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Abstract.
In this thesis we study the total mass distribution in galaxy cluster through detailed
analysis of strong gravitational lensing (SL) signatures and dynamical mass information.
We perform FORS2/VLT spectroscopic observations for a sample of 29 new SL selected
galaxy clusters from the RCSGA survey. Our spectroscopic analysis reveals 51 lensed
galaxies that correspond to 34 background sources. From the redshift measurements we
derive 689 cluster members, which are used to compute velocity dispersion and dynamical
masses resulting in a mass range of 0.28 ≤M200/1014h−1M� ≤ 28.4. We use these results
to derive robust mass measurements of our 29 clusters by combining SL constraints
with dynamical masses. We combine the best-fitting model parameters from 27 of these
clusters with the recent analysis of 19 X-ray selected clusters from the CLASH survey,
and also with concentration parameter measurements from 27 SL selected clusters from
the SGAS survey. This leads us to the largest robust dataset of concentration parameters
for a controlled sample of 73 galaxy clusters. We find that for massive clusters (M200 ∼
8 × 1014h−1M�), the concentration parameters are distributed around c200 = 4.3 ± 1.4,
which is consistent with theoretical expectations within the intrinsic scatter. In contrast,
for less massive clusters (M200 ∼ 1014h−1M�), the concentrations are on average almost
twice the mean expected value, even if the selection bias and projection effects are taken
into account, resulting in a c−M relation with a strong dependence on the cluster mass,
c ∝ Mα, where α = −0.52 ± 0.09. We find that this steep mass slope is mainly due to 6
RCSGA clusters and ∼ 16 clusters from the SGAS survey that are clearly describing a
higher and steeper c−M relation with cn = 8.9±1.12 and α = −0.69±0.09. This unusual
relation is far from any theoretical expectation suggesting a bimodality in the c −M
relation. The rest of the sample is characterized by a mass slope of α = −0.24 ± 0.11,
reconciling simulation results with observations. We also develop the first algorithm able
to automatically find multiple-image systems in galaxy clusters.

Zusammenfassung.
In dieser Dissertation untersuchen wir die gesamte Massenverteilung in Galaxienhaufen
anhand einer detaillierten Analyse der Auswirkungen des starken Gravitationslinsenef-
fekts (strong lensing, SL) und anhand dynamischer Information über die Masse. Wir
führen spektroskopische Beobachtungen mit FORS2/VLT von 29 Galaxienhaufen durch,
die aufgrund ihrer SL-Eigenschaften aus der RCSGA-Durchmusterung ausgewählt wur-
den. Unsere spektroskopische Analyse deckt 51 Galaxienbilder auf, die durch den Grav-
itationslinseneffekt aus 34 Hintergrundgalaxien erzeugt werden. Anhand der Rotver-
schiebungsmessungen identifizieren wir 689 Haufenmitglieder, die wir verwenden, um
Geschwindigkeitsdispersionen und dynamische Massen im Bereich von 0.28 ≤ M200/1014

h−1M� ≤ 28.4 zu bestimmen. Diese Ergebnisse verwenden wir, um durch Kombina-
tion der dynamischen Messungen mit SL-Daten zuverlässige Massenwerte unserer 29
Galaxienhaufen zu bestimmen. Wir kombinieren die optimal angepassten Modellpa-
rameter von 27 dieser Haufen mit der jüngsten Analyse von 19 Galaxienhaufen, die
aufgrund ihrer Röntgenemission in die Clash-Durchmusterung aufgenommen wurden.
Ferner kombinieren wir sie mit den Messungen der Konzentrationsparameter von 27
Galaxienhaufen, die anhand ihrer SL-Effekte aus der SGAS-Durchmusterung ausgewählt
wurden. Dies führt uns zum bisher größten Datensatz robuster Messungen des Konzen-
trationsparameters einer kontrollierten Stichprobe von 73 Galaxienhaufen. Wir finden,
dass massereiche Galaxienhaufen (M200 ≈ 8× 1014 h−1M�) Konzentrationsparameter von
c200 = 4.3 ± 1.4 aufweisen, was innerhalb der intrinsischen Streuung mit theoretischen
Erwartungen verträglich ist. Demgegenüber sind die Konzentrationen weniger massere-
icher Haufen (M200 ≈ 1014 h−1M�) im Mittel fast doppelt so groß wie die erwarteten
Werte, selbst wenn Auswahl- und Projektionseffekte berücksichtigt werden. Dies ergibt
eine c-M -Beziehung, die stark von der Haufenmasse abhängt, c ∝ Mα=0.52. Wir finden,
dass diese steile Abhängigkeit von der Masse hauptsächlich von sechs Galaxienhaufen
aus der RCSGA-Durchmusterung herrührt und dass ≈ 16 Galaxienhaufen aus der SGAS-
Durchmusterung deutlich eine höhere und steilere c-M -Beziehung mit cn = 8.9±1.12 und
α = −0.69 ± 0.09 aufweisen. Diese ungewöhnliche Beziehung liegt weit ab von der theo-
retischen Erwartung und legt eine bimodale c-M -Relation nahe. Der Rest der Stichprobe
ist durch einen Exponenten von α = −0.24 ± 0.11 gekennzeichnet, der im Einklang mit
Simulationsergebnissen steht. Außerdem stellen wir den ersten Algorithmus vor, der
Systeme von Mehrfachbildern in Galaxienhaufen auf automatische Weise findet.
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Chapter 1

Introduction

1.1 Introduction

The fascination with the cosmos has been present since the origins of human reasoning

and over time it has turned into one of the most important disciplines of modern science.

The main goal of modern cosmology is to address some very basic questions, regarding

the composition of our Universe, its origin, evolution and eventual fate. During the past

decades, enormous progress has been made towards this direction by the improvements in

observational techniques as well as the development of new physical theories. Resulting

in a standard cosmological model, according to which the Universe is, on large scales,

homogeneous and isotropic and geometrically flat, with structures (like stars, galaxies,

clusters of galaxies) generated by the growth of small primordial fluctuations through

gravitational instability. In the standard scenario the Universe is mainly composed by

the so-called dark energy, responsible for the observed accelerated expansion, and by

non baryonic dark matter.

Even though this model is well supported by several independent cosmological observa-

tions, such as distant type-Ia supernovae, galaxy clusters, large-scale structure, big bang

nucleosynthesis, and its most representative observation: the Cosmic Microwave Back-

ground (CMB) anisotropies, there are still important issues that can not be explained.

Our Universe seems to be composed in great majority by unknown dark components.

In fact, the ordinary matter we know accounts for only ∼ 4% of the total density. The

rest of the density is represented by dark energy (∼ 70%) and dark matter (∼ 26%),

two components whose nature has not been determined yet. Over the next decades one

of the main goals of cosmology will be, therefore, to unveil the nature of these dark

components.
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Chapter 1. Introduction 2

In this thesis we concentrate our attention on dark matter, whose composition is still

very controversial. We specifically focus our research on the determination of how this

unseen component is distributed on different scales. We carry out our investigation

by studying galaxy clusters, since these objects are the largest gravitationally bound

structures in our universe and their total mass consists for ∼ 80% of pure dark matter,

making them unique laboratories for our purposes.

Although, the main problem of studying dark matter in galaxy clusters lies in the fact

that it is dark!, i.e. it cannot be observed by usual methods, nevertheless, there are

different ways to probe the total mass distribution of galaxy clusters, such as X-ray

profiles, dynamical mass and gravitational lensing. In particular, gravitational lensing

is the only method that can directly probe dark matter without making any assumption

about the composition, distribution or dynamical state of the underlying cluster mass.

The gravitational lensing phenomenon, described by General Relativity Theory, predicts

that gravitational fields around massive objects, such as galaxies and galaxy clusters,

distort space-time and curve the light rays passing through them. Gravitational lensing

is the most robust way to probe the dark matter distribution because the light deflection

is independent of the nature of the matter and of its state – lensing is equally sensitive

to dark and luminous matter, as well as to matter in equilibrium or far out of it. Lensing

effects can appear in different forms. Close to the center of galaxy clusters, the mass

density can be high enough to noticeably modify the shape of background galaxies,

producing giant elongated arcs or even multiple images of the background sources, this is

the so-called strong lensing (SL) regime. Instead, in the outer regions of the clusters, the

light deflection produces only tiny distortions that cannot be observed on single images,

therefore statistical measurements of several of these distortions become necessary to

reconstruct the mass of the cluster, this is the weak lensing (WL) regime. Since strong

and weak lensing probe mass distributions at different radii, the combination of these

two phenomena is an indispensable tool for cosmology to fully probe the dark matter

distribution at two decades of radius.

The dynamics of galaxy clusters is another powerful method to determine the total mass

of galaxy clusters through the measurement of the velocity dispersion of the cluster

members, although it relies on equilibrium assumptions that could bias the conclusions.

Nevertheless, it has been shown that dynamical masses are good tracers of the total

mass of galaxy clusters, on the same level of other methods, such as the weak lensing

approach. Therefore, the combination of velocity dispersion of the cluster members and

strong gravitational signatures in the innermost region of the clusters becomes a powerful

tool towards a complete understanding of the total mass distribution and density profile

of galaxy clusters, providing important tests to the standard cosmological model.
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In this thesis we focus our attention on the analysis of the underlying mass distribution

of galaxy clusters, in order to put constraints on the understanding of the dark matter

component of the Universe. This analysis is conducted via reconstructions of the mass

distribution of the clusters, using an innovative technique which consists in combining

strong lensing constraints, such as giant arcs and multiple-image systems, and dynam-

ical information of the cluster members. Resulting in robust measurements of intrinsic

properties of the galaxy clusters, such as their halo concentrations and density profiles.

The thesis is organized as follows. In chapter 2, we introduce the theoretical and obser-

vational framework which represents the starting point of this thesis. In particular, we

place galaxy clusters into the cosmological picture, highlighting the currently accepted

large scale structure scenario and describing how the mass of clusters is used as cosmo-

logical probe, as well as we introduce the basic concepts of gravitational lensing that

will be used throughout the thesis. In chapter 3, we describe our strong lens modeling

methodology and we introduce our innovative technique to probe mass distributions at

larger radii by including dynamical information. In chapter 4, we present a new sam-

ple of 29 strong lensing selected clusters from the Red-sequence Cluster Survey Giant

Arc (RCSGA) and we describe their spectroscopic features as well as their dynami-

cal properties. In chapter 5, we review the results of the previous 29 clusters through

their concentration−mass relation. In this chapter we also introduce the largest robust

dataset of 73 concentration parameters for a controlled sample of galaxy clusters and

we derive the most complete analysis of the concentration−mass relation hitherto. In

chapter 6, we describe the strong lensing models for 7 clusters from the Cluster Lensing

and Supernova survey with Hubble (CLASH) and we present the candidate for the most

distant galaxy known to date. In chapter 7, we present the first automated Multiple-

Image Finder ALgorithm (MIFAL) for strong-lens modeling. Finally, in chapter 8, we

recapitulate the work presented in this manuscript as well as offer a scientific outlook.



Chapter 2

Theoretical and observational

background

In this section, we review some of the fundamental cosmological concepts, as well as

the basic aspects of gravitational lensing, that provides the basis of this thesis and that

will be relevant for the subsequent discussions. Most of the concepts on this section are

based on the work presented in Schneider et al. (1992), Pee (1994), Hogg (1999), Oguri

(2004), Anguita (2009), and Falco (2013).

2.1 Cosmology

According to the current cosmological model, our Universe originated from a singularity

in the space-time that began to expand about 13.7 billion years ago, the so-called “Big

Bang”. In this earliest phase the Universe was incredibly dense and hot and it was

expanding and cooling very rapidly.

It is believed that around 10−35s the Universe undergoes a spectacular acceleration

known as inflation. When inflation stops, the Universe consists of a plasma of quark-

gluon and other elementary particles. Particles and anti-particles are constantly being

created and annihilated.

At some point an unknown process called baryogenesis violates the conservation of

baryon number, leading to the a predominance of matter over anti-matter.

At about 3 minutes after the Big Bang, the drop in temperature due to the expansion

allows the formation of the first elements (mostly hydrogen and helium), but most

protons remain uncombined.

4



Chapter 2. Theoretical and observational background 5

Only ∼ 379000 years later electrons and nuclei are able to combine into atoms, we are

at the recombination. The drop of free electrons drastically decreases the possibility

of Compton scattering for photons, which, therefore, decouple from matter and start

traveling freely through space. This relic radiation is still detectable today and it is

known as the Cosmic Microwave Background (CMB).

At this point, baryons, no longer impeded by the radiation pressure of the photons, are

able to collapse in the potential wells previously created by the dark matter. In fact,

since dark matter does not interact with photons, it is not affected by the radiation

pressure and consequently it has started to collapse much before the recombination

epoch. After recombination the Universe becomes neutral and enters a period of time

called “The Dark Ages”: there are no sources of light, apart from the emission of the

21-cm wavelength line of neutral hydrogen.

Meanwhile structure formation proceeds. Larger and larger structures are formed by

gravitational collapse and merging of smaller objects. Eventually the first stars and

galaxies form, they re-ionize the Universe and render it bright as it appears today.

2.1.1 The cosmic expansion and Hubble law

One of the most relevant discoveries in the history of cosmology has been the expansion

of the Universe. This implies that all the objects appear to recede from the Earth and

from each other with a recession velocity higher at higher distances.

The first observational evidence of the expansion of the Universe was made by Edwin

Hubble in 1929 (Hubble, 1929). He described this phenomenon by a very simple equa-

tion, today known as the Hubble law. If galaxies are moving away from us, the light

coming from a galaxy arrives with a wavelength larger than the one originally emitted.

We define the redshift z of a galaxy as

z =
λobs
λemi

− 1, (2.1)

where λobs corresponds to the observed wavelength and λemi is the wavelength at the

time of emission. The redshift corresponds to a recession velocity v, which, for nearby

objects, is given by a simple Doppler formula v = cz.

Hubble discovered that the recession velocity of the galaxies v is linearly correlated with

their distance d from us, this being true at any distance (Hubble, 1929). The Hubble’s
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Figure 2.1: Original Hubble diagram from Hubble (1929).

law can be expressed in this way:

v = cz = H0d. (2.2)

where the proportionality constant H0 is called the Hubble constant and it quantifies

the expansion rate of the Universe at the current time. A measurement of the Hub-

ble constant requires the knowledge of both the distance of an object and its velocity,

which is obtained through its redshift. One of the common methods is to use Type Ia

Supernovae (SNeIa), since they are standard candles, i.e. sources with the same known

luminosity. Fig. 2.1 shows the original Hubble diagram found in 1929, with an extremely

high H0. Current detailed observations suggest a lower value for the Hubble constant.

It is convention to parametrize the Hubble constant in this way:

H0 = 100 h kms−1Mpc−1. (2.3)

Current measurements of the WMPA (Spergel et al., 2007), gives h = 0.7 ± 0.022,

although, the recent Planck mission finds a significantly lower value of h = 0.67± 0.014

(Planck Collaboration et al., 2013).

As we will describe below, at high redshifts, the luminosity distance departs from the

linear Hubble law and shows that the Universe expansion is accelerating.
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2.1.2 Fridmann-Robertson-Walker metric and expansion equations

The equations that govern the accelerating expansion of the Universe are derived by

introducing a metric, which describes the space-time, and by using the formalism of

General Relativity.

The Cosmological Principle states that the Universe around us, when averaged over

sufficiently large angles and scales, is homogeneous and isotropic. This assertion was

originally assumed and subsequently confirmed by observations for the very large scale of

the Universe. Assuming homogeneity and isotropy, the unique form of the line element

obeys the Friedmann-Robertson-Walker (FRW) metric and it is given by:

ds2 = c2dt2 − a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

)
, (2.4)

where ds is the line element, [t, r, θ, φ] are the co-moving polar coordinates, c is the

speed of light and a(t) is a cosmological scale factor. The parameter k determines the

curvature of the Universe and can assume different values: k = 0 corresponds to a flat

space, k = 1 corresponds to a closed space, with finite volume and no boundary, and

k = −1 corresponds to an open, infinite space.

Considering a light ray which travels along null geodesics (i.e., ds = 0) and taking a

radial path (motivated by the radial expansion of the universe), Eq. 2.4 results in:

c dt

a(t)
=

dr√
1− kr2

. (2.5)

By integrating the right side of Eq. 2.5 between an emission time te and an observed

time to and equating to the same integral between te + δte and to + δto we obtain:

∫ to

te

dt

a(t)
=

∫ to+δto

te+δte

dt

a(t)
, (2.6)

if one assumes that the variation δt� a(t)/ȧ(t), it results in:

a(to)

a(te)
=
δto
δte

=
νe
νo
, (2.7)

by replacing ν by the wavelength λ = c/ν, we can relate the scale factor a(t) with the

cosmological redshift by:
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a(to)

a(te)
=
λo
λe

= 1 + z. (2.8)

The General Relativity Theory uses 10 field equations to describe gravitational force

through descriptions of the curvature of space-time caused by matter and energy. They

have the form:

Rµν −
1

2
gµνR+ Λgµν =

8πG

c4
Tµν (2.9)

where the field curvature (composed by the Ricci tensor: Rµν , and Ricci curvature:

R = RµνR
µν) is related to the flux and density of energy and momentum (stress-energy

tensor: Tµν). The metric is describe by gµν and Λ is the cosmological constant.

By inserting the FRW metric (Eq. 2.4) into the General Relativity, one can obtain two

fundamental equations, called the expansion equations, and defined by:

• The Friedmann equation

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3
(2.10)

• The fluid equation

Ḣ +H2 =
ä

a
= −4πG

3

(
ρ+

3P

c2

)
+

Λc2

3
, (2.11)

where the quantities ρ and P are the total energy density and the pressure of the Uni-

verse. Furthermore, we have here introduced the Hubble parameter H(t), which gives a

measure of the expansion rate at the time t.

From observations we know that there are different components contributing to the

energy density and pressure of the Universe, the terms ρ and P in equations 2.10 and

2.11 refer then to the sum of all the contributions from these various components. For

each component the energy density evolves differently over time, reaching different values

at the present time. In the next section, we will show how the Universe is described in

terms of cosmological density parameters related to the different components.

2.1.3 Multi-component Universe

The total density of the Universe is composed by ordinary matter, dark matter and

radiation. Moreover, in order to explain the accelerating expansion of the Universe, a

fluid with negative pressure has been introduced as one of the species in the present
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Universe, the so-called dark energy. This new component is associated to a non-null

cosmological constant Λ and is defined by:

ρΛ =
Λc2

8πG
(2.12)

Therefore, the total density of the Universe is given by:

ρtotal = ρM + ρr + ρΛ (2.13)

where ρM and ρr corresponds to the density of the total matter and radiation, respec-

tively.

The abundance of each density component can be expressed by the dimensionless pa-

rameter

Ωi =
ρi
ρcrit

(2.14)

with the critical density ρcrit being the present energy density of a flat Universe:

ρcrit =
3H2

8πG
(2.15)

We can derive the three dimensionless component parameters by multiplying the Eq.

2.10 with (a/ȧ)2 = 1/H2 and writing it at the present time (t0), we get:

(
Λc2

3H2
0

)
+

(
− kc2

a2
0H

2
0

)
+

(
8πG

3H2
0

ρ0

)
= 1, (2.16)

where we can identify the cosmological constant parameter, the curvature parameter,

and the matter and radiation parameters with these terms:

ΩΛ =
Λc2

3H2
0

, Ωk = − kc2

a2
0H

2
0

, ΩM =
8πGρM

3H2
0

, and Ωr =
8πGρr
3H2

0

, (2.17)

respectively. Therefore, we can rewrite Eq. 2.16 using the dimensionless parameters,

by:

Ω = ΩΛ + ΩM + Ωr = 1− Ωk. (2.18)
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With the total sum of Ω determining the curvature of the Universe. If Ω > 1, the cur-

vature parameter k is greater than zero, resulting in a Universe with positive curvature.

If Ω < 1, then k < 0, corresponding to a negative curvature. A critical value is then

obtained when Ω = 0, which is the case of flat Universe, k = 0.

Moreover, the energy densities of the each component evolve with the pressure P accord-

ing to the equation of state ρ = wP . The dimensionless parameter w depends on the

corresponding component and, depending on this, it may vary with time. For constant

w, plugging the equation of state into the fluid equation, one can obtain the energy

density as a function of the scale factor:

ρ = ρ0a
−3(1+w), (2.19)

with w = 0 for non-relativistic particles, both dark matter and baryons. For radiation

(relativistic matter), we have w = +1/3. An accelerating Universe requires a component

with negative pressure, therefore, it needs w < −1/3. In the particular case in which

the acceleration of the Universe is explained by the presence of vacuum energy by the

cosmological constant, we have w = −1.

In order to determine how the individual components evolve we combine Eqs. 2.18 and

2.19, obtaining:

a(t) ∝ t2/3(1+w), (2.20)

for constant w.

Fig. 2.2 shows the evolution of the radiation, matter, and dark energy densities with

redshift. In the early hot Universe (z > 3000), the radiation dominates and the Universe

expands as a(t) ∝ t1/2. At redshifts in the interval 3000 > z > 0.5, the Universe is

dominated by matter and expands as a(t) ∝ t2/3. Finally, in the recent Universe (z <

0.5) the dark energy dominates and the Universe expands exponentially: a(t) ∝ exp(Ht).

To better understand the effect of the components on the expansion of the Universe, the

deceleration parameter q(z) has been introduced and defined as:

q(t) = − äa
ȧ2

(2.21)
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Figure 2.2: Evolution of the density of radiation, matter, and dark energy with
redshift (Frieman and Dark Energy Survey Collaboration, 2013).

During the matter and radiation dominated eras, gravity slows the expansion, and thus

q > 0 and ä < 0. During the vacuum energy dominated era, the Universe starts to

accelerate, given by q < 0 and ä > 0.

Furthermore, in order to directly constrain the density components of the Universe with

observables, we combine the FRW equations together with the expression for redshift

derived in Eq. 2.8. In this way, one can provide a parametrization of the Hubble

parameter H(t) = ȧ(t)/a(t) in terms of the redshift z (Pee, 1994) as:

H(z)2 = H2
0

[
Ωr(1 + z)4 + ΩM (1 + z)3 + Ωk(1 + z)2 + ΩΛ

]
. (2.22)

Using this function we can parametrize, not only the Hubble parameter, but also the

FRW equations and the metric as a function of the cosmological redshift z, a directly

observable quantity.

2.1.4 Cosmological distances

Defining a metric in the spacetime allows us to locally define the distance between two

events in the spacetime. In an Euclidean spacetime the concept of “distance” between

two events is independent on the observable used to evaluate it. If the spacetime is not
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Euclidean this is not true anymore and the distance between two events is no longer

uniquely defined. This means, for example, that the distance calculated measuring the

flux emitted by a source of known luminosity, has not the same value of the distances

calculated from the ratio between the source’s actual size and the angular size of the

source as viewed from earth. In particular, distances will depend on the expansion rate

of the universe and on its curvature. We give here a summary of the most used distance

definitions utilized in cosmology.

Proper distance: This is the distance that the light covers to go from a source at z2

to the observer at z1, with z1 < z2 :

Dp(z1, z2) = c

∫ a(z2)

a(z1)

da

ȧ
=

a

H0

∫ a(z2)

a(z1)

da

aE(a)
(2.23)

Co-moving distance: This is the distance measured by an observer which is co-moving

with the cosmic flow. The fact that it is measured in co-moving coordinates, implies

that the distance traveled by the light ray needs to be scaled by the cosmological scale

parameter a(t):

Dc(z1, z2) = c

∫ a(z2)

a(z1)

da

aȧ
=

a

H0

∫ a(z2)

a(z1)

da

a2E(a)
=

∫ z2

z1

cdz

H(z2)
(2.24)

Angular diameter distance: This distance is defined as the ratio between the physical

size of an object at redshift z and the angular size it displays at the current cosmological

time:

DA(z1, z2) =
Dc(z1, z2)

1 + z2
=

c

1 + z2

∫ z2

z1

dz

H(z2)
. (2.25)

The factor (1 + z) makes DA(z) the only cosmological distance that does not grow

indefinitely with redshift. This distance peaks around z ' 1 (depending on the choice

of cosmological parameters). Consequently objects, at redshifts higher than the redshift

where the angular diameter distance peaks, appear on the sky larger compared to objects

of equivalent size at smaller redshifts.

Luminosity distance: This distance relates the intrinsic luminosity of an object with

its observed flux. It is defined as:

DL(z1, z2) =

√
L

4πF
, (2.26)
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where L is the bolometric luminosity and F is the observed flux of an object. Luminosity

distance is related to the co-moving and angular diameter distances in the following way:

DL(z1, z2) = Dc(z1, z2)(1 + z2) = DA(z1, z2)(1 + z2)2 (2.27)

2.1.5 The matter density parameter

The matter density parameter ΩM was found to be close to ΩM ∼ 0.3 by independent

methods, such as gravitational lensing statistics (Chae et al., 2002), type-Ia supernovae

(Riess et al., 2004), the galaxy power spectrum, and also by galaxy cluster studies.

Allen (2002) derived ΩM using the redshift evolution of cluster gas-mass fraction, finding

ΩM = 0.30+0.04
−0.03, in excellent agreement with SN and lensing statistics. Furthermore,

CMB anisotropies can also constrain this parameter, by ΩMh
2. Spergel et al. (2003)

constrained ΩM = 0.29± 0.07 assuming h ' 0.7.

Even though we can measure ΩM precisely, there are strong observational evidences that

suggest that most of the matter in the Universe is unknown. Indeed, the ordinary matter

we know accounts for only ∼ 4% of the total ΩM . The remaining matter is known as

dark matter, since it does not emit/absorb light and can be detected only through its

gravitational effects.

One of the main goals of this thesis is the study of the mass distribution of galaxy

clusters. We are, therefore, interested in the properties of the total matter density, not

only the visible one. Below, we will review in detail for which reasons dark matter has

been proposed and how it has been investigated in the last years, as well as how it can

be analyzed in the future.

2.1.5.1 Dark matter evidence

Dark matter was first proposed by Zwicky (1933) through an analysis of the mass of the

Coma cluster from the peculiar velocities of the galaxies in the cluster. He found that the

mass is about 400 times larger than the mass estimated by adding up all of the galaxy

masses obtained from their luminosities. But only after the 1970’s, this idea began to

be considered more seriously. Rubin and Ford (1970) found that the velocities of the

ionized clouds in the Andromeda galaxy do not decrease with increasing distance from

the center and proposed as possible explanation the presence of extra mass in the outer

part of the galaxy; Rubin et al. (1985) confirmed that this phenomenon is commonly

seen in spiral galaxies; Ostriker and Peebles (1973) pointed out that the spherical halo
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component is needed to stabilize the flatten disk galaxy. With all this new observational

information, people had to pay more attention to this idea of dark matter.

Another proof for the existence of dark matter can be found through detailed analysis of

the CMB anisotropies by combining the results from baryon matter density Ωbh
2 and the

total matter parameter ΩMh
2. The former can be strongly constrained by the relative

peak heights of the odd peaks respect to the even ones. While ΩMh
2 is sensitive to the

amount of boost of the angular power spectrum around the first peak, which is caused

by the potential decay during radiation dominated era (early integrated Sachs-Wolfe

effect). The detailed angular power spectrum measurements by WMAP revealed that

ΩMh
2 is about six times larger than Ωbh

2 (Spergel et al., 2003). This clearly indicates

that most of the matter in the universe should be non-baryonic and dark.

The most significant evidence for dark matter comes from observations of cluster of

galaxies. Due to their X-ray luminosity, the mass of the clusters can be estimated

under the assumption of hydrodynamic equilibrium, which turns out to be much larger

than the mass of the visible matter (i.e., gas + stars). Indeed, White et al. (1993)

found that the fraction of the visible mass in Coma cluster compare to the total one is

Mb/Mt ' 0.01±0.05h−3/2, implying that galaxy clusters must be dominated by invisible

dark matter.

Now, the most direct evidence is offered by gravitational lensing phenomenon, because

gravitational light deflection is independent of the nature of the matter and of its state

– lensing is sensitive to the total matter, dark and luminous matter, and matter in

equilibrium or far out of it. Squires et al. (1996) estimated an upper bound for the

fraction of the gas mass to the total one, Mgas/Mt < 0.04 ± 0.02h, using weak lensing

method.

Dark matter candidates can be classified according to their collisionless damping (free

streaming) scales. If we regard massive neutrinos (mµ ≥ 10eV ) as dominant component

of dark matter, then they were relativistic until the horizon scale of ∼Mpc; therefore

fluctuations below ∼Mpc were smoothed out due to their relativistic motions. Such

dark matter is called hot dark matter (HDM). On the other hand, one can consider a

possibility of very massive dark matter so that it became non-relativistic long time ago,

a time when collisionless damping scale were much smaller than important scales for

structure formation. This is called cold dark matter (CDM). There is also a possibility

of warm dark matter (WDM) which has collisionless damping scale of ∼kpc. The dif-

ference between these dark matter models becomes evident in their power spectra. Now

observations support the cold dark matter model. Fig. 2.3 shows the comparison of ob-

served power spectrum with cold dark matter predictions. They are in good agreement
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Figure 2.3: Comparison of several measurements on the power spectrum. The black
solid line corresponds to the CDM prediction with ΩM = 0.28, h = 0.72, and Ωb/ΩM =

0.16. This Figure is taken from Tegmark et al. (2004).

at ≥Mpc scales. Therefore, now it is believed that most of dark matter is non-baryonic

and cold.

The determination of the distribution and the amount of dark matter in the Universe has

received significant attention in the recent years, representing one the most fundamental

aspect of cosmology. As noted earlier, in this thesis we would like to perform a detailed

analysis of the mass distribution in galaxy clusters, and therefore, contributing to the

understanding of Dark Matter in the Universe.

2.1.6 The flat ΛCDM model

As mentioned earlier, the evolution of our universe is governed by the Friedmann and

fluid equations (Eqs. 2.10 and 2.11 respectively). In this cosmological framework, the

most fundamental parameters are the curvature and the density content of the Universe.

Surprisingly, the current observations support a flat Universe, mainly dominated by

unknown dark components; dark energy and cold dark matter. The observations support

ΩM ' 0.3 and ΩΛ ' 0.7, which can be seen in the Fig. 2.4. This concordance model
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Figure 2.4: This figure shows three independent constraints on cosmological param-
eters projected in the ΩΛ − ΩM plane. The CMB is constraints from CMB anisotropy
observed by WMAP Spergel et al. (2003). Supernovae shows the results of type-Ia
supernovae observations by Knop et al. (2003). Finally, the X-ray measurements of
distant clusters (Allen, 2002) are denoted by Cluster. It is surprising that these three
independent observations are well explained by a model with ΩM ' 0.3 and ΩΛ ' 0.7.

This Figure is taken from http://www-supernova.lbl.gov/

is commonly called as the flat ΛCDM model. Its main features can be summarized as

follows:

• The Universe is homogeneous and isotropic and governed by the General Relativity.

• The Universe is composed by baryons, dark matter, and dark energy, and it is flat.

We also assume the densities of radiation components of photons and neutrinos as

inferred from the CMB temperature and as calculated from the standard thermal

history. We assume the three massless species of neutrinos.

• We assume that the adiabatic primordial fluctuations obey the Gaussian statistics.

The primordial power spectrum can be described by a power law, Pi(k) ∝ kns .

• Dark matter is cold.
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• We assume that the cosmological constant Λ describes the dark energy component,

i.e., w = −1

All the work performed in this thesis is based on this concordance model: a flat ΛCDM

cosmological framework, with ΩM = 1−ΩΛ = 0.3 and H0 = 100h km s−1 Mpc−1, with

h = 0− 1.0.

Furthermore, the cluster virial radius at redshift z is defined as the radius that encloses

an average over density ∆c times the critical density, ρc(z), with:

∆c = 18π2 + 82(Ωm(z)− 1)− 39(Ωm(z)− 1)2, (2.28)

based on spherical collapse theory (Bryan and Norman, 1998) in a flat ΛCDM universe,

where Ωm(z) is defined as:

Ωm(z) =
Ωm(1 + z)3

Ωm(1 + z)3 + ΩΛ
, (2.29)

and

ρc(z) =
3H(z)

8πG
, (2.30)

In this thesis we denote the concentration parameter, virial radius and mass by cvir, rvir,

and Mvir when using the theoretical value of ∆c (equation 2.28), while by c200, r200,

and M200, respectively, when fixing ∆c to 200, to compare with previous observational

works and simulations.

2.2 Gravitational lensing

We review in this section the basic concepts of the gravitational lensing theory, which

are indispensable for the complete understanding of this thesis.

As mentioned before, massive objects in the universe can act as lenses, distorting the

images of distant sources. This phenomenon, which is explained by the General Rela-

tivity Theory, exists on a wide range of scales. From small compact objects in the halo

of the Milky Way, to galaxy clusters, which represent the most powerful lenses in the

universe, modifying the shape of distant galaxies and forming giant arcs as well as small

arclets, which are the main topic of this work.
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Figure 2.5: Deflection of a light ray by a point mass M . The light ray, which
has an impact parameter b (b=ξ), is bent by the angle α̃ (Figure from Narayan and

Bartelmann 1996).

Although photons propagate along null geodesics of the space-time, as described by the

General Relativity, in most of the astrophysically relevant situations a much simpler

approximated description of light by means of light rays is enough. In particular, this is

sufficient to properly describe the lensing phenomena produced by galaxy clusters, which

will be discussed in the following chapters. For a more detailed and rigorous treatment,

we refer the reader to the book by Schneider et al. (1992) and to the reviews by Narayan

and Bartelmann (1996) and by Bartelmann and Schneider (2001).

2.2.1 The deflection angle

Consider first the deflection of a light ray by the exterior part of a spherically symmetric

mass M , with the ray impact parameter ξ much larger than the Schwarzchild radius,

ξ � Rs ≡ 2GMc−2, then General Relativity predicts that the deflection angle α̃ is:

α̃ =
4GM

c2ξ
(2.31)

We now consider more realistic lens models, i.e. three dimensional distributions of

matter with volume density ρ(r), which can be divided into cells of size dV and mass

dm = ρ(r)dV . We consider that the light ray passes this mass distribution and we
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describe its spatial trajectory by (ξ1, ξ2, r3), where the coordinates are chosen such that

the incoming light ray propagates along r3.

Now, when the physical size of the lens is much smaller than the distances between

observer, lens and source and so the deflection arises along a very short section of

the light path, we can consider the thin screen approximation (Fig. 2.6), Within this

approximation, the lensing matter distribution is fully described by its surface density,

given by:

Σ(ξ) =

∫
dr3 ρ(ξ1, ξ2, r3) (2.32)

where ξ is a two-dimensional vector on the lens plane.

As long as the thin screen approximation holds, the total deflection angle is obtained by

summing the contribution of all the mass elements Σ(ξ)dξ, described by:

α̃(ξ) =
4G

c2

∫
d2ξ′ Σ(ξ′)

ξ − ξ′

|ξ − ξ′|2
(2.33)

This condition is satisfied in virtually all astrophysically relevant situations, i.e., lensing

by galaxies and galaxy clusters, unless the deflecting mass extends all the way from the

source to the observer, which is the instance for some cases in WL.

2.2.2 The lens equation

In Fig. 2.6 we show the sketch of a typical gravitational lens system. The lens of

mass distribution Σ(ξ′) is located at redshift zl, corresponding to an angular diameter

distance Dl. This lens deflects the light rays coming from a source at redshift zs, which

corresponds to an angular distance Ds.

From the geometry of Fig. 2.6, one can derive the next relations (assuming sinα̃ ≈ α̃ ≈
tanα̃, with α̃� 1):

η = Dsβ, (2.34)

ξ = Dlθ, (2.35)

It can also be seen:
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Figure 2.6: Sketch of a typical gravitational lensing system (Figure from Bartelmann
and Schneider 2001).

