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Abstract

Interactive segmentation is an important paradigm in image processing. To minimize the number
of user interactions (“seeds”) required until the result is correct, the computer should actively
query the human for input at the most critical locations, in analogy to active learning. These
locations are found by means of suitable uncertainty measures. I propose various such measures
for the watershed cut algorithm along with a theoretical analysis of some of their properties in
Chapter 2.

Furthermore, real-world images often admit many different segmentations that have nearly
the same quality according to the underlying energy function. The diversity of these solutions
may be a powerful uncertainty indicator. In Chapter 3 the crucial prerequisite in the context of
seeded segmentation with minimum spanning trees (i.e. edge-weighted watersheds) is provided.
Specifically, it is shown how to efficiently enumerate the k smallest spanning trees that result in
different segmentations.

Furthermore, I propose a scheme that allows to partition an image into a previously unknown
number of segments, using only minimal supervision in terms of a few must-link and cannot-
link annotations. The algorithm presented in Chapter 4 makes no use of regional data terms,
learning instead what constitutes a likely boundary between segments. Since boundaries are
only implicitly specified through cannot-link constraints, this is a hard and nonconvex latent
variable problem. This problem is adressed in a greedy fashion using a randomized decision
tree on features associated with interpixel edges. I propose to use a structured purity criterion
during tree construction and also show how a backtracking strategy can be used to prevent the
greedy search from ending up in poor local optima.

The problem of learning a boundary classifier from sparse user annotations is also considered
in Chapter 5. Here the problem is mapped to a multiple instance learning task where positive
bags consist of paths on a graph that cross a segmentation boundary and negative bags consist
of paths inside a user scribble.

Multiple instance learning is also the topic of Chapter 6. Here I propose a multiple instance
learning algorithm based on randomized decision trees. Experiments on the typical benchmark
data sets show that this model’s prediction performance is clearly better than earlier tree based
methods, and is only slightly below that of more expensive methods.

Finally, a flow graph based computation library is discussed in Chapter 7. The presented
library is used as the backend in a interactive learning and segmentation toolkit and supports a
rich set of notification mechanisms for the interaction with a graphical user interface.
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Zusammenfassung

Interaktive Segmentierung ist ein wichtiger Bereich in der Bildverarbeitung. Hierbei ist es
wünschenswert die Anzahl der Benutzerinteraktionen zu minimieren, die gebraucht werden um
ein gewünschtes Ergebnis zu erzielen. Um das zu erreichen, sollte der Computer den Benutzer
an den problematischsten Stellen, in Analogie zum aktiven Lernen, nach zusätzlichen Eingaben
fragen. Solch problematische Stellen in der Segmentierung können durch geeignete Unsicher-
heitsmaße lokalisiert werden. In Kapitel 2 schlage ich verschiedene Unsicherheitsmaße für den
watershed cut Algorithmus vor.

Oftmals haben viele verschiedene Segmentierungen nahezu die gleiche Energie bezüglich
des Optimierungsproblems. Die Unterschiede dieser energetisch nahezu gleichwertigen Seg-
mentierungen können ein aussagekräftiges Unsicherheitsmaß sein. In Kapitel 3 präsentiere
ich einen Algorithmus, welcher die k günstigsten watershed cut Segmentierungen enumerieren
kann. Damit wird die Vorraussetzung zur Analyse dieser Segmentierungen geschaffen.

Des Weiteren schlage ich einen Algorithmus vor, welcher es erlaubt ein Bild in eine vorher
unbekannte Anzahl von Segmenten zu partitionieren. Dabei benutzt der Algorithmus nur sehr
schwache Annotationen in Form von einigen must-link und cannot-link Angaben. Der in Kapi-
tel 4 vorgestellte Algorithmus nutzt keine lokalen Datenterme sondern lernt direkt was eine
wahrscheinliche Grenzfläche zwischen Objekten ist. Da die Grenzflächen nur implizit durch
die cannot-link Angaben spezifiziert werden, ist dies ein schwieriges und nicht konvexes Prob-
lem. Ich schlage hierzu einen randomisierten Entscheidungsbaum vor, welcher ein strukturiertes
Lernkriterium beim Aufbau nutzt und dabei auf Zwischenpixel-Kanten arbeitet. Eine Backtrack-
ingstrategie hilft zu verhindern, dass ein schlechtes lokales Optimum gefunden wird.

Das gleiche Problem – einen Grenzflächenklassifikator ausgehend von schwachen Benutzer-
annotationen zu lernen – wird auch in Kapitel 5 betrachtet. Das Problem wird auf ein Multiple
Instance Lernproblem zurückgeführt. Hier bestehen positive Taschen aus Pfaden im Graph, die
eine Grenzfläche schneiden und negative Taschen aus Pfaden innerhalb einer Benutzerannota-
tion.

Das Multiple Instance Lernverfahren ist auch Thema in Kapitel 6. Hier schlage ich einen Mul-
tiple Instance Lernalgorithmus basierend auf randomisierten Entscheidungsbäumen vor. Exper-
imente auf den typischen Benchmarkdatensätzen zeigen, dass der Algorithmus etwas schlechter
als teurere Methoden abschneidet aber bessere Ergebnisse liefert als alle existierende Ansätze,
die auch auf Entscheidungsbäumen aufbauen.

Schlussendlich wird in Kapitel 7 die datenflussgraphbasierte Softwarebibliothek lazyflow
vorgestellt. Die Softwarebibliothek wird als Basis für ilastik, das interaktive lern und segmen-
tier toolkit benutzt, und unterstützt einen großen Satz an Benachrichtigungsmechanismen zur
Interaktion mit einer graphischen Benutzeroberfläche.
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impressed me. Together with Christoph Sommer, Anna Kreshuk, Luca Fiaschi, Martin Schiegg
and Stuart Berg we have worked towards a ilastik release. I also wish to thank all my other
colleagues, in particular Thorsten Beier, Xinghua Lou, Ferran Diego, Melih Kandemir, Burcin
Erocal, Kemal Eren, Philipp Hanslovsky, Robert Walecki, Buote Xu, Ben Heuer, Chong Zhang,
Niko Krasowski as well as Carsten Haubold. Furthermore i wish to thank Barbara Werner,
Evelyn Wilhem, and Ole Hansen for their support in all administrative affairs. Im also grateful
for Oliver Petra and Kai Karius support in writing some lazyflow operators. Finally, i am deeply
indebted to my Parents Luise and Wolfgang Straehle and my girlfriend Jil Molitor for supporting
me in any possible way throughout these years.

1





Chapter 1

Introduction

1.1 Interactive segmentation

Interactive segmentation is an important paradigm in image processing. It allows to partition an
image into components under the supervision of a human labeler. Such functionality is tremen-
dously useful for example in life sciences where biologists need to extract and measure objects
of interest from microscopic images. The most basic interactive segmentation method consists
of a drawing application which the user can use to segment an image by labeling the individ-
ual image parts. This manual segmentation process is slow and tedious, especially so for 3D
datasets. Over the years many algorithms have been developed that help the user in segmenting
image data. These algorithms speed up the segmentation process since they rely only on sparse
annotations instead of the dense image labeling. The sparse annotations are used as a start-
ing point for some kind of region growing procedure which stops either at a discernible image
boundary or when two different regions start to overlap.

One such segmentation method are the active contour based methods such as [26, 27, 137].
In these methods, the evolving estimate of the structure of interest is represented by one or more
contours. An evolving contour is a closed surface that evolves over time according to a partial
differential equation (PDE). The evolution of the PDE is steered by internal and external forces
which act on the normal vector of the closed contour. Internal forces can for example enforce
a low curvature of the contour, while external forces usually encode image information and
depend on the image location and content at the contour at a time.

Another important line of work are variational methods for image segmentation such as [120].
These methods minimize an energy functional

E(u) =

∫
Ω
g(x)|∇u|dΩ +

∫
Ω
λ(x)|u− f |dΩ, u ∈ [0, 1]

where the output u = 1 corresponds to a foreground image part and u = 0 to a background
image part. The data fidelity term λ(x)|u − f | enforces (depending on λ(x)) that the classifier
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1 Introduction

Figure 1.1: Interactive segmentation illustration. The left picture shows a image from the
BSD300 [85] segmentation database and a set of foreground and background seeds a user might
give. The right picture shows a potential segmentation result. The task of interactive segmenta-
tion algorithms is to produce a result close to the right picture with minimal supervision.

prediction f is obeyed. g(x)|∇u| is the infamous total variation (TV) norm and enforces a
smooth surface and small surface area of the foreground-background transition of u.

Variational methods treat the image space Ω as a continous domain. In contrast to this graph
based interactive segmentation methods discretize the domain into a grid graph. Still, the un-
derlying principle for interactive segmentation algorithms is the same: an energy function is
minimized that consists of a data fidelity term, also called unary potential and a boundary length
cost term that is similar to the total variation term. Some of the most important seeded seg-
mentation methods on graphs can be unified in terms of the power-watershed framework [33]. It
defines a segmentation as a labeling of a graphG(V,E), where the optimal labeling x minimizes
an energy function

E(x,w) =
∑
vi∈V

wp0,i‖xi‖
q + wp1,i‖1− xi‖

q

+
∑
eij∈E

wpij‖xi − xj‖
q

(1.1)

xi ∈ L is the label associated with node vi ∈ V , x is the vector of all label assignments, and
wi, wij are node and edge weights, respectively. The first sum thus measures compatibility
of the labeling with a given region model, whereas the second sum enforces smoothness of
the solution. For different exponents, the power watershed specializes to the watershed cut
algorithm (p → ∞, q finite, [35]), the random walker (p finite, q = 2, [50]) and an Ising-type
Markov random field amenable to graph-cut segmentation (p finite, q = 1, [18]). A number of
coarse-grained [29], pre-computed [51] or warm-started [62] strategies have been suggested to
speed up the response to user input for some of the methods.

One of the fastest algorithms for interactive segmentation however is the watershed cut [35]
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1.2 Watershed

which can be computed in linear time in the number of pixels. Even when not using the
specialized algorithm presented in [35] the computation is still extremely fast as it only re-
quires the computation of a minimum spanning forest, or, in an augmented graph a minimum
spanning tree computation. Despite of its age, the watershed algorithm is topic of current re-
search and is a cornerstone of image processing, especially in 3D and 4D image processing
[57, 36, 83, 13, 75, 60, 34]. In this thesis we use the watershed cut algorithm as a basis due to
its favorable runtime requirements. The low computational complexity of a minimum spanning
tree computation makes this algorithm applicable to large 3D datasets [114, 34, 83, 36]. In ad-
dition it was shown that the watershed cut is a very suitable algorithms for some the datasets
considered in this thesis [114].

1.2 Watershed

The watershed transform was first introduced for image processing by Digabel and Lantuéjoul
[40] in 1978. Since then many different motivations and algorithms have been proposed which
are excellently summarized in [104]. The underlying principle is always similar and centered
around the behavior of a drop of water on a topological surface. The image is treated as a height
map, with bright pixels corresponding to high elevations and dark pixels corresponding to low
elevations. Then, starting from the local minima the topological surface is flooded with water
and so called dams or watershed lines are built where water from two different minima meets
[124]. Another approach [14] is to look at a drop of water that falls onto the surface and flows
along the path of steepest descent to a local minimum. From this viewpoint stems the notion of
catchment basins which are separated by watershed lines, i.e. the lines from which the drop of
water can flow to at least two different minima. The above algorithms treat the problem on a
pixel grid graph where the input is a height-map on the nodes of the pixel grid graph, resulting
in a so called node-weighted watershed. Another approach is to look at a height-map associated
with the edges of the pixel-grid graph which results in a so called edge-weighted watershed.
This approach has been pursued in [35]. The authors show that this edge-weighted watershed is
equivalent to a minimum spanning forest computation where the individual trees represent the
different local minima or catchment basins. Flooding an image height map or an edge weighted
graph from local minima is an unsupervised segmentation paradigm. The watershed however
can also be used in a supervised fashion suitable for interactive segmentations. In this setting the
algorithm behaves in the same way but starts from a different set of seeds. Instead of associating
each local minimum with a seed, only the user given labels are used as a starting point for the
flooding process. In this way the watershed algorithm can be applied in an interactive fashion to
solve various interactive segmentation tasks.

5



1 Introduction

1.3 Graphs

So far we already mentioned graphs and edges a few times. More formally, a graph G = (V,E)
consists of a set of vertices or nodes V and a set E ⊆ V ×V , i.e. pairs of vertices. An unordered
pair (u, v) is called an edge, and we call node u and node v neighbours. A path P (p, q) in a
graph G = (V,E) from vertex p to vertex q is a sequence of vertices (p0, p1, ..., pl) such that
p0 = p, pl = q and (pi, pi+1) ∈ E∀i ∈ [0, l). If there exists a path P (p, q) from vertex p to
vertex q, we say q is reachable from p. A graph is connected if each vertex is reachable from
every other vertex. In a graph a path (p0, p1, ..., pl) forms a cycle if p0 = pl and p1, ..., pl are
distinct. A graph with no cycles is acyclic. A forest is an acyclic graph, a tree is a connected
acyclic graph. A graph G′ = (V ′, E′) is called a subgraph of G = (V,E) if V ′ ⊆ V and
E′ ⊆ E and the elements of E′ are incident with vertices from V ′ only. An edge-weighted
graph G = (V,E,w) is a graph with a weight function w : E → R. Instead of w(e) we
often write we or wuv when we talk of an edge weight for edge e = (u, v). A spanning tree
T = (V ′, E′) of graph G = (V,E) is a connected acyclic subgraph of G with V ′ = V .

1.4 Minimum spanning trees

As we will later see, a minimum spanning tree can be used to construct the watershed segmen-
tation of an image. A minimum spanning tree T = (V,E′, w) is a connected acyclic subgraph
of graph G = (V,E,w) such that the total weight

Wtotal =
∑
e∈E′

we

is minimal. This problem has a long history and several efficient algorithms for its solution have
been found. On of the best known algorithms is the algorithm of Kruskal [73]. The algorithm
sorts the edges e ∈ E according to their weight we in increasing order. Then all edges e are
inserted into the tree T according to their sort order if the edge e does not create a cycle in T .
The result is a minimum spanning tree T of G.

Another famous algorithm is the algorithm of Prim [100]. It starts at an arbitrary vertex v of
graphG and adds it to the initially empty tree T . Then, as long as T does not contain all vertices
of G, pick the smallest weight edge e that connects the current tree T to a vertex v /∈ T . Add e
and v to T .

Both algorithms construct a minimum spanning tree which is characterized by the following
Lemma:
Definition 1.4.1 (T -exchange [47]) Let T be a spanning tree of graph G. A T -exchange is a
pair of edges e,f where e ∈ T , f /∈ T , and T − e ∪ f is a spanning tree.

Lemma 1.4.2 ([47]) A spanning tree T has minimum weight if and only if no T -exchange has
negative weight.

6



1.5 Watershed cuts and minimum spanning trees

Figure 1.2: Seeded image segmentation using minimum spanning trees. The image nodes which
the user has seeded (blue, green) are connected to virtual seed nodes v−l which in turn are
connected to a virtual root node v0. The associated edge weights are set to 0 which ensures that
the edges belong to the minimum spanning tree of the augmented graph G′. The final label of
an image node depends on the subtree to which the node is assigned in the resulting minimum
spanning tree.

1.5 Watershed cuts and minimum spanning trees

It is well known [35] that the watershed cut is equivalent to a minimum spanning forest calcu-
lation or a minimum spanning tree computation on an augmented graph. Such a suitably aug-
mented graph G′ = (V ′, E′) can be constructed by adding a supernode v0 connected to newly
added seed nodes v−l, l ∈ L for each class type that are connected to v0 with zero weight edges.
All labeled nodes (i.e. all supervoxels holding a user seed) are also connected to these seed nodes
with zero-weight edges. These zero weight edges guarantee that the edges are part of a MST.
Once the MST with root node v0 has been constructed, subtrees originating from seed nodes v−l
form segments of the final segmentation. This graph construction is shown in Figure 1.2. The
subtrees and the segmentation of the seeded watershed cut are defined as follows:
Definition 1.5.1 (Subtree T i) Let T be a spanning tree of G with root node v0. The subtree
T i = (V i, Ei) is defined as the set of nodes V i and edges Ei which in T can only be reached
from the root node by a path containing vi.

Definition 1.5.2 (Segmentation x) Let T be a spanning tree of G with root node v0. The label
assignment of all nodes is called the segmentation x with xi = l if node vi is element of the
subtree T−l of seed node v−l. Thus, all nodes i with label xi = l and the edges connecting them
form the subtree T−l of T with root node v−l.

Why is a segmentation based on a minimum spanning tree computation called a watershed cut?
Assume we are given an image where the pixel values h(i) of pixel i correspond to the height of
a topographic surface. Applying the classical watershed algorithm would start by flooding this
surface starting from the user given seeds until the water from different basins meets at so called
watershed lines. For the MST based algorithm, we construct a pixel grid graph and associated

7



1 Introduction

with each edge (i, j) a weight wij = h(i) + h(j) which encodes the average height between
the two pixels. When computing the MST with Prim’s algorithm starting from the root node
v0 we always follow the smallest edge weight first and attach the node which is incident to this
smallest edge weight to the current tree. The subtrees T−l grow in this fashion until they meet
and all nodes have been assigned to one of the subtrees. Since this procedure is very similar to
the flooding based classical node weighted watershed the name watershed cut coined in [35] is
suitable.

1.6 Watershed edge weights

We have presented the underlying principle of the watershed algorithm: flooding a topographic
surface from local minima or user given seeds. However, given an image and a segmentation
task it is unclear what this topographic surface should be, or, in the context of the watershed
cut: what are the best edge weights for the segmentation task. It is clear that the edge weights
which indicate boundaries should be high where a desired segmentation boundary is located and
should be low where the object or segment of interest is homogeneous. Thus, depending on the
segmentation task, edge weights can be constructed for example from the gradient of the image
which is suitable to detect step like boundary, i.e. transitions from one homogeneous color to
another homogeneous color. Another useful boundary indicator is the largest eigenvalue of the
Hessian matrix which is suitable for image boundaries that are represented by a thin dark or
bright line.

