
DISSERTATION
submitted

to the

Combined Faculty for the Natural Sciences and
Mathematics

of the

Ruperto-Carola University of Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

M.Sc. Hanna Remmel

Born in Varkaus, Finland

Oral examination:

Supporting the Quality Assurance of a
Scientific Framework

Advisors: Prof. Dr. Barbara Paech
Prof. Dr. Peter Bastian

To my children.

Abstract

The quality assurance of scientific software has to deal with special challenges of this
type of software, including missing test oracles, the need for high performance computing,
and the high priority of non-functional requirements. A scientific framework consists of
common code, which provides solutions for several similar mathematical problems. The
various possible uses of a scientific framework lead to a large variability in the framework.
In addition to the challenges of scientific software, the quality assurance of a scientific
framework needs to find a way of dealing with the large variability.

In software product line engineering (SPLE), the idea is to develop a software platform
and then use mass customization for the creation of a group of similar applications. In
this thesis, we show how SPLE, in particular variability modeling, can be applied to
support the quality assurance of scientific frameworks.

One of the main contributions of this thesis is a process for the creation of reengineering
variability models for a scientific framework based on its mathematical requirements.
Reengineering means the adjustment of a software system to improve the software quality,
mostly without changing the software’s functionality. In our research, the variability
models are created for existing software and therefore we call them reengineering variability
models. The created variability models are used for a systematic development of system
test applications for the framework. Additionally, we developed a model-based method
for test case derivation for the system test applications based on the variability models.

Furthermore, we contribute a software product line test strategy for scientific frameworks.
A test strategy strongly influences the test activities performed. Another main contribu-
tion of this thesis is the design of a quality assurance process for scientific frameworks,
which combines the test activities of the test strategy with other quality assurance
activities. We introduce a list of special characteristics for scientific software, which we
use as rationale for the design of this process.

We report on a case study, analyzing the feasibility and acceptance by developers for
two parts of the design of the quality assurance process: variability model creation
and desk-checking, a kind of lightweight review. Using FeatureIDE, an environment for
feature-oriented software development as well as an automated test environment, we
prototypically demonstrate the applicability of our approach.

i

Zusammenfassung

Die Qualitätssicherung wissenschaftlicher Software muss sich mit den speziellen Herausfor-
derungen dieser Art von Software befassen. Diese Herausforderungen beinhalten fehlende
Testorakel, den Bedarf von Hochleistungsrechenmaschinen und die hohe Priorität von
nichtfunktionalen Anforderungen. Ein wissenschaftliches Rahmenwerk besteht aus gemein-
samem Quelltext, der Lösungen für mehrere ähnliche mathematische Probleme bereitstellt.
Die verschiedenen möglichen Verwendungen eines wissenschaftlichen Rahmenwerks führen
zu einer großen Variabilität innerhalb dieses Rahmenwerks. Zusätzlich zu den Herausfor-
derungen der wissenschaftlichen Software muss die Qualitätssicherung wissenschaftlicher
Rahmenwerke einen Weg finden, um diese große Variabilität zu bewältigen.

Die Idee bei der Produktlinienentwicklung (SPLE) ist es, zunächst eine Softwareplattform
zu entwickeln und dann individualisierte Massenfertigung zu verwenden, um eine Gruppe
von ähnlichen Anwendungen zu erstellen. In dieser Dissertation werden wir zeigen,
wie SPLE und insbesondere Variabilitätsmodellierung eingesetzt werden kann, um die
Qualitätssicherung von wissenschaftlichen Rahmenwerken zu unterstützen.

Ein Hauptbeitrag dieser Dissertation ist ein Prozess für die Erstellung von Reengineering-
Variabilitätsmodellen für ein wissenschaftliches Rahmenwerk, basierend auf den ma-
thematischen Anforderungen des Rahmenwerks. Das Reengineering bedeutet die Um-
stellung eines Software-Systems, um die Softwarequalität zu erhöhen - meistens ohne
die Funktionalität der Software selbst zu ändern. In unserer Forschung werden die Va-
riabilitätsmodelle für eine existierende Software erstellt und deswegen nennen wir sie
Reengineering-Variabilitätsmodelle. Die erstellten Variabilitätsmodelle werden für eine
systematische Entwicklung von Systemtestanwendungen für das Rahmenwerk verwendet.
Zusätzlich haben wir eine modellgestützte Methode für die Herleitung von Testfällen
entworfen. Diese Methode verwendet die erstellten Variabilitätsmodelle.

Darüber hinaus entwickelten wir eine Produktlinien-Teststrategie für wissenschaftli-
che Rahmenwerke. Eine Teststrategie hat einen starken Einfluss auf die ausgeführten
Testaktivitäten. Ein anderer Hauptbeitrag dieser Dissertation ist der Entwurf eines Quali-
tätssicherungsprozesses für wissenschaftliche Rahmenwerke. Dieser Entwurf verbindet die
Testaktivitäten aus der Teststrategie mit weiteren Maßnahmen der Qualitätssicherung.
Wir stellen eine Liste besonderer Eigenschaften von wissenschaftlicher Software vor, die

ii

wir als Begründung für den Entwurf des Prozesses verwenden.

Wir berichten über eine Fallstudie, die die Machbarkeit und die Akzeptanz von zwei
Bestandteilen des Entwurfs für den Qualitätssicherungsprozess untersucht: die Erstellung
eines Variabilitätsmodells und den Schreibtischtest, eine Art von leichtgewichtigem Review.
Anhand der Verwendung von FeatureIDE, einer Umgebung für die Feature-orientierte
Software-Entwicklung, und mittels einer automatisierten Testumgebung haben wir die
Anwendbarkeit unseres Vorgehens nachgewiesen.

iii

Acknowledgements

This work was carried out during 2010-2014 at the Combined Faculties for the Natural
Sciences and for Mathematics, in collaboration with the Interdisciplinary Center for
Scientific Computing (IWR) at the Ruperto-Carola University of Heidelberg.

I owe my deepest gratitude to my first supervisor Professor Barbara Paech. I am grateful
for her friendly and encouraging support over the years of my research. Her feedback on
my work always pushed me forward and guided me in the right direction.

I would like to express my very great appreciation to my second advisor Professor Peter
Bastian for introducing me to the world of numerics and scientific computing. I am
particularly grateful for the possibility to work with DUNE during my research.

I would particularly like to thank Professor Christian Engwer for his essential support in
clarifying numerics and DUNE specific issues. I am very thankful for his cooperation in
writing scientific publications.

I am very grateful to the Heidelberg Graduate School of Mathematical and Computational
Methods for the Sciences (HGS MathComp) and particularly Dr. Michael Winckler, for
the scientific and practical support during my research.

I would like to offer my special thanks to my colleagues in the Software Engineering
Group at the University of Heidelberg for their continued support and friendship. I would
also like to thank my colleagues in the Scientific Computing Group for their support in
the DUNE development, the participation in our case study and their feedback on our
research. Thank you Professor Sven Apel and Thomas Thüm for your kind support on
questions concerning FeatureIDE and FeatureC++.

I am deeply grateful to my husband and family for cheering and supporting me during
my work. Very special thanks are reserved for Oma and Opa: without your support with
own son, this work would not have been possible.

iv

Contents

I Preliminaries 1

1 Introduction 2
1.1 Motivation . 2
1.2 Research Goals . 4
1.3 Research Contributions . 5
1.4 Thesis Outline . 6
1.5 Previous Publications . 7

2 Background 9
2.1 Basic Definitions . 9
2.2 Acronyms . 12
2.3 QA for Scientific Software . 12

2.3.1 Statical Analysis and Dynamic Testing 15
2.3.2 Regression Testing . 16
2.3.3 Related Work on QA Processes for Scientific Software 16

2.4 Development of a SPL . 17
2.4.1 SPLE Development Processes . 17
2.4.2 Variability Modeling . 18

2.4.2.1 Orthogonal Variability Model 19
2.4.2.2 Feature Diagram . 20

2.5 QA for SPLs . 22
2.5.1 RiPLE-TE QA Process for SPLs 22
2.5.2 Test Case Derivation . 24
2.5.3 Test Suite Selection . 24

2.6 DUNE - a Scientific Framework . 25
2.6.1 A Scientific Framework for the Simulation of PDEs 25
2.6.2 Numerical Simulation Terminology 27
2.6.3 Grid Terminology . 28

2.7 Chapter Summary . 30

v

Contents

II Comprehensive Quality Assurance of Scientific Frameworks 33

3 SPLE in the QA of Scientific Frameworks 34
3.1 SPLE for Scientific Software and Reengineering 34
3.2 SPLE and Scientific Frameworks . 35
3.3 SPL Test Strategy for Scientific Frameworks 36

3.3.1 Criteria for an SPL Test Strategy for Scientific Frameworks 36
3.3.2 VAF - Variable Test Application Strategy for Frameworks 39
3.3.3 Assessment . 41

3.4 Chapter Summary . 42

4 Creating Reengineering Variability Models and System Test Applications for
a Scientific Framework 44
4.1 Creating Reengineering Variability Models 45

4.1.1 Reengineering Product Management 45
4.1.1.1 Step 1: Define the Goal(s) for the Framework 46
4.1.1.2 Step 2: Define the General Mathematical Model 47
4.1.1.3 Step 3: Describe the General Approach 47
4.1.1.4 Result: the Product Roadmap 48

4.1.2 Domain Requirements Engineering 49
4.1.2.1 Commonality Analysis 50
4.1.2.2 Variability Analysis, Step 1: Define a Concrete Mathe-

matical Model . 51
4.1.2.3 Variability Analysis, Step 2: Identify Features and Their

Dependencies . 51
4.1.2.4 Variability Analysis, Step 3: Identify Constraints Between

the Features . 53
4.1.3 Deriving Test Cases for a System Test Application from the Vari-

ability Model . 54
4.2 Developing System Test Applications . 55
4.3 Supporting Application Engineering with Reusable Test Artifacts 59
4.4 Chapter Summary . 60

5 VAF-Pro, a QA Process for a Scientific Framework 62
5.1 Characteristics of Scientific Software Development 63
5.2 Test Roles . 66
5.3 QA Process Steps . 67

5.3.1 Planning . 70
5.3.2 Review . 71
5.3.3 Unit and Integration Testing . 72
5.3.4 System Testing . 73
5.3.5 Scientific Validation . 74

5.4 Automated Regression Testing . 75
5.5 Reporting . 75
5.6 Additional Remarks . 75
5.7 Chapter Summary . 76

vi

Contents

III Evaluation and Practical Application 79

6 Case Study DUNE 80
6.1 Case Study Design . 81

6.1.1 Research Questions . 81
6.1.1.1 Feasibility . 82
6.1.1.2 Acceptance . 85

6.1.2 Research Methods . 86
6.2 Results . 89

6.2.1 Variability Modeling by Developers (F_RQ_VM1) 89
6.2.2 Advantages of Variability Modeling for the DUNE Development

(F_RQ_VM2 and E_RQ_VM) 91
6.2.3 Disadvantages of Variability Modeling for the DUNE Development

(F_RQ_VM3) . 93
6.2.4 Capturing the Variability of Mathematical Problems with Vari-

ability Modeling (F_RQ_VM4) 94
6.2.5 Acceptance of Variability Modeling (A_RQ_VM1-3) 96
6.2.6 Desk-Checking by Developers (F_RQ_DC1) 97
6.2.7 Advantages of Desk-Checking for the DUNE Development (F_RQ_DC2

and E_RQ_DC) . 98
6.2.8 Disadvantages of Desk-Checking for the DUNE Development (F_RQ_DC3)100
6.2.9 Acceptance of Desk-Checking (A_RQ_DC1-3) 101

6.3 Discussion . 103
6.3.1 Goal 1: Feasibility of Variability Modeling 103
6.3.2 Goal 2: Feasibility of Desk-Checking 104
6.3.3 Goal 3: Acceptance of Variability Modeling 104
6.3.4 Goal 4: Acceptance of Desk-Checking 104

6.4 Threats of Validity . 104
6.4.1 Construct Validity . 105
6.4.2 External Validity . 105
6.4.3 Reliability . 106

6.5 Related Work . 106
6.6 Chapter Summary . 107

7 System Testing with FeatureIDE and Automated Test Environment 109
7.1 Tool Support for the System Test Development 109

7.1.1 FeatureIDE . 110
7.1.2 FeatureC++ . 111
7.1.3 FeatureIDE and FeatureC++ example 112

7.2 System Test Development with FeatureIDE 112
7.2.1 Test Suite for a System Test Application 112

7.3 Automated Test Environment . 113
7.3.1 Running the Automated Test Environment 115
7.3.2 Experiences with the DUNE Automated Test Environment 116

7.4 Chapter Summary . 117

vii

Contents

IV Summary 119

8 Conclusion and Future Work 120
8.1 Summary and Conclusion . 120
8.2 Limitations . 122
8.3 Future Work . 123

A Case Study Questionnaire 125

B Source Code for Diffusion System Test Application 129
B.1 Diffusion: Feature-Oriented Source Code 129
B.2 Diffusion: Main Program . 131
B.3 Diffusion: Variability Model . 143

C Developing System Test Applications with FeatureIDE and FeatureC++ 147
C.1 Install FeatureIDE and FeatureC++ . 148

C.1.1 FeatureIDE and FeatureC++ . 148
C.1.2 FeatureC++ for the Automated Test Environment 152

C.2 Open the FeatureIDE Perspective . 152
C.3 Create a FeatureIDE Project . 153
C.4 Create a Variability Model and Define Constraints 157
C.5 Define Constraints . 159
C.6 Develop Source Code . 161
C.7 Create Configurations . 164
C.8 Example DUNE: Adjust diffusion.cc Source Code 166
C.9 Run Program . 167

viii

Part I

Preliminaries

1

Chapter 1
Introduction

This chapter provides an introduction to the subject of the thesis. The first section
explains the motivation for our research on quality assurance for scientific frameworks.
Subsequently, the goals and contributions of our research are introduced in Sections 1.2
and 1.3. Section 1.4 outlines the thesis and Section 1.5 provides an overview of previous
publications relating to our research.

1.1 Motivation

Scientific computer simulations are increasingly important for decision making in politics
and industry. One example of this is climate modeling used for multi-trillion dollar
decisions concerning how to prevent or adapt to climate change. At the same time, the
quality of such simulation software is subject to increasingly intense inquiry. Software
defects that change the simulation output can negatively impact important decisions,
and reduce decision makers’ confidence in the science. Unfortunately, simulation software
development teams often struggles with the consequences of extremely limited investments
in software engineering processes, e.g. verification processes [33].

Scientific software can be anything from small scripts to large computationally intensive
software packages. It is used for gathering and analysing data as well as report generation
[77]. Shared, centralized computing resources and high performance computing are often
needed for such large scientific software [7]. The primary interest of the developers and
users of scientific software is gaining scientific results. The developers are predominantly

2

1.1. MOTIVATION

domain scientists (e.g. mathematicians, physicists, or biologist) and not computer
scientists. Most of them do not have any formal training in computer science or software
engineering. Often, the primary users of scientific software are the developers themselves.
They add functionality to the source code for the needs of their own research. There is a
high turnover in the development teams of scientific software. Project members are often
graduate students or postdoc, who are only involved in the development for a few years
[19].

Scientific simulation software is often based upon a scientific framework. A scientific
framework consists of common code, which provides solutions for several similar mathe-
matical problems, such as the numerical solving of partial differential equations (PDEs).
It is not a running application itself but can be used to develop various applications
in the framework’s domain. A framework can be extended by the user by overriding
functionality or implementing interfaces [59].

Scientific software development teams find the quality assurance (QA) of scientific software
very demanding. Most existing QA methods cannot be applied straight away without
adjusting them [11]. Nonetheless, many teams consider verification and validation as
among the essential elements of the development. As Baxter states in [11]: "if software is
meant to do something, then that something can - and should - be tested for." Although
the context of scientific software is special, the benefits of well-planned QA are just as
favorable.

The QA of a scientific framework is a challenging task. On the one hand, it has to
deal with special challenges of scientific software, like missing test oracles, which means
that the expected output of the software is not known. This is due to the fact that
scientists use software as a tool for their research [47]. Furthermore, the requirements of
a scientific software project are often not known at the beginning of the project. The
requirements stem from science and the priority of non-functional requirements (e.g.
correctness, performance, portability or maintainability) over functional requirements is
high [20]. The cognitive complexity, the difficulty in understanding a concept, thought,
or system, is high for scientific software [45]. The calculations in the software can often
only be performed on high performance computers [21] and include rounding errors and
machine accuracy [38].

On the other hand, when ensuring the quality of a scientific framework, one additionally
needs to find a way of dealing with the large variability, namely the various possible
uses, of a framework. The variability is often hidden in the mathematics that the
framework implements. The variability is expressed precisely, albeit not in a form that

3

CHAPTER 1. INTRODUCTION

could be understood as a model by a human or computer. The question is: how can we
systematically capture the variability of a scientific framework? How can we generate
a set of tests for a scientific framework that cover the whole range of the frameworks
functionality? Furthermore, what else do we need to consider when ensuring the quality
of a scientific framework?

Our approach to meet this challenge is to apply software product line engineering (SPLE).
In SPLE, the idea is to develop a software platform and then use mass customization
for the creation of a group of similar applications that differ from each other in specific
predetermined characteristics [62]. In particular, we apply variability modeling to
systematically capture the framework’s variability. We call the created variability models
reengineering variability models. Reengineering is the adjustment of a software system to
improve the software quality without changing its functionality. The created variability
models are used for a systematic development of system test applications for the framework.
In the QA of scientific software, the source code is often tested with unit testing. During
unit testing, most functional failures should already have been found, whereas for scientific
software system testing is still the only testing level where the interaction between the
mathematical model, the numerical model, and its implementation can be thoroughly
tested.

There is a need for QA methods for scientific simulation software and scientific frameworks.
In particular, practices for verifying complete simulation runs (e.g. with system testing)
are missing [1]. The main goal of our research is to develop efficient software engineering
methods for the QA of scientific frameworks. We consider the overall QA management
but mainly focus on the systematic development of system tests for the framework using
the SPLE methods.

1.2 Research Goals

Our research has the following goals:

Goal 1: Develop software engineering methods for the QA of scientific frameworks
that support an efficient quality management. The methods should
consider special characteristics of scientific frameworks.

Goal 2: Examine the adoption of SPL methods for a systematic capturing of the
variability in a scientific framework. The goal is to use the captured
variability for a systematic development of tests for the framework.

4

1.3. RESEARCH CONTRIBUTIONS

Goal 3: Evaluate the extent to which the developed software engineering methods
are feasible and acceptable for the development of a scientific framework.

Goal 4: Implement the developed software engineering methods prototypical for
the scientific framework DUNE.

1.3 Research Contributions

This section summarizes the contributions of this thesis, which are connected to the
research goals defined in the last section.

For Goal 1 (methods for the QA of scientific frameworks):

Contribution 1: A list of special characteristics of scientific software that need to
be taken into account when designing QA for scientific software.

Contribution 2: Design of an overall QA process for a scientific framework, which
takes the special characteristics in Contribution 1 into account.

For Goal 2 (adaption of SPL methods for scientific frameworks):

Contribution 3: A SPL test strategy for scientific frameworks that defines the
activities in a SPL test process.

Contribution 4: A process for creating reengineering variability models for a
scientific framework based on the framework’s requirements.

Contribution 5: A way of systematically developing system test applications for
a framework based on the variability models developed in the
process in Contribution 4.

Contribution 6: A model-based method for test case derivation for scientific
frameworks based on the variability models created with the
process in Contribution 4.

5

CHAPTER 1. INTRODUCTION

For Goal 3 (evaluation of the developed methods):

Contribution 7: The design and execution of a case study evaluating the feasibil-
ity and acceptance of parts of the designed QA process defined
in Contribution 2. The design of the case study was carefully
documented so that it can be conducted for further cases.

For Goal 4 (prototypical implementation of the developed methods):

Contribution 8: A prototypical implementation of a system test application for
DUNE using the methods in Contributions 4, 5, and 6.

1.4 Thesis Outline

The thesis is structured as follows:

Chapter 2 introduces the basic definitions and general concepts used in this thesis.
It provides background information about QA for scientific software,
development and QA of SPLs and introduces DUNE, the scientific
framework with which we deal with in our research.

Chapter 3 explaines how methods of SPL development have been used in scientific
software development and reengineering in the past, as well as how the
software product line engineering (SPLE) development processes need to
be adjusted to suit scientific frameworks. Furthermore, it presents a SPL
test strategy named Variable test Application strategy for Frameworks
(VAF) that we developed for scientific frameworks.

Chapter 4 presents a process for creating reengineering variability models based
on the requirements of a scientific framework. It explaines how these
variability models can be used for a systematic development of system
test applications for a scientific framework.

Chapter 5 introduces VAF-Pro, an overall QA process for scientific frameworks.
The detailed steps in the process are reasoned with characteristics of
scientific software, the use of SPL test strategy VAF and essential QA
demands.

6

1.5. PREVIOUS PUBLICATIONS

Chapter 6 introduces a case study analyzing the feasibility and acceptance by DUNE
developers for two parts of the QA process: variability model creation
and desk-checking.

Chapter 7 deals with the practical implementation for the system testing part of
the VAF-Pro QA process. It explaines how the tool FeatureIDE can
be used for the implementation of the system test applications, as well
as how the system test applications can be run in an automated test
environment.

Chapter 8 summarizes the thesis and outlines some directions for the future research.

1.5 Previous Publications

Parts of the thesis have been published as scientific publications. The following list
provides an overview of the relevant publications in chronological order, including the
chapters and sections to which they contribute:

1. Remmel H, Paech B, Engwer C, Bastian P, Supporting the testing
of scientific frameworks with software product line engineer-
ing: a proposed approach, Proceeding of the 4th international
workshop on Software engineering for computational science and engi-
neering, Waikiki (Honolulu), May 28, 2011, pp. 10-18, USA ACM

Sections 2.3,
2.4, 2.6, 3.1,
3.2, 4.1

2. Remmel H, Paech B, Bastian P, Engwer C, System Testing for a
Scientific Framework using a Regression-Test Environment,
In: Computing in Science and Engineering Vol. 14, No. 2, March
2012, pp. 38-45

Sections 2.1,
2.3, 4.1.2.2,
4.2, 7.3.2

3. Remmel H, Paech B, Engwer C, Bastian P, Design and Rationale
of a Quality Assurance Process for a Scientific Framework,
Proceeding of the 5th international workshop on Software engineering
for computational science and engineering, San Francisco, May 18,
2013, pp. 58-67, USA IEEE

Sections 1.1
2.1.8, 2.3,
2.4.1, 3.3,
5.1, 5.2, 5.3

7

CHAPTER 1. INTRODUCTION

4. Remmel H, Paech B, Bastian P, Engwer C, A Case Study on a
Quality Assurance Process for a Scientific Framework, sub-
mitted for: Computing in Science and Engineering

Section 2.5

8

Chapter 2
Background

This chapter provides background information on topics that are relevant for this thesis.
Sections 2.1 and 2.2 define basic concepts and acronyms frequently used in this thesis. In
Section 2.3 we explain basics on QA for scientific software. Section 2.4 deals with the
development of a SPL and Section 2.5 introduces methods for the QA for SPLs. Section
2.6 introduces DUNE, the scientific framework we deal with in our research. At last,
Section 2.7 summarizes the chapter.

2.1 Basic Definitions

This section defines basic concepts handled in this thesis.

2.1.1 Software Engineering for Computational Science and Engineering

According to IEEE Computer Society, software engineering provides systematic, dis-
ciplined, and quantifiable approaches that support the development, operation, and
maintenance of software [72].

Society for Industrial and Applied Mathematics defines Computational Science and
Engineering (CSE) as "a rapidly growing multidisciplinary area with connections to
the sciences, engineering, mathematics and computer science. CSE focuses on the
development of problem-solving methodologies and robust tools for the solution of
scientific and engineering problems [71]."

9

CHAPTER 2. BACKGROUND

Software Engineering for CSE identifies and develops software engineering methods, tools
and techniques for CSE [41].

2.1.2 Framework

A framework consists of common code, which provides solution for several similar
applications for specific types of problems. Frameworks differ from software libraries,
among other things, in the following two ways: First, the flow of control is not dictated
by the caller, but by the framework (inversion of control). Second, a framework can be
extended by the user by overriding functionality or by implementing interfaces [59].

2.1.3 Quality Assurance Process

According to IEEE Computer Society, "a quality assurance process is a process for
providing adequate assurance that the software products and processes in the project life
cycle conform to their specified requirements and adhere to their established plans [72]."

2.1.4 Unit Testing, Integration Testing, System Testing

Software testing can be divided into three levels depending on the target of the testing:
unit testing, integration testing and system testing. Each of these testing levels is important
and should not be neglected. In unit testing, the goal is to verify the functionality of single
software units, small pieces of the software that are separately testable. In integration
testing, the interaction between different software components is verified. System testing
concentrates on the behavior of the whole software system. At this level the focus can
also be set on non-functional system requirements like performance or accuracy [72].

2.1.5 Regression Testing

Automating test runs on a certain level of testing and repeating them on a regular basis
leads to a regression test environment. The main idea is to show that modifications
in the software code do not cause any unwanted side effects. In other words, running
regression tests demonstrates to the developers that their changes did not break anyone
else’s code and that software, which previously passed the tests, still does [78].

10

2.1. BASIC DEFINITIONS

2.1.6 Software Product Line

According to the Carnegie Mellon Software Engineering Institute (SEI), a software product
line (SPL) is "a set of software-intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market segment or mission and that
are developed from a common set of core assets in a prescribed way [17]."

2.1.7 Software Product Line Engineering

According to Pohl et al [62], the idea in Software Product Line Engineering (SPLE) is
to develop a software platform and use mass customization for the creation of a group
of similar applications (a SPL) that differ from each other in specific predetermined
characteristics. The characteristics that can vary are called variation points and the
possible values for a variation point are called variants. A variability model includes all
variation points and their variants. It also includes the constraints between the variation
points and variants [62].

2.1.8 Software Product Line Test Strategy

In a SPL test strategy, the partition of responsibilities between domain testing and
application testing (for definition, see 2.4.1) is defined. The presence of variability is also
considered. The used test strategy strongly influences the activities performed in domain
testing and application testing [64].

2.1.9 Partial Differential Equation

In mathematical terms, a partial differential equation (PDE) is any equation involving a
function of more than one independent variable and at least one partial derivative of that
function. Many elementary phenomena, i.e. heat or fluid flow, can be described with
PDEs. For computer simulations, numerical methods are used to solve PDEs by means
of a computer [2].

11

CHAPTER 2. BACKGROUND

2.1.10 Case Study

Yin [79] defines case study as "an empirical enquiry that investigates a contemporary phe-
nomenon within its real life context, especially when the boundaries between phenomenon
and context are not clearly evident."

2.2 Acronyms

This is a list of acronyms frequently used in this thesis:

CSE Computational Science and Engineering
DC Desk-Checking
DUNE Distributed and Unified Numerics Environment
FDM Finite Difference Method
FEM Finite Element Method
FOP Feature-Oriented Programming
FVM Finite Volume Method
IDE Integrated Development Environment
LOC Lines of Code
PDE Partial Differential Equation
QA Quality Assurance
RQ Research Question
SPL Software Product Line
SPLE Software Product Line Engineering
V&V Verification and Validation
VAF Variable test Application strategy for Frameworks
VAF-Pro Quality Assurance Process for the Variable test Application strategy

for Frameworks
VM Variability Model

2.3 QA for Scientific Software

For the QA of scientific software it is important to distinguish between different possible
sources of a problem: the underlying science, the translation of the mathematical model
of the field of application to an algorithm and the translation of that algorithm into

12

2.3. QA FOR SCIENTIFIC SOFTWARE

program code [19] (see Figure 2.1).

Figure 2.1: Possible Sources of a Software Problem in Scientific Software [28].

Each possible source of problem should be handled separately. Hook and Kelly [38] point
out (as illustrated in Figure 2.2) that ideally these steps should be carried out in a strict
order: First check the program code for bugs with code verification methods and then
verify the mathematical algorithm with numerical algorithm verification methods. Only
after these two steps, the scientists are able to perform the scientific validation (evaluate
whether the output of the software is a reasonable proximity to the real world) knowing
that errors in code and mathematical algorithm are already excluded.

Figure 2.2: Model of Testing for Scientific Software [38].

The goal in code verification is to check whether the source code contains any faults or
not. Typical software testing methods (e.g. black-box and white-box testing) can be
applied. For scientific software, code verification is often performed using unit testing
tools [58].

13

CHAPTER 2. BACKGROUND

Algorithm verification is a process that focuses on the correct implementation of the
numerical algorithms. It addresses the software reliability of the implementation of all
the numerical algorithms that affect the numerical accuracy and efficiency of the code.
Depending on the used numerical algorithm, there are several algorithm verification
techniques that can be applied. The most confident method is comparing the software
output with an exact analytical solution. This is followed by semianalytical and highly
accurate benchmark solutions. Often, analytical solutions are only available for very
small mathematical problem. Benchmark solutions are very accurate numerical solutions
to special cases of a general PDEs (see Section 2.1.9). They commonly result from
simplifying assumptions, such as simplified geometries [58].

The most widely used method of calculation verification is grid convergence testing. For
single-grids (one discretization level) there are alternatives, like energy methods or a
posteriori methods, but grid convergence testing is more general and more reliable [67].
Although the correct output of a simulation cannot be known in advance, it is often
possible to identify symmetries in the theory being simulated that must be honored
by a correct simulation, e.g. translational, rotational symmetry, or symmetry in time.
Furthermore, any conserved property of the underlying theory (e.g. energy, momentum,
or particle number), should also be preserved in the simulation code. The tests should
stress parts of the system where errors may not be obvious, like on the boundaries [16].

In scientific validation the goal is to determine how accurate the computational model
simulates the real world. In an ideal case we can compare the simulation with experimental
data. Since this is mostly not possible, the goal in scientific validation is to support the
scientists in deciding whether the simulation result is what they expected or not [58].

Several methods have been introduced for each of these steps of testing scientific software.
Oberkampf et al. [58] give a broad overview of existing methods for verification, validation
and prediction capability in computational science. Especially the suitability of methods
for algorithm verification (e.g. grid convergence testing, symmetry and conservation
tests) strongly depends on the mathematical model used in the scientific software. It is a
challenge to choose a suitable combination of different V&V methods for an application.

Software engineering for CSE (see Section 2.1.1) can help scientists in code verification and
algorithm verification. The following subsections 2.3.1 and 2.3.2 introduce general software
engineering methods that are useful for scientific software development. Subsection 2.3.3
discusses related work on QA for scientific software.

14

2.3. QA FOR SCIENTIFIC SOFTWARE

2.3.1 Statical Analysis and Dynamic Testing

Some methods of classic software quality assurance (SQA) are also adapted in scientific
software development. Methods of statical analysis (e.g. reviews, inspections or audits)
are not a regular part of development activities for scientific software, although it is
widely recognized that statical analysis provides very effective QA methods [44].

According to IEEE Standard [40], a technical review is a "systematic evaluation of a
software product by a team of qualified personnel that examines the suitability of the
software product for its intended use and identifies discrepancies from specifications and
standards. Technical reviews may also provide recommendations of alternatives and
examination of various alternatives."

Methods of dynamic testing are widely used for scientific software. The source code
is often tested with unit testing. During unit and integration testing, most functional
failures should already have been found, but for scientific software, especially scientific
frameworks, system testing is still the only testing level where the interaction between
the mathematical model, the numerical model, and its implementation can thoroughly
be tested. At system testing level also non-functional requirements like correctness and
performance can be tested [72].

