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Summary

Information on protein subcellular and tissue localization is important to understand

the cellular functions of proteins. However getting such information is not trivial; one

needs to consult model organisms database, to evaluate the results of high-throughput

experiments, to read the ever-increasing literature and to use prediction tools, when

no previous knowledge on localization is available. Collecting and integrating the

necessary information is tedious and difficult to do, and there is a clear need for

evidence integration efforts. In my thesis I explored a new way of integrating and

presenting localization evidence for the scientific community.

First I discuss the COMPARTMENTS resource, which I developed in collaboration to

provide a comprehensive view on localization of proteins. This resource integrates the

above-mentioned sources and maps the evidence to common protein and localization

identifiers. In addition we developed a text-mining pipeline to find localization-

protein associations from the scientific literature. To facilitate comparison of the

different types and sources of evidence, we assigned a confidence scoring system to

the localization evidence. To provide a simple overview we visualize the evidence on a

schematic of a cell. Finally we link the evidence to its source to provide more details

to the users.

Large-scale analysis using the COMPARTMENTS resource is also possible with the bulk

download files. I have illustrated its usefulness by identifying pairs of compartments

that share a statistically significant number of human proteins and by showing that

protein-protein interaction networks can be used to infer protein localization of

interacting partners.

Later I present the TISSUES resource, which integrates evidence on tissue expression.

The resource presents the evidence the same way as COMPARTMENTS, however

it integrates more high-throughput experimental datasets. My contribution was to

create reusable components; I created a simple graphical overview based on the type

and the confidence score of the evidence. I have also improved the text-mining of
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human tissues by filtering the underlying localization keywords.

Finally I study integration on identifier level through the example of disease databases.

Ontologies are useful in data integration, however not all of them provide the same

quality. Therefore we created a modified version of the text mining pipeline to map

entries from the Online Mendelian Inheritance in Man (OMIM) to the Disease Ontol-

ogy (DO). Moreover we built a collaboration with the team behind the ontology and

they use these mappings as a basis for the next version. Overall this thesis provides

novel solutions for integrating biological data at different levels.

4



Zusammenfassung

Das Wissen über die Subzelluläre- und die Gewebelokalisation der Proteine ist wichtig

um die zelluläre Funktion der Proteine zu verstehen. Dennoch ist es nicht einfach

solche Information zu erhalten; es ist notwendig in den Datenbanken der Modelorga-

nismen nachzuschlagen, die Ergebnisse der Hochdurchsatz-Experimente auszuwer-

ten, die ständig zunehmende Literatur zu lesen und Vorhersagewerkzeuge zu nutzen,

wenn über die Lokalisation nichts bekannt ist. Die Sammlung und die Integration der

nötigen Informationen ist eine mühsame und schwierige Arbeit, und es gibt einen

großen Bedarf für die Integration bestehender Erkenntnisse. In dieser Doktorarbeit

erforschte ich einen neuen Weg, Informationen über die Lokalisation zu integrieren

und für die wissenschaftliche Gemeinschaft darzustellen.

Zuerst behandle ich in meiner schriftlichen Ausarbeitung die COMPARTMENTS Da-

tenbank, die ich in einer Kollaboration entwickelt habe, um eine Gesamtübersicht

über die Lokalisation der Proteine bereitzustellen. Diese Datenbank integriert die

obengenannte Quelle und verbindet sie mit einem Protein und dessen Lokalisation.

Außerdem haben wir eine Text-Mining Pipeline entwickelt, um Lokalisation-Protein

Assoziationen aus der wissentschaftlichen Literatur zu sammeln. Die verschiedenen

Typen und die Quellen der Informationen sind mittels eines Confidence Scoring

System vergleichbar. Wir visualisierten die Ergebnisse der Lokalisation in einer sche-

matischen Abbildung einer Zelle, um einen einfachen Überblick zu geben. Am Ende

verbindeten wir die Ergebnisse mit deren Datenquelle, um weitere Informationen für

den User anzubieten.

Die gesamte COMPARTMENTS Datenbank kann auch heruntergeladen werden, was

komplexere Analysen ermöglicht. Als Anwendungsbeispiel, zeige ich, wie man mit

Hilfe der Datenbank Organell-Paare identifizieren kann, die viele Proteine gemeinsam

haben. Außerdem zeige ich, dass man die Lokalisation der Proteine anhand eines

Protein-Protein Interaktionsnetzwerks ableiten kann.

Später stelle ich die TISSUES Datenbank vor, die die Information über die Gewe-
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belokalisation integriert. Sie stellt die Daten ähnlich wie COMPARTMENT dar, aber

sie integriert mehrere Hochdurchsatz-Experiment Datensätze. Ich entwickelte wie-

derverwendbare Komponenten, zum Beispiel eine einfache graphische Abbildung,

basierend auf dem Typ und dem Confidence Score der Information. Ich verbesserte

auch das Text-Mining des menschlichen Gewebes durch die Filterung der grundle-

genden Lokalisations-Stichwörter.

Abschließend untersuche ich die Integration der Informationen anhand verschie-

dener Krankheitsdatenbanken. Die Ontologie ist nützlich für die Datenintegration,

aber nicht jede Ontologie hat die gleiche Qualität. Deswegen modifizierten wir die

Text-Mining Pipeline, damit die Einträge aus „Online Mendelian Inheritance in Man

(OMIM)„ auf „Disease Ontology (DO)„ abgebildet werden können. Das Team, dass

die Ontologie entwickelt hat und mit dem wir eine Kollaboration ausgebaut haben,

wird die neue Abbildung in die nächste Version einbauen. Diese Doktorarbeit zeigt

neuartige Lösungen für die Integration biologischer Daten auf verschiedenen Ebenen.
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1 Introduction

1.1 Prologue

In biology we continuously extend our understanding of how life works. When one

has a disease, we want to understand what, when and how it went wrong in the body.

For example, when we realize that our elderly relative cannot remember recent events,

we ask questions like: does he have an Alzheimer’s disease, if yes how can we cure it?

Usually one or more little parts (gene, transcript, protein) of the system cease to

work in our cells, and it results in a malfunction (usually a disease). Unfortunately

we do not always know which little parts went wrong, thus we cannot cure every

disease, because we do not understand the whole biological machinery yet. Nowadays

our understanding of the biological system, while still limited, increases through

data interpretation. To have a view on the current knowledge, we need to consult

multiple sources of information such as scientific papers, datasets and results of

experiments. Despite the ongoing efforts of life scientists, it is impossible to keep

up with the ever growing quantity of biological information. Thus there is a need

for further big data integration, where the science community filters, combines and

visualizes the biomedical information, so it is easier to understand biological systems.

My research focus was to provide a solution, by creating such an integrative effort for

the community.

In this thesis I present a one-stop shop resource, COMPARTMENTS, for localization

of small cellular parts called proteins in a cell, which I developed in collaboration.

We integrated localization evidence from well-known biological databases, results of

13



Chapter 1. Introduction

high-throughput experiments and results of prediction tools for protein localizations.

Moreover we developed computational text mining tool to extract protein–subcellular

localization associations from the biomedical literature. Additionally we unified

heterogeneous evidence, translated it to confidence scores, and visualized the accu-

mulated evidence in a simple web interface.

Then I present my developed techniques could be used for integrating other types

of biological data. As an example I will demonstrate my contribution to a tissue

localization database, called TISSUES. Later I describe an automated linking of disease

databases. These databases have been used to describe and annotate biological data,

and I developed a technique to link entries in the various databases, which is later

manually checked by collaborators. Finally, I discuss how the databases can be used

to analyze large-scale biological data and how it can aid biological research.

1.2 Acquiring information about protein localization in

a cell

A cell consists of small "organs" called organelles, and they are responsible for specific

functions. For example in eukaryotes mitochondria supply the cell with a molecule

(called ATP), which is the source of chemical energy, which is later used in other

organelles to build new molecules and structures. Most of the proteins in the mito-

chondrion are involved in a chain of chemical reactions, which contributes to the

larger goal; the production of the chemical energy. Thus determining the subcellular

localization of a protein is a key step towards understanding its cellular function.

It is also known, that mislocalization of proteins occurs in diseases (Quintana et al.,

2006; Magzoub and Miranker, 2012; Gutekunst et al., 1998; Zhang et al., 2005). One

recent therapeutic effort aimed to specifically target tumor cell’s organelles. (Agemy

et al., 2013).

In this section I will give an overview how one can retrieve information on the protein

of interest. First, I will introduce a few experimental methods to unravel the subcellular

localization of proteins. Then I will talk about model organism databases, and how

the information is stored. Later I will show a few sequence-based prediction methods,

which are useful when there is no annotated data available.
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1.2. Acquiring information about protein localization in a cell

1.2.1 Experimental methods for verifying localizations

Most of the proteins are synthesized in the endoplasmic reticulum, and many proteins

are exported to other organelles in the cells. These protein have a short target peptide

(usually 3-70 amino-acid long) in their sequence and it is used by the cellular transport

machine to deliver the protein into the right compartment. The short target peptide

is either located in the middle of the sequence or in the latter case on the end of the

protein (C- or N-terminus). When the protein reaches its final destination, the target

peptide is cleaved.

There are a few high-throughput methods developed during the last decade to unravel

localization of proteins. One example is the large-scale cDNA sequencing projects

by Ziauddin and Sabatini (2001); Ozawa et al. (2003); Simpson et al. (2000). Since the

underlying ideas were similar, I describe the work by Simpson et al. (2000). In this

study a cDNA library was generated and the gene of interest was fused with the gene

of a fluorescent protein and cloning vectors are prepared for expression (Figure 1.1).

During the fusion with the fluorescent proteins the target peptide sequence might be

destroyed, thus two types of clones were generated by fusing the target protein either

at the 5’ end or at the 3’ end with the fluorescent marker protein. When the vectors

are expressed in cells, the proteins glow in specific organelles (Figure 1.2).

A similar approach was performed by Huh et al. (2003). They systematically tagged

6,234 open-reading frames (ORFs) through oligonucleotide-directed homologous

recombination. Afterwards they combined each ORF in a plasmid, followed by GFP tag

at the 5’ end (which is fused to the C-terminus of the target protein after translation).

Then they transformed haploid yeast strains and tested them using genomic PCR

whether they have integrated at the appropriate locus the GFP tag and the specific ORF.

Roughly 75% of the yeast proteome (4,156 proteins) expressed GFP signals above the

background level. After evaluating the GFP signals, the proteins were classified into

twelve subcellular localization categories. The authors suggest that the false positive

rate of this method is low. A modified approach has been carried out by Kumar et al.

(2002). Instead of marking the genes with GFP, they used an epitope sequence for the

fusion with the ORF. Then they used immunostaining to analyze the localization of

proteins. The authors tried another method as well; they used transposons to integrate

the ORFs into the genomic DNA, however it turned out to be less effective.

15



Chapter 1. Introduction

Figure 1.1: Strategy for rapid systematic localization and functional characteriza-
tion of proteins encoded by novel cDNA.
The cDNAs encoding the proteins are amplified with designed primers and to the
5’ and 3’ ends attB1 and attB2 are also added. Later the products are recombined
using the BP clonase into an entry clone, which functions as a base for expression
vectors. Then a cyan and yellow fluorescent protein gene was recombined to the 5’
and 3’ end of the gene, respectively. These vectors were used to transfect cells and
the localization of proteins were recorded. The results were later combined with data
from bioinformatical analysis and other validation experiments (immunostaining)
when it was appropriate. The figure has been taken from Simpson et al. (2000).

In proteomics studies (Andersen et al., 2002; Bell et al., 2001) first the organelles are

collected, and the proteins are extracted and analyzed. These studies begin with the

isolation of organelles through by sonication and centrifugation. Then the organelles

are purified and the proteins are separated using (1D or 2D) SDS PAGE and identified

using mass spectrometry. Peptide sequence tags were derived from the fragmentation

spectra of the proteins and a peptide sequence tag search algorithm (Mann and

Wilm, 1994; Küster et al., 2001) was used to identify proteins using the draft genome

sequence. Andersen et al. (2002) could identify 271 nucleolar proteins and Bell et al.
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1.2. Acquiring information about protein localization in a cell

Figure 1.2: cDNA-Cyan/Yellow Flourescent Protein fusion express and localize to a
wide variety of intracellular compartments.
The authors expressed the protein fusions originated from 107 entry clones in Vero
cells and imaged the cells. This figure shows the localization of twelve categories,
where the percentage refers to the part of individual expressed cDNA molecules in
the shown categories. Golgi apparatus and plasma membrance (6%), other unknown
localization (8%) and no expression (1%) are not shown. The figure has been taken
from Simpson et al. (2000).

