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Summary 
Immune surveillance by T cells is an important component of body’s defense against infection 

and disease, whereas the peripheral immune tolerance is important for defense against self-

reactive T cells. The fine balance between the two is skewed in cancer, whereby the tumors 

exploit the immune tolerance mechanisms to escape recognition and elimination by the 

cytotoxic T lymphocytes (CTLs). One of the major routes of immune resistance of tumor cells 

is mediated by cell surface bound ligands that engage immune-inhibitory receptors on T cells. 

Targeting these immune-checkpoint ligands that inhibit immune rejection, e.g. via blocking 

antibodies, can restore immune surveillance and increase the efficacy of cancer 

immunotherapy. However, only a few such targets have been identified so far.  

The aim of this thesis was to establish a high-throughput screening assay that enables a rapid 

and comprehensive identification of cell surface genes with immune modulatory function in 

selected tumors. To this end, a tumor cell-T cell co-culture assay was established which 

combines siRNA-based gene knockdown with a luciferase-based assessment of T cell-

mediated tumor cell killing. Applied to three independent parallel screens, this study 

uncovered a repertoire of novel and robust immune modulatory ligands on breast cancer cells 

that are also abundantly expressed by other cancer types. Amongst them, CCR9 was 

functionally validated as a strong inhibitor of T cell function and suppressor of T cell 

reactivity against breast cancer, malignant melanoma and pancreatic cancer. Knockdown of 

CCR9 resulted in increased tumor susceptibility towards immune lysis by antigen-

experienced T cells along with the increased production of effector cytokines and cytolytic 

enzymes. CCR9-induced gene expression changes in the encountering T cells were consistent 

with an enhanced effector T cell phenotype. Mechanistically, CCR9 regulated T cell effector 

function through differential activation of the STAT signaling pathways, thereby representing 

a unique example of an alternative, TCR-independent route for effective immune suppression 

induced by a cell surface molecule. Additionally, the in vivo relevance of targeting CCR9 for 

adoptive cancer immunotherapy was explored in this study. 

Taken together, this study describes a rapid, high-throughput, siRNA-based screening 

approach that allows a comprehensive identification of immune-modulatory genes which, as 

an entity, represents the ‘immune modulatome’ of cancer. Screening additional tumor types 

for their immune modulatory signatures would help in uncovering additional targets for 

therapeutic inhibition. 



 

 

Zusammenfassung 
T-Zellen spielen eine wichtige Rolle bei der Abwehr von Pathogenen und Krankheiten, die 

periphere Toleranz hingegen schützt vor selbst-reaktiven T-Zellen. Das Gleichgewicht 

zwischen diesen beiden Mechanismen ist bei Krebserkrankungen gestört und der Tumor nutzt 

die Mechanismen der peripheren Toleranz, um der Erkennung und Eliminierung durch 

zytotoxische T-Zellen zu entgehen. Einen der wichtigsten Mechanismen stellen dabei 

Liganden auf der Zelloberfläche der Tumorzellen dar, die inhibitorische Rezeptoren auf T-

Zellen binden. Ein Blocken dieser immune-checkpoint- Liganden, zum Beispiel mittels 

Antikörpern, kann das Erkennen des Tumors durch das Immunsystem wiederherstellen und 

die Effizienz von Immuntherapien erhöhen. Bisher wurden nur wenige dieser Liganden 

identifiziert. 

Das Ziel dieser Doktorarbeit war die Entwicklung eines Hochdurchsatz-Screens zur schnellen 

und umfassenden Identifizierung von Molekülen mit immunmodulierender Wirkung auf der 

Oberfläche von Krebszellen. Zu diesem Zweck wurde die Kokultur von Tumorzellen und T-

Zellen mit einem siRNA basiertem knockdown kombiniert. Das Töten der Tumorzellen durch 

die T-Zellen wurde dabei mit einem Luciferase-Assay gemessen. Mit Hilfe dieser Methode 

wurden in drei voneinander unabhängigen Screens neue immunmodulierende Liganden auf 

Brustkrebs-Zellen gefunden, die jedoch auch auf anderen Tumorentitäten überexprimiert sind. 

Von den Liganden wurde CCR9 als ein starker Inhibitor der T-Zell Antwort gegen Zellen aus 

Brustkrebs, malignem Melanom und Pankreaskarzinom funktional validiert. Der knockdown 

von CCR9 führt zu einer größeren Empfänglichkeit der Tumorzellen gegenüber einer Lyse 

durch Antigen-erfahrene T-Zellen sowie zu einer erhöhten Produktion von Effektor-

Zytokinen und lytischen Enzymen der T-Zellen. Eine Genexpressions-Analyse der T-Zellen 

zeigt einen verstärkten Effektor-Phänotyp nach knockdown von CCR9 in den Krebszellen. 

Mechanistisch reguliert CCR9 die T-Zell Effektor-Funktionen über die differenzielle 

Aktivierung von STAT-Signalwegen. Dies stellt einen alternativen, von 

Oberflächenmolekülen aktivierten Suppressions-Mechanismus dar, der vom Signalweg des T-

Zellrezeptors unabhängig ist. Zusätzlich wurde die Relevanz von CCR9 für eine adoptive 

Immuntherapie in vivo untersucht. 

Diese Arbeit beschreibt einen Hochdurchsatz-Screen zur umfassenden Identifikation von 

immunmodulierenden Molekülen, die in ihrer Gesamtheit das „Immun-Modulatom“ von 

Krebs darstellen. Die Untersuchung der immunmodulierenden Signatur weiterer 

Tumorentitäten kann zusätzliche Ziele für eine verbesserte Immuntherapie hervorbringe.
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1. Introduction 

1.1 Cancer  

In the present day world where at least one out of every 5 person suffers from cancer, cancer 

is a household subject that requires little introduction. More than 8.2 million deaths were 

accorded to cancer in 2012 worldwide (1). Amongst this, breast cancer, which results from the 

neoplasm arising from the inner linings of the milk ducts or lobules of the healthy breast 

tissue, has been the most frequently diagnosed form of cancer in women and the leading cause 

of cancer-related mortality with 522,000 deaths reported in 2012 (1). But cancer is more than 

just this mere representation of staggering statistics. Sun Tzu, an ancient military general and 

strategist, in his book titled ‘The Art of War’ said: “If you know neither the enemy nor 

yourself, you will succumb in every battle”. This age-old wisdom for successful combat also 

applies to our current fight against cancer where ‘knowing thy enemy’ would be the first 

milestone towards successful cancer therapy.  

 

Cancer is the malignant transformation of a normal cell to a state of uncontrolled proliferation 

that is capable of propagating throughout the body, infringing on the normal functioning of 

healthy organs and thereby endangering the survival of the host. In 2000, Douglas Hanahan 

and Robert Weinberg (2) fittingly summarized the complexity of cancer to six key hallmark 

signatures according to which cancer cells: i) stimulate their own growth; ii) resist anti-growth 

signals; iii) inhibit their programmed cell death (apoptosis); iv) stimulate the growth of blood 

vessels in order to fetch nutrients (angiogenesis); v) multiply uncontrollably; and vi) can 

invade to local and distant sites (metastasis). Their oversight of the role of the immune system 

in shaping tumor progression was rectified in a follow-up publication a decade later (3), 

whereby they added two new additional hallmarks of cancer as: vii) evading the immune 

system; and viii) deregulating the metabolic circuitry.  

 

Despite the fact that considerable progress has been made over the last decade in dissecting 

the molecular basis of cancer, a great deal of knowledge still remains to be acquired regarding 

the complex interplay between the tumor and the host, as well as its regulation thereof. In a 

broader sense, this thesis is focused on knowing thy enemy in which I attempt to further 

characterize cancer to the next level by defining its immune modulatory properties. But before 
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going into that, it is important to understand how the immune system plays a role in cancer 

development. 

1.2 Anti-tumor immunity 

The theory of immunosurveillance, put forward by Burnet and Thomas way back in the 

1950s, underlines the fact that the host immune system is capable of recognizing the 

transformed self-cells right at the early stage of tumor development (4). Over time this theory 

has found increased experimental validation and reinforcement, with both the innate and the 

adaptive arms of the immune system being shown to play a role in controlling tumor 

outgrowth. In fact the occurrence of tumor antigen-specific T cells in the tumor 

microenvironment is a predictive biomarker for improved survival in cancer patients, 

especially for melanoma and colorectal cancer patients (5, 6). Generation of anti-tumor 

immunity, however, is a multi-step process described in the so-called ‘Cancer Immunity 

Cycle’ (Figure I) (7): 

 

i. For mounting an effective immune response, first the tumor-associated neo-antigens 

have to be released so that they can be captured, processed and presented by the 

professional antigen presenting cells (APC), such as dendritic cells (DC), present in 

the tumor bed. Immunogenic cell death inducers, such as certain chemotherapeutic 

agents and radiotherapy, aid in this antigen release process (8). Tumor-associated 

antigens (TAAs) that are recognized by the immune system can be broadly classified 

into six categories: overexpressed self antigens (such as EpCAM, survivin), cancer 

testis antigens (such as MAGEA1), tissue differentiation antigens (melanosome-

related antigens such as MART1), chromosomal breakpoint antigens (such as BCR-

ABL), mutated self-antigen (such as mutated KRAS or p53) and finally oncogenic 

virurs-encoded antigens (such as HPV-16 virus encoded E6 and E7). Whole genome 

exome sequencing has revealed that the success of generating high frequency antigen-

specific anti-tumor immune response is correlative to the mutational frequency of 

certain tumors, especially in case of melanoma, colon and lung cancer (9, 10) which 

have been shown to harbor higher mutations per megabase (11). 

 



Introduction 

Page 3 

 

ii. Following the uptake of antigen, DCs undergo maturation, receiving stimulatory 

signals from the proinflammatory cytokines and co-signaling receptors (such as TNF-

a, IFN-a, ATP from dying tumor cells, CD40/CD40L interaction). This results in 

mature DCs that are capable of processing and presenting the antigenic peptides on 

their surface bound to the MHC-I or MHC-II molecules. 

 

iii. MHC receptor-bound peptides are then presented by DCs to the naïve T cells in the 

lymph nodes to prime the T cell response against the presented antigen. The nature of 

the immune response is determined at this stage depending on whether immune 

tolerance is induced towards the presented antigen (mediated by regulatory T cell 

priming and expansion) or anti-tumor immunity is induced (leading to effector T cell 

generation). 

 

iv. Effector CD8+ T cells primed in the above stage then migrates to the tumor site by 

virtue of chemokine and chemokine receptors, such as CXCL9 and CXCL10 (ligands 

for CXCR3) or CCL5 (ligand for CCR5) among others (12).  

 

v. The next challenge for the immune cells is to infiltrate the tumor bed by crossing 

through the endothelial barrier, which is achieved via the virtue of adhesion molecules 

such as LFA1, ICAM1, selectins etc.  

 

vi. Once in the tumor microenvironment, the effector T cells then have to recognize and 

bind to their tumor targets through interaction between its antigen-specific T cell 

receptor (TCR) and the MHC-I bound cognate antigen on the tumor cell surface.  

 

vii. Finally, antigen-recognition and binding activates the downstream TCR signaling in 

these antigen-specific cytotoxic T lymphocytes (CTLs), leading to the release of 

effector cytokines such as interferon-gamma (IFN-γ), interleukin-2 (IL-2) and 

cytolytic granules containing enzymes such as granzyme-B and perforin. These 

effector mechanisms not only bring about the tumor lysis, but also result in the release 

of fresh antigens that can be taken up by surrounding APCs for re-initiating the 

immune response cycle.  
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Figure I. Cancer immunity cycle detailing the seven-step process involved in the generation of an anti-tumor 

immune response. Individual steps are detailed in the text above. Adapted from Chen et al, 2013 (7).  

1.3 Cancer despite immunosurveillance: the 3E’s of cancer immune-editing  

Given that the immune system can recognize and eliminate malignant self-cells in a specific 

manner, early immunotherapists anticipated distinct clinical responses in tumor patients upon 

adoptive cellular transfer of high numbers of autologous, tumor-reactive T cells. However, 

early clinical studies involving adoptive immune cell-based therapies produced mediocre 

results at the very best, driving the clinicians back to benchside to look for the answers to 

explain the lackluster performance of T cell-based therapies (13). It soon became apparent 

that immune surveillance in patients runs in parallel with tumor-mediated immune evasion 

and that the relatively transient equilibrium between these two now forms the basis of the 

modified theory of ‘immune-editing’ (14). The principle of immune-editing recognizes the 

fact that tumor development and progression is a process guided and molded by the host 

immune system right from the early stage, involving the 3E-phases: elimination, equilibrium 

and escape. Nascent transformed cells are under attack by the host’s innate defense 

mechanisms involving NK cells, macrophages and neutrophils; all of which are capable of 

recognizing and eliminating the transformed host cells to maintain cellular homeostasis. 

Following this, in the equilibrium stage the transformed cancerous cells recognize and adapt 

to the immune selection pressure leading to the loss of MHC molecules, downregulation of 

surface antigens, defects in the antigen-presentation machinery, all in order to avoid the 
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immune attack. If the tumor cells succeed in tilting the balance in their favour during this 

equilibrium stage, immune-escape variants of the tumor emerge that are further equipped to 

escape immune surveillance. Therefore, targeting these immune escape mechanisms in 

conjunction with conventional immunotherapeutic approaches to reactivate the immune 

system would be crucial for realizing the full potential of cancer immunotherapy in clinics. 

But in order to achieve that, elucidation of the tumor-mediated immune escape pathways is 

imperative. 

1.4 Immune-escape pathways 

Peripheral immune tolerance is an integral component of a healthy body’s defense program 

against self-reactive immune cells. However, in diseased state, these pathways are hijacked by 

the cancer cells to thwart and escape the immune response. Basically, every step in the cancer 

immunity cycle, described above in Figure I, is susceptible to escape routes mediated by the 

tumor. The means of tumor-mediated immune escape are as varied and complex as the anti-

tumor immunity itself and are described here in some detail. 

1.4.1 Impairment of antigen-presentation by tumors 

CD8 effector T cells recognize their tumor targets for clearance only in context of the peptide-

bound MHC (pMHC) complex. This therefore requires the appropriate processing of the 

tumor antigens to relevant epitope-harboring peptides which can be presented on the cell 

surface in MHC-I grooves for recognition by CTLs. In this regard, tumors can escape 

recognition by CTLs via two possible routes (Figure II): 

• Down-regulation or loss of antigen: Occurs via genetic deletions or frequent mutations 

to alter the immune-dominant epitopes on the antigen, leading to immune-escape 

tumor variants that can evade immune surveillance (15). 

 

• Defects in the antigen-presentation machinery: Not only can tumor cells loose or 

mutate their immunogenic peptides, but they can also downregulate the MHC-I 

molecule, via deletion or frame-shift mutations in the beta 2-microglobulin gene 

(β2m), so that the antigen is not even presented on the tumor cell surface for 

recognition by antigen-specific effector T cells (16). Loss of HLA alleles has also 
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been reported in multiple cancers, including colorectal carcinoma and melanoma, 

aiding in immune escape (17). Furthermore, cellular components of the antigen-

processing machinery and of the immunoproteasome (such as transporter-associated 

with antigen processing: TAP or LMP2, LMP7) can be mutated leading to defective 

antigen presentation by the tumor cells (18). 
 

 
 

Figure II. Mutations in the cellular proteins responsible for antigen processing and presentation (β2m, MHC, 

TAP) may result in the failure of target antigen’s presentation by the tumor cells, thereby leading to an inhibition 

of T cell’s reactivity against their tumor targets. Adapted from Hinrichs et al, 2013 (19). 

1.4.2 Elaboration of soluble immune-suppressive mediators 

Tumor and the stromal cells in the tumor microenvironment secrete a plethora of immune-

suppressive cytokines, growth factors and metabolites that are capable of actively silencing an 

effector anti-tumor T cell response, or creating an immune-suppressive environment around 

the tumor bed for maintaining immunological anergy against the developing tumor. These 

soluble mediators and their role in immune suppression are summarized below in Table I. 

Agents Role in immune suppression 

TGF- β Inhibits T-cell activation, proliferation and differentiation (20) 

VEGF Suppresses T-cell adhesion to tumor endothelium and prevents homing to tumors (21) 

IL-10 
Reduces antigen presentation by downregulating TAP1 and TAP2, reduces Th1 

cytokine secretion, induces regulatory T cells (Treg) and impairs DC function (22) 
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Prostaglandin E2 

(PGE2) 

Impairs the ability of DCs to attract and activate naive T cells, induces accumulation 

and function of regulatory immune cells and impairs CTL activation (23) 

Indoleamine 2,3-

dioxygenase (IDO) 

and Arginase 

Involved in the catabolic degradation of tryptophan and L-arginine respectively, 

depletion of which in the tumor surrounding leads to an inhibition of T cell 

proliferation (24, 25). 

 
Table I. Soluble immunosuppressive mediators released by the tumor cells and their role in immune escape. 
 

1.4.3 Specific recruitment of the immune-regulatory cell populations 

Besides active subversion of the effector T cell responses via secretion of immunosuppressive 

mediators, tumors can also enrich their microenvironment by deploying cell populations to the 

tumor bed that promote tumor progression, along with maintaining immunogenic anergy and 

suppression. Such cell populations mostly include regulatory T cells (Tregs), immature and 

plasmacytoid dendritic cells (iDCs, pDCs), myeloid-derived suppressor cells (MDSCs), 

mesenchymal stem cells (MSCs) and tumor-associated macrophages (TAMs). 

• Regulatory T cells (Tregs): These subset of CD4 T lymphocytes are marked by 

CD25hi FOXP3hi expression and are typically involved in maintaining immune 

homeostasis and peripheral tolerance against self-antigens. However, in the case of 

tumor progression, they are preferentially recruited to the tumor microenvironment 

over effector T cells to suppress effector T cell function and maintain immune 

tolerance against the tumor antigens. Local accumulation of Tregs has been correlated 

to poor survival in many cancer types including gastric, esophagus, breast and ovarian 

cancer (26-29). They can suppress anti-tumor immunity through plethora of 

mechanisms (briefed in Figure III), for example via immune-inhibitory surface 

molecules like CTLA4, LAG3 (detailed in 1.4.4), or via soluble mediators such as 

TGF- β and adenosine (30). 

 
 

 

Figure III. Potential modes of Treg-mediated immune suppression which includes: DC impairment via 

inhibitory receptor engagement, cytokine deprivation, competitive inhibition of the effector T cells, inhibitory 

cytokine and metabolite production (IL-10, IDO, adenosine) and direct cytolysis of the effector T cells. Adapted 

from Caridade et al, 2013 (31). 
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• Immature and plasmacytoid dendritic cells (iDCs and pDCs): iDCs are those dendritic 

cells that leave the bone marrow and express very low levels of the co-stimulatory 

molecules CD80 or CD86 that results in poor maturation of the DCs and subsequent 

impairment of T cell activation. They produce little or no amount of IL-12 which is 

required to support T cell proliferation. As a result, accumulation of these immature 

DCs in the tumor microenvironment leads to immune escape (32, 33). Plasmacytoid 

DCs (pDCs) on the other hand are a small subset of dendritic cells that are believed to 

actively suppress T cell response in the tumor tissues (34). They induce the expression 

of the immunosuppressive mediators IL-10 and IDO that inhibits the clonal expansion 

of effector T cells and promotes T cell apoptosis. Besides, they also favor the growth 

and expansion of Tregs, adding to their immunosuppressive profile (35). Overall, the 

lack of proper costimulatory signal in these defective DCs induces tolerance towards 

the recognized tumor antigen, leading to T cell anergy rather than anti-tumor T cell 

response. 

 

• Myeloid-derived suppressor cells (MDSCs): These are immature myeloid cells with a 

heterogeneous hierarchy and often found to be elevated in inflammation and cancer. 

Tumor associated growth factors and cytokines, such as CCL2, CXCL12, and 

CXCL5, support the recruitment and proliferation of MDSCs in the tumor bed, while 

in return MDSCs suppress the host immune system via production of arginase, 

inducible nitric oxide synthase (iNOS), IDO and immunosuppressive cytokines that 

negate CTL function (36). Elevated levels of MDSCs have been shown to correlate 

with poor survival in many tumor types (37). 



Introduction 

Page 9 

 

• Mesenchymal stem cells (29): These are immuneprivileged, multipotent stem cells 

found in adult connective tissues and bone marrow with the capability of 

differentiating into any cell type of mesodermal lineage (38). Injection of human 

MSCs into the tumor-bearing BALB/c mice have shown that MSCs exert immune-

protection by inhibiting DC maturation as well as T cell proliferation, promoting 

apoptosis of effector CTLs, secreting immunosuppressive factors like PGE2, IDO and 

by increasing Treg proportion (39, 40). 

 

• Tumor-associated macrophages (TAM): Macrophages are mononuclear phagocytic 

cells of the myeloid lineage which are characterized by their phenotypic plasticity 

depending on the microenvironment. Classically activated (M1) macrophages are anti-

tumoral in nature, whereas alternatively activated (M2) macrophages support tumor 

growth and immune-suppression (41). TAMs are an integral cellular component of the 

inflamed, heterogeneous tumor microenvironment where they acquire an M2-like 

phenotype. Besides secreting tumor promoting growth factors, they also actively 

suppress anti-tumor immunity by secreting immunosuppressive mediators such as 

iNOS, arginase, IL-10, as well as by defective antigen presentation and inhibition of T 

cell proliferation (42). 

1.4.4 Activation of negative co-stimulatory signals on the immune cells – the case of 

immune modulatory ligands 

Tumors can engage the T cells directly via their immune-modulatory receptors and ligands on 

the cell surface, which provide negative co-stimulatory signal to the interacting T cells. This 

subsequently leads to the inhibition of TCR activation and downstream signaling and 

sometimes even apoptosis of the reactive T lymphocytes. In a healthy state, these immune-

inhibitory switches serve as fail-safe mechanisms of immune-modulation that control over-

activation of T cell responses and limit autoimmunity. However, in the diseased state of tumor 

progression, these immune-checkpoint nodes are exploited by the malignant cells to shut 

down and inactivate the anti-tumor immune response. Of such inhibitory pathways, CTLA4- 

CD80/CD86 and PD1-PDL1 axis have gained major prominence in the last decade for 

elucidating the immunosuppressive potential of such negative interactions. Therapeutic 

blocking of these immune-checkpoint entities now represents one of the most attractive 

paradigms of cancer immunotherapy (43). 
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1.4.4.1 CTLA4-CD80/CD86 axis 

Biology and the functional role: 

Cytotoxic T lymphocyte antigen 4 (CTLA4, also known as CD152), expressed on the 

activated T cells, is a cell surface receptor belonging to the immunoglobulin superfamily. 

Structurally, it is a homolog of the T cell co-activation receptor CD28, even binding to the 

same ligands - B7-1 (CD80) and B7-2 (CD86) which are expressed on the specialized APCs - 

but with higher affinity (44, 45). However, functionally it is an exact opposite. It possesses a 

cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM) domain which, upon 

successful engagement with its respective ligand on the APCs, recruits SHP family of 

phosphatases to reverse TCR activation-induced phosphorylation of signaling molecules and 

thereby serves to limit the T cell response. Role of CTLA4 in immune inhibition is further 

exemplified by Ctla4-/- mice that develop fatal multi-organ destruction due to uncontrolled 

lymphocyte proliferation and infiltration (46, 47). 

 

Role in tumor immune biology: 

Even though tumours can present antigens in the context of MHC molecules, they still elicit 

insufficient immune response. One of the reasons for this was believed to be the lack of co-

stimulatory signals provided by B7-CD28 interaction, as the expression of B7 ligands are 

restricted to specialized APCs. However, it is now known that even tumors that express B7 

ligands elicit only partial immune response (48). Work from James P. Allison’s group using 

B7+ve and B7-ve murine colon carcinoma cells has shown that the expression of immune 

inhibitory CTLA4 on tumors can explain the lack of immune reactivity against B7-positive 

tumors. Furthermore, inhibition of CTLA4-mediated negative stimulatory pathway could not 

only lead to tumor regression, but also result in immunological memory (49). Targeting 

CTLA4 therefore lowers the threshold of T cell activation and promotes expansion and 

maintenance of activated T cells. Moreover, Treg-specific CTLA4 deficiency leads to 

systemic lymphoproliferative disorder, indicating that CTLA4 is also crucial for the 

suppressive function of natural Tregs (50) and that targeting CTLA4 using antibody therapy 

might further aid in clinical immune response (Figure IV). 

 

Blocking antibodies and clinical success: 

Based on the above rationale, clinical trials have been conducted with ipilimumab, a human 

IgG1 anti-CTLA4 blocking antibody, whereby an overall response rate of 10.9 % has been 
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noted in patients with advanced melanoma (51). It is the only treatment to date for advanced 

metastatic melanoma patients whereby 46% of the treated patients are disease-free after 1 

year, as opposed to the 1-year survival rate of 25% with alternative treatment modalities (52). 