While unit testing is widely used for scientific software (e.g. [1], [34], [28]), currently
system tests are seldom systematically adopted for complex scientific software. This
may be partly due to the fact that there are several good tools for adopting unit testing
in many different programming languages. It is easier to plan and implement tests for
smaller pieces of the software. These steps can easily be integrated into the everyday
work of scientific software developers when they are implementing or changing pieces
of the software. System tests on the other hand, still mostly have to be planned and
implemented from scratch. Their form and goals can be very different from one scientific
software product to another. It needs a high level of domain understanding to plan
system tests. Case studies, like [1], confirm the fact that there is a lack in system testing.
Ackroyd et al. found testing actions in the analyzed scientific software insufficient and
pushed the developers to focus on an intensive usage of unit testing. The authors admit
that the problem that still remains is how to ensure that code changes through continuous
integration do not cause problems, if system testing is insufficient. Even though unit
tests can demonstrate that every unit works as expected, they still do not ensure that
these units work together.

15

CHAPTER 2. BACKGROUND

2.3.2 Regression Testing

When developing scientific software in a team, regression testing gives the confidence that
changes in the source code work together with the rest of the source code and changes
made by other developers. Regression testing should be performed frequently and for
every software modification. The main use of regression testing is to minimize the effort
devoted to fixing incorrect source code changes [58].

Most regression test environments compare the behavior of two program versions to
find out whether there are any changes or not. Deviations in the program behavior can
be intended, such as bug fixes, or unintended, such as regression faults. Traditionally
regression testing techniques characterize the program behavior due to the program
output. Sometimes an old version’s output is stored as an expected output. There are
also methods, like program spectra, that compare the program versions’ internal behavior
in a black box testing manner [78].

When regression testing techniques are applied for a scientific framework, we need to take
some specialties in the software’s characteristics into account. For example, the output of
scientific software often consists of floating point values. When we compare floating point
values with each others, we have to take rounding errors into account. Often, stored
expected output values with a tolerance range are used as a reference.

2.3.3 Related Work on QA Processes for Scientific Software

We could not find any other descriptions of QA processes for scientific software in
the literature. For scientific software development, some models are introduced in the
literature, like an iterative and incremental model by Segal in [70] and a staged delivery
model, similar to a waterfall model, used by software projects at a research center by
Baxter in [11]. For a development process in general and for QA in particular, we could
find in [28], [37], [36], and [55] several lists of recommended software engineering practices,
e.g. source control, configuration management, issue tracking, unit testing, verification,
and regression testing, but they are not defined as a development and QA process.

Many key success factors for a test process in agile testing are similar to ours: a high
grade of automation that we implement with the regression test environment, which also
ensures the rapid feedback to the developer about software failures, a low management
overhead, and dissolving test roles [23]. Nevertheless, an agile testing process can only
be fully adopted in a scientific software project, if, at the same time, an agile software

16

2.4. DEVELOPMENT OF A SPL

development process model like Scrum is used.

2.4 Development of a SPL

In this section, we introduce the development processes of SPLE (see Section 2.1.7) that
are used in this thesis (Subsection 2.4.1). For variability modeling, we introduce two
different approaches in Subsection 2.4.2.

2.4.1 SPLE Development Processes

The SPLE process is divided into two development processes: domain engineering and
application engineering. In the domain engineering process a reusable platform, including
the commonality (common characteristics for every application in the product line) and
variability, is defined for the product line [60]. The application engineering process is
responsible for deriving applications from the product line platform that was established
during domain engineering.

There are five key sub-processes in domain engineering: product management, domain
requirements engineering, domain design, domain realization and domain testing. In the
first sub-process, product management, a roadmap describing the scope and the goals of
the product line is created [62]. The roadmap is used as an input when the first version
of a variability model is created in domain requirements engineering.

In domain design, a reference architecture that provides a common, high-level structure
for all product line applications, is defined. Domain realisation deals with the detailed
design and the implementation of reusable software components [60].

In domain testing, the goal is to ensure the quality of the reusable platform, including the
commonality and the variability, defined for the product line in the domain engineering
process. This includes the testing of those artifacts that can be tested as early and
often as possible and the creation of reusable test artifacts that can then be reused in
application testing [63].

The reusable domain artifacts (requirements, architecture, components and tests) that
result from the domain engineering sub-processes include the product lines variability.
In the application engineering sub-processes application requirements engineering, ap-
plication design, application realization and application testing this variability is bound

17

CHAPTER 2. BACKGROUND

meaning that a specific variant is chosen for each variation point. Binding each variation
point in the variability model, results in a separate application.

In application requirements engineering one major concern is the detection of deltas
between application requirements and the available domain artifacts. It results in
requirement documentation for a particular application. Application design uses the
reference architecture as input and creates an application architecture. At last, application
realization creates the considered application [60].

In application testing, the applications derived from the SPL platform are tested. The
test activities in application testing concern parts of the application that are developed
during application engineering but also reuse test artifacts from domain testing. Variable
artifacts that are only used in one or few applications are tested in application testing
[63].

The benefits of SPLE include a reduction of development effort, since new applications can
be implemented by reusing the platform, an enhancement of quality, since the artifacts in
the platform are thoroughly tested in many applications and a reduction of maintenance
effort, since new variants can be inserted for a variation point with a reasonable effort
[62].

Traditionally, the developers of a SPL carry out both domain engineering and application
engineering. They provide completed SPL applications to the customers or users of the
SPL.

2.4.2 Variability Modeling

In SPLE, a variability model is created in domain requirements engineering and refined
in further sub-processes in domain engineering. A variability model illustrates at least
what varies and how does it vary. In the following subsections we introduce two different
possibilities to represent a variability model: the orthogonal variability model by Pohl et
al. in Subsection 2.4.2.1 and the feature diagram by Thüm et al. in Subsection 2.4.2.2.
At first we used the orthogonal variability model in our research, but this model was
rejected by the developers in a case study (see Section 6.3.1). As a consequence we
changed to the feature diagram by Thüm et al.

18

2.4. DEVELOPMENT OF A SPL

2.4.2.1 Orthogonal Variability Model

Figure 2.3 demonstrates an example of the variability model notation by Pohl et al. [61].
It shows a small example of the variability modeling for DUNE. We consider the variation
points "Grid structure type", "Grid conformity type" and "Grid refinement type" (for an
explanation of the terms, see Section 2.6.3).

Figure 2.3: Example of the variability model notation by Pohl et al [61].

In an orthogonal variability model, the characteristics in a SPL that can vary are called
variation points and the possible values for a variation point are called variants. An
example for a variation point in Figure 2.3 is "Grid structure type" and its variants are
"structured" and "non-structured". There are always a finite number of possible variants
for a variation point.

19

CHAPTER 2. BACKGROUND

Variation points are divided into external and internal variability. External variation
points are visible to the users and stakeholders, like the variation point "Grid structure
type". Internal variation points are hidden from the users and are only of interest to the
developers of the product line. Typical causes for internal variation points are technical
issues. Hiding such technical details leads to reduced complexity for the users.

It may be mandatory to select a variant for a variation point or it may be optional. The
variation point "Grid structure type" is mandatory. However, a variation point "grid
refinement type" is optional, since it is only needed, if the grid is locally refined. It can
also be defined how many variants (min, max) may be selected for a variation point.
Usually only one variant can be selected for a variation point.

A special challenge for domain testing is absent variants. These are variants that are
only created in application engineering for one or few applications and are not realized
in domain engineering.

Typically there are constraints between the different variation points and variants.
Variation point(s) (or variant(s)) may require or exclude other variation point(s) (or
variant(s)). In our example, the variant "structured" for the variation point "Grid
structure type" requires that for the variation point "Grid conformity type" the variant
"conform" needs to be selected.

A variability model includes all variations points and their variants of a product line.
It also includes constraints between the variation points and variants. A variability
model should answer at least the following questions: what varies (variation points), how
does it vary (available variants) and for whom is it documented (internal and external
variability). A variability model could also include traceability information consisting of
links to other development artifacts like use cases, design models, test cases or source
code.

2.4.2.2 Feature Diagram

This is the description of a variability model by Thüm et al. in [76]. Please note that
since this variability model is a hierarchical tree, it does not distinguish between variation
points and variants like the orthogonal variability model by Pohl et al. In a feature
diagram both variation points and variants are called features:

"A variability model defines the valid combinations of features in a domain [43].

20

2.4. DEVELOPMENT OF A SPL

Variability models have a hierarchical structure, whereas each feature can
have subfeatures [24]. The graphical representation of a variability model is a
feature diagram and an example is shown in Figure 2.4. Connections between
a feature and its group of subfeatures are distinguished as and-, or-, and
alternative- groups [10]. The children of and-groups can be either mandatory
or optional. A feature is abstract, if it is not mapped to implementation
artifacts and concrete otherwise [75]."

Figure 2.4: Example of the graphical variability model [76].

If a feature has more than one child features, there are three possibilities for the relation-
ship:

• and: none, one or more than one child feature can be used at the same time

• or: one or more than one (but at least one) child feature can be used at the same
time

• alternative: only one of the child features can be used at the same time

If a feature in the feature diagram is selected, its parent feature is automatically also
selected. Furthermore, all mandatory subfeatures of an and-group must be selected, too.
In or-groups, at least one subfeature must be selected and in alternative-groups, exactly
one subfeature has to be selected [76].

A variability model may have cross-tree constraints to define dependencies which cannot
be expressed otherwise. These constraints are expressed as logical formula over the set of
features.

More about variability modeling using the feature diagram can be found in Section C.4.

21

CHAPTER 2. BACKGROUND

2.5 QA for SPLs

This section introduces QA concepts for SPL (see Section 2.1.6). We could find three
QA process descriptions for SPL in the literature. RiPLE-TE is introduced in detail in
Subsection 2.5.1. Heider et al. [35] outline existing verification and testing approaches
supporting product line evolution: model verification techniques for verifying the vari-
ability model and application configurations, unit testing for core assets and application
generators and integration and system testing methods, e.g. the use of sample appli-
cations in domain testing. They illustrate the interplay of these QA methods, but do
not discuss how these steps could form a QA process. Neto et al. [56] propose a very
formal regression testing approach for the reference architecture of a SPL, which uses
extensive documentation, many detailed process steps and plenty of test roles. Their
approach concentrates on the commonality (see Section 2.4.1) of the SPL and does not
apply system testing.

The variability in a SPL leads to two interesting issues for preparation of tests for a SPL:
test case derivation and test suite selection. Subsections 2.5.2 and 2.5.3 deal with these
issues.

2.5.1 RiPLE-TE QA Process for SPLs

Based on a systematic mapping study on SPL testing and evaluated with an experimental
study, Machado et al. [51] designed a QA process for product lines. The process,
illustrated in Fig. 2.5, comprises both, domain testing and application testing. In domain
testing the assets are designed considering the possible variable parts to be further reused
in application testing.

The first activity in both, domain testing and application testing, is the development of
a master test plan defining what and how will be tested, who will do it, the coverage
criteria and a time schedule. The planning should be continuously performed during the
other QA activities and the plan should be updated whenever necessary.

Since it is desirable that failures in the source code can be detected as early as possible,
the second step is a technical review, where the main artifacts in SPL, such as variability
model, product map etc., are reviewed before the dynamic tests are being started.

In domain testing, where the product line platform with reusable artifacts is developed,
the focus is on unit and integration testing. The unit testing should ensure that the

22

2.5. QA FOR SPLS

Figure 2.5: RiPLE-TE Domain Engineering and Application Engineering Workflow [51]

components may be reused further. After that, integration testing seeks to guarantee
that tightly coupled components work together.

In application testing, integration, system, and acceptance testing is performed. In this
stage, integration testing is based on the assets previously developed and tested and
affects the components that will comprise the application. System testing evaluates the
application as a whole against system requirements. In acceptance testing, customer
feedback on the application is gathered. If any new artifacts have been created in
application engineering, these should first be tested with unit testing.

In special cases, when a new feature that does not yet belong to the product platform is
included to a specific application, unit tests may be performed in application testing, too.

Each of the testing activities above includes four tasks: planning, design, execution, and
reporting. After these tasks have been performed, coverage criteria are used to decide
whether the testing activity is accomplished or not. If not, the cycle returns to planning.

In the RiPLE-TE QA process, different test engineering roles are used: Test Manager,
Test Architect, Test Designer and Tester. A test engineer can assume more than one role,
and one role can be filled in by more than one engineer. Besides, other stakeholders like
SPL Manager or Product Manager can be applicable to RiPLE-TE. Divers documents
are the output of the RiPLE-TE process: Master Test Plan, Test Plan, Test Case, Test
Software, Test Reports and Test Suites [50].

23

CHAPTER 2. BACKGROUND

2.5.2 Test Case Derivation

The variability in a SPL leads to diverse requirements for the different SPL applications. It
is a challenging task to systematically develop suitable test cases for all these applications.
In the SPL literature one can find several methods for test case derivation. Most of them
are model-based, meaning that they use some kind of a model for the presentation of the
SPL requirements and use this model for the derivation of test cases.

Nebut et al. [54] present an automated approach of deriving system test cases for SPL
applications from the SPL requirements. The requirements are modeled using enhanced
UML use cases. Bertolino et al. [14] have developed a further modification of the use
case notation for SPL, called Product Line Use Cases (PLUCs), which also supports the
derivation of test cases for a specific SPL application.

ScenTED, a method for test case derivation by Reuys et al. [66] also uses use case
scenarios. The method is based on the systematic refinement of generic use case scenarios
to generic system and integration test case scenarios. Stricker et al. [73] have extended
the method to ScenTED-DF, which detects redundant test cases based on data path
analysis of the use cases.

Our model-based test case derivation method is based on variability models, as explained
in Section 4.1.3.

2.5.3 Test Suite Selection

Once we have a set of test cases for a SPL (see Subsection 2.5.2), the next challenge is to
build a suitable test suite out of the complete set of test cases available. Reducing the
amount of used test cases is necessary, if the effort for executing all test cases exceeds the
available resources for running the tests. However, the use of test selection techniques is
only justifiable when the cost to select test cases is less that running the entire test suite
[56].

In the literature, different test suite selection methods can be found to address this prob-
lem, for example sampling (test configurations are selected based on domain knowledge)
and feature interaction (the most relevant feature combinations are selected based on
statistical analysis) [48].

The sampling method should be chosen in a way that it retains as much of detect detection

24

2.6. DUNE - A SCIENTIFIC FRAMEWORK

power of the original test suite as possible. The method should also concentrate on
high-priority test cases. Possible criteria for sampling are for example [52]:

• Include all test cases that failed in the last test run.

• Include all test cases that cover the changes made to the source code.

Combinatorial Interaction Testing is especially suitable for us, because it is based directly
on the variability model (see Section 2.4.2) and can be automated. This method
selects a subset of all possible feature combinations, where possibly many potential
feature interaction failures may happen. For example, in 2-wise testing (also called
pairwise testing), those test cases will be chosen, where for every pair of two features the
combinations "both available", "one available" and "none available" are tested [42]. Kuhn
et al. have used the technique and found out, that most bugs were found with 6-wise
testing. 1-wise found 50%, 2-wise 70% and 3-wise 95% of the bugs. For non-critical
product lines, the authors recommend 3-wise test coverage. In one example for 1024
possible feature combinations, 2-wise leads to 41 and 3-wise to 119 test cases [49].

2.6 DUNE - a Scientific Framework

This section introduces DUNE, the scientific framework that is used in the case study
and practical application for our research. Subsections 2.6.2 and 2.6.3 explain specific
terminology that is used in examples in this thesis.

2.6.1 A Scientific Framework for the Simulation of PDEs

The Distributed and Unified Numerics Environment (DUNE1), is a free software licensed
framework for solving PDEs (see Section 2.1.9) with grid-based methods [8], [9]. It sup-
ports the easy implementation of discretization methods like finite element, finite volume,
and finite difference methods. DUNE makes several grids and powerful mathematical
implementations available. Its main principles are the separation of data structures
and algorithms by abstract interfaces, efficient implementation of these interfaces using
generic programming techniques and the reuse of existing finite element packages (e.g.

1http://www.dune-project.org/

25

CHAPTER 2. BACKGROUND

UG2, ALBERTA3, and ALUGrid4) with a large body of functionality.

DUNE consists of several separate modules. Its users can put together a certain set of
modules depending on their needs. The core modules deliver the basic classes (dune-
common), an abstract grid interface (dune-grid), an iterative solver template library
(dune-istl [15]), an interface for finite element shape functions (dune-localfunctions) and
tutorials for using and implementing the grid interface.

Additional to the core it is possible to use external modules in DUNE. There are several
of them including modules for complete simulations, additional grid managers and
discretization. In our research we concentrate on dune-pdelab, a discretization module
for a wide range of methods.

The development of DUNE started about twelve years ago. The distributed development
team for the core modules consists of 10 scientists from mathematics, computer science
and physics. Additionally, there are up to 20 developers working on external modules.
DUNE core modules consist of about 250.000 lines of code (LOC) in C++. It supports
parallelism based on Message Passing Interface (MPI).

Some users use DUNE’s interfaces to implement their own external modules. Most
of the users use core and external modules to implement their own applications. Still
others just use ready implemented DUNE applications. In the following, we focus only
on DUNE users who implement their own DUNE applications. Users of DUNE are
mostly mathematicians, computer scientists and physicists at universities in Germany
and abroad. Recently it was adopted for industrial applications for flow and transport
processes in porous media. Altogether, there are about 50-100 users.

The development team applies software engineering best practices like version management
and configuration management. New requirements are collected using mailing lists and an
issue tracking tool. Rapid prototyping is used to some extent. The high use of software
engineering practices is untypical for scientific software [21] and may be due to the fact
that some members of the development team are computer scientists.

Big code changes are planned as milestones with some kind of a prioritization, however,
without defined scheduling. The development is done when resources are available.
The documentation consists of detailed code documentation, a user documentation and
tutorials on mathematical concepts and their implementation. The documentation is

2http://atlas.gcsc.uni-frankfurt.de/˜ug/
3http://www.alberta-fem.de/
4http://aam.mathematik.uni-freiburg.de/IAM/Research/alugrid/

26

2.6. DUNE - A SCIENTIFIC FRAMEWORK

available online.

The most important software quality goals for DUNE are flexibility, numerical correctness
and portability, especially on high performance computers. The quality of single modules
is tested with unit tests and there are some automated configuration tests which are run
on every commit or overnight.

2.6.2 Numerical Simulation Terminology

This subsection explains some terminology in the context of numerical simulations. For
further reading we refer to [30].

Starting from observations the first step is to describe a system of components and their
interaction. In natural science and engineering these interactions are usually natural
phenomena like gravitation, fluid mechanics or heat transport, which are then formulated
as mathematical model, often in terms of PDEs like the Poisson equation, Euler equation
or heat transport equation. In general, it is not possible to solve these PDEs, or systems
of PDEs analytically, thus numerical methods are used to find an approximation for
the inaccessible analytical solution. The actual solution is obtained by a computer
simulation. This should scale from the scientists laptop to high performance computers
with thousands of cores. In the following, we provide a small glossary of the terminology
used: A PDE is a relation involving an unknown function of several independent variables
and their partial derivates with respect to those variables. They can be classified in
elliptic (e.g. Laplace equation, stationary heat equation), parabolic (e.g. instationary
heat equation) and hyperbolic (e.g. transport equation) PDEs. The function is usually
spatial varying and can be scalar, like a temperature distribution, or vector valued, like a
velocity field. The analyzed problem can be stationary, meaning that it does not depend
on time or it can be instationary, meaning that some characteristics like position or
temperature change with time.

We consider a bounded domain for which the mathematical model is assumed to be
valid. This domain of dimension d can be embedded into a higher dimensional space
of dimension w (e.g. a surface in a three-dimensional world). Boundary conditions
complement the PDEs and describe the behavior of the solution on the boundaries of
the region. Appropriate boundary conditions are necessary to guarantee the uniqueness
of the solution. Additionally, the solution of the PDE can depend on spacially varying
parameters or functions, like source terms, material parameters or external forces.

27

CHAPTER 2. BACKGROUND

To solve the PDEs numerically the exact solution is approximated by a discrete solution.
Creating a numerical problem out of a mathematical problem is called discretization.
Different discretization methods are possible and lead to different approximations with
different properties. The most well-known classes of discretization methods are finite
element methods (FEM), finite volume methods (FVM) and finite difference methods
(FDM). All mentioned discretization methods are grid based. A grid is a partition of the
computational domain into non-overlapping sub-regions called grid elements.

Instationary problems also need to be discretized in time. This usually means different
solutions are computed for different discrete time steps. How the evolution from one
time step to the next can be computed depends on the chosen time stepping scheme. For
well-posedness of the problem, initial values are needed in addition.

This discretized problem yields a large system of linear or non-linear equations. Solvers
are root-finding algorithms, which are used to numerically solve the equation system. For
non-linear systems a non-linear solver (e.g. Newton’s method, fixed point method) is used.
Iterative non-linear solvers create a sequence of linearized systems. For solving linear
systems two types of linear solvers are applicable: direct solvers (only for small problems)
and iterative solvers (e.g. Richardson, Krylov subspace methods). The performance of
an iterative linear solver can be improved by applying a preconditioner (e.g. Jacobi,
Gauss-Seidel, SOR, ILU, multigrid) to the linear equation system.

2.6.3 Grid Terminology

As an example of a field of application for DUNE we take a closer look at the grid
terminology. A detailed definition of a grid in DUNE can be found in [8].

A grid is a partition of a bounded domain into a set of grid elements, which can be
described by a reference element, (e.g. cube or simplex) and a transformation into global
coordinates that are transformations of specific reference element types. For simplicity,
all figures in this subsection use 2D grids.

A grid element consists of different subentities, like faces, edges or vertices. A face is an
entity of dimension d-1, in 2D it is the line. Edges are entities of dimension 1 and vertices
of dimension 0. An intersection describes the contact area between two neighboring
elements or an element and the domain boundary, like faces they are of dimension d-1.
As we will describe later, intersections do not necessarily correspond to the faces.

28

2.6. DUNE - A SCIENTIFIC FRAMEWORK

A grid is single-element-type when all elements correspond to the same reference element.
In a multi-element-type grid different reference elements are allowed. Figures 2.6 and 2.7
show examples of single-element-type and multi-element-type grids.

Figure 2.6: Single-element-type grids.

Figure 2.7: Multi-element-type grids.

A structured grid is a grid with congruent grid elements. An unstructured grid is more
flexible, since the grid elements may be used in an irregular pattern. Figures 2.8 and
2.9 show examples of structured and unstructured grids. Note that a structured grid is
always a single-element-type grid.

Figure 2.8: Structured grids.

Figure 2.9: Unstructured grids.

A conforming grid is one where the intersection of two elements is either empty or a face
of each of the two elements. Otherwise the grid is called nonconforming. Figure 2.10
shows examples of conforming and non-conforming grids.

To obtain a better numerical solution, it is possible to refine the grid. The refined grid is
obtained by sub-dividing elements into smaller elements. Successive refinement leads to
a hierarchy of grids.

A grid can be globally or locally refined. Global refinement means that all elements are

29

CHAPTER 2. BACKGROUND

Figure 2.10: A conforming and a non-conforming grid.

refined, whereas local refinement means that only a subset of the elements is refined.
Figures 2.11 and 2.12 illustrate the difference between global and local refinement.

Figure 2.11: Hierarchy of globally refined grids.

Figure 2.12: Hierarchy of locally refined grids.

Note that locally refined conforming grids are either multi-element-type or simplicial
grids.

2.7 Chapter Summary

This chapter provides basic definitions and background information on the topics handled
in this thesis.

For the QA of scientific software it is important to consider different possible source for
a software failure and to handle these separately: first check the source code for bugs
with code verification methods, then verify the mathematical algorithm with algorithm
verification methods, and at last evaluate whether the output is a reasonable proximity to
the natural phenomenon in question with scientific validation. Software engineering for
CSE can help scientists in code verification and algorithm verification. Recommendable
methods of classic SQA for scientific software include reviews, dynamic testing, and
regression testing.

In SPLE a software platform is developed in domain engineering development process

30

2.7. CHAPTER SUMMARY

and mass customization is then used in application engineering for the creation of a group
of similar applications (a SPL) that differ from each other in specific predetermined
features. In the first two domain engineering sub-processes, product management and
domain requirements engineering, a roadmap describing the scope and the goal of the
product line is created and used as an input for a variability model. A variability model
illustrates the variable features of the product line and the constraints between them.
In domain testing, the quality of the SPL platform, including the commonality and the
variability, is ensured. Application testing tests the applications derived from the SPL
platform reusing test artifacts from domain testing.

RiPLE-TE is a QA process for SPLs introduced by Machado et al. [51]. It comprises
both domain testing and application testing. In this process, the activities in domain
testing include the development of a master test plan, a technical review, and unit and
integration testing. In application testing, integration, system, and acceptance testing is
performed.

In test case derivation for a SPL the challenge is to systematically develop suitable
test cases for all of the SPL applications. Most methods for test case derivation are
model-based, meaning that they use some kind of a model for the presentation of the SPL
requirements (e.g. UML use case diagram) and use this model for the derivation of test
cases. The next challenge is to build a suitable test suite of the complete set of test cases.
Several test suite selection methods can be found in the literature, for example sampling
and combinatorial interaction testing.

DUNE is a scientific framework for solving PDEs with grid-based methods. It supports
the use of different discretization methods like finite elements, finite volume, and finite
difference methods. DUNE consists of several core modules and additional external
modules, e.g. a discretization module dune-pdelab. This chapter explains some numerical
simulation and grid terminology used in the examples in this thesis.

31

Part II

Comprehensive Quality Assurance of
Scientific Frameworks

33

Chapter 3
SPLE in the QA of Scientific Frameworks

In this chapter we will explain how we apply SPLE for a scientific framework to system-
atically describe the variability of the framework. This is needed for the development of
system test applications.

The first subsection provides an overview how SPLE has been used for scientific software
before. After that we will explain how SPLE suites for a framework and how it supports
framework’s developers. Section 3.3 then introduces VAF, the SPL test strategy (see
Section 2.1.8) we have designed for scientific frameworks. VAF-Pro, the QA process for a
scientific framework introduced in Chapter 5 implements this SPL test strategy. Section
3.4 gives a summary of the chapter.

3.1 SPLE for Scientific Software and Reengineering

SPLE was first introduced in scientific software by Yu and Smith [81] who used SPLE
to describe the variability of one mathematical model (beam analysis problems) and its
solution using PDEs and discretization method finite element analysis. First, differing
from their approach, we use SPLE for the reengineering of an existing framework for
several mathematical models and the discretization methods for solving PDEs. The
second difference is the goal of using SPLE: Yu and Smith wanted to create a variability
model that supports scientists in creating applications in the same field of application. Our
purpose is to model the variability in the scientific framework to use it for systematically
organizing the system testing of this framework.

34

3.2. SPLE AND SCIENTIFIC FRAMEWORKS

SPLE is also adopted for the reengineering of legacy software in other fields of research
than scientific software. This is typically applied when standalone applications in the
same field of application with a similar content are maintained separately. There are
several methods, architecture-centric or based on a feature model, for merging such
standalone applications into a product line [57]. Yoshimura et al. [80] describe how they
created a product line out of standalone applications. The focus is in merging software
code of separate variants into one source code. The variability and commonality (see
Section 2.4.1) emerge from the source code or architecture analysis.

In our case we also apply SPLE to an existing application. Still, there are some significant
reasons why we did not want to apply any existing product line reengineering methods
in our research. First, we are not dealing with standalone applications. We do not have
to merge any duplicated source code, since we are dealing with an existing framework.
Second, and even more important, we do not want to derive the variability model (see
Section 2.4.2) from the source code or architecture. The reason is that we want to use
the variability model for testing the framework. We want to test the software against
its requirements and goals. That is why we create the variability model out of the
requirement documentation. If the source code does not fit to the variability model, then
the software does not fulfill its requirements. Finding such mismatches is one important
goal of testing.

3.2 SPLE and Scientific Frameworks

In our approach, we consider the framework as the product line platform. The applications
developed by the users of the framework are then regarded as the product line applications.

This leads to a specific definition for the terms developers and users in the case of scientific
frameworks. Developers in the sense of traditional SPLE carry out the domain engineering
and application engineering processes (see Section 2.4.1). The users of traditional product
lines at best can take a look at the set of external features, choose the desired features
and at the end get to use the separate application. When we apply SPLE to a scientific
framework, the developers only deal with domain engineering. The developers set up a
scientific framework including a huge amount of variability. The application engineering,
that is the binding of the variability and the development of the application, is done by
the users of the scientific framework. When we are talking about developers and users
in this thesis, we mean their specific roles in the context of scientific frameworks. In
these terms the users of a scientific framework are at the same time the developers in the

35

CHAPTER 3. SPLE IN THE QA OF SCIENTIFIC FRAMEWORKS

application engineering process.

This also means that the borderline between internal and external variability as a
separation between the variability visible to developers only and the variability also
visible to users is shifted. The users of a scientific framework have a more technical view
on the framework’s variability. Yet, there is still variability dealing with implementation
details that is only visible to the developers of the framework.

To developers of a scientific framework the importance of domain engineering rises. They
have a lot less impact on application engineering which is performed by the users of the
scientific framework. In domain requirements engineering the developers must keep in
mind the needs of a wide range of different applications. In fact, the developers can not
foresee all applications the users want to develop using the framework. In the case of
scientific frameworks, the mathematical models used set some natural boundaries to their
variability.

Domain testing (see Section 2.4.1) has a high importance to the developers, since they
need to test the functionality of the scientific framework without knowing exactly what
kind of applications the users are going to develop. They have a lot less impact on
application testing, which is performed by the users of the scientific framework.

3.3 SPL Test Strategy for Scientific Frameworks

As described in Section 2.1.8, an SPL test strategy defines, how the testing responsibility
is partitioned between domain testing and application testing. Such considerations are
necessary in order to achieve the goal of testing and to avoid problems related to the
handling of variability [64].

In this section, we first briefly introduce SPL test strategies found in the literature
and discuss why they are not suitable for scientific frameworks. Then, we introduce an
SPL test strategy for scientific frameworks and assess it using the criteria for SPL test
strategies introduced by Pohl et al. in [64].

3.3.1 Criteria for an SPL Test Strategy for Scientific Frameworks

In a manual literature review about SPL literature, we collected papers that mention
SPL test strategies. The following SPL test strategies could be found:

36

3.3. SPL TEST STRATEGY FOR SCIENTIFIC FRAMEWORKS

A. Brute Force Strategy (test only in domain engineering) [64]

B. Pure Application Strategy or Testing Product by Product (test only in application
engineering) [64], [74]

C. Incremental Testing of Product Lines (test the first application individually and
the following applications using regression testing techniques; a special case for B)
[74]

D. Sample Application Strategy (SAS) (one or few sample applications are created
and used to test domain artifacts; testing for the specific applications in application
engineering is still needed) [63]

E. Commonality and Reuse Strategy (CRS) or Design Test Assets for Reuse (test
common parts in domain engineering and for the variable parts create reusable test
artifacts for the testing in application engineering) [64],[74]

F. Combination of strategies SAS and CRS (use fragments of a sample application in
domain testing and create reusable test artifacts for application testing) [64]

G. Opportunistic Reuse of Test Assets (create test artifacts for one application in
application testing and use these artifacts for further product line applications) [66]

H. Division of Responsibilities (select testing levels to be applied in both, domain
and application engineering, for example, test common parts with unit testing in
domain engineering and execute integration, system, and acceptance testing in
application engineering) [74]

Considering the special case of a framework where the framework developers only deal
with domain testing and the application testing is accomplished by the framework’s users,
an SPL test strategy for a framework needs to fulfill the following criteria:

1. Both, commonality and the variability of the framework are tested in domain
testing.

2. Application testing is supported with reusable test artifacts created in domain
testing.

3. Product line applications still need to be tested in application testing.

37

CHAPTER 3. SPLE IN THE QA OF SCIENTIFIC FRAMEWORKS

Criteria SPL Test Strategy
A B C D E F G H

1. X1

2. (X) X X (X)
3. X X X X X X X

Table 3.1: Fulfillment of Criteria for an SPL Test Strategy for a Framework

In most SPL strategies (B - H), at the most the common parts of the platform are tested
in domain testing. The variability of the platform, meaning possible applications that
can be derived from the platform, is tested only in application testing, where concrete
applications exist. Since we need to test the whole platform, i.e. the framework’s
functionality, we also need to test the framework’s variability using reference applications
in domain engineering already (Criterion 1). Still, the framework’s users need to test
their applications, because these always include some own functionality and may use the
framework in a way the framework’s developers could not expect. The users should not
assume that since the framework is tested, they do not need to test their own applications
(Criterion 3).