(2001) found 81 proteins localized in the Golgi.

Also verification experiments were necessary to validate the protocol (Andersen et al.,

2002); for example the fractionation was controlled by embedding organelle in resin

and examining the samples under an electron microscope. For further verifications the

proteins are immunolabeled with antibodies and examined under a light-microscope.

The protein contents of the unfractionated and the fractionated part is also compared

using SDS-PAGE separation and probing them with specific antibodies. For the in

vivo validation of these proteins Andersen et al. (2002) isolated the cDNA clones and
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Chapter 1. Introduction

fused them with fluorescent proteins.

The Human Protein Atlas (HPA) (Uhlen et al., 2010) is an on-going effort to provide

high-throughput experimental information on tissue and subcellular localization of

proteins. The HPA team is generating antibodies against the whole human proteome.

They use at least three cell lines for the immunoflourescence analysis of subcellular

localization. Since 2010 (Uhlen et al., 2010) the project uses a new scoring scheme

to reflect whether two or more antibodies stain the protein in the same compart-

ment. The images of the experimental results are open to the scientific community.

According to the release history, one of biggest challenges is the proper generation

and staining of the antibodies.

1.2.2 Curated knowledge about subcellular localization

Biological databases play an important role in biology (Bourne, 2005). Model or-

ganism databases integrate a large part of the above mentioned high-throughput

experimental datasets, and provide a summarized overview of proteins for the life

science community such as: protein and gene names, their sequence and subcellular

localization and their biological function. Highly qualified curators manually annotate

proteins, which is tedious and expensive work (Poux et al., 2014), however it gives the

resources a huge value. This includes reading the scientific papers and integrating the

key points as annotations. For easier data integration and computational processing,

these databases use common identifiers for proteins, and keywords for the annota-

tions. They also import datasets from other web resources such as protein-protein

interaction networks from STRING (Franceschini et al., 2013). In the next sections I

will introduce some of the well-known model organism databases.

In 1965 Margaret (Oakley) Dayhoff published a book called Atlas of Protein Sequence

and Structure, which was a collection of all known protein sequences at that time.

The book was republished in several editions, and after her sudden death, the mem-

bers of her former group have created the Protein Information Resource (PIR) (Wu

et al., 2003) in 1984. Amos Bairoch created another database, SwissProt (Bairoch and

Boeckmann, 1991) for protein sequences with different annotation priorities than

PIR. During the upcoming years more sequence data was generated than SwissProt

team could annotate, therefore they created TrEMBL (Bairoch and Apweiler, 1996),

for those proteins, which were not curated in SwissProt. TrEMBL annotates proteins

18



1.2. Acquiring information about protein localization in a cell

automatically without human supervision. In 2002 teams behind PIR, SwissProt and

TrEMBL united their efforts and created the UniProt Consortium.

Figure 1.3: Parts of UniProt databases.
The UniProtKB collects functional information on proteins with annotations. The Swis-
sProt part contains the high-quality manually annotated sequences, while sequences
in TrEMBL are only analyzed and annotated computationally. Protein sequences
might exist in various copies in the different databases, and UniParc imports them by
filtering redundant copies and assigning them an unique identifier. UniMES focuses
on environmental and metagenomic data, and UniRef databases are clustered sets
of protein sequences from UniParc and UniProtKB. The figure has been taken from
http://www.uniprot.org/help/about.

The Universal Protein Resource (UniProt) database stores protein sequences and

their high-quality annotation data. The resource coverage is not limited to human

proteins, but also covers other animal, plant, fungi, bacterial and viral proteins. The

2014_03 release of UniProtKB/SwissProt contains 542,782 manually annotated protein

sequences, while TrEMBL stores 54,247,468 sequences. UniProt (Magrane and UniProt

Consortium, 2011) integrates data from other resources such as MGI, SGD, FlyBase,

WormBase (Eppig et al., 2011; Cherry et al., 2011; McQuilton et al., 2011; Harris et al.,

2009) and it is extensively cross-referenced to dozens of external database (examples:

STRING (Franceschini et al., 2013), EnsEMBL (Flicek et al., 2013), etc.) to add more and

specialized information. To justify the annotations, they also provide the references to

the underlying sources and to the scientific literature with a short description. The

UniProt database is freely available for download in standardized file formats.
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Chapter 1. Introduction

In 1997 the Saccharomyces Genome Database (SGD) (Cherry et al., 1998; Costanzo et al.,

2014) was founded, which is a community database for budding yeast. It is the main

information source for yeast researchers and stores a wide range of data such as yeast

genome, proteome and other encoded features. Similarly to UniProt, it integrates

high-quality manual annotations and results of high-throughput experiments. On

top of that, they provide on their website a selection of bioinformatic tools to help

the planning of experiments. Their data is also freely available for the scientific

community.

The Mouse Genome Database (MGI) (Blake et al., 1997) was launched in 1996 to aid

mice research by providing encyclopedic information about mouse genes and proteins.

The mouse research is particularly important in biology, because it is used as a model

of understanding human biology and diseases. It integrates similar types of evidence

as UniProt and SGD, and it provides information about various mutations and their

phenotypes. The website provides the possibility of ordering mice lines with the

desired mutation. The other model organisms such as Drosophila melanogaster and

Caenorhabditis elegans are covered by FlyBase (McQuilton et al., 2011) and WormBase

(Harris et al., 2009) respectively. These databases are the central hubs of protein

knowledge about these organisms and they use the same data structures as MGI and

SGD.

1.2.3 Sequence-based prediction methods

Sometimes only the protein sequence is available, and there is no or very little an-

notation available. Fortunately using the sequence alone is enough to predict the

localization of proteins. Imai and Nakai (2010) gave a good overview about the predic-

tion techniques and methods. The protein sorting machinery of the cell secretes the

protein to its final location using the information encoded in the sequences (e.g. target

peptide). The first method was published by von Heijne (1986), where the method

could predict the cleavage site of signal peptides. Afterwards more sorting signals

were discovered and Nakai and Kanehisa (1992, 1991) developed PSORT, which has

integrated the knowledge about sorting signals into one program. It could predict a

few possible subcellular localizations based on the sequence and its type (whether

it comes from an animal or a plant cell). Later dozens of prediction software were

developed, which I will introduce in a later section.
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How do these tools derive subcellular localization prediction from the sequence? They

consider four different features according to Nakai (Imai and Nakai, 2010). First and

the most obvious one is to look for the sorting signals, which makes the prediction

feasible. Secondly they use homology information, because orthologous proteins

share the ancestry thus it is very likely they are localized in same organelle. Indeed,

Imai and Nakai (2010) used this feature alone as an objective test and assessed the

power of the predictors by comparing it to a simple BLAST-based (Altschul et al., 1990)

homology prediction. They used BLAST to compare sequences of proteins, where the

subcellular localization was known. This simple method outperformed the predictors

in redundant dataset (sequence similarity was allowed up to 90%). Third group of fea-

tures are based on empirically correlated characteristics. These empirical features are

based on the amino acid composition and captured by machine learning algorithms.

Unfortunately these features do not always have a biological basis, however Andrade

et al. (1998) attempted to give a biological explanation; for example extracellular

proteins have more acidic surface residues, while nuclear proteins contains a large

number of amino acids with basic surface residues. This is not suprising, because

it helps to bind to the negatively charged phosphate backbone of the DNA. The last

category of features are based on localization inference from external sources. These

can be PPI data (Lee et al., 2008) or evolutionary information (Drawid and Gerstein,

2000). A limiting factor here is missing and incomplete information.

1.2.4 Tools for subcellular localization

Now I will explain how the well-known prediction methods work and incorporate

these features.

One of the most well-known and oldest methods is PSORT (Nakai and Kanehisa, 1992,

1991), and it has been developed over the years (Bannai et al., 2002; Nakai and Horton,

1999; Horton and Nakai, 1997). The latest version is WoLF PSORT (Horton et al.,

2007), which is accessible through a web interface and also available for download. It

supports sequences from animals, plants and fungi, and the localization is based on

sequence-derived signals (such as sorting signals and binding domains) and other

features such as amino acid composition and length. A weighted k-nearest neighbor

classifier uses these features in the prediction (Horton et al., 2006).

YLoc (Briesemeister et al., 2010a) is one of the state-of-the-art methods according to
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the benchmarks (Goldberg et al., 2012; Briesemeister et al., 2010b). These methods

uses naïve Bayes classifier that uses features like protein domains and motifs, GO

annotations of close homologues and similar features as WoLF PSORT. Users can

submit sequences from eukaryotes on their webpage, and they provide an explaination

for their results to justify why the predicted compartment was favored and what were

the biological reasons.

Another state-of-the-art method is LocTree2 (Goldberg et al., 2012), which can predict

proteins of the three domains of life (Figure 1.4). They use a hierarchical system

of support vector machine, which resembles the protein sorting machinery in cells.

An online and newer version is available called LocTree3, which infers localization

information by searching for the homologs with curated annotation. If there are no

significantly similar homologs available, the method falls back to LocTree2.

Figure 1.4: Structure of LocTree2 prediction mechanism.
The prediction architecture is different in archea, bacterial and eukaryotes respectively.
Abbreviations: CHL, chloroplast; CHLM, chloroplast membrane; CYT, cytosol; ER,
endoplasmic reticulum; ERM, endoplasmic reticulum membrane; EXT, extra-cellular;
FIM, fimbrium; GOL, Golgi apparatus; GOLM, Golgi apparatus membrane; MIT,
mitochondria; MITM, mitochondria membrane; NUC, nucleus; NUCM, nucleus
membrane; OM, outer membrane; PERI, periplasmic space; PER, peroxisome; PERM,
peroxisome membrane; PM, plasma membrane; PLAS, plastid; VAC, vacuole; VACM,
vacuole membrane. The figure has been taken from Goldberg et al. (2012).

1.3 Integrating biomedical data

Combining biomedical data is not trivial. In this chapter I will describe, why ontologies

are useful in integration and the basic concepts behind text mining.
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1.3.1 Using ontologies in life sciences

It is well-known that many proteins are homologous and their functions and proper-

ties are shared across species. Thus there was a need to create a common "language"

to describe the properties of proteins, therefore the GO Consortium (Ashburner et al.,

2000) was founded more than a decade ago to develop controlled vocabulary for an-

notating proteins of eukaryotes and they decided to develop three ontologies, which I

describe later.

The ontologies organize information into a hierarchy of concepts and the terms

represent a domain of biological knowledge. For example the word leg represents

an anatomical entity, but it can have another meaning in a different domain, a leg

part of an object (e.g. legs of a chair). The anatomical entity, leg can be divided into

a hierarchy, because foot is a part of leg and toes are part of foot and leg. The leg is

also a limb like an arm. Thus the hierarchy of term can be represented in a Directed

Acyclic Graph (DAG). The various types of relationships of the terms are also stored in

the ontology e.g. part of or is a. Ontologies are extensively used, because they are:

focused on different domains of biological knowledge The first three ontologies (Ash-

burner et al., 2000) describe cellular components, biological processes and

molecular functions. Later new ontologies were born to describe diseases

(Schriml et al., 2011), chemical entities with biological interest (Degtyarenko

et al., 2008; Hastings et al., 2013), plant anatomy and development (Avraham

et al., 2008), human tissues (Gremse et al., 2011) and many others, those are

available at the OBO foundry homepage (Smith et al., 2007).

continuously developed by the life science community. Every year new ontologies

are published (Smith et al., 2007) and the users can submit revisions (Ashburner

et al., 2000) as our knowledge about biology grows.

using a hierarchy, where different types of relationships between the terms are allowed.

The links define how does one term relates to another such as part of or is a links.

Some ontologies allow more fine-grained links such as (positively/negatively

regulates).

linked to other resources. The terms in the ontologies are mapped to external databases

(e.g. Schriml et al. (2011)) to enlarge their scope. These mappings enables better
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data integration and computational processing of biological datasets.

processed easily by computational methods. The controlled vocabulary and unique

identifiers in the ontologies allow easy computional processing (Huang et al.,

2009a,b; Huntley et al., 2009; Binns et al., 2009; Supek et al., 2011) . The tree-like

structure of ontologies can be used for automated similarity measures.

stable. The identifiers are kept over the releases, and if an identifier is no longer used,

it is regarded obsolete and it is de-linked from the other terms.