η =
Ds

Dl
ξ −Dlsα̃(ξ), (2.36)

where Dls corresponds to the angular distance between the lens and the source. Now

combining the Eqs. 2.34, 2.35, and 2.36, one can derive the well known lens equation:

β = θ −α(θ), (2.37)

with

α(θ) ≡ Dls

Ds
α̃(Dlθ), (2.38)

where we have defined the scaled deflection angle α(θ) in the last step. The lens equation

describes the deviation α(θ) of the deflected light rays passing through the gravitational

potential, which appear at the angular position θ = (θ1, θ2) in the image plane, while

originally come from an angular position in the source plane β = (β1, β2).
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The lens equation can have more than one solution for a source at the fixed position

β = (β1, β2), therefore, it source can have multiple images on the sky. When this

happens, the lens is considered strong. Now, we can express the scaled deflection angle

in terms of the surface mass density Σ(ξ) as:

α(θ) =
1

π

∫
R2

d2θ′ κ(θ′)
θ − θ′

|θ − θ′|2
, (2.39)

where we have defined the dimensionless surface mass density or convergence κ(θ):

κ(θ) =
Σ(ξ = Dlθ)

Σcr
with Σcr =

c2

4πG

Ds

DlDls
, (2.40)

where Σcr is called the critical surface density. It is a function of the angular diameter

distances of lens and source and therefore depends on their redshifts. A mass distribution

which has κ > 1 somewhere, i.e. its surface density exceeds the critical value at some

position, produces multiple images for some source position β = (β1, β2) (Schneider

et al., 1992). Hence the critical surface density is a characteristic value of the surface

density for discriminating between the strong and weak lensing regimes. The condition

κ > 1 is only sufficient but not necessary for having multiple images: particular lenses

may be strong even if their surface density never surpasses Σcr. Furthermore, since the

lens equation (2.37) describes a mapping from the lens plane to the source plane θ → β,

by solving this equation we can determine the projected mass distribution of the lens

Σ(Dlθ). As the number of the images θ for a given source β is not known a priori, the

inversion of the lens equation is non-trivial in general, but it can be numerically solved

and one can derive the mass distribution assuming some simple density profiles (as done

in the case of parametric models).

2.2.3 Lensing potential

An extended distribution of matter is characterized by its effective lensing potential,

obtained by projecting the three-dimensional Newtonian potential on the lens plane and

by properly rescaling it:

ψ(θ) =
Dls

DlDs

2

c2

∫
R2

dr Φ(Dlθ, r3). (2.41)

Using the identity ∇ ln |θ| = θ/|θ|2, which is valid for any two-dimensional vector θ,

we can rewrite the scaled deflection angle in terms of the effective lensing potential,
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ψ(θ) =
1

π

∫
R2

d2θ′κ(θ′)ln|θ − θ′|, (2.42)

as

α(θ) = ∇ψ(θ), (2.43)

2.2.4 Magnification and distortion

One of the main features of gravitational lensing is the magnification and distortion of

the flux and shape of the sources, respectively. This is particularly evident when the

source has no negligible apparent size. For example, background galaxies can appear as

very long arcs in galaxy clusters.

The distortion arises because light bundles are deflected differentially. Ideally the shape

of the images can be determined by solving the lens equation for all the points within

the extended source. In particular, if the source is much smaller than the angular size

on which the physical properties of the lens change, the relation between source and

image positions can be linearized locally. In other words, the distortion of images can

be described by the Jacobian matrix:

A(θ) =
∂β

∂θ
=

(
δij −

∂2ψ(θ)

∂θi∂θj

)
=

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (2.44)

where we have introduced the components of the shear γ ≡ γ1 + iγ2 = |γ|e2iϕ, with

γ1 =
1

2

(
∂2ψ(θ)

∂2θ1
− ∂2ψ(θ)

∂2θ2

)
= γ(θ)cos(2ϕ), (2.45)

γ2 =
∂2ψ(θ)

∂θ2∂θ2
= γ(θ)sin(2ϕ), (2.46)

and κ is related to ψ through the Poisson equation ∇2ψ = 2κ. By using the previous

Eqs., the magnification matrix becomes

A(θ) = (1− κ)

(
1 0

0 1

)
− γ

(
cos(2ϕ) sin(2ϕ)

sin(2ϕ) −cos(2ϕ)

)
. (2.47)
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Figure 2.7: Distortion effects due to convergence and shear on a circular source
(Figure from Narayan and Bartelmann 1996).

The last equation explains the meaning of both convergence and shear. The distortion

induced by the convergence is isotropic, i.e. the images are only rescaled by a constant

factor in all directions. On the other hand, the shear stretches the intrinsic shape of

the source along one privileged direction. For this reason, a circular source like the one

shown in Fig. 2.7 is mapped into an elongated image when κ and γ are both non-zero.

An important consequence of the lensing distortion is the magnification. Because of the

Liouville theorem and the absence of emission and absorption of photons in gravitational

light deflection, the conservation of the source surface brightness is ensured. This means

that the change of the solid angle under which the source is seen implies that the flux

received from a source will be magnified (or demagnified).

Given the magnification matrix (Eq. 2.44), the magnification is quantified by the inverse

of the determinant of the Jacobian matrix. For this reason, the matrix M(θ) = A−1 is

called the magnification tensor, given by:

µ ≡ detM =
1

detA
=

1

(1− κ)2 − γ2
. (2.48)

The eigenvalues of the magnification tensor measure the amplification in the tangential

and in the radial direction, given by:

µt =
1

λt
=

1

1− κ− γ
. (2.49)

µr =
1

λr
=

1

1− κ+ γ
. (2.50)
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Figure 2.8: This figure shows the image (a) and source (b) positions with respect to
critical curves (a) and caustics (b) curves. The left panel shows a fold caustic crossing
configuration, while the right panel shows a cusp crossing configuration. The colored
circles in panels (b) display the different source positions with respect to the caustics.
These map to the distorted colored shapes in panels (a) shown with respect to the

critical curves. Figure taken from Narayan and Bartelmann (1996).

The magnification is theoretically infinite where λt = 0 and where λr = 0. These

two conditions define two curves in the lens plane, called the tangential and the radial

critical curves, respectively. Images forming along the tangential critical line are strongly

distorted tangentially to this line. On the other hand, images forming close to the radial

critical curve are stretched in the direction perpendicular to the curve itself. When

mapped to the source plane, these curves are called “caustic lines” or simply “caustics”.

Caustics can show more complicated patterns that intersect, but remain closed curves.

Fig. 2.8 shows critical curves (a: lens plane) and caustic lines (b: source plane) for an

elliptical gravitational lens. A source at different positions with respect to the caustic

lines maps to different image configurations in the lens plane. When the source is inside

the area between the two caustic lines (e.g, blue spots in the figure), two images are

mapped to the lens plane: one outside both critical curves and one between them. When

the source is enclosed by both caustic curves, four images of the source are mapped (e.g.,

red spots in the figure): two outside the critical curves and two between them. If the

source lies outside both caustic curves, there is no image splitting (e.g., pink spot in the

figure).
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Figure 2.9: Strong and weak lensing regimes. The source wavefront is distorted by
a lensing potential of the massive object. The caustic envelope indicates the region
where image splitting can be seen (strong lensing). This image was taken from Anguita

(2009).

2.2.5 Gravitational lensing regimes

In gravitational lensing we can distinguish two different regimes: strong and weak.

The former is produced close to the centers of clusters, where mass density can be

high enough to noticeably modify the shape of background galaxies, producing giant

elongated arcs or even multiple images of the background sources (e.g. Bartelmann

2010; Kneib and Natarajan 2011, for reviews). The second regime is produced in the

outer regions of the clusters, where the light deflection produces only tiny distortions

that cannot be observed on single images, therefore statistical measurements of several

of these distortions become necessary to reconstruct the mass of the cluster.

2.2.5.1 Strong lensing

Strong lensing arises when the surface mass density of the lens is larger than the Σcrit

together with an alignment (or vicinity) between the source and the optical axis of the

lens. This case corresponds in Fig. 2.8 to the position of the source, in the source plane,

inside the caustic lines, producing multiplicity of images and mirror inversion of images

located at saddle points. In general, strong lensing refers to lensing systems in which

the lens is a galaxy or galaxy cluster, and the source is a background galaxy or quasar.



Chapter 2. Theoretical and observational background 26

Due to the (small) projected velocities of galaxies and galaxy clusters with respect to

background sources, strong lensing is a static phenomenon in human time scales.

Strong lensing observables are the positions/orientation and brightnesses of the lensed

images. Being a static phenomenon, the intrinsic brightness of the source is unobserv-

able. Thus, individual brightnesses of lensed images do not give any information about

the lensing system. However, the ratio between the brightnesses of multiple images

does, as it corresponds to the ratio between the magnifications produced by the lensing

potential.

Strong lensing effects in clusters show up in the form of giant luminous arcs, strongly

distorted arclets and multiple images of background galaxies. Since strong lensing only

occurs in the central part of the clusters, it can be used only to probe their inner

mass distribution. However, strong lensing yields by far the most accurate central mass

determinations in those cases where several strong lensing features can be identified.

Therefore, strong lensing is the best cosmological tool to probe the total matter in the

core of the galaxy clusters, making it ideal for our purpose.

Furthermore, clusters do act as a “natural telescope”; many of the most distant galaxies

have been found by searching behind clusters, taking advantage of the lensing mag-

nification. In the next chapters, we will present detailed analysis of the central mass

distribution of galaxy clusters, as well as, a briefly description of how strong lensing help

to find the most distant objects in the Universe hitherto, one found at z ∼ 9.6 behind the

CLASH cluster MACSJ1149+22 (Zheng et al., 2012) , and the other at z ∼ 11 behind

the CLASH cluster MACSJ0647.7+7015 (Coe et al., 2013).

2.2.5.2 Weak lensing

Weak lensing corresponds to the case where the light deflection produces only tiny

distortions that cannot be observed on single images. In Fig. 2.9, it corresponds to

sources that are outside of the caustic lines. There is a rather smooth transition between

weak and strong lensing, where these sheared images begin to form arcs around the lens.

Nonetheless, in the general weak lensing case, the background sources are sheared only

by a few percent. If the original shape of a weakly lensed galaxy was known, the

deformation induced by weak lensing could suffice to deduce the properties of the lens.

However, the main problem weak lensing has to face is the fact that an exact knowledge

of the intrinsic shape of distorted background galaxies does not exist. To get around this

issue, massive clusters are observed at large scales and it is assumed that the distribution

of the background galaxies is random. This fact compensates for the lack of knowledge

of their exact shape and can constrain the mass distribution of the galaxy cluster with
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high C.L. For a review of weak lensing and its applications see Bartelmann and Schneider

(2001).

2.2.6 Strong lens modeling

The lens modeling refers to the modeling of the mass distribution (or effective lensing

potential) of the lens, required to produce such a configuration of observational signa-

tures, as image positions and brightnesses of the background sources. The lens equation

(Eq. 2.37) describes the mapping from θ → β, that is from the lens plane to the source

plane; for a given position θ in the image plane and for a given mass distribution Σ(θ),

we can easily calculate the source position β. The problem arises when we want to do

the mapping in the other way around, i.e., the inversion of the lens equation. Since the

mapping θ → β is not linear, finding all the image positions θ for a given source position

β is analytically possible only for some very simple mass models. As the number of the

images θ for a given source β is not known a priori, the inversion of the lens equation

is non-trivial in general, but it can be numerically solved using sophisticated methods,

which are described belows.

There are two ways by which the modeling of a mass potential can be accomplished: by

performing a “parametric” or a “non-parametric” mass model.

2.2.6.1 Non-parametric lens modeling

In the so-called “non-parametric” methods the mass distribution or lens potential is

reconstructed as a map defined on a grid of pixels. They have been initially developed

to constrain the mass distribution of galaxy-scale lenses (Abdelsalam et al., 1998; Saha

and Williams, 1997), at the beginning the purpose was to probe the large diversity of

possible mass models with a view in particular at the modeling degeneracy present in

the measurement of the Hubble constant. Since 1997, non-parametric modeling has been

intensively tested and greatly improved to overcome the lack of constraints very common

in strong lensing (e.g. Diego et al., 2005; Kochanek, 1996; Koopmans, 2005). However,

the flexibility of these methods arising from their very large number of parameters has

to be controlled to avoid over-fitting the data. Recent work on regularization techniques

(Bradač et al., 2005; Coe et al., 2008; Merten et al., 2009; Suyu et al., 2006) has improved

the situation in this regard somewhat. However, physical understanding often comes

from the measurement of quantities such as total mass, profile slope, and so on, which

still have to be extracted from the flexible reconstructed maps.
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The most successful non-parametric approaches to mass modeling are: the multipole

expansion method (e.g. Kochanek, 1991; Trotter et al., 2000) and the pixelization method

(e.g. Abdelsalam et al., 1998; Diego et al., 2005; Saha and Williams, 1997). The multipole

expansion method, as the name suggests, is a Taylor expansion of the lens potential.

On the other hand, the pixelization method makes no strong assumptions on the mass

density profile. In this case, the mass producing the deflection is defined on a grid of

pixels. PIXELENS (Saha and Williams, 1997, 2004) is the most widely used code in

this sub-class.

2.2.6.2 Parametric lens modeling

“Parametric” lens modeling techniques requires a parametric description of the poten-

tial. Therefore, these kinds of models have two advantages: the assumption of a phys-

ical model leads to inferences that are directly related to physical quantities and the

model fits the data with relatively few free parameters compared to a “non-parametric”

model. The basic philosophy in this technique is the following: first, a physically moti-

vated mass profile for the lens, like the Pseudo Isothermal Elliptical Mass Distribution

(PIEMD: Kassiola and Kovner, 1993) or the Navarro, Frenk and White profile (NFW:

Navarro et al., 1997), is chosen. Then, the parameters of the chosen profile are modified

(and subsequently the lensing potential) many times, until the observed images are re-

produced. The parameters corresponding to the best-fit are then used to construct the

mass distribution of the lens.

This technique requires a relatively good knowledge on what the system is composed

of and it is therefore usually constrained by secondary observational signatures, that go

from the ellipticity and position angle of the lensing galaxy to its effective light radius

or stellar velocity dispersion. The fitting process generally consists of a χ2 minimization

of the weighted distances between the observed and predicted image positions. To carry

out this process, a grid is created at the source plane and at the lens plane. By solving

the lens equation (Eq. 2.37) with the chosen potential, a direct mapping between source

and lens plane is obtained: for every cell of the grid in the lens plane a corresponding

cell exists in the source plane grid.

The χ2 minimization can be done either in the source plane or in the lens plane. In the

first case, based on the fact that all multiple images in the lens plane come from a single

source, the distance between the multiple (N) sources mapped to the source plane from

the multiple (N) images in the lens plane are minimized. In the lens plane minimization,

the process is inverted: one position at the source plan maps to multiple image positions

and the χ2 minimization is done based on the weighted difference between the modeled
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and observed image positions on the lens plane. In both cases, this minimization can

be complemented with constraints from the flux ratios between the images, as well as

the time-delays. Image plane minimization provides a more precise result, but it is com-

paratively much more computationally demanding (for more information on parametric

lens modeling see Jullo et al. 2007; Keeton 2001; Kneib 1993).

All the mass models that will be presented in this thesis were performed with the

parametric method LENSTOOL (Jullo et al., 2007; Kneib, 1993). LENSTOOL does

both source and image plane χ2 minimization, using a Bayesian algorithm (prior based

minimization), and a Markov Chain Monte-Carlo (MCMC) process that samples the

probability distribution by random variations of the parameters. The scanning of the

parameter space avoids hitting local χ2 minima and allows robust results. The details

of the algorithm and the underlying statistics are described in Jullo et al. (2007).

2.3 Galaxy clusters

Galaxy clusters occupy a special position in the hierarchical formation scenario as the

most extended and recently formed systems in the Universe, that are held together by

their own gravity. Their masses cover a range of roughly 1013 < M/h−1M� < 1015,

and their spatial size spreads over 1 − 3Mpc. As noted earlier, dark matter represents

' 80% of the total matter content in clusters. Stars and galaxies, which emit at visible

wavelengths, make up only for a few percent of the whole mass content of clusters

(3 − 5%). The most massive visible component is in diffuse hot gas (15 − 25%) (e.g.

Kellogg et al., 1971).

Historically, galaxy clusters have been considered among the most important cosmolog-

ical probes. In part, this is due to the fact that they occupy a unique and important

intersection of physical scales. As mentioned above, they are the largest objects which

are small enough to have come into dynamical equilibrium and conversely, they are prob-

ably the smallest objects which are big enough to contain a fair sample of the materials

in the Universe, particularly of baryonic and non-baryonic matter.

As mentioned before, the total gravitational potential of clusters (due to both visible

and dark matter) causes the deflection of light rays coming from distant galaxies, leading

to distortions in the shapes of these objects, and sometimes producing giant elongated

arcs or even multiple images of the background sources (e.g. Bartelmann 2010; Kneib

and Natarajan 2011, for reviews). The gravitational lensing is therefore, one of the most

important tools in cosmology for studying the total mass of the clusters. Fig. 2.11

shows the galaxy cluster MACSJ1206.2−0847 (Umetsu et al., 2012), from the CLASH
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Figure 2.10: The galaxy cluster MACSJ1206.2−0847 (Umetsu et al., 2012), from the
CLASH program, showing an impressive giant arc around its center due to its strong po-
tential well. This figure was taken from the CLASH website http: // www.int.stsci.edu

/ ∼postman / CLASH / ForAstronomers.html.

program1 , around the center of the image an impressive giant arc is visible. This arc is

generated as a consequence of the strong potential well of the cluster.

Since the ∼ 80% of the total mass in galaxy clusters corresponds to dark matter, detailed

studies of dark matter in N-body simulations are extremely useful for the understanding

of galaxy clusters. In the ΛCDM cosmological framework, numerical simulations have

shown that the spherically averaged density profile of relaxed halos can be described by

a universal functional form (Navarro et al. 1996, 1997). This function, known as the

Navarro-Frenk-White (NFW) profile, is independent of the cluster mass, the spectrum

of initial fluctuations and cosmological parameters.

This claim has been confirmed by detailed observational lensing measurements of massive

cluster profiles (Umetsu et al. 2011), although some discrepancies concerning their inner

slope still remain (Sand et al. 2004). As described below, we will assume a NFW profile

1The Cluster Lensing and SuperNova Survey con Hubble.
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Figure 2.11: Density profiles of simulated dark matter halos. The different panels
correspond to simulations for different cosmologies. Each panel shows the least and the
most massive halos in each simulation (least massive to the left). Solid lines are the fits

of the profiles to the NFW universal form. Figure from Navarro et al. (1997).

to characterize the cluster’s density and to derive important parameters that describe

their main properties.

Another important prediction of numerical simulations is the correlation between the

concentration of the halos and their masses, called the c −M relation in cosmological

parlance. In particular, more massive halos are expected to be less concentrated than

less massive ones. In the standard ΛCDM model, the halo concentration is determined

by the mean density of the universe at the epoch when the halo is assembled, with higher

concentrations corresponding to higher densities at earlier epochs (Bhattacharya et al.

2013; Bullock et al. 2001; Duffy et al. 2008; Macciò et al. 2008; Navarro et al. 1996; Neto

et al. 2007). Therefore, halos build up at redshift z ∼ 0 are expected to have a lower

concentration than halos of lower mass formed at higher redshifts, when the mean den-

sity was higher. Observational studies of massive lensing clusters have generally shown

qualitative agreement with the c−M relations obtained from the simulations, although

large discrepancies have been found in their normalizations (Comerford and Natarajan,

2007; Oguri et al., 2012, 2009) and slopes. The normalizations measured through lens-

ing studies are surprisingly higher than the ones predicted by ΛCDM simulations, which

means that lensing clusters are significantly more concentrated than what expected from
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N-body simulations (Broadhurst et al., 2005b, 2008; Clowe and Schneider, 2001; King

et al., 2002; Umetsu et al., 2011; Zitrin et al., 2011d). However, the lensing bias and

projection effects should be taken into account before arriving to any conclusion. In

fact, it has been shown that clusters having prominent arcs represent a strongly biased

population such as that the masses and concentrations inferred from their projected

mass distributions are on average much larger than in the normal population, mostly

due to the halo triaxiality (Hennawi et al., 2007; Meneghetti et al., 2010; Oguri et al.,

2012; Oguri and Blandford, 2009), with a typical major-to-minor axial ratio of ∼ 2 : 1

(Jing and Suto, 2002). Furthermore, since lensing observables can only measure the

projected mass distribution of the clusters, substructures and elongation along the line-

of-sight may introduce a bias in the 3D mass distribution recovered from the projected

mass (Meneghetti et al., 2003). It should be also noted that most of the N-body simula-

tions mentioned above do not include a baryonic component, which dominate the mass

in the cluster cores and makes the cluster halos more concentrated through adiabatic

contraction.

In fact, one of the main goals of this thesis is to contribute to the understanding of the

c−M relation, as well as its possible redshift evolution, in order to put strong constraints

in the current cosmological framework. We will dedicate a whole chapter to describe

and interpret this relation.

2.3.1 The mass of galaxy clusters

Galaxy clusters are one of the most important probes of the large scale structure for-

mation and the overall dynamical state of the Universe. The measurement of the total

mass of clusters provides a direct way to estimate the amount of dark matter in the Uni-

verse, as well as a tool for the determination of the nature and evolution of dark energy.

However, determining the total cluster mass is not an easy task, because the total mass

of a cluster is not directly observable, but only its luminosity, or the temperature of the

X-ray emitting intra-cluster medium. Therefore, in order to compare observed cluster

with cosmological predictions, one needs a way to determine their masses. Among the

most important methods for determining the mass of galaxy clusters are the following:

• Assuming virial equilibrium, the observed velocity distribution of galaxies in clus-

ters can be converted into a mass estimate, using the virial theorem. This method

typically requires assumptions about the statistical distribution of the anisotropy

of the galaxy orbits.
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• The hot intra-cluster gas, as visible through its Bremsstrahlung in X-rays, traces

the gravitational potential of the cluster. Under certain assumptions, the mass

profile can be constructed from the X-ray emission.

• Strong and weak gravitational lensing probes the projected mass distribution of

the clusters at different radii, with strong lensing confined to the central region,

whereas weak lensing can yield mass measurements for lager radii.

The three methods listed above are complementary; lensing yields the line-of-sight pro-

jected density of clusters, in contrast to the other two methods which probe the mass

inside spheres. Those rely on equilibrium and symmetry conditions, which are not nec-

essary for the lensig method.

In this section, we will briefly summarize the main features of two key methods to

determine masses in galaxy clusters, to then introduce our innovative technique, which

will be detailed in the next chapter.

2.3.1.1 Dynamical mass estimates from N-body simulations

The relationship between velocity dispersions and masses has been the focus of several

studies. As a first-order approach, Heisler et al. (1985) studied simple variations of the

virial theorem and found that they all behave similarly, and that it is not possible to

distinguish among them. Carlberg et al. (1997) compared masses obtained from the virial

theorem to those obtained with the Jeans equation in observed clusters. They found

that the former are highly biased by a factor of 10− 20% and associated this bias with

a surface pressure correction factor of the same order. More recently, large cosmological

simulations Evrard et al. (2008) concluded that massive (M200 > 1014h−1M�) clusters

are, on average, consistent with a virialized state, with a best-fit scaling relation for dark

matter halos described by NFW profiles in a variety of cosmologies. Accordingly, the

mass enclosed within r200 is:

M200 =
1015

h(z)

(
σDM
σ15

)1/α

M� (2.51)

where σ15 is the normalization at mass 1015h−1M�, α is the logarithmic slope, h(z) =

H(z)/100 km s−1 Mpc−1 is the normalized Hubble parameter at redshift z for a flat

universe, and σDM is the one-dimension velocity dispersion of the DM particles within

r200, which is related to the velocity dispersion of galaxies by a so-called velocity bias

factor bv = σcluster/σDM . The best-fit yields σ15 = 1082.9 ± 4.0 km s−1 and α =

0.3361± 0.0026.
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Figure 2.12: The figure shows the σDM −M200 relation for several cosmologies, as
well as the “universal” best-fit previously described by Eq. 2.51. This figure was taken

from Evrard et al. (2008)

Recent theoretical works have indicated that the way in which subhalos are tracked and

defined in simulations could affect the resulting velocity bias predictions (Evrard et al.,

2008; White et al., 2010). In fact, Evrard et al. (2008) have shown no evidence for a

velocity bias factor, bv = 1.00 ± 0.05. Thus, in this thesis we assume no velocity bias

in the computing of dynamical masses. Fig. 2.12 shows the σDM −M200 relation for

several cosmologies, as well as the “universal” best-fit previously described by Eq. 2.51.

Therefore, with robust velocity dispersion measurements the total mass of a galaxy

cluster can be determined by this scaling relation. In fact, this method was successfully

applied in recent works, e.g. Bayliss et al. (2011) and Sifón et al. (2013). In this thesis,

we use this technique to compute the dynamical masses of the galaxy clusters.
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Figure 2.13: This figure shows the projected mass distribution (in terms of κ) of
the cluster Abell 1689, reconstructed using the weak gravitational shear field γ mea-
sured from a color/magnitude-selected sample of red background galaxies registered in
deep Subaru imaging observations. This figure was take from Umetsu and Broadhurst

(2008a).

2.3.1.2 Gravitational lensing mass measurements

Gravitational lensing is the most robust way to probe the mass distribution of galaxy

clusters because the gravitational light deflection is sensitive to the total cluster mass,

regardless of its nature or state. As detailed in section 2.2.5, there are two regimes in

gravitational lensing to probe the cluster mass distribution. Close to the center, we found

the strong lensing phenomenon that yields the most precise measurements of the core

mass of galaxy clusters. This is done by solving the lens equation (Eq. 2.37) and using

the giant arcs and/or multiple-image systems as constraints in the modeling procedure.

At larger radii, weak lensing probes the total mass of the clusters by deriving tangential

shear profiles from the statistical measurements of several tiny distortions.

Several techniques for measuring the mass distribution of clusters up to large distances

from the cluster center based on the application of weak lensing have been developed (e.g.



Chapter 2. Theoretical and observational background 36

Figure 2.14: In the left panels is shown the cluster surface mass density profile
for A1689 (green triangles) and CL0024+1654 (red squares) reconstructed from strong
lensing (HST/ACS: r .200kpc) and weak lensing measurements (Subaru: r & 200kpc).
The curvature of these profiles demonstrates that both strong and weak lensing data
are required to make an accurate measurement of the cluster mass structure parame-
ters, such as the halo virial mass, Mvir, and concentration, cvir. Also shown as solid
curves are the best-fitting NFW models, with a continuously steepening density pro-
file for A1689 (black) and CL0024+1654 (gray). In the right panel is shown the joint
constraints on the NFW model parameters (cvir,Mvir) derived for CL0024+1654. The
red and blue contours show the 68.3%, 95.4%, and 99.7% confidence limits for the in-
ner strong lensing and outer weak lensing data, respectively. Combining strong and
weak-lensing information (gray contours) significantly reduces the uncertainties on the
profile parameters. This figures were taken from Umetsu and Broadhurst (2008a) and

Umetsu et al. (2010).

Bertin and Lombardi, 2001; Hoekstra et al., 1998; Kaiser, 1995; Umetsu and Broadhurst,

2008b). Although almost all weak lensing methods suffer from the important problem of

the mass sheet degeneracy. However, the fact that weak lensing methods do not need to

make any assumption on the dynamical state of the matter, make them powerful tools

anyway. In Fig. 2.13 we show the projected mass distribution (in terms of κ) of the

cluster Abell 1689, reconstructed by using the weak gravitational shear field γ measured

from a color/magnitude-selected sample of red background galaxies registered in deep

Subaru imaging observations (Umetsu and Broadhurst, 2008a).

Since strong and weak lensing probe mass distributions at different radii, the combi-

nation of both methods results in precise measurements of the total cluster mass, as

well as detailed density profile of galaxy clusters. In Fig. 2.14 we show two examples

of the combination of these methods for the clusters A1689 and CL0024+1654. The

figure shows the cluster surface mass density profiles reconstructed from strong lensing

(HST/ACS: r .200kpc) and weak lensing measurements (Subaru: r & 200kpc), as well

as the best-fit for the joint constraints. The curvature of these profiles demonstrates that

both strong and weak lensing data are required to make an accurate measurement of the
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cluster mass structure parameters, such as the halo virial mass Mvir, and concentration

cvir.

In the next Chapter, we will introduce an innovative technique to probe the mass distri-

bution of galaxy clusters, which yields results as good as those obtained by combining

strong and weak lensing constraints. The basic idea is to probe the innermost region of

the mass distribution using strong lensing signatures, while at larger radii, the cluster

mass is constrained by the velocity dispersion of the cluster members.



Chapter 3

Method: strong lensing and

dynamical mass analysis

For all methods summarized in the previous chapter, an accurate estimation of the

total cluster mass is crucial. The present thesis is devoted to contribute with new

measurements of the total cluster mass for a large sample of galaxy clusters, as well

as contributing to the development of progressive mass measurement techniques, which

can be complementary to the existing ones.

In this chapter we present an innovative technique to determine the total cluster mass

and to measure the concentration of the galaxy clusters, which is critical for a fully

understanding of the current cosmological framework.

3.1 Strong lensing analysis

In this section we describe the strong lens modeling methodology that we have used

for the mass reconstruction of all clusters studied in this thesis. We have used the

parametric method described in Kneib (1993) and implemented in the Markov Chain

Monte Carlo (MCMC) code: LENSTOOL (Jullo et al., 2007), to perform our models.

We start our models assuming an ellipsoidal NFW profile (Navarro et al., 1996, 1997)

to describe the projected mass distribution for the main DM halo (φc), which is param-

eterized by the scale radius, rs, and the halo characteristic density, ρs, by:

ρ(r) =
ρs

r/rs(1 + r/rs)2
(3.1)

38
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where rs corresponds to the region where the logarithmic slope of the density profile

equals the isothermal value, namely d ln ρ(r)/d ln r = −2, and ρs is linked to the halo

concentration parameter, c∆c , by:

ρs = ρc(z)×
∆c

3

c3
∆c

ln(1 + c∆c)− c∆c/(1 + c∆c)
, (3.2)

where ρc(z) corresponds to the critical density of the Universe (Eq. 2.15) and ∆c is the

over density given by the Eq. 2.28. The concentration parameter is defined as the ratio

of the virial radius to the scale radius,

c∆c ≡
r∆c

rs
. (3.3)

The ellipticity of the projected mass distribution is then introduced in the NFW profile

by substituting the radial coordinates r = (x1, x2), by an elliptical radius rε, given by:

rε =
√

(1− ε)x2
1 + (1 + ε)x2

2, (3.4)

where we assumed that the elliptical parameter ε is the ellipticity of the lens potential,

ϕε(x) ≡ ϕ(xε). This quantity is linked to the ellipticity of the projected mass distribu-

tion, eΣ, by assuming that eΣ = 3ε (Golse and Kneib, 2002; Kneib, 1993), which in turn

is defined by:

eΣ =
a2 − b2

a2 + b2
, (3.5)

with a and b corresponding to the “pseudo” semi major and semi minor axis, respectively.

The direction of the elliptical mass distribution, θe, is measured counterclockwise from

the West and is related to the position angle (P.A.) by P.A = θe − 90◦.

Therefore, the main DM halo can be fully characterized by six free parameters: the c∆c

and rs parameters of the NFW profile, the center position (R.A., Dec.), the ellipticity

eΣ, and its direction θe. In some clusters, where there are not enough observational

constraints, we fix the center of the main halo to the position of the brightest cluster

galaxy (BCG), since the number of constraints has to be larger than the number of

parameters in order to get a reliable fit.

Then, we add the mass contributions from the member galaxies (Σφgali) assuming a trun-

cated Pseudo-Isothermal Elliptical Mass Distribution (PIEMD; Kassiola and Kovner,
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1993; Kneib et al., 1996) with a constant mass-to-light ratio for all selected cluster

members. The PIEMD profile is given by:

ρ(r) =
ρ0

(1 + r2/r2
core)(1 + r2/r2

cut)
(3.6)

where ρ0 is the central density of the halo, which is related to the central velocity

dispersion parameter, σ0, by:

ρ0 =
σ2

0

2πG

(
rcut + rcore
r2
corercut

)
. (3.7)

The rcore and rcut parameters define the changes of the slope in the density profile. In

the inner region (r < rcore), the profile is described by a core of density ρ0, while in

the central region (rcore < r < rcut) the profile is isothermal, with a logarithmic slope

of ∼ 1/r2. In the outer region, the density progressively decays from ρ(r) ∼ 1/r2 to

ρ(r) ∼ 1/r4, introducing a cutoff (for more details, see Limousin et al. 2005). The σ0,

rcore, and rcut PIEMD profile parameters are given by (Jullo et al., 2007):

rcore = r?core(L/L
?)1/2, rcut = r?cut(L/L

?)1/2, and σ0 = σ?0(L/L?)1/4, (3.8)

where L? is the typical luminosity of the galaxies at the cluster redshift, defined in this

work as the break in the luminosity function of the cluster members, i.e., the charac-

teristic luminosity of the Schechter function (Schechter, 1976). The total mass of each

galaxy is then scaled by its luminosity L by:

M = (π/G)(σ?0)2r?cut(L/L
?) (3.9)

where r?cut and σ?0 are free parameters in the optimization process, while r?core is set to

a vanishing value of 0.15 − 0.30 kpc to get a simple expression for the total mass (Eq.

3.9) (Eliasdottir et al., 2007; Kassiola and Kovner, 1993; Natarajan et al., 1998). Unlike

the main DM halo, the center (R.A., Dec.), the ellipticity eΣ and the direction θe of the

galaxy-scale DM halos are assumed to be the same as those of the light distribution of

the selected cluster galaxies. The cluster members were selected as those lying on (±1σ)

both red sequences (r′ − z′) and (g′ − r′), and brighter than m? + 2 (where m? is the

magnitude corresponding to L?).

Therefore, the total mass distribution for each galaxy cluster is fully described by eight

free parameters (or six, depending on whether the center of the main DM halo is fixed);
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the r?cut and σ?0 parameters of the PIEMD galaxy-scale halos; the rs and c∆c parameters,

as well as the center position, the ellipticity eΣ and the direction θe of the main DM

halo.

Then, we use the observational constraints, i.e., the positions of the multiple images

and giant arcs, to optimize the parameters described above. The identification of the

multiple-image systems is mainly based on the spectroscopically confirmed lensed galax-

ies (chapter 4), as well as on the colors of the lensed arcs measured from our groundbase

imaging data. Depending of each lens configuration, giant arcs may correspond to the

merging of two or three images of the same background source. Thus, we use the de-

crease in brightness of the spectroscopically confirmed giant arcs to separate them into

multiple images, which are then used as constraints in the optimization procedure.

The optimization process is performed in the image plane. This minimizes the magnifi-

cation bias introduced by the modeling procedure. The total SL χ2 is given by:

χ2
SL =

∑
i

χ2
pos(i) +

∑
k

χ2
cc(k), (3.10)

where the first component is the χ2 of the predicted images by the model, defined by:

χ2
pos(i) =

∑
j

(xobsij − x
pred
ij )2

σ2
r

, (3.11)

with xobsij being the position of the multiple image j of the system i, while xpredij is the

position of its predicted image. This is obtained after solving the lens equation (Eq.

2.37) with the current model, i.e., by a specific projected mass distribution (Eq. 2.32).

We fix the positional error in the image plane σr at 1.4′′, which has been found to be a

reasonable value accounting for large-scale structure and matter along the line of sight

(Coe et al., 2013; Zitrin et al., 2012b).

Depending on the number of confirmed multiple images and their configurations, we may

also include the second component (χ2
cc) in the total SL χ2, which measures how well

the location of some points in the critical curves (where Σ(Dlθ) = Σcr) are reproduced

by the model. This constraint can be used in cases where we know with great confidence

the location of the critical curve (Jullo et al., 2007; Limousin et al., 2007), e.g., in the

cases where the giant arcs correspond to the merging of multiple images. In these cases,

we use the observed critical curve position (xobscc , y
obs
cc ) to define the second component

in the total SL χ2, which is given by:
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χ2
cc(k) =

∑
k

(xobscc − x
pred
cc )2 + (yobscc − y

pred
cc )2

σ2
xcc + σ2

ycc

, (3.12)

where the coordinates xpredcc and ypredcc correspond to the predicted critical curve position

by the current model. The uncertainties in the location of the critical curves are given

by σ2
xcc and σ2

ycc , which are set to 0.3′′, following the work of Limousin et al. (2007).

