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Abstract 

 

 

Photoreceptor proteins are molecular sensors that translate photon energy into biological 

information. The BLUF (Blue Light using FAD) protein is such a sensor that switches between 

its dark and light states by means of photoinduced proton-coupled electron transfer (PCET). In 

this thesis, I present the first detailed and systematic computational study of photoinduced PCET 

in BLUF using state-of-the-art electronic-structure methods. The photoactivation in BLUF 

results in the tautomerization and rotation of a conserved glutamine side chain. The computed 

potential-energy landscapes presented in this thesis reveal the energies of glutamine rotamers and 

tautomers and serve as a basis to identify the structure of the glutamine side chain in the 

functional dark and light states of BLUF. To map the pathway connecting the dark and light 

states on the excited-state potential-energy surface, I established a computational procedure 

employing multi-configurational multi-reference electronic-structure methods, and built and 

characterized quantum-mechanical cluster and hybrid quantum-mechanical/molecular-

mechanical models. After establishing and benchmarking the computational protocol, I 

computed several PCET photoreaction pathways. The energy profiles obtained serve as a basis to 

answer, for the first time, questions related to how PCET is realized in photoactivation, 

photostability, and redox tuning in BLUF. 

 

 

  



 

 

  



 

 

 

 

 

 

 

Zusammenfassung 

 

 

Photorezeptor-Proteine sind molekulare Sensoren, die die Photonenergie in biologische 

Information umwandeln. Das Protein BLUF (Blue Light using FAD) ist solch ein Sensor, der 

zwischen seinem Dunkel- und Licht-Zustand mittels Protonen-gekoppeltem Elektronentransfer 

(PCET) schalten kann. In dieser Arbeit wird die erste detaillierte und systematische 

rechnergestützte Studie über photoinduzierten PCET in BLUF mit state-of-the-art 

Elektronenstrukturmethoden präsentiert. Die Photoaktivierung von BLUF führt zur 

Tautomerisierung und Rotation der Seitenkette eines konservierten Glutamins. Die in dieser 

Arbeit errechneten Potentialenergieprofile zeigen die Energien verschiedener Rotamere sowie 

Tautomere dieses Glutamins auf und dienen als Grundlage, die Struktur der Glutamin-Seitenkette 

in den Dunkel- und Licht-Zuständen von BLUF zu identifizieren. Um den Reaktionspfad 

abzubilden, der den Dunkel- und Licht-Zustand auf der Potentialfläche des elektronisch 

angeregten Zustandes verbindet, wurde ein rechnergestütztes Verfahren mit Multikonfigurations-

Multireferenz-Elektronenstrukturmethoden entwickelt; darüber hinaus wurden quanten-

mechanische Cluster und quantenmechanisch/molekular-mechanische Hybrid-Modelle erstellt 

und charakterisiert. Nach dem Benchmarking des rechnergestützten Protokolls wurden mehrere 

PCET-Photoreaktionspfade berechnet. Mit den erhaltenen Potentialenergieprofilen kann 

erstmals beantwortet werden, wie PCET bei der Photoaktivierung, Photostabilität und beim 

Redoxtuning in BLUF wirksam wird. 

  



 

 

 

 

 

  



 

 

The work put forward in this thesis was carried out in the Department of Biomolecular 

Mechanisms at the Max Planck Institute for Medical Research, Heidelberg, Germany, under the 

supervision of Dr. Tatiana Domratcheva. 

I have performed all calculations and carried out all analysis myself, except when noted otherwise, 

and prepared this thesis myself. All other resources used are specified. 

 

 

Major parts of this dissertation have already been published or will be published in peer-reviewed 

journals. In this dissertation, I have used text and figures from these published and planned 

articles (except for the book chapter), with permission of the respective journals:  
 

 Udvarhelyi, A. & Domratcheva, T. Photoreaction and redox tuning in the BLUF dark and light 

states. In preparation. 

 Udvarhelyi, A. & Domratcheva, T. Conformational dynamics of the glutamine side chain in the 

BLUF Win and Wout flavin-binding pockets. In preparation. 

 Udvarhelyi, A., Olivucci, M. & Domratcheva, T. The role of the macromolecular environment in 

color and redox tuning: supermolecular cluster versus QM/MM model. In preparation. 

 Domratcheva, T., Udvarhelyi, A., Moughal Shahi, A. R. (2014) Computational Spectroscopy, 

Dynamics, and Photochemistry of Photosensory Flavoproteins. Chapter 10 in Flavins and 

Flavoproteins – Methods and Protocols. Eds. S. Weber, E. Schleicher, ISBN 978-1-4939-0451-8. 

Springer Protocols. Humana Press. 

 Udvarhelyi, A. & Domratcheva, T. (2013) Glutamine Rotamers in BLUF Photoreceptors: A 

Mechanistic Reappraisal. The Journal of Physical Chemistry B 117, 2888–2897. 

 Udvarhelyi, A. & Domratcheva, T. (2011) Photoreaction in BLUF Receptors: Proton-coupled 

Electron Transfer in the Flavin-Gln-Tyr System. Photochemistry and Photobiology 87, 554–563.  

 

Additional published and planned articles, not within the scope of this thesis: 
 

 Udvarhelyi, A., Harding, M. & Domratcheva, T. The principal-orbital complete-active-space 

(POCAS) approach for uracil photochemistry. In preparation. 

 Tuna, D., Udvarhelyi, A., Sobolewski, A. L., Domcke, W. & Domratcheva, T. Ab initio study of 

the photophysics of eumelanin: electronic absorption spectra of isolated and π-stacked oligomers 

of 5,6-dihydroxyindole. In preparation. 

 Winkler, A., Udvarhelyi, A., et al. (2013) Characterization of Elements Involved in Allosteric Light 

Regulation of Phosphodiesterase Activity by Comparison of Different Functional BlrP1 States. 

Journal of Molecular Biology 426 (4), 853–868. 

 Smeulders, M. J., Barends, T., Pol, A., Scherer, A., Zandvoort, M. H., Udvarhelyi, A., et al. (2011) 

Evolution of a new enzyme for carbon disulphide conversion by an acidothermophilic archaeon. 

Nature. 478, 412–416. 

 Lang, M., Jegou, T., Chung, I., Richter, K., Münch, S., Udvarhelyi, A., et al. (2010) Three-

dimensional organization of promyelocytic leukemia nuclear bodies. Journal of Cell Science. 123, 

392–400. 

 



 

 

 

 

 

 

 

 



 

 

Contents 

1 Introduction ................................................................................................................. 17 

1.1 Blue Light using FAD sensors ....................................................................................................... 17 

1.2 Photophysical and photochemical concepts ........................................................................................ 23 

1.3 Electronic-structure methods ............................................................................................................ 25 

1.4 Molecular models ............................................................................................................................ 27 

1.5 Aims of this thesis .......................................................................................................................... 30 

2 Method benchmarking: POCAS .................................................................................. 31 

2.1 CASSCF and POCAS ................................................................................................................ 31 

2.2 Computational details ..................................................................................................................... 34 

2.3 Results and discussion ..................................................................................................................... 35 

2.3.1 Low-lying excited states in lumiflavin ................................................................................ 35 

2.3.2 POCAS-optimized geometry of lumiflavin ....................................................................... 39 

2.3.3 Excitation energies in the BLUF cluster ............................................................................ 40 

2.4 Conclusions .................................................................................................................................... 44 

3 Cluster models vs. QM/MM models ........................................................................... 45 

3.1 Cluster and QM/MM models in photoreceptor studies .................................................................... 45 

3.2 Models and analysis ....................................................................................................................... 47 

3.2.1 Cluster model and QM/MM models ................................................................................. 47 

3.2.2 Analysis of intermolecular interactions .............................................................................. 50 

3.3 Computational details ..................................................................................................................... 52 



 

 

3.3.1 Cluster models ....................................................................................................................... 52 

3.3.2 QM/MM calculations ........................................................................................................... 53 

3.4 Results ........................................................................................................................................... 55 

3.4.1 Geometry of the flavin-binding site .................................................................................... 55 

3.4.2 Excitation energies – QM calculations ............................................................................... 57 

3.4.3 Excitation energies – QM/MM calculations ..................................................................... 60 

3.4.4 Electrostatic potential maps and charge-transfer effects ................................................. 61 

3.4.5 Excitation-energy shift upon QM/MM embedding ........................................................ 64 

3.4.6 Modifications of the MM charges ....................................................................................... 66 

3.4.7 Intermolecular interactions and the excitation energy of the ET state ......................... 68 

3.4.8 Comparison of the full cluster model with the reference QM/MM model ................. 72 

3.5 Discussion and conclusions .............................................................................................................. 74 

4 Glutamine rotamers ..................................................................................................... 77 

4.1 BLUF structures ........................................................................................................................... 77 

4.2 Computational details ..................................................................................................................... 81 

4.2.1 Win cluster models and geometry optimization ................................................................. 81 

4.2.2 Extended cluster models: ext-Win and ext-Wout ................................................................. 82 

4.2.3 Dihedral-angle energy scans and excitation spectra ......................................................... 83 

4.3 Results and Discussion ................................................................................................................... 84 

4.3.1 The Q63 rotamer in the Win structure ................................................................................ 84 

4.3.2 Extended cluster and QM/MM models ............................................................................ 88 

4.3.3 Dynamic aspects: glutamine rotation in the dark state .................................................... 91 

4.3.4 Dihedral-energy scans in the extended models: dark and light states ............................ 93 

4.3.5 Comparison to NMR and MD studies ............................................................................... 95 

4.4 Summary and conclusions ............................................................................................................... 97 

5 BLUF photoreaction .................................................................................................... 99 

5.1 Excited-state pathways and BLUF photochemistry ......................................................................... 99 

5.2 Methods and computational details ............................................................................................... 102 

5.2.1 Cluster and QM/MM models ............................................................................................ 102 

5.2.2 Pathway calculations ........................................................................................................... 104 

5.3 Results and discussion ................................................................................................................... 106 



 

 

5.3.1 PET in the dark state .......................................................................................................... 106 

5.3.2 Proton transfer pathways ................................................................................................... 110 

5.3.3 PCET pathway without flavin protonation ..................................................................... 116 

5.3.4 BLUF redox tuning with fluorotyrosine .......................................................................... 120 

5.3.5 PCET in the light state ....................................................................................................... 123 

5.3.6 Electron transfer rate estimates using excited-state energies and Marcus theory ...... 127 

5.4 Summary and conclusions ............................................................................................................. 129 

6 Conclusions and Outlook ........................................................................................... 131 

Abbreviations .................................................................................................................... 137 

References ......................................................................................................................... 139 

Acknowledgements ........................................................................................................... 157 

 



 

 



 

1    Introduction 

Light – through its interaction with biological matter – powers and controls the molecular 

machinery of life. It serves as an energy source (photosynthesis), provides information about the 

environment (phototaxis, visual perception, light-dependent metabolism), but may also represent 

a threat (UV damage). The interaction between light and matter is governed by the laws of 

quantum-mechanics: photon absorption excites an electron bound in a molecule; the excess 

energy is temporarily stored in the excited state and may be transferred between molecular 

species; upon excited-state relaxation, a part of the energy is dissipated. Biological matter 

converts the photon energy either into vibrational energy or into “chemical” energy by inducing 

modifications of the chemical structure. One fundamental reaction mechanism that is common in 

biological photoreactions is proton-coupled electron transfer (PCET). PCET is ubiquitous in 

biology and occurs both in light-dependent and light-independent processes, for example during 

respiration, photosynthesis, and cell signaling. The central topic of this thesis is the 

photoactivation mechanism of the unique bacterial photosensor BLUF, in which, by means of 

PCET, the photon energy is translated into chemical and vibrational energy, and ultimately into 

biological information. 

1.1    Blue Light using FAD sensors 

Light-sensitive proteins, so-called photoreceptors, detect light using photosensitive chromophore 

molecules. To date, seven classes of photoreceptors are known (van der Horst & Hellingwerf, 

2004; Rizzini et al., 2011): rhodopsins (chromophore: retinal), phytochromes (phytochromobilin), 

xantopsins (p-coumaric acid), the UV sensor UVR8 (14 tryptophan residues) and the three flavin-

binding blue-light photoreceptor classes cryptochromes, light-oxygen-voltage sensing (LOV) 

domains, and blue light using FAD sensors (BLUF) that bind flavin mononucleotide (FMN) or 

flavin adenosine dinucleotide (FAD). A distinct photochemistry characterizes each photoreceptor 
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class, i.e. upon photon absorption a chemical reaction occurs that is specific for each class. 

Rhodopsins for example isomerize the retinal chromophore. The photoactivation mechanism of 

flavin-binding photoreceptors is rather different and still a subject of debate. The flavin-binding 

photoreceptors bind flavin in its oxidized form that absorbs light in the blue spectral region, 

thereby mediating various blue-light responses in plants, bacteria and algae (Losi & Gärtner, 2011, 

2012). Detailed knowledge about the photoreceptors’ structural and chemical properties is 

essential to provide a comprehensive mechanistic understanding of their function. However, the 

size and complexity of the molecular systems involved in sensing light present a great challenge 

for studies investigating them. For an adequate interpretation of the spectroscopy data and a full 

understanding of the reaction mechanisms, a detailed and systematic characterization of 

molecular properties is required for which computational studies are indispensable (Domratcheva 

et al., 2014). Thus a combination of experimental and computational approaches is required to 

investigate photoreceptor function. A better understanding of the mechanisms involved in the 

underlying photochemical processes paves the way to powerful applications in the recently 

emerging fields of optogenetics (Fenno et al., 2011; Deisseroth, 2011) and synthetic biology 

(Cheng & Lu, 2012): Photoreceptor proteins can serve as components in rationally-designed 

photoswitches to control and manipulate targeted biological processes non-invasively with light, 

even in vivo. The ubiquitously available flavin in the cell makes blue light photoreceptors an 

interesting candidate for the “optogenetic toolkit” (Christie et al., 2012). An impressive in vivo 

example using the LOV photoreceptor in an artificial photoswitch to control the motility of cells 

was demonstrated in (Wu et al., 2009). 

Figure 1.1 shows the chemical structure of lumiflavin (LF), and the naturally occurring flavin 

analogs riboflavin (RF), FMN, and FAD. Unbound flavins in aqueous solution are found in the 

oxidized form (Song et al., 2007). The experimental UV-Vis absorption spectrum of the oxidized 

flavin is shown in Figure 1.2A, revealing two absorption bands centered at around 450 nm (2.76 

eV) and 370 nm (3.35 eV); a third, most intense band is found at 275 nm (4.51 eV), which is not 

of interest in this work. LF, FMN, and FAD possess this characteristic absorption spectrum due 

to the flavin core ring (isoalloxazine ring). The absorption bands originate from single electronic 

excitations among the π and π* frontier molecular orbitals (MO) of flavin (Neiss et al., 2003): the 

first excited S1 state is predominantly characterized by a transition from the highest occupied 

molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), and the S2 state 

by a transition from the HOMO−1 to LUMO, as schematically indicated in Figure 1.2B. The 

ability of flavins to adopt different redox and protonation states makes them remarkably versatile 

biological cofactors, exploited by diverse flavin-binding proteins in different biochemically 

relevant reactions (Miura, 2001). The local environment of the non-covalently bound flavin in the 

protein fine-tunes the broad reactivity of flavin for a specific reaction. In blue-light 

photoreceptors the local interactions between the electronically excited flavin and its neighboring 

residues determine the specific photoreaction.  
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Figure 1.1. Chemical structure of lumiflavin (LF) with conventional numbering of atoms, 
riboflavin (RF), flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and the 
BLUF lumiflavin-glutamine-tyrosine photoactive triad (LF-Q-Y). 

 The BLUF protein domain was independently discovered by two groups: it was described as 

a light-sensory unit of the AppA protein involved in the light-dependent regulation of 

photosynthetic gene expression in the purple proteobacterium Rhodobacter sphaeroides (Masuda & 

Bauer, 2002); and as a protein domain in photoactivated adenylyl cyclase (PAC) involved in the 

photoavoidance response in the eukaryote Euglena gracilis (Iseki et al., 2002). Following these 

discoveries, several proteins with a similar sequence were identified in many bacterial genomes 

and the new photoreceptor domain was termed BLUF (Gomelsky & Klug, 2002). BLUF proteins 

are modular units that can communicate the blue light signal to various output domains (Han et 

al., 2004), and can be classified to two categories based on the domain architecture: (i) either they 

serve as a sensory unit that regulates the photoresponse in a multidomain protein or (ii) they 

appear as a standalone protein that interacts with an effector output protein. Examples from the 

first category include YcgF from Escherichia coli and BlrP1 from Klebsiella pneumoniae, two 

phosphodiesterases that putatively control virulence and biofilm formation (Tschowri et al., 2009; 

Tyagi et al., 2008; Barends et al., 2009). Examples from the second category include PixD from 

Synechocystis sp. PCC6803 that mediates phototactic response (Okajima et al., 2005); BlsA from 

Acinetobacter baumannii that regulates biofilm formation in a temperature-dependent manner 

(Mussi et al., 2010); or BlrB from Rhodobacter sphaeroides with an unknown effector and unknown 

function (Jung et al., 2005). So far, from the many BLUF proteins identified in bacterial genomes, 

the physiological function of only few has been described and only few BLUF domains have 

been characterized. 
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 Figure 1.2. (A) Absorption spectrum of FMN in water. The absorption maxima 
corresponding to the S1 and S2 transitions are indicated. (B) Electronic structure and 
energies of the excited states in oxidized lumiflavin. Electronic excitations among the 
frontier MOs predominantly contributing to the S1 and S2 excited states are indicated. 
(C) Absorption spectrum of BLUF in the dark and light states. The absorption 
maximum corresponding to the S1 transition in the two states is indicated. (D) X-ray 
crystal structure of BLUF with indicated secondary structure elements in cartoon 
representation. FMN is shown in balls-and-sticks. The absorption spectra in (A) and 
(C) were measured in the course of my diploma thesis (Udvarhelyi, 2009).  

 

 BLUF photoreceptors non-covalently bind the oxidized FAD as the chromophore. Figure 

1.2C shows the flavin absorption spectrum in BLUF that closely resembles that of the free flavin 

in solution, with the absorption maxima only slightly shifted and the absorption bands 

vibrationally resolved. Remarkably, after photoexcitation, the flavin absorption is identical to the 

one in the dark state, with a merely 15-nm red-shifted first flavin band and a few nm red-shifted 

second band, as shown in Figure 1.2C. This red shift of the flavin absorption is attributed to the 

formation of the light state (Masuda & Bauer, 2002; Kraft et al., 2003; Masuda et al., 2004; Zirak 

et al., 2005, 2006; Fukushima et al., 2005), indicating that the FAD chromophore remains in its 

oxidized form in the light state. Thus, BLUF undergoes perhaps the most peculiar photoreaction 

among the photoreceptor classes where the chromophore itself does not change chemically. The 

red-shifted photoproduct is stable for seconds to minutes and spontaneously recovers the dark 
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state with different kinetics (Zirak et al., 2005, 2006, 2007; Tyagi et al., 2008; Hasegawa et al., 

2006; Fukushima et al., 2005; Penzkofer et al., 2011), when the full BLUF photocycle is 

completed. The photoproduct decays exclusively thermally to recover the dark state, without any 

light-induced back reaction (Toh et al., 2008). Concomitant with the red-shifted UV-Vis 

absorption, a 20 cm−1 red-shifted IR absorption in the carbonyl-stretching spectral region 

characterizes the light state (Masuda et al., 2004). The formation or strengthening of hydrogen 

bonds involving the flavin C4=O4 (for the atom numbering see Figure 1.1) carbonyl group 

explains these spectral shifts (Masuda et al., 2004; Hasegawa et al., 2004; Unno et al., 2005), thus 

a photoinduced hydrogen-bonding rearrangement must take place to form the BLUF light state.  

 To reveal the specific structure of the hydrogen-bonding network around flavin in BLUF, 

molecular structures are necessary. In the past years, X-ray crystal (Anderson et al., 2005; Jung et 

al., 2005, 2006; Kita et al., 2005; Yuan et al., 2006; Barends et al., 2009; Winkler et al., 2013) and 

solution NMR structures (Wu et al., 2008; Wu & Gardner, 2009) of various BLUF domains from 

several bacteria were determined. These structures revealed a globular ferrodoxin-like fold, 

shown in Figure 1.2D, with a five-stranded beta sheet and two alpha helices (α1 and α2) 

sandwiching the FMN part of the FAD chromophore. This core structure is nearly identical in all 

BLUF domains. C-terminal alpha helices (α3 and α4) are found on the other side of the beta 

sheet, with different conformations and orientations with respect to the beta sheet in various 

BLUFs. Their role in signal transduction has been proposed in several studies, reviewed in 

(Zoltowski & Gardner, 2011). To uncover the role of the C-terminus, structural studies of 

proteins in which the N-terminal BLUF sensor is connected to the C-terminal effector domain 

are necessary. So far one complex structure was determined: the BlrP1 X-ray structure of the 

BLUF domain covalently linked to its functional phosphodiesterase EAL effector domain 

(Barends et al., 2009). More recently, the X-ray structure of AppA BLUF in complex with its 

non-covalent PpsR effector was also determined (Winkler et al., 2013). 

 The X-ray and NMR structures revealed that the residues conserved in the BLUF sequences 

form hydrogen bonds with flavin, most importantly a glutamine residue (in the following referred 

to as Q53, according to the one-letter amino acid code of glutamine and the residue numbering 

of the PixD protein). Mutational studies showed that Q53 is essential for the light-switch 

function of BLUF as its mutation abolishes the formation of the red-shifted light state (Masuda 

et al., 2007; Stelling et al., 2007; Dragnea et al., 2010). The other hydrogen-bonding partner of 

Q53 is a conserved tyrosine residue, Y11. Ultrafast spectroscopy studies attributed the quenched 

flavin fluorescence, which is observed only for tenth of picoseconds, to photoinduced electron 

transfer (PET) from a nearby residue to the electronically excited flavin (Kraft et al., 2003; Zirak 

et al., 2005; Gauden et al., 2005; Dragnea et al., 2005). Mutational studies identified the Y11 

residue as the electron donor to the excited flavin (Gauden et al., 2007; Bonetti et al., 2009). In 

addition, H/D exchange experiments revealed a pronounced kinetic isotope effect, suggesting 

that the photoinduced electron transfer is coupled to proton transfer (Gauden et al., 2006; 
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Bonetti et al., 2008). The recombination of the radical intermediates on a nanosecond timescale 

finally yields the red-shifted photoproduct (Gauden et al., 2006). Because the Q53 side chain is 

located between the electron donor Y11 and the electron acceptor flavin, the photoinduced 

proton-coupled electron transfer (PCET) reaction is mediated by Q53 and must ultimately result 

in changes of the Q53 side chain in the photoproduct: a rotation (Gauden et al., 2006; Unno et al., 

2006; Jung et al., 2006; Grinstead, Avila-Perez, et al., 2006) or a tautomerization (Domratcheva et 

al., 2008; Khrenova et al., 2010) of the Q53 side chain were proposed to explain the red-shifted 

flavin absorption in the light state. The fate of the Q53 side chain during the BLUF 

photoreaction is one of the central topics of this thesis. Therefore, the relevant entity for the 

photochemistry in BLUF is not the flavin chromophore alone, but the flavin-glutamine-tyrosine 

complex, which this thesis refers to as the photoactive triad of BLUF. The minimal model for 

BLUF photochemistry thus constitutes of the LF-Q-Y complex, as shown in Figure 1.1. 

 Remarkably, two X-ray crystal structures of the AppA-BLUF domain revealed two 

conformations of the β5 strand that alters the hydrogen-bonding pocket of flavin: in one 

structure a tryptophan residue points towards flavin (Anderson et al., 2005) and in the other a 

methionine residue (Jung et al., 2006), apparently even influencing the rotamer conformation of 

the critical Q53 residue. These two structures with their differently assigned Q53 rotamer 

conformations were discussed as possible dark and light state structures of BLUF (Gauden et al., 

2006; Unno et al., 2006; Grinstead, Avila-Perez, et al., 2006; Stelling et al., 2007; Bonetti et al., 

2008, 2009; Mathes, Zhu, et al., 2012; Rieff et al., 2011; Meier et al., 2012; Hsiao et al., 2012), in 

addition to the alternative mechanism of glutamine tautomerization (Domratcheva et al., 2008; 

Sadeghian et al., 2008; Khrenova et al., 2010). Chapter 4 gives a detailed account on this debate 

and the two structures with the possible Q53 rotamer conformations. 

 

 

 

Figure 1.3. Schematic illustration of a BLUF photoswitch. For details see text. 

 In summary, the structural and spectroscopic studies identify the BLUF photoreceptor 

essentially as a light-sensitive molecular hydrogen-bonding switch (Kennis & Mathes, 2013). 
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Figure 1.3 illustrates the photocycle of this switch. Upon light absorption, the flavin 

chromophore undergoes a complex photoreaction involving the local BLUF protein 

environment that results in the formation of the red-shifted photoproduct within 1 nanosecond, 

which constitutes the primary event of photoactivation. The photoproduct contains the oxidized 

flavin chromophore in an altered hydrogen-bonding environment and initiates the signaling 

cascade. The altered local flavin-protein interactions, manifested in the switched hydrogen-

bonding network around flavin, induce a conformational change of the whole BLUF sensor. The 

modified conformation influences the sensor-effector domain protein-protein interactions, 

leading to the enzymatic function of the effector and ultimately to the biological response of the 

cell.  

 Usually, the conformational transition of the sensor domain is referred to as a switch from 

the dark state to the signaling state of the photoreceptor. The timescale for the protein 

conformational transition is micro- to milliseconds (Henzler-Wildman & Kern, 2007), thus 

several orders of magnitude longer than the 1 nanosecond required for the formation of the 

spectroscopically observable photoproduct. This is essential because the information on the 

ultrafast event of light absorption has to be stored for a rather long time for the subsequent 

biochemical processes to occur. The photoproduct state is the “end state” of the photoreaction 

that involves the local environment of flavin, observed via the flavin spectroscopic shifts and is 

determined by the photoreaction quantum yield. This thesis refers to the red-shifted 

photoproduct formed within 1 nanosecond as the BLUF “light state” and not to the BLUF 

protein conformation in the signaling state. Recently, first studies appeared that address the light-

induced conformational changes in BLUF proteins, for example in (Udvarhelyi, 2009; Brust et al., 

2013; Winkler et al., 2014), yet it is difficult to gain atomic-level insight into the protein structural 

changes underlying signal transduction. 

1.2    Photophysical and photochemical concepts 

This section introduces the fundamental physical concepts to describe and understand processes 

relevant to light-absorbing molecules which undergo a photoreaction. The concept of the Born-

Oppenheimer (BO) potential-energy surface (PES) provides the “landscape” for molecular 

reactions. Because electrons are much lighter than nuclei, their motion is much faster than the 

vibrational motion of nuclei, i.e. the relevant time scales are well-separated. Therefore, the 

adiabatic BO approximation considers the electrons instantaneously following the heavy nuclei 

(Born & Oppenheimer, 1927). The eigenvalues of the electronic Schrödinger equation at given 

nuclear configurations yield the BO-PES. A large molecule with many vibrational degrees of 

freedom obviously possesses a complex PES. The minima on this surface represent equilibrium 
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molecular structures and the saddle points transition states, mediating conformational changes or 

chemical reactions. The BO-PES concept is applicable for each electronic state. In photophysical 

and photochemical processes at least two PESs (excited and ground state) are involved and their 

characterization requires the determination of the two surfaces including the region where the 

surfaces are degenerate (i.e. the surface crossing seam). However, photochemistry is not limited 

to two electronic states. A prominent example is PET where two excited states (one of the 

excited chromophore and an electron-transfer state) and the ground state are involved. As this 

thesis will show, the BLUF problem requires the description of at least three PESs.  

 In their seminal paper, Neumann and Wigner showed that in diatomic molecules two energy 

surfaces of the same symmetry or spin multiplicity cannot cross because these molecules have 

only one internal degree of freedom (von Neumann & Wigner, 1929). Using their derivation, 

Teller argued that in contrast to diatomic systems, in polyatomic molecules a degeneracy may 

occur (Teller, 1937). The surface crossing was termed conical intersection because of the double-

cone shape of the surfaces in the appropriate two-dimensional subspace of the nuclear 

coordinates (Teller, 1937; Robb et al., 1995; Klessinger, 1995; Bernardi et al., 1996; Domcke et al., 

2011). The BO approximation brakes down at the conical intersection because non-adiabatic 

couplings between the two states become infinite. There is a high probability of non-adiabatic 

transitions between the degenerate electronic states, which provides an efficient and 

instantaneous channel for radiationless dissipation of the excitation energy (Teller, 1937; Robb et 

al., 1995; Bernardi et al., 1996; Domcke et al., 2011). Conical intersections were found to be 

ubiquitous in polyatomic molecules (Robb et al., 1995; Bernardi et al., 1996; Yarkony, 1996; 

Domcke & Yarkony, 2012), and play a key role in the radiationless decay of excited states. A 

thorough theory of conical intersections is given, for example, in (Domcke et al., 2011). 

 Figure 1.4 sketches some of the relevant processes occurring in light-absorbing molecules 

involving only singlet states (of interest in the BLUF problem). According to the Franck-Condon 

principle, photon absorption is a “vertical” process because it occurs much faster than the 

vibrational motion of nuclei. The molecule may return to the electronic ground state via the 

emission of a photon (radiative deactivation, fluorescence) or via internal conversion through a 

conical intersection (radiationless deactivation) or via an intersystem crossing (not considered 

here). In general, transitions that interconvert excited states with each other or excited and 

ground states without changing the molecular geometry significantly, are called photophysical 

processes. In general, transitions that yield chemically different molecular structures or different 

reactive intermediates are called photochemical processes. Often the radiationless deactivation 

does involve a significant geometry deformation of the molecule to reach a conical intersection. 

At the conical intersection (with the significantly altered geometry) the photoreaction may enter 

either (i) a photostable pathway, along which the reactant is regenerated (aborted photochemical 

reaction) or (ii) a photoactive pathway, along which a chemically distinct species, the 

photoproduct is formed (photochemical reaction). The topology of the potential energy surfaces 



Introduction  25  

 

in the vicinity of the conical intersection determines to a significant extent which pathway will be 

preferred at the conical intersection. The second key determinant is the dynamics: the velocity 

components in the two directions of the double-cone coordinate subspace determine the 

branching among the various possible pathways at the conical intersection (Klessinger, 1995).  

 

 

Figure 1.4. Schematic representation of photophysical and photochemical processes relevant in 
this work.  For details see text.  

 The accurate determination of the electronic PES and the characterization of conical 

intersections is a prerequisite to understand photostability and photoactivation in biomolecules. 

State-of-the-art ab initio electronic-structure methods provide the means and tools to do so, 

however, the technical aspects of exploring potential energy surfaces and an overview of 

electronic-structure methods cannot be given here and the reader is referred to the literature 

(Helgaker et al., 2000; Cramer, 2004; Serrano-Andrés & Merchán, 2005; Olivucci, 2005; Jensen, 

2011). More recently, computational methods of treating excited states and exploring potential 

energy surfaces in rather large molecules were reviewed in (González et al., 2012) and of 

characterizing conical intersections in (Schapiro et al., 2011). The next section briefly introduces 

the electronic-structure methods used in this thesis. 

1.3    Electronic-structure methods 

The exact form of the Schrödinger equation for a polyatomic system describing all its chemical 

properties is known, however, too complex to be solved. Therefore, as Paul Dirac called for in 

1929, approximate methods are needed to apply the quantum-mechanical laws to explain the 

main features of molecular systems. Since then, many methods have been developed and the field 

of quantum chemistry was born. This section briefly outlines the methods pertaining to the 

excited-state calculations of rather large molecules like flavins.   
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 The computed UV-Vis and IR spectra of flavin are in very good agreement with experiments, 

which shows the merit of the quantum-chemistry methods and raises confidence for the 

predictive capabilities of the calculations to answer experimentally unresolvable questions. Very 

good agreement in this context means that the calculations reproduce spectral signatures and 

explain the origin of spectral shifts. This is the case in the calculations of flavins where essentially 

most methods yield similar results. The computational aspects of computing excited states in 

flavins were recently reviewed in (Domratcheva et al., 2014).  

 To compute absorption and emission spectra, first the coordinates of the molecule are 

optimized in the ground and excited electronic state with a given method. At the optimized 

geometries, the vertical excitation energies are usually computed with a more accurate, higher-

level method. This procedure is denoted property-method//geometry-method in the following. 

The most popular computational method for ground-state properties is based on density 

functional theory (DFT) because of its reasonable accuracy and computational efficiency 

(Hohenberg & Kohn, 1964). In DFT the electronic energy is expressed as a functional of the 

electron density. The exchange-correlation energy term in the Kohn-Sham formulation has to be 

approximated (Kohn & Sham, 1965). The semi-empirical hybrid exchange-correlation functional 

B3LYP (Lee et al., 1988; Becke, 1993) is most widely used in the literature, also employed in the 

calculations presented in Chapter 4. Over the years many density functionals have been 

developed, recently reviewed, for example, in (Sousa et al., 2007; Grimme, 2011; Peverati & 

Truhlar, 2014). Alternative methods for ground-state calculations are the Møller-Plesset 

perturbation theory of second order (MP2) method (Pople et al., 1976) or the approximate 

second-order coupled-cluster with singles and doubles (CC2) method (Christiansen et al., 1995), 

also used for geometry optimization in Chapter 2. CC2 and MP2 feature similar accuracy and in 

contrast to DFT, they are ab initio wave-function based methods. 

 Similar to DFT for ground-state properties, the most popular choice for computing excited-

state properties in large molecules, is the time-dependent TD-DFT method (Runge & Gross, 

1984; Marques & Gross, 2004; Casida & Huix-Rotllant, 2012). TD-DFT is based on linear 

response theory where the excitation energies are obtained without solving the complete Kohn-

Sham equations explicitly. The major limitation of the TD-DFT method is a rather poor 

description of charge-transfer states (Tozer et al., 1999) and a gross underestimation of charge-

transfer excitation energies (Dreuw et al., 2003). For a qualitatively correct description of the 

excited states, the configuration interaction singles (CIS) wave function can be used (Foresman et 

al., 1992). Besides a HF reference wave function, it includes a linear combination of all possible 

singly-excited Slater determinants. The configuration coefficients are variationally optimized and 

characterize each state. The CIS method is rather fast and applicable to large systems, yet vertical 

excitation energies are severely overestimated. Including also doubly-excited determinants in the 

expansion, yielding the corresponding CISD wave function, usually results in little improvements 

(Foresman et al., 1992). A real improvement to the CIS and CISD methods are the so-called 
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spin-component scaled (SCS) and the scaled opposite-spin (SOS) variants, SCS-CIS(D) and SOS-

CIS(D) (Rhee & Head-Gordon, 2007). SOS-CIS for example was shown to provide excitation 

energies in good agreement with experiment (Khrenova et al., 2010). Computationally more 

costly, yet usually more accurate excitation energies are obtained with the response-theory based 

CC2 method, also used in Chapter 2. It is common to optimize the geometry in the excited state 

with TD-DFT and subsequently compute the excitation energies with CC2, denoted as a 

CC2//TD-DFT protocol, used for example in (Sadeghian & Schütz, 2007; Sadeghian et al., 2008, 

2010). A further method to obtain excited-state properties is the (second-order) algebraic-

diagrammatic construction method, ADC(2), based on a polarization-propagator approach that is 

devised for the treatment of valence excitations in rather large molecules (Trofimov & Schirmer, 

1995). 

