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Abstract

This thesis is about the discovery of structural similarities across narrative texts. We
will describe a method that is based on event alignments created automatically on au-
tomatically preprocessed texts. This opens up a path to large-scale empirical research
on structural similarities across texts.

Structural similarities are of interest for many areas in the humanities and social sci-
ences. We will focus on folkloristics and research of rituals as application scenarios.
Folkloristics researches folktales, i.e., tales that have been passed down orally for a long
time. Similarities across different folktales have been observed, both at the level of indi-
vidual events (being abandoned in the woods) or participants (the gingerbread house)
and structurally: Events do not happen at random, but in a certain order. Rituals are an
omnipresent part of human behavior and are studied in ethnology, social sciences and
history. Similarities across types of rituals have been observed and sparked a discussion
about structural principles that govern the combination of individual ritual elements to
rituals.

As descriptions of rituals feature a lot of uncommon language constructions, we will
also discuss methods of domain adaptation in order to adapt existing NLP components
to the domain of rituals. We will mainly use supervised methods and employ retrain-
ing as a means for adaptation. This presupposes annotating small amounts of domain
data. We will be discussing the following linguistic levels: Part of speech, chunking,
dependency parsing, word sense disambiguation, semantic role labeling and corefer-
ence resolution. On all levels, we have achieved improvements. We will also describe
how these annotation levels are brought together in a single, integrated discourse rep-
resentation that is the basis for further experiments.

In order to discover structural similarities, we employ three different alignment algo-
rithms and use them to align semantically similar events. Sequence alignment (Needle-
man-Wunsch) is a classic algorithm with limited capabilities. A graph-based event
alignment system that has been developed for newspaper texts will be used in com-
parison. As a third algorithm, we employ Bayesian model merging, which induces a
hidden Markov model, from which we extract an alignment. We will evaluate the algo-
rithms in two experiments. In the first experiment, we evaluate against a gold standard
of aligned descriptions of rituals. Bayesian model merging and predicate alignment
achieve the best results, measured using the Blanc metric. Due to difficulties in creating
an event alignment gold standard, the second experiment is based on cluster induction.
Although this is not a strict evaluation of structural similarities, it gives some insight
into the behavior of the algorithms.

We induce a document similarity measure from the generated alignments and use
this measure to cluster the documents. The clustering is then compared against a
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gold standard classification of documents from both scenarios. In this experiment, the
lemma alignment baseline achieves the best numerical performance on folktales (but
as it aligns lemmas instead of event representations, its expressiveness is limited), fol-
lowed by predicate alignment, Needleman-Wunsch and Bayesian model merging. On
descriptions of rituals, the predicate alignment algorithm outperforms all baselines and
the other algorithms. Shallow measures of semantic similarities of texts outperform the
alignment-based algorithms on folktales, but they do not allow the exact localization of
similarities.

Finally, we present a graph-based algorithm that ranks events according to their par-
ticipation in structurally similar regions across documents. This allows us to direct
researchers from humanities to interesting cases, which are worth manual inspection.
Because in digital humanities scenarios, the accessibility of results to researchers from
humanities is of utmost importance, we close the thesis with a showcase scenario in
which we analyze descriptions of rituals using the alignment, clustering and event
ranking algorithms we have described before. We will show in this showcase how
results can be visualized and interpreted by researchers of rituals.
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1 Introduction

Narrative texts are important textual sources in the humanities and social sciences. In
particular, many research questions revolve around similarities, parallels or overlaps
across narrative texts, e.g., discovery of intersections in biographies or similar develop-
ments of characters in fictional tales. Within the emerging paradigm of digital humani-
ties, we develop methods and a system for the automatic discovery of story similarities
in narrative texts. The system uses advanced computational linguistics techniques and
is designed for the specific needs and premisses of digital humanities.

We study two application scenarios in detail: Research of folktales and of rituals. In
both areas, the detection of similarities across stories plays a major role. For folktales,
the classification of tales from different eras and cultures based on common elements in
their story lines has been studied since the early twentieth century. The discovery of re-
occurring elements in rituals has sparked a discussion about the existence of structural
principles that rule the combination of these elements. For these principles, the term
“ritual grammar” has been coined1.

Both application scenarios suggest quantitative-empirical research approaches as they
aim at analyzing more than a single textual source. In addition, the expressiveness of
the analysis increases the more sources have been studied. However, traditional re-
search approaches prevalent in the humanities do not scale easily, as they rely on hu-
man scholars (close-)reading texts. A system that automatically detects similarities in
narratives is a key component for enabling large-scale empirical research in this direc-
tion2.

The system we describe detects story similarities using event alignment algorithms.
The alignment algorithms work on densely connected discourse representations, which
contain representations for events, characters and the linguistically analyzed textual
source data. Using measures of semantic similarity for events, the alignment methods
detect story similarities across discourses that can be visualized and thus made acces-
sible to humanities researchers.

The discourse representations themselves are created fully automatically using state
of the art techniques on a variety of different linguistic analysis levels. Given the pe-
culiar text characteristics of the descriptions of rituals, the linguistic processing tools
are adapted to the domain of rituals. Not all processing tools for the different linguis-
tic annotation levels employ the same basic methodology. Consequently, the adapta-
tion of these tools must employ different adaptation strategies. Supervised linguistic

1This thesis was written within the context of the research project “Ontology modeling for ritual structure
research”, in the collaborative research center “Ritual Dynamics”, funded by the German Research
Foundation (Sonderforschungsbereich 619, Ritualdynamik).

2In the words of Moretti (2000), we are describing a distant-reading approach.
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processing methods suggest retraining as a simple yet robust adaptation strategy. For
the adaptation of both the word sense disambiguation and the coreference resolution
system we employed ways of incorporating domain knowledge. The unsupervised,
knowledge-based word sense disambiguation system was adapted by enhancing the
knowledge-base directly. In order to adapt a coreference resolution system, we employ
multiple ways of integrating domain knowledge into the process.

For the detection of story similarities, we use three different alignment algorithms.
The algorithms use a similar set of features for measuring the semantic similarity of
events. We evaluate the three algorithms on a gold standard of descriptions of rituals
and in a clustering-based evaluation. In the latter, the density of produced alignments
is used as a measure for document similarity, which is in turn used by a clustering
algorithm. In order to provide researchers from the humanities a means for targeted
inspection, we also describe an algorithm for the discovery of dense alignment regions
between narratives.

As a showcase scenario, we show how a researcher of rituals can inspect and interpret
the data structures that we produce. This includes the induced document similarity,
the underlying alignment links and individual densely connected regions. We describe
how these can be interpreted and show possible visualizations for them.

Structure of the Thesis

The structure of this thesis is as follows. We will first give an introduction into the
field of digital humanities in general (Chapter 2). We will discuss the role of compu-
tational linguistics in digital humanities, highlight the main challenges computational
linguistics faces and discuss how they affect our work.

We will discuss related work to this thesis in Chapter 3. As the two main parts the
thesis will be concerned with are on domain adaptation and narrative analysis, Chap-
ter 3 is structured accordingly: Section 3.1 describes related work on domain adaptation
for supervised NLP components. As word sense disambiguation is often performed
using unsupervised methods, we will also investigate domain adaptation methods for
unsupervised word sense disambiguation algorithms. Existing work on computational
narrative analysis is discussed in Section 3.2, which also gives a background on narra-
tives in general.

In Chapter 4 we will describe the two application scenarios in detail: Section 4.1 on
folktales and Section 4.2 on rituals. For each scenario, we will give a short overview
of the state of research and describe why similarities across narratives are important.
We will also discuss how they can benefit from the computational analysis methods
we employ. Finally, we will introduce the corpora we collected in order to conduct
experiments.

Chapter 5 first describes the processing architecture, its in- and output and key char-
acteristics. The major part of the chapter describes the domain adaptation strategies we
employed for processing the descriptions of rituals on the following linguistic levels:
part of speech tagging, chunking, dependency parsing, word sense disambiguation,
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semantic role labeling and coreference resolution. All these levels are integrated into
the discourse representation.

Our methodology for the automatic discovery of story similarities is described in
Chapter 6. We will first give a general overview of the methodology and the specific
experiments we are conducting. The algorithms will be evaluated in two experiments
using data from both application scenarios. We will also describe an algorithm for
identifying the most dense alignment regions that are worth investigating.

In Chapter 7, we will describe how a researcher from humanities can make use of
the analysis tools we can provide. We will also describe how alignment-based story
similarity, the alignments themselves and dense alignment regions can be visualized
and interpreted. Chapter 7 shows visualizations and analyses that can be performed
on descriptions of rituals as a showcase. The analysis starts globally, by inspecting
document similarities as a whole, and delves deeper in a stepwise fashion, from finding
densely connected regions to analyzing individual structural similarities.

We will conclude the thesis in Chapter 8 with a summary of our solutions to the
challenges computational linguistics faces within digital humanities and our scientific
contributions. Finally, we will give an outlook on future work and other potential ap-
plication scenarios.

3



2 Digital Humanities

Digital humanities is no clearly defined research area. In contrast, the term is used as an
“umbrella term” (Presner and Johanson, 2009) that encompasses a wide variety of areas
employing computational methods to answer or address research questions from vari-
ous humanities disciplines. The umbrella covers not only classical humanities, but also
social sciences, history, archeology and many others. Consequently, the computational
methods employed cover a wide variety, and computational analysis of language and
texts is but one of many. Other computational fields are image recognition, visualiza-
tion and 3D modeling, in fields such as archeology or art history.

The work that is often reported to be the first in digital humanities (e.g. in Mc-
Carty, 2003), however, has a linguistic background: In 1946, Roberto Busa started creat-
ing the Index Thomisticus, a concordance of the writings of Thomas Aquinas, with some
support of IBM (Busa, 1980). In its final stage, the corpus contained 11 million tagged
and lemmatized tokens. A detailed description of the history of digital humanities can
be found in McCarty (2003) and Raben (1991).

Given the fact that linguistics has a long tradition in the humanities, computational
linguistics (CL) can (in part) be seen as a prototypical digital humanities discipline: Sci-
entific study of language (linguistics) is carried out using computational methods and
from a computational perspective. This led not only to novel theories about language
(e.g. formal grammar theories), but also to novel computational methods specific for
(or mainly used in) computational linguistics (e.g. parsing techniques) and illustrates
how both the humanities and the computational discipline can benefit from such inter-
disciplinary work1.

Apart from linguistics, many more humanities disciplines are using natural language
and in particular texts as their main research object: Newspaper articles are studied
in social and political sciences, poetry and prose is studied in literary science and old
records, charters and documents are studied in history (to name a few). Language anal-
ysis methods are therefore of interest in many digital humanities disciplines, as they al-
low analyzing texts on a large scale or support uncovering quantitative text properties
that are not directly accessible. Computational linguistics can play a central role in the
language-oriented digital humanities areas and in fact, a number of research projects
have been carried out that use methods, techniques or representations from computa-
tional linguistics.

1Clearly, this is not the only perspective on computational linguistics one can take.
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2.1 Existing Computational Linguistics Research within Digital Humanities

2.1 Existing Computational Linguistics Research within
Digital Humanities

Table 2.1 shows an overview of several research works from literary sciences and his-
tory. This is not a comprehensive list, but illustrates the wide variety and some of
the challenges computational linguistics faces in digital humanities research. The table
shows the linguistic representation levels used, the text genre, the average number of
tokens2 and a short description of the task.

A first observation is that the texts under study play different roles. In some projects,
the text itself is the research object, while in others the text serves as a medium and the
research object is the information contained in the text. In the former, researchers are
often interested in stylistic aspects (e.g. beauty of poems, Kao and Jurafsky, 2012) or
properties of the text as a whole (e.g. the author, Jockers et al., 2008). The latter can be
seen as information extraction tasks, but with a humanities application scenario (e.g.
social network extraction, Camp and Bosch, 2012). It also has to be noted that there is
a gray area in between these two poles. In history, for instance, the interpretation of
extracted information may depend on meta data of the source document (why it was
written, by whom, etc.).

As a second observation, we note that the data set sizes are relatively small, in com-
parison to corpus sizes in general computational linguistics3. Given the fact the main
benefit of using computational methods is being able to process large data sets, this
is somewhat surprising. In some cases, this can be explained by a very focused ap-
plication goal. There is no point in “using more data” if the goal is an analysis of a
specific literary piece (e.g. in Clement, 2008; Inaki and Okita, 2006; Jockers et al., 2008).
In other cases, analyzing more data makes sense on a conceptual level, but more data
is not available currently and also will not be available in the future (e.g. Camp and
Bosch, 2012).

Thirdly, most of the existing work in computational linguistics for digital humanities
makes use of rather shallow linguistic representations, even in the information extrac-
tion tasks. Although approaches using shallow linguistic representations are popular
in general computational linguistics as well, the lack of approaches using deep linguis-
tic structures is striking. On the first sight, this is surprising, in particular given the
small data set sizes. Deeper linguistic representations would allow more fine-grained
and meaningful analyses. However, the automatic creation of deep linguistic represen-
tations is technically difficult, and in particular for texts from non standard domains
also error-prone.

2The number shown in the table refers to the average number of tokens analyzed. In Elson et al. (2010),
for instance, the total number of tokens is much higher, as the entire corpus contains 60 novels. As the
analysis is done per novel, we show the average number of tokens per novel in the table. In Cybulska
and Vossen (2011) and Inaki and Okita (2006), different parts of a larger corpus have been studied in
comparison.

3The Wall Street Journal part of the Penn Treebank (Marcus et al., 1999) contains one million tokens , the
latest release of the Gigaword corpus (Parker et al., 2011) contains four million tokens.
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2.2 Challenges for Computational Linguistics

2.2 Challenges for Computational Linguistics

To synthesize, there are a number of challenges for the application of computational
linguistic techniques to textual data from the humanities:

Corpus sizes Modern computational linguistic approaches often rely on huge text
corpora and use sophisticated methods to train statistical models on the corpora. These
approaches are difficult to apply directly, because most text corpora in humanities are
relatively small and focused. Literary analyses, for instance, need to be based on a cer-
tain fixed data set, that also can not be expected to grow in time. Although corpus-based
analyses of literary pieces have been made (e.g. Inaki and Okita, 2006), the relatively
small data size imposes restrictions on the methodology.

Text characteristics The text corpora used in computational linguistics are often news-
paper corpora. Owing to different text characteristics on a number of linguistic levels
(e.g. lexicon, style, syntax), reusing existing models that have been trained on newspa-
per corpora often leads to unsatisfactory results. Existing models need to be adapted to
the characteristics of the texts found in humanities. As there is not a single text genre in
humanities (or even within literary analysis), it is doubtful whether a single allround-
adaptation will suffice. Instead, adaptations need to be done specifically for genres
and texts at hand. This adaptation is not only required for (computational) analysis
tools, but for annotation guidelines (and subsequently linguistic theory) as well, be-
cause most guidelines make assumptions that may not be met by the domain at hand.

The computational analysis of historical texts, for instance, is severely challenged
by the fact that spelling and grammar are very heterogeneous in historical documents
(Dipper, 2011). Poetry texts, on the other hand, often feature a unified spelling, but a
rather loose syntax. In addition, poetry uses verse as a level of information that is not
even present in newspaper texts but still very relevant for the interpretation in liter-
ary science and thus needs to be represented computationally (Kao and Jurafsky, 2012).
Corpora containing computer-mediated language (e.g. chat logs) again differ from his-
torical texts and poetry, eg by the use of colloquial forms or emoticons (Beißwenger and
Storrer, 2009).

Category definitions Many tasks and research questions in humanities are extremely
complex and so are the categories that computational methods should reproduce. For-
mal definitions for these categories often do not exist. Similarly, systematic annotations
using guidelines and measuring annotator agreement are very rare in humanities. This
in turn makes evaluation and supervised statistical approaches difficult to apply, as
there is no data to evaluate against or train on4. Evaluating quantitatively, however, is

4What poses a challenge for computational approaches can be seen as a chance for humanities. McCarty
(2003) points out that the “inevitable” mismatch between informal categories existing in humanities
and their formalizations “forces ontological questions that lead back to [. . . ] fundamental problems”
in the humanities discipline. Humanities disciplines are forced to rethink their category system, which
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a key advantage of computational methods (and goes together with processing large(r)
data sets).

As an example, consider the literary discussion about clichés in the “Eumaeus”-
episode of James Joyce’s Ulysses. It has been argued in literary science that clichés are
used a lot in order to reproduce the everyday language of uneducated people of Dublin
in 1904 (Byrnes, 2010). The number of clichés in this episode has been estimated to be
high, but was never quantified exactly (and thus was not systematically comparable to
other literary pieces). Byrnes (2010) published a study in which he manually counted
the number of clichés, based on his language intuition as a native speaker, Google and
dictionaries of idiom and cliché. However, a sound definition of the concept of a cliché
and what distinguishes clichés from other kinds of idioms is lacking. In consequence,
computational linguistics approaches in this direction (e.g. Cook and Hirst, 2013) are
either forced to establish a new definition or circumvent this issue by not using training
material and/or devising other ways of evaluation.

Accessibility Results produced with computational linguistics methods need to be
accessible to (digital) humanities researchers. Results, in this case, do not only include
tables with numerical performance measures. Instead, automatically induced annota-
tions need to be presented along with the original source texts, such that the results are
traceable (to a certain extent) and humanities researchers can base their interpretations
on them. Original source texts may also need to be cited as evidence in publications.

Making results accessible to humanities researchers is a challenge that goes beyond
pure engineering, though. Although some visualizations may be rather obvious (e.g.
showing social networks as graphs), others highly depend on the research question at
hand. Clement (2008), for instance, shows how visualizations of repetitions in Gertrude
Stein’s The Making of Americans can support certain interpretations in literary science.
While the computational linguistics part of the work is straightforward, the concrete vi-
sualization is pertained to the specific question and a result of a collaboration of literary
scholars with technicians and designers in the project.

Sculley and Pasanek (2008) go even further and state that assumptions, implicit bi-
ases and limitations made in computational (in this case: machine-learning) methods
need to be understood by the humanities researchers. Computed results should not be
seen as a proof or determinate answer and methods should not be treated as a black
box. This requires close collaboration between computational experts and humanities
researchers and goes beyond visualization of results. Instead, Sculley and Pasanek re-
quire scientists from humanities to acquire at least a basic understanding of statistical
and computational methods.

2.2.1 Challenges for the Detection of Structural Similarities

The challenges discussed above also affect this work on various levels. The number of
descriptions of rituals is, compared to corpus sizes in computational linguistics, rather

can be a fruitful process.
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small. Although a huge amount of folktales do exist in principal, a well structured,
machine-readable corpus is not available directly. Therefore, we have to cope with rel-
atively small data set sizes. As we will see, the uncommon text characteristics of the
descriptions of rituals play a major role and cause us to develop various domain adap-
tation techniques. Category definitions (structural similarities across rituals or folk-
tales) do not exist in a formal, controlled fashion. This makes the annotation of a gold
standard difficult. In order to have an additional evaluation that is not dependent on
these annotations, we performed the second experiment that makes use of a classifica-
tion of rituals and folktales. This classification is sufficiently formal (and consensual in
the respective fields) to be used in our setting. Finally, in order to produce results that
are usable and accessible to researchers from folkloristics and research of rituals, we de-
veloped a number of tools to allow visualization, targeted inspection and fine-grained
analysis of the structural similarities we detect automatically.

2.3 Summary

Digital humanities is a growing field of research and encompasses many different dis-
ciplines. It is unclear whether a clearly defined set of methods will ever emerge as
“digital humanities methods”.

Many humanities areas are using texts as either research objects or medium. There-
fore, methods from computational linguistics may be of great use in these disciplines.
However, the application of computational linguistics methods in digital humanities
scenarios poses a number of challenges. Solutions to these challenges need to be fo-
cused on the specific tasks and data at hand.
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3 Related Work

The related work to this thesis falls into two general areas: Domain adaptation and
computational narrative analysis. In Section 3.1, we will discuss approaches on domain
adaptation that have been used for various linguistic levels of annotation. As most of
the linguistic processing methods are probabilistic, supervised methods, most of the
adaptation approaches that we will discuss focuses on these methods. In addition,
we will discuss approaches for the adaptation of unsupervised knowledge-based word
sense disambiguation. The related work to computational narrative analysis can also
be separated in two general areas: Approaches for representing and modeling single
narratives and approaches for the comparison and aggregation of multiple narratives.
Section 3.2 is structured accordingly.

3.1 Domain Adaptation

This section discusses existing work in the area of domain adaptation in the follow-
ing way: Domain adaptation techniques that are applicable to supervised approaches
are discussed in Section 3.1.1. Approaches for domain adaptation of knowledge-based
word sense disambiguation will be discussed in Section 3.1.2.

3.1.1 Domain Adaptation for Supervised Approaches

Supervised techniques work by inducing statistical models on training data and apply-
ing them to test or application data, which should be a different data set. It is assumed
that both data sets are samples drawn from the same underlying distribution. If, how-
ever, the data sets come from different domains, this assumption does not hold.

In the following discussion, we will assume that there are two domains under study.
The source domain is one for which large annotated data sets (Ds) are available. For
the target domain, only a few or no instances at all have been annotated, thus the data
set Dt is comparably small. Formally, we can distinguish two distributions ps and pt,
drawn from the respective data sets. Further, x⃗i = ⟨xi,0, xi,1, . . . xi,F ⟩ ∈ X will be the
feature vector of instance i ∈ Ds/t. We assume the feature values to be mapped to real
values X = RF , where F represents the number of features. A function o ∶ X → {Ds,Dt}
maps an instance to its origin data set. y ∈ Y represents the class label. pt(x⃗, y) is the
distribution we are interested in.

The General Distribution In addition to the two distributions from source and target
domain, Daumé III (2007) introduces a third distribution, representing the “general”
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3.1 Domain Adaptation

domain. The union of the two data sets Dg =Ds∪Dt is drawn from this distribution pg.
The intuition behind this general distribution is that not all predictions of a (linguistic)
classifier are domain-dependent: The token “the”, for instance, would be tagged as a
determiner in most domains.

In Daumé III (2007), a single model is trained, but on an augmented feature space.
The augmented feature vector is created using Φ ∶ RF → R3F as shown in (3.1). This
way, the feature vector of each instance has a general and a domain-specific part. The
classifier then can learn whether to use the general domain feature set (for which it has
massive training data) or the domain-specific feature set (with small training data).

Φ(x⃗i) = { ⟨x⃗i, x⃗i, 0⃗⟩ if o(i) =Ds

⟨x⃗i, 0⃗, x⃗i⟩ if o(i) =Dt
(3.1)

Formally, a training algorithm then learns a linear hypothesis h̆ ∈ R3F that contains
a common, source and target specific component: h̆ = ⟨gc, gs, gt⟩. In the un-augmented
feature space, this corresponds to learning to hypotheses hs = (gc+gs) and ht = (gc+gt).
The application of h̆ to the augmented target sample Φ(x⃗) is then equivalent to applying
(gc + gt) to the un-augmented sample x⃗ (Kumar et al., 2010).

Daumé III (2007) reports significant reductions in error rate for part of speech tagging,
named entity resolution and chunking, compared to non-augmented ways of combin-
ing the data sets.

Harvesting Unlabeled Data An extension (Kumar et al., 2010) to the feature space
augmentation approach makes use of additional, unlabeled data Ut from the target do-
main. In regular space, the source hs and target ht hypotheses are required to agree on
the unlabeled data. This requirement (hsx⃗ ≈ htx⃗) can be transformed into the following
augmentation operation:

Φ(x⃗i) = ⟨0⃗, x⃗i,−x⃗i⟩ (3.2)

As these instances are unlabeled they are added once for each class label y ∈ Y . Ku-
mar et al. (2010) report results on sentiment classification using the data sets provided
by Blitzer et al. (2007). Compared to the original feature space augmentation approach,
they achieve a reduction in error rate between 4.3 and 39.3%.

Structural Correspondence Learning (SCL) Blitzer et al. (2006) propose a technique
called structural correspondence learning. In this setting, the assumption is that un-
labeled data from source and target domain are available, while labeled data is only
available for the source domain. Central to SCL is the concept of pivot features. Pivot
features behave similarly in source and target domain and occur frequently (enough).
They capture the commonalities of the two domains. The technique introduces a map-
ping Φ ∶ RF → RF+h into a feature space that also contains h pivot features.

Using the pivot features, a number of binary pivot predictors are trained on the (un-
labeled) source and target data. A pivot predictor predicts for an instance if the pivot
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feature is present in this instance or not. The weight vectors w⃗l (from training the pivot
predictors) are then joined into a matrix W . After doing singular value decomposition
(W = UDV T ), UT

[1∶h,∶] = θ contains the top left singular vectors of W . θ is then seen as a
parameter that encodes the mapping to the shared feature space. The training data is
then mapped using θ into this shared feature space and appended to the original fea-
ture vector. Finally, the classifier is trained on the labeled and enhanced data. Test data
can also be mapped into the feature space using Φ as defined in 3.3.

Φ(x⃗i) = ⟨x⃗i, θx⃗i⟩ (3.3)

Structural correspondence learning has been applied to a number of tasks: part of
speech tagging (Blitzer et al., 2006), dependency parsing (Shimizu and Nakagawa, 2007),
sentiment classification (Blitzer et al., 2007), parse disambiguation (Plank, 2009) e-mail
summarization (Sandu et al., 2010) and dialog utterance classification (Margolis et al., 2010).

Instance Weighting J. Jiang and Zhai (2007) analyze the problem of domain adapta-
tion by identifying two independent factors that need to be adapted. The distribution
we are interested in, pt(x⃗, y), can be factored into p(x⃗, y) = p(y∣x⃗)p(x⃗). Differences be-
tween ps and pt can be caused by both factors: pt(y∣x⃗) may be different from ps(y∣x⃗)
and/or pt(x⃗) may be different from ps(x⃗).

Consequently, J. Jiang and Zhai propose an adaptation that addresses both factors
individually. In order to do labeling adaptation (adapting ps(y∣x⃗)), a model is trained on
target domain data Dt and then applied to the source domain data Ds. Then, the top
k wrongly classified instances are removed from the source data set, as pt apparently
differs from ps in these cases. A classifier is trained on the remaining data set D′

s. For
instance adaptation (adapting ps(x⃗)), a bootstrapping method has been used. A model
is trained on the source domain data Ds and applied to the target domain. The top
k confidently predicted instances are then added to the training set and the process is
reiterated. Instances from the target data set can be weighted higher. Obviously, both
methods can be combined.

The results reported by J. Jiang and Zhai (2007) support the initial idea partially:
Accuracy on three tasks (part of speech tagging, entity type classification and spam
filtering) improves in many cases when doing labeling adaptation. However, in entity
type classification, the accuracy drops when source instances are removed. Adding
confidently classified target instances (instance adaptation) improves the results.

Instance preselection The system by Sagae and Tsujii (2007) achieved the highest
score in the domain adaptation track of the CoNLL2007 shared task on dependency
parsing. They train two different models (a maximum entropy and a support vector
machine) on source domain training data Ds. Then, both models are used to parse
the entire in-domain data set Dt. Sentences for which both models produce identical
parses are assumed to be parsed correctly and collected in data set Dc. The maximum
entropy model is then retrained on the training set Ds ∪Dc and used to parse the en-
tire in-domain data set Dt. Using this procedure, Sagae and Tsujii achieve a labeled
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Approach & Reference Requirements
Fe

at
.S

pa
ce Augmentation (Daumé III, 2007)

Augmentation++ (Kumar et al., 2010) unlabeled data from target domain
SCL (Blitzer et al., 2006) unlabeled data from both domains,

no need for labeled target domain
data

D
at

a
Se

t Instance weighting (J. Jiang and Zhai, 2007)
Instance preselection (Sagae and Tsujii, 2007) Two independent classifiers
Reliability detection (Kawahara and Uchi-
moto, 2008)

Reliability classifier

Active learning (Chan and Ng, 2007) Annotators

Table 3.1: Approaches for statistical domain adaptation

attachment score of 81.06 (unlabeled: 83.42; next best system: 80.4 LAS; both parsers
individually achieve below 79 LAS on the development set).

Reliability detection Kawahara and Uchimoto (2008) improve on that by adding a
component that selects reliable dependency parses. First, they split the source domain
data setDs into two parts: A training set for the parser and a training set for a reliability
detector. A parser is trained on the parsing training set and an SVM model to detect
reliable parses is trained on the second training set. The reliability detector uses features
that indicate parse difficulty, like sentence length or number of commas. The target
domain data setDt is parsed and the SVM used to detect reliable parses. Kawahara and
Uchimoto report precision 73.7% and recall 38.9% for the detection of reliable parses.
Reliable parses for k sentences are then added to the source domain data Ds, the parser
is retrained and Dt labeled. Using a first source domain data set, they experimentally
optimize k to be 18,000, which is slightly more than the size of Ds. This way, they
achieve an accuracy of 84.12 (UAS), compared to an unadapted performance of 83.58.

Active learning Chan and Ng (2007) discuss experiments employing active learning
for word sense disambiguation. Using a sense annotated corpus from different news-
paper genres (DSO, Ng and Lee, 1996), they iteratively train a classifier on the source
domain data and apply it to the target domain data. The prediction with the lowest
confidence then gets replaced with the true class, simulating actual annotation. Anno-
tated items are weighted higher in the training procedure. The evaluation results show
that (using weighting and active learning) only 4% of the target domain examples need
to be annotated in order to achieve the same result as the most frequent sense baseline
(61.1% accuracy).

Summary In sum, there are two groups of statistical domain adaptation approaches.
The first group employs various techniques to capture commonalities in the two do-
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mains. This is done by modifying the feature space (e.g., augmenting it or adding pivot
features). In the other group, the focus is on optimizing the data set and training with a
regular feature space. This data set modification can be done by weighting, preselecting
or removing instances.