The most used ontology is probably the Gene Ontology (Ashburner et al., 2000),

which covers three non-overlapping biological ontologies. The parts of a cell and

its surronding are described by the cellular component ontology, molecular function

terms represent enzymatic and molecular activities, while biological processes refer to

a biological goal to which the protein or a gene contributes, such as cellular, tissue

or organism level functions. These ontologies also describe relationship between

terms(Consortium, 2010) such as is_a ,part_of, has_part or (positively/negatively)

regulates (see Figure 1.5). The is_a defines, whether one term is a subtype of another

one (e.g. mitochondria is an organelle) and if a term is a subset of another term

the is_part relationship is used (e.g. mitochondria is a part of the cell). There are

relationships on inter-ontology level, for example one or more molecular functions

contribute to a biological process (Consortium, 2010; Hill et al., 2008) and the full

version of Gene Ontology includes these links. There are other stripped down versions

of the Gene Ontology: one which does not include the inter-ontology and the has_part

links (which is the complement type of is_a relationship). Another version called GO

Slim (Harris et al., 2004) even more reduced, because it does not contain the very

detailed terms.

Curators use GO terms to annotate proteins in the model organism databases (Eppig

et al., 2011; Cherry et al., 2011; McQuilton et al., 2011; Harris et al., 2009). These an-

notations come with source information, which can be literature reference, database

reference or computational evidence (Smith et al., 2007; Consortium, 2004). They also

include an evidence code, which is based on an experiment method, computational

method or a statement in the literature. There were various studies to evaluate the

effectiveness of the evidence codes (Jones et al., 2007; Skunca et al., 2012), or assign-

ing a metric (Engelhardt et al., 2005; Buza et al., 2008) to them. There are also good
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Figure 1.5: The structure of the Gene Ontology.
The ontology can be represented in a Direct Acyclic Graph (DAG), where the terms are
the nodes and the relationship are the edges. The edges point to more general terms.
The figure has been taken from du Plessis et al. (2011).

overviews available about the Gene Ontology by du Plessis et al. (2011); Jensen and

Bork (2010).

In 2009 the community-driven Disease Ontology (Osborne et al., 2009; Du et al., 2009;

Schriml et al., 2011) was created to integrate data on human inherited, developmental

and acquired diseases. The ontology classifies diseases into a single ontology by

unifying various vocabularies and terminologies. The ontology consists of currently

eight main categories to represent: diseases of anatomical entity, cellular proliferation,

infectious agent, mental health, and metabolism along with genetic diseases, medical

disorders and syndromes. The terms are organized into a hierarchic tree-like structure

by going from the more general diseases to specific ones. The terms integrate and are

mapped to biomedical databases of ICD-9, ICD-10, MeSH, NCI’s thesaurus, OMIM

disease specific set (Amberger et al., 2011), and SNOMED CT.

The BRENDA Tissue Ontology (Gremse et al., 2011) was started in 2004 to create

a classification of enzyme sources, which later became a structured encyclopedia
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of tissue terms. The ontology currently covers anatomical structures, cell lines and

types, and tissues from fungi, plants and higher level animals. It also includes disease-

related and cancerous tissues. The terms are organized in a hierarchy, from the

more general to the more specific terms, and it has three additional relationship

types besides the general is_a and part_of relations. The develops_from/derives_from

relationship shows from what was the tissue or cell was developed (e.g. myoma cell

develops_from/derives_from muscle fibre), while the related_to relationship represent

similar tissues (e.g. electroplax is related_to muscle fibre, the electroplax, which is a

specialized muscle fiber, exists in electric eel and it generates a high electric potential

instead of a contraction).

There is an ever-growing amount of environmental and metagenomics samples. Eco-

systems biology researchers are interested in the physical environment of lifeforms.

An interesting initiative is the Environmental Ontology (Buttigieg et al., 2013), which

aims to classify environmental concepts. The ontology supports the annotation with

a wide-range of terms including man-made objects to support the environment of

remote measurement devices (such as terrarium or hypodermic needle). It categorizes

the terms into the following classes: environmental systems, which has a placement

in the environment ranging from oceans to gut lumens. Its subtypes; biome class

represent ecologically similar communities of plants, animals and other organisms

and habitat class refers to spatial region having environmental qualities which may

sustain an organism or a community of organisms. There are also single entities

(e.g. human gut or coral reef ) in the ontology, which have a strong effect on the

surronding space. Entities (e.g. seamount) belonging to causal "hubs" are described

by environmental features, while masses and volumes (such as soil) are described by

environmental material terms and climate conditions are covered by environmental

condition branch.

The GO Evidence Codes (Schneider et al., 2009; Carbon et al., 2009) will be replaced

later by Evidence Ontology terms. The ontology is still under development by the

founders of GO and it will allow a more fine-grained evidence annotation. It distin-

guished evidence, which is “a type of information that is used to support an assertion”

and assertion method, which is defined as “a means by which a statement is made

about an entity” (whether the claim was made by a human or a computer).
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1.3.2 Introduction to text mining

Despite the curators’ very valued work of annotating databases, it is not possible to

fully process the ever-growing scientific literature. Fortunately automated text-mining

solutions can help to complement the work of human curators. These methods are

capable of processing million of pages in a matter of hours and derive valuable infor-

mation from it. The work of Soldatos (2009); Jensen et al. (2006); Rebholz-Schuhmann

et al. (2012) gives an overview about the basics of text mining and I will reiterate it

here.

Defining the scope(corpus) is important for successful mining of the literature. A naïve

approach would be processing of all scientific literature available by today, however

there might be no central repository available for every scientific research areas, thus

it would be impossible to get every scientific paper. The currently available 23 million

papers from biological and biomedical research are indexed by PubMed, only 10%

is open-access, and the researcher institution needs to agree with the publishers to

access subscription-only papers. Recently the funding bodies require researchers

to publish their results under an open-access license and the latest developments

allow better text mining of full text papers(Cohen et al., 2010). Fortunately abstracts

can be download from PubMed and they provide a wealthy resource for text mining

(Kuhn et al., 2014; Franceschini et al., 2013; Pafilis et al., 2013a). One can even further

limit the scope to a set of documents from the scientific literature by using PubMed to

search for a single biological term (e.g. gene). This querying step is called information

retrieval. Another interesting source is the electronical health records (Blair et al., 2013;

Eriksson et al., 2014). Mining this data can unravel unknown disease correlations,

however the access is limited due to legal issues, and their language is different from

scientific literature (Jensen et al., 2012).

Once the corpus has been selected, one needs to find biomedical entities that are

mentioned within the text such as disease names, genes, proteins, species names

etc. The Entity Recognition (ER) consists of two sub-tasks: first, recognizing names

that refer to entities, and second, the unique identification of entities and mapping

them unambiguously to database records. Let us have a look at an example sentence:

"Alternatively, insufficient survival factor signaling (for instance inadequate levels

of interleukin-3 in lymphocytes or of insulin-like growth factor 1/2 [Igf1/2] in ep-

ithelial cells) can elicit apoptosis through a BH3-only protein called Bim." (Hanahan
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and Weinberg, 2011). A goal of ER would be to recognize all gene and protein names

marked boldface in the sentence and map them to a widely used database identifier

such as UniProtKB (Magrane and UniProt Consortium, 2011) accession numbers.

Entity Recognition. The ER is a very tough task, although it seems trivial at first

glance. Early methods employed manually devised rules to look for specific postfix

endings like -ase (Chang et al., 2004) as well as searching for nearby words like "gene"

or "protein". These rules looked for typical characteristics of gene or protein names.

However most of the modern methods use machine learning algorithms to identify

protein or gene names based on their characteristic features.

Another approach is to create a dictionary based on a comphensive list of synonymous

biomedical terms (e.g. IGF-1, IGFI, IGF1A, or Insulin-like growth factor I refer to the

same protein). The terms in the dictionary will be matched against the documents.

Algorithms are used to allow matching against the variations of the names e.g. IGF-1

or IGF1 will be both matched if dash symbol is ignored. One clear advantage that

the terms are directly linked to a database reference in the dictionary, so the term

recognition and the mapping is solved in one step. The dictionary can be extended

further to increase the efficiency of Entity Recognition; using orthographical expan-

sion with various rules such as converting Roman number to their Arabic counterpart

and Greek letters to their latin counterparts. Abbreviating, permuting when possible,

creating the pluralized form and removing unnecessary parts of the terms can also

help (Pafilis et al., 2013a). There are several difficulties in Entity Recognition due to

the lack of standardization of names. Some of the most common issues are:

1. Each protein or gene has usually more names e.g. Somatomedin-C is a synonym

for Insulin-like growth factor I.

2. Some gene names are also used as common English words e.g. homeless,

crocodile.

3. Abbreviated chemical terms might also mean protein names e.g. SDS.

4. Gene names that refer to unrelated genes in organisms e.g. Cdc2 in budding

and in fission yeast.

To address this disambiguation methods have been developed (Gerner et al., 2010;

Hanisch et al., 2005; Gaudan et al., 2005; Schijvenaars et al., 2005; Hur et al., 2009;
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Pafilis et al., 2013a). Algorithms can also guess the right term by looking at the context

(Tanabe and Wilbur, 2002; Fukuda et al., 1998). Another approach would be to create

a stopword list to ignore ambiguous terms (Glenisson et al., 2003).

Scoring important terms in the corpus

The terms occur in various quantities in the text, the occurrence of a term (in a

sentence, paragraph or in the full text) usually reflects how important the term is.

Therefore many methods employ a scoring scheme which is proportional with the

occurrence. Let us assume we have downloaded thousands of papers from Pubmed

and are looking for the most relevant articles about "the Parkinson’s disease". A

starting point could be filtering out all articles, which do not contain all three words

of "the", "Parkinson’s" and "disease", but there would be still many documents left.

If we count the number of times a terms occurs (called term frequency) in an article

and then we summarize the counts. The method will incorrectly emphasize the

articles with many occurrences of "the", because of its abundance in the English

language. Therefore articles will not get enough weight with the meaningful "disease"

or "Parkinson’s" terms. "the" is clearly a bad term to distinguish non-relevant and

relevant documents. Therefore many text mining methods incorporate an inverse

document frequency factor to penalize terms, which occur very frequently in a set

of articles. Numerically the term frequency–inverse document frequency (tf-idf) is a

product of two statistics, the inverse document frequency and the terms frequency.

There are various ways to calculate the tf-idf statistic, here I give one example:

t f (ti , a) = f (ti , a)

max( f (t , a))
(1.1)

Where f (ti , a) is the count of term ti and max( f (t , a)) is the count of the most occur-

ing term in article a. The max( f (t , a)) reduces the bias towards the terms the longer

documents, where the terms might receive a higher count. The following equation

shows the inverse document frequency is measured.

i d f (ti , A) = log

(
N

1+ {a ∈ A : ti ∈ a}

)
(1.2)

N denotes the total number of articles in the corpus and {a ∈ A : ti ∈ a} is the number

of articles, where ti term was mentioned. The denominator is adjusted by adding 1 to
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avoid division-by-zero if ti term does not exist in the corpus.

In many dictionary based methods ti can refer to an entity, which incorporate other

synonyms. One should also consider, that if a term occurs too often, it should be

ignored by adding it to stopwords.

Information extraction from the corpus

Information Extraction (IE) aims to capture pre-defined types of fact – here relation-

ship of biological terms. Going back to the example sentence, an IE system should

capture that "interleukin-3 or insulin-like growth factor 1/2 protein interacts with

Bim, which protein is necessary for the apotosis of the cell." To deduce relationships

from biomedical literature, two fundamentally different solutions can be employed;

co-occurence and natural-language processing (NLP).

Natural Language Processing. Natural Language Processing methods can extract

facts from text such types of pathway interaction (Friedman et al., 2001) and protein-

protein interactions (Šarić et al., 2006). These tools incorporate the analysis of syntax

and semantics of the natural language (Rebholz-Schuhmann et al., 2012); first text

is converted to ’tokens’ by finding the boundaries of sentences and words, then the

sentences are lexically analyzed to find part of speech tags (such as nouns, verbs and

adverbs). Then the syntax tree is obtained to delineate nouns phrases (such as "insulin-

like growth factor 1/2") and represent their relationship. Afterwards entity recognition

methods are employed to semantically tag biomedical entities (for example, diseases

and proteins) and other keywords (such as apotosis, cell division). In the last step sets

of rules are used to extract relationships on the basis of syntax tree and the semantic

labels. The standard English text and the language of biomedical literature is very

different, thus limiting the applicability of general NLP parsers (particularly, the use of

long, complex noun phrases). Another difficulty is to resolve intersentence relations

linked by anaphoric relationships (e.g. use of the word ‘it’ or ’this’ to refer to something

stated before in the text). Luckily majority of the relationship are mentioned in one

sentence (Ding et al., 2002). NLP methods are computationally intensive and a good

curation of dictionaries and rules are needed (Jensen et al., 2006).

