
Inaugural-Dissertation

zur Erlangung der Doktorwürde
der Naturwissenschaftlich-Mathematischen Gesamtfakultät

der Ruprecht-Karls-Universität Heidelberg

vorgelegt von
Diplom-Mathematiker Markus Speth

aus Ravensburg

Tag der mündlichen Prüfung: 23. Juli 2014

Exact Solutions for
Discrete Graphical Models:

Multicuts and Reduction Techniques

Betreuer:
Prof. Dr. Gerhard Reinelt

Prof. Dr. Christoph Schnörr

Abstract
In the past years, discrete graphical models have become a major conceptual tool to
model the structure of problems in image processing – example applications are image
segmentation, image labeling, stereo vision, and tracking problems. It is therefore
crucial to have techniques which are able to handle the occurring optimization problems
and to deliver good solutions. Because of the hardness of these inference problems, so
far mainly fast heuristic methods were used which yield approximate solutions.

In this thesis we present exact methods for obtaining optimal solutions for the energy
minimization problem of discrete graphical models; image segmentation serves as the
main application. Since these problems are 𝒩𝒫-hard in general, it is clear that in order
to be able to handle problem sizes occurring in real-world applications one has to either
(a) reduce the size of the problems or (b) restrict oneself to special problem classes.
Concerning (a), we develop a combination of existing and new preprocessing steps which
transform models into equivalent yet less complex ones. Concerning (b), we introduce
the so-called multicut approach to image analysis: This is a generalization of the min
𝑠-𝑡 cut method which allows for solving models of a certain structure significantly
faster than previously possible or even solving them to global optimality for the first
time at all. On the whole, we present methods which solve 𝒩𝒫-hard problems to
proven optimality and which in some cases are as fast or even faster than approximative
methods.

Zusammenfassung
In den letzten Jahren entwickelten sich diskrete graphische Modelle zu einem grundle-
genden Hilfsmittel, um die Struktur in der Bildverarbeitung auftretender Probleme zu
modellieren – Beispielanwendungen sind etwa Bildsegmentierung, Bildlabeling, Stereo-
sehen und Tracking-Probleme. Es ist daher essentiell, über Techniken zu verfügen, die
mit den auftretenden Optimierungsproblemen umgehen und gute Lösungen liefern kön-
nen. Aufgrund der Schwere dieser Probleme wurden bisher hauptsächlich heuristische
Verfahren eingesetzt, die Näherungslösungen liefern.

In der vorliegenden Arbeit präsentieren wir exakte Methoden, um optimale Lösungen
des Energieminimierungsproblems diskreter graphischer Modelle zu erhalten; unsere
Hauptanwendung ist dabei die Bildsegmentierung. Da die Probleme im Allgemeinen
𝒩𝒫-schwer sind, ist es klar, dass man, um in der Praxis auftretende Problemgrößen
behandeln zu können, entweder (a) die Größe der Probleme reduzieren oder (b) sich
auf spezielle Problemklassen beschränken muss. Hinsichtlich (a) entwickeln wir eine
Kombination von existierenden und neuen Vorverarbeitungsschritten, die ein Modell
in ein äquivalentes, aber weniger komplexes umwandeln. Bezüglich (b) führen wir den
sogenannten Multicut-Ansatz in die Bildverarbeitung ein: Dabei handelt es sich um
eine Verallgemeinerung des Min-𝑠-𝑡-Cut-Verfahrens, die es ermöglicht, Probleme einer
gewissen Struktur signifikant schneller als bisherige Methoden oder sogar erstmals
überhaupt global optimal zu lösen. Insgesamt präsentieren wir Methoden, die 𝒩𝒫-
schwere Probleme beweisbar optimal lösen und die in manchen Fällen genauso schnell
oder sogar schneller sind als Näherungsverfahren.

Acknowledgments
Above all, I want to thank my supervisor Prof. Gerhard Reinelt. He aroused my interest
in combinatorial optimization and offered me the possibility to do my PhD in his group.
I got to know him as a supportive and reliable person, taking care of the students under
his guidance.

My second supervisor, Prof. Christoph Schnörr, introduced me to the field of image
analysis in general and graphical models in particular. I am thankful to him for offering
a complementing perspective from the viewpoint of application.

I owe special gratitude to Jörg Kappes for his help throughout the past years – he
always had an open door for me and was willingly sharing his experience. Thorsten
Bonato and Stefan Wiesberg helped me to get Thorsten’s max cut code running with
my instances. The evaluation of the superpixel algorithms was done in collaboration
with Borislav Antic. Stefan Lörwald provided support with the new version of PORTA.
Thanks to all of you!

Being in between two research groups, I had a lot of people helping me with adminis-
trative tasks. Our secretaries Catherine Proux-Wieland, Anke Sopka, Karin Tenschert,
Barbara Werner, and Evelyn Wilhelm were taming the bureaucratic beasts to make
life easier. Thanks to our system administrators who were responsible for keeping
our machines running: Georgios Nikolis, Adrian Dempwolff, Lucas Appelmann, Klaus
Hornung, and Jacqueline Hammer.

The members of our research group – Achim Hildenbrandt, Thomas Metz, Tuan
Nam Nguyen, Marcus Oswald, Hanna Seitz, Khoa Vo, Pei Wang, and Stefan Wiesberg
– provided a great and relaxed working atmosphere and, as well as the members of
the groups “Database System Research”, “Parallel and Distributed Systems”, and
“Image & Pattern Analysis”, enriched working days with discussions about scientific
and non-scientific topics.

I had the pleasure to be a member of the Research Training Group RTG 1653
“Spatio/Temporal Probabilistic Graphical Models and Applications in Image Analysis”.
I am grateful to the German Research Foundation (DFG) for this support and to all
colleagues associated to the group for being so helpful. Especially, I want to thank my
fellow PhD students Borislav Antic, Fabian Bachl, Eva-Maria Didden, Johannes Dueck,
Dominic Edelmann, Jochen Fiedler, Bernhard Kausler, Gabriell Máté, Annette Möller,
Fabian Rathke, and Bernhard Schmitzer – I definitely would have missed something
without you.

For proofreading parts of this thesis I thank Stefan Wiesberg, Jörg Kappes, and Kira
Augenstein – your comments were indeed helpful and improved this work. Of course,
all remaining errors are my own.

My parents Monika and Josef Speth deserve my heartfelt thanks for their uncondi-
tional support in all situations.

Finally, I thank Kira Augenstein for her loving support.

Contents

1 Introduction 1
1.1 Overview and Motivation . 1
1.2 Related Work . 2
1.3 Contribution . 2
1.4 Organization . 3

2 Background 5
2.1 General Notation . 5
2.2 Graph Theory . 5

2.2.1 Graphs . 6
2.2.2 Paths, Cycles, and Connectivity 6
2.2.3 Cuts and Multicuts . 6
2.2.4 Special Classes of Graphs . 7

2.3 Algorithms and Complexity . 7
2.3.1 Algorithms . 7
2.3.2 Decision Problems and Optimization Problems 8
2.3.3 𝒫 and 𝒩𝒫 . 8
2.3.4 𝒩𝒫-Completeness . 9

2.4 Polyhedral Theory . 9
2.4.1 Inequalities and Hyperplanes . 9
2.4.2 Polytopes . 10
2.4.3 Faces and Facets . 11

2.5 Integer Linear Programming . 11
2.5.1 Linear Programming . 12
2.5.2 Solution Methods for LPs . 12
2.5.3 Integer Linear Programming . 13
2.5.4 Solution Methods for ILPs . 14

3 Energy Minimization in Discrete Graphical Models 19
3.1 Discrete Graphical Models . 19

3.1.1 Factor Graphs . 19
3.1.2 Variables and Labelings . 20
3.1.3 Energy Functions . 21

ix

Contents

3.1.4 Energy Minimization . 22
3.2 Connection to Other Problems . 23

3.2.1 Satisfiability Problem . 23
3.2.2 Maximum Cuts and Minimum 𝑠-𝑡 Cuts 24

3.3 LP and ILP Formulations . 28
3.3.1 The Marginal Polytope . 28
3.3.2 The Local Polytope Relaxation and the ILP Model 30

3.4 Probabilistic View of Graphical Models 33
3.5 Overview of Existing Inference Methods 35

3.5.1 Polynomially Solvable Cases . 35
3.5.2 Approximative Methods . 35
3.5.3 Exact Methods for 𝒩𝒫-hard Models 37

4 Reduction Techniques 39
4.1 Exact Model-Reduction . 39

4.1.1 Partial Optimality . 39
4.1.2 Connected Components . 41
4.1.3 Tentacle Elimination . 42

4.2 Evaluation of Combined Reduction Methods 44
4.3 Reduction via Superpixels . 45
4.4 Evaluation and Comparison . 48

4.4.1 Experimental Setup . 48
4.4.2 Undersegmentation Error . 49
4.4.3 Boundary Recall . 50
4.4.4 Superpixel Size Uniformity . 51
4.4.5 Runtimes . 52
4.4.6 Summary . 52

5 Multicuts for Discrete Graphical Models 55
5.1 Problem Formulation . 55
5.2 Multicuts . 57

5.2.1 Basic Definitions . 57
5.2.2 Multicuts for Second-order Models 58

5.3 Multicuts for Higher-order Models . 60
5.3.1 General Label Permutation Invariant Functions 61
5.3.2 Higher-order Potts Functions . 64

5.4 Cutting-Plane Approach and Separation Procedures 65
5.4.1 Approach . 65
5.4.2 Relaxation, Constraints . 65
5.4.3 Rounding Fractional Solutions 69
5.4.4 Multicut Cutting-Plane Algorithm 72

x

Contents

6 Experiments 73
6.1 Application of Reduction Techniques . 73

6.1.1 Decision Tree Fields . 73
6.1.2 Multi-Label Potts Models . 74

6.2 Application of Multicut Algorithm . 78
6.2.1 Set-Up, Implementation Details 78
6.2.2 Probabilistic Image Segmentation 79
6.2.3 Higher-order Hierarchical Image Segmentation 81
6.2.4 Modularity Clustering . 82
6.2.5 Supervised Image Segmentation 83
6.2.6 Higher-Order Supervised Image Segmentation 85

Bibliography 87

Index 97

Nomenclature 101

xi

List of Figures

1.1 Example of an image segmentation . 1

2.1 Hierarchy of complexity classes . 10
2.2 𝑉 -polytope and 𝐻-polytope . 11
2.3 The integer hull 𝑃𝐼(𝐴, 𝑏) of an ILP . 14

3.1 Graphical depiction of a factor graph . 20
3.2 Transformation of SAT into a discrete graphical model 25
3.3 Transformation of a max cut problem 26
3.4 Vertex of the marginal polytope . 30
3.5 Fractional vertex of L(ℳ) . 32

4.1 Partial optimality reduction . 40
4.2 Connected component reduction . 41
4.3 Effect of connected component reduction on runtime 42
4.4 Bridge reduction . 43
4.5 Tentacle reduction . 43
4.6 Effect of tentacle reduction on runtime 44
4.7 Runtimes for synthetic binary grid models 45
4.8 Fraction of solvable instances per size and method 46
4.9 Example images from the Berkeley Segmentation Dataset 48
4.10 Example segmentations done by humans 49
4.11 Illustration of “bleeding” of superpixels 49
4.12 Undersegmentation error . 50
4.13 Illustration of the boundary recall . 50
4.14 Recall for 𝑡 = 1 and 𝑡 = 2 . 51
4.15 Normalized size of superpixels . 52
4.16 Runtimes of the superpixel algorithms 53
4.17 Qualitative comparison of superpixel algorithms 54

5.1 Transformation of a supervised graphical model into a multicut problem 59
5.2 Transformation of an unsupervised graphical model into a multicut problem 60
5.3 Reduction of a higher-order factor for the multicut framework 64
5.4 Illustration of rounding schemes . 70

xiii

List of Figures

5.5 Illustration of different rounding results 71

6.1 Examples from the Chinese character dataset 74
6.2 Color segmentation example [AKT10] 75
6.3 Input data and segmentation of the 3D MRI brain instance 76
6.4 Runtimes for the brain dataset for different slice thicknesses 77
6.5 Energy gaps to the optimal energy for the brain dataset for different

slice thicknesses . 77

xiv

List of Tables

3.1 Number of vertices of M and L . 33

5.1 Comparison of terminal cycle constraints and multi terminal constraints 68

6.1 Results on the Chinese character dataset [NRB+11] 74
6.2 Results on the three color segmentation instances [AKT10] 75
6.3 Results on the brain dataset with 7 mm slices [BW] 76
6.4 Abbreviations for the separation procedures. 78
6.5 Second-order probabilistic image segmentation [AKB+11; KAH+13] . . 80
6.6 Third-order probabilistic image segmentation [AKB+11] 81
6.7 Higher-order hierarchical image segmentation [KNK+11]. 82
6.8 Modularity clustering [BDG+08] . 83
6.9 Supervised image segmentation [AKT10] 84
6.10 Supervised image segmentation with inclusion priors 86

xv

List of Algorithms

1 Cutting-Plane Procedure . 16
2 General Branch-and-Bound Algorithm 17

3 Multicut Algorithm MC . 72

xvii

1 Introduction

1.1 Overview and Motivation
In this thesis, we deal with the following general problem: Given a discrete graphical
model ℳ = (𝒢, 𝑋, 𝜃), find a labeling 𝑥 ∈ 𝑋 that has minimal energy, i.e., solve the
MAP problem

min
𝑥∈𝑋

∑︁
𝑓∈ℱ

𝜃(𝑥nb(𝑓)),

see Chap. 3 for exact definitions.
This problem is𝒩𝒫-hard in general and many important problems from combinatorial

optimization can be modeled as a MAP problem. We will see this in Sec. 3.2 for the
satisfiability problem and the max cut problem, but it is also possible for the traveling
salesman problem, quadratic Boolean optimization, and others. Due to its generality it
found various applications, most prominently in the field of computer vision and image
analysis. Image segmentation, image labeling, stereo vision, tracking problems – all
can be modeled as an energy minimization problem in a graphical model.

Image segmentation is a fundamental problem of image analysis and will serve as our
main application. In Fig. 1.1, an example of a segmentation is shown.

The image segmentation problem itself is not well-defined since several “correct”
segmentations may exists. We here do not deal with the problem of obtaining data
from the input images by means of feature extraction – we assume the data is given
and we have to solve the problem at hand.

The methods from combinatorial optimization we apply here are linear and integer

Figure 1.1: Example of an image segmentation: On the left the input image, on the
right a segmentation of the image into meaningful segments.

1

1 Introduction

linear programming techniques and cutting-plane procedures, and all is done in view of
applicability for real-world problems.

1.2 Related Work
Dating back to the work of Schlesinger [Sch76] the marginal polytope and the local
polytope relaxation are an important research area [WJ08]. Algorithms working in the
dual domain have been suggested, either block-coordinate descent methods [Wer10;
Kol06] or subgradient or bundle methods [KPT11; KSS12]. Even if these methods solve
the dual, they have to reconstruct a relaxed primal solution and then round this to a
solution of the original integer program.

Move-making methods build another type of algorithms, the most popular being
𝛼-expansion [BVZ01], 𝛼-𝛽-swap [BVZ01], and FastPD [KT07].

In the last years combinatorial methods based on cutting-plane and branch-and-bound
techniques have come more into focus in the computer vision community [ABK12a;
OD11; FSW11; STL+12]. The main advantage of these methods is that they provide
globally optimal integer solutions if no runtime restrictions are specified.

Concerning the multicut problem we will deal with, relevant work on this topic are
recent publications dealing with closedness constraints for image segmentation [AKB+11;
AKB+12b], contour completion [MLH12], ensemble segmentation [AG12; MLH12], and
the convex hull of feasible multicuts from the optimization point of view [KNK+13;
YIF12].

The multiway cut problem [CR91], which we will treat as a special case of the multicut
problem, has been dealt with in [DJP+94], [DJP+92], and [Mar12].

A more detailed overview over the most important algorithms in given in Sec. 3.5.

1.3 Contribution
Our main contributions of this thesis are the following:

∙ We propose a set of preprocessing steps, which, when combined, lead to significant
speedups. Random binary grid instances containing more than 4 million variables
can be solved in 90 seconds. Problems from public datasets become solvable to
optimality for the first time at all. (Sec. 4.1, Sec. 4.2)

∙ We provide a fair and neutral comparison of up-to-date superpixel algorithms
that was not available before. The methods are tested on a public dataset and
evaluated using standard measures. (Sec. 4.4)

∙ We introduce the multicut approach to computer vision and show that label
permutation invariant functions are relevant for applications since they generalize

2

1.4 Organization

the popular Potts functions. These expose symmetries and we show that exploiting
this structure pays off. Using the multicut algorithm, solving problems of this
type is feasible while other approaches fail. (Chap. 5)

∙ All methods presented in the thesis are extensively evaluated on various datasets
and compared to state-of-the-art algorithms. For the multicut cutting-plane
algorithm also several relaxations are examined. (Chap. 6)

1.4 Organization
This thesis is organized as follows:

We start in Chap. 2 by giving basic definitions of concepts used in the whole thesis,
ranging from graph theory to polyhedral theory to integer linear programming.

In Chap. 3 we give an overview on discrete graphical models, starting with their
definition, special cases, and transformations. We show that the energy minimization
problem (also known as MAP problem) in a graphical model is 𝒩𝒫-hard in general and
explain its connection to cut problems. Furthermore, we discuss the formulation of the
MAP problem of general graphical models as a linear program and as an integer linear
program. After a brief section on the origins of graphical models, we end the chapter
with an overview of the most important algorithms for solving the energy minimization
problem.

Chap. 4 is devoted to techniques for reducing the complexity of graphical models
which is advisable due to the 𝒩𝒫-hardness of the corresponding optimization problem.
We show how preprocessing steps can be combined to make large problems tractable,
together with experiments proving the effectiveness of the proposed methods. Ad-
ditionally, for our main application image segmentation, we present an overview of
state-of-the-art superpixel algorithms and provide an extensive comparison of them
using various metrics on a benchmark dataset.

In Chap. 5, we introduce the multicut algorithm for solving the energy minimization
problem in special graphical models. The models for which this approach is suited
contain factors with label permutation invariant functions: Their energy does not
depend on the labeling itself but only on the partition it induces. Therefore, permuting
the labels does not change their function value. We show how second-order models can
be modeled as a multicut problem in which variables 𝑦𝑒 for each edge 𝑒 of the multicut
graph are used. In this graph, every edge corresponds to a pairwise (or unary) factor. In
Sec. 5.3 we extend the framework to higher-order models and show how corresponding
higher-order factors can be taken into account in a memory-efficient way by exploiting
symmetries. We detail separation procedures for finding violated constraints in Sec. 5.4
and show how they can be implemented efficiently. Rounding mechanisms will be
discussed in Sec. 5.4.3. We conclude the framework with our cutting-plane method
presented in Sec. 5.4.4.

3

1 Introduction

Extensive computational experiments are provided in 6, both for the reduction
techniques of Chap. 4 and for the multicut approach of Chap. 5. We use various
publicly available datasets to test our methods. Thanks to the reduction techniques,
several problems become solvable to optimality that were not tractable before. For the
multicut problems, we compare our algorithm to several standard solution methods. We
included models of second-order as well as higher-order models, both for the supervised
and unsupervised case.

Parts of this thesis have already been published in the following papers:

[KSA+11] Jörg H. Kappes, Markus Speth, Björn Andres, Gerhard Reinelt, and
Christoph Schnörr. Globally optimal image partitioning by multicuts.
In Proceedings of the International Conference on Energy Minimization
Methods in Computer Vision and Pattern Recognition (EMMCVPR), 2011

[KSR+13a] Jörg H. Kappes, Markus Speth, Gerhard Reinelt, and Christoph Schnörr.
Higher-order segmentation via multicuts. http://arxiv.org/abs/1305.
6387. 2013

[KSR+13b] Jörg H. Kappes, Markus Speth, Gerhard Reinelt, and Christoph Schnörr.
Towards efficient and exact MAP-inference for large scale discrete com-
puter vision problems via combinatorial optimization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2013

To be more precise:

∙ Sec. 4.1 and Sec. 4.2 contain material from [KSR+13b].

∙ Ch. 5 contains material from the multicut papers [KSA+11] and [KSR+13a].

∙ The results of the experiments and applications of Ch. 6 have already been
published in [KSR+13b] and [KSR+13a].

4

http://arxiv.org/abs/1305.6387
http://arxiv.org/abs/1305.6387

2 Background

In this chapter we present basic concepts needed throughout this thesis. Most of them
are standard and can be found in any textbook of the respective field. Our reasons
for nonetheless including them here are twofold: First, to introduce our notational
conventions, and second, to make the present thesis more self-contained.

2.1 General Notation

Sets setwill usually be denoted by capital letters, whereas small letters will be used for
vectors and scalars. If 𝐵 is a subset of 𝐴 this is denoted by 𝐵 ⊆ 𝐴, if the inclusion is
proper we write 𝐵 ⊂ 𝐴. The power set, i.e., the set of all subsets, of a set 𝐴 is denoted
by 𝒫(𝐴). The set of all subsets of a fixed size 𝑘 is denoted by

(︀𝐴
𝑘

)︀
. A partition partitionof a

set 𝐴 is a collection of non-empty, pairwise disjoint sets {𝐴1, . . . , 𝐴𝑛} with
⋃︀𝑛

𝑖=1𝐴𝑖 = 𝐴.
We denote the set of natural numbers (including zero) by N, the set of real numbers is
denoted by R.

A vector will usually be a column vector. If 𝑎 is a column vector, its transpose,
i.e., the corresponding row vector, will be denoted by 𝑎𝑇 and vice versa. For two
vectors 𝑎 = (𝑎1, . . . , 𝑎𝑛)𝑇 and 𝑏 = (𝑏1, . . . , 𝑏𝑛)𝑇 , we denote their inner product inner productby
𝑎𝑇 𝑏 :=

∑︀𝑛
𝑖=1 𝑎𝑖𝑏𝑖. The vector of all zeros and the vector of all ones of appropriate

dimensions are denoted by 0 and 1, respectively.
For a logical expression 𝜏 we define an indicator function indicator functionI[𝜏] that is 1 if 𝜏 is true

and 0 otherwise.
When examining the growth of a function, we are often only interested in the order

of its growth. For this we use the Landau notation Landau notation: For two functions 𝑓, 𝑔 : R → R,
we write 𝑓 ∈ 𝒪(𝑔) if there exists a 𝑐 > 0 and an 𝑥0 ∈ R such that |𝑓(𝑥)| ≤ 𝑐|𝑔(𝑥)| for
all 𝑥 ≥ 𝑥0.

2.2 Graph Theory

We will define our problems on graphs, which are well-suited as mathematical repre-
sentations of objects and their relationships. We here introduce those concepts from
graph theory that we will need later on. The definitions are mostly taken from the
introductory chapters of [Die97] and [Bol98], which are excellent references for further
reading.

5

2 Background

2.2.1 Graphs

A graphgraph 𝐺 = (𝑉,𝐸) is a pair of two disjoint finite sets 𝑉 and 𝐸 such that 𝐸 ⊆
(︀𝑉

2
)︀
.

The elements 𝑣 ∈ 𝑉 are called nodes (or vertices) and the elements 𝑒 ∈ 𝐸 are called
edges. The set of all nodes and the set of all edges of a graph 𝐺 are denoted by 𝑉 (𝐺)
and 𝐸(𝐺), respectively. Most of the time, an edge 𝑒 = {𝑢, 𝑣} will simply be denoted
by 𝑢𝑣, so 𝑒 = 𝑢𝑣 = 𝑣𝑢. For 𝑒 = 𝑢𝑣 ∈ 𝐸 the nodes 𝑢 and 𝑣 are called the endnodes of 𝑒.
Two nodes 𝑢 and 𝑣 are adjacent if 𝑢𝑣 ∈ 𝐸 and a node 𝑣 is incident to an edge 𝑒, and
vice versa, if 𝑣 ∈ 𝑒. The neighborhoodneighborhood of a node 𝑣 is the set nb(𝑣) := {𝑢 ∈ 𝑉 | 𝑢𝑣 ∈ 𝐸}
and the cardinality of nb(𝑣) is called the degreedegree of 𝑣.

Two graphs 𝐺 = (𝑉,𝐸) and 𝐺′ = (𝑉 ′, 𝐸′) are isomorphicisomorphic if there exists a bijection
𝜙 : 𝑉 → 𝑉 ′ such that 𝑢𝑣 ∈ 𝐸 if and only if 𝜙(𝑢)𝜙(𝑣) ∈ 𝐸′ for all 𝑢, 𝑣 ∈ 𝑉 . We do not
distinguish between isomorphic graphs, i.e., we write 𝐺 = 𝐺′.

A graph 𝐺′ = (𝑉 ′, 𝐸′) is a subgraphsubgraph of a graph 𝐺 = (𝑉,𝐸) if 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸. In
this case, we also say that 𝐺 contains 𝐺′. If additionally 𝑉 ′ = 𝑉 then 𝐺′ is said to be
a spanning subgraph of 𝐺.

2.2.2 Paths, Cycles, and Connectivity

A pathpath between two nodes 𝑣0 and 𝑣𝑛 in a graph 𝐺 is a subgraph 𝑃 = (𝑉𝑃 , 𝐸𝑃) of 𝐺
where 𝑉𝑃 = {𝑣𝑖 | 0 ≤ 𝑖 ≤ 𝑛} and 𝐸𝑃 = {𝑣𝑖𝑣𝑖+1 | 0 ≤ 𝑖 ≤ 𝑛− 1}. The length of a path 𝑃
is |𝐸(𝑃)|. A path that has the smallest length among all paths between two nodes 𝑢
and 𝑣 is called a shortest pathshortest path between them. If such a shortest path exists, we call its
length the distancedistance of 𝑢 and 𝑣, otherwise, we say their distance is ∞.

A cyclecycle in a graph 𝐺 is a subgraph 𝐶 = (𝑉𝐶 , 𝐸𝐶) of 𝐺 where 𝑉𝐶 = {𝑣𝑖 | 1 ≤ 𝑖 ≤ 𝑛},
𝑛 ≥ 3, and 𝐸𝐶 = {𝑣𝑖𝑣𝑖+1 | 1 ≤ 𝑖 ≤ 𝑛−1}∪{𝑣1𝑣𝑛}. The length of a cycle 𝐶 is |𝐸(𝐶)|. If
a graph 𝐺 contains a cycle 𝐶, then an edge 𝑢𝑣 ∈ 𝐸(𝐺) is a chordchord of 𝐶 in 𝐺 if 𝑢, 𝑣 ∈ 𝑉 (𝐶)
and 𝑢𝑣 ̸∈ 𝐸(𝐶). A cycle contained in a graph 𝐺 is chordless if it has no chord in 𝐺.

Two nodes in a graph are connectedconnected if the graph contains a path between them. We
call a graph connected if there exists a path between 𝑢 and 𝑣 for all nodes 𝑢, 𝑣 ∈ 𝑉 ,
otherwise it is called disconnected. Maximal connected subgraphs of a graph are called
its (connected) components.

2.2.3 Cuts and Multicuts

For a graph 𝐺 = (𝑉,𝐸) and a subset of the nodes 𝑆 ⊆ 𝑉 , we define a cutcut of 𝐺 by
𝛿(𝑆) := {𝑢𝑣 ∈ 𝐸 | 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑉 ∖𝑆}. If 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑉 ∖𝑆, we call 𝛿(𝑆) an 𝑠-𝑡-cut𝑠-𝑡-cut of 𝐺.
We extend this definition to 𝛿(𝑆1, . . . , 𝑆𝑛) := {𝑢𝑣 ∈ 𝐸 | 𝑢 ∈ 𝑆𝑖, 𝑣 ∈ 𝑆𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}
for disjoint sets 𝑆𝑖 ⊆ 𝑉 , 1 ≤ 𝑖 ≤ 𝑛 with 𝑛 ≥ 2. If {𝑆1, . . . , 𝑆𝑛} is a partition of 𝑉 ,
the set 𝛿(𝑆1, . . . , 𝑆𝑛) is called a multicutmulticut of 𝐺 and the sets 𝑆1, . . . , 𝑆𝑛 are the shores of
the multicut. Since the cut 𝛿(𝑆) can also be written as 𝛿(𝑆, 𝑉 ∖ 𝑆) if ∅ ≠ 𝑆 ̸= 𝑉 it is
therefore also a multicut. Additionally, the empty set ∅ is also a multicut.

6

2.3 Algorithms and Complexity

2.2.4 Special Classes of Graphs

A graph 𝐺 = (𝑉,𝐸) is called complete completeif 𝐸 =
(︀𝑉

2
)︀
, i.e., if all pairs of nodes are adjacent.

If a graph contains no cycles it is called acyclic or a forest; it is a tree treeif it is a connected
forest. If there is a partition {𝑉1, 𝑉2} of 𝑉 such that 𝐸 ⊆ 𝑉1 × 𝑉2 then 𝐺 is bipartite bipartite.

We define planarity only informally: A graph is called planar planarif it is possible to draw
it in the plane such that no edges are crossing. For a more formal definition, we refer
to [Die97].

A grid graph grid graphis a graph 𝐺 = (𝑉,𝐸) with 𝑉 = {(𝑖, 𝑗) | 1 ≤ 𝑖 ≤ 𝑛1, 1 ≤ 𝑗 ≤ 𝑛2} and
𝐸 = {(𝑖, 𝑗)(𝑖+ 1, 𝑗) | 1 ≤ 𝑖 < 𝑛1, 1 ≤ 𝑗 ≤ 𝑛2}∪ {(𝑖, 𝑗)(𝑖, 𝑗+ 1) | 1 ≤ 𝑖 ≤ 𝑛1, 1 ≤ 𝑗 < 𝑛2};
its size is 𝑛1 × 𝑛2.