In order to modify the feature space used by a certain NLP tool, one often needs
access to the source code of the tool. The effort to integrate these feature space modifi-
cations depends on the software quality of the NLP tools involved. The manipulation
of data sets is more robust in the sense that this technique can be employed without
access to internals of tools.

Table 3.1 shows an overview of the approaches discussed. All approaches make the
basic assumption that there is a large data set from the source domain and a small or
nonexistent one from the target domain. The third column shows additional assump-
tions made with respect to the data sets.

Approaches on domain adaptation are hard to compare in terms of results, because
there are no standard data sets. In addition, it is questionable how well an adaptation
strategy that achieves improvements on one set of domains transfers to other domains.
On a more fundamental level, boundaries between domains or between the notion of
domain and genre seem to be vague. Nonetheless, it is clear that NLP systems need to
be adapted when used on domains featuring uncommon language characteristics.

3.1.2 Word Sense Disambiguation

Because word sense disambiguation is often done in an unsupervised manner, we
will discuss domain adaptation of knowledge-based unsupervised approaches to word
sense disambiguation in the following. Most approaches discussed below use UKB as a
base application and either adapt (i) its knowledge base or (ii) the algorithm itself. We
will give a brief introduction into UKB and then discuss (i) and (ii).

UKB UKB (Agirre and Soroa, 2009) uses the PageRank algorithm in order to deter-
mine weights for candidate synsets of a given sentence. Applying the PageRank al-
gorithm directly to the entire WordNet graph would produce a context-independent
ranking of all synsets. This is due to the initialization of the vector v, which represents
the probability of the i-th vertex to be hit by a random walk. In traditional PageR-
ank, every vertex gets the same probability. In order to let the context influence the
disambiguation, Agirre and Soroa add the context words as vertices to the graph and
distribute the probability mass only to the context words. This way, the context words
receive high initial weight.

Adapting the knowledge base The sense inventory can be adapted in a number of
ways.

Adding new concepts Navigli and Velardi (2002) propose to add new senses that rep-
resent domain-relevant multi word expressions. Initially, multi word candidates are
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extracted from a domain corpus and filtered using the information-theory based mea-
sures domain relevance and domain consensus (Velardi et al., 2001). The assumption is
then that a word x subsumes the multi wordwx, i.e., that longer multi word expressions
are more special than shorter ones. Therefore, a new sense wx is added to the hierarchy
as a hyponym of the sense representing x. The system was put to use in order to speed
up the process of ontology creation for the tourism domain. Navigli and Velardi report
a precision of 85% for the semantic disambiguation of multi word expressions.

Reranking concepts WordNet senses are ranked according to their frequency in a cor-
pus. Navigli (2009, p. 10:45) reports an accuracy of 57% on a mixed-genre corpus
(Senseval-1) for a word sense disambiguation system that always assigns the most fre-
quent sense. It is reasonable to assume that the ranking of senses is highly domain-
dependent. Therefore, McCarthy et al. (2004) employ ways of computing the most fre-
quent sense from a new domain corpus (“predominant sense”) and rerank the senses
accordingly. First, a thesaurus is created from an automatically parsed domain cor-
pus (Lin, 1998). From this thesaurus, the k nearest neighbors for each target word w
and distributional similarity scores between w and its neighbors are extracted. Let
Nw = {n1, n2, . . . , nk} be the list of neighbors, {dss(w,n1),dss(w,n2), . . . ,dss(w,nk)}
be the set of distributional similarity scores and senses(w) be the set of senses of word
w. The prevalence score ps for a specific word sense sw,i is then calculated as shown in
Equations 3.4 and 3.5.

ps(sw,i) = ∑
nj∈Nw

dss(w,nj)
wnss(sw,i, nj)

∑s′w∈ senses(w)
wnss(s′w, nj)

(3.4)

wnss(sw,i, nj) = max
s′nj

∈ senses(nj)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

lesk(si, s′nj
)

or
jcn(si, s′nj

)
(3.5)

McCarthy et al. (2004) experiment with using lesk (Banerjee and Pedersen, 2002) and
jcn (J. J. Jiang and Conrath, 1997) as similarity measures between WordNet senses (3.5).

Reddy et al. (2010) conduct a series of experiments in which prevalence scores ex-
tracted on domain-specific corpora are used to initialize the link weight between con-
text words and candidate synsets. This leads to an improvement of about 10% precision
and recall (compared to using default link weight).

Removing and aggregating concepts There are several approaches that focus on spe-
cific parts of WordNet (Core WordNet) or merge multiple existing senses into one
(OntoNotes). Core WordNet (Boyd-Graber et al., 2006) contains the most salient and
basic synsets for the most frequent lemmas in the BNC. The creation of the OntoNotes
(Hovy et al., 2006) resource is guided by the inter-annotator agreement: As long as the
inter-annotator agreement is less than 90%, the sense definitions are revised (i.e., senses
are merged). Having fewer choices for a given lexeme makes the task easier. To our
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knowledge, removing and aggregating senses has to not been used for the purpose
of domain adaptation, but merging or removing domain-irrelevant senses would be a
form of domain adaptation.

Adapting the word sense disambiguation algorithm

Initialization Reddy et al. (2010) propose several alternatives to the initialization of the
weight vector v in the page rank algorithm and use UKB for their experiments. First,
they introduce the keyword ranking score krs that represents the “keyness” of a word
for a specific domain. The keyword ranking score is calculated as shown in (3.6), where
LL represents the log-likelihood ratio as described in Rayson and Garside (2000).

krs(w) = LL(w)
∑wi∈words(d)LL(wi)

(3.6)

The context words are then initialized with krs instead of uniformly. Reddy et al.
report a minor improvement in precision and recall (+ ∼ 1%).

Context choice Stevenson et al. (2012) propose to change the set of context words that
is used as input to UKB. The approach assumes that the domain of the target text is
known and that a domain corpus is available (in this case, a domain is described by
the so-called medical subject heading, MeSH). Several methods are used to extract key
terms for the domain from the domain corpus. These key terms are then added as
contexts for UKB. Overall, they achieve an improvement in accuracy of 3.3 percentage
points when using relevance feedback (Rocchio, 1971) and inverse document frequency
for the extraction of key terms.

Summary Again, comparing different approaches on domain adaptation for word
sense disambiguation is difficult, even when they are all using the same word sense
disambiguation system, because the data sets and underlying assumptions are differ-
ent. Deciding on a specific approach on word sense disambiguation adaptation should
take into account what the actual aim is and what resources are available. Calculating
prevalence scores, for instance, requires a large corpus, which is not always available.
If structured domain knowledge is available in some form, the manipulation of the
knowledge base to incorporate this domain knowledge may be feasible. In any case,
UKB makes these kinds of manipulation straightforward to implement.

3.2 Computational Narrative Analysis

In this section, we describe the related work in the area of computational narrative
analysis. We will first give some background information (Section 3.2.1) on narratives
and narratology. The remainder of the section is split into three parts: Section 3.2.2 de-
scribes work which focuses on modeling individual narratives in a deep, fine-grained
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way. As we are ultimately interested in comparing and aggregating narratives, we will
discuss approaches towards this aim in Section 3.2.3. The story intention graph frame-
work includes a modeling as well as an aggregation part and is therefore described in
two parts. We will give an overview of the discussed approaches in a schematic form
at the end, in Section 3.2.4.

3.2.1 Narratological Background

Story telling and narratives have been researched in the discipline of narratology. Mani
(2012) describes narratology as the theory of narrative structure and narrative structure
as “representations of different phenomena that are relevant to making sense of nar-
rative as story” (Mani, 2012, p. 4). In order to understand a narrative, humans have a
certain understanding of several aspects of the narrative. In order to “computationally
understand” a narrative, these aspects need to be represented. Mani mentions five as-
pects in particular: The narrator, narrative levels (embedded narratives), audience, time
and fabula. This work focuses on the aspect of fabula. A narrative fabula is a “chain of
events (actions, happenings), along with existents (characters, items of setting)” (Chat-
man, 1980). The notion of a chain implies connections of some sort between the events.

Forster (1927) distinguishes between story (“a narrative of events arranged in their
time sequence”) and plot: “Also a narrative of events, the emphasis falling on causality”
(both are fabulas, cit. Mani (2012)). This notion of causality is worth explaining, because
it employs a rather loose sense of causality.

(1) a. The king died and then the queen died.

b. The king died and then the queen died of grief.

A simple “list” of events, as in Example 1a would be a story, but not a plot according
to Forster. If, however, the events are connected so that a causal connection between
the events is expressed, they form a plot. Example 1b shows a plot, because the second
event is causally related to the first. In this thesis, we will use the term story in Forster’s
sense.

3.2.2 Story and Plot Models

Story Grammars

The story grammar approach, as implemented by Correira (1980), represents events in a
story as propositions. Initially, temporal relations are added to represent the temporal
ordering of events. By employing a collection of rules, a set of propositions is then
connected to a more abstract representation of the events. E.g., the events described
in Example 2 are connected to the meta proposition in Example 3 (“x makes a trading
voyage to y”).

(2) buy(x,ship), buy(x,goods), load(x,ship,goods), sail(x,to:y,means:ship)
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(3) tradingvoyage(x,with:goods,in:ship,to:y)

Such a rule does not only contain a concrete list of events and an abstract description,
but may also contain pre- and postconditions.

The requirement of a rule base limits the applicability of this approach. Manual cre-
ation of knowledge bases is labor-intensive and expensive and rules as fine-grained as
in 3 can be expected to be heavily domain-dependent. Although existing knowledge
bases such as SUMO (Niles and Pease, 2001), Cyc (Lenat, 1995) or FrameNet (Fillmore
et al., 2003) contain such script-like knowledge to a certain extent, their coverage is
severely limited. In particular with respect to domains from the humanities, many
rules would need to be written. First attempts on semi-automatic acquiring of scripts
have been made (e.g., Regneri et al. (2010)) that could presumably be extended towards
specific domains.

Plot Units

Plot units are described and introduced by Lehnert (1981). A plot unit consists of affect
states and links between affect states. An affect state is always bound to a specific
participant and may be an event with a positive (+) or negative (-) effect or a mental
state (M) without effect. Lehnert distinguishes four different link types that are used
to connect affect states:

Motivation (m) A causal relation between mental states

Actualization (a) A mental state gets realized and has positive or negative effect

Termination (t) The affective impact of an event ends

Equivalence (e) If multiple perspectives are separated, this relation represents that the
same event has both positive and negative effects

There are 15 different ways of linking two states with a link, because not all links are
compatible with all node types. These 15 pairwise configurations are called primitive
plot units and represent typical situations like resolution, success, etc. More complex
plots can be put together by combining primitive plot units.

(4) a. Mary got fired and needs a job.

b. She successfully applies for a job.

Both sentences in Example 4 describe two states: 4a describes a state with a negative
effect (the firing event) and a mental state (Mary needing a job). In 4b, the need for a
job (implied by the application) is a mental state. The fact that she successfully applies
for a job introduces a state with a positive effect.

The story thus contains the three primitive plot units problem (in 4a), success (in 4b)
and resolution (in both, surpassing the mental state and directly linking the firing to the
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(d) Complex Plot Unit: Problem Resolution

Figure 3.1: Primitive and complex units (Lehnert, 1981)

hiring event). Figure 3.1a, b and c show them in a graphical form. Figure 3.1d shows
how they are combined into the complex plot unit intentional problem resolution.

Most narratives involve multiple characters. Therefore, plot units can include cross-
character links, i.e., links between states of different characters. Lehnert also describes
a number of typical configurations involving cross-character links, like request or threat.

Automatic plot unit recognition A system that automatically detects plot units in
narratives has been proposed by Goyal et al. (2010). To our knowledge, this is the only
system for automatic plot unit recognition.

The algorithm works in four steps: (i) A dictionary is used to identify verbs that rep-
resent an affect state. Goyal et al. (2010) experiment with various dictionary sources,
including FrameNet (Fillmore et al., 2003) and sentiment-based resources. (ii) The char-
acters are identified and their coreferences resolved by use of a simple, rule-based coref-
erence resolution system. The system assumes that each story only contains two differ-
ent characters and that both characters are mentioned in the title of the story. (iii) For the
mapping of affect states to characters, the Sundance parser (Riloff and Phillips, 2004)
is used to obtain a shallow syntactic parse of each sentence. Then a number of rules is
used to determine the characters for which the affect state holds. (iv) If two characters
have affect states induced by the same word, a (cross-character) link between the events
is created. Links for a single character are created between pairs of consecutive affect
states.

For evaluation, a gold standard was created that consists of 34 fables of Aesop, an-
notated by two authors and adjudicated by the third. Inter-annotator agreement is not
reported for the annotation of links. Goyal et al. (2010) report results for a number
of configurations in terms of precision, recall and f-score. The best performance they
achieve for the detection of affect states is an f-score of 45. The heuristics for identifying
links achieves between 72 and 92 f-score on gold affect states, depending on the link
type. On system affect states, the performance is between 5 and 25 f-score.
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John arrests
the father

John doesn’t
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Mary doesn’t call
off the engagement

Mary calls off
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Figure 3.2: Game tree for the engagement story (Mani, 2012)

Doxastic Preference Framework

Having roots in game theory, the Doxastic Preference Framework (DPF) (Löwe and
Pacuit, 2008) can be used to model the beliefs of characters in a story. Central to the
DPF is a tree, in which each node represents a decision point for a character (game
tree). Based on his or her beliefs about the preferences of him- or herself and other
characters, he or she makes a decision. Depending on the outcome of the decision,
other characters are forced to change their beliefs and make decisions on their own.

(5) John was thrilled when Mary accepted his engagement ring. But when he found
out about her father’s illegal mail-order business, he felt torn between his love
for Mary and his responsibility as a police officer. When John finally arrested her
father, Mary called off their engagement.

Figure 3.2 shows a game tree for the engagement story (5, example and figure taken
from Mani (2012)). The first decision point is for John, when he found out about the
criminal activities of Mary’s father. Either he arrests the father (node v1) or he does not
(node t0). Depending on the outcome of John’s decision, Mary has to decide whether
she calls off the engagement or not (node t1 vs. t2). The DPF defines various event
types, such as expected event, unexpected event, Betrayal etc. In addition to the “decision
structure” of the story, the tree is used to formally represent beliefs and preferences for
each character, e.g., in the form of a function ordering possible situations by preference
for a character (see Löwe and Pacuit (2008) for the formalization).

To our knowledge, a single annotation of a narrative has been performed. Andel
(2010) formalized seven different episode fragments of a TV crime series, but gives
neither annotation guidelines nor inter-annotator agreement. He does, however, men-
tion that the framework does not offer any means to represent ambiguities or under-
specifications in the story. In his case, one episode offers two possible perpetrators for a
kidnapping. The formalization forces to decide on one of the two, as the following parts
of the story need to be encoded differently depending on who did the kidnapping.

No experiments on automatic extraction of game trees have been published.
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Story Intention Graphs

Story intention graphs (Elson, 2012b) are graph-based representations of textual nar-
ratives that focus on the intentions of characters. The graphs are multi-layered and
model the text itself as well as its story timeline and intentions, plans and goals of the
participants.

The textual layer contains the original text, broken down into fragments (clauses or
sentences). The timeline layer contains an abstract representation of events and statives
appearing in the story as proposition nodes. Proposition nodes not only model events
happening in the story reality, but also modal propositions like uncertain, imagined
or believed concepts. Each proposition node is related to state nodes which represent
points in (story) time by use of the temporal relations BEGINS AT and ENDS AT. Propo-
sition nodes are related to the text nodes they interpret with the relation INTERPRETED

AS (IA).
The interpretative layer serves as a place for interpretations of the story: It contains the

understanding the reader or listener gets while comprehending the story. Thus, it does
not only include content stated explicitly in the story, but also content inferred by the
annotator, reader or listener. The nodes in the interpretative layer can be of the types
Belief, Goal, Interpretative proposition or Affect. Nodes can also be distinguished according
to the actualization statuses they are in at points in story time: Some nodes are true with
respect to the story world and time, others are false and some are hypothetical (their
actualization status has not been determined). The interpretative layer is connected
with the timeline layer by adding relations between nodes in the layers. A relation can
be of one of 13 different types, some of which have impact on the actualization status
of the nodes they connect.

Encoding For three collections of stories, intention graph encodings have been col-
lected. Collections A and B contain a selection of stories by Aesop. The criterion for the
selection was a clear timeline and story events that are causally connected. Collection
A contains two encodings for each of 20 fables, but covers only the textual and timeline
layers. Collection B contains 6 additional fables and also the interpretative layer for
all 26 fables. More than two encodings for most of the stories are available in B. Col-
lection C contains encodings of the timeline and interpretative layer for eight stories
of very different lengths and genres, indicating that the formalism is applicable to not
only fables. Table 3.2 shows an overview of the different collections with several key
properties.

Elson (2012b) gives a detailed report on the manual labor invested, which is an im-
portant aspect for any kind of annotation project. For the collection A (without inter-
pretative layer), the time to encode a fable dropped from several hours to 30-45 minutes
due to the training effect. The median time spent on encoding a fable in collection B
(with interpretative layer) or a story in collection C was one respectively two hours. In
addition, 2-3 hours of training were invested for each collection.

For collection A, which only contains the textual and timeline layers, Elson (2012b)
reports that 10% of the proposition pairs (from two annotators) are fully identical (El-
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A B C

Number of texts 20 26 8
Annotators per text 2 1-3 1

Text sources Aesop Various
Text length �125 words 1,149 − 25,649

Table 3.2: Overview of collections with annotated stories

son, 2012b, p. 201). For measuring agreement in the collections B and C (that include
the interpretative layer), a set of 80 patterns encoding typical situations is used (El-
son, 2012a). A vector is constructed for each graph by setting a value of 1 if a pattern
occurs in the encoding and 0 otherwise. This way, agreement is quantified by measur-
ing the cosine similarity for different encodings. Encodings of the same source texts
made by different encoders have a significantly higher cosine similarity between their
feature vectors than encodings of different source texts. In terms of Cohen (1960)’s
kappa, the agreement is κ = 0.55.

We will discuss the use of story intention graphs for comparison of narratives in the
next section.

Narrative Schemas

Narrative schemas have been proposed by Chambers (2011) as a script-like structure
that can be extracted automatically from texts. A narrative schema describes situations
consisting of multiple events and participants, similarly to complex plot units or meta
propositions.

A narrative schema consists of multiple narrative chains. A narrative chain repre-
sents a (partially ordered) set of events involving a single protagonist in specific (gram-
matical) roles. Such a chain is called typed, if the protagonist is of a certain (semantic)
type. The formalism does not restrict itself to a specific type system or hierarchy, but
uses lexemes extracted from the texts in order to represent the type.

Figure 3.3 shows two typed narrative chains (a and b). The chain in 3.3a shows an
entity of the type police or agent participating in arrest- and charge-events, and in both
cases as subjects. Similarly, in 3.3b, we see a number of events in which an entity of the
type criminal or suspect participate – in plead-events as subject, in all others as objects.
A narrative schema that is constructed by merging a and b is shown in 3.3c.

Chambers (2011) describes an unsupervised algorithm to extract chains and schemas
from texts. The algorithm relies on coreference chains and dependency parses to detect
possible event chains. For each coreference chain (i.e., each entity), a list of pairs (v, d) is
extracted, one for each mention of the chain. v represents the verb of which the mention
is an argument and d the syntactic dependency of the mention. Then, the point-wise
mutual information (pmi) between two event/role pairs can be approximated by count-
ing the number of times two verbs share a coreferring entity in specific syntactic roles
in a large corpus.
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Figure 3.3: Narrative chains and schema (Chambers, 2011)

The most probable next event in a chain can be predicted by maximizing the pmi for
verbs in a specific document. In order to extract a (semantic) type for an entity, the
most salient (i.e., most often used) head words of the coreferring mentions are used to
represent the type of the entity. Prediction of the next most probable event can then be
extended to include similarity of the type.

As an evaluation, Chambers introduces the narrative cloze task: A single event is
removed from a known event chain (or schema). Ideally, the missing event is among
predicted events. In order to compare the outcome, Chambers reports the rank of the
missing events within the list. The NYT portion of the Gigaword corpus has been used
for the experiments. When using typed narrative schemas, The average ranked position
of the removed event is at approximately 72% of the result list: If the system proposes
a (ranked) list of 100 events, the correct one will be at the 72th position. This is an
improvement over using untyped schemas or chains.

3.2.3 Comparison and Aggregation

We will now focus on approaches for the automatic comparison and aggregation of
narratives. We will discuss the non-technical work by Propp (1958) in Section 4.1.

Sequence Alignment

An important aspect of comparing and aggregating multiple narratives is the identi-
fication of similar events in similar contexts. This is highly related to the notion of
sequence alignment, which has been researched intensively in the area of bio informat-
ics for aligning protein sequences. A classic algorithm for pairwise sequence alignment
is the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970) . We will discuss
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it in detail in Section 6.2.1. The algorithm generates a global alignment (i.e., every ele-
ment in both sequences is processed and evaluated) and an alignment score. The global
alignment does not include crossing links, but may contain gaps and mismatches.

Applications for Alignment of Narratives One very recent use of the Needleman-
Wunsch algorithm in the context of story comparison has been published by Fay (2012).
One of the issues of the Needleman-Wunsch algorithm is that sequence elements are
atomic to the algorithm. Any internal structure that the sequence elements may have
are ignored by the algorithm, if it is not captured with a similarity function. In addition,
each (possible) link is processed in isolation. Its similarity score only depends on the
two elements to be compared and is ignorant about other linked sequence elements.

Fay’s sequence elements are predicate argument structures. The goal of the algorithm
is not only to link the events of two stories, but also to link the participants (persons or
objects) of the stories to their counterparts. To this end, Fay uses two algorithms simul-
taneously: Sequence alignment according to Needleman-Wunsch and the construction
of a match tree. The latter makes sure that role fillers of the events to be linked are
also matched in a consistent manner. A node in the match tree consists of two sets of
unbound role fillers from both stories and a list of bindings with pairs of role fillers.
A binding represents role fillers that are considered to be corresponding. At the be-
ginning, the binding list of the root node is empty. In each step, nodes are added for
possible pairings of objects until both lists of unbound objects are empty.

The similarity function that is employed by the Needleman-Wunsch algorithm takes
the binding list into account and can reject alignments that contradict the existing bind-
ing list. The important idea is that not all possible pairings of objects are added, but
only the one for which the sequence alignment algorithm produces the highest score.
The similarity for two predicate argument structures is 0, if one of the objects used in
the same role in both events is already bound. Otherwise, a similarity score based on
WordNet is used.

Obviously, this technique greatly reduces the computational complexity of finding
the optimal binding list, compared to brute force methods. An evaluation of the qual-
itative performance of the technique has not been reported, the evaluation focuses on
technical aspects like reduced running time.

Detection of Analogous Story Intention Graphs

Elson (2012b) describes three different algorithms to detect similarities and analogies
based on story intention graphs (see previous section). The first one is a relatively
simple alignment algorithm that works on the timeline layer. The second one calculates
the overlap of previously defined situation patterns. The third algorithm is based on
the analogical constraint mapping engine (Holyoak and Thagard, 1989) and tries to
find correspondences in the story intention graphs without predefined patterns. All
algorithms assume that at least partial SIG encodings for the stories have been created.
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Propositional and temporal overlap The first algorithm serves as a baseline algo-
rithm and only uses the timeline layer. It works on pairs of (story intention) graphs.
The algorithm iteratively links the two propositions that are most similar, as long as no
constraints are violated. The set of constraints includes (i) a similarity threshold, (ii)
disallowing crossing links and (iii) consistent role fillers, which are updated every time
a new alignment link is created. The algorithm terminates if no proposition pairs are
left that fulfill the constraints.

The similarity function used by Elson is based on three different features: WordNet
similarity, morphological derivations and synonymy/antonymy. (i) WordNet similar-
ity is measured using the Lin (1998) definition of WordNet similarity. It sums the simi-
larity scores of the two predicates and the arguments. (ii) For measuring morphological
derivations, a heuristic is implemented that matches a stative proposition with a mod-
ifier attached to an event proposition. An appropriate similarity value is given, if the
propositions are matching and thus considered paraphrases. (iii) Lastly, VerbOcean is
used to detect (indirect) synonyms and antonyms.

As a gold standard for the evaluation, Elson (2012b) collected ratings for 2,700 propo-
sition pairs out of collection A (see above) using Amazon’s Mechanical Turk. The anno-
tators were given a pair of natural language sentences and asked to rate if the sentences
are paraphrases of each other. The pairs were pre-filtered to not include pairs with a
large difference in relative position in the story (more than 40%). Although the align-
ment algorithm performed better than the Jaccard index baseline, the improvement
shown is not significant.

Static pattern matching In the second algorithm, previously defined situation pat-
terns are used. A situation pattern is a hypothetical story intention graph “which min-
imally describes a certain narrative scenario” (Elson, 2012b, p. 218) and is the intention
graph equivalent of a plot unit.

A feature vector created for each story shows for each of the 80 different patterns if it
is present in the story or not. The general idea is then that if two story encodings share
a certain amount of patterns, they are similar and have analogue parts. Comparing the
cosine of the feature vectors of story encodings for the same story (created by different
encoders) with the cosine of the feature vectors of encodings for different stories, it
can be shown that the cosine similarity for encodings of the same story is significantly
higher than for encodings of different stories.

Dynamic analogy detection The third algorithm is based on the Analogical Con-
straint Mapping Engine (ACME) proposed by Holyoak and Thagard (1989). It does not
rely on predefined patterns but instead detects overlap in the story encodings directly.
Before starting the algorithm, (transitive) closure rules are applied to both graphs.

The algorithm uses “globs” as its core data structure. A glob represents a potential
alignment and contains a binding list consisting of nodes and agents. Initially, every
pair of (proposition) nodes on the timeline layer of the two input graphs is put into
a glob. Then, each glob is expanded by adding interpretative unseen nodes, if they
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Figure 3.4: An example glob for dynamic analogy detection (Elson, 2012b)

can be reached via the same relation following the arc directions. If there are multiple
outgoing relations, a glob forks and each possibility is considered separately. Each time
a glob is expanded, its binding list is updated.

Figure 3.4 shows a single glob initialization for the storiesA andB, containing propo-
sition nodesP , interpretative nodes I and several ACTUALIZES (AC) and WOULD CAUSE

(WC) relations. Two relations are added by applying the closure rules by transitivity (t).
The proposition nodes PA and PB are put in a glob. Initially, only PA and PB are on

the binding list. After the first expansion following the AC relations, the glob has been
forked in six globs, each containing one of the following, additional bindings: (IA0 , IB0 ),
(IA0 , IB1 ), (IA0 , IB2 ), (IA1 , IB0 ), (IA1 , IB1 ) and (IA1 , IB2 ). The glob containing the binding
(IA0 , IB1 ) can be further expanded by following the relation WC. After that, this largest
glob contains the bindings {(PA, PB), (IA0 , IB1 ), (IA1 , IB2 )}. In total, we have expanded
the initial single glob into six globs, one containing three bindings, the other containing
two bindings.

If a glob can not expand any further, the pairs of proposition nodes consistent with
its binding list are determined by applying the Needleman-Wunsch algorithm on the
proposition nodes. This way, the alignment with the highest number of compatible
links can be calculated for each glob. After this step has been completed, a number of
possible alignments has been determined. Starting with the alignment with the maxi-
mal number of links, the alignments are now merged if they contain compatible bind-
ings. The final result is a list of mutually incompatible alignments, sorted by their size
(i.e., the alignment linking the highest number of nodes is ranked first).

Evaluation Two experiments are carried out to compare the algorithms directly. Both
of them make use of Amazon Mechanical Turk (AMT) to get ratings.

In the first setup, the AMT users were asked to rate the analogy an algorithm ex-
tracted from two stories. The users were displayed a textual representation (created
using rules) of the analogies and both stories. The rating was collected on a 3-point
Likert scale for two questions, one about the accuracy and one about the completeness
of the analogy. For approximately 100 story pairs, three ratings have been collected for
the output of each algorithm. In 61% of the cases, a 2:1 majority occurred, the rating
was consensual in 27% of the cases. The results show that the propositional overlap and
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the dynamic analogy detection algorithms achieve the highest accuracy (differences be-
tween them statistically insignificant). The best completeness rating is achieved by the
static pattern algorithm, closely followed by the dynamic one.

The second setup collected bare similarity ratings for a story pair. The participants
read both stories and then rated their similarity on a 3-point Likert scale1. Full agree-
ment was achieved in 46.3% of the cases, 50.4% show a 2:1 majority. A linear regression
model with predictor variables from the different algorithms was trained and the cor-
relation evaluated. Here, the results indicate that propositional overlap is the weakest
algorithm. The highest correlation (Pearson’s r = 0.33) is achieved by using features
from the static and dynamic pattern detection algorithms in combination, the features
from the propositional overlap algorithm do not make a difference.

Elson published the annotated stories under the name DramaBank, but this does not
include the similarity ratings collected for the experiments.

Predicate Alignment System

The predicate alignment system, as described in Roth and Frank (2012), has been de-
veloped to align predicate argument structures in comparable texts. The system works
by generating a graph in which predicate argument structures from both documents
are represented as vertices. Then, pairwise similarity between the vertices is calculated
and weighted edges between their vertices are added. By applying a minimum cut al-
gorithm, the graph is then cut in two parts, such that the summed weight of removed
edges is minimal. This cutting is repeated until each subgraph contains at most two
vertices.

