
Dissertation

submitted to the

Combined Faculties for the Natural Sciences and for Mathematics

of the Ruperto-Carola University of Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

put forward by

Dipl.-Phys. Matthias Wieler

born in Mannheim, Germany

Oral examination: July 23, 2014

Multiple Instance Learning

with Random Forests

and Applications in Industrial Optical Inspection

Referees: Prof. Dr. Fred A. Hamprecht

Prof. Dr. Luca Amendola

Hiermit erkläre ich, da ich die vorliegende Dissertation selbst verfasst und mich dabei

keiner anderen als der von mir ausdrücklich bezeichneten Quellen and Hilfen bedient habe.

Des Weiteren erkläre ich, dass ich an keiner anderen Stelle ein Prüfungsverfahren beantragt

oder die Dissertation in dieser oder einer anderen Form bereits anderweitig als Prüfungsarbeit

verwendet oder einer anderen Fakultät als Dissertation vorgelegt habe.

Heidelberg,

Matthias Wieler

Zusammenfassung

Für die automatische Defekterkennung in der industriellen optischen Inspektion werden Al-
gorithmen benötigt, die aus Daten lernen. Eine besondere Herausforderung sind Daten mit
unvollständigen Labels. Eine der Methoden, die das Feld des maschinellen Lernens her-
vorgebrachte hat um mit unvollständigen Labels umzugehen, ist das sog. Multiple Instance
Learning. Ein Merkmal dieses Ansatzes ist, dass dabei die Datenpunkte (Instanzen) zu sog.
Bags zusammenfasst werden.

Wir schlagen eine neue Methode zur Berechnung der Bag-Wahrscheinlichkeiten aus den
Instanz-Wahrscheinlichkeiten vor, die den Vorteil hat, dass die Ergebnisse nicht von der
Größe der Bags abhängig sind. Weiterhin schlagen wir eine Erweiterung des Multiple In-
stance Modells vor, das es dem Benutzer erlaubt, die Anzahl der als positiv klassifizierten
Instanzen zu steuern.

Wir implementieren diese Methoden mit einem Algorithmus, der auf dem wohlbekan-
nten Random Forest-Klassifikator aufbaut. Der Algorithmus zeigt auf einem bekannten
Benchmark-Datensatz eine konkurrenzfähige Klassifikationsleistung. Wir wenden diesen Al-
gorithmus auf Bilddaten an, die die Besonderheiten der industriellen optischen Inspektion
widerspiegeln, und zeigen, dass der Algorithmus in diesem Szenario den normalen Random
Forest übertrifft.

Abstract

Automatic defect detection in industrial optical inspection requires algorithms that can
learn from data. A special challenge is data with incomplete labels. One of the methods
that the field of machine learning has brought forth to deal with incomplete labels is multiple
instance learning. One trait of this setting is that it groups datapoints (instances) into bags.

We propose a novel method to predict bag probabilities from given instance probabilities
that has the advantage that its results do not depend on bag size. Also, we propose an
extension of the multiple instance model that allows the user to steer the number of instances
that are classified as positive.

We implement these methods with an algorithm based on the well-known random forest
classifier. Results on a standard benchmark dataset show competitive performance. Fur-
thermore, we apply this algorithm to image data that reflects the challenges of industrial
optical inspection, and we show that in this setting it improves over the standard random
forest.

iv

Acknowledgments

I am indebted to my supervisor Prof. Fred A. Hamprecht. Without him I would probably
not have discovered the exciting field of machine learning. He did not spare any effort to
give me scientific advice. I am grateful for his unlimited support both in good times and in
bad times.

I would also like to thank all my colleagues in the multidimensional image processing
group, who gave me valuable scientific input, in particular Ullrich Köthe, Nikos Gianniotis,
Björn Andres, Michael Hanselmann, Melih Kandemir, Frederik Kaster, Christoph Sommer,
Bernhard Kausler, Marc Kirchner, and Xinghua Lou.

This work has been supported by Robert Bosch GmbH. I would like to cordially thank
the persons in charge for making this possible. Special thanks go to Walter Happold who
gave me all support I could wish for.

I would like to thank my advisers at Bosch, Christian Perwass and Ralf Zink, for many
valuable discussions. I have profited from their advice.

Working on this thesis would have been less joyful without my colleagues at Bosch. In
particular, I wish to thank Jens Röder for the numerous scientific discussions and personal
conversations we have had. Cordial thanks go to my fellow doctorate students, namely
Andreas Walstra, Patrick Sauer, Joachim Börger, Andreas Grützmann, Thomas Geiler,
Marc Jäger, Linus Görlitz, and Stefan Trittler.

Also I would like to thank Prof. Luca Amendola, Prof. Rüdiger Klingeler, and Prof. Bernd
Jähne for serving on my committee.

Deep thanks to my parents and my sister for their love and support.

v

Contents

Acknowledgments v

Contents vi

1 Introduction 1
1.1 Industrial optical inspection . 1
1.2 Image processing . 2
1.3 Machine learning . 3
1.4 Weak labels and multiple instance learning 4
1.5 DAGM datasets . 4

2 Bayesian Learning Theory 7
2.1 The general setting . 7
2.2 Inference . 9

2.2.1 Maximum posterior and maximum likelihood 10
2.2.2 Bayesian averaging . 11
2.2.3 Bagging . 11

2.3 Generative and discriminative models . 13
2.4 Semi-supervised learning . 16

2.4.1 Self-training . 17
2.5 Learning from weak labels . 19

2.5.1 Noisy labels . 19
2.5.2 Bag labels . 20
2.5.3 Inference in bag models . 21

3 Multiple Instance Learning 23
3.1 The multiple instance model . 23

3.1.1 Model definition . 23
3.1.2 Model training . 25
3.1.3 Relation to semi-supervised learning 26

3.2 Interpretations and variants of the multiple instance model 27
3.2.1 Standard MI (sMI): Estimate latent instance classes 27
3.2.2 Discard non-positive instances (dMI) 27
3.2.3 Sesqui-class learning (SCL) . 30
3.2.4 Generalizations of the multiple instance model 35

vi

3.3 Applications . 35
3.3.1 Drug activity prediction . 35
3.3.2 Image classification . 36
3.3.3 Others . 36

3.4 Algorithms . 37
3.4.1 Axes-parallel rectangles (APR) . 37
3.4.2 Diverse density (DD) . 38
3.4.3 Diverse density with expectation maximization (EM-DD) 39
3.4.4 Multiple instance SVMs . 40
3.4.5 Multiple instance learning based on decision trees 41
3.4.6 Others . 42

4 Improving Multiple Instance Classification 43
4.1 Bag size independent multiple instance classification 43

4.1.1 Bag size dependent bias . 44
4.1.2 Generative, discriminative, and general bag models 45
4.1.3 The generative multiple instance model 47
4.1.4 Bag size independent MI model . 50
4.1.5 Assessment on synthetic data . 52

4.2 Multiple instance classification with ensemble classifiers 54
4.2.1 Ensemble average at bag level . 54
4.2.2 Ensemble average at instance level . 55
4.2.3 Overview of bag classification methods 57
4.2.4 Experimental results . 58

5 Alternative Bag Models for Multiple Instance Applications 63
5.1 Bernoulli model . 63

5.1.1 Model definition . 63
5.1.2 Model properties . 64
5.1.3 Combination with MI model . 66
5.1.4 Notes on the Bernoulli model . 70

5.2 Power model . 73
5.2.1 Model definition . 73
5.2.2 Implementation . 75

6 Self-Training Multiple Instance Random Forest (SMIRF) 77
6.1 Random forests . 77
6.2 Self-training random forest for standard multiple instance learning 80

6.2.1 Self-training the multiple instance model 80
6.2.2 Sampling approach and out-of-bag estimate 81
6.2.3 Algorithm details and behavior . 83

6.3 Results on MUSK datasets . 87
6.3.1 Data balancing . 88

vii

6.3.2 Bag-size-independent classification . 89
6.4 Results on DAGM data . 94

6.4.1 Bag classification via threshold method 94
6.4.2 SMIRF with power model . 96

7 Conclusion 100

Bibliography 102

viii

Chapter 1

Introduction

The starting point of this work has been the application of industrial optical inspection.
Optical inspection is a widespread method to ensure the quality of components or devices
directly after production. As in many areas, there is a need for automation to reduce cost
and increase reliability. However, one drawback of automated optical inspection is the loss
of flexibility compared to human visual inspection.

Recent advances in the field of machine learning make algorithms available that can
learn from examples. These methods promise improved flexibility because it is easier to
retrain a machine learning algorithm than to adapt an image processing algorithm to new
requirements or boundary conditions.

The subject of this thesis is multiple instance learning, which is a machine learning setting
that corresponds to the special requirements of industrial optical inspection. But before
going into the details of multiple instance learning, we give an introduction of industrial
optical inspection and image processing and describe the role of machine learning in this
setting. Also, we present a datasets that we have used to assess our multiple instance
learning methods for the target application of industrial optical inspection.

1.1 Industrial optical inspection

Industrial optical inspection is a method of quality control. The production process of
technical devices usually involves many steps and can be quite complex. Even when great
care is taken, it is often not possible to completely rule out that an error occurs. To make
sure that the final product is free of defects, it is usually necessary to perform several
inspections and/or tests.

Optical inspection is a suitable method in many cases because it is fast and very versatile.
Often, it can be used to detect several different kinds of defects with a single inspection.
Optical inspection can either be performed by humans, or it can be an automated system.

Human visual inspection Even in highly automated production lines human visual in-
spection is still common. The reason is that the flexibility and versatility of human visual
inspection is very hard to achieve with an automated system (Kleeven & Hyvärinen 1999).
Humans have an extremely good image understanding and can detect a wide variety of
possible defects with little or even no training or instructions.

1

Chapter 1 Introduction

The main disadvantage of human visual inspection (besides cost) is the subjectivity and
varying quality of human assessment (Schoonard, Gould & Miller 1973). Different inspectors
often have different opinions as to whether a given component is to be classified as intact
or as defective. Even a single inspector’s assessment can be subject to fluctuation, caused
by tiredness or other factors.

Automated optical inspection Automated optical inspection usually includes a handling
device to position the components, special lighting, a camera with suitable optics and filters,
and an image processing system. Handling and image acquisition can typically be performed
within a few seconds or less, which allows for inspection of a component within the cycle
time of serial production. Suitable lighting, optics, and filters are often essential to make
the defects of interest clearly visible. A general rule is that the more effort is spent on
image acquisition the less effort has to be spent later on image processing. For a more
detailed introduction see (Demant, Streicher-Abel & Springhoff 2011) or (Beyerer, León &
Frese 2012).

1.2 Image processing

Image processing deals with the problem of finding meaningful descriptions of an image from
the raw data (matrix of gray values). This task can be divided into three steps: preprocess-
ing, feature extraction, and image analysis (Jähne 2012). Preprocessing includes operations
on single pixels like color adjustment or interpolation. The goal of feature extraction is to
calculate local features from a small neighborhood of pixels. These features describe basic
elements of the image like edges, ridges, corners, etc. Image analysis, finally, tries to provide
a good high-level description of the image based on local features.

In industrial optical inspection, the final goal is to classify an image as either “intact” or
“defective”. Sometimes it is also required to specify which type of defect has occurred.

The third step of image analysis and classification can either by performed with classical
image processing or with machine learning methods.

Classical image analysis Classical image analysis is state of the art in industrial optical
inspection. It includes operations like image segmentation, morphological operations, quan-
titative characterization of the segments, inverse filtering, and others. While most problems
can be solved with this approach, the solutions are very application-specific. It is necessary
to develop and optimize the algorithm specifically for each application and type of defect,
which often involves careful tuning of many parameters, setting decision thresholds, etc.

In industrial optical inspection, the requirements and boundary conditions for image
classification change regularly because of variations in the production process, changing
customer demands, or because new types of defects arise. This requires regular adjustment
of the image analysis algorithm which causes considerable effort. To reduce the cost of
adaptation, a different approach based on machine learning is necessary.

2

Chapter 1 Introduction

series production

change of requirements and/or boundary conditions

image acquisition feature extraction image classification

training data

human inspector

training of algorithm

intact

defective

Figure 1.1: Overview of applying machine learning in industrial optical inspection.

1.3 Machine learning

Machine learning concerns the development of algorithms that can learn from examples. It
has the potential to reduce the effort of customization and adaption of image processing
systems significantly.

The setting of machine learning in industrial optical inspection is illustrated in Figure 1.1.
It includes both the continually running series production (upper box), and the occasional
adjustment to new requirements and boundary conditions (lower box). In series production,
an important requirement on the inspection system is speed. Feature extraction and image
classification must be executed within the fixed cycle time. The main concern of system
adaptation (lower box) is to ensure the accuracy of image classification (i. e. the reliability
of inspection) and to minimize the amount of human work.

The core subject of machine learning (and of this thesis) is algorithm training and image
classification (rightmost text boxes). For the application in industrial optical inspection and
to test the performance of the algorithms, we also have to consider feature extraction and
training data.

Training data Training a machine learning algorithm requires a training dataset that con-
sists of (i) example images of intact and defective components and (ii) a label for each
image describing whether it is “intact” or “defective”. The example images can usually be
acquired easily with the available image acquisition device, but the labels must be provided
by a human inspector.

Note that labeled example images are needed both for machine learning and for classical
image analysis. However, machine learning is more dependent on the amount and quality
of the training data than classical image analysis. A human image processing expert can
work with unstructured and incomplete data, and few example images are often sufficient.
Machine learning, on the contrary, requires a complete dataset in a fixed format, and more

3

Chapter 1 Introduction

example images are needed to achieve good accuracy.
The increased effort of acquiring training data mitigates the benefit of automated training.

On the other hand, it increases objectivity and quantifiability. In machine learning, the
training data and accuracy estimates are documented as a matter of course, and the result
can be reproduced and checked at any time. This is not necessarily the case in classical
image analysis, where there is less emphasis on training data and statistical estimates of
prediction accuracy.

1.4 Weak labels and multiple instance learning

To keep labeling effort within acceptable limits, it is not possible to label each defect exactly
on the pixel-level. Instead, we have to use labels on either the image-level (image is labeled
as a whole) or on the region-level (the image region containing the defect is specified). In
both cases the regions labeled as “defective” contain (besides the defect) a considerable
percentage of the “intact” image. In this sense the provided labels are “weak”.

The central topic of this thesis is to develop machine learning algorithms that can deal with
this kind of weak labels. Although it is possible to use standard supervised machine learning
methods with weak labels, the mislabeled datapoints (labeled “defective” although they are
in fact “intact”) impair classification accuracy. We have found that the so-called “multiple
instance” setting is a suitable model for this task. While this model has originally been
proposed for a different application (see Chapter 3), it can also be used for weakly labeled
images. However, one can improve over the multiple instance model by using additional
information about the size of the defect (i. e. the number of truly “defective” pixels), which
will be the topic of Chapter 5.

1.5 DAGM datasets

To assess our proposed machine learning methods for the target application of industrial
optical inspection, we have created an artificially generated benchmark dataset. It has been
designed to imitate real world problems of industrial optical inspection. The data has been
published1 at the DAGM2 symposium.

The DAGM data consists of 10 different datasets, each consisting of 1000 images showing
the background texture without defects, and 150 images showing the background texture
with one defect. The images in a single dataset are very similar, but each dataset is generated
by a different texture model and defect model. The images are 8-bit grayscale with size
512-by-512. Example images are shown in Figure 1.2.

The defects are labeled by ellipses covering the defects. These labels are not exact on a
pixel-level, but are weak in the sense described above. Thus the DAGM datasets are well
suited to test the multiple instance learning algorithms proposed in this thesis.

1http://hci.iwr.uni-heidelberg.de/Staff/dagm2007/prizes.php3#industry
2Deutsche Arbeitsgemeinschaft für Mustererkennung e.V. (German Association for Pattern Recognition)

4

Chapter 1 Introduction

Figure 1.2: Example images of DAGM datasets. One defective image each of the first six
datasets are shown.

5

Chapter 1 Introduction

Image features used for DAGM datasets Before image classification we need to extract
local image features. Based on the work of (Sauer 2008), we chose a two-step approach to
feature calculation. The first step consists of a wavelet filter bank, the second step consists
of statistics calculated over small image patches.

For the first step we chose the so-called a “steerable pyramid” proposed by (Simoncelli &
Freeman 1995, Karasaridis & Simoncelli 1996). This is a wavelet filter bank that comprises
a set of oriented bandpass filters, yielding a radial-axial decomposition of frequency domain.
We chose a resolution of 4 different scales and 6 different orientations, which gives a total
of 24 different feature images.

For the second step we used patches of size 32-by-32 pixels with an overlap of 16 pixels
(giving a total of 32-by-32 patches per image). Over each patch we calculated the 5 following
statistics: minimum, maximum, mean, variance, and kurtosis. Note that the steerable
pyramid outputs images of different resolution depending on the scale used, so the statistics
are calculated over a different number of pixels of the pyramid result.

In addition to the above 120 features we used the position of the patch in the image (x-
and y-coordinates) as two additional features. These features are useful for classification if
the defects are located mainly in one region of the image (Class 7) or if the appearance of
the defects depend on the location (Class 4).

6

Chapter 2

Bayesian Learning Theory

This chapter gives an overview of statistical theory for machine learning from a Bayesian
viewpoint. The goal is to provide the theoretical foundation needed in later chapters.

We focus on the topics of semi-supervised learning and bag models (of which the multiple
instance model is a special case), generative vs. discriminative learning (which is a prerequi-
site for the bag-size-independent MI model of Section 4.1), self-training, and bagging (which
are needed for our proposed learning algorithm in Section 6). To obtain a coherent text, we
found it necessary to also include some general topics.

The emphasis of this chapter is slightly more theoretical than standard expositions of
machine learning. Of the well-known text books, our treatment is closest to (Bishop 2006).

2.1 The general setting

Machine learning is about the relation between an input x and an output y. For given
inputs x one would like to predict the corresponding outputs y. The problem is that the
relation itself is unknown. The only available information are examples of corresponding
input-output pairs (xn, yn), the training data.

The input x is usually continuous and high-dimensional, the output y is most often binary
(positive or negative), but sometimes also categorical (multiclass learning) or continuous
(regression).

Formally, the relation between x and y can most generally be described by a probability
distribution

Ptrue(x, y). (2.1)

Since this true distribution is unknown, one tries to model it with a set of candidate distri-
butions, that are described by parameters θ

P (x, y |θ). (2.2)

A specific distribution (represented by its parameter vector θ) is called a concept or an
hypothesis, and the parameter space Θ defines a set of possible concepts or an hypothesis
space. One usually assumes that there is one true parameter vector θtrue that correctly

7

Chapter 2 Bayesian Learning Theory

describes the underlying distribution

Ptrue(x, y) = P (x, y |θtrue). (2.3)

xn

yn

θ

xm

ym
N M

Figure 2.1: Markov net-
work of supervised learn-
ing. Left side: N training
data points. Right side:
M test points. Shaded
nodes represent observed
variables, unshaded nodes
must be inferred.

Since the true parameter vector is unknown, we have
to consider a probability distribution over the parameters
P (θ). This parameter prior is often taken as uniform, but
one can also define a non-uniform parameter prior that
makes certain concepts more likely than others. So most
generally, a probabilistic learning model is described by

P (x, y,θ) = P (x, y |θ) · P (θ). (2.4)

This model can be represented by the Markov network
shown in Figure 2.1. All datapoints are linked by the com-
mon concept θ. The training data points are grouped on
the left side, the test points on the right side. Index n runs
from 1 to N , index m runs from N + 1 to N +M . The task
is to infer the test outputs ym from the test inputs xm and
the training data D = {xn, yn} via the latent parameters θ.

Besides this data-centered viewpoint, it is useful to consider the complete distribution of
x and y, which is a superposition of the candidate distributions, weighted by the parameter
distribution

P (x, y) =

∫
P (x, y |θ)P (θ) dθ. (2.5)

This distribution can be seen as the intermediate result Note that we should require the
prior (x, y)-distribution to be uniform

P (x, y) = U(x, y), (2.6)

otherwise the learning model (2.4) would be prejudiced. This requirement is met by standard
learning techniques, but it is usually not stated explicitly.

After having observed the data D, the prior (2.5) is replaced by the posterior

P (x, y | D) =

∫
P (x, y |θ) P (θ | D) dθ. (2.7)

Note that the posterior distribution (2.7) is not necessarily contained in the set of candidate
distributions (2.2), so one could say that Bayesian inference “increases the flexibility” of
prediction (Minka 2000).

8

Chapter 2 Bayesian Learning Theory

Train-test split and transduction Note that the symbol D in (2.7) stands for all data, i. e.
both training data and test data

D = Dtrain ∪ Dtest = {xn, yn} ∪ {xm}. (2.8)

In fact, the posterior parameter distribution depends in general not only on the training
data but also on the test data.

P (θ | D) =
1

Z
P (θ)︸ ︷︷ ︸
prior

∏
n

P (xn, yn |θ)︸ ︷︷ ︸
training likelihood

∏
m

P (xm |θ)︸ ︷︷ ︸
test likelihood

. (2.9)

Z = P (D) =

∫ ∏
n

P (xn, yn |θ)
∏
m

P (xm |θ) dθ (2.10)

The test likelihood is usually neglected. In most cases this is does not cause a significant
difference, because the information contained in the training data usually outweighs the
information contained in the test data (i. e. the training likelihood has a sharper peak than
the test likelihood).

xn

yn

θ θ

xm

ym
N M

Figure 2.2: Markov networks of
training stage (left side) and testing
stage (right side). Note that during
testing, θ does not actually have a
fixed value (which would be the usu-
ally meaning of a shaded node), but
a fixed distribution. Nevertheless we
find that the shaded node expresses
the idea clearly enough.

The benefit of neglecting the test likelihood is
that it simplifies inference by effectively splitting
it in two subsequent steps: training and testing.
During training one infers the posterior parame-
ter distribution P (θ | Dtrain) by taking into account
the training data, but neglecting the test data.
During testing one holds the parameter distribu-
tion constant and evaluates (2.11). This setting is
shown in Figure 2.2.

The fact that the test data contain potentially
useful information does not seem to be generally
appreciated. In the context of semi-supervised learn-
ing it is more obvious, because unlabeled training
points are actually the same as test points (x is
observed, y is not). In this context, the idea of
using the test data in addition to training data to
improve prediction is known as transduction. We
will discuss this in more detail in Section 2.4.

2.2 Inference

In this section we discuss the main inference step of evaluating (2.7). As is common, we
incorporate the train-test split and consider only the training data. Then, (2.7) and (2.9)

9

Chapter 2 Bayesian Learning Theory

are replaced by

P (x, y | Dtrain) =

∫
P (x, y |θ)P (θ | Dtrain) dθ (2.11)

P (θ | Dtrain) ∝ P (θ) L(θ) (2.12)

L(θ) =
∏
n

P (xn, yn |θ) (2.13)

The integration over θ is usually infeasible because the parameter space is high-dimensional
(it must be to allow for enough flexibility of the candidate distributions).

There are several approaches to find reasonable approximations for (2.11). They all have
in common that they approximate (2.11) by a weighted sum.

P (x, y | Dtrain) ≈
∑
t

wtP (x, y |θt) (2.14)

The differences between these methods is in how they choose the support points {θt}, and
how they estimate the weights wt. Note that in general wt 6= P (θt | Dtrain).

Methods that learn multiple concepts θt are often called ensemble methods or committees.
They include Bayesian averaging, bagging, boosting, and others. But also point estimation
methods like maximum posterior and maximum likelihood can be thought of as special cases
of (2.14), with only one support point.