In domain engineering, an SPL test strategy for a framework should include the creation
of reusable test artifacts, like test applications including variability. These test artifacts
can be reused by the framework’s users when they are testing their own applications
(Criterion 2).

Table 3.1 demonstrates which SPL test strategy criteria for a framework are fulfilled
by the existing test strategies. Criterion 1 is only fulfilled by the Brute Force Strategy
(A), but this test strategy firstly does not fulfill the other criteria and secondly is not
recommended by the authors in [64]. Test strategies Incremental Testing of Product Lines
(C) and Opportunistic Reuse of Test Assets (G) create reusable test artifacts merely in
application testing and therefore only partly fulfill Criterion 2. The most suitable test
strategies are CRS (E) and the Combination of strategies SAS und CRS (F). However,
these strategies do not test the whole variability in domain testing and therefore do not
fulfill Criterion 1.

Since none of the existing SPL test strategies fulfills the criteria for a framework, in the
next subsection we propose a new SPL test strategy for frameworks fulfilling all criteria.
More or less, out strategy is a combination of the Brute Force Strategy (A) and CRS (E).

1Legend: ’X’ = fulfills criterion, ’(X)’ = partly fulfills criterion

38

3.3. SPL TEST STRATEGY FOR SCIENTIFIC FRAMEWORKS

3.3.2 VAF - Variable Test Application Strategy for Frameworks

CRS test strategy distributes test activities between domain engineering and application
engineering. Commonality, meaning the common code for all applications, is tested during
domain engineering. Furthermore, test artifacts that contain variability are prepared for
testing the variable parts is application engineering.

What we need is an SPL test strategy similar to CRS, but the strategy also needs to test
the variability of the product line in domain engineering. For this purpose, we first take
a short look at the variability modeling for a framework (see Section 2.4.2). If we had a
variability model for the whole framework, we could derive the test applications and test
cases thereof as illustrated in Fig. 3.1. Since it typically is not feasible to create such
a variability model for the whole framework covering a wide range of functionality, we
start with the mathematical requirements for the framework (the mathematical problems,
which the framework should solve) and create several variability models based on those
mathematical requirements as illustrated in Fig. 3.2 (detailed description of the variability
model creation for a scientific framework can be found in Chapter 4).

Figure 3.1: Derivation of Test Applications and Test Cases for a Framework with Vari-
ability Model (VM)

The mathematical requirements for the variability modeling should be chosen so that
they cover typical uses of the framework, meaning that typical problems, mathematical
models and numerical algorithms are covered. The goal is to reach possible high coverage
for the available numerical algorithms in the framework. It is also possible to include
special test problems in these test applications, for example complex grid structures, that
are known to be tricky for the used numerical methods.

39

CHAPTER 3. SPLE IN THE QA OF SCIENTIFIC FRAMEWORKS

Figure 3.2: Derivation of Variability Models (VM) and the Associated Test Applications
from the Framework’s Requirements

For each variability model we develop an associated system test application, as shown
in Fig. 3.2. Using the framework, the system test application solves the mathematical
problem represented with the variability model. For example, one mathematical problem
the DUNE framework (see Section 2.6.1) should support is solving the Poisson equation,
an elliptic PDE. A variability model for this problem covers among others the different
possible grid configurations and the discretization methods used (for details, see Section
2.6.2). The fulfillment of this mathematical requirement can be tested with the associated
test application.

The users of the framework can reuse the unit and integration tests, the variability
models and the system test applications when they are testing their own applications in
application engineering.

Summarized, this is our SPL test strategy called Variable Test Application strategy for
Frameworks (VAF). It fulfills the criteria for an SPL test strategy for a framework in
Section 3.3.1 :

1. Test the commonality of the framework in domain engineering (e.g. using unit and
integration testing).

2. Test the variability of the framework in domain engineering by creating variability
models based on the mathematical requirements of the framework and developing
system test applications associated to these variability models.

3. Provide reusable test artifacts (unit and integration tests, variability models and
system test applications) that framework’s users can use to test their specific
applications in application engineering.

40

3.3. SPL TEST STRATEGY FOR SCIENTIFIC FRAMEWORKS

In the next subsection, we will assess VAF and compare it with CRS, which is one of the
test strategies most often applied in practice.

3.3.3 Assessment

Pohl et al. [64] introduce five essential criteria for an SPL test strategy:

1. Time to Create Test Artifacts (overall time needed for creating test artifacts in
domain and application testing; influenced by the amount of test artifacts and by
the difficulty to create them)

2. Absent Variants (how well does a test strategy deal with absent variants; for
definition see Section 2.4.2.1)

3. Early Validation (the time between the finalization of an artifact and its validation
should be low to help keeping the costs for repairing defects low)

4. Learning Effort (time it takes for a tester to be able to perform the test activities
associated with the test strategy)

5. Overhead (amount of unnecessarily performed activities and/or produced artifacts
when the same result could be achieved with lower effort)

In Table 3.2 we compare VAF with CRS using these criteria. In our assessment of VAF,
we take into account our context of scientific software development.

Pohl et al. evaluate CRS positive with respect to the time to create test artifacts, since
the inclusion of variability in the test artifacts significantly reduces the amount of tests
needed to create from scratch in application testing. In VAF, the required test artifacts
are the variability models and test applications. Their creation is time-consuming and
mathematical expert knowledge is required. Additionally, the framework’s users need to
create new test artifacts or extend the reusable artifacts to suit their specific scientific
environment. Therefore, we rate the time to create criterion with "-".

For both, CRS and VAF, the handling of absent variants is excellent, since the test
applications created in domain testing cover the variability of the framework. If the users
of the framework introduce new features in application engineering, they can extend the
reusable test applications to test them.

41

CHAPTER 3. SPLE IN THE QA OF SCIENTIFIC FRAMEWORKS

Time to
create

Absent
variants

Early vali-
dation

Learning
effort

Overhead

VAF -2 + + - +
CRS [64] + + 0 - +

Table 3.2: Comparing VAF and CRS Test Strategies

The assessment of the early validation criterion is better than for CRS, since the test
applications created in domain testing can also already be executed in domain testing.
The learning effort is high in both cases, since scientists developing the framework are
not familiar with SPLE methods, like creating a variability model. On the other hand,
this part of the test strategy needs to be created only once at the beginning and does not
need to be changed very often afterwards, since the mathematical requirements do not
change a lot. As for CRS, the overhead for VAF is low, since the created test artifacts
can be reused in application testing.

3.4 Chapter Summary

In this chapter, we explain how SPLE supports the developers of a framework. We
introduce a SPL test strategy for scientific frameworks.

Yu and Smith [81] use SPLE in scientific software to describe the variability of one
mathematical model and its’ solution. In other fields of research (e.g. Yoshimura et al.
[80]), SPLE is also adopted for the reengineering, i.e. for merging several standalone
applications in the same field of application to a SPL by analyzing the source code or
architecture. Differing from these approaches, we use SPLE for reengineering an existing
framework for several mathematical models and methods. Since we want to test the
framework against its requirements, we do not use the source code as a resource for the
variability.

We consider the framework as the product line platform. The applications developed by
the users of the framework are the product line applications. Therefore, the developers of
a scientific framework only deal with domain engineering. They have only little impact
on application engineering which is performed by the users of the framework. Domain

1Legend: ’+’ = positive, ’-’ = negative, ’0’ = neutral

42

3.4. CHAPTER SUMMARY

testing has a high importance for the developers, since they need to test the functionality
of the scientific framework without knowing exactly what kind of applications the users
are going to develop.

A SPL test strategy defines how the testing responsibility is partitioned between domain
testing and application testing. This chapter introduces SPL test strategies that can be
found in the literature, but none of them fulfills the criteria for a SPL test strategy for a
scientific framework. The test strategy needs to consider the special case of a framework
where the developers only deal with domain testing.

In our SPL test strategy for frameworks, VAF, we create several variability models
based on the mathematical requirements for the framework, i.e. the mathematical
problems the framework should solve. The goal is to reach possible high coverage for the
available numerical algorithm in the framework. For each variability model we develop
an associated system test application that solves the mathematical problem represented
with the variability model. Summarized, this is the VAF test strategy: in domain testing,
test the commonality using unit and integration testing and the variability by creating
variability models and system test applications as described above. The unit, integration,
and system tests including the variability models can be reused by the framework’s users
in application testing.

43

Chapter 4
Creating Reengineering Variability
Models and System Test Applications for
a Scientific Framework

In this chapter, we concretize steps two and three in the VAF test strategy (see Section
3.3.2): creating reengineering variability models for a framework, developing system test
applications for these variability models and providing reusable test artifacts for the
application engineering. Reengineering means the adjustment of a software system to
improve the software quality. Thereby the software functionality remains mostly the
same [3]. In our research, we create variability models for existing software and therefore
we call them reengineering variability models.

In the first step, reengineering product management, we create roadmaps that considers
all possible applications of the framework (Section 4.1.1). In the second step, domain
requirements engineering, we specify the mathematical problems and create variability
models for them (Section 4.1.2). The system test applications can then be implemented
with the help of the results from reengineering product management and domain re-
quirements engineering (Section 4.2). In Section 4.3 we explain how framework’s users
can reuse the created artifacts in application engineering. Section 4.4 summarizes the
introduced process.

44

4.1. CREATING REENGINEERING VARIABILITY MODELS

4.1 Creating Reengineering Variability Models

Variability models (see Section 2.4.2) are created in the first two sub-processes in domain
engineering: product management and domain requirements engineering (see Section
2.4.1). Traditionally, a variability model is described in more detail in every further
sub-process. The portion of internal variability grows, when design and realization
variability are included (for definition, see Section 2.4.2.1). Since we consider an existing
framework, we are not particularly interested in domain design or domain realization (see
Section 2.4.1). As described in the following sections, we first complete the sub-processes
product management and domain requirements engineering. Then we use the results as
an input for the domain testing sub-process (see Section 2.4.1).

4.1.1 Reengineering Product Management

In the test strategy VAF (see Section 3.3.2) we create several variability models based on
the mathematical requirements of the framework meaning the mathematical problems,
which the framework should solve. We follow the instructions for creating variability
models as described by Pohl et al. [60]. Like explained in Section 2.4.1, the first sub-
process in domain engineering is product management, where scope and goals of the
product line are described in a product roadmap for the product line.

A product roadmap determines the major common and variable features of the product
line applications [60]. In our case, we can ignore the marketing and scheduling aspects of
product management, since the framework already exists. Depending on the range of the
mathematical requirements for the framework in question, we define one or few separate
roadmaps, as described in detail in the following.

A framework enables the implementation of various applications of the product line, but
does not include the implementation of these applications itself. In product management,
we consider all possible applications for the framework. We are not describing the
framework itself but its applications.

Input for the definition of the roadmaps can mostly be found in framework’s documenta-
tion and in example applications. Further input can be collected through interviewing
the developers of the framework. At this point, it is not advisable to analyze the source
code, since we want the roadmap to be based on framework’s requirements, not the
implementation. We have to be careful not to get lost in details. Since the whole

45

CHAPTER 4. CREATING REENGINEERING VARIABILITY MODELS AND
SYSTEM TEST APPLICATIONS FOR A SCIENTIFIC FRAMEWORK

framework already exists, it could easily happen that we start writing down detailed
features of the software that do not belong to product management. This sub-process
focuses on the stakeholders’ view of the application. Thus, we are only interested in the
goals of the application, not the implementation details.

We create the roadmap in three steps:

1. Define the goal(s) for the framework.

2. Define the general mathematical model for each goal described in Step 1.

3. Describe the general approach for solving the mathematical problem defined in
Step 2.

4.1.1.1 Step 1: Define the Goal(s) for the Framework

In the first step we define one or more high level goals for the framework. If the
mathematical requirements are so diverse that they cannot reasonably be formulated
using one goal, several goals are defined. Each goal should describe what kinds of
mathematical problems are solved with the framework and what kinds of approaches
are used to solve these mathematical problems. The following questions can help in
formulating goals:

• What is within the scope of the framework and what is outside?

– What kind of mathematical problems can be solved (cannot be solved) with
the framework?

– What kind of mathematical methods are used (are not used) to solve the
problems?

– Are there limitations with respect to the domain (field of application)?

Example: Goal for the DUNE framework The examples in this chapter deal with
the scientific framework DUNE introduced in Chapter 2.6. More precisely the example
handle the DUNE module dune-pdelab, which is a descretization module.

The goal for the DUNE framework can be formulated as: "DUNE is a framework for
solving PDEs with grid-based methods." This includes the definition of the group of

46

4.1. CREATING REENGINEERING VARIABILITY MODELS

mathematical problems (PDEs) and used mathematical methods (grid-based). There is
no limitation in domain, since DUNE can be used in any field of application.

4.1.1.2 Step 2: Define the General Mathematical Model

In the next step we define a general mathematical model for each goal described in Step
1. We focus on the "mathematical problem" included in the goal definition. The following
questions can help in defining the mathematical model:

• What is needed to define and restrict the mathematical problem in detail?

• What decisions does a user of the framework need to make when choosing the
mathematical model?

Example: General mathematical model for the DUNE framework

The goal in DUNE framework is to solve PDEs. The following list shows what needs
to be done to characterize the different details of the mathematical model for solving a
PDE. The terminology used in the example is explained in Section 2.6.2.

• Create systems of PDEs

• Determine type of PDEs (elliptic, parabolic, or hyperbolic)

• For each equation: note if it is linear or non-linear

• Note if the problem is stationary or instationary

– If instationary: define initial values

• Define boundary conditions, material parameters, etc.

4.1.1.3 Step 3: Describe the General Approach

There are probably several ways to solve the mathematical model(s) defined in Step 2
using the framework (with respect to possible limitations defined for the mathematical
methods in Step 1). In the last step we consider, what can be said about general decisions
that need to me made to solve the mathematical model using the framework without
knowing the exact mathematical model.

47

CHAPTER 4. CREATING REENGINEERING VARIABILITY MODELS AND
SYSTEM TEST APPLICATIONS FOR A SCIENTIFIC FRAMEWORK

Example: Decisions for the numerical model for solving a PDE with the
DUNE framework

These are general decisions that need to be made when solving a (system of) PDE(s)
with the DUNE framework:

• Decide whether the systems of PDEs are split or solved monolytically

• If instationary: choose appropriate time stepping scheme

• Set up a spacial discretization of the PDEs

– Define the used grid (dimension, reference elements etc.)

– Select a discretization method (FVM, FEM or FDM)

– If adaptive: choose adaption strategy and error estimator

• For non-linear equations: choose a non-linear solver

• Choose direct or iterative linear solver

– If iterative: choose preconditioner

4.1.1.4 Result: the Product Roadmap

The outcomes from these three steps define the product roadmaps for the frameworks.
Each roadmap gives guidance when defining specific mathematical problems and develop-
ing the corresponding variability models in domain requirements engineering (see Section
4.1.2). If new features are introduced during the life cycle of the framework, it may be
necessary to adjust the product roadmaps.

The major common and the variable features of the framework that are by definition
described by the product roadmap can be seen in the outcome of Step 3 (see Subsection
4.1.1.3). The outcome consists of decisions the user of the framework needs to meet to
solve the mathematical model. Some characteristics always need to be defined (common
features) and others are optional or can have different values (variable features).

Example: Common and Variable Features in DUNE Roadmap

Some major variable and common features of the DUNE framework can be seen in the

48

4.1. CREATING REENGINEERING VARIABILITY MODELS

DUNE example is Step 3.

As an example for common features, every application needs a grid, a discretization
method, and a linear solver.

The roadmap also shows which characteristics are variable. For example, the user has to
decide whether the PDEs should be split or not and what kind of grid should be used.
Many decisions depend on the characteristics of the mathematical problem (i.e. if a time
stepping scheme is needed) or previous decisions (i.e. whether a preconditioner is needed
or not).

4.1.2 Domain Requirements Engineering

The next sub-process in domain engineering is domain requirements engineering. Accord-
ing to Bühne and Pohl it is "a process of defining the requirements for all foreseeable
applications to be developed in the SPL" [18]. Based on the roadmaps provided by
product management, detailed common and variable requirements are formulated in
domain requirement engineering. The variable requirements are described in form of
a variability model. We use the process for defining commonality and variability (see
Section 2.4.1) for the system test applications for the framework.

First, in commonality analysis, we establish a list of common requirements for all system
test applications for one roadmap.

Second, in variability analysis, the goal is to identify variabe requirements and to define
the set of features. We create a variability model in three steps:

1. Define a concrete mathematical model.

2. Identify features and their dependencies.

3. Identify constraints between the features.

These three steps are repeated for each planned system test application.

49

CHAPTER 4. CREATING REENGINEERING VARIABILITY MODELS AND
SYSTEM TEST APPLICATIONS FOR A SCIENTIFIC FRAMEWORK

4.1.2.1 Commonality Analysis

If possible, it is advisable to begin the commonality analysis with the creation of a list
of all mathematical models that should be solved by the system test applications. This
makes it easier to consider which requirements these system test application have in
common.

A checklist-based analysis is one possibility of finding common requirements. Each
item on the checklist represents a category of requirements that should be considered
as candidates for common requirements [18]. A meaningful checklist for the common
requirements depends on the particular framework in question and should be determined
by the development team. Possible items for the checklist are:

• Basic requirements that every application must fulfill

• High priority requirements for the framework in question

• Strategic requirements are foreseeable basic needs that will appear in the frame-
work’s lifetime

• Requirements that are prescribed by mathematical laws and standards

• Requirements that are necessary for the technical support, like error handling,
maintenance, communication, graphical output, etc.

Example: Common requirements for DUNE system test applications

DUNE system test applications that solve the kind of mathematical models described in
the example in Subsection 4.1.1.2 have following common requirements:

• Support for parallelism (for parallel runs of the system test application).

• Error handling

• Output for algorithm verification (see Section 5.3.4)

• Graphical output for scientific validation (see Section 5.3.5).

50

4.1. CREATING REENGINEERING VARIABILITY MODELS

4.1.2.2 Variability Analysis, Step 1: Define a Concrete Mathematical Model

In this step we concretize the general mathematical model defined in a product roadmap.
For a specific system test application the developers choose a mathematical problem with
all its characteristics as described in 4.1.1.2.

In an ideal case, the mathematical model for a system test application is well defined
and not very simple or very complex. This makes it easier to create the variability model
in the next step and leads to a reasonable system test application.

Example: Concrete mathematical model for "diffusion" system test applica-
tion We define the conrete mathematical model using the general mathematical model
defined in 4.1.1.2.

As a concrete test problem we consider a stationary test problem named "diffusion" and
to simulate it, use the Poisson equation, an elliptic PDE. The mathematical model reads:
Given a domain Ω ⊂ Rd. Find u ∈ H1 such that

∆u = f in Ω (4.1)

u = g on ∂Ω (4.2)

where g denotes the Dirichlet boundary conditions. For an arbitrary solution of u we can
choose f and g such that Eq. 4.1 is fulfilled. For our test we have chosen u = e−|x|

2 to be
a Gauss bell. This yields g = e−|x|

2 and f = (2 · dim− 4 · |x|) · e−|x|2 . Given a particular
numerical model, the numerical results can be compared to the analytic solution of u.

The equations in this test problem are all linear.

4.1.2.3 Variability Analysis, Step 2: Identify Features and Their Dependencies

Solving the mathematical model formulated in Step 1 requires the developers to choose
from a range of different numerical methods and parameters. For the variability model
we elaborate these options and formalize the variability.

The first step in the creation of the variability model is the identification of the variability.
This starts with the analysis of the roadmap, which defines the major variable features

51

CHAPTER 4. CREATING REENGINEERING VARIABILITY MODELS AND
SYSTEM TEST APPLICATIONS FOR A SCIENTIFIC FRAMEWORK

(see Section 4.1.1.3). This definition is concretized for a concrete mathematical model
formulated in Step 1. Since the variability defined in the roadmap is only high-level, solving
a concrete mathematical model probably requires further variability, too. Framework’s
documentation and the mathematical theory are useful sources for variability definition.
In general, each difference in structure, functionality or behavior between different
numeral methods is a candidate for variability [18].

Drawing the variability model is explained in Section 2.4.2. We use the notation by
Thüm et al. [76] as integrated in FeatureIDE, the tool we use for the implementation of
the system test applications. More about variability modeling with FeatureIDE can be
found in Section C.4.

Example: Variability model for "diffusion" system test application

For the definition of a variability model for the "diffusion" system test application we
go through the description of the general approach for a DUNE system test application
defined in Section 4.1.1.3. For each item in the description we need to decide how we
want to implement the specific item. If we want to enable more than one possibilities for
one item this lead to a new feature.

• Decide whether the systems of PDEs are split or solved monolytically

→ the PDE for the "diffusion" system test application is solved monolytically

• If instationary: choose appropriate time stepping scheme

→ does not apply since "diffusion" is a stationary problem (see 4.1.2.2)

• Set up a spatial discretization of the PDEs

– Define the used grid (dimension, reference elements etc.)

→ "diffusion" system test application enables dimension 2D and 3D (feature
"dim" with childfeatures "dim_2" and "dim_3") and refenrence elements
"cube" and "simplex" (feature "mesh"). The maximum grid width (used for
global refinement of the grid) can be set to 2-8 (feature "maxlevel").

– Select a discretization method (FVM, FEM or FDM)

→ we enable two different FEM methods (feature "method") for solving the
"diffusion" problem: Lagrangian Finite-Elemente Method ("FEM", [5]) and

52

4.1. CREATING REENGINEERING VARIABILITY MODELS

Symmetrical Interior Penalty Galerkin method ("SIPG", [27]). As a maximal
polynomial order of the trial and test base the values 1-4 can be chosen (feature
"degree").

– If adaptive: choose adaption strategy and error estimator

→ does not apply since used grids are not adaptive

• For non-linear equations: choose a non-linear solver

→ does not apply since we only have linear equations

• Choose direct or iterative linear solver

→ for solving the "diffusion" problem we use an iterative linear solver, more precisely
a sequential Conjugate Gradient (CG) solver

– If iterative: choose preconditioner

→ the "diffusion" system test application uses an ILU-preconditioner mit zero
fill-in (feature "ILU0")

Please note: mathematically there are even more possibilities for the different features.
The "diffusion" system test application could enable further dimensions (1D - 4D), dis-
cretization methods, solvers and preconditioners. Furthermore, the maximal polynomial
order of the trial and test base (feature "maxlevel") and grid width (feature "degree")
could mathematically enable any integer value. Anyhow, for a concrete implementation
we can, e.g. for performance reasons, and also need, e.g. because only a finite number of
features is technically possible, to make some restrictions.

The feature definition above leads to a variability model as shown in Figure 4.1. The
variability model has a root feature "diffusion". All other features depend on this root
feature.

4.1.2.4 Variability Analysis, Step 3: Identify Constraints Between the Features

Constraints between the features determine the permissible combinations of features for
a system test application (see Section 2.4.2.2). The developers define the constraints
based on their knowledge in the field of research and the mathematical theory underlying
the applications.

53

CHAPTER 4. CREATING REENGINEERING VARIABILITY MODELS AND
SYSTEM TEST APPLICATIONS FOR A SCIENTIFIC FRAMEWORK

Figure 4.1: Variability model for the "diffusion" system test application.

Example: Constraints for "diffusion" system test application

Mathematically, there are no constraints between the features defined above. Never-
theless, for the system test application "diffusion" some constraints were defined for a
better performance. The constraints for variability model of the "diffusion" system test
application are illustrated in Figure 4.2.

Figure 4.2: Contraints definition for the "diffusion" system test application.

4.1.3 Deriving Test Cases for a System Test Application from the
Variability Model

Our research contributes a new model-based method for test case derivation (see Section
2.5.2). The used model for the presentation of the requirements is the variability model.
Different test cases for a system test application can be formed by selecting a value for
each alternative feature in the variability model. Ideally, the system tests cover the whole
variability of the variability model meaning that each possible combination of features is
tested. This would mean a 100% test coverage. It may be difficult to achieve depending
on the amount of features and dependencies between them in the variability model.

If all of the system test cases can run at once over night on the available computer

54

4.2. DEVELOPING SYSTEM TEST APPLICATIONS

resources, they all can build up the test suite for the system testing. Mostly, this is not
possible and therefore we need a way to reduce the amount of test cases without losing
the defect detection power. This can be accomplished with test suite selection methods
introduced in Section 2.5.3.

In FeatureIDE, the test cases are realized using configuration files. Section C.7 explaines
the use of configuration files in detail.

4.2 Developing System Test Applications

At last, the system test applications are implemented. Used technology (programming
language etc.) depends on the framework in question. While developing a system test
application for solving a concrete mathematical model, the developer needs to take into
account

• the common requirements defined in commonality analysis (see Section 4.1.2.1),

• the concrete mathematical model (see Section 4.1.2.2),

• the implementation decisions made when creating the variability model in Step 2,
that did not lead to variable features (see Section 4.1.2.3),

• and the variability model for the mathematical model and its constraints (see
Section 4.1.2.3).

FeatureIDE is a tool that supports SPLE in different programming languages. We
recommend using this tool for the development of system test applications. FeatureIDE
is introduced in detail in Section 7.1.1.

Example: "Diffusion" system test application

Altogether, the requirements for the "diffusion" system test application are:

• common requirements (see 4.1.2.1): support for parallelism, error handling, and
output for algorithm verification and scientific validation

• concrete mathematical model (see 4.1.2.2)

• implementation decisions (see 4.1.2.3): PDEs solved monolytically, use of an

55

CHAPTER 4. CREATING REENGINEERING VARIABILITY MODELS AND
SYSTEM TEST APPLICATIONS FOR A SCIENTIFIC FRAMEWORK

iterative linear solver with "ILU0"-preconditioner

• variable features: mesh, dim, method, maxlevel and degree (see 4.1.2.3)

The "diffusion" system test application is a C++-program consisting of about 650 LOC.
The feature-oriented source code (about 100 LOC, included in Appendix B) enables an
easy use of the variability model in the program code. Feature-oriented programming is
introduced in detail in Section 7.1.2.

Please note that the possibilities of feature oriented programming have not been exhausted
in this example system test application. For example the different methods for solving the
PDE (methods "runDG" and "runFEM") could also be included in the feature oriented
source code.

The structure of the source code for the main program is included below. The complete
source code can be found in Appendix B. The structure reveals how the requirements
are combined in the source code.

// f i l e : d i f f u s i o n . cc
//
//−−−
// Inc lude s f o r the r equ i r ed dune modules
//−−−
. . .
#inc lude<dune/common/ p a r a l l e l /mpihelper . hh>
. . .

//−−−
// Inc lude f o r the f e a tu r e o r i en t ed source code
//−−−
#inc lude " s r c /Features . h "

//−−−
// Mathematical methods support ing the s o l v i n g o f the PDEs
// c l a s s Parameter : d e f i n i t i o n s f o r t enso r d i f f u s i o n c o e f f i c i e n t ,
// v e l o c i t y f i e l d , s ink term , source term , and
// boundary cond i t i on s
//
// c l a s s Di f ferenceSquaredAdapter : c a l c u l a t i o n o f L2−e r r o r
//−−−

template<typename GV, typename RF>

56

4.2. DEVELOPING SYSTEM TEST APPLICATIONS

c l a s s Parameter
{

. . .
} ;
. . .

//−−−
// Methods runDG and runFEM fo r s o l v i n g the PDE
//−−−

template<c l a s s GV, c l a s s FEM, c l a s s PROBLEM, in t degree ,
i n t b l o ck s i z e >

void runDG (const GV& gv , const FEM& fem , PROBLEM& problem ,
std : : s t r i n g basename , i n t l e v e l , s td : : s t r i n g method ,
std : : s t r i n g weights , double alpha)

{
. . .

//−−−
// Use l i n e a r s o l v e r with " ILU0"−pr e cond i t i on e r
//−−−
typede f Dune : : PDELab : : ISTLBackend_SEQ_CG_ILU0 LS ;
LS l s (10000 , 1) ;
typede f Dune : : PDELab : : Stat ionaryLinearProblemSolver<GO,LS ,U> SLP ;

. . .
//−−−
// Output f o r the a lgor i thm v e r i f i c a t i o n (common requirement)
//−−−
TEST_OUTPUT("dG−Level=" << l e v e l << " IT " , l s_ r e s u l t . i t e r a t i o n s)
TEST_OUTPUT("dG−Level=" << l e v e l << " ra t e o f convergence " ,

l s_ r e s u l t . conv_rate)
. . .
//−−
// Output f o r the s c i e n t i f i c v a l i d a t i o n (common requirement)
//−−
i f (g raph i c s)

{
. . .
v tkwr i t e r . wr i t e (fu l lname . s t r () , Dune : :VTK: : a s c i i) ;

}
}

57

CHAPTER 4. CREATING REENGINEERING VARIABILITY MODELS AND
SYSTEM TEST APPLICATIONS FOR A SCIENTIFIC FRAMEWORK

. . .

//−−−
// Main program
//−−−

i n t main (i n t argc , char ∗∗ argv)
{

//−−−
// Support f o r p a r a l l e l i sm (common requirement)
//−−−
Dune : : MPIHelper& he lpe r = Dune : : MPIHelper : : i n s t anc e (argc , argv) ;
. . .

t ry
{
//−−−
// Use o f the f e a tu r e o r i en t ed source code
//−−−

Features f e a t u r e s ;
i f (f e a t u r e s . mesh()=="CUBE")

{
const i n t dim = Features : :F_DIM;
. . .

}
. . .
}

//−−−
// Error handl ing (common requirement)
//−−−

catch (Dune : : Exception &e)
{

std : : c e r r << "Dune repor ted e r r o r : " << e << std : : endl ;
r e turn 1 ;

}
. . .

}

The implementation of the "diffusion" test application is based on an existing test
application that was previously used for manual test runs. Most of the variability was
already implemented in the test application as input parameters. It was possible to select

58

4.3. SUPPORTING APPLICATION ENGINEERING WITH REUSABLE TEST
ARTIFACTS

the used grid element type, grid dimension and discretization method. As we compared
the implementation with the variability model, we noticed that still only four of the
possible 24 combinations of features were supported by the test application. Thus the
variability modeling helped us to detect missing functionality in our test application and
to enhance the test environment.

The output for algorithm verification for the test application "diffusion" includes the
count of iterations and the rate of convergence for the linear solver used. In addition
the global size for the grid function space and the L2-error for the numerical solution
are calculated and given out (for further information about algorithm verification see
Section 2.3). For scientific validation the simulation output is redirected into a separate
output file.