1.7 Decision trees

Despite the hand-crafted edge weights which were presented in the previous Section 1.6, edge
weights can also be learned as a combination of different boundary indicators from user an-
notations. We will consider this boundary learning problem in Chapter 4 and Chapter 5. The
boundary or edge-weight learning can be posed as a supervised learning problem where a clas-
sifier is trained from positive (boundary) and negative (no boundary) examples. Each example i
consists of a D dimensional feature vector xi ∈ RD and an associated class label yi ∈ {0, 1},
where yi = 1 would correspond to a positive example and yi = 0 would correspond to a nega-
tive example. In a supervised machine learning setting many such examples are used to train a
decision function that maps unseen query vectors x ∈ RD to either the positive or negative class.
The basis for many supervised machine learning algorithms are decision trees. One of the best
known works on decision trees is the book Classification and regression trees by Breiman et al.
[20]. The authors describe the basics of decision trees and their application to classification and
regression tasks. A decision tree is a collection of nodes an edges organized in a hierarchical
fashion as a binary tree with a dedicated root node. Nodes are divided into inner nodes and leaf
nodes. The leaf nodes contain a decision making predictor such as a class label or a regression
value. The inner nodes i contain binary test functions h(x, θi) whose output can be either true
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1.7 Decision trees

Figure 1.3: Decision tree illustration. Starting at the root node a test function h(x, θ) is applied
to a data sample x. Depending on wether the test function evaluates true (1) or false (0) the data
sample is passed on to the right or left child of the current node. This process stops once the data
sample reaches a leaf node and the corresponding class label stored at that node is returned.

or false. The output of the test function depends on the parameters θi associated with the inner
node i and the feature values of the tested data sample x ∈ Rd. Often the binary test function
h(x, θi) is a simple threshold test for a specific feature, i.e. it tests whether the feature value xf
of a data sample x for feature f is above or below a certain threshold. At prediction time, a data
sample x is passed down the tree until it reaches a leaf node. The path to the leaf node is given
by the results of the binary tests which are applied at the inner nodes. Starting at the root node
a binary test function is applied to the data sample. If the outcome is true the sample is passed
to the left child node, if the outcome is false the sample is passed to the right child node. This
process is repeated recursively until the data sample reaches a leaf node and the class label or
regression value stored at that leaf node is returned.

During the training procedure of a decision tree the structure of the tree is determined as well
as the split node parameters θi. We denote the set of training samples that belongs to a split
node i as Si. An inner node or split node partitions this set of training samples into a left set
SLi and a right set SRi . These two sets are passed on to the left and right child node of the node
under consideration. Thus, SLi = S2i+1 and SRi = S2i+2. The contents of the set SLi and SRi
depend on the split parameters θi. During tree construction these split parameters θi of a node
are optimized, such that an impurity criterion for the partitioned set is optimized with respect to
their ground truth labels:

θ∗i = argminθi I(Si, S
L
i , S

R
i , θi)

where I is a suitable purity criterion, like Gini impurity [19] or Entropy [37]. This partitioning
of the data starts with a root node 0 and the set of all training samples S0 and is continued
recursively until the set of samples assigned to a node is pure.
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1.8 Thesis overview

The watershed edge weights discussed in Section 1.6 are calculated from simple image filters.
The image, and the filter response are subject to noise which may result in ambiguous or noisy
edge weights. These erroneous edge weights in turn can lead to a wrong segmentation result.
In Chapter 2 and Chapter 3 we study how uncertainty estimates for the segmentation can be
constructed, that allow the user to find such potentially erroneous parts of the segmentation.

Furthermore, in many segmentation tasks the best boundary indicator is not just a simple im-
age filter but a combination of many such filters on different scales. In Chapter 4 and Chapter 5
we investigate how such combined edge weights can be learned from sparse user annotations
that do not need to be placed on the boundary itself. Instead we learn the edge weights from
must-link and cannot link constraints between user given brush strokes, which is beneficial since
these strokes are much easier to give.

One of those the boundary weight learning algorithms I propose is based on Multiple Instance
Learning, a weakly supervised learning technique. This lead to research on Multiple Instance
Learning algorithms itself. Thus, in Chapter 6 I propose a Multiple Instance Learning algorithm
based on an optimized linear combination of decision trees.

Finally, in Chapter 7 a flow graph based computation library is presented which forms the
backend of ilastik [110], the interactive learning and segmentation toolkit.

10



Chapter 2

Watershed uncertainty

2.1 Introduction

Interactive segmentation is a popular paradigm in image analysis because it combines the number-
crunching capabilities of a computer with the high-level understanding of a human. When the
segmentation result is immediately updated after each interaction, the user can readily spot er-
rors and correct these by a (hopefully small) number of additional inputs. Unfortunately, this
elegant scheme breaks down in 3D because errors no longer “pop out” to the user’s attention as
they do in 2D – it is not possible to visualize complicated 3D segmentations in a way that makes
user inspection and intervention as easy as in two dimensions. Most commonly, volume data is
presented on a 2D screen by means of three orthogonal views, and the user has to scroll through
several, and possibly many, layers in order to find or rule out segmentation errors.

We propose to solve this problem by guided interactive segmentation [43], akin to active learn-
ing. Active learning (AL) [107] schemes aim at the steepest possible learning curve by querying
for user input on locations which are regarded as most informative by a suitable selection cri-
terion, so that user effort is focused on decisions with high impact. Accordingly, our algorithm
not only proposes a segmentation based on the user’s inputs, but also estimates a confidence in
the segmentation result which will guide the user to locations where the uncertainty is highest.
Good uncertainty criteria are especially challenging in our context because segmentation quality
is a non-local property: A very small error (e.g. a single wrongly deleted boundary) can have
catastrophic global consequences (such as an erroneous merge of two very large regions). Purely
local error estimates as used in most existing AL work on interactive segmentation [9, 43, 117]
are not sufficiently sensitive to these non-local effects.

Our interactive segmentation framework is based on the watershed algorithm because it has a
small computational footprint and is attractive for our target application: Microscopic images of
neural tissue (see Fig. 2.1) are composed of very thin and elongated structures, which may pose
a problem for the graph cut and random walk algorithms with their well-known shrinking bias.

For the neurobiological application example we compute watershed cuts on supervoxel graphs
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2 Watershed uncertainty

(a) (b)

Figure 2.1: Raw data and ground truth. (a) Serial blockface electron microscopy (SBEM) image
slice and 3D rendering of some neural processes from the image stack. (b) Focused ion beam
electron microscopy (FIBSEM) image slice and two neural processes.

[80, 114] (see section 2.4.2). The goal of interactive segmentation is therefore to merge all super-
voxels belonging to the same object. User labels are interpreted as seeds for either a foreground
object or the background, and regions are defined according to a watershed cut initiated by these
seeds [35].

Specifically we make the following contributions:

• We define and characterize a number of uncertainty criteria that can be used in the context
of interactive segmentation with the watershed cut algorithm.

• We conduct extensive comparisons of the practical performance of these criteria in 3D
neuro-imaging application examples.

• We demonstrate empirically that correct segmentations are achieved much faster when
user attention is guided by our best active learning criteria.

This chapter is based on the publication [113].
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2.2 Background and related work

2.2 Background and related work

Interactive segmentation algorithms must be able to take user input (“seeds”) into account and
update results incrementally when new input arrives, and it must be sufficiently fast to ensure
interactive response times. As explained in Chapter 1, some of the most important seeded seg-
mentation methods can be unified in terms of the power-watershed framework [32]. It defines
a segmentation as a labeling of a graph G(V,E), where the optimal labeling x minimizes an
energy function

E(x,w) =
∑
vi∈V

wp0,i‖xi‖
q + wp1,i‖1− xi‖

q

+
∑
eij∈E

wpij‖xi − xj‖
q

(2.1)

where xi ∈ L is the label associated with node vi ∈ V , x is the vector of all label assignments,
and wi, wij are node and edge weights, respectively. The first sum thus measures compatibility
of the labeling with a given region model, whereas the second sum enforces smoothness of
the solution. For different exponents, the power watershed specializes to the watershed cut
algorithm (p → ∞, q finite, [79], [35]), the random walker (p finite, q = 2, [50]) and an Ising-
type Markov random field amenable to graph-cut segmentation (p finite, q = 1, [18]). A number
of coarse-grained [29], pre-computed [51] or warm-started [62] strategies have been suggested
to speed up the response to user input.

A significant simplification of the solution space is achieved by moving from a grid-graph
defined on the original voxels to a coarser graph of supervoxels. The weighted graphs that
reflect the supervoxel adjacency typically have a large total number of nodes, a small number of
seeded nodes (the user scribbles), and are sparse (i.e. the number of edges is of the same order
as the number of nodes). This is a favorable situation for power-watershed methods.

A number of user guidance schemes have already been proposed in the context of interactive
segmentation for the random walker [43, 117] or graph cuts [9, 98]. These works use uncertainty
cues based on the margin in the case of the random walk or min-marginal energies in the graph
cut case [68], both of which capture mostly local information. In addition a perturbation based
local uncertainty estimator for the graph-cut has recently been proposed in [98].

We propose several non-local uncertainty estimators for the watershed cut, and show that they
perform better than a local alternative. Closest in spirit to our work are the stochastic topological
watershed variants that have been proposed for unseeded segmentation [3, 92]. These authors
consider a topological watershed from randomized seeds, while we randomize the edge weights
instead.
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2 Watershed uncertainty

2.3 Uncertainty measures for watershed cuts

We reviewed the notion of a watershed cut and its relation to a minimum spanning tree (MST)
in Section 1.5 Now we will present two different types of uncertainty estimators. The first
type presented in Section 2.3.2 is based on a minimal perturbation property and expresses how
the obtained segmentation boundary depends on single edges in a graph. The second type of
uncertainty estimators in Section 2.3.4 takes into account the uncertainty of the edge weights
themselves. It measures how much the overall segmentation changes when sampling noisy edge
weights.

2.3.1 Watershed cuts and minimum spanning trees

The interactive segmentation algorithm in this chapter is based on watershed cuts [79, 35]. It
starts from a supervoxel graph which is computed by a standard flooding-type watershed algo-
rithm [124] on a suitable boundary indicator, in our case the largest eigenvalue of the Hessian
matrix which measures “ridgeness” and thus indicates cell membranes. The region adjacency
graph G(V,E) of the supervoxels is equipped with edge weights that encode surface strength
(in particular, the minimum value of the boundary indicator on the corresponding surface patch).
User seeds provide hard assignments of some supervoxels to the background or one of the fore-
ground regions.

As we explained in Section 1.5 the watershed cut is equivalent to a minimum spanning tree
(MST) computation on a suitably augmented graph G′(V ′, E′) that contains a supernode v0

connected to seed nodes v−l, l ∈ L for each class type that are connected to v0 with zero weight
edges. All labeled nodes (i.e. all supervoxels holding a user seed) are also connected to these
seed nodes with zero-weight edges, which are guaranteed to remain in the MST. Once the MST
with root node v0 has been constructed, subtrees originating from seed nodes v−l form segments
of the final segmentation. This graph construction is shown in Figure 1.2.

Since we are concerned with non-local uncertainty estimates that measure influences on the
segmentation, we frequently rely on the definition of the edges connecting different segments:
Definition 2.3.1 (Cut set C(T )) Let T be a spanning tree of G. An edge e = (i, j) is element
of the cut set C(T ) if the vertices vi and vj belong to different subtrees T−l (Definition 1.5.1) so
that the segmentation label (Definition 1.5.2) xi 6= xj .

In the following, we will introduce estimators arising from two different general principles.
The first one analyzes the effect of single edge weight perturbations on the MST and the resulting
segmentation, in a manner similar to [30]. The second estimator takes into account that the edge
weights of the supervoxel graph are themselves subject to uncertainty, and measures how much
the segmentation would change under perturbations of all weights.

As a baseline we compare our non-local estimators to a local instability defined by the mar-
gin of the seeeded watershed cut: the margin is the difference between the maximum weight
encountered on the lowest possible path from the winning seed type to the node under consider-
ation minus the maximum weight on the lowest possible path from the second best seed type to
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2.3 Uncertainty measures for watershed cuts

the same node.

2.3.2 Link instability via minimum perturbations

The first uncertainty measure we propose estimates the influence of individual edges on the final
segmentation. In Lemma 2.3.4 we show that only the inclusion of edges f ∈ C(T ) from the
current cut set C(T ) (i.e. f /∈ T ) into the minimum spanning tree changes the resulting segmen-
tation. We propose to measure the instability of all edges e ∈ T currently part of the MST T
by calculating how often an edge e would be removed from the MST when considering pertur-
bations that would enforce the inclusion of an edge f ∈ C(T ), /∈ T into the MST. i.e. weight
perturbations that change the segmentation.

Algorithm 2.3.2.1 counts how often an edge which is part of the MST would be removed
from the spanning tree considering all edge weight perturbations that change the segmentation
(Definition 1.5.2) induced by the MST. The correctness of Algorithm 2.3.2.1 is shown in the

Algorithm 2.3.2.1 Link Instability

1. Determine the cut set C(MST ).

2. Do a breadth first search starting from the root node of the MST and store at each node n
the edge with maximum weight encountered on the path from the root node to node n.

3. For each edge in the cut set: The exchange partner is the edge with maximum weight
stored in either end node of the cut edge. Increment the counter of that edge.

next section.
We note that the runtime of Algorithm 2.3.2.1 is linear in the number of edges of the graph

and thus preserves the low computational overhead of the watershed cut. This follows from the
fact that the computational complexity of the determination ofC(T ), the breadth first search and
the counter incrementation are all linear in the number of edges.

2.3.3 Correctness of algorithm 2.3.2.1

Our uncertainty measures estimate by how much the segmentation would change if the edges in
the spanning tree were replaced, and how likely these replacements are. MST edge exchange
has been investigated in [47], and we repeat a useful lemma and definition from there:
Definition 2.3.2 (e, f exchange) [47] Let T be a spanning tree of graph G. A e, f -exchange is
a pair of edges, e, f where e ∈ T, f /∈ T , and T \ e ∪ f is a spanning tree. The weight of the
exchange e, f is w(f)−w(e). The weight of tree T \e∪f is the weight of tree T plus the weight
of the exchange e, f .
Lemma 2.3.3 [47] A spanning tree T has minimum weight if and only if no e, f -exchange has
negative weight.
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2 Watershed uncertainty

Since we are only interested in changes of the MST that cause changes in the induced segmen-
tation, we analyze the sufficient and neccessary conditions that yield a different segmentation:

Lemma 2.3.4 An e, f -exchange resulting in a spanning tree T ′ = T \e∪f induces a watershed
segmentation different from T if and only if f ∈ C(T ).

Proof →: Let e, f be an exchange with edge e = (i, j) ∈ T and edge f = (k, l) ∈ C. Then,
either node k or node l change their segmentation: before the exchange we obtain from the
definition of the cut set C and f ∈ C: xk 6= xl, while after the exchange f ∈ T and thus
xk = xl.
←: Let e, f be an exchange with edge e = (i, j) ∈ T and edge f = (k, l). Assume f /∈ C.

First consider f to connect two nodes in the same subtree T−l of e, i.e. xi = xj = xk = xl = l.
Thus an e, f exchange will not change the segmentation of any node. Now consider f to connect
two nodes in a different subtree T−l

′ 6= T−l then e, i.e. xi = xj = l and xk = xl = l′, then the
e, f exchange will not produce a valid spanning tree: subtree T−l

′
contains a cycle, and subtree

T l is partitioned into two components.

Relying on the notion of an e, f -exchange (Definition 2.3.2) we now proof the correctness of the
edge link instability Algorithm:
Lemma 2.3.5 Algorithm 2.3.2.1 counts how often an edge in the minimum spanning tree is
exchange partner in negative e, f exchanges resulting from all minimal single edge weight per-
turbations that induce a different seeded watershed cut segmentation (Lemma 2.3.4).

Proof Item 1: When considering all segmentation changing perturbations involving a single
edge, it suffices to consider the e, f -exchanges where e ∈ T and f ∈ C(T ). This follows from
Lemma 2.3.4.

Item 2: When considering the minimal perturbations that move edge f ∈ C(T ) into the
minimum spanning tree via an e, f exchange, it suffices to consider the edges on the path from
node i or node j to the root node v0, with edge f = (i, j): if the edge e were not on a path
from node i or node j to the root node v0, with edge f = (i, j), exchanging e with f would lead
to a cycle. The fact that e has to be the edge of maximum weight on either path follows from
the fact that we look for the minimum perturbation of edge f that would result in a negative
e, f -exchange.

From Item 1 and Item 2 follows that the algorithm is correct.

2.3.4 Uncertainty from stochastic graphs

Edge weights in the supervoxel graph are computed from local features. Since the raw data
are noisy, the edge weights are necessarily noisy as well. We accomodate this uncertainty by
moving from deterministic edge weights to stochastic ones, which are distributed according to
a probability distribution reflecting the noise. In contrast to [3, 92] who obtain a stochastic
watershed by random perturbations of the seed positions, we keep the seeds fixed and instead
randomize the edge weights. In particular, we define the stochastic watershed cut by replacing
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the original edge weights wij with w′ij ∼ PDij , where PDij is the weight distribution of edge
(i, j) that can be modeled by multiplicative noise, for example.

Consequently, the hard label assignment xi of node vi in the fixed-weight watershed cut will
be replaced by the probability of a label assignment pi(l), l ∈ L which depends on the edge
weight distributions PDij of all edges (i, j).

Ideally, we would like to compute these probabilities exactly, but the analysis in the following
section shows that no efficient algorithm for this problem exists. This is why we study an
approximation.

2.3.5 #P-hardness of stochastic watershed cut problem

In this section we will reduce the so called l −m network reliability problem [122, 17] which
is #P-hard to a stochastic watershed cut problem. This shows that the stochastic watershed cut
problem, i.e. to calculate the probability of the label assignment xi for all nodes is also #P-
hard. #P-hard is a complexity class introduced in [122]. While an NP-hard decision problem
asks wether there is a solution to a given problem, the #P-hard problem is to count the number of
solutions to a problem. This complexity class has been extended in [17] to allow the computation
of a real number instead of the number of solutions to a problem. First we give a definition of
the l −m network reliability problem [17].
Definition 2.3.6 (l-m Network reliability problem) The two terminal network reliability prob-
lem is defined on an undirected graph G(E, V ) with edge weights wij ∼ Bernoulli(pij) where
pij is the probability of the connection between i and j being active (whereas an inactive edge
is equivalent to a non-existing edge). The two terminal network reliability problem is then to
calculate the probability of the existence of a path between two nodes l and m.

Intuition We reduce the l−m network reliability problem to a stochastic minimum spanning
tree calculation by constructing a new graph G′ based on G. We add a new root vertex 0 to G′

and introduce two label vertices −1 and −2. Graph G′ is constructed in such a way, that when
a connection between l and m exists in G node m is a child of vertex −1 in a MST of G′ and a
child of vertex −2 in a MST of G′ if no connection exists in the original graph G.

The new graphG′(V ′, E′) contains all edges and vertices of the original GraphG. In addition
a root vertex 0 is introduced which is connected with zero edge weight w−1 0 = 0, w−2 0 = 0
to the new label vertices −1 and −2. Node −1 is connected to node l′ with zero edge weight
w−1 l′ = 0. Thess zero edge weights ensure that the corresponding edges are included in any
MST of G′.

