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Summary

T cells accurately discriminate between antigens that have only moderately different
affinities. The decision of whether the cell is activated or not is made during the
initial stages of membrane-proximal signaling triggered by the T cell receptor (TCR).
Several mechanistic models have been proposed to explain the highly specific and
sensitive recognition of peptide-MHC ligands. Prominent among them is the kinetic
proofreading model that accounts for the high specificity of the ligand discrimination
by the TCR based on ligand dwell time. Open questions of central importance are
(1) whether kinetic proofreading is indeed realized in TCR signal transduction and
(2) how information about ligand binding to the TCR is transduced to the cell
interior. In this work, we addressed these questions quantitatively by means of two
data–based models. Our models describe the dynamics of two core modules of TCR
activation: the TCR signaling module and the Src–family kinase regulation module.

The model of TCR signaling accounts for the reversible phosphorylation of im-
munoreceptor tyrosine–based activation motifs (ITAMs) in the TCR complex by
the kinase Lck and the phosphatase CD45, and the subsequent recruitment and
phosphorylation of the pivotal kinase ZAP70. We parameterize the model using ki-
netic measurements of phosphorylation status and protein-protein interactions. The
model constrained by these data allows for kinetic proofreading of ligand dwell time;
however, this capacity depends on the mechanism of signal initiation. Neither an
enhancement of phosphorylation nor a reduction of phosphatase activity alone allow
the TCR to discriminate ligand dwell times, whereas a combination of both effects
yields kinetic proofreading behavior.

TCR signaling is driven by the Src–family kinase Lck: thus we investigated the
dynamic regulation of Lck activity in the second model. The parameterization of this
model is based on dose–response data of wild type Lck and Lck chimeras with altered
membrane targeting. These data allow us to determine the model parameters within
narrow confidence bounds enabling us to make quantitative predictions with the
model. We find that Lck activity is regulated jointly by its subcellular localization,
trans–autophosphorylation of the activating tyrosine residue and the activity of the
phosphatase CD45 in the proximity of Lck. Mechanistically, CD45 mediates both
activating and inhibitory dephosphorylations of Lck. Physiologically, we find that
CD45 has a solely inhibitory effect on Lck activity. Interestingly, this inhibitory
action could synergize with the mechanisms modeled in the TCR signaling model
to support kinetic proofreading.

In summary, our results show how data-driven mathematical modeling, can be used
to dissect the complexity of TCR activation on a quantitative basis.
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Zusammenfassung

T-Zellen sind in der Lage exakt zwischen Antigenen mit moderaten Affinitätsun-
terschieden zu differenzieren. Ob die Zelle aktiviert wird, entscheidet sich während
des Beginns der vom T-Zell-Rezeptor (TCR) initiierten Signaltransduktion an der
Zellmembran. Die hohe Spezifität und Sensitivität in der Erkennung von Ligan-
den kann durch verschiedene mechanistische Modelle erklärt werden. Ein wichtiger
Vertreter ist das sogenannte kinetic proofreading-Modell (im folgenden kinetische
Fehlerkorrektur genannt), welches die spezifische Diskriminierung von Liganden an-
hand ihrer Verweildauer am TCR erklärt. Offene Fragen von zentraler Bedeutung
sind (1) ob eine kinetische Fehlerkorrektur durch die Signaltransduktion des TCR
realisiert werden kann und (2) wie die Information, dass ein Ligand an den TCR
bindet, ins Innere der Zelle übermittelt wird. In dieser Arbeit adressieren wir die-
se Fragen auf quantitativer Weise mit Hilfe von zwei, auf Messdaten basierenden,
Modellen. Diese Modelle beschrieben das dynamische Verhalten von zwei Hauptmo-
dulen der TCR- Aktivierung: Das TCR Signaltransduktions Modul und das Modul
welches die Regulation der zur Src-Familie gehörenden Kinasen zusammenfasst.

Das TCR-Signaltransduktionsmodell berücksichtigt sowohl die reversible Phospho-
rylierung der ITAMs (immunoreceptor tyrosine-based activation motifs) des TCR-
Komplexes durch die Kinase Lck und Phosphatase CD45 als auch die anschließende
Rekrutierung und Phosphorylierung der zentralen Kinase ZAP70. Wir parametrisie-
ren das Modell mit zeitaufgelösten Messungen des Phosphorylierungsstatus und von
Protein-Protein Interaktionen. Das so durch die Daten beschränkte Modell hat die
Fähigkeit, Liganden anhand ihrer Verweildauer am TCR zu unterscheiden, allerdings
hängt das Verhalten dieser kinetischen Fehlerkorrektur von dem Mechanismus der
Signalinitiierung ab. Weder eine verstärkte Phosphorylierung noch die Reduzierung
der Phosphataseaktivität alleine ist ausreichend für den TCR um Liganden anhand
ihrer Verweildauer zu unterscheiden. Erst eine Kombination beider Effekte resultiert
in der Möglichkeit zur kinetischen Fehlerkorrektur.

Regulierung der Aktivität von Lck untersuchen. In diesem Modell basiert die Para-
metrisierung auf Dosis-Wirkungs-Messungen des Wildtyps und verschiedener Chi-
mären von Lck, die sich durch unterschiedliches Assoziierungsverhalten mit der
Membran unterscheiden. Die Parameter des Modells können durch diese Daten
vollständig innerhalb kleiner Konfidenzintervalle identifiziert werden, was quantita-
tive Modellvorhersagen erlaubt. Wir können beobachten, dass die Aktivierung von
Lck gleichzeitig durch die zelluläre Lokalisierung von Lck, die Trans-Autophospho-
rylierung des aktivierenden Tyrosinrests und die Aktivität der Phosphatase CD45
reguliert wird. Mechanistisch gesehen kann CD45 sowohl die Aktivierung als auch
die Inhibierung von Lck vermitteln. Physiologisch können wir einen ausschließlich
inhibierenden Effekt von CD45 auf Lck feststellen. Interessanterweise könnte die-
ser inhibitorische Mechanismus den für die kinetische Fehlerkorrektur des TCR-
Signaltransduktionsmodells wichtigen synergistischen Effekt auslösen.
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Zusammenfassend zeigen unsere Resultate, dass die durch Daten unterstützte ma-
thematische Modellierung benutzt werden kann um die Komplexität der TCR Ak-
tivierung auf quantitativer Basis detailliert zu analysieren.
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1. Introduction

The recognition of antigen by the T cell receptor (TCR) is one of the hallmarks
of adaptive immunity. Not only is the TCR highly sensitive and can be triggered
by only a few ligands it is also very specific and is able to accurately discriminate
between ligands with only moderate differences in affinity. For reasons that are still
discussed in the field the TCR is able to sense the quality of a ligand rather than its
concentration. This discriminative power allows the selection of a T–cell repertoire
that mediates effective protection against foreign pathogens but is tolerant towards
self peptides.

Despite an ongoing debate on the mechanisms of TCR discrimination, many details
of the intricate mechanisms of TCR signaling have been unraveled over the years [62]
and the key molecules of this process are thought to be known [31]. The signalosome
of the T cell receptor consists of three core modules as defined by Acuto et al. [1]:
the Src–family kinase (SFK) regulation module, the signal triggering module and
the signal diversification module. The decision whether the TCR is activated by
a peptide or not is made during early TCR signaling [61]. Therefore, for a better
understanding of antigen discrimination by the TCR, the investigation of the two
core modules of SFK activation and TCR signal triggering is crucial.

In this work we combine mechanistic models of early events in TCR signaling and
of the regulation of Src–family kinase activation with experimental data to dissect
the complexity of TCR signaling on a quantitative basis.

1.1. T cell receptor triggering

T cells are constantly presented to antigen by surrounding cells. They are able to
distinguish rare foreign antigens from a vast amount of self antigens. Antigens are
presented to T cells in form of short peptide sequences.

Antigen presenting cells (APCs) express two classes of the surface molecule major
histocompatibility complex (MHC), MHC class I and MHC class II. Both types of
MHCs are able to bind the peptides (pMHC) and mediate the interaction of the
TCR and its cognate ligand. T cells are subdivided into two groups based on the
coreceptor they express. While CD8–T cells interact with pMHC class I molecules
that can be found on the surface of more or less all cells, CD4–T cells are triggered
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1. Introduction

by specialized APCs that carry MHC class II molecules.

The discrimination of antigens takes place during the early stages of TCR–mediated
signaling [61] and is based on the affinity of the ligand for the TCR [39]. Nevertheless,
the exact cellular response after TCR activation might depend on the strength of
the stimuli as well [71].

The T cell receptor itself is an oligomer that is composed of a ligand recognition
unit on the surface of T cells and an intracellular signaling module. A dimer of
two variable TCRα and TCRβ chains is responsible for ligand recognition. The
core signaling module is a dimer of two ζ-chains that is accompanied by a CD3δ/ε
and a CD3γ/ε dimer. All three dimers comprise immunoreceptor tyrosine-based
activation motifs (ITAMs) and play an important role in TCR signaling. The ligand
recognition subunit of the TCR is distinct from its signaling unit and has only a
few intracellular amino acid residues. Hence, it is difficult to envision - based on
TCR structure - how the extracellular signal is translated into intracellular signaling.
Different theories have been proposed that contribute to the question on how the
signal is transmitted through the membrane [68]. We will come back to this question
in Section 1.1.3, where we introduce the three main ideas of signal propagation.

ITAMs are TCR intrinsic activation motifs which are located on all six intracellular
subunits of the TCR. Each ITAM is comprised of a specific amino acid sequence
(Yxx(L/I)x6−8Yxx(L/I), where x denotes variable amino acids) which includes two
tyrosines (Y) that are around ten amino acids apart [17]. The ITAMs are differently
distributed between the subunits of the TCR. While each CD3 chain carries one
ITAM, the ζ-chains are comprised of three ITAMs each. In total there are ten
ITAMs per TCR. Because the TCR is organized in dimers, ITAMs on opposing
protein chains are colocated in pairs.

1.1.1. Early signaling events

TCR mediated T cell activation coincides with elevated levels of ITAM phospho-
rylation (although there might be exceptions [54]), which marks the first step of
TCR-based signaling. Upon TCR stimulation both tyrosine residues of one ITAM
have to be phosphorylated in order to pass on the activation signal. ITAMs are phos-
phorylated by the Src–family kinase Lck, which will be introduced in more detail
later in this chapter.

The predominant effect in TCR signaling is the recruitment of ZAP70 (ζ–chain as-
sociated protein of 70kDa, introduced in more detail later) to the ITAMs, although
the individual ITAMs might have additional functions in TCR activation [49]. The
phosphorylation of one ITAM is stabilized by ZAP70 binding. ZAP70 has a high
affinity only for double phosphorylated ITAMs [24]. Once it is bound it can get
phosphorylated at various tyrosine residues. The two most important phosphoryla-
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1.1. T cell receptor triggering

tion sites for T cell activation are a tyrosine residue in the linker region of ZAP70
that is called interdomain B and one in the kinase domain of ZAP70. The phos-
phorylation site in interdomain B is, like the ITAMs, phosphorylated by Lck. The
activating phosphorylation in the kinase domain of ZAP70 is carried out by trans–
autophosphorylation of an opposing ZAP70. The important role of ZAP70 in TCR
activation is further discussed in the next section.

Two main substrates of ZAP70 are the adaptor proteins SLP–76 (SH2 domain con-
taining leukocyte protein of 76kDa) and the linker of activation (LAT) [76]. Both
orchestrate a number of signaling cascades which ultimately result in a fully acti-
vated T cell and an immune response towards the antigen that triggered the TCR
[28, 58]. Important signaling pathways that are initiated by these phosphorylation
events include the MAP kinase pathway or the PI-3 kinase/Akt pathway [33]. One
of the first signs of T cell activation is an massive increase in calcium flux, which is
also initiated by the phosphorylation of LAT.

1.1.2. ZAP70 is an essential molecule in TCR triggering

The ζ-chain associated protein of 70 kDa (ZAP70) is one of the crucial molecular
players in TCR activation. Studies show that T cells deprived of ZAP70 cannot
become activated after TCR stimulation. The absence of ZAP70 results in severe
combined immunodeficiency (SCID) which is characterized by non functional CD4
T cells and the lack of CD8 T cells in the periphery [6]. The loss of ZAP70 cannot
be substituted by other molecules. After the phosphorylation of the T cell receptor,
upon stimulation with its specific ligand, ZAP70 is the first protein that interacts
with the TCR via the phosphorylated ITAMs.

The structure of ZAP70 contains two N-terminal SH2 domains that are linked to the
C-terminal kinase domain by interdomain B. The two SH2 domains of ZAP70 – and
their close proximity– make it possible to bind to both phosphorylated tyrosines of
an ITAM simultaneously. Unbound ZAP70 is in a closed conformation that shields
its activating phosphorylation sites. In order for ZAP70 to change its conformation
the two SH2 domains need to be bound in a certain pattern [17]. The incomplete
binding pocket of the first SH2 domain is completed by parts of the outside structure
of the second SH2 domain [24]. The two tyrosines of an ITAM are spaced in exactly
the right the distance to allow for high affinity ZAP70 binding. This very specific
ITAM–ZAP70 interaction prevents ZAP70 from becoming activated spuriously if it
binds to other proteins [70, 7].

Interdomain B of ZAP70 contains three phosphorylation sites (Y292, Y315, Y319)
that serve as binding sites for different signaling molecules [74, 48, 7]. While tyrosine
315 is an important phosphorylation site and is often mentioned in the context of
TCR activation, the crucial tyrosine residue of interdomain B is Y319 [19]. It is
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1. Introduction

phosphorylated by Lck and also serves as a binding site for it. But most importantly
it is needed for a positive regulation of ZAP70. ZAP70 that is mutated at Y319
cannot be activated, whereas mutations of other tyrosine residues including Y315
also result in decreased TCR activation but with much less severe effects [19]. It is
believed that phosphorylation of Y319 further stabilizes the open conformation of
ZAP70 and thereby enables the full activation of ZAP70 [7].

The ZAP70 kinase domain holds a pair of tyrosine residues (Y492 and Y493). While
phosphorylation of Y492 has an inhibitory effect, the phosphorylation of Y493 fully
activates ZAP70 [72]. Experiments with a ZAP70 inhibitor indicate that this tyro-
sine is phosphorylated mainly by trans–autophosphorylation [39].

To summarize, the activation of ZAP70 is a crucial step in early TCR signaling and
is preceded by the decision of TCR activation. Therefore, activated ZAP70 seems
to be a good measure of T cell activation and can be used as a readout of successful
TCR triggering.

1.1.3. Signal propagation

The T cell receptor does not possess intrinsic kinase activity. Nevertheless, the
information of extracellular stimulation needs to be transmitted into the cell and
translated into stronger phosphorylation of the ITAMs. In this section we will discuss
the different underlying mechanisms of signal propagation that have been proposed
[68].

Kinase aggregation model The most widely accepted mechanism is that of kinase
aggregation. Upon stimulation, kinases, in particular the Src-family kinases Lck and
to lesser extend Fyn, aggregate in close proximity of the TCR leading to augmented
phosphorylation of the ITAMs. Lck can be bound to the coreceptors CD8 and
CD4, which have a weak, unspecific affinity for pMHC. If there is a TCR–pMHC
interaction, the coreceptors are also recruited to the TCR and with it the bound
Lck [66]. The role of the coreceptors CD8 and CD4 is not completely clarified yet.
Mature T cells either are CD8 or CD4 positive, so both coreceptors might play
different roles in TCR activation. The presence of CD4 enhances the sensitivity of
TCR activation [37], whereas CD8 is even able to bind directly to the α-chain of the
TCR [38], which could contribute to the efficiency of TCR antigen discrimination.
However, it is also possible to activate T cells that do not have any of the two
coreceptors. A finding of Nika et al. [45] supports the aggregation model. In their
study the authors report high levels of basal Lck activation (around 40 %) that stay
unchanged upon TCR triggering.
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1.1. T cell receptor triggering

Conformational change model Another proposed mechanism attributes the signal
transduction through the membrane to a conformational change of the TCR. With-
out stimulation the ITAMs of the TCR are not accessible for Lck, because ITAMs
are in close contact to the membrane [73]. Ligand binding releases the intracellular
TCR subunits from the membrane, the ITAMs becomes more accessible and can
be phosphorylated more easily. The conformational change could either be induced
due to a pulling mechanism or by dimerization of TCRs [53, 59]. Although some
findings support this theory, the strong activation of the TCR with the phosphatase
inhibitor pervanadate is hard to match with this mechanism.

Both the kinase aggregation model and the conformational change model assume
that, in one way or the other, the rate of ITAM phosphorylation is enhanced. In
contrast, a third possibility assumes a decrease in phosphatase activity following
TCR stimulation.

Phosphatase segregation model The segregation model assumes that relevant
phosphatases are pushed out of the region of TCR–pMHC contact by mechanical
forces [16]. The predominant phosphatase at the membrane is CD45. It has very
large ectodomains, that excel the TCR–pMHC complex in size. Upon the formation
of the TCR–pMHC complex, CD45 is pushed out of the region of interaction due to
its size. A second possibility that would exclude phosphatases could be a rearrange-
ment of the membrane. If the amount of phosphatase is reduced in the proximity of
the TCR, phosphorylation is reversed to a much lesser extend and T cells become
activated. Recent studies show that, indeed, CD45 is pushed out of the signaling
region of the TCR [31].

Both enhanced kinase activity or decreased dephosphorylation results in increased
phosphorylation levels of the ITAMs and ZAP70 and can lead to successful TCR
triggering. None of the mechanisms is fully validated, nor can be rejected, thus a
combination of them is plausible and would explain why none of them is able to
satisfactorily explain signal propagation alone.

1.1.4. The high discriminative power of the TCR is explained by
different mechanisms

The high discriminative power of the TCR in its accuracy is unmatched by any
other known receptor. It is the combination of specificity, sensitivity, concentration
independence and its speed that make the TCR so special.

The specificity of the TCR is demonstrated by its ability to sense small changes
in ligand affinity. This was impressively shown by Daniels et al. [14] who tested
the boundary between positive and negative selection in the thymus for an array
of ligands with small differences in affinity. The authors found a sharp threshold
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1. Introduction

response with a boundary that is mostly independent of ligand concentration; only
one of the tested ligand with an affinity close to the threshold could either function
as a negative or positive selector depending on its concentration. This implies that
weak affinity can not be replaced by a high ligand concentration.

The TCR is sensitive already to a small number of foreign antigens, while on the
other hand is able to ignore a high number of self peptides. Around ten ligands
are sufficient to reliably trigger sustained T cell activation and the formation of the
immunological synapse [75], and even a single ligand could be sufficient to activate
the TCR [30]. Additionally the decision whether the TCR is activated or not is
made very fast. The up–regulation of signaling events, during which this decision is
made [61], only takes seconds [27].

For most receptors there is a trade off between sensitivity and specificity in ligand
recognition; the TCR is a rare example that shows a combination of both char-
acteristics. The desire to quantitatively understand this property has guided the
formulation of quantitative models, among them kinetic proofreading, feedback reg-
ulation and serial triggering models.

The serial triggering model is based on the assumption that high affinity ligands bind
to multiple TCRs consecutively [67]. Thereby a small amount of agonists are able
to trigger a much higher number of TCRs, which amplifies the signal of the agonist
ligand. Serial triggering models were formalized to account for the sensitivity of
TCR discrimination. [22].

