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Impulsive Hybrid Discrete-Continuous

Delay Differential Equations

Gutachter: Prof. Dr. Dres. h.c. Hans Georg Bock





Kurzbeschreibung

Thema dieser Arbeit ist ein neuer Typ von Differentialgleichungen, der aus zwei Gründen hochgra-
dig anspruchsvoll ist. Einerseits werden Abhängigkeiten der rechten Seite von vergangenen Zustän-
den betrachtet, wobei die Zeitverzögerungen vom aktuellen Zustand abhängen. Andererseits wer-
den Unstetigkeiten in der rechten Seite und in den Zuständen an implizit definierten Zeitpunkten
zugelassen. Für den neuen Differentialgleichungstyp wird der englische Fachbegriff “impulsive
hybrid discrete-continuous delay differential equation” (IHDDE) verwendet.

Die vorgestellten theoretischen Ergebnisse und numerischen Methoden stehen in Bezug zu drei
Themengebieten: Lösung von Anfangswertproblemen (engl.: initial value problems, kurz IVPs)
bei IHDDEs; Ableitungen von IVP Lösungen nach Parametern (auch “Sensitivitäten” genannt);
und schließlich Schätzung von Parametern in IHDDE Modellen aus experimentellen Daten. Diese
Arbeit liefert dabei unter anderem die folgenden Beiträge:

• Die theoretischen Grundlagen von IHDDE-IVPs werden bereitgestellt. Dies umfasst die
Definition eines Lösungsbegriffs, die Existenz und Eindeutigkeit von Lösungen, sowie die
Differenzierbarkeit von Lösungen nach Parametern.

• Ein neuer Ansatz zur numerischen Lösung von IVPs bei Differentialgleichungen mit Zeitver-
zögerungen wird vorgestellt, dessen Kernaspekt die Verwendung von Extrapolationen über
vergangene Unstetigkeiten hinweg ist. Für stetige Runge-Kutta Verfahren, die im Rahmen
des neuen Ansatzes realisiert sind, wird Konvergenz gezeigt. Ferner wird der Vorteil der
Verwendung von Extrapolationen an einem praktischen Beispiel demonstriert.

• Zwei Ansätze zur Berechnung von Vorwärts-Sensitivitäten bei IHDDEs werden untersucht,
die sich durch die Reihenfolge der Anwendung des Diskretisierungs- und des Differenzierungs-
operators unterscheiden. Im Fall von stetigen Runge-Kutta Verfahren stellt sich heraus, dass
Zeitverzögerungen zum Verlust der Kommutativität der beiden Operatoren führen.

• Eine Erweiterung des Konzepts der Internen Numerischen Differentiation für Differential-
gleichungen mit Zeitverzögerungen wird vorgeschlagen. Die Anwendung des erweiterten
Konzepts stellt sicher, dass die numerisch berechneten Sensitivitäten gegen die exakten Sensi-
tivitäten mit derjenigen Ordnung konvergieren, mit der auch die Nominallösung konvergiert.

• Die ersten praktischen Schemata zur Berechnung von Vorwärts- und Rückwärtssensitivitäten
bei IHDDEs werden vorgestellt, die dem Konzept der Internen Numerischen Differentiation
folgen. Numerische Untersuchungen zeigen die drastisch höhere Effizienz der entwickelten
Schemata im Vergleich zu klassischen Methoden der Sensitivitätsberechnung.

• Die neuen Methoden zur Lösung von IHDDE-IVPs und zur Sensitivitätsberechnung werden
auf anspruchsvolle Probleme angewandt. Die Eigenschaften der Methoden werden analysiert.

• Es werden numerische Methoden für die Lösung von IHDDE-beschränkten Parameterschätz-
problemen vorgestellt.

• Ein neues IHDDE-Modell der Epidemienausbreitung wird vorgestellt. Hierbei modelliert
ein Impuls die Ankunft einer infizierten Bevölkerungsgruppe, und an den Nullstellen zus-
tandsabhängiger Schaltfunktionen werden neue Medikamente bzw. Impfstoffe verfügbar.

• Eine Differentialgleichung mit Zeitverzögerungen zur Beschreibung der Wechselwirkung von
zwei Zytokin-Signalkaskaden wird präsentiert. Im Vergleich zu einem Modell ohne Zeitver-
zögerungen wird einerseits eine bessere Anpassung an experimentelle Daten und andererseits
eine Verkleinerung der Anzahl an differentiellen Zuständen erreicht.

• Das Abstimmungsverhalten von Zuschauern der 2012 ausgestrahlten Talentshow “Unser Star
für Baku” wird modelliert. Numerische Untersuchungen zeigen, dass eine Zeitverzögerung im
Modell wesentlich für eine qualitativ richtige Beschreibung ist. Durch Parameterschätzung
wird zudem eine gute quantitive Übereinstimmung zwischen Modell und Daten erreicht.

• Die praktische Realisierung aller entwickelten Methoden in den Softwarepaketen Colsol-DDE
und ParamEDE wird beschrieben.
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Abstract

This thesis deals with impulsive hybrid discrete-continuous delay differential equations (IHDDEs).
This new class of differential equations is highly challenging for two reasons. First, because of
a dependency of the right-hand-side function on past states, with time delays that depend on
the current state. Second, because both the right-hand-side function and the state itself are
discontinuous at implicitly defined time points.

The theoretical results and numerical methods presented in this thesis are related to the following
subject areas: First, solutions of initial value problems (IVPs) in IHDDEs. Second, derivatives
of IVP solutions with respect to parameters (“sensitivities”). Third, estimation of parameters in
IHDDE models from experimental data. Amongst others, this thesis thereby makes the following
contributions:

• The theoretical basis of IHDDE-IVPs is established. This includes the definition of a solution
concept, the existence of solutions, the uniqueness of solutions, and the differentiability of
solutions with respect to parameters.

• A new approach for numerically solving IVPs in differential equations with time delays is in-
troduced. A key aspect is the use of extrapolations beyond past discontinuities. Convergence
of continuous Runge-Kutta methods realized in the framework of the new approach is shown,
and numerical results are presented that demonstrate the benefit of using extrapolations on
a practical example.

• A “first discretize, then differentiate” approach and a “first differentiate, then discretize”
approach for forward sensitivity computation in IHDDEs are investigated. It is revealed that
the presence of time delays destroys commutativity of differentiation and discretization in
the case of continuous Runge-Kutta methods.

• An extension of the concept of Internal Numerical Differentiation is proposed for differen-
tial equations with time delays. The use of the extended concept ensures that numerically
computed sensitivities converge to the exact sensitivities, and that the convergence order is
identical to the convergence order of the method that is used for solving the nominal IVP.

• The first practical forward and adjoint schemes are developed that realize Internal Numerical
Differentiation for IHDDEs. Numerical investigations show that the developed schemes are
drastically more efficient than classical methods for sensitivity computation.

• The new numerical methods for solving IVPs and for computing sensitivites are successfully
applied to several challenging test cases, and the properties of the methods are analysed.

• Numerical methods are presented for solving nonlinear least-squares parameter estimation
problems constrained by IHDDEs.

• A new epidemiological IHDDE model is developed. Therein, an impulse accounts for the
arrival of an infected population. Further, the zeros of state-dependent switching functions
characterize the time points at which new medical treatments become available.

• A delay differential equation model is presented for the crosstalk of the signaling pathways
of two cytokines. In comparison to an ordinary differential equation model, a better fit to
experimental data is obtained with a smaller number of differential states.

• A novel model is proposed to describe the voting behavior of the viewers of the TV singing
competition “Unser Star für Baku” aired in 2012. Numerical results show that the use of a
time delay is crucial for a qualitative correct description of the voting behavior. Furthermore,
parameter estimation results yield a good quantitative agreeement with data from the TV
show.

• The practical implementation of all developed methods in the new software packages Colsol-
DDE and ParamEDE is described.
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Introduction

The cooling of a hot cup of tea on the breakfast table, a football flying in mid air toward the goal,
the replication of a hepatitis C virus in the cells of an infected host, the oscillations of the powertrain
inside a car and a satellite moving in an orbit around the Earth have one thing in common: all
these dynamic processes can successfully be described by a certain class of mathematical formulae,
so-called differential equations. Given an initial state of the system under consideration, a set
of differential equations – called the (mathematical) model – describes the rate of change of the
system and hence the systems’ evolution in the future.

Clearly, any of the above given examples requires different quantities as input variables for the
differential equation. Depending on the nature of these variables, various subclasses of differ-
ential equations are obtained; some well-known classes are, e.g., ordinary differential equations,
differential-algebraic equations, and partial differential equations.

From time to time, scientists direct their interest toward differential equations with special
features – or combination of features – that have not been studied before. The interest in such “new
equations” may be driven by a general theoretical curiosity or by the need to find mathematical
models for specific real-world processes. If both is the case, the attention that these equations
receive in the scientific community often becomes so great that it is justified to formally define a
new subclass of differential equations.

In the past, this has happened for the study of dynamic processes that feature one of the following
two characteristics.

Delayed Reactions

One peculiarity of dynamic processes that gave rise to a differential equation class whose study is
nowadays a research field in its own right is that the rate of change of a system at the current time
may depend on the state of the system in the past. An intuitive example for such a process is given
by a car driver that attempts to follow another car in a prescribed distance. Clearly, whenever the
leading car accelerates or decelerates, the following car should do likewise. However, the driver of
the following car will need some time to react if, say, the red brake light of the leading car lights
up. Hence, it is natural to introduce a time delay into the mathematical equations describing this
system.

The formulation and mathematical analysis of differential equations with time delays dates back
at least to the beginning of the 20’th century, see e.g. Schmidt [225], Hilb [146], Fite [106], and
references therein. For some early works on real-world systems with time delays, see Callender [56],
Rhodes [213], Sievert [237], and Schürer [228]. The interest in time delay systems has increased
considerably in the 1950’s, as can be concluded from the extensive bibliographies by Weiss [254]
in 1959 and Choksy [64] in 1960. The monograph by Bellman and Cooke [28], published in 1963,
can certainly be regarded as a very influential work for the study of time delay systems, and this
research field has experienced a further and drastic increase of popularity since then.

Abrupt Changes

A second important feature of real-world dynamic processes that has attracted considerable interest
by scientists is the effect of abrupt changes. Hereby, “abrupt” is meant in the sense of a multi-scale
problem, i.e. the state of a system changes only slowly for a long time interval, and then undergoes
a drastic change within a very short time interval. For example, a football may be flying through
the air for several seconds before it changes its flight direction within milliseconds during a collision
with a goal post. For the mathematical description of this system, the specification of two sets of
equations is appropriate: one for the flight phase, and one for the collision phase.

Several mathematical models can be developed for the football example, see e.g. the introductory
reading by Tolan [248]. In a simplified setting, the motion of the football could be described by the
position and velocity of its center of mass, and the encounter with the goal post could be treated
as an inelastic collision (i.e. by an immediate change of the football’s velocity). Alternatively, one
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may also regard the football as a three-dimensional object and describe, by a set of differential
equations, how it is flattened during a finite, non-zero time interval of the collision.

The first option for the description of the collision of the ball with the goal post leads to differ-
ential equations in which the velocity experiences, at the time of the collision, a so-called impulse.
Mathematical problems of this kind are the subject of many research works and have been ana-
lyzed at least since the 1960’s, see Pavlidis and Jury [206], Schmaedeke [224], and Pavlidis [205].
Nowadays the book by Lakshmikantham, Bainov, and Simeonov [169] can be given as a standard
reference.

The second option for the description of the ball with the goal post leads, instead, to a switch
between two different differential equation models: one model for the flight in mid air and one for
the duration of the collision. The study of problems with switches also has a long tradition, see
e.g. Bocher’s paper [34] from 1905, as well as the papers by Meissner [189] and Ziegler [270] in
the 1930’s, where discontinuous differential equations occur as models for oscillatory systems with
friction. Early references for the systematic analysis of the closely related – but more general –
class of “discontinuous differential equations” are Filippov [104] and Hájek [129]. A starting point
for the study of such equations is the book by Filippov [105].

Modeling with Time Delays, Switches, and Impulses

For a single real-world process it is often possible to find several mathematical models, and the
presence of time delays, switches, or impulses in the resulting equations typically depends on the
level of abstraction that a modeler wishes to use.

The description of the football hitting the goal post can serve as an example. Here, the first model
is “simpler” and “more abstract”, because the ball is treated as a point in space in the mathematical
equations, whereas the second model is “more elaborate” and “less abstract”, because the ball is
treated as a three-dimensional object. The collision with the goal post appears “more abrupt” in
the first model, because the velocity of the ball is changed immediately. This is not the case in
the second model, where “only” the employed set of differential equations – i.e. the rate of change
– switches abruptly.

It is quite typical that transitions occur as “less abrupt” in the mathematical equations if more
elaborate models are used. Similarly, more elaborate models may also help to avoid the use of time
delays in the equations. For illustration, recall the driver of a car that attempts to follow another
car. It might, in principle, be possible to find a set of equations that models the central nervous
system of the driver of the second car, i.e. all biochemical reactions that take place inside the driver
from the time that the red brake light falls on the eye until the muscles in the foot contract and
relax in order to push the brake pedal. However, such a model can be regarded as too detailed if
only the motion of the car is of interest. For this purpose, it is likely sufficient to take the more
abstract viewpoint and use a time delay that represents the reaction time of the driver.

This discussion leads to the conclusion that it is, in many cases, possible to develop differential
equation models without time delays and with short, but continuous transitions. However, these
models may become overly large and complex and hence, it may not be appropriate to use them.
In contrast, mathematical modeling with time delays, switches, and impulses often allows to find
much smaller sets of equations that provide a sufficiently good description – and prediction – of
the real-world process under consideration. This is the key argument for the theoretical study of
differential equations with time delays, switches, and impulses, and also for the development of
numerical methods for the approximate solution of these equations.

Mathematical Formalism

After this introductory motivation for the use of time delay, switches, and impulses in mathematical
modeling, it is now appropriate to present and discuss the corresponding equations.

Therefore, let t P R denote the time and let yptq P Rny be a vector describing the state of the
dynamic system at the time t. The rate of change of the system is given by the derivative of y
with respect to time and is in this thesis denoted by 9yptq :� dyptq{dt. As a basis for the discussion,
consider the case that the rate of change 9yptq is completely described in terms of the current time t
and the current state yptq:

9yptq � fpt, yptqq. (0.1)
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This is the well-known standard form of an ordinary differential equation, with f being the so-called
right-hand-side function, which is typically assumed to be continuous in both its arguments.

One generalization of equation (0.1) is to introduce a dependency of the right-hand-side function
on the value of the state vector in the past, i.e. a dependency on the past state ypt�τq. The function
fpt, yptqq would then be replaced by fpt, yptq, ypt� τqq, where τ is called the time delay. However,
the description of a real-world process may require to consider dependencies on several past states
ypt � τiq, 1 ¤ i ¤ nτ , and the time delays may themselves be time- or state-dependent, i.e.
τipt, yptqq. This leads to the following differential equation:

9yptq � fpt, yptq, typt� τipt, yptqqqunτi�1q. (0.2)

Another generalization of equation (0.1) is to stick to the arguments t and yptq of the right-
hand-side function f but to drop the assumption of continuity. In a simple setting, the continuity
assumption could only be dropped in the time argument, such that between two successive –
and known – discontinuity points si and si�1 the evolution of the system is still described by an
equation of the form (0.1). In a more general setting, discontinuities in f could be allowed to occur
along hypersurfaces in the space R � Rny , where each hypersurface is described by an equation
σipt, yptqq � 0 for 1 ¤ i ¤ nσ. The real-valued functions σi are called switching functions. Using
the signs of the switching functions, ζiptq � signpσipt, yptqqq, as an argument of the right-hand-side
function f yields

9yptq � fpt, yptq, ζptqq, (0.3)

with ζptq � pζ1ptq, . . . , ζnσ ptqqT . Any sign change in one of the switching functions σi leads to a
“switch” in ζiptq and – depending on the concrete definition of f – potentially to a discontinuity
in f or in the partial derivatives of f with respect to its other two arguments. Hence, equation
(0.3) represents an important special case of discontinuous ordinary differential equations.

In the earlier discussion of the football example it was mentioned that mathematical modeling of
a real-world process with abrupt changes sometimes makes use of an immediate, impulsive change
of the state vector. Such impulsive changes could, for example, be applied at a sequence of given
discontinuity points si. Between two such time points, si and si�1, the system evolves as described
by the differential equation (0.1). At the discontinuity points, e.g. at si, the right-sided limit of
the state vector, written as y�psiq :� limεÑ0� ypsi � εq, is given by

y�psiq � y�psiq � ωpsi, y�psiqq. (0.4)

Herein, y�psiq :� limεÑ0� ypsi � εq is the left-sided limit of the state vector at si and ω is the
impulse function.

The next straightforward extension of a differential equation with impulses is to allow that the
impulses do not occur at a sequence of given time points si, but that they rather occur whenever
the vector pt, yptqq hits a specific hypersurface in R � Rny . The description of the hypersurfaces
could, as before, be done by means of switching functions.

Toward a New Class of Differential Equations

Real-world processes may exhibit both delayed reactions and abrupt changes. In order to describe
such processes, differential equation models have been proposed in the literature that combine time
delays with switches or impulses.

Probably the first model of this class is given in Sievert’s paper [237] from 1941, where a dif-
ferential equation with both a time delay and a switch is used to describe the damaging effect of
gamma rays on biological cells. Further instances of differential equations with delays and switches
are found in Bock and Schlöder [44], Kolmanovskii and Myshkis [163], Liu, Shen, and Zhang [180],
Kim, Campbell, and Liu [159], Sieber et al. [235], and Simpson, Kuske, and Li [238]. Differen-
tial equations with delays and impulses are the subject of the works by Das and Sharma [73],
Gopalsamy and Zhang [118], Chen, Yu, and Shen [62], Ballinger and Liu [15], Yan, Zhao, and
Nieto [265], and Corwin, Thompson, and White [71]. Recently, also a limited number of works
have considered differential equations with time delays and switches and impulses, see Wood [259],
Li, Ma, and Feng [175], Yang and Zhu [266], Liu, Liu, and Xie [179], and Schnute, Couture-Beil,
and Haigh [226].
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The above list of references allows to conclude that the study of differential equations that
incorporate time delays, switches, and impulses has reached a certain level of popularity in the
scientific community. However, to the best knowledge of the author of this thesis, no general
problem formulation has yet been proposed that allows for all of the following properties:

• The right-hand-side function depends on multiple past states, and the delay functions are
time- and state-dependent.

• Switches and impulses occur at time points that are determined implicitly, i.e. they are
characterized as zeros of state-dependent switching functions.

• The switching functions and impulse functions depend on past states.

• The right-hand-side function f , the switching functions σi, and the delay functions τi are
nonlinear functions of their arguments.

The first contribution of this thesis is thus to formulate a general class of differential equations
that covers all these aspects. For the initial value problem (IVP) corresponding to this newly
established class of equations, this thesis then presents comprehensive theoretical results, compu-
tational methods, software, real-world applications and numerical investigations as outlined below.
Several of the findings of this thesis are thereby novel also in the context of simpler subclasses of
differential equations, in particular for differential equations with several state-dependent delays
(see equation (0.2)).

Contributions of This Thesis and Related Work

This thesis is concerned, as mentioned before, with a class of differential equations and a corre-
sponding class of IVPs that has not been formulated in this generality so far. Hence, it is obvious
that this thesis is also the first work that is concerned with the theory of or with numerical methods
for these very general equations.

There is, however, a wealth of existing literature that deals with simpler subclasses of differential
equations and IVPs. In the following summary of the contributions of this thesis, only those works
are cited that have a very immediate connection to the presented work. Many more references
to other related papers and theses are given in the introductions to the individual chapters, in
particular to the Chapters 4, 5, 6, 7, 8, 9, and 13.

Theoretical Foundations

For IVPs in differential equations with switches, e.g. equations of the form (0.3), the classical
definition of a solution is unsuitable: It is evident that there might be no differentiable function
yptq that fulfills the differential equation everywhere if there are time points where the right-hand-
side function is allowed to change discontinuously. Hence, the first step of any theoretical analysis
for these kind of equations is to define a more general notion of a solution, and many approaches
have been made to address this issue, see Cortés [69].

In fact, a generalization of the concept of a solution is necessary for all classes of differential
equations with discontinuities in the right-hand-side function f or in the state vector y. The
problem class considered in this thesis gives rise to potentially many discontinuities: At all time
points, where at least one of the switching functions becomes zero, because each zero may trigger
discontinuities in either f or y (or both), and in addition at all time points where at least one
deviating argument t� τipt, yptqq crosses a discontinuity point in the past. Since this thesis is the
first work to consider a new and very general class of differential equations, a simple generalization
of the solution notion is employed. More precisely, a solution in the spirit of this thesis is a function
yptq that fulfills the differential equation almost everywhere, with the exceptional set consisting of
a finite number of time points.

With a definition of a solution at hand, three important topics in the theoretical analysis of IVPs
in differential equations are addressed in this work: existence of solutions, uniqueness of solutions,
and differentiability of solutions with respect to parameters. The parameters may thereby occur
in the right-hand-side function, in the delay functions, in the switching functions, in the impulse
function, and in the initial data of the IVP. The discussion of existence, uniqueness, and differen-
tiable dependence is done separately for differential equations without state dependencies in the
switching and delay functions, and for differential equations that feature such state dependencies.
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For IVPs in differential equations without state dependencies in the switching and delay func-
tions, existence, uniqueness, and differentiability results are given. The key idea of the proofs is
to use the method of steps. With regard to existence and uniqueness of classical solutions of IVPs
in differential equations of the form (0.2), this method has frequently been used, see e.g. El’sgol’ts
and Norkin [92] or Smith [239]. In this thesis, it is shown how the method can also be used to
obtain existence and uniqueness of solutions in a more general sense and in the context of more
general IVPs. The method of steps can further be used to prove differentiability of IVP solutions
with respect to parameters in the context of differential equations with constant delays, as shown
very recently by Lenz, Schlöder, and Bock [173]. This thesis builds upon this work and contains
a thorough discussion of sufficient differentiability conditions for the case of differential equations
with time-dependent delays, also in combination with time-dependent switching functions and
impulses.

For IVPs in differential equations with state dependencies in the switching or delay functions, a
set of new definitions is introduced that allows to formulate, in a very concise way, sufficient con-
ditions for the uniqueness of a given IVP solution. Furthermore, differentiability of IVP solutions
with respect to parameters is discussed. The basis for this discussion is a differentiability theorem
given in Bock [39] and Galán, Feheery, and Barton [111], which applies to IVPs in differential
equations with switches and impulses. Here, the idea behind this theorem is transferred to differ-
ential equation that exhibit, in addition, time delays. As a special case, a theorem is presented for
differentiability of solutions of IVPs in differential equations of the form (0.2), which allows that
discontinuities are present in the initial function. Contrariwise, all previously established differen-
tiability theorems in the context of equation (0.2) known to the author – e.g. Hartung et al. [137]
and Hartung [135] – assume continuity of the initial function.

Numerical Methods and Their Analysis

For the numerical solution of IVPs in differential equations with time delays, the so-called stan-
dard approach – see e.g. Bellen and Zennaro [26] – relies on methods that provide a continuous
approximation of the solution. In the standard approach, the computation of past states is carried
out by evaluating either the initial function or the continuous approximation of the IVP solution
provided by the numerical method. This standard approach has one disadvantage: If the current
integration step is such that a deviating argument crosses a discontinuity point in the past, then
the smoothness assumptions of the employed numerical method are typically violated.

As a remedy, extrapolations beyond past discontinuities have been employed in REBUS by Bock
and Schlöder [43, 44] and in RADAR5 by Guglielmi and Hairer [124], and detailed descriptions
of the use of extrapolations can be found in ZivariPiran [271], ZivariPiran and Enright [272], and
Ernst [101]. To date, however, there exists no theoretical basis for the use of extrapolations beyond
past discontinuity points. In this thesis, the use of extrapolations is part of the formal definition of
the modified standard approach, and the properties of this approach are analyzed. More precisely,
novel well-posedness and convergence results are presented for continuous Runge-Kutta methods
in the framework of the modified standard approach. In addition, it is observed that a previously
given proof for the convergence of numerical methods realized in the framework of the standard
approach (see Bellen and Zennaro [26]) does not hold. Hence, only the modified standard approach
has a rigorous theoretical basis.

Several contributions of this thesis are related to the numerical computation of sensitivities in
the context of differential equations with time delays, i.e. of the derivatives of IVP solutions with
respect to parameters. More precisely, continuous Runge-Kutta methods are regarded and it is
investigated how the numerical integration of a suitably-defined variational initial value problem
(a “first differentiate, then discretize” approach) – as proposed, e.g., by ZivariPiran and Enright
[273] – relates to the differentiation of the integration scheme that was used for the solution of
the original IVP (a “first discretize, then differentiate” approach). The convergence properties of
both approaches are analyzed, and based on this analysis an extension of the principle of Internal
Numerical Differentiation (see Bock [36, 38]) for differential equations with time delays is proposed.

In the case that there is a large number of parameters in the IVP whose sensitivities are of
interest, it is known that so-called adjoint (or “backward”) methods for sensitivity computation
are more efficient, see e.g. Bock [39], Albersmeyer and Bock [3]. This thesis introduces a new
numerical method for the computation of adjoint sensitivities in the context of differential equations
with time delays. The presented method relies on the development of a discrete adjoint scheme,
which exhibits the same convergence properties as the corresponding forward scheme for sensitivity
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computation. The proposed discrete adjoint scheme can also be used to compute the sensitivities
of the state at time points that are not part of the mesh of the integration method.

A frequent situation in scientific and engineering applications is that a differential equation model
is available for a particular process, but that some of the parameters in the model are unknown
and have to be estimated from experimental data. This leads to so-called parameter estimation
problems. Under certain standard assumptions, a maximum likelihood estimate for the parameters
is given by the solution of an infinite-dimensional least-squares optimization problem, in which
the differential equation occurs as an infinite-dimensional equality constraint. The task considered
in this thesis is to estimate parameters in differential equations with time delays, switches, and
impulses.

As a solution approach, the single shooting parameterization is employed in order to reduce
the problem to finite dimension. Furthermore, inspired by the works of Bock [36, 38, 39] and
Bock, Kostina, and Schlöder [41, 42], a damped Generalized Gauss-Newton method based on
the restrictive monotonicity test for solving the resulting finite-dimensional nonlinear constrained
least-squares problem is proposed and realized.

Software

This thesis contains a detailed description of the numerical methods that are employed in Colsol-
DDE, a novel software package for solving IVPs in differential equations that exhibit time delays,
switches, and impulses. In contrast to the few existing solvers for this purpose – e.g. DDE SOLVER
by Thompson and Shampine [246] and Solv95 by Wood [259] – Colsol-DDE is based on implicit
methods (more precisely, implicit Runge-Kutta methods) and is thus suitable for stiff IVPs.

Furthermore, Colsol-DDE is the first program that allows the computation of forward and ad-
joint sensitivities for the considered very general class of IVPs by means of Internal Numerical
Differentiation. In particular, this makes Colsol-DDE also the first solver that provides adjoint
sensitivities for simpler subclasses of differential equations, e.g. for those that feature only switches
or only impulses or only time delays. It should further be noted that also the automated compu-
tation of forward sensitivities of IVP solutions in the context of differential equations with time
delays is rarely found in existing solvers. To the knowledge of the author, only DDEM by ZivariPi-
ran [271] includes this feature, but – in contrast to Colsol-DDE – this code is unsuitable for stiff
IVPs.

This thesis further presents the numerical methods realized ParamEDE, which is the first soft-
ware that solves nonlinear constrained least-squares parameter estimation problems in differential
equations with time delays, switches, impulses. It makes use of several sophisticated numerical
techniques that go back to Bock [36, 38, 39], and Bock, Kostina, and Schlöder [41, 42]. The use
of the Generalized Gauss-Newton method as basic optimization method ensures that ParamEDE
converges only to those solutions that are statistically stable against small perturbations of the
measurement data. ParamEDE further makes use of the restrictive monotonicity test, which is
a particularly well-suited strategy for globalizing the convergence of (Generalized) Gauss-Newton
methods. An internal regularization is implemented in ParamEDE in order to deal with singular
or ill-conditioned problems. Last but not least, Colsol-DDE is used as underlying IVP solver in
ParamEDE, which guarantees an efficient and accurate computation of the required sensitivities
by Internal Numerical Differentiation.

Both Colsol-DDE and ParamEDE are designed to be used in conjunction with the Automatic
Differentiation tool Tapenade (see Hascoët and Pascual [140, 141]). In particular, the combined use
of Internal Numerical Differentiation and Automatic Differentiation in Colsol-DDE and ParamEDE
allows to compute sensitivities with very high accurarcy, and, in addition, makes the codes entirely
derivative-free for the user.

Mathematical Models for Applications

This thesis introduces new mathematical models for three applications.
Epidemiology is considered as one application area in which the use of time delays is very

popular. A model by Cooke and van den Driessche [68] is considered, which involves two time
delays representing the latency period of the disease and the immunization period after recovery
from an infection. For this model, three extensions are proposed, which demonstrate exemplarily
how impulses and switches can be used in epidemiology. The extensions allow for an invasion of
a healthy population by an infected population, and for the development of a new drug and a
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vaccine a certain time after the total number of casualties due to the disease has reached a given
threshold.

A second model developed in this thesis describes the interaction between the signaling path-
ways of two cytokines, Interleukin-6 (IL-6) and granulocyte macrophage colony-stimulating factor
(GM-CSF). The work presented here is based on an ordinary differential equation model of Som-
mer et al. [240]. By using time delays in the model, the size of the differential equation model is
reduced, and hence a more concise mathematical description of the process is obtained.

Eventually, a model is proposed for the voting behavior of the viewers of the German TV singing
competition “Unser Star für Baku” aired in 2012. In this TV show, the viewers could vote for
their favorite candidates by phone calls or SMS, and they were permanently able to see – in a
so-called livescore – the percentages of votes that the candidates had received so far. Hence, the
viewers could make their voting behavior dependent on the intermediate results displayed in the
livescore. In this thesis, a differential equation model is developed for the voting behavior of the
TV viewers that incorporates both switches and a time delay. The switches are thereby motivated
by the assumption that the viewers vote differently for candidates that are currently winning (i.e.
they would be allowed to return in the next episode of the show) and other candidates that are
currently losing (i.e. they would have to leave the competition). The time delay accounts, inter
alia, for encryption and decryption processes in digital broadcasting and for the time that viewers
need to dial the number of their favorite candidate.

Numerical Results

Only very few research works provide reference solutions and/or reference sensitivities of IVPs
in differential equations with time delays (Paul [202], ZivariPiran [271]). Reference solutions of
IVPs in differential equations with both time delays and switches (or with both time delays and
impulses) are also rarely available (to the knowledge of the author, only in Corwin, Thompson, and
White [71]), and reference sensitivities for these classes of differential equations are not available
at all. In this thesis, several challenging IVPs are formulated, and accurate reference values are
provided for the solution and for the sensitivities.

The performance of the numerical methods implemented in Colsol-DDE is assessed. In par-
ticular, the convergence of numerically computed solutions and sensitivities to the corresponding
reference values is investigated in the limit of small relative tolerances. Further, the performance
of the methods on a stiff IVP is investigated.

It is shown in this thesis how discontinuity location works with the modified standard approach.
In particular, it is demonstrated on a practical example that the use of extrapolations beyond past
discontinuities is beneficial for an efficient localization of discontinuity points.

This thesis further presents numerical investigations that compare the newly developed Inter-
nal Numerical Differentiation approach for differential equations with time delays to two classical
approaches for sensitivity computation. First, a comparison to finite difference sensitivity compu-
tation (so-called “External Numerical Differentiation”) reveals that Internal Numerical Differen-
tiation can provide more accurate sensitivities at only 20% of the computation time. Second, a
comparison to the numerical solution of the combined nominal and variational IVP yields the result
that Internal Numerical Differentiation provides the same accuracy at only 1% of the computation
time.

With regard to parameter estimation problems in differential equations with time delays, an
important issue is the possible non-smoothness of the considered optimization problems, see Baker
and Paul [13]. A non-smooth dependence of the objective function on the unknown parame-
ters raises the suspicion that derivative-based optimization methods – such as the Gauss-Newton
method – may show a very poor convergence behavior. More precisely, the local contraction theo-
rem of Bock [39] guarantees convergence only if there are no discontinuities or non-differentiabilities
within a ball in parameter space that contains both the initial guesses for the parameters and the
solution of the optimization problem. However, in this thesis, a practical non-smooth problem
is considered, and it is observed that convergence is obtained in the numerical practice even in
situations where convergence is not guaranteed by the convergence theory.

Last but not least, parameter estimation results are presented for two applications for which
real-world experimental data are available, namely for the crosstalk of the signaling pathways of
IL-6 and GM-CSF, and for the voting behavior of the viewers of the TV show “Unser Star für
Baku”. For the first application, the new model with time delays yields a better fit to experimental
data than the ordinary differential equation model by Sommer et al. [240], despite the fact that the
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new model is “simpler” in the sense that it consists of a smaller number of differential states. For
the second application, a very good agreement is found between the model and the data from the
TV show. Further analysis reveals that the time delay is crucial for explaning the voting behavior
of the TV viewers qualitatively, and that the size of the fan-bases of the candidates, i.e. their
popularity, has a smaller influence on the outcome of the voting procedure than the time delay.

Outline of The Thesis

Part I introduces basic problems, definitions, and concepts, and is subdivided into three chapters.
In Chapter 1, a general class of differential equations is introduced that comprises the three

features time delays, switches, impulses. This new class of differential equations is called impulsive
hybrid discrete-continuous delay differential equations (IHDDEs), whose study is the subject of this
thesis. Furthermore, Chapter 1 introduces an initial value problem in IHDDEs (shortly: IHDDE-
IVP), and introduces a consistent terminology for various classes of differential equations that are
identified as subclasses of IHDDEs.

Chapter 2 is mainly devoted to the issue of defining a concept of a “solution” of an IHDDE-
IVP. In particular, the concept of solution used in this thesis is motivated and put into relation
to alternative concepts. Chapter 2 further introduces a classification for the various sources of
discontinuities in IHDDE-IVP solutions.

Chapter 3 presents new models for three applications. The considered real-world problems are:
the spread of an epidemic within a population; the crosstalk of the signaling pathways of IL-6 and
GM-CSF; and the voting behavior of the viewers of the TV show “Unser Star für Baku”.

Part II deals with IHDDE-IVP solutions and is subdivided into three chapters.
Chapter 4 presents the existence and uniqueness theory for IVP solutions. For differential

equations with constant delays and explicitly known time points of discontinuity in the right-
hand-side function, a theorem on existence and uniqueness is formulated and formally proven
by relying on the so-called method of steps. It is furthermore discussed how this result can be
generalized to all IHDDE-IVPs in which the switching functions and the delay functions do not
depend on the unknown IVP solution itself. For IVPs where the switching functions and delay
function depend on the unknown solution, sufficient conditions are given under which a given IVP
solution can be shown to be unique.

Chapter 5 introduces the modified standard approach as a new concept for solving IVPs in dif-
ferential equations with time delays. The modified standard approach makes use of extrapolations
beyond past discontinuity points. The properties of continuous Runge-Kutta methods realized in
the framework of the modified standard approach are investigated. In particular, well-posedness
of the numerical method and convergence to the exact solution are shown.

Chapter 6 presents the numerical methods that are employed in the new IHDDE-IVP solver
Colsol-DDE. In particular, it is discussed how implicit continuous Runge-Kutta methods of col-
location type are combined with an implicit uniform correction procedure and with an implicit
quadrature rule in order to obtain error-controlled discrete and continuous approximations of the
IVP solution. Special emphasis is put on the numerical treatment of discontinuities in Colsol-DDE.

Part III deals with the sensitivity of IHDDE-IVP solutions with respect to parameters. It is
subdivided into three chapters.

Chapter 7 presents the theory of differentiability of IVP solutions with respect to parameters.
A theorem on the differentiability of IVP solutions in differential equations with constant time
delays is given, and it is discussed how this result can be extended to all IHDDEs in which the
switching functions and the delay functions do not depend on the state vector. Furthermore,
for problems where the switching functions and/or delay functions depend on the state vector,
sufficient conditions are presented under which a given IVP solution is differentiable.

Chapter 8 deals with the numerical computation of sensitivities. This chapter introduces an
extension of the concept of Internal Numerical Differentiation for differential equations with time
delays. In the context of continuous Runge-Kutta methods, Internal Numerical Differentiation
methods for the computation of forward and adjoint sensitivities are presented. Since the sensitiv-
ities are, in general, only piecewise smooth functions in time, the expressions for the jumps in the
sensitivities are discussed in detail.

Chapter 9 discusses the numerical methods for sensitivity computation that are implemented in
the new IHDDE-IVP solver Colsol-DDE. In particular, the extended principle of Internal Numerical
Differentiation for differential equations with time delays is applied to the methods that have been
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presented in Chapter 6 before. Special attention is paid to the subtleties of the implementation of
a discrete adjoint scheme for sensitivity computation.

Part IV is concerned with the estimation of parameters from experimental data and is subdivided
into four chapters.

Chapter 10 recalls the concept of maximum likelihood parameter estimation. For the important
special case of normally distributed measurements with known covariance, a maximum likelihood
estimate is given by the solution of a nonlinear least-squares minimization problem. The chapter
also contains the fundamentals of optimization theory.

Chapter 11 recalls the Generalized Gauss-Newton method for solving nonlinear constrained least-
squares problems. A fundamental convergence result for this method is given, and it is discussed
why the Generalized Gauss-Newton method is well-suited for solving least-squares parameter es-
timation problems, in particular in view of the statistical stability of the obtained solution. The
chapter further discusses an extension that makes the Generalized Gauss-Newton method applica-
ble to ill-posed problems, and a stepsize selection strategy that aims at globalizing the convergence
of the method.

Chapter 12 deals with the randomness of the result of maximum likelihood estimation as a
consequence of the randomness in the data. The focus of the chapter lies on recalling techniques
for the statistical analysis of estimated parameters.

Chapter 13 discusses the special challenges that are associated with the estimation of parameters
in differential equations, and, in particular, in IHDDEs. IHDDE-constrained parameter estimation
problems are identified as infinite-dimensional optimization problems, and a finite-dimensional pa-
rameterization is presented. Theoretical and numerical issues in non-smooth optimization problems
are discussed. Eventually, a practical algorithm for parameter estimation in IHDDEs is presented,
and the implementation of this algorithm in the software ParamEDE is discussed.

Part V contains the results of numerical investigations and is subdivided into three chapters.

Chapter 14 presents numerical results related to the solution of IVPs. Reference values for the
solutions of several challenging IVPs in differential equations with time delays are given, partially in
combination with both switches and impulses. The convergence of the methods realized in Colsol-
DDE in the limit of small relative tolerances is investigated. It is demonstrated how localization of
discontinuity points works with the modified standard approach, and a comparison to the use of the
standard approach is made. Further, a simulation study is presented that allows an assessment of
the influence of the parameters in the voting behavior of the viewers of the TV singing competition
“Unser Star für Baku”.

Chapter 15 contains numerical results for the computation of sensitivities of IVP solutions with
respect to parameters. Reference values for the sensitivities are given for several IVPs in differential
equations with time delays, switches, and impulses. Further, the convergence of the methods for
sensitivity computation realized in Colsol-DDE is investigated in the limit of small relative toler-
ances. The newly developed Internal Numerical Differentiation approach for differential equations
with time delays is compared to External Numerical Differentiation and to a combined solution of
nominal and variational IVP. Furthermore, different realizations of Internal Numerical Differenti-
ation are compared to each other.

Chapter 16 presents a numerical investigation of the convergence behavior of the Gauss-Newton
method applied to a non-smooth least-squares optimization problem in the context of a differential
equation with a time delay and with switches. Furthermore, parameter estimation results for two
applications with real-world experimental data are given: the crosstalk of the signaling pathways
of IL-6 and GM-CSF, and the voting behavior of the viewers of “Unser Star für Baku”.

In the final chapter “Summary & Outlook” of this thesis, the main contributions of this thesis
are summarized, and some suggestions for future research are made.

It should be noted that the author sets value on a comprehensive presentation of the treated
topics. For this reason, textbook knowledge is incorporated into this thesis when appropriate.
In particular, this is the case in the Chapters 5 and 6 (recap of standard methods for numerical
solution of IVPs in ordinary differential equation and in delay differential equations), and in the
Chapters 10-12 (recap of basic parameter estimation theory, of tailored numerical methods for
parameter estimation, and for the statistical analysis of solutions).
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Fonts

In this thesis, italic letters are used to introduce new terms that are used throughout the thesis.
Alternative terms that have been used in the literature, which are not adopted here, are indicated
by “quotation marks”. For emphasis, underlined expressions are used. These conventions have
already been used in this introduction.

The nomenclature in this thesis is as follows: Boldface letters A,B, etc., are used for matrices
and matrix-valued functions. Calligraphic letters, e.g. D and T , are used to represent sets and
intervals. Script letters are used to denote function spaces, e.g. C represents the space of continuous
functions. In addition, this font is used for the Landau symbol O, and for the normal distribution,
which is denoted by N .

Blackboard bold, e.g. N, R, is used – as customary – to denote the sets of all integer and
real numbers. In addition, this font is used to denote the expectation (symbol E) and the variance
(symbol V) of random numbers. Finally, gothic-type letters (e.g. y,W) are used for in the definition
of an IVP if it is desirable to reserve the symbols y and W exclusively for the solution of the IVP.
In addition, gothic-type letters e and h are used as symbols for random variables.
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1. Considered Problem Class

Despite this very satisfactory state of affairs as far as differential
equations are concerned, we are nevertheless forced to turn to the
study of more complex equations.

Bellman and Cooke, in the introduction to their book “Differential-
Difference Equations” [28]

As discussed in the introduction, real-world dynamic processes with time-delayed reactions or
abrupt changes are often appropriately modeled by differential equations that feature time delays,
switches, or impulses. In several research works, differential equation models have been proposed
that combine time delays with either switches or impulses, or even combine them with both switches
and impulses, see e.g. Ballinger and Liu [15] Corwin, Thompson, and White [71], Li, Ma, and
Feng [175], Yang and Zhu [266], and Liu, Liu, and Xie [179].

However, to the best knowledge of the author, this thesis is the first research work that allows all
of the following properties: multiple delays that depend on the time and on the current state; past
states that occur as arguments not only in the right-hand-side function but also in the switching
and impulse functions; switches in the differential equation and impulses occur at time points that
are implicitly determined as functions of the state itself; and general nonlinear dependencies of all
model functions on their arguments.

The topic of this chapter is the formulation of this new and very general class of differential
equations, as well as of the corresponding initial value problem (IVP).

Organization of This Chapter

The definition of the new class of differential equations, together with the introduction of the
necessary notation, is the subject of Section 1.1. Section 1.2 discusses subclasses of the general
problem, reviews existing terminology for these subclasses and introduces the terminology of this
thesis. Sections 1.3 and 1.4 define the terminology for special properties of the switching and delay
functions.

1.1. Problem Definition

In the following, the properties of differential equation models as discussed in the introduction
– switches, impulses, and time delays – are combined in a class of equations that has not been
formulated or studied previously.

As a starting point, equation (0.3) is recalled:

9yptq � fpt, yptq, ζptqq. (1.1)

Herein, t P R is the time, yptq P Rny is the state of the system at the time t, and the time derivative
9yptq � dyptq{dt represents the rate of change of the state. Further, ζptq � pζ1ptq, . . . , ζnσ ptqq
represents the signs of switching functions σi, i.e. ζiptq � signpσipt, yptqqq for 1 ¤ i ¤ nσ. The
purpose of the switching functions is that changes in their sign – i.e. time points of discontinuity in
ζiptq – characterize discontinuous changes of the right-hand-side function f . Accordingly, for any
given vector ζptq, the right-hand-side function f is assumed to be a continuous (or even smooth)
function of its other two arguments, and also the switching functions σi are supposed to be at least
continuous.

Throughout the thesis, functions yptq will be considered as “solutions” of a differential equation
if the switching functions become zero only at isolated time points (see the formal definition of a
solution concept in Chapter 2). Having this in mind, the differential equation (1.1) is rewritten as
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follows:

9yptq � fpt, yptq, ζptqq if ζiptq � 0 for all i P t1, . . . , nσu. (1.2)

However, this equation does not impose any condition on yptq at times t where ζiptq for at least
one i. In particular, not even continuity of yptq is imposed. Therefore, in order to express that the
equation is non-impulsive, it is appropriate to reformulate the differential equation as

9yptq �fpt, yptq, ζptqq if ζiptq � 0 for all i P t1, . . . , nσu (1.3a)

yptq �y�ptq � y�ptq else. (1.3b)

Herein, y�ptq and y�ptq are the right-sided limit and the left-sided limit of the state y at time t:

y�ptq :� lim
εÑ0�

ypt� εq (1.4a)

y�ptq :� lim
εÑ0�

ypt� εq. (1.4b)

In the next step, impulses shall be included into the problem formulation. In equation (0.4), the
impulse at a time point si was formulated as

y�psiq � y�psiq � ωpsi, y�psiqq. (1.5)

Herein, ω is the impulse function. In general, impulses may occur at time points that are implicitly
determined by the time evolution of yptq itself, which suggests to characterize their location by zeros
of switching functions, i.e. in the same way as the discontinuities of the right-hand-side function
were determined in equation (1.3a). It is then also natural that the impulse depends on the signs
of the switching functions:

y�psiq � y�psiq � ωpsi, y�psiq, ζpsiqq. (1.6)

Herein, ζpsiq should – of course – represent the signs of the switching functions before the impulse
is applied. This is necessary to note because the impulse applied to the state will generally also
cause an immediate change in the signs of the switching functions.

The formal definition of a “solution”, which follows in Chapter 2, will use right-continuituous
functions yptq, i.e.:

ypsiq :� y�psiq. (1.7)

Therefore, in order to express that ζpsiq in equation (1.6) represents, as intended, the switching
function signs to the left of si, the functions ζiptq, 1 ¤ i ¤ nσ, are defined as

ζiptq :� signpσipt, y�ptqqq. (1.8)

This makes it possible to define differential equations that account for both switches and impulses
as follows:

9yptq � fpt, yptq, ζptqq if ζiptq � 0 for all i P t1, . . . , nσu (1.9a)

yptq :� y�ptq � y�ptq � ωpt, y�ptq, ζptqq else. (1.9b)

It remains to include time delays into the problem formulation. In view of equation (0.2), the
differential equation (1.9a) is modified in the following way:

9yptq � fpt, yptq, typt� τipt, yptqqqunτi�1, ζptqq if ζiptq � 0 for all i P t1, . . . , nσu. (1.10)

Herein, τipt, yptqq for 1 ¤ i ¤ nτ are called the delay functions, αipt, yptqq :� t � τipt, yptqq are
called the deviating arguments, and ypt� τipt, yptqqq are called the past states.

If time delays are included in the problem formulation by letting the right-hand-side function
depend on past states, it is only natural to allow that also the switching and impulse functions
depend on past states. However, while t is approaching a zero s of a switching function, it is
possible that one or several deviating arguments approach a time point of discontinuity spast in
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the past. Therefore, σi and ω should be evaluated by using one-sided limits of the state at past
time points (in analogy to the one-sided limit y�ptq of the current state used in equations (1.8) and
(1.9b)). For the past states, however, it is reasonable to take the left-sided or the right-sided limit
of a past state at a discontinuity point depending on the behavior of t� τipt, yptqq, 1 ¤ i ¤ nτ , for
t in a left neighborhood of s. More precisely, if the deviating argument approaches spast from the
left (from the right) while t approaches s, then the left-sided limit (the right-sided limit) should
be taken.

In order to express this in terms of equations, the following is defined:

lαi ptq � lim
t1Ñt�

sign
�
αipt1, ypt1qq � αipt, y�ptqq

�
. (1.11)

It is thereby assumed that α is a continuous function of its arguments in order to guarantee that
the limit exists.

If αipt1, ypt1qq is smaller (greater) than αipt, y�ptqq for t1 in a left neighborhood of t, then the
sign is negative (positive) for t1 to the left of t, and thus lαi ptq � �1 (lαi ptq � �1). Further, if
αpt1, y�pt1qq is constant in a left neighborhood of t, then lαi ptq � 0.

The quantity lαi ptq enters the following definition:

ypαipt, y�ptqqq :�
#
y�pαipt, y�ptqqq if lαi ptq � �1

y�pαipt, y�ptqqq if lαi ptq � 0 or lαi ptq � �1.
(1.12)

The fact that the right-sided limit y�pαipt, y�ptqqq is used for lαi ptq � 0 is motivated by the fact
that right-continuous functions yptq are considered as solutions (see Chapter 2).

Having introduced the notation y, the generalizations of the equations (1.8) and (1.9b) for
arbitrary continuous delay functions τi become

ζiptq :� signpσipt, y�ptq, typt� τipt, yptqqqunτi�1qq (1.13)

and

yptq :� y�ptq � y�ptq � ωpt, y�ptq, typt� τipt, yptqqqunτi�1, ζptqq
if ζiptq � 0 for at least one i P t1, . . . , nσu. (1.14)

The equations (1.10), (1.13), and (1.14) form a new class of differential equations, whose study
is the subject of this thesis. For a more compact notation, it is suitable to define the set of all
possible values of ζptq as

Iζ :� t�1, 0, 1unσ . (1.15)

Further, let

Iζ0 :� tζ P Iζ | ζj � 0 for at least one j P t1, . . . , nσuu (1.16a)

Iζ1 :� tζ P Iζ | ζj � 0 @ j P t1, . . . , nσuu. (1.16b)

It holds that Iζ0 Y Iζ1 � Iζ and Iζ0 X Iζ1 � H. These definitions allow to introduce, for a given
function yptq, t P T with T being some interval, the following sets:

Dt0pT q :� tt P T | ζptq P Iζ0 u (1.17a)

Dt1pT q :� tt P T | ζptq P Iζ1 u. (1.17b)

Evidently, Dt0pT q YDt1pT q � T and Dt0pT q XDt1pT q � H.

With these notations, it is possible to express the equations (1.10), (1.14) in the following, more
compact form:

9yptq � fpt, yptq, typt� τipt, yptqqqunτi�1, ζptqq for t P Dt1pRq (1.18a)

yptq � y�ptq � y�ptq � ωpt, y�ptq, typt� τipt, y�ptqqqunτi�1, ζptqq for t P Dt0pRq. (1.18b)

Please note that the two formulations (1.10), (1.14) and (1.18a), (1.18b) are equivalent. Both
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notations will be used in this thesis. The former one is employed when applications are considered
in Chapter 3 and in Part V, whereas the latter is used in the other parts of this work.

Equations of the form (1.18a), (1.18b), (1.13) are called impulsive hybrid discrete-continuous
delay differential equations, and the study of such equations is the subject of this work. However,
mathematical models of real-world processes often contain parameters that are unknown or only
vaguely determined. If their influence on the behavior of the state should be investigated, the first
step is to make these unknown parameters “visible” in the equations. Therefore, the unknown
parameters are denoted by c and are included into the right-hand-side function, into the delay
functions, into the switching functions, and into the impulse functions. This leads to the following
formal definition.

Definition 1.1 (Impulsive Hybrid Discrete-Continuous Delay Differential Equation
(IHDDE))

An Impulsive Hybrid discrete-continuous Delay Differential Equation (IHDDE) is an equation, in
which the state y as a function of the time t P R is determined by both a differential equation and
by impulses

9yptq � fpt, yptq, c, typt� τipt, yptq, cqqunτi�1, ζptqq for t P Dt1pRq (1.19a)

yptq � y�ptq � y�ptq � ωpt, y�ptq, c, typt� τipt, y�ptq, cqqunτi�1, ζptqq for t P Dt0pRq. (1.19b)

The state y is a function y : RÑ Dy, Dy � Rny , and c P Dc � Rnc are parameters. Further, y�ptq
and y�ptq denote the left-sided limit and the right-sided limit of the state y at a time t. The symbol
y denotes the left-sided or the right-sided limit of the state y at a past time point t� τipt, y�ptq, cq,
1 ¤ i ¤ nτ , depending on the behavior of the corresponding deviating argument as follows:

lαi ptq � lim
t1Ñt�

sign
�
αipt1, ypt1q, cq � αipt, y�ptq, cq

�
(1.20a)

ypαipt, y�ptq, cqq �
#
y�pαipt, y�ptq, cqq if lαi ptq � �1

y�pαipt, y�ptq, cqq if lαi ptq � 0 or lαi ptq � �1.
(1.20b)

The delay functions τi : R�Dy�Dc Ñ R�
0 , 1 ¤ i ¤ nτ are time-, state-, and parameter-dependent

and have non-negative values. There further are switching functions σi : R�Dy�Dc�pDyqnτ Ñ R,
1 ¤ i ¤ nσ, and their signs ζiptq are defined by

ζiptq :� signpσipt, y�ptq, c, typt� τjpt, y�ptq, cqqunτj�1qq P t�1, 0, 1u. (1.21)

The signs of all switching functions are denoted by ζptq � pζ1ptq, . . . , ζnσ ptqqT , with ζptq P Iζ , and
with Iζ as defined in equation (1.15).

The sets Dt1pRq and Dt0pRq, which determine the domains where the time evolution of yptq is
prescribed by the differential equation (1.19a) and by the impulse relation (1.19b) are defined by
equation (1.17), i.e. by the signs of the switching functions and hence implicitly by the unknown
function yptq itself.

The right-hand-side function f is a function f : R�Dy�Dc�pDyqnτ�Iζ1 , with Iζ1 as in equation
(1.16b), i.e. f is defined whenever all switching function signs ζptq are non-zero. Further, there is

an impulse function ω : R�Dy �Dc � pDyqnτ � Iζ0 Ñ Rny , with Iζ0 as in equation (1.16a), i.e. ω
is defined whenever at least one switching function sign is zero.

This class of differential equations allows, as demanded, a dependency of the right-hand-side
function on multiple past states, with delays that are themselves functions of the current state. In
addition, also the switching functions and the impulse functions depend on the past states. The
time points of switches and impulses are implicitly defined by zeros of the switching functions and
thus by the state of the system itself. Moreover, all functions are allowed to be nonlinear functions
of their arguments.

Due to the above-mentioned characteristics, impulsive hybrid discrete-continuous delay differ-
ential equations are a highly challenging problem class. The name of this new problem class is
motivated by established terminology for simpler classes of differential equations:

• delay differential equations for differential equations of the simpler form
9yptq � fpt, yptq, c, typt � τipt, yptq, cqqunτi�1q, see e.g. Paul [201], Guglielmi and Hairer [122],
Bellen and Zennaro [26], and Enright and Hayashi [96],
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1. Considered Problem Class

• impulsive delay differential equations, for delay differential equations with impulses, typically
at a priori known time points, see e.g. Anokhin, Berezansky, and Braverman [6], Ballinger
and Liu [15], Corwin, Thompson, and White [71], and Xu and Yang [262],

• and hybrid discrete-continuous dynamic systems for differential equations with additional
switching conditions, possibly also including impulses, see e.g. Galán, Feehery, and Bar-
ton [111], Mao and Petzold [184], and Schlegl, Buss, and Schmidt [221].

In many practical situations, differential equations as models for real-world processes are not
considered for all t P R but only on some finite time interval T � rtini, tfins, where tini is called
the initial time and tfin is called the final time. Moreover, a solution (in a sense that is yet to be
defined for IHDDEs) yptq is sought for specific initial conditions. For differential equations without
time delays, it is thereby sufficient to specify yptiniq, i.e. the state at the initial time. Contrariwise,
when time delays are incorporated in the problem formulation, it is often necessary to define yptq
also for times t   tini. This leads to the following definition of initial value problems in IHDDEs,
which allows for initial times and final times that depend on the parameters c.

Definition 1.2 (Initial Value Problem in IHDDEs (IHDDE-IVP), Model Functions of
an IHDDE-IVP)

Let T pcq :� rtinipcq, tfinpcqs � R be some time interval, where tini : Dc Ñ R and tfin : Dc Ñ R
are functions of the parameters with �8   tinipcq   tfinpcq   8. An Initial Value Problem in
IHDDEs (IHDDE-IVP) for the state y : p�8, tfinpcqs Ñ Dy is defined by associating the IHDDE
of Definition 1.1 with initial conditions, i.e.

9yptq � fpt, yptq, c, typt� τipt, yptq, cqqunτi�1, ζptqq for t P Dt1pT pcqq (1.22a)

yptq � y�ptq
� y�ptq � ωpt, y�ptq, c, typt� τipt, y�ptq, cqqunτi�1, ζptqq for t P Dt0pT pcqq (1.22b)

yptinipcqq � yinipcq (1.22c)

yptq � φpt, cq for t   tinipcq. (1.22d)

The domains and co-domains of f, tτiunτi�1, tσiunσi�1 and ω are the same as in Definition 1.1. Further,
also ζ, y, Dt0pT pcqq and Dt1pT pcqq are defined as before.

As the initial time tini and the final time tfin, also the initial state yini : Dc Ñ Dy is a
function of the parameters. The function φ : p�8, tfinpcqs�Dc Ñ Dy is called the initial function.
Together, the functions f, tτiunτi�1, tσiunσi�1, ω, t

ini, yini, φ, and tfin are called the model functions
of the IHDDE-IVP.

For a shorter notation of the relevant intervals, the following definitions are used throughout the
thesis:

T φpcq :� p�8, tinipcqq and T f pcq :� p�8, tfinpcqs, (1.23)

i.e. T φpcq denotes the parameter-dependent interval in which the state is given by the initial
function φ, and T f pcq denotes the “full” time interval that comprises both T φpcq and T pcq �
rtinipcq, tfinpcqs.

The initial function in the IHDDE-IVP and the consideration of an extension of T pcq to the left is
dispensable if t� τipt, yptq, cq ¥ tinipcq for 1 ¤ i ¤ nτ and for all t P T pcq, but necessary otherwise.
In many cases it is sufficient to consider a finite extension to the left, e.g. in the case of constant
delays τipt, yptq, cq � τipcq, but in order to treat the case where the delay is state-dependent and
the lower bound for t�τipt, yptq, cq is a priori unknown, the interval T f pcq is defined with left-sided
endpoint �8.

The initial function is also defined for times t ¥ tinipcq, even though it is needed in the problem
formulation only for times t   tinipcq according to equation (1.22d). This extension becomes
relevant, e.g., for the differentiability theory presented in Chapter 7 of this thesis. As right border
of this extension any time to the right of tinipcq would be sufficient, but for simplicity of notation
the final time tfinpcq is used.

It is remarked that the terminology of calling problem (1.22) an “initial value problem” is
sloppy, as not only the initial value but also the initial function determine the evolution of the
state. However, the term is widely accepted in the literature of delay differential equations, see
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Bellman and Cooke [28], Bellen and Zennaro [26], Guglielmi and Hairer [122], and Bocharov and
Romanyukha [33]. Therefore, this term is therefore also used in this thesis.

Having formulated a new class of differential equations and the corresponding IVP in Defini-
tions 1.1 and 1.2, the next important step is to agree on a notion of a “solution” and to define
the function space of these “solutions”. Before taking these steps in Chapter 2, some subclasses
of IHDDEs are introduced, the terminology for these subclasses is defined, and special types of
switching functions and delay functions are discussed.

1.2. Subclasses

IHDDEs and the associated IHDDE-IVPs constitute a new and very general class of differential
equations and IVPs, respectively. They comprise several “simpler” differential equations and IVPs
as subclasses. Some of these “simpler” differential equations have already been encountered in the
derivation of IHDDEs in Section 1.1. The formal definition of these subclasses and the introduction
of a straightforward terminology in this section is useful in subsequent chapters, e.g., for the
categorization of the applications that are presented in Chapter 3. In addition, some alternative
terminologies that have been used in the literature are mentioned in this section.

For all definitions in this section, it is assumed that c P Dc is an arbitrary but fixed vector of
parameter values and that the considered interval is denoted by T pcq � rtinipcq, tfinpcqs. The sets
Dt1pT pcqq and Dt0pT pcqq and the domains and co-domains of the model functions as well as of the
state y are the same as in the Definitions 1.1 and 1.2, with obvious modifications where necessary
(e.g. if a function lacks some of its arguments compared to IHDDE(-IVP)s). The continuity
assumptions made in Section 1.1 on f , σi and τi are assumed to be fulfilled. Furthermore, it
is pointed out that most of the IVPs defined in the following require a generalized concept of a
solution.

1.2.1. Ordinary Differential Equation

An elementary class of differential equations are ordinary differential equations, as defined in the
following.

Definition 1.3 (Ordinary Differential Equation (ODE))

An Ordinary Differential Equation (ODE) is an equation, in which the state y as a function of the
time t is characterized by the differential equation

9yptq � fpt, yptq, cq for t P R. (1.24)

Definition 1.4 (Initial Value Problem in ODEs)

An Initial Value Problem in ODEs (ODE-IVP) associates the differential equation (1.24) with an
interval T pcq and with an initial value:

9yptq � fpt, yptq, cq for t P T pcq. (1.25a)

yptinipcqq � yinipcq. (1.25b)

ODEs and ODE-IVPs are comprised in the Definitions 1.1 and 1.2 of IHDDEs and IHDDE-IVPs
by setting nσ � 0 and nτ � 0, i.e. such that there are no switching functions and no past states.

1.2.2. Hybrid Discrete-Continuous Ordinary Differential Equations

If switching functions are included into the problem formulations for ODEs, and if the right-hand-
side function f is a function of the switching function signs, then the resulting equation is in this
thesis called a hybrid discrete-continuous ordinary differential equation.

Definition 1.5 (Hybrid Discrete-Continuous Ordinary Differential Equation (HODE))

A Hybrid discrete-continuous Ordinary Differential Equation (HODE) is an equation, in which
the state y as a function of the time t is characterized by a differential equation and a continuity
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condition as follows:

9yptq � fpt, yptq, c, ζptqq for t P Dt1pRq (1.26a)

yptq :� y�ptq � y�ptq for t P Dt0pRq. (1.26b)

Herein, ζptq � pζ1ptq, . . . , ζnσ ptqq and ζiptq :� signpσipt, y�ptq, cqq, 1 ¤ i ¤ nσ, are the signs of the
switching functions σi.

Definition 1.6 (Initial Value Problems in HODEs (HODE-IVP))

An Initial Value Problem in HODEs (HODE-IVP) associates the differential equation (1.26a) and
the continuity condition (1.26b) with an interval T pcq and with an initial value:

9yptq � fpt, yptq, c, ζptqq for t P Dt1pT pcqq (1.27a)

yptq :� y�ptq � y�ptq for t P Dt0pT pcqq (1.27b)

yptinipcqq � yinipcq. (1.27c)

HODEs and HODE-IVPs are comprised in the Definitions 1.1 and 1.2 of IHDDEs and IHDDE-
IVPs by setting nτ � 0 and setting the impulse functions identically zero, i.e.: ωpt, y�ptq, c, ζq � 0.

Equations of the form (1.26) have frequently been given names including the word “switched”
or “switching”, e.g. “switched system”, “switched-mode dynamical system”, “switched differential
equations”, “differential equations with switching conditions”, etc. The attribute “hybrid discrete-
continuous” that is used in this thesis is motivated by the wish to emphasize that the right-hand-side
function f of the differential equation is a function of both discrete variables (i.e. ζ) and continuous
variables (i.e. t and y).

1.2.3. Impulsive Ordinary Differential Equations

If switching functions are included into the problem formulation of an ODE in order to chracterize
the location of discontinuities in the state yptq, then the resulting equation is called an impulsive
ordinary differential equation.

Definition 1.7 (Impulsive Ordinary Differential Equation (IODE))

An Impulsive Ordinary Differential Equation (IODE) is an equation, in which the state y as a
function of the time t is characterized by both a differential equation and by impulses as follows:

9yptq � fpt, yptq, cq for t P Dt1pRq (1.28a)

yptq :� y�ptq � y�ptq � ωpt, y�ptq, c, ζptqq for t P Dt0pRq. (1.28b)

Herein, ζptq � pζ1ptq, . . . , ζnσ ptqq and ζiptq � signpσipt, y�ptq, cqq, 1 ¤ i ¤ nσ, are the signs of the
switching functions σi.

Definition 1.8 (Initial Value Problem for IODEs (IODE-IVP))

An Initial Value Problem in IODEs (IODE-IVP) associates the differential equation (1.28a) and
the impulse condition (1.28b) with an interval T pcq and with an initial value:

9yptq � fpt, yptq, cq for t P Dt1pT pcqq (1.29a)

yptq :� y�ptq � y�ptq � ωpt, y�ptq, c, ζptqq for t P Dt0pT pcqq (1.29b)

yptinipcqq � yinipcq. (1.29c)

IODEs and IODE-IVPs are comprised in the Definitions 1.1 and 1.2 of IHDDEs and IHDDE-IVPs
by setting nτ � 0 and eliminating the dependence of the right-hand-side function f on the signs
of the switching functions. Hence, the switching functions σi are needed in IODEs merely to
indicate the time points where impulses have to be applied; their signs ζiptq are further used for
the definition of the impulse.

In the literature, an equation of the form (1.28) is often simply called “impulsive differential
equation”. In this thesis, it is stressed that equation (1.28) is otherwise “ordinary” in the sense
that it does not include time delays.
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1.2.4. Impulsive Hybrid Discrete-Continuous Ordinary Differential Equations

If a zero of the switching functions may trigger both a switch in the right-hand-side function and an
impulse, then the equation is called an impulsive hybrid discrete-continuous ordinary differential
equation.

Definition 1.9 (Impulsive Hybrid Discrete-Continuous Ordinary Differential Equation
(IHODE))

An Impulsive Hybrid discrete-continuous Ordinary Differential Equation (IHODE) is an equation,
in which the state y as a function of the time t is characterized by both a differential equation and
by impulses as follows:

9yptq � fpt, yptq, c, ζptqq for t P Dt1pRq (1.30a)

yptq :� y�ptq � y�ptq � ωpt, y�ptq, c, ζptqq for t P Dt0pRq. (1.30b)

Herein, ζptq � pζ1ptq, . . . , ζnσ ptqq and ζiptq � signpσipt, y�ptq, cqq, 1 ¤ i ¤ nσ, are the signs of the
switching functions σi.

Definition 1.10 (Initial Value Problems in IHODEs (IHODE-IVP))

An Initial Value Problem in IHODEs (IHODE-IVP) associates the differential equation (1.30a)
and the impulse condition (1.30b) with an interval T pcq and with an initial value:

9yptq � fpt, yptq, c, ζptqq for t P Dt1pT pcqq (1.31a)

yptq :� y�ptq � y�ptq � ωpt, y�ptq, c, ζptqq for t P Dt0pT pcqq (1.31b)

yptinipcqq � yinipcq. (1.31c)

IHODEs and IHODE-IVPs are comprised in the Definitions 1.1 and 1.2 of IHDDEs and IHDDE-
IVPs by setting nτ � 0.

Equations of the form (1.30) have also been simply called “hybrid discrete/continuous systems”,
without stressing the presence of impulses. The viewpoint behind this terminology is that the
impulse is regarded as a “discrete event” in the sense that the evolution of the system is not
described by the continuous dynamics (i.e., by the ODE).

1.2.5. Delay Differential Equations

The differential equations considered above, i.e. HODEs, IODEs, and IHODEs, are subclasses of
IHDDEs with nτ � 0 and nσ ¡ 0. On the other hand, if an IHDDE without switching functions
but with time delays is considered, then the result is a so-called delay differential equation.

Definition 1.11 (Delay Differential Equation (DDE))

A Delay Differential Equation (DDE) is an equation, in which the state y as a function of the time
t is characterized by the differential equation

9yptq � fpt, yptq, c, typt� τipt, yptq, cqqunτi�1q for t P R (1.32)

Definition 1.12 (Initial Value Problem in DDEs (DDE-IVP))

An Initial Value Problem in DDEs (DDE-IVP) associates the differential equation (1.32) with an
interval T pcq, with an initial value, and with an initial function:

9yptq � fpt, yptq, c, typt� τipt, yptq, cqqunτi�1q for t P T pcq (1.33a)

yptinipcqq � yinipcq (1.33b)

yptq � φpt, cq for t   tinipcq. (1.33c)

DDEs and DDE-IVPs are comprised in the Definitions 1.1 and 1.2 of IHDDEs and IHDDE-IVPs
by setting nσ � 0.

It should be mentioned that there is a rich variety of alternative terms for equations of the
form (1.32). Other popular names are, e.g., “differential-difference equations”, “retarded ordinary
differential equations”, “differential equations with deviating argument”, and “differential delay
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equations”. Sometimes, equations of the form (1.32) are treated as a special type of “functional
differential equations”.

1.2.6. Hybrid discrete-continuous Delay Differential Equations

Equations that feature both time delays and switches, but no impulses, are in this thesis called
hybrid discrete-continuous delay differential equations.

Definition 1.13 (Hybrid discrete-continuous Delay Differential Equation (HDDE))

A Hybrid Discrete-Continuous Delay Differential Equation (HDDE) is an equation, in which the
state y as a function of the time t is characterized by a differential equation and a continuity
condition as follows:

9yptq � fpt, yptq, c, typt� τipt, yptq, cqqunτi�1, ζptqq for t P Dt0pRq (1.34a)

yptq :� y�ptq � y�ptq for t P Dt1pRq. (1.34b)

Herein, ζptq � pζ1ptq, . . . , ζnσ ptqq, and further ζiptq :� signpσipt, yptq, c, typt � τjpt, yptq, cqqunτj�1qq
for 1 ¤ i ¤ nσ are the signs of the switching functions σi

Definition 1.14 (Initial Value Problem in HDDEs (HDDE-IVP))

An Initial Value Problem in HDDEs (HDDE-IVP) associates the differential equation (1.34a) and
the continuity condition (1.34b) with an interval T pcq, with an initial value, and with an initial
function:

9yptq � fpt, yptq, c, typt� τipt, yptq, cqqunτi�1, ζptqq for t P Dt1pT pcqq (1.35a)

yptq � y�ptq � y�ptq for t P Dt0pT pcqq (1.35b)

yptinipcqq � yinipcq (1.35c)

yptq � φpt, cq for t   tinipcq. (1.35d)

Herein, ζptq � pζ1ptq, . . . , ζnσ ptqq and ζiptq :� signpσipt, y�ptq, c, typt � τjpt, y�ptq, cqqunτj�1qq for
1 ¤ i ¤ nσ are the signs of the switching functions σi, which are defined by using the left-sided
limit of the current state and the left-sided limit or the right-sided limit of the past state depending
on the value of

lαi � lim
t1Ñt�

sign
�
αipt1, ypt1q, cq � pαipt, y�ptq, cqq

�
(1.36)

as follows:

ypαipt, y�ptq, cqq �
#
y�pαipt, y�ptq, cqq if lαi � �1

y�pαipt, y�ptq, cqq if lαi � 0 or lαi � �1.
(1.37)

Herein, the symbol y is used in the definition of the switching function signs because the initial
function φpt, cq is allowed to be discontinuous.

HDDEs and HDDE-IVPs are comprised in the Definitions 1.1 and 1.2 of IHDDEs and IHDDE-
IVPs by setting ωpt, y�ptq, c, typt� τipt, y�ptq, cqqunτi�1, ζptqq � 0.

Alternative names for equation (1.34) found in the literature are “switching systems with delay”,
“switching time-delay systems”, “delay differential equations with switches”, and “switched system
with time delay”.

1.2.7. Impulsive Delay Differential Equations

Definition 1.15 (Impulsive Delay Differential Equation (IDDE))

An Impulsive Delay Differential Equation (IDDE) is an equation, in which the state y as a function
of the time t is characterized by both a differential equation and by impulses as follows:

9yptq � fpt, yptq, c, typt� τipt, yptq, cqqunτi�1q for t P Dt1pRq (1.38a)

yptq :� y�ptq � y�ptq � ωpt, y�ptq, c, typt� τipt, y�ptq, cqqunτi�1, ζptqq for t P Dt0pRq. (1.38b)
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Herein, ζptq � pζ1ptq, . . . , ζnσ ptqq and ζiptq � signpσipt, y�ptq, cq, typt � τjpt, y�ptq, cqqunτj�1q, 1 ¤
i ¤ nσ, are the signs of the switching functions σi, which are defined by using the left-sided of the
current state, and the left-sided or right-sided limit of the past state according to equations (1.36),
(1.37).

Definition 1.16 (Initial Value Problem in IDDEs (IDDE-IVP))

An Initial Value Problem in IDDEs (IDDE-IVP) associates the differential equation (1.38a) and
the impulse condition (1.38b) with an interval T pcq, with an initial value, and with an initial
function:

9yptq � fpt, yptq, c, typt� τipt, yptq, cqqunτi�1q for t P Dt1pT pcqq (1.39a)

yptq :� y�ptq
� y�ptq � ωpt, y�ptq, c, typt� τipt, y�ptq, cqqunτi�1, ζptqq for t P Dt0pT pcqq (1.39b)

yptinipcqq � yinipcq (1.39c)

yptq � φpt, cq for t   tinipcq. (1.39d)

IDDEs and IDDE-IVPs are comprised in the Definitions 1.1 and 1.2 of IHDDEs and IHDDE-IVPs
by eliminating the dependence of the right-hand-side function f on the signs of the switching
functions. Similar as for IODEs and IODE-IVPs, the switching functions are used here only to
characterize the time points where impulses have to be applied and to define the choice of the
impulse functions.

1.3. Switching Function Characterization

In IHDDE-IVPs, the zeros of ζiptq � signpσipt, y�ptq, c, typt� τjpt, yptq, cqqunτj�1qq characterize the

set Dt0pT pcqq and hence those times where impulses have to be applied or where the right-hand-
side function f may change discontinuously. Due to the dependency of the switching functions on
current and past states, the location of the zeros of ζiptq is in general a priori unknown. However,
in some cases, namely if a switching function takes the form

σipt, y�ptq, c, typt� τjpt, yptq, cqqunτj�1q � σ̃ipt, cq. (1.40)

the set where it becomes zero can be computed a priori. Even more restrictive is the form

σipt, y�ptq, c, typt� τjpt, yptq, cqqunτj�1q � t� σ̃ipcq. (1.41)

These special cases are termed as follows.

Definition 1.17 (Time-Dependent Switching Function)

If a switching function σi is of the special form (1.40), then it is called a time-dependent switching
function.

Definition 1.18 (Simple Time-Dependent Switching Function)

If a switching function σi is of the special form (1.41), then it is called a simple time-dependent
switching function.

The general case, i.e. a switching function that depends on current and/or past states, is conse-
quently called a state-dependent switching function.

Definition 1.19 (State-Dependent Switching Function)

If a switching function σi is not a time-dependent switching function, then it is called a state-
dependent switching function.

In the case that all switching functions of an IHDDE-IVP are time-dependent or simple time-
dependent, it is possible to compute all times t P Dt0pT pcqq a priori, which leads to a significant
simplification of the problem. In order to be able to express such a property, the following is
defined.
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Definition 1.20 (IHDDE with (Simple) Time-Dependent Switching Functions, IHDDE
with State-Dependent Switching Functions)

If all switching function σi, 1 ¤ i ¤ nσ in an IHDDE are (simple) time-dependent, then it is
called an IHDDE with (simple) time-dependent switching functions. Otherwise it is called an
IHDDE with state-dependent switching functions. According terminology applies to the associated
IHDDE-IVP, and also to the subclasses defined in Section 1.2, i.e. HODE(-IVP), IODE(-IVP),
IHODE(-IVP), HDDE(-IVP), and IDDE(-IVP).

1.4. Delay Characterization

Similar to the switching functions, also the delay functions can be further characterized. The
simplest case of delay functions are constant delays.

Definition 1.21 (Constant Delays)

A delay function τipt, yptq, cq is called a constant delay, if it holds that τipt, yptq, cq � τ̃ipcq.
Further, it is distinguished between delay functions that depend on the state yptq and those that
do not depend on the state as follows:

Definition 1.22 (Time-Dependent Delays)

A delay function τipt, yptq, cq is called a time-dependent delay, if it holds that τipt, yptq, cq � τ̃ipt, cq.
Definition 1.23 (State-Dependent Delays)

Delay functions τipt, yptq, cq that are neither constant nor time-dependent are referred to as state-
dependent delays.

Apart from their dependencies, delay functions are also classified according to the values that
they attain. Of particular theoretical and numerical relevance is the question whether delays are
vanishing for some times on the considered interval.

Definition 1.24 (Vanishing Delay at a Time t)

A delay τipt, yptq, cq is called a vanishing delay at time t, if for c P Dc and a function y : T pcq Ñ Dy,
it holds that

τipt, yptq, cq � 0. (1.42)

Whether a delay vanishes at a time t or not is in general not only a property of the delay function.
Of course, it depends also on the state y and the parameters c for which the delay function is
evaluated.
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The treatment of such equations requires from the very start a
generalization of the concept of solution.

Filippov, in the preface to his book “Differential Equations with
Discontinuous Right Hand Side” [105].

In Chapter 1 a very general class of differential equations termed impulsive hybrid discrete-
continuous delay differential equations (IHDDEs) was introduced. The formulation of this class
of differential equations allowed two sources of discontinuities: On the one hand, there are time
points where at least one switching function becomes zero, which leads to a discontinuous change
of one of the arguments of the right-hand-side function, and which triggers an impulsive change of
the state. On the other hand, the deviating arguments may cross a time point of discontinuity in
the past, which may also lead to a discontinuous change in one argument (or in several arguments)
of the right-hand-side function.

It was mentioned several times in Chapter 1 that the presence of discontinuities in the arguments
of the right-hand-side function of a differential equation makes it necessary to define what properties
a candidate function yptq has to fulfill in order to be called a “solution” of an initial value problem
(IVP). For “discontinuous ordinary differential equations”, a class of equations that is closely
related to hybrid discrete-continuous ordinary differential equations (HODEs), this fact has led to
the statement by Filippov quoted above. However, this issue has also occured in the context of
other types of differential equations, see e.g. Bellen and Guglielmi [24] for the class of so-called
“delay differential equations of neutral type” and Ballinger and Liu [15] for equations that in
the terminology of this thesis would be called “impulsive delay differential equations with simple
time-dependent switching function”.

A large number of different concepts for “solutions” has been proposed in the context of HODE-
IVPs, see e.g. the early article by Hájek [129], the book by Filippov [105], and the survey by
Cortés [69]. The solution concepts presented therein could also be used as a basis for developing a
variety of solution concepts for IHDDE-IVPs. The content and purpose of this chapter is to select,
motivate, and formally define one specific solution concept that is used for the remainder of this
thesis.

Organization of This Chapter

Section 2.1 deals with the impulse condition of an IHDDE-IVP. It is demonstrated that this con-
dition leads, in a natural way, to an elementary requirement that a function has to fulfill in order
to be called an IHDDE-IVP solution. Furthermore, the consequences of this requirement for prob-
lems with switches but without impulses are discussed. Section 2.2 addresses the problem that
the arguments of the right-hand-side function exhibit, due to the presence of impulses in the past,
discontinuities away from the zero sets of the switching functions. The discussion of this issue leads
to the formulation of a second requirement for IHDDE-IVP solutions.

Section 2.3 takes up the findings of the previous sections and condenses them into the formal
definition of an IHDDE-IVP solution. Section 2.4 discusses the consequences of the presence of
parameters in the model functions. The chapter is concluded by Section 2.5, which establishes the
terminology for the various kinds of discontinuities that may occur in IHDDE-IVP solutions.

2.1. The Impulse Condition

The main goal of this chapter is to define what a solution of an IHDDE-IVP is. To this end, regard
at first the impulse condition (1.19b), which allows the state to be discontinuous at those time
points where at least one of the switching functions is zero. The same condition also requires that
both the left-hand-side limit and the right-hand-side limit of the state y exist at this time point.
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Correspondingly, there should be some minimal distance between two successive impulses, because
otherwise the limits y� and y� may not be defined. Formally, this is accounted for by the first
requirement for IHDDE-IVP solutions as follows:

(R1) A solution yptq should be such that the set Dt0pT pcqq, which contains all time points where
at least one switching function is zero, contains only a finite number of times.

Remark that (R1) is equivalent to demanding that two time points t1 P Dt0pT pcqq and t2 P Dt0pT pcqq
are separated by some minimum distance ∆t.

Requirement (R1) is generally necessary in order to ensure that the limits y� and y� are defined
at all times t P Dt0pT pcqq for the case that the applied impulses are non-zero. However, (R1) is
also imposed if the impulse functions evaluate to zero. The two following simple examples, both
of them belonging to the class of HODE-IVPs, illustrate the effect that the requirement (R1) has
in this case.

Example 2.1

Consider, on the interval T � r0, 2s, the HODE-IVP

9yptq �
#
�1 for ζptq � �1

�0.5 for ζptq � �1
(2.1a)

y�ptq � y�ptq for ζptq � 0 (2.1b)

yp0q � 0, (2.1c)

with a switching function σpt, yptqq :� yptq � 1 and ζptq defined by

ζptq � signpy�ptq � 1q. (2.2)

It is noted that the sign ζptq is, in this example, defined with the left-sided limit y�ptq only for
reasons of notational consistency with the general IHDDE-IVP case, see Definition 1.2. Since the
IVP is non-impulsive, ζptq could also have been defined by signpyptq � 1q.

Consider, as a proposition for a solution yptq of the HODE-IVP (2.1), the following function:

yptq �
#
t for t P r0, 1q
0.5� 0.5t for t P r1, 2s. (2.3)

For this function yptq, the switching function is negative at the initial time (σptini, yptiniqq � �1)
so that the sign ζptq is initially �1. For this value of ζptq, the right-hand-side function is equal
to �1, which is fulfilled by the function yptq for t P r0, 1q. After the zero of the switching function
at t � 1, the time derivative of the function yptq as defined by equation (2.3) is equal to 0.5, and
thus equal to the value of the right-hand-side function for ζptq � �1. In addition, yptq is continuous
at t � 1 as imposed by equation (2.1b), so that yptq can indeed be regarded as a solution of the
HODE-IVP (2.1).

There are, however, other functions which fulfill all equations (2.1), e.g.

yptq �
#
t for t P r0, 1q
1 for t P r1, 2s. (2.4)

This function “stalls” at the value yptq � 1 after t � 1, so that the sign of the switching func-
tion remains ζptq � 0. However, for all t P r1, 2s, the continuity condition (2.1b) holds, so that
yptq “solves” the equations (2.1). Observe that it is also possible to create infinitely many other
functions yptq that fulfill all equations in (2.1) by leaving the value 1 at any time t P p1, 2q.

It is clear that all functions yptq that are identical to 1 for some finite time interval violate
requirement (R1). Hence, by imposing (R1), only the function defined by equation (2.3) remains
as a solution. In many practical examples, the function that obeys requirement (R1) is also the
only (physically) reasonable solution of the IVP.

Sometimes, however, it turns out that staying in the domain where the switching function is zero
is the only way to fulfill all equations in an IVP. This case is illustrated by the following example.
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Example 2.2

Consider, on the interval T � r0, 2s, the HODE-IVP

9yptq �
#
�1 for ζptq � �1

�1 for ζptq � �1
(2.5a)

y�ptq � y�ptq for ζptq � 0 (2.5b)

yp0q � 0, (2.5c)

with a switching function σptq � yptq � 1, the sign of which is defined by

ζptq :� signpy�ptq � 1q. (2.6)

Example 2.2 differs from Example 2.1 only by the value of the differential equation for ζptq � �1,
compare equations (2.1a) and (2.5a). This time, there is no function yptq that fulfills all equations
in (2.5) and additionally obeys the requirement (R1), because no matter what differential equation
is chosen for t ¡ 1, the sign ζptq of the switching function contradicts the choice of the differential
equation.

There exist practical applications where, like in Example 2.2, the vector fields of both right-
hand-side functions point toward the regime where the switching function is zero, and the option
to remain in this regime is indeed a physically reasonable solution, see e.g. Lenz [171]. This is the
main reason why more general solution concepts have been developed in the context of HODE-IVPs.
Of particular popularity is the use of so-called Filippov Solutions, in reference to Filippov [104, 105],
where ODEs with discontinuous right-hand-side functions are studied extensively.

For the benefit of elegantly avoiding accumulation points of impulses it is acceptable for the
remainder of this thesis to restrict the attention to those “almost classical solutions” that obey
requirement (R1), i.e. solutions where the switching functions become zero only at isolated time
points. In particular, this is sufficient for the applications under investigation (see Chapter 3 and
Part V of this thesis).

It should be mentioned that for a time-dependent switching function σipt, cq the requirement
(R1) is easily identified as a condition on σipt, cq itself, because there can obviously be no solution
that obeys (R1) if σipt, cq has countably or uncountably infinite zeros on the finite time interval
T pcq.

By imposing the requirement (R1), a solution yptq is piecewise continuous with only finitely many
discontinuities in the interval T pcq, if it is assumed, as obvious, that the solution is continuous
in the set Dt1pT pcqq. Hence, the limits y� and y� are defined on T pcq. In addition, however,
the left-sided or right-sided limit also need to be defined at the time points in the past (see the
equations (1.19b), (1.21)), so it is reasonable to request that the number of discontinuities in the
initial function is also finite. In summary, this motivates that the state y : T f pcq Ñ Dy should be
at least a piecewise continuous function with at most finitely many discontinuities on the full time
interval.

2.2. The Differential Equation

According to the definition of IHDDE-IVPs, see Definition 1.2, the function yptq should fulfill the
differential equation (1.19a). However, due to the presence of discontinuities at times t P Dt0pT pcqq,
and possibly also in the initial function or at the initial time, the past states ypt � τipt, yptq, cqq
are generally discontinuous, even for t P Dt1pT pcqq. Correspondingly, it can in general not be
expected that there exists a function yptq that has, for all times t P Dt1pT pcqq, a classical two-
sided derivative that fulfills the differential equation (1.19a). The classical definition of solution is
therefore generally insufficient for problems with time delays, see e.g. El’sgol’ts and Norkin [92],
page 43ff, and Bellen and Zennaro [26], page 4f.

This issue can, in general, be approached in the same way as in the HODE-IVP case, i.e. by the
use of more general solution concepts such as those proposed in Hájek [129], Filippov [105], and
Cortés [69]. In particular, Filippov solutions could be used. An alternative is the solution concept
employed by Ballinger and Liu [15] for a class of functional differential equations that covers, e.g.,
IDDEs with time-dependent delays and impulses at a sequence of a priori known time points.
Therein, so-called Carathéodory solutions are used, i.e. solutions have to satisfy the differential
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equation only in an “almost everywhere” sense on the set Dt1pT pcqq (everywhere except for a set of
Lebesgue measure zero). This allows, in particular, that the deviating arguments oscillate rapidly
around a past discontinuity point, as it is the case in the following simple DDE example.

Example 2.3

Consider, on the interval T � r0, 2s, the DDE-IVP

9yptq � ypt� τptqq (2.7a)

yp0q � 0 (2.7b)

yptq �
#

1 for t P p�8,�2q
0 for t P r�2, 0q (2.7c)

with a delay function that is defined by

τptq �
#
t� 2� pt� 1q2 � sin

�
1
t�1

	
for t � 1

t� 2 for t � 1.
(2.8)

In this example, the initial function has a discontinuity at t � �2, and the deviating argument
αptq � t�τptq is such that it oscillates rapidly around �2 when tÑ 1. More precisely, the function
αptq � 2 has infinitely many zeros in any open interval containing t � 1, and each zero results in a
discontinuity in the right-hand-side function f . Note that this behavior occurs despite the delay
function being a continuously differentiable function of time.

In order to avoid situations like those encountered in Example 2.3, the following second require-
ment is imposed for IHDDE-IVP solutions:

(R2) A solution yptq should be such that for any time s where the state y is discontinuous, the
function sign

�
αipt, y�ptq, cq� s

�
is piecewise constant with only finitely many discontinuities

for t P T pcq and for all i � 1, . . . , nτ .

If the delay function is only time-dependent, i.e. τipt, cq, then requirement (R2) can be considered
as an explicit condition on τipt, cq. If a time-dependent delay function violates the requirement
(R2) – as it is the case in Example 2.3 – there clearly cannot be any solution yptq such that (R2) is
fulfilled. This is analogous to the case of time-dependent switching functions, which have to obey
requirement (R1).

Even though it is fairly easy to construct artificial problems like Example 2.3, the requirement
(R2) is, with regard to practical problems, only a mild additional condition compared to the
solution concept of Ballinger and Liu [15]. At the same time, imposing (R2) significantly simplifies
theoretical investigations regarding existence and uniqueness of solutions. Requirement (R2) is
also almost mandatory if the solutions should be found numerically, as general-purpose numerical
methods for solving DDE-IVPs with an infinite number of discontinuities in the right-hand-side
function are very hard or impossible to develop and currently unavailable.

2.3. Formal Definition of IHDDE-IVP Solutions

Observe that both requirements (R1) and (R2) together ensure that a solution has the following
properties. First, there are only finitely many times where impulses occur or where the differential
equation does not need to be fulfilled because at least one switching function is zero. Second, there
are only finitely many times where the differential equation cannot be fulfilled due to discontinuities
in the past states (if continuity of the model functions in all real-valued arguments is assumed).
This leads to the definition of the following fuction space as a space for solutions of IHDDE-IVPs:
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Definition 2.4 (Piecewise (Right-)Continuously Differentiable Function)

Let �8   ta   tb   8, and let Dy � Rny . Then define the function spaces

PDprta, tbs,Dyq :� ty : rta, tbs Ñ Dy
��

y�ptq � yptq and 9y�ptq exist @t P rta, tbq ^
y�ptq exists @t P pta, tbs ^
and y�ptq � y�ptq, 9y�ptq exists and 9y�ptq � 9y�ptq
for all but at most a finite number of points t P pta, tbsu (2.9a)

PDprta, tbq,Dyq :� ty : rta, tbq Ñ Dy
��

y�ptq � yptq and 9y�ptq exist @t P rta, tbq ^
y�ptq exists @t P pta, tbq ^
and y�ptq � y�ptq, 9y�ptq exists and 9y�ptq � 9y�ptq
for all but at most a finite number of points t P pta, tbqu (2.9b)

PDpp�8, tbs,Dyq :� ty : p�8, tbs Ñ Dy
�� @tc   tb, y|rtc,tbs P PDprtc, tbs,Dyqu (2.9c)

PDpp�8, tbq,Dyq :� ty : p�8, tbq Ñ Dy
�� @tc   tb, y|rtc,tbq P PDprtc, tbq,Dyqu (2.9d)

By convention, define 9yptq :� 9y�ptq. Then, the function spaces defined by equations (2.9) are called
the spaces of piecewise (right-)continuously differentiable functions on the intervals rta, tbs, rta, tbq,
p�8, tbs, and p�8, tbq.

With the help of these function spaces, the solution of an IHDDE-IVP is defined as follows:

Definition 2.5 (Solution of an IHDDE-IVP, IHDDE-IVP Solution)

Let y P PDpT f pcq,Dyq be such that

• the requirements (R1) and (R2) are fulfilled,

• yptq is continuous and 9y�ptq fulfills the differential equation (1.22a) for t P Dt1pT pcqq ,

• y�ptq fulfills the impulse condition (1.22b) for t P Dt0pT pcqq ,

• yptq fulfills the initial conditions (1.22c), (1.22d) for t ¤ tinipcq.
Then the function yptq is called a solution of the IHDDE-IVP or, alternatively, an IHDDE-IVP
solution.

This solution concept can be regarded as a special kind of Carathéodory solutions that ensures
that the exceptional set where the differential equation is not fulfilled contains only a finite number
of time points.

Please note that the use of right-continuity at the initial time (see equations (1.22c) and (1.22d)),
at times t P Dt0pT pcqq (equation (1.22b)), as well as right-continuous differentiability for all
t P Dt1pT pcqq, is conventional. IHDDEs could, alternatively, also be analyzed by using left-sided
continuity and differentiability.

Some necessary assumptions on the model functions of the IHDDE-IVP for the existence of
the solutions are apparent: For example, since y P PDpT f pcq,Dyq, it is clear that the initial
function φ has to be in PDpT φpcq,Dyq. Obvious conditions on time-dependent delay functions
and time-dependent switching functions have already been mentioned in Sections 2.1 and 2.2.
The development of an existence and uniqueness theory for IHDDE-IVP solutions (in the sense of
Definition 2.5), including a complete set of sufficient conditions, is given in Chapter 4.

It is remarked that the requirements (R1) and (R2) were used to motivate why PDpT f pcq,Dyq
is an appropriate function space for IHDDE-IVP solutions, but that the fact that y is in this space
implies neither (R1) nor (R2) (e.g. the function defined in equation (2.4) is piecewise continuously
differentiable but violates (R1)). Therefore, these conditions are stated separately in Defintion 2.5.

In a similar fashion, y P PDpT f pcq,Dyq only states that there are finitely many discontinuities
in y, so it would be possible to insert (physically unreasonable) discontinuities at times t P Dt1pT pcqq
that are unmotivated by the problem formulation. In order to avoid this, it has been explicitly
demanded that yptq is continuous for t P Dt1pT pcqq, so that discontinuities may only be present at
times t P Dt0pT pcqq, i.e. in the zeros of the switching functions.

The remainder of this chapter is devoted to discussing properties of IHDDE-IVP solutions.
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2.4. Dependence on Parameters

All model functions of the IHDDE-IVP may depend on the parameters c. As a consequence, also
solutions yptq of the IHDDE-IVP (1.22) generally depend on the parameters c, which motivates to
use the notation ypt; cq. However, for the remainder of this part of the thesis, as well as for Part
II, the dependency on parameters is neglected and the notation yptq is used until the parameter
dependence of the solution becomes relevant in Part III.

2.5. Discontinuities

2.5.1. Propagation of Discontinuities and Discontinuity Order

A crucial property of solutions of differential equations with time delays is that a discontinuity in the
state y, e.g. at the initial time, may lead to further discontinuities in the right-hand-side function
f and hence in the time derivative 9y. In turn, a discontinuity in 9y may lead to discontinuities
in :y, and so on. This effect is known as propagation of discontinuities. The special instance of
discontinuities in 9y arising from those in y was already discussed in the context of requirement
(R2) in order to ensure that the number of discontinuities in 9y is finite.

The following definition is useful for discussing the discontinuity propagation in IHDDE-IVP
solutions.

Definition 2.6 (Discontinuity Order)

For t1 P T f pcq let k ¥ 1 be the largest integer number such that the time derivatives of yptq up to
order k � 1, ypk

1qpt1q, k1 � 0, . . . , k � 1, exist in t1 and such that ypk�1q is Lipschitz continuous in
t1. Then k is called the discontinuity order of y in t1. Further, the time t1 is called a (time) point
of discontinuity of order k. In addition, a time t1 P T f pcq where yptq is discontinuous, is called a
time point of discontinuity of order 0.

It is remarked that this definition of the discontinuity order is in line with the definition in
Paul [201], i.e. the discontinuity order k denotes the lowest time derivative that does not ex-
ist. The definition is, however, different from the one used in Bellen and Zennaro [26], where the
discontinuity order is equal to the highest time derivative that does exist.

It is further useful to establish a consistent notation for the sets that contain the time points of
discontinuity of an IHDDE-IVP solution yptq up to a given order on some open or closed interval T̂ :

Dt�,kpT̂ q :� tt P T̂ | t is a discontinuity of order k of yptqu. (2.10)

2.5.2. Sources of Discontinuity of Orders 0 and 1

By Definition 2.5, solutions of IHDDE-IVPs are such that Dt�,0pT f pcqq and Dt�,1pT f pcqq contain
at most a finite number of distinct time points. Because of the requirement (R1), the same holds
true for the set Dt0pT pcqq, which contains all times t P T pcq where at least one switching function
is zero. The following lemma clarifies the relation of these sets to each other.

Lemma 2.7 (Sources of Discontinuity of Orders 0 and 1)

From t P Dt�,0pT pcqq it follows that t P Dt0pT pcqq. The reverse is not necessarily true.
Let t P Dt�,1pT pcqq and let the right-hand-side function f , the switching functions σi, 1 ¤ i ¤ nσ,

and the delay functions τi, 1 ¤ i ¤ nτ of the IHDDE-IVP be continuous in all their arguments.
Then either t P Dt0pT pcqq, or t� τipt, yptq, cq P Dt�,0pT f pcqq for at least one delay function τi. The
reverse is not necessarily true.

Proof
IHDDE-IVP solutions are continuous in Dt1pT pcqq by definition, hence discontinuities of order 0 on
the interval T pcq may only occur Dt0pT pcqq (i.e. in the zeros of the switching functions).

The reverse does in general not hold, because the impulse function that is applied at a time
t P Dt0pT pcqq might evaluate to zero.

For discontinuities of order 1, the proof is obtained by contradiction. Consider t P Dt1pT pcqq such
that t � τipt, yptq, cq R Dt�,0pT f pcqq for 1 ¤ i ¤ nτ and observe that in this case both the current
state argument and the past state arguments of the switching functions σi are continuous at the
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time t. Since the switching functions are continuous and non-zero in t P Dt1pT pcqq, it holds that
the signs of the switching functions are constant (and non-zero) in rt � ε, t � εs X T pcq for some
ε ¡ 0. In summary, all arguments of f are continuous in time at t, and since f itself is continuous,
9y is continuous as well, which gives a contradiction.

The reverse statement does, in general, not hold because zeros of switching functions might lead
only to discontinuities of order higher than 1 in y. �

2.5.3. Sources of Discontinuities of Arbitrary Order

In general, three main sources for discontinuities of various orders in IHDDE-IVP solutions can be
identified. The first kind of discontinuities are those that are present in the initial function, which
are referred to as initial discontinuities.

Definition 2.8 (Initial Discontinuity)

Let s P T φpcq be a time point of discontinuity (of some order k   8) in the initial function φ.
Then φ has an initial discontinuity (of order k) at the time point s.

Note that the number of initial discontinuities of order 0 or 1 is finite by choosing PDpT f pcq,Dyq
as solution space, whereas there is no restriction on the number of initial discontinuities of higher
order.

The second source of discontinuities are the zeros of the switching functions, which are called
root discontinuities.

Definition 2.9 (Root Discontinuity)

Let s P T pcq be such that

σips, y�psq, c, typs� τkps, y�psq, cqqunτk�1q � 0 for at least one i P t1, . . . , nσu. (2.11)

Then y has a root discontinuity at the time point s.

The total number of root discontinuities is always finite for IHDDE-IVP solutions because of
requirement (R1), regardless of the discontinuity order.

The term root discontinuity is motivated by the fact that s is the root of a switching function.
It should be mentioned, however, that in the literature on ODEs or differential-algebraic equations
with switching functions, root discontinuities are often called “switching time” or “switching point”.
In the case of IVPs with non-zero impulses at the switching times, also the term “impulse time”
is used.

The third source of discontinuities is the propagation of discontinuities as discussed in Subsec-
tion 2.5.1, so it is inituitive to call them propagated discontinuities. The definition of their location
is, however, more subtle than that of root discontinuities. For example, let s P T f pcq be a discon-
tinuity of order 0, then the location of a propagated discontinuity is not described by the zeros of
the function αipt, y�ptq, cq�s. The reason is that right-continuity of the state y has been imposed.
Hence, a propagated discontinuity of order 1 may occur when the function αipt, y�ptq, cq�s changes
its sign from �1 to 0 or vice versa – but it may remain in s for some finite time or change its sign
from 0 to �1 or vice versa without causing a discontinuity in the past state.

These observations are formalized in the following definitions:

Definition 2.10 (Propagation Switching Function, Signs of Propagation Switching
Functions)

Let s P T f pcq be a time point of discontinuity of some order k   8. Then the function

σαi,spt, yptq, cq :� αipt, yptq, cq � s (2.12)

is called the propagation switching function. Further,

ζα,�i,s ptq :� sign�pσαi,spt, y�ptq, cqq (2.13)
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is called the sign of the propagation switching function, where sign�pxq for any x P R is a “sim-
plified sign function” defined as follows:

sign�pxq :�
#
�1 for x ¥ 0

�1 for x   0.
(2.14)

The superscript “�“ in ζα,�i,s ptq is thereby used to recall that the simplified sign function (2.14) has
been used for its definition.

Definition 2.11 (Propagated Discontinuity, Parent Discontinuity, Child Discontinuity)

Let s P T f pcq be a time point of discontinuity of some order k   8, and let ζα,�i,s ptq, 1 ¤ i ¤ nτ ,
be the associated signs of the propagation switching functions. Let further t be a point where the
sign ζα,�i,s ptq is discontinuous. Then y has a propagated discontinuity at the time point t.

If it is necessary to express that the discontinuity at t originates from the discontinuity in s, then
the discontinuity at t is called the child (discontinuity) of the discontinuity in s. Furthermore, the
discontinuity in s is called the parent (discontinuity) of the discontinuity in t.

The total number of propagated discontinuities of order 1 is finite for any IHDDE-IVP solution
because of requirement (R2). However, (R2) imposes no restriction on the number of propagated
discontinuities of higher order.

Having defined both root and propagated discontinuities, it is instructive to regard again the
requirements (R1) and (R2). Both requirements aim at limiting the number of low order disconti-
nuities (orders 0 or 1) to some finite number, but nevertheless they are stated in slightly different
ways.

More precisely, root discontinuities occur at the zeros of the switching functions, which are
assumed to form a set of finitely many points (R1). In contrast, propagated discontinuities occur
when the propagation switching functions enters or leave the zero from/to negative values. This
is ensured if, as specified by requirement (R2), sign

�
αipt, y�ptq, cq � s

�
undergoes only finitely

many discontinuities. In particular, this implies finitely many discontinuities in the simplified sign
function sign�

�
αipt, y�ptq, cq � s

�
, and hence finitely many propagated discontinuities of order 1

in y.
For the sake of completeness it is mentioned that there may also be “additional discontinuities”

in the IHDDE-IVP solution y that do not fall into any of the above-mentioned categories, e.g. if the
right-hand-side function has discontinuities that are not characterized by the zero of a switching
function. Such “additional discontinuities” are excluded throughout the thesis, whenever necessary,
by making smoothness assumptions for the model functions.
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Den Roman doch nicht vergessen!

German TV entertainer and musician Stefan Raab, 36 seconds
before the end of the voting time in the first show of “Unser Star
für Baku”, asking the TV viewers to vote for his favorite candidate
Roman Lob.

Novel Models Presented in This Chapter

This chapter presents three novel differential equation models with time delays. Two of the three
model feature, in addition, discontinuities or non-differentiabilities of the right-hand-side function,
and one model contains an impulse.

The first model that is introduced describes the spread of an epidemic within a population. It is
an extension of a model by Cooke and van den Driessche [68] and shows exemplarily how impulses
and discontinuous right-hand-side function can be used in mathematical epidemiology. The effects
that are considered here are: (a) the arrival of an infected population in a previously healthy
population and (b) the development of a drug and a vaccine a certain time after the number of
casualities due to the disease has reached a given threshold.

The second model describes cytokine signaling in cells. A variant of an ordinary differential
equation (ODE) model by Sommer et al. [240] is developed that makes use of time delays. The
resulting delay differential equation (DDE) model has, compared to the original model, two dif-
ferential states less while keeping the number of parameters constant. Hence, it provides a more
concise description of the signaling process.

The third model presented in this chapter is related to the German TV show “Unser Star für
Baku”, a singing competition that was held in 2012 in order to find the German representative in
the Eurovision Song Contest. The special feature of the voting procedure in this TV show was
the so-called livescore, which displayed the current percentage of votes for each of the candidates.
The voting results in one episode of the show are studied as a function of time. Based on the
observations, a differential equation model is presented that involves both time delays and switching
functions.

Organization of This Chapter

The chapter is subdivided into three sections, where each of the sections introduces one of the
models. Section 3.1 presents the epidemiological model, Section 3.2 presents the model for cytokine
signaling, and eventually Section 3.3 introduces the model for the voting behavior of the TV viewers
of the show “Unser Star für Baku”.

3.1. Epidemiology

3.1.1. An SEIRS Model with Two Delays

Differential equation models with time delays are popular as mathematical models for the spread
of epidemics. Some references are Hethcote, Lewis, and van den Driessche [145], Genik and van
den Driessche [115], Takeuchi, Ma, and Beretta [244], Taylor and Carr [245], Röst, Huang, and
Székely [218]. Furthermore, DDEs have also been suggested as a description for the spread of
malicious objects in computer networks, see e.g. Mishra and Saini [190].

In this section, the following model by Cooke and van den Driessche [68] is used a starting point
for several model extensions and refinements:

9y1ptq � bY ptq � λ
y1ptqy3ptq
Y ptq � γy3pt� τ1q expp�dτ1q � dy1ptq (3.1a)
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9y2ptq � λ
y1ptqy3ptq
Y ptq � λ

y1pt� τ2qy3pt� τ2q
Y pt� τ2q expp�dτ2q � dy2ptq (3.1b)

9y3ptq � λ
y1pt� τ2qy3pt� τ2q

Y pt� τ2q expp�dτ2q � pε� γ � dqy3ptq (3.1c)

9y4ptq � γy3ptq � γy3pt� τ1q expp�dτ1q � dy4ptq, (3.1d)

where Y ptq :� y1ptq � y2ptq � y3ptq � y4ptq. This model falls into the class of DDEs with constant
delays.

The first component of the state vector, y1ptq, represents the number of individuals (people,
animals, or computer nodes, depending on the concrete situation) in a population that are “sus-
ceptible” to the epidemic, i.e. those individuals that are “healthy” but who may become infected.
The second state vector component y2ptq stands for “exposed” individuals, i.e. those who are in-
fected but who are not yet infectious to others. The third state vector component y3ptq represents
the “infected” individuals, i.e. those that are infected and who may infect others. Eventually y4ptq
represents the “removed” or “recovered” class of individuals, i.e. those who had the epidemic but
have recovered. The sum over all components of the state vector, denoted by Y ptq, stands for the
total size of the population.

Because of the names of the classes of individuals, i.e. “susceptible”, “exposed”, “infected”, and
“recovered”, the differential equation system (3.1) is frequently called an SEIRS model. Thereby,
the last “S” indicates that recovered individuals may become susceptible again.

The motivation for the differential equation system is as follows. The first term in equation
(3.1a), bY ptq, represents new born individuals. The term λy1ptqy3ptq{Y ptq, which appears in the
equations (3.1a) and (3.1b), describes the rate with which susceptible individuals become exposed.
After some latency time τ2, exposed individuals become infected, which is represented by the
term λy1pt� τ2qy3pt� τ2q expp�dτ2q{Y pt� τ2q. Infected individuals die from the disease at a rate
εy3ptq, and recover from the disease with a rate γy3ptq. Recovered individuals are immune to the
epidemic for a certain immunization time τ1, after which they become susceptible again, see the
term γy3pt� τ1q expp�dτ1q. Eventually, there is a disease-independent death rate in each class of
individuals, which is represented by the terms dy1ptq, dy2ptq, dy3ptq, and dy4ptq.

3.1.2. Model Modifications and Extensions

The DDE model (3.1) for the spread of epidemics is modified and extended as follows.

As a first modification, it is assumed that infected individuals do not reproduce, therefore the
birth term in equation (3.1a) is altered to bỸ ptq with Ỹ ptq � y1ptq � y2ptq � y4ptq.

As a second extension, it is assumed that a group of infected individuals invades a previously
healthy population at time s. For example, s may denote the time when a group of tourists,
infected with an exotic disease, returns to their home country. This motivates to introduce a
simple time-dependent switching function

σ1ptq :� t� s, (3.2)

and at the zero of this switching function, an impulse is applied:

ypsq � y�psq �

����
0
0
ν
0

���. (3.3)

The symbol ν denotes the size of the newly arrived infected population.

For t ¡ s, the epidemic will spread within the population. In order to count the total number
of deaths within the infected class, a new differential equation is introduced:

9y6ptq � pε� dqy3ptq. (3.4)

The symbol y5ptq is reserved for an additional class that is introduced later.

It is assumed that the spread of the epidemic leads to an increased research activity to fight the
disease once the number of casualties has reached a certain threshold ϕ. The research effort leads,
after some time τ3, to the development of a new drug. The new drug reduces the death rate due
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to the epidemic to some value ε̃   ε and increases the recovery rate to some value γ̃ ¡ γ.

In order to model such a behavior, a state-dependent switching function is defined:

σ2pypt� τ3qq � y6pt� τ3q � ϕ. (3.5)

Note that y6ptq counts all deaths in the infected class rather than only those caused by the disease.

Having defined the switching function σ2, the differential equation (3.1c) for the infected class
becomes a function of ζ2ptq :� signpσ2py�pt� τ3qqq:

9y3ptq �
#
λy1pt�τ2qy3pt�τ2q

Y pt�τ2q
expp�dτ2q � pε� γ � dqy3ptq for ζ2ptq � �1

λy1pt�τ2qy3pt�τ2q
Y pt�τ2q

expp�dτ2q � pε̃� γ̃ � dqy3ptq for ζ2ptq � �1
. (3.6)

The changes in the recovery rate and in the death rate due to the disease also need to be taken
into account in the differential equations for y4ptq, y6ptq, and y1ptq. In particular, in order to keep
the equations consistent, a third switching function is introduced:

σ3pypt� τ4qq � y6pt� τ4q � ϕ, (3.7)

with τ4 � τ1 � τ3. The differential equation for the recovered class then becomes

9y4ptq �

$'&
'%
γy3ptq � γy3pt� τ1q expp�dτ1q � dy4ptq for ζ2ptq � �1

γ̃y3ptq � γy3pt� τ1q expp�dτ1q � dy4ptq for ζ2ptq � �1 and ζ3ptq � �1

γ̃y3ptq � γ̃y3pt� τ1q expp�dτ1q � dy4ptq for ζ2ptq � �1 and ζ3ptq � �1

(3.8)

with ζ3ptq :� signpσ3py�6 pt � τ4qqq. Correspondingly, the differential equation for the susceptible
class reads

9y1ptq �
#
bỸ ptq � λy1ptqy3ptq

Y ptq � γy3pt� τ1q expp�dτ1q � dy1ptq for ζ3ptq � �1

bỸ ptq � λy1ptqy3ptq
Y ptq � γ̃y3pt� τ1q expp�dτ1q � dy1ptq for ζ3ptq � �1,

(3.9)

and the differential equation for y6ptq is modified to

9y6ptq �
#
pε� dqy3ptq for ζ2ptq � �1

pε̃� dqy3ptq for ζ2ptq � �1.
(3.10)

The increased research on the epidemic may further lead, after some time τ4, to the development
of a vaccine, which makes individuals permanently immune. In mathematical terms, a fourth
switching function

σ4pypt� τ5qq � y6pt� τ5q � ϕ (3.11)

is defined. The differential equation for the susceptible class is then modified once again, such that
it depends on the sign ζ4ptq :� signpσ�4 pypt� τ5qqq:

9y1ptq �

$''''''''''''''&
''''''''''''''%

bỸ ptq � λy1ptqy3ptq
Y ptq � γy3pt� τ1q expp�dτ1q

�dy1ptq for ζ3ptq � �1 and ζ4ptq � �1

bỸ ptq � λy1ptqy3ptq
Y ptq � γ̃y3pt� τ1q expp�dτ1q

�dy1ptq for ζ3ptq � �1 and ζ4ptq � �1

bỸ ptq � λy1ptqy3ptq
Y ptq � γy3pt� τ1q expp�dτ1q

�dy1ptq � ρy1ptq for ζ3ptq � �1 and ζ4ptq � �1

bỸ ptq � λy1ptqy3ptq
Y ptq � γ̃y3pt� τ1q expp�dτ1q

�dy1ptq � ρy1ptq for ζ3ptq � �1 and ζ4ptq � �1.

(3.12)

Eventually, the size of the new vaccinated class is denoted by y5ptq, and its time evolution is
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described by the differential equation

9y5ptq �
#

0 for ζ4ptq � �1

ρy1ptq for ζ4ptq � �1.
(3.13)

In addition, Ỹ ptq is redefined as

Ỹ ptq � y1ptq � y2ptq � y3ptq � y4ptq � y5ptq. (3.14)

The symbol ρ in the equations (3.12) and (3.13) is the rate with which susceptibles are vaccinated.
No vaccination terms are added to the differential equations for y2ptq, y3ptq, and y4ptq. The
underlying assumption for this is that exposed and infected individuals would not react to the
vaccine and that the recovered individuals are still too weak to receive the vaccine.

Summarizing, the time evolution of the state yptq � py1ptq, y2ptq, . . . , y6ptqqT is described by an
IHDDE of the form (1.19) with constant delays and with both simple time-dependent and state-
dependent switching functions. In order to see the relationship to the general expression for the
impulse functions (1.19b), define

ωpt, y�ptq, typt� τiqu5i�1, ζptqq � ωpζptqq �

$'&
'%
�

0 0 ν 0
	T

for ζptq � p0,�1,�1,�1q�
0 0 0 0

	T
else

,

(3.15)

i.e. an impulse is applied only the root of the first switching function, and the impulse is independent
of the time and independent of the state vector.

3.2. Systems Biology

3.2.1. An ODE Model for the Crosstalk of Two Cytokines

Biological cells react to their environment. For example, they react if a cytokine is detected in the
vicinity of the cell. This is done, for example, by so-called receptors on the outer membrane of the
cell. Once the receptors bind to the cytokine, they may initiate a signaling cascade within the cell
that leads to cell growth, cell differentiation, cell death, or other things.

Two particular cytokines are Interleukin-6 (IL-6) and the granulocyte-macrophage colony-sti-
mulating factor (GM-CSF). Sommer et al. [240] have proposed the following ODE model for the
interaction (“crosstalk”) of the signaling pathways of these two cytokines:

9y1ptq � �p� αr � y1ptq � y2ptq (3.16a)

9y2ptq � �αr � ruGMCSF � y1ptqs � y2ptq (3.16b)

9y3ptq � �αr � ruGMCSF � y1ptqs � y2ptq � b � y3ptq � uGMCSF � δr � y3ptq � y14ptq (3.16c)

9y4ptq � �b � y3ptq � uGMCSF (3.16d)

9y5ptq � �p� αr � y5ptq � y6ptq (3.16e)

9y6ptq � �αr � ruIL6 � y5ptqs � y6ptq (3.16f)

9y7ptq � �αr � ruIL6 � y5ptqs � y6ptq � δr � y7ptq � y14ptq (3.16g)

9y8ptq � �αSTAT3� � y7ptq � y12ptq � y8ptq � αSTAT3 � y7ptq � y8ptq � µ1 � y10ptq � µ2 � y10ptq (3.16h)

9y9ptq � �αSTAT3� � y7ptq � y12ptq � y8ptq � αSTAT3 � y7ptq � y8ptq � ν � y9ptq (3.16i)

9y10ptq � �ν � y9ptq � µ1 � y10ptq � µ2 � y10ptq (3.16j)

9y11ptq � �αSK � y3ptq � y11ptq � αSTAT3� � y7ptq � y12ptq � y8ptq (3.16k)

9y12ptq � �αSK � y3ptq � y11ptq � αSTAT3� � y7ptq � y12ptq � y8ptq (3.16l)

9y13ptq � �µ2 � y10ptq � γ � y13ptq (3.16m)

9y14ptq � �δr � y7ptq � y14ptq � δr � y3ptq � y14ptq � 10 � γ � y13ptq � δSOCS3 � y14ptq (3.16n)

9y15ptq � �δr � y7ptq � y14ptq (3.16o)

9y16ptq � �δr � y3ptq � y14ptq (3.16p)
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In the following, the model is explained.

The state vector component y1ptq represents the concentration of GM-CSF that is produced
by the cell itself at a production rate p. Furthermore, an external stimulus of GM-CSF with
concentration uGMCSF can be applied experimentally. The state vector component y2ptq represents
the concentration of the GM-CSF receptor complex. Together, GM-CSF and the GM-CSF receptor
complex form the active GM-CSF receptor complex at an activation rate αr, whose concentration
is given by y3ptq. The active GM-CSF receptor complex may be blocked due to overstimulation
with GM-CSF. This blocking happens at a rate b, and the concentration of the blocked receptor
complex is given by the state vector component y4ptq.

The state vector component y5ptq represents the concentration of IL-6 that is produced by the
cell itself at a production rate p. Furthermore, an external stimulus of IL-6 with concentration
uIL6 can be applied experimentally. The state vector component y6ptq represents the concentration
of the IL-6 receptor complex. Together, IL-6 and the IL-6 receptor complex form the active IL-6
receptor complex at an activation rate αr. The concentration of the active receptor complex is
given by y7ptq.

The state vector component y8ptq stands for the concentration of the signal transducer and
activator of transcription 3 (STAT-3) in the cytoplasm of the cell. STAT-3 can be phosphorylated
(“activated”) by binding to the active IL-6 receptor complex with activation rate αSTAT3. The
concentration of the resulting phosphorylated STAT-3 (pSTAT-3) is given by y9ptq. Then, pSTAT-
3 is transported into the nucleus with rate ν (dimerization of pSTAT-3 is neglected in the model),
and the concentration of pSTAT-3 in the nucleus is given by y10ptq.

The state vector component y11ptq stands for the concentration of a supporting kinase (SK).
SK is phosphorylated (“activated”) in the presence of the active GM-CSF receptor complex, and
the concentration of the resulting activated SK (aSK) is given by y12ptq. The phosphorylation of
STAT-3 by the active IL-6 receptor complex is enhanced in the presence of aSK, and the additional
phosphorylation rate is given by αSTAT3�.

Nuclear pSTAT-3 is exported out of the nucleus as unphosphorylated STAT-3 by two different
processes, which have rate constants µ1 and µ2. Only the second process is associated with an
export of SOCS-3 mRNA. The concentration of SOCS-3 mRNA is given by the state vector
component y13ptq. SOCS-3 mRNA is translated in SOCS-3 at a rate γ, and each mRNA produces
10 SOCS-3. The SOCS-3 concentration is given by y14ptq. Eventually, SOCS-3 may deactivate
the active IL-6 receptor complex and the active GM-CSF receptor complex at a rate δr. The
concentrations of the deactivated IL-6 and GM-CSF receptor complexes are given by y15ptq and
y16ptq, respectively. SOCS-3 may further degrade at a rate δSOCS3 without deactivating an active
receptor complex.

3.2.2. A Modified Model with Two Delays

As an alternative to the ODE model (3.16), the crosstalk of the IL-6 signaling pathway and the
GM-CSF signaling pathway can also be modeled by using DDEs. Here, a model with two delays
is considered, and only the differential equations for those components are given that change
compared to equation (3.16):

9y8ptq � �αSTAT3� � y7ptq � y12ptq � y8ptq � αSTAT3 � y7ptq � y8ptq � ν � y9pt� τ1q (3.17a)

9y14ptq � �δr � y7ptq � y14ptq � δr � y3ptq � y14ptq � κ � y9pt� τ2q � δSOCS3 � y14ptq. (3.17b)

In this DDE model, the pSTAT-3 molecules remain in the nucleus for some time τ1. After this
time, they are exported as unphosphorylated STAT-3 into the cytoplasm (this is represented by
the term νy9pt � τ1q). Furthermore, SOCS-3 production is given by κy9pt � τ2q, i.e. it is directly
dependent on the amount of pSTAT-3 at the past time point t� τ2. This means that τ2 represents
the time that passes between import of pSTAT-3 in the nucleus and export of SOCS-3 mRNA plus
the time needed for translation of the mRNA.

The differential equations for y10ptq and for y13ptq can be deleted, because nuclear pSTAT-3 and
SOCS-3 mRNA are not needed in the DDE model. Hence, the size of the differential equation
system is reduced by 2 compared to the ODE model.

The number of parameters in the system is the same as in the ODE model. The reaction rates
for the export of nuclear pSTAT-3 µ1 and µ2 as well as the translation rate of SOCS-3 mRNA γ
are present only in the ODE model. Contrariwise, the two time delays τ1 and τ2 as well as κ are
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needed only in the DDE model. Thereby, the quotient κ{ν can be interpreted as the number of
SOCS-3 molecules that are produced per pSTAT-3 molecule that is imported into the nucleus.

It should be noted that the ODE model was based on the assumption that each SOCS-3 mRNA
is translated into 10 SOCS-3 molecules. The developed DDE model avoids making this assumption.

3.3. “Unser Star für Baku”

3.3.1. Background

The Eurovision Song Contest is an annual singing competition that has been held for the first
time in 1956. Each country that is an active member of the European Broadcasting Union may
participate in the competition by sending a contestant to the competition. Typically, around 40
countries take part in the Eurovision Song Contest, and the show takes place in the country of last
years’ winner. In 2011, Azerbaijain had won the show, and therefore the Eurovision Song Contest
2012 took place in the capital of Azerbaijan, Baku.

In order to find the German representative for the Eurovision Song Contest 2012, the German
TV channels ARD and ProSieben organized a series of eight TV shows called Unser Star für Baku
(english: “Our Star for Baku”). Twenty young talented singers entered this national selection, and
it was the TV viewers who decided, by telephone calls or by sending SMS, which of the candidates
would proceed to the next round.

3.3.2. Voting Procedure and Observations

The very special feature of the voting procedure in “Unser Star für Baku” was the so-called
livescore. The livescore was displayed during the entire show and showed the percentage of votes
that each of the singers had received so far.

In the first show of “Unser Star für Baku”, five out of ten candidates would be declared as
winners and would be allowed to return in the next round, whereas the other five candidates would
have to leave the competition. A few minutes before the end of the voting time, it could be observed
in the livescore that only six of the ten candidates had a realistic chance to make it to the next
round, while the remaining four candidates were lagging far behind.

The voting results for three candidates in the leading group during the last 120 seconds of voting
time are displayed in more detail in Figure 3.1 (t = 120 in the figure represents the end of the
voting time). It can be observed that the ranking order of the candidates is rapidly changing.
For example, the candidate Kai rises from rank 6 to rank 1 within 50 seconds, but then he drops
down again to rank 6 within the next 35 seconds and is eventually voted out of the show (see
Figure 3.1e).

The candidate Roman, whose voting results are displayed in the Figures 3.1c and 3.1d, was a
clear favorite of the show. Of all the ten candidates in the first show, he was the only one to get
standing ovations from the studio audience. Furthermore, he received an excellent feedback from
music experts in the show. Nevertheless, 30 seconds before the end of the voting time, he drops
down to rank 5, being only 0.1% ahead of candidate Leonie. Romans tensed smile – as a reaction
to this situation – can be seen in Figure 3.2.