Encouraged by these durable responses, FDA approved ipilimumab in 2011 as a first-in-line 

treatment option for advanced melanoma (53). Notably, about 80% of the patients treated with 

ipilimumab presented adverse toxicity-related events which could be traced back to the 

serious autoimmune phenotype of Ctla4-/- mice, highlighting the central role of CTLA4 in 

immune tolerance. Interestingly, treatment-related adverse events in some of these patients 

were found to be correlated with improved patient outcome, underscoring the need for 

modified treatment-evaluation parameters for immunotherapy trials (54, 55). 
 

 
 

Figure IV. (A) The interaction between the B7 ligands, on the surface of APCs, and CTLA4, on the surface of T 

cells, leads to the inhibition of TCR signaling in activated T cells. (B) Blocking this interaction by using the anti-

CTLA4 antibody (ipilimumab) allows for enhanced T cell stimulation and anti-tumor response. Adapted from 

Mellman et al, 2011 (56). 

 

1.4.4.2 PD1-PDL1 axis 

Biology and the functional role: 

Programmed death receptor 1 (PD-1, also known as CD279) is an inhibitory co-signaling 

receptor which also belongs to the CD28-B7 family of proteins. It is induced only upon 

activation on the surface of T cells, B cells, natural killer T cells, monocytes and dendritic 

cells (57). It pre-dominantly binds to its ligands PD-L1 (also known as B7-H1 or CD274) and 

to some extent to PD-L2 (also known as B7-DC or CD273), both of which are cell surface 

proteins that are constitutively expressed on the APCs and inducible on epithelial and 

endothelial cells upon inflammation (58). Besides the ITIM motif, PD-1 also contains a 

cytoplasmic immunoreceptor tyrosine-based switch motif (ITSM) domain, which recruits the 
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SHP2 phosphatase to dephosphorylate the TCR-induced phosphorylation event. Ligation of 

PD-1 with PD-L1 (or PD-L2) therefore transmits an inhibitory signal into the T cell, which 

reduces cytokine production, T-cell proliferation and promotes apoptosis of effector T cells, 

ultimately leading to the T cell ‘exhaustion’ (59, 60).  

 

Role in tumor immune biology: 

Tumors exploit this immune-inhibitory capacity of the PD-1/PD-L1 signaling axis by 

upregulating PD-L1 expression via the loss of tumor suppressor protein PTEN (61). 

Additionally, IFN-γ released by the activated T cells could also upregulate the expression of 

PD-L1 on tumor cells (62). Overexpression of PD-L1 has been demonstrated in many 

different cancer types (eg, melanoma: 40%-100%, non-small cell lung cancer: 35%-95%, 

breast cancer: 30-50%, pancreatic cancer: 40% and multiple myeloma: 93%), and high levels 

of PD-L1 expression have been correlated to poor clinical outcomes (63-66). Besides active 

inhibition of the T cell response, PD1-PDL1 signaling between the T cells and DCs can also 

polarize the nature of the immune response to a Treg phenotype (67), thereby further 

suppressing the anti-tumor immune response (Figure V).  

 

 
 

Figure V. PD-1 receptor, expressed on the activated T cells, binds to the ligands PD-L1 (or PD-L2) expressed on 

the tumor cells. PD-L1’s expression is induced by IFN-γ secreted by the activated T cells. PD1-PDL1 ligation 

inhibits the TCR-induced downstream signaling events in effector T cells, creating a phenotype known as T-cell 

exhaustion. PD1-PDL1 signaling in other immune subsets could also lead to pro-tumor immune escape. 

Illustration by Sznol et al. 2013 (66). 

 



Introduction 

Page 13 

 

Blocking antibodies and clinical success: 

Given its critical role in immune suppression, cancer immunotherapy based on the targeted 

inhibition of PD-1 or PD-L1 is currently been explored in the clinics. In vitro studies with 

blocking antibodies against PD-1 or PD-L1 demonstrated higher cytokine production by the 

effector T cells, prolonged survival and proliferation, as well as higher cytolytic activity (68). 

Nivolumab, a humanized IgG4 monoclonal antibody against PD-1, was the first antibody to 

demonstrate broad and encouraging results in the phase I clinical trials with objective, and 

most importantly durable response rates, observed in 31% of metastatic melanoma patients, 

16% of non small cell lung cancer patients and 29% of metastatic renal cell carcinoma 

patients (69). These impressive preliminary results in previously-treated, late-stage cancer 

patients have ushered the PD-1 and PD-L1 based therapeutics for a fast track FDA approval 

that is anticipated this year.  

 

Combinatorial therapy: 

Adverse events associated with the PD-1 antibody therapy were less severe than those 

observed with anti-CTLA4 therapy and this can be explained in view of the distinct roles that 

CTLA4 and PD-1 play in immune regulation.  CTLA4 dampens the activation signal in T 

cells during the initial activation stage and fine-tunes the magnitude of early activation of 

naïve and memory T cells, while PD-1 functions to limit the activity of already activated T 

cells in the periphery in order to limit autoimmunity. Therefore, CTLA4 is more critical in 

establishing a central tolerance threshold for T cells activation, whereas PD-1 checks upon the 

activation status of already activated T cells (66). In light of these complementary pathways 

of immune regulation which are temporally and spatially distinct, combinatorial trials with 

nivolumab and ipilimumab are currently underway in advanced melanoma patients to exploit 

any potential synergistic effect that might result from co-inhibition of PD-1 and CTLA4. 

Early results report an objective response rate of 40% in these patients with rapid and deep 

tumor regression observed in many patients (70). 

1.4.4.3 Other immune modulatory ligands 

• FasL: Fas ligand (FasL or CD95L) is a type-II transmembrane protein belonging to 

the TNF family that interacts with its receptor Fas (CD95), triggering a cascade of 

subcellular events leading to the induction of apoptotic cell death of sensitive target 

cells (71). Fas/FasL interaction plays an important role in the activation-induced cell 
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death (AICD) of cytotoxic T cells. FasL-expressing tumors exploit this pathway for 

clearing effector T cells by inducing T cell apoptosis (72).  

 

• Galectins: Galectins are evolutionarily conserved glycan-binding proteins that bind to 

N-acetyllactosamine sequences on both N- and O-glycans on the cell surface (73). 

Galectins are expressed by multiple tumor types as well as by tumor stromal cells (73). 

Few of the galectin members have exhibited immunosuppressive function. Galectin-1 

has been shown to sensitize T cells towards FasL-induced apoptosis and suppression 

of Th1 responses (74). Tumor-associated galectin-3 has been shown to promote tumor 

growth and suppress tumor-reactive CD8+ T cells in mice receiving adoptive T cell 

transfer (75). Multimeric complexes of galectin-3 have also been shown to impose 

steric hindrance to TCR complex and restrain the TCR-induced activation signaling 

(76). Galectin-9, on the other hand, is believed to be the ligand for T cell 

immunoglobulin (Ig) domain and mucin domain 3 (Tim-3), a Th1-specific type 1 

membrane protein expressed on the cell surface of fully differentiated CD4+ Th1 cells 

(77). Binding of galectin-9 to Tim-3 results in an inhibitory signaling cascade 

downstream of Tim-3 leading to apoptosis of Tim-3 expressing Th1 cells. Tim-3 

expression on T cell surface has therefore been correlated with an exhausted immune 

status. Notably, recent evidences have emerged that suggest galectin-9 is not the 

ligand for Tim-3, leaving this field of investigation open for further in depth analysis 

(78). 

 

• LAG-3: Lymphocyte activation gene-3 (LAG-3) is a cell surface molecule expressed 

on a subset of immune cells. It has been shown to be important for the immune-

suppressive function of CD4+CD25+ Tregs (79). It has also been shown to be 

expressed on antigen-specific CD8+ T cells, restraining its accumulation and effector 

function at the tumor site. Antibody blockade of LAG-3 has been shown to alleviate 

the proliferative capacity and the effector function of antigen-specific CD8+ T cells, 

indicating its role in immune tolerance (80). Recently, it has been shown that LAG-3 

and PD-1 pathway act synergistically in maintaining tolerance towards both self and 

tumor antigens, providing strong rationale for co-inhibition in clinical studies (81). 

 

• CEACAMs: Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) 

are a part of the immunoglobulin superfamily which are characterized by their 
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involvement in cell-to-cell adhesion (82). Multiple members of the CEACAM family 

have been implicated in tumor progression and metastasis, including CEACAM-1 and 

CEACAM-6. CEACAM-1, which contains a cytoplasmic immunoreceptor tyrosine-

based inhibitory motif (ITIM), is expressed on T cells upon activation and inhibits 

TCR signaling, thereby modulating immune response (83). Recently, the host 

laboratory has shown the novel involvement of CEACAM-6 expression on multiple 

myeloma in suppressing the anti-tumor function and reactivity of T cells. Inhibiting 

CEACAM-6 with blocking antibody could effectively rescue the anti-tumor reactivity 

of patient-derived T cells (84).  

 

• RCAS-1: Breast cancer cells have been shown to express RCAS1 (receptor-binding 

cancer antigen expressed on Siso cells), which induces cell cycle arrest and apoptosis 

of activated T-cells via interaction through a putative RCAS1 receptor (85). 

 

Nevertheless, the immune-inhibitory interactions presented above do not necessarily represent 

an exhaustive list of pathways that tumor cells exploit to antagonize the anti-tumor T cell 

response. Treatment unresponsiveness has been noted in a good proportion of patients 

undergoing PD-1/PD-L1 or CTLA4 blockade therapy (51, 68, 69, 86). For example, about 

50% of the PD-L1-positive tumors failed to respond to treatment with MPDL3280A, an anti-

PD-L1 blocking antibody, in Genentech’s ongoing clinical study (87). Moreover, it has been 

shown that targeting PD1-PDL1 pathway alone does not always result in a complete 

restoration of T cell functionality (88), hinting at the involvement of other undefined immune 

regulators. Given that the tumors are inherently heterogeneous, probably even in their 

expression of immunosuppressive entities, there is a strong rationale to believe that other 

immune-checkpoint pathways may be active besides the ones that are being currently targeted 

in the clinics.  

 

Therefore, successful cancer immunotherapy in the future would require a systematic 

dissection of the entire immune-modulatory circuitry that regulates the magnitude of anti-

tumor immunity. However, such an approach towards a systematic and high-throughput 

delineation of novel immune regulators has been largely missing in the field.  
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1.5 High-throughput RNAi-based screen 

Genetic screens based on the principle of RNA interference (RNAi) have become a standard 

practice to uncover modifiers of biological phenomena in a high-throughput and systematic 

fashion (89). RNAi is an intracellular defense mechanism whereby messenger RNA is 

targeted for destruction by double-stranded RNA (dsRNA) which contains sequence 

homology to the targeted gene, leading to a block in translation of the transcribed mRNA and 

thereby resulting in gene silencing (90). Since its discovery in nematode worms 

Caenorhabditis elegans in 1998, it has become a powerful tool for experimentally-induced 

gene silencing protocols with an extended use in therapeutics (91).  

1.5.1 RNAi: principle and formats 

Small interfering RNAs (siRNAs) are the main effector molecules of the RNAi pathway that 

bring about the sequence-specific gene silencing (Figure VI). These are 21-28 nucleotide long 

RNA duplexes with 2-nucleotide long 3’-overhangs which are generated upon the cleavage of 

long dsRNA by RNase-III-type enzyme termed Dicer. These siRNA duplexes are then 

recognized by the RNA-induced silencing complex (RISC) which incorporates the anti-sense 

strand of the duplex into the complex and guides it to the complementary sequence on the 

target mRNA. Perfect complementarity between the target mRNA and the antisense strand of 

siRNA duplex leads to the cleavage and degradation of the mRNA by the RISC complex. 

Imperfect complementarity however results in a steric inhibition of the RNA translation 

machinery. Ultimately, both lead to posttranscriptional gene silencing of the targeted gene 

(92). Cellular source of an siRNA can be endogenous (endo-siRNAs) or processed from long 

dsRNAs of viral origin or can be introduced synthetically in an experimental set-up. On the 

other hand, microRNAs (miRNAs) are endogenously synthesized double stranded RNA 

molecules that are transcribed as a RNA-hairpin loop structure (pri-miRNA) initially that gets 

processed into 22-nt long miRNA duplex to mediate gene silencing in a similar fashion as 

siRNA (92). Exogenously introduced short-hairpin RNAs (shRNAs) or dsRNAs undergo 

similar processing by cellular machinery to get converted into direct effectors of gene 

silencing. 
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Figure VI. RNA interference (RNAi), mediated by siRNA or miRNA effector molecules, basically involves a 

RNA duplexes, one strand of which is complementary to the mRNA of the target gene (guide or antisense 

strand). The guide strand is imported into the RNAi-induced silencing complex (RISC) which consists of the 

Argonaute protein (AGO2). AGO2 cleaves the target mRNA upon perfect complementarity or inhibits the 

translation in case of partial complementarity. In both cases, expression of the target mRNA is inhibited leading 

to the gene knockdown phenotype. miRNAs differ from siRNAs in that they are produced endogenously as 

primary miRNAs (pri-miRNAs) which subsequently gets processed by cellular machinery into the mature 

miRNA duplex. Illustration by Fougerolles et al, 2007 (93). 
 

High-throughput RNAi-based genetic screens in mammalian cells have largely employed 

either synthetic siRNAs or vector-based expression of shRNAs to create gene knockdown 

phenotypes in target cells and assess their role in context of a particular biological process 

defined by the readout assay. RNAi screening based on siRNA library involves the delivery of 

artificially synthesized siRNA duplexes with desired sequence specificity to target cells, 

typically via liposomal transfection or electroporation, for transient knockdown of target gene. 

Whereas in shRNA-based RNAi screens, shRNA-expressing plasmids carried by lenti-, retro 

or adenoviral particles are used to transduce mammalian cells to mediate transient or stable 

gene knockdowns. Both these formats have their own set of salient features. Formats based on 

siRNA offer ease of production and transfection, generally high transfection efficiency as well 

as greater control over the amount of siRNAs transfected, which in turn means greater control 

over concentration-based non-specific side effects. In comparison, shRNA-based libraries are 
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advantageous for transducing non-transfectable cell types and for stable as well as inducible 

expression that could allow for long duration-based readout assays (91). Based on individual 

experimental needs, both these formats have been widely employed by the scientific 

community in cancer genetics to find modifiers of tumor growth, metastasis, drug 

susceptibility/resistance, synthetic lethality (94-96). 

1.5.2 Cell-based assays and workflow for an RNAi screen 

One of the key steps involved in a large scale RNAi screen is the design of an assay that is 

suited for reading out the exact biological question under investigation and its scale up to a 

high-throughput level. In addition, the screen would require the selection and optimization of 

a high-throughput-compatible gene knockdown strategy in the desired cell culture system, 

data acquisition, normalization and analysis to reveal the primary hit list. Once a primary hit 

list of candidate genes is generated, potential hits are re-validated in re-runs, creating a 

secondary hit list of reproducible hits that are then followed up in secondary and tertiary 

assays. These are designed independently of the primary assay used in the screening 

methodology to rule out false-positive hits. The basic workflow of an RNAi screen and the 

associated hit validation strategy is outlined in Figure VII. 
 

“The end of the screen is the beginning of the experiment”89 

 
 

Figure VII. siRNA-based RNAi screen involves the transfection of double-stranded siRNAs, either in individual 

wells or delivered as pools, into cell cultures to induce gene silencing. Gene silencing-induced phenotype is then 

readout using the appropriate assay creating a primary hit-list of candidate genes which is subjected to further 

validations as outlined in the flow-chart on the right. Adapted from Boutros et al. 2008 (89). 
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1.5.3 Data analysis from RNAi screen experiments 

Depending on the complexity of the readout assay (image-based or value-based), large scale 

RNAi screens can be data intensive, requiring dedicated statistical analysis and computational 

resources. Software packages that integrate data analysis pipeline (such as cellHTS (97), 

RNAither (98), GUItars (99) among others) have been developed to streamline the data 

analysis part of RNAi screen approaches. Numerical datasets, such as luciferase intensity 

from the assay readout, could be imported into these software packages for normalization, 

quality metrics calculation and finally for setting filtering parameters for hit identification 

(100). 

Normalization of the raw data is usually performed to account for and remove systematic 

technical errors that can vary from plate to plate, even within the same experimental setting, 

thereby allowing for data comparison and summation across the different plates in a screen. 

Various methods of data normalization, including control-based or sample-based 

normalization exist and are chosen depending on the data distribution parametric of the 

involved study. In the more commonly used plate-based median normalization method, signal 

intensity of each well in a plate is calculated relative to the plate’s median intensity to scale 

plate-to-plate differences. The data is then deemed ready for further processing, but before 

that one must ensure the quality of the produced data meets the quality control requirements. 

Firstly, the performance of the replicates can be compared to each other to ensure 

reproducibility. Technical errors resulting from faulty pipetting or robotics, edge effects or 

spatial effects on plates could be further normalized to a certain extent at this stage using 

specialized normalization methods such as B-score or local regression (loess)-based 

normalization techniques (101). A clear dynamic range, defined as the degree and clarity of 

separation between the positive and negative controls, is desirable to ease the complexity of 

high-confidence hit calling and this can be mathematically deduced using the geometric 

means of the respective controls. For final generation of the hit-list, strength of individual 

siRNAs can be ranked based on their z-score, defined as the number of standard deviations 

from the mean of the sample distribution. User-defined threshold parameters, which can be 

control-based or quartile-based, are then employed to deduce meaningful hits from the ranked 

list. Nevertheless, it remains to be said that algorithms for hit identification are seldom 

absolute and are rather largely dependent on the biological significance of the gathered 

phenotypes compared to the relevant positive or negative controls (89). 



Introduction 

Page 20 

 

In the field of cancer immunity, RNAi screens have been very recently employed to 

investigate genes that modify antigen-presentation by dendritic cells (102) or impair tumor 

susceptibility to NK cells (103). It is worthwhile to note that the success of any high-

throughput screen largely depends on the careful design of the screening assay. Systematic 

discovery of tumor-associated immune-checkpoint molecules has proven to be challenging for 

the same reason, since a reliable high-throughput scale–compatible immune assay that 

measures the impact of tumor-specific gene expression on anti-tumor capacity of T cells has 

been largely lacking.  

 

  



Introduction 

Page 21 

 

1.6 Aims and objectives of the thesis 

Immunotherapy has emerged as a new pillar of cancer treatment over the last decade, but its 

clinical efficacy requires further optimization and tweaking. One of the major limitations to 

cancer immunotherapy is posed by the immunosuppressive ligands present on the tumor cell 

surface that inhibit an effector anti-tumor T cell response. Targeting these immune-checkpoint 

nodes is considered as the next paradigm shift in the realms of cancer immunotherapy. 

However, the current knowledge about the repertoire of such immunosuppressive ligands that 

are presented by the tumor is rather limited due to the lack of systematic, high-throughput 

studies that are devoted to the discovery of immune modulators. 

 

Therefore, the major aim of this thesis was to establish and to functionally validate a high-

throughput and robust screening assay which could uncover novel tumor-associated immune 

modulators. To achieve this aim, the following objectives were laid out: 

 

i. An immune assay will be established which combines gene knockdown via RNAi in 

tumor cells with the assessment of T cell-mediated tumor cell death in order to 

quantify the influence of individual cell surface-associated genes in cancer on the 

cytotoxic potential of effector T cells. 

 

ii. The above-mentioned immune-based screening assay will be employed at a high-

throughput level to systematically screen for potential immune modulators expressed 

by the cancer cells. The robustness and the feasibility of such a screening strategy 

under various biological parameters would also be tested.  

 

iii. Validity of the screening approach to yield meaningful immunosuppressive candidates 

will be verified by functional characterization of the identified hits. For this, the effect 

of candidate gene knockdown on the function and anti-tumor reactivity of antigen-

specific T cells in multiple tumor settings will be investigated. Potential route of 

mediating immune suppression by the candidate gene will be additionally explored. 
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2. Materials 

2.1 Chemicals, reagents and consumables 

Product 
 

Supplier 
 

1 kb DNA Ladder (GeneRuler) Thermo Fisher Scientific 
100 bp DNA Ladder (TrackIt) Life Technologies 
  
AB human serum Valley 
Agar Fluka 
Agarose Life Technologies 
AMP Sigma-Aldrich 
Ampicillin Sigma-Aldrich 
Aqua ad iniectabilia B. Braun 
ATP Roche 
  
Benzonase Merck 
Beta-mercaptoethanol Gibco 
Biocoll solution (density 1.077 g/ml) Biochrom 
Bovine serum albumin (BSA), fraction V Sigma-Aldrich 
Bromphenol blue Merck 
  
Cell culture dishes TPP 
Cell strainers (40 and 100 µm-pores) Falcon, BD 
Conical centrifuge tubes TPP 
Cryogenic vials (2 ml) Corning 
  
DharmaFECT1, 2 and 4 transfection reagents Dharmacon, GE 
Dimethyl sulphoxide (DMSO) Sigma-Aldrich 
Disposable needles (0.4 x 20 mm) Henke Sass Wolf 
Disposable syringes (1 ml) Henke Sass Wolf 
Disposable syringes (50 ml) BD 
Dithiothreitol (DTT) Gerbu 
D-luciferin (for Luc-CTL assay) Biosynth 
D-luciferin potassium salt (for in vivo injection) Synchem 
dNTP mix (10mM) Invitrogen 
Dulbecco's PBS powder without Ca2+, Mg2+ (for 10 L) Biochrom 
Dulbecco's PBS without Ca2+, MgCl2 (1X) Sigma-Aldrich 
Dynabeads CD3/CD28 T cell expander, human Dynal 
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Dynabeads Pan-Mouse IgG kit Invitrogen 
  
EDTA 1% (w/v) without Mg2+ Biochrom 
Enhanced chemiluminescence (ECL) detection reagents GE Healthcare 
Ethanol absolute Sigma-Aldrich 
Ethidium bromide Sigma-Aldrich 
  
Fetal bovine serum Biochrom 
Ficoll tubes - Leucosep (50 ml) Greiner Bio-one 
Flat-bottom plates (6, 12, 24, 48, 96 well) TPP 
Freezing container (Mr. Frosty) Nalgene, Thermo Scientific 
  
GeneJammer transfection reagent Agilent Technologies 
Geneticin sulfate (G418) Gibco 
Glycerol Carl Roth 
  
HEPES buffer (1 M) Sigma-Aldrich 
Hoechst dye Invitrogen 
  
IL-2 (human, recombinant) Novartis 
Isoflurane Baxter 
Isopropanol Fluka 
  
Library Efficieny DH5α competent cells Invitrogen 
Lipofectamin LTX/ PLUS reagent Life Technologies 
Lipofectamin RNAiMAX Life Technologies 
Loading dye solution (6X) Fermentas 
LumaPlates PerkinElmer 
Luminometer plates (white, 96 well, flat) PerkinElmer 
  
Magnetic particle concentrator Life Technologies 
Matrigel basement membrane matrix BD 
MES SDS running buffer (20X) Life Technologies 
Methanol VWR 
Milk powder Carl Roth 
Multichannel pipette (50µl) Thermo Scientific 
MultiScreen-HA filter plates (0.45 µm, clear, sterile) Merck 
  
Na2 51CrO4 (5 mCi, 185 MBq) Perkin-Elmer 
Negative control siRNA 1 and 2 Ambion 
Non-essential amino acids (100X) Sigma-Aldrich 
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Nuclease free water Ambion 
  
Oxalic acid Sigma-Aldrich 
  
PageRuler prestained protein ladder Thermo Fisher Scientific 
Pertussis toxin Sigma Aldrich 
Phenylacetic acid Sigma-Aldrich 
Pipette filter tips (10 µl -1000 µl) Starlab 
Plastic serum pipettes, sterile Greiner bio-one 
Polybrene (Hexadimethrine bromide) Sigma-Aldrich 
Polystyrene round bottom tubes with caps (5, 15 and 50 
ml) 

Falcon 

Polyvinylidene difluoride (PVDF) membrane Millipore 
PowerPac Basic Power Supply Bio-Rad 
Protease Inhibitor tablets (complete) Roche 
Puromycin (10 mg/ml) Gibco 
  
Recombinant human CCL25/TECK protein R&D Systems 
Recombinant human PD-L1 protein Life Technologies 
Round-bottom plate (96 well) TPP 
  
Safe-lock tubes (0.5, 1.5, 2 ml) Eppendorf 
SDS polyacrylamid gels (4-12% Bis/Tris) Life Technologies 
Shaver for mice (Exacta) Aesculap 
siGENOME set of 4 upgrade siRNAs against CCR9, 
CCL25, CCRL1, PTGER3 and GHSR. 