Various feedback regulations of the TCR have been found experimentally. One
important negative regulator of TCR activation is SHP–1. It can be activated by
active ZAP70 as well as Lck. But both molecules are also negatively regulated
by SHP–1 [50, 12] creating direct negative feedback. On the other hand SHP–
1 is inhibited by activated Erk which generates a competitive positive feedback
regulation [63]. Other possible feedback mechanism involve the regulation of Ras
and SOS [15, 51]. Most of the described feedback regulations have been modeled
more or less quantitatively with varying levels of detail, but none of them are directly
linked to data [4, 21, 12, 51] and model parameters are mostly either taken from
literature or selected by the investigator.

A very detailed model is proposed by Altan–Bonnet et al. [4]. It contains com-
petitive feedback regulations via Erk and SHP–1. Interestingly, they incorporated
a kinetic proofreading mechanism into the model. The kinetic proofreading model,
which is described in more detail below, accounts especially well for the high speci-
ficity of the TCR. But the increased specificity comes at the expand of a reduced
sensitivity. In the model of Altan–Bonnet et al. sensitivity is partly restored by com-
bining the kinetic proofreading scheme with the additional feedback regulations.
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1.1. T cell receptor triggering

L + T

C0 C1 C2 Cn
...

kon koff koff koff koff

kp kp kp kp

S
Figure 1.1.: Kinetic proofreading scheme, adapted from McKeithan [40]. Upon contact,
the T cell receptor (T) and its cognate ligand (L) form a complex (Ci). The complex
becomes phosphorylated sequentially with the phosphorylation rate kp, The number
of phosphorylation steps is indicated by n. The signal (S) is only passed on if all
phosphorylation steps are completed. The TCR and the ligand associate and dissociate
with the rates kon and koff, respectively.

Kinetic proofreading in T cells

The principles of kinetic proofreading have first been proposed by Hopfield in 1974
[26]. In his work the author explained the high fidelity of translating the genetic
code by means of a mechanism which he termed kinetic proofreading. The pro-
posed model provides a mechanism for the precise molecular discrimination between
binding partners with very small differences in binding energies at the expense of
metabolic energy. The T cell receptor (TCR) is able to precisely discriminate be-
tween ligands with only moderate differences in affinity as well. In 1995 Timothy
McKeithan [40] proposed a link between this high discriminative power of the TCR
to the principles of kinetic proofreading.

McKeithan’s model proposes that downstream signaling is only possible after several,
energy consuming, phosphorylation steps. These phosphorylations are triggered by
ligands that bind to the TCR. As soon as the ligand dissociates from the TCR,
phosphorylation is stopped and – due to very fast dephosphorylation rates in the
model – the receptor is immediately cleared of all phosphorylations (see Fig. 1.1).

A signal is only generated if all phosphorylation steps are completed. This implies
that the generation of a signal no longer just depends on the ligand concentration
([L]) but also on the time that the ligand is bound to the TCR (τ) which is deter-
mined by the dissociation rate koff in the model (τ = 1/koff):

7



1. Introduction

Fraction of signaling TCR =
[L]

Kd + [L]

(
kp

kp + koff

)n
(1.1)

where Kd is the affinity of the ligand given by the ratio of the dissociation and
the binding rate (Kd = koff/kon), kp is the phosphorylation rate and n denotes the
number of phosphorylation steps that is required for downstream signaling.

Given constant ligand concentration the discrimination of ligands based on their
dwell time τ at the TCR that is proposed by the kinetic proofreading model is one
of the main features of TCR mediated T cell activation [34, 75].

The precision of ligand discrimination in the kinetic proofreading model is largely
dependent on the number of (time consuming) phosphorylation steps that precede
signal generation. The decision whether the TCR is activated or not is made within
seconds, leading to constrains on the number of proofreading steps in TCR activa-
tion.

Despite its elegance, McKeithan’s model could not been linked directly to experi-
mental data and biological processes within the T cell so far. Especially the fast
dephosphorylation rates, which ensure that the receptor is cleared immediately, are
not realistic in a biological context. Slower dephosphorylation rates are problem-
atic, because they lead to an accumulation of phosphorylated complexes and would
reduce the specificity of TCR discrimination (cf. Equation 1.1). Additionally, even
if activation of the TCR is in principal sequential, it does not exactly follow the
scheme that McKeithan proposed. ZAP70 recruitment to the TCR stabilizes its
phosphorylation, protecting it from the immediate dephosphorylation that is pro-
posed by McKeithan. It is questionable if the two phosphorylation steps before
recruitment are sufficient to generate the high specificity of T cell activation via
kinetic proofreading alone.

Different models have been proposed that are based on the idea of McKeithan, but
which are more closely related to the biology of actual TCR signaling [13, 23]. One
example is a model that combines the kinetic proofreading scheme with a negative
feedback that is based on the activation of SHP–1 during signaling [21]. Although
this model is less abstract than other models and the used parameters seem to be re-
alistic, it is not directly linked to data and the model features were only qualitatively
compared to experimental data.

Taken together this makes the kinetic proofreading scheme proposed by McKeithan
difficult to validate experimentally. There is still a need for models that incorporate
the idea of kinetic proofreading but are biologically more realistic and are based on
experimental data.
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1.2. Src-family kinase regulation

unique SH3 SH2 kinase
N-Terminus

C-Terminus

Y394 Y505

unique SH3 SH2
N-Terminus

C-Terminus

Y394pY505

kinase

open conformation

closed conformation

Figure 1.2.: Structure of the Src–family kinase Lck. The structure of Lck is similar to
those of other SFKs. It consists of an N–terminal attachment site, a unique region, a
Src–homology 3 (SH3) domain, an SH2 domain, a tyrosine kinase domain (also called
SH1) and a C–terminal negative regulatory domain. Tyrosine residues 394 and 505
are important for the regulation of Lck activity. Lck is in a closed conformation when
phosphorylated at the tyrosine residue 505.

1.2. Src-family kinase regulation

Members of the Src-family kinases (SFKs) are expressed in all human cell types.
The SFKs found in T cells are Lck and Fyn [55]. Both are able to phosphorylate the
ITAMs of the TCR and to some extend ZAP70. Since these are the first phosphory-
lations in the signaling cascade that are carried out, SFKs are considered to be the
key kinases in early TCR signaling. Between the two, Lck is the more important
kinase for TCR signaling than Fyn. Although Fyn is able to restore Lck function in
T cells to a certain degree, TCR activation is mainly driven by Lck [65]. Hence, we
focus on the regulation of Lck in this work.

All SFKs have similar structures and regulation mechanisms. The structure of Lck
consists of an N–terminal attachment site, a unique region, a Src–homology 3 (SH3)
domain, an SH2 domain, a tyrosine kinase domain (also called SH1) and a C–
terminal negative regulatory domain [46, 8] (see Fig. 1.2).

Protein modifications (myristoylation and palmytoylation) at the N–terminus are
important for the localization of Lck in the cell and enable the attachment of Lck
to specific regions of the membrane [46]. The unique domain mediates interaction
with the coreceptors CD8 and CD4 [46]. This interaction is important for the
participation of Lck in TCR activation.
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Interesting with regards to SFK activation are the phosphorylation sites of the ki-
nase domain and the C–terminus. The kinase domain comprises an activating phos-
phorylation site at tyrosine residue 394 and facilitates kinase activity of Lck. The
C–terminus holds a mostly inhibitory phosphorylation site at tyrosine residue 505.
The phosphorylation of this tyrosine residue results in an interaction between the
phosphorylated tyrosine and the SH2 domain, thereby promoting an inactive closed
conformation of Lck [46] (compare Fig. 1.2). We will refer to this phosphorylation
state of Lck as inhibited Lck. The closed conformation shields tyrosine residue 394
in the kinase domain from phosphorylation.

In order to become active, Lck has to be in an unphosphorylated (primed) state.
The transition from the closed to the unphosphorylated open conformation of Lck is
mediated by CD45 which dephosphorylates tyrosine 505. Lck is active as soon as it is
phosphorylated at Y394 by trans–autophosphorylation. After this phosphorylation
Lck retains its stable open conformation even if it is additionally phosphorylated at
Y505. The single and double phosphorylated active state – as they are called by
Nika et al. [45] – yield identical kinase activity. Unless indicated otherwise we will
refer to the sum of single and double active Lck as active Lck in the following work.

While the phosphorylation of Y394 is always activating, the C–terminal tyrosine 505
is phosphorylated in the inhibited as well as the double active state of Lck. Never-
theless, Y505 is mostly referred to as the inhibiting phosphorylation site. Mutations
of the equivalent phosphorylation site in Src (Y527) result in enhanced activity of
Src [55]. This confirms the inhibitory role of that phosphorylation site.

The activity of Lck is dynamically regulated by reversible phosphorylation of the two
tyrosine phosphorylation sites. The most important regulators are the phosphatase
CD45 and the kinase Csk [46]. While CD45 controls the dephosphorylation of both
the inhibitory and the activating phosphorylation site of Lck, the substrate of Csk
is only the tyrosine residue 505. If the kinase activity of Csk is inhibited, Lck
activation is enhanced and downstream targets are phosphorylated in the absence
of TCR stimulation [60]. This shows an inhibiting influence of Csk but also implies
a predominant availability of inhibitory Lck over double active Lck.

The substrates of Lck are ITAMs and ZAP70, but the initiation of these phospho-
rylation events upon TCR triggering are still debated (compare section 1.1). An
important question in this regard is how the activation of Lck is regulated when
the TCR is stimulated. There are contrary findings that either propose that the
activation of Lck is not influenced by TCR triggering or that report massive local
upregulation of Lck activity upon ligand binding. An antibody based measurement
of global Lck levels in a cell reveals that around 40 % of Lck is constitutively ac-
tive independent of TCR triggering [45]. This indicates that phosphorylation of the
TCR might be influenced by local rearrangement of already active Lck and that
the localization of Lck at the membrane is important for TCR activation. Indeed
it is shown that clusters of Lck and TCR can be found at the membrane [57] after
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TCR triggering. In a different measurement with a Lck biosensor that detects the
open conformation of Lck [47] the constitutively active Lck levels were confirmed.
This finding is contradicted by a different, more sensitive biosensor experiment that
shows a local increase in active Lck after TCR stimulation [64].

1.2.1. CD45 is an important regulator of Lck activity

One of the main regulators of the phosphorylation dynamics of Src-family kinases –
including Lck – is the protein tyrosine phosphatase CD45 (cluster of differentiation
45) [46, 31]. CD45 is a membrane protein that is expressed in abundance on T cells
and other hematopoietic cells [29, 3].

The function of CD45 is especially interesting because of the dual role it could have
on Lck activation. It not only dephosphorylates the inhibitory phosphorylation at
Y505, shifting inhibited Lck into the primed state and double active Lck into the
single active state, but it also targets the other, activating phosphorylation site.
Thereby it is able to regulate the transition from the double active and the single
active state of Lck to the inhibitory and primed state, respectively. This dual role
of CD45 makes it more difficult to predict the influence of CD45 on the regulation
of Lck activation, it could have an activating as well as an inhibitory effect.

Although it is known that for Src the main target of CD45 is Y505 [56], this has not
been shown specifically for Lck. This finding could suggest a more inhibitory role of
CD45 on Src. But it might well be that dephosphorylation of Y505 results mostly in
primed Src, which has neither an inhibitory nor an activating effect. The function
of CD45 strongly depends how its negative and positive regulations are balanced
[29] and most probably depends on T cell lineage and the developmental stage of a
T cell [3].

A study that investigated the effect of different CD45 concentrations on Lck and
TCR activation in mice showed that the sensitivity of the TCR depends on CD45
concentration and that the phosphorylation of both tyrosines of Lck were negatively
correlated with the concentration of CD45 [41]. With high concentration only high
affinity ligands were able to stimulate T cells, whereas T cells were much less sensitive
to antigen affinity when CD45 concentration was reduced. This shows that CD45
plays an important regulatory role in Lck and TCR activation.

The trans-autophosphorylation of the activating phosphorylation site adds addi-
tional interesting dynamical behavior of Lck regulation and makes it more difficult
to predict the behavior of Lck dynamics. This is demonstrated by the model of
Src regulation by Kaimachnikov and Kholodenko that predicts bistable switching as
well as oscillatory behavior depending on the parameterization of the model [32]. In
this work we first adapt their dynamically interesting model by specifying it for the
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regulation of Lck. We later use a model that makes less assumptions on underlying
enzymatic processes than the model of Kaimachnikov and Kholodenko (which is
phrased in terms of Michalis–Menten kinetics). In our model we take into account
different localizations of Lck, where it is exposed to different concentrations of CD45
and total Lck. Thereby we are able to study the influence of CD45 regulation and
trans-autophosphorylation in more detail.

1.3. Structure of this work

Our analysis is motivated by the finding of a sharp threshold response of the TCR
that depends on the time an antigen is bound to the TCR. We were interested if
this sharp threshold response can be explained by the mechanisms of early TCR
activation, which include signal initiation, early signaling events and the regulation
of kinase activity after TCR triggering. We investigated these questions in two
parts. We first concentrated on the TCR triggering module and then analyzed the
influence of Lck regulation on TCR activation.

Chapter 2 explains briefly the methods that we used in this work to estimate model
parameters, with a focus on error estimation and the profile likelihood method.

We then introduce a model of early TCR signaling in Chapter 3. Here we develop
first a model of basal TCR activation and estimate the model parameters from
kinetic data. By extending the model we are able to investigate the relationship
between the different signal propagation mechanisms and the kinetic proofreading
behavior of the model.

Chapter 4 is dedicated to the analysis of the dynamic regulation of Src–family kinase
Lck. The parameterization of the model is based on dose–response data of Lck
phosphorylation. We are able to dissect the complex dynamics of Lck activity by
means of its localization in the cell and the influence of kinases and phosphatases
on Lck regulation.
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2.1. Modeling

Modeling biological processes is typically done by two different kind of models: a
stochastic or a deterministic approach. Stochastic models are used for simulations
of systems with high variability, mostly when only small numbers of molecules are
modeled. On the other hand deterministic models may not account for the variability
of a system but have the advantage to give an overview on the general dynamics of
the model more easily. Additionally it is often less difficult to parameterize such a
model by fitting it to experimental data. The models that we introduce in this work
are all based on the deterministic modeling approach, hence we will give a short
overview on this kind of modeling here. Often deterministic models are phrased in
terms of a system of ordinary differential equations:

ẋ(t) = f(x(t), u(t), θ)

normally f is given by rate equations and u(t) denotes the model input such as
stimulation or perturbations. The model can be related to data by observables

y(t) = g(x(t), θ)

typically these are superposition of states or even more complicated relationships of
model states.

The rates of a mechanistic models often describe the kinetics of a biological process.
The exact biological process normally is to complex to model explicitly and is always
described in a simplified way in the models. Depending on the exact process different
descriptions of the kinetics are used, two of the most widely used kinetic assumptions
are mass action kinetics and Michaelis–Menten kinetics.

Mass action kinetics assume that the rate of a reaction is proportional to the concen-
tration of the substrate or to the product of substrate concentrations for bimolecular
reaction. It is the simplest kind of kinetic and is widely used for models of biological
processes.
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In contrast, Michaelis–Menten kinetics approximate an enzyme driven catalytic re-
action where an enzyme binds a substrates that is then converted into the product
and released from the complex. This enzyme kinetics assume that the enzyme–
substrate complex is in rapid equilibrium, implying that only a fraction of the total
substrate is bound and that there is much more substrate than enzyme. A notion
that does not hold true in a lot of cases.

2.2. Parameter estimation and identifiability

One of our main goals in this work is to parameterize our models in a biological
meaningful way. Mechanistic models often describe complex dynamics that highly
depend on the parameterization of the model and can not easily be deduced from the
model structure. Especially if an analytic solution can not be calculated. To analyze
the model dynamics the parameters of the model have to be known or estimated
from data. In most cases the parameters cannot directly be measured, here we will
briefly describe how parameters are typically estimated from data.

In order to relate the model to the available experimental data, the model has to
have an appropriate structure that is able to explain the data. We are then able
to estimate the model parameters such as concentrations or rate constants from the
data.

A widely used and well established method for the estimation of the parameters
is the maximization of the log–likelihood function [20, 2], which is equivalent to a
least-square minimization if the observed noise is normally distributed.

Then the log–likelihood function is defined as
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∏
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with

χ2 =
∑
i

(
Di − θi
σi

)2

where θ denotes a vector of model parameters, Di denotes the observed data and σi
is the measurement error.

In order to find the best–fit parameters of the model logL(θ|D) has to be maximized.
This is equivalent to minimizing χ2, given that σ1 is constant. In this work we always
need to estimate the error of the data σi as well. Therefore we had to minimize

g(θ) =
∑
i

log σi +
1

2
χ2(Θ) = 2

∑
i

log σi + χ2(Θ) (2.1)

where θ is a vector that is comprised of the vectors Θ and σ.

2.2.1. The profile likelihood approach

In this work we use the profile likelihood method [43, 69] to assess the uncertainty
of our estimated model parameters as described in [52, 35].

Mechanistic models such as the models investigated in this work are typically non-
linear and confidence regions can have complex shapes. Therefore the nonlinear
likelihood function is appropriate to use in such settings. [35]

Using the profile likelihood method we can analyze which possible values of a sin-
gle model parameter are in statistical agreement with the available experimental
data. Additionally the profile likelihood method can be used to calculate confidence
intervals of the estimated parameters.

In principle we keep the parameter that we investigate fixed and re–fit the model
for a series of parameter values.

In our case the profile likelihood PL as a function of these values p is then defined
as

PLj(p) = min
θ∈{θ|θj=p}

g(θ|D)
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g(θ) is given in equation 2.1, D denotes the given experimental data and θi, i 6= j is
reoptimized.

On the basis of this we are able to estimate confidence intervals for the investigated
parameter. The confidence interval CI is thereby defined by

CIα(θj) = {p |PLj(p) ≤ min
θ
g(θ|D) + χ2

α,1} (2.2)

with χ2
α,1 denoting the α quantile of the χ2 distribution with one degree of freedom.

2.2.2. Prediction confidence intervals can be estimated by using the
profile likelihood method

The estimation of confidence intervals for model predictions is a generalization of
the profile likelihood method [11, 36]. Instead of investigating which parameters
values are in statistical agreement with the data, we can also test which values of a
model prediction are in statistical agreement with the measurements. Her we will
introduce the prediction profile likelihood method as described in [36, 35].

For the classical calculation of prediction profile likelihoods the analytical solution
is needed [25], which is not feasible for our models. Therefore we utilize the profile
likelihood method to evaluate the uncertainties of the model prediction. In principle
we re–fit the model while introducing a constraint for the prediction value instead
of fixing a parameter like described above.

A prediction F could be any characteristic of the model. The corresponding predic-
tion profile likelihood then is a function of different values z of the prediction:

PPLF(z) = min
θ∈{θ|F (θ)=z}

g(θ|D)

the minimization is performed for the subset of parameters with model response
F (θ) = z. The corresponding confidence interval is obtained similar to Equation 2.2
and is defined as

PCIα(F) = {z|PPLF(z) ≤ min
θ
g(θ|D) + χ2

α,1}

with χ2
α,1 denoting the α quantile of the χ2 distribution with one degree of freedom.