A weighted graph weighted graphis a tuple 𝐺 = (𝑉,𝐸,𝑤) where (𝑉,𝐸) is a graph which has an
associated weight function 𝑤 : 𝐸 → R which assigns a weight 𝑤(𝑒) to each edge 𝑒 of
the graph. In a weighted graph, we define the length of a path to be the sum of the
edge weights of all edges of the path. Accordingly, the definitions of shortest path and
distance change. We extend the domain of the weight function 𝑤 in a natural way to
arbitrary sets of edges: For 𝐸′ ⊆ 𝐸, we define 𝑤(𝐸′) :=

∑︀
𝑒∈𝐸′ 𝑤(𝑒) and call this value

the weight of 𝐸′.
A hypergraph hypergraph𝐻 = (𝑉𝐻 , 𝐸𝐻) is a pair of two disjoint finite sets 𝑉𝐻 and 𝐸𝐻 such

that 𝐸𝐻 ⊆ 𝒫(𝑉𝐻). This is a generalization of ordinary graphs: Here, the elements
of 𝐸𝐻 , the hyperedges, are subsets of 𝑉𝐻 of arbitrary cardinality. Again, a node 𝑣 ∈ 𝑉𝐻

is incident to a hyperedge 𝑒 ∈ 𝐸𝐻 , and vice versa, if 𝑣 ∈ 𝑒. Every hypergraph has
an associated bipartite ordinary graph that reflects the incidence relations among the
nodes and hyperedges. This incidence graph incidence graph𝐺 = (𝑉,𝐸) of a hypergraph 𝐻 = (𝑉𝐻 , 𝐸𝐻)
is defined by 𝑉 := 𝑉𝐻 ∪ 𝐸𝐻 and 𝐸 := {{𝑣, 𝑒} | 𝑣 ∈ 𝑉𝐻 , 𝑒 ∈ 𝐸𝐻 , 𝑣 ∈ 𝑒}.

2.3 Algorithms and Complexity

To compare the efficiency of algorithms, a measure of their quality is needed. In
this section we briefly introduce some basic concepts from complexity theory, most
importantly the notion of 𝒫 and 𝒩𝒫 . A very thorough work on this topic is the seminal
book by Garey and Johnson [GJ79]. For this overview we used the corresponding
chapters of [GJ79], [Sch03], and [KV00].

2.3.1 Algorithms

Although a precise definition of an algorithm is possible by using the concept of Turing
machines (or an equivalent machine model), we refrain here from doing so due to the
involved formalism. We therefore define an algorithm algorithm𝐴 only in an informal way as a set
of instructions which transforms some input data 𝑋 into output data 𝐴(𝑋). The set of

7

2 Background

instructions is required to be finite and each instruction has to consist of a sequence of
simple and elementary steps.

To be able to handle different kinds of input data uniformly, we will encode it: Let Σ
be an alphabetalphabet , i.e., a finite set, with |Σ| ≥ 2 and let Σ* denote the set of all words
over Σ, i.e., the set of all finite sequences consisting of elements of Σ. For a word 𝑥 ∈ Σ*

we denote by |𝑥| the length of 𝑥. An encoding schemeencoding scheme enc is a mapping that transforms
an arbitrary object 𝑋 into a representation as a word 𝑥 ∈ Σ*, so enc : 𝑋 ↦→ 𝑥. Since an
exact specification of the encoding scheme is not necessary as long as it is reasonable
(which means that the length of the encoding has to be bounded by a polynomial in
the length of the shortest encoding possible), we assume in the following an arbitrary
but fixed reasonable encoding scheme. The input sizeinput size of an input 𝑋 is the length of its
encoding | enc(𝑋)|.

The time complexitytime complexity time𝐴 : N→ N of an algorithm 𝐴 is the number of elementary
steps that it carries out at most during its execution and is given in terms of the input
size:

time𝐴(𝑛) := max
{︃
𝑚

⃒⃒⃒⃒
⃒ there is an input 𝑋 with input size 𝑛 such that 𝐴

needs 𝑚 elementary steps to compute 𝐴(𝑋)

}︃
.

If there exists a polynomial 𝑝 such that time𝐴(𝑛) ≤ 𝑝(𝑛) for all 𝑛 ∈ N then we call 𝐴 a
polynomial-time algorithmpolynomial-time

algorithm
or simply polynomial.

2.3.2 Decision Problems and Optimization Problems
Informally, a decision problem is a problem that can be answered by “yes” or “no”.
To formalize this, we say that a decision problemdecision problem is a set Π ⊆ Σ*. The corresponding
“yes”-“no” question is: Given an input 𝑥 ∈ Σ*, is 𝑥 ∈ Π?

An optimization problemoptimization
problem

is given by an arbitrary set 𝑋 and a function 𝑓 : 𝑋 → R and
asks for an optimal solution 𝑥*, i.e., for an element 𝑥* ∈ 𝑋 with 𝑓(𝑥*) = min𝑥∈𝑋 𝑓(𝑥)
(or 𝑓(𝑥*) = max𝑥∈𝑋 𝑓(𝑥)) if such an element exists. Every optimization problem can
be transformed into a decision problem by attaching an additional parameter 𝐾 ∈ R to
its input and asking: “Is there an 𝑥 ∈ 𝑋 with 𝑓(𝑥) ≤ 𝐾 (or 𝑓(𝑥) ≥ 𝐾)?”

2.3.3 𝒫 and 𝒩𝒫
If there exists a polynomial algorithm for a decision problem Π ⊆ Σ*, i.e., if there exists
an algorithm and a polynomial 𝑝 such that for all 𝑥 ∈ Σ* the algorithm decides in at
most 𝑝(|𝑥|) steps whether 𝑥 ∈ Π or not, then Π is called polynomially solvablepolynomially

solvable
. The set

of all polynomially solvable decision problems is denoted by 𝒫.
For example, let ΠHC be the set of all graphs that contain a Hamiltonian cycle1

1A Hamiltonian cycle in a graph is a cycle that contains all nodes of the graph. A graph containing a
Hamiltonian cycle is called a Hamiltonian graphHamiltonian graph .

8

2.4 Polyhedral Theory

(using an appropriate encoding). Since so far no polynomial-time algorithm is known
that decides whether a given graph is Hamiltonian or not, it is not known whether
ΠHC ∈ 𝒫 or not.

The class 𝒩𝒫 consists of all decision problems Π ⊆ Σ* for which there is a decision
problem Π′ ⊆ Σ* with Π′ ∈ 𝒫 and a polynomial 𝑝 such that 𝑥 ∈ Π if and only if there
exists a 𝑐 ∈ Σ* with |𝑐| ≤ 𝑝(|𝑥|) such that 𝑥𝑐 ∈ Π′ for all 𝑥 ∈ Σ*. The word 𝑐 is called
a certificate certificatefor 𝑥.

The problem ΠHC is contained in 𝒩𝒫: If 𝑥 is the encoding of a given Hamiltonian
graph 𝐺, we can set 𝑐 to the encoding of a Hamiltonian cycle of 𝐺. This is a certificate
for 𝑥 since it can be checked in polynomial time that it indeed encodes a Hamiltonian
cycle of 𝐺.

By setting 𝑐 to the empty word, one can see easily that 𝒫 is a subset of 𝒩𝒫 . However,
it is still an open question whether the classes 𝒫 and 𝒩𝒫 are equal or not.

2.3.4 𝒩𝒫-Completeness

A decision problem Π ⊆ Σ* is said to be (polynomially) reducible polynomially
reducible

to a decision problem
Π′ ⊆ Σ* if there exists a polynomial algorithm 𝐴 such that for all 𝑥 ∈ Π the relation
𝑥 ∈ Π⇔ 𝐴(𝑥) ∈ Π′ holds. As a consequence, if Π is reducible to Π′ and Π′ ∈ 𝒫, then
also Π ∈ 𝒫.

A decision problem is called 𝒩𝒫-hard 𝒩𝒫-hardif every problem in 𝒩𝒫 is reducible to it. If
Π ∈ 𝒩𝒫 and Π is 𝒩𝒫-hard then Π is called 𝒩𝒫-complete 𝒩𝒫-complete. Informally, this means that
𝒩𝒫-complete problems are the “hardest” problems in 𝒩𝒫 and that 𝒩𝒫-hard problems
are “at least as hard” as any problem in 𝒩𝒫.

A depiction of the relations between the different complexity classes can be seen in
Fig. 2.1, both for the case 𝒫 ≠ 𝒩𝒫 and 𝒫 = 𝒩𝒫.

2.4 Polyhedral Theory

The optimization problems we deal with in this thesis will be formulated as integer
linear programs (as explained in Sec. 2.5). However, the methods for solving such
problems cannot be understood without knowledge of some basic concepts of polyhedral
theory. These will be given in this section which is based on the first pages of the books
of Ziegler [Zie95] and Brøndsted [Brø83].

2.4.1 Inequalities and Hyperplanes

A set 𝐶 ⊆ R𝑑 is called convex convexif {𝜆𝑥+ (1− 𝜆)𝑦 | 0 ≤ 𝜆 ≤ 1} ⊆ 𝐶 for all 𝑥, 𝑦 ∈ 𝐶.
The convex hull convex hullof a finite set of points 𝑋 = {𝑥1, . . . , 𝑥𝑘} ⊆ R𝑑 is given by the

set conv(𝑋) :=
{︁∑︀𝑘

𝑖=1 𝜆𝑖𝑥𝑖 | 𝜆𝑖 ≥ 0 for 1 ≤ 𝑖 ≤ 𝑘,
∑︀𝑘

𝑖=1 𝜆𝑖 = 1
}︁

. One can show that

9

2 Background

𝒫

𝒩𝒫

𝒩𝒫-complete

𝒩𝒫-hard

(a) 𝒫 ≠ 𝒩𝒫
co

m
pl

ex
ity

𝒫
= 𝒩𝒫

= 𝒩𝒫-complete

𝒩𝒫-hard

(b) 𝒫 = 𝒩𝒫

Figure 2.1: Schematic depiction of the various complexity classes for the two cases
(a) 𝒫 ≠ 𝒩𝒫 and (b) 𝒫 = 𝒩𝒫.

the convex hull of a set 𝑋 is the smallest convex set that contains 𝑋, which is the
intersection of all convex sets 𝐶 ⊆ R𝑑 with 𝑋 ⊆ 𝐶.

For 𝑎 ∈ R𝑑, 𝑎 ̸= 0, and 𝑏 ∈ R, an inequalityinequality is the logical expression 𝑎𝑇𝑥 ≤ 𝑏 which
depends on a variable 𝑥 ∈ R𝑑.

Every inequality 𝑎𝑇𝑥 ≤ 𝑏 naturally defines a (closed) halfspacehalfspace {𝑥 ∈ R𝑑 | 𝑎𝑇𝑥 ≤ 𝑏},
i.e., the set of points for which it is valid, and a hyperplanehyperplane {𝑥 ∈ R𝑑 | 𝑎𝑇𝑥 = 𝑏}, i.e.,
the set of points for which it is tight.

2.4.2 Polytopes

A polytopepolytope 𝑃 in R𝑑 can be defined in two ways: A 𝑉 -polytope is the convex hull of a
finite set of points 𝑋 ⊆ R𝑑, i.e., 𝑃 = conv(𝑋). This is the so-called inner description of
a polytope. An 𝐻-polytope is a bounded polyhedron: A polyhedronpolyhedron 𝑃 is the intersection
of finitely many halfspaces, i.e., 𝑃 = {𝑥 ∈ R𝑑 | 𝑎𝑇

𝑖 𝑥 ≤ 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑚} where 𝑎𝑇
𝑖 𝑥 ≤ 𝑏𝑖

are finitely many inequalities. A polyhedron 𝑃 is boundedbounded if there is no 𝑦 ∈ R𝑑, 𝑦 ̸= 0,
with {𝑥+ 𝜆𝑦 | 𝑥 ∈ R𝑑, 𝜆 ≥ 0} ⊆ 𝑃 . This definition is called the outer description of a
polytope. For 𝐴 ∈ R𝑚×𝑑 and 𝑏 ∈ R𝑚 we define

𝑃 (𝐴, 𝑏) := {𝑥 ∈ R𝑑 | 𝐴𝑥 ≤ 𝑏}

which is an 𝐻-polytope where 𝑎𝑖 are the rows of 𝐴 and 𝑏𝑖 are the entries of 𝑏.
A central theorem of polyhedral theory, which is due to Minkowski [Min96] and

Weyl [Wey35], states that 𝑃 ⊆ R𝑑 is a 𝑉 -polytope if and only if it is an 𝐻-polytope.

10

2.5 Integer Linear Programming

(a) 𝑉 -polytope (b) 𝐻-polytope

Figure 2.2: Both (a) and (b) show the same polytope: In (a) it is depicted as the convex
hull of a finite set of points and in (b) as the intersection of finitely many
halfspaces.

We will therefore simply denote them as polytopes in the following. A depiction of a
𝑉 -polytope and an 𝐻-polytope can be seen in Fig. 2.2.

2.4.3 Faces and Facets

An inequality 𝑎𝑇𝑥 ≤ 𝑏 is valid for a polytope 𝑃 if it is valid for all 𝑥 ∈ 𝑃 . Every valid
inequality of a polytope 𝑃 defines a face face𝐹 := 𝑃 ∩ {𝑥 ∈ R𝑑 | 𝑎𝑇𝑥 = 𝑏} of 𝑃 . Such
a face 𝐹 is called proper if 𝐹 ̸= 𝑃 and 𝐹 ≠ ∅, it is called a vertex vertex(or an extreme
point) of 𝑃 if |𝐹 | = 1, and a facet facetif it is a proper face that is maximal with respect to
inclusion. It can be shown that 𝑃 = conv({𝑥 | {𝑥} is a vertex of 𝑃}) for all polytopes
𝑃 ⊆ R𝑑.

For a polytope 𝑃 and a valid inequality 𝑎𝑇𝑥 ≤ 𝑏, the inequality is facet-defining facet-definingif
𝑃 ∩ {𝑥 ∈ R𝑑 | 𝑎𝑇𝑥 = 𝑏} is a facet. Facet-defining inequalities are the most important
ones: Every (full-dimensional) polytope is the intersection of the halfspaces defined
by its facet-defining inequalities and this representation is minimal with respect to the
number of halfspaces.

2.5 Integer Linear Programming

In this section we will discuss integer linear programs (ILPs), which are a powerful tool
to solve optimization problems of a certain kind. Since the emergence of this theory in
the 1940s, integer linear programming has developed quickly and was used in many
different areas such as production planning, scheduling, and network design.

Before discussing ILPs, we will cover linear programs (LPs), not only because both
are strongly related but also because LPs are necessary for solving ILPs.

An in-depth treatment of this topic can be found in the books of Schrijver [Sch86]
and Korte and Vygen [KV00].

11

2 Background

2.5.1 Linear Programming

A linear program (LP)linear program (LP) is an optimization problem of the following type: Given a matrix
𝐴 ∈ R𝑚×𝑛 and vectors 𝑏 ∈ R𝑚 and 𝑐 ∈ R𝑛, find a vector 𝑥 ∈ R𝑛 with 𝐴𝑥 ≤ 𝑏 such
that 𝑐𝑇𝑥 is minimal or decide that no such vector exists. We will usually write an LP
in the form

min 𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏.

The definition given above specifies the so-called standard form of an LP. Linear
programs in non-standard form can for example ask for maximization instead of
minimization, can contain equality restrictions instead of only inequality restrictions,
or can require a sign for some variables. However, all these variants can be transformed
into standard form.

For a linear program given by 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, and 𝑐 ∈ R𝑛, the inequalities
𝑎𝑖𝑥 ≤ 𝑏𝑖, where 𝑎𝑖 is the 𝑖-th row of 𝐴 and 𝑏𝑖 is the 𝑖-th entry of 𝑏, are calledconstraint (linear)
constraints. The set 𝑃 (𝐴, 𝑏) = {𝑥 ∈ R𝑛 | 𝐴𝑥 ≤ 𝑏} is called the feasible regionfeasible region and its
elements the feasible points of the LP. Note that by definition the feasible region of an
LP is a polytope, so linear programming deals with minimizing a linear function over a
polytope. If the feasible region is non-empty, then the LP is called feasiblefeasible , it is infeasible
otherwise. The function 𝑥 ↦→ 𝑐𝑇𝑥 is the objective functionobjective function of the LP. If for every 𝛼 ∈ R
there exists a feasible point 𝑥 with 𝑐𝑇𝑥 > 𝛼, then the LP is called unbounded. An
optimal solutionoptimal solution of an LP is a feasible point 𝑥* ∈ R𝑛 such that 𝑐𝑇𝑥* ≤ 𝑐𝑇𝑥 for all
feasible points 𝑥. For an optimal solution 𝑥* ∈ R𝑛, the value 𝑐𝑇𝑥* is called the optimal
valueoptimal value of the LP. It can be shown that if the LP is neither infeasible nor unbounded,
there always exists an optimal solution.

An important observation is that if an LP has an optimal solution, then there always
exists an optimal solution which is a vertex of the feasible region. Additionally, for an
optimal solution 𝑥*, there always exists a facet 𝐹 of the feasible region such that 𝑥* ∈ 𝐹 .

2.5.2 Solution Methods for LPs

There are basically three methods for solving linear programs – the simplex method,
the ellipsoid method, and the interior point method. We shortly describe them:

Simplex Methodsimplex method The simplex method was developed by Dantzig in 1947 and published
in 1951 [Dan51]. It was the first algorithm that was able to solve arbitrary linear
programs to optimality and for a long time remained the only one. It first determines
a vertex of the feasible region of the LP. Starting with this initial solution, it then
generates a sequence of vertices by traversing the feasible region from the current vertex
to a neighboring one with a better objective function value. If this is not possible

12

2.5 Integer Linear Programming

anymore, an optimal solution has been found. Several variants of the simplex method
are possible, but all of them analyzed so far have exponential runtime in the worst case.
However, on average and in practice its runtime is polynomial.

Ellipsoid Method ellipsoid methodIn 1979, Khachiyan was able to prove that linear programs belong
to the class of polynomially solvable problems by adapting a method developed shortly
before for nonlinear optimization. His ellipsoid method [Kha79] constructs a series of
ellipsoids, each containing at least one optimal solution. The ellipsoids are decreasing
in size, and after a polynomial number of steps they are small enough to derive an
optimal solution. Although the method has polynomial runtime, it is too inefficient to
be used in practice.

Interior Point Method interior point
method

Shortly after the ellipsoid method, another algorithm for linear
programs was developed – the interior point method of Karmarkar [Kar84] is not only
polynomial, but also applicable in practice. As its name suggests, it does not generate
a tour along the vertices of the feasible region as the simplex method but a sequence of
points in the interior of the polytope which converges to an optimal solution.

For the purpose in this thesis, the simplex method – despite its theoretical complexity
– is the fastest and therefore still the most widely used method today due to its additional
properties that can be exploited. However, in general the interior point method is also
competitive and and sometimes even faster for solving LPs.

2.5.3 Integer Linear Programming
An integer linear program (ILP) integer linear

program (ILP)
can be seen as a simple extension of a linear program.

Again, we are given a matrix 𝐴 ∈ R𝑚×𝑛 and vectors 𝑏 ∈ R𝑚 and 𝑐 ∈ R𝑛, again we want
to find a vector 𝑥 which satisfies 𝐴𝑥 ≤ 𝑏 and maximizes 𝑐𝑇𝑥, however, in the case of an
ILP we require 𝑥 to be integral. The standard form of an ILP is therefore

min 𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ∈ Z𝑛,

where the requirements 𝑥1 ∈ Z, . . . , 𝑥𝑛 ∈ Z are called integrality constraints integrality
constraint

.
Despite their similarity to linear programs, ILPs are considerably harder: General

ILPs are known to be 𝒩𝒫-complete. The decision version of an ILP was among the
first set of problems for which 𝒩𝒫-hardness was shown [Kar72].

Integer linear programs are a quite general tool to model optimization problems.
Virtually all combinatiorial problems can be formulated as an ILP, and many of them
have a very natural formulation.

Most of the terms we defined for LPs can directly be applied for ILPs, with the
exception of the feasible region: For ILPs the feasible region feasible regionis naturally defined

13

2 Background

𝑃 (𝐴, 𝑏)

𝑃𝐼(𝐴, 𝑏)

feasible point of ILP

Figure 2.3: The integer hull 𝑃𝐼(𝐴, 𝑏), which is the convex hull of the feasible region of
the ILP, is contained in 𝑃 (𝐴, 𝑏).

as {𝑥 ∈ Z𝑛 | 𝐴𝑥 ≤ 𝑏}. If 𝑃 (𝐴, 𝑏) is bounded, the feasible region of the ILP is finite. In
this case, we can define its integer hullinteger hull 𝑃𝐼(𝐴, 𝑏) as

𝑃𝐼(𝐴, 𝑏) := conv({𝑥 ∈ Z𝑛 | 𝐴𝑥 ≤ 𝑏}),

i.e., as the convex hull of the feasible region. This is depicted in Fig. 2.3. By definition,
the integer hull is a polytope which means that the problem min {𝑐𝑇𝑥 | 𝑥 ∈ 𝑃𝐼(𝐴, 𝑏)}
is a linear program. Since we know that if an LP has an optimal solution, there also
exists an optimal solution which is a vertex of its feasible region, we can conclude that

min {𝑐𝑇𝑥 | 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ Z𝑛} = min {𝑐𝑇𝑥 | 𝑥 ∈ 𝑃𝐼(𝐴, 𝑏)}.

Thus, we have written our integer linear program (left-hand side) as a linear program
(right-hand side). Although linear programs can be solved in polynomial time as we
have seen in Sec. 2.5.2, this does not mean that we can solve the ILP in polynomial
time. The description of 𝑃𝐼(𝐴, 𝑏) requires exponentially many halfspaces which means
that the input size of the LP is already exponentially large.

2.5.4 Solution Methods for ILPs
Before describing two methods for solving integer linear programs (the cutting-plane
procedure and the branch-and-bound algorithm), we now introduce the notion of a
relaxation.

In general, a relaxationrelaxation of an optimization problem min𝑥∈𝑋 𝑓(𝑥) is also an optimiza-
tion problem min𝑥∈𝑋̄ 𝑓(𝑥) with 𝑋̄ ⊇ 𝑋. An immediate consequence is that if 𝑥* is an
optimal solution of the original problem and 𝑥̄* is an optimal solution of the relaxed
problem, then

𝑓(𝑥̄*) ≤ 𝑓(𝑥*),

14

2.5 Integer Linear Programming

i.e., solving a relaxation yields a lower bound for the original problem. A relaxation
can be used for its own sake, i.e., only for obtaining a lower bound, or as a subproblem
in an algorithm for the original problem where the bounds are used in the further
computations. The motivation for considering relaxations is of course the assumption
that the relaxed problem is easier to solve than the original one. For an ILP

min {𝑐𝑇𝑥 | 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ Z𝑛}

a natural relaxation is the LP-relaxation LP-relaxation

min {𝑐𝑇𝑥 | 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ R𝑛}

which is widely used. Other obvious relaxations include problems of the form

min {𝑐𝑇𝑥 | 𝐴′𝑥 ≤ 𝑏′, 𝑥 ∈ Z𝑛}

where 𝐴′𝑥 ≤ 𝑏′ is a subsystem of 𝐴𝑥 ≤ 𝑏, i.e., where some of the inequality constraints
of the original ILP were left out.

Cutting-Plane Procedure We now describe the cutting-plane procedure cutting-plane
procedure

: When solving
an ILP, we can start with solving a relaxation of the problem. If the obtained solution 𝑥̄*

satisfies all constraints of the ILP it is also the optimal solution of the original problem.
However, this will usually not be the case. The basic idea of a cutting-plane procedure
is to then derive a constraint which is not satisfied by 𝑥̄* but which is valid for all
feasible points of the ILP. This constraint is then added to the relaxation and the
process is iterated. As soon as all constraints of the ILP are valid for 𝑥̄* we are done.

The constraint (when it is an inequality) which is added to the relaxation is called a
cutting-plane cutting-planesince it “cuts” 𝑥̄* from 𝑃𝐼(𝐴, 𝑏); the process of finding this cutting-plane
is called separation separation.

In the original cutting-plane procedure developed in the 1950s by Gomory [Gom58],
the initial relaxation is the LP-relaxation. This original procedure is outlined in Alg. 1.
The crucial point is clearly the separation step: It can be shown that in general the
separation is polynomially solvable if and only if the original problem is polynomially
solvable. Gomory was able to specify an easy way to generate such cutting-planes
which guarantees a finite number of iterations until an integral solution is found. In
practice, however, this number can be quite large and when used in its pure version
numerical problems can occur. Nonetheless, Gomory cuts are used in many algorithms
and off-the-shelf solvers.
Branch-and-Bound The branch-and-bound branch-and-boundtechnique is a general approach for solving
hard optimization problems. As its name suggests, it consists of two main steps:
branching and bounding.

To simplify the notation in the following paragraphs, we will identify an optimization
problem min𝑥∈𝑋 𝑓(𝑥) with its domain 𝑋 (i.e., in case of an LP or an ILP with its

15

2 Background

Algorithm 1 Cutting-Plane Procedure
1: function Cutting-Plane(𝐴, 𝑏)
2: 𝐴← 𝐴, 𝑏̄← 𝑏
3: compute 𝑥̄* ∈ argmin{𝑐𝑇𝑥 | 𝑥 ∈ 𝑃 (𝐴, 𝑏̄)}
4: if 𝑥̄* ̸∈ 𝑃𝐼(𝐴, 𝑏) then
5: find 𝑎 ∈ R𝑛 and 𝑏0 ∈ R with 𝑎𝑇 𝑥̄* > 𝑏0 and 𝑎𝑇𝑥 ≤ 𝑏0 for all 𝑥 ∈ 𝑃𝐼(𝐴, 𝑏)
6: 𝐴← (𝐴, 𝑎)𝑇 , 𝑏̄← (𝑏̄, 𝑏0)𝑇

7: goto 3.
8: return 𝑥̄*

feasible region) since we assume that 𝑓 is the same for all problems we consider here.
Furthermore, we here use the shorthand notation 𝑋̄ to denote a relaxation of 𝑋.

For an optimization problem 𝑋, a separationseparation of 𝑋 is a set of optimization problems 𝑋𝑖,
𝑖 ∈ 𝐼, with

⋃︀
𝑖∈𝐼 𝑋𝑖 = 𝑋 where 𝐼 is a finite index set. This splitting of an optimization

problem into a separation is called branching. To solve 𝑋, we can also solve 𝑋𝑖, 𝑖 ∈ 𝐼,
since obviously it holds that min𝑥∈𝑋 𝑓(𝑥) = min𝑖∈𝐼(min𝑥∈𝑋𝑖 𝑓(𝑥)).

The main idea of the algorithm is to reduce the computational effort by not having
to solve all 𝑋𝑖 but only some of them without losing optimality. This is done by the
bounding step: Let 𝑥′ be a feasible solution of our problem 𝑋 which yields an upper
bound 𝑈 , i.e., min𝑥∈𝑋 𝑓(𝑥) ≤ 𝑈 = 𝑓(𝑥′). For a relaxation 𝑋̄𝑖 of 𝑋𝑖 it obviously holds
that min𝑥∈𝑋̄𝑖

𝑓(𝑥) ≤ min𝑥∈𝑋𝑖 𝑓(𝑥). Now assume that 𝑈 ≤ min𝑥∈𝑋̄𝑖
𝑓(𝑥): In this case,

it follows that 𝑈 ≤ min𝑥∈𝑋𝑖 𝑓(𝑥) which means that we do not have to solve 𝑋𝑖 at all
since we know that we cannot obtain a better solution than 𝑥′ – it was sufficient to
solve the (easier) relaxation 𝑋̄𝑖.

The exact procedure is described in Alg. 2. Of course one has to make sure that the
algorithm terminates by choosing a reasonable procedure for both the branching and
the bounding step. Additionally, also the choice of the active problem influences the
quality of the algorithm.

For solving ILPs, this method was described by Land and Doig [LD60] and by
Dakin [Dak65]. As the bounding step they use the LP-relaxation of the current problem.
In the branching step, they choose an index 𝑗 such that in the solution 𝑥̄* of the LP-
relaxation of the problem to be separated the entry 𝑥̄*

𝑗 is not integral. The separation
they create consists of two new problems which each have one new constraint: In the
first problem, the constraint 𝑥𝑗 ≤ ⌊𝑥̄*

𝑗⌋ is added, and in the second one, 𝑥𝑗 ≥ ⌈𝑥̄*
𝑗⌉ is

used. Obviously, this defines a separation.

16

2.5 Integer Linear Programming

Algorithm 2 General Branch-and-Bound Algorithm
1: function Branch-and-Bound(𝑋0, 𝑓)
2: create an active node for 𝑋0
3: 𝑈 ←∞
4: while active nodes exist do
5: let 𝑋 be an active node
6: if a relaxation of 𝑋 has already been examined then
7: let 𝑋𝑖, 𝑖 ∈ 𝐼, be a separation of 𝑋
8: create active nodes for all 𝑋𝑖, 𝑖 ∈ 𝐼
9: deactivate 𝑋

10: else
11: let 𝑋̄ be a relaxation of 𝑋
12: let 𝑥̄* be an optimal solution of 𝑋̄ (if existent)
13: switch depending on 𝑋̄ and 𝑥̄* do
14: case 𝑋̄ = ∅
15: deactivate 𝑋
16: case 𝑋̄ is unbounded
17: 𝐿(𝑋)← −∞
18: case 𝑥̄* ̸∈ 𝑋
19: 𝐿(𝑋)← 𝑓(𝑥̄*)
20: deactivate 𝑋 if 𝐿(𝑋) ≥ 𝑈
21: case 𝑥̄* ∈ 𝑋
22: 𝐿(𝑋)← 𝑓(𝑥̄*)
23: 𝑈 ← min{𝑈, 𝑓(𝑥̄*)}
24: deactivate 𝑋 and all nodes 𝑋 ′ with 𝐿(𝑋 ′) ≥ 𝑈
25: if 𝑈 <∞ then
26: return 𝑈 and the corresponding feasible point

17

3 Energy Minimization in Discrete
Graphical Models

Energy minimization in discrete graphical models, sometimes abbreviated as DGM, are
a general type of problem where we search for the “best” out of a finite set of labelings.
In fact, nearly any problem that can be formulated as labeling a finite set of discrete
variables can be written as a DGM.

3.1 Discrete Graphical Models
A discrete graphical model discrete graphical

model
ℳ = (𝒢, 𝑋, 𝜃) is a triple consisting of

∙ a factor graph 𝒢 = (𝒱,ℱ , ℰ), which determines the structure of the model, more
precisely: which variables directly interact with each other,

∙ the set of possible labelings 𝑋,

∙ and a vector 𝜃 of functions 𝜃𝑓 for all 𝑓 ∈ ℱ constituting the energy function
𝐽 : 𝑋 → R, which assigns an energy to every possible labeling of the model.

Since in this thesis we solely deal with discrete graphical models, we will sometimes
drop the term “discrete” and simply call them graphical models.

3.1.1 Factor Graphs

We will define the structure of discrete graphical models by factor graphs, which have
been introduced by Kschischang et al. in 2001 [KFL01]. They are a convenient way
to explicitly represent the structural properties of the associated energy function, in
contrast to earlier approaches where some of this information was only given implicitly.