Another interesting observation is made for the candidate Shelly, see the voting results in the
Figures 3.1a and 3.1b. At t � 35s, i.e. 85s before the end of the voting time, she drops down
to rank 6, meaning that she would have to leave the show. At that time, Thomas D., a German
musician and member of the expert jury of “Unser Star für Baku”, intervened by asking the TV
viewers to vote for Shelly (“Lasst mir bloß die Shelly drin!”). Nevertheless, for the following 20
seconds, she remains on rank 6 with a constant percentage of votes. Then, however, she receives
suffiently many votes that allow her to climb up to rank 1 within 25s, and a rapid increase in the
percentage of votes by about 1% is observed during a time interval of about 40 seconds.

3.3.3. Building a Model

In the following, the goal is to develop a differential equation model that explains the voting
behavior of the TV viewers. Therefore, for a show with n candidates, let ziptq, 1 ¤ i ¤ n, denote
the number of votes that candidate i has received until the time t. Further, let zn�1ptq �

°n
i�1 ziptq

be the total number of votes for all candidates that have been received until t. The percentage of
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1.: Voting results for three selected candidates of “Unser Star für Baku” during the last 120
seconds of voting time in the first episode of the show. The horizontal axis represents
the time in seconds, with t � 120 denoting the end of the voting time.

votes that is visible in the livescore is then given by yiptq � ziptq{zn�1ptq for 1 ¤ i ¤ n. Let further
yn�1ptq :� zn�1ptq, then it follows from elementary differentiation rules that

9yiptq � 100 � 9ziptqz4ptq � 9z4ptqziptq
pz4ptqq2 for 1 ¤ i ¤ n (3.18a)

9yn�1ptq �
ņ

i�1

9ziptq. (3.18b)

Modeling 9ziptq as a function of the percentage values yiptq that are displayed in the livescore is the
topic of the remainder of this section.

Laziness

As a first step for the construction of the model, the issue is addressed that an apparent favorite
such as Roman is very much in danger to be voted out of the show shortly before the end. It is
suggested that this can be explained by a certain “laziness” of the TV viewers. Having available
the information on the current percentage of votes, the TV viewers are likely to concentrate on
those candidates that are on the edge between winning and losing. In contrast to that, TV viewers
are unlikely to vote for candidates that are seemingly safe at the top of the table, and they are
also unlikely to vote for those that are at the bottom of the table without any reasonable chance
of a comeback. Such a laziness is only natural, and also rational, because any vote by phone call
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Figure 3.2.: “Unser Star für Baku” candidate Roman Lob, tensely observing the livescore, in which
he has dropped to rank 5 half a minute before the end of the voting time. The livescore
is visible in the left part of the screenshot, and the remaining voting time is displayed
as a countdown in the bottom of the screenshot.
Screenshot reprinted with kind permission of c©Brainpool TV GmbH.

or SMS was associated with costs of 0.50AC.

Here, the following differential equation is proposed as a basic model that accounts for laziness:

9ziptq �
#
ki � yiptqνptq for yiptq   νptq
ki � expp�λpyiptq � νptqqq for yiptq ¡ νptq. (3.19)

Herein, νptq denotes the mean percentage value between the last winner and the first loser, which
is formally defined below. Further, ki is a parameter that represents the quality of the singing
performance of candidate i, and λ represents the “laziness” of the TV viewers.

The number of votes that candidate i receives per time unit, i.e. the voting activity 9ziptq, thus
attains the maximum value ki if a candidate is exactly at the threshold. If the candidate falls below
the threshold, the value ki is multiplied by yiptq{νptq, i.e. with a linear function of the percentage
value yiptq. If the candidate is above the threshold, the voting activity decreases exponentially
with the difference to the threshold multiplied by the laziness λ.

It remains to define νptq formally. For this purpose, let rpiq be the function that attributes, to
each candidate i, his or her current position in the ranking. Further, let r�1pjq be the inverse
function, that yields for a rank j the candidate index i that is presently on this rank. If five
candidates are allowed to proceed to the next round, the threshold is given by

νptq :� yr�1p5qptq � yr�1p6qptq
2

. (3.20)

This means that the threshold νptq is, in this case, defined by the mean percentage value between
the candidates on the ranks 5 and 6.

Time Delay

The second issue that is addressed is that a time delay was observed between the intervention of
the jury member Thomas D. in favor of the candidate Shelly, and the reception of a significant
number of additional votes for Shelly (see the discussion in Subsection 3.3.2).

The occurence of a time delay in the voting procedure is plausible for several reasons. For
example, the signal of the TV show has to be broadcast by the TV channel, the viewers need
some time to react upon the current intermediate result displayed in the livescore, they need to
dial the number of the candidate, the telecommunication company has to establish the telephone
connection, and eventually the incoming votes need to be processed and displayed in the livescore.
In addition, it needs to be taken into account that the show was aired rather recently in 2012, when
many German households had already changed their receiving installations to digital broadcasting.
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The encryption and decryption processes in digital broadcasting alone may add up to a time delay
of several seconds.

It is thus reasonable to introduce a time delay into the differential equation model (3.19), which
leads to the following equation:

9ziptq �
#
ki � yipt�τqνpt�τq for yipt� τq   νpt� τq
ki � expp�λpyipt� τq � νpt� τqqq for yipt� τq ¡ νpt� τq. (3.21)

This differential equation is to be interpreted as follows: The voting activity that is observed now
(at time t) at the TV station depends on the information yipt� τq, νpt� τq that was send out at
the past time t� τ .

Panic

Towards the end of the voting time in “Unser Star für Baku”, a countdown was displayed, see the
bottom of Figure 3.2. This increased the drama in the TV show, and might have encouraged more
TV viewers to vote and/or might have made them vote more frequently. In order to reflect this
behavior in the model, a panic function is introduced:

gpanicptq �
#

1 for t   tfin � δ

1� t�ptfin�δq
δ ρ for t ¡ tfin � δ

. (3.22)

The panic function is thus constantly equal to 1 until the time tfin � δ is reached, where tfin

represents the end of the voting time. From time tfin� δ on, the panic function increases linearly,
until it reaches the value 1� ρ at tfin. Accordingly, ρ can be interpreted as a “panic factor”, and
δ represents the duration of the panic.

The panic function enters the differential equation model as a multiplicative factor, i.e.

9ziptq �
#
ki � gpanicptq � yipt�τqνpt�τq for yipt� τq   νpt� τq
ki � gpanicptq � expp�λpyipt� τq � νpt� τqqq for yipt� τq ¡ νpt� τq. (3.23)

This means that the voting activity increases, from tfin� δ on, linearly until the end of the voting
time tfin.

Summary

The differential equation model for the voting behavior of the TV viewers of “Unser Star für Baku”,
consists of the equations (3.18), (3.23), (3.22), and (3.20). In order to bring these equations into
the standard form of IHDDE-IVPs, the following simple time-dependent switching function is
introduced:

σ1ptq � t� tfin � δ. (3.24)

This switching function characterizes the beginning of the panic. With the sign ζ1ptq � signpσ1ptqq,
the linear panic function can be expressed as

gpanicpt, ζ1ptqq �
#

1 if ζ1ptq � �1

1� t�ptfin�δq
δ ρ if ζ1ptq � �1

. (3.25)

In addition, state-dependent switching functions are needed in order to define the threshold. For
notational simplicity, the case is considered that two out of three candidates are selected. The
following three state-dependent switching functions are defined:

σ2pypt� τqq � y1pt� τq � y2pt� τq (3.26a)

σ3pypt� τqq � y1pt� τq � y3pt� τq (3.26b)

σ4pypt� τqq � y2pt� τq � y3pt� τq. (3.26c)
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If the signs of the switching functions are denoted by ζiptq :� signpσipypt� τqqq for 2 ¤ i ¤ 4, then
the threshold at the relevant time point t� τ in the past can be defined as

νpt� τq �

$'&
'%
py1pt� τq � y2pt� τq{2 if pζ2ptq, ζ3ptq, ζ4ptqq � p�1,�1,�1q
py1pt� τq � y3pt� τq{2 if pζ2ptq, ζ3ptq, ζ4ptqq � p�1,�1,�1q
py2pt� τq � y3pt� τq{2 if pζ2ptq, ζ3ptq, ζ4ptqq � p�1,�1,�1q

. (3.27)

Moreover, the differential equations for yiptq can be formulated as follows:

9y1ptq �100 � k1 � gpanicpt, ζptqq � β1pt, ypt� τq, ζptqq � y4ptq � 9y4ptqy1ptqy4ptq{100

py4ptqq2 (3.28a)

9y2ptq �100 � k2 � gpanicpt, ζptqq � β2pt, ypt� τq, ζptqq � y4ptq � 9y4ptqy2ptqy4ptq{100

py4ptqq2 (3.28b)

9y3ptq �100 � k3 � gpanicpt, ζptqq � β3pt, ypt� τq, ζptqq � y4ptq � 9y4ptqy3ptqy4ptq{100

py4ptqq2 (3.28c)

9y4ptq �k1 � gpanicpt, ζptqq � β1pt, ypt� τq, ζptqq � k2 � gpanicpt, ζptqq � β2pt, ypt� τq, ζptqq
� k3 � gpanicpt, ζptqq � β3pt, ypt� τq, ζptqq. (3.28d)

Therein, gpanicpt, ζptqq is given by equation (3.25), and the functions βipt, ypt�τq, ζptqq for 1 ¤ i ¤ 3
are given as

β1pt, ypt� τq, ζptqq �

$'''''''&
'''''''%

y1pt�τq
1
2
ry1pt�τq�y2pt�τqs

for pζ2, ζ3, ζ4q � p�1,�1,�1q

y1pt�τq
1
2
ry1pt�τq�y3pt�τqs

for pζ2, ζ3, ζ4q � p�1,�1,�1q

exp
�
�λpy1pt� τq � 1

2
ry1pt� τq � y2pt� τqsq

�
for pζ2, ζ3, ζ4q � p�1,�1,�1q

exp
�
�λpy1pt� τq � 1

2
ry1pt� τq � y3pt� τqsq

�
for pζ2, ζ3, ζ4q � p�1,�1,�1q

exp
�
�λpy1pt� τq � 1

2
ry2pt� τq � y3pt� τqsq

�
for pζ2, ζ3, ζ4q � p�1,�1,�1q

,

(3.29)

as

β2pt, ypt� τq, ζptqq �

$'''''''&
'''''''%

y2pt�τq
1
2
ry2pt�τq�y1pt�τqs

for pζ2, ζ3, ζ4q � p�1,�1,�1q

y2pt�τq
1
2
ry2pt�τq�y3pt�τqs

for pζ2, ζ3, ζ4q � p�1,�1,�1q

exp
�
�λpy2pt� τq � 1

2
ry2pt� τq � y1pt� τqsq

�
for pζ2, ζ3, ζ4q � p�1,�1,�1q

exp
�
�λpy2pt� τq � 1

2
ry2pt� τq � y3pt� τqsq

�
for pζ2, ζ3, ζ4q � p�1,�1,�1q

exp
�
�λpy2pt� τq � 1

2
ry1pt� τq � y3pt� τqsq

�
for pζ2, ζ3, ζ4q � p�1,�1,�1q

,

(3.30)

and as

β3pt, ypt� τq, ζptqq �

$'''''''&
'''''''%

y3pt�τq
1
2
ry3pt�τq�y1pt�τqs

for pζ2, ζ3, ζ4q � p�1,�1,�1q

y3pt�τq
1
2
ry3pt�τq�y2pt�τqs

for pζ2, ζ3, ζ4q � p�1,�1,�1q

exp
�
�λpy3pt� τq � 1

2
ry3pt� τq � y1pt� τqsq

�
for pζ2, ζ3, ζ4q � p�1,�1,�1q

exp
�
�λpy3pt� τq � 1

2
ry3pt� τq � y2pt� τqsq

�
for pζ2, ζ3, ζ4q � p�1,�1,�1q

exp
�
�λpy3pt� τq � 1

2
ry1pt� τq � y2pt� τqsq

�
for pζ2, ζ3, ζ4q � p�1,�1,�1q

.

(3.31)

The argument t of the switching function signs has been surpressed in these expressions.
The impulse function is identically zero ω � 0. The developed model falls into the category

of HDDEs with one constant delay and with both state-dependent and simple time-dependent
switching functions.

For the general case of n candidates, the definition of n � pn�1q{2 switching functions is sufficient
to conclude, from the values of the sign functions, the current ranks of all candidates and thus also
the threshold νpt� τq.
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This method allows the opportunity to determine the solution x(t) on
several finite intervals and simultaneously to prove the existence of a
solution [...].

El’sgol’ts and Norkin, on the method of steps, Chapter I.2 in their
book “Introduction to the Theory and Application of Differential
Equations with Deviating Arguments” [92].

Two elementary questions are immediate for any mathematical problem: Does there exist a solu-
tion? And, if yes, is the solution unique? The purpose of this chapter is to find answers to these
questions for initial value problems in impulsive hybrid discrete-continuous delay differential equa-
tions (IHDDE-IVPs) that were defined in Chapter 1, under the definition of IHDDE-IVP solutions
that was established in Chapter 2.

Evidently, it is reasonable to approach this issue by having a look at the established existence
and uniqueness results for subclasses of IHDDE-IVPs and for related classes of IVPs.

Literature Survey

For initial value problems in hybrid discrete-continuous ordinary differential equations (HODE-
IVPs) it is clear that classical solutions generally exist only away from the zero sets of the switching
functions, because the right-hand-side function of the HODE may change discontinuously at the
zero sets. For the treatment of those points where the right-hand-side function is discontinuous,
a variety of more general solution concepts were proposed. Two examples for generalized solution
concepts that were mentioned in Chapter 2. On the one hand, Carathéodory solutions, which fulfill
the differential equation almost everywhere. And, on the other hand, Filippov solutions, which
allow to “slide” on the zero set of a switching function if the vector field to either side of the zero
set points toward the zero set. Existence and uniqueness results for HODE-IVPs using these and
other solution concepts can be found in the early article by Hájek [129], in the book by Filippov
[105], in the survey by Cortés [69], and references therein.

For initial value problems in delay differential equations (DDE-IVPs) the problem of disconti-
nuities (of order 1) in the solution may arise as a consequence of discontinuities (of order 0) in
the initial functions or at the initial time. Accordingly, the use of the classical solution concept is
generally insufficient for problems with time delays, which motivates to use the generalized solu-
tion concepts that are known from the theory of HODE-IVPs. Somewhat surprisingly, however,
the available literature on the existence and uniqueness theory for solutions of DDE-IVPs is pre-
dominantly restricted to classical solutions; the theorems thus come along with the requirement
of a continuous initial function that links continuously to the initial value. In particular, such a
continuity assumption occurs in the presentation of theoretical results in the well-known textbooks
by Driver [82], page 290ff, Hale and Verduyn Lunel [130], page 38ff, Kuang [167], page 18ff, Bellen
and Zennaro [26], page 32f, and Smith [239], page 25ff. For a fairly general class of functional
differential equations, Hale and Verduyn Lunel, page 58f, and Kolmanovskii and Myshkis [163],
page 100, regard existence and uniqueness of Carathéodory solutions, but their theorems do not
cover the case of IVPs with state-dependent delays and discontinuous initial functions.

Consider next the literature on initial value problems in either hybrid discrete-continuous delay
differential equations (HDDE-IVPs) or in impulsive delay differential equations (IDDE-IVPs). In
this context, the works by Krishna and Anokhin [166] and Ballinger and Liu [15] are mentioned,
and also the chapter on generalized solutions in the book by Kolmanovskii and Myshkis [163], page
126ff. However, the definitions of solutions used in these works differ from the one used in this
thesis, and hence also the conditions for existence and uniqueness are substantially different from
the ones given in this chapter.
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It is, instead, a paper by Bellen and Guglielmi [24], whose point of view and set of conditions is
possibly the closest relative to the theory presented in this chapter, even though this publication
deals with initial value problems in so-called “delay differential equations of neutral type”.

Novel Results Presented in This Chapter

This chapter of the thesis contributes to the available existence and uniqueness theory in two ways.

For the first contribution, the idea of the method of steps is picked up, which is a frequently
used technique for showing existence and uniqueness of classical solutions, see Bellman and Cooke
[28], El’sgol’ts and Norkin [92], Bellen and Zennaro [26], and Smith [239]. Here, this method
is used in the non-standard setting to prove existence and uniqueness of the Carathéodory-type
solutions defined in Chapter 2 on given time intervals. A theorem is formulated and proven in detail
for the case of HDDE-IVPs with constant delays and simple time-dependent switching functions.
Furthermore, it is discussed that the ideas of the proof carry over to all IHDDE-IVPs provided
that state-dependencies of the switching and delay functions are excluded.

State dependencies in switching and delay functions in IHDDE-IVPs (or in subclasses of IVPs)
are the subject of the second contribution of this chapter. More precisely, for the case of impulsive
hybrid discrete-continuous ordinary differential equations (IHODE-IVPs), the notion of consistent
switching function signs is established. This allows to concisely formulate a necessary condition
for uniqueness of a given Carathéodory-type solution in the sense of Chapter 2. In a similar way,
a uniqueness result for solutions of DDE-IVPs and IHDDE-IVPs is established. The concise for-
mulation of the necessary condition for the DDE-case requires the introduction of some additional
concepts, which are also used in subsequent chapters of the thesis.

Organization of This Chapter

Section 4.1 briefly recalls standard existence and uniqueness results for ODE-IVPs. Existence and
uniqueness of HDDE-IVPs with constant delays and simple time-dependent switching functions
are the subject of Section 4.2. The extensions to IHDDE-IVPs with time-dependent delays, general
time-dependent switching functions, and impulses are considered in Section 4.3.

For problems with state dependencies in the switching functions or in the delay functions, the
discussion is restricted to the problem of showing uniqueness for a given IVP solution. A unique-
ness theorem for IHODE-IVPs is given in Section 4.4, which is – after introducing some suitable
definitions – transferred to DDE-IVPs in Section 4.5 and to IHDDE-IVPs in Section 4.6.

Notation

Throughout the chapter, it turns out to be helpful to distinguish notationally between the statement
of an IVP and its solution. Therefore, in this chapter, the symbol y is used to formulate IVPs,
whereas y is used either as a symbol for a vector in Rny or for the solution of an IVP.

4.1. Preliminaries: ODEs

A helpful technique for proving existence and uniqueness of solutions of IHDDE-IVPs, or subclasses
thereof, is to reduce the original problem to an equivalent sequence of ODE-IVPs and applying
existence and uniqueness results for these ODE-IVPs. Therefore, two well-known results of ODE
theory are recalled first.

Theorem 4.1 (Peano’s Theorem on Existence of ODE-IVP Solutions [207])

Let c P Dc be a vector of arbitrary but fixed parameter values and let T pcq � rtinipcq, tfinpcqs be
the corresponding time interval for which the ODE-IVP of Definition 1.4 is considered. Further,
let ∆y ¡ 0 and define the set Dy :� ty | }y � yinipcq}8 ¤ ∆yu. Let the following assumptions be
fulfilled:

(C) Continuity: The right-hand-side function fpt, y, cq is continuous with respect to t and y for
pt, yq P T pcq �Dy.
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(B) Boundedness: The right-hand-side function f is bounded by

}fpt, y, cq}8  Mf (4.1a)

Mf   ∆y

tfinpcq � tinipcq (4.1b)

for pt, yq P T pcq �Dy.

Then there exists a solution yptq of the ODE-IVP on the interval T pcq.
Proof
See Hartman [132]. �

Theorem 4.2 (The Picard-Lindelöf Theorem on Uniqueness of ODE-IVP Solutions
[178, 209])

Consider an ODE-IVP as in Definition 1.4, and let c, T pcq, Dy be as in Theorem 4.1. Assume
that (C), (B) hold and that, in addition, the following assumption is fulfilled:

(L) Lipschitz-Continuity: The right-hand-side function fpt, y, cq is uniformly Lipschitz continu-
ous with respect to y for pt, yq P T pcq �Dy.

Then there exists a unique solution yptq of the ODE-IVP on the interval T pcq.
Proof
See Hartman [132]. �

4.2. HDDEs with Constant Delays and Simple Time-Dependent
Switching Functions

As a subclass of IHDDE-IVPs, the simpler case of HDDE-IVPs with constant delays and simple
time-dependent switching functions is considered first:

Definition 4.3 (Initial Value Problem in HDDEs with Simple Time-Dependent Switch-
ing Functions and Constant Delays)

An Initial Value Problem in HDDEs with simple time-dependent switching functions and constant
delays for the state y : T f pcq Ñ Dy is given by

9yptq � fpt, yptq, c, typt� τipcqqunτi�1, ζptqq for t P Dt1pT pcqq (4.2a)

yptq � y�ptq � y�ptq for t P Dt0pT pcqq (4.2b)

yptinipcqq � yinipcq (4.2c)

yptq � φpt, cq for t   tinipcq. (4.2d)

All definitions of functions, intervals, and sets carry over from the Definitions 1.1 and 1.2, with the
exception that ζptq � pζ1ptq, . . . , ζnσ ptqq here denotes the signs of simple time-dependent switching
functions

ζiptq � signpσipt, cqq (4.3a)

σipt, cq � t� σ̃ipcq. (4.3b)

Herein, σ̃i : Dc Ñ R, and the delay functions τi : Dc Ñ R� assume, for fixed parameters c,
fixed values (i.e. the delays are independent of t and yptq and thus constant delays in the sense of
Definition 1.21).

The parameter-dependent (but constant) delays are positive here, whereas in Definitions 1.1, 1.2
of IHDDE(-IVP)s non-negative delay functions were used. This is no restriction, because the
right-hand-side function f depends on the current state anyway.

The following theorem guarantees the existence of a solution (in the sense of Definition 2.5) of
HDDE-IVPs with simple time-dependent switching functions and constant delays.
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Theorem 4.4 (Global Existence of Solutions of HDDE-IVPs with Simple Time-Depen-
dent Switching Functions and Constant Delays)

Let c P Dc be a vector of fixed parameter values and let T pcq � rtinipcq, tfinpcqs be the corresponding
time interval for which the HDDE-IVP of Definition 4.3 is considered. Let ∆y ¡ 0 and define the
set Dy :� ty | }y � yinipcq}8 ¤ ∆yu. The following assumptions should be fulfilled:

(C) Continuity: The right-hand-side function fpt, y, c, tviunτi�1, ζq is continuous with respect to t,

y, and tviunτi�1 for pt, y, tviunτi�1, ζq P T pcq�Dy�pDyqnτ �Iζ1 . Further, for the initial function
it holds that φp�, cq P PDpp�8, tinipcqq,Dyq.

(B) Boundedness: The right-hand-side function f is bounded by

}fpt, y, c, tviunτi�1, ζq}8  Mf (4.4a)

Mf   ∆y

tfinpcq � tinipcq (4.4b)

for pt, y, tviunτi�1, ζq P T pcq �Dy � pDyqnτ � Iζ1 .

Then there exists a solution yptq of the HDDE-IVP (Definition 4.3) on the interval T pcq.
Before coming to the proof of Theorem 4.4, it is first remarked that it is called a global existence

theorem because it guarantees the existence of the solution on the full time interval T f pcq, and
not just locally in the neighborhood of the initial time. Finding such global assertions regarding
existence and uniqueness is typical for this part of the thesis; similarly, in Part III, assertions on
the differentiability of solutions with respect to parameters on the full time interval T f pcq are of
interest. The reason for this is that several problems regarding non-existence, non-uniqueness or
non-differentiability arise at the time points where (root or propagated) discontinuities occur, and
hence in general not locally in the neighborhood of the initial time.

The proof of Theorem 4.4 relies on applying the method of steps. The fundamental idea of the
method of steps is described in the following remark.

Remark 4.5 (Fundamental Idea of the Method of Steps)

Consider a DDE with a single constant delay τ , i.e. 9yptq � fpt, yptq, ypt� τqq, with initial condition
yptq � φptq for t ¤ tini, and let both f and φ be continuous in their arguments. Then the DDE-IVP
is equivalent to a sequence of ODE-IVPs, e.g. on rtini, tini � τq:

9yptq � fpt, yptq, φpt� τqq (4.5a)

yptiniq � φptiniq (4.5b)

Further, if the solution of the ODE-IVP (4.5) on rtini, tini � τq is denoted by y1ptq, then the
DDE-IVP on rtini � τ, tini � 2τq is equivalent to the ODE-IVP

9yptq � fpt, yptq, y1pt� τqq (4.6a)

yptini � τq � y1ptini � τq. (4.6b)

In the original paper by Bellman [27] the method was introduced as a computational method for
solving DDEs. But the fact that DDE-IVP solutions are, under certain conditions, equivalent to
the solution of a sequence of ODE-IVPs has also been used for proving existence and uniqueness
of DDE-IVP solutions, e.g. in the textbooks by El’sgol’ts and Norkin [92] and Smith [239]. Here,
the equivalence between DDE-IVPs and ODE-IVPs also helps for the proof of Theorem 4.4.

Proof (of Theorem 4.4)
The idea of the proof is to decompose the interval T pcq into a finite number of subintervals such
that on each subinterval the HDDE-IVP is equivalent to an ODE-IVP for which the assumption
of Peano’s existence theorem are fulfilled.

As a first step, observe that there exists a finite number of discontinuities of order 0 in yptq for
t ¤ tinipcq because φp�, cq P PDpp�8, tinipcqq,Dyq. Let M be a set that contains the time points
of these discontinuities.

Set t̃ � tinipcq and choose an increment ∆t by

∆t � minp∆t1,∆t2,∆t3q, (4.7)
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where

∆t1 :� minpttfinpcq � t̃u Y tτipcq | 1 ¤ i ¤ nτuq (4.8a)

∆t2 :� minpttfinpcq � t̃u Y tt1 � τipcq � t̃ | 1 ¤ i ¤ nτ , t
1 PM, t1 ¡ t̃� τipcquq (4.8b)

∆t3 :� minpttfinpcq � t̃u Y tσ̃ipcq � t̃ | 1 ¤ i ¤ nσ, σ̃ipcq ¡ t̃ uq (4.8c)

(the element tfinpcq� t̃ is included in the argument list of the minimum function in order to avoid
the occurence of minima of empty sets).

Consider the HDDE-IVP on the interval rt̃, t̃ � ∆tq � T pcq. Because of ∆t1, all deviating
arguments to non-zero delays remain to the left of t̃, and hence in a time domain where the state
yptq is known; in particular, if t̃ � tinipcq then the past states are given by evaluations of the initial
function. Further, due to the choice of ∆t3, no zeros of switching functions are present. Hence,
the HDDE-IVP is, on this interval, equivalent to an ODE-IVP with right-hand-side function

fODEpt, yptq, cq � fpt, yptq, c, typt� τipcqqunτi�1, ζ̃q, (4.9)

where ζ̃ are the non-zero signs of the switching functions on the interval pt̃, t̃ � ∆tq. Particularly
for the case t̃ � tinipcq, the ODE right-hand-side function is given by

fODEpt, yptq, cq � fpt, yptq, c, tφpt� τipcqqunτi�1, ζ̃q. (4.10)

Furthermore, because of the choice of ∆t2, no propagation of initial discontinuities of order 0
occurs. This, together with the continuity assumption (C) of Theorem 4.4, ensures that the function
fODE fulfills the continuity assumption (C) of Theorem 4.1. Similarly, assumption (B) of Theorem
4.4 ensures that the function fODE fulfills assumption (B) of Theorem 4.1. Hence, there exists a
solution y1ptq of the ODE-IVP, and the same function y1ptq is also a solution of the HDDE-IVP
on the considered interval because the two problems are equivalent.

In the breaking point t̂ � t̃�∆t, the state y is chosen to be continuous: ypt̂q � y�pt̂q. This is the
unique possible choice regardless of whether t̂ P Dt1pT pcqq, because solutions need to be continuous
in Dt1pT pcqq, or whether t̂ P Dt0pT pcqq, in which case continuity follows from equation (4.2b) of the
HDDE-IVP.

The arguments can now be iterated: Set t̃ � t̂ and define a new increment ∆t according to
equations (4.7) and (4.8). The procedure can then be continued on each successively defined
subinterval rt̃, t̃�∆tq, i.e. the existence of the HDDE-IVP solution is obtained from the existence
of the solution of an equivalent ODE-IVP. The applicability of the arguments is not compromised if
two or all ∆ti, i P t1, 2, 3u, are identical, e.g. because the time point of a propagated discontinuity
is identical to the time point of a root discontinuity.

The total number of subintervals is finite, because there is a finite number of initial discontinuities
and root discontinuities, and the first expression in equation (4.7) is bounded from below by the
smallest delay. Hence, after finitely many subintervals, the increment ∆t is chosen such that the
end point t̂ � t̃�∆t is equal to the final time tfinpcq.

The function yptq constructed piecewise on the subintervals and linked continuously at the break-
ing points is in PDpT f pcq,Dyq, is continuous and the right-sided time derivative fulfills the dif-
ferential equation in t P Dt1pT pcqq, fulfills the continuity condition for t P Dt0pT pcqq and fulfills the
initial conditions. It is thus a solution of the HDDE-IVP. �

For uniqueness of solutions of HDDE-IVPs in the form of Definition 4.3, consider the following
theorem.

Theorem 4.6 (Global Uniqueness of Solutions of HDDE-IVPs with Explicit Switching
Functions and Constant Delays)

Consider a HDDE-IVP as in Definition 4.3, and let c, T pcq, Dy be as in Theorem 4.4. Assume
that (C), (B) hold and that in addition the following assumption is fulfilled:

(L) Lipschitz-Continuity: The right-hand-side function fpt, y, c, tviunτi�1, ζq is uniformly Lipschitz

continuous with respect to y for pt, y, tviunτi�1, ζq P T pcq �Dy � pDyqnτ � Iζ1 .

Then there exists a unique solution yptq to the HDDE-IVP on the interval T pcq.
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Proof
The proof is analogously to Theorem 4.4, with the only modification that instead of the Theorem by
Peano the Theorem by Picard and Lindelöf is applied to the ODE-IVPs on the subintervals, which
gives the uniqueness of the solution on each subinterval. Moreover, note that in each breaking
point the solution is uniquely determined by the continuity assumptions in Dt0pT pcqq (by equation
(4.2b)) and in Dt1pT pcqq (by Definition 2.5 of IHDDE-IVP solutions). �

It is noted that in case of a zero delay, Lipschitz continuity of the right-hand-side function f in
assumption (L) is obviously also needed with respect to the corresponding argument vi.

4.3. More General Existence and Uniqueness Results

The Theorems 4.4 and 4.6 on the existence and uniqueness of solutions of HDDE-IVPs with explicit
switching functions and constant delays can be generalized, as discussed in the following.

4.3.1. Non-Vanishing Time-Dependent Delays

One possible extension is to replace the constant delays τipcq in the HDDE-IVP (Definition 4.3)
by time-dependent delays τipt, cq. The existence and uniqueness assertions carry over to this case
as long as the time-dependent delays fulfill some assumptions.

At first, it is obvious that the delay function should be such that the time points where initial
discontinuities of order 0 occur are crossed only a finite number of times, i.e. requirement (R2) has
to be fulfilled. This is the case, e.g., if all deviating arguments αipt, cq � t � τipt, cq are strictly
increasing functions. A second condition is that the delays should not vanish on T pcq so that the
analogy to a sequence of ODE-IVPs holds. And finally, the delay functions τipt, cq have to be
continuous in time so that the right-hand-side functions of the equivalent ODE-IVPs fulfill the
continuity assumption (C) of Theorems 4.1 and 4.2.

If these assumptions are fulfilled by the delay functions, then it is still possible to find some
finite number of breaking points such that between the breaking points the signs of the switching
functions are constant and the past state is known and continuous. Hence, an equivalent ODE-IVP
can be formulated. If the right-hand-side function f and the initial function φ of the HDDE-IVP
are such that the assumptions (C) and (B) of Theorem 4.4 (and the assumption (L) of Theorem
4.6) are fulfilled, then the equivalent ODE-IVP is such that assumptions of Theorem 4.1 (and of
Theorem 4.2 are fulfilled). From the proof of Theorem 4.4 (and from the proof of Theorem 4.6)
it is then clear that a solution of the HDDE-IVP exists (and is unique). Note that it is uncritical
in this context if a propagated discontinuity and a root discontinuity occur at the same breaking
point.

4.3.2. General Time-Dependent Switching Functions

In a similar fashion, the existence and uniqueness theorems can also be extended to the case
of general time-dependent switching functions σipt, cq that are continuous in t. In contrast to
simple time-dependent switching functions that were used in Definition 4.3, general time-dependent
switching functions may have several zeros or zeros of higher multiplicity. However, as long as the
total number of their root discontinuities is still finite (i.e. requirement (R1) holds), it is once again
possible to split up T pcq into finitely many subintervals on which the HDDE-IVP is equivalent to
an ODE-IVP for which the assumptions of Theorem 4.1 (or Theorem 4.2) are fulfilled. Hence,
existence and uniqueness of the HDDE-IVP solution follows from the equivalence of the HDDE-
IVP to a sequence of ODE-IVPs, the basic ODE theory of Section 4.1, and the fact that HDDE-IVP
solutions have to be continuous in the breaking points.

4.3.3. Impulses

There is also the possibility to extend the existence and uniqueness theorems to problems with
impulses, which leads to additional discontinuities of order 0 in y in the interval T pcq. The time
points of these discontinuities may be crossed by time-dependent deviating arguments only finitely
many times, so that requirement (R2) is fulfilled. Additionally, it has to be ensured that the state
yptq does not leave the set Dy, i.e. for the proper formulation of existence and uniqueness theorems
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it is necessary to choose a combination of a sufficiently large set Dy and a sufficiently small upper
bound on the impulse functions.

4.3.4. Intermediate Summary

The combination of the extensions discussed so far in this section answers questions regarding the
existence and uniqueness of solutions of IHDDE-IVPs as long as neither the delay functions nor
the switching functions depend on the state y. For IHDDE-IVPs, or subclasses thereof, where
the delay functions or the switching functions are state-dependent, it becomes very hard to give a
priori conditions that ensure global existence or uniqueness of solutions. A main issue is that very
restrictive conditions on the delay functions and switching functions need to be imposed such that
the requirements (R1) and (R2) hold regardless of the time evolution of the unknown solution yptq.

The theory developed in the following sections is therefore concerned with a different question:
Given a solution yptq of an IHDDE-IVP with state-dependent switching and/or delay functions,
what are the conditions so that uniqueness of this solution can be guaranteed?

In the following, uniqueness theorems are formulated for initial value problems a) in systems with
state-dependent switching functions but without delays, i.e. IHODEs, b) in systems with state-
dependent delay functions but without switching functions, i.e. DDEs, and finally c) in IHDDEs
with both state-dependent switching and delay functions.

4.4. IHODEs with State-Dependent Switching Functions

As an introductory example, consider first an IHODE-IVP with a single state-dependent switching
function and a (possibly zero) impulse:

9yptq � fpt, yptq, c, ζ1ptqq for t P Dt1pT pcqq (4.11a)

yptq :� y�ptq � y�ptq � ωpt, y�ptq, c, ζ1ptqq for t P Dt0pT pcqq (4.11b)

yptinipcqq � yinipcq. (4.11c)

By Definition 2.5, a solution yptq has to be such that Dt0pT pcqq contains only a finite number
of points where the sign ζ1ptq � signpσ1pt, y�ptq, cqq of the switching function is zero (require-
ment (R1)). If the switching function σ1 is continuous in all its arguments, then the solution will
be that of an ODE-IVP with a constant, non-zero sign ζ̃1 � ζ1ptq between two successive zeros of
σ1.

Assume that there is a solution yptq that fulfills this requirement, then the idea for showing
uniqueness is as follows: Make sure that the right-hand-side function f fulfills the assumptions of
the Picard-Lindelöf Theorem on those intervals where the IHODE-IVP is equivalent to an ODE-
IVP. In addition, after a root discontinuity has occured, make sure that there is a unique choice
for the sign ζ1ptq. A helpful tool for formulating a condition that ensures the latter is the following
definition.

Definition 4.7 (Consistent Choice of Switching Function Signs)

Consider an IHODE-IVP according to Definition 1.10. Let t̃ P T pcq, ỹ P Dy. Then ζ 1 P Iζ1 is
called a consistent choice of switching function signs, if there exists ∆t ¥ ∆t ¡ 0 and a solution
yζ1ptq of the ODE-IVP

9yptq � fpt, yptq, c, ζ 1q (4.12a)

ypt̃q � ỹ (4.12b)

such that

ζiptq � signpσipt, y�ζ1ptq, cqq (4.13a)

� ζ 1i (4.13b)

for all i � 1, . . . , nσ and for t P pt̃, t̃ � ∆tq. Otherwise, ζ 1 it is called an inconsistent choice of
switching function signs.
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Consistency of the choice of the switching function signs does not imply that the associated ODE-
IVP can be solved uniquely; it merely states that there exists at least one solution of the ODE-IVP
(4.12) such that equation (4.13) holds.

Consider, for illustration, again the simple case of an IHODE-IVP with only one switching
function, and assume that the right-hand-side function and the switching function are continuous
in all real-valued arguments. If, for some time t̃ and state ypt̃q, the switching function σpt̃, ypt̃q, cq
is non-zero, e.g. positive, then continuity of the switching function and continuity of a solution
yptq for t P Dt1pT pcqq ensure that the choice ζ 1 � �1 is always inconsistent. Hence, there can be at
most one consistent choice, ζ 1 � �1, of the switching function.

The situation is different at the time point of a root discontinuity. Here, the condition ζ 11 P Iζ1 �
t�1, 1u in Definition 4.7 means that the solution yptq has to be such that the switching function
σ1 is non-zero in pt̃, t̃�∆tq. If the impulse itself leads to a non-zero value of σ1, then the previous
arguments still apply and there can be at most one consistent choice of the switching function sign.
But if there is no impulse or if the impulse does not affect the value of the switching function, then
in general both ζ 11 � 1 or ζ 11 � �1 may be possible choices of the switching function signs to the
right of the time point of the root discontinuity.

Assume that for both choices the right-hand-side function f in the corresponding ODE-IVPs
(4.12) are such that the two ODE-IVPs can be solved uniquely (at least locally), and denote the
solutions of the two ODE-IVPs by y1ptq and y�1ptq, respectively. It may then happen that the
solution y1ptq – which corresponds to the choice ζ 11 � 1 – is such that the switching function
σ1pt, y1ptq, cq actually becomes positive after the time point of the root discontinuity. If yes, the
choice ζ 11 � 1 is called a consistent choice, otherwise, it is called an inconsistent choice.

In general, it may happen that there is no, one, or that there are several consistent choices of the
switching function signs after the time point of a root discontinuity. A situation where there is no
consistent choice was already encountered in Example 2.3. Clearly, for the existence of a solution,
there always has to be at least one consistent choice of the switching function signs, and assuming
that a solution exists implies that there is at least one such consistent choice. Accordingly, in order
to guarantee that the solution is unique, it needs to be ensured that there is only one consistent
choice of the switching function signs after the time points where root discontinuities occur. This
is one of the assumptions in the following uniqueness theorem.

Theorem 4.8 (Global Uniqueness of IHODE-IVP Solutions)

Consider an IHODE-IVP as in Definition 1.10 with a vector c of fixed parameter values, and let
Dy � Rny be some open domain. Let y : T pcq Ñ Dy be a solution of the problem. Assume that the
following conditions are fulfilled:

(C) Continuity: The right-hand-side function fpt, y, c, ζq is continuous with respect to t and y for

pt, y, ζq P T pcq � Dy � Iζ1 . The switching functions σipt, y, cq, 1 ¤ i ¤ nσ, are continuous
with respect to t and y for pt, yq P T pcq �Dy.

(L) Lipschitz-Continuity: The right-hand-side function fpt, y, c, ζq is uniformly Lipschitz contin-

uous with respect to y for pt, y, ζq P T pcq �Dy � Iζ1 .

(B) Boundedness: The right-hand-side function is bounded by

}fpt, y, c, ζq}8  Mf   8 (4.14)

for pt, y, ζq P T pcq �Dy � Iζ1 .

(CS) Consistent Signs: For pt, yq � ptinipcq, yinipcqq and for each pt, yptqq with t P Dt0pT pcqq there
exists exactly one consistent choice of the switching function signs.

Then the IHODE-IVP solution yptq is unique on the interval T pcq.
Proof
Assume that there is some solution ȳptq different from yptq. However, their values at tinipcq
are identical, and there is a unique consistent choice of the switching function signs for t P
ptinipcq, tinipcq � ∆tq for some ∆t ¡ 0. It is then possible to consider some closed interval
rtinipcq, tinipcq � δts and some closed neighborhood Dy � Dy where the IHODE-IVP is equiva-
lent to an ODE-IVP, and where the model functions of the ODE-IVP fulfill the assumptions of the
Picard-Lindelöf theorem (Theorem 4.2). Hence, the solution is locally unique.
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By keeping the steps small enough and knowing that the solution yptq lies in the open domain
Dy, the same argument can be applied for a sequence of intervals and closed neighborhoods, such
that it follows ȳptq � yptq on the interval rtinipcq, s1q. Hereby, s1 denotes the earliest time point
where any of the switching function signs becomes zero.

In s1, identical impulses are applied so that ȳ�ps1q � y�ps1q. For t P ps1, s1 � ∆tq, ∆t ¡ 0,
there exists again a unique consistent choice of the switching function signs, and a suitable interval
and closed neighborhood of y�ps1q can be constructed such that local uniqueness of the ODE-IVP
solution follows. The above arguments can then be used to show that ȳptq � yptq on all subintervals
and at all time points where root discontinuities occur. �

It is remarked that the conditions (C), (L) and (B) of Theorem 4.8 are all formulated for
y P Dy, but from the proof it is clear that it is sufficient to have continuity, Lipschitz continuity
and boundedness of the right-hand-side function in a tubular neighborhood around the considered
solution yptq.

In comparison to the uniqueness result for ODE-IVPs, Theorem 4.2, the sole difference is the
condition (CS). In order to check whether this additional condition is fulfilled, one option is to
simply go through all possible choices of switching function signs and check whether equation
(4.13) holds. This idea can also be considered as a blueprint for the development of numerical
methods for checking uniqueness; however, if multiple switching functions are zero at the same
time point the number of possible choices of switching function signs grows combinatorically and
it may become computationally expensive to solve all associated ODE-IVPs.

4.5. DDEs with State-Dependent Delay Functions

The next subclass of IHDDE-IVPs that is investigated with respect to the uniqueness of solutions
are DDEs with state-dependent delays. A simple case with only one state-dependent delay function
is considered first:

9yptq � fpt, yptq, c, ypt� τ1pt, yptq, cqqq (4.15a)

yptinipcqq � yinipcq (4.15b)

yptq � φpt, cq for t   tinipcq. (4.15c)

As usual, the right-hand-side function f and the delay function τ1 shall be continuous. For sim-
plicity, let the initial function φpt, cq and the initial value yinipcq be such that there is only one
discontinuity in the states for t ¤ tinipcq. The time point of this sole discontinuity is denoted by
s1.

Consider a solution yptq of the problem, and recall the definition of the propagation switching
function σα1,s1 for the sole deviating argument α1:

σα1,s1pt, yptq, cq � α1pt, yptq, cq � s1. (4.16)

By requirement (R2), there are only finitely many discontinuities in the following function1:

ζα1,s1ptq � signpσα1,s1pt, y�ptq, cqq. (4.17)

More specifically, this implies that there are only finitely many discontinuities in the simplified
sign function (recall equation (2.14))

ζα,�1,s1
ptq � sign�pσα1,s1pt, y�ptq, cqq. (4.18)

For every time t for which the past time point α1pt, yptq, cq is to the left or to the right of the
discontinuity point s1, there is a small neighborhood where the deviating argument remains to the
left or to the right of s1, because α1 is continuous in all its arguments and a solution yptq of a
DDE-IVP is continuous on Dt1pT pcqq � T pcq as well. Hence, the past states are locally continuous
when the sign function is non-zero.

1For consistency with the general IHDDE-IVP case, the sign function is defined with the left-sided limit y�ptq,
although for DDE-IVPs the state is continuous for t P ptinipcq, tfinpcqs, so that this specification is unnecessary.
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Under the assumption that the delay does not vanish for the considered solution yptq, the past
state has a known and given value. Then the DDE-IVP is locally equivalent to an ODE-IVP with
a continuous right-hand-side function

fODEpt, yptq, cq � fpt, yptq, c, ypt� τ1pt, yptq, cqqq (4.19)

and with some suitable additional assumptions on Lipschitz continuity of f , φ, and τ1, and bound-
edness of f , uniqueness of the ODE-IVP solution can be guaranteed.

It remains to deal with non-uniqueness issues at those time points t where the deviating argument
t� τ1pt, yptq, cq is equal to the discontinuity point s1. One approach in this context is to find some
definition of a “consistent choice of propagation switching function signs”, i.e. some analogous
version of Definition 4.7 for propagation switching functions. Although it is principally easy to
transfer the idea, the concrete formulation is significantly more technical.

One of the reasons for this is that the propagation switching functions are not independent of
each other, e.g. for two discontinuity points s1   s2 in the initial function and a deviating argument
αi it is clear that for ζα,�i,s1

ptq � �1 it follows that ζα,�i,s2
� �1. Consequently, it holds that if the

total number of discontinuities in the past is known, then it is sufficient to know for each deviating
argument αi the sum of all associated propagation switching function signs rather than all of them
individually, in order to determine the number of discontinuities to the left and to the right of
αipt, yptq, cq. This observation leads to the definition of discontinuity interval indicators as the
DDE-equivalent of the switching function signs:

Definition 4.9 (Discontinuity Interval, Discontinuity Interval Indicators)

Consider a DDE-IVP according to Definition 1.12. Let t P T pcq, and let y P PDpp�8, ts,Dyq be
some piecewise continuously differentiable function. Denote the total number of discontinuities of
order 0 in y by ns, and denote the discontinuity points by si, 1 ¤ i ¤ ns, which shall be sorted
ascendingly s1   s2   � � �   sns . Then the intervals p�8, s1q, rs1, s2q, . . . , rsns , tfinpcqs are called
discontinuity intervals.

Further, let

ζα,�i,sj
ptq � sign�pαipt, y�ptq, cq � sjq (4.20)

be the signs of the propagation switching functions for 1 ¤ i ¤ nτ and 1 ¤ j ¤ ns. Then

ξαi ptq � ns � 1� 1

2

nş

j�1

pζα,�i,sj
ptq � 1q (4.21)

are called the discontinuity interval indicators. As abbreviation, ξα :� pξα1 , . . . , ξαnτ qT is used. It

holds that ξα P Iξα :� t1, . . . , ns � 1unτ .

The discontinuity interval indicators are defined in such a way that ξαi ptq � 1 if αipt, y�ptq, cq is to
the left of the left-most discontinuity point s1, and that ξαi ptq � ns � 1 if αipt, y�ptq, cq is to the
right of the right-most discontinuity point sns . For all other values 2 ¤ k ¤ ns, ξ

α
i ptq � k indicates

that the deviating argument αipt, y�ptq, cq is located in the discontinuity interval rsk�1, sks.
Another technical complication in transferring the definition of consistent choice of switching

function signs to propagated switching functions is as follows. In Definition 4.7, any possible value
of switching function signs is assumed, and then an ODE-IVP is formulated that is completely
independent on the signs that the switching functions actually have. In other words, a hypothetical
right-hand-side function is used that is decoupled from the values of the switching function signs.
In order to do something equivalent for DDE-IVPs, it is necessary to find an equivalent decoupling
of the value used in the past state argument of the differential equation from the actual value of
the function y at the time point in the past. This is made possible by the following definition.

Definition 4.10 (Deduced Functions)

Let t̃ P R, y P PDpp�8, t̃s,Dyq be some continuously differentiable function, and let ns be the
total number of discontinuities of order 0 in y. The discontinuity points are denoted by si with
1 ¤ i ¤ ns, and shall be sorted ascendingly s1   s2   � � �   sns .
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Then the functions z1, z2, . . . , zns�1 defined by

z1ptq �
#
yptq for t   s1

y�ps1q � 9y�ps1qpt� s1q for t ¥ s1

(4.22a)

ziptq �

$'&
'%
y�psi�1q � 9y�psi�1qpt� si�1q for t   si�1

yptq for si�1 ¤ t   si

y�psiq � 9y�psiqpt� siq for t ¥ si

for 2 ¤ i ¤ ns (4.22b)

zns�1ptq �
#
y�psnsq � 9y�psnsqpt� snsq for t   sns
yptq for t ¥ sns .

(4.22c)

are called the deduced functions of the function y.

The deduced functions are defined in such a way that they are equal to the function y in parts of
the interval p�8, t̃s. In particular, z1ptq is equal to yptq for t P p�8, s1q, ziptq is equal to yptq for
t P rsi�1, siq for 2 ¤ i ¤ ns, and zns�1ptq is equal to yptq for t P rsns , t̃s. Outside of the set where
a deduced function equals yptq it is continued in such a way that it is continuously differentiable
and Lipschitz continuous on t P p�8, t̃s. Any other definition of deduced functions that continues
the function yptq in a different, but continuously differentiable and Lipschitz continuous manner,
would also be suitable for the remainder of this chapter.

With the help of Definitions 4.9 and 4.10 it is possible to define a consistent choice of discontinuity
interval indicators, which transfers the idea behind Definition 4.7 (consistent switching function
signs) to the treatment of DDE-IVPs.

Definition 4.11 (Consistent Choice of Discontinuity Interval Indicators)

Consider a DDE-IVP according to Definition 1.12. Let t̃ P T pcq, and let y P PDpp�8, t̃s,Dyq be
some piecewise continuously-differentiable function. Let the time points of discontinuity of order 0
in y be denoted by si, with 1 ¤ i ¤ ns, where ns is the total number, and let them be sorted
ascendingly: s1   s2   � � �   sns . Further, let zi : p�8, t̃s Ñ Dy, 1 ¤ i ¤ ns � 1, be the
continuously-differentiable deduced functions of the function y.

Then ξα1 � pξα1 1, . . . , ξαnτ 1q P Iξ
α

is called a consistent choice of discontinuity interval indicators,
if there exists ∆t ¥ ∆t ¡ 0 and a solution yξα1ptq of the ODE-IVP

9yptq � fpt, yptq, c, tzξαi 1pt� τipt, yptq, cqqunτi�1q (4.23a)

ypt̃q � ypt̃q (4.23b)

yptq � yptq for t   t̃ (4.23c)

such that

ξαi ptq � ns � 1� 1

2

nş

j�1

pζα,�i,sj
ptq � 1q (4.24a)

� ξαi
1 (4.24b)

with

ζα,�i,sj
ptq � sign�pαipt, y�ξα1ptq, cq � sjq (4.25)

for 1 ¤ i ¤ nτ and all t P pt̃, t̃�∆tq.

Observe that the deduced functions occur as argument in the differential equation (4.23a) in order
to obtain an expression for the past state arguments that a) corresponds to the choice of ξα1 and
b) is independent of the value of the function y at the past time point given by the deviating
argument.

For an interpretation of a consistent choice of discontinuity interval indicators, think again
of a DDE-IVP with a single state-dependent delay τ1pt, yptq, cq and a single discontinuity point
s1 ¤ tinipcq. Let yptq be a solution of this DDE-IVP. Clearly, if for some t̃ P T pcq the state ypt̃q is
such that the past time point is not equal to s1, α1pt̃, ypt̃q, cq � s1 � 0, then due to the continuity
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of α1 and the continuity of DDE-IVP solutions there can be at most one consistent choice of the
discontinuity interval indicator in the neighborhood of pt̃, ypt̃qq.

Care must be taken, however, when the deviating argument is located exactly at the discontinuity
point s1. Here, in general both “assumed values” for the discontinuity interval indicator are possible
for the continuation of the IVP solution, namely 1 (i.e. the deviating argument is to the left of s1)
and 2 (i.e. the deviating argument is to the right of s1). Both assumed values lead to different
solutions of the ODE-IVP (4.23), which may or may not be such that the actual discontinuity
interval indicator equals the assumed value. If it does, it is called a consistent choice, otherwise it
is called an inconsistent choice.

It is clear that for existence of a DDE-IVP solution it is necessary that there exists at least one
consistent choice of the discontinuity interval indicators for all t, and conversely, that existence of
a solution implies that at least one such consistent choice exists for all t. In order to formulate
a theorem on the uniqueness of DDE-IVP solution, it is natural to request uniqueness of the
discontinuity interval indicators in all time points t where any of the deviating arguments is located
at one of the discontinuity points of order 0 in the past. This is the case in the following theorem.

Theorem 4.12 (Global Uniqueness of DDE-IVP Solutions)

Consider a DDE-IVP as in Definition 1.12 with a vector c of fixed parameter values and let Dy �
Rny be some open domain. Let y P PDpT f pcq,Dyq be a solution of the problem, where s1   s2  
� � �   sns ¤ tinipcq are the time points of discontinuity of order 0 in y. Further, define the set

Dtα,0pT pcqq :� tt P T pcqzttinipcqu | αipt, y�ptq, cq � sj

for at least one pi, jq P t1, . . . , nτu � t1, . . . , nsuu, (4.26)

i.e. Dtα,0pT pcqq represents all times for which at least one deviating argument is located at one of
the time points of discontinuity of order 0 in y.

Assume that the following conditions are fulfilled

(C) Continuity: The right-hand-side function fpt, y, c, tviunτi�1q is continuous with respect to t,
y, and tviunτi�1 for pt, y, tviunτi�1q P T pcq � Dy � pDyqnτ . The delay functions τipt, y, cq,
1 ¤ i ¤ nτ , are continuous with respect to t and y for pt, yq P T pcq �Dy.

(L) Lipschitz-Continuity: The right-hand-side function fpt, y, c, tviunτi�1q is uniformly Lipschitz
continuous with respect to y and tviunτi�1 for pt, y, tviunτi�1q P T pcq � Dy � pDyqnτ . The
delay functions τipt, y, cq are uniformly Lipschitz continuous with respect to y for pt, yq P
T pcq � Dy. The initial function φ is piecewise continuously differentiable, i.e. φp�, cq P
PDpT f pcq,Dyq, and between two successive discontinuity points it is uniformly Lipschitz
continuous with respect to t.

(B) Boundedness: The right-hand-side function is bounded by

}fpt, y, c, tviunτi�1q}8  Mf   8 (4.27)

for pt, y, tviunτi�1q P T pcq �Dy � pDyqnτ .

(NVD) Non-Vanishing Delays: It holds for the delay functions τi, 1 ¤ i ¤ nτ that τipt, yptq, cq ¥
τ ¡ 0 for t P T pcq and the considered solution yptq.

(CI) Consistent Indicators: For pt, yq � ptinipcq, yinipcqq and each pt, yptqq with t P Dtα,0pT pcqq
there is exactly one consistent choice of the discontinuity interval indicators.

Then the solution yptq of the DDE-IVP is unique on the interval T pcq.
Proof
The proof works by contradiction. Assume that there exists a solution ȳptq of the DDE-IVP on

T f pcq different from yptq. However, ȳ and y are identical for t ¤ tinipcq, and there exists a unique
consistent choice ξα1 of the discontinuity interval indicators at the initial time. Consequently, for
some interval ptinipcq, tinipcq �∆tq the past state arguments can be replaced by evaluations of the
same deduced functions of y. Due to assumption (NVD), the DDE-IVP is locally equivalent to an
ODE-IVP with right-hand-side function

fODEpt, yptq, cq � fpt, yptq, c, zξαi 1pt� τipt, yptq, cqqq (4.28)
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Due to Lipschitz continuity of f , φ, and τi, the function fODEpt, y, cq is Lipschitz continuous with
respect to y, and because of assumption (B) it is also bounded. Hence in some sufficiently small
interval rtinipcq, tinipcq � δts, Theorem 4.2 can be applied, which gives ȳptq � yptq.

Since it holds for the given solution that yptq P Dy, with Dy being an open set, the same
argument can be applied for a sequence of intervals and closed neighborhoods on the interval
rtinipcq, sns�1q, where sns�1 denotes the earliest time point where any of the deviating arguments
becomes equal to one of the time points of discontinuity of order 0 in the past. At sns�1, the
state is continuous, because DDE-IVP solutions have to be continuous for t P Dt1pT pcqq. Hence,
ȳptq � yptq for t ¤ sns�1.

For times to the right of sns�1 the assumption (CI) guarantees that there is a unique choice of
the discontinuity interval indicators. Hence, an ODE-IVP can be formulated, where the past state
arguments of the DDE right-hand-side function are evaluated at the current (possibly updated) set
of deduced functions. The previous arguments can now be repeated, which results in the conclusion
ȳptq � yptq on the full time interval T f pcq, so the solution is unique. �

Note that, similar to Theorem 4.8, the assumptions (C), (L) and (B) are formulated for a domain
Dy � Rny , but that it is in fact sufficient if the assumptions hold in a tubular neighborhood of the
considered solution yptq.

The conditions (NVD) and (CI), which are the main differences in the assumptions of Theo-
rem 4.12 as compared to the related ODE-Theorem 4.2, can easily be checked in practice (at least
in principle). The check is obvious for condition (NVD). In order to check condition (CI) it is
required to go, at a time point where a deviating argument is located at a point of discontinuity
of order 0 in the past, through all possible values of the discontinuity interval indicators and check
whether equation (4.24) holds.

4.6. The General Case: IHDDEs

IHDDE-IVPs combine the difficulties of implicitly defined root discontinuities as they occur in
IHODE-IVPs with difficulties related to the dependency of the right-hand-side function on past
states as in DDE-IVPs. Accordingly, a theorem that guarantees uniqueness of an existing IHDDE-
IVP solution has to combine the assumptions on the model functions that were formulated in the
Theorems 4.8 and 4.12:

Theorem 4.13 (Global Uniqueness of IHDDE-IVP Solutions)

Consider an IHDDE-IVP as in Definition 1.2 with a vector c of fixed parameter values and let
Dy � Rny be some open domain. Let y P PDpT f pcq,Dyq be a solution of the problem, where
s1   s2   � � �   sns are the time points of discontinuity of order 0 in y. Further, define the set

Dtα,0pT pcqq :� tt P T pcqzttinipcqu | αipt, y�ptq, cq � sj

for at least one pi, jq P t1, . . . , nτu � t1, . . . , nsuu, (4.29)

i.e. Dtα,0pT pcqq represents all times in which at least one deviating argument is located at one of
the time points of discontinuity of order 0 in y.

Assume that the following conditions are fulfilled

(C) Continuity: The right-hand-side function fpt, y, c, tviunτi�1, ζq is continuous with respect to

t, y, and tviunτi�1 for pt, y, tviunτi�1, ζq P T pcq �Dy � pDyqnτ � Iζ1 . The switching functions
σipt, y, c, tvjunτj�1q are continuous with respect to t, y, and tvjunτj�1 for pt, y, tvjunτj�1q P T pcq�
Dy � pDyqnτ . The delay functions τipt, y, cq, 1 ¤ i ¤ nτ , are continuous with respect to t
and y for pt, yq P T pcq �Dy.

(L) Lipschitz-Continuity: The right-hand-side function fpt, y, c, tviunτi�1, ζq is uniformly Lip-
schitz continuous with respect to y and tviunτi�1 for pt, y, tviunτi�1, ζq P T pcq�Dy �pDyqnτ �
Iζ1 . The delay functions τipt, y, cq are uniformly Lipschitz continuous with respect to y
for pt, yq P T pcq � Dy. The initial function φ is piecewise continuously differentiable, i.e.
φp�, cq P PDpT f pcq,Dyq, and between two successive discontinuity points it is Lipschitz
continuous with respect to t.
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(B) Boundedness: The right-hand-side function is bounded by

}fpt, y, c, tviunτi�1, ζq}8  Mf   8 (4.30)

for pt, y, tviunτi�1, ζq P T pcq �Dy � pDyqnτ � Iζ1 .

(NVD) Non-Vanishing Delays: It holds for the delay functions τi, 1 ¤ i ¤ nτ that τipt, yptq, cq ¥
τ ¡ 0 for t P T pcq and the considered solution yptq.

(CIS) Consistent Indicators and Signs: For pt, yq � ptinipcq, yinipcqq and for each pt, yptqq with
t P Dt0pT pcqq Y Dtα,0pT pcqq there is exactly one consistent choice of the switching function
signs and exactly one consistent choice of the discontinuity interval indicators.

Then the solution yptq is the unique solution of the IHDDE-IVP on the interval T pcq.
Proof
The proof is obtained by the obvious generalization of the proofs of the Theorems 4.8 and 4.12.�
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The discontinuity of the dense output at ζ (i.e. at a past time
point of discontinuity) may prevent fast convergence or even lead
to divergence. [...] To avoid this difficulty, we propose to use the
extrapolated dense output also for the arguments beyond ζ.

Guglielmi and Hairer, in their paper “Computing breaking points
in implicit delay differential equations” [124], suggesting the use of
extrapolations beyond past discontinuities.

In the previous chapter, existence and uniqueness results for solutions of initial value problems in
impulsive hybrid discrete-continuous delay differential equations (IHDDE-IVPs) were presented. In
practice, however, it is of course insufficient to know whether a solution yptq of a given IHDDE-IVP
(or an IVP in a simpler subclass of differential equations) exists, but it is necessary to determine
the solution in some way. For many real-world applications, the IVP solutions cannot be obtained
analytically, but it is instead necessary to rely on numerical methods for the computation of an
approximate solution.

The output of the numerical method may either be a sequence of numerical approximations yl
of yptlq at a finite set of mesh points tl (in the case of a so-called discrete integration method),
or, preferably, a continuous approximation ηptq of yptq for tinipcq ¤ t ¤ tfinpcq (in the case of a
so-called continuous integration method). The presentation of discrete and continuous integration
methods for solving IVPs in differential equations as well as the analysis of these methods – in
particular, the convergence of the approximations yl and ηptq to the exact values yptlq and yptq –
is the topic of this chapter.

Literature Survey

For initial value problems in ordinary differential equations (ODE-IVPs), the literature on nu-
merical methods is very rich. The reader is therefore referred, e.g., to the standard textbooks
by Hairer, Nørsett, and Wanner [126], Hairer and Wanner [127], Butcher [55], Stoer and Bulirsch
[241], Deuflhard and Bornemann [76], Petzold and Ascher [208] and the references therein.

With respect to ordinary differential equations with discontinuous right-hand-side functions,
some papers have discussed the general case that the numerical method has no information on the
location of discontinuities, see Gear and Østerby [112], Enright et al. [98], and Calvo, Montijano,
and Rández [57]. The greater fraction of works, which is referenced further below, assumes that the
locations of discontinuities are characterized as zeros of switching functions and that the numerical
method has access to the switching functions. Away from the zero sets of the switching functions,
the right-hand-side function is assumed to be “sufficiently” smooth, where the meaning of “suffi-
ciently” is related to the smoothness requirements of the numerical method. These assumptions
are also made in this thesis, and it is recalled that the use of switching functions as indicators for
the discontinuity points corresponds to what is in this thesis called a hybrid discrete-continuous
ordinary differential equation (HODE).

The main part of Chapter 2 was concerned with the issue of finding a definition of a solution.
As discussed therein, this thesis is concerned with solutions for which the switching functions have
finitely many roots, which excludes, in particular, so-called Filippov solutions. Accordingly, this
chapter is restricted to the topic of numerically computing solutions that obey this restriction, but
it is appropriate to at least mention some of the works that have been concerned with the numerical
computation of Filippov solutions: Piiroinen and Kuznetzov [210] and Dieci and Lopez [78].

For problems with a finite number of root discontinuities, it is clear that the time evolution of an
HODE-IVP solution is that of an ODE-IVP solution between two successive root discontinuities.
Hence, the numerical solution of an HODE-IVP has to be based on methods for the solution of
ODE-IVPs. While taking an integration step with an ODE-method, one approach is to evaluate
only smooth “branches” of the right-hand-side function f . This means that the numerical method
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calls the right-hand-side function f , for all necessary evaluations in one integration step, with a
fixed vector of switching function signs even if the switching function changes its sign during the
integration step. It should be noted that the use of this approach relies on the mild assumption
that the smooth “branch” is evaluable beyond the point of the root discontinuity (see Dieci and
Lopez [79] for a numerical method that abstains from this mild assumption).

Evaluating smooth branches of f has been used since the 1970’s and 1980’s, see e.g. Hay, Crosbie,
and Chaplin [143], Ellison [87], and Bock [37]. Later it has been called the discontinuity locking
mechanism, see e.g. Park and Barton [200], Bahl and Linninger [8], and Compere [67]. This
approach can be regarded as the standard procedure for the evaluation of f in the numerical
solution of HODE-IVPs, see e.g. Bock, Schlöder, and Schulz [45] and the textbooks by Stoer and
Bulirsch [241], page 184, and by Hairer, Nørsett, and Wanner [126], page 198.

It remains to discuss approaches for the treatment of the root discontinuities, which are, in
the literature, occasionally called events. Numerical methods proposed in the literature typically
distinguish between two phases: First, recognizing that a switch has occured since the last mesh
point (event detection), and second, locating the switch (event location). The methods that can
be used for these tasks are intimitely related to the nature of integration method in use.

• Discrete integration methods: It is possible to construct HODE-IVP solvers on entirely
discrete integration methods, i.e. methods that approximate the solution yptq of the HODE-
IVP only at the mesh point.

For example, one may check after, each integration step, whether the signs of the switching
functions have changed. If not, the integration is continued. Otherwise, the location of the
root discontinuity can be approximated by linearly interpolating the values of the switching
function at the mesh points, and determining the zero of this linear function. This approach
is taken in the early paper by Hay, Crosbie, and Chapin [143]. By using, in addition, also the
time derivatives of the switching function at the mesh points, a higher order interpolation
polynomial can be constructed and used, see Cellier [61]. Optionally, the zero of a higher
order interpolation polynomial can only be used as an initial guess for a subsequent itera-
tive procedure that employs additional trial steps with the discrete integration method, see
Bulirsch [51].

• Continuous integration methods: A more straightforward approach to the numerical solution
of HODE-IVPs is the use of continuous integration methods that provide, besides the approx-
imation of the solution at the mesh points, also a continuous approximation of the solution
between the mesh points. Such a continuous approximation is usually called continuous
representation or dense output.

Using continuous integration methods implies the opportunity to evaluate the switching
functions for time points that are not part of mesh. This allows to apply any zero finding
procedure for the determination of the discontinuity point and has become the standard
technique for event location, see Park and Barton [200], Meijaard [188], Kirches [160], Wun-
derlich [261], and also the textbooks by Eich-Soellner and Führer [86], page 202, and Stoer
and Bulirsch [241], page 184. In addition, continuously evaluable switching functions can
also be used as a basis for the development of sophisticated event detection strategies that
aim at detecting multiple zero crossings of a single switching function in a single integration
step. For works in this direction, it is referred to Shampine, Gladwell, and Brankin [231] and
Park and Barton [200].

The historical developments of numerical methods for solving initial value problems in delay
differential equations (DDE-IVPs) and HODE-IVPs exhibit some similarities with regard to the
fact that several early approaches are based on discrete integration methods.

For example, Bellman [27] and Bellman, Buell, and Kalaba [29] present the technique that is
today referred to as the method of steps, see also Remark 4.5. The method of steps can be realized
in such a way that a sequence of ODE-IVPs of increasing dimension is solved. The benefit of this
realization is that all past states that are needed for the evaluation of f are available as components
of the augmented state vector at the current time. Hence, by using the method of steps, storing
past values can be avoided and any standard ODE-IVP solver can be used.

Another approach that allows to apply discrete integration methods is the use of so-called con-
strained meshes, which is suggested, in El’sgol’ts [90], page 284, El’sgol’ts [91], page 165, and
elaborated in Cryer [72]. In this approach, the approximate discrete solution at a finite number of
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time points is stored, and the stepsizes of the integration method are chosen in such a way that
the past states that are needed in the current step are among the stored values.

Both the method of steps and the use of constrained meshes have severe disadvantages. First,
they are not suitable for all classes of DDE-IVPs, e.g. the application to DDE-IVPs with state-
dependent delays or vanishing delays is not possible. Second, they are inherently inefficient. The
method of steps, on the one hand, requires a redundant computation of the DDE-IVP solution
on the same interval over and over again. On the other hand, the use of constrained meshes does
not allow the use of so-called variable-stepsize strategies, which are crucial for the efficiency of an
integration method.

An alternative approach for the numerical solution of DDE-IVPs is to use continuous integration
methods. Early works that rely on this approach are Neves [193], Oppelstrup [198], Bock and
Schlöder [43], and Oberle and Pesch [196]. Later, this idea has been adopted by Paul [201], Enright
and Hayashi [96], Guglielmi and Hairer [122] Shampine and Thompson [233], and many others.
These use of continuous integration methods has the big advantage that they can be combined
with variable-stepsize strategies in a straightforward way. The vast majority of modern algorithms
and computer codes make use of continuous integration methods, therefore it has become custom
to call it the standard approach for solving DDE-IVPs, see Bellen and Zennaro [26].

As discussed in Chapter 2, DDE-IVP solutions typically exhibit propagated discontinuities. It
is well-known that in order to obtain accurate numerical approximations of DDE-IVP solutions,
the numerical method needs to include the time points of the propagated discontinuities into the
mesh. However, there are different approaches on how to handle this issue in practice.

One approach is to rely on the assumption that the lack of smoothness will lead to repeated
stepsize rejections in the vicinity of the time point of a propagated discontinuity. Based on this
assumption, Oppelstrup [198], Enright and Hayashi [96], and Shampine [230] have developed algo-
rithms that analyze the sequence of accepted and rejected stepsizes. If the analysis raises suspicion
that a discontinuity may be present, it is attempted to include the discontinuity point approxi-
mately into the mesh.

In other papers, a rigorous tracking of discontinuities has been favoured, i.e. including all points
of discontinuity up to the order of the method into the mesh by finding the zeros of the propagation
switching functions. This approach has been taken, e.g., in Bock and Schlöder [43], Feldstein and
Neves [103], Willé and Baker [256], and Paul [204]. Furthermore, Guglielmi and Hairer [123]
suggest a “relaxed” variant of discontinuity tracking, i.e. an algorithm that calls the root finding
strategy only if certain conditions are met, e.g. if a stepsize has been rejected.

It is remarkable that even those research works that advocate the use of discontinuity tracking
do typically not describe or mention the DDE-analogon of the discontinuity locking mechanism.
Algorithms that track discontinuities but do not use discontinuity locking ensure that the time
points of the propagated discontinuities are included in the mesh, but the computation of past
states for the trial stepsizes is done in such a way that the smoothness assumptions of the employed
numerical method are violated. To the best of the authors knowledge, only the recent works by
Guglielmi and Hairer [124], ZivariPiran [271], ZivariPiran and Enright [272], and Ernst [101] have
proposed to use the DDE-analogon of discontinuity locking, which means to use extrapolations
beyond past discontinuity points if a deviating argument crosses such a past discontinuity point in
the present integration step.

Novel Results Presented in This Chapter

The use of extrapolations beyond past discontinuity points (as suggested in Guglielmi and Hai-
rer [124], ZivariPiran [271], ZivariPiran and Enright [272], and Ernst [101]) constitutes a solution
approach for DDE-IVPs that is not any longer a realization of the standard approach. In this
chapter, the use of extrapolations is therefore formally introduced as an integral part of a new
solution approach called the modified standard approach. This modified standard approach is
formulated in two versions. First, as an “idealized” variant that relies on the assumption that the
discontinuity points of the exact solution are known and included into the mesh. This assumption
can typically only be fulfilled for constant and time-dependent delays. Therefore, as a second
variant, a practically realizable version of the modified standard approach is presented that employs
numerically determined approximations of the discontinuity points.

For the idealized variant of the modified standard approach novel theoretical results are presented
that ensure, for the case of continuous Runge-Kutta (CRK) methods, existence and uniqueness of
the numerical solution in each integration step and convergence of the numerical solution to the
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exact solution. The presented theorems are also applicable to problems where the initial function
has discontinuities of order 0. Further, a subtle pitfall in the convergence proof for the standard
approach in Bellen and Zennaro [26] is described, which can effectively be circumvented by the use
of extrapolations.

The practical variant of the modified standard approach is defined, and its convergence properties
and aspects for the implementation are discussed, also in view of the more general case of IHDDE-
IVPs.

Organization of This Chapter

Section 5.1 presents basic definitions and results for continuous one-step methods for ODEs, with a
specific focus on the popular subclass of CRK methods. In Section 5.2 the application of continuous
one-step methods to DDE-IVPs is discussed. The standard approach for solving DDE-IVPs is
recalled, and the idealized variant of the modified standard approach is introduced. Well-posedness
of the numerical method and convergence to the exact solution is shown for CRK methods realized
in the framework of the modified standard approach.

Section 5.3 discusses the extension of the modified standard approach for the solution of IHDDE-
IVPs. The practical variant of the modified standard approach is introduced in Section 5.4. Eventu-
ally, Section 5.5 discusses several practically important aspects like error estimation, error control,
and efficient selection of stepsizes.

Notation

The solution of DDE-IVPs with numerical methods often requires a higher degree of smoothness of
the model functions than theorems regarding the existence and uniqueness of solutions. Therefore,
in order to express the necessary assumptions as compact as possible, the following notation is used
in this chapter. For any function g : px1, x2q Ñ Rng , x1 P Rnx1 , x2 P Rnx2 , the notation gp�, �q P
C ppAx1 � Ax2 ,Rng q means that the function g is p-times continuously differentiable with respect
to both arguments x1 and x2 on the sets Ax1 , Ax2 . Further, the notation gp�, x2q P C ppAx1 ,Rng q
means that for a given fixed x2, the function g is p-times continuously differentiable with respect
to x1 on the set Ax1

.

Further, it is remarked that within this chapter, the symbol } � } represents any of the norms
} � }1, } � }2, or } � }8 on a finite-dimensional space.

The Landau symbol Opgpxqq is used throughout the chapter, where fpxq � Opgpxqq for x Ñ a
means that lim supxÑa |fpxq{gpxq|   8. Equivalently, f � Opgpxqq can also be understood as the
existence of C ¡ 0 and ε ¡ 0 such that for all x with |x� a|   ε it holds that |fpxq| ¤ C|gpxq|.

5.1. Continuous One-Step Methods for ODE-IVPs

Consider an ODE-IVP as in Definition 1.4, i.e.

9yptq � fpt, yptq, cq (5.1a)

yptinipcqq � yinipcq. (5.1b)

Throughout the chapter the parameters c shall thereby be arbitrary but fixed. Further, it is
assumed that there exists a unique solution yptq. The task is to find a numerical method for
computing an approximation a) of the solution at some given final time, yptfinpcqq, and b) of
the solution yptq on the whole time interval T pcq � rtinipcq, tfinpcqs. For this purpose, a mesh
t0   t1   � � �   tnm is considered with t0 � tinipcq, tnm � tfinpcq, where the total number of mesh
points is nm � 1.

Definition 5.1 (Discrete One-Step Method, Stepsize, Discrete Increment Function)

A numerical method for computing an approximation yl�1 of the solution yptl�1q at the mesh point
tl�1 that is of the form

yl�1 � yl � hl�1Φptl, yl, hl�1; fq, (5.2)
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is called a discrete one-step method. The difference between two successive mesh points, hl�1 �
tl�1 � tl, for l P t0, . . . , nm � 1u, is called the stepsize (in step l � 1), and the function Φ is called
the discrete increment function.

The method is called discrete, because it provides approximations of yptq only at the mesh points
tl, and it is called a one-step method, because the right hand side of equation (5.2) depends only
on the mesh point tl and on the state yl at this mesh point, but not on states yl1 or mesh points
tl1 for l1   l. The latter would be the case for so-called multi-step methods, in particular for linear
multi-step methods and backward differentiation formulae, see e.g. Hairer and Wanner [127].

With regard to the stepsizes hl, it is distinguished between fixed stepsizes and variable stepsizes.

Definition 5.2 (Fixed Stepsize, Variable Stepsize)

If the stepsize is identical for all steps, hl � h for 1 ¤ l ¤ nm, then the method is called a
fixed-stepsize method. Otherwise it is called a variable-stepsize method.

For computing an approximation of yptfinpcqq it is sufficient to use a discrete method, whereas
an approximation of the solution yptq for all t P T pcq, requires to endow the discrete one-step
method with a continuous extension.

Definition 5.3 (Continuous Extension, Continuous Increment Function)

A continuous extension of the one-step method is a function η : T pcq Ñ Rny that is defined
piecewise by ηptq � ηl�1ptq on the interval rtl, tl�1s for 0 ¤ l ¤ nm � 1, and ηl�1ptq is of the form

ηl�1ptl � θhl�1q � yl � hl�1Ψptl, yl, hl�1, θ; fq, (5.3)

where θ P r0, 1s. The function ηl�1ptq satisfies the continuity conditions

ηl�1ptlq � yl and ηl�1ptl�1q � yl�1. (5.4)

The function Ψ is called the continuous increment function.

Definition 5.4 (Continuous One-Step Method)

The discrete one-step method of Definition 5.1, together with a continuous extension of Defini-
tion 5.3, is called a continuous one-step method.

In practical methods, the function Ψ is typically a polynomial function of the variable θ, and for the
remainder of this thesis only polynomial functions Ψ are considered. Accordingly, the continuous
extension ηptq is a piecewise polynomial function, and the polynomials are continuously linked at
the mesh points.

Due to the continuity conditions (5.4) on the continuous extension, it is clear that the increment
functions fulfill the relations

Ψptl, yl, hl�1, 0; fq � 0 (5.5a)

Ψptl, yl, hl�1, 1; fq � Φptl, yl, hl�1; fq. (5.5b)

In order for a continuous one-step method to be useful, it is clearly necessary that, for hl Ñ 0,
and nm Ñ 8, and

°nm
l�1 hl � tfinpcq � tinipcq � const., it should hold that yl Ñ yptlq for all

l � 0, . . . , nm, and that ηptq Ñ yptq for t P T pcq, i.e. the discrete and continuous approximations
should converge to the unique solution (subsequently also called “exact solution”) yptq of the
ODE-IVP. Consistency of one-step methods as defined below is a crucial property in this context.

Definition 5.5 (Consistency, Discrete Local Order, Uniform Local Order)

Let p ¥ 1 be the largest integer number such that for all ODE-IVPs with fp�, �, cq P C ppT pcq �
Rny ,Rny q and for all l � 0, . . . , nm � 1 it holds that

}ul�1ptl�1q � yl�1} � Ophp�1
l�1 q, (5.6)

where ul�1ptq is the exact solution of the local ODE-IVP

9ul�1ptq � fpt, ul�1ptq, cq (5.7a)

ul�1ptlq � yl, (5.7b)

63



Part II. Solutions of IHDDE-IVPs

and yl�1 is the numerical approximation of ul�1ptl�1q computed with a discrete one-step method,
i.e.

yl�1 � yl � hl�1Φptl, yl, hl�1; fq. (5.8)

Then p is called the discrete order of consistency or the discrete local order of the one-step method,
and the one-step method is called consistent (of discrete order p).

Similarly, let q ¥ 1 be the largest integer number such that for all ODE-IVPs with fp�, �, cq P
C qpT pcq � Rny ,Rny q and for all l � 0, . . . , nm � 1 it holds that

max
tl¤t¤tl�1

}ul�1ptq � ηl�1ptq} � Ophq�1
l�1 q, (5.9)

where ηl�1ptq is the continuous numerical approximation of ul�1ptq on rtl, tl�1s given by the con-
tinuous extension of the continuous one-step method, i.e.

ηl�1ptl � θhl�1q � yl � hl�1Ψptl, yl, hl�1, θ; fq. (5.10)

Then q is called the uniform order of consistency or the uniform local order of the one-step method,
and the one-step method is called consistent (of uniform order q).

Due to the continuity conditions (5.4), the maximum error in equation (5.9) on the interval rtl, tl�1s
can, at best, go to zero with the same order of hl�1 as the error at the end of the interval, which
is given by equation (5.6). Hence, it is clear that q ¤ p.

It is noted that the formulation fp�, �, cq P C ppT pcq�Rny ,Rny q means that the partial derivatives
of f with respect to both t and y exist and are continuous up to derivative order p. However, the
p-th order total derivative of fpt, yptq, cq with respect to t requires, by application of the chain rule,
the existence of dpyptq{dtp, which is given by the p � 1-th order total derivative of f . Hence, by
recursion, the existence of the p-th order partial derivatives also implies the existence of the p-th
order total derivative of f (which is the p� 1-th order total derivative of y) with respect to t.

The concept of consistency allows to formulate a convergence theorem for continuous one-step
methods.

Theorem 5.6 (Convergence of Continuous One-Step Methods for ODE-IVPs, Conver-
gence Order)

Consider the ODE-IVP (5.1) for some arbitrary but fixed parameter values c, and a continuous
one-step method defined by equations (5.2), (5.3). Let the following assumptions be fulfilled:

(S) Smoothness (of the right-hand-side function): The right-hand-side function f of the ODE-
IVP is such that fp�, �, cq P C ppT pcq � Rny ,Rny q.

(L) Lipschitz continuity (of the increment functions): The increment function Φpt, y, h; fq and
Ψpt, y, h, θ; fq are Lipschitz continuous with respect to y.

(E) Existence of a unique solution: There exists a unique solution yptq of the ODE-IVP.

(C) Consistency: The continuous one-step method is consistent of discrete local order p and
consistent of uniform local order q.

Then it holds that

max
1¤l¤nm

}yptlq � yl} � Ophpq, (5.11)

and the one-step method is called convergent with discrete order p. Alternatively, it is said that
the one-step method has discrete global order p. Further, it holds that

max
tPT pcq

}yptq � ηptq} � Ophrq (5.12)

with r � minpp, q � 1q, and the one-step method is called convergent with uniform order r. Alter-
natively, it is said that the one-step method has uniform global order r.

Proof
See Theorem 3.2.8. in Bellen and Zennaro [26], page 44ff. �
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5.1.1. Continuous Runge-Kutta Methods

As an important subclass of continuous one-step methods, continuous Runge-Kutta methods
(CRK) are introduced.

Definition 5.7 (Discrete Runge-Kutta Method, Continuous Runge-Kutta Method)

A continuous one-step method in which the increment functions take the special form

Φptl, yl, hl�1; fq �
ν̧

i�1

βifptil�1, y
i
l�1, cq (5.13a)

Ψptl, yl, hl�1, θ; fq �
ν̧

i�1

bipθqfptil�1, y
i
l�1, cq, (5.13b)

with

til�1 � tl � γihl�1 (5.14a)

yil�1 � yl � hl�1

ν̧

j�1

ai,jfptjl�1, y
j
l�1, cq (5.14b)

for 1 ¤ i ¤ ν is called a ν-stage continuous Runge-Kutta method (CRK method). Further, yil�1

are called the stage values, and the procedure yl�1 � yl � hl�1

°ν
i�1 βifptil�1, y

i
l�1, cq is called a

discrete Runge-Kutta method. The numbers γi P r0, 1s are called the abscissae, βi are the weights,
bipθq are the continuous weight functions and ai,j are the coefficients of the CRK method.

Definition 5.8 (Butcher Tableau)

The coefficients, weights, and abscissae of a discrete Runge-Kutta method can be expressed in a
Butcher Tableau as follows:

γ1 a11 a12 . . . a1ν

γ2 a21 a22 . . . a2ν

...
...

...
. . .

...
γν aν1 aν2 . . . aνν

β1 β2 . . . βν

, (5.15)

or, in short, as

γ A

βT
. (5.16)

In order to fulfill the continuity conditions for the increment functions Φ and Ψ (equations
(5.5)) for arbitrary right-hand-side functions f , it is obvious that bip0q � 0 for 1 ¤ i ¤ ν and that
bip1q � βi for 1 ¤ i ¤ ν.

In general, e.g. if all ai,j are non-zero, the equations (5.14b) are implicit in the variables yil�1.
In this case, a fix-point method is needed to solve the equations. However, in the special case that
ai,j � 0 for j ¥ i, then the equations are explicit and the stage values yil�1 can be computed by
simple recursion. This special property leads to the following definition.

Definition 5.9 (Explicit CRK Method, Implicit CRK Method)

If ai,j � 0 for j ¥ i, then the CRK method is called explicit, otherwise it is called implicit.

For explicit CRK methods the existence of a numerical solution for yil�1 is trivial. For implicit
CRK methods, it is stated by the following theorem.

Theorem 5.10 (Existence and Uniqueness of the Numerical Solution for Implicit CRK
Methods)

Consider an implicit CRK method applied to the ODE-IVP (5.1) for some arbitrary but fixed
parameter values c. Let the right-hand-side function fpt, y, cq be continuous in t and y, and Lip-
schitz continuous with respect to y with Lipschitz constant Lf . If the stepsize hl�1 is chosen as
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hl�1   1{Lfamax with amax :� max1¤i¤ν

°ν
j�1 |ai,j |, then there exists a unique solution of the

equations (5.14b).

Proof
See Hairer, Nørsett, and Wanner [126], p. 206. �

As an alternative to the computation of yil�1 for 1 ¤ i ¤ ν as solution of equation (5.14b), it
is also possible to define gil�1 :� fptil�1, y

i
l�1, cq and to determine gil�1 as solution of the following

equation system:

gil�1 � f

�
t, yl � hl�1

ν̧

j�1

ai,jg
j
l�1, c

�
, 1 ¤ i ¤ ν. (5.17)

The quantities gil�1 are also referred to as stage values.
For implicit methods, the system (5.17) can be uniquely solved under the same conditions as those

for the system (5.14b), i.e. under the conditions given in Theorem 5.10. For the practical solution of
ODE-IVPs, the two formulations are equivalent, but for solving DDE-IVPs it is implementationally
convenient to use gil�1 as variables of the CRK method, as is shown later in Section 6.4.

It is clear that a CRK method is practically useful only if the discrete and continuous approx-
imations yl and ηptq converge to the exact ODE-IVP solution. Hence, the convergence theorem
(Theorem 5.6) should apply. From the assumptions of this theorem, (L) and (C) are checked in
the following for the special case of CRK methods.

With regard to the assumption (L), i.e. Lipschitz continuity of the increment functions Φ and Ψ
with respect to y, the following lemma is considered.

Lemma 5.11 (Lipschitz Continuity of CRK Increment Functions)

Under the conditions of Theorem 5.10, the CRK increment functions Φ and Ψ are Lipschitz con-
tinuous with respect to their y argument, i.e. they fulfill the assumption (L) of Theorem 5.6.

Proof
Follows by considering the difference between two evaluations of the increment functions at different
y arguments, i.e.

}Ψptl, y1
l , hl�1, θ; fq �Ψptl, y2

l , hl�1, θ; fq}

�
�����
ν̧

i�1

bipθqfptil�1, ty1uil�1, cq �
ν̧

i�1

bipθqfptil�1, ty2uil�1, cq
����� (5.18)

where

ty1uil�1 � y1
l � hl�1

ν̧

j�1

ai,jfptjl�1, ty1ujl�1, cq (5.19a)

ty2uil�1 � y2
l � hl�1

ν̧

j�1

ai,jfptjl�1, ty2ujl�1, cq (5.19b)

are the stage values for two different approximations y1
l and y2

l at the mesh point tl. Please note
that the curly braces, e.g. in ty1uil�1, are used here in order to visually distinguish the inner index
(which gives the index of the argument of the increment function) from the outer indices (which
correspond, as usual, to the integration step and to the stage).

With the Lipschitz continuity of f it follows that

}Ψptl, y1
l , hl�1, θ; fq �Ψptl, y2

l , hl�1, θ; fq} ¤ bmaxLf max
1¤i¤ν

}ty1uil�1 � ty2uil�1}, (5.20)

where bmax � max1¤i¤ν,0¤θ¤1 |bipθq|.
Further, from the definitions of ty1uil�1 and ty2uil�1 and with the Lipschitz condition on f , the

following relation follows:

max
1¤i¤ν

}ty1uil�1 � ty2uil�1} ¤ }y1
l � y2

l } � hl�1Lfamax max
1¤i¤ν

}ty1uil�1 � ty2uil�1}. (5.21)
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Herein, amax � max1¤i¤ν

°ν
j�1 |ai,j |. From hl�1   1{pLf �amaxq it follows that 1�hl�1Lfamax � 0,

and hence

max
1¤i¤ν

}ty1uil�1 � ty2uil�1} ¤
1

1� hl�1Lfamax
}y1
l � y2

l } (5.22)

with a prefactor less than infinity. Insertion of this expression into equation (5.20) yields, as
desired,

}Ψptl, y1
l , hl�1, θ; fq �Ψptl, y2

l , hl�1, θ; fq} ¤ bmaxLf
1

1� hl�1Lfamax
}y1
l � y2

l }, (5.23)

i.e. Lipschitz continuity of Ψ with respect to yl with Lipschitz constant LΨ � bmaxLf {p1 �
hl�1Lfamaxq   8. With an analogous derivation, the Lipschitz continuity of Φ can be shown
as well. �

In order to obtain a convergence result for CRK methods, it remains to discuss the consistency
condition (C) of Theorem 5.6.

Lemma 5.12 (Order Conditions for CRK Methods)

Consider the following equations for the abscissae, coefficients, and continuous weight functions of
the CRK method:

ν̧

i�1

bipθq � θ (5.24a)

ν̧

i�1

bipθqγi � 1

2
θ2 (5.24b)

ν̧

i�1

bipθqγ2
i �

1

3
θ3 (5.24c)

ν̧

i�1

bipθqai,jγi � 1

6
θ3. (5.24d)

If pai,j , bipθq, γi,jq of a CRK method satisfy

• the first of these equations, then it has at least uniform local order q � 1,

• the first and the second of these equations, then it has at least uniform local order q � 2,

• all four equations, then it has at least uniform local order q � 3.

Analogous conditions for the discrete local order p of a method are obtained by setting θ � 1 and
by recalling that βi � bip1q for 1 ¤ i ¤ ν.

Proof
See Hairer, Nørsett, and Wanner [126], and Hairer, Wanner, and Lubich [128] for the conditions
for discrete Runge-Kutta methods, and Bellen and Zennaro [26] for the extension to continuous
Runge-Kutta methods. �

The given references also contain conditions for CRK methods of order 4. In addition, Hairer
Nørsett, Wanner [126] and Hairer, Wanner, and Lubich [128] also present a general technique to
derive the conditions for orders ¥ 5.

In the literature, many discrete Runge-Kutta methods can be found that are not endowed with
a continuous extension. Then an apparent question is whether, for a given discrete Runge-Kutta
method of order p, there exists a continuous extension which has at least uniform local order q � 1
or possibly even q � p. Two general results in this context are as follows:

• Without additional stages, it is always possible to construct a continuous extension of order
q � tp�1

2 u, see Bellen and Zennaro [26], page 118.
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• Further, by allowing additional stages, it is always possible to construct, successively, continu-
ous extensions of higher order until a uniform order of consistency q � p is reached. However,
additional stages formally lead to a CRK method with ν1 ¡ ν stages, whose Butcher tableau
is

γ A 0

γ̃ Ã1 Ã2

βT 0

, (5.25)

where γ̃ contains the additional abscissae. Since the weights βj are zero for ν�1 ¤ j ¤ ν1, the
discrete Runge-Kutta method is unaffected by the additional stages, whose result therefore
does not change.

A particular method for constructing a continuous extension of order q � p is the so-called uniform
correction procedure developed by Zennaro [269] and Bellen and Zennaro [25, 26]. Since this
method is used for the design of the numerical method implemented in Colsol-DDE, it is presented
in detail in Section 6.2.

For the polynomial continuous extensions, the order q must, in general, not be identical to the
polynomial degree δ. Some facts on the relation between q and δ are as follows.

• The order conditions (5.24) imply that δ ¥ q.

• If a CRK method with continuous extension of degree δ ¡ q is given, then it is possible to
construct a different continuous extension of degree q without a need for computing additional
stage values (see Bellen and Zennaro [26], page 116).

• If, in addition to the assumptions of Theorem 5.6, the right-hand-side function fp�, �, cq is
C maxpδ,pqpT pcq�Rny ,Rny q, and it holds for the degree of the continuous extension that δ ¥ q,
then

max
tPT pcq

���� djdtj yjptq � dj

dtj
ηptq

���� � Ophq�1�jq for 1 ¤ j ¤ δ. (5.26)

At the mesh points, where ηptq is only continuous, this relation holds for both the left-sided
and the right-sided time derivatives. See Bellen and Zennaro [26], page 114 for the theorem
and its proof.

These facts make clear that, on the one hand, δ ¥ q is needed in order to obtain the uniform
local order q, but that, on the other hand, δ ¥ q � 1 is unnecessary and, for δ ¥ q � 2, leads to
divergent approximations of higher order time derivatives. Hence, it is generally preferable to use
polynomial continuous extensions with degree δ � q, and it is therefore assumed in the following
that this is the case.

The section is concluded by a preparatory step toward the treatment of DDE-IVPs: the in-
vestigation of the error propagation in CRK methods applied to ODE-IVPs with an additional
argument. It is noted that the following lemma is a variation of Bellen and Zennaro [26], page 84f.
The difference is that the lemma presented here is not for general one-step methods but specialized
to CRK methods. At the same time, it yields a stronger assertion for the error propagation, i.e. a
more restrictive bound, and this more restrictive bound becomes important in the theory of CRK
methods applied to DDE-IVPs (Section 5.2).

Lemma 5.13 (Limited Error Propagation)

Consider, at the mesh point tl, two local IVPs for some arbitrary but fixed parameter values c, with
different initial values y1

l , y2
l , and with different additional input functions v1ptq, v2ptq:

9u1l�1ptq � fpt, u1l�1ptq, c, v1pαpt, u1l�1ptqqqq (5.27a)

u1l�1ptlq � y1
l (5.27b)

and

9u2l�1ptq � fpt, u2l�1ptq, c, v2pαpt, u2l�1ptqqqq (5.28a)

u2l�1ptlq � y2
l , (5.28b)
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with αpt, yq ¤ t for T pcq � Rny , and observe that despite the dependence on an additional input
function these IVPs are still ODE-IVPs. Further, consider a CRK method, applied to both these
problems, for the step tl Ñ tl�1.

Let the following assumptions be fulfilled:

(S) Smoothness (of the model functions): It holds that fp�, �, c, �q P C ppT pcq�Rny�Rny ,Rny q, and
the right-hand-side function f is globally Lipschitz continuous with respect to the arguments
y and v:

}fpt, y1, c, v1q � fpt, y2, c, v2q} ¤ Lf p}y1 � y2} � }v1 � v2}q. (5.29)

Further, v1 and v2 are globally Lipschitz continuous with Lipschitz constants Lv1
and Lv2

,
and αpt, yq is globally Lipschitz continuous with respect to y with Lipschitz constant Lα.

(B) Boundedness (of the stepsize): Assume that the stepsize hl�1 is bounded by

hl�1 ¤ 1

p2Lfαmaxp1�maxpLv1
, Lv2

qLαqq . (5.30)

Let η1
l�1ptq and η2

l�1ptq denote the continuous numerical solutions and let y1
l�1 and y2

l�1 be the
discrete numerical solutions of the ODE-IVPs obtained with the CRK method applied to the local
IVPs (5.27) and (5.28), respectively:

ηil�1ptl � θhl�1q � yil � hl�1

ν̧

j�1

bjpθqf̄ iptjl�1, tyiujl�1, cq, i � 1, 2 (5.31a)

yil�1 � yil � hl�1

ν̧

j�1

βj f̄
iptjl�1, tyiujl�1, cq, i � 1, 2 (5.31b)

tyiujl�1 � yil � hl�1

ν̧

k�1

αj,kf̄
iptkl�1, tyiukl�1, cq, i � 1, 2. (5.31c)

Herein, the standard-form ODE right-hand-side functions f̄1 and f̄2 are defined by

f̄ ipt, y, cq :� fpt, y, c, vipαpt, yqqq, i � 1, 2, (5.32)

and curly braces have been used to visually separate the inner index i (of the considered local IVP)
from the outer indices l � 1 and j (for the integration step and CRK stage, respectively).

Then there exist constants Ai, 1 ¤ i ¤ 6, only dependent on the various Lipschitz constants and
bmax � max1¤i¤ν,0¤θ¤1 |bipθq|, such that the following holds:��y1

l�1 � y2
l�1

�� ¤p1� hl�1A1q}y1
l � y2

l } � hl�1A2vdiff (5.33a)

max
tl¤t¤tl�1

��η1
l�1ptq � η2

l�1ptq
�� ¤p1� hl�1A3q}y1

l � y2
l } � hl�1A4vdiff (5.33b)

max
tl¤t¤tl�1

���� djdtj �η1
l�1ptq � η2

l�1ptq
����� ¤h1�j

l�1A5}y1
l � y2

l } � h1�j
l�1A6vdiff for 1 ¤ j ¤ q (5.33c)

with

vdiff :� max
1¤i¤ν

}v1pαptil�1, ty2uil�1qq � v2pαptil�1, ty2uil�1q}. (5.34)

Proof
By subtracting η1

l�1ptq and η2
l�1ptq, the expression

max
tl¤t¤tl�1

}η1
l�1ptq � η2

l�1ptq}

¤ }y1
l � y2

l } � hl�1 max
tl¤t¤tl�1

}Ψptl, y1
l , hl�1, θ; f̄

1q �Ψptl, y2
l , hl�1, θ; f̄

2q}

¤ }y1
l � y2

l } � hl�1bmax max
1¤i¤ν

}fptil�1, ty1uil�1, c, v
1pαptil�1, ty1uil�1qqq

� fptil�1, ty2uil�1, c, v
2pαptil�1, ty2uil�1qqq} (5.35)
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is obtained. With the Lipschitz continuity of f it follows that

max
tl¤t¤tl�1

}η1
l�1ptq � η2

l�1ptq}

¤}y1
l � y2

l }
� hl�1bmaxLf max

1¤i¤ν

�}ty1uil�1 � ty2uil�1} � }v1pαptil�1, ty1uil�1qq � v1pαptil�1, ty2uil�1qq}
� }v1pαptil�1, ty2uil�1qq � v2pαptil�1, ty2uil�1qq}

�
(5.36)

and with the Lipschitz continuity of the functions vi and α,

max
tl¤t¤tl�1

}η1
l�1ptq � η2

l�1ptq}

¤}y1
l � y2

l } � hl�1bmaxLf p1� Lv1
Lαq max

1¤i¤ν

�}ty1uil�1 � ty2uil�1}
�

� hl�1bmaxLf max
1¤i¤ν

}v1pαptil�1, ty2uil�1qq � v2pαptil�1, ty2uil�1qq} (5.37)

By using the definitions of ty1uil�1 and ty2uil�1 as the stage values of the CRK method for the two
problems, it can further be shown that

}ty1uil�1 � ty2uil�1}
¤ 1

1� hl�1Lfαmaxp1� Lv1
Lαq

�
�
}y1
l � y2

l } � hl�1αmaxLf max
1¤i¤ν

}v1pαptil�1, ty2uil�1qq � v2pαptil�1, ty2uil�1qq}


, (5.38)

where the prefactor is, according to assumption (B), bounded by 2. Hence, insertion into equation
(5.37) and using again assumption (B) gives

max
tl¤t¤tl�1

}η1
l�1ptq � η2

l�1ptq}

¤p1� 2hl�1bmaxLf p1� Lv1
Lαqq}y1

l � y2
l }

� 2hl�1bmaxLf max
1¤i¤ν

}v1pαptil�1, ty2uil�1qq � v2pαptil�1, ty2uil�1qq}. (5.39)

By defining A3 :� 2bmaxLf p1� Lv1
Lαq and A4 :� 2bmaxLf , the proof for equation (5.33b) is

completed.

The proof for relation (5.33a) for the discrete method is analogous. Moreover, the proof for the
time derivatives of the continuous representation, equation (5.33c), follows from the fact that

dj

dtj
ηkl�1ptq �

ν̧

i�1

hl�1
dj

dθj
bipθqh�jl�1fptil�1, tykuil�1, c, v

kpαptil�1, tykuil�1qqq, (5.40)

for k � 1, 2 and 1 ¤ j ¤ q, because every differentiation of bipθq gives, due to the inner derivative
of θ with respect of t, a factor of h�1

l�1. �

In short, Lemma 5.13 gives a bound on the difference of the two discrete numerical solutions
(equation (5.33a)), a bound on the difference of the two continuous representations on the entire
interval (equation (5.33b)), and a bound on the difference of the time derivatives of the two
continuous representations (equation (5.33c)). All bounds are thereby given in terms of the different
initial values y1

l , y2
l , and in terms of the different input functions v1, v2.

It is remarked that, due to the interchangeable roles of v1 and v2, it is also possible to express
vdiff by

vdiff :� max
1¤i¤ν

}v1pαptil�1, ty1uil�1qq � v2pαptil�1, ty1uil�1q}, (5.41)

where the evaluations take place at the stage values ty1uil�1 of the CRK method applied to the
first IVP (5.27a) rather than at the stage values ty2uil�1 of the CRK method applied to the second
IVP (5.28a).
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Lemma 5.13 still holds if several evaluations of the functions v1 and v2 enter the right-hand-
side function f , i.e. if the right hand side in the equations (5.27) and (5.28) is replaced by
fpt, ukl�1ptq, c, tvkpαipt, ukl�1ptqqqunαi�1q for k � 1, 2 respectively. If the right-hand-side function f is
Lipschitz continuous with respect to each of the nα additional arguments, then it is only necessary
to add, in the step from equation (5.35) to equation (5.36), a suitable zero v1pαjptil�1, ty2uil�1qq �
v1pαjptil�1, ty2uil�1qq for all j � 1, . . . , nα. The rest of the proof then works as before, with the sole
modification that a factor of nτ enters the constants Aj , 1 ¤ j ¤ 6.

In the next section, continuous one-step methods are applied to DDE-IVPs. The theorems
therein are stated for the general case of multiple delays, but the proofs are given for the nota-
tionally simpler case of a single delay. The extension to the general case of multiple delays can
always be done in a way similar to the generalization of Lemma 5.13 for multiple evaluations of
the additional input functions v1 and v2.

5.2. Continuous One-Step Methods for DDE-IVPs

5.2.1. The Standard Approach for Solving DDE-IVPs

Consider the task of numerically solving DDE-IVPs as in Definition 1.12, i.e.

9yptq � fpt, yptq, c, typt� τipt, yptq, cqqunτi�1q (5.42a)

yptiniqpcq � yinipcq (5.42b)

yptq � φpt, cq for t   tinipcq, (5.42c)

for arbitrary but fixed parameter values c. Consider a mesh tinipcq � t0   t1   � � �   tnm � tfinpcq,
and assume that the problem has been solved by a continuous one-step method until the mesh
point tl, which implies that a continuous extension ηptq is available for t P rt0, tls and that discrete
values yl1 are available at tl1 for l1 ¤ l. In such a setting, it would be ideal to find the exact solution
ul�1ptq of the following local DDE-IVP:

9ul�1ptq � fpt, ul�1ptq, c, twη,ul�1
pt� τipt, ul�1ptq, cqqunτi�1q (5.43a)

ul�1ptlq � yl, (5.43b)

where the computation of past states is done by evaluating the function

wη,ul�1
ptq �

$'&
'%
φptq for t   tinipcq
ηptq for tinipcq ¤ t ¤ tl

ul�1ptq for tl   t ¤ tl�1

. (5.44)

The subscripts of the function wη,ul�1
indicate the use of the function η in the time interval

rtinipcq, tls, and the use of the exact solution ul�1 of the local problem (5.43) in the time interval
ptl, tl�1s.

This notation is generalized as follows: For any functions ν1ptq and ν2ptq, the function wν1,ν2
ptq

is defined by

wν1,ν2
ptq �

$'&
'%
φptq for t   tinipcq
ν1ptq for tinipcq ¤ t ¤ tl

ν2ptq for tl   t ¤ tl�1

, (5.45)

and formally a right-hand-side function in the standard form of ODEs is obtained by the definition

f̄ν1,ν2pt, y, cq :� fpt, y, c, twν1,ν2pt� τipt, y, cqqunτi�1q. (5.46)

If both ν1ptq and ν2ptq are known functions – or, for theoretical analyses, assumed to be available
– then the right-hand-side function f̄ν1,ν2pt, y, cq can indeed be regarded as the right-hand-side
function of an ODE, and the application of a numerical method can be done in a straightforward
way.
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For the IVP (5.43), rewritten as

9ul�1ptq � f̄η,ul�1
pt, ul�1ptq, cq (5.47a)

ul�1ptlq � yl, (5.47b)

this is not the case because the exact solution ul�1ptq is typically unknown (or otherwise it would
not be necessary to use numerical methods for its approximation).

However, if all deviating arguments assume values to the left of tl for all t P rtl, tl�1s then it is
not necessary to evaluate ul�1ptq for the computation of the past states. Instead, the past states
are obtained by evaluations either of the initial function, or of the already-computed continuous
extension ηptq in some interval rtl1 , tl1�1s, l1   l, which is locally given by ηl1�1ptq. Since both the
initial function and the continuous extension in past integrations steps are, in practice, available,
the application of a continuous one-step method for the solution of the ODE-IVP is straightforward.
Accordingly, a discrete approximation yl�1 and a continuous approximation ηl�1ptq of ul�1ptq can
be computed by

yl�1 � yl � hl�1Φptl, yl, hl�1; f̄η,�q (5.48a)

ηl�1ptl � θhl�1q � yl � hl�1Ψptl, yl, hl�1, θ; f̄η,�q. (5.48b)

The dot in the second subscript argument of f̄ thereby indicates that the function used for comput-
ing past states at times t ¡ tl does not need to be specified, because it is not evaluated. Note that
in this case it is possible to compute the discrete step yl�1 and the continuous extension ηl�1ptq
independently of each other, if desired.

In the general case that one or several deviating arguments assume values to the right of tl,
an interpretation of the IVP (5.47) as an ODE is not possible. However, the application of the
continuous one-step method itself defines a continuous representation ηl�1ptq on the current interval
rtl, tl�1s, which can in practice be used to numerically approximate ul�1ptq for t ¡ tl. Hence,
instead of wη,ul�1

ptq, the function wη,ηptq defined by

wη,ηptq �
#
φptq for t   tinipcq
ηptq for tinipcq ¤ t ¤ tl�1

(5.49)

is used for the evaluation of past states. Practically, the equations

yl�1 � yl � hl�1Φptl, yl, hl�1; f̄η,ηq (5.50a)

ηl�1ptl � θhl�1q � yl � hl�1Ψptl, yl, hl�1, θ; f̄η,ηq. (5.50b)

are solved by the continuous one-step method, where the right-hand-side function is defined by

f̄η,ηpt, y, cq � fpt, y, c, twη,ηpt� τipt, y, cqqunτi�1q. (5.51)

Note that the defining expression (5.50b) for ηl�1 is implicit, because the function ηl�1 is also
needed in the right hand side of the equation. For the same reason, it is not longer possible
to apply the discrete one-step method independently from the computation of the continuous
representation.

Since the issue whether or not the values assumed by the deviating arguments lie in the current
interval has consequences for the construction of numerical methods, the following is defined:

Definition 5.14 (Overlapping)

If it holds for t P rtl, tl�1s and for some delay τi that t � τipt, ηl�1ptq, cq P rtl, tl�1s, then this
phenomenon is called overlapping (in the numerical solution); likewise, if it holds for t P rtl, tl�1s
and for some delay τi that t�τipt, ul�1ptq, cq P rtl, tl�1s, then this phenomenon is called overlapping
(in the exact solution of the local problem).

Further, in agreement with Bellen and Zennaro [26], the previously-described method for solving
DDE-IVPs, for both the overlapping and the non-overlapping case, is called the standard approach
for solving DDE-IVPs.

72



5. Numerical Solution

Definition 5.15 (Standard Approach for Solving DDE-IVPs)

Solving DDE-IVPs by computing, in each step tl Ñ tl�1, the solution of the equations (5.50) as an
approximation of the solution of the local IVP (5.47) is called the standard approach for solving
DDE-IVPs. Thereby, f̄η,η is defined by equation (5.51) and wη,η is defined by equation (5.49).

Bellen and Zennaro [26], page 78ff, formulate a theorem on the convergence of the so-defined
standard approach to the unique solution yptq of the DDE-IVP. Unfortunately, the proof of this
theorem contains a (very subtle) error, see Remark 5.19 below.

In the following, it is shown that the pitfall in the proof of Bellen and Zennaro [26] can be
bypassed by using extrapolations beyond past discontinuities if the corresponding deviating ar-
guments cross such discontinuity points during the integration step tl Ñ tl�1. However, the use
of extrapolations constitutes a new solution approach for DDEs that differs from the standard
approach. In the following, the use of extrapolations is therefore first formally defined as modified
standard approach.

The subsequently presented convergence result is also more general then the one formulated in
Bellen and Zennaro [26] in the sense that discontinuous initial functions are allowed. Furthermore,
the convergence theorem for the modified standard approach provides the rigorous mathematical
basis for the use of extrapolations, which has previously been used in practical DDE codes, e.g.
REBUS by Bock and Schlöder [43, 44], RADAR5 by Guglielmi and Hairer [122, 123], and DDEM
by ZivariPiran [271].

5.2.2. The Modified Standard Approach for Solving DDE-IVPs

A basic assumption for the new approach is that the exact solution yptq, t P T f pcq, has a finite
number of discontinuities up to order p, where p is the discrete local order of the employed numerical
method. The time points of these discontinuities are denoted by s�nφs   s�nφs�1   � � �   s0  
s1   � � �   sns . Thereby, si, �nφs ¤ i ¤ �1, are the discontinuity points of the initial function
for t   tinipcq, and si, 1 ¤ i ¤ ns represent the discontinuity points at t ¡ tinipcq. Assume
further, without loss of generality, that s0 � tinipcq, i.e. the initial time should be included in
the set ts�nφs , . . . , snsu regardless of whether or not the initial function is smoothly linked (up to

derivative order p) to yptq for t ¥ tinipcq.
The intervals p�8, s�nφs q, rs�nφs , s�nφs�1q, . . . , rsns , tfinpcqs are called discontinuity intervals

(cf. Definition 4.9 in Chapter 4).

In this setting, for any discontinuity point sj , �nφs ¤ j ¤ ns, and for all deviating arguments
αi, 1 ¤ i ¤ nτ , recall the definition of propagation switching functions (Definition 2.10)

σαi,sj pt, yptq, cq � αipt, yptq, cq � sj (5.52)

and their signs

ζα,�i,sj
ptq � sign�pαipt, y�ptq, cq � sjq. (5.53)

Thereby, sign� is the simplified version of the sign function as defined by equation (2.14), i.e.

sign�pxq :�
#
�1 for x ¥ 0

�1 for x   0,
(5.54)

which attributes the value 1 to the argument 0.

Further, define the corresponding discontinuity interval indicators as

ξαi ptq � pns � 1q � 1

2

nş

j��nφs

pζα,�i,sj
ptq � 1q. (5.55)

Note that the terms “discontinuity interval” and “discontinuity interval indicator” are used with a
slightly different meaning compared to Chapter 4. The difference is that not only the time points
of discontinuity of order 0 in y are taken into account, but instead all time points of discontinuity
up to the discrete local order p of the numerical method. The discontinuity interval indicator ξαi ptq
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assumes the following values depending on the value of the deviating argument:

ξαi ptq �

$'''''''''''''''&
'''''''''''''''%

�nφs for αipt, y�ptq, cq   s�nφs
�nφs � 1 for s�nφs ¤ αipt, y�ptq, cq   s�nφs�1
...

0 for s�1 ¤ αipt, y�ptq, cq   s0

1 for s0 ¤ αipt, y�ptq, cq   s1

...

ns for sns�1 ¤ αipt, y�ptq, cq   sns
ns � 1 for sns ¤ αipt, y�ptq, cq

. (5.56)

This means that the value ξαi ptq is given by the index of the discontinuity point that lies to the
right of the past time point.

Consider now a continuous one-step method of discrete local order p and uniform local order q,
which is applied to solve the DDE-IVP (5.42) by using a mesh t0   t1   � � �   tnm . Assume that
there is a finite number of discontinuities in the functions ξαi ptq for t P T pcq, which implies, in
particular, that there is a finite number of discontinuities of order p� 1 in the exact solution yptq.
Assume further that the numerical method has access to the discontinuity interval indicators ξαi ptq
and that the mesh contains all (finitely many) time points where ξαi ptq is discontinuous. Hence,
the indicators ξαi ptq, 1 ¤ i ¤ nτ , are constant between two mesh points.

Remark that, despite these fairly restrictive assumptions, the right-hand-side function f̄η,ul�1

in the local IVP (5.47) is not necessarily p-times continuously differentiable, because the mesh is
constrained by the requirement to include the discontinuity points of the exact DDE-IVP solution
yptq, but not the discontinuity points of the exact solution of the local problem ul�1ptq. Therefore
it may happen, for example, that at some t P rtl, tl�1s the expression t � τipt, ul�1ptq, cq crosses
a time point where the initial function φ has a discontinuity of order 0. As a consequence, the
ODE right-hand-side function f̄η,ul�1

is discontinuous as well, and the exact solution of the local
problem ul�1ptq, if it exists, may be just continuous but not differentiable. The same conclusion
generally also holds for the practically used right-hand-side function in the standard approach, i.e.
for f̄η,η.

For the construction of a local IVP with continuous right-hand-side function, functions different
from wη,ul�1

and wη,η have to be used for the computation of past states. One approach to achieve
this is to use the analogon of the discontinuity locking mechanism known from the numerical
solution of HODE-IVPs. Discontinuity locking means that smooth branches of the right-hand-
side function f are evaluated in each integration step, see e.g. Hay, Crosbie, and Chaplin [143],
Ellison [87], Park and Barton [200], and also the textbooks by Eich-Soellner and Führer [86],
page 198, Stoer and Bulirsch [241], page 184, or Hairer, Nørsett, and Wanner [126], page 198.
In case one steps over a discontinuity point, a smooth continuation of the solution beyond the
discontinuity point is computed first. Subsequently, the discontinuity point can be localized and
the step can be repeated in order to include the discontinuity point in the mesh.

In order to transfer this approach to the numerical solution of DDE-IVPs, it is assumed that
there exists a representation of the initial function φpt, cq

φpt, cq �

$''''&
''''%
φ�nφs pt, cq for t   s�nφs
φ�nφs�1pt, cq for s�nφs ¤ t   s�nφs�1
...

φ0pt, cq for s�1 ¤ t   s0

, (5.57)

with functions φipt, cq, �nφs ¤ i ¤ 0, that are Lipschitz continuous and p-times continuously
differentiable with respect to t on the intervals p�8, s�nφs s, rs�nφs , s�nφs�1s, . . . , rs�1, t

finpcqs.
These function φi are called the smooth branches (of the initial function φ).

Further, let J : t0, . . . , nsu Ñ t0, . . . , nmu be a function that maps each index k of a discontinuity
point sk ¥ tinipcq up to order p to the index l of the mesh point tl at which it occurs.

With these preparations, reconsider the task of taking the step from tl to tl�1, under the usual
assumption that discrete approximations yl1 and continuous extensions ηl1ptq are available for l1 ¤ l.
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Let j1 � 1 denote the index of the discontinuity interval in which the current integration step is
located, i.e. rtl, tl�1s � rsj1 , sj1�1s. Let further ξαi rl � 1s denote the value of the discontinuity
interval indicator for the exact solution in the considered time interval, i.e. ξαi rl � 1s represents
ξαi pt1q for t1 P ptl, tl�1q arbitrary. Furthermore, let ξαrl � 1s � pξα1 rl � 1s, . . . , ξαnτ rl � 1sqT . Then,
instead of the local IVP (5.47), consider the following alternative:

9u1l�1ptq � f̄dη,u1
l�1
pt, u1l�1ptq, c, ξαrl � 1sq (5.58a)

u1l�1ptlq � yl, (5.58b)

where

f̄dη,u1
l�1
pt, y, c, ξαq :� fpt, y, c, tzξαi

η,u1
l�1
pt� τipt, y, cqqunτi�1q (5.59)

Thereby, zj
η,u1

l�1
, with �nφs ¤ j ¤ j1 � 1, denotes one of the following deduced functions:

z
�nφs
η,u1

l�1
ptq �

$'&
'%
φ�nφs ptq for t   s�nφs

φ�nφs ps�nφs q �
p°
i�1

1
i!

diφ
�n

φ
s
pt,cq

dti

����
t�s

�n
φ
s

pt� s�nφs qi for t ¥ s�nφs
(5.60a)

zj
η,u1

l�1
ptq �

$''''&
''''%
φjpsj�1q �

p°
i�1

1
i!
diφjpt,cq
dti

���
t�sj�1

pt� sj�1qi for t   sj�1

φjptq for sj�1 ¤ t ¤ sj

φjpsjq �
p°
i�1

1
i!
diφjpt,cq
dti

���
t�sj

pt� sjqi for t ¡ sj

for � nφs � 1 ¤ j ¤ 0 (5.60b)

zj
η,u1

l�1
ptq �

$'&
'%
ηJpj�1q�1ptq for t   sj�1

ηptq for sj�1 ¤ t ¤ sj

ηJpjqptq for t ¡ sj

for 1 ¤ j ¤ j1 (5.60c)

zj
1�1
η,u1

l�1
ptq �

$'&
'%
ηJpj1q�1ptq for t   sj1

ηptq for sj1 ¤ t ¤ tl

u1
l�1ptq for t ¡ tl

(5.60d)

The meaning of the term “deduced functions” is, compared to Chapter 4, altered in such a way
that the deduced functions now exhibit a higher degree of smoothness when extrapolation beyond
the discontinuity points si is used. For example, the functions zj

η,u1
l�1

, �nφs ¤ j ¤ 0, are p-times

continuously differentiable extensions of the functions φj , �nφs ¤ j ¤ 0, which themselves are
p-times continuously differentiable on their time domains of definition.

Similarly, the functions zj
η,u1

l�1
, 1 ¤ j ¤ j1, are defined in such a way that they use, for t   sj�1

and t ¡ sj , smooth extrapolations of the polynomial continuous extensions in the first mesh
interval rtJpj�1q, tJpj�1q�1s and in the last mesh interval rtJpjq�1, tJpjqs that are comprised within
the discontinuity interval rsj�1, sjs. Within the discontinuity interval rsj�1, sjs, the continuous
extension ηptq is used. It is recalled at this point that the continuous extension ηptq is a piecewise
polynomial function that is only continuous at the mesh points. This issue is uncritical for the
convergence proof (proof of Theorem 5.18), and also for the orders of the local errors of practical
integration methods, see Theorem 5.21.

Finally, for zj
1�1
η,u1

l�1
, the deduced function again uses a smooth extrapolation to the left of sj1 and

the continuous extension ηptq for all times in rsj1 , tls. For t ¡ tl, the exact solution u1
l�1ptq of the

local problem (5.58) is used for the representation of past states.

The fact that deduced functions are used is notationally reflected by the superscript d in f̄d
η,u1

l�1
.

The deduced functions zj
η,u1

l�1
ptq in equation (5.60) are piecewise identical to the functions

wη,ul�1
ptq defined by equation (5.44). For example, for j � �nφs and t   s�nφs , the evaluations of

both functions are given by evaluations of the initial function.

In practice, the exact solution u1
l�1ptq of the local problem (5.58) is typically unknown. Therefore,
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in a practical numerical method the past states are, for t ¡ tl, computed from the continuous
extension ηptq that is induced by the numerical method itself. This leads to discrete and continuous
numerical approximations that are determined by

yl�1 � yl � hl�1Φptl, yl, hl�1; f̄dη,ηq (5.61a)

ηl�1ptl � θhl�1q � yl � hl�1Ψptl, yl, hl�1, θ; f̄
d
η,ηq, (5.61b)

where

f̄dη,ηpt, y, c, ξαq � fpt, y, c, tzξαiη,ηpt� τipt, y, cqqunτi�1q. (5.62)

Thereby, the deduced functions zjη,η, with �nφs ¤ j ¤ j1 � 1, are given by

zjη,ηptq � zj
η,u1

l�1
ptq for � nφs ¤ j ¤ j1 (5.63a)

zj
1�1
η,η ptq �

$'&
'%
ηJpj1q�1ptq for t   sj1

ηptq for sj1 ¤ t ¤ tl

ηl�1ptq for tl   t.

(5.63b)

Hence, zjη,ηptq � zj
η,u1

l�1
ptq only if j � j1 � 1 and t ¡ tl, i.e. only if the corresponding past state

should be obtained from the current discontinuity interval and if the past time point given by the
deviating argument is located within the current integration interval rtl, tl�1s. As indicated by
the subscripts, the function zj

η,u1
l�1

then uses the exact solution u1
l�1 of the local problem (5.47),

whereas zjη,η uses the continuous extension η of the numerical method.

Formally, the approach of using deduced functions for the computation of past states in the
aforementioned way is part of the formal definition of the idealized variant of the modified standard
approach for solving DDE-IVPs.

Definition 5.16 (Idealized Variant of the Modified Standard Approach for Solving
DDE-IVPs)

Assume that there is a unique “exact” solution yptq of a given DDE-IVP on the interval T f pcq �
p�8, tfinpcqs and assume that this solution has finitely many discontinuity points si, �nφs ¤ i ¤ ns,
of order up to the discrete local order p of a given numerical method. Assume further that the
discontinuity interval indicators of the exact solution, denoted by ξαptq, are piecewise constant
with only finitely many discontinuities (in each of its nτ components), and that both si and ξαptq
are known to the numerical method.

Then, the idealized variant of the modified standard approach is defined as follows: Select a mesh
tinipcq � t0   t1   � � �   tnm � tfinpcq in such a way that it contains all finitely many discontinuity
points of ξαptq, and compute, in each step tl Ñ tl�1, the solution of the equations (5.61) as an
approximation of the solution of the local IVP (5.58). Thereby, f̄dη,η is defined by equation (5.62)

(with ξα � ξαrl � 1s � ξαpt1q for t1 P ptl, tl�1q) and the deduced functions zjη,η are defined by
equation (5.63).

In the modified standard approach, the computation of past states depends primarily on the
discontinuity interval indicators ξαrl � 1s of the exact solution in the current integration interval
rtl, tl�1s, and only secondarily on the past time points given by the deviating arguments. In
contrast, in the original standard approach, the computation of past states is solely determined by
the past time points given by the deviating arguments, whereas the indicators ξαrl � 1s play no
role in the construction of the method.