In addition to correctly estimating excited states, the treatment of photochemical problems 

requires the description of bond-braking processes, biradicals and conical intersections, all cases 

where the merits of the above-mentioned methods is intrinsically limited. In these cases the use 

of a multi-determinant reference wave function is required, for example as in the multi-reference 

CI (MRCI) approach. MRCI//TD-DFT calculations were employed for example in (Salzmann et 

al., 2008, 2009). If also the MOs are variationally optimized in addition to the configuration 

coefficients, the so-called multi-configurational self-consistent field (MCSCF) procedure is 

carried out. Unlike single-reference methods, the MCSCF method yields a qualitatively correct 

description of practically any chemical electronic-structure problem. Chapter 2 gives examples for 

MCSCF wave functions and introduces an approach to apply it to the treatment of the BLUF 

photoreaction.  

1.4    Molecular models 

The molecular models considered in this thesis are based on the available X-ray crystal structures 

of the AppA BLUF domain, as well as on the BlrB and PixD proteins (Jung et al., 2006, 2005; 

Yuan et al., 2006). Several models were built in the course of this project, thus each chapter 

defines the models considered separately. As explained above, the minimal model to study BLUF 

photochemistry includes the photoactive triad. In the simplest case a so-called cluster model is 

constructed (Siegbahn & Himo, 2011) based on the coordinates of the lumiflavin part of the 

chromophore and the Y11 and Q53 side chains: their coordinates are “taken out” of the protein 

structure and capped with hydrogen atoms, exemplified in Figure 1.5A. The geometrical 

constraints of the missing protein environment are introduced through the coordinate locking 

scheme. Interactions with the local environment in some cases are considered by including 

respective side chains into the cluster. As a first step for example, the asparagine side chain, 
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which restrains the position of flavin by means of two hydrogen bonds, may be included to 

mimic the specific arrangement of the chromophore-binding pocket. These hydrogen bonds are 

important as they may also influence the redox properties of flavin. Further hydrogen-bonding 

partners were added to the cluster in the calculations presented in this thesis, as exemplified in 

Figure 1.5B. This procedure makes the calculations substantially more expensive. However, the 

obvious advantage is that all interactions are treated at the same (high) level of theory with the 

chosen quantum-chemical method, which is why this thesis refers to the local environment of the 

photoactive triad in such cluster models as the QM environment. In all figures in this thesis 

oxygen atoms are colored red, nitrogen atoms blue, hydrogen atoms white and sulfur yellow; 

carbon atoms are depicted in gray, green or orange, to distinguish certain parts of the model. 

 

 

Figure 1.5. (A) Minimal model of BLUF: the photoactive triad cluster model comprising LF, 
Y21 and Q63. (B) Larger cluster model that includes side chains of the local environment of the 
photoactive triad, treated at the same level of theory as the photoactive triad. (C) Hybrid 
QM/MM model of BLUF in a water droplet, with the photoactive triad in the QM subsystem 
and the rest of the protein together with the water and ion atoms in the MM subsystem. (D) 
QM/MM LA-scheme (inspired by (Senn & Thiel, 2009)). Q labels the QM atoms, M labels MM 
atoms, L labels the link atom at the QM/MM boundary. The partial charges illustrate the 
redefinition of the MM atomic charges of the MM2 atoms. 

 Because the protein and solvent environment in tuning spectral properties and controlling 

the photodynamics of biological chromophores usually plays an important role, this thesis also 

considers so-called hybrid QM/MM models, recently reviewed in (Lin & Truhlar, 2007; Senn & 

Thiel, 2009; Ananikov et al., 2010). The idea has been introduced by the 2013 Nobel Prize 

Laureates Warshel and Levitt in the study of an enzymatic reaction (Warshel & Levitt, 1976). 

Warshel and Levitt suggested to treat the biochemically active part of the protein (in this case the 

photoactive triad) at the QM level (QM subsystem), and the rest of the protein at a classical 

force-field-based molecular-mechanics (MM) level (MM subsystem), as indicated in Figure 1.5C. 
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It is generally assumed that the QM part can describe the reactive chemistry accurately, taking 

into consideration the interactions with the whole environment in an adequate way. Properties 

like, for example, protonation energies of the protein active site cannot be reproduced if the 

charge distribution of the surrounding protein is neglected (Warshel & Levitt, 1976; Kamerlin et 

al., 2009). With the QM/MM approach, the simulation of several hundred thousand atoms 

becomes possible. The coupling of the QM and MM subsystems is introduced by QM/MM 

interaction terms in the QM Hamiltonian and by the QM and MM descriptions of the boundary 

region. 

 The energy function of the QM/MM approach is given in Equation (1.1). The total energy 

of the system is determined by the QM Hamiltonian of the QM subsystem, the MM force field 

function of the MM environment and an explicit QM/MM coupling term describing the 

interactions between the QM and MM subsystems:  

                   (1.1) 

The QM Hamiltonian is determined by the quantum-chemical method used. The MM energy 

function represents the classical force-field terms: bond stretching, angle bending, dihedral 

torsions, improper torsions (the simple bonded terms), as well as the Lennard-Jones-type van-

der-Waals contribution and the Coulomb interactions between fixed point charges. The explicit 

coupling term         defines the given QM/MM method, where the electrostatic-interaction 

energy between the two subsystems is the most important term. This work uses the so-called 

electrostatic potential fitting (ESPF) scheme, that simply uses monopoles (Ferre & Angyan, 2002). 

This scheme will be described and discussed in detail in Chapter 3. More advanced QM/MM 

schemes, which are still not common, account also for the polarization of the MM charges by the 

QM subsystem (Monari et al., 2013) or include QM/MM interactions of the higher order 

electrostatic moments and additional explicit terms, for example, for dispersion or charge transfer 

(Nemukhin et al., 2003; Leverentz et al., 2011; Gordon et al., 2013).  

 Splitting the system into a QM and MM subsystem requires an adequate treatment of the 

covalent bonds across the QM/MM boundary. This work uses the most common, so-called link-

atom (LA) approach (Singh & Kollman, 1986), explained in Figure 1.5D. This approach 

introduces an additional hydrogen atom into the QM subsystem that covalently bounds to the 

carbon atom at the boundary and thus caps the dangling bond. Usually, a special treatment of the 

boundary MM atom is required, for example its charge is reset to zero in order to avoid 

overpolarization of the QM subsystem close to the boundary. The hydrogen LA does not take 

part in the QM and MM interactions and is “invisible” to the MM subsystem.  
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1.5    Aims of this thesis 

The central aim of this thesis is to map the potential-energy surface characterizing the BLUF 

photoreaction. Of particular interest are reaction pathways underlying the photoactivation of the 

dark state, the photostability of the light state and the redox effects observed in BLUF, 

controversially interpreted in the literature. The prerequisite for mapping the potential-energy 

surface is an adequate molecular model. The work presented in this thesis formulates the 

methodology, exploiting state-of-the-art multi-configurational multi-reference electronic-structure 

methods, and establishes an adequate computational protocol to achieve this goal.  

 This thesis is organized as follows. In Chapter 2, I explain the computational approach 

devised to specifically treat a large molecular system featuring the BLUF photoactive triad (flavin, 

glutamine, and tyrosine) with high-level multi-reference electronic-structure methods. In Chapter 

3, I present benchmark calculations that compare the cluster and QM/MM approaches for the 

computations of the BLUF excited-state energies and of the intermolecular interaction effects. In 

Chapter 4, I focus on the available BLUF X-ray and NMR structures and analyze in detail the 

possible glutamine rotamers and present glutamine dihedral-energy potentials defining the 

dynamical properties of the flavin-binding pocket. In Chapter 5, I present the results of the 

photoinduced PCET pathway calculations in several models of BLUF and discuss the emerging 

mechanistic picture of BLUF photoactivation, photostability, and redox tuning. A summary and 

outlook are provided in Chapter 6. 

  



 

2    Method benchmarking: POCAS 

The PT2//CASSCF method is widely used in studies of photophysical and photochemical 

reactions in organic molecules. In this chapter, I present a simple and physically intuitive way of 

constructing a CASSCF wave function in order to enable calculations on large systems such as 

the BLUF photoactive triad. First, a CASSCF wave function accounting for only static electron 

correlation is constructed; the MOs that provide this description of the excited states of interest 

are called principal orbitals. Including them in the active space yields the uniquely defined 

POCAS (principal-orbital complete-active-space) wave function. The dynamic electron 

correlation is included through the state-of-the-art multi-reference perturbation-theory methods, 

XMCQDPT2 and MS-CASPT2. POCAS is a computationally efficient alternative to the 

conventional way of choosing the active space in CASSCF calculations, according to which all 

MOs (or as many as possible) of the π and π* subspace are included. The POCAS approach 

provides a balanced description of the excited states of interest, even if they have different 

electronic character.  

 After a general introduction to CASSCF, I present the computational details of the two 

benchmark systems lumiflavin and the BLUF photoactive triad. Next, I compare the lumiflavin 

excited-state energies and the optimized S0 and S1 geometries computed with various active 

spaces and also with other quantum-chemistry methods. I also benchmark the excited-state 

energies in the BLUF photoactive triad, by comparing the CASSCF results with those of other 

methods. Section 2.3.3 in this chapter contains one figure (Figure 2.5) and some text from 

(Udvarhelyi & Domratcheva, 2011).  

2.1    CASSCF and POCAS 

Roos and coworkers pioneered the complete-active-space self-consistent field (CASSCF) method 

(Roos, 1972; Roos et al., 1980; Roos, 1987), that marks a cornerstone in applying the MCSCF 
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procedure to chemical problems. The CASSCF method reduces the problem of selecting 

important configuration state functions (CSF) for the MCSCF procedure to selecting important 

molecular orbitals for the so-called complete active space (CAS): The CASSCF wave function is 

the linear combination of all possible CSFs that can be constructed by distributing all active 

electrons among the active MOs. Thus a CASSCF calculation corresponds to performing a full 

configuration interaction calculation in the chosen active space. The remaining occupied and 

virtual MOs stay doubly occupied and empty, respectively, however, are also included in the 

orbital optimization during the SCF iterations. When treating several states in the CASSCF 

calculation, the energy optimization should be carried out in a state-averaged manner to ensure 

the orthogonality of the different wave functions (Werner & Meyer, 1981). Usually equal weights 

on the ground and excited state wave functions are used.  

 By construction, the CASSCF wave function accounts for quasi-degenerate correlation 

effects, which are often referred to as static or non-dynamic correlation. The CASSCF ansatz 

describes the correlation between two electrons at a large separation in space (long-range effects 

arising from mixing of degenerate states); e.g. a full valence CASSCF wave function will always 

dissociate a molecule correctly. However, the CASSCF wave function cannot account for short-

range correlation effects because it cannot describe the electron cusp owing to the instantaneous 

repulsion of electrons at short distances, which is often referred to as dynamic correlation. The 

definition and partitioning of the correlation energy into static and dynamic parts is not well-

defined, nevertheless it is an important and often useful concept in quantum chemistry. A given 

active space is going to be usually realistic if dynamic correlation remains constant along a 

reaction coordinate, leading to reasonable CASSCF-optimized geometries. At those geometries, 

dynamic correlation can be accounted for by multi-reference (multi-state) perturbation theory 

with the CASSCF wave function as a reference (Schmidt & Gordon, 1998). Because of the 

computational cost, one only computes the perturbation-theory energy correction until second 

order (MR-PT2 methods). There exist different ways to realize the multi-reference perturbative 

energy correction, like CASPT2 (Andersson et al., 1992) or NEVPT2 (Angeli et al., 2001), or 

those multi-state methods which allow for state interactions as well, like MS-CASPT2 (Finley et 

al., 1998) or XMCQDPT2 (Granovsky, 2011). This work employs CASPT2, MS-CASPT2, and 

XMCQDPT2. In the studies of potential energy surfaces, where many geometries of the 

molecule of interest are relevant, it is likely that so-called intruder states will deteriorate a region 

of the PES and result in unphysical energies. As a standard solution to this problem, the energy 

denominator around poles is shifted so that far from the poles the effect of the shift is 

insignificant. Throughout this work, the energy-denominator shift technique was used in the 

XMCQDPT2 calculations with a recommended edshft value of 0.02 hartree (Witek et al., 2002), 

and, likewise, in the CASPT2 calculations with an imaginary shift value of 0.2 hartree (Forsberg 

& Malmqvist, 1997). In contrast to the MOLCAS recommendation (www.molcas.org), the so-

http://www.molcas.org/
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called ipea shift (Ghigo et al., 2004), an empirical parameter, was not used in the calculations of 

this thesis. 

 In recent decades, the success of computing spectroscopic properties and excited-state 

relaxation pathways of small molecules with the CASPT2//CASSCF approach made it a 

standard, though computationally rather expensive method. Recent instructive examples are 

given in the works of Olivucci and coworkers (Altoè et al., 2010; Gozem et al., 2012; Bernini et 

al., 2013; Rinaldi et al., 2014) or Domcke and coworkers (Schultz et al., 2004; Sobolewski et al., 

2005; Frutos et al., 2007; Domcke & Sobolewski, 2013; Sobolewski & Domcke, 2006). The 

decision on the MOs comprising the active space represents the challenge in carrying out 

PT2//CASSCF calculations. There only exist rules of thumb but not a rigorous theory to guide 

the selection. Usually, the “chemically intuitive” full π electronic system with chemically 

important lone pairs is required to be included in the active space in order to be considered 

“balanced” (Veryazov et al., 2011). However, for larger molecules this recommendation becomes 

rather impractical since computational cost prohibits considering more than 14 electrons in 14 

MOs. Organic molecules of the size of lumiflavin possess an extended π-bonding system and 

several lone pairs. Usually a “top-down” approach serves as a solution to construct a 

computationally affordable active space, where one tries to reduce the “full π plus lone pairs” 

active space by excluding some MOs. One possibility is usually to exclude lone pairs on oxygen 

and nitrogen atoms (n MOs), in case one is not interested in the corresponding nπ* excited states. 

If this still results in an active space too large, one can try to exclude also the lone pairs that are 

part of the π system (p MOs) and check the resulting energies and occupation numbers of natural 

MOs. Occupied MOs with occupation numbers close to two and unoccupied MOs with 

occupation numbers close to zero are considered to be excludable from the active space 

(Veryazov et al., 2011). Usually, one tries to keep the number of active space occupied and virtual 

MOs approximately the same.  

 For large molecules this top-down approach often leads to the so-called “intermediate” 

active spaces. However, these might not represent the best choice for computing excited states 

and excited state relaxation pathways. For example, Martínez and coworkers already presented 

several examples where a rather small active space with a “chemically unintuitive” choice of the 

MOs (not selected based on the “top-down” approach) yields better energies for valence excited 

states than the full π CAS: An active space with only two-electrons-in-two MOs of the GFP 

chromophore yielded reasonable potential energy surfaces and allowed for extensive dynamics 

calculations in (Olsen et al., 2010); another example is the photochemistry of malonaldehyde 

where the authors argued that the four-electrons-in-four-MOs active space was not inferior to a 

large active space in locating and characterizing conical intersections in (Coe & Martínez, 2006); 

moreover, in (Levine & Martínez, 2009) the authors show that the full-π active space in butadiene 

even predicts a qualitatively incorrect PES. In the case of large molecules the full π-valence active 

space results in large active spaces that partially also account for dynamic correlation – already by 
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the sheer number of CSFs. In contrast, the smaller active space represents a more balanced 

treatment of correlation effects in only describing the static correlation.  

In (Domratcheva et al., 2006), the idea of using a small, or “minimal” active space in the 

excited-state computations of flavins was introduced: the active space should only comprise the 

MOs needed for the description of the excitations of interest. This is especially simple for single 

excited states like the HOMO-LUMO excitations. Often the low-lying excited states of interest 

are already known or, in case not, they can be easily identified by methods like CISD, CC2, or 

TD-DFT, which do not require any selection of the active MOs. In this thesis, the most 

important MOs from which and to which the electron excitation occurs, are called principal 

orbitals (POs). It is proposed that only those principal orbitals should be included in the active 

space, thus yielding the principal-orbital complete-active-space (POCAS) wave function. The 

POCAS wave function can be an advantage when the aim is to treat excited states of different 

chemical character in a balanced way because, by construction, POCAS accounts for static 

correlation and multi-reference perturbation theory recovers the dynamic correlation for all states 

in a balanced way. Here, CASSCF with the POCAS selection of the active space is tested for 

geometry optimization to elucidate photochemical pathways. Besides this work, the POCAS 

approach was also successfully employed in the studies of other flavoproteins, like the 6,4-

photolyase (Domratcheva, 2011; Moughal Shahi & Domratcheva, 2013) or cryptochrome 

(Solov’yov et al., 2012, 2014). This chapter contains the first systematic comparison of excitation 

energies with various active spaces and demonstrates the merit of the POCAS approach.  

2.2 Computational details 

First, lumiflavin is considered at the DFT-B3LYP optimized geometry, with the DZV(P) basis 

set with polarization functions on the “heavy” atoms. First, the excitation energies were 

computed by a number of single-reference methods, CIS, CISD, ADC(2), CC2, and TD-B3LYP 

to identify the structure of low-lying single-electronic excitations. The TZVP basis set was used; 

the computations were carried out with the quantum-chemistry software TURBOMOLE (ver. 

6.3, TURBOMOLE GmbH, Karlsruhe, Germany). Next, PT2-CASSCF calculations with the 

DZV(P) basis set were carried out, at the same B3LYP/DZV(P) geometry. The RHF MOs (or in 

some cases CASSCF MOs) served as starting MOs for the CASSCF wave function optimization. 

All CASSCF wave functions were optimized using state averaging with equal weights for each 

state. The CASSCF wave function averaged over r number of states with n number of active 

electrons in m active MOs is denoted as CASSCF(n,m)r. As PT2 theories XMCQDPT2, CASPT2, 

and MS-CASPT2 were employed. PT2(n,m)r denotes the energies computed with either MS-

CASPT2 or XMCQDPT2, using the CASSCF(n,m)r zero-order wave function. The 
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XMCQDPT2-CASSCF calculations were carried out with the quantum-chemistry package Firefly 

(Firefly ver. 7.1, 8; Granovsky) which is partially based on the GAMESS US source code 

(Schmidt et al., 1993); whereas the (MS-)CASPT2-CASSCF calculations were carried out with the 

MOLCAS package version 7.6 (Aquilante et al., 2010).  

To evaluate the effect of the active-space composition on the equilibrium geometry, the 

ground state of the lumiflavin molecule was optimized with different active spaces, including the 

POCAS and the conventional way of choosing the MOs, with the DZV(P) basis set with Firefly. 

The LF geometry was also optimized with different methods using different software: CC2/cc-

pVDZ and BHLYP/def-TZVP with Turbomole; and RHF/DZV(P), MP2/DZV(P), and 

B3LYP/DZV(P) with Firefly. The geometry optimization was performed without imposing 

symmetry constraints. In addition, it was also possible to optimize the LF geometry with Cs 

symmetry constraints at the XMCQDPT2(2,2)2/cc-pVDZ level with numerical gradients with 

the newest version 8.0 of the Firefly code. In this case, the recommended extra-tight convergence 

thresholds, a numerical gradient order of 4, and an edshft value of 0.02 hartree were applied. The 

S1 excited-state geometry of LF was optimized with CC2/cc-pVDZ and TD-BHLYP/def-TZVP 

in Turbomole; and with CASSCF/DZV(P) using different active spaces with Firefly. 

The supermolecular cluster model LF-Q-Y-N consisting of the photoactive triad and the 

N45 residue was built based on the AppA X-ray crystal structure (PDB code 2IYG) and 

optimized with B3LYP/DZV(P). To mimic the restraints of the protein, the geometry 

optimization was carried out with the terminal carbon atom in each molecular fragment fixed at 

the crystallographic positions. The absorption spectrum was computed with CIS/DZV(P) and 

XMCQDPT2-CASSCF/DZV(P) using different active spaces with the Firefly package.  

2.3 Results and discussion 

2.3.1 Low-lying excited states in lumiflavin 

The π system of lumiflavin consists of seven double bonds and two nitrogen lone pairs on the 

N3 and N10 atoms (for the LF atom numbering see Figure 1.1), denoted pN. There are further 

lone pairs of sigma symmetry on the N1 and N5 atoms, denoted nN, as well as two lone pairs on 

the O2 and O4 atoms each, denoted nO. The active space of the all these MOs, comprises 30 

electrons in 22 MOs, denoted CAS(30,22). With simple single-reference methods the principal 

orbitals describing the excited states of interest were identified. In Figure 2.1, the following 

excited states are indicated: the lowest-lying singlet excited state is a ππ* transition from the 

HOMO to the LUMO, denoted as S1; above it lie two nπ* states, involving nN and nO MOs, 

denoted as Sn; and another ππ* state, corresponding to a transition from the flavin HOMO−1 to 
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the LUMO, denoted as S2. The nπ* states show considerable mixing of various transitions and 

the structure of the excitations differs substantially in the various quantum-chemical treatments 

(Salzmann et al., 2008; Neiss et al., 2003). The ADC(2), CC2 and TD-B3LYP excitation energies 

are close, whereas the CIS and CISD excitation energies are significantly blue-shifted in 

comparison. The energies are in good agreement with the MRCI//B3LYP/TZVP calculations 

from (Salzmann et al., 2008). The S1 and S2 excitation energy estimates are slightly blue-shifted 

compared to the experimental FMN absorption maxima in water (Figure 1.2A). Importantly, all 

methods preserve the order of the states and reveal the principal orbitals involved in the 

excitations of interest, so that even CIS may be used to identify them. TD-DFT is well-suited to 

compute the flavin S1 excitation energy, which will be used in Chapter 4.  

 

 
 

 In the top-down approach, neglecting the non-π symmetry lone pairs reduces the active 

space to the full π-valence CAS(18,16), which is at the computationally possible limits. Excluding 

all lone pairs gives the (14,14) active space, and excluding one π* MO, the (14,13) active space, 

used, for example, in (Climent et al., 2006). To consider also nπ* excited states, the n MO of 

interest is added to the (14,13) active space. In the POCAS approach, the selection of the MOs 

for the active space follows a different logic: The active space is built on the basis of the 

identified (minimum number of) principal orbitals, according to the excited states of interest. 

Thus, the flavin S1 state is computed with a (2,2)2 active space, including the flavin HOMO and 

LUMO (denoted as (2,2)2-S1); the Sn state can be computed also with a (2,2)2 active space, but 

including the nN MO and the LUMO (denoted as (2,2)2-Sn). The S1 and S2 states are considered 

with a (4,3)3 active space, including the flavin HOMO−1, HOMO, and LUMO orbitals (denoted 

as (4,3)3-S1S2). The (8,5)5 active space includes two lone pairs (one nN and one nO), the 

HOMO−1, HOMO, and the LUMO orbital. Figure 2.2 compares the computed XMCQDPT2-

CASSCF energies of the S1, S2 and Sn excited states in the POCAS series (left panel) to the (MS-

)CASPT2-CASSCF energies in the series with the conventional way of reducing the active space 

(right panel). The conventional series was started from the (18,16) active space including the full 

π system of LF and two pN lone pairs. The MOs comprising the respective active space in Figure 

Figure 2.1. Excitation 
energies of the low-lying 
states of lumiflavin com-
puted with different 
methods. The MRCI// 
B3LYP values are taken 
from (Salzmann et al., 
2008). 

 



Method benchmarking: POCAS  37  

 

2.2 are explicitly indicated. The MOs and corresponding occupation numbers of the (18,16) 

active space are given in Figure 2.3. 

 

 

Figure 2.2. CASSCF and PT2 excitation energies of lumiflavin computed with the POCAS and 
conventional way of constructing the active space. The molecular orbitals comprising the active 
space are indicated explicitly.  

At the CASSCF level, the variation in the excitation energies upon a change in the active 

space is considerable, both with the POCAS and the conventional way of selecting the active-

space orbitals. Notably, there is a substantial variation among the results obtained with a (16,15)4 

active space, depending on whether a p or an nN MO is included in the active space. Furthermore, 

the S1 excitation energy is lowered significantly, by 0.29 eV, when the (14,14)3 active space is 

extended to (18,16)3, although the two pN MOs additionally included in the CAS(18,16)3 

calculation have occupation numbers 2.00 and 1.98 and thus would be considered not necessary 

to treat in the active space, according to the guidelines given in (Veryazov et al., 2011). The 

CASSCF S1 excitation energies obtained with the POCAS way of selecting the active-space 

orbitals are all higher than those obtained with the conventional selection; however, the variation 

among the POCAS excitation energies with a changing number of states is not larger than that of 

the full-π CASSCF results.  
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Figure 2.3. Lumiflavin CASSCF-optimized MOs and occupation numbers of the (18,16) active 
space. The MOs were visualized with the molcas gridviewer. 

Accounting for the dynamic correlation with the PT2 method stabilizes the excited state with 

respect to the ground state, so that the excitation energies are reduced. A comparison of the 

excitation energies computed with the different PT2 methods (XMCQDPT2 versus CASPT2 and 

MS-CASPT2) will be given in Chapter 3. Here, it is noted that MS-CASPT2 predicts higher 

excitation energies of the three considered states and shows substantially more variation than 

CASPT2. Importantly, the computed CASPT2 and MS-CASPT2 energies depend significantly on 

the number of states considered. Regarding the results with the POCAS way of choosing the 

active space MOs, at the XMCQDPT2 level, the S1 and S2 excitation energies show little 

variations. The number of states to be considered determines the active space in the POCAS 

selection. It remains to be clarified why the XMCQDPT2 correction stabilizes the Sn state so 

drastically compared to the S1 and S2 ππ* states; the Sn state computed with the active spaces of 

(6,4)4 and (8,5)5 lies even below the S1 state. The energies presented in Figure 2.2 suggest that the 

XMCQDPT2 stabilization is higher, the larger the respective Sn state CASSCF excitation energy 

is. In the documentation of Firefly (Granovsky, 2013) a list of criteria is given that judge whether 

the states and the active space provide a good zero-order description in the XMCQDPT2 

calculation. For all POCAS calculations, the analysis of the XMCQDPT2 results revealed that 

indeed (i) the off-diagonal elements of the second-order effective Hamiltonian matrix are small 

and do not exceed 0.008 hartree; (ii) the eigenvalues of the non-symmetric effective Hamiltonian 

are all real and close to the eigenvalues of the symmetric effective Hamiltonian; and (iii) the 
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overlap norm matrix of non-orthogonal eigenvectors contains off-diagonal values of less than 

0.05 hartree. Therefore, it is concluded that the XMCQDPT2-CASSCF calculations with the 

proposed principal-orbital active space provide a good description of the states of interest.  

2.3.2 POCAS-optimized geometry of lumiflavin 

To tackle photochemical problems with the POCAS way of constructing the active space, 

benchmarking of the optimized geometries is also relevant. Here, the optimized ground-state and 

S1 geometries of lumiflavin are compared. Two comparisons are of interest: the change of the 

geometry in going from the ground-state to the excited-state minimum and the comparison of 

the equilibrium bond distances (of the geometry change) obtained with different methods. Figure 

2.4 summarizes the results. For flavin photochemistry, the bond distances d9 and d10 are of 

special interest (see Figure 2.4A for the bond-distance definition). Five different active spaces are 

compared: (2,2)2-S1, (6,4)4 from the previous section, an “intermediate” active space (6,6)2, a 

“close-to-full π-π*” active space (12,12)2, and (14,13) (the latter results are taken from (Climent et 

al., 2006)). There is no experimental data on the LF structure. The graph in Figure 2.4B uses the 

structural data from (Wang & Fritchie Jnr, 1973), in which the LF bond distances were estimated 

based on several X-ray crystal structures of LF-related compounds, like 10-methylisoalloxazine 

because LF itself could not be crystallized. These estimated LF bond lengths are referred to as 

experimental data in the following. 

 Overall, geometry optimization with the listed methods yields similar ground state structures. 

The CC2, B3LYP, MP2, and XMQDPT2 methods are close in their bond length predictions; 

overall these methods give longer bond lengths compared to the experimental ones. Interestingly, 

there are more variations among the CASSCF-optimized geometries: (i) independent of the active 

space, the double bonds in ring II and III are significantly shorter than with the other methods or 

in the experimental structure; (ii) the geometries optimized with CASSCF(2,2)2 and 

CASSCF(6,4)4 are very close to those optimized with RHF and BHLYP; (iii) notably, the 

CASSCF(12,12)2- and CASSCF(14,13)-structures deviate more from the reference experimental 

data than the POCAS geometries; and (iv) the largest deviations are obtained with the 

intermediate active space (6,6)2.  

 The geometry changes between the optimized S1 and ground state minima reveal how the 

excited flavin relaxes on the excited-state potential-energy surface. All methods yield a longer N5-

C4a (d10) and a shorter C4a-C10a (d9) bond distance in the S1 minimum compared to the CS 

ground state minimum, which are the most pronounced geometry changes upon flavin S1 

relaxation and in accord with the electronic structure of the S1 HOMO-LUMO transition. These 

changes were also reported in the literature (Salzmann et al., 2008; Climent et al., 2006; Wolf et al., 

2008). Overall, CC2 essentially predicts the same geometry changes as BHLYP. The largest 
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changes in d9 and d10 are predicted by CASSCF(12,12)2 and CASSCF(14,13) and the smallest 

changes by CASSCF(2,2)2 and CASSCF(6,4)4. The CASSCF results are consistent in ring III but 

show different, even opposing, geometry changes in ring I when the POCAS and large active-

space results are compared. Importantly, the geometry changes computed with CASSCF(2,2)2 

and CASSCF(6,4)4 are practically indistinguishable. This property of POCAS-selected active 

spaces will be exploited during the pathway calculations in Chapter 5. 

 

 

Figure 2.4. Equilibrium geometries of lumiflavin. (A) Labelling of rings and bond lengths in LF. 
(B) Bond lengths of LF optimized with different methods. The experimental data on the LF 
bond lengths are taken from (Wang & Fritchie Jnr, 1973) (top). Relative distances, i.e. bond 
lengths differences between the optimized geometries and the experimental reference structure 
(bottom). (C) Bond-lengths differences between the S1 and GS minimum-energy geometries. 
The double bonds are highlighted on the plots by bold and underlined numbers. The geometry 
data from the CASSCF optimization with the (14,13) active space are taken from (Climent et al., 
2006). 

2.3.3 Excitation energies in the BLUF cluster 

In BLUF the excited states of interest are the light-absorbing S1 and S2 states of flavin and the 

optically dark electron-transfer state that corresponds to a ππ* electronic transition from the 

tyrosine HOMO to the flavin LUMO. The CIS method was used to compute the excitation 
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spectrum at the B3LYP-optimized geometry to identify the low-lying states in the BLUF cluster 

model, shown in Figure 2.5. The ET state is the eighths excited state in the CIS spectrum. Below 

it in energy lie three flavin ππ*, two flavin nπ*, and two tyrosine ππ* excited states. As expected, 

the CIS method substantially overestimates the excitation energies, however, reveals the principal 

orbitals to be included in the active space to compute the excited states of interest. For each state, 

dominated by a single-electronic excitation, a pair of MOs (occupied and virtual in the reference 

RHF electronic configuration) is included in the active space. As several states represent an 

excitation to the flavin LUMO, the POCAS active spaces contain less virtual than occupied MOs. 

The largest POCAS active space considered here is (8,6)7, describing the flavin S1, Sn, S2, the 

tyrosine S1, and the tyrosine-flavin ET state (the sixth excited state has major contributions from 

double excitations).  

 

 

Figure 2.5. Electronic excitation energies in various BLUF models. The composition of the 
active space is indicated explicitly, black and red letters correspond to flavin and tyrosine MOs, 
respectively. The main (6,4) active space is given twice, first at the DFT-optimized geometry and 
second at the CASSCF(6,4)4-optimized geometry. The CC2 values are taken from (Sadeghian et 
al., 2008), the MRCI values from (Salzmann et al., 2009), and the SOS-CISD values from 
(Khrenova et al., 2010). Figure was modified from (Udvarhelyi & Domratcheva, 2011). 

As Figure 2.5 demonstrates, at the XMCQDPT2 level the states reorder with respect to the 

CIS result: as in the case of the LF molecule, the Sn state lies below S1 in energy and the ET state 

is lower than the tyrosine locally-excited S1 state. Excluding the doubly excited and tyrosine S1 

state leads to the (8,5)5 actives space, with similar excitation energies of the respective states as 
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with (8,6)7. Considering only the flavin S1, S2, and the ET state yields the (6,4)4 active space, used 

in Chapter 5 in the computations of the photoinduced electron-transfer pathway. The (6,4)4 

active-space MOs and the electronic configurations corresponding to the four states of interest 

are depicted in Figure 2.6. CASSCF(6,4)4 was also used to optimize the ground-state geometry. 

At the CASSCF(6,4)4-optimized geometry the excitation energies are consistently blue-shifted 

with respect to the CASSCF spectrum calculated at the B3LYP-optimized geometry. 

 

 

Figure 2.6. POCAS electronic configurations and frontier MOs of the (6,4)4 active space in the 
BLUF cluster model. The active space is highlighted in pale orange. 

A systematic comparison of the XMCQDPT2-CASSCF excitation energies computed with 

various active spaces constructed in the bottom-up POCAS way and the top-down conventional 

way is given in Figure 2.7. Here, the top-down conventional way can only be used with 

“intermediate-sized” active spaces because including the whole π-π* valence system on both the 

flavin and tyrosine is computationally too demanding. The BLUF results are consistent with the 

LF results in the previous sections, therefore the same conclusions can be drawn. The most 

important points are: The XMCQDPT2 correction lowers the CASSCF excitation energies 

considerably and makes them less dependent on the active space. The Sn excitation energy varies 

drastically among the active spaces used. The results computed with active spaces constructed 

with the conventional way depend significantly on the number of states considered. The ET 

excitation energy is above 4 eV in all cases.  

Figure 2.5 also compares the POCAS results to excitation energies reported for flavoproteins 

in the literature: BlrB-BLUF (Sadeghian et al., 2008), AppA-BLUF (Khrenova et al., 2010), and a 

LOV-domain protein (Salzmann et al., 2009), where the ET state involves a cysteine residue 

instead of tyrosine. Compared to these literature results, the POCAS results for the S1 state are in 

good agreement, whereas the excitation energies of the ET state are overestimated. It should be 
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noted though, that while the calculations of the S1 and S2 excitation energies are well-established 

(Domratcheva et al., 2014), estimating the ET excited state remains a challenge. TD-DFT 

methods for example severely underestimate electron transfer states because of the self-

interaction error (Sadeghian et al., 2008; Salzmann et al., 2009). Increasing the portion of the HF 

exchange increases the ET excitation energy (Sadeghian et al., 2008). Other methods, like CC2 

and SOS-CISD place the ET state well above the flavin S1 state, in agreement with the presented 

XMCQDPT2 estimates. The sensitivity of the ET state on the molecular model and the PT2 

method will be further discussed in detail in Chapter 3. The low energy of the Sn state after the 

XMCQDPT2 correction clearly disagrees with the Sn energy of flavin in the LOV protein 

(Salzmann et al., 2009). However, while in the case of LOV photoreceptors the flavin Sn states 

were proposed to play a role in the formation of the flavin triplet state (Salzmann et al., 2008, 

2009), in BLUF the flavin triplet state is not part of the photoactivation pathway (Gauden et al., 

2007; Bonetti et al., 2009). Thus the computation of the flavin Sn state is not important for BLUF. 