The estimated confidence interval of the prediction is the set of values z for which
PPL is below a threshold that is given by the χ2 distribution.
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In this work we analyzed the uncertainties of all parameters that we estimated and
used the prediction profile likelihood method extensively in Chapter 3 to assess the
uncertainties of our model predictions.
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3. A mechanistic model of early T cell
receptor signaling

One of the core modules of T cell receptor (TCR) activation is the TCR signal trig-
gering module as described by Acuto et al. [1]. It includes the phosphorylation of
the immunoreceptor tyrosine–based activation motifs (ITAMs) and the recruitment
of ZAP70 (ζ–chain associated protein of 70 kDa) to the TCR complex followed by
the activation of ZAP70 by sequential phosphorylation. The phosphorylation of the
adapter molecule LAT (linker of activation) by ZAP70 marks the transition to an-
other module of TCR activation which is described in [1] as the signal diversification
and regulation module.

It is known that the decision whether the T cell is activated or not is made during
the early events of TCR signaling [61]. However, the exact mechanism that is able
to distinguish between different ligands is still debated. The kinetic proofreading
theory – first presented by McKeithan in 1995 in the context of T cell activation
[40] – is a promising mechanism to explain the observed threshold response. But
up to date no experimental prove of this theory has been found. Here we focus on
quantitative modeling of the early signaling events of TCR activation; especially we
will demonstrate the kinetic proofreading capability of the model and will provide
a mechanistic explanation for the sharp threshold response of the TCR to stimuli
with only little difference in affinity.

We will first introduce a model describing the basal phosphorylation of the TCR in
the absence of external TCR triggering. In the second part of the chapter we will
include the effects of stimulation into the model and scrutinize the kinetic proof-
reading capabilities of the model. We will conclude the chapter by dissecting the
impact of the different possibilities of signal transduction into the cell on the kinetic
proofreading behavior.

3.1. Modeling basal activation of the T cell receptor

Without external stimulation T cells exhibit low phosphorylation levels of ITAMs
and ZAP70. A fine balance of dephosphorylation and phosphorylation rates prevents
the T cell from becoming activated, but maintains basal activation of the TCR that
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3. A mechanistic model of early T cell receptor signaling

builds the foundation of T cell activation upon ligand stimulation.

In this first part of the chapter we build a model of early signaling events that
considers only basal activation. We use time–resolved data of basal T cell activation
to parameterize our mechanistic model. The obtained parameter estimates will
then be used in the second part of the chapter where we incorporate external TCR
stimulation into the model.

3.1.1. Basal TCR activation is measured by stimulating T cells with the
phosphatase inhibitor pervanadate

Triggering T cell activation

T cell activation is triggered by external stimulation of the TCR. This shifts the
phosphorylation of the TCR from its basal state to higher phosphorylation levels.
In a living organism TCR activation is triggered by an encounter between the TCR
and its specific ligand. Experimentally this can be achieved by either stimulation
of the TCR with its specific antibody or unspecific TCR triggering. This kind of
TCR triggering can be attained by using antibodies that bind to the CD3 unit of
the TCR, usually together with antibodies for the coreceptors CD4, CD8 and/or
CD28. Both – specific and unspecific TCR triggering – is supposed to initiate the
usual activation mechanism of the TCR and first signs of activation (like calcium
flux) can be measured within seconds after stimulation.

But T cells can also be activated by stimulating them with pervanadate, a strong
and unspecific phosphatase inhibitor which inhibits 80-90 % of the phosphatase
activity in the cell [42]. It thereby shifts the basal phosphorylation level to a higher
state, by only decreasing dephosphorylation rates and without changing the kinase
activity in the cell. Although with this method the TCR is not triggered directly,
common characteristics of T cell activation like higher phosphorylation levels of
several signaling molecules and calcium flux are observed. However, the time scale
of activation is shifted from seconds to minutes compared to the more physiological
stimulations.

Pervanadate stimulation allows us to decouple TCR activation from mutual binding
events of ligands, by directly addressing phosphorylation kinetics in a controlled
and consistent way. But it is of course not fully comparable to a more physiological
stimulation and does not give insight into the mechanism of signal initiation. While
the TCR is activated within seconds if stimulated with ligands, the activation by
pervanadate takes minutes. It is nevertheless a very strong activation.
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Figure 3.1.: Measurements of TCR activation kinetics. T cells have been stimulated
with pervanadate and recruitment and phosphorylation of ZAP70 at different time
points after stimulation have been measured. Bound ZAP70 (left panel) and phos-
phorylation of Y319-ZAP70 (middle panel) were measured in a multicolor IP-FCM
experiment. The data of Y493-ZAP70 phosphorylation (right panel) was conducted
by Western blot experiments. For each of the time points we have three replicates.
(Experiments by S. Deswal and W. Schamel)

IP-FCM and Western blot measurements reveal a hierarchy of activation

The data used in this part of the work are based on experiments conducted by Sumit
Deswal from the laboratory of Wolfgang Schamel at the University of Freiburg and
have been published in [18].

Our collaborators measured the kinetics of different early signaling events at the
TCR, with a focus on the activation dynamics of ZAP70, following treatment with
pervanadate using two experimental techniques.

Employing a multicolor IP–FCM approach, the experimentalists were able to quan-
tify the amount of ZAP70 that is bound to the ITAMs, as well as the phosphorylation
at interdomain B (at Y319) of bound ZAP70. We will refer to those measurements
as bound ZAP70 per TCR and pY319–ZAP70 per TCR, respectively. The kinetics
of the activating phosphorylation site at Y493 were measured using Western blot
techniques. For all measurements data at time points 0, 2, 5, 10 and 20 minutes are
available.

Multicolor IP-FCM, introduced by Deswal et al. [18], is a powerful and very quan-
titative measurement approach. Antibody (anti-TCRβ) coupled beads are used for
immunoprecipitation of the TCR complex at different time points after stimulation
with pervanadate. Next, the probes are stained with differently fluorescent-labeled
antibodies for ZAP70 and for pY319-ZAP70. The fluorescence intensity is then
determined by flow cytometry. Additionally, the usage of quantibeads makes it pos-
sible to determine the absolute number of measured molecules per TCR. With this
method quantitative measurements were obtained simultaneously of the amount of
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3. A mechanistic model of early T cell receptor signaling

ZAP70 bound to the TCR and the number of ZAP70 that is phosphorylated at Y319
per TCR at different time points. Thus, both data sets can be easily compared to
each other.

Unfortunately, it was difficult to also measure the amount of ZAP70 phosphorylated
at Y493 with IP-FCM. The phosphorylation at Y493 is necessary for ZAP70 to be
fully activated and can be used as an indicator for active ZAP70. To obtain more
information about the activation state of ZAP70 the amount of pY493-ZAP70 per
TCR was measured in a Western blot experiment, again at time points 0, 2, 5, 10
and 20 minutes. Although this measurement is not as quantitative as IP-FCM it
gives good additional indication on the activation kinetics of pY493-ZAP70. This
data set was made comparable to the IP-FCM data sets by using additional data
from the literature; a normalization procedure that is necessary for the estimation
of the parameters and is explained in more detail in Section 3.1.3.

The measurements demonstrate a hierarchy of ZAP70 recruitment and activation
(Fig 3.1). First ZAP70 is bound, then Y319–ZAP70 and later Y493–ZAP70 is
phosphorylated. This hints at a sequential phosphorylation of ZAP70; an important
finding that impacts the model set up discussed below.

In the next section we will describe a mechanistic model that was motivated by the
measured data and incorporates the canonical knowledge of early signaling events.
In Section 3.1.3 we use these measurements to parameterize the model.

3.1.2. A model of early events in TCR signaling

We develop a mechanistic model of basal activation of the TCR that is based on the
early signaling events after T cell triggering at the level of the TCR. It consists of
the following three main parts:

• Random phosphorylation of ITAMs

• Binding of ZAP70 to the double phosphorylated ITAMs

• Activation of ZAP70 by subsequent phosphorylation

The TCR contains ten ITAMs that are distributed among the different intracellular
subunits of the TCR and are colocated in distinct pairs. Even though they might be
phosphorylated at different rates in our modeling framework we assume that they
are independent, and set up a model for one pair of ITAMs.

The complete scheme of the basal model is depicted in Figure 3.2 with all possible
model states and transitions between those states. Each ITAM has two tyrosine
residues that are phosphorylated by the Src-family kinase Lck with same rate but in
no particular order upon TCR triggering. In the model this random phosphorylation
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is described by the rate a1, while b1 is the dephosphorylation rate of the ITAMs.
The dephosphorylation is carried out by phosphatases like CD45, which is implicitly
modeled by summarizing its concentration in the rate constants. An ITAM that is
phosphorylated then serves as a docking site for the kinase ZAP70.

The structure of ZAP70 contains two SH2 domains that simultaneously bind to the
two phosphorylated tyrosines of an ITAM. This binding event induces a conforma-
tional change in ZAP70 making it more accessible for kinases such as Lck. The
recruitment of ZAP70 is described in the model by the binding rate kon and the dis-
sociation rate koff1 . The kinase domain of ZAP70 is linked to the two SH2 domains
by interdomain B which contains several phosphorylation sites (including tyrosine
319). The kinase domain of ZAP70 itself is activated by phosphorylation of Y493.

Although ZAP70 has several phosphorylation sites, only two of them are considered
in the model. Tyrosine 319 in the interdomain B of ZAP70 is a critical regulator of
T cell activity [19] and is phosphorylated by Lck. In the model phosphorylation and
dephosphorylation of Y319 are characterized by the rates a2 and b2, respectively.
This phosphorylation stabilizes the open conformation of ZAP70, which is necessary
for the subsequent phosphorylation of tyrosine 493. Y493 is localized in the kinase
domain of ZAP70 and needs to be phosphorylated in order for ZAP70 to become ac-
tive. Because ZAP70 has to be in an open confirmation it cannot be phosphorylated
at Y493 before Y319 is phosphorylated. But once the second phosphorylation is
established, the open conformation of ZAP70 is further stabilized and ZAP70 stays
active even without Y319 being phosphorylated. This forms the possible signaling
state (Y319–pY493–ZAP70) in the model.

We assume that the TCR-ZAP70 complex is much more stable when ZAP70 is phos-
phorylated, but could still dissociate. Therefore we introduce a second dissociation
constant koff2 in the model.

It was shown that phosphorylation of Y493 is mostly due to trans-autophosphory-
lation [39] of opposing ZAP70. Hence we develop a model of a pair of ITAMs as the
minimum model. The phosphorylation of Y493-ZAP70 can only occur if ZAP70 is
bound to both of the ITAMs and is at least phosphorylated at Y319. This trans-
autophosphorylation is described in the model by the rate a3 and its reverse rate of
dephosphorylation by the parameter b3.

We assume that the pairs of ITAMs are independent from each other, for two reasons.
First, studies on the individual contributions of different ITAMs in TCR activation
are not conclusive yet and cannot quantify ITAMs that have a pronounced role
in TCR activation [49]. Second, we are not able to distinguish between individual
ITAMs based on the pervanadate data that we used. Therefore the smallest possible
model that still might be able to explain the observed behavior of the TCR and that
can be related to data is the one described.
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Figure 3.2.: Reaction scheme of the canonical model of basal T cell receptor signaling
for a pair of ITAMs. The three modules of the model are ITAM phosphorylation,
ZAP70 recruitment and the subsequent phosphorylation of ZAP70. Each ITAM can
be in different states: unphosphorylated (I), phosphorylated once (I1) or twice (I2).
ZAP70 only binds to double phosphorylated ITAMs (Z) and is then phosphorylated
sequentially. First ZAP70 is phosphorylated at Y319 (Z1), then it is activated by trans-
autophosphorylation at Y493 (Z2 and Z3) by an opposing phosphorylated ZAP70. The
transitions between the states are indicated by arrows.
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By combining all of the relevant signaling events we obtain 28 distinguishable states
for a pair of ITAMs that are composed of all possible combinations of the seven
signaling states for a single ITAM (Fig. 3.2). The corresponding system of ordinary
differential equations that was developed using mass action kinetics can be found in
Chapter A.1.1 of the appendix.

Typically, T cells have a much higher number of ZAP70 than of TCRs (compare
Fig. 2C in [4]). For this reason we assumed an abundance of ZAP70 for the model.
This entails that all of the rate constants are independent of the concentration of
ZAP70 and have the dimension of one over time.

ZAP70 that is phosphorylated at either one or both of the tyrosines considered in
the model (pY319–ZAP70, pY493–ZAP70 or pY319–pY493–ZAP70) is able to me-
diate trans-autophosphorylation. Even though ZAP70 is only fully active if phos-
phorylated in its kinase domain (at Y493) and thereby might be better capable to
phosphorylate the opposing ZAP70, we cannot distinguish between those two pos-
sible rates based on the pervanadate data. Hence, we include a single rate for any
trans-autophosphorylation into the model (a3).

Since we only have measurements for a certain subset of combined model states, we
will see in the next section that the data give only limited information about the
nine rate constants (a1, b1, kon, koff1 , a2, b2, a3, b3, koff2) that connect the individual
states.

3.1.3. Estimation of the basal rates from kinetic measurements

The nine rate parameters (a1, b1, kon, koff1 , a2, b2, a3, b3, koff2) of our model have not
been measured before, except for a measurement in 1995 by Bu et al. of the affinity
of ZAP70 [10]. Therefore we aim to estimate these parameters from the kinetic data
of bound ZAP70 and both phosphorylations of ZAP70 that is summarized in Figure
3.1. Since the measurements are obtained from stimulations with pervanadate, we
can only estimate basal rates. The affinity measurements of Bu et al. [10] are later
used for comparison with the estimated binding rate constant of ZAP70.

In order to fit the model to the data, we have to make assumptions on the efficiency
pervanadate stimulation. Pervanadate reduces the activity of the phosphatases in
the cell to 10 - 20 % [42]. In the model the pervanadate stimulation is described by
the parameter p = 0.2, which is multiplied to all dephosphorylation rates (b1, b2 and
b3) of the model. This enables us to still estimate the individual dephosphorylation
rates.

While the absolute number of bound ZAP70 per TCR and pY319-ZAP70 per TCR
are available from the IP-FCM measurements, the data derived from the Western
blot experiment are not as quantitative and are not directly comparable to the
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3. A mechanistic model of early T cell receptor signaling

IP-FCM data. Therefore, we can either estimate an additional scaling factor for
these data or try to assess this factor from the literature. Attempting the first
possibility by introducing an extra fitting parameter results in huge uncertainties
in the fitted parameters, especially for the parameter that describes the rate of
trans-autophosphorylation a3. We find this rate to be nonlinearly dependent on
the fitted scaling factor – a fact that cannot easily be seen directly in the model
equations. Most of these fitting attempts result in a huge scaling factor and very
small amounts of active ZAP70 in the model, which is biologically not plausible.
Therefore we resort to the second option of fixing the scaling factor with data from
Mallaun et al. [39] (Fig 1 and 2) and roughly estimate a 2-fold difference in pY319-
ZAP70 and pY493-ZAP70. Accordingly we keep the scaling factor fixed for the
remaining fitting procedure.

Western blot experiments are less accurate than measurements with IP-FCM. There-
fore the margins of the errors vary widely between the data sets. For the fitting this
means that data from the IP-FCM are weighted more. This is reasonable, because
we would trust the more accurate experiment more. However in the present case
the difference was so striking that the data for pY493-ZAP70 (Western blot exper-
iment) almost got neglected in our fitting attempt. We decided to rather estimate
the absolute error of each data by including the error into the objective function
that we aim to minimize (as described in Chapter 2.2)

Time point zero in the data represents the equilibrium state of the TCR before
pervanadate stimulation. The steady state of the model without pervanadate stim-
ulation (p = 1) is fitted to the measurements of time point zero of all three data
sets.

The data of bound ZAP70 per TCR, pY319-ZAP70 per TCR and pY493-ZAP70
per TCR is described by the model in terms of the following observables:

Θ1i = 5

28∑
j=1

ϕj = amount of ZAP70/TCR at time point i

Θ2i = 5
28∑
j=1

ηj = amount of pY319-ZAP70/TCR at time point i

Θ3i = 5

28∑
j=1

νj = amount of pY493-ZAP70/TCR at time point i

with ϕj , ηj , νj ∈ (0, 1, 2) being the number of bound ZAP70, pY319-ZAP70 and
pY493-ZAP70 in state xj of the model, respectively.
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3.1. Modeling basal activation of the T cell receptor
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Figure 3.3.: The model (solid line) of basal TCR activation was fitted to the time course
data of pervanadate stimulation experiments measured with IP-FCM and Western blot
(right panel). (Experiments by S. Deswal and W. Schamel)

Thus we had to minimize the objective function

f(~p) = 2 · 5
3∑
j=1

log σi + χ2,

where the first term of the right hand side is due to the estimation of the errors
(compare Chapter 2.2) and

χ2 =

5∑
i=1

(
D1i −Θ1i

e1

)2

+

5∑
i=1

(
D2i −Θ2i

e2

)2

+

5∑
i=1

(
D3i −Θ3i

e3

)2

.

Here D1i denotes the measured ZAP70, D2i pY319-ZAP70 and D3i pY493-ZAP70
per TCR at time points i = 0, 2, 5, 10, 20, and ei are the estimated errors.

For the parameter estimation we used the simplex based algorithm fminsearch from
the software MathWorks MATLAB. The resulting best fit is shown in Figure 3.3.
We capture the overall behavior of the data well, especially the data of bound ZAP70
per TCR and pY493-ZAP70 per TCR are nicely reproduced by the model.

The estimated parameters of basal TCR activation are summarized in Table 3.1.
The basal dephosphorylation rates b1 and b2, that describe dephosphorylation of
the ITAMs and pY319–ZAP70, respectively, are fast. Whereas the corresponding
phosphorylation rates are estimated to be slow. A behavior that is expected for
the basal rates of TCR activation since the TCR needs to be kept in a more or
less unphosphorylated state before it gets activated. Slow phosphorylation and
fast dephosphorylation rates ensure that this is the case, and that the TCR is not
activated by accident. In contrast, the dephosphorylation of pY493-ZAP70 (b3 =
4 × 10−5) as well as the dissociation rate of phosphorylated ZAP70 (koff2 = 0.002)
are estimated to be very slow. This might ensure that ZAP70 stays in its active
state once it is fully activated.
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3. A mechanistic model of early T cell receptor signaling

parameter estimated confidence
value interval

ITAM phosphorylation (a1) 0.002 s−1 [0.0007,∞]
ITAM dephosphorylation (b1) 0.025 s−1 [0.005,∞]
binding of ZAP70( kon) 2.96 s−1 [0.0004,∞]
dissociation of ZAP70 and ITAM (koff1) 3.73 s−1 [0.001,∞]
phosphoryation of Y319-ZAP70 by Lck (a2) 0.29 s−1 [0.004,∞]
dephosphorylation of Y319-ZAP70 (b2) 31.4 s−1 [0.47,∞]
trans-autophosphoryaltion of Y493-ZAP70 (a3) 0.36 s−1 [0.15,∞]
dephosphorylation of Y493-ZAP70 (b3) 4×10−5 s−1 [0,∞]
dissociation on phospho-ZAP70 and ITAM (koff2) 0.002 s−1 [0,∞]
estimated error for first data set (e1) 0.051 [0.03, 0.21]
estimated error for second data set (e2) 0.008 [0.003, 0.02]
estimated error for third data set (e3) 0.0005 [0.003, 0.001]

Table 3.1.: Best fit parameters as estimated from fitting the model to the pervanadate
stimulation data. For each parameter the best fit value is given as well as the estimated
95%-confidence interval.