Defintion 5.16 is called the “idealized variant” of the modified standard approach, because it
relies on the assumption that the numerical method has access to the discontinuity points si of
the exact solution yptq, and further that it has access to the corresponding discontinuity interval
indicators ξαptq of the exact solution. Both these assumptions are, for the case of state-dependent
delays, unrealistic. However, with some modifications, the idea of using extrapolations can also be
implemented in a practical code. This is the case for the practical variant of the modified standard
approach, which is defined later in this chapter, see Section 5.4.
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5.2.3. Continuous Runge-Kutta Methods for DDE-IVPs

Irrespective of the fact that the idealized variant of the modified standard approach is, for state-
dependent delays, only a theoretical construct, two main results are established for the special case
of CRK methods. These two results are, on the one hand, the existence of a unique numerical
solution, and on the other hand the convergence of the modified standard approach to the exact
solution yptq of the DDE-IVP. The restriction to CRK methods is thereby necessary because at
some point in the proof of the convergence theorem Lemma 5.13 on the limited error propagation
is exploited.

Theorem 5.17 (Existence and Uniqueness of the Numerical Solution in the Modified
Standard Approach)

Consider a DDE-IVP (5.42) for some arbitrary but fixed parameter values c, and assume that the
following condition holds:

(L) Lipschitz Continuity (of the model functions): The right-hand-side function fpt, y, c, tviunτi�1q
is Lipschitz continuous with respect to y and tviunτi�1 with Lipschitz constant Lf , i.e.

}fpt, y1, c, tpv1qiunτi�1q � fpt, y2, c, tpv2qiunτi�1q} � Lf

�
}y1 � y2} �

nτ̧

i�1

}pv1qi � pv2qi}
�
. (5.64)

The delay functions τipt, y, cq, 1 ¤ i ¤ nτ , are Lipschitz continuous with respect to y with
Lipschitz constant Lτ . Further, there exists a representation (5.57) of the initial function φ
such that the functions φi are Lipschitz continuous with respect to t on the intervals p�8, s1s,
rsi, si�1s, for 1 ¤ i ¤ nφs � 1, and rsnφs , tfinpcqs, respectively.

Then, for sufficiently small stepsize hl�1, there exists a polynomial solution ηl�1 of equation
(5.61b), and the solution is unique in the space of all polynomials of the same degree.

The theorem, and its proof below, are based on results of Bellen and Zennaro [26], pages 79f, but
transferred to the special case of CRK methods, which allows some simplifications.

Proof
According to the discussion of the proof of Lemma 5.13, it is sufficient to give the proof for the
case of a single delay τ1. Accordingly, there is only one discontinuity interval indicator, and its
value ξα1 rl � 1s in the step tl Ñ tl�1 is, for simplicity of notation, in this proof denoted by ξ.

Consider the continuous operator F that is defined by the right hand side of the equation (5.61b)
such that it transforms a polynomial function µptq to F pµqptq, t P rtl, tl�1s:

F pµqptq � yl � hl�1Ψptl, yl, hl�1, θ; f̄
d
η,µq. (5.65)

Further, let θ be defined as

θ � t� tl
hl�1

. (5.66)

The goal is to find a fixed point µ� of the continuous operator F , because if F pµ�qptq � µ�ptq, then
µ�ptq is apparently a numerical solution of equation (5.61b).

Consider, for this purpose, two arbitrary polynomial functions µ1ptq, µ2ptq, t P rtl, tl�1s, with
the sole restriction that µ1ptlq � µ2ptlq � yl such that they obey the continuity condition at the
mesh point tl. By definition, the application of the operator F yields

F pµ1qptq � yl � hl�1

ν̧

i�1

bipθqfptil�1, ty1uil�1, c, z
ξ
η,µ1

ptil�1 � τ1ptil�1, ty1uil�1, cqqq (5.67a)

F pµ2qptq � yl � hl�1

ν̧

i�1

bipθqfptil�1, ty2uil�1, c, z
ξ
η,µ2

ptil�1 � τ1ptil�1, ty2uil�1, cqqq (5.67b)
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with

ty1uil�1 � yl � hl�1

ν̧

j�1

ai,jfptjl�1, ty1ujl�1, c, z
ξ
η,µ1

ptjl�1 � τ1ptjl�1, ty1ujl�1, cqqq (5.68a)

ty2uil�1 � yl � hl�1

ν̧

j�1

ai,jfptjl�1, ty2ujl�1, c, z
ξ
η,µ2

ptjl�1 � τ1ptjl�1, ty2ujl�1, cqqq. (5.68b)

Please note that curly braces have been used in order to visually distinguish the inner index
(which corresponds to the index of the employed polyomial function) from the outer indices (which
correspond to the indices of the integration step and to the index of the stage of the CRK method).

Investigate the behavior of }F pµ1qptq � F pµ2qptq}:

}F pµ1qptq � F pµ2qptq} ¤hl�1bmax max
1¤i¤ν

}fptil�1, ty1uil�1, c, z
ξ
η,µ1

ptil�1 � τ1ptil�1, ty1uil�1, cqqq
� fptil�1, ty1uil�1, c, z

ξ
η,µ1

ptil�1 � τ1ptil�1, ty2uil�1, cqqq
� fptil�1, ty1uil�1, c, z

ξ
η,µ1

ptil�1 � τ1ptil�1, ty2uil�1, cqqq
� fptil�1, ty2uil�1, c, z

ξ
η,µ2

ptil�1 � τ1ptil�1, ty2uil�1, cqqq}
¤hl�1bmaxLfLzLτ1 max

1¤i¤ν
}ty1uil�1 � ty2uil�1}

� hl�1bmaxLf

�
max

1¤i¤ν
}ty1uil�1 � ty2uil�1}�

max
tl¤t¤tl�1

}µ1ptq � µ2ptq}



for all t P rtl, tl�1s (5.69)

where, in the second step, Lf , Lz, and Lτ1 denote the Lipschitz constants of the functions f , zξη,µ1
,

and τ1, respectively. Further, it was exploited in the last term that zξη,µ1
ptq and zξη,µ2

ptq differ only

if til�1 � τ1ptil�1, ty2uil�1, cq ¡ tl and if ξ � j1 � 1, where j1 is such that rtl, tl�1s � rsj1 , sj1�1s.
In a similar manner, it can be shown that

max
1¤i¤ν

}ty1uil�1 � ty2uil�1} ¤hl�1amax

�
Lf p1� LzLτ1q max

1¤i¤ν
}ty1uil�1 � ty2uil�1}

�Lf max
tl¤t¤tl�1

}µ1ptq � µ2ptq}


. (5.70)

with amax :� max1¤i¤ν

°ν
j�1 |ai,j |. Hence, for hl�1 sufficiently small, e.g. hl�1   p2amaxLf p1 �

LzLτ1qq�1, it follows that hl�1amaxLf p1� LzLτ1q   1{2 and thus

max
1¤i¤ν

}ty1uil�1 � ty2uil�1} ¤ 2hl�1amaxLf max
tl¤t¤tl�1

}µ1ptq � µ2ptq}. (5.71)

Insertion into equation (5.69) gives

}F pµ1qptq � F pµ2qptq} ¤ 2hl�1bmaxLf max
tl¤t¤tl�1

}µ1ptq � µ2ptq} for all t P rtl, tl�1s. (5.72)

Apparently, for sufficiently small hl�1, the mapping F is a contraction, and therefore a unique fixed
point µ�ptq exists in the space of all polynomials of the same degree. The continuous representation
of the CRK method in rtl, tl�1s is thus uniquely determined by ηl�1ptq � µ�ptq.

For the sake of completeness it is mentioned that the deduced functions zξη,µ1
, due to the use ex-

trapolations in the modified standard approach, is not globally but only locally Lipschitz continuous
in the second step of equation (5.69). However, the function zξη,µ1

is evaluated, for hl�1 Ñ 0, only

in a neighborhood of tl� τ1ptl, yl, cq and hence the local Lipschitz continuity of zξη,µ1
is sufficient.�

The next theorem established convergence of CRK methods in the framework of the modified
standard approach.

Theorem 5.18 (Convergence of CRK Methods for DDE-IVPs)

Consider a DDE-IVP (5.42) for some arbitrary but fixed parameter values c, and a CRK method
as in Definition 5.7. Let the following assumptions be fulfilled for p ¥ 1:
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(S) Smoothness (of the model functions): The right-hand-side function fpt, y, c, tviunτi�1q is
fp�, �, c, �q P C ppT pcq � Rny � tRnyunτ ,Rny q and Lipschitz continuous with respect to y and
tviunτi�1 with Lipschitz constant Lf , i.e.

}fpt, y1, c, tpv1qiunτi�1q � fpt, y2, c, tpv2qiunτi�1q} � Lf

�
}y1 � y2} �

nτ̧

i�1

}pv1qi � pv2qi}
�
. (5.73)

The delay functions τipt, y, cq, 1 ¤ i ¤ nτ , are such that τip�, �, cq P C ppT pcq�Rny ,Rny q, and
they are Lipschitz continuous with respect to y with Lipschitz constant Lτ . Further, there
exists a representation (5.57) of the initial function φ such that the functions φi are p-times
continuously differentiable and Lipschitz continuous with respect to t on the corresponding
intervals.

(B) Boundedness (of the right-hand-side function): The right-hand-side function is bounded by

}fpt, y, c, tviunτi�1q} ¤Mf   8 (5.74)

(E) Existence of a unique solution: There exists a unique solution y : T f pcq Ñ Rny of the DDE-
IVP, which has a finite number of discontinuities up to order p. The time points of these
discontinuities are denoted by s�nφs   s�nφs�1   � � �   sns . Of these discontinuity points, the

time points s�nφs , . . . , s�1 are to the left of tinipcq (i.e. they indicate discontinuities in the

initial function), and s0, . . . , sns are equal to or to the right of tinipcq.

(M) Mesh condition: The set of mesh points tt0, t1, . . . , tnmu is such that between two mesh points
the discontinuity interval indicators ξαi ptq, 1 ¤ i ¤ nτ , defined by equation (5.55), are all
constant. In particular, this implies that the mesh contains all time points of discontinuity
up to order p� 1.

(C) Consistency: The CRK method is consistent of discrete order p and consistent of uniform
order q.

Then the CRK method, realized in the framework of the idealized variant of the modified standard
approach for solving DDE-IVPs, converges with discrete global order and uniform global order
r � minpp, q � 1q, and the time derivatives of the continuous representation, djηptq{dtj, converge
with uniform global order q � 1� j, i.e.

max
1¤l¤nm

}yptlq � yl} � Ophrmaxq (5.75a)

max
tinipcq¤t¤tfinpcq

}yptq � ηptq} � Ophrmaxq (5.75b)

max
tinipcq¤t¤tfinpcq

���� djdtj yptq � dj

dtj
ηptq

���� � Ophq�1�j
max q, for 1 ¤ j ¤ q, (5.75c)

where hmax � max1¤l¤nm hl.

Proof
The proof is given for the notationally simpler case of a single delay τ1. The associated disconti-
nuity interval indicator is ξα1 ptq, which is constant between two succesive mesh points tl and tl�1.
Therefore, for simplicity of notation, ξ is used throughout the proof as a short notation for ξα1 pt1q
for t1 P ptl, tl�1q.

The basic idea is to consider, on the one hand, the local IVP in equation (5.58), i.e.

9u1l�1ptq � f̄dη,u1
l�1
pt, u1l�1ptq, c, ξq (5.76a)

u1l�1ptlq � yl, (5.76b)

in which the initial value is given by the numerical approximation yl of yptlq, and the past states

in the DDE are computed by evaluating the deduced function zξ
η,u1

l�1
defined in equation (5.60).
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On the other hand, the local problem

9u2l�1ptq � f̄dy,u2
l�1
pt, u2l�1ptq, c, ξq (5.77a)

u2l�1ptlq � yptlq (5.77b)

is considered, in which the initial value is given by the value yptlq of the exact DDE-IVP solution
at the time point tl, and where

f̄dy,u2
l�1
pt, y, cq � fpt, y, c, zξ

y,u2
l�1
pt� τ1pt, y, cqqq. (5.78)

Therein, zj
y,u2

l�1
, �nφs ¤ j ¤ j1�1, is one of the following deduced functions (j1�1 being the index

of the current discontinuity interval, i.e. rtl, tl�1s P rsj1 , sj1�1s):

zj
y,u2

l�1
ptq � zj

η,u1
l�1
ptq for � nφs ¤ j ¤ 0 (5.79a)

zj
y,u2

l�1
ptq �

$''''&
''''%
ypsj�1q �

p°
i�1

1
i!
diy�pt,cq

dti

���
t�sj�1

pt� sj�1qi for t   sj�1

yptq for sj�1 ¤ t ¤ sj

ypsjq �
p°
i�1

1
i!
diy�pt,cq

dti

���
t�sj

pt� sjqi for t ¡ sj

for 1 ¤ j ¤ j1 (5.79b)

zj
1�1
y,u2

l�1
ptq �

$''&
''%
ypsj1q �

p°
i�1

1
i!
diy�pt,cq

dti

���
t�sj1

pt� sj1qi for t   sj1

yptq for sj1 ¤ t ¤ tl

u2
l�1ptq for t ¡ tl

(5.79c)

For �nφs ¤ j ¤ 0, the deduced functions zj
y,u2

l�1
are identical to the deduced functions zj

η,u1
l�1

, i.e.

they are smooth extensions of the functions φj . For 1 ¤ j ¤ j1, the deduced functions are equal
to the exact solution yptq between two successive discontinuity points sj�1, sj , and outside of the

discontinuity interval a p-th order Taylor expansion is used. The deduced function zj
1�1
y,u2

l�1
makes

use of the exact solution yptq between sj1 and tl, a p-th order Taylor expansion is used to the left
of sj1 , and the exact solution u2

l�1ptq of the local problem (5.77) is used for tl   t ¤ tl�1.

The exact solution of the second local problem, equation (5.77), is evidently u2
l�1ptq � yptq for

t P rtl, tl�1s, because its initial value is yptlq and the past states are obtained by evaluations of φptq
for t   tinipcq and by evaluations of yptq for t ¥ tinipcq.

Consider now, on the one hand, an application of the CRK method, realized in the framework of
the idealized variant of the modified standard approach, to problem (5.76), and on the other hand
the application of the same CRK method to the IVP (5.77). Assume, for the second local problem,
that the exact solution u2

l�1ptq � yptq is available for the definition of the numerical method, so
that the local problem can be considered as an ODE-IVP with additional input argument.

In this setting, the discrete and continuous numerical approximations y1
l�1, y2

l�1, η1
l�1 and η2

l�1

are given by

y1
l�1 � yl � hl�1Φptl, yl, hl�1; f̄dη,η1

l�1
q (5.80a)

y2
l�1 � yptlq � hl�1Φptl, yptlq, hl�1; f̄dy,u2

l�1
q (5.80b)

η1
l�1ptl � θhl�1q � yl � hl�1Ψptl, yl, hl�1, θ; f̄

d
η,η1

l�1
q (5.80c)

η2
l�1ptl � θhl�1q � yptlq � hl�1Ψptl, yptlq, hl�1, θ; f̄

d
y,u2

l�1
q. (5.80d)

Herein, the evaluation of the function f̄d
η,η1

l�1
is identical to an evaluation of f̄d

η,u1
l�1

, except if

ξ � j1 � 1 and if the deviating argument assumes a value such that t � τ1pt, y, cq ¡ tl. In this
special case, the continuous representation η1

l�1ptq implied by the numerical method is used instead
of the exact local solution u1

l�1ptq.
The discrete and continuous numerical solution y1

l�1 and η1
l�1ptq of the IVP (5.76) exist and

are unique according to Theorem 5.17 for sufficiently small hl�1. For the discrete and continuous
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numerical solution y2
l�1 and η2

l�1ptq, this follows trivially for explicit CRK methods and from
Theorem 5.10 for implicit CRK methods, because the problem is an ODE-IVP.

In order to prove the theorem, consider

}yptl�1q � y1
l�1} ¤}yptl�1q � y2

l�1} � }y2
l�1 � y1

l�1} (5.81a)

max
tl¤t¤tl�1

}yptq � η1
l�1ptq} ¤ max

tl¤t¤tl�1

}yptq � η2
l�1ptq} � max

tl¤t¤tl�1

}η2
l�1ptq � η1

l�1ptq} (5.81b)

max
tl¤t¤tl�1

���� djdtj �yptq � η1
l�1ptq

����� ¤ max
tl¤t¤tl�1

���� djdtj �yptq � η2
l�1ptq

�����
� max
tl¤t¤tl�1

���� djdtj �η2
l�1ptq � η1

l�1ptq
����� . (5.81c)

In the first term on the right hand side of the equations, a difference between the exact and the
numerical solutions of the ODE-IVP (5.77) occurs. Due to condition (M), t� τ1pt, yptq, cq remains
in a domain where yptq is smooth. However, y2

l�1 and η2
l�1ptq are defined by the equations (5.80b)

and (5.80d), which imply that the past states are obtained by evaluations of a deduced function
at til�1 � τ1ptil�1, η

2
l�1ptil�1q, cq, 1 ¤ i ¤ ν, where til�1 are the abscissae of the CRK method.

These past time points may lie outside of the discontinuity interval indicated by ξ. The use of
deduced functions in the modified standard approach ensures, at this point, that the smoothness
assumptions of the numerical method are nevertheless fulfilled. It is thus possible to exploit the
property that the CRK method is consistent of discrete local order p and uniform local order q,
which allows to conclude that the first terms in the three equations (5.81) are Ophp�1

l�1 q, Ophq�1
l�1 q,

and Ophq�1�j
l�1 q, respectively.

Remark 5.19

The proof for the convergence of numerical methods realized in the framework of the standard
approach given in Bellen and Zennaro [26] fails at this point. Only the use of extrapolations allows
to construct a sufficiently smooth local IVP.

For the second term in the right hand sides of equations (5.81), Lemma 5.13 is used in the setting

y1
l � yl, y

2
l � yptlq, v1 � zξ

η,η1
l�1

and v2 � zξy,y. This gives

}y2
l�1 � y1

l�1ptq} ¤p1�A0hl�1q}yptlq � yl} � hl�1A1zdiff (5.82a)

max
tl¤t¤tl�1

}η2
l�1ptq � η1

l�1ptq} ¤p1�A0
0hl�1q}yptlq � yl} � hl�1A

0
1zdiff (5.82b)

max
tl¤t¤tl�1

���� djdtj �η2
l�1ptq � η1

l�1ptq
����� ¤Aj0h1�j

l�1 }yptlq � yl} � h1�j
l�1A

j
1zdiff , for 1 ¤ j ¤ q (5.82c)

where

zdiff :� max
1¤i¤ν

}zξ
η,η1

l�1
ptil�1 � τ1ptil�1, ty2uil�1, cqq � zξy,yptil�1 � τ1ptil�1, ty2uil�1, cqq}. (5.83)

Therein, ty2uil�1 are the stage values of the CRK method applied to problem (5.77), for which it
holds, by the boundedness condition (B) on f , that }ty2uil�1 � yptil�1q} � Ophl�1q.

Obviously, for �nφs ¤ ξ ¤ 0, the expression zdiff is zero because the deduced functions zξ
η,η1

l�1

and zξy,y are identical for this case.

Remark further that, for hl�1 sufficiently small, the past time points til�1 � τ1ptil�1, ty2uil�1, cq
that occur in the equation for zdiff are, due to }ty2uil�1 � yptil�1q} � Ophl�1q, within the interval
rsξ�1, sξs indicated by the discontinuity interval indicator whenever neither tl nor tl�1 is a prop-
agation of either sξ�1 or sξ. In this situation the use of deduced functions in equation (5.83) is
redundant and it can be concluded that

zdiff ¤ max
tinipcq¤t¤tl�1

}yptq � ηptq}. (5.84)

It remains to consider the general case that the past time points given by the deviating arguments
are located outside of the discontinuity interval indicated by ξ. According to the arguments
given above, this can happen only in one of the following four cases: tl � τ1ptl, yptlq, cq � sξ�1,
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tl � τ1ptl, yptlq, cq � sξ, tl�1 � τ1ptl�1, yptl�1q, cq � sξ�1, and tl�1 � τ1ptl�1, yptl�1q, cq � sξ. As an
example, the second case is considered, but the other cases can be treated analogously.

As an abbreviation, let tpast � til�1 � τ1ptil�1, ty2uil�1, cq for any 1 ¤ i ¤ ν, and observe that
according to the definition of the deduced functions, it follows that

}zξ
η,η1

l�1
ptpastq � zξy,yptpastq}

�
�����ηpsξq �

q̧

i�1

1

i!

di

dti
ηptq

����
t�sξ

ptpast � sξqi � ypsξq �
p̧

i�1

1

i!

di

dti
yptq

����
t�sξ

ptpast � sξqi
�����

¤ max
tinipcq¤t¤tl

}ηptq � yptq} �
q̧

i�1

1

i!
max

tinipcq¤t¤tl

���� didti pηptq � yptqq
���� |tpast � sξ|i

�
p̧

i�q�1

1

i!
max

tinipcq¤t¤tl

���� didti yptq
���� |tpast � sξ|i. (5.85)

Herein, the maximum of the differences of the time derivatives in the second term and the maximum
of the time derivatives in the third term has to be interpreted in such a way that it is applied to
both the left-sided and right-sided limit at the mesh points.

Since y is a piecewise p-times continuously differentiable function on the bounded interval
rtinipcq, tls, its time derivatives up to order p are also bounded. Therefore, it follows with a
suitable choice of constants Ni, 1 ¤ i ¤ p,

}zξ
η,η1

l�1
ptpastq � zξy,yptpastq}

¤ max
tinipcq¤t¤tl

}ηptq � yptq} �
q̧

i�1

Ni max
tinipcq¤t¤tl

���� didti pηptq � yptqq
���� |tpast � sξ|i

�
p̧

i�q�1

Ni|tpast � sξ|i. (5.86)

By considering

|tpast � sξ| �|til�1 � τ1ptil�1, ty2uil�1, cq � tl � τ1ptl, yptlq, cq|
¤p1� Lτ1q|til�1 � tl| � Lτ1}ty2uil�1 � yptlq} (5.87)

and

}ty2uil�1 � yptlq} �
�����hl�1

ν̧

j�1

ai,jfptil�1, ty2uil�1, c, z
ξ
y,yptil�1 � τ1ptil�1, ty2uil�1, cqqq

����� (5.88)

it follows, by the boundedness of f , that |tpast � sξ| ¤ Khl�1 for some K   8, and thus

zdiff ¤ max
tinipcq¤t¤tl

}ηptq � yptq} �
q̧

i�1

Ni max
tinipcq¤t¤tl

���� didti pηptq � yptqq
����hil�1 �

p̧

i�q�1

Nih
i
l�1. (5.89)

Define the following quantities:

d0
l :� max

0¤l1¤l
}yptl1q � yl1} (5.90a)

d̄0
l :� max

tinipcq¤t¤tl
}yptq � ηptq} (5.90b)

d̄il :� max
tinipcq¤t¤tl

���� didti pηptq � yptqq
���� for 1 ¤ i ¤ q. (5.90c)

This allows to bound zdiff shortly by

zdiff ¤ d̄0
l�1 �

q̧

i�1

Nid̄
i
l�1h

i
l�1 �

p̧

i�q�1

Nih
i
l�1. (5.91)
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It has thereby been exploited that d̄il ¤ d̄il�1 for 0 ¤ i ¤ q.

Further, by taking the maximum for l ¤ l̄ in equations (5.81), and using the relations (5.82) and
(5.91), the expressions

d0
l̄�1 ¤B0h

p�1 � p1�A0hqd0
l̄ � hA1

�
d̄0
l̄�1 �

q̧

i�1

Nid̄
i
l̄�1h

i �
p̧

i�q�1

Nih
i

�
(5.92a)

d̄0
l̄�1 ¤B0

0h
q�1 � p1�A0

0hqd0
l̄ � hA0

1

�
d̄0
l̄�1 �

q̧

i�1

Nid̄
i
l̄�1h

i �
p̧

i�q�1

Nih
i

�
(5.92b)

d̄j
l̄�1

¤Bj0hq�1�j �Aj0h
1�jd0

l̄ � h1�jAj1

�
d̄0
l̄�1 �

q̧

i�1

Nid̄
i
l̄�1h

i �
p̧

i�q�1

Nih
i

�
, for 1 ¤ j ¤ q

(5.92c)

are obtained, with h :� max1¤l¤l̄�1 hl, and suitable constants B0, A0, A1 and Bj0, Aj0, Aj1, for
0 ¤ j ¤ q. For simplicity of notation, the symbol l̄ is in the following replaced by l.

For the remainder of the proof terms of higher order in h are consequently neglected. For
example, in equation (5.92b), it holds that for sufficiently small h the last sum, whose terms are
proportional to hi, i ¥ q � 2, is smaller than the first term, which is proportional to hq�1. Hence,
for suitably chosen constants C0, Cj0 , 0 ¤ j ¤ q, it can be concluded that

d0
l�1 ¤C0h

r�1 � p1� C0hqd0
l � hC0d̄

0
l�1 � C0

q̧

i�1

d̄il�1h
i�1 (5.93a)

d̄0
l�1 ¤C0

0h
q�1 � p1� C0

0hqd0
l � hC0

0 d̄
0
l�1 � C0

0

q̧

i�1

d̄il�1h
i�1 (5.93b)

d̄jl�1 ¤Cj0hq�1�j � Cj0h
1�jd0

l � h1�jCj0 d̄
0
l�1 � Cj0

q̧

i�1

d̄il�1h
i�1�j for 1 ¤ j ¤ q, (5.93c)

with r � minpp, q � 1q.

Observe that the last term in all three equations vanishes if it holds that til�1�τ1ptil�1, ty2uil�1, cq P
rsξ, sξ�1s, i.e. if the past time points are in the “correct” discontinuity interval in all integration
steps. In this simpler case, it follows that

d̄0
l�1 ¤ C0

0h
q�1 � p1� C0

0hqd0
l � hC0

0 d̄
0
l�1. (5.94)

For sufficiently small h, 1� hC0
0 ¡ 0 and therefore

d̄0
l�1 ¤

1

1� hC0
0

�
C0

0h
q�1 � p1� C0

0hqd0
l

�
. (5.95)

Further, there exists C0
1 and h�, depending only on C0

0 , such that for all h ¤ h� it holds that
1{p1� hC0

0 q ¤ 1� hC0
1 . Hence,

d̄0
l�1 ¤ C0

0h
q�1 � C0

1C
0
0h

q�2 � p1� C0
0h� C0

1h� C0
0C

0
1h

2qd0
l , (5.96)

and by neglecting higher order terms,

d̄0
l�1 ¤ C0

2h
q�1 � p1� C0

2hqd0
l . (5.97)

Insertion into equation (5.93a) – with the last term neglected – gives

d0
l�1 ¤C0h

r�1 � p1� 2C0h� C0C
0
2h

2qd0
l � hC0C

0
2h

q�2

¤C1h
r�1 � p1� C1hqd0

l (5.98)
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for sufficiently small h and some constant C1. By recursion, this gives

d0
l�1 ¤ p1� C1hql�1 d0

0loomoon
�0

�
ļ

i�0

p1� C1hqiphC1h
rq. (5.99)

Since the second term is a finite geometric series, the relation

d0
l�1 ¤

p1� C1hql�1 � 1

1� C1h� 1
phC1h

rq
¤p1� C1hql�1hr (5.100)

follows. Since 1� C1h ¤ exppC1hq and l � 1 ¤ nm, i.e. the number of mesh points, the relation

d0
l�1 ¤ exppC1h � nmqhr (5.101)

follows. In addition, h � hmax for l � 1 � nm. Then, if the limit of the stepsizes is taken in the
setting that the ratio of the maximum stepsize hmax to the minimum stepsize hmin � min1¤l¤nm hl
is bounded by M   8, then also hmaxnm is bounded by M � ptfinpcq� tinipcqq. Hence, the desired
result d0

l�1 � Ophrmaxq is obtained. Further, insertion of this result into equation (5.97) yields the
same asymptotic behavior for d̄0

l�1.

For the case that the last two terms in equations (5.93) do not vanish because the deviating
argument assumes values that are outside the discontinuity interval rsξ�1, sξs, consider equation
(5.93c) for the case j � q:

d̄ql�1 ¤Cq0h� Cq0h
1�qd0

l � h1�qCq0 d̄
0
l�1 � Cq0

q�1̧

i�1

d̄il�1h
i�1�q � Cq0 d̄

q
l�1h (5.102)

At this point it is again possible to argue that for sufficiently small h there exists a constant C̃q1
such that 1 � Cq0h ¡ 0 and that 1{p1 � Cq0hq   1 � C̃q1h. However, here it is sufficient to use the
even more general approximation that 1{p1�Cq0hq can be bounded by a constant Cq1 such that it
follows

d̄ql�1 ¤Cq2h� Cq2h
1�qd0

l � h1�qCq2 d̄
0
l�1 � Cq2

q�1̧

i�1

d̄il�1h
i�1�q (5.103)

for a suitable constant Cq2 . Insertion of this relation in equation (5.93c) for 1 ¤ j ¤ q � 1 yields,

for a suitable constant Cj1 , the expression

d̄jl�1 ¤Cj1hq�1�j � Cj1h
1�jd0

l � h1�jCj1 d̄
0
l�1 � Cj1

q�1̧

i�1

d̄il�1h
i�1�j

� Cj1h
q�1�j

�
h� h1�qd0

l � h1�qd̄0
l�1 �

q�1̧

i�1

d̄il�1h
i�1�q

�
. (5.104)

Observe that the four terms in the second row, originating from d̄ql�1, are proportional to hq�2�j ,

h2�j , h2�j , and hi�2�j , and thus in each case of one order higher than the corresponding terms in
the first row.

It is thus sufficient to consider the effect of the first order term d̄1
l�1 when it is inserted into the

equations (5.93a) and (5.93b). At first, it follows from equation (5.93c) for d̄1
l�1, by neglecting the

contributions from d̄jl�1 for j ¥ 2, that

d̄1
l�1 ¤C1

0h
q � C1

0d
0
l � C1

0 d̄
0
l�1 � C1

0 d̄
1
l�1h. (5.105)

With the usual arguments, it follows

d̄1
l�1 ¤C1

2h
q � C1

2d
0
l � C1

2 d̄
0
l�1 (5.106)
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and insertion into equation (5.93b) gives

d̄0
l�1 ¤C0

0h
q�1 � p1� C0

0hqd0
l � hC0

0 d̄
0
l�1 � C0

0h
2pC1

2h
q � C1

2d
0
l � C1

2 d̄
0
l�1q

¤C0
1h

q�1 � p1� C0
1hqd0

l � hC0
1 d̄

0
l�1 (5.107)

for a suitable constant C0
1 . This equation is structurally equivalent to equation (5.94), from which

on the proof can then be continued as before. Hence, d0
l�1 � Ophrq and d̄0

l�1 � Ophrq.
It is now also easy to see that insertion of d0

l�1 � Ophrq and d̄0
l�1 � Ophrq into equation (5.106)

gives d̄1
l�1 � Ophqq. Further, by recursion, d̄jl�1 � Ophq�1�jq. �

Theorem 5.18 guarantees that the “global error” maxt0¤t¤tnm }yptq � ηptq} approaches zero pro-
portional to hrmax as the maximum stepsize goes to zero. However, equally important for practical
purposes is the behavior of the discrete local error and the uniform local error, defined as follows:

Definition 5.20 (Discrete Local Error, Uniform Local Error)

Let u1
l�1 be the exact solution of the local problem (5.58), and let, as usual, the discrete and

continuous numerical approximations of this solution be defined by

y1
l�1 � yl � hl�1Φptl, yl, hl�1; f̄dη,η1

l�1
q (5.108a)

η1
l�1ptl � θhl�1q � yl � hl�1Ψptl, yl, hl�1, θ; f̄

d
η,η1

l�1
q (5.108b)

Then the two quantities

δl�1 :� }u1
l�1ptl�1q � y1

l�1} (5.109a)

δ̄l�1 :� max
tl¤t¤tl�1

}u1
l�1ptq � η1

l�1ptq} (5.109b)

are called the discrete local error and the uniform local error.

The discrete and uniform local error represent the newly introduced error in the step from tl to tl�1.
Investigation of the behavior of these errors is particularly relevant with regard to the construction
of variable-stepsize methods in Section 5.5.

For CRK methods applied to ODEs with smooth right-hand-side functions, the behavior of these
local errors is determined by the discrete local order p and by the uniform local order q of the CRK
method itself; according to the definition of consistency, it holds that δl�1 � Ophp�1

l�1 q and that

δ̄l�1 � Ophq�1
l�1 q. However, despite the use of deduced functions, the right-hand-side function f̄d

η,u1
l�1

in equation (5.58) (and, similarly, f̄d
η,η1

l�1
) does not exhibit the necessary smoothness because the

continuous extension is only continuous in the mesh points.

At this point it is instructive to recall the proof of Theorem 5.18, which was carried out despite
the lacking smoothness of f̄d

η,u1
l�1

. The crucial point was a suitable use of the triangular inequality

and the construction of an additional smooth local problem. The same idea can also be used in
order to investigate the behavior of the discrete and uniform local error of CRK methods applied
to DDE-IVPs by using the modified standard approach.

Theorem 5.21 (Local Errors of CRK Methods for Solving DDE-IVPs with the Modi-
fied Standard Approach)

Consider the local problem (5.58) and denote its exact solution as u1
l�1ptq. Consider further a CRK

method with discrete local order p and uniform local order q, which is applied to numerically solve
the local problem with the modified standard approach, such that y1

l�1 and η1
l�1ptl�θhl�1q are given

by equations (5.108).

Assume that the conditions of Theorem 5.18 hold and further that the continuous extension in
the steps t ¤ tl are computed with uniform global order r:

max
t¤tl

}ηptq � yptq} �Ophrq, (5.110)

with h � max1¤i¤l hi.
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Then it holds that

}y1
l�1 � u1

l�1ptl�1q} �Ophp1�1
l�1 q (5.111a)

max
tl¤t¤tl�1

}η1
l�1ptq � u1

l�1ptq} �Ophq1�1
l�1 q (5.111b)

where p1 � minpp, rq, q1 � minpq, rq. Specifically, in the light of Theorem 5.18, if the uniform global
order is given by r � minpp, q � 1q, then it follows that p1 � minpp, q � 1q and q1 � q.

Proof
As in the previous proofs of this section, the case of a single delay τ1 is considered, and ξ is used a
short notation for the discontinuity interval indicator in the current step tl Ñ tl�1, i.e. for ξα1 pt1q
with t1 P ptl, tl�1q.

The sufficiently smooth problem that is employed for the proof is as follows:

9u2l�1ptq � f̄dy,ypt, u2l�1ptq, c, ξq (5.112a)

u2l�1ptlq � yl. (5.112b)

with

f̄dy,ypt, y, c, ξq � fpt, y, c, zξy,ypt� τ1pt, y, cqqq. (5.113)

As indicated by the notation zξy,y, the exact solution yptq of the DDE-IVP is used for the com-
putation of past states if the deviating argument assumes a value between the two discontinuity
points indicated by the discontinuity interval indicator; otherwise, smooth extensions of yptq are
used, see the proof of Theorem 5.18 (and in particular equation (5.79)) for details.

Denote the exact solution of the local problem (5.112) by u2
l�1ptq and define the discrete and

continuous numerical approximations y2
l�1 and η2

l�1ptq of u2
l�1ptq as follows:

y2
l�1 � yl � hl�1Φptl, yl, hl�1; f̄dy,yq (5.114a)

η2
l�1ptl � θhl�1q � yl � hl�1Ψptl, yl, hl�1, θ; f̄

d
y,yq. (5.114b)

Note that y2
l�1 and η2

l�1ptq (which are not actually computed in practice) are defined in such a way
that they make use of the exact solution yptq of the DDE-IVP (or a smooth extension thereof) for
the evaluation of past states. They are thus considered as solutions of an ODE-IVP.

Consider, for the continuous extension, the following relation:

max
tl¤t¤tl�1

}η1
l�1ptq � u1

l�1ptl�1q} ¤ max
tl¤t¤tl�1

}η1
l�1ptq � η2

l�1ptq}looooooooooooooooomooooooooooooooooon
A1

� max
tl¤t¤tl�1

}η2
l�1ptq � u2

l�1ptl�1q}looooooooooooooooooomooooooooooooooooooon
A2

� max
tl¤t¤tl�1

}u2
l�1ptl�1q � u1

l�1ptl�1q}looooooooooooooooooooomooooooooooooooooooooon
A3

. (5.115)

The second term, A2, is clearly Ophq�1
l�1 q, because the problem (5.112) is sufficiently smooth. For

the first term, which represents the difference between two continuous extensions, Lemma 5.13 is
used in the setting y1

l � yl, y
2
l � yl, v

1 � zξ
η,η1

l�1
, v2 � zξy,y, which gives

max
tl¤t¤tl�1

}η1
l�1ptq � η2

l�1ptq} ¤ hl�1Bzdiff (5.116)

for some constant B   8 and with

zdiff � max
1¤i¤ν

}zξ
η,η1

l�1
ptil�1 � τ1ptil�1, ty2uil�1, cqq � zξy,yptil�1 � τ1ptil�1, ty2uil�1, cqq}. (5.117)

With an analogous argumentation as in the proof of Theorem 5.18, by using equation (5.110) and
by considering the limit hi Ñ 0 in a way such that

hmax
hmin

� K   8, (5.118)
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it follows from equation (5.89) that zdiff � Ophrl�1q, and hence A1 � Ophr�1
l�1 q.

For the term A3, consider the integral representation of the exact solutions:

A3 ¤
» tl�1

tl

��fpt, u2
l�1ptq, c, zξy,ypt� τ1pt, u2

l�1ptq, cqqq

�fpt, u1
l�1ptq, c, zξη,η1

l�1
pt� τ1pt, u1

l�1ptq, cqqq
��� dt1 (5.119)

With the usual arguments on the Lipschitz continuity of f , zξ
η,η1

l�1
, and τ1, and the analysis of

zdiff , it follows that also A3 � Ophr�1
l�1 q

The proof for the discrete method can be carried out in the same way, except that the second
term, i.e. the difference between the exact and the approximate solution of the smooth local problem
(5.112), is Ophp�1

l�1 q. �

For the application of a CRK method to ODE-IVPs, the discrete local error is Ophp�1
l�1 q. In order

to obtain the same result for DDE-IVPs, it follows Theorem 5.21 that the discrete and uniform
local orders p and q of the method should be such that q � p� 1 or q � p.

Nevertheless, it should be noted that the discrete local error can be Ophp�1
l�1 q in some integration

steps even if q ¤ p � 2. To see this, follow again the arguments of the proof and observe that
A1 � A3 � 0 if the discontinuity interval indicator ξ is less than or equal to 0. In this case, the
evaluations of the functions zξ

η,η1
l�1

and zξy,y yield the same result because the same smooth function

φipt, cq (or extension thereof) is used. Hence, also the two local problems (5.76) and (5.112) are
identical and the discrete local error is Ophp�1

l�1 q.
In general, this leads to the important observation that the discrete local error may, for a given

CRK method and a given DDE-IVP, vary from one step to another if q ¤ p � 2. Therefore, it
is highly desirable for the practical construction of methods to use continuous extensions with
uniform local order q � p� 1 or q � p.

5.3. Continuous One-Step Methods for IHDDE-IVPs

The results for the modified standard approach for solving DDE-IVPs presented in the previous
section, i.e. Theorems 5.18 and 5.21, can be generalized to the more general case of IHDDE-IVPs
by the following modifications. The presence of switching functions makes it necessary to request
that the numerical method has access to both the discontinuity interval indicators ξαptq as well
as to the signs ζptq of the switching functions of the exact solution. The mesh condition then has
to be formulated in such a way that between two mesh points both ξαptq and ζptq are constant.
This ensures that the time points of all propagated discontinuities up to order p are included in
the mesh, and further that the time points of all root discontinuities are included in the mesh.

For non-zero impulse functions, it is further necessary to apply the impulses

η�psq � η�psq � ωps, η�psq, c, tzξαiη,ηps� τips, η�psq, cqqunτi�1, ζpsqq (5.120)

in the time point s of a root discontinuity. If Lipschitz continuity of the impulse functions with
respect to the current and past state arguments is assumed, then the error }η�psq � y�psq} is of
the same order (of the maximum stepsize h) as the error }η�psq � y�psq}.

5.4. Numerical Computation of Discontinuity Points

The idealized variant of the modified standard approach relies on the assumption that the exact
solution yptq has finitely many discontinuities up to order p, and that the time points of these
discontinuities and the corresponding discontinuity interval indicators are known to the numerical
method. Further, the mesh is expected to be chosen in such a way that it comprises all time points
of discontinuity of the discontinuity interval indicator of the exact solution, i.e. all discontinuity
points of ξαptq.

These conditions can easily be fulfilled by a practical method as long as there are no state-
dependencies in the delay and switching functions, because then the locations of both root dis-
continuities and propagated discontinuities can be computed a priori. However, for the case of
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state-dependent switching or delay functions, the location of the discontinuities in the exact DDE-
IVP solution yptq and the associated discontinuity interval indicators are usually unknown.

Hence, for state-dependencies in the delay or switching functions, a practical variant of the
modified standard approach is needed. Similar to Definition 5.16, this practical variant is formulated
for general continuous one-step methods in the case of DDE-IVPs, i.e. without switching and
impulse functions:

Definition 5.22 (Practical Variant of the Modified Standard Approach for Solving
DDE-IVPs)

Consider a continuous one-step method of discrete local order p and uniform local order q, with a
discrete increment function Φ and a continuous increment function Ψ.

For the start of the practical variant, assume that the time points of the discontinuities up to
order p in the initial function are known, and denote them by ŝi, �nφs ¤ i ¤ �1. Further, let
ŝ0 � tinipcq and apply the following algorithm:

1. Set l � 0 and ns � 0.

2. Solve the equations

yl�1 � yl � hl�1Φptl, yl, hl�1; f̄dη,ηq (5.121a)

ηl�1ptl � θhl�1q � yl � hl�1Ψptl, yl, hl�1, θ; f̄
d
η,ηq, (5.121b)

with

f̄dη,ηpt, y, c, ξαrl � 1sq � fpt, y, c, tzξαi rl�1s
η,η pt� τipt, y, cqqunτi�1q. (5.122)

Therein, ξαrl � 1s � pξα1 rl � 1s, . . . , ξαnτ rl � 1sqT is the unique consistent choice of the dis-
continuity interval indicator in the interval ptl, tl�1q for the numerical solution, i.e. it holds

ξαi rl � 1s � ξ̂αi ptq :� ns � 1�
nş

j��nφs

pζ̂α,�i,ŝj
ptq � 1q (5.123a)

ζ̂α,�i,ŝj
ptq :� sign�pαipt, ηl�1ptq, cq � ŝjq, (5.123b)

for t P ptl, tl�1q, 1 ¤ i ¤ nτ . If no hl�1 ¡ 0 can be found such that there is a unique
consistent choice for the discontinuity interval indicator, terminate the integration with an
error message.

3. If tl�1 is no point of discontinuity in ξ̂αi ptq, then set l � l � 1 and continue with step 2.
Otherwise determine the order of the discontinuity of the solution at tl�1. If the order is less
than or equal to p, continue with step 4, otherwise set l � l � 1 and continue with step 2.

4. Set ŝns�1 � tl�1, ns � ns � 1, l � l � 1, and continue with step 2.

The practical variant of the modified standard approach makes, in contrast to the idealized variant,
no assumptions on the exact solution yptq. Instead, it is only requested that the discontinuity

interval indicator for the numerical solution, ξ̂αi ptq, is constant between two mesh points. As a
consequence, the application of the practical variant yields a sequence of time points ŝk, k ¥ 0,
such that

σαi,ŝj pŝk, ηpŝkq, cq � αipŝk, ηpŝkq, cq � ŝj � 0 (5.124)

for at least one combination pi, jq P t1, . . . , nτu�t�nφs , . . . , k�1u. The set of so-determined points
ŝk is suspected to include approximations of all time points of discontinuity in the exact solution
yptq up to order p� 1.

In practice, it is of course not possible to select the sequence of stepsizes hl�1 � tl�1 � tl a
priori in such a way that the time points ŝk of propagated discontinuities are included as mesh
points. Instead, it is typical to continue the integration from tl by taking, at first, a trial step
with stepsize h1. For this trial step, all evaluations of f are done with some given value of the
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discontinuity interval indicator. For the practical realization of the trial step in the special case of
CRK methods, see Section 6.4.

After having computed the trial step, it has to be checked whether the discontinuity interval
indicator matches the assumed (fixed) value over the whole integration step, and whether this
value is the unique consistent choice. Demanding this property ensures that the practical variant
of the modified standard approach yields, for sufficiently small stepsizes, in each integration step
the unique numerical solution. However, ensuring existence and uniqueness of the discontinuity
interval indicator is, in general, non-trivial, see question Q4 below and the corresponding answer
further below.

In order to set the context, it is appropriate to mention that the practical variant of the modified
standard approach is inherently coupled to the use of so-called discontinuity tracking, see Willé
and Baker [256]. Tracking of discontinuities means explicitly locating the numerical discontinuities
by root finding techniques and including them into the mesh.

The practical variant of the modified standard approach differs from the idealized variant (Defi-
nition 5.16) insofar as it makes use of the numerically determined discontinuity points ŝi instead of

the exact discontinuity points si, and, accordingly of the discontinuity interval indicator ξ̂αptq for
the numerical solution instead of the discontinuity interval indicator ξαptq for the exact solution.
This gives rise to the following questions:

Q1 How can the order of a discontinuity be determined in practice in order to decide whether or
not a newly found discontinuity needs to be propagated further?

Q2 Is the numerically determined discontinuity point ŝk an approximation of the discontinuity
point sk in the exact solution such that, for hmax Ñ 0, ŝk Ñ sk?

Q3 Is it possible, in the special case of CRK methods, to transfer the convergence result of
Theorem 5.18 to the practical variant of the modified standard approach?

Q4 How can existence and uniqueness of a consistent choice for the numerically determined
discontinuity interval indicators be guaranteed?

As a starting point for discussing these issues, assume that there is a unique solution yptq of the
DDE-IVP (called “exact solution”) with the property that the zeros of the propagation switching
functions

σαi,sj pt, yptq, cq � αipt, yptq, cq � sj (5.125)

are distinct. This means that t P T pcq is the zero of at most one function σαi,sj . Further, if sk is a
zero of the function σαi,sj for some specific indices i, j, then it is assumed that

d

dt
σαi,sj psk, ypskq, cq � 0. (5.126)

In the case that sj is a time point of discontinuity of order 0 in the initial function, the total time
derivative of the solution y at sk may not exist, and, as a consequence, also dσαi,sj pt, yptq, cq{dt may

not exist at sk. In this case, equation (5.126) is assumed independently for both the left-sided
and for the right-sided time derivative; more specifically, consistency of the discontinuity interval
indicators for the exact solution yptq then also implies that the signs of the left-sided and right-sided
time derivative of the switching function are identical.

In the following, answers to the questions Q1–Q4 are given for both the above-established setting
with distinct zeros of propagation switching functions with non-zero time derivatives (equation
(5.126)) and for the general situation that these assumptions are not fulfilled. For simplicity of
the discussion, the two cases are subsequently referred to as “the special case” and as “the general
case”.

Determination of the Order of Discontinuities

With regard to the question Q1, it is first mentioned that the orders of the initial discontinuities
should in general be clear from the context, as they are part of the problem formulation. They
can therefore be assumed to be provided as input from the user to the numerical method.

For the orders of the propagated discontinuities, it is ensured in the special case, by condition
(5.126), that the roots of the propagation switching functions have multiplicity one. Then, in the
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context of scalar DDEs, it is well-known that the order of the child discontinuity is one higher
than the order of the parent discontinuity. In systems of DDEs, higher order smoothing may occur
depending on the structure of the system. Willé and Baker [256] describe this issue in detail and
develop a general approach to compute the orders of propagated discontinuities in DDE systems
accurately. A numerical code based on this approach requires a significant amount of user input
in order to exploit the higher order smoothing.

It is, however, easily possible to give a lower bound for the orders of the discontinuity in the
following way without the need for additional user input. The numerical method may assume that
the orders of all initial discontinuities are 0, and that each propagation increases the order only
by 1. By using the so-obtained lower bound, it can be guaranteed that all those discontinuities
are correctly propagated whose order is less or equal to the discrete local order of the numerical
method

In the general case, zeros of higher multiplicity are allowed for the exact solution yptq. In the
numerical solution, such zeros will typically split up or vanish due to the presence of numerical
integration errors, i.e. it rarely occurs in practice that both σαi,j and its time derivative are exactly
zero. Similarly, zeros of two propagation switching functions – which are allowed to coincide in the
general case for the exact solution – will typically not exactly coincide for the numerical solution.
In other words, zeros of higher multiplicity and coinciding zeros are numerically ill-defined.

However, in the numerical practice threshold values are used such that all values below the
threshold are considered as “practically zero”. In this context, coinciding propagated discontinu-
ities or zeros of higher multiplicity may certainly occur.

It is clear that the lower bound, obtained as described above, still holds for zeros of higher
multiplicity. Further, for coinciding zeros of several propagation switching functions at a time
point sk, a lower bound for the order of the discontinuity at sk is obtained by increasing the lowest
order of all parent discontinuities by 1.

Convergence of Numerically Determined Discontinuity Points to Exact Discontinuity Points

In the special case, the answer to question Q2 is yes, and it is even possible to determine the order
of convergence.

In order to discuss the issue in more detail, let the discontinuity at sk in the exact solution be
the child of the discontinuity at sj . Due to the fact that the discontinuity points are distinct and
because the propagation switching function crosses the time point sk with non-zero time derivative,
it follows that the propagation switching function changes its sign also along the numerical solution,
if sufficiently small stepsizes are taken. Accordingly, when the practical variant of the modified
standard approach is used, then there exists a mesh point tl � ŝk, where ŝk denotes the time point
of the child discontinuity of the discontinuity at ŝj .

For this situation, Guglielmi and Hairer [124] show by means of the implicit function theorem
that

|ŝk � sk| ¤ C p}yl � yptlq} � |ŝj � sj |q , (5.127)

where C is a constant. For initial discontinuities, it holds that ŝj � sj , and hence the numerically
determined point ŝk of the child discontinuity converges to the exact point sk of the child discon-
tinuity with an approximation order that is equal to the uniform global order of the numerical
method. Further, by recursion over all k, 1 ¤ k ¤ ns, this property follows for all numerically
determined discontinuity points ŝk.

This conclusion cannot be transferred to the general case. The reason is that both coinciding
propagated discontinuities as well as zeros of higher multiplicity are numerically ill-defined, as
discussed in the answer to question Q1. For illustration, consider the case that the exact solution
yptq exhibits coinciding discontinuities that are children of a discontinuity of order 0. Then, in the
numerical integration, any arbitrary small numerical error may lead to a situation such that only
one of the propagation switching function becomes zero, which leads to a child discontinuity of
order 1. After this discontinuity, the time evolution of the other propagation switching function
may be such that it never becomes zero.

Therefore, even for asymptotically small stepsizes, it cannot be guaranteed that each disconti-
nuity point sj in the exact solution is represented in the numerical solution, and, as a result, the
numerical solution may end up far off the exact solution.
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Convergence of the Numerical Solution

In the special case, the answer to question Q3 is yes, as is shown in Guglielmi and Hairer [124]. This
means that the numerical solution obtained with the practical variant of the modified standard
approach converges to the exact solution with uniform global order r � minpp, q � 1q. The proof
of this result crucially depends on the fact that, in the special case, the numerically determined
discontinuity points converge to the exact discontinuity points with the uniform global order r of
the numerical method (recall the answer to question Q2 above).

For this reason, no similar convergence result for the general case is known, and the development
of a theory for this case is beyond the scope of this thesis.

Consistency of the Discontinuity Interval Indicators

In the special case, it is clear that, for sufficiently small stepsizes, there is at most one sign change
per integration step in any of the propagation switching functions. Since the numerical solution
converges to the exact solution, it is sufficient to check after a trial step whether the sign of any of
the propagation switching functions has changed.

If a propagation switching function has changed its sign, an iterative procedure can be executed
that adapts the stepsizes in such a way that equation (5.124) is eventually fulfilled for tl�1 � ŝk
within the range of a small numerical tolerance. After that, the integration is continued with
the sign of the corresponding propagation switching function negated. If the parent discontinuity
has order 0, then it is additionally necessary to verify that the right-sided limit of the total time
derivative of the propagation switching function is such that the new choice of the indicator is
consistent.

Section 6.9 contains a practical algorithm (namely Algorithm 6.21) that includes discontinuity
points into the mesh. The algorithm is realized in the new software package Colsol-DDE. The
software checks, however, not rigorously that the assumptions of the special case are fulfilled, be-
cause coinciding discontinuities are quite frequent in practice and not generally harmful. Therefore,
only coinciding discontinuities of order 1 (or 0, in the case of IVPs with impulses) are avoided in
Colsol-DDE, and a set of numerical checks is employed to test whether the propagation switching
functions have a “regular” behavior (“sufficiently” non-zero time derivative, leaving the zero set of
the switching function into the “correct” direction) in the vicinity of the discontinuity points. These
numerical checks, which are also motivated by the differentiability theory developed in Chapter 7,
are described in more detail in Section 6.9 and in Subsection 9.1.11. The checks were found to be
suitable to detect most irregularities in practical situations.

However, the development of an algorithm that rigorously ensures existence and uniqueness of
the discontinuity interval indicator in each integration step also in the general case is an interesting
topic for future research.

5.5. Error Control and Adaptive Stepsizes

5.5.1. Global Error Control vs. Local Error Control

In Subsection 5.2.3, and in particular in Theorem 5.18, the convergence of the modified standard
approach was investigated in the limit that the stepsizes go to zero. In that context, the stepsizes
were allowed to be different in every integration step, but they were treated as if they were some
a priori sequence of numbers. The only conditions were that the exact discontinuity points should
be included in the mesh, and that the ratio of the maximum stepsize to the minimum stepsize is
bounded.

This section is concerned with practical methods for the selection of stepsizes. Knowledge of
the asymptotic behavior of the global error maxt0¤t¤tnm }yptq � ηptq} as function of the maximum
stepsize hmax is thereby of only limited practical relevance. Instead, it is desirable to find a
sequence of stepsizes such that the global error is bounded by some user-defined tolerance σtol,
and to reach such a sufficiently accurate solution at low computational costs.

Clearly, in order to control and bound the global error, it is first necessary to estimate it.
Unfortunately, already the estimation is a computationally hard problem, and numerical methods
that guarantee the error to be bounded by σtol are rarely available, even in the case of ODEs; see
Beigel [23] for some recent developments and an overview on existing methods. In the DDE case,
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global error estimation is still an unexplored field of research, and none of the popular practical
codes known to the author provide an estimate of the global error or control it.

In the following, the presentation is therefore restricted to the simpler and computationally
cheaper task of estimating and controlling the discrete and uniform local errors δl�1 and δ̄l�1 (see
Definition 5.20), i.e.

δl�1 � }ul�1ptl�1q � yl�1} (5.128a)

δ̄l�1 � max
tl¤t¤tl�1

}ul�1ptq � ηl�1ptq}. (5.128b)

The superscript 1, used earlier in Definition 5.20 in order to distinguish ul�1, yl�1, and ηl�1 from
the exact and numerical solutions of a different local problem, is from now on dropped.

The following theorem establishes, under suitable conditions on the local errors, a proportionality
of the bound on the global error to the user-defined local tolerance σtol.

Theorem 5.23 (Proportionality of the Bound of the Global Error to the Tolerance)

Consider the DDE-IVP (5.42) and a continuous one-step method used for its numerical solution
realized in the framework of the idealized variant of the modified standard approach. Assume that
the conditions of Theorem 5.18 are fulfilled and that in each step the local errors are controlled by

δl�1 ¤ hl�1σtol (5.129a)

δ̄l�1 ¤ σtol (5.129b)

for some user-defined tolerance σtol. Then it holds for the global error that

max
t0¤t¤tnm

}yptq � ηptq} ¤ Kσtol (5.130)

for some constant K   8.

Proof
The proof is given in Bellen and Zennaro, [26], page 188ff, for the case of time-dependent delays and
in the context of the standard approach. The generalization of the result to the state-dependent
delay case and to the idealized variant of the modified standard approach is straightforward. �

5.5.2. Estimation of the Local Error

Clearly, the exact solution ul�1ptq of the local problem and the local errors δl�1, δ̄l�1 are typically

unknown. Therefore, estimates δ̂l�1, ˆ̄δl�1 of the discrete and uniform local error are used in
practice.

For the construction of the estimates δ̂l�1, ˆ̄δl�1 a large variety of methods has been developed. A
majority of the methods for estimating the discrete local error δ̂l�1 is thereby based on computing
two discrete approximations of ul�1ptl�1q, denoted by y1

l�1 and y2
l�1, whose local errors δ1

l�1 and

δ2
l�1 are Ophp11�1

l�1 q and Ophp12�1
l�1 q, p11 � p12, respectively. Similarly, methods for estimating the

uniform local error ˆ̄δl�1 are often based on two continuous approximations of ul�1ptq for tl ¤
t ¤ tl�1, called η1

l�1ptq and η2
l�1ptq, whose local errors δ̄1

l�1 and δ̄2
l�1 are Ophq11�1

l�1 q and Ophq12�1
l�1 q,

q11 � q12, respectively. The estimates of the local errors are then defined by

δ̂l�1 � }y1
l�1 � y2

l�1} (5.131a)

ˆ̄δl�1 � max
tl¤t¤tl�1

}η1
l�1ptq � η2

l�1ptq}. (5.131b)

Note that, in consistency with the notation used in Theorem 5.21, the symbols p1i and q1i denote
the orders of the local errors, not the discrete local orders and uniform local orders of the methods.
How they relate to each other is discussed below in Subsection 5.5.6, but here it is simply assumed
that two methods are combined such that their local errors have different orders.

Assume, without loss of generality, that p11   p12 and that q11   q12. It then holds for the local
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errors δ1
l�1 and δ̄1

l�1 of the lower order method that

δ1
l�1 ¤ δ̂l�1 � δ2

l�1 (5.132a)

δ̄1
l�1 ¤ ˆ̄δl�1 � δ̄2

l�1, (5.132b)

i.e. the error of the lower order method is bounded by its estimate plus the error of the higher order

method. This means that the errors of the error estimates are Ophp12�1
l�1 q and Ophq12�1

l�1 q, respectively,
and hence of higher order than the errors themselves. The error estimation is therefore called
asymptotically correct (for hl�1 Ñ 0) for the lower order method, whose local errors are of the
order p11 and q11.

5.5.3. Selection of Efficient Stepsizes

This finding, together with Theorem 5.23, suggests to accept y1
l�1 as an approximation of yptl�1q

only if δ̂l�1 ¤ hl�1σtol and if ˆ̄δl�1 ¤ σtol. Assume that these conditions are fulfilled, then a suitable
new stepsize hl�2 is proposed as follows. According to the asymptotic behavior of the discrete local
errors in the current step, δ1

l�1, δ̄1
l�1, and in the next step, δ1

l�2, δ̄1
l�2, it is justified to write

δ1
l�1 � A1

l�1h
p11�1
l�1 , δ̄1

l�1 � B1
l�1h

q11�1
l�1 (5.133a)

δ1
l�2 � A1

l�2h
p11�1
l�2 , δ̄1

l�2 � B1
l�2h

q11�1
l�2 . (5.133b)

The crucial assumption is now that from one step to the next the constants should be approximately
the same, A1

l�1 � A1
l�2 and B1

l�1 � B1
l�2. In order to obtain an efficient computational method,

the next step should be as large as possible without violating the conditions (5.129a) and (5.129b).
This suggests to try to achieve δ1

l�2 � hl�2σtol and δ̄1
l�2 � σtol. With the asymptotical correctness

of the error estimates, this motivates to use

hl�2 � hl�1 min

�
� p11

d
σtolhl�1

δ̂l�1

, q11�1

d
σtol
ˆ̄δl�1

�
 (5.134)

as a stepsize for the next step.

However, since the argumentation involves approximations, it is possible that the so-selected
hl�2 will lead to a discrete error estimate that is slightly larger than hl�2σtol or to a uniform
error estimate that is slightly larger than σtol. This leads to a rejection of the stepsize in the next
integration step and therefore to a loss of efficiency. It is thus common to include a safety factor
ρsafe   1:

hl�2 � ρsafehl�1 min

�
� p11

d
σtolhl�1

δ̂l�1

, q11�1

d
σtol
ˆ̄δl�1

�
. (5.135)

In the case that the stepsize hl�1 is rejected because at least one of the error estimates violates its
tolerance condition, the right hand side of equation (5.135) can also be used for the proposition of
a new stepsize hnewl�1 to repeat the current step.

5.5.4. Local Extrapolation

The underlying assumption in the above considerations is that the stepsize is so small that the
leading order in hl�1 (and hl�2) is dominating. In this domain, it is clear that the higher order
results, i.e. y2

l�1 and η2
l�1ptq, are more accurate. This motivates to use these higher order results

rather than the lower order results when accepting a step. On the downside, the error estimates

δ̂l�1 and ˆ̄δl�1 do not have the property to be asymptotically correct for δ2
l�1 and δ̄2

l�1.

Nevertheless, advancing with the higher order result, i.e. setting yl�1 � y2
l�1, ηl�1ptq � η2

l�1ptq,
is quite common in practice and referred to as local extrapolation. For the further analysis of this
approach, it is assumed that p12 � p11 � 1 and q12 � q11 � 1, which is typical for the construction
of error estimates. The local errors of the higher order result in the step tl�1 Ñ tl�2 can then
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asymptotically be expressed by

δ2
l�2 � A2

l�2h
p11�2
l�2 , δ̄2

l�2 � B2
l�2h

q11�2
l�2 (5.136)

for some constants A2
l�2, B2

l�2. If the stepsize hl�2 is chosen by the strategies described above, i.e.

hl�2 � ρsafe min

�
p11

c
σtol
A1
l�1

, q11�1

c
σtol
B1
l�1

�
(5.137)

then, if the discrete error is dominating, it follows for δ2
l�2 that

δ2
l�2 � hl�2 �

�
� A2

l�2

p11

b
pA1

l�1qp
1
1�1

ρ
p11�1
safe

�
 p11

b
σ
p11�1
tol (5.138)

and similarly, if the uniform error is dominating, then it follows for δ̄2
l�2 that

δ̄2
l�2 �

�
� B2

l�2

q11�1

b
pB1

l�1qq
1
1�2

ρ
q11�2
safe

�
 q11�1

b
σ
q11�2
tol . (5.139)

Asymptotically, for hl�2 Ñ 0, the terms in brackets are bounded by constants C1 and C2, so

that it can be concluded that δ2
l�2 fulfills condition (5.129a) with a tolerance C1

p11

b
σ
p11�1
tol and that

δ̄2
l�2 fulfills condition (5.129b) with a tolerance C2

q11�1

b
σ
q11�2
tol .

There is a possibility to recover the proportionality to σtol as follows. Instead of requesting that
δ1
l�2 ¤ hl�2σtol and that δ̄1

l�2 ¤ σtol, consider the conditions δ1
l�2 ¤ σtol and δ̄1

l�2 ¤ σtol{hl�1.
This gives, instead of equations (5.138) and (5.139),

δ2
l�2 � hl�2 �

�
A2
l�2

A1
l�1

ρ
p11�1
safe



σtol (5.140a)

δ̄2
l�2 �

�
B2
l�2

B1
l�1

ρ
q11�2
safe



σtol (5.140b)

and hence proportionality to the chosen tolerance.

5.5.5. Error Criteria

For discrete one-step methods, a control of the local error by δ̂1
l�1 ¤ σtol is commonly termed an

error per step criterion, whereas δ̂1
l�1{hl�1 ¤ σtol (see equation (5.129a)) is known as an error per

unit step criterion. For the control of the error of the continuous representation, these terms are
typically not used.

For all conditions that involve the stepsize, it is unsatisfactory from a practical point of view
that the error control depends on the unit of the time variable, i.e. whether the time is measured in
seconds, hours, or days. In order to remove this dependency, hl�1 can be replaced by hl�1{ptfinpcq�
tinipcqq. Using this expression in the error per unit step criterion in equation (5.129a) is called a
modified error per unit step criterion.

In the previous subsections, it was discussed that – without local extrapolation – the conditions
(5.129a) and (5.129b) are suitable to achive proportionality of a bound on the global error to the
chosen tolerance σtol. With local extrapolation, the conditions δ1

l�1 ¤ σtol and δ̄1
l�2 ¤ σtol{hl�1

are suitable to obtain this proportionality.

Practical codes do not always follow these guidelines to obtain a proportionality to σtol. Instead,
an error per step criterion might be used even if the lower order result is used for advancing to
the next mesh point, or an error per unit step criterion might be used in connection with a higher
order result. In some codes the error of the continuous representation is not controlled at all,
arguing that, asymptotically, the condition on the discrete local error δ̂l�1 ¤ σtolhl�1 is always

more restrictive than the condition on the uniform local error ˆ̄δl�1 ¤ σtol.
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5.5.6. Choice of Pairs of Discrete Methods and Pairs of Continuous
Representations

The basic idea for error estimation in Subsection 5.5.2 was to compute two discrete approximations
and two continuous approximations of the solution of the local problem, whose local errors are

Ophp11�1
l�1 q, Ophp12�1

l�1 q, Ophq11�1
l�1 q, and Ophq12�1

l�1 q with p11 � p12 and q11 � q12. Unfortunately, in the
view of Theorem 5.21, the orders p1i and q1i of the local errors are not always simply given by the
discrete local order pi and by the uniform local order qi of the continuous one-step method, i.e. it
does in general not hold that p1i � pi, q

1
i � qi for i � 1, 2. Instead, the order of the local errors

may be compromised by the order of the error in the approximation of past states.

For the practical choice of pairs for error estimation, consider two discrete one-step methods
with discrete local orders p1 and p2 and two continuous representations with uniform local orders
q1 and q2. More precisely, let p1 and q1 be the orders of the advancing methods, i.e. the discrete
and continuous approximations are given by yl�1 � y1

l�1 and ηl�1ptq � η1
l�1ptq, whereas p2 and

q2 are the orders of the error-estimating methods, i.e. y2
l�1 and η2

l�1ptq are only computed for the
purpose of error estimation.

From Theorem 5.21 it is known that the order of the discrete local error p1i and the order of the
uniform local error q1i are affected by the uniform global order r of the advancing method, which is
determined by the discrete and uniform local order of the advancing method, i.e. r � minpp1, q1�1q.
The question is: How should p1, q1, p2, and q2 be chosen such that it follows p1i � pi, q

1
i � qi (for

i � 1, 2) in all integration steps?1

At first, it follows from Theorem 5.21 that q11 � q1. Further, if q1 � p1 or q1 � p1 � 1, then
it also holds that p11 � p1. Under the same condition, it follows for the uniform error-estimating
method that q12 � minpq2, p1q � q2, because the uniform order of any continuous extension cannot
exceed the discrete order. Unfortunately, for the discrete error-estimating method Theorem 5.21
gives that p12 � minpp2, p1q. Hence, it would not be possible to use discrete method for the error
estimation that is of a higher order than the discrete local order p1 of the advancing method. In
this context, consider the following remark.

Remark 5.24

If q1 � p1, and if p2 ¤ p1 � 1, then it holds that p12 � p2.

Hence, if q1 � p1, then all methods (discrete and continuous, advancing and error-estimating)
perform to their order.

The proof for the result in Remark 5.24 works similar to the proof of Theorem 5.21, however,
instead of using maxt¤tl }ηptq�yptq} � Ophr1l�1q, the existence of a function η̄ptq is postulated such

that maxt¤tl }ηptq � η̄ptq} � Ophp1�1
l�1 q. With this (and suitable smooth extensions of η̄ptq), the

remark follows. The more technical part of the proof is to show that the function η̄ptq exists. For
this purpose, it is referred to Bellen and Zennaro [26], page 184ff.

If the conditions of Theorem 5.21 and the extension in Remark 5.24 are respected, any of the
following concepts can be used for the practical combination of methods of different orders:

• The most obvious approach is to simply take two continuous one-step methods of different
discrete local orders and different uniform local orders and to combine them in such a way
that the orders of the local errors are equal to these local orders. However, an intricate
issue that has to be considered is which methods should be chosen so that the computational
costs are low. An elegant and widely-used approach for estimation of the discrete local error,
specifically for explicit Runge-Kutta methods, are so-called embedded pairs. The basic idea of
embedded pairs is to combine Runge-Kutta methods which share many of their stage values.

For the estimation of the uniform local error, the same idea can be used. However, in addition
it is highly desirable to combine two continuous representations for the error estimation such
that the maximum difference between them is located at a known and problem-independent
position in rtl, tl�1s. Contrariwise, if the maximum difference is not a problem-independent
position, the maximum value has to be determined in every integration step, which may lead
to a loss of efficiency.

1It should be noted, however, that these relations are convenient for the construction of error estimates, but not
necessary.
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• As an alternative for the estimation of the uniform local error, it is possible to take a contin-
uous one-step method with q1   p1 as a basis, and then apply a method for constructing a
higher order continuous extension, e.g. the boot-strapping process described by Enright [99]
or the uniform correction procedure by Zennaro [268, 269] and Bellen and Zennaro [25, 26].
As a result, two continuous representations of different uniform local order are obtained, and
their maximum difference can be used as an estimate for the uniform local error. In some
special situations, it can be shown that the maximum difference is located at tl � θ�hl�1,
where θ� is independent of l and independent of the model functions of the DDE-IVP. In
Chapter 6.2, some examples are presented where this is the case, and these special examples
are exploited in the construction of the new IHDDE-IVP solver Colsol-DDE.

• As an alternative for the estimation of the discrete local error, a continuous representation
of order q1 � p1 can be integrated by a quadrature rule of sufficiently high order, which gives
a discrete approximation of order p2 � p1 � 1. See Zennaro [269] and Section 6.3 for details.

• For the estimation of the discrete local error, Richardson extrapolation is an option. This
method is based on a single one-step method, which is applied on the interval rtl, tl � hl�1s
once with a stepsize hl�1, and then with two steps of length hl�1{2. Note that for ODEs
with smooth right-hand-side functions, this approach can be used to generate, in principle,
approximations of arbitrary high order, whereas for DDEs the maximum discrete local order
that can be achieved is limited by the order of the error in the approximation of past states.

• Monitoring the so-called defect, in the context of ODE-IVPs defined as εptq :� ηl�1ptq �
fpt, ηl�1ptq, cq, can also serve as a basis for error control, see Enright [94]. More precisely, it
can be shown that both the discrete local error and the uniform local error are asymptotically
bound by hl�1K maxtl¤t¤tl�1

}εptq} for some K   8. Hence, controlling the defect implies
also a control of the discrete and uniform local errors. The generalization of this defect control
strategy to DDE-IVP solvers is described in Enright [95].
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DDEs

Die praktische Durchführung erfordert einige programmiertechnische
Kunstfertigkeit, wenn auf zugleich einfache und narrensichere Weise
alle auftauchenden Möglichkeiten erfaßt und bewältigt werden sollen.

Bulirsch, in the lecture notes of a presentation at the Carl-Cranz-
Gesellschaft [51], commenting on the difficulty to implement a
practical solver for initial value problems with implicitly defined
discontinuities.

In Chapter 5, the mathematical foundation for the use of the modified standard approach has
been established by giving a well-posedness and a convergence result. Further, the proportionality
of the bound of the global error with respect to the tolerance in a common local error control
strategy has been discussed. These results are the basis for the development of the COLloca-
tion SOLver for Delay Differential Equations (Colsol-DDE), a new software package for solving
initial value problems (IVPs) in impulsive hybrid discete-continuous delay differential equations
(IHDDEs). This chapter gives the details of the algorithms that are used in Colsol-DDE for this
purpose.

Survey of Existing Solvers

The number of available solvers that are able to solve IVPs in ordinary differential equations (ODE-
IVPs) is very large. Hence, it is not attempted here to give an overview of the available codes for
this comparably simple class of differential equations.

Naturally, any ODE-IVP solver can also be applied naively to an HODE-IVP by simply im-
plementing a discontinuous right-hand-side function. However, since the right-hand-side function
then violates the smoothness assumptations on which the ODE-IVP solver is based, solvers with
fixed stepsizes may be inaccurate. Further, solvers with variable stepsizes may fail to solve the
problem, or they may undergo a large number of rejected steps in the vicinity of the discontinuity
points and thus become very inefficient. Therefore, when solving HODE-IVPs numerically, it is
highly recommended to use special solvers that are designed for the treatment of such problems.
In any case, the use of special solvers is indispensable for treating IHODE-IVPs, because the code
must be aware of the fact that an impulse has to be applied to the state vector at time points that
are in general only defined implicitly.

The following tailored solvers are available for the numerical solution of HODE-IVPs and
IHODE-IVPs: DASPKE by Mao and Petzold [184], RKFSWT by Kirches [160], and to the collec-
tion of ODE solvers currently incorporated into MATLAB [186], see also Shampine, Gladwell, and
Thompson [232].

It is therefore sufficient to restrict the further discussion to solvers for IVPs in differential equa-
tions with time delays. The following overview of computer programs gives details about the
problem classes that can be solved as well as on the employed numerical methods.

• Archi by Paul [203] can solve DDE-IVPs with multiple state-dependent delays. In addition,
IVPs in so-called “DDEs of neutral type” can be solved, and also a limited class of “integro-
differential equations”. The solver is based on embedded explicit Runge-Kutta methods
developed by Dormand and Prince [80] of order 4 and 5. A fifth-order Hermite interpolant
suggested by Shampine [229] is used as continuous representation. Tracking of discontinuities
is optional. The implementation language is FORTRAN77.

• dde23 by Shampine and Thompson [233] can solve DDE-IVPs with multiple constant delays.
In addition, the code is designed for the solution of HDDE-IVPs and IHDDE-IVPs. The
solver relies on a pair of explicit Runge-Kutta formulae of order 2 and 3 by Bogacki and
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Shampine [46], together with a cubic Hermite interpolant as continuous representation. The
solver tracks discontinuities, and since the solver is designed for constant delays only, all
propagated discontinuities can be computed in advance in the context of DDE-IVPs. The
solver is implemented in MATLAB.

• ddesd by Shampine [230] can solve DDE-IVPs with multiple state-dependent delays. In
addition, it can be used for solving HDDE-IVPs and IHDDE-IVPs. It is based on the
“classic” explicit Runge-Kutta method of order 4 together with a cubic Hermite interpolant as
continuous representation. Defect control as suggested by Enright [94] is used in the variable-
stepsize strategy. The code does not track discontinuities but relies on the control of the defect
to include discontinuity points approximately in an automatic way. The implementation is
in MATLAB.

• HBO414DDE by Yagoub, Nguyen-Ba, and Vaillancourt [264] can solve DDE-IVPs with mul-
tiple state-dependent delays. The solver is based on a variable-step variable-order general
linear method for ODE-IVPs as described in Nguyen-Ba et al. [194]. A Hermite interpo-
lation procedure is employed to approximate the solution at non-mesh time points. Only
those discontinuities are tracked that cause a rejection of a stepsize. The implementation is
in C++.

• DDEM by ZivariPiran [271] and ZivariPiran and Enright [272] is a software package for
DDE-IVPs with multiple state-dependent delays. In addition, it is designed for “DDE-IVPs
of neutral type”. It is worth remarking that DDEM is, strictly speaking, not an IVP solver,
but rather a software framework. In principle, DDEM can make use of any underlying ODE-
IVP solver that provides a continuous representation. The present implementation is based
on a continuous explicit Runge-Kutta method of order 6 as developed in Enright and Yan
[100], and defect control is used in the error estimation and stepsize selection strategy. The
code tracks discontinuities and is implemented in C/C++.

• DDE-STRIDE by Butcher [54], also described in Baker, Butcher, and Paul [12], solves DDE-
IVPs with multiple state-dependent delays. It can also be used to solve IVPs in “DDEs
of neutral type”. The code is a modified version of STRIDE by Burrage, Butcher, and
Chipman [53], which is based on so-called “singly implicit Runge-Kutta methods”. These
methods are non-standard in the sense that their abscissae are outside of the interval r0, 1s.
The code adapts both stepsize and order during the integration. The error estimation and
control relies on embedded formulae. The continuous representation of the method is based on
Laguerre polynomials. DDE-STRIDE does not track the discontinuities. The implementation
language is FORTRAN77.

• DDE SOLVER by Thompson and Shampine [246] can solve DDE-IVPs with multiple state-
dependent delays. In addition, it is suitable for HDDE-IVPs and IHDDE-IVPs as well as for
IVPs in “DDEs of neutral type”. DDE SOLVER is the successor of DKLAG6, see Corwin,
Sarafyan, and Thompson [70]. Both codes are based on explicit, embedded continuous Runge-
Kutta methods of orders 5 and 6. DDE SOLVER tracks discontinuities and is implemented
in Fortran90/95.

• DDVERK by Hayashi [144] and Enright and Hayashi [96] is a program for solving DDE-IVPs
with multiple state-dependent delays. “DDE-IVPs of neutral type” can also be solved. The
code is based on continuous explicit Runge-Kutta methods. Defect control is used in the
error estimation and variable-stepsize strategy. The code does not track discontinuities, but
instead relies on the techniques developed in Enright et al. [98] for the treatment of ODE-IVPs
with discontinuous right-hand-side function. The fact that DDVERK features this strategy
provides motivation for an application of the code to HDDE-IVPs. The implementation is
in FORTRAN77.

• DELSOL by Willé and Baker [255] solves DDE-IVPs with multiple state-dependent delays
and is based on an Adams PECE linear multi-step method. The method adapts stepsize
and order during the integration. The code tracks discontinuities and is implemented in
FORTRAN77.

• DMRODE by Neves [193] solves DDE-IVPs with state-dependent delays, but with the re-
striction that each component of the state vector is evaluated at one past time point at
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most. It is based on an explicit Runge-Kutta method of order 4 equipped with an Hermite
interpolant as continuous representation. DMRODE does not feature an automatic tracking
of discontinuities.

• PAI4D by Weiner and Strehmel [253] is a program for solving DDE-IVPs with a single con-
stant delay. The solver relies on a class of methods called “adaptive Runge-Kutta method”,
or “Rosenbrock-type methods”, which can be regarded as a linearization of a diagonally im-
plicit Runge-Kutta method (cf. Strehmel and Weiner [243] and Hairer and Wanner [127],
page 102ff). The main focus of the code is to automatically detect and address a possible
stiffness of the problem. Lagrange and Hermite interpolants of order 2 and 3 are used as
continuous representation, and Richardson extrapolation is employed in the error control
strategy. PAI4D is implemented in FORTRAN77.

• RADAR5 by Gugliemi and Hairer [122, 123] can solve DDE-IVPs with multiple state-
dependent delays. In addition, it can deal with a very general class of “implicit delay differ-
ential equations”, “delay-differential-algebraic” equations, and “DDEs of neutral type”. The
solver has been developed as a variant of the ODE-code RADAU5 (Hairer and Wanner [127],
page 568) based on the three-stage Radau IIA collocation method, i.e. an implicit Runge-
Kutta method. The collocation polynomial induced by the method is used as continuous
representation of the solution. By default, RADAR5 employs an algorithm that includes
only “significant” discontinuities into the mesh, however, restrictive discontinuity tracking is
optional. The code is written in Fortran90.

• A variant of RKFSWT (Kirches [160]) as described in Ernst [101]. This program solves DDE-
IVPs with multiple state-dependent delays. It is designed in such a way that the user can
choose from various embedded explicit Runge-Kutta methods. Hermite-Birkhoff interpola-
tion is used, or, if this does not provide a continuous representation of sufficiently high order
as compared to the discrete local order of the Runge-Kutta method, the “bootstrapping pro-
cess” of Enright et al. [99] is employed. The code tracks discontinuities and is implemented
in C/C++.

• REBUS by Bock and Schlöder [43] solves DDE-IVPs with multiple state-dependent delays.
REBUS is a variable-stepsize, variable-order code based on Adams PECE formulae. The
code was, to the knowledge of the author, the first to provide an error-controlled continuous
representation and to track discontinuities.

• RETARD by Hairer, Nørsett, and Wanner [127] solves DDE-IVPs with multiple state-depen-
dent delays by using the embedded Runge-Kutta methods of orders 4 and 5 suggested by
Dormand and Prince [80] with a continuous approximation of order 4. The code does not
track discontinuities and is realized in FORTRAN77.

• RKFHB4 by Oppelstrup [198] solves DDE-IVPs with multiple constant or time-dependent
delays. The solver is based on a embedded Runge-Kutta methods of order 4 and 5 and uses
a 4-th order Hermite-Birkhoff interpolant as continuous representation. The code does not
track discontinuities.

• SNDDELM by Jackiewicz and Lo [154] solves DDE-IVPs with multiple state-dependent
delays. In addition, it is designed for solving “DDEs of neutral type”. SNDDELM is a
realization of a variable-order Adams-Bashforth-Moulton multi-step method. The code does
not track discontinuities but instead relies on the error control strategy to include them
approximately.

• Solv95 by Wood [259] is a code for solving HDDE-IVPs and IHDDE-IVPs with multiple
state-dependent delays. “DDEs of neutral type” can also be solved. The solver is based on
explicit Runge-Kutta methods of orders 2 and 3 equipped with a cubic Hermite polynomial.
The program is written in C. In addition, an interface to R has been made available by the
PBSddesolve package of Schnute, Couture-Beil, and Haigh [226].

• SYSDEL by Karoui and Vaillancourt [155, 156] solves DDE-IVPs with multiple state-de-
pendent delays by using explicit Runge-Kutta methods with a 3-point Hermite interpolation
as continuous representation. SYSDEL tracks discontinuities and is implemented in FOR-
TRAN77.
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A small number of additional legacy codes is mentioned in Bellen and Zennaro [26] and Binder [32].

Features of the New Solver Colsol-DDE

The new solver Colsol-DDE, implemented in Fortran95, contributes to the existing collection of
solvers in the following ways.

First of all it is observed that only a relatively small number of the above-listed codes are
based on implicit methods. The exceptions are the implicit Runge-Kutta codes DDE-STRIDE
and RADAR5, the Adams PECE methods in DELSOL, REBUS, SNDDELM and the Rosenbrock-
type method in PAI4D. Colsol-DDE makes use of implicit Runge-Kutta methods of collocation
type and uses exclusively implicit strategies in the stepsize-selection mechanism. It is thus among
the few existing solvers that are able to solve stiff DDE-IVPs.

Second, Colsol-DDE is able to solve HDDE-IVPs and IHDDE-IVPs with multiple state-depend-
ent delay and switching functions. Among the existing solvers, this feature is only found in dde23,
ddesd, DDE SOLVER, and Solv95. Note that none of these solvers is based on implicit methods.

A third property of Colsol-DDE that is not commonly found in DDE solvers is that it closely
follows the definition of the practical variant of the modified standard approach. As discussed in
Chapter 5, this incorporates the use of extrapolations if a current trial step is such that a deviating
argument crosses a discontinuity point in the past. By using extrapolations, the determination of
propagated discontinuity points can be done accurately and efficiently. Even among those DDE
solvers that track discontinuities, only a few use extrapolations. To the author’s knowledge, this is
only the case in REBUS, DDEM, RADAR5, and RKFSWT. Note that, of these three codes, only
RADAR5 is based on an implicit method, and none can solve IHDDE-IVPs.

The combination of features mentioned so far provides already sufficient justification for the
presentation of a new solver. However, the most important property of Colsol-DDE – and the
main reason for its development – is its capability to compute the derivative of the IVP solution
with respect to parameters in the model functions. The property to compute these sensitivities is
unique among IHDDE-IVP solvers. Furthermore, even for the case of DDEs, there is at present
only one alternative solver that computes sensitivities, namely DDEM.

Organization of This Chapter

At first, Runge-Kutta methods of collocation type are introduced, which constitute the basis of
Colsol-DDE (Section 6.1). After that, the implicit uniform correction procedure is presented for
computing a continuous representation, whose uniform local order is equal to the discrete local
order of the collocation method (Section 6.2). By application of an implicit quadrature rule, a
higher order discrete approximation is obtained (Section 6.3). It is remarked that up to this point
in the chapter, only ODEs are considered for notational simplicity.

The extension to DDEs follows in Section 6.4. Since Colsol-DDE relies on implicit methods in
order to be suitable for stiff differential equations, nonlinear equation systems need to be solved
in every integration step. Section 6.5 discusses the details of a Newton-type method that is used
for this purpose. In Section 6.6 it is discussed how the results are used for constructing the error
estimates. Investigating the stability properties both of the advancing method and of the error
estimates is the subject of Section 6.7.

Section 6.8 gives an overview over the “core algorithm” in Colsol-DDE, i.e. everything that is
needed for the solution of DDE-IVPs on intervals where the solution is smooth. The mechanisms
for detecting discontinuities and including them into mesh, which are wrapped around this core
algorithm, are the subject of the concluding Section 6.9.

For the sake of completeness, it should be mentioned that the presentation of the computational
methods that are used in Colsol-DDE for the purpose of sensitivity computation is deferred to
Chapter 9.

Notation

As in Chapter 5, the notation gp�, �q P C ppAx1 � Ax2 ,Rng q means that the function g is p-times
continuously differentiable with respect to both arguments x1 and x2 on the sets Ax1 , Ax2 . Further,
the notation gp�, x2q P C ppAx1

,Rng q means that for a given fixed x2, the function g is p-times
continuously differentiable with respect to x1 on the set Ax1

.
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Further, also in agreement with Chapter 5, the symbol } � } represents any of the norms } � }1,
} � }2, or } � }8 on a finite-dimensional space.

6.1. Runge-Kutta Methods of Collocation Type

The Collocation Solver for DDEs is based on a special class of continuous Runge-Kutta methods
(CRK methods) called Runge-Kutta methods of collocation type. The methods are introduced here
in the context of ODE-IVPs. The generalization to DDE-IVPs is considered later in Section 6.4.

6.1.1. Theoretical Background

For the presentation of this section, and also for the rest of the chapter, some of the notation of
Chapter 5 is recalled. That is, for solving the ODE-IVP

9yptq � fpt, yptq, cq (6.1a)

yptinipcqq � yinipcq, (6.1b)

set t0 � tinipcq, y0 � yinipcq. Then apply, in each step tl Ñ tl�1 � tl � hl�1, a CRK method with
abscissae γi, weights βj , continuous weight functions bjpθq, and coefficients ai,j :

yl�1 � yl � hl�1

ν̧

j�1

βjg
j
l�1 (6.2a)

ηl�1ptl � θhl�1q � yl � hl�1

ν̧

j�1

bjpθqgjl�1 (6.2b)

gjl�1 � fptjl�1, y
j
l�1, cq (6.2c)

yjl�1 � yl � hl�1

ν̧

k�1

aj,kg
k
l�1. (6.2d)

Herein, tjl�1 � tl � γjh
j
l�1. Further, yl�1 is the discrete approximation of the exact ODE-IVP

solution y at tl�1, and ηl�1ptl � θhl�1q is the continuous representation of the solution, which
provides a continuous approximation of yptq for t P rtl, tl�1s.

The defining property of collocation methods is that the time derivative of the continuous rep-
resentation and the evaluation of the right-hand-side function coincide at the abscissae.

Definition 6.1 (Runge-Kutta Methods of Collocation Type, Collocation Methods)

Consider a CRK with ν stages and a continuous extension ηptq that is given piecewise by polyno-
mial functions ηl�1ptq of degree ν. Assume that for any continuous ODE right-hand-side function
fpt, yptq, cq it holds that

9ηl�1ptil�1q � fptil�1, ηl�1ptil�1q, cq for 1 ¤ i ¤ ν and 0 ¤ l ¤ nm � 1. (6.3)

Then the Runge-Kutta method is called a Runge-Kutta method of collocation type, or, in short,
a collocation method.

The weights βj , continuous weight functions bjpθq, and coefficients ai,j of a collocation method
depend only on the abscissae γj , as the following theorem shows.

Theorem 6.2 (Weights, Continuous Weight Functions, and Coefficients for Collocation
Methods)

Let γj, 1 ¤ j ¤ ν, be pairwise distinct abscissae of a collocation method. Then the collocation
method has continuous weight functions, coefficients, and weights that are given by

bjpθq �
» θ

0

Ljpθ1qdθ1 (6.4a)

ai,j � bjpγiq �
» γi

0

Ljpθ1qdθ1 (6.4b)

βj � bjp1q. (6.4c)
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Herein, Ljpθq, 1 ¤ j ¤ ν, are the Lagrange interpolation polynomials to the abscissae:

Ljpθq �
ν¹

i�1,i�j

θ � γi
γj � γi

. (6.5)

In turn, if the coefficients of a CRK method are given by equations (6.4), then it is a collocation
method, i.e. its continuous extension ηl�1ptq fulfills equation (6.3) in all integration steps and for
all continuous right-hand-side functions f .

Proof (cf. Hairer, Wanner, and Lubich [128])
From the general form (6.2b) of continuous representations of RK methods and from the defining
relation (6.3) of a collocation method, it follows that

ν̧

j�1

9bjpγiqgjl�1 � fptil�1, ηl�1ptil�1q, cq for 1 ¤ i ¤ ν. (6.6)

This equation should hold independent of the right-hand-side function f . Hence, set

9bjpγiq �
#

1 if i � j

0 else
, for 1 ¤ i ¤ ν, 1 ¤ j ¤ ν. (6.7)

The degree of the interpolation polynomial of a collocation method is ν, hence the functions 9bjpθq
are polynomials of degree ν � 1. By the ν conditions in equation (6.7), the functions 9bjpθq are
uniquely identified as Lagrange polynomials. From this, and by using the continuity of ηl�1ptq at
tl, equations (6.4a) follows by integration.

Further, equation (6.4c) follows from the continuity of the continuous representation at tl�1.
For equation (6.4b), recall on the one hand that gjl�1 � fptjl�1, y

j
l�1, cq by definition, and observe

on the other hand that equations (6.6) and (6.7) give gjl�1 � fptjl�1, ηl�1ptjl�1q, cq. For arbitrary

right-hand-side functions f , this only holds if yjl�1 � ηl�1ptjl�1q. This directly yields the relations
(6.4b).

For the reverse direction, simply insert the equations (6.4) into the general form of CRK methods
and verify by standard analysis that the defining relation (6.3) of a collocation method is fulfilled.�

In general, Theorem 6.2 allows to derive collocation methods for any arbitrary choice of pairwise
distinct abscissae. The discrete and uniform local orders of the derived methods can then be
determined by verifying the order conditions in Lemma 5.12. In particular, for the uniform local
order, the following result is obtained.

Theorem 6.3 (Uniform Local Order of Collocation Methods)

The uniform local order of a collocation method with ν stages is given by q � ν.

Proof
See Hairer, Nørsett, and Wanner [126], page 213f. �

From Definition 5.5 it is clear that the discrete local order p is greater than or equal to the uniform
local order q. In order to obtain a method with p ¡ q, i.e. a so-called superconvergent method, the
abscissae have to be chosen in a special way. For particular choices of the abscissae, the following
methods are obtained:

• Gauss collocation, which uses for the abscissae γi, 1 ¤ i ¤ ν, the zeros of the function
dνpxνpx� 1qνq{dxν . The resulting methods have discrete local order p � 2q � 2ν.

• Radau IIA collocation, which uses for the abscissae γi, 1 ¤ i ¤ ν, the zeros of the function
dν�1pxν�1px� 1qνq{dxν�1. The last abscissa is always γν � 1. The resulting methods have
discrete local order p � 2q � 1 � 2ν � 1.

• Lobatto IIIA collocation, which uses for the abscissae γi, 1 ¤ i ¤ ν, ν ¥ 2, the zeros of the
function dν�2pxν�1px� 1qν�1q{dxν�2. The first and the last abscissae are always γ1 � 0 and
γν � 1. The resulting methods have discrete local order p � 2q � 2 � 2ν � 2.
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It is remarked that the methods that are commonly termed Radau IA, Lobatto IIIB, and Lobatto
IIIC are so-called discontinuous collocation methods. The functions ηl�1ptl � θhl�1q implied by
these methods fulfill the collocation condition (6.3), but violate the continuity condition (5.4)
either at θ � 0 or at θ � 1 (or both), see Hairer, Wanner, and Lubich [128], page 36.

For the solution of ODE-IVPs, using a superconvergent method is computationally attractive
because a high order approximation of the solution is obtained at the mesh points at comparably
low computational costs. However, in the view of Theorem 5.21, superconvergence properties of a
method are typically lost when applied to DDE-IVPs. Only for constant or time-dependent delays,
and under severe restrictions on the stepsizes that lead to so-called constrained meshes, it is possible
to obtain a superconvergent method for DDEs, see Bellen and Zennaro [26], page 159f. On the
downside, the use of constrained meshes does not allow to select the stepsizes efficiently based on
local error estimates (see Subsection 5.5.3), so that this approach is rarely used in practice.

6.1.2. Collocation Methods in Colsol-DDE

The basis of Colsol-DDE are the Gauss collocation method with one stage (i.e. the implicit midpoint
rule) the Radau IIA collocation method with two stages, and the Lobatto IIIA collocation method
with three stages. They have the Butcher tableaus given in Table 6.1 and the following continuous
weight functions: b1pθq � θ for the one-stage Gauss collocation method, b1pθq � � 3

4θpθ � 2q and
b2pθq � 3

4θpθ� 2
3 q for the two-stage Radau IIA collocation method, and b1pθq � 2θ

�
1
3θ

2 � 3
4θ � 1

2

�
,

b2pθq � �4θ2
�

1
3θ � 1

2

�
and b3pθq � 2θ2

�
1
3θ � 1

4

�
for the three-stage Lobatto IIIA collocation

method.
According to the general results for the discrete and uniform local orders of collocation methods,

it follows that pp, qq � p2, 1q for one-stage Gauss collocation, pp, qq � p3, 2q for two-stage Radau IIA
collocation, and pp, qq � p4, 3q for three-stage Lobatto IIIA collocation. Hence, the employed
methods are superconvergent, but the uniform local order is only one order lower than the discrete
local order. This is important in order to ensure that the order of the discrete local error equals the
discrete local order in the context of DDE-IVPs, in particular if overlapping occurs, see Section 6.4.

1
2

1
2

1

(a)

1
3

5
12

�

1
12

1 3
4

1
4

3
4

1
4

(b)

0 0 0 0

1
2

5
24

1
3

- 1
24

1 1
6

2
3

1
6

1
6

2
3

1
6

(c)

Table 6.1.: Butcher Tableaus of (a) the one-stage Gauss collocation method, (b) the two-stage
Radau IIA collocation method and (c) the three-stage Lobatto IIIA collocation method

6.2. The Uniform Correction Procedure

For the three collocation methods presented in Subsection 6.1.2 the discrete local order p and the
uniform local order q are related in such a way that q � p � 1. Colsol-DDE uses the uniform
correction procedure, suggested by Zennaro [268, 269] and Bellen and Zennaro [25, 26], for the
computation of another continuous representation that has uniform local order p. For notational
convenience, the application to ODE-IVPs is regarded first and the generalization to DDE-IVPs
is deferred to Section 6.4.

6.2.1. Theoretical Background

Before formulating the algorithm for the uniform order corrections, some theory is established. For
this purpose, the notion of the local problem is recalled from Chapter 5. The local problem in step
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tl Ñ tl�1 is defined by

9ul�1ptq � fpt, ul�1ptq, cq (6.8a)

ul�1ptlq � yl. (6.8b)

In the following, let ul�1ptq be the exact solution of the local problem.

Definition 6.4 (Natural Continuous Extensions, Asymptotic Orthogonality Condition)

If, for any right-hand-side function fp�, �, cq P C ppR�Rny ,Rny q, the continuous representation ηptq
satifies the asymptotic orthogonality condition» tl�1

tl

Gptqr 9ul�1ptq � 9ηptqsdt � Ophp�1
l�1 q (6.9)

uniformly on all intervals rtl, tl�1s and for all matrix-valued functions Gptq P C ppR,RnG�ny q, then
the continuous representation ηptq of the CRK method is called a natural continuous extension.

Concerning the existence of natural continuous extensions, regard the following theorem.

Theorem 6.5 (Existence of Natural Continuous Extensions)

For any CRK method of discrete local order p, there exists a natural continuous extension that is
at least of uniform local order q � tp�1

2 u.

Proof
See Bellen and Zennaro [26], page 124. �

For reasons of efficiency, the uniform correction procedure that is presented later in this section
makes use of time points of inner superconvergence, defined as follows.

Definition 6.6 (Time Points of Inner Superconvergence)

Assume that the continuous extension of a CRK method is of uniform local order q, i.e. it holds

max
tl¤t¤tl�1

}ul�1ptq � ηl�1ptq} � Ophq�1
l�1 q (6.10a)

max
tl¤t¤tl�1

} 9ul�1ptq � 9ηl�1ptq} � Ophql�1q (6.10b)

for all intervals and all sufficiently smooth right-hand-side functions f . If there exist inner time
points tl � θ̄hl�1, θ̄ P p0, 1q, or tl � ¯̄θhl�1, ¯̄θ P p0, 1q, such that

}ul�1ptl � θ̄hl�1q � ηl�1ptl � θ̄hl�1q} � Ophq�2
l�1 q (6.11a)

} 9ul�1ptl � ¯̄θhl�1q � 9ηl�1ptl � ¯̄θhl�1q} � Ophq�1
l�1 q (6.11b)

for all intervals and all sufficiently smooth right-hand-side functions f , then the times θ̄ and ¯̄θ are
called time points of inner superconvergence for ul�1ptq and 9ul�1ptq.

In the context of Colsol-DDE, the interior abscissae of the collocation methods are time points
of inner superconvergence for 9ul�1ptq.
Lemma 6.7 (Time Points of Inner Superconvergence for Collocation Methods)

Let γj P p0, 1q be an interior abscissa of a collcation method and assume that the right-hand-side
function fpt, y, cq is continuous and Lipschitz continuous with respect to y with Lipschitz constant
Lf . Then γj is a time point of inner superconvergence for 9ul�1ptq.
Proof
At the abscissae of the collocation method it holds that 9ηl�1ptl�γjhl�1q � fptl�γjhl�1, ηl�1ptl�
γjhl�1q, cq. Therefore, it follows that

} 9ul�1ptl � γjhl�1q � 9ηl�1ptl � γjhl�1q}
�}fptl � γjhl�1, ul�1ptl � γjhl�1q, cq � fptl � γjhl�1, ηl�1ptl � γjhl�1q, cq}
¤Lf }ul�1ptl � γjhl�1q � ηl�1ptl � γjhl�1q}. (6.12)

By the uniform local order q of the CRK method, it follows that this term is Ophq�1
l�1 q. �
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In the context of Gauss collocation methods, Zennaro [268] has presented an algorithm that starts
with the collocation polynomial (which has uniform local order q) and constructs, successively,
continuous representations of higher order up to a uniform local order q̃, q   q̃ ¤ p. The concept
of natural continuous extensions made it possible to generalize the approach such that it can be
applied to all Runge-Kutta methods, see Zennaro [269]. For stiff ODE-IVPs, an implicit variant is
suggested in Bellen and Zennaro [25] that exhibits better stability properties, see also Section 6.7
below. Bellen and Zennaro [26] contains a modification of the implicit variant, which is replicated
here:

Algorithm 6.8 (Implicit Uniform Correction Procedure)

1. Start with a CRK method of discrete local order p, which employs a natural continuous rep-
resentation ηl�1ptq of uniform local order q. Set r � q. Further, for a shorter notation,
define ϕrptq :� ηl�1ptq, thereby dropping the subscript l�1 of the current step and including,
instead, the uniform local order r. The goal is to determine a polynomial continuous repre-
sentation ϕr�1ptq of degree r � 1 by formulating r � 2 linearly independent conditions on its
coefficients.

2. Identify the K 1
1 and K 1

2 time points of inner superconvergence of ϕrptq for ul�1ptq and 9ul�1ptq
(possibly K 1

1 � 0 and/or K 1
2 � 0).

3. Remove from the so-defined set of time points of inner superconvergence as many points
as necessary such that the following K1 � K2 � p � r � 1 conditions on ϕr�1 are linearly
independent:

(i) ϕr�1ptl � θ̄khl�1q � ϕrptl � θ̄khl�1q for 1 ¤ k ¤ K1, (K1 ¤ K 1
1).

(ii) 9ϕr�1ptl � ¯̄θkhl�1q � 9ϕrptl � ¯̄θkhl�1q for 1 ¤ k ¤ K2, (K2 ¤ K 1
2).

(iii)
³tl�1

tl
pt� tlqi 9ϕr�1ptqdt �

³tl�1

tl
pt� tlqi 9ϕrptqdt for 1 ¤ i ¤ p� r � 1.

(iv) ϕr�1ptlq � yl, and ϕr�1ptl�1q � yl�1.

4. Choose θ�k , 1 ¤ k ¤ K3, K3 � 2r�1�p�K1�K2 ¥ 0 such that the following collocation-like
conditions are linearly independent of the K1 �K2 � p� r � 1 conditions given in step 3:

(v) 9ϕr�1ptl � θ�khl�1q � fptl � θ�khl�1, ϕr�1ptl � θ�khl�1q, cq.
Thereby θ�k � 0 and θ�k � 1, unless 0 or 1 are abscissae of the basic CRK method.

5. Solve the r� 2-dimensional equation system of the conditions (i)-(v), which uniquely defines
the polynomial continuous representation ϕr�1ptq of degree r � 1.

6. The steps 2 to 5 can be repeated with r Ñ r� 1 until a polynomial continuous representation
ϕm of the desired degree q   m ¤ p is obtained.

The following theorem constitutes the main result for the implicit uniform correction procedure.

Theorem 6.9 (Properties of the Polynomial Continuous Representations obtained by
Algorithm 6.8)

The polynomials ϕm, for q � 1 ¤ m ¤ p, generated by Algorithm 6.8, have uniform local order m,
and they fulfill the asymptotic orthogonality condition (6.9).

Proof
Zennaro [268] contains a proof of the original uniform order correction method. This can be
generalized to the implicit variant quoted here. �

It is remarked that a violation of the requirement θ�k � 0 and θ�k � 1 on the abscissae of the
additional collocation-like conditions 4 does not affect the conclusions of Theorem 6.9. These
requirements are imposed for stability reasons only.
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6.2.2. Application to the Collocation Methods in Colsol-DDE

Gauss Collocation

Regard first the Gauss collocation method with one stage, which has discrete local order 2 and
which provides, on each interval rtl, tl�1s, a continuous representation ϕ1ptq :� ηl�1ptq of uniform
local order 1. By application of Algorithm 6.8, a polynomial continuous representation ϕ2ptq should
be determined that has degree and order 2. It is convenient to make the following ansatz:

ϕ2ptq � ϕ1ptq � δptq, (6.13)

where

δptl � θhl�1q � δ0 � δ1θ � δ2θ
2. (6.14)

Three linear independent conditions are needed to uniquely determine the coefficients δ0, δ1, and
δ2. From the continuity conditions (iv) in step 3 of Algorithm 6.8, the two equations

δ0 � 0 and δ0 � δ1 � δ2 � 0 (6.15)

are obtained. Due to the collocation condition, the continuous representation ϕ1ptq has an inner
superconvergence point at θ � 1{2, hence K 1

2 � 1. However, condition (ii) in Algorithm 6.8 on
9δptl � θhl�1q at θ � 1{2 yields

δ1 � δ2 � 0, (6.16)

which is linearly dependent on the two previous conditions and can therefore not be exploited.
Therefore, K2 � 0 and that K3 � 1. Using an arbitrary point θ�1 in the additional collocation-like
condition (v), the following relation is obtained:

9δptl � θ�1hl�1q �δ1 � 2δ2θ
�
1

hl�1

�fptl � θ�1hl�1, ϕ1ptl � θ�1hl�1q � δptl � θ�1hl�1q, cq � 9ϕ1ptl � θ�1hl�1q
�:g�pθ�1 q. (6.17)

Together, the equations (6.15) and (6.17) give

δ0 � 0, δ1 � hl�1
g�pθ�1 q
1� 2θ�1

, δ2 � �hl�1
g�pθ�1 q
1� 2θ�1

(6.18)

provided that θ�1 � 1{2. In Colsol-DDE, the choice is θ�1 � 1{3. It therefore follows that

δptl � θhl�1q � �3pθ2 � θqhl�1g
�

�
1

3



. (6.19)

By defining g�l�1 :� g�p1{3q and b�pθq � �3pθ2 � θq, the continuous representation ϕ2ptq of order
2 can be expressed as

ϕ2ptq � yl � hl�1b1pθqg1
l�1loooooooooomoooooooooon

ϕ1ptq

�hl�1b�pθqg�l�1. (6.20)

Radau IIA Collocation

Consider next the Radau IIA collocation method with two stages, which has discrete local order
3 and which provides, on each interval rtl, tl�1s, a continuous representation ϕ2ptq of uniform
local order 2. The goal is to find a continuous representation ϕ3ptq of degree and uniform local
order 3. It is again convenient to determine the difference δptq of the two polynomial continuous
representations such that

ϕ3ptq � ϕ2ptq � δptq. (6.21)
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The goal is to find four linear independent conditions for the four coefficients of the polynomial
function δptq:

δptl � θhl�1q � δ0 � δ1θ � δ2θ
2 � δ3θ

3. (6.22)

From the continuity conditions (iv) it follows that

δ0 � 0 and δ0 � δ1 � δ2 � δ3 � 0. (6.23)

The Radau IIA method with two stages has one interior collocation stage at 1{3, i.e. K 1
2 � 1. The

corresponding condition (ii) on 9δptl � θhl�1q at θ � 1{3 reads

δ1 � 2

3
δ2 � 1

3
δ3 � 0, (6.24)

which is linearly independent of the two equations obtained from the continuity conditions (iv).
Hence, it follows that K2 � 1 and that K3 � 1, i.e. one additional collocation-like condition (v)
needs to be formulated in order to obtain a continuous representation of uniform local order 3.
This yields

9δptl � θ�1hl�1q � δ1 � 2δ2θ
�
1 � 3δ3pθ�1 q2
hl�1

� fptl � θ�1hl�1, ϕ2ptl � θ�1hl�1q � δptl � θ�1hl�1q, cq � 9ϕ2ptl � θ�1hl�1q.
�: g�pθ�1 q (6.25)

Together with the equations (6.23) and (6.24), this gives

δ0 � 0, δ1 � δ3 � hl�1
g�pθ�1 q

3pθ�1 q2 � 4θ�1 � 1
, δ2 � �2hl�1

g�pθ�1 q
3pθ�1 q2 � 4θ�1 � 1

, (6.26)

provided that θ�1 � 1{3 and θ�1 � 1. In Colsol-DDE, θ�1 � 1{6 is used, and therefore

δptl � θhl�1q � 12

5
pθ3 � 2θ2 � θqhl�1g

�

�
1

6



. (6.27)

By defining g�l�1 :� g�p1{6q and b�pθq � 12
5 pθ3�2θ2�θq, the polynomial continuous representation

ϕ3ptq of order 3 can be expressed as

ϕ3ptl � θhl�1q � yl � hl�1

2̧

i�1

bipθqgil�1looooooooooooomooooooooooooon
ϕ2ptq

�hl�1b�pθqg�l�1. (6.28)

Lobatto IIIA Collocation

The Lobatto IIIA collocation method with 3 stages has discrete local order 4 and implies a con-
tinuous representation ϕ3ptq of uniform local order 3. By applying Algorithm 6.8, a polynomial
continuous representation ϕ4ptq of uniform local order 4 can be determined as follows. As usual,
the ansatz is

ϕ4ptq � ϕ3ptq � δptq (6.29)

with

δptl � θhl�1q � δ0 � δ1θ � δ2θ
2 � δ3θ

3 � δ4θ
4. (6.30)

Five linear independent conditions are needed in order to determine the coefficients δi. From the
continuity conditions, the equations

δ0 � 0 and δ0 � δ1 � δ2 � δ3 � δ4 � 0 (6.31)
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follow. The Lobatto IIIA method with 3 stages has one interior collocation stage at θ � 1{2, i.e.

K 1
2 � 1. Condition (ii) on 9δptl � θhl�1q at θ � 1{2 reads

δ1 � δ2 � 3

4
δ3 � 1

2
δ4 � 0, (6.32)

which is linearly independent of the equations (6.31).

It follows that K2 � 1 and that K3 � 2, i.e. two additional collocation-like conditions (v) need to
be formulated in order to obtain a continuous representation of order 4. For reasons of efficiency,
one of the additional stages is chosen to be θ�1 � 0, which is acceptable because the Lobatto IIIA
collocation method already employs this abscissa, and which requires no extra computation. This
yields

δ1 � 0. (6.33)

For an arbitrary second additional stage θ�2 the relation

9δptl � θ�2hl�1q �δ1 � 2θ�2 δ2 � 3pθ�2 q2δ3 � 4pθ�2 q3δ4
hl�1

�fptl � θ�2hl�1, ϕ3ptl � θ�2hl�1q � δptl � θ�2hl�1q, cq � 9ϕ3ptl � θ�2hl�1q
�:g�pθ�2 q (6.34)

is obtained. Together with the conditions (6.31), (6.32), and (6.33), this gives

δ0 � δ1 � 0, δ2 � δ4 � hl�1
g�pθ�2 q

4pθ�2 q3 � 6pθ�2 q2 � 2θ�2
, δ3 � �2hl�1

g�pθ�2 q
4pθ�2 q3 � 6pθ�2 q2 � 2θ�2

(6.35)

if θ�2 � 0, θ�2 � 1{2, and θ�2 � 1. Colsol-DDE uses θ�2 � 1{4, so that the correction polynomial
becomes

δptl � θhl�1q � 16

3
pθ4 � 2θ3 � θ2qhl�1g

�
l�1, g�l�1 :� g�

�
1

4



. (6.36)

By defining g�l�1 :� g�p1{4q and b�pθq � 16
3 pθ4 � 2θ3 � θ2q, the continuous representation ϕ4ptq of

order 4 can be expressed as

ϕ4ptq � yl � hl�1

3̧

i�1

bipθqgil�1looooooooooooomooooooooooooon
ϕ3ptq

�hl�1b�pθqg�l�1. (6.37)

The “Augmented” CRK Methods

For all three collocation methods implemented in Colsol-DDE, one additional stage is sufficient to
obtain a continuous representation whose uniform local order is p. Formally the introduction of
this extra stage defines “augmented” CRK methods with Butcher tableaus given in Table 6.2.

The continuous representation associated with the augmented CRK methods are denoted by
ηl�1,pptl � θhl�1q :� ϕpptl � θhl�1q, where the subscripts now refers to both the index of the
current step and to the uniform local order. Denoting, in analogy, the continuous representation
of the basic collocation method as ηl�1,qptl � θhl�1q, yields

ηl�1,pptl � θhl�1q � ηl�1,qptl � θhl�1q � hl�1b�pθqg�l�1. (6.38)

Thereby, b�pθq � �3pθ2�θq for the uniform correction to the one-stage Gauss collocation method,
b�pθq � 12

5 pθ3�2θ2�θq for the uniform correction to the two-stage Radau IIA collocation method,
and b�pθq � 16

3 pθ4�2θ3�θ2q for the uniform correction to the three-stage Lobatto IIIA collocation
method.

Later, e.g. in Section 6.4, it will become necessary to denote explicitly both the index of the step
and the uniform local order of the continuous representation. However, in the next section, the
short-hand notation ϕqptq and ϕpptq will still be used.
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1
2

1
2

0

1
3

1
3

2
3

1 0

(a)

1
3

5
12

�

1
12

0

1 3
4

1
4

0

1
6

11
48

�

3
48

5
18

3
4

1
4

0

(b)

0 0 0 0 0

1
2

5
24

1
3

- 1
24

0

1 1
6

2
3

1
6

0

1
4

1
6

5
48

�

1
48

3
16

1
6

2
3

1
6

0

(c)

Table 6.2.: Butcher Tableaus of the augmented CRK methods, taking into account the extra stages
from the uniform correction procedure.

6.3. A Quadrature Rule Applied to Polynomial Continuous
Representations

The basic collocation method provides, at each mesh point tl�1, an approximation yl�1 of discrete
local order p of the exact solution of the local problem at the new mesh point, i.e. of ul�1ptl�1q.
From now on, this approximation is more precisely called yl�1,p. In this section it is discussed how
a continuous representation of maximum uniform local order p, i.e. ϕpptq, can be used to obtain
an approximation yl�1,p�1 that has order p� 1. The method is introduced here in the context of
ODE-IVPs, and the generalization to DDE-IVPs is done later in Section 6.4.

6.3.1. Theoretical Background

Theorem 6.10 (A Higher Order Discrete Method by Integration)

Consider a CRK method for which the uniform local order of the continuous representation ϕpptq
equals the discrete local order p. The right-hand-side function fpt, y, cq of the ODE-IVP shall be
Lipschitz continuous with respect to y. Then

yint :� yl �
» tl�1

tl

fpt, ϕpptq, cqdt (6.39)

approximates the exact solution of the local problem at the new mesh point, i.e. ul�1ptl�1q, with
discrete local order p� 1:

}ul�1ptl�1q � yint} � Ophp�2
l�1 q. (6.40)

Proof
The result is obtained as follows:

}ul�1ptl�1q � yint} �
����» tl�1

tl

fpt, ul�1ptq, cq � fpt, ϕpptq, cqdt
����

¤ Lf

» tl�1

tl

}ul�1ptq � ϕpptq} dt

¤ Lfhl�1 max
tl¤t¤tl�1

}ul�1ptq � ϕpptq}. (6.41)

Since ϕpptq has uniform local order p, the expression in the last row is obviously Ophp�2
l�1 q. �

Note that fpt, ϕpptq, cq is a general nonlinear function, hence yint can in general not be computed
directly. Fortunately, the discrete local order p� 2 is also obtained for any quadrature rule that is
accurate for polynomials of order p or higher, as seen in the following theorem.
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Theorem 6.11 (Order Result for an Approximation by a Quadrature Rule)

Consider a µ-stage quadrature rule applied to the integral
³tl�1

tl
fpt, ϕpptq, cq, such that

yl�1,p�1 :� yl � hl�1

µ̧

i�1

Bifptl � Γihl�1, ϕpptl � Γihl�1q, cq, (6.42)

where Γi and Bi are the abscissae and weights of the quadrature rule, and where ϕpptq is a polyno-
mial continuous representation of order p. If the quadrature rule is exact for polynomials of order
p (or higher) and the right-hand-side function is fp�, �, cq P C p�1pR�Rny ,Rny q, then it holds that

}ul�1ptl�1q � yl�1,p�1} � Ophp�2
l�1 q. (6.43)

Proof
Consider an interpolation polynomial ρptq of fpt, ϕpptq, cq of degree and order p. Since the right-
hand-side function is p� 1-times continuously differentiable, standard results for the interpolation
error yield

fipt, ϕpptq, cq � ρiptq � Ophp�1
l�1 q (6.44)

for tl ¤ t ¤ tl�1 and all components i � 1, . . . , ny. Accordingly, it holds that

yint � yl �
» tl�1

tl

ρptqdt� Ophp�2
l�1 q. (6.45)

Consider then

}ul�1ptl�1q � yl�1,p�1} ¤ }ul�1ptl�1q � yint} � }yint � yl�1,p�1}, (6.46)

where the first term in the right hand side is Ophp�2
l�1 q by Theorem 6.10. Further, the second term

is also Ophp�2
l�1 q because of equation (6.45) and because the employed quadrature rule is exact for

polynomials up to order p.

The use of quadrature formulas that are exact for polynomials of higher degree than p does
not affect the result, because the error in the first term on the right hand side of equation (6.46)
remains Ophp�2

l�1 q. �

The quadrature rule in equation (6.42) yields an approximation of ul�1ptl�1q of the desired
order p � 1. Unfortunately, good stability properties of the continuous representation ϕpptq are
typically not transferred to the discrete approximation yl�1,p�1 because of the explicit nature of
the quadrature formula (6.42). Therefore, Bellen and Zennaro [25, 26] suggest an implicit variant:

Theorem 6.12 (Order Result for an Approximation by an Implicit Quadrature Rule)

Let the assumptions of Theorem 6.11 be fulfilled and let the last abscissa be Γµ � 1. Assume that
the stepsize is hl�1 ¤ h0 :� BµLf {2. Then the implicit variant of the quadrature rule defined by

yimpll�1,p�1 :�yl � hl�1

µ�1̧

i�1

Bifptl � Γihl�1, ϕpptl � Γihl�1q, cq

� hl�1Bµfptl � hl�1, y
impl
l�1,p�1, cq (6.47)

also provides an approximation such that

}ul�1ptl�1q � yimpll�1,p�1} � Ophp�2
l�1 q. (6.48)

Proof
Because of Theorem 6.11, the assertion apparently follows if the results of the explicit and of the

implicit quadrature rule differ by }yl�1,p�1 � yimpll�1,p�1} � Ophp�2
l�1 q.
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Subtraction of equation (6.42) from (6.47) yields

}yl�1,p�1 � yimpll�1,p�1} � hl�1Bµ

����fptl�1, ϕpptl�1q, cq � fptl�1, y
impl
l�1,p�1, cq

	���
¤ hl�1BµLf

�
}ϕpptl�1q � ul�1ptl�1q} � }ul�1ptl�1q � yl�1,p�1}

�}yl�1,p�1 � yimpll�1,p�1}
	
. (6.49)

Since ϕpptl � hl�1q is identical to the discrete approximation yl�1,p obtained with the collocation

method, the first term in brackets is clearly Ophp�1
l�1 q. Further, the second term is also Ophp�1

l�1 q
because of Theorem 6.11. Hence, the expression

p1� hl�1BµLf q}yl�1,p�1 � yimpll�1,p�1} � Ophp�2
l�1 q (6.50)

is obtained. Clearly, for hl�1 ¤ h0, it holds that p1 � hl�1BµLf q P r1{2, 1s. This completes the
proof. �

For the remainder of this chapter, only the implicit version of the quadrature rule is considered for
obtaining a higher order discrete approximation. Therefore, the superscript impl is from now on
dropped.

It is remarked that solving the equation system (6.47) for yl�1,p�1 is equivalent to solving the
following equation system for its unknowns g♦l�1:

g♦l�1 � fptl�1, yl � hl�1

µ�1̧

i�1

Bifptl � Γihl�1, ϕpptl � Γihl�1q, cq � hl�1Bµg
♦
l�1, cq (6.51)

The systems are transformed into each other by the definition

g♦l�1 � fptl�1, yl�1,p�1, cq. (6.52)

6.3.2. Implementation in Colsol-DDE

In order to obtain approximations of discrete local order p � 1, quadrature formulas are needed
that are accurate for polynomials of order 2, 3, and 4 for Gauss, Radau IIA, and Lobatto IIIA
collocation respectively.

Colsol-DDE uses superconvergent quadrature formulas in order to minimize the number of extra
function evaluations.

In particular, for the one-stage Gauss collocation method the two-stage Radau quadrature for-
mula with abscissa at 1 is employed, which is exact for polynomials up to degree 2. For the
two-stage Radau IIA method, the three-stage Lobatto quadrature formula with abscissa at 1 is
used, which is exact for polynomials up to order 3. Eventually, for the three-stage Lobatto IIIA
method, the three-stage Radau quadrature formula with abscissa at 1 is used, which is exact for
polynomials up to order 4.

6.4. Extension to DDE-IVPs, Computation of Past States

In the Sections 6.1, 6.2, and 6.3 the basic integration methods that are implemented in Colsol-DDE
were presented in the context of ODE-IVPs. This section is concerned with the generalization of
the methods to the solution of DDE-IVPs. The focus lies on the realization of the computation of
past states, which is done in such a way that all employed methods (collocation method, uniform
correction, implicit quadrature rule) always attain their discrete and uniform local order.

In this section, only a single integration step tl Ñ tl�1 is considered, and for the purpose of
computing the past states it is assumed that the discontinuity interval indicators are available.
How the discontinuity interval indicators are obtained in practice in Colsol-DDE is the subject of
Section 6.9.

It is remarked that the solution of IHDDE-IVPs requires, in addition, to monitor the signs of
the switching functions, to locate the zeros of the switching functions, and to apply the impulses.
However, on the level of a single integration step tl Ñ tl�1, the presence of switching functions and
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impulses in the problem formulation does not impose additional difficulties and therefore does not
need to be considered here.

For notational simplicity the presentation is restricted to the case of a single delay τ1. The
extension to the case of multiple delays is straightforward.

As introduced in the previous sections, let yl�1,p and ηl�1,qptl � θhl�1q denote the lower order
discrete and continuous approximations of the exact solution of the local problem, i.e. ul�1ptl�1q
and ul�1ptl � θhl�1q, which are obtained by the collocation methods. Further, let yl�1,p�1 and
ηl�1,pptl � θhl�1q denote the higher order discrete and continuous approximations, which are ob-
tained by the implicit quadrature rule and by the implicit uniform correction procedure, respec-
tively.

6.4.1. Collocation Method

Consider first the application of one of the collocation methods in Colsol-DDE for the solution of
a DDE-IVP. In every step tl Ñ tl�1 � tl � hl�1, the following ν � ny-dimensional equation system
is solved:

gjl�1 � fptjl�1, y
j
l�1, c, v

j
l�1q for 1 ¤ j ¤ ν. (6.53)

For the Lobatto IIIA collocation method, the first stage is explicit, and hence the dimension of the
system is only pν � 1q � ny.

In equation (6.53), yjl�1 is defined by

yjl�1 � yl � hl�1

ν̧

i�1

aj,ig
i
l�1. (6.54)

Further, vjl�1 represents the numerical approximation of the past state. Since the implementation
of Colsol-DDE follows the ideas of the practical variant of the modified standard approach, the
computation is primarily determined by the value of the discontinuity interval indicator ξα1 for the
sole deviating argument α1pt, y, cq � t� τ1pt, y, cq.