In order to avoid local minima in the image plane χ2 optimization, we use the Bayesian

MCMC implementation1 of LENSTOOL. In brief, it starts randomly drawing mock

models from a set of priors of the input parameters, and computing their χ2. The

sample progressively converges to the most likely parameter space, in where it draws

10, 000 realizations which are used to obtain the best-fitting model parameters, as well

as to compute contours of confidence levels and error bars on the estimation of these

parameters (for more details, see Jullo et al., 2007). The priors of the input parameters

are assumed to be uniform and with very broad ranges, in order to explore all possible

scenarios. We allow the concentration parameter c∆c to vary between 0.1 and 40, and

the scale radius rs, from 10 kpc to 650 kpc; the velocity dispersion σ?0 range spans

between 50 and 400 km s−1, whereas the cut radius r?cut is forced to be less than 200

kpc in order to account for tidal stripping of the galaxy-scale DM halos (e.g., Limousin

et al., 2007; Natarajan et al., 2009; Wetzel and White, 2010, and references therein);

the ellipticity eΣ is allowed to reach values as high as 0.75 (Golse and Kneib, 2002), and

its direction can take any value between 0◦ to 180◦; finally, the position of the main DM

halo is allowed to vary by ±25′′ around to the BCG. We note that in some clusters, the

redshift for some multiple-image systems is left as a free parameter in the optimization

process, with a flat prior centered at zinput = 2.0, with a conservative 1σ error of σ =+3.0
−1.0

(Bayliss et al., 2011; Oguri et al., 2012).

3.2 Dynamical masses

In this section, we briefly describe the method used to calculate dynamical masses from

velocity dispersions. The full details of this procedure can be found in chapter 4.

The redshift measurements were carried out by two independent methods: by cross-

correlation of the spectra with spectral galaxy templates of the SDSS DR7, and by

visual inspection of each spectrum, identifying a set of lines at a common redshift.

Then, the cluster members as well as the redshift, zcl, and velocity dispersion, σcluster,

of each cluster were determined by applying a cut in (rest-frame) velocities space of

1http://www.inference.phy.cam.ac.uk/bayesys/
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Figure 3.1: Filled green contours show parameter distributions from strong lensing
alone while the red line contours show the parameter distributions when dynamical con-
strains are included. Crosses denote the corresponding maximum likelihood estimates.
Contours are at the 68% and 95% levels. This figure was taken from Sifón et al. (2014).

±4000 km s−1, and then by applying the 3σ clipping method. To finally apply the

bi-weight estimator of Beers et al. (1990). This process was iterated until the number

of members was stable. That usually happened after the second iteration.

Finally, we calculated dynamical masses by applying the relation between the DM ve-

locity dispersion, σdm, and the total mass of the halo, M200, from Evrard et al. (2008),

which is given by2:

M200 =
1015

h(z)

(
σDM
σ15

)1/α

M� (3.13)

where σ15 is the normalization at mass 1015h−1M�, α is the logarithmic slope, h(z) =

H(z)/100 km s−1 Mpc−1 is the normalized Hubble parameter at redshift z for a flat

universe, and σDM is the one-dimension velocity dispersion of the DM particles within

r200, which is related to the velocity dispersion of galaxies by a so-called velocity bias

factor bv = σcluster/σDM . The best-fit yields σ15 = 1082.9 ± 4.0 km s−1 and α =

0.3361± 0.0026.

Based on recent simulation results (e.g., Evrard et al., 2008; White et al., 2010), we

assumed no velocity bias (bv = σcluster/σdm = 1) between the galaxy and DM velocity

dispersion.

3.3 Strong lensing and dynamical constraints

According to Verdugo et al. (2011), to combine constraints from velocity dispersion

and dynamical mass measurements with constraints from strong lensing, we need to

define a new likelihood (χ2) in our modeling procedure. Since we have an independent

2This relation was already presented in §2.3.1.1
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measurement of the 3D mass of the clusters from the velocity dispersion, we can define

this new χ2 as:

χ2
mass(M

obs
200, c200, rs) =

(
Mobs

200 −M
pred
200 (c200, rs)

∆M

)2

(3.14)

where Mobs
200 is M200 described in the previous section, Mpred

200 (c200, rs) is the 3D mass

predicted by the model, given the set of parameters (c200, rs), and ∆M is the uncertainty

in the measurement of the observed 3D mass. Thus, since both the strong lensing masses

and the dynamical masses are obtained through independent techniques, we combine

both sets of constraints for a given set of free parameters, by adding their χ2:

χ2
tot = χ2

SL + χ2
mass (3.15)

In practice, we add this external constraint in our modeling procedure including a gaus-

sian prior in the total mass, centered at M input
200 = M200, with 1σ error equal at the errors

of M200.

The Figure 3.1 shows how the parameter distributions change for the cluster PLCK

G004.5−19.5 (Sifón et al., 2014) by including dynamical constraints in the SL model.

The dynamical mass constraints remarkably decrease the degeneracies in the parameter

space, which are very common in strong lensing modeling (e.g., Jullo et al., 2007), ruling

out high-ME , high-concentration and low-ellipticity solutions, which were allowed in the

SL only models for low-M500.

It should be noted that this technique has been previously introduced by Verdugo et al.

(2011), who implemented the dynamical probability in LENSTOOL software. Verdugo

et al. (2011) tested this technique in galaxy groups’ masses reconstructions successfully.

3.4 Conclusions

In this chapter we introduced the mass reconstruction methodology that we have used

in all the reconstructions presented in this thesis. This consists in the combination of SL

constraints that probe the innermost region of the galaxy cluster cores, and dynamical

masses derived from the velocity dispersion of the cluster members that probe the mass

distribution of clusters at larger radii.

The mass reconstruction results by combining these two observables will be shown in

the following chapters.



Chapter 4

New sample of 29 strong lensing

selected galaxy clusters

In this chapter we present high quality spectroscopic data of 29 new strong lensing

(SL) selected galaxy clusters that were visually identified in the Red-Sequence Cluster

Survey-2 (RCS21). We also describe our spectroscopic follow-up methodology, as well

as the main results of this campaign.

4.1 The importance of controlled samples of SL selected

galaxy clusters

Galaxy clusters are one of the most powerful tool in the modern cosmology. Their

number counts are a key test of the standard concordance cosmological model, since

they are sensitive to the density fluctuation amplitudes and cosmological parameters.

Large surveys of galaxy clusters are now producing catalogs of several clusters, with

well-defined selection functions over large fractions of the sky (Gilbank et al., 2011;

Gladders and Yee, 2005; Vanderlinde et al., 2010). At the same time, extensive efforts

are underway to determine with good accuracy the mass and redshift distributions of

these clusters.

One of the most robust and direct ways to map the total mass distribution in massive

galaxy clusters is through the analysis of gravitational lensing signatures; with weak

lensing (WL) probing at larger radii the density profile of the clusters, while SL yields

the most detailed mass reconstructions of the cluster cores (e.g. Bartelmann, 2010; Kneib

and Natarajan, 2011, for reviews). WL observations of galaxy clusters have become a

1Described in Appendix A
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powerful tool in recent years (Dahle, 2006; Hoekstra and Jain, 2008; Okabe et al., 2010b),

but galaxy clusters exhibiting SL remain a rare subset of the total cluster population.

In this chapter we present a spectroscopic follow-up of a subset from a large sample of

several hundred giant arcs from the Red-Sequence Cluster Survey Giant Arc (RCSGA;

Bayliss, 2012), discovered in the RCS2 survey (Gilbank et al., 2011). This SL selected

cluster sample is intended primarily to provide statistical samples of SL clusters that

can be used to perform robust mass reconstructions of the cluster cores, as well as to

address the persistent lack of large, well-selected catalogs of giant arcs which can be

compared against of ΛCDM predictions for giant arc statistics. A large sample of SL

selected clusters also increases the volume of the high-redshift universe that is available

for observations because these clusters act as natural telescopes, magnifying the size and

the fluxes of the faint far objects.

4.2 Observations

4.2.1 The SL selected cluster sample

In this section, we present a detailed spectroscopic analysis of a sample of 29 SL selected

galaxy clusters from the RCSGA survey, from which 27 clusters are previously unpub-

lished. The clusters in RCSGA survey have been selected through an exhaustive visual

inspection in the RCS2 imaging data as those having giant blue arcs around their cores.

For more details of this new survey, the reader can go to Bayliss (2012). The RCS2

survey (Gilbank et al., 2011) was designed to detect galaxy clusters at high redshift

using the red-sequence technique (Gladders and Yee, 2000) in deep images on a 3.6m

class telescope, in the r′, g′, and z′ bands, with limiting magnitudes of 24.3, 24.4, and

22.8, respectively. The median seeing of the RCS-2 survey is ∼ 0.7′′, making it ideal for

the detection and classification of giant arcs. The RCSGA survey has discovered hun-

dreds of SL clusters, and we performed a spectroscopic follow-up for some of its most

spectacular systems.

Two of our clusters have also been reported in previous studies; RCS2 J0327−1326

in Sharon et al. (2012); Wuyts et al. (2010, 2014); and RCS2 J2111−0114 (or SDSS

J2111−0114) in Bayliss et al. (2011); Hennawi et al. (2008); Oguri et al. (2012). This

allows us to compare our results and test our innovative technique that will be described

in the next chapter. We have adopted a naming convention described in Bayliss et al.

(2011) for giant arcs discovered in RCSGA, given by RCSGA − Jhhmmss+ddmmss (e.g.

Bayliss, 2012; Wuyts et al., 2010).
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Figure 4.1: This figure shows an example of the masks used in MXU mode in this
work for the cluster RCS2 J1125−0628.

4.2.2 Imaging

The imaging of our clusters has been obtained from the RCS2 data. They were collected

in queue-scheduled mode with MegaCam at the 3.6 m Canada-France-Hawaii Telescope

(CFHT), between the semesters 2003A and 2007B inclusive. The RCS2 data (Appendix

A.1) consist in single exposure (without dithering) of 4, 8, and 6 minutes, for the g′, r′,

and z′ bands, respectively; cosmic rays and chip defects have been identified by visual

inspection and removed by interpolation (Gilbank et al., 2011). We used the r′ and z′

bands to identify the red-sequence cluster member candidates, which have been used as

targets in the spectroscopic follow-up and also to perform the mass reconstructions of

our SL models (next chapter). While the g′–band was used to identify strongly lensed
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arcs, since these tend to be relatively blue. We have also obtained pre-imaging of our

clusters in B,R, and I bands, with the Focal Reducer and low dispersion Spectrograph 2

(FORS2; Appenzeller et al., 1998) at ESO2 8.2m Very Large Telescope (VLT), in queue

mode. The FORS2/VLT pre-imaging data have been used to design the spectroscopic

masks and also in the searching for multiple-image systems during the modeling process.

4.2.3 Spectroscopy

The FORS2/VLT observations were carried out during the ESO observing programs

P78, P81, P83, and P84 (principal investigator Dr. L. Felipe Barrientos), by using the

Multi-object spectroscopy with exchangeable masks (MXU) mode. The MXU mode

allows both increase the density of the slits and free manipulation of the width, length,

and orientation of the slits, making it ideal for spectroscopy in dense regions as the

cluster cores. The spectroscopic masks for each cluster were designed with the FORS

Instrument Mask Simulator (FIMS) software. The masks were strategically positioned in

the center of each clusters in order to prioritize giant arcs and lensed galaxy candidates.

The slit width was always set to 1′′, while its length varied depending on the arc can-

didates size, typically between 12′′ to 25′′. The masks were then filled with slits placed

in red sequence cluster selected members. The length of these slits was between 6′′ and

12′′, depending on each member size. We have usually built two masks for each cluster,

although some of them had up to four masks. In order to increase the giant arcs flux,

we have fixed the slits located in the arc positions. On the other hand, with the purpose

of increasing the spectroscopically confirmed member galaxies, we have varied the slits

located in the cluster galaxy candidates between each masks. Fig. 4.1 shows an example

of the mask used in MXU mode in this work.

As one of the main goals of this work is to increase the number of both spectroscopically

confirmed lensed galaxies and member galaxies, we have always performed the same

instrument setup for medium resolution spectra, by using the GRIS 150I+27 grism and

GG435+81 filter, and we have adopted a 2×2 binning in order to improve the signal-

to-noise ratio of the spectra. This instrument setup results in a final dispersion of 6.9

Å per image pixel, and covers a spectral range from ∆λ ∼ 4300 − 10500 Å. Although,

our highest sensitivity was in the interval ∆λ ∼ 4500 − 9000, due to the transmission

efficiency of the filter used. This setup is ideal for identifying galaxies at z &1.0, which

often relies on spectral lines that are redshifted (i.e. ∼ 7000− 10000 Å). Depending on

the intrinsic features of each clusters, we varied the exposure times between 1200−3000

2ESO: the European Southern Observatory; http://www.eso.org/
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Table 4.1: Summary of FORS2/VLT spectroscopic observations

Target R.A.c Decc Period Exposures Comments
(J2000) (J2000)

RCS2 J0004−0103 00 04 52.001 −01 03 16.58 83 3×2400s 2 masks
RCS2 J0034+0225 00 34 28.134 +02 25 22.34 81 5×2700s, 1×2100s 2 masks
RCS2 J0038+0215 00 38 55.898 +02 15 52.35 84 3×2400s, 3×1800s, 2×2520s 2 masks
RCS2 J0047+0507 00 47 50.787 +05 07 52.30 81 3×2400s 1 masks
RCS2 J0052+0433 00 52 10.352 +04 33 33.31 81 2×3000s 1 masks
RCS2 J0057+0209 00 57 27.869 +02 09 33.98 84 3×1800s, 2×2280s, 1×2580s 2 masks
RCS2 J0252−1459 02 52 41.474 −14 59 30.38 78 2×2400s 1 masks
RCS2 J0309−1437 03 09 44.096 −14 37 34.38 84 3×1980s, 1×1800s 2 masks
RCS2 J0327−1326a 03 27 27.174 −13 26 22.90 78 3×2400s 1 masks
RCS2 J0859−0345 08 59 14.486 −03 45 14.63 81 5×2400s 2 masks
RCS2 J1055−0459d 10 55 35.647 −04 59 41.60 81 - 83 5×2400s, 2×3300s 4 masks
RCS2 J1101−0602 11 01 54.093 −06 02 32.02 84 3×1200s 1 masks
RCS2 J1108−0456 11 08 16.835 −04 56 37.62 83 3×2400s 2 masks
RCS2 J1111+1408 11 11 24.483 +14 08 50.82 81 3×1800s, 1×2400s 2 masks
RCS2 J1119−0728 11 19 11.925 −07 28 17.51 84 2×2400s, 2×1500s 2 masks
RCS2 J1125−0628 11 25 28.940 −06 28 39.04 83 4×2400s 2 masks
RCS2 J1250+0244 12 50 41.890 +02 44 26.57 84 5×1200s 2 masks
RCS2 J1511+0630 15 11 44.681 +06 30 31.79 83 4×2400s 2 masks
RCS2 J1517+1003 15 17 02.587 +10 03 29.27 84 6×1200s 2 masks
RCS2 J1519+0840d 15 19 31.213 +08 40 01.43 81 - 83 2×3600s, 3×2400s 3 masks
RCS2 J1526+0432 15 26 14.914 +04 32 48.01 83 3×2400s 2 masks
SDSS J2111−0114b 21 11 19.307 −01 14 23.95 83 2×2400s, 1×3000s 2 masks
RCS2 J2135−0102d 21 35 12.040 −01 02 58.27 81 - 83 4×2800s, 2×600s, 4×2400s 4 masks
RCS2 J2147−0102 21 47 37.172 −01 02 51.93 84 2×3000s, 2×2400s 2 masks
RCS2 J2151−0138 21 51 25.950 −01 38 50.14 84 3×1800s 2 masks
RCS2 J2313−0104 23 13 54.514 −01 04 48.46 81 6×2700s 2 masks
RCS2 J2329−1317d 23 29 09.528 −13 17 49.26 83 - 84 1×2700s, 2×2400s, 4×1800s 4 masks
RCS2 J2329−0120 23 29 47.782 −01 20 46.89 78 3×2400s 1 masks
RCS2 J2336−0608 23 36 20.838 −06 08 35.81 84 3×2400s, 2×1800s 2 masks

a Previously described in Wuyts et al. (2010) and Sharon et al. (2012).
b Also reported in Bayliss et al. (2011) and Oguri et al. (2012).
c Coordinates are BCG centroids (J2000).
d These clusters were observed in more than one period, but with different masks and fixing the slit
positions for the lensed galaxies.

seconds. The number of masks and total exposure time for each galaxy clusters are

reported in Tab. 4.1

4.2.4 Data reduction

The MXU masks were reduced using the standard ESO data reduction procedures and

our own IDL codes. The basic data reduction steps consisted on bias subtraction,

flat-fielding, wavelength calibration, and sky subtraction. These steps were carried out

by using the ESO Recipe Execution Tool (EsoRex3) and the Common Pipeline Library

(CPL4). The wavelength calibration was done by comparison to the standard He+Ne+Ar

3http://www.eso.org/sci/software/cpl/esorex.html
4http://www.eso.org/sci/software/cpl
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Figure 4.2: FORS2/VLT spectra for three lensed galaxies with high confidence
redshifts, labeled as class 3. The spectra are displayed in the observer/rest-frame in
the bottom/top axis, and smoothed to match the spectral resolution of the data. The
locations of spectral lines are identified by dashed red lines and labeled with their
corresponding ion. The telluric A Band absorption feature is indicated by a vertical
shaded region. From top to bottom the spectra in each panel correspond to the following
source/multiple-image objects in Tab. 4.2: a) RCS2 J0004−0103, image S1.1; b) RCS2

J0034+0225, image S1.1; c) RCS2 J0327+1326 image S1.2.

lamp observations. Since the sky subtraction was a complicated task because most of

the giant arcs are very long objects and they usually obstructed almost the entire slit,

and therefore the background subtraction was sometimes carried out independently. The

other advanced steps consisted on the removal of cosmic rays, the 1D spectra extraction
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and the average of multiple spectra for each source. These steps were done using our

own IDL codes5, inspired in the optimal extraction algorithm by Horne (1986).

4.3 Analysis and results

4.3.1 Redshift measurements

The spectroscopic redshifts were determined by two independent methods: 1) by cross-

correlating the spectra with galaxy spectral templates of the SDSS DR7 using the

RVSAO/XCSAO package for IRAF6 (Kurtz and Mink, 1998). This method yielded

accurate redshift measurements for high signal-to-noise spectra. However, half of the

lensed galaxies as well as the member galaxies of clusters at high redshift possess a medi-

um/low signal-to-noise, and thus, the redshift results of these cross-correlations have low

reliability. 2) In order to determine reliable spectroscopic redshift for all galaxies, we

assigned redshifts to individual spectra by identifying a set of lines at a common redshift,

fitting a gaussian profile to each line to determine the central wavelength for each line,

and taking the mean redshift of the entire set of lines. The redshift measurements for

cluster member galaxies are derived from at least three lines, which are the most com-

mon in older stellar populations (e.g., CaII H&K λ3934, 3969 Å, g-band λ4306Å, MgI

λ5169, 5174, 5185Å, and NaI λ5891, 5894, 5897 Å). Instead, the spectroscopic redshifts

of the lensed galaxies were determined by comparison with a varied set of emission and

absorption lines. Most of the observed emission lines corresponded to [OII] λ3727 Å,

H−β λ4862 Å, [OIII] λ4960, 5007Å and H−α λ6563 Å. These are typical emission lines

of actively forming stars regions. Due to our instrument setup this set of lines appeared

only in the lensed galaxies at z . 1.7. For the background sources at higher redshifts, we

had relied on rest-frame UV features to determine their redshifts. The more common

absorption lines corresponded to MgII λ2796, 2803 Å, λFeII 2344, 2372, 2384, 2586,

2600 Å, CIV λ1548, 1551 Å, SiII λ1260, 1527 Å, and SiIV λ1394, 1403 Å.

Redshift errors were mainly due to the combination of the uncertainty in our wavelength

calibrations and the statistical uncertainty in the identification of line centers. The me-

dian RMS in the wavelength calibration was ∼ 1.4 Å, which at a central wavelength

of ∼ 7000 Å, results in redshift errors of ∼ ±0.0002. The redshift errors for the high

signal-to-noise spectra were distributed around ∼ ±0.0005. This is in agreement with

5http://www.astro.puc.cl/ mcarrasc/RCS/spec/
6IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the

Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the
National Science Foundation.
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Figure 4.3: FORS2/VLT spectra for three lensed galaxies with medium confidence
redshift measurements, class 2 objects. The spectra are displayed in the same manner
as in Fig. 4.2. From top to bottom the spectra in each panel correspond to the
following source/multiple-image objects in Tab. 4.2: RCS2 J1250+0244, image S1.2;

RCS2 2329−0102, image S1.2; RCS2 J2329−1317, image S1.1.

the expected ones, since we have to add the uncertainties in the line center identifica-

tions. However, these errors increase for low signal-to-noise spectra, which showed errors

between ∼ ±0.001− 0.01.

Following the work done by Bayliss et al. (2011), we classified our redshift measurements

into four classes, which describe the confidence level of the redshift measurements. Class
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3 redshifts are the highest confidence measurements, typically measured from more than

4 absorption and/or emission features. These redshift measurements are definitive, with

essentially no chance of misinterpretation. Most of the redshifts reported here are of

this classification. In Fig. 4.2 we show examples of three class 3 spectra. Class 2 red-

shifts are medium confidence measurements. This classification is based on at least two

high-significance lines and/or a larger number of low-significance features. The redshifts

with this classification are very likely to be the real redshifts. Fig. 4.3 shows three

examples of these class 2 spectra. Class 1 redshifts are low-confidence measurements,

which correspond to those displaying few low-significance spectral features. The red-

shift measurements in these cases represent the “best-guess” redshift using the available

spectral data. Three examples of Class 1 spectra are shown in Fig. 4.4. Finally, we

have the class 0 redshift for those cases where the spectral analysis shows no evidence

of some spectral features.

Our FORS2/VLT spectroscopy have yielded & 1500 science spectra which have been

used to determine cluster members, cluster redshifts, and velocity dispersion of the

clusters, as well as to corroborate that the elongated galaxies and giant arcs correspond

to background objects. In fact, our spectroscopy have confirmed that 51 of these lensed

galaxies correspond to 34 background sources at high redshifts that are clearly distorted

by the gravitational potential of the cluster cores. In Tab. 4.2 we reported our redshift

measurements for the giant arcs and the lensed galaxies, which are labeled in Appendix

C as those lensed images used to constrain our the SL models (Chapter 5). All spectra

corresponding to the 34 background sources are showed in the Appendix B.

4.3.2 Cluster redshift and velocity dispersion

The correctly determination of cluster members is of great importance to avoid biases

in the velocity dispersion measurements (Beers et al., 1990). In this analysis, the cluster

member galaxies are determined by applying a cut in (rest-frame) velocity space of

4000km s−1, and then by applying the 3σ clipping method. This selection method is

iterated until the number of members is stable, which usually occurs after the second

iteration. As sanity check, we have also applied the shifting gapper method (Fadda

et al., 1996) to those clusters with a large number of galaxies falling into the ±4000km

s−1. In this double check we obtained the same number of cluster members, determining

the robustness of our method.

Our selection method have recovered ∼ 650 member galaxies. Furthermore, we have

also included redshift measurements from the Gemini spectroscopy data (Garćıa et al

2014 in preparation), of which 39 correspond to the cluster member galaxies of RCS2
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Table 4.2: Individual lensed galaxies

Cluster Lens Lensed galaxyd R.A.c Decc z Classification
(J2000) (J2000)

RCS2 J0004−0103 S1.1 00 04 51.59 -01 03 19.8 1.681 3
RCS2 J0034+0225 S1.1 00 34 27.35 +02 25 14.1 2.379 3
– S1.2 00 34 27.39 +02 25 22.1 2.379 3
RCS2 J0038+0215 S1.1 00 38 55.92 +02 15 48.9 2.817 3
– S1.3 00 38 55.90 +02 15 56.8 2.817 3
RCS2 J0047+0507 S1.3 00 47 51.12 +05 08 27.7 1.629 2
RCS2 J0052+0433 S1.2 00 52 07.73 +04 33 34.5 1.853 2
– S2.1 00 52 10.57 +04 33 25.3 1.732 2
– S2.2 00 52 10.94 +04 33 28.8 1.732 2
RCS2 J0057+0209 S1.1 00 57 27.98 +02 09 26.6 0.775 1
– S1.2 00 57 27.66 +02 09 27.5 0.775 1
RCS2 J0252−1459 S1.2 02 52 41.74 -14 59 33.2 1.096 3
RCS2 J0309−1437 S1.1 03 09 44.99 -14 37 16.1 1.519 3
– S2.1 03 09 45.33 -14 37 16.2 1.413 2
RCS2 J0327−1326a S1.1 03 27 26.63 -13 26 15.4 1.701 3
– S1.2 03 27 27.19 -13 26 54.3 1.701 3
– S2.4 03 27 28.36 -13 26 15.6 1.702 3
RCS2 J0859−0345e S1.3 08 59 14.30 -03 45 12.5 2.000 0
RCS2 J1055−0459 S1.1 10 55 36.28 -04 59 41.7 2.804 3
– S1.2 10 55 35.91 -04 59 38.4 2.804 3
RCS2 J1101−0602 S1.1 11 01 53.95 -06 02 31.3 1.931 1
RCS2 J1108−0456 S1.1 11 08 16.24 -04 56 23.3 1.475 1
– S4.1 11 08 17.31 -04 56 17.0 1.390 1
RCS2 J1111+1408 S1.1 11 11 24.26 +14 09 01.6 2.140 3
RCS2 J1119−0728 S1.1 11 19 12.26 -07 28 14.0 2.062 1
RCS2 J1125−0628 S1.1 11 25 29.21 -06 28 48.9 1.514 1
– S1.2 11 25 28.96 -06 28 49.8 1.514 1
RCS2 J1250+0244 S1.2 12 50 42.20 +02 44 31.2 2.309 2
RCS2 J1511+0630 S1.2 15 11 44.39 +06 30 31.2 1.295 1
RCS2 J1517+1003 S1.1 15 17 03.75 +10 03 32.9 2.239 3
– S1.2 15 17 03.95 +10 03 25.9 2.239 3
RCS2 J1519+0840 S1.1 15 19 30.04 +08 40 05.4 2.371 3
– S1.2 15 19 30.07 +08 39 53.2 2.371 3
RCS2 J1526+0432 S1.1 15 26 13.94 +04 33 02.0 1.443 3
– S2.1 15 26 15.73 +04 32 42.7 2.636 2
SDSS J2111−0114b S1.2 21 11 18.91 -01 14 31.9 2.856 3
– S1.3 21 11 20.22 -01 14 33.0 2.856 3
– S2.3 21 11 20.40 -01 14 30.8 2.856 3
RCS2 J2135−0102 S1.1 21 35 12.08 -01 03 36.7 2.319 3
– S1.2 21 35 11.46 -01 03 34.3 2.319 3
– S1.3 21 35 09.94 -01 03 18.0 2.319 3
– S2.1 21 35 10.17 -01 03 33.8 0.903 3
RCS2 J2147−0102 S1.2 21 47 37.12 -01 02 56.3 2.699 1
RCS2 J2151−0138 S1.1 21 51 26.87 -01 38 41.1 0.835 2
RCS2 J2313−0104 S1.2 23 13 54.54 -01 04 56.6 1.845 1
RCS2 J2329−1317 S1.1 23 29 10.33 -13 17 44.3 1.441 2
– S1.2 23 29 10.03 -13 17 41.7 1.441 2
RCS2 J2329−0120 S1.2 23 29 47.18 -01 20 45.4 1.790 2
– S2.1 23 29 47.87 -01 20 53.6 1.570 3
– S2.2 23 29 47.74 -01 20 53.6 1.570 3
RCS2 J2336−0608 S1.1 23 36 20.54 -06 08 38.4 1.295 1
– S1.2 23 36 20.38 -06 08 33.8 1.295 1

a Previously described in Wuyts et al. (2010) and Sharon et al. (2012).
b Also reported in Bayliss et al. (2011) and Oguri et al. (2012).
c Coordinates of the multiple images used in the SL models in the Chapter 5.
d Lensed galaxy labels matching those in Figs. C.1 − C.5 (Appendix C).
e The spectroscopic redshift measurement failed. Class 0.
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Figure 4.4: FORS2/VLT spectra for three lensed galaxies with low confidence red-
shift measurements, label as class 1. The spectra are displayed in the same manner as
in Fig. 4.2. From top to bottom the spectra in each panel correspond to the follow-
ing source/multiple-image objects in Tab. 4.2: RCS2 J1108−0456, image S4.1; RCS2

J1119−0728, image S1.1; RCS2 J1125−0628, image S1.1.

J0327−1326. Finally, from this exhaustive analysis we have recovered a total of 689

spectroscopically confirmed cluster members, which have been used to compute robust

measurements of the cluster redshift, zc, and the rest-frame velocity dispersion of the

clusters, σcluster, by applying the biweight estimator (Beers et al., 1990). The redshift

results for all cluster members are reported in the Appendix D in Tab. D.1 We sum-

marized the main results of our FORS2/VLT spectroscopy in the Tab. 4.3, while the
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Table 4.3: Summary of dynamical properties of RCSGA clusters

Name R.A.c Decc z Nd σcluster
e M200 r200

(J2000) (J2000) [km s−1] [h−11014M�] [h−1Mpc]

RCS2 J0004−0103 00 04 52.001 −01 03 16.58 0.5147 ± 0.0009 9 502 ± 144 0.77 ± 0.50 0.57 ± 0.16
RCS2 J0034+0225 00 34 28.134 +02 25 22.34 0.3845 ± 0.0007 26 713 ± 179 2.36 ± 1.53 0.88 ± 0.22
RCS2 J0038+0215 00 38 55.898 +02 15 52.35 0.6962 ± 0.0010 20 778 ± 105 2.54 ± 1.03 0.80 ± 0.11
RCS2 J0047+0507 00 47 50.787 +05 07 52.30 0.4279 ± 0.0012 13 878 ± 279 4.28 ± 2.78 1.05 ± 0.33
RCS2 J0052+0433 00 52 10.352 +04 33 33.31 0.7237 ± 0.0027 5 597 ± 404 1.14 ± 0.74 0.60 ± 0.40
RCS2 J0057+0209 00 57 27.869 +02 09 33.98 0.2931 ± 0.0009 19 939 ± 160 5.65 ± 2.87 1.22 ± 0.21
RCS2 J0252−1459 02 52 41.474 −14 59 30.38 0.2689 ± 0.0017 19 1610 ± 356 28.40 ± 18.50 2.10 ± 0.46
RCS2 J0309−1437 03 09 44.096 −14 37 34.38 0.8078 ± 0.0010 17 669 ± 123 1.52 ± 0.83 0.64 ± 0.12
RCS2 J0327−1326a 03 27 27.174 −13 26 22.90 0.5637 ± 0.0020 62 988 ± 122 12.25 ± 4.54 1.80 ± 0.22
RCS2 J0859−0345 08 59 14.486 −03 45 14.63 0.6486 ± 0.0029 8 912 ± 555 4.20 ± 2.73 0.96 ± 0.58
RCS2 J1055−0459 10 55 35.647 −04 59 41.60 0.6078 ± 0.0007 29 692 ± 84 1.89 ± 6.87 0.75 ± 0.09
RCS2 J1101−0602 11 01 54.093 −06 02 32.02 0.4864 ± 0.0013 8 573 ± 201 1.16 ± 0.76 0.67 ± 0.23
RCS2 J1108−0456 11 08 16.835 −04 56 37.62 0.4106 ± 0.0008 32 938 ± 154 5.26 ± 2.58 1.14 ± 0.19
RCS2 J1111+1408 11 11 24.483 +14 08 50.82 0.2207 ± 0.0008 20 907 ± 121 5.30 ± 2.11 1.22 ± 0.16
RCS2 J1119−0728 11 19 11.925 −07 28 17.51 1.0131 ± 0.0033 4 670 ± 338 1.35 ± 0.88 0.57 ± 0.29
RCS2 J1125−0628 11 25 28.940 −06 28 39.04 0.4745 ± 0.0009 13 596 ± 198 1.32 ± 0.86 0.70 ± 0.23
RCS2 J1250+0244 12 50 41.890 +02 44 26.57 0.6910 ± 0.0009 16 655 ± 115 1.53 ± 0.80 0.67 ± 0.12
RCS2 J1511+0630 15 11 44.681 +06 30 31.79 0.5516 ± 0.0009 15 444 ± 210 0.52 ± 0.34 0.50 ± 0.23
RCS2 J1517+1003 15 17 02.587 +10 03 29.27 0.6434 ± 0.0007 31 755 ± 117 2.41 ± 1.11 0.80 ± 0.12
RCS2 J1519+0840 15 19 31.213 +08 40 01.43 0.3177 ± 0.0009 36 1140 ± 117 9.92 ± 3.05 1.45 ± 0.15
RCS2 J1526+0432 15 26 14.914 +04 32 48.01 0.6344 ± 0.0007 30 735 ± 89 2.23 ± 0.81 0.78 ± 0.09
SDSS J2111−0114b 21 11 19.307 −01 14 23.95 0.6364 ± 0.0012 28 1072 ± 141 6.85 ± 2.69 1.13 ± 0.15
RCS2 J2135−0102 21 35 12.040 −01 02 58.27 0.3277 ± 0.0006 79 1192 ± 85 11.30 ± 2.41 1.51 ± 0.11
RCS2 J2147−0102 21 47 37.172 −01 02 51.93 0.8832 ± 0.0026 15 908 ± 547 3.61 ± 2.35 0.83 ± 0.50
RCS2 J2151−0138 21 51 25.950 −01 38 50.14 0.3147 ± 0.0008 35 1054 ± 125 7.86 ± 2.78 1.35 ± 0.16
RCS2 J2313−0104 23 13 54.514 −01 04 48.46 0.5279 ± 0.0010 12 625 ± 245 1.47 ± 0.96 0.71 ± 0.28
RCS2 J2329−1317 23 29 09.528 −13 17 49.26 0.3917 ± 0.0007 64 1097 ± 115 8.4 ±7 2.66 1.34 ± 0.14
RCS2 J2329−0120 23 29 47.782 −01 20 46.89 0.5274 ± 0.0010 6 358 ± 213 0.2 ±8 0.18 0.41 ± 0.24
RCS2 J2336−0608 23 36 20.838 −06 08 35.81 0.3927 ± 0.0008 36 1041 ± 113 7.2 ±4 2.36 1.27 ± 0.14

a Previously described in Wuyts et al. (2010) and Sharon et al. (2012).
b Also reported in Bayliss et al. (2011) and Oguri et al. (2012).
c Coordinates are BCG centroids (J2000). The SL models are centered at these coordinates.
d Number of spectroscopically confirmed members.
e The rest-frame velocity dispersion of the clusters.

velocity histograms for the full sample are plotted in the Figs. 4.7, 4.6, and 4.7.

4.4 Dynamical masses

The computing of dynamical mass from the velocity dispersion of the cluster members

requires a good understanding of the relationship between the velocity dispersion of

dark matter particles, σDM , in the cluster-size halos and the velocity dispersion of the

cluster members, σcluster . This relationship is known as the velocity bias factor and it

is given by bv = σcluster/σDM . Numerical N-body simulations have shown that this bias

factor is in the range of bv ∼ 1.0 − 1.3 (Diemand et al., 2004). Although, more recent

theoretical works have indicated that the way in which subhalos are tracked and defined

in simulations affects the resulting velocity bias predictions (Evrard et al., 2008; White

et al., 2010). These recent simulation results have shown no evidence for a velocity bias
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Figure 4.5: This figure shows the velocity histograms for 12 of our clusters. Each ve-
locity histogram is labeled at the top with the name of its cluster, its rest-frame velocity
dispersion, redshift, and the number of cluster members spectroscopically confirmed.
The best-fitting gaussian functions are overplotted for each cluster (dashed line) with

the mean and standard deviation values from the bi-weight estimator.

factor, i.e., bv ∼ 1.0. Thus, in this thesis we assume no velocity bias when dynamical

masses are computed.
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Figure 4.6: This figure shows the velocity histograms and gaussian function fits for
12 of our clusters in the same way as those presented in the previous figure.