Profile likelihoods show one-sided parameter bounds

The uncertainties of the estimated parameters are analyzed by calculating the re-
spective profile likelihoods as described in Chapter 2.2.1. The profile likelihoods
are shown in Figure 3.4 together with the threshold for χ2

95% (solid red line) and
χ2

90% (dashed red line). The quantified confidence intervals from the shown profile
likelihoods are given in Table 3.1.

Since our model is quite detailed and part of the model states are not covered by
the data, none of the estimated rate constants is fully identifiable. But we find lower
bounds for all phosphorylation rates (a1, a2 and a3), for the dephosphorylation rates
of the ITAMs and pY319-ZAP70 (b1 and b2), for the binding rate of ZAP70 (kon)
and for the dissociation rate of unphosphorylated ZAP70 (koff1). Our analysis shows
that all of these reactions have to happen with a certain minimal rate, but could
also be much faster.

The other two rate constants of the model (b3 and koff2) are estimated to be very
small. The dephosphorylation rate of pY493-ZAP70 b3 is even practically zero.
Because both of these rates are small, ZAP70 is kept in its active form once it
is fully activated. In the case of the dissociation rate this could be explained by
the open conformation of phosphorylated ZAP70, which could stabilize the ITAM-
ZAP70 interaction. However, the data do not support an upper bound of the 95%–
confidence interval for both rates. Even though the fit becomes worse for higher
rates, the change in χ2 is not significant.
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The other ratios have one-sided bounds.

The estimation of the errors for each of the three data set is justified by the profile
likelihoods. All three errors are well defined, have narrow bounds and correspond
well to the scale of each data set.

We can compare the binding rates of ZAP70 to measured data from Bu et al. [10].
The authors measured the affinity Kd of ZAP70 by surface plasmon resonance and
found a Kd of 21.4 nM and an association rate of ka = 6.0 × 106 M−1s−1. This
results in

koff = Kdka = 0.128 s−1

which is smaller than our best fit value for koff1 but is well inside the confidence
interval of the estimated parameter. Additionally it is difficult to compare the
measured value directly because in our model we have a second off-rate for the
phosphorylated ZAP70.

Analysis of parameter ratios

Dependencies between parameters can be the reason why individual parameters are
not fully identifiable. In our model, strong dependencies are expected between the
phosphorylation and dephosphorylation rates of reversible phosphorylation events
as well as between the rates of ZAP70 binding and dissociation. Taking the best fit
parameters, we can calculate the following ratios which we hypothesized to have a
lower relative uncertainty than the individual rates:

R1 =
b1
a1

= 12.5 R2 =
koff1

kon
= 1.26

R3 =
b2
a2

= 108.3 R4 =
b3
a3

= 0.0001

To test this hypothesis we re–parameterize the model in terms of these ratios and
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Figure 3.6.: The influence of the assumed pervanadate efficiency on the fitting results
anlyzed by means of the profile likelihood method. Parameter p describes the reduction
of dephosphorylation upon pervanadate stimulation.

compute the corresponding profile likelihoods (Figure 3.5). For the ratios R1, R2

and R4 we again find one sided bounds, whereas the ratio R3 = b2/a2 is now fully
identifiable.

Furthermore, we can draw the following conclusions from the results. We find that
R1 > 1 and also R3 � 1, indicating that b1 > a1 and b2 � a2. Like we expected
for basal rates, the dephosphorylation has to be faster than the phosphorylation.
Although we already found this result for the best fit, it was not clear before that
this is always the case for all parameter values that are in accordance with the
data. The calculation of R2 did not help to infer more information about ZAP70
recruitment. The 95% –confidence interval is quite wide and R2 could be greater as
well as smaller than 1.

In contrast to the other ratios the upper limit for the ratio R4 is < 1. This implies
that phosphorylation of Y493 is faster than its dephosphorylation. This finding
indicates that after ZAP70 is phosphorylated at Y319, the activation of the TCR is
stabilized by fast and stable activation of ZAP70.

The influence of simulating pervanadate stimulation on the parameter
estimation

We want to evaluate the influence that the efficiency of pervanadate inhibition (which
we fixed to be 80 % according to [42]) has on the parameter estimation. This
efficiency of pervanadate is expressed in the model by the parameter p = 0.2 that
was multiplied to all dephosphorylation rates to simulate pervanadate stimulation.
We can analyze the influence of p on the fit by using the profile likelihood method.
The observed change in our χ2–function in dependence on p is shown in Figure 3.6.
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3. A mechanistic model of early T cell receptor signaling

The efficiency of pervanadate has been measured to be 80% - 90% by Mikalsen et al.
[42]. The calculated profile likelihood reveals that we can find a good fit that is in
accordance with the data for values of p between 0 and 0.4 which translates into a
range of full to 60% efficiency of pervanadate. The best fit was obtained for a value
of p = 0.13 with only marginal better χ2 than for p = 0.2, the value we used in all
of the calculations.

3.2. Ligand binding can induce kinetic proofreading

The sharp threshold response of the TCR after ligand binding is highly discussed in
recent literature [39, 14, 15], but the exact mechanisms remain unresolved. It has
been hypothesized that one of the mechanisms responsible for this unique feature
of the TCR might be the kinetic proofreading mechanism, that was introduced by
McKeithan [40], and is described in Section 1.1.4 of the introduction. The rather
abstract concept of kinetic proofreading has not yet been phrased in terms of a phys-
iological meaningful way and, thus, could not be proven experimentally. Instead of
writing down yet another model with build-in kinetic proofreading, we introduce a
biologically more meaningful mechanistic model and test it for its kinetic proofread-
ing capabilities. For this purpose the model of basal TCR activation was extended
by the ability to bind ligand. We then simulated the activation of the TCR and
analyzed the ability of the model to distinguish between ligands with different TCR
affinities in terms of its kinetic proofreading capabilities.

3.2.1. Adding ligand binding to the basal model

The model described in the previous section together with the estimated basal pa-
rameters was used to further analyze early TCR signaling events. To investigate the
kinetic proofreading capabilities of the model we need to incorporate activation by
ligand binding into the existing model of basal TCR activation.

We expand the existing model by assuming that a ligand is able to bind to the TCR
independent of its basal state. Specifically, this means that a ligand can bind to any
of the 28 states of the basal model. This is different from the McKeithan model,
where it is assumed that ligands only bind to TCRs that are unphosphorylated.
The model expansion results in twice as many states, because every already existing
state of the basal model can now be in a ligand bound or unbound state (see also
Fig. 3.7).

The addition of model states with bound ligands also introduces new model pa-
rameters. We now have to take into account the binding rate of the ligand and
the dissociation rate of ligand and TCR. Both cannot be estimated from the per-
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3.2. Ligand binding can induce kinetic proofreading

vanadate stimulation experiments described in Chapter 3.1.1. But we know typical
ligand affinities and their dwell times from the literature.

To model the effect of ligand binding on TCR activation, we have to know how the
ligand–TCR interaction influences the phosphorylation levels of the TCR. There
are different theories on how signaling is initiated [68] (compare Chapter 1.1.3),
which postulate either enhanced phosphorylation or decreased dephosphorylation
of the TCR. First, Lck could be recruited to the TCR because of its association
with the coreceptors CD4 and CD8 (aggregation model). A different mechanism
that would also enhance the phosphorylation rate is a conformational change of the
TCR upon ligand binding which makes the ITAMs more accessible for Lck. Both
mechanisms would enhance the rate in which the ITAMs and potentially ZAP70
are phosphorylated. The other possibility is a decrease in phosphatase activity.
Upon ligand binding the phosphatase CD45 might be pushed out of the region of
TCR activation due to its large extracellular tail (segregation model). As a result
local phosphatase activity would be reduced. Independent of the exact mechanism
of these different possibilities, they would all yield higher overall phosphorylation
levels after ligand binding.

Since there is evidence for all of these theories we did not want to base the model on
a single theory, but rather systematically test various theories with respect to the
kinetic proofreading capability of the model. Therefore we introduced two additional
parameters that scale either the rates of basal phosphorylation (parameter α) or
dephosphorylation (parameter β) when parameter is bound. Both parameters are
chosen to simulate a change in the enzymatic activity of up to 100–fold.

The binding and the dissociation rates of ZAP70 are assumed to be unaffected by
ligand binding. This means that the estimated rates can be used for the ligand
bound and unbound situations.

The full model that now includes ligand binding is shown in Figure 3.7. The upper
right part of the figure illustrates again the basal model and the lower left part
depicts the ligand bound states of the model. As before the model is based on mass
action kinetics; the corresponding system of ordinary differential equation is given
in Chapter A.1.2 of the appendix. Although the full model has twice as many states
(56) as the basal model, there are only four additional parameters (ligand binding
lon and dissociation loff, and the factors α and β). However none of these parameters
are known or could be estimated from the existing data.

Kinetic proofreading has the characteristic feature that the activation of the TCR
depends on the time that a ligand is bound to the TCR. We want to analyze if
our model possess the same characteristic. The dwell time of the ligand is directly
related to the dissociation rate loff and is defined as

d =
1

loff
.
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Figure 3.7.: The canonical model of T cell receptor activation. Only the signaling at the
TCR level is included in the model. The three important parts of the model are ITAM
phosphorylation, ZAP70 recruitment and the subsequent phosphorylation of ZAP70.
Ligand can bind to the TCR in any of its signaling states. Upon Ligand binding
phosphorylation is enhanced by the factor α and phosphatase activity is decreased by
factor β as indicated in the scheme.
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3.2. Ligand binding can induce kinetic proofreading

The longer the dwell time of the ligand, the stronger is the signal at the end of
the signaling cascade that is initiated by the ligand. A typical dwell time of a high
affinity ligand is assumed to be around 2 seconds [44, 75].

In our model, signaling ends with the activation of ZAP70 (pY493-ZAP70 and
pY319-pY493-ZAP70). This is defined in the model as follows

active ZAP70/TCR = 5
56∑
j=1

νj

with νj ∈ (0, 1, 2) being the number of phosphorylations at Y493 in state xj of the
full model.

In the following simulations we always use active ZAP70 as the indicator of TCR
activation. If not stated otherwise, we assume a ligand occupancy of around 10%
for all our model simulations. This corresponds to a ligand affinity

Kd =
loff

lon
= 10

By defining the dwell time and the Kd of the ligand, we can fix two of the unknown
parameters of the extended model. For the simulations we will systematically vary
the dwell time of the ligand and thereby define loff. Together with a constantKd = 10
this also fixes the rate of ligand binding lon.

3.2.2. Regulated kinase access or phosphatase exclusion can trigger
TCR signaling

The TCR is not able to transmit the information of a bound signal to its intracel-
lular units by itself. Therefore the binding of a ligand to the TCR has to affect
the phosphorylation of the ITAMs by other means. The different mechanisms of
signal propagation [68] that we introduced in Chapter 1.1.3 result in two apparent
possibilities, the regulation of kinase access to the ITAMs or phosphatase exclusion
from the TCR. Here, we use the full model of TCR signaling to independently test
how the two mechanisms of TCR triggering influence its activation. We will first
explain how kinase access can be regulated and how this mechanism influences the
model simulations. We then have a closer look at the mechanism of phosphatase
exclusion.
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Figure 3.8.: The influence of kinase accessibility on TCR triggering. The amount of
active ZAP70 is shown as a function of ligand dwell time for different values of the phos-
phorylation enhancement factor α = 2, 5, 10, 20, 50, 100. Fast phosphorylation rates
only result in a slight increase in the amount of active ZAP70 and is independent of
the dwell time. An enhancement of phosphorylation rates on its own is not sufficient
for a kinetic proofreading behavior of the TCR.

Regulated kinase access

The ITAMs of the TCR are phosphorylated by the Src-family kinase Lck. The access
of Lck to the TCR can be regulated by different means.

First, Lck normally is attached to the membrane, but can also be bound to the
coreceptors CD4 or CD8, depending on the type of T cell. These coreceptors have
a binding site for MHC. If peptide loaded MHCs are recognized by the TCR and
a pMHC–TCR complex is formed, the coreceptor will also bind to the pMHC and
thereby move into close proximity of the TCR complex. Lck that is bound to the
coreceptor intracellularly will automatically be recruited to the ITAMs and is able
to better phosphorylate them. This is generally called the kinase aggregation model.

Second, there is evidence that the TCR undergoes a conformational change when
ligands bind to it. This could either happen because of dimerization of TCRs or
pulling forces on the TCR. In both cases a conformational change would give rise
to more accessible ITAMs. Since Lck is always active in T cells [45] it has better
access to the ITAMs as soon as the conformation of the TCR changes, and higher
phosphorylation levels of the TCR and the following signaling steps can be achieved.

Our model is not able to differentiate between both mechanisms. However, we are
able to simulate the higher phosphorylation rates that are implied by any of the
two possibilities with our model (parameter α). The enhanced kinase activity was
simulated for eight different values of α. Independently, we varied the dwell time of
the ligand, while keeping the ligand affinity and the ligand occupancy constant. For
each simulation we calculated the steady state of the model at different dwell times
and analyzed the amount of active ZAP70.

Each graph in Figure 3.8 shows one simulation and is marked with the value of α that
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Figure 3.9.: The influence of phosphatase exclusion on TCR triggering. The amount
of active ZAP70 is shown as a function of ligand dwell time for different values of
decreasing phosphatase set by the factor β = 0.5, 0.2, 0.1, 0.05, 0.02, 0.01. Decreased
dephosphorylation rates together with long dwell times result in higher amounts of
active ZAP70. The activation of ZAP70 is dependent on the dwell time which could
indicate kinetic proofreading behavior.

was used. The figure shows how the activation of ZAP70 could depend on the dwell
time and the increasing phosphorylation rate. The more the phosphorylation rate is
increased, the more active ZAP70 can be found. But the amount of pY493-ZAP70
hardly depends on the dwell time since the rise in active ZAP70, if there is any,
exists already for small dwell times. Although we find a change of ZAP70 activation
depending on α, the highest amount of active ZAP70 is still very small (∼ 0.004
pY493-ZAP70 per TCR) compared to the possible number of ten pY493-ZAP70 per
TCR.

Phosphatase exclusion

The TCR could also be activated by excluding phosphatases from the area of trig-
gering. This would also shift the phosphorylation of ITAMs and ZAP70 to higher
levels.

The main phosphatase that regulates dephosphorylation of the TCR is the trans-
membrane protein CD45. It has a large extracellular tail compared to the size of the
TCR. This ectodomain of CD45 is even larger than the TCR–pMHC complex that
forms when the TCR recognizes its specific ligand. In the phosphatase exclusion
model it is assumed that CD45 has not enough room in the proximity of the TCR–
pMHC complex and is pushed out of that region by physical forces. This in turn
prevents CD45 from dephosphorylating the TCR. In our model the resulting de-
creased dephosphorylation rates after ligand binding are modeled by the parameter
β.

We again analyze how the amount of active ZAP70 per TCR depends on the dwell
time of the ligand for eight different values of β. The result of these calculations is
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shown in Figure 3.9. Decreased dephosphorylation rates result in increased amounts
of active ZAP70. But in contrast to the previous calculations for varying phospho-
rylation rates, the signal also depends strongly on the dwell time of the ligand. For
bigger values of β the simulation shows very low amounts of pY493-ZAP70 for short
dwell times but higher amounts of active ZAP70 for longer dwell times. Also here,
we find that the level of active ZAP70 (∼ 0.05 pY493-ZAP70 per TCR) is still very
low when compared to the maximum number of ten pY493-ZAP70 per TCR It is
questionable if any of these simulated low levels of ZAP70 would be able to activate
the cell.

The dependence of a signal on the ligand dwell time, while the occupancy of the
receptor is constant is the hallmark of kinetic proofreading [40]. Using this criteria we
find noteworthy proofreading capabilities only in the case of phosphatase exclusion.
However, the overall amount of active ZAP70 remains quite low in all our calculations
We will see in the next chapter that this discrepancy might be resolved by allowing
phosphatase exclusion and regulated kinase activity to act together.

3.2.3. Kinetic proofreading requires a synergistic effect of enhanced
phosphorylation and reduced dephosphorylation

Since regulated kinase activity and phosphatase exclusion can act independently of
one another, both mechanisms could in principle occur simultaneously in the cell.
Here we test the influence of a combination of both mechanisms on the activation
of the TCR and its kinetic proofreading abilities.

To this end we systematically vary the phosphorylation enhancement factor α and
the dephosphorylation reduction factor β. The simulation is carried out for all
possible combinations of α = 1, . . . , 100 and β = 1, . . . , 0.01, resulting in 10000
tested combinations. Like before we are interested in the amount of active ZAP70
per TCR (in steady state) as a function of the dwell time.

Especially we want to investigate in which cases the activation of the TCR is de-
pendent on the dwell time of the ligand, thereby giving rise to kinetic proofreading
behavior. For this purpose we introduce a measure of kinetic proofreading by cal-
culating the difference of active ZAP70 at dwell times 0.1 s and 100 s

∆pY493-ZAP70/TCR = pY493-ZAP70/TCR(100s)− pY493-ZAP70/TCR(0.1s)

An example on how ∆pY493-ZAP70/TCR is calculated is shown in Figure 3.10 A
for one of the simulated parameter combination (α = 65 and β = 0.015). Like in the
previous section, the steady state of active ZAP70 is plotted against different ligand
dwell times. For this particular parameter set a strong dependency of the signal on
the dwell time is found, indicating kinetic proofreading behavior.
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Figure 3.10.: Kinetic proofreading requires a synergistic effect of increased kinase and
decreased phosphatase activity. (A) Kinetic Proofreading is measured as the difference
in the amount of active ZAP70 (pY394-ZAP70) per TCR at ligand dwell times of 0.1
s and 100 s. The example for α = 65 and β = 0.015 shows that kinetic proofreading is
possible. (B) The different kinetic proofreading abilities of the model are demonstrated
by systematically varying the influence of α (enhanced phosphorylation upon ligand
binding) and β (decreased dephosphorylation upon ligand binding). We do not find
kinetic proofreading behavior when only phosphorylation is increased (I; α > 1 and
β = 1) or when the dephosphorylation alone is decreased (II; β < 1 and α = 1)
(compare also Section 3.2.2). Kinetic proofreading is found when ligand binding induces
increased phosphorylation as well as decreased dephosphorylation (III).

The measure ∆pY493-ZAP70/TCR compares the low level of active ZAP70 at a
short dwell time to the higher level of pY493-ZAP70 at a long dwell time. We
choose these dwell times because typical ligand dwell times should lie within this
interval, and therefore we focus on kinetic proofreading behavior within this range
of dwell times.

Figure 3.10 B summarizes all differences in active ZAP70 for the tested combinations
of α and β. The change in ZAP70 activation ranges from zero difference in activation
(blue) to more than 2.5 ∆pY493-ZAP70/TCR (dark red) in the lower right corner
of the diagram. The top row of the graph (indicated by arrow I) demonstrates again
the effect of enhanced phosphorylation rates (α > 1, β = 1). As discussed previously
the amount of active ZAP70 is independent of the dwell time, thus the difference in
pY493-ZAP70 per TCR is around 0. When we analyzed the single effect of only a
reduction of phosphatase activity (α = 1, β < 1) we found a dependency of active
ZAP70 on the dwell time, but very little overall ZAP70 activation. This is depicted
in the most left column of the figure (indicated by arrow II). Compared to other
regions of the diagram, the kinetic proofreading effect can hardly be seen.

