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Abstract: 
Several new specimens of pterodactyloid pterosaurs attributed to the Ornithocheiroidea and 

Azhdarchoidea and housed within the State Museum of Natural History Karlsruhe are 

described. Knowledge of their anatomy, morphometrics, joint mechanics, and extent of the 

soft tissue membrane were subsequently used to create models that tested the aerodynamic 

characteristics of the wing, body and head. 

 

Two specimens are herein erected as holotypes, the ornithocheirid Barbosania gracilirostris 

and the azhdarchoid Microtuban altivolans. The former of these, uncovered from the 

Romualdo member of the Santana Formation of NE Brazil, preserves an unusually advanced 

state of skeletal fusion where the suture between the extensor tendon process and the proximal 

articular surface of the first wing finger phalanx is partially closed. The fossil further 

advances the cause that crestless ornithocheiroids should not be considered as juvenile 

morphs of pre-established taxa. The second specimen, Microtuban altivolan was unearthed 

from the Upper Cretaceous Lagerstätten of northern Lebanon and represents a non-azhdarchid 

azhdarchoid displaying unusual proportions between the wing finger phalanges. The hyper 

reduction without loss of the fourth wing finger phalanx is shown to be more widespread 

within the Azhdarchoidea. Additional specimens presented here are attributed to the 

ornithocheirid Coloborhynchus robustus and the azhdarchoids Tapejara wellnhoferi and cf. 

Tupuxuara.  

 

The “crocodilian-like” sequence of suture closure between the neural arches and vertebral 

bodies of the thoracic vertebrae is confirmed within the azhdarchoid pterosaurs, indicating 

that the developmental timing between the Azhdarchoidea and Ornithocheiroidea did not 

significantly differ. A possible sexual dimorphism, where the pelvic girdle lacks a symphysis 

and remains open even in large adults is observed within Coloborhynchus robustus, while a 

single preaxial metacarpal is observed to contact the distal carpus with cf Tupuxuara, 

indicating that this feature was widespread within Azhdarchoidea. 

 

The primary flight membrane is reconstructed with an ankle attachment of the trailing edge, a 

configuration that was never fundamentally altered throughout the evolutionary history of the 

group. By adopting heavier estimates of mass and increasing wing load, horizontal/vertical 

flight velocities and circling radii are shown to increase. Maximum range speed for the study 



 

subject C. robustus varies between 15 – 21 ms, depending on the methodology, along with 

maximum L/D ratios of 13-23. Body drag of the small azhdarchoid Aurorazhdarcho micronyx 

is estimated at <0.015 while a CFD analysis of C. robustus indicates a coefficient of 0.022 for 

the large ornithocheiroid. Despite the presence of an often enlarged head, this feature 

contributes only 13-16% of the total parasite drag coefficient when orientated directed into the 

flow. Yawing of the head, however, results in increases of up to 20-91% by the relatively low 

angle of 40°. The crest of Nyctosaurus gracilis is found to flutter in low to moderate flow 

velocities, resulting in higher than expected drag coefficients. While the head and crest are 

found to influence the aerodynamics of the animal a primarily aerodynamic function is 

rejected.  

 
Zusammenfassung: 
 

Einige neue Spezien der Pterodactyloid Pterosaurier angehörig der Ornithocheiroidea und 

Azhdarchoidea, die im staatlichen Naturhistorischen Museum in Karlsruhe untergebracht sind, 

werden beschrieben. Das Wissen über ihre Anatomie, Morphometrie, Gelenkmechanik und 

das Ausmaß der Weichteilmembran wurden danach benutzt, um Modelle zu erstellen, mit 

denen die Charakteristiken der Aerodynamik der Flügel, des Körpers und des Kopfes getestet 

wurden. 

 

Zwei Spezien, der Ornithocheirid Barbosania Gracilirostris und der Azhdarchoid Microtuban 

altivolans sind hierin als Holotypen aufgerichtet. Letzterer wurde vom Romualdo Member der 

Santana Formation im Nordosten Brasiliens aufgedeckt und preserviert einen ungewöhnlich 

fortgeschrittenen Zustand der Skelettfusion, in welcher die Sutur zwischen des 

Strecksehnenprozesses und die proximale Gelenkfläche des ersten Flügelfingergliedes partial 

geschlossen ist.  

 

Das Fossil zeigt des weiteren, dass der haubenlose Ornithocheiroids nicht zu den jugentlichen 

Morphen der vorherbestimmten Taxa gezählt werden darf.  Die zweite Spezie, Microtuban 

altivolans wurde aus den Oberen Kreidezeitlagerstätten im Norden von Lebanon ausgegraben 

und repräsentiert einen non-azhdarchid azhdarchoid, der ungewöhnliche Proportionen 

zwischen den Flügelfingerphalangen vorweist. Die Hyperreduktion ohne den Verlust des 

vierten Flügelfingergliedes zeigt sich als üblich bei den Azhdarchoidea.  

 



 

Weitere Spezien, die hier präsentiert werden, sind auf den Ornithocheirid Coloborhynchus 

robustus zurückzuführen, und der Azhdarchoids Tapejara wellnhoferi und cf. Tupuxuara. 

 
Die Primäre Fliegemembran ist mit einer Knöchelanhaftung der Hinterkante rekonstruiert, 

eine Konfiguration, die nie fundamental im Laufe der evolutionären Geschichte dieser Gruppe 

abgeändert wurde. Durch das Adoptieren von schwereren Schätzungen der Masse und 

steigender Flügelbelastung, zeigen sich horizontale/vertikale Fluggeschwindigkeit und 

Kreiseradien als erhöht. Der maximale Geschwindigkeitsumfang für das Studiensubjekt C. 

robustus variiert zwischen 15 – 21 ms, davon abhängend welche Methodologie verwendet 

wird, außerdem mit Maximum L/D Verhältnissen von 13-23.  
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Acronyms & Abbreviations: 
 

Aerodynamics 
 
A, surface area  
AR, aspect ratio (b2/A) 
b, span 
CD, coefficient of (total) drag 
CDpar, parasite drag coefficient 
CDpro,  profile drag coefficient 
CDi,  induced drag coefficient 
CL, coefficient of lift 
Cp, contours of the pressure coefficient 
D, drag (total) 
Dpar, parasite drag 
Dpro, profile drag 
Di, induced drag 
e, power induced correction factor 
F, force 
g, gravity 
k, deviation of lift from an ideal elliptical pattern 

(usually 1.1 – 1.2) 
L, lift 

M2, munk’s span factor 
M, mass 
Re, Reynolds number 
S, surface area 
Sw, wetted surface area 
V, volume 
V, horizontal velocity (ms) 
Vt, horizontal velocity during a turn (ms) 
Vs, vertical sinking velocity (ms) 
Vst, vertical sinking velocity during a turn (ms) 
Vms, horizontal velocity at the point of minimum 

vertical sink 
α, alpha (angle of attack in degrees) 
p, pressure 
ρ, density of air (1.23) 
π, pie (i.e. 3.14) 
ε, glide ratio 
 

 
Anatomical 

 
act, acetabulum 
acf, actinofibrils 
ast, astragalus 
av, alveolus 
b. tub., biceps tubercle 
c, cervical 
cap, capitulum 
ccrp, cranial carpal 
cd, caudal vertebrae 
cdcrp, caudal carpal 
cdfc, caudal facet 
cf, cranial facet 
cf, coracoid facet 
cr, cranium; 
co, coracoid 
cpr, caudal process 
cpr, caudal process 
cr, cranial rib 
cr, cranial ridge 
crp, corpus 
crp, carpus 
cs, cristospine 
cty, cotyle 
d, dorsal 
dXpX, digit X phalanx X 
das, dorsal articular surface  
dcrp, dorsal carpal 
dcty, dorsal cotyle 
dp, diapophysis 
dp, deltopectoral process 
dp, depression 
dpc, deltopectoral crest 

dsc, distal syncarpal 
dt, distal tarsal 
dtub, distal tubercle 
epy, epiphysis 
etp, extensor tendon process 
f, frontal 
f, foramina 
fcpt, femoral head 
fcl, femoral neck 
fe, femur 
fov, fovea 
g, groove 
gb, gastral basket 
gl, glenoid 
gr, gastral rib 
gtr greater trochanter 
hu, humerus 
hcl, humeral collum 
hcpt, humeral caput 
hu, humerus 
hl, hind limb 
hyp, hypapophysis 
ics, inter condular sulcus 
il, ilium 
isc, ischium 
j, jugal 
la, lacrimal 
las, lateral articular surface 
lec, lateral epicondyles 
ld, left dentary 
ltr, lesser trochanter 
m, mandible 

m, maxilla 
mas, medial articular surface 
mc, metacarpal 
mdr, medial dorsal ridge 
mdt, medial distal tarsal 
mec, medial epicondyles 
mf, medial flange 
ms, muscle scar 
msa, medial scapular 
articulation 
msc, mandibular sagittal crest 
mr, muscle ridge 
mr, medial ridge 
mt, metatarsal 
n, notarium 
na, nasal 
naof, nasoantorbital fenestra 
nc, neural canal 
ns, neural spine 
ob, obturator foramen 
ocd, occipital condyle 
op, opisthotic 
or, orbit 
p, process 
p, parietal 
part, proximal articulation 
pac, preaxial carpal 
pact, postacetabular process 
pas, preaxial carpal art surface 
pf, pneumatic foraman 
pg, pelvic girdle 
pm, premaxilla 



 

postzy, postzygapophyses 
pp, parapophysis 
pr, position of radius 
pre, pre-exapophysis 
prezy, prezygapophysis 
psc, proximal syncarpal 
dsc, distal syncarpal 
pt, pteroid 
pu, pubis 
postzy, postzygapophyses 
q, quadrate 
r, ridge 
rap, right articular process 
rb, ribs 
rd, radius 
s, sacral 

s, suture 
sa, sacral articulation 
sac, sacral 
sca, sternal articulation 
sc, scapulocoracoid 
scp, scapula 
scr, sclerotic ring 
scp, scapula 
ses, sesamoid 
sf, sacular furrow 
snp, supraneural plate 
soc, supraoccipital crest 
sp, sternal plate 
sq, squamosal 
ss, sagittal sulcus 
sr, sacral rib 

st, soft tissue 
sut, suture 
sy, symphysis 
tub, tubercle 
ti, tibia 
tp, transverse process 
tro, trochlea 
tub, tubercle 
wph, wing finger phalanx 
ul, ulna 
vas, ventral articular surface 
vc, ventral condyle 
vcty, ventral cotyle 
vf, ventral flange 
vmr, ventral medial ridge 
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INTRODUCTION 
 

1



 
1.0. Introduction 
 

This body of work, presented as the culmination of several projects undertaken within 

the frame of Doctorate of Philosophy, focuses on the anatomy and palaeontological 

inferences of the Pterosauria, an extinct group of volant archosauromorphs that ruled 

the Mesozoic skies between the Middle / Late Triassic and the latest part of the 

Cretaceous.  

 

The thesis focuses specifically on a large collection of undescribed Cretaceous 

pterosaurs that have been amassed by the Staatliches Museum für Naturkunde 

Karlsruhe (SMNK), due to the presence of both new genera and species, as well as the 

numerous palaeontological insights that they provide. These fossils are restricted 

taxonomically to two well known divisions of the Pterosauria, the Ornithocheiroidea 

and Azhdarchoidea (e.g. Unwin 2003; Lü et al. 2009).  

 

Further to this, interdisciplinary collaborations with the Karlsruher Institut für 

Technologie (KIT, German Institute of Technology) and the Deutsches Zentrum für 

Luft und Raumfahrt (DLR, German Centre for Flight and Space Travel) permit the 

aerodynamic and flight capabilities of individual animals to be assessed based, in part, 

on the bauplan and joint mechanics of those specimens described herein. With these 

broader considerations in mind, several specific aims are proposed to be investigated 

herein, further increasing our knowledge of the palaeobiology, morphology, and flight 

characteristics of this unique group of flying reptiles.  

 

1.1. Aims and Goals 
 

The primary goals of this thesis are divided between two major lines of investigation, 

firstly those of an anatomical and palaeontological theme, and secondly those of an 

aerodynamic nature. These two themes are intended to complement one another 

where a better understanding of the pterosaurian bauplan, the extent and shape of the 

wing membranes, scaling relationships, and joint mobility will allow the construction 

of the physical, digital, and mathematical models required for any subsequent 

aerodynamic assessment. The alteration of key variables in the experimental models, 

2



in addition to adopting multiple lines of investigation is considered to provide a robust 

means of assessing the likely aerodynamic performance within the study taxa. 

Likewise this information will allow a better understanding of the palaeobiology and 

evolution of pterosaurian skeleton.  

 

The principal aims proposed for this work are: 

 

Anatomical / Palaeontological Aims: 

 

i) The description and taxonomic identification of several new 

specimens of Cretaceous pterodactyloids. 

 

ii) Identification of the morphological and palaeontological inferences 

that such specimens provide, and their significance within a modern 

palaeontological context. 

 

iii) Determination of the long bone morphometric relationships between 

divisions of the Pterosauria. 

 

iv)  Determination of joint mechanics and available degrees of freedom. 

  

Aerodynamic Aims: 

 

v) Reconstruction of the pterosaurian bauplan and wing shape. 

 

vi) Estimation of aerodynamic performance in pterodactyloid 

pterosaurs. These are to be established based on three 

methodologies: mathematical theory, computer simulations, and 

wind tunnel modelling.  

 

vii) Comparison between various methodologies to establish the most 

likely aerodynamic characteristics of each study taxon. 
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1.2. Collections of the State Museum of Natural History Karlsruhe. 
 

The Museum of Natural History Karlsruhe lies in the south-western province of 

Baden-Württemberg and represents one of major museums of palaeontological 

interest in Germany – where specialist collections contain Tertiary birds and 

crocodiles, Pleistocene mammals, Permian tetrapods, and fishes of various Periods. In 

addition to these, and of direct relevance to this project, it also holds one of the largest 

collections of pterosaurs in Western Europe and arguably the largest publicly 

accessible collections of Cretaceous pterodactyloids from the Chapada do Araripe in 

NE Brazil; a region famous for the exception preservation of these, and other animals 

(Unwin and Martill 2007). The large numbers of specimens that at the time of writing 

lacked any full or proper description was one of the major influences in the creation 

of this body of work, creating a catalogue of fossils that increase our understanding of 

this enigmatic group and permitting ready access to photographs and descriptions for 

future workers – much as has been achieved for other collections (e.g. Veldmeijer 

2006). 

 

Material housed in these collections are assigned the pre-fix SMNK, for “Staatliches 

Museum für Naturkunde Karlsruhe,” followed by “PAL” where they belong within 

the palaeontological section of the museum. The museum is state owned rather than 

privately backed, and has a long and proud history of over 200 years of open public 

access. As such all specimens described within the context of this body of work are 

available for study and further evaluation through the curator of the Department of 

Earth Sciences. Further information may be found on the museum website in English, 

German, and Spanish at www.smnk.de/ 

 

1.3. Note on the status of privately purchased fossil included in this 

study. 
 

While the SMNK conducts large amounts of fieldwork worldwide, a substantial 

number of specimens stem from private collectors who sell fossils directly to the 

museum. As all of the specimens described within this thesis were sourced in such a 
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way, primarily from Brazil which legislates against such practices, a brief foreword is 

required to cover this often controversial practice. 

 

The collection of fossils for commercial sale has a very long history and has 

inevitably lead to a number of important specimens and discoveries that would 

otherwise gone unheeded. Furthermore with museum budgets under pressure and staff 

otherwise engaged, academic excursions dedicated to the collection and discover of 

new material are limited in both their time and scope, meaning that commercial 

quarrying can be seen as a positive means to offset these limitations – in addition to 

providing education and an addition source of wealth for those involved with the 

initial collections. 

 

Many others, however, have highlighted the problems associated with commercial 

quarrying whereby locality data is unreliable (and often purposefully absent or 

incorrect), sites can be irreversibly damaged, and many museum and institutions can 

be out priced for scientifically valuable by private collectors – the specimens often 

disappearing from the academic community for generations at a time. Perhaps the 

most vocal critics of commercial fossil collecting also point out that greater rewards 

can be obtained by moving material unearthed in one country to another, leading to 

the development of an illicit trade in fossil material, as many countries restrict 

ownership of what they regard as “cultural patrimony” (Yates and Elgin 2013).  

 

This latter point is directly relevant to the pterosaurs purchased by SMNK, as Brazil 

has banned the commercial sale of all fossil originating from its territories since 1942. 

In spite of this large numbers of fossils continue to make their way to the USA and 

Western Europe where they end up in public or private institutions. Although 

successive articles of legislation from UNSECO have attempted to address such 

problems, the current legal framework is weak as individual countries differ on their 

interpretation of fossil rights, legal consequences, and is the legislation itself remains 

non-binding. While one legislative article may offer some form of compensation, see 

UNIDROIT (1995), this has been criticised by Palmer (2000) and furthermore 

Germany is not one of the current signatories. As such current UNESCO guidelines 

indicate that Brazil (as the injured party) must prove that any specimen described 

herein was excavated from its soil post 1942 before it may be deemed to have been 
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illicitly smuggled – an impossible task as such specimens are provided with little 

documentation that would permit this to be determined. It also remains a matter of 

great debate within the scientific community as to wither fossils can, or indeed should, 

be regarded as the “cultural patrimony” of any state, given that they predate the 

evolution of human race by a considerable margin, but this is beyond the scope of this 

thesis. What is clear, however, is that national and international legislation governing 

palaeontological specimens require some degree of change to better reflect the 

modern world, and effectively decouple them from the archaeological practices to 

which they are often bound (Yates and Elgin 2013). 

 

These considerations in mind, the pterosaurs described within this body of work are 

presented for the good of the scientific community. While discouraging illicit 

trafficking is to be encouraged, the fact that the featured specimens are interred within 

a registered museum, rather than ending up within a private institution as would have 

certainly been their fate otherwise, guarantees the continued and universal access to 

any and all persons, to the benefit of the international community. 

 
 
1.4. Introduction to the Pterosauria. 
 

The pterosaurs (“ptero” – wing, “saur” – reptile) are a volant group of 

archosauromorph reptiles that represent an important transition within the vertebrate 

fossil record. These animals were the first vertebrates to evolve an active system of 

powered flight and, based on fossil finds, ruled the Mesozoic skies for at a minimum 

of 45 Million Years prior to the evolution of the first paravians. Despite the lack of 

specimens the Pterosaurian lineage must have extended back to the earliest part of the 

Triassic, prior to their split with the Dinosauria, giving them an evolutionary range 

that approached 180 Million years – reaching its maxima during the Late Jurassic and 

Early Cretaceous (Wellnhofer 1991a; Barrett et al. 2008; Lockley et al. 2008) and 

terminating at close of the Cretaceous (Maastrichtian). During this period the 

pterosaurs achieved an almost worldwide distribution (Wellnhofer 1991a; Barrett et al. 

2008) and diversified into a wide range of piscivorous (Wellnhofer 1991a; Unwin 

2005; Kellner and Campos 2002; Veldmeijer et al. 2007) and insectivorous 

(Döderlein 1923; Wellnhofer 1975, 1991a; Bennett 2007a) taxa, with rarer examples 
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indicating that hard shelled organisms (Wellnhofer 1991a), small vertebrates (Witton 

and Naish 2008), and filtered prey were also captured (Codorniú et al. 2013).  

 

The aerial performance of these animals has traditionally been regarded as 

exceptional, with even the largest individuals capable of slow stable flight, low 

sinking speeds, and capable of performing exceedingly tight turns relative to other 

animals of their size (Bramwell and Whitfield 1974; Brower 1981, 1983; Chatterjee 

and Templin 2004). As such pterosaurs have been inferred to spend much of their life 

travelling and feeding on the wing by snatching prey from the surface water 

(Veldmeijer et al. 2006). 

 

Despite the lack of fossil material from the Middle to Early Triassic, even the most 

basal taxa are known to possess fully developed and functioning wings (Wild 1984a, 

b; Dalla Vecchia 2003; Wellnhofer 2003; Stecher 2008) indicating that flight, or an 

efficient method of gliding, must have evolved at a very early point within the lineage 

and predates their earliest occurrence within the fossil record. Indeed, all specimens 

are known to display numerous adaptations to a volant lifestyle (Figure 1.1), with 

notable features include the elongation of the first four phalanges of the fourth digit in 

the manus to form the distal wing spar, the presence of three distinct membranes that 

acted as the flight surfaces (Frey et al. 2003a), a well developed brain for sensory 

processing (Witmer et al. 2003; Eck et al. 2011), hollow long bones with paper thin 

cortices (Elgin and Hone 2013), and an invasive pneumatic system that became 

increasingly extensive in more derived genera (Claessens et al. 2009; Eck et al. 2011). 

At no point within the lineage was flight abandoned in favour of terrestrial 

locomotion as in the case for a number of birds, and instead derived pterosaurs 

became the largest flying animals of all time, with wing spans up to and likely in 

excess of 10 m (Lawson 1975). Although the flight capabilities of the largest of these 

has been questioned (Sato et al. 2009; Henderson 2010), even medium sized 

pterosaurs from the Cretaceous achieved wing spans well in excess of 5 m by late 

adulthood (Bennett 2001a, b; Kellner et al. 2013).  

 

The appearance of these larger species throughout the Cretaceous, replacing the pre-

existing fauna of typically small (< 2 m) species known from the Triassic and Jurassic 

has been demonstrated to conform to the criteria of Cope’s Rule (Hone and Benton 
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2007). The result of such a trend, culminating in a low diversity of exceedingly large 

Late Cretaceous taxa, when contrasted against the wide diversity of taxa known from 

the Jurassic and Early Cretaceous (Wellnhofer 1991a,b; Wang et al. 2005; Unwin and 

Martill 2007), indicates that pterosaurs were already in steep decline by the terminal 

Cretaceous (Unwin 1987) – becoming extinct along with majority of other large 

bodied animals abruptly at the K-T boundary 65 Million year ago. Although 

fragmentary bones of pterosaurs have been unearthed from Tertiary deposits of the 

south of England, all are known to have been reworked from older Cretaceous aged 

sediments (Unwin 2001). 

 

 

Figure 1.1. - Pterosaur reconstructions over the years. A, the earliest restoration from 
1800 (see Taquet and Padian 2004) emphasising its supposed mammalian character; 
B, restoration of several pterosaurs from Seeley (1901), appearing very bat-like in 
character; C, two non-pterodactyloid pterosaurs also displaying a “bat-like” character 
to their anatomy and movement; D, a substantially more accurate reconstruction of a 
pterosaur (Pteranodon) by Marsh with the flight membrane extending down to the 
ankle.  
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1.5. A short note on pterosaur phylogeny and relationships. 
 

The position of the Pterosauria within the vertebrate tree is complicated by the 

derived state of skeletal characters observed within Upper Triassic pterosaurs (i.e. 

Eudimorphodon, Wild 1973, 1978, 1984a; Wellnhofer 2003; Peteinosaurus, Wild 

1984b; Preondactylus, Dalla Vecchia 1997; Raeticodactylus, Stecher 2008). 

Consequently even the earliest known animals possessed a highly modified skeleton 

for the dual purpose of terrestrial locomotion and flapping flight, resulting in few 

anatomical clues to their immediate ancestors. Despite initial arguments that 

pterosaurs represented a marine creature (Collini 1784), a type of bat (von Sömmering 

1812), or an intermediate form between mammals and birds, it was Cuvier (1809) 

who recognised their reptilian nature and erected the term “Ptero-dactyle” to 

accommodate the original fossil of Collini (1784). Subsequent studies and cladistic 

analyses have supported pterosaurs as archosauromorph reptiles and as such are 

included with the ornithodirans (Padian 1984; Gauthier 1986; Sereno 1991; Benton 

1999; Irmis et al. 2007; Hone and Benton 2007; Padian2008; Andres et al. 2010); a 

group containing the Pterosauria, Scleromochlus, Dinosauromorpha, and all their 

more recent decedents (see Padian 2008, Figure 1.2). 

 
 

Figure 1.2. – Selected divisions of the Pterosauria and their potential relationship to 
other archosauromorph reptiles. The Pterosauria is divided into two major groups, the 
more basal non-pterodactyloids (blue lines), and the more derived pterodactyloid 
pterosaurs (red lines). Modified from Padian 2008.  
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Although alternative hypotheses exist, where pterosaurs have been suggested to have 

originated within the Prolacertiformes (Peters 2000), this has generated little support 

(see Hone and Benton 2007) and an ornithodiran placement is adopted for the 

remainder of this thesis. 

 

The Pterosauria itself is a monophyletic group divided between a basal, paraphyletic 

group of non-pterodactyloids taxa (i.e. “Rhamphorhynchoidea”) and a derived group 

of short-tailed animals, the Pterodactyloidea. The discovery of Darwinopterus 

modularis (Lü et al. 2009), an animal intermediate between the two traditional 

divisions by possessing a combination of pterodactyloid and non-pterodactyloid 

characteristics including an elongate caudal series and single nasoantorbital fenestra, 

further divides the Pterosauria into monofenestratid (i.e. Pterodactyloidea + 

Darwinopterus) and the non-monofenestratid taxa (i.e. pterosaurs that do not posses a 

nasoantorbital fenestra). Although the major divisions within the Pterosauria have 

been identified through successive cladistic studies (e.g. Andres and Ji 2008; Andres 

et al. 2010; Bennett 1989, 1994; Kellner 1995, 1996a, 2003, 2004a; Lü and Ji 2006; 

Lü et al. 2006a, b, 2009; Unwin 1995, 2003; Wang and Zhou 2006; Wang et al. 2008, 

2009), continued debate on the taxonomic position and content of these has resulted in 

an abundance of somewhat contradictory phylogenies within the published literature 

(Figure 1.3.). As this work neither investigates nor attempts to fundamentally alter the 

established phylogeny I will follow that laid out by Lü et al. (2009) and adopt the 

terms Ornithocheiroidea and Ornithocheiridae sensu Unwin (2003). While I accept 

that other studies utilise these specific divisions to cover a different selection of taxa 

(e.g. Kellner 2003) the major conclusions of this work are not altered by the use of a 

conflicting phylogeny.   
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Figure 1.3. - Various phylogenies depicting the relationships between the pterosaurs. 
A, Unwin (2003), with the circle representing the Ornithocheiroidea (sensu Unwin 
2003); B, Kellner (2003), circle representing the Ornithocheiroidea (sensu Kellner 
2003); C, Andres et al. (2010), noting the more derived position of the 
Anurognathidae; D, Lü et al. (2008), detailing the relationships of the Azhdarchoidea.  
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2.0. The description of a new specimen of Coloborhynchus robustus 

(SMNK PAL 1133). 
 

2.0.1 Introduction 

 

A near complete ornithocheiroid represents one of the most extensively preserved 

skeleton of these large pterodactyloids, matching those of other exceptional 

specimens known from the same region in NE Brazil (e.g. RGM 401880, Veldmeijer 

2003; NSM-PV 19892, Kellner and Tomida 2000) but lacks the majority of the skull. 

The large number of postcranial elements and excellent three dimensional state of the 

bones permitted Wilkinson (2008) to reconstruct the joint mobility of the 

Ornithocheiridae, allowing a good comparison between these animals and Pteranodon 

(from which large amounts of good three dimensional material is known). In spite of 

this, the specimen lacks a formal and detailed description of its anatomy. It is 

therefore described as a new specimen of the ornithocheirid Coloborhynchus robustus 

(Wellnhofer 1987; Fastnacht 2001), by far the most compete skeleton of this species 

known to date, and is compared with other allied species from the Romualdo Member, 

Chapada do Araripe, NE Brazil.. 

 

2.0.2 Systematic Palaeontology 

 

Order Pterosauria Kaup 1834 

Superfamily Ornithocheiroidea Seeley 1870 

Family Ornithocheiridae Seeley1870 

Genus Coloborhynchus Owen 1874 

 

Diagnosis (after Fastnacht 2001) - Median depression on the anterior margin of the 

upper jaw. Flattened anterior margin of the premaxilla triangular. Pair of teeth 

projecting anteriorly from the blunt anterior margin of the upper jaw at a significant 

elevation above the palate relative to subsequent teeth. Medial crest on upper jaw rises 

from the tip of the snout. Upper jaw laterally expanded in a spoon-shape in dorsal 

view from the second to the fourth pair of alveoli. Lower jaw with medial crest rising 

from its anterior end. Lower jaw laterally expanded in a spoon-shape from the first to 
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the third pair of alveoli. Second and third pair of alveoli of the upper and lower jaw 

enlarged relative to other alveoli. 

 

Tropeognathus robustus Wellnhofer 1987 

Anhanguera robustus Kellner 1989 

Coloborhynchus robustus Fastnacht 2001 

 

Included Material - BSP 1987 I 47 (Holotype), SMNK PAL 2303 (Paratype), 

SMNK PAL 1133. 

 

Diagnosis (after Fastnacht 2001) - Facies rostralis anterior of upper jaw wider than 

high. Depressus medianus of facies rostralis anterior of the upper jaw trianglar. 

Sagittal crest of the upper jaw rising with a straight dorsal crista from the anterior end 

of the jaw. Second pair of alveoli of the upper jaw projecting anteroventrally. 

 

2.0.3 Specimen details 

 

Collection number of the described specimen - SMNK PAL 1133 

 

History & Locality Information - The specimen originates from the Chapada do 

Araripe, NE of Brazil, and was purchased by the museum from a private collector. 

The specimen is inferred as being unearthed from the Romualdo Member (Albian, 

Lower Cretaceous) based on the excellent condition of the skeleton and the original 

concretions that surrounded these elements No additional locality information is 

possible to provide.  

 

Preservation - The described specimen is primarily represented by postcranial 

elements covering almost the entire skeleton. These bones are preserved in three 

dimensions with no noticeable crushing or distortion. Many elements are damaged 

and have been extensively repaired with white plaster of Paris.  

 

2.0.4 Specimen Description 
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Cranial elements – A partially complete, tri-radiate bone, interpreted as the caudal 

portion of the jugal is the only part of the skull preserved (Figure 2.1). The three 

radiations of the bone are very thin and blade-like in cross-section, representing the 

cranio- and caudoventral margins of the orbita and the lower temporal fenestra 

respectively. In lateral view the middle radiation is broadest, while the most cranially 

preserved radiation curves sharply medially and appears to terminate in an expanded 

concave articular surface. In cross-section the long axes of the most cranial and 

caudally preserved branches are offset at an angle of just less than 90°.  

 

Mandible – The partial mandible is well preserved in three dimensions but is missing 

the left ramus and has suffered some damage to the rostral tip (Figure 2.2). The rostal 

tip, left ramus, and the caudal portion of the right dentary have all been restored with 

white plaster of Paris. Only one set of alveoli is thought to be missing due to the 

damage to the rostrum (see discussion). Further damage has occurred on the left flank 

of the bone, level with the start of the rostral expansion. All the alveoli in this 

localised region are missing. 

 

The right dentary is elongate in its lateral aspect, the dorsoventral height does not 

taper and remains relatively constant for the entire length of the bone (i.e. 35 mm). 

Only a slight increase in height of up to 39 mm is observed immediately rostral to the 

symphysis. The right ramus is directed 16° against the midline of the mandible and 

has fused to the remaining part of the left ramus, creating a symphysis 40 mm in 

width. The total length between the start of the symphysis and the rostral termination 

is 250 mm. The dorsal face of the dentary is dominated by a large sagittal sulcus, 

situated between two large medial ridges, and tapers rostrally. The sulcus begins 9 

mm rostral to the symphysis and terminates on the rostral expansion, the exact 

position of which is not visible due to the damage to the left side of the dentary. A 

large median sagittal crest begins ventral to the position of the 9th visible alveoli (i.e. 

10th tooth socket) and although its true extent is not visible due to the damage of the 

rostroventral margin, it likely extended to the rostral tip of the dentary. The crest is 

sub-triangular in cross-section. 

 

Seventeen tooth sockets are observed on the right denary with thirteen of these 

positioned rostral to the symphysis. These are positioned dorsolaterally on the lateral 
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flank of the medial dentary ridge and are oval in shape, their long axes directed 

rostromedially. The 4th visible alveolus is the smallest and marks the beginning of a 

slight rostral expansion. This is interpreted as the 5th tooth socket.   

 

A large adductor fossa is partially preserved on the medial side of the right dentary at 

the caudal termination of the bone.  

 

 Cervical vertebrae – Two vertebrae of the cervical column are present but have 

been partially repaired with plaster. The first of these has had the tip of the neural 

spine and the right postzygapophyses restored, while the second is missing the entire 

corpus and the non-articular section of the right prezygapophysis. 

  

The first vertebra described here belongs to the middle portion of the cervical column 

and is regarded as the 6th cervical owing to its long and low profile, where the central 

body is approximately 2.3 times longer than it is wide (Figure 2.3). The 

prezygapophyses are directed laterally between 56 - 59° to the sagittal plane and in 

lateral view are located slightly ventral to the level of the postzygapophyses. The 

ventral margin of the corpus is sigmoidal in lateral view due to the development of a 

pronounce hypapophysis on the anteroventral margin of the vertebral body (Figure 

2.3B & C). The lateral flank of the vertebra is occupied by a single large oval foramen 

approximately half way along its length. The postexapophyses are large and directed 

ventrolaterally in cranial view. The neural canal is small and sub-circular in outline.  

 

The remaining vertebra is that of the 8th cervical due to the presence of a tall neural 

spine, and widely spayed branches of the prezygapophyses. Further to this it 

articulates perfectly with the ninth cervical which itself is incorporated into the 

notarium. The 8th cervical is large and robust, where the body is squatter than the 

more cranially positioned cervicals, the centrum being 1.5 times as long as it is wide. 

The cranial branches of the bone are widely splayed at an angle of 54° in dorsal view 

and therefore similar to those described above, however, in the 8th cervical they are 

more elongate, i.e. twice as long as they are wide. The neural spine is tall and directed 

slightly caudally, the lateral faces of which are heavily marked by a series of rough 

cranioventrally orientated scars. The postzygapophyses are located relatively high on 

the caudal margin of the vertebrae.  
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Notarium – Six elements, the 9th cervical and first five thoracic vertebrae, have fused 

together to form a notarium, where the neural spines of the thoracic vertebrae have 

developed into a supraneural plate (Figure 2.4). Fracture lines are observed between 

the individual elements and across the middle portion of the centra while damage has 

removed several pairs of pre- and postzygapophyses. The transverse processes of the 

3rd thoracic vertebrae were broken and have been repaired with plaster, as has the 

corpus and ventral portion of the neural arch on the 5th thoracic vertebra.  

 

The bodies of the vertebrae are similar in form to one another, relatively narrow about 

their middle point in ventral view but expand laterally to form the proximal and distal 

margins. The profile of the body of the 9th cervical is the same as these subsequent 

vertebrae but it is slightly larger in size. In lateral view the vertebral bodies are 

dorsoventrally compressed. A single large pneumatic foramen pierces the lateral face 

of the body on the 9th cervical and the first two thoracic vertebrae. In cranial view a 

pair of sutures extends diagonally across the cranial articular surface, terminating 

against the ventral margin of the neural canal and marking the division between the 

vertebral body and the transverse processes/neural arch. The neural canal is slightly 

dorsoventrally compressed and is flanked laterally by small foramina, situated ventral 

the prezygapophyses. The articular surfaces of the prezygapophyses are flat and 

orientated ~60° dorsolaterally against the transverse plane. The diapophyses of the 

first thoracic vertebrae are located on the craniolateral margin of the centrum, clearly 

ventral to the position of the parapophysis, which has developed on the lateral margin 

of the transverse process. The diapophyses of subsequent vertebrae are positioned 

more dorsally relative to those of each preceding element until the 5th thoracic 

vertebrae, where after the diapophyses and parapophysis are located at the same level 

on the transverse process. This indicates that the first four thoracic vertebrae would 

have supported large double headed ribs. The transverse processes are long and 

narrow, directed laterally, and show a decrease in length moving caudally along the 

vertebral series. The transverse processes of the 4th thoracic vertebra are broader than 

other vertebrae, giving them a square-like profile. At least one large foramen has 

developed on the ventral face of each of the transverse processes.  
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A natural contact between the pre- and postzygapophyses is retained between the 9th 

cervical and 1st – 2nd thoracic vertebrae but fusion between these features has not 

occurred. The neural spines of the first five thoracic vertebrae are tall but broad and 

have fused together to form a supraneural plate. The lateral margin of the 1st thoracic 

vertebra is marked by strong linear depressions for the insertion of muscles or the 

position of mineralized tendons (Bennett 2001a). The lateral face of the 4th thoracic 

vertebra is substantially broader than all others and has expanded craniocaudally to 

form the lateral articulation with the scapula.  

 

Dorsal vertebrae - Three isolated vertebrae are present and would have been 

originally positioned between the notarium and the sacrum (Figure 2.5). These 

vertebrae are well preserved although both are missing the lateral half of the left 

transverse process and have sustained damaged to the pre- and post-

zygapophyses/exapophyses.  

 

The vertebral bodies are procelous and only marginally longer than they are wide, 

narrowing in width towards the middle of the body. The lateral faces of the vertebral 

bodies are slightly concave and free of foramina. No sutures between the bodies and 

the neural arches are visible indicating that the vertebrae are fully fused.  

 

The neural canal dominates the cranial faces of the vertebrae. The preexapophyes are 

positioned on the dorsolateral margin of the cranial cotyle and are large, with flat 

craniodorsally orientated articular surfaces. Dorsal to the preexapophysis sits a large 

foramen, positioned dorsolateral to the neural canal and ventrolateral to the remains of 

the prezygapophyses. The cranial face of the vertebrae between the prezygapophyses 

is strongly concave and merges smoothly with the neural spine. The neural spine is 

tall and narrow, approximately 1.7 times as tall as it is wide in lateral view. In lateral 

view the neural spines lie adjacent to one another while the left faces are marked by 

small ridges for the attachment of muscles. The transverse processes are long and 

narrow, approximately three times as long as they are wide, and are orientated slightly 

craniolaterally when viewed in their dorsal aspects. Three large foramina pierce the 

transverse process. The first of these is positioned immediately caudolateral to the 

prezygapophyses while the second lies adjacent to this, occupying the junction 

between the transverse processes and the neural spine. The third foramen occupies the 
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medial portion of the ventral surface. The postexapophyses are small, but slightly 

concave, and positioned on the dorsolateral margins of the distal condyle. 

Dorsolateral to the neural canal the two foramina observed on the cranial surface exit 

onto the caudal face of the bone. The caudal face of the neural spine is triangular, the 

base of which is formed by the remnants of the postzygapophyses. The central region 

of the neural spine is depressed relative to the level of the surround bone.  

 

Sacral vertebrae – The sacral vertebrae are well preserved in an excellent three 

dimensional state with the exceptions of the neural spines, which are broken. 

 

Four vertebrae have fused together into a synsacrum where the post- and 

prezygapophyses and the intercentral sutures have fully closed (Figure 2.6). The 

articular surfaces of the prezygapophyses are directed slightly caudolaterally. The 

neural canal dominates the cranial face of the bones. The ventral margins of the centra 

are flat rather than concave as is typically observed in the thoracic vertebrae. The 

neural spines, where present, are low and broad, giving them a square appearance in 

lateral view. Each of the vertebrae preserves a pair of large sacral ribs. These ribs are 

narrow medially but expand craniocaudally towards their lateral margins. In dorsal 

view the first three are directed caudolaterally while the fourth is directed laterally. 

The first rib has twisted so that in lateral view it is directed craniodorsally at an angle 

of 26° to the horizontal axis. The remaining ribs are also twisted, but in the opposite 

direction, the angle of which becomes progressively shallower in a caudal direction 

(i.e. 57°, 41° and 12° for ribs 2, 3 and 4 respectively). 

 

Caudal vertebrae – Six caudal vertebrae are present, the first of which lies in 

articulation with the four sacrals but is badly damaged and has been extensively 

repaired.  

 

The remaining five caudals are found together (Figure 2.7), however, they have not 

sutured with one another and are instead held in place with glue. The dorsal margins 

of four of the caudal vertebrae have been broken and repaired with plaster. The 

difference in size between the articular surfaces of 1st caudal vertebrae and the 1st 

element of the articulated block suggests that the two do not represent a natural series.  
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When viewed from their dorsal aspects the two most cranially located vertebrae have 

a square outline with relatively high and narrow neural spines compared to the 

remaining caudals. Caudally, the vertebrae become progressively more elongate with 

lower and broader neural spines. A prominent neural canal has developed through 

each of the caudal vertebrae.  

 

Sternum – The sternum is partially preserved but significant portions of the left side 

of the sternal plate, the right hand margin of this plate, and the cranial portion of the 

cristospine have been restored. As such the lateral margins and overall shape of the 

sternal plate is reconstructed. 

 

Despite the level of reconstruction the lateral faces of the cristospine are concave, 

while in dorsal view the bone is sub-triangular and tapers cranially (Figure 2.8). A 

weak median dorsal ridge terminates caudally against the articulation facets for the 

coracoids, which are divided into two craniolaterally located surfaces on the large 

dorsal tubercle. The cristospine is widest level with these articular facets. The caudal-

most portion of the articulation is formed by a prominent tubercle that is sub-

triangular in cranial view. The articulation itself is divided into two individual 

surfaces, located dorsally and laterally on the cristospine, one for each of the medial 

forks of the coracoid. In lateral view the articulation is directed craniodorsally. The 

neck of the sternal plate, where it meets the cristospine, is narrow but immediately 

caudal to this point the bone expands laterally. The lateral margins are directed 

dorsally in cranial view so that caudal to the neck the sternal plate lies dorsal to the 

cristospine. The sternal plate is transversely concave and the dorsal surface pierced by 

a large pneumatic foramen immediately caudal to the neck. In ventral view a weak 

median crest extends caudally from the cristospine approximately half way along the 

sternal plate.  

 

Scapulocoracoid – The right scapula and coracoid have fused together to form a 

scapulocoracoid that is well preserved in three dimensions, missing only the caudal 

portion of the medial scapular articulation and the central portion of the coracoid 

furca. The left element is represented only by a fragment of the scapula and has been 

restored based on the dimensions of the right.  
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The scapulocoracoid is a weakly U-shaped element where the coracoid is longer than 

the scapula (Figure 2.9). A comparison between the articular facet on the 4th thoracic 

vertebrae and the scapula indicates that in life the scapula was angled craniolaterally 

against the mid line of the vertebral column. The scapula forms the dorsal half of the 

scapulocoracoid body, including the dorsal half of the glenoid fossa. Dorsal to the 

glenoid fossa a large bulbous tubercle is present and marks the boundary between the 

medial portion of the scapula and the main body. On the ventral side of the scapula, 

below the large tubercle, a smaller and isolated tubercle is present. The medial section 

of the bone is dorsoventrally compressed and narrowest about its mid point but 

expands towards the medial articulation. In medial view the articular surface is oval, 

elongated craniocaudally, and displays a slight convex curvature. The cranial most 

portion is distinct from the remainder of the articular surface, its face being flatter and 

directed craniolaterally rather than flat against the sagittal plane.  

 

The coracoid forms the ventral half of the scapulocoracoid, including the ventral half 

of the glenoid. A large tubercle (biceps tubercle after Bennett 2003a) is observed 

cranial to the glenoid fossa and a pneumatic foramen is present between this and the 

cranial margin of the glenoid fossa. A second and larger foramen occupies the medial 

face of the scapulocoracoid body, just ventral to the level of glenoid fossa. Medially, 

the coracoid body thins to form a narrow shaft that is sub-triangular in cross-section. 

A short, but pronounced, craniocaudally compressed ridge is visible on the ventral 

surface of the shaft close to the coracoid body. The caudal face of the coracoid shaft is 

slightly concave between a sharp central ridge and the caudal margin of the bone. 

Medially a long low ridge is adjacent to the articular surface of the sternum for the 

insertion of M. sternocoracoideus (Bennett 2003a). The medial articular surface of the 

coracoid is formed by a slight craniocaudal expansion of the shaft and the 

development of a shallow V-shaped furca, the cranial branch of which is considerably 

smaller than that of the caudal branch.  

 

The glenoid fossa is wide and occupies the caudolateral face of the scapulocoracoid 

but does not extend onto either of the cranial or caudomedial faces. The dorsal half of 

the glenoid fossa is flat to slightly concave while the ventral half is convex. In its 

medial aspect the two halves meet at an angle only slightly greater than 90°. A small 
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furrow divides the dorsal and ventral halves of the glenoid fossa and marks the 

position of the former suture between the scapula and coracoid.  

 

Humerus - Both humeri are present and well preserved in three dimensions. Only the 

right element is complete, with the left preserving only those regions of bone medial 

to the deltopectoral crest and the dorsal portion of the distal articulation. The missing 

shaft of the left humerus has been restored with plaster to mirror that of the right.  

 

In cranial view the dorsal surface of the collum adjacent to the humeral caput is 

concave and directed dorsally at an angle of 31° to the long axis of the shaft (Figure 

2.10). On the ventral face of the collum, immediately adjacent to the humeral head, 

the bone surface is sunken, creating a large depression. The proximal articular surface 

of the humerus with the scapulocoracoid is “kidney-bean” shaped with a short 

bulbous caudal process that supports a small medial protrusion. A short curved ridge 

originating on the cranioventral margin of the medial face separates the cranial half of 

the surface into dorsal and ventral faces. The ventral face is marked by a series of 

small ridges immediately adjacent the origin of the separating ridge. The caudal half 

of the medial face is regularly convex in dorsoventral section. 

 

The deltopectoral crest is sub-triangular in cranial view and occupies approximately 

36% the length of the humerus. In cranial view the deltopectoral crest expands 

ventrally and develops a strongly concave distal margin. In ventral view the crest is 

thin and blade-like medially but curves sharply caudally and expands until it is very 

large and robust. The ventral surface of the deltopectoral crest is concave and strongly 

marked by large scars that would have acted as the insertion for the powerful pectoral 

muscles. A pronounced ridge separates the cranial half of the crest from the caudal 

half and merges gradually with the caudoventral margin of the humeral shaft. The 

caudal process (or posterior tuberosity, Bennett 2001a) is small and grades smoothly 

into the humeral head, while on the ventral surface the process forms the caudal 

margin of the central depression. The shaft is narrowest at the distal termination of the 

deltopectoral crest but expands distally near to the articular surface. A large 

pneumatic foramen pierces the dorsal face of the bone at the junction of the humeral 

neck and the caudal process. In ventral view the shaft is marked by several rugose 

ridges, presumably for the attachment of muscles. Two of these ridges are located 
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along the caudoventral margin of the bone, the first positioned just distal to the mid 

shaft, while the second is more distal and merges with the caudal portion of the 

entepicondyle. A large craniocaudally compressed supracondylar process is observed 

on the cranioventral margin of the shaft approximately three quarters along its length.  

 

The distal articular surface is D-shaped in its lateral aspect and dominated by a large 

central depression. The craniodorsal half of the surface is formed by two large 

condyles, the capitulum and trochlea, which are orientated and extend diagonally 

across the ventral face of the shaft. The caudoventral portion of the surface is formed 

by the development of an oval, convex entepicondyle, the dorsal margin of which is 

bordered by a large, distally orientated protrusion.  

 

Radius – The left radius is represented by only the proximal half of the shaft while 

the right element is complete but has been fractured into three portions.  

 

The radius is a long and narrow element with expanded proximal and distal regions 

(Figure 2.11). The shaft is bowed in a dorsal direction. The proximal articular surface 

is craniocaudally compressed and divided into three parts: a large dorsally located 

process, a flat articular surface directly ventral to this that forms the cranial articular 

surface with the capitulum of the humerus, and a small concave cotyle towards the 

caudoventral margin of the bone for the trochlea. A low ridge for the attachment of 

muscles is observed on the ventral margin of the radius only slightly distal to the 

proximal articulation. The distal expansion is craniocaudally compressed and is 

regularly convex to fit the articular surface on the proximal syncarpal.  

 

Ulna – As with the radii the left element preserves only the proximal half of the shaft 

and although the right ulna is complete, it has been severely fractured in several 

places along its length.  

 

The ulna is long and narrow, particularly about the mid shaft, while the proximal and 

distal margins have expanded (Figure 2.12). The dorsal portion of the proximal 

articular face is convex and articulates with the capitulum of the humerus while the 

most ventral portion of this convexity braced against the trochlea. There is no 

observed division of this surface. The dorsal cotyle is separated from a more ventrally 
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located cotyle, accommodating the entepicondyle of the humerus, by a bulbous ridge 

of bone that fits into the concavity of the ventral margin of the trochlea. The proximal 

surface is D-shaped in appearance and matches the distal face of the humerus. The 

dorsal margin of the cotyle for the capitulum extends onto the cranial face of the ulna 

as a short sharp ridge, marking the dorsal position of the radius, while a second ridge 

forms ventral and slightly distal to this, marking the section where the radius lay tight 

against the ulna. A single low ridge is present along the ventral margin of the ulna. In 

contrast to the proximal surface the distal expansion of the ulna is craniocaudally 

compressed. A rough but partially broken ridge marks the dorsal limit of a smooth 

region of bone on the cranial face where the radius would have lain in life. The 

ventral border of this region is formed by a blade-like ridge on the ventral margin ulna. 

Three features form the distal articular face of the ulna: a large, dorsally located and 

slightly convex articular surface, a tubercle located directly ventral to this, and finally 

a small rounded fovea near the ventral margin of the bone. 

 

Carpus – The individual carpals of the right forearm have completely fused to form 

proximal and distal syncarpal units (Figures 2.13 - 14). The preaxial carpal is 

complete but loose from the distal syncarpal block while the pteroid is also present 

but was sectioned for study by Unwin et al. (1996). As such only the articulation and 

proximal most portion of the shaft remain. No elements from the left carpus are 

preserved. 

 

The proximal syncarpal is narrow mediolaterally and shows a complex shape owing 

to the proximal and distal articular surfaces. The proximal face is divided between 

three features, the largest of which is the concave facet for the ulna and occupies the 

entire central region. At the cranioventral-most margin of this facet is a large tubercle 

that inserts into a fovea on the cranioventral margin of the ulna. A high ridge 

separates the smaller, but strongly concave articular surface for the radius from the 

articular surface for the ulna and the articular tubercle. A number of small foramina 

occupy a position immediately ventral to this ridge between the tubercle. The distal 

articular face is divided into two surfaces. The dorsal most of these surfaces is 

concave and sub-circular in profile, occupying a craniodorsal position, while the 

ventral most surface is elongate and extends diagonally from the caudodorsal to the 

cranioventral margin of the bone. A small, cranioventrally orientated ridge separates 
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the dorsal and ventral articular surfaces. The dorsal, ventral and cranial faces are all 

perforated by foramina.  

 

The proximal face of the distal syncarpal is divided into two convex surfaces that are 

separated by a central furrow, allowing the syncarpal to fit tightly against the 

proximal elements. A very large circular foramen occupies the cranioventral face of 

the bone. A single large foramen occupies the central portion of the distal articular 

surface. Dorsal to this the articular surface of what would have been the dorsal distal 

carpal prior to fusion is predominantly flat. The junction between the dorsal carpal 

and the cranial carpal is marked by a deep pit that matches a step-like articular surface 

on the fourth metacarpal. In cranial view the cranial carpal has a smooth convex 

surface that protrudes craniodistally and acts as the articular surface for the preaxial 

carpal. The dorsal margin of this surface is marked by a small crescent ridge while a 

second but more pronounced ridge is located dorsal to this. A small tubercle is located 

on the distal face of the cranial carpal. The ventral carpal forms the majority of the 

articular surface and is gently concave, the curvature becoming stronger towards the 

caudal margin. The fourth distal carpal, suggested by Kellner & Tomida (2000) to lie 

immediately dorsal to the foramen, is not observed in this specimen as this location is 

broken.  

 

The preaxial carpal has an oval, transversely compressed articular face that is concave 

to fit against the cranial protrusion of the cranial distal carpal. The middle portion of 

the carpal is narrower than the base, however, the bone expands both dorsoventrally 

and mediolaterally towards the cranial margin. The craniodorsal portion of the bone 

bears a wide V-shaped fovea that tapers distally and would have housed a sesamoid 

(pisiform after Bennett 2008). The medial face of the preaxial carpal contains a single 

foramen but no potential articular surface or ridge for the pteroid (see Bennett 2007b). 

The cranial face ventral to the fovea is bulbous, marked by a ridge on its proximal 

margin.  

 

Metacarpals – All three of the preaxial metacarpals are also preserved but only one 

of these is complete. Both of the wing metacarpals (mc IV) are also incomplete, the 

left hand element represented by proximal and distal articular ends of the bone while 
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the right hand element preserves only the proximal half of the shaft. Both wing 

metacarpals have been reconstructed with plaster of Paris.  

 

The single complete metacarpal, interpreted as mc I, has a diameter of 4 mm but has 

expanded at both the proximal and distal terminations to create the articular surfaces 

for the carpus and digits respectively (Figure 2.15). The distal expansion is bulbous 

but elongated in a craniocaudal orientation. The shaft of mc I is only just shorter than 

the reconstructed length of the fourth metacarpal.  

 

The fourth metacarpal is elongate and narrow, reconstructed as being of a similar 

length to that of the humerus as supported by other more complete ornithocheiroids 

(e.g. AMNH 225555, SMNK PAL 1132, MHNS/00/85, NSM-PV 19892, RGM 

401880). The proximal articulation is slightly expanded dorsally and divided into two 

surfaces by a small step of bone, matching the distal articular surface of the distal 

syncarpal. Originating by the proximal articulation, a thin flange of bone extends 

along the ventral margin of the cranial face of the shaft. The distal articular face is 

formed by two large condyles, the dorsal condyle of which is angled slightly dorsally 

in its cranial aspect. The intercondylar sulcus is therefore directed dorsally at an angle 

of 14° to the long axis of the shaft. A large depression is visible on the cranial face of 

the bone directly adjacent to the dorsal condyle for the attachment of muscles relating 

to the remaining metacarpals or digits. Directly ventral and slightly medial to this 

depression a small tuberosity is present on the ventral margin of the bone. In its 

caudal aspect a large depression is present on the shaft directly medial to the dorsal 

condyle that likely accommodates the flexor tendon or muscles of the fourth wing 

finger phalanx during flexion.  

 

Manus – Only two elements of the manual digits are preserved. The proximal face of 

the bone is rhomboid in outline, the dorsal half of which is concave to accept the 

bulbous articular surface of the metacarpal (Figure 2.16). The ventral half is 

craniocaudally compressed. In cranial view a long flange runs from the proximal 

margin of the digit along the ventral margin and merges with the mid-shaft of the 

bone. The presence of this feature suggests that the bone may be the first phalanx of 

the third digit (see Bennett 2001a) and may have developed for the insertion of (?) M. 

interosseus. Adjacent to the dorsal margin of the cranial face the bone is marked by 
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small, circular scars. The shafts of all the phalanges are slightly curved in a cranial 

direction and distally form a wide, saddle-shaped joint that is offset slightly 

dorsocaudally, resulting in a ventral component of movement being introduced when 

the digits were flexed. The second phalanx is almost identical in form but lacks the 

ventral flange and the dorsally located scars of ligaments or tendons.  

 

Digit 4 - Only the proximal portion of the left first wing phalanx is preserved, the 

remainder having been restored with plaster. The second phalanx of the left wing is 

mostly complete while that of the right preserves only the distal half of the shaft. The 

third phalanx of the left wing preserves only the proximal portion of the bone while 

the right element is complete. The fourth phalanges of both wings are missing.  

 

The proximal articular surface of the first phalanx is formed by two cotyles, one 

positioned dorsally and one ventrally (Figure 2.17). The dorsal cotyle of the articular 

surface is larger than that of the ventral cotyle and extends further caudally due to the 

development of a caudal process on the phalanx. The cranial halves of both of these 

cotyles are located on the extensor tendon process. The extensor tendon process is 

sub-triangular element in dorsal its dorsal aspect and firmly sutured to the main body 

of the phalanx. On the ventral face of the process a single large pneumatic foramen is 

observed.  

 

Prepubic bones – The prepubic bones are mostly complete but both are missing their 

cranial margins and have been repaired with plaster. The articular surface with the 

pubis on the left element is also broken.  

 

The articular surface with the pubis is dorsoventrally compressed and slightly concave 

as observed on the right element (Figure 2.18). The medial and lateral margins of the 

prepubes are concave with a much greater curvature being observed on the medial 

margins of the bones. As a result both elements show a pronounced expansion 

towards their cranial margins. A small blade-like process has developed on the medial 

margin of the bones, between the caudal articulation with the pubis and the cranial 

expansion of the prepubes. Although a deep depression is observed on the process of 

the left prepube, such a feature is not present on the right element. Two deep scars 

occupy the lateral margin of the dorsal surface of the right prepube but are likewise 
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not observed on the left. In lateral view the cranial blade of the prepubes are directed 

dorsally against the shaft to give the element a concave profile. 

 

Pelvic plate - Only those elements of the left pelvic plate are present but the cranial 

and caudal margins of the ilium, and the caudoventral margin of the ischium are all 

broken and have been reconstructed in plaster. The cranioventral margin of the pubis 

is broken but has not been repaired.  

 

The three individual bones of the pelvis, the pubis, ischium and ilium, have fully 

fused to form a single solid plate (Figure 2.19). While all sutures have closed slight 

ridges or scars define the original boundaries of the three elements, with a slightly 

raised region of bone marking the former position of the now closed suture between 

the pubis and ischium. This ridge terminates 8 mm ventral to the ventral margin of the 

acetabulum. A second ridge of raised bone, positioned level with middle region of the 

acetabulum, marks the former division between the ilium and the puboischiatic plate. 

The preacetabular process of the ilium is long, narrow and dorsoventrally compressed. 

The postacetabular process is mediolaterally compressed, the caudal half of which has 

twisted so that the long axis of the blade is directed dorsolaterally in caudal view. In 

lateral view a large oval acetabulum, 25 mm in diameter, occupies the central region 

of the pelvic plate, bounded by the pubis, ilium and ischium. Directly ventral to the 

acetabulum is a small foramen (obturator foramen) that pierces all the way through 

the puboischiadic plate. The obturator foramen is completely enclosed within the 

pubis. In cranial view the pubis is broadest where it forms the articular surface for the 

sacrals but narrows rapidly in a ventral direction to form a transversely compressed 

blade of bone. The cranial portion of the bone is twisted laterally with respect to the 

long axis of the pubic plate. In medial view a large trough located towards the dorsal 

margin of the plate represents the articular surface of the sacrals, the lowest point of 

this depression representing the division between the ilium and the puboischiatic plate. 

Surrounding the obturator foramen are four large pneumatic alveoli, two positioned 

within the pubis and two within the ischium. In caudal view the entire blade is 

strongly convex, causing the bone to be directed back towards the midline of the body.   

 

Femur - The right femur is well preserved but missing part of the neck and head. The 

left femur is not present. What is preserved of the collum is offset against the shaft at 
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an angle of the 20° (Figure 2.20). The greater trochanter develops as a small, dorsally 

directed protrusion on the dorsolateral margin of the shaft. Immediately ventral to the 

base of the collum where it meets the shaft, a long rugose ridge, representing the 

lesser trochanter, is observed. The shaft of the femur is long and narrow with a lateral 

curvature and expands at its distal margin to create the articular surface with the tibia. 

The medial and lateral condyles of the femur are small. The intercondylar sulcus 

present between the two condyles is longer and more prominent on the cranial surface 

than that of the caudal.  

 

Digits of the pes - Eight elements of the pes are preserved, these being the complete 

series of phalanges of digit 3, two additional unguals, and two isolated phalanges 

(Figure 2.21). The phalanges are short and delicate considering the large size of the 

animal and display a slight ventral curvature along the length of the shaft. The 

proximal and distal ends are slightly expanded towards the articular surfaces while the 

unguals are themselves also short and display only a slight curvature.  

 

 

Element Length (mm) Element Length (mm) 

Humerus 290 Wph 1 620 

Ulna 390 Wph 2 566 

Metacarpal IV 285 Wph 3 460 

Femur 277 Wph 4 330 

Tibia 338*   

 
Table 1. – Average length of long bone elements in Coloborhynchus robstus (SMNK 
PAL 1133). * denotes estimated measurements. 
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Figure 2.1. - SMNK PAL 1133. Partial jugal. 
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Figure 2.2. - SMNK PAL 1133. Mandible, where A, rostral section in its right lateral 
aspect; B, mandible in its left lateral aspect; C, dorsal aspect; D, ventral aspect. 
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Figure 2.3. - SMNK PAL 1133. Cervical vertebrae. A-E, 6th cervical; F-J, 8th 
cervical. 6th cervical observed in its A, dorsal; B, ventral; C, lateral; and E, caudal 
aspects. 8th cervical observed in its F, dorsal; G, caudal; H, cranial; I right lateral; and 
J, left lateral aspects. 
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Figure 2.4. - Notarium of SMNK PAL 1133. A, dorsal; B, ventral; C, left lateral; D, 
right lateral; and E, cranial aspects.  
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Figure 2.5. SMNK PAL 1133. Three dorsal vertebrae (positions uncertain). Elements 
are displayed in their cranial (A-C), caudal (D-E), dorsal (G-I), left lateral (J-K) and 
right lateral views (L). Scale bars are for all elements in that column. 
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Figures 2.6. SMNK PAL 1133. Sacrum. A, dorsal; B, ventral; C, left lateral; D, 
cranial aspects. 
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Figure 2.7 - SMNK PAL 1133. Caudal vertebrae. A, Dorsal, B, left lateral aspects. 
These vertebrae likely represent the anterior-most elements of the series, with the two 
right hand most elements illustrating the onset of a transition between short bodied 
bones with tall neural and those more elongate bones where the neural spine is 
depressed or absent. 
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Figure 2.8. - SMNK PAL 1133. Sternal plate. A, ventral; B, dorsal; C, left lateral; D, 
cranial aspects. 
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Figure 2.9. - SMNK PAL 1133.Right scapulocoracoid. A, cranial; B, caudal; C, 
lateral; D, medial aspects. 
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Figure 2.10. - SMNK PAL 1133. Right humerus. A, cranial; B, ventral; C, caudal; D, 
dorsal aspects. 
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Figure 2.11. - SMNK PAL 1133. Proximal portion of the right radius.A-C, proximal 
portion of the bone in: A, cranial; B, dorsal; C, caudal aspects. D-G, distal portion in 
D, caudal; E, dorsal; F, cranial; G, ventral aspects. 
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Figure 2.12. - SMNK PAL 1133. Right Ulna. A, cranial; B, dorsal; C, caudal; D, 
ventral aspects. 
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Figure 2.13. - SMNK PAL 1133. Proximal syncarpal. A, cranial; B, caudal; C, medial; 
D, lateral; E, ventral aspects. 
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Figure 2.14. - SMNK PAL 1133. Distal syncarpal and preaxial carpal. A-E, Distal 
syncarpal in A, cranial; B, caudal; C, medial; D, lateral; E, ventral aspects. F-I, 
preaxial carpal in F, proximal; G, distal; H, dorsal; J, cranial; I, ventral aspects. 
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Figure 2.15. - SMNK PAL 1133. Left metacarpal IV. A, cranial; B, caudal; C, dorsal; 
D, ventral aspects. 
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Figure 2.20. - SMNK PAL 1133. Right femur. A, cranial; B, medial; C, caudal; D, 
lateral aspects. 
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Figure 2.21. - SMNK PAL 1133. Phalanges of the pes. A, left lateral; B, right lateral 
aspects. The center series is complete and represents that of digit 3. 
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2.0.5 Discussion of the systematic palaeontology: 

 

The taxonomic history of much of the Ornithocheiroidea, is long and complex, with 

numerous examples of novel genera and species having been erected on some good, 

but some poor and ontogenetically variable characteristics, and specimens being first 

considered symonomous and later re-separated. As it is not necessary to re-state much 

of this history, interested parties are referred to, among others, Unwin (2001), 

Veldmeijer et al. (2006), Rodrigues and Kellner (2013) for summaries. 

 

The described specimen SMNK PAL 1133 lacks any elements useful for diagnosis 

from the skull, reducing the number of specimens to which it can be adequately 

compared, however, the presence of a largely complete mandible permits an analysis 

of tooth and diastema patterns. The mandible preserves 17 laterally oriented alveoli, 

indicating that at least 18 teeth were present owing to the missing first alveoli, and 

occupy 65% of the total length of the mandible. While SMNK PAL 1133 is of a 

similar size to the blunt crested Tropeognathus mesembrinus (Wellnhofer 1987, 

Kellner et al. 2013), with mandibular lengths of 572 mm versus 540 mm respectively, 

they are clearly distinct as the later species has only 11 teeth of a rather uniform size 

that occupy 51% of the mandibular length.  

 

Within SMNK PAL 1133 the 2nd and 3rd alveoli are the largest of the preserved 

features, the 5th is the smallest, while the 6th alveolus is notably larger than either 4 or 

7, after which alveolus size typically increases up to the 9th alveolus. This pattern, 

however, is generally of limited value as similar traits are noted in specimens of 

Anhanguera (e.g. N40PZ-DBAV-UERJ; SAO 2006002), although alveolus size 

decreases again after the 8th feature, and Coloborhynchus (e.g. NSM-PV 19892). In 

spite of this the presence of a significant diastema between the 4th and 5th alveoli of 

the mandible is considered diagnostic for Coloborhynchus robustus (Wellnhofer 1987, 

Fastnacht 2001, Veldmeijer et al. 2006), indicating that the described specimen may 

be considered synonymous with this species.  

 

Wellnhofer (1987) originally named BSP 1987 I 47 as Tropeognathus robustus 

although Kellner (1989) and Kellner and Tomida (2000) later regarded this specimen 

as Anhanguera robustus. Fastnacht (2001) subsequently rejected this conclusion and, 
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noting the diastema between the 4th and 5th alveoli in both BSP 1987 I 47 and SMNK 

PAL 2303, transferred these specimens to Coloborhynchus based on the diagnosis of 

Lee (1994), erecting SMNK PAL 2303 as the paratype of C. robustus and amending 

the diagnosis for the genus. Although Wellnhofer (1987) regarded the shape of the 

anterior margin of the mandibular crest, making a sharp angle of about 50° with the 

upper edge of the jaw as diagnostic for the species, the value of the form, shape, and 

size of the crest in pterosaurs remains controversial as the intraspecific variability of 

this feature throughout ontogeny remains largely unknown (Martill and Naish 2006). 

Fastnacht (2001), later supported by Veldmeijer et al (2006), did not regard it as a 

suitable feature as it is not present in SMNK PAL 2303 and was not included in his 

2001 diagnosis. The anterior tip of the mandible in SMNK PAL 1133 has been broken 

off and thus the amount of information it can add to this debate is limited. The 

mandibular crest however is a deep feature, indicated by the steepness of its caudal 

margin, the convex curvature of which suggests a maximum depth of 75 mm occurred 

level with the 3rd-4th tooth diastema. While the caudal margin is much steeper than 

that observed within BSP 1987 I 47, where the maximum depth of the bone occurs 

beneath the 4th -5th tooth diastema, in both cases the anterior margin of the crest would 

have been required to turn dorsally at a very sharp angle before the anterior 

termination of the mandible. SMNK PAL 1133 and BSP 1987 I 47 are here suggested 

to have very similar crest forms, contra that present within SMNK PAL 2303 (Figure 

2.22).  

 

While the genus Coloborhynchus was first proposed by Owen (1874) who erected it 

to accommodate the single specimen of C. clavirostris (BMNH 1822) a specific 

diagnosis was not given, rather only a collection of notable characteristics. The 

subsequent discovery of another species of Coloborhynchus (C. wadleighi) from the 

Lower Cretaceous Paw Paw Formation permitted Lee (1994) to formalise a diagnosis 

for the genus. While Kellner (1989), Kellner and Tomida (2000) and Rodigues et al. 

(2008) have argued that Coloborhynchus should be restricted only to these two 

specimens, with other proposed taxa (including C. robustus) assimilated into the 

genus Anhanguera as part of the Anhanguridea (Kellner), this approach has been 

rejected by a number of workers who hold that differences in dentition pattern (see 

Veldmeijer et al. 2006), and the blunt anterior margin of the rostrum, brought about 

by the upturning of the palate, are significant to warrant a split between Anhanguera 
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and Coloborhynchus (Lee 1994; Fastnacht 2001; Unwin 2003; Veldmeijer et al 2006). 

These conclusions are adopted herein and SMNK PAL 1133 is regarded as a further 

specimen of the species C. robustus. 

 

 

Figure 2.22 – Schematic outline of the anterior mandible in A, C. robustus (BSP 1987 
I 47, Wellnhofer 1987), and B, SMNK PAL 1133. While SMNK PAL 1133 is badly 
damaged, mandibular crest is also confined to only the most anterior portion of the 
dentary, and must have been similarly short and angular. Dashed lines indicate parts 
of the specimen repaired by plaster. Drawings are not to scale.  
 

2.0.6 Discussion of anatomical features: 

 

The preserved alveoli of SMNK PAL 1133 indicate a similarly large and robust 

dentition to that of SMNK PAL 2303 and other species within the Ornithocheiroidea 

that have an elongate mandible, with an expanded rostal end and interlocking teeth. 

Distal to these the alveoli are generally smaller and more widely spaced. This 

configuration is strongly indicative that prey capture occurred at the rostral expansion, 

incorporating the first four to five sets of teeth, and conforming to a “snap-and-kill” 

style of hunting (Frey et al. 2003a, see Veldmeijer et al. 2007), with the smaller teeth 

being used to prevent the slippery prey from falling as it was moved back to be 

swallowed.  
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Although most evidence now supports a primary role of the crests in sexual 

selection/display (Tomkins et al. 2010; Hone et al. 2011) it remains possible that this 

feature may have performed, or assisted, to minor degrees in other activities. 

Positioning the crest near the tip of the rostrum would have added extra mass to the 

section of the jaw responsible for killing its prey and created a more forceful bite, 

although it is noted that the crests are hollow and formed from splints of the 

premaxilla such that any increase in mass would have been small. Likewise 

Veldmeijer et al. (2007) advocated that the thin, wedge-shaped crest could have 

equally been deployed as a wave-cutter to reduce drag while the jaws were submerged 

during prey capture.  

 

The remains of SMNK PAL 1133 add another three dimensional specimen to the 

growing number of skeletons that preserve an extensive number of postcranial 

remains (Wellnhofer 1991b, Kellner and Tomida 2000, Veldmeijer 2006, Kellner et al. 

2013). Although postcranial remains are typically poor in diagnostic features (Naish 

et al. 2013) this nonetheless allows for robust comparisons between a variety of 

ornithocheirid taxa.  

 

Cervical vertebrae - Three cervical vertebrae are known from SMNK PAL 1133, 

one from the middle portion of the series, while the remaining elements are 

confidently described as the 8th and 9th vertebrae – the latter of which is incorporated 

into the notarium. The condyle of the first of these elements is too narrow to make a 

firm articulation with the cotyle of the 8th cervical. The form of the bone is very 

similar to that of the 6th vertebrae of BSP 1991 I 27, both of which are elongate and 

narrow with dorsoventrally compressed vertebral bodies (Veldmeijer et al. 2009). The 

lack of a large pneumatic foramen on the caudal face of the neural spine, dorsal to the 

neural canal, further supports this interpretation; where in AMNH22555 (Wellnhofer 

1991b) this foramen is present in all cervicals anterior to the 6th. The only minor 

differences between the two bones are that the prezygapophyses in SMNK PAL 1133 

appear broader and less elongate in lateral view while the prezygapophyses are 

narrower but orientated in the same direction. The presence of a large pneumatic 

opening on the lateral flank of the bone is shared with specimens of Brasileodactylus 

(Veldmeijer et al. 2009), A. santanae (Wellnhofer 1991b), and C. piscator (Kellner 
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and Tomida 2000), the latter indicating that this feature extended all the way to the 

atlas-axis and was very likely universal throughout all ornithocheirids. As with A. 

santanae and C. piscator no pneumatic elements are located lateral to the neural canal. 

 

The 8th cervical is typical in its form to those described from other specimens where it 

has a “partially dorsalised” (Kellner et al. 2013) appearance with its short, wide body 

and square neural spine. The rugose scars on the lateral flank of the spine are 

orientated anteroventrally to differing degrees, becoming more ventrally orientated 

towards the anterior margin of the spine, and indicate the insertion for muscles that 

would have acted to control the motions and stability of the neck. Damage to the body 

prevents any comparison with other specimens (see Veldmeijer et al. 2009) but the 

presence of bone within the ventral portion of neural canal suggest that the vertebral 

body and neural arch were fused, unlike NSM-PV 19892. 

 

The 9th cervical vertebra is almost identical to the succeeding dorsals but slightly 

larger in size. As with specimens of Santanadactylus brasilensis and C. spielbergi it is 

forms part of the notarium and thus shows a contrasting configuration to T. 

mesembrinus (Kellner et al. 2013) in which only the dorsal vertebrae are included. 

The taxonomic significance of this observation, however, is debateable, as while 

genuine differences are observed, there are insufficient specimens to determine if this 

varies within individual species. The configuration of SMNK PAL 1133 where the 

cervical has fused its centrum and postzygapophyses with the first dorsal is 

intermediate between that of RGM 401 880 and MN 6594-V, as the neural spine 

remains separate from the supraneural plate between the first five dorsals. This, 

however, can be taken one of two ways, that C. robustus has developed an 

intermediate configuration where the 9th cervical only partially fuses with the 1st 

dorsal and thus represents a transitional state between being fully incorporated into 

the notarium (i.e. taxonomically significant), or further ontological development will 

eventually cause the neural spine to fuse into the supraneural plate. Although it is not 

possible to make any firm conclusions the presence of breaks between the individual 

neural spines that make up the supraneural plate suggests that the notarium is only 

weakly fused and that further development is likely.  
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Although the anteroventral margin of the cervical is damaged the presence of a 

prominent hypapophysis is confirmed where the right hand half of the feature is 

preserved along the ventral margin of the cotyle. Pneumatic features are present on 

the anterior face of the bone, ventral to the prezygapophyses, which are also noted in 

Brasileodactylus (BSP 1991 I 27, Veldmeijer et al. 2013). Similar features are noted 

in AMNH 22555, but are described as flanking the neural canal, while in NSV-PV 

19892 Kellner and Tomida (2000) report that they have been reduced to two tiny 

foramina. Across the cotyle the remnants of the suture between the centum and neural 

spine is visible. Despite this the bones are firmly fused indicating that sufficient 

internal fusion has occurred to hold the bones together prior to the obliteration of this 

suture, and that this must disappear following the complete fusion of the 

postzygapophyses with the prezygapophyses of the first dorsal. 

 

Notarium - The development of the notarium is clearly linked to ontogeny where 

relatively young ornithocheiroids, i.e. those demonstrating poor degrees of skeletal 

fusion, do not possess one, while in more mature individuals the notarium can be very 

robust. As indicated previously the number of vertebrae incorporated into the 

notarium is variable but it appears that 5-6 dorsals is normal (e.g. Bennett 2001a, b), 

although more elongate supraneural processes are known that can include much (if 

not all) of the thoracic column (e.g. SMNK PAL 6609). 

 

The form of the vertebrae agree well with all other published accounts of good three 

dimensional material with double headed ribs extending up to and (presumably) 

including the 5th dorsal vertebrae. As in other specimens the fourth dorsal possesses a 

broader neural spine to act as the articulation for the scapula. Large muscle scars 

appear to be restricted to the first two dorsal vertebrae. While the five dorsal vertebrae 

form a single solid unit the large gaps between the neural spines, breaks across the 

divisions of the supraneural plate, visible sutures between accompanying sets of 

pre/postzygapophyses are contrasted against the notarium of RGM 401 880 in which 

all sutures (and almost all gaps within the supraneural plate) have closed. The 

poor/semi-fused state of the bones thus suggests that the condition observed within 

SMNK PAL 1133 is the more juvenile notarial state within large ornithocheiroids that 

subsequently develops to a form more similar to RGM 401 880 during later ontogeny.  
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Dorsal Ribs - The majority of the fragmented ribs can be assigned to the first five 

dorsal vertebrae on account of their widely spaced articulations, which correspond to 

the spacing between the diapophyses and parapophyses of the notarial vertebrae. As 

with those ribs attributed to C. piscator the caudal face of these is perforated by a 

single large pneumatic foramen situated between the tuberculum and capitulum, 

indicating that the pneumatic system extended into the thoracic ribs.  

 

Remaining Dorsals - The form of those dorsal vertebrae that are not incorporated 

into the notarium generally agree well with other published accounts (Wellnhofer 

1985, 1991a; Veldmeijer et al. 2009; Kellner and Tomida 2000) and there is little 

additional information to add. Kellner and Tomida (2000) commented that two 

pneumatic openings are located dorsolateral to the neural canal and these are also 

present here in two of the three vertebrae labelled as SMNK PAL 1133, exiting onto 

the posterior face of the bone. Unlike the previous vertebrae the smallest of the three 

preserved dorsals does not possess any pneumatic features and is most similar in 

appearance to dorsal number 11 of C. spielbergi, but appears too squat to articulate 

with the sacral series. 