Co-occurence. The principle of the method is very simple, it looks for co-occuring

entities within the same paragraph or abstracts, however many systems rely on co-
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occuring entities only in the same sentence. If the two entities occur often together

it means that they are somehow related, although the relationship is not known.

Therefore many solutions employ a frequency-based scoring scheme to rank the co-

occuring entities, because two-entities can be mentioned together without being

related somehow. The methods based on co-occurrence can capture more relation-

ship than NLP method, thus they usually yield a higher recall, however some of the

relationship tends be false therefore the precision is worse. Co-occurence analysis is

very versatile and it can be used to support new hipothesis generation (Ananiadou

et al., 2006; Kell and Oliver, 2004).

One can limit co-occuring methods to harvest relationship for a specific type only,

for example unraveling protein-protein interaction networks by looking for protein

names (von Mering et al., 2005). Also it is possible to look for two different entity

types such as mining protein-chemicals interactions (Kuhn et al., 2008, 2014). These

relationships can be used for annotation basis in databases.

Mentioning a few tools for text mining

There are several well-known and widely used tools, which employ various aspects

of the methods mentioned above. A starting point for literature search and probably

the most used website for information retrieval is PubMed (or one of the derivative

sites such as HubMed (von Isenburg, 2007) or UK PubMed Central (McEntyre et al.,

2011), however these sites have difficulties dealing with abbrevations or synonyms.

Upon query GoPubMed (Doms and Schroeder, 2005), searches for a term and by

default its synonyms as well in the documents. The results are organized into a

hierarchical structure where the results are categorized under concept labels from

the Gene Ontology and from the MeSH thesaurus. By using this feature the user can

easily navigate through the documents, thus reduced time is necessary for browsing

through the search results. WhatIzIt (Rebholz-Schuhmann et al., 2008) is a biomedical

entity recognition service, which can perform entity recognition on a text. The user

can choose what kind of dictionary should be used (GO term or SwissProt terms,

disease names etc.). Reflect (Pafilis et al., 2009; O’Donoghue et al., 2010) allows

real-time tagging of webpages in the user’s web browser, and protein, chemical and

Wikipedia terms are highlighted. Clicking on the terms opens up a small popup

window, with detailed information about the tagged term. OnTheFly (Pavlopoulos
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et al., 2009; Pafilis et al., 2013b) converts Excel, Word and PDF documents to tagged

web pages using the Reflect engine while keeping the layout. It provides advanced

functionality such as the interaction network of proteins and chemical mentioned in

the text. Several text-mining methods have been developed to automatically extract

localization information from the biomedical abstracts (Cheng et al., 2008; Müller

et al., 2004; Van Auken et al., 2012).

1.3.3 Integrating data from various sources

The different types and sources of information from high-throughput experimental

data, model organism databases, sequence-based prediction methods and literature

mining are complementary, it is important to combine them all to see the big picture.

However, such a task is not trivial. The different experimental datasets and databases

use various file formats and employ different identifiers and names for the same

biomedical terms (proteins, subcellular localizations, diseases, tissues etc.) (Taylor,

2007). Therefore one needs to define a standard for assembling an integrated database

by mapping data on common identifiers and keywords (Sterk et al., 2006). Many

prediction tools (for example the sequence-based prediction tools for subcellular

localization) have different web interfaces, the results consist of scores that are not

directly comparable, and for genome-wide analyses one needs to generally hold a local

installation of the software. Therefore it is thus time-intensive and difficult to gather

and evaluate evidence (pertaining to involvement in diseases or to the subcellular

localization) of a protein of interest. It is even more difficult when one needs to collect

evidence on a large number of proteins.

Several one-stop shop resources on proteins and genes have been developed. NextProt

(Lane et al., 2012; Gaudet et al., 2013) was initiated by the SwissProt/UniProtKB group

and in addition to the information available in UniProtKB high-throughput datasets

were integrated (such as high-quality proteomics, siRNA and 3D experimental, path-

way datasets, population-related variant information and data of protein-protein and

protein-drug interaction) and the web front-end support advanced powerful queries.

GeneCards (Belinky et al., 2013) automatically mines and imports data from more

than a hundred sources, resulting in a web-page for each of the human gene entries.

Their goal is to integrate the fragments of information into GeneCards scattered over

in specialized databases. MalaCards (Rappaport et al., 2013) has a similar architecture
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as GeneCards, but the resource is focused on diseases. It is a search-able database

of human diseases and their annotations, and the underlying information is derived

from more than forty resources.

There were several attempts to address subcellular localization data integration ac-

cording to Binder et al. (2014). DBSubLoc (Guo et al., 2004) was an early effort, which

integrated annotations from knowledge bases such as SwissProt (Bairoch and Boeck-

mann, 1991), PIR (Wu et al., 2003) and the other major model organism databases.

Later on the databases begin to incorporate other types of data; manual annotations

in eSLDB (Pierleoni et al., 2007) were complemented by sequence-based predictions,

then experimental datasets were integrated into LOCATE (Sprenger et al., 2007), locDB

(Rastogi and Rost, 2010), and SUBA3 (Tanz et al., 2012). Unfortunately the latest ver-

sions of the first three of these databases (DBSubLoc, eSLDB, and LOCATE) are more

than five years old, and they seem to be abandoned resources. Because of the lack of

updates they cannot be considered to reflect the current evidence. Although locDB

and SUBA3 have been updated since 2011; however, between them these resources

have limited species coverage by focusing on only on human and Arabidopsis thaliana

proteins. In comparison the previously mentioned resources have been collecting

subcellular localization evidence from multiple sources and depositing them into a

single database, they generally do not solve the issue of putting the various types of

evidence on a common confidence scale. One exception is the SUBA3 resource which

covers exclusively A. thaliana proteins, and it assigns an overall confidence score; but,

it is a tough task to trace these scores back to their source for the user.
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2 Results

2.1 Unification and visualization of biological data

During my PhD, I developed an up-to-date one-stop shop for protein subcellular

localization information in collaboration with Lars Juhl Jensen’s group in Copenhagen.

Also I contributed to a similar resource about tissue localization. What sets these

resources apart is that they unify heterogeneous evidence, translate it to confidence

scores, and visualize the accumulated evidence in a simple web interface. The un-

derlying evidence is regularly updated based on annotations from manually curated

knowledgebases, data from high-throughput screens, automatic text mining, and

sequence-based predictions.

2.1.1 COMPARTMENTS: an unified subcellular localization evidence

database

In this section I present the COMPARTMENTS (http://compartments.jensenlab.org)

web resource, which is a slightly modified version of my paper (Binder et al., 2014). We

have developed an automatically updated web resource to be able to provide up-to-

date information on the subcellular localization of proteins from the major eukaryotic

model organisms. In addition to integrating manually curated annotations, experi-

mental data, and predictions, we use automatic text mining to extract associations

from the biomedical literature. Unlike earlier resources, we address the challenge

of making evidence comparable across types and sources by introducing a unified

confidence scoring scheme. To further shield users from the heterogeneity of the
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many evidence sources, we map all localization evidence onto Gene Ontology terms

and visualize the combined results on an interactive schematic of a cell. All data is

freely available for download to facilitate large-scale analyses. I further demonstrated

that the dataset can be used for large scale analyses, and I showed that protein-protein

interaction networks can be used to predict subcellular localizations.

The COMPARTMENTS web resource

COMPARTMENTS holds subcellular localization information for 22,705 human and

6,696 yeast proteins and covers also other eukaryotes such as fruit fly, mouse and C.

elegans. When querying the database for a protein of interest, the user is presented

with an interactive schematic of a cell. These figures are color-coded according to the

confidence of the evidence supporting each of eleven (twelve in case of plants) labeled

compartments (Figure 2.4). Interactive tables provide the user with more fine-grained

localization information and the source of the underlying evidence (Figure 2.1 and

2.2).

To provide a unified overview as described above, we map protein identifiers from the

source databases to their corresponding identifiers in the STRING database (Frances-

chini et al., 2013), which for organisms in question come from Ensembl (Flicek et al.,

2012). We similarly map all cellular compartments to their respective Gene Ontology

cellular component terms (Ashburner et al., 2000). The labeled compartments are a

subset of broad GO terms, much like GO Slims (Harris et al., 2004).

We further assign a confidence score to each piece of evidence to reflect that not all

types and sources of localization information are equally reliable. To clearly signify

that these should not be overinterpreted as probabilities, we use a scoring scheme

that ranges from 1 star (lowest confidence) to 5 stars (highest confidence). The way

that confidence scores are assigned varies between evidence channels as explained in

the next section. The confidence scores are also the basis for the color-coding of the

figures (Figure 2.3 and 2.4): the higher the confidence, the darker the shading of the

compartment.
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Figure 2.1: Supporting information for underlying evidence.
Clicking on evidence of interest, the user is directed to source database, where the evi-
dence comes from. This feature allows the user to gather quickly specific information
about the protein of interest.

Evidence channels and sources

The evidence contained in COMPARTMENTS is logically partitioned into four chan-

nels. The first channel, called knowledge, is based on annotations from UniProtKB

(Magrane and UniProt Consortium, 2011; UniProt Consortium, 2010) MGI (Eppig

et al., 2011), SGD (Cherry et al., 2011), FlyBase (McQuilton et al., 2011) and WormBase

(Harris et al., 2009). We assign confidence scores to these annotations based on the as-

sociated GO evidence codes (Schneider et al., 2009; Carbon et al., 2009), which encode

whether the annotation is based on a peer-reviewed publication, an experimental

dataset, or sequence similarity etc. (see Methods). The knowledge channel provides

localization information on a total of 16864 human and 5909 yeast proteins.

The Human Protein Atlas (HPA) (Li et al., 2012) is an ongoing effort to experimentally

validate the tissue expression and subcellular localization for the entire set of human

proteins. The latter data is captured by the experiments channel and currently contains
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Figure 2.2: Text mining evidence viewer.
The protein and subcellular localization terms are highlighted in the Medline abstracts.
Therefore the user can see, which articles support the predicted protein-subcellular
localization association in the text-mining evidence channel.
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Figure 2.3: Visualization of localization evidence.
When querying the database for a protein, its localization is visualized on a schematic
of a cell (top). We also graphically summarize the types of evidence supporting each
compartment (bottom). The confidence of the evidence is color coded, ranging from
light green for low confidence to dark green for high confidence. White indicates
an absence of localization evidence. I created these figures, and they were used in a
previous version of COMPARTMENTS.
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Figure 2.4: New visualization of localization evidence.
My collaborators, Seán I. O’Donoghue and Christian Stolte created a better figure.
Besides the better look, another upgrade is, when the user hovers the cursor over a
compartment, we also graphically summarize the types of evidence supporting this
localization.
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information on 9306 human proteins. The confidence scores of this channel are based

on the antibody validation scores provided by HPA (Uhlen et al., 2010) (see Methods).

The third channel provides associations between proteins and subcellular localiza-

tions derived from automatic text mining of the abstracts in Medline. We used the

dictionary of protein names from STRING (Franceschini et al., 2013) and created a

dictionary of subcellular compartments from Gene Ontology (see Methods). We use a

confidence scoring scheme, which is based on the fact that the more a protein and

a cellular compartment are co-mentioned, the more likely the protein is to be local-

ized to the compartment (see Methods). The text-mining channel currently contains

putative localizations for 15304 human and 4144 yeast proteins.

Finally, the predictions channel contains pre-computed results from two sequence-

based prediction methods, namely the well known WoLF PSORT (Horton et al., 2007)

and the high-resolution version of YLoc (Briesemeister et al., 2010b,a). Published

benchmarks (Goldberg et al., 2012; Briesemeister et al., 2010b) suggest that these

methods are two of the best that cover many compartments, in particular for human

proteins. Moreover, these and the other methods mentioned earlier were developed

on overlapping training sets and thus cannot be considered independent evidence.