The most pronounced kinetic proofreading behavior is found when both mechanisms
are combined. A high phosphorylation rate together with a decreased dephosphory-
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α β

10 1

single effect
100 1
1 0.1
1 0.01

2 0.5 minimal change

10 0.1
100 0.1
65 0.015 mixed effect
10 0.01
100 0.01

Table 3.2.: Combinations of α and β that were chosen to calculate corresponding pre-
diction profile likelihoods.

lation rate, depicted in the lower right corner of Figure 3.10, results in a synergistic
increase in the kinetic proofreading capabilities of the model.

Thus, the model simulations predict that the high discriminative power that enables
the TCR to distinguish between ligands with different affinities, could be facilitated
by a synergistic effect of two activation mechanisms that only together give rise to
kinetic proofreading.

Analysis of the uncertainties of the model predictions

The model predictions that we discussed above were calculated using the best–fit
estimates of basal parameters. We will now take into account the uncertainties of the
predictions as well, by calculating the corresponding prediction profile likelihoods
(see also 2.2.2).

Before, we made 10000 predictions on the effect of different combinations of α and
β on the kinetic proofreading behavior of the model. To reduce computational ef-
fort, we now strategically choose predictions that cover a wide variety of the tested
parameter combinations and calculate the confidence intervals for those predictions.
The chosen predictions are marked by white dots in Figure 3.11 A and are summa-
rized in Table 3.2. The prediction profile likelihood for each of them are calculated
and shown in Figure A.1. We quantified the 95%- confidence interval for each of the
analyzed predictions (Figure 3.11 B).

First we evaluate the predictions where kinetic proofreading was not apparent. The
corresponding 95% confidence intervals (Fig. 3.11 B, left side and Fig. A.1, upper
row) for those cases are very narrow, confirming that kinetic proofreading can neither
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Figure 3.11.: The uncertainty of 10 selected predictions were calculated. (A) The
selected predictions are marked by white dots. The turquoise square marks the area
of high kinetic proofreading ability. (B) 95%-confidence intervals were calculated for
the selected predictions. For the non-mixed effects, bands are very narrow, excluding
the possibility of kinetic proofreading. Only for the mixed effect kinetic proofreading
is possible.

be introduced by only one of the triggering mechanisms nor by only small impacts
on the rates of the signaling machinery after stimulation.

Second, we evaluate the uncertainties of those predictions that indicate kinetic proof-
reading behavior. Those are only found for cases where both triggering mechanisms
are combined (the predictions inside the turquoise square of Figure 3.11 A). The
95%-confidence interval for these cases are much wider, some of them span almost
the whole possible range from zero to ten (compare also Fig. A.1, lower row). This
means that although we find kinetic proofreading behavior when we simulate with
the best fit basal parameters, using other parameter sets that statistically still yield
a good fit could give rise to situations where no kinetic proofreading behavior can
be found or where the kinetic proofreading behavior is even more pronounced.
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4. Modeling the dynamics of Lck
regulation

The primary kinase that drives TCR phosphorylation is the Src–family kinase Lck.
In order to phosphorylate the TCR, Lck has to be in its active form. The regulation
of its activation is highly dynamic and depends on different factors like its accessi-
bility for phosphatases and kinases, but also on the concentration of Lck. Here we
use a generic model of Lck regulation mechanism to dissect the influence of these
different factors on Lck activity.

We will first discuss two different approaches that can be taken to model Lck regula-
tion. Later in this chapter we focus on a mass action kinetic model of Lck regulation.
We use dose–response data of Lck phosphorylation in dependence on the amount
of total Lck to parameterize the model. Based on these parameters we investigate
the influence of Lck localization on its activity. We are also able to further ana-
lyze the regulatory influence of the two enzymes (CD45 and Csk) that drive the
phosphorylation dynamics of Lck.

All data that we introduce in this chapter has been generated and provided to us
by Oreste Acuto and Konstantina Nika from the University of Oxford.

4.1. Modeling Lck regulation: two different approaches

In this section we will first introduce a model of Src–family kinase (SFK) regulation
that is phrased in terms of Michaelis–Menten kinetics. We will then discuss how this
model can be specified to analyze Lck regulation and show that it allows for bistable
behavior in Lck activation. Next, we will introduce a second modeling attempt that
is based on mass action kinetics and elucidate why this model can be linked to data
much better than the other model.

4.1.1. Bistability in the model with enzymatic kinetics

Kaimachnikov and Kholodenko [32] created a generic model of SFK regulation based
on reversible phosphorylations. Although SFKs differ in function and exact struc-
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ture, in general they all share the same regulatory mechanisms.

Their model consists of four SFK states (inhibited, primed and two active SFK
forms) that are defined by the phosphorylation status of an inhibitory and an ac-
tivating tyrosine residue. The authors study the dynamic regulation of these four
states. The model is phrased in terms of Michaelis–Menten kinetics and parame-
terized with parameters from the literature. They find that the intrinsic features of
SFK regulation, like autophosphorylation and reversible phosphorylations together
with a non–reversible dephosphorylation, are sufficient for complex dynamic behav-
ior, such as oscillations, bistability and excitability. External feedback loops that
might exist are not needed to explain any of the observed dynamics.

In particular the authors investigate how the steady state behavior of the model
depends on the amount of phosphatase RPTP (receptor–type tyrosine phosphatase)
and on the kinase Csk (C–Src kinase). In this generalized model two phosphatases
are introduced; RPTP dephosphorylates only the inhibitory phosphorylation site
while PTP1B targets the activating phosphorylation site. The influence of PTP1B
concentration on the dynamic behavior of SFK activity is not further characterized
by the authors. In contrast, for Lck it is supposed that only one phosphatase (CD45)
is mostly responsible for all possible dephosphorylations. It is pointed out by the
authors that autophosphorylation most likely plays an important role in the complex
dynamic behavior of the system. In this case the phosphorylation dynamics are
dependent on the amount of total SFK. However, they did not discuss the influence
of varying levels of total SFK on its activation dynamics.

We will now particularize the model of Kaimachnikov and Kholodenko to analyze the
dynamical regulation of Lck activation. Specifically we analyze the dependence of
Lck activity on the amount of total Lck and total CD45. Since the main phosphatase
of both phosphorylation sites of Lck is CD45, we simplify the model by assuming
all dephosphorylations to be carried out by the same phosphatase.

Using the same parameterization as proposed by Kaimachnikov and Kholodenko
[32] for the generic model reveals a bistable behavior that is dependent on the total
Lck concentration (Figure 4.1). The phosphorylation of both, the activating phos-
phorylation site (Y394) and the Lck inhibitory phosphorylation site Y505 correlates
positively with the amount of total Lck and shows bistable behavior. In contrast,
a generic parameterization of the model, where we assume most of the parame-
ters to be the same, does not exhibit bistable behavior. Nevertheless, here as well
the phosphorylation of both phosphorylation sites increases monotonically with the
concentration of Lck.

Bistable behavior can also be found when analyzing the influence of the phosphatase
CD45 on Lck regulation (Fig 4.2). Increasing the amount of CD45 leads to decreased
phosphorylation both for the inhibitory and the activating phosphorylation site.
This inhibitory effect of CD45 on Lck phosphorylation is also found using the generic
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Figure 4.1.: Bistability in the model that is based on enzymatic kinetics. Both phos-
phorylation sites of Lck Y394 (A) and Y505 (B) exhibit bistable behavior depending
on the concentration of total Lck.

parameterization, but again no bistability is observed.

Here we demonstrate that a model of Lck regulation, which is phrased in terms
of Michaelis–Menten kinetics can show bistability. However, this behavior does
depend on the parameterization of the model. A disadvantage of the model is
that Kaimachnikov and Kholodenko used parameters from literature that are not
necessarily specific for the model setting. Also the authors choose the used parameter
values from a wide range of possible values. None of the ten model parameters have
been validated by additional experiments nor has the model outcome been compared
to measurements.

One of our aims in this work is to parameterize a model of Lck regulation using
dose–response data of Lck phosphorylation in dependence on the amount of total
Lck. In the next section we introduce an even further simplified model that is based
on mass action kinetics. It needs less parameters to describe Lck regulation and is
better suited to compare it to the available dose–response data.

4.1.2. A mass–action kinetics model without bistability

An alternative to enzymatic kinetics is the use of mass action kinetics to describe
the same regulatory processes. Here, we develop a model of the regulation of re-
versible phosphorylation of Lck based on mass action kinetics. Each state transition
(indicted by the arrows in Figure 4.3) is now characterized by only one parameter,
a simplification that is based on assuming fast enzyme-substrate complex turnover.
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Figure 4.2.: The influence of the amount of CD45 on Lck phosphorylation in the
model with enzymatic kinetics. The phosphorylation of both Lck phosphorylations
sites (Y394(A) and Y505(B)) correlates negatively with CD45 concentration and shows
bistable behavior.

We thereby reduce the number of parameters needed to describe the regulation of
Lck activation.

Our model is composed of the four important regulatory states of Lck (inhibited,
primed, single and double active Lck) that play a role in the regulation of Lck activity
[45]. In the following the four different states of Lck marked by the combination of
the phosphorylation state of the two tyrosine residues Y394 and Y505 of Lck. A
binary code is used to distinguish whether either site is phosphorylated or not. As
a reminder, Lck(0,1) (inhibited) is in a closed conformation due to intramolecular
interactions. All other Lck forms are in an open conformation and possess either
weak kinase activity (Lck(0,0)) or – when phosphorylated at Y394 – full kinase
activity (Lck(1,0) and Lck(1,1)).

Lck regulation is driven by C–Src kinase (Csk) and the phosphatase CD45 as shown
in the scheme of Lck regulation in Figure 4.3. Two distinctive features drive the
dynamics of Lck regulation. First, the autophosphorylation of tyrosine residue 394,
which is phosphorylated by active Lck (Lck(1,0) and Lck(1,1)) and unphosphory-
lated primed Lck (albeit less strong). Second, the direct transition from Lck(0,1)
to Lck(1,1) is not allowed in the model. This transition is excluded because the
closed conformation of Lck completely blocks the activating phosphorylation site
from kinases and Lck has to be primed first before becoming activated [46]. All
other phosphorylation steps are reversible.

The phosphatase CD45 is a membrane protein and hardly expressed in the cyto-
plasm, while the kinase Csk is a cytoplasmic molecule that is only recruited to the
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Figure 4.3.: Model scheme of the phosphorylation dynamics of Src-kinase Lck. The
phosphorylation is given in a binary code for the activating (Y394) and the inhibitory
(Y505) phosphorylation site, respectively. All dephosphorylations are mediated by
CD45, while Csk phosphorylates Y505. The conversion from primed to single active
Lck is via trans–autophosphorylation by primed and active Lck.

membrane by an adapter protein called Csk binding protein (CBP). In the model
we assume constant concentrations of CD45 and Csk at the membrane where Lck is
located under normal conditions [46].

The model framework is based on six rate parameters for phosphorylation and de-
phosphorylation. We describe the phosphorylation of Y505 with parameter a1 if
primed Lck is targeted by Csk and with parameter a2 if Y505 of single active Lck
is phosphorylated by Csk. There are two reasons for the two distinct rates of Csk
phosphorylation. First, studies show that Csk interacts with Lck more readily if
Lck is phosphorylated at Y394 [5, 9]. Second, the analytic model solution shows
that the phosphorylation of Y505 would linearly depend on the total amount of Lck
if both rates were the same (compare Section A.2.3 in the appendix), which is in
disagreement with the available dose–response data that we later use for parameter-
ization. Since we assume a constant amount of Csk both rates already include its
concentration.

Dephosphorylation is characterized by the parameters b1 and b2. While b1 describes
the dephosphorylation of tyrosine residue 505, the rate of dephosphorylation of Y394
is expressed by parameter b2. Both dephosphorylation events are carried out by
CD45 and again already contain the concentration of CD45.

The rate of trans–autophosphorylation of Y394 depends on the enzymatic activity of
the Lck form that executes the phosphorylation. Lck(0,0) has weaker kinase activity
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than both active forms of Lck. Hence, we include two parameters l1 and l2 in the
model to describe trans–autophosphorylation of Y394 by active and primed Lck,
respectively.

The model is phrased in terms of mass–action kinetics in the following system of
differential equations according to the model scheme in Figure 4.3

d

dt
Lck01(t) = −b1Lck01(t) + a1Lck00(t) + b2Lck11

d

dt
Lck10(t) = −(b2 + a2)Lck10(t) + b1Lck11(t)

+ (l1 (Lck10(t) + Lck11(t)) + l2Lck00(t)) Lck00(t)

d

dt
Lck11(t) = −(b1 + b2)Lck11(t) + a2Lck10

(4.1)

where the different Lck forms are indicated by a binary index; with zero being the
unphosphorylated and one the phosphorylated state of the activating (Y394) and
the inhibitory (Y505) phosphorylation site, respectively.

The total amount of Lck is assumed to be constant:

Lcktot = Lck01(t) + Lck00(t) + Lck10(t) + Lck11(t) = const

The steady state of this ODE system can be found analytically. The solutions are
given in Chapter A.2.2 of the appendix. In contrast to the model that is based on
Michaelis–Menten kinetics the solution does not admit bistable behavior.

In Section 4.2 we will study the introduced model further and will show that pa-
rameters can be identified within narrow bounds using steady state data of Lck
phosphorylation.

4.1.3. Flow cytometry data does not show bistability

Our experimental collaborators performed dose–response experiments and measured
phosphorylation of either Y394 or Y505 as a function of total Lck using flow cytom-
etry (for pY394 see Figure 4.4; for pY505 see Figure A.2 in the appendix).

We binned the data into groups of similar Lck expression and calculated histograms
of phosphorylation levels for each group (Fig. 4.4, left). Bistable Lck phosphory-
lation would result in a bimodal distribution of phosphorylation levels. Otherwise,
the phosphorylation level distribution of Lck is expected to be unimodal. The his-
tograms reveal distributions that have one clear peak and for some bins a slight
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Figure 4.4.: Dose–response data do not indicate bistability in the regulation of Lck.
Flow cytometry data (right) is binned into groups of different total Lck expression
in the cell. For each bin the corresponding histograms of phosphorylated Y394 are
shown left. We do not find clear bimodal distributions as we would expect for bistable
behavior. (Experiments by K. Nika and O. Acuto)
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elevation in the histogram for low levels of phosphorylation. This holds true for
both phosphorylation sites of Lck. The slight elevation in some of the histograms is
not pronounced enough to indicate a bistability in Lck regulation.

The approach of modeling the dynamic processes of Lck regulation described in the
last section has the advantage over the previous – Michaelis–Menten kinetics based –
model to have less parameters. Also the simplified description of enzymatic kinetics
using Michaelis–Menten terms is valid if the enzyme concentration is much less than
the substrate concentration. In T cells, however, CD45 is one of the most abundant
proteins [29, 3]. Additionally, in our data we have varying amounts of total Lck due
to the dose–response measurements.

The lack of bistability in the data is an important prerequisite to use the simpler
mass action kinetics model instead of the Michaelis–Menten kinetics model. Thus
in the next section we use the mass action kinetics model to identify the relevant
parameters and later dissect the different features that drive Lck regulation.

4.2. A more detailed view on the mass action kinetics model

In this section we carefully parameterize the above described mass action model
of Lck regulation using extensive dose–response data about the dependence of Lck
concentration and the phosphorylation status of Lck. Here we will first introduce the
data and then show that all parameters are fully identifiable within narrow bounds.

4.2.1. Phosphorylation of Lck was measured for different Lck chimeras

In the experiments Jurkat cells (an immortalized human T cell line) that lack func-
tional Lck, were transfected with different Lck chimeras and the regulation of Lck
activity was measured by means of flow cytometry.

To generate the chimeras the N– terminus of wild type Lck was altered to generate
different Lck constructs that then were expressed in Jurkat cells. The N–terminus
of Lck mediates the localization of Lck in the cell and hence the different chimeras
of Lck are localized differently. An overview of the chimeras that were transfected is
given in Figure 4.5. The Lck chimeras are separated into two groups: most of them
are still targeted to the membrane, despite the altered N–terminus, but Lck C3,5S
and Lck–∆10 are no longer able to associate with the membrane and can only be
found in the cytoplasm.

The membrane–targeted chimeras are constructed to associate to different regions
of the membrane. Wild type Lck (Lck–wt), Src–Lck, LAT–Lck and both CD4– Lck
variants are targeted to membrane region in close proximity of the TCR. Addition-
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Figure 4.5.: Overview of the different Lck constructs that were transfected into Jurkat
cells. Each constructs has a different N–terminus, which alters its localization in the
cell. wt–Lck, Src–Lck, LAT–Lck, CD4–Lck, CD4mut–Lck and CD45–Lck are still
targeted to the membrane while the two cytoplasmic Lck constructs are not longer
able to associate with the membrane.
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Figure 4.6.: Dose–response data for both phosphorylation sites of Lck and for all eight
different Lck constructs. (Experiments by K. Nika and O. Acuto)

ally CD4–Lck and CD4mut–Lck might be able to form dimers at the membrane.
Membrane–targeted CD45–Lck is preferably localized in regions with high CD45
content. We will later see that this has direct consequences for the dynamics of Lck
regulation.

After transfection the cells expressed different amounts of Lck, which enabled us to
analyze how the levels of phosphorylated Lck depend on the amount of total Lck
in the cell. Using flow cytometry the amount of Lck, the amount of CD45 and
either the phosphorylation level of the activating or the inhibitory phosphorylation
site was measured simultaneously. Additionally the effect of Lck localization on its
regulation is investigated by conducting these measurements for all eight chimeras.

For the analysis, the data was gated for total Lck levels and the corresponding
phosphorylation level of either Y394 phosphorylation or Y505 were quantified from
the flow cyotmetry data (Figure 4.6). We find differences in the regulation of Lck
phosphorylation for the different chimeras: For active Lck (pY394–Lck) a clear
distinction can be made between the membrane–targeted Lck (except for CD45–
Lck) and the cytoplasmic Lck and CD45–Lck. While the phosphorylation of the
first group is highly up–regulated with increasing total Lck concentration, the other
group is only mildly up–regulated with an increasing amount of total Lck. For high
levels of total Lck concentration we find a clear hierarchy of phosphorylation: both
CD4–Lck > wt–Lck, Src–Lck and LAT–Lck > CD45–Lck > cytoplasmic Lck.

For the phosphorylation of tyrosine residue 505 the result is not that definite. CD45–
Lck is still phosphorylated at low levels, but cytoplasmic Lck is phosphorylated at
Y505 similarly to the remaining membrane–bound Lck chimeras.
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4.2. A more detailed view on the mass action kinetics model

We want to use these dose–response data to parameterize the mass action model of
Lck regulation – for this purpose we have to incorporate different behavior of the
individual Lck constructs into the model.

4.2.2. Parameters can be estimated from dose-response data

Here we show that we can fully identify all six parameters (a1, a2, b1, b2, l1 and
l2) of the model of Lck regulation that we introduced in Section 4.1.2 by using the
dose–response data, which we introduced in the previous section.

We will first discuss how the effects of the different chimeras are integrated into our
model framework. The different Lck constructs have only been altered at the N–
terminus, which mediates the localization of Lck [46]. Therefore we assume that the
different Lck chimeras are exposed to different densities of CD45 and Lck, which we
take into account in the model by introducing additional parameters for some of the
phosphorylation and dephosphorylation events for each of the mutants as follows.