4.3 Supporting Application Engineering with Reusable Test
Artifacts

In application engineering (see Section 2.4.1), framework’s users develop and test their own
applications (see Section 2.4.1). Artifacts created in reengineering product management
and domain requirements engineering as explained in this chapter can be reused by the
framework’s users in application engineering.

For the development of their own applications the users can reuse the general mathe-
matical models, the descriptions of general approach and the common requirements for
applications created by the framework’s developers in domain engineering. Hereby the
users can follow the instruction for defining a concrete mathematical model in Section
4.1.2.2 and concretizing the general approach as explained in Section 4.1.2.3. The only
difference is that in concretizing the general approach the users do not define variable
features but decide on specific features for each item in the description of the general
approach. This way the result is not a variability model but a list of concrete requirements
for an application.

Since most of the users are scientists in a specific field of research who are not professional
software developers, they often start a new application as a copy of a similar application
and simply adjust it to their own needs. It can easily happen that the users do not
understand the source code in full detail. Reusing artifacts from domain engineering can
help the users to understand the source code better and to be aware of the development
decisions they have to make.

59

CHAPTER 4. CREATING REENGINEERING VARIABILITY MODELS AND
SYSTEM TEST APPLICATIONS FOR A SCIENTIFIC FRAMEWORK

The framework’s users can naturally also develop their own system test applications for
testing their own implementations for mathematical methods. The users can follow the
instructions in this chapter for developing system test applications. They can also reuse
(adjust or extend) existing system test applications created by framework’s developers
in domain testing. This is possible, if the application domain and solved mathematical
problems are suitable.

4.4 Chapter Summary

This chapter introduces a process for creating reengineering variability models and system
test applications for a scientific framework. This concretizes the steps two and three in
the VAF test strategy. Each step is demonstrated with a concrete example.

In reengineering product management we create product roadmaps that describe the scope
and the goals of the scientific framework and determine the major common and variable
features of all possible applications for the framework. A roadmap is created in three
steps. First, we define one or more high level goals for the framework, depending on how
diverse the mathematical requirements for the framework are. Each goal should describe
what kinds of mathematical problems are solved with the framework and what kinds of
approaches are used for it. Second, we define a general mathematical model for each goal.
Hereby we focus on the mathematical problem included in the goal definition and restrict
it in detail. Third, we describe a general approach for solving the general mathematical
problem(s). In this step we consider, what kind of general decisions need to be made by
a user of the framework when solving the mathematical problem without knowing the
exact mathematical model.

Domain requirements engineering consists of two parts. First, in commonality analysis,
we establish a list of common requirements for all system test applications for a roadmap.
A checklist-based analysis can be helpful in finding common requirements. Second, in
variability analysis we specify the mathematical problems and create variability models
for them. This is done in three steps. In the first step we choose a concrete mathematical
model for a system test application and formulate it with all its characteristics as described
in the definition of the general mathematical model. In the second step we identify
features and their dependencies. We analyze the roadmap, which defines the major
variable features and concretize this definition for the concrete mathematical model. In
general, each difference in structure, functionality or behavior between different numerical
methods is a candidate for variability. In the third step we identify constraints between

60

4.4. CHAPTER SUMMARY

the features that determine the permissible combinations of features for the system test
application. Different test cases for a system test application can be formed by selecting
a value for each alternative feature in the created variability model.

At last, the system test applications are implemented. A developer needs to take into
account the common requirements, the concrete mathematical model, and the variability
model resulting from the previous process steps. The tool FeatureIDE supports the
system test application development in different programming languages.

Framework’s users can reuse the created artifacts in application engineering. For the
development of their own applications the users can reuse the general mathematical
models, the descriptions of the general approch and common requirements. Furthermore,
the users can also develop their own system test applications following the instructions
in this chapter or adjust existing system test applications.

61

Chapter 5
VAF-Pro, a QA Process for a Scientific
Framework

This chapter presents the design of VAF-Pro, an overall QA process (see Section 2.1.3)
for scientific frameworks. Since we apply SPLE in our research to handle the framework’s
variability, as explained in Chapter 3, VAF-Pro also reflects SPLE principles. It imple-
ments VAF, the SPL test strategy for frameworks introduced in Section 3.3.2. However,
the use of SPLE is not the only aspect we need to consider for an overall QA process.
The fact that we are dealing with scientific software has a major influence on it.

As discussed in Section 2.3.3 we could not find any other QA process for scientific
frameworks in the literature. The design is based on RiPLE-TE, a QA process for SPL
presented in Section 2.5.1. VAF-Pro was designed to fulfill the requirements of the
scientific framework DUNE (see Section 2.6.1), but is also suitable for other scientific
frameworks. If adopted for a framework in another domain, the process should be
adjusted to suit the characteristics of that domain.

The QA is done across three angles of view: the different testing levels (unit, integration
and system testing), different goals in V&V of scientific software (code verification,
algorithm verification and scientific validation), and regression testing as the system
evolves over time.

In the following sections, we first in Section 5.1 discuss characteristics in scientific software
development that need to be considered, when designing a QA process for a scientific
framework. This includes the most important quality goals for scientific software in

62

5.1. CHARACTERISTICS OF SCIENTIFIC SOFTWARE DEVELOPMENT

general and for the DUNE framework in particular: correctness, performance, portability,
and maintainability. After that, we show how the RiPLE-TE QA process needs to
be adapted to take into account the characteristics for scientific software development.
Section 5.2 introduces the test roles we use in the QA process. The detailed steps in
the QA process are explained in Section 5.3. Sections 5.4 and 5.5 introduce the use of
automated regression testing and reporting. Section 5.6 includes some additional remarks
to the QA process and Section 5.7 summarizes the chapter.

5.1 Characteristics of Scientific Software Development

In the literature on scientific software development, several special characteristics com-
pared to traditional software development are mentioned. In a manual literature review,
we collected such special characteristics. Afterwards, we filtered out those characteristics,
that need to be taken into account when designing a QA process for scientific software.
The papers we reviewed were collected between April 2010 and October 2012 using the
IEEE and ACM digital libraries. Search strings with most hits were "scientific software
engineering", "scientific software development" and "scientific computing software". Fur-
thermore, we collected papers from the previous Workshops on Software Engineering for
Computational Science and Engineering and Software Engineering for High Performance
Systems Applications. Altogether, we found 201 papers. We looked through the papers
to find out if they mentioned any special characteristics for scientific software develop-
ment relevant for the design of a QA process. We found eight papers describing such
characteristics.

The characteristics are presented in Table 5.1. These are used as rationale in the following
description of VAF-Pro. The table includes for each characteristic a label (C1-C12), a
short description, the references where the characteristic was found and a list of the QA
process steps, where the characteristic is considered.

63

CHAPTER 5. VAF-PRO, A QA PROCESS FOR A SCIENTIFIC FRAMEWORK

Characteristic Reference Considered in
C1 Different possible sources for a software

problem. Need support for Code Verifica-
tion, Algorithm Verification and Scientific
Validation.

[28],[19],[38] Rev, U&I, Sys,
SV1

C2 Lack of test oracles. [47] U&I, Sys, SV
C3 Most software requirements, except for high-

level ones, are not known at the beginning
of a software project. Requirements stem
from science.

[20] Pla

C4 The cognitive complexity, the difficulty in
understanding a concept, thought, or sys-
tem, is high.

[45] TR, Pla, Rev, SV

C5 Need for shared, centralized computing re-
sources; high performance computing, par-
allelism.

[7] U&I, Sys

C6 Calculations include rounding errors and
machine accuracy.

[38] Sys, SV

C7 Most developers are domain scientists or
engineers, not software engineers.

[19],[46],[7],[20] TR, Rev

C8 There is a high turnover in the development
team.

[19] Pla, Rev, Rep

C9 The most highly ranked project goals: 1.
Correctness

[20] Sys, Val

C10 The most highly ranked project goals: 2.
Performance

[20] Sys

C11 The most highly ranked project goals: 3.
Portability

[20] Sys

C12 The most highly ranked project goals: 4.
Maintainability

[20] Rev, Rep

Table 5.1: Characteristics of Scientific Software

1Legend: TR = Test Roles, Pla = Planning, Rev = Review, U&I = Unit and Integration Testing, Sys
= System Testing, SV = Scientific Validation, Rep = Reporting

64

5.1. CHARACTERISTICS OF SCIENTIFIC SOFTWARE DEVELOPMENT

In the following, the characteristics are discussed in more detail.

C1: There are different possible sources of a problem in scientific software: the underlying
science, the translation of the mathematical model of the field of application to an
algorithm and the translation of this algorithm into program code. Each of these should
be handled separately: first check the source code for bugs with code verification methods
and then verify the mathematical algorithm with numerical algorithm verification methods.
Only after these two steps, knowing that errors in code and mathematical algorithm
have already been excluded, the scientists are able to perform the scientific validation
(evaluate whether the output of the software is a reasonable approximation of the real
world).

C2: Scientific software is used for gaining research results or solving problems that cannot
be solved by other means. The outcome is therefore often not known in advance. This
is a problem for testing, since most testing techniques in software engineering assume
accurate test oracles.

C3: At the beginning of a scientific software project, the known requirements are often
the laws of nature, or, like in our case, stem from mathematics. In most cases, further
requirements for the software have not been defined in advance but emerge during software
development.

C4: The context of scientific software is usually very complex. Only scientists familiar
with the scientific domain in question have the ability to entirely understand the software.
This is a problem for testing, since the tester should understand what the software is
supposed to do.

C5: Solving complex scientific problems with scientific software often requires special
resources like high performance computing. At the same time, a special programming
paradigm like the use of parallel computing is applied. This must be taken into account
when testing the software.

C6: Scientific calculations use floating-point values, which cannot be represented exactly
by a computer. This means that rounding errors and machine accuracy (the accuracy
to which floating-point numbers can be presented on a particular computer) need to
be taking into account in the calculations. Testing scientific software must support
floating-point arithmetic.

C7: The fact that the developers of scientific software mostly are domain scientists and
not software engineers has to be considered in the design of a QA process. An important

65

CHAPTER 5. VAF-PRO, A QA PROCESS FOR A SCIENTIFIC FRAMEWORK

goal is to keep the process as straightforward and understandable as possible. The process
should not include too many technical software engineering terms or structures. There is
also a difference in the objective: a software engineer’s goal is to produce high quality
software, whereas the goal of a scientist is to produce high quality science. The scientists
developing the software must be convinced that each step of the process is important
and has a real value for the scientific results.

C8: Many developers of scientific software are doctorate students or postdocs who only
stay in the team for a few years. Because of this, the overhead of the process should be
as low as possible and the method should be easy to learn and quick to adopt.

C9 - C12. In scientific software development, the priority of non-functional requirements
is high compared to functional requirements. In a series of case studies, Carver et al. [20]
found out, that the most highly ranked scientific software project goals are correctness,
performance, portability and maintainability.

We use the characteristics described in this section as rationale for adjustments of the
QA process RiPLE-TE introduced in Section 2.5.1.

In the following sections, we discuss how we need to adjust this QA process in order
to make it suitable for a framework. Furthermore, we need to take into account the
characteristics of scientific software development collected in Table 5.1. The rationale
based on these characteristics is marked in the text in parentheses.

5.2 Test Roles

In the RiPLE-TE QA process, the activities and tasks are assigned to many different
test roles: Test Manager, Test Architect, Test Designer, and Tester. In scientific software
development, in the most cases, every team member fulfills the role developer and the
different test roles all in one person.

The most important reason for this is that the scientist developing a piece of code often
is the only person who has the expertise to entirely understand the code (C4). At least in
academic projects, even the colleagues in the same group typically are working on different
topics. The scientist developing the code must be responsible for creating suitable tests
for his or her own code. Another reason not to use many different test roles is that the
developers of scientific software normally are not software engineering professionals (C7).
The QA process should be as simple as possible.

66

5.3. QA PROCESS STEPS

In VAF-Pro, we are using the roles developer and user, and as the only test specific
role, test administrator. The test administrator is responsible for keeping the (nightly
executed) test environment running. This role should ideally be fulfilled by technical
staff. If this is not possible, the role can also be carried out by a scientist. For some
activities in VAF-Pro, it may be more suitable to perform them in a team of developers
than by one developer alone. This will be mentioned in the detailed description of the
process.

5.3 QA Process Steps

This section discusses the steps in the VAF-Pro QA process. The process is illustrated in
Fig. 5.1. The scientific software angle of view can be seen in the separation of the process
in code verification, algorithm verification and scientific validation (blue rectangles in
Fig. 5.1). This separation in the QA of scientific software is explained in Section 2.3.
The different testing levels unit, integration and system testing (see Section 2.3.1) are
presented in the process as well as the regression testing (see Section 2.3.2) angle of view.

Table 5.2 provives an overview about the adjustments made in VAF-Pro QA process
compared to RiPLE-TE.

67

CHAPTER 5. VAF-PRO, A QA PROCESS FOR A SCIENTIFIC FRAMEWORK

Figure 5.1: VAF-Pro QA Process for Scientific Frameworks

68

5.3. QA PROCESS STEPS

Adjustment Description
Only Domain
Testing

The main difference to RiPLE-TE is that VAF-Pro only
covers domain testing and not application testing, since in
the development of a framework we only deal with domain
engineering (see Section 3.2). RiPLE-TE considers both
domain testing and application testing.

System Testing al-
ready in Domain
Testing

In VAF-Pro, system testing is already conducted in domain
testing. Shifting a major part of the QA responsibility from
application testing to domain testing in the VAF test strategy,
as described in Section 3.3.2, results in introducing system
tests already in domain testing. When developing a scientific
framework, domain testing should ensures the quality of the
whole framework and system testing is needed to ensure this
(for details see Subsection 5.3.4).

Scientific Valida-
tion

Since VAF-Pro deals with scientific software, the QA step
scientific validation is included to the process (see Section
2.3).

Planning RiPLE-TE expects continuous planning with several pre-
defined output documents. Instead of creating documents,
since the goal is to keep the process practical and simple
(C7), QA planning in VAF-Pro includes the development of
unit, integration and system tests (for details see Subsection
5.3.1).

Review Review in RiPLE-TE is a technical review on SPL main as-
sets like feature model, product map and so on. A timetable
for reviews is established in project planning and the reviews
are done during group meetings [50]. In VAF-Pro, the review
step is adjusted since the scientists are mostly developing the
source code alone. The review considers SPL assets (variabil-
ity model) as well as development outcome and is conducted
by the developer simultaneously to the development (for
details see Subsection 5.3.2).

System Testing In RiPLE-TE, system testing tests a set of SPL applications
previously defined during application engineering. Each
application is tested with traditional testing methods for
single applications. In VAF-Pro, we first need to define a
suitable set of test applications and then include test methods
for scientific software, as described in Subsection 5.3.4.

Table 5.2: Adjustments Made in VAF-Pro QA Process Compared to RiPLE-TE
69

CHAPTER 5. VAF-PRO, A QA PROCESS FOR A SCIENTIFIC FRAMEWORK

5.3.1 Planning

QA planning in VAF-Pro is performed during the software development and includes the
development of unit, integration and system tests. The activities in this step are critical
for the success of the whole process.

When a developer makes changes in the source code or develops a new piece of code, she
or he has to pay attention to the following QA issues:

• Do unit tests exist for the adjusted or new source code?

– If yes, adjust the unit tests if necessary.

– If no, create new unit tests.

The developer is responsible for creating new unit test cases and/or adjusting/removing
existing unit tests whenever appropriate. It is very important that the developers take
time to create suitable unit tests for their own source code at the very time when they are
developing the source code. It is advisable to perform test driven development (TDD) [12]
meaning that the unit test cases are created first as a kind of light weight specification
for the planned changes, since specifications mostly do not exist in advance (C3). The
developer might be the only one to thoroughly understand the source code she or he
is developing (C4) and it is very difficult to ensure the quality of the code later, when
the developer may have already left the team (C8). Further discussion about unit and
integration testing can be found in Subsection 5.3.3.

If the mathematical requirements for the framework change, e.g. when a new functionality
is included into the framework, the developer needs to consider the following:

• Do system test applications exist for the adjusted or new functionality?

– If yes, adjust the system test applications (e.g. insert new tests for algorithm
verification) and the associated variability models if necessary.

– If no, develop new system test applications and the associated variability
models.

70

5.3. QA PROCESS STEPS

The developer may need to formulate one or more new variability models based on the
requirements together with the associated system test applications, as described in detail
in chapter 4. In other cases only existing variability models and system test applications
must be adjusted, e.g. by including new features.

VAF-Pro does not expect any formal plan documentation. As described above, each
developer is responsible for preparing tests for his or her own source code. When major
changes are planned for the framework and the developers distribute the responsibility
for the development changes, they also should decide who is responsible for preparing
the tests.

5.3.2 Review

The review step is conducted right after developing source code, unit and integration
tests, system test applications, or variability models. A suitable moment is right before
checking in the changes in a version control system. This is the earliest possible point for
finding failures.

Taking the time for consciously reading one’s own code before checking it in (also called
desk-checking), can reveal failures before the code is even tested. At the same time, the
developer can review the code’s readability and structure. Since the software context is
complex (C4), the developers should strive to write comprehensible source code with a
sufficient amount of comments. This would also be beneficial to new colleagues working
with the same software (C8) and it improves the maintainability of the code (C12).

In contrast to the technical review in the RiPLE-TE QA process, VAF-Pro involves a
review of the source code, not just SPL artifacts like the variability models. Certainly,
the developer should review all artifacts she or he created or changed: source code, unit
and integration tests, variability models, and system test applications. Review is one
part of the code verification needed for the V&V of scientific software (C1).

A desk-checking checklist reminds the developers on all important aspects of reviewing.
The checklist could include following points:

• Before checking in, please go through the source code and other created artifacts
one more time:

– Is the desired functionality or change implemented correctly?

71

CHAPTER 5. VAF-PRO, A QA PROCESS FOR A SCIENTIFIC FRAMEWORK

– Is the source code sufficiently documented?

– Does the source code follow the coding style?

– Were unit and integration tests created for new functionality? Were existing
unit and integration tests adjusted for the changed source code?

– If new mathematical requirements were implemented, were variability models
and system test applications created/adjusted?

In a DUNE case study, the developers discussed a suitable desk-checking checklist for
the DUNE development. The most important point for the developers was to check that
the source code is sufficiently documented and that suitable tests have been created for
the source code. More details to the case study can be found in Section 6.

If appropriate, the developer can ask a colleague to review her or his changes as well. The
development team could also name developers responsible for different software modules
who review the changed source code on a regular basis [44]. We do not demand any
structured inspection or review process, as the goal is to keep the QA process practical
and simple (C7).

5.3.3 Unit and Integration Testing

In this step, the unit and integration tests (see Section 2.1.4) prepared in the planning
step are executed. A developer can execute the unit tests manually, but they also run
automatically every night in a regression test environment (see Section 5.4).

Together with the review step, unit and integration testing build the code verification part
of V&V for scientific software (C1). The goal in unit testing is to verify the functionality
of single software units. The communication between software units working closely
together is tested with integration testing. There are numerous tools available for unit
testing, depending on the used development language. For C++, for example, one could
use CppUnit2 or googletest3.

In some contexts of scientific software, where system tests can only run on a high
performance computer (C5), the importance of unit testing gets very high, since the unit
tests do not need a long time to run and still have high test coverage [53]. In a similar

2http://freedesktop.org/wiki/Software/cppunit/
3http://code.google.com/p/googletest/

72

5.3. QA PROCESS STEPS

way, the problem with a missing test oracle for system tests (C2) can be alleviated by
comprehensive unit testing.

When the test environment reports a failure, the scientists first have to find out where the
problem is: in the implementation of the unit test or in the source code of the framework.
Depending on the situation, the developer can fix the defect right away, if she or he is
testing current development, or the developer or test administrator creates a ticket in
the ticket system, if there isn’t one already for the specific failure.

5.3.4 System Testing

Similar to unit and integration tests, in this step the system test applications (see Section
2.1.4) prepared in the planning step are executed.

For algorithm verification (C1), the system test applications output includes some
significant mathematical quantities like the grid convergence rate or the count of iterations,
depending on the used mathematical and numerical model. The expected output values
for the mathematical quantities are, if possible, determined analytically. Typically, this
is often not possible (C2) and therefore the scientists set up the expected values from a
scientifically validated run of the system test application. All expected output values
include a manually adjustable tolerance range for taking rounding errors into account
(C6) (see also Section 2.3).

A discrepance between the test applications output and the expected values always
indicates a change in the test applications’ behavior. In most cases this means that there
is a defect in the framework. The other possibility is that the framework was changed in
a way that intended a change in this specific test application. In this case, the scientists
can update the expected output values for the test case. Such changes always have to be
scientifically justified and carefully documented.

Supporting algorithm verification and testing on different platforms and with different
configurations (e.g. count of processors, compiler options) is significant for assuring the
important quality goals correctness (C9) and portability (C11). System testing is also
the suitable step for executing performance testing (C10).

Similar to unit and integration testing, a developer can execute the system tests manually
or rely on the nightly running system tests. The automated nightly execution is especially
beneficial for the system test environment, because the complex mathematical problems

73

CHAPTER 5. VAF-PRO, A QA PROCESS FOR A SCIENTIFIC FRAMEWORK

solved mostly take some time to run (C5). Similar to unit tests, a failure means that there
is either a problem in the source code, or the system test application or the expected
output must be adjusted to suit the development changes.

For DUNE, the system test applications are executed in an automated system test
environment introduced in detail in Chapter 7.

Example: Algorithm Verification in the DUNE Test Environment

In the DUNE test environment, the output for the algorithm verification consists of a
free text description of the mathematical quantity and the according value followed by a
colon. An example of a test application output is shown in the left part of Figure 5.2.

Figure 5.2: Example of an algorithm verification output and the according expected
values for one test case.

For the example above, the expected values can be found in the right part of Figure
5.2. Since numerical calculations are carried out using floating point arithmetics and
thus will include rounding errors, the test environment cannot expect an exact value for
each algorithm verification test value. The tolerance range for each expected value is
determined due to the scientist’s expert knowledge.

5.3.5 Scientific Validation

Scientific validation is the last of three steps in V&V for scientific software (C1). The
goal is to determine how accurate the computational model simulates the real situation
(C9).

The outcome of the system test applications includes graphical simulation output files
(see Section 4.2). The values in these output files are compared with the corresponding
expected scientific validation output values taking rounding errors and machine accuracy
into account (C6).

In an ideal case we can compare the simulation with an analytical solution. Since this

74

5.4. AUTOMATED REGRESSION TESTING

is mostly not possible for the kind of simulations that are created with a framework
(C2), our goal in scientific validation is to support the developers in deciding, based on
their domain knowledge (C4), whether the simulation result is what they expected or
not. The developers can form their opinion about the result through examination of the
comparison and the graphical output.

5.4 Automated Regression Testing

In contrast to RiPLE-TE, we integrate regression testing in VAF-Pro (illustrated in
Figure 5.1 with a dashed arrow). If every developer creates suitable unit, integration
and system tests for their own source code in the planning step, the regression test
environment (see Section 2.1.5) proves that the code still works in an evolving framework.
Without such tests, the source code could get broken without anyone noticing it.

The unit, integration and system tests in the DUNE run every night using the current
development version. The test environment is introduced in detail in Section 7.

5.5 Reporting

Reporting the results of the QA process is important for the developers so that they can
reconstruct which changes caused which effects in the framework (C12). The log files of
unit, integration, and system testing include, beside unexpected or incorrect results also,
among other things, the information, which source code version and which configuration
was used for the test.

A clearly reported instruction for the use of the QA process and the automated regression
test environment is crucial so that the knowledge will not get lost, when the developers
leave the team (C8).

5.6 Additional Remarks

VAF-Pro, the QA process for scientific frameworks we introduced in this section takes the
special characteristics of scientific software introduced in Section 5.1 into account. The
process is straightforward and the only software engineering methods not known by most

75

CHAPTER 5. VAF-PRO, A QA PROCESS FOR A SCIENTIFIC FRAMEWORK

of the scientists in the DUNE team in advance were the creation of variability models
and desk-checking. These were introduced to the developers during the case study (see
Section 6).

The accomplishment of the important quality goals correctness, portability, and main-
tainability is already tested by VAF-Pro. In 2013 there was a Google Summer School
project with the goal of integrating performance testing to the DUNE QA process4. The
resulting tool Dune-perftest runs performance measurements for DUNE applications (e.g.
compile and run time).

In contrast to RiPLE-Te, there is no formalized acceptance testing for DUNE. The
developers of DUNE stay in close contact with the framework’s users and get frequently
feedback from the users.

5.7 Chapter Summary

In this chapter we present the design of VAF-Pro, an overall QA process for scientific
frameworks.

In a manual literature review, we collected characteristics of scientific software develop-
ment that need to be taken into account for the design of a QA process for a scientific
framework. First of all, different possible sources for a software failure and the lack of
test oracles need to be considered. Most software requirements are not known at the
beginning of a software project. The cognitive complexity of scientific software is high.
For the calculations special utilities like high performance computing are often needed.
Furthermore, the calculations include rounding errors and machine accuracy. Most of the
developers are domain scientists and not software engineers and there is a high turnover
in the development team. These characteristics are used as rationale for the design of
the QA process.

In VAF-Pro, we have three test roles: developer, user and test administrator. The
scientists developing the source code are responsible for creating suitable tests for his or
her own code. Some activities may be better performed in a team of developers. The
test administrator is responsible for keeping the regression test environment running.

The QA process has three angles of view: the different testing levels (unit, integration,
and system testing), different goals in V&V of scientific software (code verification,

4http://www.dune-project.org/gsoc/2013/index.html

76

5.7. CHAPTER SUMMARY

algorithm verification, and scientific validation), and regression testing. Code verification
is carried out in the review and unit and integration testing steps of the QA process.
Algorithm verification is integrated in the system testing step.

The first step in the QA process, planning, is performed during the software development.
Each developer is responsible for creating new unit tests or adjusting existing unit tests
whenever appropriate. If the mathematical requirements for the framework change, the
developer may also need to formulate one or more new variability models together with
the associated system test applications.

The review step is conducted right after changing any source code, unit and integration
tests, variability models or system test applications. Taking time to go through the
changes before checking them in, also called desk-checking, can reveal failures even before
testing. At the same time, the developer can review the source code’s readability and
structure. A desk-checking checklist reminds the developers on all important aspects of
reviewing, like to check that the source code is sufficiently documented and that suitable
tests have been created.

In the unit and integration testing step, the tests prepared in the planning step are
executed. The tests can be executed manually or run automatically in a regression testing
environment.

Similarly, the prepared system tests are executed in the system testing step. The system
tests also run in the automated regression testing environment. For algorithm verification,
the outputs of system test applications include some significant mathematical quantities.
The expected values for the mathematical quantities are determined analytically. If this
is not possible, the scientists set up expected values from a validated run of the system
test application.

The outcomes of the system test applications include graphical simulation output for
the scientific validation step. The developers can examine a comparison of the graphical
output with expected values to build their opinion on whether the simulation result is
what the expected or not.

77

Part III

Evaluation and Practical Application

79

Chapter 6
Case Study DUNE

In this Chapter, we report on a case study (see Section 2.1.10) based on the method
described by Runeson et al. [68] analyzing the feasibility and acceptance by DUNE
developers (see Section 2.6.1) for those parts of the design of the VAF-Pro QA process
introduced in Chapter 5 that have not yet been familiar to the DUNE developers:
variability model creation (using the orthogonal variability model by Pohl et al. presented
in Section 2.4.2.1) and desk-checking.

The use of variability modeling for the systematic creation of system tests is a new
method in scientific software development, which makes case study results interesting
for the computational science and engineering community in general. Desk-checking on
the other hand, is a relatively well-known technique and has already been mentioned in
software engineering for CSE literature [44], but no experimental results on the feasibility
and acceptability of the method in the context of scientific software were available so far.

The main results of the case study are that variability modeling is feasible for the
development team, but we needed to find a different variability modeling language to
be able to represent all important aspects. The acceptance of variability modeling was
positive. Desk-checking was also found feasible and was clearly accepted.

In Section 6.1 we introduce the case study design. After that, Section 6.2 presents
the results of the case study. Section 6.3 includes a discussion of these results and the
threats to validity for the case study are examined in Section 6.4. This is followed by the
discussion of related work in Section 6.5. Section 6.6 provides a summary of the case
study.

80

6.1. CASE STUDY DESIGN

6.1 Case Study Design

In this section we introduce the case study design in detail. This includes the defined
research questions and used research methods.

We designed and conducted the case study according to instructions by Runeson et al. in
[68]. The objective of the case study was to analyze the feasibility and the acceptance of
variability model creation and desk-checking as part of the VAF-Pro QA process. This
objective was chosen as these aspects had not yet been familiar to the DUNE developers.
The goal was to find out, if DUNE developers are satisfied with the design of the VAF-Pro
QA process and if they think it is useful for them. The advantage of analyzing the
process before it was established completely is that we still had the possibility to adjust
the design according to the case study results without much overhead.

The conducted case study can be categorized as an embedded single-case study with two
units of analysis: variability modeling and desk-checking. The design of the case study
may be used for possible replications with other teams developing a scientific framework.
The design is based on a case study protocol as described by Runeson. The contents of
the case study protocol are introduced in the following sections.

The case study was executed with a group of six DUNE developers. They all work in
the same academic group and developed DUNE for 2.5 - 3.5 years, with one developer
having worked in the group even for 10 years. Four of the developers are mathematicians
and two of even them are computer scientists.

6.1.1 Research Questions

According to the Goal Question Metric approach (GQM) of Basili et al. [6], in order to
measure in a purposeful way, we first need to specify our goals and then define how we
intend to collect and interpret data with respect to the stated goals.

These were our goals for the case study:

• Goal 1: Assess the feasibility of variability modeling in the QA from the developer’s
viewpoint.

• Goal 2: Assess the feasibility of desk-checking in the QA from the developer’s
viewpoint.

81

CHAPTER 6. CASE STUDY DUNE

• Goal 3: Assess the acceptance of variability modeling in the QA from the developer’s
viewpoint.

• Goal 4: Assess the acceptance of desk-checking in the QA from the developer’s
viewpoint.

The research questions formulated according these goals are presented in the following
subsections.

6.1.1.1 Feasibility

For the assessment of the feasibility, we reflected on possible advantages and disadvantages
of variability modeling and desk-checking. Then we formulated research questions that
would check if these assumptions apply. Tables 6.1 and 6.2 contain our research questions
and the associated hypotheses. Each research question is followed by the data sources
that are used to collect the data.

First, we want to observe how the developers perform variability modeling (F_RQ_VM1)
(respectively desk-checking (F_RQ_DC1)). During this step in the case study, we also
observe possible discussions or comments about advantages or disadvantages of the
methods (F_RQ_VM2 and F_RQ_VM3 for variability modeling and F_RQ_DC2
and F_RQ_DC3 for desk-checking). For variability modeling, we additionally want to
observe, if the method can be used to capture the variability of mathematical problems
(F_RQ_VM4). Afterwards, the developers are asked for their opinion on the methods
using a questionnaire. The first part of the questionnaire only includes open questions
about the advantages and disadvantages of the methods to capture the developers’
opinion without influencing their thoughts with predetermined options. In the second
part of the questionnaire the developers are asked to give their opinion on possible
predetermined advantages and disadvantages of the methods using closed questions. The
entire questionnaire can be found in Appendix A.

82

6.1. CASE STUDY DESIGN

Research Question Hypothesis Data Source
F_RQ_VM1: How do devel-
opers perform variability mod-
eling?