The algorithm has been applied to newspaper texts and evaluated against a manually
created gold standard featuring 70 document pairs, each document contains between
100 and 300 words. The system’s results have been compared against two baselines. In
the first baseline, same lemmas have been aligned. The second baseline uses a word
alignment tool that has been developed for statistical machine translation (Berkeley
Aligner, Liang et al. (2006)), based on automatically detected paraphrasing sentences.
The system outperforms both baselines in terms of precision and f-score, while the
word alignment tool baseline achieves a higher recall.

We will discuss the predicate alignment system in more detail in Chapter 6.

Bayesian Model Merging

Bayesian model merging (Stolcke and Omohundro, 1993) has been proposed as a tech-
nique for the induction of a hidden Markov model (HMM) from a set of sequences.
Finlayson (2012) uses Bayesian model merging to create a merged representation for
multiple, analogous stories. We will first focus on the algorithm itself and discuss its
application to narratives afterwards.

1Users were also asked to provide a textual description of the similarity, but we disregard that here.
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The Core Algorithm Let S = {S0, S1, . . . , Sn} be a set of input sequences of variable
lengths, such that ∀S ∈ S ∶ S = ⟨s0, s1, . . . ⟩. Given the input sequences S , the goal of the
algorithm is to maximize the probability of the model given the sequences: It searches
for a maximally probable model M : arg maxM P (M ∣S). By application of Bayes’ theo-
rem, this can be rewritten as arg maxM P (M)P (S ∣M). The algorithm works iteratively
after an initialization.

The HMM M0 is initialized such that ∀Si ∈ S ∶ P (Si∣M0) = 1
n . In words, all sequences

are equally probable. Then, the algorithm merges two hidden states of model Mi in or-
der to induce model Mi+1. The two states are selected such that P (Mi+1∣S) > P (Mi∣S).
Each merge introduces new transitions into the HMM. Therefore the number of paths
through the HMM increases, which in turn decreases the probability for the sequences:
P (S ∣Mi) monotonically decreases. Therefore, the prior P (Mi) needs to be defined in
such a way to compensate for that and to control the merge operations.

Application to Narratives Finlayson (2012) uses this technique in order to automati-
cally detect structural similarities in narratives. For this application, the observed states
of a HMM represent story events and hidden states the unobserved event structure.
Using a prior based on a geometric function (3.7) Finlayson applies the algorithm to
a corpus of 15 fairy tales which have been manually labeled with semantic roles and
coreference chains.

P (M) = p(1 − p)∣M ∣−1 ∏
∀n∈M

K(n) (3.7)

K(N) = { 1 if sim(N) == true
t otherwise

(3.8)

Finlayson used two similarity functions in succession, i.e., the algorithm is used twice
with different functions (plugged in the same prior function shown in (3.7)). In both
cases, the similarity function is defined to measure the similarity of all events emitted
from a single state and similarity is measured as a boolean value: The events fulfill the
similarity criterion or not. The similarity functions work on automatically assigned, but
manually corrected annotations on many levels, including Propbank frames as event
representations, semantic roles, word senses and coreference annotation. The annota-
tion also includes the assignment of discourse entities to character functions according
to Propp (1958)2.

The first stage focuses on semantics and uses four different similarity criteria. If all
criteria must be fulfilled, the events are considered similar. (i) All events must be “non-
generic”. Finlayson defines an event to be generic according to the WordNet sense its
target has. If the sense is a hyponym of communication, perception or motion, the event
is considered to be generic3. This is to exclude verbs like say from being merged. (ii)

2Proppian character functions are prototypical roles of discourse entities, like hero or villain. See Sec-
tion 4.1 for details.

3To be clear: This notion of genericity is not the same as the one discussed in Krifka et al. (1995) and we
aimed at in Reiter and Frank (2010).

28



3.2 Computational Narrative Analysis

Name & Reference Autom. Characteristics

Story Grammars (Correira, 1980) – Grammar-like structures on events
Plot Units (Lehnert, 1981) part. Modeling of positive or negative ef-

fects of events for characters
Story Intention Graphs (El-
son, 2012b)

– Models beliefs and intentions of
characters

Doxastic Preference Framework
(Löwe and Pacuit, 2008)

– Models preferences and expected
outcomes of actions

Table 3.3: Story modeling approaches

All pairs of events must be “synonyms”. A pair of events is defined to be synonymous
if their assigned WordNet senses (or hypernyms of the senses) share at least one syn-
onym. (iii) Each PropBank frame that is assigned to an event must be assigned at least
twice (within the state). This condition works as a balance for the more loose synonymy
requirement. (iv) All pairs of events must feature consistent use of character functions
in the semantic roles of the event. This condition requires that the character functions
of semantic roles should appear in compatible ways in different events.

In the second stage, the similarity function focuses on the valence of the events and
uses two criteria. (i) The character function assignments must be compatible (this is the
same requirement as in the first stage). (ii) The events must agree in their valence, i.e.,
all events have the same number of arguments.

The algorithm’s performance was compared to manually produced gold standard
annotations in the style of Propp’s event functions (see Section 4.1). He evaluates the
clustering of events into Proppian functions with the chance-adjusted Rand-index (Hu-
bert and Arabie, 1985). The performance score ranges from 0.51 in the most strict setting
to 0.71 in the most lenient setting.

As we are using Bayesian model merging in our own experiments, we will discuss it
in more detail in Chapter 6, although we will be using different similarity measures.

3.2.4 Summary

Table 3.3 gives an overview of the approaches on modeling individual stories discussed
above. The middle column indicates whether automatic generation of these models
has been investigated, the last column shows a short description of what the approach
models.

All approaches have in common that they are very expressive. A (large) collection
of these models would undoubtedly enable interesting empirical research. However,
manual annotation in these frameworks is time-consuming and expensive and auto-
matic annotation seems to be out of reach at a reasonable quality level. Another issue
that some of the fine-grained modeling approaches have is that they force annotators
or encoders to decide on a single meaning, even if the story is in fact underspecified
or ambiguous. This makes encoding difficult and encoder agreement hard to measure.
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The automatic modeling of these structures gets even more difficult if there is room for
interpretation. This raises also questions about evaluation, because a disagreement be-
tween annotators (or between a system and an annotator) could just mean that another
possible interpretation has been modeled.

The approaches in Table 3.4 focus on finding commonalities across different narra-
tives. The table contains name and reference, whether the approach has been used
on automatically processed texts, prerequisites that the approach has, whether data
sets have been released and the key characteristics. All of them are unsupervised ap-
proaches.

Sequence alignment is a very basic approach that has its (original) focus not on lan-
guage data. We therefore give neither data sets nor automatization. The extension
of the raw sequence alignment algorithm to also generate bindings of participants of
events (sequence alignment + binding list) does rely on linguistically annotated texts, in
particular semantic roles. Although a technical evaluation has been done in the form
of a complexity study, no qualitative evaluation of either the alignment nor the bind-
ing list has been published. Similarly, neither the implementation nor the data set is
available.

Narrative schemas are an unsupervised approach and they are extracted from fully
automatically annotated texts. However, the approach relies on the existence of a large
corpus (in this case: Gigaword) from which pointwise mutual information can be cal-
culated. This makes an application of this approach in digital humanities difficult, as
large corpora are often not available. The extracted event schemas are available. To our
knowledge, the implementation has not been released.

The predicate alignment system does rely on linguistically processed texts on a number
of levels including PropBank semantic roles and coreference resolution. The system has
been used on automatically annotated texts and the data set has been published. The
system is currently not publicly available, but we are in close contact to the author.

The two approaches that are most closely related to our work are story intention
graphs (Elson, 2012b) and Bayesian model merging (Finlayson, 2012), because both
have their focus on analogy detection on narrative texts.

Story intention graphs aim at modeling the intentions of story characters in graphs.
The framework allows the discovery of “deep” analogies across texts, including analo-
gies of intentions and beliefs which are not even mentioned in texts but interpreted by
an encoder/annotator. An obvious prerequisite for finding analogies across intention
graphs is that both narratives are encoded as intention graphs. Automatic encoding
of these graphs is currently out of reach for NLP, and, given the non-linguistic aspects
of these graphs, may remain out of reach for some time. The encoded story intention
graphs (for the collections described above) are available together with the encoding
application.

Bayesian model merging, in contrast, builds on mostly linguistic annotations of texts,
but some of the similarity measures also require significant domain specific pre an-
notations (character functions). Finlayson based his experiments on semi-automatic
annotations. Automatic linguistic processing has been done, but for the experiments
on Bayesian model merging, the annotations have been manually corrected. In order to
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3.2 Computational Narrative Analysis

do large-scale empirical research on narratives, such a manual correction is infeasible.
Neither the data sets nor the implementation is available.
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4 Application Scenarios

In this chapter, we will discuss two different application scenarios for structural event
analysis of narrative texts. Both scenarios come from the area of folklore research, i.e.,
research on cultural heritage. We will give a brief introduction to each research area
and highlight relevant research questions. We will further discuss how computational
narrative analysis techniques can be beneficial with regard to these questions. Finally,
we will present corpora we have collected for both areas.

4.1 Folktales

Folktales are tales that have been passed down orally for a long time and are part of the
folklore and cultural heritage of a culture or group. Folklore has been studied in the area
of folkloristics and literary sciences.

Fairy tales, fables and myths are closely-related terms and studied in the same schol-
arly areas. Fairy tales are tales that involve fantastic forces and beings, while fables
often have a moral and involve animals speaking like humans. Myths are defined as
traditional stories that “explain a practice, belief or natural phenomenon” (Merriam-
Webster Dictionary). Fairy tales, fables and myths are defined according to (aspects of)
the content of the tale or their purpose, while the term folktale focuses on the heritage
and transmission of the tale. Therefore, a fairy tale, a fable and a myth may be folktales
and vice versa. However, we will not delve into questions of exact definitions. Folk-
lorists have published collections of folktales and we will rely on their preselections.
The more important aspect is that folktales are tales and therefore comply with all the
criteria for narratives. We can expect them to describe sequences of events that are con-
nected so that the story line unfolds and they form a plot in the sense of Forster (1927).
Appendix 1 shows the fairy tale “Bearskin” as an example of this.

One of the most prominent collection of folktales is Grimm’s fairy tales, published
by the brothers Grimm under the title “Kinder- und Hausmärchen”. The multi-volume
book contains 210 tales and has been published in various editions, the first being in
1812. Andrew Lang’s Fairy Books is another well-known collection that contains 437
tales. The books were published in twelve volumes between 1889 and 1910 (Lang, 1889).

4.1.1 Variations and Patterns

Owing to oral tradition, variations on the same plot exist across borders of culture and
language. In order to facilitate research on folktales, the Aarne-Thompson-Uther index
has been created to classify tales into groups according to “tale types”. Tale types have
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4.1 Folktales

ATU

Tales of the stupid ogre,
giant or devil (1000-1199)

Realistic tales,
novelles (850-999)

Fairy tales
(300-749)

Supernatural or
Enchanted Relatives

(400-459)

Supernatural
opponents
(300-399)

The children
and the ogre

(327)

Hansel and Gretel
(327A)

The stretching tree
(317)

Animal tales
(1-299)

Religious tales
(750-849)

Anecdotes, jokes
(1200-1999)

Formula tales
(2000-2399)

Figure 4.1: Top-level categories in the Aarne-Thompson-Uther index

not been exactly defined. According to their descriptions, a type is defined by some
key elements of the story like important actions and prominent characters (see below
for an example). The index was first published by Antti Aarne in the early twentieth
century. The index has subsequently been extended by Stith Thompson and Hans-Jörg
Uther (Uther, 2004) and contains more than 2,500 types. Figure 4.1 shows the top level
categories in the index and, as an example, the hierarchy of the index type 327A, Hansel
and Gretel. Type 327A groups several stories that feature the same elements together:

The parents abandon their children in the wood. The gingerbread house.
The boy fattened; the witch thrown into the oven. . . . The children acquire
her treasure.

(Aarne and Thompson, 1961, p. 117)

To our knowledge, we are the first to make use of the ATU classification in a com-
putational narrative analysis setting. As ATU classes are categorized according to their
types and types represent story elements, the tales of a given index type necessarily
share story elements. However, there are also re-occurring elements in tales classified
into different ATU classes. For instance, many tales involve something being forbid-
den or prohibited (e.g., parents asking their children not to leave the courtyard) and a
violation of that command (the children leave the courtyard).

Propp (1958) developed a formal system of thirty-one event functions that appear in
one hundred tales that he studied. In contrast to a tale type, which makes a statement
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4.1 Folktales

about a tale as a whole, an event function represents the function of a single event in a
tale. Say, for instance, the hero in a tale has to pass a test before he receives a key item
needed to defeat the villain. There can be a number of ways this test can be realized (a
puzzle, a fight, a riddle, . . . ), but the function of this event for the narrative is still that
of testing the hero. Some of the event function descriptions indicate various ways of
realization as sub-types, as is shown in the following example:

I. One of the members of a family absents himself from home (Definition:
absentation. Designation: β.)

1. The person absenting himself can be a member of the older gener-
ation (β1). . . .

2. An intensified form of absentation is represented by the death of
parents (β2). . . .

3. Sometimes members of the younger generation absent themselves
(β3). . . .

(Propp, 1958, p. 26)

The above quotation describes an event function that appears during the description
of the initial situation. Some of the functions are related to others. For instance, an
interdiction (γ) is usually followed by a violation (δ) of said interdiction.

Similar to the event functions, Propp describes seven character functions: Prototyp-
ical roles that appear in tales. Each character function is introduced in a specific event
function and may re-appear in others. The villain, for instance, appears in the function
villainy (A), which has a number of sub-types in which the villain causes harm. Later
in the tale, he reappears in the functions H (struggle, combat between hero and villain)
and Pr (pursuit of the hero).

Propp further defines a move as “any development proceeding from villainy [. . . ]
through intermediate functions to marriage” (Propp, 1958, p. 92). A single tale may
contain multiple moves. He then analyzes the moves in fifty tales from his collection
according to the function scheme he developed in detail and published the function
strings (the list of event functions as they appear in the tale). The most significant of
his findings is that all fifty tales follow the same pattern (shown in 4.1): The first part
(A-G) is the same in all tales, then, the story can either take the upper or lower branch
or none or both (first the upper and then the lower). The last part (Q-W⋆) is again the
same in all tales (see Appendix 2 for an overview of all event functions).

ABC ↑ DEFG
HJIK ↓ Pr-Rs0L
LMJNK ↓ Pr-Rs

Q Ex TUW⋆ (4.1)

As an example, Propp published his complete analysis of a single tale. This includes a
line-based annotation in which specific lines are associated with event functions (this is
governed by typographical constraints). For the remainder of his annotations, however,
he did not publish annotations of specific text fragments, but only the function strings.
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4.1 Folktales

The Proppian analysis is deliberately formal (given the time at which it was writ-
ten). It aims to provide a way of finding patterns in tales by comparing the function
strings from different tales with each other. Propp explicitly describes his approach as
an empirical one.

4.1.2 Computational Narrative Analysis for Folktales

Plot similarities are obviously of interest for folklorists and literary scholars. Both the
ATU index and the Proppian framework, however, give little support for the actual,
reliable identification of these similarities.

The ATU index does offer a category system but the actual classification is up to the
scholar, based on the plot elements he or she identifies. It can be assumed that the
identification of such elements is not a straightforward task and that the selection of an
ATU type is difficult, even if there were only a few hundred ATU types and not 2,500.
To our knowledge, no studies that report any kind of annotator agreement have been
published to date. Propp further points out that many tales should actually be classified
in multiple classes, as multiple “striking incidents” (Propp, 1958, p. 11), which make up
the classes, can occur in a single tale.

Technically solid annotations of Proppian functions have been tried, but with rather
poor results. Finlayson (2012) achieves an F1-agreement of only 0.22 and subsequently
redefines the agreement measure so that two annotations are counted as an agreement
if they have a substantial overlap (more than half). The F1-agreement then climbs to
0.71. In Bod et al. (2012), annotators were asked to annotate the Proppian functions
directly onto four different tales for which Propp had published a function sequence.
Not a single annotator produced the same sequence as Propp, nor did any two of the
annotators agree on their function string. Even if the assignment of character functions
to characters was given beforehand, the encodings differed vastly. Bod et al. explicitly
concluded that it was not worth working on annotations according to the Proppian
scheme.

We propose the use of computational linguistics methods to discover plot similari-
ties automatically. Given the annotation issues with Proppian functions and the high
variability in the data, we refrain from a fixed inventory of patterns or event functions.
Instead, we employ a bottom-up approach, in which similarities are discovered auto-
matically in the texts and can be inspected and interpreted manually.

As a first step, texts are automatically annotated on various linguistic levels and the
annotations are linked and integrated. From these annotations, we then extract a se-
quence of event representations for each document. By applying an alignment algo-
rithm, we can find similar events that appear in different tales. The use of a multi-
factorial similarity function allows us to go beyond aligning completely equal events
(e.g., on the surface level). Instead, we can define exactly how much dissimilarity we
allow for an alignment link and which similarity factors are more important than oth-
ers.

The analysis of the generated alignments reveals areas in tales that have common
subplots (indicated by high alignment density) and areas that differ a lot (low align-
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4.1 Folktales

Corpus # documents # word tokens # word types # sentences

All 37 26,551 9,210 1,323
ATU47A 5 3,089 1,070 146
ATU156 6 2,719 1,184 101
ATU225A 7 3,647 1,443 149
ATU333 7 8,496 2,477 501
ATU361 5 5,994 1,950 281
ATU366 3 1,250 504 73
ATU1215 4 1,356 582 72

Table 4.1: Overview of some key characteristics of the folktale corpus

ment density). Common subplots, in turn, are good candidates for plot elements.

4.1.3 Folktale Corpus

We collected a corpus of 38 folktales from seven different ATU index types. Table 4.1
shows an overview of the corpus. The tales were edited by Ashliman (1987) and pub-
lished online (Ashliman, 1996).

Two main criteria guided the selection of stories: (i) we searched for index types
featuring tales that vary in length. Therefore, the tales should also differ in granularity,
presumably leading to 1-to-n alignment links. (ii) Secondly, the tales have a relatively
clear event sequence (mainly) in temporal order. We omitted tales with long passages
of internal monologue or large amounts of direct speech.

The definitions of the ATU index types are as follows:

ATU47A The bear is persuaded to bite the seemingly dead horse’s tail. Is
dragged off by the horse. The hare asks the destination and laughs till
his lip splits.

ATU156 Thorn removed from lion’s pawn. In gratitude the lion later re-
wards the man.

ATU225A Tortoise lets self be carried by eagle. Dropped and eaten.

ATU333 The wolf or other monster devours human beings until all of them
are rescued alive from his belly.

ATU361 A soldier bargains with the devil. For seven years he must neither
wash nor comb himself. He receives much money. He marries the
youngest of three sisters, the two elder of which have made sport of
him. The elder sisters hang themselves. The devil: “I got two; you
one.”

ATU366 A man steals the heart (liver, stomach, clothing) of one who has
been hanged. Gives it to his wife to eat. The ghost comes to claim his
property and carries off the man.
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4.1 Folktales

Coverage

Types in BNC 98.5%
Nouns in WordNet 97.6%
Verbs in WordNet 99.2%
Verbs in FrameNet 96.2%

Table 4.2: Coverage of resources on the folktale corpus

ATU1215 Trying to please everyone. . . . Miller blamed when he follows his
son on foot; when he takes the son’s place on the ass; when he takes
the son behind him; and when he puts the son in front of him.

(Aarne and Thompson, 1961)

As the tales were edited for an English-speaking, general public audience, they can
be expected to be written in standard language, featuring only small amounts of pe-
culiarities. In order to check this hypothesis, we calculated the coverage of a few key
resources on the tales.

Coverage Table 4.2 shows the coverage of several resources with respect to the tales
corpus. Almost all of the types present in the folktale corpus are also present in the
British National Corpus (BNC). The exceptions are (i) named entities, (ii) non-standard
spelling in direct speech (nough) or (iii) uncommon compositional word forms (undraw,
unclose).

We also calculated the coverage of WordNet. 97.6% of the nouns and 99.2% of the
verbs are indeed present in WordNet. A manual inspection finds that the missing nouns
are either named entities or wrongly identified as nouns. Part of speech tagging errors
also make up the majority of the missing verbs. In addition, a few rarely used verbs are
missing in WordNet: betake, undraw.

The coverage of FrameNet is lower than WordNet’s, but with 96.2% still quite high.
Most of the missing verbs are indeed verbs and are simply not present in FrameNet
(horrify, swallow, . . . ). This is probably due to the fact that FrameNet has been developed
using newspaper corpora.

Timeline Owing to the oral tradition and the focus of fairy tales on children as a
target audience, we generally assume that the narrative order (i.e., the order in which
events are described in the texts) correlates with the temporal order of the events as
they happen in the story. This assumption has been confirmed (Arslan, 2013) with an
annotation study in which temporal relations between events were annotated.

We do not, however, assume that this is generally the case for narrative texts. Ob-
viously, many narrative texts contain flashback elements which disrupt the temporal
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4.2 Rituals

order. Embedded narratives are also important for understanding narrative texts ac-
cording to Mani (2012) (“narrative levels”). The texts in our collection, however, follow
a chronological order.

4.2 Rituals

Research on rituals is an interdisciplinary humanities area that focuses on rituals. Al-
though religious rituals are the most prominent ones, rituals are ubiquitous and can be
observed in almost every area of human life, e.g., in politics (inaugurations of monar-
chs, presidents and chancellors) or culture (tea ceremony, table manners). Rituals also
constitute a part of cultural heritage and folklore.

An exact definition of the term ‘ritual’ is a controversial topic among researchers of
rituals and many definitions are intentionally vague. We will not discuss this issue
here in much detail. Instead, we pragmatically rely on ritual material that has been
published by researchers of rituals (e.g., Gutschow and Michaels, 2005). There are,
however, several core assumptions that are made about rituals:

Almost anything may be part of a ritual. Actions of the same action type (e.g., giving
money to someone) may be ritual or profane actions. The distinction between ritual and
profane actions is not grounded in the actions or action types, but in the context and
perception of practitioners. This also means that there is no finite set of ritual actions.

For an outside observer, it may not even be obvious that an action is part of a ritual.
However, it can generally be assumed that it is for a practitioner or participant. People
participating in rituals usually know that they are participating in a ritual, even if they
do not call it one. Similarly, practitioners also have a clear understanding of when the
ritual starts and ends (cf. Brosius et al. (2013) for a detailed discussion).

4.2.1 Ritual Grammar

Recent research on ritual has shown that many rituals consist of re-occurring elements
that can be exchanged and recombined in a given cultural or religious context. Accord-
ingly, the term “ritual grammar” has been coined to denote structural principles used
to combine basic building blocks into more general and complex ritual structures.

The exact nature of the building blocks (“ritual elements”) is debated among ritual
researchers. Oppitz (1999) argues that mobility and transposability are essential criteria
for ritual elements. This refers to the fact that elements of rituals can be reused in
other rituals. Michaels (2010) lists six areas that contribute ritual elements: (i) Agency,
representing the involvement of those leading a ritual (priests, brahmins), (ii) body,
any kind of decoration or use of participants bodies (e.g., putting on jewelry, making
certain movements), (iii) language and gestures, for speeches, sayings, prayers and
chants, (iv) decoration of the area in which the ritual is taking place, (v) framing, the
time slot for a ritual (e.g., on Sundays or at a time determined according to astrological
recordings) and (vi) material, special utensils used in the ritual. These aspects can form
ritual elements in the context of Hindu rituals, which are studied by Michaels.
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4.2 Rituals

pravargya Hot milk is offered to deities

upasad Battle against demons

layer Construction of the layer of an al-
tar

pravargya upasad layer pravargya upasad

Figure 4.2: (Sub-) structure of a fire ritual according to Staal (1989)

Inspired by generative grammar, Staal (1989) created a rule set describing an old
Indian fire ritual. The (context-free) rules can be applied recursively and repeatedly
and thus allow for the construction of an infinite number of rituals from a finite set of
ritual elements. Staal uses actions with specific participants as basic ritual elements.
The embedding rule, for instance, allows ritual elements to be enclosed within other
ritual elements: A→ BAB. When combined with the unit formation rule B →DE,
we can describe the construction of an altar and its surrounding events as shown in
Figure 4.2.

Lawson and McCauley (2002) focus on the practitioners of rituals and note “striking
similarities between speaker-listeners’ knowledge of their language and participants’
knowledge of their religious ritual systems.” They argue that children learn (ritual)
rules just the same way they learn language rules. Lawson and McCauley investigated
a number of rituals and construct “formation trees”, which roughly correspond to syn-
tactic trees for (linguistic) sentence analysis. The formation rules allow for, e.g., repeti-
tions, substitution, fusion and others. Michaels (2012) builds on this inventory of rules
in order to describe Newar life cycle rituals. All the analysis in terms of grammar has
been performed individually, manually and in a mostly informal way.

4.2.2 Computational Narrative Analysis for Ritual Research

As we have discussed earlier (Section 3.2), a narrative fabula is a chain of events which
includes particular actors/objects and unfolds in a given setting. Given this character-
ization of narratives, it is clear that descriptions of ritual performances can be seen as
narrative fabulas (according to Forster’s definition, as stories even). Although Michaels
(2010) makes no clear distinction between events and participants, the areas he de-
scribes as contributing ritual elements can be analyzed in these terms:

(i) Ritual specialists will be mentioned as participants of actions and described ac-
cordingly (the priest).

(ii) Decorating the body and making movements is expected to be expressed as ac-
tions.
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4.2 Rituals

(iii) Chants, prayers etc. that have to be uttered during the ritual will appear as se-
mantic role fillers of utterance actions.

(iv) If the decorating is part of the ritual itself, it is expected to be described in terms of
actions and participants (who is decorating what) or states. If the decoration is to
be performed beforehand, the description of the ritual should describe the setting
at the beginning.

(v) The so-called framing of a ritual, i.e., the occasion, time slot or trigger, is also often
mentioned at the beginning either as actions or states.

(vi) Specific material and utensils are mentioned in the form of event participants.

It is therefore reasonable to assume that descriptions of rituals can be analyzed us-
ing techniques developed for analysis of narrative fabulas. Although this narrative
approach does not cover every aspect of ritual analysis, we argue that the question of
event/role-structural properties of a ritual (“ritual grammar”) can be approached in
this way: Areas (i) to (iv) are expressed as actions with participants and can be mod-
eled straightforwardly. (v) and (vi) are partially expressed as statives, which can also
be represented as predicate argument structures with role semantic analysis.

One of the key aspects of existing work on computational narrative analysis is their
focus on event sequences (e.g., story grammars, narrative schemas, analogical story
merging) and as we have seen, several of them aim at detecting typical event sequences
from multiple narratives. The general hypothesis for the application of these techniques
to descriptions of rituals is that overlapping event sequences across descriptions of the
same ritual type (e.g., descriptions of multiple performances of a marriage ritual) show
common elements for that type. Say, for instance, the event sequences extracted from
two Christian baptizing church services are ⟨put(water,child), read(priest,text), say(all,our
father)⟩ and ⟨put(water,child), sing(all,song), say(all,our father)⟩. From these two sequences,
we would then extract the overlapping events (put(water,child) and say(all,our father))
as common elements for the ritual of baptism. These common elements can then be
compared to common elements for other ritual types, in order to identify the elements
that are specific to the types. If the above analysis would be done for other Christian
rituals, we would identify that say(all,our father) is not specific to the ritual of baptism,
because it appears in many other rituals as well.

The use of textual descriptions of rituals introduces another abstraction layer, in par-
ticular if compared to the manual approaches for constructing ritual grammar rules as
described above. While ritual structures encoded manually directly encode actions and
participants, we work on textual representations of actions and participants. This dis-
tinction is important for two reasons: (i) The textual representation may be ambiguous,
unclear, incomplete and may contain textual material that is not part of the actual ritual
(see below). In this work, our analysis is based solely on the textual material and not,
for instance, on any cultural knowledge an annotator might have. As the descriptions
of rituals are published to be read by other researchers we generally assume, however,
that they include all the crucial actions and existents. (ii) Without using an abstraction
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4.2 Rituals

layer, rituals would not be accessible for empirical research on a large scale, as they
would need to be encoded individually. Instead, textual ritual descriptions are avail-
able for rituals from many ritual research contexts, or can be produced relatively easily.
Video recordings of rituals may be another abstraction layer, but this poses new ques-
tions with regards to image recognition. In the future, motion capturing recordings
could be an interesting abstraction layer as well.

We propose the use of similar methods for the analysis of rituals as we are using for
the analysis of folktales: Using computational linguistics techniques, we construct an
integrated, rich discourse representation for a description of a ritual. This discourse
representation also contains a representation of the sequence of events that happen
in the ritual. We will use alignment algorithms in order to find similar subsequences
across multiple different descriptions of rituals. The common subsequences are then,
in turn, good candidates for ritual elements or “building blocks”.

4.2.3 Ritual Descriptions Corpus

As a basis for our experiments we collected a corpus consisting of 46 written descrip-
tions of rituals performed by Hindus and Buddhists from Nepal (Table 4.3). The texts
were published by Gutschow and Michaels (2005, 2008). The corpus is composed
of both prescriptive and descriptive texts about rituals from the ancient Indian Vedic
(sam. skāras) tradition and from the more recent Nepalese tradition.

All descriptions are written in English and were composed by non-native speak-
ers. 18 texts are prescriptive descriptions. They are translations of traditional ritual
handbooks originally composed either in Sanskrit, Newari, or in a mixture of both lan-
guages. Ritual handbooks are used by practitioners to ensure the correct execution of
a ritual. The remaining 28 texts were written by researchers who observed the perfor-
mance of the respective ritual, and thus represent the descriptive part of the corpus. As
with folktales, the descriptions of rituals also vary in length and granularity. In the Ihi
rituals, for instance, the length varies from 123 to 394 sentences. One of the cūd. ākaran. a
descriptions is shown in Appendix 3 as an example.