 

 

Figure 2.7. CASSCF and XMCQDPT2 excitation energies computed with the POCAS and 
conventional way of selecting the active-space MOs. The MOs comprising the active space are 
indicated; black and red letters correspond to flavin and tyrosine MOs, respectively. 
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2.4 Conclusions  

This chapter formulated the POCAS approach, a practical way of choosing the active MOs for 

CASSCF, especially in the case of large molecules and many electronic states of interest in 

photochemical-pathway calculations. In the POCAS approach the principal MOs are defined by 

the electronic states of interest and enable the description of static correlation. Excitation-energy 

calculations on the isolated lumiflavin molecule showed that the POCAS approach in 

conjunction with single-point XMCQDPT2 or MS-CASPT2 calculations provides good estimates 

for the S1 and S2 ππ* excited states. Likewise, the POCAS-optimized ground- and excited-state 

geometries of lumiflavin were found to be consistent with those optimized with other electronic-

structure methods. Importantly, the major geometry changes between the ground state FC and 

the S1 minima were fully reproduced. Notably, two active spaces chosen according to the POCAS 

approach (considering different number of states) yielded practically identical optimized 

geometries in the chosen state. Moreover, the PT2//POCAS excitation energies show very 

minor variations with respect to the number of electronic states included in the computation. 

These results raise confidence that the PT2//CASSCF method with the POCAS approach to 

select active MOs is well-suited to treat photochemical problems of the BLUF flavoprotein that 

was used in the extensive photoreaction calculations in Chapter 5.   



 

3    Cluster models vs. QM/MM models 

In this chapter, I compare the excitation energies computed in a QM cluster and a hybrid 

QM/MM model to elucidate the origin of the excitation energy shifts caused by intermolecular 

interactions. The flavin S1, S2, and the tyrosine-flavin electron transfer (ET) excited states are 

computed with the PT2//CASSCF method. To determine how intermolecular interactions and 

their description (QM or QM/MM) affect the excitation energies, I introduced variations in the 

QM cluster model composition and also modified the QM and MM subsystems of the QM/MM 

model. The excitation energies computed with the alternative models significantly differ in 

magnitude, and their shifts also originate from different physical effects that was established by a 

detailed energy-decomposition analysis. The results show significant changes of the ET excitation 

energy depending on the donor-acceptor distance, electrostatic interactions as well as wave-

function polarization and QM charge-transfer interactions. I analyzed the contributions of 

specific residue interactions to compare the predictions of the cluster and QM/MM models and 

to identify the most suitable model for the photochemical pathway calculations, presented in 

Chapter 5.  

3.1    Cluster and QM/MM models in photoreceptor studies  

As introduced in Chapter 1, two main approaches to build models of photoreceptors are 

conceivable: the supermolecular cluster and the QM/MM approach. To date, representatives of 

all major photoreceptor-protein classes have been studied to some extent with the QM/MM 

approach (Sekharan & Morokuma, 2011; Sekharan et al., 2012, 2013; Pal et al., 2013; Gozem et 

al., 2012; Melaccio et al., 2012; Valsson et al., 2013; Strambi et al., 2010; Polli et al., 2010; 

Rajamani et al., 2011; Salzmann et al., 2009; Sadeghian et al., 2008; Solov’yov et al., 2012; Isborn 

et al., 2012; Frähmcke et al., 2010; Groenhof et al., 2008; Falklöf & Durbeej, 2013). In the 

computations of various rhodopsin photoreceptors, the leading role of the electrostatic 
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environment in color tuning (Melaccio et al., 2012; Valsson et al., 2013; Wanko, Hoffmann, 

Frauenheim, et al., 2008) and photosensitivity (Gozem et al., 2012) of the retinal chromophore 

has been demonstrated. Recently, polarization effects were ascribed to an important role in 

rhodopsin (Valsson et al., 2013; Wanko, Hoffmann, Frauenheim, et al., 2008; Wanko, Hoffmann, 

Frähmcke, et al., 2008), but also in BLUF (Rieff et al., 2011). However, the general role of 

polarization effects in the photoreceptor properties and their treatment (extending the QM 

subsystem or using polarizable MM force field) has not been established yet. Most of these 

studies model the chromophore in the QM subsystem and the apoprotein in the MM subsystem. 

For example, including the conserved side chains interacting with the bilin chromophore in the 

QM subsystem of a bacteriophytochrome QM/MM model, resulted only in a marginal shifts of 

the computed excitation energies and was considered to be not worthwhile in the view of the 

significantly increased computational cost (Falklöf & Durbeej, 2013). 

In practice, with a given high-level QM method, a cluster model of a larger size than the size 

of the QM subsystem in QM/MM calculations can be computed. Therefore, with the cluster 

model the interactions of the chromophore with its local environment can be treated at the QM 

level. The cluster-model approach has especially been productive in the studies of metal-

containing proteins, where it was demonstrated that including the nearest neighbor residues of 

the active site already converges the activation energies (Siegbahn & Himo, 2011). These studies 

also emphasized the decisive role of the QM description in getting reliable energies (Siegbahn & 

Himo, 2011). In the case of photoreceptor proteins, studies employing cluster models were 

carried out for example in (Gromov et al., 2007; Domratcheva et al., 2008; Khrenova et al., 2010, 

2011; Solov’yov et al., 2012). Martínez and coworkers pioneer excited-state calculations with 

cluster models as large as the entire protein (Isborn et al., 2011). Thus, excited-state calculations 

in cluster models with increasing size become feasible. It is expected that from the comparison of 

computed excited-state properties with cluster models to those obtained with QM/MM models 

further insights into the nature of intermolecular interactions underlying light reception will 

emerge.  

A comparative analysis between cluster and QM/MM models is especially interesting in the 

case of the BLUF photoreceptor, because its photosensory function depends not only on the 

excited states of flavin, but also on the tyrosine-flavin ET state. This chapter analyzes how the 

local and more distant protein environment affects the BLUF excitation spectrum and how 

reliable different approaches are in modeling the relevant intermolecular interactions. To this end, 

a fairly large QM cluster and a QM/MM model are used to represent the environment of the 

photoactive triad in BLUF and to compute the excitation spectrum with the PT2//CASSCF 

method. The two models were optimized with two different programs: The QM subsystem was 

embedded into the MM environment by means of the “electrostatic potential fitting” (ESPF) 

operator (Ferre & Angyan, 2002) with the QM/MM coupling scheme between the MOLCAS 

quantum-chemistry suite (Aquilante et al., 2010) and the Tinker MM program (Ponder & 
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Richards, 1987); whereas the QM cluster model calculations were carried out with the program 

Firefly (ver 7.1, 8; Granovsky). The efficient computational code of Firefly allows treating a much 

larger cluster model than MOLCAS can treat in the QM subsystem of the QM/MM model, 

however, Firefly unfortunately does not have QM/MM CASSCF energy gradients implemented. 

Recently, Firefly was used to compute photochemical problems with cluster models of DNA 

photolyase and a cryptochrome photoreceptor, for example, in (Domratcheva, 2011; Solov’yov et 

al., 2012; Moughal Shahi & Domratcheva, 2013; Solov’yov et al., 2014). MOLCAS/Tinker is 

widely employed for QM/MM studies of photoreceptor proteins, recent examples are (Gozem et 

al., 2012; Melaccio et al., 2012; Bernini et al., 2013; Solov’yov et al., 2012; Rinaldi et al., 2014). 

The excited states treated here are the flavin S1, S2 and the tyrosine-flavin ET states. The 

PT2//CASSCF method is used and the active space is selected according to the POCAS 

computational scheme explained and benchmarked in Chapter 2. The two computer codes have 

different PT2 methods implemented: XMCQDPT2 in Firefly and (MS-)CASPT2 in MOLCAS. 

This chapter also compares the results of the two PT2 methods. The excitation spectrum is 

computed at a series of models: the composition of the cluster model and of the QM subsystem 

is varied, whereas the geometry parameters are conserved. Two equilibrium geometries were 

considered, one obtained with the large cluster model and the other with the QM/MM model. In 

addition, the effect of manipulating the MM subsystem in the QM/MM model is evaluated. The 

origin of the computed excitation energy shifts is analyzed, with special attention paid to the ET 

excited state because of its high relevance to the BLUF photoreaction. 

3.2 Models and analysis 

3.2.1 Cluster model and QM/MM models 

Based on the PDB coordinates of the PixD BLUF protein (Yuan et al., 2006), a QM-cluster 

model was built, consisting of the riboflavin (RF) molecule and the side chains Q53, Y11, N34, 

N35, M96, S31, and L44, in the following referred to as RFQY-NNMSL or full cluster model (in 

total 135 atoms). To mimic the geometric constraints of the protein on these selected residues, 

specific atoms were fixed during CASSCF geometry optimization (computational details are 

presented in Section 3.3.1). On the basis of the final optimized geometry of RFQY-NNMSL, a 

set of models was prepared by successively excluding the molecular fragments of the side chains 

(in the following referred to as cluster-model series, RF-series). Analogously, a model series with 

lumiflavin (LF) as the chromophore was also considered (LF-series). All these models are listed 

in Table 3.1. With the cluster model series the intermolecular interactions between the 

photoactive triad and its local environment that includes the ribityl chain, and the side chains S31, 
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N34, N35, L44 and M96 (termed the QM environment α) was analyzed, as schematically shown 

in Figure 3.1A. For brevity, the residue numbering in all plots and model designations is omitted; 

in the cases where only one asparagine is indicated, N35 is included in the model and in the cases 

where two asparagines are included, they are N34 and N35. Note that every fragment in all 

models of the series has the same coordinates because the geometries of the reduced models 

were not reoptimized. For each prepared model the excitation energy spectrum was computed 

with the XMCQDPT2//CASSCF method. 

The QM/MM model was built based on the same BLUF protein, PixD, which contains the 

LF-Q53-Y11 triad (LFQY) in the QM subsystem and the rest of the protein with the solvent in 

the MM subsystem. After QM/MM geometry optimization with CASSCF/AMBER (details are 

presented in Section 3.3.2), several variants of this so-called reference QM/MM model were 

prepared, to analyze the role of intermolecular interactions in spectral tuning. To this end, the 

QM and MM subsystems were repartitioned such that the QM subsystem includes, in addition to 

the photoactive triad, one or two residues of the set α={S31,N35,M96} (here, as in the case of 

the cluster models, the variable α is used to specify the composition of the QM environment of 

the triad included in the QM subsystem), as indicated in Figure 3.1A.  

Table 3.1. List of models prepared based on the optimized cluster and optimized QM/MM 
model, in the “cluster series” (left) and the “QM/MM series” (right). The number of atoms and 
basis functions is also given.  

cluster model 
# of 

atoms 
# of cc-pVDZ 

basis functions 
 

QM subsystem of 
QM/MM model 

# of 
atoms 

# of DZV(P) 
basis functions 

LF/RF 31/43 345/465  LF 31 309 

LF/RFQY (triad) 59/71 615/735  LFQY (triad) 56 515 

LF/RFQY-S 70/82 720/840  LFQY-S 62 553 

LF/RFQY-M 71/83 729/849  LFQY-M 65 580 

LF/RFQY-N 68/80 700/820  LFQY-N 65 585 

LF/RFQY-NN 86/98 870/990  LFQY-SM 71 618 

LF/RFQY-SN 79/91 805/925  LFQY-SN 71 623 

LF/RFQY-MN 80/92 814/934  LFQY-MN 74 650 

LF/RFQY-SM 82/94 834/954 

LF/RFQY-SNN 97/109 975/1095 

LF/RFQY-MNN 98/110 984/1104 

LFQY-SMNN 109 1089 

RFQY-SMNNL  135 1319 

   

    

 

A QM/MM model containing LF only in the QM subsystem and the rest of the system in 

the MM subsystem was also considered. These QM/MM models are referred to as QM/MM-

model series in which the index α indicates the composition of the QM subsystem. Side chains 

α={S31,N35,M96} were considered at their MM-optimized geometry. In addition to the 
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QM/MM repartitioning, the reference QM/MM model was modified by zeroing the MM charges 

of S31, N35, and M96 (the same side chains as in the QM environment) to eliminate the 

electrostatic QM/MM interactions of these residues with the photoactive triad. The effect of 

changing the MM charges in the vicinity of the electron donor and acceptor by +1 and −1 a.u. in 

the reference QM/MM model was also tested; for these computations the residues Y66, S30, 

H75 and the phosphate group of the FMN chromophore were selected. The atomic coordinates 

of the geometry-optimized reference QM/MM model were used for every modified model 

without reoptimization. 

 

 

Figure 3.1. BLUF models and the analysis of excitation energies. (A) QM-cluster and 
QM/MM-model series; (B) Comparison of the intermolecular-interaction energies in the ground 
and excited states to reveal the role of intermolecular interactions in the excitation-energy shifts. 
The energy designations and formulas used to evaluate the excitation-energy shifts due to the 
specific method (QM or QM/MM) and environmental (interacting side chains) effects are 
explained in the text. 

For each QM/MM model the excitation energy spectrum with the (MS-)CASPT2// 

CASSCF method was computed, as detailed in Section 3.3.2. Additionally, for the QM/MM 

series with the modified QM subsystems, the excitation spectrum without the QM/MM 

embedding was also computed, with the (MS-)CASPT2 and XMCQDPT2 methods. From these 

latter calculations without the MM environment, one can infer both on the effect of the method 

(i.e. by comparing the XMCQDPT2 results with CASPT2 for the same QM subsystem) and on 

the effect of the geometry (i.e. by comparing the XMCQDPT2 excitation energies of the QM 

subsystem without the MM environment with those of the cluster model of the same 

composition). 
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3.2.2 Analysis of intermolecular interactions  

The environment-induced excitation-energy shift depends on the redistribution of the electronic 

density upon the transition. To visualize the redistribution, the difference (excited state minus 

ground state) electrostatic-potential maps of all transitions of interest were computed. 

Concomitant with the charge redistribution of the electronic excitation, there is a charge transfer 

between the photoactive triad and its local QM environment. This charge transfer is visualized by 

the electrostatic-potential maps. As expected, the charge transfer is largest for the transition from 

the CS ground state to the ET state. To quantify the effects, the differences of the net charges 

(ET state minus ground state) on the electron acceptor flavin, electron donor tyrosine and on the 

QM environment of the photoactive triad were computed. To illustrate the effect of the wave-

function polarization by the MM charges, double-difference electrostatic potential maps were 

computed by subtracting the electronic transition maps of the QM/MM models from its QM 

subsystem without the MM environment.  

In the ESPF QM/MM coupling method (Ferre & Angyan, 2002), the interaction energy 

between the QM and MM subsystems consists of two components: (i) a classical electrostatic 

interaction energy term between the electron-density fitted    ESPF charges of the QM 

subsystem atoms and the    MM charges; and (ii) the energy change due to the polarized wave 

function,        , as compared to the QM solution without the MM environment. The ESPF 

energy is computed as a Coulomb sum  

 
      ∑

    

   
  {     }

  {  }

 
(3.1) 

where     is the distance between atom   of the QM subsystem and atom   of the MM subsystem. 

To determine the polarization energy, two energy calculations for each QM/MM model were 

carried out: one with and one without the MM environment, to obtain        and    , 

respectively. From the QM/MM calculations       and the energy of the MM subsystem,    , 

are known, so the energy contribution due to the polarized wave function can be computed as 

                               (3.2) 

The QM/MM excitation energies are given by 

 
             

          
   

                                         
(3.3) 
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where    ,       and          are the differences of    ,       and         in the ground and 

excited states, respectively. The excitation-energy shift obtained in the QM/MM calculation with 

respect to the QM calculation,      , also has two contributions: one due to the QM/MM 

electrostatic interactions and the other due to the QM-subsystem polarization by the MM 

environment: 

                                (3.4) 

The excitation-energy shifts upon modification of the QM and MM subsystems are defined 

as follows. The QM excitation-energy shift obtained upon including the α side chain(s) (α was 

specified in Section 3.2.1) in the QM environment of the photoactive triad is given by  

     
     

     
      (3.5) 

The QM/MM excitation-energy shift caused by zeroing the MM electrostatic charges of the α 

residue is given by 

     
        

                   
            

              
      (3.6) 

The QM/MM excitation energy shift upon moving side chain(s) α from the MM to the QM 

subsystem is defined as  

        
        

        
          

        
          

  (3.7) 

The electrostatic interaction energy contribution   to the     
  shift was estimated by 

computing the respective Coulomb sum between the    Mulliken charges of the photoactive triad 

and the    Mulliken charges of the QM environment α as 
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  {     }

  { }

 
(3.8) 

The electrostatic interaction energy contribution to the excitation energy shift is 

 
  

  ∑
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(3.9) 

By definition, the model which consists of the photoactive triad only has a Coulomb sum of zero 

(Equation 3.8); thus    
    

    
        

 , and it is referred to as the Coulomb shift, 
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analogously to the excitation-energy shifts defined above. So the QM shift defined above 

(Equation 3.5) can be expressed by the electrostatic term   
  and a non-electrostatic term 

     
    

         
  (3.10) 

The Coulomb shift (Equation 3.9) was computed for the QM/MM models and compared with 

that of the respective QM subsystem computed without the MM environment. For the QM/MM 

model, either the ESPF charges or the Mulliken charges were used. A graphical presentation of 

the energy decomposition and a summary of the excitation-energy shifts are given in Figure 3.1B. 

3.3 Computational details 

3.3.1 Cluster models 

The X-ray structure of the PixD BLUF protein (Yuan et al., 2006) (PDB code 2HFN, chain A) 

was used to generate the QM cluster model introduced above. The geometry was optimized in 

the ground state with the CASSCF(6,4)4 method, with the coordinates of the selected atoms (the 

hydroxyl-oxygen atom of S31 and the black-colored carbon atoms indicated in Figure 3.2A) fixed 

to the values in the PDB model. The cluster model series was prepared as explained above. The 

LF geometry was obtained from the RF geometry by removing the ribityl fragment and placing a 

hydrogen atom along the C-C bond at a distance of 1.091 Å. The XMCQDPT2//CASSCF(6,4)4 

excitation energies were computed with an edshift value of 0.02 au. The cc-pVDZ basis set was 

used in the calculations of the QM cluster model series. In the calculations of the isolated LF or 

RF molecules, only the three MOs localized on flavin were included in the active space and the 

three states were computed with the CASSCF(4,3)3 method. These calculations give consistent 

excitation energies with the CASSCF(6,4)4 calculations: in the LFQY cluster model for example, 

the S1 and S2 excitation energies computed with XMCQDPT2// CASSCF(4,3)3 agree within 0.03 

eV to those computed with XMCQDPT2//CASSCF(6,4)4.  

The electrostatic-potential maps and atomic Mulliken charges were computed from the zero-

order QDPT density, generated for each electronic state. The net charge was computed for the 

isoalloxazine ring of the flavin and for the whole tyrosine fragment in the ground state and ET 

state. The net charge on the QM environment was computed by excluding all the atoms of the 

photoactive triad (RFQY in the RF series and LFQY in the LF series) and summing up the 

charges on the remaining atoms. The electrostatic-potential maps for the full cluster model, 

computed on a fine grid of approx. 100 × 100 × 100 points, were visualized with Chemcraft. The 

counterpoise correction (Boys & Bernardi, 1970) using ghost MOs was used to evaluate the basis 

set superposition error (BSSE). All calculations of the cluster model series were performed with 
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the quantum chemistry package Firefly (ver. 7.1, 8; Granovsky), which is partially based on the 

GAMESS US source code (Schmidt et al., 1993). 

3.3.2 QM/MM calculations 

Based on the X-ray structure of the PixD BLUF protein (Yuan et al., 2006) (PDB code 2HFN, 

chain A), the initial coordinates of the QM/MM model were prepared with the help of the 

GROMACS 4.5 package (Pronk et al., 2013). The hydrogen atoms were added to the PDB model 

assuming standard protonation states of the residues (arginine and lysine residues protonated; 

aspartate and glutamate residues deprotonated, histidine residues neutral, H75 with Nε-H and the 

other histidines with Nδ-H). In a 75.5 × 75.5 × 75.5 nm3 box, 9055 water molecules and 7 Na+ 

ions solvated and neutralized the protein model. The entire model was subjected to 500 steps of 

steepest-descent energy minimization with the GROMOS53A6 force field (Oostenbrink et al., 

2004) and the SPC water parameters (Berendsen et al., 1981). The energy-minimized model was 

reduced to contain the protein, the Na+ counterions and a water-shell of 15 Å around the protein 

(4519 water molecules) for the QM/MM calculations with the MOLCAS 7.6/7.8 package 

(Aquilante et al., 2010) interfaced to the Tinker software (Ponder & Richards, 1987).  

The AMBER force field (Cornell et al., 1995) and the TIP3P water model (Jorgensen et al., 

1983) were used to describe the MM subsystem. For the flavin mononucleotide (FMN) with the 

terminal hydrogen phosphate, charge −1, the RESP charges were derived from a HF/6-31G* 

calculation using the antechamber package (Wang et al., 2006). The atom types and van-der-

Waals parameters of FMN were assigned according to the AMBER atom types of amino acids 

and nucleobases. The hydrogen link atom (LA) scheme at the QM/MM boundary was used 

(Singh & Kollman, 1986). The frontier was placed between non-polar sp3 carbon atoms in the 

FMN cofactor and several amino acid residues. To avoid overpolarization of the QM subsystem, 

the charge of the boundary MM carbon atom was set to zero and equally redistributed among the 

three neighboring MM atoms. In addition, the small residual charges of the MM part of the 

partitioned side chains and FMN were also equally redistributed among the three neighboring 

MM atoms (charge-redistribution scheme A). The charge-redistribution scheme A was used for 

the geometry optimization and for the computations with the modified QM part and the zeroed 

MM charges. In the computations with adding a positive or negative charge to selected residues, 

only the charge of the boundary MM carbon atom was redistributed among the three 

neighboring atoms, but the residual non-zero MM charge of the partitioned FMN and side chains 

was kept (charge-redistribution scheme B). The results of the two charge-redistribution schemes 

for the reference model with LFQY in the QM subsystem were compared. The respective total 

QM/MM energies of the four electronic states differ in the second or third digit of an atomic 
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unit, whereas the largest difference in the excitation energy was found to be 0.11 eV for the ET 

state, with an ET excitation energy decrease computed with scheme B. 

The geometry of the QM/MM model with the LFQY photoactive triad in the QM 

subsystem (the reference model) was optimized in the ground state with the CASSCF(6,4)4 

method, with “microiterations on” (Melaccio et al., 2011) to relax the geometry of the MM 

subsystem within 4 Å of any QM atom whereas the remaining MM atoms were kept frozen. The 

excitation energies were computed with the CASPT2 and MS-CASPT2 methods (without 

applying the ipea shift and with an imaginary shift of 0.2 au). In all calculations with MOLCAS 

the DZV(P) (d-functions on the heavy atoms) basis set was used. The excitation energies of the 

QM subsystem without the MM environment were also computed with the (MS)-

CASPT2/DZV(P) methods using the MOLCAS program and with the XMCQDPT2/cc-pVDZ 

method using the Firefly program. 

To compute the electrostatic potential from the CASSCF electron densities of the QM 

subsystems with and without the MM environment, 40 × 40 × 40 grid points were explicitly 

specified in the MOLCAS input file. The grid points were generated to be similar to the "coarse" 

grids of the Firefly program. From the MOLCAS output, standard cube files were generated with 

a perl script for the visualization of the potentials with Chemcraft. For the comparison of the 

net-charges the same definition of the electron donor and electron acceptor fragments and of the 

QM environment as in the cluster models were used. For the calculations of the Coulomb shifts, 

the Mulliken and ESPF charges computed with the CASPT2 method were used. 

In Chapter 5, two more QM/MM models will be used in the calculations of the 

photoreaction pathways. First, a QM/MM model based on the presented model of PixD BLUF 

but with LF, Q53, Y11, and N35 in the QM subsystem, for which the geometry was reoptimized. 

This model is referred to as PixD-II QM/MM model in Chapter 5. Second, a QM/MM model 

based on the X-ray structure of BlrB (Jung et al., 2005) (PDB code 2BYC, chain A) was also 

prepared, analogously to the PixD model detailed above. The final BlrB QM/MM model 

contains the 136-amino-acid-long protein, the FMN chromophore with hydrogen phosphate with 

charge −1, the photoactive triad (LFQY) in the QM subsystem, and the solvent shell consisting 

of 4010 water molecules and one Na+ ion. In both the PixD II and the BlrB QM/MM models 

the charge redistribution scheme A was used. 
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3.4 Results 

3.4.1 Geometry of the flavin-binding site 

The geometry optimization of the QM cluster and QM/MM models yielded two significantly 

different equilibrium structures of the photoactive triad and its local environment. Whilst the 

intrinsic geometry parameters of flavin and tyrosine are very similar as the same CASSCF method 

was employed, the different constraints of the two models resulted in different intermolecular 

distances. The hydrogen-bonding network of flavin in the two optimized structures of the 

binding site is shown in Figure 3.2. The equilibrium distances of relevant flavin bond lengths are 

also indicated. During QM/MM geometry optimization, the MM environment prevents large 

structural relaxation of the QM subsystem and thus the optimized distances of the hydrogen-

bonding network are very similar to those in the initial X-ray structure. In contrast, in the QM-

cluster model the geometry relaxation is significant as the fixed terminal atoms provide relatively 

weak constraints. The equilibrium distances characterizing the inter-fragment interactions 

increase compared to their magnitudes in the initial crystal-structure geometry, and most of the 

hydrogen-bond distances are longer in the cluster model as compared to the X-ray structure and 

the QM/MM model. In the cluster model, the M96 and S31 side-chains move away from their 

crystallographic positions. As a consequence, in the cluster model the hydrogen bond between 

the backbone carbonyl of S31 and the backbone nitrogen of N35 is disrupted. The displacement 

of M96 in the cluster is favorable for the formation of a hydrogen bond between flavin's C4=O4 

and the amide group of Q53. Hence the N(Q53)-O4(flavin) distance is shorter in the cluster 

model than in the QM/MM model. The constraints of the MM subsystem prevent the 

movement of the M96 side chain away from the photoactive triad, which interferes with the 

glutamine-flavin interactions. The role of the M96 side chain in modulating the flavin-glutamine 

interactions has been discussed previously in (Khrenova et al., 2011). 
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Figure 3.2. Optimized geometries of the BLUF photoactive triad and its local environment. (A) 
The QM-cluster model (left) and the QM subsystem of the QM/MM model (right). In the QM 
cluster series, the carbon atoms shown in black and the hydroxyl oxygen of S31 were fixed 
during geometry optimization. In the QM/MM model, the boundary MM carbon atoms are 
shown in black. The carbon atoms of the photoactive triad LFQY are shown in grey and those 
of its QM environment in green. (B) Selected equilibrium distances in Å in the QM-cluster (left) 
and QM/MM model (right). The N35 side chain is not shown for clarity. (C) Relevant bond 
lengths in Å of RF in the optimized cluster model (left) and of FMN in the optimized QM/MM 
model (right). 
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3.4.2 Excitation energies – QM calculations 

Figure 3.3 compares the excitation-energy spectra computed with the CASSCF, XMCQDPT2 

and CASPT2 methods at the two optimized geometries. On the abscissa of the plots, the models 

are arranged according to their decreasing CASSCF ET excitation energy, and this order is 

conserved throughout this chapter. The order does not correlate with the number of atoms 

comprising each model (given in Table 3.1); it is rather the specific intermolecular interactions of 

the included molecular fragments that determine the energy trend. The comparison of the 

energies at the two geometries shows that the ET excitation energy is 0.3 eV downshifted at the 

more compact QM/MM-optimized geometry, independent on the computational method. The 

lower ET excitation energy in the QM/MM models can be attributed to the decreased distances 

between the electron donor and acceptor as well as to the modifications of the hydrogen bond 

distances. At the same time, the S1 and S2 excitation energies stay unchanged, consistent with the 

fact that the equilibrium geometry of flavin is very similar in the cluster and QM/MM models. 

 

 

Figure 3.3. CASSCF and XMCQDPT2 excitation energies in the QM-cluster series (left); 
CASSCF, XMCQDPT2 and CASPT2 energies of the QM subsystem in the QM/MM model 
series without the MM environment (right). The corresponding MS-CASPT2 energies of the 
QM subsystems are presented in Figure 3.5. The residue numbering is specified in Section 3.2.1 
and in Figure 3.1 but is omitted for brevity in all plots. 

The differential dynamic electron correlation (the difference of the CASSCF and PT2 

excitation energies) is larger for the S1 state (1.0-1.27 eV with XMCQDPT2 and 1.40-1.65 eV 
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with CASPT2) than for the S2 and ET states (0.84-0.89 eV with XMCQDPT2 and 0.94-1.43 eV 

with CASPT2). The XMCQDPT2 method gives significantly higher energies than the CASPT2 

method, especially for the S2 state (about 0.5 eV difference). The MS-CASPT2 estimates (shown 

below, in Figure 3.5) are closer to the XMCQDPT2 ones, but still 0.1-0.3 eV smaller. The 

XMCQDPT2 S1 and S2 energies are in good agreement with the experimental BLUF spectrum, as 

the estimated spectral maxima are expected to shift to the lower energies upon improving the 

equilibrium geometry with a method accounting for the dynamic correlation, by extending the 

basis set and also upon accounting for vibronic interactions. As documented in the literature, all 

these improvements result in a red-shift of the excitation-energy maximum in flavin (Klaumünzer 

et al., 2010). 

The decrease of the ET energy is larger than of S2 in the computed series, which leads to the 

crossing of these two states at the QM/MM-optimized geometry when the S31 and M96 side 

chains are included in the QM subsystem. Adding both S31 and M96 side chains results in the 

reordering of the S2 and ET states. There is a significant decrease of the CASPT2 ET excitation 

energy upon addition of S31; upon further addition of M96 not only the ET energy significantly 

decreases but also the S2 energy significantly increases. At the same time, the respective changes 

in the CASSCF and XMCQDPT2 energies are much smaller. Table 3.2 and Figure 3.4 present 

the charge distribution analysis, demonstrating the S2/ET state crossing. In the S2 state, the 

electron donor Y11 and acceptor LF are neutral, while in the ET state, they become a cation and 

anion, respectively. In the LFQY-S and LFQY-M complexes, the S2 and ET states are 

significantly mixed. At the cluster-model geometry, the energy of the ET state is systematically 

up-shifted compared to the QM/MM models without the MM environment, and the state 

crossing is absent. 

Table 3.2. Mulliken charge differences between the 3rd and 4th electronic state and the ground 
state on the LF (full LF fragment) and the Y11 fragment, computed with CASPT2 and 
XMCQDPT2 at the QM/MM model series geometries (without the MM environment taken 
into account).  

 

CASPT2 XMCQDPT2 

 

LF Y11 LF Y11 

  3rd 4th 3rd 4th 3rd 4th 3rd 4th 

LFQY-N    −0.0034 −0.9890 0.0046 0.9943 −0.0045 −0.9956 0.0039 0.9952 

LFQY-SN −0.0050 −0.9840 0.0075 0.9920 −0.0107 −0.9871 0.0110 0.9881 

LFQY-MN −0.0064 −0.9849 0.0080 0.9908 −0.0154 −0.9841 0.0150 0.9841 

LFQY −0.0112 −0.9878 0.0114 0.9880 −0.0286 −0.9716 0.0279 0.9713 

LFQY-S −0.5104 −0.4818 0.5119 0.4845 −0.7098 −0.2883 0.7100 0.2891 

LFQY-M −0.8564 −0.1395 0.8570 0.1405 −0.8824 −0.1174 0.8817 0.1174 

LFQY-MS −0.9873 −0.0064 0.9911 0.0082 −0.9869 −0.0105 0.9880 0.0111 
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In the cluster-model series, there is a systematic difference in the excitation energies of the 

LF- and the RF-containing complexes, which are ascribed to the hydrogen-bonding interactions 

of the ribityl-chain OH-group with the N1-C2=O2 part of flavin. The energy difference is small 

(below 0.05 eV) in the case of the S1 state and it changes the sign when the CASSCF and 

XMCQDPT2 results are compared. The S2 energy computed with CASSCF and XMCQDPT2 is 

lowered by up to 0.08 and 0.15 eV, respectively, when RF is compared to LF. The respective 

lowering of the ET excitation energy is 0.1 and 0.15 eV. The addition of the side chains to the 

FlQY triad causes both blue and red shifts of the excitation energies, hence the FlQY model is 

situated in the middle of the excitation energy plots. The interactions with the side chain of N35, 

forming two hydrogen bonds with the flavin O4=C4-N3H moiety as a hydrogen donor and 

acceptor simultaneously, increases the S2 and ET excitation energies. In contrast, a hydrogen-

bond donation of the N34 side chain to the flavin C2=O2 carbonyl group stabilizes the S2 and 

ET states. The M96 and S31 side chains do not form hydrogen bonds with flavin, but including 

them into the complex decreases the energies of the S2 and ET states. The magnitudes of the 

respective CASSCF and XMCQDPT2 excitation-energy shifts are consistent with each other.  

To aid the comparison of the models of varying size, the basis set superposition error 

(BSSE) was evaluated, using the counterpoise correction scheme (Boys & Bernardi, 1970). Here, 

the BSSE is computed as the lowering of the excitation energy upon including ghost MOs on the 

environment of the triad or the RFQY-SNN model. The results are compiled in Table 3.3. The 

inclusion of the ghost MOs decreases the excitation energies, especially that of the ET states. 

Adding the ghost MOs on the SNNML environment to the RFQY triad decreases the ET 

excitation energy by 0.05 eV. Thus, the BSSE accounts for 0.05 eV (20%) of the total 0.25-eV red 

shift of the ET excitation energy in the full cluster model RFQY-SNNML as compared to the 

photoactive triad RFQY model. Adding the ghost MOs of N35 (the side-chain causing the 

increase of the ET excitation energy) decreases the ET excitation energy by 0.02 eV. Hence, the 

0.12-eV blue shift of the RFQY-N cluster with respect to the RFQY model is underestimated by 

0.02 eV (15%) without correcting for BSSE. If a larger complex model is considered, such as 

RFQY-SNN, the BSSE contributes 0.02 eV (15%) to the 0.13-eV red shift of the ET excitation 

Figure 3.4. Net Mulliken charge 
differences on the electron donor Y11 
and electron acceptor LF between the 
second (red line) and third (blue line) 
excited state and the ground state, 
demonstrating the crossing of the S2 
and ET states. 
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energy obtained upon extending this model to the full cluster model RFQY-SNNML. Thus, 

accounting for BSSE increases the blue shift and decreases the red shift of the ET excitation 

energy. Employing the core-consistent XMCQDPT2' method (Granovsky, 2011), by performing 

the Firefly calculations with irot=1 in the LF-series, resulted in a systematic and size-independent 

blue shift of 0.02-0.03 eV of the ET excitation energies. Thus, the shifts in the excitation energies 

upon variation of the size and composition of the cluster model is not an artifact of the 

computational methods, but a manifestation of the intermolecular interactions stabilizing or 

destabilizing the excited state with respect to the ground state. 