Observation

F_RQ_VM2: What do the de-
velopers believe are the advan-
tages of variability modeling
for the DUNE development?

The advantages of variability
modeling include: a system-
atic way to model different
possibilities to solve a math-
ematical problem, a support
for system test program devel-
opment.

Observation,
open and closed
questionnaire
questions

F_RQ_VM3: What do the
developers believe are the dis-
advantages of variability mod-
eling for the DUNE develop-
ment?

Variability model creation is
a complex task and requires
deep domain knowledge.

Observation,
open and closed
questionnaire
questions

F_RQ_VM4: Can variability
modeling be used to capture
the variability of mathematical
problems solved by the frame-
work?

Yes, variability modeling can
be used to capture the variabil-
ity of mathematical problems.

Observation

Table 6.1: Feasibility of Variability Modeling

83

CHAPTER 6. CASE STUDY DUNE

Research Question Hypothesis Data Source
F_RQ_DC1: How do devel-
opers perform desk-checking?

Observation

F_RQ_DC2: What do the
developers believe are the ad-
vantages of desk-check for the
DUNE development?

The advantages of desk-
checking include: finding
software failures even before
testing, a reminder of creating
tests and documentation,
increase in software quality,
in particular readability and
maintainability.

Observation,
open and closed
questionnaire
questions

F_RQ_DC3: What do the de-
velopers believe are the disad-
vantages of desk-check for the
DUNE development?

Desk-checking leads to minor
overhead.

Observation,
open and closed
questionnaire
questions

Table 6.2: Feasibility of Desk-Checking

In addition to the research questions about feasibility, we wanted to find out if the DUNE
developers think that the advantages of these methods outbalance the effort required.
They could proclaim their opinion on a scale from "strongly agree" to "strongly disagree"
with closed questionnaire questions. The according research questions are in Table 6.3.

Research Question Hypothesis Data Source
E_RQ_VM: Do the advan-
tages of a variability model
outbalance the effort of creat-
ing it?

The advantages of a variability
model outbalance the effort of
creating it.

Closed question-
naire questions

E_RQ_DC: Do the advan-
tages of desk-checking outbal-
ance the effort needed for it?

The advantages of a desk-
checking outbalance the effort
for it.

Closed question-
naire questions

Table 6.3: Advantages Versus Effort

84

6.1. CASE STUDY DESIGN

6.1.1.2 Acceptance

The acceptance part of our case study is based upon the Technology Acceptance Model
(TAM) [26]. This method was actually developed for software systems, but in our case we
use it for software engineering methods. Davis et al. found out, that during a one-hour
hands-on introduction, people form a perception of a system’s (method’s) usefulness
that is strongly linked to their usage intention. Furthermore, the intention of use is
significantly correlated with the future acceptance of the system (method). According
to TAM, perceived usefulness and perceived ease of use are of primary relevance for
acceptance behavior.

Strictly following the instructions of TAM, we ask the developers for their opinion on
the usefulness, ease of use and intention of use of the methods in closed questionnaire
questions. The corresponding research questions for acceptance are listed in Table 6.4.

Research Question Hypothesis Data Source
A_RQ_VM/DC1: Do the de-
velopers think variability mod-
eling/desk-checking is useful
for them?

The developers find variability
modeling/desk-checking useful
for them.

Closed question-
naire questions

A_RQ_VM/DC2: Do the de-
velopers think variability mod-
eling/desk-checking is easy to
use?

The developers think variabil-
ity modeling/desk-checking is
easy to use.

Closed question-
naire questions

A_RQ_VM/DC3: Do the
developers intend to use
the variability modeling/
desk-checking in DUNE
development?

The developers intend to
use variability modeling/desk-
checking in DUNE develop-
ment.

Closed question-
naire questions

Table 6.4: Acceptance of Variability Modeling/Desk-Checking

85

CHAPTER 6. CASE STUDY DUNE

6.1.2 Research Methods

For the case study, we had a two hour meeting with the DUNE developers with the
following agenda:

• Introduction to variability modeling (10 minutes)

• Hands-on example together with the researcher (10 minutes)

• Task 1: Creating a variability model (40 minutes)

• Discussion about variability modeling (25 minutes)

• Break (5 minutes)

• Introduction to desk-checking (10 minutes)

• Task 2: Adjustments on desk-checking checklist (15 minutes)

• Discussion about desk-checking (10 minutes)

In addition to the six DUNE developers, one researcher (the author of this thesis) took
part in the meeting and moderated it. An external researcher attended the meeting
for validity reasons. Her function was to make observation notes and to control the
recording of the discussions. The DUNE developers performed the tasks together in a
group. The researcher did not take part in the tasks, but questions of comprehension
to the researcher were allowed. The case study meeting was recorded, transcribed and
coded for analysis purpose.

Task 1 was to model different possibilities of how a grid can be defined (for details on grid
definition, see [65]). The proposed approach was to first write down possible variation
points on a flip chart and then go on with the variability modeling (using the orthogonal
variability model by Pohl et al. presented in Section 2.4.2.1) on a poster board.

Task 2 was to adjust a proposed desk-checking checklist illustrated in Figure 6.1 for
the needs of DUNE development. Which items are suitable and which are not? Which
items are missing? The developers did not try out desk-checking directly since it was not
possible to simulate a realistic application of desk-checking. The proposed desk-checking
checklist was designed by the researcher based on the VAF-Pro QA process and knowledge
about used software engineering methods in DUNE development. Reading through the
source code and answering the first question ("Is the desired functionality or change

86

6.1. CASE STUDY DESIGN

• Before checking in, please read through the source code one more time:

– Is the desired functionality or change implemented correctly?

– Is the source code sufficiently documented?

– Does the source code follow the coding style?

– Were unit tests created for new functionality? Were existing unit tests adjusted
for the changed source code?

– If new mathematical requirements were implemented, were system tests created?

Figure 6.1: Proposed Desk-Checking Checklist

implemented correctly?") is the main idea in desk-checking method as introduced by
Kelly and Sanders in [44], which is our template for the method.

We used different data sources for the case study: observation, questionnaire, and
discussion. Table 6.5 explains which kind of data was collected for each research question
during the case study and how the data was aggregated. During observation and
discussions, data was collected by the researcher using subjected notes and a recording.
The recording was transcribed and coded afterwards. For the case study results, the
notes and the coded transcription were summarized. Answers to open questionnaire
questions were summarized by counting similar answers. Results to closed questionnaire
questions were summarized using standard statistical means (Likert scale and median).
The used questionnaire can be found in Appendix A.

Research Ques-
tion

Data Source Metrics Aggrega-
tion

F_RQ_VM/DC1:
Perform1

Observation Subjective notes
by the researcher

Summary of
the notes

F_RQ_VM/DC2/
3: Advantages/
disadvantages

OQ: What do you think are
the benefits/disadvantages
of VM/DC?

Subjective opinion
of the DUNE de-
velopers

Sum-
up2similar
answers

OQ: What did you (not)
like about VM/DC?

Subjective opinion
of the DUNE de-
velopers

Sum-up sim-
ilar answers

CQ: VM/DC will help me
to develop source code in a
higher quality.

Likert scale3 Median4

87

CHAPTER 6. CASE STUDY DUNE

CQ: I think VM helps in
the development of system
test applications.

Likert scale Median

CQ: DC leads to a higher
rate of found failures.

Likert scale Median

CQ: DC leads to a better
maintainability.

Likert scale Median

CQ: DC leads to a better
readability.

Likert scale Median

Discussion Subjective notes
by the researcher

F_RQ_VM4: Cap-
ture variability

Observation Subjective notes
by the researcher

Discussion Subjective notes
by the researcher

E_RQ_VM/DC: Ef-
fort

CQ: the advantages of VM/
DC outbalance the effort.

Likert scale Median

A_RQ_VM/DC1:
Useful

CQ: Using VM/DC as a
quality assurance method
is important to me

Likert scale Median

CQ: VM/DC will help me
to develop source code in a
higher quality.

Likert scale Median

A_RQ_VM/DC2:
Easy to use

CQ: VM/DC is easy to
learn

Likert scale Median

CQ: VM/DC is easy to use
in practice

Likert scale Median

A_RQ_VM/DC3:
Intention of use

CQ: I intend to apply VM/
DC

Likert scale Median

Table 6.5: Metrics and Data Aggregation

1Legend: VM = Variability Modeling, DC = Desk-Checking, OQ = Open questionnaire Question, CQ
= Closed questionnaire Question

2With "sum-up" we mean that we count how many times similar answers regarding the content were
given

3Likert Scale used: strongly agree, agree, rather agree, rather disagree, disagree, strongly disagree
4If median is between two values, choose the side with the higher dispersal in the answers

88

6.2. RESULTS

6.2 Results

In this section we report the results of the case study. For each research question, the
data from different sources was subjectively summed up as explained in the subsections.
The codes in parentheses indicate the handled research question listed in Tables 6.1, 6.2,
6.3, and 6.4. The results are discussed further in Section 6.3.

For each research question, we also provide tables with detailed answers to each open
and close questionnaire question. As described in Table 6.5, for summarizing the answers
for a closed questionnaire question we use a median. If the median is between two values,
we choose the side with the higher dispersal in the answers.

6.2.1 Variability Modeling by Developers (F_RQ_VM1)

When the developers were working on their variability model, the working atmosphere
was very open and everybody took part in the discussion about variability model details.
The developers were motivated to learn the method and many questions of comprehension
were asked.

First, the developers collected possible variation points on a flip chart. Every proposal
was thoroughly discussed right away and at the end accepted or rejected by the group.
Possible variants for the variation points were listed instantly for each variation point.
Table 6.6 presents the notes made by the developers.

Before drawing the variability model, the developers thought about possible dependencies
between the variation points and their variants. They wanted to draw the variation
points with their dependencies close to each other. The variability model drawn by the
developers is presented in Figure 6.2.

The developers thought of the model with "levels" or a "hierarchy", although the proposed
variability model does not have any levels. They considered which variation point should
be put on the top, meaning which variation point is most essential for the variability
model. They wanted to put variation points which are built in a similar way "on the
same level" (e.g. variation points Parallel and Adaptivity in Figure 6.2). This seems to
be an intuitive way of thinking of a variability model.

89

CHAPTER 6. CASE STUDY DUNE

Figure 6.2: Variability model drawn by the developers

Dimension: 1,2,3
Geometry: cube(d), simplex(d), pyramide(d), prism(d)
Parallel: yes, no
Parallelism type: overlapping, non-overlapping
Adaptivity: yes, no
Closure type: conform, non-conform
Refinement factor: 2, 2d

Table 6.6: Possible variation points collected by the developers

90

6.2. RESULTS

In DUNE, there is a technical constraint when it comes to defining a grid: there are a
handful of grid implementations a DUNE user can choose from when implementing a
DUNE application. Each grid implementation has its own possible characteristics and
constraints. It is only possible to use a grid with characteristics that suit to at least one of
these grid implementations. The used grid implementation is actually not a characteristic
of a grid, but technically highly essential. This is why the developers decided to select
grid implementation as a central variation point. For keeping the variability model simple
at first, they chose only two possible variants (Yasp5 and UG6, see Figure 6.2) for the
grid implementation.

6.2.2 Advantages of Variability Modeling for the DUNE Development
(F_RQ_VM2 and E_RQ_VM)

The following list collects the most often mentioned advantages that DUNE developers
see in variability modeling. The numbers in parentheses indicate how many times each
statement was mentioned in the open questionnaire questions about the advantages:

• Variability modeling offers a systematic way to cope with all different possible
combinations of features and their dependencies (5)

• The process of variability modeling leads to a deeper reflection about the set of
needed variants, concrete dependencies between the concepts in the software, or
scope and goal of a test case (5)

• Variability modeling is the first step in the automatic generation of test cases for
DUNE: every valid combination of variants is a test case (2)

The summarized results of closed questionnaire questions reveal that the developers

• agree that variability modeling would be helpful in developing system test applica-
tions,

• rather agree that variability modeling would help to develop DUNE source code in
a higher quality, and

5http://www.dune-project.org/doc/doxygen/dune-grid-html/group___yasp_grid.html
6http://atlas.gcsc.uni-frankfurt.de/˜ug/

91

CHAPTER 6. CASE STUDY DUNE

Question Answer Count
What do you think are
the benefits of VM?

Variability modeling offers a systematic way to
cope with all different possible combinations of
features and their dependencies.

5

Variability modeling is the first step in the auto-
matic generation of test cases for DUNE: every
valid combination of variants is a test case.

2

The process leads to a reflection about a detailed
plan for test cases for a system test application.

1

What did you like about
VM?

The process of variability modeling leads to a
deeper reflection about the set of needed variants,
concrete dependencies between the concepts in
the software, or scope and goal of a test case.

5

Table 6.7: Detailed answers to open questionnaire questions to research question
F_RQ_VM2: What do the developers believe are the advantages of variability
modeling for the DUNE development

• rather agree that the advantages of a variability model outbalance the effort for
creating it (E_RQ_VM).

Tables 6.7, 6.8, and 6.9 include detailed answers for each questionnaire question for the
research questions F_RQ_VM2 and E_RQ_VM.

92

6.2. RESULTS

Question Strong-

ly

agree

Agree Rather

agree

Rather

dis-

agree

Dis-

agree

Strong-

ly dis-

agree

Median

VM will help me to de-
velop source code in a
higher quality.

1 3 1 1 Rather
agree

I think VM helps in the
development of system
test applications.

2 2 2 Agree

Table 6.8: Detailed answers to closed questionnaire questions to research question
F_RQ_VM2: What do the developers believe are the advantages of variability
modeling for the DUNE development

Question Strong-

ly

agree

Agree Rather

agree

Rather

dis-

agree

Dis-

agree

Strong-

ly dis-

agree

Median

The advantages of VM
outbalance the effort.

2 3 1 Rather
agree

Table 6.9: Detailed answers to closed questionnaire questions to research question
E_RQ_VM: Do the advantages of a variability model outbalance the ef-
fort of creating it

6.2.3 Disadvantages of Variability Modeling for the DUNE Development
(F_RQ_VM3)

The disadvantages some developers see in variability modeling in general are:

• The creation of a variability modeling is costly because of the complexity of the
mathematical problems (1)

93

CHAPTER 6. CASE STUDY DUNE

• It will be difficult to implement the automatic creation of test cases, since each set
of variants must be implemented in a different way (1)

These are the disadvantages the developers see in the proposed variability model:

• The modeling language is not able to represent some important aspects. Some
dependencies are more complex than can be modeled: e.g. in some cases one
variant should be excluded, if a combination of two other variants is chosen. To
model this kind of situation, the developers combined two variation points, grid
implementation and grid dimension (see Figure 6.2). This solution did not satisfy
the developers (3).

• The presentation becomes complex easily and therefore unclear, unreadable, and
hard to maintain. Many lines (dependencies) make the model unclear (5).

• The developers miss the possibility to define a hierarchy between variation points
(4)

Table 6.10 includes detailed answers for each questionnaire question for the research
question F_RQ_VM3.

6.2.4 Capturing the Variability of Mathematical Problems with Variability
Modeling (F_RQ_VM4)

While working on the variability model, the developers did not come to an agreement
about how detailed the model should be. Some developers repeatedly came up with
special cases and other developers argued that these cases are not really relevant. One
developer brought up that the variability model only needs to be as detailed as one wants
to define the different test cases for a system test application. Some minor features could
be implemented as arbitrary parameters without being part of the variability model.

All developers agreed that the point of view has a major influence on the created variability
model. If one creates a variability model for a specific system test application, it will
be different from a variability model for a general case. Many developers agreed that
it makes sense to choose a "test application" point of view, since the variability model
would be more precise and less complex.

94

6.2. RESULTS

Question Answer Count
What do you think
are the disadvantages of
VM?

The modeling language is not able to represent
some important aspects.

3

The developers miss the possibility to define a
hierarchy between variation points.

4

The modeling language should be closer related
to the modeling problem.

1

The creation of a variability modeling is costly
because of the complexity of the mathematical
problems.

1

It will be difficult to implement the automatic
creation of test cases, since each set of variants
must be implemented in a different way.

1

What did you not like
about VM?

The presentation becomes complex easily and
therefore unclear, unreadable, and hard to main-
tain. Many lines (dependencies) make the model
unclear.

5

The exact goal of the modeling has to be clear
first.

1

Table 6.10: Detailed answers to open questionnaire questions to research question
F_RQ_VM3: What do the developers believe are the disadvantages of
variability modeling for the DUNE development

95

CHAPTER 6. CASE STUDY DUNE

6.2.5 Acceptance of Variability Modeling (A_RQ_VM1-3)

The developers answered in the questionnaire that they

• rather agree that variability modeling is useful for the DUNE development.

• rather agree that variability modeling is easy to learn and use.

• rather agree that they intend to use variability modeling for the DUNE development.

This means that variability modeling is rather accepted by the DUNE developers.

Tables 6.11, 6.12, and 6.13 include detailed answers for each questionnaire question for
the research questions A_RQ_VM1-3.

Question Strong-

ly

agree

Agree Rather

agree

Rather

dis-

agree

Dis-

agree

Strong-

ly dis-

agree

Median

Using VM as a quality
assurance method is im-
portant to me.

1 1 3 1 Rather
agree

VM will help me to de-
velop source code in a
higher quality.

1 3 1 1 Rather
agree

Table 6.11: Detailed answers to closed questionnaire questions to research question
A_RQ_VM1: Do the developers think variability modeling is useful for
them

96

6.2. RESULTS

Question Strong-

ly

agree

Agree Rather

agree

Rather

dis-

agree

Dis-

agree

Strong-

ly dis-

agree

Median

VM is easy to learn. 3 2 1 Rather
agree

VM is easy to use in
practice.

1 2 3 Rather
agree

Table 6.12: Detailed answers to closed questionnaire questions to research question
A_RQ_VM2: Do the developers think variability modeling is easy to use

Question Strong-

ly

agree

Agree Rather

agree

Rather

dis-

agree

Dis-

agree

Strong-

ly dis-

agree

Median

I intend to use VM
when developing code
for DUNE.

1 2 1 1 Rather
agree

Table 6.13: Detailed answers to closed questionnaire questions to research question
A_RQ_VM3: Do the developers intend to use the variability modeling
in DUNE development

6.2.6 Desk-Checking by Developers (F_RQ_DC1)

The developers found many items in the desk-checking checklist important for the DUNE
development. One developer noted that the items in the checklist are better suitable for
the development in the DUNE base classes instead of source code for solutions of special
mathematical problems. Another developer motivated the others to take time later for
adjusting the checklist in detail for the DUNE development. He thought such a checklist
is a good reminder for each developer.

These are the items that the developers found important in the proposed checklist:

97

CHAPTER 6. CASE STUDY DUNE

• Sufficiently documented: the developers distinguished between source code docu-
mentation and commit messages in the version control system. They thought both
of these were important. The commit messages were distributed over a mailing list
which means that other developers could review the changes.

• Creating and extending tests: two developers argued for the importance of suitable
tests in particular for changes in the DUNE base classes. One developer reminded
that tests for created or changed source code are particularly important for other
developers so that they also can check the functionality.

• Two developers thought that checking whether the source code follows the coding
style is also important.

There were also some ideas for additional checklist items:

• Two developers found it important to check the naming of variables for suitability
before checking in the source code.

• Another point mentioned was that each developer should check that her or his
source code is written comprehensibly.

The item in the checklist that three of the developers found redundant was whether
the functionality was correctly implemented or not. They found that it is self-evident
that only source code that works will be checked in. They did not see any advantage in
reading the source code one more time to review this. They rather check the functionality
through testing or taking a look at the output of the software.

6.2.7 Advantages of Desk-Checking for the DUNE Development
(F_RQ_DC2 and E_RQ_DC)

The main advantage the developers see in desk-checking is quality improvement, in
particular of the documentation (5). Other quality improvements they expect are:

• a more careful check that an implementation is correct (2).

• a better chance that proper tests are developed (2).

• better readable code that follows the coding style (2).

98

6.2. RESULTS

In the closed questionnaire questions, the developers answered that they

• agree that desk-checking helps to develop source code of higher quality.

• rather agree that desk-checking leads to a higher detection rate of software failures.

• agree that desk-checking leads to better maintainability of the source code.

• agree that desk-checking leads to better readability of the source code.

• agree that the advantages of desk-checking outbalance the effort required (E_RQ_DC).

Tables 6.14, 6.15, and 6.16 include detailed answers for each questionnaire question for
the research questions F_RQ_DC2 and E_RQ_DC.

Question Answer Count
What do you think are
the benefits of DC?

Quality improvement, in particular of the docu-
mentation.

5

A more careful check that an implementation is
correct.

2

A better chance that proper tests are developed. 2
A better readable code that follows the coding
style.

2

Following the desk-checking steps can save a lot
of time and energy.

1

What did you like about
DC?

When using desk-checking, many failures can be
avoided, the documentation won’t be missing,
and simple test problems are created.

1

Low overhead. 1
It is good to reflect on which criteria should
be used when checking the source code before
committing it.

1

In my opinion, desk-checking is a basic require-
ment for each commit. Especially a suitable doc-
umentation is extremely important and should
be demanded.

1

Table 6.14: Detailed answers to open questionnaire questions to research question
F_RQ_DC2: What do the developers believe are the advantages of desk-
checking for the DUNE development

99

CHAPTER 6. CASE STUDY DUNE

Question Strong-

ly

agree

Agree Rather

agree

Rather

dis-

agree

Dis-

agree

Strong-

ly dis-

agree

Median

DC will help me to de-
velop source code in a
higher quality.

4 2 Agree

DC leads to a higher
rate of found failures.

3 1 2 Rather
agree

DC leads to a better
maintainability.

2 4 Agree

DC leads to a better
readability.

1 5 Agree

Table 6.15: Detailed answers to closed questionnaire questions to research question
F_RQ_DC2: What do the developers believe are the advantages of desk-
checking for the DUNE development

Question Strong-

ly

agree

Agree Rather

agree

Rather

dis-

agree

Dis-

agree

Strong-

ly dis-

agree

Median

The advantages of DC
outbalance the effort.

1 2 2 Agree

Table 6.16: Detailed answers to closed questionnaire questions to research question
E_RQ_DC: Do the advantages of desk-checking outbalance the effort needed
for it

6.2.8 Disadvantages of Desk-Checking for the DUNE Development
(F_RQ_DC3)

The disadvantages that the developers saw in desk-checking are:

100

6.2. RESULTS

• An overhead before checking in source code, mainly because of the creation of new
tests (4). One developer pointed out that if there is no time for creating tests at
once, the developer should create an issue in the issue tracking system as a reminder
that the tests are still missing.

• Most of the items in the checklist are subjective. Every developer has her or his own
opinion on, e.g what is "sufficiently documented". Minimum requirements must be
defined for each issue (2).

Table 6.17 includes detailed answers for each questionnaire question for the research
question F_RQ_DC3.

Question Answer Count
What do you think
are the disadvantages of
DC?

An overhead before checking in source code,
mainly because of the creation of new tests.

4

What did you not like
about DC?

Most of the items in the checklist are subjective.
Every developer has her or his own opinion on,
e.g what is "sufficiently documented". Minimum
requirements must be defined for each issue.

2

Correct implementation cannot be validated only
by looking at the source code, especially not for
mathematical source code.

1

Table 6.17: Detailed answers to open questionnaire questions to research question
F_RQ_DC3: What do the developers believe are the disadvantages of
desk-checking for the DUNE development

6.2.9 Acceptance of Desk-Checking (A_RQ_DC1-3)

The developers answered in the questionnaire that they

• rather agree that desk-checking is important to them.

• agree that desk-checking is useful for the DUNE development.

101

CHAPTER 6. CASE STUDY DUNE

• agree that desk-checking is easy to learn.

• rather agree that desk-checking is easy to use.

• agree that they intend to use desk-checking for the DUNE development.

The developers clearly find desk-checking acceptable, although they only rather agree
that it is easy to learn or personally important to them.

Tables 6.18, 6.19, and 6.20 include detailed answers for each questionnaire question for
the research questions A_RQ_DC1-3.

Question Strong-

ly

agree

Agree Rather

agree

Rather

dis-

agree

Dis-

agree

Strong-

ly dis-

agree

Median

Using DC as a quality
assurance method is im-
portant to me.

3 2 1 Rather
agree

DC will help me to de-
velop source code in a
higher quality.

4 2 Agree

Table 6.18: Detailed answers to closed questionnaire questions to research question
A_RQ_DC1: Do the developers think desk-checking is useful for them

Question Strong-

ly

agree

Agree Rather

agree

Rather

dis-

agree

Dis-

agree

Strong-

ly dis-

agree

Median

DC is easy to learn. 5 1 Agree
DC is easy to use in prac-
tice.

3 1 2 Rather
agree

Table 6.19: Detailed answers to closed questionnaire questions to research question
A_RQ_DC2: Do the developers think desk-checking is easy to use

102

6.3. DISCUSSION

Question Strong-

ly

agree

Agree Rather

agree

Rather

dis-

agree

Dis-

agree

Strong-

ly dis-

agree

Median

I intend to use DC
when developing code
for DUNE.

4 2 Agree

Table 6.20: Detailed answers to closed questionnaire questions to research question
A_RQ_DC3: Do the developers intend to use the desk-checking in DUNE
development

6.3 Discussion

In this section we discuss the results in the light of the goals listed in Section 6.1.1.

6.3.1 Goal 1: Feasibility of Variability Modeling

DUNE developers recognized important advantages of variability modeling, like having
a systematic way to model variability and support for the development of system test
applications. A surprising result was that almost every developer brought up the
positive effect of a deeper reflection about the variability in the examined concept. The
disadvantages found were almost all associated to the presented variability modeling
language, not to variability modeling in general.

The results of the case study reveal that variability modeling can be used to capture the
variability of mathematical problems if the point of view is fixed first and the modeling
task is clearly defined.

This means that variability modeling is feasible for the DUNE QA, but we needed to
find a different variability modeling language, which is able to represent all important
aspects and enables the definition of a hierarchy. The variability modeling language used
in FeatureIDE, the practical application of our approach introduced in Chapter 7 is a
feature-tree that satisfies these requirements.

103

CHAPTER 6. CASE STUDY DUNE

6.3.2 Goal 2: Feasibility of Desk-Checking

The case study convinced the developers that desk-checking helps to develop source code
of a higher quality. They could see many advantages in desk-checking including a better
documentation, a better chance that proper tests are developed and better readability
and maintainability of the source code. The main disadvantage they see, an overhead, is
mainly associated to the creation of tests. In fact, this is not an overhead in desk-checking
itself, but in creating the tests. However, they are willing to accept this overhead, as
they see it as an advantage that desk-checking reminds them of creating the tests.

Since the developers rather declined the item "Is the desired functionality /change
implemented correctly?", the desk-checking method the DUNE developers prefer is
somewhat different than the desk-checking method introduced by Kelly and Sanders in
[44].

The case study results indicate that desk-checking is feasible for the DUNE development.
As a next step the developers should adjust the desk-checking checklist to better suit
their needs and define the minimum requirements for each item in the checklist.

6.3.3 Goal 3: Acceptance of Variability Modeling

The acceptance of variability modeling for the DUNE development was positive. We could
see that the acceptance has even increased after introducing FeatereIDE, the practical
application of our approach, to the developers, since FeatureIDE includes a more suitable
variability modeling language.

6.3.4 Goal 4: Acceptance of Desk-Checking

The case study results in a clear acceptance of desk-checking. The developers see that
desk-checking is useful for the DUNE development and intend to use it.

6.4 Threats of Validity

In this section we analyze the validity of the case study and its results. We distinguish
between different aspects of the validity as presented by Runeson et al. in [68].

104

6.4. THREATS OF VALIDITY

6.4.1 Construct Validity

Construct validity reflects to what extent the used research methods really represent
what is investigated according to the research questions [68].

We used different methods to increase the construct validity of our case study. To achieve
a methodological triangulation, we combined different types of data collection methods:
observation, questionnaire, and discussion. The case study design includes a chain of
evidence on how the data of the different data sources are used to answer the research
questions. Observer triangulation was achieved by an external observer during the case
study meeting.

The questions in the questionnaire were checked for understandability by several re-
searchers. During the case study external influence on the developers was kept to a
minimum. The moderator did not mention any advantages or disadvantages of the
methods. The developers always answered the open questions about the advantages
and disadvantages first before reading the closed question that mentioned some possible
advantages. During the case study we found out that it was not clear to all developers if
they should report on their opinion on variability modeling in general or on the proposed
variability modeling language. Some problems with this specific variability modeling
language may have influenced the results on the variability modeling part of the case
study negatively.

The researcher who moderated the case study has been working with the DUNE developers
regularly over the last years. This means there is a trustful relationship between the
researcher and the developers. This is called a "prolonged involvement" by Runeson et
al, [68]. One positive effect of this is that the researcher is able to understand how the
developers interpret the terms that are used in the study.

As a further step to increase the construct validity, the results of the case study were
sent to the participating DUNE developers. They confirmed that the results reflect their
opinion correctly.

6.4.2 External Validity

The analysis of external validity seeks to find out to what extent the findings are of
relevance for other cases [68].

105

CHAPTER 6. CASE STUDY DUNE

Since variability modeling and desk-checking were found feasible and acceptable in this
case study, this indicates that the methods could be found feasible and acceptable also
for other cases in the context of scientific software development. Further examination is
necessary to confirm this.

6.4.3 Reliability

The reliability aspect of validity relates to the extent the data and the analysis are
dependent on a specific researcher [68].

During the design, data collection, and analysis of the case study, the researcher con-
tinuously documented every single step that was done. Each step was peer reviewed by
a second researcher. Furthermore, the case study design was reviewed by an external
researcher. This means there is a reproducible chain of evidence for the case study.

6.5 Related Work

In this subsection, we consider other empirical studies on QA processes for SPLE and
variability modeling. We could not find any empirical studies for QA processes for
scientific software in the literature. Independently of the domain, we also could not find
any empical studies about desk-checking.

The unit testing part of RiPLE-TE, the QA process VAF-Pro is based on, was initially
evaluated in an experimental study by Machado et al. [51]. The goal was to analyze
the effectiveness of unit testing in this process and to find out which professional skills
have impact on the test activity results. In the experiment, 30 undergraduate students
tested the same source code with and without the process. The authors admitted that
the results of this experiment were not very significant. This initial experiment serves as
a baseline for future experiments.

Neto et al. [56] propose a very formal regression testing approach for the reference
architecture of an SPL, which uses extensive documentation, many detailed process steps,
and plenty of test roles. Their approach concentrates on the commonality of the SPL
and does not apply to system testing. The approach was evaluated in order to calibrate
and improve it. Eight postgraduate students applied the approach in an experimental
scenario. The approach showed its efficiency although it was not experimented in a real

106

6.6. CHAPTER SUMMARY

SPL context.

One major advantage in our case study compared to the case studies mentioned above
was that we could conduct the case study with developers of scientific software who are
the actual target audience instead of under- or postgraduate students. This makes the
results more significant.

We could find several studies comparing different variability modeling approaches ([22],
[25], [39]), but these studies only describe technical issues like main concerns of the
variability model, hierarchy, dependencies and constraints, tool support, or evolvement
of the variability modeling approach.

In a survey of variability modeling in industrial practice, Berger et al. [13] asked the
participants for their attitute towards variability modeling. Most of them found it
either definitely useful (55%) or useful (35%). The main benefits the participants saw
in variability modeling are the management of existing variability (77%) and product
configuration (71%). 20% mentioned QA and testing. The most challenging tasks in
variability modeling for the participants were visualization of models (59%), dependency
management (59%) and model evolution (56%). Although the participants in our case
study did not have any previous practical experience in variability modeling, our results
are consistent with those in the survey of Berger et al.