We selected a core corpus of thirteen texts from the 46 descriptions of rituals. The
descriptions were selected on the basis of the following criteria: Thematic coherence
(we concentrated on four types of initiation rituals and Nepalese Ihi marriage, as can be
seen in Table 4.3), frame annotation density (see below), and the percentage of common
subsequences of verbs. The experiments in Chapter 6 use this core corpus.

Linguistic Characteristics

Descriptions of ritual feature several special linguistic phenomena on the lexical, syn-
tactic and discourse level. We describe these phenomena in the following, based on
Reiter et al. (2011).

Terminology A description of a ritual produced by an expert on rituals (be it a re-
searcher or a practitioner) often contains terminology specific to the cultural context of
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Corpus # documents # word tokens # word types # sentences

All 46 85,997 22,913 4,378
Prescriptive 18 28,125 7,369 1,976
Descriptive 28 57,872 15,544 2,402

Core Corpus 13 26,522 6,513 1,678
anna-prāśana (first food) 2 1,379 511 116
cūd. ākaran. a (hair cut) 3 4,219 1,087 279
Ihi (marriage) 3 15,433 3,262 820
mekhalā-bandhana (dressing) 3 4,430 1,244 368
nāmakaran. a (name-giving) 2 1,061 409 95

Table 4.3: Overview of key characteristics of the corpus of descriptions of rituals

the ritual. English translation equivalents for these terms often do not exist. In such
cases, they typically remain untranslated in the texts (although they are transliterated
into Latin characters).

(6) He sweeps the place for the sacrificial fire with kuśa.

Kuśa is a Sanskrit term for a kind of grass (desmostachya bipinnata) that is very im-
portant in these rituals. It is necessary to sweep the ground with kuśa and not with
any other kind of grass. The term kuśa has never been seen by a common, newspaper-
trained part of speech tagger nor is it contained in a lexicon of a rule-based grammar.

The descriptions of rituals in the entire corpus contain 3,729 special terms, mostly
nouns and proper names (e.g., gods, specific material or actions), corresponding to 0.85
special terms per sentence.

Fixed expressions Most descriptions of rituals contain fixed expressions consisting
of multiple words or sentences. These expressions are often prescribed pieces of text
which have to be spoken or chanted while a ritual is performed (e.g., Our Father in the
Christian liturgy).

(7) Salutation to Kubera reciting the mantra arddha-māsāh. [. . . ];

There is no common term in handbooks or scientific literature to refer to such fixed
expressions. Sometimes, prayers or chants have a title or name; sometimes, the first
few words or the refrain can be given and an expert will know the exact expression
from which they are taken. This in turn means that there are multiple ways to refer
to the same mantra. It does not make sense to translate the mantras, as their (proposi-
tional) meaning is not relevant for the ritual and often not even known to practitioners.
However, identifying a mantra is important for the ritual. In total, 850 mantras are
mentioned in the corpus.
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4.2 Rituals

Imperatives As ritual manuals are often written by and for practitioners, they contain
a high percentage of imperative sentences. In a randomly selected sample of (prescrip-
tive) ritual descriptions, we found 20% of the sentences used an imperative construc-
tion. The ritual description with the highest amount of imperatives contained over 70%
of sentences with imperative constructions. In contrast, only about 2% of the sentences
in the British National Corpus (BNC) contain imperatives.

Complex sentence structures Prepositional phrases (PPs) are quite common in the
ritual description, as is already apparent from Example 6. Deeply embedded PPs (as in
Example 8) are difficult to attach correctly, but appear regularly in the texts.

(8) [. . . ] worship of the doors of the house of the worshipper.

The frequency of syntactic coordination and nested sentence structures varies be-
tween languages and text types. In Sanskrit, which is the source language of most of
our texts, long and nested sentences are very common. This characteristic is also re-
flected in the texts’ translations into English, as translators try to preserve the original
character of the text as much as possible and do not aim to produce English sentences
which read well.

The occurrence of prepositional phrase attachment along with coordinations as well
as sentence embedding poses a challenge for syntactic processing. Example 9 illus-
trates the interaction of coordination (italic) and PP attachments (underlined) in a long
sentence.

(9) Beyond the members of the lineage, these visits lead to the paternal aunts of three
generations which includes father‘s and grandfather‘s paternal aunts and their
daughters and granddaughters, the maternal uncles and maternal aunts of their
grandmother as well as their maternal uncles of three generations.

This leads to a combinatorial explosion of possible analyses and to a real challenge
for parse disambiguation. A certain amount of wrong guesses (and therefore noise in
the data) has to be expected.

Interpretations Descriptions of rituals that have been published in scientific literature
often are not restricted to the ritual performance only. Instead, the factual description
is often interwoven with comments or interpretations that help the reader understand
the ritual.

(10) The involvement of the nephews can be understood as a symbolic action to ad-
dress those of the following generation who do not belong to the lineage of the
deceased.

Example 10 does not describe an event which happens during the ritual, but a scien-
tific interpretation of it. Although it is possible to represent such sentences in terms of
predicate argument structures, they represent a different level of information that does
not belong to the ritual itself.
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Timeline Because most of the descriptions of rituals are written as manuals, they
describe the events in a temporal order. This assumption has been confirmed (Ar-
slan, 2013) by an annotation study in which temporal relations between events were
annotated. The annotator almost exclusively annotated before relations, indicating the
same order in the text as in the rituals.

4.3 Discussion

In this chapter, we have introduced two scholarly areas that deal with cultural heritage:
folkloristics and research of rituals. Both textual sources — folktales and descriptions
of rituals — are narrative in nature. In addition, the sequences of events and their
participants play a major role in the respective areas, because a common goal is the
identification of core elements for types. Similarities and variances across texts can be
used to highlight these elements.

Another common feature of research of folklore and ritual is that they traditionally
not had the means to undertake empirical research on a large scale. The research ques-
tions, however, would suggest such approaches. Identifying plot patterns in tales and
establishing a ritual grammar presupposes the aggregation of multiple — many — dif-
ferent texts or data sources. This is a challenge for traditional, hermeneutic approaches,
for several reasons.

Going over large data sets takes considerable time and resources. In order to detect
commonalities in large collections of tales or descriptions of rituals manually and con-
sistently, including going over the same document multiple times, a researcher would
need to devote a significant portion of his or her life to a single study, which is just not
feasible. This is also acknowledged within literary science. Moretti (2000) describes
this as a reason why the canon of literary works that is studied is so small: “you in-
vest so much in individual texts only if you think that very few of them really matter”
(Moretti, 2000, p. 57). Following Moretti, this also causes Western-centric view on lit-
erature, because most researchers do not do comparative literature studies on a global
level.

From our point of view, it is doubtful whether a traditional study of large amounts of
data sources can be carried out consistently. If such studies are seen as a kind of anno-
tation, a high intra-annotator agreement is of major importance, i.e., the agreement of
the same annotator at different times. But although intra-annotator agreement is gener-
ally higher than inter-annotator agreement (e.g., Burchardt et al., 2009; Voormann and
Gut, 2008), it is far from perfect. In general, maintaining consistency in large annotation
projects is a difficult task independent of the number of annotators, but particularly if
such a project runs for a long time. At the very least, the means to reliably detect incon-
sistencies would need to be made available. In other words; having a single annotator
(or researcher) does not make annotations automatically consistent and in hermeneutic
studies, inconsistencies are almost impossible to detect.

To summarize, we argue that for research on both folklore and ritual, large-scale em-
pirical approaches need to be explored. This is not to say that empirical research makes
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4.3 Discussion

traditional approaches superfluous, but, empirical research can support traditional re-
search approaches by offering researchers new views on their data or aggregating them
for targeted, manual inspection.

In order to conduct experiments in this direction, we established two corpora, one
containing folktales and one containing descriptions of ritual. An inspection of a num-
ber of linguistic properties of both revealed that the corpus containing descriptions of
rituals had many peculiarities that needed to be addressed for linguistic preprocessing.
Both corpora are sub-classified according to events they describe. If other aspects were
to prove interesting, the corpus could reflect other variations, e.g., different cultures or
eras.

These corpora will be automatically annotated on various linguistic levels in order
to create machine-readable discourse representations. Sequences of events and partic-
ipants in them can then be extracted from these representations. Aligning event se-
quences according to their semantic similarity allows for the detection of similarities
across multiple representations. Comparing similarities found across multiple types in
turn allows for the identification of elements that are specific to a certain type.
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5 Automatic Semantic Annotation and
Domain Adaptation

In this chapter, we will describe the technical architecture of the linguistic processing
pipeline in Section 5.1 and the domain adaptation techniques we employed for the rit-
ual domain in Section 5.2. As the domain issues as well as the linguistic annotation
levels are quite different, the adaptation techniques do not follow a single paradigm.
Instead, each linguistic component is adapted individually. This, in turn, makes a mod-
ular processing architecture very important, because components can be adapted in iso-
lation and inserted into the pipeline easily. We will summarize the improvements we
have achieved for the linguistic processing of the descriptions of rituals in Section 5.3.

Some of the experiments on domain adaptation have been published before: Part of
speech tagging and chunking in Reiter et al. (2011), word sense disambiguation and
coreference resolution in Frank et al. (2012). Our approach on the adaptation of depen-
dency parsing and semantic role labeling has not been published before. Adaptations
and experiments for coreference resolution have been done by Thomas Bögel, one of
the research assistants in the research project on rituals.

We did not perform adaptation of processing tools or resources for the folktales cor-
pus, as the language used in these tales is relatively close to newspaper English (cf.
Section 4.1.3 on corpus characteristics).

5.1 System Architecture

NLP processing is done in a single, integrated pipeline. We are using UIMA (Apache
Software Foundation, 2014) as a pipeline framework. UIMA prescribes clearly de-
fined interfaces between components, thus enforcing modularization and also making
it straightforward. UIMA data structures can be im- and exported using an XML-based
file format. Therefore, parts of the pipeline (be it a single or a few components) can
also be run individually, by reading from and writing into the XML data format. This
is very useful for the development process.

The processing pipeline works by reading in the texts (various importers can be
plugged in), processing it in a predefined order and printing out results in a defined
format (again, various exporters can be used to export to different formats). Table 5.1
lists the components we have included in the pipeline, Table 5.2 lists package versions
and URLs. As the data structures used in UIMA use character positions to indicate
begin and end of an annotation (stand-off), new components can be integrated easily.

The only exception to the full integration is the word sense disambiguation compo-
nent. Instead of calling the UKB program from within the pipeline, the disambiguation
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5.1 System Architecture

Task Package Reference

Sentence splitting MorphAdorner
Tokenization OpenNLP
Part of speech tagging OpenNLP
Chunking OpenNLP
Word sense disambiguation UKB Agirre and Soroa (2009)
Dependency parsing Mate Bohnet (2010)
Coreference resolution BART Versley et al. (2008)
Semantic role labeling Semafor Das et al. (2010)

Table 5.1: Components used in our preprocessing pipeline

Package Version URL

MorphAdorner 1.0 http://morphadorner.northwestern.edu
OpenNLP 1.4.3 http://opennlp.apache.org
UKB 0.1.6 http://ixa2.si.ehu.es/ukb/
Mate 52LX2⋆ https://code.google.com/p/mate-tools/
BART 1.0 http://bart-coref.org
Semafor http://www.ark.cs.cmu.edu/SEMAFOR/
⋆unreleased

Table 5.2: Package versions and URLs

is done beforehand. Results from UKB are then imported into the pipeline and stored
in appropriate data structures.

5.1.1 Import

We are using two different ways of importing textual data. For the import of folktales,
we simply read in plain text files. As the descriptions of rituals undergo some prepa-
rations before the processing starts (see below), they have to be treated differently. The
descriptions are collected in a wiki. This allows the researchers of rituals to edit and
prepare them. A UIMA component then uses XML-RPC in order to retrieve the wiki
pages directly.

5.1.2 Export into Discourse Representations

The goal of the preprocessing architecture is to create a fully connected discourse rep-
resentation for each document that contains the semantic representation of events and
characters and all the linguistic annotations that have been generated. Figure 5.1 shows
a class diagram for the most important annotation types. The diagram shows both the
types and the relations between them, small numbers indicating multiplicity of the re-
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Figure 5.1: Class diagram for discourse representation

lations between annotation types. Most of which are bidirectional. The representation
also contains meta data that is not shown in the figure.

Linking annotations

Character-based annotations, as used in UIMA, make integration of different compo-
nents straightforward. In order to make use of annotations, in particular if they come
from different levels of annotation, they need to be linked. In particular, we link men-
tions with frame element fillers and vice versa. Mention detection and role identifica-
tion are, due to the modular architecture of the preprocessing pipeline, performed by
different components and the annotated spans may differ. However, in a sentence like
(11), the patron is (ideally) marked as a mention of an entity as well as the filler of a
semantic role for the saying event.

(11) The patron says the yathā vihitaṁ karma kuru.

Our algorithm for linking frame element annotations with mentions first checks whether
the boundaries of the annotation objects match exactly. If they do, the two annotations
are linked. If they do not match exactly, we search for the syntactic head within both
annotation objects. This is done robustly by searching for the token that is governed by
a token outside of the span.

For a single frame element, there may be multiple linked mentions and vice versa.
This is due to the fact that the same span of characters may be annotated as multiple
frame elements (of different frames) and at the same time, mention annotations may be
coordinated (in, e.g., hot and/or cold water, the entire phrase is annotated as a mention as
well as cold water alone).
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5.2 Adaptation to the Ritual Domain

Phenomenon Adaptation step

Terminology
Marked during input, adapting WSD, CR and SRL

Fixed expressions
Imperatives Retraining part of speech tagger

Complex sentence structures Retraining dependency parser, semantic role labeling

Table 5.3: Ritual domain phenomena and how they are addressed

5.1.3 XML Export

The output format that we finally export represents the discourse representation in
XML and is specifically designed for our purposes. All later experiments (Chapter 6)
read data from this format. To ensure technical correctness and stability, we use XML
schema to validate the exported files. Appendix 5 shows both the XML schema defi-
nition and an excerpt of an XML file in this format. Each discourse representation for
a document is fully contained within a single XML file. Links between annotation ob-
jects are stored using document-wise unique identifiers. By concatenating them with
the document identifier, a globally unique identifier can be created.

5.2 Adaptation to the Ritual Domain

In this section, we will describe how we adapted the linguistic preprocessing compo-
nents to the ritual domain. For most components, we make use of the Wall Street Jour-
nal as source domain data set (Ds) and a few annotated descriptions of rituals as target
domain data set (Dt). Table 5.3 shows the most prominent linguistic characteristics we
described in Section 4.2.3 and how we address them. We did not address interpretative
sentences in the descriptions of rituals.

In Section 3.1, we have discussed a lot of different statistical techniques for adapting
supervised NLP tools. We will explore one of them for part of speech tagging and
chunking (feature space augmentation). However, we focus our work on adaptation
techniques that can be employed in digital humanities projects without modification of
the source code of training and application programs.

5.2.1 Input Preparation

As the descriptions of rituals contain a lot of foreign words and we expected them to be
an issue for automatic processing, we devised a way to handle them. During the input
and text collection phase, all foreign words have been annotated with a special markup
that also contained circumscriptions in English. The UIMA importer replaces the for-
eign words by their English circumscription and adds the original term as a UIMA
annotation. After the preprocessing is done, the export component replaces them back
to the original.
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5.2 Adaptation to the Ritual Domain

Name Description # sentences # tokens/sentence

WSJ The Wall Street Journal 47,861 24
RIT Descriptions of Rituals 532 19

Table 5.4: Data sets for part of speech tagging and chunking

A special kind of foreign words in the ritual domain are fixed expressions like mantras
or prayers. Mantras are not directly translatable (even for practitioners) and should
therefore be treated differently from other foreign words. Mantras (and chants, hymns,
prayers) are all replaced by the indexed word mantra (or chant, hymn, prayer), such
that we can reinsert them later and they do not harm the linguistic preprocessing.

5.2.2 Part of Speech Tagging and Chunking

As we aim at a culture- and source language independent framework, we decided to
use a statistical part of speech tagger and chunker, that can be trained on specific cor-
pora. Large amounts of training material for both labeling tasks are available from
other domains, and the annotation of small amounts of data from the domain of rituals
is feasible.

We experimented with two different adaptation techniques: (i) Retraining on mixed
data sets makes use of the training procedures in original, but modifies the training data
set. (ii) Feature space augmentation uses the technique proposed by Daumé III (2007).
This technique also mixes different data sets but in addition modifies the feature space
so that in addition to the shared feature space, each domain is represented in its own
space. See Section 3.1.1 for details.

Data Sets

As a target domain data set, we manually annotated 532 sentences of the descriptions
of rituals with part of speech tags and chunks, using the Penn Treebank tag set. The
annotations has been performed in parallel by two annotators. Differences have been
adjudicated by the author of this thesis.

We chose the Wall Street Journal as a source domain data set, because it features com-
patible part of speech and chunk annotations and is reasonably large. For the extraction
of chunks from the Penn Treebank we made use of the CoNLL 2000 scripts Buchholz
(2000). They were also used for the evaluation of the chunker.

For the marking of chunks, we used a modified version of the CoNLL 2000 style of
marking chunks (Sang and Buchholz, 2000): The beginning of PP chunks is marked
with B-PP as usual. All tokens covered by the PP that are contained in a further em-
bedded NP are marked with a complex chunk tag, for example: B-NP/I-PP. This way,
we can encode embedded structures in chunks to a certain extent.

Table 5.4 shows an overview of the data sources. We used 10-fold cross-validation to
evaluate the performance of the techniques. In cases of training on mixed corpus types
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5.2 Adaptation to the Ritual Domain

Name Description # training sentences
(one fold)

WSJ + RIT Union 48,331
WSJ + RIT ↑ over-sampling RIT 106,955
WSJ ↓ + RIT under-sampling WSJ 939

WSJ × RIT Augmented feature space (Daumé III, 2007) 48,331
WSJ × RIT ↑ over-sampling RIT 106,955
WSJ ↓ × RIT under-sampling WSJ 939

Table 5.5: Training sets for part of speech tagging and chunking

(see below), we “folded” the ritual corpus before mixing it with the Wall Street Journal
data. This way, we make sure that our test data did not include any non-ritual data.

Experiments

Table 5.5 shows the different data sets and the sizes of one (average) training fold. WSJ
+ RIT is a simple union of the two sets. As the sizes of the two data sets differ vastly,
we also experimented with equally sized corpora, by use of over- and undersampling.
WSJ + RIT ↑ represents the union of the WSJ with the over-sampled RIT corpus, WSJ ↓ +
RIT stands for the union of the under-sampled WSJ corpus with the RIT corpus. The
data set WSJ × RIT was produced by augmenting the feature space along the lines of
the work in Daumé III (2007) (see Section 3.1.1).

Results and Discussion

Part of speech tagging Table 5.6 lists the results obtained by training the part of
speech tagger on different data sets. The differences between the best three results
are not significant (marked in bold). We use the model trained on the WSJ data set only,
i.e., without any domain adaptation, as a baseline. Its performance is 90.9% accuracy.

If RIT is used as (small) training set, the part of speech tagger achieves a performance
of 94.82%. Training on the union of RIT and WSJ yields an increase in performance
(95.72%) compared to RIT. Balancing the training sets again increases the performance
if the ritual data is oversampled (resulting in a very large training set). If the WSJ data is
under-sampled, performance decreases compared to the unbalanced union. Augment-
ing the feature space yields minor improvements, even if the training data is unbal-
anced. The best performing model is trained on WSJ × RIT, while WSJ × RIT ↑ performs
similarly (and the difference between the two is statistically insignificant). The small
data set, WSJ ↓ × RIT, achieves less performance than a large and balanced, but not
augmented data set (WSJ + RIT ↑). The improvement of the feature space augmen-
tation compared to the best performing non-augmented model is also not statistically
significant.
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Training data Accuracy

WSJ 90.90
RIT 94.82

WSJ + RIT 95.72
WSJ + RIT ↑ 96.23
WSJ ↓ + RIT 95.25

WSJ × RIT 96.86
WSJ × RIT ↑ 96.85
WSJ ↓ × RIT 95.92

Table 5.6: Results for adaptation of part of speech tagging

Training data Precision Recall Fβ=1

WSJ 86.3 87.0 86.6
RIT 85.5 86.0 85.7

WSJ + RIT 86.3 87.0 86.6
WSJ + RIT ↑ 87.7 88.5 88.1
WSJ ↓ + RIT 86.9 79.7 83.1

WSJ × RIT 74.0 74.9 74.4
WSJ × RIT ↑ 81.0 81.5 81.3
WSJ ↓ × RIT 74.8 71.8 73.3

Table 5.7: Results for adaptation of chunking

Chunking Table 5.7 shows the results of the chunking models trained on the different
data sets. Again, we use a model trained on the Wall Street Journal as baseline (WSJ).
This model achieves an f-score of 86.6. The model trained on the ritual data (RIT) per-
forms slightly lower, achieving an f-score of 85.7. Training the model on the simple
union (WSJ + RIT), does not increase the performance compared to the baseline. How-
ever, if we oversample the ritual data and thus balance the training data (WSJ + RIT ↑),
we achieve a minor improvement in f-score. Undersampling the WSJ data decreases the
performance. The augmentation of the feature space decreases the performance on all
data sets. This is in contrast with the results for part of speech tagging (above). Within
the augmented feature space models, we can observe similar tendencies as in the other
models: Oversampling improves the performance compared to unbalanced data, while
undersampling decreases it.

Augmentation The results of the feature space augmentation technique show no sig-
nificant improvement over the use of comparably mixed, not augmented feature spaces.
We therefore refrain from using this technique in the following experiments, as it often
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requires rewriting of source code (in particular the feature extraction part).

5.2.3 Dependency Parsing

The default models provided with the Mate parser are trained on the CoNLL data sets
and thus produce CoNLL dependency structures. In order to get more meaningful
dependency relations, we decided to retrain the parser using Stanford dependencies
(Marneffe and Manning, 2008).

Data sets

We use the Penn Treebank (WSJ, sections 1 to 21), converted to Stanford dependencies
using the Stanford Core NLP package. Additionally, we add 95 annotated questions
and imperatives provided by the parser developers (Stanford NLP Group, 2014). This
represents the source domain data set, Ds.

For the ritual domain, we annotated three sets of sentences manually, in total 191
sentences. Two sets (A and B) are complete descriptions of rituals, the sentences in the
third set (C) have been selected for their complexity. Two research assistants annotated
the sentences, differences have been adjudicated. Most problems were caused by sen-
tences with nonstandard syntax (e.g., sentences without verb). In these cases, we tried
to decide on an analysis that most accurately represents the meaning of the sentence.

Experiments

We compare three different settings of the dependency parser. (i) The performance
of the unadapted dependency parser running on part of speech tags that have been
produced by an unadapted part of speech tagger (no adaptation). The unadapted part
of speech tagger uses the default model provided with OpenNLP, trained on the Wall
Street Journal. (ii) We use the unadapted dependency parser on adapted part of speech
tags (partial adaptation). (iii) In the third setting, we run the adapted dependency
parser on adapted part of speech tags (full adaptation). The parser is adapted by using
two thirds of the annotated data as additional training data while holding back one
third as test data to avoid overfitting.

Results

Table 5.8 shows the results of the experiment. The first column indicates the status of
the part of speech tags (adapted or not). The results already improve by using adapted
part of speech tags. This is not surprising, but it highlights the “pipeline effect” in a
positive way: Improvements in earlier processing stages also improve later processing
stages, without any intervention in these stages. Noteworthy is further that the im-
provements gained by adapting the part of speech tags differ between the documents:
The improvement on documentB is very small (+1.3 LAS), but much larger onC: +13.1
LAS. The (averaged) gain by using adapted part of speech tags is +8.3 LAS.
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Part of speech Training Test LAS UAS

Unadapted
Ds A 73.5 76.1
Ds B 76.0 79.1
Ds C 70.4 75.1

� 72.8 76.4

Adapted

Ds A 80.8 82.9
Ds B 77.3 79.6
Ds C 83.5 86.8

� 81.1 83.8

Ds ∪B ∪C A 83.9 84.9
Ds ∪A ∪C B 79.5 82.3
Ds ∪A ∪B C 85.7 88.7

� 83.6 85.9

Table 5.8: Results for adaptation of dependency parsing

The results with adapted part of speech tags and unadapted parsing are between 77%
and 83% labeled attachment accuracy (avg. 81.1%), which is not far below the state of
the art for labeled attachment accuracy on Stanford dependencies (Cer et al., 2010). If
the parser is domain adapted (i.e., the training set contains some amount of domain
data) the performance improves by about 2.5 LAS on average. Unlabeled attachment
score is about 2 percentage points higher in the adapted scenarios.

5.2.4 Word Sense Disambiguation

We use UKB for word sense disambiguation. UKB works by applying the PageRank
algorithm on the WordNet concept graph. As highlighted in Section 3.1.2, there are two
obvious ways to adapt UKB to new domains: By adapting WordNet or by adapting
the algorithm, in particular its initialization. Given the existence of a sense-annotated
corpus that could be employed, we chose to adapt the WordNet database.

Data set

To build a gold standard for testing UKB’s performance, we randomly chose 50 sen-
tences from all descriptions of rituals. These sentences were annotated independently
by two annotators with word senses from WordNet 2.0. Both annotators have a com-
putational linguistics background. Differences between the two annotations have been
adjudicated.1 This resulted in 462 annotated nouns, verbs, adjectives and adverbs,
forming our gold standard for WSD.

1In two cases WordNet 2.0 did not contain appropriate concepts for annotation: “bel fruit” (Sanskrit bilva;
a fruit used for worshipping Śiva) and “block print”. These words were left unannotated.
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MFS UKBWN 2.0 UKB+rit-node

Nouns

Coverage 94.5 93.3 93.3
Precision 59.8 60.2 64.1
Recall 60.0 53.7 57.3
F-Score 59.9 56.8 60.5

Adjectives

Coverage 88.4 86.9 86.9
Precision 48.3 51.2 49.8
Recall 49.3 49.3 47.8
F-Score 48.8 50.2 48.8

All Words

Coverage 94.3 93.1 93.1
Precision 53.9 54.2 56.4
Recall 54.5 49.9 51.8
F-Score 54.2 51.9 54.0

Table 5.9: Results for adaptation of word sense disambiguation

Evaluation measure

We assessed the performance of UKB using precision and recall as evaluation metrics,
calculated for individual word types and micro-averaged over all types. As the seman-
tic annotation of verbs will be mainly covered by FrameNet annotations, we specifically
report on the performance of WordNet sense disambiguation for nouns and adjectives,
next to performance on all words. The word sense disambiguation system selects can-
didate synsets based on the part of speech tags provided by the domain-adapted tagger.

Domain adaptation for word sense disambiguation

In order to adapt UKB to the ritual domain, we enriched the WordNet database with
domain-specific sense information. We acquired senses that may be characteristic for
the ritual domain from a Digital Corpus of Sanskrit (Hellwig, 2010). This corpus is
designed as a general-purpose philological resource that covers Sanskrit texts from 500
BCE until 1900 CE without any special focus on the ritual domain. In this corpus,
approximately 400,000 tokens had been manually annotated with word senses from
WordNet 2.0. Using this annotated corpus for domain sense acquisition was motivated
by the supposition that even general passages from Sanskrit literature may contain a
significant amount of senses that are relevant for the ritual domain.

We linked all 3,294 word senses that were annotated in this corpus to a newly in-
troduced non-lexicalized pseudo-synset rit-topic. As UKB calculates the page rank
between sense-related words in the WordNet database, introducing this node increases
the chances that senses specific for Newar culture receive a higher rank.
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Results

The performance results for different system configurations are summarized in Ta-
ble 5.9. We assigned the most frequent sense (MFS) from WordNet 2.0 as a baseline.
This baseline achieves a precision of 53.9% and a recall of 54.5% for all words. For 5.7%
of the tokens, the baseline implementation does not return a word sense. This loss in
coverage is mainly caused by erroneous part of speech assignments.

We first tested the performance of UKB 0.1.6 using standard WordNet (2.0). The
system achieves a precision of 54.2% and a recall of 49.9% (for all words) and thus
performs below the MFS baseline (the loss in recall outranks the gain in precision),
which is not unusual for unsupervised WSD systems. The coverage drops by a small
amount to 93.1%.

As seen in Table 5.9, linking domain-related senses to a pseudo-synset results in an
improvement of 2.2 points in precision and 1.9 points in recall for all words, when com-
pared to UKBWN2.0. Moreover, the domain-adapted UKB system now closely matches
the MFS baseline in F-Score. Note further that for nouns the domain-adapted WSD
system obtains the best results (P: 64.1%, F: 60.5), and outperforms the MFS baseline in
terms of precision (+4.3) and f-score (+0.6), with only a slight loss in recall (57.3%; -2.7)
and coverage remaining stable.

5.2.5 Semantic Role Labeling

Semafor (Das et al., 2010) is a supervised system for FrameNet frame parsing and se-
mantic role labeling that has achieved high performance numbers for both tasks (exact
frame matching on predicted targets: 61.4 F1, fully automatic argument detection: 46.5
F1). We used Semafor as a system and decided to retrain on mixed data sets.

Data set

Frame annotations have been performed by correcting automatically produced anno-
tations. First, the original model of Semafor (trained on FrameNet data) was used to
assign frames in unannotated descriptions. The assigned frames were checked by two
annotators, and differences were adjudicated by a supervisor. In a second step, seman-
tic roles were assigned manually to the adjudicated frames by two annotators, and were
again checked for consistency by the supervisor.