The primary reason for including only two methods is thus to not present the user

with a large number of redundant predictions. We applied both methods to 22523

human, 23443 mouse, 22938 rat, 14076 Drosophila melanogaster, 20158 Caenorhab-

ditis elegans, 6697 Saccharomyces cerevisiae, and 31280 Arabidopsis thaliana protein

sequences from STRING 9.1 (Franceschini et al., 2013). The output scores from each

tool were transformed to make them comparable to other evidence in the database

(see Methods).

The number of human and yeast proteins assigned to each of the eleven labeled com-

partments based on each of these evidence channels are summarized in Tables 2.1 and

2.2, respectively. The two sequence-based prediction tools both provide full coverage

of the proteome and are therefore shown separately in the tables. For this reason we

also leave out the prediction tools in Figure 2.5, which shows the overlap in terms of

human proteins assigned to at least one compartment by knowledge, experiments,

and text mining. This shows that integrating experimental and text-mining evidence

increases the coverage by 11% additional human proteins. Even when more than one

channel covers the same protein, this is not necessarily redundant information. Firstly,
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the same protein can localize to multiple compartments, and the two evidence chan-

nels may not provide support for the same localization. Secondly, when two channels

support the same localization of a protein, they typically provide complementary

evidence of interest to the user. This is also why full coverage of the sequence-based

prediction tools does not make the other evidence channels redundant; if a protein is

predicted to have a certain localization, it is still of interest to the user if this also is

supported by experiments or literature.

Knowledge Experiments Text mining PSORT YLoc
Nucleus 6082 5848 2288 9600 5335
Cytosol 2538 4872 577 9128 4630
Cytoskeleton 1843 1215 1257 134 —
Peroxisome 124 — 240 315 262
Lysosome 386 — 262 5 120
Endoplasmic reticulum 1382 151 656 281 178
Golgi apparatus 1250 814 348 64 313
Plasma membrane 4440 1271 1515 3681 3815
Endosome 170 — 88 — —
Extracellular space 2267 — 1528 4331 1625
Mitochondrion 1156 924 793 2008 871

Table 2.1: Overview of the localization evidence for human proteins.
We counted protein-compartment associations separately for each of the eleven
labeled compartments and for each evidence channel. The only exception is the
predictions channel, for which we show the results from the two sequence-based
methods (PSORT and YLoc) separately. Dashes denote compartments for which a
channel or prediction method cannot provide evidence.

Benchmark of the text-mining pipeline

To assess the quality of the pairs extracted by text mining, we compared them against a

benchmark set of 9,764 human and 3,834 yeast proteins having 12,232 and 4,530 high-

confidence localization annotations, respectively. The benchmark set is derived from

the evidence in the knowledge channel (see Methods). This shows that the method

works well on the majority of the compartments Figure 2.6. The exceptions include

the nucleus and – in case of human – the plasma membrane. The false positives for

these compartments are predominantly due to functional associations captured by

co-mentioning. For example, a protein involved in signal transduction can easily be

functionally associated with both the plasma membrane and the nucleus without
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Knowledge Text mining PSORT YLoc
Nucleus 2194 211 3870 1476
Cytosol 422 42 3242 1533
Cytoskeleton 231 108 44 —
Peroxisome 69 65 20 127
Vacuole 268 88 0 23
Endoplasmic reticulum 486 129 42 38
Golgi apparatus 236 75 12 57
Plasma membrane 457 135 775 350
Endosome 16 18 — —
Extracellular space 94 69 302 624
Mitochondrion 1118 162 1486 422

Table 2.2: Overview of the localization evidence for yeast proteins.
For details refer to the caption of Table 2.1.

Figure 2.5: Overlap between the knowledge, experimental, and text-mining evi-
dence for human proteins.
The Venn diagram shows the number of proteins with localization evidence from one
or more of the three types of evidence. The two sequence-based prediction methods
are not included as they are able to provide a prediction for any protein sequence.

being localized to either. The method also shows poor performance for the cytosol

due to the experimental difficulty to distinguish proteins in the cytosol from those

in, for example, vesicles. Consequently, many cytosolic proteins are conservatively

annotated to the cytoplasm instead of the cytosol.
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Figure 2.6: Benchmark of text-mining results.
The performance of the text-mining pipeline on human and yeast proteins is shown
as Receiver Operating Characteristics (ROC) curves for each of eleven compartments.
The curves do not intercept sensitivity = 1.0 and FPR = 1.0, because many of the
protein-compartment pairs in the benchmark set are never found mentioned together
in Medline, for which reason they have no text-mining score.
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Linking compartments by overrepresentation of shared proteins

To illustrate the usefulness of COMPARTMENTS for large-scale studies, we identified

pairs of compartments that share a statistically significant number of human proteins

(Figure 2.7; see Methods). Notably, there were no borderline cases – all pairs of

compartments were either highly significant after controlling for multiple testing, or

they were not even significant before correction. The two compartments that share

the most proteins are the cytosol and the nucleus, both of which also share many

proteins with the cytoskeleton. Most of the remaining intracellular compartments

form a highly connected network, except the extracellular space, the mitochondria,

and the peroxisomes.

Using protein-protein interaction networks to predict subcellular localization

We assume, that protein-protein interaction could happen mostly in the same com-

partments due to the proximity of the molecules. To evaluate whether the hypothesis

is true, we used the human protein-protein interaction networks from STRING 9.1

(Franceschini et al., 2013). We benchmarked it against a high-confidence annotations

human protein annotations, which was derived from the knowledge channel. The

results supported our hypotheses (Figure 2.8), however it is not surprising, because

proteins in the same compartment can interact. One should take account that protein-

protein interaction networks in STRING are also inferred by GO annotations from

model organism databases. The initial version of the analysis was provided by Alberto

Santos Delgado.

2.1.2 Improving the results in the TISSUES database

COMPARTMENTS (Binder et al., 2014) was the first resource, where we combined

curated knowledge, high-throughput experimental results and text-mined data from

the literature. However from the first moment, we were interested to integrate other

biological data other than subcellular localization. To reduce the time of development

a similar resource, we have built a general pipeline called Mamba framework. This

effort also helped to easily maintain the resources.

The resource share this pipeline are: DISEASES (http://diseases.jensenlab.org), OR-

GANISMS (Pafilis et al., 2013a) and TISSUES (http://tissues.jensenlab.org). Many
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Figure 2.7: Compartment relationships derived from shared proteins.
Illustrating the usefulness of COMPARTMENTS for global analysis of protein local-
ization, we studied relationships between compartments. Each node represents a
single compartment, which is highlighted in green. The number of proteins in the
compartment is shown in parenthesis. We show an edge between two compartments
whenever they share more proteins than expected at random (false discovery rate
< 0.1%). The number of proteins co-localized to the two compartments is shown next
to the edge.
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Figure 2.8: Benchmark of protein-protein interaction to find subcellular localiza-
tions.
The Receiver Operating Characteristics (ROC) shows the performance of predict-
ing subcellular localizations from human protein-protein interaction network from
STRING. AUC denotes the Area Under Curve, which is the probability that the pre-
diction is correct. The predicted subcellular localizations predicted were scored with
the number of interaction partners in a compartment divided with the number of
interactions the protein had.
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of the features are common in the background, but they are presented as a distinct

services to the user. For example the text-mining engine contains all dictionaries

for subcellular localizations, diseases, organism names and tissues and we run them

regularly on PubMed to text-mine associations for all the resources, but we show only

the respective results for each of the resources. Below I outline my contributions to

this project.

A general coloring mechanism for figures

Visualization is a main part of our resources to effectively communicate the scientific

message with our users. Therefore we created a schematic of cell for COMPARTMENTS

and a schematic of a human body for TISSUES. To support various devices, resolutions

and zooming levels without loss of quality, we created the templates in SVG, which is a

vector-based graphical file format. This also allowed us to easily visualize the location

of every protein (see Methods). Therefore I developed a module, which can color the

templates for every protein. Examples can be seen in Figure 2.3, Figure 2.4 or in Figure

2.9. For faster performance, the results can be stored in an SQL database, and the

colored templates can be easily embedded on a webpage.

Visualizing the contribution of different evidence channels

COMPARTMENTS and TISSUES resources integrate heterogeneous evidence, and it is

important to our users to track the type and source of the evidence. Thus I created

an overview figure to present the existence of an evidence in the main categories and

visualize the different sources of evidence. Small squares are ordered in a table by

larger structures and they are colored based on confidence scores. Below the figure,

the user is able to retrieve more detailed information summarized in tables.

Ensuring organism specific text-mining results in TISSUES

We extensively use ontologies in our resources, because they allow different levels

of annotation. Also we found a few mature ontologies, we used as the basis for the

dictionaries for text mining. In TISSUES we use the BRENDA Tissue Ontology (Gremse

et al., 2011), which differentiate many tissues and allows broad and narrow tissue

annotations for the proteins. To our knowledge, the terms are not categorized into
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Figure 2.9: Localization of human glucocortoid receptor, NR3C1 in COMPART-
MENTS and TISSUES.
Through the example of NR3C1 we demonstrate the effectiveness of the overview
figure. The user can see the evidence channels and the broad localization categories.
The darkness of the green coloring correlates to the strength of the evidence. This
information provides an overview to the user, and down on the webpage he/she can
get a detailed information on the evidence.

species in the current version, therefore many human proteins were falsely associated

with non-human tissues by the text-mining engine on the Medline abstracts. Therefore

I went through the BRENDA Tissue Ontology and assigned to every term in which

model organisms do they exists. By rigorously annotating them, we have on first hand

human proteins are only associated with human tissues, and on the other hand we

made sure that the resource can be easily extended to support other organisms than

humans.
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2.2 Using ontologies in data integration

The ontologies describe various biological properties and they are used in the annota-

tion of model organisms (Eppig et al., 2011; Harris et al., 2009; Magrane and UniProt

Consortium, 2011; McQuilton et al., 2011) since the first release of Gene Ontology

(Ashburner et al., 2000). The ontologies are structured into a direct acyclic graph,

which allows to track back narrower to broader annotations (e.g. mitochondrial inner

membrane is a part of mitochondrion). During the last decade other ontologies have

been created, where the more mature ones are listed by OBO Foundry (Smith et al.,

2007). We used ontologies in our projects such as the Gene Ontology (Ashburner et al.,

2000), the BRENDA Tissue Ontology (Gremse et al., 2011) or the Disease Ontology

(Schriml et al., 2011). Disease Ontology was very effective to text mine the literature,

however it is not used for annotation purposes. We decided to set up a collabora-

tion with Disease Ontology team to extend the ontology and make it a more mature

resource. First we added missing diseases, then we linked the entries to another

database.

2.2.1 Introducing a mapping pipeline to Disease Ontology

Currently, there are 1,388 OMIM pages mapped to 749 DO terms. We have develop-

ment an automated mapping pipeline (see Figure 2.10) to link 3,095 OMIM pages

(Amberger et al., 2009) to 829 DO (Schriml et al., 2011) terms. The pipeline is made

general in order to make it applicable for other ontologies. My collaborators went

through the provided mapping file and used them as a bases for manual curation.

By linking the entries to OMIM, we could also add new genetic diseases to Disease

Ontology.

To increase the recall of the mapping, we incorporated an effective text mining pro-

gram described by Pafilis et al. (2013a). Compared to a simple string matching, the

method helped to incorporate the synonyms of diseases and meanwhile being as

specific as possible (For example catching diseases caused by different mutations on

the same gene: Charcot-Marie-Tooth disease type I–IV ).
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OMIM

Dictionary

Corpus
Text

Mining Mapping Improved
DO

DO

II.

I.

III. IV.

Figure 2.10: The steps of creation of an improved Disease Ontology.
Here I show the important steps of creating the mapping using a "pseudo" text mining
pipeline. The numbers denote the following parts: I. deriving corpus from OMIM
(see Methods), II. creation of a dictionary from Disease Ontology (see Methods) III.
development of an efficient "scoring" to choose the best mapping and IV. manual
curation by collaborators.

Converting the Disease Ontology to a dictionary

We need to define the set of diseases that we will tag for mapping. This is called

dictionary creation and the terms within are used to tag important expressions in

the text. We have chosen to create a dictionary from the Disease Ontology, because

the structure of the ontology ensures that we can create a broader mapping, when a

strict mapping is not possible (e.g. various types of Alzheimer disease 1-17 in OMIM

should be mapped to the broader Alzheimer disease in Disease Ontology). We could

further exploit the ontology by using the underlying tree structure (Schriml et al.,

2011), where the broader terms are the parent terms and specific terms are the leaves.