Dharmacon, GE 

siGENOME SMARTpool siRNAs against PD-L1, 
CEACAM-6, RCAS-1, GAL-3, UBC, PLK-1, R-Luc, Chk 
1, Elmo 2, FLuc and Control siRNA 

Dharmacon, GE 

Syringe filter units (0.22 and 0.45 µm-pores) Millipore 
  
Taq DNA polymerase, recombinant Invitrogen 
Tissue culture flask/filter cap (25, 75, 150 cm2) TPP 
TransIT-LTI transfection reagent MirusBio 
Transwell inserts; thin-certs 8µm pore size Greiner bio-one 
Triton X-100 Fluka 
Trypan blue solution (0.4%) Fluka 
Trypsin-EDTA (1X) (sterile filtered) Sigma-Aldrich 
TurboFectin OriGene 
Tween 20 Sigma-Aldrich 
  
Whatman 3 mm gel blot paper Sigma-Aldrich 
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2.2 Assay kits 

Kits Supplier 

5-Plex STAT Phosphoprotein kit, Milliplex MAP Millipore 

7-plex T Cell Receptor Signaling phosphoprotein kit, 

Milliplex MAP 

Millipore 

9-Plex Multi-Pathway Cell Signaling kit, Milliplex MAP Millipore 

Bight-Glo luciferase assay system Promega 

Bio-Plex Pro Assay kit Bio-Rad 

CCL25/TECK ELISA kit R&D systems 

CellTiter-Glo Luminescent Cell Viability Assay kit Promega 

Compensation Beads set (anti-mouse) BD 

Dynabeads FlowComp Mouse CD8 Kit Life Technologies 

EndoFree Plasmid Maxi Kit Qiagen 

IFN-γ ELISA kit BD 

Live/Dead fixable yellow dead cell stain kit Life Technologies 

QIAprep Spin Miniprep Kit Qiagen 

QuantiTect reverse transcription kit Qiagen 

RNeasy Mini Kit Qiagen 

2.3 Buffers 

• ACK lysis buffer for red blood cell lysis 
 

NH4Cl  8.3 g 
KHCO3  1.0 g 
EDTA  0.037 g 
ddH2O 1 L 

 
• Dulbecco's PBS without Ca2+, Mg2+ (10X) 

 
Dulbecco's PBS powder  95.5 g 
ddH2O 1 L 
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• ELISpot washing solution 
 

PBS (Sigma-Aldrich) 500 ml 
Tween-20  1.25 ml 

 
• ELISpot blocking solution 

 
RPMI (Sigma-Aldrich) 500 ml 
AB serum  25 ml 

 
• FACS buffer 

 
PBS (Sigma-Aldrich)  49.5 ml 
FCS  0.5 ml 

 
• MACS buffer 

 
EDTA 2.5 ml 
Filtered AB serum  250 µl 
PBS (Sigma-Aldrich) 47.5 ml 

 
• BL buffer 

 
ddH2O  84,8 ml 
HEPES (50mM Stock) 5 ml 
EDTA (0,5 mM Stock) 0,1 ml 
Phenylacetic acid (0,33 mM) 0,033 ml 
Oxalic acid (0,07 mM Stock)  0,07 ml 

 
pH adjusted to 7,6 and stored at 4°C for up to 4 weeks 

 
• Lysis buffer for Luc-CTL assay 

 
BL buffer                        48.5 mL 
10% TritonX-100          1.5  mL 

 
• B2 Buffer 

 
ddH2O  85 ml 
DTT (415 mM stock) 6,4 g 
ATP (33 mM stock) 1,82 g 
AMP (0,996 mM source) 0,035 g 

 
Aliquots were stored at -20°C. 
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• F-Luc mix for Luc-CTL assay 
 

ddH2O  8ml 
D_luciferin (35,7 mM stock) 0,1 g 

 
NaOH was added until the color changes. Aliquots were stored in dark eppendorf tubes at -

20°C. 

 
• FLuc buffer for Luc-CTL assay 

 
BL buffer                        44.35 mL 
Buffer B2                          5 mL 
D-Luc (10mg/mL)          0.65 mL 
1M MgSO4                       751 uL 

 
• Hoechst dye staining solution 

 
PBS  10 ml 
BSA 2.4 % 
Hoechst stain 1.25 µg/ml 

 
• SDS-PAGE running buffer 

 
MES SDS running buffer (20X)  50 ml 
ddH2O 950 ml 

 
• Immunoblot transfer buffer (10X) 

 
Tris base  30.3 g 
Glycine  144 g 
ddH2O 1 L 

 
• Immunoblot washing solution (PBS-T) 

 
PBS (10X) 100 ml 
ddH2O 900 ml 
Tween-20  1 ml 

 
• Immunoblot blocking solution 

 
WB washing solution  50 ml 
Milk powder 2.5 g 

 
• Whole cell protein extraction (WCE) buffer 

 
Tris-HCl (pH 7.4) 50 mM 
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NaCl 250 mM 
NP-40 0.5% 
Glycerol 10% 
EDTA 1 mM 
DTT 0.5 mM 
Protease inhibitor (added fresh each 
time) 

1X 

 
• Tris-acetate-EDTA (TAE) buffer (50X) 

 
Tris 242 g (2 M) 
Glacial acetic acid 57.1 ml 
0.5 M EDTA 100 ml 
ddH2O 1 L 
pH  8.5 

2.4 Media and supplements 

Product Supplier 

AB serum, human Pan Biotech 

AIM-V with L-glutamine, streptomycin sulfate, gentamycin 

sulfate 
Gibco 

Cell dissociation Buffer; enzyme-free PBS-based (1X) Gibco 

DMEM; high glucose (4.5 g/l), L-glutamine, sodium pyruvate, 

NaHCO3 
Sigma-Aldrich 

Dulbeco-PBS without Ca2+, MgCl2 (1X) Sigma-Aldrich 

Fetal calf serum (FCS) Biochrom 

Ham's F12 Nutrient Mixture  Gibco 

HEPES buffer (1M) PAA 

Human rIL-2 (for TIL expansion) Novartis 

Human rIL-2 (Proleukin; for T cell culture) Chiron 

LB broth Carl Roth 

LB-Agar Carl Roth 

L-Glutamine (200 mM) BioWhittaker, Lonza 
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Non-essential amino acids (NEAA; 100X) BioWhittaker, Lonza 

OPTI-MEM (1X) with HEPES buffer, Lglutamine, NaHCO3 Gibco 

Penicillin/Streptomycin (P/S; 100X) PAA 

RPMI 1640 with L-glutamine  Gibco 

RPMI 1640 with L-glutamine, NaHCO3  Sigma-Aldrich 

S.O.C. medium Invitrogen 

Trypsin/EDTA (1X) Sigma-Aldrich 

X-VIVO 20 (serum free)  Lonza 

 
FCS and AB serum were heat-inactivated and filtered through 0.22 µm pore-sized filters 

before being used as media supplements. Penicillin/Streptomycin (P/S) mix was also filtered 

through 0.22 µm filters before use. 

 
• Complete melanoma medium (CMM) 

 
DMEM  300 ml 
RPMI  100 ml 
Ham's F12 Nutrient Mixture  100 ml 
HEPES buffer  5 ml 
FCS  50 ml 
P/S  5 ml 

 
• Complete lymphocyte medium (CLM) 

 
RPMI 500 ml 
AB serum 50 ml 
HEPES 5 ml 
P/S 5 ml 
2-mercaptoethanol 50 µl 

 
• Freezing medium 

 
FCS 9 ml 
DMSO 1 ml 

 
• LB-Amp medium 

 
LB broth 25g 
dH2O 1L 
Ampicillin 100 µg/ml 
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• LB agar medium 

 
LB-Agar 40g 
dH2O 1L 

 
• TIL expansion medium with feeder cells 

 
CLM  50% 
AIM-V  50% 
Feeder cells  1x106/ml 
IL-2  6,000 U/ml 
OKT-3  30 ng/ml 

 
 

• TIL expansion medium without feeder cells 
 

CLM  50% 
AIM-V  50% 
IL-2  6,000 U/ml 

 
• T cell medium (for short-term culture) 

 
X-VIVO 20 50 ml 
Human rIL-2 (Proleukin) 100U/ml 

2.5 Cell lines 

All cell lines were of human origin: 
 
Cell lines Type (derived from) Culture medium 

HEK 293T Embryonic kidney DMEM, 10% FCS, 1% P/S 

M579 
Melanoma patient-derived 
primary cell culture 

Complete melanoma medium 

MCF7 Breast adenocarcinoma DMEM, 10% FCS, 1% P/S 

MCF7-luc Breast adenocarcinoma 
DMEM, 10% FCS, 1% P/S, 550 
µg/ml G418 

MDA-MB-231 Breast adenocarcinoma DMEM, 10% FCS, 1% P/S 
PANC-1 Pancreatic adenocarcinoma DMEM, 10% FCS, 1% P/S 

PANC-1-luc Pancreatic adenocarcinoma 
DMEM, 10% FCS, 1% P/S, 1 
mg/ml G418 

Phoenix ampho Embryonic kidney DMEM, 10% FCS, 1% P/S 
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Cells Type (derived from) Culture medium 

Polyclonal CD8+ T 
cells 

Leukocyte concentrates 
(Buffy coat) from healthy 
donors 

X-VIVO 20 

Survivin antigen-
specific T cells 

Peripheral blood of breast 
cancer patient 

X-VIVO 20 

SW480 Colorectal adenocarcinoma RPMI, 10% FCS, 1% P/S 

TIL 412 Melanoma patient-derived Complete lymphocyte medium 

TIL 53, and TIL 34 
Pancreatic cancer patient-
derived 

Complete lymphocyte medium 

2.6 Antibodies 

All antibodies used were reactive against human epitopes, unless otherwise stated. 

2.6.1 Flow cytometry 

Specificity Species Isotype Conjugate Clone Company Application 

CD69 mouse IgG1 PE FN50 BD 5 µl in 50µl volume 

CD8 mouse IgG2a FITC G42-8 BD 5 µl in 50µl  volume 

CD4 mouse IgG1 PerCP-Cy5.5 RPA-T4 BD 2.5 µl in 50µl volume 

CD8 mouse IgG1 V450 RPA-T8 BD 2.5 µl in 50µl volume 

CD3 mouse IgG2A APC HIT3a BD 2.5 µl in 50µl volume 

CD45 mouse IgG2A FITC 5B1 
Miltenyi 

biotec 
2.5 µl in 50µl volume 

PD-1 mouse IgG1 PE/Cy7 EH12.2H7 BioLegend 5µl in 100µl volume 

TIM-3 rat IgG2A PE 344823 R&D Systems 20µl in 100µl volume 

CCR9 mouse IgG2A 
Alexa-Fluor 

647 
112509 BD 5 µl in 50µl volume 

Isotype 

control 
mouse IgG2A APC S43.10 

Miltenyi 

biotec 
2.5 µl in 50µl volume 

Isotype 

control 
mouse IgG2A,k 

Alexa-Fluor 

647 
G155-178 BD 5 µl in 50µl volume 
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2.6.2 Immunoblot 

Specificity Species Isotype Clone Provider Application 

CCR9 rabbit IgG E99 Abgent 1:1000 

CEACAM-6 mouse IgG1 GM8G5 Axxora (Enzo) 1:1000 

Beta-actin mouse IgG1 AC-15 Abcam 1:3000 

PD-L1 mouse IgG1 130021 R&D Systems 1:1000 

Phospho-STAT1 
(Tyr701) rabbit IgG 58D6 Cell Signaling 1:1000 

Anti-mouse IgG- 
HRP goat IgG sc2005 Santa Cruz 1:2000 

Anti-rabbit IgG- 
HRP goat IgG sc2004 Santa Cruz 1:2000 

2.6.3 Cell-based assays 

Specificity Species Isotype Clone Provider 
Application and 

concentration 

CCR9 mouse IgG2A 112509 R&D Systems 

Blocking assays 

(BA): 30 or 60 

µg/ml 

CCR9 rabbit IgG ab38564 Abcam BA: 30 µg/ml 

CEACAM-6 mouse IgG1 GM8G5 Axxora (Enzo) BA: 30 µg/ml 

Isotype mouse IgG1 MG1-45 BioLegend BA: 30 µg/ml 

Isotype mouse IgG2A 20102 R&D Systems BA: 30 or 60 µg/ml 

PD-L1 mouse IgG1 130021 R&D Systems BA: 30 µg/ml 

CCL25 mouse IgG2B 52513 R&D Systems BA: 30 µg/ml 

CD3 mouse IgG2A OKT3 Dr. G. Moldenhauer 
TC activation, as 

indicated in methods 

CD28 mouse IgG1 15E8 Dr. G. Moldenhauer 
TC activation, as 

indicated in methods 

CD3 x EpCAM 

bsAb 
mouse  

OKT3 x 

HEA125 
Dr. G. Moldenhauer 

Cytotoxicity assays: 

5 µg/ml 
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2.7 Mice 

Non-obese diabetic (NOD)-severe combined immunedeficient (SCID) Il2rg-/-gamma (NSG) 

mice were used in this study. Original mouse strain was obtained from the Jackson Laboratory 

(strain name: NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ) and were bred in-house at the DKFZ 

Animal Facility. Animal experiments were approved by the regulatory authorities (Karlsruhe). 

Mice were housed in sterile, individually ventilated cages (IVC). Ethical guidelines were 

followed according to the local regulations. 

2.8 Equipments 

Instrument Associated software (version) 
and developer Manufacturer 

Acumen Explorer eX3, fluorescence 
microplate reader 

 TTP LabTech 

Axiovert 40 CFL 
microscope/AxioCam MRm 

AxioVision LE (4.4) Carl Zeiss 

Caliper (digital)  Carl Roth 

Casy cell counter  Innovatis 

CTL ImmunoSpot S5 UV analyzer ImmunoSpot (5.0 Pro DC) CTL 

FACS Canto II Flow cytometer FACS Diva software (6) BD 

Gamma Counter (Cobra Packard)  PerkinElmer 

Gammacell 1000  Best Theratronics 

Infinite M200 plate reader iControl (1.6) Tecan 

IVIS100 in vivo imaging system 
Living Image (2.50), Igor Pro 
(4.09A) 

Xenogen 

Luminex100 Bio-Plex System Bio-Plex Manager (4.1.1) Bio-Rad 

Mithras LB 940 microplate reader  Berthold 

Molecular Imager (ChemiDoc 
XRS+) 

ImageLab (5.0) Bio-Rad 

MultiDrop Combi I  Thermo Scientific 
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Instrument Associated software (version) 
and developer Manufacturer 

NanoDrop 2000c 
NanoDrop 2000c (1.3.1), 
Thermo 

Peqlab 

Thermal Cycler, Peltier PTC-200  MJ Research 

UV gel documentation system  Konrad Benda 

XCell SureLock Mini-Cell 
Electrophoresis System 

 Life Technologies 

2.9 Additional software 

Software (version) Developer 

Adobe Illustrator (CS5) Adobe systems 

cellHTS2 Boutros et al (101), Heidelberg 

Clone Manager Professional (9) Scientific and education software, Cary, NC, USA 

EndNote (X4)  Adept Scientific 

FlowJo (8.8)  Tree Star 

GraphPad Prism (6)  GraphPad Software 

ImageJ (1.44)  Wayne Rasband 

Microsoft Office 2007 Microsoft, USA 
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3. Methods 

3.1 Cell culture techniques 

3.1.1 Tumor cell lines 

MCF7, MDA-MB-231 (both breast cancer), HEK 293T (human embryonic kidney), PANC-1 

(pancreatic cancer) and SW480 (colorectal cancer) cell lines were acquired from the 

American Type Cell Culture (Wesel, Germany). Cell lines were authenticated using multiplex 

PCR at the DKFZ Genomics and Proteomics Core Facility. MCF7luc cells were generated by 

electroporation with pEGFP-Luc plasmid (kindly provided by Dr. Rudolf Haase, LMU, 

Munich) and sorted GFP-positive clones were expanded in selection medium containing 550 

µg/ml geneticin/G418 (Gibco, UK). M579-A2-luc melanoma culture, stably transfected with 

HLA-A2 expression construct and luciferase plasmid, was established from a patient as 

described before and were kindly provided by Dr. Michal Lotem, Hadassah Hebrew 

University Medical Center, Israel (104). PANC-1-luc cells were generated by Antonio 

Sorrentino in the laboratory via transfecting pEGFP-Luc plasmid using the TransIT 

transfection reagent (as described in section 3.2.6) and subsequently sorted for GFP 

expression using flow cytometry. After two rounds of sorting, more than 95% of the sorted 

PANC-1 cells maintained stable expression of GFP over time under the selection pressure of 

G418 (1 mg/ml). All cell lines were cultured in the described culture media (see section 2.5) 

and maintained at 37°C, 5% CO2, except for melanoma cell culture which was maintained at 

8% CO2. 

3.1.2 Generation of stable CCR9 knockdown cell lines 

For stable knockdown of CCR9 in tumor cell lines, a lentiviral vector expressing shRNA 

targeting CCR9 mRNA was produced according to the manufacturer’s instructions (Cellecta). 

Briefly, DNA sequence coding for shRNA hairpin loop structure targeting CCR9 were 

obtained from the DECIPHER module library database and corresponding oligonucleotides 

for the sense and antisense strand were synthesized (Sigma-Aldrich). Single stranded 

oligonucleotides were phosphorylated and annealed using a T4 polynucleotide kinase and 

ATP. Phosphorylated, double-stranded oligonucleotides were ligated into the linearized 
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backbone of the pRSI9-U6-sh-HTS3-UbiC-TagRFP-2APuro lentiviral shRNA expression 

vector (Cellecta). Successful ligation was confirmed using colony PCR and DNA sequencing. 

Plasmid containing non-targeting shRNA sequence (NTS) in place of CCR9-specific shRNA 

sequence was used as a control (Cellecta). Lentiviral particles bearing the shRNA-encoding 

plasmids were produced by Tobias Speck in the laboratory. For this, 1.2x106 of low-passage 

number HEK 293T cells were seeded in 75 cm2 tissue culture flasks and co-transfected the 

following day with the second generation lentiviral packaging plasmid psPAX2 (coding for 

gag and pol), the VSV-G envelope protein expressing plasmid pMD2.G (endcoding for env) 

and the pRSI9 transfer plasmids (encoding the NTS or CCR9 shRNAs), in a ratio of 2:1:2 (1 

= 1.5 µg DNA) using Lipofectamine LTX with PLUS as transfection reagent. Afterwards, 

cells were incubated at 37°C and supernatants containing the lentiviral particles were 

harvested after 48 h and 72 h. Cellular debris were removed by passing through a 0.45 µm 

filter. The produced lentiviral particles were used for transduction of tumor cells by seeding 

5x105 cells in 25 cm2 flasks in growth media. On the following day, growth media was 

replaced by 2 ml of lentiviral particle-containing media (diluted 1:20) along with 4 µg/ml 

polybrene. Cells were incubated at 37°C for 16 h and afterwards, lentiviral medium was 

removed and flasks were washed with PBS. Cells were incubated at 37°C for additional 48 h 

to allow stable integration and expression of plasmid encoded gene products. Cells were then 

transferred to 75 cm2 culture dishes in the presence of 1 µg/ml puromycin for positive 

selection of transduced cells. 

3.2 Molecular biology techniques 

3.2.1 RT-PCR 

To evaluate the gene knockdown efficacy of siRNAs, mRNA transcript levels were measured 

using RT-PCR. Tumor cells were harvested after siRNA transfection (described below) and 

total RNA was extracted from the cell pellets using the RNeasy Micro kit (Qiagen). 1 µg 

RNA from each sample was reverse transcribed to cDNA using the QuantiTect reverse 

transcription kit (Qiagen) as instructed by the manufacturer. Water blank, instead of template 

RNA, was used as control for the reverse transcription reaction. Transcribed cDNA were 

amplified using PCR. PCR reaction was set up in a 25 µl volume using the recombinant Taq 

DNA polymerase (Invitrogen) as detailed in the manufacturer’s protocol. Water blank, instead 
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of template cDNA, was used as control. Following primers were used for the detection and 

amplification of the respective target genes: 

  

Gene Primer sequences (5’- 3’) 

CCR9 
Forward: CAGTGAACCCCTGGACAACT 
Reverse: TGCCACTCAACAGAACAAGC 

PD-L1 Forward: GTACCTTGGCTTTGCCACAT 
Reverse: CCAACACCACAAGGAGGAGT 

GAPDH Forward: GAGTCAACGGATTTGGTCGT 
Reverse: TTGATTTTGGAGGGATCTCG 

 

The PCR reaction was carried out initially at 94°C for 2 min, followed by 35 cycles of 3-step 

process: denaturation (94°C for 30 s), annealing (55°C for 30 s) and extension (72°C for 30 

s); and finally once at 72°C for 7 min using the PTC-200 Peltier Thermal Cycler (MJ 

Research). 5 µl of the PCR product was mixed with equal volume of the DNA loading dye 

and separated on a 1.8% agarose gel using the gel electrophoresis unit. Separated DNA bands 

were visualized using the UV gel documentation system (Konrad Benda). 

3.2.2 Protein extraction 

Tumor cells were harvested and pelleted via centrifugation at 1600 rpm for 5 min and washed 

once with PBS to remove any traces of media. Depending on the pellet size, cells were 

resuspended in 30-50 µl of whole cell extract buffer containing the protease inhibitor cocktail 

(diluted 1:20). Cell lysates were incubated for 20 min, followed by centrifugation at 13,000 

rpm at 4°C for 20 min. Supernatants containing the protein lysates were transferred into fresh 

tubes and quantified using the NanoDrop analyzer (blanked with water). Protein lysates were 

stored at -80°C. 

3.2.3 Immunoblotting 

For immunoblotting analysis, 25 µg of protein lysates were separated on the 4-12% Bis/Tris 

SDS polyacrylamide gels (Invitrogen) under reduced condition. PAGE-separated protein 

bands were blotted onto the PVDF membrane using the 1X wet-transfer buffer at 400 mA for 

45 min at 4°C. Membranes were blocked with 5% milk powder in PBS-Tween (PBS-T) at 

4°C overnight to reduce unspecific binding of the antibody. On the following day, membranes 

were incubated with the primary and HRP-conjugated secondary antibody prepared in the 

blocking buffer at the dilutions indicated in section 2.6.2. Between incubation with each 
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antibody, the membranes were washed thrice with PBS-T for 10 min each. Protein bands were 

detected using the ECL developing solution containing luminol substrate which is catalyzed 

by the antibody-conjugated peroxidase (HRP) enzyme, resulting in the emission of low 

intensity light that can be detected at 428 nm. Chemiluminescent signal was acquired using 

the ChemiDoc XRS system. 

3.2.4 Bacterial transformation and plasmid extraction 

For plasmid DNA amplification, DH5α (E. coli) competent cells (Invitrogen) were 

transformed with 2 ng of plasmid DNA by heat-shock method as detailed by the 

manufacturer. Next, competent cells were plated onto the LB plates containing 100 µg/ml 

ampicillin and incubated at 37°C overnight to obtain successfully transformed antibiotic-

resistant bacterial clones. Isolated colonies were picked up on the following day and used to 

inoculate 100 ml of LB culture containing 100 µg/ml ampicillin for plasmid DNA isolation. 

Plasmid DNA from bacterial culture was isolated and purified using the EndoFree Plasmid 

Maxi Kit (Qiagen) as per the manufacturer’s instruction. Integrity of the purified DNA was 

analyzed via gel electrophoresis after enzymatic digestion. For glycerol stock preparation of 

bacterial clones, 500 µl of turbid bacterial culture was mixed with 500 µl of 50% glycerol, 

vortexed, placed on ice for 30 mins and then stored at -80°C in cryotubes.  

3.2.5 Reverse siRNA transfection 

To induce gene knockdown in tumor cells, 6-well plates were coated with 250 µl of 500 nM 

siRNA stock solution per well for 10 min at room temperature. 4 µl of RNAiMAX 

(Invitogen) transfection reagent was diluted in 200 µl final volume of OPTI-MEM and 

incubated for 10 min at RT. 400 µl of additional OPTI-MEM was then added and overlaid 

onto the siRNA coated wells for 30 min. 3x105 tumor cells were resuspended in 1,200 µl of 

antibiotic-free culture medium supplemented with 10% FCS and seeded onto the siRNA-

RNAiMAX wells for reverse transfection with the siRNAs and incubated for 72-96 h at 37°C, 

depending on the experimental requirements. For transfection in 96- or 384-well plate 

formats, the above protocol was proportionally scaled down keeping the final siRNA 

concentration to 50 nM. For testing the siRNA transfection efficacy, cells were reverse 

transfected with lethal or control siRNAs in 384-well plates and cell viability was determined 

after 72 h as described in section 3.2.8. 
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3.2.6 Plasmid Transfection 

For overexpression, codon-optimized CCR9 ORF encoded in the backbone of the pCMV6-

AC-His vector, which contains a C-terminal histidine tag, was obtained from Origene. For 

plasmid transfection, 3x105 HEK2393 or MCF7 cells were seeded in a 6-well plate and 

incubated in 37°C cell culture incubator overnight. On the following day, 6 µl of TransIT-

LT1 transfection reagent (Mirius Bio) was added in 200 µl final volume of OPTI-MEM 

solution, mixed gently and incubated for 10 min at room temperature. Simultaneously, 3 µg of 

pCMV6-AC-His-CCR9 encoding vector or pCMV6-AC-His control vector was diluted in 600 

µl OPTI-MEM and mixed gently. After 10 min incubation, 200 µl of OPTI-MEM/TransIT-

LT1 mix was added to the 600 µl of plasmid/OPTI-MEM mix and incubated for 30 min at 

room temperature. Normal growth media on the seeded cells was replaced with antibiotic-free 

media in the meanwhile and to this plasmid/TransIT mix was added. Cells were incubated at 

37°C for 48 h before use in other assays. For transient transfection of the pEGFP-Luc plasmid 

into the MCF7 and SW480 cell lines in 384-well plates, the above protocol was 

proportionately scaled down with 50 ng of plasmid DNA and 0.2 µl of individual transfection 

reagents used accordingly per well. 