 

Sacrals - The sacrum of SMNK PAL 1133 consists of four fused sacral vertebrae, 

which is one fewer than reported in each of MN 6594-V, NSM-PV 19892, AMNH 

22555 (Wellnhofer 1991b), and AMNH 22569 (Bennett 1990), and two fewer than 

noted for SMNK PAL 1132 (Frey and Martill 1994) and RGM 401 880 (Veldmeijer 

2006), although Kellner et al. (2009) regard there as being only five in this latter 

specimen. The first element in SMNK PAL 1133 possesses large ribs that are directed 

strongly caudolaterally which is also the situation noted for the 1st sacral in both 

AMNH 22569 and RGM 401 880, with subsequent vertebrae having been shown to 

posses ribs that are directed in a more lateral direction. The twisting of the first sacral 

rib so that it is orientated strongly anterodorsally (contra to the subsequent ribs) is 

also present in AMNH 22555 (Wellnhofer 1991b) and appears to be a diagnostic 

characteristic of this bone. A different configuration, however, is noted in 

Arthurdactylus conandoylei (Frey and Martill 1994) where the first set of sacral ribs 

do not expand laterally. It is not certain if the pelvic plate would record the presence 

of these ribs due to the crushed nature of this specimen, however, the grooves on the 

medial face of the pelvic plate in SMNK PAL 1133 perfectly match the outline of the 
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sacral ribs indicating that this unit must represent the first four vertebrae, as well as a 

missing fifth element, as well as indicating that fusion of the individual sacrals occur 

prior to the fusion of the pelvic plate the sacrum. The missing fifth sacral, with short 

broad ribs, close to the vertebral body (e.g. Kellner and Tomida 2000) has been 

replaced with a caudal vertebra during the preparation process, which has been 

erroneously glued into its place. As such it is not possible to determine if 5 or 6 

vertebrae would have been originally present, however, the length of the pelvic plate 

strongly suggests that SMNK PAL 1133 would only have possessed five sacrals, 

making it distinct from RGM 401 880 but conforming to that configuration noted for 

other large pterodactyloids. As such the sacrals of SMNK PAL 1133 are similar to 

those of other ornithocheiroids the only noticeable difference being that the sacral ribs 

of the 3rd vertebrae are directed anteroventrally at a much steeper angle than in NSM-

PV 19892 (the condition in other taxa is uncertain due to the sacrum being fused to 

the pelvic plate). 

 

Caudals - At least eleven caudal vertebrae were described from the ornithocheiroid C. 

piscator (Kellner and Tomida 2000) and indicated that the more anterior elements 

possessed short vertebral bodies (similar in size to their respective neural spines) 

which became progressively more elongate in the more posteriorly located bones. 

While another articulated caudal series considered by Bennett (2001a, UALVP 24238) 

had vertebrae that remained short and square in outline this likely represents a 

taxonomic difference as those of Bennett (2001a) belong to Pteranodon rather than 

Coloborhynchus. As such the latter are regarded as being of more relevance here. It is 

uncertain if the first preserved element described by Kellner and Tomida (2000) 

represents the first bone of the caudal series but the bones are of an identical form to 

those in SMNK PAL 1133, indicating that those in the latter specimen clearly 

represent the most anterior of these vertebrae. In NSM-PV 19892 the neural spine has 

become very low by the 5th element while in SMNK PAL 1133 there are at least four 

bones that possess a neural spine of a similar length to that of the vertebral body and 

two where these are shorter – indicating that the neural spines in the described 

specimen did not become very depressed until a more posterior position on the caudal 

series relative to NSM-PV 19892.  
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Sternum - Repair to the sternum of SMNK PAL 1133 has given it a very misleading 

outline where comparisons with other well preserved ornithocheirids (e.g. NSM-PV 

19892 and RMG 401880) indicate that the plate itself should be more “D-shaped” in 

dorsal view. Otherwise, the preserved sections agree very well with both specimens 

and further indicate the presence of large pneumatic foramen on the anterior section 

of the plate, adjacent to the sternal neck, and supporting the inclusion of the sternum 

into the pneumatic system. A further foramen located anterior to the first (Veldmeijer 

2006) is also observed in SMNK PAL 1133. One noticeable difference concerns the 

position of the coracoid facets, where Veldmeijer (2006) described these for RGM 

401 880 as being located caudal to the large, dorsally located tubercle. In contrast, 

while Kellner and Tomida (2000) note the presence of a deep depression in NSM-PV 

19892, not present in SMNK PAL 1133, they note that the coracoid facets are located 

anterior to this tubercle and is thus more similar to that of SMNK PAL 1133 than 

RGM 401 880.  

 

Scapulocoracoid - While the scapula and coracoid have fused and represent a 

morphologically mature unit the suture line between the two bones is still visible 

running across the glenoid fossa. This feature indicates complete fusion but suggests 

the animal was only recently mature as in other specimens the suture line has been 

completely obliterated (e.g. Veldmeijer 2006). The scapulocoracoid is identical to that 

described by Veldmeijer (2006), the presence of a slit-like pneumatic foramen on the 

medial face of the bone, and would have undoubtedly extended across both scapula 

and coracoid indicates the connection of the element to the pneumatic system where it 

would have opened into a large open internal cavity as illustrated in numerous 

specimens where the one have not fused.  

 

Humerus - The humerus of SMNK PAL 1133 illustrates the mature state of the bone 

where all epiphyses has fused to the distal end and deep scars have developed on the 

ventral face of the deltopectoral crest (contra to examples such as NSM-PV 19892). A 

single foramen located on the dorsal aspect of the humerus by the posterior process 

agrees with other accounts of ornithocheiroid specimens and indicates the only point 

where the humerus was incorporated into the pneumatic system. The large circular 

depression on the distal face of the humerus, while still filled with matrix, is not 

regarded as a pneumatic feature based on a comparison with RGM 401 880. Although 
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not always present (e.g. NSM-PV 19892, AMNH 22555), the ridge across the medial 

face of the caput is also noted within the humerus of RGM 401 880 (Veldmeijer 

2006), suggesting that it may represent an ontogenetic character – only appearing in 

more mature skeletons. 

 

Ulna - The ulna of SMNK PAL 1133 possess a prominent set of cotyles for 

articulating against the capitulum and trochlea of the humerus and a large biceps 

tubercle on the proximal articular face – similar to that observed in RGM 401 880 but 

lacking in more immature skeletons where epiphyses have yet to fuse. Only minor 

differences between these specimens are noted where the biceps tubercle is not 

located right on the cranial margin of bone but slight more on the articular face itself, 

and the articular face for the capitulum has a more narrow and pointed outline. As 

with RGM 401 880 and NSM-PV 19892, SMNK PAL 1133 lacks a pneumatic 

opening either on the shaft or the proximal and distal articular surfaces, contra to that 

noted in BSP 1982 I 89 where a pneumatic opening is observed on the distal 

articulation. This indicates that the number of elements incorporated into the 

pneumatic system appears to variable even within closely allied taxa. 

 

Carpus - Kellner and Tomida (2000) suggested the presence of a fourth distal carpal 

that formed across the dorsal margin of the large depression (fovea carpalis) located 

on the distal articular face of the distal syncarpus based on NSM-PV 19892). While 

this observation cannot be firmly supported or rejected here, the top of this fovea is 

marked by a depression with rough edges in both SMNK PAL 1133 and SMNK PAL 

1134 (an ossified proximal and distal syncarpus), suggesting that some element 

should have been positioned here during life. Both distal syncarpals are 

ontogenetically mature and fusion between all the carpalia is complete so there is no 

reason that the fourth carpal suggested by Kellner and Tomida (2000) should be 

missing. However, the roughness of the bone at this location in SMNK PAL 1133 and 

1134 suggests that the bone has been forcibly broken (see Figure 2.14D). I can offer 

no good reason as to why this location should be broken in such a manner in mature 

ornithocheiroids.  

 

Metacarpals - The fourth metacarpal is marked by two large depressions on the distal 

cranial and caudal sections of the bone for the insertion for extensor and flexor 
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muscles originating off the first metacarpal, however, none of these have developed to 

an extent that they pierce the compacta as noted in a number of taxa including the 

immature NSM-PV 19892 (Kellner & Tomida 2000) and Pteranodon (Bennett 2001a, 

b). While these foramina are small it seems likely that they represent the precursors to 

the development of fully pneumatic openings in the more derived azhdarchoids (Eck 

et al. 2011) and indicate that at least some pneumatic openings originated in more 

primitive taxa as deep excavations to support the insertion of muscles – a feature also 

noted for the femur. 

 

Digit IV - The wing finger phalanges in almost all pterosaurs are similar in form with 

expanded proximal and distal margins, the shafts of which show various degrees of 

curvature. Those preserved in SMNK PAL 1133 are not exception and agree well 

with other descriptions of pterodactyloids. The extensor tendon process is fused to the 

first wing finger phalanx, indicating that it is relatively more mature than specimens 

such as NSM-PV 19892 (Coloborhynchus piscator) and MHNS/00/85 (Barbosania 

gracilirostris), this feature being largely regarded as a reliable indicator of late 

ontogeny (although see Elgin and Frey 2011a). The presence of a large pneumatic 

foramen on the ventral face of the phalanx close to the proximal margin is a feature 

that is observed in all ornithocheiroids where the element is preserved, and indicates 

that this element must have formed part of the pneumatic system. The lack of any 

pneumatic elements on the fourth metacarpal of SMNK PAL 1133, suggest that 

subcutinous air-sacs (as argued by Claessens et al. 2009) would have been required to 

connect the bone to those pneumatic elements of the antebrachium. 

 

Pelvis - The pelvic plate in SMNK PAL 1133 is fully fused although the traces of 

where the individual elements meet are still visible, indicating that the skeletal state of 

the plate was not fully mature. The elongate ilium curves dorsally similar to that of T. 

mesembrinus (Kellner et al. 2013) while the postacetabular process is directed 

caudally and is identical to that of described for both NSM-PV 19892 and AMNH 

22555 (Wellnhofer 1988; Kellner and Tomida 2000). The obturator foramen of 

SMNK PAL 1133 is fully incorporated into the pubis while the ischium is perforated 

by two very large pneumatic features on its medial face. These features all appear to 

be the primary way in which the pelvic girdle is incorporated into the pneumatic 
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system, as has been noted by Claessens et al. (2009) and in the azhdarchoid SMNK 

PAL 6609.  

 

The formation of a symphysis in mature or sub-adult individuals, formed between the 

opposing pubes and ischia, have been observed in numerous specimens, e.g.  AMNH 

22569 (Bennett 1990), RGM 401 880 (Veldmeijer 2003), SMNK PAL 4331, or can 

be inferred in morphologically immature specimens by restoring the pelvic elements 

to their life positions (i.e. NSM-PV 19892, Kellner & Tomida 2000). A restoration of 

the pelvic girdle of SMNK PAL 1133 using casts to reconstruct the missing left hand 

pelvic plate, however, does not bring ventral margin of the ischium close to the 

midline, implying that the formation of a symphysis would not have been possible 

without substantial growth and elongation of the ischium (Figure 2.23). This 

observation results in two possible conclusions where either the pelvic symphysis is 

not universally present in pterodactyloid pterosaurs, or the pelvic girdle of SMNK 

PAL 1133 underwent an abnormal pattern of development, a conclusion that appears 

unlikely given the superb and otherwise normal preservation of the skeleton. If the 

former is true then the lack of a symphysis represents a taxonomic feature that 

separates C. robustus from its immediate relatives or represents a sexual dimorphism; 

the individual being a female with an open pelvic girdle to facilitate the passage of 

eggs. The lack of specimens that support this interpretation, however, means that it 

must be treated with caution and it is noted that in all the pelvic girdles examined by 

Bennett (1993), including those of putative females, the symphysis has formed.  

 

Femur - The caput is offset against the shaft at an angle of  20° against the femoral 

shaft and is subsequently similar to the range of values noted for other 

ornithocheiroids (e.g. 28°- 32°, Kellner and Tomida 2000; Veldmeijer 2006). The 

“greater trochanter” (Bennett 2001a, b) or “lesser trochanter” (Hutchinson 2001) is 

little more than a small protrusion which is sharply contrasted against those known 

within the Azhdarchoidea for which terrestrial locomotion appears to have been a 

more commonly utilised mode of transport. The femur of SMNK PAL 1133 does not 

possess any pneumatic features indicating that, as with other ornithocheirids, the 

pneumatic system did not extend into the hind limbs.  
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Figure 2.23. – Pelvic girdle in two ornithocheiroid taxa. A-B. Coloborhynchus 
robustus (SMNK PAL 1133); C-D, C. speilbergi (RGM 401880). A & C, illustrate 
the pelvic girdle in its left lateral aspect. B & D, illustrate the pelvic girdle in its 
caudal aspect. Pelvic girdle of SMNK PAL 1133 reconstructed from resin casts of the 
bones. Hatched line in B and D indicate the midline of the body. Ventral margin of 
the bone is open in SMNK PAL 1133 while a symphysis has formed in RGM 401880. 
 

Morphological maturity –The described specimen of C. robustus represents an adult 

individual based on the extensive closure of bone sutures, well ossified articular 

surfaces, and a lack of pitting of the cortex, three features considered representative of 

mature pterosaurs (Bennett 1993). It is, however, inferred to be a relatively newly 

adult as several features known to fused together in later ontogeny remain either 

unfused, or display an incompletely closed sutures, where the lines of contact between 

elements have not yet been obliterated. As such the specimen provides a degree of 

information on the relative timing of suture closure in pterodactyloid pterosaurs (see 

Bennett 1993; Kellner and Tomida 2000), where the fusion of the pelvic plate to the 

sacral vertebrae to form the pelvic girdle as a single ossified unit, occurs very late in 

ontogeny. Likewise, fusion of the vertebral bodies to the neural spines appears to 

occur later in the more anterior located vertebrae, where the first element of the 

61



notarium (i.e. the 9th cervical) still preserves the remains of the neurocentral suture, as 

to does the scapulocoracoid. Although each of these elements is considered mature it 

is apparent that further development to obliterate these sutures would have taken place 

in later adulthood. The notarium itself displays an interesting combination of suture 

states where the pre/postzygapophyses are fused but the neural plate, while fused, 

appears only weakly so, with cracks through the bone marking the contact between 

adjacent neural spines and evidently representing lines of weakness that fractured 

during the fossilization process.  
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Figure 2.24 – Reconstructions of Coloborhynchus robustus (SMNK PAL 1133) based 
on the isolated bones of the prepared skeleton. A, cranial view of the pectoral girdle, 
indicating maximum girth of the animal, and level/position of the humerus when 
placed within the glenoid fossa. B, C. robustus in dorsal view with the skeleton 
arranged in the hypothetical glide position. The distal wing spar and reconstruction of 
the skull are omitted for clarity. C, C. robustus in left lateral view with the skeleton 
arranged into a hypothetical standing position. Wing finger is omitted for clarity. 
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2.1. The description of a novel genus and species Barbosania 

gracilirostris (MHNS/00/85). 
 

2.1.1 Introduction 

 

The function (or functions) of the cranial crests in pterosaurs are varied, with authors 

advocating a role in sexual selection, heat exchange, aerodynamic or hydrodynamic 

activities (e.g. Bramwell and Whitfield 1974; Kellner and Tomida 2000; Veldmeijer 

2009; Tomkins et al. 2010; Hone et al. 2011). Their presence in a wide range of 

pterosaurs, including the more basal Triassic and Jurassic members (Stecher 2008), 

infer that crests formed an important function and were a common feature within the 

lineage. While the significance of the crest for taxonomic purposes has long been 

discussed with regards to the Ornithocheiroidea, several specimens lack this entirely 

and are attributed to the genus Brasileodactylus. While such specimens are 

morphologically immature, as too are many ornithocheirids for which a crest is also 

known.   

 

Here a new specimen of crestless ornithocheirid was acquired by the Sintra Museum 

of Natural History, Portugal from the Romualdo Member of the Chapada do Araripe, 

NE Brazil. In addition to providing a detailed account of the skeleton of a well 

preserved, juvenile ornithocheirid, the specimen is sufficiently distinct from 

specimens of Brasileodactylus to warrant the erection of a new genus, Barbosania. 

The skeleton is unusual in that the extensor tendon process of the wing finger phalanx 

has partially fused.    

 

The fossil was almost completely encased within its protective concretion and 

required extensive preparation to expose it. The Sintra museum requested that the 

SMNK prepare the specimen and generously allowed it to be described on completion 

of this work. A single cast of the specimen is retained by the SMNK while the 

original fossil was returned to Portugal where it is held under the collection number 

MHNS/00/85.  
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2.1.2 Systematic Palaeontology 

 

Order Pterosauria Kaup 1834 

Superfamily Ornithocheiroidea Seeley 1870 

Family Ornithocheiridae Seeley1870 

Genus Barbosania Elgin and Frey 2011a 

 

Diagnosis - Ornithocheirid pterosaur with the following combination of diagnostic 

features. Only character 11 is considered truly apomorphic for this genus:  

1. Keeled but crestless rostrum with a pointed termination. 

2. Rostral-most pair of the mandibular and premaxillary alveoli positioned 

rostroventrally and rostrodorsally respectively.  

3. Tooth positions two and three in both jaws with teeth that are twice as long as those 

of the subsequent alveoli.  

4. The 2nd and 3rd teeth are orientated craniolaterally and together with the rostral-

most teeth form a narrow rosette due to a missing expansion of the tip of the rostrum.  

5. Lateral margins of the rostrum gradually converge rostrally.  

6. An estimated 24 and 20 tooth positions in the upper and the lower jaw respectively.  

8. Interalveolar space gradually increasing caudally, alveolar diameter about constant 

until tooth position 13. 

7. Teeth between the eighth and thirteenth tooth positions in upper and lower jaw with 

an almost symmetrical interdigitation.  

8. Height of the nasoantorbital fenestra approximately 22% that of its length and 

forming 24% of the total skull length. 

9. Parietal with flat external face, dorsal margin of the short median occipital process 

is deflected with a triangular transversally convex dorsal face. 

10. Thirteen trunk vertebrae. 

11. Caudoventral margin of ischium concave. 

 

Barbosania gracilirostris Elgin and Frey 2011a 

 

Included Material - The only known specimen of this genus is MHNS/00/85 

(Holotype). 
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Diagnosis - As for genus 

 

2.1.3 Specimen Details 

 

Collection number of the described specimen - MHNS/00/85 

 

History and Locality Information - The specimen originates from the NE of Brazil 

and was purchased by the Museum of Natural History Sintra. As such locality 

information is limited. That the specimen was secured in a blue/grey concretion 

indicates that it originated from the Romualdo Member (Albian, Lower Cretaceous), 

Chapada do Araripe, NE Brazil, and more specifically the Sierra de Maõsina. 

 

2.1.4 Specimen Description 

 

As the specimen was published before the submission of this work readers are 

referred to Elgin and Frey (2011a) for a complete description and Figures 2.25 – 2.29 

for documentation. 

 

2.1.5 Additional Remarks 

 

Following the formal publication of B. gracilirostris in 2011 several conversations 

with other pterosaur workers brought to my attention that the diagnosis provided by 

Elgin and Frey (2011a) may be taken as a compete list of all characteristics that other 

specimens must posses before they might be considered synonymous, rather than 

regarding it as a differential diagnosis. Owing to the many similarities that this 

MHNS/00/85 shared with other taxa (specifically Anhanguera fittoni), and indeed the 

number of common characteristic that all ornithocheirids share, I had intended this 

diagnosis to describe features that in conjunction with one another might diagnose this 

species. Thus future specimens might be regarded as synonymous where only a 

handful of these characteristics included within the diagnosis are observed and no 

other more robust placement can be determined. The one exception to this remains 

Elgin and Frey’s character 11, “Caudoventral margin of ischium concave,” which is 

still recognised as apomorphic for this species.  
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The inherent differences in cranial configuration between specimens of Barbosania 

(and Brasileodactylus) and crested taxa that display greatly expanded rostal regions 

with large and robust teeth raise three immediate considerations of note which are 

further considered here: i) the validity of crestless taxa and how this feature relates to 

ontogeny; ii) the influence of these structures for cranial biomechanics/aerodynamics; 

iii) influence of skull shape with respects to prey capture.  

 

Crestlessness in ornithocheiroids - The presence or absence of a cranial crest in 

pterosaurs can no longer be considered in such binary terms as the feature strongly 

influenced by ontogeny (Martill and Naish 2006). Thus where it may be absent in 

juvenile animals, the onset of maturity can produce rapid growth which is best 

demonstrated by the development of an elongated spar in Nyctosaurus (Bennett 

2003b). Although the configuration in Nyctosaurus is now well known, the various 

configurations within the Ornithocheiridae and their relationships with ontogeny are 

substantially more difficult to decipher. Here specimens displaying skeletal features 

indicative of mature and sub-adult states both possess cranial crests (e.g. Kellner and 

Tomida 2000; Wellnhofer 1991b) leading a number of workers to regard crest shape 

as being largely unhelpful for taxonomic assessment (Fastnacht 2001; Veldmeijer 

2006). As such the small number of specimens that lack this feature altogether may be 

considered taxonomically distinct (see Veldmeijer et al. 2009) and was one reason 

that Elgin and Frey (2011a) established a new genus to accommodate MHNS/00/85 

rather than synonymise this with those specimens attributed to Brasileodactylus 

(Veldmeijer et al. 2009) and further relate these to crested forms known from the 

Araripe region of NE Brazil. The discovery of further specimens has done little to 

resolve this debate although specimens from China indicate that cranial crest are not 

always indicative of a mandibular crest (e.g. Lü et al. 2012), further complicating the 

situation. Thus while the practice of erecting genera or species on the basis of 

crestless taxa remains may at least remain partially controversial, the complete lack of 

a cranial or mandibular crest as a diagnostic feature (rather than crest shape itself) has 

not been discredited and to the author’s knowledge no one has yet indicated that B. 

gracilirostris should be considered a junior synonym of another taxon.  
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The lack of a crest in B. gracilirostris, Brasileodactylus araripensis, and presumably 

juvenile taxa would have prohibited these individuals from using it as a keel to 

prevent or limit yawing torques as presented by Veldmeijer et al. (2007) and 

considered previously for species of Coloborhynchus. Regardless, while this implies 

various approaches to foraging within the Ornithocheiridae its effect must have been 

somewhat limited given the overall similarities in the ornithocheiroid skull and the 

absence of rostral crests in other long beaked/snouted pterosaurs. It therefore seems 

unlikely that the lack of a median rostral crest would have prohibited the animal from 

engaging in either surface capture activities, or snatching prey from just below the 

surface of the water. This is supported here by the presence of ribbed and closely 

interlocking teeth within B. gracilirostris (Figure 2.27 - 28) that would have permitted 

the animal to snatch slippery prey from the surface waters, although it is noted that the 

differences in interalveolar spacing, tooth size and thickness and the degree of the 

rostral expansion would clearly impose limits on the size and power of the potential 

prey species. In B. gracilirostris the narrow and gracile teeth, along with its relatively 

small size and lack of a robust rostral expansion, imply that it was restricted to a diet 

of small fish or other vertebrates when compared to C. robustus, which has larger and 

more robust teeth owing to its larger size and rostral expansion. Furthermore it might 

also be suggested that the lack of a median crest would permit the narrow and slender 

rostrum of Barbosania gracilirostris to have been operated with less muscular power 

than in Anhanguera/Coloborhynchus, in which the weight of the crest would have 

been added to that of the rostrum. The relative reduction in cervicooccipital 

musculature may perhaps explain the small supraoccipital process observed within B. 

gracilirostris. While inferring muscular power from surface area attachment alone can 

(and is) problematic, the similarity in skull morphology between these taxa suggests 

that such conclusions may be considered correct. 
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Element length (mm) Element length (mm) 
Skull  Long bones  

skull (occipital condyle - snout) 391 humerus (right/left) 155/162 

NAOF 96* ulna (right/left) 223 / >111 

mandible (articulation to rostral tip) 330 carpus width (right) 58 

  pteroid (left) 129 

Axial column  mc III 137 

9th cervical 13 metacarpal IV (right/left) 155 / 156 

notarium 59 d4 p1 (right/left) >191.9 / >151.7 

body length 209.5 femur (right/left) 127 / 43* 

 
Table 2. - Barbosania gracilirostris, MNHS/00/85, selected bone measurements. * 
denotes an approximation or estimate value. 
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Figure 2.25. - Barbosania gracilirostris gen. et sp. nov. A, photograph and B, 
corresponding line tracing. 
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Figure 2.26 - Barbosania gracilirostris gen. et ep. nov. MNHS/00/85. Photograph (A) and corresponding line tracing (B). 
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Figure 2.27. A, Barbosania gracilirostris (MHNS/00/85).Photograph of the rostrum 
in left lateral view. B, close up of the rostrum showing the first few pairs of teeth. 
Small replacement teeth are visible growing behind the first tooth of the mandible and 
the third tooth of the upper jaw. In both pictures the skull is on top while the mandible 
is the lower of the two elements. 
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Figure 2.28. Barbosania gracilirostris (MHNS/00/85). A, B, photographs in various 
anterolateral views to illustrate the anterior-most pairs of teeth. Tooth order for the 
left hand side of the upper jaw is marked. C, close up of the anterior margin of the 
skull showing the newly developing madibular teeth and an exampe of striations on 
the mature tooth. 
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Figure 2.29. Barbosania gracilirostris (MNHS/00/85). Line tracings of the vertebral 
column and manus. A, vertebral column in its ventral aspect. B, wing 
metatarsophalangeal joint in its ventral aspect. Arrow denotes the position of the 
partially open suture. 
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2.2. The description of a new ornithocheirid specimen (SMNK PAL 

3854) 
 

2.2.1 Introduction 

 

As indicated by the previous specimens, the remains of a number of very well 

preserved and largely complete ornithocheiroid pterosaurs are known from the 

Romualdo Member of NE Brazil, however, relatively few have been unearthed from 

the older Crato Member (Unwin and Martill 2007). Frey and Martill (1994) described 

one such specimen which demonstrated a number of similarities to a new specimen 

offered for sale to the SMNK, erecting it as a novel genus and species Arthurdactylus 

conandoylei. A second ornithocheirid fossil subsequently purchased, also lacking the 

head, and preserving a good portion of the body and limbs, but distinguished from A. 

conandoylei by slight difference in the biometics of the long bones. The pes of this 

specimen has disarticulated, but the individual elements are well preserved, allowing 

the foot to be reconstructed. Comparisons with azhdarchoid material from the same 

region indicate that the ornithocheirid foot was very lightly built, suggesting that the 

latter animals spent significantly less time walking on the ground.  

 

2.2.2 Systematic Palaeontology: 

 

Order Pterosauria Kaup 1834 

Superfamily Ornithocheiroidea Seeley 1870 

Family Ornithocheiridae Seeley1870 

ornithocheirid indet. 

 

2.2.3 Specimen Details: 

 

Collection number of the described specimen - SMNK PAL 3854 (Figure 2.30 – 34) 

 

History & Locality Information - The specimen is preserved on a pale slab of flat 

limestone and unlike those previously described specimens has been extensively 

crushed, although some three dimensional details remain. The specimen is indicative 
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of those known from the Nova Olinda Member of the Crato Formation (Aptian, 

Unwin and Martill 2007) but as it was purchased privately no further locality 

information is possible.  

 

2.2.4 Specimen Description 

 

The initial description of this specimen has now been accepted for publication and a 

full account of the descriptive palaeontology is given by Elgin and Frey (2012) 

attached at the end of this section.  

 
Element mm Element mm 
Cervical vertebrae  Humerus  
C5 length 37 left 157 
C5 mid width 28 right  160 
C6 length 33*   
C6 mid width - Ulna  
C7 length >25 left 252 
C7 mid width - right 253 
    
Caudal vertebrae  Metacarpal 

IV 
 

1 10 left 169 
2 11* right 169 
3 10.5   
4 12 Wph 1  
5 12 left 383 
6 11 right 381 
7 >6.9   
8 12 Femur  
9 10 left 161 
10 6.2 right >150 
11 >5   
  Tibia  
Scapula 73.5 left >197 
Coracoid >61 right 202 

 

Table 3 – SMNK PAL 3854. Measurements of selected bone elements. All values are 
in mm, where * denotes an approximate or estimated value. 
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Figure 2.30. - ornithocheirid indet. SMNK PAL 3854. A, Photograph  and B, 
corresponding line tracing. 
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Figure 2.31. – ornithocheirid indet., SMNK PAL 3854. A, overview of the vertebral 
column centring on the cervicals and cranial dorsal vertebrae, forming a partial 
notarium. The caudal vertebrae are visible in the top right of the photograph. B-C, 
photograph and line tracing of the 7th cervical; D-E, 6th and 7th cervicals; F-G, 8th 
cervical and its associated rib overlying the right rib of the 9th cervical. 
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Figure 2.32 - A, Gastral basket of SMNK PAL 3854 and B, a close up of the left-most 
three ribs in A, and associated tissues. 
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Figure 2.33 - Tibia, tarsals and pes. A, photograph of SMNK PAL 3854 and B, 
photograph of SMNK PAL 3830, illustrating the difference in pedal form. C, line 
tracing of SMNK PAL 3854 and reconstrcution of the pes in both ornithocheirids (D, 
from SMNK PAL 3854) and azhdarchoids (E, from SMNK PAL 3830).  
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Chapter 3 
 

 
 

DESCRIPTIVE PALAEONTOLOGY OF THE AZHDARCHOIDEA 
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3.0. Further examination of an indeterminate azhdarchoid 

specimen (SMNK PAL 3830) 
 

3.0.1 Introduction 

 

The specimen SMNK PAL 3830 represents one of a number of partial azhdarchoids 

that are included within this work owing to a number of new and useful observations 

that such fossils bring to our understanding of the azhdarchoid postcranial skeleton 

and soft tissue structures. While Frey et al. (2003a) originally described this specimen 

as an azhdarchid, the bone ratios between the femur and tibia (0.69) and metatarsal 

and hind limb (0.11) are not unique to the Azhdarchoidea, and the fossil is instead 

regarded as an indeterminate member of the Azhdarchoidea (Unwin and Martill 2007). 

While Unwin and Martill (2007, p 499-502) erroneously noted a number of 

characteristics associated with the forelimb of this specimen (i.e. a wing metacarpal 

longer than the humerus; the proportions of the wing-finger phalanxes to the total 

digit length (46, 29, 19 and 7%); the ratio of the fore limb to the hind limb (2.93), this 

is corrected here as no antebrachial elements are preserved. Soft tissue remains 

included that of the brachiopatagium, preserving large/small scale folding patterns 

and coarse wrinkling along the trailing edge of the membrane, and well developed, 

keratinous claw sheaths (Frey et al. 2003a).  

 

3.0.2 Systematic Palaeontology 

 

Order Pterosauria Kaup 1834 

Superfamily Azhdarchoidea Unwin 2002 

Azhdarchoidea indet. 

 

3.0.3 Specimen Details 

 

Collection number of the described specimen - SMNK PAL 3830 (Figure 3.1) 
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History & Locality Information - The specimen is preserved on a pale slab of flat 

limestone indicative of the Nova Olinda Member of the Crato Formation (Frey et al. 

2003a; Unwin and Martill 2007). 

 

3.0.4 Specimen Remarks 

 

Frey et al. (2003a) originally described the specimen with particular emphasis on soft 

tissues surrounding the unguals of the pes and the fibrils present within the decayed 

remains of the brachiopatagium. The presence of the tissue traces extending to the 

ankle in this specimen formed part of the argument by Elgin et al. (2008) that the 

trailing edge of the brachiopatagium would have terminated against the soft tissues of 

the lower hind limb.  

 

While Frey at al. (2003a) noted that fibrils associated with the decayed remains of the 

flight membrane occurred as fine striae up to 180 mm in length and approximately 0.1 

mm in width, further examination provides a more precise range of values throughout 

various portions of the wing. The most distal fibrils, extending from the fourth 

metacarpal and considered part of the actinopatagium (Schaller 1984), are found to 

range in size from 0.037 – 0.121 mm in diameter (Figure 3.2), with individual fibrils 

being spaced typically 0.2 - 0.26 mm apart or, on average, ~3.9 fibres/mm. The more 

proximal fibrils are found close to the left leg and may thus be considered part of the 

tenopatagium. These are notably thicker than those more distal elements, ranging 

between 0.106 mm – 0.183 mm in width. Their chaotic distribution, however, makes 

it impossible to determine what their original spacing during life might have been 

contra to that of Frey et al. (2003a) who concluded that the fibrils became more 

densely packed proximally. Closer observation of these tight proximal bundles 

indicate that they fan out towards their proximal termini and were originally 

associated with a single strip of the patagia 70 mm in length that (unlike the rest of the 

wing) has undergone relatively little deformation. While one end of these fibrils 

appears to have remained embedded within the decaying tissue, the other was likely 

free to the current, resulting in the fibrils becoming increasingly entangled and twisted 

as the carcass of the animal floated before sinking.  
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Compared with other specimens for which fibril distribution is known, the figure of 

3.9 fibrils/mm for SMNK PAL 3830 falls within the lower range known within the 

Pterosauria, where distributions of 3-8 per mm are observed in Rhamphorhynchus 

(Padian and Rayner 1993), and 4–7 fibrils per mm for Jeholopterus (Kellner et al. 

2009), rising up to 9 per mm in the distal wing. A fibril thickness of ~ 0.1 mm 

measured in SMNK PAL 3830 is thicker than that known for Rhamphorhynchus (0.05 

mm, Padian and Rayner 1993) but are comparable to those preserved in the proximal 

wing of Jeholopterus (Kellner et al. 2009). While fibril length is variable (4–8 mm in 

Jeholopterus versus < 180 mm here) the diameter of these elements is observed to 

remain more or less constant irrespective of the animals wingspan. While some 

overlapping of the fibres has occurred due to post-mortem movement the fibres here 

are situated within the same plane and therefore represent a single sheet rather than 

several overlying layers as noted for Jeholopterus (Kellner et al. 2009).   

 

 
Element length (mm) 

metacarpal IV (left) >172 

wph 1 (left) >243 

  

femur (right) 186 

tibiotarsus (right/left) 274 / 273 

 

Table 4. - Long bone measurements of SMNK PAL 3830. 
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Figure 3.1. Azhdarchoidea indet. SMNK PAL 3830. A, photograph and B, 
corresponding line tracing. 
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Figure 3.2. - Soft tissue features visible on the azhdarchoid specimen SMNK PAL 
3830. A, actinofibrils loose from the main tissue trace. White arrows denote the 
preserved medial and lateral extent of the fibril sheet, elements of which intertwine 
distally to form a fibril bundle (black arrow). B, actinofibrils associated with the first 
wing finger phalanx; C, coarse series of wrinkles, interpreted to be part of the trailing 
edge of the brachiopatagium; D, remains of the left wing brachiopatagium. Arrow 
highlights the major fold in the trace. 
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3.1. Description of an indeterminate azhdarchoid (SMNK PAL 

3900) 
 

3.1.1 Introduction 

 

Of the nine azhdarchoid specimens that preserve extensive postcranial remains and 

were recovered from the Nova Olinda Member of the Crato Formation, six preserve 

the complete (or near compete) fore and hind limbs in the absence of the torso (i.e. 

SMNK PAL 3830, 3900, 3855, 6409, MPSC R 868, MN 6527-V). Elgin et al. (2008) 

singled out one such specimen, SMNK PAL 3900, as an important example when 

considering the extent of the flight membrane, as the fossil preserves the 

corresponding fore and hind limbs, together with tissue attributed to the primary flight 

membrane, but lacks any elements of the torso or vertebral column. The absence of 

any distortion within the limestone matrix lead them to conclude that it was unlikely 

that the body, inflated by the gases of decay, drifted off, but rather the fore and hind 

limbs disarticulated from the carcass simultaneously and were held together by the 

wing membrane, that would have bound the limbs together.  

 

While this specimen was also featured by Unwin and Martill (2007) during their 

cataloguing of the known Crato pterosaurs, no complete description was given and 

further examination indicates that the bones yield important information with regards 

to the azhdarchoid postcrania. As such it is described here with emphasis on 

unreported characteristics.  

 

3.1.2 Systematic Palaeontology 

 

Order Pterosauria Kaup 1834 

Superfamily Azhdarchoidea Unwin 2002 

Azhdarchoidea indet. 
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3.1.3 Specimen Details 

 

Collection number of the described specimen - SMNK PAL 3900. 

 

History & Locality Information - The specimen is preserved on a pale slab of flat 

limestone (Figure 3.3) indicative of the Nova Olinda Member of the Crato Formation 

(Frey et al. 2003a; Unwin and Martill 2007). 

 

3.1.4 Specimen Description 

 

Humerus - The right humerus is observed in its ventral aspect, preserving a width of 

15 mm about the mid-shaft of the bone that represents its narrowest point. The caudal 

tuberosity is broken and only the medial-most section remains, being sigmoidal in 

outline and merging with the humerus caput at almost a right angle. The base of the 

deltopectoral crest is 51.5 mm in width (i.e. 37 % the total humeral length), cranial to 

which the crest narrows rapidly due to the converging curvature of the medial and 

lateral margins. Both edges preserve a steep concave curvature that is steeper on the 

lateral margin then that of the medial margin. The medial margin forms a regular and 

continuous curve, merging with the cranial margin of the collum. Adjacent to the 

collum, between the deltopectoral crest and the posterior tuberosity, a large, oval 

pneumatic foramen, 11 by 7 mm in size, is present. The distal end of the humerus is 

33 mm in width but the remains of the entepicondyle, trochlea and capitulum are too 

badly crushed to warrant a description. 

 

Radius & Ulna - The right radius and ulna are long and narrow bones, whose 

individual lengths form a ratio of 1.3 with the humerus. A small oval depression on 

the distal articular surface of the right ulna is identified as the fovea that corresponds 

with the tubercle on the medial surface of the proximal syncarpal. The left ulna lies on 

the opposite side of the slab and is seen in its cranial aspect, where a prominent 

trochanter is observed on its proximal margin. A small fragment of bone preserved by 

the distal articulation surface of the bone, and accompanied by a more extensive 

impression in the sediment, is regarded as the left radius.  
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Syncarpal - The right proximal syncarpal is viewed in its craniodorsal aspect. The 

visible portion of the dorsal surface is very narrow but expands mediolaterally 

towards the cranial margin of the bone, the cranial face of which is blunt. The distal 

syncarpal block has rotated out of its natural position and the proximal articular 

surface, which is largely crushed, now overlies the caudal margin of the proximal 

syncarpal along with the distal-most portions of the radius and ulna. The more dorsal 

portion of this surface is concave. The dorsal surface of the distal syncarpal is sub-

triangular in appearance and tapers in a cranial direction towards the preaxial carpal. 

The preaxial carpal is dominated by the development of a large fovea, partially 

occupied by a large, oval sesamoid, interpreted as the pisiform (Bennett 2008). The 

dorsal surface of the pisiform is smooth rather than marked by coarse striations.  

 

On the left carpus two sesamoids, distinct from the pisiform described above, are 

observed overlying the cranial margin of the proximal syncarpal (Figure 3.4). The 

first of these is elongate and flat, the surface of which is marked by coarse striations. 

This articulates with and overlies the flat surface of the second sesamoid, which is 

itself marked by finer striations and displays a convex curvature on the opposing face. 

The distal syncarpal block has again moved free from its natural articulation and lies 

close by but exposed in its ventral aspect. The ventral surface is marked by a central 

concave depression within which a large pneumatic foramen penetrates the bone.  

 

The first three metacarpalia are preserved close to the main shaft of the left wing 

metacarpal where a slender metacarpal (mc I) is observed and extends for a distance 

of >159 mm towards the distal syncarpal. The bone tapers dramatically from its distal 

termination, which is preserved as an impression of 2 mm in diameter, to the most 

proximal region of bone that is less than 0.5 mm in diameter. The second longest 

metacarpal (mc II) is at least 96 mm in length, where upon it makes contact with the 

first, and is lost from view, while the final metacarpal (mc III) is at least 51.8 mm 

before it terminates against mc II. Given the length of the first element it seems likely 

that mc I would have contacted, or terminated very close to the distal syncarpus.  

 

Metacarpal IV - The fourth metacarpal of the right forelimb is preserved in 

craniodorsal view where the dorsal condyle is deflected dorsally against the long axis 

of the shaft in cranial view, although at what angle cannot be determined. The dorsal 
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surface of the condyle is concave and adjacent to the caudoproximal margin of the 

condyle there is a clear depression of the shaft that would have accommodated the 

posterior process of the first wing phalanx during flexion of the wing finger. The 

distal head along with the distal 37 mm of the shaft has broken off and been displaced 

from the main body, turning just short of 180° from its natural orientation.  

 

Phalanges - The penultimate phalanges of the left fore limb are long, slender and 

slightly curved along the length of the shaft. Distally they expand to form a large 

condyle 11 mm in width that articulates with the ungual. The unguals are robust, 

strongly curved, and 32 mm in length. A deep sulcus is observed along the midline of 

the bone.  

 

Digit 4 - The right and left wing fingers are long and relatively slender with a uniform 

width of 12 - 13 mm. The caudal margin of the bone expands in a caudal direction at 

the distal edge of the bone, creating an expended articular surface for the second 

phalanx. The distal articular surface is convex. The second wing finger phalanx of the 

right wing is slightly curved so that it would have been directed caudally during life 

while the third phalanx displays a slight curvature such that the bone is directed 

ventrally. The wing finger phalanges of the left wing are similar to those of the right 

but at least one phalanx, interpreted as the second (i.e. wph 2), is visible in its ventral 

aspect and displays a T-shaped profile in cross section. 

 

Femur - The right femur is well preserved in its cranial aspect and measures 155 mm 

in length. The femoral caput is narrow, 18.5 mm in length, and offset 37° against the 

long axis of the shaft but expands to form a dome-shaped surface, 13 mm in width. 

The greater trochanter (e.g. Bennett 2001a, b) occupies the dorsolateral margin of the 

femur and is wide across its base, 8 mm, rising vertically 8 mm from the margin of 

the shaft so that its terminal point sits almost level with that of the caput. In cranial 

view the trochanter is observed as a prominent and robust sub-triangular feature. 

Below the greater trochanter the lesser trochanter (Bennett 2001a, b) has developed as 

a prominent ridge, extending for 9.5 mm close to the midline of the shaft. 

Approximately mid way along the shaft is a raised ridge that must have served as a 

muscle attachment point. The shaft of the bone itself curves laterally and the distal 

termination is 21 mm in width across epicondyles.  
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Tibiotarsus - The tibiae and fibulae are preserved in their natural articulation where 

the fibulae have fused with the tibiae at two locations, the first by the proximal 

articulation and the second located approximately 28 mm ventral to this. The distal 

portions of the fibulae are broken. The proximal tarsals have fully fused to the distal 

end of the shaft, forming a roller joint at the ankle and creating a tibiotarsus that is 

234 mm in length and preserves a mid-shaft width of 12-13 mm. In lateral view the 

margins of the distal lateral condyle are raised above the rest creating a concave 

profile that merges with the main body of the shaft. Adjacent to the dorsal margin of 

the condyle a large depression has formed between the cranial margin of the condyle 

and the shaft. The intercondylar sulcus is visible but distorted.  

 

Tarsals - The lateral distal tarsal is observed in its cranioventral aspect. In cranial 

view the bone is wedge shaped in appearance, tapering towards its medial margin. 

The ventral surface of the tarsal is smooth and pitted with a gentle convex profile. 

Towards the caudolateral portion of the bone and partially hidden by the overlying 4th 

metatarsal, is a depression regarded as the articular surface of the 5th metatarsal.  

 

Pes - All five metatarsals of the right pes are preserved together but have moved out 

of a natural position with the tibiotarsus and now lie at around a 90° angle to the long 

axis of the shaft. The length of the five metatarsals are: 50 mm, 51 mm, 51 mm, 48 

mm, 14 mm respectively, so that mt II = mt III > mt I > mt IV > mt V. The proximal 

articulation surface of metatarsal I is mediolaterally compressed while in mc III it is 

sub-triangular in profile. The proximal margin of the fourth metatarsal is greatly 

expanded and the lateral margin of the articular surface is concave. The shaft of the 

fourth metatarsal arches dorsally while the ventral surface for the distal shaft expands 

in a ventral direction, forming a process and a blunt articular surface. The fifth 

metatarsal is large, robust and sub-triangular in profile with a distinct concavity on its 

exposed surface. A single small (3.5 mm), sub-triangular phalanx is located in 

articulation with the fifth metatarsal. Three of the digits are preserved in natural 

articulation with their respective metatarsals however only two of these retain the 

unguals. The first phalanges of each digit are similar in morphology and narrow 

distally from a flat/slightly convex articular surface. The shaft arches dorsally and 

distally expands to form a roller-like articular surface  
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The condyles are splayed to form a Y-shape in dorsal view, the sulcus, which is wide 

and relatively deep, extending 3 mm onto the dorsal surface of the bone. Compared 

with the manual unguals those of the pes are narrow and display only a very mild 

curvature. The left pes is predominantly missing from the slab however its presence is 

confirmed by impressions of the metatarsals in the matrix and the terminal tips of two 

unguals adjacent to the right tibia. 

 

Tissue traces - An extensive rusty coloured trace, clearly distinct from the general 

colouration of the slab and underlying many of the bony elements, is regarded as the 

remains of soft tissue, specifically that of the wing membrane. Although no structural 

features can be observed within this trace it is unlikely that the tissue could have 

belonged to any part of the animal other than the wing, being too extensive to have 

belonged to the soft tissue of fore or hind limbs and with no elements of the torso 

being preserved.  

 

3.1.5 Additional Remarks 

 

Sesamoids of the carpus - The carpal elements of azhdarchoid pterosaurs are 

associated with three distinct sesamoids. These are labelled A-C after Bennett (2001a) 

and are largely identical in form to those of observed within the pteranodontids, 

indicating that this configuration was widespread, if not universal, throughout the 

Pterodactyloidea. The first of these, element A, occupies its natural position within 

the V-shaped fovea of the preaxial metacarpal, the surface of this in SMNK PAL 

3900 is striated for the attachment of tendons - acting as an anchorage for elongate 

muscles running distally along the wing spar and termination on the fourth metacarpal 

or phId4 (see Frey et al. 2006, Bennett 2007b, Prondvai & Hone 2009). The sesamoid 

Elements B and C are rarely observed in azhdarchoids and are paired together in what 

appears to be their natural state. Sesamoid B (Ses 1, Figure 3.4) is flat and forms an 

elongated oval body, the dorsal surface of which is marked by coarse striations 

orientated parallel to the long axis of the element. Sesamoid C (Ses 2, Figure 3.4) is a 

sub-circular element in dorsal or ventral view, one face of which is flat while the 

opposing face is generally convex. The flat face of sesamoid C makes contact with 

and overlies the striated face of element B, as was also noted in Pteranodon (YPM 
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2348). Although the natural position of elements B and C on the carpus during life is 

uncertain, the resting position of those in SMNK PAL 3900 overlie the cranial margin 

of the proximal syncarpal. The generally distal displacement of bones within the 

forearm of this specimen tentatively suggests that these elements were originally 

associated with the dorsal face of the proximal syncarpal. 

 
Element length (mm) 

humerus (right) 36 

ulna (left/right) 178 / 177 

carpus 30* 

metacarpal IV (left / right) 183* / 170 

wph 1 (left/right) >274 / 296 

wph 2 (left/right) >95 / 185 

wph 3 (left/right) >128 / 121 

wph 4 (right) > 34 

  

femur (left/right) 151 / 157.5 

tibiotarsus (left/right) 230* / 234 

 
Table 5. – Azhdarchoidea indet. SMNK PAL 3900. Selected long bone measurements. 
* denotes an approximate or estimated value.   
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Figure 3.3. - Azhdarchoidea indet., SMNK PAL 3900. A, Photograph and B, 
corresponding line tracing. Dark grey area indicates the extent of the tissue trace. 
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Figure 3.4. Features of interest on the indeterminate azhdarchoid SMNK PAL 3900. 
A, Left proximal syncarpus; B, close up of paired sesamoids; C, left pes; D, Close up 
of the left ankle; E, femoral collum and caput. 
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3.2. Description of an indeterminate azhdarchoid (SMNK PAL 

3985) 
 

Introduction 

 

The extent of the pneumatic system in pterosaurs has been demonstrated in a variety 

of specimens, the number of elements incorporated into this system clearly increasing 

in more derived taxa (Claessens et al. 2009; Eck et al. 2011). Given that flight appears 

to have been the primary method of locomotion in these animals, the inferred weight 

reduction that this characteristic would have permitted if often thought to have been 

of great evolutionary significance – lowering the power cost of flapping flight and 

allowing pterosaurs to evolve to much larger sizes than would otherwise have been 

possible. In addition to this, pneumaticity impinges strongly on a variety of other 

factors, e.g. mass estimation (Wedel 2005; Witton 2008a, b; Henderson 2010), flight 

and locomotion dynamics (Habib 2008), physiology (Claessens et al. 2009) and 

histology (Steel 2008), meaning that mapping and understanding the extent of the 

pneumatic system greatly increases our knowledge of numerous aspects of 

pterosaurian palaeobiology. 

 

Here a single juvenile specimen within the collection of the SMNK PAL 3985 shows 

a degree of damage that exposes the trabeculae orientations, and the extent of the 

pneumatic system which appears to penetrate into even very small elements early in 

ontogeny. The description and discussion of this specimen has now been accepted for 

publication and is detailed in Elgin and Hone (2013). 

 

 

3.2.1 Systematic Palaeontology 

 

Order Pterosauria Kaup 1834 

Family Azhdarchoidea Unwin 2002 

Azhdarchoidea indet. 

 

3.2.2 Specimen Details 
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Collection number of the described specimen - SMNK PAL 3985. 

 

History & Locality Information - Very little information is available for this 

specimen but the excellent preservation of the fossil within the concretion indicates 

that it originated from the Romualdo Member of NE Brazil (Albian). 

 

3.2.3 Specimen Remarks 

 

Full details of this specimen are provided by Elgin and Hone (2013) which is attached 

at the end of this section (Figure 3.5). 
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Figure 3.5. -. Indeterminate azhdarchoid SMNK PAL 3985. A, Photograph and B, corresponding line 
tracing. Scale bar = 50 mm.  
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3.3 The description of a new specimen of Tapejara wellnhoferi 
(SMNK PAL 3986) 
 
 
3.3.1 Introduction 
 

Tapejara wellnhoferi represents one of the few azhdarchoids to be known from a 

combination of associated cranial and postcranial elements (Wellnhofer and Kellner 

1991; Eck et al. 2011). Here a new specimen preserving a partial mandible, quadrate 

and some displaced elements of the postcranial skeleton including: the cervical 

vertebrae, antebrachial bones, first wing finger phalanges, and the pes, is found to be 

sufficiently similar to these other specimens to be assigned as T. wellnhoferi.  

 

3.3.2 Systematic Palaeontology 

 
Order Pterosauria Kaup 1834 

Suborder Pterodactyloidea Plieninger 1901 

Superfamily Azhdarchoidea Nesov 1984; sensu Unwin, 2003 

Genus Tapejara Kellner 1989 

 
Diagnosis (after Kellner 1989) - Toothless pterosaur with large sagittal crest on the 

anterior part of the skull extending backwards; very large nasopreorbital fenestra that 

occupies nearly half the skull in lateral view; rostrum included downwards. 

 
Tapejara wellnhoferi Kellner 1989 

 
Included Material - AMNH 24440; CD-R-080; SMNK PAL 1137; UOSG 12891; 
SMNK PAL 3986. 
 
Diagnosis - Large and very high sagittal crest on the anterior part of the skull, 

extending backwards; rostrum very inclined downwards; absence of a mesial ridge on 

the palate; orbit situated below the level of the upper margin of the nasoantorbital 

fenestra. 
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3.3.3 Specimen Details 
 
Collection number of the described specimen - SMNK PAL 3986 
 
History & Locality Information - The fossil is preserved on a split concretion that 

was purchased on behalf of the SMNK. The concretion originates from the Romualdo 

Member (Albian-?Cenomanian) of NE Brazil.  

 

3.3.4 Specimen Description 

 

A full description of the specimen has now been accepted for publication and readers 

are referred to Elgin and Campos (2011) which is attached to the end of this section 

(Figure 3.6). 
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Figure 3.6. – Tapejara wellnhoferi, SMNK PAL 3986. 
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3.4 Description of an indeterminate azhdarchoid (SMNK PAL 

6409) 
 

3.4.1 Introduction 

 

This specimen was included along with those described previously as evidence that 

the wing membrane extended between the fore and hind limbs during life by Elgin et 

al. 2011, who argued that a dark tissue trace, representing the brachiopatagium, bound 

the wing finger phalanges and the hind limb together as they settled. While Unwin 

and Martill (2007) have previously included this specimen within their catalogue of 

Crato pterosaurs, it lacked a full description and subsequent preparation exposed the 

medial distal tarsal, providing the rare opportunity to describe this bone in mature 

azhdarchoids.    

 

3.4.2 Systematic Palaeontology 

 

Order Pterosauria Kaup 1834 

Superfamily Azhdarchoidea Unwin 2002 

Azhdarchoidea indet. 

 

3.4.3 Specimen Details 

 

Collection number of the described specimen - SMNK PAL 6409 (Figure 3.7). 

 

History & Locality Information - The specimen is preserved on a pale slab of flat 

limestone indicative of the Nova Olinda Member of the Crato Formation (Frey et al. 

2003a; Unwin and Martill 2007). 

 

3.4.4 Specimen Description 

 

Sesamoids - Two sesamoids, similar to those observed in SMNK PAL 3900 are 

found in association with each other and lie loose from the carpus. The first of these 

appears as an elongated oval, 18 mm by 6 mm, the dorsal surface of which is marked 
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by a number of striations orientated parallel to the long axis of the bone, while the 

second element is more rounded but lies on its side, partially overlapping the striated 

surface of the first sesamoid. These represent the sesamoids B and C (after Bennett 

2001a). A single metacarpal is preserved as a thin rod of bone directed into the 

sediment and across the dorsal surface of the first wing finger phalanx.  

 

Manus - The phalanges of the first three digits are slender and lack any noticeable 

curvature along the length of their shafts. A large excavation to accommodate the 

flexor muscle is observed on the ventral surface of the first phalanx of digit 1, 

immediately distal to the sulcus of the proximal condyles, while distally the phalanges 

terminate in an expanded roller joint. All three unguals share a common morphology 

where they are robust, slightly re-curved and a preserve a large medial sulcus that 

runs almost the whole length of the bone, terminating just before the distal margin.  

 

Digit 4 - The individual phalanges of the left wing finger are visible in their ventral 

aspects. The proximal region of the first phalanx is comprised of dorsal and ventral 

positioned cotyles that are strongly concave to accept the distal condyles of the fourth 

metacarpal. The ventral cotyle is smaller than that of the dorsal and located slightly 

more distally, accommodating a set of condyles up to 19 mm in width. The larger 

dorsal cotyle expands the proximal region of the bone in a caudal direction, creating a 

process that rises over the dorsal surface of the fourth metacarpal during flexion of the 

wing finger. The cranial half of the articular surface is formed by the extensor tendon 

process that has mostly closed its suture with the phalanx but can still be distinguished 

from the main body by a small scar, visible across both the ventral and caudal 

surfaces of the bone. Immediately lateral to the ventral cotyle, between the main shaft 

of the phalanx and the caudal process, a large depression is interpreted to be the 

remains of a pneumatic foramen. The shaft of the phalanx is uniform in width and 

extends for a length of 308 mm, the distal surface of which is slightly convex. The 

second wing-finger phalanx has an expanded proximal surface that is only slightly 

concave in profile. The shaft is 206 mm in length and has developed a “T-shaped” 

profile in cross section, caused by a deep depression adjacent to the leading edge of 

the bone, followed immediately by a convex bulge near the caudal margin. The third 

phalanx is 127 mm in length and narrows distally with a gentle, caudally directed 

curvature. The fourth phalanx is only 46 mm in length and diminishes to minimum 
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width of 1 mm at the distal tip. A small oval scar, presumably for a ligament that 

would have bound the third and fourth phalanges together in life, is observed on the 

ventral surface adjacent to the proximal articulation. The shaft of the phalanx also 

preserves a caudally directed curve but to a much greater degree than that observed in 

the previous phalanges. The distal tip of the phalanx is blunt.  

 

Femur - The left femur is preserved in caudal view where the collum is offset against 

the shaft at an angle of 32°. Immediately lateral to the base of the neck a pneumatic 

foramen, 9 mm in width, has developed in the tough between the collum and the 

greater trochanter. The greater trochanter forms as prominent sub-triangular 

protrusion by the lateral margin of femur, rising 6 mm dorsally from the shaft to sit 

level with the broken remains of the femoral head. An elevated ridge extends 

ventrally from the trochanter, merging with a raised section of bone that forms the 

dorsolateral margin of the shaft for a distance of no less than 11 mm. Another raised 

area of bone, smaller than that on the dorsolateral margin, occupies a position just 

ventral to the collum by the medial margin of the bone and is here regarded as the 

internal trochanter. The middle potion of the femoral shaft between these two 

trochanters is depressed and forms as a shallow trough. The shaft of the femur curves 

slightly laterally. The width of the bone across the remains of the condyles is 

measured at 24 mm.  

 

Tibiotarsus - The left tibiotarsus lies level with the distal end of the femur but has 

rotated so that it is now observed in its medial aspect. The proximal articular surface 

is concave in profile and slightly expanded to accommodate the distal condyles of the 

femur. The shaft is initially wide, 17 mm, but tapers towards its distal margin. The 

fibula is missing from the slab suggesting that it had not yet fused to the tibia. The 

proximal tarsals have fully fused to the distal end of the tibia creating an expanded 

roller joint for the ankle, the medial condyle of which is marked by a depression on its 

medial face and preserves a width of 15.6 mm. The lateral condyle and the 

intercondylar sulcus are visible but heavily camouflaged by sediment cover. The 

complete length of the tibiotarsus is 253 mm.  

 

Distal tarsals - The distal medial tarsal is observed in medial view occupying its 

natural position between the tibiotarsus and the metatarsals. The medial face is 
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broader than it is high and has a widely splayed, V-shaped appearance as a result of 

the cranial and caudal halves of the bone, which are clearly distinguished from one 

another. The cranial half forms a regular convex surface that acts as the articular 

region of the first metatarsals. The dorsal margin of the bone is directed in a 

craniodorsal direction and a small notch close to the cranial edge of the bone marks 

the beginning of the cranial tubercle. The caudoventral margin of this tubercle is 

slightly concave but merges with the larger convex surface of the cranial articulation. 

The cranial half of the bone tapers when seen from its cranial aspect where the 

craniodorsal portion is located medial to that of the ventral margin, creating a low 

lying region of bone in the central region of the tarsal. The dorsal margin of the 

caudal face of the tarsal is directed caudodorsally, i.e. perpendicular to that of the 

cranial half, creating a wide U-shaped articular surface for the distal condyles of the 

tibiotarsus. The ventral margin is strongly convex. The caudal half of the tarsal is 

generally convex and a shallow groove at least 6 mm in length originates at the 

caudodorsal margin, extending diagonally across the surface towards the central 

region of the tarsal. This is interpreted as the grove for the flexor tendon (after 

Bennett 2001). The cranial portion of this caudal half develops as a steeply sloping 

ramp that merges with the low lying region of the cranial half of the medial tarsal, 

forming a wide central depression that clearly distinguishes between the two halves of 

the bone.  

 

Metatarsals - Only four metatarsals are visible and can be observed in their 

ventromedial aspect. Metatarsals II - IV show a similar morphology where the 

proximal articular surface is wide and sub-triangular in appearance but narrows to a 

thin (~ 29 mm by the mid shaft), dorsally arching shaft that terminates in a concave 

condyle formed by a ventral expansion of the bone. The fifth metatarsal is typical of 

derived pterodactyloids and is short, robust and sub-triangular in shape. The ventral 

surface is concave across its long axis while the proximal surface, which must have 

articulated with the distal tarsals, is slightly concave between its medial and lateral 

margins. The medial margin is generally convex while the lateral margin forms as low 

ridge. Distal to the fifth metatarsal a tiny sub-triangular phalanx occupies what would 

have been its natural position during life. The metatarsals are sub-equal in length and 

here the longest is metatarsal II (56 mm) > IV (54.5 mm) = III (54 mm) > V (17.5 

mm). 
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Pedal phalanges - The penultimate phalanges of both the second and third digits are 

visible and retain a natural contact with their respective ungual. The unguals of the 

pes are sharp and strongly curved but are noticeably shorter and narrower than those 

of the manus. A deep sulcus runs along the centre of the bone.   

 

Tissue traces - A large but irregular black trace covers much of the fossil, overlying 

the first three wing-finger phalanges, tibiotarsus, and parts of the pes. As both left fore 

and hind limbs sunk together in the absence of the torso this stain most likely 

represents the remains of the brachiopatagium although no actinofibrils or internal 

structures can be observed. The position and extent of the soft tissue trace prevents it 

from being attributed to the soft tissues of the fore and hind limbs. The state of 

preservation is unusual in that the membrane stain forms as a pocket a few millimetres 

in depth and can therefore be observed on several levels where the top most surface is 

no longer present. The upper surface of the trace is black and generally featureless 

although wrinkles similar to those observed in other membranes are can found on a 

small patch of sediment close to the mid shaft of the second wing finger phalanx. 

Within the membrane pocket the trace is again predominantly black and contains a 

number of minerals that fluoresce brightly under long wave ultra violet light (365nm); 

the surface layer itself does not fluoresce. In addition to this the internal region of the 

tissue is marked by a number of rod-like impressions where associated clusters form 

in a arc-like pattern of typically less than 45°, but up to 180°, and occasionally 

crosscut or overly their neighbouring structures. These are regarded as the products of 

mineral formation rather than part of the original tissue and latex peels have been 

taken for further analysis.  

 

3.4.5 Additional Remarks 

 

Distal Tarsals - The distal tarsals are known in detail for only a limited number of 

specimens including the non-pterodactyloid Dimorphodon (Padian 1983), the 

pterodactyloids Coloborhynchus (Kellner & Tomida 2000), and Pteranodon (Bennett 

2001a, b), and the azhdarchoids Quetzalcoatlus (see Bennett 2001a, b), and Tapejara 

(Kellner 2004b). Of the elements attributed to these azhdarchoids the former remains 

unpublished, while the latter belong to a juvenile animal, confidentially inferred by its 
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very small size and lack of skeletal fusion. The left distal tarsal of SMNK PAL 6409 

is observed in its medial aspect, forming a widely splayed, V-shaped unit that is 

broader than it is high (Figure 3.8), the central portion of which is depressed and 

clearly divides the anterior and posterior sections of the bone. In medial view the 

morphology of the bone very closely resembles that described for Pteranodon (and 

presumably Quetzalcoatlus) by Bennett (2001a) where a pronounced notch along the 

anterodorsal margin of the bone marks the start of an anteriorly directed tubercle. A 

shallow sulcus, presumably for the flexor digitorum tendon (Bennett 2001a, b), is 

observed on the posteriodorsal section of the element and extends onto the posterior 

face of bone. The primary differences between the elements of Pteranodon and 

SMNK PAL 6409 are the absence of any foramina for the latter specimen.  

 

In anterior view the lateral distal tarsal is wedge shaped. Bennett (2001a) noted a 

raised feature that extended onto the lateral tarsal for the articulation of the 

metatarsals, however, the anterior face of these bones is flat and smooth in both 

SMNK PAL 3030 and 3900, where anterior and distal faces of the bone meet at a 

right angle to one another. While the distal tarsals of MN 6532-V were only weakly 

triangular in shape relative to those of SMNK PAL 3830 this likely represent the 

relatively immaturity of the former specimen.  

 

Femur - The presence of a large pneumatic foramen between the trochanter and 

collum in SMNK PAL 6409 appears to be widespread, if not universal within the 

Azhdarchoidea, having also been noted by Eck et al. (2011) for Tapejara wellnhoferi. 

The development of the lesser trochanter into a prominent, sub-triangular feature is 

largely diagnostic for azhdarchoids and points to a greater development of the 

abductor muscles (see Hutchison 2001), emphasising the increased role of terrestrial 

locomotion in these animals.     
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Specimen Measurements (mm) 

wph 1 294 

wph 2 209 

wph 3 127 

wph 4 45 

femur 183 

tibiotarsus 262 

 

Table 6. – Long bone measurements of SMNK PAL 6409. 
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Figure 3.7. - Azhdarchoidea indet., SMNK PAL 6409. A, Photograph and B, 
corresponding line tracing. 
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Figure 3.8. -. Ankle structure in the pterodactyloid pterosaurs. A, SMNK PAL 3830 
left ankle region in cranial view; B, SMNK PAL 3900, right ankle in cranioventral 
view; C, SMNK PAL 6409, left medial distal tarsal in medial view; D, Tapejara sp. 
(MN 6532-V), distal tarsals in cranial view (adapted from Kellner 2004); E, 
Pteranodon (YPM 2462), distal tarsals in cranial view (adapted from Bennett 2001a); 
Pteranodon (YPM 2462), medial distal tarsal in medial view (adapted from Bennett 
2001a).  
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3.5 The description of a novel genus and species Microtuban 

altivolans (SMNK PAL 6595). 
 

3.5.1 Introduction 

 

Although pterosaurs achieved a global distribution throughout the Mesozoic (Barrett 

et al. 2008) the location of fossil finds are not evenly distributed, with the majority of 

those specimens known to science having been unearthed in specific localities of 

exceptional preservation in Western Europe (Wellnhofer 1970, 1975), Mid Western 

areas of the USA (Bennett 2001a, b), NE Brazil (Kellner and Tomida 2000; Unwin 

and Martill 2007), and the NE of China (Wang et al. 2005). As such, regions 

including Africa and the Middle East are particularly sparse with regards to pterosaur 

remains (Dalla Vecchia et al. 2001. Intermittent finds around the Cretaceous deposits 

of Lebanon and Israel indicate that, while pterosaurs were present, their remains 

remain relatively rare compared to other fossil Lagerstätten, despite many quarries in 

the former territory being exploited specifically for the commercial sale of fossil 

material. 

 

This specimen was offered for sale to the SMNK from a local dealer in Lebanon and 

despite its crushed and broken state represents the most complete pterosaur known 

from the Arabian plate, preserving part of the cervical and dorsal vertebrae, pectoral 

girdle, and elements of the fore and hind limbs. A full description of the specimen has 

now been accepted for publication and readers are referred to Elgin and Frey (2011b).  

 

3.5.2 Systematic Palaeontology 

 

Order Pterosauria Kaup 1834 

Super Family Pterodactyloidea Plieninger 1901 

Family Azhdarchoidea Nesov 1984; sensu Unwin, 2003 

Genus Microtuban Elgin and Frey 2011b 
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Diagnosis - An azhdarchoid pterosaur distinguishable by an unusually high ratio of 

the first and second wing-finger phalanges (wph 2/wph 1 = 0.85) and a hyper-reduced 

fourth wing-finger phalanx, accounting for 1.1 % of the total wing-finger length. 

 

Included Material - Only known specimen and holotype is SMNK PAL 6595. 

 

Microtuban altivolans Elgin and Frey 2011b 

 

Diagnosis - As for genus. 

 
Elements length (mm) Elements length (mm) 

cervical 7 23.6 d1pI 12.5 

cervical 8  21.1 d1u 11.0 

cervical 9 ~ 9.0 d2u 11.0 

dorsal 1 ~10.0 d3pI 17.0 

  d3pII 3.0 

humerus 61.6 - 73.3* d3pIII 10.5 

radius 92.0* d3u 11.0 

carpus 13.0   

pteroid >38.0 wph I 135.0 

mc IV 122.0* wph II 114.5 

mc I? 50.0 wph III 63.5 

  wph IV 3.5 

 

Table 7. - Bone measurements in SMNK PAL 6595. * denotes an approximate or 
estimated value; mc, metacarpal; dp, digit and phalanx number; wph, wing-finger 
phalanx. 
 

 

3.5.3 Specimen Details 

 

Collection number of the described specimen - SMNK PAL 6595 (Figures 3.9 – 

10). 

 

History & Locality Information - The specimen was purchased from a private 

collector from the Late Cretaceous limestone of Lebanon, surrounding the town of 
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Hjoûla. These deposits are regarded as part of the Sannine Formation, and have been 

dated as early Cenomanian. 

 

3.5.4 Specimen Description 

 

The specimen has been formally accepted for publication and a full description is 

given by Elgin and Frey (2011b) which is attached at the end of this section. 
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Figure 3.9. - Microtuban altivolans, SMNK PAL 6595. A, photograph; B, 
corresponding line drawing. 
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Figure 3.10. - Photogrpahs of specific points of interest in SMNK PAL 6595. A, left 
forearm; B, pectoral girdle; C, right femur; D, middle shaft of metacarpal IV; E, 
metacarpophalangeal joint of the wing metacarpal and wing finger; F, wing finger 
phalanx IV. 
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3.6 The description of a new Tupuxuara –like azhdarchoid. 
 

3.6.1 Introduction 

 

Extensive postcranial remains attributed to azhdarchoids are rare and where they do 

occur are almost always fragmented and of little diagnostic worth – with the best 

examples of such specimens ending up in the hands of private collectors and 

disappear from scientific study (Unwin and Martill 2007). One such specimen, 

however, was acquired by the SMNK late into the writing of this thesis but its true 

value was unknown until a substantial portion of the concretions were prepared. At 

the time of writing the majority of the specimen has been exposed by the preparation 

staff at the museum, providing key bone ratios and warranting a preliminary 

description for the purpose of this work. Further preparation is required before the 

taxonomic placement of the specimen can be confidently stated. 

 

3.6.2 Systematic Palaeontology 

 

Order Pterosauria Kaup 1834 

Superfamily Azhdarchoidea Nesov 1984; sensu Unwin 2003 

Family Thalassodromidae sensu Witton 2009 

Genus cf. Tupuxuara Kellner and Campos 1988 

 

Diagnosis: -Toothless pterosaur of medium size, possessing a large sagittal crests 

situated at the anterior part of the premaxilla that is extended backwards; presence of 

a medial ridge at the ventral part of the palate; first wing finger phalanx and 

metacarpal IV comparatively slender and long; proximal articulation of the first wing 

finger phalanx with two pneumatic foramina, one situated at the superior part of the 

articulation with the fourth metacarpal. 

 

Included Material - T. longicristatus, MN 6591-V; T. leonardii, MCT 1495-R; 

SMNK PAL 4330; T. deliradamus, SMNK PAL 6410; KPMNH DL 84. 
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3.6.3 Specimen Details 

 

Collection number of the described specimen – NA. A collection number has not 

been assigned at the time of writing. 

 

History and Locality Information - The specimen consisted of eight concretions 

that were purchased from a private dealer and were partly broken or damaged to 

expose the bones inside. These concretions were thus prepared almost from scratch in 

the laboratories of the SMNK and it was clear that all bones recovered belonged to a 

single azhdarchoid pterosaur. The provenance of the concretion was the Romualdo 

Member of the Chapada do Araripe, NE Brazil (Albian - ?Cenomanian) but no further 

information is possible.  

 

3.6.4 Specimen Description 

 

The fossil is well preserved within a single large concretion that has been broken into 

eight primary segments. Although several sections of the fossil remain under 

preparation, a preliminary analysis is provided here owing to several features that are 

beneficial to the general theme of this thesis. A full account of the specimen is to be 

subsequently written following complete preparation. The skeleton represents the 

primary portion of the body fossil (Figures 3.11 - 12; Table 8) where a number of 

elements are broken along the margins of the concretion. The generally complete state 

of the fossil suggests that some sections, principally the distal wing metacarpal and 

first wing finger phalanx of the right wing, the shaft of the right tibia and pedal digits, 

and the wing finger phalanges of the left wing were all originally present. These are 

inferred to have been lost during the collection process or as a result of erosion. 

Damage to the fossil is light and restricted to the dorsal surface of the mandible, the 

central region of the sternal plate, and the caudal part of the pelvic girdle. Soft tissue 

is preserved as a dark grey / black trace that is restricted to the proximal portion of the 

forearm of the right wing and the left hand side of the thoracic vertebral series.  

 

Skull – Only the posterior section of the cranium is preserved (Figure 3.13). The 

frontal and parietal bones have sutured to form a robust neurocranial block, where the 

division between the two bones is not clear – suggesting that these have fused 
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together. The rim of the orbit and the caudal margin of the parietal have been 

damaged with the loss of their compacta. The caudal margin of the parietal is strongly 

curved and indicates that a crest would have extended caudal to the preserved margin 

of the cranium. Only a small portion of the cranial crest is present as a thin sheet of 

bone positioned dorsal to the neurocranium (most likely an extension of the 

premaxilla). The lacrimal is complete and appears as a sub-triangular element where a 

single large circular fenestra occupies the centre of the bone. The lacrimal has 

separated from the neurocranium indicating that the two had not fused. The cranial 

margin of the lacrimal is regularly concave, the ventral branch of the bone is very 

slender.  The jugal is situated directly ventral to the lacrimal and is a tri-radiate 

element that forms the cranio/caudoventral margins of the orbit and the caudoventral/ 

ventral margins of the nasoantorbital fenestra. The dorsal branch of the bone that 

articulates with the lacrimal is slender and mostly straight, indicating that the caudal 

margin of the nasoantorbital fenestra would have been more straight than concave in 

lateral view. Both the left and right bars of the jugal are present, indicating that the 

skull collapsed upon itself. The cranially directed bar becomes very slender but its 

cranial termination is missing. Four segments of the right sclerotic ring are observed 

in situ within the cavity of the orbit. Beyond the caudal margin of the skull the left 

opisthotic bone is present. The dorsolateral margin of the bone is regularly concave 

while that of the ventrolateral margin is only slightly concave. The dorsal margin of 

the bones forms the ventral margin of the posterior temporal fenestra while the ventral 

margin is strongly concave and would have formed the dorsal margin of the posterior 

cranial fenestra.  

 

Mandible – The mandible is elongate and tapers towards the cranial tip when 

observed in its lateral aspect, giving it a spear-like outline (Figure 3.14). No teeth or 

alveoli are present indicating that the animal was edentulous. In cross-section the 

mandible is typically sub-triangular with a transversely concave buccal margin. The 

distal portion of the left ramus is hidden by the overlying cranium but that of the right 

is exposed in its dorsomedial aspect. The fenestra meckeli separates the surangular 

from the angular immediately cranial to the articular. The caudal articulation of the 

surangular is concave and although the bone makes a firm contact with the articular 

the suture between these elements is open. The articulation for the quadrate forms as a 

deep furrow and is angled craniomedially.  
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Vertebral column – The vertebral column is preserved largely in situ. The atlas-axis 

complex is missing but the 3rd and 4th cervicals are preserved adjacent to the cranium, 

exposed in their right lateral aspects (Figure 3.13). Although sediment covers most of 

the neural spines no sutures are observed, indicating the centrum and neural spines 

have fully fused. The centrum of the 3rd cervical is pierced by two oval foramina. Two 

additional cervicals belonging to the mid-cervical series (likely the 6th and 7th 

cervicals) are observed in their left lateral aspects (Figure 3.14). Although largely 

hidden by sediment cover these bones are elongate with large prezygapophyses and 

high neural spines that extend the length of the vertebral body. A pneumatic foramen 

pierces the lateral flank of the vertebral body and the neurocentral sutures in both of 

these elements are fully closed. The 9th cervical is preserved in articulation with the 

remainder of the thoracic series and distinguished by its relatively large size and 

robust ribs, which are of a similar size to those of the first dorsal. The thoracic series 

is represented by at least 11 vertebrae, observed in their left ventrolateral aspects 

(Figures 3.15 - 16). The second vertebra is partially overlain by the sternal plate while 

the third is completely overlain, although its position is inferred by the presence of a 

loose rib. All thoracic vertebrae preserve a similar size and form, the corpora of which 

are sub-equal in length and width, and articulate with prominent, caudolaterally 

directed transverse processes. The ventral face of the first two transverse processes 

possess very large pneumatic foramina, which then appear to be absent in subsequent 

vertebrate until the 8th dorsal, where after these foramina have now become very 

small. 

 

Contra to the state observed for the cervical series, the neurocentral sutures of the 

thoracic vertebrae are immature, where the vertebral body and neural arch of the 

cranial most elements have been slightly displaced. Although the caudal most 

elements also display an immature state, the vertebral body and neural arch form a 

tighter association with one another and the sutures are thinner – indicating an 

advanced state of fusion. Four sacrals are preserved in natural articulation with the 

thoracic series (Figure 3.18). The vertebral bodies are narrower than those of the 

thoracic series. The ribs of the first sacral vertebra are directed strongly caudolaterally, 

while in the remaining elements they are orientated laterally instead. The sutures of 

the sacral series are fully closed. Only a single caudal vertebra is preserved and has 
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been displaced from its natural position. It is sub-rectangular in shape, being 

approximately twice as long as it is wide, with a slightly splayed cranial margin.  