In the following, it is described how the use of extrapolations is realized for the computation of
trial steps in Colsol-DDE. Therefore, as in Definition 5.22, denote the time points of the initial
discontinuities up to order p by ŝ�nφs , . . . , ŝ�1 and let, by convention, ŝ0 � tinipcq, regardless of

whether or not the initial time is a point of discontinuity of order less than p (typically, this will
be the case). Further, let ŝj , 1 ¤ j ¤ ns, be the time points of the ns propagated discontinuities
that are detected by the methods presented in Section 6.9 until the mesh point tl. This means
that each time point ŝk is an (approximate) zero of a propagation switching function

σα1,ŝj pt, ηptq, cq � t� α1pt, ηptq, cq � ŝj (6.55)

for at least one j   k. The mechanisms that are implemented in Colsol-DDE to check for uniqueness
of the discontinuity interval indicator are described in Section 6.9.

Computation of Past States from the Initial Function

The computation of past states is carried out depending on the value of the discontinuity interval
indicator ξα1 as follows. If �nφs ¤ ξα1 ¤ 0, then a smooth branch of the initial function (or smooth
extension thereof) is used for computing past states, i.e.

vjl�1 � φξα1 ptjl�1 � τ1ptjl�1, y
j
l�1, cqq. (6.56)

Computation of Past States from a Past Discontinuity Interval

If 1 ¤ ξα1 ¤ ns, let l and l be the indices such that sξα1 �1 � tl and sξα1 � tl, i.e. l and l are the first
and the last mesh point within the past discontinuity interval. The computation of past states is
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then done as follows:

vjl�1 � ηl1�1,pptl1 � θl,jhl1�1q

� yl1 � hl1�1

ν̧

i�1

bipθl,jqgil1�1 � hl1�1b�pθl,jqg�l1�1. (6.57)

The expression in the right hand side is the higher order continuous approximation on the interval
rtl1 , tl1�1s. The index l1 is thereby given as

(i) l1 � l if it holds that tjl�1 � τ1ptjl�1, y
j
l�1, cq   tl (i.e. extrapolation to the left),

(ii) l ¤ l1 ¤ l � 1 if it holds tjl�1 � τ1ptjl�1, y
j
l�1, cq P rtl, tls, and l1 is the index such that

tjl�1 � τ1ptjl�1, y
j
l�1, cq P rtl1 , tl1�1s,

(iii) l1 � l � 1 if it holds that tjl�1 � τ1ptjl�1, y
j
l�1, cq ¡ tl (i.e. extrapolation to the right).

It is clear that the index l1 depends both on the step l and on the stage j, i.e. l1pl, jq would be
a more accurate notation. However, for the sake of brevity, these dependencies are usually not
written explicitly.

The evaluation point θl,j in equation (6.57) is the relative position of the past time point in the
interval rtl1 , tl1�1s:

θl,j �
tjl�1 � τ1ptjl�1, y

j
l�1, cq � tl1

hl1�1
. (6.58)

Whenever the case (ii) occurs, i.e. the past time point is located within the discontinuity interval
indicated by ξα1 , then it holds that θl,j P r0, 1s. However, due to the use of extrapolations in the
modified standard approach, it may happen for a trial stepsize that θl,j is considerably smaller
than 0 or considerably larger than 1 (cases (i) ans (iii)). However, the mechanisms for including
discontinuity points in the mesh that are implemented in Colsol-DDE, presented in Section 6.9,
ensure that for the eventually accepted stepsizes it holds that 0 À θl,j À 1.

Computation of Past States from the Current Discontinuity Interval

Eventually, consider the case that ξα1 � ns � 1, i.e. the past states have to be obtained from the
current discontinuity interval whose left border is the currently last detected discontinuity point
sns . Let l be such that tl � sns . Then the computation of past states is done in the following way:

vjl�1 � yl1 � hl1�1

ν̧

i�1

bipθl,jqgil1�1 � hl1�1Θl,jb�pθl,jqg�l1�1. (6.59)

Herein, the index l1 is given as follows:

(i) l1 � l if it holds that tjl�1 � τ1ptjl�1, y
j
l�1, cq   tl (i.e. extrapolation to the left),

(ii) l ¤ l1 ¤ l � 1 if it holds that tjl�1 � τ1ptjl�1, y
j
l�1, cq P rtl, tls, and l1 is the index such that

tjl�1 � τ1ptjl�1, y
j
l�1, cq P rtl1 , tl1�1s,

(iii) l1 � l if it holds that tjl�1 � τ1ptjl�1, y
j
l�1, cq ¡ tl, i.e. if overlapping occurs.

The evaluation point θl,j in equation (6.59) is given by equation (6.58), i.e. the expression is
formally the same as for the computation of past states from past discontinuity intervals. The
additional factor Θl,j is 1 if l1   l (non-overlapping case), and it is 0 if l1 � l (overlapping case).
This means that in the overlapping case, the lower order approximation ηl�1,qptl � θhl�1q on the
current interval is used, because the higher order approximation is not yet available.

Importantly, the uniform local order q of any of the three employed collocation methods is only
one below the corresponding discrete local order p. Hence, in the view of Theorem 5.21, this is

still sufficient so that the discrete and uniform local errors are Ophp1�1
l�1 q and Ophq1�1

l�1 q with p1 � p
and q1 � q, respectively.

113



Part II. Solutions of IHDDE-IVPs

It is worth mentioning that even in the case of overlapping the stage values vjl�1 in equation (6.53)

can, like yjl�1, be eliminated and expressed in terms of gil�1, 1 ¤ i ¤ ν. Thus, the equation system

can be formulated in such a way that only the quantities gjl�1 occur as unknowns. Contrariwise,

it is not possible to formulate, in the overlapping case, an equation system in which only yjl�1,
1 ¤ j ¤ ν occur as unknowns. This is the reason why the equation system is, in Colsol-DDE and
other practical DDE-IVP solvers, usually formulated for gjl�1 rather than for yjl�1.

6.4.2. Implicit Uniform Correction Procedure

For the three considered methods, the implicit uniform correction procedure consists in solving the
following ny-dimensional equation system in each step tl Ñ tl�1 � tl � hl�1:

g�l�1 � fpt�l�1, y
�
l�1, c, v

�
l�1q � 9ηl�1,qpt�l�1q. (6.60)

Therein, t�l�1 � tl � θ�hl�1 is the additional abscissa of the augmented CRK method, and

y�l�1 �ηl�1,ppt�l�1q

�yl � hl�1

�
ν̧

i�1

bipθ�qgil�1 � b�pθ�qg�l�1

�
(6.61)

is the higher order continuous approximation of the exact solution ul�1 of the local problem at
t�l�1. Further, v�l�1 is the approximation of the past state, whose computation depends on the

discontinuity interval indicator ξα1 . If �nφs ¤ ξα1 ¤ 0, i.e. if the indicator points to a smooth branch
of the initial function, then

v�l�1 � φξα1 pt�l�1 � τ1pt�l�1, y
�
l�1, cqq. (6.62)

If 1 ¤ ξα1 ¤ ns�1, i.e. if the indicator points to a discontinuity interval to the right of tinipcq, then
v�l�1 is given by:

v�l�1 � ηl1�1,pptl1 � θl,�hl1�1q

� yl1 � hl1�1

ν̧

i�1

bipθl,�qgil1�1 � hl1�1b�pθl,�qg�l1�1. (6.63)

In analogy to the collocation method, l1�1 denotes the index of the step tl1 Ñ tl1�1 from which the
continuous representation is used. If the deviating argument is located outside of the discontinuity
interval indicated by ξα1 , extrapolations are used in the same way as discussed in Subsection 6.4.1.
The symbol θl,� denotes the relative position of the value of the past time point on the interval
rtl1 , tl1�1s:

θl,� �
t�l�1 � τ1pt�l�1, y

�
l�1, cq � tl1

hl1�1
. (6.64)

Due to the use of extrapolations, it may happen in trial steps that θl,� R r0, 1s, and only for
eventually accepted stepsizes it holds that 0 À θl,� À 1.

Since the uniform correction procedure itself aims at the determination of g�l�1, no distinction
needs to be made between the overlapping and the non-overlapping case. This means that the
higher order approximation in equation (6.63) is also used if l � l1.

However, since the polynomial continuous representation ηl�1,pptl � θhl�1q is given by

ηl�1,pptl � θhl�1q � yl � hl�1

�
ν̧

i�1

bipθqgil�1 � b�pθqg�l�1

�
, (6.65)

it still consists of the (unchanged) stage values gil�1 of the collocation method. If overlapping occurs,
the computation of these stage values was done by the lower order continuous approximation.
Nevertheless, in view of Theorem 5.21, this is sufficient so that a CRK method can reach uniform
local order p in the current step. Accordingly, the implicit uniform correction procedure will indeed
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provide a continuous representation of degree and order p also in the overlapping case.

6.4.3. Implicit Quadrature Rule

In the context of DDE-IVPs, the defining equation for g♦l�1, i.e. equation (6.47), is generalized to

g♦l�1 � fptl�1, yl�1,p�1, c, v
♦
l�1q. (6.66)

Herein, yl�1,p�1 is given by

yl�1,p�1 �yl � hl�1

µ�1̧

i�1

Bifpt̄il�1, ȳ
i
l�1, c, v̄

i
l�1q � hl�1Bµg

♦
l�1, (6.67)

where t̄il�1 � tl�Γihl�1 are the abscissae of the quadrature rule and ȳil�1 represents the evaluations
of the higher order continuous representation at these abscissae, i.e.

ȳil�1 :� ηl�1,ppt̄il�1q. (6.68)

It remains to discuss the computation of the past states v♦l�1 and v̄il�1, 1 ¤ i ¤ µ � 1, which

depends on the discontinuity interval indicator ξα1 . If �nφs ¤ ξα1 ¤ 0, i.e. if the indicator points to
a smooth branch of the initial function, then

v♦l�1 � φξα1 ptl�1 � τ1ptl�1, yl�1,p�1, cqq (6.69a)

v̄il�1 � φξα1 pt̄il�1 � τ1pt̄il�1, ȳ
i
l�1, cqq. (6.69b)

If 1 ¤ ξα1 ¤ ns � 1, i.e. the indicator points to a discontinuity interval to the right of tinipcq, then

v♦l�1 � ηl1�1,p

�
tl�1 � τ1ptl�1, yl�1,p�1, cq � tl1

hl1�1



� yl1 � hl1�1

ν̧

i�1

bipθl,♦qgil1�1 � b�pθl,♦qg�l1�1 (6.70a)

v̄il�1 � ηl1�1,p

�
t̄il�1 � τ1pt̄il�1, ȳ

i
l�1, cq � tl1

hl1�1



(6.70b)

Herein, l1 � 1 is the index of the step tl1 Ñ tl1�1 from which the continuous representation is
used. Thereby l1 is different for each stage i in equation (6.70b) and for v♦l�1, but for the sake
of brevity these dependency is not given. The symbol θl,♦ denotes the relative position on the
interval rtl1 , tl1�1s:

θl,♦ �
t♦l�1 � τ1pt♦l�1, yl�1,p�1, cq � tl1

hl1�1
. (6.71)

Since extrapolations beyond past discontinuity points are used it may happen for trial steps that
θl,♦ R r0, 1s.

Note that for state-dependent delays, the value yl�1,p�1 is used for the evaluation of the delay
function in equation (6.71).

Both v♦l�1 and v̄il�1 are computed from the higher order continuous representation regardless of
whether or not overlapping occurs. This guarantees that the implicit quadrature rule provides an
approximation of ul�1ptl�1q that is of discrete local order p� 1.

6.5. Practical Solution of Equation Systems

6.5.1. Formulation of the Equation Systems

The collocation method, the uniform correction procedure, and the implicit quadrature rule lead
to three nonlinear equation systems. As a first step, all dependencies of the three equation systems
on the respective unknowns are collected. For example, for the collocation method, the system to
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be solved reads

Fcolpg1
l�1, . . . , g

ν
l�1q :�

���g
1
l�1 � fpt1l�1, y

1
l�1, c, v

1
l�1q

...
gνl�1 � fptνl�1, y

ν
l�1, c, v

ν
l�1q

��� 0, (6.72)

where

yjl�1 � yl � hl�1

ν̧

i�1

aj,ig
i
l�1 (6.73a)

vjl�1 � yl1 � hl1�1

ν̧

i�1

bipθl,jqgil1�1 � hl1�1b�pθl,jqΘl,jg
�
l1�1 (6.73b)

θl,j �
tjl�1 � τ1ptjl�1, y

j
l�1, cq � tl1

hl1�1
. (6.73c)

It has thereby been assumed that 1 ¤ ξα1 ¤ ns � 1, i.e. the discontinuity interval indicator points
to a discontinuity interval to the right of the initial time tinipcq; the necessary modifications for
the case �nφs ¤ ξα1 ¤ 0 are obvious.

It is recalled that, in a strict notation, l1 � 1 � l1pl, jq � 1, and l1 � 1 gives the index of the step
tl1 Ñ tl1�1 from which the continuous representation is used for the computation of the state at
the time tjl�1 � τ1ptjl�1, y

j
l�1, cq. Further, Θl,j � 0 if overlapping occurs (i.e. if l1 � l1pl, jq � l) and

Θl,j � 1 otherwise.

For the implicit uniform correction procedure, the system to be solved is

Fucppg�l�1q :� g�l�1 � f
�
t�l�1, y

�
l�1, c, v

�
l�1

�� 9ηl�1,qptl � θ�hl�1q � 0. (6.74)

Thereby,

y�l�1 � yl � hl�1

ν̧

i�1

bipθ�qgil�1 � hl�1b�pθ�qg�l�1 (6.75a)

v�l�1 � yl1 � hl1�1

ν̧

i�1

bipθl,�qgil1�1 � hl1�1b�pθl,�qg�l1�1 (6.75b)

θl,� �
t�l�1 � τ1pt�l�1, y

�
l�1, cq � tl1

hl1�1
. (6.75c)

In the context of the implicit uniform correction procedure, l1 � 1 denotes the index of the step
tl1 Ñ tl1�1 from which the continuous representation is used for the computation of the state at
the time t�l�1 � τ1pt�l�1, y

�
l�1, cq.

Eventually, consider the implicit quadrature rule. Here, the following system has to be solved:

Fiqrpg♦l�1q :� g♦l�1 � fptl�1, yl�1,p�1, c, v
♦
l�1q � 0. (6.76)

Thereby,

yl�1,p�1 � yl � hl�1

µ�1̧

i�1

Bifpt̄il�1, ηl�1,ppt̄il�1q, c, v̄il�1q � hl�1Bµg
♦
l�1 (6.77a)

v♦l�1 � yl1 � hl1�1

ν̧

i�1

bipθl,♦qgil1�1 � hl1�1b�pθl,♦qg�l1�1 (6.77b)

θl,♦ �
t♦l�1 � τ1pt♦l�1, yl�1,p�1, cq � tl1

hl1�1
(6.77c)

v̄il�1 � ηl1�1,ppt̄il�1 � τ1pt̄il�1, ηl�1,ppt̄il�1q, cqq (6.77d)

Therein l1 � 1 in the second equation indicates the index of the interval which is used for the
computation of the state at the past time point tl�1 � τ1ptl�1, yl�1,p�1, cq. In the third line l1 � 1
depends on i and denotes the index of the interval which is used for the computation of the states
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at the past time points t̄il�1 � τ1pt̄il�1, ηl�1,ppt̄il�1q, cq. In both cases, extrapolations beyond past
discontinuity points are used if the past time points are located outside of the discontinuity interval
indicated by ξα1 .

6.5.2. Newton’s Method

By inserting the equations into each other (e.g., equations (6.73) into equation (6.72) in case of
the collocation method), the systems can shortly be expressed as

F pxq � 0 (6.78)

for all three cases. Thereby, F represents the nonlinear functions Fcol, Fucp, and Fiqr for the
collocation method, the implicit uniform correction procedure, and the implicit quadrature rule,
and x represents the respective unknowns gil�1, 1 ¤ i ¤ ν, g�l�1, and g♦l�1.

For the solution of an equation system F pxq � 0, Newton’s method or a Newton-type method can
be used. For this purpose, denote the derivative of the function F with respect to x, the Jacobian
matrix, by

Jpxq � BF px1q
Bx1

����
x1�x

. (6.79)

Then Newton’s method and a Newton-type method are defined as follows:

Definition 6.13 (Newton’s Method, Newton-Type Method)

Let x0 be an initial guess of the unknowns x. Then Newton’s Method finds new iterates xk, k ¥ 1,
by

xk�1 � xk �∆xk, (6.80)

where the increment ∆xk is determined by

∆xk � �J�1pxkqF pxkq. (6.81)

If an approximation Mpxq of the inverse of the Jacobian matrix J�1pxq is employed for defining
the increments, i.e.

∆xk � �MpxkqF pxkq, (6.82)

then the method is called a Newton-type method.

Under certain conditions, Newton’s Method and Newton-type methods converge to a solution
of the equation system.

Theorem 6.14 (Local Contraction (of Newton-Type Methods))

Let F pxq be a continuously differentiable function i.e. F P C 1pDx,Rnxq, where Dx � Rnx . Consider
y P Dx, z P Dx, z � y �∆y, where ∆y � �MpyqF pyq is the increment of a Newton-type method.
Let further z̃ P Dx. Assume that the following conditions are fulfilled for all y, z, z̃, and ϑ P r0, 1s:

1. }Mpzq pJpy � ϑ∆yq � Jpyqq∆y} ¤ ωϑ}∆y}2 with ω   8,

2. }Mpz̃qRpyq} ¤ κ}z̃ � y}, where Rpyq :� F pyq � Jpyq∆y and κ   1.

Let x0 P Dx be an initial guess such that

3. δ0 :� κ� ω
2 }∆x0}   1, where }∆x0} � }Mpx0qF px0q},

4. the ball centered at x0 defined by Bx0
:�
!
x | }x� x0} ¤ }∆x0}

1�δ0

)
is contained in Dx.

Then it holds that

(I) the iterates xk are within Bx0
,

(II) there exists x� P Bx0
such that xk Ñ x� and }∆xk} Ñ 0 for k Ñ8,
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(III) }∆xk�1} ¤ δk}∆xk}, with δk :� κ� ω
2 }∆xk}.

(IV) }xk � x�} ¤ δk
}∆xk}
1�δk

.

Further, if }M�1pxq} ¤M   8 for all x P Dx, then

(V) F px�q � 0.

Proof
See Bock [39] for the proof of a theorem that establishes local convergence in the more general
setting of constrained least-squares problems. The proof for the theorem given here follows as a
special case. �

In practice, convergence is assumed if a termination criterion is fulfilled.

Note that Rpyq � F pyq � Jpyq∆y � F pyq � JpyqMpyqF pyq � 0, if Mpyq is the exact inverse of
Jpyq. Hence, it follows that κ � 0 for the exact Newton method, and consequently the convergence
is quadratic because }∆xk�1} ¤ ω

2 }∆xk}2.

By using an approximation instead of the exact inverse, the convergence is only linear and
typically more iterations are needed until the termination criterion is fulfilled. Nevertheless, the
resulting algorithm is often more efficient with respect to floating point operations and runtimes,
because the Jacobian does not need to be computed and numerically inverted in each iteration.

In the following, the details of a Newton-type method as it is implemented in Colsol-DDE are
presented. In particular, the following issues are addressed: the generation of initial guesses, the
iterative solution with approximate inverses, the recomputation strategies for the inverse of the
Jacobian, the structure of the exact Jacobian matrices, and the termination criterion.

6.5.3. Initial Guesses

This subsection is devoted to the question how to choose the initial guess x0 for Newton’s method.

Collocation Method

For the collocation method, initial guesses are needed for gjl�1, 1 ¤ j ¤ ν. These initial guesses

are called pgjl�1q0 and are obtained by

pgjl�1q0 � fptjl�1, pyjl�1q0, c, pvjl�1q0q. (6.83)

Herein, pyjl�1q0 and pvjl�1q0 are initial approximations of the yjl�1 and vjl�1.

The initial guesses pyjl�1q0 are, in most integration steps, obtained from

pyjl�1q0 � ηl,pptjl�1q, (6.84)

that is from an extrapolation of the higher order continuous representation from the previous step
to the abscissae of the current step. Exceptions from this initialization strategy are made in the
first integration step t0 Ñ t1, and in those integration steps that follow a discontinuity for which
the practically determined order is 0 or 1. In the former case, there exists no previous integration
step l, and in the latter case extrapolation from the previous step is unsuitable because of the
presence of a low order discontinuity. Therefore, in these cases, a linear approximation is used for
pyjl�1q0:

pyjl�1q0 � yl � cjhl�1fptl, yl, c, vlq. (6.85)

Which order is, in practice, attributed to a newly found discontinuity is discussed in Section 6.9.

The computation of the initial guesses pvjl�1q0 depends primarily on the value of the discontinuity

interval indicator ξα1 . If �nφs ¤ ξα1 ¤ 0, then an evaluation of a smooth branch of the initial function
is used. For 1 ¤ ξα1 ¤ ns, and if overlapping does not occur, pvjl�1q0 is computed from

pvjl�1q0 � ηl1�1,pptjl�1 � τ1ptjl�1, pyjl�1q0, cqq, (6.86)
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i.e. from an evaluation of the higher order continuous representation in the “correct” step tl1 Ñ
tl1�1. If overlapping occurs, an extrapolation from the previous step is used (l1 � 1 � l in equation
(6.86)). The computation of pvjl�1q0 then resembles that for pyjl�1q0 in equation (6.84).

Implicit Uniform Correction

For the implicit uniform correction, an initial guess is needed for g�l�1, which is denoted by pg�l�1q0.
This initial guess is given by

pg�l�1q0 � fpt�l�1, py�l�1q0, c, pv�l�1q0q � 9ηl�1,qpt�l�1q (6.87)

where py�l�1q0 and pv�l�1q0 are the initial approximations of y�l�1 and v�l�1.
The initial guess py�l�1q0 is obtained from

py�l�1q0 � ηl�1,qpt�l�1q, (6.88)

i.e. from an evaluation of the continuous representation implied by the collocation method in the
current step.

The computation of the initial guess pv�l�1q0 is determined by the discontinuity interval indicator

ξα1 . If it holds that �nφs ¤ ξα1 ¤ 0, then pv�l�1q0 is obtained from an evaluation of a smooth branch
of the initial function. If 1 ¤ ξα1 ¤ ns � 1, then pv�l�1q0 is obtained, in the non-overlapping case,
from

pv�l�1q0 � ηl1�1,ppt�l�1 � τ1pt�l�1, py�l�1q0, cqq. (6.89)

In the case of overlapping, pv�l�1q0 cannot be obtained from the higher order continuous represen-
tation, which is yet to be determined. Instead, the same approach as for py�l�1q0 is used, i.e. the
polynomial continuous representation of lower order (implied by the collocation method itself) is
employed.

Implicit Quadrature Rule

For the implicit quadrature rule, an initial guess pg♦l�1q0 is needed for g♦l�1, which is obtained from

pg♦l�1q0 � fptl�1, pyl�1,p�1q0, c, pv♦l�1q0q. (6.90)

Colsol-DDE uses the discrete approximation of the collocation method for the initialization of
yl�1,p�1, i.e.

pyl�1,p�1q0 � yl�1,p. (6.91)

Further, pv♦l�1q0 is an initial guess for v♦l�1. If the discontinuity interval indicator ξα1 is less than
or equal to 0, then this initial guess is obtained from an evaluation of a smooth branch of the initial
function. Otherwise it is computed from

pv♦l�1q0 � ηl1�1,pptl�1 � τ1ptl�1, pyl�1,p�1q0, cqq, (6.92)

i.e. from an evaluation of the higher order continuous representation. The overlapping case (l1 � l)
does not need to be treated differently, because the uniform correction procedure has been applied
before and thus ηl�1,p is already available.

6.5.4. Structure of the Exact Jacobian Matrices

Colsol-DDE uses, for the solution of the equation systems, approximate inverses of the Jacobians
of the three equation systems (6.72), (6.74), (6.76). This subsection is concerned with the structure
of these Jacobian matrices.

Collocation Method

The equation system (6.72) has dimension ν�ny, where, as usual, ν is the number of stages of the
collocation method and ny is the dimension of the state vector y. For the Lobatto method, the
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first stage is explicit, therefore the dimension reduces to pν � 1q � ny. For notational convenience,
define the possibly reduced number of stages such that νr :� 2 for the two-stage Radau IIA
collocation method and the three-stage Lobatto IIIA collocation method, and such that νr :� 1
for the one-stage Gauss collocation method.

When taking the derivative of the function Fcol in equation (6.72) with respect to gjl�1, derivatives
of the right-hand-side function f and the delay function τ1 occur. In Colsol-DDE, the Jacobian can
be recomputed once per integration step before the iterations are started. Accordingly, the partial
derivatives of f are evaluated at the initial guesses of the unknowns, i.e. ptjl�1, pyjl�1q0, c, pvjl�1q0q.
Therefore, define �Bf

By

j
l�1

:� Bfpt, y, c, vq
By

����
ptjl�1,py

j
l�1q

0,c,pvjl�1q
0q

(6.93a)

�Bf
Bv

j
l�1

:� Bfpt, y, c, vq
Bv

����
ptjl�1,py

j
l�1q

0,c,pvjl�1q
0q

(6.93b)

�Bτ1
By

j
l�1

:� Bτ1pt, y, cq
By

����
ptjl�1,py

j
l�1q

0,cq

. (6.93c)

The derivative of the function Fcol in equation (6.72) with respect to its unknowns is a pνr �
ny, νr � nyq square matrix. With the notation introduced above, the pny, nyq-dimensional block

that represents the derivative of gjl�1 with respect to gkl�1 becomes

Bgjl�1

Bgkl�1

�δj,k1ny,ny �
�Bf
By

j
l�1

hl�1aj,k �
�Bf
Bv

j
l�1

hl�1bkpθl,jqp1�Θl,jq

�
�Bf
Bv

j
l�1

hl�1

�
ν̧

i�1

9bipθl,jqgjl1�1 � 9b�pθl,jqΘl,jg
�
l1�1

��Bτ1
By

j
l�1

aj,k. (6.94)

In the first term, δj,k represents the Kronecker-δ, which is 1 for j � k and 0 otherwise, and
1ny,ny represents the pny, nyq-dimensional identity matrix. Both the first and the second term are
present for ODEs. The third term is present if overlapping occurs. The last term accounts for
state-dependencies of the delays.

Implicit Uniform Correction

The solution of the equation system (6.74) with a Newton-type method requires approximation of
the corresponding Jacobian matrix, i.e. the derivative of Fucp with respect to g�l�1. This Jacobian
can be recomputed once per integration step before the iterations are started. In order to express
the Jacobian in a compact form, the following definitions are introduced�Bf

By

�
l�1

:� Bfpt, y, c, vq
By

����
pt�l�1,py

�
l�1q

0,c,pv�l�1q
0q

(6.95a)

�Bf
Bv

�
l�1

:� Bfpt, y, c, vq
Bv

����
pt�l�1,py

�
l�1q

0,c,pv�l�1q
0q

(6.95b)

�Bτ1
By

�
l�1

:� Bτ1pt, y, cq
By

����
pt�l�1,py

�
l�1q

0,cq

(6.95c)

With these definitions, the Jacobian is given by

BFucppxq
Bx

����
x�pg�l�1q

0

�1ny,ny �
�Bf
By

�
l�1

hl�1b�pθ�q �
�Bf
Bv

�
l�1

hl�1b�pθl,�qp1�Θl,�q

�
�Bf
Bv

�
l�1

hl�1

�
ν̧

i�1

9bipθl,�qgjl1�1 � 9b�pθl,�qg�l1�1

��Bτ1
By

�
l�1

b�pθ�q.

(6.96)
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Herein, Θl,� � 0 in the overlapping case and Θl,� � 1 otherwise.

Implicit Quadrature Rule

Consider the equation system (6.76) that needs to be solved for applying the implicit quadra-
ture rule. The Jacobian of Fiqr with respect to the unknowns g♦l�1 can be recomputed once per
integration step before the iterations are started. Accordingly, define�Bf

By

♦

l�1

:� Bfpt, y, c, vq
By

����
ptl�1,pyl�1,p�1q0,c,pv

♦
l�1q

0q

(6.97a)

�Bf
Bv

♦

l�1

:� Bfpt, y, c, vq
Bv

����
ptl�1,pyl�1,p�1q0,c,pv

♦
l�1q

0q

(6.97b)

�Bτ1
By

♦

l�1

:� Bτ1pt, y, cq
By

����
ptl�1,pyl�1,p�1q0,cq

. (6.97c)

By this, the Jacobian of the equation system (6.76) can be written as:

BFiqrpxq
Bx

����
x�pg♦l�1q

0

�1ny,ny �
�Bf
By

♦

l�1

hl�1Bµ

�
�Bf
Bv

♦

l�1

hl�1

�
ν̧

i�1

9bipθl,♦qgjl1�1 � 9b�pθl,♦qg�l1�1

��Bτ1
By

♦

l�1

Bµ. (6.98)

6.5.5. Decomposition of the Jacobian Matrix

For the computation of the increment ∆xk in Newton’s method by equation (6.81), the inverse of
the Jacobian is needed. One option for numerically inverting a matrix is based on the computation
of a singular value decomposition of the Jacobian:

Jpxq � UΣVT , (6.99)

where U and V are orthogonal matrices and Σ is a diagonal matrix that contains the singular
values of J, which are denoted by σi, 1 ¤ i ¤ nx of Jpxq:

Σ �

�����
σ1 0 . . . 0
0 σ2 0
...

. . . 0
0 . . . 0 σnx

����. (6.100)

If such a singular value decomposition is available, the inverse of Jpxq can easily be computed from
VΣ�1UT , if σi ¡ 0 for all 1 ¤ i ¤ nx.

It is remarked that the Jacobian matrices given in equations (6.94), (6.96), and (6.98) converge,
for hl�1 Ñ 0, to the identity matrix. Hence, for sufficiently small stepsize hl�1, the matrix Jpxq is
always well-conditioned. In practice, when a new Jacobian is computed and decomposed, Colsol-
DDE checks that

σ1

σnx
¤ κmax, (6.101)

where κmax is a user-given bound on the condition number of the Jacobian matrix that is implied
by the spectral norm. If the ratio σ1{σnx exceeds this bound, the stepsize is reduced.

The Jacobian matrix is a quantity that depends on the scaling that the user chooses for the
variables of the problem, e.g. whether a position is measured in meters or kilometers. More
precisely, the element pi, jq of the Jacobian matrix is affected by rxis{rxjs, where r � s represents
the user-chosen unit of the variable.

The singular values and thus the condition of the Jacobian (in the spectral norm) may depend
heavily on the user-chosen scaling. In order to make the decomposition of the matrix independent
of a probably inappropriate user-scaling, Colsol-DDE uses scaling factors sxi, 1 ¤ i ¤ nx, for the
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unknowns xi. How these scaling factors are obtained is the subject of Subsection 6.5.8. At this
point, it is simply assumed that the scaling factors roughly represent the “typical” magnitude of
xi, i.e. it should hold that sxi � xi.

Assuming that appropriate scaling factors are available, the following scaling matrix is defined:

S :�

�����
sx1 0 . . . 0
0 sx2 0
...

. . . 0
0 . . . 0 sxn

����. (6.102)

It turns out that the result of the singular value decomposition of S�1JpxqS (instead of Jpxq) is
(almost) independent of the user scaling. Hence, Colsol-DDE practically uses the decomposition

S�1JpxqS � UΣVT (6.103)

instead of equation (6.99).

6.5.6. Iterative Solution

According to the decomposition of the Jacobian matrix given in equation (6.103), the increment
∆x is determined by

∆xk � �SVΣ�1UTS�1F pxkq. (6.104)

The user may specify two integer numbers n1
itmax and n2

itmax such that 1 ¤ n1
itmax   n2

itmax. If
more than n1

itmax iterations are needed in the current integration step tl Ñ tl�1, than a recompu-
tation and decomposition of an exact Jacobian matrix is scheduled for the next integration step
tl�1 Ñ tl�2. If the number of iterations exceeds n2

itmax, then the iterations of Newton’s method are
stopped and recomputation and decomposition of an exact Jacobian matrix is done in the current
integration step. After that, Newton’s method is restarted with the initial guess x0. If convergence
can still not be obtained within n2

itmax iteration steps, the stepsize hl�1 is reduced.

The above-described mechanism for the iterative solution and Jacobian matrix recomputation
is applied for the collocation method, the implicit uniform correction, and the implicit quadrature
rule.

6.5.7. Termination Criterion

Colsol-DDE uses a component-dependent termination criterion. This means that the system is
considered to be solved successfully if, for every component of the increment, ∆xi, 1 ¤ i ¤ nx, it
holds that

|∆xi|
sxi

¤ pδtermqi. (6.105)

The components of δterm are computed in such a way that, if a user-given parameter ηterm is
chosen as 10�m, then approximately m digits are valid in the quantity that is used for error esti-
mation. The precise formula for δterm is therefore given in Section 6.6 after the quantities for error
estimation have been introduced.

6.5.8. Scaling Factors

The decomposition of the Jacobian matrices for the numerical solution of the equation systems
(6.72), (6.74), and (6.76), depends on scaling factors sxi for the unknowns. Moreover, also the
termination criterion (6.105) depends on the scaling factors. Since the unknowns are gjl�1, g�l�1, and

g♦l�1, respectively, scaling factors sgi are needed that represent the “typical” order of magnitude
of the i-th component of a right-hand-side function evaluation.

In a different context, see Section 9.1.7, scaling factors syi are needed that represent the “typical”
order of magnitude of the i-th component of the state vector.

122



6. Colsol-DDE: The COLlocation SOLver for DDEs

In the following, the heuristic is described that Colsol-DDE uses for computing scaling factors.
This is done for the computation of syi, but the techniques for choosing the scaling factors sgi are
completely analogous.

Consider the task of finding a scaling factor psyqi for yi such that yi � psyqi, i.e. psyqi should
represent the “typical” order of magnitude of yi. The main issue in doing this is how the scaling
factors should be chosen if a variable is zero or close to zero.

A possible strategy for the initialization of the scaling variable at the initial time, where only an
initial value y0 is available, is as follows:

psyqi �
#
|py0qi| if py0qi ¡ εthresh

1 else
. (6.106)

Herein, εthresh is a user-given threshold value. If the initial value of a state vector component is
below this value, it is considered to be practically zero and the scaling factor, due to a lack of
information, is chosen as 1.

However, it happens frequently that the initial guess is 0 but that the state becomes non-zero in
the first integration step. Hence, doing a single integration step would be sufficient to get a better
approximation of the “typical” order of magnitude of yi. For this reason, Colsol-DDE performs one
step with the classical explicit 4-stage Runge-Kutta method (which does not need scaling factors)
and uses, componentwise, the maximum value over the 4 stages to initialize the scaling factor.

Once the scaling factor is initialized, it is updated after each successful integration step. More
precisely, the scaling factor in the step l� 1, called psyl�1

qi, is obtained from the old scaling factor
in step l, called psylqi, by the following rule:

psyl�1
qi � p1� αmemqsnew � αmempsylqi (6.107a)

snew � maxp|pylqi|, |pyl�1qi|, εthreshq. (6.107b)

Herein, αmem P r0, 1s is a user-defined “memory factor” that gives the relative importance of the
old scaling factor for the computation of the new scaling factor. For smaller values of αmem,
the scaling factor is quickly adapted if the corresponding solution component varies significantly,
whereas for a larger value of αmem the information gathered on the “typical” order of magnitude
is changed only slightly in each integration step.

The updating rule (6.107) is also applied in discontinuities (see Section 6.9), e.g. if a jump is
applied in a root discontinuity, then the state after a jump is also used for updating the scaling
factor.

For the sake of completeness it is mentioned that for the increment computation (6.104) those
scaling factors are used that were used for the decomposition of the matrix. Contrariwise, in the
termination criterion (6.105) the scaling factors of the current integration step are used.

6.6. Error Control

This section discusses the error control mechanism that is realized in Colsol-DDE.

6.6.1. Advancing and Error-Estimating Method

In Section 5.5 it was discussed that error control strategies are typically based on two discrete
and two continuous approximations, for which the discrete and uniform local errors have different
orders. This is also the case in Colsol-DDE. More specifically, two discrete approximations yl�1,p

and yl�1,p�1 or orders p and p�1, and two continuous approximations ηl�1,q and ηl�1,q�1 of orders
q and q� 1, are available. Thereby, pp, qq denote the discrete and uniform local orders of the basic
collocation method.

At first, it needs to be specified, which discrete and which continuous approximation is used
for advancing the step. In Colsol-DDE, the lower order discrete approximation obtained with
the collocation method and the higher order continuous approximation obtained by the implicit
uniform correction are used, i.e.

yl�1 :� yl�1,p, ηl�1ptq :� ηl�1,q�1ptq. (6.108)
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Accordingly, yl�1,p and ηl�1,q�1ptq are the advancing methods, whereas yl�1,p�1 and ηl�1,qptq are
the error-estimating methods. Once a step is accepted, the latter results are no longer needed for
the further application of the method.

It is mentioned that, consequently, the advancing methods in Colsol-DDE are a realization of the
“augmented CRK methods” whose Butcher tableaus and continuous weight functions were given
in Section 6.2.

6.6.2. Error Estimation

According to the findings in Section 5.5, the maximum difference between the lower and the higher
order continuous representation can be used to estimate the uniform local error:

ˆ̄δl�1 � max
tl¤t¤tl�1

}ηl�1,qptq � ηl�1,q�1ptq}. (6.109)

For all three methods that are implemented in Colsol-DDE, this difference between the two con-
tinuous representations is simply given by

ˆ̄δl�1 � hl�1}g�l�1} max
0¤θ¤1

|b�pθq|loooooomoooooon
�:b�,max

. (6.110)

Since b�pθq is a problem-independent polynomial function, the maximum value of |b�pθq| is as-
sumed at the same value θmax on all integration intervals regardless of the specific right-hand-side
function f . More precisely, it holds that θmax � 1{2 and b�,max � 3{4 for the one-stage Gauss col-
location method, θmax � 1{3 and b�,max � 16{45 for the two-stage Radau IIA collocation method,
and θmax � 1{2 and b�,max � 1{3 for the three-stage Lobatto IIIA collocation method.

For estimating the discrete local error, the difference between the result of the collocation
method, yl�1,p, and the result of the implicit quadrature rule, yl�1,p�1, can be used (cf. Zen-
naro [268]):

δ̂l�1 � }yl�1,p�1 � yl�1,p}. (6.111)

6.6.3. Error Control

As discussed before, the lower order discrete approximation and the higher order continuous repre-
sentation are used as advancing methods. Accordingly, the uniform local error estimation employs
local extrapolation, whereas the discrete local error estimation does not.

According to the discussion in Section 5.5, proportionality of the global error to a user-defined
local tolerance σtol is obtained if the following conditions are fulfilled by the error estimates in

every integration step: ˆ̄δl�1 ¤ σtolptfinpcq � tinipcqq{hl�1 and δ̂l�1 ¤ σtolhl�1{ptfinpcq � tinipcqq
(and if the implied strategy for suggesting new stepsizes is used).

It remains to choose a specific norm in Rny and to deal with the fact that the individual com-
ponents of the state vector may, in practice, have very different orders of magnitude. Colsol-DDE
therefore uses the following variation of the two conditions (cf. Hairer, Nørsett, and Wanner [126],
page 167f):

Cdisc :� max
1¤i¤ny

� |pyl�1,p�1qi � pyl�1,pqi|
εi



� pt

finpcq � tinipcqq
hl�1

¤ 1 (6.112a)

Cunif :� hl�1b�,max max
1¤i¤ny

� |pg�l�1qi|
εi



� hl�1

ptfinpcq � tinipcqq ¤ 1. (6.112b)

where

εi � maxp|pylqi|, |pyl�1,pqi|q � σreltol � σabstol . (6.113)

Both the absolute tolerance σabstol and the relative tolerance σreltol are input parameters that are
specified by the user.

In accordance with the chosen error criteria, Colsol-DDE uses the following formula for suggesting
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a new stepsize hl�2:

hl�2 � ρsafehl�1 min

�
p

c
1

Cdisc
, q�2

d
1

Cunif

�
, (6.114)

where ρsafe is a user-given safety factor.

6.6.4. Termination Criterion for Newton’s Method

With the practically used error conditions at hand, the discussion of the termination criterion for
Newton’s method can be resumed (recall Subsection 6.5.7). For reasons of efficiency, it is reasonable
to stop the Newton iterations when Cdisc and Cunif have, say, two valid digits. For example, for
the uniform error estimation, this motivates to determine the termination criterion pδtermqi for
pg�l�1qi such that

pδtermqi �
�

10�2 ptfinpcq � tinipcqq
hl�1

εi



� 1

hl�1sgi
. (6.115)

Herein, sgi is the scaling factor for the i-th component of an evaluation of the right-hand-side
function f . For a given value of the term in brackets, the termination criterion is smaller (i.e.
higher relative accuracy) if the “typical” absolute value of the corresponding component of the
right-hand-side function – represented by the scaling factor – is larger.

For the discrete error estimation, i.e. for Cdisc, the motivation is analogous, because the difference
pyl�1,p�1qi � pyl�1,pqi is also a weighted sum of right-hand-side function evaluations multiplied by

hl�1. This gives the following termination criterion for gjl�1 and g♦l�1, respectively:

pδtermqi �
�

10�2 hl�1

ptfinpcq � tinipcqqεi


� 1

hl�1sgi
. (6.116)

In Colsol-DDE, the factor 10�2 is replaced by some user-given input parameter ηterm, in order
to give the user the opportunity to choose a different termination criterion.

6.7. Basic Stability Properties

For initial value problems, not necessarily in the context of DDEs, it is well-known from practical
experience that some methods, mostly explicit methods, become very inefficient when the solution
evolves on very different time scales, e.g. a slow oscillation in one state vector component and a
rapid transient to an equilibrium in another state vector component. In order to analyze such
a behavior, stability concepts are used. In this section, some elementary stability concepts are
recalled and it is discussed whether the methods implemented in Colsol-DDE are stable with
respect to these concepts.

6.7.1. A-Stability and L-Stability for Discrete Runge-Kutta Methods

Theoretical Background

An elementary stability concept is related to the following simple test equation:

9yptq � λyptq (6.117a)

yp0q � yini. (6.117b)

This is considered for λ P C, the real and imaginary parts of which are denoted by Repλq and
Impλq. The exact solution of the test problem is known to be yptq � yini exppλtq. Clearly,
whenever Repλq   0 then it holds that |yptq|   |yini| for t ¥ 0 and limtÑ8 yptq Ñ 0. Moreover,
for Repλq ! 0, the test problem can be considered as a role model for rapidly decaying states, e.g.
for the situation that some components of the state vector in a differential equation system show
a rapid transient behavior.
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A discrete Runge-Kutta method, when applied to the problem (6.117), yields in the first step

y1 � y0 � h
ν̧

j�1

βjλy
j
1 (6.118a)

yj1 � y0 � h
ν̧

k�1

aj,kλy
k
1 , (6.118b)

with y0 � yini. This can be expressed in the compact form

y1 �
�
1� hλβT p1� hλAq�1e

�
y0. (6.119)

where βT � pβ1, . . . , βνq is a vector containing the weights, A is a matrix containing the coefficients
aj,k, and e � p1, 1, . . . , 1qT is a ν-dimensional vector. Further, 1 is the identity matrix of the
appropriate dimension. If the absolute value of the term in square brackets is less than 1, then
it holds that |y1|   |y0|, i.e. the numerical solution is decreasing. For constant stepsizes, and for
variable stepsizes that are bounded, it holds in addition that the solution yl vanishes asymptotically
for lÑ8. This leads to the following definition.

Definition 6.15 (Stability Function, Stability Domain)

The function

Rpzq :� 1� zβT p1� zAq�1e (6.120)

is called the stability function of a discrete Runge-Kutta method and the set

S :� tz P C | |Rpzq|   1u (6.121)

is called the stability domain of a discrete Runge-Kutta method.

The well-known concept of A-stability demands that the stability domain of a numerical method
should contain the half-plane C� :� tz P C |Repzq   0u so that the numerical solution is decreasing
whenever the exact solution is decreasing.

Definition 6.16 (A-Stability)

A numerical method is called A-stable if it holds that

S � C�. (6.122)

This property ensures that, if the exact solution is rapidly going to zero (Repλq ! 0), the numerical
method may use large stepsizes h " 1 and it will still possess the contractivity property |y1|   |y0|.

However, even if a method is A-stable, its contraction for hλ Ñ �8 might be very slow if it
holds that limhλÑ�8 |Rphλq| � 1, even though the exact solution approaches the zero rapidly for
Repλq ! 0. This leads to the following stronger stability concept.

Definition 6.17 (L-Stability)

A numerical method is called L-stable if it is A-stable and, in addition, it holds that

lim
zÑ�8

|Rpzq| � 0. (6.123)

Properties of the Collocation Methods in Colsol-DDE

The stability functions RG of the one-stage Gauss collocation method, RR of the two-stage
Radau IIA collocation method, and RL of the three-stage Lobatto IIIA collocation method can be
obtained by standard analysis. Using the definition z � hλ, the following expressions are obtained:

RGpzq � 1� �2z

z � 2
(6.124a)

RRpzq � 1� zp6� zq
pz � p2�?2iqqpz � p2�?2iqq (6.124b)
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RLpzq � 1� 12z

pz � p3�?3iqqpz � p3�?3iqq . (6.124c)

It is well-known that the resulting stability domains for all three methods cover the half-plane C�,
i.e. all three methods are A-stable (see e.g. Hairer and Wanner [127]).

The plots given in Figure 6.1 show the behavior of the absolute values |RGpzq|, |RRpzq|, and
|RLpzq| for small and moderate negative real parts of z. For |z Ñ 8|, Repzq   0, it holds that
|RGpzq| Ñ 1, |RRpzq| Ñ 0, and |RLpzq| Ñ 1. Accordingly, of the three methods only the two-stage
Radau IIA method is L-stable.

(a) (b) (c)

Figure 6.1.: Absolute values |RGpzqq|, |RRpzqq|, and |RLpzqq| of the stability functions for the
Gauss, Radau IIA, and Lobatto IIIA collocation methods used in Colsol-DDE (from
left to right).

6.7.2. Stability of Continuous Representations

Theoretical Background

For any given discrete Runge-Kutta method applied to an ODE-IVP for which the stage values
are given by gjl�1 � fptjl�1, y

j
l�1, cq, 1 ¤ j ¤ ν, it is possible to find one or several continuous

representations ηl�1ptl�θhl�1q, which obey the continuity conditions ηl�1ptlq � yl and ηl�1ptl�1q �
yl�1, and which use only the stage values gjl�1 of the discrete method. In the following, the stability
properties of the continuous representation are discussed.

Consider a continuous Runge-Kutta method applied to the test equation (6.117). In the first
step the continuous representation is given by

η1phθq � y0 � h
ν̧

j�1

bipθqλyj1, (6.125)

which can shortly be expressed as

η1phθq �
�
1� hλbpθqT p1� hλAq�1e

�
y0. (6.126)

Herein, bpθq is a ν-dimensional fuction whose components are the continuous weight functions bipθq.
In analogy to the treatment of discrete Runge-Kutta methods the stability function for contin-

uous representations is defined as follows:

Definition 6.18 (Stability Function for Continuous Representations)

The function

Rηpz, θq � 1� zbpθqT p1� zAq�1e (6.127)

is called the stability function for continuous representations.

It is important to note that A-stability of a discrete Runge-Kutta method does not imply that for
Repλq   0 and for any possible continuous representation it holds that max0¤θ¤1 |η1phθq| ¤ |y0|.
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In other words, from |Rpzq|   1 it does not follow that max0¤θ¤1 |Rηpz, θq| ¤ 1. In fact, |Rηpz, θq|
may even be unbounded.

Bellen and Zennaro [25] have introduced the following stability concept for continuous represen-
tations.

Definition 6.19 (Stability of Continuous Representations)

Consider a CRK method applied to the test equation (6.117). A continuous representation η1phθq is
called stable (with respect to the discrete Runge-Kutta method), if there exists a constant M ¥ 1
such that

max
0¤θ¤1

|η1phθq| ¤M maxp|y0|, |y1|q (6.128)

for every fixed choice z P C�
0 :� C� Y tz | Repzq � 0u.

For the special case of A-stable methods, the conditions simplifies to max0¤θ¤1 |η1phθq| ¤ M |y0|,
i.e. boundedness of the continuous representation for all z P C�

0 .
For the case of polynomial continuous representations, the stability function in equation (6.127)

is a rational function in z. Hence, unboundedness of the stability function for Repzq ¤ 0 may
occur for two reasons. Either the degree of the polynomial in the nominator is higher than the
degree of the polynomial in the denominator (for at least one θ P r0, 1s), or the polynomial in the
denominator has a zero for some z P C�

0 . For the continuous representation of an A-stable method
that uses only the stage values of the discrete method, the latter is not the case. Hence, in this
case, only the degrees of the polynomials in the nominator and in the denominator need to be
compared.

Properties of the Collocation Polynomials

Consider the collocation polynomials (of uniform local order q) of the three collocation methods
that are implemented in Colsol-DDE. The corresponding stability functions RG,ηq , RR,ηq , and
RL,ηq for the one-stage Gauss collocation method, the two-stage Radau IIA collocation method,
and the three-stage Lobatto IIIA collocation method, are given by follows:

RG,ηq pz, θq � 1� �2θz

z � 2
(6.129a)

RR,ηq pz, θq � 1� 6θzp1� zp� 2
3 � 1

2θqq
pz � p2�?2iqqpz � p2�?2iqq (6.129b)

RL,ηq pz, θq � 1� 12z
�
θ � zp� 1

2θ � 1
2θ

2q � z2p 1
6θ

3 � 1
4θ

2 � 1
12θq

�
pz � p3�?3iqqpz � p3�?3iqq . (6.129c)

Observe that, as can be expected from the continuity condition, it holds that Rηpz, 1q � Rpzq for
all three methods.

From the degrees of the polynomials it is clear that |RG,ηq pz, θq| and |RR,ηq pz, θq| are bounded
for all z P C�

0 , θ P r0, 1s. Hence, the collocation polynomials are stable with respect to the
corresponding discrete Runge-Kutta method. In fact, this is a special case of a general result
found by Bellen and Zennaro [25]: Whenever the abscissae of a collocation method do not contain
both 0 and 1, then the collocation polynomial is a stable continuous representation in the sense of
Definition 6.19.

Some illustrations of the stability functions of the Gauss collocation polynomial and the Ra-
dau IIA collocation polynomial for three different values of θ are given in Figures 6.2 and 6.3,
respectively. In both cases, the bound of the stability function is 1, which, for the Gauss method,
is obvious from the fact that the continuous representation is just a linear function between the
values y0 and y1.

It remains to deal with the collocation polynomial of the three-stage Lobatto IIIA method.
Clearly, for θ R t0, 1

2 , 1u, the degree of the polynomial in the nominator is higher than the degree
of the polynomial in the denominator. Therefore the collocation polynomial is unbounded and not
stable in the sense of Definition 6.19. However, since at least the poles have positive real part, the
absolute value |RL,ηpz, θq| remains bounded in each bounded set C�

0 X tz | |z| ¤ ρ   8u.
The behavior is investigated in more detail. Since the function z{pz � p3 � ?

3iqq is complex
analytic in C�

0 and because C�
0 is a closed set, the function assumes its maximum on the imaginary
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(a) (b) (c)

Figure 6.2.: Absolute values |RG,ηq pz, 1{3qq|, |RG,ηq pz, 0.5qq|, and |RG,ηq pz, 2{3qq|, of the stability
function for the collocation polynomial in the one-stage Gauss method.

(a) (b) (c)

Figure 6.3.: Absolute values |RR,ηq pz, 1{3qq|, |RR,ηq pz, 0.5qq|, and |RR,ηq pz, 2{3qq|, of the stability
function for the collocation polynomial in the two-stage Radau IIA method.

axis. More precisely, it holds that

max
zPC�0

���� z

z � p3�?3iq

���� � max
z,Repzq�0

���� z

z � p3�?3iq

����   1.2. (6.130)

The same bound holds if 3�?3i is replaced by 3�?3i.

Furthermore, it holds that

max
0¤θ¤1

����16θ3 � 1

4
θ2 � 1

12
θ

����   0.0081. (6.131)

With this, it follows that asymptotically, for |z| Ñ 8, Repzq ¤ 0, there is a linear increase with
a very moderate prefactor 0.14. In view of the fact that the Lobatto IIIA method is not L-stable
and therefore provides reasonable approximation only if |z| does not become too large, this is
acceptable from a practical point of view.

The mild asymptotic increase can be observed in the Figures 6.4a and 6.4c.

Properties of the Uniformly Corrected Polynomials

For the uniformly corrected polynomials it is recalled that the resulting continuous Runge-Kutta
method can be expressed by the augmented schemes given in Subsection 6.2.2. Denoting the
coefficient matrix of the augmented scheme by Â and setting b̂pθqT :� �bpθqT b�pθq

�
, this yields

the following stability function for the uniformly corrected polynomial of uniform local order p �
q � 1:

Rηppz, θq � 1� zb̂pθqT p1� zÂq�1e. (6.132)
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(a) (b) (c)

Figure 6.4.: Absolute values |RL,ηq pz, 1{3qq|, |RL,ηq pz, 0.5qq|, and |RL,ηq pz, 2{3qq|, of the stability
function for the collocation polynomial in the three-stage Lobatto IIIA method.

For the three methods considered in Colsol-DDE, this gives

RG,ηppz, θq � 1� 3z
�p 1

2θ
2 � 7

6θqz � 4θ � 3θ2
�

pz � 2qpz � 3
2 q

(6.133a)

RR,ηppz, θq � 1� � 18
5 z

pz � p2�?2iqqpz � p2�?2iqqpz � 18
5 q

�
�
z2

�
θ3 � 17

6
θ2 � 19

9
θ

�
� z

�
�36

5
θ3 � 87

5
θ2 � 193

15
θ

�
�
�

72

5
θ3 � 144

5
θ2 � 102

5
θ

�

(6.133b)

RL,ηppz, θq � 1� 4z

pz � p3�?3iqqpz � p3�?3iqqpz � 16
3 q

�
�
z3

�
�2

3
θ4 � 11

6
θ3 � 17

12
θ2 � 1

4
θ

�
� z2

�
8

9
θ4 � 40

9
θ3 � 115

18
θ2 � 17

6
θ

�
�z
�

64

3
θ4 � 128

3
θ3 � 40

3
θ2 � 11θ

�
�
�
�256
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The additional poles of these rational functions compared to those in equation (6.129) are located
at 3{2, 18{5, and 16{3, and thus all have positive real part. Therefore, no unboundedness for any
of the three stability functions occurs due to the presence of poles in C�

0 .

It can be shown that this property is obtained only if the additional abscissa for the implicit
uniform correction is within p0, 1

2 q for the Gauss method and the Lobatto IIIA method, and within
p0, 1

3 q for the Radau IIA method. This motivates, a posteriori, the selection of the additional
abscissa in Subsection 6.2.2.

For the stability functions RG,ηppz, θq and RR,ηppz, θq it holds, in addition, that the degree of
the polynomial in the nominator equals the degree of the polynomial in the denominator. Hence,
also the corrected polynomials are stable with respect to the corresponding discrete method. The
stability of these polynomials can also be concluded from a general theorem on the stability of
continuous representations that are obtained by implicit uniform corrections, see Bellen and Zen-
naro [25].

The Figures 6.5 and 6.6 show the behavior of the stability functions for the corrected polynomials
in case of the Gauss and Radau IIA method for three different values of θ.

For the corrected polynomial in the case of the Lobatto IIIA method, the degree of the polynomial
in the nominator is one higher than in the denominator. Hence, the polynomial is unbounded and
not stable in the sense of Definition 6.19. In order to compute, once again, the asymptotic linear
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(a) (b) (c)

Figure 6.5.: Absolute values |RG,ηppz, 1{3qq|, |RG,ηppz, 0.5qq|, and |RG,ηppz, 2{3qq|, of the stability
function for the corrected polynomial in case of the one-stage Gauss method.

(a) (b) (c)

Figure 6.6.: Absolute values |RR,ηppz, 1{3qq|, |RR,ηppz, 0.5qq|, and |RR,ηppz, 2{3qq|, of the stability
function for the corrected polynomial in case of the two-stage Radau IIA method.

increase, observe that

max
0¤θ¤1

�����2

3
θ4 � 11

6
θ3 � 17

12
θ2 � 1

4
θ

����   0.053. (6.134)

From this it follows that the prefactor in the asymptotic linear increase is less than 0.36. Therefore
the stability function assumes moderate values of less than 10 for |z| ¤ 20, see Figure 6.7.

6.7.3. Error Estimation

Error Estimation for the Continuous Representation

Eventually, the behavior of the employed error estimators is regarded for the asymptotics |z| Ñ 8,
Repzq ¤ 0. For the error estimation of the continuous representation, the following expression is
obtained in case of the Gauss collocation method.

max
0¤θ¤1

|ηqphθq � ηpphθq| � max
0¤θ¤q

|RG,ηq pz, θq �RG,ηppz, θq||y0|

�
����RG,ηq �z, 1

2



�RG,ηp

�
z,

1

2


���� |y0|

Ñ 3

8
|y0| for z Ñ8, Repzq ¤ 0. (6.135)

The sole subscript of η thereby represents its uniform local order.
Further, for the Radau IIA collocation method, the asymptotics

max
0¤θ¤1

|ηqphθq � ηpphθq| Ñ 8

15
|y0| (6.136)
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(a) (b) (c)

Figure 6.7.: Absolute values |RL,ηppz, 1{3qq|, |RL,ηppz, 0.5qq|, and |RL,ηppz, 2{3qq|, of the stability
function for the corrected polynomial in case of the Lobatto IIIA method used in
Colsol-DDE.

is obtained, and for the Lobatto IIIA collocation method, the result is

max
0¤θ¤1

|ηqphθq � ηpphθq| Ñ 1

6
|z||y0|. (6.137)

Hence, for the Gauss and for the Radau IIA collocation method, the error estimate is bounded,
whereas for the Lobatto IIIA collocation method the error estimate increases linearly with |z|. In
all three cases, the asymptotic behavior of the error estimate therefore matches the asymptotic
behavior of the numerical error.

Error Estimation for the Discrete Method

The higher order discrete method yields, for the test equation (6.117), the following result:

yp�1 � 1� z
°µ�1
i�1 BiηppΓihq

1� zBµ
y0 (6.138)

Since the weight Bµ for the last stage is positive for all three employed quadrature formulae, there
is no pole for z P C�

0 .

In case of the Gauss method, the higher order continuous representation ηp is bounded, and
hence yp�1 is bounded as well. In fact, it can be shown that |yp�1| Ñ 0 for |z| Ñ 8, Repzq ¤ 0.
As a consequence, |yp�1� yp| remains bounded in the limit |z| Ñ 8, Repzq ¤ 0, which is the same
behavior as the true error of the Gauss collocation method (recall Figure 6.1a).

For the Radau IIA method, it also holds that the higher order continuous representation ηp is
bounded, and hence yp�1 is bounded as well. It can further be shown that |yp�1 � yp| Ñ 1.8 for
|z| Ñ 8, Repzq ¤ 0. Unfortunately, this does not correspond to the behavior of the true error of
the Radau collocation method, which, instead, vanishes asymptotically (recall Figure 6.1b).

For the Lobatto method, the higher order continuous representation ηp is unbounded, and the
same holds for the result yp�1 of the higher order method. Furthermore, it can be shown that
|yp�1 � yp| Ñ 0.8|z| for |z| Ñ 8, Repzq ¤ 0. This means that the error estimate is unbounded,
although it holds for the true error of the Lobatto IIIA collocation method method that |yp �
y0 exppλhq| Ñ 1, i.e. the true error is bounded.

Apparently, for both the Radau IIA method and the Lobatto IIIA collocation method, the
estimated error exhibits a different asymptotic behavior than the true error of the numerical
method. A similar problem is known in the literature for the code RADAU5 and its modification
for DDEs, called RADAR5, see Hairer and Wanner [127]. In analogy to the remedy proposed
therein, the error estimation in Colsol-DDE can optionally be done by replacing the quantity
|pyp�1qi � pypqi| in equation (6.112a) with |P ppyp�1qi � pypqiq|. Thereby, P is a matrix that is
given by

P � p1� hBµJq�1
(6.139)
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and J is the most recently computed approximation of the Jacobian of the function Fiqr. For the
test equation (6.117) it holds that J � λ and thus P � 1{p1 � zBµq. Consequently, for vanishing
stiffness or stepsize, z Ñ 0, the error estimate is identical to |yp�1 � yp|. On the other hand, for
|z| Ñ 8, Repzq ¤ 0, it ensures that the error estimates for the Radau IIA and for the Lobatto IIIA
method have the same behavior as the exact error of the numerical method, i.e. the estimate
approaches zero for the former and is bounded for the latter.

6.7.4. Other Stability Concepts for ODEs and DDEs

So far the methods implemented in Colsol-DDE were investigated with respect to the elementary
concepts of A-stability and L-stability as well as with respect to one specific concept for the stability
of continuous representations. All of them were related to the simple ODE test equation (6.117).

There exists a large number of different stability concepts. For example, AN-stability is related
to a test equation where the prefactor λ in equation (6.117) is replaced by a time-varying coefficient
λptq, whereas the so-called B-stability is related to a general nonlinear ODE.

With regard to DDEs, the simplest extension of the test equation is to consider 9yptq � λ1yptq �
λ2ypt� τq, where τ is a constant delay. For certain pairs pλ1, λ2q P C�C it can be shown that the
solution yptq vanishes asymptotically for tÑ8, independent of the delay τ . Requesting the same
property for the numerical solution leads to so-called P- and GP-stability, where the difference
between the two is that the first is related to stepsizes fulfilling h � τ{m, m P N, whereas the
second allows arbitrary constant stepsizes. Alternatively, it is also possible to make an analysis
for a fixed delay τ , which leads, for constant stepsizes h � τ{m, to the definition of D-stability.
Further stability concepts exist as generalizations of AN- and B-stability.

For an overview on this topic, the reader is referred to Bellen and Zennaro [26]. However, a
comprehensive discussion of the methods implemented in Colsol-DDE with respect to the large
number of existing stability concepts is beyond the scope of this thesis.

6.8. The Main Algorithm

This section is about the algorithm that is implemented in Colsol-DDE for solving DDE-IVPs.
For its presentation, assume that ns denotes the number of discontinuities that were found until

the mesh point tl. Further, let l be the index such that tl � sns denotes the left border of the
current discontinuity interval. Initially, ns � 0, and s0 � tinipcq is the initial time.

Using this notation, Algorithm 6.20 presents the main algorithm for solving DDE-IVPs. The
algorithm is applicable for solving the IVP in an interval rtl, tls, where tl is either equal to the next
discontinuity point sns�1 (which is yet to be determined) or it is equal to the final time tfinpcq.
The practical determination of the next discontinuity point sns�1 by monitoring the discontinuity
interval indicators is discussed in Section 6.9.

Algorithm 6.20 (Main Solution Algorithm in Colsol-DDE)

1. Start with l � l, with some given tl, yl, gl :� fptl, yl, c, vlq, and with a proposed stepsize hl�1.
Let Ξcol � Ξucp � Ξpqr � 1 if l � 0 (i.e. tl � t0 is the initial time) or if tl is a time point
of discontinuity of order 0 or 1 in y. Otherwise, let Ξcol � Ξucp � Ξiqr � 0. Let hmin be a
user-given minimum stepsize.

2. Determine the initial guess pgjl�1q0 for the stage values of the collocation method as described
in Subsection 6.5.3.

3. If Ξcol � 1, compute and decompose the Jacobian of the equation system (6.72) with respect
to gjl�1.

4. Apply a Newton-type method to the nonlinear equation system (6.72).

a) If convergence is achieved in n ¤ n1
itmax iterations, set Ξcol � 0 and proceed to step 5.

b) If convergence is achieved in n1
itmax   n ¤ n2

itmax iterations, set Ξcol � 1 and proceed
to step 5.

c) If no convergence is achieved after n � n2
itmax iterations and if Ξcol � 0, set Ξcol � 1

and go back to step 3.
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d) If no convergence is achieved after n � n2
itmax iterations, if Ξcol � 1 and hl�1 ¡ hmin,

set hl�1 � maxphl�1{2, hminq and go back to step 2.

e) If no convergence is achieved after n � n2
itmax iterations, if Ξcol � 1 and hl�1 � hmin,

stop and exit with an error message.

5. Determine the initial guess pg�l�1q0 for the stage value of the implicit uniform correction as
described in Subsection 6.5.3.

6. If Ξucp � 1, compute and decompose the Jacobian of the equation system (6.74) with respect
to g�l�1.

7. Apply a Newton-type method to the nonlinear equation system (6.74).

a) If convergence is achieved in n ¤ n1
itmax iterations, set Ξucp � 0 and proceed to step 8.

b) If convergence is achieved in n1
itmax   n ¤ n2

itmax iterations, set Ξucp � 1 and proceed
to step 8.

c) If no convergence is achieved after n � n2
itmax iterations and if Ξucp � 0, set Ξucp � 1

and go back to step 6.

d) If no convergence is achieved after n � n2
itmax iterations, if Ξucp � 1 and hl�1 ¡ hmin,

set hl�1 � maxphl�1{2, hminq and go back to step 2.

e) If no convergence is achieved after n � n2
itmax iterations, if Ξucp � 1 and hl�1 � hmin,

stop and exit with error message.

8. Determine the initial guess pg♦l�1q0 for the stage value of the implicit quadrature rule as
described in Subsection 6.5.3.

9. If Ξiqr � 1, compute and decompose the Jacobian of the equation system (6.76) with respect
to g♦l�1.

10. Apply a Newton-type method to the nonlinear equation system (6.76).

a) If convergence is achieved in n ¤ n1
itmax iterations, set Ξiqr � 0 and proceed to step 11.

b) If convergence is achieved in n1
itmax   n ¤ n2

itmax iterations, set Ξiqr � 1 and proceed
to step 11.

c) If no convergence is achieved after n � n2
itmax iterations and if Ξiqr � 0, set Ξiqr � 1

and go back to step 9.

d) If no convergence is achieved after n � n2
itmax iterations, if Ξiqr � 1 and hl�1 ¡ hmin,

set hl�1 � maxphl�1{2, hminq and go back to step 2.

e) If no convergence is achieved after n � n2
itmax iterations, if Ξiqr � 1 and hl�1 � hmin,

stop and exit with error message.

11. Compute Cdisc and Cunif as defined in equation (6.112) and a proposition stepsize hprop as
given by the right hand side of equation (6.114).

a) If Cdisc ¡ 1 or Cunif ¡ 1, set hl�1 � hprop and go back to step 2.

b) If Cdisc ¤ 1 and Cunif ¤ 1, set hl�2 � hprop and proceed with step 12.

12. Set l � l � 1 and go to step 2.

For the case that tl�1 in step 12 is an approximation of a discontinuity point, the reader is referred
to the embedding of Algorithm 6.20 into Algorithm 6.21. If tl�1 � tfinpcq, then stop and signal
successful integration to the user.

6.9. Detecting and Locating Discontinuity Points

A key feature of Colsol-DDE is that its implementation closely follows the definition of the practical
variant of the modified standard approach. This means that the code monitors the discontinuity
interval indicators and, accordingly, computes past states from sufficiently smooth branches of the
numerical solution.
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The following algorithm works under the (much) simplifying assumptions that there is only
one delay and that the propagated discontinuities occur well separated of each other, i.e. in each
integration step the deviating argument crosses at most one past discontinuity point. Several
modifications for more general problem classes as well as additional regularity checks and fine
tuning of the algorithm are discussed later.

For simplicity of notation, the discontinuity interval indicator ξα1 for the sole deviating argument
is in the following denoted by ξ.

Algorithm 6.21 ((Simplified) Version of Discontinuity Treatment in Colsol-DDE)

1. Start with l � 0, the initial time tl � t0 � tinipcq, the initial value y0 � yinipcq, and initial
stepsize h1. Denote the time points of the initial discontinuities up to order p � 1 by ŝi,
�nφs ¤ i ¤ �1, and set ŝ0 � t0. Let the orders of the discontinuity at ŝi be denoted by oi,
for �nφs ¤ i ¤ �1. Further, set ns � 0 and let ξ be the discontinuity interval indicator for
the sole delay τ1, whose initial value is such that �nφs ¤ ξ ¤ 0, i.e. the indicator points to a
smooth branch φipt, cq, �nφs ¤ i ¤ 0, of the initial function. Set αsearch � 0.

2. Compute tl�1 � tl � hl�1, and yl�1 and ηl�1ptl � θhl�1q by the augmented CRK method as
in steps 2-11 of Algorithm 6.20 until the criteria for error control, Cdisc ¤ 1, Cunif ¤ 1, are
fulfilled. All past states are obtained from the discontinuity interval indicated by ξ, i.e. from
rŝξ�1, ŝξs. Extrapolations are used if necessary.

3. Compute for ŝk, k � ξ � 1 and, if ξ � ns � 1, then also for k � ξ, the following quantity:

µk �

$'&
'%
�1 if tl�1 � τ1ptl�1, yl�1, cq � ŝk ¡ ptfinpcq � tinipcqq � γcrit

0 if |tl�1 � τ1ptl�1, yl�1, cq � ŝk| ¤ ptfinpcq � tinipcqq � γcrit
�1 if tl�1 � τ1ptl�1, yl�1, cq � ŝk   ptfinpcq � tinipcqq � γcrit

(6.140)

Herein, γcrit is a user-given criterion for the detection of zeros.

a) If µξ�1 � �1 and µξ � �1 and αsearch � 0, no propagated discontinuity is detected.
Proceed with step 6.

b) If µξ�1 � 0 or µξ � 0, then a propagated discontinuity is detected. Proceed with step 5.

c) If µξ�1 � �1 or µξ � �1, then a propagated discontinuity is located somewhere on
rtl, tl�1s. Determine the zero t� of t� τ1pt, ηl�1ptq, cq � ŝk1 by using regula falsi, where
k1 � ξ � 1 if µξ�1 � �1 and k1 � ξ if µξ � �1. Save told � tl�1, xold � tl�1 �
τ1ptl�1, yl�1, cq � ŝk1 . Set hl�1 � t� � tl, αsearch � 1, and go back to step 2.

d) If µξ�1 � �1 and µξ � �1 and αsearch � 1, no propagated discontinuity is detected but
the zero search has previously been initialized. Compute x � tl�1�τ1ptl�1, yl�1, cq� ŝk1 ,
where k1 is the index of the previous discontinuity whose propagation was detected in the
last time that c) was called. Determine the zero t� of a linear function that interpolates
ptl�1, xq and ptold, xoldq, set hl�1 � t� � tl, and go back to step 2.

4. If the order of the parent discontinuity (given by oξ�1 or oξ) is less than or equal to p, then
set ŝns�1 � tl�1, ons�1 � oξ1 � 1 (with ξ1 � ξ � 1 or ξ1 � ξ) and ns � ns � 1.

5. If µξ�1 � 0, then set ξ � ξ � 1. If µξ � 0, then set ξ � ξ � 1.

6. Set αsearch � 0, l � l � 1, and proceed with step 2, i.e. with the next integration step.

Even though this algorithm captures the essential points of the discontinuity detection mechanism
of Colsol-DDE, the practical realization is significantly more involved for the following reasons.

• Checking Uniqueness of Consistent Choice for ξ: According to the definition of the practical
variant of the modified standard approach (Definition 5.22), it needs to be ensured that there
is only one consistent choice of the discontinuity interval indicator. If the assumptions of “the
special case” as discussed in Section 5.4 are fulfilled (discontinuity points are well-separated
and the propagation switching functions have zeros of multiplicity one), then Algorithm 6.21
detects, for sufficiently small stepsizes, all zeros of the propagtion switching functions.

In order to verify that the behavior of the propagation switching functions is “regular” in the
vicinity of a zero, and that the discontinuity interval indicator is the unique consistent choice,
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Colsol-DDE performs the following checks. First, a check is done that the time derivative of
the propagation switching function in the determined discontinuity point is “significantly”
non-zero. Second, it is checked that the propagation switching function does not fulfill the
zero criterion in equation (6.140) a “short” time before and after the determined discontinuity
point. Thirdly, it is verified that the propagation switching function leaves – into both time
directions – its zero set into the direction indicated by ξ. The criteria for “significantly
non-zero” and “short time before/after a discontinuity point” thereby depend on user-given
parameters.

If the assumptions of “the special case” discussed in Section 5.4 are fulfilled, then Colsol-
DDE corresponds to a realization of the practical variant of the modified standard approach,
meaning that all sign changes in the propagation switching functions are detected, and that
the discontinuity interval indicator is constant and consistent between two mesh points. In
addition, the above-described safeguard checks allow to detect most irregularities in the
behavior of the propagation switching functions.

• Decision on further propagation: After a discontinuity point has been successfully included
in the mesh, it needs to be decided whether the current discontinuity needs to be propagated
further. Ideally, this decision should be based upon the order of the discontinuity in the exact
solution, which, however, is in practice typically unknown.

Colsol-DDE therefore determines a lower bound of the order of propagated discontinuities.
More precisely, it is checked for the initial discontinuities, whether the initial function is
continuous or not and, accordingly, the order is set to 0 or 1. For the propagation of discon-
tinuities, it is exploited in step 4 of the algorithm that a lower bound for the order of the
child discontinuity is given by oc � op � 1, where op is the order of the parent discontinuity.
The strategy in step 4 further guarantees that all time points of discontinuity up to order
p� 1 are propagated, as it is necessary for the application of the implicit quadrature rule.

• Multiple delays: The technical realization of Algorithm 6.21 is severely complicated due to
the fact that there maybe multiple delays. In particular, this requires to check, after every
integration step, the zero criteria for the propagation switching functions for all deviating
arguments. An approximation yl�1 of the state at tl�1 is then accepted in step 3a, if none of
the propagation switching function has changed its sign, and it is accepted in step 3b if one
or several propagated discontinuities are detected. In step 3c, the zeros of all propagation
switching functions which have changed their sign need to be determined, and the earliest
of all these zeros is used to recompute hl�1. In step 3d, linear interpolation is used for all
propagation switching functions, for which a zero has been detected the last time 3c was
called.

In view of the “special case” as discussed in Section 5.4 it is, strictly speaking, necessary
that zeros of different propagation switching functions do not coincide. Colsol-DDE is less
rigorous at this point and allows arbitrarily many propagated discontinuities of order greater
or equal to 2 to coincide. Similarly, it is allowed that they occur arbitrarily close after each
other. Only coinciding propagated discontinuities of order 1 are excluded by suitable checks,
because otherwise the IVP solution is typically not differentiable with respect to parameters
(see Chapter 7).

• Multiple switching functions (i.e. extension to IHDDE-IVPs):
The presence of multiple switching functions in IHDDEs adds another layer of complexity
to the development of a practical code. Apparently, this requires to check also the signs of
the switching functions and to make the decision in step 3c dependent on these signs. In
addition, non-zero impulses generally affect the values of other state-dependent switching
functions and propagation switching functions. Accordingly, after an impulse occured, the
switching function signs and discontinuity interval indicators need to be updated accordingly.

With regard to coinciding discontinuities, Colsol-DDE makes several checks that are mo-
tivated by the theory for differentiability of IVP solutions with respect to parameters (see
Chapter 7). This includes, in particular, that switching functions have a non-zero time
derivative at their zeros. For a further discussion of the practical realization in Colsol-DDE,
it is referred to Subsection 9.1.11.
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• Dealing with Inaccurate Extrapolations: The usage of the modified standard approach guar-
antees, in contrast to the standard approach, that past states are always obtained by evalu-
ations of sufficiently smooth functions. However, the use of extrapolations may also become
problematic when the deviating argument assumes values far outside of the interval rtl1 , tl1�1s
from which the continuous representation is used. This may happen, e.g., when the step-
size in the past, hl1�1, is very small because tl1 was coincidentally very close to the next
discontinuity point tl1�1.

In the prescribed situation, the result of the extrapolation and thus the discrete and con-
tinuous approximations in a trial step may be completely unreliable. This typically leads to
repeated calls of step 3d. As a simple but effective remedy, Colsol-DDE allows the user to
specify a maximum number of repeated calls of step 3d after which a bijection step is done
instead of a linear interpolation.

• Separate treatment of constant delays and simple time-dependent switching functions: The
zeros of (simple) time-dependent switching functions as well as the zeros of propagation
switching functions that are associated to constant or time-dependent delays can be computed
a priori. It is therefore ineffcient to take, as suggested in algorithm 6.21, first the integration
step to a time point tl�1 (which requires the solution of three nonlinear equation systems)
and to check later whether the signs of switching functions or propagation switching functions
have changed. Instead, this can be done before the integration step is done, which saves the
computational effort for an integration step that is rejected anyway.

Colsol-DDE therefore provides separate interfaces for simple time-dependent switching func-
tions and constant delays. A special treatment of time-dependent switching functions and
time-dependent delays is not yet realized.

Another important issue not mentioned in the above list is that of coinciding discontinuities, i.e.
a situation in which several switching functions or propagation switching functions are zero at the
same time (either exactly or at least according to the employed zero criteria). A simple example
for this is given by a DDE-IVP with two constant delays, in which one delay is an integer multiple
of the other.

It is clear that some discontinuities should not coincide or otherwise the solution is not unique.
For example, imagine an IHODE-IVP with two switching functions, whose associated impulse
function are not identically zero. If the switching functions become zero at the same time point,
then the application of the impulses is not generally commutative. Accordingly, there may exist
two different ways of continuing the solution beyond the discontinuity point. Colsol-DDE detects
such a situation, aborts the solution and informs the user with an error message.

In general, coinciding zeros of switching functions and propagation switching functions may not
only lead to non-uniqueness of the solution, but also to a non-continuous or non-differentiable
dependence on the parameters c that occur in the model functions of the considered IVP. Mod-
elers, and thus users of practical codes, typically expect that IVP solutions for their models are
differentiable with respect to the parameters; if this is not the case, this may hint to errors in the
model. Therefore, a good code should be able to detect points of non-differentiability with respect
to the parameters.

Finding sufficient conditions for differentiability of IHDDE-IVP solutions with respect to param-
eters is one of the main topics in the next part of the thesis. The theoretical results are then, in
Chapter 9, used to discuss the practical checks that Colsol-DDE does in order to ensure that the
computed IVP solutions are differentiable.
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7. Differentiability Theory

Differentiability results with respect to parameters, beside the obvious
theoretical importance, have a natural application in the problem of
identification of parameters of the equations.

Hartung and Turi, in the introduction of their paper “On Differen-
tiability of Solutions with respect to Parameters in State–Dependent
Delay Equations” [139].

In Chapter 1, impulsive hybrid discrete-continuous delay differential equations (IHDDEs) and the
corresponding initial value problems (IHDDE-IVPs) were defined in such a way that all model
functions – e.g. the right-hand-side function, the delay functions, and the initial function – depend
on parameters c (see Definitions 1.1 and 1.2). The results for the existence and uniqueness of
IHDDE-IVP solutions in Chapter 4, however, were presented for arbitrary but fixed parameter
values, i.e. the parameter dependence was essentially ignored.

The situation is different in this chapter. Here, it becomes important that the solution of
an IHDDE-IVP generally depends on the parameters c, and that it should therefore be denoted
by ypt; cq, cf. Section 2.4. Well-posedness of a mathematical problem in the sense of Hadamard
comprises, besides existence and uniquess of the solution, also a continuous dependence on input
quantities, which in the context of this thesis is equivalent to a continuous dependence on the
parameters. However, the subject of this chapter is to go directly one step further, i.e. to continuous
differentiability of IHDDE-IVP solutions with respect to the parameters.

More precisely, the issue treated in this chapter is as follows: Given some nominal values c̃
of the parameters (also called nominal parameters), under which conditions does there exist a
neighborhood Uc of c̃ such that for c P Uc and (almost) all times t P T f pcq � p�8, tfinpcqs the
IVP-solution ypt; cq is continuously differentiable with respect to the parameters? In the case that
such a neighborhood exists, the derivative is denoted by

Wpt; cq � Bypt; cq
Bc , (7.1)

where the function W : T f pcq � Uc Ñ Rny�nc is called the Wronskian matrix. The Wronskian
matrix itself is, like the state y, also a function of the time and the parameters.

Literature Survey

In the context of delay differential equations (DDEs), Hale and Ladeira [131] made an early contri-
bution to the differentiability of IVP solutions with respect to constant delays. Their approach is
to convert the DDE-IVP into an equivalent integral equation and to reformulate the integral equa-
tion as a fixed-point problem. Then an extension of the uniform contraction principle is applied
in order to obtain the fixed point as a differentiable map of the delays.

For DDEs with state-dependent delays, Hartung [133, 135] has obtained differentiability of IVP
solutions with respect to parameters in the right-hand-side function, in the initial function, and
in the delay function, in a pointwise sense. Furthermore – inspired by the techniques of Hale
and Ladeira [131] – Hartung and Turi [139] and Chen, Hu, and Wu [63] present results for first
and second order differentiability in a weaker sense. Hale and Verduyn Lunel [130], page 48f,
discuss differentiability of IVP solutions with respect to initial data in a fairly general class of
functional differential equations; their proof is also based upon the differentiability of a fixed-point
of a contraction mapping. For compact overviews over the differences in the various differentiabil-
ity theorems regarding, in particular, assumptions on the smoothness of the initial function, the
selection of function spaces, and the choice of norms on these function spaces, it is referred to
Hartung et al. [137] and Hartung [135].
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A different approach for proving differentiability of DDE-IVP solutions with respect to parame-
ters has been pursued by Brewer [48], Robbins [216], and Banks, Robbins, and Sutton [18]. There,
the DDE-IVP is first converted into a so-called abstract Cauchy problem and then differentiability
results for this abstract Cauchy problem are derived.

All of the results cited above make, at some point, smoothness assumptions on the initial function
and on the link of the initial function φptq to yptq for t ¥ tinipcq. Typically, φpt, cq is assumed to be
absolutely continuous and the link to yinipcq is assumed to be continuous (Hartung [133] requires
even a continuously differentiable link at the initial time). In the context of this thesis, however,
the initial function is only asssumed to be piecewise continuous and therefore the above results
cannot be used.

A more suitable starting point for discussing the differentiability of IHDDE-IVP solutions with
respect to parameters is obtained by looking at the theory for hybrid discrete-continuous ordinary
differential equations (HODEs), impulsive ordinary differential equations (IODEs), and impul-
sive hybrid discrete-continuous ordinary differential equations (IHODEs). The Wronskian matrix
Wpt; cq is thereby typically assumed to be in the space of piecewise continuously differentiable
function, i.e. Wp�; cq P PDpT pcq,Rny�ncq (where, as usual, T pcq � rtinipcq, tfinpcqs). For the
IHODE-case, Bock [35] has first formulated a theorem that guarantees differentiability of the dis-
continuity points and of the IVP solution with respect to parameters. A sequence of later works,
Bock [39], page 191ff, Lakshmikantham [169], page 73ff, von Schwerin, Winckler, and Schulz [252],
and Galán, Feheery, and Barton [111] have found similar sets of sufficient differentiability condi-
tions. In addition, these works present expressions that quantify the jump in the Wronskian.

With regard to DDEs, derivatives of IVP solutions with respect to parameters that are discontin-
uous in time have rarely been considered. To the knowledge of the author, Baker and Paul [13] were
the first who explicitly allowed this case. Later, ZivariPiran [271] and ZivariPiran and Enright [273]
used the formalism known from IHODE-IVPs for deriving the size of the jump in the Wronskian
at the discontinuity points. However, the important issue of differentiability of DDE-IVP solutions
with respect to parameters is barely touched in their works. In other words, there is a lack of
rigorous theoretical foundation for the existence of the derivatives that they practically compute.
Lenz, Schlöder, and Bock [173] make a first step in this direction and provide a differentiability
result for DDE-IVPs with multiple constant delays. This work serves as a basis for several new
developments presented in this chapter, as outlined in the following.

Novel Results Presented in This Chapter

In this chapter, it is demonstrated how the ideas of the proof of the differentiability result in Lenz,
Schlöder, and Bock [173] can be transferred to IVPs in more complicated differential equations,
namely to DDEs with time-dependent delays and even to IHDDEs with (simple) time-dependent
switching functions. Furthermore, a differentiability theorem for DDEs with state-dependent delay
functions is given, which is based on the assumption that a solution of the DDE-IVP is available.
The general case of IHDDEs with state-dependent delay and switching functions is also addressed.

It should be remarked that the differentiability of IVP solutions as discussed in this chapter
means differentiability with respect to the finite-dimensional parameter vector c. This is in contrast
to many of the above-mentioned differentiability results, where the initial function φ is treated as an
infinite-dimensional parameter and differentiability is meant in the sense of Fréchet. For practical
purposes, however, the restriction to finite-dimensional parameter vectors c is not an essential one,
because numerical approximation of the Wronskian by using computers is anyway coupled to the
need to find a finite-dimensional parametrization φpt, cq of the initial function.

Organization of This Chapter

The basic idea of the proof of the differentiability theorem in Lenz, Schlöder, and Bock [173] is to
apply the method of steps and to use differentiability theorems of ODE theory. Therefore, the first
issue is to recall the ODE theory on differentiability of IVP solutions; this is done in Section 7.1.
Section 7.2 recapitulates the differentiability theorem recently given Lenz, Schlöder, and Bock [173]
and also reproduces the proof. Section 7.3 discusses how the ideas of the proof transfer to IHDDEs
with time-dependent delay functions and (simple) time-dependent switching functions. Section 7.4
deals with IHODEs and recalls a differentiability result for this class of equations. Finally, Sections
7.5 and 7.6 show how the result for IHODEs can be transferred to DDEs and IHDDEs.
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Notation

Several times in this chapter it is necessary to consider, for some reference interval T̂ , an extension
into both directions by some value ∆a. For this purpose, the notation T̂ ∆a is used in this chapter
as a symbol for the extended open interval

T̂ ∆a :� pa1 � |∆a|, a2 � |∆a|q. (7.2)

Further, for the special case that the lower boundary is �8, i.e. T̂ � p�8, a2s, then

T̂ ∆a :� p�8, a2 � |∆a|q. (7.3)

For notational clarity, fraktal letters y and W are used in definitions of IVPs, and y and W are
used as symbols for the solutions of the IVPs in this chapter.

7.1. Preliminaries: ODEs

A result for the differentiability of the solution ypt; cq of an ODE-IVP as in Definition 1.4 with
respect to parameters goes back to Gronwall [121], and is given in slightly different variants in
various textbooks on ODEs, see e.g. Amann [5], page 126ff, and Hairer, Nørsett, and Wanner
[126], page 92ff. Here, a version given in the book by Hartman [132], page 95f, is adapted to the
notation of this thesis.

Theorem 7.1 (Local Differentiability of ODE-IVP Solutions)

Let an ODE-IVP (1.25) be given with nominal parameters c̃, open sets Vy � Rnz , Vc � Rnc and
an open interval T0 such that ptinipc̃q, yinipc̃q, c̃q P T0 � Vy � Vc. Assume that the functions tini

and yini are continuously differentiable for c P Vc and that the right-hand-side function fpt, y, cq is
continuous in t and continuously differentiable with respect to y and c for pt, y, cq P T0 � Vy � Vc.

Then the solution ypt; cq is unique and has a continuous partial derivative Wpt; cq � Bypt; cq{Bc
on pω�pcq, ω�pcqq�Vc, where pω�pcq, ω�pcqq is the maximal interval of existence i.e. the maximal
interval for which pt, ypt; cqq stays in T0 � Vy.

Proof
See Hartman [132], page 95f. �

Theorem 7.1 is a differentiability result for the solution ypt; cq that is local both in time and in
the parameters because it holds only for a (possibly very small) open set Vc � c̃ and a (possibly
very small) maximal interval of existence pω�pcq, ω�pcqq. Since all differentiability theorems in this
chapter are local in the parameter space, this property is not emphasized and the attribute “local”
in the name of the theorem therefore only refers to the fact that it is local in time. Accordingly, a
“global” differentiability result in the sense of this chapter is a differentiability result on a given,
parameter-dependent interval. More precisely, the interval of interest is T pcq � rtinipcq, tfinpcqs in
case of an IVPs without delays and T f pcq � p�8, tfinpcqs in the case of IVPs with delays.

As a first example of a global differentiability theorem, the following ODE result is formulated.

Theorem 7.2 (Global Differentiability of ODE-IVP Solutions)

Let an ODE-IVP (1.25) be given with nominal parameters c̃ and an open neighborhood Vc of c̃.
Let T pc̃q � rtinipc̃q, tfinpc̃qs be the interval for the nominal parameters, and choose ∆t ¡ 0 such
that also the extended interval T ∆tpc̃q :� ptinipc̃q � ∆t, tfinpc̃q � ∆tq is defined. Further, choose
∆y ¡ 0 and define the open set

Vy :� ty | }y � yinipc̃q}8   ∆yu � Rny . (7.4)

Assume that the model functions of the ODE-IVP (1.25) fulfill the following conditions:

(S) Smoothness: The functions tinipcq, yinipcq, and tfinpcq are continuously differentiable for
c P Vc and the right-hand-side function fpt, y, cq is continuous in t, uniformly Lipschitz
continuous with respect to y, and continuously differentiable with respect to y and c for
pt, y, cq P T ∆tpc̃q � Vy � Vc.
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(B) Boundedness: The right-hand-side function f is bounded by

}fpt, y, cq}8 ¤Mf (7.5a)

Mf ¤ ∆y

2ptfinpc̃q �∆t� tinipc̃qq (7.5b)

for pt, y, cq P T ∆tpc̃q � Vy � Vc.
Then there exists an open interval T δtpc̃q :� ptinipc̃q � δt, tfinpc̃q � δtq, δt ¡ 0, and an open
neighborhood Uc � Vc of c̃ such that T pcq � T δtpc̃q for c P Uc, and for pt, cq P T δtpc̃q � Uc the
following assertions hold:

1. A unique solution ypt; cq exists.

2. The Wronskian Wpt; cq � Bypt; cq{Bc is continuous.

3. The Wronskian Wpt; cq is given by the solution of the problem

9Wpt; cq � Bfpt, ypt; cq, cq
By Wpt; cq � Bfpt, ypt; cq, cq

Bc (7.6a)

Wptinipcq; cq � dyinipcq
dc

� f inipcq � dt
inipcq
dc

. (7.6b)

with f inipcq :� fptinipcq, yptinipcq; cq, cq.
4. The total derivative of the state at the final time is given by

dyptfinpcq; cq
dc

� Wptfinpcq; cq � ffinpcq � dt
finpcq
dc

, (7.7)

with ffinpcq :� fptfinpcq, yptfinpcq; cq, cq.

Before coming to the proof of the theorem, it is first remarked that for any (possibly parameter-
dependent) time tpcq, the total derivative of the state, dyptpcq; cq{dc, can be expressed in terms of
the partial derivative Byptpcq; cq{Bc as follows:

dyptpcq; cq
dc

� Byptpcq; cq
Bc � dyptpcq; cq

dt

dtpcq
dc

. (7.8)

In particular, this relation holds for the initial time tinipcq, see equation (7.6b), and for the final
time tfinpcq, see equation (7.7). The Wronskian matrix, i.e. the partial derivative, represents the
derivative of the state with respect to the parameters for a fixed, unchanged time point, and only
the total derivative takes into account that also the evaluation time changes with the parameters.

Proof (of Theorem 7.2)
The theorem is essentially a combination of the local differentiability result in Theorem 7.1 with
suitable additional assumptions that ensure the existence and uniqueness of a solution on T pcq �
T δtpc̃q for some neighborhood of the nominal parameters c̃. More precisely, the assumptions (S) and
(B) of the theorem are restrictive enough so that the Picard-Lindelöf theorem (Theorem 4.1) can
be applied to the parameter-dependent interval T pcq for arbitrary parameters c that are sufficiently
close to the nominal parameters c̃. This proves assertion 1, and assertion 2 follows immediately
from Theorem 7.1.

The representation of the Wronskian as solution of an initial value problem as given in asser-
tion 3 is a standard result for ODEs, see e.g. Hairer, Nørsett, and Wanner [126], page 95 and
Hartman [132], page 95. However, the textbooks usually formulate different initial value problems
for derivatives with respect to the initial value, the initial time, and the parameters. In order to
prove the variant given here, consider the integral representation of the ODE-IVP solution

ypt; cq � yinipcq �
t»

tinipcq

fpt1, ypt1; cq, cqdt1 (7.9)
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and take the derivative with respect to c. At this point it is relevant that the smoothness as-
sumption (S) was formulated for an extended time interval T ∆tpc̃q, so that for some sufficiently
small neighborhood Uc the initial and final time remain within a domain where (S) holds. This
is crucial for the application of the differentiation rule for parameter-dependent integrals (see e.g.
Bronstein et al. [49], page 475f), which yields

Bypt; cq
Bc � d

dc
yinipcq � fptinipcq, yptinipcq; cq, cq d

dc
tinipcq

�
t»

tinipcq

Bfpt1, ypt1; cq, cq
By

Bypt1; cq
Bc � Bfpt1, ypt1; cq, cq

Bc dt1. (7.10)

Differentiation with respect to t gives the differential equation (7.6a) for W, and the first two
terms in equation (7.10) are identified as the associated initial value, i.e. equation (7.6b).

Finally, assertion 4 is verified by doing the same analysis for the integral representation of
yptfinpcq; cq, i.e. replacing the upper integral boundary in equation (7.9) by tfinpcq and taking the
total derivative with respect to the parameters, which also accounts for the parameter dependency
of the final time. �

One result of Theorem 7.2 is that the Wronskian is given as solution of an ODE-IVP. In order to
distinguish between this ODE-IVP for Wpt; cq and the original ODE-IVP for ypt; cq the following
terminology is used:

Definition 7.3 (Nominal IVP, Variational IVP)

The ODE-IVP for the state ypt; cq is called nominal ODE-IVP, and the initial value problem for
the Wronskian (7.6) is called variational ODE-IVP. An analogous terminology is used later in the
remainder of this thesis for initial value problems in HODEs, IODEs, IHODEs, DDEs, HDDEs,
IDDEs, and IHDDEs.

Note that the variational ODE-IVP is defined in such a way that the partial derivatives of the
right-hand-side function are taken at ypt; cq, i.e. along the solution of the nominal ODE-IVP.

7.2. DDEs with Constant Delays

As a first generalization of ODE-IVPs, DDE-IVPs with constant delays are considered.

Definition 7.4 (Initial Value Problem in DDEs with Constant Delays)

An Initial Value Problem in DDEs with constant delays for the state y : T f pcq Ñ Dy is given by

9ypt; cq � fpt, ypt; cq, c, typt� τipcq; cqunτi�1q for t P T pcq (7.11a)

yptinipcq; cq � yinipcq (7.11b)

ypt; cq � φpt, cq for t   tinipcq. (7.11c)

All definitions of functions, intervals, and sets carry over from the Definitions 1.11 and 1.12 with
the exception that τi : Dc Ñ R� are here constant and positive delay functions of the parameters.

A global differentiability result for solutions ypt; cq of DDE-IVPs with constant delays can be found
in Lenz, Schlöder, and Bock [173], which is recalled in the following.

Theorem 7.5 (Global Differentiability of DDE-IVP Solutions)

Let a DDE-IVP with constant delays be given as in Definition 7.4. Let c̃ be the nominal parameters,
and consider a neighborhood Vc � Rnc of c̃ and the interval T f,∆tpc̃q with an extension ∆t ¡ 0.
Further, choose ∆y ¡ 0 and ∆φ ¡ 0 for the definition of the open sets

Vy :� ty | }y � yinipc̃q}8   ∆yu � Rny (7.12a)

Vφ :� ty | inf
tPT f,∆tpc̃q

pφipt, c̃qq �∆φ   yi   sup
tPT f,∆tpc̃q

pφipt, c̃qq �∆φu � Rny

for 1 ¤ i ¤ nyu (7.12b)

Let the following assumptions be fulfilled by the model functions of the DDE-IVP (7.11):
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(S) Smoothness: The functions tinipcq, yinipcq, tfinpcq, and τkpcq are continuously differentiable
for c P Vc. The right-hand-side function fpt, y, c, tvkunτk�1q is continuous in t, uniformly
Lipschitz-continuous with respect to y, and continuously differentiable with respect to y, c,
and vk, 1 ¤ k ¤ nτ , for pt, y, c, tvkunτk�1q P T f,∆tpc̃q � Vy � Vc � pVφ Y Vyqnτ . The initial
function φpt, cq is continuously differentiable for pt, cq P T f,∆tpc̃q � Vc.

(B) Boundedness f : The right-hand-side function f is bounded by

}fpt, y, c, tvkunτk�1q}8 ¤Mf (7.13a)

Mf ¤ ∆y

2ptfinpc̃q �∆t� tinipc̃qq (7.13b)

for pt, y, c, tvkunτk�1q P T f,∆tpc̃q � Vy � Vc � pVφ Y Vyqnτ .

(D) Distinctness: the values of the delays are pairwise distinct, i.e. τkpcq � τjpcq for j � k and
for all c P Vc, and it holds that τkpcq � 0 and τkpcq � tfinpcq� tinipcq for 1 ¤ k ¤ nτ , c P Vc.

Without loss of generality the delays shall be ascendingly ordered, τkpcq   τk�1pcq for 1 ¤ k ¤ nτ�1,
and K P t0, . . . , nτu shall be the largest integer1 such that tinipcq � τKpcq   tfinpcq (K � 0 if the
relation is violated for all delays). Further, define skpcq, 0 ¤ k ¤ K � 1 as follows: s0pcq � tinipcq,
sK�1pcq � tfinpcq, and, if K ¥ 1, skpcq for 1 ¤ k ¤ K as the parameter-dependent time points
of the child discontinuities of the discontinuity at tinipcq within the considered time interval, i.e.
skpcq � tinipcq � τkpcq.

Then there exists δt ¡ 0 and an open neighborhood Uc of c̃, such that T f pcq � T f,δtpc̃q for
c P Uc, and for pt, cq P T f,δtpc̃q � Uc the following assertions hold:

1. A unique solution ypt; cq of the nominal DDE-IVP exists.

2. The Wronskian Wpt; cq � Bypt; cq{Bc is continuous for t � skpcq, 0 ¤ k ¤ K. At the times
t � skpcq for 0 ¤ k ¤ K the Wronskian is right-continuous.

3. At the times skpcq, 1 ¤ k ¤ K, the Wronskian Wpt; cq is generally discontinuous, and the
difference between the left-sided limit and the right-sided limit is given by

W�pskpcq; cq �W�pskpcq; cq �
�
f�k pcq � f�k pcq



dskpcq
dc

. (7.14)

Herein, dskpcq{dc � dtinipcq{dc�dτkpcq{dc, and f�k pcq and f�k pcq are defined as the left-sided
and right-sided limit of the evaluation of the right-hand-side function f , i.e.

f�k pcq :� fpskpcq, y�pskpcq; cq, c, ty�pskpcq � τipcq; cqunτi�1q (7.15a)

f�k pcq :� fpskpcq, y�pskpcq; cq, c, ty�pskpcq � τipcq; cqunτi�1q. (7.15b)

These right-hand-side function evaluations differ in exactly one argument, namely in the value
used for the state at the time point skpcq � τkpcq � tinipcq. Once, the left-sided limit is taken
(which gives φptinipcq, cq) and once the right-sided limit is taken (which gives yptinipcq; cq).
Further, it holds that skpcq � τipcq � tinipcq for i � k, and hence y�pskpcq � τipcq; cq �
y�pskpcq � τipcq; cq.

4. On the right-open interval rskpcq, sk�1pcqq, 0 ¤ k ¤ K, the Wronskian Wpt; cq is given by
the solution of the variational DDE-IVP

9Wpt; cq �Bfpt, ypt; cq, c, typt� τipcq; cqunτi�1q
By Wpt; cq � Bfpt, ypt; cq, c, typt� τipcq; cqunτi�1q

Bc

�
nτ̧

m�1

Bfpt, ypt; cq, c, typt� τipcq; cqunτi�1q
Bvm

�
�
Wpt� τmpcq; cq � 9ypt� τmpcq; cq dτmpcq

dc

�

(7.16a)

1 Note that by the Distinctness assumption (D) and the Smoothness assumption (S) on the delays τkpcq the total
number K of discontinuities within rtinipcq, tfinpcqs (and their order) is the same for all c P Vc.
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Wpskpcq; cq �dykpcq
dc

� f�k pcq
dskpcq
dc

(7.16b)

Wpt; cq �

$'&
'%

Bφpt,cq
Bc for t   s0pcq,

solution of problem (7.16) in rsipcq, si�1pcqq
for sipcq ¤ t   si�1pcq, i P t0, . . . , ku

. (7.16c)

Herein, Bf{Bvm denotes the partial derivative of the right-hand-side function with respect to
the m-th past state, and f�k pcq is given by (7.15b) for 1 ¤ k ¤ K, and for k � 0 it is given
by

f�0 pcq :� f ini
�pcq :� fptinipcq, yinipcq, c, typtinipcq � τipcq; cqunτi�1q. (7.17)

Further, ykpcq denotes the initial state for the considered interval, which is given by y0pcq �
yinipcq for k � 0, and by ykpcq � y�pskpcq; cq for 1 ¤ k ¤ K, i.e. by the solution of the
nominal DDE-IVP at the end of the preceding interval rsk�1pcq, skpcqq. The total derivative
of this state, which occurs in equation (7.16b), is given by

dykpcq
dc

� W�pskpcq; cq � f�k pcq
dskpcq
dc

, (7.18)

so that, by using equation (7.14), equation (7.16b) is equivalent to

Wpskpcq; cq � W�pskpcq; cq. (7.19)

5. The total derivative of the state at the final time is given by

dyptfinpcq; cq{dc � Wptfinpcq; cq � f�K�1pcq �
dtfinpcq
dc

, (7.20)

with

f�K�1pcq :� ffin
�pcq � fptfinpcq, y�ptfinpcq; cq, c, ty�ptfinpcq � τipcq; cqunτi�1q. (7.21)

Before giving the proof, it is remarked that according to assumption (S) of the theorem the initial
function φ is continuously differentiable rather than just piecewise continuous differentiable as it
was assumed in Chapters 4 and 5. This restriction is made here in order to reduce the notational
complexity, because with this assumption the solution ypt; cq may have only one discontinuity of
order 0, namely at the initial time tinipcq. Accordingly, discontinuities of order 1 in y within T pcq
may occur only at the time points skpcq � tinipcq � τkpcq, 1 ¤ k ¤ K. Once the proof has been
completed, it becomes obvious how to generalize the differentiability result for the more general
case of piecewise continuously differentiable initial functions; this generalization is discussed in
Section 7.3.

It should further be emphasized that the idea of the proof is very simple. At first, the interval
T f,δtpc̃q is subdivided as follows: T f,δtpc̃q :� �K�2

k�0 Tkpcq, where T0pcq :� p�8, tinipcqq, Tkpcq :�
rsk�1pcq, skpcqq for 1 ¤ k ¤ K � 1, and TK�2pcq :� rtfinpcq, tfinpc̃q � δtq. The essential tools for
the proof is then to reduce the DDE-IVP to a sequence of ODE-IVPs on these subintervals and
to apply Theorem 7.2 on the differentiability of ODE-IVP solutions. The main technical difficulty
of the proof is to define the intervals and sets in such a way that the constructed ODE-IVPs do
indeed fulfill the assumptions of Theorem 7.2.

Proof ((of Theorem 7.5))
The assertions of the theorem are formulated for pt, cq P T f,δtpc̃q � Uc, for some δt ¡ 0 and for
a neighborhood Uc of c̃. Consider δt1 � ∆t{2 as a proposition for δt and the set Uc1 � Vc as a
proposition for Uc, where Uc1 is chosen sufficiently small so that for all elements c P Uc1 the following
conditions hold:

(I) |tinipcq � tinipc̃q|   δt1{2 and |tfinpcq � tfinpc̃q|   δt1{2
(II) |τkpcq � τkpc̃q|   δt1{2 for 1 ¤ k ¤ nτ
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(III) }yinipcq � yinipc̃q}8   ∆y{4

(IV) φpt, cq P Vφ for t P T f,∆tpc̃q.

A neighborhood Uc1 of c̃, where these conditions are fulfilled can always be found because of the
Smoothness assumption (S) for tinipcq, tfinpcq, τkpcq, yinipcq, and φpt, cq. The final choices for δt,
0   δt ¤ δt1 and Uc � Uc1 are given later in the proof.

Proof for t P T0pcq
On the first interval, T0pcq, the proof is trivial, because the assertions 1 and 2 follow from the
assumptions on the initial function φ, regardless of the specific choices of δt, 0   δt ¤ δt1, and
Uc � Uc1 . The other assertions make no statement for t   tinipcq.

Proof for t P T1pcq (for K ¥ 1)
On the right-open interval T1pcq � rs0pcq, s1pcqq, all deviating arguments t � τkpcq, 1 ¤ k ¤ nτ ,
assume values to the left of tinipcq, thus all past states are given by evaluations of the initial
function φ. On this interval, the DDE-IVP is therefore equivalent to an ODE-IVP with initial
time s0pcq, final time s1pcq, initial value y0pcq � yinipcq, and right-hand-side function

fODEpt, ypt; cq, cq :� fpt, ypt; cq, c, tφpt� τkpcq, cqunτk�1q. (7.22)

In order to apply Theorem 7.2 to the equivalent ODE-IVP, the assumptions (S) and (B) need to
be verified. It is immediately clear that the initial time, the final time, and the initial value fulfill
the assumption (S) of Theorem 7.2 for all c P Uc1 , so that it remains only to check the assumptions
on the right-hand-side function fODE . Obviously, for this ODE right-hand-side function fODE the
assumptions (S) and (B) of Theorem 7.2 hold if all arguments of the DDE right-hand-side function
f remain in the domain where (S), (B) are assumed in Theorem 7.5.

This is verified for pt, y, cq P T δt11 pc̃q � Vy � Uc1 . Clearly, because of conditions (I) and (II), it
holds that T1pcq � T δt11 pc̃q for all c P Uc1 . Furthermore, condition (II) ensures that the deviating
arguments are such that the relation

t� τkpcq P
�
tinipc̃q � δt1 � τnτ pc̃q �

δt1
2
, s1pc̃q � δt1 � τ1pc̃q � δt1

2



� T f,∆tpc̃q (7.23)

is fulfilled. Hence, the past time points given by the deviating arguments are in a domain where the
initial function fulfills (S).2 Because of condition (IV), the past states obtained from evaluations
of the initial function are in Vφ. Eventually, because of the bound Mf given in assumption (B)
and because of condition (III), the current state remains in Vy. In summary, all arguments of the
DDE right-hand-side function f are in domains where (S) and (B) were assumed in Theorem 7.5,
so that the ODE right-hand-side function fODE defined in equation (7.22) does indeed fulfill the
asssumptions (S) and (B) of Theorem 7.2.

Hence, Theorem 7.2 can be applied, which gives the existence of some sδt1 ¡ 0 and a neighborhood

Ūc1 � Uc1 of c̃, such that for pt, cq P T sδt1
1 pc̃q � Ūc1 there exists a unique solution ypt; cq of the ODE-

IVP, and the Wronskian Wpt; cq is continuous. For the representation of the Wronskian as solution
of a variational ODE-IVP, it is taken into account that the partial derivative of the right-hand-side
function with respect to the parameters in the variational ODE, BfODEpt, ypt; cq, cq{Bc, also has
to incorporate the parameter dependencies of the function f through the delay argument and the
initial function, see equation (7.22). This yields that Wpt; cq is the solution of the variational
ODE-IVP

9Wpt; cq �Bfpt, ypt; cq, c, tφpt� τipcq; cqunτi�1q
By Wpt; cq � Bfpt, ypt; cq, c, tφpt� τipcq; cqunτi�1q

Bc

�
nτ̧

m�1

Bfpt, ypt; cq, c, tφpt� τipcq; cqunτi�1q
Bvm

�
�Bφpt� τmpcq; cq

Bc � 9φpt� τmpcq; cqdτmpcq
dc

�
(7.24a)

2Note that in equation (7.23) the lower bound depends on τnτ pc̃q, which is the largest of the delays because they
are assumed to be ascendingly sorted.
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Wptinipcq; cq �dy0pcq
dc

� fps0pcq, y0pcq, c, tφps0pcq � τipcq; cqunτi�1q
ds0pcq
dc

. (7.24b)

Since the constructed ODE-IVP and the nominal DDE-IVP are equivalent on the interval T1pcq,
the conclusions regarding existence, uniqueness and differentiability of solutions carry over to the
DDE-IVP (assertions 1 and 2 of Theorem 7.5). Assertion 4 is verified by replacing, in the variational
ODE-IVP (7.24), φpt�τmpcq; cq Ñ ypt�τmpcq; cq, Bφpt�τmpcq; cq{BcÑWpt�τmpcq; cq, and adding
the equation Wpt; cq � Bφpt, cq{Bc for t   tinipcq to the system. The second and the third of these
replacements actually turn the variational ODE-IVP into a variational DDE-IVP.

Finally, assertion 3 makes a statement on the difference between left-sided and right-sided value
of the Wronskian Wpt; cq at the time points skpcq, 1 ¤ k ¤ K. In order to prepare for the proof of
this assertion at s1pcq in the next paragraph, it is observed that the left-sided limit W�ps1pcq; cq
is simply given by the left-sided limit of the solution Wpt; cq of the variational DDE-IVP, and that
the total derivative of y1pcq :� y�ps1pcq; cq is given by

dy1pcq
dc

� dy�ps1pcq; cq
dc

� W�ps1pcq; cq � f�1 pcq
ds1pcq
dc

. (7.25)

Proof for t P T2pcq (for K ¥ 2)
On the right-open interval T2pcq � rs1pcq, s2pcqq the deviating arguments t� τkpcq for 2 ¤ k ¤ nτ
assume values that are to the left of tinipcq. The corresponding past states are therefore given by
evaluations of the initial function φ. Further, the deviating argument t � τ1pcq assumes values to
the right of tinipcq, and it may or may not happen that t � τ1pcq ¥ s1pcq for some t P T2pcq. For
simplicity, it is assumed here that the following auxiliary assumption holds:

(A) Auxiliary Assumption: t� τ1pcq   s1pcq for pt, cq P T f,∆tpc̃q � Vc.

Assumption (A) implies that τkpcq   2τ1pcq for 2 ¤ k ¤ K, so that the propagation of the
discontinuity at tinipcq with the delays τkpcq, 2 ¤ k ¤ K, occurs before the propagation of the
discontinuity at s1pcq with delay τ1pcq. Arguments for Assumption (A) to be dispensable are given
later.

The next step is to replace, on the interval T2pcq, the DDE-IVP by an equivalent ODE-IVP. The
initial time of this ODE-IVP is s1pcq, and the final time is s2pcq. As initial value, the left-sided
limit of the ODE-IVP solution on the preceding interval is taken, y1pcq � y�ps1pcq; cq. This is
in accordance with the continuity property of DDE-IVP solutions for t P Dt1pT pcqq � T pcq, see
Definition 2.5. Finally, the right-hand-side function of the equivalent ODE-IVP is defined by

fODEpt, ypt; cq, cq :� fpt, ypt; cq, c, ypt� τ1pcq; cq, tφpt� τkpcq, cqunτk�2q. (7.26)

The past state corresponding to the first deviating argument, ypt� τ1pcq; cq, shall be given by the
solution of the ODE-IVP on the preceding interval. The past states corresponding to the other
deviating arguments are given by evaluations of the initial function φ.

In order to apply Theorem 7.2 to this ODE-IVP, it is again required to verify the assumptions
(S) and (B) on the model functions. The initial time and the final time are given as sums of the
initial time and delay functions, and hence as sums of differentiable functions, so they fulfill (S).
The initial value, y1pcq, is given as the left-sided limit of the ODE-IVP solution on the preceding
interval at s1pcq, i.e. y�ps1pcq; cq. The differentiability of this value follows from recalling the
equivalence of the DDE-IVP to an ODE-IVP on the interval rs0pcq, s1pcqq and the fact that the
total derivative of the final value of the ODE-IVP solution exists for c P Ūc1 by assertion 4 of
Theorem 7.2.

It remains to be checked that the constructed ODE right-hand-side function fODE in equation
(7.26) fulfills the assumptions (S) and (B) of Theorem 7.2. For this purpose, consider pt, cq P
T δt22 pc̃q � Uc2 , with δt2 � sδt1{2 and a neighborhood Uc2 of c̃ that is sufficiently small such that the
following modified versions of conditions (I) and (II) hold:

(I’) |tinipcq � tinipc̃q|   δt2{2

(II’) |τkpcq � τkpc̃q|   δt2{2, for 1 ¤ k ¤ nτ .
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These two conditions ensure, on the one hand, that for c P Uc2 the parameter-dependent interval
fulfills the relation T2pcq � T δt22 pc̃q, i.e. it remains within the extension around the nominal interval
T2pc̃q. On the other hand, the conditions also ensure that for pt, cq P T δt22 pc̃q � Uc2 it holds that

t� τ1pcq P
�
s1pc̃q � δt2 � τ1pc̃q � δt2

2
, s2pc̃q � δt2 � τ1pc̃q � δt2

2



� T 2δt2

1 pc̃q � T sδt1
1 pc̃q. (7.27)

Hence, the first deviating argument varies only within an interval where the ODE-IVP solution
on the preceding interval is differentiable. Furthermore, all other deviating arguments remain in
T f,∆tpc̃q, where the initial function φ is differentiable. Since also the current state stays, due to
the bound Mf on the DDE right-hand-side function f , within the set Vy, the constructed ODE
right-hand-side function fODE does indeed fulfill the assumptions (S) and (B) of Theorem 7.2.3

It is now possible to apply Theorem 7.2, which gives existence, uniqueness, and continuous

partial differentiability of the ODE-IVP solution ypt; cq for pt, cq P T sδt2
2 pc̃q � Ūc2 , with sδt2 ¡ 0 and

with Ūc2 � Uc2 being some neighborhood of c̃. The continuous partial derivative Wpt; cq is thereby
given as solution of the variational ODE-IVP

9Wpt; cq �Bfpt, ypt; cq, c, ypt� τ1pcq; cq, tφpt� τipcq, cqunτi�2q
By Wpt; cq

� Bfpt, ypt; cq, c, ypt� τ1pcq; cq, tφpt� τipcq, cqunτi�2q
Bc

� Bfpt, ypt; cq, c, ypt� τ1pcq; cq, tφpt� τipcq, cqunτi�2q
Bv1

�
�Bypt� τ1pcq; cq

Bc � 9ypt� τ1pcq; cqdτ1pcq
dc

�
�

nτ̧

m�2

Bfpt, ypt; cq, c, ypt� τ1pcq; cq, tφpt� τipcq, cqunτi�2q
Bvm

�
�Bφpt� τmpcq, cq

Bc � 9φpt� τmpcq, cqdτmpcq
dc

�
(7.28a)

Wps1pcq; cq �dy1pcq
dc

� fps1pcq, yps1pcq; cq, c, yinipcq, tφps1pcq � τipcq, cqunτi�2q
ds1pcq
dc

. (7.28b)

Since the constructed ODE-IVP and the original DDE-IVP are equivalent on T2pcq, the DDE-IVP
solution exists and is unique for t P T2pcq (assertion 1), and it has a continuous partial derivative
with respect to the parameters (assertion 2). By replacing, in equation (7.28), Bypt�τ1pcq; cq{BcÑ
Wpt� τ1pcq; cq, Bφpt� τmpcq, cq{BcÑWpt� τmpcq; cq, φpt� τipcq, cq Ñ ypt� τipcq; cq, and adding
the equation

Wpt; cq �
#
Bφpt,cq
Bc for t   s0pcq

solution of the variational DDE-IVP on t P rs0pcq, s1pcqq for t P rs0pcq, s1pcqq
(7.29)

to the system, assertion 4 on the expression of Wpt; cq as solution of a variational DDE-IVP is
verified. Finally, the right-sided limit of the Wronskian at s1pcq, W�ps1pcq; cq, is given by the
initial value in equation (7.28b). By using equation (7.25), this becomes

W�ps1pcq; cq � W�ps1pcq; cq � pf�1 pcq � f�1 pcqq
ds1pcq
dc

, (7.30)

with

f�1 pcq � fps1pcq, yps1pcq; cq, c, φptinipcq; cq, tφps1pcq � τipcq; cqunτi�2q (7.31a)

f�1 pcq � fps1pcq, yps1pcq; cq, c, yinipcq, tφps1pcq � τipcq; cqunτi�2q, (7.31b)

which are equal in all arguments except for the first past state argument. This verifies assertion 3.

3The purpose of the bound in assumption (B) of the ODE Theorem 7.2 is simply to ensure that the current state
remains within the domain where the assumptions are formulated, and the fact that this is the case can easily
be concluded from the corresponding assumption on the DDE right-hand-side function f .
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Proof for t P Tkpcq, 2   k   K � 2
For the intervals T3pcq, . . . , TK�1pcq, the arguments of the proof on the preceding intervals can be
repeated. For each of these intervals, an equivalent ODE-IVP can be formulated, and suitable
extended intervals T δtkk pc̃q and neighborhoods Uck of c̃ can be found so that Tkpcq � T δtkk pc̃q, and
the assumptions (S) and (B) hold for the model functions of the constructed ODE-IVPs. Hence,
existence, uniqueness and differentiability of the solutions ypt; cq of the ODE-IVPs is obtained for

pt, cq P T sδtk
k pc̃q � Ūck, and it is concluded that the Wronskian Wpt; cq can be expressed as solution

of a variational ODE-IVP.
The equivalence of ODE-IVP and DDE-IVP on the interval Tkpcq gives the assertions 1, 2, and 4

for the DDE-IVP solution; in particular, when using the equivalence between ODE-IVP and DDE-
IVP, an appropriate change of notation turns the variational ODE-IVP into a variational DDE-IVP
for the Wronskian. Further, the jump in the Wronskian Wpt; cq at the time points skpcq is derived
from

W�pskpcq; cq � dykpcq
dc

� f�k pcq
dskpcq
dc

� W�pskpcq; cq � f�k pcq
dskpcq
dc

� f�k pcq
dskpcq
dc

, (7.32)

which verifies assertion 3.

Proof for t P TK�2pcq
On the preceding interval TK�1pcq :� rsKpcq, tfinpcqs, differentiability of the solution ypt; cq of the

ODE-IVP is obtained for pt, cq P T sδtK�1

K�1 pc̃q � ŪcK�1. For the last interval

TK�2pcq :� rtfinpcq, tfinpc̃q � δts, (7.33)

δt is defined by

δt :�
#

minpsδtK�1,
1
2 � pt0pc̃q � τK�1pc̃q � tf pc̃qqq if K   nτsδtK�1 if K � nτ .

(7.34)

This means that δt is chosen small enough such that for the nominal parameters c̃ there is no child
discontinuity of tinipc̃q within rtfinpc̃q, tfinpc̃q�2δtq. Further, the set UcK�2 � ŪcK�1 is chosen such
that the following conditions are fulfilled for all c P UcK�2:

(I’) |tfinpcq � tfinpc̃q|   δt{2.

(II’) |τkpcq � τkpc̃q|   δt{2 for 1 ¤ k ¤ nτ .

Then an equivalent ODE-IVP is considered for pt, cq P T δtK�2

K�2 pc̃q � UcK�2, with δtK�2 � δt{2.

This ensures that TK�2pcq � T δtK�2

K�2 pc̃q, and the deviating arguments are located in those intervals
where differentiability of the solutions of the ODE-IVPs was proven on the preceding intervals. By
application of Theorem 7.2 and equivalence of the ODE-IVP solution and the DDE-IVP solution
on TK�2pcq the assertions 1, 2, and 4 of Theorem 7.5 follow for pt, cq P TK�2pcq � ŪcK�2. Finally,
set the neighborhood of c̃ for which Theorem 7.5 is formulated to Uc � ŪcK�2.

Assertion 5
Assertion 5 concerns the total derivative of the state at the final time tfinpcq. For the proof, simply
recall the definition of the ODE-IVP on the interval TK�1pcq and apply assertion 4 of Theorem 7.2.

Dropping the Auxiliary Assumption (A)
The effect of the Auxiliary Assumption (A) is two-fold: first, it ensures that on all intervals Tkpcq
for 1 ¤ k ¤ K � 2, all deviating arguments are located in some previous interval Tlpcq, l   k, for
which existence, uniqueness, and differentiability of the DDE-IVP solution have been proven before.
The second effect is that no children of the first order discontinuities at skpcq � tinipcq � τkpcq,
1 ¤ k ¤ K, occur within the considered time interval.

Consider a simple case where (A) is violated, namely that the discontinuity at s1pcq has a child
discontinuity at s1pcq � τ1pcq �: s̃pcq P T2pcq � ps1pcq, s2pcqq, because of the propagation with the
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delay τ1pcq. In order to treat this situation, sub-divide the interval T2pcq into T2,Apcq � rs1pcq, s̃pcqq
and T2,Bpcq � rs̃pcq, s2pcqq, and consider, on these intervals, equivalent ODE-IVPs with right-hand-
side functions defined by

fODE,Apt, ypt; cq, cq � fpt, ypt; cq, c, y1pt� τ1pcq; cq, tφpt� τkpcq, cqunτk�2q for t P T2,Apcq, (7.35a)

fODE,Bpt, ypt; cq, cq � fpt, ypt; cq, c, y2,Apt� τ1pcq; cq, tφpt� τkpcq, cqunτk�2q for t P T2,Bpcq (7.35b)

where for notational clarity the ODE-IVP solution on T sδt1
1 pc̃q is here denoted by y1 and the

ODE-IVP solution on T
sδt2,A

2,A pc̃q is denoted by y2,A. Further, the ODE-IVP solution on T
sδt2,B

2,B pc̃q is

denoted by y2,B ; hereby, sδt2,A ¡ 0 and sδt2,B ¡ 0 are suitably chosen values such that the ODE-IVP
solutions y2,A and y2,B are differentiable (see below) on the corresponding intervals.