2.2.1 Maximum posterior and maximum likelihood

Both the maximum posterior and the maximum likelihood approach are point estimation
methods, which means that they learn only one concept and have only one support point θ̂
with weight 1. In this case the approximation (2.14) simplifies to

P (x, y | Dtrain) ≈ P (x, y | θ̂). (2.15)

It is obvious that the best choice of θ̂ is the maximum of the parameter posterior

θ̂MAP = arg max
θ

P (θ | D). (2.16)

To put it into words, the procedure is that one first tries to find the concept θ̂ within the
model that best explains the training data. Then this concept is used to predict the test
class.

Another common choice of θ̂ is the maximum likelihood estimate

θ̂ML = arg max
θ

L(θ) (2.17)

Although maximum likelihood is not originally a Bayesian method, it is quite natural to
view it as an approximation of Bayesian inference as described above. Note that if the

10

Chapter 2 Bayesian Learning Theory

parameter prior is uniform P (θ) = U(θ), the maximum posterior estimate (2.16) equals
the maximum likelihood estimate (2.17). Often one does not have cogent prior information
about the model parameters, so one chooses a more or less flat prior. In this case the
maximum of the parameter posterior is dominated by the likelihood.

Note that both from a conceptual and a practical point of view there is big difference
between the Bayesian approach (2.11) and the maximum posterior or maximum likelihood
approach. The Bayesian approach puts the emphasis on integration, while the maximum
posterior/likelihood puts the emphasis on optimization. This entails very different tools and
techniques.

2.2.2 Bayesian averaging

The goal of Bayesian averaging is to approximate the full Bayesian integral (2.11). This can
be done with the averaging approach (2.14) by setting

θt ∼ P (θ | Dtrain) (2.18)

wt = P (θt | Dtrain) (2.19)

The difficulty of this approach is the large computational cost. Especially, sampling from
the posterior parameter distribution P (θ | Dtrain) is hard, because θ is high-dimensional,
and P (θ | Dtrain) is usually complex and multimodal.

2.2.3 Bagging

“Bagging” is an abbreviation of “bootstrap aggregating”. It has been proposed by (Breiman
1996). The idea is to repeatedly draw bootstrap samples from the training data (sampling
with replacement), and then train a classifier on each set of bootstrapped training data.
The final classifier is the average (or majority vote) of all single classifiers.

Formally, a bagged classifier is described by Eq. (2.14) with concepts

θt = arg max
θ

P (θ | Dt) (2.20)

where Dt is the t-th set of bootstrapped samples, and uniform weights

wt =
1

T
. (2.21)

The idea behind bagging is that taking the average over different datasets reduces the
mean squared error of the prediction. It can easily be shown (Breiman 1996) that

ED(y − ŷD)2 ≥ (y − ED(ŷD))2, (2.22)

where ED denotes expectation over all possible datasets, y is the true class, and ŷD is the
estimate from dataset D. Thus the average ED(ŷD) improves over the point estimate ŷD.
Bagging is a direct attempt to obtain an estimate of ED(ŷD).

11

Chapter 2 Bayesian Learning Theory

The problem is that bootstrapped samples Dt are not drawn from the true data distribu-
tion P (x, y), but are resampled from the observed data. Technically speaking, they do not
follow the same distribution as the training data, but are distributed according to a mix of
delta distributions at the observed datapoints

Dt /∼ D (2.23)

Dt ∼
1

T

∑
n

δ(xn)δ(yn). (2.24)

For some special models one can modify the bootstrapping procedure so that the inferred
quantities θt and yt are in fact distributed according to their posteriors P (θ | D), or P (y | D),
even though the original samples are not (2.23). This is called the “Bayesian bootstrap”
(Rubin 1981). For a complex machine learning model, however, this is not possible.

As a consequence of (2.23) we expect that the mean squared error of the bagged estimate
is larger than the mean squared error of the hypothetical average of estimators

(y − EDt(ŷDt))
2 ≥ (y − ED(ŷD))2. (2.25)

It is very difficult to exactly assess the size of the difference between the two sides of this
inequality. Bagging works if the bagged estimate’s error (left hand side of 2.25) is at least
smaller than the point estimate’s error (left hand side of 2.22).

Stability of classifier A measure to asses the size of inequality in (2.22) is the “stability”
or “variability” of the classifier. This is a rather vague concept of how much the parameter
estimate θt changes with changing data Dt. A perfectly stable classifier would have the
same optimum for all data samples,

θs = θt ∀s, t, (2.26)

and equality would hold in (2.22).
While some instability is needed to improve over the base classifier (i. e. inequality of

2.25), it seems plausible that too much instability will probably hurt performance, because
the ensemble members trained on the bootstrapped samples deviate too much from the
optimum point estimate

θt 6= θ̂MAP, (2.27)

and we expect very large inequality in 2.25.

Bootstrap sample size For a given classifier, bagging provides one parameter to control
the stability or variability of θt: the bootstrap sample size Nboot. For very large Nboot, the
bootstrapped data is just a multiplied replicate of the given data and the bagged classifier

12

Chapter 2 Bayesian Learning Theory

converges to its base (non-bagged) classifier:

Nboot →∞ =⇒ Dt → D =⇒ θt → θ̂MAP (2.28)

This situation corresponds to a perfectly stable classifier. Likewise, a small bootstrap sample
size corresponds to an unstable classifier.

Bagging has been shown to give good performance in many empirical settings. The most
well-known example of the success of bagging is the so-called “random forest” (Breiman
2001), which is a bagged version of fully grown decision trees. For the random forest a
bootstrap sample size equal to the number of available training points is the standard
choice that usually gives good results (Hastie, Tibshirani & Friedman 2009). Because of the
good reputation of the random forest, it will be the basis for our proposed algorithms for
multiple instance learning (see Chapter 6).

2.3 Generative and discriminative models

Basic idea Up to now we have considered the general case of modeling the joint distribution
Ptrue(x, y) with a single set of parameters θ. It is suggestive to split this joint distribution
into a marginal and a conditional, and model the marginal and the conditional separately.
There are two obvious ways to perform this split, one is called the generative approach, the
other the discriminative approach

generative: Ptrue(x, y) = Ptrue(x | y) Ptrue(y) (2.29)

discriminative: Ptrue(x, y) = Ptrue(y |x) Ptrue(x). (2.30)

As we will see below, the density term Ptrue(x) need not be modeled in the discrimina-
tive approach, because x is always observed. In this case the discriminative approach does
not provide an expression for the joint distribution Ptrue(x, y), but only for the conditional
Ptrue(y |x). This is the origin of the names “generative” and “discriminative”: A generative
model can generate new inputs and outputs from the joint Ptrue(x, y), while the discrimi-
native model can only discriminate between outputs for a given input from the conditional
Ptrue(y |x).

Model constraints Note that the two equations (2.29) and (2.30) are kind of meaningless.
They are valid for any distribution of x and y and do not restrict the model in any way. To
show this explicitly, we write down the general model (2.4) both in the generative form and
in the discriminative form:

P (x, y,θ) = P (x | y,θ) P (y |θ) P (θ) (2.31)

= P (y |x,θ) P (x |θ) P (θ) (2.32)

The difference between generative and discriminative models arises only when the marginal
and the conditional are “modeled separately”, which means that there are two independent

13

Chapter 2 Bayesian Learning Theory

sets of parameters for the marginal and the conditional:

Pgen(x, y,θcd,θcp) = P (x | y,θcd) P (y |θcp) P (θcd)P (θcp) (2.33)

Pdisc(x, y,θcc,θtd) = P (y |x,θcc) P (x |θtd) P (θcc)P (θtd), (2.34)

where the subscripts stand for

cd : class density cc : class conditional

cp : class prior td : total density.

This structure can be represented by the graphical models in Figures 2.3 and 2.4. For
simplicity, we have drawn only one node each for x and y, that can represent either training
points or test points (cf. Figure 2.1).

For a full understanding it is necessary to identify the concrete differences between (2.31,
2.32) and (2.33, 2.34) which cannot be overcome by reparameterization or rearranging the
formulas. By inspection we find that (2.33, 2.34) satisfy the following statistical indepen-
dence relations which are not satisfied by the general model (2.31, 2.32):

generative discriminative

x |= θcp | y y |= θtd |x (2.35)

y |= θcd x |= θcc (2.36)

where |= denotes statistical independence. For the following, we consider these indepen-
dence relations as the defining properties of generative and discriminative models.

Note that the factorization of the parameter prior in (2.33, 2.34)

generative discriminative

P (θ) = P (θcp) P (θcd) P (θ) = P (θtd) P (θcc) (2.37)

is essential, although it does not explicitly appear in (2.35, 2.36). If this factorization does
not hold, both independence relations (2.35, 2.36) are not valid anymore, and the resulting
model is equivalent to the general form (2.31, 2.32). This is illustrated in Figures 2.5 and
2.6. We will refer to (2.37) in the following as parameter independence.

Effects of model constraints Let us briefly consider the effects of parameter (in)dependence
for generative and discriminative models.

For generative models parameter independence means that the class densities do not
depend on the class ratios. This seems to be a reasonable assumption. Though one might
image a situation where the class densities do depend on the class ratios, this seems to be
rather artificial. For example one might assume that a class which occurs rarely should be
confined to a small region in feature space which would lead to a more peaked estimate of
the rare class’s density. We do not know of a classification model that has this property,
but we believe it is important to understand that such models are possible and are neither

14

Chapter 2 Bayesian Learning Theory

xn

yn

θcd

θcp
N

Figure 2.3: Bayesian network of genera-
tive models. For training points, y is ob-
served, for test points it is unobserved.

xn

yn

θtd

θcc
N

Figure 2.4: Bayesian network of discrim-
inative models. For training points, y is
observed, for test points it is unobserved.

covered by the generative nor the discriminative framework. In Section 4.1 we will propose
a bag model that is neither generative nor discriminative.

For discriminative models parameter independence has a much larger effect. The reason
is that x is always observed which renders the two model parts completely independent.
The outputs y simply do not depend on the total density θtd, see (2.35). From a practical
viewpoint one might be happy about this, because one can just leave the total density out
of the model (and out of consideration). In fact, it is often argued that discriminative
models perform well in practice because they do not model the density but “focus on the
more important class conditional P (y |x)”. We believe that this argument is not really to
the point. While the density model might of course be inappropriate and therefore lead
to bad results, there is no reason why this must be so. So if generative models perform
worse in experiments, we should rather try to find a better density model than to “blame it
on the generative property”. We should keep in mind that the total density carries useful
information (otherwise semi-supervised learning would not work), and it would be unwise
to discard this without need.

Literature To our knowledge, a discussion of generative and discriminative models similar
to the above cannot be found in the literature. Usually, only the modeling approaches (2.29)
and (2.30) are mentioned, but the concrete model constraints (2.33, 2.34) or (2.35–2.36) are

xn

yn

θcd

θcp
N

Figure 2.5: Bayesian network of genera-
tive models with prior parameter depen-
dence.

xn

yn

θtd

θcc
N

Figure 2.6: Bayesian network of discrim-
inative models with prior parameter de-
pendence.

15

Chapter 2 Bayesian Learning Theory

not stated, and the central point of prior parameter independence between the submodels
is not pointed out. As a consequence, there seems to be the believe that generative models
were the most general approach, and that the defining trait of discriminative models was
that they do not model the density.

However, the importance of prior parameter independence has been pointed out before by
some authors in special contexts: (Seeger 2002) points out that discriminative models can be
used for semi-supervised learning if there is a prior dependence between the parameters θtd
and θcc. (Minka 2005) points out that the method of “discriminative training” is actually
not a training method, but a change of model. One can impose the discriminative constraints
on a generative model by doubling its parameters and make the two duplicates independent.
The idea of (Minka 2005) has been worked out and a hybrid model where applied to object
recognition by (Lasserre, Bishop & Minka 2006) and (Bishop & Lasserre 2007).

2.4 Semi-supervised learning

In many applications (e. g. in industrial optical inspection) there are plenty of datapoints
xn that could readily be used as training data, but acquiring labels yn for these data points
is expensive or even prohibitive. The abundance of unlabeled data and scarcity of labeled
data is often called the labeling bottleneck. In this situation the question arises whether
unlabeled datapoints carry useful information, and if they do, how we can make use of
unlabeled datapoints in practice.

Figure 2.7: Illustration of
semi-supervised learning.

The intuitive answer to the first question is: Yes, unla-
beled datapoints seem to be helpful. The reason is illus-
trated in Figure 2.71. Without unlabeled points, the best
decision boundary seems to be a vertical line between the
two labeled datapoints (top image). The unlabeled data-
points suggest, however, that the true decision boundary is
completely different (bottom image).

In practice, it has also been shown by many authors
that unlabeled data carry useful information (e. g. (Mitchell
1999), (Goldman & Zhou 2000), (Singh, Nowak & Zhu 2008),
(Zhu 2010)).

The information of unlabeled points lies in their density
distribution. This is somewhat contradictory to the discrim-
inative approach to classification that does not consider the
density at all. Indeed, truly discriminative models cannot
learn from unlabeled datapoints, because the likelihood of any unlabeled point is equal,
regardless of its location and regardless of the parameters of discriminative model.

P (x |θ) =
∑
y

P (x, y |θ) = U(x) ∀θ (2.38)

1Source: Wikipedia

16

Chapter 2 Bayesian Learning Theory

Since many well-known and successful classifiers are discriminative, this fact has lead to
much discussion about the circumstances under which unlabeled points are useful (Chapelle,
Schölkopf & Zien 2006).

Models for semi-supervised learning must exhibit a statistical dependence between the
total density and class conditional (cf. Figure 2.6). (Chapelle et al. 2006) states four fun-
damental model assumptions that imply such a statistical dependence. They are more or
less equivalent, but provide different perspectives of the issue, and motivate different kinds
of models:

• Low-density separation: The decision boundary should preferably lie in low-density
regions and should not cross high density regions.

• High-density smoothness assumption: Regions of high density should belong to the
same class.

• Cluster assumption: If data points are in the same cluster, they are likely to be of the
same class.

• Manifold assumption: The data points are assumed to lie roughly on a low-dimensional
manifold in the high-dimensional feature space.

We would like to point out that the usefulness of these assumptions is not restricted
to semi-supervised learning or to unlabeled data points. They are correct and should be
considered for supervised learning as well (cf. Section 2.3).

2.4.1 Self-training

There is a variety of methods that have been developed for semi-supervised learning, among
them are self-training, co-training, transductive inference, graph-based methods, and others.
Here we focus on self-training, since this is the method we will employ later for multiple-
instance learning.

The general idea of self-training is to estimate the unknown labels by the prediction of
the classifier trained on the given labels. It is advantageous to do this in several steps, i. e.
assigning only those labels, where the classifier has high confidence, and retrain the classifier
with these labels to increase the confidence for the remaining datapoints.

More formally, self-learning alternates between updating the parameters θ, given the
current estimate of instance classes yi, and updating the instance classes y, given the
current estimate of parameters θi. In general, the current estimates of instance classes and
parameters are not given by single values yi, θi, but by distributions Pi(y), or Pi(θ). Hence,
the method of self-training is defined most generally by

Pi(θ |X) =̂
1

Z

∫
PM (y |X,θ)Pi−1(y |X) dy (2.39)

Pi(y |X) =̂

∫
PM (y |X,θ)Pi(θ |X) dθ, (2.40)

17

Chapter 2 Bayesian Learning Theory

where we have distinguished between current distribution estimates Pi at step i, and model
likelihood PM . Z is a normalization constant.

Self-training allows for semi-supervised learning based on a discriminative model PM ,
although discriminative models are in fact insensitive to unlabeled datapoints, as shown
above. This is possible because self-training is not just an algorithmic procedure, but
actually entails a change of model. This is apparent from Equation (2.39). If we dropped
the indices i and M and interpreted it as a general probabilistic statement, it would actually
be wrong! By defining the posterior Pi(θ |X) in this“wrong” way, we effectively change the
model to favor low-density separation.

To explain this effect, let us assume we have found a set of parameters θ̂, that is a fixpoint
of the sequence (2.39,2.40)

P (θ̂ |X) =
1

Z

∫
PM (y |X, θ̂)P (y |X) dy (2.41)

P (y |X) = PM (y |X, θ̂), (2.42)

Inserting (2.41) into (2.42) yields

P (θ̂ |X) =̂
1

Z

∫ [
PM (y |X, θ̂)

]2
dy (2.43)

=
1

Z

∏
n

∫ [
PM (yn |xn,θ)

]2
dyn (2.44)

=
1

Z

∏
n

(
p2
n + (1− pn)2

)
, (2.45)

where we have used the short hand pn =̂ pM (yn=1 |xn,θ). Eq. (2.45) describes the effective
parameter distribution of self-training, whose local optima correspond to the fixpoints of
the sequence (2.39,2.40).

Figure 2.8: Plot of effec-
tive class purity-dependent
weight of self-training.

The contribution of a single datapoint to the effective pa-
rameter distribution (2.45) is plotted in Figure 2.8. As an
illustrative example, let us consider two parameter vectors
θ̂db and θ̂u, that give the same pn for all datapoints except
one. Let us assume further that for θ̂db, the remaining data-
point has pn = 1/2 (it is located at the decision boundary),
while for θ̂u, the remaining datapoint has pn = 0 or pn = 1
(it is unambiguously assigned to one class). In this case,
the effective parameter probability (2.45) would be twice as
large for the unique class assignment θ̂u than for the unde-
cided class assignment θ̂db. The same argument holds for
all datapoints, so each datapoint that is close to the deci-
sion boundary reduces the relative parameter posterior by
a factor of up to two, which of course penalizes decision boundaries in high density regions.

18

Chapter 2 Bayesian Learning Theory

2.5 Learning from weak labels

Supervised and semi-supervised learning consider the extreme cases of either complete class
information about a datapoint (labeled) or zero class information about a datapoint (unla-
beled). In practice we sometimes have a situation in between these two extremes, i. e. we
have some weak information about the class of a datapoint.

The weakness of information can have different reasons. For example, the given label
might be subject to statistical error, so that it only provides a prior class probability of the
corresponding datapoint. Another possible reason is that we only have aggregate informa-
tion about a group (or bag) of many datapoints. In this case, though the bag label is exact,
it only gives a vague information about the class of a single datapoint.

In the following we give a short overview of weak label models, focusing on bag models,
since the multiple instance model is a special case of a bag model.

2.5.1 Noisy labels

xn

yn

zn

θ

N

Figure 2.9: Markov net-
work of learning from
labels with errors.

There is no single widely accepted term to refer to the
situation where the available labels are subject to errors. It
has been called “noisy labels” (Natarajan, Dhillon, Raviku-
mar & Tewari 2013), “errors in labels” (Buehler, Zisser-
man & Everingham 2009), “uncertain labels” (Bouveyron &
Girard 2009), “imperfect labels” (Tabassiana, Ghaderia &
Ebrahimpourb 2012), and “ambiguous labels” (Hüllermeier
& Beringer 2005). An experimental survey of the effect
of noisy labels can be found in (Nettleton, Orriols-Puig &
Fornells 2010).

The common trait of these models is that the classes yn
are not observed directly, but only a third quantity zn,
which is related to the class yn, is observed. The corre-
sponding graphical model is shown in Figure 2.9.

Binary classification and Bernoulli model In the case of binary classification, the relation
between yn and zn is most generally described by four parameters with one normalization
constraint

P (yn, zn) yn=0 yn=1

zn=0 β1 β2

zn=1 β3 β4

(2.46)

β1 + β2 + β3 + β4 = 1. (2.47)

Because zn is always observed, it is sufficient to model the conditional P (yn | zn)

19

Chapter 2 Bayesian Learning Theory

P (yn | zn) yn=0 yn=1

zn=0 1− βFN βFN

zn=1 βFP 1− βFP
(2.48)

where βFN is the rate of false negative labels, and βFP is the rate of false positive labels.
Often it is appropriate to set β = βFN = βFP . Since the conditional P (yn | zn) is a Bernoulli
distribution, we call the model (2.48) the “Bernoulli model”. In chapter 5, we propose such
a Bernoulli model as an addition to the multiple instance model.

The approach to model only the conditional distribution instead of the complete joint
distribution is reminiscent of the discriminative model split that we discussed in Section 2.3.
But note that in this case the parameters β are assumed fixed, so parameter independence
is not an additional constraint, and (2.48) is equivalent to (2.46).

xn

yn

znj

θ

N

Jn

Figure 2.10: Markov net-
work of learning from
multiple labels.

Multiple labels When exact labels are not available, it is
a natural idea to improve over a single noisy label by tak-
ing multiple noisy labels (see Figure 2.10). Even when it
is possible to obtain exact labels, it might be cheaper to
acquire multiple noisy labels. For this reason the setting of
multiple noisy labels has received considerable treatment in
the literature. The model of multiple noisy labels was in-
troduced by (Jin & Ghahramani 2002). Up-to-date reviews
about this topic can be found in (Zhang & Zhou 2013) and
(Sorower 2010).

2.5.2 Bag labels

20

Chapter 2 Bayesian Learning Theory

xbn

ybn

cb

θ

β

Nb

B

Figure 2.11: Markov net-
work of learning from bag
labels with bag parameters
β. The loop at node ybn
indicates that all {ybn}n
are pairwise connected (see
text for explanation).

Another form of weak labels arises if we are not given
the class information for each single datapoint, but only
aggregate information about many datapoints. Each set of
datapoints gives rise to a multiset – or bag – of classes, and
for each bag we are given one bag label c. In this context a
single datapoint is usually referred to as an instance in order
to distinguish it from its respective bag. The corresponding
graphical model is shown in Figure 2.11.

The most well-known bag model seems to be the so-called
multiple instance model, where the bag label is negative if
all instance labels are negative, and positive if at least one
instance label is positive. This model is a main topic of
this work, and we will discuss it in detail in the following
section. Another (more informative) bag label would be the
counts of instance classes within each bag. Such labels have
been used for learning by (Kück & de Freitas 2005).

Note that the essential difference between bag models and
noisy labels is that bag models allow for correlations be-
tween the instances of the same bag. Formally, the bag model factor QB does not factorize
into instances, but only into bags:

QB(Y , c,β) =
∏
b

Qb((yb, cb,β) (2.49)

6=
∏
b

∏
n

Qb((ybn, cb,β), (2.50)

where the bold symbols stand for sets of variables: Y = {ybn}bn, yb = {ybn}n, c = {cb}b.
To represent the factorization (2.49) by a the Markov network, all y-nodes on each N -plate
must be pairwise connected. We have indicated this in Figure 2.11 by a loop.

The fact that bag models do not factorize into instances makes learning difficult. We
will encounter this problem in Chapter 6, when devising an algorithm for multiple instance
learning.

2.5.3 Inference in bag models

When dealing with bag models, we must take into account the interaction between the
classifier and the bag model. The latent instance classes y depend both on the classification
model P (x, y,θ) and on the bag model P (y, c,β). This has the consequence that the two
submodels cannot be regarded as separate anymore, but they become factors QCl, QB of
the joint model P (X,y, c,θ,β).

In this section, we derive the expressions that are needed to do inference in general bag
models. To our knowledge, these expressions have not been published before. For clarity,
we state the expressions for only one bag and leave out the products over bag indices b.

21

Chapter 2 Bayesian Learning Theory

Let us denote the factor describing the classification model by qCl and the factor describing
the bag model by QB. The joint probability of the complete model is

P (X,y, c,θ,β) =
1

Z
QCl(X,y,θ)QB(y, c,β) (2.51)

QCl(X,y,θ) =
∏
n

qCl(xn, yn,θ) (2.52)

Z =

∫
QClQB dX dy dc dθ dβ, (2.53)

where X = {xn} denotes the set of all feature vectors of one bag, and the partition function
Z ensures normalization.

Note that although the factors qCl and QB represent the probabilities P (xn, yn,θ) and
P (y, c,β), resp., they are not equal to the corresponding marginal probabilities of the joint
model

qCl 6= P (xn, yn,θ) =

∫
P (X,y, c,θ,β) dxm 6=n dym 6=n dc dβ (2.54)

QB 6= P (y, c,β) =

∫
P (X,y, c,θ,β) dX dθ. (2.55)

This can be quite counter-intuitive, as we will discuss in Section 5.1.4 for the case of the
Bernoulli bag model.