The parameter b1 is estimated individually for each Lck construct to account for
different densities of CD45 within the membrane as well as in the cytoplasm. Since
the enzymatic activity of CD45 is the same for all chimeras, the ratio of both de-
phosphorylation rates c1 = b2/b1 is kept constant for all chimeras in the parameter
estimation.

It can be assumed that the different chimeras equally affect the binding of acti-
vated and primed Lck, so we take c2 = l2/l1 to be the same for all of them, while
introducing individual rates l1 for each chimera.

Csk is a cytoplasmic protein that can also be recruited to the membrane. There
is no apparent reason to assume that the availability for phosphorylation by Csk is
altered within the different Lck mutants. For simplicity we thus take the rates for
phosphorylation by Csk (a1 and a2) to be the same for all Lck chimeras.

We simultaneously fitted the resulting model to the dose–response data of all eight
chimeras. Since there is no information about the phosphorylation kinetics of the
process in the dose–response data, we scaled all parameters to a1 and kept a1 = 1
fixed in the fitting. This eliminates the time dependency of the rates.

Besides the rate parameters we have to estimate two scaling factors to take into
account the arbitrary units of the flow cytometric measurement: The parameter
s1 scales the measurement of pY416-Lck (active Lck) and the parameter s2 the
measurement of pY505-Lck. Finally, two additional parameters, ε1 and ε2, were
included in the fitting procedure to estimate the absolute measurement errors of
pY394–Lck and pY505–Lck, respectively as described in Chapter 2.2.
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4. Modeling the dynamics of Lck regulation

The above described data contains no information on the unphosphorylated state
of Lck. In order to distinguish all four states of Lck we used an additional data set
from Nika et al. [45], where all four states were measured separately (see Table 1 of
[45], first row) for the estimation of the parameters.

The measurements of the phosphorylation of Y394 and Y505 are expressed by the
model in terms of the following observables:

pY394–Lck = Θ1(~p, L) = Lck10(~p, L) + Lck11(~p, L)

pY505–Lck = Θ2(~p, L) = Lck01(~p, L) + Lck11(~p, L)

where ~p denotes the chimera–specific set of parameters and L is the concentration
of total Lck.

This yields the following objective function, which is to be minimized:

f(~p) = 2 · 8
2∑
j=1

log εi + χ2
1 + χ2

2. (4.2)

Here the first part of the left hand side is due to the estimation of the errors (compare
Chapter 2.2) and

χ2
1 =

8∑
j=1

8∑
i=1

(
D1ij −Θ1(~pj , Li)

ε1

)2

+
8∑
j=1

8∑
i=1

(
D2ij −Θ2(~pj , Li)

ε2

)2

where the index i enumerates the different total Lck concentrations, the index j
denotes one of the eight chimeras and D1ij and D2ij denote the corresponding mea-
surements of pY394 and pY505, respectively.

The third part of eqn. 4.2 is given by

χ2
2 =

(
α

(
Lck01(~p1, L = 50)

50
− 0.14

))2

+

(
α

(
Lck00(~p1, L = 50)

50
− 0.48

))2

+

(
α

(
Lck10(~p1, L = 50)

50
− 0.17

))2

+

(
α

(
Lck11(~p1, L = 50)

50
− 0.21

))2

.

Here ~p1 is the parameter set for wt–Lck and α is a weight that we introduced to
make χ2

2 comparable in size to χ2
1.
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Figure 4.7.: The model (solid lines) was fitted to the dose–response data of the two
phosphorylation sites of Lck at Y394 and Y505 and the eight different chimeras of Lck.
(Experiments by K. Nika and O.Acuto)

The parameter estimation was carried out with a trust region method (interior point
algorithm implemented in matlab). The resulting best fit (with χ2

min = 866.46) is
depicted in Figure 4.3 where the data is shown together with the fitted model curves
(solid lines).

The remaining results that we show are based on a fixed value of α = 100. Repeating
the parameter estimation with a ten fold lower value of α led to unacceptable fits
whereas a ten fold higher values of α yielded a slightly higher χ2

min = 869.32 and
almost identical parameters compared to the fitting results with α = 100. We did not
further investigate the influence of α on the other parameters and their confidence
intervals.

The estimated parameters that are the same for all Lck constructs are presented in
Table 4.1 and Table 4.2 shows the parameters that differ between the chimeras. The
uncertainties of the parameters are analyzed using the profile likelihood method as
described in Chapter 2.2.1 and are shown in Fig. 4.8. All parameters are identifiable
and have narrow confidence bounds. The estimated 95%-confidence intervals are also
given in Tables 4.1 and 4.2.

In Table 4.1 we can see that Csk is more than ten–fold more enzymatically active on
active Lck than on the primed form. The ratios c1 and c2 are both smaller than 1,
indicating that b2 < b1 and l2 < l1. This means that CD45 dephosphorylates pY394
more easily than pY505, which has been described before [56]. Since primed Lck is
not fully enzymatically active l2 < l1 is to be expected.
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4.2. A more detailed view on the mass action kinetics model

parameter estimated 90 % confidence
value interval

Phosphorylation of Y505 of primed Lck by Csk
(a1)

1

Phosphorylation of Y505 of active Lck by Csk
(a2)

30.77 [16.2, 95.5]

Ratio of dephosphorylation rates of Y505 and
Y394 by CD45 (c1)

0.53 [0.38, 0.69]

Ratio of autophosphorylation rates (c2) 0.26 [0.19, 0.35]
Scaling factor for pY416-Lck measurement (s1) 17.82 [16.8, 19]
Scaling factor for pY505-Lck measurement (s2) 32.79 [30.6, 35.2]
Error of pY416-Lck measurement (ε1) 12.74 [10.7, 15.5]
Error of pY505-Lck measurement (ε2) 24.61 [20.7, 29.8]

Table 4.1.: Best fit parameters, which are the same for all chimeras, as estimated
from fitting the model to the dose response data. The 95%–confidence interval of
each parameter is estimated by calculating the corresponding profile likelihoods. The
parameters have no units because of the normalization with a1 (see main text).

dephosphorylation of pY505 autophosphorylation by active
(b1) Lck (l1)

best fit 90 % conf. best fit 90% conf.

wt-Lck 16.26 [9.15, 47.9] 0.26 [0.11, 0.91]
Src-Lck 28.11 [16.6, 77.2] 0.216 [0.098, 0.7]
LAT-Lck 13.35 [8.14, 35.4] 0.14 [0.065, 0.4]
Lck-D10 3.1 [2.6, 3.7] 0.008 [0.0043, 0.013]
Lck-C3,5S 4.4 [3.6, 5.4] 0.012 [0.007, 0.02]
Lck-CD4 21.3 [11.4, 65.5] 0.55 [0.22, 2]
Lck-CD4 mut 21.97 [11.7, 67.5] 0.54 [0.22, 2]
Lck-CD45 31.9 [20.4, 69.2] 0.088 [0.04, 0.2]

Table 4.2.: Best fit parameters, which are different for each chimera, as estimated
from fitting the model to the dose response data. The 95%–confidence interval of
each parameter is estimated by calculating the corresponding profile likelihoods. The
parameters have no units because of the normalization with a1 (see main text).
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4. Modeling the dynamics of Lck regulation

Also interesting are the estimated chimera–specific parameters that should reflect
the different localizations of the Lck chimeras in the cell (Table 4.2). We find similar
estimates of the autophosphorylation rate (l1) and the dephosphorylation rate (b2)
for the membrane bound chimeras wt–Lck, Src–Lck and LAT–Lck. Both Lck-CD4
mutants have dephosphorylation rates similar to the other membrane–bound Lcks
but they differ in the autophosphorylation rates which are bigger in the CD4–Lck
mutants. This might reflect their ability to form dimers.

Compared to the other chimeras both mutants that are cytoplasmic have small
dephosphorylation rates. This can be explained by the absence of CD45 in the
cytoplasm. Like expected, because they diffuse in a much bigger volume, the auto-
phosphorylation rates are very small.

Surprisingly, CD45–Lck also has a small autophosphorylation rate, but a dephos-
phorylation rate that is comparable to the rates of the other membrane–targeted
chimeras.

Based on the estimated dephosphorylation rates there is a clear distinction between
the membrane–targeted Lck constructs and the cytoplasmic Lck which shows almost
ten–fold smaller dephosphorylation rates. The estimated parameters also imply a
hierarchy with respect to autophosphorylation: CD4 targeted Lck > wt–Lck, LAT–
Lck and Src–Lck > CD45–Lck > cytoplasmic Lck. The same hierarchy that we
found in the measurements of phosphorylated Y394–Lck (compare Chapter 4.2.1).

4.3. Model simulations show the regulation of Lck activity

4.3.1. Autoactivation of Lck occurs in trans

So far, we assumed in our model framework that Y394 is trans–autophosphorylated.
But the question whether this phosphorylation occurs in trans or cis is not fully
resolved. Trans-autophosphorylation would be dependent on the concentration of
Lck, because the autophosphorylation is executed by another Lck molecule. In con-
trast, if Y394 is cis-autophosphorylated, the phosphorylation would be mediated by
the Lck molecule itself and is not dependent on the concentration of Lck. Addition-
ally it could also only be carried out by primed Lck, since the active Lck is already
phosphorylated and does not need to phosphorylate itself. The available experimen-
tal data can be used to infer the dependence of the phosphorylation levels on the
amount of total Lck and thereby give insights into the question whether Y394 is cis–
or trans–autophosphorylated.

We want to explore the possibility of cis-autophosphorylation and rephrase the model
that we introduced in the previous section in such a way, that the phosphorylation
of the activating phosphorylation site is independent of Lck concentration. Hence
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Figure 4.9.: Fit of the modified Lck regulation model that assumes cis-autophos-
phorylation. Since the steady states of the modified model only depend linearly on
total Lck, the model cannot reproduce the observed dependencies in the data. (Exper-
iments by K. Nika and O. Acuto)

eliminating the second order reaction from the model. This notion is phrased in
terms of mass action kinetics again in the following system of ODEs

d

dt
Lck01(t) = −b1Lck01(t) + a1Lck00(t) + b2Lck11

d

dt
Lck10(t) = −(b2 + a2)Lck10(t) + b1Lck11(t) + l1Lck00(t)

d

dt
Lck11(t) = −(b1 + b2)Lck11(t) + a2Lck10

with
Lcktot = Lck01(t) + Lck00(t) + Lck10(t) + Lck11(t) = const.

The steady state of the modified model can be solved analytically:

Lck00 =
b1b2(a2 + b1 + b2)Lcktot

(a1 + b1)b2(a2 + b1 + b2) + (a2 + b1)(b1 + b2)l1

Lck11 =
a2b1l1Lcktot

(a1 + b1)b2(a2 + b1 + b2) + (a2 + b1)(b1 + b2)l1

Lck01 =
(a1(a2 + b1 + b2) + a2 l1)b2 Lcktot

(a1 + b1)b2(a2 + b1 + b2) + (a2 + b1)(b1 + b2)l1
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4. Modeling the dynamics of Lck regulation

Lck10 =
b1(b1 + b2)l1Lcktot

(a1 + b1)b2(a2 + b1 + b2) + (a2 + b1)(b1 + b2)l1

Like expected the solution is only linearly dependent on the total Lck concentration.

We used the same fitting routine as described before using 500 random sets of initial
parameters. We find a best fit with χ2

min = 1222.7, which is much higher than the
χ2

min of the previous fitting.

The reason for the bad performance of the model is the experimentally observed non–
linear dependence of the Lck phosphorylation levels on the total Lck concentration.
This is also demonstrated in Figure 4.9, which shows the best–fit result. We clearly
see that the model (given by solid lines) cannot reproduce the data.

Thus, we think that cis-autophosphorylation alone is not sufficient to activate Lck
in a manner that corresponds to the measurement. For all further analysis of Lck
regulation we are using the model that is proposed in Section 4.1.2 and the best fit
parameters from Section 4.2.2.

4.3.2. Csk phosphorylates the primed and the single active Lck
differently

In the model the phosphorylation of the residue of tyrosine 505 of Lck by Csk is
described by two rates. The rate a1 denotes the phosphorylation that is carried out
by Csk on primed Lck (Lck(0,0)), whereas we assume a different phosphorylation
rate (a2) of that site if Lck is already phosphorylated at Y394.

Both phosphorylation rates are kept the same for all chimeras, thus we can directly
compare the estimated rate a2 = 30.77 to a1. We find a more than ten–fold higher
rate of a2 which clearly influences how Lck activation is regulated. We did not find
any other parameterization compatible with the data that does not show this feature
(compare the analysis of parameter uncertainties in Figure 4.8).

The effect is demonstrated in Figure 4.10 by visualizing all four Lck states separately
for each chimera. For low total Lck concentrations we would not expect Lck to be
active because of the necessary autophosphorylation. But it could be in the inactive
or the primed form. Our simulation with the estimated parameters show that it
is mostly in the primed form at low Lck concentrations. The relative amount of
primed Lck decreases for the membrane bound chimeras of Lck (with the exception
of CD45–Lck) with an increase in total Lck. For these isoforms the relative amount
of active Lck is high at high amounts of total Lck. Note, that in Figure 4.10 both
active forms are depicted individually; the sum of both represents the total amount
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Figure 4.10.: The different chimeras show distinctive phosphorylation dynamics. The
regulation of Lck phosphorylation for membrane–bound Lck (with the exception of
CD45–Lck) and cytoplasmic Lck varies largely. Membrane–targeted Lck is phospho-
rylated at Y505 only after its activation. Cytoplasmic Lck and CD45–Lck is hardly
influenced by changing Lck and is mostly in its primed form.

of active Lck. Lck is stabilized in its active forms by the higher enzymatic activity
of Csk on single active Lck.

For the two cytoplasmic mutants primed Lck is as well the dominant state for low
Lck concentrations even though not as dominant as for the membrane bound Lck
chimeras. But in contrast to the other chimeras it remains the dominant form
almost independent of the Lck concentration. The relative amount of inactive Lck
also differs greatly from that of the membrane bound forms of Lck. Around 20−25%
of the total Lck is in the inactive state, again independent on the Lck concentration.
The two cytoplasmic mutants are not autophosphorylated as easily because of the
much bigger reaction volume (the whole cytoplasm) they are in. But because the
Csk activity on primed Lck is rather low only a small part of Lck is in the inactive
state.

An exception to all the membrane bound Lck isoforms is CD45–Lck, which has very
different phosphorylation dynamics, because of its proximity to CD45. Here, Lck is
mostly in its primed state, since CD45 clears it from all phosphorylations. Probably
the effects of the different enzymatic activities of Csk play hardly a role in this case.
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Figure 4.11.: CD45 influence on the activation of Lck. (A) A generic parameterization
of the model shows that CD45 could have an activating or an inhibitory effect on Lck.
(B) The model simulation with the estimated parameters indicate that CD45 has an
inhibitory effect on Lck

4.3.3. CD45 has an inhibitory effect on Lck activity

CD45 has a dual role in the activation dynamics of Lck. On the one hand it dephos-
phorylates the mostly inhibiting Y505 phosphorylation. On the other hand it also
mediates the transition from double active Lck to inhibitory Lck by dephosphory-
lating pY394. Here, we investigate the possible influence of CD45 on Lck in general
as well as in terms of our model predictions.

We investigated the influence of CD45 on the phosphorylation levels at a total Lck
concentration of 40 (arbitrary units), which corresponds to a medium Lck concen-
tration in the experiments. An increase or decrease of the dephosphorylation rates
b1 and b2 of up to 100-fold was then employed to simulate different CD45 concen-
trations.

The dual role of CD45 is shown in Figure 4.11 A. We use a generic parameterization
(with most of the parameters set equal) of the model and demonstrate that the
activation of Lck depends on the concentration of CD45 in a biphasic manner. In
such a way that low amounts of CD45 have an activating effect on Lck activity until
an optimum CD45 concentration is reached, then the effect is reversed and more
CD45 has an inhibitory influence on Lck activity.

When we use the estimated parameters of wt–Lck for the same simulation we find
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Figure 4.12.: The effect of the two dephosphorylation rates. If b1 is dominant over b2
either primed Lck or single active Lck (Lck(1,0)) are most likely the predominant forms
of Lck. In the case of a stronger b2 Lck tends to be either primed or inhibited.

a solely inhibitory effect of CD45 on the activation of Lck (see Figure 4.11 B), the
amount of active Lck monotonically decreases with the amount of CD45.

These two qualitatively different effects of CD45 can be ascribed to the relation
between b1 and b2 (see Figure 4.12). If b2 is bigger this increased would be bigger
(demonstrated in Figure 4.12 B by the thick arrows). For our estimated parameters
the opposite is the case, b1 > b2. This implies that Lck has a tendency to be either
in the primed or in the single active state. We can see in Figure 4.11 B that indeed
the fraction of primed Lck positively correlates with CD45 concentration, but given
the remaining parameters it has not the same effect on the activation of Lck.
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5. Discussion

The ability of the T cell receptor to precisely differentiate between antigens with
only moderately different affinities is pivotal for the reliable distinction between self
and nonself antigens of the adaptive immune system. However, the exact underlying
mechanism of antigen discrimination leading to either tolerance or T cell activation
has remained elusive.

In this work we utilized mathematical modeling to provide a mechanistic explana-
tion for the emergence of the sharp threshold response of the TCR by scrutinizing
the dynamics of the early T cell activation events including signal initiation, early
signaling events and the regulation of kinase activity after TCR triggering. We
based our modeling on extensive data from experiments that were conducted by our
collaborators Sumit Deswal and Wolfgang Schamel at the University of Freiburg and
Konstantina Nika and Oreste Acuto at the University of Oxford.

Our model of the early events of TCR signaling revealed that these signaling steps
contribute to the kinetic proofreading capability of the TCR, which can explain
ligand discrimination based on its dwell time. Interestingly, the kinetic proofreading
behavior of the mathematical model depends strongly on the activation mechanisms
that initiate TCR signaling. We find a synergistic effect on the ability of the TCR
to distinguish between ligands for a combination of enhanced kinase and decreased
phosphatase activity.

In a second mathematical model we concentrated on the dynamic regulation of the
Src-family kinase Lck that drives TCR signaling. Analysis of the model enabled us to
dissect the effect of the phosphatase CD45 on Lck regulation. CD45 has been shown
to both dephosphorylate an inhibiting and an activating Lck phosphorylation site.
Using our parameterized model we were able to quantify both effects and found that
the phosphatase acts as an inhibitor of Lck activation while its activating effects can
be neglected. In the light of the result of our mathematical model for the early TCR
signaling events, CD45 reduction upon TCR signaling could therefore contribute to
the kinetic proofreading capabilities of the T cell receptor.
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5. Discussion

The TCR signaling model

The model of early events in TCR signaling, which we introduced in the first part
of this work, is solely based on known mechanisms of TCR signaling. In contrast,
previous studies [4, 21, 67] made additional assumptions on the underlying processes
of antigen discrimination, like implementing an explicit kinetic proofreading scheme
into the model.