By transferring the arguments that were used before on each of the intervals Tkpcq, 1 ¤ k ¤ K�2,
to the two subintervals T2,Apcq and T2,Bpcq, it is easy to see that under a suitable reduction of the
neighborhood of c̃, the ODE-IVP solutions y2,A and y2,B exist, are unique, and continuously

differentiable with respect to the parameters on the above-used intervals T
sδt2,A

2,A pc̃q and T
sδt2,B

2,B pc̃q.
Further, the Wronskian is given as solution of a variational ODE-IVP. At s̃pcq, it holds for the
Wronskian matrix Wpt; cq that

W�ps̃pcq; cq � W�ps̃pcq; cq � pf̃�pcq � f̃�pcqqds̃pcq
dc

, (7.36)

with

f̃�pcq � fps̃pcq, y�ps̃pcq; cq, c, y�1 ps1pcq; cq, tφ�ps̃pcq � τipcq; cqunτi�2q (7.37a)

f̃�pcq � fps̃pcq, y�ps̃pcq; cq, c, y�2,Aps1pcq; cq, tφ�ps̃pcq � τipcq; cqunτi�2q, (7.37b)

being the left-sided and right-sided evaluation of f at the time point s̃pcq. Note that the current
state, as well as all past states at s̃pcq�τipcq, i ¥ 2, are continuous. Furthermore, also the first past
state is continuous, because y is continuous at s̃pcq � τ1pcq � s1pcq. It follows that f̃�pcq � f̃�pcq
and thus W�ps̃pcq; cq � W�ps̃pcq; cq, i.e. the Wronskian matrix is continuous in s̃pcq.

Due to the equivalence of the DDE-IVP to the ODE-IVPs on the interval T2,A and T2,B , it is
concluded that the DDE-IVP solution exists, is unique, and continuously partially differentiable
with respect to the parameters. Further, by an appropriate change of notation, the variational
ODE-IVPs become variational DDE-IVPs of the form (7.16) on the two subintervals. However,
it is noted that the right-hand-sides of the two variational DDE-IVPs on the intervals T2,A and
T2,B link discontinuously at s̃pcq, because the expressions 9ypt � τ1pcq; cq and Wpt � τ1pcq; cq are
discontinuous at that time point.

It remains to discuss what happens if s̃pcq � s2pcq, i.e. if it holds for the first two delays that
2τ1pcq � τ2pcq so that the propagation of the discontinuity at s1pcq with delay τ1pcq coincides
with the propagation of the discontinuity tinipcq with delay τ2pcq. Formally, this can be done by
investigating the derivatives By�ps1pcq; cq{Bc and By�ps1pcq; cq{Bc for both limits s̃pcq Ñ s�2 pcq and
s̃pcq Ñ s�2 pcq (i.e. let s̃pcq approach s2pcq once from the left and once from the right). However, in
the end it turns out that the crucial argument is, again, that the Wronskian matrix is continuous
in s̃pcq, which is the reason why both limits lead to identical derivatives. It follows that assumption
(A) can indeed be dropped, which completes the proof. �

The fact that the subdivision of T pcq must include all time points of discontinuity of order 0 or
1 in y and all time points of discontinuity of order 0 in W is only a technical issue in the proof.
However, it is important to keep this is mind for the extensions of Theorem 7.5 in Section 7.3.
Due to the particular role that discontinuities of order 0 or 1 in y or of order 0 in W play in the
following, the following definition is introduced.

Definition 7.6 (Critical Discontinuities)

Discontinuities that are of order 0 or 1 in y or of order 0 in W are called critical discontinuities.

It is appropriate to discuss the results of Theorem 7.5 on the differentiability of DDE-IVP
solutions in detail. An interesting observation is that it makes very few additional assumpions
compared to the related existence and uniqueness result (see Theorem 4.6, for nσ � 0). Besides a
higher smoothness of the model functions, which is a very natural condition for differentiability of
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the DDE-IVP solution with respect to parameters, the only difference is the distinctness assumption
(D) for the delays.

This assumption is crucial because a change in the order of the child discontinuities of tinipcq
generally leads to different jumps in the Wronskian (equation (7.14)). An example, where such
a situation occurs is when two delays τ1pcq and τ2pcq coincide for specific parameter values c̃,
τ1pc̃q � τ2pc̃q, but their derivatives differ, dτ1pcq{dc|c�c̃ � dτ2pcq{dc|c�c̃. While such a coincidence
is entirely uncritical for the existence and uniqueness of a DDE-IVP solution, differentiability of
the DDE-IVP solution is lost for all t ¥ tinipc̃q � τ1pc̃q. This is demonstrated by the following
example.

Example 7.7

Consider, on the interval T � r0, 3s, the DDE-IVP

9ypt; c1q � ypt� c1q � ypt� 2q (7.38a)

yp0q � 2 (7.38b)

ypt; c1q � 1 for t   0. (7.38c)

The DDE-IVP has only one parameter c1, which is a delay, and it is assumed that c1 P Dc �
r1.6, 2.4s. A second delay is present which is not parameter-dependent. The state y is discontinuous
at the initial time tini � 0, because yini � 2 � 1 � φptiniq.

The choice of the interval T and of the set Dc is such that both deviating arguments reach, for
some time t P T , the initial time tini � 0, which causes first order discontinuities in y at the time
points t � c1 and t � 2. Since it holds for the final time that tfin � 3   2 � minpc1, 2q, these
discontinuities of order 1 in y do not have any child discontinuities within T .

It is a simple task to determine the forward solution of the problem for all parameter values
c1 P r1.6, 2.4s. This yields

ypt; c1q �

$'&
'%
t� 2 for t P r0, c1q
1
2 t

2 � p2� c1qt� 1
2c

2
1 � c1 � 2 for t P rc1, 2q

1
3 t

3 � 2�c1
2 t2 � 1

2c
2
1 � c1 � 4

3 for t P r2, 3q,
for c1   2 (7.39)

and

ypt; c1q �
#
t� 2 for t P r0, 2q
1
3 t

3 � 4
3 for t P r2, 3q, for c1 � 2 (7.40)

and

ypt; c1q �

$'&
'%
t� 2 for t P r0, 2q
1
2 t

2 � 2 for t P r2, c1q
1
3 t

3 � 2�c1
2 t2 � 1

6c
3
1 � 1

2c
2
1 � 2 for t P r2, 3q

for c1 ¡ 2. (7.41)

If the distinctness assumption (D) holds, i.e. if c1 � 2, then it follows from Theorem 7.5 that the
Wronskian – i.e. the partial derivative of the solution ypt; c1q with respect to the parameter c1 –
can be obtained from the solution of the variational DDE-IVP

9Wpt; c1q � ypt� 2q pWpt� c1; c1q � 9ypt� c1; c1qq � ypt� c1qWpt� 2; c1q (7.42a)

Wp0q � 0 (7.42b)

Wpt; c1q � 0 for t   0. (7.42c)

Further, a jump in W at the propagated discontinuity point t � c1 needs to be taken into account,
cf. assertion 3.4 Alternatively, it is also possible to take directly the derivative of the equations
(7.39) and (7.41) with respect to c1 as long as c1 � 2.

4The jump in W at the propagated discontinuity point t � 2 vanishes, because this propagated discontinuity point
does not depend on the parameter.
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Both approaches lead to

Wpt; c1q �

$'&
'%

0 for t P r0, c1q
�t� c1 � 1 for t P rc1, 2q
� 1

2 t
2 � c1 � 1 for t P r2, 3q

for c1   2. (7.43)

and

Wpt; c1q �
#

0 for t P r0, c1q
� 1

2 t
2 � 1

2c
2
1 � c1 for t P rc1, 3q

for c1 ¡ 2. (7.44)

The Wronskian Wpt; c1q is displayed in Figure 7.1a for the interesting domain pt, c1q � p2, 2q.
Clearly visible is, for any fixed parameter value c1, the discontinuity of order 0 in W at the time
point t � c1, which is a child of the discontinuity at tini � 0 due to the propagation with the
delay c1.

(a) (b)

Figure 7.1.: (a) The Wronskian Wpt; c1q of the solution of the DDE-IVP (7.38) with respect to
the parameter c1. (b) The Wronskian Wpt; c1q of the solution of a modified version
of DDE-IVP (7.38), where the initial value is set to yp0q � 1 such that the state is
continuous at the initial time.

For c1   2 and c1 ¡ 2, this discontinuity at t � c1 is the only time point of discontinuity in the
function Wpt; c1q. However, at c1 � 2, the two expressions for the Wronskian – one for c1   2 and
the other for c1 ¡ 2 – do not “match” for any time t ¥ 2. The reason is that the temporal order of
the child discontinuities tini� c1 and tini� 2 changes at c1 � 2, which leads to two different jumps
in W in the expression (7.14) at the time point c1. Hence, for c1 � 2, the DDE-IVP solution is
not differentiable with respect to c1 for t ¥ 2.

At this point, it is also easy to see why the distinctness assumption (D) does not only require
pairwise distinctness between the delays, but also that the delays do not become 0 or equal to
tfinpcq � tinipcq. In such a situation, additional discontinuities of order 0 in W would “enter”
or “leave” the interval T pcq either at tinipcq or at tfinpcq. As a consequence, at all times to the
right of this additional discontinuity point, the state would not any longer depend continuously
differentiable on the parameters.

The situation is different if Example 7.7 is altered in such a way that the state y is continuous
at the initial time tini � 0, e.g. by setting yp0q � 1. In this case, the solution ypt; c1q becomes

ypt; c1q �

$'&
'%
t� 1 for t P r0, c1q
1
2 t

2 � p1� c1qt� 1
2c

2
1 � 1 for t P rc1, 2q

1
3 t

3 � c1
2 t

2 � c1t� t� 13
3 � 2c1 � 1

2c
2
1 for t P r2, 3q,

for c1   2 (7.45)
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and

ypt; c1q �
#
t� 1 for t P r0, 2q
1
3 t

3 � t2 � t� 7
3 for t P r2, 3q, for c1 � 2 (7.46)

and

ypt; c1q �

$'&
'%
t� 1 for t P r0, 2q
1
2 t

2 � t� 3 for t P r2, c1q
1
3 t

3 � c1
2 t

2 � c1t� t� 1
6c

3
1 � 1

2c
2
1 � 3 for t P r2, 3q

for c1 ¡ 2. (7.47)

Following Theorem 7.5, the partial derivative of the IVP solution with respect to parameters
can, for c1 � 2, be determined by the solution of the variational DDE-IVP (7.42). Further, no
discontinuities of order 0 in the Wronskian matrix W need to be taken into account, because y is
continuous at the initial time tini.

As an alternative to the application of Theorem 7.5, it is also possible to take the derivative of
the equations (7.45) and (7.47). Both approaches for the computation of the Wronskian yield the
expressions

Wpt; c1q �

$'&
'%

0 for t P r0, c1q
�t� c1 for t P rc1, 2q
� 1

2 t
2 � t� 2� c1 for t P r2, 3q

for c1   2. (7.48)

and

Wpt; c1q �
#

0 for t P r0, c1q
� 1

2 t
2 � t� 1

2c
2
1 � c1 for t P rc1, 3q

for c1 ¡ 2. (7.49)

In contrast to the original version of Example 7.7, the Wronskian Wpt; c1q approaches the same
function Wpt; 2q � � 1

2 t
2 � t for both limεÑ0� Wpt; 2� εq and limεÑ0� Wpt; 2� εq. Hence, ypt; cq

is continuously differentiable for all c P Dc, see also Figure 7.1b, even though the distinctness
assumption (D) is violated. The reason is that the state is continuous in the initial time, from
which it follows that the discontinuity order of W at the child discontinuities is 1 (instead of 0).
Therefore, it does not matter in which temporal order the child discontinuities occur.

This finding can be generalized: the distinctness assumption (D) is dispensable in Theorem 7.5
whenever, for all c in a neighborhood Vc of the nominal parameters c̃, the state y is continuous at
the initial time.

7.3. More General Differentiability Results

7.3.1. Piecewise Continuously-Differentiable Initial Functions

Theorem 7.5 gives a result for the differentiability of solutions of DDE-IVPs with constant delays.
The initial function was thereby assumed to be continuously differentiable. Hence, there is at
most one discontinuity of order 0 in y, namely at the initial time tinipcq. The question is how this
differentiability result can be generalized to piecewise continuously differentiable initial functions,
i.e. for φp�, cq P PDpT f pcq,Rny q.

In order to find the answer to this question, it is recalled that differentiability of the initial time
tinipcq was assumed in Theorem 7.5 in order to guarantee that the time point of the child discon-
tinuities, given by tinipcq � τipcq, are differentiable functions of the parameters. Accordingly, in
order to obtain differentiability of solutions of DDE-IVPs with piecewise continuously differentiable
initial functions, it is necessary to assume that the time points of all critical discontinuities in the
initial function are differentiable functions of c. More precisely, if there are nφs critical discontinu-
ities in the initial functions, then there must be functions sipcq, �nφs ¤ i ¤ �1, which describe the
locations of the discontinuities and which are differentiable with respect to c for a neighborhood
Vc of c̃.

155



Part III. Sensitivities of IHDDE-IVP Solutions with Respect to Parameters

The initial function φpt, cq should then be given by

φpt, cq �

$''''&
''''%
φ�nφs pt, cq for t   s�nφs pcq
φ�nφs�1pt, cq for s�nφs pcq ¤ t   s�nφs�1pcq
...

φ0pt, cq for s�1pcq ¤ t

, (7.50)

where each function φipt, cq is continuously differentiable for pt, cq P T f,∆cpcq � Vc. They are
therefore also called the smooth branches (of the initial function φ).

Eventually, the distinctness assumption (D) needs to be modified is such a way that distinctness
holds for all children of discontinuities of order 0 in y. Moreover, children of discontinuities of order
0 in y must not enter or leave the interval T pcq. Formally: the discontinuity points sjpcq � τipcq,
�nφs ¤ j ¤ �1, 1 ¤ i ¤ nτ and tinipcq � τipcq, 1 ¤ i ¤ nτ , must be pairwise distinct and not equal
to tinipcq or tfinpcq � tinipcq for all c P Vc.

With these three modifications – differentiability of the initial discontinuity points, differentia-
bility of the smooth branches of the initial function φipt, cq, and a modified distinctness assumption
– it is possible to reduce the DDE-IVP to a sequence of ODE-IVPs for which the assumptions of
Theorem 7.2 hold. Then, differentiability of the DDE-IVP solution follows.

7.3.2. Non-Vanishing Time-Dependent Delays

As a next step, consider DDE-IVPs with non-vanishing time-dependent delays. In order to obtain
an existence, uniqueness, and differentiability result as in Theorem 7.5, a set of conditions needs to
be found so that the DDE-IVP can be reduced to a sequence of ODE-IVPs for which Theorem 7.2
can be applied.

In this context, it is immediately clear that requirement (R2) needs to be fulfilled, cf. Subsec-
tion 4.3.1 on the existence and uniqueness of DDE-IVPs with time-dependent delays. It is also clear
that the delay functions τipt, cq, 1 ¤ i ¤ nτ , have to be differentiable for all pt, cq P T f,∆tpc̃q � Vc,
with ∆t ¡ 0 and with Vc being a neighborhood of the nominal parameters c̃. Further, the prop-
agated discontinuities have to satisfy a suitable distinctness assumption. Discontinuities whose
parent discontinuity is of order 0 in y should not occur at the same time point, and not at tinipcq
or tfinpcq.

In addition, it needs to be guaranteed that the locations of children of critical discontinuities are
differentiable functions of the parameters. Differentiability of the critical discontinuities themselves
and differentiability of the delay functions are not sufficient in this context, as is illustrated by the
following example.

Example 7.8

Consider the following DDE-IVP on the interval T � r0, 2s, with nominal parameter value c̃1 � 0,
and c1 P Vc � p�0.1, 0.1q:

9ypt; c1q � ypt� τ1pt, c1qq (7.51a)

yp0q � 0 (7.51b)

yptq � 1 for t P p�8, 0q, (7.51c)

where the delay function is defined by

τ1pt, c1q �

$'&
'%
t� pt� 0.5q3 � c1 for t   0.5

t� c1 for 0.5 ¤ t   1.5

t� pt� 1.5q3 � c1 for t ¥ 1.5.

(7.52)

For the nominal parameter c̃1 � 0, the deviating argument α1pt, c1q � t� τ1pt, c1q assumes values
smaller than 0 for t   0.5, identically 0 for t P r0.5, 1.5s, and it assumes values greater than 0
for t ¡ 1.5. Since propagated discontinuities occur, by definition, at those time points where the
simplified sign function

ζα,�1,tiniptq � sign�pα1pt, c1q � tiniq (7.53)
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changes its value either from �1 to �1 or vice versa (recall Definition 2.11), there is only one
propagated discontinuity for c̃1 � 0 at s � 0.5. However, for any (arbitrarily small) positive
value of c1, the deviating argument assumes values to the left of tini for all t ¤ 1.5, and the
propagated discontinuity now occurs at some time t ¡ 1.5. Hence, the time point of the propagated
discontinuity is not a continuous, let alone continuously differentiable, function of the parameter c1,
even though the time point of the parant discontinuity (tini) is differentiable (with derivative 0) and
the delay is non-vanishing and a twice-continuously differentiable function that fulfills requirement
(R2) for all c1 P Vc.

In order to formulate a sufficient condition for the differentiability of the discontinuity points in
DDE-IVPs with time-dependent delays, the implicit function theorem is recalled.

Theorem 7.9 (Implicit Function Theorem)

Let Vx1 � Rnx1 and Vx2 � Rnx2 be open subsets and let F : Vx1 � Vx2 Ñ Rnnx , F : px1, x2q Ñ
F px1, x2q be a continuously differentiable function of its arguments. Let further pa, bq P Vx1 � Vx2

be a point with F pa, bq � 0, and let the nx2 � nx2 matrix

BF
Bx2

px1, x2q
����
px1,x2q�pa,bq

be regular. Then there exists an open neighborhood Ux1 � Vx1 of a, an open neighborhood Ux2 �
Vx2 of b, and a continuously differentiable function G : Ux1 Ñ Ux2 � Rnx2 with Gpaq � b such
that

F px1, Gpx1qq � 0 for all x1 P Ux1 . (7.54)

If px1, x2q P Ux1 � Ux2 is such that F px1, x2q � 0, then x2 � Gpx1q.
It holds for the derivative of the function G that

BGpx1q
Bx1

� �
�� BF

Bx12
px11, x12q


�1 BF
Bx11

px11, x12q
�
px11,x

1
2q�px1,Gpx1qq

. (7.55)

Proof
See Forster [110], page 89f. �

In the context of DDE-IVPs with non-vanishing, time-dependent delay functions, the implicit
function theorem is applied in the setting x1 Ñ c, x2 Ñ t, and

F pc, tq :� σαi,sj pt, cq � αipt, cq � sjpcq. (7.56)

Therein, αi is the i-th deviating argument, sjpcq is the time point of a parameter-dependent critical
discontinuity in the past, i.e. sjpcq   t, and σαi,sjpcq is the associated propagation switching function.

Let now, according to Theorem 7.9, skpc̃q be the time point of a child discontinuity whose parent
discontinuity is located at sjpc̃q, and which is propagated by the delay τi. If σαi,sjpc̃q is differentiable

with non-zero time derivative

dσαi,sjpc̃qpt, cq
dt

�����
pt,cq�pskpc̃q,c̃q

� 0 (7.57)

then there exists a neighborhood of pskpc̃q, c̃q where the location of the propagated discontinuity
is a differentiable function skpcq of the parameters, and

dskpcq
dc

� �
��

9αipt1, c1q
��1

�Bαipt1, c1q
Bc1 � dsjpc1q

dc1


�
pt1,c1q�pskpcq,cq

. (7.58)

In a shorter notation, this relation is written as

dskpcq
dc

� �p 9αipskpcq, cqq�1

�Bαipskpcq, cq
Bc � dsjpcq

dc



, (7.59)

and this shorter notation is used frequently in the following.
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It is appropriate to summarize the assumptions that need to be made for a differentiability result
for DDE-IVPs with time-dependent delays:

(a) The time-dependent delay functions are differentiable with respect to all arguments.

(b) The time-dependent delays fulfill requirement (R2).

(c) Children of discontinuities of order 0 in y occur at pairwise distinct time points, and they do
not occur at tinipcq or tfinpcq.

(d) All deviating arguments cross the time points of past critical discontinuities with non-zero
time derivative. This last condition ensures differentiability of the time points of the child
discontinuities. This condition reoccurs in the following sections and subsections as a crucial
condition for differentiability of all IVP solutions in which implicitly determined discontinu-
ities play a role.

Note that these are only those assumptions that need to be made in addition to the earlier made
assumptions for DDE-IVPs with constant delays and with piecewise continuously differentiable
initial functions.

If the sufficient conditions for differentiability are satisfied, then the Wronskian matrix is piece-
wise given as solution of a variational DDE-IVP. Further, the jump in the Wronskian matrix Wpt; cq
at the discontinuity point skpcq is given by equation (7.14), with dskpcq{dc given by equation (7.59).

7.3.3. HDDEs with (Simple) Time-Dependent Switching Functions

With the conclusions from the last subsection concerning DDEs with time-dependent delays in
mind, it is easy to extend the differentiability result of Theorem 7.5 also to HDDEs with simple
time-dependent or general time-dependent switching functions. The set of additional conditions is
shortly summarized as follows:

(a) The switching functions are differentiable with respect to all arguments.

(b) The number of root discontinuities is finite (i.e. requirement (R1) is fulfilled).

(c) Root discontinuities and children of discontinuities of order 0 in y occur at piecewise distinct
time points, and they do not occur at tinipcq or at tfinpcq. In particular, the time points of
each of the root discontinuities is a zero of only one switching function.

(d) The switching functions cross their zeros with non-zero time derivative. Note that this last
condition is automatically fulfilled for simple time-dependent switching functions, because in
this case the time derivative is identically 1.

If the conditions are fulfilled, then the derivative of a time point skpcq of a root discontinuity,
which is the zero of the time-dependent switching function σipt, cq, is given by

dskpcq
dc

� �p 9σipskpcq, cqq�1 Bσipskpcq, cq
Bc . (7.60)

This expression occurs in the equation that gives the size of the jump in the Wronskian:

W�pskpcq; cq �W�pskpcq; cq �
�
f�k pcq � f�k pcq

� dskpcq
dc

. (7.61)

Herein, the quantity f�k pcq � f�k pcq represents the difference between the left-sided and the right-
sided evaluation of f at skpcq, which differ in exactly one argument, namely the sign of the switching
function σi.

7.3.4. Impulses

For the case of non-zero impulses, e.g. in an IHDDE-IVP with time-dependent switching and delay
functions, it must at first be ensured that the additional conditions for existence and uniqueness
hold (see Subsection 4.3.3). These conditions are that the delay functions must obey require-
ment (R2) for all discontinuities of order 0 introduced in the root discontinuities, and that the set
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Dy is sufficiently large and the impulses are sufficiently small so that the state remains in the set
Dy.

Clearly, for differentiability, it is also necessary that the impulse functions are continuously
differentiable with respect to all arguments. It further follows from the previous subsections that
switching functions and propagation switching functions of critical discontinuities should have a
non-zero time derivative in their zeros. It has also been discussed that root discontinuities and
propagations of discontinuities of order 0 in y should occur at pairwise distinct time points, and
they should not occur at tinipcq or at tfinpcq. However, it turns out in the following that the last
of these conditions, i.e. the distinctness, has to be formulated more restrictively for the treatment
of impulses.

In order to derive the jump in the Wronskian Wpt; cq at the time point skpcq where a non-zero
impulse is applied, it is first remarked that the derivative of the time point of the root discontinuity
is still given by expression (7.60). Further, the total derivative of the left-sided limit of the state
at the time point of the root discontinuity, i.e. y�pskpcq; cq, is given by

dy�pskpcq; cq
dc

� dy�pskpcq; cq
dt

dskpcq
dc

� By�pskpcq; cq
Bc

� f�k pcq
dskpcq
dc

�W�pskpcq; cq. (7.62)

Therein, f�k pcq denotes, as in Section 7.2, the left-sided limit of the right-hand-side function f at
the discontinuity point skpcq. For the case of IHDDE-IVPs with time-dependent delays, it reads

f�k pcq :� fpskpcq, y�pskpcq; cq, c, typskpcq � τipskpcq, cq; cqunτi�1, ζ
kq, (7.63)

where ζk denotes the signs of the switching functions to the left of skpcq. Note that it has been
taken into account in the notation of the past states that they are continuous at the time points
skpcq � τipskpcq, cq, 1 ¤ i ¤ nτ , because root discontinuities and children of discontinuities of
order 0 in y must not coincide (distinctness). Hence, it is not necessary to distinguish between the
left-sided limit y� and the right-sided limit y� (or to use the generic expression y) for the past
states in equation (7.63).

The next step is to compute the total derivative of the right-sided limit of the state at skpcq. This
state is determined by the impulse equation. Recall for this purpose that, according to condition
c) in the previous subsection on HDDEs with time-dependent switching functions, each time point
of a root discontinuity is the zero of only one switching function. Let, in the following, σIpkq be
the switching function that is zero at skpcq, i.e. the function I maps the index of the time point of
a root discontinuity to the index of the corresponding switching function.

Recall further that the impulses in IHDDE-IVPs were defined in Chapter 1 by the impulse
functions ω, and that one of the arguments of ω was ζptq, i.e. the vector of signs of the switching
functions. This notation had been used because in general any combination of switching functions
may become zero at the same time point. However, under the assumption that zeros of switching
functions do not coincide, the use of a different notation is suitable in the following. Therefore, it
is from now on understood that ωIpkq is the impulse function that has to be applied in the zero of
the switching function σIpkq.

It should be remarked that this notational simplification additionally implies that the impulse
does not depend on the (non-zero) signs of the remaining switching functions. However, this
limitation is irrelevant for the theoretical analysis, and also sufficient for the treatment of many
practical applications.

By characterizing impulses with the index of the sole switching function that is zero, the right-
sided limit of the state at skpcq is given by

y�pskpcq; cq � y�pskpcq; cq � ωIpkqpskpcq, y�pskpcq; cq, c, typskpcq � τipskpcq, cq; cqunτi�1q. (7.64)
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By use of elementary differentiation rules, the total derivative dy�pskpcq; cq{dc turns out to be

dy�pskpcq; cq
dc

�dy
�pskpcq; cq
dc

�
�BωIpkq

Bt
dskpcq
dc

� BωIpkq
By

dy�pskpcq; cq
dc

� BωIpkq
Bc �

nτ̧

m�1

BωIpkq
Bvm � dypskpcq � τmpskpcq, cq; cq

dc

�
, (7.65)

where the arguments of the partial derivatives of the impulse functions have been surpressed for
notational simplicity; they have to be evaluated at pskpcq, y�pskpcq; cq, c, ypskpcq � τipskpcq, cq; cqq.

According to relation (7.8), the total derivative of the right-sided limit of the state can further
be expressed as

dy�pskpcq; cq
dc

� W�pskpcq; cq � f�k pcq
dskpcq
dc

. (7.66)

Herein,

f�k pcq :� fpskpcq, y�pskpcq; cq, c, typskpcq � τipskpcq, cq; cqunτi�1, ζ
k�1q, (7.67)

and ζk�1 denotes the sign of the switching functions to the right of skpcq.
Finally, the total derivatives of the past states in equation (7.65) are given by

dypskpcq � τmpskpcq, cq; cq
dc

� 9ypskpcq � τmpskpcq, cq; cq

�
�
dskpcq
dc

� 9τmpskpcq, cqdskpcq
dc

� Bτmpskpcq, cq
Bc



�Wpskpcq � τmpskpcq, cq; cq. (7.68)

Inserting all this into equation (7.65) yields

W�pskpcq; cq �W�pskpcq; cq �
��

1ny �
BωIpkq
By



f�k pcq �

BωIpkq
Bt � f�k pcq

�
nτ̧

m�1

9ypskpcq � τmpskpcq, cq; cqp1� 9τmpskpcq; cqq
�
dskpcq
dc

� BωIpkq
By W�pskpcq; cq �

BωIpkq
Bc

�
nτ̧

m�1

BωIpkq
Bvm

�
� 9ypskpcq � τmpskpcq, cq; cqBτmpskpcq, cqBc

�Wpskpcq � τmpskpcq, cq; cq
�
. (7.69)

This equation describes the jump in the Wronskian W for the case of non-zero impulses, with 1ny
being the ny � ny-dimensional identity matrix.

Note that the right hand side of equation (7.69) depends both on the time derivative of the
state 9y and on the Wronskian W at the past time point skpcq � τmpskpcq, cq. Because of this,
the distinctness assumption has to be formulated in such a way that the time points of the root
discontinuities do not coincide with the time points of children on criticial discontinuities – instead
of just avoiding coincidences with the time points of children of discontinuities of order 0 in y, as
it has been the case in Subsection 7.3.3 for HDDE-IVPs. However, the more restrictive version of
distinctness is needed only if the impulse function actually depends on past states.

7.3.5. Intermediate Summary

So far, differentiability results for IHDDE-IVPs with time-dependent switching and delay functions
were considered in this chapter. In comparison to the existence and uniqueness results in Chapter 4,
three major additional conditions were worked out.

The first additional condition is that a higher degree of smoothness needs to be assumed for the
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model functions. In particular, a smoothness assumption needs to be made for the time points of
discontinuity in the initial function, which were not “visible” as model functions in the Chapter
4, because for existence and uniqueness it was sufficient to consider some fixed nominal parameter
values c̃ and assume that φp�, c̃q P PDpT f ,Dyq.

The second major modification is the assumption of distinctness. In the case of IHDDE-IVPs
with multiple time-dependent delay and switching functions, the distinctness needs to ensure

• that the time points of the root discontinuities are zeros of only one switching function, and
that they do not coincide with the time points of children of critical discontinuities,

• that children of discontinuities of order 0 in y do not occur at the same time point,

• and that root discontinuities and children of discontinuities of order 0 in y do not occur at
the initial time or at the final time.

As a consequence, IHDDE-IVP solutions that fulfill these conditions for differentiability have a
rather simple structure regarding the locations of critical discontinuities, which is a very important
observation also for the numerical treatment of these problems.

The third and last assumption for differentiability that goes beyond the assumptions for exis-
tence and uniqueness is that switching functions and propagation switching functions of critical
discontinuities have non-zero time derivatives in their zeros. This is necessary for the applicability
of the implicit function theorem. Thus, this is sufficient for the differentiability of the time points
of the root discontinuities and of the propagated discontinuities with respect to parameters.

In analogy to Chapter 4, state dependencies in the switching or delay functions lead to a signifi-
cant complication of the problem. Therefore, it is assumed in the following sections that a solution
exists for some nominal parameters c̃. Then, sufficient conditions are given that ensure differen-
tiability of the IVP solution with respect to c in a neighborhood of c̃. IHODE-IVPs with state-
dependent switching functions are discussed first, followed by DDE-IVPs with state-dependent
delay functions. Eventually, the general case of IHDDE-IVPs with both state-dependent switching
and state-dependent delay functions is considered.

7.4. IHODEs with State-Dependent Switching Functions

As a first problem class that involves state dependencies, IHODE-IVPs as in Definition 1.10 are
investigated. For this problem class, the following differentiability theorem holds (cf. Bock [39],
Galan, Féehery, and Barton [111]):

Theorem 7.10 (Global Differentiability of IHODE-IVP Solutions)

Consider an IHODE-IVP as in Definition 1.10, with nominal parameters c̃ and a neighborhood Vc
of c̃. Let Vy � Rny be an open domain, and let y : T pc̃q Ñ Vy, y : pt, c̃q Ñ ypt; c̃q be a solution of
the problem for the nominal parameters. Choose ∆t ¡ 0 for the definition of the interval T ∆tpc̃q.

Further, let s1pc̃q   � � �   snspc̃q, skpc̃q P ptinipc̃q, tfinpc̃qq for 1 ¤ k ¤ ns be the zeros of
the switching functions (i.e. the root discontinuities) that occur for the given solution ypt; c̃q, and
define s0pcq :� tinipcq, sns�1pcq :� tfinpcq. Let Ipkq P t1, . . . , nσu denote the index of the switching
function that is zero at the time point skpc̃q for 1 ¤ k ¤ ns. The signs of the switching functions
on the subintervals are denoted by

ζk :� ζptq for t P psk�1pc̃q, skpc̃qq, for 1 ¤ k ¤ ns � 1 (7.70)

and the left-sided limit and the right-sided limit of the right-hand-side function f at skpc̃q for
1 ¤ k ¤ ns are denoted by f�k pc̃q and f�k pc̃q, with

f�k pcq :� fpskpcq, y�pskpcq; cq, c, ζkq (7.71a)

f�k pcq :� fpskpcq, y�pskpcq; cq, c, ζk�1q. (7.71b)

Let the following assumptions be fulfilled:

(S) Smoothness: The initial time tinipcq, the final time tfinpcq, and the initial value yinipcq are
continuously differentiable functions for c P Vc. The right-hand-side function fpt, y, c, ζq
is continuous in t and continuously differentiable with respect to y and c, and uniformly

161



Part III. Sensitivities of IHDDE-IVP Solutions with Respect to Parameters

Lipschitz continuous with respect to y for pt, y, c, ζq P T ∆tpc̃q � Vy � Vc � Iζ1 . The switching
functions σipt, y, cq for 1 ¤ i ¤ nσ, and the associated impulse functions ωipt, y, cq that have
to be evaluated in their zeros, are continuously differentiable with respect to their arguments
for pt, y, cq P T ∆tpc̃q � Vy � Vc.

(B) Boundedness: The right-hand-side function f is bounded by

}fpt, y, c, ζq}8 ¤Mf   8 (7.72)

for pt, y, c, ζq P T ∆tpc̃q � Vy � Vc � Iζ1 .

(RS) Regularity of the Switching Functions: The switching functions are non-zero in tinipc̃q and
tfinpc̃q, i.e. σjptinipc̃q, yptinipc̃q; c̃q, c̃q � 0 and σjptfinpc̃q, yptfinpc̃q; c̃q, c̃q � 0 for 1 ¤ j ¤ nσ.
In addition, depending on the impulse function, the following conditions hold:

• if ωIpkqpt, y, cq � 0, then�BσIpkqpt, y, cq
Bt � BσIpkqpt, y, cq

By f�k pcq
�
pt,y,cq�pskpc̃q,y�pskpc̃q;c̃q,c̃q

� 0. (7.73)

and �BσIpkqpt, y, cq
Bt � BσIpkqpt, y, cq

By f�k pcq
�
pt,y,cq�pskpc̃q,y�pskpc̃q;c̃q,c̃q

� 0. (7.74)

• if ωIpkqpt, y, cq � 0, then condition (7.73) is assumed and

σIpkqpskpc̃q, y�pskpc̃q; c̃q, c̃q � 0. (7.75)

Further, for all other switching functions σj, j � Ipkq, it holds that

σjpskpc̃q, y�pskpc̃q; c̃q, c̃q � 0 and σjpskpc̃q, y�pskpc̃q; c̃q, c̃q � 0. (7.76)

Then there exists δt ¡ 0, an open interval T δtpc̃q, and a neighborhood Uc of c̃ such that T pcq �
T δtpc̃q for c P Uc, and for pt, cq P T δtpc̃q � Uc the following assertions hold.

1. There exists a unique solution ypt; cq.
2. The Wronskian Wpt; cq � Bypt; cq{Bc is continuous for t � skpcq, 1 ¤ k ¤ ns, and right-

continuous in t � skpcq, 1 ¤ k ¤ ns.

3. The discontinuity time points skpcq are continuously differentiable functions of the parameters
c, and

dskpcq
dc

� �
BσIpkq
By W�pskpcq; cq � BσIpkq

Bc

BσIpkq
Bt � BσIpkq

By f�k pcq
, (7.77)

where the partial derivatives of σIpkq have to be evaluated at pskpcq, y�pskpcq; cq, cq.
4. At the discontinuity time points skpcq, 1 ¤ k ¤ ns, the jump in the Wronskian Wpt; cq (i.e.

the difference between left-sided and right-sided) is given by

W�pskpcq; cq �W�pskpcq; cq � �
BωIpkq
By W�pskpcq; cq �

BωIpkq
Bc

�
�
f�k pcq �

BωIpkq
Bt � BωIpkq

By f�k pcq � f�k pcq



dskpcq
dc

,

(7.78)

where dskpcq{dc is given by equation (7.77) and the partial derivatives of ωIpkq have to be
evaluated at pskpcq, y�pskpcq; cq, cq.
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5. On the right-open interval rskpcq, sk�1pcqq, 0 ¤ k ¤ ns, the Wronskian Wpt; cq is given as
the solution of the variational IVP

9Wpt; cq � Bfpt, ypt; cq, c, ζk�1q
By Wpt; cq � Bfpt, ypt; cq, c, ζk�1q

Bc (7.79a)

Wpskpcq; cq � dykpcq
dc

� f�k pcq
dskpcq
dc

, (7.79b)

where ykpcq � yinipcq for k � 0 and ykpcq � y�pskpcq; cq � ωIpkqpskpcq, y�pskpcq; cq, cq for
k � 0 is the initial state for the corresponding interval. For k � 0, the derivative with respect
to the parameters is given by dy0pcq{dc � dyinipcq{dc, whereas for k � 0 the derivative is
given by

dykpcq
dc

�
�

1ny �
BωIpkq
By



W�pskpcq; cq �

BωIpkq
Bc

�
�
f�k pcq �

BωIpkq
Bt � BωIpkq

By f�k pcq


� dskpcq

dc
, (7.80)

which, by using equation (7.78), is equivalent to

dykpcq
dc

� f�k pcq
dsipcq
dc

�W�pskpcq; cq. (7.81)

In the special case k � 0, the symbol f�0 pcq in equation (7.79b) is defined by

f�0 pcq :� fptinipcq, yptinipcq; cq, c, ζ1q. (7.82)

6. The total derivative of the state at the final time with respect to the parameters is given by

dyptfinpcq; cq
dc

� W�ptfinpcq; cq � f�ns�1pcq
dtfinpcq
dc

. (7.83)

with

f�ns�1pcq :� fptfinpcq, yptfinpcq; cq, c, ζns�1q. (7.84)

Before the proof of the theorem is given, the regularity condition (RS) is discussed and illus-
trated. Consider first the case ωIpkqpt, y, cq � 0, and assume without loss of generality that
σIpkqpt, ypt; c̃q, c̃q ¡ 0 for t   skpc̃q. Then, the conditions (7.73) and (7.75) ensure that the switch-
ing function has, in the neighborhood of skpc̃q, a qualitative behavior that is represented either by
Figure 7.2a or by Figure 7.2b: The switching function becomes zero at skpc̃q with non-zero, i.e.
negative time derivative, and it is either positive or negative after the impulse. Then, if y�pt; cq
depends continuously differentiable on the parameters, this guarantees that the switching function
remains non-zero even for small changes in the parameters.

(a) (b) (c)

Figure 7.2.: Behavior of switching functions according to the regularity condition (RS) at a zero.
Figures (a), (b) represent the case of a non-zero impulse and Figure (c) represents the
case without impulse.
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For the case that ωIpkqpt, y, cq � 0, the condition (7.73) ensures that the switching functions
becomes zero at skpc̃q with non-zero, i.e. negative time derivative. The positive sign is, for t ¡
skpc̃q, inconsistent, and if y�pt; cq is continuously differentiable with respect to the parameters, the
positive sign remains inconsistent even for small changes in the parameters.5 Since a solution ypt; c̃q
exists, it is guaranteed that there exists a consistent choice for the switching function sign. Since,
the old sign �1 is inconsistent, it follows ζk�1

Ipkq � �1 (note: ζk�1
Ipkq is the sign of the switching function

with index Ipkq in the interval psk, sk�1q). Because of regularity condition (7.74), the switching
function leaves the zero right-sided with non-zero, i.e. negative time derivative. If y�pt; cq �
y�pt; cq depends continuously differentiable on the parameters, this guarantees that the negative
sign remains consistent even for small changes in the parameters.

With this geometric interpretation of the regularity assumption (RS) in mind, the next step is
the proof of Theorem 7.10.

Proof (of Theorem 7.10)
The proof relies again on the fact that the solution of the IHODE-IVP is locally equivalent to
an ODE-IVP. More precisely, since there is no root discontinuity at tinipcq, the IHODE-IVP is
locally equivalent to an ODE-IVP with right-hand-side fODEpt, ypt; cq, cq :� fpt, ypt; cq, c, ζ1q. Since
yptinipc̃q; c̃q P Vy, with Vy being an open set, and because the right hand side function f fulfills the
conditions (S) and (B), it is possible to find for every c sufficiently close to c̃ a closed set Dy � Vy
and an interval rtinipcq, tinipcq � δt1s with δt1 ¡ 0, so that Theorem 7.2 can be applied to the
constructed ODE-IVP.6 From this it follows that the ODE-IVP solution is unique, continuously
differentiable with respect to the parameters and that the Wronskian is given by the solution of a
variational ODE-IVP.

At the time tinipc̃q � δt1 the same argument can be used for the ODE-IVP on the intervals
rtinipc̃q � δt1, t

inipc̃q � δt2s, and subsequently for rtinipc̃q � δt2, t
inipc̃q � δt3s, and so on, until the

time point of the first root discontinuity, s1pc̃q, is reached. In fact, since also yps1pc̃q; c̃q is in
the open set Vy, uniqueness and differentiability of the ODE-IVP solution follow also for times
beyond s1pc̃q, which is important because the discontinuity point s1pcq generally varies with the
parameters.

On the interval rtinipcq, s1pcqq, it follows due to the equivalence of ODE-IVP and IHODE-IVP,
that also the IHODE-IVP solution is unique and continuously partially differentiable (assertions
1 and 2). Further, the Wronskian can be expressed as solution of the variational ODE-IVP (7.79)
(assertion 5).

At the time point s1pcq of the first root discontinuity, the time derivative of the switching function
σIp1q is non-zero according to assumption (RS). This allows to use the implicit function theorem,
which gives differentiability of the discontinuity point s1pcq with respect to the parameters, and in
particular

ds1pcq
dc

� �
BσIp1q
By W�ps1pcq; cq � BσIp1q

Bc

BσIp1q
Bt � BσIp1q

By f�1 pcq
. (7.85)

Therein, the partial derivatives of σIp1q are evaluated at ps1, y
�ps1; cq, cq. This verifies assertion 3.

It further follows from elementary differentiation rules that

dy�ps1pcq; cq
dc

� dy�ps1pcq; cq
dt

ds1pcq
dc

� By�ps1pcq; cq
Bc

� f�1 pcq
ds1pcq
dc

�W�ps1pcq; cq. (7.86)

Further, by recalling that the right-sided limit of the state at the time point of the root disconti-
nuity is given by y�ps1pcq; cq � y�ps1pcq; cq � ωIp1qps1pcq, y�ps1pcq; cq, cq, the following relation is
obtained:

dy�ps1pcq; cq
dc

�dy
�ps1pcq; cq
dc

� BωIp1q
Bt

ds1pcq
dc

� BωIp1q
By

dy�ps1pcq; cq
dc

� BωIp1q
Bc . (7.87)

Therein, the partial derivatives of ωIpkq have to be evaluated at ps1pcq, y�ps1pcq; cq, cq.
5Showing that y�pt; cq is indeed continuously differentiable is done in the formal proof of the theorem.
6The increment δt1 only has to be chosen small enough such that the bound Mf in condition (B) of Theorem 7.10

fulfills the more restrictive bound (B) of Theorem 7.2.
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Finally, it also holds that

W�ps1pcq; cq � dy�ps1pcq; cq
dc

� f�1 pcq
ds1pcq
dc

, (7.88)

and by inserting the equations (7.86) and (7.87) into equation (7.88), assertion 4 is verified.
For the continuation of the solution to the right of the discontinuity point s1pcq, assumption

(RS) is exploited: it guarantees, for both cases ωIpkqpt, y, cq � 0 and ωIpkqpt, y, cq � 0, that there is
a unique consistent choice of the sign of the relevant switching function σIpkq for all c in a neigh-
borhood Uc of c̃ (recall Figure 7.2 and the corresponding discussion). Further, also all remaining
switching functions have a unique consistent choice of the corresponding signs because of equation
(7.76).

It is then possible to continue, for each c sufficiently close to c̃, the solution of the IHODE-IVP
by solving a locally equivalent ODE-IVP. The arguments can then be repeated on all subintervals
rsipcq, si�1pcqq. By choosing, if necessary, a smaller neighborhood Uc of c̃ such that the total
number and temporal order of discontinuities in T pcq does not change, the proof is completed. �

In comparison to Theorem 4.8 (uniqueness of IHODE-IVP solutions), Theorem 7.10 only requires
a higher degree of smoothness of the model functions and the additional condition (RS). In this
context it should be emphasized that the equation (7.75) for the case ωIpkqpt, y, cq � 0 is sufficient,
but not necessary. In the case that a switching function remains zero after the impulse for all c in
a neighborhood of c̃, it is possible to use condition (7.74) instead and requiring, in addition, that
the opposite sign �ζ2

Ipkq is inconsistent for a neighborhood of c̃. This can be ensured, e.g., by an
appropriate condition on the time derivative of σIpkq for this opposite sign choice.

7.5. DDEs with State-Dependent Delay Functions

The technique used in the previous section for proving differentiability of IHODE-IVP solutions can
immediately be transferred to DDE-IVPs with state-dependent delays. This leads to the following
theorem.

Theorem 7.11 (Global Differentiability of DDE-IVP Solutions)

Consider a DDE-IVP as in Definition 1.12, with nominal parameters c̃ and a neighborhood Vc of c̃.
Let Vy � Rny be an open domain and let y : T f pcq Ñ Vy, y : pt, c̃q Ñ ypt; c̃q be a solution of the
DDE-IVP for the nominal parameters. Choose ∆t ¡ 0 such that the interval T f,∆tpc̃q is defined.

Let r1pc̃q, . . . , rnr pc̃q, ripc̃q P T f pc̃q, be the time points of the nr critical discontinuities in ypt; c̃q
for t P T f pc̃q, nφr of which are located in p�8, tinipc̃qq; it is possible that rnφr�1pc̃q � tinipc̃q.
Further, let s1pc̃q, . . . , snspc̃q denote the time points of the children of critical discontinuities in
ypt; c̃q for t P T pc̃q, and define s0pcq :� tinipcq, sns�1pcq :� tfinpcq. Let

ζα,k�1
l,rjpc̃q

� ζαl,rjpc̃qptq for t P pskpc̃q, sk�1pc̃qq for 1 ¤ k ¤ ns � 1, (7.89)

denote the simplified signs of the propagation switching function (see Definition 2.10), i.e.

ζαl,rjpc̃qptq :� sign�pαlpt, ypt; c̃q, c̃q � rjpc̃qq (7.90)

on the subintervals.
In addition, if a time point rjpc̃q of a critical discontinuity is propagated to a discontinuity point

skpc̃q with the deviating argument αl, then let I1 : t1, . . . , nsu Ñ t1, . . . , nru be the function that
maps the index k of the time point skpc̃q of the child discontinuity to the index I1pkq � j of the
time point rI1pkqpc̃q of the critical parent discontinuity. Further, let I2 : t1, . . . , nsu Ñ t1, . . . , nτu
be the function that maps k to the index I2pkq � l of the according deviating argument.7

Let the following assumptions be fulfilled:

(S) Smoothness: The initial time tinipcq, the final time tfinpcq, and the initial value yinipcq are
continuously differentiable functions for c P Vc. The right-hand-side function fpt, y, c, tviunτi�1q

7Note that for every rjpc̃q ¡ tinipc̃q there is some i P t1, . . . , nsu such that rjpc̃q � sipc̃q, because all critical
discontinuities that are located in ptinipc̃q, tfinpc̃qq are also children of discontinuities of order 0 in y and thus
children of critical discontinuities.
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is continuous in t, continuously differentiable with respect to y, c, and tviunτi�1, and uniformly
Lipschitz continuous with respect to y for pt, y, c, tviunτi�1q P T f,∆t � Vy � Vc � pVyqnτ . The
delay functions τipt, y, cq are continuously differentiable with respect to all arguments and
Lipschitz continuous with respect to y for pt, y, cq P T f,∆t � Vy � Vc.
The time points of the critical discontinuities in the initial function φ, i.e. ripcq for 1 ¤ i ¤
nφr , are continuously differentiable functions for c P Vc. The initial function φp�, cq has a
representation (7.50), and all functions φip�, cq are continuously differentiable with respect to
both t and c and Lipschitz continuous with respect to t for pt, cq P T f,∆tpc̃q � Vc.

(B) Boundedness: The right-hand-side function f is bounded by

}fpt, y, c, tviunτi�1q}8  Mf   8 (7.91)

for pt, y, c, tviunτi�1q P T f,∆t � Vy � Vc � pVyqnτ .

(NVD) Non-Vanishing Delays: It holds that τipt, ypt; c̃q, c̃q ¥ τ ¡ 0 for 1 ¤ i ¤ nτ , t P T pc̃q and the
considered solution ypt; c̃q.

(RS) Regularity of the Propagation Switching Functions: It holds for the propagation switching
functions of critical discontinuities, i.e. σαi,rjpcqpt, y, cq � αipt, y, cq � rjpcq, that

σαi,rjpc̃qptinipc̃q, yptinipc̃q; c̃q, c̃q � 0 for 1 ¤ i ¤ nτ , 1 ¤ j ¤ nφr (7.92a)

σαi,rjpc̃qptfinpc̃q, yptfinpc̃q; c̃q, c̃q � 0 for 1 ¤ i ¤ nτ , 1 ¤ j ¤ nr. (7.92b)

Further, it holds for skpc̃q, 1 ¤ k ¤ ns, with I1pkq � j and I2pkq � l that�Bσαl,rjpcqpt, y, cq
Bt �

Bσαl,rjpcqpt, y, cq
By f�k pcq

�
pt,y,cq�pskpc̃q,ypskpc̃q;c̃q,c̃q

� 0. (7.93)

If rjpcq is the time point of a discontinuity of order 0 in y, then it holds in addition that�Bσαl,rjpcqpt, y, cq
Bt �

Bσαl,rjpcqpt, y, cq
By f�k pcq

�
pt,y,cq�pskpc̃q,ypskpc̃q;c̃q,c̃q

� 0, (7.94)

and further that

σαl1,rj1 pcqpskpc̃q, ypskpc̃q; c̃q, c̃q � 0 (7.95)

for l1 � l and all critical discontinuities rj1pcq, j1 � j, that are of order 0 in y.

In equations (7.93), (7.94), f�k pcq and f�k pcq are defined by

f�k pcq �fpskpcq, ypskpcq; cq, c,
typskpcq � τl1pskpcq, ypskpcq; cq, cq; cqunτl1�1,l1�l, y

,kprjpcq; cqq (7.96a)

f�k pcq �fpskpcq, ypskpcq; cq, c,
typskpcq � τl1pskpcq, ypskpcq; cq, cq; cqunτl1�1,l1�l, y

,k�1prjpcq; cqq (7.96b)

where

y,k
1prjpcq; cq :� y�prjpcq; cq if ζα,k

1

l,rjpcq
� �1 for k1 P tk, k � 1u (7.97)

Note that it has been taken into account in equation (7.96) that the state is continuous in all
past time points except for one.

Then there exists δt ¡ 0, an open interval T f,δtpc̃q, and a neighborhood Uc such that T f pcq �
T f,δtpc̃q, and for pt, cq P T f,δtpc̃q � Uc the following assertions hold.

1. There exists a unique solution ypt; cq.

166



7. Differentiability Theory

2. The Wronskian Wpt; cq � Bypt; cq{Bc is continuous for t ¡ tinipcq, t � skpcq for 1 ¤ k ¤ ns,
and right-continuous in t � skpcq, 1 ¤ k ¤ ns.

3. The discontinuity points skpcq, 1 ¤ k ¤ ns, are continuously differentiable functions of the
parameters c, and

dskpcq
dc

� �
Bαl
By W�pskpcq; cq � Bαl

Bc � drjpcq
dc

Bαl
Bt � Bαl

By f
�
k pcq

, (7.98)

where j � I1pkq, l � I2pkq, and where the partial derivatives of αl have to be evaluated at
pskpcq, ypskpcq; cq, cq.

4. At the time points skpcq, 1 ¤ k ¤ ns, the jump in the Wronskian Wpt; cq (i.e. the difference
between left-sided limit and right-sided limit) is given by

W�pskpcq; cq �W�pskpcq; cq � pf�k pcq � f�k pcqq
dskpcq
dc

, (7.99)

where dskpcq{dc is given by equation (7.98).

5. On the right-open interval rskpcq, sk�1pcqq, 0 ¤ k ¤ ns, the Wronskian Wpt; cq is given as
the solution of the variational DDE-IVP

9Wpt; cq �BfByWpt; cq �
Bf
Bc

�
nτ̧

m�1

Bf
Bvm

�
9ypt� τmpt, ypt; cq, cq; cq

�
�BτmBy Wpt; cq �

Bτm
Bc
�

�Wpt� τmpt, ypt; cq, cq; cq; cq



(7.100a)

Wpskpcq; cq �dykpcq
dc

� f�k pcq
dskpcq
dc

(7.100b)

Wpt; cq �

$'&
'%

Bφpt,cq
Bc for t   tinipcq

solution of problem p7.100q in rsjpcq, sj�1pcqq
for t P rsjpcq, sj�1pcqq, j ¤ k

. (7.100c)

Herein, ykpcq � yinipcq for k � 0 and ykpcq � y�pskpcq; cq for k ¡ 0 is the initial state
for the corresponding interval. The derivative with respect to the parameters is given by
dy0pcq{dc � dyinipcq{dc and

dykpcq
dc

� W�pskpcq; cq � f�k pcq
dskpcq
dc

for k ¡ 0. (7.101)

The partial derivatives of f in equation (7.100) have to be evaluated at pt, ypt; cq, c, typt �
τipt, ypt; cq, cqqunτi�1q, and the partial derivatives of τm have to be evaluated at pt, ypt; cq, cq.
The time derivative of the state, 9y, and the Wronskian, W, have to be evaluated at the past
time points given by the deviating arguments, see equation (7.100). For the special case that

t � skpcq and m � l � I2pkq, the left-sided limit is taken if ζα,k�1
l,sjpc̃q

� �1, and the right-

sided limit is taken if ζα,k�1
l,sjpc̃q

� �1. The same holds for the corresponding past state in the

argument of the partial derivative of f .

Finally, it is defined that

f�0 pcq :� fptinipcq, yptinipcq; cq, c, typtinipcq � τiptinipcq, yptinipcq; cq, cq; cqunτi�1q. (7.102)

6. The total derivative of the state at the final time with respect to the parameters is given by

dyptfinpcq; cq
dc

� W�ptfinpcq; cq � f�ns�1pcq
dtfinpcq
dc

, (7.103)
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with

f�ns�1pcq :� fptfinpcq, yptfinpcq; cq, c, typtfinpcq � τiptfinpcq, yptfinpcq; cq, cq; cqunτi�1q. (7.104)

The proof of this theorem is mostly analogous to the proof of Theorem 7.10.

Proof
The delays are non-vanishing for the solution ypt; c̃q, and in particular non-vanishing at the ini-
tial time. The DDE-IVP is therefore locally equivalent to an ODE-IVP, in which all past state
arguments are replaced by evaluations of differentiable deduced functions. All critical propagation
switching functions are non-zero, the initial state yptinipc̃q; c̃q is in the open domain Vy, and the
DDE right-hand-side function f fulfills the conditions (S) and (B). For a sufficiently small neigh-
borhood of c̃, it is therefore possible to find a closed set Dy and an interval rtinipc̃q, tinipc̃q � δt1s,
δt1 ¡ 0, such that Theorem 7.2 can be applied. Since also yptinipc̃q � δt1; c̃q is in the open set
Vy, it is possible to continue this ODE-IVP solution successively until and beyond s1pc̃q, which
gives uniqueness of the ODE-IVP solution and continuous differentiability with respect to the
parameters. The Wronskian W can be expressed as the solution of a variational ODE-IVP.

Due to equivalence of DDE-IVP and ODE-IVP on rs0pcq, s1pcqq, existence, uniqueness and differ-
entiability of the DDE-IVP solution follow for a neighborhood Uc of c̃ (assertions 1 and 2). With
an appropriate change of notation, the variational ODE-IVP becomes a variational DDE-IVP
(assertion 5).

For the discontinuity point s1pcq, differentiability and thus assertion 3 follows from the implicit
function theorem, because the left-sided time derivative of the propagation switching function
σαl,rjpc̃q, l � I2p1q, j � I1p1q, is non-zero (equation (7.93)). Since the state y is continuous in

the time points of the propagated discontinuities, it holds that y�ps1pcq; cq � y�ps1pcq; cq, and by
elementary differentiation rules, equations (7.101) and (7.99) follow (assertion 4).

For the continuation of the DDE-IVP solution to the right of s1pcq, consider at first the case
that s1pcq is the time point of a critical discontinuity itself (i.e. s1pcq is the time point of a child
discontinuity whose parent discontinuity is of order 0 in y). In this case, the equations (7.93)
and (7.94) ensure that there is a unique consistent choice for the sign of the relevant propagation
switching function σαl,rjpc̃q, l � I2p1q, j � I1p1q, for c̃ and a sufficiently small neighborhood. In

the case that skpcq is not the time point of a critical discontinuity, the argument is the same, but
the condition (7.94) is not needed because it is implied by equation (7.93). All other propagation
switching functions of discontinuities of order 0 in y are non-zero, according to equation (7.95).

Hence, there is a unique consistent choice of the signs of all critical propagation switching
functions. The DDE-IVP solution can then again be replaced by a locally equivalent ODE-IVP on
the interval rs1pcq, s2pcqq. By repeating the arguments on all subintervals, the proof is completed.�

7.6. The General Case: IHDDEs

A differentiability result for IHDDE-IVP solutions can be obtained by combining the ideas that
led to the Theorems 7.10 and 7.11. In particular, it needs to be ensured that root discontinuities
do not coincide neither with other root discontinuities nor with children of critical discontinuities
(neither before nor after a possible non-zero impulse). Moreover, children of discontinuities of
order 0 in y should not coincide.

As a result, one obtains again that the Wronskian is piecewise given as solution of a variational
IVP of the form (7.100), except that the partial derivatives of f now include the switching function
signs ζ as an additional argument. Moreover, there are again jumps in the Wronskian W that
need to be taken into account. They may occur at the time points of root discontinuities and at
the time points of child discontinuities whose parent discontinuity is of order 0 in y.

Since the formalization of the differentiability result is mainly a technicality, it is omitted here.
Instead, only the expressions for the jumps in the Wronskian are discussed in the following.

For children of discontinuities of order 0 in y, the expressions given in Theorem 7.11, namely
equations (7.98) and (7.99), remain valid. It only needs to be taken into account that f�k pcq and
f�k pcq are defined in such a way that they get – compared to equations (7.96) - the switching
function signs as an additional argument.

The expression for the jump in the Wronskian W at root discontinuities in IHDDE-IVPs is,
however, more involved. In order to derive this expression, it is first observed that the total
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derivative of the time point of a root discontinuity with respect to the parameters is given by

dskpcq
dc

�� 1
BσIpkq
By f�k pcq �

BσIpkq
Bt �°nτ

m�1
BσIpkq
Bvm

9yk,mpast

�
1� Bτm

Bt � Bτm
By f

�
k pcq

�
�
"BσIpkq

By W�pskpcq; cq �
BσIpkq
Bc

�
nτ̧

m�1

BσIpkq
Bvm

�
9yk,mpast

�
�BτmBy W�pskpcq; cq � Bτm

Bc


�Wk,m

past

�+
. (7.105)

Herein, the partial derivatives of the switching function σIpkq are evaluated at the arguments
pskpcq, y�pskpcq; cq, c, typskpcq � τipskpcq, y�pskpcq; cq, cq; cqunτi�1q, and the partial derivatives of the
delay functions τm are evaluated at pskpcq, y�pskpcq; cq, cq. Further, it holds that

f�k pcq � fpskpcq, y�pskpcq; cq, c, typskpcq � τipskpcq, y�pskpcq; cq, cq; cqunτi�1, ζ
kq, (7.106)

where ζk are the switching function signs to the left of skpcq. Eventually, the quantities 9yk,mpast and

Wk,m
past are given by

9yk,mpast � 9ypskpcq � τmpskpcq, y�pskpcq; cq, cq; cq (7.107a)

Wk,m
past �Wpskpcq � τmpskpcq, y�pskpcq; cq, cq; cq. (7.107b)

Note that the past states, the past time derivatives 9yk,mpast, and the past Wronskians Wk,m
past are

continuous at the time point of evaluation because it is assumed that root discontinuities do not
coincide with children of critical discontinuities.

With dskpcq{dc being given by equation (7.105), the jump in the Wronskian matrix at the time
point of a root discontinuity can be expressed as

W�pskpcq; cq �W�pskpcq; cq �
��

1ny �
BωIpkq
By



f�k pcq �

BωIpkq
Bt � f�k pcq

�
nτ̧

m�1

BωIpkq
Bvm 9yk,mpast

�
1� Bτm

Bt � Bτm
By f�k pcq


�
dskpcq
dc

� BωIpkq
By W�pskpcq; cq �

BωIpkq
Bc

�
nτ̧

m�1

BωIpkq
Bvm

�
9yk,mpast

�
�BτmBy W�pskpcq, cq � Bτm

Bc



�Wk,m
past

�
. (7.108)

with

f�k pcq � fpskpcq, y�pskpcq; cq, c, typskpcq � τipskpcq, y�pskpcq; cq, cq; cqunτi�1, ζ
k�1q, (7.109)

where ζk�1 are the switching function signs to the right of skpcq.
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Summing up, internal numerical differentiation leads to a drastic
reduction of computing time (60-80 % especially for low tolerances)
compared to external numerical differentiation because of substantial
overhead savings (...) and much lower accuracy requirements for the
basic integration scheme.

Bock, in the paper “Recent advances in parameter identification
techniques for ODE” [38], summarizing the advantages of Internal
Numerical Differentiation for the computation of derivatives of initial
value problem solutions with respect to parameters.

The definitions of an impulsive hybrid discrete-continuous delay differential equation (IHDDE)
and of the corresponding initial value problem (IHDDE-IVP) in Chapter 1 were formulated in such
a way that all model functions depend on parameters c P Rnc . Accordingly, the solution of an
IHDDE-IVP depends not only on the time t but also on the parameters; it is therefore denoted by
ypt; cq. In the previous chapter, sufficient conditions were given under which IVP solutions depend
differentiably on the parameters. More precisely, if these sufficient conditions are fulfilled, then
there exists an open domain Uc � Rnc such that the Wronskian matrix

Wpt; cq � Bypt; cq
Bc (8.1)

is, for any c P Uc, a piecewise continuously differentiable function of time with potential jumps
at the time points of root discontinuities and at the time points of propagated discontinuities.
Throughout the chapter, the derivatives of the IVP solution with respect to the parameters are
often shortly called sensitivities. This term is motivated by the fact that the derivatives measure
how sensitive the IVP solution is with respect to changes in the parameters.

In practice, solutions of IVPs are of interest for specific values c̃ of the parameters called the
nominal parameters. Numerical methods for the approximation of the function ypt; c̃q were pre-
sented in the Chapters 5 and 6. The results of Chapter 7 provide means to assess whether IVP
solutions are differentiable with respect to c, i.e. whether Wpt; c̃q exists. The next logical step is, of
course, to present and analyze numerical methods for the practical computation of the Wronskian
Wpt; c̃q. This is the topic of this chapter.

Literature Survey

A simple and straightforward way for sensitivity computation that can be used on any differentiable
function is the computation of a difference quotient. For example, if an IVP solver is available, then
it can be called twice: once for computing the solution ypt; c̃q for the nominal parameter values c̃,
and once for computing a solution for slightly varied parameter values c̃ � ∆c. By computing a
difference quotient from these two integration results, a numerical approximation of the derivative
in the direction ∆c of the parameter variation can be obtained.

This approach is also referred to as External Numerical Differentiation, because the differentia-
tion takes place outside of the integrator. An alternative name occasionally found in the literature
is “brute-force method (for differentiation)”. Derivative computation by this approach can be
easily realized. However, the result of practical variable-stepsize IVP solvers is typically a discon-
tinuous function of the parameters, with jumps that are of the order of magnitude of the chosen
relative tolerance. This is a consequence of logical decisions in the IVP solvers, e.g. in the error
control strategy. Therefore, External Numerical Differentiation requires the computation of highly
accurate IVP solutions even if only a low or medium accuracy is required for the sensitivities. This
makes the External Numerical Differentiation approach very inefficient.

171



Part III. Sensitivities of IHDDE-IVP Solutions with Respect to Parameters

Several authors have reported this drawback of External Numerical Differentiation, see e.g. the
early accounts of Bard [19], Gear and Vu [113], and Bock [36, 38]. These works, as well as a
large number of later publications, have dealt with the development of numerical methods that
are superior to External Numerical Differentiation regarding reliability and efficiency. Most of the
proposed methods fit into the following categorization.

1. Methods for computing forward sensitivities aim, like the External Numerical Differentia-
tion method, at the computation of the derivative of all components of the state vector with
respect to one or several perturbations in parameter space. This corresponds to the computa-
tion of the columns of the Wronskian matrix Wpt; c̃q (or linear combinations of the columns).
Two subclasses of methods for forward sensitivity computation are given are distinguished.

• Numerical solution of a variational initial value problem by discretization (first differ-
entiate, then discretize):

In view of the results of Chapter 7, it is obvious that one way to compute sensitivi-
ties of IVP solutions with respect to parameters is the solution of the corresponding
variational initial value problem. In case that root discontinuities or propagated dis-
continuities occur in the numerical solution that give rise to jumps in the Wronskian,
discrete analogues of the expressions for the jump in the Wronskian (see Chapter 7) can
be derived and evaluated.

Examples for early works that approach sensitivity analysis for ordinary differential
equations (ODEs) in this way are due to Dickinson and Gelinas [77] and Dunker [83],
who called it the “direct method” for sensitivity analysis. Caracotsios and Stewart [59]
use the same approach on differential-algebraic equations. Galán, Feehery, and Bar-
ton [111] follow this idea for impulsive hybrid discrete-continuous ordinary differential
equations (IHODEs). In order to compute the sensitivities in this case, they evaluate
the jump expressions for the Wronskian in the time points of the root discontinuities.
These jump expressions involve, in particular, the derivative of the time point of the
root discontinuity with respect to the parameters. For delay differential equations, the
computation of sensitivities by solving a variational IVP and taking into account the
jump expressions has been proposed by Bock and Schlöder [44]. Later, this approach
has also been used by ZivariPiran [271] and ZivariPiran and Enright [273], also for delay
differential equations of so-called “neutral type”.

• Differentiation of the adaptively generated discretization scheme (first discretize, then
differentiate):

Here, the basic idea is to take the derivative of the adaptively generated discretization
scheme, under the condition that all logical and discrete decisions – as they occur e.g.
in common variable-order, variable-stepsize strategies – are kept fixed. This condition
ensures that the call of the numerical integration method can be regarded as a sequence
of differentiable mappings. Jumps in the Wronskian matrix can be computed by ap-
plying the formalism of Chapter 7 (in particular, the implicit function theorem) to the
numerical solution of the nominal IVP.

The basic idea of this approach goes back to Bock [36, 38], where it is used on extrapola-
tion methods applied to ODEs. The method has therein been called Internal Numerical
Differentiation as opposed to the earlier mentioned External Numerical Differentiation.
Very early, Bock [39] has presented the extension to IHODEs. Von Schwerin, Winck-
ler, and Schulz [252] use Internal Numerical Differentiation on a Runge-Kutta method
applied to IHODE-IVPs arising in multi-body systems. Bauer [20], Albersmeyer [1, 2],
and also Støren and Hertzberg [242] have used the approach on backward differentiation
formulae applied to differential-algebraic equations.

It is worthwile to remark that for linear integration methods (i.e. methods that are linear in
the evaluations of the right-hand-side function f) applied to ODEs or differential-algebraic
equations, both approaches lead formally to the same equation systems, see e.g. Bock [39],
Körkel [164], and Sandu and Miehe [220]. Hence, if the same stepsizes are used, the differen-
tiation and discretization operators commute. The efficiency and accuracy of the numerically
computed sensitivities does therefore not so much depend on the point of view under which
the equations are derived, but rather on how they are concretely solved in practice. A variety
of propositions has been made in this respect.
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In the literature of the “first differentiate, then discretize” approach, it is mainly distinguished
between the coupled direct method (also called “simultaneous method”) and the decoupled
direct method (also called “staggered method”). The coupled method interpretes the nominal
IVP and the variational IVP as one enlarged system of equations, see e.g. Dickinson and
Gelinas [77] and Maly and Petzold [183]. Contrariwise, the decoupled method computes
the step in the sensitivities independently after the step in the solution of the nominal IVP
(but using the same integration stepsize). The decoupled method is, for implicit methods,
typically much more efficient. For references on the decoupled direct method, see e.g. Dunker
[83], Caracotsios and Stewart [59], and Feehery, Tolsma, and Barton [102]. An overview over
the different practical realizations of the direct method is found in Li and Petzold [176].

The “first discretize, then differentiate” approach can be carried out rigorously such that dif-
ferentiation is applied to every floating point operation in the numerical integration scheme,
except for those that affect the adaptive components. This approach is usually called iterative
Internal Numerical Differentiation and can be interpreted as a special realization of Auto-
matic Differentiation (see Kedem [157], Griewank [119] and Griewank and Walther [120] for
an introduction of this concept). There exist, however, variants that deviate from this rigor-
ous interpretation. These variants are usually called direct Internal Numerical Differentiation
and Internal Numerical Differentiation with varied trajectories. For overviews on different
realizations of Internal Numerical Differentiation, see Bauer [20] and Albersmeyer [1, 2]. It
is noted that Internal Numerical Differentiation methods presented in the literature have
typically been derived under sophisticated structure exploitation, which has led to the devel-
opment of highly efficient practical solvers.

2. Methods for computing adjoint sensitivities, also called “backward sensitivities”, aim at the
computation of the derivative of one or several scalar functions of the state vector with
respect to all parameters. This corresponds to the computation of the rows of the Wronskian
matrix Wpt; c̃q (or linear combinations of the rows). Similar to the computation of forward
sensitivities, two subclasses of approaches are distinguished.

• Numerical solution of an adjoint initial value problem by discretization: This approach
relies, traditionally, on a Hilbert space scalar product of the variational differential
equation with newly introduced continuous adjoint variables. From this, an adjoint
initial value problem can be derived, whose numerical solution yields an approxima-
tion of the sought sensitivities. Examples for works in this direction in the context of
ODEs and differential-algebraic equations are Cao, Li, Petzold [58], Sandu, Daescu, and
Carmichael [219], and Alexe and Sandu [4]. For the discussion of the approach in the
context of DDEs, it is referred to Koda [162] and Rihan [214].

• Discrete adjoint of a forward method for sensitivity computation: This approach relies
on multiplying the equations that are used for the numerical computation of forward
sensitivities by discrete adjoint variables. From this, a discrete adjoint scheme can be
derived for the numerical computation of the sensitivities. This approach has been first
suggested by Bock [39], where it was used on Runge-Kutta methods applied to ODEs
(see also Wirsching [258] and Kirches et al. [161]). Bock, Schlöder, and Schulz [45],
Albersmeyer and Bock [3], and Albersmeyer [2] present the application of this approach
to backward differentiation formulae for differential-algebraic equations.

In contrast to forward sensitivity computation, discretization and differentiation do typically
not commute, not even for linear integration methods applied to ODE-IVPs. For example,
Bock [39] shows that Runge-Kutta methods have to fulfill rather restrictive conditions on their
abscissae, weights, and coefficients in order to be self-adjoint in the sense that a discretization
of the adjoint IVP is equivalent to the discrete adjoint scheme.

As a consequence of the fact that discretization and differentiation do not generally commute
for adjoint sensitivity computation, the intermediate quantities in the discrete adjoint scheme
can not easily be related to the continuous solution of the adjoint IVP. In the context of
backward differentiation formulae applied to ODE-IVPs, Beigel [23] has recently investigated
the relationship between continuous adjoints and discrete adjoints by means of a functional
analytic framework. Importantly, these results have also led to new efficient methods for
goal-oriented global error estimation and control.
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Occasionally, it has also been suggested to directly apply Automatic Differentiation to an existing
integration scheme in forward mode, see Carmichael, Sandu, and Potra [60] and Ellwein et al. [88],
or in adjoint mode, see Sandu, Daescu, and Carmichael [219]. However, since such a straightfor-
ward application of forward and adjoint Automatic Differentiation also takes the derivative of the
adaptively chosen stepsize into account, this is not equivalent to forward and adjoint Internal Nu-
merical Differentiation, respectively. Naive application of Automatic Differentiation may thus lead
to relative errors of more than 100% even for simple test problems, see Eberhard and Bischof [84].

For completeness, it is further appropriate to mention the following related works on sensitivity
analysis: Hwang et al. [153], Dougherty, Hwang, and Rabitz [81], Kramer and Calo [165] have in-
troduced a so-called “Greens function method”, which aims at the reduction of the computational
costs for equation systems with many parameters. Gear and Vu [113] have proposed the construc-
tion of a smooth variable-stepsize strategy. Rabitz, Kramer, and Dacol [211], Turányi [250], and
Kiehl [158] have published surveys on various methods for sensitivity analysis. Finally, there is a
large number of papers that are application-oriented, where sensitivities of IVP solutions need to
be computed for a specific differential equation model of a real-world process. In particular, in the
context of DDEs, it is referred to Baker and Rihan [14], Horbelt, Timmer, and Voss [152], Reinecke
[212], and Wu, Wang, and Shang [260].

Despite the considerable literature that is available in the area of sensitivity analysis for differen-
tial equation systems, it seems that only very few works have proposed general-purpose numerical
methods for sensitivity analysis of delay differential equations (DDEs). Further, the numerical
analysis of these methods is still immature. Hybrid discrete-continuous delay differential equa-
tions (HDDEs) and impulsive hybrid discrete-continuous delay differential equations (IHDDEs)
have apparently not been studied at all in this respect. This chapter aims at improving on this
unsatisfactory state of research by presenting several new results, as described in the following.

Novel Results Presented in This Chapter

This chapter presents and compares two numerical methods for the computation of forward sen-
sitivities of DDE-IVP solutions: On the one hand, differentiation of the continuous Runge-Kutta
scheme (CRK scheme) that is used for solving the nominal DDE-IVP, and, on the other hand,
discretization of the variational DDE-IVP with the same CRK method. This yields the result that
discretization and differentiation do not generally commute for CRK methods applied to DDEs –
in contrast to a known result for Runge-Kutta methods applied to ODE-IVPs.

Subsequently, the convergence of the numerically computed sensitivities by the developed meth-
ods to the exact derivative of the exact IVP solution with respect to parameters is discussed.
Furthermore, also the behavior of the local error in a single integration step is analyzed for both
methods. Based on the findings regarding the behavior of the local and of the global error, a gen-
eralization of the concept of Internal Numerical Differentiation is proposed, and important aspects
of error control strategies for numerically computed sensitivities are discussed. The generalization
of the results for the treatment of IHDDE-IVPs is also part of this chaper.

This chapter furthermore introduces the first discrete adjoint scheme for the computation of
sensitivities in the context of DDEs and IHDDEs. In particular, it is also discussed how the
proposed discrete adjoint approach can be used to compute the derivatives of the state at inner
time points of the considered interval.

Organization of This Chapter

Section 8.1 gives a short summary of previous chapters in order to recall some basic concepts and
notations. Section 8.2 is about the computation of forward sensitivities. After analysing External
Numerical Differentiation and discussing the reasons for its inefficiency, the “first discretize, then
differentiate” and the “first differentiate, then discretize” approaches are used in the context of
CRK methods applied to DDE-IVPs. Subsequently, the local and global errors of the two methods
are studied. Section 8.3 derives the discrete adjoint scheme for the computation of sensitivities in
the context of CRK methods applied to DDE-IVPs and IHDDE-IVPs. In particular, the contri-
butions originating from jumps in the Wronskian are discussed in detail.
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8.1. Short Summary of Previous Chapters

It is appropriate to start this chapter with a short summary of the concepts and notations that
were introduced in the preceding chapters. More precisely, the notation for CRK methods and
their realization in the framework of the modified standard approach is recalled, and the main
results of the differentiability theory for DDE-IVP solutions are summarized.

8.1.1. CRK Methods and the Modified Standard Approach

Consider a DDE-IVP with a single but possibly state-dependent delay τ1:

9yptq � fpt, yptq, c, ypt� τ1pt, yptq, cqqq (8.2a)

yptinipcqq � yinipcq (8.2b)

yptq � φpt, cq for t   tinipcq. (8.2c)

This DDE-IVP is considered on the interval rtinipcq, tfinpcqs. Like in Chapter 7, the DDE-IVP (8.2)
is often referred to as nominal DDE-IVP in order to allow a better distinction from the variational
DDE-IVP, which was introduced in Section 7.2 and which will also play a role in this section. The
solution of problem (8.2), subsequently also called nominal DDE-IVP solution, depends on the
parameters c and is therefore denoted by ypt; cq (cf. Section 2.4).

For the solution of the nominal DDE-IVP, a CRK method with discrete local order p and uniform
local order q is applied on a mesh t0   t1   � � �   tnm , where nm � 1 is the total number of mesh
points. The method is initialized with t0 � tinipcq, y0 � yinipcq and proceeds as follows: Given
a discrete approximation yl of yptl; cq and a continuous approximation ηptq of ypt; cq for t ¤ tl,
the discrete approximation yl�1 of yptl�1; cq and the continuous representation ηl�1ptq of ypt; cq for
t P rtl, tl�1s are obtained by:

yl�1 � yl � hl�1

ν̧

j�1

βjg
j
l�1 (8.3a)

ηl�1ptl � θhl�1q � yl � hl�1

ν̧

j�1

bjpθqgjl�1 (8.3b)

gjl�1 � fptjl�1, y
j
l�1, c, v

j
l�1q (8.3c)

yjl�1 � yl � hl�1

ν̧

i�1

aj,ig
i
l�1. (8.3d)

In order to establish the theoretical results of this chapter, recall first the idealized variant of the
modified standard approach as a technique for the computation of past states (cf. Subsection 5.2.2,
and in particular Definition 5.16).

The idealized variant of the modified standard approach relies on a number of – quite restrictive
– assumptions. The first assumption is that the exact solution ypt; cq is unique and has finitely
many discontinuities up to the discrete local order p of the numerical method. The time points of
these discontinuities are denoted by sj , with �nφs ¤ j ¤ ns. Thereby, the discontinuity points sj
with �nφs ¤ j ¤ �1 are the time points of the initial discontinuities. Secondly, s0 is by convention
the initial time (even if yptq is smooth up to order p at that time). And thirdly, sj with 1 ¤ j ¤ ns
are the time points of the propagated discontinuities in the interval ptinipcq, tfinpcqs.

For these discontinuity points sj , it is possible to define the associated propagation switching
functions

σα1,sj pt, ypt; cq, cq � α1pt, ypt; cq, cq � sj . (8.4)

with the deviating argument α1pt, y, cq :� t�τ1pt, y, cq. It is further possible to define the simplified
signs of these propagation switching functions as

ζα,�1,sj
ptq � sign�pα1pt, y�pt; cq, cq � sjq. (8.5)

The simplified sign function sign� attributes, to the argument 0, the value 1, see equation (2.14).
Note that these signs are defined by an evaluation of the propagation switching function along the
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exact solution ypt; cq.
Given the signs ζα,�1,sj

ptq, it is further possible to define the discontinuity interval indicator of the
sole deviating argument α1 as

ξα1 ptq � ns � 1� 1

2

nş

j��nφs

pζα,�1,sj
ptq � 1q. (8.6)

The idealized variant of the modified standard approach further relies on the assumption that ξα1 ptq
has only finitely many discontinuities. This implies, in particular, that there is a finite number of
discontinuities up to order p� 1 in y.

Eventually, the idealized variant assumes that the discontinuity points sj and the discontinuity
interval indicator ξα1 ptq - evaluated for the exact solution yptq - are known to the numerical method,
and that the mesh is chosen in such a way that it contains all of the finitely many discontinuity
points in ξα1 ptq.

In the remainder of this section and in Section 8.2, only a single integration step tl Ñ tl�1 of
the CRK method is considered. Therefore, the notation can be simplified by using the symbol ξ
as an abbreviation for ξα1 pt1q for t1 P ptl, tl�1q.

The key aspect of the modified standard approach – in both the idealized variant (Definition 5.16)
and the practical variant (Definition 5.22) – is to use extrapolations beyond past discontinuity
points, whenever the current integration step is such that the deviating arguments assumes values
outside of the discontinuity interval indicated by ξ. In order to formalize this idea, so-called
deduced functions zξη,η are evaluated in order to compute past states:

vjl�1 � zξη,ηptjl�1 � τ1ptjl�1, y
j
l�1, cqq. (8.7)

Whenever the past time points given by the deviating argument are located within the “correct”
discontinuity interval, the evaluation of the deduced function zξη,η is equivalent to an evaluation

of a smooth branch of the initial function (if �nφs ¤ ξ ¤ 0) or to an evaluation of the continuous
representation in a previous or in the current integration step (if 1 ¤ ξ ¤ ns � 1). If the past time
points are located outside of the “correct” discontinuity interval, the deduced function is given
by extrapolating the smooth branch of the initial function or by extrapolating the continuous
representation, see equations (5.63) and (5.60). Formally, one has

vjl�1 �
#
φξptjl�1 � τ1ptjl�1, y

j
l�1, cq, cq if � nφs ¤ ξ ¤ 0

yl1 � hl1�1

°ν
i�1 bipθl,jqgil1�1 if 1 ¤ ξ ¤ ns � 1,

(8.8)

where φi are the smooth branches of the initial function, see equation (5.57). Further, in the
case that 1 ¤ ξ ¤ ns � 1, l1 � 1 is the index of the integration step from which the continuous
representation is used for the computation of the past state, and the symbol θl,j denotes the relative
position of the past time points in the interval rtl1 , tl1�1s:

θl,j �
tjl�1 � τ1ptjl�1, y

j
l�1, cq � tl1

hl1�1
. (8.9)

The index l1 generally depends on l and j, but for compactness of the notation this dependency
is not written. It is emphasized that the mesh is assumed to be chosen such that the points of
discontinuity in the exact solution ypt; cq are included in the mesh. Therefore, it may happen for

the numerical solution that the deviating argument assumes values tjl�1�τ1ptjl�1, y
j
l�1, cq such that

θl,j R r0, 1s.

8.1.2. Derivatives of IVP Solutions with Respect to Parameters

If the derivative of the nominal DDE-IVP solution ypt; cq with respect to the parameters c exists,
then it is denoted by Wpt; cq � Bypt; cq{Bc, and Wpt; cq is called the Wronskian matrix. In practice,
the goal is typically to compute, on the one hand, the solution ypt; c̃q for specific parameters c̃,
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and, on the other hand, the Wronskian matrix along this specific solution, i.e.

Wpt; c̃q � Bypt; cq
Bc

����
c�c̃

. (8.10)

However, for simplicity of notation, it is not formally distinguished in this chapter between the
parameters c as a variable and the specific evaluation point c̃.

The theory on the differentiability of DDE-IVP solutions was presented in the Sections 7.2, 7.3,
and 7.5 (recall, in particular, Theorems 7.5 and 7.11). In the following, it is assumed that the
sufficient conditions for differentiability as presented in these sections are fulfilled. In this case, the
Wronskian matrix is at the initial time given by

Wptinipcq; cq � d

dc
yinipcq � f inipcq d

dc
tinipcq (8.11)

f inipcq :� fptinipcq, yinipcq, c, φptinipcq � τ1ptinipcq, yinipcq, cq, cqq.

Further, for t ¡ tinipcq the Wronskian Wpt; cq is given as solution of the following variational
DDE-IVP (cf. equation (7.100)):

9Wpt; cq �BfByWpt; cq �
Bf
Bc �

Bf
Bv

�
9ypt� τ1pt, ypt; cq, cq; cq

�
�Bτ1By Wpt; cq �

Bτ1
Bc
�

�Wpt� τ1pt, ypt; cq, cq; cq
�

(8.12a)

Wptinipcq; cq �dy
inipcq
dc

� f inipcqdt
inipcq
dc

(8.12b)

Wpt; cq �Bφpt, cqBc for t   tinipcq. (8.12c)

Herein, all partial derivatives of f are evaluated at pt, ypt; cq, c, ypt � τ1pt, ypt; cq, cq; cqq, and the
partial derivatives of τ1 are evaluated at pt, ypt; cq, cq.

In addition, there may be jumps in the derivative W. The jumps may occur at the time point
of a propagated discontinuity if the parent discontinuity is of order 0 in y. The jump that needs
to be applied is given by equation (7.99), which is recalled here:

W�psi; cq �W�psi; cq � pf�i pcq � f�i pcqq
dsi
dc
, (8.13)

with

f�i pcq :� fpsi, ypsi; cq, c, ypsi � τ1psi, ypsi; cq, cq; cqq. (8.14)

Thereby, y represents the left-sided or the right-sided limit at the time point of the parent dis-
continuity depending on the behavior of the deviating argument to the left and to the right of si.
Furthermore, the term dsi{dc in equation (8.13) is given by

dsi
dc

�
Bτ1
By W�psi; cq � Bτ1

Bc � dsjpcq
dc

1� Bτ1
Bt � Bτ1

By f
�
i pcq

. (8.15)

Herein, sj is the time point of the initial discontinuity of order 0 in y that is the parent of the
discontinuity at si. The partial derivatives of τ1 are evaluated at psi, ypsi; cq, cq.

There are different ways how to regard the IVP (8.12) for the Wronskian matrix. Either one
considers it together with the nominal DDE-IVP (8.2), in which case the combined system occurs
as a so-called “DDE-IVP of neutral type”, i.e. a DDE-IVP in which the right-hand-side function
depends on the time derivative of the state at past time points. Or one considers the variational
IVP (8.12) disconnected from the nominal IVP, in which case the nominal DDE-IVP solution yptq
and its time derivative 9yptq have to be considered as external input functions that are simply
assumed to be available.
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8.2. Forward Sensitivity Computation

This section is concerned with the numerical computation of forward derivatives of DDE-IVP
solutions with respect to parameters in the model functions. As a motivation for the work presented
in this section, it is first recalled why the use of difference quotients is a very inefficient strategy
for this purpose.

8.2.1. Difference Quotients, External Numerical Differentiation

Error Analysis for Derivative Approximation by Difference Quotients

Whenever an arbitrary function x, depending both on time t and on parameters c, is differentiable
with respect to c (for fixed t), then an elementary approach for derivative computation is the use
of a difference quotient. More precisely, one obtains from a Taylor expansion the relation

Bxpt, cq
Bc ∆c � xpt, c� εfd∆cq � xpt, cq

εfd
� Opεfdq. (8.16)

The first term on the right hand side is a difference quotient approximating the directional deriva-
tive Bxpt, cq{Bc �∆c. The second term on the right hand side represents nonlinear dependencies of
x on c; it is proportional to εfd.

In theory, the derivative approximation by a difference quotient becomes better and better if
the variational parameter εfd is chosen smaller and smaller. Unfortunately, if the function x is
given in the form of a computer program, then this is not true due to the use of floating point
arithmetic. For computer programs, one has to take into account that the result of an evaluation
of x are representable numbers x̂pt, cq and x̂pt, c� εfd∆cq, which are only approximations of xpt, cq
and xpt, c� εfd∆cq, respectively. Hence, it holds that

x̂pt, cq � flpxpt, cqq � xpt, cq � ε1 (8.17a)

x̂pt, c� εfd∆cq � flpxpt, c� εfd∆cqq � xpt, c� εfd∆cq � ε2pεfdq, (8.17b)

where fl is the operator that rounds its argument to a representable floating point number and ε1
and ε2pεfdq are the numerical errors that are made in the computer evaluation of the function x.
The latter, ε2, is considered as a function of the variational parameter εfd.

Note that, in fact, there are further sources of errors in equation (8.17) because also the input
arguments t, c, and c � εfd∆c have to be rounded to representable numbers flptq, flpcq, and
flpc � εfd∆cq. This issue is neglected here. However, the reader should keep in mind that this
principally prevents to regard the asymptotic εfd Ñ 0 whenever floating point arithmetic is used.
Instead, the variation always has to be large enough such that a representable number different
from flpcq is used as input argument of x̂ in equation (8.17b).

The error analysis of a practically computed finite difference approximation yields

x̂pt, c� εfd∆cq � x̂pt, cq
εfd

�Bxpt, cqBc ∆c� Opεfdq � ε2pεfdq � ε1
εfd

. (8.18)

The error of the derivative approximation thus has two contributions. On the one hand, there are
nonlinear effects in the function x, represented by the second term in the right hand side, which
become larger for increasing εfd. On the other hand, there are errors in the evaluation of x. For
any arbitrary computer program, e.g. a program evaluating a polynomial function, it must always
be expected that ε2pεfdq� ε1 is of the size εmach � |xpt, cq|, with εmach being the machine precision.
Since this error is divided by the variational parameter, it becomes larger with decreasing εfd.
Hence, there typically is a value for εfd that balances the two errors optimally such that the error
of the resulting derivative approximation is minimal. Unfortunately, this optimal value (and also
the range of “good” values) of εfd is generally unknown.

Difference Quotients for Derivatives of IVP Solutions (External Numerical Differentiation)

Difference quotients may also be used if the function xpt, cq represents the numerically computed
solution of an initial value problem. If realized in such a way that the integrator is called twice for
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the computation of x̂pt, cq and x̂pt, c�εfd∆cq, then the approach is also termed External Numerical
Differentiation, because the differentiation takes place outside the integrator.

Importantly, it holds in the context of IVP solutions that ε1 and ε2pεfdq represent the numerical
integration errors, which are typically much larger than the machine precision εmach. Moreover,
the result obtained from an IVP solver is typically a discontinuous function of the parameters c,
because the IVP solver involves discrete decisions, see e.g. the error control strategy of Colsol-
DDE in step 11 of Algoritm 6.20, which is representative for IVP solvers. As a consequence, the
difference ε2pεfdq�ε1 must generally be expected to be of the order of the chosen relative tolerance
σreltol in case that a variable-stepsize solver is used.

As a rule of thumb, even for the optimal choice of εfd the directional derivative is approximated
with only half as many valid digits as the nominal solution. Hence, in general, the computation
of the sensitivities with four valid digits requires to compute IVP solutions with eight valid digits.
Since such highly accurate IVP solutions are available only at very high computational costs, this
motivates the search for more efficient methods for sensitivity computation.

Two approaches for a more efficient sensitivity computation are considered in the following. On
the one hand, the differentiation of the discrete scheme that is used for the numerical solution of
the nominal DDE-IVP (“first discretize, then differentiate”). On the other hand, the discretiza-
tion of the variational DDE-IVP by the numerical method (“first differentiate, then discretize”).
The convergence properties of both approaches are subsequently analyzed, which will lead to a
generalization of the concept of Internal Numerical Differentiation.

The two approaches, “first discretize, then differentiate” and “first differentiate, then discretize”,
are here presented in the context of CRK methods. However, some important peculiarities of
sensitivity computation for DDE-IVP solutions discussed in this section are also encountered for
other one-step and multi-step methods.

8.2.2. First Discretize, Then Differentiate (Differentiation of CRK Scheme)

In the first approach, the CRK scheme equation (8.3), (8.8) for solving the nominal DDE-IVP
(8.2), is differentiated with respect to the parameters. Clearly, all intermediate results of the CRK
scheme are generally dependent on the parameters, even though this dependency was so far not
explicitly given. For compactness of notation, define the following quantities:

Wl�1 :� Byl�1

Bc , Wj
l�1 :� Byjl�1

Bc , Gj
l�1 :� Bgjl�1

Bc . (8.19)

Start with t0 :� tinipcq, y0 :� yinipcq, and with the following initialization for the Wronskian
matrix:

W0 :� dy0

dc
� fpt0, y0, c, φpt0 � τ1pt0, y0, cqqqdt0

dc
. (8.20)

Then, in order to obtain the approximation of the Wronskian matrix for t ¡ t0, take the derivative
of the CRK scheme (8.3), (8.8). Motivated by the findings for sensitivity computation for ODE-
IVPs (see introduction of this chapter, and references given therein), the sequence of stepsizes is
thereby kept fixed. This yields the following result:

Wl�1 � Wl � hl�1

ν̧

j�1

βjG
j
l�1 (8.21a)

El�1ptl � θhl�1q � Wl � hl�1

ν̧

j�1

bjpθqGj
l�1 (8.21b)

Gj
l�1 �

�Bf
By

j
l�1

Wj
l�1 �

�Bf
Bc

j
l�1

�
�Bf
Bv

j
l�1

dvjl�1

dc
(8.21c)

Wj
l�1 � Wl � hl�1

ν̧

i�1

aj,iG
i
l�1. (8.21d)

Herein and throughout the chapter, the quantity El�1ptl � θhl�1q denotes the continuous repre-
sentation for the Wronskian matrix on the interval rtl, tl�1s. The symbols pBf{Byqjl�1, pBf{Bcqjl�1,
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and pBf{Bvqjl�1 represent evaluations of the partial derivatives of f :�Bf
By

j
l�1

:� Bfpt, y, c, vq
By

����
ptjl�1,y

j
l�1,c,v

j
l�1q

(8.22a)

�Bf
Bc

j
l�1

:� Bfpt, y, c, vq
Bc

����
ptjl�1,y

j
l�1,c,v

j
l�1q

(8.22b)

�Bf
Bv

j
l�1

:� Bfpt, y, c, vq
Bv

����
ptjl�1,y

j
l�1,c,v

j
l�1q

. (8.22c)

It remains to give an expression for dvjl�1{dc. A straightforward differentiation of equation (8.8)
gives

dvjl�1

dc
�
$&
%
�
Bφξ
Bc

	j
l�1

�
�
dφξ
dt

	j
l�1

��
Bτ1
By

	j
l�1

Wj
l�1 �

�
Bτ1
Bc

�j
l�1

�
if � nφs ¤ ξ ¤ 0

Wl1 � hl1�1

°ν
i�1 bipθl,jqGi

l1�1 � hl1�1

°ν
i�1

9bipθl,jqgil1�1
dθl,j
dc if 1 ¤ ξ ¤ ns � 1.

(8.23)

Herein, the abbreviations

dθl,j
dc

� �

�
Bτ1
By

	j
l�1

Wj
l�1 �

�
Bτ1
Bc

�j
l�1

hl1�1
(8.24)

and �Bτ1
By

j
l�1

:� Bτ1pt, y, cq
By

����
ptjl�1,y

j
l�1,cq

(8.25a)

�Bτ1
Bc

j
l�1

:� Bτ1pt, y, cq
Bc

����
ptjl�1,y

j
l�1,cq

(8.25b)

�
dφξ
dt


j
l�1

:� dφξpt, cq
dt

����
ptjl�1�τ1pt

j
l�1,y

j
l�1,cq,cq

(8.25c)

�Bφξ
Bc

j
l�1

:� Bφξpt, cq
Bc

����
ptjl�1�τ1pt

j
l�1,y

j
l�1,cq,cq

(8.25d)

have been used.

Inserting equation (8.24) into (8.23) gives, for 1 ¤ ξ ¤ ns � 1, the following expression:

dvjl�1

dc
� Wl1 � hl1�1

ν̧

i�1

bipθl,jqGi
l1�1 �

ν̧

i�1

9bipθl,jqgil1�1

��Bτ1
By

j
l�1

Wj
l�1 �

�Bτ1
Bc

j
l�1

�
. (8.26)

Clearly, this is equivalent to

dvjl�1

dc
� El1�1ptl1 � θl,jhl1�1q � 9ηl1�1ptl1 � θl,jhl1�1q

��Bτ1
By

j
l�1

Wj
l�1 �

�Bτ1
Bc

j
l�1

�
. (8.27)

It can then be seen that the equations (8.21), (8.23) are a CRK method applied to the variational
DDE-IVP (8.12) in which the time derivative of the nominal solution, 9yptjl�1 � τ1ptjl�1, y

j
l�1, cq; cq,

is approximated by the time derivative of the continuous representation, i.e. by the expression
9ηl1�1ptjl�1 � τ1ptjl�1, y

j
l�1, cqq.

Without giving the formulas explicitly, it is remarked that the numerical computation of sen-
sitivities for problems with multiple delays leads to additional terms in the right hand side of
equation (8.21c); each of the occuring terms dpvmqjl�1{dc for each delay τm is thereby given by an
expression of the form (8.23).
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8.2.3. First Differentiate, Then Discretize (CRK Discretization of Variational
IVP)

Consider now, as a second approach for sensitivity computation, a CRK method applied to the
variational DDE-IVP (8.12). Clearly, this approach for computing sensitivities offers more freedom
than the “first discretize, then differentiate” approach, because a different sequence of stepsizes
may be used. Moreover, a CRK discretization for the numerical computation of the Wronskian
Wpt; cq implies no specific approximation of the nominal DDE-IVP solution ypt; cq or its time
derivative 9ypt; cq; in fact, it is generally possible to take the exact solution and its time derivative,
if it is available.

In the typical situation that the exact nominal DDE-IVP solution is not available, it is practical
to use the same sequence of stepsizes and the same stage values yjl�1, vjl�1 as for the nominal
DDE-IVP solution in order to save computational costs. However, the question remains how to
approximate 9y at past time points because this quantity is not needed for solving the nominal
DDE-IVP.

The use of the time derivative of the continuous representation, 9η, is only one possible option.
Alternatively, it can be exploited that a solution of a DDE-IVP fulfills the differential equation
(8.2a). Accordingly, evaluations of the right-hand-side function f at past time points can be used
as approximations:

9yptjl�1 � τ1ptjl�1, y
j
l�1, cq; cq � fptjl�1 � τ1ptjl�1, y

j
l�1, cq, vjl�1, c, u

j
l�1q. (8.28)

Thereby, ujl�1 is an approximation of the state at ttpastujl�1�τ1pttpastujl�1, v
j
l�1, cq with ttpastujl�1 �

tjl�1 � τ1ptjl�1, y
j
l�1, cq, i.e.:

ujl�1 � ypttpastujl�1 � τ1pttpastujl�1, v
j
l�1, cq; cq. (8.29)

This means that ujl�1 is an approximation of a state at a time point even further in the past. In

practice, ujl�1 is given by an evaluation of the initial function or by an evaluation of the continuous
representation at that time, depending on the discontinuity interval indicator ξpast that was used
for the past integration step tl1 Ñ tl1�1.

By using evaluations of the right-hand-side function f at past time points, the obtained CRK
scheme is given by the equations (8.21) and

dvjl�1

dc
�

$''''&
''''%

�
Bφξ
Bc

	j
l�1

�
�
dφξ
dt

	j
l�1

��
Bτ1
By

	j
l�1

Wj
l�1 �

�
Bτ1
Bc

�j
l�1

�
if � nφs ¤ ξ ¤ 0

El1�1ptl1 � θl,jhl1�1q � fptl1 � θl,jhl1�1, v
j
l�1, c, u

j
l�1q

�
��

Bτ1
By

	j
l�1

Wj
l�1 �

�
Bτ1
Bc

�j
l�1

�
if 1 ¤ ξ ¤ ns � 1.

(8.30)

The sole difference of this equation to equation (8.27) is that the evaluation of 9η has been replaced
by an evaluation of the right-hand-side function f at the past time point.

For DDE-IVPs with multiple delays, total derivatives dpvmqjl�1{dc need to be computed for each
delay τm by a formula of this form depending on the value of the discontinuity interval indicator
for this delay. The computed terms have to be taken into account in the equation (8.21c) of the
CRK scheme.

It is remarked that there exists at least one more option for the approximation of the time
derivative 9yptq for t P rtl1 , tl1�1s: the use of an interpolation procedure on a set of evaluations of the
right-hand-side function f . Some evaluations of f are always available, namely the stage values
gjl�1. This approach is known from the numerical solution of delay differential equations of neutral
type, see Bellen and Zennaro [26] and Bellen and Guglielmi [24] for details.

It is remarked that the freedom gained in the “first differentiate, then discretize” approach as
compared to “first discretize, then differentiate” is not specific to the use of CRK methods. In
fact, it holds also for arbitrary numerical methods that the latter approach is coupled to the
differentiation of the continuous representation used by the method, whereas the former allows to
use different approximations of 9y.
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8.2.4. Discontinuities of Order 0 in W

In both approaches discussed in the preceding subsections – “first discretize, then differentiate” vs.
“first differentiate, then discretize” – it needs to be taken into account that the Wronskian matrix
Wpt; cq may be discontinuous at the time points si. More precisely, this is the case whenever the
parent of the discontinuity in sj is of order 0 in y.

Let the parent discontinuity at sj , j   i, be of order 0 in y. Then the jump in the exact derivative
Wpt; cq at t � si is given by equation (8.13) (see also the equations (8.14) and (8.15)).

In the context of the idealized variant of the modified standard approach, let l be the index of
the mesh points that corresponds to the discontinuity point si. Further, let W�

l be the numerical
approximation obtained by applying a CRK scheme to the variational DDE-IVP (8.12) until the
mesh point tl. Then the right-sided limit of W at tl � si, denoted by W�

l , can numerically be
approximated by

W�
l � W�

l � pf�l pcq � f�l pcqq
�

Bτ1ptl,yl,cq
By W�

l � Bτ1ptl,yl,cq
Bc � dsj

dc

1� Bτ1ptl,yl,cq
Bt � Bτ1ptl,yl,cq

By f�l pcq

�
. (8.31)

Therein, f�l pcq and f�l pcq are the right-sided limit and the left-sided limit of the right-hand-side
function evaluation at tl, respectively, which are given by

f�l pcq � fptl, yl, c, zξ
�

η,ηptl � τ1ptl, yl, cqqq. (8.32)

The symbol ξ� denotes the discontinuity interval indicator ξα1 ptq for t P ptl, tl�1q and for t P
ptl�1, tlq, respectively. It is noted that the jump in the Wronskian given by equation (8.31) is
obtained from equation (8.13) by replacing ypsiq Ñ yl.

After the discontinuity point, the integration of the variational IVP is continued by using W�
l

as a starting value for the step tl Ñ tl�1.

8.2.5. Convergence of Derivative Approximations to the Exact Derivative

It was observed in the previous subsections that discretization and differentiation do, in general, not
commute for the computation of derivatives of DDE-IVP solutions with respect to parameters, even
if the same integration method and the same sequence of stepsizes is used. This is a fundamental
difference to sensitivity computation in the context of IVPs in ODEs or in differential-algebraic
equations. There, differentiation and discretization do commute, at least for Runge-Kutta methods,
extrapolation methods, and for linear multi-step methods (see e.g. Bock [38], Bock [39], page 199,
Körkel [164], page 112).

The fact that there are several approaches for the approximation of 9y in a discretization of the
variational DDE-IVP leads immediately to the question which approximation should be used in
practice.

A first hint to the answer of this question is obtained as follows. From results on the polynomial
approximation of functions it is known that, if the continuous representation η is consistent of
uniform local order q, then its j-th time derivative djηptq{dtj is a continuous approximation of
djyptq{dtj that is consistent with uniform local order q � j, 1 ¤ j ¤ q � 1. Hence, a reduction of
the order of consistency is obtained by using time derivatives of the continuous representation.

Consider further the special case that an explicit or implicit Euler method is used with linear
interpolation. Then vjl�1 is obtained by

vjl�1 �ηl1�1ptl � θl,jhl1�1q
�yl1 � hl1�1θl,jg

1
l1�1. (8.33)

In this case, the time derivative 9ηl1�1ptq is a piecewise constant approximation of the time deriva-
tive 9y of the exact solution. This approximation is discontinuous at the mesh points tl, hence the
obtained method cannot be interpreted as continuous Runge-Kutta method.

Another important argument against the use of the time derivative of the continuous represen-
tation is obtained by analysing the convergence of the numerically computed sensitivities to the
exact derivative of the exact IVP solution. Since the exact derivative is given piecewise by the
solution of the variational DDE-IVP, with possible discontinuities of order 0 at the time points si,
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Theorem 5.18 with the extension to IHDDE-IVPs (Section 5.3) can be used. More precisely, the
following corollary is obtained, which is formulated for the general case of multiple delays.

Corollary 8.1 (Convergence of CRK Scheme for Sensitivity Computation)

Consider a CRK method of discrete local order p and uniform local order q applied to the variational
DDE-IVP (8.12). Assume that the same sequence of stepsizes is used and that yjl�1 and vjl�1 are
computed by the same CRK method applied to the nominal DDE-IVP. Let the time derivative of
the past state in the variational DDE be approximated with uniform local order q̃.

Assume that the right-hand-side function of the variational DDE-IVP fulfills the conditions (S)
and (B) of Theorem 5.18. Assume further that the conditions of Theorem 7.11 are fulfilled (which
guarantee existence of the partial derivative Wpt; cq � Bypt; cq{Bc).

In addition, assume that there is a finite number of discontinuities up to order p in either y or
W, whose locations are denoted by s�nφs , . . . , sns . Assume that the set of mesh points is chosen in

such a way that the discontinuity interval indicator ξαptq � pξα1 ptq, . . . , ξαnτ ptqqT for the above-given
set of discontinuities, evaluated along the exact solution, is (componentwise) constant between two
mesh points; in particular, this implies that all discontinuities up to order p� 1 in either y or W
are included in the mesh. Further, in all discontinuities sj whose parent is of order 0 in y, the
jump in the Wronskian is approximated by equation (8.31).

Then the obtained CRK scheme for sensitivity computation, realized in the framework of the
idealized variant of the modified standard approach, converges with discrete global order and uniform
global order r̃ � minpp, q � 1, q̃ � 1q, i.e.

max
1¤l¤nm

}Wptlq �Wl} � Ophr̃maxq (8.34a)

max
t0¤t¤tnm

}Wptq �Eptq} � Ophr̃maxq, (8.34b)

where hmax � max1¤l¤nm hl.

Proof
Follows directly from Theorem 5.18 applied to the variational DDE-IVP. �

There are two main differences between the convergence result for the sensitivity computation
compared to the convergence result for the nominal solution (Theorem 5.18).

The first difference is that potentially more discontinuity points have to be included in the mesh
in order to guarantee sufficient smoothness of the right-hand-side functions of both the nominal
and of the variational DDE-IVP.

The second difference is that the discrete and uniform global order for the computed sensitivities,
r̃, is lower than the discrete and uniform global order r � minpp, q � 1q for the nominal solution if
q̃   minpp� 1, qq. In particular, if the time derivative of the continuous representation is used for
approximating 9y (which has uniform local order q̃ � q�1) then it follows that r̃ � minpp, q�1, qq �
q. This is less than r if q   p.

Contrariwise, the evaluation of the right-hand-side function at a past time point (see equation
(8.28)) provides an approximation of 9y that is of uniform local order q. Hence, it follows that
r̃ � minpp, q � 1q � r. This means that the CRK scheme for sensitivity computation converges
with the same discrete and uniform global order as the CRK scheme for the nominal solution.

It is worthwile to remark that the above conclusions regarding the convergence order of the
computed sensitivities extend to many other one-step and multi-step integration methods. The
reason is that the time derivative of a polynomial continuous approximation always has a lower
uniform order of consistency than the continuous approximation itself; hence, a reduction of the
convergence order may occur.

8.2.6. Internal Numerical Differentiation

The traditional definition of Internal Numerical Differentiation is to differentiate the discretization
scheme that was used for computing the nominal solution, thereby keeping the adaptive components
of the integration method fixed. In the context of IVPs in ODE and in differential-algebraic
equations, and for many numerical integration methods, this turned out to be a suitable definition
in order to obtain the desired property that the method for sensitivity computation converges with
the same (discrete) order as the method that was used for solving the nominal initial value problem
(see e.g. Bock [39], page 199).
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For ODEs and differential-algebraic equations with switches or impulses, a straightforward dif-
ferentiation of the discretization scheme does not take into account that the location of some of
the mesh points is enforced by the condition to include the time points of the root discontinuities
into the mesh. This led to an adaptation of the principle of Internal Numerical Differentiation,
which was introduced in Bock [39], see also Albersmeyer [2].

The observations of the previous subsection, in particular Corollary 8.1, suggest that sensitivity
computation in the context of DDEs requires a further extension of the concept of Internal Numer-
ical Differentiation. More precisely, the following definition of Internal Numerical Differentiation
for DDEs is proposed:

Definition 8.2 (Internal Numerical Differentiation for DDEs)

An Internal Numerical Differentiation method for computing the sensitivities of DDE-IVP solutions
is obtained by differentiating the discretization scheme that was used for the nominal solution,
thereby keeping the adaptive components of the integration scheme fixed. Furthermore, jumps in
the Wronskian are taken into account and all approximations of quantities in the past have the
same local order of consistency as the approximations of quantities in the past that are used in the
nominal scheme.

Remark 8.3 (Example for an Internal Numerical Differentiation Method)

According to this definition, the scheme (8.21), (8.30) is an Internal Numerical Differentiation
method, but the scheme (8.21), (8.23) is not.

It holds for CRK methods applied to DDE-IVPs that sensitivities that are computed by following
the above definition of Internal Numerical Differentiation converge to the exact sensitivities with the
same order as the nominal solution obtained by the same CRK method. It is remarked, however,
that Definition 8.2 is formulated sufficiently general such that the same favorable convergence
result should be obtained for other continuous integration methods, for discrete methods applied
to DDE-IVPs on so-called constrained meshes, and for the computation of higher order derivatives
djypt; cq{dcj for j ¥ 2 (which involves j-th order time derivatives of y).

8.2.7. Local Error

In the following, the discrete and uniform local errors of CRK methods for sensitivity computation
are studied, i.e. the errors that are newly introduced in the integration step tl Ñ tl�1. The results
of this subsection are used in Subsection 8.2.8 below for the construction of a numerical method
that provides error-controlled sensitivity approximations.

For the numerical solution of the nominal DDE-IVP, the local error was formally defined as
the difference between the numerical solution and the “exact solution of the local problem”, see
Definition 5.20. Therefore, in order to investigate the discrete and uniform local errors of CRK
methods for sensitivity computation, it is necessary to define what the equivalent of the local
problem (5.58) is in the case of sensitivity computation.

As a prepatory step for this purpose, a new notation is introduced for the right-hand-side function
of the variational DDE (8.12a). Thereby, the general case of multiple delays is considered:

Fpt,W, c, tViunτi�1q :�BfByW � Bf
Bc

�
nτ̧

i�1

Bf
Bvi

�
9ypt� τipt, ypt; cq, cq; cq

�
�BτiBy W � Bτi

Bc
�
�Vi



. (8.35)

As usual, all partial derivatives of f are evaluated at pt, ypt; cq, c, typt�τipt, ypt; cq, cq; cqunτi�1q and all
partial derivatives of τi are evaluated at pt, ypt; cq, cq. The above introduced notation is motivated
by the wish to express the right-hand-side function of the variational DDE-IVP in a way that
is similar to the right-hand-side function f of the nominal DDE-IVP. In particular, the second
argument of F represents the Wronskian at the current time and the fourth argument represents
the Wronskians at the past time points.

Assume that the variational DDE-IVP has been solved until the mesh point tl, such that discrete
approximations Wl1 of Wptl1q and continuous approximations El1ptl1�1 � θhl1q of Wptl1�1 � θhl1q
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are available for l1 ¤ l. Then, in analogy to the local IVP (5.58), the idealized variant of the
modified standard approach consists in solving the following local variational IVP:

9Ul�1ptq � F̄dE,Ul�1
pt,Ul�1ptq, c, ξαrlsq (8.36a)

Ul�1ptlq � Wl. (8.36b)

with

F̄dE,Ul�1
pt,W, c, ξαq :� Fpt,W, c, tZξαiE,Ul�1

pt� τipt, y, cqqunτi�1q. (8.37)

The past Wronskians in this local IVP are - as usual in the modified standard approach - obtained
by evaluating deduced functions. Which of the deduced functions is evaluated depends on the
discontinuity interval indicator ξαrls in the current integration step, i.e. ξαrls � ξαpt1q for an
arbitrary t1 P rtl, tl�1s. It thereby holds that j1 is the index such that rtl, tl�1s � rsj1 , sj1�1s.

The deduced functions ZjE,Ul�1
ptq for �nφs ¤ j ¤ j1 � 1 are thereby given in complete analogy

to equation (5.60). This means that ZjE,Ul�1
ptq for �nφs ¤ j ¤ 0 denotes a smooth branch of

Bφj{Bcpt; cq and its smooth extrapolation. Further, ZjE,Ul�1
ptq for 1 ¤ j ¤ j1 is equal to the

continuous representation Eptq if the argument t is in the “correct” discontinuity interval, i.e. if
t P rsj�1, sjs. Otherwise, the continuous representation in the first (last) integration step within

that discontinuity interval is extrapolated to the left (right). Finally, Zj
1�1

E,Ul�1
ptq is equal to Eptq

for t P rsj1 , tls, extrapolation of the continuous representation is used to the left of sj1 , and the
exact solution Ul�1ptq of problem (8.36) is used if t ¡ tl.

In practical situations, the exact solution Ul�1ptq is unavailable. Therefore, a continuous one-
step method has to make use of the continuous representation El�1ptq that is implied by the method
itself. In particular, this has been the case for the CRK methods for sensitivity computation
presented in the Subsections 8.2.2 and 8.2.3. In terms of the discrete and continuous increment
functions Φ and Ψ of the CRK method, Wl�1 and El�1ptl � θhl�1q can formally be written as

Wl�1 � Wl � hl�1Φptl,Wl, hl�1; F̄dE,E1
l�1
p�, �, �, ξαqq (8.38a)

El�1ptl � θhl�1q � Wl � hl�1Ψptl,Wl, hl�1, θ; F̄
d
E,El�1

p�, �, �, ξαqq. (8.38b)

Herein, F̄dE,El�1
is a right-hand-side function that has formally the shape of an ODE:

F̄dE,El�1
pt,W, c, ξq :� Fpt,W, c, tZξαiE,El�1

pt� τipt, y, cqqunτi�1q, (8.39)

The deduced functions ZjE,El�1
are thereby given in analogy to equation (5.63). This means that

the evaluation of the deduced functions ZjE,El�1
yields the same result as an evaluation of ZjE,Ul�1

except if j � j1 � 1 and if the evaluation time is to the right of tl. In the exceptional case, the
continuous representation implied by the method itself is used instead of the exact solution Ul�1

of the local variational IVP (8.36a).

With these preparations, a corollary of Theorem 5.21 for sensitivity approximations can be
formulated.

Corollary 8.4 (Local Errors of CRK Methods for Sensitivity Computation with the
Modified Standard Approach)

Consider the two local IVPs (5.58) and (8.36), and denote their exact solutions by ul�1ptq and
Ul�1ptq, respectively. Consider further a CRK method with discrete local order p and uniform
local order q, which is applied to numerically solve these local problem with the modified standard
approach. The results are denoted by yl�1 and ηl�1ptl � θhl�1q for the local nominal IVP (see
equation (5.108)) and as Wl�1 and El�1ptl � θhl�1q for the local variational IVP (see equation
(8.38)).

Assume that the conditions of Corollary 8.1 hold and further that the state ypt; cq and the Wron-
skian Wpt; cq at times to the left of tl are approximated by an expression Eptq that has uniform
global order r1:

max
t¤tl

}ηptq � yptq} �Ophr1q (8.40a)
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max
t¤tl

}Eptq �Wptq} �Ophr1q, (8.40b)

with h � max1¤i¤l hi. Further, assume that the time derivative of the state, i.e. 9ypt; cq, is approx-
imated with uniform global order r2.

Then it holds that

}Wl�1 �Ul�1ptl�1q} �Ophp1�1
l�1 q (8.41a)

max
tl¤t¤tl�1

}El�1ptq �Ul�1ptq} �Ophq1�1
l�1 q (8.41b)

where p1 � minpp, r1, r2q, q1 � minpq, r1, r2q.
Proof
Follows directly from Theorem 5.21 applied to the CRK scheme for sensitivity computation. �

8.2.8. Error Control

Computing the approximations ηptq of the nominal solution and Eptq of the derivatives on the
same discretization mesh offers the opportunity to select the stepsizes in such a way that the error
in yl�1 and ηl�1ptl � θhl�1q, θ P r0, 1s, and in Wl�1 and El�1ptl � θhl�1q is controlled.

Error estimation and control for the computation of sensitivities can in principle be done by the
same techniques as those that are used for error estimation and control for the nominal solution
(recall Section 5.5). This means to employ two methods whose local errors have different orders
p11 � p12 and q11 � q12. For the practical design of error estimators it is thereby convenient to ensure
that the orders of the local errors are equal to the discrete and uniform local orders of the methods,
i.e. p1i � pi, q

1
i � qi.

For the nominal solution, it was already shown that these conditions may not hold because the
orders of the local errors may be compromised by the order of the error in the computed past states.
For the computation of sensitivities it turns out, see Corollary 8.4, that both the approximation
order of the past Wronskian and the approximation order of the past time derivative of the nominal
solution have to be taken into account.

8.2.9. Generalization: Sensitivities of IHDDE-IVP Solutions

The generalization of the main results of the previous subsections, Corollaries 8.1 and 8.4, to
IHDDE-IVPs is obtained by making the following modifications. For the application of the ide-
alized variant of the modified standard approach, it is required (in addition to previously-made
assumptions) that the switching function signs ζptq along the exact solution are known, and that
the mesh is chosen in such a way that ζptq is constant between two mesh points.

In the time points of the root discontinuities, the jump in the Wronskian matrix is taken into
account. This jump is given by equation (7.108), with the total derivative of the discontinuity
time point given by equation (7.105). In the framework of the idealized variant of the modified
standard approach, these expressions are approximated numerically by replacing y�psk; cq Ñ y�l ,
W�psk; cq Ñ W�

l . Further, some method of approximating the time derivative of the state 9y
and the Wronskian W at past time points is needed that is based on the evaluation of deduced
functions.

8.2.10. Practical Variant of the Modified Standard Approach

The idealized variant of the modified standard approach is based on a number of irrealistic assump-
tions (see Definition 5.16). For example, it assumes that the points of discontinuity up to order p
in the exact solution ypt; cq are known. It further assumes that the discontinuity interval indicator
ξαptq is a piecewise constant function with (componentwise) finitely many discontinuities, and that
all its points of discontinuity are included into the mesh.

The practical variant for solving DDE-IVPs was formally defined and discussed in Section 5.4
(cf., in particular, Definition 5.22). The key aspects of the practical variant were as follows:

• The selection of the mesh is done such that the discontinuity interval indicator for the nu-

merical solution, denoted by ξ̂αptq, is constant between two mesh points.
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• There is a unique consistent choice for the discontinuity interval indicator.

Under certain regularity conditions on the behavior of the switching functions, it was possible to
transfer the convergence result of the idealized variant to the practical variant.

For the purpose of sensitivity computation, the practical variant of the modified standard ap-
proach has to be modified. Motivated by Corollary 8.1, it is necessary to include all those discon-
tinuity points into the mesh for which the “practically determined discontinuity order” in either
y or W is less than or equal to p � 1. This requires, of course, to determine the order of the
discontinuity in the Wronskian. This can be done as follows: Assume that all initial discontinuities
are of order 0 in W. Then, if oyj and oWj denote the order of the discontinuity in the nominal
solution and in the derivatives at the time point sj , respectively, the order of discontinuity in W
at si is set to oWi � minpoWj , oyj � 1q� 1. For the determination of the order of discontinuity in the
nominal solution, denoted by oyj , it is referred to the answer to question Q1 in Section 5.4.

By using the practical variant instead of the idealized variant, only the underlying assumption
on the choice of the mesh changes. Therefore, all equations of the Subsections 8.2.2 and 8.2.3
remain formally valid. The same holds for the computation of the jumps in the Wronskian, which
can be computed by equation (8.31) whenever a mesh points tl is identified as an approximation
of the location of a propagated discontinuity. An according statement holds in the time points of
root discontinuities in IHDDE-IVP solutions (cf. Subsection 8.2.9).

If certain regularity assumptions on the behavior of the propagation switching functions are
fulfilled for the exact nominal DDE-IVP solution ypt; cq, then the convergence result of Corollary 8.1
can be transferred to the practical variant of the modified standard approach. The arguments are
thereby the same as in the answers to Question Q2 and Q3 in Section 5.4.

Further, the differentiability result given in Theorem 7.11 suggests to make the following safe-
guard checks: Children of discontinuities of order 0 in y should not coincide, and the propagation
switching functions that correspond to critical discontinuities should have a non-zero time deriva-
tive in their zeros (both to the left and to the right of the time point of the child discontinuity). In
addition, if IHDDE-IVPs are solved numerically, the findings of Chapter 7 suggest to exclude that
a zero of a switching function coincided with the zero of a different switching function or with the
zero of a propagation switching functions that corresponds to a critical discontinuity.

The safeguard checks that are practically used in Colsol-DDE are presented in Subsection 9.1.11.

8.3. Adjoint Sensitivity Computation

8.3.1. Motivation

The derivative Wpt; cq � Bypt; cq{Bc of an IVP solution with respect to the parameters is a matrix-
valued function. It contains in column j the derivatives of all components of y with respect to the
j-th parameter, and in row i the derivative of the state vector component yi with respect to all
parameters.

Consider the situation that only the i-th row of the Wronskian matrix is of practical interest for a
specific problem. Since the forward approach for sensitivity computation computes the sensitivities
columnwise, it becomes very inefficient if there are many parameters. In this case, it is well-known
that adjoint methods for sensitivity computation are much more efficient, because the sensitivities
are computed rowwise and the computational effort is indepedent of the number of parameters,
see e.g. Bock [39], page 210, and Bock, Schlöder, and Schulz [45].

In a slightly more general setting, consider the issue of computing the derivative of a scalar
function Ωptfinpcq, yptfinpcq; cq, cq, where ypt; cq is the solution of a DDE-IVP. Its total derivative
with respect to c can be approximated numerically by

dΩptnm , ynm , cq
dc

�BΩ

Bt ptnm , ynm , cq
dtnm
dc

� BΩ

Bc ptnm , ynm , cq

� BΩ

By ptnm , ynm , cq
�Bynm
Bc � ffinpcqdtnm

dc

�
. (8.42)

Herein, dtnm{dc � dtfinpcq{dc and

ffinpcq :�fptnm , ynm , c, vnmq, (8.43)
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and vnm is an approximation of yptnm � τ1ptnm , ynm , cq; cq, which is obtained by an evaluation of
a deduced function, as usual in the framework of the modified standard approach.