 

Pectoral girdle – The coracoids are exposed in their ventral aspects but have 

disarticulated from the underlying scapulae, indicating that a scapulocoracoid has not 

formed (Figure 3.14). The coracoid body is expanded relative to the remainder of the 

element, with a concave dorsal margin forming the ventral portion of the glenoid 

fossa. Ventral to this a large, smooth and oval tubercle is situated just lateral to the 

onset of the shaft. The shaft itself is narrow and extends medially before expanding to 

form a forked articulation. The sternocoracoidal furca is widely splayed, the surface 

of which is smooth and convex. The saddle between the two forks of the furca is 

relatively shallow when compared to the ornithocheiroid configuration.     

 

Sternal plate – The sternal plate is observed in its ventral aspect where it is almost 

rectangular in profile, being slightly longer than it is wide, and transversely concave 

(Figure 3.16). The lateral margins of the plate are crenulated for the articulation of the 

thoracic ribs, two of which are preserved along the right hand margin of the plate, 

while the caudal margin is convex. The cristospine is robust with a strongly concave 

caudoventral margin. The cranial section is broken and missing. 

 

Forelimb – The bones of the forelimb are exposed primarily in their ventral or 

caudoventral aspects (Figures 3.15 – 17, 3.19). The humerus is a slender bone that 

displays an immature state as indicated by two large sesamoids, representing the 

trochlea and capitulum, which lie loose from the expanded distal articulation. The 

deltopectoral crest is unwarped and typical of that observed in other azhdarchoids, 

with sub-parallel medial/distal margins, and a large pneumatopore occupies the 

ventral face of the humerus between the deltopectoral crest and caudal process. The 

radius and ulna are slender and elongate, 1.26 times as long as the humerus. A single 

large sesamoid lies loose from the proximal articular face of the ulna. The elements of 

the proximal and distal carpus have disarticulated from one another but have not been 

displaced far. Within the right carpal region two elements of the proximal and distal 

are observed, displaying a series of complex profiles. The preaxial carpal is observed 

in its lateral view with an empty fovea, the large sesamoid that once occupied this 

being located close by. The pteroid lies adjacent to the radius and is an elongate 
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element, 58% the length of the ulna, with an expanded and concave articular surface. 

The shaft is narrow and tapers strongly towards its medial terminus. Just medial to the 

articular surface, the bone is strongly curved so the shaft would have been directed 

parallel to the radius/ulna. The wing metacarpal (mc IV) forms a ratio of 1.6 with the 

humerus and narrows distally from its proximal articulation. The distal articulation is 

created by the presence of a dorsal and ventrally located condyle. The preaxial 

metacarpals (i.e. mc I-III) are bulbous at their distal termini but taper strongly towards 

their proximal margins where they become exceedingly narrow (Figure 3.17). At least 

one of these metacarpals, here presumed to be the first (i.e. mc I), terminates against 

the distal carpals of the wrist. The wing finger phalanges are typical of other 

azhdarchoid pterosaurs where the length of the phalanges decreases distally with each 

successive element. The extensor tendon process is unfused from the proximal face of 

the first wing finger phalanx, while the shaft of this phalanx is pierced on its ventral 

face adjacent to the proximal articulation. The shaft of the phalanges themselves are 

straight, the proximal and distal regions of the bones have expended to form the 

articular surfaces for their neighbouring elements. 

 

Pelvic girdle – The elements of the pelvic girdle are unfused and have been slightly 

displaced from their natural positions (Figure 3.18). The ilium is a long, narrow and 

medially curving blade of bone that extends cranially and terminates level with the 

10th thoracic vertebrae. Accounting for a slight displacement of the ilium it is likely 

that the cranial termination of bone lay lateral to the 9th thoracic vertebrae during life. 

The pubis forms as a mediolaterally compressed plate, thickest about its dorsal region 

that acts as the cranioventral portion of the acetabulum. The ventral margin is strongly, 

but irregularly, convex and a large foramen (obturator foramen) occupies part of the 

caudal margin. The ischium is badly damaged with the loss of much compacta and no 

osteological details are preserved.   

 

Hind limbs – The semi-globular articular head of the femur is situated within the 

acetabulum with the femoral neck being offset against the shaft of the bone at an 

angle of 33° (Figures 3.18, 3.20). The femoral shaft is bowed slightly laterally and 

forms a ratio of 1.29 with that of the humerus. The tibia is badly damaged and missing 

much of its mid-shaft but makes a ratio of 1.73 with that of the humeral length and 

1.34 with that of the femoral length. The proximal tarsals are loose from the distal 
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margin of the tibia and are semi-lunate in shape. The distal tarsals appear to be 

missing. The metatarsals are strongly bowed in a ventral direction (Figure 3.20). 

 

Soft tissue preservation – Several patches of mineralized tissue are observed as a 

light/dark grey trace over a wide area of the fossil. The origin of two corresponding 

patches of tissue, located between the elbow regions and thoracic series on both arms 

is uncertain where no fibres or soft tissue structures are observed with the trace. As 

such it is not possible to confirm whether these traces represent the preserved remains 

of the wing membrane or that of the body tissues. A second trace also lacking internal 

features is regarded as being the preserved remains of the propatagium. This latter 

trace is located between the antebrachial bones of the right forearm and encompassing 

the proximal region of the pteroid; a state of preservation strikingly similar to that 

displayed by the Vienna Pterodactylus. A final trace of tissue, adjacent to the wing 

finger phalanges, is here regarded as part of the distal wing patagia due to the 

presence of zigzagged actinofibrils, identical to the pattern observed within 

Jeholopterus (Kellner et al. 2009). 

 

3.6.5 Specimen Comments 

 

While a complete discussion of the taxonomic affinity of this specimen cannot be 

provided before preparation is complete, a sufficient amount has been exposed such 

that it would be amiss if this question was not considered here. It is confidently 

identified as an azhdarchoid pterosaur due to the relatively elongate metacarpal, femur 

and tibia (making respective ratios of 0.62, 0.78, and 0.58 with the humerus, see 

Unwin 2003). The outline of the “spear-like” mandible further distinguishes this 

specimen from the majority of specimens uncovered from the Araripe Basin of NE 

Brazil, where both Tapejara and Tupandactylus are characterised by a ventrally 

turned rostral tip and median sagittal crest (Wellnhofer and Kellner 1991; Kellner 

2003, 2004a), while the ventral mandibular margin of Thalassodromeus sethi (Kellner 

and Campos 2002) turns dorsally close to the tip, creating a relatively bunt and robust 

rostral segment (Figure 3.21). Taxa with a similarly gracile and strongly tapered 

mandible from the NE of Brazil are therefore restricted to the genus Tupuxuara (i.e. T. 

longicristatus, T. deliradamus, and presumably also T. leonardii).  
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Figure 3.21 – Comparison of a variety of mandibles attributed to the Azhdarchoidea: 
A, Tapejara wellnhoferi (Iwaki specimen); B, Shenzhoupterus chaoyangensis; C, 
Tupuxuara leonardii; D, Thalassodromeus sethi (private specimen, Oberli Collection); 
E, cf. Tupuxuara (described specimen); F, Jidapterus edentus. Within the Early 
Cretaceous deposits of NE Brazil, only specimens attributed to the genus Tupuxuara 
are known to preserve a “spear-like” mandible.  
 

A comparison with T. leonardii is not possible as the holotype preserves the cranial 

section of the skull which is not present here. The remaining two species, however, 

are well represented by two complete skulls (i.e. KPM NH DL 84 and IMCF 1052) 

and complemented by the presence of several additional specimens (i.e. CD-R-003, 

SMNK PAL 4330, SMNK PAL 6410). Witton (2009) reported that the major 

diagnostic difference between T. deliradamus and T. longicristatus was the angle of 

the quadrate to the jugal, this angle being higher in the former (i.e. 150° versus 130° 

respectively). At 161°, the angle between the jugal and quadrate of the described 

specimen is closest to that of T. deliradamus (Figure 3.22), albeit rather larger. 

Additionally, Witton (2009) argued that the caudal margin of the nasoantorbital 

fenestra was straighter in T. deliradamus relative to that of T. longicristatus, which is 

more concave. Although the skull of the described specimen has fragmented, the 

dorsal branch of the jugal that articulates with the lacrimal is almost straight (Figure 

3.22), again suggesting a better relationship with T. deliradamus. The remaining 

diagnostic features of T. deliradamus are problematic for comparison as the 

nasoantorbital fenestra is incomplete but, reconstructing its dorsal margin based on 

the angle of the cranial margin of the lacrimal, the posterior margin of the 

nasoantorbital fenestra makes an angle of 134°, compared to 120° recorded by Witton 
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(2009) for T. deliradamus (SMNK PAL 6610). Thus the described specimen appears 

to be broadly similar to that of Tupuxuara deliradamus but it herein merely diagnosed 

to the level of the genus, for which a very robust affinity is proposed based on the 

form of the mandible. In spite of this the prefix cf. is added pending a formal 

publication of the specimen. 

 

 
Figure 3.22. – Schematic comparison of Tupuxuara crania where: A, Described 
specimen; B, SMNK PAL 6410; C, KPMNH DL 84; D, SMNK PAL 4330.  The 
reconstructed angle between the jugal and quadrate in the described specimen (A) 
exceeds that of both T. deliradamus (B-C) and T. leonardii (D). Figure adapted after 
Witton (2009). 
 

Morphometric maturity - The specimen is morphologically immature using the 

criteria of Bennett (1993) as while the compacta and articular surfaces are well 

ossified, numerous elements are divided by sutures or lie loose. Although the order of 

suture closure has been covered within Pteranodon (Bennett 1993, 2001), and 

ornithocheirids (Kellner and Tomida 2000), little work has been done on the 

azhdarchoid skeleton (Eck et al. 2011). A crocodilian-like, caudal to cranial pattern of 

suture closure along the vertebral column, where the vertebral body fused with the 

neural arch and transverse processes was noted in pterosaurs by Kellner and Tomida 

(2000), however, unlike modern crocodiles they reported that the mid-cervicals (i.e. 

3-7) fuse early in ontogeny, prior to those sutures of the thoracic series. The state of 

sutures within the described specimen, along with those preserved in SMNK PAL 

1137 (Eck et al. 2011) confirm the observation of Kellner and Tomida (2000), where 

the caudal, sacral and mid cervical vertebrae have fully closed their neurocentral 

sutures while those of the thoracic series are still open (Figure 3.23). Within the 

thoracic series, however, the neurocentral sutures of the caudal most elements are less 

pronounced, with the central bodies and neural arches in tightly articulation, 

suggesting the onset of fusion. In contrast, the most cranial vertebrae are fully open 
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and the two elements are displaced, indicating that no fusion had occurred. The lack 

of fusion visible across the remainder of the skeleton indicates that the closure of the 

neurocentral sutures occurs relatively early in ontogeny, prior to the formation of the 

syncarpals, tibiotarsus and pelvic and pectoral girdles and indicates that this pattern of 

fusion can be broadly applied across the Pterodactyloidea. 

 

Within T. wellnhoferi (SMNK PAL 1137) a similar condition to that of NSM-PV 

19892 is observed where the atlas-axis complex is unfused, along with the 8th cervical, 

the body of which is missing, while the sutures of the middle cervicals are fully closed. 

The state of sutures within the thoracic series is variable with some preserving fully 

mature states while others are missing their vertebral bodies. As such the neurocentral 

sutures of pterodactyloids close relatively early in ontogeny, with the mid-cervicals, 

sacrals and caudals reaching their mature state prior to the closure of sutures in the 

appendicular skeleton. These observations thus support the conclusions of Kellner and 

Tomida (2000) but additionally indicate that the pattern of suture closure was largely 

unaltered even between distantly related taxonomic groups. Furthermore I add that 

closure of elements of the thoracic series occurs before that of the atlas-axis complex 

and the caudal-most cervical elements (i.e. 8 and 9).  

 

 

 
Figure 3.23 - Thoracic column of cf. Tupuxuara (described herein) illustrating the 
sequence of closure of the neurocentral suture between the corpal body and the neural 
arch. The suture remains fully open in the more cranial elements while is closing in 
the more caudal elements, illustrating a caudal to cranial closure sequence. Cranial to 
caudal direction is from right to left.  
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Right 

Element 

Length (mm) Left Element Length (mm) Elements Length (mm) 

humerus 146 humerus 149 metatarsals 64 

ulna 183 ulna 188 Sacrals 

(x4) 

50 

radius 177 radius 182 Thoracic 

vert. (x9) 

121 

pteroid 107 Metacarpal IV 238   

wph II 159 wph I >271   

wph III 111 Mandible  471   

femur 189 PCRW 211*   

Tibia 253     

 
Table 8. - cf. Tupuxuara Selected bone measurements. Where: PCRW, “praecaudale 
Rumpfwirbelsäule” (i.e. combined dorsal + sacral vertebrae length) after Wellnhofer 
(1970); wph, wing finger phalanx.  
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Figure 3.11. – cf. Tupuxuara. Line tracing with bone element shaded in grey. The 
largely complete nature of the specimen suggests that the absent sections of the 
skeleton (the middle cervicals and rostral potion of the skull) were lost as a result of 
poor collection.  
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Figure 3.12 – cf. Tupuxuara. Major divisions of the concretion as referred to in the 
following figures.  
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Figure 3.13. – cf. Tupuxuara. Concretion 1. A, Elements of the cranium, and B, 
corresponding line tracing.   
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Figure 3.14. – cf. Tupuxuara. Concretion 2. Line tracing of the cranial section of the 
torso and middle portion of the mandible. 
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Figure 3.15. – cf. Tupuxuara . Concretion 3. Line tracing of the right half of the 
thoracic column. Grey shading indicates the preservation of soft tissue.  
 

 
Figure 3.16 – cf. Tupuxuara. Concretion 4. Line tracing of the left half of the thoracic 
column. Grey shading indicates the preservation of soft tissue. 
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Figure 3.17 – cf. Tupuxuara.. Concretion 5. Line tracing of concretion containing the 
right wrist. Grey shading indicates soft tissue preservation.  
 

 
Figure 3.18. – cf. Tupuxuara. Concretion 6. Line tracing of the pelvic girdle and right 
hind limb. 
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Figure 3.19. – cf. Tupuxuara. Concretion 7. Line tracing of the left wrist and 
mandible.  
 

 
 

Figure 3.20. – cf. Tupuxuara. Concretion 8. Line tracing of the left manus and pes. 
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Chapter 4 
 

 
 

PTEROSAURIAN JOINT MOBILITY 
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4.0 Comments and analysis of pterosaurian joint mobility. 
 

Within the context of this thesis a review of the pterosaurian joint mobility was 

deemed essential to set the limits for wing position, and its flexion/extension in both 

the mathematical and physical models developed in the next chapter. Although 

reconstructions of this type in extinct animals are problematic owing to the lack of 

soft tissue structures such as cartilage which can significantly alter the shape of a key 

articular surfaces, a sufficient number of well preserved and three dimensional 

specimens has allowed successive authors to propose a broad range of motions that 

can be generally applied within the Pterosauria. Herein, the range of motion 

determined through the manipulation of individual bones of SMNK PAL 1133, along 

with other material, is compared against works that have focused on this problem. A 

comparison and update of these values is subsequently provided with this stage 

regarded as a prerequisite for reconstructing pterosaurian wing beat cycles on which 

future work will focus.  

 

4.1 Material and Methods 

 
Joint mobility in the specimen SMNK PAL 1133 was estimated through the 

manipulation of individual elements and the identification of bone locks between 

them. Long bones were directly manipulated with the assistance of a colleague, E. 

Prondvai, until physical contact of the bones prevented further movement (i.e. bone 

lock) or disarticulation occurred (i.e. > 50% of the surface was no longer in contact 

with the opposing element). Where movement occurs in only a single plane it was 

measured using a compass while the second person immobilised the skeletal elements. 

For more complex joints a camera or video camera was mounted on a tripod, and 

photographs and/or videos of the bones were taken at the maximum limits of motion. 

The footage was later analysed and angles were measured in Adobe Photoshop. Pre-

existing casts of the bones of the forearm and distal wing spar were fixed together in 

natural articulation to observe the angles at maximum extension. The angles provided 

by the photographs and video footage of SMNK PAL 1133 can only be considered 

approximate values as no attempt was made to correct the angle based on the 3D 

position of the bone as was done by Wilkinson (2008). 
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4.2 Current limits of joint mobility in pterosaurs 

 

Scapulocoracoid / Pectoral girdle- No movement is possible between the scapula 

and coracoid as these elements fuse to create a unified scapulocoracoid later in 

ontogeny (Bennett 1993). This element in turn articulates with the sternum and 

vertebral column to create the pectoral girdle, four distinct configurations of which 

are observed among the Pterosauria (Figure 4.1). In addition to the relative position of 

the glenoid fossa in both “tapejarid” and “azhdarchid” configurations (see Frey et al. 

2003b) these differ from the “ornithocheirid” models in a number of significant 

aspects. In the latter configuration the scapula is orientated more medially and 

typically braces itself against the neural spine of the fourth thoracic vertebra, where a 

shallow, oval concavity forms on the lateral faces of the neural spine to accommodate 

the medial surface of the scapula. This is contrasted with the remaining three 

configurations where the scapula is not firmly buttressed against the vertebral column 

and the scapular blade is orientated in a more craniolateral direction, forming a steep 

angle against the long axis of the vertebral column (~20-30°). The scapula in these 

taxa is more blade-like in appearance (being dorsally-ventrally compressed) and does 

not expand towards its medial edge as in ornithocheiroids.  

 

Within the “ornithocheirid” configuration Wellnhofer (1991b) noted that some degree 

of flexion and extension of the pectoral girdle must have been possible and although 

Wilkinson (2008) subsequently considered the joint to be essentially immobile, he 

speculated that some degree of movement, in the order of 10°, may have been 

possible or the scapula would probably have fused to the notarium. This motion was 

more specifically defined by Bennett (2001b) who stated that the scapula could flex 

15° from its “normal” position (i.e. 45-50° craniolaterally), with 20° of extension also 

being possible. In Coloborhynchus robustus (SMNK PAL 1133) the scapula is also 

directed craniolaterally but at an angle of 71° to the sagittal plane. Determining the 

degree of possible flexion and extension is problematic as much of the caudal and 

dorsal portion of the scapula articular end has been repaired with plaster. My own 

manipulations confirm that flexion is certainly possible because the scapula slides on 

the steeply slanted cranial portion of its articular surface while the surface caudal to 

this disarticulates from the notarium. From this I estimate that ~15° flexion was also 
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theoretically possible if the presence of soft tissue, mineralised tendons or sternal 

articulation did not restrict this in some way. As the caudal surface of the scapula is 

reconstructed I cannot estimate the degree of extension that may have been possible. 

 

 
Figure 4.1. - Morphology of the scapulocoracoid. A, “Top wing” configuration of the 
non-pterodactyloids and basal pterodactyloids (e.g. Dorygnathus); B, “Top wing” 
configuration observed in ornithocheiroids (e.g. Coloborhynchus); C, “middle wing” 
configuration in derived azhdarchoids (e.g. Quetzalcoatlus); D, “bottom wing” 
configuration of the Tapejaridae (e.g. Tapejara). Dashed lines mark the position of 
the glenoid fossa and the level of the humerus.  
 

The medial articulation of the coracoid attaches onto the cristospine of the sternum. 

The position of the articular surfaces and the angle at which the coracoids converge 

vary between pectoral configurations. The coracoids of the azhdarchid configuration 

lie almost horizontally, forming an angle of ~ 170° between one another, with a small, 

medially located furca articulating with the lateral face of the cristospine. In the 

ornithocheirid construction, however, the coracoids form an angle of ~ 90° and thus 

articulate onto the dorsolateral face of the cristospine. The articular surface itself is 

orientated transversely and has developed as a V-shaped incision as deep as it is wide. 

Wilkinson (2008) considered that any vertical movements between the coracoid and 

the sternum (i.e. elevation and depression) were regarded as unlikely because not only 

would this have caused disarticulation between the elements, but also because a high 
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degree of mobility would have been incompatible with it acting as a stable base for 

the humerus and pectoral adductors. There thus remains some controversy over the 

movements permitted between the sternocoracoid joint and the degree to which such 

movements (if any) can be applied between morphotypes.  

 

Shoulder joint - The mobility of the shoulder represents one of the most complex 

joints of the pterosaurian skeleton owing to the duel role that the forelimb performed 

in both terrestrial and aerial locomotion. The position and extent of the saddle shaped 

glenoid fossa within each pectoral configuration have a pronounced effect on the 

range of motions available to the humerus.  

 

 
Figure 4.2. - Form of the glenoid fossa in ornithocheiroid and azhdarchoid pterosaurs. 
A – B, SMNK PAL 1133 in its lateral and caudal aspects. C, Quetzalcoatlus in lateral 
view; D, azhdarchoid indet., MN6685-V in caudal view. The glenoid fossa in 
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azhdarchoids is narrower than that of A – B in lateral view, with better defined dorsal 
and ventral ridges, and extends far onto the caudal face of the bone (i.e. D).   
 

This is demonstrated within the “top decker” configuration, where the articular 

surface is restricted to the caudolateral side of the scapulocoracoid (Figure 4.2A) and 

does not extend onto the caudal surface to any noticeable degree (Figure 4.2B) but in 

the “middle” and “bottom” decker configurations the glenoid fossa extends and 

occupies much of the caudal aspect of the bone. Bramwell and Whitfield (1974) 

argued that Pteranodon (based on specimen BMNH 3378) could depress its humerus 

25° below the horizontal while elevating it 70° during maximum upstroke, giving a 

total arc of 95°. In dorsal view they state that the humerus could be extended parallel 

to the transverse axis (i.e. = 0°) and flexed 65° behind this axis (i.e. caudolaterally). 

Although Bennett (2001b) generally agreed on this interpretation he differed on two 

points, that the humerus could be extended and flexed when depressed below the 

horizontal, and that it could also be flexed a little more than 65° against the transverse 

axis. Hazlehurst and Rayner (1992) proposed a radically different sort of movement 

based on the partial remains of Santanadactylus, stating that little to no elevation or 

depression was possible and that a rotational component was the major motion at this 

joint. I can indeed confirm that the shoulder joint of this specimen is difficult to 

manipulate without immediate disarticulation (pers. obs.) and although Wilkinson 

(2008) argued that the lack of movement available to this specimen may be due to its 

incompleteness, the humeral head and the glenoid fossa are well preserved. It is 

instead likely that cartilage and soft tissue allowed elevation and depression of the 

humerus during life as take off or large power strokes would be difficult without a 

significant range of vertical movement. In addition to this other specimens of 

ornithocheiroid taxa indicate that such vertical movement was possible.  

 

Chatterjee and Templin (2004) argued for a vertical elevation of 60° by late upstroke 

in the specimen NSM-PV 19892 and a depression of as much as 65° below the 

horizontal plane, giving a total arc of 125°. The specimen, however, is 

morphologically immature and the glenoid fossa very smooth, which may have 

allowed more movement than was originally possible. Wilkinson (2008) subsequently 

estimated a cartilage thickness of 3 mm, i.e. ~7.5% the width of the humeral articular 

surface, for NSM-PV 19892. Contra to Wellnhofer (1991b), who gives the typical 
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gliding position of the humerus as being orientated 15-20° dorsal to the transverse 

plane and 15° caudally, Wilkinson (2008) instead interprets the shaft as lying along 

the horizontal plane and directed ~ 10° caudally. He further estimated the maximum 

range of elevation and depression of the humerus as ~70° and 25° respectively, giving 

a total arc of ~95°. Importantly the limit of depression is simple to determine as 

beyond this point the proximal portion of the humeral neck abuts against the ventral 

frill of the glenoid fossa, forming a bone lock. This is supported by my own 

observations of SMNK PAL 1133 which suggest that the humerus can be depressed 

between 45-50° ventral to the horizontal axis, while the maximum elevation that can 

be generated as the humerus is supinated is around 50°, giving a total arc of ~95-100° 

(Figure 4.3). This agrees perfectly with the results of Wilkinson (2008) as the arcs 

calculated here begin with the humerus elevated 20°, illustrated by Wellnhofer 

(1991b).  

 

Despite the complexity involved with determining the degrees of freedom available to 

the shoulder joint it is reassuring that the majority of studies are in general agreement 

concerning the maximum elevation and depression of the humerus. Both myself and 

Wilkinson (2008) estimate an arc of 95°, along with Bramwell and Whitfield (1974) 

and Bennett (2001b), while other studies have reported similar values of 90° (Padian 

1983) and 80° (Wellnhofer 1991b). Only the analysis of Chatterjee and Templin 

(2004) deviates from this consensus.  

 

The cranial extension of the humerus has been found to have been extremely limited 

in pterosaurs as due to the caudoventral orientation of the glenoid fossa and its 

caudolateral positioning (Figure 4.4). Wellnhofer argued that the humerus could not 

be extended cranial of the transverse axis and retracted only 25° caudally to this, as 

the cranial portion of the humeral head would become disarticulated from the glenoid 

fossa with any additional movement. Bennett (2001b), however, countered this by 

noting that the humerus remains in contact with the caudal portion of the glenoid. 

Similar to Padian’s (1983) suggestion that Dimorphodon could flex its humerus so 

that the long axis of the bone lies parallel with the vertebral column, Bennett’s 

interpreted that the humerus of Pteranodon could be positioned to lie within 10° of 

the long axis, as a result of a >65° flexion of the humerus coupled with a 20° flexion 

of the shoulder girdle. Wilkinson (2008) noted an intermediate range of motions and 
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stated that from the close packed position (i.e. 0° elevation, 10° retraction from the 

transverse plane) the humerus could be protracted only 10°, thus lying parallel to the 

transverse axis and retracted by 40°, beyond which contact with the glenoid is lost. 

However, if the humerus was elevated and contact is mostly lost with the coracoidal 

portion of the glenoid then the humerus can roll freely, greatly increasing the 

measured range of protraction and retraction to 30° and 50° respectively.  

 

 
Figure 4.3 - Position of the forearm during gliding flight (A) and the maximum 
degrees of elevation and depression of the humerus in SMNK PAL 1133 (B). Dashed 
lines indicate the long axis of the humerus.  
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The kidney shaped articular surface of the humerus and the curvature of the glenoid 

fossa permit a large degree of rotation, where the humerus rotates about its long axis 

during terrestrial and aerial locomotion along with a pronation and supination of the 

fore arm. Hazlehurst and Rayner (1992) proposed that a 70° rotation of the humerus 

was possible in Santanadactylus and although their conclusion that rotation was the 

primary motion available at this joint is rejected, similar values have been reported 

from other workers. Chatterjee and Templin (2004) reported a rotation of ~ 85° in 

Anhanguera while Wilkinson (2008) proposed that the maximum range of supination 

and pronation was 50° and 30° respectively to give a total rotational component of 

80°. My own workings on the joint suggest a smaller rotational arc of 62-63° between 

the maximum supination and pronation but a general consensus might be that the 

ornithocheirid construction supported a rotational component of between 70 – 80°. 

This same range of values was noted in extant birds (i.e. pigeons and starlings) by 

Poore et al. (1997).  

 

The range of motions available to the azhdarchoid configurations must have been very 

similar given their common morphology and can be considered together. The position 

of the glenoid fossa in both of these configurations is located more ventrally than that 

observed in the ornithocheirid pectoral girdle but all morphotypes are united in the 

fact that the articular surface does not extend onto the cranial surface of the 

scapulocoracoid body. However, the glenoid fossa of the azhdarchoid configurations 

clearly extends onto caudomedial face of the scapulocoracoid and thusly allows for a 

far greater retraction of the humerus than was possible in ornithocheiroid pterosaurs. 
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Figure 4.4 - Degrees of freedom in the forearm of SMNK PAL 1133 in dorsal view. A, 
hypothetical gliding position. B, flexion of major joints distal to the shoulder; C, 
maximum extension of the humerus; D, maximum flexion of the humerus and 
forearm.   
 

 

 

 

 

143



Additionally a second humeral morphotype is recognised with respect to the position 

of the articular surface. Here the humeral neck is deflected dorsally at a greater angle 

to that of the ornithocheirid humerus (e.g. 47° in SMNK PAL 3856 versus 22 – 25° in 

SMNK PAL 1133) and the articular surface is more curved and orientated 

dorsomedially, directing the humeral shaft dorsally when placed in articulation with 

the scapulocoracoid, and allowing for a greater degree of elevation. This does not 

appear to be caused by a warping of the bone during taphonomy as the remainder of 

the humerus is in a good condition and an identical configuration is seen in 

Quetzalcoatlus, tapejarids, and more basal pterosaurs (e.g. Dorygnathus). Based on 

specimen TMM 41544 (Quetzalcoatlus) the humerus can be depressed to an angle of 

~30-38° below the transverse axis and elevated to ~ 65° above it to give a total arc of 

between 95 – 103°. If the humerus is supinated, as would be expected during the 

upstroke of the wing, then it is difficult to determine the dorsal limit of elevation 

because the long axis of the shaft can reach a vertical position without disarticulation 

between the humeral head and the glenoid fossa. Rotation of the humerus when 

restricted to the caudolateral portion of the glenoid fossa is between 56-68°, although 

as my own observations for the ornithocheirid configuration were lower than those of 

previous workers the same may be expected of this as a result of the common 

methodology. As such the true rotational component may be slightly higher and more 

similar to that reported in ornithocheirid taxa.   

 

The morphology of the humeral head and that of the glenoid fossa allow for a far 

greater vertical elevation of the humerus and a near complete retraction, allowing it to 

lie almost parallel with the axial column. If the articular surface of the humerus is 

placed flat against the glenoid fossa then the humeral shaft is directed dorsally at a 

very steep angle relative to the ornithocheirid condition. The morphology of the 

humeral head, combined with a more ventrally located glenoid fossa, allows the wings 

to be moved into a position more level with, or above, the centre of gravity, therefore 

making the pterosaur more stable during gliding flight. In such a way the 

azhdarchoids evolved a solution to a shoulder girdle that fulfils its duel roles in both 

terrestrial and aerial locomotion.   

 

Elbow joint - Bennett defined the elbow as “a complex hinge that allows the radius 

and ulna to fold towards the humerus. There is no rotation of the ulna but the simple 

144



convex-concave joint of the radius would permit it to rotate slightly on the humerus.” 

(Bennett 2001b, p119). At the position of maximum extension an angle of 150° 

between the humerus and radius/ulna remains fairly uncontroversial and is supported 

by numerous authors: Bennett (2000b, 150°); Bramwell and Whitfield (1974, 153°); 

Chatterjee and Templin (2004, 145°); Wellnhofer (1985, 150°); Wilkinson (2008, 

160°). My own examinations of C. robustus (SMNK PAL 1133) indicate an angle of 

~ 155°. In cranial view at the position of maximum extension Wellnhofer (1985) 

reported that the humerus and ulna of Santanadactylus met at an angle of 163°, while 

an angle of 162° is observed within C. robustus (Figure 4.5). 

 

Although my interpretation of the position of the brachial and antebrachial bones at 

maximum extension is in general agreement with previous investigations, the 

available degree of flexion that can occur from this point remains extremely 

controversial. Several studies advocate only small degrees of flexion, in the order of 

30 – 55°, between the bones (e.g. 30° for Hankin and Watson (1914); 40° for 

Wellnhofer (1985); 55° for Chatterjee and Templin (2004) while at the other extreme 

Unwin (1989) noted that the ulna in Dimorphodon could be folded tightly against the 

humerus, and Padian suggested that the elbow could close completely so that the ulna 

would lie parallel to the humerus. Bennett (2001b) also argued that a considerable 

degree of flexion was possible between the elements as the articular surface of the 

capitulum extends far on to the ventral surface of the humerus in three dimensionally 

preserved specimens (BMNH 1776, 8715; TMP 82-16-303) and faces proximally. He 

further suggested that Wellnhofer may have underestimated the degree of flexion due 

to Santanadactylus lacking its distal epiphyses and stated that Pteranodon could have 

flexed its elbow so that the ulna lay at 30° to the humerus, giving a closure arc of 120°. 

Wilkinson (2008) estimated a cartilage covering of the joint of 5 mm thickness (i.e. 

6.5% the width of the distal humerus articular surface), and reported that an 

intermediate range of flexion of 90° was possible. Based on my own observations I 

can confirm that the size and position of the capitulum does indeed allow for a large 

degree of flexion. An alternative method for calculating the maximum degree of 

flexion is to slide the radius against the carpus, causing the carpus to flex until it no 

longer makes contact with the articular surface of the radius. The distance travelled by 

the radius thus allows the flexion of the elbow to be reconstructed. In C. robustus 

maximum flexion of the elbow is reached when the ulna lies at an angle of 89 - 73.5° 
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to the humerus and supports an intermediate closure arc of 66-76.5°. While this range 

of movement is not quite in agreement with that of Wilkinson (2008) it supports 

neither very large nor very small angles of maximum closure. Flexion of the elbow in 

all pterosaurs results in the ulna and radius being directed ventrally with respect to the 

long axis of the humerus and Bennett (2001b) reported that at maximum flexion an 

angle of 30° was present between the ulna and the humerus. 

 

A single, privately held and three dimensional skeleton of Dorygnathus (Thermopolis 

specimen, pers.obs.) suggests that the elbow could be extended to 150°, as is also 

observed in pterodactyloid taxa, but could be flexed to an angle of  26° to give a total 

closure arc of 124°. This is well in excess of that found for most other pterosaurs with 

the exception of Pteranodon (Bennett 2001b). While it is simply possible that non 

pterodactyloid pterosaurs were better able to flex their elbows (e.g. Dimorphodon), 

the lack of any well defined condyles due to acid preparation almost certainly results 

in an overestimate of the motion available to the elbow. Maximum flexion of the 

elbow here is again coupled with a distal displacement of the radius (3.6% of the 

radius length) and flexion of the proximal syncarpal. 

 

Carpal joint - There are five potential joints formed by the carpus: those of the radio-

ulno-carpal, which is linked with the flexion of the elbow, the intersyncarpal joint, 

where the proximal and distal syncarpal blocks may slide against each other; the joint  
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Figure 4.5. - Bone position and joint mobility of the carpus. Left carpus of SMNK 
PAL 1133 at maximum extension in dorsal  (A-B) and cranial views (C). Left carpus 
in dorsal view at various degrees of flexion between the syncarpals of SMNK PAL 
1134 (D-F). Abbreviations: ul, ulna; rd, radius; prsy, proximal syncarpal; dsy, distal 
syncarpal, metacarpal IV.  
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Figure 4.6. - The carpus region of Quetzalcoatlus sp. (TMM 42157-2, 42145-1) in 
maximum extension. A, dorsal view and B, cranial view. The maximum degrees of 
extension and flexion between the syncarpal blocks are illustrated in figures C - F 
where: C, maximum extension in cranial view; D, maximum extension in cranial view; 
E, maximum extension in dorsal view; F, maximum flexion in dosal view. In dorsal 
view the maximum possible flexion before disarticulation occurs is ~32°. This directs 
the distal syncarpal ventrally at an angle of 29°. 
 

between the distal “cranial” carpal and the preaxial carpal, the pteroid and its 

articulation on the carpus; and the carpometacarpal joint. At maximum extension the 

angle between the radius/ulna and wing metacarpal is between 165° - 175° (e.g. 

Wellnhofer 1985; Wilkinson 2008). In specimens of Quetzalcoatlus (TMM 42157-2, 
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42145-1) the angle between the ulna-syncarpals-Mc IV at maximum extension is 

170.5° and 12.5° in cranial view, directing the distal wing dorsocaudally (Figure 4.6). 

 

Although Bramwell and Whitfield (1974) suggested that the carpus might have been 

hyperextended to 17°, an examination of additional ornithocheirid materials (e.g. 

SMNK PAL 1135) provides no evidence suggest that this was correct. Indeed 

Wellnhofer (1985) argued against this and in Santanadactylus the joint was fully 

extended at 165°. Bennett (2001b) also disagreed that hyperextension between the 

syncarpals was possible but did not rule out any further extension (i.e. 165° – 180°). 

My own analysis of SMNK PAL 1133 suggests that the joint reached a maximum 

extension at 165° and concurs with the conclusions of Wellnhofer (1985). The first of 

the wrist joints, where the ulna and radius meet the carpus, has been well documented 

as flexion of the elbow will cause the radius to slide distally along the ulna, causing 

the carpus to extend ~30° caudally and ventrally. For SMNK PAL 1133 there is no 

deviation and flexion results in the carpus being directed caudally by between 27 - 

31°, coupled with a ventral movement of 27°. 

 

Syncarpal mobility - At maximum flexion with the ulna/radius orientated parallel to 

the transverse axis, the wing metacarpal is directed caudally by 35° and ventrally by 

50°. The maximum range of angulation is about 25° between the two syncarpal blocks. 

During flexion the fourth metacarpal is retracted by 20° and depressed by 15°.  

 

The intrasyncarpal joint is a sliding joint where the distal syncarpal may slide against 

the proximal one, the caudoventral motion resulting in the distal syncarpal being 

flexed and depressed slightly (Bennett 2001b). Bennett’s (2001b) assessment is that 

the joint may be flexed ~25°, seconded by Wilkinson (2008), while Unwin (1988) 

noted a 30° movement in Dimorphodon. The mobility of this joint was not considered 

by Chatterjee and Templin (2004) while other authors suggest little to no movement 

was possible (Hankin and Watson 1974; Padian 1984; Wellnhofer 1985). I support the 

view that movement here was voluntary as the two carpals fit together, forming an 

excellent sliding surface, and the range of movement is simply too great for them not 

to have been utilised in this manner. Further to this if no movement between the two 

syncarpals were possible then it may be expected that the entire carpus would be 

reduced to a single functional unit through further fusion. The estimates of Bennett 
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(2001b), Unwin (1988) or Wilkinson (2008) are therefore more likely to be correct 

than conservative measurements. In my own examinations of fossil material the two 

syncarpal elements of Anhanguera santanae (AMNH 22555) do not fully disarticulate 

until a 38° movement has occurred, a similar degree of flexion, 36°, being observed in 

another ornithocheiroid (SMNK 1135 PAL). These are obviously extreme motions 

and I do not suggest that such a degree of flexion occurred during life due to the 

limitations imposed by soft tissues. 

  

The preaxial carpal-distal syncarpal joint does not allow for a great deal of movement, 

however, in the absence of soft tissue it can be depressed, elevated and flexed 

medially and laterally (Wellnhofer 1985, 1991b) to move with the pull of the tendon 

that attached onto the pisiform located within the cranially located fovea (see Frey et 

al. 2006; Bennett 2007b). 

 

The carpometacarpal joint allows rotational movement with the fourth metacarpal. 

Bramwell and Whitfield (1974) suggest that the metacarpals standard position was 

supinated as far caudally as possible and from here 15-20° of rotation was possible. 

This would move the metacarpal 5° forward and 8° downward. Bennett (2003c) 

describes an arthritic joint where grooves on the distal surface of the distal syncarpal 

mark out a 20° rotation. My own observations indicate that between 14 – 18° of 

rotation were possible. Bennett (2001b) further argued that the rotation of Mc IV from 

its normal portion would result in a decrease in the angle of attack of the outer part of 

the wing and might be an important mechanism for controlling distal wing during 

flapping flight. In this scenario, any upward force acting on the outer part of the wing 

during down stroke might rotate Mc IV to decrease the angle of attack at an 

appropriate time. Pronation of the distal wing would certainly be important for 

changing the angle of attack and the creation of a twist between the root and tip.  

 

Between the radio-ulno-carpal and intercarpal joints a large degree of flexion must 

have been possible and several specimens from the fossil record are interpreted as 

preserving the carpus at/close to its maximum extension. Bennett (2001b) illustrated 

one such specimen of Pteranodon (YPM 2425) in natural articulation with the Mc IV 

flexed at ~113° from the radius. Other fossils include: an example of Gnathosaurus 

subulatus that preserves an angle of 122° between the ulna and fourth metacarpal, 
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Aurorazhdarcho for which the left and right wrists make respective angles of 101° 

and 97° between the ulna and mc IV, and SMNK PAL 6595, for which an angle of 

118° is noted. Assuming that a 20° flexion was possible between the two syncarpal 

blocks for C. robustus, the maximum possible angle of flexion between the ulna and 

metacarpal would have been ~115°. 

 

In Dorygnathus the maximum flexion in the caudoventral plane is observed to be 31°, 

suggesting that a ~30° movement may be common amongst all pterosaur taxa. The 

intrasyncarpal joint permits substantially more flexion prior to any disarticulation, 70° 

caudally and 19° ventrally prior to disarticulation.  

 

Metacarpophalangeal joint - The distal-most joint of consideration is that of the 

fourth metacarpophalangeal joint that acts as a hinge, allowing the distal wing to fold 

in the craniocaudal plane (Figure 4.7). During flexion the first wing finger phalanx 

undergoes a slight pronation (~20°, Wilkinson 2008) due to the caudodorsal 

orientation of the metacarpal condyles, allowing it to ride up over the caudodorsal 

surface of the wing metacarpal. In this way the animal could reduce the wing area 

when flying at high glide speeds and to protect the wings when moving on the ground. 

Bramwell and Whitfield (1974) suggested that at full extension the wph 1 formed an 

angle of 166° from the Mc IV and could be flexed in an arc of 136° so that the two 

bones formed an angle of 30°. Wellnhofer (1975) estimated a 140° flexion arc for 

Rhamphorhynchus and 130° arc for Anhanguera, while Chatterjee and Templin (2004) 

argued that the joint was fully extended at an angle of 165° and could be flexed to an 

angle of 35°, giving a total arc of 130°. Bennett (2001b) disagreed with Bramwell and 

Whitfield’s (1974) interpretation and instead suggested that maximum extension in 

Pteranodon was ~175°. Flexion thus allowed the wph 1 to close to an angle of only 5° 

to that of the fourth metacarpal, giving a total closure arc of ~170°. Wilkinson (2008) 

stated that at maximum extension the first wing finger phalanx and the fourth 

metacarpal were parallel to each other and that a large range of flexion, 160°, was 

possible in SMNK PAL 1133. My own examinations of C. robustus indicate that 

there is no physical barrier to wph 1 being extended past 165° and while it is simple to 

move the bones into a hyper extended position whilst maintaining full articulation, 

maximum extension was almost certainly limited by soft tissue during life. Wilkinson 

(2008) also noted that even were the fourth metacarpal and wing finger phalanx to be 
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orientated parallel to one another then drag force acting on the spar during flight 

would have resulted in a small but unavoidable degree of flexion. In SMNK PAL 

1133 the supination of the first wing finger phalanx during flexion causes it to ride 

over the posterodorsal surface of the fourth metacarpal, forming a bone lock when the 

elements make an angle of 30°. This bone lock is also observed in a smaller 

ornithocheirid (SMNK 1135 PAL), where a similar mobility of 28° is observed. The 

maximum possible flexion of the knuckle joint in ornithocheirid pterosaurs is 

therefore ~150° if it is assumed that maximum extension of 180° was possible. The 

large range of extension proposed by Bennett (2001b) may be applicable only to 

Pteranodon but not to C. robustus or other ornithocheidids.  

 

Hyperextension between the fourth metacarpal and first wing finger is possible in 

Dorygnathus where the wing finger can make an angle of up to 184° with the fourth 

metacarpal, although soft tissue would have prevented this and maximum extension is 

again likely to be 180°. Maximum flexion of wph 1 is not as great as in pterodactyloid 

taxa and reaches bone lock at 56°, giving a total closure arc of ~104°. 

 

 

Figure 4.7. - A, maximum extension and B, maximum flexion in SMNK PAL 1133. 
Hyper-extension in A, as denoted by the arrow was likely prevented due to soft tissue. 
C – D, examples of wing flexion in well preserved fossil remains (Pterodactylus and 
Rhamphorhynchus respectively).  
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Joints of the fourth digit - The interphalangeal joints of digit IV, which form the 

distal portion of the wing, are generally agreed to have been incapable of voluntary 

movement owing to the lack of insertion points for flexor/extensor muscles (Bennett 

2001a). The distal spar can therefore be considered as a single functional unit where 

any rotation or flexion/extension caused by drag forces would have been counteracted 

by soft tissue ligaments during life. The geometry of the wing spar, where it extends 

distally in a straight line or curves caudally is uncertain and conflicting evidence is 

observed from the fossil record. The wing phalanges of Anurognathus (Bennett 2007a) 

and Jeholopterus (Kellner et al. 2009) are preserved as being naturally flexed; a 

possible mechanism to help fold the wings out of harms way when on the ground. In 

contrast to this several specimens of Pterodactylus (e.g. BSP 1937 I 18A) have wing 

phalanges that are preserved as a single linear spar, while still more fossils (e.g. 

Rhamphorhynchus, JME SOS 4784; SMNK PAL 6595) preserve a slight caudally 

directed curvature. The fourth wing finger phalanx is thus known to curve caudally in 

some taxa e.g. Pteranodon, Sinopterus, but is straight in others. In cranial view the 

phalanges curve ventrally (Wilkinson 2008) when free from any aerodynamic loads. 

Two phalanges from a three dimensional specimen from the Romualdo Formation of 

Brazil (SMNK PAL 3845) consists of the first two wing finger phalanges that 

preserve a strong ventral curvature, where the wing was directed 163° ventrally from 

the transverse axis. Although the possibility does exist that these bones were bent by 

lithostatic pressure the majority of the curvature is present at the proximal and distal 

articulations which represent the thickest part of the bone, while the thinner shaft is 

undistorted.  

 

Hip joint - The degrees of freedom available to the femur are very difficult to 

reconstruct because without soft tissue inference the femur can be moved freely 

within the acetabulum. From my manipulations of the bones, I estimate that the 

femoral shaft can be protracted 40°, and retracted 70°, cranial and ventral to the 

transverse axis. In cranial or caudal view it can also be elevated 20° and depressed 

60° against the horizontal plane prior to the femoral head becoming disarticulated 

from the acetabulum (Figure 4.8). 
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Knee joint - The knee acts as a hinge where at the point of maximum extension the 

tibiotarsus and femur form an angle of 175°. The arc of flexion from this point is 

estimated at 110°.  

 

Figure 4.8. - Mobility of the femur of SMNK PAL 1133. A, maximum extension and 
flexion in dorsal view; B, maximum elevation and depression in cranial view.  
 

4.3 Revised estimates of joint mobility 

 

Recent summaries of the joint mobility in ornithocheirids and Pteranodon were 

published by Wilkinson (2008) and Strang et al. (2009), and are summarised below in 

Table 9 (Figure 4.9). Despite the problems with reconstructing joint mobility in fossil 

taxa the majority of publications find a surprising degree of convergence for most 

pterosaurian joints, with the most controversial degrees of motion being the flexion of 

the elbow and the retraction of the humerus. 

 

Based on a combination of previous studies and my own observations the following 

reconstructions are adopted here. The maximum humeral elevation and depression in 

ornithocheiroid taxa is ~50° dorsal to the transverse axis and up to 40-45° ventral to 

this. In azhdarchoid taxa the humerus appears to have an increased vertical 

component, up to 65° against the transverse axis in a dorsal direction, but also has a 

reduced ventral component of only 30-38°. The rotational arcs of the humerus during 
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pronation and supination events are similar between ornithocheirid and azhdarchoid 

taxa, being 62-63° and 55.5 – 68° 

 
Figure 4.9. – Rotation of joints about the x, y and z-axes of the wing as described by 
Table 9. Figure adapted from Strang et al. (2009).  
 

 

Table 9. -  Pterosaur joint mobility given as Euler angles after Strang et al (2009). 

 

respectively, but the larger value of ~70° presented in other studies for ornithocheirids 

may also be correct. During the upstroke, or with a pronounced supination of the bone, 

I interpret that the humerus of C. robustus can be flexed to lie at an angle of between 

34 - 48° to the vertebral column although it is possible that extension of the shoulder 

girdle were it not constrained by soft tissue would further reduce this value. For 

Joint name  Shoulder  Elbow  Wrist  Knuckle 

Study ø θ ψ ψ ø θ ψ ψ 

Bramwell and Whitfield 

(1974) [-25;70]  [-65;0] [30;60]  [-10;10] [-45;17] 

[-150; 

-15] 

Bennett (2001b) [-25;70] [-35;35] [-65;0] [30;150]  [-10;10] [-50;0] [-175:-5] 

Wellnhofer (1975) [-40;40]  [-25;0] [30;70]   [-45;-15] 

[-150; 

-15] 

Chatterjee and Templin 

(2004) [-65;60] 

[-42.5; 

 42.5] [-70;-15] [35;90]   [-45;-15] 

[-145; 

-15] 

This study [-45/50;50]   [25;91/96.5] [-27;0]  [-42;-13] 

[-151; 

-15] 
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Quetzalcoatlus and other azhdarchoid pterosaurs the extension of the glenoid fossa 

onto the caudomedial surface of the scapulocoracoid allows the humerus to be 

supinated and directed steeply caudally to lie parallel with the long axis of the body.  

 

The maximum angle for extension in elbow is 150° in all studied taxa and in cranial 

view I note a measurement of 162° for SMNK PAL 1133, a value that that is very 

similar to Wellnhofer’s reconstruction of Santanadactylus. The humerus is interpreted 

here to have been directed ~ 18° dorsolaterally, rounded to a rough value of 20° at the 

natural gliding position, directing the ulna near parallel to the transverse axis. My own 

interpretation of the maximum flexion permitted at the elbow is intermediate between 

the lower estimates of a ~30 – 55° closure arc and Bennett’s (2001b) argument that 

the ulna could flex to within 30° of the humerus. Having not personally examined the 

material of Pteranodon I will not comment on whether the value presented by Bennett 

is an overestimate of the joint folding or simply a taxonomic variation, but in C. 

robustus the ulna could not close much more than 89 - 74° against the humerus. As 

Wilkinson (2008) also supported a similar, but slightly higher, range of movements, 

i.e. 90° flexion arc, from examining the same material, I will therefore use an 

estimated closure arc of 66°- 90° for ornithocheiroid taxa. 

 

Flexion of the carpus is uncontroversial and a complete flexion of the elbow is 

coupled with a ~30° caudal and ventral movement in both C. robustus and 

Quetzalcoatlus, suggesting that this motion is universally available in derived 

pterosaurs. The sliding motion between the two syncarpal blocks is impossible to 

determine but it was certainly below 36 - 38° in ornithocheiroids and 32° for 

Quetzalcoalus, the points where disarticulation occurs. The maximum flexion that can 

occur across the carpus region thus seems to be fairly similar in most taxa, with the 

ulna and Mc IV forming an angle of between 113-122°. In maximum extension the 

two bones form at an angle of 165° in dorsal view and 175° in cranial view, directing 

the Mc IV both dorsally and caudally. For gliding flight the degree of movement 

available to the carpus is perhaps of lesser importance and would have been used far 

more extensively in both flapping flight and terrestrial locomotion.  
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Pro- or supination of the fourth metacarpal against the distal syncarpal was certainly 

possible and in C. robustus the range of motion appears similar to the 20° suggested 

by Bennett (2001b).  

 

The maximum extension of wph 1 against the fourth metacarpal is here interpreted as 

being 180°, however, the typical gliding position used for the modelling process will 

instead be between 165-170°. Maximum flexion in ornithocheirid pterosaurs is taken 

to have occurred when the two bones form an angle ~ 28-30° as this represents a bone 

lock and no further movement is possible. Although these values differ from other 

taxa, specifically Pteranodon and Quetzalcoatlus where an almost complete flexion of 

the wing finger appears to have been possible (~5° from the Mc IV) this could simply 

be a case of interspecific variation or, in the case of Quetzalcoatlus, the warped nature 

of the cast. 

 

The interphalangeal joints of the wing finger do not appear to have had any movement 

but could almost certainly flex slightly when under aerodynamic loads. For simplicity 

the wing finger in all models is reconstructed as a single, straight, un-jointed unit.   
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4.4 Position and mobility of the pteroid 

 

The pteroid bone originates from the carpus and is incorporated into the leading edge 

of the propatagium. The origin, direction and, to a degree, function of the bone are 

however highly disputed. The bone was initially interpreted as the first digit by 

Goldfuss (1831), however, it has also subsequently been considered to be the product 

of a calcification of a tendon, as well as both a modified carpal or a neomorph. Unwin 

et al. (1996) performed the first histological analysis on a three dimensionally 

preserved pteroid and sesamoid from the pterosaur C. robustus (SMNK PAL 1133) 

and concluded that the pteroid was a true bone on account of it being both pneumatic 

and preserving multilayered cortical bone.  

 

Marsh (1882) regarded the preaxial carpal and pteroid as being articulated together 

during life while Hankin (1912) was the first to illustrate a cranially directed pteroid, 

an idea continued by several subsequent authors (Frey and Reiß 1981; Frey and 

Martill 1994; Unwin et al. 1996; Wilkinson 2007; Wilkinson et al. 2005) who saw it 

as a means to support and control the propatagium while providing a high lift function 

during flight. This hypothesis, however, remained reliant on the assumption that the 

pteroid articulated within the open fovea of the preaxial carpal, a point disputed by 

Bennett (1991, 2001a,b, 2007b) who argued that a large sesamoid occupied this 

instead. The observations of Bennett (1991, 2001a,b, 2007b) are now supported by a 

number of specimens representing a wide diversity of pterosaur taxa, including those 

described herein, and as such the pteroid can no longer be considered to articulate in 

the fovea of the preaxial carpal, or have the ability to face or be directed cranially. 

Instead it is now universally supported that the pteroid was directed medially and 

formed part of the leading edge of the propatagium, following the original suggestion 

of Wagner (1858).  

 

The articulation point on the wrist and the degrees of freedom available to the pteroid 

remain controversial, with opinions divided between placing the articular surface on 

the medial side of the preaxial carpal or elsewhere on the proximal syncarpal.  Based 

on several specimens of Pteranodon Bennett (2007b) identified a bulbous ridge on the 

medial side of the preaxial carpal as the articular surface of the pteroid, suggesting 

that its absence in others was the result of ontogenetic immaturity. It is uncertain how 
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extensive this development is in other specimens as no robust development is viewed 

in the ornithocheirid SMNK PAL 1135, or the relatively mature SMNK PAL 1133 

(Figure 4.10). The medial face of these are strongly concave and pitted with muscle 

scars or foramina, however, given the connection of a long tendon running across the 

sesamoid, many of these were likely to fix the preaxial carpal in place and prevent 

excessive medial and lateral displacements.  

 

While Bennett (2007b) also argued that articulated specimens of Eudimorphodon, 

Peteinosaurus, Rhamphorhynchus, and Pterodactylus all preserve the pteroid with its 

articular end adjacent to the preaxial carpal this is disputed. In none of the 

photographs presented by Bennett (2007b) is this configuration preserved and instead 

a gap is observed between these two elements, where they have been pulled in 

opposite direction. This taphonomy is observed in a number of well preserved and 

articulated specimens (Figure 4.11). As such any connection between the pteroid and 

preaxial carpal was weak and that following the death of the animal the pteroid was 

displaced medially while the preaxial carpal was pulled distally. 

 

 

 
Figure 4.10. - Medial face of the preaxial carpal in A, SMNK PAL 1133; B, SMNK 
PAL 1135; C, KUVP 2120; D, YPM 2414 (source: Bennett 2007b). Where: asp, 
articulation for the pteroid; ses, sesamoid; fov, fovea of the preaxial carpal.  
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Figure 4.11. - Relative positions of the pteroid and preaxial carpal indicating the post 
mortem displacement (also see figures of Bennett 2007b). Where: A-B, Pterodactylus 
antiquus; C, Aurorazhdarcho (Frey et al. 2011); D, ornithocheiroid indet (private 
collection, courtesy of Urs Oberli); E-F, Changchengopterus; G, Darwinopterus 
modularis (YH-2000); H, Campylognathoides liasicus (SMNHS 18875). 
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The tension acting on the preaxial carpal is dependant on the reconstruction of the 

length and function of tendon that anchors on the sesamoid. Three broad 

reconstructions (Figure 4.12) have been presented by Bennett (2001a, 2007b), Frey et 

al. (2006), and Prondvai and Hone (2009). In the configurations of Bennett (2001a, 

2007b), the sesamoid of the preaxial carpal acts as an anchor point of the tendon of M. 

extensor carpi ulnaris, anchoring distally on the mid shaft of the fourth metacarpal, 

while the wing finger is extended via a tendon that runs from the humerus and across 

the cranial face of the carpus. In contrast to this Frey et al. (2006) and Prondvai and 

Hone (2009) proposed that the tendon passing across the sesamoid of the preaxial 

carpal anchored itself distally on the extensor process of the first wing-finger phalanx, 

and was responsible for extending the distal wing.  Differences between the two latter 

configurations exist where in that of Frey et al. (2006) the tendon originates from m. 

extensor digiti, which anchors on the distal margin of the humerus, while that of 

Prondvai and Hone (2009) this is the Ligamentum extensor digiti alae, and originates 

from a more medial location on the humerus and the coracoid. A “hybrid” 

configuration was also provided by Prondvai and Hone (2009), where both the 

Ligamentum extensor digiti alae and the tendon of m. extensor digiti play a role in the 

extension the wing finger. 

 

Regardless of whichever configuration is selected, the elbow, carpus and wing finger 

flex following the animal’s death, slackening the proximal portion of the wing-finger 

extensor tendon while tightening the portion distal to the carpus. The result of this is 

to pull the sesamoid, and with it the preaxial carpal, distally, accounting for the 

frequency by which this is observed within the fossil record. The configurations of 

Frey et al. (2006) and that of Prondvai and Hone (2009) would naturally result in a 

greater pull, due to their increased length, over that of Bennett (2007b). 

 

In well preserved and articulated specimens the preaxial carpal remains adjacent to 

the distal syncarpal and is angled distally or pulled flat against the cranial face of the 

fourth metacarpal (Figure 4.11D), indicating that its displacement was restricted by 

additional muscles. In rarer cases it has been completely separated from the carpus 

and pulled distally along the shaft of the fourth metacarpal (e.g. MNHS/00/85).  
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Figure 4.12. - Reconstructions of the primary extensor muscles and tendons of the 
wing finger in pterosaurs. Red lines indicate the extensor of the wing-finger while 
blue lines represent the extensor of the carpus and wing metacarpal. A, Frey et al. 
(2006); B, Bennett (2007b); C-D, Prondvai and Hone (2009). E, flexion of the elbow 
and wing finger after death leads to the preaxial carpal experiencing an increase in 
distal tension. The result of this is to pull the preaxial carpal distally while the pteroid 
remains either in situ, or is pull medially by the shrinking propatagium or m. tensor 
propatagialis (F). 
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In contrast to the post mortem actions of the preaxial carpal, the pteroid is not pulled 

distally except in very rare occasions (e.g. Aurorazhdarcho). Instead it is observed 

with its articular end between the proximal and distal syncarpals (e.g. MNHS/00/85), 

held in place by the tissue of the propatagium, or is instead drawn medially due to the 

tension of the proximal patagia and/or the pull of the m. tensor propatagialis, and lies 

adjacent to the proximal syncarpal or the ulna. In only one example do the preaxial 

carpal and the pteroid appear to have shared the same resting location (Wellnhofer 

1991a). While this cannot be used to dismiss the reconstruction of Bennett (2007b) it 

indicates that the two elements were only loosely connected to one another and any 

connection was easily broken due the post mortem tension of the extensor tendon.  

 

While I regard the articular position of the pteroid to be somewhat controversial and 

perhaps half formed by soft tissue or cartilage to explain the lack of a clear articular 

surface, the general conclusions on the mobility of the pteroid are widely supported 

and the bone must have been directed medially during life. The compressed articular 

surface indicates that the bone was restricted to a hinge-like motion, allowing it to 

extend the propatagium during flight and fold it against the proximal part of the 

forearm during terrestrial locomotion. If the motion available to the bone was 

restricted to a slight cranial and caudal extension/flexion, with no dorsal or ventral 

component, then the aerodynamic force alone would be responsible for cambering the 

patagia, the degree of which could be increased by a slight flexion of the pteroid. 

More likely, however, was that the pteroid was angled such that a slight dorsal and 

ventral component was generated when the bone was flexed or extended (i.e. Bennett 

2007b). In this way the camber, and effect of the patagia, could be controlled by the 

animal.   
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PTEROSAUR AERODYNAMICS 
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5.0 Introduction to the aerodynamics of biological fliers 
 

The study of flight within the animal kingdom is complicated by the variety of wing profiles 

and locomotory mechanisms observed in living animals, as well as the range of flow 

characteristics within which they operate. The primary study subjects in this field are 

naturally birds and bats, which are large enough in size that conventional aerodynamics are 

useful in estimating their performance. Furthermore carcasses or models can be readily 

utilised for wind tunnel experiments (Maybury et al. 2000; Maybury and Rayner 2001; 

Videler et al. 2004; Thomas 2010) and data can be subsequently coupled with field 

observations (Shamoun-Baranes et al. 2003). In rarer cases, and with significantly more 

trouble, live animals can be trained to fly within the working section of a wind tunnel (e.g. 

Pennycuick 1968, 1971; Pennycuick et al. 1996, 2000). The study of extinct flight, lacking 

many of the variables known or calculated in these ways must therefore borrow heavily from 

such studies (e.g. Chatterjee and Templin 2004, 2007); the result of which is that aerodynamic 

performance is often commented upon but relatively little data are provided. 

 

As many palaeontologists who are interested in the aerial abilities of pterosaurs (or other 

extinct fliers) are unlikely to have a working knowledge of aerodynamics, a brief introduction 

to many of the basic concepts, terms, and equations encountered in subsequent chapters of 

this thesis is necessary. Several excellent texts that give a fuller account of aerodynamic 

theory of flight, along with its application to biological fliers, are recommended for those with 

a further interest in the subject (e.g. Pennycuick 1972; McNeill Alexander 2003; Shyy et al. 

2008).   

 

5.0.1 Aerodynamic forces 

 

In its simplest sense, an animal or aircraft that wishes to remain airborne while travelling in its 

desired direction is required to generate both lift and thrust forces. The former is necessary to 

counter the gravitational force pushing the animal downwards while the latter is required to 

overcome drag and produce forward momentum. Lift force generated by the wing is typically 

written in the form of:  

 

Eq.1.  L = 0.5ρAv2CL 
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but is often replaced within the aerodynamic literature by a non-dimensional coefficient, 

allowing the performance and characteristics of various aerofoils to be compared irrespective 

of size.  This lift coefficient, where force is non-dimensionalised with respect to the surface 

area of the wing, is subsequently written as:  

 

Eq.2.  CL = L/(0.5ρAv2) 

 

The production of lift itself can be understood via the principle of Bernoulli where (in 

simplified terms) any particle moving in the flow has three components of energy: kinetic, 

due to movement; gravitational, due to altitude; and pressure. If the flow is simplified to an 

inviscid state, by which we assume that viscosity is zero, then it follows that the individual 

particles will retain their energy indefinitely due to the lack of friction. In such a regime the 

components of energy can be expressed as: 

 

Eq.3.  0.5ρv2δV + ρgh δV + p δV = constant 

 

Here the left hand term (0.5ρv2δV) refers to the kinetic energy of a particle, the middle term 

(ρgh δV ) refers to the gravitational potential energy and p is the pressure energy (p δV). The 

term δV refers to the volume of any given particle within the flow. When this inviscous flow 

reaches an aerofoil some of the fluid is directed up over the top surface, resulting in an 

increase in velocity, while some is deflected downwards, slowing in its velocity instead 

(Figure 5.1A). For equation 3 the change in gravitational energy will be negligible as both 

gravity and altitude will remain more or less constant over the surface of the aerofoil. As 

0.5ρv2δV + p δV must equal to a constant, it therefore follows that an increase in velocity 

corresponds to a decrease in pressure energy and vice versa. The difference in flow velocity 

over the top and bottom surfaces of the aerofoil results in the development of a pressure 

differential and in turn generates a lift force acting normal to the top surface of the wing 

(Figure 5.1B).  
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Figure 5.1. - A, flow increases in velocity (v) as it travels over the dorsal side of the wing 
profile relative to the flow on the ventral surface (A). The resulting pressure differential 
causes lift to be directed normal to the wings surface (B) (adapted from McNeill Alexander 
2003). 
 

 

 
Figure 5.2. – Example of a pressure distribution over the surface of the Clark Y wing section 
at increasing angles of attack (α, Marchman and Werme 1984). The upper and lower lines 
denote the differences in pressure between the upper and lower surfaces of the aerofoil, 
indicating in this example, an increase in pressure distribution (and subsequently greater lift) 
with higher angles of attack.   
 
 

 
Figure 5.3. - A, Effects of the Reynolds number (A) and aspect ratio on coefficients of lift and 
drag (source: McNeill Alexander 2003).  
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The magnitude of lift generated is dependant on the magnitude of the pressure differential 

between the upper and lower surfaces of the wing and is therefore heavily influenced by the 

shape, aspect ratio, angle of attack, and camber of the aerofoil in question (Figure 5.2). Higher 

degrees of wing camber typically increase the velocity of the flow directed upwards and 

produce higher values of lift due to the development of larger pressure differentials. In 

contrast flat plates make the poorest wing sections as the pressure difference on the upper and 

lower surfaces of the wing is small. The performance of wings is also greatly influenced by 

the Reynolds number at which the animal operates (Figure 5.3A). This is a numerical value 

defined as the ratio of viscous to inertial forces and defines the flow regime, where below a 

critical transition point of ~106 the flow is said to be laminar, while values in excess of this 

indicate turbulent conditions. Biological fliers such as birds and bats operate completely 

within laminar flow regimes, defined by Reynolds numbers in the range of 104 – 105, while 

insects fly at very low Reynolds numbers where viscous forces dominate.  

 

At Reynolds numbers below 106 the laminar flow is susceptible to separation from the 

aerofoil and may give rise to a wide range of wing behaviour, meaning that the evolution of 

the wing configuration is largely influenced by the Reynolds numbers within which they must 

operate. At Reynolds numbers of >168,000 aero foils with a cambered section represent the 

most efficient wing form, while at lower values of ~42,000, very thin cambered plates are 

found to be superior. Given their range of size, pterosaurs are firmly situated within a flow 

regime defined by Reynolds numbers of 104-105 and would have benefited greatly from the 

development of a cambered wing section, with very large azhdarchids, upon attaining their 

adult size appearing to be the only biological fliers to have crossed the turbulent transition 

(Re >106). 

 

As previously noted the production of lift can be increased through changing the angle of 

attack at which the flight surface meets the flow. Steeper positive angles direct the flow 

upwards at a faster velocity which results in a greater pressure differential (Figure 5.2). 

However, beyond a certain angle of attack unique for each wing section, the flow lacks the 

necessary energy to remain attached to the surface of the wing causing the pressure 

differential to break down. At this point lift production decreases and the aircraft begins to 

stall. On a graphic plot, the point of stall is taken to be the point where lift force plateaus or 

rapidly declines (Figure 5.4A).  
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In addition to its angle, the aspect ratio of an aerofoil also has an effect on lift production, 

where wings with a high aspect ratio generate both a steeper lift gradient and higher 

maximum values of lift, but reach their stall point at a lower angle of attack relative to low 

aspect ratio wings (Figure 5.4B).  

 

Using the principle of Bernoulli it is possible to roughly determine the lift force if the velocity 

at which the flow is directed upwards is known, however, lift is instead more commonly 

calculated from wind tunnel experiments or computer programmes for a given aerofoil. 

Within aerodynamic literature, specifically that dealing with biological fliers and where no 

wind tunnel data is available, lift is often taken to be equal to the mass of the animal 

multiplied by the gravitational acceleration, where this represents the minimum upwards force 

required to keep the animal airborne at a constant altitude. Experiments on biological and 

manmade aircraft indicate that the coefficient of lift is typically a maximum of 1.5 for a 

cambered wing, with values in the range of 1.2 – 1.5 also being considered appropriate 

(McNeill Alexander 2003).  

 

 
 
Figure 5.4. - The effect of angle of attack on lift production and the onset of stall (A). The 
dotted line indicates the inferred effect of the angle of attack on lift production post stall. B, 
Hypothetical example of the aspect ratio effect on lift generation and stall.  
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Unlike lift, the second principal force acting on the animal, drag, is an aerodynamic penalty 

that impairs flight performance and resists the inertial motion of an object through a viscous 

substance. Drag and its non-dimensional coefficient are respectively written as: 

 

Eq.4.  Fdrag = 0.5ρAv2CD  

Eq.5.  CD = Fdrag/(0.5 ρAv2) 

 

When comparing different aerodynamic studies it is important to ensure the reference area 

used to non-dimensionalise the coefficient is constant. While this is usually the surface area of 

the wing it can also be written as the wetted surface area or projected frontal area (when 

considering the body or fuselage) depending on the component of drag being studied.  

 

Drag, or more correctly total drag (Dtotal), is comprised of three major components: lift 

induced drag (Di), profile drag (Dpro), and parasite drag (Dpar), where: 

 

 Eq.6.  Dtotal = Di + Dpar + Dpro  

 

As with lift the coefficient form of drag represents a non-dimensional value with respect to a 

specific reference area where: 

 

Eq.7.  CDi = Di /(0.5 ρAv2) 

Eq.8.  CDpro = Dpro /(0.5 ρAv2) 

Eq.9.  CDpar = Dpar /(0.5 ρAv2) 

 

The first of these components, lift induced drag is proportional to the square of the airflow 

and is, as its name suggests, a by-product of lift that varies in magnitude along the wing, 

becoming stronger towards the wing tips. The effects decrease as both velocity and aspect 

ratio increase. Span-wise flow resulting from the pressure differential build up on the top and 

bottom sides of the wing gives rise to shedding vortices at the wing tips as it attempts to 

equalise, creating a downwash and directing the lift vector in a more caudal direction. Kinetic 

energy is imparted to these vortices at a rate of 2L2/πvb2 and, where work is force multiplied 

distance, is multiplied by velocity to give: 

 

Eq.10.  Di = 2L2/πv2A2 
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While an elliptical distribution of the load can be achieved by the development of an elliptical 

wing section, whereby lift at the wing tips is reduced to almost zero and all parts of the wing 

experience the same downwash, this is not common, and instead flow is directed over the 

aerofoil at the different velocities. The result of this is that the induced drag component will 

be higher than that calculated from Equation 10 and to compensate an additional term, kinduced, 

is added to the equation; representing the deviation of lift over the wing section from that of a 

perfect elliptical pattern. Spedding and McArthur (2010) demonstrated several problems with 

this term and its application within the aeronautical literature, particularly when applied to 

biological fliers. Here the term k is typically a little over 1 when representing the span 

efficiency and a little under 1 when written inversely as a “power inducted correction factor” 

(i.e. “e”). In biological literature k is often given an assumed value of 1.1 – 1.2 and e = ~0.9, 

with no further discussion. When the calculation applies to a wing of finite length further 

modification of Equation 10 may incorporate the aspect ratio (i.e. AR = b2/A) and the 

equation is now written as: 

 

Eq.11.  Di = 2 kinduced L2/πv2A*AR 

 

Or in its non-dimensional form as: 

 

Eq. 12.      Di = CL2/πAR (1 + δ)    

 

where: e = 1/(1 + δ), with δ representing the deviation from a perfect elliptical loading state 

(i.e. 1). Often this appears in the literature as: 

 

Eq. 13.  Di = CL2/πARe    

 

In all of these equations the term “e” accounts only for the departure from a perfect state of 

elliptical loading with no consideration of the variations of CL with CD. To account for the 

change of lift to drag ratio with angle of attack, e must be ideally altered to the form: 

 

Eq. 14.  e  = 1/(1 + δ + kπAR) 
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Unlike lift induced drag that forms a part of total drag only when lift is produced, the 

remaining components of drag are proportional to the square of velocity and are present even 

in the absence of lift. The second component, profile drag, is taken as the sum of friction drag 

acting on the surface of the wing, along with drag created by the differences in pressure up 

and down wind of object immersed into the flow (typically the leading edge of the wing spar). 

The friction drag acts on the total surface area of the aerofoil and for an object moving at a 

velocity of v, Reynolds number of Re, fluid density of ρ, and total area of Atotal then the drag 

can be written as: 

 

Eq.15.  Dfriction = 0.5 ρ Atotal v2(1.33Re-0.5) and 

Eq.16.  Dfriction = 0.5 ρ Atotal v2(0.074Re-0.2)  

 

for high and low Reynolds numbers respectively (Prandtl and Tietjens 1957). The final form 

of drag, the parasite drag, applies only to the remainder of the body not associated with the 

production of lift, the head, neck, body and legs of biological animals or the fuselage of 

aircraft. As such the total drag acting on the wing can be calculated by combining Equations 

11 and 15 so that: 

 

Eq.17.  Dwing = 0.5 ρ Atotal v2(1.33Re-0.5) + 2 kinduced L2/πv2A*AR 

 

To account for the small amount of pressure drag that must be present the left hand term for 

skin friction is rewritten as the profile drag coefficient along with a profile drag factor Kprofile 

where: 

 

Eq.18.  Dwing = 0.5 ρ Atotal v2(2.7kprofileRe-0.5) + 2 kinduced L2/πv2A*AR 

 

Rearrangement and conversion to present the terms in their non-dimensional form allows the 

coefficient of drag acting on the wing to be written as: 

 

Eq.19.  CDwing = 2.7kprofileRe-0.5 + kinduced CL2/πAR (McNeill Alexander 2003) 

 

If the parasite drag is known based on the frontal surface area of the body or fuselage can be 

added to equation 19 or in its coefficient form to equation 14 to give the total drag acting on 
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the wing. Note that all of these formulae account only for the deviation of the load from an 

elliptical state where e = 1/(δ +1).  

 

5.0.2 Gliding flight 

 

Gliding represents a simple form of aerial locomotion where the animal does not expend any 

energy in the form of wing beats to overcome drag and frictional forces, instead converting 

potential energy into kinetic energy by sacrificing altitude. As vertical height must always be 

lost, the direction of flight makes an angle to the horizontal of α° (Figure 5.5), the value of 

which ranges between only a few degrees for the most efficient gliding birds, and up to 90° 

where the animal is described as parachuting. During a glide the lift and drag forces acting on 

the wing can be defined as: 

 

Eq.20.  D = sinαMg 

Eq.21.  L = cosαMg 

 

For very small angles of attack, cosα approaches 1.0, effectively reducing Equation 21 to L = 

Mg.  

 

Based on Equation 1 (i.e. L or mg = 0.5ρv2SA) it can be seen that as flight velocity decreases 

more lift is required to keep the aircraft airborne. During a glide the wings are assumed to be 

stationary, although this is not necessarily true for biological fliers that can bank their wings 

to provide stability or fine directional controls, particularly during gusty conditions. For the 

sake of simplicity, however, a rigid wing is often adopted. If it is assumed that the animal 

performs a straight glide then thrust must be generated from a loss of altitude, allowing the 

vertical sinking velocity to be calculated as: 

 

Eq.22.  Vs = Vs α = DV/Mg 

 

Here the wing has a single coefficient of lift and drag at any given angle of attack. When 

plotted over a range of angles of attack this produces a C-shaped a polar plot of CD and CL 

(Figure 5.6) from which the horizontal velocity and corresponding vertical sinking velocity 

are respectively calculated by: 
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Eq.23.  V =   √ 2Mg/CLρA 

Eq.24.  Vs = (CD/CL)V = √ ((2Mg*CD2)/(ρACL3)) = -V*ATAN(1/(L/D)) 

 

The resulting gliding polars shows the flight characteristics of a particular wing, where 

vertical sink increases rapidly at both slow and fast horizontal velocities, giving a relatively 

narrow range of desirable flight speeds. The highest point of the gliding curve is termed the 

minimum sink velocity (Vms) and represents the optimal horizontal velocity to stay airborne 

for the longest possible period where vertical sink is minimised. A second point, termed the 

maximum range velocity (Vmr), occurs at the tangent to the glide polar and represents the 

optimal velocity to travel the greatest distance for any given loss in altitude. In the illustrated 

example of Figure 5.6 the horizontal velocities of the petrel and the vulture adapted from 

Tucker and Parrott (1970) are approximately 8 and 14 ms respectively at the point of 

minimum sink, indicating the target velocity to maximise their time in the air. At the 

maximum range speeds the flight velocities of the two birds have increased to approximately 

11.5 and 15 ms respectively, the desired velocities to travel as far as possible without 

expending any energy in the form of flapping. The difference between the maximum range 

and minimum sink speeds in aircraft, biological or otherwise, are not constant, demonstrated 

in this scenario the vulture, where Vms and Vmr are close together, suggesting that the animal 

would have actively sought a very narrow range of flight speeds. The petrel on the other hand 

has a larger difference between these two velocities and would experience a range of flight 

velocities depending on the immediate intensions of the bird. At the point of minimum sink 

the gliding ratio is at its maximum and can be written as: 

 

Eq.25.  εmax = v(minVs)/(minvVs) 

Figure 5.5. - Forces acting on a pterosaur during gliding flight where: M, body mass (kg); g, 
gravitational acceleration (9.8 ms); α, angle of attack. 
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Figure 5.6. - A, Gliding polar of two biological fliers, adapted from Tucker and Parrott (1970).  
For a single wing configuration the horizontal and vertical velocities can be defined by the 
curves above, increasing rapidly at both fast and slow flight speeds. The top of the curve 
represents the minimum sinking speed (Vms). A tangent to the curve represents the point 
where L:D is maxed and is referred to as the maximum range speed (Vmr). B, Velocity vector 
diagrams showing the relationship between glide angle and rate of change of altitude (dh/dt). 
U and Z represent the horizontal and vertical velocity vectors respectively. Adapted from 
Tucker and Parrott (1970). 
 