Therefore, the dynamical masses of our clusters are then calculated by using the relation

between the DM velocity dispersion, σDM , and the total mass of the halo, M200, from

Evrard et al. (2008), which is given by7:

7This relation was already presented in §2.3.1.1
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Figure 4.7: This figure shows the velocity histograms and gaussian function fits for
5 of our clusters in the same way as those presented in the previous figure.

M200 =
1015

h(z)

(
σDM
σ15

)1/α

M� (4.1)

where σ15 is the normalization at mass 1015h−1M�, α is the logarithmic slope, h(z) =

H(z)/100 km s−1 Mpc−1 is the normalized Hubble parameter at redshift z for a flat

universe, and σDM is the one-dimension velocity dispersion of the DM particles within

r200. The best-fits yielded σ15 = 1082.9± 4.0 km s−1 and α = 0.3361± 0.0026.

The dynamical masses derived from Eq. 4.1 are also reported in the Tab. 4.3, as well

as their respective radius r200, which have been calculated using M200 and assuming

spherical clusters (i.e., M200 = 200ρc × 4πr3
200/3).

It should be noted that our dynamical mass estimates could be biased mainly by two

factors: 1) the modest number of spectroscopically confirmed cluster members to perform

the statistic, and 2) the selection function to “select” the sample. To investigate the

former, we review the work done by White et al. (2010). They studied the relationship

between σDM and σcluster for individual simulated halos as a function of the number of

available spectroscopic cluster members. Their theoretical results showed that cluster-

size halos with more than 50 spectroscopic members present an intrinsic scatter of ∼ 15%

between the DM particles velocity dispersions and the “observed” ones. They also found

that this scatter is a steep function of the number of observed members, reaching a
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scatter as high as 30% for halos with less than 10 observed members. However, our

sample has on average 24 members per cluster and there are only six systems with less

than 10 spectroscopically confirmed members. Therefore, we can conclude that our mass

measurements are not strongly biased by systematic errors associated with the modest

number of cluster member redshifts available. The second possible source of bias is

related to the selection function. The clusters in this sample were selected by SL, and it

has been shown that the SL population are on average more concentrated and massive

than the rest of the normal cluster population (Hennawi et al., 2007; Meneghetti et al.,

2010; Oguri and Blandford, 2009). The excess of concentration in this cluster population

is mainly due to triaxiality and projection effects. Numerical simulations have shown

that the cluster-size halos appear to be triaxial, and clusters that are efficient strong

lenses are more likely to have their major axes aligned along the line of sight with

respect to us. Therefore, we assume that our SL selected clusters have this orientation

bias. We are measuring the projected velocity dispersion of galaxies that should tend to

be preferentially aligned along the major axis of the cluster potential and consequently,

our velocity dispersion measurements could be overestimated with respect to velocity

dispersions measured for clusters that are randomly oriented on the sky. Bayliss et al.

(2011) found that in the worst case scenario (for a total alignment), the measured

velocity dispersions could be biased on average about ∼ 18% to higher values than in

normal cluster populations, which results in mass estimates that are biased high by

∼ 63% on average, when the Evrard et al. (2008) relation is used. However, this is the

most extreme case for orientation bias, corresponding to a sample of clusters that are

all aligned with their major axes pointing along the line of sight.

To figure out a possible overestimation in our mass measurements, we compare the

relation between dynamical masses derived from the observed velocity dispersions in

this work and their corresponding effective Einstein radii (for a source at zs = 2.0),

with the relation between WL masses derived by Oguri et al. (2012) and their effective

Einstein radii (also for a source at zs = 2.0). These relations are shown in the Fig.

5.1. This figure clearly indicates that the effective Einstein radii and dynamical masses

are well correlated with each other, showing that the more massive clusters derived

from dynamical analysis have larger effective Einstein radii on average. This figure also

shows that both samples present practically the same correlation between total mass

and Einstein radius. Since in Oguri et al. (2012) the mass measurements were derived

from a WL analysis, these estimates should not be affected by a bias in their velocity

dispersions. Therefore, due to this great similarity in both relations, we can conclude

that: 1) our dynamical mass measurements are not strongly biased to higher values

due to the orientation bias, or 2) both samples are being equally affected by this bias.
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Since the probability of the latter is small, we can conclude that our dynamical mass

measurements are not strongly affected by the orientation bias.

Once discarded these biases, or at least checked that our sample is not strongly affected

by them, we can use these mass estimates for deriving accurate mass distributions from

our cluster sample by combining them with spectroscopically confirmed lensed galaxies

presented in the cluster cores. This analysis will be presented in the next chapter.

4.5 Summary and conclusions

Here we presented the results of the FORS2/VLT spectroscopy of 29 SL selected galaxy

clusters. Our exhaustive analysis yielded a total of 689 cluster members, which were used

to measure velocity dispersions and dynamical masses for this cluster sample, covering

three orders of magnitude in mass, from 2.80 × 1013 ≤ M200/h
−1M� ≤ 2.84 × 1015,

with a median mass of M200 ∼ 3.6 × 1014h−1M�. This large mass range allows a

diverse kinds of studies, such as detailed analysis of the slope and normalization of the

c−M relation, and galaxy evolution. Our sample spans a spectroscopic redshift range

of 0.22 < z < 1.01, with a median redshift of z ∼ 0.5, allowing to explore a possible

redshift evolution in the c−M relation. The FORS2/VLT spectroscopy data have also

discovered/revealed 51 lensed galaxies, corresponding to 34 background sources at high

redshifts that are clearly distorted by the gravitational potential of the cluster cores,

and some of them are forming multiple-image systems.

All results presented in this chapter will be used to perform robust mass reconstructions

of these clusters by combining SL constraints and dynamical masses. These mass models

will be presented in the next chapter.



Chapter 5

The observed concentration-mass

relation for 73 galaxy clusters

This thesis aims to contribute with the understanding of the mass distribution in galaxy

clusters. In particular, it focuses in the relation between the concentration of the cluster

halos and their total masses. In order to derive the most complete analysis of the

concentration mass (c −M) relation, the results obtained in this thesis are combined

with two previously well studied samples of galaxy clusters.

We derive the concentration parameter by a meticulous strong lensing and dynamical

mass analysis. We reconstruct the inner mass distribution of our clusters using the

well tested parametric method LENSTOOL (Jullo et al., 2007). Furthermore, to fully

constrain the density profile and measure accurate and reliable concentration parameters

of our clusters, we explore an innovative technique which consists in the combination of

strong lensing signatures with velocity dispersions and dynamical masses, implemented

in LESNTOOL by Verdugo et al. (2011). As it will be described below, this approach

yields results equivalent to those obtained from the combination of strong and weak

lensing constrains, allowing us to probe mass distributions at larger radii in a way as

good as done by using weak lensing analysis. In practice, we use velocity dispersions,

dynamical masses, and virial radii as priors in our models to probe the outer regions

in the mass distributions and increasing the number of constraints in our optimization

process.

62
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5.1 The sample

In this work we use a new sample of 29 strong lensing (SL) selected galaxy clusters

from the RCSGA survey. This sample has been detailed in chapter 4. In brief, the

29 clusters span a spectroscopic redshift range of 0.22 < z < 1.01, with a median

redshift of z ∼ 0.5. The FORS2/VLT spectroscopic observations have yielded ∼ 650

cluster members. Then, we have also include GMOS/Gemini and GISMO/Magellan

spectroscopic data to our analysis. In total, we have recovered 689 member galaxies,

which are used to measure velocity dispersions and dynamical masses, covering three

orders of magnitude in mass, from 2.80 × 1013 ≤ M200/h
−1M� ≤ 2.84 × 1015, with a

median mass of M200 ∼ 3.6×1014h−1M�. Besides, we have confirmed 51 lensed galaxies

corresponding to 34 background sources at high redshifts that are clearly distorted by

the gravitational potential of the cluster cores. This sample and their main features are

summarized in Tabs. 4.2 and 4.3.

Furthermore, we have included in our c−M relation analysis the cluster sample studied

by Oguri et al. (2012) (hereafter O12) and by Merten et al. (2014) (hereafter M14). The

former is a subset of the SL selected clusters from the Sloan Giant Arcs Survey (SGAS;

Bayliss et al., 2011; Hennawi et al., 2008), while the second is a subset of the X-ray

selected clusters from the Cluster Lensing and Supernova survey with Hubble (CLASH;

Postman et al., 2012). We have also included the PLCK G004.5−19.5 cluster (Sifón

et al., 2014), in where we have derived the concentration parameter using the same

technique described in this thesis.

5.2 Strong lensing and dynamical mass analysis

We have used the parametric method described in Kneib (1993) and implemented in the

Markov Chain Monte Carlo (MCMC) code LENSTOOL (Jullo et al., 2007) to perform

the models of all clusters studied in this thesis.

The full details of this methodology were presented in chapter 3. All mass models for

the RCSGA sample derived by using this technique (in terms of their critical curves and

predicted images) together with their best-fitting mass model parameters are presented

in the Appendix C.
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Table 5.1: The effective Einstein radius

SL only SL and Dy. Mass
Name zdarc θE(zs = zarc) θE(zs = 2) θE(zs = zarc) θE(zs = 2)

[arcsec] [arcsec] [arcsec] [arcsec]

RCS2 J0004−0103 1.681± 0.001 3.8± 0.5 4.4± 0.5 3.7± 0.4 4.1± 0.5
RCS2 J0034+0225 2.374± 0.004 18.5± 3.8 16.5± 3.7 17.5± 3.8 15.5± 3.6
RCS2 J0038+0215 2.817± 0.001 7.0± 1.8 5.8± 1.2 7.4± 1.4 5.6± 1.6
RCS2 J0047+0507 1.629± 0.001 5.6± 1.2 6.4± 1.0 5.5± 1.3 6.4± 1.3
RCS2 J0052+0433 1.853± 0.001 16.9± 2.4 17.3± 2.4 15.9± 2.6 17.5± 2.6
RCS2 J0057+0209 0.775± 0.001 10.4± 1.5 19.8± 2.8 11.2± 1.7 20.4± 2.8
RCS2 J0252−1459g 1.096± 0.001 2.6± 0.3 4.3± 0.4 2.6± 0.4 4.2± 0.5
RCS2 J0309−1437 1.519± 0.001 14.2± 3.2 10.3± 2.3 14.2± 2.9 10.5± 1.8
RCS2 J0327−1326a 1.701± 0.001 20.6± 2.6 22.5± 2.8 20.8± 2.6 22.6± 2.8
RCS2 J0859−0345e 2.0± 1.0 5.1± 0.6 5.1± 0.6 5.2± 0.6 5.2± 0.6
RCS2 J1055−0459g 2.800± 0.003 7.9± 1.7 7.0± 2.8 7.1± 1.3 4.8± 1.6
RCS2 J1101−0602g 1.931± 0.001 2.6± 0.3 2.7± 0.3 2.6± 0.3 2.7± 0.3
RCS2 J1108−0456f 1.475± 1.0 12.4± 2.6 13.2± 2.2 10.3± 2.2 11.9± 1.9
RCS2 J1111+1408 2.140± 0.002 10.4± 1.9 10.2± 2.5 10.4± 1.8 9.8± 1.6
RCS2 J1119−0728f 2.062± 1.0 5.6± 1.0 5.5± 1.1 5.4± 1.2 5.3± 0.9
RCS2 J1125−0628f 1.514± 1.0 8.2± 1.6 9.7± 1.7 7.5± 1.5 8.8± 2.2
RCS2 J1250+0244 2.309± 0.001 3.7± 0.5 3.1± 0.4 3.8± 0.5 3.2± 0.5
RCS2 J1511+0630f 1.295± 1.0 3.5± 0.5 5.5± 0.6 3.5± 0.4 5.2± 0.6
RCS2 J1517+1003 2.239± 0.002 17.2± 2.4 16.8± 2.0 17.2± 2.7 16.5± 2.7
RCS2 J1519+0840 2.371± 0.003 10.1± 1.6 9.7± 1.1 10.8± 1.4 10.5± 1.4
RCS2 J1526+0432 1.443± 0.001 16.0± 2.6 21.5± 3.2 15.8± 2.6 20.5± 3.0
SDSS J2111−0114b 2.856± 0.003 13.8± 2.4 9.8± 2.0 12.8± 2.3 8.0± 1.8
RCS2 J2135−0102 2.319± 0.001 33.2± 4.3 32.0± 4.2 30.2± 4.0 29.0± 3.9
RCS2 J2147−0102f 2.699± 1.0 5.2± 1.3 3.5± 1.1 5.2± 1.4 3.5± 1.0
RCS2 J2151−0138 0.835± 0.001 22.2± 3.2 37.5± 4.8 22.2± 3.2 34.8± 4.5
RCS2 J2313−0104f 1.845± 1.0 7.0± 1.3 7.4± 1.5 7.2± 1.5 7.4± 1.6
RCS2 J2329−1317 1.441± 0.001 17.1± 3.4 19.2± 4.1 17.2± 3.5 19.5± 4.5
RCS2 J2329−0120e 2.0± 1.0 13.4± 2.0 13.4± 2.0 13.0± 2.1 13.0± 2.1
RCS2 J2336−0608f 1.295± 1.0 10.3± 1.7 12.2± 1.7 11.3± 1.7 12.6± 2.0
PLCK G004.5−19.5c 1.601± 0.001 24.5± 3.4 27.7± 4.2 24.2± 3.0 27.7± 3.3

aPreviously described in Wuyts et al. (2010) and Sharon et al. (2012).
bAlso reported in Bayliss et al. (2011) and O12.
cThis cluster belongs to the Planck Early SZ sample (Planck Collaboration et al., 2011). Previously
described in Sifón et al. (2014), where we used the same technique applied in this work.
dFor some systems we found more than one multiple-image system. In this case we show the redshift of
the main arc used in the models.
eThe redshift measurements failed.
fLow-confidence measurements of the redshift. It corresponds to the best-guess redshift using the
available spectral data.
gGalaxy-galaxy lens, it is not considered to construct the c−M relation.
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Figure 5.1: The correlation between the effective Einstein radius from SL-only anal-
ysis and M200 from the velocity dispersions derived from the cluster members. The red
triangles/crosses correspond to clusters where their velocity dispersions were computed
from more than 10 members, while the blue triangles/crosses correspond to systems
with a lower number of members. The three crosses correspond to potential galaxy-
galaxy lenses, which are left out of our analysis. The red circle corresponds to the
PLCK G004.5−19.5 cluster. The black squares represent the Einstein radii derived to
the SGAS sample in O12. The green line and shaded region correspond to the expected

Er −M200 correlation, assuming c200 ' 4.9 and its scatter, respectively.

5.3 Concentration – mass relation of the RCSGA sample

5.3.1 Correlation between the observables

In order to check if dynamical masses are good tracers of the total mass as weak lensing

masses are, we compare dynamical masses with Einstein radii, since both quantities

measure directly the cluster mass at different radius. We compute the effective Einstein

radius θE as the radius within which the averaged convergence κ̄(θE) is equal to 1

(Meneghetti et al., 2011; Zitrin et al., 2011a),

1− κ̄(θE) = 0. (5.1)
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To normalize the results in our sample and to compare with other cluster samples, we

compute convergence maps for all clusters for a source redshift at zs = 2.0. Then, the

effective Einstein radius is derived by applying Eq. 5.1. Dynamical masses are directly

computed from the cluster velocity dispersions by applying the relation between the

total mass of DM halos and their DM velocity dispersion (Chapters 3 and 4, Evrard

et al., 2008).

In Fig. 5.1 we visualize the correlation between the effective Einstein radius from SL-

only analysis and M200 from our dynamical study. The red triangles/crosses correspond

to clusters where their velocity dispersions were computed from more than 10 members,

while the blue triangles/crosses correspond to systems with a lower number of members.

The three crosses in the Er−M200 plane correspond to clusters where was found only one

multiple-image system per cluster, which seem to be more affected by the gravitational

potential of the BCG than by the whole potential of the cluster. Conservatively, we left

out these three clusters of our analysis (although they are always shown in the plots),

leaving us with 26 RCSGA SL selected clusters to carry out our studies. The red circle

corresponds to the PLCK G004.5−19.5 cluster, where its M200 was obtained from its

X-ray emission (Sifón et al., 2014) and its SL analysis was performed using the same

technique used in this work. Then, our final sample consists of 26 clusters from RCSGA

sample plus the PLCK G004.5−19.5 cluster. For simplicity, we refer to these 27 clusters

as the RCSGA sample.

Fig. 5.1 clearly indicates that the effective Einstein radii and dynamical masses are

well correlated with each other, showing that the more massive clusters derived from

dynamical analysis have larger effective Einstein radii on average. This figure also shows

the observed Er−Mweak correlation found by O12 to their cluster sample, as well as the

expected Er−Mweak correlation for simulated clusters assuming c200 ' 4.9 (typical value

for concentration when lensing selection is taken into account, O12) and its scatter. It

can be seen that both sample follow quiet well the expected correlation, although there

is a slight trend to larger Einstein radii, indicating that both samples are a bit more

concentrated than c200 ' 4.9.

Since both samples show practically the same correlation, one can confirm that dynam-

ical masses of SL selected clusters are good tracers of their total masses, allowing us to

probe mass distributions at large radii in a way as good as done by using weak lens-

ing masses. Tab. 5.1 lists the effective Einstein radii for all the clusters in our sample

derived from SL-only analysis and for SL and dynamical mass analysis, by computing

convergence maps for a source at zs = zarc, and for a source at zs = 2.0.
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Table 5.2: Concentration−mass parameters.

SL only SL and Dy. Mass
Name χ2/d.o.f. c200 M200 χ2/d.o.f. c200 M200

[1014h−1M�] [1014h−1M�]

RCS2 J0004−0103 1.17/3 4.7+9.9
−1.9 1.62+53

−1.62 1.17/4 7.1+7.0
−3.9 0.74+1.11

−0.73

RCS2 J0034+0225 1.36/1 5.2+4.9
−2.1 0.75+0.91

−0.47 1.98/2 5.2+2.9
−2.1 1.33+0.59

−0.94

RCS2 J0038+0215 1.35/1 4.5+6.5
−1.8 0.84+0.11

−0.79 1.99/2 5.9+3.5
−2.4 1.59+0.13

−1.42

RCS2 J0047+0507 1.24/1 7.4+3.0
−3.0 0.55+0.65

−0.39 2.38/2 4.9+4.6
−2.0 0.96+0.33

−0.80

RCS2 J0052+0433 2.57/2 17.7+7.1
−9.4 1.80+2.32

−0.63 2.32/3 19.4+7.8
−9.0 1.54+1.45

−0.34

RCS2 J0057+0209 6.89/3 4.3+4.1
−1.7 8.97+1.67

−7.56 6.93/4 5.1+2.0
−2.0 5.82+3.38

−3.27

RCS2 J0252−1459d 1.13/1 7.6+7.1
−3.7 0.39+1630

−0.13 2.98/2 3.5+8.1
−1.4 1.89+70.40

−1.66

RCS2 J0309−1437 3.96/1 4.8+4.9
−1.9 1.18+1.43

−0.69 3.96/2 4.8+4.9
−1.9 1.18+1.43

−0.69

RCS2 J0327−1326a 2.49/4 8.1+3.2
−5.7 2.31+0.99

−1.53 1.43/5 7.9+3.2
−5.2 5.50+3.55

−3.52

RCS2 J0859−0345 2.21/3 3.7+1.5
−1.5 3.34+2.42

−1.32 2.34/4 3.0+1.2
−1.2 4.89+0.28

−2.16

RCS2 J1055−0459d 6.32/2 6.3+2.5
−2.5 0.30+0.52

−0.13 10.14/3 6.5+3.3
−2.6 0.65+0.34

−0.41

RCS2 J1101−0602d 1.06/1 10.9+4.4
−7.4 0.26+6.11

−0.24 1.11/2 5.2+3.5
−2.1 1.06+0.18

−0.96

RCS2 J1108−0456 5.45/1 3.2+1.3
−1.3 4.15+0.79

−2.71 5.45/2 3.2+1.3
−1.3 4.15+0.79

−2.71

RCS2 J1111+1408 1.06/3 5.8+2.3
−2.6 2.87+5.96

−0.35 1.09/4 4.3+1.9
−1.7 5.33+2.95

−2.71

RCS2 J1119−0728 1.02/1 4.7+12.0
−1.9 0.28+2.38

−0.21 1.31/2 5.2+2.1
−2.1 0.91+1.41

−0.18

RCS2 J1125−0628 1.01/2 14.8+5.9
−9.6 0.58+1.34

−0.34 1.00/3 9.7+6.1
−4.6 1.31+0.66

−1.02

RCS2 J1250+0244 1.03/1 5.8+13.7
−2.3 0.61+575

−0.54 1.47/2 5.8+12.5
−2.3 0.89+2.00

−0.82

RCS2 J1511+0630 1.01/1 5.1+12.3
−2.0 0.95+0.69

−0.81 1.03/2 7.1+9.3
−2.8 0.53+0.31

−0.36

RCS2 J1517+1003 1.03/1 18.9+7.6
−13.8 2.15+2.98

−0.48 1.06/2 13.6+5.4
−6.4 2.43+1.35

−0.68

RCS2 J1519+0840 1.22/1 3.9+1.6
−1.6 4.57+1.15

−4.29 2.50/2 3.0+1.6
−1.2 6.16+0.24

−5.30

RCS2 J1526+0432 2.52/2 4.3+2.3
−1.7 2.21+3.55

−0.64 2.64/3 5.4+2.2
−2.2 2.26+1.72

−0.43

SDSS J2111−0114b 2.66/1 4.7+1.9
−2.1 4.99+2.45

−2.04 2.89/2 3.2+1.7
−1.3 6.97+0.54

−3.94

RCS2 J2135−0102 3.03/1 7.9+3.2
−4.0 8.78+2.76

−4.70 4.25/2 6.8+2.7
−3.1 8.75+3.82

−3.65

RCS2 J2147−0102 1.02/1 20.5+8.2
−10.3 0.14+1170

−0.07 2.81/2 11.2+12.8
−4.5 0.32+0.31

−0.26

RCS2 J2151−0138 1.03/1 4.6+6.0
−1.8 0.70+0.49

−8.74 1.05/2 6.3+3.7
−2.5 7.54+2.62

−5.10

RCS2 J2313−0104 1.25/1 4.9+6.2
−2.0 0.90+1.22

−0.85 1.40/2 5.2+4.6
−2.1 1.24+0.37

−1.08

RCS2 J2329−1317 2.29/1 3.3+4.3
−1.3 2.04+2.59

−1.40 4.44/2 3.5+2.9
−1.4 4.50+1.14

−3.58

RCS2 J2329−0120 4.07/2 10.6+8.5
−4.2 0.78+0.50

−0.54 4.81/3 10.0+7.5
−4.0 0.43+0.39

−0.24

RCS2 J2336−0608 3.41/1 3.0+5.0
−1.2 7.23+1.65

−4.99 3.37/2 3.2+2.1
−1.3 7.09+0.83

−3.52

PLCK G004.5−19.5c 1.08/1 5.2+12.4
−2.3 7.68+3.09

−7.00 1.09/2 4.3+5.4
−1.1 9.81+1.69

−6.46

Note – Summary of the SL only models and SL and dynamical mass analysis models. Errors

indicate 1σ errors on each parameter.

aPreviously described in Wuyts et al. (2010) and Sharon et al. (2012).
bAlso reported in Bayliss et al. (2011) and O12.
cThis cluster belongs to the Planck Early SZ sample (Planck Collaboration et al., 2011). Previously
described in Sifón et al. (2014), where we used the same technique applied in this work.
dGalaxy-galaxy lens, it is not considered to construct the c−M relation.



Chapter 5. The observed c−M relation for 73 galaxy clusters 68

5.3.2 The c – M relation for 27 clusters from the RCSGA sample

In Fig. 5.2 we present the c−M relation for the 27 systems previously described. The

concentration parameters were obtained from our SL and dynamical mass analysis, which

are listed in Tab. 5.2. The figure shows a evident correlation between the measured

concentrations and dynamical masses, with more massive clusters having on average

smaller concentrations than less massive clusters, which is consistent with the theoretical

expectation, although the dependence on the cluster mass is much stronger. As it has

been showed by previous theoretical and observational works, the c−M relation can be

fitted very well by a power law. Therefore, we fit our data to a power law with both the

normalization, cn, and mass slope, α, as free parameters,

c200(M200) = cn ×
(

M200

Mpiv h−1M�

)α
, (5.2)

where Mpiv corresponds to the median value of M200 for our cluster sample. At this

stage, we ignore the redshift dependence of the c −M relation, given that theoretical
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Figure 5.2: This figure shows the observed c −M relation for 27 RCSGA clusters.
The colors and symbols correspond to the same described in Fig. 5.1. The red line
and shaded region correspond to the best-fit, which is described by a α = −0.32±0.11.
The figure also shows the expected c −M relations of B13 and D08, blue and brown

dashed lines, respectively
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predictions show a little evolution of the concentration of massive halos with its redshift

(e.g. Meneghetti et al., 2014, hereafter M14Sim), but we will return to this possible

redshift evolution in the next sections. We perform a Levenberg-Marquardt least-squares

minimization for fitting:

χ2 =
∑ (c200,obs − c200,fit)

2

σ2
c200

, (5.3)

where σ2
c200 is the 1σ error on c200. We find that the best-fit for the observed c −M

relation for our 27 RCSGA clusters, including 1σ errors on both the cn and α, is given

by:

c200 = (5.80± 1.08)×
(

M200

3.61× 1014 h−1M�

)−0.32±0.11

, (5.4)

which is also showed in Fig. 5.2. The best-fitting parameters are reported in Tab. 5.3.

Since theoretical works have shown that velocity dispersions derived from less than 10

members are not likely representative of the cluster velocity dispersion (Evrard et al.,

2008; White et al., 2010), we check how much affect to the observed c −M relation

clusters with less than 10 members (blue triangles). We probe this by computing a new

best-fit excluding five systems from our sample that have less than 10 members. The cn

and α parameters for this new best-fit and their respective 1σ errors are listed in Tab.

5.3. We find a difference on the normalization and the slope are lower than ∼ 4% and

∼ 10%, respectively. Therefore, since the inclusion/exclusion of these five clusters with

few members do not affect significantly the best-fit of the c −M relation, they will be

always included in the next studies.

5.3.2.1 Comparison with N-body simulations

For the theoretical prediction, we adopt results of the N-body simulations of Duffy

et al. (2008) (hereafter D08) and Bhattacharya et al. (2013) (hereafter B13). Since both

simulations are qualitatively similar and their expected c −M relations are very well

fitted by a power law (at z = 0), these can be used to analyze our results.

D08 found that their results for the full sample at z = 0 are well described by a power

law, with (cn, α, Mpiv) = (3.93,−0.097, 1 × 1014h−1M�). While B13 found that the

normalization for their expected c−M relation of the full sample at z = 0, is about 15%

higher compared to the results found by D08. But given the statistical limitations and
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the different cosmological background model used in D08, we focus our comparison to

the simulation results of B13.

The Fig. 5.2 also shows the expected c − M relations of B13 and D08. One can

see from this figure that our results are in reasonable agreement with the simulation

results for massive clusters of M200 ∼ 8 × 1014h−1M�. In contrast, our results also

show that less massive clusters of M200 ∼ 1× 1014h−1M� are much more concentrated

than theoretical expectations, indicating that our observed c −M relation has a much

stronger dependence on the cluster mass than theoretical works. To put these results in

more quantitative footing, we calculate the ratio cobs(Mi)/csim(Mi) for M1=8×1014h−1M�

and M2=1×1014h−1M�, which will serve as prototypes for the next sections. These

comparisons are reported in Tab. 5.3. We found that for massive clusters, the measured

concentrations are on average about 11% (39%) higher than the simulation results of

B13 (D08). In contrast, the concentration of less massive clusters are distributed around

c200 ' 8.7, which is almost twice that the expected concentration values for this mass

range. This increase in the concentrations, is reflected in the slope of the observed

relation, which is four times its expected value. These results are in concordance with

previous observational works (Ettori et al., 2010; Okabe et al., 2010a, O12), however,

the lensing bias and projection effects should be taken into account before arriving to

any conclusion.

5.3.2.2 Comparison with N-body simulations considering SL bias and pro-

jection effects

As mentioned, the RCSGA clusters were selected by strong lensing, and it has been

shown that this family of clusters represents a strongly biased population such that

their measured concentrations are on average much larger than in the normal population,

mostly due to the halo triaxiality (Hennawi et al., 2007; Meneghetti et al., 2010; Oguri

and Blandford, 2009). Furthermore, since lensing observables can only measure the

projected mass distribution of the clusters, substructures and elongation along the line-

of-sight may introduce a bias in the 3D mass distribution recovered from the projected

mass (Meneghetti et al., 2003).

In order to take into account the selection bias and the projection effects, we compare

our observed c − M relation with the simulation results of O12 and M14Sim, which

study in detail these biases. They studied ∼ 1000 cluster-size halos at high spatial

and mass resolution, and each of them was projected along many line-of-sight. Then,

they performed several semi-analytic calculations with ray-tracing of extended sources

to estimate the effect of the lensing bias (see the references for more details).
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In Fig. 5.3, we visualize the expected c −M relations at z = 0.45 found by O12 and

by M14Sim, which are characterized by the same dependence on the cluster mass of

α ∼ −0.2, which is stronger than the mass slope when the lensing bias is not considered.

Although the normalization of these expected relations are a little different, we consider

that both are in concordance with each other, and therefore, both will be used in our

comparisons that are reported in Tab 5.3. This figure clearly shows a better agreement

between our measured concentrations and those derived from simulations. In fact, for

massive clusters, the difference between our data and theoretical expectations is reduced

to a level of 1%, when the comparison is performed with the results of O12. Despite the

reconciliation between the median value of the concentration at the high mass range,

there is still a large discrepancy when the slopes are compared, with a difference of

∼ 60%. These results reflect a large excess of concentration of lower mass cluster, excess

that simulations are still not able to describe, even if the lensing bias and projection

effects are considered.
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Figure 5.3: In this figure we visualize our measured concentrations as well as the
expected c −M relations at z = 0.45 found by O12 and by M14Sim, which are rep-
resented by the black and green dashed lines, respectively. Both expected trends are
characterized by the same mass slope of α ∼ −0.2. This figure clearly shows a better
agreement between our measured concentrations and those derived from simulations.
Although there is still a large discrepancy when the slopes are compared, with a dif-
ference of ∼ 60%. Clusters inside the open circles are describing a higher and steeper

c−M relation.
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The most likely explanation for this excess of concentration for less massive clusters is

associated to the baryon cooling effect. The adiabatic contraction of dark matter dis-

tribution at the formation time of the central galaxy, enhances the core density of the

clusters, resulting in an increase of their concentrations. Cluster halos of lower mass are

more affected for this effect because their fraction of the central galaxy mass to the total

mass is larger, resulting in a faster and stronger increase of the core density. In fact,

simulations with radiative cooling and star formation show that baryon cooling signifi-

cantly increases the concentration parameter, particularly for low-mass halos (e.g. Mead

et al., 2010; Rudd and Nagai, 2009; Zentner et al., 2008), although the effect is strongly

dependent on the feedback (Duffy et al., 2010; McCarthy et al., 2010). Therefore, baryon

physics could be a good candidate to explain the observed strong dependence on the

cluster mass in the c−M relation, although more work needs to be made in this area.

A concern we should discuss is the possibility of false identification of multiple-image

systems throughout our modeling methodology, because many of the images used in our

analysis have no spectroscopic information, which would introduce systematic errors in

our final results. Although, the models were constructed mainly based in the giant arcs,

and since most of them were spectroscopically confirmed, one can trust the following

steps of modeling as well as the final results.

5.3.2.3 Bimodality in the observed c – M relation

By a visual inspection of the Fig. 5.3, one can see that there is a possible bimodality

in the c −M plane. There are six clusters (open circles) that clearly describe a c −M
relation with a higher normalization and with a dependence on the cluster mass a bit

stronger than the rest of the measured concentrations. Indeed, the best-fit for our

RCSGA sample, excluding these six clusters, is in total agreement with the simulation

results in both the normalization and the mass slope, with differences in the slopes

smaller than 10%, reconciling simulations and real data.

There are few explanations for this bimodality in the c−M relation. Perhaps the most

likely are two: 1) this bimodality is caused by an incompleteness in our sample, and

therefore, we need to complement our data with another cluster samples before arriving

to any conclusion; 2) these six systems belong to a special subset of SL clusters, hence,

they have to be studied independently. Although, there is not a clear evidence neither

in our imaging data nor in our spectroscopy for selecting these systems as special SL

clusters. Therefore, we can not exclude them from our analysis at this stage. To figure

out this, we need deeper and high-quality imaging data as well as more spectroscopic

information of the multiple images used to constrain the models.
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Table 5.3: The best-fitting model parameters for the c−M relations.

(cobs/csim)M=8×1014M� / (cobs/csim)M=1×1014M�

Sample cn α Mpiv B13 D08 O12SL M14simSL M14simXray
[1014h−1M�]

RCSGAa 5.80±1.08 -0.32±0.11 3.61 1.12 / 1.84 1.40 / 2.23 0.99 / 1.28 1.19 / 1.48 1.15 / 1.61
RCSGA (N > 10)b 5.58±1.14 -0.29±0.18 3.73 1.10 / 1.71 1.38 / 2.07 0.98 / 1.18 1.18 / 1.38 1.14 / 1.49
RCSGA (low cn)c 5.07±0.76 -0.29±0.13 2.54 0.90 / 1.40 1.13 / 1.69 0.80 / 0.97 0.96 / 1.13 0.93 / 1.22
SGASd 6.07±0.77 -0.68±0.14 4.12 0.96 / 3.35 1.20 / 4.05 0.85 / 2.32 1.02 / 2.70 0.99 / 2.93
CLASHe 3.57±0.24 -0.21±0.22 8.00 0.89 / 1.16 1.11 / 1.41 0.79 / 0.81 0.94 / 0.94 0.92 / 1.02
Allf 4.75±0.84 -0.52±0.09 5.26 0.95 / 2.37 1.19 / 2.87 0.84 / 1.64 1.01 / 1.91 0.98 / 2.07
All (high cn)g 8.90±1.12 -0.69±0.09 3.63 1.28 / 4.56 1.61 / 5.51 1.14 / 3.16 1.37 / 3.67 1.32 / 3.99
All (low cn)h 4.20±0.92 -0.24±0.11 6.10 0.98 / 1.36 1.23 / 1.65 0.87 / 0.95 1.04 / 1.10 1.01 / 1.19

aThe full RCSGA sample, composed by 26 RCSGA SL selected clusters plus PLCK G004.5−19.5
bThe RCSGA sample excluding systems with less than 10 members to compute the velocity dispersion.
cThe RCSGA sample excluding six clusters that are describing a higher and steeper c−M relation.
dThe SGAS sample, composed by 27 SL selected clusters.
eThe CLASH sample, compound by 19 X-ray selected clusters.
fCombined dataset of 73 concentration parameters.
gDataset composed by ∼ 23 system, that describe a higher and steeper c−M relation.
hDataset composed by ∼ 50 galaxy clusters, describing a c−M relation that is fully consistent with
theoretical expectations.

5.4 The largest robust observed c – M relation

In this section, we combine our results with previous datasets of concentration parame-

ters obtained by O12 from their SGAS SL selected clusters, and with the recent results of

M14 for a subset of CLASH X-ray selected clusters, providing the largest robust dataset

of concentration parameter for a controlled sample of 73 galaxy clusters, resulting in the

most complete analysis for the observed c−M relation hitherto.