If an approximation to the nominal DDE-IVP solution at the final time has been computed, then
the first, the second, and the fourth term in equation (8.42) can directly be computed. However, the
third term requires a numerical approximation of the derivative of the IVP solution with respect to
parameters, Wnm � Bynm{Bc. The basic idea of the adjoint approach for sensitivity computation
is to set

Λnm :� BΩ

By ptnm , ynm , cq P Rny (8.44)

and to compute the product ΛnmWnm without computing the two factors individually. In partic-
ular, this avoids the computation of the full Wronskian Wnm .

8.3.2. Sensitivity Computation by Discrete Adjoints

In the following, a discrete adjoint scheme of the CRK method (8.3), (8.8) is derived. More
precisely, the goal is to derive the discrete adjoint scheme that fits exactly to the Internal Numerical
Differentiation scheme for sensitivity computation given by equations (8.21), (8.30). For notational
simplicity the case of a DDE-IVP with a single delay τ1 is considered. The generalization to the
multiple delay case is straightforward.

It is assumed here that there are no discontinuities of order 0 in the Wronskian. This means
that for all mesh points tl that are identified as propagated discontinuities the following equation
holds: W�

l � W�
l . The treatment of problems with discontinuities of order 0 in the Wronskian is

discussed later in Subsection 8.3.4.

An idea of Bock [39] is used as basis for the development of the new discrete adjoint scheme that
fits exactly to the scheme (8.21), (8.30): Take the equations (8.21), (8.30) for the computation
of forward derivatives, multiply them by newly introduced prefactors (the adjoint variables), and
reorder the obtained expressions such that the quantities Wl, Gj

l�1, Wj
l�1, and dvjl�1{dc need not

be computed because they are multiplied by zeros. More precisely, the following variational ansatz
is made that employs the adjoint variables Λl�1, Λjl , Γjl , and Πj

l , all of which are row vectors of
dimension ny (the dimension of the state vector).

0 �
nm�1¸
l�0

#
Λl�1

�
�Wl�1 �Wl � hl�1

ν̧

j�1

βjG
j
l�1

�

� hl�1

�
ν̧

j�1

Λjl

�
�Gj

l�1 �
�Bf
By

j
l�1

Wj
l�1 �

�Bf
Bc

j
l�1

�
�Bf
Bv

j
l�1

dvjl�1

dc

��

� hl�1

�
ν̧

j�1

Γjl

�
Wj

l�1 �Wl � hl�1

ν̧

i�1

aj,iG
i
l�1

��

� hl�1

�
ν̧

j�1

Πj
lHl�1

�
�dv

j
l�1

dc
�Wl1 � hl1�1

ν̧

i�1

bipθl,jqGi
l1�1

�pfpastqjl�1

��Bτ1
By

j
l�1

Wj
l�1 �

�Bτ1
Bc

j
l�1

���

� hl�1

�
ν̧

j�1

Πj
l p1�Hl�1q

�
�dv

j
l�1

dc
�
�Bφξrl�1s

Bc

j
l�1

�
�
dφξrl�1s

dt


j
l�1

��Bτ1
By

j
l�1

Wj
l�1 �

�Bτ1
Bc

j
l�1

���+
. (8.45)

Herein, pfpastqjl�1 � fptjl�1�τ1ptjl�1, y
j
l�1, cq, vjl�1, c, u

j
l�1q, where ujl�1 is, as discussed in the context

of equation (8.29), an approximation of the state at a time point even further in the past. Further,
Hl�1 is an integer that characterizes whether or not the past states vjl�1 were, in the integration
step tl Ñ tl�1, computed from a smooth branch of the initial function. More precisely, if ξrl � 1s
denotes the value of the discontinuity interval indicator for the sole delay τ1 in the integration step
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tl Ñ tl�1, then it holds that Hl�1 � 0 if ξrl � 1s ¤ 0, and Hl�1 � 1 if ξrl � 1s ¡ 0.

If ξrl � 1s ¡ 0, then the past states in step tl Ñ tl�1 are computed from the continuous
representation in the integration step tl1 Ñ tl1�1 with l1 ¤ l. It is necessary to recall in this context
that the index l1 depends on both l and j. This fact becomes important in the following.

It is remarked that the terms in the square brackets in equation (8.45) correspond exactly to the
equations of the CRK scheme for forward sensitivity computation, see equations (8.21) and (8.30).
It is thus obvious that the term on the right hand side is indeed zero such that the equation holds.

In order to avoid the computation of any of the quantities Wl, Wj
l�1, Gj

l�1, and dvjl�1{dc, all
terms in equation (8.45) are sorted with respect to these quantities. This yields the following
expression:

0 �
nm�1¸
l�0

#
�Λl�1Wl�1 �

�
Λl�1 � hl�1

ν̧

j�1

Γjl

�
Wl � hl�1

ν̧

j�1

�
Λl�1βj � Λjl � hl�1

ν̧

i�1

ai,jΓ
i
l

�
Gj
l�1

� hl�1

ν̧

j�1

�
Λjl

�Bf
By

j
l�1

� Γjl

�Πj
l

�
Hl�1pfpastqjl�1 � p1�Hl�1q

�
dφξrl�1s

dt


j
l�1

��Bτ1
By

j
l�1

�
Wj

l�1

� hl�1

ν̧

j�1

�
Λjl

�Bf
Bv

j
l�1

�Πj
l

�
dvjl�1

dc

� hl�1

ν̧

j�1

Λjl

�Bf
Bc

j
l�1

� hl�1

ν̧

j�1

Πj
l

�
Hl�1pfpastqjl�1 � p1�Hl�1q

�
dφξrl�1s

dt


j
l�1

��Bτ1
Bc

j
l�1

� hl�1

ν̧

j�1

Πj
l p1�Hl�1q

�Bφξrl�1s

Bc

j
l�1

�hl�1

ν̧

j�1

Πj
lHl�1

�
Wl1 � hl1�1

ν̧

i�1

bipθl,jqGi
l1�1

�+
. (8.46)

At this point, the goal to factor out all quantities of the CRK scheme for forward sensitivity
computation is not yet reached because the expression in the last line contains terms Wl1 and
Gj
l1�1. These terms can locally, in the step tl Ñ tl�1, only be taken into account if overlapping

occurs, i.e. if l1 � l.

However, since the summation goes over all step indices l, it is always possible to move these
terms to other integration steps. In order to do this, recall that the index l1 actually depends on
l � 1 and j, i.e. l1pl � 1, jq is a more appropriate notation. In order to rearrange the terms in the
last row of the equation (8.46), let Ml for l ¥ 0 be a set of all those pairs of indices pµ, ρq such
that l1pµ� 1, ρq � l. Further, let Ml, �nφs � 1 ¤ l ¤ �1 be the sets containing those indices µ for
which ξrµ� 1s � l � 1.
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With this notation the following equation is obtained:

0 �
nm�1¸
l�0

#
�Λl�1Wl�1 �

�
�Λl�1 � hl�1

ν̧

j�1

Γjl �
¸

pµ,ρqPMl

hµ�1Πρ
µ

�
�Wl

� hl�1

ν̧

j�1

�
�Λl�1βj � Λjl � hl�1

ν̧

i�1

ai,jΓ
i
l �

¸
pµ,ρqPMl

hµ�1Πρ
µbjpθµ,ρq

�
�Gj

l�1

� hl�1

ν̧

j�1

�
Λjl

�Bf
By

j
l�1

� Γjl �Πj
l

�
Hl�1pfpastqjl�1

�p1�Hl�1q
�
dφξrl�1s

dt


j
l�1

��Bτ1
By

j
l�1

�
Wj

l�1

� hl�1

ν̧

j�1

�
Λjl

�Bf
Bv

j
l�1

�Πj
l

�
dvjl�1

dc

� hl�1

ν̧

j�1

Λjl

�Bf
Bc

j
l�1

� hl�1

ν̧

j�1

Πj
l

�
Hl�1pfpastqjl�1

�p1�Hl�1q
�
dφξrl�1s

dt


j
l�1

��Bτ1
Bc

j
l�1

+

�
�1̧

l��ns�1

¸
pµ,ρqPMl

hµ�1Πρ
µ

�Bφl
Bc

ρ
µ�1

. (8.47)

This equation motivates the following definition of a discrete adjoint of the CRK scheme (8.3),
(8.8).

Definition 8.5 (Discrete Adjoint Scheme of a CRK Scheme Applied to DDE-IVPs)

The equations

Λl � Λl�1 � hl�1

ν̧

j�1

Γjl �
¸

pµ,ρqPMl

hµ�1Πρ
µ (8.48a)

Λjl � Λl�1βj � hl�1

ν̧

i�1

ai,jΓ
i
l �

¸
pµ,ρqPMl

hµ�1Πρ
µbjpθµ,ρq (8.48b)

Γjl � �Λjl

�Bf
By

j
l�1

�Πj
l

�
Hl�1pfpastqjl�1 � p1�Hl�1q

�
dφξrl�1s

dt


j
l�1

��Bτ1
By

j
l�1

(8.48c)

Πj
l � Λjl

�Bf
Bv

j
l�1

. (8.48d)

constitute a discrete adjoint scheme of the CRK scheme (8.3), (8.8).

Remark 8.6 (Adjoint Internal Numerical Differentiation)

It is clear, from the way in which Definition 8.5 has been motivated, that the discrete adjoint
scheme (8.48) “fits exactly” to the forward method for sensitivity computation given by the CRK
scheme (8.21), (8.30). Thus, in view of Remark 8.3, it constitutes an adjoint Internal Numerical
Differentiation method.

By solving the above-defined discrete adjoint scheme backward for l � nm � 1, . . . , 0, the terms
in the square brackets in the second, third, and fourth line of equation (8.47) vanish for all l
according to equations (8.48b), (8.48c), and (8.48d). Further, by using equation (8.48a), only two
terms remain after summation over all l of the terms in the first line of equation (8.47). The two
remaining terms are �ΛnmWnm and Λ0W0.
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Hence, equation (8.47) simplifies to

ΛnmWnm �� Λ0W0 �
nm�1¸
l�0

#
hl�1

ν̧

j�1

Λjl

�Bf
Bc

j
l�1

� hl�1

ν̧

j�1

Πj
l

�
Hl�1pfpastqjl�1 � p1�Hl�1q

�
dφξrl�1s

dt


j
l�1

��Bτ1
Bc

j
l�1

+

�
�1̧

l��ns�1

¸
pµ,ρqPMl

hµ�1Πρ
µ

�Bφl
Bc

ρ
µ�1

. (8.49)

Herein, W0 is given by equation (8.20), which requires only the right-hand-side function evaluation
at the initial time, the derivatives of the initial time t0 � tinipcq and the initial value y0 � yinipcq
with respect to parameters.

Obviously, expression (8.49) allows to compute the product ΛnmWnm only in terms of the adjoint
variables, which are given by solving the discrete adjoint scheme (8.48). Additional contributions
in the equations (8.48), (8.49) that occur for problems with discontinuities in the Wronskian are
presented in Subsection 8.3.4.

Subsection (8.3.5) below discusses the relation of adjoint sensitivities to forward sensitivities and
the convergence of adjoint derivatives to the exact derivative.

8.3.3. Sensitivities of the States at Inner Time Points

The discrete adjoint approach for sensitivity computation can also be used for computing the
derivatives of states at inner time points of the considered interval, i.e. for the computation of
dypt̄; cq{dc for t̄ P ptinipcq, tfinpcqq. In particular, this is also possible if t̄ is not part of the mesh
that was used for the forward solution of the nominal DDE-IVP.

For illustration, consider a scalar function Ωpypt̄; cqq whose derivative with respect to the param-
eters c should be computed. For this purpose, set

Λȳ :� BΩ

By pypt̄; cqq (8.50)

and observe that

dΩ

dc
pypt̄; cqq � Λȳ

dypt̄; cqq
dc

. (8.51)

Let ȳ be the numerical approximation of ypt̄; cq obtained by a continuous Runge-Kutta method
applied to the nominal DDE-IVP, and let n̄ be the integer number such that tn̄   t̄ ¤ tn̄�1. Then
a numerical approximation of dypt̄; cqq{dc by a CRK scheme for forward sensitivity computation is
given by

dȳ

dc
� Wn̄ � hn̄�1

ν̧

j�1

bjpθ̄qGj
n̄�1. (8.52)

Therein Wn̄ represents Byn̄{Bc and Gj
n̄�1 represents Bgjn̄�1{Bc. Further, θ̄ � pt̄� tn̄q{hn̄�1 P p0, 1s

denotes the relative position of t̄ on the interval rtn̄, tn̄�1s.
In order to avoid the computation of forward sensitivities, a variational approach is used:

Λȳ

�
dȳ

dc
�Wn̄ � hn̄�1

ν̧

j�1

bjpθ̄qGj
n̄�1

�
� 0. (8.53)

This equation, in combination with the variational approach for the continuous Runge-Kutta
method for the steps up to the mesh point tn̄�1 suggests to make the following initialization
step for the discrete adjoint scheme:

Λn̄ � Λȳ � hn̄�1

ν̧

j�1

Γjn̄ �
¸

pµ,ρqPMn̄,µ�n̄

hµ�1Πρ
µ (8.54a)
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Λjn̄ � Λȳbjpθ̄q � hn̄�1

ν̧

i�1

ai,jΓ
i
n̄ �

¸
pµ,ρqPMn̄,µ�n̄

hµ�1Πρ
µbjpθµ,ρq (8.54b)

Γjn̄ � �Λjn̄

�Bf
By

j
n̄�1

�Πj
n̄

�
Hn̄�1pfpastqjn̄�1 � p1�Hn̄�1q

�
dφξpn̄�1q

dt


j
n̄�1

��Bτ1
By

j
n̄�1

(8.54c)

Πj
n̄ � Λjn̄

�Bf
Bv

j
n̄�1

. (8.54d)

This initialization step differs from a usual step in the discrete adjoint scheme (8.48) in two respects.
On the one hand, the first terms in the equation (8.54b) contains a factor bjpθ̄q instead of βj . On
the other hand, the summation in the equations (8.54a) and (8.54b) goes only over index pairs
pµ, ρq for which overlapping occured in the step tn̄ Ñ tn̄�1.

After the initialization step (8.54), the discrete adjoint scheme (8.48) can be applied for l �
n̄ � 1, . . . , 0. Thereby, it has also be taken into account that the summations in the equations
(8.48a) and (8.48b) only go over those pairs pµ, ρq for which µ ¤ n̄. As a result, the sought
derivative can be computed by

Λȳ
dȳ

dc
�� Λ0W0 �

ņ̄

l�0

�
hl�1

ν̧

j�1

Λjl

�Bf
Bc

j
l�1

� hl�1

ν̧

j�1

Πj
l

�
Hl�1pfpastqjl�1 � p1�Hl�1q

�
dφξrl�1s

dt


j
l�1

��Bτ1
Bc

j
l�1

�

�
�1̧

l��ns�1

¸
pµ,ρqPMl,µ¤n̄

hµ�1Πρ
µ

�Bφl
Bc

ρ
µ�1

. (8.55)

8.3.4. Discontinuities of Order 0 in the Sensitivities

According to the differentiability theorem for general DDE-IVPs (Theorem 7.11) the exact deriva-
tive Wpt; cq � Bypt; cq{Bc has discontinuities that are potentially of order 0. For example, let si be
the time point of a propagated discontinuity whose parent discontinuity at sjpcq is of order 0 in
y. Further, let tl be the corresponding mesh point (i.e. tl � si). Then the jump in the Wronskian
W was taken into account in the idealized variant of the modified standard approach by equation
(8.31). For the adjoint sensitivity computation, it is appropriate to express this equation as

W�
l � A1

lW
�
l �A2

l . (8.56)

Herein, the matrices A1
l and A2

l are given by

A1
l � 1ny � pf�l pcq � f�l pcqq

�
Bτ1ptl,yl,cq

By

1� Bτ1ptl,yl,cq
Bt � Bτ1ptl,yl,cq

By f�l pcq

�
(8.57a)

A2
l � �pf�l pcq � f�l pcqq

�
Bτ1ptl,yl,cq

Bc � dsj
dc

1� Bτ1ptl,yl,cq
Bt � Bτ1ptl,yl,cq

By f�l pcq

�
, (8.57b)

and 1ny is the identity matrix of dimension ny � ny.
Note that discontinuities of order 0 in y arise, for DDE-IVPs, only because of discontinuities in

the initial function. It can therefore be assumed that dsj{dc in the expression for A2
l is in practice

available as part of the problem formulation.
Consider the following variational approach for equation (8.56):

Λ�
l pW�

l �A1
lW

�
l �A2

l q � 0. (8.58)

Hence, discontinuities of order 0 can be taken into account in the discrete adjoint approach as
follows: During the application of the discrete adjoint scheme, stop at all mesh points tl that are
identified as approximations of propagated discontinuity points. Then compute Λ�

l :� Λ�
l A1

l , and
continue the application of the discrete adjoint scheme with Λ�

l .
Further, let Nj be a set that contains all indices l of the mesh points where the child discon-
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tinuities of sj are located (for all �nφs ¤ j ¤ 0). Formally: an index l is contained in Nj if
tl � τ1ptl, yl, cq � sj . With this definition, a term

0̧

j��nφs

¸
lPNj

Λ�
l A2

l

is added to equation (8.49).

8.3.5. Equivalence of Forward Approach and Adjoint Approach

The discrete adjoint scheme was derived by taking the equations for the forward approach, multi-
plying these expressions by adjoint variables, and reordering the terms in the obtained equation in
such a way that the forward sensitivities do not need to be computed because they are multiplied
by zeros. As a result, the equation (8.49) is obtained. Hence, computation of the sought derivative
with the forward approach (left hand side of that equation) or by the adjoint approach (right hand
side of that equation) yields, theoretically, exactly the same result, i.e. the two approaches are
fully equivalent. In particular, it is also possible to compute the full Wronskian matrix Wnm by
starting the discrete adjoint scheme with the ny unit vectors of Rny .

The exact equivalence of the forward and adjoint Internal Numerical Differentiation approaches
are also known from ODE- and DAE-theory, see e.g. Bock [39], Albersmeyer [2]. Due to the equiva-
lence, it is immediately clear that the adjoint sensitivities converge, for hÑ 0, h :� max1¤l¤nm hl,
with the same convergence order to the exact derivative as the forward sensitivities, provided
that the assumptions of Corollary 8.1 are fulfilled. Moreover, convergence is also obtained in the
framework of the practical variant of the modified standard approach if the propagation switching
functions have a regular behavior (see Section 5.4 and Subsection 8.2.10).

In the numerical practice it happens frequently that forward sensitivities and adjoint sensitivities
do not yield exactly the same result. The reason is the use of floating point numbers and operations.
Accordingly, equation (8.49) holds exactly in theory, but due to the fact that a different algorithm
is used small deviations may occur. Typically, these deviations are very small, such that forward
and adjoint sensitivities are often identical in the leading 10 or more digits.

Please note that an excellent agreement between forward and adjoint sensitivities is not a measure
for the accuracy of the computed sensitivities. A good agreement is also obtained if only one or
two digits are correct as compared to the exact derivative.

8.3.6. Error Control

The adjoint sensitivities are obtained by computing the discrete adjoints that fit exactly to one
specific forward computation method for sensitivity computation and for the specific mesh that
was used for the solution of the nominal DDE-IVP. Hence, the mesh has to be considered as fixed.
The discrete adjoint approach for sensitivity computation does therefore not allow to adapt the
stepsizes in order to control the error of the approximation.

8.3.7. Generalization: Sensitivities of IHDDE-IVP Solutions

This subsection deals with the generalization of the discrete adjoint approach for sensitivity com-
putation to the general IHDDE-IVP case. For this purpose it is necessary to take into account the
jumps in the Wronskian that may occur at the time points of the root discontinuities.

In order to discuss this issue in detail, consider the time point sk of a root discontinuity, and let
Ipkq denote the index of the switching function that is zero at sk. Further, consider the idealized
variant of the modified standard approach and let l be the index of the mesh point that corresponds
to the time point of the root discontinuity, i.e. tl � sk. Assuming that the sufficient differentiability
conditions of Section 7.6 are fulfilled (which implies, in particular, a non-zero time derivative of
the switching function σIpkq at its zero sk), the exact derivative dsk{dc of the time point of the
root discontinuity is given by equation (7.105).

The discrete analogue of this equation can, for the special case of a single delay, be expressed as

dsk
dc

� B1
lW

�
l �B2

l (8.59)
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with matrices B1
l and B2

l that are given by

B1
l � �

BσIpkq
By � BσIpkq

Bv1
9yk,1past

Bτ1
By

BσIpkq
Bt � BσIpkq

By f�l pcq �
BσIpkq
Bv1

9yk,1past

�
1� Bτ1

Bt � Bτ1
By f

�
l pcq

� (8.60a)

B2
l � �

BσIpkq
Bc � BσIpkq

Bv1
9yk,1past

Bτ1
Bc �

BσIpkq
Bv1

Wk,1
past

BσIpkq
Bt � BσIpkq

By f�l pcq �
BσIpkq
Bv1

9yk,1past

�
1� Bτ1

Bt � Bτ1
By f

�
l pcq

� . (8.60b)

Herein, the partial derivatives of the switching function σIpkq are evaluated at ptl, y�l , c, v�l q, where

y�l represents the numerical approximation of y�ptl; cq obtained by using the idealized variant of the
modified standard approach. Further, v�l is an approximation of the past state yptl�τ1ptl, y�l , cq; cq,
which is obtained by an evaluation of a deduced function.

The partial derivatives of the delay function τ1 in equation (8.60) are evaluated at the arguments
ptl, y�l , cq. The symbol f�l pcq represents the evaluation of the right-hand-side function to the
left of the mesh point tl, i.e. f�l pcq � fptl, y�l , c, v�l , ζ�q, where ζ� represents the signs of the

switching functions to the left of tl. Moreover, 9yk,1past represents a numerical approximation of

9yptl � τ1ptl, y�l , cq; cq, which, for the discrete adjoint of the CRK scheme (8.21), (8.30), is given by

an evaluation of the right-hand-side function at the past time point. Eventually, Wk,1
past represents

a numerical approximation of Wptl � τ1ptl, y�l , cq; cq. This approximation has to be a obtained by
an evaluation of a deduced function as usual in the context of the modified standard approach.

The exact jump in the Wronskian matrix Wpt; cq at the discontinuity point sk is given by
equation (7.108). The discrete analogue of this equation is given by

W�
l � C1

lW
�
l �C2

l

dsk
dc

�C3
l . (8.61)

Therein, dsk{dc is given by equation (8.59), and the matrices C1
l , C2

l , and C3
l are given by

C1
l � 1ny �

BωIpkq
By � BωIpkq

Bv1
9yk,1past

Bτ1
By (8.62a)

C2
l �

�
1ny �

BωIpkq
By



f�l pcq �

BωIpkq
Bt � f�l pcq �

BωIpkq
Bv1

9yk,1past

�
1� Bτ1

Bt �
Bτ1
By f

�
l pcq



(8.62b)

C3
l �

BωIpkq
Bc � BωIpkq

Bv1
9yk,1past

Bτ1
Bc �

BωIpkq
Bv1

Wk,1
past, (8.62c)

where 1ny is the ny � ny dimensional identity matrix. Further, the impulse function ωIpkq is eval-

uated at the arguments ptl, y�l , c, v�l q, and f�k pcq is given by f�l pcq � fptl, y�l , c, v�l , ζ�q. Thereby,
y�l is the numerical approximation of the state after the impulse, i.e.

y�l � y�l � ωIpkqptl, y�l , c, v�l q, (8.63)

and v�l is an approximation of yptl�τ1ptl, y�l , cq; cq that is computed by an evaluation of a deduced
function. Eventually, ζ� represents the switching function signs to the right of tl.

Inserting equation (8.59) into (8.61) yields

W�
l � D1

lW
�
l �D2

l (8.64)

with D1
l � C1

l �C2
lB

1
l and D2

l � C3
l �C2

lB
2
l .

The general idea is to use the procedure that was used in the context of children of discontinuities
of order 0 in y, see Subsection 8.3.4. Hence, consider the variational approach

Λ�
l pW�

l �D1
lW

�
l �D2

l q � 0. (8.65)

Accordingly, during the application of the discrete adjoint scheme, it is necessary to stop at the time
points of root discontinuities, and to compute the jump in the adjoint variables, i.e. Λ�

l :� Λ�
l D1

l .
Subsequently, the application of the discrete adjoint scheme is continued with Λ�

l .
It then remains to deal with the contribution of the matrix D2

l . This matrix contains, in

particular, terms that depend on the Wronskian Wk,1
past at the past time point. If the discontinuity
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interval indicator ξrls for the sole delay τ1 is the step tl�1 Ñ tl is such that 1 ¤ ξrls ¤ ns, then
this Wronskian matrix is, in the forward approach, approximated by the continuous representation
El1�1ptq, with l1�1 ¤ l. In order to avoid the computation of this quantity in the adjoint approach,
the terms Wl1 and Gjl1�1 have to be factored in the integration step tl1 Ñ tl1�1. This leads to a
modification of the discrete adjoint scheme (8.48).

Only the result is given in the following. Let the set Pl contain all those indices k of the time
points of root discontinuities for which the deviating argument is located in rtl, tl�1q. Then the
following modified versions of equation (8.48a) and (8.48b) are obtained:

Λl �Λl�1 � hl�1

ν̧

j�1

Γjl �
¸

pµ,ρqPMl

hµ�1Πρ
µ �

¸
kPPl

�
�BωIpkq

Bv1
�

C2
Jpkq

BσIpkq
Bv1

9σ�Ipkq

�
 (8.66a)

Λjl �Λl�1βj � hl�1

ν̧

i�1

ai,jΓ
i
l �

¸
pµ,ρqPMl

hµ�1Πρ
µbjpθµ,ρq

�
¸
kPPl

�
�BωIpkq

Bv1
�

C2
Jpkq

BσIpkq
Bv1

9σ�Ipkq

�
bjpθIpkqq (8.66b)

where Jpkq is the function that attributes to the discontinuity point sk the mesh point tJpkq at
which it occurs and

9σ�Ipkq :� BσIpkq
Bt � BσIpkq

By f�k pcq �
BσIpkq
Bv1

9yk,1past

�
1� Bτ1

Bt �
Bτ1
By f

�
k pcq

�
. (8.67)

Further, θIpkq is the relative position of the past time point tJpkq� τ1ptJpkq, yJpkq, cq in the interval
rtl, tl�1q.

The remaining terms in D2
l , i.e. those that do not depend on the Wronskian at past time points,

have to be taken into account by additional terms in equation (8.49). In order to do this, let Q
denote the set of those indices k P t1, . . . , nsu such that sk is the time point of a root discontinuity.
This leads to the following contributions in equation (8.49):

¸
kPQ

BωIpkq
Bc � BωIpkq

Bv1
9yk,1past

Bτ1
Bc �

C2
Jpkq

�
BσIpkq
Bc � BσIpkq

Bv1
9yk,1past

Bτ1
Bc

�
9σ�Ipkq

.

Of course, the treatment of IHDDE-IVPs still requires to take into account possible jumps in
the sensitivities that originate from propagations of discontinuities of order 0 in y as discussed in
Subsection 8.3.4.

The combined presence of non-zero impulse functions and delays may also leads to a situation
where a root discontinuity of order 0 in y has a child discontinuity within the considered time
interval. Since the right hand side of equation (8.57b) contains a term that represents the total
derivative of the time point of the parent discontinuity, this term can be taken into account in
the adjoint sensitivity computation when the time point of the parent discontinuity (i.e. the time
point of the root discontinuity of order 0) is reached later (during the backward recursion). More
precisely, this leads to an additional contribution in the matrix C2

l .

8.3.8. Practical Variant of the Modified Standard Approach

In Subsection 8.3.2 a discrete adjoint scheme was derived that fits exactly to the forward Internal
Numerical Differentiation method (8.21), (8.30). This forward scheme was originally derived in
Subsections 8.2.2 and 8.2.3 in the context of the idealized variant of the modified standard approach.
Further, the jumps in the Wronskian matrix in the time points of propagated discontinuities (see
Subsection 8.3.4) and in the time points of root discontinuities (see Subsection 8.3.7) have also
been derived in the framework of the idealized variant.

However, as discussed in Subsection 8.2.10, the practical variant differs from the idealized variant
only with regard to the underlying assumption on the construction of the mesh. Therefore, all
equations derived in the Subsection 8.3.2, 8.3.4, and 8.3.7 formally remain valid also in the context
of the practical variant.
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9. Sensitivity Computation in Colsol-DDE

Ableitungen liegen nicht auf der Straße.

Heard in a lecture by Utz Wever (TU München and Siemens AG).

In Chapter 8 a generalization of Internal Numerical Differentiation (IND) for delay differen-
tial equations (DDEs) has been proposed. Further, forward and adjoint methods for sensitivity
computation have been presented, which realize IND for DDEs and which allow for an accurate
computation of the sensitivities. This chapter discusses how these forward and adjoint IND meth-
ods are realized in practice in the newly developed solver Colsol-DDE.

Survey of Existing Solvers with Sensitivity Computation

Computation of sensitivities of initial value problem solutions in ordinary differential equations
(ODEs) can be done by a variety of existing programs. It is therefore sufficient to direct the reader
to the following codes: The variants of DIFSYS and METAN1 as described in Bock [36], DAESOL
by Bauer [20] and Bauer, Bock, and Schlöder [21], DASPK by Li and Petzold [176, 177], and
CVODES by Hindmarsh and Serban [147]. Without going into the details, it should be mentioned
that these codes differ significantly with respect to the approaches that are realized (forward vs.
adjoint), their capabilities (first, second, or higher order sensitivities), and to the extent to which
structures are exploited. For a recent code that features efficient arbitrary order forward and
adjoint sensitivity computation in differential-algebraic equations, it is referred to DAESOL-II by
Albersmeyer [2].

Sensitivity computation in hybrid discrete-continuous ordinary differential equations (HODEs)
and impulsive hybrid discrete-continuous ordinary differential equations (IHODEs) is rarely avail-
able. For two codes that provide this feature, see DAEPACK by Tolsma and Barton [249] and
RKFSWT by Kirches [160]. Both programs compute the sensitivities only in forward mode. To
the knowledge of the author, there is presently no solver that computes adjoint sensitivities of
initial value problem (IVP) solutions in HODEs and IHODEs.

For problems with time delays, only one program has been developed so far that features sensi-
tivity computation, DDEM by ZivariPiran [271] and ZivariPiran and Enright [273]. The approach
taken by DDEM is to solve the variational DDE-IVP and to stop at the time points of the propa-
gated discontinuities in order to apply the jumps to the Wronskian matrix. DDEM is not able to
compute adjoint sensitivities.

Features of the New Solver Colsol-DDE

Colsol-DDE is the first solver that features an accurate and efficient computation of first order
forward and adjoint sensitivities by means of Internal Numerical Differentiation in the general case
of IHDDE-IVPs. Since IHODE-IVPs and DDE-IVPs are included as special cases, Colsol-DDE is
thus also the first solver to provide adjoint sensitivities for these simpler classes of IVPs.

Further, with regard to forward sensitivity computation for DDE-IVPs, the methods in Colsol-
DDE differ in many respects to the ones implemented in DDEM. In particular, Colsol-DDE strictly
follows the IND concept (see Definition 8.2), i.e. the realized methods for sensitivity computation
are obtained by applying IND to the numerical methods that were presented in Chapter 6. An
analysis of the resulting equation systems reveals structures that are exploited in Colsol-DDE. This
is particularly important because Colsol-DDE is based on implicit methods.

Another key feature of Colsol-DDE is that error-controlled sensitivities can be computed. This
feature is non-standard even among sensitivity-generating ODE-IVP solvers.

Eventually, it is pointed out that Colsol-DDE is – in contrast to DDEM – designed to be used in
conjunction with an Automatic Differentiation tool, which provides (up to machine precision) the
exact derivatives of the model functions. This improves significantly the achievable precision for the
computed sensitivities. At the same time, the use of Automatic Differentiation for the computation
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of the model function derivatives makes the usage of Colsol-DDE entirely derivative-free for the
user.

Organization of This Chapter

The chapter is divided into two sections. In Section 9.1, the practically implemented methods for
the computation of forward sensitivities are presented. Section 9.2 deals with the realization of
adjoint sensitivity computation.

9.1. Practical Computation of Forward Sensitivities

9.1.1. Collocation Method

A first discrete and continuous approximation of a DDE-IVP solution yptq in the step tl Ñ tl�1

is, in Colsol-DDE, obtained by the application of a collocation method, see Section 6.1. This
provides a value yl�1,p and a polynomial continuous representation ηl�1,qptl � θhl�1q, θ P r0, 1s,
which approximate the exact local solution in that integration step with discrete local order p and
with uniform local order q, respectively. Note that, in agreement with Section 6.4, the local orders
of the approximations are indicated by subscripts.

More precisely, the employed collocation methods in Colsol-DDE are the one-stage Gauss meth-
od, the two-stage Radau IIA method, and the three-stage Lobatto IIIA method. Their abscissae
γi, coefficients ai,j , weights βj , and continuous weight functions bj were given in Subsection 6.1.2
and in Table 6.1. Recall that the pairs of discrete local orders and uniform local orders for these
methods are pp, qq � p2, 1q for the one-stage Gauss method, pp, qq � p3, 2q for the two-stage
Radau IIA method, and pp, qq � p4, 3q for the three-stage Lobatto IIIA method.

The starting point of the discussion is the ν � ny-dimensional equation system (pν � 1q � ny-
dimensional in the case of the Lobatto IIIA method) that needs to be solved for the collocation
method. For notational simplicity, the case of a DDE-IVP with a single delay τ1 is regarded in the
following. In this case, the system that needs to be solved was given in equation (6.53), which is
recalled here:

gjl�1 � fptjl�1, y
j
l�1, c, v

j
l�1q for 1 ¤ j ¤ ν. (9.1)

Therein, yjl�1 is given by

yjl�1 � yl � hl�1

ν̧

i�1

aj,ig
i
l�1. (9.2)

After the system (9.1) has been solved, the discrete and continuous numerical approximations of
the DDE-IVP solution in the interval rtl, tl�1s are given by

yl�1,p � yl � hl�1

ν̧

j�1

βjg
j
l�1 (9.3a)

ηl�1,qptl � θhl�1q � yl � hl�1

ν̧

j�1

bjpθqgjl�1. (9.3b)

The approximations vjl�1 of the past states are, in Colsol-DDE, computed by the practical variant
of the modified standard approach (see Definition 5.22, and also Subsection 8.2.10). This means
that a deduced function is evaluated for the computation of vjl�1, and the selection of the deduced

function depends on the value of the numerically determined discontinuity interval indicator ξ̂α1 ptq
for the sole delay τ1 and for t P ptl, tl�1q.

Since only a single integration step tl Ñ tl�1 is considered in the following, the notation ξ is
used as an abbreviation for ξ̂α1 pt1q, t1 P ptl, tl�1q arbitrary.

Let nφs denote the total number of discontinuities to left of the initial time, and let ns denote
the total number of propagated discontinuities1 up to order p � 1 to the right of the initial time

1In Colsol-DDE, the time points of all children of discontinuities up to order p � 1 need to be included into the
mesh, because the discrete error-estimating method is of order p� 1. Further, when making the decision on the
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that were found until the mesh point tl. Then, according to Subsection 6.4.1, the computation of
past states is done in the following way:

• If �nφs ¤ ξ ¤ 0, then the past states are computed by an evaluation of a smooth branch φξ
of the initial function φ.

• If 1 ¤ ξ ¤ ns � 1, then the past states are computed from the continuous representation in
the step rtl1 , tl1�1s. The index l1 is thereby different for every stage j (and for different indices
l � 1 of the integration step, of course). For the practical choice of l1, see Subsection 6.4.1.

If overlapping does not occur, i.e. l1   l, then the past states are computed by an evaluation
of the continuous representation ηl1�1,p of uniform local order p in the past integration step
tl1 Ñ tl1�1.

If overlapping occurs, i.e. l1 � l, then the past states are computed by an evaluation of
the continuous representation ηl�1,q of uniform local order q in the current integration step
tl Ñ tl�1 (because the higher order continuous representation ηl�1,p, obtained from the
implicit uniform correction, is not yet available).

The application of Internal Numerical Differentiation to the equations (9.1) and (9.2) then yields,
at first,

Gj
l�1 �

�Bf
By

j
l�1

Wj
l�1 �

�Bf
Bc

j
l�1

�
�Bf
Bv

j
l�1

dvjl�1

dc
(9.4)

and

Wj
l�1 � Wl � hl�1

ν̧

i�1

aj,iG
i
l�1. (9.5)

The discrete and continuous approximations for the sensitivities are then given

Wl�1,p � Wl � hl�1

ν̧

j�1

βjG
j
l�1 (9.6a)

El�1,qptl � θhl�1q � Wl � hl�1

ν̧

j�1

bjpθqGj
l�1. (9.6b)

Note that these equations have also been found in Section 8.2 (see equation (8.21)), and that an
(almost) identical notation has been used. For example, compare

Wl�1,p :� Byl�1,p

Bc , Wj
l�1 :� Byjl�1

Bc , Gj
l�1 :� Bgjl�1

Bc (9.7)

with equation (8.19), and �Bf
By

j
l�1

:� Bfpt, y, c, vq
By

����
ptjl�1,y

j
l�1,c,v

j
l�1q

(9.8a)

�Bf
Bc

j
l�1

:� Bfpt, y, c, vq
Bc

����
ptjl�1,y

j
l�1,c,v

j
l�1q

(9.8b)

�Bf
Bv

j
l�1

:� Bfpt, y, c, vq
Bv

����
ptjl�1,y

j
l�1,c,v

j
l�1q

(9.8c)

with equation (8.22).
For the computation of the derivatives of the past states, dvjl�1{dc, one option is the use of

equation (8.30). As discussed in Section 8.2, this way of computing dvjl�1{dc is compatible with
the concept of Internal Numerical Differentiation for DDEs (Definition 8.2). This ensures that

further propagation of a discontinuity, the orders in the approximations of both y and W are taken into account,
because the error control strategy optionally applies to both the nominal solution and to the sensitivities.
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the orders of the discrete and uniform local errors of Wl�1,p and El�1,q are indeed p and q (see
Corollary 8.4), as indicated by the subscripts.

For the practical realization in Colsol-DDE, it is taken into account that different continuous
representations are used in the overlapping and non-overlapping case. This leads to

dvjl�1

dc
�
�Bφξ
Bc

j
l�1

�
�
dφξ
dt


j
l�1

��Bτ1
By

j
l�1

Wj
l�1 �

�Bτ1
Bc

j
l�1

�
if � nφs ¤ ξ ¤ 0, (9.9)

to

dvjl�1

dc
�El1�1,pptl1 � θl,jhl1�1q � pfpastqjl�1 �

��Bτ1
By

j
l�1

Wj
l�1 �

�Bτ1
Bc

j
l�1

�
if 1 ¤ ξ ¤ ns � 1 and l1   l, (9.10)

and to

dvjl�1

dc
�El�1,qptl � θl,jhl�1q � pfpastqjl�1 �

��Bτ1
By

j
l�1

Wj
l�1 �

�Bτ1
Bc

j
l�1

�
if ξ � ns � 1 and l1 � l. (9.11)

In accordance with the notation of Section 8.2, the partial derivatives of the initial function φ
and of the delay function τ1 have thereby been abbreviated as�

dφξ
dt


j
l�1

:� dφξpt, cq
dt

����
ptjl�1�τ1pt

j
l�1,y

j
l�1,cq,cq

(9.12a)

�Bφξ
Bc

j
l�1

:� Bφξpt, cq
Bc

����
ptjl�1�τ1pt

j
l�1,y

j
l�1,cq,cq

(9.12b)

�Bτ1
By

j
l�1

:� Bτ1pt, y, cq
By

����
ptjl�1,y

j
l�1,cq

(9.12c)

�Bτ1
Bc

j
l�1

:� Bτ1pt, y, cq
Bc

����
ptjl�1,y

j
l�1,cq

. (9.12d)

Further, the symbol θl,j was used in the equations (9.10) and (9.11) in order to represent the

relative position of the past time point tjl�1 � τ1ptjl�1, y
j
l�1, cq in the interval rtl1 , tl1�1s:

θl,j �
tjl�1 � τ1ptjl�1, y

j
l�1, cq � tl1

hl1�1
. (9.13)

Eventually,

pfpastqjl�1 � fptl1 � θl,jhl1�1, v
j
l�1, c, u

j
l�1q (9.14)

is an abbreviating notation for an evaluation of the right-hand-side function at the past time point
ptpastqjl�1 :� tjl�1 � τ1ptjl�1, y

j
l�1, cq. The argument ujl�1 in this right-hand-side function evaluation

is thereby

ujl�1 � ypptpastqjl�1 � τ1pptpastqjl�1, v
j
l�1, cq; cq, (9.15)

meaning that it is an approximation of a state at a time point even further in the past, compare
Subsection 8.2.3. The computation of ul�1 is thereby done depending on the value ξpast of the
discontinuity interval indicator in the past integration step tl1 Ñ tl1�1.

9.1.2. Implicit Uniform Correction

Colsol-DDE uses the implicit uniform correction procedure as described in Section 6.2 to obtain a
continuous representation ηl�1,pptl � θhl�1q whose uniform local order is equal to p, i.e. equal to
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the discrete local order of the collocation method. For this purpose, the system given in equation
(6.60) is solved, i.e.

g�l�1 � fpt�l�1, y
�
l�1, c, v

�
l�1q � 9ηl�1,qpt�l�1q, (9.16)

where

y�l�1 � yl � hl�1

�
ν̧

i�1

bipθ�qgil�1 � b�pθ�qg�l�1

�
(9.17a)

9ηl�1,qpt�l�1q �
ν̧

i�1

bipθ�qgil�1. (9.17b)

After the system (9.16) has been solved, the higher order continuous representation in the interval
rtl, tl�1s is given by

ηl�1,pptl � θhl�1q � yl � hl�1

�
ν̧

i�1

bipθqgil�1 � b�pθqg�l�1

�
. (9.18)

The function b�pθq and the additional abscissa θ� for the methods that are practically used in
Colsol-DDE are defined in Subsection 6.2.2.

The approximation v�l�1 of the past state is, in Colsol-DDE, computed as described in Subsection
6.4.2. Due to the use of the practical variant of the modified standard approach, the computation
depends on the value of the discontinuity interval indicator ξ for the sole deviating argument as
follows:

• If �nφs ¤ ξ ¤ 0, then the past state is computed by an evaluation of a smooth branch φξ of
the initial function φ.

• If 1 ¤ ξ ¤ ns � 1, then the past state is computed by an evaluation of the continuous repre-
sentation ηl1�1,p of uniform local order p in the step tl1 Ñ tl1�1, where l1 ¤ l, i.e. regardless
of whether or not overlapping occurs. For the practical choice of l1, see Subsection 6.4.2.

In order to compute a higher order continuous representation of the sensitivities, the principle of
Internal Numerical Differentiation is applied to equations (9.16) and (9.17). This yields

G�
l�1 �

�Bf
By

�
l�1

W�
l�1 �

�Bf
Bc

�
l�1

�
�Bf
Bv

�
l�1

dv�l�1

dc
� 9El�1,qpt�l�1q (9.19)

and

W�
l�1 � Wl � hl�1

�
ν̧

i�1

bipθ�qGi
l�1 � b�pθ�qG�

l�1

�
(9.20a)

9El�1,qpt�l�1q �
ν̧

i�1

9bipθ�qGi
l�1. (9.20b)

The higher order continuous representation for the sensitivities is then given by

El�1,pptl � θhl�1q � Wl � hl�1

�
ν̧

i�1

bipθqGi
l�1 � b�pθqG�

l�1

�
. (9.21)

In the above equations, the notations

W�
l�1 :� By�l�1

Bc , G�
l�1 :� Bg�l�1

Bc , (9.22)
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and �Bf
By

�
l�1

:� Bfpt, y, c, vq
By

����
pt�l�1,y

�
l�1,c,v

�
l�1q

(9.23a)

�Bf
Bc

�
l�1

:� Bfpt, y, c, vq
Bc

����
pt�l�1,y

�
l�1,c,v

�
l�1q

(9.23b)

�Bf
Bv

�
l�1

:� Bfpt, y, c, vq
Bv

����
pt�l�1,y

�
l�1,c,v

�
l�1q

, (9.23c)

have been used.

Further, in agreement with Definition 8.2 of Internal Numerical Differentiation for DDEs, a
suitable expression for the derivative of the past state, dv�l�1{dc, is given by

dv�l�1

dc
�
�Bφξ
Bc

�
l�1

�
�
dφξ
dt


�
l�1

��Bτ1
By

�
l�1

W�
l�1 �

�Bτ1
Bc

�
l�1

�
if � nφs ¤ ξ ¤ 0 (9.24)

and by

dv�l�1

dc
�El1�1,pptl1 � θl,�hl1�1q � pfpastq�l�1 �

��Bτ1
By

�
l�1

W�
l�1 �

�Bτ1
Bc

�
l�1

�
if 1 ¤ ξ ¤ ns � 1, l1 ¤ l. (9.25)

The partial derivatives of the initial function φ and of the delay function τ1 have thereby been
abbreviated as �

dφξ
dt


�
l�1

:� dφξpt, cq
dt

����
pt�l�1�τ1pt

�
l�1,y

�
l�1,cq,cq

(9.26a)

�Bφξ
Bc

�
l�1

:� Bφξpt, cq
Bc

����
pt�l�1�τ1pt

�
l�1,y

�
l�1,cq,cq

(9.26b)

�Bτ1
By

�
l�1

:� Bτ1pt, y, cq
By

����
pt�l�1,y

�
l�1,cq

(9.26c)

�Bτ1
Bc

�
l�1

:� Bτ1pt, y, cq
Bc

����
pt�l�1,y

�
l�1,cq

. (9.26d)

Further, the symbol θl,� was used in equation (9.25) in order to represent the relative position of
the past time point t�l�1 � τ1pt�l�1, y

�
l�1, cq in the interval rtl1 , tl1�1s:

θl,� �
t�l�1 � τ1pt�l�1, y

�
l�1, cq � tl1

hl1�1
. (9.27)

Eventually,

pfpastq�l�1 � fptl1 � θl,�hl1�1, v
�
l�1, c, u

�
l�1q (9.28)

is an abbreviating notation for an evaluation of the right-hand-side function at the time point
ptpastq�l�1 :� t�l�1 � τ1pt�l�1, y

�
l�1, cq. The argument u�l�1 in this right-hand-side function evaluation

is thereby

u�l�1 � ypptpastq�l�1 � τ1pptpastq�l�1, v
�
l�1, cq; cq, (9.29)

meaning that it is an approximation of a state at a time point even further in the past, compare
Subsection 8.2.3. The computation of u�l�1 is thereby done depending on the value ξpast of the
discontinuity interval indicator in the past integration step tl1 Ñ tl1�1,
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9.1.3. Implicit Quadrature Rule

Colsol-DDE uses the implicit quadrature rule as described in Section 6.3 in order to obtain a
discrete approximation yl�1,p�1 whose discrete local order is p� 1. For this purpose, the equation
system given in equation (6.66) is solved, i.e.

g♦l�1 � fptl�1, yl�1,p�1, c, v
♦
l�1q, (9.30)

where

yl�1,p�1 �yl � hl�1

�
µ�1̧

i�1

Bifpt̄il�1, ȳ
i
l�1, c, v̄

i
l�1q �Bµg

♦
l�1

�
(9.31)

denotes the sought approximation of discrete local order p� 1.
The approximation v♦l�1 of the past state is, in Colsol-DDE, computed as described in Subsection

6.4.3. Since the implementation of Colsol-DDE closely follows the practical variant of the modified
standard approach, the computation depends on the value of the discontinuity interval indicator ξ
for the sole deviating argument as follows:

• If �nφs ¤ ξ ¤ 0, then the past state is computed by an evaluation of a smooth branch φξ of
the initial function φ.

• If 1 ¤ ξ ¤ ns � 1, then the past state is computed by an evaluation of the continuous
representation ηl1�1,p of uniform local order p in the integration step tl1 Ñ tl1�1, where
l1 ¤ l, i.e. regardless of whether or not overlapping occurs. For the practical choice of l1, see
Subsection 6.4.3.

The quadrature rules that are practically used in Colsol-DDE are discussed in Subsection 6.3.2.
This defines, in particular, the abscissae t̄il�1 and the weights Bi. Moreover, ȳil�1 are given by
evaluations of the higher order continuous representation in the current integration step, i.e. by
ηl�1,ppt̄il�1q. Further, v̄il�1 are the corresponding past states, which are computed in a way anal-

ogous to v♦l�1, i.e. either by an evaluation of a smooth branch of the initial function, or by an
evaluation of the continuous representation in the integration step tl1 Ñ tl1�1 (where l1 is depen-
dent on the stage i of the quadrature rule and, of course, on the integration step l).

For the application of the implicit quadrature rule, the states ȳil�1 and v̄il�1 are known and fixed
values.

In order to compute a higher order discrete approximation for the sensitivities, the principle of
Internal Numerical Differentiation for DDEs, Definition 8.2, is applied to the equations (9.30) and
(9.31). This gives

G♦
l�1 �

�Bf
By

♦

l�1

Wl�1,p�1 �
�Bf
Bc

♦

l�1

�
�Bf
Bv

♦

l�1

dv♦l�1

dc
. (9.32)

and

Wl�1,p�1 �Wl � hl�1

�
µ�1̧

i�1

Bi

���Bf
By

i
l�1

W̄i
l�1 �

��Bf
Bc

i
l�1

�
��Bf
Bv

i
l�1

dv̄il�1

dc

�

�BµG♦
l�1

�
. (9.33)

This quantity represents the higher order discrete approximation of the sensitivities.
In the above equations, the notations

Wl�1,p�1 :� Byl�1,p�1

Bc , G♦
l�1 :� Bg♦l�1

Bc . (9.34)

and �Bf
By

♦

l�1

:� Bfpt, y, c, vq
By

����
ptl�1,yl�1,p�1,c,v

♦
l�1q

(9.35a)
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�Bf
Bc

♦

l�1

:� Bfpt, y, c, vq
Bc

����
ptl�1,yl�1,p�1,c,v

♦
l�1q

(9.35b)

�Bf
Bv

♦

l�1

:� Bfpt, y, c, vq
Bv

����
ptl�1,yl�1,p�1,c,v

♦
l�1q

. (9.35c)

have been used.

Further, in agreement with Definition 8.2 of Internal Numerical Differentiation for DDEs, a
suitable expression for the derivative of the past state, dv♦l�1{dc, is given by

dv♦l�1

dc
�
�Bφξ
Bc

♦

l�1

�
�
dφξ
dt


♦

l�1

��Bτ1
By

♦

l�1

W♦
l�1 �

�Bτ1
Bc

♦

l�1

�
if � nφs ¤ ξ ¤ 0 (9.36)

and by

dv♦l�1

dc
�El1�1,pptl1 � θl,♦hl1�1q � pfpastq♦l�1 �

��Bτ1
By

♦

l�1

W♦
l�1 �

�Bτ1
Bc

♦

l�1

�
if 1 ¤ ξ ¤ ns � 1, l1 ¤ l. (9.37)

The partial derivatives of the initial function φ and of the delay function τ1 have thereby been
abbreviated as �

dφξ
dt


♦

l�1

:� dφξpt, cq
dt

����
ptl�1�τ1ptl�1,yl�1,p�1,cq,cq

(9.38a)

�Bφξ
Bc

♦

l�1

:� Bφξpt, cq
Bc

����
ptl�1�τ1ptl�1,yl�1,p�1,cq,cq

(9.38b)

�Bτ1
By

♦

l�1

:� Bτ1pt, y, cq
By

����
ptl�1,yl�1,p�1,cq

(9.38c)

�Bτ1
Bc

♦

l�1

:� Bτ1pt, y, cq
Bc

����
ptl�1,yl�1,p�1,cq

. (9.38d)

Further, the symbol θl,♦ was used in equation (9.37) in order to represent the relative position of
the past time point tl�1 � τ1ptl�1, yl�1,p�1, cq in the interval rtl1 , tl1�1s:

θl,♦ � tl�1 � τ1ptl�1, yl�1,p�1, cq � tl1

hl1�1
. (9.39)

Eventually,

pfpastq♦l�1 � fptl1 � θl,♦hl1�1, v
♦
l�1, c, u

♦
l�1q (9.40)

is an abbreviating notation for an evaluation of the right-hand-side function at the past time
point ptpastq♦l�1 :� tl�1 � τ1ptl�1, yl�1,p�1, cq. The argument u♦l�1 in the right-hand-side function
evaluation is thereby

u♦l�1 � ypptpastq♦l�1 � τ1pptpastq♦l�1, v
♦
l�1, cq; cq, (9.41)

meaning that it is an approximation of a state at a time point even further in the past, compare
Subsection 8.2.3. The computation of u♦l�1 is thereby done depending on the value ξpast of the
discontinuity interval indicator in the past integration step tl1 Ñ tl1�1.

It is further mentioned that equation (9.33) makes use of the abbreviating notations

W̄i
l�1 :� Bȳil�1

Bc (9.42)
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and ��Bf
By

i
l�1

:� Bfpt, y, c, vq
By

����
pt̄il�1,ȳ

i
l�1,c,v̄

i
l�1q

(9.43a)

��Bf
Bc

i
l�1

:� Bfpt, y, c, vq
Bc

����
pt̄il�1,ȳ

i
l�1,c,v̄

i
l�1q

(9.43b)

��Bf
Bv

i
l�1

:� Bfpt, y, c, vq
Bv

����
pt̄il�1,ȳ

i
l�1,c,v̄

i
l�1q

. (9.43c)

The derivatives of the past states at the first µ� 1 stages of the quadrature rule, i.e. dv̄il�1{dc, are
computed by

dv̄il�1

dc
�
��Bφξ
Bc

i
l�1

�
��dφξ
dt


i
l�1

���Bτ1
By

i
l�1

W̄i
l�1 �

��Bτ1
Bc

i
l�1

�
if � nφs ¤ ξ ¤ 0 (9.44)

and by

dv̄il�1

dc
�El1�1,pptl1 � sθl,ihl1�1q � p�fpastqil�1 �

���Bτ1
By

i
l�1

W̄i
l�1 �

��Bτ1
Bc

i
l�1

�
if 1 ¤ ξ ¤ ns � 1, l1 ¤ l. (9.45)

Herein, the index l1 depends of course on the stage i of the quadrature rule. Furthermore, the
equations (9.44), (9.45) make use of the following abbreviations for the partial derivatives of the
initial function and of the delay function τ1:��dφξ

dt


i
l�1

:� dφξpt, cq
dt

����
pt̄il�1�τ1pt̄

i
l�1,ȳ

i
l�1,cq,cq

(9.46a)

��Bφξ
Bc

i
l�1

:� Bφξpt, cq
Bc

����
pt̄il�1�τ1pt̄

i
l�1,ȳ

i
l�1,cq,cq

(9.46b)

��Bτ1
By

i
l�1

:� Bτ1pt, y, cq
By

����
pt̄il�1,ȳ

i
l�1,cq

(9.46c)

��Bτ1
Bc

i
l�1

:� Bτ1pt, y, cq
Bc

����
pt̄il�1,ȳ

i
l�1,cq

. (9.46d)

The symbol θ̄l,i denotes the relative position of the past time point t̄il�1 � τ1pt̄il�1, ȳ
i
l�1, cq in the

interval rtl1 , tl1�1s

θ̄l,i �
t̄il�1 � τ1pt̄il�1, ȳ

i
l�1, cq � tl1

hl1�1
. (9.47)

Eventually,

p�fpastqil�1 � fptl1 � θ̄l,ihl1�1, v̄
i
l�1, c, ū

i
l�1q (9.48)

represents an evaluation of the right-hand-side function at the past time point p�tpastqil�1 :� t̄il�1 �
τ1pt̄il�1, ȳ

i
l�1, cq. The argument ūil�1 in the right-hand-side function evaluation is thereby

ūil�1 � ypp�tpastqil�1 � τ1pp�tpastqil�1, v̄
i
l�1, cq; cq, (9.49)

meaning that it is an approximation of a state at a time point even further in the past. The
computation of ūil�1 is thereby done depending on the value of the discontinuity interval indicator
that was used for the past integration step tl1 Ñ tl1�1, compare Subsection 8.2.3.
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9.1.4. Equation Systems for Sensitivity Computation

In the previous subsections, Internal Numerical Differentiation for DDEs (Definition 8.2) was
applied to the nonlinear equation systems that have to be solved in each integration step for the
collocation method, for the implicit uniform correction, and for the implicit quadrature rule. As a
result, the following was obtained

• For the collocation method, the equation system (9.4) was obtained, with Wj
l�1 being given

by equation (9.5) and dvjl�1{dc being given by either equation (9.9), by equation (9.10), or
by equation (9.11). If the equations are inserted into each other, it is possible to obtain an
equation system in which only Gj

l�1 occur as derivative variables from the current step.

• For the implicit uniform correction, the equation system (9.19) was obtained, with W�
l�1 and

9Eq
l�1ptq being given by equations (9.20a) and (9.20b), respectively, and with dv�l�1{dc being

given by equation (9.24) or by equation (9.25). If the equations are inserted into each other,
it is possible to obtain an equation system in which only G�

l�1 occurs as derivative variable
from the current step.

• For the implicit quadrature formula, the equation system (9.32) was obtained, with Wl�1,p�1

being given by equation (9.33) and dv♦l�1{dc being given either by equation (9.36) or by
equation (9.37). If the equations are inserted into each other, it is possible to obtain an
equation system in which only G♦

l�1 occurs as derivative variable from the current step.

9.1.5. Properties of the Equation Systems

A first important observation is as follows: If the equation system for Gj
l�1 is considered together

with the corresponding equation system for the nominal solution for gjl�1, then the combined sys-
tem is of dimension ν � ny � p1� ncq. Furthermore, this combined system is coupled, because the

equations for Gj
l�1 depend on gjl�1, e.g. through the evaluations of the partial derivatives of the

right-hand-side function f . The resulting equation system is generally also nonlinear in gjl�1, again
because of the evaluations of the partial derivatives of the right-hand-side function f

Approaching the task of sensitivity computation naively by applying a Newton or Newton-type
method (see Section 6.5.2) to this potentially large nonlinear system is computationally expensive.
It is pointed out that this is exactly what happens if the user of a standard DDE-solver decides to
implement the variational equations manually.

Contrariwise, if the equation systems for the nominal solution are solved first, then the variables
gjl�1 can be regarded as fixed for the sensitivity computation. Accordingly, the three equation

systems for the sensitivities contain only the quantities Gj
l�1, G�

l�1, and G♦
l�1 as unknowns. Fur-

thermore, the equations for the sensitivities with respect to all nc parameters decouple, such that
only nc � 1 systems of dimension ν � ny need to be solved.

A second important observation is that, in the decoupled case, the equation systems that need
to be solved for sensitivity computation are linear in their unknowns Gj

l�1, G�
l�1, and G♦

l�1. This
means that they can be represented as

AG � B, (9.50)

where G represents the unknowns for the respective system.

More precisely, for each of the three methods – collocation method, implicit uniform correction,
and implicit quadrature rule – the matrices A are very similar to those derived in Subsection 6.5.4.
The sole difference is that the time derivative of the past states is, in the Jacobians, approximated
by the time derivative of the continuous representation, whereas for the computation of the sen-
sitivities they are approximated by an evaluation of the right-hand-side function f in order to
comply with the principle of IND.

9.1.6. Practical Solution of Equation Systems

The above findings suggest to use one of the following two approaches for an efficient computation
of the unknowns G:
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• The first option is to exploit the fact that the equation systems are linear in their unknowns.
Hence, the equation system can be solved by explicit construction and decomposition of the
matrix A. This approach is referred to direct Internal Numerical Differentiation.

• The second approach is to exploit the fact that an approximate inverse of the matrix A is
available from the solution of the corresponding nominal equation system. Hence, a Newton-
type method (see Definition 6.13) can be used to compute the unknowns. This approach is
referred to iterative Internal Numerical Differentiation.

The terms “direct” and “iterative” Internal Numerical Differentiation have been established in the
literature in the context of other integration methods and of other classes of differential equations,
see e.g. Albersmeyer and Bock [3], Albersmeyer [2], and Beigel [23].

In Colsol-DDE, both direct and iterative Internal Numerical Differentiation are realized.
For direct IND, the matrix A is computed and decomposed by a singular value decomposition.

After that, the unknowns G are computed by using the decomposition for the computation of
A�1B.

For iterative IND, the computation of the initial guesses for the unknowns is done completely
analogous to the computation of initial guesses for the nominal solution, see Subsection 6.5.3. With
regard to the termination criterion, iterative Internal Numerical Differentiation is realized in two
variants, both of them being well-justified as follows.

On the one hand, the user may choose to do, for the computation of each directional derivative
(i.e. for each column of G), exactly as many iterations as were needed to solve the corresponding
nominal equation system. The idea behind this is that the obtained sensitivities are, in some sense,
closer to the “exact” derivative of the discrete mapping that is used for solving the nominal initial
value problem, see Albersmeyer [2].

On the other hand, the user may choose to iterate until convergence is obtained, which may occur
after a different number of iterations for each directional derivative. This approach is motivated
by the fact that Colsol-DDE allows to compute error-controlled sensitivities (see Subsection 9.1.8
below). For this purpose, it is important that the equation systems are solved with sufficient
accuracy so that the quantities that are used for error control have at least two valid digits.

Clearly, for the latter approach, a termination criterion for the computation of sensitivities is
needed. The convergence criterion employed in Colsol-DDE for this purpose is constructed in
complete analogy to the convergence criterion for the nominal solution, see Subsections 6.5.7 and
6.6.4. In particular, the termination criterion involves scaling factors for the sensitivities, which
are computed analogous to Subsection 6.5.8.

9.1.7. Computation of Model Function Derivatives

An issue that has not yet been addressed is the practical computation of the partial derivatives of
the right-hand-side function f , of the initial function φ (or smooth branches thereof), and of the
delay functions τi, 1 ¤ i ¤ nτ . Colsol-DDE provides several options for this purpose, which are
exemplarily demonstrated for the computation of pBf{Byqjl�1:

• One-Sided Finite Differences: Here, the k-th column of the derivative pBf{Byqjl�1 is approx-
imated by � Bf

Byk


j
l�1

� Bfpt, y, c, vq
Byk

����
ptjl�1,y

j
l�1,c,v

j
l�1q

�fpt
j
l�1, y

j
l�1 � εkek, c, v

j
l�1q � fptjl�1, y

j
l�1, c, v

j
l�1q

εk
(9.51)

where ek is the k-th unit vector and εk is a variational parameter.

• Two-Sided Finite Differences: Here, the k-th column of the derivative pBf{Byqjl�1 is approx-
imated by� Bf

Byk


j
l�1

�fpt
j
l�1, y

j
l�1 � 1

2εkek, c, v
j
l�1q � fptjl�1, y

j
l�1 � 1

2εkek, c, v
j
l�1q

εk
. (9.52)
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• Automatic Differentiation: Colsol-DDE is designed to be used in conjuction with the Au-
tomatic Differentiation tool Tapenade [140, 141]. Tapenade provides, by source-to-source
transformation, a code that computes with machine precision the matrix-vector product�Bf

By

j
l�1

d

for any arbitrary d P Rny .

It is pointed out that none of the three approaches requires the user to bother about the compu-
tation of derivatives. Hence, Colsol-DDE is, in any case, derivative-free for the user.

The accuracy of both one-sided and two-sided finite differences depends on the choice of the
variational parameter εk. In Colsol-DDE, this variational parameter is selected proportional to
the internally computed scaling factor of the corresponding component of the state vector (see
Subsection 6.5.8), in order to make the computation independent of a possibly inappropriate user
scaling. However, the choice of the variational parameter is essentially heuristic, and even for an
optimal choice the obtained derivative approximations have, in general, only half as many valid
digits as the evaluations of the right-hand-side function itself.

It is therefore highly recommended to use Colsol-DDE in connection with Tapenade (or another
source-to-source Automatic Differentiation tool that provides suitable interfaces for the derivative-
computing routines). The obtained derivatives are then accurate to machine precision.

It is remarked that in several terms, e.g. in the first term on the right hand side of equation
(9.4), only the product of the partial derivatives with other matrices is needed (e.g. with Wj

l�1),

but not necessarily the full ny � ny matrix
�
Bf
By

	j
l�1

.

One approach is to ignore this fact and to compute the full matrix
�
Bf
By

	j
l�1

once. This has

the advantage that the product
�
Bf
By

	j
l�1

W̄ j
l�1 can subsequently be computed by matrix-vector

products for each derivative direction and for each iteration of the Newton-type method.

An alternative approach is to exploit the fact that only the product
�
Bf
By

	j
l�1

W̄ j
l�1 is needed. This

can be done by calling the derivative routine provided by Tapenade for each derivative direction
and in each iteration.

It is, in general, not possible to say which approach is more efficient, since this depends on the
number of iterations, on the number of derivative directions, and on the cost of an evaluation of
the derivative function in relation to the cost of a matrix-vector product. At present, Colsol-DDE
always computes the full derivative matrices.

9.1.8. Error Control

In the Subsections 9.1.1-9.1.3, several equation systems were derived. These equation systems
allowed to compute discrete approximations of the sensitivities which have discrete local errors of
order p and p� 1, and continuous approximations which have uniform local errors of order q and
q� 1. Hence, the techniques described in Section 6.6 can directly be transferred to construct error
estimates for the sensitivities, and, based thereon, also a strategy for error control.

Colsol-DDE allows to control the local errors in both the nominal solution and in the sensitivities.
Optionally, local error control for the sensitivities may also be disabled. In this case, for efficiency
reasons, the implicit quadrature rule is not applied to the sensitivities because its results are not
needed.

9.1.9. Incorporation of Sensitivity Computation into the Main Algorithm

The sensitivity computation is incorporated as follows into the main algorithm of Colsol-DDE (see
Algorithm 6.20 in Section 6.8).

• The equation systems for the collocation step in the sensitivities are solved between step 4
and step 5. If direct IND or iterative IND with a fixed number of iterations is applied, the
code always proceeds with step 5. If iterative IND is used until convergence is achieved,
and n1

itmax or more iterations are needed to obtain convergence, then recomputation of the
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Jacobian matrix for the next integration step might be triggered. In the case that the method
fails to converge, stepsize rejections may occur such that the code proceeds with step 2 of
the main algorithm.

• The equation systems for the implicit uniform correction in the sensitivities are solved be-
tween step 7 and step 8. The above remarks regarding the use of direct and iterative IND
apply accordingly.

• The equation systems for the implicit quadrature rule applied to the sensitivities are solved
between step 10 and step 11. The above remarks regarding the use of direct and iterative
IND apply accordingly.

9.1.10. Discontinuities of Order 0 in the Sensitivities

Colsol-DDE ensures that the time points of root discontinuities and the time points of propagated
discontinuities are included into the mesh as described in Section 6.9.

In the time points of propagated discontinuities, it is checked whether the parent discontinuity is
of order 0 in y. If yes, this may lead to a jump of order 0 in the Wronskian, and thus the expression
(8.31) is evaluated in Colsol-DDE.

In the time points of root discontinuities, it must generally be expected that the sensitivities are
discontinuous. At these points, Colsol-DDE computes the discrete analogue (see Subsection 8.2.9)
of the jump in the Wronskian as it is given in Section 7.6.

9.1.11. Differentiability Checks

Motivated by the results of Chapter 7, Colsol-DDE uses numerical checks to ensure that the
following conditions are fulfilled:

• Root discontinuities are “sufficiently far away” from other root discontinuities.

• Root discontinuities are “sufficiently far away” from children of critical discontinuities.

• Children of discontinuities of order 0 in y are “sufficiently far away” from other children of
discontinuities of order 0 in y.

• Root discontinuities and children of discontinuities of order 0 do not occur at the initial time
or at the final time.

• Switching functions and propagation switching functions have, at their zeros, a “sufficiently
non-zero” time derivative.

In all cases, the meaning of “suffciently far away” and “sufficiently non-zero” depends on user-given
input parameters.

9.2. Practical Computation of Adjoint Sensitivities

9.2.1. Simplified Case: No Discontinuities in the Sensitivities

In Section 8.3 the discrete adjoint scheme of a CRK method applied to DDE-IVPs was defined
(Definition 8.5), and it was presented how the discrete adjoints can be used for the computation
of the sensitivities, see equation (8.49).

For the practical realization in Colsol-DDE, an additional aspect must be taken into account in
order to obtain a scheme that is the “exact” discrete adjoint of the method for forward sensitivity
computation. This additional aspect is that continuous representations of different uniform local
order are used in the collocation method depending on whether or not overlapping occurs.

Analogously to Section 8.3, the case of a single delay function is considered. Further, it is first
assumed that all propagated discontinuities are at least of order 1 in the Wronskian, such that no
jump expressions need to be taken into account.
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In this setting, consider the following variational ansatz as a modification to equation (8.45):
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. (9.53)

In this equation, the following notations have been used in agreement with Sections 6.4 and 8.3:

• ξrl�1s is the value of the numerically determined discontinuity interval indicator in the step
tl Ñ tl�1.

• Hl�1 � 0 if the discontinuity interval indicator is less than or equal to 0, i.e. the past states
in integration step tl Ñ tl�1 are computed from a smooth branch of the initial function.
Otherwise, if the discontinuity interval indicator is greater or equal 1, indicating that the
past states are computed from the continuous representation in a past or in the current
integration step, then Hl�1 � 1.

• Θl,j � 0 indicates that overlapping occurs for the j-th stage in integration step tl Ñ tl�1,
whereas Θl,j � 1 indicates that overlapping does not occur.

• Λl�1, Λjl , Γjl , and Πj
l are the adjoint variables for the collocation method, and Λ�

l , Γ�l , and
Π�
l are the adjoint variables for the implicit uniform correction.

Note that the implicit quadrature rule does not need to be taken into account, because its results
are only used for error estimation.

The goal is exactly the same as in Section 8.3, i.e. the product ΛnmWnm should be computed
without computing the variables Wl, Wj

l�1, Gj
l�1, and dvjl�1{dc. Furthermore, also the procedure
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to reach this goal is the same as in Section 8.3, i.e. the terms are sorted in such a way that Wl,
Wj

l�1 Gj
l�1, and dvjl�1{dc can be factored out.

In order to state the result, the following is defined (compare, once again, to Section 8.3):

• Let Ml for l ¥ 0 contain the set of all those pairs of indices µ and ρ such that l1pµ�1, ρq � l,
i.e. it contains the indices of those steps and stages for which the past state is computed by
an evaluation of the continuous representation in step tl Ñ tl�1.

• Let M�
l for l ¥ 0 contain those indices µ for which the past state of the implicit uniform

correction is computed by an evaluation of the continuous representation in step tl Ñ tl�1.

• Let Ml for l   0 contain the set of those indices µ for which ξrµ � 1s � l � 1, i.e. the
discontinuity interval indicator of step tµ Ñ tµ�1 points to a smooth branch of φ.

• Let M�
l for l   0 contain the set of those indices µ for which ξrµ � 1s � l � 1, i.e. the

discontinuity interval indicator of step tµ Ñ tµ�1 points to a smooth branch of φ.

By using these notations, the following is obtained as a generalization of the discrete adjoint
scheme (Definition 8.5):

Definition 9.1 (Discrete Adjoint Scheme for the Methods used in Colsol-DDE)

The equations
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j�1

Γjl � hl�1Γ�l �
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hµ�1Πρ
µ �
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µPM�

l

hµ�1Π�
µ (9.54a)
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i
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�
¸

pµ,ρqPMl
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µbjpθµ,ρq �

¸
µPM�

l

hµ�1Π�
µbjpθµ,�q � 9bjpθ�qΛ�

l (9.54b)

Λ�
l �� hl�1b�pθ�qΓ�l �

¸
pµ,ρqPMl

hµ�1Πρ
µΘµ,ρb�pθµ,ρq �

¸
µPM�

l

hµ�1Π�
µb�pθµ,�q (9.54c)

Γjl �� Λjl

�Bf
By

j
l�1

�Πj
l

�
Hl�1pfpastqjl�1 � p1�Hl�1q

�
dφξrl�1s

dt


j
l�1

��Bτ1
By

j
l�1

(9.54d)

Γ�l �� Λ�
l

�Bf
By

�
l�1

�Π�
l

�
Hl�1pfpastq�l�1 � p1�Hl�1q

�
dφξrl�1s

dt


�
l�1


�Bτ1
By

�
l�1

(9.54e)

Πj
l �Λjl

�Bf
Bv

j
l�1

(9.54f)

Π�
l �Λ�

l

�Bf
Bv

�
l�1

. (9.54g)

constitute the discrete adjoint scheme of the method for forward sensitivity computation used in
Colsol-DDE.

By using this discrete adjoint scheme, it is possible to show that the sought sensitivities can be
computed by:

ΛnmWnm �� Λ0W0 �
nm�1¸
l�0

�
hl�1

ν̧

j�1

Λjl

�Bf
Bc

j
l�1

� hl�1Λ�
l

�Bf
Bc

�
l�1

� hl�1

ν̧

j�1

Πj
l

�
Hl�1pfpastqjl�1 � p1�Hl�1q

�
dφξrl�1s

dt


j
l�1

��Bτ1
Bc

j
l�1

� hl�1

ν̧

j�1

Π�
l

�
Hl�1pfpastq�l�1 � p1�Hl�1q

�
dφξrl�1s

dt


�
l�1


�Bτ1
Bc

�
l�1

�

�
�1̧

l��ns�1

¸
pµ,ρqPMl

hµ�1Πρ
µ

�Bφl
Bc

ρ
µ�1

�
�1̧

l��ns�1

¸
µPM�

l

hµ�1Πρ
µ

�Bφl
Bc

�
µ�1

. (9.55)
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Colsol-DDE features a practical implementation of the discrete adjoint scheme (9.54) and computes
adjoint sensitivities by means of equation (9.55).

A subtle but important aspect is that the Lobatto IIIA method is explicit in its first stage. Thus,
it plays a role whether overlapping occured for the last stage of the previous integration step. For
notational simplicity, the effect of this explicit stage for the adjoint sensitivity computation has
not been taken into account in the equations above.

9.2.2. Practical Computation of the Discrete Adjoint Scheme

Inserting the equations (9.54e) and (9.54g) into equation (9.54c), and inserting the equations
(9.54d) and (9.54f) into equation (9.54b) yields equation systems of the form

ΛA � B̃. (9.56)

This means that the equations are linear in the unknowns pΛ1
l , . . . ,Λ

ν
l q and λ�l , respectively. Some

further properties that are theoretically satisfying and useful for the numerical computation are as
follows:

• In the equation system for Λ�
l , the matrices A and B are independent of all Λjl , i.e. the adjoint

variables of the collocation method of the same step. In other words, the two equation systems
for λ�l and Λjl decouple, and Λ�

l can be computed by solving an ny � ny dimensional linear
system. This decoupling is a direct correspondence of the fact that the computation of the
step in the collocation method is independent of the implicit uniform correction (which is
applied subsequently in the case of forward sensitivity computation).

• The system for λjl is, generally, of dimension ν � ny � ν � ny. However, the Lobatto IIIA
method is, in the forward mode, explicit in its first stage, i.e. W1

l�1 � Wl. This has a
correspondence in the adjoint mode as well. More precisely, for the three-stage Lobatto IIIA
method implemented in Colsol-DDE, Λ2

l and Λ3
l can be determined by solving a 2ny � 2ny

system, and Λ1
l can subsequently be computed explicitly.

• The matrices A that occur in the schematic equation (9.56) for the collocation method
and for the implicit uniform correction are the same as the matrices A that occur in the
forward mode, see the schematic equation (9.50). The matrix-valued right hand sides of
these equations are, however, different.

For the practical solution, it is therefore possible to use the same approaches as those discussed
in Subsection 9.1.6, i.e. direct solution of the linear equation systems by matrix decomposition,
or iterative solution with an approximate inverse. These approaches can be called direct adjoint
Internal Numerical Differentiation and iterative adjoint Internal Numerical Differentiation. More-
over, if the matrices that were used in the forward nominal solution are stored, they can be reused
such that for each integration step the same number of iterations are performed with the same
approximate inverse.

At present, however, only the direct adjoint Internal Numerical Differentiation is implemented
in Colsol-DDE.

9.2.3. Discontinuities in the Sensitivities and Generalization to IHDDE-IVPs

If there are discontinuities of order 0 in the initial function φ of a DDE-IVP, then the Wronskian
generally exhibits jumps at the time points of the child discontinuities. These jumps are taken into
account in Colsol-DDE as described in Subsection 8.3.4.

Sensitivity computation for IHDDE-IVP solutions requires to take into account a jump in the
adjoint sensitivities at the time points of the root discontinuities. Furthermore, dependencies of
the switching functions and impulse function on past states lead to additional terms in the discrete
adjoint scheme and in the expression that is used for sensitivity computation.

The necessary modifications for CRK methods were described in Subsection 8.3.7. Since Colsol-
DDE uses, for forward sensitivity computation, the continuous representation of order p, also a
modification in equation (9.54c) for the adjoint variable Λ�

l of the uniform order correction becomes
necessary. This modification is implemented in Colsol-DDE.

Contributions that arise from children of root discontinuities of order 0 in y are also taken into
account.
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Sampling experiments (...) have shown, however, that the maximum
likelihood method produces acceptable estimates in many situations.
Whereas better methods may be available for specific cases, a pow-
erful argument for the use of the maximum likelihood method is the
generality and relative ease of application.

Bard, in his book “Nonlinear Parameter Estimation” [19], motivating
the use of maximum likelihood estimation.

A typical situation in the natural and engineering sciences is as follows: On the one hand, there
is a real-world dynamic process, and on the other hand there is a mathematical object ypt; cq that
describes the state of the process as a function of the time t and of parameters c.

In practice, it is frequently the case that the parameters c cannot be derived from “first princi-
ples”. Instead, it is necessary to estimate the parameters from measurement data. The formulation
of a mathematical problem whose solution provides – in some sense – a “good” estimate of the
parameters is the main topic of this chapter.

Organization of This Chapter

Section 10.1 introduces the notions of a dynamic model and a measurement model for an observed
process, and makes elementary assumptions for these models. Section 10.2 deals with the issue
that practically obtained measurement data are almost always random numbers. Furthermore, the
section introduces the likelihood function. Section 10.3 recalls that a maximizer of the likelihood
function – a so-called maximum likelihood estimate – is, in the special case of normally distributed
measurement errors, obtained by solving an optimization problem with a least-squares objective
function. Eventually, Section 10.4 gives the necessary and sufficient conditions for solutions of
optimization problems.

10.1. Models and Assumptions

10.1.1. Dynamic Model

Consider the situation that a real-world process is mathematically described by a function ypt; cq
of time t P rta, tbs and of parameters c P Rnc . The function ypt; cq is typically defined by a dynamic
model, e.g. by a system of algebraic equations, differential equations, or both. Depending on the
knowledge and insight that went into the construction of the dynamic model, the function ypt; cq
may be more or less suitable for the description of the real behavior of the system. For this part
of the thesis, the fundamental assumption is made that the model is correct. This means that
there exist parameters c�, called the correct parameters, such that the mathematical object ypt; c�q
describes the state of the real-world process completely and correctly.

In this thesis, the focus lies on the estimation of parameters in functions ypt; cq that solve
impulsive hybrid discrete-continuous delay differential equations (IHDDEs). IHDDEs as dynamic
model equations are considered in Chapter 13. In this chapter – and also in Chapters 11 and 12 –
the concrete shape of the dynamic model is irrelevant, and it is assumed that the function ypt; cq
is available.

10.1.2. Measurement Model(s)

Even in the fortunate case that the dynamic model is correct, some or all of the correct parame-
ters c� of the system might be unknown. However, there is typically some device that allows to
observe the dynamic process. From this device, or several such devices, a number of measurements
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ηi, 1 ¤ i ¤ nh, is obtained. If a function hi is available that describes the measurement process,
then the measurement ηi can be expressed as

ηi � hiptyptj ; c�quntj�1, c
�q � εi. (10.1)

The function hi : Rny�nt � Rnc Ñ R is called measurement model or measurement function.
The function hi is allowed to depend on the system states yptj ; cq at nt time points and on the
parameters c. The mismatch between the measurements and the evaluation of the measurement
function is denoted by εi.

The dependencies of the measurement function in equation (10.1) are quite general. For many
applications, it is sufficient to consider measurement functions hi that depend only on the state at
a single measurement time tj . More precisely, this means that for each ηi there exists an index j,
1 ¤ j ¤ nt, such that

ηi � hipyptj ; c�q, c�q � εi. (10.2)

It is assumed throughout this part of the thesis that the measurement functions hi are correct
models for the observation process. In this case, the quantity εi in equation (10.1) can be interpreted
as the measurement error for the i-th observation.

10.1.3. Goal of Parameter Estimation

The goal of parameter estimation is to use the measurement data ηi, 1 ¤ i ¤ nh, to obtain a
“good” estimate ĉ of the (unknown) correct parameters c�.

10.2. Random Measurements

Measurement errors are, in practice, random. This has to be understood as follows. If two ex-
periments are conducted, for which the dynamic process behaves identically, and in which the
same devices are used for taking measurements in exactly same way, then this yields two sets of
measurement data η � pη1, . . . , ηnhqT and η̃ � pη̃1, . . . , η̃nhqT . These sets of measurement data
correspond to two sets of measurement errors ε � pε1, . . . , εnhqT and ε̃i � pε̃1, . . . , ε̃nhqT .

The errors are thereby such that ε̃ � ε (componentwise), and thus also η̃ � η, even though the
observed process is exactly the same as before. Formally, εi is called a specific realization of the
random number ei.

It is assumed at this point that the reader is familiar with some elementary concepts of proba-
bility theory, in particular with probability, continuous random variables, and independent random
variables.

The next definition introduces the notion of a probability density function.

Definition 10.1 (Probability Density Function)

A function p : RÑ R is called a probability density function if it has the following properties:» 8
�8

ppxqdx � 1 (10.3a)

ppxq ¥ 0 for all x P R. (10.3b)

By assigning, to a continuous random variable x, the probability density function px, the prob-
ability for x to assume a value in the interval rxa, xbs is given by

P px P rxa, xbsq �
» xb
xa

pxpxqdx. (10.4)

With regard to the measurement errors εi, it is assumed that they are realizations of continuous
random variables ei. To these continuous random variables, probability density functions pi : RÑ
R, 1 ¤ i ¤ nh, are assigned.

In the following, let pall : Rnh Ñ R be the function that gives, for any ε P Rnh , the probability
density that corresponds to the specific combination ε of measurement errors. This function is called
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joint probability density function. Some elementary results for the function pall are as follows (cf.
Bard [19], page 23):

• Independent measurement errors: If the measurement error ei is independent of the measure-
ment error ej for i � j, then the joint probability density function pallpεq can be expressed
as

pallpεq �
nh¹
i�1

pipεiq. (10.5)

• Normally distributed measurement errors: If the measurement errors e are normally dis-
tributed with mean 0 and regular covariance matrix Vε, shortly denoted by e � N p0,Vεq,
then the joint probability density function is

pallpεq � p2πq�nh
2 pdet Vεq� 1

2 exp

�
�1

2
εTV�1

ε ε



. (10.6)

If the measurement errors are independent and normally distributed, ei � N p0, σ2
i q, σi P p0,8q,

then it follows immediately that

pallpεq � p2πq�nh
2

nh¹
i�1

pσiq�1 exp

�
�1

2

ε2i
σ2
i



. (10.7)

Consider the situation that measurements η are available, which correspond to one specific real-
ization ε of the vector-valued random variable e. It is possible to define, for any values of the
parameters c, the residuals

rpc; ηq � η � hptyptj ; cquntj�1, cq, (10.8)

where h is a vector-valued function whose components are the measurement functions hi. It is
thereby clear that rpc�; ηq � ε, i.e. the residuals for the true parameters c� are the measurement
errors.

The residuals are used in the following definition.

Definition 10.2 (Likelihood Function)

By replacing, in the joint probability distribution function pall, the measurement errors ε by the
residuals rpc; ηq, the likelihood function is obtained.

For example, in the case that the measurement errors are assumed to be normally distributed
with covariance matrix Vε, the joint probability density function is given by equation (10.6).
Consequently, the likelihood function is defined as

Λpc; η,Vεq :�pprpc; ηqq

�p2πq�nh
2 pdet Vεq� 1

2 exp

�
�1

2
rT pc; ηqV�1

ε rpc; ηq


. (10.9)

The integral of the likelihood function defined in equation (10.9) over some volume in Rnc can
be interpreted as the probability that parameters in that volume yield a particular set η of mea-
surement data, provided that the measurement data are assumed to be normally distributed with
covariance matrix Vε.

10.3. Maximum Likelihood Estimation

The idea of maximum likelihood estimation is to find those parameters c for which the likelihood
function assumes its maximum value. This maximum likelihood estimate is denoted by ĉ. For like-
lihood functions that are differentiable with respect to c (e.g. in the case of a normal distribution)
it follows from standard analysis that a maximum likelihood estimate has to fulfill the following
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necessary condition:

dΛpc; η,Vεq
dc

����
c�ĉ

� 0. (10.10)

A maximum ĉ of the function Λpc; η,Vεq is also a maximum of the function lnpΛpc; η,Vεqq, because
the logarithm is a strictly increasing function. It is therefore possible to reformulate the above
necessary condition as

d lnpΛpc; η,Vεqq
dc

����
c�ĉ

� 0. (10.11)

A very useful result for practical maximum likelihood parameter estimation is formulated in the
following theorem.

Theorem 10.3 (Maximum Likelihood Estimation for Normally Distributed Errors)

If the measurement errors e are normally distributed with mean zero and a regular covariance
matrix Vε, i.e. e � N p0,Vεq, then maximization of the likelihood function Λpc; η,Vεq is equivalent
to minimization of the function

ϕpcq :� rT pc; ηqV�1
ε rpc; ηq. (10.12)

Herein, the implicit dependencies of ϕ on the data η and on the covariance matrix Vε of the data
are suppressed.

If the measurement errors are, in addition, independent, i.e. ei � N p0, σ2
i q, then the covariance

matrix Vε is a diagonal matrix with entries σ2
1 , . . . , σ

2
nh

, and the function ϕpcq simplifies to

ϕpcq �
nḩ

i�1

pripc; ηqq2
σ2
i

. (10.13)

Proof
See Bard [19], page 63. �

Covariance matrices are real-valued and symmetric. If they are, in addition, assumed to be regular

(see Theorem 10.3), then there exists a matrix V
1
2
ε such that V

1
2
ε V

1
2
ε � Vε. Furthermore, also V

1
2
ε

is regular, and its inverse V
� 1

2
ε is such that V

� 1
2

ε V
� 1

2
ε � V�1

ε . Therefore, by defining r̄pc; ηq :�
V
� 1

2
ε rpc; ηq, the function ϕpcq can be expressed as

ϕpcq � }r̄pc; ηq}22 � }V� 1
2

ε rpc; ηq}22 � }V� 1
2

ε

�
η � hptyptj ; cquntj�1, cq

� }22. (10.14)

This means that ϕpcq can be expressed as a sum of squares for any arbitrary but regular covariance
matrix Vε. Hence, maximum likelihood estimation is, under the conditions of Theorem 10.3,
equivalent to minimizing the differences between the measurements and the evaluations of the
measurement functions in a weighted Euclidean norm.

In general, the minimization of the function }ϕpcq}22 may be subject to additional equality con-
straints. It is natural to allow that the equality constraint functions gi, 1 ¤ i ¤ ng, have the same
dependencies as the measurement function hi. This leads to the following optimization problem:

min
c
}V� 1

2
ε

�
η � hptyptj ; cquntj�1, cq

� }22 (10.15a)

subject to gptyptj ; cquntj�1, cq � 0. (10.15b)

Herein, g is a vector-valued functions whose components are given by giptyptj ; cquntj�1, cq.
Equality constraints of the form (10.15b) may be appropriate to formalize “expert knowledge”

that a modeler has about a process, e.g., if a process is known to be periodic or if there are conser-
vation laws that have to be fulfilled. There further exist applications in which some measurements
are known to be highly accurate compared to other measurements. In such a case, it may be
numerically favorable to define equality constraints rather than least-squares terms.

For compactness and consistency of notation, let now F1 : Rnc Ñ Rnh be a function whose
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components are given by

F1,ipcq :� r̄ipc; ηq (10.16)

and let F2 : Rnc Ñ Rng be a function whose components are given by

F2,ipcq :� giptyptj ; cquntj�1, cq for 1 ¤ i ¤ nF2
. (10.17)

Further, define nF1
:� nh and nF2

:� ng.
With these notations, the problem (10.15) can be stated in a compact form, as it is done in the

following definition.

Definition 10.4 (Nonlinear Constrained Least-Squares Problem)

A minimization problem of the form

min
c
}F1pcq}22 (10.18a)

subject to F2pcq � 0, (10.18b)

with functions Fi : Rnc Ñ RnFi , as it arises in constrained maximum likelihood parameter es-
timation for normally distributed measurement errors with known covariance matrix, is called a
nonlinear constrained least-squares problem.

If the functions F1 and F2 are differentiable with respect to c, then their derivatives are denoted
by

Jipcq :� dFipc1q
dc1

����
c1�c

, for i � 1, 2, (10.19)

and are called the Jacobian matrices.
The following definitions are helpful in order to establish an understanding of a solution of the

nonlinear constrained least-squares problem (10.18).

Definition 10.5 (Feasible Point)

A point c P Rnc is called a feasible point if the equality constraints are satisfied:

F2pcq � 0. (10.20)

Definition 10.6 (Feasible Set)

The set that contains all feasible points,

F :� tc P Rnc | F2pcq � 0u (10.21)

is called the feasible set.

A (strict) global solution of the constrained nonlinear least-squares problem (10.18) is defined
as follows.

Definition 10.7 (Global Solution, Strict Global Solution)

Let ĉ be a feasible point such that }F1pcq} ¥ }F1pĉq} for all c P F . Then ĉ is called a global solution.
If the inequality is strict, }F1pcq} ¡ }F1pĉq}, then ĉ is called a strict global solution.

Contrariwise, (strict) local solutions fulfill the inequalities only in a neighborhood of ĉ.

Definition 10.8 (Local Solution, Strict Local Solution)

Let ĉ be a feasible point and let Uc be a neighborhood of ĉ. If }F1pcq} ¥ }F1pĉq} holds for all
c P F X Uc, then ĉ is called a local solution. If the inequality is strict, }F1pcq} ¡ }F1pĉq} for all
c P F X Uc, then ĉ is called a strict local solution.

In the context of parameter estimation problems it of course typical nF2   nc, because nF2 � nc
may lead to a situation in which only one point ĉ in Rnc fulfills all equality constraints. Hence,
there would be no remaining degrees of freedom in order to minimize the function }F1pcq}22.
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It is further typical for parameter estimation problems that nF1
¡ nF2

�nc, meaning that there
are more measurements than degrees of freedom. In fact it is desirable to have nF1

" nF2
� nc in

order to estimate the parameters reliably in the sense of confidence intervals. Confidence intervals
are an important aspect in the statistical analysis of parameter estimates and are discussed in
detail in Subsection 12.2.4.

10.4. Characterization of Solutions by Optimality Conditions

The presentation of this section is based upon Bock [39], pages 45ff and Nocedal and Wright [195],
pages 304ff.

Even if a point c is known to be a (strict) local solution it is, in general, very hard to decide
whether or not it is also a (strict) global solution. Typically, the knowledge on the global shape of
}F1pcq}22 and F2pcq that would be required for such a characterization is not available. However,
the set of necessary conditions for a local solution and the set of sufficient condition for a strict
local solution are well-known and recalled in the following.

As a first step toward the formulation of the necessary and sufficient optimality conditions, the
tangent space of the feasible set and the linearized feasible direction set are defined.

Definition 10.9 (Tangent to the Feasible Set, Tangent Space)

A vector ∆c P Rnc is called a tangent to the feasible set F at the point c P F if there is a sequence
ξk of feasible points, limkÑ8 ξk � c and a sequence of positive scalars αk, limkÑ8 αk � 0, such
that

∆c � lim
kÑ8

ξk � c

αk
. (10.22)

The set of all possible tangents ∆c is called the tangent space and denoted by Zpcq.
Definition 10.10 (Linearized Feasible Direction Set)

Consider a feasible point, i.e. c P F . Then, if the constraint function F2 is differentiable in c, the
set

Apcq :� t∆c P Rnc | J2pcq∆c � 0, ∆c � 0u (10.23)

is defined and called the linearized feasible direction set.

The linearized feasible direction set contains all those directions for which the equality constraints
remain fulfilled in the sense of a first order Taylor expansion. Contrariwise, the tangent space
defines the shape of the feasible set in the vicinity of a point c in terms of other feasible points, and
not by the mathematical description of the feasible set in terms of the constraint function F2pcq.

It is natural to ask for the relation between the tangent space and the linearized feasible direction
set. An important property of the constraint function F2pcq in this context is defined as follows.

Definition 10.11 (Linear Independence Constraint Qualification)

A point c P Rnc satisfies the linear independence constraint qualification if F2 is differentiable and
if the rows of the Jacobian matrix J2pcq are linearly independent. For the typical case nF2

  nc, it
follows that

rankpJ2pcqq � nF2
. (10.24)

Consider next the following lemma, which clarifies the relation between Apcq and Zpcq.
Lemma 10.12 (Relationship Between Tangent Space and Linearized Feasible Direction
Set)

For all c P F it holds that Zpcq � Apcq. Further, if linear independence constraint qualification
(equation (10.24)) holds in c, then it follows that Zpcq � Apcq.
Proof
See Nocedal and Wright [195], page 323f. �
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In short, the linear independence constraint qualification ensures that the linearization of the
equality constraints (in the point c) yields an adequate description of the shape of the feasible set
(in the vicinity of c).

Two further crucial definitions for the characterization of solutions by optimality conditions are
as follows.

Definition 10.13 (Lagrange Function, Lagrangian)

The function

Lpc, λq � }F1pcq}22 � λTF2pcq (10.25)

is called the Lagrange function or the Lagrangian of the nonlinear constrained least-squares problem
(10.18).

Definition 10.14 (Hessian Matrix of the Lagrange Function, Hessian)

If the Lagrange function Lpc, λq is twice differentiable with respect to the parameters c, then the
second derivative

Hpc, λq � B2

Bc12Lpc
1, λq

����
c1�c

(10.26)

is called the Hessian matrix of the Lagrange function, or, in short, the Hessian.

With the above-established definitions and notations, it is possible to formulate the following
theorem on the necessary optimality conditions of first and second order.

Theorem 10.15 (Necessary Optimality Conditions of First and Second Order)

Let Fi, i � 1, 2, be twice continuously differentiable functions, i.e. Fi P C 2pRnc ,RnFi q, and let ĉ
be a local solution of problem (10.18) that satisfies the linear independence constraint qualification
(Definition 10.11). Then the following holds:

• ĉ is a feasible point,

• the necessary optimality condition of first order is fulfilled: there exists a unique λ̂ such that

d

dc
Lpc, λq

����
pc,λq�pĉ,λ̂q

� 2FT1 pĉqJ1pĉq � λ̂TJ2pĉq � 0, (10.27)

• and the necessary optimality condition of second order is fulfilled: the Hessian matrix of the
Lagrangian is positive semi-definite on the tangent space of the feasible set:

∆cTHpĉ, λ̂q∆c ¥ 0 @∆c P Zpĉq (10.28)

Proof
See Nocedal and Wright [195], pages 321 and 332. �

Definition 10.16 (Karush-Kuhn-Tucker Conditions, Karush-Kuhn-Tucker Points)

The equations (10.20) and (10.27) together are called the Karush-Kuhn-Tucker conditions (in

short: KKT conditions) for the nonlinear constrained least-squares problem (10.18). A pair pĉ, λ̂q
that fulfills these conditions is called a Karush-Kuhn-Tucker point (in short: KKT point).

The following theorem allows to conclude, from a set of sufficient conditions of first and second
order, that a given point in parameter space is a strict local solution.

Theorem 10.17 (Sufficient Optimality Conditions of First and Second Order)

Let Fi P C 2pRnc ,RnFi q for i � 1, 2, and let the following sufficient optimality condition of first
order be fulfilled:

• pĉ, λ̂q is a KKT point of the minimization problem (10.18).

Assume further that the following sufficient optimality condition of second order is fulfilled:
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• The Hessian matrix Hpc, λq is positive definite on the linearized feasible direction set Apĉq,
i.e. for all ∆c P Apĉq it holds that

∆cTHpĉ, λ̂q∆c ¡ 0. (10.29)

Then ĉ is a strict local solution.

Proof
See Nocedal and Wright [195], page 333f. �
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Vielmehr erscheint es gerade als Vorzug des Gauß-Newton Ver-
fahrens, nicht gegen stationäre Punkte mit κ ¡ 1 zu konvergieren.

Bock, in his PhD Dissertation [39], pointing out a favorable conver-
gence property of a Gauss-Newton method for parameter estimation.

In Chapter 10 the concept of maximum likelihood estimation was recalled. For the special
case that the measurement errors are assumed to be normally distributed with known covariance
matrix, maximum likelihood estimation is equal to the minimization of the residuals in a weighted
Euclidean norm. This minimization is, in general, subject to additional equality constraints. Hence,
a nonlinear constrained least-squares problem was obtained.

The topic of this chapter is to recall numerical methods for the solution of this optimization prob-
lem. More precisely, a Generalized Gauss-Newton method is discussed along with a modification for
the treatment of ill-conditioned and singular problems. Furthermore, the restrictive monotonicity
test is recalled as a strategy to select the stepsizes in a damped Generalized Gauss-Newton method.

Damped Generalized Gauss-Newton methods such as those presented in this chapter have suc-
cessfully been used for solving parameter estimation problems in various disciplines. For examples
from automotive engineering, biology, chemical engineering, and space flight, see Bock [36, 38, 39],
Schlöder and Bock [223], Schlöder [222], Baake and Schlöder [7], Körkel [164], Kirches [160], Bock,
Kostina, and Schlöder [42], Lenz [171], Lenz et al. [172], and Binder et al. [31].

Organization of This Chapter

Section 11.1 contains the basic algorithm of a Generalized Gauss-Newton Method and recalls a
theorem that establishes the local convergence of this method. In Section 11.2, a modification of
the Generalized Gauss-Newton method for the treatment of singular and ill-conditioned param-
eter estimation problems is discussed. Eventually, Section 11.3 motivates the use of a damped
Generalized Gauss-Newton method and presents a practical algorithm that employs the so-called
restrictive monotonicity test.

The presentation of parts of this chapter relies on Bock [39].

11.1. Generalized Gauss-Newton Method

11.1.1. Definition of the Method

As a starting point for this section, the nonlinear constrained least-squares problem (10.18) is
recalled:

min
c
}F1pcq}22 (11.1a)

subject to F2pcq � 0. (11.1b)

As discussed in Section 10.4, a problem of this form arises in constrained maximum likelihood
estimation for normally distributed measurement errors.
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In the following, also the term linear constrained least-squares problem is defined.

Definition 11.1 (Linear Constrained Least-Squares Problem)

A minimization problem of the form

min
c
}a1 �A1c}22 (11.2a)

subject to a2 �A2c � 0, (11.2b)

with vectors ai P RnAi and matrices Ai P RnAi�mAi , is called a linear constrained least-squares
problem.

The solution method that is regarded here is a so-called Generalized Gauss-Newton Method
(cf. Bock [36], [38], and Bock [39], page 47).

Algorithm 11.2 (Gauss-Newton Method, Generalized Gauss-Newton Method)

Assume that the functions Fi are continuously differentiable, i.e. Fi P C 1pRnc ,RnFi q.
1. Start with k � 0 and with an initial guess c0 for the unknowns.

2. Determine the solution ∆ck of the following linear constrained least-squares problem

min
∆c

}F1pckq � J1pckq∆c}22 (11.3a)

subject to F2pckq � J2pckq∆c � 0, (11.3b)

where Jipckq :� dFipcq{dc|c�ck .

3. Set ck�1 � ck �∆ck.

4. If }∆ck} ¤ εterm, with εterm being a given threshold, then terminate the algorithm. Otherwise
set k � k � 1 and go back to step 2.

In step 4 of the algorithm, any norm in Rnc may be used for computing }∆ck}.
The above algorithm is called Generalized Gauss-Newton method. If there are no equality con-

straints, i.e. nF2 � 0, then the algorithm is called Gauss-Newton method.

As a next step, the notion of a generalized inverse is defined.

Definition 11.3 (Generalized Inverse)

Consider a matrix A P RnA�mA . Then a matrix A� P RmA�nA that fulfills the relation A�AA� �
A� is called a generalized inverse of A.

The Generalized Gauss-Newton method requires, in each iteration, the solution of a linear con-
strained least-squares problem. The next theorem gives sufficient conditions for the existence and
uniqueness of the solution of the linear problem. In order to formulate the theorem, the following
convenient notations are introduced:

F pckq :�
�
F1pckq
F2pckq



and Jpckq :�

�
J1pckq
J2pckq



. (11.4)

Theorem 11.4 (Existence and Uniqueness of Solutions of Linear Constrained Least-
Squares Problems)

Consider the linear constrained least-squares problem (11.3) and assume that the rank conditions
rankpJ2pckqq � nF2

¤ nc and rankpJpckqq � nc are fulfilled. Then the following holds:

1. For arbitrary F1pckq P RnF1 and arbitrary F2pckq P RnF2 there exists exactly one KKT point
p∆ck, λkq of the minimization problem (11.3). The point ∆ck is a strict local minimum.

2. There exists a generalized inverse J�pckq of the matrix Jpckq, and the strict local minimum
∆ck can be represented as

∆ck � �J�pckqF pckq. (11.5)
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3. The KKT point p∆ck, λkq can be expressed as�
∆ck

� 1
2λ

k



� �

�
JT1 pckqJ1pckq JT2 pckq

J2pckq 0


�1�
JT1 pckq 0

0 1


�
F1pckq
F2pckq



. (11.6)

Proof
See Bock [39], page 56. �

The generalized inverse J�pckq thus takes the form

J�pckq � �1 0
��JT1 pckqJ1pckq JT2 pckq

J2pckq 0


�1�
JT1 pckq 0

0 1



. (11.7)

The explicit construction of the generalized inverse J�pckq by means of equation (11.7) is in practice
not necessary. Instead, it is numerically favorable to compute the solution of the linear constrained
least-squares problem by means of matrix decompositions. This issue is discussed in Section 13.3.

11.1.2. Convergence Properties

The justification for approaching nonlinear constrained least-squares problems by a Generalized
Gauss-Newton method is provided by the next lemma and the subsequent theorem.

Lemma 11.5 (KKT points of Linear and Nonlinear Constrained Least-Squares Prob-
lems)

Let Fi P C 1pRnc ,RnFi q. Then pc, λq � pĉ, λ̂q is a KKT point of the nonlinear constrained least-

squares problem (11.1) if and only if p∆c, λq � p0, λ̂q is a KKT point of the linear constrained
least-squares problem

min
∆c

}F1pĉq � J1pĉq∆c}22 (11.8a)

subject to F2pĉq � J2pĉq∆c � 0. (11.8b)

Proof
Follows directly by considering the KKT conditions (Definition 10.16) of the problems (11.1) and
(11.8). �

Theorem 11.6 (Local Contraction (of Generalized Gauss-Newton Methods))

Let Fi P C 1pDc,RnFi q, where Dc � Rnc . Consider y P Dc, z P Dc, z � y � ∆y, where ∆y �
�J�pyqF pyq is the increment of a Generalized Gauss-Newton method and J�pyq is the generalized
inverse of Jpyq. Let further z̃ P Dc. Assume that the following conditions are fulfilled for all y, z,
z̃, and ϑ P r0, 1s:

1. }J�pzq pJpy � ϑ∆yq � Jpyqq∆y} ¤ ωϑ}∆y}2 with ω   8,

2. }J�pz̃qRpyq} ¤ κpxq}z̃ � y} ¤ κ}z̃ � y}, where Rpyq :� F pyq � Jpyq∆y and κ   1.

Let c0 P Dc be an initial guess such that

3. δ0 :� κ� ω
2 }∆c0}   1, where }∆c0} � }J�pc0qF pc0q},

4. the ball centered at c0 defined by Bc0 :�
!
c | }c� c0} ¤ }∆c0}

1�δ0

)
is contained in Dc.

Then it holds that

(I) the iterates ck are within Bc0 ,

(II) there exists ĉ P Bc0 such that ck Ñ ĉ and }∆ck} Ñ 0 for k Ñ8,

(III) }∆ck�1} ¤ δk}∆ck}, with δk :� κ� ω
2 }∆ck}.

(IV) }ck � ĉ} ¤ δk
}∆ck}
1�δk

.
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Proof
See Bock [39], page 59. �

This is a generalization of Theorem 6.14, which establishes the local convergence of Newton-type
methods applied to systems of nonlinear equations (see Section 6.5). Both theorems are valid for
any norm on finite-dimensional spaces.

The local contraction theorem (Theorem 11.6) guarantees, under certain conditions on the deriva-
tives Jpcq, on the generalized inverse J�pcq, and on the initial guess c0, that the iterates ck con-

verge to a point ĉ and that the increments ∆ck converge to 0. Thus, there exists λ̂ such that
p∆c, λq � p0, λ̂q is a KKT point of the problem (11.8). By using Lemma 11.5, it further follows

that pĉ, λ̂q is a KKT point of the nonlinear constrained least-squares problem (11.1).

The question that remains is whether p∆c, λq � p0, λ̂q and pc, λq � pĉ, λ̂q are also (strict) local
minima of the linear and nonlinear constrained least-squares problems, respectively.

In order to answer this question, recall Theorem 10.17. This theorem states that a sufficient
condition for a minimum is that the Hessian matrix of the Lagrange function is positive definite
on the linearized feasible direction set.

For the linear constrained least-squares problem (11.8), this condition is equivalent to the positive
definiteness of JT1 pĉqJ1pĉq on the kernel of J2pĉq. Such a condition can easily be checked in practice,
see Section 13.3.

For the nonlinear constrained least-squares problem (11.1) the Hessian matrix can be expressed
as

Hpĉ, λ̂q � 2JT1 pĉqJ1pĉq � 2FT1 pĉq
BJ1pĉq
Bc � λ̂T

BJ2pĉq
Bc , (11.9)

where the vector-tensor products in the second term and in the third term are to be understood
as

FT1 pĉq
BJ1pĉq
Bc :�

nF1̧

i�1

pF1pĉqqi BF1,ipĉq
BcjBck (11.10a)

λ̂T
BJ2pĉq
Bc :�

nF2̧

i�1

λ̂i
BF2,ipĉq
BcjBck . (11.10b)

Due to the presence of the second and the third term in equation (11.9), positive definiteness of

JT1 pĉqJ1pĉq is not sufficient for positive definiteness of the Hessian matrix Hpĉ, λ̂q; the Hessian may
become indefinite or negative definite if the “second order terms” are sufficiently large. Thus, a
minimum of the linear problem may turn out to be a saddle point or even a maximum of the
nonlinear problem.

Importantly, the following results can be proven for the obtained solution ĉ.

(i) Let condition 2 in Theorem 11.6 be fulfilled for some κ   1 for all points y, z in a neighborhood

of the KKT point ĉ. Then it follows that the Hessian Hpĉ, λ̂q is positive definite. Thus, ĉ is
a strict local minimum of the nonlinear constrained least-squares problem (11.1).

(ii) Let ĉ be a KKT point such that condition 2 does not hold for some κ   1. Let further ξ
be a perturbation of the measurement data – which enter the function F1 – whose order of
magnitude is equal to the size of the residuals Rpĉq. Then there exists a pair pĉpξq, λ̂pξqq,
which is a KKT point of the perturbed problem. However, ĉpξq is not a minimum of the
perturbed problem. The solution ĉ of the unperturbed problem can thus be characterized as
statistically instable.

The key argument for these results is that κ   1 can, on the one hand, be interpreted as a
condition on the quality of the measurement data (i.e. the measurement errors should be sufficiently

small). On the other hand, it holds that the condition κ   1 limits the size of FT1 pĉq and λ̂ such
that the second order terms given in the equations (11.10) remain sufficiently small compared to
the Hessian 2JT1 pĉqJ1pĉq of the linear problem (which is positive definite under the given rank
conditions).

For a further discussion of the two results (i) and (ii), it is referred to Bock [39], page 63ff.
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11.2. Regularization Strategy for Singular and Ill-Conditioned
Problems

11.2.1. Motivation and Goal

In step 2 of the Generalized Gauss-Newton method (Algorithm 11.2) the linear constrained least-
squares problem (11.3) has to be solved. According to Theorem 11.4, a unique solution of this
linear problem exists provided that two rank conditions are fulfilled: rankpJ2pckqq � nF2

and
rankpJpckqq � nc. The topic of this section is a modification of the Generalized Gauss-Newton
method for the case that the second of the two rank conditions is violated.

In the following, a linear constrained least-squares problem that violates the rank condition
rankpJpckqq � nc is called a singular problem. Further, if the rank condition is fulfilled but
the matrix Jpckq is ill-conditioned, then the linear constrained least-squares problem is called an
ill-conditioned problem. Please note that in finite precision arithmetic, the rank of a matrix is
ill-defined in the sense that a tiny round-off error may alter a singular matrix in such a way that
it has formally full rank but a very poor condition.

Ill-conditioning of Jpckq implies ill-conditioning of the generalized inverse J�pckq and thus a
high sensitivity of the increment ∆ck � �J�pckqF pckq toward changes in F pckq. This is particu-
larly critical because F1pckq contains differences between evaluations of measurement functions and
measurements, and thus quantities that depend on the specific realization ε of the random mea-
surement errors. Therefore, in a practical realization, it is reasonable to modify the Generalized
Gauss-Newton method in both the singular and in the ill-conditioned case.

In view of the above discussion, it is appropriate to mention that the underlying assumption for
this section is that rankpJ2pckqq � nF2 and that J2pckq has a small or moderate condition number.

11.2.2. Reduced Form of the Linear Constrained Least-Squares Problem

For the following discussion, it is convenient to define the short notation

J :� Jpckq �
�

J1pckq
J2pckq



(11.11)

and to assume that J is given in reduced form.

Definition 11.7 (Jacobian Matrix in Reduced Form)

Let J P RpnF1
�nF2

q�nc be the Jacobian matrix of a linear constrained least-squares problem. Assume
that J takes the form

J :�
�

A S
L 0



(11.12)

with L P RnF2
�nF2 being a regular lower triangular matrix, and S P RnF1

�pnc�nF2
q being a diagonal

matrix with entries si, 1 ¤ i ¤ nc � nF2 , such that

s1 ¥ s2 ¥ � � � ¥ snc�nF2
¥ 0. (11.13)

Further, let A P RnF1
�nF2 .

Then the matrix J is called a Jacobian matrix in reduced form.

The Jacobian matrix J (equation (11.11)) of any linear constrained least-squares problem (11.3)
can – under the given assumption rankpJ2pckqq � nF2 – be brought into this reduced form (see
Section 13.3 for details) by orthogonal transformations.

Definition 11.8 (Linear Constrained Least-Squares Problem in Reduced Form)

Consider a linear constrained least-squares problem of the form (11.3) and assume that J :� Jpckq
is given in reduced form. Then the problem can be rewritten as

min
∆c

}F̃1 �A∆c1 � S∆c2}22 (11.14a)

subject to F̃2 � L∆c1 � 0, (11.14b)
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with F̃1 :� F1pckq, F̃2 :� F2pckq. Further ∆ck � p∆cT1 ,∆cT2 qT with ∆c1 P RnF2 and ∆c2 P Rnc�nF2 .

The linear constrained least-squares problem in reduced form is singular if and only if one or
several of the diagonal entries si of the matrix S are 0. Ill-conditioning of the matrix J arises if
s1{snc�nF2

" 1, independent of the absolute size of s1 and snc�nF2
.

11.2.3. Modification for Singular and Ill-Conditioned Problems

For the practical treatment of singular and ill-conditioned problems, Bock [39], page 144f., suggests
to solve the following modified linear problem (instead of problem (11.14)):

min
∆c

����F̃1 �
�
A S

�
Pr

�
∆c1
∆c2


����2
2

� η2
�}∆c1}22 � }∆c2}22� (11.15a)

subject to F̃2 � L∆c1 � 0. (11.15b)

Herein, η ¡ 0 is a regularization factor, and Pr P Rnc�nc is an orthogonal projection matrix of
rank r, nF2 ¤ r ¤ nc. The projection matrix is explicitly given by

Pr �
�

1r 0
0 0



, (11.16)

with 1r being the r�r-dimensional identity matrix. An analogous notation is used in the following
for identity matrices of other dimensions.

It is helpful to define B � �A S
�
, L̃ � �L 0

�
and to reformulate problem (11.15) as follows:

min
∆c

�����F̃1

0



�
�

BPr

η � 1nc



∆c

����2
2

(11.17a)

subject to F̃2 � L̃∆c � 0. (11.17b)

In this representation of the modified linear problem, and with the above assumptions that L is
regular and η ¡ 0, it is obvious that rankpL̃q � nF2 , and that

rank

�
�
�
� BPr

η � 1nc
L̃

�

�
� nc. (11.18)

As a consequence, Theorem 11.4 can directly be applied to the modified problem (11.17), which
yields the following corollary (cf. Bock [39], page 144).

Corollary 11.9 (Existence and Uniqueness of Solutions of the Modified Linear Con-
strained Least-Squares Problem)

Consider the modified constrained least-squares problem (11.15). Then it holds that

1. For arbitrary F̃1 P RnF1 and arbitrary F̃2 P RnF2 there exists exactly one KKT point p∆c, λq
of the minimization problem (11.15). The point ∆c is a strict local minimum.

2. There exists a generalized inverse of the matrix

�
� BPr

η � 1nc
L̃

�
, and the strict local minimum ∆c

can be represented as

∆c � �
�
� BPr

η � 1nc
L̃

�
�

�
�F̃1

0

F̃2

�
. (11.19)

3. The KKT point p∆c, λq can be expressed as

�
∆c
� 1

2λ



� �

�
PT
r BTBPr � η2 � 1nc L̃T

L̃ 0


�1�
PT
r BT η � 1nc 0
0 0 1nF2


��F̃1

0

F̃2

�
. (11.20)
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Furthermore, it is possible to derive – from equation (11.20) – the following explicit expression for
∆c1 and ∆c2:

∆c1 � �L�1F̃2 (11.21a)

p∆c2qi �
#
� si
s2i�η

2Gi for 1 ¤ i ¤ r̃

0 for r̃ � 1 ¤ i ¤ nc � nF2
,

(11.21b)

with r̃ � r � nF2
and G � F̃1 �A∆c1.

Hence, the modified linear constrained least-squares problem (11.15) has, for any η ¡ 0, a unique
solution. Of particular interest is the limit η Ñ 0, i.e. the limit of the solution (see equation (11.21))
for vanishing regularization term in (11.15). This limit is given by

∆c1 � �L�1F̃2 (11.22a)

p∆c2qi �
#
�Gi
si

for 1 ¤ i ¤ r̃

0 for r̃ � 1 ¤ i ¤ nc � nF2 .
(11.22b)

In order to express this solution conveniently in matrix notation, let S̃ P RnF1
�pnc�nF2

q be a
diagonal matrix with entries

s1 ¥ s2 ¥ � � � ¥ sr̃ ¡ sr̃�1 � sr̃�2 � � � � � snc�nF2
� 0. (11.23)

That is, S̃ is obtained from S by setting the nc � nF2
� r̃ smallest diagonal elements to zero.

Let further S̃: P Rpnc�nF2
q�nF1 denote the Moore-Penrose pseudoinverse of the matrix S̃. The

matrix S̃: is such that the first r̃ diagonal elements are given by s�1
1 , . . . , s�1

r̃ , and the remaining
elements are 0.

With this notation, the solution (11.22) can be expressed as

∆c � �
�

0 L�1

S̃: �S̃:AL�1


�
F̃1

F̃2



. (11.24)

It can easily be verified that the matrix in equation (11.24) is a rank-deficient generalized inverse
of the matrix J as given in equation (11.12), i.e. for

J�rrs :�
�

0 L�1

S̃: �S̃:AL�1



(11.25)

it holds that J�rrsJJ�rrs � J�rrs. It is noted that the subscript r indicating the rank has been enclosed

in square brackets in order to avoid confusion with the Jacobian matrices J1 and J2 of the functions
F1 and F2, respectively.

Since J�rrs possesses the property to be a generalized inverse of J, the modified version of the

Generalized Gauss-Newton method based on a rank-deficient generalized inverse is also locally
convergent (cf. Theorem 11.6 and Bock [39], page 148 and page 150). An analysis of the obtained
rank-deficient solution is given in Section 12.3.

11.2.4. Practical Rank Decision

It remains to discuss the practical choice of the rank r (or, equivalently, the practical choice
of r̃) in the modified version of the Generalized Gauss-Newton method. One aim of using a rank
r̃   nc � nF2

is to ensure that the matrix S is well-conditioned on the space tPr∆c | ∆c P Rncu.
More precisely, if γmax is a given upper bound to the acceptable condition of S in the spectral
norm, then set smin � s1{γmax and choose r̃ such that

s1 ¥ � � � ¥ sr̃ ¡ smin ¥ sr̃�1 � � � � � snc�nF2
� 0. (11.26)

In addition to this regularization based on the condition number, it is useful in the context of
parameter estimation to define a lower bound for the diagonal elements si of the matrix S. As seen
later in Section 12.2, the quantity s�2

i is – in the solution of the least-squares problem – a measure
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for the variance of the corresponding parameter estimate as a function of the data, i.e. for the
uncertainty in the parameter estimate. Given an appropriate scaling of the parameters, the choice
smin � 1{σmax guarantees that only those parameters are estimated whose relative variance, as a
function of the data, is less than σ2

max.

The combination of both regularization strategies thus leads to the choice

smin � max

�
s1

γmax
,

1

σmax



. (11.27)

11.3. Damped Generalized Gauss-Newton Methods

11.3.1. Definition of Damped Method

Theorem 11.6 ensures – under certain conditions – local convergence of the Generalized Gauss-
Newton method (Algorithm 11.2) to a KKT point of problem (11.1). One of the conditions is
that the “initial increment” ∆c0 is such that δ0 � κ� ω}∆c0}   1. In practical situations, it may
be difficult to find an initial guess c0 such that this assumption is fulfilled, and the Generalized
Gauss-Newton method presented in Algorithm 11.2 may fail to converge.

One approach for constructing a method with improved convergence properties is the use of
damped methods.

Definition 11.10 (Damped Generalized Gauss-Newton Method)

If the iteration ck�1 � ck�∆ck (step 3 in the Generalized Gauss-Newton method (Algorithm 11.2)
is replaced by the following damped iteration step:

ck�1 � ck � αk∆ck, with αk P p0, 1s, (11.28)

then the resulting method is called a damped (Generalized Gauss-Newton) method.

In contrast, the original Generalized Gauss-Newton method as stated in Algorithm 11.2 is in the
following referred to as full-step (Generalized Gauss-Newton) method.

11.3.2. Level Functions

The basic idea of the damped method is to choose the stepsize αk in such a way that the new
iterate ck�1 is in some sense “better” then the old iterate ck. The use of damped iterations
therefore requires a definition of a “good” iterate. In view of the fact that a minimum of the
Lagrange function (equation (10.25)) is sought, the use of the following level function as a measure
for the quality of an iterate seems appropriate:

T pcq :� }F1pcq}22 �
nF2̧

i�1

βi|F2,ipcq|. (11.29)

Herein, βi ¡ |λi|, which attributes a higher weight to the equality constraints.

Indeed, it is possible to show – under mild assumptions – that the sequence of iterates of a
damped Generalized Gauss-Newton method converges for any arbitrary initial guess c0 to a KKT
point of the nonlinear constrained least-squares problem (11.1) if αk is determined by

αk � argminαPr0,1spT pck � α∆ckqq, (11.30)

see Bock [39], page 77. Such a “global convergence” result also holds if αk is given by an approxi-
mation of the minimum of the level function along the increment ∆ck.

Unfortunately, this damped Generalized Gauss-Newton method may converge – in contrast to
the full-step method – to “stastically instable” minima with κ ¡ 1 (Bock [39], page 79).

Moreover, already for mildly ill-conditioned problems (e.g. condition γ � 102) the stepsizes αk as
determined by equation (11.30) become very small, see Bock [39], page 80ff. Hence, the convergence
becomes very slow, even in cases where the obtained KKT point is a minimum with κ   1.
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This motivates the use of alternative level functions and alternative strategies for the determi-
nation of the stepsizes αk. In the following, natural level functions of the form

Tnatpc; ckq :� }J�pckqF pcq}22 (11.31)

are discussed. This level function can – for ck Ñ ĉ – be interpreted as an approximation of
}J�pĉqF pcq}, which, in turn, approximates the distance of the parameters c to the solution ĉ, i.e.
}c� ĉ}22, see Bock [39], page 83f.

The natural level function is “compatible” with the Generalized Gauss-Newton method in the
sense that it decreases into the direction of the increment ∆ck. More rigorously, the following
upper bound holds (see also Bock [39], page 85ff).

Lemma 11.11 (Descent of Natural Level Function along Generalized Gauss-Newton
Increment)

Let Dc � Rnc be open, Fi P C 2pDc,RnFi q. Consider c P Dc, let ∆c be the corresponding Generalized
Gauss-Newton increment, and assume that c� α∆c P Dc for all α P r0, 1s. Further, define

wpc, αq :� sup
βPp0,αs

}J�pcq rJpc� β∆cq � Jpcqs∆c}2
β}∆c}22

(11.32)

and assume wpc, αq ¤ wmax   8.