It is convenient to use a distinct symbol My for the marginal over the latent variables y
and focus on its dependence on the parameters (θ,β) and on the bag class c.

My(θ,β, c) = P (c,X,θ, β) =

∫
QB QCl dy (2.56)

The parameter posterior P (θ,β |x, c) (needed for training) and the bag class probability
P (c |X,θ, β) (needed for testing) now take on the following simple forms

P (θ, β |X, c) =
My∫

My dθ dβ
∝ My(θ,β) (2.57)

P (c |X,θ, β) =
My∫
My dc

=
My(c)

My(c=0) +My(c=1)
(2.58)

Note that for maximization of or sampling from the parameter posterior (2.57) it is not
necessary to know the denominator (normalization constant), but for bag classification
(2.58) the denominator is essential.

For discriminative bag models, the above expressions can be simplified (see Section 4.1).
Since the multiple instance model is a discriminative bag model, it does not necessarily
require the general expressions above. However, for the improvements and generalizations
we propose in Chapters 4 and 5, the general expressions stated above are indeed necessary,
and we will refer to Equations (2.56–2.58) when discussing and analyzing these models.

22

Chapter 3

Multiple Instance Learning

Multiple instance learning is the central topic of this work. It allows to learn from bag labels,
where a negative bag label implies that all of its instances are negative, and a positive bag
label implies that at least one of its instances are positive. This bag model corresponds to
the setting of industrial optical inspection, where an image is labeled as negative only if it
is entirely free of defects, and labeled positive if it contains at least one defect.

Multiple instance learning has originally been proposed by (Dietterich, Lathrop & Lozano-
Pérez 1997) for an application of drug activity prediction. Since then it has found several
other applications in image classification, text categorization, data mining, and others. It
has received continued attention from the machine learning community and several algo-
rithms for multiple instance learning have been proposed.

In this chapter we will give an overview of the multiple instance model, its applications,
and available algorithms.

3.1 The multiple instance model

3.1.1 Model definition

The multiple instance model is actually a deterministic bag model. However, it is only
useful in combination with a probabilistic classifier. Therefore, we state below both the
deterministic and the probabilistic expressions.

Multiple instance bag model (deterministic) The multiple instance model relates the bag
class c to the instance classes y = {yn}. The informal definition is

bag negative ⇔ all instances negative

bag positive ⇔ at least one instance positive
(3.1)

Formally, this is expressed most concisely as

c = max
n

yn = ORn(yn) ⇐⇒ (3.2)

1− c = min
n

1− yn = ANDn(1− yn), (3.3)

23

Chapter 3 Multiple Instance Learning

where c and yn are binary variables with c = 0 (or yn = 0) denoting a negative class
membership and c = 1 (or yn = 1) denoting a positive class membership.

An example of a bag containing two instances is

c y2 =0 y2 =1

y1 =0 0 1

y1 =1 1 1

(3.4)

For bags containing more instance, one can imagine an N -dimensional cube where one
orthant is 0 and all others are 1.

Note that the multiple instance bag model is in fact a deterministic model. If the instance
classes y are known, the bag class c is determined exactly. The probabilistic nature of
multiple instance learning originates solely from the probabilistic classifier.

xbn

ybn

cb

θ

N

B

Figure 3.1: Graphical
model of multiple instance
learning.

Multiple instance classification model (probabilistic) The
multiple instance bag model (3.2) is always used together
with a probabilistic classifier. The combined model (clas-
sifier plus MI) is characterized by the y-marginal My. To
evaluate it, we first we state (3.2) as a degenerate probabil-
ity distribution

QMI(y, c) = δ
(
c,max

n
yn

)
, (3.5)

and we introduce the short-hand

pn = qCl(xn, yn,θ) (3.6)

In the following, we refer to pn as the “soft outputs” of the instance classifier. Now, Eq.
(2.56) evaluates as

MMI(c=0) =
∏
n

(1− pn) = ANDn(1− pn) (3.7)

MMI(c=1) = 1−
∏
n

(1− pn) = ORn(pn). (3.8)

Since MMI(c=0) +MMI(c=1) = 1, the denominator of (2.58) is trivial and we have

P (c=1) = 1−
∏
n

(1− pn) = ORn(pn). (3.9)

We have used the notation “AND” and “OR” for probabilistic conjunction and disjunc-
tion, resp. Probabilistic OR is often called “noisy-OR” in the literature. The expression
(3.9) was first stated by (Maron & Lozano-Pérez 1998) and is well-known in the literature.
However, the conceptual distinction between the (deterministic) label model itself and its

24

Chapter 3 Multiple Instance Learning

(probabilistic) combination with the classifier is usually not made.
Note that the term “multiple instance learning” is a bit misleading because actually all

bag models involve multiple instances, not just the specific model defined above. A more
descriptive term would be “bag-OR model”. We point this out because the improper name
has led to some confusion; for instance, (Amores 2013) uses the term “multiple instance”
as referring to the class of all bag models. But since the majority of papers uses the term
“multiple instance learning” according to the above definition, we adopt this term although
it is somewhat misleading.

3.1.2 Model training

To get an idea of the effect of the multiple instance (MI) model on classifier training, we
examine the negative log-likelihood of the model as a function of the soft outputs of the
instance classifier. Comparing Equations (2.57), (3.7), and (3.7), we find

NLL−MI(p) = − log(MMI(c=0)) = −
∑
n

log(1− pn) (3.10)

NLL+
MI(p) = − log (MMI(c=1)) = − log

(
1−

∏
n

(1− pn)

)
, (3.11)

where (3.10) is valid for bags labeled “negative” and (3.10) is valid for bags labeled “posi-
tive”. Note that the model likelihood for positive bags does not factorize, which makes MI
learning hard.

To understand the behavior of the model, it is useful to separate a single instance pj in the
formulas (3.10,3.11), so that we see the effect of changing this instance’s class probability
on the bag model likelihood. For negative bags this is trivial because it factorizes into
instances, but for positive bags we have to take some care.

It is convenient to summarize all instances other than j in a single term p\j = {pn}n6=j .
Then we can express the complete bag’s negative log-likelihood as a function of the “re-
duced” bag’s negative log-likelihood NLL(p\j) and pj :

NLL−MI(pj ,p\j) = − log(1− pj) + NLL−MI(p\j) (3.12)

NLL+
MI(pj ,p\j) = − log

[
1−

(
1− pj

)(
1− exp

[
NLL+

MI(p\j)
])]

(3.13)

These functions of two variables can be plotted as a set of curves, as is done in Figure
3.2. The slope of the curves characterizes the impact of a single instance on the total
bag likelihood. If the slope is large, the multiple instance model will “push” the instance
classifier hard to change the class assignment of that instance.

As expected, an instance’s impact is the larger the more its class probability contradicts
the given bag label. For negative bags, completely positive instances (pj = 1) are forbidden
(dashed curves). For positive bags, an instance’s impact on the bag-NLL depends on the
remaining instances of its bag. If one (or several) of them is positive, they have already

25

Chapter 3 Multiple Instance Learning

Figure 3.2: Contribution of a single instance to the negative log-likelihood of the multiple
instance model. The negative log-likelihood of the “reduced” bag is denoted by NLLr =
NLL(p\j).

“justified” the positive bag label (NLL(p\j) = 0), and the class assignment for instance j
becomes irrelevant (constant cyan curve). If none of the remaining instances are positive,
the positive bag label is not yet “justified” (NLL(p\j)� 1), and the remaining instance is
strongly pushed to a positive class assignment (solid blue curve).

3.1.3 Relation to semi-supervised learning

Multiple instance (MI) learning has some similarity with semi-supervised learning (SSL).
To make this apparent, consider an asymmetric semi-supervised setting where all labeled
datapoints are negative (i. e. there are no positive labels at all). Then the labeled data-
points correspond to the instances from negative MI-bags, while the unlabeled datapoints
correspond to instances from positive MI-bags.

The correspondence is not exact, because the instances from positive MI bags are not
really unlabeled. Instead, at least one of the instances from each positive MI-bag must be
positive. This can be viewed as a constraint on the instance classes, and we will refer to
this in the following as the MI-constraint.

Note that the hypothetical asymmetric semi-supervised setting above is actually ill-
defined, because the best fit to the observed data (without any positive labels) is the trivial
one of classifying all datapoints as negative. The only thing that prevents this degenerate
solution in the multiple instance setting are the MI-constraints.

Because of the close correspondence between multiple instance learning and semi-supervised

26

Chapter 3 Multiple Instance Learning

learning many methods that have been proposed for one of these settings has also been ap-
plied to the other. Notable semi-supervised methods that are related to multiple instance
learning are (Kück, Carbonetto & de Freitas 2004), (Goldman & Rahmani 2006), (Zhou
& Xu 2007), (Leistner, Saffari, Santner & Bischof 2009), and (Zeisl, Leistner, Saffari &
& Bischof 2010).

Low-density separation During training the multiple instance model, we can distinguish
between two different situations. For positive bags with large negative likelihood, we say
that the MI-constraint is active, for positive bags with small negative likelihood, the MI-
constraint is inactive.

The situation where the MI-constraint is inactive corresponds to semi-supervised learning.
In this case, we have to adopt one of the four model assumptions of semi-supervised learning
(see Section 2.4). As mentioned above, these assumptions are more or less equivalent. We
find the assumption of low-density separation most intuitive.

Our algorithm described in Section 6 is based on self-training and therefore exhibits the
kind of low-density separation described in Section 2.4.1.

3.2 Interpretations and variants of the multiple instance model

When the multiple instance model was first proposed (Dietterich et al. 1997), it was not
stated as formally as above, but as a verbal description of the application’s requirements.
Besides the above described model, there are some slightly different variants that are also
plausible and correspond to the verbal description (3.1).

In this section we describe these different variants and analyze in which applications they
are appropriate.

3.2.1 Standard MI (sMI): Estimate latent instance classes

To distinguish the MI model as defined in Section 3.1 from the following MI variants, we
call it the “standard MI” or “sMI” model.

The main point that distinguishes the sMI model from the following MI models is the
role of the instance classes y. In sMI, they are treated as latent variables that are unknown,
but are explicitly estimated during training and passed as input to the instance classifier.

3.2.2 Discard non-positive instances (dMI)

Let us denote the datapoints from positive bags that are in fact negative as the “non-
positive” instances. While in the standard MI model the non-positives are regarded as
negative, it is also possible to discard them, so they have no effect on the instance classifier.
We call this approach “dMI”.

This approach seems reasonable if there are already many negative instances from negative
bags. One might consider this as the “safe” option, because we do not know for sure which

27

Chapter 3 Multiple Instance Learning

instances are the non-positives are never known for sure to be negative, because the MI
learner might have erred.

However, discarding the non-positives has another effect: The MI learner now prefers
to discard as many instances as possible and to estimate as few instances as possible as
truly positive. This leaves only the most extreme instance of each positive bag, and the MI
learner will place the decision boundary in the middle between the most extreme instances
of the negative bags and the most extreme instances of the positive bags. In the following
we will call the “most extreme” (i. e. most positive) instance of a bag as the bag’s witness.

The idea to discard non-positives was first proposed by (Andrews, Tsochantaridis &
Hofmann 2002) for the adaption of support vector machines to multiple instance-learning.
They named their implementation of dMI “MI-SVM” and their implementation of sMI “mi-
SVM”. Improved versions of these algorithms have been proposed by (Gehler & Chapelle
2007), called “AW-SVM” and “AL-SVM”, resp., where the W stands for “witness” and L
stands for “all labels”. We believe that a clear and ambiguous terminology is needed to
distinguish between the two models, irrespective of algorithmic details, so we propose the
terminology “sMI” and “dMI” as stated in the headlines.

Formal statement of dMI-model Proceeding to a formal statement of the dMI-model, we
label the negative class by y=−1 and introduce a third instance “class” y= 0 that labels
discarded instances. The bag model of dMI is represented by (cf. Eq. (3.2))

QdMI(c=−1,y) =

{
1 if maxn yn = −1

0 otherwise
(3.14)

QdMI(c=1,y) =

{
1 if (maxn yn = 1) AND (minn yn > −1).

0 otherwise
(3.15)

An example of a bag containing two instances is the following (This might be compared to
the example in Section 4.1.2):

QdMI(c=−1,y) y2 =−1 y2 =0 y2 =1

y1 =−1 1 0 0

y1 =0 0 0 0

y1 =1 0 0 0

(3.16)

QdMI(c=1,y) y2 =−1 y2 =0 y2 =1

y1 =−1 0 0 0

y1 =0 0 0 1

y1 =1 0 1 1

(3.17)

28

Chapter 3 Multiple Instance Learning

xn′

yn′

cb

θ

xn′′

0

N ′bN ′′b

B

Figure 3.3: Markov net-
work of dMI-model (multi-
ple instance with discarding
of non-positives).

Next we need to define how “discarded” instances (yn=0)
are treated by the instance classifier. From a practical point
of view, one can just leave the discarded points out of the
corresponding factor (cf. Eq. (2.52))

QCl(X,y,θ) =
∏

n:yn 6=0

qCl(xn, yn,θ) (3.18)

The problem with this approach is that the factor (2.52) is
in fact determined by the laws of Bayesian inference, and
we are not allowed to change it at will. Actually, our newly
defined factor (3.20) corresponds to a different graphical
model, shown in Figure 3.3. Note that the discarded points
xn′′ have no connection to any other nodes. So during train-
ing, one actually does not only infer the values of parameters
and latent variables, but the model structure itself is flex-
ible. There are methods that can learn the model structure (Daly, Shen & Aitken 2011),
but this is actually a bit over the top for the model above.

Instead, it is much easier to introduce another factor q′Cl(x, y,θ) than to change the model
structure.

q′Cl(xn, yn,θ) =

{
1

qCl(xn,yn,θ) if yn = 0

0 otherwise
(3.19)

QCl(X,y,θ) =
∏
n

qCl(xn, yn,θ) q′Cl(xn, yn,θ) (3.20)

Note that QCl as defined above is not normalized, so care must be taken when interpreting
it as a classification probability.

Testing the dMI model A change of model affects both training and testing. Since dMI
discards instances during training, the same is allowed during testing. This corresponds to
the “threshold” method (cf. Section 4.2.2).

One-class learning of witnesses (wMI) In the original multiple instance application of
drug activity prediction, it is known that the positive region in feature space is very small.
In this case it is plausible to try and find the smallest positive region that explains all positive
bags. Indeed, this is the underlying idea of the first proposed MI algorithms “APR” and
“diverse density” (see Section 3.4).

This approach is actually a form of one-class learning of the positive bags’ witnesses (most
positive points of each bag). In this approach the negative bags are used merely to identify
the witnesses. Once the witnesses are known, the decision boundary is fitted around them
as tight as possible without taking into account the negative points anymore.

29

Chapter 3 Multiple Instance Learning

Figure 3.4: Illustration of sesqui-class learning. Solid lines: Observed densities of positive
and negative bags. Dashed: True positive density.

3.2.3 Sesqui-class learning (SCL)

Sesqui-class learning is based on the generative approach, i. e. the classification model is
divided into class densities P (x | y,θ) and a class prior P (y |π) (see Section 2.3)

P (x, y,θ, π) = P (x | y,θ)P (y |π)P (θ)P (π) (3.21)

In the MI setting we cannot observe these densities directly because the instance classes yn
are latent. We only know the bag class c, and according to the MI model the corresponding
densities can be written as

P (x | c=0) = P (x | y=0) (3.22)

P (x | c=1) = αP (x | y=1) + (1− α)P (x | y=0) 0 < α < 1. (3.23)

Negative bags contain only negative instances, but positive bags contain both positive and
negative instances, so their combined density is a mixture of the true positive and true
negative densities. The observed bag densities and the true instance class densities are
illustrated in Figure 3.4.

The mixture parameter α is given by the bag sizes and the class prior. Let (N+, N−) be
the numbers of instances from positive and negative bags, resp. Then

P (y=1 |π) = π =
αN+

N+ +N−
(3.24)

α = π

(
1 +

N−

N+

)
(3.25)

Since the bag sizes are known, estimation of the mixture parameter α and the class prior π
is equivalent.

30

Chapter 3 Multiple Instance Learning

Figure 3.6: Comparison of sesqui-class learning (SCL) with standard MI (sMI).

xn

−1

−1

θ−

N−

xn

yn

1

θ−

θ+

πN

Figure 3.5: Bayesian network of sesqui-
class learning (multiple instance learning
with fixed negative density). Left: Learn-
ing the negative density from negative
bags (the node labels yn and c have been
replaced by their fixed values −1). Right:
Learning positive density and class prior
from all bags.

Relation to standard MI (sMI) While stan-
dard MI learning estimates both densities and
the class prior in one step, sesqui-class learn-
ing divides the procedure into two steps. In
the first step, one learns the negative class
density P (x | y=−1,θ) from the negative bags
only; in the second step, one learns the posi-
tive density P (x | y=1,θ) and the class prior
P (y |π) from the positive bags, while keeping
the negative density constant.

We would like to stress that this two-step
approach is not just an algorithmic choice, but
it actually corresponds to a different model
that has a different optimum. The difference
lies in the role of the non-positives (true neg-
ative instances from positive bags). While in
sMI they can influence the learned negative
density, this influence is canceled in sesqui-
class learning. Figure 3.5 shows the graphical
model for both steps of sesqui-class learning.

31

Chapter 3 Multiple Instance Learning

To compare sesqui-class learning with standard MI learning, consider the example shown
in Figure 3.6. The left mode of the observed positive density is similar to the negative
density, but slightly shifted. Standard MI learning puts the decision boundary in the low
density region, although in this case the resulting estimated negative density differs some-
what from the negative density as observed from negative bags. Sesqui-class learning, on
the contrary, abides by the negative density as observed from negative bags and instead
explains the observed positive density with a bimodal true positive density.

We think that standard MI is more plausible in this example, but this might be different
in other examples. To judge, one should consider which of the following is the more reliable
indicator of the true decision boundary: (i) the low density region or (ii) the border of the
density from negative bags.

Training the sMI and SCL models In the generative approach the y-marginal (2.56) reads

My(c=0) =
∏
n

(1− π)f0(xn) (3.26)

My(c=1) =
∏
n

[
πf1(xn) + (1− π)f0(xn)

]
−
∏
n

(1− π)f0(xn), (3.27)

where we have used the short-hands

f0(x) = P (x, y=0,θ) (3.28)

f1(x) = P (x, y=1,θ). (3.29)

During training, My this is optimized over θ and π. The second summand of (3.27) is the
MI constraint; it should be very small.

As already mentioned before, standard MI has a tendency to assign all points as negative
π= 0. Only the MI constraint prevents this degenerate solution. However, we can be sure
of a good solution only if the MI constraint is not “active”, i. e. the second summand of
(3.27) is very small.

Sesqui: Since f0 is not allowed to change, all deviations of the positive bag density must
be explained by f1. However, π is held as small as possible, because otherwise the negative
bags would not be explained anymore.

We would like to stress that the negative bags are not disregarded in the second SCL
step. The negative bags play a vital role in the estimation of the prior π (i. e. the mixture
parameter α). If the negative bags were disregarded, one could simply assign all instances
from positive bags as positive:

π = 1 (3.30)

P (x | y=1) = P (x | c=1) (3.31)

This degenerate solution is prevented by the negative bags which require a π close to zero.
So the classifier is encouraged to assign as negative all points from positive bags that comply

32

Chapter 3 Multiple Instance Learning

with the negative density.

Relation to generative supervised learning Let ry and rc be the ratios of instance class
densities and bag class densities, resp.

ry(x) =
P (x | y=1,θ)

P (x | y=0,θ)
(3.32)

rc(x) =
P (x | c=1,θ)

P (x | c=0,θ)
(3.33)

Then we can derive from (3.22) and (3.23):

ry(x) = 1 +
1

α

[
rc(x)− 1

]
(3.34)

rc(x) = 1 + α
[
ry(x)− 1

]
(3.35)

We are most interested in the decision boundary ry = 1.

ry(x) = 1 ⇐⇒ rc(x) = 1 (3.36)

This means that the true decision boundary ry(x) = 1 is equal to the decision boundary
of the bag densities rc(x) = 1. When knowing the bag densities (taking the bag labels as
true instance labels), we can learn the correct decision boundary ry(x) without estimating α.
This means that generative supervised learning directly yields the correct decision boundary
of sesqui-class learning. (However, if we want to put the decision boundary at a density
ratio other than r = 1, we have to estimate α. Without knowing α, we can still optimize
the critical density ratio as a hyperparameter. In this case we do not know α or the
corresponding critical instance density ratio ry.)

Relation to discriminative supervised learning While the above applies for the generative
setting where we have access to the densities, most common classifiers are discriminative,
i. e. they yield the class probabilities instead of densities. In this case the densities must be
determined from the class probabilities and the class priors.

Let us define the following short-hands:

py = P (y=1 |x,θ) πy = P (y=1 |θ) (3.37)

pc = P (c=1 |x,θ) πc = P (c=1 |θ) (3.38)

The Bayes theorem gives following relationship between density ratios r, class probabilities
p, and class priors π (valid both on the bag level (index c) and on the instance level (index
y))

r =
p

1− p
1− π
π

. (3.39)

33

Chapter 3 Multiple Instance Learning

Furthermore, the instance class prior πy and the bag class prior πc are related via the
mixture parameter α

πy = απc. (3.40)

Inserting (3.39) and (3.40) into (3.34) and rearranging, we obtain

py
1− py

1− απc
απc

= 1 +
1

α

(
1− πc
πc

pc
1− pc

− 1

)
(3.41)

py
1− py

=
1

1/πc − α

(
α− 1 +

1− πc
πc

pc
1− pc

)
. (3.42)

This gives an expression for the sought instance class probability py in terms of the bag class
probability pc, the bag class prior πc and the mixture parameter α. The bag class probability
pc can be learned by discriminative supervised learning using the bag labels. The bag class
prior can be estimated from the number of instances in positive bags πc = N+/N . α must
be estimated. Interesting special cases are

πc=1/2 :
py

1− py
=

α− 1 + loc
2− α

(3.43)

loc=1, πc=1/2 :
py

1− py
=

α

2− α
. (3.44)

The condition πc = 1
2 can be met by balancing the data before classification. The standard

decision boundary is loc = 1.
This means that the sesqui-class decision boundary is a contour of bag class probability.

Without α, we do not know which contour is the correct one, but this could be found
by optimization on the training data after having learned the discriminative supervised
classifier.

It has been experimentally observed by (Ray & Craven 2005) that supervised learning
often performs surprisingly well on multiple instance data. To our knowledge, no explanation
for this has been given in the literature. The above result explains this observation for the
case when sesqui-class learning is the correct model, and the number of instances from
positive and negative bags is approximately equal.

One-class learning of negative bags We would like to mention one last possibility to
approach MI problems: one-class learning of the negative bags. This approach can be seen
as an aborted sesqui-class learning. Instead of learning the positive density and a class
prior, we just have to estimate a threshold value for the negative density. Regions with
lower negative density are classified as positive.

34

Chapter 3 Multiple Instance Learning

3.2.4 Generalizations of the multiple instance model

For completeness we mention two generalizations of the multiple instance model that have
been proposed in the literature. A more extensive literature survey can be found in (Foulds
& Frank 2010).

Multiple concepts (Scott, Zhang & Brown 2005) proposed a generalization of the multiple
instance setting where each positive bag must contain at least one instance from each of
multiple concepts.

This model would be appropriate for example in natural scene classification. Suppose we
tried to find images showing a beach. Beach images contain both sand and sea, so it is a
good approach to learn two concepts for sand and sea and classify an image as “beach” only
if it contains at least one patch classified as “sand” and one patch classifier as “sea”.