Table 3.3. Correction of the XMCQDPT2 excitation energies using the counterpoise correction 
scheme. a) energies are taken from Figure 3.3; b) BSSEs are given in brackets. 

 

 

 

 

 

 

 

3.4.3 Excitation energies – QM/MM calculations 

Figure 3.5  shows the excitation energies of the QM/MM models obtained with and without the 

electrostatic embedding of the QM subsystem into the MM environment. With the CASSCF 

method a downshift of the S1 and S2 excitation energies and a large upshift of the ET-state energy 

are obtained upon embedding. With the CASPT2 method, only the S2 state is down-shifted, 

whereas the S1 and ET states are up-shifted. The S2/ET state crossing is absent in the QM/MM 

calculations. Upon embedding, the change of the excitation energy with respect to the 

composition of the QM subsystem is significantly reduced, which is especially apparent for the 

ET excitation energies. More specifically, without embedding, the ET excitation-energy 

difference between the most blue-shifted and most red-shifted estimates equals to 0.40 eV (MS-

CASPT2 estimates), whereas upon embedding it decreases to 0.10 eV. For the S1 and S2 energies, 

the largest change is found between the QM subsystem consisting only of the LF fragment and 

the other QM/MM models. Yet again, these shifts are smaller than the respective shifts obtained 

without the QM/MM embedding. 

 

 excitation energy [eV] 

 S1 S2 ET 

RFQYa)  3.06 3.89 4.31 

RFQY with ghost MOs on N35 3.05 (0.01)b) 3.87 (0.02) 4.29 (0.02) 

RFQY with ghost MOs on NNS 3.05 (0.01) 3.87 (0.02) 4.27 (0.04) 

RFQY with ghost MOs on SNNML 3.04 (0.02) 3.87 (0.02) 4.26 (0.05) 

RFQY-SNNa) 3.08 3.85 4.19 

RFQYSNN with ghost MOs on ML 3.07 (0.01) 3.84 (0.01) 4.17(0.02) 

RFQYS-NNMLa) 3.07 3.82 4.06 
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3.4.4 Electrostatic potential maps and charge-transfer effects 

Figure 3.6 compares the difference electrostatic-potential maps characterizing the three electronic 

transitions. Table 3.4 presents the dipole moments in the four electronic states. In the full cluster 

model, all excited states are more polar than the ground state; the polarity increases in the order 

S1, S2, and ET. The excited states of flavin S1 and S2 correspond to an intramolecular negative-

charge transfer from the phenyl to the uracil ring, consistent with the structure of the MOs 

involved in the transitions, as discussed in Chapter 2. The ET state corresponds to one electron 

transfer from the phenol ring of tyrosine to the isoalloxazine system of flavin; thus the transition 

from the ground state to the ET state is the most polar one considered in this study. For the QM 

subsystem computed without the MM environment, a very similar picture to that of the full 

cluster model is found. There are pronounced changes in the charge distribution upon 

embedding the QM subsystem to the MM environment, demonstrating its polarization. The 

polarization of the states by the MM environment increases the polarity of all four states but to a 

different extent. The largest effect is found for the S1 state that becomes more polar than the S2 

Figure 3.5. The effect of the 
electrostatic embedding on the 
excitation energies. To aid the 
comparison, the dashed lines 
report the excitation energies of 
the QM subsystem computed 
without the MM environment, 
which are the same CASSCF and 
CASPT2 energies as in the right 
panel of Figure 3.3. The QM/MM 
excitation energies were 
computed with the charge-
redistribution scheme A. 
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state. The ground-state polarity also significantly increases and becomes comparable to the 

polarity of the S2 state. The polarity of the ET state increases to the same extent as that of the 

ground state. Hence the polarity of the transitions changes: The S1 transition becomes 

significantly more polar, the S2 transition substantially less polar and the polarity of the ET 

transition does not change as demonstrated by the double-difference maps in Figure 3.6C. 
 

 

Figure 3.6. Electrostatic potential differences (in atomic units) upon electronic transitions and 
electrostatic embedding. (A) Molecular model and electrostatic-potential difference maps in the 
largest cluster model. (B) Molecular model and electrostatic-potential difference maps in the 
QM/MM models in comparison to the same models without MM environment. The color scale 
shown is also valid for the maps presented in panel (A). (C) The double difference maps “w/-
w/o MM” visualize the polarization of the electrostatic transitions upon including the MM 
environment. The Chemcraft software was used for the visualization of the maps with the 
mapped spheres scaled by 1.5 to improve the visibility of the differences. 
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Table 3.4. Dipole moments (in Debye) for selected models of the cluster series (XMCQDPT2),  
QM/MM series (XMCQDPT2 and CASSCF without MM) and QM/MM models (CASSCF 
with MM). The XMCQDPT2 method is abbreviated by XPT2. 

 

GS S1 S2 ET 

QM/MM XPT2 
CASSCF 

w/o MM 
CASSCF 
w/ MM 

XPT2 
CASSCF 

w/o MM 
CASSCF 
w/ MM 

XPT2 
CASSCF 

w/o MM 
CASSCF 
w/ MM 

XPT2 
CASSCF 

w/o MM 
CASSCF 
w/ MM 

LF-Q-Y-N 9.47 10.26 13.65 9.89 11.00 17.25 14.23 11.72 13.64 37.37 37.59 39.58 

LF-Q-Y 6.56 7.84 10.46 8.93 10.57 15.48 13.40 10.10 10.99 35.77 36.53 37.66 

LF-Q-Y-S 5.88 7.42 10.96 9.10 10.90 16.28 16.60 19.80 11.75 27.67 20.58 37.78 

LF-Q-Y-M 6.06 7.00 9.39 8.30 9.85 14.28 12.12 9.11 9.99 30.78 29.94 35.52 

LF-Q-Y-MS 5.67 6.79 9.88 8.74 10.40 15.09 12.51 9.03 10.77 34.06 34.40 35.64 

Cluster 
            

LF-Q-Y-N 7.98 
  

8.43 
  

13.01 
  

38.96 
  

LF-Q-Y 4.92 
  

7.53 
  

12.33 
  

38.47 
  

LF-Q-Y-MS 5.75 
  

9.37 
  

12.98 
  

35.12 
  

RF-Q-Y-MSNNL 8.11 
  

11.62 
  

15.31 
  

39.91 
  

 

As demonstrated by the maps of the full cluster model in Figure 3.6A, the charge 

redistribution involves also the environment of the photoactive triad in all three electronic 

transitions. Especially noticeable is the redistribution of the negative charge into the local 

environment of the flavin electron acceptor upon the ET transition. To quantify the charge 

transfer, the net-charge difference (ET state minus ground state) on the electron donor, electron 

acceptor and the environment of the photoactive triad was computed. The charge-transfer 

magnitudes correlate with the ET excitation energy, as evidenced by Figure 3.7.  

 

 

Figure 3.7. Correlation between the charge transfer to the QM environment and the excitation 
energies of the ET state computed in the cluster model series. For both RF and LF series, the 
CS ground state to ET charge transfer on the electron acceptor isoalloxazine fragment, the 
electron donor tyrosine fragment and on the QM environment α is shown. The red lines 
indicate linear regression, performed with gnuplot. 
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The more the excitation energy is shifted to the red, the more the negative-charge transfer from 

tyrosine to flavin deviates from one electron and the larger amount of the negative charge is 

transferred to the environment. This finding indicates that the charge transfer interactions of the 

photoactive triad with its environment stabilize the very polar (charge-separated) ET state with 

respect to the ground state. The absolute magnitude of the charge leakage to the environment is 

only −0.0057 au. However, even a small amount of charge transfer between interacting molecules 

has been shown to be associated with significant charge-transfer interaction energies (Mo et al., 

2011). In the QM/MM models with the α side chains included in the QM subsystem, the charge-

transfer interaction also should play a role. The analogous charge transfer analysis for the 

QM/MM models was not carried out because of the small number of models and because the 

S2/ET state mixing obviously influencing the atomic charges. 

3.4.5 Excitation-energy shift upon QM/MM embedding 

Of the two QM/MM interaction energy components       (Equation 3.1) and         

(Equation 3.2), the former represents the stabilization (binding) energy; it is more negative than 

the QM/MM interaction energy. The         term is approximately one order of magnitude 

smaller than       and is positive as it corresponds to the energy of redistributing the 

equilibrium electron density upon polarization by the MM environment. Although the CASSCF 

and CASPT2-derived ESPF charges are quite different, the respective       interaction energies 

are very similar in magnitude. The         term increases when computed with the CASPT2 

method as compared to the CASSCF method. Because the two terms have an opposite sign, the 

excitation-energy shift upon electrostatic embedding,        (Equation 3.4), results from the 

interplay of the stabilization and destabilization of the two electronic states: The blue shift 

originates from either the increased electrostatic interactions of the ground state compared to the 

excited state or a larger polarization of the excited state compared to the ground state. The origin 

of the red shift is a larger electrostatic stabilization of the excited state or a larger wave-function 

polarization of the ground state. The more polar the transition is, the more significant the ESPF 

contribution       becomes. The polarity of the transitions is demonstrated by the difference 

electrostatic-potential maps in Figure 3.6B. In the case of nonpolar transitions, like the S2 

transition in the QM/MM model, the       component should be insignificant and thus the 

wave-function polarization contribution         determines the excitation-energy shift. The 

double difference electrostatic-potential maps in Figure 3.6C illustrate the charge redistribution 

due to wave-function polarization. 

 The results of the energy decomposition analysis for the CASSCF and CASPT2 excitation-

energy shifts upon electrostatic embedding,      , are presented in Figure 3.8. The       shifts 

are very similar when computed with the CASSCF and CASPT2 methods, whereas the 

        shifts increase significantly when computed with the CASPT2 method for the S1 and S2 
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transitions but are quite similar for the ET transition. The largest         shifts are obtained for 

the QM subsystems with the S2/ET state crossing; these large shifts are related to the spurious 

change of the S2 and ET energies computed with the CASPT2 method. The       term causes 

the red-shift of the S1 energy, does not contribute to the shift of the S2 energy, and significantly 

blue-shifts the ET excitation energy. The         shift is blue for the S1 transition and thus 

counteracts the red       shift. In total, the CASSCF S1 energy is red-shifted because of the 

electrostatic interactions, but the CASPT2 S1 excitation energy is blue-shifted because of wave-

function polarization. The          energy completely determines the red shift of the S2 excitation 

energy. For the S1 and S2 transitions, the largest shifts are found when the QM subsystem 

consists only of the LF chromophore. Interestingly, in the LF model, the       and          

shifts compensate each other for the S1 transition, whereas they sum up for the S2 transition. In 

the LFQY model, the         red shift partly counteracts the large       blue shift for the ET 

transition. 

 

 

 

Figure 3.8. Energy decomposition 
analysis of the QM/MM models. 

The two contributions,         and 

      to the excitation-energy 
shifts upon including the 
interactions with the MM part, 

      (Equation 3.4), are shown. 
Negative and positive values 
correspond to red and blue shifts, 
respectively. 
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3.4.6 Modifications of the MM charges 

The modifications of the MM charges of selected side chains resulted in specific changes of the 

excitation-energy spectrum, especially of the ET excitation energy. Figure 3.9 shows a cartoon of 

the flavin-binding pocket with highlighted residues for which the MM charges were manipulated. 

The computed excitation energies after zeroing the MM charges of the S31, N35, or M96 

residues along with the energy decomposition analysis is presented in Figure 3.10; the results 

obtained when modifying the charges on the phosphate group of FMN and on the H75, S31, or 

Y66 residues are presented in Figure 3.11. Zeroing the MM charges resulted in small changes of 

the excitation energies, with the largest shift of the ET energy. Zeroing the S31 or N35 charges 

resulted in a 0.03-0.04 eV (5-6 nm) blue shift of the S1 excitation energy. Experimental 

absorption spectra are available for a PixD S31A mutant, which show a 12-nm red shift of the 

first absorption band, associated with the S1 transition (Bonetti et al., 2009). Thus, a simple 

zeroing procedure is not capable of reproducing the experimental trend. Zeroing of the M96 side 

chain causes only an insignificant S1 shift, more in line with the experimentally observed 

unperturbed absorption spectrum of the PixD M96A mutant (Yuan et al., 2011). The interactions 

of the photoactive triad with N35 result in a blue shift of the ET excitation energy and 

interactions with either S31 or M96 yield a red shift. The respective       and         terms 

follow the same trend as in the unmodified QM/MM series. The origin of the       excitation-

energy shifts is the same as in the reference QM/MM model, however, because of the small 

magnitudes of the shifts, neither       nor         can be neglected if the excitation energies of 

the modified models are compared to those of the reference model. 

 

 

Figure 3.9. Arrangement of the residues with modified MM charges in PixD BLUF. The MM 
charges of the cyan colored residues were set to zero. The charges on the green-colored residues 
and the phosphate were changed by +1 or −1 a.u.  
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Figure 3.10. CASSCF and (MS-)CASPT2 excitation energies of the S1, S2, and ET states in eV 
with (solid lines) and without (transparent lines) the MM environment. The brackets in (S), (N) 
and (M) indicate that the corresponding residue’s electrostatic interactions were switched off by 
setting the charges of its atoms to zero (left). Energy decomposition analysis of the excitation 
energy shifts upon including the MM environment (right). The charge redistribution scheme A 
and the same color coding are used as in the previous figures.  

 Upon placing a positive or a negative charge on the H75, S31, and Y66 residues as well as on 

the phosphate group of FMN, substantial shifts of the ET excitation energy, and small changes 

of the flavin S1 and S2 excitation energies are found, as expected. The energies, along with the 

shift decomposition, are presented in Figure 3.11. As in all considered models, the changes of the 

S1 and ET energies follow the same trend as the       energies, whereas the changes of the S2 

energy are determined by the polarization term        . The polarity of the S1 transition is 

significantly smaller compared to the ET transition, therefore only small changes of its excitation 

energy are possible to achieve through the electrostatic interactions with the environment. In 

contrast, the large polarity of the ET transition underlies its high sensitivity to the electrostatic 

charges of the environment. The computed changes are consistent with the conjecture that 

interactions of the electron donor with the negative charge and the acceptor with the positive 
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charge decrease the ET excitation energy. The reverse is also true: interactions of the donor with 

the positive charge and of the acceptor with the negative charge increase the ET energy. It is 

interesting to note that the stabilization of the ET state by placing a negative charge on Y66 

results in almost degenerate ET and S2 states. However, in this case the two states are not mixing 

at all: the Mulliken charges on the LF fragment in the third and fourth state are −0.9610 and 

−0.0032 a.u., respectively; and on the Y11 fragment 0.9616 and 0.0036 a.u., respectively, 

indicating that the QM/MM coupling dominates the QM coupling between the two degenerate 

states. 

 

 

Figure 3.11. CASSCF and (MS-)CASPT2 excitation energies of the S1, S2, and ET states in eV 
(left). Energy decomposition analysis of the excitation energy shifts upon including the MM 
environment (right). The charge redistribution scheme B and the same color coding is used as in 
the previous figures.  

3.4.7 Intermolecular interactions and the excitation energy of the ET state 

The above analysis showed that the ET state is most sensitive to environmental effects. These 

can be both red- and blue-shifting: upon extending the QM model a pronounced red-shift is 

obtained, whereas by adding the MM environment the ET excitation energy is significantly blue-
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shifted. This section further elaborates on the role of electrostatic and non-electrostatic 

interactions in determining the ET excitation energy. In Figure 3.12, the electrostatic-interaction 

energy difference in the CS ground state and the ET state, i.e. the Coulomb shift   
  (Equation 

3.9), is compared to the XMCQDPT2 or CASPT2 excitation-energy shifts     
  (Equation 3.5) 

and also to the shifts computed with the QM/MM models        
  (Equation 3.7), originated 

from including the side chain(s) α in the QM environment, and to the ESPF component of the 

latter shift,       
 . 

 

 

Figure 3.12. Comparison of the   
 ,     

  and        
  shifts of the ET excitation energy 

obtained upon including the QM environment α. (A)      
  and   

  shifts in the RF-cluster 

model series computed with XMCQDPT2 using Mulliken charges. (B)     
  and   

  shifts in 

the QM subsystems without MM environment, computed with both XMCQDPT2 and 

CASPT2 using Mulliken charges. (C)         
  and   

  shifts in the QM/MM models, 

computed with CASPT2 using Mulliken and ESPF charges. Additionally, the       
  shift and a 

   -term explained in the text (Equation 3.11) is plotted. (D) Same as in (C) with additional 

terms     (Equation 3.13) and       
     . Note the different energy scale of the plots. 

 The     
  shift includes the contribution of all interactions between the photoactive triad 

and the particular side chain(s) α (electrostatic, charge transfer, polarization) computed with the 
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XMCQDPT2 or CASPT2 methods. The deviations between   
  and     

 , presented in Figure 

3.12A and B, indicate the role of interactions other than electrostatic ones in the excitation 

energy of the ET state. Such interactions are, for instance, polarization and charge-transfer. The 

charge-transfer analysis in Figure 3.7 indicates that the role of these interactions increases in the 

red-shifted models and these interactions contribute to the stabilization of the ET state. In the 

blue-shifted models RFQY-N (Figure 3.12A) and LFQY-N (Figure 3.12B) the electrostatic 

interactions of the triad with N35 induce a blue-shift, which is further increased by the small shift 

due to the non-electrostatic interactions. In the model RFQY-NN (Figure 3.12A), including the 

N35 and N34 side chains results in a small blue shift, but this shift is compensated by the 

substantial red shift due to the non-electrostatic interactions. In the RFQY-S and RFQY-M 

models (Figure 3.12A), the Coulomb shift equals to the XMCQDPT2 QM shift, indicating that 

the non-electrostatic effects are equal in the two states and therefore play no role in the 

excitation-energy shift. Interestingly, however, when both S31 and M96 side-chains are added in 

the RFQY-MS model, a significant non-electrostatic red shift appears. Thus, it seems that the 

contribution of non-electrostatic interactions is increasing with increasing number of molecular 

fragments included in the environment of the RFYQ triad which stabilizes the ET state (red-

shifts the ET excitation energy). In the full cluster model, the shifts due to the electrostatic and 

non-electrostatic interactions have the same sign (both red) and are about equal in magnitude.  

 It appears that there is an increasing contributing of the non-electrostatic quantum effects in 

the LFQY-S and LFQY-M complexes (Figure 3.12B) according to the CASPT2 shifts as 

compared to the XMCQDPT2 shifts. These models feature the S2/ET state crossing (see Figure 

3.4) and therefore the polarity of the ET state is reduced by the mixing with the S2 state, thus 

decreasing the respective Coulomb sum. Figure 3.12B shows that the XMCQDPT2 and CASPT2 

Coulomb shifts are similar, whereas the respective QM shifts deviate significantly in the models 

with the S2/ET state crossing because of the spurious decrease of the CASPT2 excitation energy. 

 Figure 3.12C compares the Coulomb shifts   
  for the QM/MM series computed from the 

Mulliken MM-polarized (computed with the MM environment) and not polarized charges 

(computed without the MM environment). For the considered ET state, these shifts are almost 

identical except for the LFQY-S model, in which the polarization by the MM environment 

increases the Coulomb shift because it removes the state crossing and the non-polarized mixed 

ET/S2 transition is less polar than the polarized pure ET transition. The Coulomb shifts 

computed with the ESPF charges, also presented in Figure 3.12C, are blue-shifted compared to 

those estimated with the Mulliken charges. The deviation is small, but for a larger number of 

interacting charges this difference may become more significant and might be contributing to the 

blue shift of the       energies determining the ET excitation energy in the QM/MM models. 

 The QM/MM excitation-energy shift, caused by moving the α side chain(s) in the QM 

subsystem,        
  (Equation 3.7), plotted in Figure 3.12C consists of three components (the 

QM contribution, the ESPF contribution and the polarization contribution), as explained in 

Section 3.2. The electrostatic-energy component       
       

       
     , can be written as two 

Coulomb sums: 
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(3.11) 

where small    and    denote the QM charges of the triad and its α environment, respectively; 

capital    and    denote the MM charges of the α environment and the rest of the protein 

excluding the α environment and the triad, respectively;             is the charge 

difference upon excitation. The indices      and   are associated with the photoactive triad, α 

environment, and MM environment atoms, respectively. The term containing     describes the 

change of the electrostatic energy related the change in the interactions of the polarized charges 

of the α environment with the charges of the MM environment. The term containing     

describes the change of the electrostatic interaction because of the excitation in the triad 

interacting with the classical MM charges of the α environment. The        
  energies together 

with the    -term are also plotted in Figure 3.12C. The difference between the two reveals the 

magnitude of the    -term, i.e. the effect of including the polarized QM-ESPF charges as 

opposed to the fixed Amber MM charges of the α environment. The    -term, describing local 

interactions, is equal or larger in magnitude than the       
  shift. The magnitude of the    -

term is significant, even though the magnitude of the charge polarization     is rather small (see 

below), because the number of the MM atoms in the model of the protein and solvent interacting 

with the    charges is large. To further elaborate on the role of charge-polarization of the 

photoactive triad,   
  (Equation 3.9) is compared to       

 . The Coulomb shift   
  can be also 

decomposed into two terms depending on     and    : 
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(3.12) 

The Mulliken charge analysis shows that the    -term is the leading term of the Coulomb shift 

and the    -term is negligible (does not exceed 0.016 eV) in the considered cases. Figure 3.12C 

shows that       
  more-or-less compensates   

  in the estimates of the        
  shifts. The 

magnitude of the polarization component         
  can be derived from Figure 3.8: it ranges 

from −0.05 to 0.01 eV (CASSCF values) or from −0.01 to 0.47 eV (CASPT2 values). Thus, 

       
  essentially accounts for the non-electrostatic interactions of the triad with the α 

environment and thus is roughly comparable to the difference between the   
  and     

  energies 

in Figure 3.12A and B. Thus the smaller magnitude of the        
  shifts compared to the 
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  shifts are explained by the fact that the electrostatic interaction energies between the 

photoactive triad and the α side chain(s) are already included in the reference QM/MM model, 

but not in the cluster model consisting only of the triad.  

 Figure 3.12D compares the above shifts from Figure 3.12C to the shifts obtained with the 

zeroed charges. In the excitation energy shifts computed with the zeroed charges of the α 

environment,     
  (Equation 3.6), the energy term depending on the     and    charges also 

appears: 
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(3.13) 

The obtained expression in (Equation 3.13) looks like the second term in (Equation 3.11), 

however, they are not completely identical: The       
      energy shift depends on the charges of 

the entire α residue as defined in the PDB model, whereas the     term in the       
  energy 

shift depends on the charges of the α side chain as included in the QM subsystem (fragments 

without the back bone atoms). These two     terms computed for the reference QM/MM 

model for the full α residue and the α side chain are compared in Figure 3.12D and show small 

deviations. At the same time, the       term computed for the full α residue practically equals to 

the       
      excitation energy shift, which is also shown in Figure 3.12D. The polarization energy 

shift         
     , which is the other component of the     

  shift, ranges from −0.01 to 0.04 eV 

(the CASPT2 results) in the three considered zeroed-charge models, and in the case of the N35 

residue, it exceeds the       
      shift and makes more than a half of the     

  shift. Thus, the 

excitation-energy shifts computed by manipulating the MM charges are not necessarily 

dominated by the electrostatic interactions. This conclusion is also supported by the origin of the 

S2 excitation energy shifts in the QM/MM models, which are dominated by the polarization of 

the QM subsystem (by the MM environment), even when the MM charges are manipulated. 

3.4.8 Comparison of the full cluster model with the reference QM/MM 

model 

The two alternative models of PixD BLUF, the full cluster model RFQY-NNMSL and the 

reference QM/MM model, with all differences mentioned in the previous sections, provide 

overall consistent estimates of the BLUF excitation-energy spectrum. In the cluster model with 

the XMCQDPT2 method the excitation energies of the S1, S2, and ET states are 3.07, 3.82, and 

4.19 eV, respectively; whereas in the reference QM/MM model with the MS-CASPT2 method, 

the respective energies are 2.77, 3.67, and 4.56 eV. Compared to the isolated chromophore, both 

models predict red-shifted S1 and S2 excitation energies, as expected for flavin in a polar 
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environment. The major difference of the two models is the red as opposed to the blue shift of 

the ET excitation energy upon introducing the environment of the photoactive triad. 

Table 3.5 summarizes the effects of the geometry optimization, the PT2 method, the QM 

environment and the QM/MM embedding in the obtained excitation-energy estimates. The S1 

estimate depends on the choice of the PT2 method and practically does not depend on 

environmental effects. The environmental shifts are observed only for interactions such as 

hydrogen bonds of flavin with Q53, N35, and N34. As these hydrogen bonds both red- and blue 

shift the S1 excitation energy, in the full cluster model the related effects compensate each other. 

In contrast, the S2 excitation energy is rather sensitive to both local and long-ranged effects of the 

environment. The sensitivity is related to the high polarity of this transition in the cluster model. 

Interestingly, in the QM/MM model this property is not reproduced because the higher 

polarization of the ground state with respect to the S2 state turns this transition into a non-polar 

one. The red-shift of the S2 excitation energy in the QM/MM model originated purely from 

wave-function polarization. The red shift shows no dependence on the size of the QM subsystem, 

in contrast to the cluster model. The ET state is very sensitive to all factors but the choice of the 

PT2 method (unless the S2/ET state crossing is considered). Remarkably, the energy of the state 

is sensitive to all types of environmental effects: the electrostatic interactions, the arrangement of 

the electron donor and the electron acceptor and also the quantum-mechanical effects such as 

polarization and charge transfer. The latter can only be accounted for by enlarging the QM 

subsystem. As in the QM/MM model the ET excitation energy depends on the interactions 

between the atomic charges to a significant extent, the accuracy of these charges is critical for the 

correct estimation of the ET excitation energy in the protein. The dependence of the ET energies 

on many factors makes their accurate determination a real challenge. It is noteworthy that the 

electrostatic interactions of the photoactive triad with the MM environment eliminate the 

crossing of the ET and S2 electronic states, indicating that the classical interactions dominate the 

quantum mechanical ones in the QM/MM models considered here. 

Table 3.5. Geometry, PT2 method and QM- or MM-environmental effects on the excitation 
energies obtained with the full cluster model and reference QM/MM model. Excitation energies 
are taken from Figure 3.3 and 3.5. All significant energy shifts are marked bold. 

effect 
energy [eV] 

S1 S2 ET 
Cluster-geometry versus QM/MM -geometry 

Model LF-Q-Y, XMCQDPT2 method 
3.01 – 3.04 4.04 – 4.06 4.44 – 4.12 

XMCQDPT2 method versus MS-CASPT2 method 
Model LF-Q-Y at the QM/MM geometry 

3.04 – 2.74 4.06 – 3.90 4.12 – 4.10 

QM environment: LF-Q-Y cluster versus full cluster, 
XMCQDPT2 method 

3.01 – 3.03 4.04 – 3.96 4.44 – 4.19 

MM environment: LF-Q-Y w/o MM environment versus 
LF-Q-Y with MM environment, MS-CASPT2 method 

2.74 – 2.77 3.90 – 3.67 4.10 – 4.56 
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3.5 Discussion and conclusions 

This chapter analyzed the effects of the intermolecular interactions on the excitation energies of 

the photoactive triad in BLUF by comparing the computed excitation energies in a QM cluster 

model and in a QM/MM model. The estimates of the protein’s role in fine-tuning the excitation 

energies support mechanistic studies aiming at establishing the mechanism of photoactivation in 

BLUF. A careful analysis is especially important in the case of the tyrosine-flavin ET state, as the 

ET state excitation energy is experimentally only indirectly accessible through the determination 

of the flavin fluorescence quenching rates. Multi-exponential models are needed to describe the 

measured fluorescence kinetics, making the understanding of the link between the fluorescence 

life time and the BLUF photoreaction challenging. Therefore, evaluating the effects related to the 

specific intermolecular interactions on the ET excitation energy is indispensable to complement 

the experimental detection of fluorescence life times. The flavin S1 and S2 excitation energies, 

however, can be directly derived from the UV/Vis absorption spectra. Experiments observe only 

minor changes in the UV/Vis spectra of the oxidized flavin in proteins and solutions of different 

polarity. In polar solvents, there is a small red shift of the S1 and S2 bands that is more 

pronounced for the higher-energy S2 state. In previous quantum-chemical studies this 

observation was correlated with the polarity of the S1 and S2 states (Salzmann et al., 2008; 

Hasegawa et al., 2007). Overall, the flavin excitation energies computed with the TD-DFT, CC2, 

SOS-CIS, MRCI(DFT) and the current XMCQDPT2 and (MS)-CASPT2 estimates are in good 

agreement with each other and with the experimental excitation band maxima, as already 

discussed in Chapter 2 and reviewed in detail in (Domratcheva et al., 2014). 

 This chapter reveals major environmental effects that shift the excitation energy of the S1, S2 

and ET excited states. The S1 state of flavin shows only small variations with respect to the 

environment. Consistent with this finding, color tuning in BLUF (and in flavoproteins binding an 

oxidized flavin in general) is not important because the charge separation in the S1 transition is 

not significant enough. The method differences play a significant role in the energy of the S1 state 

but not in the amount of the environment-induced shifts. The S2 excitation energy is more 

sensitive to the environment because of the higher polarity of the S2 transition. However, 

surprisingly, the higher polarity is not reproduced by the QM/MM models, which predict the S2 

transition to be rather neutral in contrast to the S1 and ET transitions. The S2 state is less 

important in the photochemistry of BLUF and other flavoproteins (Domratcheva et al., 2014). It 

was included here for the sake of completeness and because the photochemically relevant ET 

state is close to S2 in energy. The ET excited state energy depends on many factors. The 

geometry conformation of the active site plays an important role as it defines the distance 

between the electron donor and acceptor. The electrostatic environment, as expected, has a large 

effect on the energy of the highly polar ET transition that is responsible for the blue-shift of the 

ET excitation energy in the QM/MM model. Importantly however, the ET excitation energy also 

depends on the QM interactions of the photoactive triad with its local environment to a 

substantial extent: these interactions, accounted for only by the cluster model with an extended 
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QM subsystem, red-shift the ET excitation energy. Therefore, in the estimation of the ET state 

excitation energy, the QM cluster and QM/MM approaches are rather complementary.  

 The QM/MM models account for the long-range electrostatic effects. The QM cluster 

models account only for the local electrostatic effects but also for QM interactions, e.g. charge 

transfer between the photoactive triad and the local environment. In the cluster models, it is the 

QM effects that play a substantial role in the stabilization of the ET state along with the 

electrostatics. The long-ranged electrostatic interactions of the protein with the photoactive triad 

are missing in the cluster models, which should result in a slow convergence of the excitation 

energies with the size of the cluster model when a very polar transition is considered. The 

convergence is slower, the more polar the transition is. Still, a careful choice of the local 

environment to be included in the cluster to study specific problems may minimize the systematic 

error due to the missing parts of the protein. On the contrary, the QM/MM model accounts for 

the long-range electrostatic effects that dominate the computed excitation energy shifts. The 

presented ESPF-operator based model predicts a blue shift of the ET excitation energy upon 

including the electrostatic interactions of the protein. However, the amount of the blue shift 

upon the QM/MM embedding is difficult to validate. The fact that this shift is defined by the 

rather simple ESPF interactions raises the question whether the ESPF electrostatic model is 

accurate enough. Moreover, the excitation energy obtained with the QM/MM model also 

depends on the MM force-field charges; again the dependence of the excitation energies on the 

magnitude of the atomic charges increases with the increasing polarity of the electronic transition 

and the number of atomic charges to be considered. However, in the studies of shifts induced by 

rather local effects, like point mutations, the systematic error related to the MM charges should 

be alleviated.  

 How accurate the electrostatic interactions are described by the ESPF scheme is especially 

critical for the ET excitation energy; an underestimation or overestimation of the electrostatic 

interaction energy results in artifacts rather than in a more realistic protein-tuned ET excitation 

energy estimate. This is especially important for photochemistry: The blue shift of the ET-state 

energy in the QM/MM model compared to the cluster model might be significant, for example, 

in the estimates of the electron-transfer rates. This chapter showed that for a highly polar state, 

like the tyrosine-flavin ET excited state in BLUF, the excitation energy depends strongly on the 

electrostatic description of the protein. When the QM subsystem is enlarged, the ET excitation 

energy red shifts in the QM/MM models similar to the cluster models, though to a much smaller 

extent than in the cluster models. The strongly blue-shifting protein ESPF electrostatic 

interaction terms dominate over the red-shifting local QM interactions (or also the local 

electrostatic interactions) between the photoactive triad and the α environment. The modification 

of the MM charges by +1/−1 au, though exaggeratedly, but clearly showed that the ET 

excitation energy is highly sensitive to the MM charges and thus an “unphysical charge” or an 

“unphysically screened charge” in the QM/MM model results in an unphysical shift in the ET 

excitation energy. As an example the counterions neutralizing the charge of the protein should be 

mentioned: the seven Na+ ions were placed randomly into the model (as is usually done when 

neutralizing a protein model). However, a more realistic simulation should account for the 
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presence of both cation and anion counterions, and for their averaged distribution around the 

negatively and positively charged residues on the protein surface. The importance of the ion 

distribution and its role in screening the DNA charges for the ET excitation energies in the case 

of the DNA photolyase was recently pointed out in (Moughal Shahi & Domratcheva, 2013). 

 The problem of choosing a cluster model or a QM/MM model is related to estimating the 

systematic errors caused by the treatment of the protein electrostatics. In the cluster model the 

origin of the excitation-energy shifts is clear and physically well-founded. However, in the 

QM/MM model used in this study the excitation-energy shifts depend strongly on the ESPF 

charge model and its rigorous validation would be an additional tedious task to carry out. 

Therefore, it is found here that large cluster models including the local environment of the 

photoactive triad are more suitable to address photochemical questions in the BLUF 

photoreceptor. The highly efficient XMCQDPT2-CASSCF code in Firefly is a further important 

reason. Chapter 5 will revisit some of the QM/MM issues presented here, in view of the 

fluorescence quenching mechanism and the computed photoreaction pathways. 