Then it holds that

Tnatpc� α∆c; cq ¤
�

1� α� α2

2
wpc, αq}∆c}2


2

Tnatpc; cq. (11.33)

Proof (cf. Bock [39], page 85ff)
At first, the triangular inequality }u1} � }u2} ¤ |}u1} � }u2}| ¤ }u1 � u2} is used with u1 �
J�pcqF pc� α∆cq and u2 � p1� αqJ�pcqF pcq. This yields��J�pcqF pc� α∆cq��

2
� p1� αq ��J�pcqF pcq��

2

¤
����J�pcq�F pc� α∆cq � p1� αqF pcq

�����
2

¤
����J�pcq�F pc� α∆cq � F pcq � αJ�pcqJpcqF pcq � α

�
1� J�pcqJpcq

	
F pcq

�����
2

(11.34)

Using the triangular inequality }u1 � u2} ¤ }u1} � }u2} leads to

��J�pcqF pc� α∆cq��
2
� p1� αq ��J�pcqF pcq��

2
¤
����J�pcq�F pc� α∆cq � F pcq � αJpcqJ�pcqF pcq

�����
2

�
����J�pcq�α�1� JpcqJ�pcq

	
F pcq

�����
2

(11.35)

The second summand on the right hand side vanishes because of the defining property of generalized
inverses (see Definition 11.3). With regard to the first term, it holds that

F pc� α∆cq � F pcq �
» α

0

Jpc� β∆cq∆cdβ. (11.36)

From this and with ∆c � �J�pcqF pcq it follows that

��J�pcqF pc� α∆cq��
2
� p1� αq ��J�pcqF pcq��

2
¤
» α

0

��J�pcq rJpc� β∆cq � Jpcqs∆c��
2
dβ

¤wpc, αq
» α

0

β}∆c}22dβ

¤1

2
α2wpc, αq}∆c}22, (11.37)
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and thus ��J�pcqF pc� α∆cq��
2
¤
�
1� α� 1

2
α2wpc, αq}∆c}2

� ��J�pcqF pcq��
2
. (11.38)

The assertion then easily follows from the definition of the natural level function. �

11.3.3. Restrictive Monotonicity Condition

Define, for given c and ∆c, the pre-factor in equation (11.38) as the function

upαq :� 1� α� 1

2
α2wpc, αq}∆c}2. (11.39)

Further, define for every 0   η   2 the following linear function

vpα; ηq :� 1� α

�
1� 1

2
η



(11.40)

For any fixed η it is possible to find a stepsize ᾱpηq such that the condition

upαq ¤ vpα; ηq (11.41)

is fulfilled for all 0   α ¤ ᾱpηq. More precisely, the maximum stepsize ᾱpηq for which the relation
holds is given by

ᾱpηq � η

wpc, αq}∆c}2 . (11.42)

The natural level function thus fulfills both the “standard” monotonicity condition Tnatpck �
α∆ck; ckq   Tnatpck; ckq, and the restrictive monotonicity condition

Tnatpck � α∆ck; ckq ¤ pvpα; ηqq2Tnatpck; ckq (11.43)

for all 0   α ¤ ᾱpηq. Of particular interest is the special choice η � 1, because the stepsize ᾱp1q
corresponds to the minimum of the function upαq.

Define further

¯̄αpηq :� minp1, ᾱpηqq (11.44)

and consider a damped Generalized Gauss-Newton method, whose stepsizes are such that the
relation

αk P r ¯̄αpη1q, ¯̄αpη2qs with 0   η1 ¤ η2   2. (11.45)

holds. Then, whenever the sequence of iterates ck converges to a point ĉ, it follows that full steps
(αk � 1) are taken in a neighborhood of ĉ, see Bock [39], page 89. Hence, it also follows that the
damped method preserves the property of the full-step method to avoid convergence to statistically
instable minima with κ ¡ 1.

In a practical situation, the quantity wpc, αq is typically unknown. Therefore, in order to obtain
a practical stepsize selection strategy from the equations (11.42)-(11.45), it is necessary to find a
numerical approximation of wpc, αq. Bock [39], page 90, makes the following suggestion.

Definition 11.12 (A Posteriori Estimation Formula for wpck, αq)
Let ck be an iterate of the Generalized Gauss-Newton method and let ∆ck be the corresponding
increment. Then an a posteriori estimation formula for wpck, αq is – for any α P p0, 1s – given by

ŵpck, αq � 2
} � J�pckqF pck � α∆ckq � p1� αq∆ck}2

α2}∆ck}22
. (11.46)

As shown in Bock [39], page 90f, this formula provides (under certain differentiability conditions)
an asymptotically correct estimation of wpck, αq for α Ñ 0. Bock [39] further shows: Selecting
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α P p0, 1s such that

α ¤ η

ŵpck, αq}∆ck}2 (11.47)

holds for 0   η   2 is sufficient for the restrictive monotonicity condition (11.43). Accordingly,
equation (11.47) is called a practical restrictive monotonicity test.

11.3.4. A Practical Algorithm based on the Restrictive Monotonicity Test

The above results justify the use of the following practical stepsize selection algorithm (cf. Bock [39],
page 92f):

Algorithm 11.13 (Generalized Gauss-Newton Method with a Practical Stepsize Selec-
tion Strategy based on a Restrictive Monotonicity Test)

Start with k � 0, j � 0, with an initial guess c0, and with α0,0 � 1. Further, choose η, η2 such
that 0   η   η2   2.

1. Determine the increment ∆ck as solution of equation (11.3).

2. If }∆ck} ¤ εterm, with εterm being a given termination criterion, then terminate the algo-
rithm. Otherwise, continue with step 3.

3. Set ck�1,j � ck � αk,j∆ck.

4. Compute ŵpck, αk,jq by means of the a posteriori estimation formula (11.46).

5. Make the restrictive monotonicity test

αk,jŵpck, αk,jq}∆ck}2 ¤ η2. (11.48)

If the condition is fulfilled, continue with step 7, otherwise continue with step 6.

6. Propose a new stepsize

αk,j�1 � η{pŵpck, αk,jq}∆ck}2q (11.49)

(which is smaller than αk,j), then set j � j � 1 and continue with step 3.

7. Accept the stepsize and the new iterate, i.e. set αk � αk,j and ck�1 � ck�1,j.

8. Propose a stepsize for the next iteration by

αk�1,0 � minp1, η{pŵpck, αk,jq}∆ck}2qq. (11.50)

Set k � k � 1, j � 0, and continue with step 1.

A typical choice is η � 1, because this is the optimal value in the sense that it corresponds to the
minimum of the function upαq. This value is used in the predictor stepsize in step 7 and in the
corrector stepsize in step 6 of the algorithm. The acceptance test in step 5 employs the larger value
η2 and could, in view of the equations (11.45) and (11.47), be made more restrictive by adding a
lower bound η1.

For the first stepsize in the first iteration, i.e. α0,0, Algorithm 11.13 attempts a full step iteration.
Alternatively, one may also use

α0,0 � minp1, η{pŵ0}∆c0}2qq. (11.51)

With η � 1 and ŵ0 � 100, this implies α0,0}∆c0}2 ¤ 1{100. Using a suitable scaling of the
parameters, the norm of the damped increment is approximately 1% of the norm of c0.

In theory, it is always possible to fulfill the restrictive monotonicity test in step 5 for a sufficiently
small stepsize. However, in practice it is preferable to bound the predictor and corrector stepsizes
from below by αmin in order to avoid exceedingly small stepsizes. If no sufficient decrease is
obtained by using the minimum stepsize αmin, the problem may be treated as locally ill-conditioned
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(or singular), and another increment can be computed using a rank-deficient generalized inverse,
see Bock [39], page 93. An algorithm that uses this modification is given in Section 13.3.

The damped Generalized Gauss-Newton method in Algorithm 11.13 uses full steps αk � 1 if the
sequence of iterates ck converges to a point ĉ. Accordingly, Algorithm 11.13 avoids convergence to
statistically instable minima with κ ¡ 1, see Bock [39], page 94.
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12. Analysis of Solutions

It is important for parameter estimation problems to compute not
only parameters but also a statistical assessment of the accuracy
of these parameter estimates. This can be done by means of the
covariance matrix.

Bock, Kostina, and Kostyukova, in their paper “Covariance Matrices
for Parameter Estimates of Constrained Parameter Estimation
Problems” [40].

In Chapter 10 it was discussed that the idea of maximum likelihood estimation is to determine
those parameters that are the most likely ones to explain the given measurements η. Accordingly,
the maximum likelihood estimate is implicitly also a function of η, which motivates to write ĉpηq.

It was further discussed in Chapter 10 that the measurements η correspond to one specific
realization ε of the random measurement errors e. In other words, if the experiment is carried
out again, a different realization of the measurement errors is obtained and thus also a different
maximum likelihood estimate. Therefore, if the maximum likelihood estimate is regarded as a
function of the random counterpart h of η, i.e. ĉphq, it is obvious that the maximum likelihood
estimate is also random.

The topic of the chapter is the quantification of the uncertainty in the maximum likelihood
estimate by considering the probability distribution of ĉphq.

Organization of This Chapter

This chapter is divided into three sections. Section 12.1 establishes the necessary notation. Sec-
tion 12.2 deals with the analysis of solutions for which two regularity assumptions are fulfilled. In
particular, it is shown that these regularity assumptions guarantee that the covariance matrix of
the estimate ĉphq (or an approximation thereof) is a full-rank matrix. Finally, Section 12.3 provides
an analysis of solutions under weaker assumptions.

12.1. Preliminaries

As a starting point, recall equation (10.1), i.e.

ηi � hiptyptj ; c�quntj�1, c
�q � εi, (12.1)

where ηi represents a measurement value, tj are the measurement times, c� P Rnc are the correct
parameters and yptj ; c�q are the values of the state vector at the measurement times for the correct
parameters c�. If the dynamic model that defines the function ypt; cq and if all measurement models
hi (for 1 ¤ i ¤ nh) are correct, then εi, 1 ¤ i ¤ nh, can be interpreted as measurement errors.

Recall further that parameters are often subject to constraints of the form (10.15b), i.e.

giptyptj ; cquntj�1, cq � 0, (12.2)

for 1 ¤ i ¤ ng.
For simplicity of notation, it is convenient to regard hi and gi as a function of the parameters

alone and to use a vector notation, i.e.

η � hpc�q � ε (12.3)

and

gpcq � 0. (12.4)
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In these equations, ε � pε1, . . . , εnhqT and η � pη1, . . . , ηnhqT , and g and h are vector-valued
function whose components are the functions gi and hi.

The measurement errors ε � pε1, . . . , εnhqT – and thus the measurements η � pη1, . . . , ηnhqT –
denote only one specific realization of the corresponding random variables e and h. For the special
case that the measurement errors vanish, i.e. ε � 0, it is useful to denote the correct measurements
by

η� :� hpc�q. (12.5)

A maximum likelihood estimate ĉpηq for a specific realization η of the measurements is defined by
the property that it is a maximizer of the likelihood function, see Section 10.3. If the measurement
errors are normally distributed with known and regular covariance matrix Vε, then ĉpηq is a solution
of the following constrained least-squares problem:

min
c

���V� 1
2

ε phpcq � ηq
���2
2

(12.6a)

s.t. gpcq � 0, (12.6b)

see Theorem 10.3.

Occasionally, it is useful in this chapter to use the notations

F1pcq :� V
� 1

2
ε phpcq � ηq and F2pcq :� gpcq. (12.7)

The Jacobian matrices of the functions F1 and F2 are denoted by

Jipcq :� BFipc1q
Bc1

����
c1�c

. (12.8)

Further, let

F pcq :�
�
F1pcq
F2pcq



and Jpcq :�

�
J1pcq
J2pcq



. (12.9)

12.2. Statistical Analysis based on Covariance Matrices

12.2.1. Statistical Distribution of Parameter Estimates

Linear Constrained Least-Squares Problems

A rigorous result for the statistical distribution of a maximum likelihood estimate ĉpηq can be
obtained under the condition that the functions hi (and the constraint functions gi, if present),
are both linear in c.

Theorem 12.1 (Covariance of Parameter Estimates for Linear Problems and Normally
Distributed Measurements)

Let h � hpc�q � e, and correspondingly, let a specific realization of the random variables be given
by η � hpc�q � ε. Let further gipcq � 0 for 1 ¤ i ¤ ng, ng   nc, denote equality constraints on the
parameters.

Assume that h and g are linear, i.e. hpcq � B1c� b1 and gpcq � B2c� b2, and assume that the
measurement errors are normally distributed with expected value zero and covariance matrix Vε,

e � N p0,Vεq, with Vε being a regular matrix (which implies that a matrix V
� 1

2
ε exists such that

V
� 1

2
ε V

� 1
2

ε � V�1
ε ). Further, let the regularity assumptions rankpB2q � ng and rank

��
B1

B2




� nc

be fulfilled.

Then the following holds:

1. The maximum likelihood estimate ĉpηq is the solution of the following linear constrained least-
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squares problem:

min
c

���V� 1
2

ε pB1c� b1 � ηq
���2
2
, (12.10a)

s.t. B2c� b2 � 0. (12.10b)

2. The maximum likelihood estimate ĉpηq can be expressed as

ĉpηq � �J�F p0q, (12.11)

where J� is the generalized inverse of the (constant) Jacobian matrix J � Jpcq.
3. The maximum likelihood estimate cphq is normally distributed; more precisely it holds that

ĉphq � N pc�,Vcq , with Vc :� J�
�

1 0
0 0



pJ�qT . (12.12)

Proof (see also Bock [39], page 133f)
Equation (12.10) is only the special form of problem (12.6), and thus assertion 1 follows directly
from Theorem 10.3. Further, under the given assumptions, also Theorem 11.4 can be applied, which
yields that ĉpηq � �J�F p0q and thus assertion 2. Hence, it holds for the random counterpart ĉphq
of ĉpηq that

ĉphq � �J�

�
V
� 1

2
ε pb1 � hq

b2

�
, (12.13)

i.e. ĉphq is a linear transformation of h. From this it follows immediately that ĉphq is normally
distributed. The expected value is given by Epĉphqq � ĉpη�q � c�, and the covariance follows from

Vpĉphqq �Eppĉphq � c�qpĉphq � c�qT q

�J�E

��
V
� 1

2
ε pη� � hq

0

��
pη� � hqTV

� 1
2

ε 0

	�
pJ�qT (12.14)

and from Eppη� � hqpη� � hqT q � Vε. �

Remark 12.2 (Covariance of Parameter Estimates for Jacobian in Reduced Form)

Let, in addition to the assumptions of Theorem 12.1, the matrix J be given in reduced form
(Definition 11.7), i.e.

J �
�

A S
L 0



, (12.15)

where A P Rnh�ng , S P Rnh�pnc�ngq is a diagonal matrix with diagonal elements s1 ¥ s2 ¥ � � � ¥
snc�ng , and L P Rng�ng is a regular lower triangular matrix.

Then the covariance matrix takes the special form

Vc �
�

0 0
0 S:pS:qT



. (12.16)

Accordingly, if the entries of S are denoted by s1, . . . , snc�ng , then the variance of the parameter es-
timates ĉ1phq, . . . , ĉng phq is 0 (because these parameters are determined by the equality constraints),

and the variance of the parameter estimates ĉng�1phq, . . . , ĉncphq is given by s�2
1 , . . . , s�2

nc�ng . It is

recalled that this interpretation of s�2
i has already been used as a motivation for using equation

(11.27) in the practical rank decision of the Generalized Gauss-Newton method (see discussion in
Subsection 11.2.4).

Nonlinear Constrained Least-Squares Problems

For the case that h and g are general nonlinear (but smooth) functions, the maximum likelihood
estimate cphq is not any longer a normally distributed random variable. However, if the Jacobian
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matrices J1pĉpηqq and J2pĉpηqq are, for specific measurements η, such that rankpJ2pĉpηqqq � ng
and rankpJpĉpηqqq � nc, then the expression

Ṽc :� J�pĉpηqq
�

1 0
0 0



pJ�qT pĉpηqq (12.17)

can still be used as an approximation of the covariance of the parameter estimates.

A recent result is that even the assumption of a correct model, i.e. the existence of c� such that
hpc�q � η�, can be dropped (see Hoffmann [149]). More precisely, the use of the above expression
as an approximation of the covariance of parameter estimates is justified whenever the product of
“incorrectness” and “nonlinearity” of the model – in suitable measures – is sufficiently small.

12.2.2. Distribution of Least-Squares Sum

The next issue that is considered is the distribution of the least-squares sum
���V� 1

2
ε phpĉphqq � hq

���2
2
.

As in Subsection 12.2.1, a rigorous result can be obtained if the functions h and g are linear, in
which case the maximum likelihood estimate is given as solution of the linear constrained least-
squares problems (12.10).

Theorem 12.3 (Distribution of Least-Squares Sum for Linear Problems and Normally
Distributed Measurements)

Consider the linear constrained least-squares problem (12.10), where η represents a specific real-
ization of the random number h � η�� e, with e � N p0,Vεq. Further, let the regularity conditions

rankpB2q � ng and rank

��
B1

B2




� nc be fulfilled.

Then it holds that the least-squares sum, evaluated at the solution ĉphq, is χ2-distributed with
nh � pnc � ngq degrees of freedom, in short���V� 1

2
ε pB1ĉphq � b1 � hq

���2
2
� χ2

nh�pnc�ngq
. (12.18)

Proof
The regularity assumption rankpB2q � ng ensures that the (constant) Jacobian

J �
�

V
� 1

2
ε B1

B2

�
(12.19)

can be brought into reduced form (Definition 11.7) by applying orthogonal transformations, see
Sections 11.2 and 13.3. Therefore, without loss of generality, it is sufficient to prove the theorem
for a Jacobian in the reduced form

J �
�

A S
L 0



, (12.20)

where S is a diagonal matrix and L is a regular lower triangular matrix.

The linear constrained least-squares problem then reads

min
c

����A S
�
c�V

� 1
2

ε pb1 � ηq
���2
2
, (12.21a)

s.t.
�
L 0

�
c� b2 � 0. (12.21b)

In view of equation (11.24), the solution ĉpηq can be written as

ĉpηq � �
�

0 L�1

S: �S:AL�1


�
V
� 1

2
ε pb1 � ηq

b2

�
, (12.22)

where S: P Rpnc�ngq�nh is the Moore-Penrose pseudoinverse of S. For the least-squares sum in the
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solution, it then follows that

����A S
�
ĉphq �V

� 1
2

ε pb1 � hq
���2
2
�
������ �SS: AL�1 � SS:AL�1

��V
� 1

2
ε pb1 � hq

b2

�
�V

� 1
2

ε pb1 � hq
�����
2

2

�
���p1� SS:q

�
V
� 1

2
ε pb1 � hq �AL�1b2

	���2
2
. (12.23)

It further holds that h � η� � e � B1c
� � b1 � e and thus

V
� 1

2
ε pb1 � hq � V

� 1
2

ε p�B1c
� � eq. (12.24)

Furthermore, c� � ĉpη�q and V
� 1

2
ε B1 �

�
A S

�
yield

�V
� 1

2
ε B1c

� � �A S
�� 0 L�1

S: �S:AL�1


�
V
� 1

2
ε p�B1c

�q
b2

�

�� SS:V
� 1

2
ε B1c

� �AL�1b2 � SS:AL�1b2, (12.25)

and hence

p1� SS:qV� 1
2

ε B1c
� � �p1� SS:qAL�1b2. (12.26)

Eventually, inserting this relation and equation (12.24) into equation (12.23) yields����A S
�
ĉphq �V

� 1
2

ε pb1 � hq
���2
2
�
���p1� SS:qV� 1

2
ε e

���2
2
. (12.27)

The matrix 1�SS: is a diagonal matrix, and the diagonal contains nc�ng entries that are equal to

0 and nh�pnc�ngq entries that are equal to 1. Furthermore, V
� 1

2
ε e � N p0,1q. The least-squares

sum
���V� 1

2
ε pB1ĉphq � b1 � hq

���2
2

hence is a sum of squares of nh � pnc � ngq standard normally

distributed random variables, which by definition is a χ2 distribution with nh � pnc � ngq degrees
of freedom. �

If the functions hpcq and (or) gpcq are nonlinear, the least-squares sum }V� 1
2

ε phpĉphqq � hq }22 is
only approximately χ2

nh�pnc�ngq
-distributed.

12.2.3. Confidence Regions

Having obtained parameter estimates ĉpηq for specific measurement data η, it is desirable to make
statistical inference on the values of the correct parameters, i.e. on c�. For illustration purposes, it
is appropriate to consider first the case of a linear unconstrained least-squares problem for a scalar
parameter, i.e. c P R.

Linear Unconstrained Least-Squares Problems, Scalar Parameter

In the special case of linear unconstrained least-squares problems, it follows from Theorem 12.1
and Remark 12.2 that the distribution of the estimate is ĉphq � N pc�, s�2

1 q (in the notation of the
reduced form). It is well-known from the properties of the normal distribution that the probability
for ĉphq to be in the interval rc� � s�1

1 , c� � s�1
1 s is given by

P pĉphq P rc� � s�1
1 , c� � s�1

1 sq � 0.6827. (12.28)

Vice versa, it is also possible to write

P pc� P rĉphq � s�1
1 , ĉphq � s�1

1 sq � 0.6827. (12.29)

Having in mind that the measurements η are only one specific realization of the random variable h,
it is possible to use the sloppy formulation that “the interval rĉpηq � s�1

1 , ĉpηq � s�1
1 s will enclose

the correct parameter c� with a probability that is approximately 0.6827”.
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It is immediately clear that the interval rĉpηq� νs�1
1 , ĉpηq� νs�1

1 s with ν ¡ 1 (with ν   1) has a
higher (lower) probability to enclose the correct parameter c�. More precisely, by a specific choice
of ν, any desired probability α, 0   α   1, can be obtained.

One way to define the exact size of the interval that corresponds to a given probability α is the
approach via so-called δ-indifference regions. This approach is discussed in the following in the
context of linear constrained least-squares problems and several parameters.

Linear Constrained Least-Squares Problems, Several Parameters

Consider the δ-indifference region around the correct parameters c�, i.e. that region in which
the constraints are fulfilled and the least-squares sum is less than or equal to δ for the correct
measurements η�:

Υc�pδq :�
"
c� �∆c | B2pc� �∆cq � b2 � 0 ^

���V� 1
2

ε pB1pc� �∆cq � b1 � η�q
���2
2
¤ δ

*
.

(12.30)

The question is how to choose δ such that this deterministic region contains the random maximum
likelihood estimate ĉphq with a given probability α. The answer is given by the following lemma.

Lemma 12.4 (Confidence Region for Estimates)

Consider a linear constrained least-squares problem

min
c

���V� 1
2

ε pB1c� b1 � ηq
���2
2
, (12.31a)

s.t. B2c� b2 � 0, (12.31b)

and assume that η � η� � e, e � N p0,Vεq. Further, let the regularity conditions rankpB2q � ng,

rank

��
V
� 1

2
ε B1

B2

��
� nc be fulfilled.

Then it holds that the random maximum likelihood estimate ĉphq is contained in the region
Υc�pqpχ2

nc�ng , αqq with probability α, i.e. formally:

P
�
ĉphq P Υc�pqpχ2

nc�ng , αqq
�
� α. (12.32)

Herein, qpχ2
nc�ng , αq represents the quantile of the χ2

nc�ng distribution to probability α.

Proof
Without loss of generality, it can be assumed that the Jacobian is given in reduced form (see

discussion in the proof of Theorem 12.3). It then holds that B2 �
�
L 0

�
and V

� 1
2

ε B1 �
�
A S

�
,

with L being a regular lower triangular matrix and S being a diagonal matrix. Furthermore, it
holds that B1c

� � b1 � η�, and thus

Υc�pδq �
!
c� �∆c | �L 0

� pc� �∆cq � b2 � 0 ^ ���A S
�

∆c
��2
2
¤ δ

)
. (12.33)

The maximum likelihood estimate ĉphq is, according to Remark 12.2, distributed as ĉphq �
N pc�,Vcq with

Vc �
�

0 0
0 S:pS:qT



. (12.34)

Consequently, ∆cphq :� ĉphq � c� � N p0,Vcq. In view of equation (12.33), the distribution of�
A S

�
∆cphq is investigated:

�
A S

�
∆cphq � N

�
0,
�
A S

�
Vc

�
AT

ST




� N

�
0,

�
0 0
0 SS:pS:qTST




. (12.35)

The matrix SS:pS:qTST is of dimension nh � nh, and it is diagonal with the first nc � ng entries

being 1 and the remaining entries being 0. From this it follows that
���A S

�
∆cphq��2

2
� χ2

nc�ng .
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Therefore, if the δ-indifference region Υc�pδq should contain the random maximum likelihood
estimate ĉphq with probability α, the indifference parameter δ has to be chosen as the quantile
qpχ2

nc�ng , αq of the χ2
nc�ng distribution to probability α. �

For statistical inference about the correct parameters c�, the following δ-indifference region is
considered:

Υĉphqpδq :�
"
ĉphq �∆c | B2pĉphq �∆cq � b2 � 0 ^

���V� 1
2

ε pB1pĉphq �∆cq � b1 � hq
���2
2
� }V� 1

2
ε pB1ĉphq � b1 � hq

����2
2

¤ δ

*
.

(12.36)

For specific measurements (i.e., replace h by η) this region comprises all those points c for which

the constraints are fulfilled and the objective function
���V� 1

2
ε pB1c� b1 � ηq

���2
2

differs from the value

in the solution ĉpηq by less than δ.

The question is how to choose δ such that the random region Υĉphqpδq contains the deterministic
point c� with a given probability α. Once again, the answer is given by the quantile qpχ2

nc�ng , αq
of the χ2

nc�ng distribution to probability α, as stated by the following lemma.

Lemma 12.5 (Confidence Region for Correct Paramaters)

Consider a linear constrained least-squares problem

min
c

���V� 1
2

ε pB1c� b1 � ηq
���2
2
, (12.37a)

s.t. B2c� b2 � 0, (12.37b)

and assume that the assumptions of Lemma 12.4 are fulfilled.

Then it holds that the correct parameters c� are contained in the region Υĉphqpqpχ2
nc�ng , αqq with

probability α, i.e. formally:

P
�
c� P Υĉphqpqpχ2

nc�ng , αqq
�
� α. (12.38)

Proof
It is assumed – without loss of generality – that the Jacobian J �

�
V
� 1

2
ε B1

B2

�
is given in reduced

form, i.e. V
� 1

2
ε B1 �

�
A S

�
and B2 �

�
L 0

�
.

Consider the distribution of���V� 1
2

ε pB1pĉphq �∆cphqq � b1 � hq
���2
2
�
���V� 1

2
ε pB1ĉphq � b1 � hq

���2
2

for ∆cphq :� c� � ĉphq. From h � η� � e and B1c
� � b1 � η� it follows for the first term that���V� 1

2
ε pB1pĉphq �∆cphqq � b1 � hq

���2
2
�
���V� 1

2
ε e

���2
2
. (12.39)

Further, for the second term it holds that���V� 1
2

ε pB1ĉphq � b1 � hq
���2
2
�
���V� 1

2
ε p�B1∆cphq � eq

���2
2

�
���V� 1

2
ε e

���2
2
� ���A S

�
∆cphq��2

2
� 2∆cphqT

�
AT

ST



V
� 1

2
ε e. (12.40)

With

∆cphq � �
�

0

S:V
� 1

2
ε e

�
, (12.41)
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and with pS:qTST � SS:, it follows that���V� 1
2

ε pB1ĉphq � b1 � hq
���2
2
�
���V� 1

2
ε e

���2
2
�
���SS:V

� 1
2

ε e
���2
2
. (12.42)

Since SS: is an nh�nh diagonal matrix with nc�ng entries that are equal to 1 and nh�pnc�ngq
entries that are equal to 0, it follows that���V� 1

2
ε pB1pĉphq �∆cphqq � b1 � hq

���2
2
�
���V� 1

2
ε pB1ĉphq � b1 � hq

���2
2
� χ2

nc�ng . (12.43)

Thus, the proof is completed. �

It is remarked that the Lemmas 12.4 and 12.5 are consistent with the equations (12.28) and
(12.29), because for an unconstrained least-squares problem and a scalar parameter c, one has
qpχ2

1, 0.6827q � 1 and

Υc�p1q � tc� �∆c | |s1∆c|22 ¤ 1u
ñ |∆c| � s�1

1 ñ Υc�p1q � rc� � s�1
1 , c� � s�1

1 s (12.44)

(and analgously for Υĉphqp1q).

Nonlinear Constrained Least-Squares Problems

Eventually, a general least-squares problem of the form

min
c

}F1pcq}22 (12.45a)

s.t. F2pcq � 0, (12.45b)

with F1pcq � V
� 1

2
ε phpcq � hq and F2pcq � gpcq is considered.

Consider, in analogy to equation (12.36), the following definition:

ΥN
ĉphqpqpχ2

nc�ng , αqq :�
"
ĉphq �∆c | F2pĉphq �∆cq � 0 ^

}F1pĉphq �∆cq}22 � }F1pĉphqq}22 ¤ qpχ2
nc�ng , αq

*
. (12.46)

For specific measurements η, this indifference region has the shape of a level set of }F1pcq}22,
restricted on the subset of Rnc for which the equality constraints are fulfilled. Since the set
ΥN
ĉphqpqpχ2

nc�ng , αqq is defined with the nonlinear functions F1 and F2, it is in the following called
a nonlinear indifference region. This terminology is also characterized by using the superscript N .

Further, by using linear approximations of the functions F1 and F2 (around ĉph)), the following
linearized indifference region is defined (superscript L):

ΥL
ĉphqpqpχ2

nc�ng , αqq :�
"
ĉphq �∆c | F2pĉphqq � J2pĉphqq∆c � 0 ^

}F1pĉphqq � J1pĉphqq∆c}22 � }F1pĉphqq}22 ¤ qpχ2
nc�ng , αq

*
.

(12.47)

For specific measurements η, this linearized indifference region has the elliptic shape of a level set
of }F1pĉpηqq�J1pĉpηqq∆c}22, constrained to the hyperplane of dimension nc�ng that is defined by
the linearized equality constraints.

The set ΥL
ĉpηqpqpχ2

nc�ng , αqq can also be represented in an alternative way that makes use of the
generalized inverse.

Lemma 12.6 (Alternative Representation of Linear Indifference Region)

Let ĉpηq be the solution of the nonlinear constrained least-squares problem (12.45) for specific
measurement data η. Assume that the Jacobian fulfills, in the solution, the regularity conditions
rankpJ2pĉpηqqq � ng and rankpJpĉpηqqq � nc.
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Then it holds that

ΥL
ĉpηqpqpχ2

nc�ng , αqq �
"
ĉpηq �∆c | ∆c � �J�pĉpηqq

�
∆y
0



, }∆y}22 ¤ qpχ2

nc�ng , αq
*
. (12.48)

Proof
See Bock [39], p. 136f, or Bock, Kostina, and Kostyukova [40]. �

Due to the nonlinearity of F1 and F2, the distribution of the maximum likelihood estimate
ĉphq is generally unknown. Consequently, also the distributions of the expressions that occur
in the definitions of ΥN

ĉphqpqpχ2
nc�ng , αqq and ΥL

ĉphqpqpχ2
nc�ng , αqq are unknown, and the quantile

qpχ2
nc�ng , αq can only be regarded as an approximation of the “correct” indifference parameter δ

(for the probability α). Therefore, both indifference regions contain the correct parameters only
approximately with probability α:

P pc� P ΥN
ĉphqpqpχ2

nc�ng , αqqq � α (12.49a)

P pc� P ΥL
ĉphqpqpχ2

nc�ng , αqqq � α. (12.49b)

The less nonlinear the functions F1 and F2 are, the better these approximations become.

12.2.4. Confidence Intervals

In the previous subsection, indifference regions were derived that enclose the correct parameters
c� either exactly with probability α (in the case of linear functions F1 and F2) or approximately
with probability α (in the case of nonlinear functions F1 and F2). The next lemma shows that the
indifference region ΥL

ĉpηqpqpχ2
nc�ng , αqq as defined by equation (12.47) is “exactly” contained in a

box.

Lemma 12.7 (“Exact” Bound for Linearized Indifference Region)

Let the assumptions of Lemma 12.6 be fulfilled. Then it holds that

ΥL
ĉpηqpqpχ2

nc�ng , αqq � Ω :� tĉpηq �∆c | |∆ci| ¤ θi for 1 ¤ i ¤ ncu (12.50)

with θi :� qpχ2
nc�ng , αq � pṼcqi,i, where

Ṽc :� J�pĉpηqq
�

1 0
0 0



pJ�qT pĉpηqq. (12.51)

Moreover, Ω contains ΥL
ĉpηqpqpχ2

nc�ng , αqq exactly in the sense that

max
cPΥL

ĉpηq
pqpχ2

nc�ng
,αqq

|ci � ĉipηq| � θi. (12.52)

Proof
See Bock [39], p. 137, or Bock, Kostina, and Kostyukova [40]. �

Please note that, under the assumptions of Lemma 12.4, the indifference region ΥL
ĉpηqpqpχ2

nc�ng , αqq
encloses the correct parameters c� exactly with probability α. In this case, rĉi � θi, ĉi � θis is thus
identified as confidence interval for the individual parameter ci. If the functions F1 and/or F2 are
nonlinear, rĉi � θi, ĉi � θis can be used as an approximation of the confidence interval.

12.3. Analysis of “Rank-Deficient Solutions”

In Section 12.2, results were presented on the statistical distribution of maximum likelihood param-
eter estimates ĉphq, on the statistical distribution of the least-squares sum, on confidence regions
and on confidence intervals. All rigorous results thereby relied on the following assumptions:

• The functions hpcq and gpcq in the constrained least-squares problem (12.6) are linear.
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• The measurements η in problem (12.6) are realizations of the random variables h � η� � e,
and e � N p0,Vεq.

• The (constant) Jacobians J1 � J1pcq and J2 � J2pcq are such that the rank conditions
rankpJ2q � ng and rankpJq � nc are fulfilled.

For nonlinear functions h and g, the results for the linear case are still approximately valid provided
that the (non-constant) Jacobians J1pcq and J2pcq are such that the rank conditions are fulfilled
in the solution, i.e. for c � ĉpηq.

Unfortunately, it is quite frequent in practice that the rank condition rankpJpĉpηqqq � nc is
violated or that the matrix is (very) ill-conditioned. This situation may occur, e.g., from overpa-
rameterization of the dynamic process. The analysis and interpretation of solutions in this case is
the subject of this section.

Linear Constrained Least-Squares Problems

It is instructive to regard, at first, the case of a linear constrained least-squares problem of the
form

min
c

���V� 1
2

ε pB1c� b1 � ηq
���2
2

(12.53a)

s.t. B2c� b2 � 0, (12.53b)

for which the rank condition

rankpJq � nc, J :�
�

V
� 1

2
ε B1

B2

�
(12.54)

is violated.
As in Section 12.2, it is assumed that the measurements are normally distributed (h � η� � e,

e � N p0,Vεq, η� � B1c
� � b1, B2c

� � b2) and that the rank condition rankpB2q � ng is fulfilled.
Further, for numerical purposes, let the matrix B2 be well-conditioned.

Since B2 has full rank (and is well-conditioned), it is still possible to transform the problem into
the reduced form (Definition 11.8) such that the above problem becomes

min
c

����A S
�
c�V

� 1
2

ε pb1 � ηq
���2
2
, (12.55a)

s.t.
�
L 0

�
c� b2 � 0. (12.55b)

Violation of the rank condition (12.54) is equivalent to the case that one or several entries in the
diagonal matrix S are zero. Hence, the solution is not unique. However, there exists a unique
solution of minimum norm }c}2, and this solution can be expressed in terms of the rank-deficient
generalized inverse J�rrs that was introduced in Section 11.2:

ĉpηq � �J�rrs

�
V
� 1

2
ε pb1 � ηq

b2

�
, J�rrs �

�
0 L�1

S: �S:AL�1



. (12.56)

Thereby, r denotes the rank of the matrix J.
A result for the practical interpretation of this “minimum-norm” solution is as follows (see also

Bock [39], page 154).

Theorem 12.8 (Characterization of Rank-Deficient Solutions of Linear Problems)

The solution ĉpηq of problem (12.55) given by equation (12.56) is equivalent to the unique solution
of the regularized problem

min
c

����A S
�
c�V

� 1
2

ε pb1 � ηq
���2
2
, (12.57a)

s.t.
�
L 0

�
c� b2 � 0, (12.57b)

p1�Prqc � 0. (12.57c)
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where Pr is given by Pr �
�

1r 0
0 0



, and 1r is the identity matrix of dimension r � r.

Proof
Let ĉpηq � pzT1 , zT2 , zT3 q, with z1 P Rng , z2 P Rr�ng and z3 P Rnc�r. It is obvious that z1 and z2 are,

for both problems, given by z1 � �L�1b2 and z2 � �S̄�1pV� 1
2

ε pb1 � ηq �AL�1b2q, respectively,
where S̄ denotes the upper left block of S of dimension pr�ngq�pr�ngq that contains the non-zero
entries of S.

The vector z3 is arbitrary in problem (12.55) because it is multiplied by the zero entries of S. In
equation (12.56), these components of ĉpηq are set to zero because of the zero elements in S:. For
the solution of problem (12.57), these components are zero as well due to the additional equality
constraints. �

By interpreting a rank-deficient solution as the unique solution of the regularized problem
(12.57), it is immediately possible to apply the analysis of Section 12.2. That is, if the unde-
termined parameters of problem (12.55) are considered as fixed, the statistical distribution of the
parameter estimates can be expressed as (cf. Theorem 12.1)

ĉphq � N pc�,Vcq , Vc � J�rrs

�
1 0
0 0



pJ�rrsqT , (12.58)

i.e. Vc represents the covariance of the those parameters that are estimated (i.e. locally identi-
fyable).

Further, confidence intervals can be given for the subset of estimated parameters (cf. Lemma 12.7)

Υĉpηqpqpχ2
r�ng , αqq � Ω :� tĉpηq �∆c | |∆ci|   θi for 1 ¤ i ¤ ncu (12.59)

with θi :� qpχ2
r�ng , αq � pVcqi,i.

For ill-conditioned, yet non-singular, problems for which some elements si are “almost” zero,
two approaches for the analysis exist. The first is to regard the solution as singular, and thus
to compute the statistical distribution of the estimated parameters by means of equation (12.58).
Alternatively, it is also possible to apply the analysis of Section 12.2 directly. This will yield
huge entries in the covariance matrix and thus huge confidence intervals for the estimates of those
parameters that correspond to the near-singular values si.

Nonlinear Constrained Least-Squares Problems

For nonlinear problems of the form

min
c

}F1pcq}22 (12.60a)

s.t. F2pcq � 0, (12.60b)

the Generalized Gauss-Newton method computes the iterates by ck�1 � ck � ∆ck, where ∆ck is
the solution of the linear constrained least-squares problem

min
∆c

}F1pckq � J1pckq∆c}22 (12.61a)

s.t. F2pckq � J2pckq∆c � 0. (12.61b)

The modification of the Generalized Gauss-Newton method for ill-conditioned problems as de-
scribed in Section 11.2 thereby uses, if necessary, a rank-deficient generalized inverse J�rrspckq of

Jpckq �
�

J1pckq
J2pckq



to determine the increment ∆ck. Accordingly, the method may end up in a

point ĉpηq where ∆c � 0 is a rank-deficient solution of the linear constrained least-squares problem.
Then – as a generalization of Theorem 12.8 – the following theorem holds.

Theorem 12.9 (Rank-Deficient Solutions in the Context of Nonlinear Problems)

Let ĉpηq be a point such that the locally linearized constrained least-squares problem has a rank-
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deficient solution ∆c � 0. Then it holds that ĉpηq is a KKT point of the problem

min
c

}F1pcq}22 (12.62a)

s.t. F2pcq � 0 (12.62b)

p1�Prqpc� ĉpηqq � 0 (12.62c)

with Pr � J�rrspĉqJpĉq.
Proof
See Bock [39], page 153f. �
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13. Parameter Estimation in the Context of
IHDDEs

Parameter estimation for DDEs can often be achieved success-
fully by minimizing the objective function Φppq, but in doing so
computationally one needs to be aware that Φppq and its derivatives
may suffer jumps.

Baker and Paul, in the conclusion of their paper “Pitfalls in Param-
eter Estimation for Delay Differential Equations” [13].

In Chapter 10 it was shown that constrained maximum likelihood parameter estimation is, for
measurements η that are normally distributed with known covariance matrix Vε, equivalent to
solving nonlinear constrained least-squares problems of the form (10.15), i.e.

min
c

���V� 1
2

ε

�
η � hptyptj ; cquntj�1, cq

����2
2

(13.1a)

subject to gptyptj ; cquntj�1, cq � 0. (13.1b)

Thereby, h is the Rnh-dimensional vector of measurement functions and g is the ng-dimensional
vector of equality constraint functions. The parameters are denoted by c P Rnc .

The state ypt; cq is defined as solution of a dynamic model, see Subsection 10.1. So far, no
particular form of the dynamic model has been specified. In this chapter, the case is considered
that the dynamic model is a system of differential equations. This task requires to solve infi-
nite-dimensional optimization problems. In particular, for the comparably simple case of ordinary
differential equations (ODEs), the following optimization problem arises:

min
ypt;cq,c

���V� 1
2

ε

�
η � hptyptj ; cquntj�1, cq

����2
2

(13.2a)

subject to gptyptj ; cquntj�1, cq � 0 (13.2b)

9ypt; cq �fpt, ypt; cq, cq @ t P T pcq :� rtinipcq, tfinpcqs. (13.2c)

It is recalled that f is called the right-hand-side function of the ODE, and that tinipcq and tfinpcq
are the initial time and the final time. The interval T pcq has to be chosen in such a way that
tj P T pcq for all 1 ¤ j ¤ nt.

The problem (13.2) is “of infinite dimension” because the state vector ypt; cq occurs as an (infinite-
dimensional) optimization variable, which has to fulfill the (infinite-dimensional) condition (13.2c),
i.e. the differential equation system. In order to apply, in the numerical practice, an optimization
method such as the Generalized Gauss-Newton method (Chapter 11), a finite-dimensional param-
eterization of the problem (13.2) is needed first.

In the context of this thesis, the goal is of course to go beyond problems of the form (13.2). More
precisely, in this chapter, parameter estimation problems are addressed in which the state ypt; cq
fulfills a system of impulsive hybrid discrete-continuous delay differential equations (IHDDEs)
rather than a system of ODEs. Further, a finite-dimensional parameterization for such problems
is presented.

Literature Survey

In order to give the context for the methods presented in this chapter, a literature survey on
parameter estimation methods is given first. The emphasis is thereby on the following two aspects:

(a) strategies for finite-dimensional parameterization of infinite-dimensional parameter estima-
tion problems, and
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(b) numerical optimization methods for solving the resulting finite-dimensional optimization
problems.

Issue (b) is addressed first. The underlying idea of many methods that have been developed for
this purpose is to locally apply Newton’s method to the KKT conditions (see Definition 10.16) of
the optimization problem. However, away from the solution the exact Hessian matrix (cf. equation
(11.9)) may not be positive indefinite, and/or the exact computation of the Hessian matrix may be
too expensive. This has lead to the development of many approximation strategies for the Hessian.

The (Generalized) Gauss-Newton method (as defined in Chapter 11), e.g., is specific to problems
with least-squares objective function. It uses an approximation of the Hessian that disregards
second order derivatives of the functions h and g, which significantly reduces the computational
costs compared to an “exact” Newton method. In addition, it has been discussed in Subsection
11.1.2 that the use of this approximation ensures that the (Generalized) Gauss-Newton method
converges only to “statistically stable” solutions. This makes the (Generalized) Gauss-Newton
method particularly well-suited for the solution of (constrained) least-squares parameter estimation
problems.

A popular alternative method for the solution of unconstrained least-squares problems is the
Levenberg-Marquardt method (see Levenberg [174], Marquardt [185]). This method can be viewed
as a hybrid between the Gauss-Newton method and a rudimentary steepest descent method (which
chooses the increments into the direction of the negative gradient of the objective function). For-
mally, the Levenberg-Marquardt method is obtained by adding a regularizing term to the Hes-
sian, which also acts as a limiting factor on the norm of the increment. A modification of the
Levenberg-Marquardt method for constrained least-squares problems is described, e.g., in Holt
and Fletcher [150].

In the context of more general optimization problems – i.e. those of “non-least-squares type” –
other strategies have been proposed for the approximation of the Hessian. Of frequent use are
those strategies that compute, from a given (approximate) Hessian in one iteration, a new Hessian
approximation by so-called “update strategies”. Popular examples of such update strategies are
called Davidon-Fletcher-Powell (see Davidon [74] and Fletcher and Powell [109]), and Broyden-
Fletcher-Goldfarb-Shanno (see Broyden [50], Fletcher [107], Goldfarb [117], and Shanno [234]).

Optimization methods further differ with respect to the handling of equality constraints (and
possibly inequality constraints). One approach is to design optimization algorithms that are ca-
pable of handling constraints – this has been the case for the Generalized Gauss-Newton method
(Chapter 11). Another prominent method, suitable for problems with general (“non-least-squares”)
objective functions, and with both equality and inequality constraints, is the sequential quadratic
programming method (also called “Wilson method”, in reference to Wilson [257]).

An alternative approach for the handling of constraints is to reformulate the original constrained
optimization problem as an unconstrained problem. This can be achieved by adding terms to
the objective function that penalize violations in the constraints. This leads to so-called penalty
methods and augmented Lagrangian methods, all of which require an underlying method for solving
unconstrained optimization problems.

Detailed presentation of all aforementioned methods can be found, e.g., in the following text-
books: Fletcher [108], Geiger and Kanzow [114], Bonnans et al. [47], Nocedal and Wright [195],
Biegler [30], and Ulbrich and Ulbrich [251].

As a second step in this literature review, methods for finite-dimensional parameterization are
discussed next (i.e., item (a) above). An obvious and straightforward way for the finite-dimensional
parameterization of problem (13.2) is the so-called initial value problem approach (also called single
shooting). This approach relies on using the initial value for the finite-dimensional parameteriza-
tion, which leads to the following problem:

min
c
}V� 1

2
ε

�
η � hptyptj ; cquntj�1, cq

� }22 (13.3a)

subject to gptyptj ; cquntj�1, cq � 0 (13.3b)

ypt; cq is the solution of the following IVP on T pcq � rtinipcq, tfinpcqs
9ypt; cq �fpt, ypt; cq, cq (13.3c)

yptinipcq; cq �yinipcq. (13.3d)
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For the formulation of the finite-dimensional problem in this form it might be necessary to augment
the original parameter vector in order to be able to parameterize yini in terms of c.

Alternative finite-dimensional parameterizations of problem (13.2) can be found by the so-called
boundary value problem approach. Two realizations of the boundary value problem approach are
popular in the context of optimization problems that are constrained by ODEs or by differential-
algebraic equations.

One realization of the boundary value problem approach is the multiple shooting method, which
goes back to Bock [36, 38, 39]. In this approach, several so-called multiple shooting nodes are
introduced in order to split up the interval T pcq into several subintervals. The state vectors at
the multiple shooting nodes are introduced as additional optimization variables, and they are used
as initial values for the IVPs on the subintervals. Further, additional equality constraints (often
called matching conditions) are added to the optimization problem in order to ensure that the
trajectory is continuous in the solution.

Another boundary value problem approach is the collocation method, see e.g. Bock [38] and Tjoa
and Biegler [247]. This method relies on choosing a mesh such that the interval T pcq is split up into
a number of subintervals that is typically much larger than in the case of multiple shooting. On
each subinterval, a polynomial representation of the state is assumed, and the coefficients of the
polynomials are determined by the condition to fulfill the differential equation at the collocation
nodes. As a result, the parameterization by the collocation method leads to a high dimensional
nonlinear constrained least-squares problem that does not require explicit solutions of IVPs in each
iteration of the optimization method.

The parameterization of optimization problems – not necessarily with least-squares objective
function as in problem (13.2) – by boundary value problem approaches has many advantages. In
particular, multiple shooting and collocation approaches are well-suited for highly unstable and
chaotic systems for which it is numerically impossible to solve the IVP on the whole time interval
T pcq (see e.g. Bock [39], pages 24 and 226f, and Bock, Kostina, and Schlöder [42]). Furthermore,
boundary value problem approaches allow to exploit knowledge about the solution, e.g. the available
measurement data, in the initial guess of the optimization variables. This often drastically improves
the convergence behavior, see e.g. Lenz et al. [172].

After having reduced the infinite-dimensional parameter estimation problem to finite dimension,
a method for solving finite-dimensional nonlinear constrained least-squares problems can be ap-
plied. Many combinations of finite-dimensional parameterizations and optimization methods are
suggested in the literature, and only those works are cited in the following that have dealt with
problems with time delays, in particular with delay differential equations (DDEs).

In one of the first approaches by Burns and Hirsch [52], the DDE is discretized on the whole
considered time interval by an explicit Euler scheme or a Runge-Kutta scheme, which yields a
delay difference equation. The solution of the resulting finite-dimensional least-squares problem is
either done by a rudimentary steepest-descent method or by a quasi-Newton method that employs
the Davidon-Fletcher-Powell update strategy.

Other early works have proposed a rather indirect approach: Burns and Cliff [16], Banks and
Daniel Lamm [17], and Murphy [191] transform the DDE into an abstract operator equation. They
then find finite-dimensional approximations of the abstract operator equation, which are shown to
be equivalent to a system of ODEs. Murphy [191] then follows the single shooting approach and
solves the resulting finite-dimensional optimization problem with a Levenberg-Marquardt method.

Bocharov and Romanyukha [33] take a more straightforward approach and use the single shooting
parameterization in order to obtain a finite-dimensional least-squares problem. This problem is
subsequently minimized by combining the derivative-free Nelder-Mead algorithm (see Nelder and
Mead [192], and a survey on derivative-free optimization methods in Rios and Sahinidis [215]) and
quasi-Newton methods that use, e.g., the Davidon-Fletcher-Powell update strategy.

Baker and Paul [13] raise attention to the issue that the objective function for parameter es-
timation problems in the context of DDEs is, in general, non-differentiable with respect to the
parameters. Nevertheless, Baker, Bocharov, and Paul [10], Baker et al. [11], and Baker et al. [9]
combine the single shooting approach with derivative-based optimization methods like sequential
quadratic programming or Levenberg-Marquardt and apply them to parameter estimation prob-
lems constrained by DDEs and “DDEs of neutral type”. Despite the fact that the objective func-
tions may be non-smooth, they used this approach successfully for solving parameter estimation
problems in several real-world applications.
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The single shooting parameterization has further been used in Hartung and Turi [138], Har-
tung [134], and Hartung [136]. All three papers put emphasis on the fact that the theory is de-
veloped for infinite-dimensional parameters. However, all numerical computations use, of course,
finite-dimensional representations of such infinite-dimensional parameters. The finite-dimensional
problems are, in Hartung and Turi [138], solved with a quasi-Newton method using a least-squares-
specific update strategy for the Hessian that is due to Dennis, Gay, and Welsch [75]. In Har-
tung [134] and in Hartung [136], a Gauss-Newton method is employed, which, however, is therein
called “quasi-linearization method” (see Xuyen and Svrcek [263], who discuss the equivalence of
these approaches).

Several application-oriented works have also used the single shooting approach for DDE-con-
strained parameter estimation problems, see Lehn, Tibken, and Hofer [170], Reinecke [212], and
Olufsen and Ottesen [197]. In Lehn, Tibken, and Hofer [170], the optimization is performed
by a combination of the Nelder-Mead method and a sequential quadratic programming method.
Reinecke [212] uses a Gauss-Newton method, and Olufsen and Ottesen [197] rely on a Levenberg-
Marquardt method.

The above-listed references suggest that the single shooting parameterization combined with
a straightforward application of a derivative-based optimization method are – despite a possible
non-smooth behavior of the objective function (and of the constraint functions) – the most often
used techniques for DDE-constrained parameter estimation problems. The remainder of this lit-
erature survey mentions comparably recent publications, in which different approaches have been
explored.

There is, for example, the work by ZivariPiran [271]. Therein, the “usual” single shooting
parameterization is used, but the realization of the optimization is non-standard in two respects.
At first, it is noted that the derivative-based optimization method presented therein avoids the
use of finite differences for computing the sensitivities Wpt; cq � Bypt; cq{Bc. Instead, a “first
differentiate, then discretize” approach is used that also accounts for possible jumps in Wpt; cq
(see Chapter 7). Second, this work addresses the issue that the non-smoothness of y and W
may cause a non-smoothness of the objective function (or of the constraint functions). In this
context, it is suggested to embed a sequential quadratic programming method into a higher level
algorithm that ensures smoothness of the optimization problems by means of additional constraints.
ZivariPiran [271] reports encouraging numerical results for this strategy for two problems with
either one or two constant delays. It is remarked, however, that the proposed strategy is implicitly
based on the assumption that the total number and the order of the discontinuities in ypt; cq
remains unchanged during the iterations of the sequential quadratic programming method. Hence,
it is non-trivial to generalize this approach to the case that the delays are state-dependent.

The works by Horbelt [151] and Horbelt, Timmer, and Voss [152] are distinctive in the respect
that they present a multiple shooting approach for DDE-constrained parameter estimation prob-
lems. Herein, the IVPs on the subintervals are defined by using splines as initial functions, and
these splines are requested to coincide with the IVP solution on the preceding interval on a small
number of discrete time points (“ad hoc” modification of matching conditions for problems with
time delays). The method seems to have performed satisfactorily for the considered applications.
However, the method is somewhat heuristic in the sense that it lacks an analysis of the errors that
are introduced to the specific matching conditions. Further, the method has been applied to scalar
DDEs with single delays, and the generalization to state-dependent delays is non-trivial.

The author is not aware of any works that have used the collocation approach as a finite-
dimensional parameterization of DDE-constrained parameter estimation problems. However, it is
referred to Schumann-Bischoff, Luther, and Parlitz [227] and to Mehrkanoon, Mehrkanoon, and
Suykens [187]. The approaches used therein are at least distantly related to collocation in that
they avoid the use of an IVP solver. It should be noted that they make some rather restrictive
assumptions on the problem (linearity of the right-hand-side function in the past states, small time
delays, dense measurements) and are limited in their capabilities (e.g. only the initial function or
the delay can be estimated).

For completeness, it should be mentioned that the collocation approach has been used for com-
puting steady states or periodic solutions in DDEs by solving boundary value problems; in par-
ticular, this is the case in the software package DDE-BIFTOOL by Engelborghs, Luzyanina, and
Roose [93], see also Luzyanina, Engelborghs, and Roose [181]. Further, for an example of a col-
location discretization used for optimal control problems constrained by DDEs with constant or
time-dependent delays, see Günterberg [125].
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Novel Results Presented in This Chapter

At first, an infinite-dimensional parameter estimation problem is formulated for the case that the
state y is defined by an impulsive hybrid discrete-continuous delay differential equation (IHDDE)
model. Of course, this comprises parameter estimation problems in the context of all subclasses
of differential equations that were presented in Section 1.2. It is remarked that, to the knowledge
of the author, also the simpler class of hybrid discrete-continuous delay differential equations
(HDDEs) has not yet been treated in the context of parameter estimation.

As a second contribution of this chapter, a finite-dimensional parameterization of the IHDDE-
constrained parameter estimation problem by means of the single shooting approach is presented.

It is further elaborated on the issue that IHDDE-constrained parameter estimation problems
must generally be considered as non-smooth optimization problems. A justification is given why
the application of derivative-based optimization methods may nevertheless be successful.

Eventually, this chapter presents the numerical methods that are implemented in PARAMeter
Estimation in Differential Equations (ParamEDE) – a newly developed code for practical parame-
ter estimation in IHDDEs. This code is the first that realizes a damped Generalized Gauss-Newton
method based on the restrictive monotonicity test for parameter estimation in DDEs. ParamEDE
uses Colsol-DDE as underlying IVP solver and exploits its capabilities for computing the derivatives
of IVP solutions with respect to parameters.

Organization of This Chapter

The chapter is divided into three sections. Section 13.1 introduces the infinite-dimensional IHDDE-
constrained least-squares problem and presents a finite-dimensional parameterization by means of
the single shooting approach. Section 13.2 discusses why IHDDE-constrained least-squares prob-
lems have to be regarded as non-smooth, and elaborates on the consequences of this non-smoothness
for the properties of local solutions and for the applicability of derivative-based optimization meth-
ods. Eventually, Section 13.3 presents a detailed algorithm for practical parameter estimation in
IHDDEs that is based on a damped Generalized Gauss-Newton method with restrictive monotonic-
ity test and a regularization strategy. It further discusses the practical realization of this algorithm
in the software package ParamEDE.

13.1. Problem Formulation: Parameter Estimation in IHDDEs

13.1.1. Infinite-Dimensional Problem

Consider the case that a real-world process is modeled by an IHDDE as in Definition 1.1. Then
the following infinite-dimensional parameter estimation problem is formulated as a generalization
of problem (13.2):

min
ypt;cq,c

}V� 1
2

ε

�
η � hptyptj ; cquntj�1, cq

� }22 (13.4a)

gptyptj ; cquntj�1, cq � 0 (13.4b)

9ypt; cq �fpt, ypt; cq, c, typt� τipt, ypt; cq, cq; cqunτi�1, ζptqq for t P Dt1pT pcqq (13.4c)

ypt; cq �y�pt; cq
�y�pt; cq � ωpt, y�pt; cq, c, typt� τipt, y�pt; cq, cq; cqunτi�1, ζptqq for t P Dt0pT pcqq. (13.4d)

Herein, T pcq � rtinipcq, tfinpcqs is the considered interval, with tinipcq denoting the initial time and
tfinpcq denoting the final time. For the problem formulation given above, the interval has to be
such that tj P T pcq for all 1 ¤ j ¤ nt.

For completeness, also the meaning of all other symbols in equation (13.4) is recalled from
Section 1.1: Dt1pT pcqq is the set that contains those times for which all switching function signs
ζptq are non-zero, and Dt0pT pcqq � T pcqzDt1pT pcqq is a set containing those times for which at
least one switching function sign ζptq is zero. Further, f is the right-hand-side function, τi are the
delay functions, ζptq � pζ1ptq, . . . , ζnσ ptqqT are the signs of the switching functions σi, and ω is
the impulse function. Eventually, tinipcq and tfinpcq are the initial time and the final time of the
considered time interval, respectively.
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The IHDDE-constrained parameter estimation problem (13.4) is, like problem (13.2), of infinite
dimension: The function ypt; cq occurs as infinite-dimensional optimization variable, which is sub-
ject to the infinite-dimensional constraint (13.4c). In order to make the problem computationally
treatable, a finite-dimensional parameterization is needed.

13.1.2. Finite-Dimensional Problem

A finite-dimensional parameterization of the optimization problem (13.4) is given by

min
c
}V� 1

2
ε

�
η � hptyptj ; cquntj�1, cq

� }22 (13.5a)

gptyptj ; cquntj�1, cq � 0 (13.5b)

ypt; cq is solution of the following IHDDE-IVP on T pcq � rtinipcq, tfinpcqs :

9ypt; cq �fpt, ypt; cq, c, typt� τipt, ypt; cq, cq; cqunτi�1, ζptqq for t P Dt1pT pcqq (13.5c)

ypt; cq �y�pt; cq
�y�pt; cq � ωpt, y�pt; cq, c, typt� τipt, y�pt; cq, cq; cqunτi�1, ζptqq for t P Dt0pT pcqq

(13.5d)

yptinipcq; cq �yinipcq (13.5e)

ypt; cq �φpt, cq for t   tinipcq. (13.5f)

As in Chapter 1, yini is called the initial value and φ is called the initial function.
The difference to problem (13.4) is that ypt; cq is not longer an optimization variable, but that it

is, for given parameter values c, determined as solution of an IHDDE-IVP. It is noted that finite-
dimensional parameterization implies, for IHDDEs, that also the initial function is parameterized
in terms of c.

In taking the step from problem (13.4) to problem (13.5), the parameter vector c may have to
be augmented in order to parameterize yini and φ in terms of c.

Problem (13.5) can be regarded as a single shooting approach (or initial value problem approach)
applied to problem (13.4) in the context of IHDDEs.

13.2. Non-Smooth Parameter Estimation Problems

As in Chapter 10, let the following abbreviating notations be defined for the objective function
and for the constraint functions in problem (13.5):

F1pcq :� V
� 1

2
ε

�
η � hptyptj ; cquntj�1, cq

�
(13.6a)

F2pcq :� gptyptj ; cquntj�1, cq. (13.6b)

Further, let nF1
:� nh and nF2

:� ng be the dimensions of F1pcq and F2pcq.
Since IHDDE-IVP solutions may have discontinuities of order 0, the functions F1pcq and F2pcq

are generally discontinuous functions of c even if the functions h and g are smooth. More precisely,
discontinuities occur for those points c P Rnc in parameter space for which a discontinuity of order
0 is located at one of the measurement times tj .

Consider next the first derivative of the functions F1pcq and F2pcq. In the abbreviating notation
defined above, the Jacobians

Jipcq � BFipc1q
Bc1

����
c1�c

(13.7)

can formally be expressed as follows:

J1pcq � �V
� 1

2
ε

�
nţ

j�1

Bh
Byj

Byptj ; cq
Bc � Bh

Bc

�
(13.8a)

J2pcq �
nţ

j�1

Bg
Byj

Byptj ; cq
Bc � Bh

Bc . (13.8b)
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The partial derivatives of h and g are thereby evaluated at ptyptj ; cquntj�1, cq.
Equations (13.8) show that the Jacobians J1pcq and J2pcq involve the derivative of the IHDDE-

IVP solution with respect to the parameters c. In Chapter 7, sufficient conditions were given under
which there exists a piecewise continuously differentiable function Wpt; cq such that Wpt; cq �
Bypt; cq{Bc. However, even in the case that these sufficient differentiability assumptions are fulfilled,
the Jacobians J1pcq and J2pcq are non-differentiable at a point c P Rnc in parameter space if one
of the jumps in Wpt; cq occurs at one of the measurement times tj .

Parameter estimation problems constrained by IHDDEs therefore need to be considered as non-
smooth optimization problems. The various consequences of this non-smoothness are discussed in
the following.

13.2.1. Necessary and Sufficient Optimality Conditions

Necessary and sufficient optimality conditions were given in Section 10.4 under the assumption
that F1pcq and F2pcq are (twice) continuously differentiable with respect to the parameters. If the
state ypt; cq is given by the solution of an IHDDE-IVP, this assumption might not be fulfilled.

Consider the case that h and g are smooth functions of their arguments, and let ĉ be a local
solution (Definition 10.8) such that the sufficient conditions for differentiability of the IVP solution
(see Chapter 7) are fulfilled. Moreover, assume that the discontinuities in y and W do not occur at
the measurement times tj , 1 ¤ j ¤ nt. Then it holds that F1pcq and F2pcq are locally differentiable
in a neighborhood of the local solution ĉ. Accordingly, under these assumptions, the necessary
condition of first order given in Theorem 10.15 remains valid.

Second order differentiability has not been discussed in this thesis so far. Assume, however,
that also the second derivative B2ypt; cq{Bc2 is a piecewise smooth function. If its time points of
discontinuities are, for a local solution ĉ, safely away from the measurements times tj , 1 ¤ j ¤ nt,
then F1pcq and F2pcq are locally twice continuously differentiable and the Theorems 10.15 and 10.17
hold.

Of course, the question remains whether a set of sufficient conditions can be found, which ensure
that B2ypt; cq{Bc2 is a piecewise smooth function. In general, this question can be approached by the
techniques that were employed in Chapter 7 for showing first order differentiability, i.e. applying
the method of steps and exploiting regularity conditions on the switching functions. However,
the concrete formulation of suitable regularity conditions and the derivation of the “second-order
variational IVP” and the corresponding jump expressions for the second order derivatives become
very technical and are thus not given in this work.

13.2.2. Derivative-Based Optimization

As mentioned before, the functions F1pcq and F2pcq (as defined in equations (13.6a) and (13.6b)) are
generally discontinuous or non-differentiable if ypt; cq represents an IHDDE-IVP solution. Clearly,
this fact calls for a justification of using derivative-based optimization methods.

The justification is as follows. If h and g are smooth, and if the discontinuities of order 0 in y
and W do, at a local minimum ĉ, not occur at the measurement times tj , 1 ¤ j ¤ nt then the
functions F1pcq and F2pcq are differentiable in a neighborhood of ĉ. Accordingly, the differentiability
assumption of the local contraction theorem (Theorem 11.6) is fulfilled within this neighborhood.
This directly yields a local convergence result for the Generalized Gauss-Newton method under
the condition that the initial guess is sufficiently close to the solution.

If no sufficiently good initial guess is available, the Generalized Gauss-Newton method may fail
to converge. More over, also a damped Generalized Gauss-Newton method – like the one presented
in Section 11.3 – may fail to converge. For example, it can get stuck at a boundary of the domain on
which F1 and F2 are differentiable. Numerical investigations have shown, however, that damped
Generalized Gauss-Newton methods are quite successful for practical non-smooth least-squares
problems (see Lenz [171]), even though standard convergence theory does not apply. Further nu-
merical investigations on the practical performance of damped Generalized Gauss-Newton methods
applied to a non-smooth least-squares parameter estimation problem are given in Chapter 16.

13.2.3. Analysis of Solutions

Rigorous statistical results for the distribution of parameter estimates as a function of the (random)
measurement data, for confidence regions, and for confidence intervals were obtained in Chapter 12
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under the assumption that F1pcq and F2pcq are linear.
In the vast majority of practical least-squares problems the functions F1 and F2 are nonlinear.

This is, in particular, true for parameter estimation problems where the state ypt; cq is the solution
of an IVP in differential equations. In this case, only approximations of confidence regions are
available, see equations (12.46), (12.47), and (12.49). Accordingly, also the intervals rĉi�θi, ĉi�θis
with θi as defined in Lemma 12.7 are only approximations of confidence intervals. The quality of
these approximations thereby depends on the “amount of nonlinearity” of the functions F1pcq and
F2pcq.

In the case that ypt; cq is an IHDDE-IVP solution, the functions F1pcq and F2pcq may be dis-
continuous or non-differentiable for some parameter values. Nevertheless, if F1 and F2 are locally
differentiable at a solution ĉ, the linear indifference region ΥL

ĉ pqpχ2
nc�ng , αqq is still defined (equa-

tion (12.47)) and the intervals rĉi� θi, ĉi� θis can formally be computed (Lemma 12.7). However,
both the indifference region and the intervals have to be interpreted with caution regarding a
statistical inference about the correct parameters c�.

13.3. Practical Parameter Estimation in IHDDEs

13.3.1. A Practical Algorithm

In this section, an algorithm is suggested for estimating parameters in model functions of IHDDEs.
It should be noted that the strategy for stepsize selection and for the computation of rank-deficient
generalized inverses in this algorithm resembles the implementation in the parameter estimation
software PARFIT as presented in Bock [36, 38, 39], Bock, Kostina, Schlöder [41], see also Lenz
[171].

For convenience, it is briefly recalled that the Generalized Gauss-Newton solves nonlinear con-
strained least-squares problems of the form

min
c
}F1pcq}22 (13.9a)

s.t. F2pcq � 0 (13.9b)

by starting from an initial guess c0 and iterating from ck to ck�1 by setting ck�1 � ck �∆ck (see
Chapter 11). Thereby, ∆ck is the solution of the linear constrained least-squares problem

min
∆c

}F1pckq � J1pckq∆c}22 (13.10a)

s.t. F2pckq � J2pckq∆c � 0. (13.10b)

By setting F pckq :�
�
F1pckq
F2pckq



and Jpckq :�

�
J1pckq
J2pckq



, the increment ∆ck can be expressed as

∆ck � �J�pckqF pckq, (13.11)

where J�pckq is the generalized inverse of Jpckq.
The algorithm given below makes use of the restrictive monotonicity test as globalization strat-

egy, i.e. the iterates are given by ck�1 � ck � αk∆ck, αk P p0, 1s, see Section 11.3 for details.
The algorithm further uses the modification for ill-conditioned and singular problems described in
Section 11.2. This means that the increment is determined by

∆ck � �J�rrspckqF pckq, (13.12)

with J�rrspckq being a rank-deficient generalized inverse with rank r ¤ nc. It is further recalled that

r̃ � r � nF2 , where nF2 is the number of equality constraints.
As in Section 11.2, it is assumed that the rank condition rankpJ2pckqq � nF2 is fulfilled for all

iterates.

Algorithm 13.1 (A Generalized Gauss-Newton Method for Parameter Estimation in
IHDDEs)

Start with j � 0, k � 0, and with an initial guess c0 for the unknown parameters. Let further
αmin P p0, 1q be a minimum stepsize for the Generalized Gauss-Newton method, and let αacc P
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pαmin, 1s. Moreover, let γmax be an upper bound of the acceptable condition (in a given norm) of
J1pcq on the kernel of J2pcq. Finally, let εterm be a termination criterion and let η, η1, and η2 be
given such that 0   η1   η   η2   2. Initialize αbnd � 1.

1. Solve the IHDDE-IVP in order to obtain ypt; ckq and compute the sensitivities Wpt; ckq �
Bypt; ckq{Bc.
• If an error occurs in the (numerical) solution of the IHDDE-IVP or during the compu-

tation of the sensitivities, proceed with step 2.

• If the (numerical) integration was successful, proceed with step 3.

2. Proceed according to the iteration number k as follows:

• If k � 0 (i.e. first iteration), stop and exit with an error message.

• If k ¡ 0, Propose a new stepsize αk�1,j�1 or a new increment ∆ck�1 according to the
following rule:

– If αk�1,j ¡ αmin, set αbnd � αk�1,j and

αk�1,j�1 � max

�
αk�1,j

2
, αmin



.

– If αk�1,j � αmin, nF2 � 0, and r̃ ¡ 1, then set αk�1,j�1 � αmin, r̃ � r̃ � 1, and
compute a new increment with a rank-deficient generalized inverse, i.e.

∆ck�1 � �J�rrspck�1qF pck�1q,

where r � r̃. Reset αbnd � 1.

– If αk�1,j � αmin, nF2 � 0, and r̃ � 1, then stop and exit with an error message.

– If αk�1,j � αmin, nF2 ¡ 0 and r̃ ¡ 0, then set αk�1,j�1 � αmin, r̃ � r̃ � 1, and
compute a new increment with a rank-deficient generalized inverse, i.e.

∆ck�1 � �J�rrspck�1qF pck�1q,

where r � nF2 � r̃. Reset αbnd � 1.

– If αk�1,j � αmin, nF2 ¡ 0, and r̃ � 0, then stop and exit with an error message.

Set j � j � 1, ck � ck�1 � αk�1,j∆ck�1, and go back to step 1.

3. Evaluate the functions F1pckq and F2pckq (as defined by equations (13.6a), (13.6b)). Then
proceed according to the iteration number k as follows:

• If k � 0 (first iteration), then proceed with step 7.

• If k ¡ 0, proceed with step 4.

4. Compute an auxiliary increment �∆ck � �Jrrspck�1qF pckq, set δc � �∆ck�p1�αk�1,jq∆ck�1,

and compute ŵ � 2 � }δc}2{pαk�1,j � }∆ck}2q2. Proceed as follows (restrictive monotonicity
test):

• If ŵαk�1,j}∆ck}2 ¡ η2, proceed with step 5.

• If ŵαk�1,j}∆ck}2   η1, proceed with step 6.

• If η1 ¤ ŵαk�1,j}∆ck}2 ¤ η2, proceed with step 7.

5. Propose a new stepsize αk�1,j�1 or a new increment ∆ck�1 according to the following rule:

• If αk�1,j ¡ αmin, set αbnd � αk�1,j and

αk�1,j�1 � max

�
η

ŵ}∆ck}2 , αmin


.

255



Part IV. Parameter Estimation

• If αk�1,j � αmin, nF2
� 0, and r̃ ¡ 1, then set αk�1,j�1 � αmin, r̃ � r̃�1, and compute

a new increment with a rank-deficient generalized inverse, i.e.

∆ck�1 � �J�rrspck�1qF pck�1q,

where r � r̃. Reset αbnd � 1.

• If αk�1,j � αmin, nF2
� 0, and r̃ � 1, then stop and exit with an error message.

• If αk�1,j � αmin, nF2 ¡ 0 and r̃ ¡ 0, then set αk�1,j�1 � αmin, r̃ � r̃�1, and compute
a new increment with a rank-deficient generalized inverse, i.e.

∆ck�1 � �J�rrspck�1qF pck�1q,

where r � nF2
� r̃. Reset αbnd � 1.

• If αk�1,j � αmin, nF2
¡ 0, and r̃ � 0, then stop and exit with an error message.

Set j � j � 1, ck � ck�1 � αk�1,j∆ck�1, and go back to step 1.

6. Proceed as follows depending on the value of the employed stepsize αk�1,j:

• If αk�1,j ¥ minpαacc, 0.5 � αbndq, proceed with step 7.

• If αk�1,j   minpαacc, 0.5 � αbndq, then propose a new stepsize

αk�1,j�1 � min

�
η

ŵ}∆ck}2 , 0.5 � pαbnd � αk�1,jq


.

Then, set j � j � 1, ck � ck�1 � αk�1,j∆ck�1, and go back to step 1.

7. Accept ck as new iterate. Compute the Jacobians J1pckq and J2pckq by means of equa-
tions (13.8).

8. Choose the largest possible rank r, r � nF2 � r̃, 0 ¤ r̃ ¤ nc � nF2 , such that the condition of
J1pckq on the kernel of J2pckq is, in the chosen norm, at most γmax.

9. Compute the new increment

∆ck � �J�rrspckqF pckq.

10. Perform termination check:

• If }∆ck}2 ¤ εterm, then exit with message “convergence achieved”, define the solution
ĉ :� ck and provide an analysis of the obtained solution.

• Otherwise, proceed with step 11.

11. Propose a stepsize for the next step:

• If k � 0 (first iteration), then set αk,0 � 1.

• If k ¡ 0, then set ŵ � 2 � }δc}2{pαk�1,j � }∆ck}2q2, and

αk,0 � max

�
min

�
η

ŵ � }∆ck}2 , 1


, αmin



.

12. Set j � 0, ck�1 � ck � αk,j∆ck, k � k � 1. Reset αbnd � 1. Then go back to step 1.

This algorithm is an augmented version of Algorithm 11.13, which allows the use of rank-deficient
generalized inverses for the computation of increments in the case that the restrictive monotonicity
test fails for a user-given minimum stepsize αmin. Furthermore, Algorithm 13.1 employs a lower
bound η1 for the restrictive monotonicity test, and provides an error handling for the case that the
IHDDE-IVP solution or its derivative cannot be computed in parts of the parameter space.

Some strategies used in Algorithm 13.1 are now explained in detail.
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• If the integration or the sensitivity computation fails in step 1, then the algorithm attempts,
for k ¡ 0, different stepsizes or different increments that are computed with rank-deficient
generalized inverses. Preference is given to a reduction of the stepsize, and rank reductions
are only attempted once the minimum stepsize is reached.

• A similar strategy is employed if the upper bound of the restrictive monotonicity test is
violated, see step 5. The only difference to the decision tree in step 2 is the choice of
αk�1,j�1 in the case that αk�1,j ¡ 1. Here, a new stepsize is proposed, which is based on the
“optimal” value η. Contrariwise, the stepsize is simply multiplied by a factor 1{2 in step 2.

• For unconstrained problems, rank reductions are performed in the steps 2 and 5 until the
rank of J1pckq has reached the value 1. For constrained problems, the rank of J1pckq on the
kernel of J2pckq may even be reduced to 0; in this case, the iteration only aims at fulfilling
the linearized equality constraints.

• The quantity αbnd records, for a given increment (corresponding to a certain rank r of the
generalized inverse), the smallest attempted stepsize that has led to a failure of the integration
or to a violation of the restrictive monotonicity test. Before the start of an iteration, and
also if a new increment is computed with a rank-deficient generalized inverse, the value is
reset to 1.

• The value of αbnd is used in step 6, which is called if the lower bound of the restrictive
monotonicity test is violated. Here, it is proposed to accept the iterate if the stepsize is at
least half as large as αbnd – i.e. the stepsize for which the upper bound of the restrictive
monotonicity test had been violated or for which integration had failed.

• The proposed stepsize is further accepted in step 6 if it is greater than or equal to αacc. The
algorithmic parameter αacc can thus be used to “override” the restrictive monotonicity test
with respect to the lower bound η1.

• A good default value for η is 1, which corresponds to the “optimal” stepsize according to the
discussion in Section 11.3. Reasonable values for η1 and η2 are 0.5 and 1.5, respectively.

13.3.2. Realization in ParamEDE

Algorithm 13.1 is realized in a new software package called ParamEDE (PARAMeter Estimation
in Differential Equations). In the following, specific topics concerning the implementation are
discussed in detail.

Solution of IHDDE-IVPs and Computation of Sensitivities

In ParamEDE, the IHDDE-IVP solution ypt; ckq that is needed in step 1 of Algorithm 13.1 are
computed by calling Colsol-DDE (see Chapter 6). The sensitivities Wpt; ckq are also computed by
Colsol-DDE by using the principle of Internal Numerical Differentiation (see Chapters 8 and 9).

It is recalled at this point that Colsol-DDE performs a number of numerical checks that aim at
detecting a possible non-differentiable behavior of the IVP solution with respect to the parameters
c, see Subsection 9.1.11. If one of the numerical checks is not passed, the integration is stopped,
and Algorithm 13.1 attempts to find a different stepsize or determines a rank-deficient increment,
see step 2.

Computation of Derivatives of the Functions h and g

The vector of measurement functions h and the vector of constraint functions g need to be differ-
entiated with respect to their arguments in order to compute the Jacobian J1 and J2. For this
purpose, an Automatic Differentiation tool can be used. In particular, ParamEDE is designed
to be used in conjunction with Tapenade, see Hascoët and Pascual [140, 141]. ParamEDE can
therefore be used in such a way that it is derivative-free for the user.
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Multiple Experiments

In practical applications, it is typical that a sequence of similar experiments has been carried
out. ParamEDE supports the user in specifying such “multi-experiment parameter estimation
problems” by providing the opportunity to specify “global” parameters, which occur in several or
in all experiments, and “local” parameters, which occur in only one experiment. For the solution
of the IHDDE-IVP in each of the experiments, Colsol-DDE is called with a parameter vector that
comprises both the global parameters and the correct set of local parameters.

Computation of Increments

In each iteration, the increments are determined by ∆ck � �J�rrspckqF pckq, where nF2 ¤ r ¤ nc if

nF2 ¡ 0 and 1 ¤ r ¤ nc if nF2 � 0. If r   nc, then J�rrspckq represents a rank-deficient generalized
inverse.

For the practical computation of the increment ∆ck, define

Jpckq :�
�

J1pckq
J2pckq



. (13.13)

By a householder decomposition of JT2 pckq, the following representation can be obtained:

Jpckq �
�

A B
L 0



Q, (13.14)

where Q is an orthogonal matrix. If the rank condition rankpJ2pckqq � nF2 is fulfilled (which is
assumed by ParamEDE), then L is a regular nF2 � nF2 lower triangular matrix. Further, A and
B represent the first nF2

columns and the last nc � nF2
columns of J1pckqQT , respectively. By

computing a singular value decomposition of B such that B � USVT , it follows that

Jpckq �
�

U 0
0 1


�
Ã S
L 0


�
1 0
0 VT



Q. (13.15)

In this equation, U and V are orthogonal, and S is a diagonal matrix containing the singular
values si (for 1 ¤ i ¤ nc � nF2

) of J1pckq on the kernel of J2pckq. Further, Ã � UTA, and 1 and
0 represent identity matrices and zero matrices of appropriate dimension, respectively.

At this point, it is observed that any matrix Jpckq can be brought into the reduced form (Def-
inition 11.7) by using orthogonal transformations, provided that J2pckq is regular. It is further
noted that snc�nF2

¡ 0 is a sufficient condition for positive definiteness of JT1 pckqJ1pckq on the

kernel of J2pckq, and hence, an increment computed with a “full-rank” generalized inverse (i.e.
∆ck � �J�rncspckqF pckq) is a strict local minimum of the linear constrained least-squares problem,

compare Section 11.1.

Consider now the case that a generalized inverse J�rrspckq of Jpckq should be computed, where

r ¤ nc denotes the possibly reduced rank. For this purpose, define r̃ :� r � nF2
, and let S̃ be a

diagonal matrix whose entries are given by s̃i � si for 1 ¤ i ¤ r̃ and by s̃i � 0 for r̃�1 ¤ i ¤ nc�nF2

(cf. Subsection 11.2.3). The (possibly rank-deficient) generalized inverse J�rrspckq of Jpckq is then

given by

J�rrspckq � QT

�
1 0
0 V


�
Ã S̃
L 0


��
UT 0
0 1



(13.16)

(verify J�rrspckqJpckqJ�rrspckq � J�rrspckq). Further, by recalling equation (11.25), it follows that

J�rrspckq � QT

�
1 0
0 V


�
0 L�1

S̃: �S̃:AL�1


�
UT 0
0 1



, (13.17)

where S̃: is the Moore-Penrose pseudoinverse of S̃.

ParamEDE computes the above-described matrix decompositions and obtains a possibly “rank-
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deficient increment” by

∆ck � �QT

�
1 0
0 V


�
0 L�1

S̃: �S̃:AL�1


�
UT 0
0 1


�
F1pckq
F2pckq



. (13.18)

The matrices Q, A, L, U, S, and V are stored until a step is eventually accepted (step 7 in
Algorithm 13.1). Thus, for the computation of the auxiliary increment �∆ck in step 4, a costly
recomputation of the matrix decomposition is avoided. The matrix decompositions are also re-
used in case that the rank-reduction strategy is activated (step 2 or step 5).

Practical Rank Decision

Algorithm 13.1 requires to bound the condition of the matrix J1pckq on the kernel of J2pckq.
ParamEDE bounds the condition in the spectral norm by setting r̃ such that si ¥ s1{γmax for
1 ¤ i ¤ r̃, where γmax is a user-given input parameter. Furthermore, ParamEDE allows to specify
a lower bound on the singular values, because the singular values correspond to the standard error
of the corresponding parameter combination, see Subsection 11.2.4 and Section 12.2.

Scaling of Parameters

In practical parameter estimation problems, the unknown parameters may have very different or-
ders of magnitude. ParamEDE therefore uses an internal scaling of the parameters. The employed
initialization and update strategies for the scaling factors thereby resembles the heuristics used in
Colsol-DDE (see Subsection 6.5.8). The computed scaling factors are then used in the solution of
the linear constrained least-squares problems and for the computation of increment norms. The
latter is relevant, in particular, in the termination criterion and for the computation of ŵ.

Estimation of κ

One of the conditions in the local contraction theorem (Theorem 11.6) is that there exists κ   1
such that }J�pz̃qRpyq} ¤ κ}z̃�y} for all y, z̃ in the considered domain, with Rpyq :� F pyq�Jpyq∆y.
It was further discussed in Subsection 11.1.2 that κ   1 can be interpreted as a condition on the
quality of the measurement data, and that the existence of κ   1 plays a key role regarding the
statistical stability of the obtained solution.

Because of the significant role that κ plays in the convergence theory and the analysis of solutions,
it is desirable to estimate it numerically. ParamEDE uses, when iterating from ck to ck�1 �
ck � αk∆ck, the following estimate:

κ̂ �
}J�rrspck�1qRpckq}2

}ck�1 � ck}2 �
}J�rrspck�1q �F pckq � Jpckq∆ck� }2

αk}∆ck}2 . (13.19)

Thereby, the rank r in the nominator is the same as the one that has been used for computing
∆ck. The Euclidean norms in both the nominator and in the denominator are computed with the
same scaling factors.

Alternative estimation formulae for κ and their use in specific regularization strategies are dis-
cussed in Becker [22] and Hass [142].

Analysis of Solutions

In Section 12.2 it has been discussed that the matrix

Ṽc :� J�pĉq
�

1 0
0 0



pJ�qT pĉq (13.20)

can be used as an approximation of the covariance of the estimates as a function of the (random)
measurement data (cf. equation (12.17)).

Given a decomposition of Jpckq as in equation (13.15), ParamEDE computes for snc�nF2
¡ 0
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the matrix Ṽc by

Ṽc � QT

�
1 0
0 V


�
0 0
0 S:pS:qT


�
1 0
0 VT



Q. (13.21)

This matrix can subsequently be used to compute approximations of confidence intervals for all
parameters, see Lemma 12.7.

It is further observed that equation (13.18) can be rewritten as�
1 0
0 VT



Qloooooomoooooon

�:Ω

∆ck � �
�

1 0
0 S:


�
0 L�1

1 �AL�1


�
UT 0
0 1


�
F1pckq
F2pckq



(13.22)

Therefore, in a solution ĉ, the first nF2 rows of Ω give the parameter combinations that are
locally determined by the equality constraints. The lower nc � nF2

rows of Ω combinations are
locally determined by the least-squares conditions. Further, the nF2

� 1-st row corresponds to the
“best determined parameter combination”, and the nc-th row corresponds to the “least determined
parameter combination”.

Because of the relevance of the matrix Ω for the analysis of the obtained solution it is provided
to the user of ParamEDE.

Let further ei P Rnc be the unit vector into the direction of the i-th coordinate, and compute

z � Ωei. (13.23)

Then

ρ1 �
nF2̧

i�1

pziq2, ρ2 �
ŗ

i�nF2
�1

pziq2, ρ3 �
nç

i�r�1

pziq2 (13.24)

are the projections of z on the subspaces spanned by those parameter combinations that are locally
determined by the equality constraints, by the “large” singular values and by the “small” singular
values, respectively. Thereby, the meaning of “large” and “small” is defined according to the rank
decision in the last iteration. ParamEDE provides the values of ρ1, ρ2, and ρ3 for each individual
parameter ci, 1 ¤ i ¤ nc, in order to assist the user in the analysis of the parameter estimates.
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14. Solution of IHDDE-IVPs

A good test problem should have an analytic solution. Finding
interesting and nontrivial functional differential equations whose
solution is known is sometimes a difficult task.

Neves [193], commenting on the difficulty to find suitable test
problems for initial value problem solvers.

This chapter presents results for the numerical solution of initial value problems (IVPs) in
differential equations with time delays, with discontinuities in the right-hand-side function, and
with impulses.

Numerical Results Presented in This Chapter

The presented results are related to four topics.

The first issue addressed in this chapter is the current lack of established test problems for
the challenging class of differential equations considered in this thesis. Finding interesting and
non-trivial test problems with known analytic solutions is indeed difficult (see quote by Neves
above). Therefore accurate numerical solutions are provided as reference values for several IVPs
with unknown analytic solution.

The second issue is related to the modified standard approach, which has been introduced in
Subsection 5.2.2. If a current trial step of the integration method is such that the deviating ar-
guments cross discontinuities in the past, then the modified standard approach employs smooth
extrapolations beyond past discontinuities for computing the past states. In this chapter, a nu-
merical example is given that demonstrates the benefit of using the modified standard approach
rather than the standard approach in an algorithm for locating propagated discontinuities.

Furthermore, this chapter includes a simulation study that assesses the influence of some of the
parameters in the model for the voting behavior of the viewers of the TV singing competition
“Unser Star für Baku” (see Section 3.3). It is demonstrated that the use of a time delay in the
differential equation model is crucial in order to make the simulation results qualitatively consistent
with the observations in the TV show.

Eventually, the performance of the newly developed solver Colsol-DDE (see Chapter 6) is in-
vestigated. In particular, convergence of the results obtained with Colsol-DDE is demonstrated in
the limit of small tolerances, and the capabilities and limitations of the implemented methods for
solving stiff problems are studied.

Organization of This Chapter

In Section 14.1, accurate numerical reference solutions are given and the performance of the meth-
ods implemented in Colsol-DDE is investigated. Section 14.2 shows how localization of disconti-
nuities works with the modified standard approach and points out the advantages over the use the
standard approach. The simulation study for the model of the voting behavior of the viewers of
the TV singing competition “Unser Star für Baku” is presented in Section 14.3.

Notation

In this chapter, the notation yptq (instead of ypt; cq) is used for the state because the dependency
of the IVP solution on parameters in the model functions is not addressed here.
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14.1. Accurate Reference Solutions and Performance of
Colsol-DDE

This section gives accurate numerical reference solutions for IVPs in delay differential equations
(DDEs), impulsive delay differential equations (IDDEs), and impulsive hybrid discrete-continuous
delay differential equations (IHDDEs). The reference solutions are obtained by using Colsol-DDE
and are validated by using other IVP solvers.

The convergence behavior of the methods implemented in Colsol-DDE is analysed in the limit
of small relative tolerances. This analysis makes use of the given reference solutions. Furthermore,
the two-stage Radau IIA method and the three-stage Lobatto IIIA method are applied to a stiff
DDE-IVP. The chosen stepsizes are analysed and put into relation with the stability properties of
the methods (see Section 6.7).

In general, the accuracy of numerically computed IVP solutions depends on the relative tolerance
σreltol , on the absolute tolerance σabstol and on the “zero criterion” γcrit that is used in the strategy for
locating zeros of state-dependent switching functions, and also for locating zeros of the propagation
switching functions that correspond to state-dependent delays (see Subsection 6.6.3 and Section
6.9 for details). Unless otherwise noted, very small values are used for both σabstol and γcrit for all
numerical computations presented in this chapter. In particular, this is the case for the computation
of reference results and for the computations done for convergence analyses.

14.1.1. DDE with State-Dependent Delay

Problem Definition

The following differential equation is considered as an introductory example:

9yptq � ypyptqq. (14.1)

The right-hand-side function of this differential equation can also be expressed as ypt� τpt, yptqqq,
with the state-dependent delay defined by

τpt, yptqq � t� yptq. (14.2)

The employed initial conditions are

yp2q � 1 (14.3a)

yptq � 1

2
for t   2. (14.3b)

This means that the initial time is tini � 2, the initial value is yini � 1, and the initial function
is φptq � 1{2. Note that the initial function does not link continuously to the initial value, i.e.
φptiniq � yini. The final time is set to tfin � 5.5. Thus the IVP (14.1), (14.3) is considered on the
interval T � r2, 5.5s.

Categorization and References

The IVP (14.1), (14.3) is a DDE-IVP with one state-dependent delay, and it is due to Paul [201],
see also Paul [202].

Analytic Solution

Among all IVPs considered in this chapter, the DDE-IVP (14.1), (14.3) is the only one for which
an analytic solution is known. The analytic solution is given in Paul [201, 202]:

yptq �

$'&
'%

1
2 t 2 ¤ t ¤ 4

2 expp 1
2 t� 2q 4 ¤ t ¤ lnp4 expp4qq

�2 ln
�
expp�2q r1� lnp4 expp4qq � ts� lnp4 expp4qq ¤ t ¤ 1

2 � lnp4 expp4qq
. (14.4)

It is noted that lnp4 expp4qq � 5.386294361119891, and thus 1
2� lnp4 expp4qq � 5.886294361119891.

The final time tfin � 5.5 has been chosen such that it lies within the interval for which an
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analytic solution is known. A plot of the solution within the considered interval r2, 5.5s is given in
Figure 14.1.

Figure 14.1.: Solution of the DDE-IVP (14.1), (14.3). The discontinuity of order 1 at t=4 is clearly
visible.

Convergence Behavior

The convergence behavior of the numerical methods implemented in Colsol-DDE is studied. For
this purpose, the relative tolerance is varied over several orders of magnitude as follows: σreltol �
10�2, and σreltol � n � 10�m, with n P t1, 2, . . . , 9u and m P t3, . . . , 14u.

For all above-given values of the relative tolerance, the DDE-IVP (14.1), (14.3) is solved. This
gives, for each choice of σreltol , a numerical result ηp5.5q. Then the relative error of the numerical
solution at the final time tfin � 5.5 is computed as follows:

εrel � |ηp5.5q � yp5.5q|
|yp5.5q| . (14.5)

The obtained relative errors as a function of the relative tolerance are shown in Figure 14.2.
Figure 14.2a (left) displays the results for the two-stage Radau IIA method implemented in Colsol-
DDE, and Figure 14.2b (right) displays the results for the three-stage Lobatto IIIA method im-
plemented in Colsol-DDE.

For both methods, a very good proportionality of the relative error at the final time to the
relative tolerance is obtained for a wide range of relative tolerances. For small tolerances, small
violations from the error-tolerance proportionality are observed only when the relative error is
approximately 10�14 and thus close to the reachable machine precision εmach � 10�16.

(a) (b)

Figure 14.2.: Convergence of the results obtainted with Colsol-DDE to the exact solution of the
DDE-IVP (14.1), (14.3): (a) relative errors εnomrel obtained with the two-stage Radau
IIA method, (b) relative errors εnomrel obtained with the three-stage Lobatto IIIA
method.
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For crude tolerances, it is observed that the relative error levels off at a certain value. For
the Lobatto method, this happens for σreltol Á 10�4, and for the Radau method, this happens for
σreltol Á 5 � 10�3. In both cases, the reason is that the variation of the tolerance in this regime
does not affect the choice of the mesh. In fact, only 5 integration steps are taken for these crude
tolerance values, and the choice of the stepsizes is only determined by the initial stepsize (which
has here been chosen as h1 � ptfin � tiniq{10 � 0.35) and by the requirement to include the time
points of the propagated discontinuities (approximately) into the mesh.

14.1.2. IDDE with State-Dependent Delay

Problem Definition

Consider the following modification of the DDE (14.1), which includes impulses:

9yptq � ypyptqq for ζptq � p�1,�1,�1qT (14.6a)

yptq � y�ptq � ωpζptqq else (14.6b)

As before, the right-hand-side function of the differential equation can be written as ypt�τpt, yptqqq
with the state-dependent delay

τpt, yptqq � t� yptq. (14.7)

Further, ζptq � pζ1ptq, ζ2ptq, ζ3ptqqT , and ζiptq for 1 ¤ i ¤ 3 are the signs of three switching
functions:

ζiptq � signpσipt, y�ptq, ypt� τpt, yptqqqqq, for i � 1, 2, 3. (14.8)

Here, three simple time-dependent switching functions are considered:

σipt, y�ptq, ypt� τpt, yptqqqq � σiptq for 1 ¤ i ¤ 3, (14.9a)

σ1ptq � t� 2.5, σ2ptq � t� 3.4, σ3ptq � t� 3.88. (14.9b)

At the zeros of all three switching functions, impulses are applied. The following impulse function
is used, which is independent of the time and of the states:

ωpt, yptq, ypt� τpt, yptqqqq � ωpζptqq (14.10a)

ωpζptqq �

$'&
'%

0.7 if ζptq � p0,�1,�1qT
�1 if ζptq � p�1, 0,�1qT
�1.5 if ζptq � p�1,�1, 0qT

. (14.10b)

The initial conditions that are used here are the same as in Subsection 14.1.1:

yp2q � 1 (14.11a)

yptq � 1

2
for t   2. (14.11b)

As before, the model functions are tini � 2, yini � 1, φptq � 1{2, and tfin � 5.5. This implies that
the IVP (14.6), (14.10), (14.11) is considered on the interval T � r2, 5.5s.

Categorization

The IVP (14.6), (14.10), (14.11) is an IDDE-IVP with one constant delay and with three simple
time-dependent switching functions.

Numerical Reference Solution

A numerically computed reference solution ηref p5.5q is given by

yp5.5q � ηref p5.5q � 4.303485743099. (14.12)
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This reference result has been obtained by using both Colsol-DDE and the Matlab solver dde23
(see Shampine and Thompson [233]). Using a sequence of stringent tolerances, the solvers yielded
the same result in the leading 13 digits given above.

A plot of the numerical reference solution is given in Figure 14.3. The three impulses at the
time points t � 2.5, at t � 3.4, and at t � 3.88 are clearly visible. Furthermore, there are many
discontinuities of order 1 and higher. A complete list of all discontinuities is given in Table 14.1. In
total, there are 4 discontinuities of order 0 (including the discontinuity at tini), 7 discontinuities of
order 1, 8 discontinuities of order 2 and of order 3, 5 discontinuities of order 4 and 1 discontinuity
of order 5.

Figure 14.3.: Solution of the IDDE-IVP (14.6), (14.10), (14.11). There are three impulses (i.e.
discontinuities of order 0) at t � 2.5, at t � 3.4, and at t � 3.88. In addition, there
are many discontinuities of order 1 and higher, see Table 14.1.

Convergence Behavior

The convergence of the numerical results obtained with Colsol-DDE to the reference result ηref p5.5q
is investigated. As in Subsection 14.1.1, the relative tolerance is varied over several orders of
magnitude: σreltol � 10�2, and σreltol � n � 10�m, with n P t1, 2, . . . , 9u and m P t3, . . . , 14u.

For each value of the relative tolerance, the IDDE-IVP (14.6), (14.10), (14.11) is solved and the
relative error in the numerical result ηp5.5q is determined by

εrel � |ηp5.5q � ηref p5.5q|
|ηref p5.5q| . (14.13)

Figure 14.4 displays the relative error as a function of the relative tolerance for both the two-stage
Radau IIA method (left part, Figure 14.4a) and the three-stage Lobatto IIIA method (right part,
Figure 14.4b) implemented in Colsol-DDE. A very good proportionality of the obtained numerical
error at the final time to the relative tolerance is observed. For small tolerances, error-tolerance
proportionality is observed up to the accuracy of the reference result.

For crude tolerances, the relative error levels off. Compared to the results presented in Fig-
ure 14.2, this “levelling off” occurs for smaller values of σreltol , and the obtained relative error is
smaller. The reason for this phenomenon is that Colsol-DDE tracks discontinuities, i.e. the code
includes all those discontinuities into the mesh whose order is less than or equal to the order of
the discrete error-estimating method (see Section 6.3 and Section 6.6 for details). The code thus
takes at least 33 integration steps independent of the chosen tolerance, which leads to a more
accurate approximation of the solution even for very crude tolerances (in comparison to the results
presented in Subsection 14.1.1).
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Time Point Order Discontinuity Parent
of Discontinuity Type Discontinuity

2.000000000000 0 Initial
2.500000000000 0 Root
2.600000000000 1 Propagated 2.000000000000
3.046287102628 1 Propagated 2.500000000000
3.096922718597 2 Propagated 2.600000000000

3.296922718597 2 Propagated 3.046287102628
3.316784011696 3 Propagated 3.096922718597
3.387984216475 3 Propagated 3.296922718597
3.394450807608 4 Propagated 3.316784011696
3.400000000000 0 Root

3.537332584912 1 Propagated 2.500000000000
3.587968200881 2 Propagated 2.600000000000
3.787968200881 2 Propagated 3.046287102628
3.807829493979 3 Propagated 3.096922718597
3.879029698759 3 Propagated 3.296922718597

3.880000000000 0 Root
4.280235740772 1 Propagated 2.000000000000
4.726522843400 1 Propagated 2.500000000000
4.777158459369 2 Propagated 2.600000000000
4.977158459369 2 Propagated 3.046287102628

4.997019752467 3 Propagated 3.096922718597
5.068219957247 3 Propagated 3.296922718597
5.074686548380 4 Propagated 3.316784011696
5.096983677979 4 Propagated 3.387984216475
5.098939211900 5 Propagated 3.394450807608

5.100607935648 1 Propagated 3.400000000000
5.157470913611 2 Propagated 3.537332584912
5.177332206710 3 Propagated 3.587968200881
5.248532411489 3 Propagated 3.787968200881
5.254999002622 4 Propagated 3.807829493979

5.277296132222 4 Propagated 3.879029698759
5.277590305387 1 Propagated 3.880000000000
5.488442308087 2 Propagated 4.280235740772

Table 14.1.: List of all numerically determined discontinuities in the solution of the IDDE-IVP
(14.6), (14.10), (14.11). The first column gives the time point of the determined dis-
continuity, the second one gives the order of the discontinuity. The third column
provides the information whether the discontinuity is an initial discontinuity, a root
discontinuity, or a propagated discontinuity. Eventually, for all propagated disconti-
nuities, the last column lists the corresponding parent discontinuity.

(a) (b)

Figure 14.4.: Convergence of the results obtainted with Colsol-DDE to the reference solution of the
IDDE-IVP (14.6), (14.10), (14.11): (a) relative errors εnomrel obtained with the two-
stage Radau IIA method, and (b) relative errors εnomrel obtained with the three-stage
Lobatto IIIA method.
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14.1.3. Epidemiology: An IHHDE Model with State-Dependent Switching
Functions

Problem Definition

In Section 3.1, an extension of the SEIRS epidemiological model by Cooke and van den Driess-
che [68] has been introduced. The extensions allow for an invasion of a healthy population by an
infected population, for an improved medical treatment of the infected population after a new drug
becomes available and for a vaccination of susceptibles after a vaccine is developed.

First, all differential equations from Section 3.1 are collected:

9y1ptq �

$''''''''''''''&
''''''''''''''%

bỸ ptq � λy1ptqy3ptq
Y ptq � γy3pt� τ1q expp�dτ1q

�dy1ptq for ζptq � p�1,�1,�1,�1qT
bỸ ptq � λy1ptqy3ptq

Y ptq � γ̃y3pt� τ1q expp�dτ1q
�dy1ptq for ζptq � p�1,�1,�1,�1qT
bỸ ptq � λy1ptqy3ptq

Y ptq � γy3pt� τ1q expp�dτ1q
�dy1ptq � ρy1ptq for ζptq � p�1,�1,�1,�1qT
bỸ ptq � λy1ptqy3ptq

Y ptq � γ̃y3pt� τ1q expp�dτ1q
�dy1ptq � ρy1ptq for ζptq � p�1,�1,�1,�1qT

(14.14a)

9y2ptq � λ
y1ptqy3ptq
Y ptq � λ

y1pt� τ2qy3pt� τ2q
Y pt� τ2q expp�dτ2q

� dy2ptq for ζptq � p�1,�1,�1,�1qT (14.14b)

9y3ptq �
#
λy1pt�τ2qy3pt�τ2q

Y pt�τ2q
expp�dτ2q � pε� γ � dqy3ptq for ζptq � p�1,�1,�1,�1qT

λy1pt�τ2qy3pt�τ2q
Y pt�τ2q

expp�dτ2q � pε̃� γ̃ � dqy3ptq for ζptq � p�1,�1,�1,�1qT (14.14c)

9y4ptq �

$'&
'%
γy3ptq � γy3pt� τ1q expp�dτ1q � dy4ptq for ζptq � p�1,�1,�1,�1qT
γ̃y3ptq � γy3pt� τ1q expp�dτ1q � dy4ptq for ζptq � p�1,�1,�1,�1qT
γ̃y3ptq � γ̃y3pt� τ1q expp�dτ1q � dy4ptq for ζptq � p�1,�1,�1,�1qT

(14.14d)

9y5ptq �
#

0 for ζptq � p�1,�1,�1,�1qT
ρy1ptq for ζptq � p�1,�1,�1,�1qT (14.14e)

9y6ptq �
#
pε� dqy3ptq for ζptq � p�1,�1,�1,�1qT
pε̃� dqy3ptq for ζptq � p�1,�1,�1,�1qT . (14.14f)

yptq � y�ptq � ωpζptqq for ζptq � p�1,�1,�1,�1qT (14.14g)

It is recalled that Y ptq � y1ptq�y2ptq�y3ptq�y4ptq�y5ptq, and that Ỹ ptq � y1ptq�y2ptq�y4ptq�
y5ptq. There are five constant delays, i.e. the delays are given by

τipt, yptqq � τi, 1 ¤ i ¤ 5. (14.15)

As explained in Section 3.1, it holds that τ4 � τ1 � τ3. Moreover, ζptq � pζ1ptq, ζ2ptq, ζ3ptq, ζ4ptqq,
and ζiptq for 1 ¤ i ¤ 4 are the signs of switching functions σi:

ζiptq :� signpσipt, y�ptq, ty�pt� τiqu5i�1qq for 1 ¤ i ¤ 4. (14.16)

One of the switching functions is simple time-dependent, whereas the other three are state-
dependent:

σ1pt, yptq, typt� τiqu5i�1q � σ1ptq � t� s (14.17a)

σ2pt, yptq, typt� τiqu5i�1q � σ2pypt� τ3qq � y6pt� τ3q � ϕ (14.17b)

σ3pt, yptq, typt� τiqu5i�1q � σ3pypt� τ4qq � y6pt� τ4q � ϕ (14.17c)

σ4pt, yptq, typt� τiqu5i�1q � σ4pypt� τ5qq � y6pt� τ5q � ϕ. (14.17d)

269



Part V. Numerical Investigations

The impulse function for this problem is defined by

ωpt, yptq, typt� τiqu5i�1, ζptqq � ωpζptqq (14.18a)

ωpζptqq �

$'&
'%
�

0 0 ν 0 0 0
	T

for ζptq � p0,�1,�1,�1qT�
0 0 0 0 0 0

	T
else

, (14.18b)

i.e. an impulse is only applied in the zero of the first switching function, and the impulse is
independent of the time and independent of the states. In the zeros of the switching functions σ2,
σ3, and σ4 the state vector is continuous but the right-hand-side function f is discontinuous.

The differential equation system (14.14) and the impulse equation (14.18) are associated with
the following initial condition:

yptq � �100 0 0 0 0 0
�T

for t ¤ 0. (14.19)

This means that tini � 0, φptq � φp0q � yini � �
100 0 0 0 0 0

�T
. Further, the final time

is set to tfin � 350, i.e. the considered time interval is T � r0, 350s. The numerical values for the
parameters in the differential equations (14.14) are given in Table 14.2.

Parameter Description Numerical
Value

τ1 time interval of immunization 42
τ2 latency time 4
τ3 time needed for drug development 30
τ4 � τ1 � τ3 72
τ5 time needed for vaccine development 140
b birth rate 0.005
d death rate independent of disease 0.004
λ infection rate 0.2
ε additional death rate due to disease (before drug development) 0.06
ε̃ additional death rate due to disease (after drug development) 0.006
γ recovery rate (before drug development) 0.04
γ̃ recovery rate (after drug development) 0.08
ρ vaccination rate 0.03
s arrival time of infected population 50
ν size of infected population that arrives at s 2
ϕ threshold number of deaths that triggers drug & vaccine developm. 5

Table 14.2.: Description and numerical values of parameters for simulation of the epidemiological
model (14.14), (14.18).

Categorization

The IVP (14.14), (14.18), (14.19) is an IHDDE-IVP with five constant delays, with one simple
time-dependent switching function and with four state-dependent switching functions.

Numerical Reference Solution

A numerical reference solution ηref p350q is given by

yp350q � ηref p350q �

��������

17.964515428508
0.044210519674

0.2564968120450
1.963180626737
70.99920119505
40.72925671756

�������. (14.20)
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This reference result has been obtained by using both Colsol-DDE and the Matlab solver dde23
(Shampine and Thompson [233]) with a sequence of stringent tolerances. The results of the two
solvers were identical in the leading 11� 13 digits given above.

A plot of the IVP solution is given in Figure 14.5. In the interval r0, 50s, the entire population is
healthy, and thus Y ptq � Ỹ ptq � y1ptq, and the number of susceptibles y1ptq shows an exponential
growth ( 9y1ptq � pb� dq � y1ptq � 0.001y1ptq). Meanwhile, all other components of the state vector
are identically zero, i.e. yiptq � 0 for 2 ¤ i ¤ 6.

At t � 50, i.e. at the zero of the simple time-dependent switching function σ1, the infected
population arrives. From this time on, the epidemics spreads within the population, which leads
to a rapid decrease in y1ptq (number of susceptibles), and an increase of the size of the exposed,
infected, and recovered population. The total number of deaths within the infected class reaches
the threshold ϕ � 5 at t � 78.2. However, from that time on τ3 � 30 time units are needed until
the new drug is available.

When the drug becomes available at t � 108.2, the right-hand-side functions of the differential
equations for y3ptq, y4ptq, and y6ptq change discontinuously. In Figure 14.5, it is clearly visible
that the size of the recovered population increases more rapidly, and that the number of deaths
increases much slower than before. There is also a discontinuity in 9y4ptq (rate of change of the
number of infected individuals), but the “kink” is not clearly visible in the plot because ε̃ � γ̃ �
0.086 � ε�γ � 0.1. This means that the sum of revovery and death rate remains almost the same
as before; in fact it decreases slightly, leading to a slightly more rapid increase of the number of
infected individuals.

Figure 14.5.: Solution of the IHDDE-IVP (14.14), (14.18), (14.19), which simulates the spread of
an epidemic. Population in each of the five classes: susceptible (blue, solid line),
exposed (gray, dashed line), infected (black, dashed line), recovered (blue, dashed
line), vaccinated (gray, solid line). In addition, the total number of deaths in the
infected class is displayed (black, solid line).

After an additional 42 time units, at t � 150.2, the switching function σ3 becomes zero. At this
time, the fraction of the population that has recovered thanks to the drug at t � 108.2 becomes
susceptible again. This leads to a significant increase in the number of susceptibles at t � 150.2
and to a corresponding significant decrease in the number of recovered.

Eventually, at t � 218.2, the vaccine becomes available. This leads to discontinuities in 9y1ptq
and 9y5ptq, such that the size of the susceptible population starts to decrease rapidly and the size of
the vaccinated population starts to increase rapidly. Thanks to the vaccination of the population,
the number of exposed and infected monotonically decreases for t Á 218.2, such that the epidemic
is eventually defeated. Correspondingly, the number of deaths levels off when t approaches the
final time tfin � 350.

The total population Y ptq is plotted as a function of time in Figure 14.6. Clearly visible is the
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impulse at t � 50, the time point when the infected population arrives. From then on, the total
population drops quickly, approximately from 107 to 90. At t � 108.2, the new drug is available,
and the decrease in the total population is slowed down. However, the total population starts to
increase only at approximately t � 250, i.e. some time after the vaccine has become available. At
the final time tfin � 350, the total population has not yet reached its initial value 100.

Figure 14.6.: Solution of the IHDDE-IVP (14.14), (14.18), (14.19): total population.

Convergence Behavior

As a last step in the discussion of the epidemiological model, the convergence behavior of the numer-
ical results obtained with Colsol-DDE for the IHDDE-IVP (14.14), (14.18), (14.19) is investigated.
For this purpose, the relative tolerance is varied as follows: σreltol � 10�2, and σreltol � n � 10�m, with
n P t1, 2, . . . , 9u and m P t3, . . . , 12u.

For each value of the relative tolerance, the IHDDE-IVP is solved, which yields a numerical
approximation ηp350q of yp350q. The relative error in the solution is then computed as

εrel � max
1¤i¤6

�
|ηip350q � ηrefi p350q|

|ηrefi p350q|

�
, (14.21)

where the maximum is taken over all 6 components of the state vector.
Figure 14.7 shows the relative error as a function of the relative tolerance. A good proportionality

of the relative error to the relative tolerance is observed for both the two-stage Radau IIA and
the three-stage Lobatto IIIA method, which indicates a good reliablity of the code. With both
methods, the reference result can be reproduced up to a relative precision of 10�11, which is the
accuracy of the second component of the reference solution.

(a) (b)

Figure 14.7.: Convergence of the results obtainted with Colsol-DDE to the reference solution of the
IHDDE-IVP (14.14), (14.18), (14.19): (a) relative errors εnomrel obtained with the two-
stage Radau IIA method, and (b) relative errors εnomrel obtained with the three-stage
Lobatto IIIA method.

The convergence behavior of the Lobatto IIIA method (Figure 14.7b) shows some irregularities
in the sense that the relative error is not an almost perfectly linear function of σreltol as it is observed
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for the Radau IIA method (Figure 14.7a). Please note that this does not contradict Theorem 5.23,
because this theorem only guarantees that a bound on the global error (i.e. the maximum error on
the whole considered time interval) is proportional to the relative tolerance.

14.1.4. Stiff Test Problem

Problem Definition

In this subsection, numerical results are presented for the following differential equation:

9y1ptq � �k1y1ptq � k3y2pt� τqy3ptq (14.22a)

9y2ptq � k1y1ptq � k3y2pt� τqy3ptq � k2py2ptqq2 (14.22b)

9y3ptq � �k2py2ptqq2 (14.22c)

The differential equation system contains one constant delay, i.e.

τpt, yptqq � τ. (14.23)

The differential equation system (14.22) is associated with the following initial condition:

yptq � �1 0 0
�T

for t ¤ 0, (14.24)

which means that tini � 0, φptq � φp0q � yini � �1 0 0
�T

. The final time is set to tfin � 10000,
such that the IVP is considered on the interval T � r0, 10000s. The constants are set as follows:
k1 � 0.04, k2 � 3 � 105, k3 � 100. The delay is given by τ � 0.01.

Categorization and References

The IVP (14.22), (14.24) is a DDE-IVP with one constant delay. The ODE variant (i.e. set τ � 0)
is motivated as a model for a chemical reaction and has frequently been used as a standard stiff test
problem for ODE-IVP solvers, see e.g. Robertson and Williams [217], Enright, Hull, and Lindberg
[97], and Hairer and Wanner [127]. The variant with delay has been proposed by Guglielmi and
Hairer [122] as a stiff DDE test problem.

Numerical Reference Solution

A numerical reference solution ηref p10000q is given by

yp10000q � ηref p10000q �
�
�2.08929059712 � 10�3

8.3536874368 � 10�7

0.9979098740341.

�
 (14.25)

This reference solution has been obtained by solving the stiff DDE-IVP (14.22), (14.24) with both
Colsol-DDE and RADAR5 (see Guglielmi and Hairer [122, 123]). Using a sequence of stringent
tolerances in both solvers, the obtained results were identical in the leading 11 � 13 digits given
above.

A plot of the trajectories yiptq, 1 ¤ i ¤ 3, for t P r0, 10000s, is given in Figure 14.8. It can
be observed that the first chemical species is consumed (monotonically decreasing concentration
y1ptq), and that the third chemical species is produced (monotonically increasing concentration
y3ptq). Only very small amounts of the intermediate product, represented by y2ptq, are available
during the entire time horizon, because it quickly reacts to y1ptq and y3ptq (k2 " k1 and k3 " k1).

Application of Colsol-DDE to the Stiff DDE-IVP (14.22), (14.24)

The stiff DDE-IVP (14.22), (14.24) is suitable for investigating the capabilities and limitations of
the collocation methods that are implemented in Colsol-DDE.

As seen in Figure 14.8, all three components of the state vector eventually approach a steady
state. Therefore, if a numerical method is sufficiently stable in order to deal with the stiffness
in the DDE-IVP, it is expected that it takes larger and larger stepsizes toward the final time
(cf. Guglielmi and Hairer [122]).
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Figure 14.8.: Solution of the stiff DDE-IVP (14.22), (14.24). Note that the horizontal axis is
logarithmic in order to better resolve the rapid transient behavior in the beginning
of the considered interval. Note further that the state vector component y2ptq is
amplified by a factor of 1000.

In order to test whether this is the case, the IVP is solved by using both the two-stage Radau
IIA method and the three-stage Lobatto IIIA method implemented in Colsol-DDE. A moderate
relative tolerance σreltol � 10�3 is used, and the absolute tolerance is set to σabstol � 10�8.

Figure 14.9 displays, at each mesh point tk, the stepsize hk�1 that was accepted to proceed to
the next mesh point tk�1 � tk � hk�1. The two-stage Radau IIA method takes larger and larger
stepsizes toward the final time, with the largest stepsize being greater than 2000. At t � k � 10�2,
k P t1, 2, 3, 4u, some steps are taken with smaller stepsizes than the neighboring steps. The reason
for this is that discontinuity points are included into the mesh. Furthermore, the last stepsize is
short compared to the second-to-last one in order to stop at the final time tfin � 10000.

For the three-stage Lobatto IIIA method, a less regular behavior of the sequence of accepted
stepsizes is observed. In particular, the Lobatto IIIA method takes for t Á 3000 – where the steady
state is almost reached – integration steps that are small compared to the integration steps in the
Radau IIA method. This behavior can possibly be attributed to the fact that the three-stage
Lobatto IIIA method has, compared to the two-stage Radau IIA method, less favorable stability
properties, see Section 6.7.

(a) (b)

Figure 14.9.: Accepted stepsizes for solving the stiff DDE-IVP (14.22), (14.24), (a) in double loga-
rithmic scaling and (b) in linear scaling. The stepsizes that are taken by the two-stage
Radau IIA method are plotted in blue, and the stepsizes that are taken by the three-
stage Lobatto IIIA method are plotted in black.
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Despite the fact that the lack of stability appears to be a limiting factor for the performance
of the three-stage Lobatto IIIA method, the method is still much faster than explicit methods.
For example, for the above-given absolute and relative tolerances, Colsol-DDE needs 2840 ac-
cepted integration steps and 0.2s of computation time with the three-stage Lobatto IIIA method
(1311 accepted integration steps and 0.1s for the two-stage Radau IIA method). In comparison,
DDE SOLVER by Thompson and Shampine [246] – as an example for a code that is based on
explicit methods – needs 189946 (accepted) integration steps and 167s of computation time.1

14.2. Accuracy and Efficiency of the Modified Standard
Approach for Locating Discontinuities

A key element of the modified standard approach is to use smooth extrapolations if a current trial
integration step is such that the deviating argument crosses discontinuities in the past. The use of
extrapolations has also been proposed in Guglielmi and Hairer [122], ZivariPiran [271], ZivariPiran
and Enright [272], and Ernst [101]. However, to the knowledge of the author, the advantage of
using extrapolations has not yet been demonstrated on a practical example. This is done in the
following.

Problem Definition

Consider the DDE-IVP

9yptq � ypyptqq (14.26a)

yp2q � 0.1 (14.26b)

yptq � 1� sin
�
pt� 1q � π

4
� π

8

	
for t   tini � 2 (14.26c)

on the interval T � r2, 10s. The differential equation is the same as in Subsection 14.1.1, but
the initial value, the initial function, and the final time are different. In particular, the choice of
a sine-like initial function ensures that locating the time point of the child discontinuity of the
discontinuity at tini becomes harder compared to the constant initial function used in Subsection
14.1.1.

Numerical Reference Solution

A highly accurate DDE-IVP solution has been computed by applying Colsol-DDE with stringent
tolerances. The obtained solution is plotted in Figure 14.10. There is only one propagated dis-
continuity within the considered time interval at t � 6.453, and this propagated discontinuity is of
order 1 in y.

Figure 14.10.: Plot of the solution of the DDE-IVP (14.26) (solid line). The dashed line plotted
for t   2 shows the employed initial function.

1On an Intel i7 960 cpu with a frequency of 3.2GHz and 8MB cache, compilation with g95 compiler and identical
choice of compiler flags.
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14.2.1. Discontinuity Location during an Integration with Moderate Relative
Tolerance

Consider the situation that the DDE-IVP should be solved with a moderate relative tolerance
σreltol � 10�3. Colsol-DDE (three-stage Lobatto IIIA method) reaches, after 6 successful integration
steps, the mesh point t6 � 6.336915699252338, and the numerical approximation of the IVP
solution at that time is given by y6 � 1.845963562901120.

With the approximation y6 at the mesh point t6, the “optimal” stepsize is given by hopt7 �
0.1162441676165301. “Optimality” is thereby meant in the following sense: If the three-stage
Lobatto IIIA method in Colsol-DDE is used with this stepsize, then the continuous representa-
tion ηopt7 ptq on the interval rt6, topt7 s, topt7 � t6 � hopt7 � 6.453159866868869, is such that yopt7 �
ηopt7 ptopt7 q � 2.000000000000001. This means that the deviating argument, evaluated along the
numerical solution, reaches the past discontinuity point t � 2 (the initial time) up to machine

precision at the end of the integration step. The continuous representation ηopt7 ptq is plotted as a

red line in Figure 14.11 (for t P r6.452, topt7 s), and the point ptopt7 , yopt7 q is plotted as a red dot.

For DDE-IVPs with state-dependent delays, such as the one considered here, it is in general
impossible to know the optimal stepsize a priori. In the particular example (14.26), the stepsize
selection strategy in Colsol-DDE (see Section 6.6) proposes the value h0

7 � 0.6515050019875654 as
a stepsize for the next step. This stepsize leads to a time point t07 � t6�h0

7 that is well to the right
of topt7 . In the following, it is discussed how discontinuity location works with the modified standard
approach realized in Colsol-DDE. Furthermore, the alternative of using the standard approach is
considered and compared to the modified standard approach.

Modified Standard Approach

When taking the integration step with stepsize h0
7, Colsol-DDE first solves the nonlinear equations

that arise in the three-stage Lobatto IIIA method, in the uniform order correction, and in the
implicit quadrature rule (see Sections 6.1-6.5). The Newton method used for solving the nonlinear
equations converges after 5, 5, and 3 iterations, respectively. This yields a discrete approximation
y0

7 � 2.881694350084759, and further a continuous representation η0
7ptq for t P rt6, t07s. The contin-

uous representation η0
7ptq is plotted as black line in Figure 14.11. Please note that the black line

is, on the interval r6.452, topt7 s, very close to the continuous representation ηopt7 ptq (red line) that is
obtained with the optimal stepsize.

The code proceeds with the computation of error estimates, which obey the employed tolerance
criterion. Colsol-DDE then checks the signs of the propagation switching function

σαpyptqq :� yptq � 2 (14.27)

at the beginning and end of the integration step, see Section 6.9. This leads to the detection of a
sign change because σαpy6q � �0.154   0 and σαpy0

7q � 0.882 ¡ 0. Subsequently, regula falsi is
used to determine an approximation of the root of

σαpη0
7ptqq � η0

7ptq � 2. (14.28)

The obtained approximation of the root is given by t17 � 6.453183048573098. The point pt17, η0
7pt17qq

is plotted in Figure 14.11 as a black diamond, which is almost overlayed by the red dot that
indicates the “optimal” point ptopt7 , yopt7 q. More precisely, it holds that |t17 � topt7 | � 2.318 � 10�5.