3.2.7 Fluorescent microscopy 

GFP and phase contrast images of the MCF7luc cells were acquired using the inverted 

Axiovert 40 CFL microscope and analysed using the Axiovision 4.4 software. 

3.2.8 Cell viability assays 

To assess cell viability after siRNA transfection, growth media was removed from wells and 

cells were fixed in 50 µl of fixation buffer (PBS, 4% PFA) for 30 min at room temperature. 

Buffer was removed and 20 µl of the DNA-binding Hoechst dye staining solution was added 

per well and incubated for 1 h at room temperature. Following this, the staining solution was 

removed and wells were washed twice with 80 µl PBS to remove any unbound dye. Plates 

were read using the Acumen Reader at 460 nm. 

For screening viability-related genes, CellTiter-Glo (CTG) assay (Promega) was employed. It 

quantifies the level of ATP present in the culture based on the luminescence signal generated 

by oxidative catalysis of luciferin to oxyluciferin by recombinant luciferase already present in 

the reagent mix. Therefore, it is important to note that CTG assay can only be performed with 
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luciferase negative cell lines. For CTG assay, siRNA transfected 384-well plates were soaked 

off media and incubated with 20 µl of CTG solution per well which was pre-diluted 1:4 in 

media and kept for 15 min in the dark. Luminescence was measured with the Mithras reader 

using 0.1 sec as the acquisition time with no filter setting. 

3.2.9 Transwell migration assay 

To evaluate the migration of CCR9+ve cells towards the chemotactic stimulus of CCL25 and 

to assess the capacity of pertussis toxin in inhibiting this migration, transwell migration assay 

was performed in 24-well plates with 8 µm transwell inserts. The receiver well was cultivated 

with 500 µl of medium alone or medium supplemented with 3 µg/ml of rhCCL25 protein 

(R&D systems). Transwell inserts (Greiner bio-one) containing 1x105 MDA-MB-231 cells in 

200 µl DMEM medium, supplemented with or without pertussis toxin (2 µg/ml), were 

overlaid onto the receiver wells and incubated for 24 h. Cells that migrated into the lower 

chamber were carefully harvested after 24 h and quantified using the CTG assay, as described 

in section 3.2.8. Experiment was performed in triplicates per sample group. 

3.2.10 Global gene expression analysis 

For transcriptomic analysis, 2.5 x 105 MCF7 cells per group were reverse transfected with 

control or CCR9 s1 siRNA in 6-well plates as detailed in section 3.2.5. Transfection was set 

up in triplicates per knockdown. After 72 h, 5 x 106 survivin T cells were added to each well 

of siRNA-transfected MCF7 cells and co-incubated for 12 h in 37°C incubator. Following co-

incubation, supernatant from each well were harvested and wells were additionally rinsed 

with 1 ml of culture media and pooled with the remaining supernatant. Survivin TCs in the 

supernatant were separated from the MCF7 tumor cells using anti-EpCAM antibody-coated 

magnetic beads as detailed in section 3.4.7. Total RNA was isolated from the purified T cells 

using the RNeasy Mini kit (Qiagen) as instructed by the manufacturer and diluted to 40 ng/ml 

final concentration using the RNase free water. RNA hybridization onto the GeneChip Human 

Genome U133 Plus 2.0 Array (Affymetrix) was performed by the Genomics and Proteomics 

Core Facility (DKFZ, Heidelberg). Gene expression intensity was quantile normalized and 

significant differences in the log fold-change of gene expression between the CCR9hi versus 

the CCR9lo treated TCs was evaluated using the Welch’s t-test. Gene expression comparison 

between the two groups was represented using the volcano plot distribution and the top 
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differentially up and down regulated genes were plotted as heatmaps using heatmap.2 

function. Gene enrichment analysis based on the GO molecular functions terms was 

performed for the top differentially expressed genes using DAVID. The obtained gene 

expression profile was compared with a publically available gene expression dataset from a 

previous study (105), which compared CD8+ T cells from the peripheral blood of healthy 

donors before and after 24 h of activation with anti-CD3/CD28 antibody plus IL-2. The 

published dataset was retrieved from the Gene Expression Omnibus using the accession code 

GSE7572 and analyzed using standard methods in R. Data analysis was kindly performed by 

Ashwini Kumar Sharma (DKFZ, Heidelberg). 

3.3 Immune-RNAi screen  

3.3.1 Screen layout and the Luc-CTL assay 

GPCR-targeting sub-library of the genome-wide siRNA library siGENOME (Dharmacon, 

Thermo) containing 516 siRNA pools, each pool consisting of four synthetic siRNA duplexes, 

was prepared as described (106). Four RNAi screens were performed in duplicate wells. 

Positive and negative siRNA controls were distributed into empty wells prior to the screening. 

Reverse siRNA transfection was performed by delivering 0.05 µl of RNAiMAX in 15 µl 

RPMI (Invitrogen). After 30 min, 3000 MCF7 cells (screen 1 and 3: MCF7luc, screen 2 and 

4: MCF7) in 30 µl DMEM medium (Invitrogen) supplemented with 10% FBS (Invitrogen) 

were added. Plates were incubated at 37°C for 24 h and for screens 2 cells were transiently 

transfected with a luciferase expression plasmid using the TransIT-LT1 transfection reagent 

(Mirius Bio). 72 h post siRNA transfection cancer cells were either challenged with CTLs and 

anti-CD3 x anti-EpCAM bi-specific antibody (0.2 µg/well; screen 1 and 2) or survivin-

specific CTLs (screen 3) or left untreated (condition without addition of CTLs and screen 4). 

T cells were isolated and activated as described in section 3.4.1 for use in the screen. Screen 1 

contained CTLs from one single donor and screen 2 CTLs from two different donors; one for 

each technical replicate within the screen. Tumor lysis was quantified 18 h later by analysis of 

residual luciferase expression in tumor cells (107).  For screen 1-3, supernatant was removed 

using a 24-channel suction comb and cells were lysed by adding 20 µl of the Luc-CTL lysis 

buffer per well for 10 min at room temperature. After this, 30 µl of FLuc buffer was added per 

well and plates were read after 1 min using the Mithras reader with 0.1 sec counting time. 
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Viability measurements were performed for screen 4 using the CellTiter-Glo assay as 

described in section 3.2.8.  

3.3.2 Data analysis 

Plate reader data from RNAi screens were analyzed using the cellHTS2 package in 

R/Bioconductor (101). Scores from both conditions, i.e. addition of CTLs and without 

addition of CTLs, were quantile normalized against each other using the aroma.light package 

in R. Differential scores were calculated using a loess regression fitting. Given the 

biologically mixed setup used for the three different screens, unsupervised hierarchical 

clustering of differential score of all genes from all screens was performed using the loess 

score to assess inter-screen heterogeneity on a per gene basis. To derive the candidate hit list, 

firstly, preliminary thresholds for the toxicity and the viability scores were determined for 

each screen based on the quartile distribution of z-scores of the samples. For identifying 

negative immune modulators, genes in the 75% to 100% quartile of the toxicity score 

(representing elevated CTL-mediated lysis) and below 75% quartile for the viability scores 

(representing negligible impact on cell viability) were chosen as hits in each screen. For 

identifying positive immune modulators, range of the toxicity score was chosen as 0% to 25% 

(representing lowered CTL-mediated lysis) and viability score of 15% to 75% (corresponding 

to the normalized score of -1.5 to +1.5). Next, these statistical thresholds based on sample 

distribution parameters were individually adjusted for each screen based on the biological 

performance of the relevant controls within the individual screens with PD-L1, GAL-3, 

RCAS-1 used to determine the toxicity threshold; PLK-1, UBC used for viability thresholds 

and control siRNA 1 and 2 used for both the scores. Genes satisfying the above threshold 

criteria were identified individually for each screen and those which popped up in at least two 

screens were selected. Top positive and negative immune regulators (ordered by highest and 

lowest summed loess scores across screens) were plotted as heatmaps using value imputation 

for highlighting their relative immunomodulatory strength across the individual screen setups. 

Finally, genes scoring in a CellTiterGlo-based viability screen were filtered out from the 

candidate list (score <-1.5 and >1.5) to exclude any additional siRNAs affecting cell viability. 

Data analysis was kindly performed by Dr. Marco Breinig and Ashwini Kumar Sharma 

(DKFZ). 
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3.4 Immunological techniques 

3.4.1 T cell isolation and activation  

For RNAi screens, CD8+ T cells were isolated from leukocyte cell concentrates (buffy coat) 

obtained from IKTZ Blood Bank (Heidelberg). Ficoll density gradient centrifugation was 

performed to isolate peripheral blood mononuclear cells (PBMCs) from buffy coats of healthy 

donors. CD8 Flow Comp kit (Invitrogen; Karlsruhe, Germany) was used to isolate CD8+ T 

cells from the isolated PBMCs as detailed by the manufacturer. 1x106 CD8+ T cells/ml of X-

VIVO 20 medium (Lonza) were activated for 3 days using the Human T-Activator 

CD3/CD28 activation beads (Dynal, Invitrogen; bead:cell = 1:3) and 100 U/ml IL-2. On the 

day of the co-culture, activated T cells were magnetically separated from activation beads, 

washed twice in X-VIVO 20 and then used directly for the experiment. For alternate T cell 

activation protocols (section 4.3), purified 6x107 CD8+ T cells from PBMCs were cultured in 

30 ml complete RPMI media in 75 cm2 tissue culture flask which was pre-coated for 2 h at 

37°C with 100 µg of anti-CD3 antibody (OKT3 clone from G. Moldenhauer). To this, either 

150 µg anti-CD28 antibody (15E8 clone from G. Moldenhauer) was added or left alone in the 

presence 100 U/ml IL-2. T cells were used after 3 days for Cr-release assay and FACS 

staining. HLA-A0201 restricted survivin95-104 (clone SK-1) specific CTL clones were 

generated from the PBMC of healthy donors as described (108). Tumor-infiltrating 

lymphocyte 412 microculture (provided by Dr. Michal Lotem, Hadassah Hebrew University 

Medical Center, Israel) was expanded from an inguinal lymph node of a melanoma patient as 

described before (109). Similarly, TIL 34 and TIL 53 microcultures (provided by Dr. Isabel 

Poschke and Dr. Rienk Offringa, DKFZ) were established from two different male patients 

with poorly differentiated pancreatic adenocarcinoma (PDAC). Both melanoma and 

pancreatic TIL cultures were expanded using the Rapid Expansion Protocol described in 

section 3.4.2. 

3.4.2 Rapid expansion protocol (REP) for TILs 

Isolated TILs were ex vivo expanded using the modified Rosenberg’s REP protocol (110). 

Thawed TILs were treated with benzonase (500 U/ml) to avoid cell clumps and were diluted 

to 6x105 cells/ml in CLM supplemented with 6000 U/ml rhuIL-2. Cells were incubated for 48 

h at 37°C and 5% CO2. PBMCs from 3 different buffy coats (1:1:1) were irradiated with 60 
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Gray (Gammacell 1000) and used as feeder cells to support TIL expansion. 1x106 TILs were 

co-incubated with 1x106 feeder cells/ml in 150 ml of TIL expansion medium and incubated 

for 5 days without any disturbance. Afterwards, media was replenished with fresh TIL media 

containing IL-2. Henceforth, TILs were counted every second day and cell concentration was 

set to 6x105 TILs/ml. On 14th day of the expansion, TILs were counted and frozen in aliquots 

of 10 x106 cells/ml or depleted of IL-2 overnight and used fresh for experiments the next day. 

3.4.3 51Chromium-release Assay 

Tumor cells were transfected with described siRNAs or expression plasmids as detailed 

(section 3.2.5 and 3.2.6) and used for Cr-release assay after 72 h. For antibody-mediated 

inhibition of target protein, 106 tumor cells were harvested and incubated with 3 µg of 

blocking mAb or isotype control antibody (unless otherwise stated) for 30 min on ice before 

being used as target cells. For CCR9 blockade using pertussis toxin (PTX), 106 tumor cells 

were incubated with 250 ng/ml of PTX (Sigma Aldrich) for 1 h at 37°C. In either case, treated 

target cells were washed and labeled with 200µL 51Cr/106 target cells (Perkins-Elmer, 

Germany) for 45 mins at 37°C. After labeling, the cells were carefully washed thrice to 

remove cell-free chromium and 3000 target cells /well were co-cultured with survivin-specific 

T cells in 96 well plates at a T cell to target cell ratio of 1:1 to 100:1 for 4 h at 37°C. In 

experiments where polyclonal T cells were used, 5 µg/ml of anti-CD3 x anti-EpCAM bi-

specific antibody was added to each well of the cyotoxicity assay to induce tumor lysis. Non-

specific anti-CD3 x anti-CD19 bi-specific antibody was used at the same concentration as 

control. After 4 h of tumor and T cell co-incubation, plates were spun down and the 

supernatant was harvested for measuring the radioactivity released by dead cells using the 

Gamma counter (Cobra counter Packard, Perkin Elmer). As a control for spontaneous release, 

the labeled cells were co-incubated with media alone; and for maximum release, cells were 

incubated with 10% Triton X-100 instead of T cells. % specific lysis was then calculated 

using the formula given below: 

 

%  !"#$%&%$  !"#$#   =
(!"#!$%&!'()*  !"#"$%" − !"#$%&$'#(!  !"#"$%")
(!"#$!%!  !"#"$%" − !"#$%&$'#(!  !"#"$%")   ×100 
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3.4.4 ELISpot Assays 

IFN-γ or granzyme B secretion from T lymphocytes was determined using the enzyme-linked 

immunosorbent spot (ELISpot) assay, as detailed by the manufacturer (Mabtech, Nacka 

Strand, Sweden). Briefly, CCR9 expression was inhibited in the tumor cell lines using 

specific siRNAs or antibodies, along with the necessary controls. siRNA transfected cells 

were harvested after 48 h, washed and then added to the IFN-γ or granzyme B antibody 

coated ELISpot wells (1 µg/well). For antibody blockade, 5x105 WT cells were pre-treated 

with 3 µg of anti-CCR9 antibody (R&D systems or Abcam) for 1 h on ice, washed and then 

co-incubated with T cells in the ELISpot wells. For co-culture, either survivin-specific T cells 

(5000 cells) or polyclonal CD8+ T cells (10,000 cells) along with anti-CD3 x anti-EpCAM 

bsAb were used in a ratio of 5:1 (T cell to tumor cell) for 24 h at 37°C. After this, plates were 

washed and incubated with the respective biotinylated antibodies (0.1 µg/well), followed by 

the addition of streptavidin-alkaline phosphatase conjugate. Secreted cytokines by T cells 

which are locally captured by the coated antibodies were developed as spots using the 

Mabtech kit and analysed using the ELISPOT software (CTL Europe). Experiment was 

performed in triplicate wells for statistical comparison using the two-sided student’s t-test. 

3.4.5 ELISA 

To measure the production of CCL25 in different tumor cell lines, sandwich ELISA was 

performed using the commercial CCL25 ELISA kit (R&D systems). Briefly 96-well 

microplate were coated with 100 µl of the anti-human CCL25 antibody (0.5 µg/ml) and 

incubated overnight at room temperature. Plates were carefully washed thrice and blocked for 

1 h at room temperature using the blocking buffer provided in the kit. CCL25 protein 

standards were used as positive control and rhPD-L1 protein (BioLegend) was used as a 

negative control to check for the unspecific binding of anti-CCL25 antibody coated plates. 25 

µg of protein lysates from the respective tumor cell lines were prepared in 100 µl of the PBS-

T and added to the washed wells for 2 h at room temperature. Afterwards, plates were 

washed, incubated with the detection antibody, followed by incubation with streptavidin-HRP 

solution, as indicated in the manufacturer’s protocol. Finally, plates were developed using the 

provided substrate solution (containing H2O2 and tetramethylbenzidine) for 20 min in dark at 

room temperature after which reaction was stopped using 2 N H2SO4 solution. Absorbance or 

optical density was measured at 450 nm using the Infinite M200 plate reader (Tecan). 
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Similarly, IFN-γ ELISA was performed using the IFN-γ ELISA kit as detailed in the 

manufacturer’s protocol (BD Biosciences). Experiments were performed in triplicate wells for 

statistical comparison. 

3.4.6 Cytokine measurements using luminex 

For simultaneous quantification of multiple analytes in the same sample, luminex xMAP 

technology was used (Bio-Rad). This utilizes distinctly colored miscrosphere beads that can 

be coated with specific antibody to capture the analyte of choice in the sample mix, which can 

then be quantified by excitation and subsequent emission of light from the colored beads. For 

luminex assay, MCF7 cells were transfected with CCR9-specifc or control siRNA for 48 h 

and then harvested and cocultured with 104 survivin-specific T cells at 1:5 ratio in 96-well 

plate for additional 24 h at 37°C. After incubation, the plates were spun down and 100 µl of 

the culture supernatant was collected from each test well and centrifuged at 1000 g for 15 min 

at 4°C. The clear supernatant was collected and used directly for cytokine measurement using 

the Luminex100 Bio-Plex System and the Bio-Plex Pro Assay kit, as described by the 

manufacturer (Bio-Rad). Data was analyzed using the Bio-Plex Manager software version 6.0. 

Individual measurements were acquired from three test wells per group. 

3.4.7 Phosphoprotein analysis 

MCF7 cells were transfected with either control or CCR9-specific siRNAs as described 

before. After 72 h, the cells were harvested and 8x104 cells in 100 µl of cytokine free X-

VIVO 20 medium were plated per well of a 96-well plate. To this 2x106 survivin-specific T 

cells, suspended in 100µl of X-VIVO 20 medium, were added. Tumor and T cells were co-

cultured for 1 min, 5 min and 20 min for T cell receptor complex analysis and for 20 min, 1 h 

and 2 h for phospho-STAT analysis. After respective co-incubation time points, each cell 

group was added to 100 µl of pan mouse IgG beads (Invitrogen) that were coated with 4 µg of 

anti-EpCAM antibody (clone HEA125, provided by G. Moldenhauer, DKFZ) for 30 min at 

4°C to separate EpCAM+ve MCF7 tumor cells from EpCAM-ve T cells. Bead-separated TCs 

were then lysed and total protein concentration was measured using the BSA Protein Assay 

kit (Thermo scientific) as detailed in the product manual. Protein concentration was 

normalized across all samples before phosphoprotein detection using the 7-plex T cell 

receptor signaling phosphoprotein kit or phospho-STAT 5-plex kit (Millipore, Billerica, U.S.), 
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as instructed by the manufacturer. For phospho-transcription factor analysis (section 4.19), 

5x105 MCF7 cells were transfected with control or CCR9 s1 siRNA for 72 h and protein 

lysates were used for phosphoprotein detection as above using the Multi-Pathway Cell 

Signaling kit (Millipore). Measurements were performed using the Luminex100 Bio-Plex 

System (Luminex) and all the data were analysed using the Bio-Rad Bio-Plex Manager 

software version 4.1.1 (Bio-Rad).  

3.4.8 Imprinting T cells with immunosuppressive tumor supernatants 

To assess whether CCR9 mediates suppression on T cells via soluble mediators, MCF7 tumor 

cells were reverse transfected with control or CCR9 s1 siRNA in 6-well plates as detailed in 

section 3.2.5. After 60 h, cell culture supernatants were harvested from both the knockdown 

conditions and used to culture 1x107 fresh survivin T cells, each with the respective 

supernatants overnight. On the following day, knocked down MCF7 tumor cells (CCR9hi and 

CCR9lo) were harvested and used as target cells, along with wild type MCF7 cells, and the 

respective supernatant treated T cells (CCR9hi and CCR9lo SSN treated TCs) were used as 

effector cells in the classical Cr-release assay. 

3.4.9 Flow cytometry 

For flow cytometric analysis of surface proteins, cells were harvested and washed in FACS 

buffer and set to 3x105 cells per sample. For harvesting adherent cells from tissue culture 

dishes, enzyme-free PBS-based Cell Dissociation Buffer (Gibco, Paisley, UK) was used 

instead of trypsin-EDTA, especially for CCR9 surface staining, as trypsinization resulted in 

the loss of surface expression when detected by flow cytometry. Fc receptors of the washed 

cells (human) were blocked with 166 µg of Kiovig (Baxter), a human immunoglobulin 

concentrate, in 100 µl FACS buffer for 20 min on ice to reduce unspecific antibody binding. 

For mouse samples, BD Fc Block (BD Biosciences) was used at 5% concentration in 50 µl 

FACS buffer for 20 min on ice. After blocking, cells were washed once in FACS buffer and 

then incubated with fluorophore-conjugated target-specific or isotype antibody at the 

concentrations indicated in section 2.6.1 for 20 min in dark on ice. After this, cells were 

thoroughly washed twice in FACS buffer to remove any unbound antibody. For human 

samples, 5 µl of 10 µg/ml propidium iodide (PI) solution was added to each sample just 

before acquiring as a dead cell marker. For mouse samples, cells were stained with Pacific 
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Orange viability dye (1:1000 in 50 µl FACS buffer) for 15 min on ice before Fc blocking. All 

samples were acquired with the FACS Canto II Cell analyzer machine (BD Biosciences) and 

data was analyzed using FlowJo software (Tree Star). 

3.5 Mouse work 

Approval for the animal work was obtained from the relevant regulatory authorities 

(Regierungspräsidium, Karlsruhe). Experiments were performed by Tobias Speck as a part of 

his M.Sc. thesis under my guidance. For assessing the in vivo effect of tumor-specific CCR9 

upon the anti-tumor cytotoxicity of T cells, xenograft mouse model based on immunodeficient 

NOD/SCID gamma (NSG) mice was used. Four-six weeks old female NSG mice were 

ordered from the Animal Core Facility at DKFZ, Heidelberg. CCR9-ve PANC-1-luc cells 

(transduced with the CCR9-specific shRNA plasmid) and CCR9+ve PANC-1-luc cells 

(transduced with the non-targeting shRNA control plasmid) were generated as described in 

section 3.1.2. Mice were shaved at the flank regions and subcutaneously injected with 4x105 

CCR9+ve tumor cells in the left flank and 4x105 CCR9-ve tumor cells in the right flank at day 

0. Cells were prepared in 100 µl of matrigel/injection and injected using the 0.4 mm x 20 mm 

needles. Following this, at d2 and d9, 5 out of the 8 tumor-bearing mice received adoptive 

transfer of expanded TIL 53 cells (described in section 3.4.2) intravenously into the tail vein 

(1x107 cells/100 µl PBS/mouse). The remaining three mice were left untreated. In vivo 

bioluminescent imaging using the IVIS1000 imaging system was used to monitor tumor 

growth. For this, mice were intraperitoneally injected with 100 µl of 30 mg/ml D-luciferin 

substrate and anaesthetized via inhalation of the isoflurane-O2 mixture (5 L/min). Mice were 

then placed onto the imaging platform of the IVIS system to acquire the emitted 

bioluminescence signal using the CCD camera. Signal intensity was quantified in 

photons/second/cm2/steradian. Mice were imaged twice a week with an exposure duration of 

10 sec.  

 

For the flow cytometric analysis, mice were sacrificed via cervical dislocation at the end of 

the experiment and spleens and tumors were removed and placed in ice-cold PBS. To obtain 

single cell suspension from spleens, they were pushed through 100 µm-pore strainers. For 

tumors, they were cut into small pieces and pushed through 100 µm-pore strainers. Cell 

suspensions were washed with ice cold PBS and centrifuged at 1700 rpm for 5 min at 4°C. 
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For spleens, cells were briefly resuspended in 2.5 ml of ACK buffer to lyse the erythrocytes. 

Following this, the cells were washed, centrifuged again and resuspended in 1 ml of FACS 

buffer. They were then filtered using a 40 µm-pore strainer and used for staining as described 

in section 3.4.9.  

3.6 Statistical evaluation 

Statistical differences between the test and the control groups were analyzed by the two-sided 

student’s t-test, unless indicated otherwise. In all statistical tests, a p-value ≤ 0.05 was 

considered significant with * = p<0.05, ** = p<0.01, *** = p<0.005. Pearson correlation test 

was used to ascertain the correlation between the replicates in the screen and for inter-screen 

comparisons of the overall cytotoxicity scores. Statistical analysis for the RNAi screen and 

gene expression datasets are detailed in the respective sections of the methods. 
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4. Results 

4.1 Establishment of the Luc-CTL cytotoxicity assay for immune-RNAi screen 

The primary aim of this thesis was to establish a large-scale-compatible, RNAi-based 

immunological assay which quantifies the effect of individual tumor genes on the cytotoxic 

ability of T cells. One of the attractive high-throughput approaches to quantify cell death in 

response to a treatment is the colorimetric measurement of release of either an exogenously 

introduced reporter enzyme or an endogenous enzyme released by the dying cells. In a tumor 

cell-T cell co-culture system, measurement of endogenous cellular metabolites as an indicator 

of tumor-specific cell death is invalid given the cross-contamination from metabolites 

released by the T cells themselves. Therefore, reporter enzymes, such as luciferase, could be 

employed to tag the tumor cells before the co-culture, making its detection in the co-culture 

supernatant a direct indicative of the T cell-mediated cytotoxicity. A typical immune-based 

kill assay requires the co-incubation of T cells and tumor cells for a minimum of 4 hours, but 

the half-life of the released luciferase enzyme from dying cells in the supernatant is 

approximately 20 minutes (111). Thus, rather than measuring the activity of the released 

enzyme, we aimed to measure the luciferase activity of the remaining live tumor cells that are 

left attached to the plate after treatment with T cells (112). Therefore, in this assay, termed as 

the Luc-CTL assay henceforth, lower the luciferase activity associated with the leftover tumor 

cells, higher is the T cell mediated cytotoxicity.  