In addition the newly introduced vertex −2 is connected with weight w′−2 i′ = α, α > 1 to
all nodes i′ ∈ V ′ that are also present in G.

The edge weight distributions of the original edges wi j of G are modeled as

w′i′ j′ ∼ Bernoulli(1 − pij) ∗ β, β > α

Thus a random trial in G that removes an edge (i, j) corresponds to an edge with weight w′i′j′ =
β in G′. A random trial which leaves edge (i, j) intact in G induces an edge with weight
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w′i′j′ = 0 in G′.
Lemma 2.3.7 The probability of the node m′ being a child of node −1 in the MST (G′) is
exactly the probability of a connection between m and l in the original graph G. Thus the two
terminal network reliability problem can be reduced to a stochastic watershed cut.

Proof Consider a random draw of the edge weights. First we consider the case that the realized
graph induced by the trial leaves l and m connected in G. It is easy to see that in this case
m′ must be a child of node −1 in the MST of the corresponding realization of G′, since any
spanning tree in which m′ is a child of vertex −2 must include an edge w′−2 i′ = α > 1,
while the connectedness of l and m in the original graph G implies by construction that a path
P (l′,m′) in G′ exists with edge weights w′i′ j′ = 0,∀(i′, j′) ∈ P (l′,m′). Thus any MST in G′

with root node 0 will have node m′ and l′ in a subtree of node −1 (which is by construction
connected with zero edge weight to l′).

Secondly we consider the case that the realized graph induced by the trial leaves l and m
disconnected. It is also easy to see that in this case m′ must be a child of node −2 in any MST
of the corresponding realization of G′, since any spanning tree connecting m′ to node −1 must
include an edge w′i′j′ = β > α since the disconnectedness in G implies that any P (l′,m′) in
G′ includes at least on edge of such weight (by construction of the edge weights in G′ which
assigns weight w′i′j′ = β when the bernoulli trial in the original graph G removes edge (i′, j′)).
Thus any minimum spanning tree connects node m′ to node −2 since this incurs the cheaper
maximum cost of w′−2 m′ = α < β.

We showed that any random trial that leaves l andm connected inG implies thatm′ is a child
of node −1 in the MST (G′), while any random trial that disconnects l and m in G implies that
m′ is a child of −2 in the MST (G′).

Since the final probability is defined by the outcome of all possible trials and the outcomes
are linked in the described way it has been shown that the l−m terminal network reliability can
be answered by calculating the probability for m′ being a child of a newly introduced node −1
in a MST of a newly constructed Graph G′. This is a stochastic watershed cut problem.

Sampling scheme

Since computing the exact label distribution is infeasible, we propose to sample tmax complete
graphsGt, t ∈ {1, .., tmax} from the space of feasible graphs by sampling their edge weights wtij
from the independent probability distributions PDij .

For each randomly drawn graph Gt, the seeded watershed cut is computed by calculat-
ing the minimum spanning tree and assigning the node labels xti = l according to Defini-
tion 1.5.2. After all repetitions, the probability of node vi carrying label l can be estimated
as pi(l) = 1

tmax

∑tmax
t′=1 δ(x

t′
i , l). The final segmentation after tmax repetitions is defined as

xi = argmax
l

pi(l), i.e. xi is assigned in a winner-take-all fashion to the label l to which node i

was most often assigned during the trials.
The computational complexity of this sampling scheme depends linearly on the number of
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sampled graphs and the individual minimum spanning tree computations can be executed in
parallel.

Stochastic uncertainty estimators

Uncertainty estimators based on the stochastic watershed cut can be defined in various ways, a
natural one being the probability margin between the winning label xi = l and the one with the
next highest class count, i.e. mi = pi(l)− pi(z′) where z′ = argmax

l′ 6=l
cl

′
i .

However, this is only a local estimator of uncertainty, whereas critical edges should be charac-
terized by their non-local effects. By combining the link instability according to Algorithm 2.3.2.1
with stochastic watershed cuts by accumulating the link instability of the edges over all tmax tri-
als, a measure incorporating the influence of a single edge on the global segmentation can be
obtained. This estimator is called stochastic link instability.

Algorithm 2.3.5.1 Stochastic segmentation instability
• Do tmax times

1. Construct graph Gt by sampling wtij from PDij .

2. Construct MST (Gt) with root node 0, and store the segmentation xt.

3. Calculate and store the size of the subtree hti = |T i| of each node i.

• Calculate pi(l) = 1
tmax

∑tmax
t′=1 δ(x

t′
i , l)

• Calculate the final segmentation from the winning label for each node: xi =
argmax

l
pi(l).

• Calculate the cut set C induced by x.

• Aggregate for each node i with edge (i, j) ∈ C, i.e. for all nodes i touching the segmen-
tation border, the size of the subtrees hti over all trials where the label xti differed from the
winning label xi: Hi =

∑
t′:xti 6=xi

ht
′
i

Finally we propose another non-local alternative. Algorithm 2.3.5.1 takes advantage of an
important property of the randomization of edge weights: the changing segmentation boundary
(cut set C(T t)) that results from each trial t of the stochastic watershed cut. This effect can
be incorporated into an uncertainty estimator which attributes the magnitude of the aggregated
segmentation boundary movement throughout the trials to individual edges.

The intuition behind the stochastic segmentation instability measure Hi is that very unstable
segmentation boundaries indicate ambiguity in the data and need user verification. The definition
of Hi (Algorithm 2.3.5.1) ensures that nodes receive high uncertainty when their label differs
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.2: User guidance example for two of the proposed estimators. The top row displays the
stochastic watershed using the stochastic segmentation instabiltiy estimator (Algorithm 2.3.5.1)
, the bottom row the stochastic link instability estimator (Section 2.3.5). Displayed from left
to right are the initial segmentation and two refinements based on seeding at the position of
highest uncertainty (uncertainty is indicated by red color, the position of highest uncertainty by
an arrow).

frequently from the winning label, or the affected subtrees are large. Nodes of highest criticality
exhibit both problems.

2.4 Evaluation

2.4.1 Robot user

To evaluate the proposed uncertainty estimators objectively, we have designed an interactive
segmentation robot [94]. The automaton tries to segment all neural processes in the data using
two different seeding strategies. In the ground truth strategy the robot places two initial seeds,
one inside the object of interest, one outside and then loops until convergence:

1. Calculate the set differences between ground truth and current segmentation.

2. Place a correcting single voxel seed in the center (maximum of the Euclidean distance
transform) of the largest false positive or false negative region.

3. Re-run the segmentation algorithm with the new set of seeds.

Note that this segmentation robot requires knowledge of the complete three-dimensional ground
truth for each iteration. This is clearly unrealistic, because if this knowledge were so readily
available, then interactive segmentation would not be required in the first place.
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The uncertainty query strategy, on the other hand, does not require full knowledge of the
entire ground truth at each step. The robot begins by placing two initial seeds, one inside the
object of interest, and one outside. It then loops until convergence:

1. Query the segmentation algorithm for the most uncertain region, using one of the confi-
dence measures defined in Section 2.3.

2. Query the ground truth for the true label at the corresponding position.

3. Place a suitable seed at that position and re-run the segmentation algorithm.

2.4.2 Experiments

To evaluate the proposed uncertainty estimators for the seeded watershed cut we compare the
estimators on a 3D segmentation problem from the neurosciences in a user guided segmentation
setting. The nearly isotropic and densely annotated ground truth data is a subset of 400 ×
200×200 voxels from a 20003 volume of neural tissue acquired with a serial blockface electron
microscopy (SBEM [38], Figure 2.1) and a 900 × 450 × 450 densely annotated subset from a
20003 volume acquired with focused ion beam electron microscopy (FIBSEM [67], Figure 2.1).
The reconstruction of the neural processes in this tissue is a segmentation problem that exhibits
many properties that make it suitable for the seeded watershed cut [114].

We have tested all proposed uncertainty estimators with the uncertainty query strategy of
the robot user against the ground truth strategy, which can be seen as an upper bound labeling
strategy. During the segmentation process we recorded the resulting segmentation f-measure
after each additional seed to compare the convergence rate of the robot for the different un-
certainty estimators. Figure 2.3 shows the median across all neural processes in the respective
ground truth. The parameters, namely the bias of the background seed (a background seed
preference, [114]) and the amount of perturbation β in the case of the estimators based on
the stochastic watershed cut were determined by a grid search over a training set consisting of
10% of the neural processes. For simplicity, the edge weights for the trials t were sampled as
wtij ∼ Unif(wij , (1.0+β)∗wij). These edge weight distributions are simplistic, and even bet-
ter results may be obtained when using more appropriate distributions. Figure 4.5 b displays the
averaged standard deviation for pi(l) over 100 runs of the stochastic watershed cut with differ-
ent trial counts tmax. While the average standard deviation does not converge for the trial counts
considered here, Figure 4.5 a indicates, that the number of randomly sampled graphs has vir-
tually no effect on the predictive quality of the two proposed stochastic uncertainty estimators,
already a trial size of tmax = 5 can be used for successful user guidance. Thus our estimators
incur only a small additional computational overhead compared to the standard watershed cut,
which can be calculated in quasi linear time [28] (inverse ackerman complexity).
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2 Watershed uncertainty

2.5 Conclusion

We have presented and evaluated several novel uncertainty estimators for the seeded watershed
cut. The proposed estimators are based on a perturbation principle and stochastic edge weights,
respectively. The proposed estimators were evaluated on a 3D biological neuroimaging applica-
tion example that can profit from good uncertainty estimates and which exhibits many properties
that make the seeded watershed cut a suitable algorithm. We showed that the proposed non-local
uncertainty estimators yield a tremendous improvement in the number of user interactions com-
pared to a simple local margin based approach which fails to query for more informative labels
after the first few iterations. The proposed non-local estimators yield segmentation improve-
ments that come close to an error correction strategy that relies on complete knowledge of the
ground truth while incurring only an insignificant overhead compared to a standard watershed
cut.
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(a)

(b)

Figure 2.3: Median F-measure over number of user interactions using the different uncertainty
estimators as the query strategy for the segmentation robot for the two different datasets. (a)
FIBSEM. (b) SBEM.
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2 Watershed uncertainty

(a)

(b)
Figure 2.4: (a) Median F-measure over number of user interactions using 5 and 65 randomly
sampled graphs. (b) Averaged standard deviation for pi(l) using 100 runs of the stochastic
watershed over the number of randomly sampled Graphs along the x-axis.
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Chapter 3

Enumerating the k best segmentation
changing spanning trees

3.1 Introduction

The most popular algorithms for interactive segmentation are Ising type Markov random fields
(MRFs) [18], the random walker [50] and the seeded watershed [91]. Their smoothness terms
penalize label changes with the L1,L2 and L∞ norms respectively [32]. However, in the process
of finding the single lowest energy solution to the graph partitioning problem a lot of information
is lost and other modes of the solution space which may convey important aspects of the prob-
lem are ignored. An enumeration of more than one low energy solution allows to obtain a more
robust segmentation, and can help defining an uncertainty of the resulting segmentation which
may be used in downstream processing. Thus, recent work on these algorithms has focused on
finding the M lowest energy solutions [45, 95, 130], ideally subject to a diversity constraint [10].
These references solve the problem for Ising-type MRFs. However, systematic empirical studies
[114] show that the seeded watershed outperforms MRFs in certain datasets and offers compu-
tational advantages. The near linear runtime of a seeded watershed stems from its connection
to the minimum spanning tree (MST) of the image graph [90, 35]. The present work presents
the first viable algorithm that provides analogous M-best results for the seeded watershed cut.
We build on the seminal work of Gabow [47] to enumerate only those spanning trees (ST) in an
edge-weighted graph that lead to a change in the resulting segmentation. Furthermore we give a
modification of Gabow’s algorithm that allows to enumerate the M-best diverse solutions simi-
lar to [10], by enforcing a user specified distance between some of the generated segmentations.
Such a diverse set of solutions can in turn be combined into a final segmentation [21].

This chapter is based on the publication [115].
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3.2 Related work

The M-best solutions problem has been studied in the context of discrete graphical models [15]
where it is known as the M-best MAP problem. Several types of algorithms have been pro-
posed for the M-Best MAP problem: junction tree based exact algorithms [95, 106], dynamic
programming based algorithms [105] and max marginal based algorithms [130]. An interesting
extension of the M-best MAP problem was proposed and studied in [10]. Here, the authors give
an algorithm to enumerate a diverse set of solutions. This is an attractive approach since the
M-best solutions tend to be very similar to the MAP solution for a low M and thus important
aspects of the solution space cannot be found. Generating such a set of diverse solutions was
shown in [10] to remedy the problem of M-best solutions: when the initial M-best solutions
are too close, important aspects of the solution space may only be found by enforcing a certain
amount of diversity. The authors show that this diverse set of solutions which differ in a user
specified amount from the MAP solution do not exhibit this problem.

The seeded watershed algorithm [91, 124] which we adapt enjoys great popularity in appli-
cations where large amounts of data have to be processed, including medical and biological 3D
image analysis [114], and where the shrinking bias typical of MRFs is detrimental.

We rely on the equivalence of the edge weighted seeded watershed and the minimum spanning
tree (MST) algorithm [90, 35, 42] and draw on the seminal work of Gabow [47] who solved the
k-smallest minimum spanning trees problem.

3.3 Image segmentation with minimum spanning trees

As explained in Chapter 1 we formulate the interactive image segmentation problem as a graph
partitioning problem on the pixel neighborhood graph G(E, V ). All neighboring pixels v ∈ V
are connected with edges (i, j) ∈ E. All edges have an associated edge weight wij ∈ R
which expresses the dissimilarity between the neighboring pixels. The edge weights wij can
be computed for example from the color gradient or another suitable boundary indicator. It is
well known [90, 35] that the seeded watershed cut on a graph G is equivalent to a minimum
spanning tree computation on a suitably augmented graph G′(V ′, E′) that contains a supernode
v0 connected to seed nodes v−l for each label class l ∈ L. These seed nodes are connected
to the root node v0 with zero weight edges. All labeled nodes (i.e. all supervoxels holding a
user seed) are also connected to these seed nodes with zero-weight edges wi,−l = 0, which
are guaranteed to remain in the MST. Once the MST with root node v0 has been constructed,
subtrees originating from seed nodes v−l form segments of the final segmentation. This graph
construction is illustrated in Figure 1.2.
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3.4 Gabow’s algorithm for the k smallest spanning trees

The MST segmentation algorithm outlined in the previous section finds a single smallest span-
ning tree of the augmented graph. In the next section, we will propose to generalize the algo-
rithm by Gabow [47] to enumerate spanning trees that result in different segmentations. To lay
the foundation for our extension, we start with a description of Gabow’s original algorithm.

Gabow’s algorithm starts with a minimum spanning tree for the graph generated by e.g. Kruskal’s
algorithm. This MST constitutes the first solution. The algorithm then enumerates different
spanning trees in the order of increasing weight by swapping out an edge e belonging to the
current spanning tree, and replacing it by another edge f which is currently not in the tree.

To obtain the smallest spanning tree under such a so-called e, f -exchange, it finds the pair
e, f that gives the smallest weight increase w(f)− w(e).

The main idea of the algorithm is to maintain a set of branchings and two lists associated with
each branch, called IN and OUT, which prevent the algorithm from enumerating a spanning tree
twice. All edges contained in the IN list have to stay in the spanning tree and all edges contained
in the OUT list cannot enter the spanning tree.

To enumerate all spanning trees in order, the algorithm finds the smallest weight e, f -exchange
which is feasible according to the IN and OUT lists of the current state and branches on this
exchange. Branching is done by considering two different cases: one branch is constructed by
adding the f edge to the OUT list, the other branch is established by adding f to the IN list. Any
further branching which is executed in the two cases inherits the respective IN and OUT lists
from its parent state. Thus, any spanning tree constructed in the first branch excludes edge f and
any spanning tree constructed in the second branch includes edge f . By visiting all branchings
strictly in the order of increasing tree weight, the first k minimum spanning trees are constructed
in the correct order. This process is illustrated in Figure 3.1.

3.5 Enumerating changing segmentations

While Gabow’s algorithm finds the k smallest spanning trees of a given graph, it cannot be used
to find the different modes of a segmentation: a grid graph has exponentially many spanning
trees (1040 for a 4-connected grid graph of size 10× 10, [119]). In typical images, exceedingly
many spanning trees lead to the same segmentation. This effect is visible in the illustration of
Gabow’s algorithm in Figure 3.1: while the algorithm always produces a new spanning tree,
the associated segmentation does not necessarily change. This is especially true when there are
large basins, or areas with low edge weights, as are typical for graphs constructed from natural
images.

Thus, when generating the k smallest spanning trees, many if not all (when k is small) of
the trees correspond to the same segmentation result. Luckily we can identify the sufficient and
necessary condition that leads to a different segmentation result (compared to the previous state)
in an e, f -exchange in Gabow’s algorithm.
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3 Enumerating the k best segmentation changing spanning trees

Figure 3.1: Illustration of Gabow’s algorithm and our modification (best viewed in color). The
algorithm of Gabow branches after each e, f -exchange into an upper case where the edge f
(indicated by thick black stroke) must stay in the tree and a lower case where the edge f (thick
red stroke) must stay out of the tree. Our modified algorithm works in the same way, but only
considers edges f ∈ C(ST ) which are part of the cut set for the current spanning tree. By
definition, this induces a changed segmentation in each step. In contrast, in the original Gabow
algorithm the segmentation often stays unchanged. Some of the k smallest spanning trees have
a cut set fully contained in the OUT list and hence do not allow further branching: the set of
viable edges for an exchange has been depleted (crossed out state).
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Figure 3.2: Illustration of cut edges. On the left, all edges of a spanning tree (ST) are shown
in bold. In the middle all edges not belonging to the spanning tree a shown. The subset of
the middle edges which belong to the seeded watershed cut – i.e. the edges which connect the
different segments – are shown on the right. We modify Gabow’s algorithm by only considering
these cut edges in any e, f -exchange. This enforces a changing segmentation between any two
STs in the hierarchy of Figure 3.1, but does not guarantee that all resulting segmentations are
unique.

In the case of a spanning tree segmentation, the assigned label (color) of a node depends on
the subtree to which the node is connected in the spanning tree: the node is assigned the label of
the virtual seed node v−l of which it is a child in the spanning tree (see Figure 1.2). All edges in
the spanning tree connect nodes of the same color. An edge connecting two nodes of different
color cannot be part of the spanning tree segmentation.

Now, if an e, f -exchange removes an edge e from the tree and replaces it with an edge f
that connects two nodes of the same color it is clear that the segmentation cannot change: the
resulting spanning tree is merely a different way to express the same segmentation.