The shape of CL/CD polar is highly dependant on the aspect ratio of the wing in question 

where typically, higher aspect ratio wings generate higher values of CL at lower values of CD. 

The relationships between wing load, aspect ratio and gliding performance is illustrated in 

Figure 5.7 where, despite a constant aspect ratio, a high wing load is associated with higher 

velocities of minimum sink, maximum range and vertical sink velocities. Further increasing 

aspect ratio, but keeping wing load constant, again also leads to faster flight velocities but is 

coupled with a reduction in vertical sink. Aircraft with higher wing loads are therefore 

associated with smaller glide angles.  
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Figure 5.7. - Relationship of wing load and aspect ratio with gliding performance (source: 
McNeill Alexander 2003).   
 

5.0.3 Circling performance 

 

The equations covered by the section above apply only to a pterosaur during a straight glide, 

however, to initiate a turn the animal is required to bank both its wings, resulting in the lift 

force being directed at an angle of Φ° to the vertical (Figure 5.8). As a result of this, 

horizontal and vertical velocities increase as the aircraft accelerates into a turn and may be 

described by: 

 

Eq.26.  Vt = V/(cosΦ0.5) 

Eq.27.  Vst = Vs/(cosΦ3)0.5 

 

As such the length of the radius defining the turn is given by the equation: 

 

Eq.28.  r = (Mg/A) * (2/(ρgCLsinΦ)) = 2M/ρACLsinΦ 

 

Estimating circling performance in this manner is useful for a comparison of the circling 

performance of extinct pterosaurs with extant biological fliers (Figure 5.9). Increasing the 

banking angle results in progressively tighter circling radius given by Equation 28 but at the 

expense of a further increase in both Vt and Vst. The term circling envelope is used to 

describe the radius of a turn relating to the minimum sinking speed.  

 

176



 
 
Figure 5.8. - Forces acting on a pterosaur during a banking manoeuvre where: M, body mass 
(kg); g, gravitational acceleration (i.e. 9.8 ms); L, lift (N); Φ, banking angle. 
 

 
 
Figure 5.9. Circling curves produced for (A) configurations of Pteranodon (Bramwell 1971) 
and (B) as an extant example, the bats of the genus Pteropus (Norberg et al. 2000). 
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5.1 Introduction to pterosaur aerodynamics and methodologies 
 

A combination of powered flight and gliding appears to have been the primary 

methods of locomotion favoured by pterosaurs, given the presence of fully developed 

wings within even the most primitive taxa (Sharov 1971; Wild 1984; Wild 1994; 

Bakhurina and Unwin 2003). Flightless ness is unknown for this clade and even 

within certain ctenochasmatids and the Azhdarchoidea, where terrestrial locomotion is 

inferred to have been more widespread, and there is no evidence that the wing 

diminished in any way; except for a reduction of the terminal wing finger phalanx 

(Kellner and Langston 1996; Elgin and Frey 2012). This latter point, however, likely 

has more to do with reducing the aspect ratio for aerodynamic purposes. 

 

As the first and largest volant vertebrates it is perhaps unsurprising that pterosaurian 

flight has been subject to investigation by numerous authors over the last century, 

who reconstructed flight characteristics from comparisons with gliding aircraft 

(Bramwell and Whitfield 1974; Brower 1980, 1982, 1983), or mathematical theory 

derived from related aerodynamical studies (Bramwell 1971; Bramwell and Whitfield 

1970; Chatterjee and Templin 2004). Although certain criteria necessary for accurate 

estimates of performance are impossible to retrieve for extinct animals, these 

including both wing camber and membrane aeroelasticity, sufficiently useful 

estimates may still be produced where three important variables are known: i) 

reconstruction of the skeletal configuration, ii) shape and surface area of the flight 

surfaces, and iii) accurate estimation of mass. As such a consensus has been 

established over the years whereby pterosaurs are portrayed as relatively slow and 

highly manoeuvrable fliers (e.g. Langly 1902; Williston 1911; Hankin and Watson 

1914; Bramwell 1971; Bramwell and Whitfield 1970; 1974; Heptonstall 1971; Stein 

1975; Brower 1980, 1982, 1983; Hazlehurst and Rayner 1992; Chatterjee and 

Templin 2004; Wilkinson 2007, 2008), often able to out perform extant birds with 

respect the circling ability and returning high ratios of lift:drag, resulting is superb 

gliding ratio. 

 

While a reconstruction of the gliding position remains relatively uncontroversial given 

the degree of study focused on pterosaurian anatomy (see Chapter 4), the remaining 
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two required variables, i.e. wing shape and mass, are more uncertain; small changes to 

which have the potential to significantly alter final estimations of aerial performance. 

Given recent controversies over both mass estimation and wing profile a brief 

reassessment of the aerodynamic ability of the Pterosauria is required. Moving on 

from pterosaurian anatomy this section of the thesis aims to investigate the 

flight/gliding dynamics of a variety of taxa through a range of experimental and 

mathematical methods, and altering critical variables within the flight equations to 

address output sensitivity.  

 

5.2 Methodologies 
 

5.2.1 Skeletal Reconstruction 

 

A reconstruction of the pterosaurian skeleton during gliding flight was obtained from 

a combination of Wellnhofer (1985) and personal studies of the joint mechanics of 

three dimensional fossil material where the humerus is angled 20° dorsally and 15° 

caudally. This forms an angle of 162° with the ulna in cranial view and directs the 

latter bone more or less perpendicular to the axis of the body. In dorsal view the ulna 

meets the humerus to form an angle of 155° and directs the ulna in a craniolateral 

direction, providing sufficient space medially for the propatagium to develop as a 

useful flight surface. The angle between the ulna and fourth metacarpal in this 

position, joined by the syncarpus, is approximately 150° in dorsal view, projecting the 

metacarpals almost directly laterally. The phalanges of the wing finger itself (i.e. digit 

4) are estimated to have made an angle of approximately 165° with the fourth 

metacarpal during passive gliding. The position occupied by the hind limbs is harder 

to interpret owing to the large degree of movement available to the femur and 

uncertainty over angle of the tibia, which would have had an active role in tensioning 

the proximal section of the brachiopatagium. Herein the femur was directed caudally 

at an intermediate value of 45° in dorsal view, and made an angle of 130° with the 

tibia, which was orientated directed craniocaudally. 
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5.2.2 Wing Reconstruction 

 

The shape and extent of the primary flight membrane in pterosaurs, the 

brachiopatagium is herein taken to run from the tip of the distal most wing finger 

phalanx, with the trailing edge terminating level with the ankle or lower tibia after 

Elgin et al. (2011, Figure 5.10). The resulting configuration, supported by 

exceptionally preserved fossil specimens, is therefore more similar to the traditional 

broad/ankle chord model (Bakhurina and Unwin 2003; Unwin and Bakhurina 1994, 

1995; Kellner et al. 2009) and as such contra to a the narrow chord model, 

popularised during the 1980s and 1990s (Brower 1980, 1982, 1983; Padian 1983, 

1985, 1987; Padian and Rayner 1993; Peters 2001). While a number of aerodynamic 

studies have utilised a wing whose trailing edge terminates medially level with the 

torso or hip (Brower 1980, 1982, 1983; Chatterjee and Templin 2004; also see Dyke 

et al. 2006) this configuration is reliant on membranes that has severely contracted 

post mortum, is contra to membranes preserved in exceptional specimens (e.g. 

Anurognathus ammoni, Beipiaopterus chenianus, Eosipterus yangi, Eudimorphodon 

ranzii, Jeholopterus ningchangensis, Rhamphorhynchus muensteri, Sordes pilosus), 

and contradicted by the observation that paired fore- and hind limbs often settle 

together due to a membranous connection (Frey et al. 2003a; Unwin and Martill 2007); 

also demonstrated previously in Chapter 3. As such a “narrow” chord model is 

rejected herein. Following Elgin et al. (2011) an ankle wing configuration must have 

evolved very early on in the lineage and was never fundamentally altered throughout 

their subsequent evolutionary history. Alterations in hind limb/forelimb lengths 

provided the driving mechanism whereby the shape of the main wing was altered 

(Witton 2008a; Elgin et al. 2011). 
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Figure 5.10 – Contrasting extent of the main wing membrane in pterosaurs. The 
broader, ankle chord (i.e. “bat-like”) configuration is illustrated left while the three 
narrow, body/hip (i.e. “bird-like”) configurations are shown to the right. 
 
5.2.3 Mass Relationships 

 

As with wing shape, estimations of pterosaurian mass have been reappraised in recent 

years, with several authors contesting the long established consensus that pterosaurs 

enjoyed an ultra lightweight frame (e.g. Prondvai et al. 2008; Witton 2008a, b); a 

result synonymous with the use of volumetric study models. As such, where previous 

mass estimations for the Cretaceous pterodactyloid Pteranodon were as low as 14.94 

kg (Brower 1983) - 16.6 kg (Bramwell and Whitfield 1974; Chatterjee and Templin 

2004), with upper estimates of 22.7 kg (Heptonstall 1971), 23.8 kg (Bramwell and 

Whitfield 1974), and 27.8 kg (Kripp 1943), results returned by scaling relationships 

indicated a significant increase in mass. This divergence is highlighted by using the 

giant azhdarchid Quetzalcoatlus as an example, where more traditional estimates of 

~70 kg (Chatterjee and Templin 2004) are contrasted against much heavier values of 

250 kg (Witton 2008a, b). While Henderson (2010) subsequently presented a model 

predicting that large azhdarchids could reach a mass of 544 kg this was contested by 

Witton and Habib (2010).  
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Divergence in methodology and total mass estimation mean that any mathematic 

assessment of pterosaurian biomechanical or aerodynamic performance must 

accommodate two very different final estimates. Herein, both of these estimates are 

adopted to give a wide range of characteristics that may be subsequently compared. 

These values will be casually referred to as “light” or “heavy” mass estimations, 

respectively following results presented  Chatterjee and Templin (2004) and Witton 

(2008a, b); accepting that these represent only two of many divergent examples of 

mass estimation, and are calculated as follows: 

 

“Light” mass estimation: 

 

Eq. 30.  Mbm = 0.1863b2.4767 (Chatterjee and Templin 2004) 

 

“Heavy” mass estimation: 

 

Eq. 31.  Mbm = 0.681b2.807 (non-pterodactyloids, Witton 2008a, b) 

Eq. 32.  Mbm = 0.519b2.55 (pterodactyloids, Witton 2008a, b) 

 

5.2.4 Theoretical Modelling 

 

Theoretical modelling was conducted through the alteration of individual variables in 

a variety of stimulatory and / or mathematical software. Data on variables such as 

mass and wing shape was sourced from the published literature or based on templates 

created from fossil material as described previously. Such templates were made by 

photographing pterosaur specimens and scaling/arranging the bony elements into the 

appropriate flight position with Adobe Illustrator. Where wing area was required, the 

template was imported into Adobe Photoshop and the percentage of total pixels 

occupied by the template were calculated, allowing a direct calculation of wing area. 

For simplicity the total wing area and span is here taken to include the strip of the 

body that lies medial to the brachiopatagium. 
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5.2.5 Computer based modelling 

 

Computer based modelling was achieved through the use of the freeware program 

“TORNADO,” along with a CFD analysis in association with the DLR and KIT. 

Coordinates along the leading and trailing edges of the wing templates were 

calculated in Microsoft Excel, and the resulting geometric models were imported into 

TORNADO (Figure 5.11). As the exact centre of gravity in pterosaurs is uncertain 

this was positioned on the body segment in line with the quarter chord. Instructions on 

the use of the programme, developed as a collaboration between the Royal Institute of 

Technology (KTH), Stockholm, Sweden, the University of Bristol, UK, and the 

University of Linköping, can be found at http://www.redhammer.se/tornado/.  

 

For the CFD study, the template was created using the skeleton of Coloborhynchus 

robustus (SMNK PAL 1133), described earlier in this thesis. Photographs of bony 

elements were taken from several aspects, and digitally scaled and repositioned with 

Adobe CS 3 to produce a working template. This template was sectioned along its 

sagittal and transverse planes and the relative coordinates were calculated in Adobe 

Illustrator, the section geometry being subsequently reduced to a series of best fit 

curves. The cross section of the wing bones at key points along the spar was 

determined from the actual bones. Sections of the model were visualised using the in-

house program MoDGen (courtesy of the DLR, Göttingen) and minor modifications 

of the geometry were subsequently made using the graphics program RHINOCEROS 

at KIT (Figure 5.12). The body sectioning proved too problematic for ModGens and 

was reconstructed directly from the 2D cross-section in RHINOCEROS. Rescaling of 

the wing section, along with minor modifications to remove inconsistencies and alter 

the wing tips were performed in RHINOCEROS by S. Rück (KIT) under the 

supervision of the author.  

 

5.2.6 Calibration and operation of the wind tunnel 

 

All physical model experiments were conducted within an open section wind tunnel 

housed in the Karlsruhe Institute of Technology. The tunnel section was 

approximately 2 m in width allowing for the mounting of models up to 1.5 m in span 

(Figure 5.13). Although larger models could be accommodated, this limitation 
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ensured that all parts of the model remained permanently situated within the main 

body of the flow. 

 

A new measuring balance, FTS-Gamma SI-65-5 (www.schunk.com), was purchased 

specifically for this project and was both installed and calibrated by an engineering 

student at KIT. The balance was capable of recording up to 65 N of force in the x- and 

y- axes (drag and side force), 200 N in the z-axis (Lift) and was accurate to 1/40th and 

1/20th of a Newton respectively.  

 

While the initial testing and calibration of the device was the responsibility of the KIT, 

subsequent tests were conducted by the author. Sampling runs taken from three of the 

fixed wing models (i.e. representing the genera Aurorazhdarcho, Coloborhynchus, 

Sinopterus, Figure 5.14) at α = 0° and a velocity of 10 ms indicated that all force and 

torque data was normally distributed. At higher velocities the wing spar of the models 

began to flutter and further sampling runs were arranged to ensure that no data spikes 

or skewing occurred. At the maximum recorded flight speed of 20 ms the force and 

torque data remained normally distributed, indicating that no data spikes or skewing 

existed, although the range of recorded values was greatly increased (Figure 5.14; 

Table 10).  

 

5.2.7 Set up of the mounting bracket  

 

Models were mounting onto a custom built bracket, 1.47 m in height, and positioned 

in the centre of the working section of the tunnel. The base of the mounting strut 

consisted of a solid base onto which the measuring balance and narrow mounting strut 

were fixed. The vertical mounting strut of the model was fixed onto this with a bolt 

but could otherwise be freely rotated in the vertical plane, allowing the pitch (i.e. 

angle of attack) of the model to be controlled (Figure 5.15A). No mechanism existed 

for determining the angle and prior to each experimental run the position of the 

mounting strut was measured with a protractor and photographed from a standardised 

position. For the cranium models a new L-shaped bracket was created. The strut of the 

model was positioned on the top surface of this bracket and could be freely rotated in 

the horizontal plane, thereby allowing the head to be yawed (Figure 5.15B). 
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Figure 5.11. - Flat plate, geometrical model of the pterosaur Sinopterus dongi with the 
long axis of the body centred on y-axis (top). Lift producing surfaces of the wing are 
typically divided into 9 segments to calculate theoretical lift/drag (bottom), although 
slight variation to this number was needed for some taxa to more accurately define the 
wing shape.  
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Figure 5.12. - Example of the model template in RHINOCEROS showing 
modifications of the wing geometry where the distal tip (shown in black) is narrowed 
(A – C). 
 

 
Taxon Drag (N) Side force (N) Lift (N) Roll (Nm) Pitch (Nm) Yaw (Nm) 

Aurorazhdarcho       

10ms 0.50 (0.258) -0.20 (0.374) 2.95 

(0.345) 

0.005 

(0.087) 

0.125 

(0.058) 

-0.02 

(0.014) 

20 ms 2.20 

(0.663) 

-0.45 

(0.923) 

7.80 

(1.299) 

-0.01 

(0.222) 

0.47 

(0.127) 

-0.01 

(0.043) 

Coloborhynchus       

10 ms 2.20 

(0.374) 

-0.05 

(1.559) 

9.65 

(1.616) 

0.017 

(0.979) 

0.265 

(0.167) 

0.0085 

(0.254) 

20 ms 6.90 

(1.356) 

0.4 

(3.839) 

29.3 

(4.590) 

-0.96 

(1.908) 

0.705 

(0.462) 

0.24 

(0.990) 

Sinopterus       

10 ms 1.35 

(0.345) 

-0.05 

(0.808) 

9.1 

(1.299) 

0.0095 

(0.450) 

0.145 

(0.081) 

0.03 

(0.084) 

20 ms 5.00 

(1.544) 

-0.20 

(3.204) 

25.5 

(3.955) 

0.135 

(1.253) 

0.515 

(0.358) 

0.21 

(0.251) 

 

Table 10. - Mean force values for selected models, where the angle of attack is zero. 
Figures in brackets indicate one standard deviation from the mean.  
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Figure 5.13. - A, Model mounted in the working section of the wind tunnel at the 
Karlsruhe Institute of Technology (KIT) along with the schematic of the machine (B). 
Direction of flow is clockwise (from right to left in both pictures).  
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Figure 5.14. - Force distribution during calibration tests of the Coloborhynchus model 
at 10 and 20 ms. Data remains normally distributed at faster flight velocities although 
the standard deviation increases as a result of higher degrees of scatter.  
 

 

5.2.8 Set up of the velocity control  

 

The flow velocity was manually adjusted via a dial linked to the fan control but 

velocity readings were taken by a measuring device (testo 350 –M/XL – testo 454) 

mounted upwind from the model. In the rare occasions when this device was not 

available the flow velocity could be calculated from: 

 

Eq. 33.   v∞ [ms] = √ 16.6*ρ [mmWS]  

where v = velocity (metres per second) and ρ = dynamic pressure (mm of water).  
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Figure 5.15. - Mounting brackets of (A) the flight models, allowing pitch; and (B), 
cranial models, allowing pitch and yaw movements.  
 

Neither of these steps required any further work or calibration on the part of the 

author. After the flight models were fixed into the working section the measuring 

balance was “zeroed,” by means of a calibration, to compensate for the addition of 

this new weight. This step was repeated every time the angle of attack was altered due 

to the new position and weight distribution of the model. A single calibration run was 

taken with a flow velocity of zero (i.e. fan off), the results of which were subtracted 

from all subsequent runs at that angle of attack.  

 

 

 
Measurement Height (cm) 

Floor to the base of the balance. 116.2 

Base of the balance to the articular 

joint of the model 

26.4 

Diameter of the mounting strut 0.12 

Height of the wing above the 

articular joint (for isolated wing 

model only) 

 

6 

  

Total height of the mounting strut 148.6 

 

Table 11. - Measurements of the mounting strut housing the measuring balance.  
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Data readings were recorded for flow velocities between 4 ms up to 20 ms, increasing 

in 1 ms increments. Higher velocities were produced only when it was necessary to 

simulate higher Reynold number regimes. At each sample velocity the force and 

torque data were recorded for 100 seconds at a sampling rate of 10 readings per 

second by the program LABview. Multiple angles of attack were recorded for each 

individual model. Where it was not possible to complete all experiments within a 

single day, the angle of attack was reset to 0° the following day and the data 

compared to ensure that no significant variations between data sets existed.  

 

Control of the flow velocity had to be manually achieved, inevitably introducing a 

small degree of inaccuracy into the experiments. This was a result of fluctuations in 

the flow velocity caused by the intermittent speeding up and slowing down of the fan 

motor. To make the reading as accurate as possible the velocity measurements were 

desirably kept to within ± 0.1 ms of the target velocity and typically never exceeded ± 

0.2 ms. The high sample rate and long period of recording (i.e. 100) are here 

considered to be sufficient to smooth out temporary changes in flow velocity. 

 

5.2.9 Construction of fixed wing models 

 

Fixed wing models used within the wind tunnel were cut from a plywood base with 

individual wooden rods cut to fit the corresponding elements of the forearm (Figure 

5.16). These elements were orientated in their theoretical flight position with the wing 

finger at maximum extension. The major joints were strengthened by a combination 

of aluminium strips and epoxy putty. The wing membrane was cut from a single sheet 

of PVC that was glued onto the wing spar and body template, creating a small to 

moderate camber. The body was cut from blocks of polystyrene foam and gaps or 

irregularities were filled or smoothed over with epoxy putty. All construction took 

place within the preparation lab of the SMNK under the supervision of Rene Kastner. 

 

5.2.10 Construction of body casts 

 

A latex mould of the model representing the genus Aurorazhdarcho (Frey et al. 2011) 

was created at the SMNK. The mould was filled with a soft foamy resin, creating a 
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replica of the original model. The surface was later coated with a harder resin for 

protection. Following the casting process the mounting strut was added by removing a 

small part of the ventral surface and excavating a section of the torso. The mounting 

strut was tightly fitted into this excavation and further secured with hard drying epoxy 

resin.  

 

5.2.11 Construction of cranial models 

 

Models representing the crania of selected taxa were built from a variety of material 

(Figure 5.17). That of Nyctosaurus was created from a template based on specimens 

KJ 1 and 2 (Bennett 2003b), where the midline of the model was constructed from 

aluminium and filled out with epoxy putty to an appropriate bulk. The vertically 

orientated portion of crest was formed by a length of laterally compressed aluminium 

tubing fixed to the skull. The horizontal bar was also created by flattening a length of 

aluminium tubing and fixing it to the vertical bar at the correct position. This, 

however, was modelled on KJ1, the horizontal bar of which is incomplete when 

compared to KJ2 and is thus smaller than it should otherwise be. Nonetheless this is 

unlikely to significantly influence the results presented later. A mounting strut was 

fixed about the position of the occipital condyle and extended caudally behind the 

skull. A resin cast of the cranium of a specimen of Anhanguera from the collection of 

Urs Oberli was adapted by reconstructing a mandible of the same length and width 

and gluing it into position. The occipital region was excavated and the horizontally 

orientated mounting strut was fixed into position with epoxy. The remaining three 

specimens, Tupandactylus navigans, Tupandactylus imperator, and Quetzalcoatlus sp. 

were respectively created from templates of the fossil specimens: SMNK PAL 

2343/2344 (Frey et al. 2003c), SMNK PAL 2839 (Frey et al. 2003c), TMM 41961 

(Kellner and Langston 1996). An aluminium sheet acted as the vertical base, forming 

the midline of these models, while the remainder of the crania were sculpted from a 

single block of foam. The lateral extent of the skull in these specimens is unknown 

and so it was estimated from personal examination of the material or photographs. 

The mounting strut was positioned horizontally, level with position of the occipital 

condyle. The effects of Reynolds numbers on the data was tested on Nyctosaurus 

where the tunnel velocity was increased up to 25 ms to see if the data deviated 

significantly from the predicted curves. As no significant change was apparent 
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between these datasets, regression lines or curves from the recorded data can be used 

to investigate the forces and torques at high velocities.   

 

Models Lateral surface area (m2) Reference chord (m)+ 

Anhanguera 0.04342 0.496 

Nyctosaurus 0.020073 0.206 

Quetzalcoatlus 0.030699 0.495 

Tupandactylus navigans* 0.037376 0.175 

Taupandactylus imperator 0.060602 0.176 

 

Table 12. - Characteristics of the various cranial models. Where: * = half life size; + = 
ref chord taken to be the distance from the tip of the rostrum to the occipital condyle.
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Figure 5.16. - Fixed wing models, construction and complete model. A, body template 
cut from a single strip of plywood along with the naked wing spar in the 
Anurognathus configuration; B, Coloborhynchus model at 1/4 life scale, mounted in 
the working section and seen in lateral view; C, Coloborhynchus as viewed from 
upwind.  
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Figure 5.17. - Cranial models mounted in the wind tunnel at KIT. A, Nyctosaurus in 
lateral view; B, Anhanguera in lateral view; C, Anhanguera in craniolateral view. 
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5.3 Wind tunnel experiments 

 
5.3.1 Aerodynamics of the pterosaurian body 

 

As noted previously, estimates of body drag can vary greatly within the aerodynamic 

literature depending on the study taxon. While low coefficients are reported for a 

number of birds, e.g. 0.0132 and < 0.01 for an albatross (Tucker and Parrott 1970; 

Pennycuick et al. 1988), 0.11 for a peregrine (Tucker 2000), and 0.12 for a red-tailed 

hawk (Tucker 2000), estimates for passerines are significantly higher at an average 

value of 0.37 (Hendenström and Liecti 2001). Experiments on dead animals or models 

also yield variable coefficients in the range of 0.14 – 0.4 (e.g. Pennycuick et al 1988; 

Tucker 1990), however, the interaction of the body elements during life is important as 

illustrated by the peregrine falcon (Falco peregrinus), where the drag coefficient is 

reduced from 0.24 on a wingless carcass to 0.14 on a smooth model (Tucker 2000). 

 

Here, the body cast of Aurorazhdarcho (Frey et al. 2011) showed a very low parasite 

drag coefficient when orientated directly into the flow (Figure 5.18). The slightly 

negative value observed at flow velocity of 5 ms (i.e. Re = 32 124) is attributed to the 

very low force values recorded by the balance prior to the calibration equation being 

applied. At low angles of attack the gradient for all three recorded Reynolds number 

profiles is similar, but beyond an angle of 6°, CDpar increases dramatically at very slow 

flight speeds. At faster flight speeds the effect of Reynolds number on CDpar is less 

pronounced, with little difference being observed between the profiles at 10 and 15 ms 

(Re = 64 248 and 98 372 respectively). With the exception of take off and landing, 

dramatic pitching of the body is not expected during flight, suggesting that angles of 

attack less than ~10° might be appropriate for determining the CDpar of a gliding 

pterosaur. As such an average CDpar of 0.033 (Re = 64 248) and 0.027 (Re = 96 372) at 

α = 10° likely represent the maximum values of this coefficient during gliding flight. 

These values are lower still if the animal pitched its body forward, where CDpar of 

0.016 (Re = 64 248) and 0.013 are recorded instead (Re = 96 372). Results for 

Aurorazhdarcho are lower than many of those noted for birds above which is likely, in 

part, attributed to the smooth surface of the model. As long as the body is not pitched 

more than 5 – 10° from a horizontal orientation, particularly if it slopes forwards, 
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values are similar to those reported by Brower (i.e. 0.013 – 0.02) for the larger 

pterodactyloids Pteranodon and Nyctosaurus. Values of 0.005 adopted for Pteranodon 

by Bramwell and Whitfield (1974), while although anomalously low when compared to 

other studies, are supported here only where the body is pitched no more than a couple 

of degrees from a horizontal position. Given the sharp decline in CDpar as the angle of 

pitch is lessened it is not possible to give an average value to be assigned to this taxon, 

however, values of between 0.01 – 0.016 seem appropriate for this taxon, accounting 

for a sufficient degree of movement of the body.  

 
Figure 5.18. - Coefficient of parasite drag against angle of attack for a body cast of the 
pterosaur Aurorazhdarcho at selected Reynolds numbers. 
 

5.3.2 Aerodynamics of cranial models 

 

Models of each study examples (Table 13; Figure 5.19) were fixed at 0° pitch while the 

yaw was altered between 0-60° in 20° increments to give a total of four distinct 

experimental setups. The flow velocity in the wind tunnel ranged from 4-20 ms for each 

of these positions where the situation permitted. In some situations it was not possible 

to determine the maximum yaw position as the torque at higher angles was too great for 

the balance, causing the model to loosen its connection to the mounting strut and 

immediately bringing the experiment to a halt. In other cases the higher flow velocities 

were problematic where vibrations developed and threatened to damage the model.  
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During one run an unexpected acceleration of the fan and the resulting gust caused the 

large crested model of T. imperator to tear off the mounting bracket and break in two. 

As a result of this, data for this model is only available for a single angle of attack and 

for a limited range of velocities.  

 

Models Lateral surface area (m2) Reference chord (m)+ 

Anhanguera 0.043420 0.496 

Nyctosaurus 0.020073 0.206 

Quetzalcoatlus 0.030699 0.495 

Tupandactylus navigans* 0.037376 0.175 

Tupandactylus imperator 0.060602 0.176 

 

Table 13. - Characteristics of the various cranial models. Where: * = half life size; + = 
ref chord taken to be the distance from the tip of the rostrum to the occipital condyle. 
 
Force and torque coefficients acting on the remaining models at a flow velocity of 10 

ms are summarised below (Table 14, Figure 5.20), all of which produce a large increase 

in the coefficient of drag as the head is yawed to the side. The CD of Quetzalcoatlus for 

example, increases 21.25 times over a range of 60°, for Nyctosaurus this is 7.61, and 

Anhanguera it was 9.67 but over a narrower range of 0-40°. Notably, although CD is 

typically very low when the head is orientated directly into the wind due to the stream 

lined form of the skull, the lowest CD recorded for Nyctosaurus is relatively high at 

0.13, compared to the values of <0.06 observed in other models. This appears to be a 

direct consequence of the long vertically orientated strut that forms the leading edge of 

the crest. Although the strut itself is streamlined, being blade-like in cross section, its 

position and length nonetheless contribute substantially to drag production.    

 

Two models with vertically orientated crests, Nyctosaurus and T. navigans, show 

similar patterns of roll and pitch coefficients. In the former (i.e. roll) the slope gradient 

increases sharply  between 0° and 20°, and plateaus beyond 20°, while pitch increases 

linearly all the way up to a yaw position of 60° where: 

 

Eq. 34.  Cpitch = 0.0301α + 0.3572  (Nyctosaurus) 

Eq. 35.  Cpitch = 0.0247α – 0.0045   (T. navigans)  
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By contrast the roll coefficients of Anhanguera and Quetzalcoatlus reach only about 

40% that of T. navigans at yawing angles of 40° and 60°. Tupandactylus navigans and 

Nyctosaurus also share an almost identical pattern of side force coefficient, which 

mirrors that of roll by increasing rapidly between 0° and 20° and decreasing slightly 

thereafter. Quetzalcoatlus records a coefficient ~55% that of T. navigans at a yaw 

position of 20°, but is comparable to both this and Nyctosaurus at higher angles of yaw. 

The coefficient in Anhangera is very low compared to all other models. All models 

have a sufficiently distinct coefficient of yaw regardless of their similarities of their 

similarities in previous graphs.  

 

Anhanguera sp. 

 

Drag remains relatively low at slower speeds (e.g. 0.15 N at 10 ms) but increases with 

velocity to reach 0.76 N at a flow of 20 ms. Yawing the head 20° essentially doubles 

the drag acting on the skull (i.e. 0.38 N at 10ms and 1.84 N at 20 ms) while by the time 

the head is yawed 40°, drag has increased by approximately 10 times the original 

amount (e.g. 1.56 N at 10 ms and ~4.84 N at 20 ms). It was not possible to test this 

model at a greater yaw position as the resulting torque caused the head and bracket to 

swing around 180°, immediately halting the experiment. Both side force and yaw 

torque increase rapidly with a turn of the head. At 10 ms these are recorded as being 

0.04 N and 0.0005 Nm respectively, but increase to 1.05 N and 0.43 Nm at a 20° yaw 

and 2.45 N and 1.14 Nm by 40°. Increasing the velocity to 20 ms at a yaw position of 

0° returns values of 0.19 N and 0.0017 Nm for side force and yaw torque respectively. 

By a yaw angle of 20° this has increased to 5.2 N and 2.13 Nm and by 40° yaw it has 

further increased to ~ 9.99 N and 4.63 Nm.  

 

Nyctosaurus gracilis 

 

Drag on the head increases from its starting value of 0.18 N at 10 ms (0° α) to 0.44 N 

after a 20° turn of the head, corresponding to a force increase of 2.44 times, 0.78 N at 

40° (i.e., x4.31 increase) and 1.25 N by 60° (i.e., x6.94 increase). At 20 ms the drag is 

recorded as being 0.63 N (0° α), increasing to 1.8 N at 20° yaw, 3.79 N  at 40° yaw, and 

5.55 N at 60° yaw. The largest torque acting on the model is pitch, followed closely by 

198



roll, and is substantially larger than the yaw torque. At 0° yaw position and 10 ms the 

values for roll and pitch are 0.06 Nm and 0.09 Nm respectively, increasing to 0.26 Nm 

and 0.36 Nm at 20 ms. Roll torque increases by 4.37 times by 20° yaw, and levels off 

thereafter, while pitching torque increases by 2.76 times by 20° yaw, 4.32 times by 40° 

yaw, and 6.14 times at 60° yaw.  

 

Tupandactylus navigans  

 

This model was constructed at ½ life size and so it is more useful to scale the recorded 

forces and torques up to the animals natural size. In this way a drag force of 0.65 N is 

expected at 10 ms and 2.57 N at 20 ms when the head is orientated directly into the 

flow. By a yaw angle of 20°, drag has increased 4.69 times to 3.04 N at a velocity of 10 

ms, and 12.09 N at 20 ms. By 40° yaw the drag has further increased to 6.76 N (10 ms) 

and 27.48 N (20 ms), and by 60° yaw drag stands at 7.64 N (V = 10 ms) and 37.17 N 

(V = 20 ms). The most dominant torque acting on the crest of T. navigans is roll, which 

increases from 0.69 Nm at 10 ms, to 4.86 Nm at 20° yaw before levelling out (5.09 Nm 

at 40° yaw) and subsequently decreasing at higher angles of yaw (i.e. 3.54 Nm at 60° 

yaw). At higher angles of yaw pitching torque becomes dominant (e.g. 4.79 Nm at 60° 

yaw). Were T. navigans to fly at a very fast velocity (e.g. 20 ms) then the forces acting 

on the crania become quite substantial when combined with a simple turn of the head. 

At a flight velocity of 20 ms and a yaw angle of 0°, the roll, pitch and yaw torques 

stand at 2.76 Nm, 2.54 Nm, and 1.4 Nm respectively. Increasing the yaw of the head to 

20° subsequently increases these to 19.8 Nm, 6.13 Nm, and 7.89 Nm respectively, 

while a 40° turn predicts values of 21.19 Nm, 16.26 Nm, and 11.23 Nm respectively.    

 

Quetzalcoatlus northropi  

 

At a velocity of only 10 ms this model produces a drag force of 0.0956 N when the 

skull is orientated into the flow, steadily rising to 1.62 N after a 60° turn of the head; 

making the forces acting on this model, relative to others, rather low. Side force at 0° 

yaw (10 ms) is 0.0617, increasing up to 1.0035 at an angle of attack of 60°, while roll, 

pitch and yaw torques start at 0.0132 Nm, 0.0257 Nm, 0.0157 Nm respectively (0°, 10 

ms) and increase to 0.4108 Nm, 0.3160 Nm, and 0.5039 Nm following the maximum 

yaw of the head. If the forces are scaled up to an adult sized Quetzalcoatlus from the 
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relationship D = CDρv2A where the reference length is now 1.98 m, then the drag 

acting on the skull at 10 ms and 20 ms with zero yaw is estimated to have been only 

1.24 N and 4.97 N respectively. This would have increased to 21.14 N and 84.56 N 

respectively following a 60° turn of the head if Reynolds Numbers did not significantly 

alter the results. Given the large size of the adult animal and its position with a 

turbulent flow regime (i.e. above the critical transition of Re = 106) the accuracy of this 

calculation is uncertain.   

 

Taxon Force Coefficients 
angle of attack Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. 

Q. northropi Drag Lift Side force Roll Pitch Yaw 

0° 0.05 0.14 -0.03 0.01 0.01 0.02 

20° 0.14 0.01 -0.35 0.20 0.02 0.15 

40° 0.5 -0.22 -0.68 0.46 0.07 0.41 

60° 0.86 -0.22 -0.53 0.44 0.17 0.54 

       

N. gracilis       

0° 0.15 0.03 -0.1 0.26 0.35 0.05 

20° 0.37 0.05 -0.66 1.13 0.98 0.13 

40° 0.63 0.02 -0.65 1.14 1.53 0.22 

60° 1.01 0.09 -0.57 1.04 2.17 0.26 

       

T. navigans       

0° 0.05 0.05 -0.03 0.08 0.06 0.04 

20° 0.27 -0.06 -0.63 1.25 0.40 0.52 

40° 0.58 -0.10 -0.59 1.27 0.98 0.68 

60° 0.84 -0.12 -0.49 1.11 1.51 0.83 

       

Anhanguera       

0° 0.06 -0.02 0.00 0.01 0.01 0.00 

20° 0.14 -0.39 -0.04 0.19 0.01 0.32 

40° 0.58 -0.92 -0.17 0.44 0.09 0.86 

 

Table 14. - Force and torque coefficients for four pterosaur crania: Anhanguera, 
Nyctosaurus gracilis, T. navigans, Quetzalcoatlus, at a variety of yaw positions. A flow 
velocity of 10 ms was used for these calculations.  
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Figure 5.19 - Photographs of the cranial models of A, Tupandactylus navigans; B, 
Nyctosaurus gracilis; C, Anhanguera sp.; D, Quetzalcoatlus northropi. 
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Figure 5.20. - Plots of the force and torque coefficients against the angle of attack in 
various head crest models where: pink squares, Nyctosaurus gracilis; yellow triangles, 
Tupandactylus navigans; blue circles, Quetzalcoatlus northropi; orange diamonds, 
Anhanguera sp.  
 

5.3.3 Parasite drag and torque in relation to wing surface area. 

 

Where wing surface area can be calculated it is useful to determine what composition 

of the animals total parasite drag or torqueses are a direct result of the head and crest. 
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The wing surface areas of the selected taxa were calculated from scaling mostly 

complete fossil specimens to the size of the test model and reconstructing the wing 

membrane to the ankle as has been argued for previously. For Nyctosaurus this is based 

on specimens KJ1 and KJ2 (Bennett 2003a), Quetzalcoatlus is based on the model of 

TTU P10390 (Chatterjee and Templin 2004), and Anhanguera is based on NSM-PV 

19892 (Kellner and Tomida 2000). As no good model was available for T. navigans at 

the time of writing, no data is presented. Based on these reconstructions the total 

surface areas for Anhanguera, Nyctosaurus, and Quetzalcoatlus are 1.046 m², 0.129 m², 

and 1.357 m² respectively, the results of which are illustrated in Table 15 below. 

 

Yaw angle 0° 0° 20° 20° 40° 40° 60° 60° 

Velocity (right) 

Taxon (down) 

10 ms 15 ms 10 ms 15 ms 10 ms 15 ms 10 ms 15 ms 

Anhanguera 0.002 0.003 0.006 0.007 0.024 0.024 x x 

Nyctosaurus 0.02 0.02 0.06 0.06 0.1 0.12 0.16 0.16 

Quetzalcoatlus 0.001 x 0.003 x 0.01 x 0.02 x 
 

Table 15. - Coefficients of drag for three of the study taxa at a variety of velocities and 
angles of yaw. Results are non-dimensionalised by the surface area of the wing.  
 

5.3.4 Discussion  

 

The parasite drag used for the sum of the body and head in previous studies ranges 

from 0.005 (Pteranodon, Bramwell and Whitfield 1974) to 0.01254 / 0.01958 

(Pteranodon / Nyctosaurus, Brower 1983), producing a rather large disparity between 

these analyses. If the results of the head crest modelled for this analysis are 

representative, then at an angle of attack and a flight speed of 0° and 10 ms respectively, 

the head therefore accounts for 25-40% of the total parasite drag based on Bramwell 

and Whitfield but only 13-16% based on that of Brower.  

 

At higher angles of attack the coefficient of drag produced by the study models can 

exceed that of body and indicate the extent to which yawing the head can increase the 

total parasite drag of the animal. For example, the cranial model of Anhanguera at an 
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angle of attack of 40° generates a coefficient of drag of 0.024, i.e. 191% (Brower 1983) 

or 480% (Bramwell and Whitfield 1974) the CDpar attributed to the body alone.  

 

Drag coefficients in Nyctosaurus (in addition to side force, roll and pitch) are unusually 

high when compared to the other models despite the similarities in size and 

smoothness/material composition. As such they are regarded as a direct result of the 

cranial crest. Despite being built out of compressed and relatively rigid aluminium 

tubing, the crest fluttered when placed in even very light velocities and must account 

for the increased drag force recorded for this model. Given the long length of the crest 

in life and its narrow, blade-like cross section, it seems probable that flutter would have 

been unavoidable during flight, although I acknowledge that the structural properties of 

bone and aluminium are certain to differ. Unfortunately, it was not possible here to 

separate the force components generated by that of the model from those caused by 

flutter. The increase these forces and torques are certainly an undesirable consequence 

of the crest and would have only acted to destabilise the head or reduce the 

performance of the aircraft.  

 

For those pterosaurs that have a vertically orientated crest, Nyctosaurus, T. navigans 

(and likely taxa such as P. sternbergi), roll and pitch coefficients become increasingly 

important, the former reaching its maximum value after only a 20° yaw of the head. 

The rapid increase in roll coefficient partially explains the development of the tight 

contact between the pre- and postzygapophyses of the cervical vertebrae (Bennett 

2001a), which resist torque induced rolling motions between vertebrae.  

 

While several authors have argued in favour of a potential aerodynamic function of the 

cranial crest in pterosaurs, the diversity of forms between closely related taxa, 

allometric growth (Tomkins et al. 2010), ontogenetic variability (Martill and Naish 

2006), and different sizes between putative male and female specimens (Bennett 1992, 

2001a, b) together make a strong argument that the feature evolved primarily as a 

sexual display. The potential aerodynamic functions, however, are problematic to 

disprove numerically as a crest of any shape, size and position will influence the 

aerodynamics of the skull, regardless of their evolutionary function. Here the only thing 

that can be done is to examine each taxa individually and comment on the effectiveness 
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of the structure relative to other controls the animal had at its disposal, and whether the 

animal was likely to utilise them. 

 

The first such argument concerns the head and crest being deployed as a air brake 

(Stein 1975) and while the crest does indeed produce additional drag as it is yawed to 

the side (see above), it is difficult to envisage a scenario in which a pterosaur would use 

its head and crest to slow its forward velocity (Elgin et al. 2008). As noted by Bennett 

(1992) the maximum drag would be produced if the head was turned perpendicular to 

the direction for travel but this would severely limit the animals depth perception and 

visibility of incoming obstacles, particularly during landing which would be the only 

time such a large increase in drag would be desired. Pterosaurs instead could have 

adopted several methods to slow their flight when necessary, including twisting the 

wings and lowering the hind limbs to produce drag from the combined surface area of 

the legs and uropatagium. Based on the estimated wing surface area the drag generated 

by the head and crest is low and remains lower than <0.03 even after a 60° turn of the 

head and flat plate models indicate that the wings were undoubtedly better suited for 

drag generation. For Anhanguera the head yawed to an angle of 20° generates a drag 

coefficient equal to the lift induced drag of a wing pitched by 6°, while a 40° yaw is 

equivalent to a  pitch of 10°. Likewise for Quetzalcoatlus a 20° yaw of the head 

generates as much drag as the lift induced component of a wing pitch to 3-4°, while a 

40° yaw is equivalent to a wing pitch of 8°. Small adjustments of the wing could 

therefore easily generate drag equal to the head crests when they were turned at low 

angles. These examples are simplistic as they of course ignore profile drag, which itself 

can be an order of magnitude higher than that of lift induced drag, but still illustrate the 

futility of suggesting that the cranial crest may have acted as an airbrake or a means to 

generate additional drag. As such while in practice a small turn of the head would have 

lead to an increase in parasite drag and contributing to the total drag of the animal, there 

is no reason to suppose that this was commonly used by the animals during life.  

 

The idea that the crest acted as counterbalance has been discussed by Elgin et al. (2008) 

for Pteranodon, but here the selection of models cannot add much to this discussion as 

only in Nyctosaurus does the crest extend caudally beyond the occipital condyle. 

Without a caudally situated crest the counterbalance is impossible as aerodynamic 

forces will only push the head further in the direction of yaw. Although Xing et al. 
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(2009) reconstructed Nyctosaurus with a large sail-like crest, this reconstruction is 

hypothetical and unsupported by the original description of the fossil material (Bennett 

2003b). At all points of yaw in this study the aerodynamic centre of pressure, calculated 

by r = T/(Fsinθ)), where r is the centre of pressure, T is torque, F is the side force and θ 

is the angle of yaw, is forward of the occipital condyle and the crest does not act as a 

counterbalance.  

 

A further potential role of the crest is to act as a forward rudder. Rudders do not initiate 

a turn in aircraft, which is instead caused by the banking of the wings, but rather assist 

in keeping the nose of the aircraft pointing into the direction of the turn. To maximise 

their effectiveness such features are located as far as possible from the aircraft’s centre 

of gravity, which in pterosaurs is estimated to be just caudal to the glenoid fossa of the 

shoulder girdle (Bramwell and Whitfield 1974). As such, features attributed as rudders 

are found precisely where we would expect them in pterosaurs, the terminal end of the 

caudal series in non-pterodactyloid individuals and the head of the short tailed 

pterodactyloids. The magnitude of the side forces and yawing torques acting on the 

head crests have been presented and would certainly allowed a rudder effect to occur, 

however, it should be noted that only a limited number of non-pterodactyloids have 

been confirmed to develop a caudal vane (e.g. Pterorhynchus, Rhamphorhynchus, 

Sordes) while other long tailed non-pterodactyloid specimens instead develop a cranial 

crest (e.g. Eudimorphodon, Raeticodactylus (Stecher 2008), Darwinopterus (Lü et al. 

2009). Additionally as no extant biological flier has developed an additional feature to 

act as a rudder there is no good reason to suppose that pterosaurs required one also. 

 
5.3.3 Aerodynamics of fixed wing models 

 

A total of four models with fixed and immobile wings were constructed for the series of 

wind tunnel experiments. The taxa: Coloborhynchus robustus (SMNK PAL 1133, this 

study), Sinopterus dongi (Wang and Zhou 2003; private specimen pers. obs), and 

Aurorazhdarcho micronyx (Frey et al. 2011; Bennett 2013) were selected to provide a 

good cross section throughout the Pterodactyloidea with regards to mass and wing shape. 

Due to its small size, good preservation, and unusual wing profile the anurognathid 

Anurognathus ammoni (Bennett 2007a) was also constructed to provide comparative data 

for the more basal members of the lineage. As with the cranial crest each model was 
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mounted on the bracket inside the working section of the wind tunnel (see Section 5.2) 

and subjected to flow velocities of between 4 and 20 ms. As yaw and rolling moments of 

the model were not permitted due to the makeup of the mounting bracket pitch was the 

only variable that could be actively changed with each iteration of the experiment. Vital 

characteristics for each of these models are located in Table 16.  

 

Anurognathus -The onset of stall in Anurognathus is relatively well marked at 13° 

followed by a slow decline of lift at higher angles of attack (Figure 5.21). As such 

CLmax of 1.16, occurs at this point at a Reynolds number of 34 250 and decreases in 

magnitude as Reynolds number increases further (i.e. 1.04 at Re = 68 500, and 0.89 at 

Re = 102 750). The gradient of the lift slope is calculated as 0.0611 while the point of 

zero lift (i.e. where the slope intersects the x-axis) occurs at an angle of attack of -5.6°. 

Consequently the angle of attack may be modified by 5.6° to determine the point where 

the slope crosses the y-axis at zero. 

 

The highest measured ratio of L/D from this model was only 5.48 at a Reynolds 

number of 34 250 (Figure 5.22). Based on the polar curve this also coincided with the 

lowest measured value of the total drag coefficient (i.e. CD = 0.087) at a lift coefficient 

of 0.48. As such total drag remains relatively high and predicts fast sinking speeds 

where at a Reynolds number of 68500 the horizontal velocity at the point of minimum 

sink is 6.72 ms and vertical sinking velocity is -1.66 ms for a heavy mass individual (i.e. 

1.44 N). At maximum range speed the horizontal velocity is 7.68 ms and vertical sink -

1.72 ms. For a light mass individual (0.54 N) the horizontal velocity at the point of 

minimum sink is reduced to 4.12 ms and a vertical sink of -1.01 ms while the maximum 

range speed is 4.71 ms (Vs = -1.01 ms).  

 

The turning performance between heavy and light mass estimates are pronounced 

where the heavier mass configuration (M = 1.44 N) has a turning radius of 26.5 m at the 

point of minimum sink, Vst = -1.7 ms and a horizontal velocity of 6.77 ms. This 

decreases to 13.5 m at a banking angle of 20° (Vt = 6.93 ms, Vst = -1.82 ms) and 9.2 m 

at a banking angle of 30° (Vt = 7.22ms, Vst = -2.05 ms). In contrast to this a light mass 

configuration (M = 0.54 N) has a turning radius of only 10 m at the point of minimum 

sink (Vt = 4.15 ms, Vst = -1.04 ms), decreasing to 5 m at a 20° bank (Vt = 4.25 ms, Vst 

= -1.11 ms) and only 3.5 m at 30° (Vt = 4.42 ms, Vst = -1.26 ms). 
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Figure 5.21. - Plot of the coefficient of lift versus angle of attack for Anurognathus at 
selected flight velocities. 
 

 
Figure 5.22. - Polar curve for Anurognathus across several Reynold numbers.  
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Taxon Total span 
(b) 

b2 Surface 
area (m2) 

Wetted 
surface 
area (m2) 

Aspect 
ratio 

Mean 
aerodynamic 
chord (m) 

Mass (kg) Mass (N) Wing load 
(N/m2) 

Anurognathus 
ammoni  
- model 

0.61 0.3721 0.061 0.1525 6.1 0.1 0.15 1.44 23.66 

Anurognathus 
ammoni  
- life size 

0.31 0.093 0.0305 0.0763 6.1 0.5 0.03 0.25 8.20 

Aurorazhdarcho 
micronyx 
- life size 

0.59 0.3463 0.114 0.2851 12.1 0.09 0.79 7.71 67.65 

Coloborhynchus 
robustus  
– life size 

5.83 33.9889 5.2594 13.148 12.9 0.35 46.52 456.34 173.53 

Coloborhynchus 
robustus 
- model 

1.46 2.1316 0.3287 0.8218 12.9 0.09 1.36 13.31 80.96 

Sinopterus dongi  
– life size 

1.21 1.4641 0.176 0.44 8.3 0.13 0.84 8.28 47.04 

 

Table 16. – Characteristics of the fixed wing flight models and their life sized counterparts. Mass is calculated after Witton (2008a, b).  
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Aurorazhdarcho - Stall in this model occurs at an angle of attack of 13° (Figure 5.23). 

A maximum CL of 1.86 is recorded at a velocity of 5 ms while the maximum CL’s 

prior to stall at other selected flight speeds are 1.24 (10 ms); 1.17 (15 ms); and 1.24 

(20 ms). For each of these three flight velocities, corresponding to Reynolds number 

of 32 124 (5 ms), 64 248 (10 ms), 96 372 (15 ms), the angle of attack at which CL = 0 

are -1.76°, -4.69° and -5.24° respectively. The maximum value of CL recorded for 

this model at the proposed onset of stall (and a Reynolds number of 32 124 was 1.51, 

decreasing to 1.24 at a Reynolds number of 64 248 and 1.17 at Re = 96 372.  

 

Based on the polar curve of Figure 5.24, the maximum ratio of L/D is 6.3, however, at 

α = 0° and flight velocities of 6 and 7 ms, low values of drag correspond to a large 

jump in L/D ratios of 18.7 to 9.1 respectively. With the exception of these points the 

L/D curve closely matches the theoretical predictions if a K value of 5.0 is used which, 

as with the other fixed wing models examined here, is substantially lower than that 

attributed to other biological fliers.  

 

The polar curve indicates that at a Reynolds number of 64 248 the CDmin is 0.111 and 

therefore a higher than expected sinking velocity is produced by the gliding polar. 

After adopting a heavy mass estimate for this animal the polar data itself returns a Vms 

of -1.83 ms at a horizontal velocity of 10.3 ms, while a light mass animal would have 

had a Vms of only -1.09 ms at a velocity of 6.1 ms. The presence of some data points 

with higher than expected Vms, resulting from the combination of data collected over 

several days, makes it relatively difficult to fit the data to a quadratic curve. Quadratic 

curves based on the data presented in Figure 5.24 predict slightly larger values of Vms 

than the polar data itself, i.e. -2.1 ms at V = 8 ms, and -2.17 ms at V = 11 ms.  At the 

higher Reynolds number of 96 372 the data distribution appears to be slightly better 

and quadratic equations calculate the Vms to be either -2.26 ms at V = 12 ms (selected 

data points) or -2.5 ms at V = 2.5 ms. The best glide ratio calculated from the glide 

polar is only 5.6.  
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Figure 5.23 - Plot of the coefficient of lift versus angle of attack for Aurorazhdarcho 
at selected flight velocities. 
 

 
 

Figure 5.24 - Polar curve plot of Aurorazhdarcho across four Reynolds number 

regimes. 

 

Data for the circling performance derived from the polar curve indicates that the 

turning radius decreases rapidly with increasing bank angle. This occurs at a cost of 

increased Vts, the minimum turning radius occurring at a Vts marginally higher than 

the minimum calculated Vms. At a banking angle of only 10° the turning radius would 

have been 52.07 m; the turning radius halving in size at 20° (26.43 m) and 30° (18.08 
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m). Beyond this point the turning radius plateaus, decreasing from 18.08 m at a 30° 

bank to 9.18 m at 80°. For a light mass animal the turning radius is substantially lower, 

18.44 at a banking angle of 10° and decreasing down to 3.25 m if the animal was to 

bank sharply to an angle of 80° (i.e. only 35.4% the radius of the heavy mass animal).  

 

Coloborhynchus - The model of Coloborhynchus represents an animal one quarter 

the size of specimen SMNK PAL 1133. The results can thus either be taken at face 

value to represent a juvenile/sub adult (assuming isometric scaling) or can be scaled 

up to the correct adult size. The Reynolds numbers of an adult individual range from 

154 125 at a velocity of 5 ms, up to 616 500 at 20 ms; well below the turbulent 

transition of ~106. Nondimensional coefficients remain constant regardless of the 

desired size of the animal providing the same geometry is used and all given force 

coefficients are equally applicable to both the model and a life sized Coloborhynchus. 

  

The CL/α plot shows a slight reflex between an angle of attack of 6 - 7.3° and plateaus 

beyond this point, indicating the onset of stall (Figure 5.25). No decrease in the lift 

coefficient is noted, even at high angles of attack, indicating that the flow remained 

attached to the wing at all points during this experiment. The largest CL value 

recorded for this model was 1.22 (measured at 4 ms, α = 6° and 19.4°). At the 

proposed onset of stall, i.e. 6°, the CLmax at each Reynolds number was 1.14 (Re = 30 

140), 1.06 (Re = 60 280), 0.99 (Re = 90 420), 1.05 (Re = 108 544). The angle of 

attack where CL = 0 is calculated as -9.27° from the regression y = 0.0765 α + 0.7095.  

 

From the polar curve the CDmin is 0.1 at a Reynolds number of 30 140, and 

corresponds to a CL value of 0.25 (Figure 5.26). Increasing the Reynolds number 

increases the CDmin to a small degree, e.g. 0.12 at Re = 60 280. Subsequent increases 

in the Reynolds number increase the CDmin to 0.11 (i.e. Re = 90 420, 108 544), 

indicating that CDmin is not greatly influenced by Reynolds number over the measured 

range. The only other slight difference resulting from the increase in Reynolds 

number is that the top most curve of the C-shaped polar decreased in magnitude, 

following a reduction in CL.  
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Figure 5.25 - Plot of the coefficient of lift versus angle of attack for Coloborhynchus 
at selected flight velocities.  
 

 

 
 

Figure 5.26 - Polar curve of lift and drag coefficients for Coloborhynchus across 
Reynolds numbers.  
 

The L/Dmax for each Reynolds number regime is unusually low, ranging from a high 

of 4.74 at Re = 30 140 to 4.17 at Re = 60 280. As a result, the gliding profile of 

Coloborhynchus is suspect (ε = 4.06), with a Vms of -3.09 ms occurring at a horizontal 

velocity of 12.53 ms for a heavy mass animal. A lighter mass animal has a Vms of -

1.83 ms at a horizontal velocity of 7.41 ms, i.e. 59.1% that of the heavy mass estimate.  
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The turning radius decreases rapidly with increasing bank angle but in all cases it is 

associated with a very large Vst. For a heavy mass animal the turning radius is 73.07 

m at a bank angle of only 10°, decreasing to 37.1 m for a banking angle of 20° and 

25.38° by 30°. The turning radii for a light mass animal are exactly 35% of those 

given by the heavy mass estimation, i.e. 25.6 m at a bank angle of 10°.  

 

Sinopterus - The onset of stall appears to occur at around α = 5.9° (Figure 5.27) and 

is accompanied by a long flat stall profile in which no obvious decrease in lift 

coefficient is observed; as already noted in Coloborhynchus. The maximum CL 

recorded during the course of these experiments was 1.07, with the CL at the 

proposed onset of stall for each tested Reynolds number regime being 0.95 (Re = 44 

525), 0.88 (Re = 89 050), 0.88 (Re = 133 575 and 178 100). The angle of attack where 

CL = 0 is -7.17°, given by the regression line y =0.0682x + 0.4893.  

 

 
Figure 5.27 - Plot of the coefficient of lift versus angle of attack for Sinopterus at a 
variety of flight velocities. 
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Figure 5.28 - Polar curve of lift and drag coefficients for the model Sinopterus across 
a variety of Reynolds number.  
 

The polar plot of lift and drag coefficients records a CDmin of 0.078 at a Reynolds 

number of 44 525 (Figure 5.28). As with other models the CDmin does not appears to 

be influenced by changing Reynolds number over the recorded range, initially 

increasing to 0.091 by Re = 89 050 and subsequently decreasing to 0.084 at Re = 133 

575 and 178 100. As is also observed in Coloborhynchus the CL is reduced at higher 

values of CD as Reynolds number increases.  

 

The L/Dmax derived from the polar curves is 7.31 (down from a maximum of 7.7 

recorded at 0° and a flight velocity of 4 ms). At higher Reynolds numbers this value is 

slightly lower i.e. 5.422 (Re = 133 575), 5.376 (Re = 178 100). As noted in other 

fixed wing models the low L/D ratios result in a poorer than expected gliding 

performance (εmax = 5.71) where the minimum sink speed for a heavy mass animal is 

calculated as -1.84 ms, corresponding to a horizontal flight velocity of 10.54 ms. A 

light mass model has a Vms of -1.1 ms at a horizontal velocity of 6.27 ms, i.e. 59.5% 

that of the heavy mass animal.   

 

Using a heavy mass estimate the turning radius is 47.47 m at a bank angle of only 10°, 

decreasing to 24.10 m for a banking angle of 20° and 16.02° by 30°. The turning radii 

for a light mass animal are 35.4% those given by the heavy mass estimation, i.e. 16.35 

m (10°), 8.3 m (20°), 5.68 m (30°).  
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5.3.4 Discussion 

 

All the studied models show the expected linear increase of lift with angle of attack 

prior to stall, however, despite differences in wing profile and aspect ratios there is 

little to distinguish between the CL/α gradient of the individual models; where 

Anurognathus = 0.0611, Aurorazhdarcho = 0.0845, Coloborhynchus = 0.0765, 

Sinopterus = 0.0682 (Figure 5.29). While the lift coefficients fall within the low end 

of those known for biological fliers, the lift slope gradients are only around half as 

large as those calculated for Rhamphorhynchus (0.11) by Klaus (2008). 

Coloborhynchus and Aurorazhdarcho produce the steepest lift gradients as a result of 

their higher aspect ratio wings although these are not as distinct from the other models 

as might have been expected. The onset of stall in all models is confusing and is 

identified by a plateau in the CL/α curve suggesting that the flow remained attached 

to the wings for a large range of α after the stall point had been passed. Although 

higher aspect ratio wings should be expected to stall first the indistinct range of lift 

slope gradients reported above suggested that a typical stall profile was unlikely to 

have been produced. The onset of stall occurs first in Sinopterus, which has an aspect 

ratio of 8.32, at an angle of attack of 13°, followed by Anurognathus (15.8-18.6°, AR 

= 6.1), Coloborhynchus (15.3 – 16.5°, AR = 13), and finally Aurorazhdarcho at α = 

17.4° (AR = 14.84). Note that each of these angles have been modified where α  = 0° 

is taken as the position where CL = 0, i.e. the point where no lift occurs. The 

maximum lift coefficients recorded from these studies (Table 17) are slightly lower 

than those known from similarly thin airfoils e.g. Eiffel 13 (CLmax = 1.2), Göttingen 

265 (1.6), Göttingen 464 (1.6), Göttingen 400 (1.1), suggesting that the models are 

likely to slightly underestimate the amount of lift generated by the pterosaurian wing.  

 

Taxon CLmax  

Anurognathus 1.03 

Aurorazhdarcho 1.51 

Coloborhynchus 1.14 

Sinopterus 0.95 

Table 17. - CLmax for the study taxa taken from the onset of stall. 
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Figure 5.29. - Comparison of the CL and angle of attack for each of the four study 
taxa.  
 

The lift data described above is lower than expected and at all times is coupled with 

abnormally high values of CDtotal, which reach a minimum of about 0.1 for all models. 

As a result of the low lift slope gradient, combined with a very high CDtotal, a low 

range of L/D ratio is observed, and in turn produces high values of Vms even when 

light mass estimates are substituted into the equations (see Table 18). The values of 

Vms illustrated below exceed those calculated for the majority extant birds and bats 

when a heavy mass estimation is used (e.g. Pennycuick 1968, 1971; Tucker and 

Parrott 1970; Norberg et al. 2000). As such the polar plots for the model pterosaurs 

are intermediate between those known from most other biological fliers and those 

with substantially poorer glide ratios e.g. poor performance gliders (Vms = 2.32 ms, 

McMasters 1794), Columba livia (Vms = 2.67 ms, Pennycuick 1968; McMasters 

1974). Using a light mass estimation the values remain high but are comparable to 

those given to some birds and bats, i.e. Coragyps atratus, Black vulture (Vms = 1.1 ms, 

Tucker and Parrott 1970); Fulmarus glacialis, Fulmar petrel (Vms = 1.24 ms, 

Pennycuick 1960); Rousettus aegyptiacus, Dog-faced bat (1.17 ms, Pennycuick 1971). 
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Despite the problematic values of Vms the horizontal velocity is not derived from the 

L/D ratio, instead being primarily a product of mass and lift coefficient:  

 

Eq. 36.  Vms = √ (2Mg)/(ρCLS) 

 

As such the horizontal velocity is likely to be close to the true value although the 

slightly lower than expected maximums as noted above lead me to believe that the CL 

of the pterosaurian wing would have been slightly higher, leading to a slight decrease 

in horizontal velocity.  

 

  Heavy Mass Light Mass 

Taxon L/D V (ms) Vminsink 

(ms) 

V (ms) Vminsink 

(ms) 

Anurognathus 9.97 5.65 -1.39 3.50 -0.86 

Aurorazhdarcho 5.58 10.30 -1.83 6.13 -1.09 

Coloborhynchus 3.98 12.53 -3.09 7.41 -1.83 

Sinopterus 5.65 10.54 -1.85 6.27 -1.10 

 
Table 18. - Minimum sinking velocity (Vminsink) for each of the studied pterosaur taxa 
along with their corresponding horizontal flight speed and L/D ratio.  
  

An attempt to understand the unusually high values of CDtotal was made using the 

fixed wing, and body cast models of Aurorazhdarcho and comparing these against 

estimates from flat plate models (see subsequent sections). Flat plate models for a 

range of velocities (4-20 ms, Re = 38 548 – 128 496) suggest a CDpar of between 

0.015 – 0.02. While the body model by itself approaches a CDpar of close to zero 

when the body is oriented parallel to the flow the complete model, when orientated in 

the same way, returns a CDtotal of 0.11 (Re = 64 248), indicating that a significant 

portion of the total drag is due to the configuration of the wings, and the interaction of 

flow between the wings and body. This is further supported by the relatively low 

values of CL returned from all of the study models (Table 17), coupled with high 

values of drag which suggests that the curved wing profile and leading edge are 

unrepresentative of the living animals. A further breakdown of the individual 

components of drag however is not possible at this point in time but it indicates that 
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further investigation is required the exact problem with the wing configuration of 

these models. In an attempt to do this, a further experiment was devised using more 

complex jointed models onto which membranous flight surfaces of different aero 

elastic properties could be attached. Although a study into pterosaurian joint 

mechanics and several working models were completed, experiment were limited due 

to a lack of cooperation with supporting institutions, and eventually abandoned due to 

time constraints. As such wind tunnel modelling of the full model models is not 

satisfactorily resolved and results of the latter experiments are presented as part of the 

Appendix rather than within this chapter. 

 

5.3.5 Summary of experimental results 
 
 
The body drag component for the small pterodactyloid Aurorazhdarcho micronyx 

(Frey et al. 2011) is found to closely approach zero at very low angles of attack, and 

as such most closely resembles values of 0.005, proposed by Bramwell and Whitfield 

(1974) for Pteranodon. Accounting for a small degree of forward pitch that would 

have inevitably occurred during gliding flight, CDpar is found to have reached a 

maximum of 0.013 – 0.016 in this taxon, supporting those coefficients presented by 

some workers such as Brower (1982), who proposed figures of 0.013 and 0.02 for 

Pteranodon and Nyctosaurus respectively, Tucker and Parrott (1970) and Pennycuick 

et al. (1988) who respectively supported figures of 0.0132 and < 0.01 for an albatross. 

Only at high angles of pitch, > 10°, do CDpar values approach those proposed for 

several other extant birds (e.g. Pennycuick 1988; Tucker 2000; Hendenström and 

Liecti 2001) and a range of unpolished models or carcasses (Pennycuick 1988; Tucker 

2000). In contrast to this a significant higher figure of 0.02-0.022 is recorded for the 

much larger model of Coloborhynchus robustus, although this figure is likely the 

result of a relatively deep sternum and a large crested skull. 

 

Yawing moments of the head in all study taxa lead to a significant increase in drag, 

which can exceed that of the total CDpar in a horizontal orientation (with the head 

increasing the parasite drag of the animal by 20 – 91% through a 40° turn), but still 

remains minor compared to that generated by the wings; suggesting that, in addition 

to biological/behavioural arguments (e.g. Bennett 1993), its use as an air brake cannot 

be supported. Further aerodynamically useful functions such as a counterbalance are 
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also dismissed as the aerodynamic centre of pressure in all studied forms lies cranial 

to the occipital condyle during yaw, indicating that yaw can only act to destabilise the 

head. The only studies supporting this function rely on incorrect or hypothetical (and 

unproven) cranial reconstructions of the pterodactyloid Nyctosaurus (Xing et al. 

2009). My own cranial models of Nyctosaurus indicate that the presence of the highly 

elongate crest contribute significantly to rolling torques and produced a CDpar that 

equalled the entire body model of C. robustus (i.e. 0.02), rising up to 0.16 following a 

60° yaw of the head.  

 

With regards to the fixed wing models the configuration and make up of the wings 

gives very poor aerodynamic results and making any firm conclusions from this series 

of experiments suspect. The high drag to lift ratios mean that the information 

presented above must represent the “worst” performance available to each taxon and 

vertical sinking velocity would be markedly reduced for the actual animal itself. As 

such the subsequent sections focusing on mathematical and theoretical simulations are 

regarded as being more representative. 
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5.4 Theoretical simulations 
 
 
5.4.1 Flat plate theoretical performance 

 

Independent of the wind tunnel data covered in the previous section, lift acting over 

the total surface of the wing may be taken as being equal to that of the animal’s mass 

times the gravitational acceleration (i.e. 9.81 ms), representing the minimum force 

required to support the animal in horizontal flight. Alternately a maximum lift 

coefficient of 1.2 – 1.4, which appears appropriate for bird-like wing sections and is 

slightly larger than the CLmax recorded for the fixed wing wind tunnel models, can be 

adopted for a pterosaurian configurations. 

 

An additional method of calculating the forces acting on a wing section is to 

determine the parasitic drag through the calculation of the “equivalent parasitic area” 

(Perkins and Hage 1950). Here the steps laid out in Tucker and Parrott (1970) are 

followed where the area can be “thought as the wetted area of a hypothetical object 

with the same parasite drag as the total aircraft, but with a parasitic drag coefficient 

(CDpar), arbitrarily assigned to 1.0,” and the relationship written as: 

 

Eq. 37.  0.5ρCDpar1*f*v2 = 0.5ρCDpar2*Sw*v2 

 

Here CDpar1 is equal to the parasitic drag coefficient of the hypothetical object (i.e. = 

1.0), CDpar2 is the parasitic drag coefficient of the pterosaur in question, while Sw is 

its wetted surface area.  

 

Modification of Eq. 37 is advantageous whereby it allows a comparison of aircraft at a 

wide range of Reynolds numbers, with CDpar being given as the parasitic drag 

coefficient of a thin, flat plate, orientated parallel to the wind flow and with a 

turbulent boundary layer rather (Cf). Here the turbulent boundary layer is calculated 

as a function of Reynolds number, where: 

 

Eq. 38.  Cf = 0.455(log10Re)-2.58 
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This is substituted in place of CDpar1 in Equation 37 which, after cancellations and 

rearrangements, gives: 

 

Eq. 39.  SwCDpar/Cf = KSw = f, 

 

where f is now the wetted area of the flat plate with the same drag as the aircraft in 

question and K is the ratio of the parasitic drag coefficient of the aircraft to that of the 

plate at an appropriate Re number. K values that have been obtained for other aircraft 

are shown in Table 19 Very low values of K appear to be reserved for engineered 

aircraft while a range of values are observed for the full range of biological fliers. 

 
Aircraft K 

Falcon 2.4 

Vulture 2.2 

Gull 3.5 

Fulmar 4.1 

Pigeon 4.3 

Astro-mite model 1.8 

SHK sailplane 0.7 

 

Table 19. - K-values for various birds and man-made aircraft (Tucker and Parrott 

1970). 

 

Tucker and Parrott (1970) used a K value of 2.2 in their study of falcon flight as it was 

the lowest value noted for birds that they considered accurate (contra Raspet 1950, 

1960). As K remains an unknown variable for pterosaurs a range of numbers were 

adopted herein. The effect of K on the predicted lift to drag ratio is illustrated in 

Figure 5.30 where for Coloborhynchus, at velocities in excess of 10 ms, the L/D ratios 

diverge and are highly dependant on K. At velocities below 10 ms, however, the 

effect appears to be negligible.  

 

Following the selection of a satisfactory value of K, several additional variables are 

required to calculate theoretical drag, these being: weight, wing span, surface area, 

wetted surface area, chord and an appropriate air speed. The wing span is determined 

from fossil evidence or bone element regressions whilst surface area and chord are  
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Figure 5.30. - Theoretical L/D performance for various values of K in the pterosaur 
Coloborhynchus.  
 

taken to from an ankle-chord wing. The wetted surface area is here defined as 2.5 

times the total surface area.  

 

Selecting a small Coloborhynchus as a case example, these variables are measured or 

reconstructed as: mass (M) = 13.29N, span (b) = 1.46 m, surface area (S) = 0.16 m2, 

wetted surface area (Sw) = 0.41 m2, chord (c) = 0.09 m, and velocity (V) = 10 ms. If 

lift is equal the mass of the animal times the gravitational acceleration (i.e. 13.29 N), 

then the induced drag is 0.47 N. The parasitic drag, calculated from CDpar = K*Cf and 

including drag attributed to the wetted surface area of the wing, is substantially higher 

at 5.14 N. Total drag can thus be defined as the sum of the calculated induced drag 

and the parasite drag, written as: 

 

Eq. 40.  D = (2L2)/(πρ(MVb)2) + (ρCDparSwv2)/2 

 

An estimation of the L/D ratio in an aircraft, knowing only the air speed, K, wing area, 

wing span and body mass, is subsequently written as: 
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Eq. 41.  L/D = 1.67W(Vb)2/W2+2.48*CDpar*S*b2V4 

 

As induced drag is high at low speeds and decreases with increasing velocity, while 

parasitic drag is high at fast speeds, a U-shaped curve is produced to show that total 

drag is high at both fast and slow speeds. The lowest point of the curve, lying 

somewhere between the fast and slow maximums, represents the velocity at which 

drag is minimised and may be calculated by setting the derivative of total drag, with 

respect to velocity, to zero. 

 

Eq. 42.  V = (4L2/πCDpar*Sw*(pMb)2) 0.25 

 

By using this method, and assuming a K value of 2.2, the horizontal velocity at which 

drag is minimised in Coloborhynchus would have been 10.34 ms. Calculations for a 

range of taxa across the Pterosauria for which the above steps were subsequently 

repeated are illustrated in Table 20, however, any alterations to either K or the span 

efficiency (here set as 0.9), will have a marked effect on the presented results. Where 

possible specimens similar to those selected for wind tunnel experiments were used, 

however, Sinopterus dongi was substituted for T. navigans, as no good postcranial 

remains were known for this specimen prior to Eck et al. (2011). 

 

The lift to drag ratios of the pterosaurian configurations calculated here are 

noteworthy in that almost all ratios exceed those calculated for birds (Table 21). 

Coloborhynchus with its large glider-like wings has the highest L/D prediction of 18, 

occurring at a horizontal speed of 18 ms (heavy mass after Witton 2008a, b), and 

compares well with that of a wandering albatross (Diomedea exulans) whose own 

estimated L/Dmax is around 20. The velocity at which minimum drag occurs is 

calculated as 15.7 ms. The lowest L/Dmax found among the study taxa belongs to that 

of Anurognathus with a value of 8.4 and corresponds to a flight speed of only 5 ms. 

Table 22 presents the results of these calculations in full. 
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Taxon L/Dmax Velocity (L/Dmax) Velocity (CDmin) 

Anurognathus 8.4 5 ms 5.00 ms 

Aurorazhdarcho 14.24 10 ms 9.21 ms 

Coloborhynchus 

(1/4 scale) 

14.85 11 ms 9.89 ms 

Coloborhynchus  18.07 18 ms 15.70 ms 

Rhamphorhynchus 13.39 7 ms 6.48 ms 

Sinopterus 11.89 9 ms 8.39 ms 

 

Table 20. - Theoretical L/D max for several pterosaur taxa taken from a flat plate 
model and the velocity at which it occurred. K = 2.2, M2 = 0.9. Mass estimates Witton 
(2008a, b). 
 