The result of the regula falsi method suggests to use h1
7 � 0.1162673493207601 as a new stepsize

in order to include the time point of the propagated discontinuity (approximately) into the mesh.
Colsol-DDE then computes a step with this stepsize, which yields y1

7 � 2.000032053223695 such
that σαpy1

7q � 3.2 � 10�5. Since only a moderate relative tolerance σreltol � 10�3 is requested, it is
reasonable to accept this step, i.e. to set t7 � t17, y7 � y1

7 , and to proceed with the integration.
Alternatively, one may decide to go through an additional cycle, i.e. calling regula falsi again for
proposing a new stepsize and computing an integration step with the new stepsize. Additional
numerical investigations have indicated, however, that the error that is introduced due to an
inaccurate localization of the discontinuity point is of the same order of magnitude than the
error that is made anyway during the integration with the selected moderate relative tolerance
σreltol � 10�3. Hence, only one root finding by regula falsi and one repeated integration step allow
to include the discontinuity point into the mesh with sufficient accuracy.
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Figure 14.11.: Plot of continuous representations of the solution of the DDE-IVP (14.26) in the
vicinity of topt7 . Red: Continuous representation ηopt7 ptq for t P r6.452, topt7 s. Black:
Continuous representation η0

7ptq that is obtained by using the modified standard
approach for computing past states (the red line and the black line partly overlay
each other). Blue: Continuous representation η̃0

7ptq that is obtained by using the
standard approach for computing past states.
The red dot indicates the zero of ηopt7 ptq � 2, and the black diamond and the blue
diamond represent the zeros of η0

7ptq and η̃0
7ptq, respectively. Clearly, the use of the

modified standard approach allows for a much more accurate approximation of the
propagated discontinuity as the standard approach.

Standard Approach

Consider now the case that the standard approach is used for approximating past states. This
time, when taking the integration step with stepsize h0

7, the Newton method fails to converge when
attempting to solve the nonlinear equation for the uniform order correction (the method ends up in
a two-cycle). As a remedy, smaller stepsizes can be tried out. For h̃0

7 � h0
7{4 � 0.1628762504968901,

the Newton method successfully solves the nonlinear equations that arise in the collocation method,
in the implicit uniform correction, and in the implicit quadrature rule. The obtained continuous
representation η̃0

7ptq is displayed in blue in Figure 14.11. A root finding algorithm applied to the
propagation switching function σαpη̃0

7ptqq � η̃0
7ptq�2 yields, approximately, the result t̃17 � 6.45578.

The point pt̃17, η̃0
7pt̃17qq is displayed as a blue diamond in Figure 14.11. Obviously, the error in the

approximation of the discontinuity point by using the standard approach is much larger than the
error that was obtained by using the modified standard approach. More precisely, it holds that
|t̃17 � topt7 | � 2.620 � 10�3 " |t17 � topt7 | � 2.318 � 10�5.

In order to determine the propagated discontinuity with an accuracy of � 10�5, one or several
additional trial steps will be needed, which requires additional computation time. In addition,
computation time has already been spent in the attempt to take the larger stepsize h0

7, for which
the Newton method failed to converge.

These results demonstrate clearly that the modified standard approach is a more efficient strategy
for locating propagated discontinuities than the standard approach.
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14.3. Simulation Study: Voting Behavior of TV Viewers of
“Unser Star für Baku”

In this section, simulation results are presented for the voting behavior of the viewers of the TV
singing competition “Unser Star für Baku”. The focus lies on a qualitative investigation of the role
of certain parameters in the model introduced in Section 3.3, namely the laziness parameter λ, the
delay τ , and the panic factor ρ. For all investigations in this section, it is assumed that there are
three candidates, two of which may proceed to the next round while the last one is voted out.

Problem Definition

For convenience, the differential equation model introduced in Section 3.3 is recalled. The situation
that is considered here is that two out of three candidates are selected to continue in the next round
of the show while the last candidate is voted out. In this case, the state vector has four components,
i.e. yiptq, 1 ¤ i ¤ 4. The first three components represent the percentages of votes of the three
candidates that are displayed in the livescore, while the fourth component represents the total
number of votes. The differential equations are given by

9yiptq �100 � ki � g
panicpt, ζptqq � βipt, ypt� τq, ζptqq � y4ptq � 9y4ptqyiptqy4ptq{100

py4ptqq2
for 1 ¤ i ¤ 3 (14.29a)

9y4ptq �
3̧

i�1

�
ki � gpanicpt, ζptqq � βipt, ypt� τq, ζptqq� (14.29b)

There is one constant delay in this differential equation system:

τpt, yptqq � τ (14.30)

The symbol ζptq represents the signs of the switching functions: ζptq � pζ1ptq, ζ2ptq, ζ3ptq, ζ4ptqqT ,
with

ζiptq � signpσipt, y�ptq, y�pt� τqqq for i � 1, 2, 3, 4. (14.31)

One of the four switching functions is simple time-dependent and the other three are state-
dependent:

σ1pt, yptq, ypt� τqq � σ1ptq � t� tfin � δ (14.32a)

σ2pt, yptq, ypt� τqq � σ2pypt� τqq � y1pt� τq � y2pt� τq (14.32b)

σ3pt, yptq, ypt� τqq � σ3pypt� τqq � y1pt� τq � y3pt� τq (14.32c)

σ4pt, yptq, ypt� τqq � σ4pypt� τqq � y2pt� τq � y3pt� τq. (14.32d)

The switching function signs ζptq are arguments to both the function gpanic and to the functions
βi (with 1 ¤ i ¤ 3). The function gpanic is continuous and piecewise linear:

gpanicpt, ζptqq �
#

1 if ζptq � p�1,�1,�1,�1q
1� t�ptfin�δq

δ ρ if ζptq � p�1,�1,�1,�1q . (14.33)

Only the sign of the first switching function is relevant for the definition of gpanic. The signs of
the other three switching functions determine the result of the functions βi:

β1pt, ypt� τq, ζptqq

�

$''''''&
''''''%

y1pt�τq
1
2 ry1pt�τq�y2pt�τqs

for ζptq � p�1,�1,�1,�1q
y1pt�τq

1
2 ry1pt�τq�y3pt�τqs

for ζptq � p�1,�1,�1,�1q
exp

��λpy1pt� τq � 1
2 ry1pt� τq � y2pt� τqsq� for ζptq � p�1,�1,�1,�1q

exp
��λpy1pt� τq � 1

2 ry1pt� τq � y3pt� τqsq� for ζptq � p�1,�1,�1,�1q
exp

��λpy1pt� τq � 1
2 ry2pt� τq � y3pt� τqsq� for ζptq � p�1,�1,�1,�1q

, (14.34)
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and

β2pt, ypt� τq, ζptqq

�

$''''''&
''''''%

y2pt�τq
1
2 ry2pt�τq�y1pt�τqs

for ζptq � p�1,�1,�1,�1q
y2pt�τq

1
2 ry2pt�τq�y3pt�τqs

for ζptq � p�1,�1,�1,�1q
exp

��λpy2pt� τq � 1
2 ry2pt� τq � y1pt� τqsq� for ζptq � p�1,�1,�1,�1q

exp
��λpy2pt� τq � 1

2 ry2pt� τq � y3pt� τqsq� for ζptq � p�1,�1,�1,�1q
exp

��λpy2pt� τq � 1
2 ry1pt� τq � y3pt� τqsq� for ζptq � p�1,�1,�1,�1q

, (14.35)

and

β3pt, ypt� τq, ζptqq

�

$''''''&
''''''%

y3pt�τq
1
2 ry3pt�τq�y1pt�τqs

for ζptq � p�1,�1,�1,�1q
y3pt�τq

1
2 ry3pt�τq�y2pt�τqs

for ζptq � p�1,�1,�1,�1q
exp

��λpy3pt� τq � 1
2 ry3pt� τq � y1pt� τqsq� for ζptq � p�1,�1,�1,�1q

exp
��λpy3pt� τq � 1

2 ry3pt� τq � y2pt� τqsq� for ζptq � p�1,�1,�1,�1q
exp

��λpy3pt� τq � 1
2 ry1pt� τq � y2pt� τqsq� for ζptq � p�1,�1,�1,�1q

. (14.36)

It is remarked that the right-hand-side function of the DDE (14.29) is continuous in the zeros of
the switching functions.

The differential equation (14.29) is associated with the following initial condition:

yptq � �36 33 31 100000
�T

for t ¤ 0. (14.37)

This means that tini � 0 and that φptq � φp0q � yini � p36, 33, 31, 100000qT . The final time is set
to tfin � 600, i.e. the considered time interval is T � r0, 600s. The chosen initial conditions are
interpreted as follows: At the beginning of the considered time interval, 100000 votes have been
received. Candidate 1 has received 36% of the votes, candidate 2 has received 33% of the votes,
and candidate 3 has received 31% of the votes.

The parameters in the differential equation system (14.29), and in the functions gpanic and
βi have the following meaning: ki represents the size of the fan-base of candidate i and can be
interpreted as a measure for the “true” singing performance of candidate i. Further, δ stands
for the duration of the time interval at the end of the voting time in which viewers vote more
frequently (“panic”). The parameter ρ is the amplification factor due to the panic at the end of
the voting time, and λ characterizes the laziness of TV viewers if a candidate is currently on one
of the two winning ranks. The delay τ represents the time that passes between the emission of the
current livescore results from the TV studio until the votes of the TV viewers – as a reaction to
the displayed results – are received and counted.

The following values for ki and δ are used in all simulations:

k1 � 40, k2 � 25, k3 � 18, δ � 120. (14.38)

This means, in particular, candidate 1 has a bigger fan-base than candidate 2, who in turn has
a bigger fan-base than candidate 3. The values of the other parameters τ , λ, and ρ are varied in
order to study their influence.

Categorization

The IVP (14.29), (14.37) is an HDDE-IVP with one constant delay, one simple time-dependent
switching function, and three state-dependent switching functions.

Integrator Settings

All numerical results presented in this section have been obtained with Colsol-DDE (three-stage
Lobatto IIIA method), and with the following settings for the relative and absolute tolerance:
σreltol � 10�4, σabstol � 10�8.
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14.3.1. Influence of the Time Delay

In order to investigate the influence of the time delay, the IVP is solved for four different values of
τ : 0, 15, 30, and 60. The laziness parameter is thereby fixed to λ � 10, and the panic factor is set
to ρ � 0.

The results are displayed in Figure 14.12. If the delay is set to τ � 0, the differential equation
is an HODE rather than an HDDE. In this case, the percentages of votes for the three candidates
approach a steady state. The differences in the percentages of votes at the end of the time interval
are very small: y1p600q � 33.39, y2p600q � 33.34, y3p600q � 33.27. However, the ranking order of
the three candidates is the same on the entire time interval, i.e. the best candidate always stays
on rank 1, and the worst candidate always stays on rank 3. The livescore yields a fair result, but
it is also boring.

(a) (b)

(c) (d)

Figure 14.12.: Solution of the DDE-IVP (14.29), (14.37), which simulates the percentages of votes
displayed in the livescore for various values of the delay τ : (a) τ � 0, (b) τ � 15, (c)
τ � 30, (d) τ � 60. The black, blue, and red lines show the simulated percentages
of votes for candidate 1, 2, and 3, respectively.

The situation changes if a time delay is introduced. For all three tested values of the delay, the
ranking order of the candidates changes over time, which makes the results qualitatively consistent
with the observations in the TV show. The changes in the ranking order are a combined effect of
the laziness and the time delay: The viewers only vote for a candidate on rank 1 or 2 if he or she
is in danger to drop to rank 3. However, by the time when the viewers react it might already be
too late. This leads to oscillations in the percentages of votes for the three candidates, and the
amplitudes of the oscilations become larger vor increasing values of the time delay τ . Accordingly,
a time delay in the voting procedure makes the livescore more interesting, but also unfair.

14.3.2. Influence of Laziness

In order to study the influence of the laziness parameter, IVP solutions for λ � 5 are computed
for τ � 0 and τ � 30. The panic factor is set to ρ � 0.
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For the non-delayed case (τ � 0), the simulation results displayed in Figure 14.13a are qual-
itatively the same as those seen in Figure 14.12a, which was computed with the larger laziness
parameter λ � 10. However, the differences in the percentages of votes for the different candidates
are larger for the smaller laziness parameter: y1p600q � 33.44, y2p600q � 33.35, y3p600q � 33.22.

In the variant with delay (τ � 30), compare Figures 14.12c and 14.13b, a reduced value of the
laziness decreases the chances of the “worst” candidate 3 to make it to the next round; instead,
candidate 3 is now almost always on the last rank. Moreover, candidate 3 never reaches rank 1,
which was temporarily the case for the higher laziness value λ � 10.

(a) (b)

Figure 14.13.: Solution of the DDE-IVP (14.29), (14.37), for a reduced value of the laziness pa-
rameter: λ � 5. The left figure, (a), shows the IVP solution for τ � 0, and the right
figure, (b), shows the IVP solution for τ � 30. The black, blue, and red lines show
the simulated percentages of votes for candidate 1, 2, and 3, respectively.

14.3.3. Influence of Panic

The last topic of this simulation study is to investigate the influence of the panic parameter ρ.
Therefore, the HDDE-IVP is solved for ρ � 3 and for delay values τ � 0 and τ � 30. The laziness
parameter is in both cases set to λ � 5.

(a) (b)

Figure 14.14.: Solution of the DDE-IVP (14.29), (14.37) with panic parameter ρ � 3. The left
figure, (a), shows the IVP solution for τ � 0, and the right figure, (b), shows
the IVP solution for τ � 30. The black, blue, and red lines show the simulated
percentages of votes for candidate 1, 2, and 3, respectively.

The results are shown in Figure 14.14. For the case τ � 0, the panic factor does not visibly
influence the percentages of votes for the three candidates; in fact, the computed results differ only
in the 10th digit. The reason for this behavior is that the panic affects the voting activities for
all three candidates in a very similar way. There is, however, a significant increase in the number
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of the total votes that are received, i.e. in the state vector component y4ptq (not displayed in the
figures). With ρ � 0, the total number of votes at t � 600 is approximately 125000, whereas in
the case ρ � 3 it is approximately 135000.

In the variant with delay (τ � 30), the panic at the end of the voting time leads to a larger
amplitude in the last oscillation, compare Figures 14.14b and 14.13b. As a consequence, candidate 1
on rank 1 has almost 2% more votes at the end of the voting time than candidate 3 on rank 2. In
contrast to this, the gap is only 0.6% in the case without panic.
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There are a number of articles in which the above discussed methods
are compared. The conclusion of each article is that the authors’
own method is faster and maybe more accurate than the previously
published methods.

Turányi [250], commenting on the literature on numerical compar-
isons for various methods for sensitivity computation.

This chapter presents numerical results for the computation of sensitivities, i.e. for the computation
of the derivatives of initial value problem (IVP) solutions with respect to parameters. Challenging
differential equations are considered that feature time delays, discontinuities in the right-hand-side
function, and discontinuities in the state.

Numerical Results Presented in This Chapter

The results presented in this chapter are related to four topics.
The first issue is to provide accurate reference values for the sensitivities of IVP solutions in the

context of differential equations with time delays. For a specific IVP with chaotic solution, the
results of this chapter suggest that previously given reference sensitivities (ZivariPiran [271] and
ZivariPiran and Enright [273]) are incorrect.

The second topic of this chapter is to investigate the performance of the newly developed Internal
Numerical Differentiation method (see Section 8.2). More precisely, the accuracy and efficiency of
the method are compared to two traditional methods for sensitivity computation: finite differences
(so-called External Numerical Differentiation) and solution of the combined nominal and variational
IVP. In both comparisons, it turns out that the newly developed Internal Numerical Differentiation
approach is one or several orders of magnitude faster, while being at least as accurate as the
alternative approaches.

This chapter further presents results for different realizations of Internal Numerical Differenti-
ation. More precisely, equivalence of forward and adjoint Internal Numerical Differentiation for
delay differential equations (see Sections 8.2 and 8.3) is shown, i.e. the two approaches yield the
same result except for numerical round-off errors. For a problem with many parameters, it is
demonstrated that the adjoint approach is more efficient for sensitivity computation than the for-
ward approach (see Section 8.2). In addition, an IVP is presented for which it is crucial to use
the Internal Numerical Differentiation approach in combination with an error-control strategy for
sensitivity computation (see Subsection 8.2.8).

Eventually, the reliability of Colsol-DDE for computing sensitivities is assessed by considering
the convergence behavior of the implemented methods in the limit of small relative tolerances.

Organization of This Chapter

The presentation of reference sensitivities and the investigation of the convergence behavior of
the methods implemented in Colsol-DDE is the subject of Section 15.1. The comparison of the
Internal Numerical Differentiation approaches to alternative methods for sensitivity computation
is discussed in Section 15.2. Finally, Section 15.3 presents the results for the forward and the
adjoint mode of Internal Numerical Differentiation and demonstrates the benefit of error-controlled
sensitivity computation.

General Remarks

For the computation of all numerical results presented in this chapter, a very stringent absolute
tolerance is used unless otherwise noted. Further, a restrictive “zero criterion” is employed in
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the algorithm that locates zeros of switching functions and propagation switching functions (see
Section 6.9).

Throughout this chapter, the use of Colsol-DDE always refers to the use of the three-stage
Lobatto IIIA method in Colsol-DDE. Further, sensitivities computation with Internal Numerical
Differentiation always refers to the use of the “direct Internal Numerical Differentiation” variant
implemented in Colsol-DDE (see Subsection 9.1.6 for details). However, very similar results have
also been obtained with the two-stage Radau IIA method and with iterative Internal Numerical
Differentiation.

Whenever computation times are reported in this section, they have been obtained on an In-
tel i7 960 cpu with 3.2GHz frequency rate and 8GB cache. Furthermore, the same compiler and
same compiler flags have been used in order to obtain fair comparisons, e.g. of different approaches
for sensitivity computation.

Notation

Parameters in the model functions are denoted by ci if the sensitivity of the solution with respect
to this parameter is of interest. Consequently, the notation ypt; cq is used for the IVP solutions.
Furthermore, the i-th row of a matrix A is denoted by Ai,�, and the j-th column of a matrix A
is denoted by A�,j .

15.1. Accurate Reference Sensitivities and Convergence
Analysis

This section presents accurate sensitivities of solutions of challenging IVPs in delay differential
equations (DDEs), hybrid discrete-continuous delay differential equations (HDDEs), and impul-
sive delay differential equations (IDDEs). These accurate sensitivities can be used as reference
values. Furthermore, it is demonstrated that sensitivities computed by Colsol-DDE converge to
the reference values in the limit of small tolerances.

15.1.1. Physiology: The Mackey-Glass DDE

Problem Definition

Consider the following differential equation:

9ypt; cq � c4ypt� τpcqq
c5 � pypt� τpcqqqc2 � c4yptq. (15.1)

The differential equation has one constant (but parameter-dependent) delay:

τpt, ypt; cq, cq � τpcq � c3. (15.2)

The following initial condition is employed:

ypt; cq � c1 for t ¤ 0. (15.3)

This means that tinipcq � tini � 0, φpt, cq � φp0, cq � yinipcq � c1. The final time is set to
tfinpcq � tfin � 100, such that the considered interval is T � r0, 100s.

There are 5 parameters in the IVP: The parameter c1 represents the constant value of the initial
function, c3 is the constant delay, and the parameters c2, c4, and c5 are used in the right-hand-side
function. The values of the parameters are chosen as follows:

c1 � 0.5, c2 � 9.65, c3 � 2, c4 � 2, c5 � 1. (15.4)

Categorization

The IVP (15.1), (15.3) is a DDE-IVP with one constant delay.
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References and Background

Mackey and Glass [182] have proposed the DDE (15.1) as a heuristic model for the regulation of
hematopoesis and for respiratory behavior. In the former case, the state yptq represents the density
of mature circulating cells and the time delay τpcq � c3 stands for the time that passes between
the initiation of blood cell production in the bone marrow and the release of mature cells into the
blood.

It is known that the DDE-IVP (15.1), (15.3) exhibits, for the parameter values given above, a
chaotic behavior (see Glass and Mackey [116]). For this reason, huge values can be expected in
the Wronskian matrix Wpt; cq. This is indeed the case, as shown in the following.

Numerical Reference Solution and Numerical Reference Sensitivities

A reference solution ηref p100q is given by

yp100; cq � ηref p100q � 0.840255042, (15.5)

and reference sensitivities Eref p100q are given by

Wp100; cq �Eref p100q
� �5514.74692 �294.963701 �228.342535 407.812186 �1101.27548

�
. (15.6)

For consistency with the remainder of the thesis, the sensitivities W and Eref are written here as
matrices (in boldface), even though they are row vectors in this example because y is scalar.

The reference values ηref p100q and Eref p100q have been obtained by using Colsol-DDE with
stringent absolute and relative tolerances and relying on the implemented Internal Numerical
Differentiation method. Verification of the reference values was done by manually implementing
the combined system of nominal and variational DDE-IVP in DDE SOLVER (Thompson and
Shampine [246]) and solving this IVP with stringent tolerances. In this “manual” implementation,
automatically generated derivatives of the model functions as provided by Tapenade (Hascoët and
Pascual [140]) have been used. The results for the solution and for the sensitivities obtained by
Colsol-DDE and DDE SOLVER were identical in the leading 9 digits given above.

Please note that solving the variational DDE-IVP is sufficient for sensitivity computation in
this example because the initial function is continuous, and because the initial function links
continuously to the initial value. For DDE-IVPs with discontinuities in the initial function, jumps
in the sensitivities would have to be taken into account, cf. Chapters 7 and 8.

Plots of the IVP solution and of the sensitivities with respect to all 5 parameters on the time in-
terval T � r0, 200s are given in Figure 15.1. The nominal solution ypt; cq, displayed in Figure 15.1a,
shows an oscillatory but aperiodic behavior. The sensitivities, displayed in the Figures 15.1b-15.1f,
all show an oscillatory, aperiodic behavior with increasing amplitude. The oscillations with the
largest amplitudes are observed in the sensitivity of the nominal IVP solution with respect to the
parameter c1, i.e. in the sensitivity with respect to the constant value of the initial function.

Convergence Behavior

The convergence behavior of the methods implemented in Colsol-DDE is investigated by varying
the relative tolerance over several orders of magnitude: σreltol � 10�2, and σreltol � n � 10�m, with n P
t1, . . . , 9u and m P t3, . . . , 11u. Sensitivities are computed by Internal Numerical Differentiation,
and the error control mechanism of Colsol-DDE is only applied to the nominal IVP solution.

For all selected values of the relative tolerance, the IVP is solved and the sensitivities of the IVP
solution with respect to the parameters ci, 1 ¤ i ¤ 5, are computed. This gives results ηp100q and
Ep100q. The relative errors of these results are computed by

εnomrel � |ηp100q � ηref p100q|
|ηref p100q| (15.7a)

εsensrel � max
1¤i¤5

�
|E1,ip100q �Eref

1,i p100q|
|Eref
i p100q|

�
. (15.7b)
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(a) (b)

(c) (d)

(e) (f)

Figure 15.1.: Solution of the DDE-IVP (15.1), (15.3) and sensitivities: (a) nominal IVP solution
ypt; cq, (b)-(f) sensitivities W1,ipt; cq � Bypt; cq{Bci for 1 ¤ i ¤ 5.

The relative errors as a function of the relative tolerance are displayed in Figure 15.2. A very
good error-tolerance proportionality is observed. In particular, error-tolerance proportionality is
also observed for the sensitivities, although the error control strategy has only been applied to the
nominal solution. Furthermore, the relative error in the sensitivities is only slightly larger than
the error in the nominal solution.

Comparison of the Results to Literature Values

ZivariPiran [271] and ZivariPiran and Enright [273] have investigated the Mackey Glass DDE with
the same parameter values. Using their software DDEM, they have obtained completely different
results for the sensitivities. In particular, the sensitivity W1,1pt, cq � Bypt; cq{Bc1, approaches 0
for tÑ 100 in their computations. This clearly contradicts the behavior observed in Figure 15.1b,
and, in fact, also sensitivity approximations that are obtained by using finite difference, see Zi-
variPiran [271] and ZivariPiran and Enright [273]. The reason for these contradictory results is
unclear. However, the results of the manual implementation of the nominal and variational DDE-
IVP in DDE SOLVER gives confidence to the implementation in Colsol-DDE and thus to the
above-presented reference sensitivities.
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Figure 15.2.: Convergence of the results obtained with Colsol-DDE to the numerical reference val-
ues for the solution of the DDE-IVP (15.1), (15.3), and to the corresponding sensi-
tivities. The black line displays the relative error εnomrel in the nominal solution, and
the gray line displays the relative error εsensrel in the sensitivities.

15.1.2. Mechanics: An HDDE Model for Stick Balancing

Problem Definition

Consider the following differential equation system:

9y1pt; cq � y2pt; cq (15.8a)

9y2pt; cq � sinpy1pt; cqq � gpypt; cq, ypt� τpcq; cq, c, ζptqq (15.8b)

where

gpypt; cq, ypt� τpcq; cq, c, ζptqq

�
#

��c5y1pt� τpcq; cq � c6y2pt� τpcq; cq� � cospy1pt; cqq for ζptq � �1

0 for ζptq � �1
. (15.9)

There is one constant delay in the differential equation system (15.8):

τpt, yptq, cq � τpcq � c3. (15.10)

Further, ζptq is the sign of the switching function σ:

ζptq � signpσpt, y�pt; cq, c, y�pt� τpcq; cqqq. (15.11)

The following state-dependent switching function is considered:

σpt, ypt; cq, c, ypt� τpcq; cqq � σpypt� τpcq; cq, cq
σpypt� τpcq; cq, cq � y1pt� τpcq; cq

�
y2pt� τpcq; cq � c4y1pt� τpcq; cq

	
. (15.12)

The differential equation system (15.8) is associated with the following initial condition:

ypt; cq � �c1 c2
�T

for t ¤ 0. (15.13)

This means that tinipcq � tini � 0, φpt, cq � φp0, cq � yinipcq � pc1, c2qT . The final time is set to
tfinpcq � tfin � 25, i.e. the IVP (15.8), (15.13) is considered on the time interval T � r0, 25s.

There are 6 parameters in the IVP: The parameters c1 and c2 in the initial condition, the
parameter c3 is the constant delay, parameter c4 is used in the definition of the switching function,
and the parameters c5 and c6 are used in the right-hand-side function.

The following values are used for the parameters:

c1 � 0.01, c2 � 0.01, c3 � 0.5, c4 � 0.3, c5 � 1.5, c6 � 4. (15.14)
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Eref�,1 p25q � Byp25; cq{Bc1 Eref�,2 p25q � Byp25; cq{Bc2 Eref�,3 p25q � Byp25; cq{Bc3
-45.03397148 -26.29134854 -53.99468177
-10.79594265 -6.488152219 -12.87492139

Eref�,4 p25q � Byp25; cq{Bc4 Eref�,5 p25q � Byp25; cq{Bc5 Eref�,6 p25q � Byp25; cq{Bc6
1.957157801 -0.5925401568 0.4113500361

0.2206458197 0.02754767065 0.4612943382

Table 15.1.: Numerical reference sensitivities for the solution of the HDDE-IVP (15.8), (15.13).

Categorization

The IVP (15.8), (15.13) is an HDDE-IVP with one constant delay and with one state-dependent
switching function.

Background and References

The differential equation (15.8) originates from the description of an inverted pedulum that is
mounted on a moving cart. By moving the cart back and forth, the inverted pendulum can be
balanced in the upright position. Under the assumption that the mass of the pendulum is small
compared to the mass of the cart, the model of Sieber and Krauskopf [236] reads

9y1pt; cq � y2pt; cq (15.15a)

9y2pt; cq � sinpy1pt; cqq �Gpypt; cq, ypt� τpcq; cq, cq. (15.15b)

Herein, y1pt; cq denotes the angular displacement of the pendulum compared to the upright position
and y2pt; cq denotes the angular velocity. Gpypt; cq, ypt�τpcq; cqq represents the angular acceleration
that is due to the movement of the cart. This acceleration depends on the current state and on
the state of the system at the past time point t� τpcq.

The alternative “control law” gpypt; cq, ypt � τpcq; cq, c, ζptqq given in equation (15.9), which is
used in the differential equation (15.8), has recently been proposed by Simpson, Kuske, and Li [238].
Here, the external control by the movement of the cart is active only if the components of the past
state vector ypt� τpcq; cq are located in certain regions of the phase space.

Numerical Reference Solution and Numerical Reference Sensitivities

By using a sequence of stringent tolerances, the methods implemented in Colsol-DDE show a
reasonable convergence behavior for at least the leading 10 digits in the approximations of the
components of the nominal solution and of the components of the sensitivity matrix. This motivates
to give the following reference solution ηref p25q:

yp25; cq � ηref p25q �
�

0.2410376148
0.9931167622



. (15.16)

Further, it holds that

Wp25; cq � Eref p25q (15.17)

and the reference sensitivities Eref p25q are given in Table 15.1.

The reference solution ηref p25q has been validated by using DDE SOLVER (see Thompson and
Shampine [246]) with stringent tolerances.

Since Colsol-DDE is the only existing solver that features computation of sensitivities of HDDE-
IVP solutions, validation of the reference sensitivities Eref p25q is difficult. Here, a finite difference
approach (“External Numerical Differentiation”) has been used. This approach may only provide
moderate accuracies as discussed in Subsection 8.2.1, however, it allowed verification of the leading
5-6 digits given in Table 15.1. This, together with the reasonable convergence behavior of Colsol-
DDE, provides confidence in the correctness of the given reference sensitivities.

The reference solution yptq is plotted as a function of time in Figure 15.3a and in phase space in
Figure 15.3b. Starting at the point p0.01, 0.01q the state spirals outward in a clockwise direction
until it eventually shows a periodic behavior.
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(a) (b)

Figure 15.3.: Solution of the HDDE-IVP (15.8), (15.13) (a) as a function of time and (b) in phase
space. In (a), the solution y1ptq is plotted as a black line, and y2ptq is plotted as a
gray line. The thin gray lines in (b) represent the points in phase space where the
switching function σpypt � c3; cqq is zero. The control is active whenever the past
states are either in the upper right part of the plot or in the lower left part.

The reference sensitivities are displayed in Figure 15.4. Note that discontinuities are present in
the sensitivities of y2pt; cq (vertical lines), but not in the sensitivities of y1pt; cq. The reason for this
is that only the second component of the right-hand-side function is discontinuous in the zeros of
the switching function.

Convergence Behavior

The convergence behavior of Colsol-DDE is investigated by varying the relative tolerance over
several orders of magnitude: σreltol � 10�2, and σreltol � n � 10�m, with n P t1, . . . , 9u and m P
t3, . . . , 10u. For the computation of the sensitivities, Internal Numerical Differentiation is used,
and the error control is only applied to the nominal IVP solution.

For all values of the relative tolerance, the IVP is solved and the sensitivities with respect to
the parameters ci, 1 ¤ i ¤ 6, are computed. For each value of σtolrel, this yields a result ηp25q for
the nominal solution and a result Ep25q for the sensitivities. The relative errors in the nominal
solution and in the sensitivities are then computed as follows:

εnomrel � max
1¤i¤2

|ηip25q � ηrefi p25q|
|ηrefi p25q| (15.18a)

εsensrel � max
1¤i¤2,1¤j¤6

�
|Ei,jp25q �Eref

i,j p25q|
|Eref
i,j p25q|

�
. (15.18b)

The relative errors as functions of the relative tolerance are displayed in Figure 15.5. A good
convergence behavior of the employed methods is observed for the nominal solution (black). Al-
though the local errors in the sensitivities are not controlled, a good convergence behavior is also
observed for the sensitivities (gray). The relative error in the sensitivities is typically one order of
magnitude larger than the error in the nominal solution.
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(a) (b)

(c) (d)

(e) (f)

Figure 15.4.: Sensitivities of the solution of HDDE-IVP (15.8), (15.13): In all Figures (a)-(f), the
black line shows the sensitivity of y1pt; cq and the gray line shows the sensitivity of
y2pt; cq.

Figure 15.5.: Convergence of the results obtained with Colsol-DDE to the numerical reference val-
ues for the solution of the HDDE-IVP (15.8), (15.13) and to the corresponding sen-
sitivities. The black line displays the relative error εnomrel in the nominal solution, and
the gray line displays the relative error εsensrel in the sensitivities.
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15.1.3. Computer Science: An IDDE Model for a Cellular Neural Network

Problem Definition

In this subsection, the following differential equation system is investigated:

9y1pt; cq � � c10 � y1pt; cq � sinpc11 � tq � gpy1pt; cqq � cospc12 � tq � gpy2pt; cqq
� sinpc13 � tq � gpy1pt� τ1pt, cq; cqq
� sinptq � gpy2pt� τ2pt, cq; cqq � c14 � sinptq if ζiptq � �1, 1 ¤ i ¤ 20 (15.19a)

9y2pt; cq � � c15 � y2pt; cq � cosptq � gpy1pt; cqq
c16

� cospc17 � tq � gpy2pt; cqq
c18

� cosptq � gpy1pt� τ1pt, cq; cqq � cospc19 � tq � gpy2pt� τ2pt, cq; cqq
� c20 � cosptq if ζiptq � �1, 1 ¤ i ¤ 20, (15.19b)

ypt; cq �y�pt; cq � ωpy�pt; cqq if ζiptq � 0 for at least one i P t1, 2, . . . , 20u. (15.19c)

where

gpxq � |x� 1| � |x� 1|
2

. (15.20)

The differential equation system (15.19) features two time-dependent delay functions:

τ1pt, ypt; cq, cq � τ1pt; cq � c3 � cosptq
c4

(15.21a)

τ2pt, ypt; cq, cq � τ2pt; cq � c5 � sinptq
c6

. (15.21b)

Further,

ζiptq � signpσipt, y�pt; cq, c, typt� τipt; cq; cqqu2i�1q (15.22)

are the signs of the following simple time-dependent switching functions:

σipt, ypt; cq, c, typt� τipt; cq; cqqu2i�1q � σipt, cq � t� i � c7, (15.23)

with 1 ¤ i ¤ 20. The impulse function, which is evaluated in the zeros of these switching functions,
is given by

ωpt, ypt; cq, c, typt� τipt, cqqu2i�1, ζptqq � ωpypt; cqq (15.24a)

ωpypt; cqq �
�
c8y1pt; cq
c9y2pt; cq



(15.24b)

The following initial condition is employed:

ypt; cq � �c1 c2
�T

for t ¤ 0. (15.25)

This means that tinipcq � tini � 0, φpt, cq � φp0, cq � yinipcq � pc1, c2qT . The final time is set to
tfinpcq � tfin � 41, i.e. the considered time interval is T � r0, 41s.

The values for the parameters that are considered here are the same as those in Corwin, Thomp-
son, and White [71]:

c1 � �0.5, c2 � 0.5, c3 � 1, c4 � 2,

c5 � 1, c6 � 2, c7 � 2, c8 � 0.2,

c9 � 0.3, c10 � 6, c11 � 2, c12 � 3,

c13 � 3, c14 � 4, c15 � 7, c16 � 3,

c17 � 2, c18 � 2, c19 � 2, c20 � 2. (15.26)

Note that c1 and c2 define the initial conditions, and that c3, c4, c5, and c6 are used in the delay func-
tions. For the specific parameter values used here, the delays vanish periodically. The parameter
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c7 occurs in the definition of the switching function. Since c7 � 2 and because rtini, tfins � r0, 41s,
there are in total 20 impulses. The parameters c8, and c9 define the impulse, and c10, c11, ..., c20

occur in the right hand side of the differential equation.

Categorization

The IVP (15.19), (15.24), (15.25) is an IDDE-IVP with two time-dependent delay functions and
20 simple time-dependent switching functions.

Please note that the function g defined in equation (15.20) is continuous, but not differentiable.
In general, this requires to define additional state-dependent switching functions and to formulate
the differential equation as a function of the signs of these switching functions. In this way, it can
be ensured that the right-hand-side function is, for any fixed values of the switching function signs,
sufficiently smooth in order to apply higher order numerical methods. The IVP then becomes an
IHDDE-IVP.

However, for the specific initial conditions used here, it is known from Corwin, Thompson, and
White [71] that |y1ptq|   1, and that |y2ptq|   1. Hence, implementation of additional switching
function is dispensable here.

Background and References

The model (15.19) has its roots in the research on so-called cellular neural networks. Cellular
neural networks have been introduced by Chua and Yang [65, 66] as a class of information process-
ing systems. An important application area of cellular neural networks is image processing, see
Egmont-Petersen, de Ridder, and Handels [85]. The specific model for a cellular neural network
given in equation (15.19) takes into account time delays and impulsive effects and is due to Yang
and Cao [267].

Numerical Reference Solution and Numerical Reference Sensitivities

By using a sequence of stringent tolerances, Colsol-DDE shows a reasonable convergence behavior
in the leading 8� 13 digits in the approximations of the components of the nominal solution and
of the components of the Wronskian matrix. The smallest number of significant digits is obtained
for the entries in the first two columns of the Wronskian matrix, which have very small absolute
values (� 10�50). For the nominal solution components as well as for all other components of the
sensitivity matrix, a reasonable convergence behavior is obtained for at least the leading 10 digits.
Hence, a numerical reference solution ηref p41q with 10 digits is given:

yp41; cq � ηref p41q �
�

0.06327602399
�0.3804007754



. (15.27)

Further,

Wp41; cq � Eref p41q, (15.28)

and the components of Eref p41q are given in Table 15.2 with 8 digits in the first two columns and
with 10 digits in all other columns.

The reference solution ηref p41q has been validated by using ddesd (Shampine and Thompson
[233]) with stringent tolerances.

Validation of the reference sensitivities is not easily possible because Colsol-DDE is the only
existing solver designed for the computation of sensitivities of IDDE-IVP solutions. Therefore,
only the leading 4-5 digits have been verified by using the External Numerical Differentiation
approach. This is considered as a good indication for the correctness of the reference sensitivities
given in Table 15.2.

A plot of the solution on the considered time interval r0, 41s is given in Figure 15.6. Both state
vector components show an oscillatory behavior as a function of time (Figure 15.6a). In the phase
space plot (Figure 15.6b), the impulses lead to a “ragged” structure.

For brevity, only selected sensitivities are displayed in figures. The sensitivities with respect to
c1, i.e. W�,1pt; cq, are shown in Figure 15.7. Both components of the column W�,1pt; cq rapidly
approach zero. In order to resolve the initial dynamics, the sensitivities are therefore displayed on
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Eref
�,1 p41q � Byp41; cq{Bc1 Eref

�,2 p41q � Byp41; cq{Bc2 Eref
�,3 p41q � Byp41; cq{Bc3

3.2129483�10�50 -5.7915006�10�51 0.004577405219
-1.6481695�10�49 2.9709082�10�50 -0.05010246309

Eref
�,4 p41q � Byp41; cq{Bc4 Eref

�,5 p41q � Byp41; cq{Bc5 Eref
�,6 p41q � Byp41; cq{Bc6

-1.984800522�10�4 -0.001477483886 5.517575242�10�4

4.713910077�10�4 0.01412557471 -0.006985226893

Eref
�,7 p41q � Byp41; cq{Bc7 Eref

�,8 p41q � Byp41; cq{Bc8 Eref
�,9 p41q � Byp41; cq{Bc9

0.06667825669 0.002207972975 5.147258058�10�4

-0.1688573721 -0.003591162952 -0.003600313094

Eref
�,10p41q � Byp41; cq{Bc10 Eref

�,11p41q � Byp41; cq{Bc11 Eref
�,12p41q � Byp41; cq{Bc12

-0.02830142263 1.004468381 -0.01672278018
0.01033310197 -0.2548906213 -0.1911011073

Eref
�,13p41q � Byp41; cq{Bc13 Eref

�,14p41q � Byp41; cq{Bc14 Eref
�,15p41q � Byp41; cq{Bc15

-0.8837175467 0.003235348615 -0.009470848088
0.1502288185 -0.008400349003 0.06592171736

Eref
�,16p41q � Byp41; cq{Bc16 Eref

�,17p41q � Byp41; cq{Bc17 Eref
�,18p41q � Byp41; cq{Bc18

-6.756497854�10�4 0.05292386639 -0.002050396788
0.003472102391 -0.07979146305 0.01486079828

Eref
�,19p41q � Byp41; cq{Bc19 Eref

�,20p41q � Byp41; cq{Bc20

0.04313277544 0.02516731477
0.09416982507 -0.1733996897

Table 15.2.: Numerical reference sensitivities for the solution of the IDDE-IVP (15.19), (15.24),
(15.25).

the interval r0, 3s (Figure 15.7a). Figure 15.7b zooms in on the discontinuity point t � 2. It can
be seen that a small jump is applied to the sensitivities.

Figure 15.8 displays the sensitivity W1,3pt; cq � By1pt; cq{Bc3. The close up view in Figure 15.8b
shows that this sensitivity is discontinuous at the time points of the root discontinuities (t � 2,
t � 4, t � 6), but also at other time points, e.g. at t � 6.9. In fact, the point t � 6.9 is a zero of
the propagation switching function σα1,spt, cq :� t� τ1pt, cq � s for s � 6.

Figure 15.9 displays the sensitivities of the IVP solution with respect to the parameters c7, c8,
and c9. All these sensitivities have jumps at the zeros of the switching functions. The sensitivities
with respect to c7 have additional jumps at the time points of the propagated discontinuities. It
is observed that the jumps in W�,7pt; cq are much larger than those in W�,8pt; cq and W�,9pt; cq.

Eventually, Figure 15.10 displays the sensitivities with respect to two parameters in the right-
hand-side function, c10 and c13. The sensitivities with respect to c10 appears to be “almost” peri-
odic, with only small impulsive perturbations at the zeros of the switching functions. Contrariwise,
the sensitivities with respect to the parameter c13 show oscillations of increasing amplitude, and
the absolute values of these sensitivities are much larger than those of the sensitivities with respect
to c10.
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(a) (b)

Figure 15.6.: Solution of the IDDE-IVP (15.19), (15.24), (15.25) (a) as a function of time and (b)
in phase space. In (a), the state vector component y1pt; cq is plotted as a black line,
and the state vector component y2pt; cq is plotted as a gray line.

(a) (b)

Figure 15.7.: Sensitivities of the solution ypt; cq of the IDDE-IVP (15.19), (15.24), (15.25) with
respect to the parameter c1, (a) on the time interval r0, 3s, and (b) in the vicinity
of the discontinuity point t � 2. In both cases, W1,1pt; cq is displayed in black, and
W2,1pt; cq is displayed in gray.

(a) (b)

Figure 15.8.: Sensitivity of the component y1pt; cq of the solution of the IDDE-IVP (15.19), (15.24),
(15.25) with respect to the parameter c3, (a) in the (entire) time interval r0, 41s, and
(b) in the interval r0, 8s.
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(a)

(b) (c)

Figure 15.9.: Sensitivities of the solution ypt; cq of the IDDE-IVP (15.19), (15.24), (15.25) with
respect to the parameters c7, c8, and c9. In all three figures, the sensitivity of y1pt; cq
is displayed in black, and the sensitivity of y2pt; cq is displayed in gray.

(a) (b)

Figure 15.10.: Sensitivities of the solution ypt; cq of the IDDE-IVP (15.19), (15.24), (15.25) with
respect to the parameters c10 and c13. In both cases, the sensitivity of y1pt; cq is
displayed in black, and the sensitivity of y2pt; cq is displayed in gray.
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15.2. Internal Numerical Differentiation vs. Alternative
Approaches for Sensitivity Computation

This section is concerned with a comparison of the newly developed Internal Numerical Differenti-
ation method to alternative approaches for sensitivity computation. As a first step, the employed
test problem is defined.

Problem Definition

The following DDE variant of the Hodgin-Huxley model [148] for three coupled neurons is due to
Orosz, Moehlis, and Murray [199] and is used a test problem for the investigations in this section:

y1pt; cq �c14 �
�
c15 � ϕNapy1pt; cq, y4pt; cq, y7pt; cq, cq � ϕKpy1pt; cq, y10pt; cq, cq

�ϕLpy1pt; cq, cq � c22

�py2pt� c13q � y1ptqq � py3pt� c13q � y1ptqq
��

(15.29a)

y2pt; cq �c14 �
�
c15 � ϕNapy2pt; cq, y5pt; cq, y8pt; cq, cq � ϕKpy2pt; cq, y11pt; cq, cq

�ϕLpy2pt; cq, cq � c22

�py1pt� c13q � y2ptqq � py3pt� c13q � y2ptqq
��

(15.29b)

y3pt; cq �c14 �
�
c15 � ϕNapy3pt; cq, y6pt; cq, y9pt; cq, cq � ϕKpy3pt; cq, y12pt; cq, cq

�ϕLpy3pt; cq, cq � c22

�py1pt� c13q � y3ptqq � py2pt� c13q � y3ptqq
��

(15.29c)

yipt; cq �γmpyi�3pt; cq, cq � p1� yipt; cqq � βmpyi�3pt; cq, cq � yipt; cq for i � 4, 5, 6 (15.29d)

yipt; cq �γhpyi�6pt; cq, cq � p1� yipt; cqq � βhpyi�6pt; cq, cq � yipt; cq for i � 7, 8, 9 (15.29e)

yipt; cq �γnpyi�9pt; cq, cq � p1� yipt; cqq � βnpyi�9pt; cq, cq � yipt; cq for i � 10, 11, 12 (15.29f)

Herein, the following functions have been used:

ϕNapz1, z2, z3, cq � c16 � z3
2 � z3 � pz1 � c19q (15.30a)

ϕKpz1, z2, cq � c17 � z4
2 � pz1 � c20q (15.30b)

ϕLpz1, cq � c18 � pz1 � c21q (15.30c)

and

γmpz, cq � c24 � pz � c23q
1� expp�pz � c23q{c25q (15.31a)

γhpz, cq �c27 � expp�pz � c26q{c28q (15.31b)

γnpz, cq � c30 � pz � c29q
1� expp�pz � c29q{c31q (15.31c)

βmpz, cq �c33 � expp�pz � c32q{c34q (15.31d)

βhpz, cq � c36

1� expp�pz � c35q{c37q (15.31e)

βnpz, cq �c39 � expp�pz � c38q{c40q. (15.31f)

The DDE (15.29) is associated with the following initial condition

yipt; cq �ci for t ¤ 0, (15.32)

which means that tinipcq � tini � 0 and φpt, cq � φp0; cq � yinipcq. The final time is set to
tfinpcq � tfin � 60, i.e. the DDE-IVP (15.29), (15.32) is considered on the interval T � r0, 60s.

The DDE-IVP has a 12-dimensional state vector and a 40-dimensional parameter vector. The
state vector components y1pt; cq, y2pt; cq, and y3pt; cq represent the potential at the membrane of
the neuron. The first 12 parameters represent the constant values of the initial function (which
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are equal to the initial value). Parameter c13 is the delay and the parameter c22 stands for the
coupling strength between the neurons. For the meaning of the other state vector components and
parameters it is referred to Hodgin and Huxley [148] and to Orosz, Moehlis, and Murray [199].

The following parameter values are used:

c01 � �66.0, c02 � �57.0, c03 � �55.8, c04 � 0.043,

c05 � 0.12, c06 � 0.54, c07 � 0.32, c08 � 0.37,

c09 � 0.069, c10 � 0.49, c11 � 0.44, c12 � 0.73,

c13 � 5.511241875, c14 � 1.0, c15 � 20.0, c16 � 120.0,

c17 � 36.0, c18 � 0.3, c19 � 50.0, c20 � �77.0,

c21 � �54.4, c22 � 0.03, c23 � 40.0, c24 � 0.1,

c25 � 10.0, c26 � 65.0, c27 � 0.07, c28 � 20.0,

c29 � 55.0, c30 � 0.01, c31 � 10.0, c32 � 65.0,

c33 � 4.0, c34 � 18.0, c35 � 35.0, c36 � 1.0,

c37 � 10.0, c38 � 65.0, c39 � 0.125, c40 � 80.0 (15.33)

Numerical Reference Solution and Numerical Reference Sensitivities

For the specific parameters given in equation (15.33), the DDE-IVP is solved with stringent toler-
ances and sensitivities are computed with the Internal Numerical Differentiation approach imple-
mented in Colsol-DDE. The leading 8 digits of the obtained solution are verified by implementing
the combined system of nominal DDE-IVP and variational DDE-IVP manually1 in DDE SOLVER
by Thompson and Shampine [246]. Please note that validation of the sensitivities in this way
is only possible because the initial function is continuous, and because the initial function links
continuosly to the initial value.

The obtained reference solution ηref p60q with 8 valid digits is:

yp60; cq � ηref p60q �

��������������������

�57.458788
�38.031909
�67.977636
0.11091611
0.81196903

0.034856126
0.37964947

0.065512347
0.30805708
0.43376271
0.74446898
0.50819294

�������������������

. (15.34)

Further, for the sensitivities it holds that

Wp60; cq � Ep60q, (15.35)

and the reference sensitivities Ep60q are given in Table 15.3. For the sake of brevity, only the
leading 4 digits of the sensitivities are given.

A plot on the interval r0, 60s is given in Figure 15.11. All 12 state vector components show a
periodic behavior, and the peaks in the membrane potential of the three neurons (“neuron spikes”)
are equally spaced.

15.2.1. Comparison to External Numerical Differentiation

The goal in this subsection is to compare the efficiency and accuracy of the newly developed
Internal Numerical Differentiation method for DDE-IVPs (Section 8.2) to classical finite difference
approximations of the sensitivities (“External Numerical Differentiation”, see Subsection 8.2.1).

1The “manual” implementation employed automatically generated subroutines for the derivatives of the model
functions provided by Tapenade (see Hascoët and Pascual [140]).
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Eref�,1p60; cq Eref�,2p60; cq Eref�,3p60; cq Eref�,4p60; cq Eref�,5p60; cq Eref�,6p60; cq Eref�,7p60; cq Eref�,8p60; cq

-6.495E-02 4.736E-01 2.313E-02 -6.188E-01 3.470E+01 -3.228E-01 7.639E+00 1.841E+01
4.650E-01 -8.589E+00 -3.726E-01 6.025E+00 -6.295E+02 1.976E+00 -8.035E+01 -3.221E+02

-1.163E-02 4.660E-01 1.695E-02 -1.966E-01 3.451E+01 -2.314E-01 2.804E+00 1.806E+01
-6.831E-04 4.267E-03 2.194E-04 -6.349E-03 3.120E-01 -3.065E-03 7.766E-02 1.660E-01
5.273E-03 -9.754E-02 -4.229E-03 6.834E-02 -7.149E+00 2.252E-02 -9.115E-01 -3.659E+00

-4.704E-05 1.902E-03 6.914E-05 -7.991E-04 1.409E-01 -9.440E-04 1.141E-02 7.371E-02
1.083E-04 -8.180E-04 -3.925E-05 1.035E-03 -6.000E-02 5.740E-04 -1.279E-02 -3.189E-02
1.141E-04 -2.006E-03 -8.740E-05 1.448E-03 -1.470E-01 4.901E-04 -1.922E-02 -7.531E-02

-2.065E-04 7.934E-03 2.886E-04 -3.403E-03 5.875E-01 -4.022E-03 4.836E-02 3.077E-01
7.831E-06 1.630E-04 4.864E-06 2.168E-05 1.212E-02 -3.971E-05 -4.252E-05 6.215E-03
1.477E-04 -2.433E-03 -1.071E-04 1.830E-03 -1.782E-01 6.073E-04 -2.416E-02 -9.134E-02
1.791E-04 -7.430E-03 -2.691E-04 3.080E-03 -5.503E-01 3.707E-03 -4.408E-02 -2.880E-01

Eref�,9p60; cq Eref�,10p60; cq Eref�,11p60; cq Eref�,12p60; cq Eref�,13p60; cq Eref�,14p60; cq Eref�,15p60; cq Eref�,16p60; cq

2.463E+00 -3.395E+01 -1.343E+02 -6.030E+00 -4.913E+00 2.831E+01 3.875E+00 4.323E-01
-1.539E+01 3.111E+02 2.430E+03 3.505E+01 4.023E+01 -3.724E+02 -4.682E+01 -5.824E+00
1.532E+00 -1.019E+01 -1.334E+02 -4.713E+00 -2.773E+00 2.045E+01 2.786E+00 2.911E-01
2.383E-02 -3.494E-01 -1.207E+00 -5.652E-02 -4.334E-02 2.689E-01 3.729E-02 4.005E-03

-1.752E-01 3.528E+00 2.759E+01 3.998E-01 4.588E-01 -4.222E+00 -5.318E-01 -6.627E-02
6.247E-03 -4.140E-02 -5.445E-01 -1.923E-02 -1.129E-02 8.327E-02 1.134E-02 1.187E-03

-4.333E-03 5.685E-02 2.322E-01 1.081E-02 8.627E-03 -5.727E-02 -1.264E-02 -5.211E-04
-3.811E-03 7.501E-02 5.674E-01 8.731E-03 1.012E-02 -8.196E-02 -1.148E-02 -1.558E-03
2.667E-02 -1.769E-01 -2.271E+00 -8.188E-02 -4.764E-02 3.417E-01 3.986E-02 5.420E-03
1.962E-04 1.625E-03 -4.677E-02 -9.093E-04 -1.794E-03 1.420E-02 4.190E-03 1.495E-04

-4.765E-03 9.513E-02 6.879E-01 1.076E-02 1.262E-02 -1.068E-01 -1.432E-02 -8.833E-04
-2.450E-02 1.595E-01 2.127E+00 7.560E-02 4.367E-02 -3.118E-01 -3.880E-02 -4.635E-03

Eref�,17p60; cq Eref�,18p60; cq Eref�,19p60; cq Eref�,20p60; cq Eref�,21p60; cq Eref�,22p60; cq Eref�,23p60; cq Eref�,24p60; cq

-2.782E+00 -1.839E+01 5.012E-01 1.793E+00 1.163E+00 1.531E+02 1.064E+01 1.706E+03
3.489E+01 2.589E+02 -7.023E+00 -2.179E+01 -1.404E+01 -2.365E+03 -1.399E+02 -2.255E+04

-1.965E+00 -9.275E+00 3.326E-01 1.825E+00 8.358E-01 1.106E+02 7.366E+00 1.184E+03
-2.639E-02 -1.653E-01 4.617E-03 1.759E-02 1.119E-02 1.410E+00 1.064E-01 1.701E+01
3.970E-01 2.938E+00 -7.935E-02 -2.495E-01 -1.595E-01 -2.686E+01 -1.587E+00 -2.556E+02

-8.006E-03 -3.767E-02 1.356E-03 7.604E-03 3.401E-03 4.515E-01 3.244E-02 5.164E+00
7.690E-03 -3.491E-02 -2.003E-04 -1.518E-02 -3.792E-03 -2.779E-01 -1.805E-02 -2.811E+00
9.287E-03 5.580E-02 -1.795E-03 -6.740E-03 -3.443E-03 -5.512E-01 -3.230E-02 -5.186E+00

-2.991E-02 -2.837E-01 6.850E-03 7.876E-03 1.196E-02 1.859E+00 1.283E-01 2.073E+01
-2.657E-03 2.343E-02 1.812E-04 5.563E-03 1.257E-03 3.623E-02 3.181E-03 4.985E-01
8.068E-03 5.287E-02 -2.351E-04 -7.093E-03 -4.297E-03 -6.889E-01 -3.815E-02 -6.006E+00
2.790E-02 2.286E-01 -5.295E-03 -1.390E-02 -1.164E-02 -1.753E+00 -1.173E-01 -1.885E+01

Eref�,25p60; cq Eref�,26p60; cq Eref�,27p60; cq Eref�,28p60; cq Eref�,29p60; cq Eref�,30p60; cq Eref�,31p60; cq Eref�,32p60; cq

3.365E+01 -1.482E+00 4.235E+02 -2.074E-01 -9.429E+00 -1.717E+04 -2.303E+01 7.424E+00
-4.386E+02 1.930E+01 -5.514E+03 2.732E+00 1.134E+02 2.053E+05 2.763E+02 -9.706E+01
2.318E+01 -9.505E-01 2.716E+02 -1.578E-01 -6.239E+00 -1.143E+04 -1.517E+01 5.092E+00
3.383E-01 -1.370E-02 3.914E+00 -1.995E-03 -8.971E-02 -1.634E+02 -2.194E-01 7.459E-02

-4.980E+00 2.198E-01 -6.281E+01 3.010E-02 1.289E+00 2.334E+03 3.138E+00 -1.097E+00
1.047E-01 -3.875E-03 1.107E+00 -6.437E-04 -2.540E-02 -4.656E+01 -6.172E-02 2.253E-02

-5.903E-02 -1.194E-02 3.411E+00 -4.792E-04 2.262E-02 4.511E+01 5.420E-02 -1.321E-02
-1.017E-01 2.985E-03 -8.528E-01 1.074E-03 2.808E-02 5.377E+01 6.672E-02 -2.309E-02
4.017E-01 -3.024E-02 8.641E+00 -5.113E-03 -1.009E-01 -1.781E+02 -2.482E-01 8.783E-02
1.068E-02 -5.600E-04 1.600E-01 -5.981E-05 2.044E-03 3.897E+00 4.713E-03 2.326E-03

-1.220E-01 2.203E-03 -6.293E-01 1.120E-03 3.659E-02 7.430E+01 8.396E-02 -2.648E-02
-3.688E-01 1.513E-02 -4.323E+00 2.512E-03 9.991E-02 1.830E+02 2.431E-01 -8.107E-02

Eref�,33p60; cq Eref�,34p60; cq Eref�,35p60; cq Eref�,36p60; cq Eref�,37p60; cq Eref�,38p60; cq Eref�,39p60; cq Eref�,40p60; cq

-3.341E+01 -3.079E+00 -9.145E-01 9.962E+00 -3.219E+00 -3.347E+00 2.142E+03 7.615E-02
4.368E+02 4.160E+01 1.221E+01 -1.343E+02 4.274E+01 3.965E+01 -2.537E+04 -9.329E-01

-2.292E+01 -2.115E+00 -5.457E-01 1.030E+01 -2.113E+00 -2.258E+00 1.445E+03 4.852E-02
-3.357E-01 -3.035E-02 -8.277E-03 1.057E-01 -2.989E-02 -3.206E-02 2.052E+01 7.051E-04
4.937E+00 4.612E-01 1.402E-01 -1.467E+00 4.847E-01 4.505E-01 -2.883E+02 -1.073E-02
-1.014E-01 -8.291E-03 -2.225E-03 4.207E-02 -8.618E-03 -9.180E-03 5.875E+00 1.996E-04
5.946E-02 4.864E-03 -8.724E-03 -1.846E-01 -1.904E-02 9.377E-03 -6.002E+00 -1.894E-04
1.039E-01 1.090E-02 5.893E-04 -1.053E-01 7.548E-03 9.783E-03 -6.261E+00 -3.081E-04

-3.952E-01 -3.707E-02 -1.561E-02 1.704E-02 -4.839E-02 -3.471E-02 2.221E+01 7.215E-04
-1.047E-02 -7.870E-04 -3.520E-04 -2.969E-03 -9.540E-04 5.374E-04 -3.440E-01 -4.132E-05
1.192E-01 9.472E-03 -9.081E-04 -1.809E-01 5.640E-03 1.273E-02 -8.146E+00 -5.864E-04
3.648E-01 3.376E-02 8.691E-03 -1.645E-01 3.368E-02 3.627E-02 -2.322E+01 -7.609E-04

Table 15.3.: Numerical reference sensitivities for the solution of the DDE-IVP (15.29), (15.32). All
values are given in “scientific e-notation”; e.g., �6.495E � 02 means �6.495 � 10�2.
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(a) (b)

(c) (d)

Figure 15.11.: Solution of the DDE-IVP (15.29), (15.32): (a) y1pt; cq (black), y2pt; cq (dark gray),
y3pt; cq (light gray); (b) y4pt; cq (black), y5pt; cq (dark gray), y6pt; cq (light gray); (c)
y7pt; cq (black), y8pt; cq (dark gray), y9pt; cq (light gray); (d) y10pt; cq (black), y11pt; cq
(dark gray), y12pt; cq (light gray).

Consider the situation that the sensitivities should be computed with a moderate relative accu-
racy of 10�2. On the one hand, the realization of Internal Numerical Differentiation in Colsol-DDE
is used. The error control strategy is applied only to the nominal solution. The relative tolerance
is set to σreltol � 10�3 and the absolute tolerance is set to σabstol � 10�8.

On the other hand, External Numerical Differentiation is realized by calling Colsol-DDE 41 times,
once for computing an approximation of the nominal solution yp60; cq, and 40 times for computing
approximations of yp60; c� εifdeiq, where ei is the unit vector in the i-th direction (i � 1, 2, . . . , 40)

and εifd is the variational parameter of the finite difference. The variational parameter is chosen

to be proportional to the absolute value of the parameter: εifd � ε̃fd|ci|. Three different values for

ε̃fd are used: 10�4, 10�6, and 10�8. For all integrations, the relative and absolute tolerance are
set as follows: σreltol � 10�4, σabstol � 10�8.

Accuracy of Sensitivity Computation

The accuracy of an approximation Ep60q of the sensitivity matrix, obtained either with Internal
Numerical Differentiation or with External Numerical Differentiation, is assessed by computing
the relative error for each of the 480 components of the sensitivity matrix:

∆Erel
i,j �

|Ei,jp60q �Eref
i,j p60q|

|Eref
i,j p60q| . (15.36)

The results are displayed in Figure 15.12. Clearly, the relative errors obtained with Internal
Numerical Differentiation are very small compared to the relative errors obtained with External
Numerical Differentiation. More precisely, the largest relative error obtained with Internal Numer-
ical Differentiation occurs in E10,7p60; cq � By10p60; cq{Bc7 and is given by ∆Erel

10,7 � 9.77 � 10�3.
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Contrariwise, the largest relative errors obtained with External Numerical Differentiation are ap-
proximately 16.4, 8.03, and 9.84 � 10�2 for ε̃fd � 10�8, ε̃fd � 10�6, and ε̃fd � 10�4, respectively.
This means that errors of more than 100% are obtained for the two smaller values of ε̃fd, and for
ε̃fd � 10�4 the relative error is still one order of magnitude larger than with Internal Numerical
Differentiation.

Please note that the dependency of the relative errors on the variational parameter ε̃fd in the
External Numerical Differentiation approach is different for individual components of the sensitivity
matrix. For example, the element ∆Erel

12,13 appears as bright gray in Figure 15.12b, indicating a
large relative error. For increasing ε̃fd, the error becomes smaller (darker gray in Figures 15.12c

and 15.12d). The opposite behavior is observed, e.g., for the element ∆Erel
10,38. Yet other elements,

e.g. ∆Erel
10,7, are largest for the intermediate value ε̃fd � 10�6.

The poor performance of External Numerical Differentiation is rooted in the fact that integration
methods with adaptive components involve discrete decisions, e.g. because of stepsize rejections.
As a consequence, the integration result obtained with a variable-stepsize IVP solver generally
depends discontinuously on the values of the parameters (recall the discussion in Section 8.2.1).
For the particular choice εfd � 10�8, Colsol-DDE takes one additional integration step (compared
to the nominal solution) for solving the DDE-IVPs for variations in the parameters c13, c15, c16,
c19, c23, c24, c25, c27, c32, and c39. This causes the large errors in the corresponding columns (see
Figure 15.12b).

It is remarked that the poor performance of the External Numerical Differentiation approach is
not related to the use of the specific solver Colsol-DDE. Instead, External Numerical Differentiation
typically leads to poor sensitivity approximations also for other variable-stepsize IVP solvers. In
particular, this effect is observed for dde23 and RADAR5 in Lenz, Schlöder, and Bock [173].

(a) Internal Numerical Differentiation (b) External Numerical Differentiation, ε̃fd � 10�8

(c) External Numerical Differentiation, ε̃fd � 10�6 (d) External Numerical Differentiation, ε̃fd � 10�4

(e)

Figure 15.12.: Accuracy of sensitivity computation with Internal Numerical Differentiation and
with External Numerical Differentiation: Relative errors in the entries ∆Erel

i,j of the
sensitivity matrix, (a) for sensitivity computation with Internal Numerical Differ-
entiation, and (b)-(d) for sensitivity computation with External Numerical Differ-
entiation for various values of the finite difference variational parameter ε̃fd. The
relative errors are displayed as grayscale values, where darker gray indicates smaller
relative errors. White corresponds to relative error of 10 (1000%) or more, black
corresponds to a relative error of 10�4 (0.01%) or less, see the color bar in (e).

Efficiency of Sensitivity Computation

The combined computation of the nominal IVP solution and of the sensitivities with the Internal
Numerical Differentiation approach realized in Colsol-DDE takes 3.36s. Contrariwise, numerically
solving 41 IVPs for the External Numerical Differentiation approach needs 15.1s. This means
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that Internal Numerical Differentiation reduces the computation time by roughly 80%, while also
providing the more accurate sensitivity approximation. This clearly demonstrates the advantages of
the developed Internal Numerical Differentiation method over External Numerical Differentiation.

15.2.2. Comparison to Manual Implementation of Variational IVP

In this subsection, the Internal Numerical Differentiation approach realized in Colsol-DDE is com-
pared to another classical approach for sensitivity computation, namely to manual implementation
of the combined nominal and variational DDE-IVP. Please recall, from the discussion of the valida-
tion of the reference sensitivities, that this approach is applicable here because the initial function
is continuous and because the initial function links continuously to the initial value, see equation
(15.32). For DDE-IVPs with a discontinuity at the initial time, with discontinuous initial func-
tions, and also for HDDE-IVPs and IHDDE-IVPs, it is generally necessary to take into account
possible jumps in the sensitivities, see Chapter 7.

The two approaches are implemented as follows. First, the combined system of nominal and vari-
ational DDE-IVP is defined as an augmented IVP and solved by Colsol-DDE. This implementation
makes use of model function derivatives generated by Tapenade (Hascoët and Pascual [140]). The
time derivative 9ypt� c13q that appears in the variational DDE is approximated by evaluating the
right-hand-side function of the nominal DDE-IVP at the past time point, which can be achieved
in Colsol-DDE by defining a second constant delay with value 2c13. Second, Internal Numerical
Differentiation as implemented in Colsol-DDE is used. The error control strategy is thereby ap-
plied to both the nominal IVP solution and to the computation of sensitivities, in order to have
a better comparability to the manual implementation of the variational DDE-IVP. All settings of
Colsol-DDE are the same for the implementation of the two approaches; in particular, the relative
and absolute tolerance are set as follows: σreltol � 10�3, σabstol � 10�8.

The accuracy and efficiency of the two approaches are assessed by regarding the relative errors
in the computed sensitivities and the computation time as a function of the number of forward
sensitivity directions (i.e. the number of columns of Wpt; cq that are computed). Figure 15.13a
demonstrates that the accuracy of the computed sensitivities is nearly identical for the two ap-
proaches (the two lines overlap almost completely). The computation times are, however, dras-
tically different. With Internal Numerical Differentiation, the computation time increases only
very mildly from 2.9s to 13s when the number of sensitivity directions is increased from 1 to 40.
Hence, the black line in Figure 15.13b coincides almost exactly with the horizontal axis. Contrari-
wise, the computation time for the manual implementation of the combined system of nominal
and variational DDE-IVP increases from 15s for 1 sensitivity direction to 1500s for 40 sensitivity
directions.

(a) (b)

Figure 15.13.: Comparison of Internal Numerical Differentiation (black) to manual implementation
of the combined system of nominal and variational DDE-IVP (gray). Figure (a) dis-
plays the maximum relative error in any of the 12 �nfd components of the sensitivity
matrix (nfd :� number of forward sensitivity directions). Figure (b) displays the
computation time.

The observed effects are explained as follows. When implementing the combined nominal and
variational DDE-IVP manually, the dimension of the state vector is ny � 12 � pnfd� 1q, where nfd
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represents the number of forward sensitivity directions. The Lobatto IIIA collocation method in
Colsol-DDE requires, in every integration step, solution of a 2ny–dimensional nonlinear equation
system; in particular, for nfd � 60, the size of the system is 984. Further, the Newton-type method
used for solving the equation system occasionally requires a recomputation and decomposition of
the Jacobian matrix. The costs of these matrix computations and decompositions are the major
cause of the increase in computation time seen in Figure 15.13b.

Internal Numerical Differentiation as realized in Colsol-DDE exploits the fact that the computa-
tion of the sensitivities can be decoupled from the nominal solution, such that the computational
effort shrinks to solving pnfd � 1q equation systems of dimension 12, see Subsection 9.1.5. Direct
Internal Numerical Differentiation further exploits that the equation systems for the sensitivities
are linear in the unknowns. Hence, it is sufficient to compute and decompose a 12 � 12 matrix,
and the decomposition can be used for solving all nfd linear equation systems that arise in the
sensitivity computation.

These results show that structure exploitation is crucial for an efficient computation of sensitiv-
ities, in particular for implicit integration methods such as those realized in Colsol-DDE.

15.3. Comparison of Different Realizations of Internal
Numerical Differentiation

This section presents and discusses numerical results obtained with different realizations of Internal
Numerical Differentiation. First, forward and adjoint mode of Internal Numerical Differentiation
are compared. Second, it is demonstrated on a practical example that accurate sensitivity compu-
tation sometimes requires to couple the Internal Numerical Differentiation approach with an error
control strategy for the sensitivities.

15.3.1. Forward and Adjoint Mode of Internal Numerical Differentiation

Equivalence of Forward and Adjoint Internal Numerical Differentiation

On a given mesh, forward and adjoint Internal Numerical Differentiation are equivalent, i.e. theoret-
ically they yield exactly the same result (see Subsection 8.3.5). This is validated for the HDDE-IVP
(15.8), (15.13), which models the motion of an inverted pendulum mounted on a moving cart.

Please recall the investigation of the convergence behavior of Colsol-DDE for this example.
Figure 15.5 displays, as a function of the relative tolerance, the relative errors εnomrel and εsensrel in
the approximations ηp25q and Ep25q of the nominal solution and of the sensitivities, respectively.
Thereby, the approximation Ep25q of the sensitivity matrix has been obtained by forward Internal
Numerical Differentiation.

Alternatively, the sensitivity matrix Wp25; cq can be approximated by adjoint Internal Numerical
Differentiation, which yields a result that is denoted by Ẽp25q. The relative difference of the results
obtained with forward and adjoint Internal Numerical Differentiation can be computed by

ε̃sensrel � max
1¤i¤2,1¤j¤6

�
|Ẽi,jp25q �Ei,jp25q|

|Eref
i,j p25q|

�
, (15.37)

where Eref p25q is the reference result for the sensitivity matrix given in Table 15.1.
Figure 15.14 shows ε̃sensrel as a function of the relative tolerance. For all values of the relative

tolerance, an excellent agreement of forward and adjoint Internal Numerical Differentiation is
obtained. The small deviations, which never exceed 10�12, are expected due to the use of floating
point arithmetic, see Subsection 8.3.5.

Similar good agreements have been found for a large number of test problems, including some
with impulses and state-dependent delays. Since forward and adjoint sensitivity computation are
done in almost completely disjoint parts of the Colsol-DDE source code, the good agreement in the
results of the two approaches is a very strong evidence for the correctness of the implementation.

Comparison of Efficiency

It is known from theory that adjoint approaches for sensitivity computation are computationally
more efficient than forward approaches when there are many parameters (cf. Subsection 8.3.1). In
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Figure 15.14.: Equivalence of forward and adjoint Internal Numerical Differentiation. The solid
black line displays the relative error εnomrel in the nominal solution and the solid gray
line displays the relative error εsensrel in the sensitivities, cf. Figure 15.5. In addition,
the dashed gray line displays the relative difference ε̃sensrel of the results obtained with
forward and adjoint Internal Numerical Differentiation.

the following, this is demonstrated for the DDE-IVP (15.29), (15.32) which has a 12-dimensional
state vector and a 40-dimensional parameter vector. For the sensitivity computations with both
forward and adjoint Internal Numerical Differentiation, the DDE-IVP is solved with the following
tolerance values: σreltol � 10�3 and σabstol � 10�8. The error control strategy is applied only to the
nominal solution.

Table 15.4 shows the computation times needed with forward and adjoint Internal Numerical Dif-
ferentiation. The full sensitivity matrix can be obtained by computing the directional sensitivities
for ny � 12 adjoint directions or for nc � 40 forward directions. As expected for a problem with
nc ¡ ny, adjoint Internal Numerical Differentiation is more efficient and reduces the computation
time by about 12%.

In general, it depends on the context whether forward or adjoint Internal Numerical Differen-
tiation is more efficient. For example, if only the first row of the sensitivity matrix is of interest,
i.e. W1,�ptfin; cq, then one has to choose between 1 adjoint sensitivity direction and 40 forward
sensitivity directions. Here, the adjoint mode is about 29% faster. Contrariwise, if only the first
column of the sensitivity matrix is of interest, W�,1ptfin, cq, then one has to choose between 1
forward sensitivity direction and 12 adjoint sensitivity directions. Here, the forward mode is about
51% faster.

Mode Number of computation
sensitivity directions time [s]

forward 1 1.44
forward 40 3.36
adjoint 1 2.40
adjoint 12 2.95

Table 15.4.: Comparison of forward and adjoint Internal Numerical Differentiation: computation
times

15.3.2. Sensitivity Computation with and without Error Control

In Section 15.1 the convergence of the results of Colsol-DDE was investigated for the DDE-IVP
(15.1), (15.3) and for the HDDE-IVP (15.8), (15.13). The computed sensitivities converged to the
reference result although the error control strategy had been applied only to the nominal solution.
Further, the relative error in the sensitivities was only slightly larger than in the nominal solution.
These observations are typical for sensitivity computation by Internal Numerical Differentiation.
However, in some situations the relative error in the sensitivities can also be much larger than the
relative error in the nominal solution. In the following, an example for such a situation is given.
Further, it is demonstrated that a remedy is given by making the sensitivity computation subject

303



Part V. Numerical Investigations

to the error control strategy.

Problem Definition

The so-called repressilator is a gene regulatory network of three genes that inhibit each other,
see Elowitz and Leibler [89]. Orosz, Moehlis, and Murray [199] have proposed an extension of
the model for the repressilator, which introduces an additional control gene with time-delayed
transcription:

9y1pt; cq � � y1pt; cq � α � gpy6pt; cqq (15.38a)

9y2pt; cq � � y2pt; cq � α � gpy7pt; cqq (15.38b)

9y3pt; cq � � y3pt; cq � α � gpp1� ηqy5pt; cq � ηy8pt; cqq (15.38c)

9y4pt; cq � � y4pt; cq � α� � gpy6pt� τqq (15.38d)

9y5pt; cq � � c � y5pt; cq � c � y1pt; cq (15.38e)

9y6pt; cq � � c � y6pt; cq � c � y2pt; cq (15.38f)

9y7pt; cq � � c � y7pt; cq � c � y3pt; cq (15.38g)

9y8pt; cq � � β� � y8pt; cq � β� � y4pt; cq (15.38h)

Herein the function gpxq is given by

gpxq � 1

1� xn
� f0. (15.39)

The state vector components y1, y2, y3, and y4 represent the concentrations of mRNA containing
information of the four genes. Further, the state vector components y5, y6, y7, and y8 represent
the concentrations of the proteins translated from the information encoded in the mRNA.

The following initial condition is used:

ypt; cq � �0.2582 9.2097 7.0079 1.9009 8.6734 4.1847 2.3194 1.5617
�T

for t ¤ 0.
(15.40)

This means that tinipcq � tini � 0 and that φpt, cq � φp0q � yini. The final time is set to
tfinpcq � tfin � 200, such that the considered interval is T � r0, 200s.

Kuhn [168] has investigated the DDE-IVP (15.38), (15.40) and, by applying optimization tech-
niques, has found that the solution rapidly approaches a steady state for the following values:

α � 215.52, α� � 215.58, c � 0.2069, β� � 0.109633

η � 0.609648, f0 � 0.001, n � 2, τ � 8.6409. (15.41)

Numerical Reference Solution and Numerical Reference Sensitivities

Reference values for the solution and the sensitivity of the solution with respect to the scalar
parameter c, both with 8 valid digits, are given:

yp200; cq � ηref p200q �

������������

6.0306857
5.9914350
6.0284712
5.9972995
6.0131210
6.0026783
6.0267559
6.0031892

�����������
, Wp200; cq � Eref p200q �

������������

4718.6092
880.91300

�3834.3053
5247.4681
5337.4239

�2008.5146
�1033.8767

437.11806

�����������
. (15.42)

For consistency with the remainder of the thesis, the sensitivities W and Eref are written here as
matrices (in boldface), even though they are column vectors in this example because c is scalar.

All state vector components rapidly approach a steady state as discussed in Kuhn [168]. Con-
trariwise, the sensitivities show oscillations with increasing amplitude. For a plot of the first four
components of ypt; cq and Wpt; cq, see Figure 15.15.
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(a) (b)

Figure 15.15.: Solution of the DDE-IVP (15.38), (15.40), and sensitivities: (a) nominal IVP solu-
tion, y1pt; cq in black, y2pt; cq in dark gray, y3pt; cq in medium gray, and y4pt; cq in
light gray; (b) sensitivities, W1,1pt; cq in black, W1,2pt; cq in dark gray, W1,3pt; cq in
medium gray, and W1,4 in light gray.

Comparison

The DDE-IVP (15.38), (15.40) is numerically solved with Colsol-DDE with relative tolerance
σreltol � 10�3 and absolute tolerance σreltol � 10�8. Sensitivities are computed by Internal Nu-
merical Differentiation in two ways. On the one hand, the error control strategy is applied only
to the nominal solution, which gives approximations η1ptq and E1pt; cq. On the other hand, the
error control strategy is applied to both the nominal solution and the sensitivities, which gives
approximations η2ptq and E2pt; cq.

The obtained solutions and sensitivities as well as the relative errors of all components, defined
by

pεnomrel qi �
|η1
i p200q � ηrefi p200q|

|ηrefi p200q| (15.43a)

pεsensrel qi �
|E1
i p200q �Eref

i p200q|
|Eref
i p200q| , (15.43b)

are given in Table 15.5. The relative errors are given in percent, i.e. multiplied by a factor 100.
Without error control on the sensitivities, the nominal solution is approximated with relative errors
of less than 10�3. This corresponds well to the chosen relative tolerance. However, the relative
errors in the computed sensitivities are more than four orders of magnitude larger. For three
components (highlighted in boldface), the error is larger than 100%, and not even the sign of the
result is correct. Contrariwise, with error control on the sensitivities, the relative errors in the
sensitivities is less than 0.1% in all components.

For the sensitivity component W7,1 � By7pt; cq{Bc, Figure 15.16a displays the reference solution

Eref
7,1 ptq and the approximations E1

7,1ptq and E2
7,1ptq. Without error control, the computed sensi-

tivity E1
7,1ptq (dashed gray line) deviates signifcantly from the reference sensitivity Eref

7,1 ptq (solid

black line). With error control, the computed sensitivity E2
7,1ptq (dashed black line) is completely

overlayed by the solid black line representing the reference sensitivity. The errors in both E1
7,1ptq

and E2
7,1ptq are displayed in Figure 15.16b.

The explanation for this behavior is that the numerical solution of the nominal DDE-IVP has
reached a steady state for t Á 50. Hence, Colsol-DDE – as an efficient variable-stepsize solver –
takes large integration steps. However, these large integration steps are unsuitable for an accurate
computation of the sensitivities.

It should be noted that the computation of error-controlled sensitivities leads only to a moderate
increase of the number of integration steps and of the computation time. More precisely, 129
integration steps and 0.064s of computation time are needed if the error control is applied only to
the nominal solution, and 316 integration steps and 0.21s of computation time are needed if the
error control is applied to both the nominal solution and to the sensitivities.
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η1p200q 100 � εnomrel E1p200q 100 � εsensrel

6.0150579 0.26 5142.9684 9.0
6.0007368 0.16 -1012.3459 215
6.0277592 0.012 -2028.8327 47.1
5.9970402 0.0043 2983.9745 43.1
6.0047092 0.14 4330.0101 18.9
6.0113466 0.14 -2522.1552 25.6
6.0223561 0.073 133.62396 113
6.0077961 0.077 -491.35630 212

η2p200q 100 � εnomrel E2p200q 100 � εsensrel

6.0307066 0.00035 4718.9988 0.0083
5.9913891 0.00077 880.42225 0.056
6.0285092 0.00063 -3834.0230 0.0074
5.9972526 0.00078 5247.0746 0.0075
6.0131070 0.00023 5337.4061 0.00033
6.0026613 0.00028 -2008.7611 0.012
6.0267833 0.00045 -1033.6090 0.026
6.0031660 0.00039 436.87860 0.055

Table 15.5.: Sensitivity computation with and without error control. The upper part of the table
gives, in the columns 1 and 3, the results η1p200q and E1p200q that are obtained
without error control on the sensitivities. The columns 2 and 4 contain the relative
errors of these results. The lower part of the table gives the corresponding results
η2p200q and E2p200q and relative errors for the computations with error control on
the sensitivities.

(a) (b)

Figure 15.16.: Sensitivity of the component y7pt; cq of the solution of the DDE-IVP (15.38), (15.40)

with respect to the scalar parameter c: (a) The reference sensitivity Eref
7,1 ptq is

displayed as a solid black line. The approximation E1
7,1ptq, computed without error

control on the sensitivity, is displayed as a dashed gray line. The approximation
E2

7,1ptq, computed with error control on the sensitivity, is displayed as a dashed
black line and is completely overlayed by the reference sensitivity. (b) Absolute error

∆E7,1pt; cq � Eref
7,1 pt; cq � Ej

7,1pt; cq in the computed sensitivities for j � 1, 2. The

absolute error of E1
7,1ptq (no error control on sensitivities) is displayed as a dashed

gray line, and the absolute error of E2
7,1ptq (with error control on sensitivities) is

displayed as a dashed black line.
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16. Parameter Estimation

Stimmen nun die mittelst den Formeln erhaltenen Werte mit denen
durch Experimente erhaltenen in genügendem Umfange überein,
hat man folgendes erreicht: 1. Eine Erklärung der betreffenden
Erscheinungen [...]; 2. einen Ausgangspunkt für [...] numerische
Berechnungen [...], und schließlich 3. gewisse Möglichkeiten zu
Voraussagungen [...].

Sievert, in his paper “Zur theoretisch-mathematischen Behandlung
des Problems der biologischen Strahlenwirkung” [237], describing
an essential motivation for mathematical modeling and parameter
estimation.

This chapter presents numerical results for parameter estimation problems in the context of delay
differential equations (DDEs) and hybrid discrete-continuous delay differential equations (HDDEs).

Numerical Results Presented in This Chapter

Parameter estimation results are presented for three models.
First, an HDDE model is considered that has been proposed by Sievert [237] for the damaging

effect of radioactive radiation on cells. This model is used as a basis for the formulation of a non-
smooth parameter estimation problem. On this non-smooth problem, the convergence behavior of
the derivative-based Gauss-Newton method is tested. For this purpose, initial guesses are gener-
ated for which the differentiability assumption in the local contraction theorem (Theorem 11.6) is
violated. Nevertheless, convergence of the method is observed in practice.

Second, parameter estimation results are presented for the DDE model of the crosstalk of the
IL-6 and GM-CSF signaling pathways, see Section 3.2. In comparison to an ODE model developed
by Sommer et al. [240], the DDE model is smaller (14-dimensional instead of 16-dimensional state
vector) but it fits the experimental data better.

Finally, parameter estimation results are presented for the HDDE model of the voting behavior
of the viewers of the German TV singing competition “Unser Star für Baku”, which was aired
in 2012. A very good agreement of the model and the results in the TV show is obtained. A
statistical analysis of the solution of the parameter estimation problem reveals that the “laziness”
of the TV viewers and the time delay in the voting procedure have significant effects on the results
displayed in the livescore.

Organization of This Chapter

The chapter is subdivided into three sections. Section 16.1 investigates the convergence behavior
of the Gauss-Newton method for the application to a non-smooth parameter estimation problem.
Section 16.2 presents parameter estimation results for the DDE model of the crosstalk of the IL-6
and GM-CSF signaling pathways. The results for the parameter estimation of the HDDE model
for the voting behavior of the viewers of the TV show “Unser Star für Baku” are presented in the
concluding Section 16.3.

16.1. Non-Smooth Least-Squares Problems: Convergence
Behavior of Gauss-Newton Method

16.1.1. An HDDE Model for the Irradiation of Cells

In this section, the convergence behavior of the Gauss-Newton method is investigated for the
application to a non-smooth least-squares problem. The considered differential equation model is

307



Part V. Numerical Investigations

the earliest hybrid-discrete continuous delay differential equation (HDDE) known to the author,
which is due to Sievert [237]:

9ypt; cq �

$'''&
'''%
�c6ypt; cq � c7 � pc5 � ypt� τpcq; cqq for ζptq � p�1,�1,�1qT
�c6ypt; cq � c8 � pc5 � ypt� τpcq; cqq for ζptq � p�1,�1,�1qT
c7 � pc5 � ypt� τpcq; cqq for ζptq � p�1,�1,�1qT , ζptq � p�1,�1,�1qT
c8 � pc5 � ypt� τpcq; cqq for ζptq � p�1,�1,�1qT , ζptq � p�1,�1,�1qT

(16.1)

Herein, the constant but parameter-dependent delay is given by

τpt, yptq, cq � τpcq � c4. (16.2)

Further, ζptq � pζ1ptq, ζ2ptq, ζ3ptqqT , and ζiptq are the signs of switching functions:

ζiptq � signpσipt, y�pt; cq, c, y�pt� τpcq; cqqq for i � 1, 2, 3. (16.3)

The three switching functions are defined as follows:

σ1pt, ypt; cq, c, ypt� τpcq; cqq � σ1pypt� τpcq; cq, cq � c5 � ypt� τpcq; cq (16.4a)

σ2pt, ypt; cq, c, ypt� τpcq; cqq � σ2pt, cq � t� c2 (16.4b)

σ2pt, ypt; cq, c, ypt� τpcq; cqq � σ3pt, cq � t� c3. (16.4c)

The first of these switching functions is state-dependent while the other two are simple time-
dependent. The following initial condition is used:

ypt; cq � c1 for t ¤ 0. (16.5)

This means that tinipcq � tini � 0, φpt, cq � φp0, cq � yinipcq � c1. The final time is set to
tfinpcq � tfin � 300.

16.1.2. Background

The HDDE (16.1) has been proposed by Sievert [237] as a heuristic model to describe the influence
of radioactive radiation on biological cells. The fundamental assumption underlying the model has
been described by Sievert [237] as follows:

“If ’something’, X, changes in the cell due to a harmful external force, then reconstructing
internal forces become active that aim at bringing X back to its nominal value”.

Here, the nominal – or “ideal” value – is represented by the parameter c5. The reconstructing
internal forces are subject to a time delay τpcq � c4. If the past state ypt� τpcq; cq is larger than
c5, then ζ1ptq � �1, and the reconstructing force is proportional to the parameter c7. If the past
state ypt� τpcq; cq is smaller than c5, then ζ1ptq � �1, and the reconstructing force is proportional
to c8.

The zeros of the simple time-dependent switching functions σ2 and σ3 characterize the beginning
and end of the time interval in which a damaging radioactive radiation is applied to the cell. More
precisely, the damaging influence is proportional to c6, and it is applied for t P rc2, c3s.

16.1.3. Measurement Data

For the investigations in this section, artificial measurement data are generated. Therefore, the
HDDE-IVP (16.1), (16.5) is solved with Colsol-DDE for the following parameter values:

c�1 � 90, c�2 � 50, c�3 � 70, c�4 � 30

c�5 � 100, c�6 � 0.06, c�7 � 0.025, c�8 � 0.02. (16.6)

In the context of the parameter estimation problem setup below, the parameter values c� are
considered as the correct parameters, cf. Chapter 10.1.
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The time points tj � j � 1, j � 1, . . . , 301, are used as measurement times. For each measure-
ment time, a measurement value is obtained by adding a Gaussian random number with standard
deviation σ � 5 (variance σ2 � 25) to the HDDE-IVP solution, i.e.

ηj � yptj ; c�q � εj , εj � N p0, 25q. (16.7)

The HDDE-IVP solution ypt; c�q and the generated measurement data are displayed in Figure 16.1.

Figure 16.1.: Solution ypt; c�q of the HDDE-IVP (16.1), (16.5), displayed as a solid line, and sim-
ulated measurement data with standard deviation σ � 5, displayed as diamonds.

16.1.4. Setup of Optimization Problem

The least-squares optimization problem

min
c
}F1pcq}22 (16.8)

is considered, where the components of F1pcq are defined as follows:

F1,ipcq :� ηi � ypti; cq
σi

for i � 1, . . . , 301. (16.9)

Therein, ypti; cq represents the solution of the HDDE-IVP (16.1), (16.5) at the measurement time ti
for given parameters c. Further, σi � 5 for i � 1, . . . , 300 are the standard deviations of the
simulated measurement data.

16.1.5. Solution of the Optimization Problem

The solution of the optimization problem is given in the fourth column of Table 16.1 (“estimated
values”). Table 16.1 also contains the square roots of the diagonal elements of the matrix Ṽc

(see equation (12.17)). These diagonal elements can be used as a measure for the uncertainty
in the parameter estimates. However, they are only approximations of the standard deviations
of the parameters, because the objective function is a nonlinear function of the parameters, and
furthermore non-differentiable (as described in the following).

16.1.6. Smoothness Considerations

Smoothness of the Sensitivities

The sensitivities of the HDDE-IVP solution ypt; cq with respect to the parameters c2 and c3, i.e.

W1,2pt; cq � Bypt; cq
Bc2 and W1,3pt; cq � Bypt; cq

Bc3 , (16.10)
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Parameter Description Correct Est. “Std. “Std
Value c�i Value ĉi Dev.” Dev. [%]”

c1 initial value 90 93.3 1.3 1.3
c2 start of irradiation 50 49.50 0.52 1.0
c3 end of irradiation 70 70.4 1.1 1.5
c4 time delay 30 30.31 0.62 2.1
c5 optimal value 100 99.63 0.88 0.9
c6 intensity of irradiation 0.06 0.0561 0.0033 5.9
c7 reconstr. force for too large values 0.025 0.0255 0.0053 20.8
c8 reconstr. force for too small values 0.02 0.01980 0.00047 2.4

Table 16.1.: Parameter estimation results for the irradiation of biological cells. The second column
gives the description of the parameters and the third column gives the correct values
c�i that were used for the generation of measurement data, cf. equation (16.6). The
fourth column gives the result of the parameter estimation, i.e. the “estimated values”
ĉi. The fifth column gives the square roots of the diagonal elements of the matrix Ṽc

(see equation (12.17)), which are approximations of the standard deviations of the
parameters. Eventually, the sixth column gives the relative values of the so-obtained
standard deviations (in %).
In order to obtain an approximate 90% confidence interval, the diagonal elements
given in the fifth column have to be multiplied by the quantile of the χ2-distribution
with 8 degrees of freedom, i.e. qpχ2

8, 0.9q � 3.49.
All approximations of absolute standard deviations are given with two digits precision.
The estimated values are given with an according number of digits. All approximations
of relative standard deviations are given with one digit after the decimal point.

are discontinuous at the points t � c2 and t � c3, respectively. Furthermore, the sensitivity
W1,2pt; cq is non-differentiable at t � c3 and at t � c2 � c4, and the sensitivity W1,3pt; cq is non-
differentiable at t � c3 � c4. This is illustrated in Figure 16.2 for c � c�, where c�2 � 50, c�3 � 70,
c�2 � c�4 � 80, and c�3 � c�4 � 100. The sensitivities with respect to other parameters have time

(a) (b)

Figure 16.2.: Sensitivity of the solution ypt; c�q of the HDDE-IVP (16.1), (16.5), (a) with respect
to the parameter c2 and (b) with respect to the parameter c3.

points of non-differentiability, too. For example, the sensitivity of the HDDE-IVP solution with
respect to the delay,

W1,4pt, cq � Bypt; cq
Bc4 , (16.11)

is non-differentiable at t � c4, t � c2, t � c3, t � c2 � c4, and t � c3 � c4. For c � c�, the
non-differentiabilities are located at t � 30, t � 50, t � 70, t � 80, and t � 100, see Figure 16.3.
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Figure 16.3.: Sensitivity of the solution ypt; c�q of the HDDE-IVP (16.1), (16.5) with respect to the
parameter c4.

Smoothness of the Optimization Problem

Formally, the derivatives of the individual components F1,ipcq of the function F1pcq are given by

dF1,ipcq
dc

� � 1

σi
Wpti; cq. (16.12)

Hence, discontinuities and non-differentiabilities in Wpt; cq directly lead to a non-smooth depen-
dence of F1pcq on the parameters c. More precisely, the function F1pcq is non-differentiable at an
evaluation point c whenever at least one of the measurement times ti is identical to one of the
time points of discontinuity of Wpt; cq. This is the case whenever c2 or c3 assume integer values,
because the measurement times are ti � 0, 1, . . . , 300. Furthermore, the function F1pcq fails to be
twice continuously differentiable whenever at least one of the measurement times ti is identical to
one of the time points of non-differentiability of Wpt, cq.

16.1.7. Numerical Investigation of Convergence Behavior

The lack of smoothness of the function F1 raises the suspicion that derivative-based optimization
methods such as the Gauss-Newton method may show a very poor convergence behavior. For
example, a necessary condition for the application of the local contraction theorem (Theorem 11.6)
is that F1pcq is a continuously differentiable function on a ball in parameter space that contains both
the initial guess c0 and the solution ĉ of the optimization problem. For the particular parameter
estimation problem considered here, this implies that the initial guess c0 should be such that

c02 P r49, 50s and c03 P r70, 71s, (16.13)

because t � c2 and t � c3 are time points of discontinuity of Wpt, cq, and because 49, 50, 70, and
71 are measurement times.

Furthermore, it should be noted that the use of the restrictive monotonicity test as a globalization
strategy for the Gauss-Newton method (see Section 11.3) looses its theoretical justification in the
case of non-smooth least-squares problems. In particular, the descent property of the natural level
function (equation (11.31)) described in Lemma 11.11 may be lost.

In order to test the convergence in the numerical practice, 10 initial guesses are generated by
adding random numbers to the estimated parameter values ĉ. More precisely, the parameters
ĉ1, . . . , ĉ5 are perturbed by normally distributed random numbers with standard deviation 10
(variance 100), and the parameters ĉ6, ĉ7, and ĉ8 are perturbed by normally distributed random
numbers with standard deviation 0.01 (variance 0.0001):

c0i � N pĉi, 100q for i � 1, . . . , 5 (16.14a)

c0i � N pĉi, 0.0001q for i � 6, 7, 8. (16.14b)

The use of a smaller standard deviation for the initial guesses of the latter three parameters is
motivated by the smaller absolute values of the corresponding components of ĉ.
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The generated initial guesses are given in Table 16.2. Please note that none of the initial
guesses is such that the conditions (16.13) are fulfilled. Accordingly, the local contraction theorem
(Theorem 11.6) does not apply, and it is not guaranteed that the method converges.

c1 c2 c3 c4 c5 c6 c7 c8
initial guess 1 101.44 40.62 71.44 36.02 103.76 0.03279 0.03453 0.00144
initial guess 2 83.41 44.06 73.48 24.27 101.40 0.05675 0.02587 0.04207
initial guess 3 90.21 43.50 75.34 40.78 97.65 0.05539 0.02044 0.02216
initial guess 4 96.56 56.89 87.56 34.71 93.46 0.05854 0.02622 0.01371
initial guess 5 96.03 47.56 49.06 47.61 93.55 0.04386 0.02868 0.00637
initial guess 6 85.91 41.10 83.99 38.98 98.83 0.04576 0.03883 0.01561
initial guess 7 102.27 38.78 80.05 31.44 104.03 0.05468 0.03451 0.01680
initial guess 8 94.30 50.74 84.81 11.77 88.23 0.06638 0.02206 0.02993
initial guess 9 82.35 29.89 68.46 28.13 105.05 0.06238 0.02339 0.01114

initial guess 10 97.17 37.42 99.52 42.54 86.80 0.04565 0.02281 0.01542

Table 16.2.: Initial guesses used for testing the convergence behavior of a damped Gauss-Newton
method applied to a non-smooth parameter estimation problem. Each row corresponds
to one initial guess c0.

The practical performance of the damped Gauss-Newton method realized in ParamEDE is,
however, very satisfactory. For all 10 initial guesses, the method converges to the solution ĉ given
in Table 16.1. The number of executed iterations are given in Table 16.3. For 9 of 10 initial guesses,
the method converges in at most 12 iterations. Furthermore, for initial guess 2 and 7, the method
uses exclusively full-step iterations, i.e. no globalization strategy is needed in order to solve the
problem.

No. of iterations No. of full-step
iterations

initial guess 1 66 9
initial guess 2 7 7
initial guess 3 7 6
initial guess 4 9 5
initial guess 5 12 6
initial guess 6 7 5
initial guess 7 7 7
initial guess 8 8 6
initial guess 9 11 6

initial guess 10 9 6

Table 16.3.: Number of iterations and number of full-step iterations needed to solve the parameter
estimation problem for the irradiation of cells.

Discussion and Conclusion

The good convergence behavior of the damped Gauss-Newton method is possibly related to the
fact that the objective function is differentiable except for a set of measure zero, and that the
solution ĉ is not contained in this set. Starting from an initial guess (which is also not contained
in the set of points of non-differentiability), the increments of the Gauss-Newton method are such
that the iterates eventually end up in a domain where the conditions (16.13) are fulfilled. Then, in
the neighborhood of the solution ĉ, the assumptions of the local contraction theorem are fulfilled,
and the method converges with full step iterations.

The results of this section show that derivative-based optimization methods can be quite suc-
cessful for solving non-smooth problems, even though classical convergence theory does not apply.
A more detailed analysis of the reasons of the observed good convergence behavior is subject to
future work.
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16.2. Crosstalk of the Signaling Pathways of IL-6 and GM-CSF

This section gives parameter estimation results for the DDE model describing the interaction
(“crosstalk”) of the signaling pathways of IL-6 and GM-CSF (see Section 3.2).

16.2.1. Measurement Data

Cells were exposed to four different experimental settings:

(a) stimulation with IL-6

(b) stimulation with IL-6 and with a blocking antibody for the GM-CSF receptor complex

(c) stimulation with both IL-6 and GM-CSF

(d) no stimulation.

For each setting, three independent experiments were done, and the concentration of pSTAT-3 in
the cytoplasm was measured at 11 time points: 0, 5, 10, 15, 20, 25, 30, 45, 60, 90, 120. For the stimu-
lation with IL-6, also the concentration of SOCS-3 was measured at these time points. The SOCS-3
measurements take into account both “free” SOCS-3 molecules and those SOCS-3 molecules that
are bound in deactivated IL-6 and GM-CSF receptor complexes.

Detailed information on the experimental design, on the measurement techniques, and on the
postprocessing of obtained measurement data can be found in Sommer et al. [240].

16.2.2. Setup of Optimization Problem

Both the ODE model and the DDE model described in Section 3.2 contain 12 parameters. For the
ODE model, the parameters are p, αr, b, αSK , αSTAT3�, δSOCS3, δr, αSTAT3, ν, µ1, µ2, and γ. For
the DDE model, ν, µ1, and µ2 are replaced by τ1, τ2, and κ. In addition, a scaling parameter has to
be introduced for the parameter estimation because the measurements of SOCS-3 are in abitrary
units, i.e. no absolute values for the concentrations are available. Hence, in total, 13 parameters
need to be estimated.

Let the 13-dimensional parameter vector be denoted by c. Then a least-squares parameter
estimation problem of the following form is considered:

min
c
}F1pcq}22. (16.15)

The function F1pcq has 150 components. The first 120 components correspond to the measure-
ments of pSTAT-3 that are available (4 different stimulations, 3 independent experiments for each
stimulation, 10 measurement times for each experiment and each stimulation). The measurements
at t � 0 are not used as least-squares terms, but are instead exploited in order to determine the
initial concentration of pSTAT-3. The remaining 30 components of F1pcq correspond to the mea-
surements of SOCS-3 (3 independent experiments for the stimulation with IL-6, 10 measurement
times for each experiment).

The first 120 components of F1pcq are weighted differences between the pSTAT-3 measurement
values and y9ptj ; cq, i.e. of the 9-th component of the IVP solution at the corresponding measure-
ment time. The remaining 30 components of F1pcq are weighted differences between the SOCS-3
measurement values (scaled with the factor c13) and y14ptj ; cq � y15ptj ; cq � y16ptj ; cq. The sum-
mation over the three state vector components is necessary because the measurement technique
does not distinguish between “free” SOCS-3 molecules and SOCS-3 molecules that are bound in
the deactivated IL-6 and GM-CSF receptor complexes. For all components of the function F1pcq,
sample standard deviations are used as weighting factors.

Please note that the problem considered here is a multi-experiment parameter estimation prob-
lem: 4 IVP solutions are required for the evaluation of F1pcq, one for each of the 4 stimulations.
The IVP solutions differ by the values of uIL6 and uGMCSF that are used in the right-hand-side of
the differential equation system (see equation (3.16)), and further by the employed initial values.
For the first experiment, the stimulation with IL-6, one has uIL6 � 0.004, uGMCSF � 0, and the
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Par. Notation of Description Estimated “Std. “Std.
Section 3.2 Value ĉi Dev.” Dev. [%]”

c1 p production rate of IL-6 and GM-CSF 5.00 � 10�7 3.9 � 10�8 7.8
c2 αr activation rate of IL-6 and GM-CSF receptors 3000 undet. undet.
c3 b blockade of GM-CSF receptor (overstimulation) 100000 undet. undet.
c4 αSK activation rate of SK by active GM-CSF receptor 8000 undet. undet.

c5 αSTAT3�
additional STAT-3 activation rate

30000 undet. undet.
on active IL-6 receptor due to presence of SK

c6 δSOCS3 degradation rate of SOCS-3 0.0224 0.0022 9.8

c7 δr
deactivation rate of

920 200 21.7
IL-6 and GM-CSF receptors by SOCS-3

c8 αSTAT3 STAT-3 activation rate on active IL-6 receptor 0.4104 0.0070 1.7
c9 ν import rate of pSTAT-3 into nucleus 0.0378 0.0015 4.0
c10 τ1 time that pSTAT-3 remains in nucleus 5.00 undet. undet.

c11 τ2
time delay between import of pSTAT-3

10.11 0.95 9.4
into nucleus and production of SOCS-3

c12 κ
κ{ν gives the number of produced SOCS-3

0.093 0.019 20.4
per pSTAT-3 that is imported into the nucleus

c13 — scaling constant for SOCS-3 measurements 1.20 0.21 17.5

Table 16.4.: Parameter estimation results for the crosstalk of the IL-6 and GM-CSF signaling
pathways. The first column gives the generic parameter symbol ci and the second
column gives the parameter symbol used in Section 3.2. The third column recalls
the meaning of the parameter. The fourth column gives the estimated values ĉi of
the parameters, and the fifth column gives the square roots of the diagonal elements
of the matrix Ṽc (see equation (12.17)). These are approximations of the standard
deviations of the parameters. Eventually, the last column gives the relative values of
the so-obtained standard deviation (in %). The mark “undet.” in the last two columns
indicates those parameters that are undetermined (i.e., these parameters have very
large standard deviations).
All standard deviations (fifth column) have been rounded to two digits. The estimated
values are given with an according number of digits. Relative standard deviations
(sixth column) are given with one digit after the decimal point.

following initial values1:

yini � p0, 7.958 � 10�4, 0, 0, 4 � 10�7, 0.007958, 0, 0.1454, 4.511 � 10�4, 0, 0.033, 0, 0, 0, 0qT . (16.16)

For the second experiment, the stimulation with IL-6 and with a blocking antibody for the GM-
CSF receptor complex, one has uIL6 � 0.004, uGMCSF � 0 and yini2 � 0. This means that the
action of the blocking antibody is simulated by setting the initial value for the GM-CSF receptor
complex to 0. The initial values of all other components are the same as in equation (16.16).
For the third experiment, the double stimulation with IL-6 and GM-CSF, one has uIL6 � 0.004,
uGMCSF � 0.004, and yini as given in equation (16.16). Finally, for the fourth experiment, one
has uIL6 � 0, uGMCSF � 0 and yini as given in equation (16.16).

For all computations with the DDE model, a constant initial function is used, and the values
are identical to yini, i.e. formally φpt, cq � φp0, cq � yini.

For a derivation of the employed initial values, it is referred to Sommer et al. [240].

16.2.3. Parameter Estimation Results

For the DDE model, the estimated values ĉ of the parameters given in Table 16.4 have been
obtained by using ParamEDE. For the ODE model, estimated values č of the parameters can
be found in Sommer et al. [240]. Both models contain five parameters that are unidentifyable
(“undetermined”) because they have locally (in the vicinity of the estimated parameter values) no
measurable influence on the IVP solution.

Among the identifyable parameters of the DDE model is c11 � τ2, the time delay between the
import of pSTAT-3 into the nucleus and the formation of SOCS-3. This time delay is given by
τ2 � 10.11 � 0.95 (minutes). Furthermore, also the two parameters c9 and c12 are identifyable.

1For the sake of notational consistency with the ODE model, a 16-dimensional state vector is used in the DDE
model, although the 10-th and 13-th component (which represent nuclear pSTAT-3 and SOCS-3 mRNA in the
ODE model) are not needed.
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Hence, the ratio c12{c9 � κ{ν is identifyable, which is approximately 2.46. This gives the number
of SOCS-3 molecules that are produced per pSTAT-3 molecule that is imported into the nucleus.

The Figures 16.4 and 16.5 show the fit of the DDE model to the experimental data. In addition,
also the fit of the ODE model developed by Sommer et al. [240] is displayed. The two models differ
only slightly, and both show a good agreement with the data. However, a computation of the least-
squares sums reveals that the DDE model fits the data slightly better (decrease of approximately
20%). This is remarkable since the DDE model is “simpler” in the sense that the dimension of
the differential equation system is reduced from 16 to 14 (see Section 3.2). This shows exemplarily
that DDEs can be an interesting alternative to ODEs for modeling biological processes.

(a) (b)

(c) (d)

Figure 16.4.: Parameter estimation results for the crosstalk of the IL-6 and GM-CSF signaling
pathways: Fit of the ODE-IVP solution and of the DDE-IVP solution to the pSTAT-
3 measurement data. Figure (a) shows the results for the stimulation with IL-6, (b)
shows the results for the stimulation with IL-6 and simultaneous blockade of the GM-
CSF receptor. Further, (c) shows the result for the double stimulation with both IL-6
and GM-CSF, and (d) shows the results for unstimulated cells. Please note that a
different scaling has been chosen for the vertical axis in Figure (d).
In all figures, the component y9pt; ĉq of the DDE-IVP solution (for the estimated
values ĉ of the parameters, see Table 16.4) is displayed as a solid black line. The
component y9pt; čq of the ODE-IVP solution (for the estimated values č of the pa-
rameters of the ODE-model, see Sommer et al. [240]) is displayed as a solid gray
line.
For each of the four different stimulations, three independent experiments were done.
The measurement values obtained in the individual experiments are shown as small
diamonds with black outline and white filling, the means of the three measurements
are displayed as larger and solid diamonds.
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(a) (b)

Figure 16.5.: Parameter estimation results for the crosstalk of the IL-6 and GM-CSF signaling
pathways: Fit of the ODE-IVP solution and of the DDE-IVP solution to the SOCS-
3 measurement data. Figure (a) shows the result for the DDE model. The solid
black line represents y14pt; ĉq � y15pt; ĉq � y16pt; ĉq for the estimated values ĉ of the
parameters of the DDE model. Figure (b) shows the result for the ODE model. Here,
the solid gray line represents y14pt; čq � y15pt; čq � y16pt; čq for the estimated values č
of the parameters of the ODE model.
In both figures, the measurements values obtained in the three independent experi-
ments are displayed as small diamonds with black outline and white filling, and the
means of the three values are displayed as larger and solid diamonds. Please note that
the measurement data displayed in (a) and (b) incorporate slightly different scaling
factors ĉ13 and č13.

16.3. “Unser Star für Baku”

In this section, parameter estimation results are presented for the HDDE model of the voting
behavior of the viewers of the TV singing competition “Unser Star für Baku” (see Section 3.3).

16.3.1. Measurement Data

Measurement data have been obtained from the 3rd episode of the show. In this episode, 10 candi-
dates were competing. The candidates on the ranks 1-8 were allowed to return in the 4th episode,
while the last 2 candidates had to leave the competition. The time interval between the last com-
merical break and the end of the voting time has a length of 390s. During this time interval, the
percentage of votes for each of the 10 candidates is recorded every 5 seconds2. In total, this gives
79 � 10 � 790 measurement values.

16.3.2. Setup of Optimization Problem

Since an episode is considered in which 8 of 10 candidates are selected for the next round of the
competition, an HDDE model with a 11-dimensional state vector is constructed as explained in
Section 3.3. Thereby, the state vector components y1pt; cq, . . . , y10pt; cq represent the percentages
of votes for the 10 candidates and y11pt; cq represents the total number of votes.

There are 24 parameters in the model equations. At first, there are 10 initial values, denoted by
c1, . . . , c10, which represent the percentages of votes that the candidates have at the beginning of
the considered time interval. There are further 10 parameters c11, . . . , c20, which represent the sizes
of the fan-bases for each of the 10 candidates (these parameters have been called ki in Section 3.3).
Eventually, there is the laziness parameter c21, the time delay c22, the panic factor c23, and the
duration of the panic c24, which have been called λ, τ , ρ, and δ in Section 3.3, respectively.

A least-squares approach for parameter estimation is used, i.e. the following minimization prob-

2The show can, at the time of submission of this thesis, still be watched online under
http://www.unser-star-fuer-baku.tv/videos/
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lem is considered:

min
c
}F1pcq}22. (16.17)

Thereby, the i-th component of F1pcq takes the form

F1,ipcq � ηj,k � yjptk; cq
σj,k

, (16.18)

for one combination of indices j, k of the candidate and of the measurement time. Explicitly, the
optimization problem thus takes the following form:

min
c

10̧

j�1

79̧

k�1

�
ηj,k � yjptk; cq

σj,k


2

. (16.19)

The function ypt; cq denotes the solution of an HDDE-IVP with the following initial condition:

ypt; cq � �c1, . . . , c10, 100000
�T

for t ¤ 0. (16.20)

Hence, it is assumed that a (guessed) total number of 100000 votes has been received during the
show so far. Furthermore, the use of the constant initial function implies that no votes have been
received a short time before the considered interval during the commercial break. This assumption
is motivated by the fact that it yields the simplest possible parameterization of the initial function.

The denominators in equation (16.19) are chosen as σj,k � 0.1 for all j and k. This value
corresponds to the fact that the percentage values are given with an accuracy of 0.1%.

16.3.3. Parameter Estimation Results

The estimated values ĉ of the parameters, which are given in the third column of Table 16.5, have
been obtained by using ParamEDE. For these values of the parameters, the HDDE-IVP solution
fits the data taken from the TV show very good, see Figure 16.6. For 602 of the 790 data points,
the deviation is less than 0.1%, which is the accuracy of the results displayed in the livescore.
Furthermore, the largest deviation of the simulated results (solid lines) to the data (diamonds) is
� 0.26% and occurs for candidate “Shelly” (y3pt; cq, see Figure 16.6c), at t � 300.

In the fourth column of Table 16.5, the diagonal elements of the matrix Ṽc computed by means of
equation (12.17) are given. These diagonal elements are approximations of the standard deviations
of the parameters. Large relative standard deviations (fifth column of Table 16.5) are obtained
for the fan-bases of all candidates, and the values are particularly large for the two candidates
“Roman” and “Yana”; hence, c11 and c12 are characterized as undetermined in Table 16.5. The
reason for this is the so-called “laziness”, i.e. the viewers tend to vote for a candidate only if he
or she is currently on one of the two loser ranks (rank 9 or rank 10), or in immediate danger of
dropping to a loser rank. This is never the case for the candidates “Roman” and “Yana” during
the last 390 seconds of the show, and hence, the size of their fan-base cannot be estimated from
the data.3

Much smaller relative standard deviations are obtained for the delay and for the laziness of TV
viewers. This indicates the important role that the delay and the laziness play for the dynamics
observed in the livescore. Furthermore, it can be concluded from the values of the relative standard
deviations that delay and laziness have a larger influence on the results than the size of the fan-bases
of the candidates.

The smallest relative standard deviations are obtained for the parameters c1, . . . , c10. This shows
that the constant values of the initial function have a major influence on the HDDE-IVP solution.
This is an undesirable effect, because the percentages of votes for the candidates prior to the
considered time interval are unknown and might not have been constant. Future investigations on
the livescore may therefore consider different parameterizations of the initial function.

3It can only be suspected that “Roman” and “Yana” have many fans, because otherwise they would not have
received so many votes prior to the last 390 seconds of the show.
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Parameter Description Estimated “Std. “Std.
Value ĉi Dev.” Dev.” [%]

c1 initial value “Roman” 13.309 0.018 0.1
c2 initial value “Yana” 11.609 0.017 0.1
c3 initial value “Shelly” 10.008 0.021 0.2
c4 initial value “Sebastian” 9.361 0.031 0.3
c5 initial value “Leonie” 9.416 0.015 0.2
c6 initial value “Celine” 9.582 0.023 0.2
c7 initial value “Ornella” 9.462 0.028 0.3
c8 initial value “Umut” 9.468 0.016 0.2
c9 initial value “Katya” 9.506 0.012 0.1
c10 initial value “Rachel” 8.281 0.033 0.4
c11 fan-base “Roman” 58 undet. undet.
c12 fan-base “Yana” 35 undet. undet.
c13 fan-base “Shelly” 49 21 42.9
c14 fan-base “Sebastian” 2.05 0.74 36.1
c15 fan-base “Leonie” 1.00 0.37 37.0
c16 fan-base “Celine” 15.7 6.6 42.0
c17 fan-base “Ornella” 12.7 5.3 41.7
c18 fan-base “Umut” 1.65 0.61 37.0
c19 fan-base “Katya” 0.87 0.31 35.6
c20 fan-base “Rachel” 2.59 0.93 35.9
c21 laziness 16.92 0.93 5.5
c22 delay 35.69 0.49 1.4
c23 panic factor 8.5 3.3 38.8
c24 panic duration 331 19 5.7

Table 16.5.: Parameter estimation results for the voting behavior of the viewers of the TV singing
competition “Unser Star für Baku”. The second column gives the description for the
24 parameters together with the names of the 10 competing candidates. The third
column gives the estimated values ĉ of the parameters, which have been obtained by
using ParamEDE. The fourth column gives the square roots of the diagonal elements
of the matrix Ṽc (see equation (12.17)), which can be used as approximations of the
standard deviations of the parameters, see Subsection 12.2.1. The parameters c11 and
c12 have very large standard deviations and are thus characterized as “undetermined”.
Eventually, the fifth column gives the relative values of the so-computed standard
deviations (in %).
All absolute standard deviations are given with two digits precision. The estimated
values are given with a corresponding number of digits. All relative values of the
standard deviations are given with one digit after the decimal point.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 16.6.: Parameter estimation results for the voting behavior of the viewers of the TV singing
competition “Unser Star für Baku”: Fit of the components yipt; ĉq of the HDDE-IVP
solution for the estimated values ĉ of the parameters (solid lines) to data taken from
the show (diamonds). The Figures (a)-(h) display the results for all 10 candidates.
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Summary & Outlook

In this concluding chapter, the main contributions of this thesis are summarized and ideas for
future research are given.

This thesis has introduced and treated a new class of differential equations called impulsive hybrid
discrete-continuous delay differential equations (IHDDEs). These are differential equations with
time delays and with discontinuities in the right-hand-side function of the differential equation
and/or in the state itself. Delay functions and switching functions have been considered that
depend on the state, which implies that the time points of discontinuity in y (and in its time
derivatives) are defined implicitly as functions of the state itself. A possible further generalization
of the considered problem is to consider dependencies of the right-hand-side function on the time
derivative of the state in the past, which is the case in so-called “delay differential equations of
neutral type”.

In this thesis, initial value problems (IVPs) were formulated for IHDDEs, and a concept of
a solution of an IHDDE-IVP was established. The solution concept involved the requirement
that there are only finitely many zeros of switching functions, and further that there are only
finitely many sign changes of the propagation switching functions. These requirements exclude,
for example, Filippov solutions. A proposition for future research is to consider Filippov solutions
of IHDDEs, and to develop the corresponding existence, uniqueness, and differentiability theory.

For the specific solution concept used in this thesis, theoretical results on existence of solutions,
uniqueness of solutions, and differentiability of solutions with respect to parameters were given.
All theorems given in this context made assumptions that allow to transform complicated IVPs
into sequences of IVPs in ordinary differential equations (ODEs). The proofs of the theorems were
then approached with the method of steps, combined with an exploitation of tailored consistency,
distinctness, or regularity assumptions that ensure uniqueness (or differentiability) of the IVP so-
lution in the neighborhood of discontinuity points. This technique could also be used for deriving
higher order differentiability results of IHDDE-IVP solutions, but the derivation of the correspond-
ing “higher-order variational IVPs” as well as the formulation of suitable regularity assumptions
is a very technical issue.

In this thesis, the modified standard approach was introduced as a novel concept for numerically
solving IVPs in differential equations with time delays. The modified standard approach formalizes
the idea of using extrapolations beyond discontinuities in the past. It was shown that the numerical
solution of a continuous Runge-Kutta method – realized in the framework of the modified standard
approach – converges to the exact solution. It should be possible to develop convergence theorems
similar to the presented one for other continuous one-step and continuous multi-step methods,
which is an interesting subject for future research.

This work has investigated a “first differentiate, then discretize” and a “first discretize, then
differentiate” approach for the numerical computation of forward sensitivities in IHDDEs. An
analysis of the two approaches at the example of continuous Runge-Kutta methods has revealed
that the presence of time delays destroys commutativity of the discretization and differentiation
operators as it is known from ordinary differential equation theory. A key role is played by the time
derivative of the state in the past. Straightforward differentiation of the continuous representation
may lead to a scheme for sensitivity computation that has a lower convergence order than the
scheme that is used for solving the nominal IVP. In order to obtain identical convergence orders
for the nominal solution and for the computation of sensitivities, different approximations of the
time derivative of the state in the past are favorable, for example an evaluation of the right-hand-
side function at the past time point.

An extension of the concept of Internal Numerical Differentiation was proposed in this thesis,
and practical numerical schemes were presented that realize Internal Numerical Differentiation for
IHDDEs. Both a forward scheme and an adjoint scheme were presented. By construction, the
developed forward and adjoint schemes “fit exactly” to each other, meaning that the same result
is obtained for the sensitivities. A topic for future research in this context is to investigate the
relation of the developed discrete adjoint scheme to a “continuous adjoint”, i.e. to the solution of
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a suitably defined adjoint IHDDE-IVP.
The performance of the newly developed methods for the numerical solution of IVPs in dif-

ferential equations with time delays and for the computation of sensitivities was analysed. For
several challenging IVPs, reference values for the solution and for the sensitivities were given, and
the convergence of the results of a variable-stepsize method in the limit of small relative toler-
ances was studied. Furthermore, it was shown that localization of the time point of a propagated
discontinuity is more efficient with the modified standard approach than with the standard ap-
proach. Internal Numerical Differentiation was compared to two classical approaches for sensitivity
computation. In comparison to finite differences (“External Numerical Differentiation”), Internal
Numerical Differentiation yielded more accurate sensitivities (relative error decreased by one order
of magnitude), while reducing the computation time by about 80%. In comparison to a solution of
the combined system of nominal and variational IVP, Internal Numerical Differentiation provided
sensitivities of the same accuracy at only 1% of the computation time. In additional numerical
investigations, the forward and adjoint variant of Internal Numerical Differentiation were com-
pared, and the superior efficiency of the developed discrete adjoint scheme for problems with many
parameters was demonstrated. Eventually, it was shown on a practical example that accurate
computation of sensitivities may require the use of a newly developed error control strategy for
sensitivity computation in IHDDEs.

This thesis has further addressed the task of estimating parameters in the model functions of
IHDDEs. A single shooting parameterization of IHDDE-constrained least-squares parameter esti-
mation problems was considered, and a damped Generalized Gauss-Newton method for the solution
of the resulting finite-dimensional nonlinear constrained least-squares problem was proposed and
realized. Parameter estimation problems in differential equations with time delays and switches are
non-smooth optimization problems. Nevertheless, the damped Generalized Gauss-Newton method
(as an example of a derivative-based optimization method) showed a very good convergence be-
havior on a test case with artificial measurement data. Furthermore, the developed methods were
successfully used for solving two parameter estimation problems in systems with time delays and
with real-world experimental data. This demonstrates the suitability of the methods for practical
problems. A proposition for future research is to develop – on the basis of the methods proposed
in this work – boundary value problems approaches for parameter estimation in IHDDEs. The use
of such approaches could be advantageous, e.g. for the treatment of unstable problems.

Among the applications discussed in this thesis is the voting behavior of the viewers of the TV
singing competition “Unser Star für Baku”, that was broadcast in Germany in 2012. A differential
equation model for the voting behavior was developed that incorporated time delays and switches
in the right-hand-side function. A good fit of the developed model to data taken from the TV show
was obtained, and the analysis of the solution revealed that the time delay in the voting procedure
and the “laziness” of the TV viewers have a significant impact on the dynamics observed in the
livescore.

Eventually, this thesis contains detailed descriptions of two newly developed software packages,
Colsol-DDE and ParamEDE. Colsol-DDE numerically solves IHDDE-IVPs with the modified stan-
dard approach and realizes forward and adjoint Internal Numerical Differentiation for computing
the sensitivities with respect to parameters. ParamEDE realizes a damped Generalized Gauss-
Newton method for solving nonlinear constrained parameter estimation problems in IHDDEs, in
which the restrictive monotonicity test is used a globalization strategy. In ParamEDE, Colsol-DDE
is used as a building block for solving IVPs and for computing sensitivities.
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rentialgleichungen mit adaptiven Runge–Kutta–Methoden. Computing, 29:153–165, 1982.

[244] Y. Takeuchi, W. Ma, and E. Beretta. Global asymptotic properties of a delay SIR epidemic
model with finite incubation times. Nonlinear Analysis, 42:931–947, 2000.

[245] M. L. Taylor and T. W. Carr. An SIR epidemic model with partial temporary immunity
modeled with delay. Journal of Mathematical Biology, 59:841–880, 2009.

[246] S. Thompson and L. F. Shampine. A friendly Fortran DDE solver. Applied Numerical
Mathematics, 56:503–516, 2006.

[247] I.-B. Tjoa and L. T. Biegler. Simultaneous Solution and Optimization Strategies for Pa-
rameter Estimation of Differential-Algebraic Equation Systems. Industrial & Engineering
Chemistry Research, 30:376–385, 1991.

[248] M. Tolan. Manchmal gewinnt der Bessere: Die Physik des Fußballspiels. Piper Taschenbuch,
München, Zürich, 2011.
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