5.4.1 Modeling techniques and selection bias

Before to combine these three datasets of concentration parameters, we check possi-

ble bias due to the different modeling techniques used and we also study whether the

selection function plays a decisive role in the final c−M relation.

5.4.1.1 Different modeling techniques

O12 performed their SL models using the parametric software GLAFIC (Oguri, 2010),

assuming a NFW profile for the main DM halo and a pseudo-Jaffe model for the member

galaxies. From the derived best-fitting mass model, they computed the effective Einstein

radius (by Eq. 5.1), which is then combined with constraints from tangential shear

profiles to obtain the final best-fitting model parameters. While M14 used the non-

parametric software SaWLens (Merten et al., 2009), which combines strong and weak

lensing data, making no a priori assumption about the underlying mass distribution
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Figure 5.4: The ratio between the concentration parameters derived using the tech-
nique described in this work and the concentrations derived by M14 and O12. The
LENSTOOL model results for Abell 2261 and MACSJ1206−08 were previously pre-

sented in Umetsu et al. (2012) and Coe et al. (2013), respectively.

Table 5.4: Summary of the LENSTOOL models for CLASH and SGAS clusters.

Name χ2/d.o.f. c200 M200

[1014h−1M�]

MACSJ1206−08a 35/42 6.1± 0.9 9.22± 3.82
MACSJ1115+0129 1.88/1 4.0± 1.4 10.54± 2.81
Abell 2261b 3.85/5 5.6± 1.9 12.67± 1.93
Abell 383 2.41/2 4.9± 1.3 8.62± 2.90
MACSJ0329−02 3.89/3 4.2± 1.1 7.48± 2.56
MACSJ1720+3536 2.91/1 3.4± 1.0 1.94± 0.69
SDSS 2111−1114c 2.66/1 3.2± 1.5 6.97± 2.24

aPreviously described in Coe et al. (2013).
bPreviously described in Umetsu et al. (2012).
cThis cluster is also included as part of the RCSGA sample. Tab. 5.2

and performing a reconstruction of the lensing potential on an adaptively refined grid.

Then, convergence maps are derived from the lensing potential, which are used to fit

the NFW profile and to obtain the concentration parameters.

The three used approaches are quite different, making it difficult to see whether there

is some bias due to the modeling technique. A possible way to check if there is any dis-

crepancy between these techniques is to perform LENSTOOL models for some clusters

used in both researches. Therefore, we perform models for 6 of the 19 CLASH clusters

studied in M14 and 1 of 28 SGAS clusters analyzed by O12. Fig. 5.4 shows the ra-

tio between the concentration parameters derived using the technique described in this

thesis, cL200, and the concentrations derived by M14 and O12, co200. From the figure one

can see that our results are moderately consistent with the results derived by SaWLens

and GLAFIC. Although, the models for the clusters Abell 2261, MACSJ1206−08, and

MACSJ1115+0129, yielded different results to those presented in M14. However, the
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LENSTOOL model results for Abell 2261 and MACSJ1206−08 were previously pre-

sented in Umetsu et al. (2012) and Coe et al. (2013), respectively. In both works, these

results were compared with concentrations derived from other models, which were al-

ways consistent with each other within the statistical errors. Therefore, due to the

reasonable agreement between the model results, we can assume that the bias related to

the different modeling techniques is negligible, even though we have compared a small

fraction of the total sample. The main best-fitting LENSTOOL model parameters for

these 7 clusters are tabulated in Tab. 5.4. The LENSTOOL models for the CLASH

clusters are described in the next chapter.
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Figure 5.5: This figure shows the measured concentrations by M14 (purple diamonds)
and by O12 (black squares), as well as our results for the RCSGA sample (same colors
and symbols as before). The blue (black, green) dashed line correspond to the expected
c−M relation derived from simulation results of B13 (O12, M14Sim). While the orange
dashed line correspond to the expected relation derived from M14Sim, for X-ray selected

clusters.

5.4.1.2 Selection bias

As mentioned, the RCSGA and SGAS samples selected their clusters by strong lensing,

therefore, we expect that both samples are biased at the same order. Otherwise, the

CLASH clusters were selected by their X-ray emission, avoiding this bias. Although,

they could still be affected by projection effects.
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In order to check whether the selection method does not bias the observed c−M relation,

we perform a comparison between these three samples in the concentration − high mass

plane, since the mass range covered by the CLASH clusters spans only for high masses.

Fig 5.5 shows the measured concentrations by M14 and O12, as well as our results

for the RCSGA sample. This figure also shows the expected relations derived from

simulation results of B13, O12, M14Sim. We have also included a new expected relation

derived from M14Sim, for X-ray selected clusters, to perform a better comparison with

the CLASH clusters.

From the figure, one can see that the concentrations derived from all the observational

works do not have a different behavior. Indeed, they are well distributed in the plane,

describing a wide c −M relation with a slight trend to lower values of concentration

parameter to higher masses. Although, when the central value of the concentration

parameters (in the mass range of 4 < M200/1014h−1M� < 16) of each sample is compared,

one begin to see small differences in the distributions, with the CLASH clusters being

less concentrated on average, with c̄200 ' 3.7. On the other hand, the SGAS clusters

are the most concentrated, with a central value of c̄200 ' 4.8, while the concentrations

of the RCSGA clusters are distributed around of c̄200 ' 4.3, just in the middle of the

previous ones. The Fig. 5.5 also indicates that all the expected c −M relations from

theoretical works, satisfy or are in reasonable agreement with the observational data,

even those that do not include the selection bias in these calculations (B13).

Due to the distribution of the concentration parameters in the mass range analyzed and

also because the differences on the median values of the concentrations are inside the

intrinsic scatter of the c−M relation, we can conclude that the selection method does

not play a crucial role in determining the central value of the concentration parameter

of the massive clusters. We can also conclude that, given the qualitative agreement

between all the expected relations and the data, one can not perform a conclusive study

of the slope of the c-M relation in a narrow mass range as showed in the figure, making

necessary a study in a wider mass range. Therefore, the combination of these three

samples is not only reasonable, but it is even required.

5.4.2 The c – M relation for 73 galaxy clusters

After having determined that the selection methods and different modeling techniques

do not bias our results, we give rise to the construction of largest observed c−M relation,

composed by 27 RCSGA clusters from this thesis, 27 SGAS clusters from O12 and 19

CLASH clusters from M14. Resulting in the largest robust dataset of 73 concentration

parameters, distributed in a wide mass range from 0.28 < M200/1014h−1M� < 15.60,
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with a median mass at M200 = 5.26 × 1014h−1M�, allowing a detailed study of the

dependence on the cluster mass in the c −M relation. Furthermore, since its cluster

redshift range spans from 0.22 < z < 1.01, it is also possible to explore the potential

redshift evolution in the c−M plane.
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Figure 5.6: This figure shows the largest robust dataset of the 73 concentration
parameters in the c − M plane by combining 27 RCSGA clusters analyzed in this
thesis corresponding to the red/blue symbols, with 27 SGAS clusters from O12 which
are represented by black squares, and with 19 CLASH clusters showed by the purple
diamonds. The best-fit results a steep c −M relation of α ∼ −0.52, mainly due to
the SGAS sample, in where the clusters present in general more concentrated mass
distributions. The best-fit is and its 1σ errors are showed by the red solid line and the
shaded region, respectively. The black (green, orange, blue) dashed line corresponds to
the expected c−M relation derived from the simulation results by O12 for SL selected
clusters at z = 0.45 (M14Sim for SL selected clusters at z = 0.45, M14Sim for X-ray

selected clusters at z = 0.45, B13 for all cluster population at z = 0).

In Fig. 5.6 we visualize the 73 concentration parameters in the c−M plane. The colors

and symbols are the same previously described and the red solid line corresponds to

the best-fit for all data. From the figure, we already confirmed that there is a strong

correlation between the cluster mass and its concentration, which is consistent with

theoretical expectations for massive clusters, whose average concordance is about ∼ 6%.

This agreement decreases rapidly when the less massive clusters are analyzed, whose

concentrations are distributed around a central value of c̄200 ' 11, which is almost
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double of the mean expected value at M200 ∼ 1014h−1M�. These results confirm our

previous conclusions about the excess of the concentration for less massive clusters, which

is not yet reproduced by the simulations, even if the lensing bias and projection effects

are taken into account. This pronounced dependence on the cluster mass yields a steep

mass slope of α = −0.52± 0.09, which is stronger than that found in the RCSGA c−M
relation, mainly due to the inclusion of the SGAS clusters, which are on average more

concentrated than the rest of the sample for masses lower than M200 ∼ 7× 1014h−1M�.

Although in the previous section we concluded that the samples look similar at the

high mass range, the picture is different when the full mass range is analyzed. Some

differences appear between these samples, specifically in their mass slopes. For masses

lower than M200 ∼ 7 × 1014h−1M�, most of the SGAS clusters start increasing their

concentration parameter to higher values than those found in the RCSGA and CLASH

clusters, resulting in a mass slope of α = −0.68 ± 0.14, which is more than twice that

found for our RCSGA sample alone, and much steeper than the expected slope in simu-

lations. These clusters with higher concentrations are indeed describing the same trend

previously found for six of our clusters, as it can be seen in Fig. 5.6. Thereby, the

combined analysis highlights the possible bimodality in the c − M relation, which is

analyzed next.

5.4.3 The distribution of concentrations and bimodality

In order to study a possible bimodality in the observed c − M relation, and also to

understand and quantify the concentration scatter, we perform a series of distributions

of the measured concentration parameters.

Numerical simulations have shown that the scatter in the concentration, about the

concentration median, is well described by a log-normal for relaxed halos (e.g. Jing,

2000, D08), with a slight decrease in the scatter as a function of mass (Neto et al.,

2007). These works also showed that the inclusion of unrelaxed halos adds a tail towards

low concentrations. Fig. 5.7 shows the concentration distribution for the 73 clusters,

which is well fitted by a log-normal function with σ(log10c200) = 0.14, which is in a very

good quantitative agreement with the previously described theoretical works. Although,

the tail is not added to the low concentrations in our distribution, on the contrary, it is

added to high values of the concentration parameters, which represent the inclusion of

clusters of lower masses.

Theoretical works have also shown that the concentration distribution is also very

well described by a Gaussian function, at a given mass bin, with an intrinsic scat-

ter of σ/c200 ' 0.33, which remains over a wide mass and redshift range (e.g. Reed
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Figure 5.7: This figure shows the concentration distribution for the 73 clusters, which
is well fitted by a log-normal function with σ(log10c200) = 0.14, which is in a very good
quantitative agreement with the previously described theoretical works. Although, the
tail is added to high values of the concentration parameters, associated to clusters of

lower masses.

et al., 2011, B13). Therefore, we study the possible bimodality in the observed c −M
relation by analyzing the scatter in the concentration distributions, by fitting Gaus-

sian functions. We perform concentration distributions for four mass bins centered at

(9.00, 5.07, 2.04, 0.69) × 1014h−1M�, which are showed in Fig. 5.8. The concentration

distribution centered at the higher mass bin is very well described by a gaussian func-

tion, centered at c200 = 4.01 with a scatter of σ/c200 = 0.31, which are consistent with

those found by B13. As noted earlier, in the high mass range, the concentrations of all

clusters have relatively the same behavior, therefore, we should expect a very well de-

scribed Gaussian distribution, centered at the mean/median value of the concentration

parameters of these clusters, with a standard desviation similar to the intrinsic scatter

of expected c −M relations. For the next mass bin, the concentration distribution is

also described by a Gaussian function, but wider and centered at c200 = 5.02. As we

expected, the center of the gaussian fit augmented to a higher value of the concentration

parameter, but while the scatter should keep its value of σ/c200 ' 0.33, it increases

considerably towards σ/c200 = 0.47. In the next two mass bins, due to the lack of data,

we could not fit the Gaussian function to the distributions, but by analyzing the stan-

dard desviation of these distributions and also by visual inspection, one can see that

the distributions are much wider than those for the previous mass bins. Moreover, this

increase in both the standard desviation and width correlates with the central mass of

the mass bins. This behavior could be interpreted as two distributions whose separation

between their peaks increases by decreasing the central mass.
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Figure 5.8: The concentration distributions for four mass bins centered at (9.00, 5.07,
2.04, 0.69) ×1014h−1M�, from the top – left to the bottom – right panel. The top panels
are well described by a gaussian function, centered at c200 = 4.01 and c200 = 5.02, with
a scatter of σ/c200 = 0.31 and σ/c200 = 0.47, for the left and right panels, respectively.
The green dotted-dashed lines correspond to the best-fit of the distributions. The
bottom panel show the concentration distributions for the lower mass bins, which due
to the lack of data we could not fit a Gaussian function to the distributions. The
standard deviations of the bottom left and right distribution are σ/c200 = 0.73 and
σ/c200 = 0.94, respectively. The constant growth of both the scatter and width of
the concentration distributions can be interpreted as a bimodal distribution, where the
separation between their peaks is inversely correlated with the central mass of the mass

bin, which supports the existence of a bimodality in the observed c−M relation.

Thus, even though one can not see a double peak on the distributions, the constant

growth in both the scatter and width, can be interpreted as a bimodal distribution,

where the separation between their peaks is inversely correlated with the central mass

of the mass bin. Although it could be also associated to the lack of data to perform the

statistic. However, the scatter/width of the mass bin centered at M200 ' 5×1014h−1M�

turned out to be almost 50% larger than the scatter/width of the mass bin centered at

a higher mass, with both mass bins containing practically the same number of clusters
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Figure 5.9: This figure shows the bimodality in the c − M plane. One of these
relations is composed by the full CLASH sample, ∼ 20 − 21 RCSGA clusters, and
∼ 11−15 clusters from SGAS. The best-fit for this subset of concentration is described
by the red dotted-dashed line, which shows a weaker dependence on the cluster mass
given by α = −0.24 ± 0.11, resulting in an excellent agreement with theoretical works
that have included the selection bias and projection effects, reconciling simulations with
observations. The rest of the RCSGA and SGAS clusters describe a higher and steeper
c −M relation (red dotted line), with α ' −0.69, which is far from the theoretical

expectations.

to perform the statistic.

Therefore, due to the qualitative analysis to the concentration distributions and also

by visual inspection of the observed c − M relation presented in Fig. 5.6, one can

confirm the existence of a bimodality in the observed c − M relation. One of these

relations is composed by the full CLASH sample, ∼ 20 − 21 RCSGA clusters, and

∼ 11−15 clusters from SGAS, and shows a lower dependence on the cluster mass, given

by α = −0.24±0.11, resulting in an excellent agreement with theoretical works that have

included the selection bias and projection effects. The rest of the RCSGA and SGAS

clusters describe a higher and steeper c−M relation of α = −0.69± 0.09, which is far

from any theoretical expectation. Fig. 5.9 shows the best-fit to both c −M relations,

while the comparisons are reported in Tab. 5.3.
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Since this relation was found in two independent pieces of research, with different mod-

eling techniques, we can confirm the existence of a subset of SL clusters, which are much

more concentrated than the rest of the SL population, and therefore, they should be

treated independently by theoretical works. Although as it has already been mentioned,

there is no evidence or a clear correlation between these clusters and other parameters,

like ellipticity, orientation, Einstein radius, etc, that make them special. Therefore, to

define these clusters as a special SL population, more data analysis needs to be done

using deeper and high-quality imaging data as well as more spectroscopic information.

5.4.4 Redshift evolution of the c – M relation

In this section we explore the possible redshift evolution of the observed c−M relation,

where theoretical works invoke the existence of a negative dependence on the cluster

redshift of the expected c − M relation (e.g. D08, Zhao et al., 2009, M14Sim), due

mainly to the combined effect of the density at the formation time and the mass growth.

Although, the dependence is small for massive halos.

10
13

10
14

10
15

 M200 [h
-1

MO •]

10

c
2
0
0

0.19 ≤  z  < 0.40

0.41 ≤  z  < 0.60

0.61 ≤  z  < 1.01

Figure 5.10: The figure shows the sample divided in three redshift bins, centered
at z = 0.3, 0.5, and 0.8, which are showed by the blue squares, green diamonds, and
red circles, respectively. The best-fitting c −M relations are showed by the dotted-
dashed lines, with the colors corresponding to same redshift bins. The best-fits show

no evidence to confirm a redshift evolution of the observed c−M relation.
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In order to explore this possible redshift evolution, we divide the full sample in three

redshift bins, centered at z = 0.3, 0.5, and 0.8. In Fig. 5.10 we visualize these three

subsets and their respective best-fitting c−M relations. The derived c−M relations from

these subsets describe practically the same trend, with a slight increase in their slope

to higher redshifts. However, these differences in the slopes are virtually undetectable,

and therefore, one can conclude that there is no evidence to confirm a redshift evolution

of the observed c−M relation.

In contrast, if we analyze the full sample in the c− z plane, by dividing it in the same

four mass bins studied in the previous section, we can arrive to other conclusion. The

Fig. 5.11 shows the c− z plane obtained from the 73 galaxy clusters studied. The figure

indicates a positive correlation between the cluster redshift and its concentration, which

is well fitted by a power law of α ∼ 0.18. This correlation is more evident when we focus

only in the two higher mass bins, which contain the ∼ 70% of all data. For the other two

mass bins, this correlation is lost by the large scatter in the concentration distributions.

Even though our observed c−M relation shows no evidence of some redshift evolution,

we find a clear correlation between the cluster redshift and its concentration, which is

more obvious for massive clusters. The observed trend appears to be consistent, at least

qualitatively, with the theoretical predictions. But a sample with a wider mass and

redshift range is needed to study with more detail the dependence on redshift of the

c−M relation.

It should be noted that in this analysis we do not take into account the bimodality in

the c−M relation, because as mentioned before, we do not find any correlation between

the special SL population and another parameter or observable, like the cluster redshift.

In fact, we can see in Fig. 5.10 that the concentrations from the three redshift bins are

presented in both c−M relations.

5.5 Summary and conclusion

We have performed a combined SL and dynamical mass analysis for a sample of 29

SL selected clusters from the RCSGA survey, in the redshift range 0.22 < z < 1.01

and covering three orders of magnitude in mass. We have derived the concentration

parameters by applying an innovative technique, which consists in to probe the inner

regions of the mass distribution by SL signatures, while at larger radii it is constrained

by the velocity dispersion of the cluster members.

We have found that the observed c−M relation of the RCSGA clusters is well described

by a power law of α = −0.32 ± 0.11, indicating a strong dependence on the cluster
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Figure 5.11: In this figure we visualize the c− z plane obtained from the 73 galaxy
clusters studied. The black squares correspond to concentration parameters of clus-
ters contained in the mass bin centered at M200 = 9 × 1014h−1M�. While the green
diamonds, purple circles and magenta triangles correspond to the mass bins centered
at M200 = (5.07, 2.04, 0.69) × 1014h−1M�, respectively. The figure indicates a evident

correlation between the cluster redshift and its concentration for massive clusters.

mass, which is more pronounced than the mass slope derived from theoretical works of

α ' −0.2, even if they have included the lensing bias and projection effects. The steep

mass slope derived in this work is the result of a excess of concentration of the less massive

clusters of M200 ∼ 1 × 1014h−1M�, whose concentrations appear to be significantly

higher than theoretical expectations. In the other hand, the measured concentrations

of massive clusters of M200 ∼ 8 × 1014h−1M�, are in reasonable agreement with the

simulation results at ∼ 12% level.

A possible bimodality has been detected in the observed c −M relation, described by

six clusters with a higher and steeper trend. After excluding these six clusters, we have

found a full reconciliation between simulations and observations. Although, there is no

evidence in our data to separate these six clusters from the rest of the SL population.

In order to perform the most complete analysis of the observed c − M relation, we

have combined concentration parameters of 27 clusters of our RCSGA sample, with

results from 27 SGAS clusters studied by O12, and 19 CLASH clusters from M14.

Resulting in the largest robust dataset of 73 concentration parameters. The possible



Chapter 5. The observed c−M relation for 73 galaxy clusters 85

biases due to the different modeling techniques have been discarded by the construction

of LENSTOOL models to seven clusters belonging to SGAS and CLASH samples. These

mass models have yielded similar results that those in their original researches. We have

also concluded that the selection method does not play a crucial role in determining the

median concentration of massive clusters, by a simple statistical comparison between

these three samples, in the CLASH mass range (4 < M200/1014h−1M� < 16).

After having ruled out these potential biases, we have derived the best-fit to the full

sample, which is also well described by a power law, but with a much stronger dependence

on the cluster mass that found for the RCSGA data alone, with α = −0.52 ± 0.09. As

our previous results, we have found that clusters in the high mass range, independently

of their selection methodology, are reasonable consistent with the ΛCDM predictions.

But the picture is different when the low mass range is analyzed, showing a significant

contrast.

This steep mass slope found for the observed c − M relation, is mainly due to the

inclusion of the SGAS clusters, whose slope is more than twice than the expected slope.

The steep behavior of the most of the clusters in the SGAS sample, increases the tension

in the c −M plane, adding more concentration parameters to the higher and steeper

c−M relation previously found by six clusters in our RCSGA sample. We have solved

this concern through the analysis of the scatter of the concentration distributions, which

have shown a constant growth by displacing the mass bins to lower masses, which was

interpreted as a bimodal distribution. Therefore, we have detected the existence of two

trends in the c−M plane. One of these relations is composed by the full CLASH sample,

∼ 20 − 21 RCSGA clusters, and ∼ 11 − 15 clusters from SGAS, and shows a weaker

dependence on the cluster mass given by α = −0.24 ± 0.11, resulting in an excellent

agreement with theoretical works that have included the selection bias and projection

effects, reconciling observations with simulation results. The rest of the RCSGA and

SGAS clusters describe a higher and steeper c−M relation of α = −0.69±0.09, which is

far from any theoretical expectation. Since this relation was found in two independent

pieces of research, we can confirm the existence of a subset of SL clusters, which are

much more concentrated than the rest of the SL population, and therefore, they should

be treated independently by theoretical works. Although, as mentioned earlier there

is no evidence or a clear correlation between these clusters and other parameters or

observables, that make them special. Therefore, to define these clusters as a special SL

population, more data analysis needs to be done using deeper and high-quality imaging

data, as well as more spectroscopic information.

Our redshift evolution analysis has showed no evidence of a possible redshift dependence

on the c−M relation, although we found a clear positive correlation between the cluster
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redshift and its concentration, which is more obvious for massive clusters. A broader

mass and redshift range sample is necessary to perform a deeper analysis about this

concern.

In this thesis we have demonstrated the power of combining SL and dynamical mass

analysis to study the SL selected cluster population. This innovative technique can be

applied to upcoming SL cluster samples, to fully describe the c−M relation described

by galaxy clusters, as well as to characterize their mass distributions. We want also

to highlight the importance of combining controlled cluster samples, which allows to

analyze in a broad mass and redshift ranges the observed c−M relation. For example,

this combined research yielded the discovery of a very likely bimodal c −M relation,

posing the existence of a special class of SL clusters. Although, we need to deepen these

findings in forthcoming researches.



Chapter 6

The CLASH X-ray selected

galaxy clusters: robust inner

mass measurements

One of the main goals of this thesis is to contribute to the understanding of dark matter

distribution in cluster-size halos, by obtaining robust mass reconstructions of galaxy

clusters. A detailed understanding of the dark matter distribution is a key test of the

current cosmological ΛCDM framework. Furthermore, elaborated mass distributions

allow us to search for high-z magnified galaxies which would otherwise be too faint to

be observed and studied.

In this chapter we present detailed strong lensing (SL) mass reconstructions for a subset

of the X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey

with Hubble (CLASH). We also review some of the most distant objects in the Universe

which were found behind these CLASH clusters. Additionally, we check the robustness

of our mass reconstructions by performing SL models for a subset of simulated galaxy

clusters like the CLASH clusters.

6.1 The CLASH X-ray selected clusters

The best and highest resolution maps of DM distribution in massive galaxy clusters come

from observations of strong gravitational lensing made by CLASH (Postman et al., 2012),

which is a multi-cycle treasury program using 524 Hubble Space Telescope (HST) orbits

to target 25 galaxy clusters (0.18 < z < 0.89), each in 16 filters with the Wide Field

87
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Figure 6.1: The best-fitting mass models for the CLASH cluster Abell 383. The
multiple-image systems used as constraints in the reconstruction are labeled by green
circles, while the predicted images by the current best-fitting mass model are shown
by yellow ellipses. The red and cyan lines correspond to critical curves at z = 2.5 and

z = 1.0, respectively.

Camera 3 (WFC3; Kimble et al., 2008) and the Advanced Camera for Surveys (ACS;

Ford et al., 2003).

In this survey, 20 clusters were specifically selected by their unperturbed X-ray mor-

phology with the goal of representing a sample of clusters with regular, unbiased density

profiles that allow for an optimal comparison with models of cosmological structure

formation.

Recently, Merten et al. (2014) (hereafter M14) presented an exquisite strong and weak

lensing study on multi-scale grids for 19 CLASH X- ray selected clusters. M14 found

that the concentrations derived from these clusters are distributed around a central value

of c̄200 ' 3.7 with a mild negative dependence on the cluster mass. These results are

fully consistent with theoretical expectations (at 4% level) and they are in reasonable

agreement with the mean value of the concentration parameters of our RCSGA clusters

(c̄200 ' 4.3).

In order to check whether the lens modeling methodologies bias or not the understanding

of the cluster mass distributions, we construct SL models for 7 CLASH clusters by using

the SL technique described in chapter 3.
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Table 6.1: The CLASH X-ray selected cluster subset.

Name z R.A.a Dec.a

(J2000) (J2000)

Abell 383 0.188 02 48 03.38 −03 31 45.4
MACSJ0329−02 0.450 03 29 41.57 −02 11 46.4
MACSJ0647.7+7015 0.591 06 47 49.80 +70 14 55.5
MACSJ1115+0129 0.352 11 15 51.90 +01 29 55.0
MACSJ1206−08 0.439 12 06 12.16 −08 48 03.4
MACSJ1720+3536 0.391 17 20 16.75 +35 36 26.2
Abell 2261 0.225 17 22 27.21 +32 07 56.9

aCoordinates are BCG centroids (J2000).

6.1.1 Strong lensing mass models for CLASH clusters

In this section we present SL mass reconstructions for 7 CLASH X-ray clusters. The

mass models were performed by applying the same technique used in the RCSGA cluster

sample. The main features of this subset are listed in Tab. 6.1.

Some SL mass models of CLASH clusters with their respective multiple-image systems

have already been published (Coe et al., 2012, 2013; Umetsu et al., 2012; Zitrin et al.,

2011c, 2012d) and the full set of SL models and multiple image identifications will be

presented in Zitrin et al. (2014 in prep). We use these already known systems to

perform our LENSTOOL mass reconstructions. The redshifts for the lensed galaxies

are usually taken from the literature, as well as from the spectroscopic CLASH-VLT

Figure 6.2: The best-fitting mass models for the CLASH cluster MACSJ0329−02.
The multiple-image systems and predicted images are shown in the same manner as in

Fig. 6.1. The red line corresponds to a critical curve at z ∼ 6.
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program (Balestra et al., 2013) or from the CLASH photometry directly, using Bayesian

photometric redshifts (BPZ; Beńıtez, 2000).

Figure 6.3: The best-fitting mass models for the CLASH cluster MACSJ1206−08.
The multiple-image systems and predicted images are shown in the same manner as
in Fig. 6.1. The magenta and cyan lines correspond to critical curves at z = 2.5 and

z = 1.0, respectively.

As described in chapter 3, the mass reconstructions are performed by assuming an

ellipsoidal NFW profile (Navarro et al., 1996, 1997) to describe the projected mass

distribution for the main DM halo (Eq. 3.1). Then, we add the mass contributions from

the member galaxies (Eq. 3.6) assuming a truncated Pseudo-Isothermal Elliptical Mass

Distribution (PIEMD; Kassiola and Kovner, 1993; Kneib et al., 1996) with a constant

mass-to-light ratio for all selected cluster members. From the best-fitting mass models,

we derive the concentration parameters, the total cluster masses and other important

Figure 6.4: The best-fitting mass models for the CLASH cluster MACSJ1115+0129.
The multiple-image systems and predicted images are shown in the same manner as in

Fig. 6.1. The red line corresponds to a critical curve at z = 2.9.



Chapter 6. The CLASH X-ray selected galaxy clusters: robust inner mass
measurements 91

Table 6.2: Best-fitting model parameters.

Name χ2/d.o.f. c200 M200

[1014h−1M�]

Abell 383 2.41/2 4.9± 1.3 8.62± 2.90
MACSJ0329−02 3.89/3 4.2± 1.1 7.48± 2.56
MACSJ0647.7+7015 13.6/11 3.7± 0.8 8.31 ± 2.10
MACSJ1115+0129 1.88/1 4.0± 1.4 10.54± 2.81
MACSJ1206−08a 35/42 6.1± 0.9 9.22± 3.82
MACSJ1720+3536 2.91/1 3.4± 1.0 1.94± 0.69
Abell 2261b 3.85/5 5.6± 1.9 12.67± 1.93

aPreviously described in Coe et al. (2013).
bPreviously described in Umetsu et al. (2012).
cThis clusters is also included as part of the RCSGA sample. Tab. 5.2

properties of these clusters, such as the ellipticity of the projected mass distribution and

its orientation. The concentration parameters and the total masses derived from the

best-fitting mass models are reported in Tab. 6.2. It should be noted that six of these

clusters were already presented in the previous chapter (Tab. 5.4).

The best-fitting mass models are shown through their critical lines and predicted images

in Figs. 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7. The multiple-image systems used as con-

straints in the reconstruction are labeled by green circles while the predicted images by

the current best-fitting mass models are shown by yellow ellipses. The critical curves are

shown for different redshifts which are respectively labeled. From these figures we can

Figure 6.5: The best-fitting mass models for the CLASH cluster MACSJ1720+3536.
The multiple-image systems and predicted images are shown in the same manner as in

Fig. 6.1. The red line corresponds to a critical curve at z = 3.1.
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already see the excellent image reproduction that we obtain with the best-fitting mass

models. In all cases, the rms error in the image reproduction was lower than ∼ 1.5′′,

assuming an expected scatter of σr = 1.4′′ due to lensing by structures along the line

of sights and variation in the mass-to-light ratio of cluster galaxies (Host, 2012; Jullo

et al., 2010).

In Fig. 5.4 (chapter 5), we presented the ratio between the concentration parameter

results derived by M14 and those derived in this work. From that figure one can see

that our results are moderately consistent with the results derived by M14 (by using

SaWLens, more details in §5.4.1.1). Although, the models for the clusters Abell 2261,

MACSJ1206−08, and MACSJ1115+0129 yielded different results to those presented in

M14. However, the LENSTOOL model results for Abell 2261 and MACSJ1206−08

were previously presented in Umetsu et al. (2012) and Coe et al. (2012), respectively. In

both works, these results were compared with concentrations derived from other models,

which were always consistent with each other within the statistical errors.

Therefore, we can conclude that the mass reconstructions derived in this thesis for

the CLASH clusters are reliable measurements of the inner mass distributions of these

Figure 6.6: The best-fitting mass models for the CLASH cluster MACSJ0647.7+7015.
The multiple-image systems and predicted images are shown in the same manner as in
Fig. 6.1. The magenta, cyan, and red lines correspond to critical curves at z = 2.0,
z = 3.5 and z = 11.0, respectively. The system 6 corresponds to a J-dropout at

z = 10.7+0.6
−0.4, at 95% confidence limits.
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systems. With these results, we are providing new “tools” to probe the current under-

standing of our Universe.

Before starting the next section, we should highlight that thanks to the mass reconstruc-

tion of the cluster MACJ0647.7+7015 we found a candidate for the most distant galaxy

known to date. The full details of this discovery can be found in Coe et al. (2013). In

brief, our SL mass model for this cluster predicted a candidate system composed by three

multiple images (system 6 in Fig. 6.6) with a rms in the image position reproduction

lower than 1′′. Since the redshift was unknown, it was left as a free parameter in the

optimization process with a flat wide prior of 1.0 < z < 15.0. The best-fitting model

yielded a redshift of z ∼ 11, ruling out lower redshift solutions (in terms of rms error in

the image reproduction). Then, our CLASH team conducted an exhaustive J-dropout

analysis. We found that the most likely photometric redshift for this system should be

z = 10.7+0.6
−0.4, at 95% confidence limits. We also found that galaxies of known types at

z < 9.5 are ruled out at 7.2− σ.

Since two independent methods yielded identical results, we can conclude that the most

likely redshift for this systems has to be z ∼ 11. This result together with other high

redshift galaxies discovered by CLASH team have helped to characterize the luminos-

ity function of the objects in the early Universe, which is a key test for the ΛCDM

cosmological model.

Figure 6.7: The best-fitting mass models for the CLASH cluster Abell 2261. The
multiple-image systems and predicted images are shown in the same manner as in Fig.
6.1. The red and cyan lines correspond to critical curves at z = 7.0 and z = 1.0,

respectively.
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Figure 6.8: This figure shows the resulting halo (left panel), clumpy (middle panel)
and smooth (right panel) components. This figure was taken from http: //cgio-

coli.wordpress.com /research-interests/moka/.

6.2 Synthetic galaxy clusters

In order to double-check the robustness of our mass reconstructions, we perform SL mass

models for a subset of simulated galaxy clusters with properties similar to the CLASH

clusters. In this way we can corroborate if the mass distributions derived from our SL

analysis are able to reproduce the “true” mass of the clusters.

The simulated clusters were taken from the ongoing projects of Massimo Meneghetti

together with Carlo Giocoli and CLASH team. Some details of these projects can be

found in Meneghetti et al. (2014), Giocoli et al. (2012), and Meneghetti et al. (2010).

Figure 6.9: This figure shows a simulated cluster at z = 0.29 in its XY projection.
The multiple-image systems, the predicted ones and the critical curves are displayed in

the same manner than in Figs. 6.1 − 6.7.
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Figure 6.10: This figure shows the same simulated cluster at z = 0.29, but in its XZ
projection. The multiple-image systems, the predicted ones and the critical curves are

displayed in the same manner than in Figs. 6.1 − 6.7.

In brief, these clusters were created by using the semi-analytical code Matter density

distributiOn Kode for gravitationAl lenses (MOKA, Giocoli et al., 2012). This code

produces halos mass distributions by combining a clumpy component, which represents

the cluster members, and a smooth component, that stands the DM distribution which

in turns is derived from the clumpy component. This algorithm includes features like

triaxiality, BCG, adiabatic contraction due to baryon cooling and galaxy halo truncation

by dynamical friction. Furthermore, the main dark matter halo is simulated by a triaxial

shape NFW density profile, while a Jaffe density profile is used for the BCGs. The

substructures (cluster members) are described by a truncated SI profile. Finally, mass

distributions are projected on the plane of the sky, since this is the only mass that can be

obtained through lensing. Fig. 6.8 shows the resulting halo component plus the smooth

and clumpy components.

Then, the lensing signatures are included in these simulated mass distributions by the

SkyLens code (Meneghetti et al., 2010). This code creates simulated patches of the sky

using real galaxies from the Hubble Ultra-Deep Field (HUDF).

The way we proceeded in this thesis is the following: we used three different projections

of one simulated cluster (at z=0.29) to perform SL mass reconstructions of the cluster.

The main goals of this study are: 1) investigate how much the parameters derived from

SL mass models change with the orientation of the cluster, and 2) determine how robust

are the derived mass distributions from the lensing reconstructions.
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The SL mass models are shown in the Figs. 6.9, 6.10, and 6.11. The best-fitting mass

models are displayed in the same manner as in the figures of the previous section, al-

though this time the parameters derived from the best-fit are also displayed in the

figures. By visual inspection, we can directly see the high accuracy in the image predic-

tion. Indeed, the highest rms error in the image position was only 0.92′′ (with σr = 1.4′′)

for the XZ projection, while for the other two it was about ∼ 0.5′′. The main results

can be summarized as follows: the ellipticity of the projected mass distributions varies

from ∼ 0.3 − 0.75, the concentration parameter goes from c200 ∼ 0.40 to c200 ∼ 0.56,

and the total mass varies from 2 . M200/1014h−1M� . 7. From this simple analysis

we can already conclude or corroborate that there is a strong dependence of the SL

reconstructions on the cluster halo orientation. Therefore, the projection effects should

be taken into account before arriving to any conclusion.