To employ the Luc-CTL assay for immune-checkpoint discovery RNAi was performed in 

luciferase-tagged tumor cells and the CTL-mediated lysis of RNAi-transfected tumor cells 

was measured based on the luciferase signal (Figure 1A). In order to exclude genes whose 

knockdown in itself impacts on cell viability and hence luciferase activity, the Luc-CTL assay 

included a viability control per gene knockdown, to which no CTLs were added (Figure 1A). 

The difference in luciferase activity between the toxicity wells (containing CTLs) and the 

viability wells (without CTLs) was then calculated per gene to ascertain the immune-

modulatory hits (detailed in methods section 3.3.2). Importantly, the extent of tumor cell 

killing detected by the Luc-CTL assay was comparable to that obtained with a common test of 

T cell mediated cytotoxicity, the 51chromium-release assay (113), establishing the robustness 

and the reliability of the Luc-CTL assay (Fig. 1B). 
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Figure 1. Principle and performance of the Luc-CTL assay. (A) RNAi is performed with luciferase 

expressing cells that are challenged with or without CTLs. Before readout, cell supernatant is removed and the 

remaining intact cells are lysed to measure the residual cell-associated luciferase. To identify immune-

checkpoint regulators, the difference between normalized luciferase measurements for conditions with CTLs and 

without CTLs is calculated. siRNA enhancing CTL cytotoxicity will only reduce normalized luciferase levels 

under conditions with CTLs, hence the difference between luciferase measurements will be > 0. (B) Comparison 

between the Luc-CTL assay (■) and the classical chromium release assay (○) with MCF7 breast cancer cells as 

target cells and survivin-specific T cells as effector cells at varying effector to target (E:T) ratios. Error bars 

denote +/- SEM; n=3. 
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4.2 Optimization of RNAi screen parameters: cell line, cell density, siRNA 

transfection and luciferase expression 

Breast cancer was chosen as the model tumor type to implement the Luc-CTL assay-based 

screen for the discovery of novel immune modulators. This was not only because of its 

abundant prevalence, but also because its progression is marked with decreased 

immunocompetence, hinting at the involvement of putative immunosuppressive entities (114). 

To induce gene knockdown tumor cells were reverse transfected with siRNA pools, whereby 

four different siRNAs per target gene in a single pool were arrayed and coated onto the 

bottom of 384-well plates and overlaid with the transfection reagent and tumor cells. Since 

different cell lines exhibit different levels of susceptibility towards siRNA-based transfection, 

two different breast cancer cell lines, namely MCF7 and KS, were tested for their 

transfectibility with siRNAs. In parallel, different siRNA transfection reagents were tested to 

establish the most effective reagent that delivered the siRNAs to the cells. To achieve this, 

different lethal siRNAs targeting genes that are vital for cell growth and viability (described 

in Supplementary Table 1), such as ubiquitin C (UBC) or polo-like kinase 1 (PLK1), were 

used. Successful transfection of these siRNAs would lead to the loss of cell viability that can 

be read out via live/dead staining using the Hoechst dye. As shown in Figure 2A, MCF7 cells 

were found to be best transfectable with RNAiMAX and DharmaFECT2 in comparison to the 

other transfection reagents. However, DharmaFECT2 showed a mild cytotoxic impact on cells 

in comparison to RNAiMAX and therefore RNAiMAX was chosen as the desired transfection 

reagent for MCF7 cells for the high-throughput screen (Figure 2B). On the other hand, KS 

cells showed a strong resistance to siRNA-based transfection using the tested reagents (Figure 

2A).  

 

For the luciferase-based readout, MCF7 cells were tested for both transient and stable 

luciferase expression using a plasmid encoding a fusion protein of GFP and firefly luciferase 

(pEGFP-Luc). For stable cell line generation, MCF7 cells were electroporated with the GFP-

Luc plasmid, selected under antibiotic selection pressure and subsequently FACS sorted twice 

based on GFP expression to select cell populations stably expressing GFP-luc. The selected 

clones (MCF7luc) maintained high levels of GFP expression over time, monitored via 

fluorescent microscopy (Figure 2C), as well as exhibited high luciferase signal that could be 

silenced using firefly luciferase (FLuc)-targeting siRNA (Figure 2D). Moreover, a linear 

relationship was observed between the seeded MCF7luc cell numbers and the associated 
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luciferase activity (r2 = 0.99), whereby as low as 250 luc+ cells could be detected above the 

background (Figure 2E). Correlation between cell density and luciferase intensity was also 

used to determine the appropriate cell number for seeding in order to avoid overcrowding of 

the tumor cells in the small 384 wells which may lead to saturation of the luciferase signal. 

Since the generation of stable luciferase expressing clones can be tedious and time-intensive, 

transient luc expression in MCF7 cells for the Luc-CTL assay was next tested. Co-

transfection of wild-type MCF7 cells with siRNAs and the GFP-Luc plasmid was found to be 

efficient, with GFP expression being noted in more than 85% of control siRNA-treated cells 

compared to negligible signal in the UBC siRNA-treated cells (data not shown). This 

indicated that transient transfection of luciferase plasmid could be exploited for rapid 

screening in wild type tumor cells without creating stable clones. 
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Figure 2. Optimization of RNAi screen parameters. (A) MCF7 and KS breast cancer cells were reverse 

transfected with the described control (H2O blank, RLuc) or lethal (UBC, PLK1, COPB2) siRNAs in 384 well 

plates using different transfection reagents (DharmaFECT1,-2,-4 and RNAiMAX). Loss in cell viability was 

readout after 72 h using Hoechst staining with light green representing viable cells and dark green indicating loss 

in viability. Mean cell intensities + SEM are quantified for MCF7 cells with DharmaFect2 (red bars) and 
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RNAiMAX (blue bars) in B. n= 6. (C) Fluorescent microscopy showing GFP expression in MCF7luc stable cell 

line. Scale bar = 100µm. (D) Luciferase activity of the MCF7luc cell line upon transfection with mock, control 

siRNA, luciferase (FLuc)-targeting siRNA or UBC-specific siRNA using Trans-IT as the transfection reagent; 

n=4. (E) Linear relationship plotted between luciferase intensity versus cell number for MCF7luc cells seeded in 

384-well plate (r2= 0.9907; p<0.0001). Error bars denote +/- SEM. 

4.3 Antigen-restricted and antigen-unrestricted T cells for the high-throughput 

screen 

As effector T cells for the high-throughput screen, both options of using an antigen-

unrestricted as well as an antigen-restricted system were explored (Figure 3A). For the 

antigen-unrestricted system, polyclonal CD8+ T cells were purified from the peripheral blood 

lymphocytes of healthy donors and pre-activated in culture via triggering of the CD3-based 

primary and/or CD28-based co-stimulatory signals in the presence of interleukin 2 (IL-2). 

Degree of T cell activation using the three different activation protocols: anti-CD3 antibody + 

IL-2; soluble anti-CD3 and anti-CD28 antibody; or anti-CD3/CD28 antibody coated beads + 

IL-2, was compared using CD69 as an early T cell activation marker in flow cytometry based 

staining (115). As shown in Figure 3B, anti-CD3/CD28 antibody coated beads induced the 

highest level of activation of CD8+ T cells (72%) compared to the other activation protocols 

tested. Accordingly, it also induced a higher tumor lysis of MCF7 cells in comparison to the 

activation protocol using anti-CD3 antibody alone (Figure 3C) and was therefore chosen as 

the method of choice for polyclonal T cell activation. Tumor recognition and lysis by these 

pre-activated polyclonal T cells was induced by using anti-CD3 x anti-EpCAM bispecific 

antibody (bsAb). As shown in Figure 3A, one arm of this bsAb recognizes and binds to the 

EpCAM epithelial antigen, present on the MCF7 breast cancer cells, and the other arm binds 

to the CD3 receptor on the T cells, creating an artificial immune synapse which facilitates the 

lysis of target tumor cells in the proximity by pre-activated T cells (116). The specificity and 

effectiveness of the bsAb approach in mediating tumor lysis is shown in Figure 3D, whereby 

polyclonal T cells could induce tumor lysis in the Luc-CTL assay in the presence of anti-CD3 

x anti-EpCAM bsAb, but not in the presence of anti-CD3 x anti-CD19 bsAb, which binds to 

an unrelated B-cell antigen CD19 that is absent on the MCF7s. Bi-specific antibody-induced 

tumor lysis was also found to be dose dependent as shown in Figure 3E. For the antigen-

restricted system, survivin-specific CTLs (clone SK-1) were employed that recognize the 

HLA-A0201 restricted survivin(95-104) epitope expressed by the breast cancer cells, but fail to 
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recognize the T2 cells loaded with an unrelated HIV peptide (108). As shown in Figure 1B, 

survivin-specific CTLs recognize and lyse the MCF7 breast cancer cells in a dose-dependent 

manner. Both these systems have their own merits and limitations which are discussed in 

detail in section 5.1.3. Given that robust immune modifiers that extend beyond a single donor 

or setup were sought, the RNAi screen was performed in parallel under both the settings.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Effector T cells for immune RNAi screen. (A) Scheme showing the antigen-unrestricted approach 

whereby pre-activated, polyclonal T cells are cross-linked to tumor cells using bi-specific antibody and the 

antigen-restricted approach, whereby antigen-specific CTL clones recognize tumor targets in context of peptide-

MHC I complex. (B) CD69 surface staining showing the activation of CD8+ T cells after 72h of stimulation with 

anti-CD3 antibody and IL-2, or with anti-CD3 and anti-CD28 soluble antibody, or with anti-CD3/CD28 antibody 

coated beads and IL-2. Gates were set based on the isotype control antibody. (C) Cr-release assay showing the 

cytotoxic capacity of polyclonal CD8+ T cells upon stimulation with either anti-CD3 antibody + IL-2 (○) or with 

anti-CD3/CD28 antibody coated beads (■) against MCF7 target cells. Lysis in both cases was induced by the 

addition of anti-CD3xEpCAM bi-specific antibody; n=3. (D) Luc-CTL assay performed at different T cell to 

MCF7 cell ratio with PBMC-derived CD8+ T cells and anti-CD3 x anti-EpCAM bi-specific antibody (○). Anti-

CD3 x anti-CD19 bi-specific Ab (■) was used as a specificity control since CD19 is a B-lymphocyte-specific 

antigen and therefore this bsAb fails to crosslink tumor to T cells. Lower luciferase intensity indicates higher 

lysis; n=8. (E) Cr-release assay showing % specific lysis of MCF7 tumor cells by polyclonal pre-activated CD8+ 

T cells at E:T of 50:1 in the presence of the indicated doses (x-axis) of bi-specific antibody. Error bars denote 

SEM. Experiments are representative of at least three independent repeats. 
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4.4 Immunosuppressive positive controls for the screen 

For a high-confidence hit calling from a data intensive RNAi screen, it is essential to have a 

clear distinction between the expected positive and negative phenotype. Therefore, as positive 

controls for the Luc-CTL assay, the reported immunosuppressive effects of PD-L1 (60), 

RCAS-1 (85) and CEACAM-6 (117) were validated in MCF7 cells. Knockdown of these 

immune-checkpoint molecules in MCF7 cells (Figure 4A) led to a varied but strong decrease 

in the luciferase activity of the remaining tumor cells upon co-culture with the pre-activated 

TCs and bsAb, indicating elevated immune-mediated tumor lysis under the knockdown 

conditions (Figure 4B). Downregulation of the respective immune-checkpoint molecules had 

no major impact on tumor cell viability per se, as determined in the CTG cell viability assay 

(Figure 4C). These were therefore chosen as the reference immunosuppressive controls for 

evaluating the screen efficacy, along with the scrambled control siRNA as the negative 

control. 
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Figure 4. Positive immunosuppressive controls for the RNAi screen. (A) MCF7 cells were reverse 

transfected with scrambled control, CEACAM-6 or PD-L1 specific siRNAs and harvested after 72 h for 

determining protein knockdown efficacy using western blot analysis. Immunoblots were probed with anti-beta-

actin antibody to verify equal protein loading. (B) Luc-CTL assay showing lysis of MCF7luc cells upon siRNA-

mediated knockdown of indicated immune-checkpoint molecules by polyclonal pre-activated CD8+ T cells and 

CD3xEpCAM bi-specific antibody. (C) CellTiter-Glo (CTG) cell viability assay showing the impact of immune-

checkpoint knockdown on the viability of MCF7 cells. siRNA against UBC, which is vital for cell viability, was 

used as a positive control. Error bars denote SEM. Experiments are representative of at least three independent 

repeats; n = 6. 

4.5 Workflow and performance of the high-throughput RNAi screen 

To translate the Luc-CTL assay to a high-throughput screening approach, a library of 516 

genes coding for transmembrane and cell surface proteins, involving many G-protein coupled 

receptors (GPCRs), was chosen as these are suitable targets for therapeutic function-blocking 

antibodies. The entire RNAi screen workflow and candidate identification procedure is 

outlined in Figure 5A. In brief, screen 1 and 2 were conducted with polyclonally-activated 

PBMC-derived CD8+ T cells in the presence of the bispecific antibody, whereas screen 3 was 

conducted with survivin-specific CTLs. T cells derived from a single donor were used for 

screen 1 and two different donors were used for each technical replicate in screen 2. 

Additionally, the screens were conducted with not only stably transfected MCF7luc cells 

(screen 1 and 3), but also with wild type MCF7 cells that were transiently transfected with the 

luciferase plasmid (screen 2). The latter approach can be easily and rapidly employed for 

screening of various tumor cell lines without the time-intensive generation of stable 

luciferase-positive clones. Finally, data from an additional screen (based on the CTG assay) in 

which cell viability was determined independent of the luciferase activity by measuring 

intracellular ATP levels (screen 4) was employed to exclude genes that impacted cell 

viability. Each screen (screen 1-3) was performed a set of 4 replicates, two of which were 

exposed to CTLs (toxicity set) and two were incubated without CTLs (viability set). The 

reproducibility of the replicates within each individual screen was satisfactory for both the 

toxicity set and the viability set. For example, the Pearson’s correlation coefficient for the 

replicates in the toxicity set in screen 2, which had two different donor-derived T cells per 

replicate, was 0.73 and for the viability set it was 0.94. 
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An overview of the results from the individual screens is depicted in Figure 5B-D, whereby 

each gene is plotted for its impact on cell viability (x-axis) and immune-susceptibility (y-

axis). Knockdown using the FLuc siRNA expectedly abrogated the luciferase signal under 

both conditions and served as an internal control for the luciferase-based readout. siRNAs 

targeting genes indispensable for cell survival (UBC, PLK-1) resulted in a clear loss of cell 

viability, thereby yielding high scores under non-treated condition (without CTLs; x-axis). In 

contrast, the negative control siRNAs (Ctrl1 and Ctrl 2) impacted neither the cell viability nor 

the immune susceptibility of tumor cells and therefore showed no effect on the luciferase 

intensity under both conditions (Figure 5B-D). In accordance with their reported immune 

regulatory function, silencing of PD-L1, GAL-3 and CEACAM-6 resulted in higher 

cytotoxicity scores, whereby PD-L1 showed a higher impact on tumor lysis. On the other 

hand, knockdown of caspase 3 (CASP3) and caspase 8 (CASP8), which are required for the T 

cell-mediated apoptosis of target cell (118, 119), resulted in decreased cytotoxicity score 

(Figure 5D). Independent assessment of all genes for their impact on cell viability was 

achieved using the CTG assay as shown in Figure 5E.  
 

 

 

 

 

 

 

Figure 5. Layout and analysis of the RNAi screen used to identify immune-modulatory tumor genes. (A) 

Workflow: RNAi screen was performed thrice, each time in duplicates, along with an additional CTG-based 

viability screen. Screen 1 and 2 were performed with polyclonal CD8+ T cells derived from three different 

donors along with bsAb, whereas screen 3 was performed with survivin-specific CTLs. MCF7luc stable cells 

wete used for RNAi in screen 1 and 3, while transient transfection of the luciferase plasmid was employed 24 h 

after siRNA transfection in screen 2. Luciferase intensity after CTL challenge was acquired and data was 

normalization and analyzed using the cellHTS2 package. (B-D) Graphical summary of gene function related to 

modification of T cell mediated tumor lysis and cell viability for screen 1, 2 and 3 respectively. Positive score = 

reduced cancer cell viability, negative score = increased viability. X axis: Influence on cell viability without 

addition of T cells. Y axis: Influence on cell viability with addition of T cells. Appropriate immune-modulatory 

(PD-L1, CEACAM-6, GAL-3 and CASP3) and lethality (UBC, PLK-1) controls and few positive and negative 

immune modulatory hits (CCR9, GRM4) are highlighted herein. (E) Normalized score for all the tested genes 

depicted for the CellTitre Glo (CTG) assay used for determining lethal genes that directly affect MCF7 cell 

viability upon knockdown. 
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4.6 Data analysis and hit-calling parameters 

For hit identification, loess-normalized differential score between the viability and toxicity 

values for all genes was calculated for each screen. As explained earlier in Figure 1A, a 

candidate immunosuppressive hit would reveal a positive differential score and a candidate 

immune-activating hit would exhibit a negative differential score. This is shown exemplarily 

for PD-L1 and CASP8 in Figure 6A, whereby the difference between without CTL and with 

CTL condition is positive for immunosuppressive control PD-L1, negative for immune-

activating control CASP3 and no difference is observed for the control siRNA. Based on these 

differential scores, unsupervised hierarchical clustering was performed for all genes across the 

three screens to identify robust immune modulators that regulated anti-tumor immune 

response in all the three screening formats (Figure 6B). Clustering analysis revealed 

heterogeneity in the immunomodulatory performance of certain genes across the three 

screens, which is represented by the overall correlations between the three screens (Figure 

6C). The observed heterogeneity was expected given the intentional assorted biological set-up 

used for the three different screens, including not only the source and format of effector T 

cells, but also the nature of tumor cell modification with regard to luciferase expression. 

Therefore, to identify only robust immune-regulatory genes that modified anti-tumor immune 

response irrespective of the T cell source or tumor modification, candidates were considered 

as hits if they popped up in at least two of the three screens. Notably, the loess differential 

score between the viability and cytotoxicity value can be high for even a non-

immunosuppressive candidate if its viability score is too low while the cytoxicity score is 

minimal. To account for this bias, clustered hits were filtered based on threshold values for 

both toxicity and viability scores that were set based on the performance of the controls and 

sample’s quartile distribution (detailed in the methods section). Filtered genes were then 

ranked based on the sum of their loess differential scores from all three screens, resulting in 

top immunomodulatory candidates that are represented in Supplementary Figure 1. Filtering 

based on the CTG screen data was additionally employed as a second layer to exclude hits 

that revealed viability effects. Taken together, the presented screening methodology could 

reliably confirm the already established immune modulatory ligands in breast cancer cells, 

thereby proving its efficacy to identify novel immune modulatory ligands on tumor cells. 
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Figure 6. Identification of immune-modulatory tumor genes. (A) Principle behind hit identification using 

differential score calculation between without CTL and with CTL condition (black bar and white bar, 

respectively). MCF7 cells were transfected with siRNAs against immune-suppressive PD-L1 and immune-

activating CASP3 and challenged with or without CTLs and bsAb in Luc-CTL assay. For each condition, the 

luciferase activity was normalized to that of the control treatment and is shown here. (B) Heat map 

representation of differential scores used to identify positive immune modulators (yellow), i.e. the knockdown of 

which enhance CTL mediated cell killing and negative immune modulators (blue), i.e. the knockdown of which 

reduce CTL mediated cell killing are depicted for all genes tested in the 3 different screens. Differential scores 

prior to filtering are shown (see methods). Selected representative clusters of high-confidence hits are displayed 

herein. (C) Correlation between the toxicity scores across the three screens as evaluated using the Pearson’s 

correlation test. 

4.7 Validating potential immunosuppressors in the re-run of the primary assay 

Next, based on the overlap between the three screens and the exhibited immunosuppressive 

strength (Figure 6B, Supplementary Figure 1), selected hits (CCR9, GHSR and CCRL1) were 

repeated in the Luc-CTL assay for first round of validation. This was performed at least thrice 

with individual deconvoluted as well as the pooled siRNAs to reproduce the results obtained 

from the primary screens and to refine the candidate hit-list for further validation studies. As 
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shown in Figure 7A, the identified gene hits were compared for their impact on CTL-

mediated tumor lysis based on the range set by control siRNA on one hand and the PD-L1 

siRNA on the other hand. As a control for the selectivity of the RNAi screen, PTGER3 which 

was not identified as an immunosuppressive hit was also included in the assay re-run. Cell 

viability assay was performed to rule out the siRNA sequences that impacted cell viability 

(Figure 7B). Both GHSR and CCR9 exhibited a strong suppression on the CTL-mediated 

tumor lysis, comparable to that observed with PD-L1, without affecting cell viability per se. 

For CCRL1, s2 and s3 siRNA sequences resulted in an increase in tumor lysis, however they 

also showed a commensurate impact on cell viability. Based on the strength of 

immunosuppression observed in the screens as well as in the re-run assays, CCR9 was chosen 

for further validation studies. Interestingly, its role in immune modulation has never been 

reported before. 
 

 
 

Figure 7. Pre-validation of the identified hits using primary assay re-runs. (A) Luc-CTL assay was 

performed with the deconvoluted siRNAs against the indicated target genes in MCF7luc cells using the PBMC-

derived, pre-activated CTLs and bsAb at 10:1 (E:T) ratio. PD-L1 was used as the positive immunosuppressive 

control along with the negative control siRNA. (B) CTG cell viability assay was performed with the individual 

siRNAs transfected in MCF7luc cells. Mean +SEM are plotted herein; n=4. Data presented here is representative 

of at least three independent experiments. 

4.8 Knockdown of CCR9 sensitizes the breast cancer cells towards immune lysis 

C-C chemokine receptor 9 (CCR9) is a surface bound receptor which binds to the chemotactic 

ligand CCL25 and is involved in the trafficking of a subset of immune cells to the intestinal 
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mucosa and thymus (120). To validate the role of CCR9 in suppression of anti-tumor immune 

response, correlation between the knockdown efficiency and the immunosuppressive 

phenotype of the individual siRNAs from the CCR9-targeting siRNA pool was first 

evaluated. CCR9’s mRNA and protein estimation in the MCF7 cells after knockdown with 

individual siRNAs revealed s1 and s2 siRNA sequences to induce the strongest knockdown, 

which correlated well with their functional effect on the CTL-mediated cytotoxicity (Figure 

8A, B). Since at least two different CCR9 siRNA sequences, amongst four, exhibited both 

knockdown as well as functional phenotype on CTL-mediated lysis, with CCR9 s1 siRNA 

being the strongest, it was reasonable to assume the direct involvement of CCR9 in immune-

suppression rather than an off-target effect. None of the siRNAs by themselves impacted on 

cell viability as determined in the CTG assay (Figure 8C). Furthermore, CCR9 s1 siRNA was 

also found to reduce the surface expression of CCR9 receptor on MCF7 cells in the flow 

cytometry staining (Figure 8D). Therefore, s1 siRNA sequence was chosen as the model 

siRNA for further studies. Knockdown of CCR9 using the s1 siRNA sequence markedly 

increased the tumor lysis of breast cancer cell lines MCF7 and MDA-MB-231 by survivin-

specific CTLs in the secondary independent chromium-release assays (Figure 8E, F), 

validating its role in tumor-mediated immune-inhibition. Impact of CCR9 knockdown on 

CTL-mediated cytotoxicity was found to be comparable to or even better than PD-L1 

knockdown (Figure 8B and E). 