While creating the dictionary, we removed some Disease Ontology specific "features"

from the term names (such as: (morphologic abnormality)) or introduced synonyms

of disorder and syndrome for every disease. We created general to make sure that

the dictionaries can be used in other text mining projects (e.g. DISEASES (http:

//diseases.jensenlab.org)) besides the mapping.

Creating a corpus from OMIM

We defined the set of document, which we use to map every of them to a single disease.

Therefore we prepared a corpus from OMIM and we ignored the parts, which were

genes and obsolete entries. Moreover we have processed the titles of the disease pages

in corpus to increase the chances of a correct mapping (see Methods).
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To increase the possibility of a specific mapping, the corpus includes only the titles

of diseases. We decided to ignore the descriptions, because it introduces a number

of issues: I. one needs a scoring scheme, which can score enough high the correct

disease from the description (however we implemented in a scoring scheme, which we

dropped later, see Methods), II. how one chooses between the possible matches from

the title and the description and III. it would make unnecessary difficult to handle

complex diseases (such as Cerebellar ataxia, mental retardation, and dysequilibrium

syndrome). We also ignored the complex diseases for the time being.
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3.1 Assembling the COMPARTMENTS database

This section explains how the COMPARTMENTS database was built and the text was

mainly taken from Binder et al. (2014).

3.1.1 Visualization of protein subcellular localization

For visualization purposes, we selected a set of commonly used localizations, includ-

ing the cytosol and all major organelles. Each of these represents a GO term, and all

evidence for more fine-grained localizations is projected onto these through is_a and

part_of relationships. In case of multiple lines of evidence for the same localization,

we always select the strongest. We subsequently present the evidence by color-coding

a schematic of a cell. We have developed separate figures for animal, fungal, and plant

cells to account for differences in their cell structure; for example, animal cells have

no cell wall, and only plants have chloroplasts.

3.1.2 Assembly of the knowledge and experiments channels

We imported subcellular localization annotations from comments and database cross-

reference fields of UniProtKB. We map these to the corresponding Ensembl identifiers

using the STRING alias file (Franceschini et al., 2013) and GO terms using the UniPro-

tKB controlled vocabulary of subcellular localizations. For Saccharomyces cerevisiae,

Caenorhabditis elegans, Drosophila melanogaster and Mus musculus we imported
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cellular component Gene Ontology annotations from their respective model organism

database (Eppig et al., 2011; Cherry et al., 2011; McQuilton et al., 2011; Harris et al.,

2009).

For the knowledge channel we assigned the highest score of 4 stars for annotations

with the following evidence codes: CURATED, IDA, TAS, and NAS. We assigned 3

stars to the evidence codes PROBABLE, EXP, IPI, IMP, IGI, IEP, ISS, ISO, ISA, ISM, IBA,

IBD, IKR, IMR, IRD, and IC. We assigned 2 stars to the less reliable evidence codes

POTENTIAL, IGC, and IEA, while BY SIMILARITY, RCA and NR are assigned only 1

star. Because we consider some sources to be more reliable than others, we upgraded

annotations from UniProtKB and the model organism databases by one star, resulting

in a maximum score of 5 stars for the knowledge channel.

We also imported subcellular localization data from the Human Protein Atlas (HPA)

(Uhlen et al., 2010; Fagerberg et al., 2013), which uses Ensembl identifiers, and man-

ually mapped their locations to the corresponding GO terms. HPA uses two scoring

schemes to classify the quality of its data. When a protein has been stained using

two or more antibodies, HPA provides a reliability score based on the similarity of

the staining patterns obtained with the different antibodies and the agreement with

published literature. This scale has four levels of reliability: High (4 stars), Medium

(3 stars), Low (2 stars), and Very low (1 star). When only a single antibody has been

used for staining, we instead make use of the validation score provided by HPA. This

scale has three levels: Supportive (3 stars), Uncertain (1 star), and Non-supportive

(not imported).

3.1.3 Text mining of Medline abstracts

We used the protein dictionary from STRING 9.1 (Franceschini et al., 2013) and created

a dictionary of names of subcellular localizations from the cellular component terms

of the Gene Ontology (Ashburner et al., 2000). To improve the protein dictionary we

discarded protein names that conflict with names of Gene Ontology terms. Further-

more, we blocked frequently occurring ambiguous names, such as acronyms, thereby

greatly improving the precision. This was done through manual inspection of all

protein and localization names giving rise to more than 2000 matches in Medline.

We matched these dictionaries against all Medline abstracts using an efficient named
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entity recognition engine described elsewhere (Pafilis et al., 2013a). To score the

co-occurring proteins and localizations, we used the text-mining scoring scheme of

STRING 9.1 (Franceschini et al., 2013), which is a weighted count (C (P,L)) for each

pair of protein P and for localization L:

C (P,L) =
n∑

k=1
wsδsk (P,L)+waδak (P,L) (3.1)

where n is the number of abstracts, ws = 0.2 and wa = 3 are the weights for co-

occurrence within the same sentence and within the same abstract, respectively. If

P and L are mentioned together in a sentence or in abstract k, the delta functions

δak (P,L) and δsk (P,L) are 1, and 0 otherwise. Thus, an abstract that mentions P and

L in the same sentence will give a score contribution of ws +wa whereas an abstract

that mentions them in different sentences will give a score contribution of wa only.

The co-occurrence score (S(P,L)) is defined as:

S(P,L) =C (P,L)α
(

C (P,L)C (•,•)

C (P,•)C (•,L)

)1−α
(3.2)

where C (P,•), C (•,L) and C (•,•) are the sums over localizations paired with protein P ,

over all proteins from the same organism paired with localization L and over all pairs

of proteins from the same organism and localizations, respectively. The weighting

factor α is 0.6. All parameters in the scoring scheme (ws , wa , and α) were optimized

to maximize the agreement between protein-protein co-occurrence scores and KEGG

pathways (Franceschini et al., 2013).

The text-mining score depends on number of pairs identified in Medline abstracts,

which changes as Medline grows. We therefore convert the scores into z-scores

(Z (P,L)) to get a more robust measure. The observed distribution is a mixture of

two, one from low-scoring random pairs and second from high-scoring, biologically

meaningful pairs. The former is modeled as a Gaussian where the mean is equal to

the mode of the observed distribution, which empirically coincides with the 40th

percentile. The variance of the background is estimated from the difference between

the 20th and the 40th percentiles. The final confidence score, stars, is the z-score/2,

limited to a maximum of four.
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Figure 3.1: Counting positive and negative examples.
Through counting the mitochondrial proteins, we show how the benchmarking was
done. Protein C was annotated being in the Mitochondrial inner membrane in the
benchmark set, thus it could be backtracked to Mitochondrion, so we counted it as a
positive example. Protein D was annotated being in the Endoplasmic reticulum so we
added as a negative example. Protein E is known to be in the cytoplasm, but it also
means that it might be in the Mitochondrion and in Endoplasmic reticulum, so we
ignored it.

3.1.4 Construction of text-mining benchmark set

We constructed a high-quality benchmark set based on the knowledge channel. The

positive examples are pairs of proteins and compartments supported by 5-star evi-

dence. The negative examples are pairs of proteins and compartments for which there

is no evidence suggesting that the protein is in the compartment and 5-star evidence

for the protein being in a different compartment (Figure 3.1). The compartments

considered for the benchmark set are the eleven subcellular localizations used in the

overview figure, and all evidence for more specific localizations have been backtracked

to this level. The benchmark set is available for download from the COMPARTMENTS

web resource.
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3.1.5 Construction of benchmark set for prediction based on protein-

protein interaction

We derived the same benchmark set as for the text-mining. We used protein-protein

interactions from STRING and for each protein we marked it in which compartment

are they localized according to the benchmark set. The protein’s (up to ten) highest-

scoring interaction partners were also labeled with this compartment. Afterward we

compared the labeled proteins to the benchmark set; if it is indeed localized in that

compartment it was counted a true positive otherwise it was a false positive.

3.1.6 Scoring of sequence-based predictions

The WoLF PSORT and YLoc-HighRes methods were selected for prediction of subcellu-

lar localization. We pre-computed predictions for the entire set of protein sequences

for human, mouse, rat, Drosophila melanogaster, Caenorhabditis elegans, Saccha-

romyces cerevisiae and Arabidopsis thaliana in STRING 9.1. We converted all scores

to stars to make them comparable to other evidence types; the maximum number of

stars that can be assigned to a sequence-based prediction is 3. This ensures that pre-

diction scores cannot exceed the scores of reliable manual annotations, experiments

or text mining.

PSORT (Horton et al., 2006) predicts localization based on various sequence-derived

features such as sorting signals, binding domains and amino acid composition. These

are used by a weighted k-nearest neighbor classifier. The output scores (n) roughly

correspond to the number of the k nearest neighbors from the training set that are

annotated with each localization. We convert these scores to stars (sPSORT ) using the

following formula:

sPSORT = 3
n

k
(3.3)

YLoc (Briesemeister et al., 2010b) is a naïve Bayes classifier that uses features similar

to those of PSORT combined with GO annotations of close homologues. We found

that most of the posterior probabilities from YLoc are very close to either 0 or 1. To

differentiate between the probabilities close to 1 when converting them to stars, we
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transform them using the following heuristic function:

sY Loc = 3(1− 4
√

1−p) (3.4)

where sY Loc is the stars derived from a YLoc prediction, p is the prediction probability

that the protein is localized in the given compartment. (p < 0.2 is ignored). This

formula ensures that probabilities close to 1 become distinguishable when converted

to stars: p = 0.8 → 1 star, p = 0.99 → 2 stars, p = 0.999 → 2.5 stars, p = 1.0 → 3 stars.

3.1.7 Statistical analysis of compartments sharing proteins

From the unified dataset we extracted localization information on human proteins

with more than two stars to disregard weak text-mining and prediction evidence.

The retrieved dataset comprised 18692 unique human proteins with 29493 links to

compartments; 20021 were supported by curated knowledge, 4841 by high-throughput

experimental evidence, 1468 by text mining, and 15788 by sequence-based predictions.

We counted the number of proteins shared between any two compartments. To assess

if this is higher than expected we compared the counts to a null model that assumed no

correlation between any compartments. To this end we generated 1,000,000 random

datasets in which links between proteins and compartments were permuted, thereby

preserving the number of links per protein and per compartment. We computed a

p-value for each pair of compartments as the fraction of random datasets resulting in a

count greater than or equal to the observed count. Finally, we defined the statistically

significant compartment pairs by imposing a false discovery rate of 0.1% using the

Benjamini-Hochberg method (Benjamini and Hochberg, 1995).

3.2 Contribution to the TISSUES database

In this section I outline the technical aspects of my contributions to the TISSUES

project. I will describe, how does the presentation of the figures work, how are the

figures colored and how do we filter out the non-human tissues from the BRENDA

Tissues Ontology (Gremse et al., 2011).

First I convert the scores to colors using the following equation, where scor emax = 5 is

the maximum confidence score, scor emi n = 0 is the minimum confidence score and
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scor e is the confidence score of the evidence at a given localization:

w = scor emax
2 − scor e2

scor emax
2 − scor emi n

2
(3.5)

The w weight also ensures that higher confidence scores receive a higher weight due

to the quadratic function. Using the weight we calculated the colors with the following

equation:

c = cscoremin w +cscoremax (1−w) (3.6)

cscoremin is the color (usually white) at zero confidence score and cscoremax is the color

(usually dark green) at the highest confidence score. Using the w weight the equation

creates the c color between cscoremin and cscoremax .

After we calculated for every protein the color of the evidence for every tissue or

subcellular localization based on the scores and stored the results in a PostgreSQL

table.

The web framework called blackmamba, developed in Python, renders webpages us-

ing a PostgreSQL database and colors the figure templates. We designed our templates

in SVG, because the images are vector-based and the format is a text-file, thus it is

easy to automate the coloring the subcellular locations or tissues. My script finds the

subcellular localizations or tissues in the figure and color them based on the evidence,

and finally insert it as an element in the Document Object Model of the webpage.

Figure 3.2: Coloring the evidence in an SVG.
One strength of SVGs that they are XML based and it is easy to manipulate them. The
script look for specific titles in the file and changes the fill color based on the evidence.