In order to check the robustness of our results, we compare the projected mass distribu-

tion derived by our SL modeling technique with the “true” projected mass distribution

of these clusters. Fig. 6.12 shows this comparison for the projections XY and XZ, which

present the extreme differences in the best-fitting model parameters. In this figure we

also visualize the projected mass distribution derived by other SL models (Zitrin et al.

2009b method, in particular). We can see that all methods are able to derive very reli-

able mass distributions. Although, in both projections our results are closer to the true

mass than the others. In fact, we were able to reproduce the projected mass at ∼ 5%

level.

Figure 6.11: This figure shows the same simulated cluster at z = 0.29, but in its YZ
projection. The multiple-image systems, the predicted ones and the critical curves are

displayed in the same manner than in Figs. 6.1 − 6.7.
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Figure 6.12: Top panel: Mass distribution in the XY projection of the simulated
cluster at z = 0.29. The black line corresponds to the true profile of the projected mass
distribution. The red solid line corresponds to results derived from the best-fitting
mass models of our mass reconstruction, while the blue dotted line represents the mass
distribution derived by using the light-trace-mass method (Zitrin et al., 2009b). Bottom
panel: Mass distribution (in terms of κ) in the XZ projection. In this case, the red open
circles correspond to the true mass and the black solid line describes the best-fitting

mass model derived in this thesis.

Consequently, we can conclude that our mass reconstructions yield accurate mass dis-

tributions and therefore, the properties derived from these mass distributions represent

(or are very close to) the real characteristics of the galaxy clusters.

It should be noted that all mass models presented in this chapter were performed using
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only SL constraints, therefore, all the conclusions presented here are strictly valid in the

most inner region of the clusters, although it does not mean that they are not true at

larger radii.

6.3 Conclusions

In this chapter we presented detailed SL mass reconstructions for a subset of 7 X-ray

selected galaxy clusters from the CLASH survey. From the best-fitting mass models

we derived the concentration parameters which were compared with those derived by

M14, where they used a different modeling methodology. This comparison resulted in a

reasonable agreement indicating that the lens modeling methodologies used to analyze

the CLASH clusters do not bias the understanding of their mass distributions.

Thanks to the lens power of the cluster MACJ0647.7+7015, we found a candidate for

the most distant galaxy known to date. This result together with other high redshift

galaxies discovered by CLASH team have helped to understand and characterize the

early Universe.

Finally, we performed SL mass reconstructions for simulated clusters like the CLASH

clusters in order to check the robustness of our results. Our mass reconstructions were

in excellent agreement with the “true” mass distributions. Even more, our SL mass

models were those that provided the most accurate mass reconstructions in our team.

Therefore, we can conclude that the mass reconstructions derived in this thesis for

the CLASH clusters are reliable measurements of the inner mass distributions of these

systems.



Chapter 7

A fully automated

Multiple-Image Finder

ALgorithm (MIFAL) for

strong-lens modeling

From previous strong lensing studies we have noticed that by constructing a simple pre-

liminary lens model, multiple-images can be easily matched by the model, by projecting

“manually” each arc-like image to the source plane and back to the image plane, and

then searching for similar looking (and similar redshift) objects as the model predicts,

i.e., reproduces. Thus, our goal in this chapter is to present a simple algorithm that

automatically find multiple-image systems in galaxy clusters.

7.1 The Multiple-Image Finder ALgorithm

We detail here the simple and innovative Multiple-Image Finder ALgorithm (MIFAL),

and its different components.

7.1.1 The lensed galaxy catalogs

The first step we apply here for automatically searching for multiple images is to pri-

marily identify as many lensed galaxy candidates as possible in the cluster or lens field.

For that purpose, two independent catalogs were built for each clusters.

99
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7.1.1.1 The arc candidate catalogs

To build the first catalog we use the Arcfinder algorithm (Seidel and Bartelmann, 2007),

which uses the first and second brightness moments for the detection of elongated ob-

jects across the frame. As detailed in Seidel and Bartelmann (2007), the algorithm is

sufficiently robust to detect such features even if their surface brightness is near the pixel

noise of the image, yet the amount of spurious detections remains (relatively) low.

The algorithm subdivides the image into a grid of overlapping, circular cells (see Fig.

7.1a) which are iteratively shifted towards their local center of brightness in their im-

mediate neighborhood (see Fig. 7.1b to 7.1e). The center of brightness is defined as

the first moment
∫
A ~xd

2x = ~̄x, where A is the cell area and q(I) is a weighting function

that dependents on the image intensity I(~x). The code then computes the cell ellipticity

(Q11 −Q22 + 2iQ12)/(Q11 +Q22) using their second brightness moments

Qij =

∫
A(xi − x̄i)(xj − x̄j)q(I(~x)) d2x∫

A q(I(~x)) d2x
. (7.1)

The ellipticity of each cell provides a natural measure of its orientation in the image

and allows us to compute their angular separation. Cells oriented in the same direction,

and spatially aligned, are then combined into initial objects using a simple coherence

measure (see Fig. 7.1f); essentially the product of the cosine of the angle between cell

orientations and a (scaled) perpendicular cell separation, with a friends-of-friends type

algorithm. At this point, the objects are nothing more than sets of correlated cells (see

7.1g) where one cannot directly infer much morphological information, and there are still

many spurious detections, e.g. for spatially connected point sources. A large number of

spurious detections is removed with a filter interpreting the brightness distribution in

each cell to remove those which are unlikely to belong to an elongated object. For objects

still containing a sufficient number of valid cells, several consecutive steps compute

isophote contours which allow the computation of basic properties like length, length-

to-width and signal-to-noise. These are then used to choose the most likely arc-shaped

objects, and further reduce the number of spurious detections. Some further filtering

and noise cleaning procedures take place, for example to remove elongated objects which

are clearly not gravitational arcs (such as diffraction spikes, spiral galaxy arms, edge-on

galaxies, etc.), resulting in a final catalog of arc candidates (see 7.1i).

It should also be noted, that the arc detection part takes only several seconds on a

standard CPU. Two main caveats are entailed, however, by using an arcfinder rather

than examining each arc candidate by eye. First, some spurious detections of elongated,

un-lensed galaxies may appear in the catalog. These, however, will be filtered out

at a later stage based on their photometric redshifts and the mass model. Second,
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images with a feeble elongation or distortion may not be detected even if they are

multiply lensed (see example the multiply-imaged spiral galaxy in MACS J1149.5+2223,

Zitrin and Broadhurst 2009). Our goal throughout, though, is not to test whether all

previously known multiple-images are uncovered, but whether enough of them are found

to automatically constrain the mass model.

7.1.1.2 The high-redshift galaxy catalogs

To include all the galaxies distorted by the cluster potential, even the multiple images

that have a slight deformation, we use another automatic method to build lensed galaxy

catalogs taking into account only the photometric redshift of the galaxies in the cluster

field.

The construction of these independent catalogs is carried out by selecting all the objects

from the CLASH survey catalogs with photometric redshifts higher than zl + 0.3, where

zl is the redshift of the cluster. The selection does not consider the elongation or shape

of the galaxy, i.e., without using an arcfinder algorithm. It will maximize the number of

candidates but could certainly introduce un-lensed objects in the catalog, nevertheless,

these will be rejected out in the next step by the algorithm itself.

As we describe below, with both catalogs the algorithm is able to recover the same

number of multiple-image systems. However, when the high-redshift galaxy catalogs are

used instead the arc candidate catalogs, the computation time is increased to reach the

final systems.

7.1.2 Photometric redshifts

We use the Bayesian Photometric Redshifts (BPZ; Beńıtez 2000; Beńıtez et al. 2004;

Coe et al. 2006) of the CLASH survey to populate our catalogs. The CLASH photom-

etry is modeled using the SED templates from PEGASE (Fioc and Rocca-Volmerange,

1997), which have been significantly adjusted and re-calibrated to match the observed

photometry of galaxies with known spectroscopic redshifts from FIREWORKS (Wuyts

et al., 2008). The FIREWORKS data set includes 0.38 - 24 µm photometry of galaxies

down to mag ∼ 24.3 (5-σ K-band) and spectroscopic redshifts out to z ∼ 3.7. In anal-

ysis of large datasets with high quality spectra, this template set yields ≤ 1% outliers,

demonstrating that it encompasses the range of observed metallicities, extinctions, and

star formation histories for the vast majority of real galaxies.

For our arc candidate catalogs, we match each arc identified by the arcfinder with the

corresponding source in the CLASH catalogs to obtain its photometric redshift. In the
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Figure 7.1: Example of some key steps in the arcfinder algorithm. The upper-left
panel (a) shows the initial division into cells in an equally spaced grid. The following
sub figures (“b-e”) show the iterative displacement of the cells towards their centers of
brightness. “e” shows a zoom-in of the complete process where the black lines trace the
path of each cell, shown by a white circle. Then, highly correlated cells are searched
for, marked in yellow in sub figure “f”. These ensembles of cells are now combined into
objects using a friends-of-friends type algorithm, and the resulting objects are shown in
“g”, where their calculated brightness contours are shown in “h”. Sub figure “i” shows
the central field of MACS0329 and the arclets found therein in green contours (shown

also in Fig. 7.2 for a better view).
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Figure 7.2: Same as Fig. 7.1, but enlarged for better view.

case of the high-redshift galaxy catalogs, we build them by selecting all the high-redshift

objects in the CLASH catalogs. Therefore, each object in our catalogs corresponds to

a source in the CLASH catalogs. These redshifts will then be used to compute the

(relative and approximate, see below) lensing distances to project the candidate arcs

through the mass model and further constrain the model in the cases where these were

matched as multiple images.

7.1.3 The preliminary mass model

The preliminary mass model used in MIFAL is based on the parametric method of Zitrin

et al. (2009c) (see also Broadhurst et al. 2005a), which is based on the assumption that

light traces mass (hereafter LTM). Then, the mass model can be quickly constructed by

adopting a simple representation of the cluster member galaxies and the underlying DM

together with a prior guess of the ratio between the two components, Kgal, and a certain
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mass-to-light ratio (M/L) to account for the overall normalization, Kq. For details of

this mass modeling method see Zitrin et al. (2009c) and Zitrin et al. (2011b).

In brief, the mass model consists of three components. The first component are the

cluster galaxies, whose surface mass density is modeled as a power-law of slope q, scaled

by their luminosity. The superposition of the mass density contribution from all red-

sequence galaxies (brighter than a certain threshold: usually m? + 2, where m? is

the break in the luminosity function of the members) represents the lumpy, galaxy

component. This mass distribution is then smoothed using a 2D polynomial spline of

degree S to provide a model for the DM distribution in the cluster halo, which is the

second component of the model. These two components are then added together with

a relative weight (Kgal), and the resulting deflection field of this mass distribution is

calculated over the image grid. Finally, the third component is an external shear which

can be added to the deflection field for further flexibility. In all, there are six free

parameters: the mass scalings of both the smooth and galaxy components, the power

law of a unique galaxy density profile, the degree of the smoothing polynomial, and the

strength and direction of the external shear.

As we have mentioned in previous work (e.g. Zitrin et al., 2009a), the choice of the

power-law (q) and smoothing degree (S) hardly affects the reproduction of multiple

images. These parameters mainly affect the mass profile, so that all systems can in

principle be reproduced with either choice of q and S. The values of q and S will only

affect the radius from the mass center at which the multiple images form, but since

here we wish to create a preliminary model, we can iterate on different cosmological

distances (Dls/Ds normalizations) searching for multiple images with the same effect.

We set these two parameters to typical values deduced from our previous analyses (see

also Zitrin et al. 2011b); q=1.1 and S=11. Similarly, for the two other parameters:

the overall scaling (Kq), and the relative galaxy mass to DM fraction (Kgal), we adopt

typical values; Kq = 0.4 and Kgal = 0.03. Here, we do not use an external shear, since

we do not use any multiple images to constrain the mass model yet. We thus have now a

single, preliminary mass model (see Fig 7.3) that can be used to find multiple images. It

is also worth mentioning, that once photometry is in hand and the red-sequence member

galaxies are chosen, the construction of this initial mass model takes only a few seconds.

7.1.4 Searching for multiple images

With the LTM preliminary mass model described above and the lensed galaxy catalogs

in hand, we can start the multiple-images search. Since the following procedures are

exactly the same for both catalogs (arc candidate and high-redshift galaxies catalogs),
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we will refer to the objects in both catalogs just as “candidates”, therefore, the next

procedures will be described for the compound “candidate catalog”.

We use the preliminary mass model to automatically project each candidate in our

catalog to the source plane and then back, to predict the location of possible counter

images. The program then runs over all the candidates in the catalog searching for

objects near the predicted locations and with similar photometric redshift as the re-

lensed candidate. The thresholds ∆z and ∆r used to parametrize this similarity are

user defined, but to optimize the number of real multiple-image systems we fix ∆z = 0.5

for the redshift difference and ∆r = 10′′ for the search radius.

Once MIFAL has selected all the likely multiple-images for the re-lensed candidate, it

calculates the median system redshift, zsys, using the redshift of all members. The code

then runs again for the next candidate in the catalog and so forth. At the end of this

stage, each candidate in our catalog has its own temporary multiple-image system and

its respective zsys.

It should be noted, as we are conducting a blind study, the Dls/Ds normalization for

the preliminary mass model can not be fixed because we do not know a-priori any

confirmed multiple-image system, i.e., any confirmed source. To explore all the possible

normalizations, the code repeats all the processes described above for 25 discrete values

of Dls/Ds(zs), from source redshifts zs = zl + 0.1 to zs = 9, where zl is fixed to the

cluster redshift and zs increases logarithmically such that the increments in Dls/Ds(zs)

are linear.

Then, all the temporary systems of the 25 realizations are grouped in five Dls/Ds bins

(where each bin contains five realizations corresponding to five different source red-

shifts), merging those systems that have at least 2 images in common and similar red-

shift (zsys ± ∆z). Once it ends, we have five new catalogs of semifinal multiple-image

systems, one for each Dls/Ds bin. Now, a new filtering/selection step takes place in our

procedure, where the unlikely images in the semifinal systems are removed and the best

of these new filtered systems are selected, obtaining the final weighted multiple-image

system catalogs. To explore all the possible lensed systems scenarios, two different filter-

ing/selection methods were implemented. The first method selects images only based on

their χ2(rsearch, zima, color, Er), while the second one selects the images by their lens con-

figuration, taking into account image parity and the previous χ2(rsearch, zima, color, Er).

7.1.4.1 χ2 only method

The χ2 only method is implemented to study atypical multiple-image configurations

that usually appear in complicated mass distributions. For example, the systems 1 in
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the cluster MACS J0717.5+3745 (Zitrin et al., 2009c), in where 5 multiple-images are

in the same side of the cluster field, and there are no counter-images in the other side.

In other words, this method does not consider the position of the multiple images in the

lens field to select them.

This method assigns to each multiple-image candidate a χ2 grade to weight its likelihood

of being a member of this family, defined by:

χ2
ima = χ2

r + χ2
z + χ2

color + χ2
Er, (7.2)

where the first component is the χ2 of the image location defined by:

χ2
r = ((x′ − x)2 + (y′ − y)2) / σ2

r , (7.3)

with [x′,y′] and [x,y] being the position of the candidate, and the model-predicted

multiple-image, respectively, and σr the expected image-plane reproduction uncertainty

due to large-scale structure and matter along the line of sight (e.g. Zitrin et al., 2012c),

which we set as σr = 1.4′′ throughout. The second component is defined as:

χ2
z = ((z′ − z)2) / σ2

z , (7.4)

where z′, z, and σ2
z , represent the measured photometric redshift, the median system

redshift (from the other images found for that system, excluding the image in question),

and the redshift error, respectively. The third component is defined as:

χ2
color =

∑
i

(color′i − colori)2 / σ2
colori

, (7.5)

where color′i, colori, and σ2
colori

are the i color of the candidate in question, the median

system color (from the other images found for that system excluding the image in ques-

tion), and the color error of the i color, respectively, The sum is over the F814w−F625w,

F625w − F475w, and F814w − F475w colors. The fourth component is defined as:

χ2
Er = ((Er′ − Ermnu)2) / σ2

Er mnu, (7.6)

where Er′ is the Einstein radius of the candidate, defined as the distance from the

brightest cluster galaxy (BCG) to the object. Ermnu and σ2
Er mnu are the median
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Figure 7.3: The preliminary mass models for the cluster M0329 (left panel), M1720
(middle panel), and M1931(right panel). These preliminary mass models are shown in

terms of their magnification maps.

Einstein radius and its respective 1− σ error found by Meneghetti et al. (2011) in their

MareNostrum Universe simulation (Meneghetti et al., 2010) for massive clusters,

respectively. We set Ermnu = 25′′ and σ2
Er mnu = 5′′ throughout.

After MIFAL assigns a χ2 grade to each candidate, it selects the most likely images per

system. In practice, if the semifinal system has more than five images (and most of the

semifinal systems have them), the algorithm selects the five images with the lowest χ2
ima.

Then, it calculates the total χ2
sys of the system, adding in quadrature the χ2

ima of the

selected images. If the semifinal system has five multiple-images or less, the program

only calculates its χ2
sys.

Once the program has run through all semifinal systems, filtering and updating them, we

obtain five final multiple-image systems catalogs, one for each Dls/Ds bin. Henceforth,

these final catalogs are named as the χ2 only catalogs.

7.1.4.2 Lens configuration, parity and χ2 method

This method is implemented to study the typical lensed system configurations that are

generally produced by smoothed and elliptical mass distributions. Some of the most typ-

ical lens configurations are the Einstein cross, cusp arc, and fold arc systems, which have

five multiple-images each (four distributed around the lens and one close to the cluster

center). As it is common in massive elongated clusters that cusp system only shows the

three highly magnified close images, we consider this configuration independently.

This method uses the four lens configurations described above to add position constraints

in the selection process of the final multiple images. In practice, the program takes a

semifinal system and checks if there are image combinations that match with some of

these four lens configurations, and saves the successful image combinations. Then, the

program assigns a χ2 to each successful combination, defined by:
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Table 7.1: MIFAL results for M0329

Id R.A.a Deca zima zsys
bznorm Rfind Er ima Er sys χ2

col χ2
z χ2

Rfind
χ2
parity χ2

Er
χ2
ima χ2

sys

(◦) (◦) (′′) (′′) (′′)

1.1 52.415100 -2.196250 3.010 3.080 1.476 6.9 29.2 30.3 1.01 0.49 24.21 1.64 1.11 28.46 187.10
1.2 52.417500 -2.190630 2.868 3.080 1.476 8.8 28.8 30.3 15.90 5.22 39.18 1.64 1.11 63.05 187.10
1.3 52.424900 -2.187690 3.257 3.080 1.476 5.8 31.3 30.3 1.45 3.05 16.95 1.64 1.11 24.20 187.10
1.4 52.426500 -2.199300 3.151 3.080 1.476 7.6 16.2 30.3 38.74 0.51 29.40 1.64 1.11 71.40 187.10
2.1 52.424900 -2.187690 3.257 3.149 1.476 9.7 31.3 34.4 1.19 1.61 47.56 0.64 3.54 54.53 218.81
2.2 52.433197 -2.196578 3.041 3.149 1.476 10.0 35.9 34.4 7.31 1.77 50.92 0.64 3.54 64.18 218.81
2.3 52.422144 -2.206588 3.013 3.149 1.476 8.8 37.5 34.4 3.56 2.77 39.32 0.64 3.54 49.83 218.81
2.4 52.416600 -2.204170 3.321 3.149 1.476 8.3 37.3 34.4 6.33 4.40 35.35 0.64 3.54 50.26 218.81
3.1 52.421900 -2.201400 6.055 6.032 1.476 5.8 19.3 30.9 2.38 0.06 17.10 359.43 1.40 380.37 1632.49
3.2 52.416800 -2.198060 6.009 6.032 1.476 7.5 24.1 30.9 2.15 0.06 28.81 359.43 1.40 391.85 1632.49
3.3 52.417500 -2.195560 5.781 6.032 1.476 5.4 20.7 30.9 2.57 17.28 14.84 359.43 1.40 395.53 1632.49
3.4 52.429900 -2.188120 6.139 6.032 1.476 3.8 37.8 30.9 95.59 0.78 7.53 359.43 1.40 464.74 1632.49
4.1 52.425725 -2.190436 2.284 2.210 1.476 5.4 22.7 27.6 2.87 6.06 15.01 24.44 0.28 48.66 217.99
4.2 52.426393 -2.198453 2.244 2.210 1.476 6.5 14.0 27.6 0.98 1.04 21.56 24.44 0.28 48.29 217.99
4.3 52.415078 -2.200176 2.162 2.210 1.476 5.7 32.6 27.6 20.72 2.26 16.75 24.44 0.28 64.44 217.99
4.4 52.421065 -2.191334 2.176 2.210 1.476 7.6 19.2 27.6 1.15 1.20 29.53 24.44 0.28 56.59 217.99

a Coordinates of each multiple image in (J2000).
b Redshift used to normalize the SL model, or the redshift bin in the automated process.

χ2
comb =

(∑
i

χ2
imai

)
+ χ2

Er sys + χ2
parity, (7.7)

where the χ2
ima component is defined as:

χ2
ima = χ2

r + χ2
z + χ2

color, (7.8)

where χ2
r , χ

2
z, and χ2

color are defined by the equations 7.3, 7.4, and 7.5, respectively,

and the sum is over all members of the successful image combination in question. The

second component is defined as:

χ2
Er sys = ((Ersys − Ermnu)2) / σ2

Er mnu, (7.9)

where Ersys is the Einstein radius of the successful image combination in question. In

the case of the five image configurations, the Ersys is defined as the mean of the radial

distances of the most distant image and its opposite image, while for the three image

systems, Ersys is defined as the median of the radial distances of the three members.

Ermnu and σ2
Er mnu are the median Einstein radius and its respective 1−σ error described

above, respectively.

The third component is the χ2 of the image parity. The image parity describes the

relative orientation of the multiple images, which are often formed such that one of the

images is a mirror image of the other. This is equivalent to the signs of the eigenvalues

of the magnification matrix, where all images can be described as having either positive
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Table 7.2: MIFAL results for M1720

Id R.A.a Deca zima zsys
bznorm Rfind Er ima Er sys χ2

col χ2
z χ2

Rfind
χ2
parity χ2

Er
χ2
ima χ2

sys

(◦) (◦) (′′) (′′) (′′)

1.1 260.079174 35.606614 2.565 2.333 3.881 7.0 33.9 37.5 10.08 9.49 24.69 142.80 6.30 193.36 710.35
1.2 260.067820 35.601192 2.343 2.333 3.881 6.7 23.2 37.5 3.84 0.01 23.10 142.80 6.30 176.05 710.35
1.3 260.058501 35.605402 2.199 2.333 3.881 4.9 41.2 37.5 4.42 1.15 12.44 142.80 6.30 167.11 710.35
1.4 260.062456 35.612745 2.324 2.333 3.881 5.8 32.9 37.5 7.65 0.01 17.07 142.80 6.30 173.83 710.35
2.1 260.061096 35.611111 3.477 3.296 3.881 4.7 34.2 30.0 112.11 1.58 11.13 157.17 0.99 282.99 825.07
2.2 260.073317 35.612099 3.253 3.296 3.881 7.5 21.4 30.0 2.26 0.12 28.77 157.17 0.99 189.32 825.07
2.3 260.076529 35.609749 3.338 3.296 3.881 5.5 25.8 30.0 3.83 0.12 15.60 157.17 0.99 177.71 825.07
2.4 260.069728 35.603732 2.996 3.296 3.881 3.2 12.9 30.0 2.50 9.15 5.25 157.17 0.99 175.06 825.07
3.1 260.076074 35.602565 1.273 1.579 3.881 10.1 28.3 21.9 1.25 173.49 52.41 127.29 0.38 354.82 845.09
3.2 260.067137 35.604648 1.600 1.579 3.881 6.6 13.5 21.9 1.83 0.06 22.29 127.29 0.38 151.85 845.09
3.3 260.065805 35.605677 1.600 1.579 3.881 7.2 15.5 21.9 7.76 0.06 26.77 127.29 0.38 162.25 845.09
3.4 260.067583 35.609483 1.557 1.579 3.881 4.1 11.2 21.9 40.00 0.05 8.46 127.29 0.38 176.18 845.09
4.1 260.079174 35.606614 2.565 2.735 3.881 11.6 33.9 26.0 14.33 1.47 68.15 14.72 0.04 98.71 236.11
4.2 260.069728 35.603732 2.996 2.735 3.881 3.2 12.9 26.0 8.89 7.78 5.22 14.72 0.04 36.66 236.11
4.3 260.066423 35.604602 2.749 2.735 3.881 7.6 15.6 26.0 5.96 0.02 29.72 14.72 0.04 50.46 236.11
4.4 260.059562 35.611026 2.720 2.735 3.881 8.1 39.2 26.0 2.37 0.02 33.14 14.72 0.04 50.29 236.11

a Coordinates of each multiple image in (J2000).
b Redshift used to normalize the SL model, or the redshift bin in the automated process.

parity or negative parity. But, as we are driving a blind study, we can not check the

image parity by visual inspection or by checking their signs in the magnification matrix

due to the limited accuracy of the preliminary mass model. The simplest way to check

the image parity, is to compare the radial distances of the multiple images, especially

those that subtend the smallest angle with respect to the mass center. Indeed, often in

the literature mirror arcs shown practically the same radial distances to the center of

the lens potential. Considering this, we defined the χ2 of the image parity as:

χ2
parity = ((rAima − rBima)2) / (fas × σr)2, (7.10)

where rAima and rBima are the radial distances from the cluster center to images A and

B, respectively. Image A and image B are those that subtend the smallest angle with

respect to the mass center of the image combination in question. The component σr is

the expected image-plane reproduction uncertainty described above, fixed to σr = 1.4′′.

The factor fas depends on the angular separation of the images A and B, starting from

fas = 0.1, for the smallest angular separations, and ending with fag = 1.0, for the

largest angular separations. The smaller the angular separation is, larger the weight

for the parity will be. Thus, all systems where their closest images present significant

differences in their radial distances will be deleted (or weighted with a huge χ2
parity).

After each successful image combination has been weighted with its respective χ2
comb,

the program selects the best of these configurations for the semifinal system in question.

In other words, the combination with the lowest χ2
comb becomes in the final multiple-

image system for this semifinal system. The algorithm then runs over all semifinal
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Table 7.3: MIFAL results for M1931

Id R.A.a Deca zima zsys
bznorm Rfind Er ima Er sys χ2

col χ2
z χ2

Rfind
χ2
parity χ2

Er
χ2
ima χ2

sys

(◦) (◦) (′′) (′′) (′′)

1.1 292.943245 -26.577280 5.028 5.388 4.742 3.3 49.2 45.1 28.93 63.68 5.61 76.73 16.17 191.11 608.41
1.2 292.949521 -26.566378 5.458 5.388 4.742 8.0 43.0 45.1 0.87 0.96 32.78 76.73 16.17 127.51 608.41
1.3 292.961578 -26.565480 5.388 5.388 4.742 4.4 41.0 45.1 186.83 0.23 9.85 76.73 16.17 289.79 608.41
2.1 292.946140 -26.580900 5.230 5.230 4.742 9.1 42.6 41.8 0.27 0.16 42.32 8.93 11.29 62.97 263.30
2.2 292.946274 -26.569463 5.186 5.230 4.742 8.2 44.4 41.8 4.91 1.21 34.39 8.93 11.29 60.73 263.30
2.3 292.961578 -26.565480 5.388 5.230 4.742 8.0 41.0 41.8 53.00 33.47 32.92 8.93 11.29 139.60 263.30
3.1 292.944589 -26.578876 6.289 6.192 4.742 4.0 45.4 39.1 15.31 9.70 8.19 138.77 7.91 179.88 587.48
3.2 292.946914 -26.566489 6.192 6.192 4.742 11.6 49.1 39.1 3.73 0.03 68.53 138.77 7.91 218.98 587.48
3.3 292.959282 -26.567086 6.135 6.192 4.742 5.4 32.7 39.1 24.80 2.37 14.77 138.77 7.91 188.62 587.48
4.1 292.971083 -26.570402 5.431 5.390 4.742 8.8 54.9 48.7 30.48 1.14 39.20 50.53 22.56 143.90 431.06
4.2 292.963866 -26.588617 5.390 5.390 4.742 6.1 52.5 48.7 16.77 0.18 19.05 50.53 22.56 109.07 431.06
4.3 292.946140 -26.580900 5.230 5.390 4.742 11.1 42.6 48.7 3.80 38.76 62.44 50.53 22.56 178.09 431.06
5.1 292.966507 -26.568729 5.482 5.482 4.742 8.4 43.2 47.4 31.77 0.12 35.73 22.35 20.09 110.07 302.66
5.2 292.968258 -26.583570 5.590 5.482 4.742 8.1 49.7 47.4 4.74 1.40 33.58 22.35 20.09 82.16 302.66
5.3 292.958990 -26.590005 5.162 5.482 4.742 9.2 51.6 47.4 0.64 23.98 43.36 22.35 20.09 110.43 302.66
6.1 292.968723 -26.587459 5.416 5.130 4.742 8.9 59.9 54.5 9.32 21.83 40.64 35.50 34.84 142.13 369.46
6.2 292.955802 -26.591654 5.130 5.130 4.742 7.4 57.0 54.5 11.22 0.11 28.05 35.50 34.84 109.73 369.46
6.3 292.943245 -26.577280 5.028 5.130 4.742 9.1 49.2 54.5 3.23 1.47 42.55 35.50 34.84 117.59 369.46
7.1 292.968258 -26.583570 5.590 5.390 4.742 6.1 49.7 50.6 3.38 3.79 18.76 264.61 26.27 316.81 1031.90
7.2 292.963866 -26.588617 5.390 5.390 4.742 7.4 52.5 50.6 40.16 0.00 28.20 264.61 26.27 359.24 1031.90
7.3 292.958990 -26.590005 5.162 5.390 4.742 10.6 51.6 50.6 1.75 5.38 57.84 264.61 26.27 355.85 1031.90
8.1 292.968723 -26.587459 5.416 5.220 4.742 8.9 59.9 58.5 10.45 14.34 40.64 98.54 44.76 208.73 594.51
8.2 292.962432 -26.591011 5.220 5.220 4.742 7.1 58.2 58.5 3.56 0.07 26.01 98.54 44.76 172.93 594.51
8.3 292.955802 -26.591654 5.130 5.220 4.742 7.1 57.0 58.5 42.07 1.84 25.63 98.54 44.76 212.85 594.51
9.1 292.949594 -26.570605 1.817 1.817 4.742 7.2 32.1 29.9 0.67 0.00 26.22 52.98 0.95 80.83 274.24
9.2 292.957989 -26.568611 1.829 1.817 4.742 5.8 26.4 29.9 42.75 5.78 16.95 52.98 0.95 119.41 274.24
9.3 292.960596 -26.569164 1.807 1.817 4.742 4.8 27.6 29.9 4.60 3.56 11.92 52.98 0.95 74.00 274.24
10.1 292.967009 -26.578874 2.995 3.109 4.742 7.9 38.2 37.7 11.24 3.55 31.53 4.81 6.45 57.57 219.29
10.2 292.953752 -26.586549 3.109 3.109 4.742 7.7 40.1 37.7 74.92 0.00 30.20 4.81 6.45 116.38 219.29
10.3 292.946810 -26.578311 3.246 3.109 4.742 7.1 37.1 37.7 2.85 5.79 25.43 4.81 6.45 45.33 219.29
11.1 292.969399 -26.579625 2.456 2.534 4.742 10.8 47.3 44.7 13.12 46.72 59.40 419.13 15.59 553.96 2501.88
11.2 292.958152 -26.589497 2.534 2.534 4.742 10.0 49.4 44.7 8.47 0.20 51.49 419.13 15.59 494.88 2501.88
11.3 292.950162 -26.585492 2.552 2.534 4.742 0.2 42.2 44.7 1017.22 1.07 0.02 419.13 15.59 1453.04 2501.88
12.1 292.967009 -26.578873 2.995 3.084 4.742 6.0 38.2 34.4 21.68 10.08 18.32 110.66 3.54 164.27 515.77
12.2 292.955218 -26.583679 3.084 3.084 4.742 11.3 28.8 34.4 0.08 0.04 65.64 110.66 3.54 179.95 515.77
12.3 292.952107 -26.582897 3.135 3.084 4.742 9.9 30.6 34.4 5.16 2.30 49.90 110.66 3.54 171.55 515.77
13.1 292.958152 -26.589497 2.534 2.401 4.742 4.2 49.4 48.8 148.01 2.23 9.02 287.27 22.66 469.19 1154.04
13.2 292.953015 -26.588310 2.401 2.401 4.742 3.8 46.9 48.8 0.81 0.04 7.26 287.27 22.66 318.04 1154.04
13.3 292.950583 -26.587687 2.162 2.401 4.742 8.7 48.2 48.8 7.97 10.55 38.36 287.27 22.66 366.81 1154.04

a Coordinates of each multiple image in (J2000).
b Redshift used to normalize the SL model, or the redshift bin in the automated process.

systems, performing all possible image combinations and selecting the final multiple-

image systems. If there are not combinations that match these four lens configurations,

the semifinal system is automatically deleted from the list. Once this ends, we obtain

the five final multiple-image systems catalogs (one for each Dls/Ds bin), defined as the

configuration catalogs.

It should be noted, that we are not considering the central image to constrain the config-

urations described above due to the limited number of candidates with good photometry

near the cluster center.

7.2 MIFAL results

To carry out this study we analyze three CLASH clusters: MACS J0329−0211, MACS

J1720+3536, and MACS J1931−2635 (hereafter M0329, M1720, and M1931 respec-

tively). The former one was recently analyzed by Zitrin et al. (2012a), finding six sets of
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Figure 7.4: The figure shows the most likely multiple-image systems found by MIFAL
for a normalization redshift of znorm = 1.476 labeled by yellow circles. The systems 1,
3, and 4 correspond to three of four systems previously discovery by visual inspection.

multiply-lensed galaxies, but using four of them to constrain their model. The clusters

M1720 and M1931 will be fully described in the forthcoming paper Zitrin et al. (2014,

in preparation).

Before we run MIFAL we have to find the most likely multiple-image systems by the

usual manner. After an exhaustive visual examination and using the preliminary model,

we match the most obvious multiple-image systems. The preliminary mass models of

these clusters are shown in terms of their magnification maps in the Fig. 7.3. Then, we

incorporate these multiple images to improve the preliminary mass model and search

again for new candidates as it has mentioned in previous work (e.g. Zitrin et al., 2009a).

Finally, we include all the found systems to reach the best-fit solution via a long (several

dozens of thousands steps) MCMC minimization.

Finally, we apply MIFAL to these three clusters with known multiple-image systems.

The most likely multiple-image systems found by our innovative approach are reported

in Tabs. 7.1, 7.2, and 7.3. It should be noted that the tables listed all the possible

multiple-image systems that satisfy the configuration constraints imposed by MIFAL,

but not all of them are considered as likely systems as is described below.

MACS J0329.6-0211: Fig. 7.4 shows the most likely multiple-image systems found

by MIFAL for a normalization redshift of znorm = 1.476. Zitrin et al. (2012a) reported
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six set of likely lensed systems, although, they used only four systems to constrain their

models. The systems 1, 3, and 4 (labeled in the figure) correspond to three of these four

systems used as constraints. The automated procedure fully recovered systems 4 and 3,

while the system 1 was partially identified (images 1.1 and 1.2 are real). Therefore, MI-

FAL was able to recover the ∼ 75% of the multiple images detected by visual inspection

in this cluster.

MACS J1720+3536: Fig. 7.5 shows the most likely multiple-image systems found

by MIFAL for a normalization redshift of znorm = 3.881. In this cluster, our algorithm

recovered in total 3 very likely systems. Although, in this case only system 2 was fully

recovered. In total MIFAL found 9 lensed galaxies that correspond to 3 background

sources. The photometric redshift of each system, as well as the total χ2 can be found

in Tab. 7.2. The conventional method has found 7 candidate systems in this cluster.