A factor graph factor graphis a tuple 𝒢 = (𝒱,ℱ , ℰ) where (𝒱 ∪ ℱ , ℰ) is a bipartite graph with a
set of variable nodes 𝒱 , a set of factors ℱ with 𝒱 ∩ℱ = ∅, and a set of edges ℰ ⊆ 𝒱 ×ℱ
that defines the relation between those.1 An example of a factor graph can be seen in
Fig. 3.1.

1Alternatively, it is possible to represent the structure by a hypergraph as follows: Given a factor
graph 𝒢 = (𝒱, ℱ , ℰ), the hypergraph representing the same model as 𝒢 is 𝐻 = (𝑉 , 𝐸̃) with 𝑉 := 𝒱
and 𝐸̃ := {nb(𝑓) | 𝑓 ∈ ℱ}. Note that (𝒱 ∪ ℱ , ℰ) is exactly the incidence graph of 𝐻.

19

3 Energy Minimization in Discrete Graphical Models

𝑣

𝑓

Figure 3.1: Graphical depiction of a factor graph 𝒢 = (𝒱,ℱ , ℰ): Circles correspond
to variable nodes 𝑣 ∈ 𝒱, squares to factor nodes 𝑓 ∈ ℱ . Since 𝒢 contains
factors of order 1, 2, and 4, the order of the graphical model described by it
is 4.

For reasons of simplicity, we usually assume that the neighborhood of a factor is
unique, i.e., that nb(𝑓1) ̸= nb(𝑓2) for all 𝑓1, 𝑓2 ∈ ℱ with 𝑓1 ̸= 𝑓2. This is no restriction
as will be shown in Sec. 3.1.4. Using this convention also allows us to easily name a
specific factor: For this, we denote the (unique) factor 𝑓 with nb(𝑓) = {𝑣1, 𝑣2, . . . , 𝑣𝑟}
by 𝑓𝑣1𝑣2...𝑣𝑟 .

We define the orderorder of a factor by its degree, i.e., the order of 𝑓 ∈ ℱ is |nb(𝑓)|.
Sometimes we will split up the set of factors according to their degree: We will denote
all factors in ℱ with degree 𝑟 by ℱ𝑟. Factors in ℱ1 and ℱ2 are commonly referred to
as unaryunary, pairwise and

higher-order factors
and pairwise factors, respectively, whereas factors of order greater than two

are called higher-order factors. The order of a discrete graphical model is the maximal
degree among the factors of its factor graph.

For a factor graph 𝒢 = (𝒱,ℱ , ℰ) that only contains factors of order at most two, we
define its underlying graphunderlying graph by 𝐺 = (𝑉,𝐸) where 𝑉 := 𝒱 and 𝐸 := {nb(𝑓) | 𝑓 ∈ ℱ2},
i.e., the pairwise factors are represented by edges in 𝐺 and the unary factors are not
explicitly present. It is sometimes convenient to specify a factor graph by its underlying
graph.

3.1.2 Variables and Labelings

For every variable node 𝑣 ∈ 𝒱 there is a variable 𝑥𝑣 corresponding to 𝑣. Each variable 𝑥𝑣,
𝑣 ∈ 𝒱 , can take values in a corresponding label setlabel set 𝑋𝑣, where 𝑋𝑣 is a non-empty, finite
set. The elements of 𝑋𝑣 are called labels. Since only the cardinality of the label set and
not the labels themselves is important, we will often simply use integers as labels, so a
label set with |𝑋𝑣| = 𝑘 will be identified with {1, 2, . . . , 𝑘}. We will use the shorthands
𝑋𝐴 :=

∏︀
𝑣∈𝐴𝑋𝑣 and 𝑥𝐴 := (𝑥𝑣)𝑣∈𝐴 for 𝐴 ⊆ 𝒱 as well as 𝑋 := 𝑋𝒱 and 𝑥 := 𝑥𝒱 . We

call 𝑥 a labelinglabeling of our discrete graphical model. For simplicity of notation, we will
sometimes assume that all 𝑋𝑣 have the same cardinality (i.e., are equal) and denote
this common label set by 𝐿, so that 𝑋 = 𝐿|𝒱|. We can do so without loss of generality
as will be shown in Sec. 3.1.4.

20

3.1 Discrete Graphical Models

If |𝑋𝑣| = 2 for all 𝑣 ∈ 𝒱 , the discrete graphical model is said to be binary binary model, if |𝑋𝑣| > 2
for some 𝑣 ∈ 𝒱, then the model is called a multi-label multi-label modelmodel.

3.1.3 Energy Functions

Each factor 𝑓 ∈ ℱ has an associated energy function 𝜃𝑓 : 𝑋nb(𝑓) → R. Using these,
we can define the energy function energy function𝐽 : 𝑋 → R of the discrete graphical model, which
assigns an energy to every labeling of the model. It is given by

𝐽(𝑥) :=
∑︁
𝑓∈ℱ

𝜃𝑓 (𝑥nb(𝑓)).

Please note that when we use the shorthand notation 𝑓𝑣1...𝑣𝑟 for the factor 𝑓 with
nb(𝑓) = {𝑣1, . . . , 𝑣𝑟}, then the order of the arguments of 𝜃𝑓𝑣1...𝑣𝑟

is always meant to
correspond to the order of the elements 𝑣1, . . . , 𝑣𝑟. This means for example that although
𝑓𝑢𝑣 = 𝑓𝑣𝑢, the values of 𝜃𝑓𝑢𝑣 (0, 1) and 𝜃𝑓𝑣𝑢(0, 1) are not necessarily the same since the
first term gives the energy contribution of this factor in the case 𝑥𝑢 = 0 and 𝑥𝑣 = 1
whereas the second term covers the case 𝑥𝑣 = 0 and 𝑥𝑢 = 1.

Some functions of a particular type are of special interest since despite their simplicity
they are expressive enough to be useful in applications.

An energy function 𝜃𝑓𝑢𝑣 is called a Potts function Potts functionif 𝑓𝑢𝑣 is a pairwise factor with
{𝑢, 𝑣} = nb(𝑓) and the energy function is given by

𝜃𝑓𝑢𝑣 (𝑥𝑢, 𝑥𝑣) := 𝛽 · I[𝑥𝑢 ̸= 𝑥𝑣] =
{︃
𝛽, if 𝑥𝑢 ̸= 𝑥𝑣,
0, otherwise,

for all (𝑥𝑢, 𝑥𝑣) ∈ 𝑋𝑢 ×𝑋𝑣,

where 𝛽 ∈ R. The value 𝛽 is called a disagreement term. A graphical model is called
a Potts model Potts modelif it is of order at most two and all its energy functions associated to
pairwise factors are Potts functions.

An Ising function Ising functionis a special case of a Potts function where 𝑋𝑢 = 𝑋𝑣 with |𝑋𝑢| =
|𝑋𝑣| = 2. A graphical model is called an Ising model Ising modelif all its energy functions are Ising
functions. Ising models are closely related to the max cut problem, as will be shown in
Sec. 3.2.2.

Potts functions can be generalized in different ways. One natural possibility is to
extend their definition to higher-order factors: An energy function of a factor 𝑓 is a
higher-order Potts function higher-order Potts

function
if 𝜃𝑓 is given by

𝜃𝑓 (𝑙1, 𝑙2, . . . , 𝑙𝑟) :=
{︃
𝛽1, if 𝑙1 = 𝑙2 = · · · = 𝑙𝑟,
𝛽2, otherwise,

for all (𝑙1, 𝑙2, . . . , 𝑙𝑟) ∈ 𝑋nb(𝑓),

where 𝑟 > 2 is the order of 𝑓 and 𝛽1, 𝛽2 ∈ R.

21

3 Energy Minimization in Discrete Graphical Models

Another important class are submodular functions: If 𝑓 is a pairwise factor with
𝑋𝑣 = {0, 1} for all 𝑣 ∈ nb(𝑓) then the energy function 𝜃𝑓 is submodularsubmodular if

𝜃𝑓 (0, 0) + 𝜃𝑓 (1, 1) ≤ 𝜃𝑓 (0, 1) + 𝜃𝑓 (1, 0).

If 𝑓 is a higher-order factor then 𝜃𝑓 is submodular if all its projections on two variables
are submodular.

3.1.4 Energy Minimization
Now we have defined all components of a discrete graphical model and can formulate
our goal: finding a labeling with the lowest energy.

Problem 3.1 (MAP Problem). Given a discrete graphical model ℳ, the energy
minimization problem (or MAP problemMAP problem) is to determine a labeling 𝑥* that has the
lowest energy among all possible labelings of ℳ, i.e., for which

𝑥* ∈ argmin
𝑥∈𝑋

𝐽(𝑥)

holds.

Such a labeling 𝑥* is called an optimal solution or an optimal labeling of ℳ. The
corresponding decision problem to this optimization problem is 𝒩𝒫-hard as we will see
in Sec. 3.2.1.

The process of finding 𝑥* is also called inferenceinference , an optimal labeling 𝑥* is also called
a maximum a posteriori (MAP) solutionMAP solution . These terms originate from probability theory
where graphical models serve as a modeling tool for certain distributions. This will be
explained in Sec. 3.4.

After having formulated our goal – computing a labeling that is optimal with respect
to the energy function – we can now give some simple transformations for modifying
the graphical model without influencing the optimal labelings.

Assume that in a given graphical model there are two factors 𝑓 ′ and 𝑓 ′′ that have the
same neighborhood 𝑁 . We can simply replace 𝑓 ′ and 𝑓 ′′ by a new factor 𝑓 with the same
neighborhood and an energy function that is defined as 𝜃𝑓 (𝑥𝑁) := 𝜃𝑓 ′(𝑥𝑁) + 𝜃𝑓 ′′(𝑥𝑁).

If the label sets 𝑋𝑣 do not have the same cardinality for all 𝑣 ∈ 𝒱 , we can replace them
by a common label set 𝐿 := {1, . . . , 𝑘} where 𝑘 := max𝑣∈𝒱 |𝑋𝑣|. Let 𝑋old :=

∏︀
𝑣∈𝒱 𝑋𝑣

be the old label set of the model and 𝑋new := 𝐿|𝒱| be the new label set. The energy
functions have to be redefined as

𝜃𝑓 (𝑥nb(𝑓)) :=
{︃
𝜃𝑓 (𝑥nb(𝑓)), if 𝑥 ∈ 𝑋old,
𝑀, if 𝑥 ∈ 𝑋new ∖𝑋old

where 𝑀 is a constant that is large enough.

22

3.2 Connection to Other Problems

It is also worth mentioning that any graphical modelℳ with a factor graph (𝒱,ℱ , ℰ)
and an energy function 𝐽 can be reformulated as a graphical model ℳ′ that contains
only a single factor – a so-called global factor global factor, which is connected to all variable nodes –
by using the factor graph (𝒱, {𝑓 ′}, {𝑓 ′𝑣 | 𝑣 ∈ 𝒱}) and 𝜃𝑓 ′(𝑥) := 𝐽(𝑥) for all 𝑥 ∈ 𝑋. By
doing so, all structural properties of the original factor graph get lost, which makes the
computation of optimal solutions harder. It is therefore favorable to model a problem
with a graphical model of an order as low as possible.

3.2 Connection to Other Problems

In this section we will show how well-known problems from Logic and Combinatorial
Optimization can be formulated as graphical models:

First, this is shown for the satisfiability problem, which proves that energy minimiza-
tion in graphical models is 𝒩𝒫-hard.

Second, we show that both the maximum cut and the minimum 𝑠-𝑡 cut problem can
be written as a graphical model of low order and, even more important for the following
chapters, how graphical models of a certain structure can be transformed into one of
these classical optimization problems. By applying these transformations, we can solve
certain graphical models using the methods available for computing cuts.

3.2.1 Satisfiability Problem

The satisfiability problem (SAT) deals with the satisfiability of a set of clauses over
Boolean variables. When Cook introduced the concept of𝒩𝒫-completeness, this was the
first problem he showed to be 𝒩𝒫-complete [Coo71]. We will now give a transformation
of SAT into a discrete graphical model. Since this transformation is polynomial, it
follows that energy minimization in discrete graphical models is 𝒩𝒫-hard.

We first need some definitions: Let 𝑈 = {𝑢1, . . . , 𝑢𝑛} be a finite set of variables, let
𝑈̄ := {𝑢̄ | 𝑢 ∈ 𝑈}, 𝑈 ∩ 𝑈̄ = ∅, and let 𝑡 be a truth assignment truth assignmentfor 𝑈 , i.e., a function
𝑡 : 𝑈 → {𝑇, 𝐹}. An element 𝑙 ∈ 𝑈 ∪ 𝑈̄ is called a literal literal. For a literal 𝑙 and a truth
assignment 𝑡, if 𝑙 = 𝑢 for a 𝑢 ∈ 𝑈 , then 𝑙 is said to be true if and only if 𝑡(𝑢) = 𝑇 ; if
𝑙 = 𝑢̄ for a 𝑢 ∈ 𝑈 , then 𝑙 is said to be true if and only if 𝑡(𝑢) = 𝐹 . A subset 𝑐 ⊆ 𝑈 ∪ 𝑈̄
is a clause clauseover 𝑈 . Given a truth assignment 𝑡, a clause 𝑐 is true (or satisfied) if 𝑙 is true
for at least one 𝑙 ∈ 𝑐. A set 𝐶 of clauses is satisfiable satisfiableif there is a truth assignment 𝑡
such that all 𝑐 ∈ 𝐶 are satisfied by 𝑡.

Problem 3.2 (Satisfiability Problem (SAT)). The satisfiability problem satisfiability
problem (SAT)

is a decision
problem that asks for the following: Given a finite set of variables 𝑈 and a finite set 𝐶
of clauses over 𝑈 , is there a truth assignment 𝑡 for 𝑈 for which all clauses in 𝐶 are
satisfied, i.e., is 𝐶 satisfiable?

23

3 Energy Minimization in Discrete Graphical Models

The satisfiability problem can be modeled as a discrete graphical model ℳ =
(𝒢, 𝑋, 𝜃) [WJ08]: We define a factor graph 𝒢 = (𝒱,ℱ , ℰ) by

𝒱 := 𝑈,

ℱ := {𝑓𝑐 | 𝑐 ∈ 𝐶},
and

ℰ := {(𝑓𝑐, 𝑢) | 𝑐 ∈ 𝐶, 𝑢 ∈ 𝑐}.

The label sets and energy functions are given by

𝑋𝑢 := {𝑇, 𝐹} for all 𝑢 ∈ 𝒱
and

𝜃𝑓𝑐(𝑥nb(𝑓𝑐)) :=

⎧⎪⎨⎪⎩
1, if 𝑥𝑢 = 𝐹 for all 𝑢 ∈ nb(𝑓𝑐) with 𝑢 ∈ 𝑐

and 𝑥𝑢 = 𝑇 for all 𝑢 ∈ nb(𝑓𝑐) with 𝑢̄ ∈ 𝑐,
0, otherwise,

for all 𝑐 ∈ 𝐶.

An example of an instance of SAT and the corresponding factor graph can be seen in
Fig. 3.2. The label set is {𝑇, 𝐹} for all variables, so that a labeling 𝑥 directly corresponds
to a truth assignment. The energy functions are designed in a way that 𝜃𝑓𝑐(𝑥nb(𝑓𝑐)) is 1
if the truth assignment corresponding to 𝑥 does not satisfy 𝑐 and 0 otherwise. So 𝐽(𝑥),
the energy of the whole model, is the number of unsatisfied clauses of the labeling 𝑥.
Therefore, the equivalence

min
𝑥∈𝑋

𝐽(𝑥) = 0 ⇔ 𝐶 is satisfiable

holds. To decide whether 𝐶 is satisfiable or not we can compute an optimal solution
of ℳ and check whether its energy is 0 or not. We have therefore reduced SAT to
energy minimization in a graphical model and since this reduction was polynomial the
latter is 𝒩𝒫-hard.

3.2.2 Maximum Cuts and Minimum 𝑠-𝑡 Cuts

The max cut problem is one of the best known problems from Combinatorial Optimiza-
tion and its associated decision problem was one of the first problems that was shown
to be 𝒩𝒫-complete [Kar72].

Problem 3.3 (Max Cut Problem). Given a weighted graph 𝐺 = (𝑉,𝐸,𝑤), the max
cut problemmax cut problem consists of finding a cut of 𝐺 that has the maximal weight among all cuts,
i.e., a maximizer of

max
𝑆⊆𝑉

𝑤(𝛿(𝑆)).

24

3.2 Connection to Other Problems

SAT instance 𝐶 =
{︂
{𝑢1, 𝑢̄2, 𝑢3}, {𝑢1, 𝑢3}, {𝑢2, 𝑢̄3}, {𝑢̄2}

}︂
𝑢1 𝑢2

𝑢3

𝜙𝑓𝑢2𝑢3
(𝑇, 𝑇) := 0

𝜙𝑓𝑢2𝑢3
(𝑇, 𝐹) := 0

𝜙𝑓𝑢2𝑢3
(𝐹, 𝑇) := 1

𝜙𝑓𝑢2𝑢3
(𝐹, 𝐹) := 0

Figure 3.2: Transformation of an instance of the satisfiability problem into a discrete
graphical model. The variables of SAT correspond to the variable nodes
in the factor graph, the clauses to the factor nodes. The energy functions
are 1 if and only if the corresponding clause is unsatisfied as is exemplarily
shown for 𝑓𝑢2𝑢3 .

The max cut problem can be formulated as a discrete graphical modelℳ = (𝒢, 𝑋, 𝜃)
as follows: Let 𝐺 = (𝑉,𝐸,𝑤) be the weighted graph defining a max cut instance. We
set 𝒢 := (𝒱,ℱ , ℰ) where

𝒱 := 𝑉,

ℱ := {𝑓𝑢𝑣 | 𝑢𝑣 ∈ 𝐸},
and

ℰ := {𝑢𝑓𝑢𝑣, 𝑣𝑓𝑢𝑣 | 𝑢𝑣 ∈ 𝐸},

i.e., we simply use 𝐺 as the underlying graph of 𝒢. For a depiction of the structure of the
factor graph see Fig. 3.3. The label-space of the associated variables 𝑥𝑣 is 𝑋𝑣 := {0, 1}
for all 𝑣 ∈ 𝒱 and the energy functions corresponding to the factors are

𝜃𝑓𝑢𝑣 (𝑥𝑢, 𝑥𝑣) :=
{︃
−𝑤(𝑢𝑣), if 𝑥𝑢 ̸= 𝑥𝑣,
0, otherwise,

for all 𝑓𝑢𝑣 ∈ ℱ .
Since 𝒢 contains only factors of order two and the energy functions are given by

disagreement terms, ℳ is an Ising model.
Now let 𝑥* be an optimal labeling of ℳ, i.e., a minimizer of

∑︀
𝑓∈ℱ 𝜃𝑓 (𝑥nb(𝑓)). Then

𝛿(𝑆) with 𝑆 := {𝑣 ∈ 𝑉 | 𝑥*
𝑣 = 0} obviously defines a maximal cut of 𝐺.

After having transformed a max cut instance into a graphical model, we now turn
to the converse: modeling a graphical model of a certain kind as a max cut problem.
Assume we are given a binary graphical model of order at most two with factor graph
𝒢 = (𝒱,ℱ , ℰ) and label sets 𝑋𝑣 = {0, 1} for all 𝑣 ∈ 𝒱.

25

3 Energy Minimization in Discrete Graphical Models

𝑣

𝑢

𝑤(𝑢𝑣)

𝑣

𝑢

𝑓𝑢𝑣

Figure 3.3: Transformation of a max cut problem given by 𝐺 = (𝑉,𝐸,𝑤) into a graphical
model 𝒢 = (𝒱,ℱ , ℰ). The graph 𝐺 is used as the underlying graph of 𝒢, so
factors are added for each edge of 𝐺.

To ease our notation, we assume without loss of generality that there are unary and
pairwise factors for all nodes and pairs of nodes, respectively, i.e., 𝑓𝑣 ∈ ℱ and 𝑓𝑢𝑣 ∈ ℱ
for all 𝑢, 𝑣 ∈ 𝒱. This is no restriction since we can simply add missing factors and
define the corresponding energy functions to be 0 for all arguments.

The graph defining the max cut instance will be a complete graph with nodes 𝒱 and
an additional node 𝑣0. The partition implied by a cut will naturally define a labeling:
All nodes in one shore will be labeled with 0, all nodes in the other shore with 1. The
additional node 𝑣0 is necessary for removing the ambiguity of which shore will get which
label. This transformation was similarly already shown in [Ham65]. Our presentation
is based on [SK08], but we give an explicit proof.

Let 𝐺 := (𝑉,𝐸,𝑤) be a complete graph with 𝑉 := {𝑣0} ∪ 𝒱 where 𝑣0 ̸∈ 𝒱 and
𝐸 = 𝐸′ ∪ 𝐸′′ where 𝐸′ := {𝑢𝑣 | 𝑢, 𝑣 ∈ 𝒱} and 𝐸′′ := {𝑣0𝑣 | 𝑣 ∈ 𝒱}. We define the
weight function 𝑤 by

𝑤(𝑢𝑣) := 1
2

(︂
𝜃𝑓𝑢𝑣 (0, 1) + 𝜃𝑓𝑢𝑣 (1, 0)− 𝜃𝑓𝑢𝑣 (0, 0)− 𝜃𝑓𝑢𝑣 (1, 1)

)︂
for all 𝑢𝑣 ∈ 𝐸′

and

𝑤(𝑣0𝑣) := 𝜃𝑓𝑣 (1)− 𝜃𝑓𝑣 (0) +
∑︁
𝑢∈𝒱
𝑢̸=𝑣

(︂
𝜃𝑓𝑢𝑣 (0, 1)− 𝜃𝑓𝑢𝑣 (0, 0)− 𝑤(𝑢𝑣)

)︂
for all 𝑣0𝑣 ∈ 𝐸′′.

Now let 𝐶 ⊆ 𝐸 be a cut in 𝐺. Then there exists a unique set 𝑆0 ⊆ 𝒱 with
𝛿({𝑣0} ∪ 𝑆0) = 𝐶. Let 𝑆1 := 𝒱 ∖ 𝑆0, so 𝑉 = {𝑣0} ∪ 𝑆0 ∪ 𝑆1.

Then we can write the weight 𝑤(𝐶) of the cut as

26

3.2 Connection to Other Problems

𝑤(𝐶)
=

∑︁
𝑢∈{𝑣0}∪𝑆0

𝑣∈𝑆1

𝑤(𝑢𝑣)

=
∑︁

𝑣∈𝑆1

𝑤(𝑣0𝑣) +
∑︁

𝑢∈𝑆0
𝑣∈𝑆1

𝑤(𝑢𝑣)

=
∑︁

𝑣∈𝑆1

(︂
𝜃𝑓𝑣 (1)− 𝜃𝑓𝑣 (0) +

∑︁
𝑢∈𝑆0∪𝑆1

𝑢̸=𝑣

(︀
𝜃𝑓𝑢𝑣 (0, 1)− 𝜃𝑓𝑢𝑣 (0, 0)− 𝑤(𝑢𝑣)

)︀)︂
+

∑︁
𝑢∈𝑆0
𝑣∈𝑆1

𝑤(𝑢𝑣)

=
∑︁

𝑣∈𝑆1

(︂
𝜃𝑓𝑣 (1)− 𝜃𝑓𝑣 (0)

)︂
+

∑︁
𝑣∈𝑆1
𝑢∈𝑆0

(︂
𝜃𝑓𝑢𝑣 (0, 1)− 𝜃𝑓𝑢𝑣 (0, 0)

)︂

+
∑︁

𝑣∈𝑆1
𝑢∈𝑆1
𝑢̸=𝑣

(︂
𝜃𝑓𝑢𝑣 (0, 1)− 𝜃𝑓𝑢𝑣 (0, 0)

)︂
−

∑︁
𝑣∈𝑆1
𝑢∈𝑆0

𝑤(𝑢𝑣)−
∑︁

𝑣∈𝑆1
𝑢∈𝑆1
𝑢̸=𝑣

𝑤(𝑢𝑣) +
∑︁

𝑢∈𝑆0
𝑣∈𝑆1

𝑤(𝑢𝑣)

=
∑︁

𝑣∈𝑆1

(︂
𝜃𝑓𝑣 (1)− 𝜃𝑓𝑣 (0)

)︂
+

∑︁
𝑣∈𝑆1
𝑢∈𝑆0

(︂
𝜃𝑓𝑢𝑣 (0, 1)− 𝜃𝑓𝑢𝑣 (0, 0)

)︂

+
∑︁

𝑢𝑣∈𝐸
𝑢,𝑣∈𝑆1

(︂
𝜃𝑓𝑢𝑣 (0, 1)− 𝜃𝑓𝑢𝑣 (0, 0) + 𝜃𝑓𝑢𝑣 (1, 0)− 𝜃𝑓𝑢𝑣 (0, 0)

)︂
−

∑︁
𝑢𝑣∈𝐸

𝑢,𝑣∈𝑆1

2𝑤(𝑢𝑣)

=
∑︁

𝑣∈𝑆1

(︂
𝜃𝑓𝑣 (1)− 𝜃𝑓𝑣 (0)

)︂
+

∑︁
𝑣∈𝑆1
𝑢∈𝑆0

(︂
𝜃𝑓𝑢𝑣 (0, 1)− 𝜃𝑓𝑢𝑣 (0, 0)

)︂

+
∑︁

𝑢𝑣∈𝐸
𝑢,𝑣∈𝑆1

(︂
𝜃𝑓𝑢𝑣 (1, 1)− 𝜃𝑓𝑢𝑣 (0, 0)

)︂

= 𝐽(𝑥)− 𝐽(0),

where the labeling 𝑥 is defined by

𝑥𝑣 :=
{︃

0, if 𝑣 ∈ 𝑆0,
1, if 𝑣 ∈ 𝑆1,

for all 𝑣 ∈ 𝒱. So the weight of the cut 𝐶 only differs by −𝐽(0), which is a constant,
from the energy of 𝑥. However, to compute a labeling with minimum energy with an
algorithm for maximum cuts, we have to negate the weights 𝑤. Then a maximum cut

27

3 Energy Minimization in Discrete Graphical Models

directly corresponds to an optimal labeling 𝑥* and the weight of the cut only differs by
a constant from 𝐽(𝑥*).

Also the min 𝑠-𝑡 cut problem can be modeled by a graphical model and (partly) vice
versa.

Problem 3.4 (Min 𝑠-𝑡 Cut Problem). Given a weighted graph 𝐺 = (𝑉,𝐸,𝑤) with
𝑤(𝑢𝑣) ≥ 0 for all 𝑢𝑣 ∈ 𝐸 and two nodes 𝑠, 𝑡 ∈ 𝑉 , the min 𝑠-𝑡 cut problemmin 𝑠-𝑡 cut problem consists of
finding an 𝑠-𝑡 cut of 𝐺 that has the minimal weight among all other 𝑠-𝑡 cuts, i.e., a
minimizer of

min
𝑆⊆𝑉

𝑠 ∈ 𝑆, 𝑡 ∈ 𝑉 ∖ 𝑆

𝑤(𝛿(𝑆)).

In contrast to the max cut problem, the min 𝑠-𝑡 cut problem is solvable in polynomial
time [JF56].

As before, it is possible to convert a min 𝑠-𝑡 cut instance given by 𝐺 into a graphical
model. We again use 𝐺 as the underlying graph for the factor graph and add pairwise
factors for all edges in 𝐺. Additionally, we have to add two unary factors to the nodes 𝑠
and 𝑡 to ensure that they are labeled differently.

For the opposite direction, we can use a binary graphical model of order at most two.
For the min 𝑠-𝑡 cut graph, this time we have to add two additional nodes connected to
all other nodes. The construction of the weights is similar as before. However, to indeed
obtain an instance of the min 𝑠-𝑡 cut problem, we have to ensure that the weights 𝑤(𝑢𝑣)
are non-negative. It turns out that this is only possible when the energy functions of
the graphical model are submodular.

3.3 LP and ILP Formulations
The energy minimization problem in a discrete graphical model can be written as an
LP and as an ILP. A commonly used LP optimizes over the so-called marginal polytope.
The ILP is based on a relaxation of the marginal polytope, the local polytope: Adding
integrality constraints to this relaxation makes it exact.

3.3.1 The Marginal Polytope
To formulate the MAP problem in a graphical model ℳ as a linear program, we
define the following indicator variables: For every factor 𝑓 ∈ ℱ , every possible labeling
𝑥′ ∈ 𝑋nb(𝑓), and every labeling 𝑥 ∈ 𝑋 we set

𝜙𝑓 (𝑥′, 𝑥) := I[𝑥nb(𝑓) = 𝑥′].

We combine all these variables to a common vector

𝜙(𝑥) :=
(︁(︀
𝜙𝑓 (𝑥′, 𝑥)

)︀
𝑥′∈𝑋nb(𝑓)

)︁
𝑓∈ℱ

28

3.3 LP and ILP Formulations

and do the same for the energy function values

𝜃 :=
(︁(︀
𝜃𝑓 (𝑥′)

)︀
𝑥′∈𝑋nb(𝑓)

)︁
𝑓∈ℱ

.

The dimension of 𝜙(𝑥) and 𝜃 is 𝑑 =
∑︀

𝑓∈ℱ |𝑋nb(𝑓)|.
Using these, we can write the energy function 𝐽 as

𝐽(𝑥) =
∑︁
𝑓∈ℱ

𝜃𝑓 (𝑥nb(𝑓))

=
∑︁
𝑓∈ℱ

∑︁
𝑥′∈𝑋nb(𝑓)

𝜃𝑓 (𝑥′)𝜙𝑓 (𝑥′, 𝑥)

= 𝜃𝑇𝜙(𝑥),

where the linear programming formulation becomes apparent: Using the vectors 𝜙(𝑥)
for all labelings 𝑥 ∈ 𝑋 as vertices, we define the marginal polytope marginal polytopeas

M(ℳ) := conv({𝜙(𝑥) | 𝑥 ∈ 𝑋}).

An example of a vertex of the marginal polytope can be seen in Fig. 3.4.
Now, the equivalence

min
𝑥∈𝑋

𝐽(𝑥) = min
𝜇∈M

𝜃𝑇𝜇

is clear, making energy minimization in ℳ equivalent to optimizing a linear function
over the marginal polytope, which can be written as an LP. However, the definition
above is only a representation as a 𝑉 -polytope and not as an 𝐻-polytope.

Note that the indicator variables 𝜙(𝑥) we used here are the so-called standard
overcomplete representation [WJ08] of the labeling 𝑥, which means that it is not the
most compact form of encoding a labeling since there are several linear dependencies
among the entries, e.g.,

∑︀
𝑥′∈𝑋nb(𝑓)

𝜙𝑓 (𝑥′, 𝑥) = 1 for all 𝑓 ∈ ℱ and all 𝑥 ∈ 𝑋. However,
it is a very convenient one.