We now come to the core idea: to enforce a different segmentation, the edge f that is swapped
in has to connect two nodes of different colors. After swapping in the edge f , both nodes belong
to the same subtree and thus one of the two nodes changes its color. The resulting segmentation
is different.

We call these edges f that connect nodes of different color in a ST segmentation “cut edges”
f ∈ C(ST ). See Figure 3.2 for an illustration.

At this point, we are able to modify Gabow’s algorithm to not only enumerate different span-
ning trees in order of increasing weight, but to enumerate changing segmentations in the order
of increasing weight.

A small change is sufficient to reach the desired behavior: by adding all edges f which are not
part of the cut set to a list OUTC = {f : f /∈ C(ST )} , Gabow’s algorithm can only consider
edges f ∈ C(ST ) for any e, f -exchange since all edges in the OUT and OUTC list are not
eligible. Thus the segmentation of any spanning tree that is generated differs from the previous
segmentation. The OUTC list is always updated once a new spanning tree has been generated
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and ensures the desired behavior.
Our modification of Gabow’s algorithm does not change its computational complexity, the

scanning of the edges and the calculation of the OUTC list take time proportional to the number
of edges in the graph which is of the same order as the normal Gabow algorithm takes in each
iteration.

3.5.1 Algorithm correctness

Our algorithm may enumerate a segmentation (though not a spanning tree) more than one time
and in that sense is an approximation. However, our modification of Gabow’s algorithm gen-
erates all possible segmentations in their order of increasing weight and finds the lowest cost
spanning tree that represents each segmentation. We first show that any spanning tree of mini-
mum weight that represents a segmenation is found by our algorithm.
Definition 3.5.1 a minimum spanning tree S of a given segmentation can be found by computing
the cut edges C(S) of the desired segmentation: it contains all edges c = (i, j), xi 6= xj that
connect nodes of different color xi 6= xj . The minimum spanning tree S of this segmentation
can then be found by removing these edges from the graph (or adding them to theOUT list) and
computing the minimum spanning tree of the modified graph.

A set of constraints INS , OUTS that induce the minimum spanning tree S for a given seg-
mentation can be found easily: the largest such set is INS = {e : e ∈ S},OUTS = {e : e /∈ S}.
Computing a spanning tree obeying these constraints will produce S. This shows the existence
of at least one such set of constraints.
Theorem 3.5.2 Let T be a minimum spanning tree of graph G and let S be the minimum weight
spanning tree that induces a given segmentation. Let INS , OUTS be a set of constraints that
induce spanning tree S. Then there exists a series of branchings that leads to INS , OUTS .

Proof Let C(T ) be the cut edges of spanning tree T . Then any edge f ∈ C(T ) which is
eligible for an e, f -exchange in our algorithm is either (a) /∈ S or (b) ∈ S. The algorithm
now picks the f ∈ C(T ) that has the smallest exchange weight w(f) − w(e) using their best
respective exchange partner e. In case (a) if f /∈ S we follow the branch where f is added to
the OUT list. This leads to a new state that has the same induced segmentation (and cut set)
but a modified OUT list. In the new state the next best exchange pair e′, f ′ with f ′ ∈ C(T )
will be considered and the same case consideration applies. In case (b) when f ∈ S we follow
the other branch by adding f to the IN list. This leads to a new state with a new segmentation
(and new cut set), but starting from this new state the same consideration applies. Both cases (a)
and (b) lead to a state which is closer to a set of constraints INS , OUTS . After a finite number
of branchings we end up with a set of constraints INS , OUTS that define the minimum cost
spanning tree that induces a given segmentation.

The proof shows that all segmentations that are representable by a spanning tree will be found
by our algorithm, forbidden branchings as in Figure 3.1 do not pose a problem: they occur when
the OUT list contains all edges in the current cut set. By construction of the proof, for all edges
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f ∈ OUT we know f /∈ S. Since the current cut set is fully contained in the OUT list no edge
in the current cut set can be part of the segmentation inducing spanning tree S. But if no edge
of the current cut set is ∈ S then the current state already defines the correct segmentation.
Definition 3.5.3 [47]: T -exchange. Let T be a spanning tree of graph G. A T -exchange is a
pair of edges e,f where e ∈ T , f /∈ T , and T − e ∪ f is a spanning tree.

Lemma 3.5.4 [47]: A spanning tree T has minimum weight if and only if no T -exchange has
negative weight.

Theorem 3.5.5 Let T be a minimum spanning tree of graph G and let f be an edge not in T .
Let e, f be a T -exchange having the smallest weight of all exchanges e′, f . Then T − e ∪ f is a
minimum weight spanning tree of graph G under the constraint that f is in this tree.

Proof The proof is similar to the proof of Theorem 2 in [47]. Let S = T − e ∪ f . Suppose
S does not have minimum weight. By Lemma 3.5.4, there is a S-exchange g, h having negative
weight. We derive a contradiction below. Let T − e consist of the two trees U, V . Edge e joins
U and V . Edge f must also join U and V since e, f is a T -exchange which produces a valid
spanning tree. Edge h also joins U and V . For if not, assume without loss of generality that h
joins two vertices in U . Since g, h is an S-exchange g is also in subtree U and thus g, h is also a
T -exchange. Thus, by Lemma 3.5.4 it has positive weight which violates our assumption, thus
h must join U and V . Edge g 6= f is in U ∪ V since exchange g, h cannot remove edge f from
S due to the constraint. Assume without loss of generality that g ∈ U . Now let U − g consist of
the two trees W,X . Edge e is incident to one of those trees, say W . Since T − e− g ∪ f ∪ h is
a spanning tree, either f or h is incident to X (since edge h must join U and V ). If h is incident
to X then g, h is also a negative a T-exchange which would violate Lemma 3.5.4 and leads to a
contradiction. If f is incident to X then g, f is also a T-exchange, but since w(g) ≤ w(e) (since
by construction we picked the smallest possible e, f exchange, i.e. the largest eligible weight
edge e) this would imply the T-exchange e, h being negative since w(h) ≤ w(g) ≤ w(e): also a
contradiction.

Induction and Theorem 3.5.5 gives us the property that our algorithm always produces span-
ning trees of increasing weight. No permitted e, f -exchange during the execution of the algo-
rithm is of negative weight.

From Theorem 3.5.2 we have that the algorithm produces any segmentation at some point. In
combination with Theorem 3.5.5 we have that our algorithm produces all possible segmentations
in the order of increasing weight.

3.6 Enumerating diverse segmentations

When enumerating the M-best solutions and choosing a sensible M, say 50, there is a certain
danger that the returned solution set is very similar and only differs marginally from the lowest
energy solution. To remedy this problem in the M-best MAP setting the authors in [10] propose
to enumerate diverse solutions S that obey a given minimum distance ∆(MAP,S) to the MAP
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Figure 3.3: Modified Gabow example. The top-left image shows an electron micropscopy
image of cells in neural tissue [22] and user given seeds (red,green). The k = 1, 2, 3, 4, 5 first
segmentations generated by our modified Gabow algorithm are shown in black and white. The
algorithm successfully finds different modes of the segmentation.

solution. We now show that a similar constraint can be incorporated into our algorithm without
increasing computational complexity. We will modify our algorithm that enumerates changing
segmentations in such a way that it returns a changing segmentation which differs in at least ∆
nodes from the previous segmentation.

The core part of our modified Gabow algorithm from the previous section is the e, f -exchange
with a restriction that only allows edges f from the current cut set to be moved into the tree. This
restriction of f enforces that at least one node changes its color because it is attached (via edge
f ) to a differently colored subtree. The exact number of nodes that change their color depends
on the edge e which is removed from the tree: all nodes and edges below edge e are reconnected
by edge f to another subtree with different color. Thus, by also restricting the edges e for an
e, f -exchange we can control how many nodes will change their color in that exchange.

The exact implementation is straightforward: in each step of our modified algorithm, we
compute for each edge e the number of nodes #(e) below this edge. This can be done in time
linear in the number of edges. Then, we add all edges e which do not fullfill the user specified
diversity requirement ∆ to an IND list: IND = {e : #(e) < ∆}. The algorithm is adapted to
use both lists, IN and IND. Thus, the IND edges are not considered for an e, f -exchange in the
current iteration since they must stay in the tree and any eligible e, f -exchange must change the
color of at least ∆ nodes. The IND list is updated in each iteration of the algorithm.

3.7 Experiments

The proposed algorithm is a heuristic because it may produce multiple spanning trees that induce
the same segmentation, see section 3.5.1. To study how many unique segmentations are gener-
ated, we choose a segmentation task that is suitable for a minimum spanning tree segmentation
[114]: the segmentation of single cells in neural tissue. For each out of 10 neural processes we
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Figure 3.4: This plot shows how many unique segmentations are generated when varying the
parameter k′ that determines how many spanning trees are generated. Shown are the results
for Gabow’s original algorithm and for our modified version. Gabow’s original algorithm fails
to generate different segmentations: the spanning trees differ, but the induced segmentation
is always the same. In contrast, in the proposed algorithm, more than half of the generated
spanning trees induce a unique segmentation.

ran Gabow’s original algorithm and our modified version and compared the induced segmenta-
tion of each generated spanning tree to all previous generated segmentations to see how many
unique segmentations each of the algorithm generates. As can be seen in Figure 3.4, Gabow’s
original algorithm fails to generate even two unique segmentations in k′ = 300 iterations. Each
generated spanning tree differs, but all spanning trees induce an equivalent segmentation. The
same effect can be observed in the toy example in Figure 3.1. Our modification ensures that
each generated spanning tree induces a different segmentation compared to the previous state. It
works well in practice: more than half of the generated MST’s induce a unique segmentation.

3.8 Conclusion

Recently a way to enumerate the diverse M-best solutions for Markov random fields has been
proposed in [10]. We present an algorithm that allows to enumerate locally changing segmenta-
tions in order of increasing spanning tree weight. We prove that the algorithm finds the smallest
weight spanning tree that represents a given segmentation. We experimentally validate the al-
gorithm and show that it can be used to effectively enumerate different smallest spanning tree
segmentations. Furthermore we show how a diversity constraint can be incorporated into the
algorithm that allows to enumerate segmentations which differ in a user specified number of
nodes. We expect the proposed algorithm to be of value in the pursuit of meaningful uncertainty
measures as well as user guidance in a 3D segmentation setting. We also trust that more robust
segmentations can be obtained by taking into account the information contained in a diverse set
of solutions.
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Chapter 4

Image partitioning using structured
decision trees

4.1 Introduction

This chapter describes a new method to learn edge models from sparse user scribbles marking
regions and is based on the publication [112]. Consider Figure 4.1 and assume that we want
to segment each kiwi. Normally, scribbles as shown on the left would be used to learn region
appearance models that can then serve as potential functions in energy-minimizing segmentation
methods such as graph cuts. However, this does not work here because the individual objects
are indistinguishable by region appearance. Another popular approach would use the scribbles
as seeds for a suitable region growing algorithm such as a seeded watershed or random walker.
However, such an approach would need a seed or scribble for each and every object.

When region appearance alone is not informative, segmentation must be based on an edge
model. Our ambition is to train such a model with minimal labeling effort on the user’s part.
Traditional learning methods require the user to place edge scribbles exactly on the desired
edges. The required localization accuracy makes this a time consuming task. Section 4.1.1
describes recent proposals for a simplified edge labeling. In contrast, we strive to use cheap
region scribbles like in Figure 4.1 to train edge models instead of the usual region models.

Clearly, region scribbles cannot be used for edge learning directly because they are typically
located far away from edges. However, they provide a large number of constraints that can
control edge learning indirectly:

• Each pair of pixels from the same scribble defines a must-link constraint, i.e. there must
be at least one connecting path that does not cross any edge.

• Pixels from different scribbles define a cannot-link constraint, i.e. any connecting path
must cross at least one edge.
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Figure 4.1: Segmentation example. Each connected component of the user scribbles is treated
as an individual label and the decision tree is trained using must-link constraints inside each
component and cannot-link constraints between label components. The resulting tree learns an
edge model consistent with the user-provided constraints and successfully generalizes to the
unlabeled part of the image, where it segments many objects successfully.

We call this a “link-or-cut edge learning” problem. It turns out that these constraints contain
sufficient information for successful training of an edge model, and we propose a structured
decision tree-type algorithm to solve this problem.

Since the training data does not contain direct edge annotations, the training error cannot be
defined as the fraction of mis-classified pixels or edges. However, such a simplistic criterion is
unsuitable for segmentation quality assessment anyway [121, 56]: It cannot penalize the global
consequences (big changes in the resulting connected components) that may be caused by local
errors such as a fine gap in an object contour. Instead, we define the training error in terms
of a clustering quality score similar to the Rand Index (eq. 4.1), which can be directly derived
from the pairwise constraints. This has profound consequences for the learning algorithm: Local
decisions should be conditioned on the state of the entire segmentation, and our new learning
algorithm reflects this requirement.

The proposed algorithm recursively builds a decision tree that predicts the state of each edge
of the image graph. During tree construction we use a non-local split criterion which takes into
account the global connectivity consequences of local edge predictions.

To summarize, the proposed algorithm relies on cheap must-link and cannot-link annotations
and has the following virtues:

• it requires no region appearance terms,

• the number of segments need not be specified in advance,
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• weak supervision in terms of sparse annotations is sufficient and no explicit edge labels
are needed,

• the training optimizes a global clustering score in a decision tree.

To the best of our knowledge, this is the first time a decision tree is trained using a non-local
structured split criterion.

4.1.1 Related work

Previous work on edge learning includes many approaches which are based on training data
with exact boundary localization, e.g. [70, 135, 69, 86, 41]. The method presented in [99] learns
an optimal edge labeling policy based on context and gestalt features, but also requires dense
ground truth. An interesting approach using weaker supervision is the livewire method in [8]
which snaps a path to the most probable boundary predicted by a classifier which is trained
online. Another approach using weaker supervision is presented in [6]. The author learns an
edge model from inaccurate boundary annotations.

Small errors in the boundary predictions have large global consequences when calculating the
connected components. To avoid this some authors introduce higher order constraints (e.g. bound-
ary closedness) to obtain a consistent segmentation [65, 1, 64]. A novel take at edge learning
based on a non local clustering quality measure is used in [118] to learn a neural network. A
non-local warping error that takes topological constraints into account is also proposed in [56]
but the authors also use a dense labeling during neural network training.

The decision tree based edge learning algorithm that we propose is related to [96]. The authors
learn edge on/off probabilities using a decision tree, but the method requires a dense labeling as
input and does not take the effect on the connected components of the graph into account – it acts
locally. Our special split criterion is inspired for example by [59] where a special loss function
in the split nodes of a decision tree is optimized. But in contrast to our approach their objective
is local, as is the case in [58]. The authors of [71] have introduced a decision tree algorithm
that works on locally structured labels. We build on this idea and extend it to a structured loss
function on a complete image graph. In [72] a decision tree is proposed whose intermediate
learning state is used as a feature for further tree growing. This is the basis for our proposed
algorithm which evaluates a structured split criterion with regard to the intermediate tree state.

The must-link and cannot-link constraints that we use to train our learning algorithm have also
been used by [53, 132]. These algorithms partition an image graph into connected components
using said constraints. Both partitioning algorithm use a single scalar value associated with each
edge whereas our method can take a multitude of edge features into account and learns an edge
model from the given constraints. The same type of partitioning constraints has been considered
in [54] where the authors introduce must-link constraints in the context of the normalized cut
algorithm. In the context of the image foresting transform cannot-link constraints have been in-
vestigated in [81]. To summarize, must-link and cannot-link constraints haven been investigated
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in the literature, but our approach is novel since we use these constraits for weakly supervised
boundary learning.

4.2 Problem definition and objective function

We consider a segmentation problem defined on a graphG(E ,V) in which the nodes ni ∈ V cor-
respond to the pixels of an image, and the edges (i, j) ∈ E correspond to the pixel neighborhood
of the image. We assume a suitable set of edge features wijf (such as color gradients or structure
tensor eigenvalues on different scales) is available and can be attributed to each edge (i, j). In
addition we are given a sparse constraint matrix C ∈ {−1, 0, 1}N×N that defines whether a
pair of pixels (i, j) must be in the same component (Cij = 1), or in two different components
(Cij = −1). The decision variables xij ∈ {0, 1} determine whether an edge (i, j) is removed
from (xij = 0), or remains (xij = 1) in the graph G. The objective function F (c,x) which we
seek to maximize depends on the set of constraints c and the connected components or partitions
π(x) implied by the binary edge indicator variables xij :

F (c, π(x)) =

TP × TN − FP × FN√
(TP + FP )(TP + FN)(TP + FP )(TN + FN)

(4.1)

where TP (c, π(x)) is the number of pairs of pixels which are correctly (according to the con-
straints c) assigned to the same component and FP (c, π(x)) is the number of pairs of pixels
which are incorrectly assigned to the same component. TN(c, π(x)) and FN(c, π(x)) are the
number of true negative and false negative pairs respectively. Equation 4.1 is known as Matthews
correlation coefficient [87].

Thus, in the optimum x̂ = argmaxx F (c, π(x)), the binary indicator vector x̂ corresponds to
a partitioning of the graph into a set of connected components π(x) that satisfy the constraint
matrix. Note that the number of connected components defined by π(x) can be larger than the
number of components defined by the constraints c: the unconstrained pixels of the image can
be partitioned in many different ways.

4.2.1 Overview: global optimization using decision trees

The objective function F (c, π(x)) defines a global objective which depends on the structure of
the graph G. Maximizing F may be a simple task when the constraint set is very small: many
different possible edge assignments x may partition the graph correctly. But depending on the
size of the constraint set and the structure of the graph the problem can become computationally
infeasible. The objective function is highly non-smooth and non-convex: switching a single
binary indicator variable xij – for example on the boundary between two objects – may have a
huge influence on the value of F .
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Figure 4.2: Illustration of our decision tree building process. Starting at the root node (1) the
edges are partitioned into two sets, one of which is assigned xij = 1 (thick, edges stays in the
graph) while the edges of the other partition are assigned xij = 0 (thin, edges are removed from
the graph). In the next steps this initial decision on the edge states is revised by partitioning the
two edge sets recursively further into an on and off set such that the objective function F (x, c)
is maximized. The value of the objective function depends on the connected components of the
graph G that are induced by the edge state defined in the leaf nodes. The connected components
are distinguished by the node colors.

In contrast to existing approaches which use classifiers to learn local pixel class probabilities
or which learn pairwise boundary probabilities [96] from strong edge/no-edge examples, our aim
is to learn from weak labels: the learner will be trained only from the constraint set c derived
from sparse user scribbles and the structure of the problem, the pixel neighborhood graph G.