We first parameterized a model of basal TCR activation by fitting it to kinetic data
of ZAP70 recruitment and phosphorylation after pervanadate stimulation. For this
we had to quantify the dephosphorylation effect of pervanadate, which we fixed to
be 80% based on literature estimates [42]. In a second step we then treated this
ratio as a free parameter and used the profile likelihood method to show that the
literature value is consistent with the available data, but based on these data can
only be estimated with large uncertainties. Another assumption we had to make
concerned the estimate of the scaling factor for the Western blot data. This factor
could not be estimated directly from our data. We could partly resolve this issue
by fixing the factor using former measurements of the ratio between the absolute
amount of ZAP70 phosphorylation at the sites Y319 and Y493 [39]. However, future
experimental work should be done to address this question again. Especially since
we could not extract the uncertainty of the phosphorylation ratio estimate from the
paper.

With the data at hand we only found lower bounds for the estimates of most rate
constants using the profile likelihood method. Even though we took into account a
quite extensive set of data, clearly more data would be needed to improve parameter
estimation. However, using the method of prediction profile likelihoods we found
that we can still draw many important quantitative conclusions from the modeling.
We will discuss these in the following paragraphs.

An analysis of parameter ratios revealed that in order to maintain basal TCR ac-
tivity, the phosphorylation of ITAMs and the first phosphorylation of ZAP70 have
to be slower than the corresponding dephosphorylations. This prevents the TCR
from becoming activated accidentally. The opposite is true for the reversible phos-
phorylation of the activating tyrosine residue (Y493 in the kinase domain); here,
the phosphorylation rate is faster than the dephosphorylation rate. This seems to
ensure that once the signal comes through it is intensified. At this point downstream
signaling cascades will be triggered leading to activation of the T cell.

We extend the model of basal TCR signaling by incorporating ligand binding and
then tested the model for its kinetic proofreading capabilities. The main character-
istic of kinetic proofreading is that activation explicitly depends on the dwell time
of the ligand and not just its affintiy to the TCR. In order to systematically test our
model for kinetic proofreading behavior we introduced a measure of kinetic proof-
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reading that is based on the difference in TCR activation at fixed ligand dwell times.
This is computational more effective than to base the calculation of the differences
in activation on the minimum and the maximum of the steady state curve. Since we
were only interested in the occurrence of kinetic proofreading behavior at biological
realistic dwell times [75] our measure is reasonable.

We find that kinetic proofreading in our model depends on the mechanism of signal
initiation: a combination of enhanced phosphorylation and reduced dephosphoryla-
tion could synergistically lead to significant kinetic proofreading capabilities of the
model. Narrow prediction confidence intervals indicate that either mechanism by it-
self would not result in such behavior. The different mechanisms of signal initiation
have only been investigated separately before; it has however already been suggested
to consider a combined effect of both [68].

In contrast to our model, previous models were usually limited to the specific mech-
anism the researches wanted to analyze [4, 40, 21, 67, 12].

The kinetic proofreading model of McKeithan explains the specificity of ligand dis-
crimination [40]. It relies on very fast dephosphorylation rates and requires that
ligands can only bind to unphosphorylated TCRs. In our model framework we
deviate from these principles. Although we estimated relatively fast dephospho-
rylation rates they are not comparable to the infinitely fast dephosphorylation in
McKeithan’s model. Additionally, we assume that ligands can bind to the TCR
independently of its phosphorylation state. While both assumptions seem to be
biological more realistic, they lead to a softening of the high specificity of ligand dis-
crimination compared to the idealized situation in the original model. Nevertheless,
we still find that our model is able to distinguish ligands with very similar affinities
but different dwell times in a kinetic proofreading sense.

Altan–Bonnet and Germain proposed a model that combines a kinetic proofreading
scheme with competitive feedback regulations [4]. The aim of the authors is to
propose a quantitative model that not only accounts for the specificity of the TCR,
but also for the sensitivity and speed of TCR discrimination. In their study the
authors carefully measured concentrations of relevant model components, but had
to modify kinetic parameters to match the model predictions to experimental data.

The same is true for a model by Francois et al. [21], which also relies on a kinetic
proofreading scheme that is extended by a negative feedback mechanism. Again,
parameters are not estimates from data but chosen by the investigator based on
the recent literature. Additionally, model predictions could only qualitatively be
compared to biological measurements.

Both models are able to account for the high discriminative power of the TCR based
on ligand dwell time and concentration. However, in comparison to our model there
are two striking differences in the modeling approach. First, our model framework
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5. Discussion

is based on the actual signaling at TCR level. Although the feedback regulations
used in both models have been described in the literature [63], the underlying kinetic
proofreading scheme incorporates many additional processes. Second, we estimate
the parameters from data. Hereby we are able to draw quantitative conclusions from
the model whereas predictions from the above described models come without esti-
mates of their statistical uncertainty and rely on the correctness of the parameters,
which in some cases only represent ad-hoc estimates.

A model that is solely based on biological processes is a feedback model propsed
by Das et al. [15]. In their model, feedback regulations downstream of LAT are
important for T cell activation implying that the decision of activation is not made
during early TCR signaling. In contrast our results indicate that ligand discrimina-
tion can be achieved already upstream of LAT during the initial signaling events.
In our model the slow dephosphorylation of active ZAP70 stabilizes the signal and
indicates that at this point of the signaling cascade the decision of TCR activation
has already been made.

The main drawback of models that aim to dissect the discriminative power of the
TCR is their parameterization. Due to the complexity of the models it is difficult
to find data that would allow to fully identify all parameters. On the other hand
a simplification of the model may not any longer allow a biological interpretation
of the modeling results. Thus, it is a necessity to create models that incorporate a
reasonable level of detail while still allowing good enough estimates of the parameters
to ensure predictability. This balance will be largely dependent on the data at hand.

Our model is parameterized by available kinetic data. However, the estimated pa-
rameters have only one-sided bounds and were not constrained by the data com-
pletely. Nevertheless, compared to the other studies our model predictions and
quantitative conclusions are based on a defined set of data allowing us to provide
confidence bounds for these quantitative model predictions.

Further analysis of our model of TCR signaling would largely benefit from a decrease
in the uncertainties of the parameters. Two apparent possibilities could improve the
fitting result. First, additional measurements would contribute to more constraint
parameter estimates. Especially experiments on the phosphorylation of the ITAMs
could help to account for the complexity of the model and might improve the pa-
rameter estimation. Second and more importantly, to account for the given data
the model could be further simplified at the potential loss of exactness in describing
the underlying signaling processes. Various options come to mind. Since measure-
ment of ITAM phosphorylation are difficult to obtain, we possibly could merge the
two phosphorylation steps into one step that describes how ITAMs are primed for
ZAP70 recruitment. Another possibility would be to simplify the model by ne-
glecting trans–autophosphorylation by ZAP70 and estimate parameters with the
resulting seven state model. This implies to ignore a possibly important regulatory
process in the signaling cascade. A possible analysis that could be done with such
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a well-parameterized model would be to explore the model response in dependence
of ligand dwell time and ligand concentration and thereby studying the relation
between TCR sensitivity and specificity (as an example for such an analysis see
[19]). This would also allow to quantitatively explore in which way the incorpora-
tion of more realistic processes in our model leads to a reduction in TCR specificity
compared to the original kinetic proofreading model.

A crucial experimental demonstration of kinetic proofreading has not been achieved
and will be difficult to obtain in the future. We based our model on biologically
realistic processes and could show that kinetic proofreading capabilities can occur
naturally in such a model without making additional assumptions about unobserved
mechanisms. This was not possible before and can be interpreted as an additional
indication that kinetic proofreading does indeed take place during T cell activation.
We believe that the use of such mechanistic models in a combined approach with
experimentation is the key to demonstrate kinetic proofreading in T cell activation
by validating quantitative model predictions experimentally. However, in our case
it is difficult to design experiments where ligands have exactly the same affinity
but different dwell times. But the concentration of ligands can easily be adjusted
to result in the same ligand occupancy albeit different ligand affinities. Such data
could be used to further constrain the model and to test the kinetic proofreading
characteristics that are predicted by it.

The model of Lck regulation

The kinase that drives TCR signaling is the Src–family kinase (SFK) Lck. Its
activity is heavily regulated by various factors, such as its localization and auto-
phosphorylation, which we investigated in the second part of this work. For a better
understanding of the dynamics of Lck activity we first analyzed an already existing
model of SFK regulation [32] and specified it for the regulation of Lck. It is based
on Michaelis–Menten kinetics and shows bistability in the regulation of Lck.

We then proposed a model that is based on mass action kinetics. By assuming fast
enzyme-substrate complex turnover we build a model with fewer parameters than
the Michaelis–Menten kinetics model, but which also does not give rise to bistability.
An analysis of flow cytometry data of the dependence of Lck phosphorylation on the
amount of total Lck did not show bistability, which justified the use of the simpler
mass action kinetics based model for further analysis of Lck regulation.

Our collaborators (K. Nika and O. Acuto) measured the phosphorylation of different
Lck chimeras, that either bind to distinct areas of the membrane or are cytoplasmic,
in dependence of the amount of total Lck. We parameterized the model using these
dose–response data. The data did not contain information about the unphosphory-
lated Lck state (primed Lck). We thus had to rely on an additional data set where
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5. Discussion

the relative amount of all four Lck states was measured explicitly for a fixed amount
of total Lck [45]. This enabled us to identify all parameters within narrow bounds
ensuring a high predictive power of the model.

The difference in the estimated parameters between the considered Lck chime-
ras contain information about the influence of Lck localization on its phospho-
rylation. We find a clear distinction in terms of dephosphorylation and trans–
autophosphorylation rates between membrane–targeted and cytoplasmic Lck. In
terms of trans–autophosphorylation we find the following hierarchy: both CD4–Lck
> wt–Lck, Src–Lck and LAT–Lck > CD45–Lck > cytoplasmic Lck. This hierarchy
reflects the localization of the different Lck chimeras and the effects it has on the
local concentration of Lck.

Lck activity depends on the balance between phosphorylation and dephosphorylation
of its activating phosphorylation site. This balance is influenced by the localization of
Lck. We find that while cytoplasmic Lck is mostly in its primed form, the membrane–
targeted Lck chimeras exhibit a much higher fraction of active Lck. Also their
regulation of activity correlates much stronger with the amount of total Lck.

Parameter estimation also yields that Csk kinase activity on Lck is more than ten
times higher when Lck is already phosphorylated at the activating phosphoryla-
tion site (single active Lck) than in the completely unphosphorylated state (primed
state). This is in line with studies that investigated Csk–Lck interactions and found
that Csk binds with much higher affinity to single active Lck and thus phosphory-
lates this Lck state more efficiently [5, 9]. These findings confirms the necessity to
have two different phosphorylation rates.

Studies indicate that the efficiency of dephosphorylation of both tyrosine residues by
CD45 is different; CD45 has a stronger enzyme activity on Y505 [56]. Our estimated
rates corroborate this finding. Dephosphorylation of Y394 is two–fold less efficient
than dephosphorylation of Y505. Nevertheless, it is also conceivable that – similar
to Csk – the kinase activity of CD45 on each of the two phosphorylation sites of
Lck depends on the phosphorylation state of the other site. For example one could
imagine that the access of CD45 to pY505 is different if Lck is in its closed or open
conformation. However, we are not aware of studies showing this and for simplicity
modeled the kinase activity to be the same.

Another important finding of our model simulations is that autophosphorylation is
likely to occur in trans or a combination of cis and trans. Explicitly incorporating
pure cis–autophosphorylation into our model yielded a linear dependency of Lck
phosphorylation on the amount of total Lck. The data, however, clearly show a
non–linear dependency, indicating that autophosphorylation is not exclusively cis.

Finally, we quantified the influence of CD45 on Lck regulation. Since CD45 de-
phosphorylates both the inhibiting and the activating Lck phosphorylation site, its

70



overall effect on the amount of active Lck is very much dependent on the chosen
parameters values. Our finding that CD45 enzyme activity is stronger on tyrosine
residue 505 could suggest an overall activating effect of CD45. Instead we find that
the best–fit parameters imply an inhibitory influence of CD45 on the activity of wild
type Lck. Increasing local concentrations of CD45 results mostly in enhanced levels
of primed Lck, whereas the inactive form of Lck is affected by CD45 the same way as
active Lck. This finding is an important prerequisite for TCR signaling initiation as
proposed by the so-called segregation model [16]: according to this model, CD45 is
pushed out of the TCR signaling region upon ligand binding due mechanical forces.

To summarize, we found that the localization of Lck influences has a strong influence
on its phosphorylation, which is reflected in the differences between the estimated
rates belonging to the different chimeras. Our quantitative model further allowed us
to predict an overall inhibitory influence of CD45 on Lck. Finally, we showed that
a model that assumes pure cis–autophosphorylation is not in accordance with the
data.

The model that is most similar to our modeling approach is the one propsosed by
Kaimachnikov and Kholodenko [32]. We used a slightly modified version of it in the
beginning of Chapter 4 as a basis to analyze the regulation of Lck activity. Based on
a general model of SFK (including Lck) regulation, the authors discuss a number of
possible phosphorylation dynamics, like oscillations and bistability. In contrast to
our work, their model is not directly linked to experimental data and their analysis
is instead based on rather rough estimates of parameters taken from the literature.
Hence the investigators are limited to qualitative predictions about the dynamics of
SFK regulation.

A broader approach to model Lck regulation was taken by Chan et al. [12]. The
authors model Lck activity in the context of interaction with the TCR and a phos-
phatase that is not further specified. In their model Lck activity is regulated by
several feedback mechanism. Although feedback mechanisms might also contribute
to the dynamic regulation of Lck activity (Chan et al. also find bistable Lck activa-
tion), Kaimachnikov and Kholodenko showed that feedback loops are not necessary
to explain the complex dynamics of Lck activation. For this reason and for simplicity
we did not include additional feedback mechanisms in our model. Again parameters
are rough estimates made by the investigators and it remains unclear in which way
other biologically justified choices of parameter values would influence the model
predictions. For example, the model theoretically shows that feedback regulations
of Lck activation could contribute to antigen discrimination by the TCR, but the
robustness of this prediction with respect to parameter uncertainties is not assessed.
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5. Discussion

Conclusions

In this work we investigated two mechanistic models of early TCR activation that
follows TCR triggering. The first model focuses on the induction of TCR signaling
by phosphorylation of the ITAMs of the receptor and subsequent ZAP70 recruitment
and phosphorylation. In the other model we more closely study the regulation of
Lck, which is the kinase that drives TCR signaling. The parameterization for both
models is strictly data–based and makes use of extensive measurements to estimate
the model parameters and to assess the predictive power of the models.

We analyzed the model of TCR signaling induction with regard to its kinetic proof-
reading capabilities, implying the ability to discriminate between ligands with dif-
ferent dwell times but similar affinities. We found that the kinetic proofreading
capabilities of the model depend on how the signaling is triggered. Neither an en-
hancement of phosphorylation nor a reduction of phosphatase activity alone would
lead to the discriminative power of the TCR based on dwell times. Both mechanisms
have separately been proposed to initiate TCR signaling. Contrary to this, we find
in our quantitative model that only the synergistic interaction of both mechanisms
does result in kinetic proofreading behavior.

With our second model we dissect the complex dynamics of Lck activation. We
found that Lck activity is regulated by three main factors: the localization of Lck
in the cell, its activation by trans–autophosphorylation and an inhibitory effect of
CD45 on Lck activity.

Our models represent two of the core modules of TCR activation that are pointed
out by Acuto et al. [1]. Biologically, both of the mechanisms that are described by
our models are closely related, because Lck is the key kinase of TCR signaling. It
is responsible for the phosphorylation of the ITAMs as well as for the stabilization
of the open conformation of ZAP70 by phosphorylation of the tyrosine residue in
interdomain B (Y319).

The model of TCR signaling predicts that a combined effect of reduced phosphatase
and enhanced kinase activity is needed in order to accurately discriminate antigens
in a kinetic proofreading sense. This result is especially interesting in the light
of our model on Lck regulation which predicts that a reduction in the phosphatase
activity of CD45 results in higher levels of active Lck. Together both models indicate
that a reliable ligand discrimination based on dwell times might be induced by a
reduction of phosphatase activity alone (which then automatically leads to enhanced
Lck activity).

This reduced phosphatase activity has been proposed in the kinetic segregation
model [16]: upon TCR triggering CD45 is excluded from the signaling region of the
TCR by mechanical forces. This in turn alters the balance of phosphorylation and
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dephosphorylation activity at the TCR and initiates signaling. Our modeling shows
that kinetic proofreading is possible in the segregation model.

There are contradicting studies about the regulation of Lck that either claim Lck to
be constitutively active with TCR triggering having no effect on its global activity
[45, 47] or that ligand binding increases Lck activity [64]. According to our model
CD45 is a negative regulator of Lck, this implies that the first finding of constitutively
active Lck would speak against the proposed kinetic segregation model, whereas the
latter finding suggest that TCR signaling might be triggered by exclusion of CD45.
While we are not able to resolve this contradiction biologically, we can assess the
importance of these findings for the ability of the TCR to discriminate between
different ligands.

The decision whether the TCR is activated by the presented antigen takes place
within seconds. The threshold of activation is shown to be around 2s [75]. In
contrast, the regulation of Lck is seems to be happening on the time scale of minutes
[45, 64]. Even though our model proposes that the activation of Lck is enhanced
upon CD45 exclusion, this might happen on a time scale that is not relevant for the
discrimination of antigen by the TCR. Therefore, it would be interesting to extend
the model fit with kinetic measurements (similar to those in [45]) to further elucidate
this notion.
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[19] Vincenzo Di Bartolo, Dominique Mége, Valérie Germain, Michele Pelosi, Eve-
lyne Dufour, Frédérique Michel, Giovanni Magistrelli, Antonella Isacchi, and
Oreste Acuto. Tyrosine 319, a newly identified phosphorylation site of zap-
70, plays a critical role in t cell antigen receptor signaling. J Biol Chem,
274(10):6285–6294, Mar 1999.

[20] R A Fisher. On the mathematical foundations of theoretical statistics. Phil.
Trans. R. Soc. Lond. A, 222:309–368, 1922.