 

   



 

4    Glutamine rotamers 

In this chapter, I discuss two BLUF crystal structures and identify the glutamine rotamer 

conformation that is consistent with the experimental electron densities. The analysis presented 

here solves the long-standing debate on the chemical change underlying the photoactivation in 

BLUF: The two main hypotheses postulate rotation as opposed to tautomerization of the 

conserved glutamine residue Q63 (in this chapter the residue numbering of the AppA BLUF 

protein is used). In this chapter, I propose physical criteria for the dark- and light-state structures 

as well as for the light-induced photoreaction to evaluate existing models of BLUF. The 

glutamine rotamer assignment of the crystal structure with the PDB code 1YRX does not satisfy 

these criteria because after equilibrating the intermolecular forces the glutamine rotamer in 1YRX 

is incompatible with the experimental density. Therefore, the root of the mechanistic controversy 

is identified to be the incorrect glutamine rotamer assignment in 1YRX. Furthermore, by 

performing extensive dihedral-angle energy scans, I show that the glutamine side chain may 

rotate without light activation in the BLUF dark state. Finally, I demonstrate that the 

tautomerized glutamine is consistent with the formulated criteria and observations of the BLUF 

light state. Parts of this chapter have been published in (Udvarhelyi & Domratcheva, 2013); 

indicated figures and parts of the text are taken from this publication. In addition to the 

published results, calculations on substantially extended cluster models are also presented that 

elucidate that specific glutamine rotamers are stabilized in the two crystal-structure 

conformations of BLUF. On the basis of these preferences, I discuss the two structures as the 

functional dark and light states.  

4.1    BLUF structures 

X-ray protein crystallography determines the three-dimensional structure of protein crystals. The 

obtained electron density (at the usual resolution not better than 1.5 Å) is used to fit the residues 
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of the protein into, according to a previously known amino-acid sequence. Protons are not 

“visible” in the density because of the low scattering cross section, and the distinction between 

the oxygen and nitrogen atoms is usually not possible. Ambiguous side chain rotamers in the case 

of glutamine, asparagine or histidine side chains are thus distinguished based on the available 

hydrogen-bonding possibilities. In the case of BLUF, the X-ray structures provide key 

information on characterizing the hydrogen-bonding network of the flavin-binding pocket. 

Interestingly, two different crystal structures of the AppA-BLUF domain were independently 

solved (Anderson et al., 2005; Jung et al., 2006). The structures differ in the rotamer 

conformation of the Q63 side chain as well as in the fold of the β5 strand and the position of the 

conserved W104 residue with respect to flavin as shown in Figure 4.1. In the crystal structure 

presented in (Anderson et al., 2005) the side chain of W104 points into the flavin-binding pocket 

(PDB 1YRX), thus it was dubbed Win structure. In the crystal structure presented in (Jung et al., 

2006) W104 is solvent exposed and M106 replaces W104 in the flavin pocket (PDB 2IYG), thus 

it was dubbed Wout structure. Critically, the Q63 side chain was placed with different rotamers 

into the obtained electron density in the two structures. In addition, the orientation of the 

hydroxyl group of Y21 was also affected. In the following, the Q63 rotamer in the Win and Wout 

structures are referred to by Q63A and Q63J, respectively.  

 Importantly, as Figure 4.1B shows, the electron density defining the arrangement of the Y21, 

Q63 and N45 conserved residues with respect to the flavin chromophore are virtually identical in 

the two structures. However, because of the differently assigned glutamine rotamers, two distinct 

hydrogen-bonding networks around flavin are assumed in the two PDB structures, sketched in 

Figure 4.1C. The decisive difference for the BLUF mechanistic discussion is that the Q63J 

rotamer forms a hydrogen bond to the flavin C4=O4 carbonyl, whereas the Q63A rotamer does 

not. This hydrogen bond could in principle explain the red-shifted flavin absorption spectrum in 

the light state (Unno et al., 2006), thus most experimental (Gauden et al., 2006; Unno et al., 2006; 

Bonetti et al., 2008; Grinstead, Avila-Perez, et al., 2006; Stelling et al., 2007; Bonetti et al., 2009; 

Mathes, Zhu, et al., 2012) and some computational (Rieff et al., 2011; Meier et al., 2012; Hsiao et 

al., 2012) studies consider the Win structure with Q63A as the dark-state and the Wout structure 

with Q63J as the light-state model of BLUF. 

The assignment of the two X-ray structures to the functional states of BLUF led to a 

photoreaction hypothesis that explains the light-induced hydrogen-bond switch by glutamine 

rotation (Gauden et al., 2006; Unno et al., 2006; Jung et al., 2006). It is further assumed that 

glutamine rotation subsequently leads to a conformational switch of the β5 strand, where the 

W104 and M106 residues exchange their position (Jung et al., 2006; Masuda et al., 2005; Dragnea 

et al., 2009). However, there is no direct experimental evidence that glutamine rotation would 

indeed be coupled to a W104-M106 conformational switch. Thus, it remains unclear how the 

hydrogen-bond switch leads to BLUF signaling. 
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 The glutamine-rotation mechanism was challenged in several studies (Domratcheva et al., 

2008; Obanayama et al., 2008; Khrenova et al., 2010), noting various inconsistencies in the Win X-

ray structure containing Q63A. The major issue concerns the 2.7-Å distance between the flavin 

carbonyl O4 and the glutamine carbonyl Oε1 atoms being clearly too short to represent an 

equilibrium distance between the two carbonyl oxygen atoms. The corresponding distance in the 

Wout structure is 2.8 Å, where it describes a hydrogen bond between the flavin O4 and glutamine 

Nε2 atoms. To explain the short distance in the Win crystal structure, the computational studies in 

(Domratcheva et al., 2008; Khrenova et al., 2010) suggested a tautomeric glutamine. Taking this 

into account, glutamine tautomerization was proposed as the photoactivation mechanism in 

BLUF (Domratcheva et al., 2008; Sadeghian et al., 2008).  

 To model the crystallographic Q63A rotamer in the Win structure with the short oxygen-

oxygen distance as the dark state, other computational studies in (Rieff et al., 2011; Hsiao et al., 

Figure 4.1. Comparison of the 
AppA-BLUF domain structures, Win 
PDB structure 1YRX (yellow) and 
Wout PDB structure 2IYG (gray), 
both chain A. (A) Superposition of 
the backbone of the two structures 
in cartoon representation and the 
side chains of conserved residues 
around flavin in ball and stick 
representation. (B) The hydrogen 
bonding network of the flavin-
binding pocket with key distances 
indicated in Å. The upper and lower 
values correspond to the 1YRX and 
2IYG structures, respectively. The 
2IYG experimental electron density 
contoured at two sigma overlays the 
two structures. (C) The two 
hydrogen bonding networks of the 
two glutamine rotamers Q63A (Win) 
and Q63J (Wout). Figure was taken 
from (Udvarhelyi & Domratcheva, 
2013). 
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2012) introduced restraints. However, the physical meaning of these restraints stabilizing the 

Q63A rotamer is unclear. Another important question is why most crystal structures of BLUF 

proteins adapt the Wout conformation (Jung et al., 2005; Barends et al., 2009; Kita et al., 2005; 

Yuan et al., 2006), which according to the light-induced glutamine rotation hypothesis represents 

the light state. Furthermore, the hydrogen-bonding network postulated by the Win structure is 

inconsistent with the IR study in (Takahashi et al., 2007) that established Y21 to be a hydrogen-

bond donor in both the dark and light states. A recent IR study concluded that the hydrogen 

bond between Y21 and Q63 in the light state is unusually strong: The Y21-OH stretching 

frequency is 400-600 cm−1 lower than the typical frequency of a hydrogen bond between a 

phenolic OH and a carbonyl group (Iwata et al., 2011). This finding is in fact inconsistent with 

the glutamine rotation mechanism that proposes the Wout structure as the light state, where the 

Y21 hydroxyl group forms a “normal” hydrogen bond with the Q63J carbonyl group. All these 

observations suggest that the Q63A rotamer in the Win structure cannot represent the dark and 

the Q63J rotamer in the Wout structure cannot represent the light state. Finally, it is questionable, 

from the theoretical viewpoint, how the energy barrier of glutamine rotation in the flavin-binding 

pocket is raised to be high enough to ensure the photosensitivity of BLUF. 

 To resolve the inconsistencies listed above, three criteria for physical models of BLUF are 

proposed here. First, both the dark and light state models must contain an atom arrangement that 

represents equilibrated molecular forces that correspond to minimum-energy structures. After 

optimization of the respective molecular models, at least the dark-state model must be consistent 

with the experimental X-ray electron density. Second, the light-state model must reproduce the 

15-nm red-shifted flavin absorption compared to the dark state. Third, the transition from the 

dark to the light state must have a high energy barrier in the electronic ground state to ensure 

light sensitivity. All criteria must be satisfied simultaneously. In particular, it is not sufficient for 

physically meaningful models of BLUF to only reproduce the spectral red shifts.  

 In the following, using these three criteria, the crystallographic assignment of the Q63 side 

chain rotamer in the Win structure is re-examined and the Q63A and Q63J models as proposed 

dark and light states are reappraised. This chapter complements previous computational studies 

addressing the Q63 orientation and its tautomeric forms in both the Win and Wout structures 

(Khrenova et al., 2010, 2011, 2013). First, the Win structure is investigated, in light of the 

conformation of the Q63 side chain. The optimized model structures are compared directly to 

the experimental X-ray electron density. Clarifying the Q63 rotamer assignment in the Win 

structure is of highest importance since it directly influences the interpretation of all spectroscopy 

data. Second, extensive Q63 dihedral-angle energy scans characterize the energy barriers for 

glutamine rotation in both the amide and imid forms in both the Win and Wout structures. Along 

these lines, dynamics aspects are discussed. 
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4.2 Computational details 

4.2.1 Win cluster models and geometry optimization 

Supermolecular cluster models with a complete quantum-mechanical description of the 

hydrogen-bonding network around flavin and a substantial part of the beta sheet (parts of the β1, 

β3 and β5 strands) are used. The AppA BLUF Win model, built based on the PDB coordinates 

1YRX chain A, includes lumiflavin, the residues Y21, Q63, N45, L65, W104, and A46 as well as 

the backbone atoms of residues C20, R22, F62, W64, E66, H105, G103, H44 (AppA numbering); 

in total 184 atoms, shown in Figure 4.2A. To account for the ambiguous assignment of the 

hydrogen atom positions in the crystal structures, three forms of the glutamine side chain were 

assumed: the two rotamers Q63A and Q63J as well as the tautomeric form, Q63tau. In addition, the 

Q63A rotamer in the Win molecule of the PixD BLUF protein was also considered because this 

structure was determined with the highest resolution among the BLUF X-ray structures (Yuan et 

al., 2006). The PixD model, built based on the PDB coordinates 2HFN chain D, consists of 

lumiflavin, residues Y11, Q53, V54, L55, N35, P36, A37, N38, and W94 as well as the backbone 

atoms of residues I10, S12, L52, E56, G39, N34, S95, V93 and the water molecule WAT1005 

(PixD numbering); in total 225 atoms, shown in Figure 4.2B. In the PixD model only the 

crystallographic Q53A rotamer was considered. The computer program HyperChem (HyperCube, 

Inc., Gainesville, FL, USA) was used to add the hydrogen atoms and to optimize their 

coordinates in the starting geometries with the Amber force field, keeping the PDB coordinates 

of the heavy atoms fixed. In the following, the standard PDB names for residue atoms are used. 

 

 

Figure 4.2. Supermolecular cluster models of BLUF. (A) Win AppA model based on the PDB 
structure 1YRX, chain A. (B) Win PixD model based on the PDB structure 2HFN, chain D. 
The black-colored atoms (all Cα and four flavin atoms) were constrained during geometry 
optimization. Figure was taken from (Udvarhelyi & Domratcheva, 2013). 
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 To characterize the hydrogen bonding network in BLUF, the geometries of the prepared 

starting models were optimized with B3LYP/6-31G**. To mimic the constraints due to the 

protein scaffold, the Cartesian coordinates of the Cα carbon atoms, the water oxygen atom in the 

PixD model and the flavin carbon atoms C6, C8, C1’ and C10a were constrained to their 

crystallographic values (black-colored atoms in Figure 4.2). A three step optimization procedure 

was used to conserve the crystallographic distance between the glutamine Oε1/Nε2 and flavin 

O4 atoms as much as possible. First, starting from the X-ray coordinates, the geometry was 

optimized with constrained PDB coordinates of the glutamine Oε1/Nε2 and flavin O4 atoms to 

conserve the glutamine-flavin interactions postulated by the PDB structures (opt1). Then, the 

optimization was continued with the released glutamine and the constrained PDB coordinates of 

the flavin O4 atom (opt2). Finally, the geometry optimization was completed without the 

additional flavin–glutamine constraints (opt3). The geometries were optimized to an energy 

gradient of 0.0001 hartree/bohr in all three steps. The finally obtained models (opt3) are regarded 

as models for the flavin hydrogen-bonding network in the Win BLUF conformation. The opt3 

optimized geometries are compared with the experimental electron densities computed with the 

ARP/wARP program (Perrakis et al., 1999) using the structure factors of the respective PDB 

models by performing 25 cycles of “map improvement by atoms update and refinement”. A Perl 

script was written to evaluate the heavy-atom RMSD values with respect to the crystallographic 

coordinates along the three-step optimization procedure.  

4.2.2 Extended cluster models: ext-Win and ext-Wout 

In addition to the AppA-Win and PixD-Win models presented above, extended models of both 

the Win and Wout conformations of AppA BLUF were considered. These extended models 

include also parts of the β4 strand, and the α1 and α2 helices in addition to the residues of the 

AppA-Win model above. The ext-Win model, built based on the PDB coordinates 1YRX chain A 

(Anderson et al., 2005), includes lumiflavin and the first part of the ribityl chain, the residues Y21, 

I37, S41, N45, A46, G52, A53, L54, Q63, L65, I79, and W104 as well as the backbone atoms of 

residues C20, R22, D36, V38, T40, Q42, A43, H44, T51, F55, F62, W64, E66, H78, Q80, G103, 

H105, M106; in total 346 atoms, shown in Figure 4.3A. In this model, the glutamine side chain 

was considered in three forms: Q63A, Q63J, and Q63tau. The ext-Wout model, built based on the 

PDB coordinates 2IYG chain A (Jung et al., 2006), includes the same residues and backbone 

atoms as the ext-Win model, except for the β5 strand, where the ext-Wout model contains M106 

and the backbone atoms of residues W104, H105, Q107, and L108. Thus, the ext-Wout model 

consists of 349 atoms in total, shown in Figure 4.3B. In this model, the glutamine side chain was 

considered in the Q63J and Q63tau forms.  
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Figure 4.3. Extended supermolecular cluster models of AppA BLUF. (A) Win model based on 
the PDB structure 1YRX, chain A. (B) Wout model based on the PDB structure 2IYG, chain A. 
The black-colored atoms (all Cα and one flavin atom) were constrained during geometry 
optimization. 

Altogether five extended models (three in the Win conformation and two in the Wout 

conformation) were subjected to geometry optimization with B3LYP/cc-pVDZ. The Cα atoms 

and one flavin atom were kept fixed to their crystallographic position, indicated by the black-

colored atoms in Figure 4.3, and no additional constraints on the Q63 atoms were imposed. The 

gradient threshold was selected as 0.0003 hartree/bohr. The finally obtained ext-Win and ext-Wout 

models are the largest equilibrium-geometry models of BLUF optimized at the density-functional 

level (3430 and 3449 basis functions were used, respectively).  

4.2.3 Dihedral-angle energy scans and excitation spectra 

To estimate the energy barriers between different glutamine rotamers, relaxed energy scans along 

the glutamine and glutamine-flavin dihedral angle coordinates were computed. As the scans were 

computed not in Cartesian but in the delocalized internal coordinates (Granovsky, 2013), protein 

scaffold constraints were applied as constraints of distances between all pairs of atoms 

constrained in the previous geometry optimization procedure (black-colored atoms in Figure 4.2 

and Figure 4.3). To produce scans every 10 degrees of the chosen dihedral angle, geometry 

optimization was carried out until an energy gradient of 0.0003 hartree/bohr with a fixed value of 

the dihedral angle. Complete 360 degree scans in both clock- and counter clockwise directions 

were obtained and analyzed. The energy scans were computed with the B3LYP method, with the 

6-31G** and cc-pVDZ basis sets in the Win models and the extended models (Win and Wout), 

respectively. 
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 At the optimized structures, and at the identified local minima in the dihedral-angle energy 

scans, the excitation spectrum was computed with the TD-B3LYP/cc-pVDZ method for the ten 

lowest lying excited states. The HOMO-LUMO transition of the flavin is of interest in this 

chapter as that corresponds to the absorption maximum around 450 nm (2.76 eV). Among the 

ten computed states, the state corresponding to the HOMO-LUMO flavin excitation was 

identified according to the contributions of the respective MOs. This state is also the lowest 

energy excited state characterized by a considerable oscillator strength. The excitation energy of 

this state can be considered as a measure for the position of the flavin absorbance maximum. 

The computer program Firefly (ver 7.1, 8; Granovsky) which is partially based on the GAMESS 

US source code (Schmidt et al., 1993) was used for all quantum-chemical calculations presented 

in this chapter. 

4.3 Results and Discussion 

4.3.1 The Q63 rotamer in the Win structure 

The conservative three-step geometry-optimization procedure employed here assures finding the 

local-energy-minimum structure closest to the initial AppA and PixD Win PDB structures (the 

final opt3 models). In the optimized models containing Q63J or Q63tau (i.e. opt3-Q63J and opt3-

Q63tau models), the glutamine side chain is close to its crystallographic position, whereas in the 

opt3-Q63A model both Y21 and Q63 side chains move away from the crystal coordinates, as 

demonstrated in Figure 4.4 and Table 4.1. During geometry optimization, the largest geometry 

changes occur between the opt1-Q63A and opt2-Q63A models. The final heavy-atom RMSD 

values of the fully optimized Q63J, Q63tau and Q63A models are 0.32 Å, 0.29 Å, and 0.53 Å, 

respectively. The Q63 carbonyl oxygen and Y21 hydroxyl oxygen atoms in Q63A undergo the 

largest displacements. The distance between the glutamine Oε1 and flavin O4 atoms increases 

from 2.7 Å in the PDB structure to 3.7 Å in the optimized AppA model, and from 2.7 Å to 4.1 Å 

in the PixD model. The Q63A side chain no longer stays parallel to flavin, but is rather 

perpendicular. In Figure 4.5 the optimized structures are overlaid with the experimental electron 

density, which demonstrates how the Q63A side chain, in contrast to Q63J or Q63tau, rotates out 

of the experimental electron density.  
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Figure 4.4. Heavy atom RMSD 
values and atom-specific 
displacements of the AppA cluster 
models Q63A (black), Q63J (red) and 
Q63tau (blue) as the function of the 
geometry optimization step, 
determined with respect to the 
starting 1YRX crystal structure. The 
colored background rectangles in the 
RMSD plot indicate the three-step 
optimization procedure of the 
corresponding models: gray – Q63A 
model (opt1 and opt3), light red – 
Q63J (opt1 and opt3) and light blue – 
Q63tau (opt1 and opt3). As a 
comparison, the corresponding 
RMSDs and displacement values for 
the comparable QM/MM models in 
(Hsiao et al., 2012) are also indicated: 
1YRXQM/MM corresponds to the 
QM/MM-optimized model with the 
Q63A rotamer (opt3-Q63A model), 
1YRXQflip – to the 180 degree rotated 
glutamine (opt3-Q63J model) and 
1YRXref – to the “quantum-refined” 
model (opt1-Q63A). Figure was taken 
from (Udvarhelyi & Domratcheva, 
2013). 
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Table 4.1. Four selected distances in Å involving glutamine heteroatoms of the optimized 
AppA models, along the three-step optimization procedure: opt1 (constrained glutamine Oε1 or 
Nε2 to flavin O4 distance), opt2 (constrained flavin O4 atom) and opt3 (fully optimized without 
flavin-Q63 constraints). Table was taken from (Udvarhelyi & Domratcheva, 2013). 

Q63A model opt1 opt2 opt3 

Tyr-OH to Q63-Nε2 3.0 3.1 3.1 

Q63-Nε2 to fl-N5 3.2 3.0 3.0 

Q63-Oε1 to fl-O4 2.7 3.7 3.6 

Q63-Oε1 to W104-Nε1 3.1 2.8 2.8 

Q63J model opt1 opt2 opt3 

Tyr-OH to Q63-Oε1 2.8 2.8 2.8 

Q63-Oε1 to fl-N5 3.1 3.1 3.1 

Q63-Nε2 to fl-O4 2.7 2.8 2.8 

Q63-Nε2 to W104-Nε1 3.4 3.5 3.4 

Q63tau model opt1 opt2 opt3 

Tyr-OH to Q63-Nε2 - 2.8 2.8 

Q63-Nε2 to fl-N5 - 3.1 3.1 

Q63-Oε1 to fl-O4 - 2.8 2.7 

Q63-Oε1 to W104-Nε1 - 2.9 2.9 

    

 To keep the Q63A rotamer in the experimental density, i.e. to preserve the unphysical 

oxygen-oxygen distance that is inconsistent with the interactions of the two carbonyl groups, 

the position of the two oxygen atoms must be constrained. As a consequence of the distance 

constraint, the energy of opt1-Q63A is 9.5 kcal/mol higher than that of opt3-Q63A, 

demonstrating the repulsive oxygen-oxygen interactions. In contrast, the energy of the opt1-

Q63J model is almost identical to the opt3-Q63J model, indicating that the intermolecular 

forces between Q63 and flavin are equilibrated already in the starting structure. The same is 

true for Q63tau. Thus, in the fully optimized opt3 models, the Q63A rotamer is incompatible 

with the experimental electron density in contrast to the Q63J and Q63tau models. Therefore 

either the Q63J or Q63tau form but not the Q63A rotamer should be used to model the X-ray 

density of the Win structure. From Figure 4.5 it must be concluded that Q63A does not satisfy 

the first criterion, but Q63J and Q63tau do. With the Q63J rotamer, the crystallographic Win 

and Wout hydrogen bonding networks would be the same (differing only in the W104 

position) and with the Q63tau form they would differ because of the chemically distinct Q63tau. 

It is emphasized that in either case the glutamine rotation mechanism cannot be proposed on 

the basis of the BLUF X-ray structures. 
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Figure 4.5. (A-C) Part of the optimized Win AppA-BLUF cluster models overlaid with the 
experimental X-ray electron density of the PDB structure 1YRX, chain A, contoured at two 
sigma. The carbon atoms of the glutamine side chain are colored orange. The full cluster models 
are shown in Figure 4.2. (D) Win PixD-BLUF cluster model overlaid with the experimental X-
ray electron density of the PDB structure 2HFN, chain D, contoured at three sigma. (E) 
Relative ground state energies (black empty squares) of the AppA-BLUF models optimized with 
and without constraints computed with respect to the energy of the fully optimized opt3-Q63J 
model, and flavin excitation energies (blue filled squares). The small red arrow indicates the high 
energy of the crystallographic Q63A rotamer. Figure was taken from (Udvarhelyi & 
Domratcheva, 2013). 

 Figure 4.5E presents the flavin excitation energy of the identified energy-minimum 

structures in the AppA-Win models with and without constraints. In the case of the constrained 

opt1-models, the excitation energy in the Q63A model is significantly blue-shifted with respect to 

the Q63J model. After releasing the distance constraint (opt2), the difference in the predicted 

absorption almost vanishes. In the final opt3 models, a small difference of 0.03 eV (4.5 nm) is 

obtained. These calculations demonstrate that there is a caveat when working with constrained or 

restrained models since constraints/restraints influence the absorption maximum and may 

introduce artifacts. The formulated physical criteria related to the protein photoactivation 

function help to minimize artifacts of computational models. According to the first criterion, 

only the fully optimized opt3 Q63A, Q63J and Q63tau models, which correspond to the 

equilibrated structures, should be considered as BLUF models. Only opt3-Q63J and opt3-Q63tau 

consistent with the electron density can represent the dark state. The flavin absorption energy in 

the opt3-Q63tau model is 2.75 eV and 14 nm red-shifted with respect to that of the Q63J model. 

Thus only Q63tau reproduces the absorption properties of the light state. 
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4.3.2 Extended cluster and QM/MM models 

The question naturally arises how well the Win cluster models from the previous section can 

represent BLUF states since parts of the protein and the solvent are missing from the models. It 

is expected that the observed structural relaxation is well-described by these models since the 

important geometry changes pertain to Y21 and Q63 because of the local interactions and not 

because of the extended protein environment. To further elucidate how much the protein 

environment influences the relaxation of Y21 and Q63, the models were extended to include 

more residues, referred to as the ext-Win models, as shown in Figure 4.3. In addition, the Wout 

structure was also modeled with an extended environment of Q63 and compared to the results 

obtained with the ext-Win models. 

 Figure 4.6 shows the five optimized extended models, overlaid with the respective 

experimental electron density. Concerning the Win structure, the same conclusions are drawn on 

Q63, as in the previous section with the smaller Win models: The Q63A rotamer is incompatible 

with the experimental electron density, whereas Q63J and Q63tau can both be used to model the 

electron density of the 1YRX structure. Comparing the relative energies of the optimized 

structures, interestingly, one finds that the ext-Win-Q63tau equilibrium structure lies 2.3 kcal/mol 

below the ext-Win-Q63A minimum, indicating that the Q63A rotamer in the BLUF pocket is 

indeed energetically so unfavorable that even the chemically modified tautomeric form of 

glutamine is more stabilized by the BLUF environment. Concerning the Wout structure, both 

optimized ext-Wout-Q63J and ext-Wout-Q63tau minima are compatible with the experimental 

electron density and the relevant interatomic distances are close to those in the X-ray structure 

2IYG. The ext-Wout-Q63tau geometry lies 14.7 kcal/mol higher in energy than that of ext-Wout-

Q63J. Thus the energy difference between the imid and amide forms of glutamine is significantly 

increased in the Wout structure compared to the Win structure. 

 The S1 excitation energies computed in all five extended models are also indicated in Figure 

4.6. In the models containing the amide Q63, the S1 excitation energy varies between 2.91-2.94 

eV and containing the imid Q63 it is 2.81 and 2.83 eV. Thus, irrespective of the methionine and 

tryptophan position, the glutamine chemical structure defines the position of the S1 transition: 

the tautomeric glutamine-containing models feature a significantly red-shifted S1 excitation energy 

compared to those computed containing the amide glutamine. Thus, similar to the findings in the 

smaller Win models of the previous section, it is emphasized that there is no significant excitation-

energy shift between the equilibrated ext-Win models containing either the Q63A or Q63J rotamer. 

However, the environment (tryptophan or methionine) plays a role in the stabilization of the 

tautomeric glutamine form relative to the amide form. The different relative energies suggest that 

the imid Q63 is more favored in the Win environment compared to the Wout environment, 

therefore, Win with Q63tau is suggested here to represent the light state and Wout with Q63J the 

dark state of BLUF.  
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Figure 4.6. Optimized structures of the extended models. (A-C) Part of the optimized ext-Win 
AppA-BLUF cluster models with the three forms of Q63 overlaid with the experimental X-ray 
electron density of the PDB structure 1YRX, chain A, contoured at two sigma. The full ext-Win 
cluster model is shown in Figure 4.3A. (D-E) Part of the optimized ext-Wout AppA-BLUF 
cluster models with the two forms of Q63 overlaid with the experimental X-ray electron density 
of the PDB structure 2IYG, chain A, contoured at two sigma. The full ext-Wout cluster model is 
shown in Figure 4.3B. Selected interatomic distances are given in Å. The relative energies with 
respect to the Q63J-containing model are indicated in kcal/mol. The excitation energies in eV 
define the position of the flavin absorption maximum. 

 In the following, the QM/MM study presented in (Hsiao et al., 2012) is discussed in view of 

the Q63A rotamer relaxation in the Win structure and compared to the results of the cluster 

models presented here. Hsiao et al. reported “quantum-refined” AppA BLUF crystal structures 

obtained by QM/MM calculations with crystallographic restraints and compared these to fully-

optimized QM/MM models. The authors considered models with both the Q63A and Q63J 

rotamers and computed their excitation energies. The model with the Q63A rotamer was found to 

have a blue-shifted flavin absorption with respect to the 180 degree rotated glutamine rotamer, 

Q63J. Following this finding, Hsiao et al. assigned the Q63A and Q63J rotamers to the dark and 

light states respectively, thereby supporting the glutamine rotation as the light-activation 

mechanism of BLUF. To identify the origin of the apparent contradiction in their work and the 

presented results, the QM part of three of their QM/MM models is analyzed here according to 

the formulated three criteria of the BLUF dark and light state models. The three models are (i) 

the “quantum-refined” 1YRXref model (comparable to the opt1-Q63A model); (ii) 1YRXQM/MM 

structure without restraints (equivalent to the opt3-Q63A model) and (iii) the 1YRXQflip structure 
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with the Q63J rotamer (equivalent to the opt3-Q63J model). Figure 4.7 shows the superposition 

of the QM part of the QM/MM-optimized models by Hsiao et al. with the 1YRX electron 

density. A picture fully consistent with the results of the cluster models is obtained: The Q63A 

rotamer is only compatible with the electron density when the geometry is restrained but not 

when its geometry is fully equilibrated. The energy difference between the restrained 1YRXref and 

fully equilibrated 1YRXQM/MM models is 15 kcal/mol because of the restraints, which is even 

higher than in the case of the cluster models. The distance after the unrestrained QM/MM 

optimization increases to 3.6 Å (because of the repulsion between the two carbonyl oxygen 

atoms), which is very similar to the geometry change in the cluster models. This repulsion by no 

means represents a “weak hydrogen bond” as the authors refer to it in (Hsiao et al., 2012). Just as 

in the case of the cluster models, the Q63A side chain undergoes the most significant geometry 

change upon relaxation in contrast to its 180 degree rotated counterpart, Q63J. The latter is 

compatible with the experimental electron density. Unfortunately, Hsiao et al. did not perform 

constrained optimization (“quantum-refinement”) of the 1YRXQflip model containing Q63J to 

further confirm the incorrect assignment of the Q63A orientation in the 1YRX crystal structure. 

 

 

Figure 4.7. The QM part of the QM/MM-optimized geometries by Hsiao et al. (Hsiao et al., 
2012) superposed with the arp/wARP-refined electron density of the PDB structure 1YRX, 
contoured at two sigma. Selected interatomic distances are given in Å. The relative energies with 
respect to the 1YRXQflip model are indicated in kcal/mol. The excitation energies in eV define 
the position of the flavin absorption maximum. Figure was taken from (Udvarhelyi & 
Domratcheva, 2013). 

 Hsiao et al. reported on the major structural rearrangement of Q63A, nonetheless, on the 

basis of the small overall RMSD values of 0.3 Å (and the blue-shifted flavin absorption) they 

assigned the restrained optimized 1YRXref model with Q63A to the BLUF dark state. However, 

overall RMSD values are not suitable to judge the agreement of a specific side chain 

conformation with the experimental electron density. Instead, atom-specific displacements 

should be looked at, like those displayed in Figure 4.4, from which it is apparent that in both the 

cluster and the QM/MM models of (Hsiao et al., 2012), Q63A deviates significantly from the 

starting PDB structure in contrast to the Q63J rotamer. Most importantly, the Q63A-Oε1 atom 
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displacement in 1YRXref is larger than the displacement of the Nε2 atom at the same position in 

1YRXQflip (Q63J model), thus clearly demonstrating that Q63J is preferred over Q63A. 

Unfortunately, Hsiao et al. did not consider a tautomeric form of Q63. They noted however, that 

the bond distances in the glutamine side chain in all of their models were typical for amides and 

incompatible with an imid form of glutamine, thus arguing against the latter. However, this result 

is an obvious consequence of their choice to add hydrogen atoms assuming only the amide 

glutamine because geometry optimization always results in an energy-minimum structure 

consistent with the selected protonation pattern. Therefore, the results presented in (Hsiao et al., 

2012) cannot be used to evaluate the tautomeric form of Q63 in BLUF. 

4.3.3 Dynamic aspects: glutamine rotation in the dark state 

As demonstrated above, the energy difference between all fully optimized models containing 

Q63J and Q63A is rather small. To estimate the energy barrier of glutamine rotation, energy scans 

along different glutamine dihedral angles can be used. Two types of scans were computed: (i) 

changing the glutamine Cβ-Cγ-Cδ-Oε1 dihedral angle to rotate the amide group and (ii) changing 

the glutamine Cδ=Oε1 flavin C4=O4 dihedral to control hydrogen-bonded interactions of flavin 

and glutamine. Both energy scans revealed several minima with different Q63 rotamers that are 

close in energy and separated by low-energy barriers. The results for the smaller Win models are 

shown in Figure 4.8. 

 The Q63 dihedral angle scan starting from the opt3-Q63A model (minimum I) in both the 

clockwise (cw) and counterclockwise (ccw) directions revealed two other minima lower in energy 

than Q63A, separated by low-energy barriers, shown in Figure 4.8A-C. The ccw scan starting 

from the opt3-Q63J model (minimum V) also revealed two more minima, but with higher energy, 

shown in Figure 4.8D-F. In this case the full 360 degree scans cannot be used to analyze the Q63 

rotamers in BLUF as a model artifact occurs in the cw direction after 7 steps: the scan arrives at a 

minimum where W104 forms a hydrogen bond with the backbone carbonyl of W64. Along the 

ccw scan, a similar hydrogen bond is formed after 18 steps. Since the hydrogen bond between 

W104 and the backbone carbonyl most likely cannot form in BLUF (the β2 strand preventing 

such interactions is missing from this model), the respective minima have to be excluded from 

further analysis and consistently, Figure 4.8 only shows minima relevant for BLUF. Importantly, 

none of these minima feature a short distance between the glutamine and flavin carbonyl groups, 

as in the crystal structure 1YRX. The glutamine Cδ=Oε1 flavin C4=O4 dihedral angle scan 

starting from the opt3-Q63A model revealed a low-energy barrier between the Q63A and Q63J 

rotamers, shown in Figure 4.8G-J. In this case again, only parts of the scan can be used because 

of the W104-backbone hydrogen bond formation. However, the part of the energy scan 

meaningful for BLUF displays a low-energy path between the Q63A and Q63J (minimum IV) 
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rotamers, which have almost equal energies. Minimum IV differs from the opt3-Q63J model by 

the orientation of the Y21 hydroxyl group because the scan was started from the opt3-Q63A 

model. The orientation of the Y21 hydroxyl group with respect to Q63 represents another degree 

of freedom, which is interesting to consider in future studies. In fact, when changing a given 

dihedral angle, all the dihedral angles of glutamine and not only those of the head group change, 

indicating the coupling of various torsional degrees of freedom. 

 

 

Figure 4.8. (A), (D) and (G) energy scans of the Q63 dihedral angle and the Q63-flavin dihedral 
angle, starting from the Q63A model (minimum I) or the Q63J model (minimum V) in clockwise 
(cw) and counter-clockwise (ccw) directions in 10 degree steps. The black lines represent the 
dihedral angle potential energy that connects respective minima. The S1 excitation energies for 
the minimum-energy structures are indicated in eV. (B) and (C) The structure of the flavin 
binding pocket at the energy minimum II and of molecule 8 of the NMR ensemble (PDB 
2BUN), respectively. (E), (F), (H) and (J) The structure of the flavin binding pocket at the 
indicated energy minima. Figure was taken from (Udvarhelyi & Domratcheva, 2013). 
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 Figure 4.8 also indicates the flavin S1 excitation energy at the identified local minima. The 

differences of 0.02–0.04 eV (3–6 nm) are small. All of these minima together should be regarded 

as the dark state model of BLUF. This picture is consistent with the results of a recent MD study 

(Khrenova et al., 2010), that identified four conformational substates with different Q63 rotamers 

in the BLUF Wout structure with the flavin excitation energy varying by 0.03 eV. In contrast, the 

excitation energy of the opt3-Q63tau model is significantly red-shifted by 0.09-0.12 eV compared 

to the amide forms. The energy barrier of glutamine tautomerization is certainly much higher 

than the energy of thermal fluctuations because it requires the rearrangement of covalent bonds. 