Therefore, in this case our algorithm was able to recover ∼ 40% of the “real” multiple

images or those ones found by visual inspection.

MACS J1931-2635: In this cluster MIFAL found many candidates of multiple-image

systems (see Fig. 7.6). But only 1 system was completely identified, labeled as system

9 in the figure. From the Tab. 7.3 we can see that the system 9 has the second lower

Figure 7.5: The figure shows the most likely multiple-image systems found by MIFAL
for a normalization redshift of znorm = 3.881. In this cluster, our algorithm recovered
in total 3 very likely systems. The conventional method has found 7 candidate systems

in this cluster.
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Figure 7.6: The figure shows the most likely multiple-image systems found by MIFAL
for a normalization redshift of znorm = 4.742. Only 1 system was fully recovered, instead

the conventional method that found 12 candidate systems.

χ2
sys, suggesting that the way as MIFAL assigns the weights seems right. The system

12 and 13 were partially identified, although their χ2
sys are quite high to be recognized

as likely systems through the automated analysis, even though these systems could be

real. In this cluster, the visual inspection yields 12 candidate systems. Then, MIFAL

was not very successful in this cluster, but still MIFAL was able to recover one very

likely system fully automatically and in just 40 minutes.

7.3 Summary and conclusions

In this work we presented an innovative Multiple-Image Finder ALgorithm (MIFAL)

designed to automatically find multiple images in galaxy cluster lenses, so that their mass

model could be efficiently and automatically constrained. We combined an arcfinder al-

gorithm with CLASH photometric redshift measurements, along with a preliminary mass

model, to physically match together multiple-image systems in an automated (“blind”)

manner. We obtained a robust assessment of the likelihood of each arc to belong to

one of the multiple-image systems, as well as the preferred redshift for the different

systems. MIFAL then selected the most likely multiple images for each system based
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on the assigned weights, to finally construct five catalogs of multiple-image systems for

each Dls/Ds normalization.

We applied MIFAL to the recently studied galaxy cluster M0329, as well as to the

unprecedented galaxy clusters M1720 and M1931 in deep CLASH/HST images. We

compared the results of our automated procedure with the results by the conventional

SL analysis where multiple images were verified by eye using the parametric method.

Our automated SL analysis blindly recovered 3 out of the 4 systems in M0329, 3 out of

the 7 systems in M1720, and 1 out of the 12 candidate systems in M1931.

It should be noted that most of the multiple images and/or systems that were not

picked by the automated procedure was mainly due to the ambiguity of the photometric

redshift measurements. Another concern that should be taken into account is that our

automated procedure yields successful results only for high quality photometric data,

i.e., HST data. It is due that the first steps in the selection process are mainly based on

the photometric redshifts, and therefore, inaccurate measurements of the photometric

redshifts will never allow right combinations of multiple-image systems.

We want to highlight that the the whole automated process takes not more than 1 or 2

hours in a normal CPU, while the conventional SL analysis usually takes days or weeks.

Although more comparisons are required for a more robust assessment of the proposed

algorithm accuracy, it constitutes another step towards the fully automating SL analysis

as a standard tool for studying cluster mass distributions of very large samples, especially

with the HST and successors.
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Conclusion and outlook

In this thesis we have studied the mass distribution of galaxy clusters in the context

of gravitational lensing. In particular, we have extensively investigated the total mass

distribution of clusters, by obtaining robust mass reconstructions of galaxy clusters

through a detailed analysis of the SL signatures and dynamical mass information.

We have performed FORS2/VLT spectroscopic observations for a new sample of 29 SL

selected galaxy clusters from the RCSGA survey, which were visually identified in the

RCS2 survey. Our spectroscopic analysis reveals 51 lensed galaxies corresponding to 34

background sources at high redshift, which are clearly distorted by the gravitational po-

tential of the cluster cores. Our exhaustive analysis has also spectroscopically confirmed

689 cluster members, which were used to measure velocity dispersions, cluster redshift

and dynamical masses, covering three orders of magnitude in mass, from 2.80× 1013 ≤
M200/h

−1M� ≤ 2.84 × 1015, with a median mass of M200 ∼ 3.6 × 1014h−1M�. The

redshift range of these clusters is 0.22 < z < 1.01, with a redshift median of z ∼ 0.5.

In order to derive reliable cluster mass distributions we have introduced an innovative

mass reconstruction methodology, which consists in the combination of SL constraints

from the cluster cores (probing the innermost region of the galaxy clusters) with dy-

namical masses derived from the velocity dispersion of the cluster members (probing the

mass distribution of clusters at larger radii). From the best-fitting mass models we have

derived the concentration parameter of the clusters, which is one of the most important

properties of the cluster-size halos. The concentration parameter allows us to test the

current cosmological ΛCDM framework through its relation with the total mass of the

cluster halo.

In this thesis we have provided one of the most complete analysis of the c−M relation by

combining results from 27 clusters of our RCSGA sample with the recent analysis of 19

115
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X-ray selected clusters from the CLASH survey, and also with concentration parameter

measurements from 27 SL selected clusters from the SGAS survey. This provides the

more robust and largest dataset of concentration measurements so far for a controlled

population of 73 galaxy clusters. We found that for massive clusters (M200 ∼ 8 ×
1014h−1M�), the concentration parameters are distributed around c200 = 4.3±1.4, which

is in reasonable agreement with theoretical expectations. In contrast, for less massive

clusters (M200 ∼ 1014h−1M�), the central value of the concentrations is almost twice

the mean expected value, even if the selection bias and projection effects are taken into

account. This results in a c−M relation with a strong dependence on the cluster mass,

given by c ∝Mα, where α = −0.52±0.09. We found that this steep mass slope is mainly

due to ∼ 6 RCSGA clusters and ∼ 16 clusters from the SGAS survey, which are clearly

describing a higher and steeper c−M relation, with a normalization of cn = 8.9± 1.12

and α = −0.69 ± 0.09. This unusual relation is far from any theoretical expectation.

The rest of the sample is characterized by a mass slope of α = −0.24± 0.11, reconciling

simulation results with observations. Since this bimodal behavior has been found in two

independent samples with different modeling techniques, we can conclude that there is

a subset of SL clusters that are more concentrated than the rest of the SL population.

Although, there is no evidence or a clear correlation between these clusters and other

parameters or observables that make them special. Therefore, a deeper analysis is

required to classify these clusters as a special SL population. This can be done by using

deeper and high-quality imaging data, as well as more spectroscopic information of the

multiple images used as constraints. However, the most likely explanation for this excess

of concentration for less massive clusters can be associated to the baryon cooling effect.

In this thesis we have also detected a clear positive correlation between the cluster

redshift and its concentration, which is more obvious for high mass clusters. However,

when the redshift dependence on the c − M relation was analyzed, no evidence of a

possible redshift evolution was found.

In order to check whether the lens modeling methodologies bias or not the understanding

of the cluster mass distributions, we have performed detailed SL mass reconstructions

for a subset of 7 X-ray selected galaxy clusters from the CLASH survey. From the best-

fitting mass models we derived the concentration parameters, and compared them with

those derived in other works, in which different modeling methodologies were used. The

results show a reasonable agreement, indicating that the lens modeling methodologies

used to analyze the CLASH clusters are consistent with each others and therefore, we de-

rived reliable properties from their mass distributions. We have also performed SL mass

reconstructions for simulated clusters with properties similar to the CLASH clusters, in
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order to check the robustness of our results. We have found that our mass reconstruc-

tions are in excellent agreement with the “true” mass distributions. Even more, our SL

mass models provided the most accurate mass reconstructions in our team.

In this thesis we have developed a new innovative algorithm (MIFAL) designed to auto-

matically find multiple images in galaxy cluster lenses, so that their mass model could be

efficiently and automatically constrained. We have combined an arcfinder algorithm with

high-quality photometric redshift measurements, along with a simple preliminary mass

model, to physically match together multiple-image systems in an automated procedure.

We have applied MIFAL to three CLASH clusters with successful results. MIFAL was

able to automatically recover 1 – 3 systems (completely or partially), becoming the

first algorithm able to automatically find multiple-image systems in galaxy clusters. Al-

though more comparisons are required for a more robust assessment of the accuracy of

this algorithm, it constitutes another step towards the fully automatizing SL analysis as

a standard tool for studying cluster mass distributions of very large samples, especially

with the HST and successors.

The mass modeling methodology presented in this thesis can be also applied to other

cluster samples that present SL signatures. In fact, the closest project will be to perform

mass reconstructions of all CLASH clusters using this technique. The next step in our

modeling methodology will be to include weak lensing analysis and the BCG velocity

dispersion information, in order to fully constrain the density profile of galaxy clusters

to test the universal form of the cluster mass distributions. Then, we want to perform a

detailed study of the orientation and triaxiality of the cluster-size halos, and therefore,

we want to include X-ray information in our SL analysis.

In order to fully automate the SL analysis of galaxy clusters we will improve our al-

gorithm by adding another step in the procedure. We will refine the preliminary mass

model by using the most likely multiple-image systems found in the first steps. This

refined mass model will be then used to find again multiple-image systems, in an iterate

mode. Finally, the best systems in the last iteration will be used as input into the regu-

lar minimization procedure. In this manner, we could derive fully automatically robust

mass reconstructions of galaxy clusters in only a couple of hours, getting ready for the

next generation of large samples of clusters.
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Galaxy cluster surveys

As explained earlier, galaxy clusters are ideal tracers of the largest density fluctuations

in the universe and their abundances can be used to constrain cosmological parameters

(e.g. Eke et al., 1996). The building of large and well-defined samples of galaxy clusters

become extremely necessary. The first systematic searches of clusters consisted in the

visual identification of overdensities of optical galaxies on photographic plates (Abell,

1958; Abell et al., 1989). In the 1970s, with the advent of X-ray telescopes above

Earth’s atmosphere, selection of clusters from their extended X-ray emission was possible

(Mitchell et al., 1976; Serlemitsos et al., 1977). Recently, a combination of large format

CCD detectors and objective algorithms to search efficiently for signatures of galaxy

clusters has led to a revival in the use of optical selection in cluster surveys (Gladders

and Yee, 2000; Kepner et al., 1999; Postman et al., 1996). A variety of techniques have

been suggested to exploit the expected luminosity and/or color distribution of galaxies in

clusters. In this appendix we will briefly describe two of them, which are the cornerstones

of this thesis. The information provided in this appendix is mainly based in Gilbank

et al. (2011) and Postman et al. (2012).

A.1 The Red-sequence Cluster Survey-2 (RCS2)

The second Red-sequence Cluster Survey (RCS2) is a ∼ 1000 deg2 , multi-color imaging

survey using the square-degree image, MegaCam, on the Canada-France-Hawaii Tele-

scope.

It was designed to detect clusters of galaxies over a large redshift range, from 0.1 . z . 1.

The primary aim was to build a statistically complete, large (∼ 10000) sample of clusters,

covering a sufficiently long redshift baseline to be able to put constraints on cosmological

parameters via the evolution of the cluster mass function.
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Figure A.1: This figure shows an example of the red-sequence from a composite of
low-redshift clusters. The color of the red-sequence depends on the cluster redshift.
This means that the color can be used to estimate the redshift of the cluster. This

figure was taken from Gladders and Yee (2000)

The second main science goals include building a large sample of high surface brightness,

strongly gravitationally lensed arcs associated with these cluster lenses, and construct

an unprecedented sample of several tens of thousands of galaxy clusters and groups,

spanning a large range of halo masses, in order to study the properties and evolution of

their member galaxies.

The survey uses the well defined red-sequence of early-type galaxies to identify clusters

with a well-understood selection function (Gladders and Yee, 2000). This technique was

used with great success in the 90 square degree R and z survey, RCS1 (Gladders and

Yee, 2005). The red-sequence method involves the construction of many color slices

from the survey data and searching for overdensities of galaxies in these slices. Once

significant overdensities are found, the slice containing the peak signal for the overdensity

gives the cluster candidate’s most probable redshift. Fig. A.1 shows an example of the

red-sequence from a composite of low-redshift clusters. The color of the red-sequence

depends on the cluster redshift. This means that the color can be used to estimate

the redshift of the cluster. The typical accuracy obtained in the Red-sequence Cluster

Surveys using R− z color is ∼ 0.05.

RCS2 reaches average 5σ point-source limiting magnitudes of griz = [24.4, 24.3, 23.7, 22.8],

approximately 1−2 mag deeper than the SDSS. Due to the queue-scheduled nature of the

observations, the data are highly uniform and taken in excellent seeing, mostly FWHM

. 0.7′′ in the r band, making it ideal for the detection and classification of giant arcs.

In this thesis we have worked with a new sample of 29 strong lensing galaxy clusters,

which have been selected through an exhaustive visual inspection of the RCS2 imaging
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data as those having prominent blue arcs around their cores. This search has resulted

in hundreds of strong lensing clusters, which have giving rise to a new survey; the Red-

Sequence Cluster Survey Giant Arc (RCSGA; Bayliss, 2012). From this new survey, we

have selected this subset of 29 clusters to perform a spectroscopic follow-up, in order to

confirm giant arcs and lensed galaxies, as well as to match up multiple-image systems.

A detailed description of this new sample of 29 SL selected galaxy clusters is presented

in chapters 4 and 5.

A.2 The Cluster Lensing and Supernova Survey with Hub-

ble (CLASH)

The Cluster Lensing and Supernova Survey with Hubble (CLASH; Postman et al., 2012)

is a multi-cycle treasury program, using 524 Hubble Space Telescope (HST) orbits to

target 25 galaxy clusters (0.18 < z < 0.89), each in 16 filters with the Wide Field Camera

3 (WFC3; Kimble et al., 2008) and the Advanced Camera for Surveys (ACS; Ford et al.,

2003) over the course of three years (HST cycles 18-20). They are largely drawn from

Abell and MACS cluster catalogs (Abell, 1958; Abell et al., 1989; Ebeling et al., 2007,

2001). 20 clusters were specifically selected by their unperturbed X-ray morphology

with the goal of representing a sample of clusters with regular, unbiased density profiles

that allow for an optimal comparison with models of cosmological structure formation.

As reported in Postman et al. (2012) all the clusters in the sample are fairly X-ray

luminous with X-ray temperatures Tx ≥ 5 keV and show a smooth morphology in their

X-ray surface brightness. For all the systems the separation between the brightest cluster

galaxy (BCG) and the X-ray luminosity centroid is < 20 kpc.

In this thesis we study some of these clusters, specifically we construct strong lensing

models of seven of these CLASH clusters to analyze the concentration-mass relation of

the massive dark matter halos.



Appendix B

RCSGA: spectroscopically

confirmed lensed galaxies

Our FORS2/VLT spectroscopy analysis has discovered/revealed 51 lensed galaxies, cor-

responding to 34 background sources at high redshift that are clearly distorted by the

gravitational potential of the cluster cores.

In this appendix we present the spectra for those 34 background sources in the Figs.

B.1, B.2, B.3, and B.4.
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Figure B.1: FORS2/VLT spectra for ten lensed galaxies with high confidence red-
shifts, labeled as class 3. The spectra are displayed in the observer/rest-frame in the
bottom/top axis, and smoothed to match the spectral resolution of the data. The
locations of spectral lines are identified by red dashed lines and labeled with their cor-
responding ion. The telluric A Band absorption feature is indicated by a vertical shaded
region. From top to bottom − left to right the spectra in each panel correspond to the
following source/multiple-image objects in Tab. 4.2: 1) RCS2 J0004−0103, S1.1; 2)
RCS2 J0034+0225, S1.1; 3) RCS2 J0038+0215, S1.1; 4) RCS2 J0252−1459, S1.2; 5)
RCS2 J0309−1437, S1.1; 6) RCS2 J0327−1326, S1.2; 7) RCS2 J1055−0459, S1.1; 8)

RCS2 J1111+1408, S1.1; 9) RCS2 J1517+1003, S1.1; 10)RCS2 J1519+0840, S1.1.
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Figure B.2: FORS2/VLT spectra for five lensed galaxies with high confidence red-
shifts, labeled as class 3. The spectra are displayed in the same manner as in the previ-
ous figure. From top to bottom − left to right the spectra in each panel correspond to
the following source/multiple-image objects in Tab. 4.2: 11) RCS2 J1526+0432, S1.1;
12) RCS2 J2111−0114, S1.2; 13) RCS2 J2135−0102, S1.1; 14) RCS2 J2135−0102, S2.1;

15) RCS2 J2329−0102, S2.1.
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Figure B.3: FORS2/VLT spectra for nine lensed galaxies with medium confidence
redshifts, labeled as class 2. The spectra are displayed in the same manner as in the
previous figure. From top to bottom − left to right the spectra in each panel correspond
to the following source/multiple-image objects in Tab. 4.2: 1) RCS2 J0047+0507, S1.3;
2) RCS2 J0052+0433, S1.2; 3) RCS2 J0052+0433, S2.1; 4) RCS2 J0309−1437, S1.1; 5)
RCS2 J1250+0244, S1.2; 6) RCS2 J1526+0432, S2.1; 7) RCS2 J2151−0138, S1.1; 8)

RCS2 J2329−0102, S1.1; 9) RCS2 J2329−1317, S1.2.
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Figure B.4: FORS2/VLT spectra for ten lensed galaxies with low confidence red-
shifts, labeled as class 1. The spectra are displayed in the same manner as in the previ-
ous figure. From top to bottom − left to right the spectra in each panel correspond to
the following source/multiple-image objects in Tab. 4.2: 1) RCS2 J0057+0209, S1.1;
2) RCS2 J1101−0602, S1.1; 3) RCS2 J1108−0456, S1.1; 4) RCS2 J1108−0456, S4.1; 5)
RCS2 J1119−0728, S1.1; 6) RCS2 J1125−0628, S1.1; 7) RCS2 J1511+0630, S1.2; 8)

RCS2 J2147−0102, S1.2; 9) RCS2 J2313−0104, S1.2; 10)RCS2 J2336−0608, S1.1.



Appendix C

RCSGA: strong lensing and

dynamical mass models

In this appendix we present the complete results of our innovative technique by com-

bining strong lensing (SL) signatures and velocity dispersion information of the cluster

members. We perform our models with the parametric software LENSTOOL (Jullo

et al., 2007).

We report the best-fitting model parameters derived of the analysis where SL information

of the giant arcs were used alone, as well as when they were combined with dynamical

mass of the cluster members. These results are tabulated in the Tab. C.1 and C.2,

respectively.

We also present the multiple-image systems used to constrain our models, as well as the

derived critical curves from our best-fitting models computed at zs = zarc. In all figures,

multiple images are labeled by yellow ID numbers and critical lines are displayed by red

curves. It should be noted that the ID of the lensed galaxies reported in the Tab. 4.2

correspond to the same ID displayed in these figures.
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Table C.1: The best-fitting model parameters for the SL only analysis

Name χ2/d.o.f. xoffset
d yoffset

d eΣ θe
e rs c200 rcut σgal zarc,2 rarc,3

[′′] [′′] [deg] [kpc] [kpc] [km s−1]

RCS2 J0004−0103 1.17/3 – – 0.26+0.13
−0.06 312+2

−7 156+37
−142 4.7+9.9

−1.9 – – – –

RCS2 J0034+0225 1.36/1 – – 0.28+0.06
−0.17 38+0

−18 116+27
−64 5.2+4.9

−2.1 88+107
−6 162+3

−63 – –

RCS2 J0038+0215 1.35/1 8.4+0.5
−3.3 −1.4+2.2

−2.3 0.06+0.13
−0.05 9+19

−7 108+4
−77 4.5+6.5

−1.8 55+53
−43 191+98

−45 2.2+3.1
−0.7 –

RCS2 J0047+0507 1.24/1 0.4+2.3
−1.3 −0.5+4.4

−0.3 0.55+0.00
−0.19 80+9

−9 71+56
−20 7.4+3.0

−3.0 33+101
−11 150+67

−49 – –

RCS2 J0052+0433 2.57/2 5.5+3.4
−2.2 −3.3+4.7

−5.5 0.49+0.15
−0.15 64+14

−10 39+65
−8 17.7+7.1

−9.4 16+88
−5 294+20

−139 1.2+1.0
−0.2 –

RCS2 J0057+0209 6.89/3 – – 0.24+0.00
−0.13 82+12

−9 329+59
−222 4.3+4.1

−1.7 48+126
−15 60+89

−8 – –

RCS2 J0252−1459 1.13/1 – – 0.44+0.10
−0.09 204+19

−9 66+613
−0 7.6+7.1

−3.7 105+41
−43 52+161

−0 – –

RCS2 J0309−1437 3.96/1 −0.1+0.0
−3.5 −0.2+0.1

−4.5 0.200+.09
−0.05 10800

−18 122048
−71 4.804.9

−1.9 49038
−26 205023

−46 2.6+1.6
−0.1 3.1+0.2

−1.4

RCS2 J0327−1326a 2.49/4 −1.8+3.8
−5.9 −0.1+2.8

−3.4 0.38+0.29
−0.02 4+0

−9 100+212
−1 8.1+3.2

−5.7 91+97
−67 142+77

−3 – –

RCS2 J0859−0345 2.21/3 −1.4+2.5
−0.1 1.5+0.0

−1.2 0.10+0.10
−0.06 −2+11

−1 242+142
−89 3.7+1.5

−1.5 – – – –

RCS2 J1055−0459 6.32/2 −1.0+1.8
−0.0 −0.9+1.8

−0.0 0.75+0.00
−0.32 126+6

−11 63+33
−13 6.3+2.5

−2.5 184+8
−142 147+59

−65 – –

RCS2 J1101−0602 1.06/1 – – 0.07+0.22
−0.05 27+10

−17 36+127
−5 10.9+4.4

−7.4 118+2
−111 31+134

−6 – –

RCS2 J1108−0456 5.45/1 4.6+0.3
−6.4 2.4+1.5

−3.6 0.46+0.28
−0.05 21+7

−8 328+21
−126 3.2+1.3

−1.3 15+128
−4 101+26

−59 – –

RCS2 J1111+1408 1.06/3 – – 0.46+0.13
−0.24 56+5

−8 170+264
−17 5.8+2.3

−2.6 – – – –

RCS2 J1119−0728 1.02/1 – – 0.21+0.18
−0.16 143+10

−7 71+85
−52 4.7+12.0

−1.9 189+6
−135 271+32

−215 – –

RCS2 J1125−0628 1.01/2 – – 0.54+0.11
−0.22 88+8

−7 36+110
−4 14.8+5.9

−9.6 173+0
−161 33+102

−1 – –

RCS2 J1250+0244 1.03/1 – – 0.53+0.16
−0.22 136+8

−5 85+206
−62 5.8+13.7

−2.3 4+91
−1 125+68

−101 – –

RCS2 J1511+0630 1.01/1 – – 0.51+0.03
−0.16 −9+8

−10 119+9
−98 5.1+12.3

−2.0 181+13
−127 83+81

−69 – –

RCS2 J1517+1003 1.03/1 −3.9+8.4
−0.9 −5.0+4.6

−1.6 0.40+0.19
−0.16 30+6

−3 40+148
−1 18.9+7.6

−3.8 93+49
−88 67+113

−21 – –

RCS2 J1519+0840 1.22/1 −18.0+4.4
−0.9 −2.3+2.2

−2.6 0.24+0.06
−0.22 −2+15

−2 289+140
−137 3.9+1.6

−1.6 95+77
−43 83+127

−2 1.5+0.3
−0.3 1.2+0.1

−0.3

RCS2 J1526+0432 2.52/2 −0.5+2.1
−2.4 2.5+1.8

−3.0 0.50+0.14
−0.28 119+5

−4 182+51
−51 4.3+2.3

−1.7 127+64
−65 201+36

−88 1.1+1.8
−0.1 –

SDSS J2111−0114b 2.66/1 −3.6+3.6
−0.3 6.5+2.1

−10.1 0.10+0.24
−0.02 103+3

−5 217+192
−31 4.7+1.9

−2.1 84+62
−31 57+39

−45 – –

RCS2 J2135−0102 3.03/1 −5.7+7.8
−0.2 6.7+1.0

−13.0 0.20+0.10
−0.06 114+1

−11 176+192
−24 7.9+3.2

−4.0 20+77
−15 76+110

−32 0.7+2.9
−0.1 –

RCS2 J2147−0102 1.02/1 – – 0.60+0.04
−0.34 76+12

−10 13+355
−1 20.5+8.2

−0.3 82+187
−58 163+168

−118 – –

RCS2 J2151−0138 1.03/1 0.6+1.4
−0.6 −5.9+3.0

−2.0 0.05+0.09
−0.02 79+14

−3 325+6
−232 4.6+6.0

−1.8 140+55
−39 120+45

−14 – –

RCS2 J2313−0104 1.25/1 – – 0.29+0.10
−0.25 95+3

−19 122+57
−81 4.9+6.2

−2.0 35+91
−3 125+44

−82 – –

RCS2 J2329−1317 2.29/1 −0.9+2.7
−1.5 4.7+0.1

−4.6 0.55+0.04
−0.22 72+15

−2 252+89
−178 3.3+4.3

−1.3 59+37
−38 182+28

−60 3.2+2.7
−0.5 –

RCS2 J2329−0120 4.07/2 – – 0.65+0.00
−0.16 58+5

−10 54+23
−30 10.6+8.5

−4.2 155+0
−93 111+55

−20 – –

RCS2 J2336−0608 3.41/1 −12.0+1.4
−0.0 11.5+0.4

−6.2 0.19+0.21
−0.08 121+3

−8 424+22
−317 3.0+5.0

−1.2 131+36
−66 85+18

−20 1.4+0.1
−0.1 2.9+0.1

−0.2

PLCK G004.5−19.5c 1.08/1 – – 0.38+0.15
−0.22 53+49

−2 237+134
−196 5.2+12.4

−2.3 33+34
−25 117+171

−58 – –

Note – Summary of the SL only models. Errors indicates 1σ errors on each parameter.

aPreviously described in Wuyts et al. (2010) and Sharon et al. (2012).
bAlso reported in Bayliss et al. (2011) and Oguri et al. (2012).
cThis clusters belongs to the Planck Early SZ sample (Planck Collaboration et al., 2011). Previously
described in Sifón et al. (2014), where we used the same technique applied in this work.
dThe offsets are measured from the BCG centroids.
eThe direction of the elliptical mass distribution measured counterclockwise from the West and is
related to the position angle (P.A.) by P.A = θe − 90◦.
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Table C.2: The best-fitting model parameters for the SL and M200 analysis

Name χ2/d.o.f. xoffset
d yoffset

d eΣ θe
e rs c200 rcut σgal zarc,2 rarc,3

[′′] [′′] [deg] [kpc] [kpc] [km s−1]

RCS2 J0004−0103 1.17/4 − − 0.32+0.07
−0.12 311+3

−5 80+97
−65 7.1+7.0

−3.9 − − − −
RCS2 J0034+0225 1.98/2 − − 0.17+0.17

−0.06 34+4
−14 140+13

−69 5.2+2.9
−2.1 91+103

−9 141+19
−44 − −

RCS2 J0038+0215 1.99/2 8.7+0.2
−3.6 −1.5+2.3

−2.2 0.08+0.12
−0.06 15+13

−14 130+9
−79 5.9+3.5

−2.4 17+90
−6 184+99

−72 2.2+3.1
−0.7 −

RCS2 J0047+0507 2.38/2 0.6+2.1
−1.5 1.2+2.7

−2.0 0.47+0.08
−0.11 79+9

−8 123+9
−72 4.9+4.6

−2.0 25+108
−4 152+67

−51 − −
RCS2 J0052+043 2.32/3 5.0+3.8

−1.8 −2.6+4.0
−5.5 0.44+0.21

−0.02 66+12
−9 34+41

−1 19.4+7.8
−9.0 29+47

−18 271+56
−100 1.2+1.0

−0.1 −
RCS2 J0057+0209 6.93/4 − − 0.23+0.01

−0.11 88+6
−14 243+98

−86 5.1+2.0
−2.0 98+28

−65 82+60
−31 − −

RCS2 J0252−1459 2.98/2 − − 0.49+0.06
−0.13 203+20

−8 243+370
−179 3.5+8.1

−1.4 76+70
−14 52+162

−0 − −
RCS2 J0309−1437 3.96/2 −0.1+0.0

−3.5 −0.2+0.1
−4.5 0.20+0.09

−0.05 108+0
−18 122+48

−71 4.8+4.9
−1.9 49+38

−26 205+23
−46 2.2+0.2

−1.4 3.7+0.9
−0.7

RCS2 J0327−1326 1.43/5 −2.2+2.2
−3.2 −1.9+2.6

−2.5 0.21+0.18
−0.09 8+2

−12 137+245
−33 7.9+3.2

−5.2 79+112
−70 55+137

−35 − −
RCS2 J0859−0345 2.34/4 −1.3+2.4

−0.2 1.5+0.0
−1.1 0.10+0.08

−0.06 −2+10
−2 339+2

−137 3.0+1.2
−1.2 − − − −

RCS2 J1055−0459 10.14/3 −1.0+1.7
−0.0 −1.0+1.9

−0.0 0.72+0.02
−0.29 122+9

−7 94+8
−43 6.5+3.3

−2.6 44+148
−1 130+59

−48 − −
RCS2 J1101−0602 1.11/2 − − 0.04+0.15

−0.03 25+13
−14 125+12

−73 5.2+3.5
−2.1 97+0

−90 26+113
−2 − −

RCS2 J1108−0456 5.45/2 4.6+0.3
−6.4 2.4+1.5

−3.6 0.46+0.28
−0.05 21+7

−8 328+21
−126 3.2+1.3

−1.3 15+128
−4 101+26

−59 1.5+1.0
−0.2 2.8+1.3

−0.5

RCS2 J1111+1408 1.09/4 − − 0.40+0.19
−0.17 56+6

−7 288+142
−130 4.3+1.9

−1.7 − − − −
RCS2 J1119−0728 1.31/2 − − 0.14+0.16

−0.09 137+16
−2 95+31

−14 5.2+2.1
−2.1 86+108

−4 232+4
−149 − −

RCS2 J1125−0628 1.00/3 − − 0.32+0.32
−0.01 89+9

−8 71+73
−40 9.7+6.1

−4.6 57+115
−45 32+104

−0 − −
RCS2 J1250+0244 1.47/2 − − 0.35+0.34

−0.04 136+8
−5 96+27

−75 5.8+12.5
−2.3 9+86

−6 51+142
−27 − −

RCS2 J1511+0630 1.03/2 − − 0.51+0.03
−0.16 −8+7

−10 70+6
−48 7.1+9.3

−2.8 180+14
−107 95+49

−82 − −
RCS2 J1517+1003 1.06/2 −3.7+8.4

−1.0 −5.5+4.9
−1.1 0.38+0.21

−0.13 31+4
−4 58+62

−13 13.6+5.4
−6.4 54+52

−47 95+73
−30 − −

RCS2 J1519+0840 2.50/2 −18.2+3.6
−0.7 −2.7+2.2

−2.2 0.23+0.02
−0.20 −1+11

−3 412+19
−228 3.0+1.6

−1.2 67+96
−5 100+82

−0 1.5+0.3
−0.3 1.2+0.1

−0.3

RCS2 J1526+0432 2.64/3 −1.2+2.6
−1.7 2.4+2.0

−2.9 0.46+0.13
−0.23 119+5

−4 146+26
−6 5.4+2.2

−2.2 93+100
−11 205+12

−68 1.1+1.5
−0.1 −

SDSS J2111−0114 2.89/2 −3.5+3.3
−0.4 6.5+2.2

−10.1 0.12+0.22
−0.03 103+3

−5 355+53
−171 3.2+1.7

−1.3 69+77
−17 80+16

−68 − −
RCS2 J2135−0102 4.25/2 −6.8+8.9

−0.8 8.8+0.8
−15.3 0.26+0.03

−0.07 114+2
−8 205+185

−29 6.8+2.7
−3.1 66+30

−61 82+108
−39 0.7+2.2

−0.2 −
RCS2 J2147−0102 2.81/2 − − 0.33+0.31

−0.01 73+15
−7 33+7

−21 11.2+12.8
−4.5 245+25

−211 147+83
−92 − −

RCS2 J2151−0138 1.05/2 1.4+1.1
−1.4 −6.3+2.8

−1.9 0.04+0.08
−0.02 84+9

−9 209+65
−106 6.3+3.7

−2.5 102+93
−1 119+39

−29 − −
RCS2 J2313−0104 1.40/2 − − 0.22+0.18

−0.16 91+6
−15 129+5

−78 5.2+4.6
−2.1 33+82

−2 109+48
−57 − −

RCS2 J2329−1317 4.44/2 0.1+1.7
−2.5 0.2+4.5

−0.1 0.43+0.16
−0.16 83+5

−12 306+6
−203 3.5+2.9

−1.4 20+74
−0 174+36

−82 3.3+2.8
−0.6 −

RCS2 J2329−0120 4.81/3 − − 0.65+0.00
−0.14 56+6

−8 46+16
−23 10.0+7.5

−4.0 139+8
−57 145+26

−39 − −
RCS2 J2336−0608 3.37/2 −12.0+1.0

−0.0 11.3+0.6
−4.6 0.18+0.11

−0.06 121+2
−8 391+5

−215 3.2+2.1
−1.3 132+25

−58 81+20
−10 1.4+0.1

−0.1 3.0+0.1
−0.2

PLCK G004.5−19.5 1.09/2 − − 0.35+0.15
−0.16 53+7

−2 311+63
−214 4.3+5.4

−1.1 53+12
−46 93+162

−40 − −

Note – Summary of the SL and M200 models. Errors indicates 1σ errors on each parameter.

aPreviously described in Wuyts et al. (2010) and Sharon et al. (2012).
bAlso reported in Bayliss et al. (2011) and Oguri et al. (2012).
cThis clusters belongs to the Planck Early SZ sample (Planck Collaboration et al., 2011). Previously
described in Sifón et al. (2014), where we used the same technique applied in this work.
dThe offsets are measured from the BCG centroids.
eThe direction of the elliptical mass distribution measured counterclockwise from the West and is
related to the position angle (P.A.) by P.A = θe − 90◦.
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RCS2 J0004−0103 RCS2 J0034+0225

RCS2 J0038+0215 RCS2 J0047+0507

RCS2 J0052+0433 RCS2 J0057+0209

Figure C.1: The best model derived from our SL and dynamical analysis. The
multiple images are labeled by yellow ID numbers while critical curves are displayed by

red curves. Each cluster is labeled at the top with its cluster name.
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RCS2 J0252−1459 RCS2 J0309−1437

RCS2 J0327−1326 RCS2 J0859−0345

RCS2 J1055−0459 RCS2 J1101−0602

Figure C.2: The best model derived from our SL and dynamical analysis. The
multiple images are labeled by yellow ID numbers while critical curves are displayed
by red curves. Each cluster is labeled at the top with its cluster name. The im-
ages of the cluster RCS2J0327−1326 were taken from the HST website. The clusters
RCS2J0252−1459, RCS2J1055−0459, and RCS2J1101−0602 present a small effective
Einstein radius and their arcs seem to be more affected by the central galaxies than
the hole clusters. Conservatively, we left out these three systems of our c−M relation

analysis, although they are always shown in the plots.
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RCS2 J1108−0456 RCS2 J1111+1408

RCS2 J1119−0728 RCS2 J1125−0628

RCS2 J1250+0244 RCS2 J1511+0630

Figure C.3: The best model derived from our SL and dynamical analysis. The
multiple images are labeled by yellow ID numbers while critical curves are displayed by

red curves. Each cluster is labeled at the top with its cluster name.
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RCS2 J1517+1003 RCS2 J1519+0840

RCS2 J1526+0432 RCS2 J2111−0114

RCS2 J2135−0102 RCS2 J2147−0102

Figure C.4: The best model derived from our SL and dynamical analysis. The
multiple images are labeled by yellow ID numbers while critical curves are displayed by
red curves. Each cluster is labeled at the top with its cluster name. The images of the

cluster RCS2J2111−011 were taken from the HST website.
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RCS2 J2151−0138 RCS2 J2323−0104

RCS2 J2329−0120 RCS2 J2329−1317

RCS2 J2336−0608

Figure C.5: The best model derived from our SL and dynamical analysis. The
multiple images are labeled by yellow ID numbers while critical curves are displayed by

red curves. Each cluster is labeled at the top with its cluster name.