 
 

 

 

Figure 8. CCR9 knockdown sensitizes breast tumor cells to immune attack. (A) MCF7 cells were 

transfected with the described siRNA sequences for estimating the mRNA and protein levels using RT-PCR 

(left) and western blot (right) analysis respectively. GAPDH and beta-actin were used as controls for RNA and 

protein normalization respectively. (B) Luc-CTL cytotoxicity assay with PBMC-derived CTLs as effector 

population and MCF7 as target cells, which were transfected with individual (s1-s4) or pooled CCR9 siRNA 

sequences. PD-L1 and non-specific control siRNAs were used as positive and negative controls respectively for 

CTL-mediated cytotoxicity. (C) CTG viability assay with MCF7 cells upon CCR9 knockdown using the 

described siRNAs, along with lethality control (UBC) and negative non-specific control siRNA. (D) Flow 

cytometry staining for CCR9 surface expression on MCF7 cells after 72h of knockdown with control or CCR9 

s1 siRNA. Shift in the CCR9+ population can be seen in CCR9 siRNA treated samples. Gates were set based on 

the isotype antibody control. (E, F) Cr-release assay showing % specific lysis of MCF7 (E) or MDA-MB-231 

(F) breast cancer cells by survivin-specific T cells at different ratios upon CCR9 knockdown and in comparison 

to the positive control PD-L1 (□) or non-specific control siRNA (■). 
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4.9 Overexpression of CCR9 on breast cancer cells inhibits immune lysis 

Next, to investigate whether overexpression of CCR9, which is observed in many tumor 

entities, correlated with poor immune response, breast cancer cells were transfected with 

histidine-tagged CCR9 expression plasmid. Since CCR9 is a 7-transmembrane receptor, the 

efficacy of the exogenously introduced CCR9 to be expressed and targeted to the cell surface 

was first assessed. Easily transfectable HEK 293T cells showed a marked upregulation of 

CCR9 expression on the cell surface upon transfection with the CCR9 vector compared to the 

control vector in the flow cytometry staining (Figure 9A). Similar increase in cell surface 

expression of CCR9 was also noted in MCF7 cells transfected with the overexpression 

construct. Importantly, overexpression of CCR9 resulted in a clear decrease in antigen-

specific lysis of MCF7 cells by the survivin-specific CTLs (Figure 9B), indicating that cell-

surface bound CCR9 inhibits immune-recognition and lysis of the protected tumor cells. 
 

A B

 
 

Figure 9. CCR9 overexpression inhibits immune lysis of tumor cells. (A) Flow cytometry staining for CCR9 

surface expression in HEK 293 cells transfected with control or histidine-tagged CCR9 (CCR9-His) 

overexpression vector. Gates were set based on isotype control. (B) Cr-release assay showing % specific lysis of 

MCF7 cells by survivin-specific T cells. MCF7 cells were transfected with control vector (■) or CCR9-His 

expression vector (○) 72h prior to the assay. 

4.10 CCR9 inhibits the secretion of cytolytic enzymes and Th1 cytokines  

Cytotoxic T cells upon antigen encounter and engagement secrete effector cytokines such as 

interferon-gamma (IFN-γ), interleukin-2 (IL-2) and cytolytic enzymes such as perforin and 

granzyme B that bring about tumor lysis (121). Tumor-specific CCR9 inhibits this anti-tumor 

immune response by inhibiting the secretion of these immune mediators as seen in the IFN-γ 
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and granzyme B ELISpot assays. siRNA-mediated knockdown of CCR9 in MCF7 cells 

significantly increased the secretion of IFN-γ and granzyme B by survivin-specific T cells as 

shown in Figure 10A and B. Furthermore, luminex analysis of the tumor/TC co-culture 

supernatant revealed that CCR9 also selectively inhibited the secretion of T-helper-1 (Th1) 

cytokines, such as IL-2 and tumor necrosis factor-alpha (TNF-α), as well as IL-17, but 

increased the secretion of the immunosuppressive cytokine IL-10 (Figure 10C). Together, 

these data indicate that tumor-associated CCR9 impedes the anti-tumor, Th1 cytokine-based 

immune response. 
 

 
  

Figure 10. Tumor-specific CCR9 impedes Th1-type immune response. (A, B) ELISpot assay showing IFN-γ 

(A) and granzyme B (B) secretion by survivin-specific CTLs, as spot numbers, upon CCR9 knockdown (black 

bars) in MCF7 cells compared to the control knockdown (white bars). T cells (TC) only group was used to 

account for the background noise. Triplicate wells were used per sample group. (C) Luminex assay showing 

cytokine levels in the supernatant from the co-culture of survivin-specific T cells (TC) with either CCR9- MCF7 

(transfected with CCR9-specific siRNA) or CCR9+ MCF7 (transfected with control siRNA) cells. Error bars 

denote SEM. Statistical differences between the control siRNA and CCR9 siRNA treated groups were calculated 

using two-sided student’s t-test: * = p<0.05, ** = p<0.01, *** = p<0.001. 

4.11 CCR9 expression in melanoma inhibits the anti-tumor reactivity of TILs 

After validating the immunosuppressive role of CCR9 in breast cancer setting, its influence 

on anti-tumor immunity in other tumor entities was investigated next. For this, primary 

melanoma cells (termed as M579 cells) isolated from a metastatic melanoma patient were 

used. M579 cells were additionally stably co-transfected with an HLA-A2 expression 
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construct and luciferase-expressing plasmid (M579-A2-luc). At the same time, tumor 

infiltrating lymphocytes (termed as TIL 412) were isolated from a sygeneic metastatic 

melanoma patient and expanded in vitro using the modified Rosenberg’s rapid expansion 

protocol. TIL 412 consists of CD8 (43%) as well as CD4 (55%) T cells as shown in the flow 

cytometry staining of Figure 11A. Amongst the CD8+ T cell compartment, almost half 

express PD-1, around 34% express TIM-3 and ~17% express both the exhaustion markers, 

underscoring the exhausted state of the tumor infiltrating T cells in this melanoma patient 

(122, 123) (Figure 11A). Since M579-A2 cells were also found to express CCR9, the next 

question therefore was whether CCR9 inhibition could alleviate the anti-tumor immune 

reactivity of the exhausted TIL 412 cells as well. Indeed, knockdown of CCR9 in M579 cells 

resulted in a marked increase in tumor lysis by TIL 412 cells in both Luc-CTL and Cr-release 

cytotoxicity assays, performing even better than PD-L1 inhibition (Figure 11B, C). 

  

 

 
 

Figure 11. CCR9 inhibition induces anti-tumor reactivity of melanoma patient-derived exhausted TILs. 

(A) Flow cytometry staining showing the percentage of CD8 and CD4 T cells amongst CD3 T cells (left) and the 

percentage of PD-1 and TIM-3 positive T cells amongst CD8 T cells (right) in the melanoma patient-derived TIL 
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412 T cell culture. Gates were set based on the isotype controls. Stainings were performed by Tillmann Michels. 

(B, C) Luc-CTL (B) and Cr-release (C) cytotoxicity assays showing lysis of M579-A2-luc cells upon siRNA-

mediated CCR9 knockdown by TIL 412 cells. Error bars denote +/- SEM. 

4.12 CCR9 suppresses the tumor lysis potential of TILs in pancreatic adenocarcinoma 

Next, the influence of CCR9 expression upon anti-tumor immune response in pancreatic 

adenocarcinoma (PDAC) was assessed. PDAC results from the malignant neoplasm arising in 

the exocrine component of the pancreas and has an extremely poor prognosis with the 5-year 

survival rate as low as 6% (124). Tumor infiltrating lymphocytes, although present in PDAC 

patients, are known to be subjected to systemic and local immune suppression (125). 

Accordingly, an exhausted immune phenotype, based on the PD-1 and TIM-3 surface 

staining, was noted in TIL 34 and TIL 53 T cell cultures which were isolated and established 

from two poorly differentiated PDAC male patients (Figure 12A). TIL 34 is a CD8/CD4 

mixed T cell culture, whereas TIL 53 consists primarily of the CD8+ T cells (Figure 12A). 

Upon siRNA-mediated knockdown of CCR9 in PANC-1 pancreatic tumor cell line, a 

remarkable two-six fold increase in the tumor lysis capacity of both these exhausted TILs was 

noted in the Luc-CTL and Cr-release cytotoxicity assays (Figures 12B, C). Additionally, 

polyclonal CD8+ T cells derived from the peripheral blood of healthy donors also showed an 

enhanced IFN-γ secretion when co-cultured with CCR9 knocked down PANC-1 cells 

compared to the control knockdown cells (Figure 12D). 

 

Taken together these data indicate that CCR9 mediates immunosuppressive effect in a broad 

variety of tumors with a clear clinical impact on the tumor lysis capacity of the infiltrating 

lymphocytes. 
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Figure 12. CCR9 mediates immune suppression in pancreatic cancer. (A) (left) CD8 and CD4 T cell 

population distribution amongst the TIL 34 and TIL 53 lymphocyte culture as determined by flow cytometry; 



Results 

Page 72 

 

(right) PD-1 and TIM-3 expression on CD8+ T cells of TIL 34 and TIL 53 culture as analysed by flow cytometry 

(grey histogram: anti-PD-1 or anti-TIM-3 staining, white histogram: isotype Ab). Stainings were performed by 

Antonio Sorrentino. (B, C) Increase in TIL 34 (B) or TIL 53 (C) mediated lysis of PANC-1 cells upon CCR9 

knockdown as determined by the Luc-CTL (B) or the Cr- release assay (C). (D) ELISpot assay showing IFN-γ 

secretion by polyclonal CD8 T cells upon co-culture with control or CCR9 knocked down PANC-1 tumor cells 

in the presence of anti-CD3 x EpCAM bi-specific antibody. Only T cells or PANC-1 cells were used as controls 

to account for the background signal. Error bars denote +/- SEM; statistical difference between control siRNA 

and tested siRNA groups are highlighted herein whereby * = p<0.05, ** = p<0.01, *** = p<0.001. 

4.13 Tumor-specific CCR9 does not impair the activation of the T cell receptor 

signaling complex 

To explore whether the immunosuppressive effect of CCR9 on T cells is mediated by the 

impairment of the T-cell-receptor (TCR)-based signaling events, survivin-specific CTLs were 

co-cultured with either control siRNA-transfected (denoted as CCR9hi) or CCR9 siRNA-

transfected (CCR9lo) MCF7 cells. The activation status of the TCR-associated signaling 

complex in these CCR9hi or CCR9lo treated TCs was then assessed at different time-points 

using the phospho-plex assay. Early TCR signaling events, upon antigen recognition and 

binding, involve the tyrosine phosphorylation of the cytosolic tyrosine kinase Lck, which 

phosphorylates ITAM (immunoreceptor-tyrosine based activation motifs) on the CD3 

subunits. This leads to the phosphorylation of ZAP-70 and subsequently of the 

transmembrane adaptor protein LAT, which in turn recruits a broad range of signaling 

molecules in the T cell. As shown in Figure 13A and B, tumor-specific CCR9 did not alter the 

magnitude or the kinetics of the TCR activation and associated downstream signaling in the 

survivin-specific T cells upon antigen encounter. This indicates that CCR9-mediated immune 

suppression occurs via an alternate pathway in T cells that makes them unresponsive to tumor 

targets despite the presence of a sound and effective TCR signaling complex. 
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Figure 13. CCR9 does not impair TCR activation and signaling. (A-B) Phospho-plex analysis of the 

activated T cell receptor signaling complex in survivin-specific T cells (TC) that were co-cultured with MCF7 

cells transfected with control (CCR9lo) or CCR9-specific siRNA (CCR9hi). Log2 ratio of mean fluorescent 
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intensity (MFI) of specified phospho-proteins to the unstimulated survivin-specific TCs are depicted for all the 

studied analytes after 5 mins of co-incubation (A) or individually for all the analytes after 1 min, 5 min and 20 

mins of co-culture (B). TCs stimulated with PMA and ionomycin were used as positive control. Experiments 

were performed in triplicates and are representative of atleast three independent repeats. Mean +/- SEM are 

plotted herein. 

4.14 CCR9 impedes STAT signaling in antigen-specific T cells 

An alternative route of T cell activation is the STAT (signal transducer and activator of 

transcription) family of transcription factors which regulate the expression of cytokines in T 

cells (126). Since an impediment in Th1 cytokine production by T cells in response to CCR9+ 

tumor targets was already observed (Figure 10C), it was next sought to assess the impact of 

CCR9 on the activation status of STAT signaling in the encountered TCs. To analyze STAT 

signaling exclusively in the T cells after co-culture with the tumor cells, we exploited the 

preferential expression of EpCAM antigen on the surface of epithelial MCF7 tumor cells, and 

its lack thereof on the endothelial T cells, for separating the two cell populations (Figure 

14A). Using anti-EpCAM antibody-coated magnetic beads, which effectively bound only 

EpCAM+ve MCF7 tumor cells, EpCAM-ve T cells were separated from the co-culture with 

more than 95% purity as assessed by the CD3 surface staining on the purified TCs (Figure 

14B). Time-course based analysis of STAT activation in CCR9hi and CCR9lo treated TCs 

revealed a significant decrease in STAT1 signaling, along with decrease in STAT2 and 

STAT5a/b signaling, in survivin-specific T cells mediated by CCR9 (Figure 14C, D). This 

impairment in STAT1 signaling could also be verified on western blot using phospho-specific 

STAT1 antibody, indicating that tumor-derived CCR9 impairs STAT signaling, especially 

STAT1, in the encountering TCs (Figure 14E). Taking together the observations from the 

cytokine and phospho-STAT analysis, it can be concluded that tumor-specific CCR9 impedes 

Th1-type immune response via differential regulation of the STAT pathway. 

 

 



Results 

Page 75 

 

 
 

 
 
 

Figure 14. CCR9 impairs STAT activation in T cells. (A) Flow cytometry staining showing EpCAM 

expression on MCF7 and survivin T cells before co-culture. After 2h of co-culture they were separated using 

EpCAM-Ab-coated magnetic beads. EpCAM and CD3 staining on the bead-free cell suspension is shown at the 

extreme right. Cells were gated based on the isotype control. (B) Phospho-plex analysis showing the activation 

of STAT signaling in survivin-specific TC upon encountering CCR9lo MCF7 cells (CCR9-siRNA transfected) 

compared to CCR9hi MCF7 cells (control siRNA transfected). (C) Time-course based phosphorylation of 

STAT1 in survivin-specific T cells (TC) that were co-cultured with CCR9hi or CCR9lo MCF7 cells for the 
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indicated time points. Log2 ratio of mean fluorescent intensity (MFI) to the unstimulated TCs are plotted in B 

and C. (D) Western blot analysis of phospho-STAT1 protein levels in the respective TC samples. Beta-actin was 

used as the loading control. All experiments were performed in triplicates. Error bars denote +/- SEM. * = 

p<0.05, ** = p<0.01, *** = p<0.001, as calculated by two-sided student’s t-test. 

4.15 Role of CCL25 in CCR9-mediated immune-suppression 

CCL25 is the only known interacting partner and ligand for CCR9 and was also found to be a 

weak immune-inhibitory hit in the first two screens (Supplementary Figure 1). Therefore, 

CCL25’s involvement in tumor immune-suppression and its role in defining CCR9’s 

tolerogenic phenotype were characterized next. Firstly, CCL25 was found to be produced by 

all the studied tumor cell lines, although at varied levels, as determined by ELISA (Figure 

15A). Interestingly, shRNA-mediated stable knockdown of CCR9 did not affect CCL25 

production by MCF7 breast cancer cells (Figure 15A). Next, inhibition of CCL25 using 

siRNAs or blocking antibody showed no effect on antigen-specific lysis of MCF7 or PANC-1 

cells by the respective antigen-specific T cells, au contraire to the CCR9 knockdown (Figure 

15B-D). Although, stronger responses were observed in IFN-γ and granzyme B secretion by T 

cells upon CCL25 knockdown in MCF7 cells (data not shown). In case of M579 melanoma 

cells, which secreted higher levels of CCL25 (Figure 15A), knockdown of CCL25 resulted in 

a significant increase in tumor lysis by TIL 412 (Figure 15E). Conversely, the addition of 

recombinant CCL25 protein to the tumor/TC co-culture led to a slight decrease in IFN-γ 

production as measured by ELISA (Figure 15F), which was not noted for the other cell lines. 

Thus, based on the current data, CCL25 does not seem to play a driving role in immune 

suppression of breast or pancreatic tumors, but might be crucial for melanoma cells. Further 

investigations would be required to clarify CCL25 as an immunosuppressive entity. 
 

 

Figure 15. Role of CCL25 on immune-suppression of antigen-specific T cells. (A) ELISA showing CCL25 

expression in cell lysates from indicated cancer cell lines. rhuCCL25 and rhuPD-L1 were used as positive and 

negative controls respectively for CCL25 detection by anti-CCL25 antibody coated ELISA plates. (B-E) Cr-

release assay showing % specific lysis of MCF7 (B, C), PANC-1 (D) or M579-A2 (E) cells by survivin TC (B-

C), TIL 53 (D) or TIL 412 (E) upon CCL25 inhibition using either specific siRNAs (B, D, E) or blocking 

antibody (C). Unspecific siRNAs or isotype antibodies were used as controls in the respective experiments. (F) 

ELISA showing HLA-A2-restricted IFN-γ production by TIL 412 cells in response to HLA-A2 positive M579-

A2 cells or HLA-A2 negative MaMel 33 melanoma cells upon addition of rhuCCL25 protein to the co-culture. 

Error bars denote SEM; n=3. Parts of the experiments were performed by Tobias Speck and Tillmann Michels. 
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4.16 CCR9-mediated immune suppression requires direct cellular contact with T cells 

It is possible that CCR9 mediates its immune-suppressive effect via other soluble ligands or 

mediators. To examine this possibility, survivin-specific T cells were treated with the cell 

culture supernatants from either the knocked down (CCR9lo) or control (CCR9hi) MCF7 

tumor cells overnight and then challenged against CCR9hi or CCR9lo MCF7 cells in the 

cytotoxicity assay. Against the same tumor target, neither of the supernatant treated T cells 

showed any difference in their recognition and lytic capacity. The difference in lysis between 

the different groups depended entirely upon CCR9’s expression on the tumor targets rather 

than on the TC treatment (Figure 16A). This clearly indicated that soluble mediators released 

by the tumor cells, including CCL25, are not involved in defining CCR9’s 

immunosuppressive capacity. Rather direct cellular contact between the CCR9-bearing tumor 

cells and the T cells is essential for the observed immunosuppressive effect. To further assess 

whether cytoplasmic signaling mediated by the surface-bound CCR9 in tumor cells plays any 

role in immunosuppression, pertussis toxin (PTX) was used. PTX irreversibly inhibits and 

uncouples the Gαi family of proteins from binding to the GPCRs and thereby blocks the 

downstream GPCR signaling. Treatment of CCR9+ve MDA-MB-231 tumor cells with PTX 

inhibited its migration towards the chemotactic stimuli of CCL25 in a transwell migration 

assay, proving the effectiveness of pertussis toxin in blocking CCR9’s downstream signaling 

that is responsible for its chemotaxis (Figure 16B). However, inhibition of intracellular CCR9 

signaling by PTX failed to elicit elevated tumor lysis by antigen-specific T cells, when 

compared to the CCR9 gene knockdown, indicating that CCR9-mediated immune suppression 

on T cells is independent of its intracellular signaling in the tumor cells (Figure 16C). 
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Figure 16. Direct cellular contact is essential for CCR9-mediated immunesuppression. (A) MCF7 cells 

were transfected with control or CCR9-specific siRNAs and 48h later the respective supernatants (CCR9lo or 

CCR9hi SSN) were used to culture survivin TCs overnight. Supernatant treated TCs were then used as effector 

cells against CCR9lo or CCR9hi MCF7 tumor cells in the Cr-release assay along with wild type MCF7 cells. (B) 

Migration of MDA-MB-231 tumor cells in response to rhCCL25 protein with or without pertussis toxin (PTX) in 

24-well transwell migration assay. Migrated cells were fixed and stained with CTG dye and luminescence was 

used to score the migration capacity. ***= p <0.001 (C) Cr-release assay showing % specific lysis of MCF7 

cells pre-treated with or without pertussis toxin, along with CCR9 knockdown MCF7 cells as positive control. 

Error bars denote SEM. 

4.17 CCR9 induces immune-suppressive gene signatures in encountered T cells 

To better understand the mode of CCR9-mediated immunosuppression in T cells, global gene 

expression study was performed to compare the changes in the transcriptome of the T cells 

that encounter CCR9hi versus CCR9lo MCF7 tumor cells. Microarray analysis comparing 

these two populations revealed a list of differentially up and down regulated genes in the 

CCR9lo treated T cells compared to the CCR9hi treated T cells which is represented in the 

volcano plot of Figure 17A and listed in the associated heatmap of Figure 17B. Immune 

response-related genes such as LTA, IL2RA, CISH were found to be upregulated; whereas 

genes that inhibit T cell maturation and effector function such as CD24, EFNA1, ID1, TOB1 

were downregulated in the CCR9lo treated T cells, which was found to be in accordance with 

the increased cytotoxicity observed before. Gene-annotation/ontology (GO) analysis of the 

top up-regulated genes revealed an significant enrichment of genes involved in the positive 

regulation of immune response, while genes involved in lymphocyte maturation and apoptosis 

were found to be significantly enriched in the downregulated list (Figure 17C). Next we 

wondered if these gene signatures associated with the re-activated T cells upon tumor-specific 

CCR9 knockdown overlap with the gene signatures generally associated with an activated T 

cell population. Using a publically available gene expression study comparing the 

unstimulated CD8+ T cells to activated T cells (105), overlapping gene signatures in the 

upper quartile could be identified that were present in both the studies (Figure 17D). Taken 

together, these data underscore CCR9’s role in keeping the anti-tumor T cells in a suppressed 

and relatively immature phase, which can be reprogrammed to an effector phenotype upon 

successful inhibition of tumor-specific CCR9. 
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Figure 17. CCR9 knockdown on tumor cells reprograms the T cells towards an immune effector 

phenotype. MCF7 cells transfected with control siRNA (CCR9hi) or CCR9 siRNA (CCR9lo) were co-cultured 

with survivin TCs for 12 h. Gene microarray was performed with the total RNA extracted from purified T cells 

after the co-culture. (A) Volcano plot illustrating fold change (FC; log2) in gene expression intensities compared 

with p-value (-log2) between CCR9hi and CCR9lo treated TCs. Horizontal bar at y = 4.32 represents a statistical 

significance of p=0.05 (genes in grey below this line did not reach significance). LogFC cut-off at ± 0.5 is 

represented by the vertical lines. (B) Heatmap representation of the top upregulated (LogFC>0.5) and 

downregulated (LogFC<-0.85) genes with p≤0.05. Individual replicates per sample group are shown herein. (C) 

GO categories of differentially expressed genes in CCR9lo TCs as determined by DAVID. Percentages of genes 

within the differentially regulated gene list that are attributed to a certain GO category are represented here with 

only statistically significant enrichment terms being plotted. (D) Differentially regulated genes overlapping in 

the presented microarray study and a published study comparing gene expression changes in CD8 T cells before 

and after activation (GSE7572; refer to methods for details) is represented. Significantly up and down regulated 

genes (top 30%) in both the studies were compared and few of the common gene signatures are summarized in 

brief. 

 

 

 



Results 

Page 81 

 

 



Results 

Page 82 

 

 

4.18 Synergistic blockade of immune modulatory pathways: CCR9, PD-L1 and 

CEACAM-6  

Combinatorial inhibition of multiple immune-checkpoint molecules is currently being 

investigated in the clinics to further strengthen the magnitude of the anti-tumor T cell 

responses in cancer patients. This study therefore investigated whether any synergy exists 

between the immune-modulatory pathways mediated by CCR9 and those of other immune-

checkpoint molecules, namely PD-L1 and CEACAM-6, so that co-inhibition could result in 

even heightened immune response against target tumor cells. For this, CCR9 and PD-L1 or 

CCR9 and CEACAM-6 were co-inhibited in the MDA-MB-231 or PANC-1 tumor cells, 

respectively, and evaluated for impact on CTL-mediated tumor lysis. Antibody-mediated 

blockade of PD-L1 or CEACAM-6 on the surface of CCR9 knocked down tumor cells 

showed no striking additive effect on the anti-tumor T cell responses, however individual 

blocking of both these immune-checkpoint entities was successful in elevating the cytotoxic 

potential of the tumor-specific CTLs (Figure 18A, B). 
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Figure 18. Synergy between CCR9 and PD-L1 or CCR9 and CEACAM-6 mediated immune-suppressive 

pathways. (A-B) Cr-release cytotoxicity assay showing % specific lysis of MDA-MB-231 cells by survivin-

specific CTL (A) or PANC-1 tumor cells by TIL 53 (B) upon CCR9 knockdown along with PD-L1 (A) or 

CEACAM-6 (B) inhibition. Anti-PD-L1 and anti-CEACAM-6 blocking antibodies, along with respective isotype 

controls, were used for PD-L1 and CEACAM-6 inhibition on tumor cells. Curve represents the mean and error 

bars denote +/- SEM. 

4.19 Tumor pathways modulated by CCR9 

For rational designing of efficient combinatorial therapies for cancer treatment, it is essential 

to identify whether redundant or divergent signaling pathways underlying the potential 

immune modulatory function of CCR9 and other immune-checkpoint entities exist, which 

could then be synergistically targeted. Although intracellular signaling mediated by CCR9 

was not found to be critical for its immunosuppressive effect on the T cells, it might still be 

relevant for its impact on other tumor immune-modulatory pathways and therefore relevant 

for the design of synergistic approaches. As a preliminary approach in this direction, signaling 

pathways downstream of CCR9 were characterized using the phospho-protein analysis of 

major transcription factors in WT versus CCR9 knockdown MCF7 cells. Knockdown of 

CCR9 resulted in a significantly reduced signaling via Akt and S6-kinase, whereas a 

potentially compensatory upregulation in the ERK kinase pathway was noted, indicating their 

involvement in the downstream CCR9 signaling (Figure 19).  
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Figure 19. Altered signaling cascades in MCF7 tumor cells upon CCR9 knockdown. MCF7 cells were 

reverse transfected with control or CCR9-specific siRNA and after 72h protein lysates were used for phopho-

plex analysis of the major transcription factors indicated on x-axis (studied phopho-sites are indicated in 

brackets). Statistical differences between the two groups were analyzed using student’s two-sided t-test, n=3. 