Naturally, this model requires a multiclass classification on the instance-level. Computa-
tionally it is very expensive, which has prevented more widespread use.

Class ratio labels Instead of binary bag labels that only indicate if the bag contains at
least one instance, it would be more informative to know the number of positive instances.
However, in most applications the number of positive datapoints per positive bag is not
known but can only be roughly estimated.

Several authors have considered possibilities to control the number of positive instances
that will be found by their multiple instance algorithms, see (Bunescu & Mooney 2007),
(Gehler & Chapelle 2007), (Li, Tax, Duin & Loog 2013). Our proposed models in Chapter
5 have the same goal, but we take a more general approach based on probabilistic models.

3.3 Applications

Multiple instance learning can be applied in several branches of machine learning. In this
section we give a brief overview of possible multiple instance applications.

Multiple instance learning is applicable in many cases where we have bag labels relating
to many datapoints. Such aggregate labels can be the result of natural variety of the object
to be categorized (drug activity prediction), missing labels (image classification, text catego-
rization), or intentional anonymization (data mining). Possible benefits of MI learning over
standard supervised learning are reduced labeling effort, reduced computational complexity,
and improved classification performance.

An early review of multiple instance applications can be found in (Yang 2005).

3.3.1 Drug activity prediction

Drug activity prediction was the first application of MI learning (Dietterich et al. 1997).
The task is to predict whether a given drug molecule will bind to a specific binding site of
a larger protein. Binding depends not only on the atomic composition and chemical bonds
of the drug molecule (primary and secondary structure), but also on its exact geometrical

35

Chapter 3 Multiple Instance Learning

shape (tertiary structure). The geometrical shape changes dynamically, as some bonds are
free to rotate. If the given drug molecule can adopt the correct shape, it will bond and is
thus classified as positive or “active”.

In the language of multiple instance learning, a drug molecule is a bag, and each of
its possible shapes is an instance. Because the “correct” shape is precisely defined by
the binding site, one can assume that there is only one small positive region in feature
space (shape space). When designing an algorithm specifically for this application, one can
make use of this additional information that greatly reduces the complexity of considered
classification functions (as done by (Dietterich et al. 1997) and (Maron & Lozano-Pérez
1998)).

3.3.2 Image classification

Image data fit quite naturally into the bag-of-instances setting, because an image is usually
composed of several different objects or segments (e. g. a car, a house, the street, and the
sky). Accordingly, an image is described by a set of feature vectors, one for each image patch
or interest point. When classifying images according to their content, it usually suffices
if a single image patch shows the object of interest for the whole image to be classified
accordingly. This situation corresponds exactly to the MI setting.

A very specific image classification problem is face detection. Multiple instance learning
has been applied to face recognition by (Viola, Platt & Zhang 2006), (Zhang & Viola 2007),
and (Babenko, Dollár, Tu & Belongie 2008). The survey by (Zhang & Zhang 2010) points
out the usefulness MI learning for the reduction of labeling effort in face detection.

Another image classification problem is content-based image retrieval (CBIR). Work on
multiple instance learning in this field has been done by (Maron & Ratan 1998), (Zhang,
Goldman, Yu & Fritts 2002), (Vijayanarasimhan & Grauman 2008), and others.

Furthermore, the problem of visual tracking has been approached with multiple-instance
methods by (Babenko, Yang & Belongie 2009), (Babenko, Yang & Belongie 2011), (Li,
Kwok & Lu 2010), (Zeisl et al. 2010), and (Zhang & Song 2013). Finally, multiple instance
learning has been applied to image segmentation by (Vezhnevets & Buhmann 2010).

3.3.3 Others

Besides the main applications of image classification, multiple instance learning has also been
applied in many other fields. Among them are text categorization (Andrews et al. 2002),
data mining (Kück & de Freitas 2005), computer security (Ruffo 2000), aerosol prediction
(Wang, Radosavljevic, Han, Obradovic & Vucetic 2008), and activity recognition (Stikic &
Schiele 2009).

Also, the multiple instance setting has been applied to regression problems by (Ray 2001)
and (Zhang & Goldman 2001).

36

Chapter 3 Multiple Instance Learning

3.4 Algorithms

This section gives an overview of multiple instance algorithms. It is ordered roughly chrono-
logically. We start with special purpose techniques that have been designed for the specific
application of drug activity prediction (APR, DD, EMDD). They are very restrictive in
that they allow for only one convex positive region in feature space, which is inappropriate
for most applications. Therefore, recent multiple instance algorithms use modifications of
standard classification algorithms like SVMs and random forests.

The difficulty of learning from multiple instance data is the latent variables (unknown
instance classes). The full Bayesian solution would require integration over all possible com-
binations of instance classes, which is infeasible, because there are about 2N

+
combinations,

where N+ is the total number of datapoints in all positive bags (see box below).
Literature reviews of algorithms for multiple instance learning can be found in (Zhou

2004), (Foulds & Frank 2010), and (Amores 2013).

Instance-level vs. bag-level algorithms The algorithms discussed below can be divided
into two classes, instance-level algorithms and bag-level algorithms.

The natural approach to the MI setting is an instance-level algorithm, because (i) the pro-
vided features describe single instances and not whole bags, and (ii) the class-membership
of a bag is defined via the class-membership of its instances. Therefore, a direct implemen-
tation of the MI setting must be based on an instance-level classifier. In fact, most proposed
algorithms follow this approach, and typically, this results in a two-step iterative algorithm
that alternates between estimation of the latent instance labels and standard supervised
classification with the estimated labels. (In diverse density, the latent instance classes are
not estimated but integrated over.)

However, some authors have also proposed bag-level classifiers. The idea behind this is
to first construct bag-wise features from the given instance features in a preprocessing step.
Then, the bags are classified directly without decomposition into instances.

3.4.1 Axes-parallel rectangles (APR)

The APR-algorithm has been the first published MI-algorithm. It is a special-purpose
classifier that has been devised for the specific application of drug activity prediction. It
assumes that the positive region in feature space is a single axes-parallel rectangle, all
instances outside this rectangle are negative.

Actually, three different algorithms have been proposed by (Dietterich et al. 1997): A
noise-tolerant “standard” algorithm, an “outside-in” algorithm, and an “inside-out” algo-
rithm. Tests showed that the latter algorithm clearly outperforms all others, so we will
consider only this one and refer to it as the APR-algorithm.

This algorithm comprises two steps. The first step searches the smallest possible APR
that explains all bags. This is achieved by a combined iterative search for (i) the true
positive instance of each positive bag and (ii) the most discriminative features. The true
positive instances are found in each iteration by an exhaustive backfitting search. In the

37

Chapter 3 Multiple Instance Learning

APR-algorithm (pseudo-code)

start with arbitrary datapoint

until convergence (usually 3-4 iterations)

for each positive bags search best witnesses

find point from all unexplained bags that can be
explained by least enlarging the APR

enlarge APR

for each explained bag backfitting

check if any other point of explained bag allows
for smaller APR, if yes, replace points

calculate discriminative matrix (number of
features)-by-(number of negative points)

search best features

until all negative points are discriminated
against

find feature that discriminates most points

drop corresponding points from list

for each feature enlarge APR

choose kernel width, using user-supplied τ

perform 1D kernel density estimate

enlarge APR along current feature, so that left and
right kde-tails are ε/2

second step, the minimal APR is enlarged to improve generalization performance, which is
done according to a data-dependent heuristic, based on a kernel density estimate.

APR discards the non-positives, so it is an implementation of the dMI-model.

3.4.2 Diverse density (DD)

Like APR, diverse density by (Maron & Lozano-Pérez 1998) has been devised for the specific
application of drug activity prediction, and it is a realization of dMI. It models the instance-
wise class probability as a single non-normalized Gaussian in feature space

P (yn=1 |xn, θ) = exp
(

(xn − µ)TΣ−1(xn − µ)
)

(3.45)

P (yn=0 |xn, θ) = 1− exp
(

(xn − µ)TΣ−1(xn − µ)
)

(3.46)

It is possible to predefine the covariance matrix Σ (usually as isotropic) and to optimize only
the position µ. More commonly, however, Σ is modeled as diagonal and its components are

38

Chapter 3 Multiple Instance Learning

optimized together with µ.
The main contribution of diverse density is that it is based on a well-founded probabilistic

model of the MI setting. Given the instance-wise class probabilities pn = P (yn = 1 |xn, θ)
of all instances in one bag, the bag-wise class probability reads:

P (c=1 |p) = 1−
∏
n

(1− pn) (3.47)

P (c=0 |p) =
∏
n

(1− pn). (3.48)

Inserting (3.45) and (3.46) into (3.47) and (3.48) and multiplying all bags yields the complete
likelihood of the diverse density model

L(µ,Σ) =
∏
b

P (cb |pb). (3.49)

The diverse density algorithm searches for the maximum likelihood by a two-step gradient
ascent (Maron 1998). In the first step, µ is optimized at constant Σ, in the second step, Σ is
optimized at constant µ. µ is initialized at an instance from a positive bag. The algorithm
is run multiple times, until each instance from any positive bag has been used as starting
point. This heuristic is costly, but makes it very likely that the global optimum is found.

It should be noted that the name “diverse density” is a misnomer. By “density” one
usually understands a probability distribution over feature space P (x | . . .). What is called
“diverse density”, however, is in fact the likelihood P (D |µ,Σ), taken as a function of µ.
Like a density, this function is defined on feature space and large values indicate a positive
region, but conceptually, the two things have nothing in common. The diverse density
model is actually a discriminative model, so no density is ever modeled or calculated.

The intention behind the naming might have been to distinguish between the densities
P (x | c=1) and P (x | y=1). The former is the “standard” positive density that arises if all
instances from positive bags are taken as truly positive. The latter is the “true” positive
density that would be modeled in a generative multiple instance model (as we will do in
Chapter ??). But again, this has nothing to do with the above “diverse density” model.

3.4.3 Diverse density with expectation maximization (EM-DD)

The speed of the diverse density algorithm described above is moderate, because the objec-
tive function (3.49) is quite costly to evaluate. (While the product over all negative bags
(3.48) can be reduced to a sum of logarithms, this is not possible for the positive bags
(3.47)). It would be much simpler if it were known which instances from the positive bags
are truly positive.

EM-DD attempts to find the true positive instances via expectation maximization (Zhang
& Goldman 2001). The E-step finds the most positive instance (for each positive bag), while
the M-step optimizes the parameters considering only the most positive instance from each

39

Chapter 3 Multiple Instance Learning

positive bag (which is standard supervised learning). Explicitly:

i
(t)
j = arg max

ij

P (yjij |xjij ,µ(t),Σ(t)) E-step (3.50)(
µ(t+1),Σ(t+1)

)
= arg max

µ,Σ

∏
j

P (yji(t) |xji(t) ,µ
(t),Σ(t)) M-step (3.51)

From a theoretical viewpoint, DD would be the preferred choice over EM-DD, because it
performs exact Bayesian inference (integration over latent variables), whereas EM-DD uses
an approximate estimate of the latent variables. In practice however, EM-DD does not have
worse performance than DD, and its reduced computational cost is significant.

3.4.4 Multiple instance SVMs

Support vector machines were one of the first general-purpose classifiers that have been
adapted to multiple instance learning. (Gärtner, Flach, Kowalczyk & Smola. 2002) sug-
gested to construct kernels on the bag-level and then classify the bags directly with an
SVM. They proposed two different kernels, one based on the sum of all feature vectors
within a bag, and one based on the component-wise minimum and maximum of all features
vectors. They showed that these bag-level kernel can separate the same concepts as their
corresponding instance-level kernels. The drawback of this approach is that the bag-level
kernel is quite arbitrary and that the classifier does not output the truly positive instances
(i. e. which of the instances of a positive bag is responsible for the positive label).

A more direct implementation of the MI-setting with SVMs was proposed by (Andrews
et al. 2002). They explicitly estimate the hidden instance labels and apply an SVM on
the instance-level. The difficulty is to find the correct instance labels which is a mixed
integer programming problem. An efficient approach is a two step iterative algorithm that
alternatingly (i) estimates the hidden instance labels given the discriminant function and
(ii) finds the optimum discriminant function given the hidden instance labels.

(Gehler & Chapelle 2007) proposed deterministic annealing as a method to find the correct
instance labels. DA is a special case of a homotopy method to find global optima. Homotopy
methods construct a sequence of functions starting with a simple (convex) one and ending
with the true objective function. Each function is optimized using the optimum of the
previous function as initial value. For a good sequence of functions, the path of optima
can lead to the global optimum (although this is not guaranteed). Deterministic annealing
constructs the function sequence by adding a convex entropy term. The scaling factor of
the entropy term can be interpreted as a temperature. (In contrast to simulated annealing,
deterministic annealing carries out a minimization during each step, not a probabilistic
sampling.

(Gehler & Chapelle 2007) observed that DA yields better optima than minimizing the
objective function directly. However, this does not directly yield better classification perfor-
mance, because the success of the MI model depends on the true structure of the data. They
proposed to introduce the instance class ratio as an additional user-defined parameter. By

40

Chapter 3 Multiple Instance Learning

manual optimization of this parameter the performance could be improved over (Andrews
et al. 2002).

The work of (Gärtner et al. 2002) was extended by (Bunescu & Mooney 2007). They
proposed two variants of SVM-constraints for Gärtner’s kernel based on sums of feature
vectors. These constraints are designed to more exactly represent the multiple instance
model. Moreover, they proposed “sparse balanced MIL” which features an additional user-
defined parameter that describes the expected ratio of positive and negative instances in
the positive bags.

According to (Han, Tao & JueWang 2010), many MI methods tend to produce false
positives rather than false negatives in natural scene classification. They attributed this to
the fact that positive images often contain image patches that are related to the positive
concept, but are in fact negative (e. g. a waterfall is often accompanied by mist, but mist
does not define the concept waterfall). There is the danger of falsely classifying the mist
as “waterfall” which leads to false positives if the test set contains images of mist or clouds
without waterfall. To avoid this, (Han et al. 2010) propose a projection constraint for
each positive bag that encourages large variance of the bags instances perpendicular to the
decision boundary, or vice versa, that encourages the decision boundary be perpendicular
to the direction of greatest variance of a bags instances. They report good performance, but
conceptually it is somewhat unclear under which circumstances the projection constraint is
appropriate and whether there are detrimental side-effects.

(Li et al. 2013) proposed a single-mixture-parameter approach based on an SVM. The
idea is to assign positive labels to all instances from positive bags, train a standard SVM,
and adjust the obtained class probabilities with the help of an estimate of the percentage
of true positives. Furthermore, (Li et al. 2013) propose several heuristics based on ideas of
classifier combination in order to translate the obtained instance-wise class probability to a
bag class. The reason for this remains a bit unclear, however, since there is actually a well-
defined and feasible solution to MI-bag classification given instance-wise class probabilities,
as shown by (Andrews et al. 2002).

3.4.5 Multiple instance learning based on decision trees

Using decision trees for multiple instance learning was first proposed by (Ruffo 2000). Later
works include (Chevaleyre & Zucker 2001) and (Blockeel, Page & Srinivasan 2005).

In recent times, ensembles of trees (e. g. random forests) have become much more popular
in machine learning than single decision trees. Still, we are aware of only one work that
proposes a random forest-based multiple instance algorithm (Leistner, Saffari & Bischof
2010). They proposed an iterative algorithm similar to our proposal in Chapter 6. In
addition, they borrowed the idea of (Gehler & Chapelle 2007) to use deterministic annealing
to overcome local minima. According to our experience, however, the random nature of
random forests is already sufficient to prevent trapping in local minima (see results in
Chapter 6). Therefore, we believe that deterministic annealing is not needed, but rather
slows down convergence.

41

Chapter 3 Multiple Instance Learning

3.4.6 Others

There have been proposals for multiple instance algorithms based on many different super-
vised learning methods.

One of the first general multiple instance algorithms, which is based on k-nearest neighbor,
has been proposed by (Wang & Zucker 2000). Other early work on multiple instance learning
has been done on neural nets by (Ramon & De Raedt 2000) and by (Zhou & Zhang 2002).

More closely related to our present work are ensemble methods like the one proposed by
(Zhou & Zhang 2003), which is based on classifier combination. Other multiple instance
ensemble methods based on boosting have been proposed by (Andrews & Hofmann 2004)
and by (Viola et al. 2006).

Finally, a new idea for multiple instance learning is conditional random fields, see (Deselaers
& Ferrari 2010).

42

Chapter 4

Improving Multiple Instance Classification

The challenging part of classification is usually the training stage (i. e. parameter optimiza-
tion or evaluation of parameter posterior), while testing new data with a learned classifier is
mostly straightforward. Accordingly, little attention has been paid in the literature to the
task of classifying unknown bags in the multiple instance setting. However, as will be shown
in this chapter, there is some room to improve the calculation of bag class probability from
given instance class probabilities.

In Section 4.1 we show that bag classification of the standard multiple instance model
depends on the bag size: the larger the bag, the larger the probability that it is classified
as positive. In many applications this behavior is not appropriate. Therefore we propose
a bag size independent version of the multiple instance model, which is equivalent to the
standard multiple instance model during training, but does not exhibit a bag size dependent
bias during testing.

In Section 4.2 we consider multiple instance learning with ensemble classifiers. Since
ensemble classifiers provide multiple versions of trained classifiers, each version can be used
to predict the complete bag. As we will show, this method differs from the standard approach
of averaging over ensemble members at the instance level and applying the bag model
only afterwards. If the predicted instance class probabilities are not i. i. d. but correlated,
the standard “noisy-OR” approach yields a wrong result, but our proposed method of
“treewise”1 bag classification is still correct.

4.1 Bag size independent multiple instance classification

In this section we will propose and examine a variation of the multiple instance model. It
differs from the standard multiple instance model by a factor that depends on the bag size
and on the mean of the predicted instance class probabilities over all bags.

To motivate the approach we first introduce the notions of generative and discriminative
bag models, and we find that the standard multiple instance model is discriminative. Then
we consider a generative version of the multiple instance model, which has the property
that it is “a-priori” bag size independent. For bag classification, however, the posterior
distribution is relevant. To render the model bag size independent after training, we have
to adjust the normalization factor depending on the mean outcome of the instance classifier.

1in reference to the random forest classifier that we use in Chapter 6 and whose ensemble members are
trees

43

Chapter 4 Improving Multiple Instance Classification

Finally we test the model on synthetic data. In Section 6.3.2 we will show that it also
works on real datasets.

4.1.1 Bag size dependent bias

To inspect the bag size dependent bias of the discriminative multiple instance model, we
plot the predicted bag class probability for different bag sizes. As derived in Section 3.1,
the bag class probability is given by the “noisy-OR” formula (3.8), which we reprint here
for readability:

P (c=1 |xn,θ) = 1−
∏
n

(1− pn) = ORn(pn) (4.1)

pn = P (yn=1 |xn,θ) (4.2)

We inspect two special cases: (i) all instance class probabilities are equal pn = pneg and (ii)
all instance class probabilities can take on one of two values pn = pneg or pn = ppos.

P (c=1 |xn,θ) = 1− (1− pneg)Nb (4.3)

P (c=1 |xn,θ) = 1− (1− pneg)N
−
b · (1− ppos)

N+
b (4.4)

Formula (4.3) represents a negative bag with Nb instances and false positive instance rate
ppos. Formula (4.4) represents a positive bag with N+

b positive instances, N−b negative
instances, and a true positive instance rate of ppos.

The corresponding plots are shown in Figures 4.1 and 4.2. In all cases the bag class
probability tends to P (c= 1 |x,θ) = 1 for increasing bag size. Even negative bags with a

Figure 4.1: False positive rate of negative bags as a function of bag size Nb and instance
class probability pneg (false positive rate of negative instances).

44

Chapter 4 Improving Multiple Instance Classification

false positive instance rate of just pneg = 0.01 will be predicted as positive if the bag size
exceeds 80 instances. For positive bags which have at least one instance with large positive
probability ppos, the bag class probability will always be larger than ppos.

Bag class prior Of specially interest is the prior situation, i. e. the situation before any data
has been observed or before the classifier has been trained. We can assume an unprejudiced
instance classifier with a uniform instance class prior

P (y) =

∫
P (x, y,θ) dx dθ =

{
1/2 for y=0

1/2 for y=1.
(4.5)

The corresponding bag class prior is given by (4.3) with pneg = 1/2

P (c) =

{(
1
2

)N
for c=0

1−
(

1
2

)N
for c=1,

(4.6)

which shows a heavy preference towards positive for large bags.

4.1.2 Generative, discriminative, and general bag models

Discriminative MI model The multiple instance model as described above regards the
instance labels y as given. Hence it models the conditional probability P (c |y), and not
the joint probability P (y, c). The instance labels y are defined solely by the instance
classification model P (xn, yn,θ). This model structure is shown in Figure 4.3. In analogy
to discriminative classifiers, we call this model the discriminative multiple instance model,

Figure 4.2: False negative rate of positive bags. Left: N+
b = 1, right: N+

b = 2. Note the
different scales of y-axes. Class probability of true positive instances ppos = 0.9.

45

Chapter 4 Improving Multiple Instance Classification

since it allows to discriminate between bag classes c for given instance classes y, but cannot
generate new instance classes.

We would like to construct a model that satisfies the multiple instance definition and yields
a uniform bag class prior. With a discriminative bag model this is not possible, because
the constraint

∫
P (c |y) dc = 1 together with the MI property (3.2) uniquely defines the

standard discriminative MI model described above. So we need to relax this constraint and
model the joint probability P (y, c), which is a more general bag model.

General bag models We need to be careful, however, when combining such a general bag
model with a classifier, because – loosely spoken – both the bag model and the classifier
“try to define y”. More formally, the problem is that the two marginal distributions P (y) =∫
P (y, c) dc and P (y) =

∫
P (X, dy,θ) dX dy are in general not equal. To set up a valid

model, it is reasonable define the complete joint as the normalized product

P (X,y, c,θ) =
1

Z
QMI(y, c)

∏
n

qCl(xn, yn,θ), (4.7)

but doing this one should keep in mind that the single model factors QMI and qCl are not
equal anymore to the probabilities which they are intended to represent

QMI(y, c) 6= P (y, c) =

∫
P (X,y, c,θ) dX dθ (4.8)

qCl(xn, yn,θ) 6= P (xn, yn,θ) =

∫
P (X,y, c,θ) dX n̄ dyn̄ dc, (4.9)

where the subscript n̄ denotes the vector where component n has been omitted. We have
discussed these general bag models already in Section 2.5.2, and here we will make use of
the results.

xbn

ybn

cb

θ

Nb

B

Figure 4.3: Graphical model of the stan-
dard “discriminative” multiple instance
model.

xbn

ybn

cb

θ

N

B

Figure 4.4: Graphical model of the pro-
posed “generative” multiple instance
model.

46

Chapter 4 Improving Multiple Instance Classification

Generative bag models Modeling the joint P (y, c) under the constraint (4.10) is equivalent
to modeling the conditional P (y | c). In analogy to classifiers, we call such a bag model a
generative bag model, because it allows to generate new instance labels y for a given bag
label c. The corresponding graphical model is shown in Figure 4.4.

4.1.3 The generative multiple instance model

Model definition To set up a MI model with uniform bag class prior, we start with the
discriminative MI model (3.5) and renormalize it to satisfy∫

QMIgen(y, c) dy = 1, (4.10)

which ensures a uniform bag class prior

P (c) =

∫
P (X,y, c,θ) dX dy dθ (4.11)

=
1

Z

∫
QMI(y, c)

∏
n

(∫
qCl(xn, yn,θ) dxn dθ

)
dy (4.12)

=
1

Z

∫
QMI(y, c)(1/2)N dy (4.13)

=
1

2
for Z = (1/2)N−1. (4.14)

The result of the renormalization is

QMIgen y=0 y 6=0

c=0 1 0

c=1 0 1
2N−1

(4.15)

and as an example we write out the result for a bag containing two instances N = 2:

QMIgen(c=0,y) y2 =0 y2 =1

y1 =0 1 0

y1 =1 0 0

QMIgen(c=1,y) y2 =0 y2 =1

y1 =0 0 1/3

y1 =1 1/3 1/3

(4.16)

Training the generative MI model The difference between the discriminative MI model
(3.2) and the generative MI model (4.15) is just the factor of 1/(2N − 1) on positive bags.
During training the bag labels are given, and this factor is canceled in the posterior. So for
the training stage, the generative and the discriminative MI model are equivalent.