For special models, even more dependencies among the entries of 𝜙(𝑥) hold. Recall
that for an Ising model ℳ, there are only pairwise factors and the energy functions
are given as disagreement terms. Since 𝜃𝑓 (0, 0) = 𝜃𝑓 (1, 1) = 0 for all 𝑓 ∈ ℱ , the
corresponding entries of 𝜙(𝑥) are not needed to compute the energy of a labeling.
Furthermore, since 𝜃𝑓 (0, 1) = 𝜃𝑓 (1, 0), the full information is contained in the vector
𝜓(𝑥) := (𝜓𝑓 (𝑥))𝑓∈ℱ , where 𝜓𝑓 (𝑥) is defined as 𝜓𝑓 (𝑥) := 𝜙𝑓 ((0, 1), 𝑥) +𝜙𝑓 ((1, 0), 𝑥). So
instead of optimizing over the marginal polytope, we can restrict ourselves to

C(ℳ) := conv({𝜓(𝑥) | 𝑥 ∈ 𝑋}).

This is exactly the cut polytope cut polytope, as for example given in [DL97].
The name “marginal polytope” again originates in probability theory and will be

motivated in Sec. 3.4.

29

3 Energy Minimization in Discrete Graphical Models

𝑣1

𝑣2 𝑣3

𝜇 = 𝜙(𝑥) = 𝜙(0, 1, 0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜇𝑓1(0)
𝜇𝑓1(1)
𝜇𝑓2(0)
𝜇𝑓2(1)
𝜇𝑓3(0)
𝜇𝑓3(1)
𝜇𝑓12(0, 0)
𝜇𝑓12(0, 1)
𝜇𝑓12(1, 0)
𝜇𝑓12(1, 1)
𝜇𝑓13(0, 0)
𝜇𝑓13(0, 1)
𝜇𝑓13(1, 0)
𝜇𝑓13(1, 1)
𝜇𝑓23(0, 0)
𝜇𝑓23(0, 1)
𝜇𝑓23(1, 0)
𝜇𝑓23(1, 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
1
1
0
0
1
0
0
1
0
0
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Figure 3.4: Vertex of the marginal polytope: For a graphical model ℳ with the factor

graph depicted on the left and the common label set 𝐿 := {0, 1}, so
𝑋 = {0, 1}3, the vector 𝜇 on the right is the vertex of M(ℳ) corresponding
to the labeling 𝑥 = (0, 1, 0).

3.3.2 The Local Polytope Relaxation and the ILP Model

Directly optimizing over the marginal polytope is not possible since we only know its
inner description as the convex hull of its vertices and not its outer description in terms
of halfspaces. Even if this were known, due to the huge number of inequalities this
approach were prohibited.

We therefore first introduce a relaxation of the MAP problem. We here once more
assume without loss of generality that for all 𝑣 ∈ 𝒱 a unary factor 𝑓𝑣 ∈ ℱ exists (if
not present, a factor with function value 0 can be added). The relaxation is given as

30

3.3 LP and ILP Formulations

follows:

min 𝜃𝑇𝜇

s.t.
∑︁

𝑥′∈𝑋nb(𝑓)

𝜇𝑓 (𝑥′) = 1 for all 𝑓 ∈ ℱ (3.1a)

∑︁
𝑥′∈𝑋nb(𝑓)

𝑥′
𝑣=𝑥𝑣

𝜇𝑓 (𝑥′) = 𝜇𝑓𝑣 (𝑥𝑣) for all 𝑓 ∈ ℱ , 𝑣 ∈ nb(𝑓), 𝑥𝑣 ∈ 𝑋𝑣 (3.1b)

𝜇𝑓 (𝑥′) ≥ 0 for all 𝑓 ∈ ℱ , 𝑥′ ∈ 𝑋nb(𝑓) (3.1c)

The feasible region of this LP is called the local polytope local polytopeL(ℳ) and the LP itself the
local polytope relaxation. It is the first in a hierarchy of relaxations – details on this can
be found in [WJ08]. For pairwise models, this LP was first introduced by Schlesinger
in 1976 [Sch76]. In this case, the constraints (3.1b) simplify to∑︁

𝑥𝑢∈𝑋𝑢

𝜇𝑓𝑢𝑣 (𝑥𝑢, 𝑥𝑣) = 𝜇𝑓𝑣 (𝑥𝑣) for all 𝑢, 𝑣 ∈ 𝒱 with 𝑓𝑢𝑣 ∈ ℱ and all 𝑥𝑣 ∈ 𝑋𝑣.

That it is indeed a relaxation, i.e., that L(ℳ) ⊇M(ℳ), is clear since 𝜙(𝑥) satisfies
all constraints for all 𝑥 ∈ 𝑋 and both sets are polytopes. Therefore

min
𝜇∈L(ℳ)

𝜃𝑇𝜇 ≤ min
𝜇∈M(ℳ)

𝜃𝑇𝜇

holds. In some simple cases even equality holds: When ℳ is a pairwise model and the
underlying graph is a tree, then L(ℳ) = M(ℳ) [WJ08]. It is also known that if 𝜇* is
an optimal solution of the local polytope relaxation and all entries of 𝜇* are integral,
then it is also an optimal solution of the MAP problem, and that all vertices of the
marginal polytope are also vertices of the local polytope. However, in general there are
also additional (fractional) vertices of L(ℳ), which can also be optimal solutions for
certain graphical models.

The simplest model, for which an optimal solution is fractional, is shown in Fig. 3.5 –
its factor graph is the same that we used in the last section, three nodes and unary and
pairwise factors for all nodes and pairs of nodes, respectively [WJ08]. The common
label set is again {0, 1}. The fractional vector 𝜇* is in L(ℳ) as can be checked easily:
The constraints (3.1a) and (3.1c) are satisfied and the constraints (3.1b) in this case
are

𝜇𝑓𝑢𝑣 (0, 0) + 𝜇𝑓𝑢𝑣 (1, 0) = 𝜇𝑓𝑣 (0)
𝜇𝑓𝑢𝑣 (0, 1) + 𝜇𝑓𝑢𝑣 (1, 1) = 𝜇𝑓𝑣 (1)

for all 𝑢, 𝑣 ∈ 𝒱, which are also true for 𝜇*. If the energy functions are given by

𝜃𝑓𝑣 (𝑥𝑣) := 0 for all 𝑣 ∈ 𝒱, 𝑥𝑣 ∈ {0, 1}

31

3 Energy Minimization in Discrete Graphical Models

𝑣1

𝑣2 𝑣3

𝜃𝑓𝑣 (𝑥𝑣) = 0

𝜃𝑓𝑢𝑣 (𝑥𝑢, 𝑥𝑣) =
{︃

0, if 𝑥𝑢 ̸= 𝑥𝑣,
1, otherwise.

𝜇* =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜇𝑓1(0)
𝜇𝑓1(1)
𝜇𝑓2(0)
𝜇𝑓2(1)
𝜇𝑓3(0)
𝜇𝑓3(1)
𝜇𝑓12(0, 0)
𝜇𝑓12(0, 1)
𝜇𝑓12(1, 0)
𝜇𝑓12(1, 1)
𝜇𝑓13(0, 0)
𝜇𝑓13(0, 1)
𝜇𝑓13(1, 0)
𝜇𝑓13(1, 1)
𝜇𝑓23(0, 0)
𝜇𝑓23(0, 1)
𝜇𝑓23(1, 0)
𝜇𝑓23(1, 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5
0.5
0.5
0.5
0.5
0.5
0

0.5
0.5
0
0

0.5
0.5
0
0

0.5
0.5
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Figure 3.5: Fractional vertex of L(ℳ): The fractional vertex 𝜇* satisfies all constraints

of the local polytope relaxation and is a vertex of L(ℳ). For the energy
function 𝜃, it is an optimal solution with a lower value than an optimal
solution of the MAP problem.

and

𝜃𝑓𝑢𝑣 (𝑥𝑢, 𝑥𝑣) :=
{︃

0, if 𝑥𝑢 ̸= 𝑥𝑣,
1, otherwise,

for all 𝑢, 𝑣 ∈ 𝒱, 𝑥𝑢, 𝑥𝑣 ∈ {0, 1},

the value of an optimal solution of the corresponding MAP problem is 1. However,
𝜃𝑇𝜇* = 0 and so min𝜇∈L(ℳ) 𝜃

𝑇𝜇 < min𝜇∈M(ℳ) 𝜃
𝑇𝜇.

For this model, the marginal polytope has 8 vertices (since the number of labelings
is |𝐿|3 = 8), whereas the local polytope has 12 vertices, so 4 of these are fractional.
We used PORTA [Chr97] to compute the number of vertices of L(ℳ) for larger values
of |𝐿|, the results can be seen in Tab. 3.1. While for |𝐿| = 5, the marginal polytope has
125 vertices, the local polytope has 853725 vertices.

As already mentioned, all integral vertices of L(ℳ) are also vertices of M(ℳ). This
directly leads to an integer linear programming formulation of the MAP problem by

32

3.4 Probabilistic View of Graphical Models

Table 3.1: Number of vertices of M(ℳ) and L(ℳ) for a graphical model with the
factor graph depicted in Fig. 3.5 for different cardinalities of the label set 𝐿.
Since the only integral vertices L(ℳ) contains are the vertices of M(ℳ), the
difference between the two numbers is the number of non-integral vertices
of L(ℳ). The numbers were computed with PORTA [Chr97].
|𝐿| number of vertices of M(ℳ) number of vertices of L(ℳ)

2 8 12
3 27 207
4 64 8992
5 125 853725

simply additionally requiring integrality. So the ILP

min 𝜃𝑇𝜇

s.t. 𝜇 ∈ L(ℳ)
𝜇 ∈ {0, 1}𝑑

is equivalent to the energy minimization problem in ℳ.

3.4 Probabilistic View of Graphical Models
In this section, we give a brief motivation of the terms used in graphical models by
explaining their origins. More details can be found in the book of Koller [KF09].

The content presented here is independent of the rest of the thesis. We will use the
same notation for different concepts which turn out to be the same.

Let 𝑥 = (𝑥1, . . . , 𝑥𝑛) be a random vector consisting of random variables 𝑥𝑖 taking
values in 𝑋𝑖 ⊆ R, 𝑖 = 1, . . . , 𝑛, let 𝑋 :=

∏︀𝑛
𝑖=1𝑋𝑖, and let 𝜙 : 𝑋 → R𝑑 be a 𝑑-

dimensional vector of potential functions potential functionsor sufficient statistics. Then we can define
a set of probability distributions called exponential family exponential familyparametrized by 𝜃 ∈ R𝑑

associated with the potential functions 𝜙, which is given by

𝑝𝜃(𝑥) := exp(𝜃𝑇𝜙(𝑥)−𝐴(𝜃)), 𝑥 ∈ 𝑋, 𝜃 ∈ Ω,

where 𝐴(𝜃) denotes the log partition function log partition
function

which is defined by

𝐴(𝜃) := log
∫︁

𝑋
exp(𝜃𝑇𝜙(𝑥))𝜈(𝑑𝑥)

for some measure 𝜈 and Ω is the set of valid canonical parameters canonical
parameters

𝜃 defined as Ω :=
{𝜃 ∈ R𝑑 | 𝐴(𝜃) <∞}.

33

3 Energy Minimization in Discrete Graphical Models

The log partition function 𝐴(𝜃) is simply a normalizing factor to ensure that 𝑝𝜃 is
indeed a probability distribution.

A discrete exponential familydiscrete exponential
family

is an exponential family where all 𝑋𝑖 are discrete finite
sets. In the discrete case, 𝜈 is the counting measure, so the log partition function can
be written as

𝐴(𝜃) = log
∑︁
𝑥∈𝑋

exp(𝜃𝑇𝜙(𝑥)),

and Ω = R𝑑 holds.
Let 𝜙 be the vector of potential functions of a discrete exponential family, and let 𝑝 be

an arbitrary probability distribution on 𝑋. Then we define the vector 𝜇 = (𝜇1, . . . , 𝜇𝑑)
of mean parametersmean parameters associated to 𝜙 by

𝜇𝑗 := E𝑝[𝜙𝑗(𝑥)] =
∑︁
𝑥∈𝑋

𝜙𝑗(𝑥)𝑝(𝑥)

for 𝑗 = 1, . . . , 𝑑, where E𝑝 denotes the expectation function defined by 𝑝. Note that we
did not require 𝑝 to be a member of an exponential family, in particular, not of the
exponential family associated to 𝜙.

We now can consider the set of all possible mean parameters, i.e., the set of all 𝜇 for
which a probability distribution 𝑝 exists:

M :=
{︂
𝜇 ∈ R𝑑 | there is probability distribution 𝑝 on 𝑋 such that 𝜇 = E𝑝[𝜙(𝑥)]

}︀
.

The definition of M can be reformulated to

M =
{︂
𝜇 ∈ R𝑑 | there is a 𝑝 : 𝑋 → R+

0 with
∑︁
𝑥∈𝑋

𝑝(𝑥) = 1 such that 𝜇 =
∑︁
𝑥∈𝑋

𝑝(𝑥)𝜙(𝑥)
}︂

which is equivalent to
M = conv({𝜙(𝑥) | 𝑥 ∈ 𝑋})

so that it becomes apparent that M is a polytope: It is called the marginal polytopemarginal polytope .
For a member of a discrete exponential family given by a canonical parameter 𝜃, a

state 𝑥* ∈ 𝑋 is called a MAP solution if it has the highest probability of all possible
states, i.e., if

𝑥* ∈ argmax
𝑥∈𝑋

𝑝𝜃(𝑥).

This is equivalent to requiring

𝑥* ∈ argmax
𝑥∈𝑋

𝜃𝑇𝜙(𝑥).

Everything introduced in this section of course directly corresponds to the components
of a discrete graphical model with the same identifiers: The random variables correspond

34

3.5 Overview of Existing Inference Methods

to the nodes of a factor graph, the set of possible states 𝑋 corresponds to the label set,
and so on. We set the energy function 𝜃 of the graphical model by 𝜃 := −𝜃 so that

argmin
𝑥∈𝑋

𝜃𝑇𝜙(𝑥) = argmax
𝑥∈𝑋

𝜃𝑇𝜙(𝑥),

and a MAP solution 𝑥* therefore is equivalent to an optimal labeling in the graphical
model and finding such a solution is the energy minimization problem.

3.5 Overview of Existing Inference Methods
There is a vast number of algorithms for energy minimization in graphical models
– some are quite general, others are specialized to restricted models, some compute
optimal solutions and others only approximations. Since a complete overview is too
much to include here, we present a short description of those that are relevant for the
rest of this thesis. For a more complete coverage, see [KAH+13].

3.5.1 Polynomially Solvable Cases
Min 𝑠-𝑡 Cut Approach This approach was first used in computer vision in 1989 by
Greig et al. [GPS89]. It works for binary models of order two with submodular energies,
which are transformed to min 𝑠-𝑡 cut problems as described in Sec. 3.2.2. Because
of the equivalence of minimum 𝑠-𝑡 cuts and maximum flows, mostly algorithms for
the max flow problem are used where many different versions have been developed for
special structures of the factor graph and the energy functions [BK04].

Perfect Matching Approach Schraudolph et al. describe a way to compute a maximum
cut in a planar graph by exploiting a correspondence between maximum cuts and
minimum perfect matchings [SK09]. The algorithm works for either binary pairwise
models without unary factors whose underlying graph is planar or for binary pairwise
models whose underlying graph is outerplanar.

Junction-Tree Algorithm The junction-tree algorithm first builds a tree whose nodes
nodes correspond to subsets of the nodes of the factor graph of the graphical model.
The structure depends solely on the structure of the factor graph. Then dynamic
programming is used on this graph to compute a labeling. The runtime of the junction-
tree algorithm is polynomial in the tree-width of the graph.

3.5.2 Approximative Methods
Alpha-Expansion (𝛼-Exp) This method was introduced by Boykov [BVZ01] and is
applicable to multi-label graphical models of order at most two where the energy
functions of the second-order factors are given by a metric. It is a move-making

35

3 Energy Minimization in Discrete Graphical Models

algorithm that starts with an arbitrary labeling and then computes a series of minimum
cuts to improve this. In each iteration, a label 𝛼 ∈ 𝐿 is chosen and every variable can
then either keep its current label or get label 𝛼. This is repeated until there are no
further changes. Alpha-expansion provides a guarantee for the labeling it produces in
relation to an optimal labeling, which depends on the energy function values.

Sequential Tree-Reweighted Message Passing (TRWS) Developed by Kolmogorov
in 2006 [Kol06], the sequential tree-reweighted message passing algorithm improves
an earlier message passing algorithm [WJW05] and has a connection to the local
polytope relaxation. It produces a sequence of labelings with decreasing energy value
and additionally provides a lower bound in each iteration. TRWS is suited for models
of order at most two. It is a fast and universal it is a block-coordinate descent method
that is widely used, however, it can get stuck in local minima. An implementation of
the method is available from the original author.

Fast Primal-Dual (FastPD) FastPD is an algorithm by Komodakis and Tziritas [KT07]
and uses, as its name suggests, primal and dual formulations of the problem. It is a
move-making algorithm and can be seen as a generalization of 𝛼-Exp. It can converge
to a non-optimal point. However, since it also works in the dual domain, it at least
also provides a lower bound. It uses of the dual solutions to reparametrize the energy
function, which leads to a significant speedup. The code is publicly available from the
authors.

Quadratic Pseudo-Boolean Optimization (QPBO) Originally used to name the type
of problem, QPBO now stands for a method to solve such problems. It dates back
to a work of Hammer [HHS84] and was developed further by Rother et al. [RKL+07].
QPBO can be used for binary pairwise models and is equivalent to the local polytope
relaxation. For permuted submodular energy functions it yields optimal solutions. In
general, it provides partial optimality: For a subset of the variables, it computes labels
that occur in an optimal solution, i.e., it is guaranteed that there is an optimal solution
that coincides with the QPBO solution on this subset. It is described in more detail in
Sec. 4.1.1.

Reweighted Perfect Matching (RPM) This method can be used for graphical models
of max cut type. In [Sch10], Schraudolph extends the algorithm from [SK09] to non-
planar graphs. In order for this to work, a so-called consistent collection of graphs that
builds a cycle basis for the input graph is needed. Finding such a collection is difficult
in general, however, for grid graphs the author gives one that performs well. As part of
the isinf library, the code is free for non-commercial research and education purposes.
Although the author claims that the algorithm is exact, his proof remains unclear.

36

3.5 Overview of Existing Inference Methods

3.5.3 Exact Methods for 𝒩𝒫-hard Models
Integer Linear Programming (ILP) A general representation of a discrete graphical
model is an integer linear program as explained in Sec. 3.3.2: Additional to the
constraints of the local polytope relaxation it contains integrality constraints. This
method is implemented in [ABK12a] and imposes no further restrictions on 𝒢 or 𝜃𝑓 (·).
During optimization a sequence of linear programs is solved and integer constraints are
enforced iteratively by applying cutting-plane or branch-and-bound techniques. The
code of [ABK12a] is publicly available under the MIT license and uses the commercial
optimization library CPLEX, which is free for academic use.

MPLP using Cycle Constraints (MPLP-C) MPLP (Max Product Linear Program-
ming) is a dual decomposition method introduced by Globerson and Jaakkola [GJ07].
Sontag et al. [SCL12] give an extension of it which searches for violated constraints
corresponding to cycles of length 3 or 4. This leads to a tighter relaxation than the
local polytope relaxation.

Breadth-Rotating AND/OR Branch-and-Bound (BRAOBB) Otten et al. suggested
a depth-first search branch-and-bound algorithm over AND/OR search spaces using
mini-bucket heuristics for bounding [OD11]. Contrary to naive depth-first search,
which processes one branch of the tree after another, BRAOBB processes all branches
“simultaneously” in a round-robin style. This leads to a better anytime behavior.
BRAOBB was the winner of the Probabilistic Inference Challenge 2011 [PIC11]. The
source code is freely available under the GPL.

Max Cut by Branch-and-Cut (MCBC) In [Bon11], Bonato developed a method for
solving max cut problems to optimality using a branch-and-cut framework. For graphical
models that can be transformed into max cut problems (see Sec. 3.2.2), this can used
for the MAP problem. In addition to using the standard cycle relaxation for the
cut polytope he employs special separation and lifting techniques for deriving further
inequalities that tighten the relaxation. The algorithm is in particular very well
suited for sparse graphs. We applied it to computer vision problems for the first time
in [KSR+13b]. The code is not publicly available, but the author kindly provided us
with the possibility to run our experiments.

37

4 Reduction Techniques

One of the main challenges when dealing with real-world applications of graphical
models are the mere problem sizes that occur: Problem formulations in image analysis
or computer vision usually use one variable per image pixel or video voxel. So even
for medium-sized images, this yields graphical models with hundreds of thousands of
variables. Solving these to optimality is often intractable despite the advance in both
algorithms and computer hardware.

In this chapter, we will describe two approaches to reformulate a graphical model
with the aim of obtaining problems of smaller size that are easier to solve.

In Sec. 4.1 we will introduce a set of preprocessing steps which transform a graphical
model into a smaller but equivalent one – here, equivalent means that an optimal
solution of the reduced problem is also an optimal solution of the original problem.
While each of these steps is well-known or quite simple, it is their combination which
yields good results as will be demonstrated in Sec. 4.2.

Sec. 4.3 and Sec. 4.4 are devoted to superpixels which are a valid way to simplify
models for our main application image segmentation. Several existing methods for
creating superpixels are presented and evaluated. When using superpixels, several
pixels are first grouped together and then treated as one variable in the graphical model.
Although this does not yield an equivalent model, this preprocessing step can save a lot
of computation time while still delivering qualitatively good results.

The findings of Sec. 4.1 and Sec. 4.2 have already been published in [KSR+13b].

4.1 Exact Model-Reduction

Assume we are given a graphical model with a factor graph 𝒢 = (𝒱,ℱ , ℰ). How can
we modify the model in order to make it solvable more efficiently while at the same
time maintaining the optimal solutions? We propose some simple reduction techniques
which can also be combined easily.

4.1.1 Partial Optimality

An important observation when trying to solve graphical models that are based on
real-world data is that their computational complexity often only depends on a relatively
small part of the problem instance. Especially problems from computer vision tend to

39

4 Reduction Techniques

−→

Figure 4.1: Partial optimality reduction: After applying a partial optimality algorithm,
the nodes with known value (black dots) can be removed after modifying
the factors connected to them appropriately (red).

contain large parts that can be solved easily. This means that algorithms that provide
partial optimalitypartial optimality work well in these cases.

Existing partial optimality algorithms are based on roof duality [BH02], e.g., [RKL+07;
Kov03; KSR+08], or on iterative pruning, e.g., [SSK+13].

The output of a partial optimality algorithm is a partition 𝒱 = 𝒱∘ ∪ 𝒱∙ together
with a vector 𝑥̄ ∈ 𝑋𝒱∙ such that for every optimal solution (𝑥*

𝒱∘ , 𝑥*
𝒱∙) ∈ 𝑋 of 𝒢 also

(𝑥*
𝒱∘ , 𝑥̄) ∈ 𝑋 is an optimal solution of 𝒢. Here, 𝒱∙ represents the “easy” part of the

problem that could be solved by the partial optimality algorithm and 𝒱∘ is the “difficult”
part which remains to be solved in an additional step. This is done in a straightforward
way by defining a modified graphical model in the following way: The factor graph
𝒢′ = (𝒱 ′,ℱ ′, ℰ ′) is given by

𝒱 ′ := 𝒱∘,

ℱ ′ := {𝑓 ∈ ℱ | nb(𝑓) ∩ 𝒱∘ ̸= ∅},
and ℰ ′ := ℰ ∩ (𝒱 ′ × ℰ ′).

This is sketched in Fig. 4.1. The set of labels 𝑋 ′ is the product of the label sets of
the unknown nodes, so 𝑋 ′ :=

∏︀
𝑣∈𝒱∘ 𝑋𝑣. For all factors 𝑓 ∈ ℱ ′, their neighborhood

in 𝒢 can be written as nb𝒢(𝑓) = {𝑣1, . . . , 𝑣𝑖, 𝑣𝑖+1, . . . , 𝑣𝑟} with 1 ≤ 𝑖 ≤ 𝑟 such that
{𝑣1, . . . , 𝑣𝑖} ⊆ 𝒱∘ and {𝑣𝑖+1, . . . , 𝑣𝑟} ⊆ 𝒱∙. The energy functions 𝜃′

𝑓 are then defined as

𝜃′
𝑓 : 𝑋nb𝒢(𝑓)∖𝒱∙ → R,

𝜃′
𝑓 (𝑥1, . . . , 𝑥𝑖) := 𝜃𝑓𝑣1,...,𝑣𝑟

(𝑥1, . . . , 𝑥𝑖, 𝑥̄𝑖+1, . . . , 𝑥̄𝑟),

where 𝜃 are the original energy functions.
With these changes, a solution 𝑥* of the modified model together with the output 𝑥̄

of the partial optimality algorithm gives an optimal solution (𝑥*, 𝑥̄) of the original
model. The total energies of the solutions differ by the function values of the factors
𝑓 ∈ ℱ with nb(𝑓) ⊆ 𝒱∙, so the total energy 𝐽(𝑥*, 𝑥̄) of the composed solution can be

40

4.1 Exact Model-Reduction

−→

Figure 4.2: Connected component reduction: Obviously, each connected component of
a factor graph can be treated separately.

computed as

𝐽(𝑥*, 𝑥̄) = 𝐽 ′(𝑥*) +
∑︁

{𝑓∈ℱ|nb(𝑓)⊆𝒱∙}
𝜃𝑓 (𝑥̄nb(𝑓)).

In principle, any algorithm can be used to compute 𝑥*, and indeed, this approach
has already been used in [AKT10] with approximative methods. In contrast, we here
systematically exploit partial optimality to make exact combinatorial methods feasible
for large problem sizes. That this is feasible can be seen in the experiments of Sec. 4.2
and Chap. 6.

4.1.2 Connected Components

If the factor graph 𝒢 is disconnected, the individual connected components can clearly
be treated separately as sketched in Fig. 4.2. We suggest to use a preprocessing
step that detects connected components in polynomial time, e.g., by using depth-first
search [CLR90], such that all of them can be solved independently.

Although this might seem obvious, it is not automatically taken into account by
many solvers. As a proof of concept, we used test instances of the following type: Each
instance is a binary graphical model of order two. The underlying graphs each have
three connected components which are complete graphs of equal size. We used models
with 15, 30, . . . , 90 variables and created ten instances for each size. The values of the
unary and pairwise factors were chosen randomly.

In Fig. 4.3, we show the average runtime per size for these models: They have been
solved by an ILP solver, once without any modification (ILP) and once by first splitting
them up into their connected components (ILP-c). It can be seen clearly that first
detecting the connected components leads to a huge speedup. The instances with
90 variables took on average only about ten seconds with ILP-c compared to nearly
one hour with ILP.

41

4 Reduction Techniques

15 30 45 60 75 90

0.1 s
1 s

10 s
1 min

10 min
1 h

number of variables

ru
nt

im
e

ILP
ILP-c

Figure 4.3: Average runtimes of ten binary instances per size. Each instance consists of
three complete graphs of equal size. Standard ILP solvers are not able to
capture this. Processing each connected component independently (ILP-c)
leads to a significant speedup. Note that the time axis is logarithmic.

4.1.3 Tentacle Elimination

We call an edge 𝑒 ∈ ℰ a bridgebridge if the number of connected components of 𝒢 increases
when 𝑒 is removed. After removing a bridge, the resulting components can be treated
separately.

When doing so while fixing the variable incident to 𝑒 for all its possible labels, one
side of the bridge can be shrunken to a unary factor representing the optimal values of
this subgraph, see Fig. 4.4.

More formally: Assume that 𝒢 is connected and that 𝑒′ = (𝑣′, 𝑓 ′) ∈ ℰ is a bridge
where 𝑣′ ∈ 𝒱 and 𝑓 ′ ∈ ℱ . After removing 𝑒′, the factor graph 𝒢 consists of two
components 𝒢1 = (𝒱1,ℱ1, ℰ1) and 𝒢2 = (𝒱2,ℱ2, ℰ2) where w.l.o.g. 𝑣′ ∈ 𝒱1 and 𝑓 ′ ∈ ℱ2.
Let 𝑋𝑣′ = {𝑙1, . . . , 𝑙𝑘} and nb(𝑓 ′) = {𝑣′, 𝑣1, . . . , 𝑣𝑟}. We are now defining 𝑘 graphical
models: Their structure is given by 𝒢2, their label set by

∏︀
𝑣∈𝒱2 𝑋𝑣, and their energy

functions by the corresponding functions of the original model with the exception of 𝜃𝑓 ′ :
Instead of 𝜃𝑓 ′ , for the 𝑖-th model, 1 ≤ 𝑖 ≤ 𝑘, we use the function 𝜃𝑖

𝑓 defined as

𝜃𝑖
𝑓𝑣1,...,𝑣𝑟

(𝑥1, . . . , 𝑥𝑟) := 𝜃𝑓 ′
𝑣′,𝑣1,...,𝑣𝑟

(𝑙𝑖, 𝑥1, . . . , 𝑥𝑟).

We implicitly assume that these models are easily solvable so that it is still efficient to
solve all of them. Let 𝑥𝑖 ∈ 𝑋𝒱2 be an optimal solution of the 𝑖-th model with energy 𝐽 𝑖

for 1 ≤ 𝑖 ≤ 𝑘.
We can now replace the component 𝒢2 in the original model: We define a graphical

model with the factor graph (𝒱1,ℱ1∪{𝑓 ′′}, ℰ1∪{(𝑣′, 𝑓 ′′)}). The label sets are the same

42

4.1 Exact Model-Reduction

𝑓 ′
𝒢1 𝒢2

𝑣′

𝑒′
−→

𝑓 ′′𝑣′

Figure 4.4: Bridge reduction: The right side of the original graph can be shrunken
to a unary factor 𝑓 ′′ by |𝑋𝑣′ | small optimization problems. After solving
the problem corresponding to the reduced graph, the full solution can be
recovered.

𝑓 ′

𝒢2

𝑣′

𝑒′
−→

𝑓 ′′𝑣′

Figure 4.5: Tentacle reduction: In cases where 𝒢2 is acyclic, i.e., is a tentacle, dy-
namic programming can be used to replace this subgraph by a single unary
factor 𝑓 ′′.

as in the original model and the additional factor 𝑓 ′′ has the associated energy function

𝜃𝑓 ′′(𝑙𝑖) := 𝐽 𝑖.