We have chosen to optimize Equation 4.1 using a greedy method inspired by traditional de-
cision trees. As explained in Section 6.3 decision trees are constructed in the following fash-
ion: Given a set of examples Si associated with a decision tree node i, a tree is built start-
ing at the root node 0 by partitioning the set of examples into two subsets SL and SR. The
decision how the set Si is partitioned depends on the parameters θi for node i and the fea-
tures of the samples. These parameters are obtained by optimizing a split criterion function
θ̂i = argmaxθi CFi(SL, SR, θi;Si). Examples of such split criteria CF include the Gini-
Impurity or the Information Gain. Important is the purely local dependency of the split functions
that are usually used – the function which is optimized only depends on the split parameters θi
of the node i that is optimized and the set of training examples Si over which this node optimizes
and their associated features.

We however propose to optimize a global function at each split node. In other words, we
condition the split criterion function CFi on the parameters θ0, ..., θi−1 of all other split nodes
of the tree. Intuitively speaking, in each node we optimize the split parameters θi of that node,
given all split decisions of all other nodes at the current state of the tree. Formally we find the
parameters of node i:

θ̂i = argmaxθi CFi(SL, SR, θi;Si, θ0, ..., θi−1)
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In our case we seek to optimize the objective function F over the connected components of
a graph G obeying constraints on pairs of nodes. The samples and features of the decision tree
consist of edges and their associated features on this graph.

4.2.2 Decision tree building algorithm

Our algorithm seeks to discriminate object boundaries by their features such that the boundaries
satisfy a set of must-link and cannot-link constraints. Tree construction starts by trying to satisfy
as many of the given constraints as possible by thresholding a single feature and thereby splitting
the edges of the graph into one set that is removed from and another one that remains in the
graph. The decision on the split parameters θi of node i is optimized by sorting the edges
Si associated with decision tree node i on mtry different feature values. For each of the mtry
features all possible split points are evaluated by first removing all edges Si associated with the
decision tree node from the graphG. It is important to realize that only the edges of the currently
considered split node are removed, the presence and absence of all other edges, as defined by
the current state of the decision tree, remains unchanged. In a second step, the edges associated
with split node i are re-inserted into the graph one after the other in the order of increasing
feature weight. After each edge insertion, its effect on the connected components of the graph
is efficiently evaluated using a union find data structure. In addition, we count how many true
positive and false positive pairs are generated with respect to the global constraint set c which
specifies which nodes should be in the same component and which nodes should be in different
components. Using the TP , FP , TN and FN counts we compute the value of the objective
function F and remember the best split position that we encountered while inserting the edges
into the graph. The same procedure is executed in descending sort order. After determining
the feature and split position that yield the highest objective function value, two child nodes
are added to the currently considered node i and the split parameters θi of the node are set
accordingly. These two child nodes determine the new state of their associated edges until they
are further refined in a recursive fashion. The recursive partioning continues until no further
improvement in the objective function can be made.

Splitting a node and the associated edge set further thus re-optimizes the state of the edges
associated with that node: the final leaf node with which an edge is associated defines the edge
state within the tree. This process is illustrated in Figure 4.2.

It is important to see that during this recursive partitioning the optimization in each leaf node
involves only the edges associated with that particular node. The state of the other edges is
determined by the already existing leaf nodes and is assumed fixed. Thus each leaf node is
optimized conditioned on the graph state given by the current complete decision tree.

While the insertion of edges and its effect on the connected components of the graph can
be computed very efficiently, handling edge removal is more difficult. Handling edge removal
requires either extremely intricate algorithms [116] or a linear scan over possibly all edges in
G even though the removed edge set is very small. For this reason we compute the connected
components of the graph a single time once all edges associated with a decision tree node are
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removed. We then trace all changes to the union find data structure and to the TP , FP , TN
and FN pair counts caused by inserting an edge into the graph when we test for a split position.
This allows us to unwind all changes once the objective function has been evaluated for all split
points along one feature and to efficiently begin testing for better splits using the next feature
without recomputing the connected component state from scratch.

4.2.3 Backtracking for greedy global decision trees

It is intuitively clear that the greedy tree building procedure that was outlined in the previous
section may get stuck in local minima: when partitioning the edge set recursively, the sets as-
signed to the leaf nodes quickly get smaller and the edges associated to one decision tree leaf are
not necessarily close to each other in the underlying graph. It becomes very likely that the edges
in any single leaf are unable to form a linking path between two isolated connected components
regardless of their labeling – this implies that it would be impossible to satisfy any constraint
that would require linking those components in the current state of the decision tree. Similarily
it becomes more unlikely that the edges in small leaves are sufficient to build a cut across a con-
nected component – thus it can become impossible to satisfy any constraint that would require
splitting some component into two isolated parts because the edges that could form such a cut
are distributed across different leaf nodes of the decision tree. For these reasons, we propose a

Figure 4.3: Illustration of split node insertion for backtracking. First a random subtree of the
decision tree is selected (green overlay). Then a split node is inserted above this subtree whose
split function is optimized under the assumption that the left partition below the inserted node
is passed onto the existing subtree, while the right partition is passed to a new leaf node and is
assigned either to 0 or 1. The insertion of a split at a higher tree level effectively optimizes over
a larger set of samples compared to adding a split ad a leaf node. The insertion split takes away
some samples from an existing part of a decision tree and overrides the existing subtree partially.

novel backtracking scheme during decision tree building: we allow for split nodes to be inserted
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at arbitrary positions in the tree, not only at the leaves of the tree. Since we allow these nodes to
be inserted at any tree level, these split nodes can optimize over a larger set of edges compared
to a node at a decision tree leaf. In the extreme case of inserting such a node above the current
root of the tree, the new node can reoptimize over all edges of the graph. This novel insertion
split partitions the edge set arriving at an inserted node into two parts, such that the left partition
is passed to the already existing subtree below the inserted split node as before while the right
partition is either assigned to xij = 0 or xij = 1. Thus an existing learned combination of rules,
defined by the subtree below the inserted node, is partially reused and the decision for a subset
of the edges below/above a feature threshold is reconsidered.

The optimization of an inner node of the decision tree is executed in the same manner as
already described for a leaf node. The only difference is that when scanning over the edges
in the partition in increasing/decreasing feature weight order, not all edges are re-inserted into
the graph. Instead, the current state of the edge xij which is determined by the subtree of the
node currently under consideration is used as a mask. In a first trial only edges with current state
xij = 1 are re-inserted. This corresponds to overriding the subtree for the edges right (increasing
sort order) / left (decreasing sort order) of the split position with a xij = 0 assignment. In a
second trial, only the edges with xij = 0 are removed from the graph before inserting all edges
in increasing/decreasing order. This corresponds to overriding the subtree for some edges with
a xij = 1 assignment left or right of the split position.

4.2.4 Decision tree prediction algorithm

Once a decision tree has been built in the described manner, it can be used to determine a seg-
mentation of the graph by predicting the binary indicator xij for all edges. Prediction proceeds
as in any normal decision tree: samples (in our case edges (i, j)) are passed down the tree, start-
ing from the root node 0 by comparing the value wijf of edge feature f with the split value that
is stored in a tree node. Edges with a smaller (larger) feature value are passed to the left (right)
child of the current node. Once a leaf node is reached, the x label of this leaf node is assigned to
the edge. Now all edges with xij = 1 are switched on in the graph and its connected components
are determined.

In an unsupervised segmentation setting, the resulting connected components of the graph
are the final output.

In a foreground/background segmentation setting as shown in Figure 4.4, the number and
type of user labels that are located inside each component are determined and the component is
labeled with the winning label. Since not necessarily all induced components contain user given
labels, the unlabeled components are assigned a label by determining the closest (node distance)
labeled component in the adjacency graph.
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4.3 Experiments

Unfortunately, at present there is no suitable benchmark for the sparse must-link/cannot-link
edge learning problem that we propose. To indicate the usefulness of the proposed method we
apply our method to a related benchmark dataset [131] and show that our method is applicable
to a range of typical unsupervised segmentation problems. Examples of such problems are given
in Figure 4.1 and Figure 4.6.

Edge features: a range of simple local filters (Gaussian smoothing, Hessian eigenvalues and
Gradient magnitude) computed over several scales (σ = 1.0, 1.3, 1.6, 2.5) have been used as
interpixel edge features. These filter responses haven been calculated in RGB and the LUV
colorspace respectively. To obtain features that can be associated with an interpixel edge, these
pixel features have been linearly interpolated from two neighboring pixels.

Postprocessing: When our algorithm satisfies a cannot-link constraint between nodes, it does
so by introducing a closed boundary between these nodes. This boundary often consist of many
isolated 1-pixel components, as can be observed in Figure 4.6. This thick boundary is a result
of the ambiguity in the data. A simple way to obtain a visually more pleasing segmentation as
in Figure 4.1 is to perform a seeded region growing from all large regions, and to reassign the
1-pixel components to the nearest larger component.

Analysis of training and test error is given in Figure 4.5. The scores were obtained by
sparsely labeling all objects in the images of Figure 4.1 and Figure 4.6 and splitting the individ-
ual images into two parts. Training was done on the left half and testing on the right half and
vice versa. The two examples with inhomogenous boundary appearance (apples, kiwis) profit
from deeper trees, as can be seen from the test score which increases until a depth of 4. The
examples with homogenous boundary appearance (cells, neural tissue) do not profit from more
decision tree levels - the tree starts to overfit after the first level. This ovefitting behaviour of
single decision trees is well known. In the future we intend to remedy this problem by training
an ensemble of randomized trees which are trained on different subsets of the training data.

Quantitative evaluation: In addition to the qualitative examples, we test our algorithm on
the LHI [131] interactive segmentation benchmark. The Benchmark consists of several natu-
ral images and provides ground truth and three different types of foreground/background user
scribbles with varying difficulty. We adapt the problem to our algorithm by introducing must-
link constraints for all foreground-foreground label pairs and all background-background label
pairs. In addition we introduce cannot-link constraints for all mixed foreground-background la-
bel pairs. We ran the benchmark on all three kinds of user scribbles and calculated the average
foreground object precision (S+

gt

⋂
S+
res/S

+
gt

⋃
S+
res) over all images.

The results show that our purely edge based decision tree achieves a segmentation quality that
surpasses many established methods, without learning local class probabilities (unary potentials
describing region appearance) from the user labels. These local class probabilities usually work
very well on the benchmark images. In addition the other methods rely on a hand-crafted edge
probability. We show experimentally that it is possible to achieve the same segmentation quality
without relying on local class probabilities and without hand-crafting binary potentials for edges.
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Bai et al. [7] 0.50
Gradi [50] 0.56

Couprie et al.[32] 0.58
our algorithm w/o. insertion splits 0.68

Boykov et al. [18] 0.69
our algorithm 0.71

Unger et al. [120] 0.73
Zhao et al.[134] 0.79

Table 4.1: Quantitative Evaluation on the LHI interactive segmentation dataset [131]. The
dataset consist of several foreground-background segmentation tasks with varying seed qual-
ity (see Figure 4.4 for examples). Results for other algorithms were taken from [134].

Our method exclusively relies on the edge probabilities learned from sparse user scribbles.

4.4 Conclusion

We propose “link-or-cut edge learning”, i.e. to learn an edge model from sparse region scrib-
bles interpreted as must-link and cannot-link constraints. To solve this problem, a novel global
structured learning scheme based on decision trees is introduced. We explain how decision
trees can be trained using a global structured loss criterion and show how they can be used to
learn an edge model on an image graph. In addition, we show how local minima during tree
construction can be overcome by a split node insertion that reuses the already learned decision
structure. When applied to interactive foreground/background segmentation problems on natu-
ral images, the proposed algorithm produces results comparable to other methods which do rely
on local appearance models. The real strength of the proposed method, however, does not lie
in the foreground/background segmentation, but in the discrimination of multiple, and possibly
similarly-looking foreground objects. Unfortunately the presented approach does have some
limitations which we want to discuss. A current limitation is the reliance on axis-orthogonal
splits. If there is no single feature that can discriminate the edges around an object relatively
well, the algorithm cannot construct a closed cut around this object and cannot escape from this
situation – the objective function only improves, if an object is completely separated from its
cannot-link partners. The same problem holds for the must-link constraint: if there is no single
feature that can be used to build a linking path between two must-link partners, the objective
function cannot be improved.

In future work we hope to remedy some of these problems, either by using a relaxed version
of the objective function that allows to increase the objective value also by partially separating
a node. In addition one could introduce oblique splits that may prevent some of the problems
since the algorithm could construct a suitable linear combination of existing features. Another
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promising avenue is to extend the supervised segmentation learning algorithm using region ho-
mogeneity priors.

Figure 4.4: Supervised segmentation example. The images shown are two examples from the
LHI interactive segmentation benchmark, also displayed are the benchmark provided scribbles.
Our decision tree iteratively partitions the image graph into connected components (indicated
by same color). In each tree level (1,2,3) the decisions are refined such that a global objective
function over the image graph is optimized that enforces the pairwise connectivity and exclusion
constraints that are implicitly defined by the labels.
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Figure 4.5: The plots show the training and testing score over the decision tree depth. The two
examples with inhomogenous boundary appearance (apples, kiwis) profit from deeper trees, as
can be seen from the test score which increases until a depth of 4. The examples with homoge-
nous boundary appearance (cells, neural tissue) do not profit from more decision tree levels - the
tree starts to overfit after the first level.
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Figure 4.6: Segmentation examples of different characteristics, all segmented with the same
parameter settings. The last two rows show yeast cells in light microscopy, and dendrites in
electron microscopy [24, 25], respectively. Individual objects do not differ in appearance and
can be discriminated via their boundaries only. These are learned in a weakly supervised fashion
from the connectivity constraints that are implicit in the seeds. In contrast to seeded segmen-
tation only a subset of objects need to be marked and the learned classifier can be applied to
similar images. Region types that are not represented in the training set (no labels) receive an
incoherent prediction (bottom example, arrows).
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Chapter 5

Multiple instance based edge learning

5.1 Introduction

This chapter describes a new method to learn edge models from sparse user scribbles marking
regions. Consider Figure 5.1 and assume that we want to segment each kiwi. Normally, scribbles
as shown on the left would be used to learn region appearance models that can then serve as
unary potential functions in labeling methods such as graph cuts. However, this does not work
here because the individual objects are indistinguishable by region appearance. When region
appearance alone is not informative, segmentation must be based on an edge model. Based on
the edge model one would use the scribbles as seeds for a suitable region growing algorithm
such as a seeded watershed or random walker. When the edge model is of high accuracy even a
simple connected component computation can produce the desired segmentation.

Figure 5.1: Qualitative boundary learning result. The boundary prediction (red, right image) was
learned from the user given region scribbles (green, right image).
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Our ambition is to train such a model with minimal labeling effort on the user’s part. Tradi-
tional learning methods require the user to place edge scribbles exactly on, or close to [6], the
desired edges. The required localization accuracy makes this a time consuming task. In contrast,
we strive to use cheap region scribbles like in Figure 5.1 to train edge models instead of the usual
region models.

Clearly, region scribbles cannot be used for edge learning directly because they are typically
located far away from edges. However, they provide a large number of constraints that can
control edge learning indirectly:

• Each pair of pixels from the same scribble defines a must-link constraint, i.e. there must
be at least one connecting path that does not cross any edge.

• Pixels from different scribbles define a cannot-link constraint, i.e. any connecting path
must cross at least one edge.

Our main contribution is to point our that this can be formulated in a multiple instance learn-
ing setting. Multiple instance learning (MIL) [39] is a learning technique that relies on very
weak supervision. As opposed to standard supervised learning settings where a ground-truth
label is available for each instance, in the MIL setting the labels of individual instances remain
unobserved (latent variables). Instead, a single label is assigned to each set, called bag, of in-
stances. A positive bag label indicates that there exists at least one instance in that bag with
positive label. In a bag with a negative label, all instances are known to have a negative label.

More formally, the MIL problem considers several bags Bb, b ∈ {1, ..., N}. Each bag Bb

consists of a number of instances xbi ∈ Bb, i ∈ {1, ..., N b}. A bag Bb has a positive label
Y b = 1 if there is a xbi ∈ Bb with ybi = 1. This is called the positive identifiability constraint
[77]. A bag Bb has a negative label Y b = 0 if ybi = 0 for all xbi ∈ Bb. This is called the negative
exclusion constraint [77]. An instance of a positive bag is called a witness if it has a positive
label, and non-witness if it has a negative label. Given a previously unobserved bag of instances,
an MIL model can either predict a label at the bag level, as in [136], or at the level of individual
instances, as in [2]. The latter is a more difficult problem and requires a model with greater
descriptive power. For a more detailed introduction to the MIL problem and related algorithms
we refer to Chapter 6.

5.2 Edge learning as a MIL problem

We consider an image partitioning problem defined on a graph G(E, V ) in which the nodes
ni ∈ V correspond to the pixels of an image, and the edges (i, j) ∈ E correspond to the pixel
neighborhood of the image. We assume a suitable vector of edge features wij (such as color
gradients and structure tensor eigenvalues on different scales) is available and can be attributed
to each edge (i, j). In addition we are given a sparse constraint matrix cij ∈ {−1, 0, 1} that
defines whether a pair of pixels (i, j) must be in the same component (cij = 1), or in two
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different components (cij = −1). Associated with each edge are decision variables xij ∈ {0, 1}
that determine whether an edge (i, j) is removed from (xij = 1), or remains (xij = 0) in the
graph G. These decision variables define the solution to the graph partitioning problem via the
connected components of a modified graph G′ consisting only of the non-boundary edges (i, j)
with xij = 0. Our aim is to learn a classifier that predicts all edge decision variables xij such
that the connected components of the graph G′ satisfy all user given grouping constraints C.

We now show that it is possible to formulate the edge learning problem from sparse user
scribbles as a multiple instance learning problem (for a introduction to multiple instance learning
see Chapter 6) by expressing the must-link and cannot-link constraints as positive and negative
bags: any path P ⊆ E on G between two cannot-link nodes a, b must, by definition, contain
at least one edge e ∈ P which is a boundary edge. This is, because node a and node b are
located in different partitions, which in turn must be separated by at least one boundary. This
boundary crossing constraint on the edges of path P corresponds exactly to the concept of a
positive bag in the MI setting: the positive bag must contain at least one positive instance.
The negative bag concept on the other hand is directly related to must-link constraints within
user scribbles: we treat each edge between two neighboring nodes which received a must-link
constraint (i.e. two neighboring pixels inside a user scribble) as a non-boundary edge: the two
nodes must be connected and there is no boundary between them. Thus, we can add all such
edges between must-link nodes to a single negative bag which in the MI setting must not contain
any positive instance, i.e. no boundary. Thus, we relate boundary edges (xij = 1) with positive
instances and non-boundary edges (xij = 0) with negative instances.