As my another contribution to the project, I created a filtering of tissues. It works

following way: Where a tissue does not exist an organisms (e.g. swim bladder in

humans), we assigned those NCBI taxonomy ID (Federhen, 2012) to that tissue term.
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Due the nature of the text mining some human proteins are associated with non-

human tissues, but thanks to the filter these tissues are filtered out in a post-processing

step, thus these false associations are not show on the webpage.

3.3 Developing tools to map OMIM to Disease Ontology

In this section I describe the technical details of the mapping. First I explain the rules

for dictionary creation from the ontology, then I discuss, how did we convert OMIM

to a corpus and finally I present the one-to-one mapping procedure from text mining.

3.3.1 Methods to build a dictionary from Disease Ontology

One term has a name and it might have synonyms as well in the ontology. We used a

generalized script to convert the ontology into two files: one contains identifier name

pairs, the other stores the parent-child relationships. To increase the coverage, we

extended orthographically names and synonyms of the identifier name pairs. We used

specific expansion rules for the Disease Ontology discussed in the table below: such

as creating an orthographic variant by changing Roman numbers to Arabic numbers

(such as for congenital disorder of glycosylation type I and II).

Rule Example
Removal of genitive case Alzheimer’s disease
Strip punctuations, quotes
and parenthesis

total, mature senile cataract

Remove unnecessary word
after deficiency

coenzyme Q10 deficiency disease

Roman to Arabic numbers congenital disorder of glycosylation type I and II
Permuting disease, disorder
and syndrome

gallbladder disease and gallbladder disorder

Permuting familial and
hereditary

familial retinoblastoma

Table 3.1: The rules for orthographic expansion for the dictionary creation.

After long testing we found these rules sufficient to cover most of the disease names

found in OMIM and other corpuses.
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3.3.2 Creating a corpus from OMIM database

The corpus creation consists of two parts. First we filtered out every OMIM page

marked as a gene (symbol *) or moved into another entry (symbol ˆ) and we ignored

the disease descriptions. Then continued with the titles left from OMIM disease

pages. We kept the two categories of titles (main title, and alternative titles) to create a

better mapping. We invented a new category for complex and less described diseases

where the syndromes are listed (such as knuckle pads, leukonychia, and sensorineural

deafness), becuase these diseases cannot be mapped to a single disease in OMIM.

Acronyms were splitted from the titles and treated as a new title.

We prepared further the titles for the text mining by stripping commas, punctuations

and quotes. Roman numbers and complex types (such as type IIA) were converted to

arabic numbers without the trailing subtype (which are marked with a letter). OMIM

writes the adjectives after the disease (such as heart disease, congenital) so we have

moved them in the front. When more adjectives were used, we permuted them (e.g.

diabetes and deafness, maternally inherited converted to maternally inherited diabetes

and deafness and inherited maternally diabetes and deafness respectively). We had an

old mapping scheme where we included the disease descriptions as well, however we

do not utilize it for the being.

3.3.3 Using specific rules to derive a one-to-one mapping

After we ran the text-mining, we usually had more Disease Ontology candidate terms

to map them to an OMIM page, we employed a "scoring scheme" to select the most

proper mapping. We ignored the matches coming from the body of an OMIM page.

We applied various rules until only one mapping was left (see Table 3.2 for details).

OMIM pages mapped to "disease" or to "syndrome" were excluded from the map-

ping, and it meant that those diseases are missing from the Disease Ontology. There-

fore we used the excluded pairs to add more diseases to the Disease Ontology.

In this paragraph I explain, how did the old mapping worked and what were the

issues. We counted how often does a term occur in a disease page and we included

the disease descriptions. We corrected the counts per page by counting the parent

terms as well and down-weighting terms that are mentioned in more OMIM pages by
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Level Rule
1st Removing duplicated terms
2nd Discarding parent terms
3rd Keeping the matches from the first character
4th Discarding matches from alternative titles
5th Keeping match with the most words

Table 3.2: Applying filtering rules until one candidate is left.
First terms tagged more than once are removed from matches. To increase the speci-
ficity of the mapping, we remove any terms, which children are also tagged. If there are
still more matches left, we keep only those, that matches from the very first character
in the title. This step ensures the selection of specific diseases. Some diseases in
OMIM have multiple titles, and in such cases we keep the match from the main title.
In very cases there are still multiple matches left and to get a one-to-one mapping we
employ a heurestic rule, namely we map to the term with more words, because they
are more specific.

using the term frequency–inverse document frequency. To emphasize the importance

the matches from the main title and the alternative titles, we tripled and doubled

the counts in these parts respectively. Finally for every OMIM term, we have chosen

the highest-scoring term. Unfortunately there have been two major issues with this

scoring: I. it tended to create more general mapping, even when a specific term existed

in DO. II. it could not handle correctly the complex and less described diseases.
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4 Discussion

Retrieving existing knowledge about proteins and other biological entities is a key

step in biomedicine research. One needs to invest time in reading the scientific

literature, examine previous experimental results and use computational tools, which

can predict the answer to the biological question. While a lot of annotation resources

exist the coverage as well as quality are lacking, thus there is a need for higher coverage

of annotation of the biological data.

Fortunately there are many tools and databases available which address the above

mentioned issues. Text mining collects meaningful biological associations from thou-

sands of articles within the matter of minutes, while data integration provides a single

view on different domains of knowledge. Ontologies have been created to annotate

biological entities on different levels.

However some tools and databases are difficult to use or obsolete and no longer

maintained. A large number of databases does not truly solve the data integration

challenge, which include the scoring of biological data based on the different types

and sources of information. The tools and databases presented in this thesis have tried

to address these challenges by incorporating up-to-date data integration framework

focusing on subcellular and tissue localization and diseases.
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4.1 Providing an unified view of subcellular localization

using COMPARTMENTS

The COMPARTMENTS resource unifies complementary evidence on protein local-

ization from curated knowledge, high-throughput experiments, text mining and

sequence-based prediction methods. We developed a self-updating pipeline, which

regularly imports the data from model organism databases and from experimen-

tal datasets and processes the recent literature for associations without any human

involvement.

We go beyond merely integrating many sources of evidence into a single database by

mapping all pieces of evidence onto the same set of identifiers and carefully assigning

them comparable confidence scores. We derived these through a combination of

manual inspection of each evidence source, a previous study of the reliabilities of

Gene Ontology evidence codes (Skunca et al., 2012), the benchmark results for the text-

mining pipeline, and score distributions for the sequence-based prediction methods.

This allows the users to compare and assess the different evidence based on the

confidence score.

4.1.1 Accessing the web site of COMPARTMENTS

The primary aim of COMPARTMENTS web interface is to provide the user with a sim-

ple overview of the localization of a protein of interest without losing the connection

to the underlying evidence. The resources disambiguates the queries by accepting the

common names and various identifiers and provide a list of possible candidate organ-

isms for the protein of interest. The overview is provided through a schematic of a cell,

which is color-coded based on the strongest evidence supporting each compartment.

This visualization is interactive, vector-based, supports a wide-range of devices and

allows the user to see which evidence channels support a particular compartment and

how strongly. Evidence exploration can be followed up with additional information

about the origin of the evidence.

For the knowledge and experiments channels, the tables link out to the external

databases from which the evidence was obtained. For text mining, the table gives

access to a text viewer that shows the literature sources from abstracts in which the
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protein and localization are co-mentioned, highlighting the terms that were recog-

nized. The website itself incorporates the latest HTML5 technologies and supports a

wide range of devices including smartphones and tablets.

COMPARTMENTS is the first resource to integrate subcellular localization evidence

from manually curated annotations, high-throughput screens, and sequence-based

predictions with automatic text mining for all major model organisms. To avoid the

common problem of bioinformatics databases not being maintained, we have – from

the beginning – designed the resource to be automatically kept up-to-date with the

constant changes in source databases and literature. We address the challenge of

making it easy for users to comprehend the heterogeneous evidence by projecting it

onto a common reference both in terms of protein and compartment identifiers and in

terms of reliability scores. This is complemented by the web interface, which provides

an intuitive, interactive graphical overview of the unified evidence and simple tables

with more detailed information, including links to the original sources. The website

was built using an in-house developed general framework and it has been effectively

used in similar resources. We also make the unified evidence available as bulk down-

load files to facilitate large-scale computational studies of protein localization and

integration with omics datasets.

4.1.2 Function of shared proteins shuffling between compartments

Demonstrating the usefulness of COMPARTMENTS for large-scale analyses, we de-

rived a network of compartments, which is highly consistent with established knowl-

edge on protein trafficking. We describe here 18 highly interconnected pairs of com-

partments sharing a high number of proteins as seen in Figure 2.7.

The pair of compartments, that shares the largest group of proteins, is the cytosol

and the nucleus. The observation is not surprising, since nucleocytosolic protein

transport is long known to orchestrate vital cell functions, such as the cell cycle

and transcription regulation (Yoneda, 2000). However, the biological mechanisms

that control the protein shuttling between nucleus and cytosol are currently in the

focus of investigations (Sedek and Strous, 2013). Interestingly, both nucleus and

cytosol exclusively share a significantly high number of proteins with the cytoskeleton.

The majority of these proteins are involved in cell cycle regulation processes (e.g.

centrosome organization, chromosome segregation and nuclear division) and the
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cytoskeleton organization, representing successfully the highly dynamic collaboration

between these compartments during cell cycle progression (Heng and Koh, 2010).

A further interesting relationship that emerged is the one that the peroxisomes have

with the endoplasmic reticulum and the mitochondria, which is formed by proteins

mainly involved in fatty acid metabolic and lipid biosynthetic processes. Noteworthy,

while the functional cooperation between the peroxisomes and the endoplasmic retic-

ulum in metabolic regulation is well studied (Dirkx et al., 2005; Braverman and Moser,

2012), their connection to mitochondria was not revealed until recently (Camões

et al., 2009; Schrader and Yoon, 2007). However, further investigation of the proteins

forming the functional bridges between peroxisomes and its interactors is expected

to provide a valuable means to trace the underlying mechanisms of this yet poorly

explored interplay (Islinger et al., 2012).

In contrast to the exclusive relationships described above, the rest of the intracellular

compartments form a highly connected network. Proteins shared between the plasma

membrane, endosomes and lysosomes, as well as the ones between lysosomes and

the extracellular matrix are mainly involved in processes such as immune response

and phagocytosis, reflecting their long known cooperation in the endocytic trafficking

pathway (Watts, 2001, 2012). Respectively, proteins shared between the endoplasm

reticulum, Golgi apparatus and plasma membrane mainly participate in protein

processing such as protein metabolism, membrane proteolysis and phospholipid

biosynthesis, supporting their well described collaboration on the exocytic pathway

(Mellman and Warren, 2000). Last, further connections between the Golgi apparatus,

endosomes and lysosomes represent the complex cross-talk between these two major

trafficking pathways (Le Roy and Wrana, 2005).

Considering the fact that the protein environment in the cell is critical for the protein

function, highly interconnected compartments can give valuable insight or even pre-

dict the functional role of the proteins identified in these compartments. Additionally,

such information can support putative functional or physical interactions between

proteins uncovering unreported protein collaborations. Because COMPARTMENTS

uses the same protein identifiers as the STRING database (Franceschini et al., 2013), it

also facilitates large-scale analysis of protein localization in the context of interaction

networks.
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4.1.3 Effectiveness of prediction of subcellular localization using protein-

protein interactions

We have shown that if we understand the interaction network of proteins and some

proteins are known to be localized in a specific compartment, then we can infer with

high probability that the other proteins are also located in the same compartment.

This is not surprising because in many cases physical proximity is necessary for

protein-protein interaction (Fields and Song, 1989), thus it is likely that the proteins

are localized in the same compartment. Indeed protein-protein interaction studies

showed previously that interacting proteins are likely to be in the same compartment

(Huh et al., 2003; von Mering et al., 2002).

With this study we showed that one can easily combine our database with other

databases for large scale studies. One can also make predictions based on their local-

ization as we did know predicting the localization of a protein using the interaction

network.

4.1.4 Future directions

COMPARTMENTS is a user-friendly database, which provides an overview about

subcellular localization of any given protein. Although I have developed the first

version of this resource, it could be easily extended to support a broader range of

studies or the resource could be tighter incorporated into bioinformatics pipeline. In

these sections I give an overview about the possible future avenues.

Support for large-scale studies

Currently the community can carry out large studies by parsing the bulk download

files. Although we showed that using only these files one can carry out powerful

studies, using them also requires a solid knowledge of scripting and bioinformatics

tools. Therefore the life science community could benefit if one could do simple

large-scale studies using only the web site.