We added two ritual specific frames to the FrameNet hierarchy because the appli-
cable frames in FrameNet were not able to capture the relevant meaning aspects for
rituals or too broad in their meaning.

The original frame FILLING describes both the filling of a container and the cover-
ing of an area. After careful inspection of the description, we decided that using this
frame would introduce too much of an abstraction. We therefore created the frame
FILLING_RITUALLY, specifically for the filling of containers. In terms of hierarchy, this
new frame easily inherits from the original FILLING frame.
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5.2 Adaptation to the Ritual Domain

Training Coverage Precision Recall F-Score

FN 70.94 40.25 28.67 33.48
RIT 94.65 96.52 91.36 93.86
FN ∪ RIT 97.14 98.61 95.79 97.18
FN↓ ∪ RIT 96.24 96.19 92.57 94.34

Table 5.10: Results for adaptation of frame labeling

Acts of saluting someone or something seem to be not covered in FrameNet. Neither
to salute nor to greet are included as a lexical unit in FrameNet. Because salutations
are important for rituals, we added the frame SALUTE_RITUALLY to inherit the frame
STATEMENT.

Depending on the complexity and the ambiguity of a frame, we observed an inter-
annotator agreement between κ = 0.619 (frame MANIPULATION) and κ = 1.0 (frame
CUTTING) for frame annotation. For role annotation, we observed a global κ = 0.469,
which indicates rather low agreement. However, a closer look at the data reveals that
89.4% of the differences in role annotations occur when one annotator annotates a role
that the other annotator does not recognize.

Using this double annotation approach, we built up a domain corpus of manually
checked frame semantic annotations that contains 1540 frames of 15 different types and
3197 roles of 95 different types.

Experiments

We are adapting Semafor to the ritual domain by retraining its models on various data
sets. FN represents the original annotated FrameNet corpus, RIT is the manually an-
notated data set consisting of descriptions of rituals. FN ∪ RIT stands for the union of
the two and FN↓ ∪ RIT for the union of the under-sampled FrameNet corpus with the
descriptions of rituals corpus. We restrict the evaluation of frame assignment to cases
in which the frame target lemma is included in the training set. Technical issues with
the large data set size prevented us from evaluating FN ∪ RIT ↑.

Table 5.10 shows the results for the frame labeling task. Compared to the results of
using a standard model, we can achieve an improvement of 63.7 f-score by using the
union data set. It is noteworthy that the union data set achieves the highest results,
indicating that Semafor benefits from both in-domain and out-of-domain training data.

Error analysis of the performance of the FN model for frame labeling shows that
the performance varies strongly depending on the frames. Semafor performs poorly
with frames that carry culture-specific notions or are evoked by rare lexemes. For the
frame TEXT_CREATION, for instance, Semafor yields R: 0.21, P: 8.33 and F: 0.41, be-
cause it labels target words such as “chant” consistently with the frame COMMUNICA-
TION_MANNER, while we annotated the frame TEXT_CREATION in these cases2. The

2It is questionable whether the utterance of a mantra in a ritual is a communication event, as it usually
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5.2 Adaptation to the Ritual Domain

Training Precision Recall F-Score

FN 17.75 18.04 17.89
RIT 72.88 75.58 74.21
FN ∪ RIT 86.20 86.79 86.49
FN↓ ∪ RIT 72.41 74.91 73.64

Table 5.11: Results for adaptation of frame element labeling

high number of unrecognized instances can be explained by the fact that nouns such
as “mantra”, which are missing in FrameNet, are annotated manually with the frame
TEXT_CREATION. On the other hand, we observe good accuracy for less specialized
frames such as PLACING (R: 77.49, P: 60.17, F: 67.74).

The results for role labeling behave similarly (Table 5.11): FN ∪ RIT achieves by far
the best performance, with an improvement of 68.6 f-score compared to using only FN.

The evaluation of semantic roles was restricted to the roles of those frames that were
annotated correctly by Semafor. On these 1268 roles, Semafor achieved P: 73.57, R: 77.29
and F: 75.38, allowing both partial and perfect overlap of spans; P: 70.35, R: 73.90, F:
72.08 if restricted to perfect match.3 As major error sources we identified non-local roles
and non-core roles that are missing in Semafor’s output, domain specific vocabulary
of our texts, and syntactic peculiarities such as numerous imperative constructions.
On the whole, we are confident that system annotations for frames and roles can be
improved by retraining Semafor on our labeled domain data.

5.2.6 Coreference Resolution

The coreference resolution system BART (Versley et al., 2008) is a supervised system
that implements the methodology and the feature set presented in Soon et al. (2001).
BART is tightly integrated with its own preprocessing pipeline. This makes domain
adaptation difficult. Given extremely poor results when using BART as off-the-shelf
coreference resolver, the need for domain adaptation was obvious, because coreferences
are crucial in order to represent events in narratives. Due to the small number of docu-
ments in our descriptions of rituals corpus, a retraining approach to domain adaptation
is unreasonable. Instead, we employed several other ways of adapting BART:

(i) To reduce noise, we adapted BART’s integrated preprocessing pipeline, using our
own components for part of speech tagging and chunking. After comparative evalua-
tion with mixed results (see below) we chose to use BART’s original parsing pipeline
with our own tokenizer. Two further enhancements are used to tailor the system to
the ritual domain. (ii) After mention detection, a WordNet lookup filters out mentions
of specific semantic classes. This allows us to concentrate on the most important and

lacks an addressee.
3Precision rises to 73.90/77.29 (perfect/partial match) if the evaluation is restricted to roles contained

in the gold standard. Precision could be slightly underestimated due to a number of roles (64) in
Semafor’s output that are not annotated in the gold standard, but could still be correct.
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5.2 Adaptation to the Ritual Domain

MUC B3

P R F P R F

Gold standard chunks 38.88 50.9 44.09 26.96 39.39 32.01
Adapted Pipeline (chunks) 37.33 50.9 43.07 25.78 40.08 31.38
BART Pipeline (Stanford Parser) 38.27 56.36 45.58 23.48 44.78 30.81

Table 5.12: Results for coreference resolution with domain-adapted chunking and full
parsing components

most frequent entity types: persons and supernatural beings such as gods (as opposed
to inanimate objects). Moreover, (iii) we included domain-specific knowledge to im-
prove the predictions of BART’s semantic agreement features: We extended BART’s
internal database for names and its procedures with a new category for gods. We also
added gender information for items frequently occurring in ritual texts to the existing
knowledge databases.

Evaluation

We evaluated BART’s performance on manually annotated gold standards using the
standard MUC (Vilain et al., 1995) and B3 (Bagga and Baldwin, 1998) measures as eval-
uation metrics.

(i) Preprocessing We tested different pipeline architectures, using our own domain-
adapted chunker (adapted pipeline) in contrast to BART’s pipeline including full pars-
ing with the Stanford parser. We further compared the results obtained using our
domain-adapted chunker to gold chunk information (cf. Table 5.12). This evaluation
uses a gold standard sub-corpus, a single ritual text, consisting of 40 mentions.

Using chunks provided by the adapted pipeline almost reaches the performance on
gold chunks. In general, BART operating on chunks achieves better precision according
to the B3 measure, which is the stricter measure for evaluating entity chains, while the
BART pipeline performs better according to MUC. But given the small differences and
evaluation data sets, we currently chose to stick to the BART pipeline.

(ii, iii) Sense restrictions and domain knowledge. In further experiments, we evalu-
ated the two domain-specific adaptions discussed above: (ii) restricting coreference res-
olution to entity subtypes, and (iii) extending BART’s semantic knowledge by adding
gender information and semantic categories for frequently occurring terms. Here, we
used an extended gold standard (3 ritual texts) consisting of 344 mentions. In this ex-
perimental set-up, we used the BART pipeline with our own tokenization module.

Table 5.13 shows high performance improvements for sense restriction to the entity
types person and god. This holds both for the standard gender model of BART (upper
part) and the domain-adapted model (lower part). In both scenarios we observe high
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MUC B3

P R F P R F

Standard
(all) 37.68 59.77 46.22 28.79 46.28 35.5
(person only) 63.44 57.86 60.52 47.22 38.39 42.35
(object only) 25.64 49.5 33.78 23.89 48.88 32.1

Domain
gender
model

(all) 44.62 62.06 51.92 34.23 47.86 39.92
(person only) 65.21 56.6 60.6 49.04 33.36 39.7
(object only) 25.64 49.5 33.78 23.89 48.88 32.1

Table 5.13: Results for adaptation of coreference resolution with entity type restrictions
and a domain-adapted gender database

gains in precision and f-score, with losses in recall. This fits well with our main inter-
est in analyzing event chains from rituals, where coreference information for the main
actors is of primary importance, and our general interest in achieving high-quality an-
notations.

For the domain-specific enhancements to the gender model, both recall and precision
increase across all metrics when taking all mentions into consideration. However, men-
tions of category object are not affected.4 Precision of person mentions improved sub-
stantially at the cost of a decline in recall, yielding better results for both evaluation met-
rics. Overall, we achieve best precision figures for the person-restricted domain-adapted
gender model, with a boost of 20.2 points (B3) and 27.53 points (MUC) when compared
to the standard BART model, at comparable f-scores.

5.3 Summary

In this chapter, we have described our linguistic processing architecture and how we
adapted existing tools for linguistic processing to the ritual domain, thus addressing
the challenge of uncommon text characteristics (cf. Chapter 2). The architecture is
highly modularized and produces a rich, highly connected discourse representation.
Although character-based data structures make integration of different components
straightforward, the different levels of annotation need to be linked at some point in
order to make use of them.

We were able to improve the performance of the linguistic processing tools on the
ritual domain substantially by employing various domain adaptation strategies. Ta-
ble 5.14 summarizes the most important improvements, compared to a non-adapted
baseline in each case and the data set sizes we used. The methods we used to achieve
these improvements are diverse. For part of speech tagging, chunking, dependency
parsing and semantic role labeling, we annotated a small data set from the ritual do-

4This is partly explained by the fact that this category is not distinguished by different genders in English,
and our focus on the person category when extending the gender database.
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Level Improvement Domain data set size

Part of speech tagging +5.3%
532 sentences

Chunk +1.5 f
Dependency parsing +9.5 UAS 191 sentences
Word sense disambiguation (nouns) +0.6 f
Semantic role labeling +68.6 f 1.540 frame instances
Coreference resolution +6.3 f (MUC)

Table 5.14: Improvements achieved by adapting linguistic analysis components to the
ritual domain

main and retrained statistical models, mixing in the domain data. This worked ro-
bustly in this setting and was mostly straightforward to implement. The use of feature
space augmentation, as a more complex technique, did not improve the performance,
compared to the union of data sets. Both coreference resolution and word sense dis-
ambiguation have been adapted in an unsupervised manner, because in both cases the
amount of domain data that we would need to annotate was quite large.

In research projects in the area of digital humanities, domain adaptation is usually
not the main focus but an instrument to improve processing results. Therefore, there
will always be a consideration between effort and expected gain. It is hard to give
general conclusions about that, because the main goals – and therefore the need for
specific annotations – is very different. However one should keep in mind the pipeline
effect: Adaptations on a lower level of linguistic analysis have effects on higher levels.
Improving the quality of part of speech tagging, for instance, indirectly influences the
quality of all processing stages that build upon part of speech tags. As we have seen
for dependency parsing, the improvement gained by adapting part of speech tagging
outranks the improvement gained by adapting the dependency parser.

We have also seen that retraining approaches can achieve performance improve-
ments on the same level as more complex approaches discussed in Chapter 3. De-
velopments such as those in the context of the infrastructure project CLARIN-D make
retraining approaches available to researchers from humanities: The integration of a
web-based processing pipeline (Hinrichs et al., 2010) with an annotation tool (Yimam
et al., 2013) and the training of statistical models on the basis of the annotations is cur-
rently in development. This will make retraining available as an adaptation technique
to many researchers from the humanities, even without deep insight into statistical
techniques.
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6 Discovering Structural Similarities

In this chapter, we will describe the alignment-based methodology we propose for
the discovery of story similarities in large-scale settings. An overview of the general
methodology will be given in Section 6.1, along with the experimental tasks that we
derive in order to evaluate the performance of the algorithms. In Section 6.2, we de-
scribe the alignment algorithms that we employ in order to detect similar events across
stories. We will discuss the gold standard and the evaluation methods and measures
we are using in Section 6.3. The two experiments we conduct will be discussed, evalu-
ated and analyzed in Section 6.4 and 6.5. In Section 6.6, we will describe an algorithm
to detect and rank structural similarities based on event alignments.

6.1 Discovering Story Similarities through Event Alignments

In Chapter 4, we have described how both folkloristics and ritual research can benefit
from automatically detected story similarities. Beyond a mere classification of tales,
which is done with the ATU index, Propp proposed the use of so-called event func-
tions in order to describe the story line in tales and to detect similar story elements.
Researchers of rituals are discussing the existence of structural principles that govern
the combination of individual actions into a ritual, because striking similarities in the
“story lines” of different types of rituals have been observed.

In both scenarios, a key observation is that similar events appear across stories. In
order to assess the similarity of events, we focus on two aspects: (i) The action itself and
(ii) the sentient and non-sentient participants. The action itself is expressed as a verb or
noun in texts. Participants are described in terms of semantic arguments of the verb or
noun.

In both scenarios, the similarity that is sought goes beyond the similarity of individ-
ual events. The important finding of Propp was not that heroes fight villains in multiple
tales, but that there is a structure in the tales. The events happen in a certain order and
this order is similar across tales. Similarly, the striking observation in ritual research
was not that the same kind of grass is burnt in different rituals, but that rituals are
structurally similar, e.g., that a specific mantra is spoken before the grass is burnt.

We consider two aspects of structural similarity between (sub-) sequences of events: (i)
The similarity of individual events and (ii) the similarity of the order in which similar
events appear in the sequences. Figure 6.1 shows this visually, with arrows indicat-
ing the sequence ordering and dashed lines connecting similar events. Although both
sequence pairs contain four pairs of similar events, we would consider ⟨A,B⟩ as struc-
turally more similar than ⟨C,D⟩, because the individual events are appearing in the
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A

a0

a1

a2

a3

a4

B

b0

b1

b2

b3

b4

C

c0

c1

c2

c3

c4

D

d0

d1

d2

d3

d4

sequence

event similarity

Figure 6.1: Sequences ⟨A,B⟩ are structurally more similar than ⟨C,D⟩

same order.
In order to operationalize the detection of structural similarities across texts, we are

casting this as an alignment task in which similar events across stories are aligned.
Alignment algorithms do not align events in isolation, but in their contexts, taking the
order of events into account. If we provide lists of events extracted from different doc-
uments to an alignment algorithm, the algorithm generates a set of links that denote
corresponding events. Consecutive alignment link sequences mark structural similari-
ties.

We will use three different alignment algorithms for aligning events across narrative
texts. (i) The first algorithm (Needleman-Wunsch) serves as a baseline algorithm. It
has been developed in bioinformatics and has been used in many alignment tasks. The
sequence alignment algorithm produces a global, pairwise alignment without crossing
links. (ii) The second algorithm is a graph-based clustering algorithm. It has been de-
veloped in order to align events in newspaper articles and has not been used before
on data from the humanities. It may generate crossing links but is developed for pair-
wise alignments. (iii) The third algorithm (Bayesian model merging) induces a hidden
Markov model (HMM) from multiple sequences. Alignments can be extracted from
the HMM. All three algorithms make use of a multifactorial similarity function that we
provide in order to assess similarity of individual events.

This operationalization as an alignment task also makes evaluation theoretically straight-
forward: Automatically produced alignments can be compared against a manually an-
notated gold standard. In practice, however, event alignment gold standards for our
data sets or domains are not directly available and hard to produce. We will therefore
use alignment density as a global measure for the similarity of entire stories. Alignment
density is defined as the number of linked in relation to the lengths of the sequences.
This story similarity, in turn, can be used to induce a clustering of the documents, which
can then be compared to existing classifications present in the corpora.

Consequently, we will perform two experiments in order to evaluate the performance
of the event alignment algorithms for the detection of story similarities. Table 6.1 shows
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6.2 Event Alignment Algorithms

Rituals Fables

Experiment 1: Gold standard ✓ –
Experiment 2: Cluster Induction ✓ ✓

Table 6.1: Experiment overview

an overview of the experiments and in which application scenarios they work. In the
first experiment, the outputs of the alignment systems are compared directly to an an-
notated gold alignment for descriptions of rituals. We evaluate the produced align-
ments with the Blanc score, a measure introduced for the quality assessment of coref-
erence resolution systems. As we will describe, producing such a gold standard is a
difficult task.

Therefore, the second experiment does not rely on such an alignment gold standard.
Instead, we use the alignments generated by the algorithms in order to induce a clus-
tering of the input documents. This clustering can then be compared to a previously
known clustering of the documents: The ritual descriptions are grouped according to
their ritual type, the tales are grouped according to overlaps in their plots (encoded in
the ATU index). Both classifications have been described in Chapter 4. We evaluate the
cluster quality with the Rand index.

While the clustering induced by the alignment density allows a global view on event-
based story similarity, the individual alignments show event similarity on a local and
fine-grained level. To support researchers from the humanities with the fine-grained
analysis, we will describe a graph-based algorithm that allows targeted inspection. The
algorithm ranks events according to their connectivity to another sequence. Based on
this score, we can identify regions that are structurally similar across stories.

6.2 Event Alignment Algorithms

This section describes the three alignment algorithms we employ. We will first describe
the algorithms, give an example and then highlight their key properties in comparison.
As all algorithms make use of a function for measuring semantic similarity of individ-
ual events, we will describe the similarity measures at the end of this section.

6.2.1 Sequence Alignment

The Needleman-Wunsch algorithm (Needleman and Wunsch, 1970) works on two in-
put sequences S = ⟨s1, s2, . . . sn⟩ and T = ⟨t1, t2, . . . tm⟩ over an alphabet E (si ∈ E ,1 ≤
i ≤ n and ti ∈ E ,1 ≤ i ≤ m). It generates a global alignment (i.e., every element in both
sequences is either linked or skipped) and an alignment score. The global alignment
does not include crossing links, but may contain gaps and mismatches.

The algorithm relies on two functions: A gap cost and a similarity function. The gap
cost function g ∶ N → R assigns a cost for the introduction of gaps. The cost depends
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6.2 Event Alignment Algorithms

on the size of the gap. The similarity function sim ∶ E × E → R gives a score to the sim-
ilarity of two sequence elements. Usually, sim assigns a negative score to mismatches
(dissimilar sequence elements) and a positive score to similar elements.

The backbone of the algorithm is an n+1×m+1-matrix M in which n rows represent
the elements of sequence A and m columns the elements of sequence B. A cell in the
matrix then stands for a link of two sequence elements. Initially, the cell in the top left
is filled with a 0 and the first row and the first column are filled according to the gap
function. Then, the remainder of the matrix is filled according to Equation (6.1).

M[i, j] = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

M[i − 1, j − 1] + simNW(ai, bj) Match/Mismatch
max1≤k≤iM[i − k, j] + g(k) Gap
max1≤l≤jM[i, j − l] + g(l) Gap

(6.1)

The overall alignment score can then be found in the bottom right cell of the matrix.
The alignment can be extracted by tracing the individual decisions back through the
matrix. A global alignment is achieved if the path goes from the top left element to the
bottom right element (therefore, all elements in both sequences are handled).

Originally, the Needleman-Wunsch algorithm has been developed for use in bioinfor-
matics for the alignment of protein or nucleotide sequences. Proteins and nucleotides
are represented by upper-case letters and their is a finite set of them. Measuring sim-
ilarity of proteins and nucleotides is not an issue, as they are either equal or not. In
order to incorporate our semantic similarity function into the Needleman-Wunsch al-
gorithm, we scale the values it returns (mismatches should be represented by negative
numbers). Values above the threshold t are scaled to [1,2] and values below t to [−1,0].
We use g(n) = −n as gap cost function (i.e., introducing a gap costs 1 point).

Example

As an example, we will align the two sequences S = ⟨a, b, a⟩ and T = ⟨b, a⟩. We assume
identity as a similarity function, such that sim(a, a) = 1 and sim(a, b) = 0 and a threshold
of 0.5, such that the scaled values are −1 (for mismatches) and 2 (for matches). Initially,
the matrix is filled as shown in 6.2.

M0 =
⎡⎢⎢⎢⎢⎢⎣

0 −1 −2 −3
−1
−2

⎤⎥⎥⎥⎥⎥⎦
(6.2)

M[1,1] = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

M[0,0] + (−1) Aligning a and b
M[0,1] + (−1) Gap in S
M[1,0] + (−1) Gap in T

(6.3)

For filling cell M[1,1], we have to calculate the maximum of M[0,0] + sim(a, b) =
0 + (−1) = −1 (for aligning a and b) and −2 (for introducing a gap in either sequence, cf.
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a b a

ab

Figure 6.2: Alignment for ⟨a, b, a⟩ and ⟨b, a⟩ produced by Needleman-Wunsch

(6.3)). In this case, we align a and b and fill in M[1,1] = −1.

M1 =
⎡⎢⎢⎢⎢⎢⎣

0 −1 −2 −3
−1 −1
−2

⎤⎥⎥⎥⎥⎥⎦
(6.4)

In the next step, we fill M[2,1] and choose the maximum of M[1,0] + sim(b, b) =
−1 + 2 = 1 (aligning b and b), M[2,0] + (−1) = −2 (gap) and M[1,1] + (−1) = −3 (gap).
This time, we align b and b and fill in M[2,1] = 1. This way, the matrix gets filled
entirely, until we reach the bottom right corner. Equation 6.5 shows the full matrix after
six steps. Numbers in boldface indicate the chosen path.

M6 =
⎡⎢⎢⎢⎢⎢⎣

0 − 1 −2 −3
−1 −1 1 0
−2 0 0 3

⎤⎥⎥⎥⎥⎥⎦
(6.5)

The final alignment score can be found in the bottom right corner and is 3. The
extracted alignment is shown in Figure 6.2.

6.2.2 Graph-based Predicate Clustering

The graph-based predicate clustering approach on event alignment is described in Roth
and Frank (2012). As the name suggests, the algorithm uses a graph as basic data repre-
sentation. Each vertex in the graph represents an event from the sequences, (weighted)
edges in the graph represent similarities between the events. The graph is then clus-
tered and events in the same cluster are aligned.

Again, we assume two sequences of events as input: S = ⟨s1, s2, . . . sn⟩ and T =
⟨t1, t2, . . . tm⟩. From the sequences, we construct a bipartite graph. Each event in each
sequence is represented by a vertex (6.7). Edges are added between vertices iff (i)
the two vertices are from different sequences and (ii) their similarity is above a lower
threshold t (6.8). The similarity according to sim is attached to the edges as edge weight
(6.6).

G = (V,E, sim) (6.6)
V = S ∪ T (6.7)
E = {(e1, e2)∣e1 ∈ S ∧ e2 ∈ T ∧ sim(e1, e2) > t} (6.8)

In order to create alignments between events, an iterative clustering algorithm is then
used to cut the graph in parts. In each iteration, the algorithm removes a number of
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Sequence S Sequence T

S1 ∶ a

S2 ∶ b

S3 ∶ a′

T1 ∶ b

T2 ∶ a

(a) Step 1: Initialization of the graph with
pairwise event similarities

Sequence S Sequence T
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S2

S3

T1

T2

next cut

(b) Step 2: Create one cluster containing all
events

Sequence S Sequence T

S1

S2

S3

T1

T2

next cut

next cut

(c) Step 3: Apply minimum cut

Sequence S Sequence T

S1

S2

S3

T1

T2

(d) Step 4: Apply minimum cut and termi-
nate, because all clusters contain at most two
events

Figure 6.3: Running predicate alignment on the sequences ⟨a, b, a⟩ and ⟨b, a⟩

edges, such that (i) the graph is cut into two unconnected parts and (ii) the summed
weight of removed edges is minimal. Such a cut is called a minimum cut in graph theory.
Roth and Frank (2012) use an implementation based on Goldberg and Tarjan (1988) to
determine the minimum cut. The minimum-cut algorithm is applied iteratively, until
only clusters with at most two vertices remain. The events clustered together are then
extracted as an alignment.

We are using the settings and optimizations that have been optimized on newspaper
texts and published in Roth and Frank (2012). A more detailed description can be found
in Roth (2014).

Example

See Figure 6.3 for an example. Similarities are represented by line thickness in Fig-
ure 6.3a. We employ the same input sequences as in the previous examples. However,
for the sake of the example, we assume the third event in sequence S is a slight variation
(a′) of the first event: sim(a, a) > sim(a, a′).

As a first step, a cluster is created that contains all events (Figure 6.3b). The first
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a b a

ab

Figure 6.4: Alignment ⟨a, b, a⟩ and ⟨b, a⟩ produced by predicate alignment

cut to be applied is indicated by the dotted line (removing edges to S3). At this point
we know that S3 will remain un-aligned. In the next step, the two edges (S1, T1) and
(S2, T2) are removed, as they have minimal weight.

The algorithm terminates when all clusters contain two events or less (Figure 6.3d).
In contrast to the output generated by the Needleman-Wunsch algorithm, the induced
alignment contains crossing edges, as shown in Figure 6.4.

6.2.3 Bayesian Model Merging

In this algorithm, hidden Markov models (HMM) are used to represent event sequences
and their overlap. Events, in HMM terminology, are observed items, while the corre-
spondences across multiple sequences are unobserved and thus, represented by the
hidden states in the HMM. Bayesian model merging (Stolcke and Omohundro, 1993)
is a technique for the induction of such a HMM from sequences. The algorithm starts
with the initialization of a simple HMM in which sequences have nothing in common
but a start and end state. Then, hidden states are merged iteratively if the events they
emit are similar.

Given a set of input sequences S, the algorithm searches for a HMM M ∈ M that
is maximally probable, given the input sequences: arg maxM P (M ∣S). This probability
can be transformed using Bayes’ theorem: P (M ∣S) ≃ P (M)P (S ∣M).

The probability of the sequences given a certain model, P (S ∣M), can easily be cal-
culated using the forward-backward Trellis algorithm (cf. Manning and Schütze, 1999).
The prior P (M) needs to be defined. The general idea is to give higher probability to
models with less states. In addition, the prior can be defined to yield lower probability
if a state emits dissimilar events. We will first discuss how Bayesian model merging
works in general and then come back to the definition of the prior.

Let S = {S0, S1, . . . , Sn} be the set of input sequences over a set of events E . In the
beginning, the HMM M0 is initialized in such a way that ∀Si ∈ S ∶ P (Si∣M0) = 1

n . In
words, all sequences are equally probable. Internally, each (observed) event is emitted
from a hidden state and the hidden states are connected sequentially. A special start
node is connected to the first hidden state of each sequence, similarly are the last hidden
states of each sequence connected to a special end node.

The algorithm then works iteratively by merging two hidden states of model Mi in
order to induce modelMi+1. In each step, the algorithm searches for a pair of states to be
merged, such that P (Mi+1∣S) > P (Mi∣S). As each merge may introduce new transitions
and therefore increase the number of paths through the HMM, P (S ∣Mi) monotonically
decreases. This can (and should) be counterbalanced by the prior P (Mi).
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Finlayson (2012) used Bayesian model merging in order to automatically detect nar-
rative structure in the form of a HMM on narrative texts that feature manually corrected
linguistic annotations. We follow his general approach on defining the prior. The prior
probability of a model P (M) (Eq. 6.9) is a product of two functions:

P (M) = geo(M)plaus(M) (6.9)
geo ∶ M→ [0,1] (6.10)

plaus ∶ M→ {0,1} (6.11)

As shown in Eq. 6.12, geo represents a geometric distribution that gives higher prob-
ability to smaller models (∣M ∣ stands for the number of hidden states in the HMM),
depending on the prior parameter 0 ≤ p ≤ 1 (Finlayson uses p = 0.95). Intuitively, this
makes the tendency for smaller models quite strong.

geo(M) = p(1 − p)∣M ∣−1 (6.12)
plaus(M) = ∏

∀n∈M

K(n) (6.13)

K(n) = { 1 if ∀ei, ej ∈ n, simb(ei, ej) > t
0 otherwise

(6.14)

The second function plaus(M) (6.13) represents the ‘plausibility’ of the model and
can only be 0 or 1. plaus(M) is calculated as a product over function K for all hidden
states n of the model. For each state,K(n) equals 1 if all pairs of events emitted from the
state are more similar than threshold t. Otherwise, K(n) becomes zero and so does the
plausibility function for the entire model plaus(M). This makes the similarity threshold
a hard constraint and as a result the induced alignment does not contain alignment links
with a similarity lower than t.

We extract an alignment from the final HMM by creating an alignment link between
all events that are emitted from the same state. This algorithm is able to create arbitrary
alignment links: Crossing alignment links or links that include more than two events
and documents. Also, the algorithm can generate links within a single document and
thus, create cyclic structures.

Example

As an example, we use Bayesian model merging in order to induce a HMM for the set
S of two sequences S = ⟨a, b, a⟩ and T = ⟨b, a⟩. For the sake of the example, we assume
identity as similarity function, such that sim(a, a) = 1 and sim(a, b) = 0. We are using
the prior probability as described above, the choice of the prior parameter p will only
play a role in Step 3. Figure 6.5 shows each step of the application of the algorithm,
starting with the initialization. In the initialization model, both sequences have equal
probability:

P (S ∣M0) = 0.52 (6.15)
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Figure 6.5: Running Bayesian model merging on the sequences ⟨a, b, a⟩ and ⟨b, a⟩
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Figure 6.6: Alignment for ⟨a, b, a⟩ and ⟨b, a⟩ produced by Bayesian model merging
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Algorithm # events crossing similarity A(⟨a, b, a⟩, ⟨b, a⟩)

Needleman-Wunsch 2 – function

Predicate alignment 2 ✓ function

Bayesian model merging n ✓ function

Table 6.2: Algorithm overview

In each step, a pair of hidden states is merged. The dotted lines indicate the pair
of states to be merged next. The probability of the sequences does not change in the
first two steps (P (S ∣M0) = P (S ∣M1) = P (S ∣M2)), and the model probability increases
(P (M2) > P (M1) > P (M0)), because the number of hidden states decreases. Merg-
ing the states 1 and 3, however, drastically decreases the probability of the sequences.
Therefore, this step will only be performed if the increase in model probability outper-
forms the decrease.