6.6 Chapter Summary

This chapter reports on a case study analyzing the feasibility and acceptance by DUNE
developers for two parts of the design of the VAF-Pro QA process: variability model
creation and desk-checking.

The case study design is based on instructions by Runeson et al. in [68]. The goal was to
find out, if DUNE developers are satisfied with the design of the VAF-Pro QA process
and if they think it is useful for them. This way we still had the possibility to adjust the
design before establishing the QA process.

Corresponding to the GQM approach, the goals for the case study are to assess the
feasibility (acceptance) of variability modeling (desk-checking) in the QA from the
developer’s viewpoint. For the assessment of the feasibility, we first want to observe how
the developers perform variability modeling (desk-checking). Afterwards, the developers
are asked for their opinion on the methods using a questionnaire with two parts: first

107

CHAPTER 6. CASE STUDY DUNE

the developers are asked about advantages and disadvantages of the methods with
open questions and then they are asked to give their opinion on possible predetermined
advantages and disadvantages using closed questions. For the acceptance part of the case
study we strictly follow the instructions of the TAM model and ask the developers for
their opinion on the usefulness, ease of use and intention of use of the methods in closed
questionnaire questions.

For the case study, we had a two hour meeting with six DUNE developers. The author of
this thesis moderated the meeting and an external researcher attended for validity reasons.
The DUNE developers performed the following two tasks together in a group: model
different possibilities of how a grid can be defined and adjust a proposed desk-checking
checklist for the needs of DUNE development.

DUNE developers found that variability modeling is a systematic way to model variability
and that it supports the development of system test applications. The results of the
case study reveal that variability modeling can be used to capture the variability of
mathematical problems if the point of view and the exact modeling task are fixed first.
Most of the found disadvantages were associated to the presented variability modeling
language, not variability modeling in general. This means that variability modeling is
feasible, but we needed to find a different variability modeling language. The acceptance
of variability modeling was positive.

The developers were convinced that desk-checking helps to develop source code in a
higher quality (e.g. with better documentation, a higher change to have proper tests, and
better readability and maintainability of the source code). The main disadvantage, an
overhead, is mainly associated to the creation of tests. This indicates that desk-checking
is feasible for the DUNE development. The results also reveal a clear acceptance of
desk-checking.

108

Chapter 7
System Testing with FeatureIDE and
Automated Test Environment

This chapter introduces the practical implementation of the system testing part in the
VAF-Pro QA process. We apply a tool called FeatureIDE1 for the development of system
test applications. For DUNE (see Section 2.6.1), the system tests are run in an automated
test environment developed for DUNE.

Section 7.1 explains which requirements we had for tool support in system test development
and introduces FeatureIDE and FeatureC++, a C++ language extension for feature-
oriented programming, which fulfill these requirements. Section 7.2 then explaines how
to develop system test applications using FeatureIDE and FeatureC++. Section 7.3
presents how the system test applications can be run in an automated test environment.
Section 7.4 summarized the chapter.

7.1 Tool Support for the System Test Development

As we were planning the practical implementation of the system testing part of VAF-Pro
QA process, we first looked for an existing tool that would fulfill our requirements. Such
a tool should

• support variability modeling and the integration of the variability model in the

1http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

109

CHAPTER 7. SYSTEM TESTING WITH FEATUREIDE AND AUTOMATED TEST
ENVIRONMENT

system test development.

• support several programming languages so that it would be applicable for several
scientific frameworks.

• support the running of system test applications in an automated test environment.

• generate separate executables for the system test cases so that the system test
applications could be executed independently and, if needed, using parallelism.

• The used variability model should fulfill the requirements defined by the developers
in the case study (see Section 6.2.3).

• The tool should be continuously supported and in an ideal case have a large
developer and user base.

We were able to find a tool that fulfills all our requirement: FeatureIDE. In this section
we introduce FeatureIDE and its’ possible applications in SPLE. As an example, we
introduce how FeatureC++ that supports feature-oriented programming with C++ can
be used within FeatureIDE.

7.1.1 FeatureIDE

FeatureIDE is an open-source Eclipse-based IDE that supports all phases of SPLE:
domain analysis and implementation, requirements analysis, and software generation. It
supports different SPL implementation techniques such as feature-oriented programming,
aspect-oriented programming, delta-oriented programming, and preprocessors (for details
about the different techniques see [76]).

FeatureIDE is developed since 2004, mainly at the University of Magdeburg in Germany.
Currently, there are about 20 project members and contributors [32]. FeatureIDE is used
in software engineering lectures at different universities all over the world [76].

This is a list of FeatureIDEs main features [32]:

• Full Eclipse Integration

• A graphical and text based variability model editor.

• A constraint editor with syntax and semantic checking.

110

7.1. TOOL SUPPORT FOR THE SYSTEM TEST DEVELOPMENT

• A configuration editor to create and edit configurations and with support for
deriving valid configuration.

• Feature-oriented programming with AHEAD2, FeatureC++3 , and FeatureHouse4

(with support for C, C#, Java, etc.)

• Aspect-oriented programming with AspectJ5

• Delta-oriented programming with DeltaJ6

• Support for different preprocessors (Colligens7, TypeChef8, etc.)

Example: FeatureIDE for DUNE framework For the DUNE framework, we apply
FeatureIDE with FeatureC++, since DUNE is implemented in C++. This is why we use
FeatureC++ as an example in this Chapter. According to Thüm et al. [76], the user
interface for different implementation techniques is almost identical.

7.1.2 FeatureC++

FeatureC++ is a C++ language extension to support feature-oriented programming
(FOP). FOP is an extension to object-oriented programming, where classes are decomposed
into feature modules each implementing a certain feature. The feature modules can be
composed to a program based on a given configuration [76].

FeatureC++ enables a programmer to express features in a modular way. FeatureC++
comes in form of a C++ preprocesser that transforms FeatureC++ code into native C++
code. FeatureC++ was developed at the Institute for Technical and Business Information
Systems at the University at Magdeburg in Germany [31].

FeatureC++ uses folders to represent features. A hierarchy of features can be represented
using a folder hierarchy. Classes implemented in plain C++ are distributed over multiple
features. In contrast to plain C++, classes are completely implemented in header files.
All header files with the same name represent the implementation of a particular feature
of that class. There are two new keywords used in FeatureC++: refines is used to

2http://www.cs.utexas.edu/users/schwartz/ATS.html
3http://wwwiti.cs.uni-magdeburg.de/iti_db/forschung/fop/featurec/
4http://www.fosd.de/fh
5http://www.eclipse.org/aspectj/
6http://deltaj.sourceforge.net/
7https://sites.google.com/a/ic.ufal.br/colligens/
8http://ckaestne.github.io/TypeChef/

111

CHAPTER 7. SYSTEM TESTING WITH FEATUREIDE AND AUTOMATED TEST
ENVIRONMENT

specify extension of an existing class and super is used to call an overridden method
[31].

7.1.3 FeatureIDE and FeatureC++ example

Figure 7.1 describes, how the different parts of FeatureIDE and FeatureC++ relate to
each others. A step by step instruction for system test application development with a
concrete DUNE example can be found in Appendix C.

Depending on the variability model (see Section 2.4.2.2), FeatureC++ automatically cre-
ates a folder structure for the FeatureC++ source code. After the developers have written
the source code and created a configuration file (called "HelloBeautifulWorld.equation"
in this example), FeatureC++ automatically assembles the source code according to the
feature configuration.

7.2 System Test Development with FeatureIDE

In the process of creating reengineering variability models and system test applications
for a scientific framework (see Chapter 4), FeatureIDE and FeatureC++ can be applied as
a supporting tool for the identification of features and their dependencies (Step 4.1.2.3),
the identification of constraints between the features (Step 4.1.2.4), the derivation of test
cases for a system test application (Section 4.1.3) and the development of system test
applications (Section 4.2). Table 7.1 provides on overview of the support supplied by
FeatureIDE and FeatureC++ for these steps.

Appendix C includes a detailed example of the use of FeatureIDE and FeatureC++.

7.2.1 Test Suite for a System Test Application

The set of configuration files, i.e. the test cases, build up a test suite for the system test
application. In Section 4.1.3 we explained that often test suite selection methods are
needed to reduce the test effort.

FeatureIDE has a functionality for building T-Wise configurations automatically. The
functionality chooses, with a selected algorithm, a suitable subset of possible configurations

112

7.3. AUTOMATED TEST ENVIRONMENT

for the test application. Unfortunately this functionality was not available in FeatureIDE
for FeatureC++ in February 2014 when writing this thesis.

Figure 7.1: FeatureIDE and FeatureC++ example

7.3 Automated Test Environment

In the last section we explained how the system test applications can be developed
with FeatureIDE. The part that is still missing is comparing the output for algorithm
verification and scientific validation with previously defined reference values (see Sections
5.3.4 and 5.3.5). Furthermore, it is not practical to run each system test application

113

CHAPTER 7. SYSTEM TESTING WITH FEATUREIDE AND AUTOMATED TEST
ENVIRONMENT

Process Step FeatureIDE and FeatureC++ support
Variability Analysis,
Step 2: Identifying
Features and Their
Dependencies

FeatureIDE supports the creation of a variability model with
a graphical editor. The model is stored in an XML format
and can also be edited textually simultaneously. Variability
models can also be stored in several graphical formats and
printed to a PDF file. Since the models tend to change with
time, FeatureIDE supports refactoring variability models
with a separate edit view [76]. An example of variability
model creation in FeatureIDE can be found in Appendix C.4.

Variability Analysis,
Step 3: Identifying
Constraints Between
the Features

FeatureIDE provides an editor for constraints between the
features. The constraints can be expressed as logical formula
over the set of existing features. An example of constraint
definition in FeatureIDE can be found in C.5.

Deriving Test Cases for
a System Test Applica-
tion from the Variability
Model

The alternative features in the variability model enable nu-
merous possible feature combinations, i.e. different test cases
for the system test application. To be able to compose one
executable source code, one needs to choose a concrete set
of features. In FeatureIDE, this is done by creating configu-
ration files. See also Subsection 7.2.1. An example can be
found in Appendix C.7.

Developing System Test
Applications

The variability model and constraint configuration are used in
feature-oriented programming with FeatureC++. Using the
possibilities of feature-oriented programming the developers
can systematically generate source code for different test cases
for a system test application. An example of a DUNE system
test application developed with FeatureIDE and FeatureC++
can be found in C.6.

Table 7.1: FeatureIDE and FeatureC++ support for the process of creating reengineering
variability models and system test applications for a scientific framework

114

7.3. AUTOMATED TEST ENVIRONMENT

separately. What we need is an automated test environment that runs the system test
applications automatically on a regular basis.

In this section we introduce one solution for an automated test environment that have
been developed for DUNE. The environment does not just include the system tests, but
also the unit and integration tests introduced in Section 5.3.3.

In the context of our research, the automated test environment for DUNE was extended
by the system testing level. The foundations for this part, including the structure of
the configuration files and the scripts running individual tests, were implemented by
Felix Heimann from the DUNE development team for his own daily work. The original
version of the script for the scientific validation was implemented by Jorrit Fahlke from
the DUNE development team. Our main work was to adjust the test scripts for system
testing and include them in the automated test environment.

Subsection 7.3.1 explains how the automated test environment works. In Subsection
7.3.2 we report on experiences we have made with the automated test environment
during an implementation sprint in 2011. FeatureIDE was integrated to the system test
development after this implementation sprint and we have not evaluated its’ use in the
daily development yet. First feedback from the DUNE developers after presenting the
prototypical use of FeatureIDE is positive.

7.3.1 Running the Automated Test Environment

The automated test environment consists of scripts running the tests, files including the
reference values for algorithm verification and scientific validation and a database where
the results of test runs are saved. The result for the test runs are announced on an
internet page.

A test run consists of the following steps:

• fetch the source code according to the test run configuration (e.g. current develop-
ment version)

• compile the source code

• run unit and integration tests

• run system tests and compare the output for algorithm verification and scientific

115

CHAPTER 7. SYSTEM TESTING WITH FEATUREIDE AND AUTOMATED TEST
ENVIRONMENT

validation with reference values

• insert the results to the database

• announce the results on the internet page

According to the configuration, the test environment runs automatically for example
every night. It is also possible to run the environment manually.

For our research, we have included the system testing part to the automated test
environment. For the system tests, FeatureC++ provides scripts that enable compiling
the system test applications using the FeatureIDE configuration files outside the Eclipse
environment. The system testing part of the automated test environment has the following
steps:

• for each test case configuration of every system test application

– compile the system test application using the test case configuration (Fea-
tureIDE configuration file)

– run the generated system test application

– compare the output for algorithm verification and scientific validation with
reference values

It is a great advantage for the DUNE developers that they can use the comfortable
development environment of FeatureIDE for the system test development and then run
the generated test cases in the automated test environment.

7.3.2 Experiences with the DUNE Automated Test Environment

During a DUNE implementation sprint of the dune-pdelab module in 2011 (FeatureIDE
was not yet applied at that time) we applied the system testing part of the test environment
to test the development changes and to evaluate how the test environment supports
the scientists’ work. The sprint took over one month and involved about ten DUNE
developers. The changes consisted of over 400 commits with about 32000 new LOC and
19000 deleted LOC.

The implementation sprint included some major changes in the dune-pdelab module.

116

7.4. CHAPTER SUMMARY

These include the replacement of a grid operator and interface changes for a local operator
and an AMG solver. Since these operators are used in most DUNE applications, this
also led to some major changes in the test applications in the test environment.

We used the following approach for applying the system test environment for the devel-
opment sprint. First we run the test environment for the previous version of dune-pdelab.
Those expected output values for algorithm verification and scientific validation that
are not defined analytically were determined according to the test run on the previous
version. After that the test applications were adjusted to the new development. As
soon as the changes in the source code were implemented, we adopted them to the test
applications and rerun the tests on the changed version of dune-pdelab.

The unit tests were always run before the test application was executed. This way we
observed that even though the single units were tested using unit tests, some faults
could only be found through the system test environment. Using the test environment
for such a major development sprint was challenging. Each test application had to be
adjusted to the changed framework functionality which caused some extra work for the
scientists. The test applications could only be changed after the development for a
specific development change was completed. This sometimes led to a delay in testing
these development changes.

When the test environment reported a problem, the scientists first had to find out where
the problem is: in the implementation of the test application or in the functionality of
the framework. In the second step the scientists had to figure out if this change in the
output was intended or unintended.

Altogether, this process helped the scientists to evaluate the development changes made
in the framework. After this process they were more confident about the good quality
of the new dune-pdelab version. Finding some defects in the DUNE framework (even
some that existed for months or years) motivated the scientists to use the system test
environment.

7.4 Chapter Summary

This chapter introduces the prototypical implementation of the system testing part of
VAF-Pro QA process. For the implementation, we were looking for a tool that should e.g.
support variability modeling, several programming languages, and running the system

117

CHAPTER 7. SYSTEM TESTING WITH FEATUREIDE AND AUTOMATED TEST
ENVIRONMENT

test applications in an automated test environment. The used variability model should
fulfill the requirements defined in the case study.

The tool that fulfills these requirements is FeatureIDE, an open-source Eclipse-based IDE
supporting all phases of SPLE. It has graphical and text based editors for a variability
model and its constraint and a configuration editor. Configuration files are used for
the test case derivation. Furthermore, FeatureIDE supports different feature-oriented
programming paradigm. FeatureC++ is a C++ language extension to support feature-
oriented programming. Depending on the variability model created in FeatureIDE,
FeatureC++ automatically creates a folder structure for the feature-oriented source code.

FeatureIDE and FeatureC++ support the development of system test applications in the
variability modeling, identification of constraints between the features, derivation of test
cases, and the development of system test applications.

In the context of our research, an automated test environment developed for DUNE was
extended by the system testing level. The test environment automatically compiles the
system test applications based on the test case configuration defined in FeatureIDE,
runs the tests on a regular basis and compares the output for algorithm verification and
scientific validation with reference values.

The system testing level of the automated test environment was first applied during a
DUNE implementation sprint in 2011. Even though the single software units were tested
using unit tests, some faults could only be found through the system test environment.
Using the test environment made the developers more confident about the good quality
of the changed source code.

118

Part IV

Summary

119

Chapter 8
Conclusion and Future Work

This chapter concludes the thesis. A summary of the contributions is given in Section
8.1. Section 8.2 introduces some limitations to the contributions and Section 8.3 provides
an overview of possible future work based on the contributions of our research.

8.1 Summary and Conclusion

In the QA of a scientific framework, we need to cope with special challenges of scientific
software, as well as finding a way of dealing with the large variability of a framework.

In this thesis, we explain how SPLE supports the quality assurance of a scientific
framework. We consider the framework as the product line platform. The applications
developed by the users of the framework are the product line applications. The developers
of a scientific framework only deal with domain engineering and, in particular, domain
testing holds high importance for the developers. They need to test the functionality of
the scientific framework without knowing exactly what kind of applications the users are
going to develop.

In Chapter 3 we introduce VAF, a SPL test strategy for frameworks. In VAF, we create
several variability models based on the mathematical requirements for the framework, i.e.
the mathematical problems that the framework should solve. For each variability model,
we develop as associated system test application that solves the mathematical problem
presented with the variability model. The commonality, i.e. common characteristics for
every application of the framework, is tested using unit and integration testing.

120

8.1. SUMMARY AND CONCLUSION

Chapter 4 concretizes VAF by introducing a process for creating reengineering variability
models and system test applications for a scientific framework. In reengineering product
management, we create product roadmaps that describe the scope and the goals of the
scientific framework. The roadmaps determine major common and variable features of all
possible applications for the framework. First, we define high level goals for the framework
by describing mathematical problems and the approches for solving them with the
framework. Second, we define a general mathematical model for each goal by describing
the mathematical problem in detail. Third, we describe a general approach for solving the
general mathematical problem. In domain requirements engineering, we establish a list of
common requirements for all system test applications and create variability models that
define the variable requirements for each system test application. For each variability
model, we first choose a concrete mathematical model and subsequently identify its
variable features, their dependencies and constraints by analyzing the previously created
roadmap. We use the variability models for a model-based derivation of test cases for
the system test applications. A framework’s users can reuse the created artifacts for the
development of their own applications.

For the implementation of the system test applications, we take into account the common
requirements, the concrete mathematical model, and the variability model resulting from
the aforementioned process. As described in Chapter 7, the tool FeatureIDE together
with FeatureC++ support the system test application development with graphical editors
for variability modeling and the identification of contraints. Furthermore, FeatureIDE
supports the derivation of test cases for the system test applications.

Together with other QA activities, the test activities described above form VAF-Pro, the
design of a QA process for scientific frameworks introduced in Chapter 5. In a manual
literatur review, we collected the characteristics of scientific software development that
were used as rationale for the design of the QA process. The QA process has three angles
of view: the different testing levels (unit, integration, and system testing), different goals
in V&V of scientific software (code verification, algorithm verification, and scientific
validation), and regression testing. In the planning step, each developer creates unit
and integration tests, and develops variability models with the associated system test
applications whenever appropriate. In the review step, any changed development artifacts
are reviewed by the developer based on a desk-checking checklist. Subsequently, unit,
integration, and system tests are executed in a regression testing environment. The
outcome of the system test applications include output for both algorithm verification
and scientific validation.

121

CHAPTER 8. CONCLUSION AND FUTURE WORK

Chapter 6 reports on a case study analyzing the feasibility and acceptance by DUNE
developers for two parts of the VAF-Pro QA process design: variability model creation
and desk-checking. In the case study, we observed how the developers perform variability
modeling and desk-checking. Afterwards, a questionnaire ascertained developer’s opinions
on the advantages and disadvantages, usefulness, ease of use, and intention of use of the
methods. The main results of the case study are that variability modeling is feasible for
the development team, but we needed to find a different variability modeling language
to represent all important aspects. The acceptance of variability modeling was positive.
Desk-checking was also found feasible and was clearly accepted.

Chapter 7 introduces a prototypical implementation of the system testing part of VAF-
Pro QA process using FeatureIDE and an automated test environment developed for
DUNE. In the context of our research, the automated test environment was extended
by the system testing level. The DUNE developers tried out the extension during an
implementation sprint, after which they were more confident about the good quality of
the changed source code.

8.2 Limitations

The process of creating reengineering variability models and system test applications is
first used for the scientific framework DUNE. While we also expect the process to be
applicable for other scientific frameworks, those in another domains could have some
special characteristics that we could not foresee in developing the process. This may lead
to necessary adaptions in the process and is a subject of future research.

VAF-Pro, the QA process for scientific frameworks, is designed for a scientific development
team of an academic project. Such teams mostly consist of scientists developing the
software, as well as possibly some technical staff. If the scientific framework in question
is developed in a different environment (e.g. research center or industry), adaptions of
the QA process are most likely necessary (e.g. in form of more extensive documentation).
The design of VAF-Pro also assumes, that the developers test the software themselves. If
there is a separate testing department, further test roles and activities (e.g. further test
documentation for smooth transitions between the development and test teams) have to
be inserted into the process.

If the developed scientific framework includes a high security risk (e.g. medical applica-
tions), this must also be taken into account in the QA process. In such a case, beside the

122

8.3. FUTURE WORK

desk-check review, structured inspections might be advisable, for example. The quality
assurance should be carefully planned and documented.

8.3 Future Work

There are several possible research directions for the continuation of our research. One
of the next planned steps is the adaption of the VAF-Pro quality assurance process for
further scientific frameworks. Some questions that arise are: How does VAF-Pro (in
particular, the process of creating reengineering variability models) fit other scientific
frameworks, particularly other domains (e.g. biology or medical science)? What needs
to be adapted on VAF-Pro? Furthermore, as discussed in the last section 8.2, it is an
interesting research challenge to investigate how the VAF-Pro QA process needs to be
adapted if the development environment changes (e.g. research center or industry instead
of an academic project) or the framework in question includes a high securiry risk (e.g.
medical applications). Both cases will likely lead to a more extensive documentation
and for example to the adoption of structured inspections. Replicating the case study
introduced in this thesis for other scientific frameworks could reveal such requirements
for adaption mentioned above.

The list of special characteristics of scientific software that need to be taken into account
when designing QA for scientific software reflects a unique effort in collecting such
characteristics in the software engineering for the CSE research community. Further
research in this direction could answer questions such as: Do we need to take other special
characteristics into account, when designing QA for scientific frameworks in other domains
(e.g. biology or medical science)? What kind of changes do such new special characteristics
demand on the QA process design? How does the list of special characteristics change
when we use it as rationale for the design of other software engineering methods, e.g.
software design, requirements engineering, or software maintenance?

Teams developing scientific frameworks that have already existed for years or even
decades often need to meet the challenge of re-structuring existing source code or even
changing the programming paradigm used. Such re-structuring involves the risk of losing
or breaking existing functionality and features. The process of creating reengineering
variability models could be used to capture the functionality and feature of the scientific
framework before the re-structuring. An interesting research question is: How can the
developed variability models and system test cases be used to support re-structuring
decisions and the QA during re-structuring?

123

CHAPTER 8. CONCLUSION AND FUTURE WORK

Variability models capturing the features of a scientific framework can also be used as
documentation for knowledge management, supporting the communication and decision
making in the dvelopment team. It is also important for capturing knowledge about
the framework’s functionality so that it does not get lost when developers leave the
development team. Interesting research questions include: What kind of management
and development decisions for a scientific framework can be supported by variability
modeling? What further information could be connected to a variability model to support
knowledge management?

In further research, the model-based method for test case derivation based on a variability
model developed in this thesis could be put under a large-scale practical test. An
interesting research question would be: What kind of test suite selection methods are
recommendable to be combined with our test case derivation method? In this area, a
collaboration with the FeatureIDE development team could be possible to enable the use
of test suite selection methods together with FeatureC++.

Correspondingly, a logical further research direction is a large-scale practical test for the
use of VAF-Pro leaned on the prototypical implementation introduced in this thesis. This
should include a more extensive use of feature-oriented programming in the development
of the system test applications.

While the contributions of this thesis provide a basis for the adoption of SPL methods
for the QA of scientific frameworks, but there are still many open questions concerning
further possibilities for its application.

124

Appendix A
Case Study Questionnaire

The following questionnaire was used in the Case Study with DUNE developers.

DUNE Case Study: Variability modeling and desk-check

Variability modeling, open questions:

1. What do you believe are the benefits of variability modeling for the DUNE devel-
opment?

2. What do you believe are the disadvantages of variability modeling for the DUNE
development?

3. Furthermore, what did you like about creating the variability model?

4. Furthermore, what did you not like about creating the variability model? What
did you find difficult?

5. Do you have any further comments on variability modeling?

Variability modeling, closed questions:

What is your opinion on the following arguments about variability modeling? Please
mark the appropriate choice with a cross. When you answer the questions, please assume
that variability modeling will be applied in DUNE development, and that you continue
developing DUNE in the future.

125

APPENDIX A. CASE STUDY QUESTIONNAIRE

Strongly
agree

Agree Rather
agree

Rather
dis-
agree

Disagree Strongly
dis-
agree

I believe variability modeling
is helpful in designing and de-
veloping system test applica-
tions.
I believe the benefits of a vari-
able model outbalance the ef-
fort for creating it.
Using variability modeling as
a quality assurance method for
DUNE is important to me.
Using variability modeling will
help me to develop higher qual-
ity DUNE code.
Variability modeling is easy to
learn.
I believe variability modeling
is easy to use in practice.
I intend to use variability mod-
eling when developing code for
DUNE.

126

Desk-check, open questions:

1. What do you believe are the benefits of desk-checking for the DUNE development?

2. What do you believe are the disadvantages of desk-checking for the DUNE develop-
ment?

3. Furthermore, what did you like about desk-checking?

4. Furthermore, what did you not like about desk-checking? What did you find
difficult?

5. Do you have any further comments on desk-checking?

Desk-checking, closed questions:

What is your opinion on the following arguments about desk-checking? Please mark the
appropriate choice with a cross. When you answer the questions, please assume that
desk-checking will be applied in DUNE development, and that you continue developing
DUNE in the future.

127

APPENDIX A. CASE STUDY QUESTIONNAIRE

Strongly
agree

Agree Rather
agree

Rather
dis-
agree

Disagree Strongly
dis-
agree

I believe that desk-checking
leads to a higher rate of finding
software defects.
I believe that desk-checking
leads to a better DUNE source
code maintainability.
I believe that desk-checking
leads to a better DUNE source
code readability.
I believe the benefits of a desk-
checking outbalance the effort
for creating it.
Using desk-checking as a qual-
ity assurance method for
DUNE is important to me.
Using desk-checking will help
me to develop higher quality
DUNE code.
Desk-checking is easy to learn.
I believe desk-checking is easy
to use in practice.
I intend to use desk-checking
when developing code for
DUNE.

128

Appendix B
Source Code for Diffusion System Test
Application

This appendix includes all relevant source code for the diffusion system test application:
the feature-oriented source code in Section B.1, the main program in Section B.2 and the
source code for the variability model in Section B.3.

B.1 Diffusion: Feature-Oriented Source Code

The following listings are the feature-oriented source code for the diffusion system test
application.