If 𝑥* ∈ 𝑋𝒱1 is an optimal solution of this model and 𝑥*
𝑣′ = 𝑙𝑗 , then (𝑥𝑗 , 𝑥*) is an optimal

solution of the original model.
So the described procedure yields a simplified and smaller model by replacing 𝒢2

by 𝑓 ′′. However, this is only beneficial if the computation of the optimal solutions
of the 𝑘 subproblems is fast, i.e., if the structure or size of 𝒢2 is simple enough. A
special case where this holds is when 𝒢2 is acyclic – we then call 𝒢2 a tentacle tentacle, see also
Fig. 4.5. Since acyclic graphical models can be solved in polynomial time by dynamic
programming, tentacles can be eliminated very efficiently.

To demonstrate this efficiency, we again created test instances that exhibit this. The
instances are again pairwise binary models where the values of the unary and pairwise
factors were chosen randomly. The models have 100, 200, 400, . . . , 25600 variables, we
created ten instances per size. Their structure is as follows: The underlying graph of
each instance consists of a complete graph with 20 nodes, all remaining nodes were

43

4 Reduction Techniques

100 400 1 600 6 400 25 600
0.1 s

0.3 s

1 s

3 s

10 s

number of variables

ru
nt

im
e

ILP
ILP-t

Figure 4.6: Average runtimes of ten binary instances per size. Each instance consists
of a complete graph with 20 nodes, all other nodes are part of tentacles.
This is not exploited by standard ILP solvers, so eliminating the tentacles
first (ILP-t) clearly pays off. Note that both axes are logarithmic.

added iteratively and connected to an already present node by a single edge.
The average runtime per size can be seen in Fig. 4.6: ILP gives the times needed

by a standard ILP solver. For ILP-t, the same solver was used but all tentacles were
eliminated first. We can again see a clear improvement: The instances of size 25 600
took 8.8 seconds on average when solved normally but only 0.2 seconds when applying
tentacle elimination first.

The basic idea behind bridge and tentacle elimination is also known as variable
conditioning and variable elimination, see [KF09] and the references therein for an
overview. The main difference to our work is that we suggest to use such techniques
only for fast solvable substructures and not for the complete model.

4.2 Evaluation of Combined Reduction Methods

We created pairwise models where the underlying graph is a grid graph of size 32× 32,
64× 64, . . . , 2 048× 2 048. The problems are binary, i.e., |𝑋𝑣| = 2 for all 𝑣 ∈ 𝒱 . Unary
and pairwise factors were added for all nodes and edges of the grid; the values of 𝜃𝑓 (·)
and 𝜃𝑓 (·, ·) were drawn uniformly at random from the interval [0, 1] for all 𝑓 ∈ ℱ . We
created ten instances per size. Problems of this type can be transformed into pure max
cut problems as described in [SK09]. For MCBC and RPM, we transform the problems
into max cut instances and solve those.

As expected, the runtimes decrease by orders of magnitudes when we apply QPBO
to get partial optimal solutions first, see. Fig. 4.7. Please note that this is not possible
for RPM since it needs certain embeddings which are easy to compute for the original

44

4.3 Reduction via Superpixels

32 64 128 256 512 1 024 2 048

0.1 s

1 s

10 s
1 min

10 min
1 h

grid size

ru
nt

im
e

ILP
ILP-p

ILP-pct
BRAOBB-p

MCBC
MCBC-p

RPM

Figure 4.7: Average runtimes of those instances that could be solved in less than one hour
(compare Fig. 4.8). For all methods reduction makes them applicable to
larger instances. Overall, ILP-pct and BRAOBB-p perform best.

grid problems but not for the reduced ones. The optimality ratio, i.e., the percentage
of nodes that were already correctly labeled by QPBO, was 97.6% on average.

However, we achieve another tremendous reduction of the runtime by taking into
account that the reduced problems are mostly disconnected and treating the connected
components as independent problems. For the 1 024× 1 024 instances, the number of
components is between 2 497 and 2 669 with sizes in the range of 4 to 83.

We do not apply the connected component reduction for BRAOBB explicitly because
this is already taken into account by the method itself. Therefore, the performance of
BRAOBB-p is similar to ILP-pct. For MCBC, we only apply the partial optimality
reduction.

As can also be seen in Fig. 4.8, the reduction methods show their full potential when
applied to large scale problems. We are able to solve instances of size 2 048× 2 048 in
less than 90 seconds. Overall, BRAOBB-p and ILP-pct perform best.

4.3 Reduction via Superpixels

The reduction methods we have presented so far are applicable to general graphical
models and not limited to a certain type of problem. Since the main application in this
thesis is image segmentation, we will now introduce a technique which was developed
solely for segmenting images: Superpixels are a grouping of several pixels of an image
into one object which is then treated as a single variable. This preprocessing of grouping
the pixels cannot be reversed in the optimization step of the reduced model, implying
that this is not an equivalent reformulation: An optimal solution of the reduced model
is not necessarily an optimal solution of the original model.

45

4 Reduction Techniques

grid size 32 64 128 256 512 1 024 2 048
ILP

ILP-p
ILP-pct

BRAOBB
BRAOBB-p

MCBC
MCBC-p

RPM

Figure 4.8: Fraction of the ten instances per grid size that could be solved within
one hour (), that could not be solved due to the time limit of one hour (),
and that could not be solved due to an out-of-memory error (). Using the
three proposed reduction techniques makes methods applicable to larger
instances. Overall, ILP-pct scales best.

Several algorithms for obtaining superpixel have been published. However, what was
lacking so far was a neutral comparison of them, i.e., one which was not conducted by
one of the developers of a superpixel algorithm.

We will therefore present five methods for creating superpixels, four of which having
been developed recently (2009–2011) and the fifth one being an established method
from 2003. All methods will be compared based on fixed criteria which measure their
quality. This way, we will obtain an unbiased view on the different techniques allowing
us to choose the appropriate method for our applications.

No precise definition of a superpixel beyond being a semantic grouping of pixels
exists. It is clear that superpixels should an oversegmentation and that each each
superpixel should belong to the same real-world object. Further desired properties are
that superpixels

∙ are compact,

∙ contain pixels of similar color and texture,

∙ are uniform in size and shape,

∙ and are computationally efficient to compute.

Superpixels are usually used as a preprocessing step to speed up computations.
Additionally, they can help to reduce redundancies. They are used in applications
like image segmentation and parsing, depth estimation, or object localization. Overall,
superpixels contribute to the computational efficiency.

We will now give a brief summary of the superpixel algorithms used in our comparison.

46

4.3 Reduction via Superpixels

Superpixels Based on Normalized Cuts Superpixel segmentation based on normalized
cuts was first proposed by Ren and Malik [RM03]. Mori used the same technique and
published a freely available version of his code [Mor]. The method is used by many
application as a preprocessing step. NCuts has an excellent segmentation quality due to
the global optimization criterion it is based on and we can directly control the number
of superpixels. The algorithm is known to quite slow compared to other approaches,
which we will also see in our experiments. There is also no control of the compactness
of the superpixels.

TurboPixels TurboPixels is a geometric flow based algorithm proposed by Levin-
shtein et al. [LSK+09]. The method dilates regularly spaced seeds and adapts them
to a local image structure. It uses curve evolution and geometric flow techniques and
it delivers simply connected and compact superpixels which are also uniform in size.
There exists an extension of TurboPixels to the spatio-temporal domain to compute
supervoxels. It has a theoretically sound formulation, however, it is a bit slower than
the fastest methods available.

SLIC Superpixels SLIC stands for simple linear iterative clustering and was introduced
by Achanta et al. [ASS+10]. It is a special case of the 𝑘-means algorithm adapted to the
task of superpixel segmentation. SLIC clusters pixels in a joint color and location space,
where they are represented as (𝑙𝑎𝑏𝑥𝑦), where (𝑙𝑎𝑏) are the components in CIELAB
color space and (𝑥𝑦) are coordinates in the image plane. SLIC is a very fast method for
superpixel generation and delivers a good segmentation performance. The superpixels
are uniformly sized and compact, we have direct control of the number of superpixels
and their compactness.

Veksler’s Method for Superpixels by Energy Minimization This approach to the su-
perpixel problem was published by Veksler et al. [VBM10]. It is formulated as a
pairwise discrete graphical model where the underlying graph is the 8-connected image
graph. The optimization is done with 𝛼-expansion, where only two iterations are
needed. It gives very good results while being efficient and easily parallelizable since it
contains independent subproblems. Since it uses an explicit energy, it is easy to modify
– Veksler et al. also give several variants of their approach. However, it is not as fast as
SLIC.

Superpixels via Pseudo-Boolean Optimization Introduced by Zhang [ZHM+11] in
2011, this superpixel algorithm uses pseudo-Boolean optimization. It needs only
two runs: One run divides the image in horizontal stripes, one in vertical stripes.
The superpixels are then generated by intersecting these stripes. Since these two
computations are independent, there is no connectivity or size constraint for the
superpixels. This is a very fast method whose runtime is independent from the number

47

4 Reduction Techniques

Figure 4.9: Example images from the Berkeley Segmentation Dataset.

of superpixels. However, it is of rather low quality, as we will see, since it produces a
lot of small fragments.

4.4 Evaluation and Comparison

4.4.1 Experimental Setup

We tested publicly available implementations of NCuts, SLIC, TurboPixels, Veksler’s
method, and PBO-SP. Additionally, we included a method squares for having a baseline
in the comparisons: This simply divides the input image into squares of the same size,
independent of the image data. We wrote a wrapper code in MATLAB to be able to
call all methods in a consistent way and also did the evaluation in MATLAB.

We took 50 images from the Berkeley segmentation dataset (BSDS) [MFT+01] as our
input data. This dataset consists of color images of size 481× 321 of different real-world
scenes, see Fig. 4.9 for example images. Additionally, each image in the dataset has at
least five ground truth segmentations done by humans. As already mentioned, since
the segmentation problem is not well-defined also these ground truth segmentations
can differ a lot, see Fig. 4.10 for examples.

For each image and each method, a segmentation into 150, 250, . . . , 950 superpixels
was generated. Please note that it is not possible for all methods to specify the number
of superpixels exactly. In these cases we chose the input parameters in a way that the
number of superpixels was approximately correct. The measures shown in the plots
on the next pages are averaged over all images and (if it depends on the ground truth
segmentation) over all ground truths.

Our tests were run on a PC with an Intel E5400 DualCore 2.7 GHZ processor and
8 GB RAM.

48

4.4 Evaluation and Comparison

Figure 4.10: For two images of the Berkeley segmentation dataset five segmentations
done by humans are shown. Clearly there is a lot of variation in the
segmentations.

Figure 4.11: Illustration of the “bleeding” of superpixels, which is measured by the
undersegmentation error. The object with the black border is a ground
truth segment, the red lines are superpixel boundaries. The areas shaded
red count towards the undersegmentation error.

4.4.2 Undersegmentation Error
The undersegmentation error undersegmentation

error
measures the amount of “bleeding” of superpixels when

they are placed over ground truth segments. This is illustrated in Fig. 4.11. Given
ground truth segments 𝑔1, . . . , 𝑔𝑀 and superpixels 𝑠1, . . . , 𝑠𝐿, the undersegmentation
error 𝑈 is defined as

𝑈 := 1
𝑁

⎛⎜⎜⎜⎝ ∑︁
1≤𝑖≤𝑀

∑︁
1≤𝑗≤𝐿
𝑠𝑗∩𝑔𝑖 ̸=∅

|𝑠𝑗 | −𝑁

⎞⎟⎟⎟⎠ ,

where 𝑁 is the number of pixels of the image.
The computed undersegmentation errors can be seen in Fig. 4.12. As can be seen,

NCuts achieves the lowest undersegmentation error. Veksler’s method and SLIC show
similar segmentation performance, whereas TurboPixels shows a somewhat weaker
performance when the number of superpixels is small. PBO-SP has the highest
undersegmentation error at whole range of superpixel counts.

49

4 Reduction Techniques

150 250 350 450 550 650 750 850 950
0

0.2

0.4

0.6

0.8

1

number of superpixels

un
de

rs
eg

m
en

ta
tio

n
er

ro
r
𝑈

NCuts
SLIC

TurboPixels
Veksler

PBO-SP
squares

Figure 4.12: Undersegmentation error.

Figure 4.13: Illustration of the boundary recall: The boundary of a ground truth segment
(black) counts towards the boundary recall if it is within a distance of 𝑡 to
the boundary of a superpixel segment (red).

4.4.3 Boundary Recall
The boundary recallboundary recall computes the fraction of pixels on the boundary of ground truth
segments that falls within a small distance of at least one superpixel boundary, see
Fig. 4.13. Given ground truth segments 𝑔1, . . . , 𝑔𝑀 , superpixels 𝑠1, . . . , 𝑠𝐿, and a
distance 𝑡, the boundary recall 𝑅𝑡 is defined as

𝑅𝑡 :=
∑︀

𝑝 I[𝑑(𝑝, 𝜕𝑠𝑗) ≤ 𝑡 for some 𝑗] · I[𝑝 ∈ 𝜕𝑔𝑖 for some 𝑖]∑︀
𝑝 I[𝑝 ∈ 𝜕𝑔𝑖 for some 𝑖] ,

where 𝜕𝑠𝑗 and 𝜕𝑔𝑖 denote the border of the segments and 𝑑 is the smallest distance of
a pixel 𝑝 to the border of a segment.

Fig. 4.14 shows the computed recall values for 𝑡 = 1 and 𝑡 = 2. NCuts achieves the
best boundary recall for both values of 𝑡. Veksler’s method and SLIC again produce
similar results, whereas TurboPixels has a lower boundary recall for small numbers

50

4.4 Evaluation and Comparison

150 250 350 450 550 650 750 850 950
0

0.2

0.4

0.6

0.8

1

number of superpixels

re
ca

ll
𝑅

1

NCuts
SLIC

TurboPixels
Veksler

PBO-SP
squares

150 250 350 450 550 650 750 850 950
0

0.2

0.4

0.6

0.8

1

number of superpixels

re
ca

ll
𝑅

2

NCuts
SLIC

TurboPixels
Veksler

PBO-SP
squares

Figure 4.14: Recall for 𝑡 = 1 and 𝑡 = 2.

of superpixels, but its performance improves as the number of superpixels increases.
PBO-SP once again has the worst segmentation performance. If the distance constraint
is relaxed from 𝑡 = 1 to 𝑡 = 2, all methods show an improved recall rate by roughly 15%
with no changes in their relative order.

4.4.4 Superpixel Size Uniformity

It is preferable that superpixels are uniform in size and shape. We therefore plot the
average histogram of superpixel size, normalized with respect to the expected superpixel
size 𝑁

𝐾 , where 𝑁 is the number of pixels of the image and 𝐾 is the number of superpixels,
see Fig. 4.15.

51

4 Reduction Techniques

0 0.5 1 1.5 2 2.5 3
0

0.1
0.2
0.3
0.4
0.5
0.6

normalized size of superpixel

re
la

tiv
e

fr
eq

ue
nc

y
NCuts
SLIC

TurboPixels
Veksler

PBO-SP

Figure 4.15: Normalized size of the superpixels.

SLIC has the least variability in the size of superpixels, and also TurboPixels produces
very uniform superpixels. NCuts and Veksler’s method produce a greater variability in
the size of produced superpixels since these methods lack the control of the compactness
of the superpixel. PBO-SP produces a bimodal distribution peaked at 1 and 0. As this
method doesn’t have any connectivity constraint, it produces many tiny superpixels.

4.4.5 Runtimes
We plotted the runtimes of the methods in Fig. 4.16. NCuts is extremely slow compared
to the other methods, which makes it unacceptable in many real-world applications.
Its runtime increases with the number of superpixels, whereas for the other methods
the running time is roughly constant. TurboPixels and Veksler’s method have medium
runtimes of about 14 seconds and 5 seconds, respectively. SLIC and PBO-SP are the
fastest methods with running times of about 0.3 seconds each.

4.4.6 Summary
When time is not an essential resource, according to this comparison you should choose
NCuts as your superpixel algorithm. It delivered the best quality, however, it is by far
the slowest method.

SLIC constitutes a good alternative: Its quality is nearly as good as NCuts and it has
the best runtime in our evaluation. Also TurboPixels and Veksler have their benefits:
Both can be used for computing supervoxels and Veksler is easily modifiable, and both
have acceptable runtime.

Only the results of PBO-SP were disappointing: It clearly was the worst competitor,
mostly due to its property of producing many small superpixel segments.

In Fig. 4.17, the superpixel segmentation of all algorithms considered are shown
side-by-side for two different numbers of superpixels.

52

4.4 Evaluation and Comparison

150 250 350 450 550 650 750 850 950
0

100

200

300

400

500

600

number of superpixels

ru
nt

im
e

NCuts
SLIC

TurboPixels
Veksler

PBO-SP
squares

150 250 350 450 550 650 750 850 950
0
2
4
6
8

10
12
14

number of superpixels

ru
nt

im
e

SLIC
TurboPixels

Veksler
PBO-SP
squares

Figure 4.16: Runtimes of the superpixel algorithms: In the top plot it can be seen that
NCuts is clearly the slowest method. The bottom plot is simply a zoomed
in version of the top one to show the differences of the other methods.

53

4 Reduction Techniques

ground truth

NCuts

SLIC

TurboPixels

Veksler

PBO-SP

Figure 4.17: Qualitative comparison of superpixel algorithms: The two left columns
show a superpixel segmentation into 𝐾 = 50 superpixels, the two right
columns into 𝐾 = 450 superpixels. In both cases, the second column is a
zoomed in version of the first one.

54

5 Multicuts for Discrete Graphical Models

After having seen reduction techniques for rather general graphical models, we will
now turn our view to a specific class of models, which we will solve with specialized
methods.

A partition of a graph can be represented by a labeling of its nodes. However, such
a representation is far from unique: Any permutation of the labels yields the same
partition. What is uniquely defined, however, is the set of edges with endnodes in
different partition sets – such a set of edges is called a multicut.

We will exploit this fact to achieve an efficient encoding of suitable functions, namely
functions invariant to label permutation. Because of the involved symmetries, standard
methods for treating labeling problems like TRWS do not perform well on problems
with label permutation invariant functions.

After defining the problem types involving label permutation invariant functions in
Sec. 5.1, we show how we can state this class of problems as a multicut problem in
the second-order case. Also higher-order factors can be incorporated in this framework
quite efficiently, see Sec. 5.3.

In Sec. 5.4, we will explain in detail how we solve multicut problems in an (integer)
linear programming formulation. Various types of inequalities together with separation
procedures for them are presented, which build the basis for a cutting-plane algorithm.
Additionally, we also show dedicated rounding methods for solutions of relaxations.

Of course the reduction techniques explained in the previous chapter can also be
used with the models treated here as will be demonstrated in Chap. 6.

The main content of this chapter has already been published in [KSR+13a].

5.1 Problem Formulation

The most important concept for this chapter are energy functions that are invariant to
label permutations. For a function of this class the function values only depend on the
partition induced by the labels of the variables rather than on the labeling itself. They
generalize Potts functions in a natural way and are especially suited to be handled by
the multicut approach. Many problems of interest are covered by models involving
functions of this class. They are defined as follows:

For a factor 𝑓 ∈ ℱ of order 𝑟 with 𝑋nb(𝑓) = 𝐿𝑟 for some common label set 𝐿 the
associated energy function 𝜃𝑓 : 𝐿𝑟 → R is called invariant to label permutations label permutation

invariant function
if for all

55

5 Multicuts for Discrete Graphical Models

𝑥′, 𝑥′′ ∈ 𝐿𝑟 with 𝑥′
𝑢 = 𝑥′

𝑣 ⇔ 𝑥′′
𝑢 = 𝑥′′

𝑣 for all 𝑢, 𝑣 ∈ 𝑋nb(𝑓) the equality 𝜃𝑓 (𝑥′) = 𝜃𝑓 (𝑥′′)
holds.

A permutation invariant function of a factor of order two can be written as

𝜃𝑓 (𝑥𝑢, 𝑥𝑣) =
{︃
𝛼1, if 𝑥𝑢 ̸= 𝑥𝑣,
𝛼2, otherwise

By setting 𝛽𝑓 = 𝛼1 − 𝛼2 this is equivalent to

𝜃𝑓 (𝑥𝑢, 𝑥𝑣) = 𝛽𝑓 · I[𝑥𝑢 ̸= 𝑥𝑣] + 𝛼2,

which is the sum of a Potts function and the constant term 𝛼2. Since a constant does
not influence the optimization problem, we assume in the following without loss of
generality that all permutation invariant functions of factors of order two are given as
Potts functions with disagreement terms 𝛽𝑓 .

We now introduce the two types of graphical models we are investigating in this
chapter. Both involve functions that are invariant to label permutations, but differ in
the structure of their factor graphs and label sets.

Supervised case

Problem 5.1. In the supervised case, we deal with the energy minimization problem

min
𝑥∈𝑋

∑︁
𝑓∈ℱ1

𝜃𝑓 (𝑥nb(𝑓)) +
∑︁
𝑟≥2

∑︁
𝑓∈ℱ𝑟

𝜃𝑓 (𝑥nb(𝑓))

in a graphical model ℳ where we require the energy functions 𝜃𝑓 to be invariant to
label permutations for all factors 𝑓 ∈ ℱ𝑟 with 𝑟 ≥ 2. The unary factors 𝑓 ∈ ℱ1 can
have arbitrary energy functions.

If ℳ is a graphical model as required in Prob. 5.1 and it is of order at most two, i.e.,
ℱ𝑟 = ∅ for all 𝑟 > 2, then it is a Potts model (see Sec. 3.1.3) since we can then write
the energy functions with disagreement terms as explained before.

We focus on related higher-order models separately in Sec. 5.3.

Unsupervised case

Problem 5.2. As in the supervised case in Prob. 5.1, in the unsupervised case we
require all energy functions of factors of order greater than one to be invariant to
label permutations. However, here we do not allow unary factors at all, so ℱ1 = ∅.
Additionally, we have a common label set 𝐿 with cardinality |𝒱| for all variables, i.e.,
𝐿 = {1, . . . , |𝒱|}. We can therefore write the problem as

min
𝑥∈{1,...,|𝒱|}|𝒱|

∑︁
𝑟≥2

∑︁
𝑓∈ℱ𝑟

𝜃𝑓 (𝑥nb(𝑓)).

56

5.2 Multicuts

In the second-order case, Prob. 5.2 is known as the pairwise correlation clustering
problem [BBC04], where a set of variables has to be partitioned into clusters such that
the sum of the weights of pairs of nodes in different clusters is minimized.

The main difference between the two cases is that in the supervised case 5.1, the labels
usually have a meaning: They correspond to classes about which some information is
known. In applications, usually the unary factors indicate the likelihood of a variable
belonging to certain class. That is why this type is called a supervised problem. In
the unsupervised case 5.2, there is no such inherent meaning linked to the labels. We
therefore do not have unary factors. Consequently, the common label set is {1, . . . , |𝒱|}
which means that in the extreme cases all variables can have the same label or every
variable can have its own label. The number of labels actually used solely depends on
the factors of order 𝑟 ≥ 2.

As shown in [KSA+11] for the second-order case, solving Prob. 5.2 with solvers
commonly used for Prob. 5.1, e.g., TRWS [Kol06], does not work, since the large state-
space and label permutation invariant functions cause large sets of optimal solutions.

We study efficient methods for solving both Prob. 5.1 and Prob. 5.2 in the general
case – multicuts play a key role in modeling their structure.

5.2 Multicuts
Multicuts and functions invariant to label permutations have a close connection: Multi-
cuts are a way of representing a partition of the node set of a graph and such a partition
generated by a labeling is what a label permutation invariant function depends on.

5.2.1 Basic Definitions
We first repeat the definition of a multicut: For a graph 𝐺 = (𝑉,𝐸), let {𝑆1, . . . , 𝑆𝑘}
be a partition of 𝑉 . We call the edge set

𝛿(𝑆1, . . . , 𝑆𝑘) := {𝑢𝑣 ∈ 𝐸 | 𝑢 ∈ 𝑆𝑖, 𝑣 ∈ 𝑆𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑘}

a multicut multicutand the sets 𝑆𝑖 the shores of the multicut. An edge 𝑒 ∈ 𝛿(𝑆1, . . . , 𝑆𝑘) is
called a cut edge cut edge.

To obtain a polyhedral representation of multicuts, we define incidence vectors
incidence vectors𝜒(𝐸′) := (𝜒𝑒(𝐸′))𝑒∈𝐸 ∈ {0, 1}|𝐸| for each subset 𝐸′ ⊆ 𝐸 by

𝜒𝑒(𝐸′) :=
{︃

1, if 𝑒 ∈ 𝐸′,

0, if 𝑒 ∈ 𝐸 ∖ 𝐸′.

The multicut polytope multicut polytopeMC(𝐺) is then given by the convex hull of these vectors:

MC(𝐺) := conv ({𝜒(𝛿) | 𝛿 is a multicut of 𝐺}) .

57

5 Multicuts for Discrete Graphical Models

For details on the geometry of this and related polytopes, we refer to [DGL91].

Problem 5.3 (Multicut Problem). The multicut problemmulticut problem is to find a multicut in a
weighted graph 𝐺 = (𝑉,𝐸,𝑤) for which the sum of the weights of cut edges is minimal.
Since all vertices of the multicut polytope correspond to multicuts, this amounts to
solving the linear program

min
𝑦∈MC(𝐺)

∑︁
𝑒∈𝐸

𝑤(𝑒)𝑦𝑒.

Please note that the terms multicut and multicut problem are not used consistently
in the literature. They are sometimes also used to refer to a generalization of the
maximum flow problem, for an overview see [CLR05]. The multicut problem, as we
stated it here, is related to the 𝑘 cut problem [GH94], however, we do not fix the
number of partition sets and therefore also allow arbitrary edge weights.

In order to apply linear programming techniques, we have to represent MC(𝐺) as the
intersection of halfspaces given by a system of inequalities. Since the multicut problem
is 𝒩𝒫-hard [BBC04; GJ79], we cannot expect to find a system of polynomial size. But,
as we will see later, partial systems may already support effectively solving the multicut
problem.

Before discussing how Prob. 5.3 can be solved efficiently, we will show how the
problems 5.1 and 5.2 can be transformed into Prob. 5.3.

5.2.2 Multicuts for Second-order Models
We first restrict ourselves to second-order models before treating higher-order models
in Sec. 5.3.

Supervised case

Let ℳ = (𝒢, 𝑋, 𝜃) be an instance of Prob. 5.1 of order two. As explained, we assume
that the energy functions of the second-order factors are given by disagreement terms 𝛽𝑓

for 𝑓 ∈ ℱ2. Additionally, we assume without loss of generality that all variables have
the same label set 𝐿 = {1, . . . , 𝑘}.

Every labeling 𝑥 ∈ 𝑋 naturally defines a partition {𝑆1, . . . , 𝑆𝑘} of the nodes 𝒱 where
𝑆𝑖 := {𝑣 ∈ 𝒱 | 𝑥𝑣 = 𝑖} for 1 ≤ 𝑖 ≤ 𝑘. The energy of a labeling is the sum of the energy
of the unary factors for assigning a label to the nodes plus the disagreement terms 𝛽𝑓

for each second-order factor connecting nodes with different labels.
For the graph defining the instance of the multicut problem we define additional

nodes 𝑇 := {𝑡𝑙 | 𝑙 ∈ 𝐿} = {𝑡1, . . . , 𝑡𝑘} and the weighted graph 𝐺 = (𝑉,𝐸,𝑤) with

𝑉 := 𝒱 ∪ 𝑇
and

𝐸 := {nb(𝑓) | 𝑓 ∈ ℱ2} ∪ {𝑡𝑣 | 𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 } ∪ {𝑡𝑖𝑡𝑗 | 𝑡𝑖, 𝑡𝑗 ∈ 𝑇, 𝑡𝑖 ̸= 𝑡𝑗}.

58

5.2 Multicuts

Figure 5.1: Transformation of a supervised graphical model into a multicut problem:
The factor graph 𝒢 of order two on the left belongs to an instance of
Prob. 5.1. The graph in the middle is the input graph of the corresponding
multicut problem. For each of the 𝑘 = 3 labels a terminal node is added to
the underlying graph of 𝒢 and connected to all nodes. On the right, one
possible multicut is indicated by showing all edges that are not part of it.
The label of each internal node is determined by the (unique) terminal node
that is in the same connected component.

The nodes in 𝒱 are called internal nodes, the ones in 𝑇 are terminal nodes internal and
terminal nodes

. Edges
between internal nodes are internal edges, edges between a terminal node and an
internal node are terminal edges, and edges between terminal nodes are inter-terminal
edges internal, terminal,

and inter-terminal
edges

.
Certain multicuts of 𝐺 will correspond to a labeling of ℳ as follows: The terminal

nodes represent the 𝑘 labels of 𝐿 and label 𝑙 is assigned to variable 𝑥𝑣 if the terminal
edge 𝑡𝑙𝑣 is not part of the multicut, i.e., if 𝑡𝑙 and 𝑣 are in the same shore. For this to be
sensible, not all multicuts will be allowed: Since only a single label should be assigned
to each variable, 𝑘 − 1 terminal edges incident to each internal node 𝑣 have to be part
of the multicut. Also, inter-terminal edges have to belong to different shores. We will
see in Sec. 5.4.2 how this is enforced. An depiction of the graph construction can be
seen in Fig. 5.1.

It remains to define the weight function of 𝐺 such that that the weight of a multicut
as described above equals the energy of the labeling it induces. For an internal edge 𝑢𝑣,
we set 𝑤(𝑢𝑣) := 𝛽𝑓𝑢𝑣 . Inter-terminal edges have weight 0. For the terminal edges,
let 11𝑇 be the matrix of all ones and 𝐼 be the identity matrix, both of size 𝑘× 𝑘. Then
the weights 𝑤(𝑡𝑙𝑣), 𝑙 ∈ 𝐿, 𝑣 ∈ 𝒱, are given by⎛⎜⎝𝑤(𝑡1𝑣)

...
𝑤(𝑡𝑘𝑣)

⎞⎟⎠ := 1
𝑘 − 1(11𝑇 − 𝐼)

⎛⎜⎝𝜃𝑓𝑣 (𝑙)
...

𝜃𝑓𝑣 (𝑘)

⎞⎟⎠ .

59

5 Multicuts for Discrete Graphical Models

Figure 5.2: Transformation of an unsupervised graphical model into a multicut problem:
For the factor graph on the left containing only pairwise factors, its under-
lying graph is used for the multicut problem (middle). On the right, one
possible multicut is indicated by showing all edges that are not part of it.
Here all multicuts correspond to a labeling. The exact labels of the nodes
are not important since all energy functions only depend on the induced
partition.