Classification To evaluate the bag class probability of the generative multiple instance
model, we insert the definition (4.15) into the equations for inference in general bag models

47

Chapter 4 Improving Multiple Instance Classification

(2.56, 2.58), using the notation (4.2). The result is

MMIgen(c) =

{∏
n(1− pn) for c = 0

1−
∏

n(1−pn)

2N−1
for c = 1

(4.17)

PMIgen(c=0 |X,θ) =
MMIgen(c=0)

MMIgen(c=0) +
1−MMIgen(c=0)

2N−1

(4.18)

=
1

1 +
1/MMIgen(c=0)−1

2N−1

. (4.19)

To compare this result to the discriminative MI model, we show plots in Figures 4.5 and
4.6, which are to be compared to Figures 4.1 and 4.2. As required, a bag with undecided
instances pneg = 0.5 has undecided bag class P (c= 1) = 0.5. If the instances are (slightly)
positive pneg > 0.5 the bag class probability increases with bag size, but for (slightly)
negative instances pneg < 0.5 the bag class probability decreases with bag size. Note that
the curves in Figure 4.5 are not symmetric: the curve with pneg = 0.75 approaches 1 faster
than the curve with pneg = 0.25 approaches 0. Additional instances with large instance
class probability shift the “initial position” upwards, but they can be overruled by many
negative instances Figure 4.6. For example, a bag containing two instances with pn = 0.75
and ten instances with pn = 0.4 would be classified as negative (dotted line in right plot of
Fig. 4.6).

Figure 4.7 shows the bag class probability as a function of a single instance class proba-
bility. For the discriminative MI model (left plot) the dependence is always linear and the
bag is classified as positive (P (c |p) > 0.5) for all shown settings. For the generative MI

Figure 4.5: Bag class probability of the generative MI model as a function of bag size Nb

and instance class probability pneg.

48

Chapter 4 Improving Multiple Instance Classification

Figure 4.6: Bag class probability of generative MI model with additional instances with class
probability ppos = 0.75. Left: one additional instance, right: two additional instances.

model (right plot) the dependence is nonlinear. As long as the instance class probability is
small (negative instances), small changes do not affect the bag class probability much. But
when the instance class probability tends to 1 (positive instance), the bag class probability
tends to 1 as well, regardless of the other instances in the bag, as is required by the MI

Figure 4.7: Bag class probability as a function of a single instance class probability. Left:
discriminative MI model, right: generative MI model. Bag size N = 5, pr: instance class
probability of 4 remaining instances.

49

Chapter 4 Improving Multiple Instance Classification

property.
Let us consider the lower solid line. It corresponds to a bag with five instances, four of

which have been assigned a positive class probability of 0.2 by the instance classifier. If
the fifth instance is assigned a positive class probability of 0.9, the bag is still classified as
negative, because of the four other instances. It needs a positive class probability larger
than ca. 0.95 to overrule the other instances and classify the complete bag as positive. Note,
however, that if an instance is known to be positive (pj = 1), its bag is always classified
positive, no matter how many negative instances there are, as is required by the MI property.

4.1.4 Bag size independent MI model

The generative MI model satisfies the requirement that the bag class probability P (c) is
independent of bag size for the prior instance class probabilities P (yn) = 1/2. For clas-
sification, however, the relevant quantity is not the prior but the posterior instance class
probabilities P (yn | D) = pn.

For optimum classification, we seek a model that is independent of bag size after training.
We can achieve this by choosing a bag size dependent normalization factor that is different
from the “generative” normalization factor F (N) 6= 2N − 1 (cf. Eq. 4.15).

Derivation of normalization factor F(N) As a first step, let us determine the general
normalization factor F (p) so that P (c |p) = 1/2. From equations (4.17) and (4.19) it
follows easily that

P (c |p) =
M(c)

M(c=0) +M(c=1)

!
= 1/2 ⇐⇒ (4.20)

M(c=0) = M(c=1) (4.21)∏
n

(1− pn) =
1−

∏
(1− pn)

F (p)
(4.22)

F (p) =
1∏

n(1− pn)
− 1 (4.23)

Of course, this is not reasonable, because in this case any bag, positive or negative, will
have P (c |p) = 1/2, which does not allow for classification.

The normalization factor F should not depend on the instance classification results p,
but only on bag size F (N). Let us assume that the pn are i. i. d. with distribution P (p).
Then we can write the product in (4.23) as a sum of logarithms, and replace the summand
with the weighted integral. We obtain

F (N) =
1

exp (
∑

n ln(1− p))
− 1. (4.24)

= exp

(
−N

∫
P (p) · ln(1− p) dp

)
− 1. (4.25)

50

Chapter 4 Improving Multiple Instance Classification

The distribution P (p) can be estimated from the training data. There are two plausible
ways: take all instances from negative and positive bags P (p), take instances from negative
bags only P (p | c= 0). We prefer to use P (p | c= 0), because this is more in line with the
MI model. In this case, negative bags will have P (c |p, p0) = 1/2, independent of bag size,
while positive bags will have P (c |p, p0) > 1/2. Using P (p) a positive bag would have to
have a certain ratio of positive points.

Parametrization and special cases In effect, the normalization is an additional degree
of freedom of the model. It is useful to introduce a single parameter that specifies the
normalization. A convenient parameter is the instance class probability p1/2 for which the
bag class probability P (c |p) equals 1/2, independent of bag size.

P (c |p=[p1/2, p1/2, . . . , p1/2]) =
1

2
(4.26)

(4.27)

Comparison of (4.23) with (4.24), and (4.25) yields

F (N, p1/2) =

(
1

1− p1/2

)N
− 1 (4.28)

p1/2 = 1− exp

(
−
∫
P (p) · ln(1− p) dp

)
(4.29)

p1/2 = 1− exp

(
1

N

∑
n

ln(1− pn)

)
, (4.30)

xbn

ybn

cb

θ

p1/2
Nb

B

Figure 4.8: Graphical
model of the extended
“bsiMI” model (bag size
independent MI).

The graphical model of the bsiMI model with the addi-
tional parameter p1/2 is shown in Figure 4.8.

In principle, we would have to optimize the new parame-
ter p1/2 during training together with all other parameters
θ. For practical purposes, however, it is completely satisfac-
tory to specify p1/2 after training by using (4.29). In our im-
plementation we chose to use only negative instances from
negative bags for calculation of the mean value in (4.29).
The reason is that we expect positive instances to have a
large scatter of predicted class probability which could im-
pair the method. Choosing p1/2 so that the prediction of all
negative bags is bag size independent should work as well
and is probably more stable.

Note that for p1/2 = 1/2, the bsiMI model is equal to
the generative MI model. For p1/2 = 0 and p1/2 = 1, the equations degenerate because of
division by zero. In cases where the trained classifier assigns exactly zero class probability
to negative instances (pn = 0 ∀n), we should use the discriminative MI model.

51

Chapter 4 Improving Multiple Instance Classification

4.1.5 Assessment on synthetic data

To assess the potential improvements of the bag size independent MI model compared to
the standard discriminative MI model, we test it on synthetic instance probabilities pn. We
prepared 1000 positive and 1000 negative bags. The bag sizes are distributed according to
the maximum entropy distribution P (Nb) ∝ exp(((Nb − A)/B)2) with A and B chosen so
that the mean value is µ = 10 and the variance is σ = 3. Each positive bag contains 3
positive instances (corresponding to a ratio ofα = 0.3). For the instance probability pn we
chose a Beta distribution with a mean of µ = 0.3 (negative instances) and µ = 0.6 (positive
instances) and variance σ = 0.1 for both positive and negative instances. Histograms of the
dataset are shown in Figure 4.9.

Figure 4.9: Synthetic data for the assessment of the generative and bag size independent MI
models. Left: histogram of bag sizes µ = 10, σ = 3. Middle: class probabilities of instances
in negative bags µ = 0.3, σ = 0.1. Right: class probabilities of instances in positive bags
α = 0.3 µ = 0.6, σ = 0.1.

Figure 4.10: Receiver operator characteristic (ROC) of discriminative, generative, and bag
size independent MI models on synthetic data.

52

Chapter 4 Improving Multiple Instance Classification

Figure 4.11: Classification performance as a function of neutral instance probability p1/2.
Left: synthetic data shown in Figure 4.9; right: synthetic data with µ¬ = 0.1, µpos = 0.1
and 1 positive instance per positive bag. The red line indicates the estimate (4.29) using
the instances from negative bags.

The bag classification performance of the discriminative, the generative, and the bag size
independent MI model on the synthetic dataset is shown in Figure 4.10. The bag size
independent MI model clearly gives the best result. The corresponding neutral instance
probability is p1/2 = 0.308.

To check the estimation of neutral instance probability p1/2 = 0.30761, we plot the clas-
sification performance as a function of p1/2 in Figure 4.11. The optimum is indeed at (or
very close to) our estimate.

53

Chapter 4 Improving Multiple Instance Classification

4.2 Multiple instance classification with ensemble classifiers

When using an ensemble classifier with a bag model, there are two plausible procedures for
classifying an unknown bag: The ensemble average can be taken either at the instance level
or at the bag level.

The standard procedure is to take the ensemble average at the instance level. In this case,
the ensemble classifier represents a probabilistic instance classifier, i. e. the ensemble vote is
taken as the instance class probability. Thus the ensemble classifier can easily be replaced
by a different probabilistic instance classifier.

From a theoretical viewpoint, however, the correct procedure is to take the ensemble
average at the bag level. This means that we evaluate the bag model separately for the
prediction of each ensemble member, and only afterwards take the ensemble average.

We discuss both procedures from a general viewpoint and examine the specific example of
using the random forest (ensemble classifier) with the multiple instance model (bag model).

4.2.1 Ensemble average at bag level

According to the model structure of discriminative multiple instance learning shown in
Figure 4.12, the bag class probability during testing is

P (c |X,D) =

∫
P (c,y,θ |X,D) dy dθ (4.31)

=

∫
P (c |y)

∫ ∏
n

P (yn |xn,θ)P (θ | D) dθ dy, (4.32)

where X stands for the set of all input vectors X = {xn}n. This is a special case of the
general class probability in bag models (2.58) where there is no interaction between the
model factors.

D θ

xn

yn

c

N

Figure 4.12: Bayesian network for multi-
ple instance classification. The training
stage is simplified to describe the poste-
rior parameter distribution P (θ | D).

θt

xn

yn

c

N
T

Figure 4.13: Bayesian network for multi-
ple instance classification with an ensem-
ble classifier.

54

Chapter 4 Improving Multiple Instance Classification

The single terms of (4.32) are given as follows:

P (θ | D) =
1

T

∑
t

δ(θt) (4.33)

P (yn |xn,θt) = δ(ynt) ynt ∈ {0, 1} (4.34)

P (c |y) = δ(c(y)) c(y) = max
n

yn (4.35)

Eq. (4.33) defines an ensemble classifier (compare to Figure 4.13), Eq. (4.34) describes the
fact that each ensemble member t provides a hard output for each instance n (deterministic
class prediction, no class probability), and Eq. (4.35) is the (deterministic) multiple instance
model. Inserting these equations one after the other into (4.32) yields

P (c |X,D) =

∫
P (c |y)

1

T

∑
t

∏
n

P (yn |xn,θt) dy (4.36)

=
1

T

∑
t

P (c |yt) (4.37)

=
1

T

∑
t

max
n

ynt (4.38)

It is worth to state the result in words: For each ensemble member t we evaluate the multiple
instance model to obtain “hard” predictions of the bag class ĉt = maxn ynt; afterwards, we
take the ensemble average a “soft” bag class probability P (c |X,D). In the following we
will call this procedure the treewise MI method (in reference to the random forest, where
the ensemble members are trees).

4.2.2 Ensemble average at instance level

θt

xn

pn
N

T p̂n

c

N

Figure 4.14: Bayesian network
for multiple instance classifica-
tion by applying the ensemble
average at the instance level.

Instead of the above procedure, another plausible
idea is to apply the ensemble average (i. e. integration
over θ) to each instance separately, instead of apply-
ing it to the complete bag at once. This procedure
is illustrated in Figure 4.14. Inference is divided into
two steps: First we infer the instance class probabilities
pn = P (yn=1), afterwards we apply the bag model to
the pn.

The effect of this division is that it cancels the corre-
lations between instance classes yn (or their class prob-
abilities pn). While each single ensemble member pre-
dicts a product distribution P (y |θ) =

∏
n P (yn |θ),

the sum (or weighted integral) of many product distri-

55

Chapter 4 Improving Multiple Instance Classification

butions is in general not a product distribution anymore

P (y) =

∫ ∏
n

P (yn |θ)P (θ) dθ 6=
∏
n

q(yn) (4.39)

for any q. However, a plausible approximation for P (y) is the product of its marginals
P (y) ≈

∏
n P (yn).

Formally, this procedure is described by interchanging the inner integral with the product
in (4.32), which leads to

P ′(c |X,D) =

∫
P (c |y)

∏
n

∫
P (yn |xn,θ)P (θ | D) dθ dy. (4.40)

Inserting the ensemble predictions (4.33, 4.34) yields

P ′(c |X,D) =

∫
P (c |y)

∏
n

1

T

∑
t

ynt dy, (4.41)

and inserting the multiple instance model (4.35) finally yields the well-known “noisy-OR”
result which we have already encountered in Section 3.1

P ′(c=1 |X,D) = 1−
∏
n

(1− pn) (4.42)

pn =
1

T

∑
t

ynt. (4.43)

Again, we state the result in words: We use the ensemble predictions to obtain a class
probability pn = P (yn = 1) for each instance n; afterwards, we apply the “probabilistic”
multiple instance model (noisy-OR) to obtain the bag class probability P (c |X,D). In the
following we will refer to this procedure as the noisy-OR method.

θt

xn

yn
N

T ŷn

c

N

Figure 4.15: Bayesian network
for multiple instance classi-
fication with the “threshold
method”.

Threshold method For completeness we would like to
state a third plausible procedure. Instead of using the
instance-wise class probabilities p̂n to calculate the bag
class prediction, one might make a class decision ŷn on
the instance level and only afterwards apply the bag
model. In the graphical model this difference can be
expressed by replacing the node p̂n with ŷn (see Figure
4.15). The corresponding general formula is

P ′′(c |X,D) = (4.44)∫
P (c |y)

∏
n

[∫
P (yn |xn,θ)P (θ | D) dθ

]
dy,

56

Chapter 4 Improving Multiple Instance Classification

where square brackets denote rounding (cf. (4.32) and
(4.40)). Since yn can take on only two values yn ∈ {0, 1}, the probability for one of the values
is always > 1/2 while the probability for the other value is < 1/2; if P (yn = 0 |xn,θ) =
P (yn=1 |xn,θ) = 1/2, we define P (yn=0 |xn,θ) = 1. Inserting (4.33–4.35) yields

P ′′(c |X,D) = δ(ĉ) (4.45)

ĉ = max
n

ŷn (4.46)

ŷn =

{
0 if 1/T

∑
t ynt ≤ 1/2

1 if 1/T
∑

t ynt > 1/2.
(4.47)

This representation is overly complex. We can put it in one line as follows

c = 1 iff max
n

(∑
t

ynt

)
>

T

2
. (4.48)

In words: A bag is classified as positive iff the tree count of any instance is larger than T/2.
Hence we will refer to this procedure as the threshold method.

4.2.3 Overview of bag classification methods

In the section above we have focused on the theoretical derivation of the different procedures
for bag classification. In this subsection we would like to give a more practical overview.

It is convenient to consider the following three steps that have to be carried out to classify
a bag when given the instance-wise predictions of an ensemble classifier:

1. evaluation of bag model, i. e. integration over the latent instance classes y

2. taking the ensemble average

3. taking the class decision, i. e. rounding the class probability to 0 or 1

The different bag classification methods correspond to different orders in which these steps
are carried out. Not all orders make sense, for example class decision cannot be the first
step. But there are three reasonable orders that are listed in Table 4.1.

treewise MI noisy-OR threshold

step 1 bag model ensemble average ensemble average

step 2 ensemble average bag model class decision

step 3 class decision class decision bag model

P (c | {ynt}) 1
T

∑
t

(
maxn ynt

)
1−

∏
n

(
1− 1

T

∑
t ynt

)
maxn

(
1
T

∑
t ynt

)
Table 4.1: Overview of bag classification methods.

57

Chapter 4 Improving Multiple Instance Classification

The name “treewiseMI” has been chosen with reference to the random forest, since the
random forest’s ensemble members θt are trees, and because we will the random forest use
in Chapter 6. A more general (but also more awkward) name would be “ensemble-member-
wise”, which does not seem suitable.

Example To illustrate that the three methods can lead to very different results, we give
one example. Consider the following instance class predictions of an ensemble classifier

ynt t=1 t=2 t=3

n=1 1 0 0

n=2 0 1 0

n=3 0 0 1

(4.49)

Using the treewise MI method (4.38), each tree finds 1 positive instance (among 2 negative
ones) and hence classifies the bag as positive. With three trees having classified the bag as
positive, the final classification is positive, too, and seems to have a large confidence.

The noisy-OR method (4.42) yields the soft outputs pn = 1/3 ∀n, which leads to a bag
probability of P (c= 1) = 1 − (2/3)3 = 19/27 > 1/2. The bag is classified as positive, but
the confidence is low.

Using the threshold method (4.48), all instances n are classified as negative (2 to 1
majority vote), so the whole bag is classified as negative, too.

4.2.4 Experimental results

We tested the three different bag classification methods on synthetic data, i. e. we simulated
the raw output of an ensemble classifier {ynt} with specified properties (bag size, instance
class ratios, etc.), then we compared the results of bag classification on this input.

As discussed in Section 4.2.2, we expect the largest difference between the methods for
raw data with correlations between instance classes yn. That’s why we first examine the
influence of correlation on the predicted bag class probabilities P (c | ynt). The result for a
relevant setting (bag class probability between 0 and 1) is shown in Figure 4.16. Without
correlation (top row), both “treewise MI” and “noisy-OR” predict the correct value, while
“threshold” strongly underestimates the bag class probability. With correlation (bottom
row), the true bag class probability increases. This is due to the fact that with correlation,
the positive instances are evenly distributed among bags, so there are more bags that have at
least one positive instance. As expected, the only method that captures this effect correctly
is “treewise MI”, while both “noisy-OR” and “threshold” now underestimates the bag class
probability.

Next we take a look at the scatter of the predictions. The scatter of “noisy-OR” is
somewhat smaller than that of “treewise MI” and “threshold”, which might be related to
the fact that “noisy-OR” is a smooth method that does not require to take the maximum (cf.
table in Section 4.2.3). Figure 4.17 shows the results for a reduced ensemble size of T = 11,

58

Chapter 4 Improving Multiple Instance Classification

which confirms the above statements. Note that the predictions of “treewise MI” and
“threshold” are restricted to fractions of ensemble votes P (c | ynt) = t/T ; the fluctuations
in the histogram of “noisy-OR” are also an artifact of applying noisy-OR on such fractions.

For final performance, only the correct decision is important regardless of the exact pre-
dicted value of bag class probability. Figure 4.18 shows the dependence of the ratio of false
bag predictions on the ratio of false instance predictions by each ensemble member. The
settings of the left plot represent a small positive bag with three instances (they are the
same as for Figure 4.17), the settings of the right plot represent a medium-sized negative
bag. Positive bags are assumed to have correlated instance, negative bags are assumed to
be uncorrelated. Note the different scales on the x-axis: The multiple instance model is
very robust to false negative instances (unless there is only a single positive instance per

Figure 4.16: Predicted bag class probabilities of different classification methods. Each plot
shows the histogram counts of 1000 simulated bags and indicates the true value by a red
stem. Top row: no correlation between instance classes yn, bottom row: strongest possible
correlation. Settings: bag size n = 3, instance class probability P (yn=1) = 0.3, number of
ensemble members T = 101 (odd number to avoid problems of undecided vote).

59

Chapter 4 Improving Multiple Instance Classification

bag), but very sensitive to false positive instances.
“Treewise MI” and “noisy-OR” have the same false positive rate, but “treewise MI” has

somewhat lower false negative rate and is therefore to be preferred. The “threshold” method
always underestimates the bag class probability, and hence it has much lower false positive
rate but much larger false negative rate than the other two methods.

Figure 4.17: Predicted bag class probabilities of different classification methods with small
ensemble (T = 11). Each plot shows the histogram counts of 1000 simulated bags and
indicates the true value by a red stem. Settings: bag size n = 3, instance class probability
P (yn=1) = 0.3, maximum correlation.

Figure 4.18: Percentage of misclassified bags for different classification methods. The red
curves show the true bag probability and the corresponding optimal decision. Settings:
number of ensemble members T = 11, number of positive instances per positive bag npos = 3
(relevant for left plot), number of negative instances per negative bag nneg = 11 (relevant
for right plot), decision threshold: 0.5. For each datapoint 500 bags have been simulated.

60

Chapter 4 Improving Multiple Instance Classification

The misclassification rates shown in Figure 4.18 have been calculated for the standard
(and theoretically correct) decision threshold of P (c) = 0.5. In practice, however, instances
from different classes might have different misclassification rates, bags from different classes
might have different misclassification cost, or the model might not exactly represent the
situation at hand. All these reasons lead to an unwanted classification bias that one can
correct by optimizing the decision threshold after training. The dependence of classifica-
tion performance on the decision threshold is commonly depicted by the receiver operator
characteristic (ROC).

We show the ROC-curves of all three methods for a relevant setting in Figure 4.19).
Most notably, the “threshold” method performs surprisingly well; optimizing the decision
boundary compensates its bias that we observed in the previous figures. Without correlation
between instance classes (top row), “noisy-OR” performs best due to its low scatter (cf.
Fig. 4.16). With correlation, the performance of all methods increases because of reduced
scatter, but as expected, “treewise MI” profits most from the correlation because it models
it correctly, an has best performance with correlation.

Simulations have also been conducted with different settings (more instances, smaller
positive instance probability), but the results have always been similar to the above.

61

Chapter 4 Improving Multiple Instance Classification

Figure 4.19: Receiver operator characteristics of different classification methods. Top
row: no correlation between positive instances, bottom row: strongest possible corre-
lation. The optimum accuracy and corresponding classification threshold of each curve
is shown in red, further thresholds corresponding to different points of each curve are
shown in black. Settings: number of ensemble members T = 101, numbers of in-
stances per bag [npos, nnonpos, nneg] = [3, 8, 11], corresponding instance class probabilities
[ppos, pnonpos, pneg] = [0.2, 0.13, 0.13], number of bags: [Mpos,Mneg] = [100, 100].

62

Chapter 5

Alternative Bag Models for Multiple Instance
Applications

As we have seen in Chapter 3, the multiple instance model can be applied in many different
settings. For many of them, we can assume that there is not only a single positive instance
in each positive bag, but typically there is more than one positive instance.1 We have seen
above that estimating the instance classes is difficult and that there often is some ambiguity
regarding the location of the decision boundary. The SCL model estimates a maximum
number of instances as positive, while the tight dMI (single witness) model estimates a
minimum number of positive instances.

Besides these fixed models, it is also possible to set up a parametrized model that can
interpolate between the extreme cases. In this chapter we present two such bag models, and
we show that they can improve performance on some datasets that are typically considered
as “multiple instance datasets”. We would like to point out that the additional parameter(s)
that control the number of positive instances per positive bag is not intended to be optimized
during training as a “hyperparameter”, but is intended to be set by the user before training
based on prior information about the application or the data.