Error bars represent SEM. 

4.20 Blocking antibody for inhibiting CCR9’s immunosuppressive effect 

Therapeutic targeting of the classical immune-checkpoint nodes such as CTLA4, PD-L1 or 

PD-1 has gained clinical success owing to the generation of effective blocking antibodies that 

inhibit the interaction of these negative immune-checkpoint receptors with their respective 

counterparts on the tumor or T cell surface. Therefore it was next assessed whether any of the 

commercially available anti-CCR9 monoclonal antibodies could inhibit the tumor immune-

resistance phenotype imposed by CCR9 expression. Antibody blockade of CCR9 on MCF7 

cells using the two different antibody clones from R&D and Abcam manufacturers failed to 

induce tumor lysis or IFN-γ secretion by survivin-specific CTLs, irrespective of the dosage 

(Figure 20A-C). However, the reported blocking properties of the R&D anti-CCR9 antibody 

clone could not be verified in the transwell migration assay, where the addition of anti-CCR9 

antibody did not inhibit the migration of CCR9+ve MDA-MB-231 breast cancer cells towards 

the chemotactic gradient of the recombinant CCL25 protein (data not shown), leaving open 

the search for a function blocking CCR9 antibody that could also inhibit its 

immunosuppressive property. 
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Figure 20. antibody-mediated blockade of CCR9. (A-B) Cr-release assay showing % specific lysis of MCF7 

tumor cells by survivin TCs upon CCR9 inhibition using commercial blocking antibodies from R&D systems 

(A) or Abcam (B) along with the respective isotype controls. Tumor cells were incubated with the respective 

antibodies for 30 min on ice before being used as target cells in the cytotoxicity assays. (C) ELISpot assay 

showing IFN-γ secretion by survivin TC as spot numbers in response to MCF7 cells upon CCR9 inhibition using 

anti-CCR9 Ab (R&D systems) or isotype control Ab. Only T cells (TC) were used as control for unspecific 

background IFN-γ secretion. Mean ±SEM are indicated herein. 

4.21 CCR9 inhibition results in delayed tumor growth in vivo upon adoptive T cell 

transfer in xenograft NSG mouse model 

To evaluate the in vivo relevance of CCR9 as a tumor-associated immunosuppressive entity, 

stable CCR9 knockdown variants of the PANC-1 tumor cell line were created which also 

expressed the luciferase reporter to allow in vivo bioluminescent imaging. Figure 21A shows 

the knockdown efficiency of the lentivirally transduced PANC-1-luc cells using the non-

targeting shRNA (NTS) or the CCR9-specific shRNA (shCCR9). As expected, stable CCR9 

knocked down cell variants were more susceptible to immune lysis than their counterparts in 

the in vitro chromium release assay (Figure 21B). 

 

For the preliminary in vivo analysis, 4x105 cells each of PANC-1-luc-NTS (CCR9+ve) and 

PANC-1-luc-shCCR9 (CCR9-ve) tumor cell lines were subcutaneously implanted in the left 

and the right flank respectively of the NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) 

immunodeficient mice, which lack mature T, B and NK cell compartments (scheme in Figure 

21C). These mice then received intravenous injection of 1x107 pancreatic tumor infiltrating 
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lymphocytes (TIL 53) at day 2 and day 9. Tumor growth was followed using bioluminescent 

imaging via intraperitoneal injection of the luciferin substrate until day 35 (Figure 21D). As 

shown in Figure 21E, in the early phases of the tumor growth, CCR9-ve PANC-1 tumors 

grew much slower in response to the adoptive T cell transfer than the CCR9+ve tumors, 

indicating that CCR9 suppresses the anti-tumor activity of the transferred T cells in vivo as 

well. Differences in the tumor growth upon T cell therapy remained statistically significant at 

d35 (Figure 21F). However, towards the later stage, a difference in the tumor growth kinetic 

between the CCR9+ve and the CCR9-ve tumor cells was also observed in mice that received 

no T cell transfer, indicating that long term knockdown of CCR9 in itself might confer some 

growth disadvantage to the growing tumors (Figure 21G). Therefore, this argues for a 

cautious interpretation of the results. Nevertheless, adoptively transferred human T cells could 

be detected in the spleen and the tumors of the treated mice even after day 35 as assessed by 

the CD3/CD45 based flow cytometric analysis of the respective tissue samples (Figure 21H 

and I). Relative frequency of the detected CD3+ CD45+ TILs was found to be significantly 

higher in the tumor bed than in the spleen (Figure 21J), out of which majority of them were 

CD8+ T cells (Figure 21K). This distribution was consistent with the ratio of CD8 and CD4 T 

cells in the TIL 53 culture before transfer (~ 85% CD8+ and ~ 8.5% CD4; Figure 12A). 

 

Taken together, these results give a preliminary indication of the in vivo relevance of targeting 

CCR9 as an immune-checkpoint node for application in cancer immunotherapy. These 

findings need to be replicated for reproducibility with additional improvements implemented 

to the tumor model. 
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Figure 21. In vivo inhibition of CCR9 for adoptive T cell transfer therapy. (A) Immunoblot analysis 

showing stable knockdown of CCR9 in PANC-1 tumor cells transduced with lentiviral construct coding either 

CCR9-specific shRNA (sh6) or the non-targeting shRNA (NTS). Immunoblot was probed for beta-actin as 

control for equal protein loading. (B) Cr-release assay showing TIL 53-mediated lysis of PANC-1 tumor cells 

upon stable knockdown of CCR9 (CCR9-ve) compared to the control knockdown (CCR9+ve). Mean ±SEM are 

plotted herein, n=3. (C) Scheme for the in vivo mouse experiment involving the s.c. injection of CCR9+ve or 

CCR9-ve PANC-1-luc tumor cells in the left and right flank, respectively, of the NSG mice at the beginning of 

the experiment (d0). Following this, at d2 and d9, mice received i.v. injection of TIL 53 cells (n=5) or no T cells 

at all (control group for tumor growth; n=3). Mice were imaged for bioluminescence twice every week until d35 

to monitor tumor growth upon treatment or without. After d35, mice were sacrificed and organs were harvested 

for flow cytometric analysis. (D) Representative bioluminescence imaging showing the growth of CCR9+ve and 

CCR9-ve tumors at d35 of TIL-treated mice. (E) Individual tumor growth per mice (in terms of luciferase units; 

RLU) is plotted for the first 25 days where maximum immune control of tumors is expected. (F) Mean ±SEM of 

tumor growth in terms of luciferase intensity is represented herein for CCR9+ve and CCR9-ve PANC-1 tumors 

in mice that received adoptive TIL transfer. n=5. (G) Tumor growth curve showing mean± SEM of CCR9+ve or 

CCR9-ve tumors in non-TIL treated mice. n=3. Statistical difference was calculated using paired student’s t-test. 

(H-K) Representative dot plots showing the gating strategy to identify CD3+ and CD45+ human T cells in the 

spleen (H) and tumor (I) of TIL-treated (or non-treated control) mice after d35. Individual frequency of 

CD3+CD45+ T cells in spleen, CCR9+ve and CCR9-ve tumors of each mice are cumulatively shown in J. 

Percentage of CD4 and CD8 T cells amongst the CD3+CD45+ T cells are representatively shown on the extreme 

right in the dot plots (H and I) and the cumulative data is shown in K. Tumors were harvested from 3 mice 

whereas all 5 mice were used for FACS staining of the spleen. Statistical differences between the test groups 

were assessed using the paired student’s t-test. Experiments were designed and supervised by me and executed 

by Tobias Speck as a part of his Masters thesis. 

4.22 Extension of the screening methodology to additional tumor entities 

Given that tumors are heterogeneous entities, even in their immune-modulatomic profile, it 

would be essential to elaborate this screening methodology to other tumor entities in order to 

find tumor-specific immune-modulators that could be targeted for individual cancer types or 

to find common checkpoint nodes for broader applicability and therapeutic development. 

Colorectal cancer (CRC) is the third most common cause of cancer worldwide and represents 

an urgent need for successful translation of immunotherapeutic approaches for better 

treatment options for patients (127). Therefore, to extend the screen to CRC setting, HLA-A2 

positive SW480 colorectal cancer cell line was chosen. Reverse transfection of lethal siRNAs 

(targeting UBC and PLK-1) using RNAiMAX as the transfection reagent led to a strong 

decrease in viability of the SW480 cells as demonstrated by the Hoechst dye staining in 
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Figure 22A-B. Thus SW480 cells could be used for the siRNA-based screening strategy using 

RNAiMAX as the transfection reagent. For applicability of the SW480 cells in the Luc-CTL 

assay, plasmid transfection efficacy of these cells was next tested using the pEGFP-Luc 

plasmid and different transfection reagents. Remarkably, plasmid transfection with Trans-IT, 

which worked well for the MCF7 cells (Figure 2D), failed to induce luciferase expression in 

the SW480 cells (Figure 22C). Nevertheless, Lipofectamine LTX-PLUS and GeneJammer 

transfection reagents could successfully deliver the GFP-Luc plasmid to the SW480 cells as 

determined by the luciferase activity upon plasmid transfection (Figure 22C). SW480 cells 

were next tested for whether they could be recognized and lysed by the already established T 

cell cultures. Both survivin-specific T cell clone and pancreatic cancer derived TIL 53 could 

recognize and lyse SW480 cells in the chromium-release cytotoxicty assay in a dose-

dependent manner, with survivin TCs exhibiting higher cytotoxicity against SW480s. It is 

indeed known that colorectal cancer in general and SW480s in particular express higher levels 

of the survivin antigen (128), supporting the observed effect. Both these T cell populations 

could therefore be used as effector cells against SW480s in an siRNA-based immune screen 

to uncover CRC-associated immune-modulators. 

 



Results 

Page 91 

 

 
 

Figure 22. Establishing SW480 colorectal cancer cells for the immune RNAi screen. (A-B) SW480 

colorectal cancer cells, seeded at two different concentrations, were reverse transfected with the described 

control (H2O blank, RLuc) or lethal (UBC, PLK1, COPB2) siRNAs in 384 well plates using RNAiMAX as the 

transfection reagent. Loss in cell viability was readout 72h later using Hoechst staining with light green 

representing viable cells and dark green indicating loss in viability (A). Total cellular intensities upon siRNA 

transfection are enumerated in B. (C) Luciferase activity of SW480 cells upon transfection with pEGFP-Luc 

plasmid with the indicated transfection reagents. Mock represents addition of no transfection reagent. (D) Cr-

release cytotoxicity assay showing % specific lysis of SW480 cells using survivin-specific T cells (○) or 

pancreatic cancer-derived TIL 53 cells (■) as effector CTLs at titrating E:T ratio. Error bars denote +/- SEM. 
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5. Discussion 

5.1 High-throughput screening for immune modulatory genes 

One of the major challenges for the systematic discovery of novel immune modulators has 

been the lack of a robust and relevant immune-based assay that is suitable for scale up to 

high-throughput needs. This thesis addresses this problem by establishing and implementing a 

screening assay which overcomes the current limitations and subsequently proves its efficacy 

by successful validation of the identified hits. Previous screening strategies to uncover 

immune modulators have relied on the release of IFN-γ as an indicator of anti-tumor immune 

cell reactivity (103, 129). However, IFN-γ secretion alone by immune cells does not always 

correlate with cellular cytotoxicity (130, 131). This could be partly due to the fact that certain 

tumor cells (for example, LNCaP prostate cancer cells) lack the expression of IFN-γ receptor 

or have defects in the downstream JAK-STAT signaling pathway, making them insensitive to 

IFN-γ in the in vitro assays (132). This is further reiterated from the observations in the field 

of viral immunology, where HIV vaccines that predicted T cell responses based on  IFN-γ 

secretion failed to reduce the viral load in infected patients (133). Therefore, in this study 

direct tumor cell lysis by the T cells was set out as the end-point of the assay readout. 

5.1.1 Assessment of cytotoxicity 

Quantification of target cell lysis by immune cells has classically relied on the chromium 

(51Cr)-release based cytotoxicity assay which involves the tagging of target cells with a 

radioactive salt of chromium, sodium chromate (Na2
51CrO4) (113). However, the short half-

life and the radioactive nature of the assay itself make this assay unsuitable for an RNAi-

based immune screen. Alternatives to the 51Cr-release assay for quantifying immune-mediated 

cytotoxicity can be broadly classified into the following genres: 

 

1. Fluorescent dye-based assays: These employ tagging of the tumor cells with 

fluorescent dyes such as calcein (134), BCECF (135), CFSE (136), MUH (137) etc. 

However, not all target cells take up and retain fluorescent dyes with equal ease and 

higher spontaneous release of dyes leads to low signal to noise ratio (134). 
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2. Flow cytometry-based assays: These employ the detection of apoptosis markers, such 

as annexin V (138), caspase 3 (139), 7-AAD (140), on the target cells at single cell 

level upon co-culture with immune cells. However, this requires efficient separation of 

the target and immune cell populations in the flow cytometric set-up, making data 

analysis time and labor-intensive, along with the requirement for automated 

acquisition dashboard for flow cytometers for batch sample processing. Moreover, 

apoptosis marker analysis using flow cytometric staining only captures the cells 

undergoing apoptosis at the time of staining. This overlooks the impact of immune-

mediated lysis during the initial hours of the tumor-T cell co-culture.  

 

3. Reporter enzyme-based assays: These require the tagging of tumor cells with 

exogenous reporter enzymes, such as luciferase (firefly or renilla), beta-galactosidase 

or lactate dehydrogenase (LDH), before the co-culture with T cells (111, 134, 141). 

Tumor cell viability can then be estimated based on the loss or residual enzyme 

activity. For example, luciferase activity can be quantified by measuring the emitted 

bioluminescence resulting from the oxidative catalysis of luciferin substrate to 

oxyluciferin by the tumor-derived luciferase enzyme. Such systems offer the ease of 

readout desirable for a high-throughput screening approach. 

 

Keeping the above caveats in mind, this study adapted the luciferase-based readout assay 

from Brown et al (107), combined it with the RNAi approach and successfully tested the 

resulting screening system to identify known as well as novel immune modulators which 

could be further validated in independent assays. Besides being non-radioactive, the 

luciferase-based cytotoxicity assay, termed as the Luc-CTL assay in this study, also exhibits: 

high sensitivity, high signal-to-noise ratio, ease of readout, simplified data analysis and allows 

batch processing of samples using standard robotics. All of this makes the Luc–CTL assay, in 

comparison to the other alternatives above, the most suitable assay for high-throughput 

immune screening needs. Notably, the Luc-CTL assay is based on the detection of the 

luciferase activity in the leftover live tumor cells upon removal of the dead cells from the 

culture wells, which assumes the efficient removal of the dead cells upon aspiration of the cell 

culture supernatant. However, this needs to be controlled and monitored for individual tumor 

cell lines which might differ in their adhesion properties to the surface of the wells. 

Accordingly, the Luc-CTL assay would be unsuitable for screening purposes in the 

suspension cell lines. Besides screening for tumor-associated gene modifiers of CTL 
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responses, luciferase-based cytotoxicity assay could also be applied to screen for modulators 

of NK (natural killer) cells, NK-T cells, cytotoxic CD4+ T cells and interferon-producing 

killer DC (IKDC) using the same principle as above. 

5.1.2 Gene knockdown for high-throughput approaches  

Both siRNA as well as shRNA based formats have been widely employed for high-throughput 

RNAi screens. Given that the tumor cell lines are generally amenable to transfection with 

siRNAs and that it doesn’t require specialized bio-safety hoods that are necessary for virus-

based transductions, this study employed the siRNA-based screening library for its purpose. 

RNAi screens based on synthetic siRNA duplexes make use of arrayed and pre-spotted 

siRNAs in individual wells of 384- or 96-well microtiter plates. These, when complexed with 

RNAi transfection reagent, could reverse transfect the overlaid cells to induce transient gene 

knockdowns. However, at this stage the right choice of transfection reagent which could 

successfully deliver the siRNAs to the cells is critical, as not all reagents do the job similarly 

for all the cell lines and therefore this needs to be carefully optimized for a given cell line. 

Cationic lipid based transfection of siRNAs is generally employed for successful siRNA 

delivery in arrayed cell culture systems. Cationic lipids, consisting of positively charged polar 

head group linked to apolar alkyl chains, interact with the negatively charged phosphate 

backbone of nucleic acids forming a complex which fuses with the negatively charged cell 

membrane. The transfection complex enters the cells via endocytosis and once inside, the 

siRNA diffuses through the cytoplasm, where it is recognized by the cellular RISC machinery 

and targeted for mRNA inhibition. siRNA duplexes in the endosomes could also be 

recognized by RNA-sensing Toll-like receptors (TLR), especially TLR-3, -7 and -8; however 

chemical modifications of nucleosides, such as 2'-O-methyl, are nowadays employed to 

suppress the immunerecognition of siRNAs (142). Nevertheless, there are numerous cell types 

and lipid structure that influences the transfection efficiency, case in point being RNAiMAX 

which could efficiently deliver siRNAs to MCF7 cells but not to KS cells (Figure 2A). This 

emphasizes the necessity for pre-optimization of siRNA delivery for individual cell types 

while conducting patient-specific rapid RNAi screening protocols. 
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5.1.3 T cell recognition format for high-throughput assays 

With regard to the nature of the tumor and T cell interaction used for the screen, both antigen-

unrestricted as well as antigen-restricted systems were successfully employed. This was done 

for several reasons. Firstly, this study sought to uncover robust immune modifiers that were 

not biased based on the use of T cells derived from a single donor. Establishing multiple T 

cell clones from different donors with the same antigenic specificity is technically challenging 

and time intensive. Whereas, polyclonal T cells could be easily isolated and expanded from 

the peripheral blood of multiple donors and used as effector T cells for the screen. Secondly, a 

genome-wide RNAi screen for immune-modulators would typically require one to ten billion 

T cells - a number which is difficult to obtain from the expansion of antigen-restricted clones 

compared to the polyclonal T cells from the peripheral blood. Thirdly, the antigen-

unrestricted system using the bi-specific antibody helps to additionally uncover those tumor-

associated immune modulatory targets that can be synergistically inhibited to increase the 

clinical efficacy of the bsAb-based therapy (143). Fourthly, the antigen-restricted system 

recapitulates the real supramolecular complex structure of the immune synapse involving the 

TCR-peptide-MHC interaction and the resulting co-stimulatory signals, which is missing 

from the CD3-mediated activation of the polyclonal T cells. Taking these caveats into 

consideration, both T cell formats were used so that TCR signaling-dependent as well as -

independent immune modifiers could be identified by comparing the two approaches. Indeed, 

55% overlapping immune-inhibitory hits from all the three screens were found to be common 

between the antigen-unrestricted (either of the two screens) and the antigen-restricted screen.  

 

One of the attractive approaches to customize the antigen-specificity of a T cell is by 

introducing transgenic TCRs which could alleviate the problem of isolating low frequency 

antigen-specific T cell clones from the patients. However, an important parameter to keep 

under consideration with the antigen-specific T cell clones is the affinity of their T cell 

receptor (TCR). High affinity TCR-transgenic T cells bind strongly to their pMHC partners 

on the tumor targets, but they represent an unlikely and small proportion of the natural 

repertoire of anti-tumor T cells, since high affinity TCR-bearing T cells that are reactive to 

tumor-associated antigens (which are mostly dysregulated self-antigens) are subjected to 

peripheral tolerance mechanisms (144). In accordance with this, it has been observed that 

most of the naturally occurring anti-tumor T cells isolated from cancer patients bear low-

affinity TCRs which possibly escape the strong tolerance mechanism to persist in the 
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circulation and are favored over the high affinity effector T cells by the tumors themselves 

(145, 146). Therefore, to keep the in vitro RNAi screen as close to the in vivo patient scenario 

as possible, it would be recommended to use low-affinity, naturally occurring anti-tumor T 

cells rather than strong affinity engineered T cells. The survivin-specific T cell clone used in 

this study was isolated from the peripheral blood of an HLA-matched (to limit alloreactivity) 

breast cancer patient bearing a relatively low affinity TCR. In the peptide titration assay, 

10−7–10−6 M concentration of survivin95−104 peptide loaded onto T2 cells resulted in the half-

maximum of IFN-γ secretion by survivin-specific T cells, proving the mild affinity of its TCR 

(108). Importantly, the inhibition of the identified immune modulatory targets on tumor cells, 

as shown in the post-validation studies, could enhance the anti-tumor response of even these 

low-affinity survivin T cells. Additionally, it is important to note that performing a high-

throughput genome-wide RNAi screen with antigen-specific CTL clones might also result in 

true hits being masked or false hits to pop up given that the genes involved in regulating the 

antigen expression and/or processing itself might be targeted. In such a scenario, post-screen 

validations with CTL clones of different antigenic specificity than the one used for the initial 

screen could bypass the problem. 

5.1.4 Performance and interpretation of the high-throughput screen 

Performance of the established high-throughput screening methodology is reflected by its 

sensitivity to identify the already established immune-inhibitors (PD-L1, Gal-3, RCAS-1) and 

immune activators (CXCL9). However, a certain degree of heterogeneity in the performance 

of the individual genes was noted across the first two screens (e.g., 23 common hits out of the 

54 overall hits), as well as in comparison to the third screen. This was expected given their 

different biological set ups, not only with regard to the different CTL source, but also with 

regard to the use of genetically engineered MCF7luc cells or wild-type MCF7 cells transiently 

expressing luciferase. Even though technical replicates within each screen were in the 

acceptable quality range, more biological replicates would be required to be certain that the 

observed heterogeneity between the different screens does not represent a technical pitfall, but 

rather has a biological meaning. On the same note, it is interesting to note the observations 

from the three different yet similar RNAi screens in which the investigators in each study 

infected siRNA-transfected HeLa (147, 148) or HEK (149) cells, that expressed HIV receptor 

CD4, with HIV-1 virus in order to determine the host genes essential for virus replication. 

Each of these studies yielded more than 200 filtered hits, but when compared to each other, 
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showed a mutual overlap of only 13-15 genes (150). This limited overlap in rather similar 

screens emphasizes the importance of doing a biologically mixed screening asking the same 

question in order to identify high-confidence hits.  

 

Surface-bound immune modulators are easy targets for therapeutic antibody development. G-

protein coupled receptors (GPCRs), which represent a sizeable fraction of the surface-bound 

molecules, were screened in this focused study as a proof-of-concept of the screening 

methodology. Extension of this approach to all surface-related entities would be an essential 

step forward for future screening approaches. Unfortunately, none of the current commercial 

siRNA libraries are uniquely dedicated to the cell surfaceome coverage, therefore custom-

designed libraries would need to be produced. With regard to GPCRs, they have been well 

described to be involved in metastasis, angiogenesis, proliferation and survival among other 

functions (151). Therefore, it is not surprising that they hold more than 30% of the market 

share for FDA-approved drugs currently (152). However, the involvement of GPCRs, 

including the chemokine and chemokine-receptor sub-family, in immune regulation hasn’t 

been investigated in depth before. This study sheds a new light on the role of GPCRs in 

immune regulation of cancer progression which merits further investigation. 

 

Considering the use of a focused siRNA library in this study, a hit rate of ~10% was noted for 

identifying potential immune inhibitors. When put in the context of genome-wide screens, this 

discovery rate might appear high and therefore warrants careful functional validation of the 

individual candidates. Off-target effects are not uncommon in RNAi-based screenings and 

could lead to the discovery of false hits (153). They might occur if an siRNA sequence in 

addition matches to an unintended mRNA sequence, leading to its degradation and creation of 

a mixed phenotype which might be construed as a false-positive hit (153). Additionally, 

partial sequence similarity of the seed region of an siRNA to the 3’ untranslated region (UTR) 

of an unrelated mRNA might cause the translational repression of the unintended mRNA, 

leading to the same consequence as above. Finally, sequence-independent recognition of 

siRNA duplexes by the cellular sensors, such as Toll-like receptors which can activate type-I 

interferon signaling, might interfere with the appropriate interpretation of readout assays 

leading to false-positives (154). Consequently, commercial companies selling siRNA libraries 

are on a constant look out for unintentional complementarities for their siRNA sequences that 

are omitted from their databases on a continuing basis. However, it is also plausible that this 

high discovery rate might indeed represent the complex regulatory networks that govern the 
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peripheral immune surveillance. Immune response-related genes represent a major proportion 

of the genome, out of which cell surface signaling proteins, which were already enriched in 

this study, play a pivotal role in immune modulation (155). Moreover, a previous screen for 

tumor ligands that modulate NK cell function also revealed a high number of immune-

modulatory candidates (103), indicating the complex nature of immune surveillance that 

possibly involving multiple players. 