Unsupervised case

Reformulating Prob. 5.2 in the second-order case into a multicut problem is straight-
forward. Let again ℳ = (𝒢, 𝑋, 𝜃) be an instance of Prob. 5.2. Since there are no
unary factors we can simply use the underlying graph of 𝒢 and the disagreement
terms 𝛽𝑓 to define the graph for the multicut problem and make use of the one-to-one
correspondence between a partition and a multicut. So let 𝐺 := (𝑉,𝐸,𝑤) with

𝑉 := 𝒱,
𝐸 := {nb(𝑓) | 𝑓 ∈ ℱ},

and

𝑤(𝑢𝑣) := 𝛽𝑓𝑢𝑣 for all 𝑢𝑣 ∈ 𝐸.

Accordingly, the weight of a multicut of 𝐺 is the sum of all 𝛽𝑓 over factors 𝑓 connecting
variables in different shores, which equals the energy of the labeling induced by the
multicut – see [CR91] for a formal proof. An illustration of this can be seen in Fig. 5.2.

5.3 Multicuts for Higher-order Models

In the last section, we have shown how to transform second-order graphical models into
an input graph 𝐺 of the multicut problem so that we can solve the MAP problem with

60

5.3 Multicuts for Higher-order Models

the linear program
min

𝑦∈MC(𝐺)

∑︁
𝑒∈𝐸

𝑤(𝑒)𝑦𝑒.

The constraints for ensuring that 𝑦 ∈MC(𝐺) will be detailed in Sec. 5.4.
Before doing so, we will now show how higher-order factors with energy functions

invariant to label permutations can be included in this framework. For this, we can use
the same variables 𝑦𝑒 that are already present in the formulation and have to add only
a few additional auxiliary variables and inequalities. This is possible by encoding the
function as a sum of indicator functions of all possible partitions of the neighborhood
of such a higher-order factor.

For special functions, e.g., higher-order Potts functions, the representation is even
more efficient than in the general case.

5.3.1 General Label Permutation Invariant Functions
Definition

Let ℳ be a graphical model, let 𝑓 be a factor of ℳ of order 𝑟 > 2 whose energy
function is invariant to label permutations, and let nb(𝑓) = {𝑣1, . . . , 𝑣𝑟}. We assume
that 𝑋𝑣 = 𝐿 for all 𝑣 ∈ nb(𝑓). The energy function of 𝑓 therefore only depends on the
partition of {𝑣1, . . . , 𝑣𝑟} induced by the labeling 𝑥′ ∈ 𝐿𝑟.

Each possible partition of the 𝑟 nodes is uniquely represented by an indicator vector
(𝜒𝑣𝑠𝑣𝑡)1≤𝑠<𝑡≤𝑟 ∈ {0, 1}𝑟(𝑟−1)/2 over all pairs of nodes by

(𝜒)𝑣𝑠𝑣𝑡
:=

{︃
1, if 𝑣𝑠 and 𝑣𝑡 are in the same shore,
0, otherwise,

for all 1 ≤ 𝑠 < 𝑡 ≤ 𝑟.

Clearly, not every vector 𝜒 ∈ {0, 1}𝑟(𝑟−1)/2 corresponds to a partition – indeed, those
vectors are exactly the vertices of MC(𝐾𝑟), where 𝐾𝑟 denotes the complete graph with 𝑟
nodes. Their number is given by the Bell numbers 𝐵(𝑟) [Aig79]1. This observation
raises the issue of an efficient representation of these functions, independent of the
number of labels.

Let us denote for 𝑖 = 1, . . . , 𝐵(𝑟) by 𝜒𝑟
𝑖 ∈ {0, 1}𝑟(𝑟−1)/2 the indicator vector of the

𝑖-th partition of the 𝑟 nodes, i.e., 𝜒𝑟
𝑖 is the 𝑖-th vertex of MC(𝐾𝑟), for some arbitrary

order. Furthermore, we define a mapping 𝜏 𝑟 : 𝐿𝑟 → {0, 1}𝑟(𝑟−1)/2 from a labeling
𝑥′ ∈ 𝐿𝑟 to the partition indicator. With this we can represent the energy function 𝜃𝑓

by a parameter 𝛽 ∈ R𝐵(𝑟) by

𝜃𝑓 (𝑥′) = 𝛽𝑖 if 𝜏 𝑟(𝑥′) = 𝜒𝑟
𝑖 . (5.1)

We call such functions generalized higher-order Potts functions generalized
higher-order Potts
function

since they generalize
(second-order) Potts functions.

1The first Bell numbers are 𝐵(2) = 2, 𝐵(3) = 5, 𝐵(4) = 15, 𝐵(5) = 52, 𝐵(6) = 203, and 𝐵(7) = 877.

61

5 Multicuts for Discrete Graphical Models

Reduction Theorem

In order to incorporate generalized higher-order Potts functions into our multicut
framework, we introduce the following reduction theorem. The basic idea of this
theorem dates back to the work of Glover and Woolsey [GW74].

Theorem 5.1 (Reduction Theorem). Any pseudo-Boolean function 𝑔 : {0, 1}𝑀 → R
given by 𝑔(𝑧) =

∏︀
𝑖∈𝐵+ 𝑧𝑖 ·

∏︀
𝑖∈𝐵−(1− 𝑧𝑖), with |𝐵+ ∪𝐵−| = 𝑀 and 𝐵+ ∩𝐵− = ∅, can

be transformed into an optimization problem with

(a) a single Boolean auxiliary variable 𝑠 ∈ {0, 1} and two linear inequalities

min
𝑧∈{0,1}𝑀 ,𝑠∈{0,1}

𝑠

s.t. 𝑀𝑠 ≤
∑︁

𝑖∈𝐵+

𝑧𝑖 +
∑︁

𝑖∈𝐵−

(1− 𝑧𝑖) (5.2a)

𝑠 ≥ 1−𝑀 +
∑︁

𝑖∈𝐵+

𝑧𝑖 +
∑︁

𝑖∈𝐵−

(1− 𝑧𝑖) (5.2b)

or

(b) a single auxiliary variable 𝑠 ∈ [0, 1] and 𝑀 + 1 inequalities

min
𝑧∈{0,1}𝑀 , 𝑠∈[0,1]

𝑠

s.t. 𝑠 ≤ 𝑧𝑖 for all 𝑖 ∈ 𝐵+ (5.3a)
𝑠 ≤ (1− 𝑧𝑖) for all 𝑖 ∈ 𝐵− (5.3b)
𝑠 ≥ 1−𝑀 +

∑︁
𝑖∈𝐵+

𝑧𝑖 +
∑︁

𝑖∈𝐵−

(1− 𝑧𝑖). (5.3c)

Proof. The function 𝑔(𝑧) takes the value 1 if and only if 𝑧𝑖 = 1 for all 𝑖 ∈ 𝐵+ and 𝑧𝑖 = 0
for all 𝑖 ∈ 𝐵−, otherwise 𝑔(𝑧) = 0. It remains to show that the systems of inequalities
together with 𝑠 ∈ {0, 1} or 𝑠 ∈ [0, 1] restrict the feasible set such that 𝑠 = 𝑔(𝑧).

We set 𝜅 :=
⃒⃒
{𝑖 ∈ 𝐵+ | 𝑧𝑖 = 0} ∪ {𝑖 ∈ 𝐵− | 𝑧𝑖 = 1}

⃒⃒
.

(a) Inequalities (5.2a) and (5.2b) imply 𝑠 ≤ 1− 𝑘
𝑀 and 𝑠 ≥ 1− 𝑘. Since 𝑠 ∈ {0, 1}, it

follows that 𝑠 = 1 if 𝜅 = 0 and 𝑠 = 0 if 𝜅 > 0.

(b) If 𝜅 > 0, the inequalities (5.3a) and (5.3b) imply 𝑠 ≤ 0. Since 𝑠 ∈ [0, 1] it follows
that 𝑠 = 0. In the case 𝜅 = 0, we have 𝑠 ≥ 1 because of (5.3c) and therefore
𝑠 = 1.

A crucial observation is that case (b) of the reduction theorem implies integrality
of 𝑠 if 𝑧𝑖 ∈ {0, 1} for all 𝑧𝑖, whereas in case (a) this has to be enforced separately

62

5.3 Multicuts for Higher-order Models

by 𝑠 ∈ {0, 1}. Consequently, case (b) leads to tighter relaxations by only enforcing
𝑠 ∈ [0, 1].

While reduction (b) thus seems to be preferable, due to a lower number of constraints,
method (a) can be nonetheless appealing for some (I)LP techniques, e.g., for the dual
simplex method. In our experiments, we therefore use all 𝑀+2 constraints (5.2a),(5.2b),
(5.3a), and (5.3b) (note that (5.2b) is the same as (5.3c)), and let the solver choose the
active constraint set.

Reduction

In order to apply Theorem 5.1 to a label permutation invariant function (5.1) of order 𝑟
parametrized by 𝛽 ∈ R𝐵(𝑟) we rewrite it as a sum of pseudo-Boolean functions 𝑔𝑖 as
required by the theorem by

𝜃𝑓 (𝑥′) =
𝐵(𝑟)∑︁
𝑖=1

𝛽𝑖 · I[𝜏 𝑟(𝑥′) = 𝜒𝑟
𝑖]

=
𝐵(𝑟)∑︁
𝑖=1

𝛽𝑖 ·
∏︁
𝑠,𝑡

1≤𝑠<𝑡≤𝑟

I[(𝜏 𝑟(𝑥′))𝑣𝑠𝑣𝑡 = (𝜒𝑟
𝑖)𝑣𝑠𝑣𝑡]

⏟ ⏞
=𝑔𝑖(𝜏𝑟(𝑥′))

.

We apply the reduction theorem to each of the 𝐵(𝑟) binary functions 𝑔𝑖(𝑧) where
𝑧 = 𝜏 𝑟(𝑥′). Consequently, a function 𝜃𝑓 (𝑥′) of order 𝑟 requires 𝐵(𝑟) auxiliary variables
and for each of them at most 𝑀+1 = 𝑟(𝑟−1)/2+1 inequalities. These auxiliary variables
are connected to the labels via the Boolean expressions I[(𝜏 𝑟(𝑥′))𝑣𝑠𝑣𝑡 = (𝜒𝑟

𝑖)𝑣𝑠𝑣𝑡] and
correspond to the edge variables 𝑦 used in the multicut problem 5.3.

If for an expression I[(𝜏 𝑟(𝑥′))𝑣𝑠𝑣𝑡 = (𝜒𝑟
𝑖)𝑣𝑠𝑣𝑡] there is no corresponding edge 𝑣𝑠𝑣𝑡 in 𝐺,

we add this edge to 𝐺 with weight 0 and therefore also the variable 𝑦𝑣𝑠𝑣𝑡 .
Summing up, to include a label permutation invariant factor of order 𝑟 into our

multicut framework, we require at most 𝑟(𝑟 − 1)/2 edge variables 𝑦𝑒 (if they are not
included yet), 𝐵(𝑟) auxiliary variables, and 𝐵(𝑟) · (𝑟(𝑟 − 1)/2 + 2) linear inequalities.
In many cases more compact representations are obtained, see Sec. 5.3.2. Note that
the size of the representation does not depend on the number of states per variable.

We observed in our experiments that additionally enforcing that all auxiliary variables
corresponding to a higher-order factor sum up to 1 significantly speeds up optimization.
This leads to a single equality constraint for each higher-order term.

Fig. 5.3 illustrates an example of a factor graph containing a factor of order three.

63

5 Multicuts for Discrete Graphical Models

𝑣1

𝑣2𝑣3

𝑣1

𝑣2𝑣3

𝛽𝑓𝑣1𝑣2
𝛽𝑓𝑣1𝑣3

0

000 011 101 110 111

Figure 5.3: The factor graph 𝒢 on the left contains a factor of order three. To include
it in our multicut framework, 𝐵(3) = 5 auxiliary variables corresponding
to the possible partitions of its neighbors are added (they are indicated
by 𝜒3

𝑖 , 𝑖 = 1, . . . , 5, in the figure). Since no factor 𝑓 with nb(𝑓) = {𝑣2, 𝑣3} is
contained in 𝒢, the edge 𝑣2𝑣3 with weight 0 is added to the multicut graph.

5.3.2 Higher-order Potts Functions
Definition

A special case of label permutation invariant functions are functions 𝜃𝑓 taking only two
different values, depending on whether all nodes in the neighborhood of the factor 𝑓
have the same label or not. They can therefore be parametrized by a vector 𝛽 ∈ R2

and are defined as

𝜃𝑓 (𝑥′
1, . . . , 𝑥

′
𝑟) =

{︃
𝛽1, if 𝑥′

1 = · · · = 𝑥′
𝑟,

𝛽2, otherwise,

for all (𝑥′
1, . . . , 𝑥

′
𝑟) ∈ 𝐿𝑟.

We call such functions higher-order Potts functionshigher-order Potts
function

since they constitute the simplest
generalization of (second-order) Potts functions to the higher-order case. Such functions
are general enough to model the costs of a hypergraph partitioning [KNK+11], in
which the cost for a hyperedge is included in the overall cost function if the hyperedge
connects at least two shores.

Reduction

We can reformulate such functions in a pseudo-Boolean form as

𝜃𝑓 (𝑥′) = 𝛽2 + (𝛽1 − 𝛽2)
∏︁

𝑒∈𝐸′

(1− 𝑦𝑒)

where 𝐸′ is a subset of the edges of the multicut graph 𝐺 that spans nb(𝑓). If
𝐺′ = (nb(𝑓), 𝐸 ∩ (nb(𝑓) × nb(𝑓))) is disconnected we have to add some edges with
weight 0. We point out our empirical observation that using a spanning graph that
includes all edges of 𝐺′ instead of an arbitrary spanning tree leads to shorter runtimes.

64

5.4 Cutting-Plane Approach and Separation Procedures

As before, we apply the reduction theorem to add a higher-order Potts function to
our model. This only requires a single auxiliary variable.

5.4 Cutting-Plane Approach and Separation Procedures
5.4.1 Approach
Determining a multicut with minimal weight is 𝒩𝒫-hard in general. However, if given
data induces some structure then it is plausible to expect such problems to be easier
solvable in practice than problems without any structure.

Let 𝐺 = (𝑉,𝐸,𝑤) be a weighted graph obtained from converting a problem of type 5.1
or 5.2 into a multicut problem as described in Sec. 5.2 and Sec. 5.3. To solve this, we
use a cutting-plane approach to iteratively tighten a relaxation of the form

min
𝑦∈𝑌

∑︁
𝑒∈𝐸

𝑤(𝑒)𝑦𝑒.

We will use both linear programs and integer linear programs of this type. When dealing
with an LP, we have MC(𝐺) ⊆ 𝑌 , so that 𝑌 is superset of the multicut polytope MC(𝐺)
(see Sec. 5.2.1). In case of an ILP we have MC(𝐺) ∩ {0, 1}|𝐸| ⊆ 𝑌 ⊆ {0, 1}|𝐸|.

In each step we solve such a relaxation, detect violated constraints from a pre-specified
finite list (see Sec. 5.4.2) and augment the constraint system accordingly. This procedure
is repeated until no more violated constraints are found.

After each iteration we obtain a lower bound as the solution of the (I)LP and an upper
bound by mapping the obtained solution to the feasible region (rounding, see Sec. 5.4.3).

5.4.2 Relaxation, Constraints
Initial Constraints

We start with a polytope that enforces all variables 𝑦𝑒 to be lower and upper bounded
by 0 and 1, respectively:

𝑦𝑒 ∈ [0, 1] for all 𝑒 ∈ 𝐸. (5.4)
In case of Prob. 5.1 when terminal nodes are present in 𝐺, we additionally enforce for
each internal node 𝑣 ∈ 𝑉 ∖ 𝑇 that (in case of an ILP) exactly one incident edge is in
the multicut, i.e.,∑︁

𝑡∈𝑇

𝑦𝑡𝑣 = |𝑇 | − 1 for all 𝑣 ∈ 𝑉 ∖ 𝑇 (if 𝑇 ̸= ∅). (5.5)

Furthermore, we add the compulsory constraints
𝑦𝑡𝑡′ = 1 for all 𝑡, 𝑡′ ∈ 𝑇 with 𝑡 ̸= 𝑡′,

forcing different terminal nodes to belong to different shores.

65

5 Multicuts for Discrete Graphical Models

Integer Constraints

A more restrictive alternative to (5.4) are the integer constraints

𝑦𝑒 ∈ {0, 1} for all 𝑒 ∈ 𝐸. (5.6)

In general, using constraints (5.6) renders inference problems more difficult. On the
other hand, finding violated constraints can be much simpler for Boolean variables
than for less tight LP relaxations. This may well compensate the additional costs2 for
solving an ILP instead of an LP.

Cycle Constraints

The problem of inconsistent edge-labelings has been considered in the literature, either
motivated by closing contours [MLH12; AKB+11] or as tightening the multicut polytope
relaxation via cycle constraints [CR93; NJ09; KNK+11; KSA+11]. In both cases
inconsistent cycles are detected. If integer constraints are enforced, an inconsistent
cycle is a cycle that contains exactly a single active edge, which obviously violates
transitivity. This can be generalized to the relaxed non-Boolean case 𝑦𝑒 ∈ [0, 1] [CR93].

A system of cycle inequalitiescycle inequalities that necessarily has to be satisfied by consistent
labelings is given by∑︁

𝑒∈𝐸(𝑃)
𝑦𝑒 ≥ 𝑦𝑢𝑣 for all 𝑢𝑣 ∈ 𝐸 and all paths 𝑃 between 𝑢 and 𝑣. (5.7)

It is well known [CR93] that the constraint is facet-defining for the underlying polytope
if and only if the cycle consisting of 𝑃 and 𝑢𝑣 is chordless.

While for fully connected graphs, the constraints (5.7) can be represented by a
polynomial number of triangle constraints [CR93; GW89; BDG+08], the separation
procedure reduces to a sequence of shortest path problems in the general case [CR93].
Given 𝑦, the naive approach searches for each edge 𝑢𝑣 ∈ 𝐸 the shortest path from 𝑢
to 𝑣 in the weighted graph 𝐺𝑦 := (𝑉,𝐸, 𝑦). If this path is shorter than 𝑦𝑢𝑣, it represents
the most violated constraint of the form (5.7) for 𝑢𝑣. Using a basic implementation
of the Dijkstra algorithm (as we do) the cost for one search is 𝒪(|𝑉 |2). This can be
reduced to 𝒪(|𝐸|+ |𝑉 | log |𝑉 |) by using Fibonacci heaps.

To reduce the number of shortest path searches we exploit the following three ideas:

Efficient Bounds on the Shortest Path (B) Instead of searching for each edge 𝑢𝑣 ∈ 𝐸
a shortest path from 𝑢 to 𝑣 in the graph 𝐺𝑦 = (𝑉,𝐸, 𝑦) we can compute a lower bound
on the path length for all 𝑢𝑣 ∈ 𝐸 in 𝒪(|𝐸| + |𝑉 |). To this end, we determine the
connected components of the graph 𝐺<𝛾 := (𝑉, {𝑒 ∈ 𝐸 | 𝑦𝑒 < 𝛾}). If two nodes 𝑢, 𝑣 ∈ 𝑉
are not in the same connected component of 𝐺<𝛾 , the length of a shortest path from 𝑢

2Note that sometimes solving the ILP is even faster than the LP.

66

5.4 Cutting-Plane Approach and Separation Procedures

to 𝑣 is greater than or equal to 𝛾. Choosing 𝛾 = 1 yields a preprocessing procedure
that enables to omit many shortest path searches. Furthermore, if the edge between
two nodes has weight 0, this is obviously the shortest path since all edge weights 𝑦𝑒 are
non-negative.

Shortest Path in Binary Weighted Graph (I) If the edge weights are either 0 or 1,
simple breadth-first search can be applied instead of the Dijkstra algorithm. The
computational effort can be reduced further by restricting the search to the graph
𝐺=0 := (𝑉, {𝑒 ∈ 𝐸 | 𝑦𝑒 = 0}) since any path including an edge with weight 1 cannot be
shorter than the edge between the two nodes which is 0 or 1.

Finding Chordless Shortest Paths/Facet-Defining Constraints (F) A path between
the two nodes forming an edge is called chordless if the cycle consisting of the path and
the edge has no chord. Shortest path search can be easily extended so as to determine
the shortest chordless paths: Every node except for the endnode is not updated by
the Dijkstra algorithm if the path from this node to the starting node is chordal.
This increases the costs by a factor bounded by |𝑉 |. In view of cycle constraints, the
corresponding constraints are facet-defining.

Our experiments, discussed in Chap. 6, show that the joint application of all three
improvement methods B, I, and F leads to better runtimes in nearly all cases.

Terminal Cycle Constraints

We can further reduce the costs for shortest path searches based on the following
observation: In the presence of terminal nodes there exists no cycle 𝐶 of length greater
than three that is chordless and contains a terminal node. This follows from the fact
that there are edges from all nodes to all terminal nodes.

As a result, we can ignore all cycle constraints where the induced cycle has a length
greater than three and includes a terminal node. All facet-defining cycle constraints
that include a terminal node are then given by

𝑦𝑡𝑢 + 𝑦𝑡𝑣 ≥ 𝑦𝑢𝑣 for all 𝑢𝑣 ∈ 𝐸, 𝑡 ∈ 𝑇 , (5.8a)
𝑦𝑡𝑢 + 𝑦𝑢𝑣 ≥ 𝑦𝑡𝑣 for all 𝑢𝑣 ∈ 𝐸, 𝑡 ∈ 𝑇 , (5.8b)
𝑦𝑡𝑣 + 𝑦𝑢𝑣 ≥ 𝑦𝑡𝑢 for all 𝑢𝑣 ∈ 𝐸, 𝑡 ∈ 𝑇 . (5.8c)

As a consequence we can exclude the terminal nodes when searching for general cycle
constraints, which results in a graph that has |𝑇 | · |𝑉 | fewer edges.

67

5 Multicuts for Discrete Graphical Models

Table 5.1: Comparison of terminal cycle constraints and multi terminal constraints:
For a toy example consisting of two nodes and four labels, we show the
implications of (5.8a)–(5.8c) and (5.9) on 𝑦𝑣1𝑣2 for a few values of 𝑦𝑒 for
the terminal edges 𝑒. In the example in the third row, the constraints (5.9)
improve the bound.

(𝑦𝑡𝑣1)𝑡∈𝑇 (𝑦𝑡𝑣2)𝑡∈𝑇 (5.8a)–(5.8c) imply (5.9) implies

(1, 1, 1, 0) (1, 1, 0, 1) 1 ≤ 𝑦𝑣1𝑣2 ≤ 1 1 ≤ 𝑦𝑣1𝑣2

(1, 1, 1
2 ,

1
2) (1, 1, 1

2 ,
1
2) 0 ≤ 𝑦𝑣1𝑣2 ≤ 1 0 ≤ 𝑦𝑣1𝑣2

(1
2 ,

1
2 , 1, 1) (1, 1, 1

2 ,
1
2) 1

2 ≤ 𝑦𝑣1𝑣2 ≤ 3
2 1 ≤ 𝑦𝑣1𝑣2

(1, 2
10 ,

3
10 ,

5
10) (1, 1

10 ,
2
10 ,

7
10) 2

10 ≤ 𝑦𝑣1𝑣2 ≤ 3
10

2
10 ≤ 𝑦𝑣1𝑣2

Multi Terminal Constraints

Călinescu et al. [CKR00] suggested another class of non-facet-defining inequalities that
further tightens the relaxation:

𝑦𝑢𝑣 ≥
∑︁
𝑡∈𝑆

(𝑦𝑡𝑢 − 𝑦𝑡𝑣) for all 𝑢𝑣 ∈ 𝐸, 𝑆 ⊆ 𝑇 . (5.9)

Intuitively, these constraints enforce each internal edge to be at least as active as all its
pairs of terminal edges indicate. Since

∑︀
𝑡∈𝑇 (𝑦𝑡𝑢− 𝑦𝑡𝑣) = 0, we only consider differences

in the direction from 𝑢 to 𝑣. An alternative representation of (5.9) exploiting symmetry
is

𝑦𝑢𝑣 ≥
∑︁
𝑡∈𝑇

1
2 |𝑦𝑡𝑢 − 𝑦𝑡𝑣| for all 𝑢𝑣 ∈ 𝐸. (5.10)

In order to see why multi terminal constraints are useful, let us consider a tiny toy
example of a graphical model with two nodes and four labels. Overall, the multicut
graph has eight terminal edges (𝑡𝑣1)𝑡∈𝑇 and (𝑡𝑣2)𝑡∈𝑇 and one internal edge 𝑣1𝑣2. We
inspect a few values of 𝑦 and check if (5.9) is implied by (5.8a)–(5.8c) or not in Tab. 5.1.
In the third row of the table the multi terminal constraints tighten the relaxation. It
can be shown that these constraints may tighten the relaxation only if at least four
terminal nodes are present.

Odd-Wheel Constraints

While cycle constraints are sufficient to obtain optimal solutions if integer constraints
are enforced, we may tighten the relaxation in the case 𝑦𝑒 ∈ [0, 1] by adding more
complex constraints.

One such a class of constraints for which the separation procedure can be carried out
efficiently are odd-wheel constraints. A wheelwheel 𝑊 = (𝑉𝑊 , 𝐸𝑊) is a graph with a selected

68

5.4 Cutting-Plane Approach and Separation Procedures

center node 𝑐 ∈ 𝑉𝑊 . There are edges between all other nodes and the center, and the
remaining edges build a cycle containing all nodes in 𝑉𝑊 ∖ {𝑐}. An odd-wheel odd-wheelis a wheel
with an odd number of non-center nodes. The odd-wheel constraints are given by

∑︁
𝑢𝑣∈𝐸𝑊 ,𝑢,𝑣 ̸=𝑐

𝑦𝑢𝑣 −
∑︁

𝑣∈𝑉𝑊 ∖{𝑐}
𝑦𝑐𝑣 ≤

⌊︂ ||𝑉𝑊 | − 1|
2

⌋︂

for all odd-wheels 𝑊 = (𝑉𝑊 , 𝐸𝑊) that are subgraphs of 𝐺.
Deza et al. [DGL92] could prove that odd-wheel constraints are facet-defining for
||𝑉𝑊 |−1| ≥ 3. As described in detail by Deza and Laurent [DL97] and Nowozin [Now09],
the search for violated odd-wheel constraints can be reduced to a polynomial number
of shortest path searches if the current solution does not violate any cycle constraints.

In our experiments, we found that with increasing sparsity odd-wheel constraints
tighten the relaxation less. This is intuitively plausible since in densely connected
graphs significantly more odd-wheels exist that could be violated.

The overall gain of including odd-wheel constraints was not better than with the
previously proposed methods.

5.4.3 Rounding Fractional Solutions

Relaxations of the multicut problem yield solutions that may be fractional and therefore
infeasible. The objective value then will be a lower bound of the optimal value. The
procedure to map an infeasible solution to the feasible set is called rounding rounding. For the
resulting multicut, a corresponding labeling has to be determined.

Let in the following 𝑦* be a solution of a relaxation of the multicut problem.

Supervised Case

In the presence of terminal nodes, i.e., for Prob. 5.1, when 𝑦* is the solution of an ILP
we assign to each node 𝑣 ∈ 𝒱 the label corresponding to the unique terminal node 𝑡
with 𝑦*

𝑡𝑣 = 0. This idea extends to the LP case by assigning to node 𝑣 the label 𝑙
with the lowest value of 𝑦*

𝑡𝑙𝑣
, i.e., the nearest corner in the corresponding simplex,

see Fig. 5.4 (a):

𝑥𝑣 := argmin
𝑙∈𝐿

𝑦*
𝑡𝑙𝑣

for all 𝑣 ∈ 𝑉 ∖ 𝑇 .

This heuristic nearest label rounding nearest label
rounding

method has two drawbacks, however. Firstly, it
does not provide any performance guarantee. Secondly, nearby nodes that favor two
or more labels nearly equally might be randomly assigned to different labels due to
numerical inaccuracy. This is particularly problematic when homogeneously labeled
regions are preferred.

69

5 Multicuts for Discrete Graphical Models

101 011

110

(a) nearest label rounding

101 011

110

𝜌

(b) derandomized rounding

Figure 5.4: Illustration of the two rounding schemes for the multicut formulation of
Prob. 5.1 for the vector (𝑦*

𝑡𝑣)𝑡∈𝑇 . Nearest label rounding shown in (a) assigns
each point in the simplex to the nearest vertex. In (b) one iteration of
derandomized rounding is shown, exemplarily for 𝜌 = 0.75.

Contrary to this local procedure, Călinescu et al. [CKR00] suggested a randomized
rounding procedure that provides optimality bounds for Potts models with positive
disagreement terms. Given a threshold 𝜌 ∈ [0, 1], they iterate over all labels in a fixed
order and assign label 𝑙 to node 𝑣 if 𝑦*

𝑡𝑙𝑣
≤ 𝜌 and no label was assigned to 𝑣 before.

In case no label was assigned to node 𝑣 in the end, the last label with respect to
the ordering of the labels is assigned to 𝑣. This rounding procedure is sketched by
Fig. 5.4 (b).

A randomized roundingrandomized
rounding

procedure would apply this for all 𝜌 ∈ [0, 1] and select the
labeling with the lowest energy. Since [0, 1] is uncountable, Călinescu et al. suggested a
derandomized version. This is based on the observation that we only have to consider
|𝑇 | · |𝑉 ∖ 𝑇 | different threshold parameters, namely the values of the variables 𝑦*

𝑡𝑣 for all
𝑡 ∈ 𝑇 and 𝑣 ∈ 𝑉 ∖ 𝑇 . Since this set can still be quite large, we also consider a heuristic
approximation that we call pseudo-derandomized roundingpseudo-

derandomized
rounding

, using a small number of
equidistant thresholds, in practice 0, 0.01, 0.02, . . . , 0.99, 1.

Concerning the tightness of the relaxation, Călinescu et al. [CKR00] pointed out that
the integrality ratio of the relaxed LP for the second-order multiway cut problem with
positive disagreement terms, exploiting cycle, terminal and multi terminal constraints,
is 3

2 −
1
𝑘 . This is superior to the 𝛼-expansion algorithm [BVZ01] and the work of

Dahlhaus et al. [DJP+92], which guarantees only a ratio of 2− 2
𝑘 .

Empirically, we observed for these types of models that derandomized rounding and
pseudo-derandomized rounding usually lead to results that are slightly better than
when using nearest label rounding. While pseudo-derandomization does empirically
not give results worse than original derandomization, it is much faster, but does not
come along with theoretical guarantees. Fig. 5.5 shows results for two instances taken
from [KAH+13]. While for the synthetic instances rounding matters, for real world
examples the differences are negligible.