 

 
Aircraft L/D 

Fulmar 8.3 

Gull 8.7 

Falcon 10 

model aircraft 10 

Black vulture 11.6 

 

Table 21. - Lift/drag ratios for selected man-made and biological fliers. 
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Sinopterus      

Velocity (ms) Re number CDi CDpar V (ms) CDmin L/D 

4 35 620 0.9622 0.0201 8.39 4.51 

5 44 525 0.3941 0.0190 8.51 6.65 

6 53 430 0.1901 0.0182 8.60 8.72 

7 62 335 0.1026 0.0175 8.68 10.39 

8 71 240 0.0601 0.0170 8.75 11.46 

9 80 145 0.0375 0.0166 8.81 11.89 

10 89 050 0.0246 0.0162 8.86 11.78 

11 97 955 0.0168 0.0158 8.91 11.31 

12 106 860 0.0119 0.0155 8.95 10.63 

13 115 765 0.0086 0.0152 8.99 9.87 

14 124 670 0.0064 0.0150 9.03 9.09 

15 133 575 0.0049 0.0148 9.06 8.34 

16 142 480 0.0038 0.0146 9.09 7.64 

17 151 385 0.0029 0.0144 9.12 7.00 

18 160 290 0.0023 0.0142 9.15 6.43 

19 169 195 0.0019 0.0140 9.18 5.91 

20 178 100 0.0015 0.0139 9.20 5.44 

      

      
Coloborhynchus - life size     

Velocity (ms) RE number CDi CDpar V (ms) CDmin L/D 

5 154125 3.4461 0.0143 15.70 3.08 

6 184950 1.6619 0.0138 15.86 4.40 

7 215775 0.8970 0.0133 15.99 5.90 

8 246600 0.5258 0.0130 16.10 7.54 

9 277425 0.3283 0.0126 16.20 9.27 

10 308250 0.2154 0.0124 16.29 11.00 

11 339075 0.1471 0.0121 16.37 12.66 

12 369900 0.1039 0.0119 16.44 14.19 

13 400725 0.0754 0.0117 16.50 15.50 

14 431550 0.0561 0.0116 16.56 16.56 

15 462375 0.0425 0.0114 16.62 17.34 

16 493200 0.0329 0.0113 16.67 17.83 

17 524025 0.0258 0.0111 16.72 18.07 

18 554850 0.0205 0.0110 16.77 18.07 

19 585675 0.0165 0.0109 16.82 17.88 

20 616500 0.0135 0.0108 16.86 17.53 
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Coloborhynchus - 1/4 scale     

Velocity (ms) RE number CDi CDpar V (ms) CDmin L/D 

5 37675 0.7514 0.0198 9.89 6.31 

6 45210 0.3624 0.0189 10.00 8.60 

7 52745 0.1956 0.0182 10.09 10.80 

8 60280 0.1147 0.0177 10.17 12.64 

9 67815 0.0716 0.0172 10.24 13.95 

10 75350 0.0470 0.0168 10.30 14.67 

11 82885 0.0321 0.0164 10.36 14.85 

12 90420 0.0226 0.0161 10.41 14.60 

13 97955 0.0164 0.0158 10.46 14.05 

14 105490 0.0122 0.0156 10.50 13.33 

15 113025 0.0093 0.0153 10.54 12.52 

16 120560 0.0072 0.0151 10.58 11.69 

17 128095 0.0056 0.0149 10.61 10.87 

18 135630 0.0045 0.0147 10.65 10.09 

19 143165 0.0036 0.0145 10.68 9.37 

20 150700 0.0029 0.0144 10.71 8.70 

      

      

Anurognathus     

Velocity (ms) Re number CDi CDpar V (ms) CDmin L/D 

4 13700 15.4955 0.0257 5.00 7.30 

5 17125 6.3470 0.0242 5.07 8.40 

6 20550 3.0608 0.0231 5.13 8.31 

7 23975 1.6522 0.0222 5.19 7.57 

8 27400 0.9685 0.0214 5.23 6.63 

9 30825 0.6046 0.0208 5.27 5.74 

10 34250 0.3967 0.0203 5.30 4.95 

11 37675 0.2709 0.0198 5.33 4.29 

12 41100 0.1913 0.0194 5.36 3.74 

13 44525 0.1389 0.0190 5.39 3.29 

14 47950 0.1033 0.0187 5.41 2.91 

15 51375 0.0784 0.0184 5.44 2.59 

16 54800 0.0605 0.0181 5.46 2.32 

17 58225 0.0475 0.0178 5.48 2.09 

18 61650 0.0378 0.0176 5.49 1.89 

19 65075 0.0304 0.0174 5.51 1.72 

20 68500 0.0248 0.0172 5.53 1.58 
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Aurorazhdarcho     

Velocity (ms) Re number CDi CDpar V (ms) CDmin L/D 

6 38549 0.2692 0.0197 9.21 9.30 

7 44974 0.1453 0.0190 9.29 11.40 

8 51399 0.0852 0.0184 9.37 12.99 

9 57823 0.0532 0.0179 9.43 13.93 

10 64248 0.0349 0.0174 9.49 14.24 

11 70673 0.0238 0.0170 9.54 14.04 

12 77098 0.0168 0.0167 9.59 13.50 

13 83523 0.0122 0.0164 9.64 12.75 

14 89948 0.0091 0.0161 9.68 11.91 

15 96372 0.0069 0.0159 9.71 11.05 

16 102797 0.0053 0.0156 9.75 10.22 

17 109222 0.0042 0.0154 9.78 9.43 

18 115647 0.0033 0.0152 9.81 8.70 

19 122072 0.0027 0.0151 9.84 8.04 

20 128497 0.0022 0.0149 9.87 7.43 

      

      

Rhamphorhynchus     

Velocity (ms) Re number CDi CDpar V (ms) CDmin L/D 

5 27058 0.1503 0.0215 6.48 10.92 

6 32469 0.0725 0.0205 6.55 12.76 

7 37881 0.0391 0.0198 6.62 13.39 

8 43292 0.0229 0.0191 6.67 13.05 

9 48704 0.0143 0.0186 6.72 12.15 

10 54115 0.0094 0.0181 6.76 11.04 

11 59527 0.0064 0.0177 6.80 9.91 

12 64938 0.0045 0.0174 6.83 8.85 

13 70350 0.0033 0.0171 6.87 7.91 

14 75761 0.0024 0.0168 6.89 7.08 

15 81173 0.0019 0.0165 6.92 6.35 

16 86584 0.0014 0.0163 6.95 5.73 

17 91996 0.0011 0.0160 6.97 5.19 

18 97407 0.0009 0.0158 6.99 4.71 

19 102819 0.0007 0.0156 7.02 4.30 

20 108230 0.0006 0.0155 7.04 3.94 

 

Table 22. - Theoretical values of CDpar, CDi based on the flat plate model for each of 
the study taxa. The velocity at the CDmin and L/D ratios are calculated from this data. 
 
5.4.2 Performance estimates of TORNADO models 

 

Following the steps laid out within section 5.2 the geometric models of six taxa were 

loaded into the programme TORNADO and pitched in 1° increments, through an 

angle of attack of -5° to 20°. The force outputs were subsequently calculated and the 

sum of the lift induced and skin friction drag coefficients are illustrated in Figure 5.31. 
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Here, recorded values of CD approach close to zero on the left hand side of the curve 

as the simulation considers neither the parasite drag of the body nor the drag resulting 

from wing spar, both of which have been calculated separately. Although this study 

focuses on pterodactyloids, the non-pterodactyloid Dorygnathus banthensis was 

included for the ability to present a comparison between the major divisions of the 

Pterosauria.  

 
 

Figure 5.31. - TORNADO output of lift coefficient against the induced drag 
coefficient in six pterosaur taxa.  
 

The parasite drag coefficient is unknown but was varied between the reported values 

of 0.005 and 0.02 inline with data collected for the body model simulation of 

Aurorazhdarcho, and supported by previous studies (e.g. Bramwell and Whitfield 

1974; Brower 1982). Profile drag coefficient was adopted from Tucker (1988), whose 

experiments on birds suggested a relationship of CDpro = 0.035 - 0.078CL + 0.08CL², 

and that of Klaus (2008), where CDpro = 0.085 - 0.084CL + 0.0325CL2. Altering these 

variables produced a range of aerodynamic values and polar curves which encompass 

the likely performance range for each geometric shape (Tables 23 and 24). Increasing 

the parasite drag of the body for example leads to an increase in sinking velocity 

along with a reduction of the horizontal flight speed and L/D ratio. With regards to 
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circling performance the turning radii became tighter at the expense of increased 

vertical sink and lower Vt.  

 

The alteration of mass estimates between those light weight volumetric values (e.g. 

Chatterjee and Templin 2004) and more recent heavy mass estimates (i.e. Witton 

2008a, b) had an expectedly profound effect on the gliding performance of all 

pterosaur geometries.  

 

 
Figure 5.32. - Variation in gliding performance as an effect of mass in 
Coloborhynchus, CDpar = 0.01.  
 

As illustrated by Figure 5.32 the tangent to the polar curve remains unchanged 

regardless of mass (being instead mostly influenced by the geometry of the wing), 

however, the curve is instead displaced along the line representing the glide angle; 

moving right for an increase in mass (correlating to both an increase in both 

horizontal velocity and vertical sink speed) and left for lighter estimates. Here a heavy 

mass estimate for Coloborhynchus at the point of minimum sink gives the animal a 

horizontal velocity of 18.93 ms and a vertical sinking speed of 1.28 ms. Employing a 

lighter mass estimate of 137.2 N (rather than 455.9 N, i.e. 30% the original value) 

reduces the minimum sinking speed to a horizontal component of 10.38 ms (i.e. 55% 

that of the heavier mass estimate), and the vertical sink speed to 0.7 ms. For 

Quetzalcoatlus (CDpar = 0.01) a heavy mass of 2450 N returns a minimum sink speed 
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of 17.58 ms, coupled with a vertical sink speed of 1.75 ms, while a mass of only 686 

N (i.e. 28% the original value) gives values of 9.30 ms and 0.92 ms respectively (i.e. 

53% that of the heavier estimate). For both examples the glide angle remains constant 

between varying estimates and is only altered by a change to either geometry or CDpar. 

Polar glide curves for the remainder of the models are illustrated in Figures 5.33 – 

5.44 with a summary of the data presented in Tables 23 and 24 for a variety of 

variables.  
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CDpar 0.005 0.01 0.02 0.005 0.01 0.02 0.005 0.01 0.02 0.005 0.01 0.02 0.005 0.01 0.02 

Taxon/Variable  L/Dmax   V (ms)   Vs 

(ms) 

  V (mr)   Vs 

(mr) 

 

Anurognathus 16.56 14.52 11.85 8.84 5.83 5.84 -0.37 -0.41 -0.49 6.53 6.16 5.84 -0.39 -0.42 -0.49 

Aurorazhdarcho 15.85 13.96 11.84 9.05 8.63 8.63 -0.61 -0.67 -0.83 10.11 10.11 10.81 -0.64 -0.72 -0.91 

Coloborhynchus 18.40 16.01 12.94 19.95 21.16 18.13 -1.15 -1.32 -1.49 22.6 21.16 21.16 -1.23 -1.32 -1.63 

Dorygnathus 17.20 15.07 12.23 14.51 15.39 13.13 -0.89 -1.02 -1.14 16.46 15.39 14.51 -0.96 -1.02 -1.18 

Sinopterus 19.63 16.86 13.70 10.63 10.09 9.22 -0.56 -0.62 -0.73 11.28 11.28 10.63 -0.57 -0.66 -0.78 

Quetzalcoatlus 12.01 10.73 8.99 17.92 17.08 15.71 -1.57 -1.70 -1.92 20.05 20.04 18.89 -1.67 -1.86 -2.09 

 
CDpar 0.005 0.01 0.02 0.005 0.01 0.02 0.005 0.01 0.02 0.005 0.01 0.02 0.005 0.01 0.02 

Taxon/Variable  L/Dmax   V (ms)   Vs 

(ms) 

  V (mr)   Vs 

(mr) 

 

Anurognathus 16.56 14.52 11.85 3.65 3.65 3.65 -0.23 -0.26 -0.31 4.09 3.85 3.65 -0.25 -0.26 -0.31 

Aurorazhdarcho 15.85 13.96 11.84 5.40 5.15 5.15 -0.36 -0.40 -0.49 6.04 6.04 6.46 -0.38 -0.43 -0.54 

Coloborhynchus 18.40 16.01 12.94 11.28 11.96 10.25 -0.65 -0.75 -0.84 12.79 11.96 11.96 -0.69 -0.75 -0.92 

Dorygnathus 17.20 15.07 12.23 6.63 7.55 6.44 -0.41 -0.50 -0.56 7.52 7.55 7.12 -0.43 -0.50 -0.58 

Sinopterus 19.63 16.86 13.70 6.34 6.01 5.49 -0.33 -0.37 -0.43 6.72 6.72 6.33 -0.34 -0.39 -0.46 

Quetzalcoatlus 12.01 10.73 8.99 9.83 9.37 8.62 -0.86 -0.93 -1.05 11.00 10.99 10.37 -0.91 -1.02 -1.15 

 
Table 23. – Horizontal velocity and minimum sink velocity for selected pterosaurs at minimum sink and maximum range speeds. The coefficient 
of parasite drag is altered from 0.005 – 0.02. Heavy mass estimates (top); light mass estimates (bottom). 
CDpro taken after Tucker (1988). 
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Taxon/Variable Bank Vt Vst radius Vt Vst radius 

Anurognathus 10° 5.88 -0.42 20.04 2.30 -0.16 7.85 

 20° 6.02 -0.45 10.17 2.36 -0.18 3.98 

 30° 6.27 -0.51 6.96 2.45 -0.20 2.72 

 40° 6.67 -0.61 5.41 2.61 -0.24 2.12 

 50° 7.28 -0.80 4.54 2.85 -0.31 1.78 

 60° 8.26 -1.16 4.02 3.23 -0.45 1.57 

        

Aurorazhdarcho 10° 8.69 -0.69 43.73 4.71 -0.37 15.60 

 20° 8.90 -0.74 22.20 4.82 -0.40 7.92 

 30° 9.27 -0.83 15.19 5.02 -0.45 5.42 

 40° 9.86 -1.00 11.81 5.33 -0.54 4.21 

 50° 10.76 -1.30 9.91 5.82 -0.70 3.54 

 60° 12.20 -1.90 8.77 6.60 -1.03 3.13 

        

Coloborhynchus 10° 19.08 -1.31 210.65 10.47 -0.72 67.35 

 20° 19.53 -1.4 106.95 10.71 -0.77 34.20 

 30° 20.35 -1.58 73.16 11.16 -0.87 23.39 

 40° 21.63 -1.9 56.91 11.87 -1.04 18.20 

 50° 23.62 -2.48 47.75 12.95 -1.36 15.27 

 60° 26.78 -3.61 42.24 14.69 -1.98 13.50 

        

Dorygnathus 10° 13.87 -1.00 111.39 6.80 -0.49 26.80 

 20° 14.20 -1.07 56.55 6.97 -0.53 13.60 

 30° 14.79 -1.21 38.69 7.26 -0.60 9.31 

 40° 15.73 -1.46 30.09 7.72 -0.72 7.24 

 50° 17.17 -1.90 25.25 8.42 -0.93 6.07 

 60° 19.47 -2.77 22.34 9.55 -1.36 5.37 

        

Sinopterus 10° 10.17 -0.63 59.83 6.05 -0.38 21.23 

 20° 10.41 -0.68 30.38 6.19 -0.41 10.78 

 30° 10.84 -0.77 20.78 6.45 -0.46 7.37 

 40° 11.53 -0.93 16.16 6.86 -0.55 5.74 

 50° 12.59 -1.20 13.56 7.49 -0.72 4.81 

 60° 14.27 -1.75 12.00 8.49 -1.04 4.26 
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       cont….. 

Taxon/Variable Bank Vt Vst radius Vt Vst radius 

Quetzalcoatlus 10° 17.21 -1.74 171.42 9.11 -0.92 51.61 

 20° 17.62 -1.86 87.04 9.32 -0.99 26.20 

 30° 18.35 -2.11 59.54 9.71 -1.11 17.92 

 40° 19.51 -2.53 46.31 10.33 -1.34 13.94 

 50° 21.30 -3.29 38.86 11.27 1.74 11.70 

 60° 24.15 -4.80 34.37 12.78 -2.54 10.34 

 

Table 24. - Circling performance in selected pterosaurs at various angles of bank. Left 
hand values derived from heavy mass pterosaurs (Witton 2008a, b), right hand values 
represent light mass estimates (Chatterjee and Templin 2004).  
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Figure 5.33. - Gliding curves for the geometric models of selected pterosaurs. The 
coefficient of parasite drag is reconstructed after Bramwell and Whitfield where, 
CDpar = 0.005, while mass is estimated after Witton (2008a, b).  
 

 
 

Figure 5.34 - Gliding curves for the geometric models of selected pterosaurs. The 
coefficient of parasite drag is reconstructed after Bramwell and Whitfield (1974) 
where, CDpar = 0.005, while mass is estimated after Chatterjee and Templin (2004).  
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Figure 5.35. - Gliding curves for the geometric models of selected pterosaurs. The 
coefficient of parasite drag is set to 0.01, while mass is estimated after Witton (2008a, 
b).  
 

 

 
Figure 5.36. - Gliding curves for the geometric models of selected pterosaurs. The 
coefficient of parasite drag is set to 0.01, while mass is estimated after Chatterjee and 
Templin (2004).  
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Figure 5.37 - Gliding curves for the geometric models of selected pterosaurs. The 
coefficient of parasite drag is set to 0.02, while mass is estimated after Witton (2008a, 
b).  
 

 
 

Figure 5.38. - Gliding curves for the geometric models of selected pterosaurs. The 
coefficient of parasite drag is set to 0.02, while mass is estimated after Chatterjee and 
Templin (2004).  
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Figure 5.39. - Gliding curves for the geometric models of selected pterosaurs. The 
coefficient of parasite drag is reconstructed after Bramwell and Whitfield (1974) 
where, CDpar = 0.005, while mass is estimated after Witton (2008a, b). CDpro is 
derived from the equations of Klaus (2008) based on the high aspect wings of 
Rhamphorhynchus. 
 
 

 
Figure 5.40. - Gliding curves for the geometric models of selected pterosaurs. The 
coefficient of parasite drag is reconstructed after Bramwell and Whitfield (1974) 
where, CDpar = 0.005, while mass is estimated after Chatterjee and Templin (2004). 
CDpro is derived from the equations of Klaus (2008) based on the high aspect wings 
of Rhamphorhynchus. 
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Figure 5.41. - Gliding curves for the geometric models of selected pterosaurs. The 
coefficient of parasite drag is set to 0.01, while mass is estimated after Witton (2008a, 
b). CDpro is derived from the equations of Klaus (2008) based on the high aspect 
wings of Rhamphorhynchus. 
 

 
Figure 5.42. - Gliding curves for the geometric models of selected pterosaurs. The 
coefficient of parasite drag is set to 0.01, while mass is estimated after Chatterjee and 
Templin (2004). CDpro is derived from the equations of Klaus (2008) based on the 
high aspect wings of Rhamphorhynchus. 
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Figure 5.43. - Gliding curves for the geometric models of selected pterosaurs. The 
coefficient of parasite drag is set to 0.02, while mass is estimated after Witton (2008a, 
b). CDpro is derived from the equations of Klaus (2008) based on the high aspect 
wings of Rhamphorhynchus. 
 

 
Figure 5.44. - Gliding curves for the geometric models of selected pterosaurs. The 
coefficient of parasite drag is set to 0.02, while mass is estimated after Chatterjee and 
Templin (2004). CDpro is derived from the equations of Klaus (2008) based on the 
high aspect wings of Rhamphorhynchus. 
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Taxon 

gradient of 

tangent to polar 

Vertical/Horizontal 

ratio 

CD = 0.005   

Anurognathus -0.06 1:16.7 

Aurorazhdarcho -0.06 1:15.8 

Coloborhynchus -0.05 1:18.4 

Dorygnathus -0.06 1:17.1 

Sinopterus -0.05 1:19.8 

Quetzalcoatlus -0.08 1:12.0 

 

CD = 0.01   

Anurognathus -0.07 1:14.7 

Aurorazhdarcho -0.07 1:14.0 

Coloborhynchus -0.06 1:16.0 

Dorygnathus -0.07 1:15.1 

Sinopterus -0.06 1:17.1 

Quetzalcoatlus -0.09 1:10.8 

 

Table 25. - Gradient of the tangent to the gliding polar and the effect of varying the 
parasite drag coefficient on potential glide distance.   
 
5.4.3 Estimates from previous studies 

 

Klaus (2008) used a geometric model of Rhamphorhynchus to run several simulations 

on pterosaur flight dynamics, trimming the wings to their optimal configuration 

during flight. The two components of drag calculated from this study (induced and 

parasite) follow the quadratic curves: 

 

Eq. 42  CDpar = 0.0325CL2 - 0.084CL + 0.085 

 

Eq. 43  CDi = 0.0250CL2 
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Figure 5.45. - Theoretical drag coefficients based on the above wing profile. Where 
CD = total drag; CD_0 = parasite drag (skin friction + pressure); CD_i = lift-induced 
drag.   
 

As Coloborhynchus also shares a similar high aspect ratio configuration, these were 

adopted here (Figure 5.45) where the sum of the curves gives the total drag polar and 

was used to recover the L/D ratio for a given coefficient of lift. The glide polar can 

subsequently be plotted from this by determining the Vs for any given CL: 

 

Eq. 44   Vs = -V*ATAN*(1/(L/D)) 
 
or 
 
Eq. 45   Vs =√ (2L*CD2)/(ρ*SA*CL3) 
 
As with the previous section, Figure 5.46 also illustrates the effect of using different 

weight estimates for a single geometry. Here an increase in mass from a 4.12 N 

juvenile animal to a 13.24 N juvenile leads to the horizontal velocity at the point of 

minimum sink increased from 6.02 ms to 10.8 ms. Likewise in adult specimens (i.e. 

SMNK PAL 1133) the velocities are 8.65 ms (Vs = -0.48) for a light mass estimate 

and 15.37 ms (15.37 ms) for a heavy mass estimate, giving the tangent to the polar a 

gradient of -0.05578. 
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Figure 5.46. - Glide polar of Coloborhynchus. The two curves represent an animal of 
the same shape and area but different mass, where the red line represents an animal 
weighing 4.12 N and the yellow 13.24 N.  
 

Bramwell and Whitfield (1974) calculated the performance of Pteranodon by taking 

the polar data from a Göttingen 417A glider wing for three Reynolds numbers and 

adopting a CDpar = 0.005. Although Bramwell and Whitfield originally applied this 

data to a large Pteranodon, it is equally applicable assign this data to any large 

pterosaur with a similar aspect ratio and wing geometry. Applying this data directly to 

an almost complete specimen of Coloborhynchus (SMNK PAL 1133) gives three size 

classes based on the Reynolds number; a 6.44 m adult (Re = 420 000); a 2.58 m sub 

adult (Re = 168 000) and a 0.64 m juvenile (Re = 42 000), covering the full 

developmental range of this taxon (Table 26).  

 

 
Reynolds 

number b (m) Mass_h (N) V_ms (ms) 

V_h 

(ms) Mass_l (N) V_ms (ms) V_h (ms) 

420 000 6.44 587.6 -1.2 17.47 184 -0.67 9.79 

168 000 2.58 57 -1.78 14.37 19.1 -1.03 8.32 

42 000 0.64 1.63 -1.44 9.16 0.6 0.88 5.58 

 
Table 26. - Minimum sinking speed and horizontal flight velocity for a light mass and 
heavy mass Coloborhynchus (SMNK PAL 1133) based on the Göttingen 417a glider 
wing.  
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As a consequence of their mass, the heavier juvenile configuration now records a 

minimum sink velocity occurring at approximately the same velocity experienced by 

a “light weight” adult (i.e. 9.16 ms versus 9.79 ms). The minimum sink velocity of a 

heavier adult form is calculated as 17.5 ms, 1.78 times that of the lighter model.  

 

A further study that can be readily altered is that of Brower (1982), who selected a 

specimen of Pteranodon with a wing span of 6.95 m and is roughly equivalent to the 

maximum size attained by this species (Bennett 2001b). Here I have applied Brower’s 

data to the almost complete specimen of YPM 2493 that has a wing span of 5.43 m 

and would have weighted either 12.3 kg (120.6 N) or 38.7 kg (379.4 N) depending on 

the preferred method of estimation. Figure 5.47 illustrates that the heavier model had 

a Vms of -0.81 ms, which occurs at a horizontal velocity of 15.2 ms, and a maximum 

range speed that was very similar. In contrast a light mass animal would have shown a 

Vms of -0.51 ms, occurred at a forward velocity of 9.46 ms. Increasing the mass of the 

animal by a factor of 2.58 is thus correlated with an increase of 1.61 in both flight 

speed and minimum sink speed.  

 

 
Figure 5.47. - Polar gliding curves of heavy and light mass variants of Pteranodon 
YPM 2493 after Brower (1982). Light and heavy mass estimates are 14.94 kg (146.4 
N) and 38.7 kg (379.2 N) respectively. 
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5.4.4 CFD simulation of Coloborhynchus robustus  
   

A model of C. robustus derived from the skeleton of SMNK PAL 1133 was used to 

form the basis of a commutative fluid dynamics (CFD) analysis (Figures 5.48-50). 

Owing to the limited amount of time available to the author and workers at the KIT 

only three angles of attack  (0°, 3° and 6°) were sampled, however, this was judged to 

be a sufficient range to cover the of pro- and supination of the wing prior to stall.   

 

 

 

 

 
Figure 5.48. - Body templates of Coloborhynchus robustus (SMNK PAL 1133). A, 
pectoral girdle and humeri in cranial view (A); pectoral girdle in its caudal aspect (B); 
and pelvic girdle in cranial view (C). The hypothetical extent of the soft tissue is 
shown in black. 
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Figure 5.49. - Body template of Coloborhynchus robustus (SMNK PAL 1133) in right 
lateral view.  
 

 

 
 

Figure 5.50. - Cross section of the wing spar and membrane of Coloborhynchus 
robustus (SMNK PAL 1133).  
 

The forces acting on the model are summarised in Table 27. No sudden stall was 

observed at higher angles of attack and instead CL continued to increase at 0.1 for 

each degree of pitch, giving a lift coefficient of 0.52, 0.8 and 1.1 at angles of 0°, 3° 

and 6° respectively. As such the maximum recorded lift force occurs at an angle of 

attack of 6° and reached 86 N in magnitude. The lift slope can be subsequently 
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defined by the equation CL = 0.09 α + 0.5233. Unlike lift the drag force coefficient 

acting on the body, i.e. parasite drag (CDpar), remains stable, increasing from 0.02 to 

0.022 at higher angles of attack and constituting 24% and 42% of the total drag at α = 

0° and 3° respectively. For the lower angles of attack, i.e. 0° and 3°, the respective  

L/D ratio is calculated as 6.13  (corresponding to a V = 23.4 ms and Vs of -2.43 ms) 

and 15.4 (V = 18.8 ms, Vs = -0.97 ms).  

 

At an angle of attack of 6° the drag acting on the wing is negative and is clearly 

problematic for the extrapolation of forces at higher values of α. The reason for the 

incorporation of negative drag into this simulation is uncertain as the remainder of the 

results appear to be uncontroversial, suggesting that this cannot be attributed to an 

unknown error in the mathematic model. At the same time, however, the wing section 

profile does not indicate why thrust should be produced.  

 
Angle of 
Attack  Forces Force Values (N)  Coefficient  
  Wing Body Total Wing Body Total 
0° Lift 41.61 0.01 41.62 0.514 0.000 0.515 
 Drag 5.21 1.58 6.79 0.064 0.020 0.084 
 Shear 0.69 1.98 2.68 0.009 0.024 0.033 
        
3° Lift 63.75 0.94 64.69 0.788 0.012 0.800 
 Drag 2.43 1.76 4.19 0.030 0.022 0.052 
 Shear 0.03 1.98 2.00 0.000 0.024 0.025 
        
6° Lift 86.00 0.02 86.02 1.063 0.000 1.064 
 Drag -1.94 1.74 -0.2 -0.024 0.022 -0.002 
 Shear 2.75 2.12 4.87 0.034 0.026 0.060 

Table 27. - Force values and their corresponding coefficients derived from the CFD 
simulation of Coloborhynchus robustus (SMNK PAL 1133). 

 

The distribution of pressure coefficients contours over the model indicates that the 

highest forces are concentrated on the caudoventral section of the neck, the shoulders, 

the ventral surface of the propatagium and proximal section of the forelimb (Figure 

5.51). A further area of high pressure, marked out by wedge shaped section of the 

flight membrane immediately caudal to the fourth metacarpal, is due to the downward 

deflection of the flow over the most cambered section of the aerofoil. 

 

The distribution of pressure coefficients are further illustrated through span-wise 

sections of the wing (Figures 5.52 - 53) where the relatively bulky leading edge strut, 
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formed by the tissue of the forelimb, deflects the flow both up and down around the 

wing at a relatively similar velocity, leading to similar pressure conditions on top and 

bottom surfaces of the wing. This effect is minimised lateral to the wrist where the 

bone and tissue components of the wing become substantially smaller. Pressure 

coefficients are again highest where the flow first makes contact with the wing.  

 

The velocity component over the span-wise sections of the wing is illustrated in 

Figure 5.54 where a large wake of slow moving air forms behind the body as a result 

of the deep sternum. A similar consequence is noted on the wing spar slow moving air 

forms behind the bulky leading edge.  

 

Continuing from previous observations, if the drag coefficient from the Anhanguera 

cranial model can be directly applied to that Coloborhynchus, something that appears 

likely given the geometric similarities between skulls, then the head is subsequently 

responsible for 15% of the total parasite drag coefficient, where total parasite drag is 

0.02.  
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Figure 5.51. - Pressure coefficients and their distribution over the Coloborhynchus 
geometry in A, ventral, B, dorsal, C, right lateral, D, cranial; E, caudal; F, 
craniolateral; G, ventrolateral; H, caudolateral; I, craniodorsal; J, cranioventral aspects. 
(continued over page).  
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Figure 5.51 - continued from the previous page. 
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Figure 5.52. – Wing geometry and pressure distribution over the surface of the wing, 
where the upper surface is shown in black while the lower surface is shown in red. 
Geometry sections are span wise, moving laterally towards the tip in 0.25 m intervals, 
with A representing the section of the wing 0.25 m lateral to the median sagittal plane 
of the body. Section J represents the wing just medial to the tip, 2.75 m from the 
midline of the body. The spiking on the pressure profiles is caused by the thick 
leading edge spar (i.e. tissue of the forearm) whereby the flow is deflected up and 
down at relatively similar rates. This effect is particularly strong in medial sections of 
the wing (A-D) but becomes much less pronounced in more lateral sections as the 
forearm becomes thinner in section (E-J). Continued overleaf.
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Figure 5.52. – continued from previous page. 
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Figure 5.53. - Pressure distribution across span-wise sections of the body and wing. 
The d-value represents the distance from the midline in mm. Pressure is concentrated 
at the leading points of the head, body and wing sections, particularly across the 
propatagial region. White shapes indicate the model sections. Figure continued over 
the page. 
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Figure 5.53 - continued from the previous page.  
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Figure 5.54. - Velocity profiles across span wise sections of the body and wing where: 
A, midline of torso, B, proximal torso section; C, proximal wing section; D, mid-wing 
section. The caudoventral regions of body produce large bodies of slow moving air, 
leading to formation of a large proximal wake.  
 

5.4.5 Summary of theoretical data 
 

While both the “flat plate” examples and the tornado geometries ignore or require 

addition input to determine the profile drag of the wing spar, they are useful due to 
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their simplicity, allowing several taxa to be examined rapidly. Several differences, 

however, are apparent between these methodologies, where in all cases the L/Dmax of 

the TORNADO geometries exceeds those of the flat plate models. Although some of 

values are relatively close matches (e.g. Coloborhynchus 18.4 versus 18.1 for the 

TORNADO and flat plate models respectively) two of the TORNADO geometries, 

Anurognathus and Sinopterus, are calculated to have L/Dmax ratios that greatly exceed 

those of the flat plate models, i.e. 16.56 verses 8.4 for Anurognathus and 19.63 versus 

11.9 for Sinopterus, and appear as a consequence of low values of lift. In all examples 

the maximum range velocities of the TORNADO geometries are up to 31% higher 

than those of comparable flat plate models (e.g. 18 ms versus 22.6 ms for 

Coloborhynchus; 5 ms vs 6.53 ms for Anurognathus; 9 ms vs 11.28 ms for 

Sinopterus).  

 

The body drag coefficient of 0.005 used for Pteranodon by Bramwell and Whitfield 

(1974) is here regarded as being unusually low and is contra to the values calculated 

using the CFD analysis where values of 0.02 for Coloborhynchus are more supportive 

of those proposed by Brower (1982).  

 

The general conclusions of the theoretical studies vary depending on the preferred 

method of mass estimation. Low mass estimates produce slow speed fliers with low 

vertical sinking velocities and very good circling performances. By contrast the 

heavier mass estimates result in substantially faster flight speeds, corresponding to 

greater vertical sink speeds and larger circling radii.  

 

The uncertainties over of the true values of CDpar and CDpro, however, are manifested 

in the output of the TORNADO based models, the results being largely dependant on 

these variables. As the CDpro is influenced by both wing profile and Reynolds number 

its direct application from one study to another is problematic but necessary where no 

other data is known. This is clearly illustrated by the quadratic equations of three 

authors focusing on biological flight where despite them having been conducted in 

similar flow regimes, they return very different results (Figures 5.55 - 56). 
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Figure 5.55. - Quadratic equations developed for the calculation of CDPRO in 
biological fliers where: CDpro = 0.0608CL2 – 0.024CL + 0.058 (Re = 105, Wilkinson  
et al. 2005); CDpro = 0.08CL2 – 0.078CL + 0.035 (Re = 1.2*105, Tucker 1988); CDpro 
= 0.0325CL2 – 0.084 + 0.085 (Re = 52 850, Klaus 2008). 
 

 
Figure 5.56. - Comparison of the theoretical gliding performances in the 
ornithocheiroid Coloborhynchus (SMNK PAL 1133) where CDpro is calculated from 
the equations of Tucker (1988) and Klaus (2008).  
 

Comparing the CDpro of Tucker and Klaus for a model of Coloborhynchus the CDpro 

of Klaus is higher that that of Tucker at low values of CL (< 0.95) and lower at higher 

values of CL. In addition to this the L/Dmax of Klaus is lower at 15.3 compared with 
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18.4. Such differences can be readily visualised in the form of a polar gliding curve, 

as given for Coloborhynchus in Figure 5.56, where the minimum sinking velocities 

are -0.98 ms compared with -1.5 ms, while the horizontal velocity is substantially 

lower at 14.2 ms compared to 20 ms. The maximum range speed is 16 ms (Vs = -1.04 

ms) down from a value of 22.6 ms.  The characteristics of the wing profile are 

therefore very important to reconstruct as accurately as possible. While this statement 

should be obvious for any aerodynamic study it highlights the difficulty with 

reconstructing even simple gliding performance in an extinct animal for which no 

good cross sectional data of the wing exists. As such approximations or estimates, 

even when based on previous studies or other biological fliers, must be treated with 

caution and can be expected to give no more than a general impression of flight 

performance in pterosaurs.  

 
 
5.5 Chapter Summary  
 

A comparison of theoretical with experimental data is complicated owing to the poor 

ratios of lift to drag exhibited by the fixed wing models. However, an overview of the 

generalised flight characteristics of the Pterodactyloidea is still possible.  

 

Where low estimates of mass were used the results are comparable to older studies, 

where pterosaurs adopted a very slow horizontal speed during gliding flight (i.e. 3.85 

– 11.96 ms), coupled with very low rates of vertical sink and superb circling radii. 

Superb circling performances are reflected in even medium and large taxa such as 

Coloborhynchus and Quetzalcoatlus, for which a shallow bank of only 10° returns 

radii of 67.35 m and 51.61 m respectively. For smaller animals such as the 

azhdarchoid Sinopterus, this is reduced to only 21.23 m at a 10° bank and can be as 

tight as 4.26 m by adopting a banking angle of 60°.  

 

Substituting heavier masses into the flight formulae and bringing wing loads to a 

comparable state with extant birds (Witton 2008a, b) leads to an increase in horizontal 

flight speed, vertical sinking velocity, and circling radii, but preserves the original 

glide angle. Despite the increase in velocity, the Pterosauria still cover a substantial 

range of flight speeds where the tiny anurognathids (e.g. Anurognathus) retain a 
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horizontal velocity < 6 ms, the very slow gliding speeds of anurognathids resulting in 

exceedingly tight circling radii (typically <10 m) that undoubtedly would have 

assisted the animals to fulfil their niche as aerial insectivores. Larger gliding forms 

such as Coloborhynchus and Quetzalcoatlus occupy the upper range of the scale 

where the best horizontal velocities are calculated as being between 15 – 18 ms, 

despite the former taxon being around half the size of the latter where the substantial 

increase in mass of the Quetzalcoatlus was offset by the increase in hind limb length 

and subsequently larger wing area. Given the problems associated with flapping flight 

at large sizes (see Sato et al. 2009), the increase in hind limb length was likely 

essential for this animal to have adopted gliding flight within a safe range of flight 

velocities. The faster glide speeds of larger pterodactyloids as a result of their mass 

indicates shorter travelling times and a faster paced mode of life, where the capture of 

prey on the wing now takes place at velocities up to twice those suggested by light 

mass studies. The faster pace of prey capture and gliding flight is consistent with the 

enlarged flocculus, optical lobes, and semicircular canals reported from endocasts of 

the pterosaurian brain cavity (Eck et al. 2011). While landing, particularly in large 

heavy azhdarchids, might be considered more dangerous owing to the increased 

minimum useful speed, pterosaurs would still have been able to pitch rapidly just 

prior to landing, suddenly increasing drag and slowing the animal to a safe velocity. 

As quadrupeds, pterosaurs also would have had an advantage over fast extant fliers 

where immediately after touchdown they could fall forward onto their forelimbs 

(Mazin et al. 2009) and absorb some the impact rather than collapsing onto their 

bellies as observed in albatross.  

 

Determining usable values of body (parasite) and profile drag coefficients are 

problematic and the resolution of these is suggested as a primary goal of any future 

research. While that calculated for birds by Tucker (1988), and used extensively here 

may perhaps be useful for many pterosaurian taxa, it is certainly not universally 

applicable as suggested by the CFD body drag of Coloborhynchus. Coefficients of 

this latter taxon instead indicate a better association with the equations of Klaus (2008) 

for the non-pterodactyloid Rhamphorhynchus. This largely accounts for the 

discrepancy between horizontal velocities at maximum range, where speeds of 15 ms 

are returned following Klaus (2008) while 21 ms are noted after Tucker (1988). 

Taking the CDpar of 0.02 returned by the CFD analysis C. robustus indicates that 
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during life the adult animal experienced flight velocities of between 15 ms (based on 

Klaus 2008) – 18 ms (based on Tornado and flat plate models) at the point of 

maximum range, with a gliding gradient between 12 – 13. While the maximum range 

velocity of C. robustus remains relatively constant between methodologies, some 

disparity occurs between the maximum ratios of L/D, where the Tornado geometric 

models produced relatively low ratios of L/D, 12.9 – 16 when compared to both flat 

plate simulations (L/D = 18) and more sophisticated models such as that of Klaus 

(2008; L/D = 17.91) and my own CFD model (L/D > 26.3). As such the former 

geometries are likely to produce a slight underestimate of true performance of high 

aspect ratio configurations such as that displayed by Coloborhynchus. The very low 

values of L/D produced by the corresponding model mounted within a wind tunnel, 

where L/Dmax < 5, indicates that some component of the model resulted in up to 4 

times as much drag than should have otherwise been expected.   

 

While these flight models did not produce the desired results, wind tunnel 

experiments on the body of Aurorazhdarcho suggest that CDpar for this animal should 

remain below 0.015 at low angles of pitch, while for C. robustus a steady result of 

0.02 appears more appropriate. Head crest models do not support an aerodynamic 

function for the cranial crest but do provide an abundance of data on their effects on 

CDpar as they are yawed. While the majority of the head models display very low 

coefficients of drag, only leading to sudden increases in force and torque when yawed, 

the elongate crest of Nyctosaurus is in fact aerodynamically undesirable even when 

directed parallel to the flow; the drag coefficient being up to 10 times higher than that 

of the ornithocheirid Anhanguera. 
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Concluding Statement  
 
As introduced in Chapter 1 this thesis has dealt with two distinct primary aims, these 

being the description of ornithocheiroid and azhdarchoid pterosaurs housed within the 

State Museum of Natural History Karlsruhe, and the aerodynamic characteristics of 

several pterodactyloid and non-pterodactyloid taxa.  

 

To relate these diverse aims, the first section of the dissertation focused on the 

descriptive palaeontology and utilised my understanding of the pterosaurian bauplan 

through the anatomical characteristics, wing structure and extent, and joint mobility to 

create the subsequently used aerodynamic models. As such the detailed study of the 

largely complete ornithocheiroid SMNK PAL 1133 yielded not only a new specimen 

attributable to the established species Coloborhynchus robustus, but also allowed for 

the creation of the model template for the physical, theoretical and CFD aerodynamic 

simulations. Likewise the description of a new azhdarchoid Microtuban altivolans 

(Elgin and Frey 2011b) and further study of a new specimen of cf. Tupuxuara 

influenced the azhdarchoid flight models, here typified by Sinopterus due to the 

number of well preserved specimen available to study. While both Tapejara 

wellnhoferi (Eck et al. 2011) and / or cf. Tupuxuara (this study) would have made fine 

reference specimens, good examples of these did not become available until a late 

point of this thesis. A number of non-pterodactyloid taxa were included in the 

theoretical section of Chapter 5 (in addition to a single model of Rhamphorhynchus 

for which a fixed wing model was also constructed) due to the cooperation with E. 

Prondvai who was primarily fixated on the more basal pterosaur species. While 

funding for a follow on to this project was not forthcoming, the data from these 

specimens are retained for comparative purposes despite the focus of this dissertation 

being on pterodactyloids.  

 

The “narrow wing” pterosaur configuration was confidently discarded after Elgin et al. 

(2011) reconstruct all subsequent aerodynamic models according to a configuration 

where the trailing edge of the brachiopatagium terminates against the soft tissue of the 

hind limb. This was based partially on a number of azhdarchoid remains within the 

SMNK where fore and hind limbs from the same side of the body had separated 
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together in union, minus elements of the torso, and as such the inclusion of these 

fossils within the overall description was deemed necessary. 

 

A number of goals proposed at the onset of this project were never, or only partially 

realised, where the full extent of the joint mobility outlined in Chapter 4 was 

incorporated into prototype models for which only limited testing was possible before 

the premature termination of project funding. As such the section on joint mobility 

was retained to justify the configurations used for the gliding flight simulations. 

Additionally it adding extra information on the mobility observed within the 

Ornithocheiroidea and more rarely reported estimations from the Azhdarchoidea, 

where the range of motion when the humerus is raised or flexed appears to be greater. 

The flexible wing model data is not presented within the main body of Chapter 5 but 

is instead available through the appendix. Likewise reconstruction of a membranous 

wing for the physical wind tunnel models using the data obtained from Tupuxuara, 

SMNK PAL 3830, and Kellner et al. (2009), Elgin et al. (2011), was never adequately 

constructed by collaborators.  

 

With regards to the aims proposed at the onset of the thesis all were effectively 

completed where descriptions of the SMNK fossils erects two holotypes (Elgin and 

Frey 2011a, b), a new exceptional specimen of an established taxon (Coloborhynchus 

robustus), the most complete specimen of Tupuxuara known to science, and a variety 

of rare ornithocheiroid and azhdarchoid pterosaurs (Elgin and Campos 2011; Elgin 

and Frey 2012; Elgin and Hone 2013). The palaeontological significance of these 

specimens is noted, where new observations on the ontogeny / maturity (Elgin and 

Frey 2008; this work) and crestlessness in ornithocheiroids (Elgin and Frey 2011a), 

taphonomy (Elgin et al. 2011), pedal / ankle structure (Elgin and Frey 2011c; this 

work), pneumaticity (Elgin and Hone 2013), soft tissue (Elgin et al. 2011; this work); 

the pelvic symphysis (this work), and presence of traits with broader taxonomic 

implications (e.g. wing finger phalanges, Elgin and Frey 2011b; metacarpalia, this 

work). A reassessment of the joint mechanics, as noted above, is included where 

much support is found for an intermediate range of motions within the 

Ornithocheiroidea. The morphometric data derived from the descriptive section of this 

thesis, while useful for reconstructing missing elements, was not regarded as forming 

a significant section of the thesis (it was not used extensively for the generation of the 
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subsequent aerodynamic models) and so while not included in the main body of text 

can also be found within the appendix at the end of this dissertation.  

 

With the completion of all palaeontological aims the mathematical and physical 

models were construction based on the combined data derived from these descriptions. 

A comparison of the various models, while an important aim, is complicated by the 

poor lift:drag results generated from the fixed wing models which is regarded as not 

representative of the real animals. As such this aim is only partially completed as 

while the experimental data is not usable, the theoretical and CFD simulations appear 

to be a much better representation of what would be expected from such animals 

during gliding flight and should be used in place of the physical models. Despite this 

setback the cranial and body models performed well and go a long way to quantifying 

the individual sections of the pterosaurian body with regards to their aerodynamics. It 

is hoped that this information can be effectively incorporated into any future studies 

on the aerodynamics of this enigmatic groups.  
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Abstract

Perhaps the most iconic of pterosaurs is the Late Cretace-
ous Pteranodon, known for its large wing span of up to 5.6 m 
or more and a remarkable long bony crest at the back of the 
head. The function of this crest has been the subject of much 
controversy, having been interpreted as an aerodynamically 
benefi cial structure, perhaps acting as an airbrake, a forward 
rudder, or a counterbalance to the beak. In this paper these 
hypotheses are tested by experimenting on cranial models of 
both P. longiceps and its close relative P. steinbergi in a wind P. steinbergi in a wind P. steinbergi
tunnel and comparing the results against a crestless control 
model. The results show that, while a crest assists in lowering 
the yawing moment of the head and limiting the movement 
of the centre of pressure, the overall aerodynamic effect is 
modest. The crest most probably evolved independently 
of any aerodynamic function, other than to maintain their 
streamlined profi le for reducing drag, and presumably served 
primarily in either intraspecifi c sexual displays and/or species 
recognition.

Key words: pterosaurs, aerodynamics, fl ight, Cretaceous, 
biomechanics.

Zusammenfassung

Mit seiner Flügelspanne von bis zu 5,6 m und dem markan-
ten knöchernen Hinterhauptskamm gehört Pteranodon aus 
der Oberkreide zu den bekanntesten und beliebtesten Flug-
sauriern. Die Funktion des Scheitelkammes war Gegenstand 
vieler Kontroversen: Er wurde als aerodynamisch nützliche 
Struktur betrachtet, die möglicherweise als Luftbremse wirkte 
oder als Frontruder oder auch als Gegengewicht zum Schnabel. 

Hier werden diese Hypothesen mit Hilfe von Kopfmodellen 
von P. longiceps und seinem nahen Verwandten P. sternbergi
in Winkanalversuchen überprüft und mit einem kammlosen 
Kontrollmodell verglichen. Die Ergebnisse zeigen, dass der 
Kamm dazu beiträgt, das Giermoment zu senken und die 
Verschiebung des Druckzentrums zu begrenzen, obgleich der 
generelle aerodynamische Effekt eher gering ist. Die Kämme 
entstanden höchst wahrscheinlich außerhalb des aerodynami-
schen Funktionsregimes außer dass die ein stromlinienförmiges 
Profi l zur Reduktion des Luftwiderstandes zeigen. Die Kämme 
waren entweder intraspezifi sche Sexualmerkmale oder dienten 
der Arterkennung.

Schlüsselwörter: Pterosauria, Aerodynamik, Flug, Kreide, 
Biomechanik

1. Introduction

Extinct organisms offer many challenges to functional inter-
pretation, especially if there is no living animal that can act as a 
comparative model. The pterodactyloid pterosaur Pteranodon
is an example of this – a fl ying reptile from the Late Cretaceous 
(100–65 million years ago) of North America, whose adult 
wingspan varied from 3.8–5.6 m depending on its gender, but 
might also have reached sizes of over 6 m (BENNETT 2001). 

Pteranodon was named by MARSH (1876) on the basis of an 
isolated skull from shallow marine limestones of the Niobrara 
Chalk Formation (Late Cretaceous) of Kansas, USA. This pte-
rosaur, as one of the largest animals ever to fl y, has been the sub-
ject of several aerodynamic studies (HANKIN & WATSON 1914; 
BRAMWELL 1971; BRAMWELL & WHITFIELD 1974; BROWER 1983; 
CHATTERJEE & TEMPLIN 2004). The head crest has often been 
interpreted as an aerodynamically useful structure that may 
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have functioned as: an airbrake to slow speeds while landing 
(BRAMWELL & WHITFIELD 1974), a forward rudder to provide 
steering (HEPTONSTALL 1971; STEIN 1975), or an aerodynamic 
counterbalance to correct cranial movements, reducing the 
need for heavy neck muscles (EATON 1910; HEPTONSTALL 1971; 
BRAMWELL & WHITFIELD 1974). Others have postulated non-
aerodynamic functions for the head crest including: a site of 
muscle attachment (EATON 1910), a heat loss vane (KELLNER
& CAMPOS 2002; CHATTERJEE & TEMPLIN 2004), or a display 
structure (SHORT 1914; BENNETT 1992, 2001; CHATTERJEE & 
TEMPLIN 2004).

While some previous workers (BRAMWELL & WHITFIELD

1974; STEIN 1975; BROWER 1983; WILKINSON et al. 2006) have 
performed wind tunnel experiments on model pterosaurs, 
most work so far has focused on wing design and function. 
These earlier studies are also of limited use owing to inaccurate 
reconstructions of the animal, wing shape and properties, and 
a complete lack of taxonomic diversity. Pteranodon longiceps
has thus commonly been used as a standard for all pterodac-
tyloids. This is not appropriate for several reasons including: 
it’s unusually large size, highly derived anatomical features, 
large crest variations among different Pteranodon species, and 
because recent fi nds have revealed pterosaurs with an even 
more remarkable array of head crests (CAMPOS & KELLNER
1997; KELLNER & CAMPOS 2002; FREY et al. 2003). 

Recent studies that highlight the variability in size and shape 
between species (FREY et al. 2003), sexual dimorphism (BEN-
NETT 1992, 2001) and ontogenetic variability (BENNETT 2003; 
MARTILL & NAISH 2006) have tended to interpret the primary 
function of the pterosaur crest as for display, even though ex-
perimental tests to determine the aerodynamic characteristics 
of different types of crested forms have never been carried 
out. The aim of this paper is to investigate the aerodynamic 
characteristics of the cranial crest of the well-studied ptero-
saur Pteranodon longiceps and its closest relative P. sternbergi. 
Calculated aerodynamic results can then be compared with 
theoretical assumptions to determine whether the crest acted 
in some aerodynamically useful manner, or was primarily a 
structure for display. 

Institutional Abbreviations: FHSM, Fort Hays Sternberg 
Museum, Fort Hays State University, Hays, Kansas; KUVP, 
Museum of Natural History, University of Kansas; UALVP, 
Geology Museum, University of Alberta, Edmonton; YPM, 
Yale Peabody Museum.

2. Methodology

2.1 Model construction

While Pteranodon is one of the best-known pterosaurs, re-
presented by hundreds of specimens, it is diffi cult to use these 
as a basis for accurate three-dimensional models because the 
bones are usually fragmentary and crushed (BENNETT 2001). 
Here the composite cranial reconstructions of Pteranodon by 
BENNETT (2001), based on specimens of BENNETT (2001), based on specimens of BENNETT P. longiceps (KUVP 976, 
2212; YPM 1177, YPM 2473) and P. sternbergi (FHSM VP 339; P. sternbergi (FHSM VP 339; P. sternbergi
UALVP 24238), were used to generate two-dimensional templa-
tes in both dorsal and lateral profi les. These two templates were 
then joined together to produce a three-dimensional structure 

that, when bulked up with modelling clay, resulted in a three-
dimensional model of the head. Additional bulking due to the 
presence of soft tissue was very limited as no heavy neck muscles 
could be attached to the free head and much of the rest of the 
skull formed the beak. For use in wind tunnel experiments, the 
sculpted models were then cast in polyurethane, and the crest 
was cut from a thin aluminium sheet (3 mm thick based on data 
from BRAMWELL & WHITFIELD 1974) so that it would remain 
rigid under load. Three scale models were built: large, crested 
versions of P. longiceps and P. sternbergi, and a crestless control. 
By using models with almost identical head shapes (excluding 
the crests), all aerodynamic differences can therefore be attri-
buted to the shape and presence or absence of a cranial crest. 
The control model was based on BENNETT’s (2001) composite 
reconstruction, but was scaled to around half life size because the 
wind tunnel was not large enough for a full-sized model (around 
727 mm in this case). While the skulls of old adult males greatly 
exceed the size of this composite reconstruction (~1138 mm 
for the head of a presumed male P. longiceps, excluding a crest, 
and 1090 mm for P. sternbergi), the models were subject to the 
same requirements of space and were scaled down appropriately. 
Thus for large adult animals the model of P. sternbergi can be P. sternbergi can be P. sternbergi
considered to be one third life size while the P. longiceps model 
is between half and one third life size. 

As the object of these experiments was to measure the ae-
rodynamic forces produced by the head crest confi gurations, 
it was only necessary that the models had external forms that 
were broadly representative of the real animals. Other charac-
teristics such as mass and mass distribution did not have to be 
replicated as the model was not free fl ying. It was fi xed to a 
central strut and dynamic stability was not a study variable. 
It was also unnecessary to attempt to reproduce the fi ne detail 
of the skin over the heads and crests as the lift and drag cha-
racteristics are insensitive to the precise form and patterns of 
roughness over the range of conditions of interest (HOERNER
1965). Similarly, the section shape of a thin aerofoil (the crest 
in these experiments) has very little effect on the profi le drag 
at low Reynolds numbers (HOERNER 1965). However, the 
maximum lift coeffi cient achieved before stall is somewhat 
sensitive to the fi ne details of the section shape and also the 
Reynolds number. In our experiments these restrictions did 
not affect the conclusions because our main objective was to 
investigate the sub-stall performance characteristics. 

2.2 Wind tunnel testing

The models were mounted in a low-speed wind tunnel in 
the Handley Page Wind Tunnel Laboratory at City University, 
London, on custom-made brackets positioned on the occipital 
condyle. The brackets allowed the models to be fi xed in a 
range of  ‘beak down’ (pitch) orientations (Fig. 1) as well as a 
range of yaw angles (to represent the head being turned to the 
side). The wind tunnel force-measuring balance and electronic 
data-acquisition system recorded the three principal forces 
produced by the models under aerodynamic loading: side 
force (laterally acting forces), yawing moment (the moment 
of the side force about the vertical axis), and drag (the force 
acting backwards). The balance was calibrated so as to cancel 
out the tare drag of the attachment strut and bracket as well 
as the weight of the models. 
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Experiments were run at a speed of 20 m/s, approxima-
tely twice the fl ight speeds calculated in previous studies for 
Pteranodon: 7 m/s (HEPTONSTALL 1971), 8 m/s (BRAMWELL & 
WHITFIELD 1974), 9.51 m/s (BROWER 1983), 15 m/s (BROWER 1983), 15 m/s (BROWER STEIN 1975), 
or 10–15 m/s (CHATTERJEE & TEMPLIN 2004). The doubling 
of the tunnel velocity in this way was required to achieve 
dynamic similarity of the half-sized models. At this speed, 
the Reynolds number was 400,000 for the complete model 
and approximately 130,000 for the crests, both of which were 
expected to be below the transition point from a laminar to 
a turbulent fl ow regime. Preliminary tests at a range of air 
speeds confi rmed the insensitivity of the non-dimensional 
aerodynamic characteristics to fl ow velocity, so a single speed 
could be adopted for the tests. The results were reduced to 
non-dimensional form, from which actual forces could then 
be predicted for any likely fl ight speed. 

An examination of the osseous labyrinth from an endocast 
of Anhanguera by WITMER et al. (2003) indicated that ptero-
dactyloid pterosaurs, such as Pteranodon, would probably 
have fl own with a somewhat inclined cranium. As a result, 
side force and yawing moments were calculated for each 
model at head inclinations (pitches) of 0°, 20° and 40° along 
with yaw angles ranging from -10° to 40°. While it would have 
been desirable to test our models at up to 90° yaw and greater 
degrees of pitch, the model attachment, position of the strain 
gauges and other aspects of the working section of the tunnel 
prevented this from being a possibility. At 40° pitch the range 
of yaw was further restricted because of interference from the 

central mounting strut. 
The resulting forces were then converted into their di-

mensionless coeffi cients for comparison and analysis, as 
follows: 

1)  Side force coeffi cient (CY) = Y / q * S, and

2)  Yawing moment coeffi cient (CN) = N / q * S * c,

Where: Y= side force, q = dynamic pressure, S = Surface 
area (m2), N = moment, and c = reference length (m). 

Owing to the unusual shape of the crest, the total head 
length (tip of beak to most caudal part of the cranium) was 
used as the model’s reference length rather than the more tra-
ditional chord in the case of a wing. The yawing moment data 
were used to calculate the point of action of the side force (the 
centre of pressure), from which the turning couple applied to 
the heads was calculated.

3. Results

Results of the wind tunnel tests for each model show how 
variations in model pitch and yaw angle affect the side force up 
to a yaw angle of 40°. It is important to note that the coeffi cients 
presented are dimensionless and represent the aerodynamic 
characteristics of the model shape rather than any potential 
differences in size. 

Figure 1: Schematic diagram of a Pteranodon cranium and movement about the major axes. The pitch and yaw were constantly altered to test 
the varying effect of model orientation on force generation while the third axis, roll, was not used in this study. The thick arrows here show the 
major forces acting on the model.
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As was expected, there is a general trend of increasing side 
force with yaw angle (Fig. 2). For P. longiceps, (Fig. 2a) with 
the head horizontal, the side force coeffi cients increase almost 
linearly with angles of yaw up to the maximum value tested 
(40°). When the head is pitched downwards, the rate of increase 
of side force with yaw angle (the lift-curve slope) is initially 
greater, but becomes the same as for the horizontal orientation 
at angles of yaw greater than 15°. This result probably arises 
because the crest acts as a high aspect ratio aerofoil, which 
initially increases the lift-slope curve, but then experiences 
stall at a yaw angle of 10° to 15°. At the same time, the low 
aspect-ratio head, which is of greater area than the crest, can 
be expected to have a lower lift slope and a far less marked stall 
point. The combination of these two characteristics is the most 
likely explanation of the knee in the curve. 

The crestless model (Fig. 2b) displays a similar lift slope 
to the crested P. longiceps when both are horizontal. When 
the head is pitched down, the lift slope increases and at 40° 
it is almost the same as for the head with a crest at the same 
pitch orientation. In this case, it appears that the head itself 
is becoming an increasingly effi cient aerofoil as it is pitched 
down, most probably because of the increase in effective aspect 
ratio. With this model it was possible to test the 40° pitch case 
at yaw angles up to 40°, and a clear stall occurred. The angles 

of stall reduce with increasing pitch angle, which is commen-
surate with the changing aspect ratio. However, because of 
the lower surface area of the crestless model, the actual forces 
produced will be less. 

The P. sternbergi model (Fig. 2c) showed less variation of lift P. sternbergi model (Fig. 2c) showed less variation of lift P. sternbergi
slope with pitch angle than the P. longiceps model. Apart from 
a localised refl ex in the 40° pitch case around the zero angle of 
yaw, all three curves more or less collapsed into one another. 
They all had lift curves with a marked knee infl ection at 15° to 
20° angle of yaw, with maximum lift being reached by 40°. This 
is probably because the crest is a relatively large proportion 
of the total area of the profi le of the head and crest, so tends 
to dominate the aerodynamic characteristics. As the head was 
pitched down, the effective aspect ratio did not change greatly, 
thus limiting the change in lift-curve slope. The marked knee 
infl ection in the curve at an angle of yaw of approximately 15° 
most probably refl ects the point at which the fl ow over the 
crest becomes stalled, while the fl ow around the low-aspect-
ratio head remains attached and allows the lift to continue to 
rise with yaw angle, albeit much less rapidly.

The centres of pressure in all three models are anterior to the 
point of attachment (Figs 3 & 4). In the case of P. longiceps the 
centre of pressure at 0° and 20° pitch angle moves anteriorly, 
almost linearly with increasing yaw angle, up to the limit of the 

Figure 2: Wind tunnel results showing the lateral force (Cy) generation characteristics of the three models over angle of yaw. The models P. 
longiceps (a), the crestless form (b), and P. sternbergi (c) were mounted at varying angles of cranial pitch, 0º, 20 º and 40 º, indicated by the icons P. sternbergi (c) were mounted at varying angles of cranial pitch, 0º, 20 º and 40 º, indicated by the icons P. sternbergi
on the fi gure.

Figure 3: Wind tunnel results showing the displacement of the aerodynamic centre of pressure from the attachment bracket of the three models: 
P. longiceps (a), the crestless model (b), and P. sternbergi (c). Varying angles of cranial pitch, 0º, 20 º and 40 º are indicated by the icons on the P. sternbergi (c). Varying angles of cranial pitch, 0º, 20 º and 40 º are indicated by the icons on the P. sternbergi
fi gure.



171

tests at 40°. The position is more anterior at 20° pitch, which 
may be because the model’s rostrum becomes a more effective 
aerofoil as pitch angle increases. At 40° pitch, movement of the 
centre of pressure has become mostly insensitive to yaw (Fig. 
3a). When the crest is removed, the results collapse onto one 
another and the position of the centre of pressure becomes the 
same regardless of the cranial pitch (Fig. 3b). 

The model of P. sternbergi exhibits similar results to P. 
longiceps. The results for 0° and 20° pitch show almost linear 
increase with yaw angle, the curve for the higher pitch angle 
being the more anterior of the two. At 40° pitch, the centre of 
pressure is again constant with yaw angle (Fig. 3c). 

The wind tunnel results were recorded for yaw angles up to 
40°, which for the 20° and 40° pitched models was approaching 
the stall point, and thus the maximum side force. BRAMWELL & 
WHITFIELD (1974) measured similar results for P. longiceps, but 
were able to make their tests over a wider range of yaw angles. 
They found that stall occurred at a yaw angle of around 50° for 
a model in a horizontal (zero pitch) orientation.   

If the model was turned to a yaw angle of 90°, the fl ow 
became fully separated and the centre of pressure coincident 
with the centre of area. By interpolation, this allows a good ap-
proximation of the position of the centre of pressures position 
for the missing angles of yaw, between 40° and 90° (Fig. 4).

The results described above show the location of the centre 
of pressure. However, the yawing (or twisting) moment on 
the attachment of the head to the neck is the product of the 
distance of the centre of pressure from the attachment and the 
actual side force being produced. Typical values of side force 
and yawing moment were calculated and are shown in Figure 
5. As previously stated, the independence of the coeffi cients 

from velocity allows aerodynamic forces, which are a function 
of the square of the fl ight speed, to be calculated for any desired 
velocity. Here, a fl ying speed of 14 m/s was used to facilitate 
direct comparison with BRAMWELL & WHITFIELD’s results. 
The maximum value for P. longiceps found here was 2.5 Nm 
as compared to a value of 9.0 Nm reported by BRAMWELL & 
WHITFIELD (1974), who assumed a relatively larger head size. 
If the P. longiceps results were ‘scaled up’ to the size proposed 
by BRAMWELL & WHITFIELD (1974) a moment of 15.9 Nm is 
predicted – a clear disagreement between the two studies. This 
may be in part due to differences in the shape of the models, 
position of the model attachment or tunnel calibration howe-
ver, in the absence of the original test data, it is not possible to 
comment further on this difference. 

The locations of the centres of pressure in the models are 
shown in Figure 4. In each case the yaw scale is positioned 
to be in line with the neck attachment. The solid parts of the 
curves represent the locations calculated from the present 
tests. As described above, the location at a yaw angle of 90° 
is coincident with the centre of area and thus it is possible to 
construct the likely shape of the curve between yaw angles of 
40° and 90°. 

4. Discussion

Having tested our three models, we may now consider the 
validity of the generally assumed aerodynamic functions of the 
cranial crest. The depression of the head outlined by WITMER

et al. (2003) tends to increase the lift-curve slope, which results 
in a rapid increase in lateral force with yaw angle. This force 

Figure 4: The three models: P. longiceps (a), the crestless model (b), and P. sternbergi (c) are drawn in proportion to full size along with the P. sternbergi (c) are drawn in proportion to full size along with the P. sternbergi
displacement of the aerodynamic centre of pressure off the occipital condyle for varying angles of yaw. The solid lines represent experimental 
data while the broken line is the predicted movement of the centre of pressure to the centre of the projected area of the head/crest at 90º. Scale 
bar 300 mm.
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is, however, limited by stall, which occurs at lower yaw angles 
when the head is depressed, although a more abrupt stall may 
itself be a potential source of aerodynamic instabilities. De-
pression of the head also has the effect of limiting the anterior 
movement of the centre of pressure, which in turn limits the 
yawing moment acting on the attachment of the head. Thus 
the least destabilizing position for the head of Pteranodon, by 
which early or abrupt stall (and the associated sudden change in 
applied forces) can be avoided, is horizontal, while the yawing 
moment can be reduced by depressing the head, at the possible 
expense of fl ight stability. 

4.1 Airbrake

The idea that the crest acted as an airbrake, proposed by 
BRAMWELL & WHITFIELD (1974), relied on the generation of a 
large drag force as a result of turning the head through 90° in 
fl ight. While our models lacked the range of movement tested 
by BRAMWELL & WHITFIELD (1974), at a horizontal pitch and a 
maximum angle of attack of 44°, P. longiceps and P. steinbergi
respectively produced around 25% and 50% more drag than 
the crestless model because of their crests. As the cranium 
was pitched down to 40°, however, the drag characteristics 
of the three models became much more similar. This effect 
is caused as the model of P. sternbergi generates little to no P. sternbergi generates little to no P. sternbergi
additional lift as the head is pitched downwards. In contrast, 
the other two models actually become better airfoils as the 
head is depressed and thus generate not only more lift but 
also additional lift-induced drag which causes the various drag 
profi les to converge. 

Physiological arguments, as much as aerodynamic evidence, 
indicate that turning the head to act as an airbrake would have 
been a dangerous and ineffi cient method of slowing the animal. 
Turning the head fully broadside to the airfl ow would result 
in the binocular vision being diverted from the animal’s fl ight 
path, a risky manoeuvre when landing. Deploying the head 
as an airbrake would also have required a large turn of both 
the head and neck and placed additional stress on to the neck 
muscles. It is likely that the wings would have provided a more 

effective airbrake both during fl ight and landing in addition to 
the, as yet untested, braking performance of the uropatagium 
and webbed feet. As WILKINSON et al. (2006) have shown, the 
highly cambered wing membrane is capable of producing a 
combination of high lift and drag, a far more effective and con-
trollable means of slowing fl ight than turning the head 90° to 
one side. The crest is thus poorly designed for an airbrake and 
indeed a crestless model is itself capable of producing similar 
values of drag compared with a crested model, provided the 
head could be pitched downwards during fl ight. The study of 
WITMER et al. (2003) suggests that this was the case and thus 
a crest is not required and, at larger values of pitch, does not 
enhance the production of drag. 

4.2 Forward Rudder

STEIN’s (1975) argument that the crest acted as a forward 
rudder for steering was based on the belief that a membrane 
joined the crest to the neck. The idea is weakened by the fact 
that no fossil evidence for such a membrane has been found 
in any pterosaur, and most signifi cantly no evidence has been 
found even in specimens that preserve a gular pouch and other 
soft tissue structures around the head including soft-tissue 
crests. While a lack of evidence does not disprove the existence 
of such a membrane, it remains unlikely for several reasons: the 
dorsally, rather than caudally, directed crest of P. sternbergi is a P. sternbergi is a P. sternbergi
poor shape to support such a membrane, neck mobility would 
have been hampered to an unknown degree, and large wings 
along with additional fl ight control surfaces (e.g. propatagium 
[WILKINSON et al. 2006] or foot rudders [FREY et al. 2003]) 
would almost certainly be better suited for steering. 

A related idea was that the large cranium alone might have 
acted as a fl ight-control mechanism (HEPTONSTALL 1971) by 
generating the forces required to turn the animal. A crest would 
certainly have assisted in such a role, as the crested P. longi-
ceps produced around twice as much side force as its crestless 
counterpart. It remains diffi cult, however, to understand why 
such a design would have been more effi cient than the use 
of the animal’s large wings under the control of its complex 

Figure 5: Calculated full-scale forces produced by the three models. (a) Side force over the range of tested yaw angles; and (b) yawing moment 
derived from the wind tunnel tests and calculation of the result at 90º yaw. The larger P. longiceps represents the results produced assuming the 
model was one third its life size. A fl ight speed of 14m/s was selected for ease of comparison with BRAMWELL & WHITFIELD’s (1974) results.
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neuroanatomy (WITMER et al. 2003). The total lift produced 
by the wings must equal the weight of the animal. BRAMWELL
& WHITFIELD (1974) estimated a mass of 16.6 kg, so using the 
scaling factor deduced from the difference in head size between 
their reconstruction and that used for the present work, the 
mass of P. longiceps was 4.3 kg. Thus, if the animal banked at 
45°, it would have produced a turning force of 30 N, more 
than three times the maximum generated by the head and crest 
at an angle of yaw of 40°, and six times that generated at 15° 
yaw, the probable upper limit before the onset of a potentially 
destabilizing stall of the crest. Thus by comparison to the wing 
the crest is a substantially less useful structure for generating 
lift. It is relevant that extant soaring bats, which do not have 
crests and rely on wings alone for turning, achieve tight turning 
circles when circling in thermal lift (NORBERG et al. 2000), as 
do many species of birds in same conditions. 

4.3 Counterbalance

The fi nal suggestion was that the crest functioned as an 
aerodynamic counterbalance to reduce the mass of the muscles 
required to resist the yawing moments of the head, by shifting 
the centre of pressure caudally from the attachment (EATON
1910; HEPTONSTALL 1971; BRAMWELL & WHITFIELD 1974). 
This reduction in the mass of the neck muscles would have 
had evolutionary signifi cance through reducing the weight 
of the animal.

Wind tunnel experiments on P. longiceps by BRAMWELL & 
WHITFIELD (1974) showed that the crest acted as a complete 
counter balance only at angles of yaw greater than 70°. While 
this may be aerodynamically correct, it is diffi cult to accept 
that this characteristic was actually exploited by the animal. 
Not only is it highly unlikely that an animal in fl ight would 
ever have turned its head to such a degree, but according 
to BRAMWELL & WHITFIELD (1974) the margin between the 
aerodynamic yawing moment of the head and the restoring 
moment available from the neck muscles at 45 –50° angle was 
extremely small. In practice this gives the very real possibility 
that the slightest increase in moment, caused for example by 
fl uctuating air speeds (or indeed errors in their estimates), may 
have broken the animal’s neck. This extremely low margin of 
safety appears implausible for a large fl ying animal. 

While our experiments lacked this range of movement, they 
confi rm that below a 45° turn of the head, neither crest acted 
as a full counterbalance, and the calculation of the result at 90° 
yaw indicates that even at this angle the crested forms were not 
fully counterbalanced. When compared to the crestless form, 
the P. longiceps model only produced a 20% higher yawing 
moment despite having almost 50% more total area. Thus the 
addition of the crest did not result in substantial increases in 
the yawing moment, despite increased aerodynamic forces due 
to its greater area. 

Such an effect would have been signifi cant since controlling 
lateral movements of the head was clearly important to ptero-
saurs, as suggested by anatomical observations. The cervical 
vertebrae of Pteranodon show a combination of condylar-co-
tylar, zygapophyseal, and exapophyseal articulations designed 
to resist twisting motions of the neck (BENNETT 2001). The 
location of the centre of pressure (Figs 3 & 4) in all results 
however suggests that the crest’s primary function was not as 

a full aerodynamic counterbalance. 
If the crest is regarded as a sexually dimorphic feature 

(BENNETT 1992), the apparent absence of a major aerodynamic 
function might then suggest that males did not suffer a major 
adaptive penalty by carrying a large crest compared with the 
smaller-crested females. From the point of view of a sexually 
selected characteristic it is key that the feature impose some 
kind of penalty on the animal carrying it (DARWIN 1871). 
Although the aerodynamic effects of the crest may not have 
hindered the animal, a penalty, in the form of the energy de-
voted to both developing and carrying such a heavy structure 
on such a lightweight animal, must be considered. Thus the 
neutral aerodynamic results obtained from this study cannot 
rule out a sexually selective origin or function of the cranial 
crests in Pteranodon. 

5. Conclusion

Many studies of function in animals contrast adaptations for 
physical activities and those for display (FARLOW & DODSON
1975; HOEFS 2000). In the case of the head crest of Pteranodon, 
and perhaps of other pterosaurs, the crest is aerodynamically 
streamlined, so that it does not impede fl ight by creating ex-
cessive drag. However our wind tunnel experiments suggest 
that previously proposed specific aerodynamic functions 
(airbrake, forward rudder, and counterbalance) are unlikely 
to have applied to any great extent. It is more likely that 
the wings could have performed any steering and balancing 
functions adequately, particularly with the aid of the animal’s 
complex neuroanatomy (WHITMER et al. 2003) and complex 
membrane (FREY et al. 2003), without the need for additional 
mechanical assistance from the head and its crest. A behaviour 
demonstrated by extant soaring bats. Our experiments suggest, 
in fact, that were Pteranodon to try to use its head to assist 
in steering, braking, or manoeuvring, it would have created 
aerodynamic instability and imposed substantial twisting loads 
on the neck attachment.

Sexually dimorphic traits in pterosaurs are apparently evi-
dent in the pelvic and other postcranial characters of a number 
of species including Rhamphorhynchus (WELLNHOFER 1975), 
Pterodactylus (MATEER 1976), Quetzalcoatlus, Dsungaripterus
and Anhanguera (BENNETT 1992). The work of BENNETT (2001, 
2003) has demonstrated that sexual selection and ontogenetic 
age are the most likely infl uences in determining the size and 
shape of the crest. In apparent male specimens of Pteranodon
the head crest is greatly enlarged against the females, around 
50% larger than in putative females (BENNETT 1992). Species 
could also grow through several variable crest forms throug-
hout their development (MARTILL & NAISH 2006) and rapidly 
sprout massive structures upon reaching maturity (BENNETT
2003). 

Palaeobiologists, and perhaps most evolutionary biologists, 
might feel that interpreting a complex structure as ‘merely’ 
for display is a weak line of argument. Surely something as 
evolutionarily costly and astounding as the head crest of 
Pteranodon must have offered some hard, biomechanical 
advantage? And yet, similar recent studies of the dorsal plates 
of Stegosaurus and other extinct reptiles (MAIN et al. 2005) 
have shown that these elaborate structures perhaps served 
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more for communication than for thermoregulation. A key 
point in understanding those animals, as here, is that many (or 
most) congeners seemed to survive perfectly well without the 
elaborate structure, be it a head crest or a dorsal plate. Animals 
today often sport astonishing structures for display purposes 
(e.g. peacock, lyrebird, red deer): providing the structure does 
not represent an overwhelming encumbrance, the riotous 
functioning of sexual selection may far outweigh the common 
sense of natural selection.
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空中之龙：短尾翼龙的飞行 

DRAGONS OF THE AIR: FLIGHT IN SHORT TAILED 
PTEROSAURS 

Ross A. ELGIN* 
Abteilung Geologie, Staatiches Museum für Naturkunde Karlsruhe, Erbprinzenstrasse 13., 76133 Karlsruhe, Germany 

The Pterosaur Flight Dynamics Research Group 
was established just over three years ago as part of a 
Karlsruhe based initiative to investigate the aerody-
namics of pterodactyloid pterosaurs. Since then, the 
research group has been joined by experts in the fields 
of aeroelastics (DLR), fluid dynamics (KIT) and tex-
tile engineering (ITV Denkendorff, BIONA project) to 
explore a number of aspects associated with ptero-
saurian flight. Models of several pterosaurian taxa, 
Anurognathus, Coloborhynchus, Quetzalcoatlus, Si-
nopterus, and an as yet unpublished azhdarchoid, were 
constructed and mounted in a wind tunnel at the Uni-
versity of Karlsruhe (Fig. 1). The results of these ex-
periments are presented here. 

The goals of this study were to utilise a number 
of experimental and theoretical models to record the 
forces and torques generated during flight; obtaining 
the coefficients for individual elements of the ptero-
saur flight apparatus (e.g., cranium, body, fore arm). 
The results of fixed wing models are compared to 
those of computerised models of the pterosaur wing 
(Fig. 2), while jointed models are used to trim the dis-
tal wing at higher flight velocities. The effects of al-
tering the material properties of the wing membrane 

were also investigated. 
Current models of pterosaur flight are based on 

the use of very light mass estimations in even very 
large animals and a low parasite drag coefficient, with 
values ranging from 0.01 to 0.05, based on experi-
ments with smooth objects. Increasing the mass of a 
pterosaur to match recent estimates was found to sig-
nificantly increase the flight speed such that velocities 
attributed to adults by previous authors should instead 
be attributed to juveniles of the same taxon. Wind 
tunnel experiments of fixed wing models returned 
higher than expected coefficients of drag, leading to 
poorer gliding performances and higher sinking speeds. 
Such high values of total drag may perhaps be attrib-
uted to the large heads, necks and forearms of these 
taxa; but performance can be altered depending on the 
degree of streamlining of the body and the aerody-
namic efficiency of the selected wing material. 

The data recorded for the individual components 
of the flight apparatus and body will be useful for 
further aerodynamic analyses of low Reynolds number 
fliers; specifically the basal, non-pterodactyloids that 
remain understudied with regard to their flight dy-
namics. 
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Fig. 1  A, Wind tunnel set up with a fixed wing model mounted in the working section. B, Schematic of a model mounted 
above the measuring balance. Flow direction in both illustrations is from right to left. 