Feature "diffusion":

c l a s s Features {
} ;

Feature "mesh":

r e f i n e s c l a s s Features {
pub l i c :

const std : : s t r i n g mesh () { re turn " " ; }
} ;

Feature "cube":

129

APPENDIX B. SOURCE CODE FOR DIFFUSION SYSTEM TEST APPLICATION

r e f i n e s c l a s s Features {
pub l i c :

const std : : s t r i n g mesh () { re turn "CUBE" ; }
} ;

Feature "simplex":

r e f i n e s c l a s s Features {
pub l i c :

const std : : s t r i n g mesh () { re turn "SIMPLEX" ; }
} ;

Feature "dim":

r e f i n e s c l a s s Features {
} ;

Feature "dim_2":

r e f i n e s c l a s s Features {
pub l i c :

const s t a t i c i n t F_DIM = 2 ;
} ;

Feature "dim_3":

r e f i n e s c l a s s Features {
pub l i c :

const s t a t i c i n t F_DIM = 3 ;
} ;

Feature "method":

r e f i n e s c l a s s Features {
pub l i c :

const std : : s t r i n g method () { re turn " " ; }
} ;

Feature "SIPG":

r e f i n e s c l a s s Features {
pub l i c :

const std : : s t r i n g method () { re turn "SIPG " ; }
} ;

130

B.2. DIFFUSION: MAIN PROGRAM

Feature "FEM":

r e f i n e s c l a s s Features {
pub l i c :

const std : : s t r i n g method () { re turn "FEM" ; }
} ;

Feature "maxlevel":

r e f i n e s c l a s s Features {
pub l i c :

i n t maxlevel () { re turn −1; }
} ;

Feature "ml_2" (ml_3 - ml_8 accordingly):

r e f i n e s c l a s s Features {
pub l i c :

i n t maxlevel () { re turn 2 ; }
} ;

Feature "degree":

r e f i n e s c l a s s Features {
} ;

Feature "deg_1" (deg_2 - deg_4 accordingly):

r e f i n e s c l a s s Features {
pub l i c :

const s t a t i c i n t F_DEGREE = 1 ;
} ;

B.2 Diffusion: Main Program

This is the "diffusion.cc" main program file:

/∗∗ \ f i l e
\ b r i e f High−l e v e l t e s t with Poisson equat ion

∗/
#i f d e f HAVE_CONFIG_H
#inc lude " c on f i g . h "
#end i f

131

APPENDIX B. SOURCE CODE FOR DIFFUSION SYSTEM TEST APPLICATION

#inc lude<iostream>
#inc lude<vector>
#inc lude<map>
#inc lude<dune/common/ p a r a l l e l /mpihelper . hh>
#inc lude<dune/common/ except i ons . hh>
#inc lude<dune/common/ f v e c t o r . hh>
#inc lude<dune/common/ s t a t i c_a s s e r t . hh>
#inc lude<dune/common/ timer . hh>
#inc lude<dune/ g r id / yaspgr id . hh>
#inc lude<dune/ i s t l / bvector . hh>
#inc lude<dune/ i s t l / ope ra to r s . hh>
#inc lude<dune/ i s t l / s o l v e r s . hh>
#inc lude<dune/ i s t l / p r e c ond i t i on e r s . hh>
#inc lude<dune/ i s t l / i o . hh>
#inc lude<dune/ i s t l /paamg/amg . hh>
#inc lude<dune/ i s t l / super lu . hh>
#inc lude<dune/ g r id / i o / f i l e /vtk/ subsampl ingvtkwr i ter . hh>

#inc lude<dune/pdelab / f in i tee l ementmap /monomfem . hh>
#inc lude<dune/pdelab / f in i tee l ementmap /opbfem . hh>
#inc lude<dune/pdelab / f in i tee l ementmap /qkdg . hh>
#inc lude<dune/pdelab / f in i tee l ementmap /pkfem . hh>
#inc lude<dune/pdelab / c on s t r a i n t s / conforming . hh>
#inc lude<dune/pdelab / g r i d f unc t i on spa c e / g r i d f unc t i on spa c e . hh>
#inc lude<dune/pdelab / g r i d f unc t i on spa c e / g r i d f u n c t i o n s p a c e u t i l i t i e s . hh>
#inc lude<dune/pdelab / g r i d f unc t i on spa c e / i n t e r p o l a t e . hh>
#inc lude<dune/pdelab / c on s t r a i n t s /common/ c on s t r a i n t s . hh>
#inc lude<dune/pdelab /common/ func t i on . hh>
#inc lude<dune/pdelab /common/ f u n c t i o n u t i l i t i e s . hh>
#inc lude<dune/pdelab /common/ vtkexport . hh>
#inc lude<dune/pdelab / g r i dope ra to r / g r i dope ra to r . hh>
#inc lude<dune/pdelab /backend/ i s t l v e c t o rba ck end . hh>
#inc lude<dune/pdelab /backend/ i s t lmat r ixbackend . hh>
#inc lude<dune/pdelab /backend/ i s t l s o l v e r b a c k end . hh>
#inc lude<dune/pdelab / l o c a l o p e r a t o r / d i f f u s i o ndg . hh>
#inc lude<dune/pdelab / l o c a l o p e r a t o r / convec t i ond i f f u s i onpa ramet e r . hh>
#inc lude<dune/pdelab / l o c a l o p e r a t o r / c onv e c t i ond i f f u s i ondg . hh>
#inc lude<dune/pdelab / l o c a l o p e r a t o r / conve c t i ond i f f u s i on f em . hh>
#inc lude<dune/pdelab / s t a t i ona ry / l inearprob l em . hh>

// used here only f o r Dune : : PDELab : : L inea rSo lve rResu l t
#inc lude<dune/pdelab /newton/newton . hh>

132

B.2. DIFFUSION: MAIN PROGRAM

#inc lude " . . / u t i l i t y / gr idexamples . hh "
#inc lude " . . / u t i l i t y / u t i l i t y . hh "
#inc lude " s r c /Features . h "

const bool g raph i c s = true ;

template<typename GV, typename RF>
c l a s s Parameter
{

typede f Dune : : PDELab : : Convect ionDif fus ionBoundaryCondit ions : : Type
BCType ;

pub l i c :
typede f Dune : : PDELab : : Convect ionDi f fus ionParameterTra i t s<GV,RF> Tra i t s ;

// ! t en so r d i f f u s i o n c o e f f i c i e n t
typename Tra i t s : : PermTensorType
A (const typename Tra i t s : : ElementType& e ,

const typename Tra i t s : : DomainType& x) const
{

typename Tra i t s : : PermTensorType I ;
f o r (std : : s i z e_t i =0; i<Tra i t s : : dimDomain ; i++)

f o r (std : : s i z e_t j =0; j<Tra i t s : : dimDomain ; j++)
I [i] [j] = (i==j) ? 1 : 0 ;

r e turn I ;
}

// ! v e l o c i t y f i e l d
typename Tra i t s : : RangeType
b (const typename Tra i t s : : ElementType& e ,

const typename Tra i t s : : DomainType& x) const
{

typename Tra i t s : : RangeType v (0 . 0) ;
r e turn v ;

}

// ! s ink term
typename Tra i t s : : RangeFieldType
c (const typename Tra i t s : : ElementType& e ,

const typename Tra i t s : : DomainType& x) const
{

133

APPENDIX B. SOURCE CODE FOR DIFFUSION SYSTEM TEST APPLICATION

re turn 0 . 0 ;
}

// ! source term
typename Tra i t s : : RangeFieldType
f (const typename Tra i t s : : ElementType& e ,

const typename Tra i t s : : DomainType& x) const
{

typename Tra i t s : : DomainType xg loba l = e . geometry () . g l oba l (x) ;
typename Tra i t s : : RangeFieldType norm = xg loba l . two_norm2 () ;
r e turn (2 . 0∗GV: : dimension −4.0∗norm)∗ exp(−norm) ;

}

// ! boundary cond i t i on type func t i on
BCType
bctype (const typename Tra i t s : : In t e r s ec t i onType& i s ,

const typename Tra i t s : : Intersect ionDomainType& x) const
{

re turn
Dune : : PDELab : : Convect ionDi f fus ionBoundaryCondit ions : : D i r i c h l e t ;

}

// ! D i r i c h l e t boundary cond i t i on value
typename Tra i t s : : RangeFieldType
g (const typename Tra i t s : : ElementType& e ,

const typename Tra i t s : : DomainType& x) const
{

typename Tra i t s : : DomainType xg loba l = e . geometry () . g l oba l (x) ;
typename Tra i t s : : RangeFieldType norm = xg loba l . two_norm2 () ;
r e turn exp(−norm) ;

}

// ! Neumann boundary cond i t i on
typename Tra i t s : : RangeFieldType
j (const typename Tra i t s : : In te r s ec t i onType& i s ,

const typename Tra i t s : : Intersect ionDomainType& x) const
{

re turn 0 . 0 ;
}

// ! out f low boundary cond i t i on
typename Tra i t s : : RangeFieldType

134

B.2. DIFFUSION: MAIN PROGRAM

o (const typename Tra i t s : : In te r s ec t i onType& i s ,
const typename Tra i t s : : Intersect ionDomainType& x) const

{
re turn 0 . 0 ;

}
} ;

/∗ ! \ b r i e f Adapter r e tu rn ing | | f 1 (x)− f 2 (x) | | ^ 2 f o r two given
g r id f unc t i on s

\tparam T1 a gr id func t i on type
\tparam T2 a gr id func t i on type

∗/
template<typename T1 , typename T2>
c l a s s Di f ferenceSquaredAdapter

: pub l i c Dune : : PDELab : : GridFunctionBase<
Dune : : PDELab : : GridFunct ionTraits<typename T1 : : Tra i t s : : GridViewType ,

typename T1 : : Tra i t s : : RangeFieldType ,
1 ,Dune : : Fie ldVector<typename T1 : : Tra i t s : : RangeFieldType ,1> >

, Dif ferenceSquaredAdapter<T1 ,T2> >
{
pub l i c :

typede f Dune : : PDELab : : GridFunct ionTraits<
typename T1 : : Tra i t s : : GridViewType ,
typename T1 : : Tra i t s : : RangeFieldType ,
1 ,Dune : : Fie ldVector<typename T1 : : Tra i t s : : RangeFieldType ,
1> > Tra i t s ;

// ! c on s t ruc to r
Di f ferenceSquaredAdapter (const T1& t1_ , const T2& t2_) :

t1 (t1_) , t2 (t2_) {}

// ! \ copydoc GridFunctionBase : : eva luate ()
i n l i n e void eva luate (const typename Tra i t s : : ElementType& e ,

const typename Tra i t s : : DomainType& x ,
typename Tra i t s : : RangeType& y) const

{
typename T1 : : Tra i t s : : RangeType y1 ;
t1 . eva luate (e , x , y1) ;
typename T2 : : Tra i t s : : RangeType y2 ;
t2 . eva luate (e , x , y2) ;
y1 −= y2 ;

135

APPENDIX B. SOURCE CODE FOR DIFFUSION SYSTEM TEST APPLICATION

y = y1 . two_norm2 () ;
}

i n l i n e const typename Tra i t s : : GridViewType& getGridView () const
{

re turn t1 . getGridView () ;
}

p r i va t e :
const T1& t1 ;
const T2& t2 ;

} ;

// ! s o l v e problem with DG method
template<c l a s s GV, c l a s s FEM, c l a s s PROBLEM, in t degree ,

i n t b l o ck s i z e >
void runDG (const GV& gv , const FEM& fem , PROBLEM& problem ,

std : : s t r i n g basename , i n t l e v e l , s td : : s t r i n g method ,
std : : s t r i n g weights , double alpha)

{
// coord inate and r e s u l t type
typede f typename GV: : Grid : : ctype Coord ;
typede f double Real ;
const i n t dim = GV: : Grid : : dimension ;
std : : s t r i ng s t r eam ful lname ;
fu l lname << basename << "_" << method << "_w" << weights

<< "_k" << degree
<< "_dim" << dim << " _leve l " << l e v e l ;

// make g r id func t i on space
typede f Dune : : PDELab : : NoConstraints CON;
typede f Dune : : PDELab : : ISTLVectorBackend

<Dune : : PDELab : : ISTLParameters : : s ta t i c_b lock ing , b l o ck s i z e > VBE;
typede f Dune : : PDELab : : GridFunctionSpace<GV,FEM,CON,VBE> GFS;
GFS g f s (gv , fem) ;

// make l o c a l operator
Dune : : PDELab : : ConvectionDiffusionDGMethod : : Type m;
i f (method=="SIPG")

m = Dune : : PDELab : : ConvectionDiffusionDGMethod : : SIPG ;
i f (method=="NIPG")

m = Dune : : PDELab : : ConvectionDiffusionDGMethod : : NIPG;

136

B.2. DIFFUSION: MAIN PROGRAM

Dune : : PDELab : : ConvectionDiffusionDGWeights : : Type w;
i f (weights=="ON")

w = Dune : : PDELab : : ConvectionDiffusionDGWeights : : weightsOn ;
i f (weights=="OFF")

w = Dune : : PDELab : : ConvectionDiffusionDGWeights : : we ightsOf f ;
typede f Dune : : PDELab : : ConvectionDiffusionDG<PROBLEM,FEM> LOP;
LOP lop (problem ,m,w, alpha) ;
typede f Dune : : PDELab : : ISTLMatrixBackend MBE;
typede f typename GFS : : template Constra intsConta iner<Real >: :Type CC;
CC cc ;
typede f Dune : : PDELab : : GridOperator<GFS,GFS,LOP,MBE, Real ,

Real , Real ,CC,CC> GO;
GO go (g f s , cc , g f s , cc , lop) ;

// make a vec to r o f degree o f freedom vec to r s and i n i t i a l i z e i t with
// D i r i c h l e t ex tens i on
typede f typename GO: : Tra i t s : : Domain U;
U u(g f s , 0 . 0) ;
typede f Dune : : PDELab

: : Convect ionDi f fus ionDi r i ch l e tExtens ionAdapter<PROBLEM> G;
G g (gv , problem) ;

// make l i n e a r s o l v e r and so l v e problem
i f (method=="SIPG")

{
typede f Dune : : PDELab : : ISTLBackend_SEQ_CG_ILU0 LS ;
LS l s (10000 , 1) ;
typede f Dune : : PDELab : : Stat ionaryLinearProblemSolver<GO,LS ,U> SLP ;
SLP s l p (go , u , l s , 1 e−12);
s l p . apply () ;
Dune : : PDELab : : L inearSo lverResu l t<double> l s_ r e s u l t = l s . r e s u l t () ;
TEST_OUTPUT("dG−Level=" << l e v e l << " IT " , l s_ r e s u l t . i t e r a t i o n s)
TEST_OUTPUT("dG−Level=" << l e v e l << " ra t e o f convergence " ,

l s_ r e s u l t . conv_rate)
}

e l s e
{

typede f Dune : : PDELab : : ISTLBackend_SEQ_BCGS_ILU0 LS ;
LS l s (10000 , 1) ;
typede f Dune : : PDELab : : Stat ionaryLinearProblemSolver<GO,LS ,U> SLP ;
SLP s l p (go , u , l s , 1 e−12);
s l p . apply () ;

137

APPENDIX B. SOURCE CODE FOR DIFFUSION SYSTEM TEST APPLICATION

Dune : : PDELab : : L inearSo lverResu l t<double> l s_ r e s u l t (l s . r e s u l t ()) ;
TEST_OUTPUT("dG−Level=" << l e v e l << " IT " , l s_ r e s u l t . i t e r a t i o n s)
TEST_OUTPUT("dG−Level=" << l e v e l << " ra t e o f convergence " ,

l s_ r e s u l t . conv_rate)
}

// compute L2 e r r o r
typede f Dune : : PDELab : : DiscreteGridFunct ion<GFS,U> UDGF;
UDGF udgf (g f s , u) ;
typede f Di f ferenceSquaredAdapter<G,UDGF> Di f f e r enceSquared ;
Di f f e r enceSquared d i f f e r e n c e s qua r ed (g , udgf) ;
typename Di f f e r enceSquared : : Tra i t s : : RangeType l 2 e r r o r s qua r ed (0 . 0) ;
Dune : : PDELab : : in tegrateGr idFunct ion (d i f f e r en c e squa r ed ,

l 2 e r ro r squar ed , 1 2) ;

TEST_OUTPUT("dG−Level=" << l e v e l << " gfs−g l o b a l s i z e " , g f s . g l o b a l S i z e ())
TEST_OUTPUT("dG−Level=" << l e v e l << " L2ERROR" , std : : setw (11)

<< std : : s e t p r e c i s i o n (7)
<< std : : s c i e n t i f i c << std : : uppercase
<< sq r t (l 2 e r r o r s qua r ed [0]))

// wr i t e vtk f i l e
i f (g raph i c s)

{
Dune : : SubsamplingVTKWriter<GV> vtkwr i t e r (gv , degree −1);
v tkwr i t e r . addVertexData (new Dune : : PDELab : :

VTKGridFunctionAdapter<UDGF>(udgf , " u_h ")) ;
v tkwr i t e r . addVertexData (new Dune : : PDELab : :

VTKGridFunctionAdapter<G>(g , " u ")) ;
v tkwr i t e r . wr i t e (fu l lname . s t r () , Dune : :VTK: : a s c i i) ;

}
std : : cout << "==" << std : : endl ;

}

// ! s o l v e problem with DG method
template<c l a s s GV, c l a s s FEM, c l a s s PROBLEM, in t degree>
void runFEM (const GV& gv , const FEM& fem , PROBLEM& problem ,

std : : s t r i n g basename , i n t l e v e l)
{

// coord inate and r e s u l t type
typede f typename GV: : Grid : : ctype Coord ;

138

B.2. DIFFUSION: MAIN PROGRAM

typede f double Real ;
const i n t dim = GV: : Grid : : dimension ;
std : : s t r i ng s t r eam ful lname ;
fu l lname << basename << "_FEM" << "_k" << degree << "_dim"

<< dim << " _leve l " << l e v e l ;

// make g r id func t i on space
typede f Dune : : PDELab : : ISTLVectorBackend<> VBE;
typede f Dune : : PDELab : : Con fo rmingDi r i ch l e tConst ra in t s CON;
typede f Dune : : PDELab : : GridFunctionSpace<GV,FEM,CON,VBE> GFS;
GFS g f s (gv , fem) ;

// make c on s t r a i n t s conta ine r and i n i t i a l i z e i t
typede f typename GFS : : template Constra intsConta iner<Real >: :Type CC;
CC cc ;

// make l o c a l operator
typede f Dune : : PDELab : : ConvectionDiffusionFEM<PROBLEM,FEM> LOP;
LOP lop (problem) ;
typede f Dune : : PDELab : : ISTLMatrixBackend MBE;
typede f Dune : : PDELab : : GridOperator<GFS,GFS,LOP,MBE, Real , Real , Real ,

CC,CC> GO;
GO go (g f s , cc , g f s , cc , lop) ;

// make a vec to r o f degree o f freedom vec to r s and i n i t i a l i z e i t
// with D i r i c h l e t ex tens i on
typede f typename GO: : Tra i t s : : Domain U;
U u(g f s , 0 . 0) ;
typede f Dune : : PDELab : :

Convect ionDi f fu s ionDi r i ch l e tExtens ionAdapter<PROBLEM> G;
G g (gv , problem) ;
Dune : : PDELab : : i n t e r p o l a t e (g , g f s , u) ;

Dune : : PDELab : : ConvectionDif fus ionBoundaryCondit ionAdapter<PROBLEM>
bctype (gv , problem) ;

Dune : : PDELab : : c o n s t r a i n t s (bctype , g f s , cc) ;
Dune : : PDELab : : set_nonconstra ined_dofs (cc , 0 . 0 , u) ;

// make l i n e a r s o l v e r and so l v e problem
typede f Dune : : PDELab : : ISTLBackend_SEQ_CG_ILU0 LS ;
LS l s (10000 , 1) ;
typede f Dune : : PDELab : : Stat ionaryLinearProblemSolver<GO,LS ,U> SLP ;

139

APPENDIX B. SOURCE CODE FOR DIFFUSION SYSTEM TEST APPLICATION

SLP s l p (go , u , l s , 1 e−12);
s l p . apply () ;
Dune : : PDELab : : L inearSo lverResu l t<double> l s_ r e s u l t (l s . r e s u l t ()) ;
TEST_OUTPUT("FEM−Level=" << l e v e l << " IT " , l s_ r e s u l t . i t e r a t i o n s)
TEST_OUTPUT("FEM−Level=" << l e v e l << " ra t e o f convergence " ,

l s_ r e s u l t . conv_rate)

// compute L2 e r r o r
typede f Dune : : PDELab : : DiscreteGridFunct ion<GFS,U> UDGF;
UDGF udgf (g f s , u) ;
typede f Di f ferenceSquaredAdapter<G,UDGF> Di f f e r enceSquared ;
Di f f e r enceSquared d i f f e r e n c e s qua r ed (g , udgf) ;
typename Di f f e r enceSquared : : Tra i t s : : RangeType l 2 e r r o r s qua r ed (0 . 0) ;
Dune : : PDELab : : in tegrateGr idFunct ion (d i f f e r en c e squa r ed ,

l 2 e r ro r squar ed , 1 2) ;

TEST_OUTPUT("FEM−Level=" << l e v e l << " gfs−g l o b a l s i z e " ,
g f s . g l o b a l S i z e ())

TEST_OUTPUT("FEM−Level=" << l e v e l << " L2ERROR" , std : : setw (11)
<< std : : s e t p r e c i s i o n (7) << std : : s c i e n t i f i c
<< std : : uppercase
<< sq r t (l 2 e r r o r s qua r ed [0]))

// wr i t e vtk f i l e
i f (g raph i c s)

{
Dune : : SubsamplingVTKWriter<GV> vtkwr i t e r (gv , degree −1);
v tkwr i t e r . addVertexData (new Dune : : PDELab : :

VTKGridFunctionAdapter<UDGF>(udgf , " u_h ")) ;
v tkwr i t e r . addVertexData (new Dune : : PDELab : :

VTKGridFunctionAdapter<G>(g , " u ")) ;
v tkwr i t e r . wr i t e (fu l lname . s t r () , Dune : :VTK: : a s c i i) ;

}
}

i n t main (i n t argc , char ∗∗ argv)
{

//Maybe i n i t i a l i z e Mpi
Dune : : MPIHelper& he lpe r = Dune : : MPIHelper : : i n s t anc e (argc , argv) ;
i f (Dune : : MPIHelper : : i sFake)

std : : cout<< " This i s a s e qu en t i a l program . " << std : : endl ;
e l s e

140

B.2. DIFFUSION: MAIN PROGRAM

{
i f (he lpe r . rank ()==0)

std : : cout << " p a r a l l e l run on " << he lpe r . s i z e ()
<< " proce s s (es) " << std : : endl ;

}

t ry
{

Features f e a t u r e s ;
i f (f e a t u r e s . mesh()=="CUBE")

{
const i n t dim = Features : :F_DIM;
Dune : : Fie ldVector<double , dim> L (1 . 0) ;
Dune : : Fie ldVector<int , dim> N(1) ;
Dune : : Fie ldVector<bool , dim> P(f a l s e) ;
typede f Dune : : YaspGrid<dim> Grid ;
Grid g r id (L ,N,P , 0) ;
typede f Grid : : LeafGridView GV;
f o r (i n t i =0; i<=f e a t u r e s . maxlevel () ; ++i)

{
const GV& gv=gr id . l ea fView () ;
typede f Parameter<GV, double> PROBLEM;
PROBLEM problem ;
const i n t degree=Features : :F_DEGREE;

i f (f e a t u r e s . method()=="SIPG") {
typede f Dune : : PDELab : :

QkDGLocalFiniteElementMap<Grid : : ctype ,
double , degree ,
dim> FEMDG;

FEMDG femdg ;
const i n t b l o c k s i z e =

Dune : : QkStuff : : QkSize<degree , dim>: : va lue ;
runDG<GV,FEMDG,PROBLEM, degree , b l o ck s i z e >

(gv , femdg , problem , "CUBE" , i , " SIPG " , "ON" , 2 . 0) ;
}
i f (f e a t u r e s . method()=="FEM") {

typede f Dune : : PDELab : : QkCGLocalFiniteElementMap
<Grid : : ctype , double , degree , dim> FEMCG;

FEMCG femcg ;
runFEM<GV,FEMCG,PROBLEM, degree>

(gv , femcg , problem , "CUBE" , i) ;

141

APPENDIX B. SOURCE CODE FOR DIFFUSION SYSTEM TEST APPLICATION

}
// r e f i n e g r id
i f (i<f e a t u r e s . maxlevel ()) g r id . g l oba lRe f i n e (1) ;

}
}

#i f HAVE_ALUGRID
BEGIN_BLOCK(HAVE_ALUGRID)

i f (f e a t u r e s . mesh()=="SIMPLEX")
{

const i n t dim = Features : :F_DIM;

// make g r id
ALUUnitCube<dim> unitcube ;
typede f ALUUnitCube<dim>: : GridType Grid ;
typede f Grid : : LeafGridView GV;

f o r (i n t i =0; i<=f e a t u r e s . maxlevel () ; ++i)
{

const GV& gv=unitcube . g r id () . l ea fView () ;
typede f Parameter<GV, double> PROBLEM;
PROBLEM problem ;
const i n t degree = Features : :F_DEGREE;

i f (f e a t u r e s . method()=="SIPG") {
typede f Dune : : PDELab : : OPBLocalFiniteElementMap

<Grid : : ctype , double , degree , dim ,
Dune : : GeometryType : : s implex> FEMDG;

FEMDG femdg ;
const i n t b l o c k s i z e = Dune : :PB : :

PkSize<degree , dim>: : va lue ;
runDG<GV,FEMDG,PROBLEM, degree , b l o ck s i z e >

(gv , femdg , problem , "SIMPLEX" , i , " SIPG " , "ON" , 2 . 0) ;
}

i f (f e a t u r e s . method()=="FEM") {
typede f Dune : : PDELab : : PkLocalFiniteElementMap

<GV, Grid : : ctype , double , degree , dim> FEMCG;
FEMCG femcg (gv) ;
runFEM<GV,FEMCG,PROBLEM, degree >(gv , femcg , problem ,

"SIMPLEX" , i) ;
}

142

B.3. DIFFUSION: VARIABILITY MODEL

// r e f i n e g r id
i f (i<f e a t u r e s . maxlevel ()) unitcube . g r id () . g l oba lRe f i n e (1) ;

}
}

END_BLOCK(HAVE_ALUGRID)
#end i f

}
catch (Dune : : Exception &e)

{
std : : c e r r << "Dune repor ted e r r o r : " << e << std : : endl ;
r e turn 1 ;

}
catch (. . .)

{
std : : c e r r << "Unknown except ion thrown ! " << std : : endl ;
r e turn 1 ;

}
}

B.3 Diffusion: Variability Model

This is the source code for the diffusion variability model

<?xml ve r s i on ="1.0" encoding="UTF−8" s tanda lone="no"?>
<featureModel chosenLayoutAlgorithm="1">

<st ruc t>
<and mandatory=" true " name=" d i f f u s i o n ">

<a l t mandatory=" true " name="mesh">
<f e a tu r e mandatory=" true " name="cube"/>
<f ea tu r e mandatory=" true " name="s implex "/>

</a l t>
<a l t mandatory=" true " name="dim">

<f ea tu r e mandatory=" true " name="dim_2"/>
<f ea tu r e mandatory=" true " name="dim_3"/>

</a l t>
<a l t mandatory=" true " name="method">

<f e a tu r e mandatory=" true " name="SIPG"/>
<f ea tu r e mandatory=" true " name="FEM"/>

</a l t>
<a l t mandatory=" true " name="maxlevel ">

<f e a tu r e mandatory=" true " name="ml_2"/>

143

APPENDIX B. SOURCE CODE FOR DIFFUSION SYSTEM TEST APPLICATION

<fea tu r e mandatory=" true " name="ml_3"/>
<f ea tu r e mandatory=" true " name="ml_4"/>
<f ea tu r e mandatory=" true " name="ml_5"/>
<f ea tu r e mandatory=" true " name="ml_6"/>
<f ea tu r e mandatory=" true " name="ml_7"/>
<f ea tu r e mandatory=" true " name="ml_8"/>

</a l t>
<a l t mandatory=" true " name="degree ">

<f e a tu r e mandatory=" true " name="deg_1"/>
<f ea tu r e mandatory=" true " name="deg_2"/>
<f ea tu r e mandatory=" true " name="deg_3"/>
<f ea tu r e mandatory=" true " name="deg_4"/>

</a l t>
</and>

</st ruc t>
<cons t r a i n t s >

<rule>
<imp>

<conj>
<var>cube</var>
<conj>

<var>dim_2</var>
<var>SIPG</var>

</conj>
</conj>
<not>

<var>deg_4</var>
</not>

</imp>
</rule>
<rule>

<imp>
<conj>

<var>cube</var>
<conj>

<var>dim_2</var>
<var>FEM</var>

</conj>
</conj>
<not>

<d i s j >
<var>deg_3</var>

144

B.3. DIFFUSION: VARIABILITY MODEL

<var>deg_4</var>
</d i s j >

</not>
</imp>

</rule>
<rule>

<imp>
<conj>

<var>cube</var>
<conj>

<var>dim_3</var>
<var>FEM</var>

</conj>
</conj>
<not>

<d i s j >
<var>deg_3</var>
<var>deg_4</var>

</d i s j >
</not>

</imp>
</rule>
<rule>

<imp>
<conj>

<var>simplex</var>
<conj>

<var>dim_2</var>
<var>SIPG</var>

</conj>
</conj>
<not>

<var>deg_4</var>
</not>

</imp>
</rule>
<rule>

<imp>
<conj>

<var>simplex</var>
<conj>

<var>dim_2</var>

145

APPENDIX B. SOURCE CODE FOR DIFFUSION SYSTEM TEST APPLICATION

<var>FEM</var>
</conj>

</conj>
<not>

<var>deg_4</var>
</not>

</imp>
</rule>
<rule>

<imp>
<conj>

<var>simplex</var>
<conj>

<var>dim_3</var>
<var>SIPG</var>

</conj>
</conj>
<not>

<var>deg_4</var>
</not>

</imp>
</rule>

</cons t r a i n t s >
<c a l c u l a t i o n s Auto=" true " Const ra in t s=" true "

Features=" true " Redundant=" true "/>
<comments/>
<featureOrder userDef ined=" f a l s e "/>

</featureModel>

146

Appendix C
Developing System Test Applications
with FeatureIDE and FeatureC++

This appendix explains step by step how to develop system test applications with
FeatureIDE and FeatureC++.

The steps needed are

• installing FeatureIDE and FeatureC++,

• opening the FeatureIDE perspective in Eclipse,

• creating a FeatureIDE project,

• creating a variability model,

• defining constraints,

• developing source code,

• creating configurations for different test cases, and

• running the system test applications.

147

APPENDIX C. DEVELOPING SYSTEM TEST APPLICATIONS WITH
FEATUREIDE AND FEATUREC++

C.1 Install FeatureIDE and FeatureC++

This section explains how to install FeatureIDE and FeatureC++ for Eclipse, and
FeatureC++ for the use in an automated test environment.

C.1.1 FeatureIDE and FeatureC++

FeatureIDE is an Eclipse plug-in. Please check at the FeatuteIDE internet page [31] first
that there is a FeatureIDE version available for your Eclipse version. This documentation
was created using Eclipse Galileo version 3.5.2.

Goto Eclipse Marketplace for FeatureIDE at marketplace.eclipse.org/content/featureide
to get the correct URL for the Eclipse Installation. Click on the green arrow for download
to see the URL (see Figure).

Start Eclipse and select menu Help/Install New Software...

148

C.1. INSTALL FEATUREIDE AND FEATUREC++

In field "Work with:" insert the URL for Eclipse Marketplace for FeatureIDE.

Select the FeatureIDE modules as shown in the figure below (at least variability modeling,
FeatureIDE and FeatureIDE extension for FeatureC++).

149

APPENDIX C. DEVELOPING SYSTEM TEST APPLICATIONS WITH
FEATUREIDE AND FEATUREC++

Click next to install.

150

C.1. INSTALL FEATUREIDE AND FEATUREC++

Accept the license agreement.

Accept the warning with OK.

Restart Eclipse.

FeatureC++ needs the CDT plug-in. You can check, if it is install by trying to install it
in the same way as FeatureIDE.

151

APPENDIX C. DEVELOPING SYSTEM TEST APPLICATIONS WITH
FEATUREIDE AND FEATUREC++

C.1.2 FeatureC++ for the Automated Test Environment

To be able to use FeatureC++ also without Eclipse for an automated test environment
scripts, you need to install a FeatureC++ binary. Instruction for the installation can
be found on the FeatureIDE internet page http://wwwiti.cs.uni-magdeburg.de/iti_db/
fcc/under Get Started/Installation. In our case we needed the "Linux x86-64bit binary
(2009/02/25)" binary.

C.2 Open the FeatureIDE Perspective

After installing FeatureIDE, the FeatureIDE perspective can be opened using the context
menu of the icon on the right upper corner of the Eclipse window.

152

C.3. CREATE A FEATUREIDE PROJECT

For a short introduction to FeatureIDE and FeatureC++, see the FeatureIDE Cheet
Sheet in menu Help/Cheat Sheets.

C.3 Create a FeatureIDE Project

There are two possibilities for creating a FeatureIDE project: it can be created directly
using the menu item New/FeatureIDE Project or the FeatureIDE nature can be included

153

APPENDIX C. DEVELOPING SYSTEM TEST APPLICATIONS WITH
FEATUREIDE AND FEATUREC++

to an existing project, as described below.

During the project creation the developer can choose between the different implementation
techniques for FeatureIDE. In the example below we choose FeatureC++.

For adding the FeatureIDE nature to a project, select the project in the Package Explorer
and choose FeatureIDE/Add FeatureIDE Nature in the context menu.

Choose the Composer FeatureC++. Leave the path specification as it is.

FeatureIDE includes three new folders and one new file to the project:

• model.xml file will include the variability model for the system test application

• configs folder will include configuration files with different feature combinations
based on the variability model

• features folder will include the FeatureC++ source code for each concrete feature

154

C.3. CREATE A FEATUREIDE PROJECT

in the variability model

• src folder will include the executable source code created by FeatureC++ based on
the source code in the features folder and the chosen configuration

Example: Create a DUNE Makefile Project with FeatureIDE

DUNE applications are build using makefiles. This is why we want to import an existing
makefile project in FeatureIDE for the diffusion system test application.

Select menu File/New/Project...

Select C++ Project and click Next.

155

APPENDIX C. DEVELOPING SYSTEM TEST APPLICATIONS WITH
FEATUREIDE AND FEATUREC++

Give the project a suitable project name. As location select the folder where the makefile
is located. Select Empty Project for the Project Type and Linux GCC for the Toolchain.
Click next.

156

C.4. CREATE A VARIABILITY MODEL AND DEFINE CONSTRAINTS

Now one can already see the makefile and other sources located in the same folder in
the Package Explorer. Add the FeatureIDE nature to the project as explained in the
beginning of the section.

C.4 Create a Variability Model and Define Constraints

FeatureIDE automatically creates a file named model.xml in the project folder. It can be
opened with a double click. At first, the model will only include a feature named in the
same way as the project and a dummy feature Base.

By selecting a feature and using the context menu one can

• create a feature above or below the selected feature

• rename or delete a feature

157

APPENDIX C. DEVELOPING SYSTEM TEST APPLICATIONS WITH
FEATUREIDE AND FEATUREC++

• make a feature abstract or concrete. For every concrete feature FeatureC++ creates
a subfolder in features folder for the FeatureC++ source code.

• set the relationship between a parent and a child feature mandatory or optional.
Mandatory means that for a valid feature configuration, this child feature must be
selected.

• select the type of the relationship between a parent and its child features: and-,
or-, or alternative-group.