0.52p(1 − p)4 < 0.55p(1 − p)3 (6.16)
p > 0.875 (6.17)

In this case, (6.16) needs to be fulfilled, in order to execute step 3. In other words, p
needs to be at least 0.875 in order to counterbalance the decrease in sequence probability
in step 3. If this is the case, the algorithm produces two links (one of them 2-to-1) and
aligns every a-event and every b-event, as shown in Figure 6.6. If not, Bayesian model
merging produces the same alignment as Needleman-Wunsch.

6.2.4 Comparison of Alignment Algorithms

Table 6.2 shows an overview of three key properties of the algorithms: The number of
events that can be in an alignment link, whether the algorithm can generate crossing
alignment links and how similarity is measured. The Needleman-Wunsch algorithm
aligns two events, but does not generate crossing alignments. In a situation in which
it would be possible, it will skip sequence elements instead. The predicate alignment
algorithm is able to generate crossing links, but has been developed for linking only
two events. Extending it to allow n-to-m-links is possible, but has not been tested in
practice1. Bayesian model merging is the most liberal algorithm. It aligns an arbitrary
number of events and the resulting links may be crossing.

All three algorithms can be used with a similarity function that is defined externally
and can be integrated in a modularized way. The algorithms also have in common that

1Both graph representation and clustering algorithm could be used unchanged. The exit condition, how-
ever, would need to be rethought.
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they work in an unsupervised manner. No training data is needed, except for tuning
the similarity weight vector parameters (see below).

6.2.5 Similarity Measures

In order to assess the similarity between two events ei and ej , we use several different
measures of semantic similarity in combination. All of them return a value in [0,1].
Apart from the first of the following measures, our implementations are based on the
implementations by Michael Roth (Roth and Frank, 2012).

The measures are combined using the geometric or arithmetic mean and different
weightings, as shown in (6.18) and (6.19).

simgeo(e1, e2) = 5
√

simF (e1, e2)λF × simW (e1, e2)λW × simV (e1, e2)λV × . . .
× simD(e1, e2)λD × simA(e1, e2)λA (6.18)

simavg(e1, e2) = 1

5
(λF simF (e1, e2) + λW simW (e1, e2) + λV simV (e1, e2) + . . .

+λD simD(e1, e2) + λA simA(e1, e2)) (6.19)

FrameNet similarity (F)

FrameNet similarity is a lexical measure and based on the FrameNet hierarchy using
all FrameNet relations. If d is the length of the shortest possible path between two
frames, we calculate the similarity as 1

d+1 . This way, frames with a distance of 0 get the
maximal similarity. We are using Dijkstra’s algorithm (Dijkstra, 1959) for finding the
shortest path. If, for any reason, no path can be found between the two frames, the
similarity is set to 0. This in particular happens for frames that are not connected in the
FrameNet hierarchy.

WordNet similarity (W)

For measuring similarity according to WordNet, we are using the similarity measure in-
troduced by Lin (1998) applied on the synsets of the frame targets, which are assigned
by the word sense disambiguation component. For this measure, the information con-
tent (ic) of the lowest common subsumer of the two synsets is set in relation with the
information content of the synsets itself, as shown in equation 6.20. The information
content has been precomputed on the British National Corpus, the Penn treebank, the
Brown corpus, the complete works of Shakespeare and SemCor (Pedersen, 2014).

2 ∗ ic(lcs(s1, s2))
ic(s1) + ic(s2)

(6.20)
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VerbNet similarity (V)

This measure detects overlap in potential VerbNet classes, calculated using the target
lemmas of the frames. The resulting similarity value differentiates three cases: (i) If
there is a VerbNet class that contains both verbs, the similarity is 1. (ii) If one verb is in
a subclass of a class of the other verb, the similarity is 0.8. (iii) If there are only disjunct
classes for the verbs, the similarity is 0.

Distance similarity (D)

This similarity measure compares the relative positions of the two events in their re-
spective chains. First, the relative position is computed. Then, the difference of the two
relative positions is calculated and normalized with a Gaussian distribution (σ = 0.2).
Therefore, smaller differences in relative positioning are not penalized as much.

Argument text similarity (A)

This measure includes the arguments of the events. For both events ei and ej , we collect
a bag of words si and sj containing the lemmas of the frame element fillers. In addi-
tion, for each filler, the set of coreferent lemmas is added. The similarity is calculated
according to Equation 6.21.

sim(ei, ej) =
∣si ∩ sj ∣
∣si∣ + ∣sj ∣

(6.21)

6.3 Gold Standard and Evaluation

6.3.1 Data Sets

In Chapter 4, we have described two scholarly areas in which structural similarities
play a major role and which we use as application scenarios. We have also described
linguistic characteristics of the texts in the corpora. We will now describe how we use
the corpora in order to measure the performance of the event alignment algorithms for
the detection of story similarities.

Alignment Gold Standard

In order to get a detailed insight into the performance of the algorithms, we annotated
a small set of descriptions of rituals manually with alignment links.

The annotated data set consists of alignment links between the cūd. ākaran. a rituals.
The annotation has been performed by two experts at rituals independently and reflects
the discussions in scientific literature about ritual elements. Annotating alignments
across descriptions of rituals proved to be a tedious and difficult task. Although the
descriptions are detailed, they are not very clear (“underspecified”) in many cases. This
makes it hard, even for experts, to exactly pinpoint the similarities. Researchers of
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Description # tokens # events

A 1,986 132
C 1,071 91
I 1,162 100

Pair # links % 1-1 links

A, C 11 54.5 %
A, I 16 56.2 %
C, I 45 84.4 %

Table 6.3: Alignment gold standard

#documents #clusters �#tokens

Folktales 37 7 717.6
Rituals 13 5 2,040.2

Table 6.4: Overview of clustering data sets

rituals have published proposals for ritual elements, but they are not clearly defined
and in particular, it is often difficult to tell where they start and end.

We did not provide an annotation interface. One annotator used a CSV file to store his
annotations, the other marked them on paper. After an initial conversion of the paper-
based annotations into a machine-readable file, the initial agreement between the two
annotators was very low: κ = 0.19 (Fleiss’ kappa; measured as a pairwise classification
task). A discussion with one annotator allowed the refinement of the annotations, as
he explained the comments he gave on paper. Measuring the agreement of the refined
alignment results in κ = 0.61. The remaining differences have been adjudicated by the
author of this thesis. The annotator approved the final alignment as a possible one.

Table 6.3 shows some statistics about the documents themselves on the lefthand side
and statistics about the alignment links on the righthand side. Noteworthy on the right
table is that the pair (C,I) contains many more links as any other pair. Also, most of
them are one-to-one links. The alignments involving A seem to be much harder and
fuzzier. This is in line with the fact that A is much longer and has a different cultural
background. Multiple events in A are linked to single events in C and I and are thus
1-to-n-links.

Clustering Gold Standard

Both corpora are classified into groups according to story elements they employ: (i) The
folktales are grouped into ATU classes and ATU classes are defined by shared elements
in the stories. All the tales in ATU class 327A (Hansel und Gretel), for instance, have in
common that children are abandoned in the woods, stumble upon a gingerbread house
etc. To our knowledge, we are the first to use the ATU index to define a classification
that can be used for evaluation and investigation. (ii) A subset of thirteen descriptions
of rituals are grouped according to their ritual type, i.e., the ritual they describe. Sim-
ilarly to the folktales, structural similarities can be expected between the descriptions
of the same ritual type. Although the descriptions come from different handbooks and
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differ in many details, the main events should be similar and in a similar order. We will
use the classifications as a gold standard in the clustering experiment. Table 6.4 lists
sizes and average number of tokens per document for the two data sets.

6.3.2 Evaluation Measures

In order to quantify the performance of the algorithms, we need two evaluation mea-
sures. For comparing the performance of the alignment-based clustering with the gold
clustering, we employ a classic cluster quality measure called Rand index (Rand, 1971).
In contrast to purity, which assigns each cluster to its majority class and calculates ac-
curacy per cluster, the Rand index penalizes both false positive and false negative deci-
sions.

Finding an appropriate evaluation measure for alignment evaluation proved to be
more complicated, given that it should be able to (i) cope with n-to-m-links and (ii)
scale to more than two documents. The first requirement comes directly from the gold
standard, which already contains a high number of n-to-m-links. The second require-
ment may not be so obvious, but given that one of the algorithms is capable of running
on more than two documents and the gold standard also includes links across three
documents, the evaluation algorithm should allow that as well.

The comparison of manually created alignments with system alignments has been re-
searched a lot in the context of machine translation and cross-lingual word or sentence
alignment. Many alignment evaluation measures break down n-to-m-links into pair-
wise 1-to-1-links (cf. Fraser and Marcu, 2007; Och and Ney, 2003). Tiedemann (2003)
argues that this can lead to highly skewed results, in particular when n andm get large,
as every n-to-m-link introduces n ∗m pairwise links. He proposes to count every n-to-
m-link as a single link, but weighted according to the correctly aligned tokens on both
source and target side.

Comparing alignments can be seen as a comparison of sets. Given a set of sequences
S = {Si∣Si = ⟨si,0, si,1, . . . ⟩}, an alignment can be expressed as a set of alignment links
and an alignment link as a set of sequence elements. Aligning, for instance, the first
elements of the sequences S0 and S1 would then be expressed as the set {s0,0, s1,0}.
This is very similar to coreference resolution, in which a set of sets of mentions has
to be constructed and compared to a reference set of sets of mentions. Specifically for
coreference resolution, the Rand-based Blanc score has been proposed as an evaluation
measure. Using Blanc as a measure for alignment evaluation would allow n-to-m-links
easily and it can be applied directly to alignments of multiple documents (because as a
coreference resolution metric, Blanc does not know about documents at all).

Rand index

The Rand index (Rand, 1971) is a classic measure of cluster quality. It can be used to
measure the quality of arbitrary partitions, in particular including partial ones. Let
X = {X1,X2, . . . ,Xn} be the set of objects to be clustered (in our case: documents) and
S and R be the system and reference partitioning. For each pair of objects (Xi,Xj), the

76



6.3 Gold Standard and Evaluation

algorithm then counts if the two objects are in the same or different cluster in S and R.
Two cases can be distinguished:

a) Correct decision: Xi and Xj are in the same cluster in both S and R or in different
clusters in both

b) Incorrect decision: Xi and Xj are in the same cluster in S and in different clusters
in R, or vice-versa

The first case represents agreements of the system partitioning with the reference
partitioning. This can mean either thatXi andXj are in the same cluster in both system
and reference partitioning or that they are in different clusters in both clusterings. The
Rand index is then defined as shown in Equation 6.22, where ∣a∣ is the number of a
cases (the number of agreements). Simply put, the Rand index represents the portion
of correct pairwise decisions.

Rand(S,R) = ∣a∣
(n
2
)

(6.22)

The Rand index is a single score, producing values between 0 (no similarity) and 1
(equal clusterings). An important property of the Rand index is that objects not in the
same clusters are evaluated as well. We are using the Rand index as a measure for
comparing the manually defined clusterings of tales and descriptions of rituals to the
system outputs of a clustering algorithm (Experiment 2).

Blanc

Blanc (Recasens and Hovy, 2011) is an extension of the Rand index for evaluating coref-
erence chains. Similarly to the regular Rand index, system output S and reference R
are compared for each pair of mentions Xi and Xj .

a) Correct decision: Xi and Xj are in the same cluster in both S and R or in different
clusters in both

b) Incorrect decision: Xi and Xj are in the same cluster in S and in different clusters
in R (or vice-versa)

The cases a) and b) are counted separately for coreference and non-coreference links
(two mentions are in a non-coreference link if they are not coreferent). Then, preci-
sion, recall and f-score are calculated as shown in 6.23, for coreference links (c), non-
coreference links (n) and overall.

Pc =
ac

ac + bc
Pn = an

an+bn
P = Pc + Pn

2

Rc =
ac

ac + bn
Rn = an

an+bc
R = Rc +Rn

2

Fc =
2PcRc
Pc +Rc

Fn = 2PnRn

Pn+Rn
F = Fc + Fn

2
(6.23)
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An issue with the evaluation of end to end coreference resolution systems is the (pos-
sible) discrepancy between system mentions and reference mentions: A coreference res-
olution system may detect a different set of mentions than is annotated in the reference
data set. This makes evaluation inherently difficult and has sparked a lot of debates in
the coreference resolution community (see, for instance Cai and Strube (2010), for a dis-
cussion of metrics and their applicability to end to end systems). In our case, however,
we can evaluate over all tokens in the documents, which are necessarily the same for
system and reference.

Because coreference and non-coreference links are weighted equally, the resulting
general precision, recall and f-score values are highly biased. A system that generates
very few alignment links already achieves around 50% precision and recall, because the
vast majority of pairs are in fact non-aligned in the gold standard. This tendency can
be seen in the experiment, in which a number of configurations achieve close to 50%
precision and recall.

6.4 Experiment 1: Comparison against an Alignment Gold
Standard

In the first experiment, we evaluate generated alignments directly against a manually
annotated gold standard. We are using the data set in order to optimize the similar-
ity weight vector and the threshold for the Bayesian model merging and Needleman-
Wunsch algorithms. We use cross validation for parameter tuning and the evaluation.
All algorithms are using the targets of frames that are reliably annotated as input se-
quences. We select the reliably annotated frames by choosing only the frames whose
targets have been annotated in the training set of the semantic role labeling compo-
nent. We will first describe the experimental setup and then results including an error
analysis.

6.4.1 Cross Validation

In order to test the performance of the algorithms in a reliable fashion, we optimize
their parameters on two pairs and test them on the remaining pair. D = {A,C, I} is
the set of documents in the gold standard and C the set of candidate configurations
to be optimized. We run the algorithm in each configuration cj ∈ C on each pair of
documents pi ∈ D × D and test against the gold standard. This way, two pairs will
serve as optimization set and one pair as test set. The best performing configuration c′pi
is extracted for each pair. We select the configuration that achieves the highest Blanc
score on both optimization pairs as final configuration in order to evaluate the test pair.
To be clear: This is not a training step in the classical, supervised sense, but a parameter
optimization step.
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6.4.2 Parameter Settings

We optimized the weight w for each similarity measure as well as the threshold and the
mean calculation (geometric and arithmetic mean).

Because the Needleman-Wunsch algorithm compares different possible alignments
to each other, the setting of the threshold does not make a difference: If by increasing
the threshold a certain link score decreases, so do all the other link scores. Therefore,
we only optimized the weight vector for the similarity measures in the above described
manner. The best performing vector was equal weight for all measures and using geo-
metric mean.

For the predicate alignment algorithm, the best performing settings λF = 2, λA = 2,
λD = 2, λV = 1.67, λW = 1, a threshold of t = 0.8 and using the geometric mean for com-
bination. The best performing weight vector for the Bayesian model merging algorithm
was weighting each measure equally and using the geometric mean to combine them.
The best performing threshold was t = 0.8 for all optimization pairs.

Over all algorithms, using geometric mean achieves better results than arithmetic
mean. In addition, quite high threshold settings have been determined.

6.4.3 Baseline

We compare the results against two baselines. The harmonic baseline algorithm creates
an alignment by linking all elements of the shorter sequence to their positional counter-
part. The unaligned elements of the longer sequence are then added to the surrounding
alignment links. Let, for instance, S = ⟨s1, s2, s3, s4⟩ be one sequence and T = ⟨t1, t2⟩ be
the other sequence, the baseline alignment would link {s1, s2, t1} and {s3, s4, t2}. Ad-
ditionally, the lemma alignment baseline creates alignment links between all events with
the same lemma. This creates many n-to-m-links. In both baseline algorithms, we use
the same set of candidate events as in the other algorithms.

6.4.4 Results

Table 6.5 shows the results for all pairs of descriptions of rituals1. The first column
displays the number of alignment links generated by the algorithm, with the number of
1-to-1-links in parentheses, if applicable (Needleman-Wunsch and predicate alignment
only generate 1-to-1-links). The second to fourth columns show the Blanc scores.

In terms of precision, the predicate alignment achieves the highest score on one pair,
while Bayesian model merging achieves the highest precision score on the other pairs.
The highest recall for pairs AC and AI is also achieved by the Bayesian model merging,
while for CI, the predicate alignment achieves a slightly higher recall.

All three algorithms show similar behavior in one respect: Performance scores on CI
are higher than on the other pairs. We can explain this by looking at the nature of the
documents. Compared with the other pairings, CI contains much more links and most
of them are non-crossing 1-to-1-links (cf. Table 6.3), which makes it easier for the algo-
rithms. The other two pairings, AC and AI are much harder for all algorithms. Both
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# links (#1-to-1) Blanc-P Blanc-R Blanc

Lemma Baseline
A, C 14 (2) 51.1 59.5 51.4
A, I 15 (1) 50.7 59.6 50.5
C, I 19 (4) 50.4 57.6 49.0

Harmonic
Baseline

A, C 91 (50) 50.1 50.2 50.1
A, I 100 (68) 49.8 49.8 49.8
C, I 91 (82) 50.3 50.3 50.3

Needleman-
Wunsch

A, C 90 49.8 49.9 49.8
A, I 97 49.8 49.9 49.9
C, I 76 55.1 54.0 54.5

Predicate
Alignment

A, C 0 49.9 50.0 49.9
A, I 4 49.9 50.0 49.9
C, I 24 76.9 57.0 61.0

Bayesian Model
Merging

A, C 7 (7) 64.1 50.8 51.5
A, I 10 (10) 54.9 50.5 50.8
C, I 37 (36) 65.2 56.4 59.0

Table 6.5: Results for Experiment 1: Comparison with a gold standard

Needleman-Wunsch and the predicate alignment system perform similarly or below
the harmonic baseline. In fact, they do not detect a single correct alignment between
events on pairs involving A. The Bayesian model merging algorithm outperforms the
harmonic baseline on every pair and the lemma baseline in terms of precision. Al-
though the predicate alignment outperforms Bayesian model merging on the pair CI, it
has to be noted that the structure Bayesian model merging induces (the hidden Markov
model) is more complex and offers more insight. The alignment can be considered a
“by-product” of the hidden Markov model.

Number of alignment links

The lemma baseline generates only a few links, but some of them are quite large. The
largest alignment link generated by the lemma baseline contains 60 different events.
This is, although some of the links are correct, not suitable for our task. The harmonic
baseline as well as the Needleman-Wunsch algorithm generate close to 100 links in most
cases (gold standard: AC: 11, AI: 16, CI: 45). Interestingly, the pair CI, which actually
has the most links in the gold standard, is the pair that gets the fewest links assigned
by the Needleman-Wunsch algorithm. This can be explained by the fact that the long
ritual (A) is not involved. The predicate alignment and the Bayesian model merging

1This table shows the results of the different system, but separately for aligned pairs (c) and non-aligned
pairs (n). As can be seen, the performance for alignment links is far from perfect. In comparison to
each other, however, the systems performances behave similarly as in the combined scores.
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generate much fewer links, and, in agreement with the gold standard, more links for CI
than for the other pairs.

Error analysis

Manual inspection of the alignments generated by the systems reveals several major
sources of errors.

Preprocessing errors Although we have adapted the preprocessing pipeline heav-
ily in order to improve the linguistic annotation quality, there are errors in the pre-
annotation (as can be expected). We will not discuss this issue in detail, but it is a
source of errors.

Event extraction An issue is the generation of the input sequences for all the al-
gorithms. Baseline, Needleman-Wunsch and Bayesian model merging use FrameNet
frames as event representations and generate alignments between all automatically as-
signed frames, whose targets have been seen in the training set of the semantic role la-
beler. This, however, includes a number of frames that clearly do not represent events.
The most prominent example is KINSHIP on targets like mother, sister, . . . . The straight-
forward answer, restricting events to be verbal, is not feasible, because many events in
the descriptions are expressed as nouns (Salutation, Offering, . . . ). The predicate align-
ment system uses nominal and verbal predicate argument structures as event represen-
tations, which leads to different examples of the same problem: boy, south, . . . .

Arguments of frequent events A few lemmas that are of general meaning appear
often in the descriptions of rituals, e.g., place or take. They often describe similar ac-
tions that only differ slightly, e.g., in the cardinal direction something should be placed.

Pc Rc Fc Pn Rn Fn

Lemma Baseline
A, C 2.5 22.0 4.5 99.7 97.1 98.4
A, I 1.7 23.4 3.2 99.8 95.9 97.8
C, I 1.0 22.6 1.9 99.7 92.6 96.0

Harmonic Baseline
A, C 0.6 0.8 0.7 99.6 99.5 99.6
A, I 0.0 0.0 0.0 99.7 99.5 99.6
C, I 0.9 1.0 1.0 99.7 99.6 99.6

Needleman-Wunsch
A, C 0.0 0.0 0.0 99.6 99.7 99.7
A, I 0.0 0.0 0.0 99.7 99.7 99.7
C, I 10.5 8.2 9.2 99.7 99.8 99.7

Predicate Alignment
A, C 0.0 0.0 0.0 99.8 100.0 99.9
A, I 0.0 0.0 0.0 99.8 100.0 99.9
C, I 54.2 14.0 22.2 99.7 100.0 99.8

Bayesian Model
Merging

A, C 28.6 1.7 3.1 99.7 100.0 99.8
A, I 10.0 0.9 1.7 99.7 100.0 99.8
C, I 30.8 12.9 18.2 99.7 99.9 99.8
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6.4 Experiment 1: Comparison against an Alignment Gold Standard

This information could be present as a frame element, but the argument text similarity
measure does not differentiate between different frame elements. Therefore, the key
difference is easily “overlooked”, in particular if another measure votes for their simi-
larity.

Reciting mantras Two often appearing constructions describe the recitation of mantras:

(12) a. Sprinkle water reciting the devasya tvā.

b. Sprinkle water with the devasya tvā.

The semantic role labeler annotates reciting, as in 12a, as an instance of TEXT_CREATION,
with the mantra as filler of the frame element TEXT. The mantra in 12b remains un-
annotated or a filler of a MANNER element of a frame representing the sprinkling ac-
tion. The only means of detecting the similarity of the mantras in these constructions is
the similarity of argument fillers.

Knowledge bottleneck In some cases, the linguistic realizations of similar actions is
so different that it would require a lot of world and/or domain knowledge to detect
their similarity:

(13) a. Place cakraphan. i on the head reciting the trātāram indram.

b. Bind a phani on the tuft reciting tava vāyav.

The events described in 13 should be aligned, according to the gold standard. Un-
fortunately, they differ in most aspects covered by our similarity functions: Both the
appropriate concepts in FrameNet as well as WordNet are quite far of each other in the
hierarchy. Except for the verb reciting, the arguments are different. The relative dis-
tance of the two events in their sequence is in a medium range. Therefore, they get low
similarity and are not linked. A domain knowledge base might include a relation be-
tween cakraphan. i and phani, but relating placing and binding and head and tuft requires
a large amount of knowledge.

Quantified error analysis

In order to also get a quantified overview of the errors made by the systems, we clas-
sified the precision errors manually into four different classes. This classification is
done on a pairwise basis, i.e., n-to-m-links are broken into 1-to-1-links. Similarly to the
evaluation metric, we classify each pair of events. We grouped the errors into three
different classes plus a rest class: (i) Events that have different arguments and should
not be aligned, (ii) events that have the same arguments and should not be aligned, (iii)
Events that are no events, i.e., preselection errors and (iv) Other errors.

Table 6.6 shows the portions of errors made by the predicate alignment and Bayesian
model merging system on the pair CI. What we can see here is that the Bayesian model
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6.5 Experiment 2: Alignment-based Clustering Evaluation

i ii iii iv

Predicate alignment 45.5% 45.5% 0.0% 9.1%
Bayesian model merging 65.5% 19.2% 7.7% 7.7%

Table 6.6: Quantified error analysis of precision errors in Experiment 1

merging and the predicate alignment system make different (precision) errors. Most
of the errors made by the predicate alignment system are caused by incorrectly linking
events with different arguments or similar arguments. Two thirds of the errors made by
the Bayesian model merging are events that have different arguments. This reflects the
different weights the argument text similarity measure has: In the predicate alignment
system, the argument similarity is assigned a high weight, while the measures are all
equally weighted in the Bayesian model merging system. This could be easily changed,
but the optimization showed that the overall results decreases with other weighting
schemes.

6.5 Experiment 2: Alignment-based Clustering Evaluation

We use the induced alignments as an indicator of document similarity in the second
experiment. We build on the fact that both the descriptions of rituals from the core
corpus as well as the folktales are grouped according to their event structure: Rituals are
grouped according to their ritual type, tales are grouped according to the ATU index.
The intuition is that two documents from the same group share more alignment links
than two documents from different groups. Or, the other way around: If an algorithm
introduces many alignments across documents, they should belong to the same group.
This way, we can induce a clustering of the documents, based on the automatically
assigned alignments. The induced clustering can be compared to the gold clustering as
given in the corpora.

6.5.1 Document Similarity

The clustering builds on a measure simdoc ∶ S × S × A → [0,1] for pairwise similarity
of documents. This measure is defined so that it can be calculated from any cross-
document alignment, independent from the algorithm that created it. Let S ∈ S and
T ∈ S be the two sequences that are aligned and A the set of alignment links generated
by the algorithm. We first compute the similarity within each alignment link a ∈ A as
the average similarity of all cross-document pairs (6.24).

sim′(a) =
∑si∈S,tj∈T sim(si, tj)
∣{(s, t)∣s ∈ S ∧ t ∈ T}∣ (6.24)

simdoc is then calculated as the sum of the similarity scores of all alignment links,
divided by the length of the shorter sequence (6.25).
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6.5 Experiment 2: Alignment-based Clustering Evaluation

simdoc(S,T,A) = ∑a∈A sim′(a)
min(∣S∣, ∣T ∣) (6.25)

This definition ensures that densely aligned sequences are considered to be similar. It
also ensures that the document similarity is more than zero, as long as there is a single
alignment link with non-zero similarity.

6.5.2 Clustering Algorithm

We employ the group-average agglomerative hierarchical clustering method (Manning
and Schütze, 1999). First, the document pairs are ranked according to simdoc and each
document is placed in its own cluster. Then, in each turn, the most similar clusters
are merged. Cluster similarity is measured by the average document similarity. The
algorithm runs until all clusters are merged. This gives us a number of different parti-
tions as a result, all with different numbers of clusters k. We will look at two ways of
selecting k: (i) The partition with the correct number of clusters (which is “oracle” in-
formation, as we only know that from the gold standard) and (ii) the partition with the
maximal variance ratio. The variance ratio criterion (Caliński and Harabasz, 1974) has
been proposed as a means for selecting a partition in a clustering scenario and balances
between similarity within and across clusters. We will refer to these two variants as the
VRC and NUM variant in the following.

A word on naming: In the following we will use the names of the alignment algo-
rithms to refer to the clustering algorithm that uses the alignments produced by the
alignment algorithm. For instance, by referring to the Bayesian model merging algo-
rithm within the context of this experiment, we actually refer to the clustering algorithm
that uses document similarity calculated on the basis of the alignments produced by the
Bayesian model merging algorithm.

6.5.3 Baseline

We employ three baselines. Lemma baseline uses the alignment baseline from the first ex-
periment in order to generate alignments, from which we calculate simdoc as described
above, assuming all similarities to be 1. This is the only baseline that is based on actual
alignment links. The lexical overlap baseline calculates document similarity directly over
all lemmas of the documents (without inducing an alignment first). If L0 and L1 are the
two sets of lemmas of documents D0 and D1, the document similarity is calculated as
shown in (6.26).

simdoc(D0,D1) =
2 ∗ ∣L0 ∩L1∣
∣L0∣ + ∣L1∣

(6.26)

In order to also compare to shallow semantic similarity measuring approaches, we
also use a vector similarity baseline, as implemented in the Semilar toolkit (Rus et al., 2013).
We did not do any domain adaptation, but used the internal preprocessing components
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6.5 Experiment 2: Alignment-based Clustering Evaluation

Cluster criterion NUM: k = 5 VRC: k = arg maxk vrc(k)
�#links Rand k �size σ Rand

Gold 5 2.6 0.5

Lemma alignment 31.3 50.0 7 1.9 1.5 70.5
Needleman-Wunsch 68.1 69.2 4 3.3 1.7 69.2
Predicate alignment 9.9 66.7 11 1.2 0.4 83.3
Bayesian model merging 13.6 69.2 7 1.9 1.5 75.6

Vector similarity 61.5 6 2.2 2.2 82.1∗
Lexical overlap 64.1 5 2.6 2.5 64.1∗

Table 6.7: Results for Experiment 2: Cluster induction on descriptions of rituals

as they are integrated. The baseline generates word vectors for each document and
computes the dot product between the two.

6.5.4 Results

Table 6.7 shows the results of the clustering experiment for the descriptions of rituals,
Table 6.8 shows the results for the folktales in the same way. The tables show results for
both ways of choosing the number of clusters k. The columns displayed are the average
number of alignment links produced between a pair of stories (�#links, if applicable),
the Rand score for using the “oracle” k, k when using the variance ratio criterion, the
average size of the clusters and the standard deviation for the sizes (�size, σ). Further,
the tables display the Rand index score for the VRC variant and whether the difference
to the next lower performing partition is statistically significant (using a t-test with
α = 0.05).