In contrast to the rotation energy barrier, the tautomerization energy barrier ensures 

photosensitivity. Rotations of both the amide Q63 and imid Q63tau side chains are implicated in 

protein dynamics of the dark and light states, respectively. The next section elaborates further on 

them in the extended models.   

4.3.4 Dihedral-energy scans in the extended models: dark and light states 

The dihedral-energy scans were also carried out in the extended models, both in the Win and Wout 

conformations and with Q63 in both the amide and imid forms. In the extended models, the 

additional β2 strand prevented the formation of the unphysical hydrogen bond between W104 

and the backbone carbonyl atom encountered above. However, also in the extended models, 

parts of the energy scans had to be disregarded because of major conformational changes 

involving the Y21 residue that are unlikely to occur in the protein as parts of the protein 

environment around Y21 is missing in these extended models (e.g. β4). Nevertheless, by merging 

the suitable parts of the energy scans in the cw and ccw directions, full 360-degree energy scans 

and dihedral-angle potential energy curves were obtained revealing several local minima, as 

presented in Figure 4.9. Figure 4.9 shows the results from the energy scans of changing the 

glutamine Cδ=Oε1 flavin C4=O4 dihedral angle. The energy scans of changing the glutamine 

Cβ-Cγ-Cδ-Oε1 dihedral angle revealed very similar minima as those shown in Figure 4.8, and are 

therefore not discussed further.  

Consistent with the findings in the previous section, the energy scan starting from the ext-

Win-Q63A model (minimum VIII) revealed two local minima (IX and X), substantially stabilized 

in energy and separated by only a few kcal/mol energy barrier from minimum VIII. Minimum X, 

containing the rotated glutamine Q63J, is 5.7 kcal/mol lower in energy than minimum VIII 

containing Q63A. In contrast, the energy scan starting from the ext-Wout-Q63J model (minimum 

XI) revealed a high-energy barrier for glutamine rotation, which is attributed to the relatively 

strong hydrogen bond between the Y21 hydroxyl and Q63 carbonyl oxygen atoms. In the energy 

scan starting from the ext-Win-Q63J model (minimum XII) the energy barrier for glutamine 

rotation is not that high and a Q63A-type local minimum is identified (minimum XIII), 5 
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kcal/mol higher in energy than the structure with Q63J. This finding is fully consistent with the 

results in the energy scan starting from minimum VIII. Apparently, in the Win structure the amide 

Q63 is more likely to rotate inside the flavin-binding pocket than in the Wout structure. This 

characteristic could be relevant for the thermal recovery of the dark-state, when the protein, 

following the recovery of the amide state of glutamine, returns from the Win light state to the Wout 

dark state. 

 

 

Figure 4.9. (A), (D) and (E) Full 360 degree energy scans of the Q63-flavin dihedral angle, 
starting from the ext-Win-Q63A (minimum VIII) or the ext-Wout-Q63J (minimum XI) or the ext-
Win-Q63J (minimum XII) models in clockwise (cw) and counter-clockwise (ccw) directions in 10 
degree steps. The black lines represent the dihedral angle potential energy that connects 
respective minima. Note the different energy scale of the plots. The S1 excitation energies for 
the minimum-energy structures are indicated in eV. (B), (C) and (F) The structure of the flavin 
binding pocket at the indicated energy minima. The rest of the models is not shown for clarity. 
The structure of the flavin binding pocket at the minima VIII, XI, and XII is shown in Figure 
4.6. 

The dihedral-angle energy scans starting from the ext-Wout-Q63tau model (minimum XIV) and 

from the ext-Win-Q63tau model (minimum XV) are presented in Figure 4.10. The energy barrier 

for the rotation of the tautomeric glutamine is around 10 kcal/mol in the two cases; a little above 

10 kcal/mol in the Wout structure and a little below 10 kcal/mol in the Win structure. In the Win 

structure, a well-defined local minimum is identified (minimum XVI), 4.4 kcal/mol above 

minimum XV. In contrast, in the Wout structure, such a local minimum was not found. Thus, the 

rotation of the tautomeric glutamine to adopt the orientation of minimum XVI is strongly 
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promoted in the Wout structure. This finding is consistent with the assumption that upon the 

formation of the tautomeric glutamine during the photoreaction in the Wout dark-state structure, 

the tautomeric glutamine rotates to adopt its more stable rotamer, which is further stabilized by 

the formation of the Win light-state structure. In contrast, a tautomeric glutamine in the rotamer 

form of minimum XVI is proposed as the light-state model in (Sadeghian et al., 2008, 2010). On 

the basis of the presented energy scans however, it can be concluded that the rotated Q63tau form 

as in minimum XV is energetically more favorable, supporting the light-state model suggested in 

(Domratcheva et al., 2008; Khrenova et al., 2010). In Figure 4.9 and Figure 4.10 the S1 excitation 

energies are also indicated at the equilibrium geometries. In the models containing the amide 

glutamine, the excitation energy varies between 2.91 and 2.94 eV, whereas in the models 

containing the imid glutamine, it varies between 2.79 and 2.83 eV. These findings are consistent 

with the results on the smaller Win cluster models presented above. As was argued in the previous 

section, only a glutamine undergoing the amide-imid transition is consistent with the observed 

red-shifted flavin absorption in the BLUF light state.   

 

 

Figure 4.10. (A) and (B) Full 360 degree energy scans of the Q63-flavin dihedral angle, starting 
from the ext-Wout-Q63tau (minimum XIV) or the ext-Win-Q63tau (minimum XV) models in 
clockwise (cw) and counter-clockwise (ccw) directions in 10 degree steps. The black lines 
represent the dihedral angle potential energy that connects respective minima. Note the different 
energy scale of the plots. The S1 excitation energies for the minimum-energy structures are 
indicated in eV. (C) The structure of the flavin-binding pocket at minimum XVI. The rest of the 
model is not shown for clarity. The structure of the flavin binding pocket at the minima XIV 
and XV is shown in Figure 4.6. 

4.3.5 Comparison to NMR and MD studies 

The results of these calculations suggest a rather dynamic flavin-binding pocket in the dark state 

with several glutamine rotamers present, especially in the Win BLUF conformation, which all are 

consistent with the experimental absorption maximum of the dark state at about 450 nm. The 

proposed structural disorder is in agreement with the NMR study of the AppA-BLUF domain 

that revealed intermediate exchange broadening of the Q63 signals and suggested several Q63 
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rotamers in the Win conformation of the dark state structure (Grinstead, Hsu, et al., 2006). 

Importantly, none of the 20 NMR structures of the Win conformation contains the 1YRX 

crystallographic Q63A rotamer. The hydrogen bonding network around flavin in all NMR 

structures is distinct from the Win crystal structure 1YRX. The Y21-OH group points towards 

Q63 in all NMR molecules and not away from it as it is assumed in the crystal structure. 

Therefore, the NMR solution structure cannot support the crystallographic Q63A rotamer, as 

other studies implied (Grinstead, Avila-Perez, et al., 2006; Rieff et al., 2011; Meier et al., 2012; 

Hsiao et al., 2012). Interestingly, one of the 20 NMR structures resembles the low-energy 

minimum II shown in Figure 4.8 B and C. Further NMR studies on other BLUF proteins 

revealed a rather complex picture of protein dynamics. For instance, BlrB BLUF appeared highly 

dynamic (Wu et al., 2008), similar to AppA BLUF, whereas BlrP1 BLUF (Wout conformation) 

turned out to be more stable (Wu & Gardner, 2009). Whether these differences are implicated in 

the light-sensing properties of BLUF is still unknown and must be elucidated in upcoming 

studies.  

 In the literature one only finds limited molecular dynamics (MD) analysis of the flavin-

binding pocket of BLUF (Obanayama et al., 2008; Rieff et al., 2011; Meier et al., 2012; Khrenova 

et al., 2010) and no studies on the energy barriers separating conformational substates. In 

(Obanayama et al., 2008) a rotation of the Q63A side chain in the Win structure was observed 

during the course of the MD trajectory, yielding the Q63J rotamer as the stable conformation in 

the Win structure. Consistent with the results and argumentation presented here, the authors 

explained the Q63 side-chain rotation to be promoted by the electrostatic repulsion between the 

carbonyl oxygen atoms of Q63 and flavin. However, in contrast to the presented results, 

Obanayama et al. argued that the transition from the solvent-exposed to the protein-buried 

conformation of W104 is sufficient to induce the spectral red shift between the dark and light 

states, notably without any change in the Q63J rotamer conformation. In (Rieff et al., 2011) the 

dynamics of the Win and Wout conformations using crystal and solution NMR structures of several 

BLUF proteins was simulated. The observed movements of the residues destabilizing the 

hydrogen bonds in the flavin-binding pocket were ascribed to the lack of electrostatic 

polarizability in the force field employed, but not to the non-equilibrated Win starting structure, 

containing the wrong conformation of the glutamine side chain. To maintain the crystallographic 

positions of the atoms, Rieff et al. introduced harmonic restraining potentials. The stability of the 

protein was judged on the basis of average atom-specific RMSD values larger than the thermally 

expected deviation in the restraining potential for each atom. In another MD study comparing 

the Win and Wout structures (Meier et al., 2012) a different definition of protein stability was used: 

the existence of the characteristic secondary structure motifs throughout the MD simulation and 

an average overall RMSD of maximum 3.5 Å led the authors to conclude that both the Win and 

Wout X-ray structures are “reasonably stable” and that the Win structure is preferred in solution. 

However, the hydrogen-bond statistics presented in this study reveal a substantial deviation of 
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the simulated structures, in particular of the flavin-binding pocket, from the starting crystal 

structures throughout the trajectories. It is emphasized that atom-specific RMSD values used 

here and in (Rieff et al., 2011) are more instructive to judge the stability of a hydrogen-bonding 

network than overall RMDS of the whole protein.  

 The presented dihedral energy scans – though computed on cluster models excluding parts 

of the protein and the solvent – are an expensive yet highly valuable way to characterize protein 

dynamics through the estimation of energy barriers separating neighboring local minima. 

Undoubtedly, the DFT method describes hydrogen bonds better than any molecular-mechanical 

force field. In this respect, the equilibration of the structures and the description of assessable 

side-chain rotamers are expected to be more accurate than those derived from the MD 

trajectories. However, for larger scale calculations this method is too expensive and can serve 

only as a complement for MD studies like, for example, those presented in (Khrenova et al., 2010, 

2011). In the future, a systematic study of the various dihedral degrees of freedom of the 

hydrogen-bonding network residues and a comparative study of various BLUF proteins would be 

of high interest. Furthermore, the analysis of protein-protein interactions most likely influencing 

the conformational dynamics of BLUF is needed, as most BLUFs are part of a multi-domain 

protein. Finally, large-scale conformational transitions, like the Wout–Win (or vice versa) transition 

and the refolding of the β5 strand, will require the use of enhanced conformational sampling and 

free-energy techniques that deform the potential-energy surface along a pre-defined collective 

coordinate. 

4.4 Summary and conclusions 

In this chapter, the Q63 rotamer assignment in the Win X-ray structure of AppA BLUF was 

investigated and shown to be wrong. The wrong assignment has been fuelling the debate on the 

BLUF light-activation mechanism for several years. The interpretation of the structural and 

computational findings in the context of the three criteria formulated here help to overcome the 

debate: agreement with the X-ray electron density, flavin S1 spectral shifts and the light-sensitivity 

energy-barrier requirement. The analysis of rather large cluster models describing the 

environment of the flavin-binding pocket demonstrates that from the three possible forms of the 

conserved glutamine only Q63J and Q63tau but not Q63A are compatible with the experimental 

electron density of the Win structure. Thus the Q63A rotamer, originally proposed in the 1YRX 

X-ray structure, cannot serve as an experimental basis for the BLUF dark-state model. It is noted 

that the NMR structures in fact do not support the original Q63A assignment in the Win crystal 

structure because they contain different Y21 and Q63 rotamers.  
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 Figure 4.11 summarizes the main conclusions of this chapter. In the dark state of BLUF the 

Q63 side chain (and possibly that of other residues) may adopt several conformational substates. 

The dihedral energy scans in both the Win and Wout structures revealed that the energy barriers 

between these substates, in particular in the Win structure, is low. The computed red shift of 

flavin absorption between the geometry-optimized Q63A and Q63J models is insignificant, 

irrespective of the tryptophan orientation. In contrast, the significant spectral shift computed 

between the amide Q63 and imid Q63-containing models is consistent with the experimental red 

shift. The conclusions drawn from the results in the cluster models are not altered to any extent if 

QM/MM models are considered. The extended Win and Wout cluster models discussed in this 

chapter represent the hitherto largest BLUF models optimized at the DFT level providing 

insights into the dynamic nature of the two BLUF protein conformations. Their relative energies 

allow speculating that the Wout conformation with Q63J and the Win conformation with Q63tau 

correspond to the dark and light states, respectively. The dihedral-angle energy scans in both 

structures with both amide and imid Q63 forms support this conclusion. Furthermore, it is 

concluded from the light-sensitivity criterion that glutamine rotation does not require 

photoactivation and is unlikely to trigger the BLUF light response. Instead, light-induced 

glutamine tautomerization is consistent with the formulated light-sensitivity criteria and thus 

proposed as the light-activation mechanism in BLUF. 

  

Figure 4.11. The potential 
energy surface of Q63 
rotamers and tautomers in 
BLUF. Figure was taken 
from (Udvarhelyi & 
Domratcheva, 2013). 

 



 

5    BLUF photoreaction 

Having obtained a good understanding of the method and model limitations in the previous 

chapters, in this chapter, I present the results of the photoinduced proton-coupled electron 

transfer pathway calculations of the BLUF photoreaction mechanism. I have computed the 

hitherto most complete pathways that describe the photoactivation of the BLUF dark state, the 

photostability of the BLUF light state and the effect of the chemical (redox) modification of the 

conserved tyrosine side chain. From the computed pathway energies, I estimate the electron-

transfer rate that determines the flavin fluorescence life time using Marcus theory. The results of 

the calculations consistently reproduce experimental trends. The results on the dark-state 

photoactivation mechanism in a small cluster model were previously published in (Udvarhelyi & 

Domratcheva, 2011). In my more recent studies of the BLUF photoreaction, I employed a 

significantly larger cluster model and also hybrid QM/MM models. I further refined the protocol 

of the pathway calculations to obtain more accurate estimates of the energy barriers. This chapter 

contains the results from the most recent calculations.  

5.1    Excited-state pathways and BLUF photochemistry 

The knowledge of the pathway along which the excited-state chromophore relaxes back to the 

ground state potential energy surface is required to determine the photoreaction mechanism. 

Along the relaxation pathway crossings of excited-excited and excited-ground state potential 

energy surfaces govern the formation of the photoproduct. Molecular geometry optimization in 

the excited state is needed to find the relaxation pathway. For a molecular complex of the size of 

the BLUF photoactive triad, consisting of flavin, glutamine, and tyrosine, these calculations are 

very rare and bear many challenges. In fact, in the literature one finds detailed photochemical 

calculations only for the isolated flavin molecules embedded in different environments but 
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without considering intermolecular electron transfer (Climent et al., 2006; Salzmann et al., 2008; 

Klaumünzer et al., 2010). 

Photoreactions of the flavin molecule start with the population of the S1 excited state 

through blue light absorption. Subsequent S1-state relaxation may take several routes, the most 

typical of which are fluorescence, triplet formation or photoinduced electron transfer from a 

nearby residue inside the protein. The latter two are computationally described by locating state- 

crossing geometries between the S1 and another excited state, a triplet or an intermolecular 

electron-transfer (ET) state. The location of the state crossings is the primary task in the 

characterization of photoreaction pathways. The different electronic character of the two 

crossing excited states or of an excited state and the ground state ensures that the crossing 

geometry can be located by following the energy gradient of the higher-energy state because the 

energy decrease of the higher-lying state is concomitant with the energy increase of the lower-

lying state, finally leading to the state crossing.  

The triplet formation in the isolated flavin molecule (or flavin in a polar environment) was 

described using different computational techniques. In (Salzmann et al., 2008), a linear 

interpolation path connects two minima of different electronic structure (S1 and Tn) that contains 

the crossing of the two electronic states. Alternatively, a minimum energy path, used in (Climent 

et al., 2006), initiated from the FC point in the S1 state on the excited-state potential-energy 

surface leads to a state crossing between the S1 and Tn states. An intersystem crossing from S1 to 

the triplet state plays no role in BLUF photochemistry (Bonetti et al., 2009). Instead, an 

intermolecular electron transfer from the conserved tyrosine Y11 residue to the excited flavin is 

responsible for the fluorescence quenching of the S1 state. The observed multiple S1 decay times 

point to a complex process (Gauden et al., 2006). Electron transfer in the excited state 

corresponds to the S1/ET state crossing, which in the case of the BLUF photoreceptor is 

characterized in detail in the present work for the first time, using multi-configurational quantum-

chemistry methods. Previously, Sadeghian et al. attempted to locate the S1/ET state crossing with 

the combination of TD-DFT geometry optimization in the ET state and subsequent CC2 single-

point energy calculations (denoted CC2//TD-DFT) (Sadeghian & Schütz, 2007; Sadeghian et al., 

2008, 2010). As already discussed in Chapter 2, TD-DFT severely underestimates the energy of 

the ET state and gives an incorrect S1 and ET state ordering in BLUF. The TD-DFT-computed 

ET state is the lowest-lying excited state in the computations of Sadeghian et al., which they used 

to perform excited-state geometry optimization to find the ET-state energy minimum. Then, 

along the interpolation path connecting the FC point and the ET minimum, Sadeghian et al. 

recomputed the energies of the ground and excited states with the CC2 method and obtained 

correctly-ordered states and estimated the energy of the ET/S1 crossing. However, both the CC2 

and TD-DFT methods are unsuitable to locate and characterize the state crossing of an excited 

state with the ground state; therefore the computed CC2//TD-DFT pathway of BLUF remains 

incomplete. 
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In BLUF photochemistry, electron transfer is followed by proton transfer (Gauden et al., 

2006). Proton-coupled electron transfer (PCET) leads to the ET/CS state crossing, mediating the 

system’s decay to the ground state. Only the multi-reference PT2//CASSCF methods are 

suitable to describe complete reaction pathways consisting of the photoinduced electron transfer 

(PET) part with the ET/S1 and the proton transfer (PT) part with the ET/CS electronic state 

crossings. Therefore, the multi-reference PT2//CASSCF methods, despite the impressive 

development of the single-reference excited-state methods in the recent years, remain the method 

of choice for the computation of intermolecular electron and proton transfer processes in excited 

organic molecules. For example, in (Sinicropi et al., 2000) the intermolecular PCET process 

between amine and electronically excited azoalkane was computed with the PT2//CASSCF 

approach. Domcke and coworkers studied the photoinduced electron and proton transfer 

reactions with the PT2//CASSCF approach and demonstrated that photoinduced PCET 

provides an efficient deactivation pathway for an excited pyridine molecule in the hydrogen-

bonded pyridine-pyrrole system (Frutos et al., 2007) and proposed that PCET explains DNA 

photostability (Schultz et al., 2004; Sobolewski et al., 2005). 

The BLUF dark-state photoreaction (i.e. the formation of the BLUF light state) is proposed 

to involve sequential electron and proton transfer reactions, leading to a neutral biradical 

intermediate (Gauden et al., 2006). Then, a second PCET reaction results in the recombination of 

the biradical to form the photoproduct characterized by the 15-nm red-shifted flavin absorption. 

The formation of the photoproduct via the two PCET reactions takes place in less than a 

nanosecond (Gauden et al., 2006). The photoproduct (i.e. the light state) contains the oxidized 

flavin in an altered hydrogen-bonding environment compared to that in the dark state. In 

particular, the hydrogen bond to flavin C4=O4 becomes stronger as evidenced by its well-

pronounced downshift in the IR region (Masuda et al., 2004). Moreover, it was found that Y11 

forms an “unusually strong” hydrogen bond with Q53 in the light state (Iwata et al., 2011). 

Several studies proposed that the spectral red shifts observed in the light state are signatures of 

stronger intermolecular interactions of flavin with its hydrogen-bonded environment (Mathes, 

Zhu, et al., 2012; Toh et al., 2008; Shibata et al., 2009; Lukacs et al., 2011; Yuan et al., 2011). 

These studies also showed that the flavin fluorescence life time is significantly shortened and the 

heterogeneity of the excited-state decay is reduced in the light state compared to the dark state. It 

was suggested that similar to the dark-state photoreaction, the light state also undergoes a PCET 

process upon photoexcitation, yet with a distinct photodynamics consistent with a concerted 

proton and electron transfer reaction, in contrast to the sequential reaction of the dark state 

(Mathes, Zhu, et al., 2012). Upon photoactivation of the light state, a neutral biradical 

intermediate highly similar to the one formed during the dark-state photoreaction was identified 

and the photoreaction was completed in about a picosecond. However, in contrast to the dark 

state, the light state is highly photostable because the internal conversion leads back to the light-

state Franck-Condon (FC) point (Toh et al., 2008). The light state thermally decays to the dark 
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state within seconds to minutes (spanning three decades), depending on the BLUF domain 

(Masuda et al., 2004; Zirak et al., 2006, 2005; Fukushima et al., 2005; Rajagopal et al., 2004).  

Notably, the biradical intermediate could only be resolved in the experiments with the PixD 

protein (Gauden et al., 2006), but not with AppA (Gauden et al., 2007; Stelling et al., 2007), BlrB 

(Mathes et al., 2011) or BlsA (Brust et al., 2014). Recently, on the grounds of the missing radical 

intermediates, the Meech group proposed that BLUF photoactivation does not follow the PCET 

pathway (Lukacs et al., 2014). Instead, they proposed a “neutral pathway” along which the 

formation of the S1 flavin induces the tautomerization of the glutamine side chain. In contrast, 

the Kennis group demonstrated that the dynamics of both photoactivation and the dark-state 

recovery are linked to redox properties (Mathes, Stokkum, et al., 2012), which the authors 

interpreted according to the PCET mechanism. The observed redox tuning was achieved by 

mutations of residues around flavin and by the chemical modifications of the tyrosine electron 

donor (Mathes, Stokkum, et al., 2012). For example, when the tyrosine electron donor was 

replaced by a fluorotyrosine analog, a substantially slower fluorescence quenching was observed 

in PixD (Mathes, Stokkum, et al., 2012) and AppA (Lukacs et al., 2014).  

Here the PT2//CASSCF approach is applied to find the BLUF photoreaction pathway of 

the dark and light states to reveal the mechanisms responsible for photoactivation and 

photostability. In addition, the redox-modulating effect of Y11 fluorination is computed and 

compared to the measured ET rates in fluorotyrosine-containing BLUFs. Geometry optimization 

is carried out in the excited state with the CASSCF method in various BLUF models containing 

the photoactive triad and its environment in the protein. At the equilibrium geometries, the 

energies are recomputed with the XMCQDPT2 and (MS-)CASPT2 methods to include dynamic 

electron correlation. As demonstrated in Chapter 2, the POCAS selection of active space orbitals 

provides a chemically sensible and computationally efficient choice that allows mapping the 

complete photoreaction pathway in BLUF (consisting of the PET and PT parts). The ET/S1 and 

ET/CS state crossings are located along the pathways and the ET and PT energy barriers are 

estimated. The results obtained in the dark-state, fluorinated, and light-state models are 

consistent with experimental observations. The hitherto most complete model of BLUF 

photochemistry is presented.   

5.2 Methods and computational details 

5.2.1 Cluster and QM/MM models 

The “small cluster model” representative of any BLUF protein (introduced in Chapter 2) as well 

as the “large cluster model” and a QM/MM model based on the PixD X-ray structure 
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(introduced in Chapter 3) were used for the electron and proton transfer pathway calculations in 

this chapter. This chapter refers to the QM/MM model as PixD I. In addition, a second 

QM/MM model, denoted PixD II, including the N35 side chain into the QM subsystem is also 

considered. Furthermore, this chapter also considers a QM/MM model based on the 2BYC PDB 

coordinates (chain A) of the BlrB BLUF protein, prepared analogously to the PixD QM/MM 

model (for details see Chapter 3).  

 To model the effect of tyrosine fluorination, cluster and QM/MM models including 3-

fluorotyrosine and 2-fluorotyrosine were used. For both fluorotyrosine analogs two 

conformations resulting from the relative orientation of tyrosine to glutamine were considered, 

indicated in Figure 5.1. All four fluorotyrosine analogs were used in the small cluster and the 

PixD-I QM/MM model PET pathway calculations, whereas only the two conformations of 3-

fluorotyrosine were considered in the large cluster model. Finally, the photoreaction of the BLUF 

light state, that contains the tautomeric glutamine, was also computed in the small cluster model 

(built based on the respective crystal structure, as described in Chapter 2), and in the PixD I 

QM/MM model (built based on the structure obtained at the end of the dark-state photoreaction 

calculations).  

 

 

Figure 5.1. Two orientations of the 3-fluorotyrosine and 2-fluorotyrosine analogs with the 
fluorine atom either pointing away from the Q53 side chain (orientation 1) or towards it 
(orientation 2).  

 Similar to the previous chapters, geometry optimization was carried out with the state-

averaged CASSCF method. In the cluster models the distances between pairs of the terminal 

atoms of each molecular fragment were kept constant. In the QM/MM models the 

“microiterations on” (Melaccio et al., 2011) scheme was used to optimize the geometry of the 

QM subsystem and to relax the geometry of the MM subsystem within 4 Å of any QM atom, 

whereas the remaining MM atoms were kept frozen. The excitation energies at the CASSCF 

geometries were computed with the XMCQDPT2/cc-pVDZ (with an edshift value of 0.02 au) 

method with the Firefly program and the (MS-)CASPT2/DZV(P) (without applying the ipea 

shift and with an imaginary shift of 0.2 au) method in the cluster and QM/MM models, 

respectively.  
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5.2.2 Pathway calculations 

The photoactivation pathways computed in this chapter consist of two parts, as mentioned in 

Section 5.1, the PET part starting from the FC geometry and leading to the zwitterionic biradical 

minimum, and the PT part describing proton transfer and neutralization of the biradical charge. 

Geometry optimization was performed at the CASSCF level of theory and at the optimized 

geometries single-point energy calculations were performed at the XMCQDPT2 level in the 

cluster models and at the (MS-)CASPT2 level in the QM/MM models. The POCAS way of 

choosing the active-space MOs was employed as described in Chapter 2. For brevity, energy-

CAS//optimization-CAS denotes the active spaces used for the CASSCF geometry optimization 

and the subsequent PT2 energy calculations in this chapter. In the dark-state photoinduced 

electron-transfer reaction calculations, the (6,4)4//(6,4)4 active space was used, describing the 

closed-shell, the flavin S1 and S2 states and the tyrosine-flavin ET state. At the FC geometry, the 

ET state is the fourth state, whereas at the radical-pair geometry reached after electron transfer 

from tyrosine to flavin, the ET state becomes the second state. In the subsequent PT reactions 

starting from the radical-pair (biradical) minimum, only the CS and ET states were considered 

and thus the (2,2)2//(2,2)2 active space was employed. As shown for the isolated LF molecule in 

Section 2.3.2, changing the number of states in the POCAS calculations yields virtually identical 

optimized structures. This is also the case for the BLUF cluster. Figure 5.2 demonstrates the 

structural similarities of the biradical minimum, optimized with (2,2)2 and (6,4)4 in the small 

cluster model. In the light-state PET pathway calculations also the (6,4)4//(6,4)4 active space, 

whereas in the light-state PT pathway calculations the (2,2)2//(2,2)2 active space was employed. 

It should also be noted here that along the reaction pathway, the POCAS active space is stable 

and not even the occupation numbers of the considered MOs change, which is an important 

prerequisite of a balanced description of the states along the pathway. 

The absolute energies of the states obtained from the POCAS calculations with the different 

number of states differ significantly, however, the respective XMCQDPT2 excitation energies are 

very close to each other. At the biradical minimum for example, the excitation energy of the ET 

state computed with (2,2)2 and (6,4)4 differs by less than 5%. This good agreement was used to 

“merge” the PET part of the pathway computed with the (6,4)4 active space to the PT part of 

the pathway computed with the (2,2)2 active space by shifting the (2,2)2-computed energies (CS 

and ET state) such that the ET state obtained with (2,2)2 matches that computed with (6,4)4. 

The fact that the POCAS excitation energies show a negligible dependence on the number of 

states included in the calculation allows for an easy comparison of the relative energies of various 

species occurring along the photochemical pathways studied here. 
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Figure 5.2. CASSCF(2,2)2/cc-pVDZ and CASSCF(6,4)4/cc-pVDZ-optimized geometries of 
the biradical minimum in the small cluster model (N35 is not shown for clarity). Relevant bond 
lengths are indicated in Å.  

 In the fluorotyrosine-containing models there are several cases in the geometry-optimization 

and in the subsequent single-point calculations of changing the number of states in the POCAS 

calculations. In the fluorotyrosine-containing small cluster and PixD-I QM/MM models the FC 

geometry was optimized with CASSCF(4,3)3 (with the CS, S1, and S2 states) but the single-point 

energies were recomputed either with the (6,4)4 active space, i.e. (6,4)4//(4,3)3 for the small 

cluster 3-fluorotyrosine-1, 2-fluorotyrosine-1, 2-fluorotyrosine-3 and the PixD-I 3-fluorotyrosine-

2 models or with (8,5)5//(4,3)3 for the small cluster 3-fluorotyrosine-2 model. In that case the 

(8,5)5 active space was used for the single-point energy calculation because the flavin Sn state had 

to be included into the active space to compute the ET state. The biradical minima in the all four 

fluorotyrosine PixD-I QM/MM models were computed with (6,4)4//(2,2)2. In the large cluster 

models containing fluorotyrosine models the whole pathway was computed with (6,4)4//(6,4)4.

 The PT part of the pathway calculations was carried out for the dark state models (with the 

native tyrosine) in the small cluster, large cluster and PixD-I QM/MM models. To determine the 

transition state geometry and the energy barrier of the proton transfer reactions, relaxed energy 

scans along hydrogen bonds, denoted by donor-proton…acceptor (D-H…A), were performed. 

Along the energy scan, the H…A distance was successively reduced by 0.1 Å along the vector 

connecting the D and A atoms, and at each step the geometry was fully optimized with the 

coordinates of the D-H…A atoms kept fixed. The standard gradient thresholds (0.0001 

hartree/bohr) were used except for the calculations of the large cluster model, where a threshold 

of 0.0005 hartree/bohr was applied. The geometry with the highest energy along the evaluated 

scan is considered as the PT transition state. The difference between the ET-state energies at this 

structure and at the D-H…A minimum gives the PT energy barrier. At the end of the energy 

Aniko
Rectangle
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scan, geometry optimization without freezing the D…H-A atomic coordinates leads to the 

structure with the proton transferred to the acceptor atom.  

 The reaction coordinate of the ET and PT pathways was determined from the analysis of the 

obtained energy minima by finding a suitable linear combination of the bond and hydrogen bond 

distances, which are specified in Figure 5.3. Because of the different chemical structure and 

orientation of Q53, the bonds and hydrogen bonds comprising the reaction coordinate are 

distinct in the dark and light states. The gradient threshold for geometry optimization in the small 

cluster model was 0.0001 hartree/bohr and in the large cluster model and all fluorotyrosine-

containing cluster models was 0.0003 hartree/bohr. Test calculations revealed no significant 

effect on the geometries with these thresholds. 

 

 

Figure 5.3. Definition of interatomic distances used to describe the ET and PT reaction 
coordinates in the dark-state model containing the amide and in the light-state model containing 
the imid Q53 side chain. 

5.3 Results and discussion 

5.3.1 PET in the dark state 

The geometry in the closed-shell ground state was optimized to reach the Franck-Condon 

minimum, denoted as geometry A in the following. Table 5.1 lists the vertical S1 and ET state 

excitation energies in the five BLUF models employed to study the PET pathway. At the FC 

point, the ET state lies always above the S1 state in energy. As the following PET pathways will 

show, the S1–ET gap is relevant for quenching of the flavin fluorescence by photoinduced 

electron transfer. The lowest ET state excitation energy and smallest S1–ET gap is found in the 

large cluster and the BlrB QM/MM models, and the largest in the PixD QM/MM models. The 

energy diagrams presented in Figure 5.4 illustrate the PET reaction energies in dark-state BLUF. 
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Both CASSCF and PT2 pathways are shown for the five models. In the following, the 

construction of these pathways is detailed and the implications discussed.  

Geometry optimization in the S1 state, the first excited state, leads to the S1 minimum from 

which fluorescence is observed, denoted as geometry B. The relaxation from A to B decreases 

the energy of the S1 state by ≈12 kcal/mol in the cluster models and less, by ≈8 kcal/mol, in the 

QM/MM models (here, and below XMCQDPT2 and MS-CASPT2 values are given for the 

cluster and QM/MM models, respectively). At geometry B, the vertical S1 excitation energy gives 

an estimate for the emission maximum, also listed in Table 5.1. The obtained vertical S1 energies 

at B and the Stokes shifts (computed as an energy difference between the vertical S1 excitation 

energy at A and B) are consistent in all models and are in reasonable agreement with experiment 

(Zirak et al., 2006, 2007; Weigel et al., 2011; Fujiyoshi et al., 2011). It is noteworthy that the 

Stokes shift in the PixD II QM/MM model, which has the QM subsystem of the same 

composition as the small cluster model, is identical to the one obtained in the small cluster model. 

Table 5.1. The vertical S1 and ET excitation energies at the FC minimum A, along with the S1-
ET energy gap are listed together with the vertical S1 excitation energy (emission) at the 
optimized S1 minimum B and the resulting Stokes shift. XMCQDPT2 and MS-CASPT2 values 
are given for the cluster and QM/MM models, respectively.  

 
absorption [eV] ET [eV] S1-ET gap [eV] emission [eV] Stokes shift [nm] 

small 3.03 4.58 1.55 2.37 114 

large 3.07 4.06 1.00 2.34 125 

PixD I 2.77 4.45 1.68 2.12 137 

PixD II 2.76 4.63 1.87 2.20 114 

BlrB 2.87 3.85 0.98 2.30 108 

  

Geometry optimization starting from the FC point in the ET state, the third excited state, 

first leads to the ET/S2 state crossing. The geometry optimization in the second excited state 

after the crossing follows the energy gradient of the ET state until the ET/S1 state crossing is 

reached, denoted as geometry C. Here again, after the crossing the geometry optimization is 

continued in the lower, first excited state which becomes the ET state, leading to a zwitterionic 

biradical minimum, denoted as geometry D. Structure D contains the flavin radical anion and the 

tyrosine radical cation. Upon relaxation from C to D, the biradical is stabilized by 5.6 kcal/mol in 

the large cluster model and by 8 kcal/mol in the BlrB model, given by the ET-state energy 

decrease from C to D. The biradical stabilization is insignificant in the small cluster and both 

PixD QM/MM models. The energy difference between the ET state at geometry D and the S1 

state at geometry B is one of the determinants of the ET rate, which will be discussed in Section 

5.3.6. The lowest-energy geometry D is found in the large cluster and the BlrB QM/MM model, 

at a similar energy as the S1 state at geometry B. The ET state at geometry D is still rather high in 

energy; its further stabilization takes place by proton-transfer reactions, which neutralize the 
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zwitterionic biradical. The PT steps concomitantly increase the energy of the closed-shell ground 

state ultimately leading to the ET/CS state crossing, discussed in the next section. 