In principle a MI classifier can be trained by constructing the positive bags from all possible
paths between all cannot-link nodes. But unfortunately it is infeasible to sample all paths Pi
between even a single cannot-link node pair since there are exponentially many such paths on a
graph.

One solution to this problem is a cutting planes like approach: we sample k paths initially and
iteratively add violated paths to the learning problem. The algorithm works as follows: from
the initially sampled paths positive bags are constructed by adding all edges e ∈ Pi on path
i to a positive MI bag Bi

+. In addition a negative bag B− is constructed from all must-link
edges which is also added to the MI problem. Next, a MI learning algorithm is trained on the
constructed problem. The trained MI classifier is then used to predict an instance label xij for
all edges (i, j) of the image graph. This predicted instance label is the boundary indicator for
each edge: xij = 1 is a positive instance which corresponds to a boundary, xij = 0 is a negative
instance which corresponds to a non-boundary.

Now the graph G′ is constructed from all non-boundary (xij = 0) edges. The connected
components of G′ define the solution to the graph partitioning problem in the current iteration.
On this graph G′ k still violated paths, i.e. paths which connect two cannot-link nodes, are
sampled. These newly sampled paths are also added as positive bags to the MI problem. This
whole process is repeated until no more paths between cannot-link nodes can be found in G′

- the segmentation problem is then solved and the MI classifier has learned a positive instance
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boundary concept that separates all cannot-link nodes from each other by predicting a closed
boundary between them.

5.3 Experimental evaluation

We evaluated the proposed boundary learning method on several images which are suitable for
such an algorithm: these images contain many similar objects touching each other and thus
cannot be discriminated by training a normal foreground/background classifier since all objects
look alike featurewise.

The iterative learning/prediction scheme from Section 5.2 requires a MI learning algorithm
with low computational requirements since the problem size increases in each iteration and
can consist of hundreds of thousands of instances. For this reason the MIForest [76] is used

Figure 5.2: Qualitative boundary learning result. The boundary prediction (red, right image) was
learned from the user given region scribbles (green, right image).
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throughout the experiments due to its low runtime complexity.
The example images and experiments show that the MIForest fails to learn a reasonable

boundary concept: nearly all unlabeled parts of the image are predicted as boundary at test
time.

We identified two interconnected reasons for this undesirable behavior. The first reason are
the algorithm internals of MIForest (and mi-SVM, MI-SVM and others): the algorithm infers
the latent instance labels in an iterative fashion by training a normal supervised random forest.
The MIForest starts from an instance label initialization of yi = 1 if instance i is part of of
positive bag and yi = 0 if instance i is part of a negative bag. These labels are used for training a
normal random forest and the prediction of the trained forest is used as the instance labels in the
next iteration. This process is repeated until the instance labels do not change from one iteration
to the next.

The second reason is the class imbalance between positive bags and negative bags: since the
iterative learning/prediction scheme from Section 5.2 adds several positive bags per iteration un-
til all constraints are satisfied, the number of positive bags and instances outweighs the negatives
by far.

The simplistic supervised classifier that is internally used by MIForest and the huge class
imbalance together lead to a multiple instance classifier that prefers assigning most edges to the
boundary class.

5.4 Conclusion

We propose a method that can make use of sparse partial region annotations to learn a boundary
concept on an image, even when the regions look alike and cannot be discriminated from the
background. The proposed method maps the boundary learning task to a multiple instance
learning problem. Positive bags correspond to paths between cannot-link labels where a positve
instance in a bag maps to a boundary edge on the path. Negative bags in the multiple instance
learning problem correspond to paths within a user given brush stroke: all edges on the path
belong to the non-boundary class. The method is evaluated on several natural images but fails to
produce visually pleasing results due to the many boundary predictions that are produced. Much
of the image is predicted as being a positive instance. Further research is neccessary to remedy
this problem.
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Chapter 6

Multiple instance optimized random
forest

6.1 Introduction

Dramatic improvements in instrumentation, and online data collection on an unprecedented
scale, result in a tremendous increase in the number of observations. In contrast, the rate with
which a human expert can annotate such observations for the purpose of supervised machine
learning is a (biologically limited) constant. It is hence attractive to trade human effort for com-
putational expense, by learning from weak supervision. In brief, learning highly descriptive
models from weak supervision appears as a key challenge in next generation data analysis.

Multiple instance learning (MIL) [39], which was used in Chapter 5 to learn image bound-
aries, is a learning technique that relies on very weak supervision. As opposed to standard
supervised learning settings where a ground-truth label is available for each instance, in the MIL
setting the labels of individual instances remain unobserved (latent variables). Instead, a single
label is assigned to each set, called bag, of instances. A positive bag label indicates that there
exists at least one instance in that bag with positive label. In a bag with a negative label, all
instances are known to have a negative label.

More formally, the MIL problem consists of several bags Bb, b ∈ {1, ..., N}. Each bag Bb

consists of a number of instances xbi ∈ Bb, i ∈ {1, ..., N b}. A bag Bb has a positive label
Y b = 1 if ∃xbi ∈ Bb with ybi = 1. This is called the positive identifiability constraint [77]. A
bag Bb has a negative label Y b = 0 if ybi = 0 ∀xbi ∈ Bb. This is called the negative exclusion
constraint [77]. An instance of a positive bag is called a witness if it has a positive label, and non-
witness if it has a negative label. Given previously unobserved bag of instances, an MIL model
can either predict a label at the bag level, as in [136], or at the level of individual instances, as in
[2]. The latter is a more difficult problem and requires a model with greater descriptive power.

In this chapter, which is based on publication [111], we introduce a decision tree based solu-
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tion to MIL. Our model inherits the desirable properties of decision trees such as small compu-
tational footprint, ease of implementation, and high interpretability. In particular, we extend the
work of Blockeel et al. on multi-instance decision trees [16] in several aspects. First, we learn
multiple randomized decision trees [19]. Secondly, we employ a non-linear split criterion on
multiple features at a time, in place of the commonplace axis-orthogonal approach. Thirdly, we
increase the robustness of our model against noise by regularizing instance weights. Lastly and
importantly, we introduce a means to learn the optimal combination of the decision outputs of
all trees in the forest. In a lesion study, we analyze the contribution of each of these extensions
to overall performance. The combined model clearly outperforms existing decision tree based
methods [76, 16].

6.2 Related Work

The first algorithm to solve the multiple instance learning problem was proposed by [39]. Here,
the authors assume that the positive instances reside in a single axis parallel rectangle (APR).
The diverse density framework in [84, 133] assumes that positive instances form a Gaussian-like
pattern around some concept points. Wang et al. [127] propose a nearest neighbor and nearest
neighbor of nearest neighbor based approach. Another SVM-based approach is presented in
[48, 74]. Here, the authors design kernel functions on bags, instead of on instances. Mangasarian
et al. [82] use a succession of linear programs to solve the MIL problem. Boosting based
approaches include, for example, Viola et al. [125]. In addition, some deterministic annealing
type approaches have been proposed [49, 76] that try to uncover the instance labels in several
training iterations. Joulin and Bach [61] propose a convex formulation for estimating the latent
instance labels. An interesting extension to the finite-sized MIL algorithms has been proposed
in [4] that learns from infinite size manifold bags. Also noteworthy is the method proposed
in [12] which tackles the runtime complexity of multiple instance learning algorithms using a
fast bundle method. Settles et al. [108] apply the idea of active learning to MIL by querying
the labels of instances in positive bags . Li et al. [78] reports increased performance in object
tracking if learning is performed from batches of bags.

A large group of existing MIL methods commonly follow the large margin principle [2, 49, 31,
52]. These models are based on extensions of the support vector machine (SVM) optimization
problem with the positive identifiability and negative exclusion constraints. MI-SVM [2] adds
one constraint per one instance in a positive bag that has the largest discriminant value. mi-SVM
[2] treats the instance labels in positive bags as latent variables to be learned from data. Although
mi-SVM is a more flexible model, MI-SVM exhibits better prediction performance, since the
prediction of the latent variables in mi-SVM strongly biases false positives to maximize the
margin. This inherent difficulty in regularizing the intra-bag distribution of instance labels has
been pointed out by [52], and solved alternatively by enforcing the instances in positive bags to
lie on a manifold perpendicular to decision boundary.

An alternative approach to MIL is via probabilistic modeling. A seminal work in this line is
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by Kim and de la Torre [63], who introduce an extension of Gaussian process classification to
the MIL setting. The model relies on a very similar principle to MI-SVM, namely describing
positive bags by a single instance having the largest separation from the border. Apart from the
fact that it enjoys a principled parameter tuning mechanism, this model shares all the weaknesses
of MI-SVM, such as not being robust to false positives in positive bags, due to the fact that it
ignores the information stored in all the instances in a positive bag but one. Raykar proposes a
Bayesian formulation [103] to MIL that can effectively perform feature selection.

A third alternative approach is decision tree based MIL. Blockeel et al. [16] adapted deci-
sion trees to the MIL problem by introducing a priority queue into the tree construction process.
Leistner et al. [76] propose a deterministic annealing procedure for uncovering the hidden in-
stance labels in several forest training iterations. In this chapter, we introduce another MIL
algorithm on this track, which is an extended version of of the work of Blockeel et al. [16].

Recent examplary applications of MIL include diabetic retinopathy screening [101], cancer
detection from tissue images [129], visual saliency estimation [128], and content-based ob-
ject detection and tracking [109, 5]. MIL is also useful in drug activity prediction where each
molecule constitutes a bag, each configuration of a molecule an instance, and binding of any
of these configurations to the desired target as a positive label, as first introduced by Dietterich
et al. [39]. More recent applications of MIL to this problem include finding the interaction of
proteins with Calmodulin molecules [11], and finding bioactive conformers [46].

6.3 Decision trees

We quickly review the decision tree algorithm already covered in Section 1.7.
Let D = {(x1, yi), (x2, y2) · · · , (xN )} be a data set of N instances where
xi = [xi1, xi2, · · · , xiD] are D-dimensional vectors of observed instances and yi are associated
labels. Suppose that M(ys) is a scalar measure based on the labels of an instance set s, denoted
by ys. A decision tree is built by the following steps:

• For each observed value xij of each feature j, group the instances into two groups ac-
cording to the split rule fj > xij where fj is an arbitrary value for feature j. Calculate a
goodness measure for the split θij = M(yfj>xij ) +M(yfj≤xij ).

• Create a node for the feature ĵ which gives the highest θij , and two child nodes, and assign
all instances with fj > xij to one node, and the rest to the other node.

• For each child node, repeat this process on their assigned set of instances recursively until
all nodes have instances belonging to a single class.

Let fc denote the ratio of instances in ys that belong to class c. Two widely used examples of
goodness measures are Gini Impurity:

IG = 1−
C∑
c=1

f2
c ,
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and Information Gain:

IE = −
C∑
c=1

fc log fc.

Gini impurity is widely used by the CART (Classification And Regression Tree) algorithm [20],
and the information gain is more often preferred with the C4.5 algorithm [102]. The outlined
axis-orthogonal splitting procedure can be replaced by more complex splitting tests over multi-
ple features at a time, see for example [88].

6.4 Random forests

Decision tree learning has several desirable properties such as being computationally very fast,
and being very interpretable. However, the main drawback of this algorithm is the suboptimal
prediction performance it provides. One reason for the low accuracy of decision trees is that
features are handled one-by-one in the decision process, hence complex correlations between
features are not captured sufficiently. Another reason is that the goodness measures are calcu-
lated over the entire set of available instances, which makes the algorithm prone to overfitting.

Breiman has showed that a simple extension to the decision tree algorithm, called the random
forest, indeed brings a significant improvement in prediction performance, while keeping the
other good properties of decision trees [19]. The random forest takes a decision tree as a weak
classifier, and performs ensemble learning together with a bagging procedure. In particular, the
algorithm learns multiple decision trees on randomly chosen features based on randomly chosen
sets of training instances. The decision for a newly seen instance is made by combining the
outcomes of the learned trees in the forest.

6.5 Multi-instance tree learning

As a basis for our method we rely on the multi-instance tree learning (MITI) algorithm presented
in [16]. This greedy decision tree algorithm initially assumes that each instance in a positive bag
has a positive label. Importantly, the algorithm from [16] does not follow the depth first recursive
partitioning scheme outlined in Section 6.3. Instead, the authors propose a priority queue based
node expansion. The algorithm maintains a priority queue of split nodes, and iteratively takes
the node with the highest priority from the queue. The node that was taken from the queue is
split according to the goodness measure, and the resulting two child nodes are inserted into the
priority queue. The algorithm uses the number of positive instances in a node as the priority for
the queue.

Furthermore, the authors assign to each instance xbi a weight wbi . At the beginning this weight
is set to 1

|Bb| , the inverse of the size of the bag b to which instance i belongs. This ensures that the
weights of all the instances in a bag sum up to 1 - otherwise large bags would cause a bias. The
instance weight is used throughout the entire tree construction process and is also considered
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during the evaluation of the goodness of a split. Thus, a weighted Gini-impurity measure for a
set S of instances xbi is

G(S) =

∑
xb
i∈S

wbi

2

−

 ∑
xb
i∈S+

wbi

2

−

 ∑
xb
i∈S−

wbi

2

,

where S+ denotes the subset of instances in S with positive labels, and S− denotes the ones
with negative labels.

In addition the authors propose to change the assigned weight of the instances once a purely
positive leaf has been discovered. In this case the other instances of the bags that are covered by
the leaf will be discounted by setting their weight to 0. More formally, once a positive leaf Πk

has been found during tree construction we set wbi = 0,xbi ∈ Bb, i 6= j,xbj ∈ Πk. The intuition
here is that that once a positive bag is explained by one or more positive instances in a purely
positive leaf node, the decision tree does not need to find another positive instance to explain the
positive label of the associated bag, thus the weight wbi of the other instances of the bags that
are covered by the leaf node can be set to 0. This essentially discards these instances from the
further tree growing process, since these presumed negative instances have no influence on the
weighted Gini impurity during split evaluation.

Figure 6.1: Overview of the different decision tree split types. The standard axis-orthogonal split
type (left) is less discriminative then the oblique hyperplane split (right) and the ellipsoid split
(middle). The ellipsoid split is defined by the contour line of a normal distribution fitted to the
positive instances.

The overall process amounts to building a decision tree in a special order, where the largest
positive subset in the decision tree is expanded first. This prioritization induces the tree learner
to focus on finding pure positive subsets. In other words, it enforces the rule that it is legal for
non-witness positive instances to end up in negative nodes, but it is not desirable for negative
instances to end up in positive nodes. Thus trying to first find pure positive subsets best ex-
presses the multiple instance constraint. In [16] the authors show that the resulting tree growing
procedure outperforms other decision tree based algorithms in MIL problems.

In the following sections we extend the MITI algorithm in several ways and show that this
approach yields an algorithm that outperforms the existing decision tree based MIL algorithms,
and gives results similar to other existing algorithms. Our extensions to MITI are:
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• learning a random forest instead of a single deterministic decision tree,

• using a regularization and a weight redistribution to increase robustness to noise (as de-
tailed in 6.5.1),

• using a non-linear splitting method on pairs of features, instead of line search in individual
features (as detailed in 6.5.2),

• learning how to combine the decision outputs of the trees in the forest from data, subject
to a multiple instance constraint (as detailed in 6.5.4).

6.5.1 Tree regularization and weight redistribution

As opposed to [16] who grow a decision tree until impurity, we use a minimum leaf node size
as the stopping criterion for the decision tree growing process. This early stopping acts as a
regularizer, since it allows leaf nodes to contain positive and negative instances and the positive
instances in such impure leaves are assumed to be false positives. In this case we redistribute the
weights of the positive instances in an impure leaf node to the other instances of the correspond-
ing bag which are not yet assigned to a leaf node. More formally, for an impure leaf node Πk

that is below a size threshold we set wbi = wbi + 1
|Bb| ,x

b
i ∈ Bb, Y b = 1, i 6= j,xbj ∈ Πk where

|Bb| is the size of bag Bb. Thus, these remaining positive instances of a bag Bb contribute more
strongly to the further decision tree building process and the reweighted positive instances are
more likely to end up in a positive leaf node.

6.5.2 Inside/outside split concepts

In typical multiple instance learning tasks, positive instances are often distributed around few
cluster centers while the negative class is distributed more evenly. This fact is exploited in many
multiple instance learning algorithms, such as [84, 133, 31]. The orthogonal axis splits used in
traditional decision trees, such as in [16], appear as a bottleneck in model performance since
they assume an axis-orthogonal boundary between classes.

As a solution to this problem, we strenghten the modeling power of our decision trees with
a more complex split scheme. Instead of the line-search based splits on single features used in
[16], we employ two types of split criteria on multiple features at a time (see Figure 6.1):

• Ellipsoid splits

• Hyperplane splits

These complex split criteria are inspired from the oblique random forest idea studied in [89],
and the Gaussian density estimation forests in [37]. In the case of ellipsoid splits, we pick a
random subset of the feature dimensions and calculate the weighted mean and weighted sample
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covariance matrix of the positive samples that are assigned to that split node N :

µ =
∑

xb
i∈X+

wbix
b
i

W
,

where W =
∑

xb
i∈X+

wbi , and

Σkl =

 ∑
xb
i∈X+

wbi(∑
xb
i∈X+

wbi

)2
−
∑

xb
i∈X+

(wbi )
2


×
∑

xb
i∈X+

wij(x
b
ik − µk)(xbil − µl)

where X+ is the set of positive instances, xbi is the instance i of bag b, and xbik is the kth feature
of the same instance. We then sort the instances with respect to their Mahalanobis distance

λ =
√

(xbi − µ)TΣ−1(xbi − µ)

and search for the optimal split threshold λ > τ with respect to the Gini impurity of the induced
partitioning into a left and right subset.

In the case of hyperplane splits, we choose a random subset of the feature dimensions and
assign a random weight to each dimension, afterwards we search for the optimal linear intercept
with respect to the Gini impurity. This split type allows to discriminate better on correlated
features than the axis orthogonal split type used in [16].

Figure 6.2: The classifier response f(xb
i ) = uTi r for the instances is calculated as the scalar

product between leaf weights r and the indicator vector ui for instance xbi . The indicator vector
has 1 entries for the leaf nodes in which that instance xbi ends up when predicting the instance
with the individual trees tk. The leaf node weights r are then optimized in a post processing step
subject to positive identifiability and negative exclusion constraints.
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6.5.3 Forest vote bias correction

Our model learns multiple decision trees, each on a random subset of training instances and
features. Each of these trees have their own decision output for a newly seen instance. Hence, a
mechanism is required to combine these decisions to obtain the final outcome for that instance.