Number of links The number of links produced between two documents are gener-
ally smaller for the folktales than for the rituals, which can easily be explained by the
fact that the folktales are shorter. Comparing the systems, we can observe a similar
behavior for both scenarios: Needleman-Wunsch generates many links, followed by
the lemma alignment baseline and the predicate alignment. Bayesian model merging
generates the fewest links.

Overview The best performing algorithm is predicate alignment on both data sets.
On the descriptions of rituals, it achieves a (VRC-)score of 83.3 on descriptions of rituals
and 82.4 on folktales. In the NUM variant, the scores are much closer on descriptions
of rituals than on folktales. Lemma alignment baseline performance on folktales is
surprisingly high: With a Rand score of 83.2 it outperforms all other alignment-based
algorithms.

We will first look at the rituals-scenario in detail and then at folktales.
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6.5 Experiment 2: Alignment-based Clustering Evaluation

Descriptions of rituals

From the fact that several of the algorithms achieve reasonable results, we first of all can
conclude that a clustering based on structural similarities is in principle able to replicate
the ritual types. This supports the initial hypothesis, that rituals of a given type indeed
share structural similarities that can be represented in terms of alignments.

Generally, the results are in line with the results from Experiment 1. Predicate Align-
ment and Bayesian model merging achieve good results in the first experiment and are
ranked first and second in the clustering experiment. The Needleman-Wunsch algo-
rithm and the lemma alignment baseline performed poorly in the first experiment and
achieve low scores in the clustering experiment. At least for the descriptions of rituals,
with a carefully defined classification of the descriptions, the clustering performance
seems to be indicative for the quality of the individual alignments.

The fact that the lemma alignment baseline achieves relatively low scores (in both
variants) indicates that the event structure plays an important role in determining sim-
ilarity of narrative structure in rituals.

Choosing k There is only one setting in which the correct number of clusters (five)
is selected by the variance ratio criterion: The lexical overlap baseline. Needleman-
Wunsch tends to generate fewer, but larger clusters. The clusters produced by Needle-
man-Wunsch are relatively homogeneous regarding their size (σ = 1.7).

Predicate Alignment induces eleven clusters on descriptions of rituals, which is only
slightly below the number of descriptions (thirteen). In fact, two clusters have been
created that contain more than one description, all others just consist of a single de-
scription. This is caused by the very low number of alignment links induced between
the descriptions. On average, 9.9 alignment links are created between two descriptions.
This causes document similarity values to be very low. However, the clusters that have
been created are correct.

Bayesian model merging and the lemma alignment baseline induce more smaller
clusters, that are also even more homogeneous regarding their size (σ = 1.5 in both
cases). Both tend to make finer distinctions between types than Needleman-Wunsch
(at a slightly better quality level). This could indicate that a finer distinction of types of
rituals based on event alignments might be feasible and justified by the event structure.
However, only manual inspection by a domain expert could confirm that.

Choosing k based on the document similarities computed from the algorithms (VRC)
generally improves the results compared to a fixed setting (NUM). This can be ex-
pected.

Baselines In the NUM setting, the performance of the shallow baselines (vector simi-
larity and lexical overlap) is on par with the alignment algorithms. Using the variance
ratio, however, benefits the vector similarity substantially. This indicates that it is pos-
sible to achieve better performance in measuring pure document similarity. Obviously,
measuring document similarity in this way does not help in locating the exact similari-
ties and allows only very limited insight into structural similarities.
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6.5 Experiment 2: Alignment-based Clustering Evaluation

Cluster criterion NUM: k = 7 VRC: k = arg maxk vrc(k)
�#links Rand k �size σ Rand

Gold 7 5.3 1.5

Lemma alignment 7.4 38.4 16 2.3 1.4 83.2∗
Needleman-Wunsch 12.6 75.9 6 6.1 4.4 75.7
Predicate Alignment 1.9 83.5 6 6.2 3.4 82.4
Bayesian model merging 0.5 38.4 12 3.1 3.8 74.9∗
Vector similarity 87.7 8 4.6 2.6 96.1∗
Lexical overlap 53.0 5 7.4 11.1 49.1

Table 6.8: Results for Experiment 2: Cluster induction on folktales

Folktales

Findings for the folktale corpus are somewhat different. In the NUM variant, the perfor-
mance of Bayesian model merging ranges below the baselines and all other algorithms.
This is likely due to the fact that the tales are shorter than descriptions of rituals and
Bayesian model merging favors precision over recall. This leads to very few alignment
links between the tales (0.5 on average) and makes it hard for the algorithm to find
good clusters to be merged. In addition, its threshold and similarity measures have
been tuned on descriptions of rituals.

In the VRC variant, the algorithm makes fewer merges (produces more clusters than
in the gold standard) and achieves higher performance (74.9). This shows that the al-
gorithm works well on fables in principle, and that its alignments induce appropriate
clusters as long as it is not forced to make merges.

The predicate alignment algorithm is the best performing algorithm on folktales as
well, in both variants (VRC: 82.4, NUM: 83.5). Similarly to Bayesian model merging
it is reluctant to create alignment links (1.9 on average), although to a lesser degree.
In contrast to the experiment on descriptions of rituals, predicate alignment is slightly
outperformed by two baselines on folktales.

The lemma alignment baseline achieves similar performance as Bayesian model merg-
ing in the NUM variant. If, however, we use the VRC variant on the lemma baseline,
the performance is much higher (83.2) yet with a higher number of clusters (sixteen).
This could indicate that this overall more topical (rather than structural) way of mod-
eling similarity makes finer distinctions (sub classes) within the ATU classes that may
or may not be related to structural properties.

Choosing k The behavior of the algorithms with respect to k is generally similar to the
setting using descriptions of rituals. Bayesian model merging and the lemma alignment
baseline induce much more clusters than in the gold standard when using the VRC
variant. Again, the clusters induced seem to be more fine-grained than the ones present
in the gold standard.
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6.6 Graph-based Detection of Structural Similarities

Looking at the other direction, the lexical overlap baseline generates fewer clusters
than in the gold standard, both with a very high standard deviation (σ = 11.1). It creates
a single large cluster and four smaller ones.

The predicate alignment algorithm induces six clusters in the VRC variant. This is
close to the gold standard number. On descriptions of rituals, predicate alignment in-
duced much more clusters than in the gold standard, caused by a very low number of
alignment links created. Although the absolute average number of alignment links on
folktales is even lower, the folktales are generally much shorter. In the case of folktales,
the predicate alignment seems to have created alignment links well suited for clustering
purposes.

Summary

The experiments show that event alignments can be used to induce clusters with a good
overlap with gold classes in most cases (predicate alignment outperforms specialized
shallow baselines on descriptions of rituals, and almost on par with baseline perfor-
mance on folktales). Very sparse event alignment links, however, are fatal (Bayesian
model merging on tales). High baseline performance on tales could indicate that topi-
cal similarity might play a role in ATU classes (in contrast to narrative structural sim-
ilarity). Issues with the event preselection, as discovered in the first experiment, also
play a role here.

6.6 Graph-based Detection of Structural Similarities

Having generated a large amount of alignments across narratives is an important step
towards the discovery of structural similarities. As a means to detect structural sim-
ilarities on a large scale, we have developed a graph-based algorithm that identifies
events which are placed in structurally similar regions. The algorithm works on the
alignments produced by any event alignment algorithm.

Assuming two sequences S,T and an alignment A. The first step is the conversion
of the alignment data structure in an undirected graph G = (V,E) in which events are
represented as vertices (6.27). Two events are connected with an (unweighted, undi-
rected) edge in two cases (6.28): (i) If the two events are from the same document, they
are connected if one directly succeeds the other in the narrative (v1 → v2). (ii) If two
events are from different documents, they are connected if an alignment link has been
produced between them. n-to-m-links are broken down into pairwise links. This cre-
ates an undirected graph as shown in Figure 6.7. The node set {a1, a2, b1, b3} would be
a structurally similar region that we seek to identify.

V = S ∪ T (6.27)
E = {(v1, v2)∣v1 → v2 ∨ {v1, v2} ∈ A} (6.28)
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Figure 6.7: Undirected graph g created from an alignment

Our algorithm works iteratively and assigns each vertex a numerical score c ∶ S ×T ×
A→ [0, k] that represents its connectivity to the other sequence. This is done by starting
a random walk (cf. Bollobás, 1998) of k steps, once from each vertex. The random walk
selects the next visited vertex at random (equal probabilities for all possible vertices)
and generates an ordered set of k vertices (6.29).

rwalk ∶ G × V × k → V k (6.29)

If a vertex v has a degree of deg(v) = 0, we define the random walk to be rwalk(G,v, k) =
⟨v⟩k0 . In this case, we basically assume a looping edge connecting v with itself. This can
only happen if an input sequence is of length 1 and the one event is not aligned to any
other event and is therefore not happening in practice.

We count the number of times we cross from one event sequence to another during
the random walk. After one iteration (doing one walk starting in each vertex), each
vertex has a score between 0 and k, which is the absolute frequency of steps that have
crossed to another sequence (6.30). This is repeated n times and the scores for each
vertex are added.

c(g, v, k) = ∣{(v1, v2)∣v1 → v2 ∈ rwalk(g, v, k) ∧ v1 ∈ S ∧ v2 ∈ T}∣ (6.30)

As an example, we consider a few random walks of length k = 2 in Figure 6.7. If the
walk would be rwalk(g, a0,2) = ⟨a0, a1, a2⟩, vertex a0 gets a score of c = 0, because no
crossing to the other sequence has occurred. If the walk is ⟨a0, a1, b1⟩, a0 gets a score of
c = 1. The walk ⟨a1, b1, a1⟩ would get a score of c = 2.

The relative frequency of crossing the sequences when starting from a given node
can easily be calculated by dividing the absolute frequency in each node by n∗ k. After
two iterations (n = 2, k = 3) with the two walks ⟨a0, a1, a2⟩ and ⟨a0, a1, b1⟩, a0 gets a score
of c = 1. The relative frequency of crossing sequences is then 1

6 , because one of six steps
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Figure 6.8: Visualisation of connectivity scores for alignment in Figure 6.7

has crossed the sequences. By increasing n, this relative frequency converges on the
probability of crossing to the other sequence at least once.

Figure 6.8 shows, as an example, how the connectivity scores can be visualized for
the example alignment from Figure 6.7. The scores have been calculated with k = 3 and
n = 1,000. Each line represents an event sequence. The y-axis shows the connectivity
scores, the x-axis the sequence ordering. In this case, the dashed line represents the left
event sequence from Figure 6.7. As one would expect, the connectivity scores decrease
towards the end of the sequence, because the last two event nodes are unconnected
(starting from the last node a4, there is only a single walk of length k = 3 that would
cross to the other sequence). It is also noteworthy that the top scores in sequence A (a1,
a2) are higher than the top scores in sequence B (b1, b3). This nicely represents the fact
that the alignment links in A are more dense than in B.

The top ranked events according to this score can easily be extracted and represent
the most connected events across two narratives. Due to being based on event align-
ments, “best connected” events are the most similar events both individually and struc-
turally.

6.7 Summary

In this chapter, we have described and evaluated the technical methodology for dis-
covering structural similarities across narrative texts. More fundamentally, we have
described three different alignment algorithms that can be employed for the alignment
of events. We have evaluated their performance in two experiments with mixed re-
sults. Finally, we have described a graph-based algorithm that detects dense regions of
alignments across documents.
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7 Analyzing and Exploiting Structural
Similarities in Digital Humanities

In this chapter, we will describe in a showcase scenario for the analysis of descriptions
of rituals how results from previously discussed algorithms and methods can be (i) vi-
sualized and (ii) put to use by researchers from digital humanities. In Section 7.1, we
will focus on story similarities from a global perspective, comparing entire stories. Sec-
tion 7.2 shows how to identify densely connected regions within pairs of descriptions
and what kind of insights can be drawn from these. In Section 7.3, we focus on a specific
region that can be found in this way among the descriptions of rituals.

7.1 Inspecting Story Similarities Globally

Suppose we are working in a large-scale research scenario and we have induced sim-
ilarities (based on event alignments as established in Chapter 6) for a large number of
documents. A first overview of the generated similarities can be gained by looking at
heat maps. Figure 7.1 shows a heat map that displays the similarities between descrip-
tions of rituals based on the Bayesian model merging. The darker a small rectangle
is, the more similar the two documents are. Obviously, the diagonal rectangles are all
black, because each document is maximally similar to itself. The larger rectangles rep-
resent the predefined ritual types. Ideally, the small rectangles within a large rectangle
would be dark, and the small rectangles outside a large rectangle bright. In order to
improve visibility, the similarity scores have been scaled.

Heat maps like these can serve as an entry point for a detailed analysis by the re-
searcher of rituals. What we can directly see in Figure 7.1 is a dark group of rectangles
surrounding the box of anna-prāśana rituals (t4), consisting of the descriptions E, F, G
and H. The fact that the descriptions E and H (within the (t4)-box) are relatively similar
is in line with the gold standard, as both rituals are anna-prāśana rituals. The descrip-
tions F and G are also measured as similar, in contrast to the gold standard. F belongs
in the (t5/mekhalā-bandhana)-group, while G is a nāmakaran. a-ritual (t3). In this case,
the researcher of rituals is able to inspect the alignments found between F and G and
can either discover unexpected similarities or errors in the processing or clustering.

Another interesting group consists of the descriptions A, B, L and N, because their
columns and rows are relatively bright in general and even seem white at some points
(e.g. L with A, I, B, D, H and K)1. This is caused by low similarities to other descriptions
of rituals. Again, an inspection of the textual sources reveals that this can indeed be

1The actual similarity values are slightly above zero.

91



7.2 Uncovering Structural Similarities

C

C

I

I

A

A

N

N

B

B

M

M

D

D

G

G

E

E

H

H

F

F

L

L

K

K

t1

t2

t3

t4

t5

Figure 7.1: Heat map with document similarities for descriptions of rituals, based on
the Bayesian model merging

explained: B is a descriptive text and therefore different from the other, prescriptive
texts. A, L and N have a different cultural background and, in terms of the ritual actions,
feature different elements at the beginning and ending sections.

7.2 Uncovering Structural Similarities

Heat maps provide ways for an abstract and global inspection of similarity scores. In or-
der to analyze details, in particular alignments between specific documents, a straight-
forward visualization is shown in Figure 7.2. In this web-based view, the text doc-
uments are shown in parallel next to each other. Alignments are displayed as lines
between frame targets and can be manually inspected. The results of the linguistic
analysis can be inspected with tool-tips, the display of various metadata information
can be toggled on or off. In the screenshot in Figure 7.2, we see a dense section of align-
ments, found automatically on the descriptions C and I using Bayesian model merging.
If the full descriptions are shown, this view allows the direct visual identification of
dense areas which feature similar actions in parallel. Given that we are interested in
similar elements across texts, these dense areas are worth closer inspection.

In large-scale studies, the manual, visual identification of interesting areas is no longer
feasible. In order to preselect interesting areas automatically, we employ the graph-
based random-walk algorithm described in Section 6.6 in order to identify strongly
connected components across multiple sequences. The following analysis is based on
the alignments created by the Bayesian model merging algorithm. We used the algo-
rithm with k = 5 and n = 1,000 (random walks of 5 steps length and repeating one
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7.2 Uncovering Structural Similarities

Figure 7.2: Screenshot of the alignment visualization

type pair 15 top ranked events (sorted according to ranking)

cū
d .ā

ka
ra

n .a
(fi

rs
th

ai
r

cu
t)

AC give(razor,barber) give(barber,razor) shave(barber,rest)
throw(rice,everybody) throw(hair) sit(boy) say(forehead)
shave(head) place(fruit) say(karavān. i,patron) recite(mano
jūtir,priest) place(water) keep(barber,śikhā) place(boy) sit(boy)

AI father(father) give(mother,portion) shave(barber,head)
give(barber,piece) father(father) father(father) touch(with,hair)
father(father) shave(barber,rest) recite(he,it) collect(hair) fa-
ther(father,sister) take(razor) mother(mother) touch(who,need)

CI recite(gandhadvārām. ) sprinkle(arghyapātra,recite) recite(trātāram
indram) recite(tejo ’si) sit(boy) recite(yāh. phalinı̄r) sit(boy) re-
cite(devasya tvā) recite(ya bhūriścarā divam. ) throw(boy,rice)
recite(raks.ohanam. ) place(cakraphan. i) recite(ausraghnam)
place(sesame) shave(hair)

an
na

-p
rā

śa
na

(fi
rs

tf
oo

d)

EH recite(asuraghnam) place(place) recite(hiran. yavarn. ām. )
place(ornament) recite(yāh. phalinı̄r) take(fire) re-
cite(svastivācana,Brahmin) put(grain) offer(pañcabali) put(rice)
recite(yāh. phalinı̄r) take(thāybhū) offer(leaf) recite(svastivācana)
put(coconut)

Table 7.1: Most connected events across descriptions A, C and I
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7.2 Uncovering Structural Similarities

thousand times).
First, the algorithm generates a ranking of the events according to their connectivity

score c. Table 7.1 shows the top ranked 15 events for four different pairings of rituals.
Reciting-events and non-events are colored gray. Pronouns have been replaced by the
noun they refer to in order to increase readability. The top three pairs show cūd. ākaran. a
rituals, which are about the first shaving, the bottom pair is an anna-prāśana ritual,
which is about the first solid food that is fed to a child.

This is reflected in the list of important events: The action shaving appears in the first
three pairs, across AI even multiple times. In terms of characters (as they are apparent
in the arguments), the barber and the boy apparently play an important role. This is in
line with the expectations and shows how the alignment algorithms can be put to use
in order to extract important ritual elements. For the description pair EH, this is not so
obvious. Although the feeding of the child appears in both descriptions, this event is
not among the top 15. However, the food is still represented prominently among the
event arguments: rice, grain, coconut, leaf.

Looking at important events across the ritual types, we find that rice also plays an
important role across CI, but in a different kind of event (it is thrown). The same mantra
also appears across the ritual types, yā.h phalinīır. Although there are some similarities
across types among the top ranked events, the differences are striking and in fact reflect
the ritual type.

In Figures 7.3 and 7.4 we show the connectivity scores generated from three pairwise
alignments of these descriptions in a graphical form (cf. Section 6.6 and Figure 6.8).
The top ranked 5 events of each sequence are marked with their token id. Clearly,
the figures directly represent the fact that the description pair CI is more similar than
the other pairs, by showing generally higher connectivity scores in Figure 7.4 than in
Figure 7.3. This is expected from analyzing the gold standard in the context of the
alignment experiment.

Both pairs involving description A (Figures 7.3a and b, the dashed line shows A)
show a peak close to the end of A. The alignment links that produce this peak point to
a certain region in the other description, as indicated by the dotted ellipses and links
marked with 1 and 2 . In both pairs, the peak in A involves the (same) token t157
which represents a shaving event. The fact that the same region from A is highly con-
nected to two other descriptions highlights the importance of the region for the specific
ritual type. Also, if we are looking at the actual context of the shaving-event in the
source documents, we find other similarities (that the alignment algorithm did not cap-
ture): Before the barber shaves the hair, the razor is given to him. After the shaving,
the hair is thrown into the water. This is in fact a structural similarity that goes beyond
individual alignment links.

The connectivity scores shown in Figure 7.4 are generally much higher, as can be ex-
pected. Across the two descriptions C and I, we find two densely connected regions,
indicated with 3 and 4 . First of all, the fact that the most densely connected re-
gions across the descriptions of these two rituals are at the beginning and end of the
sequences can be explained by the fact that both have a similar cultural background
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7.3 Fine-grained Analysis of Structural Similarities

. . . . . .

n0 ∶ hold(thakāli, his hand)

n1 ∶ sit(on svastika)

n2 ∶ recite(raks.ohan. am. )

n3 ∶wash(body) n4 ∶ sprinkle(water)

n5 ∶ recite(adhy avoca|devasya tvā)

n6 ∶ salutation

n7 ∶ offer(lamp)

n8 ∶ burn(wick). . . . . .

C I

Description C:
hold(thakāli, his hand)
sit(on svastika)
recite(raks.ohan. am. )
wash(body)
recite(adhy avoca)
salutation
offer(lamp)
burn(wick)
sprinkle(water)
recite(devasya tvā)

Description I:
hold(thakāli, his hand)
sit(on svastika)
recite(raks.ohan. am. )
sprinkle(water)
recite(devasya tvā)

Figure 7.5: Region 4 from Figure 7.4

and share most of the beginning and end. The regions marked with 3 indicate struc-
turally similar event (sub) sequences. Many of the individual events are similar and
they jointly populate a dense region, indicating high structural similarity.

The region marked with 4 seems like a dense heap of events. We will therefore
analyze this region in the next section more closely.

7.3 Fine-grained Analysis of Structural Similarities

For the closer inspection of 4 , we can delve even deeper and look at the individual
events that are described in both sequences. Figure 7.5 shows the densely connected
region, including non-aligned events. Each event is represented by a node, aligned
events have been merged into a single node, as is (conceptually) done in the Bayesian
model merging algorithm. The lefthand part of the figure contains events from descrip-
tion C and the righthand part from description I. The events on the dotted middle line
are from merged hidden states, i.e., have been aligned. The node sequences, as they
appear in the texts, are: ⟨n0, n1, n2, n3, n5, n6, n7, n8, n4, n5⟩ for C and ⟨n0, n1, n2, n4, n5⟩
for I and are printed as readable predicate argument structures on the far left and right.

In this region, the descriptions differ in their granularity. The first three events, repre-
sented by nodes n0, n1 and n2 are completely parallel. After that, I contains a sprinkle-
event (n4) and a recitation of a mantra (devasya tvā, n5) and then goes on. In C, how-
ever, a number of events (wash, recite, salute, offer, burn) happen before the sprinkling
and the recitation of the same mantra. In C, actions are mentioned and in part described
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7.3 Fine-grained Analysis of Structural Similarities

in more detail that do not appear in I. The fact that the sequence for C contains the same
node twice (n5) is actually an error. Two mantras are recited in C, one between washing
and salutation and the other one after n8, burning and n4, sprinkling. Unfortunately,
these two recitations have been merged by the algorithm.

Despite errors made by the alignment algorithm, we have detected a dense region
that can be considered as a prime candidate for a ritual element during the preparation
phase in Newar rituals. It is described in different granularity in the two texts. From
our point of view, there are two possible reasons for this difference: Imprecision or
underspecification in the writing of the description or differences in the actual execu-
tion of the ritual. This question, however, needs to be traced down and interpreted by
researchers of rituals.
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8 Conclusions

In this thesis, we have described a methodology for the discovery of structural simi-
larities across narrative texts and its implementation. The system makes use of event
alignment algorithms that work on linguistically analyzed texts. A full-fledged lin-
guistic discourse analysis is done fully automatically, taking domain adaptation issues
into account. The automatic discovery of similarities across narratives opens a path to
scalable, empirical research in many humanities areas.

8.1 Challenges for Computational Linguistics

We will briefly discuss how the challenges that computational methods face when deal-
ing with humanities problems (cf. Chapter 2) affect this work and highlight our solu-
tions.

In order to cope with the limited data set size, we have employed linguistic anal-
ysis components to produce deep semantic discourse representations. This allows us
to define different semantic similarity measures that can be used in combination in
largely unsupervised alignment methods. Thus only a limited amount of tuning data
is needed. Although the use of deep linguistic representations is not trivial either, it al-
lows finding expressive structures without relying on a huge amount of redundancies
in the data.

We have employed various domain adaptation techniques in order to cope with the
special text characteristics of the descriptions of rituals. The supervised domain adap-
tation techniques make use of existing annotated corpora from other domains and re-
quire only small amounts of in-domain annotation, based on partially adapted existing
annotation rules. The re-use of existing annotated corpora is a prerequisite for creating
fine-grained linguistic representations, because large annotated data sets are needed as
training material. We have not used statistical adaptation approaches for word sense
disambiguation and coreference resolution and this is also due to data set limitations.
Training statistical models for both tasks requires huge amount of training material, as
supervised word sense disambiguation systems are usually trained per lemma (Nav-
igli, 2009) and coreference resolution is a document/discourse-level phenomenon. In
both cases, we have devised specific adaptation techniques that make use of domain-
relevant data or domain phenomena.

We have evaluated the technical machinery, in particular the alignment algorithms,
as far as possible. Given the small size of the gold standard, we performed an indi-
rect evaluation with the clustering experiment. An interactive evaluation, in which
researchers from the respective humanities areas are actually using produced analyses,
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would be an extrinsic evaluation, but this is hard to operationalize. The evaluation
of the alignment algorithms against a manually constructed gold standard highlighted
different strengths of Bayesian model merging and predicate alignment: The Bayesian
model merging algorithm produces correct alignment links on pairs where the other
algorithms fail to produce a single correct link. Predicate alignment achieves higher
precision and recall scores on the other pair of documents.

In order to make the system outputs accessible and usable, we have developed vi-
sualization tools that show the output of the various components of the system. Each
visual representation is linked with the underlying discourse representation and tex-
tual material. This allows the humanities researcher not only to find examples for pub-
lication, but also provides a means for verification against processing errors. We also
described in Chapter 7 how a humanities researcher can use these tools to discover
specific new areas of interest in an iterative process.

8.2 Contributions

The major contributions of this thesis fall in five areas:

Linguistic Processing and Discourse Representation We have described a modular
processing architecture that produces fully integrated semantic representations of dis-
courses. The discourse representations are based on automatic annotations from many
linguistic levels, from part of speech to coreference chains. The representation scheme
does not only contain the linguistic annotation layers in isolation. Instead, the anno-
tation objects are linked to each other and can be exploited in conjunction and in their
interaction. Technically, the XML data format we used is clearly defined and data files
can be validated using XML schema.

Domain Adaptation The fact that most linguistic processing tools are developed for
and trained on newspaper texts gives rise to the need for domain adaptation, because
many texts used in the humanities are not newspaper texts. For each linguistic layer
processed in our architecture, we have described techniques for the adaptation of the
individual components to the ritual domain. Most of the techniques, however, can be
employed similarly for the adaptation to other domains. The modularization of the
processing architecture is a prerequisite for domain adaptation on individual linguistic
levels. We focused on simple adaptation techniques that rely on retraining only, because
they can easily be employed within DH projects. Also, we have shown that with small
amounts of manually annotated data significant performance gains could be achieved
with retraining.

Event Alignment Algorithms We have described three different algorithms for the
alignment of events with different properties and have developed multi-factorial mea-
sures for semantic similarity of events. They exploit both semantic similarity of the
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event terms and the arguments and also consider relative distance as an important
structural criterion. We applied the algorithms to folktales as well as descriptions of
rituals in order to generate alignments.

For the evaluation of the alignment algorithms we established a gold standard of
alignments in the ritual domain. Both Bayesian model merging and predicate align-
ment achieved a performance above the lemma alignment baseline, indicating the ad-
vantage of measuring similarity taking multiple factors into account. The Bayesian
model merging has also produced a higher number of correct positive alignments over
all story pairs, and can be considered most robust according to this evaluation. Predi-
cate alignment achieves highest precision and recall scores on a single story pair.

The cluster evaluation, in which we compared clusterings induced by the alignment
algorithms against a gold standard classification proved to be not fully reliable: A high
number of imprecise alignment links can still produce correct clusters, without the in-
dividual links being correct indicators of structural similarities. This tendency can be
seen from the strong performance of shallow similarity measures and different perfor-
mance results for Needleman-Wunsch across the two experiments. Furthermore, the
gold clustering provided by the ATU index might be more indicative of topical as op-
posed to structural similarity.

Identifying Event-level Similarities Based on the integrated discourse representa-
tions, we described a method to detect structural similarities of event sequences using
alignment techniques. We align events across discourses by use of appropriate similar-
ity functions for the alignment algorithms. We described how these alignments can be
used to (i) quantify story similarity in general and (ii) detect specific similar elements
in particular. We would like to point out that the alignment algorithms have been used
on automatically pre-processed data that includes noise and processing errors. Nev-
ertheless, we have shown how alignments can be visualized and used by humanities
researchers. In addition, because the discourse representations contain arguments that
have been connected by coreference chains, they offer many ways of analyzing narra-
tives that go beyond events. Instead, the analysis can focus on characters and the events
they participate in.

Visualization and Accessibility In digital humanities, the accessibility of results for
researchers from the humanities is of utmost importance. Numeric evaluation scores,
even if they are available, are difficult to interpret properly for researchers with a hu-
manities background, because they lack the technical background. We have therefore
shown how the results we have produced can be visualized and performed a showcase
analysis on the descriptions of rituals.

8.3 Outlook and Future Work

As an outlook, we will discuss two areas that are, from our perspective, worth working
on in the future. (i) Obviously, many components of the entire system can be improved.
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We will discuss the most important ones and suggest some ideas. (ii) We have discussed
ritual research and folkloristics as application scenarios, but it is our belief that the
automatic detection of structural similarities can be of use in many more scenarios. We
will describe some possibilities.

System improvements

Events A pressing issue is the notion of “event”, or, from a technical standpoint, the
input to the alignment algorithms. In the current setup, we use FrameNet frames as
event representations and collect them as event sequences. Although many events are
captured correctly by this approach, the input sequences also contain frames likes KIN-
SHIP, which we clearly do not want there. They introduce noise into the alignment algo-
rithms and have a bad influence on, e.g., the distance similarity measure. Long lists of
family relatives appear sometimes in the descriptions of rituals. This causes the relative
positions of the sequence elements around the list to be afar, although nothing really
happened in terms of actions. A more restrictive preselection of events that are actually
used in the event sequences could improve the alignment results. Relatively straight-
forward would be to use FrameNet frame inheritance and, e.g., allow only frames that
inherit from the frame EVENT. In this regard, the special status of statives should also
be taken into consideration.