One obvious feature would be the possibility of querying for multiple proteins, but this

task is not trivial and it needs significant amount of planning and development. Such

features could especially aid high-throughput studies such as proteomics research.
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For example it will be possible to submit a list of proteins to answer questions related

to their localization. One question is whether the proteins are enriched in a specific

compartment. The enrichment could be further customized by selecting the type

and source of evidence (e.g. selecting the most reliable evidence from the knowledge

channel). Another feature would visualize protein-protein interaction networks us-

ing STRING (Franceschini et al., 2013) and its payload mechanism to show where

these proteins are localized. This can further help to see how proteins in different

compartments interact.

Increased evidence and species coverage

The recent version of COMPARTMENTS supports only seven organisms, but more

species can be easily included (such as including proteins from Danio rerio or Schizosac-

charomyces pombe). There are many challenges, whether a model organism database

is available. The same name can refer to two completely different genes in within

species (e.g. Cdc2 in Schizosaccharomyces pombe and in Saccharomyces cerevisiae),

and a better disambiguation module is needed for this task in the text mining pipeline.

The resource can also cover more evidence as it becomes available. We can add an

experimental evidence channel for organisms other than human, if similar screening

studies like Human Protein Atlas (Uhlen et al., 2010) become available. We can also

incorporate more sources of evidence if the quality is high enough e.g. another source

for human high-throughput experimental results. The set of predictions tools can be

changed as well if better ones are developed.

Developing a curation tool for database annotation

The evidence for protein-subcellular localization associations are supported by a

number of Medline abstracts. We show these abstracts where the protein and the

localization term are highlighted in the text. A curation tool based on this abstract

viewer could be created, and it would show uncurated assocations to aid the annotia-

tion process. It can also include full-text articles, and the highlighting feature improves

the curators’ ability to catch the evidence for the annotation.
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Accessing COMPARTMENTS through an API and integration into other services

More tools can be integrated into our database, if we open the resource for external

developers. This can be done by developing an Application Programming Interface

(API) to retrieve the results programmatically. The schematic of the cell can be easily

integrated into existing web-based frameworks. It can be easily manipulated to meet

the needs of the tools, because it is a vector based image.

The API will be developed in conjunction with the new version of Reflect (O’Donoghue

et al., 2010; Pafilis et al., 2009). One of the many improvements is refreshing the

underlying database, from where Reflect retrieves the data. The new version will

include the protein dictionary from COMPARTMENTS, and the overview of subcellular

localization in the popup will be based on the COMPARTMENTS dataset and figure.

Thus the Reflect will be capture more biomedical terms on the websites.

4.2 Using the general components of COMPARTMENTS

and TISSUES

COMPARTMENTS (Binder et al., 2014), DISEASES, TISSUES and ORGANISMS (Pafilis

et al., 2013a) share the most of the same software components and this framework

reduced the time of development and the complexity of the resources. These com-

ponents are reusable and they can be easily used to create new resources in order to

effectively integrate and visualize biomedical data by today. Here I discuss how the

scientific community will benefit from my contributions to this framework.

4.2.1 Creating a human-specific text mining pipeline

The tissue protein association mined from Medline abstracts were not species specific.

The terms in the BRENDA tissue ontology (Gremse et al., 2011) are not organism

specific, and all terms were included in the dictionary creation. Many protein names

are the same in human and other species. The text-mining pipeline does not always

recognize, what species the text is about and then by default it tags human proteins.

Unfortunately this gave rise to incorrect associations with non-human tissues.

Therefore I solved the problem of false association by creating a filter for the tissue
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dictionary. This filter efficiently removes non-human tissues from the final results,

therefore it increases the quality of the text-mining results. These results can also be a

basis later for annotation of proteins.

4.2.2 Providing a general overview of evidence channels

It is important to show where the original biological data was derived. Therefore I

created an efficient overview figure for COMPARTMENTS and TISSUES, which shows

where the evidence comes from, how strong it is, and to what bigger category does

it belongs to. To support a wide-range of devices, the figure is vector-based and it is

text-based to populate easily with information in bioinformatics processes.

4.2.3 Future directions

COMPARTMENTS (Binder et al., 2014), DISEASES, TISSUES and ORGANISMS (Pafilis

et al., 2013a) can be easily extended simultaneously by developing new components.

Also the resources can be further integrated to unravel more biological associations.

Here I outline a few possible avenues.

Opening a one-stop shop for protein data

We have a resource for subcellular localizations, tissue and disease associations. In-

tegrating these data we can create a knowledge-base about proteins. Upon that we

could create a mobile or tablet application, which is useful if one needs to gather

information quickly about a protein at a conference or at a workshop. Some parts are

already shared, for example text-mining engine collects associations in one run, but

the results are presented in the above mentioned databases.

It is still a challenge, how to present the results to the user or what would be a clear

visualization for the evidence. Also we could create an integrated platform for high-

throughput experiments, where one can not only see if a protein is enriched in a

subcellular compartment, but whether these proteins are also connected somehow to

a disease.
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Mining tissue associations for more species

We made the filter to support more organisms and text-mining pipeline can easily

include associations from other species. However we do not have high-quality an-

notated and experimental data for organisms other than human yet. Should that

data become available, we could integrate protein-tissue associations for other model

organisms.

4.3 Linking more disease related data to Disease Ontol-

ogy

Ontologies were used for data integration in COMPARTMENTS and in TISSUES, be-

cause they allow different levels of annotation. Moreover the dictionaries derived

from the ontologies are very effective for text mining of biological associations. Unfor-

tunately some of the ontologies contain only a limited number of terms and not all of

them are cross-linked to other popular biological databases, therefore their usability

is limited. However there are clear advantages of using ontologies in biological data

integration and improving them could accelerate the integration progresses.

To unleash the full potential of our text-mining engine, we created an efficient map-

ping pipeline, which links OMIM (Amberger et al., 2011) documents to Disease Ontol-

ogy terms (Schriml et al., 2011). Since OMIM is widely used for curation processes, this

integration effort allows easier and automatic annotation of proteins using Disease

Ontology terms. Moreover as a "by-product" of the mapping process, we found several

hereditary diseases, which do not exist in the Disease Ontology. Hopefully these will

be added to the next release.

The current version of Disease Ontology performs well in text mining of Medline

abstracts (see DISEASES), and through the mapping we could increase evidence from

knowledge. By adding more term to the ontology, we can mine more disease-protein

associations from the abstracts. A clear advantage of the mapping is that the Disease

Ontology allows both narrow and broad annotations thanks to the tree-like structure.

In this section we elaborate what are the advantages of this automated mapping

pipeline and how does it help manual integration efforts. Finally we discuss how can

it be extended to satisfy further goals of the bioinformatics community.
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4.3.1 Mapping datasets automatically

Manual integration of ontologies and biological databases is a time-consuming and

difficult task because they evolve over time. By developing an automated solution, we

addressed the mapping entries of new versions of these databases. We also created

specific rules adopted for this task, which ensures high precision of the mappings.

Many maladies contain words of "disease" or "syndrome", which are root terms in the

Disease Ontology. When the mapping could only link the documents to these entries

meant that these maladies do not exist in Disease Ontology thus we could extend it

with these terms.

4.3.2 Building up international collaborations

Disease Ontology is a community effort and we wanted to give back to the community.

We have sent the results of the automated mappings to the team behind the ontology

and it served as a basis for their annotation efforts. The manual inspection increased

also the quality of the mappings, because the automated pipeline cannot outperform

the wisdom of the curators. We hope that the pipeline will be part of the annotation

process of the Disease Ontology in the future.

4.3.3 Future directions

For the time being the mapping is focused on two specific databases, however we

envision that it can be coverted to a general mappinf and extended to support more

datasets. Here I outline how over text-mining based integration can be used in other

projects.

Automatic Disease Ontology annotation of UniProt or Ensembl entries

UniProt and Ensembl annotate proteins and genes using OMIM identifiers, however a

significant problem of OMIM lies in the restrictive licensing terms. Therefore disease

descriptions from OMIM cannot be taken without signing an agreement and it can

limit the commercial usability of derivative products. Fortunately UniProt contains

beside the annotations a short description of the diseases with a more relaxed license,
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which can be reused in Disease Ontology descriptions.

Also the descriptions can be used for the text-mining based mapping pipeline, and

we can automatically annotate the proteins in UniProt with Disease Ontology terms.

Another approach is to automatically map the OMIM annotations in UniProt and

Ensembl by using the mapping file generated by the pipeline.

Integrating more disease-related databases

Disease Ontology links to many datasets about human diseases, it is however manually

curated. This could be largely automatized, if the pipeline supported other sources.

Since many of the rules are general, we think that it could be possible to integrate

some of these sources (e.g. ICD-9, ICD-10, MeSH, NCI’s thesaurus and SNOMED CT

entries).
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5 Conclusions

In this thesis I presented a work, that is focused on integrating and presenting biomed-

ical information to the life science community. These resources are targeting at a

broad audience, from wet lab biologist to bioinformatics experts.

Presenting the data in a user friendly way was one of the driving principles. This

goal was achieved in easy-to-use querying interface and a summarized results page

supporting multiple devices, which make the resources attractive for simple biolo-

gist users. The reuse of data is encouraged by providing the underlying dataset in

standardized formats.

To widen the scope of the resources and extend their capabilities, developing reusable

components was also one of the main goals. For text-mining and data integration we

have reused and fine-tuned existing components from other highly-used scientific

methods.

Keeping the resources up-to-date is tedious work, and resources often become aban-

doned and outdated, when the main authors leaves. Therefore we developed a robust

self-updating pipeline, which automatically pulls in the recent updates. In compar-

ison with many other resource, this database keeps itself up-to-date thanks to the

automated self-updating pipeline.

COMPARTMENTS – to our knowledge – is the first resource, which integrates subcel-

lular localization evidence for all model organisms, derived from curated knowledge,

high-throughput experimental data, associations based on automated text-mining

and results of sequence-based predictions. The resource is equipped with a user-
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friendly interface and graphical summaries, which makes it attractive to a broader

audience including students, teachers and researchers with an interest in molecular

biology.

The resource solved the challenging task of identifier disambiguation for data integra-

tion from various sources, while hiding the complex underlying machinery from the

user. The in-house text-mining pipeline complements the manually curated knowl-

edge by capturing valuable protein-subcellular localization associations from millions

of scientific articles.

To make sure that the scientific community can assess the underlying localization

evidence, COMPARTMENTS uses a common confidence scoring system. We have

carefully scored the different types and sources of evidence and for every protein

there is an overview figure created to get an immediate understanding about the

localization information. Moreover the resource also presents specific detailed textual

evidence to provide the necessary details for scientific research. Finally every piece of

information are supported by linkouts to its origins in order to easily track the source

of the underlying evidence.

The database is also available for download to allow large-scale analyses of the pro-

teome. These analyses help to understand how protein-protein interaction networks,

protein function are connected with subcellular localization.

Many pieces of the pipeline behind COMPARTMENTS have been reused to build a

database, called TISSUES, about protein expressions in human tissues. This resource

employs a powerful graphical overview to give a quick glance of tissue expression

based on different types and sources of evidence. The text-mining pipeline has

been tailored to mine human-specific tissue-protein associations from the scientific

literature. In contrary to the previous resource, this one integrates multiple high-

throughput experimental datasets. In summary TISSUES, provides a unified view on

tissue expression based on curated data, experimental results and text-mining.

Ontologies were used to integrate evidence in the previously mentioned resources,

because they allow different levels of annotation. However they have varying quali-

ties, which limits the possibility of building a resource based on them. Therefore a

modified-version of the text-mining pipeline (OMIM2DO) mapped terms of OMIM

to Disease Ontology terms. A clear advantage is that the mapping is extended when
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a new release comes out, and it also suggests new terms to the ontology. Finally we

have built up a new international collaboration, and the mapping serves as a basis of

manual curation.

Both COMPARTMENTS and TISSUES tackled the challenge of integrating and assign-

ing a common scoring system for evidence from various sources. These resources

provide a one-stop-shop for subcellular and tissue localization information and sup-

port large analysis of the whole proteome. OMIM2DO solved the task on another level

by improving the fundamentals of data integration.

This software paved the way for enabling the creation of a single knowledge-base of

proteins by collecting evidence such as their subcellular localization, tissue expression,

involvement in diseases from multiple sources. The underlying evidence and visual-

ization can be incorporated into third party tools for example for high-throughput

analysis.
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