 
Fig. 2  Selected graphs giving an overview of the range of data gathered during the course of this project. A, Polar curve for 

Sinopterus dongi, B, Polar curves for Coloborhynchus robustus and a computerised simulation; C, Circling performance of 
Sinopterus based on the data presented in graph A; D, Gliding performance of Coloborhynchus at various stages of it’s growth 
cycle where b = wing span, filled symbols = heavy mass estimates, open symbols = light mass estimates. CL = Coefficient of lift, 

CD = Coefficient of drag. 
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Abstract An almost complete, ornithocheirid pterosaur

from the Romulado Member of the Santana Formation, NE

Brazil is described. The specimen lacks a rostral and

dentary median sagittal crest and is sufficiently distinct

from other crestless taxa to warrant the erection of a new

genus and species, Barbosania gracilirostris gen. et sp.

nov. It confirms the absence of a crest as a genuine con-

dition rather than a consequence of ontogenetic immaturity

and indicates a shift from the previously observed pattern

of suture closure in pterodactyloid pterosaurs, where partial

fusion of the extensor tendon process has occurred at a

relatively small size. Several specimens showing mor-

phology similar to Brasileodactylus may instead be more

closely allied to B. gracilirostris.

Keywords Barbosania � Ornithocheiridae � Pterosaur �
Santana Formation

Abbreviations

AMNH American Museum of Natural History,

New York, USA

BSP Bayerische Staatssammlung für Paläonologie

und Historische Geologie, Munich, Germany

MHNS Museum of Natural History Sintra,

Sintra, Portugal

NM Museu Nacional, Rio de Janeiro, Brazil

NSM National Science Museum, Tokyo, Japan

RGM Nationaal Natuurhistorisch Museum, Leiden,

The Netherlands

SMNK Staatliches Museum für Naturkunde Karlsruhe,

Karlsruhe, Germany

Introduction

The Romulado Member of the Santana Formation, NE

Brazil, has greatly increased our understanding of the

anatomy and palaeobiology of Early Cretaceous pterosaurs.

Several taxa known from this locality include the orni-

thocheiroids: Anhanguera santanae (Wellnhofer 1985);

A. araripensis (Wellnhofer 1985); A. blittersdorffi (Campos

and Kellner 1985); Brasileodactylus araripensis (Kellner

1984); Cearadactylus (Leonardi and Borgomanero 1985;

Dalla Vecchia 1993); Coloborhynchus piscator (Kellner

and Tomida 2000); C. robustus; C. spielbergi (Wellnhofer

1987); Santanadactylus (Wellnhofer 1985); Ornithocheirus

mesembrinus (Kellner and Campos 1994); and the azhd-

archoids Tapejara wellnhoferi (Kellner 1989); Thalasso-

dromaeus sethi (Kellner and Campos 2002); Tupuxuara

leonardii (Kellner and Campos 1994); T. longicristatus

(Kellner and Campos 1988). Despite the large number of

specimens now known, various details of pterosaur sys-

tematics remain the focus of considerable debate and dis-

agreement, foremost among them perhaps being the

taxonomic composition of the Ornithocheiroidea (Kellner

2003; Unwin 2003) and the preferential use of the Ornith-

ocheiridae or Anhangueridae; both of which are widely

found within the current literature (e.g. Kellner 2003;

Unwin 2003; Andres and Ji 2008; Wang et al. 2008; Lü

et al. 2008). Although the purpose of this manuscript is not

to debate the merits of either side, for the sake of clarity all

taxonomic divisions adopted here are sensu Unwin (2003)
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until a more general consensus is reached. In addition to the

problems apparent at higher taxonomic levels, the diagnosis

of ornithocheirid pterosaurs from the Brazilian Lagerstätte

to a generic or species level is complicated by the presence

of several taxa that are not clearly distinguished from others

(e.g. Araripedactylus, Araripesaurus, Santanadactylus, see

Kellner 1991; Kellner and Tomida 2000), the degree to

which fossils from the English Greensands are represented

in South American localities (Unwin 2001; Veldmeijer

et al. 2005; Rodrigues and Kellner 2008), and the extent to

which an ontogenetically variable cranial crest can be used

to diagnose a taxon (Veldmeijer 2003; Martill and Naish

2006). Crestless materials belonging to ornithocheirid

pterosaurs, primarily consisting of isolated rostral frag-

ments, are often assigned as tentative specimens of Brasi-

leodactylus, a genus known for the absence of a median

crest. As such the genus is particularly controversial, having

been suggested to be conspecific with either Anhanguera

(Unwin 2001) or Ludodactylus (Unwin and Martill 2007).

Here we present a new crestless ornithocheirid pterosaur

from the Romualdo Member of the Santana Formation. The

specimen is similar in morphology to those specimens

assigned to Brasileodactylus but does not meet the current

diagnostic criteria for this genus and is sufficiently distinct

to warrant the erection of a new genus and species. The

described specimen preserves the majority of the skull and

postcranial skeleton which is unusual for crestless ornith-

ocheirid pterosaurs from the locality. It is housed in the

Museum of Natural History Sintra, Portugal, under the

collection number MHNS/00/85, while a cast is held in the

collections of the State Museum of Natural History Kar-

lsruhe, Germany (SMNK).

Preservation

The described specimen MNHS/00/85 is encased within a

single large calcareous concretion as is typical of fossils

from the Romualdo Member (Fig. 1). It is comprised of a

mostly complete, but damaged cranium and mandible, the

caudal-most cervical vertebra (c9), the dorsal vertebral

column (d1–13), the first sacral vertebrae (s1), and four

caudal vertebrae from the base of tail.

The skull is mostly complete, exposed in right lateral

view and in natural association with the mandible, which is

articulated in occlusion with the upper jaw. Due to the

relief of the bone the frontal, parietal and left hand side of

the skull remain buried within the matrix of the concretion

after preparation. The skull has suffered lateral crushing

that is particularly noticeable not only along the rostral and

caudal portions of the mandible but also around of the

nasoantorbital fenestra and the orbita. The bones dorsal to

the nasoantorbital fenestra, such as the caudal process of

the maxilla conjoined with the frontoprefrontal complex,

the nasal and the lacrimal are disarticulated along their

sutures, but still lie close to their original positions. The

lateral parts of the occipital, squamosal, quadrate and

postorbital are eroded almost to the same level as the

foramen of the n. vagus. The postorbitosquamosal arch is

missing and the jugal has rotated medially with the max-

illary process diving into the matrix. The transition

between premaxilla and maxilla is obscured by both the

overlying right humerus and sediment.

The mandible is visible in right lateral view. All parts of

the mandible have been extensively crushed.

The teeth in the rostral portion of the skull show the best

preservation. In both the upper and lower jaws the caudally

located tooth positions are represented by empty and par-

tially damaged alveoli. Most teeth rostral to the 12th tooth

position are preserved in three dimensions with the

exception of tooth positions 6 in the upper jaw and 4–5 in

the lower. The crowns of the second to fifth teeth of the

cranium are missing while the fourth mandibular tooth has

broken off at the base of its crown. The rostral-most three

of the mandible are completely preserved.

The entire vertebral column is embedded in sediment

about level with the transverse processes so that the right

lateral faces are only visible in the first 6 vertebrae, i.e. c9

and d1–5. Caudal to the fifth dorsal the vertebral column is

offset to the right by the full diameter of a vertebral body

before continuing caudally in full articulation. The bodies

of the dorsal vertebrae are badly damaged and the exap-

ophyses on the first three dorsals have broken off and are

missing from the skeleton. Several disarticulated ribs and

possible gastralia are scattered in the thoracic region. Only

the right rib of the second dorsal retains a contact with the

transverse process. Both scapulae and coracoids are pre-

served close to their natural positions, but only the right

coracoid is almost entirely visible from its caudal aspect.

The rest of the shoulder girdle is mostly camouflaged by

matrix.

The majority of the skeletal elements of both wings

have disarticulated from their natural position but have

been displaced by only a small degree. The left humerus

lies close to its natural position while the right humerus

has been displaced a greater distance from the right

shoulder girdle so that it is now positioned with its head

across the rostrum. The right humerus and ulna are

exposed in caudoventral view and make an angle of

about 120� between each other. The right ulna lies along

the cranial margin of the right ulna. The right wing

metacarpal (mc IV) lies adjacent to the distal syncarpal

although it has rotated *90� caudally around its long

axis and is viewed in its cranial aspect. Two metacar-

pals, associated with the first three digits, lie adjacent to

its dorsal face. One is completely exposed while the
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second is overlain by the first and covered by sediment

so that only its distal portion is visible. The metacarpus

forms an angle of about 150� with the radius/ulna. The

first three digits are preserved cranial to the articulation

between the wing finger metacarpal and the basal wing

finger phalanx. These three digits preserve all of their

elements with the exception of the disciform phalanges

and lie sub-parallel to each other with the unguals facing

distally. The first or basal phalanx of the right wing

finger is partially preserved up until a large break in the

concretion approximately 2/3rds along its length. Here a

fragment of the concretion containing the articulation of

two phalanges of the left wing finger has been errone-

ously attached. This fragment is interpreted to represent

the distal portion of the left first wing finger phalanx and

the proximal portion of the second wing finger phalanx.

The left humerus is visible in its ventral aspect. Of the

left radius/ulna the proximal half is overlain by the elbow

of the right wing and the matrix, however, the distal half is

visible in its ventral aspect. The shaft of the left pteroid

bone lies adjacent to the left radius. The head of the pteroid

bone terminates between the proximal and the distal syn-

carpals. The wing finger metacarpalia and the basal wing

finger phalanges are seen in their ventral aspects and

remain in full articulation. A 57-mm section of the left

metacarpal IV has undergone extensive repair with a large

fragment of bone being glued back into place. The unguals

and penultimate phalanges of the first three digits of the left

wing lie perpendicular across the proximal terminus of the

shaft of the right basal wing finger phalanx. The proximal

elements are still covered by matrix. The angle between

humerus and radius/ulna as well as that between radius/

Fig. 1 Barbosania
gracilirostris (MHNS/00/85)

gen. et sp. nov. a Photograph

and b corresponding line tracing

highlighting the major elements

of the skeleton. Shading
indicates material erroneously

attached to the concretion.

Where: c cranium, ca caudal

vertebrae, co coracoid, cr
cervical vertebrae, d dorsal

vertebrae, dsc distal syncarpal,

f femur, h humerus, il ilium, is
ischium, m mandible, mc
metacarpal, n ‘‘notarium’’ dorsal

vertebrae 1–5, p pteroid, pa
preaxial carpal, psc proximal

syncarpal, pu pubis, r radius,

s scapula, sc sacral vertebrae,

u ulna, wph wing finger

phalanx. Scale equals 100 mm
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ulna and metacarpus is about 150�, while metacarpus and

the basal wing finger phalanx include an angle of about

80�. The left basal wing finger phalanx is broken at the mid

shaft area at the border of the concretion.

The majority of the pelvic girdle is preserved although

some damage and displacement has occurred due to lateral

crushing of the specimen. The left puboischiadic plate is

only slightly displaced from its natural position although its

dorsal portion is obscured by sediment cover and the

ventral margins of both the pubis and ilium have been

broken. The right puboischiadic plate has collapsed across

the sacrals and the ventral margins of the pubis and ischium

lie adjacent to the broken end of the left puboischiadic

elements. The majority of the right preacetabular process

has been broken and crushed but remains visible. Both

prepubic bones are missing.

Both femora are articulated with their respective ace-

tabulae and are directed laterally at right angles with

respect to the vertebral column. The femora terminate at

the border of the concretion whereby the fragment of the

right femur is three times the length of the left. Adjacent to

the right femoral shaft lies the distal extremity of a wing

finger phalanx, most likely wph 3 of the wing. Next to this

an elongated bone is directed diagonally across the dorsal

surface of the pelvic girdle and is cut by the edge of the

concretion. It is uncertain whether this element represents

the fourth wing finger phalanx or the tibia as the proximal

margin is damaged and missing approximately half the

articular surface. The distal portion of the bone does not

taper or show a decrease in diameter suggesting that it is

more likely to be a displaced tibia.

Although a limited amount of crushing has occurred due

to compaction, principally to the skull and portions of the

wing finger, the majority of the skeleton has kept its three

dimensional form and many of the preserved elements

show little trace of post mortem displacement. The denti-

tion shows a progressively better state of preservation

moving towards the rostrum. Damage from abrasion or the

splitting of the concretion is more common and has been

severe enough to erode through the bone surface, exposing

the internal structures.

The skeleton underwent some preparation and repair

prior to its arrival at the State Museum of Natural History

Karlsruhe (SMNK), where the majority of preparation was

completed on request from the Museum of Natural History

Sintra (MHNS), Portugal. The completeness of the skeleton

suggests that many more details could be uncovered with a

more extensive preparation from the reverse side of the

concretion. However, time constraints, a complex posi-

tioning of the bones, and a risk of damage prevented this

from occurring.

Systematic palaeontology

Pterosauria (Kaup 1834)

Ornithocheiroidea (Seeley 1870)

Ornithocheiridae (Seeley 1870)

Barbosania nov. gen.

B. gracilirostris nov. sp.

Derivation of name For the genus: Barbosania after

Professor Dr. Miguel Barbosa, Sintra Museum of Natural

History, a recognised local scientist, who engaged himself

in bringing palaeontology to public knowledge and sub-

stantially helped to secure the specimen. For the species:

gracilirostis (gracilis = lat. for slender, rostrum = lat. for

snout): the ‘‘slender snouted’’ referring to the slender

crestless rostrum without lateral dilatation

Material Holotype and only specimen MHNS/00/85

housed in the Museum Natural History Sintra, Portugal

Locality Unknown locality. Romualdo Member, Santana

Formation, Araripe Plateau, Brazil, (Albian–?Cenoma-

nian). The bluish colour of the concretion strongly suggests

a provenance of the Sierra de Maõsina.

Diagnosis for genus and species

Ornithocheirid pterosaur with the following diagnostic

features:

1. Keeled but crestless rostrum with a pointed

termination.

2. Rostral-most pair of the mandibular and premaxillary

alveoli positioned rostroventrally and rostrodorsally,

respectively.

3. Tooth positions two and three in both jaws with teeth

that are twice as long as those of the subsequent

alveoli.

4. The second and third teeth are orientated craniolat-

erally and together with the rostral-most teeth form a

narrow rosette due to a missing expansion of the tip

of the rostrum.

5. Lateral margins of the rostrum gradually converge

rostrally.

6. An estimated 24 and 20 tooth positions in the upper

and the lower jaw, respectively.

7. Interalveolar space gradually increasing caudally,

alveolar diameter about constant until tooth position

13.

8. Teeth between the eighth and thirteenth tooth posi-

tions in upper and lower jaw with an almost

symmetrical interdigitation.

9. Height of the nasoantorbital fenestra approximately

22% that of its length and forming *24% of the total

skull length.
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10. Parietal with flat external face, dorsal margin of the

short median occipital process is deflected with a

triangular transversally convex dorsal face.

11. 13 trunk vertebrae.

12. Caudoventral margin of ischium concave.

While several of these features are not unique to the

described specimen their presence, when combined with

the other characters noted above, remains useful for the

identification of this genus. Only character 12 is unique for

Barbosania.

Description

Skull

The most apparent feature of the skull is the lack of any

median sagittal crest on the rostrum. Both the intermaxil-

lary region and the symphyseal area of the mandible had a

tall, sub-triangular cross-section with a sharp median keel.

In a rostral direction the ventral margin of the cranium is

directed craniodorsally from the tenth alveolus. This is also

true for the dorsal margin of the mandible although the

curvature begins level with the sixth mandibular tooth. The

second to seventh alveoli of the cranium counted from the

tip of the rostrum are therefore positioned dorsal to and

slightly lateral to those in the more caudal tooth positions.

The palate is orientated approximately 50–60� to the hor-

izontal plane in the premaxillary portion of the cranium

and is visible in lateral view, particularly by the sixth

alveoli. Accounting for the compaction to the rostral region

of the skull the premaxillary part of the palatine would

have formed a median keel protruding into the buccal

cavity.

Premaxilla

The premaxilla is well preserved but shows an impaction

groove that runs parallel to dorsal margin of the rostrum. It

extends from a position level with the 4th tooth position

until the 12th tooth socket. The rostral portion of the snout

remains undamaged and is sub-triangular in cross section.

A small discontinuous scar that may represent the remains

of the suture between the premaxilla and maxilla is visible

and extends to a point level with the caudal margin of the

fourth tooth. Further rostrally the suture becomes vague

and its exact termination cannot be reconstructed with

certainty. There is no lateral expansion of the rostrum and

the dorsal and ventral margins of the premaxilla converge

at a steep angle, *33.4� in lateral view. The rostrum is

therefore slender with a pointed termination. The maxillary

keel becomes blunt on the premaxillary part of the rostrum

and merges with its slender tip (Figs. 2, 3).

Fig. 2 Barbosania gracilirostris (MHNS/00/85) gen. et sp. nov.

Photograph (a) and (b) line tracing of the skull and surrounding

elements: dp deltopectoral crest, h humerus, j jugal, jar jaw

articulation, ld left dentary, m maxilla, n nasal, naof nasoantorbital

fenestra, ocd occipital condyle, or orbita, p parietal, pm premaxilla,

q quadrate, rap retroarticular process, rd right dentary, soc supraoc-

cipital crest. Scale equals 100 mm
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Maxilla

The maxilla extends caudally forming the majority of the

ventral margin of the cranium and the ventral border of the

nasoantorbital fenestra. The ventral margin of the bone is

straight but is deflected dorsally at an angle of about 10�
around the tenth tooth position. The caudoventral portion

of the bone is damaged and the compacta is missing. The

caudal extent of the maxilla and its relationship with the

jugal is therefore unclear.

Nasal

The nasal lies loose from its surrounding elements and is

complete with the exception of a small break in the cranial

portion of the bone. In its lateral aspect the bone shows its

maximum dorsoventral extension just dorsal to the articular

surface with the lacrimal while the rostral and caudal

processes of the nasal taper away from this point. The

rostral process of the bone extends ventral to the premaxilla

and forms *48% of the dorsal margin of the nasoantorbital

fenestra. Likely the caudal process of the premaxilla has

merged with the rostral process of the nasal. The caudal

process of the nasal is one-third the length of the rostral

process and displays a more pronounced convex ventral

margin. The bone margin is recurved just dorsal to the

caudoventral margin of the lacrimal articulation where it

would have acted as the articular surface for the rostro-

dorsal margin of the prefrontal. The articular surface on the

ventral margin of the nasal, where it would have articulated

with the lacrimal, is flat.

Prefrontal, frontal and parietal

These three bones form the caudodorsal roof of the skull

but are mostly embedded within the concretion. No suture

dividing the three elements can be identified. The dorsal

face of the parietal is transversely concave and is confluent

with the supraoccipital crest.

Jugal

The jugal is a triradiate bone that forms the caudal and

caudoventral margins of the nasoantorbital fenestra, the

cranioventral, caudoventral margins of the orbita and the

cranial border of the infratemporal fenestra. Although it

appears mostly intact in MNHS/00/85, the bone has been

displaced and rotated into the skull cavity such that only

the quadratojugal/postorbital and the lacrimal processes are

visible but broken. The maxillary process is buried in the

matrix. At the break the lacrimal process of the jugal is

teardrop shaped in cross-section and tapers towards its

caudal margin.

Supraoccipital

The prominent feature of this bone is the blunt median

supraoccipital crest that is elongated and triangular in lat-

eral view. It commences as a low ridge on the mid dorsal

margin of the foramen magnum and from there extends

dorsally, gradually increasing in both width and promi-

nence. At its dorsal extremity the supraoccipital crest forms

a caudoventrally inclined transversally convex face that is

cranially confluent with the parietal. Lateral to the supra-

occipital crest the supraoccipital is vertically concave while

the lateral margins of this bone are either broken or

obscured by sediment. The supraoccipital forms the dorsal

margin of the foramen magnum. A large oval pneumatic

foramen, 3 mm by 5 mm, perforates the caudolateral face

of the supraoccipital near the deepest point of the con-

cavity. A straight, medially serrated suture separates the

supraoccipital from the exocciptobasioccipital complex.

Fig. 3 Barbosania gracilirostris (MHNS/00/85) gen. et sp. nov.

Photographs of the rostral region of the skull in its lateral (a) and

dorsal (b) aspects where: c cranial tooth, m mandibular tooth, m-pm

?maxilla-premaxilla suture. White arrow denotes the pointed rostral

termination while the black arrow indicates an example of tooth

replacement. Scale equals 50 mm
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The suture runs from the middle of the lateral margin of the

foramen magnum dorsolaterally at an angle of about 20�
against the horizontal plane. On the ventromedial corner of

the supraoccipitale a foramen is visible.

Exoccipital, basioccipital and basisphenoid

These bones make a fused complex that forms the ventrolat-

eral and ventral margins of the foramen magnum. The fora-

men itself is sub-circular in outline, being slightly broader at

its base than dorsally. In lateral view the occipital condyle is

orientated caudoventrally at an angle of *40� against the

horizontal plane. The condyle is regularly rounded in its lat-

eral aspect and has an oval outline in caudal view. The vagus

foramen, which lies immediately lateroventrally to the

occipital condyle, is orientated dorsoventrally but continues as

a short ventrally directed sulcus. Directly ventral to the vagus

foramen the smooth and vertically concave basioccipital part

of the bone complex is exposed, forming the dorsolateral

margin of the posterior cranial fenestra. Ventral to the basi-

occipital flange a fragment of the basisphenoid is separated

from the latte by a smooth, ventrolaterally directed, shallow,

and sinusoid suture that merges with the ventral margin of the

posterior cranial fenestra.

The mandible

The dentary is straight with a constant height except in

places where compaction has distorted the bone. A short

but pronounced crest on the labial surface of the dentary,

forming the lateral margin of a midline groove, is visible

2–4 mm dorsal to the level of the tooth row. Rostrally, the

dentary is broken in such a way that the right lateral face is

mostly missing and the medial face of the left dentary is

exposed. The ventral part of the symphysis is eroded. On

the rostral face of the mandible, two small, slit-like

foramina, *3 mm in length, are observed between the first

tooth position and the median line. Cranial of the sixth

tooth position, the ventral surface of the dentary is

deflected upwards at an angle of *23� to the long axis of

the mandible. Here, the symphysis has formed as a rounded

keel suggesting that no sagittal crest was present.

No suture lines defining the angular, surangular or

articular are visible, suggesting that these elements may

have already fused together. The articular facet for the

quadrate forms as an extended, mediolaterally directed

oval depression. The retroarticular process is short, 15 mm

in length, and directed slightly caudoventrally.

Dentition

The number of alveoli present in the cranium and dentary is

uncertain due to a combination of poor preservation,

particularly about the middle portion of the skull, and the

position of the overlying right humerus. In the cranium 13

alveoli are present cranial to the right humerus and 8 poorly

preserved ones caudal to this. Two tooth positions are

estimated to be present below the humerus and another

tooth position likely was present in the caudal portion of

the tooth row where the compacta is missing. In total, a

minimum of 24 tooth positions are therefore reconstructed

for the cranium. As with the cranium, 13 mandibular tooth

positions are also preserved rostral to the overlying

humerus. A single tooth is visible adjacent to the humeral

head while 5 alveoli are visible caudally. One, or perhaps

two, tooth positions are likely obscured by damage or the

humerus. A minimum of 20 tooth positions are therefore

reconstructed for the mandible. The caudal-most alveolus

of the mandible is positioned 29 mm rostral to that of the

cranium. The three rostral-most teeth of the mandible are

completely preserved and show mesiolingual compression

and a slight mesial curvature. The crowns of first and third

mandibular teeth bear a finely striated enamel cap.

Replacement teeth are observed in the third alveolus of

the cranium as well as the first alveolus of the mandible,

where it is \29% in size of the active tooth (Fig. 3). The

fourth tooth of the cranium and the 11th of the mandible do

not completely fill their alveoli indicating that they have

not yet grown to their full size.

The first pair of teeth of the cranium are orientated ro-

stroventrally, while those of alveoli 2–5 are orientated

more rostrolaterally, as are alveoli 6 and 7 to a lesser

extent. Those teeth caudal to the seventh alveoli are

directed ventrally.

On the mandible the first tooth is inclined rostrodorsally

while the second and third are orientated rostrolaterally.

Caudal to these the teeth have a slight dorsolateral incli-

nation. A dentition pattern common in all ornithocheiroids

is seen, where the diameter of the alveoli increases cau-

dally until the fourth tooth, which is the largest. The fifth

tooth is smaller than the fourth and while the subsequent

tooth sockets (alveoli 5–11) are sub-equal in diameter they

increase slightly in size up to the ninth tooth position.

Caudal to the ninth tooth position the diameter appears to

decline. On the mandible the first alveolus is the largest and

the diameter of the subsequent alveoli decrease steadily.

The interalveolar spaces are gradually increasing from

rostrally to caudally, whereby the teeth from position 5

through 12 are straight and form a regular occlusion pattern

with an even spacing.

Vertebral column

The vertebral column is well preserved in ventral view but

missing the majority of the cervicals and terminal caudals.

In total 19 vertebrae are visible, corresponding to the
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caudal-most cervical (c9); 13 dorsals (d1–13); the cranial-

most sacral (sc1), the rest of the sacrum being covered by

sediment and the puboischiadic plate; and 4 caudals. An

additional caudal is preserved as a fragment. Within the

vertebral column four clearly defined associations are

identified: (1) the neck, consisting of only a single disar-

ticulated cervical (c9); (2) the ‘‘notarium’’, comprised of

the first 5 dorsals; (3) the free dorsals and sacrals, a single

uninterrupted unit comprised of dorsal vertebrae 6–13 and

the first sacral; (4) the four caudal vertebrae (Fig. 4).

Within each of the above divisions the vertebrae remain in

close association, however, no fusion has occurred between

the vertebral bodies. Where the transverse processes are

visible they show a depression on their ventral face. In the

three cranial-most vertebrae this penetrates the base of the

transverse processes deeply and may represent the open-

ings of pneumatic foramina. In d1 and 2 they are associated

with 2 or 1 additional small foramina, respectively.

The last cervical (c9) is similar in appearance to the

succeeding dorsals but marginally larger in size (Table 1).

It lies slightly out of articulation with the first dorsal, the

gap having been filled with sediment. On the ventral sur-

face of the transverse process a single large, transverse,

oval foramen transversarium pierces the bone and occupies

most of the basal region of the transverse process. The

corpus itself is pierced by two small oval foramina and

between these and the proximal portion of the transverse

process seven more are visible. The lateral face of the body

of c9 as well as d1 and 2 bears longitudinally oval pleu-

rocoels that contain numerous foramina and pits.

On each of the first five dorsals the transverse processes

are large, with those of the first dorsal being sub-equal in

iI

iI

Fig. 4 Barbosania
gracilirostris (MHNS/00/85)

gen. et sp. nov. Line tracing of

the axial skeleton: c cervical

vertebrae co coracoid, d dorsal

vertebrae, il ilium, pu pubis, sac
sacral vertebrae, sc scapula.

Scale equals 100 mm

Table 1 Selected long bone lengths of Barbosania gracilirostris
(MHNS/00/85) gen. et sp. nov.

Element Length (mm)

Skull

Skull (occipital condyle—snout) 391

NAOF 96a

Mandible (articulation to rostral tip) 330

Axial column

Ninth cervical 13

Notarium 59

Body length 209.5

Long bones

Humerus (right/left) 155/162

Ulna (right/left) 223/[111

Carpus width (right) 58

Pteroid (left) 129

mc III 137

Metacarpal IV (right/left) 155/156

Digits and phalanges (right)

d1 p1 29

d1 u1 14

d2 p1 20

d2 p2 29.5

d2 u1 15

d3 p1 x

d3 p2 3

d3 p3 23

d3 u1 15

d4 p1 (right/left) [191.9/[151.7

Femur (right/left) 127/43a

a Denotes a value based on an estimation or reconstruction
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size to that of ninth cervical. The shortest transverse pro-

cess belongs to the second dorsal although these increase in

both length and distal width for subsequent vertebrae. With

the single exception of the fifth dorsal the transverse pro-

cesses of c9–d4 are directed slightly caudolaterally. The

distal half of the transverse process of the fifth dorsal,

however, curves cranially again so that its tip is directed

laterally. The vertebrae remain of sub-equal length and

intervertebral articulations are unfused. As such these

vertebrae have not yet fully formed a mature notarium. A

single, large but unfused rib lies adjacent to the transverse

process of the second dorsal. The preserved length of the

rib is 79 mm and it displays a shallow curvature. The

capitulum and tuberculum are damaged but have a spacing

of 10 mm, which corresponds to the lateral extension of the

adjacent transverse process.

The third vertebral section consists of d6–d13 and the first

sacral as a single articulated unit. Despite heavy damage it is

clear that the intervertebral joints are open. The transverse

processes of these dorsals, of which only the bases are visi-

ble, are again directed slightly caudolaterally with two

exceptions. The transverse processes of the 12th dorsal are

orientated laterally while those of the 13th dorsal are

recurved and point craniolaterally. For both the 12th and 13th

dorsals the lateral margins of the transverse processes con-

verge, but without meeting, and terminate close to the cranial

process of the ilium. There is no evidence for a cranially

expanded synsacrum. The 13th dorsal and the first sacral are

clearly distinct with the sacral possessing large sacral ribs. In

cranial view the dorsal margin of these ribs is almost straight

while the ventral margin curves ventrolaterally causing the

bone to expand to twice its basal thickness. The lateral

margin is divided into two articular surfaces standing at 90�
to each other for the pubis and ilium. These latter elements

are slightly displaced and sediment infilling between the

sacrals, pubis, and ilium indicate that they are unfused. Two

faint sutures are visible between the vertebral bodies and the

sacral ribs suggesting that fusion has neared completion. The

remainder of the sacrals are buried beneath both sediment

and the right ischiopubic complex.

The final vertebral section consists of the caudal

vertebrae. These are preserved together but have been

displaced slightly so that they are no longer articulated.

The majority are observed in their ventral aspect, how-

ever, the first visible caudal has rotated so that it is now

observed in ventrolateral view. The neural spine is

positioned cranially on the bone and occupies approxi-

mately 2/3rds the length of the corpora. It is not certain

that this represents the first vertebrae of the caudal ser-

ies, however, comparisons with other ornithocheiroids

(e.g. Kellner and Tomida 2000) indicate that it must be

one of the cranially positioned vertebrae due to its

prominent neural spine and short body.

Pectoral girdle

The remains of the left scapula and coracoid are seen in

caudal view. They are unfused and lie close to their natural

articulation. The shaft of the coracoid expands towards the

pars glenoidalis, where it is twice as wide as in the middle

of the shaft. The ventral half of the glenoid fossa is visible

on the right coracoid. A single robust process is viewed on

the caudolateral margin of the bone along with a deep scar

located immediately ventral to it, perhaps corresponding to

the insertion points of m. coracobrachialis (Bennett

2003a). The shaft is blade-like and offset against the body

at an angle of 25�. The medial furca for the articulation

with the sternum has broken away on both coracoids.

Humerus

Both humeri are present with the left observed in ventral

view and the right in its caudoventral aspect. They are typical

of ornithocheiroid pterosaurs and preserve the characteristic

short (34% of the humeral shaft length), warped, deltopec-

toral crest with a sub-triangular margin. The head of the

humerus is kidney shaped in its medial aspect and measures

28.5 mm by 16.5 mm. The articular surface is convex. A

deep concavity marks the ventral margin of the humerus

adjacent to the articular head, between the caudal tuberosity

and the deltopectoral crest. In caudal view the humeral head

is deflected dorsally in relation to the main humeral shaft at

an angle of about 10�. It is impossible to comment on the

extent of the caudal tuberosity because this has broken off

from the right humerus and on the left it is mostly hidden by

sediment. The deltopectoral crest begins as a thin flange

proximally on the base of the humeral neck where it is ori-

entated ventrolaterally. From cranial view the flange thick-

ens distally by forming a pronounced convex curvature.

Here, the cranial margin of the crest curves ventrally and

reaches its maximum thickness. A small scar is visible on the

ventral surface of the left deltopectoral crest as a rough

depression where it runs a short distance of *6 mm towards

the proximal portion of the humerus. On the shaft of the

humerus a large solitary scar is visible on the caudoventral

margin of the humerus and extends for a distance of 21 mm.

This would represent the insertion point for the medial head

of m. triceps (Bennett 2003a) or m. latissimus dorsi (Bonde

and Christiansen 2003). An isolated bone fragment lying off

the distal margin of the right humerus, adjacent to a large

oval excavation of the distal margin of the bone, is inter-

preted as an unfused epiphysis.

Radius and ulna

The radii/ulnae are preserved in their ventral aspects where

the right has been displaced so that it now overlies the
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proximal half of the left. Much of the bone surface has

been damaged and because of some clumsy restoration

attempts during its initial preparation few details are

observed. A large concave recess on the proximal articu-

lation surface of the right ulna indicates that the now

missing epiphysis was unfused. Additionally a small ridge

is viewed on the ventral side of the bone. While this was

probably an extensive feature only the most distal portion

is visible as the compacta is missing, revealing a calcite-

filled core.

Carpals

The carpal regions of both forearms are well preserved

in ventral view and between them show both the preaxial

carpal and the pteroid bone. The two carpal blocks lie

close to their natural positions but in both cases the

distal syncarpal has rotated against the proximal one and

now lies in disarticulation. A thin suture runs across both

proximal and distal syncarpals indicating that fusion of

the carpals is incomplete, however, the lateral part of the

suture on the proximal syncarpal is partially closed. The

distal syncarpal is semi-lunate in outline with a strong

convex curvature along its proximal margin. The distal

margin of the proximal syncarpal is concave to an equal

degree, matching its counterpart on the distal syncarpal.

A number of pneumatic foramina are visible on the

carpals. The right proximal syncarpal is observed in

ventral, cranial and craniolateral orientations where one

oval foramen is located on the caudal portion of the

ventral surface while another spans the cranial and distal

surfaces towards the ventral margin of the bone. Only a

single large depression is observed on the left distal

syncarpal, located on the proximal articular face and

occupying the cranial portion of the bone.

The right preaxial carpal has been displaced distally

from the carpus, is partially overlain by metacarpal IV and

has rotated so that it is now visible in lateral view. A large

fovea filled with sediment occupies the majority of the

craniodorsal surface of the bone.

The articular surface of the left pteroid is thin and is

transversely compressed. Moving medially, the strongly

curved neck expands to about twice its diameter at the

articular end. The shaft, which is directed towards the

body stands at an angle of about 75� to the neck. The

distal half of the shaft curves slightly cranially. Restoring

the pteroid to its natural position this sigmoid curve

would have directed the medial end of the pteroid

slightly cranially and extended the propatagium to the

base of the neck. The right pteroid bone is visible for a

total length of 129 mm before it is obscured by sediment

and by the right ulna.

Metacarpalia

The fourth metacarpal is sub-equal in length to the humerus

(Table 1). The bone is widest at its proximal articulation

face with the shaft of the bone becoming gradually nar-

rower distally and terminates in a double roller joint with

the wing finger. The ventral condyle is directed only

slightly ventrally and extends further onto the cranial sur-

face of fourth metacarpal than the dorsal condyle (Fig. 5).

The dorsal condyle slants steeply dorsally at an angle of

*30� against the long axis of metacarpal IV, creating a

slightly oblique sulcus. A large depression at the cranial

termination of the dorsal condyle was presumably for the

insertion of muscles or ligaments associated with the first

three metacarpalia. Arising from the proximal articulation

a short dorsoventrally compressed ridge is observed that

extends for *16% of the metacarpal length distally along

the cranioventral margin of the bone.

An isolated metacarpal (mc 1) is preserved along the

dorsal margin of the cranial face of the fourth metacarpal.

This bears a bulbous termination at both its proximal and

distal ends, which lie adjacent to the distal syncarpal and

the first three digits, respectively, and indicates that the

shaft of the metacarpal would have extended the full dis-

tance from the digits to the carpus. Of the second meta-

carpal only the distal portion is visible, which shows a

slight expansion towards its articular face. As is seen on the

left metacarpal IV the ventral roller develops its strongest

convexity at its craniodistal margin. The caudal margin is

nearly straight but curves sharply caudally in its proximal-

most fifth where it is off set from the shaft by a notch.

Cranially the roller merges with the shaft in an even con-

cavity. The ventral face of the roller is slightly depressed

and shows a circumferential rugosity that accommodated

the capsular ligaments of the joint.

Digits

The digits of both arms are well preserved although with

the exception of the unguals of the right manus, few of

these bones are preserved in their natural articulations. As

in all pterosaurs the phalangeal formula is 2-3-4-4 for digits

I–IV with each of the first three digits terminating in a short

cranially curving ungual (Fig. 5). Each ungual bears a deep

sulcus that extends almost the whole length from the tip to

the base and covers approximately a third of the bone’s

surface. The tip of each ungual is pointed and strongly

curved in palmar direction. The individual phalanges are

about twice as broad as the shaft at their proximal articu-

lations and narrow distally as the cranial margin of the

bone curves caudally for a short distance before the shaft

adopts a uniform diameter for the remainder of its length.

R. A. Elgin, E. Frey



A pronounced ridge runs along most of the length of the

cranial surface of digit II phalanx 2 presumably for the

attachment of flexor muscles.

Wing finger (digit 4)

The extensor tendon process is preserved in situ for both

left and right wing fingers. In places the suture with the

corpus of the first phalanx is open but some closure has

occurred. On the left first wing finger phalanx (wph 1) this

suture is laterally discontinuous but extends approximately

2/3rds across the ventral surface of wph 1. On the right wph

1 the extensor tendon process is exposed in both ventral

and lateral aspect. While the suture is still fully open

against the proximal articular surface of wph 1 it does not

extend onto the ventral surface.

The shaft of wph 1 is typical of other pterosaurs in that

its width initially converges towards the middle of the shaft

before expanding again to form the distal articulation sur-

face. A fragment of bone containing a distal articular sur-

face adjacent to the femur is interpreted as that of the third

phalanx of the right wing.

Pelvic girdle

All the individual elements of the pelvic girdle remain

unfused. In cranial view this is indicated by open sutures

between the ilium and pubis, as well as between the sacral

ribs and the ilium. In lateral view a large gap separates the

caudoventral margin of the pubis from the cranioventral

margin of the ischium. An open suture between the two

elements extends dorsally until the ventral margin of the

acetabulum where it is lost due to poor preservation and

obstruction by the femur.

Due to damage and sediment cover only a small portion

of the left ischiopubis is useful for describing the external

morphology. In cranial view the pubis is a medially curv-

ing, transversally compressed bone that is thickest at its

articulation with the ilium and ischium, forming the cranial

margin of the acetabulum. Moving ventrally the pubis is

twisted so that the ventral blade is aligned in a craniolateral

direction. In lateral view the cranial margin of the left pubis

is slightly concave while that of the left is indeterminate

due to damage to the compacta. The ventromedial margin

of the pubis is straight. The high oval obturator foramen

separates the pubis from the ischium.

In lateral view, the cranial margin of the ischium is

strongly concave for much of its length, while the caudal

margin is shallowly concave, constricting the width of

the bone. The ventral margin of the ischium is straight

while the cranioventral margin is convex. The caudo-

ventral margin of the bone, however, is strongly con-

cave. The ventral edge of the right ischium lies adjacent

to the preserved ventral margin of the left, which has

broken and is *5 mm shorter than that of the right.

Sediment infill between the pubis and its articular sur-

face on the first sacral suggest that the left ischiopubic

plate may have been slightly displaced laterally, likely

due to the collapsing right plate. Restoring the pubis and

ischium to their original positions indicates that their

ventral margins would have sat close to the midline of

the body but would have been sufficiently distant from

the opposite elements to prevent the formation of a

symphysis.
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Fig. 5 Barbosania
gracilirostris (MHNS/00/85)

gen. et sp. nov. Line tracing

centred on the fourth

metacarpophalangeal joint

where: d digit; d-p digit and

phalanx; mc metacarpal,

u ungula, wph wing finger

phalanx (d4). Arrow indicates a

partially open suture between

the first wing winger phalanx

and the extensor tendon process.

Scale equals 50 mm
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Femur

The femoral head is offset against the shaft of the femur at

an angle of approximately 1538. The greater trochanter is

preserved as a weakly developed ridge along the lateral and

dorsal margins of the bone while a large scar, approxi-

mately 9 mm in length, is located directly ventral to this.

Discussion

Systematic palaeontology

Specimen MNHS/00/85 is placed within the Ornithochei-

roidea by preserving a notarium, a humerus with a warped,

sub-triangular deltopectoral crest, an ornithocheiroid car-

pus, and a reduction of the metacarpalia where only one of

the first three would have made contact the distal face of

the carpus (see Unwin 2003). It is distinguished from the

Istiodactylidae (e.g. Anders and Ji 2006; Wang et al. 2005)

on the basis of a relatively short nasoantorbital fenestra,

making up only *24% of the skull length, a rostrum with

triangular cross-section, and narrow, elongated teeth that

extend caudally for more than 50% the length of the skull.

The specimen therefore ranks within the Ornithocheiridae

where it is referred to a new genus and species.

The cranium and mandible of Barbosania gracilirostris

clearly lack a median sagittal crest and as such the

described specimen is considered distinct from those or-

nithocheirids known to possess large rostral crests e.g.

Anhanguera, Coloborhynchus. While the absence of a crest

may perhaps be considered an insufficient reason for dis-

tinguishing MNHS/00/85, due to ontogenetic variability or

sexual dimorphism, it differs from specimens of Colo-

borhynchus by the lack of a palate turned 90� at the tip of

the rostrum, two small teeth positioned on the rostral face

of the skull, and a robust lateral expansion of the rostrum.

Despite a similar appearance to specimens of Anhanguera,

which also developed a more pointed rostrum, B. gracili-

rostris does not posses parietal crest, considered a syna-

pomorphy of the genus (Kellner and Tomida 2000).

Barbosania gracilirostris shares the absence of a med-

ian sagittal crest with several other taxa including: Anh-

anguera fittoni (Owen 1859), Brasileodactylus araripensis

(Kellner 1984; Veldmeijer et al. 2009), Coloborhynchus

sedgwickii (Owen 1859), Cearadactylus (Leonardi and

Borgomanero 1985; Dalla Vecchia 1993), and Ludodacty-

lus sibbicki (Frey et al. 2003). A general morphological

comparison with these taxa is therefore required. Anhan-

guera fittoni is superficially similar to MHNS/00/85 and

also lacks a lateral rostral expansion but the specimen is

limited to an isolated rostral fragment and a full compari-

son of the two is therefore impossible. Owen (1859)

founded the species due to its clear distinction with Colo-

borhynchus sedgwickii where the diagnosis was restricted

to the interalveolar spacing of the first three tooth sockets,

the lesser degree of the rostral expansion, and the presence

of a shallow longitudinal groove on the palate, three

characters that are no longer considered distinct. Differ-

ences between the rostral portions of the skull of A. fittoni

and B. gracilirostris are limited to a slightly more rounded

rostral termination in A. fittoni where the largest alveolus is

the fourth, rather than the third as in MNHS/00/85. The

pattern of the interalveolar spaces also differs between the

two specimens where the interalveolar distance increases

rapidly caudal to the 8th alveolus in A. fittoni, while in

MNHS/00/85 this occurs caudal to the 13th. Without

clearer indication of the diagnostic features of A. fittoni and

a better understanding of the relationships between Bra-

zilian and English ornithocheirid pterosaurs, the limited

preservation of this specimen prevents any further

consideration.

Coloborhynchus sedgwickii is distinguished from the

MNHS/00/85 by possessing a flat, vertically orientated,

triangular shaped rostral termination, which bears two

rostrally directed teeth.

Ludodactylus sibbicki bears a blade-like, caudally

directed parietooccipital crest similar to Pteranodon lon-

giceps (Frey et al. 2003) and as such is clearly distinct from

MNHS/00/85, where the supraoccipital process is deflected

and the caudal face of the parietal is flat.

Cearadactylus atrox may have lacked a rostral crest,

however, the dorsal part of the skull terminates with the

edge of the concretion. The dorsal aspect of the specimen

has neither been described nor depicted, and therefore the

presence or absence of a crest remains doubtful. Further-

more, Cearadactylus atrox is characterized by notch in the

premaxillomaxillary transition, which is missing in MNHS/

00/85, and the dentition is different in both count and

arrangement. A second specimen ‘‘C.’’ ligabuei is also

distinct from MNHS/00/85 by a thick and robust rostrum.

This has a rounded termination with larger and more pro-

nounced premaxillary tooth sockets relative to the more

caudally located alveoli, and a pronounced lateral expan-

sion beginning level with the fourth alveolus.

The general morphology of the described specimen is

most similar to that of Brasileodactylus. Although the

taxonomic validity of this genus has been questioned by

several authors, such interpretations have been challenged

by Kellner and Tomida (2000) and Veldmeijer et al. (2009)

who redefined the synapomorphies or better diagnostic

features of Brasileodactylus as:

1. A slight expansion of the rostrum.

2. A deep groove on the dorsal surface of the mandible

extending to the rostral margin of the dentary.
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3. The presence of paired side branches off the primary

dentary groove.

4. The rostral, rostrolateral, and lateral orientation of the

first three alveoli of the mandible.

The diagnostic value of several of these characters

remain questionable because the position and extent of the

lateral expansion of the rostrum is not constant even

between those specimens attributed to the genus, Kellner

and Tomida (2000) reported this as beginning between the

third and fourth alveolus of the mandible in MN 4804-V,

while Veldmeijer et al. (2009) noted that it occurred

between the fourth and fifth alveolus in SMNS 55414.

Furthermore, the size of the expansion is not sufficiently

distinct from specimens of Anhanguera and is also likely to

be linked to ontogenetic age.

Likewise the presence of laterally directed branches of

the median mandibular sulcus is also not unique to

Brasileodactylus but is present in the large crested

specimens of Coloborhynchus (SMNK PAL 2302), where

they are restricted to the rostral-most part of the dentary,

and in a skull of Anhanguera (SMNK PAL 1281). The

median mandibular sulcus of SMNK PAL 2302 termi-

nates 7.9 mm caudal to the rostral margin of the bone

while in the latter specimen it extends to the rostral

margin, bifurcating at the very tip of the rostrum. The

role of these mandibular sulci is unknown, but likely

they represent canals for blood and nervous supply the

buccal lining of the mandibular rostrum and should not

be considered unique to any particular genus. The final

character, however, the positioning of the first mandib-

ular alveolus on the rostral face of the dentary, is

regarded as a valid character for diagnosis.

Regardless of the issues noted above two of the cited

characters cannot be observed due to the occluded resting

position of the upper and lower jaws (characters 2, 3),

while the premaxillary part of the rostum is gradually

converging and does not show any lateral expansion

(character 1). Finally, the rostral-most pair of mandibular

teeth is positioned rostrodorsally and not rostrally (char-

acter 2) and as such MNHS/00/85 fails to meet any of these

diagnostic features of Veldmeijer et al. (2009). MNHS/00/

85 must therefore be distinguished from Brasileodactylus.

Several isolated rostral fragments known from the Nova

Olinda Member of the Crato Formation are superficially

similar in appearance to B. gracilirostris, in that they lack a

medial crest and possess a pointed rostral termination in

lateral view (Unwin and Martill 2007, pp. 492–493; Sayão

and Kellner 2000). Although these specimens have been

tentatively referred to the genus Brasileodactylus, the first

pair of alveoli on the mandible appear to be orientated

rostrodorsally as in MNHS/00/85 and thus should be re-

investigated based on the data presented here.

Dentition

The estimated number of teeth per half jaw in MHNS/00/

85 are [24 and [20 in the upper and lower jaws, respec-

tively, and is therefore similar to that of Coloborhynchus.

piscator (Kellner and Tomida 2000; 25 upper and 18–19

lower). Given that these are minimum estimates the den-

tition number is distinct from several other ornithocheirid

specimens e.g. C. robustus (*18, lower jaw), A. santanae

(20, upper jaw) and Ornithocheirus mesembrinus with 13

and 11 alveoli in the upper and lower jaws, respectively.

The largest tooth in B. gracilirostris is the fourth which

also holds true for Cearadactylus araripensis, Anhanguera

fittoni, Anhanguera blitterdorffi, Anganguera santanae.

However, the second largest tooth caudal to this in the

above taxa is the eighth rather than the ninth for MHNS/00/

85. In other taxa the largest tooth is either the second

(Brasileodactylus SMNS 55414, Veldmeijer et al. 2009) or

the third (Coloborhynchus piscator; Coloborhynchus

clavirostris; Coloborhynchus robustus; Anahanguera bli-

tterdorffi) and the second largest tooth varies between the

eighth and the tenth.

Figure 6 records the diameter of the premaxillomaxil-

lary and mandibular alveoli and interalveolar spaces for a

number of ornithocheirid pterosaurs. Several taxa e.g.

Coloborhynchus and Ornithocheirus are clearly distinct

from Anhanguera, Brasileodactylus and Ludodactylus with

regard to the dentition pattern. Although the general pat-

terns observed in these latter taxa are similar, there are a

number of observations to be discussed. The cranial

interalveolar space pattern of MNHS/00/85 is most similar

to that of Brasileodactylus indet. (AMNH 24444) that

differs from other Brasileodactylus specimens where the

interalveolar space rapidly increases caudal to the sixth or

seventh alveolus. The interalveolar space patterns of the

two unidentified Brasileodactylus specimens AMNH

24444 and BSP 191 I 27 are so distinct that they must

represent either different species or that a large range of

dentition patterns existed for this genus. No specimen

shows an exact match to the pattern observed in Ludo-

dactylus and it is thus not possible to comment on the

possibility that isolated and crestless rostral fragments also

known from the Brazilian deposits may be conspecific.

Postcranium

The general morphology of the ornithocheirid postcranial

skeleton is almost identical between species and few fea-

tures are useful for differential diagnostics. The postcranial

remains of crestless specimens are rare, however, two are

known (AMNH 24444 and BSP 191 I 27). The former of

these is still under preparation and therefore little
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information is available (Veldmeijer et al. 2009) making

BSP 191 I 27 the only comparable specimen. MNHS/00/85

and BSP 191 I 27 share only a limited number of elements

including the cervical and dorsal vertebrae, the humerus,

and the pubis. The majority of these elements are almost

identical in their morphology and as such few differences

can be observed although a single pneumatic foramen on

the ventral face of the transverse process of the ninth cer-

vical is significantly smaller in MNHS/00/85 while in BSP

191 I 27 it encompasses the majority of the bone surface.

The transverse processes of the fifth dorsal are significantly

more elongated in MNHS/00/85, where the transverse

processes are low on the neural arch, which apparently

reaches ventrally onto the lateral face of the respective

vertebral dorsoventrally compress corpus. The number of

dorsal vertebrae present in MNHS/00/85 is 13, suggesting

that variable counts of vertebrae existed within the Or-

nithocheiridae, where Coloborhynchus is known to have

only 12 (Veldmeijer 2003, 2006) while Anhanguera

(AMNH 22555) preserves 13.

The ischium of BSP 191 I 27 and MHNS/00/85 differ in

the concavity of the cranial margin, which is more pro-

nounced in the former and terminates at a relatively more

ventral position on the bone. The caudal margin in BSP

191 I 27 it is almost straight whereas in MNHS/00/85 it is

concave. The caudoventral margin of the bone is MNHS/

00/85 is strongly concave, which is contrasted against other

ornithocheiroids, where the entire caudal margin of the

ischium is gently convex (Fig. 7).

Ontogenetic maturity

While elements of the cranium appear to suture very early

in ontogeny (Kellner and Tomida 2000) all ornithochei-

roids recovered from the Romualdo Member of the Santana

Formation are considered to be ontogenetically immature

based on the lack of fusion in the postcranial skeleton.

Such findings are contrary to ornithocheiroids from the

Nova Olinda Member of the Crato Formation that preserve

a more mature state of suturing e.g. Arthurdactylus

Fig. 6 Comparison of the

interalveolar spacing in selected

taxa where: a cranium, closed
diamond, Ornithocheirus
mesembrinus (BSP 1987 I 46);

grey diamond, Barbosania
gracilirostris (MNHS/00/85);

open diamond, Anhanguera sp.

(SMNK PAL 1281); closed
triangle, Brasileodactylus
araripensis (MN 4804-V); open
triangle, Brasileodactylus
araripensis (MN 4797-V);

b mandible, closed triangle,

Ludodactylus sibbicki, (SMNK

PAL 3828); grey triangle,

Brasileodactylus sp. (BSP 191 I

27); open triangle,

Brasileodactylus sp. (AMNH

24444); closed diamond,

Ornithocheirus mesembrinus,

(BSP 1987 I 46); grey diamond,

Barbosania gracilirostris
(MNHS/00/85); open diamond,

Coloborhynchus robustus
(SMNK PAL 2302)
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conandoylei (Frey and Martill 1994) and azhdarchoids of

the Romulado Member, e.g. SMNK-PAL 6607, a putative

azhdarchoid where tendons and ligaments have mineral-

ized along the lateral margin of the supraneural plate.

While little is known about the condition of the skull of

MNHS/00/85 except that the premaxillomaxillary suture

has mostly closed, the specimen must also be considered

immature because the thoracic ribs have not fused to the

transverse processes, the scapula and coracoid lie apart, the

epiphyseal gap of the humerus is open, and large open

sutures are visible between the elements of the pelvic gir-

dle. In contrast to other ornithocheiroids from the Santana

Formation (e.g. SMNK PAL 1133), MNHS/00/85 has

partially closed sutures between the carpals and the

extensor tendon process to the cranioproximal face of the

first wing finger phalanx. As the latter of these is consid-

ered an indicator of late ontogeny in pterosaurs (Bennett

1992; Frey and Martill 1994, 1998; Kellner and Tomida

2000), it is unusual to observe this in an otherwise mor-

phologically immature skeleton. The specimen is therefore

considered as having died in a more advanced ontogenetic

state than other complete Santana pterosaurs (e.g. A.

santanae; C. piscator) and indicates either the onset of late

fusing features at a relatively small size (i.e. dwarfism) or a

significant deviation from the previously observed pattern

of suture development in ornithocheirids.

Comments on the cranial crest

The cranial crest has been associated with a wide variety of

roles including thermoregulation (Kellner and Campos

2002), an aerodynamic rudder and/or counterbalance

(Bramwell and Whitfield 1974), a means to stabilise the

head during prey capture (Veldmeijer et al. 2006), or a

sexual display. The large variety that exists within the size,

shape and position of the crest across the Pterosauria and

the differences between closely related taxa argue strongly

in favour of a sexually selected trait, a position reinforced

by the appearance of sexually dimorphic crests in Pteran-

odon (Bennett 1992) and its strong allometric growth

(Tomkins et al. 2010).

The crest as a diagnostically useful feature is problem-

atic as the degree of intraspecific variation is unknown in

pterosaurs, while the size, shape and position of the crest

are also likely to change during ontogeny (Martill and

Naish 2006) and must be considered with respect to the

morphological maturity of the specimen. Likewise the

differences between male and female animals are uncer-

tain; while the crest of putative female specimens of

Pteranodon are smaller than those of their male counter-

parts they are nonetheless present (Bennett 1992, 2001),

but the exaggerated crest of Nyctosaurus appears to be

present only beyond a specific point in their development

A  B  C D

E F  G

Fig. 7 Comparison of the pelvic plate in selected ornithocheiroid

pterosaurs. a Right puboischiadic plate of Barbosania gracilirostris
gen. et sp. nov; b left puboischiadic plate of B. gracilirostris, clearly

showing the suture between the pubis and ischium; c Brasileodactylus,

left ischium (BSP 191 I 27, Veldmeijer et al. 2009); d Coloborhynchus

piscator (NSM-PV 19892, Kellner and Tomida 2000); e AMNH

22569 (Bennett 1990); f Arthurdactylus conandoylei (SMNK PAL

1132, Frey and Martill 1994); g Coloborhynchus speilbergi (RGM

401880)
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(Bennett 2003b). It is this uncertainty that prevents a

consensus of whether specimens distinguished almost

exclusively by the absence of a crest should be regarded as

sexual morphs of a single species (e.g. Colobrhynchus

sedgwickii and C. capito, Unwin 2001). Within the Or-

nithocheiridae, however, a number of ontogenetically

immature specimens are known to possess a well-devel-

oped median sagittal crest (e.g. C. piscator, Santana-

dactylus, AMNH 22555) suggesting that this feature

formed relatively early in ontogeny. The absence of the

crest in MHNS/00/85 should therefore not be considered a

product of its morphologically immature status, particu-

larly considering the partial fusion of the extensor tendon

process to the first wing finger phalanx.

The lack of a rostral median crest in MNHS/00/85 is

aligned with another feature, a caudoventrally deflected

supraoccipital process combined with a lack of a short

parietal crest that characterizes the skull of other orni-

thocheirids e.g., Anhanguera blittersdorffi. The narrow and

slender rostrum of MNHS/00/85 could probably be oper-

ated with less muscular power than in Anhanguera, in

which the crest added to the weight of the rostum with a

long lever action on the occipitoatlantical articulation. The

same holds true for the cervicooccipital musculature, which

in MNHS/00/85 had a relatively smaller momentum to

handle compared with a similar sized, crested species. This

would explain the small supraoccipital process.

As the cranial crest appears to develop relatively early

during ontogeny and with no evidence to suggest that

putative females should be regarded as completely crestless

the lack of a rostral and dentary median crest in MNHS/00/

85 is argued to be regarded as a genuine and diagnostic

character. Veldmeijer et al. (2009) previously argued that

in the absence of additional specimens, or until more

information becomes available, crestless specimens must

be regarded as separate taxa rather than juvenile members

of pre-established genera. We follow them in this respect.

Conclusions

Barbosania gracilirostris represents the most complete

skeleton of a crestless ornithocheirid known from the

Santana Formation of NE Brazil and is distinguished from

the morphologically similar Brasileodactylus by the ro-

strodorsal position of the first mandibular alveoli. Although

they are also not observed in the described specimen, the

remaining apomorphies listed for Brasileodactylus are

dubious, because the size and position of the rostral

expansion is variable and may itself develop later in

ontogeny with the appearance of larger teeth and alveoli.

The appearance of a long median sulcus and the presence

of paired lateral branches in Anhanguera (SMNK PAL

1281) and Coloborhynchus (SMNK PAL 2303) also cast

sufficient doubt on the diagnostic use of these features.

MHNS/00/85 shares 13 dorsal vertebrae with Anhangu-

era (AMNH 22555), deviating from the 12 dorsal conditions

observed in other derived pterodactyloid pterosaurs. A brief

comparison of the interalveolar spaces between the cranial

alveoli finds two patterns within specimens assigned to

Brasileodactylus where BSP 191 I 27 differs from AMNH

22444 and MHNS/00/85 by a significant increase of the

interalveolar spacing caudal to the eighth alveolus. MHNS/

00/85 strongly suggests that the absence of the cranial crest is

a genuine character rather than an ontogenetic feature due to

the advanced state of skeletal fusion relative to other

immature, crested pterosaurs from the same locality.

Several specimens that have been possibly referred to

Brasileodactylus but lack a rostrally positioned first man-

dibular pair of alveoli might instead be considered as B.

gracilirostris (e.g. Unwin and Martill 2007, pp. 492–493;

Sayão and Kellner 2000).
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A new specimen of the azhdarchoid pterosaur Tapejara wellnhoferi
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A new specimen of the Early Cretaceous azhdarchoid Tapejara wellnhoferi is described from the Romualdo Member of the
Santana Formation, NE Brazil, providing the first detailed account of the postcranial skeleton. Although limited in its
preservation, the osteology is typical of other azhdarchoid pterosaurs from these deposits and represents a juvenile animal
with a relatively small wing span of ,1.5m. The ratios of the pedal elements are identical to those noted for larger,
indeterminate azhdarchoids of the Nova Olinda Member of the Crato Formation, where the unguals of the pes are greatly
enlarged relative to those of the ornithocheiroids that co-inhabited the Santana lagoon. The ratios of these elements suggest
that, as part of a larger suite of characters, these animals were likely better adapted for life on the ground than their
ornithocheiroid relatives.
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Introduction

The Early Cretaceous azhdarchoid Tapejara wellnhoferi is

well represented by several excellent cranial examples

recovered from the Romualdo Member of the Santana

Formation, NE Brazil (AMNH 24440, Wellnhofer and

Kellner 1991; MN 6595-V, Kellner 1989; MCT 1500-R,

Kellner 1996; SAO 12891, Wellnhofer and Kellner 1991;

SMNK PAL 1137, personal observation, RAE). In spite of

this, specimens preserving an association between the

cranial and postcranial elements are rare, where the skull

appears to have detached from the body early in the decay

process and settled separate from the torso or wings

(Unwin and Martill 2007). Although more recent

acquisitions (i.e. SMNK PAL 1137 and IMNH 1053)

preserve significant portions of the postcranial skeleton,

and may yet provide a more robust diagnosis based on

non-cranial characters, this material remains to be

formally published. Herein, a new specimen of Tapejara

wellnhoferi that preserves elements of both the cranial and

postcranial skeleton is figured and formally described. The

material is listed under the collection number of SMNK

PAL 3986.

Description

Preservation and provenance

The fossil was unearthed from the concretion-bearing unit

within the Chapata do Araripe, NE Brazil, commonly

referred to as Romualdo Member of the Santana

Formation (e.g. Kellner and Tomida 2000; Martill 2007;

but see Neumann and Cabrera 1999 for an alternative

stratigraphical framework), and deposited during the Early

Cretaceous, Albian (e.g. Pons et al. 1990, 1996). This

fossil is preserved on a single split concretion, typical of

fossils unearthed from this unit, and preserves the remains

of two isolated cranial elements (jugal and quadrate), the

mandible, two cervical vertebrae, the radii and ulnae,

metacarpals, the first wing finger phalanges, in addition to

three metatarsals and six phalanges of the first four digits

of the left pes (Figure 1). Only digit I is complete and

preserves the ungual. The skeleton was disturbed as

indicated by several small and indeterminate fragments of

bone scattered about the concretion and the juxtaposition

of the pes against the cervical vertebrae. The bones are 3D

in form and although they remain in a generally good state

of preservation many have been damaged, where the

concretion was split and portions of the compacta were
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Figure 1. (A) Photograph and (B) line tracing of T. wellnhoferi, SMNK PAL 3986; cv, cervical vertebra; crp, carpal elements; m,
mandible; msc, mandibular sagittal crest; r, radius; ul, ulna; wph, wing finger-phalanx; j, jugal; q, quadrate; mc, metacarpal; mt,
metatarsal; d?p?, digit and phalanx number. Scale bars represent 50mm.
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lost from the top (i.e. visible) surface. Several of the long

bones are cut by the margin of the concretion indicating

that the remains were originally more extensive. No

counter slab is known for this specimen.

Anatomy

Two elements of the skull can be clearly identified, these

being the dorsally directed branch of jugal, which would have

articulated with the lacrimal in life and formed the

caudal/caudoventral margin of the nasoantorbital fenestra,

and the dorsal half of right quadrate. The jugal element is very

thin and blade-like, the cranial and caudal margins of which

are gently concave. In its lateral aspect, the bone has broad

ventral base that tapers dorsally. The quadrate, which is

observed in its caudal aspect, terminates naturally by the

margin of the concretion. The dorsal articular face of the bone

is small and oval in cross section, with a smoothly convex

termination. Ventral to this, a dorsoventrally orientated

concave depression has developed on the caudomedial face of

the bone, becoming gradually more pronounced towards the

ventral portion of the quadrate. The cross section of the ventral

half of the bone is L-shaped, formed by the presence of a

medially and caudally directed blade.

Mandible

The edentulous mandible is visible in its right lateral

aspect. The dorsal margin is typically straight with the

rostral portion of the bone defected ventrally at an angle of

138, beginning at a position 42 mm short of the rostral

tip. The dorsal margin of this deflection is weakly concave

and merges with the rostral tip of the bone, which is

rounded. The ventral margin of the mandible supports a

median sagittal crest that reaches a maximum depth of

35 mm directly ventral to the initial point of deflection.

Rostral to the apex of the dentary crest, the ventral margin

of the bone is weakly concave when viewed from its lateral

aspect (Figures 1 and 2(A)).

Cervical vertebrae

Two cervical vertebrae are observed in their ventrolateral

aspects and represent elements from the middle of the

cervical column, likely cervicals four and five. The bones

are long and narrow, being 3.8 times longer than the

narrowest point at the middle shaft (based on the

caudalmost element), and display wide blunt postzygapo-

physes. The lateral margins of the corpora are concave in

profile and, in the cranialmost element, are pierced by two

small foramina.

Radius and ulna

The radii and ulnae are long and narrow bones, observed in

their ventral aspects, and preserve a circular cross section

of 4 mm in diameter at the middle portion of the shaft. The

elements from both left and right sides of the wing are

present; however, only the left ulna is complete with a total

length of 107 mm. The shaft of the ulna curves caudally

and becomes craniocaudally compressed towards the

distal articulation. A pronounced tubercle is observed on

the dorsal margin of the right radius and left ulna that

would have braced against the capitulum of the humerus

during life. A small pneumatic foramen is observed on the

ventral half of the cranial face of the ulna, immediately

adjacent to the proximal articular surface. An elongate

Figure 2. Cranial morphology of several specimens attributed to T. wellnhoferi. A, SMNK PAL 3986; B, MCT 1500-R (Kellner 1989);
C, AMNH 24440 (Wellnhofer and Kellner 1991); D, SMNK PAL 1137; E, IMNH 1053; F, SAO 12891 (Wellnhofer and Kellner 1991).
Dashed lines represent reconstructed portions of the cranium. Scale bars represent 50mm.
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depression, presumably for the attachment of antebrachial

muscles, is visible on the cranioventral margin of the bone.

Carpus

Immediately adjacent to the distal margin of the left ulna,

two carpal bones are observed, which are still partially

buried within the concretion. Their visible surfaces are

transversely concave and pierced by two foramina.

Adjacent to the left carpals, two partially preserved

bones are regarded as the displaced carpals of the right

carpus due to the similarities in size and form when

compared with the left carpal elements. Sediment cover

prevents any further description.

Metacarpals

A single long bone aligned with the left radius is regarded

as the fourth metacarpal based on its position and circular

cross section. The element, however, is cut by the margin

of the concretion after a length of 54 mm and the proximal

portion of the shaft is covered by sediment, making this

diagnosis uncertain. Two elements underlie the distal

portion of this bone and are regarded as the wing

metacarpal of the right arm and one of the three preaxial

metacarpals. The smaller metacarpal craniocaudally

compresses and expands dorsoventrally towards its distal

termination to create the articular surface for the manual

digits.

Wing finger phalanges

The distal ends of both first wing finger phalanges lie

parallel to one another with their shafts displaying a

circular cross section about the middle shaft that becomes

dorsoventrally compressed towards the distal termination.

The caudal margins of the phalanges curve caudally to

create an expanded articular surface, convex in profile and

10 mm in width craniocaudally.

Pes

The left pes preserves three metatarsals and six elements

of the first four digits. The metatarsals are long and

narrow with mediolaterally compressed proximal mar-

gins. The bones become more circular in section towards

their midpoints and have a diameter of 1.7 mm. All

metatarsals are at least 28 mm in length and preserve a

slight ventral curvature. The first phalanx of digit one is

complete and preserves a length of 15 mm, along with a

very slight ventral curvature of the shaft. The phalanx

terminates in a weak condyle, lying in natural articulation

with its ungual which itself is 11 mm in length. In its

lateral aspect, the proximal half of the ungual is almost

trapezoidal in its outline while that of the distal half is

curved strongly in a ventral direction and compressed

dorsoventrally. The first phalanx of the second digit is

4.5 mm in length and lies in natural articulation with the

second phalanx, which is estimated to have been 13 mm

in length. The first phalanx of the third digit is 6 mm in

length and lies in articulation with the second phalanx.

The phalanx of the fourth digit is broken after only 5 mm

but was at least 9 mm long.

Discussion

The specimen described herein does not preserve the

cranium and the high sagittal crest on its rostral margin

that are diagnostic for T. wellnhoferi; however, the form

of the mandible matches perfectly the amended diagnosis

of Wellnhofer and Kellner (1991, p. 101), ‘Lower jaw

ventrally with sagittal crest on the symphysis. Upper

margin of symphysis inclined downwards [ventrally] with

concave depression dorsally.’ The upper margin of the

symphysis is turned ventrally at an angle of 138relative to

the dorsal margin of the ramus and is sufficiently similar

to that noted in other examples of the T. wellnhoferi (i.e.

168, AMNH 24440; 128, SMNK PAL 1137; 148, IMNH

1053) for the mandible to be considered complementary

(Figure 2). Although a similar mandible is also noted for

Tupandactylus imperator (CPCA 3590, Pinheiro et al.

2011), the ventral deflection is flat not concave, and the

cranial margin of the mandibular crest is dominantly

convex rather than concave, as noted in all individuals

of T. wellnhoferi. The form of the mandibular crest

in Tupandactylus navigans (Frey et al. 2003b) is

unknown.

The shape of the ventral margin of the mandible is

noteworthy in that the cranial and caudal margins of the

crest show a shallow concave curvature relative to IMNH

1053 and the reconstructed margins of AMNH 24440. As

such the profile of SMNK PAL 3986 is more comparable

to that of SMNK PAL 1137, which also preserves a more

gentle convex curvature (Figure 2D). There is, however,

little reason to consider such a small divergence in crest

morphology to be of taxonomic significance and it is

instead likely to be the result of intraspecific variation or

perhaps even slight differences in development or relative

ontogenetic age. With regard to the latter point, the

described specimen is relatively ontogenetically immature

based on the lack of fusion between the cranial elements,

which are found isolated, and the individual carpals, which

have been disassociated from one another.

Although very little work has focused on the

postcranial remains of azhdarchoid pterosaurs, any

comparison of the described specimen with those of

more complete azhdarchoids is restricted owing to a lack

of preserved elements. The radius and ulna, which here

represent the most complete long bones, are identical in
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form to that of all derived pterosaurs with the exception of

the size and position of pneumatic features. A large

pneumatopore positioned on the cranial face of the ulna is

known in other indeterminate azhdarchoids from NE

Brazil (e.g. SMNK PAL 3985); however, no reference is

made to such a feature in Chinese azhdarchoids (e.g.

Sinopterus, Wang and Zhou 2003), largely due to the

preserved orientation of the specimens and the degree of

lateral compression. The form of the ungual is identical to

that of Sinopterus dongi (IVPP V 13363), where the distal

half is very narrow and ventrally curved. It is not possible

to comment on the degree of mobility available to the

ungual of SMNK PAL 3986 as the proximal margin is

slightly convex with no presence of a large dorsally

located cotyle as observed in other taxa (e.g. SMNK PAL

3830, 3900, 6409).

The ratio of the ungual to the length of the preceding

phalanx in digit one of the pes is similar to that observed in

larger and more mature azhdarchoids (i.e. 0.67 versus 0.62

in the azhdarchoid SMNK PAL 3830), and as such is

sufficiently distinct from other pterodactyloids (e.g. 0.4 for

the ornithocheiroid SMNK PAL 3854). The development

of large unguals in T. wellnhoferi and the likely presence of

large claw sheaths as demonstrated by Frey et al. (2003a;

SMNK PAL 3830) form a part of a broader suite of

characters (including the elongate femur/tibiotarsus and

the increased development of the greater trochanter),

suggesting that azhdarchoids were well adapted to life

both on the ground and in the air.

Based on the size of the mandible, the described

specimen was larger than that of SMNK PAL 1137 but

slightly smaller than AMNH 24440 and SAO 12891, the

latter specimens having an estimated wing span of 1.35–

1.5 m (Wellnhofer and Kellner 1991). Although the only

complete long bone observed herein is the ulna, regression

relationships are fairly well established in pterosaurs such

that wing length can be calculated from the comparison of

additional azhdarchoid specimens, where ulna

length ¼ 1.5789 £ humerus length–7.615 (R 2 ¼ 0.97

based on 14 azhdarchoid specimens from 10 genera) and

total span ¼ 14.485 £ humerus length þ 413.94

(R 2 ¼ 0.76 based on six azhdarchoid specimens from

four genera). Despite the relatively low confidence

coefficient for total span, the estimated wing span between

1.15 and 1.47m agrees well with those estimates of other

specimens (Wellnhofer and Kellner 1991).

Although the chaotic displacement of several bone

elements indicates that the specimen was disturbed after

settling, the presence of delicate bones that remained in situ

(i.e. metacarpalia, elements of the pes) indicates that at

least parts of the soft tissue remained viable for a

prolonged period following death.

Conclusions

The specimen described herein represents a small and

ontogenetically immature azhdarchoid pterosaur of the

genus Tapejara wellnhoferi along with the partial remains

of the postcranial skeleton. This individual developed the

large curved unguals of the pes noted for other tapejarid

examples (e.g. SMNK PAL 3830, 3900) and is inferred to

have spent substantially more time on the ground than the

ornithocheiroids, with whom they co-inhabited the

Santana locality. The relatively small wing span compared

to other pterosaurs known from the Lagerstätten deposits

of NE Brazil is interpreted as a result from the

morphologically immature nature of the skeleton and it

is likely that it would have grown to have become much

larger in size.
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Pau, Mémoire: Elf Aquitaine. p. 383–401.

Unwin DM, Martill DM. 2007. Pterosaurs of the Crato Formation. In:
Martill DM, Bechly G, Loveridge RF, editors. The Crato Fossil Beds
of Brazil: Window into an Ancient World. Cambridge: Cambridge
University Press. p. 475–524.

Wang X, Zhou Z. 2003. A new pterosaur (Pterodactyloidea, Tapejaridae)
from the Early Cretaceous Jiufotang Formation of western Liaoning,
China and its implications for biostratigraphy. Chin Sci Bull. 48:16–23.

Wellnhofer P, Kellner AWA. 1991. The skull of Tapejara wellnhoferi
Kellner (Reptilia, Pterosauria) from the Lower Cretaceous Santana
Formation of the Araripe Basin, Northeastern Brazil. Mitt Bayer
Staat Paläon Hist Geo. 31:89–106.

R.A. Elgin and H.B.N. Campos6



A nearly complete ornithocheirid pterosaur from the
Aptian (Early Cretaceous) Crato Formation of NE Brazil
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Elgin, R.A. and Frey, E. 2012. A nearly complete ornithocheirid pterosaur from the Aptian (Early Cretaceous) Crato
Formation of NE Brazil. Acta Palaeontologica Polonica 57 (1): 101–110.

A partial ornithocheirid, representing a rare example of a pterosaurian body fossil from the Nova Olinda Member of the
Crato Formation, NE Brazil, is described from the collections of the State Museum of Natural History, Karlsruhe. While
similar in preservation and taphonomy to Arthurdactylus conandoylei, it is distinguished by slight differences in biomet−
ric ratios, but the absence of a skull prevents closer identification. Mostly complete body fossils belonging to ornitho−
cheiroid pterosaurs appear to be relatively more abundant in the younger Romualdo Member of the Santana Formation,
making the described specimen one of only two well documented ornithocheiroids known from the Nova Olinda
Lagerstätte.
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Introduction
The Araripe Basin of NE Brazil contains two Early Creta−
ceous Lagerstätten that are world renowned for their excep−
tional preservation of insects and vertebrate fossils (Unwin
1988; Unwin and Martill 2007). Pterosaurs from the Aptian/
Albian−aged Crato Formation and Albian/?Cenomanian−
aged Santana Formation (Martill 2007) confirm that taxa at−
tributed to both the Ornithocheiroidea (sensu Unwin 2003)
and Azhdarchoidea inhabited the area of this inland lagoon, a
setting in which marine influences became more dominant
towards the end of the Albian after the formation of the
Santana sea (Kellner and Tomida 2000).

Despite ongoing debates on taxonomic validity, a number
of ornithocheiroid pterosaurs are known from the Santana
Formation including Anhanguera/Coloborhynchus (Welln−
hofer 1991; Kellner and Tomida 2000; Fastnacht 2001), Ara−
ripedactylus (Price 1971; Wellnhofer 1977), Brasileodac−
tylus (Kellner 1984; Veldmeijer et al. 2009), Cearadactylus
(Leonardi and Borgomanero 1983; Dalla Vecchia 1993; Vila
Nova et al. 2011), Ornithocheirus (Wellnhofer 1987), and
Santandactylus (Buisonjé 1980; Wellnhofer 1985). In con−
trast, relatively few ornithocheiroid specimens have been de−
scribed from the older Nova Olinda Member of the Crato
Formation (e.g., Arthurdactylus conandoylei, SMNK PAL
1132, Frey and Martill 1994; Ludodactylus sibbicki, SMNK
PAL 3828, Frey et al. 2003a; cf. Brasileodactylus, Sayão and
Kellner 2000) and isolated crania or headless postcranial
skeletons attributed to azhdarchoid taxa are instead better
represented in the literature (Sayão and Kellner 2007; Martill
and Frey 1999; Frey et al. 2003b; Kellner 2004).