Event similarity Another point that could be improved is the measuring of event simi-
larity. Using different measures and averaging other them is relatively straightforward,
but it is also very shallow because nuances that are captured by a single measure are
removed due to the averaging. There are a number of cases in which a single measure
would allow to make the correct choice, but it has not enough weight to overrule the
other measures. Remember that the weights of the measures are fixed on a global level,
i.e., the same weighting scheme is used for each pair. It would presumably improve
the results if there was a way to decide the weight of the measures not globally, but per
event pair or event pair type. If, for instance, both events are TEXT_CREATION-events,
the similarity of the fillers of the frame elements becomes much more important than
if one event is a PLACING and the other a CAUSE_FLUIDIC_MOTION. In order to do
such a thing, we would require a classification of potential alignment links for which
different weighting schemes could be used.

Characters In our current setup, characters come into play as arguments of events or
entities created by the coreference resolution system. The similarity of characters across
stories is measured only in terms of argument overlap. A more direct and explicit
handling of characters, e.g., by inducing some sort of binding list as in Fay (2012), could
be helpful to improve event alignments. However, one has to be careful to not being to
restrictive, in particular if named entities are involved. Obviously, the similarity should
not suffer, if Hansel and Gretel are named differently.
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Connecting dense regions An obvious improvement to the random-walk algorithm to
uncover densely connected regions across two aligned documents (Section 6.6) would
be to base the algorithm on a weighted graph where the weights are given by the sim-
ilarities of aligned events. This way, strongly connected regions would be receive a
higher connectivity score if they link events that are similar. However, it is not directly
clear what weight the sequential links in the graph should receive.

Application scenarios We have described ritual research and folkloristics as two ap-
plication scenarios for this system: Both scholarly areas have an interest in event simi-
larities across different narratives. However, we believe that there are many more ap-
plication scenarios for identifying structural similarities.

Biographies Many areas in social sciences are interested in analyzing biographies (cf.
Roberts, 2002). The comparison of biographies also has a long tradition, starting with
Plutarch’s “Parallel Lives”, in which he made pairwise comparisons of Roman and
Greek noblemen. If one would see a written biography as a story, a system like the
one presented in this thesis would be able to uncover similarities in the story line, i.e.,
the lives of people. Although dates and locations are important in biographies, the sim-
ilarities this system could detect go beyond that by taking the order and the relation to
other persons into account (via coreference analyses).

Contemporary history Finding similarities across texts that describe temporal develop-
ments might be another interesting application scenario. Tanca (1993) described a num-
ber of cases in which international armed forces intervened in state-internal conflicts.
Each intervention is usually preceded by discussions in the U.N. security council, pos-
sibly resolutions, etc. Finding similarities in the context of international interventions
might help to identify key turning points in the process.

Summarization A system that identifies structural similarities in narrative texts, such
as ours, might also be useful to improve a multi-document summarization (McKeown
and Radev, 1995) application. In multi-document summarization, the task is to identify
the key pieces of information from many documents about the same topic. Identify-
ing similar events and participants across multiple documents allows such a system
to detect important (and consistent) events and participants. Those can be chosen for
generating a summary.
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Appendix

1 Folktale: Bearskin

A soldier, having deserted his regiment in the thick of battle, took refuge in the woods.
However, the foes of war were soon replaced by the enemies cold, thirst, and hunger.
With nowhere to turn for help, he was about to surrender to the powers of despair,
when without warning an awful spirit appeared before him. He offered the poor soldier
great wealth, if he would but serve this uncanny master for seven years. Seeing no other
escape from his misery, the soldier agreed.

The terms of the pact were quickly stated: For seven years the soldier was to wear
only a bearskin robe, both day and night. He was to say no prayers. Neither comb
nor shears were to touch his hair and beard. He was not to wash, nor cut his nails, nor
blow his nose, nor even wipe his behind. In return, the spirit would provide him with
tobacco, food, drink, and an endless supply of money.

The soldier, who by his very nature was not especially fond of either prayers or of
cleanliness, entered into the agreement. He took lodgings in a village inn, and discov-
ered soon enough that his great wealth was ample compensation for his strange looks
and ill smell.

A nobleman frequented this inn. Impressed by Bearskin’s lavish and generous ex-
penditures, he presented him with a proposal. "I have three beautiful daughters," he
said. "If the terms are right, you may choose any one of them for a bride."

Bearskin named a sum that was acceptable to the nobleman, and the two set forth
to the palace to make the selection. The two older daughters made no attempt to hide
their repugnance of the strange suitor, but the youngest unhesitatingly accepted her
father’s will. Bearskin formalized the betrothal by removing a ring from his own finger
and twisting it into two pieces. One piece he gave to his future bride; the other he kept.
Saying that soon he would return, he departed.

The seven years were nearly finished, so a short time later Bearskin did indeed come
back for his bride. Now freshly bathed, neatly shorn, elegantly dressed, and riding in
a luxurious carriage, he was a suitor worthy of a princess. Identifying himself with his
half of the twisted ring, he claimed his bride.

Beside themselves with envy, and furious that they had squandered their rights to
this handsome nobleman, one of the bride’s older sisters hanged herself from a tree
and the other one drowned herself in a well. Thus the devil gained two souls for the
one that he had lost.
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2 Proppian Event Functions

2 Proppian Event Functions

Symbol Description
A The villain causes harm or injury to a member of a family.
B Misfortune or lack is made known; the hero is approached with a

request or command; he is allowed to go or he is dispatched.
C The seeker agrees to or decides upon counteraction.
↑ The hero leaves home.

D The hero is tested, interrogated, attacked etc., which prepares the
way for his receiving either a magical agent or helper.

E The hero reacts to the actions of the future donor.
F The hero acquires the use of a magical agent.
G The hero is transferred, delivered or led to the whereabouts of an

object of search.
H The hero and the villain join in direct combat.
J The hero is branded.
I The villain is defeated.

K The initial misfortune or lack is liquidated.
↓ The hero returns.

Pr The hero is pursued.
Rs Rescue of the hero from pursuit.
L A false hero presents unfounded claims.

M A difficult task is proposed to the hero.
N The task is resolved.
Q The hero is recognized.

Ex The false hero or villain is exposed.
T The hero is given a new appearance.
U The villain is punished.
W The hero is married and ascends the throne.

3 Description of a Cūd. ākaran. a Ritual

Salutation to Śrı̄ Gan. eśa.
Now the ritual of the first shaving of the head.
The yajamāna should sip three times water from the palm of the hand.
Place a plate with pūjā materials such as flowers etc. on the ground.
vākya starting with: "Today etc."
The Brahmin should perform the worship of the kalaśa with the siddhir astu. . . until
yathāvān. a.
Perform here the worship of the sixteen digits of the moon’s disc on the bronze plate
with salutations to Indra, Candra, Niśānātha, Śı̄tām. śu, Śaśalāñchana, Vidhu, Tārādhipati,
Śaśin, Abja, Ud. upa, R. ks.a, Pūrn. imā and Dvijarāja.
Recitation of the imam. devā asupatnam.
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3 Description of a Cūd. ākaran. a Ritual

Act here in the yathākarma.
The nāyaka should bring the boy holding his hand and make him sit on a svastika.
Fan the smoke of burnt rape and mustard seeds reciting the raks.ohanam. .
Wash ritually the body of the boy with water and rice reciting the adhy avoca.
Salutation.
Offer a lamp with a burning wick and the tejo ’si.
Sprinkle water from the arghyapātra reciting the devasya tvā.
Let the boy worship the sacred vase saying: "This seat is for all the filled sacred vases
or the deities invoked in the vases".
Salutation.
Salutation with flowers.
Give a tikā to the yajamāna and/or boy with sandalwood paste and vermilion.
Salutation with flowers and a yajñopavı̄ta.
Incense.
Light with a burning wick.
Now fragmant materials etc.
Worship of the lamp, the wooden measuring vessel and the key reciting the agnir
mūrdhā divah. and the trātāram indram.
One should wave with lamp, wooden measuring vessel and key.
Offering of oil.
Wave a bamboo plate reciting the ausraghnam.
Offer oil on the head, hands and legs of the boy with the kān. d. ātkān. d. āt.
The worshipper should comb the hair of the boy with a porcupine bristle and divide it
into two parts reciting the dı̄rghāyutvāya.
Bind wood and leaves in the hair.
For it is said: "In the east above the forehead, a piece of the bar.
In the south above the right ear, a piece of the dubasi, on the left i.e. north, above the
left ear, a piece of the valasi, in the west also above the right ear, a piece of the bastard
teak or flame of the palasi."
The following is the os.adhe trāyasva for binding the wood and leaves into the hair.
After this draw a svastika on the hands of the maternal uncle and worship the hands.
Give daks.in. ā to the priest or gods.
Hand over a golden needle, a silver needle, a golden razor and a silver razor to the
maternal uncle.
The father should pour hot and/or cold water reciting the us.n. ena vāya.
By this mikhiścāpa.
The father should pour water in the east of the hair, then should the maternal uncle
shave the hair at the given auspicious moment reciting the ya bhūriścarā divam. .
The same in the south reciting the os.adhe trāyasva svadhite mainam himsı̄h. .
The same in the north reciting the śivo nāmāmsi.
The same in the west reciting the ya bhūriścarā divam. .
Imagine that the whole head is shaved reciting the yatks.uren. a māskāyu mukhanis. ı̄.
Recite the mūrdhānam. divo aratim. .
Pierce the ears: on the right side with a golden needle, on the left side with a silver
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3 Description of a Cūd. ākaran. a Ritual

needle reciting the bhadram. karn. ebhih. śr.n. uyāma.
Give sandalwood paste etc. and svagã.
Shower pieces of fruits etc. from the measuring vessel on the head of the boy with the
yāh. phalini.
Make this three times.
Show and offer the lamp to the boy with the tejo ’si.
Everybody should throw popped rice on the head of the boy while the priest recites the
mano jūtir.
Worship the hands of the barber.
Give the golden and silver razor with daks.in. ā to the barber.
Give him also a small plate.
After finishing this much, the nāyah. should take away the boy holding his hand.
Place him on the seat decorated with a svastika.
Shave the head.
The nini should collect the shaved hair.
Throw sweet meat on the plate for the barber.
Let the boy be besmeared and bath with mustard oil cake.
Let the boy undress.
After finishing this, the nāyah. should bring the boy holding his hand.
Let the boy again sit on the seat decorated with a svastika.
Fan the smoke of burnt rape and mustard seeds reciting the raks.ohanam. .
Clean the eyes with uncooked rice and water and place the rice in the woven bamboo
basket reciting the adhy avocad.
Show and offer the lamp to the boy with the tejo ’si.
Sprinkle water from the arghyapātra reciting the devasya tvā.
Let the boy worship the sacred vase saying: "This seat is for all the filled sacred vases".
Salutation.
Salutation with flowers.
Also give a tikā of sandalwood paste and vermilion to the boy.
Give him the yajñopavı̄ta.
Burn incense.
Wave light with a burning wick.
Now fragrant materials etc.
Worship the lamp, the wooden measuring vessel and the key reciting the agnir mūrdhā
and the trātāram indram.
Wave the lamp, the wooden measuring vessel and the iron key over the head of the boy
reciting the ausraghnam.
Draw on the head of the boy a svastika with sandalwood paste.
Apply this sandalwood paste on the whole head reciting the gandhadvārām. .
Place some white sesame on the head of the boy.
Bind the kumah. kah. around on the head with the raks.ohanam. .
Bind a silk thread around the head with the pavitre ’stho.
Stick a porcupine bristle, stick a traditional comb, stick a piece of kuśa in the hair again
with the pavitre ’stho.
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4 Mathematical Notation Overview

For kuśa the brahmanaspate.
Apply black soot on the eyes of the boy reciting yuñjanti bradhnam.
Bind a phani on the tuft reciting tava vāyav.
Wave the thāybhū on which is a candraman. d. ala is drawn.
Give a svagã.
Offer rice to the gods.
Paste a tikā of sandalwood paste on the forehead of the child.

4 Mathematical Notation Overview

R
ep

re
se

nt
at

io
ns

S Set of sequences
A Set of possible alignments
E Set of events
M Set of hidden Markov models
S ∈ S, S ⊆ E , S = ⟨s0, s1, . . . sn⟩ An ordered set of events, a sequence
T ∈ S, T ⊆ E , T = ⟨t0, t1, . . . tm⟩
AS,T ∈ A Set of alignment links over S and T
∣S∣ = ∣⟨s0, s1, . . . , sn⟩∣ = n Number of sequence elements, length of a sequence
⟨ai⟩k0 = ⟨a0, a1, . . . , ak⟩ Short notation for sequences
s ∈ S, t ∈ T Single sequence elements, single events
s1 → s2 Sequence element s2 directly follows element s1
a ∈ AS,T , a ⊆ (S ∪ T ) A single alignment link, set of aligned sequence elements

Fu
nc

ti
on

s

g ∶ N→ R Gap cost function (Needleman-Wunsch, p. 65)
geo ∶M→ [0,1] Geometric function (Bayesian model merging, p. 69)
plaus ∶M→ {0,1} Plausibility function (Bayesian model merging, p. 69)
sim ∶ E × E → [0,1] Similarity of individual events (p. 73)
sim ∶ AS,T → [0,1] Similarity within an alignment link (p. 83)
simdoc ∶ S × T ×AS,T → [0,1] Document/sequence similarity (p. 83)
rwalk ∶ G × V × k → V k Random walk, returns a sequence of k events (p. 88)
c ∶ G × V × k → [0, k] Connectivity score based on one random walk; absolute

frequency of crossing the sequences (p. 88)

5 Discourse Representation File Format

5.1 XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema elementFormDefault="unqualified" attributeFormDefault="unqualified"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xs="http://www.w3.org/2001/XMLSchema-instance">

<xsd:element name="root">
<xsd:complexType>
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<xsd:sequence>
<xsd:element name="document" type="documentType"></xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:complexType name="documentType">

<xsd:sequence>
<xsd:element name="originaltext" type="xsd:string" maxOccurs="1"

minOccurs="1">
</xsd:element>
<xsd:element name="sentences" maxOccurs="1" minOccurs="1">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="sentence" type="sentenceType"

maxOccurs="unbounded" minOccurs="0">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="coreference" maxOccurs="1" minOccurs="1">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="entity" type="entityType"

maxOccurs="unbounded" minOccurs="0">
</xsd:element>
<xsd:element name="singletons" maxOccurs="1"

minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="mention" type="mentionType"

maxOccurs="unbounded" minOccurs="0" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="frames" maxOccurs="1" minOccurs="1">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="frame" type="frameType"

maxOccurs="unbounded" minOccurs="0" />
<xsd:element name="order" type="orderType" maxOccurs="1"

minOccurs="1" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="chunks" maxOccurs="1" minOccurs="1">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="chunk" type="chunkType"

maxOccurs="unbounded" minOccurs="0" />
</xsd:sequence>

</xsd:complexType>
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</xsd:element>
<xsd:element name="sections" maxOccurs="1" minOccurs="1">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="section" type="sectionType"

maxOccurs="unbounded" minOccurs="0" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="senses" maxOccurs="1" minOccurs="1">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="sense" type="senseType"

maxOccurs="unbounded" minOccurs="0" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="mantras" maxOccurs="1" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="mantra" type="mantraType" maxOccurs="unbounded"

minOccurs="0" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute ref="id" />

</xsd:complexType>
<xsd:complexType name="sentenceType">
<xsd:sequence>

<xsd:element name="token" type="tokenType" maxOccurs="unbounded"
minOccurs="1" />

</xsd:sequence>
<xsd:attribute ref="id" />

</xsd:complexType>
<xsd:complexType name="tokenType">

<xsd:sequence>
<xsd:element name="frame" type="frameRefType"

maxOccurs="unbounded" minOccurs="0" />
</xsd:sequence>
<xsd:attribute name="word" type="xsd:string" />
<xsd:attribute name="lemma" type="xsd:string" use="required" />
<xsd:attribute name="sense" type="xsd:IDREF" />
<xsd:attribute name="characterOffsetBegin" type="xsd:int" />
<xsd:attribute name="characterOffsetEnd" type="xsd:int"

use="required" />
<xsd:attribute name="governor" type="xsd:IDREF" />
<xsd:attribute name="deprel" type="xsd:string" />
<xsd:attribute ref="id" />
<xsd:attribute name="pos" type="xsd:string" use="required" />
<xsd:attribute ref="OldId" />

</xsd:complexType>
<xsd:complexType name="frameType">

<xsd:sequence>
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<xsd:element name="token" type="tokenRefType" maxOccurs="1"
minOccurs="1" />

<xsd:element name="frame_element" maxOccurs="unbounded"
minOccurs="0" />

<xsd:complexType>
<xsd:sequence maxOccurs="unbounded" minOccurs="1">
<xsd:choice maxOccurs="unbounded" minOccurs="1">
<xsd:element name="mention" type="mentionRefType"

maxOccurs="unbounded" minOccurs="0" />
<xsd:element name="token" type="tokenRefType"

maxOccurs="unbounded" minOccurs="0" />
<xsd:element name="head" type="tokenRefType"

maxOccurs="1" minOccurs="0" />
</xsd:choice>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" />
<xsd:attribute ref="id" />

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" />
<xsd:attribute ref="id" />
<xsd:attribute ref="OldId" />

</xsd:complexType>
<xsd:complexType name="tokenRefType">

<xsd:attribute name="idref" type="xsd:IDREF" />
</xsd:complexType>
<xsd:complexType name="chunkType">
<xsd:sequence>

<xsd:element name="token" type="tokenRefType"
maxOccurs="unbounded" minOccurs="1" />

</xsd:sequence>
<xsd:attribute name="category" type="xsd:string" />
<xsd:attribute ref="id" />
<xsd:attribute name="sentence" type="xsd:IDREF" />

</xsd:complexType>
<xsd:complexType name="senseType">
<xsd:attribute name="wordnet" type="xsd:string" use="required" />
<xsd:attribute ref="id" />

</xsd:complexType>
<xsd:complexType name="sectionType">

<xsd:sequence>
<xsd:element name="sentence" type="sentenceRefType"

maxOccurs="unbounded" minOccurs="0" />
</xsd:sequence>
<xsd:attribute ref="id" />

</xsd:complexType>
<xsd:attribute name="id" type="xsd:ID" />
<xsd:complexType name="entityType">
<xsd:sequence>

<xsd:element name="sense" type="senseRefType"
maxOccurs="1" minOccurs="0" />

<xsd:element name="mention" type="mentionType"
maxOccurs="unbounded" minOccurs="1" />
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</xsd:sequence>
<xsd:attribute ref="id" />

</xsd:complexType>
<xsd:complexType name="senseRefType">

<xsd:attribute name="idref" type="xsd:IDREF" />
</xsd:complexType>
<xsd:complexType name="mentionType">
<xsd:sequence>

<xsd:element name="token" type="tokenRefType"
maxOccurs="unbounded" minOccurs="1" />

<xsd:element name="fe" type="frameElementRefType"
maxOccurs="unbounded" minOccurs="0" />

</xsd:sequence>
<xsd:attribute ref="id" />

</xsd:complexType>
<xsd:complexType name="frameElementRefType">

<xsd:attribute name="idref" type="xsd:IDREF" />
</xsd:complexType>
<xsd:complexType name="mentionRefType">

<xsd:attribute name="idref" type="xsd:IDREF" />
</xsd:complexType>
<xsd:complexType name="frameRefType">

<xsd:attribute name="idref" type="xsd:IDREF" />
</xsd:complexType>
<xsd:complexType name="orderType">

<xsd:sequence>
<xsd:element name="frame" type="frameRefType"

maxOccurs="unbounded" minOccurs="0" />
</xsd:sequence>
<xsd:attribute name="type">

<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="temporal" />
<xsd:enumeration value="textual" />

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>
<xsd:complexType name="sentenceRefType">

<xsd:attribute name="idref" type="xsd:IDREF"></xsd:attribute>
</xsd:complexType>
<xsd:complexType name="mantraType">

<xsd:sequence>
<xsd:element name="token" type="tokenRefType"

maxOccurs="unbounded" minOccurs="1" />
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID"/>

</xsd:complexType>
<xsd:attribute name="OldId" type="xsd:string" />

</xsd:schema>

5.2 XML Example

<?xml version="1.0" encoding="UTF-8"?>
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<root>
<document id="r0009">

<originaltext><![CDATA[Salutation to Śrī Gan.eśa.
Now the ritual of the first shaving of the head.
[...]

]]></originaltext>
<sentences>
<sentence id="s0">
<token id="t722" word="Salutation" lemma="salutation"
characterOffsetBegin="0" characterOffsetEnd="10" pos="NN" OldId="r0009_0_t_0">
<frame idref="f0"/>

</token>
<token id="t677" word="to" lemma="to" deprel="PREP"
characterOffsetBegin="11" characterOffsetEnd="13"
governor="t722" pos="TO" OldId="r0009_0_t_1"/>

<token id="t666" word="Śrı̄" lemma="Śrı̄" deprel="NN"
characterOffsetBegin="14" characterOffsetEnd="17"
governor="t688" pos="NNP" OldId="r0009_0_t_2"/>

<token id="t688" word="Gan.eśa" lemma="Gan.eśa" deprel="POBJ"
characterOffsetBegin="18" characterOffsetEnd="24"
governor="t677" pos="NNP" OldId="r0009_0_t_3"/>

<token id="t780" word="." lemma="." deprel="PUNCT"
characterOffsetBegin="24" characterOffsetEnd="25"
governor="t722" pos="." OldId="r0009_0_t_4"/>

</sentence>
[...]

</sentences>
<coreference>

<entity id="e3">
<mention id="m12">
<token idref="t829"/>
<token idref="t840"/>
<token idref="t865"/>

</mention>
<mention id="m14">
<token idref="t669"/>
<token idref="t716"/>
<token idref="t730"/>
<fe idref="fe98"/>
<fe idref="fe99"/>

</mention>
<mention id="m17">
<token idref="t235"/>
<token idref="t246"/>
<token idref="t263"/>
<fe idref="fe113"/>
<fe idref="fe115"/>
<fe idref="fe111"/>

</mention>
[...]

</entity>
</coreference>
<frames>
[...]
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<frame id="f3" OldId="r00092_f0" name="Ingestion">
<token idref="t895"/>
<frame_element id="fe6" name="Source">
<head idref="t986"/>
<token idref="t962"/>
<token idref="t976"/>
<token idref="t986"/>
<token idref="t1054"/>
<token idref="t940"/>
<token idref="t955"/>

</frame_element>
<frame_element id="fe4" name="Ingestor">
<head idref="t6"/>
<token idref="t6"/>
<token idref="t928"/>
<mention idref="m0"/>

</frame_element>
<frame_element id="fe5" name="Ingestibles">
<head idref="t997"/>
<token idref="t997"/>

</frame_element>
</frame>
[...]

</frames>
<chunks>
<chunk id="c2" category="NP" sentence="s0">
<token idref="t688"/>
<token idref="t666"/>

</chunk>
[...]

</chunks>
<senses>
<sense id="sen149" wordnet="601611-v"/>
<sense id="sen147" wordnet="14373933-n"/>
[...]

</senses>
<mantras>

<mantra id="mantra0">
<token idref="t23"/>

</mantra>
[...]

</mantras>
</document>

113



Bibliography

Aarne, Antti and Stith Thompson. The Types of the Folktale. 2nd. Vol. 75. FF Communi-
cations 184. Helsinki, Finland: Suomalainen Tiedeakatemia, May 1961.

Agirre, Eneko and Aitor Soroa. Personalizing PageRank for Word Sense Disambigua-
tion. In: Proceedings of the 12th Conference of the European Chapter of the ACL (EACL
2009). Ed. by Alex Lascarides, Claire Gardent, and Joakim Nivre. Athens, Greece:
Association for Computational Linguistics, Mar. 2009, pp. 33–41.

Andel, Kevin M. van. Formalizing TV Crime Series: Application and Evaluation of the
Doxastic Preference Framework. Bachelor’s thesis. University of Amsterdam, 2010.

Apache Software Foundation. UIMA. URL: http://uima.apache.org (visited on
02/10/2014).

Arslan, Hamdiye. Temporale Annotation narrativer Texte: Vergleich zwischen Fabel-
texten und Ritualtexten. Bachelor’s thesis. Heidelberg University, 2013.

Ashliman, D. L. A Guide to Folktales in the English Language: Based on the Aarne-Thompson
Classification System. Vol. 11. Bibliographies and Indexes in World Literature. West-
port, New York and London: Greenwood Press, 1987.

– Folktexts: A library of folktales, folklore, fairy tales, and mythology. University of Pitts-
burgh. 1996. URL: http://www.pitt.edu/~dash/folktexts.html (visited on
02/10/2014).

Bagga, Amit and Breck Baldwin. Algorithms for Scoring Coreference Chains. In: Pro-
ceedings of the Workshop on Linguistic Coreference held at the First International Conference
on Language Resources and Evaluation; Granada, Spain, May 1998.

Banerjee, Satanjeev and Ted Pedersen. An Adapted Lesk Algorithm for Word Sense
Disambiguation Using WordNet. In: Computational Linguistics and Intelligent Text Pro-
cessing. Ed. by Alexander Gelbukh. Vol. 2276. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2002, pp. 136–145.

Beißwenger, Michael and Angelika Storrer. Corpora of Computer-Mediated Commu-
nication. In: Corpus Linguistics. An International Handbook. Ed. by Anke Lüdeling and
Merja Kytö. Vol. 2. Handbooks of Linguistics and Communication Science. Berlin:
Mouton De Gruyter, 2009.

Blitzer, John, Mark Dredze, and Fernando Pereira. Biographies, Bollywood, Boom-
boxes and Blenders: Domain Adaptation for Sentiment Classification. In: Proceed-
ings of the 45th Annual Meeting of the Association of Computational Linguistics. Ed. by
Annie Zaenen and Antal van den Bosch. Prague, Czech Republic: Association for
Computational Linguistics, June 2007, pp. 440–447.

Blitzer, John, Ryan McDonald, and Fernando Pereira. Domain Adaptation with Struc-
tural Correspondence Learning. In: Proceedings of the 2006 Conference on Empirical

114

http://uima.apache.org
http://www.pitt.edu/~dash/folktexts.html


Bibliography

Methods in Natural Language Processing. Ed. by Dan Jurafsky and Eric Gaussier. Syd-
ney, Australia: Association for Computational Linguistics, July 2006, pp. 120–128.

Bod, Rens, Bernhard Fisseni, Aadil Kurji, and Benedikt Löwe. Objectivity and Repro-
ducibility of Proppian Narrative Annotations. In: Proceedings of the Third Workshop on
Computational Models of Narrative. Ed. by Mark Alan Finlayson. May 2012, pp. 17–21.

Bohnet, Bernd. Top Accuracy and Fast Dependency Parsing is not a Contradiction.
In: Proceedings of the 23rd International Conference on Computational Linguistics (Coling
2010). Ed. by Chu-Ren Huang and Dan Jurafsky. Beijing, China: Coling 2010 Orga-
nizing Committee, Aug. 2010, pp. 89–97.

Bollobás, Béla. Modern Graph Theory. Vol. 184. Graduate Texts in Mathematics. Springer
Berlin / Heidelberg, 1998.

Boyd-Graber, Jordan, Christiane Fellbaum, Daniel Osherson, and Robert Schapire. Adding
Dense, Weighted Connections to WordNet. In: Proceedings of the Third International
WordNet Conference. Ed. by Petr Sojka, Key-Sun Choi, Christine Fellbaum, and Piek
Vossen. Jeju Island, Korea, Jan. 2006, pp. 29–35.

Brooke, Julian, Graeme Hirst, and Adam Hammond. Clustering Voices in The Waste
Land. In: Proceedings of the Workshop on Computational Linguistics for Literature. Ed. by
David Elson, Anna Kazantseva, and Stan Szpakowicz. Atlanta, Georgia: Association
for Computational Linguistics, June 2013, pp. 41–46.

Brosius, Christiane, Axel Michaels, and Paula Schrode, eds. Ritual und Ritualdynamik.
Göttingen, Germany: Vandenhoeck & Ruprecht, 2013.

Buchholz, Sabine. chunklink. 2000. URL: http://www.cnts.ua.ac.be/conll2000/
chunking/ (visited on 02/10/2014).

Burchardt, Aljoscha, Marco Pennacchiotti, Stefan Thater, and Manfred Pinkal. Assess-
ing the impact of frame semantics on textual entailment. In: Natural Language Engi-
neering 15, Special Issue 4 Sept. 2009, pp. 527–550.

Busa, Roberto. The Annals of Humanities Computing: The Index Thomisticus. In:
Computers and the Humanities 14, 1980, pp. 83–90.

Byrnes, Robert. A statistical analysis of the “Eumaeus” Phrasemes in James Joyce’s
Ulysses. In: Proceedings of the 10th International Conference on Statistical Analysis of
Textual Data. Ed. by Bolasco Sergio, Chiari Isabella, and Giuliano Luca. Rome, Italy:
LED Edizioni Universitarie, June 2010.

Cai, Jie and Michael Strube. Evaluation Metrics For End-to-End Coreference Resolution
Systems. In: Proceedings of the SIGDIAL 2010 Conference. Ed. by Raquel Fernández,
Yasuhiro Katagiri, Kazunori Komatani, Oliver Lemon, and Mikio Nakano. Tokyo,
Japan: Association for Computational Linguistics, Sept. 2010, pp. 28–36.
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