5.1 Bernoulli model

5.1.1 Model definition

1A bag with a single positive instance is still be classified as positive, but it can be assumed as an extreme
case, while for most bags we expect a larger number of positive instances.

63

Chapter 5 Alternative Bag Models for Multiple Instance Applications

xn

yn

cb

θ

β
N

B

Figure 5.1: Baysian net-
work of the generative
Bernoulli model.

The idea of the Bernoulli model is to add a factor for each
instance that increases its probability to be positive. The
corresponding graphical model is shown to the right. The
Bernoulli factor is defined by

qBern(y, c, β) y=0 y=1

c=0 1 0

c=1 1− β β

(5.1)

A negative bag (c= 0) allows negative instances only, a
positive bag (c = 1) allows both positive and negative in-
stances. To increase the instance’s probability to be posi-
tive, β must be larger than 1/2. For β = 1, the Bernoulli
model is equivalent to standard supervised learning. For
β = 1/2 the Bernoulli factor would have no effect, and for
β < 1/2 it would decrease the instance’s probability to be positive. Sometimes it is conve-
nient to write β = 0 for negative bags.

The Bernoulli model suggests itself because of its simplicity. The point is that it factorizes
over instances, i. e. the factor (5.1) exists once for each instance, not once per bag. It is
instructive to write down the product of (5.1) for a complete bag. For a bag containing two
instances we have

QBern(c=0,y) y2 =0 y2 =1

y1 =0 1 0

y1 =1 0 0

QBern(c=1,y) y2 =0 y2 =1

y1 =0 (1− β)2 β(1− β)

y1 =1 β(1− β) β2

(5.2)

For a bag containing an arbitrary number of instances we have

QBern(c=1,y) = βN
+
b (1− β)N

−
b , (5.3)

with β=0 for c=0, where N+
b is the number of (estimated) positive instances in this bag,

and N−b is the number of (estimated) negative instances.

5.1.2 Model properties

To study the properties of the Bernoulli model, we need to state the complete bag classi-
fication model (i. e. instance classifier plus bag model). Let pn = P (yn = 1 |xn,θ) be the
predictions of the instance classifier. Combining these predictions with the Bernoulli bag
model yields

qCl · qBern y=0 y=1

c=0 1− pn 0

c=1 (1− β)(1− pn) βp

(5.4)

64

Chapter 5 Alternative Bag Models for Multiple Instance Applications

Figure 5.2: Contribution of a single instance from a negative bag (green) or a positive bag
(red) to the parameter likelihood PBern(X, c |θ), given the prediction of the instance clas-
sifier pn = P (yn=1).

As described in Section 2.5.2, it is convenient to write down the marginal over the latent
variables My, because both the parameter posterior (needed for training) and the bag class
probability (needed for testing) are simple expressions of My (cf. Eqs. 2.56–2.58) Inserting
(5.4) into the general formula for factorizing models (2.13), we obtain

MBern(c=0) =
∏
n

(1− pn) (5.5)

MBern(c=1) =
∏
n

[
βpn + (1− β)(1− pn)

]
. (5.6)

Training According to (2.57), the likelihood of a bag model is proportional to the y-
marginal: P (θ |X, c) ∝MBern(c). To show the effect of the Bernoulli model on the learned
parameters, we plot (5.6) as a function of instance class probability in Figure 5.2. The
logarithmic scale is convenient, so that the contributions of the single instances are additive.

The solid lines correspond to the multiple instance model (which is equivalent to β = 0
for negative bags and β = 1/2 for positive bags). For positive bags, the MI model is
completely indifferent regarding the class-membership of instances from positive bags. In
order to induce the instance classifier to estimate instances from positive bags as positive,
one must set β > 1/2 (dashed and dotted lines).

Testing The central motivation for the Bernoulli model is to change the training behavior
of the algorithm, i. e. to induce the instance classifier to estimate more instances as positive
and assign a larger region of feature space to the positive class. However, the model change

65

Chapter 5 Alternative Bag Models for Multiple Instance Applications

from the MI model to the Bernoulli model has consequences for testing as well, as we will
show in the following. 2

We obtain the bag class probability of the Bernoulli model by inserting (5.5) and (5.6)
into (2.58). The result is

PBern(c=0 |p) =

∏
n(1− pn)∏

n(1− pn) +
∏
n [βpn + (1− β)(1− pn)]

(5.7)

=
1

1 +
∏
n

[
β pn

1−pn + (1− β)
] (5.8)

=
1

1 +
∏
n

(
1− β 1−2pn

1−pn

) (5.9)

and likewise

PBern(c=1 |p) =
1

1 +
∏
n

1
1−β 1−2pn

1−pn

. (5.10)

The above expressions have the disadvantage that they are not additive over instances.
Analyzing the situation becomes much easier when considering the log-odds (or logit) of the
class probabilities

logit(PBern(c |p)) = c ·
∑
n

log

(
1− β · 1− 2pn

1− pn

)
, (5.11)

where the bag class c is supposed to be denoted by ±1, so that it determines the sign of
the right-hand side. The advantage of this expression over (5.9) is that it is additive over
instances.

A plot of (5.11) is shown in Figure 5.3. For β = 1 (standard supervised learning) the
curve is symmetric, i. e. negative and positive instances have the same influence on the bag
class. The larger β the steeper the curve, i. e. the more sensitive the bag class probability
depends on the predicted instance class probability. Also, positive bags pn > 1/2 have a
larger impact on bag class probability P (c = 1) than negative bags pn < 1/2. A single
instance with pn = 1 can cause a bag to be classified as positive, overruling the negative
instances in that bag.

5.1.3 Combination with MI model

The Bernoulli model does not imply the MI constraint (which ensures that each positive bag
has at least one positive instance). The probability of a positive bag having only negative
instances QBern(c= 1,y= 0) = (1 − β)Nb is small but not zero. If we want to ensure that

2From a practical point of view it is of course possible to classify unknown bags with any bag model
regardless of which model has been used for training. But this is not methodologically sound, so we will
refrain from doing this.

66

Chapter 5 Alternative Bag Models for Multiple Instance Applications

Figure 5.3: Contribution of a single instance to the bag class probability PBern(c | pn), given
the prediction of the instance classifier pn = P (yn=1).

the MI constraint is met, we need to set the above probability to zero. This is equivalent
to multiplying the Bernoulli model with the MI model.

QBMI = QBern ·QMI (5.12)

In this section we repeat the above discussion of the Bernoulli model for the combination
of Bernoulli with MI model 5.12. To avoid redundancy we do not repeat the complete
argumentation but only state the differences between the pure Bernoulli and the BMI model.

The effect of the MI-constraint can be seen most clearly in the example of a positive bag
containing two instances. Instead of the right table of (5.2), we obtain for the BMI-model:

QBMI(c=1,y) y2 =0 y2 =1

y1 =0 0 β(1−β)
1−(1−β)2

y1 =1 β(1−β)
1−(1−β)2

β2

1−(1−β)2

(5.13)

The MI constraint forces the upper left entry of the table to zero. Since we want to keep
the generative property of the Bernoulli model

∑
y QBMI = 1 (uniform bag class prior, see

Section 4.1), this entails the normalization factor 1 − (1 − β)2. For a bag with arbitrary
number of instances, the MI constraint changes Eq. (5.3) to

QBMI(c=1,y) =

0 for y = 0

β
N+
b (1−β)

N−
b

1−(1−β)N
for y 6= 0

(5.14)

67

Chapter 5 Alternative Bag Models for Multiple Instance Applications

When combining the BMI model with the instance classifier, we obtain (instead of 5.6):

MBMI(c=1) =
1

1− (1−β)N

(∏
n

[
βpn + (1−β)(1−pn)

]
−
∏
n

[
(1−β)(1−pn)

])
(5.15)

Training The behavior of the BMI model is more complex than the Bernoulli model be-
cause it does not factorize into instances. To still get an idea of the training behavior, we
assume that the instance likelihoods pn = PBMI(yn |θ) of all but one instances are fixed
and only the remaining instance likelihood pm can change. It is convenient to define the
constants A, B, and Z, and rewrite (5.15) as

A =
∏
n6=m

[
βpn + (1− β)(1− pn)

]
(5.16)

B =
∏
n6=m

[
(1− β)(1− pn)

]
Z = 1− (1− β)N (5.17)

MBMI(c=1) =
1

Z

(
A

[
βpm + (1−β)(1−pm)

]
−B

[
(1−β)(1−pm)

])
(5.18)

The contribution of instance m to the bag likelihood can then be written as

MBMI(c=1) ∝
[
βpm + (1− β)(1− pm)

]
− B

A

[
(1− β)(1− pm)

]
(5.19)

= βpm +

(
1− B

A

)
(1− β)(1− pm) (5.20)

= βpm + (1−βeff)(1−pm) βeff = 1−
(

1−B
A

)
(1−β)(5.21)

Plots of (5.21) and (5.21) are shown in Figure 5.4. The larger B/A the larger effective
Bernoulli parameter βeff. This means that if the instances (n 6= m) are all negative (large
B), the model strongly prefers the remaining instance m to be positive (large β) to explain
the positive bag label.

Testing To obtain the bag class probability of the Bernoulli model with MI constraint, we
have to repeat the calculation (5.7) replacing the denominator with (5.15). We obtain

PBern(c=0 |p) =

∏
n(1− pn)∏

n(1− pn) + 1
Z

∏
n [βpn + (1−β)(1−pn)]− 1

Z

∏
n [(1−β)(1−pn)]

(5.22)

=
1

1 + 1
Z

∏
n

[
β pn

1−pn + (1− β)
]
− 1

Z

∏
n(1− β)

(5.23)

=
1

1 +
∏
n

(
1− β 1−2pn

1−pn

)
− 1

Z (1− β)N
(5.24)

68

Chapter 5 Alternative Bag Models for Multiple Instance Applications

Figure 5.4: Left: Effective Bernoulli parameter of the BMI model. Right: Contribution of
instance m to the parameter likelihood PBMI(θ |X, c) for B/A = 0.8 (cf. Figure 5.2).

As above we would like to extract the effect of a single instance m. To do that, it is
convenient to define a constant C and rearrange (5.24) as

C =

∏
n6=m

(
1− β · 1−2pn

1−pn

)
(1− β)N−1

(5.25)

PBern(c=0 |p) =
1

1 + (1−β)N−1

Z

(
−(1− β) + C

(
1− β 1−2pm

1−pm

)) (5.26)

Note that C ≥ 1 because of 0 ≤ pn ≤ 1. For comparison with the Bernoulli model without
MI constraints (5.11) we again consider the log-odds

logit(PBern(c |p)) = log

(
(1− β)N−1

Z

)
+ log

(
C

[
1−β 1−2pm

1−pm

]
−1+β

)
(5.27)

logit

(
PBern(c | pm)

PBern(c | pm=1/2)

)
= log

(
C

[
1−β 1−2pm

1−pm

]
−1+β

)
− log (C−1+β) . (5.28)

For C � 1 the summands not containing C are outweighed and (5.28) converges to (5.11).
This is the case if the instances (n 6= m) already contain a positive instance, so that the
remaining instance m can hardly render the bag negative anymore. If, on the other hand,
the instances (n 6= m) are all negative, then C = 1, and (5.28) converges to

logit

(
PBern(c | pm)

PBern(c | pm=1/2)

)
= log

(
1− 1− 2pm

1− pm

)
(5.29)

69

Chapter 5 Alternative Bag Models for Multiple Instance Applications

Figure 5.5: Contribution of a single instance to the bag class probability PBern(c | pn), given
the prediction of the instance classifier pn = P (yn = 1). This figure is to be compared to
Figure 5.3.

which is equivalent to (5.28) with β = 1. For an intermediate value of C = 1.5, equation
(5.28) is plotted in Figure 5.5.

5.1.4 Notes on the Bernoulli model

Discriminative Bernoulli model The Bernoulli model as stated above is a generative bag
model, i. e. it provides a probability of instance classes given the bag class P (y | c). It is
also possible to formulate a discriminative Bernoulli model that provides a probability of
the bag class for given instance classes P (c |y) as follows

qBern,disc(y, c, γ) y=0 y=1

c=0 1− γ 0

c=1 γ 1

(5.30)

In this case, the Bernoulli parameter γ describes the probability of a negative instance to
belong to a positive bag.

The difference between the generative and the discriminative Bernoulli model is just the
normalization. As we have seen in Section 4.1.2, however, the normalization has a large
impact on the bag prior. For the discriminative Bernoulli model the bag prior reads

PBern,disc(c=0) =

(
1− γ

2

)N
. (5.31)

The bag prior depends both on the Bernoulli parameter γ and on the bag size N , which
makes implementing the discriminative Bernoulli model more complicated than the genera-

70

Chapter 5 Alternative Bag Models for Multiple Instance Applications

tive Bernoulli model. Since there is no clear advantage of the discriminative Bernoulli model
over the generative one, we will not pursue the discriminative Bernoulli model further.3

Interpretation of the Bernoulli parameter It is suggestive to interpret the Bernoulli pa-
rameter β as the (observed or expected) ratio of positive instances in positive bags. This
would indeed be the case if the instance classes were determined by the Bernoulli model
alone, since β is defined as β = qBern(y=1 | c=1)). However, the instance classes are in fact
determined by both the Bernoulli model and the instance classifier:

PBern(yn=1 | c=1) =
1

Z
· qCl(yn |xn,θ) · qBern(yn | c) (5.32)

=
pnβ

pnβ + (1− pn)(1− β)
. (5.33)

Moreover, the instance classifier often has a “strong opinion” about the instance class,
meaning that pn is close to zero or close to one, while β is usually in a “moderate” range.
In other words, the instance classifier dominates the instance class prediction, while the
Bernoulli model just “pushes the decision boundary a little”, so that more instances get
classified as positive; the larger β the stronger the push.

As described above, the MI model is equivalent to β = 1/2, but of course this does not
imply that exactly half of the instances from positive bags must be positive, while the other
half must be negative.

To pinpoint the issue, let us consider a bag that contains less positive than negative in-
stances. According to the above mentioned (faulty) interpretation, the Bernoulli parameter
should be β < 1/2. But then, the Bernoulli model would penalize positive instances in
positive bags, which is obviously wrong.

Estimation of the Bernoulli parameter It is not clear a-priori which value of the Bernoulli
parameter β yields the best result. Therefore, it is suggestive to optimize β during training
to automatically find the best value.

However, as we will discuss in this paragraph, this is not possible.
The reason can be seen by inspecting the parameter likelihood in Figure 5.2. Let us first

assume that the result of the instance classifier pn is fixed. For any instance with pn < 1/2
the optimum is β = 0, for any instance with pn > 1/2, the optimum is β = 1. So β always
diverges to the extreme values.

If we have a bag with more than one instance, the situation is a bit more complex. There
are well-behaved situations, e. g.

d

dβ
log
[
βp+ (1− β)(1− p)

]
=

1

β + 1−p
2p−1

(5.34)

3In effect, correcting for the unwanted bag prior of the discriminative Bernoulli model would lead back to
the generative Bernoulli model.

71

Chapter 5 Alternative Bag Models for Multiple Instance Applications

At the optimum, the sum of derivatives must be zero. For two instance we obtain

βopt +
1− p1

2p1 − 1
= −βopt −

1− p2

2p2 − 1
(5.35)

βopt =
1

2

(
p1 − 1

2p1 − 1
+

p2 − 1

2p2 − 1

)
(5.36)

Equation (5.36) is plotted in Figure 5.6. For more than two instances, we expect a similar
behavior: For many values of pn, βopt is degenerate in many cases (if all pn > 1/2, then
βopt = 1, if all pn < 1/2, then βopt = 0). For the small band of non-degenerateness, betaopt

is very sensitive to small changes of pn.
The second problem with the estimation of β is the interaction with the instance classifier.

Even if βopt has a reasonable value (between 0.5 and 0.9) for fixed pn, we must also take
into account that for β > 0.5, the likelihood increases with increasing pn. Again, we analyze
the situation for a bag containing a single instance: There is only one stationary point (at
β = p = 1/2), and this is not a stable minimum, but a saddle point. The two degenerate

Figure 5.6: Left: Value of Bernoulli parameter βopt that optimizes the likelihood for a bag
with two instances with fixed instance class probabilities p1, p2. Right: In the white region,
βopt is degenerate βopt = 0 or βopt = 1.

72

Chapter 5 Alternative Bag Models for Multiple Instance Applications

minima are located at β = p = 1 and at β = p = 0.

d2NLL

dβ2
=

−1(
β + 1−p

2p−1

)2 (5.37)

d2NLL

dβ dp
=

−1

(β(2p− 1) + 1− p)2 (5.38)

H(β=p=1/2) =

(
0 −4

−4 0

)
(5.39)

To sum up: The Bernoulli parameter does not describe the ratio of positive instances in
positive bags, but it is a rather heuristic parameter that induces the algorithm to find more
positive instance. How many more positive instances will be found depends on the details
of the dataset and the instance classifier. β does not have a clear meaning.

5.2 Power model

The original idea of the Bernoulli model was that the user can define a preferred ratio of
positive instances in positive bags. As we have seen above, however, the Bernoulli parameter
β does not fulfill this role. In this section we propose a bag model that is better suited to
control the ratio of positive instances.

5.2.1 Model definition

To examine the properties of a bag model, it is expedient to plot its factor for the complete
bag as a function of the ratio of positive instances r in a positive bag. For the Bernoulli
model we obtain

Q(y, c) =
∏
n

P (yn | c) = βN
+

(1− β)N
−

=
(
βr(1− β)1−r)N (5.40)

r =
N+

N
=

1

N

∑
n

yn. (5.41)

This function is plotted for N = 1 in Figure 5.7. For r = 1 the function degenerates. Also,
for large N the function will degenerate, too. As noted above, the Bernoulli model does not
encompass the MI constraint Q(y=0, c) > 0, unless it is degenerate.

Figure 5.7 suggests a different approach to set up a bag model, namely to model Q(r)
directly, without dependence on the bag size N . We should demand that Q(r=0) = 0 (MI
constraint). We propose the following power model

QPow(r,N, γ) = r(γ·N), (5.42)

which is plotted in Figure 5.8.

73

Chapter 5 Alternative Bag Models for Multiple Instance Applications

Besides plotting the bag model factors Q(r+) it is also useful to plot their logarithm,
because the logarithm is additive over instances. It is apparent from Figure 5.9 that in the
Bernoulli model each instance contributes the same to the bag model factor, independent
of the other instances, while in the power model there is an effect of “diminishing” returns,
meaning that a estimating an instance as positive reduces the negative log-likelihood very
much if there are only few positive instances in the bag, but it does not change the log-
likelihood much, if there are already many positive instances explaining the positive bag.

Figure 5.7: Bag model factor as a function of the ratio of positive instances for the Bernoulli
model (N = 1).

Figure 5.8: Bag model factor as a function of the ratio of positive instances for the power
model (N = 1).

74

Chapter 5 Alternative Bag Models for Multiple Instance Applications

5.2.2 Implementation

To implement the power model in our sampling-based self-training framework (see the fol-
lowing Chapter 6), we need to draw samples from the instance class distribution of each
positive bag. This is somewhat more difficult for the power model than for the Bernoulli
model, because the power model does not factorize over instances. Our approach is to use
rejection sampling with a factorizing proposal distribution that is optimized for each bag to
give a good sampling efficiency.

The instance class distribution from which we need to draw samples is P (y | c=1,X,θ, γ)
(cf. Eq. 6.21). The bag class c will be left out in the following for brevity, and the information
of the data X and the classification parameters θ can be summarized by the classifier’s
predictions P . So we have

P (y |p, γ) ∝ QPow ·QCl = r(γ·N) ·
∏
n

qCl(yn) (5.43)

For rejection sampling we use the following factorizing proposal distribution.

Pprop(y |p, β) ∝ Qprop ·QCl =
∏
n

qprop(yn, β) · qCl(yn, pn) (5.44)

qprop(yn, β) =

{
β for yn = 1

1− β for yn = 0
(5.45)

The parameter β can be chosen freely, and in the following we will describe how to optimize
β for maximum sampling efficiency.

Sampling efficiency is determined by the acceptance rate R which is the ratio between
target and proposal distribution. Since the contribution of the instance classifierQCl cancels,

Figure 5.9: Negative log-likelihood of bag model factor Q(r+) for the Bernoulli and the
power model.

75

Chapter 5 Alternative Bag Models for Multiple Instance Applications

we have

R(r, β) =
QPow(r,N, γ)

Qprop(r,N, β)

Qprop(rmax, N, β)

QPow(rmax, N, γ)
(5.46)

rmax(β) = arg max
r

QPow(r,N, γ)

Qprop(r,N, β)
. (5.47)

The term containing rmax ensures that the acceptance rate does not exceed 1: R(r) ≤ 1 with
equality at r= rmax. Note that both factors QPow and Qprop depend only on the instance
counts (r,N), and not on the exact combination of instance classes y. This makes handling
the acceptance rates significantly easier.

The acceptance rate R is maximum at r= rmax and decreases with increasing deviation
|r=rmax|. So to achieve good sampling efficiency, rmax should be a typical instance class
ratio. We choose rmax as the expected value of r of the target distribution (5.43). This
expectation can be approximated by

rmax = Er

[
1

Z
·QPow(r,N, γ) ·QCl

]
(5.48)

≈
∑

r r ·
(
N
Nr

)
r(γN)

(
p̄r · (1− p̄)1−r)N∑

r

(
N
Nr

)
r(γN) (p̄r · (1− p̄)1−r)N

(5.49)

The binomial coefficient accounts for the different number of instance class combinations
that yield the same instance class ratio r. The terms containing p̄ approximate the Poisson
binomial distribution with a binomial distribution with mean instance class probability
p̄ = 1/N

∑
n pn.

Actually, we cannot select the chosen rmax directly, because it is determined by (5.47).
Instead, we have to choose β so that it yields the desired rmax. To find the corresponding
value of β, we have to solve (5.47) for β. We achieve this by setting equal the derivatives of
the logarithms of numerator and denominator

d

dr
logQPow(r,N, γ) =

d

dr
Nγ log r =

Nγ

r
(5.50)

d

dr
logQprop(r,N, β) =

d

dr
(Nr log β +N(1− r) log(1− β)) = N · log

(
β

1− β

)
(5.51)

log

(
β

1− β

)
=

γ

rmax
(5.52)

β =
1

1 + e−γ/rmax
(5.53)

76

Chapter 6

Self-Training Multiple Instance Random
Forest (SMIRF)

In this chapter we present a multiple instance (MI) classifier that is based on the random
forest (RF). The latent variables (unknown instance classes) are estimated via the semi-
supervised method of self-training. We propose and explore three variants of this algorithm:
one for the pure multiple instance model, one for the Bernoulli model proposed in Section
5.1, and one for the power model proposed in Section 5.2. Also we test the different bag
classification methods discussed in Chapter 4.

6.1 Random forests

The random forest is an ensemble classifier that is based on decision trees. In this section
we give a short description of decision trees and the random forest for later reference.

Decision trees for classification A decision tree is a discriminative classifier that defines
the class y(x) by a sequence of binary decisions rules η(x). The result of each binary decision
either specifies the next decision rule to apply or it assigns the class y(x). This gives rise to
a binary tree structure, as illustrated in Figure 6.1 Each internal node represents a decision
rule, and each leaf node represents a class assignment, either y = 0 or y = 1. For a given
decision tree, the input x specifies the path through the tree while the leaf node where the
path ends specifies the corresponding class assignment y(x).

77

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

η

η0 η1

1 η01 0 η11

η010 1 1 0

0 1

Figure 6.1: Decision tree for classifi-
cation. At internal nodes, a simple
binary criterion η is evaluated, to de-
termining the route. Terminal nodes
(leaves) assign a class (0 or 1).