• create constraints that restrict possible feature combinations

Example: Create a variability model for the diffusion system test application

We demostrate the creation of a variability model with the DUNE system test application
"diffusion". As described in Section 4.1.2.3, the test application diffusion has the following
variable features: mesh, dimension, method, maximum level and degree. In the variability
model, select the feature Base and use the context menu to rename Base to mesh.

For mesh (like for each of the features listed above), a value must be selected for a test
case. Select feature mesh and use the context menu to change the feature to mandatory.

In the diffusion system test application, possible values for mesh are cube and simplex
(see Section 4.1.2.3). Select feature mesh and add two new feature using the context
menu item Create Feature Below.

For mesh, one needs to choose exactly one value, cube or simplex. This means the
relationship between parent feature mesh and child features cube and simplex is an

158

C.5. DEFINE CONSTRAINTS

alternative choice. Select feature mesh and choose Alternative in the context menu.

Insert other features in the same way. Note: feature names cannot be pure numerical.

Since we also want to add FeatureC++ source code for the root feature diffusion, select
the feature and use the context menu to change it to concrete (remove Abstract flag).

C.5 Define Constraints

Now we can define some constraints between the features, if necessary. For example we
could define that for a simplex mesh in 3D and method SIPG it is not possible to choose
degree four. Choose Create Constraint in the context menu (none of the features need to
be selected) and define the constraint by clicking on the feature names and operators.

159

APPENDIX C. DEVELOPING SYSTEM TEST APPLICATIONS WITH
FEATUREIDE AND FEATUREC++

The constraint is displayed in the variability model.

The variability model can also be edited in a very similar way using the Collaboration
Outline view.

160

C.6. DEVELOP SOURCE CODE

FeatureIDE view variability model Edits provides some statistics of the variability model.

C.6 Develop Source Code

Depending on the used implementation tool, FeatureIDE supports the source code
development with editors, syntax highlighting, on-the-fly error checking etc [76]. In the
following we concentrate on the implementation tool FeatureC++.

In features folder, FeatureC++ automatically creates a subfolder for each concrete feature

161

APPENDIX C. DEVELOPING SYSTEM TEST APPLICATIONS WITH
FEATUREIDE AND FEATUREC++

in the feature tree. In these folders one can include the FeatureC++ source code. For
details about FeatureC++, see Section 7.1.2. Note: all files for one class need to be
named the same way. FeatureC++ source code is completely included in header files,
there are no cpp files.

Example: Add FeatureC++ source code for the diffusion system test appli-
cation

In this example we add FeatureC++ source code for the root feature diffusion and the
features mesh, cube and simplex for the DUNE system test application diffusion.

In the package explorer, select subfolder diffusion in the folder features and select
New/FeatureIDE File in the context menu.

Add class name Features and click Finish.

For the root Feature diffusion we leave the class Features empty. We will extend this
class in the child features.

162

C.6. DEVELOP SOURCE CODE

Add class Features for the subfolder mesh, too. This time, we note that we refine the
class Features.

For the feature mesh, we extend the class Features to include a method mesh(). Since
the value for mesh is first defined by the child features for mesh, this method return an
empty string.

Insert the class Features for subfeature cube (refines class Features). For the feature cube,
we override the method mesh(). The FeatureC++ source code for cube looks almost
exactly the same as for parent feature mesh, but the method mesh() returns "CUBE".

In the same way, insert source code for the subfeature simplex.

163

APPENDIX C. DEVELOPING SYSTEM TEST APPLICATIONS WITH
FEATUREIDE AND FEATUREC++

The complete FeatureC++ source code for the DUNE system test application diffusion
can be found in Appendix B.

C.7 Create Configurations

The configuration editor in FeatureIDE gets the variability model as input and offers
configuration choices. The developer can choose a set of features and save the selection in
a configuration file. It is possible to create multiple configurations and one configuration is
marked to be the current configuration for which FeatureIDE compiles the feature-oriented
source code [76].

Select New/Configuration File in the context menu (it does not make a difference, which
file or folder of the project is selected in the project explorer).

Give a name for the configuration file.

164

C.7. CREATE CONFIGURATIONS

Now the feature values for the configuration can be chosen. FeatureIDE highlights all
possible values and informs the developer if the configuration is not valid.

Different configuration files for one system test application can be created. Currently
active configuration is highlighted in the Project Explorer.

Active configuration means, that FeatureC++ creates executable source code out of the
FeatureC++ source code corresponding to the active configuration. After creating one
valid configuration, the executable source code can be found in the src folder in Project
Explorer.

165

APPENDIX C. DEVELOPING SYSTEM TEST APPLICATIONS WITH
FEATUREIDE AND FEATUREC++

The active configuration can be changed by selecting the favored configuration and
selecting Set as current configuration in the context menu.

C.8 Example DUNE: Adjust diffusion.cc Source Code

Now we want to use the FeatureC++ source code for the DUNE system test application
diffusion. We need to adjust the diffusion.cc source file in the following way:

• include src/Features.h which is the executable FeatureC++ source code for the
currently active feature configuration

• Create an object Features and use it to access the feature values (see code example
below).

166

C.9. RUN PROGRAM

The complete source code for diffusion.cc can be found in Appendix B.

C.9 Run Program

When we set a new active configuration, FeatureIDE automatically compiles the system
test application with the corresponding feature configuration (i.e. test case). The system
test application can be executed by selecting the project in the Project Explorer and
choosing Run As/Local C,C++ Application in the context menu.

Before this works, it may be necessary to exclude some files or folders (like the folder
.tmp) from the build, first.

167

APPENDIX C. DEVELOPING SYSTEM TEST APPLICATIONS WITH
FEATUREIDE AND FEATUREC++

In FeatureIDE, it is possible to trigger the automatic compilation of all possible applica-
tions (i.e. all valid configurations). This is only applicable for small variability models. It
is also possible to trigger the automatic compilation of all manually created configurations
[76].

168

Bibliography

[1] Ackroyd, K.S., Kinder, S.H., Mant, G.R., Miller, M.C., Ramsdale, C.A., and
Stephenson, P.C., "Scientific Software Development at a Research Facility," IEEE
Software 25, pp. 44-51, 2008. 4, 15

[2] Arens, T., Hettlich, F., Karpfinger, Ch., Kockelkorn, U., Lichtenegger, K., and
Stachel, H., "Mathematik," Spektrum Akademischer Verlag Heidelberg, 2008. 11

[3] Arnord, R.S., "Software Reengineering," IEEE Compuer Society Press, 1994. 44

[4] Avrunin, G.S., Siegel, S.F., and Siegel, A.R., "FiniteState Verification for High Per-
formance Computing," In Proceeding of the 2nd Workshop on Software Engineering
for High Performance Systems Applications (SE-HPCS ’05), ACM New York, NY,
USA, pp. 68-72, 2005.

[5] Babuška, I., "The finite element method with Lagrangian multipliers", In Numerische
Mathematik, Vol. 20, Is. 3, pp. 179-192, Springer-Verlag, 1973. 52

[6] Basili, V.R., Caldiera, G., and Rombach, H.D., "The Goal Question Metric Ap-
proach," Encyclopedia of Software Engineering, Wiley and Son, pp. 528-532, 1994.
81

[7] Basili, V.R., Carver, J.C., Cruzes, D., Hochstein, L.M., Hollingsworth, J.K., Shull, F.,
and Zelkowitz, M.V., "Understanding the High-Performance-Computing Community:
A Software Engineer’s Perspective," Software, IEEE, vol. 25, no. 4, pp. 29-36, 2008.
2, 64

[8] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., and

169

Bibliography

Sander, O., "A generic grid interface for parallel and adaptive scientific computing.
Part I: abstract framework," Computing 82, pp. 103-119, 2008. 25, 28

[9] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R.,
Ohlberger, M., and Sander, O., "A generic grid interface for parallel and adaptive
scientific computing. Part II: implementation and tests in DUNE," Computing 82,
pp. 121-138, 2008. 25

[10] Batory, D., "Feature Models, Grammars, and Propositional Formulas," Proc. Int’l
Software Product Line Conference (SPLC), Springer, Berlin, Heidelberg, New York,
London, pp. 7-20, 2005. 21

[11] Baxter, R., "Software engineering is software engineering," 26th International Con-
ference on Software Engineering, W36 Workshop Software Engineering for High
Performance System (HPCS) Applications, pp. 4-18, 2004. 3, 16

[12] Beck, K., "Test-Driven Development," Addison-Wesley Longman, Amsterdam, 2002.
70

[13] Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., and
Wąsowski, A., "A survey of variability modeling in industrial practice," In VaMoS
’13 Proceedings of the Seventh International Workshop on Variability Modelling of
Software-intensive Systems, No. 7, ACM New York, NY, USA, 2013. 107

[14] Bertolino, A., Fantechi, A., Gnesi, S. and Lami, G., "Product Line Use Cases:
Scenario-Based Specification and Testing of Requirements," In Software Product
Lines, Springer Berlin Heidelberg, pp. 425-445, 2006. 24

[15] Blatt, M., and Bastian, P., "The Iterative Solver Template Library," In Applied
Parallel Computing, State of the Art in Scientific Computing 4699, pp. 666-675,
Springer, 2007. 26

[16] Booth, S., and Henty, D., "Verification strategies for High Performance Computing
Software," In Proceeding of the 1st Workshop on Software Engineering for High
Performance System (HPCS) Applications, pp. 24-26, 2004. 14

[17] Carnegie Mellon Software Engineering Institute, http://www.sei.cmu.edu/. 11

[18] Bühne, S., and Pohl, K., "Domain Requirement Engineering," In Software Product
Line Engineering, Springer Berlin Heidelberg, pp. 193-216, 2005. 49, 50, 52

170

Bibliography

[19] Carver, J.C., Hochstein, L., Kendall, R.P., Nakamura, T., Zelkowitz, M.V., Basili,
V.R., and Post, D.E., "Observations about Software Development for High End
Computing," In CTWatch, vol. 2, no. 4A, pp. 33-38, 2006. 3, 13, 64

[20] Carver, J.C., Kendall, R.P., Squires, S.E., and Post, D.E., "Software Development
Environments for Scientific and Engineering Software: A Series of Case Studies,"
ICSE 2007, 29th International Conference on Software Engineering, pp. 550-559,
2007. 3, 64, 66

[21] Carver, J.C., "Report: The Second International Workshop on Software Engineering
for CSE," Computing in Science & Engineering, vol. 11, no. 6, pp.14-19, 2009. 3, 26

[22] Chen, L., Babar, M.A., and Ali, N., "Variability management in software product
lines: a systematic review," In SPLC ’09 Proceedings of the 13th International
Software Product Line Conference, Carnegie Mellon University Pittsburgh, PA,
USA, pp. 81-90, 2009. 107

[23] Crispin, L., and Gregory, J., "Agile Testing: A practical Guide for Testers and Agile
Teams," Addison-Wesley Professional, 2008. 16

[24] Czarnecki, K., and Eisenecker, U.W., "Generative Programming: Methods, Tools,
and Applications," ACM/Addison-Wesley, New York, NY, USA, 2000. 21

[25] Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., and Wąsowski, A., "Cool
features and tough decisions: a comparison of variability modeling approaches," In
VaMoS ’12 Proceedings of the Sixth International Workshop on Variability Modeling
of Software-Intensive Systems, ACM New York, NY, USA, pp. 173-182, 2012. 107

[26] Davis, F.D., Bagozzi, R.P., and Warshaw, P.R., "User Acceptance of Computer
Technology: A Comparison of two Theoretical Models," Management Science, vol.
35, no. 8, pp. 982-1003, 1989. 85

[27] Douglas, J., and Dupont, T., "Interior penalty procedures for elliptic and parabolic
Galerkin methods," In Lecture Notes in Physics, Vol. 58, Springer-Verlag, 1976. 53

[28] Dubois, P.F., "Maintaining Correctness in Scientific Programs," Computing in Science
& Engineering, vol. 7, no. 3, pp. 80-85, 2005. 13, 15, 16, 64, 177

[29] Engström, E., and Runeson, P., "Decision Support for Test Management and Scope
Selection in a Software Product Line Context," Fourth International Conference

171

Bibliography

on Software Testing, Verification and Validation Workshops (ICSTW), pp.262-265,
2011.

[30] Eriksson, K., Estep, D., Hansbo, P., and Johnson C., "Computational Differential
Equations," Campridge University Press, 1996. 27

[31] FeatureC++ internet page http://wwwiti.cs.uni-magdeburg.de/iti_db/fcc/. 111,
112, 148

[32] FeatureIDE internet page http://wwwiti.cs.uni-magdeburg.de/iti_db/research/
featureide/. 110

[33] Freeman, S.M., Clune, T.L., and Burns III, R.W., "Latent Risks and Dangers in
the State of Climate Model Software Develoment," Spektrum Akademischer Verlag
Heidelberg, 2008. 2

[34] Hannay, J.E., Langtangen, H.P., MacLeod, C., Pfahl, D., Singer, J., and Wilson,
G., "How Do Scientists Develop and Use Scientific Software?," SECSE ’09 ICSE
Workshop on Software Engineering for Computational Science and Engineering, pp.
1-8, 2009. 15

[35] Heider, W., Rabiser, R., Grünbacher, P., and Lettner, D., "Using regression testing
to analyze the impact of changes to variability models on products," SPLC ’12
Proceedings of the 16th International Software Product Line Conference - Volume 1,
pp. 196-205, 2012. 22

[36] Heroux, M.A., "Improving the Development Process for CSE Software," PDP ’07,
15th EUROMICRO International Conference on Parallel, Distributed and Network-
Based Processing, pp. 11-17, 2007. 16

[37] Heroux, M.A. and Willenbring, J.M., "Barely sufficient software engineering: 10
practices to improve your CSE software," SECSE ’09 ICSE Workshop on Software
Engineering for Computational Science and Engineering, pp. 15-21, 2009. 16

[38] Hook, D., and Kelly, D., "Testing for trustworthiness in scientific software," In
Proceedings of the 2009 ICSE Workshop on Software Engineering for Computational
Science and Engineering, IEEE Computer Society, pp. 59-64, 2009. 3, 13, 64, 177

[39] Hubaux, A., Tun, T.T., and Heymans, P., "Separation of concerns in feature diagram
languages: A systematic survey," ACM Computing Surveys (CSUR), vol. 45, no. 4,

172

Bibliography

ACM New York, NY, USA, 2013. 107

[40] IEEE Standard for Software Reviews, IEEE Std 1028-1997. 15

[41] International Workshop on Software Engineering for Computational Science and
Engineering, http://secse13.cs.ua.edu/ICSE/index.htm 10

[42] Johansen, M.F., Haugen, Ø., and Fleurey, F., "Bow tie testing: a testing pattern
for product lines," EuroPLoP ’11, Proceedings of the 16th European Conference on
Pattern Languages of Programs, ACM New York, no. 9, 2012. 25

[43] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., and Peterson, A.S., "Feature-
Oriented Domain Analysis (FODA) Feasibility Study," Tech. Rep. CMU/SEI-90-TR-
21, Software Engineering Institute, 1990. 20

[44] Kelly, D., and Sanders, R., "Assessing the Quality of Scientific Software," in Proceed-
ings of the International Conference on Software Engineering, First International
Workshop on Software Engineering for Computational Science and Engineering,
Leipzig, Germany, 2008. 15, 72, 80, 87, 104

[45] Kelly, D., and Sanders, R., "The Challenge of Testing Scientific Software," CAST
2008, Proc Conference of the Association of Software Testing, Toronto, Canada,
2008. 3, 64

[46] Kelly, D. and Smith, S., "2nd CASCON Workshop on Software Engineering for
Science," CASCON 2009, pp. 345-347, 2009. 64

[47] Kelly, D., Smith, S., and Meng, N. "Software Engineering for Scientists," Computing
in Science and Engineering, vol. 13, no. 5, pp. 7-11, 2011. 3, 64

[48] Kim, C.H.P., Batory, D., and Khurshid, S., "Elimination products to test in a software
product line," ASE ’10, Proceeding of the IEEE/ACM international conference on
Automated software engineering, ACM New York, pp. 139-142, 2010. 24

[49] Kuhn, D.R., Wallace, D.R., and Gallo, A.M., "Software fault interactions and
implications for software testing," IEEE Transactions on Software Engineering, vol.
30, no. 6, pp. 418-421, 2004. 25

[50] Machado, I.C., "RiPLE-TE: A software product lines testing process," M.Sc. Dis-
sertation, CIn - Informatics Center, UFPE - Federal University of Pernambuco,
Recife-PE, Brazil, 2010. 23, 69

173

Bibliography

[51] Machado, I.C., da M.S. Neto, P.A., Almeida, E.S., and de Lemos Meira, S.R.,
"RiPLE-TE: A Process for Testing Software Product Lines," SEKE, Knowledge
Systems Institute Graduate School, pp. 711-716, 2011. 22, 23, 31, 106, 177

[52] McGregor, J., "Testing a Software Product Line," Technical Report, CMU/SEI-2001-
TR-022, ESC-TR-2001-022, 2001. 25

[53] Morris, C., "Some Lessons learned reviewing scientific code," in Proceedings of the
International Conference on Software Engineering, First International Workshop on
Software Engineering for Computational Science and Engineering, Leipzig, Germany,
2008. 72

[54] Nebut, C., Le Traon, Y., and Jezequel, J.-M., "System Testing of Product Lines:
From Requirements to Test Cases," In Software Product Lines, Springer Berlin
Heidelberg, pp. 447-477, 2006. 24

[55] Neely, R., "Practical software quality engineering on a large multi-disciplinary HPC
development team," 26th International Conference on Software Engineering, W3S
Workshop Software Engineering for High Performance Computing System (HPCS)
Applications, pp. 19-23, 2004. 16

[56] da M. S. Neto, P.A., Machado, I.C., Cavalcanti, Y.C., Almeida, E.S., Garcia,
V.C., and de Lemos Meira, S.R., "A Regression Testing Approach for Software
Product Lines Architectures," Fourth Brazilian Symposium on Software Components,
Architectures and Reuse (SBCARS), pp. 41-50, 2010. 22, 24, 106

[57] Obbink, H., Pohl, K., Kang, K.C., Kim, M., Lee, J. and Kim, B., "Feature-Oriented
Re-engineering of Legacy Systems into Product Line Assets - a Case Study," In
Software Product Lines Springer Berlin / Heidelberg, pp. 45-56, 2005. 35

[58] Oberkampf, W.L., Trucano, T.G., and Hirsch, C., "Verification, Validation, and
Predictive Capability in Computational Engineering and Physics", Applied Mechanics
Rev., pp. 345-384, 2004. 13, 14, 16

[59] Pasetti, A., "Software frameworks and embedded control systems," Springer-Verlag,
2002. 3, 10

[60] Pohl, K., Böckle, G., and Linden, F., "A Framework for Software Product Line
Engineering," In Software Product Line Engineering, Springer Berlin Heidelberg, pp.
19-38, 2005. 17, 18, 45

174

Bibliography

[61] Pohl, K., Böckle, G., Linden, F., and Lauenroth, K., "Principles of Variability," In
Software Product Line Engineering, Springer Berlin Heidelberg, pp. 57-88, 2005. 19,
177

[62] Pohl, K., Böckle, G., Linden, F., and Lauenroth, K., "Software Product Line
Engineering - Foundations, Principles, and Techniques," Springer Berlin Heidelberg,
2005. 4, 11, 17, 18

[63] Pohl, K., and Reuys, A., "Application Testing," In Software Product Line Engineering,
Springer Berlin Heidelberg, pp. 355-370, 2005. 17, 18, 37

[64] Pohl, K. and Reuys, A., "Domain Testing," In Software Product Line Engineering,
Springer Berlin Heidelberg, pp. 257-284, 2005. 11, 36, 37, 38, 41, 42

[65] Remmel, H., Paech, B., Engwer, C. and Bastian, P., "Supporting the testing of
scientific frameworks with software product line engineering: a proposed approach,"
Proceeding of the 4th international workshop on Software engineering for computa-
tional science and engineering (SECSE ’11), ACM, pp. 10-18, 2011. 86

[66] Reuys, A., Reis, S., Kamsties, E., and Pohl, K., "The ScenTED Method for Testing
Software Product Lines", in Software Product Lines, Springer Berlin Heidelberg, pp.
479-520, 2006. 24, 37

[67] Roache, P.J., "Building PDE codes to be verifiable and validatable," Computing in
Science and Engineering, Vol. 6, No. 5, pp. 30-38, 2004. 14

[68] Runeson, P., Höst, M., Rainer, A., and Regnell, B., "Case Study Research in Software
Engineering," John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012. 80, 81, 104, 105,
106, 107

[69] Sayre, K. and Poore, J., "Automated Testing of Generic Computational Science
Libraries," In Proceedings of the 40th International COnference on System Sciences
(HICSS), Waikoloa, Hawaii, USA, pp. 277c, 2007.

[70] Segal, J., "Models of scientific software development," Proceeding of the 2008 Work-
shop Software Engineering In Computational Science and Engineering, 2008. 16

[71] Society for Industrial and Applied Mathematics, www.siam.org/. 9

[72] Software Engineering Body of Knowledge, IEEE Computer Society, www.swebok.org/
. 9, 10, 15

175

Bibliography

[73] Stricker, V., Metzger, A., and Pohl, K., "Avoiding redundant testing in application
engineering," In Software Product Lines: Going Beyond, Springer Berlin Heidelberg,
pp. 226-240, 2010. 24

[74] Tevanlinna, A., Taina, and Kauppinen, R., "Product family testing: a survay," ACM
SIGSOFT Software Engineering Notes, vol. 29, no. 2, pp. 1-6, 2004. 37

[75] Thüm, T., Kästner, C., Erdweg, S. and Siegmund, N., "Abstract Features in Feature
Modeling," Proc. Int’l Software Product Line Conference (SPLC), IEEE, Washington,
DC, USA, pp. 191-200, 2011. 21

[76] Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T.,
"FeatureIDE: An Extensible Framework for Feature-Oriented Software Development,"
Science of Computer Programming, vol. 79, no. 0, pp. 70-85, 2014. 20, 21, 52, 110,
111, 114, 161, 164, 168, 177

[77] Vigder, M., "End-User Software Development in a Scientific Organization," In
Proceedings of the 2009 ICSE Workshop on Software Engineering Foundations for
End User Programming, IEEE Computer Society, pp. 15-19, 2009. 2

[78] Xie, T., and Notkin, D., "Checking inside the black box: regression testing by
comparing value spectra," IEEE Transactions on Software Engineering, vol.31, no.10,
pp. 869- 883, 2005. 10, 16

[79] Yin, R.K., "Case Study Research: Design and Methods," 3rd edition. SAGE Publi-
cations, 2003. 12

[80] Yoshimura, K., Ganesan, D. and Muthig, D., "Defining a strategy to introduce
a software product line using existing embedded systems," In Proceedings of the
Proceedings of the 6th ACM & IEEE International conference on Embedded software,
Seoul, Korea2006 ACM, 2006. 35, 42

[81] Yu, W., and Smith, S., "Reusability of FEA software: A program family approach," In
Proceedings of the 2009 ICSE Workshop on Software Engineering for Computational
Science and Engineering, IEEE Computer Society, pp. 43-50, 2009. 34, 42

176

List of Figures

2.1 Possible Sources of a Software Problem in Scientific Software [28]. 13
2.2 Model of Testing for Scientific Software [38]. 13
2.3 Example of the variability model notation by Pohl et al [61]. 19
2.4 Example of the graphical variability model [76]. 21
2.5 RiPLE-TE Domain Engineering and Application Engineering Workflow [51] 23
2.6 Single-element-type grids. 29
2.7 Multi-element-type grids. 29
2.8 Structured grids. 29
2.9 Unstructured grids. 29
2.10 A conforming and a non-conforming grid. 30
2.11 Hierarchy of globally refined grids. 30
2.12 Hierarchy of locally refined grids. 30

3.1 Derivation of Test Applications and Test Cases for a Framework with
Variability Model (VM) . 39

3.2 Derivation of Variability Models (VM) and the Associated Test Applica-
tions from the Framework’s Requirements 40

4.1 Variability model for the "diffusion" system test application. 54
4.2 Contraints definition for the "diffusion" system test application. 54

5.1 VAF-Pro QA Process for Scientific Frameworks 68
5.2 Example of an algorithm verification output and the according expected

values for one test case. 74

6.1 Proposed Desk-Checking Checklist . 87
6.2 Variability model drawn by the developers 90

177

List of Figures

7.1 FeatureIDE and FeatureC++ example . 113

178

List of Tables

3.1 Fulfillment of Criteria for an SPL Test Strategy for a Framework 38

3.2 Comparing VAF and CRS Test Strategies 42

5.1 Characteristics of Scientific Software . 64

5.2 Adjustments Made in VAF-Pro QA Process Compared to RiPLE-TE . . . 69

6.1 Feasibility of Variability Modeling . 83

6.2 Feasibility of Desk-Checking . 84

6.3 Advantages Versus Effort . 84

6.4 Acceptance of Variability Modeling/Desk-Checking 85

6.5 Metrics and Data Aggregation . 88

6.6 Possible variation points collected by the developers 90

6.7 Detailed answers to open questionnaire questions to research question
F_RQ_VM2: What do the developers believe are the advantages of
variability modeling for the DUNE development 92

6.8 Detailed answers to closed questionnaire questions to research question
F_RQ_VM2: What do the developers believe are the advantages of
variability modeling for the DUNE development 93

6.9 Detailed answers to closed questionnaire questions to research question
E_RQ_VM: Do the advantages of a variability model outbalance the
effort of creating it . 93

6.10 Detailed answers to open questionnaire questions to research question
F_RQ_VM3: What do the developers believe are the disadvantages of
variability modeling for the DUNE development 95

179

List of Tables

6.11 Detailed answers to closed questionnaire questions to research question
A_RQ_VM1: Do the developers think variability modeling is useful for
them . 96

6.12 Detailed answers to closed questionnaire questions to research question
A_RQ_VM2: Do the developers think variability modeling is easy to use 97

6.13 Detailed answers to closed questionnaire questions to research question
A_RQ_VM3: Do the developers intend to use the variability modeling in
DUNE development . 97

6.14 Detailed answers to open questionnaire questions to research question
F_RQ_DC2: What do the developers believe are the advantages of desk-
checking for the DUNE development . 99

6.15 Detailed answers to closed questionnaire questions to research question
F_RQ_DC2: What do the developers believe are the advantages of desk-
checking for the DUNE development . 100

6.16 Detailed answers to closed questionnaire questions to research question
E_RQ_DC: Do the advantages of desk-checking outbalance the effort
needed for it . 100

6.17 Detailed answers to open questionnaire questions to research question
F_RQ_DC3: What do the developers believe are the disadvantages of
desk-checking for the DUNE development 101

6.18 Detailed answers to closed questionnaire questions to research question
A_RQ_DC1: Do the developers think desk-checking is useful for them . . 102

6.19 Detailed answers to closed questionnaire questions to research question
A_RQ_DC2: Do the developers think desk-checking is easy to use 102

6.20 Detailed answers to closed questionnaire questions to research question
A_RQ_DC3: Do the developers intend to use the desk-checking in DUNE
development . 103

7.1 FeatureIDE and FeatureC++ support for the process of creating reengi-
neering variability models and system test applications for a scientific
framework . 114

180

	Preliminaries
	Introduction
	Motivation
	Research Goals
	Research Contributions
	Thesis Outline
	Previous Publications

	Background
	Basic Definitions
	Acronyms
	QA for Scientific Software
	Statical Analysis and Dynamic Testing
	Regression Testing
	Related Work on QA Processes for Scientific Software

	Development of a SPL
	SPLE Development Processes
	Variability Modeling
	Orthogonal Variability Model
	Feature Diagram

	QA for SPLs
	RiPLE-TE QA Process for SPLs
	Test Case Derivation
	Test Suite Selection

	DUNE - a Scientific Framework
	A Scientific Framework for the Simulation of PDEs
	Numerical Simulation Terminology
	Grid Terminology

	Chapter Summary

	Comprehensive Quality Assurance of Scientific Frameworks
	SPLE in the QA of Scientific Frameworks
	SPLE for Scientific Software and Reengineering
	SPLE and Scientific Frameworks
	SPL Test Strategy for Scientific Frameworks
	Criteria for an SPL Test Strategy for Scientific Frameworks
	VAF - Variable Test Application Strategy for Frameworks
	Assessment

	Chapter Summary

	Creating Reengineering Variability Models and System Test Applications for a Scientific Framework
	Creating Reengineering Variability Models
	Reengineering Product Management
	Step 1: Define the Goal(s) for the Framework
	Step 2: Define the General Mathematical Model
	Step 3: Describe the General Approach
	Result: the Product Roadmap

	Domain Requirements Engineering
	Commonality Analysis
	Variability Analysis, Step 1: Define a Concrete Mathematical Model
	Variability Analysis, Step 2: Identify Features and Their Dependencies
	Variability Analysis, Step 3: Identify Constraints Between the Features

	Deriving Test Cases for a System Test Application from the Variability Model

	Developing System Test Applications
	Supporting Application Engineering with Reusable Test Artifacts
	Chapter Summary

	VAF-Pro, a QA Process for a Scientific Framework
	Characteristics of Scientific Software Development
	Test Roles
	QA Process Steps
	Planning
	Review
	Unit and Integration Testing
	System Testing
	Scientific Validation

	Automated Regression Testing
	Reporting
	Additional Remarks
	Chapter Summary

	Evaluation and Practical Application
	Case Study DUNE
	Case Study Design
	Research Questions
	Feasibility
	Acceptance

	Research Methods

	Results
	Variability Modeling by Developers (F_RQ_VM1)
	Advantages of Variability Modeling for the DUNE Development (F_RQ_VM2 and E_RQ_VM)
	Disadvantages of Variability Modeling for the DUNE Development (F_RQ_VM3)
	Capturing the Variability of Mathematical Problems with Variability Modeling (F_RQ_VM4)
	Acceptance of Variability Modeling (A_RQ_VM1-3)
	Desk-Checking by Developers (F_RQ_DC1)
	Advantages of Desk-Checking for the DUNE Development (F_RQ_DC2 and E_RQ_DC)
	Disadvantages of Desk-Checking for the DUNE Development (F_RQ_DC3)
	Acceptance of Desk-Checking (A_RQ_DC1-3)

	Discussion
	Goal 1: Feasibility of Variability Modeling
	Goal 2: Feasibility of Desk-Checking
	Goal 3: Acceptance of Variability Modeling
	Goal 4: Acceptance of Desk-Checking

	Threats of Validity
	Construct Validity
	External Validity
	Reliability

	Related Work
	Chapter Summary

	System Testing with FeatureIDE and Automated Test Environment
	Tool Support for the System Test Development
	FeatureIDE
	FeatureC++
	FeatureIDE and FeatureC++ example

	System Test Development with FeatureIDE
	Test Suite for a System Test Application

	Automated Test Environment
	Running the Automated Test Environment
	Experiences with the DUNE Automated Test Environment

	Chapter Summary

	Summary
	Conclusion and Future Work
	Summary and Conclusion
	Limitations
	Future Work

	Case Study Questionnaire
	Source Code for Diffusion System Test Application
	Diffusion: Feature-Oriented Source Code
	Diffusion: Main Program
	Diffusion: Variability Model

	Developing System Test Applications with FeatureIDE and FeatureC++
	Install FeatureIDE and FeatureC++
	FeatureIDE and FeatureC++
	FeatureC++ for the Automated Test Environment

	Open the FeatureIDE Perspective
	Create a FeatureIDE Project
	Create a Variability Model and Define Constraints
	Define Constraints
	Develop Source Code
	Create Configurations
	Example DUNE: Adjust diffusion.cc Source Code
	Run Program