 

 

Figure 5.4. Photoinduced electron transfer pathway in various BLUF cluster and QM/MM 
models at the CASSCF and PT2 level of theory. Optimized geometries A-D and energies were 
obtained as described in the text, with (6,4)4//(6,4)4 calculations in all cases, except for 
geometry D in the PixD-II model, where (6,4)4//(2,2)2 was employed. 

An analysis of the changes in the bond lengths helps to describe the photoreaction 

coordinate connecting the located geometries A-D and to construct the energy diagrams in 

Figure 5.4 for different models in a consistent way. Table 5.2 lists the bond lengths that change 

most during geometry optimization of the S1 and ET states. The structural relaxation from 

geometry A to B involves a lengthening of the flavin N5-C4a bond (d3) by approx. 0.06 Å and a 

shortening of the C4a-C10a (d2) and C4a-C4 (d4) bonds to a lesser extent. The lengthening of d3 

is larger in the cluster models, whereas the shortening of d4 is more pronounced in the QM/MM 

models. The structural changes are consistent with the flavin HOMO-LUMO electron density 

redistribution (see Chapters 2 and 3). As a result of the S1 transition, the negative charge on the 

flavin N5 atom increases, that shortens the flavin-glutamine hydrogen bond (d5) and increases the 

N-H (d6) bond lengths of the glutamine amide group. Even the Q53 C=O (d10) and C-N (d11) 

bonds are affected to a small extent; the lengthening of d10 and the shortening of d11 are more 

pronounced in the cluster than in the QM/MM models. 
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Table 5.2. Selected bond lengths of the optimized structures along the PET pathway in the five 
models given in Å. For the definition of the distances see Figure 5.3.  

small d1 d2 d3 d4 d6 d8 d10 d11 
geo A 1.278 1.465 1.273 1.492 1.004 0.956 1.214 1.335 
geo B 1.275 1.435 1.337 1.453 1.009 0.959 1.222 1.326 
geo C 1.301 1.424 1.349 1.447 1.019 0.981 1.229 1.313 
geo D 1.307 1.423 1.351 1.446 1.020 0.994 1.235 1.307 

         large d1 d2 d3 d4 d6 d8 d10 d11 
geo A 1.294 1.455 1.278 1.491 1.003 0.953 1.214 1.336 
geo B 1.292 1.426 1.340 1.455 1.007 0.956 1.221 1.329 
geo C 1.314 1.417 1.351 1.449 1.012 0.970 1.227 1.318 
geo D 1.325 1.412 1.356 1.445 1.015 0.988 1.233 1.310 

         PixD I d1 d2 d3 d4 d6 d8 d10 d11 
geo A 1.289 1.455 1.276 1.488 1.006 0.965 1.209 1.334 
geo B 1.286 1.428 1.337 1.452 1.012 0.966 1.214 1.330 
geo C 1.315 1.418 1.353 1.446 1.022 1.010 1.230 1.311 
geo D 1.319 1.415 1.356 1.444 1.024 1.029 1.235 1.306 

         PixD II d1 d2 d3 d4 d6 d8 d10 d11 
geo A 1.289 1.454 1.275 1.489 1.007 0.964 1.209 1.334 
geo B 1.286 1.425 1.333 1.445 1.011 0.965 1.212 1.330 
geo C 1.306 1.422 1.342 1.447 1.021 0.997 1.226 1.313 
geo D 1.316 1.417 1.347 1.446 1.028 1.037 1.237 1.303 

         BlrB d1 d2 d3 d4 d6 d8 d10 d11 
geo A 1.298 1.449 1.276 1.487 1.005 0.964 1.208 1.337 
geo B 1.297 1.416 1.333 1.445 1.010 0.965 1.212 1.333 
geo C 1.310 1.416 1.335 1.448 1.014 0.981 1.219 1.322 
geo D 1.322 1.412 1.342 1.446 1.023 1.035 1.234 1.304 

 

 

 

At the ET/S1 state-crossing geometry C, the bond lengths d3, d6, d8, and d10 further increase 

and d2, d4, and d11 further decrease compared to minimum B. From B to C a significant 

lengthening of the d1 bond length also occurs. In addition, the hydrogen bonds between Y11 and 

Q53 as well as between Q53 and flavin N5 shorten, following the charge separation between the 

negatively charged flavin and the positively charged tyrosine radicals. The bond distance changes 

in the Y11 phenol ring (not shown in Table 5.2) are consistent with removing an electron from 

the tyrosine HOMO. Structural relaxation from the state-crossing geometry C to minimum D 

involves further increase/decrease of the respective bond lengths, however, altogether to a 

smaller extent. Thus, the ET state minimum D lies rather close in geometry to the ET/S1 state-

crossing geometry C, except for the BlrB QM/MM model, where the structural relaxation from 

C to D is even more pronounced than that from B to C, presumably because of the large energy 

stabilization of the ET state.  
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The observed structural changes upon the relaxation of the S1 and ET states characterize the 

reaction coordinate (R) for the photoinduced electron transfer from Y11 to flavin in BLUF. The 

relaxation of the photoactive triad monotonically progresses along the same bond-stretching 

collective coordinate. Two set of coordinates are relevant: First, the flavin bond-stretching mode 

−d2+d3−d4 related to the flavin LUMO, which is the same singly-occupied MO in both the S1 

and ET states. Second, the hydrogen-bond mode +d6+d8+d10−d11 points to the important role of 

glutamine in mediating the photoreaction in BLUF, already at this early stage. Therefore, in 

Figure 5.4 the PET reaction coordinate in BLUF is described by a linear combination of the 

discussed bond lengths: R=d1−d2+d3−d4+d6+d8+d10−d11. It is emphasized that the order of 

geometries A to D along this coordinate is revealed by the bond distance changes during the 

independent optimization of the S1 and ET states without any restraints (except for the terminal 

atom constraints). 

The energy diagrams in all models are consistent but show some variations. The important 

difference is the barrier of electron transfer predicted by the models, determined here by the 

energy at the crossing geometry C. The large cluster and the BlrB QM/MM models predict the 

smallest ET barrier and thus shortest flavin fluorescence life time. These are also the models with 

the smallest S1-ET gap at the FC geometry. Notably, the S1-ET gap correlates with the barrier 

height. In fact, the presented QM/MM models cannot explain the experimentally observed 

approximately twice-long fluorescence life time in BlrB (Zirak et al., 2006), compared to PixD 

(Zirak et al., 2007). The BlrB QM/MM model predicts a substantial ET-state stabilization by the 

protein environment, in drastic contrast to the PixD QM/MM model. In BlrB a (positively 

charged) arginine side chain is located close to the flavin C2=O2 carbonyl group, whereas in 

PixD a polar but neutral asparagine residue is located at that position. Consistent with the 

calculations in Chapter 3, the positive charge on the arginine close to flavin may explain the large 

stabilization of the ET state in the BlrB QM/MM model.  

5.3.2 Proton transfer pathways 

Proton-transfer pathways, along which the ET state is further stabilized, were computed using 

the small cluster, the large cluster and the PixD-I QM/MM models. To reach the neutral biradical 

intermediate, geometry optimizations were carried out considering only the CS and ET states, 

starting at the zwitterionic biradical minimum D. At D, the ET state is the first excited state. In 

all models, geometry optimization of geometry D with CASSCF(2,2)2 resulted in minimum D’, 

virtually identical to minimum D, as shown in Section 5.2.2. Proton transfer from the electron 

donor to the electron acceptor stabilizes the zwitterionic biradical through neutralization; a 

process referred to as “the proton follows the electron” along the hydrogen bond connecting the 

donor and acceptor (Sobolewski et al., 2005). As a consequence, the ET state energy decreases 
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and concomitantly the CS state energy increases. In BLUF, hydrogen-bonding between the Y11 

electron donor and flavin electron acceptor is established via Q53. Therefore, starting from 

structure D’, there are two hydrogen bonds and two PT reactions considered here, which may 

occur in different order. 

 

 

Figure 5.5. Full XMCQDPT2 and MS-CASPT2 energy profiles of the ET/PT-I pathway and 
structures F1 and H1 in the three models. The L44 side chain (see Figure 3.2A) in the large 
cluster model is not shown for clarity. The energies at geometries A-D were obtained with the 
(6,4)4//(6,4)4 calculations and at geometries D’-H1 with (2,2)2//(2,2)2, as described in Section 
5.2.2. 

First, the PT reaction mediated by the hydrogen bond between Q53-Nε2 and flavin N5, is 

discussed, denoted as PT-I. PT-I corresponds to flavin protonation. The computed energy 

diagram for PT-I is presented in Figure 5.5 along with the preceding PET pathway described in 

the previous section. At the identified transition state, denoted as geometry E1, the proton is 

“half way” between the glutamine Nε2 and flavin N5 atoms. After the barrier, unrestrained 
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geometry optimization in the ET state yields the ET/CS state crossing geometry, denoted as 

geometry F1. Starting from the F1 crossing point, there are two relaxation pathways in the 

ground state: the CS pathway leading back to the Franck-Condon minimum A and the radical-

pair ET-state pathway. The latter was computed by continuing geometry optimization from F1 in 

the ground state, finally leading to the neutral biradical minimum, denoted as H1. Structure H1 

contains the neutral N5-protonated flavin radical, the neutral deprotonated Y11 radical, and a 

tautomeric E-imidic Q53 in the three models. The tautomeric Q53 is rotated approximately 90° 

with respect to the neutral flavin radical. The hydrogen bond between the E-imidic Q53 and the 

neutral Y11 radical is substantially weakened and even broken in the PixD-I model. 

Deprotonation of the Y11 radical occurs practically concomitant to the protonation of the flavin 

radical, therefore only a single PT barrier (E1) was located along this pathway. The E1 barrier of 

flavin protonation in the ET state is rather small and slightly changes from one model to the 

other: 0.9 kcal/mol (small cluster), 3.9 kcal/mol (large cluster), and 1 kcal/mol (PixD I 

QM/MM). With respect to D’, the energy of the ET state at the neutral biradical H1, after the 

two PT reactions are completed, is lowered by 30 kcal/mol (small cluster), 20 kcal/mol (large 

cluster), and 26 kcal/mol (PixD-I QM/MM). Thus the two PT reactions substantially stabilize 

the ET state.  

As Table 5.3 demonstrates, the structural relaxation from D’ to H1 mainly concerns the 

bonds involved in the glutamine-flavin (described by d5 and d6) and involved in the tyrosine-

glutamine (described by d7 and d8) hydrogen bonds, as well as the Q53 d10 and d11 bonds. Proton 

transfer from the tyrosine hydroxyl to the Q53-Oε1 oxygen atom occurs concomitantly to the 

proton transfer from Q53-Nε2 to flavin N5, however, the three models differ in their structures 

at the ET/CS state crossing geometry F1. In the small cluster model, both protons are 

transferred and the Y11 and flavin radicals are both neutralized at F1 in a concerted fashion. In 

the large cluster model, F1 is reached upon flavin protonation but before tyrosine deprotonation. 

Thus, F1 contains a deprotonated anionic glutamine that explains the higher energy barrier of the 

PT process compared to the other models and the high energy of the ET state at F1. In the 

PixD-I QM/MM model the spontaneous deprotonation of the Y11 radical precedes the 

protonation of the flavin radical so that F1 is reached before the flavin radical is protonated. A 

deprotonation of Q53-Nε2 and a concomitant protonation of Q53-Oε1 result in a substantial 

increase and decrease in the d10 and d11 bonds, respectively. From the observed structural changes, 

the following PT reaction coordinate R’ can be identified: The hydrogen bond distance changes 

are described by the obvious −d5+d6−d7+d8 coordinate and the changes in the bond lengths of 

Q53 Cδ-Oε1 and Cδ-Nε2 by the +d10−d11 tautomerization coordinate. Thus, the reaction 

coordinate R’=0.1 × (−d5+d6−d7+d8)+d10−d11 is proposed for the PT process in BLUF. The 

weighting coefficient 0.1 is arbitrarily chosen to emphasize the changes in the tautomerization 

coordinate.  
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Table 5.3. Selected interatomic distances (defined in Figure 5.3) in Å along the pathway PT-I. 

small d5 d6 d7 d8 d10 d11 

geo D' 1.992 1.021 1.551 0.995 1.236 1.306 

geo E1 1.392 1.171 1.455 1.017 1.252 1.297 

geo F1 1.058 1.788 1.016 1.492 1.311 1.271 

geo H1 1.008 2.274 0.954 2.199 1.328 1.257 

       large d5 d6 d7 d8 d10 d11 

geo D' 2.102 1.015 1.599 0.988 1.233 1.310 

geo E1 1.302 1.277 1.422 1.030 1.255 1.299 

geo F1 1.063 1.742 1.365 1.053 1.269 1.288 

geo H1 1.013 2.131 0.952 2.322 1.327 1.258 

       PixD I d5 d6 d7 d8 d10 d11 

geo D' 2.152 1.024 1.443 1.030 1.235 1.306 

geo E1 1.585 1.183 1.389 1.048 1.244 1.302 

geo F1 1.482 1.205 1.001 1.599 1.325 1.264 

geo H1 1.011 2.304 0.958 3.028 1.330 1.251 

 

Next, the PT reaction mediated by the hydrogen bond between Q53 and Y11 is discussed, 

denoted as PT-II and shown in Figure 5.6. PT-II corresponds to Y11 deprotonation. 

Analogously to PT-I, in the large cluster and the PixD-I models, the relaxed proton transfer 

(Y11-OH to Q53-Oε1) energy scan renders the transition state E2, the ET/CS state crossing F2, 

and the neutral biradical minimum H2. The same energy scan in the small cluster model resulted 

in a different PT pathway, discussed in the Section 5.3.3. Deprotonation of the Y11 radical 

requires only a small energy at the CASSCF level (transition state geometry E2); at the PT2 level 

the transition state disappears because at E2 the ET-state energy is even lowered by 1.5 kcal/mol 

(large cluster) and 1.9 kcal/mol (PixD I) compared to that at D’. This finding indicates a 

completely barrierless relaxation towards the ET/CS state crossing geometry F2. Continuing 

geometry optimization in the ground state after F2 leads back to the Franck-Condon minimum 

on the CS path. To stay on the ET path in the ground state, proton transfer from Q53-Nε2 to 

flavin N5 is needed.  

In the PixD-I model, the F2 crossing is “delayed” significantly. It can only be located by 

performing the second PT energy scan (corresponding to flavin protonation). At the beginning 

of this scan, the ET/CS crossing is reached, denoted as F2’. The transition state for the Q53-Nε2 

to flavin N5 proton transfer, denoted as G2, is only a transition state at the CASSCF level, but at 

the MS-CASPT2 level its energy lies below that of F2 and F2’. Thus the downhill energy path 

from D’ to H2 in the PixD-I model indicates that both proton transfer reactions occur 

spontaneously and in a concerted fashion. In the large cluster model, F2 contains the protonated 

Q53 and the second proton transfer to flavin N5 stabilizes the ET state and yields the neutral 

biradical H2. The biradical intermediate H2 contains the neutral Y11 and flavin radicals and the 
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tautomeric E-imidic Q53. The latter still forms a strong hydrogen bond to Y11 in the PixD-I 

model, whereas in the large cluster model this hydrogen bond is broken and the tautomeric Q53 

is rotated approximately 90° with respect to flavin. With respect to D’, the energy of the ET state 

at H2 is lowered by 19 kcal/mol (large cluster) and 23 kcal/mol (PixD I). Because of the obvious 

similarity to the PT-I pathway, the same reaction coordinate for the PT-II pathway, R’=0.1 × 

(−d5+d6−d7+d8)+d10−d11 including the hydrogen bond and glutamine tautomerization 

coordinates, is proposed. Table 5.4 and Figure 5.6 summarize and illustrate the results.   

 

 

Figure 5.6. Full XMCQDPT2 and MS-CASPT2 energy profiles of the ET/PT-II pathway and 
structures F2/F2’ and H2 in the large cluster and PixD-I models. The L44 side chain in the large 
cluster model is not shown for clarity. The energies at geometries A-D were obtained with the 
(6,4)4//(6,4)4 calculations and at geometries D’-H2 with (2,2)2//(2,2)2, as described in Section 
5.2.2. 
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Table 5.4. Selected interatomic distances (defined in Figure 5.3) in Å along the pathway PT-II. 

large d5 d6 d7 d8 d10 d11 

geo D' 2.102 1.015 1.599 0.988 1.233 1.310 

geo E2 2.066 1.020 1.199 1.155 1.248 1.297 

geo F2 2.031 1.025 0.972 1.825 1.275 1.285 

geo H2 1.013 2.145 0.953 2.292 1.327 1.258 

       PixD I d5 d6 d7 d8 d10 d11 

geo D' 2.152 1.024 1.443 1.030 1.235 1.306 

geo E2 2.128 1.029 1.250 1.122 1.245 1.299 

geo F2 2.144 1.037 0.995 1.552 1.275 1.284 

geo F2' 1.644 1.118 0.987 1.588 1.288 1.280 

geo G2 1.444 1.251 0.977 1.652 1.302 1.273 

geo H2 1.015 2.230 0.966 1.856 1.347 1.247 

 

Figure 5.5 and Figure 5.6 depict the results from the combined ET and PT pathway 

calculations. The relaxation of the respective first excited state starting from the Franck-Condon 

minimum reveals a PCET downhill energy path until the biradical intermediates H1 and H2. 

Both PT pathways essentially predict two concerted and barrierless proton transfer reactions that 

result in the formation of the very similar intermediates H1 and H2, containing the tautomeric 

glutamine. The energy of the ET state at H2 is only 0.6 kcal/mol (large cluster) and 2.8 kcal/mol 

(PixD I) above that at H1. The energy of the ET state both at H1 and H2 is higher in the PixD-I 

model than in the cluster models with respect to the Franck-Condon minimum A. The S1 

minimum B is separated by the energy barrier E1 or D from the biradical minima H1 and H2, 

respectively. The different energy barriers in the different models suggest significantly different 

life times of the flavin fluorescence. The energy barrier is negligible in the large cluster model, 

thus suggesting a completely downhill energy path (especially the ET/PT-II pathway) in full 

accordance with the experiments that show no kinetic isotope effect upon H/D exchange on the 

flavin fluorescence life time (Gauden et al., 2006). Remarkably, a rather clear barrier (E1 or D’) 

exists in the PixD-I model QM/MM. As Chapter 3 discussed, the PixD protein environment 

rather destabilizes the ET state and as found here, the barrier in the PixD-I model is even the 

highest among all models.  

Radical recombination from H1 and H2 in the ground state either leads to the photoproduct 

minimum or back to the FC minimum. Radical recombination is not considered here, however, 

with the presented approach its calculation is straightforward. A further rotation of the 

tautomeric Q53 is likely (Khrenova et al., 2011, 2013). A second ET reaction coupled to two PT 

reactions with a low energy barrier in the ground state leads to the photoproduct minimum 

containing the tautomeric and rotated glutamine, which forms specific hydrogen bonds with the 

oxidized flavin explaining the red-shifted flavin absorption. A radical recombination pathway was 

computed in (Khrenova et al., 2013) with the UDFT method, along with energy barriers for the 
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rotation of the various imidic forms of Q53 in BLUF. Khrenova et al. proposes the same rotated, 

tautomeric Q53 in the BLUF light state as this work. 

A reaction pathway leading to the formation of the tautomeric Q53 that is overall similar to 

the PT-II pathway presented here was previously computed and analyzed in (Sadeghian et al., 

2008) for the BlrB protein. The same two PT reactions (first from Y11 to Q53 and then from 

Q53 to flavin N5) were computed with CC2//TD-DFT in the ET state, leading to a similar 

biradical intermediate as H1 and H2 shown here, but with a Z-imidic Q53. Next, the radical 

recombination was postulated to take place via the concerted protonation of the Q53-Oε1 atom 

and the Y11 radical, yielding the final photoproduct with a tautomeric, but non-rotated Q53. The 

authors explicitly ruled out the rotation of the tautomeric Q53 based on the computed high 

energy barrier of the rotation. The presented work and the calculations in (Khrenova et al., 2011, 

2013) challenge this conclusion. The next section demonstrates that the rotation of the 

tautomeric Q53 in the ET state in fact may be even barrierless. Moreover, the dihedral-energy 

scans presented in Chapter 4 and the cited works by Khrenova et al. further support that the 

flavin-binding complex representing the BLUF light state is more likely to contain the rotated 

Q53 tautomer than the non-rotated one. 

The PT-I and PT-II results presented here are significantly different from those discussed 

earlier in (Udvarhelyi & Domratcheva, 2011), especially for the case of PT-I. The unrelaxed 

energy scans in our earlier study suggested that the PT-I pathway has a substantial energy barrier. 

However, this energy barrier vanishes when the energy scans are performed with a concomitant 

relaxation of the other degrees of freedom, as presented here. How similar/different the PT-I 

and PT-II pathways indeed are, i.e. how fast and in which order the two PT reactions occur, 

might also be determined by protein dynamics that further studies should elucidate.  

5.3.3 PCET pathway without flavin protonation 

In the small cluster model, the proton-transfer energy scan Y11-OH to Q53-Oε1 yielded a PCET 

pathway, denoted as PT-III and shown in Figure 5.7. PT-III describes a new pathway, which 

does not involve the protonation of the flavin radical. Deprotonating the Y11 radical and 

protonating Q53 occurs with a small energy barrier denoted as E3 at the CASSCF level and 

without an energy barrier at the XMCQDPT2 level of theory. The ET/CS state crossing F3 is 

reached after the E3 transition state. At F3 the Y11-Q53 hydrogen bond is broken. From F3, 

geometry optimization was continued in the ground state (corresponds to the ET state) and 

surprisingly, the observed structural relaxation involves a spontaneous rotation of the protonated 

glutamine. As a result, a hydrogen bond forms between Q53-Oε1 and the flavin radical anion O4 

atom. During the rotation, the hydrogen bond between Q53-Nε2 and the flavin radical anion N5 

atom remains intact. Thus, the formation of a salt bridge between the flavin anion and the 
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glutamine cation is a mechanism to stabilize the ET state, alternative to flavin protonation. 

Geometry optimization in the ground ET state continues until another CS/ET state crossing is 

reached, denoted as F3’. At F3’, Q53 is almost 180° rotated with respect to its initial position. 

The energy of the ET state at F3’ is 20 kcal/mol lower than at D’. Continuing geometry 

optimization in the electronic ground state from the F3’ geometry yields radical recombination 

and spontaneous Y11 protonation (a PCET reaction). Finally the optimization leads to the 

photoproduct minimum, denoted as T’, that contains the tautomeric rotated Q53, oxidized flavin 

and reduced tyrosine. At minimum T’, four states were computed with (6,4)4//(6,4)4 and the 

switch between the (2,2)2//(2,2)2-optimized T’ and the (6,4)4//(6,4)4-optimized T’ was done 

with the energy-shifting procedure described in Section 5.2.2 for the case of geometry D/D’.  

 

 

Figure 5.7. Full XMCQDPT2 and MS-CASPT2 energy profiles of the ET/PT-III pathway and 
structures F3/F1 and T’/T in the small cluster and PixD-I models. In the PixD-I model the 
energy barrier of glutamine rotation is not shown. The energies at geometries A-D were 
obtained with the (6,4)4//(6,4)4 calculations, at geometries D’-F3 with (2,2)2//(2,2)2, and at 
geometries T’ and T with (6,4)4//(6,4)4, as described in Section 5.2.2. 
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During the course of the radical recombination the hydrogen bond between the N35-Nδ2 

and flavin-O4 atoms broke and the N35 side chain rotated away from flavin. It seems unlikely 

that this rotation of N35 is relevant for the BLUF photoactivation reaction because the 

surrounding protein (missing in the small cluster model) probably prevents such a large structural 

change. To obtain a photoproduct minimum in which the hydrogen bond to N35 exists 

consistent with the BLUF structure, the coordinates of N35 from the E3 structure were inserted 

in the T’ structure. The geometry optimization of the prepared structure yielded the “correct” 

BLUF photoproduct minimum, denoted as geometry T. The ground state energy in T is 1.4 

kcal/mol below that at T’ and 11 kcal/mol above that at the Franck-Condon minimum A. 

Starting from the ET/CS state crossing F1, the calculations of the above glutamine rotation 

PT-III pathway were also attempted in the PixD-I QM/MM model. Unfortunately, a technical 

problem with MOLCAS did not allow computations accounting for the relaxation of the 

environment during the energy scan of glutamine rotation, as it was not possible to freeze the 

internal torsional degree of freedom of the glutamine side chain. Therefore, an unrelaxed energy 

scan was performed that yielded a very high energy barrier, not shown in Figure 5.7. The final 

photoproduct minimum T, containing the rotated tautomeric Q53, was fully relaxed in the 

ground state and is indicated in Figure 5.7. It lies 22 kcal/mol above minimum A, considerably 

higher than in the cluster model. Remarkably, the protein environment does not stabilize the 

photoproduct in contrast to what was found in the large cluster model. Therefore, together with 

the results of the previous section, it is concluded that the protein environment destabilizes the 

whole PCET pathway in the PixD-I QM/MM model. This finding is consistent with the results 

of Chapter 3, where a protein-environment-induced blue shift of the ET-state energy in the PixD 

QM/MM model was identified and discussed. 

Table 5.5. Selected interatomic distances (defined in Figure 5.3) in Å along the pathway PT-III.  

small d7 d8 d10 d11 d12 d13 d14 

geo D' 1.551 0.995 1.236 1.306 5.523 0.996 5.387 

geo E3 1.251 1.112 1.253 1.296 4.922 0.998 4.895 

geo F3 0.962 2.031 1.287 1.278 3.708 1.000 4.841 

geo F3' 0.986 3.601 1.270 1.291 1.604 0.998 3.441 

geo T' 0.958 5.229 1.322 1.264 1.879 1.922 0.962 

geo T 0.957 5.185 1.326 1.263 1.991 1.927 0.961 

        PixD I d7 d8 d10 d11 d12 d13 d14 

geo D' 1.443 1.030 1.235 1.306 5.864 1.003 5.364 

geo F1 1.001 1.599 1.325 1.264 5.382 1.015 5.307 

geo T 0.963 5.172 1.321 1.259 2.283 1.821 0.972 
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For the PT-III pathway a new reaction coordinate R’’ is identified on the basis of the bond 

distance analysis. R’’ features the formation of the new hydrogen bond between the tautomeric 

glutamine and flavin O4 at the final minimum T. Table 5.5 shows the relevant interatomic 

distances. The linear combination R’’=0.1 × (−d7+d8−d12+d13−d14)+d10−d11 was used to plot the 

energies in Figure 5.7. 

It is noteworthy that although the characteristic conformational “softness” (in a sense of 

being less constrained) of the small cluster model sometimes results in structural relaxations 

unfeasible in BLUF (e.g. rotation of N35), it is the large structural relaxations that at the same 

time allow for a potentially better exploration of the potential energy landscape. The presented 

examples clearly show the merit of the small cluster model in the identification of new pathways: 

first, because of its smaller size, the small cluster model is technically easier to handle and the 

calculations are considerably faster; and second the PT-III pathway was found at first place with 

this model, providing new physical insight into the BLUF photoactivation mechanism. Yet, 

taking into consideration the presented results here and in Chapter 3, the large cluster model 

seems most suitable to study BLUF photochemistry, as it includes at least the local environment 

of flavin but provides enough flexibility at the same time for larger structural changes to occur. 

Thus, of high interest is the computation of the PT-III pathway in the large cluster model in 

upcoming calculations of the BLUF photoreaction. The QM/MM model, with the standard 

approach of freezing the coordinates of a significant part of protein, seems to impose severe 

limitations in addressing the geometry changes relevant to the stabilization of the excited states. 

The presented PT-III pathway revealed by the small cluster model is a plausible pathway in 

BLUF, as the spectroscopic signatures of a neutral biradical intermediate in some BLUF proteins 

were not observed. Thus, it is conceivable that a neutral biradical intermediate (like H1 or H2) 

indeed does not form at all in, for example, AppA and BlrB, and that the photoactivation does 

not take the same pathway in all BLUFs: it may take the ET/PT-III route in AppA and BlrB, but 

the ET/PT-II route in PixD. However, the preferred route also depends on the protein dynamics 

which was not considered here. Importantly, independent of the formation and stability of the 

neutral flavin radical intermediate, the BLUF photoactivation reaction leading to the 

tautomerization of Q53 is a photoinduced PCET reaction. The “neutral pathway” suggested by 

the Meech group (Lukacs et al., 2014) thus seems rather implausible. In the presented framework 

their suggestion that flavin photoexcitation triggers glutamine tautomerization implies either (i) a 

S1/CS state crossing along the glutamine tautomerization coordinate, which is ruled out on the 

basis of the presented calculations; or (ii) fluorescence decay of the red-shifted photoproduct, 

which experimentally is not observed; or (iii) another complex internal conversion mechanism 

that at present cannot be proposed on the basis of the flavin literature and which is hard to 

imagine based on the current models of flavin photochemistry and photophysics. 
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5.3.4 BLUF redox tuning with fluorotyrosine 

To locate and optimize geometries A-D of the PET pathway in the fluorotyrosine models, the 

respective structures of the pathway computed with the native tyrosine were used as starting 

geometries (in the small cluster, large cluster, and the PixD-I QM/MM models), in which the 

respective H atom was exchanged by an F atom. The same reaction coordinate R as for the dark-

state PET pathway was used to plot the energy diagrams. Table 5.6 collects the bond lengths of 

interest in the fluorotyrosine models and Figure 5.8 and Figure 5.9 show the obtained PET 

pathways in comparison to the dark state PET pathway.  

Table 5.6. Selected interatomic distances (defined in Figure 5.3) in Å along the PET pathway. 
2f2 abbreviates 2-fluorotyrosine-2, 3f2 abbreviates 3-fluorotyrosine-2 and so on. Models not 
listed here feature essentially same bond lengths as their counterparts.  

small 2f2 d1 d2 d3 d4 d6 d8 d10 d11 
geo A 1.279 1.462 1.277 1.490 1.004 0.957 1.215 1.334 
geo B  1.275 1.436 1.336 1.453 1.009 0.959 1.222 1.326 
geo C 1.304 1.424 1.350 1.447 1.020 0.988 1.233 1.311 
geo D 1.307 1.423 1.350 1.447 1.023 0.998 1.237 1.305 

         small 3f2 d1 d2 d3 d4 d6 d8 d10 d11 
geo A 1.279 1.461 1.277 1.490 1.004 0.959 1.214 1.335 
geo B  1.275 1.435 1.337 1.453 1.009 0.960 1.221 1.327 
geo C 1.305 1.425 1.350 1.448 1.020 0.994 1.227 1.312 
geo D 1.308 1.423 1.352 1.447 1.024 1.025 1.239 1.302 

         large 3f2 d1 d2 d3 d4 d6 d8 d10 d11 
geo A 1.295 1.454 1.278 1.491 1.003 0.956 1.213 1.335 
geo B  1.292 1.425 1.340 1.456 1.007 0.959 1.222 1.327 
geo C 1.319 1.415 1.354 1.448 1.013 0.984 1.229 1.316 
geo D 1.325 1.412 1.357 1.445 1.015 1.008 1.235 1.309 

         PixD I 2f2 d1 d2 d3 d4 d6 d8 d10 d11 
geo A 1.290 1.455 1.276 1.488 1.006 0.966 1.210 1.334 
geo B  1.287 1.428 1.337 1.452 1.012 0.967 1.215 1.329 
geo C 1.317 1.416 1.354 1.445 1.024 1.032 1.235 1.306 
geo D 1.317 1.419 1.347 1.448 1.025 1.036 1.236 1.305 

         PixD I 3f1 d1 d2 d3 d4 d6 d8 d10 d11 
geo A 1.290 1.454 1.277 1.488 1.007 0.965 1.209 1.334 
geo B  1.287 1.429 1.337 1.452 1.012 0.967 1.214 1.328 
geo C 1.315 1.417 1.353 1.445 1.024 1.032 1.234 1.306 
geo D 1.319 1.415 1.355 1.444 1.025 1.050 1.238 1.303 

         PixD I 3f2 d1 d2 d3 d4 d6 d8 d10 d11 
geo A 1.292 1.450 1.282 1.486 1.006 0.969 1.208 1.335 
geo B  1.288 1.427 1.338 1.452 1.011 0.971 1.215 1.327 
geo C 1.314 1.417 1.353 1.445 1.023 1.071 1.229 1.310 
geo D 1.317 1.421 1.348 1.445 1.035 1.635 1.268 1.286 
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Figure 5.8. XMCQDPT2 and MS-CASPT2 energy profiles of the PET pathway in the 3-
fluorotyrosine models and structure D* in the PixD-I model. The energies at geometries A-D 
were obtained with (6,4)4//(6,4)4 calculations, with the following exceptions: small-cluster-3f1 
geometry A (6,4)4//(4,3)3, small-cluster-3f2 geometry A (8,5)5//(4,3)3, PixD-I-3f2 geometry A 
(6,4)4//(4,3)3, PixD-I-3f2 geometry D* (6,4)4//(2,2)2. The energy-shifting procedure outlined 
in Section 5.2.2, was used for the small-cluster-3f2 model as follows. The (8,5)5 energies at 
geometry A were compared to the (8,5)5 energies computed at geometry B. The energies at 
geometry A were then shifted such that the S1 excitation energy at geometry B obtained with 
(8,5)5 matches that computed with (6,4)4. The energies from Figure 5.4 of the dark-state 
pathway with the native tyrosine are also plotted for comparison. 

Overall, the PET pathway in the fluorotyrosine models is very similar to that of the dark-

state models with the native tyrosine (in the following referred to as “wildtype” models): The S1 

and S2 excitation energies are hardly affected by tyrosine fluorination (as expected), whereas the 

ET-state energies lie above those in the wildtype models at all optimized geometries A-D. This 

suggests a higher energy barrier for the electron-transfer reaction and thus slower S1 fluorescence 

quenching. The results from the cluster and QM/MM models are consistent. It is interesting to 

note that a larger S1-ET gap at the Franck-Condon minimum correlates with a higher energy 

barrier of the electron transfer process upon the “chemical modification” of the model. This 

correlation was earlier discussed in Section 5.3.1 for the case of different dark-state models. 
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Figure 5.9. XMCQDPT2 and MS-CASPT2 energy profiles of the PET pathway in the 2-
fluorotyrosine models. The energies at geometries A-D were obtained with the (6,4)4//(6,4)4 
calculations, with the exception of the small-cluster-2f1 and -2f2 geometry A computed with 
(6,4)4//(4,3)3 and the PixD-I-2f1 and -2f2 geometry D computed with (6,4)4//(2,2)2. The 
energies from Figure 5.4 of the dark-state pathway with the native tyrosine are also plotted for 
comparison. 