70

5.4 Cutting-Plane Approach and Separation Procedures

(a) input data (b) nearest
label rounding

(c) pseudo-
derandomized

rounding

(d) derandomized
rounding

Figure 5.5: Illustration of different rounding results (nearest label rounding, pseudo-
derandomized rounding, and derandomized rounding) after solving the
LP relaxation with terminal, multi terminal, and cycle inequalities
for the instances “inpainting” (top row) and “clownfish” (bottom row)
from [KAH+13]. Derandomized rounding and pseudo-derandomized round-
ing give similar results. Simply rounding to the nearest label can give
inferior results (top row). However, for real applications the differences of
the labelings are marginal (bottom row).

Unsupervised Case

In absence of terminal nodes, i.e., for Prob. 5.2, if 𝑦* is integral we compute the
connected components of 𝐺=0 = (𝑉, {𝑒 ∈ 𝐸 | 𝑦*

𝑒 = 0}). We enumerate them and
define #𝐶𝐶𝐺=0(𝑣), 𝑣 ∈ 𝑉 , to be the number of the connected component 𝑣 belongs to.
This number is then used as the label of 𝑣, so

𝑥𝑣 := #𝐶𝐶𝐺=0(𝑣) for all 𝑣 ∈ 𝑉 .

If 𝑦* is not integral we first have to map it to a vertex of the multicut polytope. To
this end, we determine the connected components of 𝐺≤𝜅 = (𝑉, {𝑒 ∈ 𝐸 | 𝑦*

𝑒 ≤ 𝜅}) and
define the feasible projection 𝑦 by

𝑦𝑢𝑣 =
{︃

0, if #𝐶𝐶𝐺≤𝜅
(𝑢) = #𝐶𝐶𝐺≤𝜅

(𝑣),
1, otherwise.

The labeling then is given by

𝑥𝑣 := #𝐶𝐶𝐺≤𝜅
(𝑣) for all 𝑣 ∈ 𝑉 .

71

5 Multicuts for Discrete Graphical Models

Since this procedure tends to remove dangling edges, it seems to be reasonable to
select 𝜅 smaller than 0.5. This was empirically confirmed by our experiments.

5.4.4 Multicut Cutting-Plane Algorithm
Alg. 3 provides a compact description of our complete multicut approach, summarizing
the present section. In addition to the specification of the objective function in terms of a
graphical modelℳ, we expect a list of separation procedure sets 𝒮 as input parameters.
For example, 𝒮1 could represent simple cycle constraints separation, 𝒮2 integrality
constraints, and 𝒮3 cycle constraints separation specialized to integer solutions.

As specified by Alg. 3, we construct the weighted graph 𝐺, introduce auxiliary
variables for higher-order factors (as detailed in previous sections), and initialize the
constraint set 𝒞 by a simple relaxation of the feasible set.

We apply all separation procedures in
⋃︀𝑖

𝑗=1 𝒮𝑖 to find violated constraints and add
these to 𝒞 until no more are found. Then we proceed with the next set 𝒮𝑖+1.

The (integer) linear program in line 7 is solved by CPLEX 12.2, a standard off-the-
shelf LP-solver. Finally, we compute an optimal labeling 𝑥 ∈ 𝑋 from the multicut
solution 𝑦*.

Algorithm 3 Multicut Algorithm MC
1: Given: graphical model ℳ, list of separation procedure sets 𝒮
2: construct 𝐺 = (𝑉,𝐸,𝑤) from ℳ (see Sec. 5.2.2)
3: add auxiliary variables for higher-order factors (see Sec. 5.3)
4: initialize the constraint set 𝒞 (see Sec. 5.4.2)
5: for 𝑖 = 1, . . . , |𝒮| do
6: repeat
7: compute 𝑦* ∈ argmin𝑦∈𝒞

∑︀
𝑒∈𝐸 𝑤(𝑒)𝑦𝑒

8: 𝒞 ← violated constraints found by separation procedures
⋃︀𝑖

𝑗=1 𝒮𝑗 for 𝑦*

9: 𝒞 ← 𝒞 ∪ 𝒞
10: until 𝒞 = ∅
11: compute a labeling 𝑥 ∈ 𝑋 based on 𝑦*

The implementation of Alg. 3 turned out to be involved, due to several pitfalls
necessitating some care. When solving the (I)LP one should not expect that the
solution is feasible. Sometimes we observed negative values of 𝑦𝑒 and therefore project
solutions always to [0, 1]|𝐸|. Also Boolean constraints were sometimes slightly violated.
Most importantly, due to numerical reasons, constraints should only be added if they
are significantly violated, i.e., the constraint 𝑎 ≤ 𝑏 is only added if 𝑎 ≤ 𝑏− 𝜖 does not
hold. Ignoring this may not only lead to infinite loops for some instances, but may also
significantly increase runtime. The parameter 𝜖 should be chosen depending on the
precisions of the (I)LP solver. We use 𝜖 = 10−8.

72

6 Experiments

We here give application of the method presented in the thesis.
These experiments have already been published in [KSR+13b] and [KSR+13a].

6.1 Application of Reduction Techniques
In the following, we denote the algorithms introduced in Sec. 3.5 by ILP, BRAOBB,
MCBC, and RPM, and the multicut algorithm 3 by MC followed by the reduction
type (p, c, t) from Sec. 4.1 if preprocessing was applied. Additionally, we compare to
TRWS [Kol06], FastPD [KT07], and 𝛼-expansion [BVZ01] – all provided by the original
authors of the papers. TRWS is stopped after 1 000 iterations. For evaluation we count
how often a method provides the best energy value among all competing methods (best)
and how often the gap between the energy value and the lower bound was less than
10−7 (ver. opt). For the synthetic models we use an Intel Pentium E5400, 2.7 GHz,
8 GB RAM, for the other a Xeon W3550, 3.07 GHz, 12 GB RAM. For MCBC we use a
Xeon E5420, 2.5 GHz, 16 GB RAM for all experiments.

6.1.1 Decision Tree Fields
Decision tree fields (DTF) [NRB+11] are discriminatively learned conditional random
fields (CRF). We consider the Chinese character models provided along with [NRB+11]1.
The dataset consists of 100 binary problems with first and second order terms. Variables
are connected to more than 30 other variables by pairwise factors. Common approxi-
mations using local polytope relaxations do not perform well on these problems, and
standard ILP solvers are not able to guarantee optimality in one hour, even if partial
optimality is used to reduce the problem size. For the Chinese character dataset, partial
optimality has reduced the problem size from 4 992–17 856 to 502–1 093 variables.

We set a time limit of one hour per instance. Using MCBC [Bon11] with the partial
optimality reduction, we were able to verify optimality for 56 instances. Overall, we
obtain superior results to all other methods, followed by ILP-pct. This is a significant
progress – see Tab. 6.1. BRAOBB-p, which performed very good on the synthetic grid
data, does not perform well on this dataset. We believe that this is caused by the
larger size of the subproblems as well as the high connectivity which results in a higher
treewidth.

1http://www.nowozin.net/sebastian/papers/DTF_CIP_instances.zip

73

http://www.nowozin.net/sebastian/papers/DTF_CIP_instances.zip

6 Experiments

Figure 6.1: Examples from the Chinese character dataset. From left to right: Original
image, occluded image, TRWS solution, MCBC solution.

Table 6.1: Results on the Chinese character dataset [NRB+11]
algorithm avg. runtime avg. energy avg. bound best ver. opt

ILP-pct 3 581.42 −49 542.87 −50 071.87 30% 0%
BRAOBB-p 3 600.00 −49 415.55 −∞ 0% 0%
MCBC-p 2 053.89 − 49 550.10 −49 612.38 92% 56%
TRWS 100.13 −49 496.84 −50 119.41 2% 0%
QPBO 0.16 −49 501.95 −50 119.38 0% 0%
SA [NRB+11] n/a −49 533.02 −∞ 13% 0%

6.1.2 Multi-Label Potts Models

We also evaluate our approach on multi-label instances. To obtain partial optimality,
we use the method of Kovtun [Kov03] and therefore restrict ourselves to second order
Potts functions. While more general methods exist [KSR+08; SH11; KS11] these do
not scale as well and will be subject to further work.

First, we consider the three color segmentation instances used in [AKT10]. While
the standard multiway cut method [KSA+11] takes on average more than two minutes,
we obtain runtimes comparable to state-of-the-art methods by using partial optimal-
ity for problem reduction and contrary to those verified globally optimal solutions,
see Tab. 6.2. The reduction obtained by partial optimality was between 95% and 99.9%.

The differences between the energy values of the methods are quite small. Fig. 6.2
shows the calculated optimal labeling by MC (middle) and the differently labeled pixels
by TRWS. Differences exist in boundary regions that might be not that important
for applications. However, on this dataset MC-pct is comparable to approximative

74

6.1 Application of Reduction Techniques

Table 6.2: Results on the three color segmentation instances [AKT10]
algorithm avg. runtime avg. energy avg. bound best ver. opt

MC 149.43 308 472 274.3 308 472 274.3 3/3 3/3
MC-pct 1.86 308 472 274.3 308 472 274.3 3/3 3/3
TRWS 150.47 308 472 310.6 308 472 270.4 2/3 1/3
TRWS-pct 3.90 308 472 274.3 308 472 274.3 2/3 2/3
FastPD 0.45 308 472 275.0 −∞ 2/3 0/3
FastPD-pct 1.62 308 472 274.7 −∞ 2/3 0/3
𝛼-Exp 6.42 308 472 275.6 −∞ 2/3 0/3
𝛼-Exp-pct 1.72 308 472 274.3 −∞ 3/3 0/3

Figure 6.2: Color segmentation example from [AKT10]. Left: Original image. Mid-
dle: Optimal segmentation. Right: Pixels labeled differently by TRWS
(256 out of 414 720 pixels).

state-of-the-art methods in terms of runtime and provides optimality. Furthermore, we
would like to point out that most of the runtime of MC-pct is spent for the calculation
of partial optimality.

We also apply model reduction for approximative methods as in [AKT10]. This
improves the runtimes and energies of TRWS and 𝛼-Exp as can also be seen in Tab. 6.2.
For FastPD we oberve an increase in runtime.

Second, we investigate large scale 3D MRI brain segmentation. We use simulated
3D MRI brain data [BW] and calculate the five color modes in the histogram. Our
model contains five labels corresponding to the five intensity modes. The local data-term
penalizes the 𝐿1-distance between the voxel intensities and the mode intensities. We
use a pairwise Potts term to penalize the boundary length using the 6-neighborhood
in the 3D grid [BK04]. We choose a T1 pulse sequence with 3% noise relative to the
brightest tissue and 20% intensity non-uniformity, see [BW] for details. The simulated
slice thickness was set to 3, 5, 7, and 9 mm, which results in 181× 217× 60, 36, 26, and
20 voxel volumes, respectively.

75

6 Experiments

Figure 6.3: Left: Input data of the 3D MRI brain instance. It contains more than
one million variables with five states. Right: Segmentation using the 𝐿1-
distance to the five intensity modes as data term together with a boundary
length regularization.

Table 6.3: Results on the brain dataset with 7 mm slices [BW]
algorithm runtime energy bound best ver. opt

MC 1 370.80 12 661 506 12 661 506 yes yes
MC-pct 21.64 12 661 506 12 661 506 yes yes
TRWS 589.67 12 661 590 12 661 506 no no
TRWS-pct 335.27 12 661 572 12 661 506 no no
FastPD 1.80 12 663 105 −∞ no no
FastPD-pct 8.60 12 662 871 −∞ no no
𝛼-Exp 53.25 12 662 909 −∞ no no
𝛼-Exp-pct 9.91 12 662 793 −∞ no no

For the instance with a thickness of 7 mm, MC requires 20 minutes for optimization.
We can reduce the runtime to less than half a minute by using partial optimality,
connected components, and tentacle elimination, see Tab. 6.3. FastPD (both with and
without reduction) and 𝛼-Exp-pct provide results that are a bit faster than that of
MC-pct but worse in terms of energy. Notably, TRWS found the optimal bound but
was not able to find the optimal integer solution during 1 000 iterations. For MC-pct,
951 982 variables are eliminated by partial optimality and 7 391 by tentacle elimination.
Of the remaining 2 467 subproblems, the largest one contains 45 023 variables.

The runtimes for the different problem sizes are shown in Fig. 6.4. As already seen
for the 7 mm instance, MC-pct is quite fast and at the same time provides verified
optima for all problems. MC fails on the largest instance due to the lack of enough
memory. For the approximate methods we show the gap to the optimal energy in
Fig. 6.5. TRWS performs good but has worse runtimes than MC-pct.

76

6.1 Application of Reduction Techniques

1 · 106 2 · 106

10 s

1 min

10 min

1 h

number of variables

ru
nt

im
e

MC
MC-pct
TRWS

TRWS-pct
FastPD

FastPD-pct
𝛼-Exp

𝛼-Exp-pct

Figure 6.4: Runtimes for the brain dataset for different slice thicknesses which result
in different numbers of variables. While for MC, the speedup caused by
model-reduction is large, it is moderate or not present for approximative
methods.

1 · 106 2 · 106
0

1 000

2 000

3 000

number of variables

en
er

gy
ga

p

TRWS
TRWS-pct

FastPD
FastPD-pct
𝛼-Exp

𝛼-Exp-pct

Figure 6.5: Energy gaps to the optimal energy for the brain dataset for different slice
thicknesses which result in different numbers of variables. TRWS gives
remarkably good but non-optimal solutions.

77

6 Experiments

Table 6.4: Abbreviations for the separation procedures.
I integer constraints
C cycle inequalities separation
CF facet-defining cycle inequalities separation
CI cycle inequalities separation for ILP
CIF facet-defining cycle inequalities separation for ILP
OW odd-wheel inequalities separation
T terminal inequalities separation
MT multi terminal inequalities separation
TI terminal inequalities separation for ILP
. . . B bounding for the shortest path search was used

6.2 Application of Multicut Algorithm

6.2.1 Set-Up, Implementation Details

We implemented the separation procedures and reduction methods described above
using C++ and the OpenGM2-library [ABK12b] for the factor graph representation,
and CPLEX for solving ILPs and LPs in the inner loop of the iteration.

Our multicut approach encompasses a variety of algorithms which differ in the used
inequalities, in the separation procedures, and in the order these procedures are applied.
The abbreviations for single separation procedures are listed as Tab. 6.4.

For example, MC-CFB-I-CIF indicates:

∙ application of the multicut algorithm (MC) based on

∙ searching for violated facet-defining cycle inequalities (CF) using bounding (B),

∙ enforcing integer constraints (I), and finally

∙ searching for facet-defining cycle inequalities violated by the current Boolean
solution (CIF), based on Breadth-First-Search instead of the Dijkstra algorithm.

We report for each dataset results averaged over all its instances:

1. the mean runtime: runtime,

2. the mean value of the integer solution after rounding: value,

3. the mean lower bound: bound,

4. how often the method found an integer solution with an objective value not larger
than 10−6 compared to the overall best method for this instance: best, and

78

6.2 Application of Multicut Algorithm

5. how often the method provided a gap between the objective value of the integer
solution and the lower bound, that was smaller than 10−6: ver. opt, which we
interpret as globally optimal for our instances.

In the unsupervised case, we compared the proposed methods with our implementation
of the Kernighan-Lin (KL) algorithm [KL70] for the second-order case, as well as with
iterative conditional mode (ICM) [Bes86] and Lazy Flipper (LF) [AKB+12a]. For
planar graphs, an optimal segmentation with only four labels exists, and methods for
the supervised case can be applied.

In the supervised case, we compared with TRWS [Kol06], 𝛼-expansion [BVZ01] and
FastPD [KT07] – using in each case code provided by the respective authors of these
papers. Furthermore, we compared to commercial LP- and ILP-solvers in the nodal
domain, LBP, TRBP, and 𝛼-fusion, as provided by OpenGM2.

6.2.2 Probabilistic Image Segmentation

The probabilistic image segmentation framework is due to Andres et al. [AKB+11]
and belongs to the class of unsupervised image segmentation problems. These problem
instances involve 156 · · · 3764 superpixels. For all pairs of adjacent superpixels, the
likelihood that their common part of the superpixel boundary is part of the segmentation,
is learned offline by a random forest. This results in a Potts model with positive and
negative coupling constraints. While the connection to Potts models is not mentioned
in [AKB+11], they use a similar optimization scheme as in the present work. They
introduced a higher-order model as well as a second-order one. Only the latter has
been made publicly available in [KAH+13].

Second-order Case. As shown in Tab. 6.5, for this dataset, we profit from using
ILP subproblems. This reduces the mean runtime to less than 3 seconds and is therefore
empirically faster than LP-based cutting-plane methods and the heuristic KL-algorithm.
ICM and LF perform worse than KL. With increasing search space LF outperforms KL.
For a search-depth greater than 1 we make use of the fact that the instances are planar
and an optimal solution with four labels exists. The same trick is used to make TRWS
applicable. Additionally, we fix the first variable and initialize messages randomly.
Even this does not help to prevent TRWS from running into poor local fix-points. In
both cases the label reduction is marked by the postfix L4.

Concerning the multicut approach, odd-wheel constraints only marginally improve
the results. LP-based cutting-plane methods find the optimal solution for 35 of 100
instances and are slower than ILP-based methods, too.

Higher-order Case. The third-order models from [AKB+11] are hard to solve
with relaxations, hence rounding becomes more important. The additional third-order
factors favor smooth boundary continuation. Since this sometimes conflicts with local
boundary probabilities, the problem becomes more involved.

79

6 Experiments

Table 6.5: Second-order probabilistic image segmentation [AKB+11; KAH+13]
algorithm runtime value bound best ver. opt

KL 4.96 s 4608.57 −∞ 0.0% 0.0%
ICM 6.03 s 4705.07 −∞ 0.0% 0.0%
LF1 2.35 s 4705.01 −∞ 0.0% 0.0%
LF2-L4 0.13 s 4627.38 −∞ 0.0% 0.0%
LF3-L4 3.16 s 4581.83 −∞ 0.0% 0.0%
LF4-L4 176.47 s 4555.73 −∞ 0.0% 0.0%

TRWS-L4 0.84 s 4889.23 4096.53 0.0% 0.0%

MC-C 14.02 s 4447.47 4442.34 35.0% 35.0%
MC-CB 4.71 s 4447.47 4442.34 35.0% 35.0%
MC-CF 11.35 s 4447.47 4442.34 35.0% 35.0%
MC-CFB 5.16 s 4447.47 4442.34 35.0% 35.0%

MC-C-OW 14.08 s 4447.41 4442.34 35.0% 35.0%
MC-CB-OW 4.81 s 4447.41 4442.34 35.0% 35.0%
MC-CF-OW 11.45 s 4447.41 4442.34 35.0% 35.0%
MC-CFB-OW 5.19 s 4447.41 4442.34 35.0% 35.0%

MC-I-CI 2.78 s 4442.64 4442.64 100.0% 100.0%
MC-I-CIF 2.20 s 4442.64 4442.64 100.0% 100.0%
MC-C-I-CI 15.00 s 4442.64 4442.64 100.0% 100.0%
MC-CFB-I-CIF 5.69 s 4442.64 4442.64 100.0% 100.0%

80

6.2 Application of Multicut Algorithm

Table 6.6: Third-order probabilistic image segmentation [AKB+11]
algorithm runtime value bound best ver. opt

ICM 10.79 (8.11) s 6030.49 −∞ 0.0% 0.0%
LF 4.17 (3.11) s 6030.29 −∞ 0.0% 0.0%

MC-C 43.82 (9.33) s 6657.32 5465.15 0.0% 0.0%
MC-CB 42.86 (9.26) s 6657.32 5465.15 0.0% 0.0%
MC-CF 26.68 (8.06) s 6658.28 5465.15 0.0% 0.0%
MC-CFB 25.00 (6.64) s 6658.28 5465.15 0.0% 0.0%

MC-C-OW 43.71 (11.16) s 6657.12 5465.29 0.0% 0.0%
MC-CB-OW 43.38 (9.66) s 6657.12 5465.29 0.0% 0.0%
MC-CF-OW 27.62 (8.15) s 6658.08 5465.29 0.0% 0.0%
MC-CFB-OW 25.55 (7.40) s 6658.08 5465.29 0.0% 0.0%

MC-I-C 689.79 (41.43) s 5627.52 5627.52 100.0% 100.0%
MC-I-CFB 469.87 (33.02) s 5627.52 5627.52 100.0% 100.0%
MC-I-CI 119.64 (31.73) s 5627.52 5627.52 100.0% 100.0%
MC-I-CIF 72.81 (27.39) s 5627.52 5627.52 100.0% 100.0%
MC-C-I-CI 125.33 (33.63) s 5627.52 5627.52 100.0% 100.0%
MC-CFB-I-CIF 82.00 (25.60) s 5627.52 5627.52 100.0% 100.0%

As shown in Tab. 6.6, local search methods give better results than relaxed solutions
after rounding. Our exact multicut scheme was able to solve all instances to optimality.
Notably, one instance was significantly harder than all others and took more than half
of the overall runtime for MC-I-C and MC-I-CFB.

Overall, a few instances are significantly harder than others. This is apparent by
the large difference of the mean runtime to the median runtime (the latter is shown in
parentheses in Tab. 6.6).

6.2.3 Higher-order Hierarchical Image Segmentation
The hierarchical image segmentation framework was suggested by Kim et al. [KNK+11]
and also belongs to the class of unsupervised image segmentation problems. Contrary to
the work of Andres et al. [AKB+11], they learn their model-parameters by a structured
support vector machine (S-SVM). Furthermore, higher-order Potts terms force selected
regions to belong to the same cluster. The 715 instances of this dataset, published as
part of [KAH+13], contain factors of order up to a few hundred and 122–651 variables.

The results are summarized as Table 6.7. Surprisingly, our LP-based methods perform
better than the original algorithm used in [KNK+11], even though the algorithms
are identical. Maybe this was caused by the different LP solver they used, or by

81

6 Experiments

Table 6.7: Higher-order hierarchical image segmentation [KNK+11].
algorithm runtime value bound best ver. opt

ICM 1.90 s −585.60 −∞ 0.0% 0.0%
LF 1.00 s −585.60 −∞ 0.0% 0.0%

MC-C 0.23 s −625.97 −628.89 19.9% 13.7%
MC-CB 0.12 s −625.97 −628.89 19.9% 13.7%
MC-CF 0.20 s −625.97 −628.89 19.9% 13.7%
MC-CFB 0.11 s −625.97 −628.89 19.9% 13.7%

MC-C-OW 0.24 s −625.98 −628.89 20.1% 14.0%
MC-CB-OW 0.14 s −625.98 −628.89 20.1% 14.0%
MC-CF-OW 0.21 s −625.98 −628.89 20.1% 14.0%
MC-CFB-OW 0.13 s −625.98 −628.89 20.1% 14.0%
MCR [KNK+11] 0.38 s −624.35 −629.03 16.4% 10.2%

MC-CI 1.14 s −628.16 −628.16 100.0% 100.0%
MC-CIF 1.04 s −628.16 −628.16 100.0% 100.0%
MC-C-CI 0.85 s −628.16 −628.16 100.0% 100.0%
MC-CFB-CIF 0.62 s −628.16 −628.16 100.0% 100.0%

some floating-point problems inside their separation procedure. The use of odd-wheel
constraints marginally improves the results. Best results are obtained by using integer
cutting-planes after having solved the LP. The use of the bounding as part of the post-
processing reduces runtime by a factor of 2. The differences to only using facet-defining
constraints are negligible.

6.2.4 Modularity Clustering

We also considered a clustering problem from outside the field of computer vision,
which contrary to the previous models considered so far, involves a fully connected
graph. Modularity clustering [BDG+08] means the problem of clustering an undirected
unweighted graph into "meaningful" subsets, which amounts to optimization problems
related to fully connected Potts model. For our experiments, we used the datasets2

dolphins, football, karate, and lesmis, with 62, 115, 34, and 77 data-points, respectively.
As shown in Tab. 6.8, for modularity clustering, the use of facet-defining inequalities

as well as odd-wheel constraints significantly improves the results. We attribute this to
the high connectivity of the graph. In such dense graphs more likely violated odd-wheel
inequalities exist. Likewise, more non-facet-defining cycle inequalities exist as well, and

2http://www-personal.umich.edu/~mejn/netdata/

82

http://www-personal.umich.edu/~mejn/netdata/

6.2 Application of Multicut Algorithm

Table 6.8: Modularity clustering [BDG+08]
algorithm runtime value bound best ver. opt

KL 0.01 s −0.5251 −∞ 2/4 0/4
ICM 0.12 s 0.0000 −∞ 0/4 0/4
LF 0.05 s 0.0000 −∞ 0/4 0/4

MC-C 47.99 s −0.5204 −0.5294 1/4 1/4
MC-CB 48.33 s −0.5204 −0.5294 1/4 1/4
MC-CF 1.02 s −0.5204 −0.5294 1/4 1/4
MC-CFB 0.91 s −0.5204 −0.5294 1/4 1/4

MC-C-OW 72.05 s −0.5282 −0.5282 4/4 4/4
MC-CB-OW 72.42 s −0.5282 −0.5282 4/4 4/4
MC-CF-OW 12.26 s −0.5282 −0.5282 4/4 4/4
MC-CFB-OW 11.60 s −0.5282 −0.5282 4/4 4/4

MC-I-C 152.20 s −0.5282 −0.5282 4/4 4/4
MC-I-CI 14.57 s −0.5282 −0.5282 4/4 4/4
MC-I-CIF 6.31 s −0.5282 −0.5282 4/4 4/4
MC-I-CCFDB 6.56 s −0.5282 −0.5282 4/4 4/4
MC-C-I-CI 58.24 s −0.5282 −0.5282 4/4 4/4
MC-CFB-I-CIF 1.31 s −0.5282 −0.5282 4/4 4/4

adding those only blows up the system of inequalities.
As observed by Nowozin and Jegelka [NJ09], odd-wheel inequalities usually tighten

sufficiently the polytope. Furthermore, we observed for this dataset, as in [NJ09],
numerical problems if the allowed feasibility and optimality tolerances were set too
large. However, the experiments showed that our proposed integer cycle inequalities
perform better than odd-wheel separation, especially if we start from the LP-relaxation
with cycle inequalities, see Tab. 6.8.

6.2.5 Supervised Image Segmentation

An elementary approach to supervised image segmentation, or image labeling, is to
apply locally a statistical classifier, trained offline beforehand, to raw image data or to
locally extracted image features. This is complemented by a non-local prior term, the
most common form of which favours short boundaries of the segments partitioning the
image domain. Such terms can be approximated by pairwise Potts terms [BK03] and

83

6 Experiments

Table 6.9: Supervised image segmentation [AKT10]
algorithm runtime value bound best ver. opt

MC-T-MT-I-T 149.43 s 308 472 274.3 308 472 274.3 3/3 3/3
MC*-T-MT-I-T 1.86 s 308 472 274.3 308 472 274.3 3/3 3/3
ILP † † † † †
ILP* 1.91 s 308 472 274.3 308 472 274.3 3/3 3/3

MC-T-MT 115.14 s 308 472 274.3 308 472 274.3 3/3 3/3
MC*-T-MT 1.76 s 308 472 274.3 308 472 274.3 3/3 3/3
LP † † † † †
LP* 2.17 s 308 472 274.3 308 472 274.3 3/3 3/3
TRWS [Kol06] 150.47 s 308 472 310.6 308 472 270.4 2/3 1/3
TRWS* 3.90 s 308 472 274.3 308 472 274.3 2/3 2/3

FastPD [KT07] 0.45 s 308 472 275.0 −∞ 2/3 0/3
FastPD* 1.62 s 308 472 274.7 −∞ 2/3 0/3
𝛼-Exp [BVZ01] 6.42 s 308 472 275.6 −∞ 2/3 0/3
𝛼-Exp* 1.72 s 308 472 274.3 −∞ 3/3 0/3

lead to an energy function of the form∑︁
𝑓∈ℱ1

− log(𝑝𝑛𝑒(𝑓)(𝑥𝑛𝑒(𝑓)|𝐼)) +
∑︁

𝑓∈ℱ2

𝛽 I(𝑥𝑛𝑒(𝑓)1 ̸= 𝑥𝑛𝑒(𝑓)2).

As recently shown by Kappes et al. [KSR+13b], such models can be evaluated globally
optimal and very fast by first determining partial optimality, leading to a reduced
inference problem in terms of remaining unlabelled connected image components,
followed by solving each of these smaller problems independently.

We use the labels “*” to mark when these preprocessing steps were applied and “†”
to mark whenever the memory requirement exceeded 12 GB.

As dataset we used the color segmentation instances of Alahari et al. [AKT10]. The
results are summarized as Table 6.9.

While standard (I)LP solvers often suffer from their large memory requirements, the
multicut approach outperformed all other approaches. Since for all instances the local
polytope relaxation returned optimal integer solutions, MC-T-MT could solve them in
polynomial time. When we resorted to the model reduction *, the subproblems became
small for these problem instances, and (I)LP solvers could be conveniently applied.
Our multicut approach then was only marginally faster. Despite global optimality,
however, the runtime was comparable to algorithms for approximate inference that do
not guarantee global optimality.

84

6.2 Application of Multicut Algorithm

6.2.6 Higher-Order Supervised Image Segmentation
We studied image segmentation with junction regularisation as problem instances that
benefit from the application of higher-order generalized Potts functions.

Rather than merely penalizing the boundary length of segments, this approach aims at
improving segmentation results by additionally penalizing points where the boundaries
of three or more segments meet:

𝜃𝐼(𝑥1, 𝑥2, 𝑥3, 𝑥4) =
{︃
𝜆, if |{𝑥1, 𝑥2, 𝑥3, 𝑥4}| > 2,
0, else.

The overall energy for labeling then is given by∑︁
𝑓∈ℱ1

𝜃1
𝑓 (𝑥𝑛𝑒(𝑓)) +

∑︁
𝑓∈ℱ2

𝜃2
𝑓 (𝑥𝑛𝑒(𝑓)) +

∑︁
𝑓∈ℱ4

𝜃𝐼(𝑥𝑛𝑒(𝑓)),

where 𝜃1 denotes the 𝐿1-norm of the difference between intensity of a pixel and a
pixel-label, 𝜃2 the same second-order terms as in the pairwise case, and ℱ4 the set of
all factors over four pixels that build a cycle in the image grid.

Setting 𝜆 to 0 yields standard second-order model with boundary length regularization,
whereas setting 𝜆→∞ yields a model that enforces segments to be surrounded by one
single segment.

The results of an empirical evaluation for 10 synthetic 32×32 images are summarized
as Table 6.10.