A new specimen from the Nova Olinda Member in the
collections of the State Museum of Natural History, Karls−
ruhe (SMNK PAL 3854), is described here, representing the
rare occurrence of a largely complete ornithocheirid ptero−
saur from this locality. The specimen is taxonomically inde−
terminate, missing the skull, cranially located elements of the
cervical column and the second to fourth phalanges of the
wing−fingers, but is otherwise in a fairly good state of preser−
vation. As is typical of fossils from the Crato Lagerstätte, the
bones are crushed and few three−dimensional details can be
observed. A greater degree of damage is observed along the
caudally located thoracic vertebrae and the pelvic girdle. The
skeleton has collapsed upon itself following contact with the
lagoon floor, exposing the majority of bones in their dorsal or
dorsolateral aspects (Fig. 1).

Institutional abbreviations.—AMNH, American Museum of
Natural History, New York, USA; BMNH, British Museum
of Natural History, London, UK; IVPP, Institute for Palaeon−
tology and Palaeoanthropology, Beijing, People’s Republic
of China; JZMP, Jinzhou Paleontological Museum, Jinzhou,
Liaoning Province, China; LPM, Liaoning Paleontological
Museum, Western Liaoning Institute of Mesozoic Paleontol−
ogy, Shenyang Normal University, Liaoning, China; MPSC,
Museu de Paleontologia de Santana do Cariri, Santana do
Cariri, Brazil; NGMC, National Geological Museum of
China, Beijing, People’s Republic of China; NSM, National
Museum of Nature and Science, Tokyo, Japan; RGM,
Nationaal Natuurhistorisch Museum (Naturalis), Leiden, the
Netherlands; SMNK, Staatliches Museum für Naturkunde
Karlsruhe, Karlsruhe, Germany.
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Fig. 1. New ornithocheirid pterosaur specimen (SMNK PAL 3854) from the Nova Olinda Formation, Crato Basin, Brazil. Photograph (A) and correspond−
ing line tracing (B).



Systematic palaeontology

Order Pterosauria Kaup, 1834
Superfamily Ornithocheiroidea Seeley, 1876
Family Ornithocheiridae Seeley, 1870
Genus and species indet.

Description.—The cervical column is represented by four
vertebrae, identified as cervicals 5–8 (C5–8) (Figs. 2, 3). The
morphology of these vertebrae is typical for ornithocheiroid
taxa (Table 1), in that the cervical vertebrae are 2–2.7 times
as long as they are wide, they have a wide neural canal and
widely diverging pre− and postzygapophyses, and the pre−
zygapophyses are located lateral to the postzygapophyses
(Bennett 2001). The neural spines of C5–6 are broken and no
comment can be made on their relative height. Caudal to the
6th cervical vertebrae the remaining cervicals have been dis−
placed from their natural position and are now visible in their
craniolateral (C7) and cranial (C8) aspects. The neural spine
of the 7th cervical is tall and thin with respect to the vertebral
body while the most caudally located cervical vertebrae (i.e.,
C8–9) preserve large robust ribs that remained in situ, sug−
gesting that these had fused to the transverse processes. Al−
though the 9th cervical itself is not visible, being overlain by
the 8th, its presence is confirmed by a single large rib situated
caudal to that of the 8th cervical (Fig. 3C). The capitulum and
tuberculum are widely spaced, by approximately 16 mm, and
the shaft is narrow, decreasing rapidly to 6 mm by the mid
corpus. The rib of the 9th cervical is complete and terminates
in a robust, slightly convex surface after a length of 89 mm.

The centra of the thoracic vertebrae are missing, buried
and/or badly damaged such that the description of these ele−
ments is restricted to the neural spines, three of which are

partially fused and form a supraneural plate. Thin suture lines
separating the individual neural spines are visible (Fig. 2).
The neural spine of the first visible thoracic vertebra lies sep−
arate from the supraneural plate, although it is uncertain
whether this is due to damage or displacement of the skele−
ton, or whether the neural spine simply did not form part of
this structure. A large oval depression with a raised rim occu−
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Fig. 2. New ornithocheirid pterosaur specimen (SMNK PAL 3854) from the Nova Olinda Formation, Crato Basin, Brazil. Photograph detailing the cervical,
notarial thoracic and terminal caudal vertebrae.

Table 1. Skeletal measurements of the new unidentified ornithocheirid
from Brazil. SMNK PAL 3854. Measurements of selected bone elements.
All values are in mm, where * denotes an approximate or estimated value.

Element mm Element mm

cervical vertebrae scapula 73.5

C5 length 37 coracoid >61

C5 mid width 28 humerus

C6 length 33* left 157

C6 mid width – right 160

C7 length >25 ulna

C7 mid width – left 252

caudal vertebrae right 253

1 10 metacarpal IV

2 11* left 169

3 10.5 right 169

4 12 Wph 1

5 12 left 383

6 11 right 381

7 >6.9 femur

8 12 left 161

9 10 right >150

10 6.2 tibia

11 >5 left >197

right 202



pies the lateral flank of the third visible thoracic vertebra,
forming the articulation for the medial articular surface of the
scapula. Caudal to the notarial vertebrae the vertebral col−
umn is kinked and the more caudal thoracic vertebrae are
badly damaged, indistinct and partly overlain by the left fe−
mur. These are also seen in lateral aspect and they have a

maximum height of 19 mm from the base of the centrum to
the top of the neural spine.

Nothing can be said about the sacral vertebrae, which are
obscured from view by the overlying pelvic girdle. At least
six gastralia have separated from the main body of the fossil
and were displaced to overlie the distal portion of the right
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Fig. 3. New ornithocheirid pterosaur specimen (SMNK PAL 3854) from the Nova Olinda Formation, Crato Basin, Brazil. A. 5th cervical vertebrae. B. 6th

and 7th cervical vertebrae. C. 8th and 9th cervical ribs. Photographs (A1, B1, C1) and explanatory drawings (A2, B2, C2). Black shading highlights gaps/foram−
ina with the bone and the collapsed neurocentral canal.



ulna following the disintegration of the dorsal column. These
gastralia are preserved as three opposing sets and are associ−
ated with a limited amount of mineralised tissue. Eleven cau−
dal vertebrae lie loose from the axial column and are scat−
tered between the notarial vertebrae and the right scapulo−
coracoid. These are identical in appearance to those of C.
piscator (Kellner and Tomida 2000), being long and narrow,
typically between 2 and 4 times as long as they are wide.
Where visible, the neural spines are positioned cranially and
protrude past the cranial margin of the vertebrae, indicating
that these bones belong to the middle portion of the tail. The
terminal−most caudal vertebrae remain in articulation and are
mediolaterally compressed to a greater degree than the other
caudals. These are conical in form and do not expand at their
articular surfaces (Fig. 2).

The right scapulocoracoid is preserved in cranial view.
No suture line between the two elements is visible, indicating
that the structure was fully fused. The glenoid body measures
23 mm across its widest part and the scapula is shorter than
the coracoid, the condition typical of ornithocheiroids (Frey
et al. 2003c; Kellner 2003; Unwin 2003). The scapula is off−
set against the glenoid body at an angle of 121� and the dorsal
rim of the articular surface is visible as a flat, slightly convex
surface that would have braced against the sub−oval facet of
the notarium. The coracoid is about half as thick as the scap−
ula in the mid−shaft region and forms an angle of 60� against
the scapula. The proximal portion of the coracoid, where it
would have articulated with the sternum is obscured by over−
lying sediment. The vertical distance between the dorsal sur−
face of the scapula articular surface and the sternocoracoid
articulation is estimated to have been no greater than 100
mm.

The individual bones of the forearm are mostly preserved
in either near articulation or bent beyond bone lock. Both hu−
meri are visible in dorsal aspect and preserve a short, warped,
sub−triangular deltopectoral crest that is approximately one
third of the total humeral length. The caudal tuberosity is
short, and no pneumatic foramina are observed where it con−
verges with the shaft of the humerus, although the compacta
of these surfaces is slightly damaged. On the distal portion of
the left humerus, along the craniodorsal margin of the shaft, a
pronounced flange, 15% the humeral length, may be the in−
sertion for the flexor muscles of the carpus (Bennett 2003).
Towards the distal margin of the humerus, the humeral shaft
expands to about twice its width at the elbow joint, preserv−
ing an almost straight dorsal margin perpendicular to the
long axis of the shaft. The epiphyseal gap is partially open.

The left ulna lies at an angle of 72� to the humerus while
the right makes an angle of 53�. Both have become slightly
disarticulated from their natural positions. Both ulnae are
about six times longer than they are wide and preserve no ob−
vious muscle scars. While the right radius lies in situ along
the right ulna the left radius has separated from the ulna and
preserves a mid shaft width of 10–13 mm.

The carpals have fused to form two distinct syncarpal

blocks but these have disarticulated from one another and are
badly damaged so that no anatomical details can be observed.

The fourth metacarpals have been displaced by approxi−
mately 180� and lie sub−parallel to the ulnae; the distal roller
joints are located near the proximal ends of the ulnae. Both
wing metacarpals are also preserved in ventral view, with the
ventral part of the roller joint measuring 16 mm across at its
widest point, and they retain a natural articulation with the
first phalanges of the wing finger. At least two additional
metacarpals, presumably belonging to the left wing, are also
preserved. Both are long and narrow and at least one would
have made contact with the distal syncarpal during life.

The digits of the left manus are well preserved, and al−
though the individual phalanges have disarticulated from
each other they have not been displaced any great distance.
The distal bones retain a contact with their respective un−
guals. The phalanges are about half as wide as the proximal
margins of the unguals and slightly curved, with expanded
proximal and distal margins at the articular facets to accom−
modate the neighbouring elements. The unguals are slightly
curved with longitudinally concave ventral faces, forming a
sulcus that extends almost the entire length of the bone. The
phalanges of the right manus are mainly obscured and only
two partial phalanges and one ungual are visible.

Only the first phalanges of the wing fingers are preserved
and lie in natural articulation with the fourth metacarpals,
making angles of 89� and 68� against the long axis of the left
and right metacarpals respectively. The extensor tendon pro−
cess has fused to the proximal face of the first phalanx and a
large pneumatic foramen is present on the caudoventral sur−
face of the right phalanx, adjacent to the proximal articula−
tion. At its distal terminus the cranial margin of the first wing
finger phalanx gradually merges with the gently convex dis−
tal articulation. Caudally this articulation facet forms a sharp
caudally directed process that is formed by the steeply con−
vex caudodistal margin of the shaft. This creates an ex−
panded surface for the second wing phalanx that would have
directed the distal phalanges caudally.

The individual elements of the pelvis have fully fused to
form two complete pelvic plates, although these are in a poor
condition. The compacta is damaged and the bone itself is
crushed over several underlying elements. The left ischio−
pubic plate is observed in lateral view while the right is seen
in caudolateral aspect, the acetabulum dominating the lateral
faces of each and the obturator foramen being fully enclosed
within the pubis. The cranial and caudal margins of the left
pubis are shallowly concave, being almost symmetrical
about the long axis of the bone. The bone is narrowest about
its mid point before expanding towards its ventral margin,
however, the ventral margin of the pubis is broken and its
original shape cannot be determined. While the long axis of
the pubis is directed ventrally, that of the ischium is directed
caudoventrally at an angle of 46� against the pubis. As with
the pubis, it is narrowest about its mid point and expands to−
wards its ventral margin. Approximately half the caudal por−
tion of the left ischium has been broken and lost from the
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specimen while the right has been distorted and is directed
through the bedding plane of the slab. The preacetabular pro−
cess of the ilium is long and thin but its cranial portion is ei−
ther overlain by the ulna (left) or broken (right). The post−
acetabular process of the right pelvic plate partially overlies
that of the left, which in turn has been crushed over the re−
mains of the sacral vertebrae. The postacetabular process ex−
pands caudodorsally for approximately one quarter of its to−
tal length due to the curvature of the dorsal margin of the
bone. Caudal to this expansion, the dorsal and ventral mar−
gins are directed caudoventrally, creating a caudoventrally
directed process more or less uniform in width.

The femora lie adjacent to the pelvis and preserve a long,
narrow femoral collum femoris, approximately 17 mm long,
and a moderately bowed, laterally curving shaft. The femoral
head is offset against the shaft at an angle of 20�. Although
both tibias have disarticulated from their respective femurs,
they have not been displaced much. The tibia is long and
slender, becoming increasingly narrow towards its distal ar−
ticulation. Neither fibula is preserved. The distal articulation
of the left tibia is broken and missing but the right is complete
and terminates as a flat surface, 7.5 mm in width, indicating
that the calcaneum and astragalus had not fused with this
bone to create a tibiotarsus (Fig. 4). Two tarsals, the astra−
galus and a distal tarsal, lie level with the distal margin of the
tibia but off to one side. The astragalus is weakly crescentic
in shape and is observed in medial aspect. A large foramen
pierces the craniomedial portion of the bone. Although its
caudomedial face is damaged, the preserved remains suggest
that the medial surface was convex, projecting medially as
described by Kellner (2004). The dorsal margin of the astra−
galus is concave to form the articulation with the distal sur−
face of the tibia, while the ventral margin is strongly convex.
The distal tarsal is as large as the astragalus itself, with a gen−
erally smooth convex surface and lies in contact with three of
the four metatarsals.

The right metatarsals are very long and thin, the longest
reaching a length of 58 mm with a mid−shaft diameter of only
1 mm. The length of these bones ranges from 54–58 mm, but
at least one of the first four metatarsals is noticeably shorter
with a length of only 45 mm. The fifth metatarsal is clearly
distinct from the others, and is about one fourth to one fifth
the length of metatarsals I–IV and has a sub−triangular out−
line with slightly convex medial and lateral margins.

The pedal phalanges are delicate and show only slight
curvature. Their proximal and distal margins are slightly ex−
panded at the interphalangeal articulations and in all cases
the unguals maintain a natural articulation with the penulti−
mate phalanx. The unguals themselves are equal in width to
the preceding phalanges and are only slightly curved.

Discussion
Largely complete ornithocheiroid pterosaurs appear to be
much less common in the Nova Olinda Lagerstätte than in the
geologically younger Romulado Member of the Santana For−
mation, NE Brazil. A thorough review of these was provided
by Unwin and Martill (2007), who noted that specimens from
the Crato Formation attributed to the Ornithocheiroidea are
limited to SMNK PAL 1132 (Arthurdactylus conandoylei,
Frey and Martill 1994), a headless skeleton preserving the ma−
jority of the postcranial elements; the proximal part of a wing
belonging to an indeterminate ornithocheiroid (SNMK PAL
3842); an isolated tooth (Sayão and Kellner 2000); the com−
plete cranium of SMNK PAL 3828 (Ludodactylus sibbicki,
Frey et al. 2003a); and the rostral fragments of cf. Brasileo−
dactylus (Sayão and Kellner 2000). Unwin and Martill (2007)
include two further specimens, MPSC R−739 and MPSC
R−779 (Nuvens et al. 2002) in the Ornithocheiroidea. A com−
parison of the present specimen with these other named taxa
from the same locality, however, is problematic because no
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Fig. 4. The foot and pedal function of the new ornithocheirid pterosaur from the Nova Olinda Formation, Crato Basin, Brazil. A. SMNK PAL 3854. Line
tracing of the ankle region (A1) and reconstructions of the ornithocheiroid pes, based on the described specimen (A2). B. The azhdarchoid pes, based on
SMNK PAL 3900. Both reconstructions are scaled to a common humeral length.



postcranial elements are known for L. sibbicki, while the taxo−
nomic validity of Brasileodactylus is uncertain (Unwin and
Martill 2007) and diagnostic features are restricted to the skull
(Veldmeijer et al. 2009).

It is fortunate that pterosaurs generally display isometric
growth, in which individual bones grow at the same relative
rate through ontogeny, and this allows the calculation of bio−
metric ratios to distinguish taxa. Omitting the pteranodontids
(studied by Bennett 2001) and nyctosaurids, the wing meta−
carpal and femur of the Ornithocheiridae + Istiodactylidae
show significantly negative allometric relationships, so that
the ratios of lengths of these elements to humerus length in−
crease at larger sizes (see Appendix 1). Limb bone propor−
tions place SMNK PAL 3854 within the Ornithocheiroidea
(Table 2) where it is distinguished from pteranodontid and
nyctosaurid pterosaurs by the relative shortness of the wing
metacarpal, and from the Istiodactylidae by a set of ratios that
lie outwith the observed range of values known for these
taxa. This suggests that the current specimen may be tenta−
tively assigned to the Ornithocheiridae. Despite the similari−
ties in preservation and taphonomy between SMNK PAL
3854 and SMNK PAL 1132, the described specimen is dis−
tinguished from A. conandoylei through biometric ratios,
where its humerus is relatively longer, forming ratios of 0.63
and 0.41 with the ulna and first wing−finger phalanx respec−
tively (0.74 and 0.52 for SMNK PAL 1132). A more distinct
ratio is observed in the hind limb, where the femur is substan−
tially shorter, based on a large difference in the forelimb/
hindlimb ratio (1.48 for SMNK PAL 3854 versus 1.81 for
SMNK PAL 1132). A possible relationship is suggested with
a larger specimen attributed to Santanadactylus sp. (SMNK
PAL 1250) by an almost identical suite of bone ratios (note
that this latter fossil is in a private collection and has not been
described or diagnosed; Frey and Martill 1994).

SMNK PAL 3854 is estimated to have had a wing span of
3.4 m, based on the observations of Veldmeijer (2003), who
noted that in Santanadactylus pricei (Wellnhofer 1991) the
ratio between the total length of the wing finger and the hu−
merus plus radius/ulna is 2.7. A similar ratio is also recorded
for A. conandoylei, suggesting that this relationship is useful
across a range of ornithocheirid taxa. The length of the torso,

measured from the first thoracic vertebra to the caudal mar−
gin of the ilium, is 140 mm, namely 4% of the total wingspan.

Ontogenetic age.—Despite the relatively advanced state of
suture closure in parts of SMNK PAL 3854 shows no fusion
between the astragalus and the tibia, and so is not yet at maxi−
mum age. The relative timings of suture closure in pterosaurs
have been briefly reviewed by Bennett (1993) and Kellner and
Tomida (2000), and the former tentatively proposed that for
Pteranodon the atlas−axis complex, scapulocoracoid, second−
ary centres of ossification in the humerus, the cranial−most no−
tarial vertebrae and ribs appear to precede all others. The su−
ture between the extensor tendon process and the first wing
finger phalanx appears to close shortly before skeletal matu−
rity is reached. An examination of the suture states in SMNK
PAL 3854 indicates that fusion of the tibia and proximal
tarsals, the caudal thoracic ribs and their respective vertebrae,
complete suturing of the notarium, and fusion of the humeral
epiphyses to the humerus itself should all be considered indi−
cators of late ontogeny and are preceded by the closure of the
suture between the extensor tendon process and the first
wing−finger phalanx and elements of the pelvic plate. Such ob−
servations do not contradict the proposals of Bennett (1993)
and Kellner and Tomida (2000) but rather provide an example
of interspecific variation in developmental timings that likely
existed even between closely related taxa.

Life style.—The estimated length of the wing spar combined
with the short length of the torso and hind limbs indicates that
SMNK PAL 3854 developed the high aspect−ratio configura−
tion noted for other ornithocheiroids and likely shared their
interpreted lifestyle, being a relatively fast, open water
glider, using dynamic or thermal soaring (e.g., Chatterjee
and Templin 2004). The view that such taxa spent most of
their life on the wing is further supported by the structure and
relative size of the pes with respect to the wings; these bones
in SMNK PAL 3854 are exceedingly thin compared with the
pedal elements of azhdarchoid pterosaurs with which they
shared the Cretaceous Crato lagoon. The comparison of a
similar−sized azhdarchoid, SMNK PAL 3900, effectively il−
lustrates this difference where the mid−shaft diameter of the
phalanges ranges between 2–2.5 mm, with the unguals being
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Table 2. Selected long bone ratios of ornithocheiroid taxa. Abbreviations: fe, femur; FL, fore limb (humerus + ulna + metacarpal IV); HL, hind limb
(femur + tibia); hu, humerus; mc IV, wing metacarpal; wph 1, first wing finger phalanx; ti, tibia; ul, ulna.

Taxon FL/HL hu/ul hu/mc IV hu/wph1 hu/fe hu/ti fe/ti

Boreopterus cuiae JZMP−04−07−3 1.73 0.72 0.84 0.58 0.96 0.96 1.00

Nurhachius ignaciobritoi LPM 0003 – 0.57 0.87 0.47 0.88 – –

Istiodactylus sinensis NGMC 99−07−011 – 0.57 0.82 0.50 – 0.73 –

Istiodactylus latidens BMNH R 3877 – 0.58 – 0.56 1.10 – –

ornithocheirid indet. (this study) SMNK PAL 3854 1.48 0.63 0.94 0.41 0.98 0.78 0.79

?Santanadactylus SMNK PAL 1250 – 0.65 0.93 0.45 – – –

Coloborhynchus robustus SMNK PAL 1133 1.57 0.74 1.02 0.47 1.05 0.86 0.82

Arthurdactylus conandoylei SMNK 1132 PAL 1.81 0.74 1.01 0.52 1.21 0.98 0.81

Coloborhynchus spielbergi RGM 401880 1.49 0.71 1.23 – 1.04 0.82 0.79

Pteranodon sp. AMNH 4908 1.77 0.68 0.46 0.39 0.96 0.62 0.65



17 mm long (Fig. 4A2, B). Similar values are also noted for
the medium−sized azhdarchoids SMNK PAL 3830 and 6409,
and the former demonstrates that sharp keratinous sheaths
doubled the total length of the pedal claws. In contrast, the
phalanges of SMNK PAL 3854 are only 1 mm in diameter
with a length of 7 mm. The delicate nature of the pes in
SMNK PAL 3854 therefore suggests that it was predomi−
nantly a soaring animal that spent little time on the ground.
While one reviewer noted that blunted claws would be more
in keeping with a terrestrially active lifestyle, it is difficult to
explain the long, sharp keratinous sheaths of azhdarchoids
without invoking a role in terrestrial support, as pterosaurs
did not utilise their pedal claws for either the manipulation of
prey or arboreal perching. Nonetheless, the lack of wear on
the ungual sheaths of SMNK PAL 3830, a morphologically
mature individual, perhaps indicates that these animals spent
a significant portion of their life on the wing, while still being
more terrestrially competent than ornithocheirids such as that
described here.

Taphonomy.—The resting position and taphonomy of
SMNK PAL 3854 strongly resembles SMNK PAL 1132,
where the skeleton has collapsed upon itself following the
destruction of the ventral body wall and the subsequent re−
lease of air from the pneumatic system. In both individuals,
the lack of a preferred orientation indicates that bottom cur−
rents were absent, while the overlapping bones indicate that
the carcass sank left wing first, and the hind limbs were the
last elements to settle. In contrast to SMNK PAL 1132, the
neck did not detach at its base but between the 4th and 5th

cervicals (Frey and Martill 1994). The sternum is also miss−
ing from SMNK PAL 3854, the reason perhaps being the
rapid bacterial degradation of the large pectoral muscle mass.
While the pectoral muscles insert at the humerus with mas−
sive tendons, their origin on the sternum is fleshy and thus
subject to more rapid decay and earlier detachment of the
sternum, where the sternocostal and sternocoracoideal artic−
ulations must have been weak. The carcasses of ornitho−
cheiroid pterosaurs likely followed the pattern of decay ob−
served in birds and mammals (Oliver and Graham 1994; Da−
vis and Briggs 1998), in which the head detaches first from
the body, followed by the sternum.

Long−term floating at the water surface is typical for
highly pneumatised tetrapods (Schäfer 1962, 1972), buoyed
up by their air sacs. The state of decomposition when the
specimen settled on the lagoon floor was probably relatively
advanced, based on the degree of disarticulation. While this
indicates that the interarticular ligaments had largely lost
their ability to restrict the mobility of the bones, the carcass
nonetheless must have been largely intact when it settled, as
is shown by the preservation of easily displaced elements,
such as manual and pedal phalanges. It then seems likely that
the larger elements missing from the slab, such as the head
and neck and the distal wing phalanges, were likely lost dur−
ing sedimentary transport rather than during collection.

Conclusions
A new specimen from the Crato Formation of NE Brazil is an
ornithocheirid pterosaur, distinguishable from Arthurdac−
tylus conandoylei, the only other nearly complete postcranial
skeleton from the Crato locality, by biometrics of the long
bones. Almost identical bone ratios indicate possible rela−
tionship with a specimen of ?Santanadactylus sp. (Frey and
Martill 1994), but the lack of a formal description of the latter
prevents a taxonomically useful comparison.

The inferred high aspect ratio of the wing, combined with a
delicate pes, supports the established hypothesis that ornitho−
cheiroids spent the majority of their life in the air and that,
while fully capable of terrestrial locomotion, spent little time
on the ground when compared to other pterosaurs.

The animal was ontogenetically relatively mature when it
died, based on the state of its sutures, which include fusion of
the extensor tendon process to the first wing−finger phalanx,
the scapula to the coracoid, the proximal and distal syncar−
pals of the wrist, the ischiopubic plate, and a partial notarium.
The animal was not fully mature, however, because a tibio−
tarsus had not yet formed, and suture lines separate the
epiphyses from the humerus. These elements can therefore
be regarded as late−forming structures and may be of use in
diagnosing the relative ontogenetic maturity of pterosaurs in
future studies.
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Appendix 1
Long bone measurements of ornithocheiroid specimens used for calculating ratios and isometric/allometric relationships in
this paper, where “R” denotes a value reconstructed from personal observations or the source literature. At the 95% CI with
the humerus acting as the independent variable, the relationships of selected bone elements are defined as: ulna = 0.325*x0.936

+/− 0.119 (R2 = 0.96); mc IV = 0.493*x0.789 +/− 0.082 (R2 = 0.97); femur = 0.444*x0.798 +/− 0.183 (R2 = 0.93); and wph 1 = 0.16*x1.071 +/−

0.13 (R2 = 0.97). With respect to the humerus, the wing metacarpal and femur show a significantly negative deviation from
isometry. Specimens attributed to pteranodontids and nyctosaurid pterosaurs were omitted for several reasons: the elongation
of the wing metacarpal in relation to the humerus is unusual for ornithocheiroids; certain bone relationships e.g. ulna/mc IV
appear to be different between Pteranodon/Nyctosaurus and the remainder of the Ornithocheiroidea; the large number of
specimens known for Pteranodon would unduly bias the regression relationships towards this single genus rather than the
broader trend across the entire division. The observed taxonomic level of regression relationships is thusly important and the
state at one level need not be directly applicable to others.

Taxon (Collection Nr.) hu ul mc IV wph 1 wph 2 wph 3 wph 4 fe ti

ornithocheiroid indet. (SMNK PAL 1135) 172.0 263.0 179.0 383.0 – – – – –

ornithocheiroid indet. (SMNK PAL 1134) – 239.0 165.0 357.0 – – – – –

ornithocheirid indet. (SMNK PAL 3854) 159 253 169 382 – – – 161 230

Boreopterus cuiae (JZMP−04−07−3) 79.0 110.0 94.0 137.0 122.5 98.0 87.0 82.0 82.0

Istiodactylus sinensis (NGMC 99−07−011) 133.5 233.7 162.7 268.2 243.5 195.4 >32.9 >139.5 182.5

Istiodactylus latiden (BMNH R 3877) 220.0 381R – 393R 388R – – 200.0 –

Nurhachius ignaciobritoi (IVPP V−13288) 110.5 192.8 132.6 226.5 165.7 – – 146.4 >118.2

Nurhachius ignaciobritoi (LPM0003) 88.3 156 101 188.0 157 120 – 100 –

Haopterus gracilis (IVPP V11726) 70.0 101.5 90.0 134.5 119.0 95.5 >45.0 – –

Anhanguera santanae (AMNH 225555) 204.0R 291.0R 206.0R 446.0R 389.0R 302.0R 192.0R 165.0R 287.0R

Arthurdactylus conandoylei (SMNK PAL 1132) 230.0 312.0 227.0 445.0 402.0 312.0 275.0 190.0 234.0

Coloborhynchus piscator (NSM−PV 19892) 255.0 390.0 256.0 > 120 – – – 234.0 > 256

Coloborhynchus robustus (SMNK 1133 PAL) 290.0 390.0 285.0 620.0R 566.0R 460.0R 330.0R 277.0 338.0

Coloborhynchus spielbergi (RGM 401880) 290.0 410.0 235.0 – – – – 277.8 351.8

Gegepterus change (IVPP V 11981) – – 52.7* 69.3 68.3 – >38.0 – –

Santanadactylus pricei (AMNH 22552) 170.0 242.5 172.0 372.0 324.0 252.0 160R

?Santanadactylus (SMNK PAL 1250) 230.0 353.0 248.0 515.0 – – – – –



A new azhdarchoid pterosaur from the Cenomanian
(Late Cretaceous) of Lebanon

Ross A. Elgin • Eberhard Frey

Received: 16 September 2010 / Accepted: 7 October 2011

� Swiss Geological Society 2011

Abstract A new pterosaur, Microtuban altivolans gen. et

sp. nov., is described from the Sannine Formation of

northern Lebanon. The specimen is the first pterosaur from

the Early Cenomanian (Late Cretaceous) locality of Hjoûla

and is regarded as the most complete pterosaur fossil dis-

covered from Africa. While postcranial characters indicate

a possible relationship with members of the Thalassodr-

omidae or Chaoyangopteridae, the specimen possesses an

exceptionally short wing-finger phalanx 4, forming only

1.1% of the total length of the wing-finger. Its appearance

along with an unnamed ornithocheiroid from the slightly

younger locality of Hâqel suggests that a number of

pterosaur taxa existed within the local area, perhaps living

on exposed carbonate platforms.
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Introduction

While the Late Cretaceous Lagerstätten deposits of north-

ern Lebanon are famous for the exceptional preservation of

their invertebrate and fish faunas, the remains of higher

vertebrates are rare. Although pterosaurs, a group of aerial

archosauromorphs, had effectively achieved a world wide

distribution during the latter part of the Mesozoic, the first

pterosaur specimen from the Lebanese carbonates was only

recently described by Dalla Vecchia et al. (2001), con-

sisting of a single isolated forearm of a Late Cretaceous

ornithocheiroid. The deposits of northern Lebanon there-

fore follow a more general pattern observed across the

whole of the African plate, where pterosaur material is both

rare and consists of a rather sparse collection of fragmented

bones or teeth. To date, fossil discoveries have included:

‘‘rhamphorhynchoids’’ (Unwin and Heinrich 1999); orni-

thocheiroids, anhanguerids and pteranodontids (Swinton

1948; Mader and Kellner 1999; Wellnhofer and Buffetaut

1999); the dsungaripteroid Tendaguripterus recki (Unwin

and Heinrich 1999) from the Upper Jurassic of Tendaguru,

Tanzania; and several members of the Azhdarchoidea

(Wellnhofer and Buffetaut 1999), including the azhdar-

chids Arambourgiania philadelphiae (Arambourg 1954)

and Phosphatodraco mauritanicus (Suberbiola et al. 2003).

Recent additions to these also include two humeri

belonging to pterosaurs of the Dsungaripteroidea and the

Archaeopterodactyloidea from the Upper Jurassic of Ten-

daguru (Costa and Kellner 2009), and the aforementioned

specimen from northern Lebanon (Dalla Vecchia et al.
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2001). Therefore, in spite of their condition and relative

rarity, this collection of elements illustrates that Gondwana-

land supported a diverse number of pterosaur taxa throughout

its geological history.

This paper describes a second pterosaur from the Late

Cretaceous (Cenomanian) limestone of northern Lebanon,

originating from the locality of Hjoûla (Fig. 1). The spec-

imen is preserved on a single oval slab of limestone and is

partially complete, consisting of: the most posterior cerv-

icals and anterior dorsal vertebrae, the pectoral girdle, a

complete left wing, and the fragmented remains of the

hindlimbs (Fig. 2). It is relatively more complete than that

described by Dalla Vecchia et al. (2001) and is therefore

regarded as the most complete pterosaur yet discovered

from the African plate. The described specimen is housed

at the State Museum of Natural History Karlsruhe in

Germany under the collection number SMNK PAL 6595.

Geological setting

The regional tectonic history of Lebanon has been the

focus of several studies (e.g., Butler and Spencer 1999;

Brew et al. 2001) where the prominent Yammouneh Fault,

along with several smaller structures, represents the

northern extension of the Dead Sea fault system (Fig. 1a;

Abdel-Rahman and Nader 2002). During the Cretaceous

Period the majority of the sediments were deposited within

the Palmyride Basin, a large NNE–SSW trending intraplate

trough, which persisted until the end of the Cretaceous

when it was destroyed by regional compression. Within

this basin the sediments slope westwards to form a single

large monoclinal structure and the depositional environ-

ments are split between a western, open marine facies and

an eastern, coastal facies (Nader et al. 2006).

Of significant palaeontological interest are the Konser-

vat Lagerstätten that consist of four major fossiliferous

localities: Sâhel Aalma, Nammoûra, Hâqel, and Hjoûla,

each of which are famous for their exceptional preservation

of Late Cretaceous invertebrates and fishes (e.g., Forey

et al. 2003; Hay 1903; Woodward 1942). The youngest of

these localities is Sâhel Aalma, which is Santonian in age

(Garassino 1994) while the others are Cenomanian and

deposited as part of the Sannine Formation (Fig. 1b), which

itself appears to have been created during a period of rel-

ative stability and low sea levels (Nader et al. 2006). The

Nammoûra is regarded as late to mid Cenomanian in age

(Dalla Vecchia and Venturini 1999) while the localities of

Hâqel and Hjoûla are both Early Cenomanian (Saint-Marc

1974); with the locality of Hâqel occupying a position

approximately 20 m stratigraphically higher than that of

Hjoûla (Hückel 1970). Other than fish, fossil vertebrates at

all of these localities are rare, however, birds (Dalla Vec-

chia and Chiappe 2002), turtles, dolichosaurs and marine

varanoids (Dalla Vecchia and Venturini 1999; Dal Sasso

and Renesto 1999) have nonetheless been described from

Fig. 1 a Geological map of northern Lebanon showing the localities of Hâqel and Hjoûla. b Relative position of the Sannine Formation within

the Cretaceous strata of Lebanon. Figures adapted after Abdel-Rahman and Nader (2002)
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the limestone of Nammoûra. In contrast to the older

localities of Hâqel and Hjoûla, terrestrial plant remains are

also common at Nammoûra (Dalla Vecchia and Venturini

1999), including a diverse selection of ferns, gymnosperms

and angiosperms. Some of these share an affinity with

similar aged flora in North America, central Europe and the

Crimea, suggesting a palaeoclimate similar to the present

day Mediterranean (Krassilov and Bacchia 2000). The

occurrence of these well preserved plant materials within

marine sediments indicates the proximity of the region to a

palaeoshoreline. In comparison to Nammoûra, indetermi-

nate plant material (Krassilov and Bacchia 2000) and algae

(Basson 1972) are also known from Hâqel, where fossil

reptiles are represented by a single ornithocheiroid ptero-

saur (Dalla Vecchia et al. 2001). Prior to this study, fossil

reptiles were unknown from the locality of Hjoûla. Saint-

Marc (1974) described the palaeoenvironments of both

Hâqel and Hjoûla during the Cenomanian as a small,

oxygen depleted, marine basin, with the major land mass

being located in the present WSW portion of the Arabian

Peninsula. Nader et al. (2006) later described the deposi-

tional environment in the frame of a carbonate ramp model

with shallower waters prevailing to the far east of Lebanon.

Lithology and provenance

The specimen was purchased by the SMNK from a fossil

dealer with local contacts and thus the exact provenance of

the specimen is uncertain and worthy of discussion. The

SMNK was initially told that the pterosaur originated from

a quarry at Hâqel, although doubts were raised during

discussions with another local dealer. We were later

informed that this fossil had probably not been removed

from the quarry of Hâqel but was likely from the nearby

locality of Hjoûla (Roy Nohra, personal communication).

As Hjoûla is only *4 km south of Hâqel it is conceivable

that the fossil dealers and middle men were uncertain as to

the specimen’s exact provenance. The sediments of Hâqel,

however, contain a moderate amount of bioclasts and are

noticeably whiter in colouration than those of Hjoûla,

which are more micritic. A comparison of the grey lime-

stone slab with other specimens housed at the SMNK leads

us to propose the Early Cenomanian locality of Hjoûla as

the true provenance of this specimen. This conclusion

could be further confirmed by a thin section or petrographic

analysis, but these were beyond the scope of this

investigation.

Systematic palaeontology

Order Pterosauria KAUP 1834

Suborder Pterodactyloidea PLIENINGER 1901

Superfamily Azhdarchoidea NESSOV 1984; sensu UNWIN

2003

Genus Microtuban gen. nov.

Etymology Greek lijqó1 = micros, for small; Arabic

= tu’bān, for basilisk, dragon, a star in the in the

constellation Draco.

Diagnosis As for type species.

Type species. Microtuban altivolans gen. et sp. nov.

(Figs. 2, 3)

Etymology altivolans: Latin altivolans = soaring/high

flyer.

Diagnosis An azhdarchoid pterosaur distinguishable by an

unusually high ratio of the first and second wing-finger

phalanges (wph 2/wph 1 = 0.85) and a hyper-reduced

fourth wing-finger phalanx, accounting for 1.1% of the

total wing-finger length.

Fig. 2 Microtuban altivolans (SMNK PAL 6595) gen. et sp. nov.

a Photograph, b line tracing corresponding to photograph in a. Scale
bars 50 mm. c coracoid, carp carpus, cv cervical vertebrae, d dorsal

vertebrae, digits digits 1–3, f femur, hl fragments of the hindlimb, hu
humerus, mc metacarpal, pa preaxial carpal, pt pteroid, r radius,

s scapula, u ulna, wph wing-finger phalanges (digit 4)
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Holotype The holotype specimen is housed in the Staatli-

ches Museum für Naturkunde Karlsruhe (Germany) under

the collection number SMNK PAL 6595.

Locality ?Hjoûla (= Hadjoula), town and region 35 km

NNE of Beirut (Lebanon).

Horizon Sannine Formation, Late Cretaceous (Early

Cenomanian).

Description

Cervical vertebrae and associated ribs At least three cru-

shed cervicals are preserved in dorsolateral view while

incomplete fragments of bone, cranial to the seventh cer-

vical, may represent the remains of the sixth cervical

vertebra. The seventh and eighth cervicals are in natural

articulation, where the postzygapophyses of the former

overlie the latter vertebra. The ninth cervical is in natural

articulation with the first thoracic vertebra (d1). The neural

spines of all the vertebrae except that of the ninth cervical

are broken and missing. The seventh cervical is longer than

that of the eighth (Table 1) and the prezygapophyses of

both are widely splayed, lying lateral to the postzygap-

ophyses. The prezygapophyses of the seventh cervical are

orientated craniolaterally at an angle of *45� to the

Fig. 3 Selected elements of Microtuban altivolans gen. et sp. nov.

with specific points of interest. a Overview of the forearm, b the

cranial aspect of the pectoral girdle and cervical/dorsal series in dorsal

view, c the right femur in dorsal view, d fracture across the shaft of

mc IV in cranial view (arrow indicates the termination of metacarpal

?1), e close up of the left manus and first wing-finger phalanx in

dorsal view, f the fourth wing-finger phalanx in ventral view (arrow

indicating the articulation between wph 3 and 4). Scale bars a 50 mm,

b 50 mm, c 10 mm, d 10 mm, e 10 mm, f 5 mm. c coracoid, cX
cervical vertebra X, carp carpus, dX dorsal vertebra X, gt greater

trochanter, h humerus, mc metacarpal, pac preaxial carpal, pf
pneumatic foramen, pt pteroid, r radius, u ulna, wph wing-finger

phalanx
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midline. The left prezygapophysis of the ninth cervical face

dorsomedially although at what angle remains uncertain.

Double-headed ribs are visible in close association with the

last two cervical vertebrae. In cervical 8 these are long

([19 mm in length) but thin, and while one lies adjacent,

though un-fused, to the left prezygapophysis, another can

be tentatively traced to the opposite side. More ribs also lie

adjacent but un-fused to the transverse processes of the

ninth cervical; however, they are significantly larger and

more robust than those of the preceding vertebra.

Thoracic vertebrae and associated ribs A single tho-

racic vertebra is preserved in natural articulation with the

ninth cervical, flanked by two large and robust double-

headed ribs. A loose pair caudal to these suggests that they

were present up to and including the second thoracic ver-

tebrae. The neural spine is broken but must have run for a

length of 8 mm along the dorsal portion of the centrum.

The absence of any axial elements caudal to the first tho-

racic vertebrae indicates that no notarium was originally

present. The caudally positioned thoracic ribs are thin,

strongly curved and loosely positioned along with the

imagined midline of the axial skeleton.

Pectoral girdle Both left and right scapulae and corac-

oids are unfused but the similarity in their resting positions

indicates little post mortem displacement (Fig. 3b). The

scapula consists of a caudomedially directed blade, which

ventrally diverges into a scapular body bearing the glenoid

fossa. The angle between body and blade is approximately

145�. The scapular blade is straight, most likely long ovoid

in cross-section as can be concluded from the right scapula,

and is approximately five times longer than it is wide. The

cranial edge appears to have been a little more massive

than the caudal one. Towards its median terminus it tapers

to a sharp median margin with a rounded outline. The two

contralateral scapular blades are angled in a craniolateral

direction at an angle of *45� against the median plane.

The scapular body curves medially at an angle of about

145� measured against the long axis of the blade and while

crushed, was likely sub-triangular in cross-section. From

their articulation with the scapulae both coracoids point

medially, forming an angle of about 50� with the body of

their respective scapulae. The glenoid head of the coracoid

is angled against the shaft at about 80� and has three times

the diameter of the medially most preserved part of the

shaft. Cranioventrally the glenoid head is marked by a

blunt crest that medially merges with the cranioventral face

of the shaft. Nothing can be said about the morphology of

the glenoid fossa because it is either covered by sediment

and overlying bone, or is damaged. The coracoid shaft is

almost circular in cross-section at its midpoint and pre-

serves no trace of a medial divergence towards the furca.

On the right coracoid the ventral process of the furca is

visible at the left hand margin of the vertebral complex;

giving a ratio of 1:0.78 between scapula and coracoid.

Humerus Both humeri have been broken into two large

proximal and distal fragments with only the left humerus

preserving any osteological details. The proximal fragment

of this is preserved in its cranial aspect and consists of the

humeral head, which lies slightly disarticulated from the

lateral margin of the left scapular body. The collum of

the humeral head is dorsocaudally concave and bears the

deltopectoral crest; the proximal margin is regularly con-

cave and would have been confluent with the cranial corner

of the articular surface of the humeral head if not for a small

break in the bone. The cranial margin of the deltopectoral

crest is convex, whereby the convexity is a little stronger at

the cranioproximal corner than at the craniodistal one. At

the mid part of the deltopectoral crest the proximal and

caudal margins run almost parallel to each other. Close to

the collum, the distal margin of the deltopectoral crest

curves distally and merges with the humeral shaft. The

deltopectoral crest is almost flat, about 1.5 times as long as it

is wide, and the collum itself is inclined caudally at an angle

of about 43�. Near the break on the distal humeral fragment

there is an elongate, oval scar that probably acted as the

insertion point for a muscle; possibly m. triceps or m.

brachialis (Bennett 2003a). The distal fragment is observed

Table 1 Selected bone measurements in Microtuban altivolans gen.

et sp. nov.

Selected elements Length (mm)

Cervical 7 23.6

Cervical 8 21.1

Cervical 9 *9.0

Dorsal 1 *10.0

Humerus 61.6–73.3a

Radius 92.0a

Carpus 13.0

pteroid [38.0

mc IV 122.0a

mcIII? 50.0

dI p1 12.5

dIu 11.0

dIIu 11.0

dIIIp1 17.0

dIIIp2 3.0

dIIIp3 10.5

dIIIu 11.0

wph 1 135.0

wph 2 114.5

wph 3 63.5

wph 4 3.5

d digit, etp extensor tendon process, mc metacarpal, ph phalanx,

postzy postzygapophyses, prezy prezygapophysis
a Estimated values
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in cranial view, the length of which suggests that a degree of

overlap likely existed between the two fragments and a middle

estimate of 67.5 mm is adopted for this study (Table 1).

Radius/ulna The bones of the antebrachium have been

badly crushed and the compacta fragmented. The left

antebrachium has fractured into at least one proximal and

one distal portion, each of which preserves their respective

articular surfaces. The proximal radial fragments, identified

by their proximodorsal tubercle, lie almost perpendicular to

the distal articular face of the left humerus. The proximal

fragments are overlain by their distal fragments, the latter

of which are orientated almost perpendicular to the former.

An exception occurs where a further fragment of bone,

attributed to the middle portion of the ulna, overlies and

converges with the proximal end of the distal ulnar frag-

ment (Fig. 3a). The distal fragments of the ulna and radius

run parallel to each other, the diameter of bones

approaching a ratio of 1:0.7 towards the midpoint of the

shaft. The preserved diameter is fairly reliable because of

the late diagenetic compaction, which preserved the actual

diameter of the bones in the bedding plane.

Carpus Both proximal and distal elements are present

and preserved in craniodorsal view, although abrasion of

the compacta limits the observed articulation between the

proximal and distal blocks to the cranial third of the carpus.

It is thus not possible to identify the presence of a syn-

carpal, although given the general completeness of the

carpus this appears to be likely and the term is adopted

here. The left carpus remains in situ and forms an angle of

116.5� between the radius/ulna and the fourth metacarpal

(Fig. 3a). The cranial aspect of the proximal syncarpal is

cuboid in appearance while that of the distal syncarpal

cannot be determined. A large, longitudinally ovoid exca-

vation, preserving slightly broken margins, is located in a

patch of predominantly intact compacta on the dorsal sur-

face of the distal syncarpal, close to the cranial margin.

Within this depression three smaller, presumably pneu-

matic, foramina pierce the distal syncarpal. The left pteroid

and the preaxial carpal are preserved close to their natural

positions (Fig. 3a). The pteroid is long and slender, about

0.75 mm wide at its distal terminus, but has been displaced

medially so that the proximal portion is hidden by the

overlying radius; the exact length of the element is thus

unknown. The distal end does not taper but shows a

rounded knob-like termination that is slightly kinked in the

direction of the antebrachium. In the proximal third of the

pteroid, a piece of the compacta is missing, revealing the

hollow interior of the bone. The preaxial carpal has rotated

over the distal margin of its articular face on the distal

carpal block and now lies parallel to the fourth metacarpal.

An oval sesamoid with an evenly convex surface (‘‘Sesa-

moid A’’ = pisiform after Bennett 2008) sits within the

fovea of the preaxial carpal.

Metacarpals The wing metacarpal is broken about

halfway along its length (Fig. 3a), the proximal and distal

fragments of which are displaced slightly. The shaft of the

metacarpal narrows distally but then expands caudally at its

most distal margin, forming a pair of condyles for the

articulation of the first wing-finger phalanx. The distal

dorsal condyle shows only a slight compaction and is thus

well preserved in three dimensions; the dorsal surface of

which is slightly concave with a shallow elevation in the

centre. In cranial view the condyle is directed slightly

dorsolaterally at an angle of *20�. Caudoproximally the

rim of the dorsal condyle terminates abruptly, forming a

short concavity that borders the condylar neck caudally. All

three remaining metacarpals can be observed in situ along

the craniodistal face of the wing metacarpal and form a

natural contact with the digits. These can be traced proxi-

mally only as far as the large break across the fourth

metacarpal, with the exception of a single metacarpal (mc

?I), which is preserved on the proximal fragment of the

wing metacarpal and tapers to a natural termination some

48 mm distal to the carpometacarpal articulation (Fig. 3d).

Damage to the metacarpals indicates that even these slen-

der bones were hollow.

Digits The left manus is preserved in a slightly hyper-

extended position. Digit I overlies digit II, however, digit

III has been displaced slightly caudally with the palmer

part of the proximal articulation condyle of its first phalanx

now overlying the dorsal margin of the first phalanx of

digit I (Fig. 3e). All of the elements belonging to the digits

are in full articulation. The dorsally facing compacta of the

phalanges of digit 1 are mostly eroded and the first phalanx

shows signs of compaction along the mid-part of its shaft;

the palmer face of which is concave between the articu-

lation heads. A narrow trace, most likely the remnants of a

claw sheath, is present, adjacent to the tip, along the caudal

margin of the ungual phalanx. Of digit II only the ungual

phalanx is visible. Distal to the tip of the ungual the

keratinous claw sheath is visible as a yellowish buff trace

that extends the tip of the ungual by at least 2 mm. Com-

pared with the first phalanx of digit I the concavity of the

shaft of the first phalanx of digit III is shallow. Phalanx 2 of

digit III has barely one-fourth of the length of the first

phalanx and is marked by a deep palmer notch and a dorsal

styloid process that has one-third of the length of that

phalanx. This process forms a bone lock that hinders a

hyper-extension of the third phalanx of digit III. The third

phalanx is almost conical with a very shallow circumfer-

ential concavity in its distal two-thirds. According to its

external mould, the distal articular condyle with the ungual

phalanx was almost confluent with the shaft. The ungual

phalanx of digit III is preserved predominantly as an

impression, lined with some remnants of the compacta

along the lateral sulcus and the very tip. This tip is
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prolonged by a black pyrolusite or goethite stain, 3 mm

in length, which represents the remains of a keratinous

sheath. All ungual phalanges are—or in the case of digit III

were—11 mm long.

Wing-finger Only those elements belonging to the left

wing-finger can be identified and preserve the fourth digit

in its entirety. With the exception of the third and fourth

phalanges these have been displaced and lie slightly out of

natural articulation with their neighbouring elements. The

first wing-finger phalanx is preserved in partial articulation

with the fourth metacarpal and lies flexed back to such an

extent that the caudal process now overlies the dorsocaudal

surface of metacarpal IV, forming an angle of 3.5� between

the two bones. This flexion has separated the metacarpal IV

and the first wing-finger phalanx so that only the extensor

tendon process still lies between the condyles of the

metacarpal. The lack of contact between the two elements

suggests that the metacarpophalangeal articulation is likely

hyper-flexed. The distal terminus of the phalanx shows

some surface erosion as does the dorsal margin of the

proximal cotyle, but the margin of the gently convex

articulation with phalanx 2 is still visible. The extensor

tendon process is not fused to the first wing phalanx and is

sub-triangular outline with a deeply concave cranial mar-

gin. Caudally this rises into a blunt ridge and becomes

confluent with the proximal ridge above the articular face.

This latter ridge tapers caudally and is perforated by a

pneumatic foramen that is partly obscured by the dorsal

condyle. The remaining three phalanges of the wing-finger

lie adjacent to each other and display a shallow caudally

directed curvature. In contrast to the other elements of the

wing these are exposed in ventral view. The second wing-

finger phalanx is 85% of the length of the first wing-finger

phalanx and preserves a gentle, caudally directed curva-

ture. The bone formed a long oval in cross-sectional view.

The third wing-finger phalanx is missing most of the

compacta and is around half the size of the second (i.e.,

55%). The distal articulation face is only one-fourth the

size of the proximal one. The fourth wing-finger phalanx is

a tiny element about 3.5 mm in length and shows three

shallow, distally converging striae on its dorsal face

(Fig. 3f). The caudal margin of the bone is concave and

terminates in a blunt, slightly re-curved tip with a flat distal

surface.

Hindlimbs The hindlimbs have been crushed and broken

into several mostly indeterminable elements. The right

femur is preserved in its caudal aspect where the femoral

neck is offset from the shaft at an angle of 41� (Fig. 3c).

The greater trochanter is observed as a prominent, cranially

directed triangular process, the caudal margin of which is

slightly convex and marked by a blunt ridge that merges

distally with the femoral shaft. Between the trochanteric

ridge and the femoral neck a large, pneumatic, trabeculae-

lined opening pierces the shaft. Immediately distal to the

trochanteric area, portions of the femur were broken and

re-attached with a loss of some bone material.

Discussion

Ontogenetic age

The identification of unfused sutures in the skeleton, and

the sequence in which they occur, has proven useful to

determine the morphological age of a variety of arch-

osauromorphs (Brochu 1995, 1996; Irmis 2007), included

pterosaurs (e.g., Bennett 1993; Kellner and Tomida 2000).

While Bennett (1993) further noted an immature bone

grain, and pitting about the articular extremities as being

indicative of osteological immaturity in pterosaurs, the

bone grain of M. altivolans appears to be well developed.

Immaturity is however indicated by the lack of skeletal

fusion where the cervical and thoracic ribs are separate

from their respective vertebrae, the scapula and coracoid

have no formed a scapulocoracoid, and the presence of a

large suture between the extensor tendon process and the

first wing-finger phalanx. As such the animal did not live to

a late ontogenetic state and is inferred as being juvenile or

sub-adult.

Taphonomy

The skeleton of M. altivolans shows some unusual features

in that while almost all the long bones have been badly

fractured (Fig. 3a), many of these elements have remained

in close association or lie just beyond bone lock. Fragile

elements that are easily displaced by post mortem move-

ment, including the pteroid, preaxial carpal, metacarpalia,

and digits I–III, are also preserved in situ or with only

minor displacement. The humerus, radius, ulna and meta-

carpal IV were broken transversely by a single event and

although one fragment of the bone often overlies the other,

there has been little actual displacement. It is difficult to

explain these fracture patterns as a result of a natural decay

process. The sediment indicates that stagnant, and possibly

hostile, seafloor conditions persisted in the local environ-

ment while disruption by sediment activities or high-

energy currents is unlikely based on the lithology. The lack

of any trace of bioturbation excludes any benthic or en-

dobenthic scavengers as the cause of the given breakage

pattern, thus the carcass of the pterosaur encountered a

violent traumatic encounter of an unknown origin. The fact

that most of the broken bones are still aligned can only be

explained by the presence of soft tissues that held the

fractured elements together to a large degree. The breakage

of the bones must have occurred when the pterosaur was
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either still alive or freshly dead and in a very early stage of

decay.

Systematic palaeontology

The presence of an elongate wing metacarpal identifies

M. altivolans as a pterodactyloid, but it is more specifically

diagnosed as an azhdarchoid by a relatively short wing-

finger with a rapid decline of phalanx length distally

(Lü et al. 2008), an elongated wing-finger phalanx 1 being

[40% of the entire wing finger (Kellner 2003), and a well

developed tubercle on the caudoventral margin of the

coracoid (Kellner 2004). The pneumatisation of the hind-

limb and the presence of a well developed greater

trochanter further support this conclusion, where the for-

mer has been demonstrated to be widespread throughout

the Azhdarchoidea by means of a large excavation on the

craniodorsal face of the femur (e.g., Claessens et al. 2009;

Eck et al. 2011).

The Azhdarchoidea itself is comprised of four families,

the Tapejaridae, the Thalassodromidae, the Chaoyangop-

teridae, and the Azhdarchidae (see Lü et al. 2008), along

with the Protoazhdarchidae as a potential fifth (Frey et al.

2011). The assignment of M. altivolans to one of these

families is complicated as the majority of diagnostic

characters are restricted to the cranium and the middle

cervicals (e.g., Kellner and Langston 1996; Kellner 2003;

Unwin 2003; Suberbiola et al. 2003; Witton 2008); none of

which can be observed in the described specimen. Of the

few remaining elements of the axial column, only the

posterior cervicals 7–9 and the first dorsal vertebrae are

identified. The lack of the mid cervical vertebrae and the

poor preservation of any diagnostic features on the

remaining elements prevent an extensive comparison with

other azhdarchoids. The posterior cervicals of the Moroc-

can azhdarchid Phosphatodraco mauritanicus (Suberbiola

et al. 2003), which has an unusually elongated seventh

vertebrae, are distinct from those of M. altivolans, whose

own cervicals more closely resemble those of other

pterodactyloid pterosaurs. Fortuitously additional postcra-

nial characters can be used for a more refined diagnosis.

The configuration of the metacarpals for example, whereby

the preaxial metacarpals appear to terminate distal to the

carpus is used to distinguish the described specimen from

the Tapejaridae, where a single preaxial metacarpal is

known to contact the wrist. While the hyper-reduction,

without loss, of the fourth phalanx to\5% that of the total

length of the wing-finger is known only for Quetzalcoatlus

(Kellner and Langston 1996; Fig. 4), an azhdarchid affinity

is rejected by a further comparison of postcranial elements.

Here the scapula and coracoid preserve a ratio of 1.30,

more comparable to that of non-azhdarchid azhdarchoids,

e.g., MN 6588-V (1.27); SMNK PAL 3843 (1.39), and an

unnumbered specimen at the SMNK (1.42, RAE, personal

observation), than that of Quetzalcoatlus (1.01) or even the

chaoyangopterid Shenzhoupterus chaoyangensis (1.00, Lü

et al. 2008), while M. altivolans further lacks the well

developed ventral flange to the coracoid (Fig. 5). Unwin

and Martill (2007) described a number of postcranial

azhdarchid apomorphies that include: a highly elongated

wing metacarpal (i.e., mc IV [ wph 1); and a wing-finger

forming \50% the total forelimb length. Lü et al. (2008)

later included a mc IV/humerus ratio of [2.2. In M. al-

tivolans the wing metacarpal is slightly less than that of the

first wing-finger phalanx (i.e., mc IV/wph 1 = 0.9), the

wing-finger forms 51–52% of the total forelimb length and

the mc IV/humerus ratio is between 1.7 and 2.0. Under

these qualifiers, M. altivolans is excluded from the

Azhdarchidae.

Despite the lack of a skull and the general state of

preservation, postcranial features can be used to exclude

M. altivolans from a placement within the Tapejaridae and

Azhdarchidae, however, its assignment to either the Thal-

assodromidae or the Chaoyangopteridae is complicated by

the fact that both of these families are defined by their

cranial characteristics alone (e.g., Kellner 2004; Lü et al.

2008; Witton 2008). While a tentative similarity with

Shenzhoupterus chaoyangensis (Lü et al. 2008) is noted

from ratios of the mc IV/hu and mc IV/wph 1, the majority

of body proportions do not differ substantially from those

of other derived azhdarchoids (Table 2). Furthermore those

elements that do, i.e., phalanx proportion in the wing-fin-

ger, differ considerably and isolate M. altivolans from

other azhdarchoids. The high ratio of the second wing-

finger phalanx to that of the first is greater than the range of

values observed for other azhdarchoids; contra to the

synapomorphy stated by Kellner (2003) for the Azhdar-

choidea where by the second wing-finger phalanx is always

more than 1/3rd smaller than the first wing-finger phalanx

(i.e., wph 2/wph 1\0.7). While similar ratios are observed in

other pterodactyloid pterosaurs, e.g., Pteranodon, Nyctosaurus,

Germanodactylus and several selected ornithocheiroids,

all of which are readily distinguished from the described

specimen.

The phylogenetic placement of M. altivolans within the

Azhdarchoidea therefore remains uncertain and while

postcranial characteristics support the erection of a new

genus within either the Thalassodromidae (Witton 2009) or

Chaoyangopteridae (Lü et al. 2008), no more specific a

diagnosis can, or should, be reliably made at this time.

General discussion

The placement of M. altivolans within the Thalasso-

dromidae/Chaoyangopteridae highlights the degree of to

which variations in wing phalange length can occur, along
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with the problems involved with identifying taxa from their

biometric proportions alone. Although the ratio of the first

and second wing-finger phalanges of the described speci-

men exceeds the range of values regarded as a

synapomorphy of the Azhdarchoidea (Kellner 2003), this is

not problematic as a suite of additional characters readily

support its position within the group. Defining pterosaurs in

absolute values is problematic as taxa or individuals (as a

result of natural intraspecific variations) will occasionally

fall outside the range covered by previously known

specimens. Indeed Sinopterus dongi (Wang and Zhou

2003) and a ?tapejarid specimen (SMNK PAL 6900,

Unwin and Martill 2007) also exceed the absolute value

given by Kellner (2003), although to a much smaller

degree, and indicate that such practices can often fail to

encompass the full range of values of the desired group.

The second unusual feature of the described specimen

also relates to the wing phalanges and the size of the ter-

minal wing-finger phalanx. While a reduction in the length

of the fourth wing-finger phalanx is observed in a number

Fig. 4 Bar chart illustrating the percentage of the total length of the

fourth digit formed by each phalanx. Hyper-reduction of the terminal

wing-finger phalanx is typically restricted to the Azhdarchidae and

distinguishes them from other members of the Azhdarchidae. List of

taxa from top to bottom: Arthurdactylus conandoylei (SMNK PAL

1132); Santanadactylus pricei (AMNH 22552); Eoazhdarcho

liaoxiensis (GMN-03-11-002); Sinopterus dongi (IVPP V 13363);

Shenzhoupterus chaoyangensis (HGM 41HIII-305A); Huaxiapterus
jii (GMN-03-11-001); tapejarid indet. (SMNK PAL 6409); tapejarid

indet. (SMNK PAL 3900); Quetzalcoatlus northropi (TMM 41450);

Quetzalcoatlus sp. (TMM 41961); Microtuban altivolans (SMNK

PAL 6595)

Fig. 5 Comparison of the scapula and coracoid elements from a an

un-named tapejarid (SMNK PAL 3843). b Microtuban altivolans
(SMNK PAL 6595). c Quetzalcoatlus sp. (TMM 42138-1). All line

tracings have been scaled to the same size, based on the coracoid

length. The coracoid: scapula ratio of 1.30 in M. altivolans is similar

to that of other azhdarchoid pterosaurs e.g., SMNK PAL 3843, 1:1.39;

unlabelled azhdarchoid indet. (SMNK), 1.27; MN 6588-V, 1:1.27 and

is clearly distinct from that of other more derived pterosaurs, e.g.,

Shenzhoupterus chaoyangensis (1:1) and Quetzalcoatlus sp. (1:1).

c coracoid, cf coracoid flange, gf glenoid fossa, approximate location,

s scapula, sta sternal articulation
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of taxa, specifically those within the Azhdarchoidea, the

actual loss of the phalanx is rare; having only been docu-

mented in specimens of Anurognathus, Beipiaopterus and

Nyctosaurus (Bennett 2003b, 2007; Lü 2003). Even within

the Azhdarchoidea the reduction of the fourth phalanx to a

length\5% that of the total wing finger is known only for

Quetzalcoatlus. Its presence here is therefore unusual and

extends the range of this feature to encompass non-azh-

darchid azhdarchoids. The biomechanical reasoning behind

the extreme reduction or loss of the fourth phalanx remains

uncertain but must have been linked to either the aerody-

namic forces acting on the distal section of the wing, and

the subsequent deformation of the leading edge spar/

membrane, or acted as one possible means of lowering the

overall aspect ratio.

The presence of M. altivolans within the Cenomanian

aged deposits of Lebanon represents one of the few non-

azhdarchid azhdarchoids known from the Late Cretaceous.

Members of the Chaoyangopteridae such as Shenzhoupte-

rus chaoyangensis and Chaoyangopterus zhangi from the

Jiufotang Formation of Liaoning Province, are dated as

Early Aptian, while Eopteranodon was uncovered from

Barremian–Early Aptian deposits (Swisher et al. 1999).

Members of the Thalassodromidae are known chiefly from

the NE of Brazil, the two major fossiliferous deposits are

both regarded as Early Cretaceous in age (Kellner and

Campos 2002; Unwin and Martill 2007; Witton 2009). An

isolated rostrum and mandible from the Javelina Formation

of North America (Wellnhofer 1991; Kellner 2004) there-

fore appears to represent the sole member of the

Thalassodromidae known from the Late Cretaceous (Mar-

till and Naish 2006). The confirmation of M. altivolans as a

thalassodromid or chaoyangopterid pterosaur within the

Early Cenomanian Lagerstätten of Lebanon therefore

reveals only a minor portion of the ghost lineage available

to these taxa, but it is significant as the dating of these

deposits appears to be uncontroversial. Azhdarchoid

remains are also known from the Cenomanian Kem Kem

locality of Morocco, but are regarded as either tapejarid or

azhdarchid pterosaurs (Kellner and Mader 1997; Well-

nhofer and Buffetaut 1999) and as such are not directly

comparable to M. altivolans. A similar situation is found in

the Cenomanian chalk of England that yields specimens of

Anhanguera and Lonchodectes (Unwin 2000), while sub-

stantial material recovered from the Cenomanian aged

Cambridge Greensand of England is likewise incomparable

and thought to have been reworked from the older Albian

deposits (Wellnhofer 1991; Dalla Vecchia et al. 2001).

Microtuban altivolans therefore represents one of the youn-

gest confirmed thalassodromid/chaoyangopterid pterosaurs,

perhaps the only one of a known Cenomanian age, and indi-

cates a greater geographical distribution existed than

the immediate localities encompassed by the Lagerstätten

deposits of Brazil and China.

Pterosaurs from the eastern edge of the African Plate

remain exceedingly rare and those belonging to the portion

that now forms the Middle East are restricted to the Early

Cenomanian M. altivolans, an indeterminate ornithochei-

roid (Dalla Vecchia et al. 2001), and a ‘‘pterodactyloid’’

hindlimb (Tchernov et al. 1996). As azhdarchid pterosaurs

are known from the upper Campanian of Israel and the

upper Maastrichtian of Jordan (Arambourgiania philadel-

phiae, Arambourg 1954; Frey and Martill 1996), the region

was undoubtedly inhabited by a variety of pterosaurs more

or less continuously throughout the Late Cretaceous. If

pterosaurs formed a major portion of the local ecosystem

Table 2 Ratios of selected long

bone elements in various

pterosaur taxa

a Estimated values

Taxa Specimen number wph 2/wph 1 mc IV/hu mc IV/wph 1

Azhdarchidae

Zhejiangopterus linhaiensis ZHNM M1323 0.66 2.45 1.04

Quetzalcoatlus sp. TMM 41961 0.51 9 0.81

Quetzalcoatlus sp. TMM 42422 0.51 2.48 1.03

Q. northropi TMM 41450 9 1.79a 9

Chaoyangopteridae

Shenzhoupterus chaoyangensis HGM41HIII-305A 0.68 2.12 0.95

Eoazhdarcho liaoxiensis GMN-03-11-002 0.78 1.50 0.76

Thalassodromidae

Tupuxuara longicristatus IMCF 1052 0.60 1.53 0.71

Tapejaridae

Huaxiapterus jii GMN-03-11-001 0.79 1.67 0.81

tapejarid sp. indet. SMNK PAL 6409 0.71 9 9

tapejarid sp. indet. SMNK PAL 3900 0.62 1.39 0.62

Sinopterus dongi IVPP V 13363 0.73 1.63 0.79

Microtuban altivolans SMNK PAL 6595 0.85 1.81a 0.90
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during the Cenomanian then it is surprising that so few of

their remains have been uncovered as, unlike many local-

ities, the Lagerstätten of Hâqel and Hjoûla are quarried

exclusively for their fossils contents. The palaeogeo-

graphical reconstructions of northern Lebanon during the

Cenomanian indicate that an open marine setting prevailed

in the west of the country and the appearance of pterosaurs

here, several hundred km from the nearest inferred palae-

ocoastline, inevitably raises questions as to how they came

to rest in this setting. The animal perhaps died migrating

between landmasses, drifted into the region on the ocean

currents, or have inhabited any palaeoislands that existed

within the immediate region. Dalla Vecchia et al. (2001)

suggested that the pterosaurs of the Cenomanian inhab-

ited small islands composed of carbonate exposures, a

hypothesis supported by the presence of sub-aerially

exposed carbonate reefs, with palaeochannels, within the

Early Cenomanian lithologies (Nader et al. 2006). Terres-

trial plant deposits are also known from these localities

indicating that material from colonised islands in the local

area, or the nearest landmass, were occasionally swept into

the region. As this input of material is of a poorer quality

than that found at younger localities the source is regarded

as being more distant than that of the upper Cenomanian

locality of Nammoûra. The presence of these small ptero-

saurs so far from the nearest major landmass, along with

the generally good preservation observed within the spec-

imen, suggests that Early Cenomanian pterosaurs probably

did inhabit exposed carbonate islands within the local

region. Any such platforms however were located more

distant in the Early Cenomanian localities when compared

to these of the Late Cenomanian. The relative lack of any

teeth or bone fragments attributed to pterosaurs, despite the

extensive quarrying of these localities for commercial

fossils suggests that pterosaurs either did not reside close

by in great numbers, or unknown conditions prevented

their preservation in a locality famous for its spectacular

preservation of fossil fish.

Conclusions

Microtuban altivolans represents a small, ontogenetically

immature azhdarchoid pterosaur tentatively associated with

the Thalassodromidae or Chaoyangopteridae. Differentiat-

ing between taxa of either group based on postcranial

remains or biometric data and ratios is currently not pos-

sible and no more a specific diagnosis can be made. The

unusual ratios formed by the second and fourth wing finger

phalanges highlight some of the problems with using

biometry to identify pterosaur taxa, indicating that the

lengths of the individual wing elements are often highly

variable. Additionally some ratios that are generally useful,

e.g., wph 2/wph 1 \ 0.7 (Kellner 2003) or mc IV [ wph 1

(Unwin and Martill 2007), can ultimately fail to encompass

the diversity of a desired group. The hyper-reduction

without loss of the fourth wing-finger phalanx within

M. altivolans indicates that this feature was present

throughout the Azhdarchoidea and was not solely restricted

to the largest azhdarchids.

While African pterosaurs remain exceedingly rare the

discovery of M. altivolans from the Cenomanian deposits of

Lebanon, and the first from Hjoûla, fills in the earliest part

of the Thalassodromidae/Choayangopteridae ghost lineage

in the Late Cretaceous, indicating that these pterosaurs were

more geographically widespread than the immediate

localities covered by the Crato/Santana and Jehol Forma-

tions of Brazil and China. Although the exact provenance of

the described specimen is uncertain, the only alternative site

(i.e., Hâqel) is also Cenomanian and would indicate an even

younger age than we have suggested here. As such, no

conclusions presented in this manuscript will become void

if the specimen is later proved to have originated from a

neighbouring locality. The presence of this small pterosaur

in an open marine setting, many hundreds of kilometres

from the nearest palaeoshoreline, supports the idea that

pterosaurs of the Cenomanian of Lebanon inhabited

exposed carbonate islands (Dalla Vecchia et al. 2001).

Given the rarity of these specimens it is unlikely that Hjoûla

will ever be as important to pterosaur workers as other

European, Asian and South American Lagerstätten locali-

ties, however, it does promises the prospect of future finds

from a little known Cretaceous age of pterosaur evolution.
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The shape and extent of the membranous brachioptagium in pterosaurs remains a controversial topic for those attempting
to determine the aerodynamic performance of the first vertebrate fliers. Various arguments in favour of the trailing edge
terminating against either the torso or hip, the femur, the ankle, or different locations for various taxa, has resulted in sev−
eral published reconstructions. Uncertainty over the correct model is detrimental to both aerodynamic and palaeoecologi−
cal studies that are forced to simultaneously consider multiple and highly variable configurations for individual taxa. A
review of relevant pterosaur specimens with preserved soft tissues or impressions of the wing membrane, however,
strongly suggests that the trailing edge of the wing extended down to the lower leg or ankle in all specimens where the
brachiopatagium is completely preserved. This configuration is seen across a phylogenetically broad range of pterosaurs
and is thus likely to have been universally present throughout the Pterosauria. Support for opposing hypotheses where the
trailing edge terminates against the body, hip, or knee are based on several specimens where the wing membrane is either
incomplete or has undergone post−mortem contraction. An ankle attachment does not rule out a high aspect ratio wing as
the curvature of the trailing edge and the ratio of the fore to hind limbs also play a major role in determining the final shape
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Introduction

The pterosaurs were prehistoric flying reptiles that domi−
nated the skies for much of the Mesozoic Era (Late Triassic
to the end Cretaceous). They were the first vertebrates to de−
velop true powered flight and included the largest flying ani−
mals of all time, with wing spans in excess of 10 metres
(Witton 2008). While several studies have considered the
aerodynamic characteristics of the group (e.g., Bramwell and
Whitfield 1974; Stein 1975; Brower 1980, 1982, 1983; Chat−
terjee and Templin 2004) further work is required to better
understand the aerodynamics of the pterosaurian wing and
the consequences of altering its material and structural com−
positions. Such studies, however, cannot proceed in the ab−
sence of a consensus on the shape and extent of the wings.

Previous aerodynamic and palaeoecological based studies
have been divided over the shape and surface area of the main
wing membrane by the use of either a “bird−like” model,
where the proximal portion of the trailing edge attaches to the
body, or a “bat−like” model where it is integrated with the hind
limbs. The result of this divergence is that the conclusions of
aerodynamic studies utilising a narrow chord (Brower 1980,
1982, 1983; Chatterjee and Templin 2004) will differ from
those with a broader chord (Hankin and Watson 1914; Kripp
1941; Heptonstall 1971; Bramwell and Whitfield 1974; Stein

1975; Wilkinson et al. 2005) regardless of any other similari−
ties between the methods or taxa under investigation. As both
aspect ratio and wing load have important implications for
ecology in bats and birds (Hazelhurst and Rayner 1992),
which can be equally applied to pterosaurs (McGowan and
Dyke 2009; Witton 2008), the resolution of the wing shape in
pterosaurs benefits not only those seeking to investigate their
aerodynamic characteristic but also those with an interest in
determining pterosaur life habits.

Powered flight appears to have been the primary method
of locomotion in all pterosaurs where the flight surface is pri−
marily comprised of a single uninterrupted membrane, the
“brachiopatagium,” with the leading edge being formed by the
bones of the forelimb (Fig. 1). Within the context of this
manuscript we use the term wings inclusively to refer to all the
bones of the forearm and the primary flight membrane that
spans between the most distal point of the forearm to where it
is associated with the lateral margin of the body or hind limb.
The distal portion of the brachiopatagium was controlled by
the elongated fourth digit (wing−finger) that was able to flex
anterioposteriorly about the wing metacarpal, folding the wing
during terrestrial locomotion, diving, or fast gliding flight. For
the purpose of this study all orientations are given for an ani−
mal in its estimated gliding position, with the wing fully ex−
tended as illustrated in Fig. 1. Within the patagia itself a radiat−
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ing pattern of structural actinofibrils developed for both con−
trolling the local camber and spreading the wing distally
(Bennett 2000). The distribution of these elements gives rise to
the major divisions of the brachiopatagium, the distal, fibril
dense actinopatagium, and the proximal tenopatagium, con−
taining fewer fibrils (Schaller 1985).

In addition to the brachiopatagium two separate, and
much smaller, membranes are also proposed to take an active
role in flight, these being the fore−wing or “propatagium” and
the tail wing or “uropatagium” (also sometimes referred to as
the “cruorpatagium”). While the shape of the pro− and uro−
patagia may also be considered controversial, the former is
reliant on the orientation and mobility of the pteroid bone
(see Bennett 2007a; Palmer and Dyke 2009; and Wilkinson
2008 for contrasting interpretations), while the latter also
hinges on the use of an important skeletal element, the fifth
pedal digit. While the authors acknowledge that both the
propatagia and uropatagia are important for the construction
of an accurate flying model of a pterosaur, they are not con−
sidered further here.

The primary focus of this paper is thus to evaluate the fos−
sil evidence and identify the proximal attachment of the
brachiopatagium so that future aerodynamic studies do not
have to simultaneously consider radically different wing
configurations. It also aims to ensure that unsupported wing
reconstructions, common throughout the current literature,
are not repeated in future works.

Institutional abbreviations.—BPM, Beipaio Paleontolgical
Museum, Beipaio, China; BSPG, Bayerische Staatssammlung
für Paläontologie und Geologie, Munich, Germany; GMV,
Geological Museum of Nanjing, Nanjing, China; IGM, Uni−
versidad Nacional Autónoma de México Instituto Geología de
Mexico, Mexico City, Mexico; IVPP Institute of Vertebrate
Palaeontology and Palaeoanthropology, Beijing, China; JME,

Jura−Museum, Eichstätt, Germany; MCSNB, Museo Civico di
Scienze Naturali Bergamo, Bergamo, Italy; NHMW, Natur−
historisches Museum Wien, Vienna, Austria; SMNK, Staat−
liches Museum für Naturkunde Karlsruhe, Karlsruhe, Ger−
many; YPM, Yale Peabody Museum, New Haven, USA.

Current problems: “bird” versus
“bat”−like wings
Reconstructions of the wing membrane are divided between
the so called “bird” (narrow chord) and “bat−like,” (broad/an−
kle chord) configurations (Fig. 2). In the former the mem−
brane extends to the torso or hip (Brower 1980, 1982, 1983;
Padian and Rayner 1993; Peters 2001), while in the latter it is
associated with the hind limb at about the knee (Martill and
Unwin 1989) or ankle (e.g., Unwin and Bakhurina 1994;
Frey and Martill 1998; Frey and Tischlinger 2000; Tischlin−
ger and Frey 2002; Frey et al. 2003; Witton 2008). Variable
configurations for individual species must also remain a pos−
sibility (Wellnhofer 1991; Dyke et al. 2006). The inferred ex−
tent of the wing has been influenced by a number of factors
including historical interpretations, the mode of terrestrial lo−
comotion, and the degree of soft tissue preservation in speci−
mens; each of which will be considered separately.