In the traditional random forest formulation, this issue is solved simply by majority voting.
In the case of multiple instance decision trees this can have detrimental effects: since each tree
deactivates all positive instances of a positive bag when it discovered a positive witness for that
bag the decision boundary is biased in favor of the negative instances since instances of the
negative bags are never deactivated.

Another undesirable situation occurs when the true positive instances are arranged in several
distinct clusters. Due to the deactivation mechanism, each tree can only identify a single positive
cluster per positive bag. The other clusters have a certain probability of being misclassified by a
single tree. Once again, true positive samples may not receive sufficiently many positive votes
to reach the majority vote threshold. Consequently, a simple majority vote combination of the
individual trees will lead to a strong negative bias of the forest.

We propose to counter the negative class bias of the forest in a simple way by optimizing a
threshold with regard to the MI-constraint. We count the number of positive tree votes for each
instance, and the instance that receives the most positive votes from each bag is recorded. For
these most positive instances the vote count threshold that best separates the positive from the
negative bags is determined by a line search with respect to the induced bag accuracy. We ex-
perimentally show that countering the negative bias of the forest is crucial for good performance
(see section 6.6).

6.5.4 Forest response optimization

Threshold optimization counters the class imbalance bias (which arises from deactivation of
positive training samples) by lowering the number of positive votes an instance must receive in
order to be assigned to the positive class. This strategy does not alter the votes themselves, but
only their interpretation. Alternatively (or in addition), we can improve voting performance by
optimizing the response of all leaf nodes. This optimization is only beneficial if it is conducted
jointly over all trees in the ensemble, because the standard leaf response (the majority label
of the instances assigned to each leaf) is clearly optimal as long as each tree is considered in
isolation. Since we want to retain the property that the ensemble response is computed as a
linear combination of tree responses, this leads us to a constrained linear optimization problem
similar to the ones discussed in only [44, 88]. These works introduce a sparsity constraint
in order to prune as many nodes as possible without degrading performance. In contrast, we
attempt to optimize leaf responses under the multiple instance constraints.

To define the linear system, we introduce the indicator vector ui of an instance i. It is a binary
vector whose length equals the total number of leaf nodes in the forest, and whose elements
represent the membership of i to the different leaves. That is, an element of ui takes a value of
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1 precisely when the instance i is assigned to the corresponding leaf. For example, the indicator
vector for the ensemble in Figure 6.2 has length 8. When the features vector xbi is propagated
down each tree, the leaves (1,5), (2,4), and (3,2) marked in blue are reached, and the three
corresponding entries in the indicator vector are set to 1. In addition, we define the leaf response
vector by r = [r11, r12, · · · , rTL] (where rtl is the response of leaf tl). Then, the total response
of the ensemble can be written as the scalar product

f(xb
i ) = uTi r

To optimize the weights r, we take the indicator vectors of all training examples and stack them
next to each other into the indicator matrix U. The training response is thus f = UT r. Note that
all instances are assigned to all trees during global optimization, irrespective of whether they
where out-of-bag or de-activated in the tree construction phase. We now seek the vector r∗ that
minimizes the training loss under the multiple instance constraints. That is, fi should take the
value 0 for all instances from negative bags, and 1 for the witness of each positive bag, whereas
the response for non-witness members of positive bags is ignored. Under our linear model, the
witness is defined as the positive bag member that receives the maximum response. This leads
to the following formal definition of the loss

Lbr(X
b, Y b) =

{
(maxxb

i∈Xb [f(xbi)]− 1)2 , Y b = 1,∑
xb
i∈Xb(f(xbi))

2 , Y b = 0.

This loss is combined with a quadratic regularizer to obtain the global optimization problem

r∗ = argmin
r

rT r +
∑
b∈B

Lbr(X
b, Y b).

While this is a non-convex optimization problem (the arguments of the square functions in the
loss can have arbitrary sign), we found in practice that good local optima can be found using
gradient descent by initializing the leaf weights r with the fraction of positive instances assigned
to them:

rl =

∑
xb
i∈Πl,y

b
i =1 1∑

xb
i∈Πl

1

The resulting optimization algorithm is efficient and takes only a small fraction of the total
training time.

6.6 Experiments

We evaluated the generalization performance of our algorithm on five publicly available bench-
mark data sets for MIL. The randomized decision tree parameter mtry which determines how
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many different splits are tested in each split node during tree construction was set to the stan-
dard square root of number of feature dimensions proposed by Breiman [19]. The number of
dimensions for the hyperplane splits was set to 5 and the number of dimensions for the Gaus-
sian ellipsoid split were set to 2. These choices ensure that the both split types have the same
number of free parameters (a 2D Gaussian has 3 free covariance matrix entries and 2 free mean
vector entries). Additionally, we set the minimum leaf node size regularization parameter to the
number of free parameters in the split nodes, i.e. 5. All performance scores reported below are
obtained by averaging 5 runs of 10-fold cross-validation.

6.6.1 Drug activity prediction

Drug activity prediction has been the first problem on which the concept of multiple instance
learning was introduced [39]. In this setup, each molecule is formulated as a bag, and each
configuration of that molecule as an instance in that bag. An instance is positively labeled if the
corresponding configuration of the molecule binds with another predetermined target molecule.
For a bio-chemist, what matters is whether a molecule binds with its target, but which particular
configuration binds is less important. Hence, this setup is exactly suitable to be defined as an
MIL problem. We evaluate our model on the two standard benchmark data sets for the drug
activity prediction: MUSK1 and MUSK2. The MUSK1 data set consists of 47 positive bags,
45 negative bags and 476 instances overall. Each instance is represented by a 166 dimensional
feature vector. MUSK2 consists of 39 positive bags, 63 negative bags and 6598 instances of 166
dimensions.

6.6.2 Image classification

Content based image classification is another application domain for multiple instance learning.
Each image consists of several regions, only one of which contains an object of interest. When
only image-level labels are available, such as the image contains a dog or the image does not
contain a dog the task to identify all images which contain a dog can be cast as a multiple
instance learning problem. In the benchmark data set the images are segmented into different
regions, each segmented region is described by a 230 dimensional feature vector. Each bag
corresponds to a single image and each region of an image constitutes an instance. All data sets
are grouped into 100 positive and 100 negative bags. The Elephant dataset consists of 1391, the
Tiger data set of 1220 and the Fox data set of 1320 instances.

6.6.3 Influence of proposed extensions

As seen in Table 6.1, all extensions except constraining the minimum leaf node size contribute to
prediction accuracy, and the highest performance is achieved when the extensions are employed
altogether. Most pronounced is the influence of combining multiple decision trees into a forest,
which is indicated by the low accuracy of the single tree model. The difference of our single
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tree accuracy in comparison to the MITI method can be explained by the randomized training
procedure that we employ to ensure uncorrelated trees. To investigate the influence of the forest
reponse optimization, we replaced this part of our model with the simpler forest vote bias cor-
rection step on the instance predictions of the forest. We found that the response optimization is
an essential part of the proposed model, as can be seen in Table 6.1. Deactivating also the forest
vote bias correction from Section 6.5.3 leads to predictions at the chance level. Less pronounced
but still positive is the contribution of the Ellipsoid split that we propose. The leaf node regular-
ization via a minimum leaf node size and a redistribution of the positive weights does not have
a visible positive effect. The Musk2 data set benefits from this extension while the effect on the
Musk1 data set is detrimental.

6.6.4 Discussion

Table 6.2 shows the accuracy of the models in comparison. The top-most group contains de-
cision tree based algorithms including our proposed model (MIOForest). Our model gives the
highest accuracy in this group of models in all five data set, while in Musk2 data set it is tied
with [16].

The group below it contains kernel-based based methods, which are either built on SVMs or
Gaussian processes. In terms of average performance over the five data sets, our model ranks as
fourth slightly after PC-SVM [52] and [23], and GP-MIL [63]. Among these models, PC-SVM
depends on a Quadratically Constrained Quadratic Programming (QCQP), and GP-MIL involves
inversion of a data-sized matrix, which make these models asymptotically more complex than
the method we propose. The average prediction performance of our model is 2% less than
these expensive models. We think the proposed algorithm is a worthwhile new approach to
the multiple instance learning problem that inherits the nice computational properties of the
random forest: O(nfeatures×N logN) per tree and its inherent parallelism during training of the
individual trees.

The third group from the top consists of two variants of an algorithm that is based on a plain
SVM with a special type of kernel function that calculates the dissimilarity between two bags.
Due to the fact that each bag is represented as a single instance during classification, these
algorithms are very fast. In addition their accuracy is very competitive. However, the problem
of these algorithms is that they are able to make predictions only at the bag level, as opposed to
all the other algorithms in comparison, including the method we propose.

The methods in the last group includes methods depending on various other approaches.
MILES [31] and SIL-SVM [23] basically solve the MIL problem using single-instance learning,
and EM-DD [133] uses a diverse density based approach combined with expectation maximiza-
tion.
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6.7 Conclusion

We have extended the multi instance tree learning algorithm proposed in [16] with a regulariza-
tion and weight redistribution scheme, inside/outside split concepts, randomization and a leaf
node response optimization. We have shown that our method exhibits superior performance to
other decision tree based algorithms on a number of benchmark data sets, and that its accuracy is
only slightly worse than rather expensive MIL algorithms that yield instance-level predictions.

There exist several interesting future extensions of the model we propose. For instance, ex-
ploring additional ways to control the witness/non-witness co-occurrences in positive bags is a
promising strategy for future work. Employing projection constraints towards the most discrim-
inative direction in a manner introduced in [52] easily be added to our method at the response
optimization stage of the algorithm. In addition, the idea from [136] to treat the instance from
the bags as non i.i.d. samples is another attractive direction of research that might be incorpo-
rated in the response optimization stage. Furthermore the instance-to-bag principle presented in
[126] could be beneficial also for the decision tree based approach used here.
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Chapter 7

Lazyflow: flow graph based
computation framework

Lazyflow is a flow graph based computation framework written in the Python programming
language. It is the cornerstone of all computations in ilastik [110], the interactive learning and
segmentation toolkit.

Expressing a computation as a data flow graph is often beneficial. It allows to analyze depen-
dencies easily and to reuse subblocks of the computation. A lazyflow graph is a directed acyclic
graph that expresses a computation. A data flow graph in lazyflow consists of so-called operators
and the edges connecting different operators. An operator is a small unit of computation that has
a set of input slots and output slots. These slots are used to define the inputs to the computation
by connecting them either to the outputs of a predecessor operator or by connecting them to data
directly.

Figure 7.1: Illustrations of a data flow graph in lazyflow. Units of computations are expressed as
operators whose inputs are either connected to a data source or to the output of another operator.
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7 Lazyflow: flow graph based computation framework

Figure 7.2: Illustrations of dirty propagation in lazyflow. Once some input to a calculation is
changed (red Data on the left) this change is propageted through the graph (red) by notifying
the dependent successors. This mechanism is highly useful in conjunction with a graphical user
interface.

There are two different ways to compute the calculation defined by such a data flow graph.
The first way is a push based computation in which the graph is traversed left to right by calcu-
lating the output of each operator and feeding that output to the input of the next operator. This
approach which is used by many flow graph based computation libraries has a big drawback
however: when computing the result of an operator the required input to the next operator has
to be known exactly. In Figure 7.1 the exact required inputs for Operator C have to be known,
to be able to first compute the outputs of Operator A and B. If we want to be able to parametrize
the computation of Operator A, for example by requesting only a subset of the full output of
Operator A, the parametrization has to be known beforehand.

The second approach to execute the computation of a data flow graph is a pull based mech-
anism. The pull mechanism traverses the graph right to left by determining the inputs required
for the calculation of an output and then requesting these inputs from the predecessor operators.
This pull based mechanism has the advantage that output parametrizations do not have to be
known beforehand. When the output of Operator C is requested, Operator C determines what
the required input for this computation is and then proceeds by requesting that input from its
predecessor operators A and B.

Another advantage of using a data flow graph to express a computation is the ability to track
dependencies of the data which are encoded in the graph. This allows to determine changed
outputs easily once the input to a computations changes which is a highly useful mechanism
when combining such a flow graph with a graphical user interface (GUI). In Figure 7.2 such
a dirty propagation is illustrated. When the user changes the parameter of a computation, this
change is propagated through the graph and all dependent outputs are flagged as dirty. This
notification mechanism can be used by a GUI to request the changed data and to update the
displayed results.

The development of lazyflow was driven by several key requirements which constitue the
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main features of lazyflow:

• Python programming language. Since the application whose requirements lead to the
development of the lazyflow library is written in Python the choice of the programming
language was clear. Python allows to rapidly prototype and develop software due to its
dynamic nature.

• Flow graph based computations. Expressing computations as data flow graphs allows easy
reusing of components and automatic parallelization of computations at branchings of the
flow graph.

• Lazy computations. ilastik is an end user application for biologists that allows to process
massive amounts of data interactively. On such large datasets processing all data is not an
option; only the small currently visible parts of the data should be processed to provide
interactive response times.

• Automatic data dependency tracking. Lazyflow should provide the neccessary communi-
cation channels that allow to track dependencies in the computation pipeline. Changing a
parameter in the flow graph should message this change to all dependent calculations and
outputs.

• Intuitive application programming interface. Since ilastik computations should be devel-
opable by non-experts, the API of lazyflow should be simple to use.

• Rich set of notification mechanism for tight integration with a graphical user interface.

In the next sections we will describe the lazyflow computation framework that was developed
with these key requirements in mind.

7.1 Related work

The advantages of a flow graph based computation pipeline, such as dependency tracking or
parallelization have lead to many implementations of this paradigm. The best known example
of a flow graph based programming environment is propably LabVIEW [93]. It is a graphical
environment that allows to perform scientific calculations or data manipulations on measure-
ments by connecting input nodes and computation nodes. LabVIEW also supports to extend
the functionality by creating custom plugins, however the environment is proprietary and not
free. Another example of such a graphical environment that allows to create a data process-
ing pipeline is KNIME [66]. It is a open source java program especially tailored towards data
analytics. It supports a wide range of data processing nodes and can easily be extended by writ-
ing plugins in the Java programming langauge. However it does not support partial region of
interest calculations and is not suited for large multidimensional array processing. The use of
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7 Lazyflow: flow graph based computation framework

the java programming language is another obstacle since the software developed in our group
is written in python. A flow graph based computation library written in C++ and suited for
multidimensional array processing is itk [55]. It allows to develop plugins and includes several
processing nodes suitable for image manipulation and registration. Lazyflow was influenced by
its capabilities but adds several important aspects such as higher level slots (Section 7.5) the
ability of operator wrapping (Section 7.6) or composite operators (Section 7.7). OpenAlea [97]
is a Python based open source framwork primarily aimed at the plant research community. It
supports a graphical user interface for creating flow graphs from predefined processing nodes
and allows to extend the functionality by writing custom nodes in Python. It lacks however
support for partial computations, the handling of large multidimensional arrays and other im-
portant features of lazyflow such as the ones already mentioned. Another python based flow
graph library is joblib [123]. It is however push based which prevents its use in a pull based
computation framework that uses partial region of interest calculations. It also lacks the rich set
of notification mechanisms neccessary for a tight gui integration that lazyflow provides.

7.2 Lazyflow operators

Lazyflow operators encapsulate a small part of a computation. The requirements from a user
perspective on an operator are.

• Define inputs and outputs of the computation

• Define how properties of the output slots depend on properties of the input slots

• Define the computation

• Define how dirty inputs propagate to the outputs of a computation

These requirements are directly reflected in the application programming interface (API) of
lazyflow, as we will see in the following sections.

Inheriting from the operator class and defining inputs and outputs

To implement an operator, the user has to derive from the Operator base class and has to imple-
ment several methods that define the behaviour of the operator.

from lazyflow.graph import Operator , InputSlot , OutputSlot
from lazyflow.stype import ArrayLike

class SumOperator(Operator):
inputA = InputSlot(stype=ArrayLike)
inputB = InputSlot(stype=ArrayLike)

output = OutputSlot(stype=ArrayLike)
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7.2 Lazyflow operators

def setupOutputs(self):
pass

def execute(self , slot , subindex , roi , result):
pass

def propagateDirty(self , slot , subindex , roi):
pass

The setupOutputs method

This method is called when all InputSlots of an operator are connected and ready. The con-
nection partner can either be the OutputSlot of another operator or directly a data source. The
method receives no arguments and is responsible for setting up the neccessary meta information
for the output slots. Once an operator has set up the meta information of an OutputSlot, this
OutputSlot will become ready. Meta information on the OutputSlots can contain such informa-
tion as the shape of the OutputSlot or the data type of the OutputSlot. This information is not
known beforehand and can only be determined once all InputSlots are connected. The most
simple example is a pipe Operator which just copies its input to the output. The shape of the
OutputSlot is only known once an InputSlot has been connected.

The execute method

The execute method receives several arguments: slot, subindex, roi and result. The execute
method is called, when somebody requests data from an OutputSlot of an operator. The Output-
Slot for which data was requested is given in the slot argument. In addition, when requesting
data from an OutputSlot the user can specify a region of interest (roi). This region of interest
that the user specified is given in the roi argument. The result argument holds a preallocated data
area of correct size (compatible with the roi) into which the operator must write the result of its
computation.