The binary decision rules (also called splits) should
be simple and fast to evaluate. The most common
choice is to consider only univariate step functions

η(x; d, s) =

{
1 if xd ≤ s
0 if xd > s.

(6.1)

In this case each split is defined by the split dimen-
sion d and the split location s. Another possibility
is to consider all linear step functions

η(x;v, s) =

{
1 if vTx ≤ s
0 if vTx > s,

(6.2)

which is defined by the split direction v (normal-
ized vector) and split location s. Random forests
based on (6.2) are called oblique random forest
(Menze, Kelm, Splitthoff, Koethe & Hamprecht
2011). We will use the standard random forest
with splits (6.1). In effect, a decision tree subdi-
vides the feature space into (cuboid) regions and
assigns a class to each region.

Training a decision tree A decision tree is trained (or grown) by recursively choosing the
split that gives optimum class discrimination on the training data. A single split usually
cannot perfectly separate the two classes, so that the resulting two sets of datapoints are
still impure. The splitting procedure is then repeated on both sets of datapoints until the
resulting sets are pure.

Formally, a split is chosen by maximizing the sum of the resulting class purities

(s, d) = arg max
s,d

R(yn0
) +R(yn1) (6.3)

n0 = {n : η(xn)=0} (6.4)

n1 = {n : η(xn)=1}, (6.5)

where n0 and n1 denote the sets of datapoints of the two child nodes. The most common

78

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

measures of class purity are the Gini impurity and the entropy

RGini(y) = r0 · r1 (6.6)

REntropy(y) = −r0 ln r0 − r1 ln r1 (6.7)

r0 =
1

N

∑
n

1− yn (6.8)

r1 =
1

N

∑
n

yn, (6.9)

where r0 (r1) is the ratio of negative (positive) data points in the given set y.
This procedure of tree growing is a “greedy” method, since each single split tries to achieve

the best purity. This does not guarantee that the resulting tree has the minimum number
of nodes or the minimum depth, but it is a good practical method to find good decision
trees very fast.

Altogether, a trained decision tree t is specified by all split dimensions d, all split locations
s, and the tree structure TS that defines the order in which the decision rules are to be
applied. Thus we can make the connection to the generic symbol θ for the classifier’s
parameters, which has been used in the previous chapters, by writing

θ = {d, s, TS}. (6.10)

Random forest The random forest is a bagged version of the decision trees described above.
A general description of bagging in the context of ensemble classifiers and Bayesian inference
has been given in Section 2.2. A crucial feature of bagging is the randomization that
ensures the required instability (or variability) of the ensemble members. The random forest
combines two methods of randomization: (i) subsampling of datapoints and (ii) subsampling
of features (or dimensions).

Subsampling of datapoints means that for each tree only a subset of all datapoints Ds is
used for training. The subset is sampled with replacement (bootstrap sample). The typical
sample size is equal to the total number of datapoints N . Note that bootstrap sampling
will lead to some datapoints being present twice or more in the subsampled dataset while
other datapoints are left out. On average, each tree will use a fraction of 1− 1/e ≈ 63% of
the available datapoints.

Subsampling of features means that for each split, only a subsample of features is taken
into account, so (6.3) is replaced by

(s, d) = arg max
s,d

[
R(yn0

) +R(yn1)

]
· I(d) (6.11)

where I(d) is the indicator function of the available features. The available features are
drawn randomly without replacement. The typical sample size is the square root of the
total number of features

√
D.

Finally, the predicted class probability of a random forest is the arithmetic mean of the

79

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

class predictions of all trees

P (y=yt |x,θ) =
1

T

∑
t

yt(x,θ). (6.12)

The random forest has been proposed by (Breiman 2001). It has become one of the
most-used classifiers. Advantages are that it is easy to understand and implement, fast, and
robust. The most important disadvantage is probably that it is not based on a probabilistic
model. The rules for randomization (subsampling) are rather heuristic. However, random
forests have consistently shown good classification performance in practice (Hastie et al.
2009).

6.2 Self-training random forest for standard multiple instance
learning

To learn the multiple instance model one has to estimate the unknown instance classes y
explicitly. This situation is equivalent to constrained semi-supervised learning, as described
in Section 3.1.3. Negative bags correspond to labeled instance and positive bags correspond
to unlabeled instances. The constraints are given by the requirement of the multiple instance
model that each positive bag must contain at least one positive instance.

In this section we propose a self-training approach based on the random forest for multiple
instance learning. We first describe the baseline algorithm for the standard MI model, then
we describe how the Bernoulli model and the power model proposed in Chapter 5 can be
incorporated.

6.2.1 Self-training the multiple instance model

A special difficulty of the MI model is that its bag likelihood does not factorize over instances,
but instead is a sum (or integral) over all combinations of instance classes

P (c |X,θ) =

∫
PMI(c |y)

∏
n

P (yn |xn,θ) dy (6.13)

This integral is infeasible because there are 2Nb − 1 combinations of instance classes y for
each bag b.

The difficulty can be overcome with a self-training approach. We start by reprinting the
basic equations of self-training from Section 2.4.1:

Pi(θ |X) =̂
1

Z

∫
PM (y |X,θ)Pi−1(y |X) dy (6.14)

Pi(y |X) =̂

∫
PM (y |X,θ)Pi(θ |X) dθ, (6.15)

80

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Both steps require the evaluation of the instance class probabilities PM (y |X,θ). For ref-
erence, we first specify this term for semi-supervised learning:

PSSL(y |X,θ) =
∏
n

P (yn |xn,θ) (6.16)

For the multiple instance model, we additionally have to take into account the “multiple
instance constraints” which are specified by the bag labels c. The required probability
PM (y | c,X,θ) can be evaluated via

PMI(y | c,X,θ) =
PMI(c |y)

∏
n P (yn |xn,θ)∫

PMI(c |y)
∏
n P (yn |xn,θ) dy

, (6.17)

which yields

PMI(y | c,X,θ) y=0 y 6=0

c=0 1 0

c=1 0
∏

n P (yn |xn,θ)
1−

∏
n P (yn=0 |xn,θ) ,

(6.18)

The denominator of the lower right entry is a normalization factor. If it is zero, i. e. P (yn=
0 |xn,θ) = 1 ∀n, (6.18) cannot be normalized and is not well-defined.

Factorizing the parameter update Just like the bag likelihood (6.13), the distribution
of latent instance classes (6.18) does not factorize over instances. However, the two-step
procedure of self-training allows for the following simplification:

We approximate the parameter update (6.14) by using the factorizing equation (6.16)
instead of the complete MI model (6.18). The MI constraints are enforced only by the
update of instance classes (6.15), where we have to use the correct distribution (6.18).

Following the same line of argument as in Section 2.4.1, we find that this procedure leads
to the following effective parameter distribution at a fixpoint (or local optimum) θ̂:

P (θ̂ | c,X) =
1

Z

∫
PMI(y | c,X, θ̂)PSSL(y |X, θ̂) dy, (6.19)

This ensures that despite the approximation of the parameter update the MI constraints
will be satisfied when the algorithm has converged, since the MI factor PMI(y | c,X,θ) is
zero if the MI constraints are not satisfies, which dominates over the approximated factor
PSSL(y |X,θ).

6.2.2 Sampling approach and out-of-bag estimate

In Section 2.4.1 we have formulated self-training in the most general probabilistic form.
However, the random forest cannot process probabilistic class estimates P (y), but requires
concrete samples ŷ to grow a tree. Since the random forest can also be regarded as a tree

81

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

sampling method as described (cf. Sections 2.2.3 and 6.1), this leads to a full sampling
approach of self-training.

Sampling approach to self-training Rewriting equations (6.14) and (6.15) in terms of
concrete samples and factorizing the parameter update (as described in the previous section)
leads to

θti ∼
1

S

∑
s

∏
n

P (yns,i−1 |xn,θ) (6.20)

ysi ∼
1

T

∑
t

PMI(y | c,X,θti) (6.21)

In each step i we draw T parameter samples (i. e. grow T trees), and draw S samples of the
latent variables y.

This procedure can be regarded as a kind of blocked Gibbs sampling. One block of
variables contains the instance classes y, the other block contains the parameters θ.

The sampling approach introduces variability into the otherwise deterministic self-training
procedure, which makes the algorithm robust to local minima. We do not need additional
methods like deterministic annealing to avoid getting trapped, as is required for multiple
instance SVMs (Gehler & Chapelle 2007).

Out-of-bag estimate To draw samples ysi from (6.21), we need class predictions for the
training data P (yn |xn,θi). However, the standard formula for random forest class predic-
tion (6.12) is valid only for test data that have not been seen during training. (For the
training data, the trees just return the training labels they had been given.)

Fortunately, the random forest as a bagging method makes possible the so-called “out-
of-bag” (oob) estimation of P (yn |xn,θi) on the training data. For the out-of-bag estimate
at datapoint xn, only those trees are allowed to vote that have not seen xn, i. e. where the
point xn has not been part of the bootstrap sample.

Poob(yn |xn,θ) =

{
1

#U

∑
t∈U ynt for yn=0

1− 1
#U

∑
t∈U ynt for yn=1

=

∣∣∣∣∣yn − 1

U

∑
t∈U

ynt

∣∣∣∣∣ , (6.22)

where ynt = y(xn,θt). The out-of-bag estimate is almost identical to the estimate obtained
from N -fold cross-validation (Hastie et al. 2009). Therefore, we can use the oob-estimate
(6.22) as an estimate of PMI(y | c,X,θti) in (6.21).

We performed bagging on the bag-level, meaning that a bag is either completely con-
tained in the bootstrap sample or completely left out. This is beneficial, because it allows
for online accuracy prediction from the oob-estimates. This significantly facilitates perfor-
mance assessment because a single run of the algorithm on the complete dataset suffices for
performance assessment. Cross-validation is not needed for a quick test or for parameter
tuning.

82

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Pseudo-code of SMIRF (self-training multiple instance random forest)

initialize instance classes as equal to their bag class P0(ybn) = δ(ybn − cb)
for each iteration i (usually 5 iterations until convergence)

for each tree t

• draw instance classes ŷti from Pi−1(y), ensuring that MI-constraint

is met for each bag: ŷb,ti 6= 0 ∀b
• draw bootstrap sample on bag level bti ⊂ {1, . . . , B} and create

corresponding set of instances nti

• grow tree θ̂ti = growTree(Xnt,i, ŷnt,ti)

calculate oob-estimate Pi(y) = oobRF(X, θ̂ti)

6.2.3 Algorithm details and behavior

In this section we describe some details of the algorithm and test its behavior on a synthetic
dataset.

First of all, we provide the pseudocode of the algorithm in the text box above. Note
that the initialization corresponds to the supervised setting. Therefore, the algorithm auto-
matically provides a supervised random forest for comparison to SCL-learning (see Section
3.2.3).

Drawing instance classes We draw samples of y according to (6.21) by rejection sampling.
We first draw samples from the factorizing distribution (6.16), then we reject those samples
that do not satisfy the MI constraint (6.18).

For each n we draw an instance-wise sample yn from the Bernoulli distribution whose
parameter is equal to the ratio of positive tree votes for the data point xn.

yn,si ∼
1

T

∑
t

P (yn |xn,θti) = Bern

(∑
t ŷnti
T

)
(6.23)

Afterwards we check if y 6= 0. If y = 0, we reject the complete sample y and redraw
samples from (6.23). This is repeated until the MI-constraint is satisfied.

This procedure is simple and efficient unless the given instance probabilities are strongly
negative for all instances in the bag: P (yn=1 |xn,θt,i−1)� 1 ∀n.

Behavior of baseline algorithm We tested the algorithm described above on a synthetic
multiple instance dataset, where we know the ground truth,i. e. which instances of the
positive bags are truly positive. The data was generated by a mixture of 13 Gaussians
in 20 dimensions. The centers of the Gaussians were drawn from a uniform distribution
on the unit hypercube, the covariances were diagonal with entries drawn uniformly from

83

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Figure 6.2: Behavior of baseline algorithm on synthetic dataset. “NLL/#bags” stands for
the negative log-likelihood per bag. Settings: Number of trees: T = 100, bag size n = 5, 2
positive instances per positive bag.

[0,0.5]. From the five negative Gaussians we draw 4000 datapoints, and from the 8 positive
Gaussians we draw 1000 datapoints. These 5000 datapoints were grouped in 500 negative
bags with an average of 5 negative instances, and 500 positive bags with an average of 2
positive and 3 negative instances.

The progress of the SMIRF algorithm on the synthetic data is plotted in Figure 6.2. The

Figure 6.3: Receiver-operator curves of first and last iteration of baseline algorithm applied
on synthetic dataset. Left: first iteration. Right: last (20th) iteration. The number above
the curve is the optimum classification accuracy, the numbers below the curve are the
corresponding decision thresholds.

84

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Figure 6.4: Histograms of estimated instance class probabilities. Left: first iteration. Right:
last (20th) iteration.

negative log-likelihood of the bags

− logP (c |θ) = − log

[
PMI(y)

∏
n

Poob(yn |θ)

]
(6.24)

decreases with increasing number of iterations (see), while the classification performance
(oob-estimate of accuracy with optimum decision threshold and oob-estimate of area-under-
ROC) increases. Convergence is reached after about 5 iterations.

Receiver-operator curves of the first and last iteration are shown in Figure 6.3. Besides
the increase in classification performance, one can see a strong decrease of optimum decision
threshold (0.98 to 0.54). At the first iteration there are many false positive labels, which
causes positive predictions of all bags (with a decision threshold of 0.5 one would have 100%
false positives). After the algorithm has estimated the latent instance classes, the observed
optimum decision threshold is close to the theoretical value of 0.5.

The estimated instance class probabilities are shown in Figure 6.4. At the first iteration,
the algorithm assigns a pretty large positive probability (P (y = 1) ≈ 0.4) to the negative
instances, because many of them have a positive bag labels. After the algorithm has esti-
mated the instance classes, most truly negative instances are assigned a very small positive
probability.

Figure 6.5 shows one tree of the first iteration’s random forest and one from the last
iteration. The last iteration’s tree has a significantly lower number of leaves than the first
iteration’s tree. This shows that the tree has relaxed to a simpler structure as some instances
from positive bags have adopted a negative class label. The average progress of the structure
of all trees is shown in Figure 6.6. In agreement with the previous figure we observe that the
number of leaves needed to fit the data drops significantly with the number of iterations,
while the mean and maximum depth of the tree remain approximately constant.

85

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Figure 6.5: Structure of grown trees. Left: first iteration. Right: last (20th) iteration. Red
bullets indicate positive leaves, green bullets indicate negative leaves. At each split the
dimension used for that split is printed.

Figure 6.6: Progress of tree structure over iterations.

86

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Dataset #Features #Instances #Bags #Instances

(dimensions) (pos / neg) per bag

MUSK1 166 476 47 / 45 2–40

MUSK2 166 6598 39 / 63 1–1044

Table 6.1: Characteristics of MUSK datasets

6.3 Results on MUSK datasets

The MUSK datasets are a standard benchmark for multiple instance learning. They have
been the first published datasets for the multiple-instance setting (Dietterich et al. 1997).
The numbers of dimensions, bags, and instances is given in Table 6.1. Special traits of the
MUSK datasets are their large variation of bag size (especially for MUSK2), and the low
number of true positive instances in positive bags. (Although the true positive instance are
not known, the origin of the dataset from drug activity prediction strongly suggests that
there is rarely more than one positive instance per bag.)

The result of SMIRF on the MUSK1 dataset is shown in Figure 6.7. The negative log-
likelihood decreases with the number of iterations, which shows that the algorithm works
correctly. Surprisingly, however, the classification accuracy (oob-estimate) decreases as well.
A possible explanation is that SMIRF estimates some of the bags with very high probability
(leading to low NLL), but estimates other bags very badly (leading to low classification
accuracy). This could happen if a few true positive instances are very close to a cluster of
negative instances. In this case, SMIRF would be compelled to assign negative labels to
these few true positives to increase the likelihood of the negative bags.

Figure 6.7: Results of SMIRF on MUSK1. Settings: Number of trees: T = 100, bootstrap
sample size: B = 92, feature sample size: [

√
D] = 13.

87

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Note that the standard random forest already yields a quite good classification accuracy
(80% oob-estimate). A similar result has also been found by (Leistner et al. 2010), see Table
6.2.

One characteristic of the MUSK datasets is the low number of true positive instances.
Since it is well-known that large class imbalance can severely impair classification perfor-
mance, it is suggestive to try data balancing to improve the performance of SMIRF.

6.3.1 Data balancing

The term imbalanced data describes a dataset that has significantly more datapoints of one
class than of the other. A comprehensive review of algorithms and tools for learning from
imbalanced data is given by (He & Garcia 2009). There are two main classes of meth-
ods: Sampling methods and cost-sensitive methods. Sampling methods resample from the
available data to obtain a balanced dataset that is used for classification. One advantage of
these methods is that they are a preprocessing technique that can be used with any classifier
without modifications. Cost-sensitive methods assign a very high cost to misclassification of
the minority class. The objective function of the classifier has to be modified to incorporate
the desired weights.

Methods to deal with imbalanced data have first been used with the random forest by
(Chen, Liaw & Breiman 2004). They found that their proposed sampling method and cost-
sensitive method both performed very well. The good result of Chen’s sampling method
has been confirmed by (Liu, Wu & Zhou 2009). Imbalanced classification is usually used
in a supervised setting. We are aware of only one publication that uses balancing methods
for semi-supervised learning (Li, Wang, Zhou & Lee 2011). For multiple instance learning,
balancing is a new idea.

SMIRF with data balancing To deal with the problem of imbalanced data, we choose an
oversampling method. At each step of SMIRF, we oversample the positive instances with
replacement to obtain the same number of instances for both classes. This oversampling
is performed after the instance classes have been drawn according to (6.21) and before the
next iteration’s trees are grown according to (6.20).

The result of SMIRF with data balancing on MUSK1 is shown in Figure 6.8. In contrast
to previous section’s results, the classification accuracy indeed increases over iterations as
expected. Convergence is reach after about 20 iterations, and the predicted classification
accuracy is on a competitive level (see Table 6.2).

To further explore why data balancing improves performance on MUSK1, we show ex-
ample trees and the progress of tree shapes for both non-balanced and balanced SMIRF
in Figure 6.9. Deep trees seem to be important for good classification performance. What
happens during tree growing on balanced data is the following: The few positive instances
are heavily oversampled, therefore many splits are made right next to the oversampled
instances. To separate the oversampled instance from all surrounding negative instances,
many consecutive splits in different dimensions are necessary. So oversampling positive

88

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Figure 6.8: Results of MIRF with data balancing on MUSK1. Settings: Number of trees:
T = 100, bootstrap sample size: B = 92, feature sample size: [

√
D] = 13.

instances does not lead to “overruling” of neighboring negative instances, but to a better
confinement of the positive instances in many directions.

6.3.2 Bag-size-independent classification

In Chapter 4 we have proposed two methods to improve bag classification for given in-
stance class probabilities, and we have shown that they work well on synthetic datasets.
Here we apply these methods to the instance class probabilities as predicted by balanced
SMIRF on the MUSK1 dataset. The results are shown in Figure 6.10. While the standard
method (noisy-OR) gives an accuracy of 88%, both bag-size-independent and treewise bag
classification improve the accuracy to 91%.

Figure 6.11 shows the receiver-operator-characteristic corresponding to bag-size-independent
prediction. As expected, the optimum decision threshold is close to the theoretical value of
0.5.

To illustrate the difference between standard noisy-OR classification and bag-size-independent
classification, we plot the predicted bag probability as a function of bag size for both clas-
sification methods (see Figure 6.12). One can clearly see that noisy-OR is biased towards
predicting large bags as positive, which impedes class separation, while bag-size-independent
prediction is bias-free.

MUSK2 We applied the same method that has proven successful on MUSK1 (i. e. bal-
anced SMIRF with bag-size-independent classification) on the MUSK2 dataset. The result
is shown in Figure 6.13. With noisy-OR classification we achieve only 77% classification ac-
curacy (mean oob-estimate), which is clearly below the reported performance other methods.
With bag-size-independent classification accuracy improves to 85%, which is a competitive
result (see Table 6.2.

89

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Figure 6.9: Example trees and progress of tree shapes over iterations for non-balanced
SMIRF (left) and balanced SMIRF (right) on MUSK1. Settings: Number of trees: T = 100,
bootstrap sample size: B = 92, feature sample size: [

√
D] = 13.

The trees grown by balanced SMIRF on MUSK2 have a similar shape to those grown on
MUSK1. As can be seen in Figure 6.14, they have a very large depth in order to confine
the positive region in feature space in many dimensions.

Cross-validation To check the above results, we performed 10-fold cross-validation on both
MUSK1 and MUSK2. Surprisingly, the results were significantly worse than the out-of-
bag predictions: 86% and 81% (CV estimate) vs. 91% and 85% (oob-prediction). The
explanation for this effect is probably that each cross-validation run does not use all available
data, but only 9/10 of the data. In large datasets this difference is not significant, but in
the MUSK datasets there only 47 (39, resp.) positive bags, so that each single missing bag
can impair classification.

While the oob-estimate is more meaningful for prediction accuracy of new unknown data,
the cross-validation results are more significant for comparison with other methods, since

90

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

cross-validation is the standard methods that is available for all classifiers, not only those
based on bagging.

Figure 6.10: Comparison of bag classification methods on results of balanced SMIRF on
MUSK1.

Figure 6.11: Receiver-operator-characteristic of balanced SMIRF on MUSK1 with bag-size-
independent prediction. The number above the curve denotes optimum classification accu-
racy, the numbers below the curve denote corresponding decision thresholds.

91

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Figure 6.12: Predicted bag probabilities of standard noisy-OR (left) and bag-size-
independent classification (right). Instance class probabilities are as predicted by balanced
SMIRF on MUSK1.

Figure 6.13: Comparison of bag classification methods on results of balanced SMIRF on
MUSK2. Settings: Number of trees: T = 100, bootstrap sample size: B = 92, feature
sample size: [

√
D] = 13.

92

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Figure 6.14: Shape of learned trees of balanced SMIRF on MUSK2.

Algorithm Reference MUSK1 MUSK2

SMIRF oob 73

SMIRF bal. oob 88

SMIRF bal. bsi oob 91 85

SMIRF bal. bsi CV 86 81

Random forest 80 72

Random forest (Leistner et al. 2010) 85 78

MIForest (Leistner et al. 2010) 85 82

PC-SVM (Han et al. 2010) 91 91

miGraph (Zhou, Sun & Li 2009) 89 90

AL-SVM (Gehler & Chapelle 2007) 86 83

AW-SVM (Gehler & Chapelle 2007) 86 84

mi-SVM (Andrews et al. 2002) 87 84

MI-SVM (Andrews et al. 2002) 78 84

EM-DD (Zhang & Goldman 2001) 85 85

diverse density (Maron & Lozano-Pérez 1998) 89 82

IAPR (Dietterich et al. 1997) 92 89

Table 6.2: Comparison of classification performance on MUSK datasets. If not specified
otherwise, values have been obtained by 10-fold cross validation.

93

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

6.4 Results on DAGM data

Finally, we applied our proposed algorithm on the DAGM data presented in Section 1.5. In
order to evaluate the classification performance, we divided each dataset into a training set
and a test set of 575 images each.

The training datasets are very large (122 feature images for each of the 575 images), so that
we cannot use the complete dataset for training. Note that there is a large class imbalance:
only few image patches contain a defect (positive class), while most image patches show
only the background (negative class). Therefore, we subsampled from the negative image
patches, so that the resulting dataset is roughly balanced (approx. 1000–5000 image patches
for each class).

The behavior of SMIRF on the DAGM datasets is shown in Figure 6.15. Shown is the
result on a test image of “Class1”. As already seen on the MUSK datasets, the first iteration
(which corresponds to the standard random forest) yields an acceptable result. Although
there is significant noise in the image (false positive instance class probabilities), the defect
is clearly discernable.