[21] Paul François, Guillaume Voisinne, Eric D Siggia, Grégoire Altan-Bonnet, and
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A. Appendix

A.1. Additional material for the T cell signaling model

A.1.1. ODE-System for the basal model

The ODE-system for the basal model as described in Chapter 3.1 is setup like follows

x′1(t) = −4a1x1(t) + pb1x2(t)

x′2(t) = 4a1x1(t)− (3a1 + pb1)x2(t) + 2pb1(x3(t) + x8(t))

x′3(t) = a1x2(t)− (2a1 + 2pb1 + kon)x3(t) + koff1x4(t) + koff2(x5(t) + x6(t) + x7(t))

+ pb1x9(t)

x′4(t) = konx3(t)− (2a1 + koff1 + a2)x4(t) + pb2x5(t) + pb1x10(t) + pb3x7(t)

x′5(t) = a2x4(t)− (2a1 + pb2 + koff2)x5(t) + pb3x6(t) + pb1x11(t)

x′6(t) = −(2a1 + pb2 + pb3 + koff2)x6(t) + a2x7(t) + pb1x12(t)

x′7(t) = pb2x6(t)− (2a1 + a2 + pb3 + koff2)x7(t) + pb1x13(t)

x′8(t) = 2a1x2(t)− 2(pb1 + a1)x8(t) + 2pb1x9(t)

x′9(t) = 2a1x3(t) + 2a1x8(t)− (a1 + 3pb1 + kon)x9(t) + 4pb1x14(t) + koff1x10(t)

+ koff2(x11(t) + x12(t) + x13(t))

x′10(t) = 2a1x4(t) + konx9(t)− (pb1 + a1 + koff1 + a2)x10(t) + 2pb1x15(t) + pb2x11(t)

+ pb3x13(t)

x′11(t) = 2a1x5(t) + a2x10(t)− (pb1 + a1 + pb2 + koff2)x11(t) + 2pb1x16(t)

+ pb3x12(t)

x′12(t) = 2pb1x17(t)− (pb1 + a1 + pb2 + pb3 + koff2)x12(t) + 2a1x6(t) + a2x13(t)

x′13(t) = 2pb1x18(t) + pb2x12(t)− (pb1 + a1 + a2 + pb3 + koff2)x13(t) + 2a1x7(t)

x′14(t) = a1x9(t)− (4pb1 + 2kon)x14(t) + koff1x15(t) + koff2(x16(t) + x17(t) + x18(t))

x′15(t) = a1x10(t) + 2konx14(t)− (2pb1 + kon + koff1 + a2)x15(t) + 2koff1x19(t)

+ pb2x16(t) + pb3x18(t) + koff2(x20(t) + x21(t) + x22(t))

x′16(t) = a1x11(t) + a2x15(t)− (2pb1 + kon + pb2 + koff2)x16(t) + koff1x20(t)

+ pb3x17(t) + koff2(2x23(t) + x24(t) + x25(t))
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x′17(t) = −(2pb1 + kon + pb2 + pb3 + koff2)x17(t) + koff1x21(t) + a1x12(t) + a2x18(t)

+ koff2(x24(t) + 2x26(t) + x27(t))

x′18(t) = a1x13(t) + pb2x17(t)− (2pb1 + kon + a2 + pb3 + koff2)x18(t) + koff1x22(t)

+ koff2(x25(t) + x27(t) + 2x28(t))

x′19(t) = konx15(t)− (2koff1 + 2a2)x19(t) + pb2x20(t) + pb3x22(t)

x′20(t) = konx16(t) + 2a2x19(t)− (koff1 + a2 + pb2 + koff2)x20(t) + 2pb2x23(t)

+ pb3(x21(t) + x25(t))

x′21(t) = pb2x24(t) + konx17(t)− (koff1 + a2 + pb2 + pb3 + koff2)x21(t) + a2x22(t)

+ pb3x27(t)

x′22(t) = pb2x25(t) + pb2x21(t) + konx18(t)− (koff1 + 2a2 + koff2 + pb3)x22(t)

+ 2pb3x28(t)

x′23(t) = a2x20(t)− (2pb2 + 2a3 + 2koff2)x23(t) + pb3x24(t)

x′24(t) = 2a3x23(t)− (2pb2 + pb3 + a3 + 2koff2)x24(t) + a2x21(t) + 2pb3x26(t)

+ a2x25(t)

x′25(t) = pb2x24(t)− (pb2 + a2 + 2koff2 + a3 + pb3)x25(t) + a2x22(t) + pb3x27(t)

x′26(t) = a3x24(t)− (2pb2 + 2pb3 + 2koff2)x26(t) + a2x27(t)

x′27(t) = 2pb2x26(t)− (2pb3 + pb2 + a2 + 2koff2)x27(t) + 2a2x28(t) + a3x25(t)

x′28(t) = pb2x27(t)− (2a2 + 2koff2 + 2pb3)x28(t)

here, xi denotes the 28 different model states that are shown in Figure 3.2.

A.1.2. ODE-System of the model with ligand binding

The ODE-system for the model that is extended by the ability to bind ligand as
described in Chapter 3.2.1 is setup like follows

x′1(t) = −(4a1 + lon)x1(t) + b1x2(t) + loffx29(t)

x′2(t) = 4a1x1(t)− (3a1 + b1 + lon)x2(t) + 2b1(x3(t) + x8(t)) + loffx30(t)

x′3(t) = a1x2(t)− (2a1 + 2b1 + kon + lon)x3(t) + koff1x4(t) + koff2(x5(t) + x6(t) + x7(t))

+ b1x9(t) + loffx31(t)

x′4(t) = konx3(t)− (2a1 + koff1 + a2 + lon)x4(t) + b2x5(t) + b1x10(t) + b3x7(t) + loffx32(t)

x′5(t) = a2x4(t)− (2a1 + b2 + koff2 + lon)x5(t) + b3x6(t) + b1x11(t) + loffx33(t)

x′6(t) = −(2a1 + b2 + b3 + koff2 + lon)x6(t) + a2x7(t) + b1x12(t) + loffx34(t)

x′7(t) = b2x6(t)− (2a1 + a2 + b3 + koff2 + lon)x7(t) + b1x13(t) + loffx35(t)
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x′8(t) = 2a1x2(t)− (2b1 + 2a1 + lon)x8(t) + 2b1x9(t) + loffx36(t)

x′9(t) = 2a1x3(t) + 2a1x8(t)− (a1 + 3b1 + kon + lon)x9(t) + 4b1x14(t) + koff1x10(t)

+ koff2(x11(t) + x12(t) + x13(t)) + loffx37(t)

x′10(t) = 2a1x4(t) + konx9(t)− (b1 + a1 + koff1 + a2 + lon)x10(t) + 2b1x15(t) + b2x11(t)

+ b3x13(t) + loffx38(t)

x′11(t) = 2a1x5(t) + a2x10(t)− (b1 + a1 + b2 + koff2 + lon)x11(t) + 2b1x16(t) + b3x12(t)

+ loffx39(t)

x′12(t) = 2b1x17(t)− (b1 + a1 + b2 + b3 + koff2 + lon)x12(t) + 2a1x6(t) + a2x13(t) + loffx40(t)

x′13(t) = 2b1x18(t) + b2x12(t)− (b1 + a1 + a2 + b3 + koff2 + lon)x13(t) + 2a1x7(t) + loffx41(t)

x′14(t) = a1x9(t)− (4b1 + 2kon + lon)x14(t) + koff1x15(t) + koff2(x16(t) + x17(t) + x18(t))

+ loffx42(t)

x′15(t) = a1x10(t) + 2konx14(t)− (2b1 + kon + koff1 + a2 + lon)x15(t) + 2koff1x19(t) + b2x16(t)

+ b3x18(t) + koff2(x20(t) + x21(t) + x22(t)) + loffx43(t)

x′16(t) = a1x11(t) + a2x15(t)− (2b1 + kon + b2 + koff2 + lon)x16(t) + koff1x20(t) + b3x17(t)

+ koff2(2x23(t) + x24(t) + x25(t)) + loffx44(t)

x′17(t) = −(2b1 + kon + b2 + b3 + koff2 + lon)x17(t) + koff1x21(t) + a1x12(t) + a2x18(t)

+ koff2(x24(t) + 2x26(t) + x27(t)) + loffx45(t)

x′18(t) = a1x13(t) + b2x17(t)− (2b1 + kon + a2 + b3 + koff2 + lon)x18(t) + koff1x22(t)

+ koff2(x25(t) + x27(t) + 2x28(t)) + loffx46(t)

x′19(t) = konx15(t)− (2koff1 + 2a2 + lon)x19(t) + b2x20(t) + b3x22(t) + loffx47(t)

x′20(t) = konx16(t) + 2a2x19(t)− (koff1 + a2 + b2 + koff2 + lon)x20(t) + 2b2x23(t)

+ b3(x21(t) + x25(t)) + loffx48(t)

x′21(t) = b2x24(t) + konx17(t)− (koff1 + a2 + b2 + b3 + koff2 + lon)x21(t) + a2x22(t) + b3x27(t)

+ loffx49(t)

x′22(t) = b2x25(t) + b2x21(t) + konx18(t)− (koff1 + 2a2 + koff2 + b3 + lon)x22(t) + 2b3x28(t)

+ loffx50(t)

x′23(t) = a2x20(t)− (2b2 + 2a3 + 2koff2 + lon)x23(t) + b3x24(t) + loffx51(t)

x′24(t) = 2a3x23(t)− (2b2 + b3 + a3 + 2koff2 + lon)x24(t) + a2x21(t) + 2b3x26(t) + a2x25(t)

+ loffx52(t)

x′25(t) = b2x24(t)− (b2 + a2 + 2koff2 + a3 + b3 + lon)x25(t) + a2x22(t) + b3x27(t) + loffx53(t)

x′26(t) = a3x24(t)− (2b2 + 2b3 + 2koff2 + lon)x26(t) + a2x27(t) + loffx54(t)

x′27(t) = 2b2x26(t)− (2b3 + b2 + a2 + 2koff2 + lon)x27(t) + 2a2x28(t) + a3x25(t) + loffx55(t)

x′28(t) = b2x27(t)− (2a2 + 2koff2 + 2b3 + lon)x28(t) + loffx56(t)

x′29(t) = −(4α1 + loff)x29(t) + β1x30(t) + lonx1(t)

x′30(t) = 4α1x29(t)− (3α1 + β1 + loff)x30(t) + 2β1(x31(t) + x36(t)) + lonx2(t)

x′31(t) = α1x30(t)− (2α1 + 2β1 + kon + loff)x31(t) + koff1x32(t) + β1x37(t)
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+ koff2(x33(t) + x34(t) + x35(t)) + lonx3(t)

x′32(t) = konx31(t)− (2α1 + koff1 + a2 + loff)x32(t) + β2x33(t) + β1x38(t) + β3x35 + lonx4(t)

x′33(t) = a2x32(t)− (2α1 + β2 + koff2 + loff)x33(t) + β3x34(t) + β1x39(t) + lonx5(t)

x′34(t) = −(2α1 + β2 + β3 + koff2 + loff)x34(t) + a2x35(t) + β1x40(t) + lonx6(t)

x′35(t) = β2x34(t)− (2α1 + a2 + β3 + koff2 + loff)x35(t) + β1x41(t) + lonx7(t)

x′36(t) = 2α1x30(t)− (2β1 + 2α1 + loff)x36(t) + 2β1x37(t) + lonx8(t)

x′37(t) = 2α1x31(t) + 2α1x36(t)− (α1 + 3β1 + kon + loff)x37(t) + 4β1x42(t) + koff1x38(t)

+ koff2(x39(t) + x40(t) + x41(t)) + lonx9(t)

x′38(t) = 2α1x32(t) + konx37(t)− (β1 + α1 + koff1 + a2 + loff)x38(t) + 2β1x43(t) + β2x39(t)

+ β3x41(t) + lonx10(t)

x′39(t) = 2α1x33(t) + a2x38(t)− (β1 + α1 + β2 + koff2 + loff)x39(t) + 2β1x44(t) + β3x40(t)

+ lonx11(t)

x′40(t) = 2β1x45(t)− (β1 + α1 + β2 + β3 + koff2 + loff)x40(t) + 2α1x34(t) + a2x41(t) + lonx12(t)

x′41(t) = 2β1x46(t) + β2x40(t)− (β1 + α1 + a2 + β3 + koff2 + loff)x41(t) + 2α1x35(t) + lonx13(t)

x′42(t) = α1x37(t)− (4β1 + 2kon + loff)x42(t) + koff1x43(t) + koff2(x44(t) + x45(t) + x46(t))

+ lonx14(t)

x′43(t) = α1x38(t) + 2konx42(t)− (2β1 + kon + koff1 + a2 + loff)x43(t) + 2koff1x47(t) + β2x44(t)

+ β3x46(t) + koff2(x48(t) + x49(t) + x50(t)) + lonx15(t)

x′44(t) = α1x39(t) + a2x43(t)− (2β1 + kon + β2 + koff2 + loff)x44(t) + koff1x48(t) + β3x45(t)

+ koff2(2x51(t) + x52(t) + x53(t)) + lonx16(t)

x′45(t) = −(2β1 + kon + β2 + β3 + koff2 + loff)x45(t) + koff1x49(t) + α1x40(t) + a2x46(t)

+ koff2(x52(t) + 2x54(t) + x55(t)) + lonx17(t)

x′46(t) = α1x41(t) + β2x45(t)− (2β1 + kon + a2 + β3 + koff2 + loff)x46(t) + koff1x50(t)

+ koff2(x53(t) + x55(t) + 2x56(t)) + lonx18(t)

x′47(t) = konx43(t)− (2koff1 + 2a2 + loff)x47(t) + β2x48(t) + β3x50(t) + lonx19(t)

x′48(t) = konx44(t) + 2a2x47(t)− (koff1 + a2 + β2 + koff2 + loff)x48(t) + 2β2x51(t)

+ β3(x49(t) + x53(t)) + lonx20(t)

x′49(t) = β2x52(t) + konx45(t)− (koff1 + a2 + β2 + β3 + koff2 + loff)x49(t) + a2x50(t) + β3x55(t)

+ lonx21(t)

x′50(t) = β2x53(t) + β2x49(t) + konx46(t)− (koff1 + 2a2 + koff2 + β3 + loff)x50(t) + 2β3x56(t)

+ lonx22(t)

x′51(t) = a2x48(t)− (2β2 + 2a3 + 2koff2 + loff)x51(t) + β3x52(t) + lonx23(t)

x′52(t) = 2a3x51(t)− (2β2 + β3 + a3 + 2koff2 + loff)x52(t) + a2x49(t) + 2β3x54(t) + a2x53(t)

+ lonx24(t)

x′53(t) = β2x52(t)− (β2 + a2 + 2koff2 + a3 + β3 + loff)x53(t) + a2x50(t) + β3x55(t) + lonx25(t)

x′54(t) = a3x52(t)− (2β2 + 2β3 + 2koff2 + loff)x54(t) + a2x55(t) + lonx26(t)
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x′55(t) = 2β2x54(t)− (2β3 + β2 + a2 + 2koff2 + loff)x55(t) + 2a2x56(t) + a3x53(t) + lonx27(t)

x′56(t) = β2x55(t)− (2a2 + 2koff2 + 2β3 + loff)x56(t) + lonx28(t)

here, xi denotes the 56 different model states that are shown in Figure 3.7.

A.1.3. Prediction profile likelihoods

As discussed in Chapter 3.2.3 the uncertainties of selected model predictions is
assessed by the use of the prediction profile likelihood method (compare Section
2.2.2). The result is shown in Figure A.1. The quantification of the prediction
profile likelihood is given in Figure 3.11.
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Figure A.1.: The uncertainties of selected model predictions is assessed by the use of
the prediction profile likelihood method. The analyzed prediction is defined by the
combination of the parameters α and β.
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A.2. Additional material for the Lck regulation model

A.2.1. Flow cytometry data of pY505

As discussed in Chapter 4.1.3, flow cytometry data of the phosphorylation of tyrosine
residue 505 of Lck do not indicate bisable behavior.

Figure A.2.: Dose–response data do not indicate bistability in the regulation of Lck.
Flow cytometry data (right) is binned into groups of different total Lck expression
in the cell. For each bin the corresponding histograms of phosphorylated Y505 are
shown left. We do not find clear bimodal distributions as we would expect for bistable
behavior. (Experiments by K. Nika and O. Acuto)

A.2.2. Steady state solution of the Lck model

The ODE–system that describes the model of Lck regulation in Chapter 4.1.2 is
solved analytically. The four model states are desribed by the following equations.

sActive = (-(a1^2*b2*(a2+b1+b2)) + a1*(-(b1*(a2+b1+b2)*(2*b2-L*l1))

+ sqrt((a2+b1+b2)*((a2+b1+b2)*((a1+b1)*b2 - b1*L*l1)^2

+ 4*b1*(a2+b1)*b2*(b1+b2)*L*l2))) + b1*(-(b1*(a2+b1+b2)*

(b2-L*l1)) - 2*(a2+b1)*(b1+b2)*L*l2 + sqrt((a2+b1+b2)*((a2+b1+b2)
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*((a1+b1)*b2 - b1*L*l1)^2 + 4*b1*(a2+b1)*b2*(b1+b2)*L*l2))))

/(2*(a2+b1)*((a1+b1)*(a2+b1+b2)*l1 - (a2+b1)*(b1+b2)*l2))

dActive = (a2*(-(a1^2*b2*(a2+b1+b2)) + a1*(-(b1*(a2+b1+b2)*

(2*b2-L*l1)) + sqrt((a2+b1+b2)*((a2+b1+b2)*((a1+b1)*b2-b1*L*l1)^2

+ 4*b1*(a2+b1)*b2*(b1+b2)*L*l2))) + b1*(-(b1*(a2+b1+b2)*

(b2-L*l1)) - 2*(a2+b1)*(b1+b2)*L*l2 + sqrt((a2+b1+b2)*((a2+b1+b2)

*((a1+b1)*b2 - b1*L*l1)^2 + 4*b1*(a2+b1)*b2*(b1+b2)*L*l2)))))

/(2*(a2+b1)*(b1+b2)*((a1+b1)*(a2+b1+b2)*l1 - (a2+b1)*(b1+b2)*l2))

inactive = (a1^2*b2*(a2+b1+b2)^2 + a1*(a2+b1+b2)*(a2*(b1-b2)*b2

+ a2*(b1+2*b2)*L*l1 + b1*(b1+b2)*(b2+L*l1)

- sqrt((a2+b1+b2)*((a2+b1+b2)*((a1+b1)*b2 - b1*L*l1)^2

+ 4*b1*(a2+b1)*b2*(b1+b2)*L*l2))) + a2*b2*(-(b1*(a2+b1+b2)*

(b2-L*l1)) - 2*(a2+b1)*(b1+b2)*L*l2 + sqrt((a2+b1+b2)*((a2+b1+b2)

*((a1+b1)*b2 - b1*L*l1)^2 + 4*b1*(a2+b1)*b2*(b1+b2)*L*l2))))

/(2*(a2+b1)*(b1+b2)*((a1+b1)*(a2+b1+b2)*l1 - (a2+b1)*(b1+b2)*l2))

primed = ((a2+b1+b2)*((a1+b1)*b2 + b1*L*l1)

- sqrt((a2+b1+b2)*((a2+b1+b2)*((a1+b1)*b2 - b1*L*l1)^2

+ 4*b1*(a2+b1)*b2*(b1+b2)*L*l2)))

/(2*(a1+b1)*(a2+b1+b2)*l1 - 2*(a2+b1)*(b1+b2)*l2)

A.2.3. Csk kinase activity with two different rates

Our model could be further simplified by using the same phosphorylation rate for
both phosphorylations that are carried out by Csk, instead of using two rate a1

and a2. We can substitute both rates by the rate a in our steady state solution of
the Lck model. Since we are interested in the phosphorylation of Y394 and Y505
we calculate the steady state solution for pY505 as the sum of inactive and double
active Lck for a model system where the rates a1 and a2 are lumped into one rate a.

pY505–Lck =
aLcktot

a+ b1

The phosphorylation of Y505 depends only linearly on the amount of total Lck,
which is in disagreement with the observed data.
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Abbreviations

APC antigen presenting cell

CBP Csk binding protein

CD45 cluster of differentiation 45

Csk C–Src kinase

I interleucine

ITAM immunoreceptor tyrosine–based activation motif

L leucine

LAT linker of activation

Lck lymphocyte-specific protein tyrosine kinase

MAPK mitogen–activated protein kinase

MHC major histocompatibility complex

ODE ordinary differential equation

PI–3 phosphoinositide 3

pMHC peptide bound to MHC

RPTP receptor–type tyrosine phosphatase

SFK Src–family kinase

SH Src–homology

SHP–1 Src homology region 2 domain-containing phosphatase-1

SLP–76 SH2 domain containing leukocyte protein of 76kDa

SOS son of Sevenless

TCR T cell receptor
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Y tyrosine

ZAP70 ζ–chain associated protein of 70 kDa
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