Historical considerations
Although life restorations of pterosaurs are known as early as
1800 (Taquet and Padian 2004) it was the reconstruction of
Sömmerring (1812) that was to become the best known and
most widely circulated in the early years of pterosaur re−
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Fig. 1. Schematic sketch of Pterodactylus as viewed in its inferred flight position from ventral view (adapted from Wellnhofer 1970). The three flight mem−
branes are illustrated with the brachiopatagium, the focus of this work, being shaded in grey. All terminology is applied to the animal in this position and the
size of any specific chord is here generally defined as being narrow or broad, large or small. While the root chord should generally also include the chord of
the propatagium for the purpose of this paper it is restricted to the brachiopatagium.



search. His belief that pterosaurs were a form of extinct bat,
ignoring the fossil evidence laid down by Collini (1784) and
Cuvier (1801)—dismissing the reptilian quadrate, the elon−
gated fourth metacarpal and reconstructing the thorax and
pelvis based on the skeleton of a bat—must have been the
dominant reason why the wing membrane extended to the
hind limbs in his restoration. While later authors would ac−
cept the reptilian nature of pterosaurs contra to that of Söm−
mering (1812), his illustration of a “bat−like” membrane re−
mained the accepted configuration for much of the 19th and
20th centuries.

The appearance of the first fossils preserving part of the
membranous wing seventy years later did little to alter this
view when in 1882 Zittel and Marsh each independently pub−
lished on different exceptionally preserved fossils of Rham−
phorhynchus. Despite the absence of the body, Zittel (1882)
interpreted the membrane in his specimen as being associ−
ated with the hind limbs during life. Restorations from the
19th century illustrate that the flight apparatus in pterosaurs
was more or less universally accepted to have been “bat−like”
(e.g., Marsh 1882; Zittel 1882; Williston 1897; also see
Seeley 1901: fig. 58). However, in his classic book “Dragons
of the Air,” Seeley (1901) criticised his colleagues for restor−

ing more of the wing membrane than the fossil specimens
preserved, stating that “I should have preferred to carry it
[brachiopatagium] no further down the body than the lower
part of the back there being no fossil evidence in favour of
this extension so far as specimens have been described”
(Seeley 1901: 165). Although later works such as Jaekel
(1910) and Strömer (1913) also kept the hind limbs of Rham−
phorhynchus free from the brachiopatagium, a majority of
restorations produced during the first quarter of the 20th cen−
tury continued to carry the membrane down to the lower hind
limb or ankle (e.g., Abel 1919, 1925; Hankin and Watson
1914—Pteranodon; Stieler 1922—Dorygnathus; Wiman
1923—Dorygnathus; Wiman 1925—Pterodactylus). Willi−
ston, in his 1911 paper, included an extensive wing surface
for Nyctosaurus, which stretched from the ankle as far for−
wards as the head, and stated “that the membrane extended to
the tarsus on the peroneal side of the legs I think now hardly
admits of doubt; the animals would hardly have been
“flugfähig [volant]” were the legs wholly free, since the
membrane would have been too narrow to serve as a para−
chute…..” (Williston 1911: 704).

Although this ankle chord configuration was widely ac−
cepted and would later be adopted by several studies into
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Fig. 2. Various configurations of the pterosaur main wing. A. The traditional “bat−like” interpretation adopted by Sömmerring 1812 (1) and Marsh 1888 (2).
B. The “bird−like” model where the membrane was free of the legs and attached to the body after Peters 2001(3), Padian and Rayner 1993 (4, 5), or tail
Bennett 1987(6). C. The “Pterodactylus model” where the membrane, based on specimen NHMW 1975/1756, attached around the knee (7). D. A more re−
cent “bat−like” wing model (8, 9) where the membrane attaches to the ankle (Unwin and Bakhurina 1994; Frey and Martill 1998; Frey and Tischlinger 2000;
Tischlinger and Frey 2002; Frey et al. 2003).



pterosaur flight dynamics (e.g., Bramwell and Whitfield
1974; Stein 1975) there was little fossil evidence during this
period to suggest that this, or indeed any other model, was
correct. The holotype of Pterodactylus antiquus preserves no
trace of a membrane and therefore the restorations of Her−
mann (Taquet and Padian 2004) and Sömmerring (1812),
amongst others, are fictional. Neither were the first speci−
mens preserving a membrane of much assistance, as the
“Zittel Wing” (BSPG 1880 II 8) is an isolated wing with no
trace of the body, though Padian and Rayner (1993) argued
that it would have extended no further caudally than the hip.
The Rhamphorhynchus specimen (YPM 1778) of Marsh
(1882) is also of little use as the proximal portion of the mem−
brane is not preserved. No traces of a membrane have ever
been found in any specimen of Dorygnathus, Pteranodon
or Nyctosaurus and therefore the early reconstructions of
Marsh (1882) and Williston (1897) cannot be tied to any fos−
sil evidence. Lastly Williston’s (1911) assumptions that ptero−
saurs would not have been flight worthy were the legs free of
the flight membrane is also untrue, as has been demonstrated
by a significant increase in our understanding of aerodynam−
ics and several recent studies on the subject (e.g., Brower
1980, 1982, 1983; MacCready 1985; Chatterjee and Templin
2004). Therefore while a “bat−like” configuration has histori−
cally been the accepted model it was not explicitly tied to any
fossil evidence and appears to have been sustained primarily
through a historical bias and a lack of any evidence to the
contrary.

“Bird−like” configuration
Many of these points were raised by Padian (1983, 1985,
1987) who challenged the traditional “bat−like” model and
argued that the wing was far less extensive and more “bird−
like” in profile. Padian (1983) supported this by observing
that several fossils of Rhamphorhynchus “clearly show that
the hind limb was free of the wing and that the wing extended
no further back along the body wall than the pelvis” (Padian
1983: 219); reiterating the concerns of Seeley (1901). It was
subsequently argued that previous workers were mislead into
reconstructing an ankle chord as post−mortem contractions
had caused the trailing edge of the membrane to coinciden−
tally lie in the same plane as the wing (Padian and Rayner
1993). Padian and Rayner (1993) also noted that an ankle
membrane would have required a trailing edge structure, a
feature which has never been identified, and that with an ap−
propriate form and the actinofibrils providing a sufficient
camber there was no need for the brachiopagium to attach to
the hind limbs. The hind limbs would have been of limited
use in cambering a high aspect ratio wing as their influence
would have been restricted to only the most proximal region
of the membrane.

The narrow chorded configuration was adopted by Rayner
(1990) and was also incorporated into several aerodynamic
experiments (Brower 1980, 1982, 1983; MacCready 1985;

Chatterjee and Templin 2004). It was also used, along with
other configurations, by Hazlehurst and Rayner (1992) in their
study of pterosaur ecology. Other studies followed in a similar
style by presenting a model where the hind limbs were also
free from any role in flight. Bennett (1987) argued that the
brachiopatagium might have attached to the lateral face of the
tail, having found a pair of elongate caudal rods in Pteranodon
and possibly Nyctosaurus too, although he subsequently re−
jected this idea (Bennett 2001). Peters (2001), based on his
own photographic observations, reconstructed the trailing
edge of the brachiopatagium as extending only slightly caudal
to the elbow before turning sharply and attaching to the femur
(Fig. 2B, configuration 3).

Due to their common association, a narrow chorded model
may perhaps be viewed as being inseparable from bipedal lo−
comotion in pterosaurs although this is not suggested to be the
case. Bipedal locomotion in pterosaurs was argued for by
Padian (1983) but this has been challenged and rejected by
several workers (e.g., Unwin 1987, 1988; Wellnhofer 1988);
although a parasagittal orientation of the hind limbs was later
demonstrated to be possible (Bennett 1990, contra Wellnhofer
1988). Bennett (1997) more recently rejected bipedal locomo−
tion in pterosaurs by noting that: the metatarsals were spread−
ing and unfused; the foot was not symmetrical with a reduc−
tion of the medial and lateral digits, unlike other cursorial
digitigrade animals; and the metatarsophalangeal joints did
not permit sufficient extension. The assumption that these ob−
servations, having been made on large pterodactyloids, were
equally applicable to more basal pterosaurs was later con−
firmed by Clark et al. (1998) in a specimen of Dimorphodon
weintraubi (IGM 3494). Although Padian (2003, 2008) subse−
quently acknowledged that pterodactyloid pterosaurs must
have adopted a quadrupedal stance as a result of ichnological
evidence and the increasing length of the fourth metacarpal he
argued that this evolved secondarily from a bipedal ancestry
and non−pterodactyloid pterosaurs may themselves have been
bipedal.

The arguments for and against a bipedal mode of locomo−
tion are not considered further here as we do not regard them
as being of direct relevance in determining the extent of the
main wing (for a full discussion see Padian 2008). It is suffi−
cient to state that it is now universally accepted that ptero−
dactyloids were quadrupedal and thus would have been free
to have extended a membrane to the ankle. Even if non−
pterodactyloid pterosaurs (or pterosaur ancestors) were
bipedal it is widely accepted that the brachiopatagium was
flexible, elastic and could have been folded to a large degree
so there is no clear reason to expect it to hinder terrestrial lo−
comotion to any great degree.

Membrane−preserving fossils
The shape and extent of the brachiopatagium can only be re−
solved by a comprehensive review of the fossil evidence that,
despite their relative rarity, contains a significant number of
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specimens in which the wing membrane can be observed. Al−
though many of these have been described individually by
separate authors and used in isolation to infer details of the
brachiopatagium, when considered together they present a
clearer picture of the wing configuration. The most useful of
these include: Anurognathus (private collection, see Bennett
2007b) and Jeholopterus (IVPP V 12705), representing the
Anurognathidae; Eudimorphodon (MCSNB 8950a), Rham−
phorhynchus (e.g., JME SOS 4784) and Sordes (PIN 2585/3)
for other non−pterodactyloid pterosaurs; Beipiaopterus (BPM
0002), Pterodactylus (NHMW 1975/1756), Eosipterus (GMV
2117), and to a lesser degree a number of indeterminate
azhdarchoids (e.g., SMNK PAL 3830, 3900, 6404) for the
pterodactyloids.

The extensive preservation of soft tissue belonging to the
wing appears to be relatively more common for Rhampho−
rhynchus than for any other pterosaur taxon. However, de−
spite the relatively large number of individuals having been
documented with membrane preservation, only a minority of
these are of much use for the purpose of this study. These in−
clude the specimens figured by Padian and Rayner (1993:
fig. 3) as contra to their claims that these clearly show the
hind limb to be free of a membrane, the proximal portion of
the trailing edge in each specimen is either obscured or de−
tached. While we rightly acknowledge that these were some
of the best specimens available at that time, they cannot be
used to infer details of the wing other than that the distal por−
tion of the wing was narrow, as in no specimen does the trail−
ing edge of the membrane contact the body wall in a natural
state. This is also the situation observed in the “Zittel Wing”
(BSPG 1880 II 8) as despite its exceptional preservation, the
absence of the body means that it is of little value for deter−
mining the extent of the wing membrane, having been inter−
preted as supporting a trailing edge attachment to both the
ankle (Zittel 1882) and the torso (Padian and Rayner 1993).
Arguably the only specimen of Rhamphorhynchus that pre−
serves the proximal portion of the wing in association with
the hind limb is that of R. muensteri (JME SOS 4784), com−
monly referred to as the “Dark Wing”. The detail of preser−
vation here is superior to these other specimens and allows
for ultra−violet light to pick out muscle facia and a vascular
system within the wing itself (see Frey et al. 2003). Impor−
tantly the proximal portion of the left wing is complete and
demonstrates that the membrane curved sharply caudally on
approaching the body to attach by the ankle (Figs. 3A, 4A).

The holotype of Sordes pilosus (PIN 2585/3) preserves
several extensive membranous surfaces and has been the fo−
cus of a number of publications since its original description
by Sharov (1971) (e.g., Unwin and Bakhurina 1994; Unwin
1999). While identifying the full length of the trailing edge of
the wing in photographs is often difficult, the brachiopata−
gium was described as being narrow distally and becoming
broader towards the proximal portion with a trailing edge
that terminates about the ankles (Unwin and Bakhurina
1994: figs. 3E, 4E). Bakhurina and Unwin (2003) later re−
constructed the wing membrane of Eudimorphodon ranzii

(MCSNB 8950a) noting that the hind limbs, foot and 5th toe,
together with preserved patches of membrane, showed an al−
most identical disposition to that seen in the holotype of
Sordes (Figs. 3F, 4F). The patterns of fibres observed be−
tween the hind limbs were interpreted as patagial fibres with
the same orientation and spacing viewed in the uropatagium
of Sordes and therefore the reconstruction of the wings of E.
ranzii, and very likely all basal pterosaurs, are directly com−
parable to that of S. pilosus. The wing shape of Sordes was
disputed by Peters (1995, 2001) who questioned the trailing
edge identified by Sharov (1971), suggesting that it may
have been an organic smear bounded by breaks in the bed−
ding plane, and having identified a “possible alternate trail−
ing edge…..just posterior to the elbows” (Peters 2001: 285).
He also argued that post−mortem disturbance was evident in
this specimen and that the movement of the fore and hind
limbs had created the illusion of an ankle wing. Dyke et al.
(2006) later cautioned against applying a Sordes−like config−
uration universally because the hind limb proportions were
suggested to be atypical for even its closest relatives. The
completion of more extensive databases, however, indicates
that this concern is incorrect and nothing unusual is noted in
its limb proportions (RAE personal observation 06/2010).

Within the Anurognathidae the exceptional preservation
of the specimens of Jeholopterus ningchengensis (Figs. 3B,
4B) and Anurognathus ammoni (Figs. 3D, 4D) indicate that
the membrane, or the impression of the wing and its associ−
ated fibres, were also associated with the hind limb down to
the ankle (Wang et al. 2002; Bennett 2007b; Kellner et al.
2009). While a second specimen of Jeholopterus (Ji and
Yuan 2002) is also known it does not show an ankle attach−
ment but rather the trailing edge is clearly seen to extend
from the first wing−finger phalanx to the proximal margin of
the humerus (Fig. 5B). This forms a wing of an impossibly
narrow chord that does not even contact much with the wing
finger and is a clear example of the extent to which a flexible
membrane can contract post−mortem.

The preservation of extensive wing membranes in ptero−
dactyloid pterosaurs appears to be less common than for
non−pterodactyloids taxa. In one exceptional Pterodactylus
specimen (the “Vienna specimen”, NHMW 1975/1756) a
very narrow wing membrane is preserved and implies a fem−
oral attachment of the brachiopatagium (Figs. 3C, 4C). How−
ever, the original extent of the membrane is unclear as its nar−
row chord suggests a large degree of post−mortem contrac−
tion while soft tissue structures preserved adjacent to the
tibia, observed under UV light (Tischlinger and Frey 2002),
suggest that the trailing edge did not truly terminate about the
knee. Rather it is likely that the membrane extended further
distally along the limb towards, or even as far as the ankle
(Helmut Tischlinger personal communication 6/2008).

The pterodactyloid Beipiaopterus chenianus (Lü 2002,
2003) preserves a long patch of membrane adjacent to its fe−
mur and a configuration similar to that found in non−ptero−
dactyloid pterosaurs can be observed in the holotype speci−
men of Eosipterus (Figs. 3E, 4E; Ji and Ji 1997). Although
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Fig. 3. Selected photographs of pterosaur specimens displaying soft tissue preservation around the hind limbs and/or ankles. A. Rhamphorhynchus muensteri
(Goldfuss, 1831), the “Dark Wing”, JME SOS 4784, Eichstätt region (Upper Jurassic), Germany. B. Jeholopterus ningchengensus Wang, Zhou, Zhang, and Xu,
2002, IVPP V 12705, Lower Yixian Formation (Early Cretaceous), China. C. Pterodactylus kochi (Wagner, 1837), “Vienna specimen”, NHMW 1975/1756,
Solnhofen Limestone (Upper Jurassic), Germany. D. Anurognathus ammoni Döderlein, 1923, private specimen (Bennett 2007b), Solnhofen Limestone (Upper
Jurassic), Germany. E. Eosipterus yangi Ji and Ji, 1997, GMV 2117, Lower Yixian Formation (Early Cretaceous), China. F. Sordes pilosus Sharov, 1971, PIN
2585/3, Karatau Formation (Upper Jurassic), Kazakhstan. G. Tapejarid indet., SMNK PAL 3830, Crato Formation (Early Cretaceous), Brazil.
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Fig. 4. Line drawings of the pterosaur specimens depicted in Fig. 3 or specific points of interest. Tissue belonging to the wings is marked in bold outlines.
A. Rhamphorhynchus muensteri, the “Dark Wing”, JME SOS 4784, Eichstätt region (Upper Jurassic), Germany. B. Jeholopterus ningchengensus, IVPP V
12705, Lower Yixian Formation (Early Cretaceous), China. C. Pterodactylus kochi, “Vienna specimen”, NHMW 1975/1756, Solnhofen Limestone (Upper
Jurassic), Germany. D. Anurognathus ammoni, private specimen (Bennett 2007), Solnhofen Limestone (Upper Jurassic), Germany. E. Eosipterus yangi,
GMV 2117, Lower Yixian Formation (Early Cretaceous), China. F. Sordes pilosus, PIN 2585/3, Karatau Formation (Upper Jurassic), Kazakhstan.
G. Tapejarid indet., SMNK PAL 3830, Crato Formation (Early Cretaceous), Brazil.



the flight membrane was not specifically mentioned by Ji and
Ji (1997) we confirm that the brachiopatagium extends to
about the middle part of the tibia (DWEH personal observa−
tion 10/2008). However, the wing membranes of Eosipterus
require further preparation, being partially obscured by ma−
trix, and that exposed does not include a termination point.
The attachment point of the trailing edge was thus probably
located more caudally than the mid−tibia, and may well have
been at the ankle.

A number of azhdarchoid limb elements from the Crato
Formation of NE Brazil are associated with soft tissues from
the wings but in the absence of any cranial or axial elements.
Frey et al. (2003) described a basal azhdarchoid SMNK PAL
3830 (Figs. 3G, 4G) where a membrane trace extends from
the metacarpal region to the ankle of the respective hind
limb. Two more specimens (SMNK PAL 3900 and 6409, see
Unwin and Martill 2007) also consist of the fore and hind
limbs preserved in close association along with a goethitic
trace representing part of the brachiopatagium. A fourth
specimen (SMNK PAL 3855) preserves no visible soft tis−
sue, however, both the fore and hind limbs are preserved in a
comparable manner suggesting that they sank together. In the
case of these specimens the soft tissue traces are too exten−
sive to be regarded as anything other than the wing mem−

brane and in the SMNK PAL 3830 preserve traces of folding
structures and actinobrils; known only from the brachio−
patagium. Although the subsequent specimens do not pre−
serve direct evidence about the attachment location of the
tenopatagium it is difficult to explain the presence of corre−
sponding limb elements, settling separate to the torso, with−
out invoking a configuration where they where bound
together by a flight membrane.

Discussion
In all exceptionally preserved pterosaur specimens where the
proximal portion of the membrane is present, the original de−
scriptions confirm and/or support an attachment to the ankle
(e.g., Anurognathus ammoni, Beipiaopterus chenianus, Eosi−
pterus yangi, Eudimorphodon ranzii, Jeholopterus ningchan−
gensis, Rhamphorhynchus muensteri, Sordes pilosus). Several
azhdarchoid pterosaurs (i.e., SMNK PAL 3830, 3855, 3900,
6409) are also interpreted here as having their limb elements
connected by an extensive membrane due to the observed state
of the fossil specimens (Frey et al. 2003; Unwin and Martill
2007). Although several of these observations are in no way
immune to criticism, as it can be argued that without any
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Fig. 5.  Photographs and line drawings of selected specimens showing a pronounced contraction of the wing. A. Rhamphorhynchus longicaudus (Münster,
1839), BSPG 1938 I 503a, Solnhofen Limestone (Upper Jurassic), Germany; photograph (A1), explanatory drawing (A2). B. Jeholopterus sp. (Ji and Yuan
2002), Lower Yixian Formation (Early Cretaceous), China; photograph (B1), explanatory drawing (B2). Tissue belonging to the wings is marked in bold
outlines in A2 and B2.



actinofibrils it is not always possible to know whether the tis−
sue belongs to that of the wing of the membrane, we note that
it is unlikely that tissue from the body has here been misinter−
preted as belonging to the brachiopatagium. The majority of
the presented specimens preserve fibres and wrinkles, known
only from the wing membrane, and/or a clear trailing edge that
itself strongly suggests the trace must be regarded as part of
the wing. Where none of these features are present the mem−
brane traces are located lateral to the body and between the
fore and hind limbs, or are too extensive in their coverage to
have belonged to anything other than the flight membrane.
The ankle attachment is therefore the best configuration sup−

ported by direct soft tissue evidence, although a knee attach−
ment as suggested by the Vienna Pterodactylus, or tibia as
with Eosipterus in any case confirms that the tenopatagium
was associated with the hind limbs.

To the best of the authors’ knowledge no specimens exist
that conclusively show an attachment to the torso or hip. This
is contrary to the configuration argued for by Padian and
Rayner (1993) who figured several specimens of Rhampho−
rhynchus to support the hypothesis that the hind limbs were
free from the wing membrane. As noted above, and is evident
from their own figures, these specimens do not preserve the
proximal portion of the wing membrane and thus cannot be
used support a “bird−like” wing, particularly as more exten−
sive membranes are now known (Frey et al. 2003). While
Padian and Rayner (1993) had earlier argued that the post−
mortem contraction of the wing membrane was responsible
for the misidentification of an ankle attachment in some
specimens we instead suggest that these contractions can be
used to reject a hip or torso attachment. No preserved wing
will ever be broader than during life, but instead may appear
to be much narrower due to post−mortem effects (Fig. 5). The
comparison of two specimens of Jeholopterus sp. (Ji and
Yuan 2002; Wang et al. 2002) indicates that considerable
post−mortem contraction of the flight membranes was possi−
ble and demonstrates the extent to which contractions of the
membrane can deform the original shape and/or surface area
of the wing (Fig. 5B). While this comparison highlights a
rather extreme example of wing contraction, lesser examples
are likely to be wide spread throughout the fossil record. To
ensure that the most extensive membrane preserved is taken
as the minimum for any particular taxa, specimens of the
same genus must be compared with other, more recent dis−
coveries whenever possible. We suggest that contraction of
the membrane is also responsible for some of the exception−
ally narrow chords observed in specimens of Rhampho−
rhynchus (e.g., BSPG AS I 772, BSPG 1938 I 503a; Fig. 5A)
and support this by comparative observations with many
other specimens of the taxon, particularly the “Dark Wing”
specimen and to a lesser extent, the “Zittel Wing”. We also
argue that the intrinsic flexibility of the membrane (Frey et
al. 2003) must be considered when confronted with a pre−
served wing as any folded or contracted example will inevi−
tably produce a significant underestimate of its true extent if
simply taken at face value (see e.g., Bennett 2000).

Despite continuing conflicts between major phylogenies
(e.g., Kellner 2003; Unwin 2003; Wang et al. 2005, 2009;
Bennett 2007b; Andres and Ji 2008, Andres et al. 2010) the
presence of an ankle attachment is supported in a variety of
pterosaurian taxa (Fig. 6) demonstrating that an ankle attach−
ment of the wing was widespread across the full range of the
Pterosauria. Although Kellner (2003) and Bennett (2007b)
both considered the anurognathids to be the most basal ptero−
saurs, which would confirm an ankle wing as a basal charac−
teristic, the more recent study of Andres et al. (2010) instead
places them as the sister−group to the Pterodactyloidea. Ac−
cepting a more derived placement of the Anurognathidae
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(2009). B. A simplified version of that presented by Wang et al. (2005).
Thick black lines indicate species or groups of taxa for which the fossil evi−
dence supports an ankle attachment of the wing.



does not alter the idea of a basal pterosaurian ankle wing as
Eudimorphodon ranzii (MCSNB 8950a) occupies a position
low down on the tree in all phylogenies (Kellner 2003;
Andres et al. 2010) and has been inferred to have a wing ex−
tent similar to Sordes (Bakhurina and Unwin 2003). Al−
though Dyke et al. (2006) voiced concern about “Sordes−
like” pattern being universally adopted, these have proven to
be unfounded and Sordes itself is not unusual in this respect
for non−pterodactyloid pterosaurs; in any case a similar con−
figuration can be observed in other pterodactyloid and non−
pterodactyloid pterosaurs. The presence of an extensive an−
kle wing as a basal feature is not unexpected as such a config−
uration would have been beneficial to early pterosaur ances−
tors and an arboreal leaping origin of flight in the Pterosauria
(Bennett 1997).

When considering the arguments of Padian (2008) that
basal pterosaurs were bipedal rather than aboreal in habit we
argue for a decoupling of the biped/quadruped hypotheses
and the attachment of the trailing edge of the wing mem−
brane. Regardless of which gait pterosaurs used, the flexibil−
ity of the brachiopatagium would not have impeded terres−
trial locomotion, particularly if the wing was folded.

Additional support for a universally broad wing attach−
ment has been suggested by an observed “high knee” style of
preservation common in many pterosaurs. The suggestion
here is that post mortem shrinkage of the patagium would have
pulled the hind limbs upwards into its observed resting posi−
tion. Although this position is commonly viewed in bats (RAE
personal observation, 02/2009) it is not restricted to animals
where a membrane would have attached to the hind limbs as it
can also be observed in many fossil birds, including the
holotype specimens of Liaoxiornis delicates, Eoenantiornis
buhleri, Longipteryx chaoyangensis, Yanornis martini, and
Prototeryx fengningensis (Zhang et al. 2007). Furthermore
this position is also observed in the carcasses of extant birds
and mammals and is instead linked to damage of the proximal
portion of the cerebellar cortex, where decerebellate rigidity
causes the limb to flex in such a way (Faux and Padian 2007).
The “high knee” style of preservation is thus the result of the
central nervous system just prior to the animals’ death and not
as a result of a contracting flight membrane.

One of the principle reasons for resolving the confusion
surrounding the extent of the wing membrane in pterosaurs is
to more accurately assess their aerodynamic performance,
the results of which can vary significantly depending on the
chosen configuration. Wing area, aspect ratio and wing load−
ing are all important parts of several mathematical equations
used to estimate flight performance, although more straight−
forward comparisons of these variables with extant animals
are also useful for inferring ecological or palaeobiological
aspects. When discussing the narrow chorded wing of ptero−
saurs Padian and Rayner (1993: 108) stated that “were the
wings to extend to the ankle the animals aspect ratio and
wing load would be significantly lower than those of compa−
rable piscivorous birds”. Although a high aspect ratio wing is
the most efficient configuration for fast gliding, piscivorous

birds and aerodynamic studies of pterosaurs with a “bird−
like” wing have shown that they would have been slow, ma−
noeuvrable and highly competent fliers (e.g., Brower 1980,
1982, 1983; MacCready 1985; Chatterjee and Templin
2004), experimental results should not and cannot be used to
contradict the fossil evidence where it exists. As demon−
strated above this provides unanimous support for the inte−
gration of the hind limbs with the tenopatagium. We also
note that the above concerns of Padian and Rayner (1993)
need not be problematic for pterosaurs and stress that if these
taxa adopted a configuration like Rhamphorhynchus, where
the trailing edge curved sharply to the ankle only towards the
proximal most portion of the wing, then the difference in
overall wing characters would not be too great (Fig. 2D, con−
figuration 8). As previously noted the long fore arms and
short hind limbs that typify these taxa would naturally result
in a high aspect ratio/higher wing load configuration even if
the trailing edge extended as far down as the ankle, as we ar−
gue it should be reconstructed.

Conclusions
The resurgence of interest in the aerodynamic abilities of
pterosaurs is a welcome step forward following a prolonged
absence of focused research; however, future experiments
must not be hampered by a lack of knowledge or uncertainty
when reconstructing the flight apparatus. While some vari−
ables, such as mass and mass distribution, will invariably re−
main contentious, others, such as the shape and extent of the
brachiopatagium can instead be resolved (or at least heavily
constrained) by a review of the fossil specimens. We separate
the ankle chord configuration presented here from the tradi−
tional “bat−like” reconstruction, which is now widely ac−
cepted to have lacked support from fossil specimens and to
have been based on incorrect historical interpretations and a
supposed aerodynamic “need” for a broad chord. By contrast
the ankle chord configuration presented here is based solely
on individual specimens where a clear association between
the membrane and the hind limbs can be observed. Based on
the available specimens the only configuration supported by
fossil evidence is that of an ankle or lower hind limb attach−
ment of the proximal trailing edge (Frey et al. 2003; Witton
2008). In the absence of conflicting evidence for specific
specimens or taxa we argue that the null hypothesis should
become that of an ankle attachment.

The “bird−like” model remains an unsupported interpre−
tation of the wing shape in pterosaurs as none of the speci−
mens cited by Padian and Rayner (1993) preserve the proxi−
mal section of the brachiopatagium. As an ankle attachment
is observed in the “Dark Wing” specimen proponents of a
narrow chord wing must first present fossil evidence against
an ankle attachment in this specimen and why, as the most
extensive membrane in the taxon, it cannot be considered the
standard configuration for Rhamphorhynchus. While we ar−
gue that the bipedal/quadrupedal debate can be separated
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from the extent of the brachiopatagium, as it would not inter−
fere with terrestrial locomotion if it was folded, pterodacty−
loid pterosaurs are now universally accepted to have been
quadrupedal and so would have been free to extend the mem−
brane to their ankles. Since its proposal only the interpreta−
tions of Peters (1995, 2001) have provided any new support
for the “bird−like” model based on fossil evidence. Peters’
(1995, 2001) studies of the membrane in Jeholopterus, Sor−
des, and Eudimorphodon along with their subsequent recon−
structions where the trailing edge extends only just caudal to
the elbow are, however, extremely controversial (Unwin and
Bakhurina 1995), and appear to have been based solely on
photographs rather than first hand observations. While work−
ing from photographs is not uncommon and at times un−
avoidable the conclusions of Peters (2001) arise from an im−
proper use of graphic manipulation that exploits the poor res−
olution of photographs and allows the boundaries between
blocks of pixels to be interpreted as “patterns”. This method−
ology is subjective and produces false and often fantastical
images that have no value to science in general (see Bennett
2005). Thus without substantial evidence to the contrary, the
narrow wing model must be rejected and should not be con−
sidered as a viable alternative to an ankle chord model. The
presence of the brachiopatagium extending to the ankle in a
variety of distantly related taxa is central to our argument that
pterosaurs probably never radically altered the attachment of
the trailing edge of the wing throughout their evolutionary
history. In this respect the authors are in agreement with
Witton (2008) that changes in the lengths of the fore and hind
limbs was the driving mechanism for altering pterosaur wing
shape.
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The partial skeleton of an immature azhdarchoid pterosaur from the Santana Formation (Early Creta-
ceous) of NE Brazil is described, where breaks across several of the three dimensionally preserved
postcranial elements have permitted the thickness of the cortex to be accurately measured. Air-space
proportions (ASP) are shown to be comparable to those observed in sauropod dinosaurs. The ptero-
saurian pneumatic system, prevalent throughout these animals, is shown to be well developed in even
non-adult animals and is inferred to have penetrated into even the smallest of bones.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The pterosaurs were a group of volant archosaurian reptiles that
existed during the Mesozoic (Triassic, Norian e Cretaceous, Maas-
trichtian), predating birds as the earliest actively flying vertebrates
by around 60 million years. While the aerodynamic prowess of the
Pterosauria has been widely debated (Bramwell and Whitfield,
1974; Brower, 1980, 1983; Witton, 2008; Sato et al., 2009; Witton
and Habib, 2010), numerous adaptation to active flight, including
both a complex series of flight membranes (Frey et al., 2003a; Lü,
2003; Kellner et al., 2010) and an advanced neurological system
(Witmer et al., 2003) are suggestive of great aerial competence and
likely contributed to the diversification of the group, along with
their worldwide distribution. As part of their advanced suite of
adaptations to flight, the skeleton became largely hollow with pa-
per thin compacta, braced by trabeculae, as the diverticulae of the
lungs or air sacs invaded a number of skeletal elements (Claessens
et al., 2009; Naish et al., 2013), creating a system of postcranial
pneumaticity that may be considered analogous to (or perhaps
homologous to) those of birds and, by extension, other saurischian
dinosaurs (Schwarz et al., 2007; Schwarz-Wings et al., 2010;
Claessens et al., 2009). The net effect of pneumatisation appears to
have been a reduction in total mass by lightening the skeleton
(Wedel, 2005; Witton, 2008), and a subsequent reduction in
required power during flight.
googlemail.com (R.A. Elgin),

All rights reserved.
This latter development, observed across both major divisions of
the Pterosauria, the pterodactyloids, and the basal paraphyletic
group of smaller animals, the ‘rhamphorhynchoids’ or non-
pterodactyloid pterosaurs, became significantly more widespread
in larger andmore derived taxa (Claessens et al., 2009). In addition to
the often greatly enlarged sinus cavities of the skull (e.g., Chaoyan-
gopterus, Wang and Zhou, 2003; Tapejara, Frey et al., 2003b), ele-
ments belonging to the postcranial skeleton including the cervical
anddorsalvertebrae, sternum, scapulaandcoracoid, humerus, radius
and ulna, carpus, metacarpalia, wing-finger phalanges, pelvic girdle
andproximal hind limb bones, have been confirmed as pneumatic in
one or more taxa (Bonde and Christiansen, 2003; Butler et al., 2009;
Claessens et al., 2009; Eck et al., 2011; Naish et al., 2013).

Although several studies have otherwise noted that the mass
reduction gained from the development of hollowed out bones
appears to be small (Waiser, 2007; Witton, 2008), or that these
features developed as a consequence of flapping flight, where
bending strength was sacrificed for torsional resistance (Cubo and
Casinos, 2000), it is difficult to separate extensive pneumaticity
from mass reduction given its prevalence within both birds and
terrestrial animals of a very large maximum size, i.e. sauropod di-
nosaurs (Wedel, 2005, 2006, 2009; Schwarz et al., 2007; Schwarz-
Wings et al., 2010). For palaeontologists trying to accurately
reconstruct the biology of pterosaurs, the pneumatic system
therefore impinges strongly on a large number of different factors,
these being (among others) a key component of mass estimates
(Wedel, 2005; Witton, 2008; Henderson, 2010) and by extension,
flight and locomotion dynamics (Habib, 2008), physiology
(Claessens et al., 2009) and histology (Steel, 2008).
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Herein a new specimen of a juvenile pterosaur is described
where damage to the bone cortices has exposed the pneumatic
cavities and their associated trabeculae. The significance of the
fossil, in addition to detailing the often overlooked postcranial
anatomy of the Azhdarchoidea, is that it permits observations to be
made on the orientation of the internal bracing systems within
several long bone elements, and the calculation of air-to-space
(ASP) proportions. Accurate measurements of the bone wall
thickness indicate that the compacta of pneumatic elements can be
as thin as only a few hundredths of a millimetre.

Institutional abbreviations: BSP, Bayerische Staatsammlung für
Paläontologie und Historische Geologie, Munich, Germany; SMNK,
Staatsliches Museum für Naturkunde Karlsruhe, Karlsruhe, Ger-
many; YPM, Peabody Museum of Natural History, Yale University,
New Haven, USA.
2. Taphonomy and locality information

The specimen is preserved in a concretion and originates from
the Romualdo Member of the Santana Formation, an AlbianeCen-
omanian aged Fossil Lagerstätte in the northeast of Brazil (Kellner
and Tomida, 2000; Martill, 2007), the depositional environment
of which is reported as a shallow lagoon that retained an ever
expanding connection to the open sea (Kellner and Tomida, 2000).

The bones are preserved in three dimensions without any
apparent distortion, although several of these elements are broken
at the margin of the concretion. Abrasion of the proximal and distal
regions of the long bones has exposed their internal structure,
allowing for the infilling of such regions by the matrix. Diagenetic
calcite is limited to the distal portion of the radius and the medular
cavity of the humerus. The presence of elements from various re-
gions of the body indicates the animal wasmostly complete prior to
burial, an observation supported by the retention of small, easily
transportable elements such as the phalanges of digits I-III. Prior to
petrification, the skeleton settled in such a manner that several
elements lay heaped one on top of the other and the right humerus
was rotated 180� about its long axis.
3. Specimen description

The specimen is embedded within a small concretion (173 mm
by 112 mm in plan view) that has been broken into two equally
sized parts. It is housed within the State Museum of Natural History
Karlsruhe under the collection number SMNK PAL 3985 (Fig. 1). The
partial skeleton consists of at least five cervical vertebrae, six
thoracic vertebrae, the sternum and pectoral girdles, right and left
humeri, radii and ulnae, the right wing metacarpal, elements of the
pelvic girdle, and the left femur, and is estimated to have possessed
a wing span of approximately 1.2 m, based on comparisons of the
humerus with the early complete azhdarchoid SMNK PAL 3900
(where the half span is 8.6 times the humeral length). Although
only partially complete, the presence of an unwarped deltopectoral
crest on the humerus (Unwin, 2003) distinguishes SMNK PAL 3985
from the numerous ornithocheiroids known to have inhabited the
region (e.g., Wellnhofer, 1991; Kellner and Tomida, 2000), while
large pneumatopores on the ventral and posterior faces of the
humerus and femur, respectively, remain a feature only observed
within the Azhdarchoidea, specifically for Tapejara wellnhoferi
where numerous postcranial elements are known (Wang et al.,
2009; Eck et al., 2011; Elgin and Campos, 2011). Beyond that of an
indeterminate azhdarchoid, no further taxonomic identification is
possible owing to a lack of diagnostic anatomical or morphometric
characters.
The cervical series is represented by five damaged vertebrae,
positioned adjacent to the left coracoid, and are distinguished by
their larger size and more robust form relative to those of the
thoracic series. The posterior faces of the cervical neural spines are
depressed and perforated by numerous foramina. A single foramen
occupies the lateral flank of the corpus. The centre of the thoracic
vertebrae is 7 mm in both length and width and associated with
long transverse processes (8 mm), and tall neural spines (>10 mm).
Three vertebrae remain in situ but small sutures between the
centrum and the transverse process/neural arches indicate that
these elements remain osteologically immature. Several foramina
are observed on the ventral surfaces of the transverse processes
although their size and position are not consistent. In three verte-
brae the only visible perforations are small oval foramina (1 mm by
w0.5 mm) situated on the anteroventral portion of two elements
and the posteroventral portion of a third. By contrast, a more
posteriorly located element preserves a larger foramen (2.5 mm by
1.5 mm) on the anteroventral portion of the transverse process that
penetrates the interior of the bone. In several elements the poste-
rior face of the neural spine is “kite-shape,” and well defined, the
centre of which is deeply depressed and pierced by three large
foramina that likely exited onto the anterior face (Fig. 2D). The
postzygapophyses are 3 mm in length, and are angled dorsolat-
erally at 45� against the lateral plane in posterior view, and slightly
posterolaterally in dorsal view. Directly ventral to the post-
zygapophyses, a pair of small foramina flank the neural canal. In the
second configuration, associated with a more posterior position
within the dorsal column, the posterior face of the neural spine
instead develops only a slight depression and in its lateral aspect
slopes gently dorsally from the ventral to dorsal margins. Several
small foramina pierce the ventral portion of the neural spine but
the majority of the posterior surface is occupied by a single,
mediolaterally compressed foramen that appears to extend for
almost the entire length of the spine. The posterolateral flanks of
the spine are penetrated by tiny foramina.

Several dorsal ribs belonging to the anterior and posterior sec-
tions of the torso lie adjacent to the remains of the vertebral column.
Two large, robust and double-headed ribs showing only a slight
curvature must have articulated with the last cervical or one of the
first two dorsal vertebrae, while those ribs associatedwith themore
posterior dorsals are much thinner. A single dorsal rib has been
damaged to reveal its internal structure and the remains of minute
trabeculae are visiblewithin the proximal part of the internal cavity.

The sternal plate is compact with no sign of a keel or any obvious
muscle scars (Fig. 2A). Although damaged, the cristospine appears
to have been very short. The plate itself is gently convex in all di-
rections with the posterolateral margins lying approximately
12 mm above the lowest point of the sternum, i.e., where the plate
meets the cristospine. The flanks of the cristospine are sharply
concave and pierced by a small crescent-shaped foramenwhile the
posterior margin is smooth and evenly convex.

The scapula and coracoid are unfused. The shaft of the left
coracoid is long and thin (3.5 mm) with an oval-shaped cross sec-
tion, that expands to a width of 9 mm towards its proximal edge
where it would have articulated with the sternum. Muscle scars
and attachments are clearly visible. A small tubercle on the distal
edge of the shaft lies lateral to a pronounced scar, itself 12 mm in
length andwhich occupies the posteroventral margin of the bone. A
coarse series of dorsomedially orientated ridges occupy the lateral
flank of the bone, ventral to the biceps tubercle. The tubercle and
scar may represent the insertion points for m. coracobranchialis
while on the series of ridges m. supracoracoideus originated
(Bennett, 2001, 2003). The articular surface of the glenoid fossa is
concave and is distinguished from the rest of the bone by both its
smooth surface and lighter colouration.



Fig. 1. A, Overview of the described specimen (SMNK PAL 3985); B, Corresponding line tracing. Abbreviations: cv, cervical vertebrae; d, dorsal vertebrae; sp, sternal plate; c, coracoid;
s, scapula, hu, humerus, ul, ulna; rd, radius; epy, epiphysis; crp, carpals; mc IV, metacarpal IV; pu, pubis; isch, ischium; fe, femur; pf, pneumatic foramen. Scale bar ¼ 50 mm.
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Both humeri are preserved (Fig. 2C) and each measure 71 mm in
length. The deltopectoral crest is unwarped with concave medial
and lateral margins, preserving a number of coarse striae on its
ventral face to serve as the origin of the pectoral muscles. A single
large pneumatic foramen occupies the anteroventral surface of the
humeral column. The column is further marked by a long scar,
positioned about three quarters along the shaft on the poster-
oventral margin of the bone, here considered to be the insertion
point for m. triceps (Bennett, 2003). Two disarticulated, but well
ossified, epiphyses lie adjacent to the distal margin of the bone, the
first is sub-circular, located on the ventral portion of the articular
surface, while the second is saddle-shaped and is located dorsal and
posterior to the first.

The ulna is an elongate bone, 99.5 mm in length, with an oval
cross section and a mid-shaft diameter of 5e6 mm. A single loose
epiphysis lies adjacent to the proximal articular margin while
adjacent to this a pneumatic foramen is observed on the anterior
face of the ulna. The shaft of the ulna bows anteriorly and towards
the distal margin the anterior face becomes anteroposteriorly
flattened. The radius is of a similar length but is smaller and more
circular in cross section, being 4.5 mm in diameter at the midpoint
of the shaft.

Only two carpalia of the right carpus are present, indicating that
fusion to form the proximal and distal syncarpal blocks was
incomplete at the time of death. The medial side of the anterior
proximal carpal acted as the articular surface with the antebrachial
bones and is divided into two sub-oval concavities by a prominent
anteroventrally orientated ridge. The ventral articular surface that
accommodates the ulna is smaller than the dorsal one for the
radius. The anterior face of the carpal is flat and perforated by
foramina. The central portion of the distal ventral carpal, which is
observed in ventral view, is gently concave and pierced by three
large foramina. A third element by the wrist is likely not part a
carpal as the shape, colour and texture of the element have more in
commonwith the unfused epiphyses of the humeri and ulna. If this
represents an epiphyseal element, then its original association re-
mains uncertain.

Only a single element is identified as belonging to the fourth
digit by its sub-triangular cross-section indicating that it repre-
sented either the second or third phalanx within the series (Martill
and Frey,1999). The bonewall is particularly thick about its anterior
and posterior margins, 1.3 and 1.8 mm respectively, despite the
small size of the actual element.

Elements of the pelvic girdle are unfused and lie loose about the
femur. A large circular opening approximately one third along the
posterior margin of the pubis represents the obturator foramen,
which is fully enclosed within the ischiopubic plate later in
ontogeny. A small, tear-drop shaped foramen is observed on the
medial face of the pubis, directly adjacent to the obturator foramen.
What little can be observed of the ischium suggest that it is largely
flat, with a sub-triangular outline.

On the femur a prominent, sub-triangular development, repre-
senting the “greater” (Bennett, 2001; Kellner and Tomida, 2000) or
“lesser” (Hutchinson, 2001) trochanter, is observed lateral to the
femoral collum and occupies the dorsolateral margin the shaft. The
trochanter grades medially into a steep walled excavation, which
represents the likely insertion of m iliofemoralis, and subsequently
pierces the interior of the bone.

4. Discussion

4.1. Ontogenetic status

Bennett (1993, 1995, 1996) described three indicators of onto-
genetic maturity in Pteranodon that are equally applicable here: the
degree of skeletal fusion; degree of epiphysal ossification; and
degree of pitting on the cortex (i.e. bone grain). The described
specimen is considered mature by the first condition as there is no
pitting and the cortex is smooth, however, the epiphyses remain
unfused (but well ossified) to their associated element, and the very
poor degree of skeletal fusion indicates that the animal was juve-
nile when it died. The relative timing of suture closure within
pterosaurs remains an area that requires further exploration as only
the early fusion of the cranial elements and fusion of the extensor
tendon process towards the end of ontogeny appear to have been
consistently reported (Eck et al., 2011). Despite this, a crocodile-
like, posterior-to-anterior pattern of fusion between the neural
arch and vertebral body has been demonstrated within the orni-
thocheirids (Kellner and Tomida, 2000), although unlike modern
crocodiles the mid-cervicals (i.e. 3e7) fuse early in ontogeny. As
such the presence of disarticulation between the vertebral corpora
of the dorsal vertebrae and their respective neural arches within
the described specimen, unfused sutures within posterior cervicals
(or anterior dorsals), unfused epiphyses of the humeri and ulna,
distinct scapula and coracoid elements, individual carpalia, an un-
formed pelvic girdle, and loose ribs are all indicative that the animal
must have been relatively juvenile at the time of it’s death and a
long way off what would be considered an osteologically mature
state.

4.2. Trabeculae orientation

The bones of the specimen show the pattern of trabeculae
orientation and distribution commonly observed within other
pterosaurs, where the long bones are pneumatic with concentra-
tions of trabeculae in the proximal and distal margins of the bone
and substantially fewer in the middle. This is well illustrated by the
radius, which has broken open by its distal margin. The trabeculae
show a mixture of orientations, typically two perpendicular to each
other but reinforced in only one direction to resist compressive
loads on the bone (Habib, 2008). Examples of these reinforcement
patterns are visible in Fig. 3 and illustrate that the trabeculae
adopted a variety of orientations among different elements to suit
the local loading conditions. The trabeculae of the humeral
epiphyses (Fig. 3B) are therefore orientated mediolaterally to resist
the compressive forces generated by flexion of the elbow while
those of the sternal plate are orientated dorsoventrally. Within the
corpora of the dorsal vertebrae the trabeculae are arranged in a fan-
like pattern, roughly perpendicular to the outer bone wall (Fig. 3A).

4.3. Pneumatic invasions

Along with both derived saurischian dinosaurs lineages (sau-
ropods and theropods), pterosaurs represent the only other verte-
brate to have evolved an extensively pneumatic skeleton (Wedel,
2005, 2006, 2009; Butler et al., 2009). As in birds, the observed
degree of pneumaticity in pterosaurs increases with body size
(Bonde and Christiansen, 2003; Claessens et al., 2009), and is thus
tied to some degree with phylogeny, where derived pterodactyloids
become substantially larger than even the biggest of non-
pterodactyloid taxa (Hone and Benton, 2007).

While O’Connor’s (2006) examination of extinct archosaurs
determined that a large foramen or communicating fossa that
pierces the compacta and exits into a large internal chamber re-
mains the only reliable and consistent means of diagnosing pneu-
maticity, distinguishing pneumatic openings from their vascular
counterparts remains problematic for pterosaurs (see also Wedel,
2009). Preservational artefacts means that generally only one of
two possible situations is observed: firstly where the external
surface of the bone showing a penetrating pneumatopore is visible



Fig. 2. Photographs illustrating points of anatomical interest in SMNK PAL 3985. A, sternal plate and cristospine; B, coracoid; C, left humerus and epiphyses; D, ventral aspect of a
thoracic vertebrae. Abbreviations: bt, biceps tubercle; c, coracoid; cs, cristospine; cv, cervical vertebrae; dpc, deltopectoral crest; ms, muscle scar; na, neural arch; pf, pneumatic
foramen; pp, posterior process; sp, sternal plate. Scale bar ¼ 10 mm.
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or, alternatively (as is the case here), erosion or damage to the in-
ternal surface exposes the internal structure at the expense of
surface features. Furthermore, biological factors such as specific
gravity of the bone and a reduction in oil and marrow content
cannot be observed (Hunter, 1774) and the literally paper thin
bones of the pterosaurian skeleton mean that almost all foramina
or fossi that penetrate the cortex will inevitably open into a large
internal cavity.

The confirmationof pneumatic elements fromthe twodiagnostic
criteria of O’Connor’s (2006) must therefore be based on multiple
specimens of a single taxon or, where these do not exist, must
instead be inferred from allied or closely related specimens with
differing states of preservation, the most parsimonious pneumatic
state being subsequently adopted.Withinpterodactyloid bones, and
more specifically those attributed to the azhdarchoids, pneumatic
foramina are known to pierce the sternum (SMNK PAL 1133), cora-
coid (SMNK PAL 1269), humerus (SMNK PAL 3985, Zhou, 2010; Eck
et al., 2011), ulna (SMNK PAL 3986), distal manual carpals (Lü
et al., 2006), first wing-finger phalanx (SMNK PAL 6595, Lü and
Yuan, 2005), ilium (Naish et al., 2013), cervical and dorsal verte-
brae, cervical and notarial ribs (SMNK PAL 3856, SMNK PAL 1133),
dorsal ribs (SMNK PAL 1133), and the femur (SMNK PAL 3900; Eck
et al., 2011). Pneumatic elements in SMNK PAL 3985 that are sup-
ported by the presence of pneumatic foramina are confined to the
several cervical and thoracic vertebrae, the humerus, ulna, carpal
elements and femur, whilst inferred elements based on the related
taxa above include the sternum, coracoid and first wing-finger
phalanx, as well as many additional bones from the cervical and
thoracic vertebral column (Fig. 4). A large, trabeculae-supported
cavity observed within the thoracic ribs of SMNK PAL 3985 is also
inferred as forming part of the pneumatic system as pneumatic
foramina are known to pierce the bone between the capitulum and
tuberculum on themedioventralmargin of the cervical and anterior
dorsal ribs (SMNK PAL 3856), and extend as far as the single headed
ribs of the posterior dorsals (SMNK PAL 1133). The same principle is
also applied to the pubis, which is here pierced by a small foramen
and known to be pneumatic in ornithocheiroids (Claessens et al.,
2009) as well as in the azhdarchoid SMNK PAL 6607 (RAE pers. obs).

Through direct observation the pneumatic system in the
described specimen can thusly be traced up to the carpus in the
forearm, into the posterior dorsal vertebrae of the axial column, and
the femur. Whilst it is reasonable, and probably more parsimonious
to therefore infer that the pneumatic system extended into the
sternum, ribs, first phalanx of the wing finger and the pelvic girdle,
from which the diverticulae penetrating the femur may have
developed a subcutaneous connection (O’Connor, 2006), we
concede that this cannot be absolutely verified for this specimen.
The extent of inferred pneumatization present within SMNK PAL
3985 nonetheless agrees well with the accounts of other azh-
darchoid pterosaurs.



Fig. 3. Orientation of the trabeculae supports within three bone structures. A, dorsal vertebrae; B, humeral epiphysis; C, deltopectoral crest of the humerus. The trabeculae are
reinforced primarily in a single direction to resist the local compressive loads (shown as a grey arrow). Abbreviations: D, distal; Dor., dorsal; Lat., lateral; P, proximal; Vent., ventral.

Fig. 4. Major pneumatopores and pneumatic cavities visible within the described specimen. A, dorsal rib and its internal pneumatic cavity; B, distal ventral carpal in ventral view;
C, proximal ulna in anterior view; D, isolated pubis (left of the photograph) and the dorsal portion of the femur (right). Abbreviations: gt, greater trochanter; of, obturator foramen;
pc, pneumatic cavity; pf, pneumatic foramen. All scale bars ¼ 5 mm.

Table 1
Average cortex thickness and corresponding air space proportions (ASP) for selected
bone elements of SMNK PAL 3985. Both bone wall thickness and the ASP were
calculated from digital photographs of the individual elements using the measuring
tools of Adobe Photoshop CS3 where ASP is equal to the gas filled component of the
bone/total cross sectional area.

Element Average cortex
thickness (mm)

ASP

Sternal plate 0.06 e

Dorsal rib 0.14 0.77
Left humerus (shaft) 0.42 e

Left humerus (deltopectoral crest) 0.19 e

Right radius 0.28 e

Left radius/ulna 0.32 e

Wing-finger phalanx 0.65 0.27
Pubis 0.06 e

Ischium 0.12 e

Left femur 0.53 e

Right femur 0.56 0.66
Right tibia 0.52 0.72
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The location of pneumatic foramina in pterosaurs is notable for
its variability where, despite many of the same elements being
incorporated into the pneumatic system, the exact location of the
pneumatopores changes between even closely related taxa. Large
pterodactyloids for example differ from Rhamphorhynchus by
developing a large pneumatic foramen on the dorsal surface of the
sternal plate rather than on the cristospine, but also differ from
each other in the placement of the brachial and antebrachial
foramina (Kellner and Tomida, 2000; Bonde and Christiansen,
2003; Lü et al., 2009) Variation of pneumatopore location within
azhdarchoids (e.g. Tupuxuara, Quetzalcoatlus) and other pter-
odactyloid taxa (e.g. Pteranodon, Anhanguera, Coloborhynchus),
most noticeable between the humeri, lead Claessens et al. (2009) to
suggest an independent origin and evolution of pneumatization
within various lineages of Pterosauria. The relationships of pneu-
matopore development in pterosaurs, however, remain poorly
understood and while the presence of a large foramen on the
ventral surface of the humerus, observed in the described spec-
imen, is a common feature of azhdarchoids, it is certainly not
unique to them, being also found in Pteranodon (Bennett, 2001).
Furthermorewhile the ventrally located foramen is in clear contrast
to that of the ornithocheiroids, whose own humerus is pierced by a
pneumatopore on its posteriodorsal surface where the posterior
process merges with the neck, hybrid configurations where
pneumatopores pierce both the dorsal and ventral surfaces of the
bone are also known (Wang et al., 2009; Eck et al., 2011), acting as a
potential transitional state between the “ornithocheiroid” and
“azhdarchoid” pneumatic configurations.



Fig. 5. Cross sections through several bone elements used for determining the ASP values where, black ¼ bone; white ¼ air space. A, 3rd phalanx of digit IV; B, right tibia; C, cervical
vertebrae; D, posterior dorsal rib.
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The described specimen confirms the presence of a large fora-
men on the anterior face of the ulna, adjacent to the proximal
articulation (Fig. 4C), however, caution is advised against applying
this observation too broadly as the placement of foramina on the
ulna appears variable even between closely related taxa. Compar-
isons between Pteranodon specimens YPM 1181 and YPM 2767
(Bennett, 2001) highlight the degree of variation that can exist as
the foramen in the former is found on the anterior face of the
proximal articulation while in the latter it is found on the posterior
surface. Likewise the holotype of Anhanguera araripensis (BSP 1982
I 89) preserves a pneumatic formation on the anterior side of the
distal portion of the bone but this is not observed in any other
Santana pterosaur (Kellner and Tomida, 2000).

The extent that the vertebral pneumatization invades even the
smallest of elements is effectively illustrated within the dorsal ribs,
where internal chambers within the head and proximal shaft are
expansive (Fig. 4A) and the bone wall thickness, which averages at
0.14 mm, can shrink to a minimum of 0.03 mm (Table 1). Other
thin-walled elements all with trabeculae and large pneumatic
cavities include the pubis (0.06 mm), and ischium (0.12 mm), but
relative measures of the degree towhich the pneumatic system has
hollowed out a bone is required. One method is to calculating K, or
the ratio of the outer cortex circumference to that of the inner,
however this is effective for only tubular bones. For the more
complex geometries of bones encountered here we calculate the
Air-space proportion (ASP) of the element following the method-
ology of Wedel (2005). Here the exposed cross sections were
digitally recorded and imported into the Adobe Illustrator software
package. The bone wall and empty spaces were subsequently
traced, converted into black and white pixels respectively before
being transferred to Adobe Photoshop. This allowed a count of the
number of black to white pixels within the image, where the pro-
portion of the element that is filled with gas would be, (number of
white pixels)/(number of black þ white pixels).

The highest value that was found in the specimen described
here belongs to a partial cervical that scored an ASP value of 0.83
(Fig. 5, Table 1), indicating that the bones are comparable to some
sauropods, whose cervical vertebrae were also highly pneumatic
(Schwarz et al., 2007), and approach themaximumvalue calculated
by Wedel (2005, i.e., 0.89 in Sauroposeidon). A single thoracic rib
was calculated to have an ASP of 0.77, and two long bones, sug-
gested to be the right femur and tibia based on their relative po-
sitions within the concretion, had values of 0.66 and 0.72,
respectively. The phalanx of the wing finger with its triangular
cross-section and thicker cortex had the lowest observed ASP of
only 0.27 (Table 1). While the limitations of this technique are
apparent and the values obtained are highly dependant on which
section the bone can be observed, it nonetheless provides an
objective value for comparing bone space both within and between
individual skeletons. The degree to which the pneumatic invasions
filled these elements is central to the reduction of mass within the
pterosaurs and was likely a key development that allowed them to
reach giant sizes (O’Connor, 2009). Even for smaller animals the
reduction in mass must have been of significant benefit and rep-
resented an energy saving in transport costs.

Although the described specimen is considered a juvenile on the
basis on several unfused sutures there must have been great po-
tential to develop postcranial air sacs in even younger animals with
equally thin walled bones. In domestic fowl there is a rapid
development of an extensive system of air sacs throughout their
postcranial skeleton after hatching. The earliest development of
this system within the humerus and cervical vertebrae occurs 28
days after hatching with the remainder of the vertebral column
becoming pneumatic after 77 days, although it is noted that some
synsacral vertebrae do not form part of this system until at least 182
days post hatching (Hogg, 1984). While the possible volant nature
of pterosaur hatchlings (Unwin, 2006) has proven controversial
(Prondvai et al., 2012), we note that juveniles below a sub-adult
status may have been largely pneumatic, and the acquisition of
such a system close to, or shortly after, hatching would have
doubtless been of significant benefit to an animal flying for the first
time.

5. Conclusions

The described specimen is that of an azhdarchoid pterosaur
from the Santana Formation of NE Brazil where a combination of
three dimensional preservation and a limited degree of cortex
damage allows for an accurate determination of the bone wall
thickness and confirms the extent of skeletal pneumaticity in these
animals, as has been mapped by other workers (e.g., Bonde and
Christiansen, 2003; Claessens et al., 2009). While the authors
agree that a foramen penetrating the cortex and coinciding with a
large internal cavity remains the most reliable means of deter-
mining the presence of pneumatic elements (O’Connor, 2006) it is
appropriate (or indeed necessary) where the preservation of the
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specimen cannot confirm to both of these requirements to infer the
most parsimonious pneumatic state based on the material of
closely related taxa.

The range of variation observed in the positioning of ptero-
saurian pneumatopores indicates that even closely allied speci-
mens, the foramina need not be found in the same location and that
inferring phylogenetic implications from this data may be prob-
lematic. While the hypothesis of an independent origin of the
pneumatic system in ornithocheiroids and azhdarchoids requires
further investigation (Claessens et al., 2009), the presence of in-
termediate forms of humeral pneumaticity suggests that the very
large degree of positional variations inherently present within the
Pterosauria may itself potentially account for such discrepancies
(Eck et al., 2011).

SMNK PAL 3985 was still morphologically immature upon its
death confirming that the pneumatic system was well developed
within juvenile individuals and penetrated even some of the
smallest bones of the body. The air-space proportions of these
bones are typically high and fall within the range observed in
sauropod dinosaurs (typically >0.50, Wedel, 2005), although these
values are greatly reduced in those distal wing-finger phalanges.
The increasing extent of the air sac system is generally credited
with allowing derived pterosaurs to grow to large sizes but the
corresponding reduction in skeletal mass may have permitted the
redistribution of mass around the animal, and potentially even
contributed towards the larger and more elaborate cranial crests
that developed in several taxa. In addition to this, if the hypothesis
of volant juveniles is accepted then the invasion of the pneumatic
system into extremely thin bones may have been beneficial to very
young animals.
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Show me your sutures, I tell you your age: Age traces in a young Anhanguera 
skeleton.  
 
Ross A. Elgin & Eberhard Frey 
Staatliches Museum für Naturkunde Karlsruhe, Germany. 
 
The reconstruction of the pterosaurian ontogenetic sequence is complicated by a 
number of factors including a lack of extant relatives, crushed and isolated bones and 
low numbers of useful specimens for each taxon. Where sufficient material is 
available, however, the closure of key sutures could be a good method to assess the 
relative morphological maturity of fossil vertebrates. Extant tetrapods may serve as a 
model for extinct animals. Brochu (1996) demonstrated that during crocodilian 
ontogeny the neurocentral sutures closed following a caudal to cranial pattern while 
the scapula and coracoid in extant crocodiles and alligators would reach their closed, 
morphologically mature state late in life (Brochu 1995).   
 
For pterosaurus, the suture/fusion state was used in conjunction with size dependant 
characters by Wellnhofer (1975) to distinguish between juvenile and adult specimens 
of Rhamphorhynchus. However, size dependant features are unreliable characters for 
determining maturity in extinct animals, because intraspecific variations in genetics, 
environmental conditions and the supply of food may result in similar aged 
individuals being of very different sizes. Thus, a calibration if the maturity based on 
sutures size is impossible.  Bennett (1993) successfully demonstrated this in 
populations of Pteranodon where animals with juvenile characteristics, based on 
fusion state, epiphyseal ossification and bone grain, were not of a significantly 
different size to fully mature adults. Due to the fragmentary nature of the specimens 
Bennett (1993) stated that the exact order of element fusion could not be determined, 
although he did suggest that the atlas-axis complex, scapulocoracoid, secondary 
ossification centres of the humerus, cranial notarial vertebrae and ribs fused before 
other elements. The extensor tendon process (olecranon sensu Wellnhofer 1991), 
however, remained unfused in Pteranodon until just before skeletal maturity.   
 
Kellner & Tomida (2000) also discussed the ontogeny of pterosaurs but based their 
arguments on a large juvenile specimen of Coloborhynchus and other well preserved 
members of ornithocheiroids from Brazil. Their work and conclusions form the base 
for this study.  
 
Here we describe a new sub-complete specimen of ?Anhanguera with several 
enigmatic features including a relatively short first wing finger phalanx of comparable 
size to that of a short winged form from the Cenomanian of Lebanon (Dalla Veccia et 
al 2001). Secondly while, like all previous anhanguerids, the specimen is clearly a 
juvenile it also displays a number of more advanced closure states and mature 
characteristics including a partially fused notarium and extensor tendon process. This 
combined with other material housed at the Staatliches Museum für Naturkunde 
Karlsruhe (SMNK) is used to provide the most detailed evaluation of ornithocheiroid 
ontogeny to date.  Here we propose that suture closure follows the general pattern of: 
 

1) Fusion of the cranial elements 
2) Fusion of vertebral elements 



3) Initial development of a notarium 
4) Fusion of the scapulocoracoid 
5) Fusion of the extensor tendon process to the first wing finger 
6) Fusion of epiphyses and formation of the tibiotarsus 

 
In a number of specimens, however, deviations from this pattern are observed, 
indicating that the possible stages of suture closure could overlap quite substantially 
or that, more likely, the order of suture closure was variable between members of the 
ornithocheiroids. A similar change in the onset of suture closure has been 
demonstrated in the scapula and coracoid of Alligator and Caiman (Brochu 1995). 
While this highlights the problems of determining the ontogenetic sequence in 
pterosaurs, even between closely related taxa, our results do provide a useful sequence 
and framework for dating relative maturity that can easily incorporate newly 
discovered specimens as they come to light. 
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The problem of the pterosaur wrist. 
Ross A. Elgin & Eberhard Frey 
Staatliches Museum für Naturkunde Karlsruhe, Germany. 
 
The construction of the pterosaur wrist is a familiar problem for pterosaur workers. 
Even the best, three dimensionally prepared materials have failed to produce a 
commonly accepted reconstruction of the carpus. These problems, the articulation and 
mobility of the pteroid and the function of the preaxial carpal and its sesamoid 
associated tendon, have dogged all previous reconstructions. The forward directed 
pteroid sitting in the fovea of the preaxial carpal (Frey & Reiß 1981, Wilkinson et al 
2006) has effectively been replaced by a medially directed model (Frey et al 2006, 
Bennett 2007) where the fovea of the preaxial carpal holds a sesamoid associated with 
a tendon. Bennett (2007) has argued that the pteroid articulated on to the medial side 
of the preaxial carpal and the tendon that passed through its fovea inserted on to the 
fourth metacarpal as an extensor of the wrist, making it M flexor carpi ulnaris. This 
interpretation is contra Frey et al (2006) who instead suggested that the pteroid 
articulated between the two syncarpal blocks and the tendon ran the length of the 
metacarpals distally and inserted on to the extensor tendon process of the first wing 
finger phalanx..  
 
For us the arguments of Bennett (2007) are far from conclusive and in several cases 
are contradicted by the by the fossil evidence and taphonomy. We counter the notion 
that the pteroid articulated on the medial side of the preaxial carpal by noting that: 
 

i) Until now, in no specimen are the two elements ever preserved in the 
proposed articulation. 

ii) The articular surface of the pteroid in well preserved and relatively 
undisturbed specimens is commonly found resting between the proximal 
and distal syncarpals. 

iii) The articulation surface identified by Bennett (2007) on the preaxial carpal 
does not exist on any mature specimens housed in the SMNK. 

iv) The nyctosaurid pteroid requires a different explanation and a different 
articulation point under the model of Bennett (2007). Based on a second 
specimen of Muzquizopteryx in which the articulation surface of the 
pteroid is preserved it would be impossible to place this against the 
preaxial carpal leading to multiple points of origin which we deem 
unlikely.  

v) Under the configuration suggested by Bennett (2007) the pteroid and 
preaxial carpal would be bound together by muscles and ligaments. Thus, 
we might expect to find these elements in close association. This is rarely 
the case and in several specimens the two elements are pulled in opposite 
directions, the pteroid medially and the preaxial carpal laterally and up 
against the fourth metacarpal, sometimes very close to the distal insertion 
point of the tendon of M. flexor carpi ulnaris as reconstructed by Bennett 
(2007).  

 
Reconstruction of the path taken by the tendon is more difficult as there is less 
taphonomic evidence on which to base any conclusion. Detailed three dimensional 



reconstructions of the carpals, metacarpals I-IV and the first wing finger, however, 
allow the potential paths and insertion points for any long fibred muscle or tendon that 
passed this way to be examined. This approach is necessary to prevent interference 
between muscles and other structures such as in Bennett’s (2007) reconstruction of 
the long M flexor carpi ulnaris, which is anchored dorsal to the path taken by 
metacarpals I-III.  
 
Without good evidence, reconstructions that require the restoration of soft tissue take 
palaeontology to the very edge of its useful limits as a science. None the less, 
experimental models reconstructing the lever arms and pull of ancient muscles about a 
frame, based on three dimensionally preserved long bones, can be a very useful tool 
for the reconstruction of a musculotendinal apparatus. If the results produced can be 
tied together with the available taphonomy and fossil evidence and do not interfere 
with other structures then a fairly robust and scientific model can still be produced.  
Here we present our findings but also argue that the construction of the pterosaur 
wrist is an issue that is far from being resolved and we encourage further discussion 
and experimentation in this area. 
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Testing the functional significance of cranial crests as an aerodynamic feature 
within the Pterosauria.  
 
Ross A. Elgin1, Colin Palmer2, David W.E. Hone3, Carlos A. Grau2, Eberhard Frey1, 
Doug Greenwell4. 
 
1Staatliches Museum für Naturkunde Karlsruhe, Germany; 2University of Bristol, 
UK; 3Institute of Vertebrate Palaeontology and Palaeoanthropology, China; 4City 
University, UK.  
 
The unusual and often bizarre cranial crests sported by most pterosaurs appear to 
demand an unusual or extravagant explanation. Normally the cranial ctrests have been 
taken as some kind of aerodynamically beneficial structure perhaps acting as an 
airbrake (Bramwell & Whitfield 1947), a forward rudder (Heptonstall 1971; Stein 
1975) or a means of counterbalancing the head (Eaton 1910; Heptonstall 1971; 
Bramwell & Whitfield 1974). Very little experimental work exists and previous 
studies predate the discovery of many of the most interesting and diverse specimens 
(Bramwell 1971; Bramwell & Whitfield 1974; Stein 1975; Brower 1983). As a result 
they were hampered by a compelling lack of taxonomic diversity in which the results 
of Pteranodon longiceps were applied to all pterosaurs.  
 
Here we present the first comprehensive study that tests the aerodynamic 
characteristics of the most basal crested rhamphorhynchoids to the most derived and 
elaborate azhdarchid pterosaurs. Highly unusual forms including Nyctosaurus gracilis, 
Tupandactylus imperator and Thalassodromeus sethi are also included for the first 
time. Here we show that many of the previously proposed aerodynamic effects cannot 
apply. This gives extra weight to suggestions they were used primarily as display 
structures (Bennett 1992) and, bearing a streamlined profile, evolved largely 
independent of any aerodynamic factors. None the less in some cases they were 
capable of generating large forces which should be considered during future 
modelling of pterosaurian flight capabilities.   
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Extreme pneumaticity in pterosaurs 
Ross A. ELGIN1, David W.E. HONE2 & Eberhard FREY1. 
 
1Staatliches Museum für Naturkunde Karlsruhe, Abteilung Geologie, Erbprinzenstraße 13. 76133 
Karlsruhe, Germany. E-mail: 
rosselgin@hotmail.com 
2Institute of Vertebrate Palaeontology and Palaeoanthropology (IVPP), Xizhimenwai Dajie 142, 
Beijing 100044, P. R. China. 
 
Pterosaurs, like fossil and extant birds, developed an extensive system of air sacs 
within much of their skeletons. This feature appears to have been of great importance 
for flying animals and has been linked to roles in physiology and weight reduction or 
redistribution (Claessens et al 2009; Witton 2008). While the idea that dorsal ribs also 
formed part of the pneumatic system is not particularly novel (e.g. 
Bennett 2001) a new tapejarid specimen (SMNK PAL 3985) is presented here and 
indicates that pneumatic invasions entered even the smallest of bones, mostly filling 
them. The rib in question is interpreted to be one of the smallest pterosaurian elements 
in which a pneumatic system is visible and the bone wall thickness can be accurately 
measured as being 0.426mm at its thickest point, by the smaller of the two articular 
heads, and 0.045mm at its thinnest point, by the larger of the two heads. 
The rib is interpreted as belong to one of the most cranially located thoracic vertebrae 
and may have been expected to form part of the notarium later in life. The lack of 
fusion suggests that the animal was still ontogenetically immature and raises 
questions as to how such small, hollow ribs were capable to withstanding the large 
stresses that they were, presumably, subjected too (Bennett 2001, 2003). The 
pneumatic system thus appears to have been extensively developed in young animals 
and to have penetrated even the smallest bones. Further analysis is required to 
determine the taxonomic distribution of the pneumatic system and how it may have 
developed within the clade. 
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Modelling pterosaur flight dynamics: Initial experimental findings 
Ross A. ELGIN 
 
Staatliches Museum für Naturkunde Karlsruhe, Abteilung Geologie, Erbprinzenstraße 13, 76133 
Karlsruhe, Germany. E-mail: rosselgin@hotmail.com 
 
Pterosaurs were the first vertebrate clade to evolve true powered flight and have 
attracted the attention of both palaeontologists and aerodynamicists alike. A number 
of issues, however, are required to be addressed prior to an investigation into their 
flight characteristics. As part of an ongoing investigation, the workgroup for Pterosaur 
Flight Dynamics presents its findings to date. We reconstruct the fore-arm and overall 
joint mobility based on a number of ornithocheiroid and azhdarchoid specimens along 
with basal taxa including Dorygnathus. Mass is theoretically altered so experiments 
can represent both the suggested “light” (e.g. Bramwell and Whitfield 1974; Brower 
1983; Chatterjee and Templin 2004) and “heavy” builds (Prondvai et al. 2008; Witton 
2008) attributed to these animals and the wing membrane is demonstrated to have 
extended to the lower leg or ankle. This pattern appears to have been universally 
present within the clade (Elgin et al in press). 

Using the above reconstructions the flight characteristics of several 
pterosaurian taxa are examined through both theoretical and experimental approaches. 
A variety of models were flown in a wind tunnel and the resulting data was contrasted 
with that of other studies (e.g. Bramwell and Whitfield 1974; Brower 1983; Chatterjee 
and Templin 2004). Subsequent experiments will construct the wing membrane from 
materials of different structural properties to simulate and allow the development of 
more complex patagia and their associated aeroelatic characteristics. This approach is 
central to understanding the flight of large pterosaurs which must have encountered a 
range of Reynolds numbers during their development. 
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AERODYNAMICS OF PTEROSAUR HEAD CRESTS: THE PROBLEM 
WITH NYCTOSAURUS. 
 
Ross A. Elgin 
Staatliches Museum für Naturkunde Karlsruhe (SMNK), Abteilung Geologie, Erbprinzenstraße 13., 
76133 Karlsruhe, Germany. E-Mail: rosselgin@hotmail.com 
 
Many authors have speculated on the function of the pterosaurian cranial crest; 
proposing that it assisted flight performance by acting as a forward rudder, an airbrake, 
and/or an aerodynamic counterbalance. More recently the aerodynamics of the North 
American pterodactyloid Nyctosaurus were calculated where, contra to fossil 
evidence, a membranous sail was reconstructed and interpreted as an auxiliary form 
of flight control. This highlights the dangers of ignoring fossil evidence and relying 
on aerodynamic data alone to arrive at conclusions about past performance.  
 
The “aerodynamic benefits” of a cranial crest are difficult to disprove from numerical 
data alone as larger structures will naturally be correlated with an increase in both the 
torques and forces acting on the skull. However, the diversity in crest size, material 
composition, and relative location throughout the pterosaur lineage strongly suggests 
that the evolution of such a feature cannot be tied with a universal form of 
aerodynamic enhancement; “performance” must have varied greatly between taxa.  
 
Aerodynamic studies on the crania of pterosaurs may still prove useful even when no 
benefits are noted as many pterodactyloids develop large skulls/crests; the acting 
forces and torques are unknown and are an important consideration due to yawing and 
pitching movements of the head. Here we report on the aerodynamic characteristics of 
a number of derived pterodactyloid taxa, recorded during wind tunnel experiments, as 
part of a larger study into the aerial characteristics of these Mesozoic fliers.  
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WHEN ALL ELSE FAILS: CT SCANNING IN PTEROSAUR RESEARCH 
 
Ross A. Elgin 
Staatliches Museum für Naturkunde Karlsruhe (SMNK), Abteilung Geologie, Erbprinzenstraße 13., 
76133 Karlsruhe, Germany. E-Mail: rosselgin@hotmail.com 
 
The Romualdo Formation of NE Brazil is well known by pterosaur researchers as an 
excellent source of three dimensionally material; where fossil material is encased 
within a protective concretion. Removing the sediment surrounding such specimens 
can, however, be problematic as it is both time consuming and damage can occur 
from either mechanical preparation, or acid seeping into the hollow interior of the 
bones; slowly destroying portions of the skeleton. Such a condition is found within an 
almost complete azhdarchoid torso housed within the collections of the SMNK. The 
specimen itself is scientifically important, reaching a state of morphological maturity 
unknown from the Romulado Formation where an epineural plate has immobilized 
the entirety of the vertebral column and mineralized tendons of the m. spinoarticularis 
and m. articulospinalis are present along the lateral margins of the neural arches and 
their spinous processes. Further preparation of the specimen, mechanical or acid, is 
unlikely to occur in the near future for the above noted reasons. Instead computed 
tomography (CT) scans, conducted by the Royal Veterinarian College London (RVC), 
provides a means to determined the three dimensional shape of the bones, observe 
their internal architecture, and map the extent of the pneumatic system known to have 
penetrated the majority of the pterodactyloid skeleton. The extent of the pneumatic 
system, here present throughout the vertebrae and most of the pelvic girdle, is 
compared with that observed in CT scans of Anhanguera.     
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