With increasing number of iterations, SMIRF estimates more and more instances as
negative. Consequently, the result image of iteration 5 is almost free of noise. However,
on further iteration SMIRF also estimates more and more of the truly positive instances as
negative. This is because SMIRF is satisfied if it finds a single positive instance per training
image. If the positive patches in the test image do not correspond exactly to that single
patch in the training image, they will not be recognized as positive. This inappropriate
behavior of the multiple instance model can be corrected by replacing it with the power
model (see Section 6.4.2), but before, we consider bag classification of a complete image.

6.4.1 Bag classification via threshold method

To arrive at a prediction for the complete image, we have to combine the class probabilities
of the image patches to one image class probability. In terms of multiple instance learning,
this corresponds to the task of bag classification.

However, we find that the standard bag classification method (noisy-OR) does not perform
well on images. The reason is that noisy-OR effectively “adds up image noise”, so that an
image with some noise over a large area is assigned a larger defect probability than an image
with a small defect but less large area noise.

A better choice is the threshold method, described in Section 4.2.2. From the viewpoint
of the multiple instance model, the threshold method is a very crude approximation, but
for image data it is a good practical choice.

Figure 6.16 shows ROC curves of the bag classification methods “noisy-OR” and “thresh-
old” on the “Class1” dataset. While noisy-OR leads to a significant misclassification rate
of approx. 7%, the threshold method achieves perfect classification.

94

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Figure 6.15: Behavior of SMIRF on DAGM dataset “Class1”. Top left: original image.
Remaining panels: instance class probabilities as estimated by SMIRF at iteration 1, 2, 5,
10, 20 (top to bottom). 95

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Figure 6.16: Comparison of the bag classification methods “noisy-OR” (left) and “thresh-
old” (right).

6.4.2 SMIRF with power model

As observed above, the multiple instance model leads to inappropriate behavior of SMIRF
of the DAGM data, because it searches for only one positive instance per bag, while there
are in fact many. We have discussed this shortcoming of the multiple instance model in
Chapter 5 and proposed two models for improvement.

The power model can be incorporated into SMIRF by adapting the sampling of instance
classes. We replace the instance class probability PMI in (6.21) with the instance class
probability of the power model (5.43), and use the sampling technique described in 5.2.2.

The results of SMIRF with the multiple instance model and with the power model are
shown in Table 6.3. The multiple instance model works well only on Class1 and Class3,
on the other four datasets there is a significant number of misclassified images. The power
model also does not achieve perfect classification on these four datasets, but the number of
misclassfcations is much smaller.

One example image of each dataset is shown in Figures 6.17 and 6.17, together with the
patch-wise class probabilities as estimated by SMIRF with the power model.

96

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

multiple instance power model

false pos false neg false pos false neg

Class1 0 0 0 0

0 0 0 0

Class2 1 7 1 0

75 0 1 0

Class3 0 0 0 0

0 0 0 0

Class4 13 45 1 0

457 0 1 0

Class5 1 2 2 0

16 0 2 0

Class6 5 6 7 1

42 0 9 0

Table 6.3: Comparison of SMIRF with standard multiple instance model and with power
model (γ = 1) on DAGM dataset. In the upper line of each entry the decision threshold
was set to achieve a minimum number of misclassifications; in the lower line it was set to
achieve minimum false positives at zero false negatives.

97

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Figure 6.17: Results of SMIRF (power model with γ = 1) on DAGM datasets “Class1” to
“Class3” (top to bottom).

98

Chapter 6 Self-Training Multiple Instance Random Forest (SMIRF)

Figure 6.18: Results of SMIRF (power model with γ = 1) on DAGM datasets “Class4” to
“Class6” (top to bottom).

99

Chapter 7

Conclusion

In this work we were concerned with learning from the type of labels that are available in
industrial optical inspection and many other image processing applications: Negative images
are completely negative, but positive images contain both negative and positive regions. In
this situation multiple instance learning is an appropriate approach.

Most of the reported work on multiple instance learning is centered on specific algorithms
and applications. We have treated the multiple instance model in greater depth and gener-
ality than can be found elsewhere. On this route we have discovered two new methods for
bag classification (see below).

While the multiple instance model is an appropriate approach for our setting, there is
room for improvement by using the information we have about the number of positive
instances per bag. For this aim we have examined and implemented two alternatives to the
multiple instance model.

The above suggestions have been implemented and tested on a standard multiple instance
benchmark dataset and synthetic images that reflect the situation of industrial optical in-
spection

To summarize, the contributions of this thesis are:

1. Bag size independent classification: We have shown that the standard method of
bag classification (noisy-OR) is biased towards classifying large bags as positive. This
is true especially if the instance classifier provides noisy output. We have proposed a
model that compensates for this behavior and yields a bag size independent estimate of
the bag class probability. We have shown that this method can improve classification
performance both on synthetic data and on a real-world dataset.

2. Treewise classification: We have shown that the noisy-OR method yields a wrong
bag class probability if the instance class probabilities are correlated. Such a correla-
tion is to be expected especially if there are only few positive instances per positive
bag. We have suggested treewise bag classification, which is not impaired by corre-
lation, and we have shown that it indeed improves classification performance on a
standard multiple instance benchmark data.

3. Bernoulli model: In most applications where multiple instance learning is used,
each positive bag contains not only one but multiple positive instances. The simplest
way to adapt the multiple instance model to this setting is the Bernoulli model. We

100

Chapter 7 Conclusion

have examined the properties of this model and found that it has a different effect on
model training than it suggests at first sight, which makes it much less convincing.

4. Power model: As an alternative to the Bernoulli model we have suggested a power
model. It has the advantage that its influence smoothly varies with the number of
estimated positive instances per bag. In the case of few estimated positives per bag it
strongly increases the positive instance probabilities to explain the bag, while in the
case of many estimated positives it has only a minor effect.

5. SMIRF algorithm: We have proposed and implemented a self-training multiple
instance random forest (SMIRF). Also, we have incorporated the Bernoulli model
and the power model by adapting the method of instance class sampling. Using this
algorithm, we have compared the behavior of the multiple instance model with the
power model on an image dataset, and we have found that the power model indeed
improves performance in this case.

101

Bibliography

Amores, J. (2013), ‘Multiple instance classification: Review, taxonomy and comparative
study’, Artificial Intelligence 201(0), 81–105.

Andrews, S. & Hofmann, T. (2004), ‘Multiple instance learning via disjunctive programming
boosting’, Advances in Neural Information Processing Systems (NIPS) 16.

Andrews, S., Tsochantaridis, I. & Hofmann, T. (2002), ‘Support vector machines
for multiple-instance learning’, Advances in Neural Information Processing Systems
(NIPS) 15, 561–568.

Babenko, B., Dollár, P., Tu, Z. & Belongie, S. (2008), Simultaneous learning and alignment:
Multi-instance and multi-pose learning, in ‘Workshop on faces in real-life images: De-
tection, alignment, and recognition’.

Babenko, B., Yang, M.-H. & Belongie, S. (2009), Visual tracking with online multiple
instance learning, in ‘Computer Vision and Pattern Recognition (CVPR)’.

Babenko, B., Yang, M.-H. & Belongie, S. (2011), ‘Robust object tracking with online mul-
tiple instance learning’, Pattern Analysis and Machine Intelligence (PAMI), IEEE
Transactions on 33(8), 1619–1632.

Beyerer, J., León, F. P. & Frese, C. (2012), Automatische Sichtprüfung: Grundlagen, Meth-
oden und Praxis der Bildgewinnung und Bildauswertung, Springer.

Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Springer.

Bishop, C. M. & Lasserre, J. A. (2007), Generative or discriminative? getting the best of
both worlds, in J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Hecker-
man, A. F. M. Smith & M. West, eds, ‘Bayesian Statistics 8’, Oxford University Press,
chapter 8, pp. 3–24.

Blockeel, H., Page, D. & Srinivasan, A. (2005), Multi-instance tree learning, in ‘Proceedings
of the 22nd International Conference on Machine Learning (ICML)’, pp. 57–64.

Bouveyron, C. & Girard, S. (2009), ‘Robust supervised classification with mixture models:
Learning from data with uncertain labels’, Pattern Recognition 42(11), 2649–2658.

Breiman, L. (1996), ‘Bagging predictors’, Machine Learning 24, 123–140.

Breiman, L. (2001), ‘Random forests’, Machine Learning 45, 5–32. Publisher: Kluwer
Academic Publishers.

102

Bibliography

Buehler, P., Zisserman, A. & Everingham, M. (2009), Learning sign language by watch-
ing tv (using weakly aligned subtitles), in ‘Computer Vision and Pattern Recognition
(CVPR)’.

Bunescu, R. & Mooney, R. (2007), Multiple instance learning for sparse positive bags, in
‘International Conference on Machine Learning (ICML)’.

Chapelle, O., Schölkopf, B. & Zien, A., eds (2006), Semi-Supervised Learning, The MIT
Press.

Chen, C., Liaw, A. & Breiman, L. (2004), Using random forest to learn imbalanced data,
Technical Report 666, Department of Statistics, Univ. of California, Berkeley.

Chevaleyre, Y. & Zucker, J.-D. (2001), Solving multiple instance and multiple part learning
problems with decision trees and rule sets, application to the mutagenesis problem., in
‘14th Canadian Conference on Artificial Intelligence’, pp. 204–214.

Daly, R., Shen, Q. & Aitken, S. (2011), ‘Learning bayesian networks: approaches and issues’,
The Knowledge Engineering Review 26(2), 99–157.

Demant, C., Streicher-Abel, B. & Springhoff, A. (2011), Industrielle Bildverarbeitung: Wie
optische Qualittskontrolle wirklich funktioniert, Springer.

Deselaers, T. & Ferrari, V. (2010), A conditional random field for multiple-instance learning,
in ‘Proceedings of the 27th International Conference on Machine Learning (ICML)’.

Dietterich, T. G., Lathrop, R. H. & Lozano-Pérez, T. (1997), ‘Solving the multiple-instance
problem with axis-parallel rectangles’, Artificial Intelligence 89, 31–71.

Foulds, J. & Frank, E. (2010), ‘A review of multi-instance learning assumptions’, The Knowl-
edge Engineering Review 25(1), 1–25.

Gärtner, T., Flach, P., Kowalczyk, A. & Smola., A. (2002), Multi-instance kernels, in ‘Pro-
ceedings of the 19th International Conference on Machine Learning (ICML)’, pp. 179–
186.

Gehler, P. V. & Chapelle, O. (2007), Deterministic annealing for multiple-instance learn-
ing, in ‘International Conference on Artificial Intelligence and Statistics (AISTATS)’,
pp. 123–130.

Goldman, S. A. & Rahmani, R. (2006), Missl: Multiple-instance semi-supervised learning,
in ‘Proceedings of the 23rd International Conference on Machine Learning (ICML)’.

Goldman, S. & Zhou, Y. (2000), Enhancing supervised learning with unlabeled data, in
‘International conference on machine learning (2000)’.

Han, Y., Tao, Q. & JueWang (2010), Avoiding false positive in multi-instance learning, in
‘Advances in Neural Information Processing Systems (NIPS)’, pp. 1–8.

103

Bibliography

Hastie, T., Tibshirani, R. & Friedman, J. (2009), The Elements of Statistical Learning, 2
edn, Springer.

He, H. & Garcia, E. A. (2009), ‘Learning from imbalanced data’, IEEE TRANSACTIONS
ON KNOWLEDGE AND DATA ENGINEERING 21(9), 1263–1284.

Hüllermeier, E. & Beringer, J. (2005), Advances in Intelligent Data Analysis VI, Springer
Berlin Heidelberg, chapter Learning from ambiguously labeled examples, pp. 168–179.

Jähne, B. (2012), Digitale Bildverarbeitung, 7., revised edn, Springer.

Jin, R. & Ghahramani, Z. (2002), ‘Learning with multiple labels’, Advances in neural in-
formation processing systems (NIPS) pp. 897–904.

Karasaridis, A. & Simoncelli, E. (1996), A filter design technique for steerable pyramid
image transforms, Technical report, GRASP Laboratory, University of Pennsylvania.

Kleeven, S. & Hyvärinen, L. (1999), ‘Vision testing requirements
for industry’, Materials Evaluation 57(8), 797–803. Introduction,
http://www.asnt.org/publications/materialseval/basics/aug99basics/aug99basics.htm.

Kück, H., Carbonetto, P. & de Freitas, N. (2004), A constrained semi-supervised learn-
ing approach to data association, in ‘Computer Vision-ECCV 2004’, Springer Berlin
Heidelberg, pp. 1–12.

Kück, H. & de Freitas, N. (2005), Learning about individuals from group statistics, in
‘Proceedings of the Conference on Uncertainty in Artificial Intelligence’.

Lasserre, J. A., Bishop, C. M. & Minka, T. P. (2006), Principled hybrids of generative and
discriminative models, in ‘2006 Conference on Computer Vision and Pattern Recogni-
tion (CVPR)’, pp. 87–94. Kuer.

Leistner, C., Saffari, A. & Bischof, H. (2010), Miforest: Multiple-instance learning with
randomized trees, in ‘Proc. of the 11th European Conference on Computer Vision
(ECCV)’.

Leistner, C., Saffari, A., Santner, J. & Bischof, H. (2009), Semi-supervised random forests,
in ‘Computer Vision, 2009 IEEE 12th International Conference on’, pp. 506–513.

Li, M., Kwok, J. T. & Lu, B.-L. (2010), Online multiple instance learning with no regret,
in ‘Computer Vision and Pattern Recognition (CVPR)’.

Li, S., Wang, Z., Zhou, G. & Lee, S. Y. M. (2011), Semi-supervised learning for imbalanced
sentiment classification, in ‘Proc. 22nd international joint conference on Artificial In-
telligence’, Vol. 3, AAAI Press.

Li, Y., Tax, D. M. J., Duin, R. P. W. & Loog, M. (2013), ‘Multiple-instance learning as a
classifier combining problem’, Pattern Recognition 46(3), 865–874.

104

Bibliography

Liu, X.-Y., Wu, J. & Zhou, Z.-H. (2009), ‘Exploratory undersampling for class-imbalance
learning’, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETIC-
SPART B: CYBERNETICS 39(2), 539–550.

Maron, O. (1998), Learning from Ambiguity, PhD thesis, Massachusetts Institute of Tech-
nology.

Maron, O. M. & Lozano-Pérez, T. (1998), ‘A framework for multiple-instance learning’,
Advances in Neural Information Processing Systems (NIPS) 10, 570–576.

Maron, O. & Ratan, A. L. (1998), Multiple-instance learning for natural scene classification,
in ‘Fifteenth International Conference on Machine Learning (ICML)’.

Menze, B. H., Kelm, B. M., Splitthoff, D. N., Koethe, U. & Hamprecht, F. A. (2011),
Machine Learning and Knowledge Discovery in Databases, Springer Berlin Heidelberg,
chapter On oblique random forests, pp. 453–469.

Minka, T. P. (2000), Bayesian model averaging is not model combination, Technical report,
MIT Media Lab Note.

Minka, T. P. (2005), Discriminative models, not discriminative training., Technical Report
TR-2005-144, Microsoft Research, Cambridge, UK. Kuer.

Mitchell, T. M. (1999), The role of unlabeled data in supervised learning, in ‘Proceedings
of the sixth international colloquium on cognitive science’.

Natarajan, N., Dhillon, I., Ravikumar, P. & Tewari, A. (2013), Learning with noisy labels,
in C. Burges, L. Bottou, M. Welling, Z. Ghahramani & K. Weinberger, eds, ‘Advances
in Neural Information Processing Systems 26’, pp. 1196–1204.

Nettleton, D. F., Orriols-Puig, A. & Fornells, A. (2010), ‘A study of the effect of different
types of noise on the precision of supervised learning techniques’, Artificial Intelligence
Review 33(4), 275–306.

Ramon, J. & De Raedt, L. (2000), Multi-instance neural networks, in ‘Proc. of ICML-2000
Workshop on “Attribute-Value and Relational Learning”’.

Ray, S. (2001), Multiple instance regression, in ‘Proc. of the 18th International Conference
on Machine Learning (ICML)’, Morgan Kaufmann, pp. 425–432.

Ray, S. & Craven, M. (2005), Supervised versus multiple instance learning: An empirical
comparison, in ‘Proc.s of 22nd International Conference on Machine Learning (ICML)’.

Rubin, D. B. (1981), ‘The bayesian bootstrap’, The Annals of Statistics 9(1), 130–134.

Ruffo, G. (2000), Learning Single and Multiple Instance Decision Trees for Computer Secu-
rity Applications, Doctoral dissertation, Department of Computer Science, University
of Turin, Torino, Italy.

105

Bibliography

Sauer, P. (2008), Pattern recognition on statistically textured surfaces, Master’s thesis,
Ruperto-Carola University of Heidelberg, Germany.

Schoonard, J. W., Gould, J. D. & Miller, L. A. (1973), ‘Studies of visual inspection’, Er-
gonomics 16/4, 365–379. Introduction.

Scott, S. D., Zhang, J. & Brown, J. (2005), ‘On generalized multiple-instance learning’,
International Journal of Computational Intelligence and Appliocations 5, 21–35.

Seeger, M. (2002), Learning with labeled and unlabeled data, Technical report, Institute for
Adaptive and Neural Computation University of Edinburgh, 5 Forrest Hill, Edinburgh
EH1 2QL.

Simoncelli, E. P. & Freeman, W. T. (1995), The steerable pyramid: A flexible architecture
for multi-scale derivative computation, in ‘Second International Conference on Image
Processing’.

Singh, A., Nowak, R. & Zhu, X. (2008), Unlabeled data: Now it helps, now it doesn’t, in
‘Advances in Neural Information Processing Systems (NIPS)’.

Sorower, M. S. (2010), A literature survey on algorithms for multi-label learning, Technical
report, Oregon State University, Corvallis, OR, USA.

Stikic, M. & Schiele, B. (2009), Activity Recognition from Sparsely Labeled Data Using
Multi-Instance Learning, Vol. 5561/2009, Springer, chapter Lecture Notes in Computer
Science, pp. 156–173.

Tabassiana, M., Ghaderia, R. & Ebrahimpourb, R. (2012), ‘Combination of multiple diverse
classifiers using belief functions for handling data with imperfect labels’, Expert Systems
with Applications 39(2), 1698–1707.

Vezhnevets, A. & Buhmann, J. (2010), Towards weakly supervised semantic segmentation
by means of multiple instance and multitask learning, in ‘Computer Vision and Pattern
Recognition (CVPR)’.

Vijayanarasimhan, S. & Grauman, K. (2008), Keywords to visual categories: Multiple-
instance learning for weakly supervised object categorization, in ‘Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)’.

Viola, P., Platt, J. C. & Zhang, C. (2006), ‘Multiple instance boosting for object detection’,
Advances in Neural Information Processing Systems (NIPS) 18, 1417–1426.

Wang, J. & Zucker, J.-D. (2000), Solving the multiple-instance problem: A lazy learning
approach, in ‘Proc. of the 17th International Conference on Machine Learning (ICML)’,
pp. 1119–1125.

106

Bibliography

Wang, Z., Radosavljevic, V., Han, B., Obradovic, Z. & Vucetic, S. (2008), Aerosol optical
depth prediction from satellite observations by multiple instance regression, in ‘Proc.
8th SIAM International Conference on Data Mining’.

Yang, J. (2005), Review of multi-instance learning and its applications, Technical report,
School of Computer Science.

Zeisl, B., Leistner, C., Saffari, A. & & Bischof, H. (2010), On-line semi-supervised multiple-
instance boosting, in ‘Computer Vision and Pattern Recognition (CVPR)’, pp. 1879–
1879.

Zhang, C. & Viola, P. (2007), ‘Multiple-instance pruning for learning efficient cascade de-
tectors’, Advances in Neural Information Processing Systems (NIPS) pp. 1681–1688.

Zhang, C. & Zhang, Z. (2010), A survey of recent advances in face detection, Technical
report, Microsoft Research.

Zhang, K. & Song, H. (2013), ‘Real-time visual tracking via online weighted multiple in-
stance learning’, Pattern Recognition 46(1), 397–411.

Zhang, M. & Zhou, Z. (2013), ‘A review on multi-label learning algorithms’, Knowledge and
Data Engineering, IEEE Transactions on (Volume:PP , Issue: 99) in press(99).

Zhang, Q. & Goldman, S. A. (2001), ‘EM-DD: An improved multiple-instance learning
technique’, Advances in Neural Information Processing Systems (NIPS) 14, 1073–1080.

Zhang, Q., Goldman, S. A., Yu, W. & Fritts, J. E. (2002), Content-based image retrieval
using multiple-instance learning, in ‘Proc. of the 19th International Conference on
Machine Learning (ICML)’, pp. 682–689.

Zhou, Z.-H. (2004), Mulit-instance learning: A survey, Technical report, Nanjing University,
National Laboratory for Novel Software Technology.

Zhou, Z.-H., Sun, Y.-Y. & Li, Y.-F. (2009), Multi-instance learning by treating instances
as non-i.i.d. samples, in ‘Proceedings of the 26th International Conference on Machine
Learning (ICML’09)’.

Zhou, Z.-H. & Xu, J.-M. (2007), On the relation between multi-instance learning and semi-
supervised learning, in ‘Proc. of the 24th International Conference on Machine Learning
(ICML)’.

Zhou, Z.-H. & Zhang, M.-L. (2002), Neural networks for multi-instance learning, Technical
report, Nanjing University, National Laboratory for Novel Software Technology.

Zhou, Z.-H. & Zhang, M.-L. (2003), Ensembles of multi-instance learners, in ‘Proc. of the
15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI)’.

Zhu, X. (2010), Encyclopedia of Machine Learning, Springer, chapter Semi-Supervised
Learning.

107

	Acknowledgments
	Contents
	Introduction
	Industrial optical inspection
	Image processing
	Machine learning
	Weak labels and multiple instance learning
	DAGM datasets

	Bayesian Learning Theory
	The general setting
	Inference
	Maximum posterior and maximum likelihood
	Bayesian averaging
	Bagging

	Generative and discriminative models
	Semi-supervised learning
	Self-training

	Learning from weak labels
	Noisy labels
	Bag labels
	Inference in bag models

	Multiple Instance Learning
	The multiple instance model
	Model definition
	Model training
	Relation to semi-supervised learning

	Interpretations and variants of the multiple instance model
	Standard MI (sMI): Estimate latent instance classes
	Discard non-positive instances (dMI)
	Sesqui-class learning (SCL)
	Generalizations of the multiple instance model

	Applications
	Drug activity prediction
	Image classification
	Others

	Algorithms
	Axes-parallel rectangles (APR)
	Diverse density (DD)
	Diverse density with expectation maximization (EM-DD)
	Multiple instance SVMs
	Multiple instance learning based on decision trees
	Others

	Improving Multiple Instance Classification
	Bag size independent multiple instance classification
	Bag size dependent bias
	Generative, discriminative, and general bag models
	The generative multiple instance model
	Bag size independent MI model
	Assessment on synthetic data

	Multiple instance classification with ensemble classifiers
	Ensemble average at bag level
	Ensemble average at instance level
	Overview of bag classification methods
	Experimental results

	Alternative Bag Models for Multiple Instance Applications
	Bernoulli model
	Model definition
	Model properties
	Combination with MI model
	Notes on the Bernoulli model

	Power model
	Model definition
	Implementation

	Self-Training Multiple Instance Random Forest (SMIRF)
	Random forests
	Self-training random forest for standard multiple instance learning
	Self-training the multiple instance model
	Sampling approach and out-of-bag estimate
	Algorithm details and behavior

	Results on MUSK datasets
	Data balancing
	Bag-size-independent classification

	Results on DAGM data
	Bag classification via threshold method
	SMIRF with power model

	Conclusion
	Bibliography