The increase of the ET state energy leads to a “delay” of geometries C and D along the 

reaction coordinate R as compared to the wildtype pathway. The fluorinated tyrosine models 

feature not only an increased ET state energy but also an increased acidity of the fluorinated 

tyrosine compared to the native one as suggested by the elongated tyrosine OH bond length (d8) 

in all models. In the 3-fluorotyrosine-2 QM/MM model, optimization of the ET state after the 

ET/S1 state crossing results in a spontaneous deprotonation of the Y11-3f2 radical instead of the 

formation of a zwitterionic biradical minimum. As a consequence, a minimum with the neutral 

Y11-3f2 radical, protonated Q53, and anionic flavin radical is formed, denoted as D* in Figure 

5.8. Despite the deprotonation of the Y11-3f2 radical, the ET and CS states do not cross at D* as 

was the case in the wildtype dark state models at D. However, protonation of flavin N5 will lead 

to the ET/CS state crossing.  

The obtained results, in particular the increase of the ET excited-state energy, are consistent 

with the experimentally observed longer flavin fluorescence life time of fluorotyrosine-containing 

BLUFs (Mathes, Stokkum, et al., 2012; Lukacs et al., 2014). It is noteworthy that the calculations 

presented here explain the longer fluorescence life time through the direct estimation of the 

change in the ET energy barrier upon tyrosine fluorination. This is an advantage over the 

experimental indirect estimation of the barrier: To estimate the barrier, the change in the redox 

potential of the fluorinated tyrosine in comparison to the native tyrosine has to be determined. 

The redox potential of tyrosine in aqueous solution is pH dependent, however, fluorination 

changes the acidity of tyrosine (Seyedsayamdost et al., 2006). Thus, the experimental 

determination of the change in the ET dynamics upon tyrosine fluorination is rather challenging.  
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5.3.5 PCET in the light state 

Flavin in the BLUF light state features a 15-nm red-shifted absorption, shorter fluorescence life 

time than in the dark state and undergoes an internal photoconversion that explains its 

photostability. These photophysical properties and processes are investigated here using the 

approach that was developed to study the photoactivation of the BLUF dark state. Table 5.7 

shows the spectral properties of the light state predicted by the small cluster, and the PixD-I and 

PixD-II QM/MM models. As expected, the S1 excitation energy is red-shifted compared to the 

dark state; the QM/MM models predict a slightly more pronounced red shift compared to the 

cluster model. Similar to the dark state, there is only little difference in the predicted S1 and S2 

energies and the Stokes shifts between the PixD-I and PixD-II QM/MM models. Noteworthy, 

the PixD II models predicts a slightly more pronounced red shift, indicating that describing the 

N35 residue on the QM level, as opposed to the MM level, enhances the hydrogen-bonding 

interactions with flavin. Concomitant to the red-shifted S1 state, the ET excitation energy is 

substantially reduced in the light state compared to the dark state. The resulting smaller S1-ET 

gap at the Franck-Condon minimum suggests a faster fluorescence quenching process by 

electron transfer, consistent with experimental findings in (Mathes, Zhu, et al., 2012). 

Table 5.7. The vertical S1 and ET excitation energies at the FC minimum A, along with the S1-
ET energy gap are listed together with the vertical S1 excitation energy (emission) at the 
optimized S1 minimum B and the resulting Stokes shift. XMCQDPT2 and MS-CASPT2 values 
are given for the cluster and QM/MM models, respectively. The red shift is the difference of the 
S1 excitation energy at the dark- and light-state geometry A. 

 abs [eV] ET [eV] 
S1-ET gap 

[eV] 
emission 

[eV] 
Stokes 

shift [nm] 
red shift S1 

[nm] 
 

small 3.00 4.17 1.18 2.36 112 4.2 

PixD I 2.74 4.17 1.44 2.17 118 6.0 

PixD II 2.71 4.35 1.64 2.18 111 7.8 
 

 

Figure 5.10 summarizes the results of the light-state photoreaction calculations performed 

with the small cluster and PixD I models. The S1 minimum B and the ET/S1 crossing C are 

similar to those in the dark state both with regard to energy and geometry. However, geometry 

optimization in the ET state starting from C yields a spontaneous deprotonation of the Y11 

radical and leads directly to the ET/CS state crossing, geometry F. Structure F contains the 

neutral Y11 radical, anionic flavin radical and protonated Q53. After F, further optimization of 

the ET state, in the first electronic state, leads back to the Franck-Condon minimum. To reach 

the neutral biradical minimum H, similar to the dark state, the flavin anionic radical needs to be 

protonated. However, and in drastic contrast to the dark state, the ET state energy is hardly 

lowered at minimum H with respect to F (only by 4 kcal/mol in the small cluster). The ET state 
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at the crossing point F is substantially stabilized with respect to C, by 40 kcal/mol (small cluster) 

and by 33 kcal/mol (PixD I model), which represents an even larger stabilization than that at the 

final biradical minimum H in the dark-state pathway, as shown in Section 5.3.2.  

 

 

Figure 5.10. Full XMCQDPT2 and MS-CASPT2 energy profiles of the PCET pathway of the 
light state. Structures F and H in the small cluster and PixD-I models are also shown. The 
energies at geometries A-C were obtained with the (6,4)4//(6,4)4 calculations, in the small 
cluster model at geometries F and H with (2,2)2//(2,2)2; in the PixD-I QM/MM model at 
geometries A-F with (6,4)4//(6,4)4. 

Similar to the dark-state PT-III reaction in the small cluster model, a hydrogen-bond rupture 

and rotation of the N35 residue occurs at the ET/CS state crossing F. This rotation is not 

expected to influence the observed energy trends to a significant extent, similarly to the case of 
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the dark-state photoreaction, discussed in Section 5.3.3. In the PixD-I QM/MM model the N35 

conformation does not change (N35 is part of the MM subsystem). For the light state PCET 

pathway a slightly modified reaction coordinate was chosen to plot the energy diagram in Figure 

5.10 because of the different arrangement of the hydrogen bonds compared to the dark state: 

R=d1−d2+d3−d4+ 0.1 × (−d5+d6−d13+d14). Table 5.8 lists the relevant interatomic distances. The 

geometry changes of the respective flavin bonds are very similar to those in the dark state 

pathway (except for the slightly less pronounced changes in d3 and d4). 

Table 5.8. Selected interatomic distances (defined in Figure 5.3) in Å along the PCET pathway. 

small d1 d2 d3 d4 d5 d6 d13 d14 

geo A 1.276 1.466 1.274 1.495 2.366 1.009 1.939 0.961 

geo B 1.273 1.440 1.334 1.453 2.211 1.012 1.897 0.965 

geo C 1.293 1.431 1.347 1.445 2.169 1.015 1.598 1.013 

geo F 1.310 1.426 1.342 1.436 1.897 1.025 1.008 1.963 

geo H 1.301 1.425 1.342 1.447 1.021 1.904 1.007 2.362 

         QM/MM d1 d2 d3 d4 d5 d6 d13 d14 

geo A 1.289 1.454 1.278 1.487 2.552 1.009 1.821 0.972 

geo B 1.285 1.431 1.334 1.449 2.444 1.011 1.807 0.974 

geo C 1.301 1.428 1.338 1.447 2.387 1.013 1.568 1.023 

geo F 1.315 1.423 1.349 1.438 2.133 1.025 1.014 1.788 

 

An important finding of the light-state pathway is a much stronger ET-state energy 

stabilization upon reaching the ET/CS state crossing geometry F than in the respective reaction 

of the dark state. This feature, the key difference between the dark- and light-state photoreactions, 

is related to the lowered excitation energy of the ET state at the light-state FC point and also to 

the increased basicity of the imidic Q53 =NH group interacting with the electron donor Y11. 

The latter characteristic is observed experimentally as a downshift of the Y11-OH stretching 

frequency in the light state (Iwata et al., 2011) and is reproduced by computational models 

(Khrenova et al., 2013). The neutral biradical minimum H is quite similar in both the dark and 

light state photoreactions, in accord with the experimental observations and argumentation in 

(Mathes, Zhu, et al., 2012). The difference between the two neutral biradical intermediates in the 

dark and light states is the orientation of the tautomeric glutamine: it forms a strong hydrogen 

bond to flavin O4 in the light state but not in the dark state. In the dark state, the tautomeric 

glutamine has to rotate in order to establish the hydrogen bond with the flavin O4 atom. This 

rotation decreases the energy of the neutral biradical by 11 kcal/mol (according to the energy 

difference of the ET state at H in the dark and light states). In the light state, the energy barrier to 

reach the Franck-Condon minimum through the state crossing F is small and thus it is possible 

that the system takes that route back to the light-state Franck-Condon minimum. Because of the 
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different topology of the ET/CS state crossing in the dark and light states, it is also conceivable 

that in the light state minimum H is not reached at all and that the system relaxes back to the FC 

directly after reaching the conical intersection. In summary, the relatively small energy difference 

between F and H in the light state and the relatively large energy difference between F and H in 

the dark state is in line with the experimentally observed differences in the two photoreactions.  

In (Sadeghian et al., 2010) the photoreaction of the BLUF light state containing the 

tautomeric, non-rotated Q53 was computed with CC2//TD-DFT and the authors concluded 

that a PCET reaction underlies the photostability of the light state because of a ET/CS state 

crossing found “early” along the PT reaction pathway. “Early” means that the ET/CS crossing is 

already reached before the protonation of Q53 is completed. The results here give a more 

detailed view because in the present work the ET/CS state crossing was located and the 

stabilization of the ET state along the photoreaction coordinate was estimated, whereas in 

(Sadeghian et al., 2010) this was not possible due to the limitation of the single-reference 

methodology. The present study reveals that the photostability does not stem from an “early 

crossing”, because in fact a complete protonation of Q53 is required to reach the ET/CS 

crossing F, which mediates the decay of the excited state. The crossing geometry F in both the 

dark and the light states contains similar chemical species (in particular the protonated Q53). 

Rather the large energy stabilization of the ET state in the light state results in the crossing F 

being much lower in energy compared to that in the dark state. As a consequence, the formation 

of the neutral biradical in the light state does not lead to further stabilization, rendering the 

relaxation back to the light-state Franck-Condon geometry likely. 

On the basis of the time-resolved ultrafast spectroscopy studies, Kennis and coworkers 

emphasize that in the dark state photoreaction the ET and PT reactions proceed in a stepwise 

manner whereas in the light state photoreaction they proceed in a concerted manner (Mathes, 

Zhu, et al., 2012). Their argument is mainly based on the observation of the transiently formed 

anionic and neutral flavin radicals in PixD. The presented results and the fact that in BLUFs 

other than PixD no anionic or neutral biradical intermediates could be resolved are shedding new 

light on the concerted versus stepwise nature of the ET and PT reactions in BLUF. The light-

state photoreaction is completed in 1 ps, much faster than the dark state photoreaction (1 ns), 

indicating barrierless ET and PT processes and a concerted PCET reaction. In the dark-state 

photoreaction the ET and PT reactions may have some barrier so that intermediate species may 

be formed and observed, however, the presented calculations showed that proton transfer must 

follow the electron transfer reaction because the zwitterionic biradical D is too high in energy and 

must be stabilized. Thus, in that sense the dark state photoreaction can also be regarded as a 

concerted PCET reaction with the ET energy barrier (without the PT energy barrier) being rate-

determining.  

PCET is a central biological photochemical reaction with functional relevance for example in 

light harvesting or in the photostability of DNA, reviewed, for example, in (Migliore et al., 2014; 
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Sobolewski & Domcke, 2006). However, multi-configurational PT2//CASSCF calculations on 

photoinduced PCET reactions have only been carried out for rather simple processes that do not 

lead to photochemical changes. One prominent example is DNA photostability discussed in 

(Schultz et al., 2004; Sobolewski et al., 2005). The authors demonstrated that Watson-Crick 

hydrogen bonds provide the efficient deactivation channel of the excited states in DNA bases in 

the course of the photoinduced PCET reaction: The photoreaction is controlled by a direct 

proton transfer from the electron donor to the electron acceptor. Similar to the BLUF case, in a 

Watson-Crick complex of two nucleobases the ET state lies higher in energy than the locally-

excited state at the Franck-Condon minimum, but during the reaction the ET and locally-excited 

states cross. The subsequent proton-transfer reaction leads to the ET/CS state crossing, from 

where the system relaxes back to the Franck-Condon minimum. The photostable reaction of the 

BLUF light state is similar yet more complex because the direct hydrogen-bonding contact 

between electron donor and acceptor is broken by the conserved glutamine Q53. Moreover, in 

the BLUF dark state the same photoinduced PCET reaction is tuned for photoactivation, where 

the special hydrogen-bonding network allows for opening the photoactive relaxation channel 

along which the photoproduct is formed. The tautomeric glutamine in the BLUF light state 

“closes” the photoactive channel and ensures photostability. This work gives first hints how the 

interactions with the Q53 side chain switch the PCET reaction in BLUF between photoactive 

and photostable ones. The specific hydrogen-bonding network is a critical element of this 

mechanism. To date, no similar example in biology was studied and explained, to the best of my 

knowledge. Given that there is a significant variation in dynamics inside the chromophore-

binding pocket among BLUF proteins, it is interesting to elaborate how the dynamics “selects” 

the right pathway for the photoreaction. 

5.3.6 Electron transfer rate estimates using excited-state energies and 

Marcus theory 

To deduce electron transfer rate estimates from the presented pathways, the seminal Marcus rate 

theory (Marcus & Sutin, 1985) is used. The ET rate in the non-adiabatic, high-temperature limit is 

given by 

     
  

 
|   | 

 

√      
 

  
(     )

 

      (5.1) 

where     is the electronic coupling matrix element between the electron donor and acceptor,   is 

the reorganization energy,     is the standard free energy of the reaction. The parameter   is the 

energy needed for the reorganization of the environment without electron transfer; its typical 

value ranges between 0.7 and 1.7 eV in biological systems (Moser et al., 1992; Venturoli et al., 
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1998; Liu et al., 2012; Woiczikowski et al., 2011). The magnitude of the coupling     is reported 

to change in a large range, between 0.3 meV and 0.1 eV (Venturoli et al., 1998; Blancafort & 

Voityuk, 2007; Liu et al., 2012; Woiczikowski et al., 2011). The non-trivial dependence of the 

three parameters    ,  , and     on the properties of the system, and possibly also existing 

correlations between them, discussed for example in (Venturoli et al., 1998), makes their 

experimental and theoretical evaluation challenging. Therefore, from Equation (5.1) only an order 

of magnitude estimate for the ET rate can be obtained. Thus, the logarithmic version of the 

formula is used here to estimate the trends. With              (room temperature) and 

assuming                            , the logarithmic rate expression reads: 

                              
        

 
 (5.2) 

In the “optimal” case with        turning the last term into zero, the physical limit of the 

maximum ET rate is reached. This case is used here to estimate the coupling    . The fastest ET 

rate at a van der Waals contact constitutes about          (Moser et al., 1992), leading to the 

requirement               , from which the coupling              is deduced as an upper 

limit.  

Equation (5.2) with the estimated     is used to determine the electron transfer rate, 

controlling the flavin fluorescence life time in BLUF. The energy estimates from the results of 

the large cluster model are used. The reorganization energy   is estimated as the XMCQDPT2 

energy difference between the S1 state at geometry D and B (see Figure 5.4) and     is estimated 

as the XMCQDPT2 energy difference between the ET state at geometry D and the S1 state at 

geometry B, ignoring the zero-point vibrational energy and entropic contributions. The latter 

assumption implies that the change in the total energy (computed here) is the dominant term in 

the change of the free energy G and for an order-of-magnitude estimate of the ET rate this 

approximation should be valid. Thus, with           and           , an ET rate of the order 

of 10-100 ps is obtained (for     ranging between 0.009 eV and 0.025 eV), which, as a matter of 

fact, is in good agreement with experimental observations. In the case of the 3-fluorotyrosine-1 

model, both parameters determining the electron-transfer activation energy slightly increase, 

          and            , yielding a one order of magnitude slower ET rate, which is also in 

agreement with experimental observations. Yet in the presented calculations the effect of tyrosine 

fluorination on the ET rate is somewhat overestimated: the 3-fluorotyrosine-containing PixD and 

AppA proteins feature five-times and three-times slower fluorescence quenching rates than the 

wildtype proteins, respectively (Mathes, Stokkum, et al., 2012; Lukacs et al., 2014). It is 

noteworthy that also the reorganization energy   changes in the fluorotyrosine-containing model, 

in contrast to the assumption often made (for example in (Lukacs et al., 2014)) that   stays 

constant and only     is modified by mutations or other alterations in a given protein.  



BLUF photoreaction  129  

 

5.4 Summary and conclusions 

For the first time, photoreaction pathways in BLUF along which the excited flavin chromophore 

relaxes were characterized and analyzed in detail in this chapter. This was feasible because of the 

developed PT2//CASSCF protocol that enabled mapping the excited-state potential energy 

surfaces of the relevant flavin local-excited S1 and the tyrosine-flavin ET states, in both the dark 

state and the light state of the photoreceptor and also in fluorotyrosine-modified models in a 

totally consistent manner. The calculations reveal that the photoreaction in BLUF is rather 

complex (the most complex photoreaction hitherto characterized using excited-state calculations) 

and involves a sequence of PCET reactions. The photoreaction starts with the population of the 

S1 state through blue-light absorption. At the FC geometry, the ET state lies significantly higher 

in energy than S1. However, geometry relaxation in the S1 and ET states proceeds, to a certain 

extent, along the same reaction coordinate and a pathway along which the S1 and ET states cross 

was identified with the ET energy being significantly lowered at the crossing point with respect to 

that at the FC point. This pathway features a photoinduced electron transfer reaction, yielding a 

zwitterionic (charge-separated) radical-pair intermediate. The energy barrier separating the excited 

flavin S1 and the radical-pair minima is estimated at the ET/S1 crossing geometry obtained upon 

geometry optimization in the ET state starting from the FC minimum. The height of the energy 

barrier (the energy of the ET/S1 crossing) depends on the ET-state energy in a particular BLUF 

model. The estimates of the electron-transfer rates obtained here suggest that this barrier 

determines the life time of flavin fluorescence in BLUF. In particular, in the photoreaction of the 

fluorotyrosine-containing BLUFs, the higher ET-state energy results in a higher energy barrier 

for the PET reaction thus explaining the measured longer fluorescence life time. Analogously, the 

lower ET-state energy results in a lower PET energy barrier and thus a shorter flavin fluorescence 

life time. The photoinduced electron transfer is followed by proton transfer from the electron 

donor tyrosine to the excited electron acceptor flavin, mediated by hydrogen bonds involving the 

conserved glutamine residue. The special position of glutamine with respect to tyrosine and flavin 

opens several possible PT channels, leading either to the formation of a photoproduct (in the 

case of the photoactive BLUF dark state) or to the recovery of the initial FC structure (in the case 

of the photostable BLUF light state).  

In the dark-state photoactivation reaction, three PT pathways were computationally 

characterized in this chapter. All these PT reactions stabilize the ET state and concomitantly 

increase the energy of the closed-shell ground state so that eventually the system reaches the 

ET/CS conical intersection. At the conical intersection, two channels (the ET and the CS 

channels) compete: The CS-state channel corresponds to the dark-state recovery, which reduces 

the efficiency of photoactivation, whereas the ET channel eventually leads to the formation of 

the photoproduct, which is the 15-nm red-shifted light-state of BLUF. The mechanism 
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controlling the branching between these two channels is yet to be unraveled. Two PT reactions in 

the photoactive channel after the ET/CS state crossing produce a neutral radical-pair 

intermediate containing the neutral flavin and tyrosyl radicals and a tautomeric glutamine on the 

ground-state potential energy surface. In the third PT reaction, the protonated glutamine 

spontaneously rotates approximately 180° which prevents the protonation of the flavin anionic 

radical and thus the formation of the neutral flavin radical. Instead, mediated by the rotated 

protonated glutamine, a second PCET reaction leads to the recombination of the radicals and the 

formation of the photoproduct (i.e. the BLUF light state) in the CS ground state. The 

photoproduct contains the reduced tyrosine, oxidized flavin and the tautomeric glutamine. The S1 

absorption of this species is 15 nm red-shifted compared to the dark state minimum. 

In the photostable reaction of the light-state, only one PT pathway was identified. The 

proton transfer (from tyrosine to the tautomeric glutamine) stabilizes the ET state to a 

substantially larger extent than it was found during the dark-state photoreaction. Similar to the 

dark-state photoreaction, a neutral biradical intermediate may form after the system passes 

through the ET/CS conical intersection. However, in contrast to the dark-state reaction, this 

intermediate lies close in energy to the crossing geometry and therefore is unlikely to be 

populated to the same extent as during the dark-state reaction. The different topology of the 

excited-state surface in the vicinity of the respective ET/CS crossings in the dark- and light-state 

reactions gives initial hints to how photoactivation and photostability are governed by the PCET 

photorelaxation processes in BLUF. 

The thermal dark-state recovery reaction, involving the reverse tautomerization of the 

glutamine in the electronic ground state, has not been a subject of computational studies so far. 

However, on the basis of the presented calculations, a sequence of PCET reactions in the ground 

state can be proposed to accomplish the reverse tautomerization of the glutamine side chain. 

Therefore, the redox potential of the tyrosine-flavin redox pair should control also the dark-state 

recovery.   



 

6    Conclusions and Outlook 

Over the recent years, computations proved an indispensable complement to experimental 

studies on photoreceptor proteins aiding the interpretation of spectroscopy data, providing 

detailed models of protein dynamics and facilitating our understanding of the photochemical 

mechanisms. Quantum-chemical methods allow following the relaxation of the excited 

chromophore and treating its interactions with the protein environment. Sophisticated methods 

and models are indeed needed to explain the observed complex reactions used by photoreceptor 

proteins to sense light. With the discovery of the flavin-binding photoreceptors LOV, 

cryptochrome, and BLUF a new type of photoreaction was identified, which invokes PCET 

rather than the cis-trans photoisomerization of the chromophore like in the rhodopsin 

photoreceptors. PCET in general is a key reaction in many biologically relevant processes from 

respiration to cell signaling and photoinduced PCET plays a major role not only in photoactive 

reactions but also in mechanisms underlying the photostability of biomolecules. The BLUF 

protein is an exceptionally interesting system as it features both photoactive and photostable 

states, among which it can switch, as this thesis identified, by means of the tautomerization of the 

conserved glutamine residue. Both the photoactive dark state and the photostable light state 

contain the oxidized flavin chromophore. In the light state, the flavin absorption is 15 nm red-

shifted, indicative of the altered hydrogen-bonding network that, as proposed here, contains the 

tautomeric glutamine. In this work I presented the first detailed and systematic computational 

study of photoinduced PCET underlying both photoactivation and photostability in BLUF, 

covering all most important experimental observations.   

In order to perform such a complex study, first the computational method had to be 

established. The major computational requirements to study PCET in BLUF are (i) the possibility 

to treat the electronic ground and excited states of different chemical character (for example the 

flavin S1 excited state and the tyrosine-flavin ET state) in a balanced way; (ii) the possibility for 

geometry optimization in any low-lying excited state of interest to map the pathway along which 

the energy is dissipated after photon absorption; and (iii) a multi-reference treatment in order to 

localize state-crossing geometries and to describe the formation and recombination of biradicals. 
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These requirements are only fulfilled by the CASSCF method. The CASSCF wave function 

includes all possible electronic configurations that can be constructed from distributing the 

electrons among the MOs within the active space. This procedure yields a qualitatively correct 

wave function that accounts for static electron correlation. In order to also describe dynamic 

electron correlation, multi-reference second-order perturbation theory is used with the CASSCF 

wave function as the zero-order wave function. The PT2//CASSCF approach is a 

computationally highly expensive method and its conventional way of selecting the active space 

(the full ππ* valence shell) limits the calculations to small molecular systems. In Chapter 2, I 

demonstrated that choosing only the principal orbitals describing the single-electronic excitations 

of interest (that is flavin HOMO, LUMO and tyrosine HOMO in the case of the BLUF 

photoreaction), makes the PT2//PO-CASSCF method also practical in rather large molecular 

complexes as the BLUF photoactive triad. Both energies and geometries computed with POCAS 

were shown to be consistent and in agreement with those computed with other methods. 

A suitable model for the treatment of the intermolecular interactions in the BLUF 

photoreceptor had to also be established. To this end, an extensive comparison between various 

cluster and QM/MM models of BLUF was carried out in Chapter 3. The evaluation of the 

intermolecular interaction effects in the computational models aids the BLUF mechanistic studies 

with accurate energy computations. Comparing different models, the energy of the flavin S1 state 

was found to be insensitive to the flavin environment, whereas the ET-state energy is highly 

sensitive on the geometry of the active site, as well as to the local and also the more distant 

protein environment. The local environment in the cluster models red- or blue-shifts the ET state 

energy, depending on the specific intermolecular interactions. In the largest size cluster model the 

ET state is substantially red-shifted by the electrostatic interactions and also because of charge-

transfer interactions between the photoactive triad and the environment. In the QM/MM models, 

the energy of the S1 state does not change significantly upon QM/MM embedding, however, the 

ET-state energy is strongly blue-shifted, because of the high polarity of this transition. The 

energy of polar transitions is highly dependent on the employed electrostatic atomic-charge 

model, i.e. on the MM point charges. The employed charge model is difficult to validate against 

experimental data as the ET excitation energies are not observed directly. In that view, a 

superiority of the QM/MM model over the cluster model, which does not account for the major 

part of the protein, cannot be established. At the same time, the full QM treatment of the local 

interactions of the chromophore in the cluster model certainly results in an improvement of the 

model. Therefore, for comparative studies that are more focused on the effect of the local 

environment of flavin (the hydrogen-bonding interactions), large cluster models including all 

relevant side chains may be superior to the QM/MM models.  

Next, using cluster models including a rather extended part of the protein environment 

around the photoactive triad, I examined the structural inhomogeneity in BLUF and evaluated, 

from a theoretical point of view by formulating suitable criteria, the conflicting assignments of 
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the dark-state structure leading to different mechanistic proposals in Chapter 4. The two main 

hypotheses discussed in the literature consider light-induced rotation as opposed to 

tautomerization of the conserved glutamine in the photoactive triad. The changes of the 

glutamine structure are considered concomitant with a putative conformational switch between 

the Win and Wout conformations of the β5 strand. To resolve the controversy, three criteria for 

the BLUF functional states were formulated: (i) the agreement of the proposed stationary dark 

structure with the X-ray electron density; (ii) the red shift of the light state absorption as 

compared to the dark state, which has to be reproduced; and (iii) the existence of a high energy 

barrier between the dark- and light-state structures in the ground state to ensure photosensitivity 

(low thermal noise) of BLUF activation. A comparison of the optimized models with the 

experimental electron density and complete dihedral-angle energy scans along the glutamine 

rotation coordinate rendered the glutamine rotation mechanism clearly inconsistent with the 

three criteria, whereas the glutamine tautomerization mechanism is in agreement with them. The 

dihedral-angle energy scans revealed that glutamine rotation may also occur in the dark state (i.e. 

without photoexcitation) because of the low energy barriers separating the rotamers. The 

comparison of energy scans in the Win and Wout models hints at the Wout conformation to 

correspond to the dark state and the Win conformation to correspond to the light state of BLUF. 

Further extended models including the whole β5 strand and both tryptophan and methionine 

side chains in both Win and Wout models will allow the computation of the relative energies and, 

on that basis, a more definite conclusion concerning the distinct conformations of the functional 

states. 

Glutamine tautomerization is a highly peculiar reaction because so far there are no examples 

of the imidic forms of glutamine to play a role in biochemistry. A low energy barrier separates the 

imidic forms from the commonly known lower-energy amide form in a protic environment like 

water. However, in the special protein environment of BLUF, the energy barrier increases and 

the imidic glutamine can be stable for seconds to hours. In fact, the tautomerization of the 

glutamine side chain ensures that a chemically distinct species is formed in the BLUF 

photoproduct as compared to the dark state. Therefore, glutamine tautomerization defines the 

photoreaction coordinate in BLUF.  

After establishing the methods, models, and general theoretical considerations regarding a 

photoreaction involving the tautomerization of the glutamine side chain, I investigated the 

complete excited-state photoreaction pathway. Figure 6.1 summarizes the photoreaction pathway 

calculations presented in Chapter 5.  
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Figure 6.1. Photoreaction of the BLUF dark and light states: black arrows indicate the 
photoactive dark-state pathway, red arrows the photostable light-state pathway. 

The photoactive reaction of the dark state starts with flavin light absorption followed by 

electron transfer from the conserved tyrosine residue to the excited flavin, quenching the S1 

fluorescence and leading to a zwitterionic (charge-separated) biradical intermediate. The ET/S1 

state crossing mediates this process. Subsequent PT reactions involving the glutamine side chain 

lead to the ET/CS state crossing, which is rather close in energy to the zwitterionic biradical 

minimum. Two PT reactions – deprotonation of the tyrosine electron donor and protonation of 

the flavin electron acceptor mediated by the glutamine – yield the neutral biradical intermediate in 

the ET state, which contains the tautomeric glutamine. This intermediate is further stabilized by 

the rotation of the tautomeric glutamine, to finally form the hydrogen bond via its OH group 

with the flavin O4 atom. Recombination of the neutral radical pair involves again two PT steps, 

leading to the formation of the photoproduct light state and eventually the signaling state of the 
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protein. The light state is stabilized by the interactions between the flavin and the tautomeric 

glutamine and has a slightly red-shifted flavin absorption maximum and also a red-shifted ET 

state. Following blue light absorption, the same ET process as in the dark state quenches the S1 

fluorescence in the light-state, yet with the faster kinetics that is determined by the lowered ET-

state energy. The concomitant PT reactions yield the ET/CS state crossing much lower in energy 

than that in the dark state, whereas the energy of the neutral radical pair intermediate does not 

change (because, chemically, it is the same intermediate formed in both cases). The lower energy 

ET/CS crossing reached by the photoexcitation of the light state apparently has a higher 

probability to decay back to the light-state Franck-Condon minimum. The modulation of the 

redox potential of the flavin/tyrosine pair comes about as an up- or downshift of the ET-state 

energy curve in Figure 6.1, whereas the CS and S1 energy curves stay practically unaffected. Using 

the Marcus theory, Section 5.3.6 demonstrated that the upshift of the ET energy upon tyrosine 

fluorination, is consistent with the experimentally observed longer flavin fluorescence life time.  

Consistent mechanistic conclusions were obtained with several cluster and QM/MM models, 

which provide further validation of the chosen computational approach and ensures a certain 

robustness of the mechanistic predictions derived in this extensive study. Disappointingly, for 

questions addressing the specific protein environment, the standard QM/MM models built based 

on the crystal structures (without accounting for protein dynamical effects) proved inappropriate 

or difficult to handle, indicating that the existing QM/MM protocols require further 

improvements. One of the examples is the failure to reproduce the flavin fluorescence life times 

in PixD and BlrB. The fluorescence quenching rate by PET was predicted to be shorter in BlrB 

than in PixD, in total contrast to experiment. Another important aspect is that the structural 

relaxation of the QM subsystem in the QM/MM geometry optimizations was rather limited 

compared to the cluster models, which complicated the computations of the photochemical 

pathways. Overall, the pathways computed in the QM/MM models were similar to the ones in 

the cluster models with the same composition of the QM subsystem, so that no protein-

environment induced effect that may influence the photoreaction yield could be identified.  

The presented photoreaction pathways lay the foundation for further studies elucidating the 

details of the BLUF photoactivation mechanism: conical intersection analysis, photodynamics, 

redox tuning etc. All of these upcoming studies must rely on the knowledge of the potential 

energy surfaces, which is established in great detail here. The developed computational 

framework allows for the exploration of other pathways involving electron-transfer states from 

alternative electron donors to flavin, like tryptophan or methionine. In BLUF, photoinduced 

electron transfer involving other side chains and competing energy-dissipation channels are 

relevant for the explanation of the observed complex fluorescence decay kinetics. It is interesting 

to elaborate on how the protein dynamics contributes to selecting the pathway ensuring the 

highest quantum yield of photoproduct formation or preventing photochromism. 
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In conclusion, the studies presented in this thesis have shown that an energetically accessible 

optical-dark ET state mediates the decay of the flavin spectroscopically-observed S1 state during 

the BLUF dark and light state photoreactions. The ET state is strongly stabilized by two proton 

transfer reactions which eventually lead to glutamine tautomerization. Along the proton-transfer 

pathway, the ET state connects the S1 state with the ground state via two state crossings. The 

intermolecular ET reaction coupled to specific PT reactions plays the same role in BLUF as the 

cis-trans photoisomerization of the chromophores in rhodopsin, phytochrome, and xanthopsin 

photoreceptors. The same PT reaction underlies the photostability of the BLUF light-state. 

BLUF is therefore a highly interesting example where PCET is realized as the fundamental 

mechanism for both photoactivation and photostability. Further in-depth investigations of the 

properties of this unique switch operating through the peculiar reaction of glutamine 

tautomerization will help to obtain a more complete understanding of the fundamental role of 

PCET reactions in biology.  

  



 

Abbreviations 

  BLUF  blue light using FAD sensor 

  BSSE  basis set superposition error 

  CAS  complete active space 

  CASPT2 complete active space perturbation theory of second order 

  CASSCF complete active space self-consistent field 

  CS closed shell 

  DFT density functional theory 

  ESPF electrostatic potential fitting 

  ET electron transfer 

  FC Franck-Condon 

  Fl flavin 

  GS ground state 

  HOMO highest occupied molecular orbital 

  LA link atom 

  LF lumiflavin 

  LUMO lowest unoccupied molecular orbital 

  MD molecular dynamics 

  MO molecular orbital 

  NMR nuclear magnetic resonance (method) 

  PCET proton-coupled electron transfer 

  PDB protein data bank 

  PET photoinduced electron transfer 

  POCAS principal-orbital complete active space 

  PT proton transfer 

  PT-I proton-transfer pathway I 

  PT-II proton-transfer pathway II 
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  PT-III proton-transfer pathway III 

  PT2 perturbation theory of second order 

  RMSD root mean square displacement 

  QM/MM hybrid quantum-mechanical molecular-mechanical model 

  RF riboflavin 

  S1 first excited singlet state 

  S2 second excited singlet state 

  TD-DFT time-dependent density functional theory 

  Win BLUF structure with tryptophan pointing into the flavin-binding pocket 

  Wout BLUF structure with the conserved tryptophan solvent exposed 

 XMCQDPT2 extended multi-configuration quasi-degenerate perturbation theory (2nd o.) 

 

 

One-letter codes for the amino acids 

  A alanine 

  R arginine 

  N asparagine 

  D aspartic acid 

  C cysteine 

  E glutamic acid 

  Q glutamine 

  G glycine 

  H histidine 

  I isoleucine 

  L leucine 

  K lysine 

  M methionine 

  F phenylalanine 

  P proline 

  S serine 

  T threonine 

  W tryptophan 

  Y tyrosine 

  V valine 
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