The propagateDirty method

The propagateDirty method receives as arguments a slot, subindex and a roi. This method is
called by the operator base class whenever an InputSlot of the operator is set to dirty. This
InputSlot is given in the slot argument. The region of interest of the slot which was set to dirty
is given in the roi argument. The responsibility of the operator is to determine which OutputSlot
becomes dirty in which region depending on the arguments that it was called with. In a simple
case, such as an Operator which just pipes its InputSlot to the OutputSlot, the OutputSlot would
be set to dirty in the same region that the InputSlot became dirty.
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7 Lazyflow: flow graph based computation framework

Simple SumOperator example

Below is a simple but fully functional example of an operator that has two input slots and one
output slot. The computation which the operators performs is adding the two inputs.

from lazyflow.graph import Operator , InputSlot , OutputSlot
from lazyflow.stype import ArrayLike

class SumOperator(Operator):
inputA = InputSlot(stype=ArrayLike)
inputB = InputSlot(stype=ArrayLike)

output = OutputSlot(stype=ArrayLike)

def setupOutputs(self):
# get the shape of the operator inputs
shapeA = self.inputA.meta.shape
shapeB = self.inputB.meta.shape

# check that the inputs have the same shape
assert shapeA == shapeB

# setup the shape of the output slot
self.output.meta.shape = shapeA

# setup the dtype of the output slot
self.output.meta.dtype = self.inputA.meta.dtype

def execute(self , slot , subindex , roi , result):
# the following two lines request the inputs of the
# operator for the specififed region of interest

a = self.inputA.get(roi).wait()
b = self.inputB.get(roi).wait()

# the result of the computation is written into the
# pre -allocated result array

result [:] = a+b

def propagateDirty(self , slot , subindex , roi):
# the method receives as argument the slot
# which was changed , and the region of interest (roi)
# that was changed in the slot

# in this case the mapping of the dirty
# region is simple , it corresponds exactly
# to the region of interest that was changed in
# one of the input slots
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self.output.setDirty(roi)

Using operators in lazyflow

To use an operator in lazyflow one first has to construct an instance of the operator:

# instantiate two SumOperators
op1 = SumOperator ()
op2 = SumOperator ()

Now these operators must receive some input, either by connecting them to another operator
or by directly connecting them to a data source. An operator whose inputs are not connected
is not functional because its setupOutputs method has not been called which implies that the
OutputSlots of the operator are not yet ready. Below we give an example of how the inputs of
the two operators can be connected:

# instantiate two SumOperators
op1 = SumOperator ()
op2 = SumOperator ()

# first we provide some data to op1 using the
# setValue method of its InputSlots
op1.inputA.setValue(numpy.zeros ((10 ,20)))
op1.inputB.setValue(numpy.ones ((10 ,20)))

# next we connect op2 to the output of op1
op2.inputA.connect(op1.output)
# and now connect the remaining InputSlot of op2 directly to some data
op2.inputB.setValue(numpy.ones ((10 ,20)))

The above example is now a fully functional lazyflow graph which can be executed. To perform
the calculation we request the data from the OutputSlot output:

result = op2.output [:]. wait()

7.3 Lazyflow slots

Lazyflow slots serve as the input and output facilities for lazyflow operators. Input and output
slots for an operator are defined as follows:

from lazyflow.graph import Operator , InputSlot , OutputSlot
from lazyflow.stype import ArrayLike

class SumOperator(Operator):
inputA = InputSlot(stype=ArrayLike)
inputB = InputSlot(stype=ArrayLike)

output = OutputSlot(stype=ArrayLike)
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In an operator instance the slots can be accessed by their name and provide methods to connect
to other slots or to connect to data directly:

# instantiate a SumOperators
op = SumOperator ()

# connecting to another slot
op.inputA.connect(other_operator.output)

# setting a data value directly
op.inputB.setValue( some_data )

In addition to these methods already discussed, slots provide many notification mechanisms
which are very useful when using lazyflow in the context of a graphical user interface applica-
tion.

notifyDirty

The notifyDirty method of a slot notifies an subscriber of a dirty event. Such dirty events are
propagated through a lazyflow graph to all dependent operators and outputs. A graphical user
interface that displays some computation results of an output slot can subscribe to this event and
update the displayed data once it becomes dirty. Such a dirty notification can be triggered for
example by changing a computation parameter.

some_operator.some_slot.notifyDirty(callback)

After registering a callback the corresponding callback function is called when the slot gets
dirty. First argument of the callback is the slot, second argument the dirty region of interest (roi).

notifyMetaChanged

The notifyMetaChanged method of a slot can be used to register a callback for meta change
events on this slot. Meta information of a slot may contain information such as the dimensional-
ity or shape of a computation result. A meta information change event is triggered for example
when connecting a data set of different shape or dimensionality to an input slot. In this case, all
dependent output slots will also have to change the shape of the computation result and trigger
such an event. A graphical user interface may register to this type of event by registering a
callback, the callback can then update the displayed data or reconfigure the data view.

def callback(slot):
# do some work
pass

some_operator.some_slot.notifyMetaChanged(callback)
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notifyReady

The notifyReady method of a slot can be used to register a callback like this:

def callback(slot):
# do some work
pass

some_operator.some_slot.notifyReady(callback)

The callback is called whenever a slot becomes ready. A ready slot in lazyflow is a slot from
which computation results can be requested. Unready slots throw an error when a computation
is requested. Such a notification is useful in the context of a graphical user interface, since the
data view may only query for computation results on ready slots.

notifyUnready

The notifyUnready method is the counterpart of the notifyReady notification. The callback is
called whenever a slot becomes unready. An unready slot in lazyflow cannot be used to request
a calculation result, thus a graphical user interface, which displays some computation result of a
slot, may want to register to this kind of event to prevent from trying to display unready data.

def callback(slot):
# do some work
pass

some_operator.some_slot.notifyUnready(callback)

notifyConnect

The connect event is triggered once a lazyflow slot is connected to a partner. This type of event
is mostly used internally by lazyflow. An operator registers for this kind of event on all of
its input slots and calls its setupOutputs method once all inputs are properly connected. The
notifyConnect method of a slot can be used to register a callback like this:

def callback(slot):
# do some work
pass

some_operator.some_slot.notifyConnect(callback)

notifyDisconnect

The notifyDisconnect method of a slot is the counterpart of the notifyConnect method. It is
also mainly used internally by lazyflow. An operator registers for this kind of event for all its
input slots. Once an input slot becomes disconnected, all output slots of the operator are set
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to unready. In addition, when the slot becomes connected again, this recalls the setupOutputs
method of the operator.

def callback(slot):
# do some work
pass

some_operator.some_slot.notifyDisconnect(callback)

7.4 Lazyflow requests

Lazyflow requests encapsulate a computation. They allow for easy cancellation or notification
of computations. All queries for computation results to lazyflow operators return a lazyflow
request object that can be used to handle the computation which is processed in the background
by a threadpool.

A simple example of the creation of a request object in the context of a lazflow operator looks
like this

# instantiate a SumOperators
op = SumOperator ()

# querying the output slot returns a request object
request = op.output [:]

Creating custom requests

While lazyflow operator slots return request objects when queried for output, a request object
can also be created outside lazyflow to encapsulate a parallel computation. An example is given
below:

from some_img_lib import smooth
from functools import partial
from lazyflow.request import Request

def f(image , sigmaA , sigmaB):
r2 = Request( partial(smooth , image , sigmaA) )
r3 = Request( partial(smooth , image , sigmaB) )

# Start executing r3
r3.submit ()

# Wait until both requests are complete
smoothedA = r2.wait() # (Auto -submits)
smoothedB = r3.wait()

result = smoothedA - smoothedB
return result
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r1 = Request( partial(f, my_image , 1.0, 3.0) )
diff_of_smoothed = r1.wait()

Request submission

The computation encapsulted by a lazyflow request is started via its submit method. The com-
putation is executed by a threadpool in the background.

request.submit ()

Synchronous waiting for a request

Instead of submitting a request for background processing, the user can also decide to syn-
chronously wait for the computation result via the requests wait method. This is a blocking
method call that returns the result of the computation.

result = request.wait()

Request cancellation

Once a request has been submitted for processing, the user can cancel the computation via the
request’s cancel method:

requestA.cancel ()

Lazyflow internally tracks all requests that have been created by requestA and cancels these
requests too.

Request computation finished notification

Once a request has been submitted for background processing, the user can specify a callback
that is executed once the request has been processed and its computation is finished. If the
computation was already finished before the user specified the callback, the callback is executed
immediately.

request.notify_finished(callback)

It is important to know that this callback is executed in a thread of the threadpool.

Request computation cancelled notification

The user can also specify a callback that is executed after a request has been cancelled:

request.notify_cancelled(callback)
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Request computation failed notification

Since a computation encapsulated by a request can fail with an exception, we provide a callback
mechanism for a corresponding notification:

request.notify_failed(callback)

This callback is executed in the context of a thread from the threadpool.

7.5 Higher level slots

Consider a lazyflow operator that works on multiple images at once. An example would be
a sum operator that adds more than two images. Implementing such an operator is simple if
the number of images on which the operator works is fixed: just define as many input slots as
needed. But if the operator should work with a variable number of inputs the situation is more
complicated. To handle this use case lazyflow supports so-called higher level slots. These slots
act as a list of inputs. A slot of level 1 consists of a list of input slots, a slot of level 2 consists of
lists of lists of input slots. These higher level slots are defined like this:

from lazyflow.graph import Operator , InputSlot , OutputSlot
from lazyflow.stype import ArrayLike

class SumOperator(Operator):
input = InputSlot(level = 1) # note the level keyword argument !

Accessing such higher level slots inside and outside an operator is simple since they behave like
a Python list:

sumop = SumOperator ()

sumop.input [0] # this accesses the first slot inside the sumop.input higher
level slot

Since higher level slots behave like a Python list they have a certain length or size. To resize a
higher level slot to a specified number of elements the resize function can be used:

sumop.input.resize (4) # resize the input level 1 slot to contain 4 input
slots

Such resizing happens automatically when an input level 1 slot is connected to another output
level 1 slot. In this case, the input slot is resized to match the number of elements in the output
slot to which it is connected.

To allow the developer of an operator or graphical user interface to react to such resize events
higher level slots support a wider range of notification events which we present now.

notifyResize

Calls the corresponding callback function before the slot is resized. Such a resize event can
occur for example when connecting a slot to a slot of different size or when manually calling the
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resize method of a slot. The first argument of the function is the slot, the second argument is the
old size and the third argument is the new size.

def callback(slot , old_size , new_size):
# do something
pass

operator.level1slot.notifyResize(callback)

notifyResized

Setting up this notification calls the corresponding callback function after the slot is resized.
The first argument of the function is the slot, the second argument is the old size and the third
argument is the new size.

def callback(slot , old_size , new_size):
# do something
pass

operator.level1slot.notifyResized(callback)

notifyRemove

Lazyflow will call the specified callback function before a slot is removed. Such a slot removal
can happen during a resize event of a slot when the size of the slot is decreased. The first
argument of the function is the slot, the second argument is the old size and the third argument
is the new size.

operator.level1slot.notifyRemove(callback)

notifyRemoved

Calls the given callback function after a slot is removed. The first argument of the function is
the slot, the second argument is the old size and the third argument is the new size.

operator.level1slot.notifyRemoved(callback)

notifyInserted

Allows to specify a callback function which is called after a slot has been added. Such an event
can occur during a resize operation when the size of a slot is increased. The first argument of the
function is the slot, the second argument is the old size and the third argument is the new size.

operator.level1slot.notifyResize(callback)
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Figure 7.3: Illustrations of the OperatorWrapper class. It replicates the input and outputs slots
of a given operator (OperatorA) with a level of +1, i.e. for each slot it creates a list of slots. The
slots of this list slots are forwarded to the inner slots of instances of the wrapped operator.

notifyPreInsertion

Calls the given callback function immediately before a slot is going to be inserted into a multi-
slot. Same signature as the notifyInserted signal.

operator.level1slot.notifyPreInsertion(callback)

7.6 The OperatorWrapper

Consider a lazyflow computation graph where all operators work on lists of images at once. I.e.
all operators in the graph have output and input slots of level 1. Now assume we want to apply
another operator, say a threshold operator, at the end of the computation pipeline. If we already
have implemented such a threshold operator which works on a single image, i.e. a level 0 slot, it
would be a burden to write another threshold operator which justs can work on multiple images.
Exactly for this use case, there exists the OperatorWrapper class. It takes a given lazyflow
operator as input, replicates all its inputs and outputs, but with a level of +1. It then reacts to all
kinds of slot resize events and instantiates or deletes instances of the input operator and connects
newly created instances of created operators to its input and output slots.
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I.e. the wrapped operator behaves exactly like the given input operator, but works on many
inputs at once. All of this comfort can be used with a single line of code:

opMultiThreshold = OperatorWrapper( OpThreshold ) # creates a higher level
+1 operator from a given input operator

This opMultiThreshold can now be used in the assumed lazyflow computation graph without
having to rewrite a threshold operator just for multiple images.

7.7 Composite operators

While developing an operator one often realizes that parts of the needed functionality already
exist in form of other operators. Combining many operators into a single composite operator is a
frequent use case and lazyflow supports this functionality. Existing operators can be instantiated
and connected to input and output slots easily in the init method of the composite operator. An
example is given below.

from lazyflow.graph import Operator , InputSlot , OutputSlot
from lazyflow.stype import ArrayLike
import numpy

class SumThresholdOperator(Operator):
inputA = InputSlot(stype=ArrayLike)
inputB = InputSlot(stype=ArrayLike)
threshold = InputSlot ()

output = OutputSlot(stype=ArrayLike)

def __init__(self):
# instantia a SumOperator
self.sumOp = SumOperator ()

# forward the input slots to the sum operator
self.sumOp.inputA.connect(self.inputA)
self.sumOp.inputB.connect(self.inputB)

def execute(self , slot , subindex , roi , result):
# request the result from the SumOperator
sumResult = self.sumOp.output.get(roi).wait()

# get the threshold value
threshold = self.threshold.value

# threshold and return the sumResult
return numpy.where(sumResult > threshold , 1, 0)

In the above example the setupOutputs and propagateDirty methods we left out for brevity.
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7.8 Summary

Lazyflow is a flow graph computation library. It was designed around several key requirements.
The first requirement was the Python programming language since ilastik, the interactive learn-
ing and segmentation toolkit is written in this language and lazyflow should serve as its compu-
tation backend. The second requirement was the flow graph based computation principle: we
want developers to be able to quickly prototype and develop a new pipeline by reusing existing
code fragments. These code fragments are encapsulated in so-called lazyflow operators with
defined input and output slots which can easily be chained together. The third requirement was
the lazy computation principle: the flow graph computation is not processed in a push based
manner, but in a pull based manner. Thus when requesting output from an operator, the user can
specify a region of interest for the results and only this region of interest is actually computed.
Each operator backprojects the region of interest to its own inputs and in turn only requests
subsets of the results from its predecessor operators. In this way a graphical user interface can
be developed which supports fast response times since only visible subsets of the data need to
be processed. A fourth requirement was the need for automatic parallel processing of the com-
putation requests. This lead to the development of the request system, which encapsulates a
computation. Each query for a computation result returns a request object, which is processed
in the background by a thread pool. When an operator triggers multiple requests to upstream
operators, all these requests are processed in parallel. Another requirement was the need to work
on multiple images at once, which is an interaction mode ilastik supports. This requirement lead
to the development of the so-called higher level slots which act as lists of input slots. To support
reusing single image operators for such multi image pipelines lazyflow provides the Operator-
Wrapper class which conveniently takes care of instantiating as many single image operators as
needed and takes care of connecting and configuring the input and output slots. Reusing existing
operator inside newly created operators is supported with the composite operator principle. In
lazyflow it is easy to instantiate already available operators inside a new operator and to reuse
code. The requirements a graphical user interface demands lead to the various notification and
callback mechanisms that all lazyflow components such as slots, requests and higher level slots
support. These callbacks make the implementation of a graphical user interface easy and provide
the necessary means for communicating with lazyflow.
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Chapter 8

Conclusion

Interactive segmentation is an important paradigm in image processing. However, the initial
segmentation result may not always be what the user expects. Spotting erroneous areas of the
segmentation is easy in 2D: the user can examine the segmentation result with one glance. In
3D segmentation tasks finding errors is much more laborsome, as the user has to inspect many
orthogonal slice views of the data to find mistakes of the algorithm. In Chapter 2 I investi-
gated this problem in the context of the seeded watershed cut and proposed several uncertainty
measures which guide the user effectively to potentially interesting regions of the segmentation
which may need correction. The proposed uncertainty measures were evaluated and shown to
be superior to a simple local margin based measure. In fact, the best of the proposed uncertainty
measures results in performance close to a ground truth oracle.

Another important problem in the context of segmentation algorithms is the enumeration of
the M-best solutions. These M-best solutions can be used to evaluate the segmentation results
with regard to higher order priors which cannot be incorporated into the energy formulation
directly due to their computational hardness. Another interesting application of the M-best
solutions is to find different modes of the segmentation which differ from the lowest energy
solution. These differing solutions may be close in terms of the energy but far in terms of the
Hamming distance of the segmentation result. Fusing different modes of the segmentation into
a consistent result or deriving a segmentation uncertainty from the different modes are natural
applications of the M-best solutions. This problem has been studied in the literature recently in
the context of Markov random fields. In Chapter 3 I study the M-best solutions problem in the
context of watershed cuts and provide an algorithm that enumerates many unique segmentations
in the order of increasing cost.

Another interesting question in the context of the seeded watershed cut segmentation algo-
rithm is the choice of the edge weights for a segmentation problem. Usually these edge weights
are hand crafted for each segmentation task and often simple image filters such as the image
gradient or the largest eigenvalue of the Hessian matrix are used, depending on the type of the
segmentation problem at hand. In Chapter 4 I propose a decision tree type algorithm that can
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partition an image into an unknown number of components by learning a combination of edge
features that represents an image boundary. The algorithm is interesting since it uses a global
structured split criterion defined on the connectivity structure of a graph and requires only very
weak annotations, namely region scribbles, to learn a boundary model from the must-link and
cannot-link constraints expressed by the user given annotations. Other approaches require pre-
cise boundary annotations and thus much greater labeling effort. The learned boundary model
that is encoded in the decision tree can either be used directly to segment an unseen image
without supervision, or it can be used to calculate a boundary probability for each edge using
a randomized ensemble of such decision trees. This boundary probability for each edge can in
turn be used as input for a seeded watershed cut segmentation algorithm.

In Chapter 5 I propose another way to solve the same problem. I express the must-link and
cannot-link constraints inherent in the user given scribbles as a multiple instance learning prob-
lem. In this setting the must-link constraints correspond to negative bags and the paths connect-
ing two cannot-link scribbles correspond to positive bags. The positive bag in a multiple instance
learning problem must contain at least one positive sample which I relate to a boundary which
must be crossed by a path connecting two cannot-link strokes. I study if this intuitive mapping
of a weakly supervised boundary learning problem can be solved using of the shelf multiple in-
stance learning algorithms. Unfortunately the resulting segmentations are of low quality, nearly
all image pixels outside the user given scribbles are predicted as the boundary class. From the
multiple instance learning algorithm point of view, this is a correct solution, but from a practical
point of view this is not a desirable outcome.

The usage of multiple instance learning algorithms in the context of the boundary learning
problem was inspiring and lead to the development of a new multiple instance learning algorithm
in Chapter 6. The algorithm is based on decision trees that make use of the positive identifiability
constraint during learning. The outputs of many such randomized decision trees are linearly
combined in a fashion that obeys the multiple instance constraints. Experiments on the standard
benchmark datasets show that the proposed algorithm outperforms previous decision tree type
algorithms.

Finally, in Chapter 7 a flow graph based computation framework was presented. Its key fea-
tures are the pull based computation principle which allows for lazy region of interest computa-
tions that are important in the context of a graphical user interface to allow partial computations
of visible areas. Furthermore, the framework supports push based dirty notifications upon pa-
rameter changes, intuitive development of computation nodes, semiautomated parallelization
at branchings of the data flow graph, a rich notification infrastructure which is necessary in the
context of a graphical user interface and advanced concepts like higher level slots and composite
operators.
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