Appendix D

RCSGA: spectroscopically

confirmed cluster members

The FORS2/VLT spectroscopy observations of the RCSGA cluster sample have yielded

∼ 700 cluster members. This spectroscopic information has been used to measure ve-

locity dispersions and dynamical masses.

In this appendix we report all the spectroscopically confirmed cluster members in Tab.

D.1.

Table D.1: The FORS2/VLT Spectroscopic redshifts for cluster members

Cluster R.A. Dec. z

(◦) (◦) z

RCS2J0004−0103 – – –

– 1.164037228 -1.031056523 0.5178

– 1.187413931 -1.032596350 0.5175

– 1.218209743 -1.074513793 0.5110

– 1.252925158 -1.056319118 0.5151

– 1.268463135 -1.058558226 0.5106

– 1.264403820 -1.068215370 0.5160

– 1.263284087 -1.077172756 0.5165

– 1.172435999 -1.036445022 0.5143

– 1.177335262 -1.039104342 0.5130

RCS2J0034+0225 – – –

– 8.60755825 2.47035551 0.3848

Continued on next page
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Table D.1 – Continued from previous page

Cluster R.A. Dec. z

(◦) (◦) z

– 8.61596298 2.46720552 0.3836

– 8.61582470 2.45824718 0.3860

– 8.63711643 2.45523882 0.3788

– 8.61848736 2.44866109 0.3771

– 8.61498356 2.42948627 0.3848

– 8.60545826 2.42612505 0.3881

– 8.59978294 2.41640019 0.3819

– 8.62744999 2.40961123 0.3902

– 8.62941265 2.40513062 0.3831

– 8.62535000 2.39197516 0.3804

– 8.63494587 2.38826680 0.3823

– 8.58542538 2.37783909 0.3873

– 8.58773708 2.37021112 0.3856

– 8.60755825 2.47035551 0.3845

– 8.62345791 2.46811676 0.3828

– 8.64559174 2.45677781 0.3838

– 8.63536644 2.44117236 0.3806

– 8.58983707 2.43795276 0.3849

– 8.59971237 2.42787504 0.3829

– 8.62247944 2.41597795 0.3855

– 8.64237118 2.40828061 0.3854

– 8.58269215 2.40492225 0.3921

– 8.64139175 2.40170288 0.3932

– 8.63697529 2.39078617 0.3843

– 8.58773708 2.37028074 0.3858

RCS2J0038+0215 – – –

– 9.710704803 2.284380198 0.6930

– 9.713926315 2.281441212 0.6990

– 9.715467453 2.278501749 0.6926

– 9.719669342 2.276262283 0.6919

– 9.730455399 2.268284321 0.7009

– 9.7328366 2.2645053 0.6931

– 9.731716156 2.261846066 0.6970

– 9.735918045 2.256667376 0.7019

Continued on next page
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Table D.1 – Continued from previous page

Cluster R.A. Dec. z

(◦) (◦) z

– 9.731575966 2.254567862 0.6893

– 9.747263908 2.245050192 0.6985

– 9.719949722 2.238331795 0.7046

– 9.721350670 2.232453346 0.7026

– 9.695717812 2.220416069 0.6978

– 9.691093445 2.301945686 0.6976

– 9.692354202 2.299146414 0.6904

– 9.7328366 2.2645053 0.6931

– 9.740119934 2.256317377 0.6916

– 9.738719940 2.247639418 0.6969

– 9.735077858 2.243860483 0.6946

– 9.692635536 2.234622478 0.6973

RCS2J0047+0507 – – –

– 11.99014187 5.15903902 0.4276

– 11.97510433 5.15134192 0.4292

– 11.97229576 5.15015268 0.4279

– 11.95683765 5.15449190 0.4347

– 11.95985794 5.14056396 0.4259

– 11.95985794 5.14056396 0.4267

– 11.96393299 5.11159420 0.4198

– 11.94672108 5.11614180 0.4300

– 11.94172955 5.11222219 0.4217

– 11.95149612 5.09962797 0.4269

– 11.93793774 5.10564423 0.4262

– 11.92992878 5.10424423 0.4323

– 11.93337059 5.09066963 0.4345

RCS2J0052+0433 – – –

– 13.06461620 4.57020283 0.7178

– 13.05008316 4.57629156 0.7271

– 13.04671669 4.56215572 0.7196

– 13.04545021 4.55781698 0.7238

– 13.03569126 4.56159735 0.7273

RCS2J0057+0209 – – –

– 14.327603340 2.176548958 0.2904

Continued on next page
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Table D.1 – Continued from previous page

Cluster R.A. Dec. z

(◦) (◦) z

– 14.344270706 2.188446283 0.2942

– 14.352395058 2.178369045 0.3001

– 14.346652985 2.152475357 0.2941

– 14.362059593 2.178929090 0.2957

– 14.351835251 2.140858412 0.2946

– 14.370182991 2.156254768 0.2975

– 14.369202614 2.142678022 0.2899

– 14.371583939 2.138478994 0.3005

– 14.389162064 2.165352345 0.2911

– 14.392804146 2.159333706 0.2925

– 14.392663956 2.147016764 0.2882

– 14.398825645 2.147716522 0.2958

– 14.335797310 2.185297012 0.2943

– 14.351063728 2.172280550 0.2877

– 14.357787132 2.183617830 0.2930

– 14.369273186 2.153105497 0.2860

– 14.372353554 2.147926807 0.2893

– 14.393083572 2.171230793 0.2939

RCS2J0252-1459 – – –

– 43.17150497 -14.94787788 0.2800

– 43.17324066 -14.95137787 0.2701

– 43.15259552 -14.96915054 0.2798

– 43.17193604 -14.97216129 0.2812

– 43.16411591 -14.97923088 0.2805

– 43.18657684 -14.98175049 0.2698

– 43.17903900 -14.98524761 0.2643

– 43.19975662 -14.98839760 0.2718

– 43.17721558 -14.99704170 0.2682

– 43.17164993 -14.99858093 0.2635

– 43.17143250 -14.99942017 0.2650

– 43.17267609 -15.00986958 0.2657

– 43.18434525 -15.01230240 0.2590

– 43.16131973 -15.02514172 0.2732

– 43.16632462 -15.02863312 0.2620

Continued on next page
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Table D.1 – Continued from previous page

Cluster R.A. Dec. z

(◦) (◦) z

– 43.17618179 -15.03155804 0.2695

– 43.15764618 -15.03921127 0.2647

– 43.17779922 -15.04436398 0.2636

– 0.00000000 0.00000000 0.2628

RCS2J0309-1437 – – –

– 47.488540649 -14.582889557 0.8111

– 47.486816406 -14.641256332 0.8033

– 47.484069824 -14.654832840 0.8070

– 47.481323242 -14.654973984 0.8057

– 47.477416992 -14.655533791 0.8073

– 47.458457947 -14.599270821 0.8042

– 47.452819824 -14.613548279 0.8099

– 47.439874 -14.621141 0.8036

– 47.438064575 -14.621106148 0.8126

– 47.433727264 -14.626145363 0.8046

– 47.424903870 -14.603610039 0.8116

– 47.419261932 -14.610467911 0.8053

– 47.415355682 -14.624744415 0.8134

– 47.404651642 -14.611865997 0.8045

– 47.439874 -14.621141 0.8036

– 47.438064575 -14.621106148 0.8126

– 47.438064575 -14.621106148 0.8125

RCS2J0327-1326 – – –

– 51.86061478 -13.43758106 0.5624

– 51.87525177 -13.45442772 0.5537

– 51.90061951 -13.48007298 0.5618

– 51.91069031 -13.47627831 0.5604

– 51.91142654 -13.48418617 0.5643

– 51.84401703 -13.46564198 0.5577

– 51.88822937 -13.46377468 0.5583

– 51.84124756 -13.46314716 0.5720

– 51.86796951 -13.45788860 0.5724

– 51.84029770 -13.45658875 0.5600

– 51.85223389 -13.45660019 0.5634
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(◦) (◦) z

– 51.87660217 -13.45558357 0.5641

– 51.84815216 -13.45533657 0.5601

– 51.88372040 -13.45484734 0.5551

– 51.85322952 -13.45486641 0.5614

– 51.86703873 -13.45384121 0.5625

– 51.83876038 -13.45234203 0.5679

– 51.86246490 -13.45211124 0.5619

– 51.85461044 -13.45181370 0.5590

– 51.87912369 -13.44970512 0.5597

– 51.88410568 -13.44788361 0.5744

– 51.86850739 -13.44762802 0.5668

– 51.89250565 -13.44725800 0.5630

– 51.83625793 -13.44524956 0.5737

– 51.86742783 -13.44476128 0.5577

– 51.84402466 -13.44420528 0.5617

– 51.85091400 -13.44293880 0.5604

– 51.84140015 -13.44239140 0.5646

– 51.86442566 -13.44153023 0.5678

– 51.88077545 -13.43953609 0.5660

– 51.84952545 -13.43935299 0.5669

– 51.89400101 -13.43850803 0.5583

– 51.86323547 -13.43645859 0.5682

– 51.87012863 -13.43568039 0.5674

– 51.89244080 -13.43462467 0.5686

– 51.87011337 -13.43076134 0.5649

– 51.84202194 -13.42878342 0.5688

– 51.87432861 -13.42666149 0.5640

– 51.85435104 -13.42581081 0.5596

– 51.85784912 -13.42388630 0.5529

– 51.84763718 -13.42356682 0.5642

– 51.86972046 -13.42245865 0.5566

– 51.88482666 -13.42052460 0.5745

– 51.87628555 -13.41940022 0.5631

RCS2J0859-0345 – – –
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Cluster R.A. Dec. z

(◦) (◦) z

– 134.795593262 -3.736541986 0.6589

– 134.796569824 -3.741720438 0.6433

– 134.792358398 -3.757816076 0.6488

– 134.804855347 -3.747738838 0.6454

– 134.809616089 -3.753477335 0.6437

– 134.843566895 -3.767752647 0.6606

– 134.798812866 -3.758236170 0.6484

– 134.805831909 -3.752917528 0.6454

RCS2J1055-0459 – – –

– 163.87594604 -4.96433258 0.6052

– 163.89898682 -4.98308802 0.6119

– 163.89672852 -4.98994637 0.6105

– 163.90234375 -4.99652481 0.6030

– 163.90684509 -4.99918413 0.6009

– 163.91372681 -4.99974346 0.6091

– 163.92300415 -5.00254250 0.6087

– 163.93241882 -5.00996017 0.6079

– 163.94900513 -5.01485777 0.6042

– 163.87608337 -4.96433258 0.6052

– 163.88984680 -4.96615267 0.6061

– 163.89364624 -4.97399092 0.6031

– 163.88577271 -4.99456501 0.6113

– 163.89433289 -4.99078608 0.6149

– 163.91372681 -4.99974346 0.6102

– 163.93142700 -5.01415920 0.6076

– 163.93916321 -5.01163960 0.6087

– 163.86785889 -5.00203943 0.6041

– 163.89237976 -4.98055553 0.6056

– 163.88851929 -4.99623108 0.6114

– 163.89785767 -4.98650408 0.6075

– 163.90411377 -4.99448156 0.6009

– 163.90959167 -4.99889088 0.6121

– 163.91128540 -5.01309681 0.6078

– 163.92231750 -5.00343943 0.6077
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(◦) (◦) z

– 163.89877319 -4.98811340 0.6135

– 163.90039062 -5.00085020 0.6102

– 163.91662598 -4.99210215 0.6047

– 163.90916443 -5.01806593 0.6105

RCS2J1101-0602 – – –

– 165.467132568 -6.018191814 0.4843

– 165.475387573 -6.034847736 0.4858

– 165.483612061 -6.046044827 0.4899

– 165.470169067 -6.049823761 0.4814

– 165.461868286 -6.057101727 0.4887

– 165.491836548 -6.060390472 0.4829

– 165.470169067 -6.068509102 0.4887

– 165.452011108 -6.100700378 0.4881

RCS2J1108-0456 – – –

– 167.120620728 -4.917506695 0.4212

– 167.102630615 -4.911419392 0.4202

– 167.086547852 -4.907710552 0.4094

– 167.078750610 -4.919397831 0.4122

– 167.082260132 -4.936333656 0.4127

– 167.076721191 -4.938922882 0.4136

– 167.06649 -4.9409874 0.4070

– 167.06713 -4.94484 0.4075

– 167.066879272 -4.945431232 0.4118

– 167.066741943 -4.950119972 0.4119

– 167.050018311 -4.956418037 0.4153

– 167.047073364 -4.960826874 0.4085

– 167.049102783 -4.979022503 0.4098

– 167.039474487 -4.994627953 0.4110

– 167.089645386 -4.908410549 0.4070

– 167.098419189 -4.936822891 0.4073

– 167.066467285 -4.912329674 0.4084

– 167.083389282 -4.936123371 0.4051

– 167.071945190 -4.929965019 0.4046

– 167.091476440 -4.952009201 0.4115
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(◦) (◦) z

– 167.091476440 -4.952009201 0.4049

– 167.06649 -4.9409874 0.4070

– 167.06713 -4.94484 0.4075

– 167.066955566 -4.945291519 0.4118

– 167.067306519 -4.951589584 0.4103

– 167.051574707 -4.948230267 0.4213

– 167.065475464 -4.967825413 0.4055

– 167.032455444 -4.944660187 0.4125

– 167.039199829 -4.954108238 0.4072

– 167.064834595 -4.981751919 0.4173

– 167.016586304 -4.952497482 0.4148

– 167.043777466 -4.994627953 0.4105

RCS2J1111+1408 – – –

– 167.905502319 14.182679176 0.2182

– 167.868103027 14.160989761 0.2237

– 167.861465454 14.172607422 0.2167

– 167.849624634 14.137617111 0.2149

– 167.834625244 14.147414207 0.2170

– 167.835342407 14.123060226 0.2164

– 167.832168579 14.118721008 0.2197

– 167.804458618 14.121096611 0.2193

– 167.900726318 14.184848785 0.2197

– 167.889602661 14.160918236 0.2194

– 167.883544922 14.119070053 0.2268

– 167.879226685 14.126208305 0.2270

– 167.857421875 14.140625954 0.2210

– 167.865509033 14.129849434 0.2255

– 167.850936890 14.135867119 0.2164

– 167.849334717 14.131808281 0.2246

– 167.817291260 14.180373192 0.2213

– 167.835205078 14.123270035 0.2230

– 167.820617676 14.136005402 0.2232

– 167.796081543 14.155595779 0.2202

RCS2J1119-0728 – – –
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(◦) (◦) z

– 169.787857056 -7.467146397 1.0062

– 169.800354004 -7.466726780 1.0194

– 169.809677124 -7.469526291 1.0090

– 169.778610229 -7.474214554 1.0171

RCS2J1125-0628 – – –

– 171.383819580 -6.441330910 0.4740

– 171.382553101 -6.465124607 0.4743

– 171.380294800 -6.479260921 0.4771

– 171.376220703 -6.473382473 0.4733

– 171.373123169 -6.475481987 0.4816

– 171.367202759 -6.478561401 0.4763

– 171.361145020 -6.488079071 0.4760

– 171.332824707 -6.466243267 0.4762

– 171.388610840 -6.466384411 0.4695

– 171.380447388 -6.487518787 0.4692

– 171.380447388 -6.487518787 0.4736

– 171.371292114 -6.464984894 0.4725

– 171.367202759 -6.479960918 0.4753

RCS2J1250+0244 – – –

– 192.667953491 2.762478590 0.6907

– 192.660736084 2.740713835 0.6923

– 192.680068970 2.750511408 0.6857

– 192.676712036 2.745332718 0.6964

– 192.683914185 2.740503788 0.6923

– 192.684265137 2.733995438 0.6903

– 192.683853149 2.715240002 0.6870

– 192.701583862 2.724407673 0.6930

– 192.721405029 2.721117973 0.6890

– 192.674743652 2.766047716 0.6909

– 192.679153442 2.748831987 0.6926

– 192.682174683 2.740364075 0.6846

– 192.682174683 2.740364075 0.6961

– 192.664306641 2.719858885 0.6950

– 192.687423706 2.735045195 0.6923
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(◦) (◦) z

– 192.685943604 2.719858885 0.6861

RCS2J1511+0630 – – –

– 227.952606201 6.532571793 0.5513

– 227.963592529 6.529911995 0.5551

– 227.955139160 6.520395279 0.5533

– 227.942047119 6.505838871 0.5541

– 227.936691284 6.501500130 0.5502

– 227.934783936 6.491003036 0.5500

– 227.945770264 6.487223625 0.5473

– 227.935211182 6.451113224 0.5534

– 227.941696167 6.519065857 0.5499

– 227.944503784 6.516266346 0.5498

– 227.944503784 6.516266346 0.5529

– 227.918090820 6.493802071 0.5498

– 227.918655396 6.488903046 0.5580

– 227.967407227 6.484563828 0.5512

– 227.935287476 6.453072548 0.5500

RCS2J1517+1003 – – –

– 229.237045288 10.104122162 0.6376

– 229.223037720 10.084175110 0.6456

– 229.240600586 10.088445663 0.6469

– 229.240524292 10.084457397 0.6458

– 229.237899780 10.077178955 0.6354

– 229.250839233 10.074729919 0.6488

– 229.256317139 10.067381859 0.6454

– 229.258026123 10.065562248 0.6453

– 229.262207031 10.064653397 0.6490

– 229.278137207 10.067312241 0.6456

– 229.265335083 10.045967102 0.6423

– 229.270599365 10.046596527 0.6460

– 229.277633667 10.045826912 0.6384

– 229.287796021 10.044707298 0.6373

– 229.272933960 10.027491570 0.6460

– 229.292556763 10.031619072 0.6431
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(◦) (◦) z

– 229.282104492 10.017483711 0.6552

– 229.276275635 10.010625839 0.6439

– 229.290145874 10.011674881 0.6396

– 229.276779175 10.003067970 0.6436

– 229.246429443 10.108181000 0.6469

– 229.239685059 10.080958366 0.6407

– 229.235275269 10.076548576 0.6379

– 229.249771118 10.069271088 0.6427

– 229.254318237 10.068572044 0.6460

– 229.255523682 10.065002441 0.6411

– 229.255737305 10.062273026 0.6375

– 229.266265869 10.057864189 0.6426

– 229.282745361 10.045967102 0.6469

– 229.263198853 9.998799324 0.6435

– 229.280761719 10.003486633 0.6411

RCS2J1519+0840 – – –

– 229.87594604 8.71224117 0.3240

– 229.86956787 8.69873619 0.3127

– 229.83332825 8.67941952 0.3096

– 229.84344482 8.67766953 0.3143

– 229.86291504 8.67781162 0.3111

– 229.87686157 8.67864990 0.3265

– 229.88337708 8.67557240 0.3160

– 229.87509155 8.66773319 0.3201

– 229.89746094 8.63505268 0.3166

– 229.89002991 8.62245560 0.3146

– 229.84362793 8.67804432 0.3149

– 229.85383606 8.67776489 0.3195

– 229.86317444 8.67818546 0.3112

– 229.84985352 8.66684723 0.3162

– 229.86146545 8.66908741 0.3210

– 229.87591553 8.66222954 0.3223

– 229.87733459 8.65817070 0.3271

– 229.89036560 8.65894032 0.3120
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Cluster R.A. Dec. z

(◦) (◦) z

– 229.89276123 8.65544128 0.3227

– 229.87081909 8.64158440 0.3235

– 229.87860107 8.64200497 0.3153

– 229.87321472 8.63654613 0.3123

– 229.87294006 8.62226963 0.3238

– 229.88653564 8.61793041 0.3153

– 229.83351135 8.67972279 0.3093

– 229.88320923 8.69610119 0.3160

– 229.86593628 8.67664623 0.3173

– 229.85162354 8.66670799 0.3170

– 229.88589478 8.67972469 0.3149

– 229.89213562 8.67986488 0.3207

– 229.88560486 8.66628838 0.3203

– 229.87924194 8.66069031 0.3194

– 229.91505432 8.66040802 0.3260

– 229.91590881 8.65788841 0.3153

– 229.90698242 8.63339520 0.3196

– 229.87980652 8.61520100 0.3212

RCS2J1526+0432 – – –

– 231.552291870 4.601474285 0.6363

– 231.559875488 4.596435547 0.6281

– 231.560012817 4.580479622 0.6413

– 231.592315674 4.570541382 0.6306

– 231.550186157 4.560464382 0.6304

– 231.552856445 4.543669224 0.6346

– 231.538803101 4.542618752 0.6378

– 231.581634521 4.530722141 0.6357

– 231.581634521 4.530722141 0.6307

– 231.563232422 4.529462814 0.6351

– 231.567733765 4.522744179 0.6365

– 231.560165405 4.522884369 0.6352

– 231.544006348 4.520644665 0.6365

– 231.587387085 4.506368160 0.6267

– 231.551162720 4.588457584 0.6387
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(◦) (◦) z

– 231.577285767 4.578660011 0.6347

– 231.591049194 4.568161964 0.6331

– 231.607757568 4.561023235 0.6420

– 231.553558350 4.562424183 0.6394

– 231.538253784 4.561863899 0.6350

– 231.538253784 4.561863899 0.6375

– 231.577850342 4.549407482 0.6302

– 231.568725586 4.540449619 0.6297

– 231.547103882 4.540729523 0.6332

– 231.578689575 4.531212330 0.6316

– 231.548645020 4.534711361 0.6363

– 231.575042725 4.520854950 0.6319

– 231.585296631 4.511896610 0.6372

– 231.559036255 4.508677959 0.6288

– 231.544708252 4.499300003 0.6369

RCS2J2111-0114 – – –

– 317.837829590 -1.198773265 0.6312

– 317.820068359 -1.195414066 0.6301

– 317.823272705 -1.203812003 0.6369

– 317.844696045 -1.229285359 0.6320

– 317.841888428 -1.232364655 0.6438

– 317.836303711 -1.229985356 0.6357

– 317.83133 -1.2314199 0.6366

– 317.83067 -1.2319798 0.6323

– 317.831268311 -1.234604120 0.6347

– 317.82997 -1.2411824 0.6460

– 317.82815 -1.2429669 0.6414

– 317.828186035 -1.249020457 0.6316

– 317.784698486 -1.236423254 0.6353

– 317.784698486 -1.245940804 0.6401

– 317.847564697 -1.199682951 0.6330

– 317.859466553 -1.215638757 0.6363

– 317.846588135 -1.225296378 0.6302

– 317.836517334 -1.218858123 0.6275
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(◦) (◦) z

– 317.831329346 -1.226276159 0.6285

– 317.831329346 -1.226276159 0.6333

– 317.830474854 -1.230755091 0.6354

– 317.831481934 -1.235933661 0.6462

– 317.82997 -1.2411824 0.6460

– 317.82815 -1.2429669 0.6414

– 317.800659180 -1.221517324 0.6403

– 317.821105957 -1.255038857 0.6377

– 317.821105957 -1.258817911 0.6320

– 317.814819336 -1.258257985 0.6472

RCS2J2135-0102 – – –

– 323.75717163 -1.04473603 0.3212

– 323.76681519 -1.03598881 0.3268

– 323.76779175 -1.05124438 0.3224

– 323.77899170 -1.02779996 0.3190

– 323.77758789 -1.04263604 0.3330

– 323.77572632 -1.06174159 0.3329

– 323.78228760 -1.04942501 0.3224

– 323.78671265 -1.05187500 0.3304

– 323.79440308 -1.04172778 0.3343

– 323.79693604 -1.05922222 0.3248

– 323.79782104 -1.05957222 0.3222

– 323.80981445 -1.03332782 0.3388

– 323.81204224 -1.05320275 0.3373

– 323.81799316 -1.04963326 0.3275

– 323.82553101 -1.05705273 0.3210

– 323.84078979 -1.05054438 0.3272

– 323.85409546 -1.04459441 0.3226

– 323.81317139 -1.01296389 0.3320

– 323.80105591 -1.01107502 0.3264

– 323.81231689 -1.02472222 0.3286

– 323.81155396 -1.03864717 0.3341

– 323.80581665 -1.03836668 0.3338

– 323.80218506 -1.04011667 0.3275
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(◦) (◦) z

– 323.80615234 -1.04697502 0.3221

– 323.80090332 -1.04816389 0.3289

– 323.80068970 -1.04879439 0.3257

– 323.80020142 -1.04949439 0.3298

– 323.80047607 -1.05572212 0.3371

– 323.79693604 -1.05922222 0.3234

– 323.79623413 -1.06048048 0.3227

– 323.79067993 -1.06202221 0.3387

– 323.78671265 -1.06299996 0.3317

– 323.77572632 -1.06174159 0.3321

– 323.79299927 -1.08266675 0.3237

– 323.78256226 -1.08049726 0.3280

– 323.79315186 -1.08966398 0.3230

– 323.77935791 -1.08861399 0.3320

– 323.77682495 -1.09337223 0.3185

– 323.75808716 -1.08651388 0.3329

– 323.75415039 -1.08868337 0.3225

– 323.74374390 -1.03792500 0.3265

– 323.75982666 -1.02028978 0.3219

– 323.77899170 -1.01861048 0.3317

– 323.76849365 -1.04310405 0.3327

– 323.75463867 -1.07263625 0.3267

– 323.79452515 -1.02182972 0.3361

– 323.79522705 -1.02560866 0.3189

– 323.78375244 -1.04758298 0.3210

– 323.78991699 -1.04604352 0.3288

– 323.78234863 -1.06059968 0.3237

– 323.80154419 -1.06077468 0.3265

– 323.80139160 -1.07711554 0.3340

– 323.81777954 -1.05934000 0.3260

– 323.82882690 -1.06591833 0.3322

– 323.84130859 -1.06241906 0.3224

– 323.83526611 -1.08243394 0.3274

– 323.82940674 -1.10006952 0.3343
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Cluster R.A. Dec. z

(◦) (◦) z

– 323.83010864 -1.10440826 0.3261

– 323.83737183 -1.09992945 0.3244

– 323.76556396 -1.05409122 0.3264

– 323.76528931 -1.00517380 0.3309

– 323.75646973 -1.02350903 0.3266

– 323.76290894 -1.02952754 0.3304

– 323.75241089 -1.04996204 0.3367

– 323.76123047 -1.04408371 0.3277

– 323.74749756 -1.06913710 0.3265

– 323.79159546 -1.01189220 0.3301

– 323.76107788 -1.06185925 0.3155

– 323.77227783 -1.04996228 0.3248

– 323.76907349 -1.06017971 0.3240

– 323.78094482 -1.05010235 0.3293

– 323.78796387 -1.04702318 0.3277

– 323.80154419 -1.06077468 0.3265

– 323.79580688 -1.08369374 0.3274

– 323.80938721 -1.08285403 0.3246

– 323.80630493 -1.09209168 0.3315

– 323.82882690 -1.06591833 0.3316

– 323.82199097 -1.08453345 0.3223

– 323.84579468 -1.06801748 0.3351

RCS2J2147-0102 – – –

– 326.947509766 -1.017211556 0.8775

– 326.945983887 -1.027429104 0.8829

– 326.923706055 -1.050663710 0.8803

– 326.913757324 -1.042545676 0.8744

– 326.912384033 -1.044085264 0.8803

– 326.906341553 -1.043665409 0.8787

– 326.899353027 -1.057382107 0.8809

– 326.876678467 -1.067039728 0.8956

– 326.855834961 -1.029668450 0.8962

– 326.951293945 -1.002095103 0.8810

– 326.945556641 -1.022110343 0.8801

Continued on next page
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Cluster R.A. Dec. z

(◦) (◦) z

– 326.917968750 -1.013432741 0.8847

– 326.922454834 -1.052483320 0.8817

– 326.855834961 -1.029668450 0.8957

– 326.850921631 -1.030228138 0.8947

RCS2J2151-0138 – – –

– 327.824035645 -1.633788347 0.3165

– 327.840118408 -1.624690771 0.3100

– 327.817718506 -1.654923320 0.3130

– 327.847961426 -1.637427807 0.3146

– 327.849639893 -1.642186642 0.3140

– 327.857360840 -1.641626835 0.3083

– 327.856994629 -1.663251758 0.3162

– 327.875213623 -1.649254918 0.3083

– 327.858123779 -1.674029112 0.3184

– 327.869476318 -1.666610837 0.3174

– 327.879272461 -1.659472346 0.3180

– 327.861755371 -1.685506344 0.3085

– 327.890319824 -1.658632517 0.3089

– 327.880676270 -1.674308896 0.3141

– 327.898162842 -1.660451889 0.3140

– 327.897888184 -1.664230943 0.3205

– 327.896362305 -1.671369314 0.3117

– 327.876464844 -1.706921101 0.3096

– 327.903076172 -1.680327058 0.3148

– 327.801361084 -1.621610761 0.3162

– 327.799530029 -1.649464130 0.3151

– 327.842498779 -1.608594656 0.3107

– 327.821380615 -1.644285917 0.3205

– 327.849090576 -1.623151183 0.3113

– 327.863372803 -1.622451425 0.3153

– 327.847839355 -1.647925258 0.3105

– 327.854278564 -1.643306375 0.3226

– 327.856445312 -1.665771008 0.3175

– 327.865417480 -1.661991954 0.3153

Continued on next page
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Cluster R.A. Dec. z

(◦) (◦) z

– 327.880950928 -1.649814725 0.3182

– 327.854614258 -1.684806466 0.3191

– 327.893280029 -1.647015214 0.3034

– 327.899291992 -1.644775629 0.3209

– 327.878997803 -1.681307197 0.3234

– 327.890899658 -1.680467248 0.3151

RCS2J2313-0104 – – –

– 348.42761230 -1.08599174 0.5279

– 348.43960571 -1.06919730 0.5308

– 348.46499634 -1.08018339 0.5273

– 348.48318481 -1.08760285 0.5260

– 348.49398804 -1.08899999 0.5257

– 348.50064087 -1.08284175 0.5289

– 348.50390625 -1.12917221 0.5334

– 348.42761230 -1.08599174 0.5282

– 348.46499634 -1.08018339 0.5262

– 348.48318481 -1.08760285 0.5260

– 348.48992920 -1.07479453 0.5344

– 348.51553345 -1.10383618 0.5216

RCS2J2329-0120 – – –

– 352.47549438 -1.33600008 0.5226

– 352.43594360 -1.35132778 0.5288

– 352.43325806 -1.34768891 0.5264

– 352.41577148 -1.34096944 0.5294

– 352.41192627 -1.34992778 0.5283

– 352.40280151 -1.34733617 0.5275

RCS2J2329-1317 – – –

– 352.23699951 -13.25346756 0.3866

– 352.30560303 -13.24619484 0.4006

– 352.29711914 -13.25739288 0.3871

– 352.30242920 -13.25907230 0.3866

– 352.28375244 -13.26593113 0.3931

– 352.27929688 -13.27628803 0.3903

– 352.28820801 -13.27740765 0.3902

Continued on next page
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Cluster R.A. Dec. z

(◦) (◦) z

– 352.30343628 -13.27796745 0.3862

– 352.30432129 -13.28118610 0.3954

– 352.28433228 -13.29014397 0.3919

– 352.28762817 -13.29140377 0.3900

– 352.28805542 -13.30316067 0.3953

– 352.25195312 -13.31778526 0.3915

– 352.27279663 -13.31596661 0.3937

– 352.29138184 -13.31624794 0.3895

– 352.29956055 -13.31778717 0.3895

– 352.30072021 -13.32086563 0.3794

– 352.29336548 -13.32436562 0.3906

– 352.28359985 -13.32884407 0.3904

– 352.28286743 -13.34382057 0.3909

– 352.33868408 -13.33975697 0.3836

– 352.33639526 -13.34339619 0.3990

– 352.24118042 -13.24934006 0.3870

– 352.32241821 -13.23996544 0.3902

– 352.29711914 -13.25732327 0.3886

– 352.31567383 -13.25536156 0.4003

– 352.27984619 -13.26642036 0.3870

– 352.30343628 -13.26404095 0.3868

– 352.28604126 -13.27565765 0.3915

– 352.29193115 -13.27957726 0.3965

– 352.28433228 -13.28335571 0.3964

– 352.28604126 -13.28783512 0.3980

– 352.29638672 -13.28923512 0.3861

– 352.29638672 -13.28923512 0.3835

– 352.28344727 -13.30477142 0.3914

– 352.28619385 -13.31274891 0.3932

– 352.30978394 -13.31484699 0.3917

– 352.30502319 -13.31792736 0.4009

– 352.28820801 -13.32520485 0.3890

– 352.29553223 -13.33094406 0.3890

– 352.28836060 -13.34284115 0.3912

Continued on next page
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Table D.1 – Continued from previous page

Cluster R.A. Dec. z

(◦) (◦) z

– 352.29956055 -13.34871864 0.3979

– 352.24676514 -13.28339481 0.3898

– 352.25711060 -13.26996040 0.4014

– 352.25927734 -13.29025459 0.4004

– 352.26803589 -13.29319477 0.4009

– 352.27996826 -13.27639961 0.3907

– 352.30642700 -13.29347610 0.3910

– 352.30889893 -13.29655457 0.3946

– 352.31204224 -13.29725456 0.3945

– 352.32141113 -13.31138992 0.3948

– 352.24734497 -13.24854374 0.3891

– 352.23394775 -13.30550671 0.3982

– 352.26086426 -13.28241730 0.3883

– 352.28240967 -13.27779961 0.3966

– 352.29119873 -13.27752018 0.3942

– 352.30355835 -13.28962708 0.3853

– 352.30615234 -13.29956532 0.3866

– 352.30111694 -13.31286144 0.3901

– 352.31204224 -13.30362320 0.3914

– 352.30529785 -13.32741833 0.3874

– 352.32067871 -13.30796146 0.3916

– 352.33578491 -13.29312325 0.3883

– 352.31649780 -13.35667038 0.4037

RCS2J2336-0608 – – –

– 354.036224365 -6.103911877 0.3989

– 354.053375244 -6.117769718 0.3923

– 354.080139160 -6.105874062 0.3986

– 354.055938721 -6.126167774 0.3973

– 354.083648682 -6.114971638 0.4010

– 354.089019775 -6.115391731 0.3962

– 354.088745117 -6.123649597 0.3991

– 354.077880859 -6.135966301 0.3917

– 354.091552734 -6.130507946 0.3884

– 354.083099365 -6.139465809 0.3928

Continued on next page
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Table D.1 – Continued from previous page

Cluster R.A. Dec. z

(◦) (◦) z

– 354.093383789 -6.142125130 0.3971

– 354.107299805 -6.141984463 0.3968

– 354.087036133 -6.156821251 0.3896

– 354.093383789 -6.157101154 0.3911

– 354.098999023 -6.155981541 0.3927

– 354.112670898 -6.152901649 0.3955

– 354.111938477 -6.157660484 0.4014

– 354.095336914 -6.170398235 0.3944

– 354.083526611 -6.184254646 0.3909

– 354.079986572 -6.190972805 0.3875

– 354.089019775 -6.188033581 0.3882

– 354.136871338 -6.168996334 0.3909

– 354.042755127 -6.109091282 0.3923

– 354.082611084 -6.089918137 0.3904

– 354.062194824 -6.111752033 0.3864

– 354.096405029 -6.100135326 0.3867

– 354.096405029 -6.100135326 0.3858

– 354.079071045 -6.119170666 0.3911

– 354.084564209 -6.119730473 0.4020

– 354.113159180 -6.118750095 0.3893

– 354.093383789 -6.142125130 0.3971

– 354.093444824 -6.142264843 0.3844

– 354.095397949 -6.152902126 0.3885

– 354.092742920 -6.162419796 0.3927

– 354.133148193 -6.161858082 0.3906

– 354.134399414 -6.171935558 0.3907
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Beńıtez, N. (2000). Bayesian Photometric Redshift Estimation. The Astrophysical Journal,
536:571–583.
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