Approximate inference methods performed quite good, but among those only LBP-
LF2 (Lazzy Flipper initialed with the solution of LBP) was able to provide nearly
optimal results. While the multicut approach is on par when relaxations were considered,
it became quite slow compared to a ILP applied to labeling in the nodal domain, when
a globally optimal solution was enforced.

We believe there are two major reasons: First, the relaxation “prefers” less integral
solutions due to the higher-order terms and therefore becomes harder to solve for LP-
based methods. Second, we observe that CPLEX solves the ILP mainly by branching
and probing in order to avoid solving LPs. This is also the reason why ILP is faster
than LP.

85

6 Experiments

Table 6.10: Supervised image segmentation with inclusion priors
algorithm runtime value bound best ver. opt

ICM 0.03 s 1556.20 −∞ 0/10 0/10
LBP-LF2 12.20 s 1400.62 −∞ 8/10 0/10
𝛼-FUSION 0.07 s 1587.13 −∞ 0/10 0/10

LBP 12.28 s 1800.67 −∞ 3/10 0/10
TRBP 13.93 s 2000.67 −∞ 2/10 0/10

LP 25.04 s 3900.59 1400.33 1/10 1/10
MC-T-MT 18.55 s 1739.29 1399.49 1/10 0/10

ILP 7.33 s 1400.57 1400.57 10/10 10/10
MC-T-MT-I-T 66.58 s 1400.57 1400.57 10/10 10/10

86

Bibliography

[ABK12a] Björn Andres, Thorsten Beier, and Jörg H. Kappes. OpenGM: A C++
library for discrete graphical models. http://arxiv.org/abs/1206.
0111. 2012 (cited on pages 2, 37).

[ABK12b] Björn Andres, Thorsten Beier, and Jörg H. Kappes. OpenGM2. http:
//hci.iwr.uni-heidelberg.de/opengm2/. 2012 (cited on page 78).

[AG12] Amir Alush and Jacob Goldberger. Ensemble segmentation using efficient
integer linear programming. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(10):1966–1977, 2012 (cited on page 2).

[Aig79] Martin Aigner. Combinatorial Theory. Springer, 1979 (cited on page 61).
[AKB+11] Björn Andres, Jörg H. Kappes, Thorsten Beier, Ullrich Köthe, and Fred A.

Hamprecht. Probabilistic image segmentation with closedness constraints.
In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2011 (cited on pages 2, 66, 79–81).

[AKB+12a] Björn Andres, Jörg H. Kappes, Thorsten Beier, Ullrich Köthe, and Fred A.
Hamprecht. The lazy flipper: Efficient depth-limited exhaustive search in
discrete graphical models. In Proceedings of the European Conference on
Computer Vision (ECCV), 2012 (cited on page 79).

[AKB+12b] Björn Andres, Thorben Kröger, Kevin L. Briggman, Winfried Denk,
Natalya Korogod, Graham Knott, Ullrich Köthe, and Fred A. Hamprecht.
Globally optimal closed-surface segmentation for connectomics. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), 2012
(cited on page 2).

[AKT10] Karteek Alahari, Pushmeet Kohli, and Philip H. S. Torr. Dynamic hybrid
algorithms for MAP inference in discrete MRFs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(10):1846–1857, 2010 (cited
on pages 41, 74, 75, 84).

[ASS+10] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal
Fua, and Sabine Süsstrunk. SLIC Superpixels. Technical report. École
Polytechnique Fédérale de Lausanne, 2010 (cited on page 47).

[BBC04] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering.
Machine Learning, 56(1–3):89–113, 2004 (cited on pages 57, 58).

87

http://arxiv.org/abs/1206.0111
http://arxiv.org/abs/1206.0111
http://hci.iwr.uni-heidelberg.de/opengm2/
http://hci.iwr.uni-heidelberg.de/opengm2/

Bibliography

[BDG+08] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin
Hoefer, Zoran Nikoloski, and Dorothea Wagner. On modularity clustering.
IEEE Transactions on Knowledge and Data Engineering, 20(2):172–188,
2008 (cited on pages 66, 82, 83).

[Bes86] Julian Besag. On the statistical analysis of dirty pictures. Journal of the
Royal Statistical Society, Series B, 48(3):259–302, 1986 (cited on page 79).

[BH02] Endre Boros and Peter L. Hammer. Pseudo-Boolean optimization. Dis-
crete Applied Mathematics, 123(1–3):155–225, 2002 (cited on page 40).

[BK03] Yuri Boykov and Vladimir Kolmogorov. Computing geodesics and mini-
mal surfaces via graph cuts. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2003 (cited on page 83).

[BK04] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(9):1124–
1137, 2004 (cited on pages 35, 75).

[Bol98] Béla Bollobás. Modern Graph Theory. Springer, 1998 (cited on page 5).
[Bon11] Thorsten Bonato. Contraction-based Separation and Lifting for Solving

the Max-Cut Problem. Optimus Verlag, 2011 (cited on pages 37, 73).
[Brø83] Arne Brøndsted. An Introduction to Convex Polytopes. Springer, 1983

(cited on page 9).
[BVZ01] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy

minimization via graph cuts. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(11):1222–1239, 2001 (cited on pages 2, 35,
70, 73, 79, 84).

[BW] BrainWeb: Simulated brain database. http : / / brainweb . bic . mni .
mcgill.ca/brainweb/ (cited on pages 75, 76).

[Chr97] Thomas Christof. PORTA – POlyhedron Representation Transformation
Algorithm. http://www.iwr.uni-heidelberg.de/groups/comopt/
software/PORTA/. 1997 (cited on pages 32, 33).

[CKR00] Gruia Călinescu, Howard Karloff, and Yuval Rabani. An improved ap-
proximation algorithm for multiway cut. Journal of Computer and System
Sciences, 60(3):564–574, 2000 (cited on pages 68, 70).

[CLR05] Marie-Christine Costa, Lucas Létocart, and Frédéric Roupin. Minimal
multicut and maximal integer multiflow: A survey. European Journal of
Operational Research, 162(1):55–69, 2005 (cited on page 58).

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-
duction to Algorithms. MIT Press, 1990 (cited on page 41).

88

http://brainweb.bic.mni.mcgill.ca/brainweb/
http://brainweb.bic.mni.mcgill.ca/brainweb/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/

Bibliography

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the ACM Symposium on Theory of Computing (STOC),
1971 (cited on page 23).

[CR91] Sunil Chopra and Mendu R. Rao. On the multiway cut polyhedron.
Networks, 21(1):51–89, 1991 (cited on pages 2, 60).

[CR93] Sunil Chopra and Mendu R. Rao. The partition problem. Mathematical
Programming, 59(1–3):87–115, 1993 (cited on page 66).

[Dak65] R. J. Dakin. A tree-search algorithm for mixed integer programming
problems. The Computer Journal, 8(3):250–255, 1965 (cited on page 16).

[Dan51] George B. Dantzig. Maximization of a linear function of variables subject
to linear inequalities. In Tjalling C. Koopmans, editor, Activity Analysis
of Production and Allocation, pages 339–347. John Wiley & Sons, 1951
(cited on page 12).

[DGL91] Michel M. Deza, Martin Grötschel, and Monique Laurent. Complete
descriptions of small multicut polytopes. In Peter Gritzmann and Bernd
Sturmfels, editors, Applied Geometry and Discrete Mathematics: The
Victor Klee Festschrift, pages 221–252. American Mathematical Society,
1991 (cited on page 58).

[DGL92] Michel M. Deza, Martin Grötschel, and Monique Laurent. Clique-web
facets for multicut polytopes. Mathematics of Operations Research, 17(4):981–
1000, 1992 (cited on page 69).

[Die97] Reinhard Diestel. Graph Theory. Springer, 1997 (cited on pages 5, 7).
[DJP+92] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D.

Seymour, and Mihalis Yannakakis. The complexity of multiway cuts
(extended abstract). In Proceedings of the ACM Symposium on Theory
of Computing (STOC), 1992 (cited on pages 2, 70).

[DJP+94] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D.
Seymour, and Mihalis Yannakakis. The complexity of multiterminal cuts.
SIAM Journal on Computing, 23(4):864–894, 1994 (cited on page 2).

[DL97] Michel M. Deza and Monique Laurent. Geometry of Cuts and Metrics.
Springer, 1997 (cited on pages 29, 69).

[FSW11] Vojtěch Franc, Sören Sonnenburg, and Tomáš Werner. Cutting plane
methods in machine learning. In Suvrit Sra, Sebastian Nowozin, and
Stephen J. Wright, editors, Optimization for Machine Learning, pages 185–
218. MIT Press, 2011 (cited on page 2).

89

Bibliography

[GH94] Olivier Goldschmidt and Dorit S. Hochbaum. A polynomial algorithm
for the k-cut problem for fixed k. Mathematics of Operations Research,
19(1):24–37, 1994 (cited on page 58).

[GJ07] Amir Globerson and Tommi Jaakkola. Fixing max-product: Convergent
message passing algorithms for MAP LP-relaxations. In Proceedings of the
Annual Conference on Neural Information Processing Systems (NIPS),
2007 (cited on page 37).

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979
(cited on pages 7, 58).

[Gom58] Ralph E. Gomory. Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Mathematical Society, 64:275–278,
1958 (cited on page 15).

[GPS89] D. M. Greig, B. T. Porteous, and Allan H. Seheult. Exact maximum a
posteriori estimation for binary images. Journal of the Royal Statistical
Society, Series B, 51(2):271–279, 1989 (cited on page 35).

[GW74] Fred Glover and Eugene Woolsey. Converting the 0-1 polynomial program-
ming problem to a 0-1 linear program. Operations Research, 22(1):180–
182, 1974 (cited on page 62).

[GW89] Martin Grötschel and Yoshiko Wakabayashi. A cutting plane algorithm
for a clustering problem. Mathematical Programming, 45(1):59–96, 1989
(cited on page 66).

[Ham65] Peter Hammer. Some network flow problems solved with pseudo-Boolean
programming. Operations Research, 13(3):388–399, 1965 (cited on page 26).

[HHS84] Peter L. Hammer, Pierre Hansen, and Bruno Simeone. Roof duality, com-
plementation and persistency in quadratic 0-1 optimization. Mathematical
Programming, 28(2):121–155, 1984 (cited on page 36).

[JF56] Lester R. Ford Jr. and Delbert R. Fulkerson. Maximal flow through a
network. Canadian Journal of Mathematics, 8:399–404, 1956 (cited on
page 28).

[KAH+13] Jörg H. Kappes, Björn Andres, Fred A. Hamprecht, Christoph Schnörr,
Sebastian Nowozin, Dhruv Batra, Sungwoong Kim, Bernhard X. Kausler,
Jan Lellmann, Nikos Komodakis, and Carsten Rother. A comparative
study of modern inference techniques for discrete energy minimization
problems. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2013 (cited on pages 35, 70, 71, 79–81).

90

Bibliography

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Ray-
mond E. Miller and James W. Thatcher, editors, Complexity of Computer
Computations, pages 85–103. Plenum Press, 1972 (cited on pages 13, 24).

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear pro-
gramming. Combinatorica, 4(4):373–395, 1984 (cited on page 13).

[KF09] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Princi-
ples and Techniques. MIT Press, 2009 (cited on pages 33, 44).

[KFL01] Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger.
Factor graphs and the sum-product algorithm. IEEE Transactions on
Information Theory, 47(2):498–519, 2001 (cited on page 19).

[Kha79] Leonid G. Khachiyan. A polynomial algorithm in linear programming.
Doklady Akademii Nauk SSSR, 244:1093–1096, 1979 (cited on page 13).

[KL70] Brian W. Kernighan and Shen Lin. An efficient heuristic procedure for
partitioning graphs. The Bell Systems Technical Journal, 49(2):291–307,
1970 (cited on page 79).

[KNK+11] Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang D. Yoo.
Higher-order correlation clustering for image segmentation. In Proceedings
of the Annual Conference on Neural Information Processing Systems
(NIPS), 2011 (cited on pages 64, 66, 81, 82).

[KNK+13] Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang D. Yoo.
Task-specific image partitioning. IEEE Transactions on Image Processing,
22(2):488–500, 2013 (cited on page 2).

[Kol06] Vladimir Kolmogorov. Convergent tree-reweighted message passing for
energy minimization. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 28(10):1568–1583, 2006 (cited on pages 2, 36, 57, 73,
79, 84).

[Kov03] Ivan Kovtun. Partial optimal labeling search for a NP-hard subclass of
(max, +) problems. In Proceedings of the DAGM Symposium, 2003 (cited
on pages 40, 74).

[KPT11] Nikos Komodakis, Nikos Paragios, and Georgios Tziritas. MRF energy
minimization and beyond via dual decomposition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 33(3):531–552, 2011 (cited
on page 2).

[KS11] Fredrik Kahl and Petter Strandmark. Generalized roof duality for pseudo-
Boolean optimization. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), 2011 (cited on page 74).

91

Bibliography

[KSA+11] Jörg H. Kappes, Markus Speth, Björn Andres, Gerhard Reinelt, and
Christoph Schnörr. Globally optimal image partitioning by multicuts.
In Proceedings of the International Conference on Energy Minimization
Methods in Computer Vision and Pattern Recognition (EMMCVPR),
2011 (cited on pages 4, 57, 66, 74).

[KSR+08] Pushmeet Kohli, Alexander Shekhovtsov, Carsten Rother, Vladimir Kol-
mogorov, and Philip H. S. Torr. On partial optimality in multi-label
MRFs. In Proceedings of the International Conference on Machine Learn-
ing (ICML), 2008 (cited on pages 40, 74).

[KSR+13a] Jörg H. Kappes, Markus Speth, Gerhard Reinelt, and Christoph Schnörr.
Higher-order segmentation via multicuts. http://arxiv.org/abs/1305.
6387. 2013 (cited on pages 4, 55, 73).

[KSR+13b] Jörg H. Kappes, Markus Speth, Gerhard Reinelt, and Christoph Schnörr.
Towards efficient and exact MAP-inference for large scale discrete com-
puter vision problems via combinatorial optimization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2013 (cited on pages 4, 37, 39, 73, 84).

[KSS12] Jörg H. Kappes, Bogdan Savchynskyy, and Christoph Schnörr. A bun-
dle approach to efficient MAP-inference by Lagrangian relaxation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2012 (cited on page 2).

[KT07] Nikos Komodakis and Georgios Tziritas. Approximate labeling via graph
cuts based on linear programming. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 29(8):1436–1453, 2007 (cited on pages 2,
36, 73, 79, 84).

[KV00] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory
and Algorithms. Springer, 2000 (cited on pages 7, 11).

[LD60] Alisa H. Land and Alison G. Doig. An automatic method of solving
discrete programming problems. Econometrica, 28(3):497–520, 1960 (cited
on page 16).

[LSK+09] Alex Levinshtein, Adrian Stere, Kiriakos N. Kutulakos, David J. Fleet,
Sven J. Dickinson, and Kaleem Siddiqi. TurboPixels: Fast superpixels us-
ing geometric flows. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(12):2290–2297, 2009 (cited on page 47).

[Mar12] Dániel Marx. A tight lower bound for planar multiway cut with fixed num-
ber of terminals. In International Colloquium on Automata, Languages
and Programming (ICALP), 2012 (cited on page 2).

92

http://arxiv.org/abs/1305.6387
http://arxiv.org/abs/1305.6387

Bibliography

[MFT+01] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A
database of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecological statistics.
In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2001 (cited on page 48).

[Min96] Hermann Minkowski. Geometrie der Zahlen. Teubner, 1896 (cited on
page 10).

[MLH12] Yansheng Ming, Hongdong Li, and Xuming He. Connected contours:
A new contour completion model that respects the closure effect. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2012 (cited on pages 2, 66).

[Mor] Greg Mori. http://www.cs.sfu.ca/~mori/research/superpixels/
(cited on page 47).

[NJ09] Sebastian Nowozin and Stefanie Jegelka. Solution stability in linear
programming relaxations: Graph partitioning and unsupervised learning.
In Proceedings of the International Conference on Machine Learning
(ICML), 2009 (cited on pages 66, 83).

[Now09] Sebastian Nowozin. Learning with Structured Data: Applications to
Computer Vision. PhD thesis. Technische Universität Berlin, 2009 (cited
on page 69).

[NRB+11] Sebastian Nowozin, Carsten Rother, Shai Bagon, Toby Sharp, Bangpeng
Yao, and Pushmeet Kohli. Decision tree fields. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2011 (cited on
pages 73, 74).

[OD11] Lars Otten and Rina Dechter. Anytime AND/OR depth-first search for
combinatorial optimization. In Proceedings of the Annual Symposium on
Combinatorial Search (SOCS), 2011 (cited on pages 2, 37).

[PIC11] The probabilistic inference challenge (PIC 2011). http://www.cs.huji.
ac.il/project/PASCAL/. 2011 (cited on page 37).

[RKL+07] Carsten Rother, Vladimir Kolmogorov, Victor Lempitsky, and Martin
Szummer. Optimizing binary MRFs via extended roof duality. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2007 (cited on pages 36, 40).

[RM03] Xiaofeng Ren and Jitendra Malik. Learning a classification model for
segmentation. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2003 (cited on page 47).

[Sch03] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Effi-
ciency. Springer, 2003 (cited on page 7).

93

http://www.cs.sfu.ca/~mori/research/superpixels/
http://www.cs.huji.ac.il/project/PASCAL/
http://www.cs.huji.ac.il/project/PASCAL/

Bibliography

[Sch10] Nicol N. Schraudolph. Polynomial-time exact inference in NP-hard binary
MRFs via reweighted perfect matching. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), 2010
(cited on page 36).

[Sch76] Michail I. Schlesinger. Syntactic analysis of two-dimensional visual signals
in noisy conditions. Kibernetika, 4:113–130, 1976 (cited on pages 2, 31).

[Sch86] Alexander Schrijver. Theory of Linear and Integer Programming. John
Wiley & Sons, 1986 (cited on page 11).

[SCL12] David Sontag, Do Kook Choe, and Yitao Li. Efficiently searching for frus-
trated cycles in MAP inference. In Proceedings of the Annual Conference
on Uncertainty in Artificial Intelligence (UAI), 2012 (cited on page 37).

[SH11] Alexander Shekhovtsov and Václav Hlaváč. On partial optimality by
auxiliary submodular problems. In Control Systems and Computers, 2011
(cited on page 74).

[SK08] Nicol N. Schraudolph and Dmitry Kamenetsky. Efficient exact inference
in planar Ising models. http://arxiv.org/abs/0810.4401. 2008 (cited
on page 26).

[SK09] Nicol N. Schraudolph and Dmitry Kamenetsky. Efficient exact inference
in planar Ising models. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS), 2009 (cited on pages 35, 36, 44).

[SSK+13] Paul Swoboda, Bogdan Savchynskyy, Jörg H. Kappes, and Christoph
Schnörr. Partial optimality via iterative pruning for the Potts model. In
Proceedings of the International Conference on Scale Space and Varia-
tional Methods in Computer Vision (SSVM), 2013 (cited on page 40).

[STL+12] Min Sun, Murali Telaprolu, Honglak Lee, and Silvio Savarese. Efficient
and exact MAP-MRF inference using branch and bound. In Proceedings
of the International Conference on Artificial Intelligence and Statistics
(AISTATS), 2012 (cited on page 2).

[VBM10] Olga Veksler, Yuri Boykov, and Paria Mehrani. Superpixels and supervox-
els in an energy optimization framework. In Proceedings of the European
Conference on Computer Vision (ECCV), 2010 (cited on page 47).

[Wer10] Tomáš Werner. Revisiting the linear programming relaxation approach
to Gibbs energy minimization and weighted constraint satisfaction. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(8):1474–
1488, 2010 (cited on page 2).

[Wey35] Hermann Weyl. Elementare Theorie der konvexen Polyeder. Commentarii
Mathematici Helvetici, 7:290–306, 1935 (cited on page 10).

94

http://arxiv.org/abs/0810.4401

Bibliography

[WJ08] Martin J. Wainwright and Michael I. Jordan. Graphical models, expo-
nential families, and variational inference. Foundations and Trends in
Machine Learning, 1(1–2):1–305, 2008 (cited on pages 2, 24, 29, 31).

[WJW05] Martin J. Wainwright, Tommi Jaakkola, and Alan S. Willsky. MAP esti-
mation via agreement on trees: Message-passing and linear programming.
IEEE Transactions on Information Theory, 51(11):3697–3717, 2005 (cited
on page 36).

[YIF12] Julian Yarkony, Alexander Ihler, and Charless C. Fowlkes. Fast planar cor-
relation clustering for image segmentation. In Proceedings of the European
Conference on Computer Vision (ECCV), 2012 (cited on page 2).

[ZHM+11] Yuhang Zhang, Richard Hartley, John Mashford, and Stewart Burn.
Superpixels via pseudo-Boolean optimization. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2011 (cited on
page 47).

[Zie95] Günter M. Ziegler. Lectures on Polytopes. Springer, 1995 (cited on page 9).

95

Index

𝐻-polytope, 10
𝑉 -polytope, 10
𝒩𝒫-complete, 9
𝒩𝒫-hard, 9
𝑠-𝑡-cut, 6

acyclic graph, 7
adjacent, 6
algorithm, 7
alphabet, 8

binary discrete graphical model, 21
bipartite graph, 7
boundary recall, 50
bounded polyhedron, 10
branch-and-bound, 15
bridge, 42

canonical parameters, 33
certificate, 9
chord, 6
chordless cycle, 6
clause, 23
complete graph, 7
connected component, 6
connected graph, 6
connected nodes, 6
convex, 9
convex hull, 9
cut, 6
cut edge, 57
cut polytope, 29
cutting-plane, 15
cutting-plane procedure, 15
cycle, 6

decision problem, 8
degree of a node, 6
disagreement term, 21
disconnected, 6
discrete exponential family, 34
discrete graphical model, 19
distance of two nodes, 6
distance of two nodes in a weighted

graph, 7

edges of a graph, 6
ellipsoid method, 13
encoding scheme, 8
endnodes of an edge, 6
energy function, 21
exponential family, 33
extreme point, 11

face, 11
facet, 11
facet-defining, 11
factor graph, 19
feasible, 12
feasible points, 12
feasible region of an ILP, 13
feasible region of an LP, 12
forest, 7

generalized higher-order Potts function,
61

global factor, 23
graph, 6
grid graph, 7

halfspace, 10
Hamiltonian cycle, 8

97

Index

Hamiltonian graph, 8
higher-order factor, 20
higher-order Potts function, 21, 64
hyperedge, 7
hypergraph, 7
hyperplane, 10

incidence graph, 7
incidence vectors, 57
incident, 6
indicator function, 5
inequality, 10
infeasible, 12
inference, 22
inner product, 5
input size, 8
integer hull, 14
integer linear program (ILP), 13
integrality constraint, 13
inter-terminal edges, 59
interior point method, 13
internal edges, 59
internal nodes, 59
Ising function, 21
Ising model, 21
isomorphic graphs, 6

label, 20
label permutation invariant function, 55
label set, 20
labeling, 20
Landau notation, 5
length of a cycle, 6
length of a path, 6
length of a path in a weighted graph, 7
length of a word, 8
linear constraint, 12
linear program (LP), 12
literal, 23
local polytope, 31
log partition function, 33

LP-relaxation, 15

MAP problem, 22
marginal polytope, 29, 34
max cut problem, 24
maximum a posteriori solution, 22
mean parameters, 34
min 𝑠-𝑡 cut problem, 28
multi-label discrete graphical model, 21
multicut, 6
multicut polytope, 57
multicut problem, 58

neighborhood of a node, 6
nodes of a graph, 6

objective function, 12
odd-wheel, 69
optimal labeling, 22
optimal solution, 12
optimal value, 12
optimization problem, 8
order of a discrete graphical model, 20
order of a factor, 20

pairwise factor, 20
partial optimality, 36, 40
partition of a set, 5
path, 6
planar graph, 7
polyhedron, 10
polynomial-time algorithm, 8
polynomially reducible, 9
polynomially solvable, 8
polytope, 10
potential functions, 33
Potts function, 21
Potts model, 21
power set, 5
proper face, 11
proper subset, 5

98

Index

relaxation, 14
rounding, 69

satisfiability problem (SAT), 23
satisfiable, 23
separation (in a cutting-plane proce-

dure), 15
separation (of an optimization problem),

16
shore, 6
shortest path, 6
shortest path in a weighted graph, 7
simplex method, 12
spanning subgraph, 6
subgraph, 6
submodular, 22
subset, 5

tentacle, 43
terminal edges, 59

terminal nodes, 59
tightness, 10
time complexity, 8
tree, 7
truth assignment, 23

unary factor, 20
unbounded, 12
underlying graph, 20
undersegmentation error, 49

valid inequality, 10
vertex, 11
vertices of a graph, 6

weight, 7
weight function, 7
weighted graph, 7
wheel, 68
word, 8

99

Nomenclature

0 vector of all zeros, 5

1 vector of all ones, 5(︀𝐴
𝑘

)︀
set of all subsets of 𝐴 with size 𝑘, 5

⊂ proper subset, 5

⊆ subset, 5

ℰ edges of a factor graph, 19

ℱ factors of a factor graph, 19

ℱ𝑟 factors of order 𝑟, 20

𝒢 factor graph, 19

ℳ discrete graphical model, 19

𝒩𝒫 set of all polynomially verifiable decision problems, 9

𝒪 Landau notation, 5

𝒫 set of all polynomially solvable decision problems, 8

𝒫(𝐴) power set of 𝐴, 5

𝒱 nodes of a factor graph, 19

C(ℳ) cut polytope, 29

I indicator function, 5

L(ℳ) local polytope, 31

M(ℳ) marginal polytope, 29

MC(𝐺) multicut polytope of 𝐺, 57

N set of natural numbers (including zero), 5

101

Nomenclature

R set of real numbers, 5

𝜒 incidence vector, 57

𝛿(𝑆1, . . . , 𝑆𝑛) set of edges with endnodes in different sets 𝑆𝑖, 6

𝜃𝑓 energy function for factor 𝑓 , 21

Π decision problem, 8

Σ alphabet, 8

Σ* set of all words over Σ, 8

conv(·) convex hull, 9

𝑒 edge of a graph, 6

enc encoding scheme, 8

𝑓𝑣1𝑣2...𝑣𝑟 factor with neighborhood {𝑣1, 𝑣2, . . . , 𝑣𝑟}, 20

𝑘 cardinality of label set, 20

nb(𝑣) neighborhood of a node 𝑣, 6

𝑟 order of a factor, 20

time time complexity of an algorithm, 8

𝑢𝑣 edge of a graph, 6

𝑣 node of a graph, 6

𝑤 weight function, 7

𝑥 labeling of a discrete graphical model, 20

𝑥𝑣 variable holding the label of node 𝑣, 20

𝑦 variable of the multicut (I)LP, 58

𝐴 algorithm, 7

𝐸 edge set of a graph, 6

𝐸(𝐺) edge set of a graph 𝐺, 6

𝐺 graph, 6

102

Nomenclature

𝐽 energy function, 21

𝐿 common label set, 20

𝑃 polytope, 10

𝑇 terminal nodes, 59

𝑉 node set of a graph, 6

𝑉 (𝐺) node set of a graph 𝐺, 6

𝑋 label set of a discrete graphical model, 20

𝑋𝑣 label set of node 𝑣, 20

103

	1 Introduction
	1.1 Overview and Motivation
	1.2 Related Work
	1.3 Contribution
	1.4 Organization

	2 Background
	2.1 General Notation
	2.2 Graph Theory
	2.2.1 Graphs
	2.2.2 Paths, Cycles, and Connectivity
	2.2.3 Cuts and Multicuts
	2.2.4 Special Classes of Graphs

	2.3 Algorithms and Complexity
	2.3.1 Algorithms
	2.3.2 Decision Problems and Optimization Problems
	2.3.3 P and NP
	2.3.4 NP-Completeness

	2.4 Polyhedral Theory
	2.4.1 Inequalities and Hyperplanes
	2.4.2 Polytopes
	2.4.3 Faces and Facets

	2.5 Integer Linear Programming
	2.5.1 Linear Programming
	2.5.2 Solution Methods for LPs
	2.5.3 Integer Linear Programming
	2.5.4 Solution Methods for ILPs

	3 Energy Minimization in Discrete Graphical Models
	3.1 Discrete Graphical Models
	3.1.1 Factor Graphs
	3.1.2 Variables and Labelings
	3.1.3 Energy Functions
	3.1.4 Energy Minimization

	3.2 Connection to Other Problems
	3.2.1 Satisfiability Problem
	3.2.2 Maximum Cuts and Minimum s-t Cuts

	3.3 LP and ILP Formulations
	3.3.1 The Marginal Polytope
	3.3.2 The Local Polytope Relaxation and the ILP Model

	3.4 Probabilistic View of Graphical Models
	3.5 Overview of Existing Inference Methods
	3.5.1 Polynomially Solvable Cases
	3.5.2 Approximative Methods
	3.5.3 Exact Methods for NP-hard Models

	4 Reduction Techniques
	4.1 Exact Model-Reduction
	4.1.1 Partial Optimality
	4.1.2 Connected Components
	4.1.3 Tentacle Elimination

	4.2 Evaluation of Combined Reduction Methods
	4.3 Reduction via Superpixels
	4.4 Evaluation and Comparison
	4.4.1 Experimental Setup
	4.4.2 Undersegmentation Error
	4.4.3 Boundary Recall
	4.4.4 Superpixel Size Uniformity
	4.4.5 Runtimes
	4.4.6 Summary

	5 Multicuts for Discrete Graphical Models
	5.1 Problem Formulation
	5.2 Multicuts
	5.2.1 Basic Definitions
	5.2.2 Multicuts for Second-order Models

	5.3 Multicuts for Higher-order Models
	5.3.1 General Label Permutation Invariant Functions
	5.3.2 Higher-order Potts Functions

	5.4 Cutting-Plane Approach and Separation Procedures
	5.4.1 Approach
	5.4.2 Relaxation, Constraints
	5.4.3 Rounding Fractional Solutions
	5.4.4 Multicut Cutting-Plane Algorithm

	6 Experiments
	6.1 Application of Reduction Techniques
	6.1.1 Decision Tree Fields
	6.1.2 Multi-Label Potts Models

	6.2 Application of Multicut Algorithm
	6.2.1 Set-Up, Implementation Details
	6.2.2 Probabilistic Image Segmentation
	6.2.3 Higher-order Hierarchical Image Segmentation
	6.2.4 Modularity Clustering
	6.2.5 Supervised Image Segmentation
	6.2.6 Higher-Order Supervised Image Segmentation

	Bibliography
	Index
	Nomenclature