 

Besides for CCR9, preliminary experimental validations have been performed for few of the 

other identified immunosuppressive hits, including GHSR, TRHDE, OR51E2, HTR1D, IL8 

and IL8RA. Strong immunosuppression in both luciferase as well as Cr-release based 

cytotoxicity assays could be demonstrated in breast cancer cell lines using the survivin-

specific T cells for GHSR, TRHDE and OR51E2, with mild effects observed for IL8 and 

IL8RA (preliminary findings, not presented here). Further repetitions and additional analysis 

of the T cell effector functions (such as cytokine and cytolytic enzyme production) upon 

target gene knockdown would be required to confirm the immune modulatory role of these 

candidate genes. Nevertheless, successful validation of these candidate genes in the primary 

Luc-CTL and the secondary Cr-release assays stresses the robustness of the screening 

methodology which appears to have a low false-positive hit rate. 

 

Both PD-L1 and CEACAM-6, which were intended as immunosuppressive controls, could be 

successfully identified as negative modulators of anti-tumor immunity in the RNAi screen. 

Although PD-L1 is known to mediate immune suppression in breast cancer setting (65), 

CEACAM-6’s involvement in immune modulation of breast cancer has never been reported 

before. Interestingly, CEACAM-6 is overexpressed on a majority of human breast cancers 

with expression being correlative to poor prognosis (156). Although not presented here in 

detail, CEACAM-6 was further validated as a potent immunosuppressor in breast cancer as a 

sub-project of the presented thesis. CEACAM-6 expression on multiple breast tumor cell lines 

was found to inhibit antigen-specific tumor lysis by reactive T cells. Moreover, therapeutic 

inhibition of CEACAM-6 with function-blocking antibody could slow down tumor growth 

upon adoptive T cell transfer in a breast cancer xenograft mouse model, indicating the 

therapeutic relevance of targeting CEACAM-6. Notably, the detection of such a valid immune 

suppressor as a part of the screening methodology further strengthens the biological 

sensitivity of the screening approach.  



Discussion 

Page 99 

 

5.2 Functional validation of the high-throughput screen 

5.2.1 C-C chemokine receptor 9 (CCR9) 

CCR9 (previously known as GPR-9-6) is a 42 kDa member of the beta-chemokine receptor 

family containing the C-C motif. Like most other G-protein coupled receptors, CCR9 is also a 

seven transmembrane protein with a short extracellular domain. The CCR9 gene is mapped to 

the chromosome 3 on the p21.3 locus and transcribes two spliced variants: one of which lacks 

12 amino acid residues at the N-terminal end (157). Expression of CCR9 is restricted to the 

intraepithelial lymphocytes (IELs) and to a small subset of the beta7+ T cells in the 

circulation (158). Along with integrin α4β7 (or LPAM), CCR9 is one of the key homing 

receptors of effector T cells, regulating their migration to intestinal mucosa in response to the 

chemotactic stimulus provided by its ligand CCL25, which is constitutively expressed by the 

epithelial cells of the intestine (120) (Figure VIII). CCR9 knockout mice show no major effect 

on the intrathymic T-cell development; however a reduction in the intraepithelial γδ T cells is 

noted (159). In cancer, CCR9 has been shown to be overexpressed in breast, ovarian, 

pancreatic and prostate cancer, aiding in tumor cell migration and invasion (160-162). Its 

expression positively correlates with the histopathological state of the tumor (162). Recently, 

CCR9 expression has been shown to mark the tolerogenic plasmacytoid DCs that are capable 

of suppressing acute graft-versus-host disease (163). However, the exact functional role of 

CCR9 in defining the tolerogenic phenotype was never elucidated. This study is the first one 

to point out the functional role of CCR9 in actively suppressing anti-tumor immunity. 
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Figure VIII. Role of CCR9 in the homing of IELs. Integrin α4β7’s expression on the CCR9+ T cells facilitate 

its attachment to mucosal vascular addressin cell adhesion molecule-1 (MadCAM-1) expressed on the small 

intestinal vascular endothelial cells (a-b). This is followed by the migration of the T cells into the lamina propria 

in the direction of the CCL25 gradient, expressed constitutively by the intraepithelial cells (c). Adapted from 

Agace, 2008 (164). 

 

 

CCR9 was found to be strongly immunosuppressive in all the three screens. Subsequent 

validation studies effectively showed that tumor-specific expression of CCR9 inhibited tumor 

lysis as well as effector Th1 cytokines production by antigen-specific T cells, making 

CCR9+ve tumors highly immune-resistant. Previous studies have demonstrated that triplet 

production of IFN-γ, IL-2 and TNF-α cohort by virus-specific CD8+ T cells correlates with 

improved virus control in vitro as well as in vivo (165, 166). The same has been shown for 

anti-tumor CTL responses whereby secretion of these poly-cytokines is known to be tightly 

associated with higher peptide sensitivity and superior tumor recognition by antigen-specific 

CTL clones (167). Similar cytokine release pattern was observed upon CCR9 knockdown 

which would explain the pro-tumor attack environment generated by disarming the tumor 

cells of CCR9 expression. Additionally, IL-10, which is known to mediate immune 

suppression by selectively inhibiting the CD28 co-stimulatory pathway in antigen-specific T 

cells, was also downregulated upon CCR9 knockdown (168).  
 

Of note, CCR9-mediated immune suppression was found to be comparable, or even stronger 

in some instances, to PD-L1, making one speculate whether it overtakes and replaces PD-L1 

as one of the major immunosuppressive pathway in certain tumors. One reason for the 

observed effect might be that MCF7 cells, compared to the MDA-MB-231 breast cancer cells, 

are believed to express lower levels of surface-bound PD-L1 (65). However, even in the 

MDA-MB-231 cells CCR9 was found to mediate comparable levels of immune suppression 

as PD-L1 (Figure 18A). CCR9-mediated immunosuppression was noted not only in breast 

cancer but also in multiple tumor entities, stressing its importance as a key immune regulator. 

However, the lack of autoimmune phenotype in CCR9 null mouse limits its claim as an 

important player in the central immune tolerance. Rather, it appears that the deregulated 

expression of CCR9 is exploited by the tumors to mediate pro-tumor pathways including 

immunosuppression. 
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Importantly, this study found out that tumor infiltrating lymphocytes (TILs) derived from 

melanoma and pancreatic cancer patients are susceptible to CCR9-mediated 

immunosuppression. Cellular therapy involving isolation, ex vivo expansion and autologus 

adoptive transfer of patient-specific TILs has been shown to induce tumor regression in 

metastatic melanoma patients with overall response rate of 40-60% (169). But only a fraction 

of them show durable responses and therefore one of the major challenges that remains to be 

tackled is to increase the frequency of these durable responses. Two of the doctoral students 

in our lab (Tillmann Michels and Antonio Sorrentino) have established the ex vivo culture and 

expansion protocol for TILs derived from melanoma and PDAC patients (TIL 412 and TIL 

34, TIL53; respectively) and have characterized their exhausted phenotype in culture based on 

PD-1 and TIM-3 double-positive surface expression. Given, the immune-exhausted phenotype 

of these TILs in the tumor microenvironment, further enablement of the T cell effector 

function by targeting the immune-checkpoint nodes would be a promising approach to 

strengthen the TIL-based therapy. This is even more critical for PDAC-derived TILs, which 

are known to be less tumor-reactive (170), with TIL 53 showing a weak basal killing of 

around 10% against syngeneic tumor cell line at 100 to 1 E:T ratio. Additionally, it would be 

interesting to see whether tumor-specific CCR9 blockade, which reactivates these exhausted 

TILs to kill again, induces a durable imprinting on the T cells or not. 

 

TCR downstream signaling has been shown to be inhibited upon the engagement of PD-1 

receptor on the activated T cells with PD-L1 and is defined as the mode of action of PD-L1 

mediated immunosuppression (171). CCR9, however, seemed to act independent of its effect 

on the TCR signaling, as the level of T cell activation was found to be similar irrespective of 

tumor’s CCR9 expression and even comparable to the superantigen stimulated TCs. This 

might suggest that a threshold level of activation is already achieved when survivin TCs 

interact with antigen-bearing MCF7 tumor cells and further fluctuations in TCR signaling 

upon manipulation of CCR9 expression might be unfeasible. This doesn’t come as a surprise 

as CCR9 was found to mediate strong immunosuppression even in the antigen-unrestricted 

screen which lacked the TCR interaction. Nevertheless, CCR9 was found to impair the 

activation of STAT-1 pathway in the encountering T cells. STAT-1 is typically activated upon 

interferon signaling (especially IFN-γ), following which phospho-STAT dimers translocate to 

the nucleus and bind to the interferon-stimulated response elements (ISRE) in the promoter 

region of the target genes (such as CD80, CD40, IL-12, CDKN1A) inducing their expression 

(126). In accordance with this finding, a previous study has also demonstrated a similar 
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enhancement in STAT-1 phosphorylation levels upon inhibition of PD-1 signaling in T cells 

isolated from the HCV-infected patients (172). Moreover, intratumoral exhausted T cells in 

follicular lymphoma patients also exhibit lower STAT1 signaling upon stimulation compared 

to the non-exhausted counterparts (173). Given that Stat1-/- mice fail to reject immunogenic 

tumors and their T cells lack cytolytic function (174), inhibition of STAT-1 signaling in CTLs 

by tumor-specific CCR9 represents an important aspect of its immunosuppressive mechanism. 

CCR9 inhibition also led to a significant increment in the STAT-2 and slight increases in the 

STAT-5 signaling. Role of STAT2 in anti-tumor immunity, particularly in CTLs, has been 

poorly defined. However, it is reported to act along with STAT1 as a part of the heterodimer 

(175), which might explain its commensurate activation with STAT1 upon CCR9 inhibition. 

Activated STAT5 signaling, on the other hand, has been clearly shown to correlate with 

prolonged CTL survival and in vivo tumor rejection (176). Taken together, these findings 

implicate the involvement of deregulated STAT signaling as a part of CCR9’s 

immunosuppressive pathway, but whether they are causally linked to CCR9-mediated 

immunosuppression remains to be clarified. 

 

Genome-wide transcriptomics analysis in CCR9lo encountering CTLs revealed a distinct 

pattern of gene signature changes that are mediated by CCR9. Analysis revealed that CCR9-

mediated signaling events in the T cells inhibit the expression of genes involved in the gain of 

T cell effector functions (such as ITGA2, IL2RA, LTA, SOCS1, CISH); whereas on the other 

hand it upregulates genes that either inhibit effector functions (such as ID1, TOB1) or induce 

immature T cell phenotype (such as CD24, EFNA1).  

 

Integrins are α/β heterodimeric transmembrane receptors that facilitate cell-to-cell interaction 

by binding to proteins in the extra cellular matrix (such as collagen), thereby inducing a two-

way signaling cascade. Integrin alpha-2 (ITGA2 or CD49b), in heterodimeric interaction with 

integrin beta-1 (CD29), forms the VLA-2 receptor which mediates the adhesion of activated T 

lymphocytes to collagen type I in the extracellular matrix (177). VLA-2 (α2β1) signaling in T 

cells acts as a costimulatory signal and augments IFN-γ production (178). Moreover, in a 

previous study in neuroblastoma it has been demonstrated that upon cell-based vaccination 

CD49b gets upregulated on activated CD8+ T cells and that CD49bhi CTLs are far more 

effective in tumor control in vivo than the CD49blo counterparts, making CD49b expression a 

marker for superior anti-tumor effector CTLs (179). IL-2 receptor alpha (IL2RA) and IL-2 

signaling are known to be required for the differentiation of CD8+ T cells to cytotoxic 
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phenotype, as IL2RA-deficient CD8+ T cells lack peforin and granzyme B expression in vivo 

and they prematurely express the terminal memory markers CD62L and BCL6 (180). 

Interestingly, in accordance with the above report, this study also observed a downregulation 

of BCL6 transcript levels along with IL2RA upregulation in CCR9lo encountering T cells. It 

would therefore be interesting to assess whether long-term exposure to CCR9 leads to a 

premature terminal differentiation of the encountering T cells as one of the possible routes to 

abrogate effective anti-tumor immunity. Fasciculation and elongation protein zeta 1 (FEZ1) 

was also one of the top upregulated genes found in this study. It is a cytoskeletal transport 

protein that is involved in axonal guiding. Role of FEZ1 in immune effector functions has not 

been investigated before, but recent studies have linked the expression of FEZ1 in cultured 

cells to resistance against viral infection (HIV-1 and MLV) (181), as well as its expression in 

cancer is known to regulate mitosis (182). It is possible that immune synapse formation might 

require the involvement of microtubule-associated FEZ-1 in immune cells, a speculation that 

merits further investigation. Other markers which are typically associated with effector 

function or prolonged survival of T cells were also found to be upregulated in CCR9lo 

encountering T cells, for example CISH (183), LTA or TNF-beta (184), SLAMF1 (185). 

Importantly, many of these upregulated genes, such as CISH, CCND2, IL2RA, SOCS1, IL13, 

were linked to the JAK-STAT signaling pathway (analyzed via KEGG pathway mapping 

tool), which was found to be in consistence with the observed upregulation of the phospho-

STAT levels upon CCR9 knockdown. Given that many of these gene expression changes 

noted above correlate with reported enhancement in T cell functionality, it would be 

interesting to exploit them as functional markers for identifying more effective CTLs that are 

resistant against immunosuppressive tumors in clinical studies.  

 

Conversely, CCR9 inhibition in tumors resulted in the downregulation of gene signatures 

associated with immature T cell phenotype, such as KLF4 and ID1 whose expression is 

known to inhibit the T cell lineage commitment, impair the generation of functional memory 

CD8+ T cells and induce apoptosis by lowering the threshold for TCR activation (186-188). 

Additional molecules that are known to directly inhibit T cell effector responses or IL-2 

mediated signaling, such as TOB1 (189) and EFNA1 (190, 191) were also found to be 

significantly downregulated in the CCR9lo encountering CTLs. Notably, no significant 

upregulation in the transcript levels of cytolytic enzymes such as perforin or granzyme B was 

observed. However, an increase in the lytic enzyme secretion was already detected at protein 

level in the ELISpot assays 12 hours post target cell and T cell co-culture (Figure 10), which 
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is the same time-point that was used for the gene-expression analysis. So it is possible that the 

transcript upregulation for these cytolytic enzymes might have preceded the studied time-

point. Consistent with this, an increase in expression of genes that control TCR signaling was 

also noted at this time-point, such as CEACAM1 (192) and SOCS1 (193), which are generally 

expressed only in the activated T cells as a fail-safe switch to fine tune the intensity of 

immune response. 

 

Comparison of the observed gene signatures with another study performed by Wang et al 

(105), where they compared stimulated TCs to unstimulated TCs, confirmed a clear pattern of 

gene expression changes that correlated with activated T cell phenotype upon tumor-specific 

CCR9 knockdown. It is relevant to note here that in contrast to the unstimulated peripheral 

CD8+ T cells that were used as the control by Wang et al, this study made use of survivin-

specific T cells which are not entirely unstimulated as a threshold level of activation occurs 

upon encounter of wild type survivin-positive MCF7s. Therefore, a significant overlap of 

differentially regulated gene hits between both these studies might not be expected. However, 

above and beyond the threshold level of activation, it is encouraging to see many gene 

signatures overlapping that define activated T cells. Now the question remains that which 

amongst of these genes falls directly in the line of CCR9-mediated immunosuppressive 

pathway. Many of the observed changes, such as upregulation of lymphotoxins, shut-down 

signals or IL-2 signaling related genes, might very well represent the bystander effects of T 

cell activation upon CCR9 inhibition rather than the causal link for CCR9-mediated 

suppression. In this regard, it would be interesting to look at the non-overlapping genes 

between the CCR9lo treated TCs and the polyclonally stimulated TCs, which might represent 

genes that are unique to the CCR9-mediated pathway. Functional validation studies involving 

knockdown of these relevant gene hits in T cells would be essential to establish the causal link 

between tumor-specific CCR9 and induced immunosuppressive pathways in the interacting T 

cells. 

 

CCL25 (also known as thymus expressed chemokine, TECK) is a 16 kDa CC-chemokine that 

is primarily expressed in the thymic dendritic cells and mucosal epithelia (194). It serves as a 

chemoattractant for CCR9-expressing T cells to the mucosal sites. In addition, CCL25 has 

been shown to be expressed by various tumors, with expression being correlative with 

histological subtype and metastatic potential (162, 195). Inhibition of CCR9 expression in 

tumor cells was not found to modulate CCL25’s expression. This excluded the possibility of 
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an autocrine loop mechanism whereby immune-suppression mediated by CCR9 might act via 

the increase of CCL25 in the tumor-immune cell space as a result of CCR9-CCL25 signaling 

axis. However, it might still be possible that knockdown of CCR9 on the cell surface leads to 

increased bioavailability of CCL25 for the interacting T cells in the co-culture, as it is no 

longer occupied by CCR9, leading to the observed immunosuppressive effects. But to this 

end, no effect of CCR9 knockdown supernatant or CCL25 per se was observed on the 

suppression of anti-tumor T cell activity, except against melanoma cells which secreted higher 

levels of CCL25. Therefore, it might be possible that depending on the relative abundance in 

different tumor types, CCL25 might be involved in shaping the immune response, but whether 

it does so independently or in concert with CCR9 remains to be established. Although for 

CCR9 it is clear that its immunosuppressive effect is mediated by non-soluble entities that 

rather require direct cellular contact with the T cells. Additionally, this immunosuppressive 

effect also seems to be independent of the intracellular CCR9 signaling as functional blockade 

of the downstream signaling by pertussis toxin did not have any impact on the immune 

susceptibility of the treated tumor cells. In contrast, CCR9 knockdown which effectively 

reduces the surface receptor expression shows an impact.  

 

Together these findings indicate that surface bound CCR9, via its interaction with a putative 

corresponding ligand on the T cell surface, brings about the immune regulatory phenotype. 

However, since CCL25 is the only known interaction partner for CCR9 in functional 

interaction databases, speculating or predicting novel direct or downstream interaction 

partners seems tedious. It might also be possible that the effect is indirect, wherein CCR9 

regulates the expression of another tumor cell surface bound entity that in turn is responsible 

for relegating the immunosuppressive signals to the interacting T cells. Although such a 

regulation mediated by CCR9 could be effectively blocked upon long term pertussis toxin 

treatment (current protocol involved the tumor cell treatment with toxin for only 1 hour before 

their use in the cytotoxicity assays), it should be avoided as pertussis toxin is an unspecific 

GPCR blocker affecting other receptors as well. Perhaps stable CCR9 knockdown tumor 

variants could be employed to investigate the expression changes in the surface proteins upon 

CCR9 inhibition and assess if they share a causal link to CCR9-mediated suppressive effects 

on the T cells. 
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5.2.2 Synergy of CCR9 with other immune-checkpoint pathways 

Blockade of multiple immune-checkpoint molecules in several combinations is increasingly 

being tested in early clinical trials. The recently concluded anti-PD1 plus anti-CTLA4 

antibody trial has demonstrated a synergistic advantage (more than 40% objective response 

rate) of simultaneously targeting multiple immune-checkpoint molecules (70). In this thesis 

also, synergistic blockade of CCR9-mediated immunosuppressive pathway with other 

immune-checkpoint molecules was explored. Co-inhibition of PD-L1 or CEACAM-6 with 

CCR9 resulted in no additive effect upon T cell mediated tumor lysis, however each of these 

targets in themselves induced a strong suppression on CTL’s effector function. In this regard, 

it is interesting to note that PI3K-Akt and mTOR-S6K1 pathway has been shown to regulate 

PD-L1’s expression in APCs (196), melanoma (197), breast and prostate cancer (198). 

Inhibition of these pathways leads to a strong downregulation of PD-L1 expression (197, 

198). Interestingly, CCR9 knockdown in MCF7 breast tumor cells led to a significant 

decrease in the activation of the S6 kinase pathway as well as of the Akt pathway, which was 

in accordance with a previous study showing that CCR9 mediates PI3K/Akt-dependent 

signaling cascade in prostate cancer cells (199). Therefore, it is possible that CCR9 inhibition 

leads to the downregulation of PD-L1 expression on tumor cells via the PI3K-AKT-mTOR-

S6K pathway, thereby making them insensitive to PD-L1 blockade which might explain the 

lack of synergy between the two blockade therapies. An additional attribute of Akt activation 

upon CCR9 signaling that is worth mentioning is that tumor cells with higher, constitutive 

Akt activation have been shown to be more immune-resistant towards CTL-mediated lysis 

(200). Therefore, CCR9 inhibition on tumor cells might work partly by interfering with Akt 

activation and subsequently sensitizing them to immune destruction, although further 

experimental validation of any direct links between CCR9 expression, AKT activation and 

immune response are currently required. Similarly, possible mode of co-regulation of 

CEACAM-6 and CCR9 expression also needs to be further explored.  

 

In this regard, it is relevant to note the findings from a recently published screening strategy 

which utilized pooled shRNA library for gene knockdowns in OT-I mouse T cells to assess 

the impact on their accumulation in the tumor of B16-Ova-bearing mice (201). Such a screen 

revealed interesting immune inhibitory targets on the T cell side whose knockdown facilitated 

the proliferation and accumulation of reactive T cells in the tumor microenvironment. 

However, gene expression analysis revealed that out of the five candidate genes studied, none 
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of them induced a similar gene expression signature in the reactive TILs, indicating that 

overall enhanced TIL reactivity can be achieved via multiple and more likely complex 

intracellular routes. A deeper understanding of the underlying mechanisms of immune-

checkpoint pathways therefore becomes necessary for rationale designing of combinatorial 

therapies. The reported screening strategy on T cells investigated and thereby enriched gene 

knockdowns that facilitated prolonged T cell survival since the readout was based on the 

detection of shRNA barcodes in tumor-infiltrating T cell populations after a period of time. 

However, it is to be noted that prolonged survival, which might also result from knocking 

down cell cycle checkpoints, does not necessarily represent a gain in effector T cell function 

or better tumor control and therefore the reported hits must be carefully validated to assess 

true immune-checkpoint entities. 

5.2.3 In vivo relevance of CCR9 inhibition on anti-tumor immunity 

Therapeutic translation of new drug targets requires the proof-of-principle studies in pre-

clinical mouse or animal model systems to show their relative effectiveness and anticipated 

clinical outcome. Various mouse model systems for studying cancer exist, including the 

xenograft model system whereby human tumors (either established cell line or fresh patient-

derived primary tumors) can be implanted (orthotropically or heterotropically) in an 

immunodeficient mice. Although the lack of the immune system provides an unreal tumour 

microenvironment in these mice, the xenograft model system is time and cost effective 

allowing for simple and rapid assessment of response of patient-derived tumors to therapeutic 

regimen (202). For xenografting of human tumors into the recipient mouse host, several types 

of immunodeficient mice have been used. Athymic nude mice lack the T cell compartment 

but retain functional B cells and other immune cells which might interfere with tumor growth. 

On the other hand, nonobese diabetic/ severe combined immunodeficient (NOD/SCID) mice 

lack both T and B cell function and are therefore widely used for xenograft experiments. 

However, they overcompensate for this lack by increase in NK cell and macrophage activity 

which should be taken into account especially when interpreting the efficacy of adoptive 

immune cell-based therapy in this model system. Additional null mutation in the interleukin 2 

receptor gamma chain (Il2rg) gene of the NOD/SCID mice results in the most 

immunodeficient mice strain, called as NOD/scid gamma or NSG mice, which lacks 

functional T, B and NK cell compartment (203).  
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To assess whether tumor-specific CCR9 expression interferes with and suppresses the anti-

tumor reactivity of the adoptively transferred T cells, immunodeficient NSG mice were used 

for transplantation of CCR9+ve or CCR9-ve human PANC-1 pancreatic cancer cell line and 

subsequently treated with adoptive transfer of pancreatic patient-derived TIL 53 cells. Given 

the highly immunosuppressive environment of pancreatic tumors and the exhausted state of 

the patient-derived TIL 53 cells that showed poor anti-tumor cytotoxicity in vitro, testing 

CCR9 inhibition in this setting in vivo to reactivate the anti-tumor response in TIL 53 

transferred mice constitutes the litmus test for the strength of CCR9-based therapeutics. 

Bioluminescent in vivo imaging was used for monitoring the tumor growth in mice. Besides 

early detection of small or slow growing tumors, bioluminescent imaging also reduces any 

user-based biases in tumor measurement, exhibits minimal background luminescence from 

animal tissue and embodies the 3R principle of ethical animal work by allowing non-invasive 

and frequent in vivo imaging of animals (204). To minimize inter-mouse variability, 

CCR9+ve and -ve PANC-1-luc cells were xenografted into the right and left flank of the same 

mice, respectively, thereby also effectively reducing the number of animals per test group to 

half while keeping the statistically relevant sample size. Given the high sensitivity of the 

bioluminescent imaging system, one should be aware of the possibility of signal saturation at 

later time points when tumors have grown out in size which could make comparisons between 

the test groups difficult. 

 

Adoptive transfer of pancreatic human TIL 53 cells into tumor-bearing immunodeficient mice 

led to significantly delayed growth of CCR9-ve tumors compared to the CCR9+ve PANC-1 

tumors, especially in the early stages. Anti-tumor reactivity of the transferred TILs could only 

be observed in the CCR9-ve tumors compared to the CCR9+ve tumors during this period. 

This goes in parallel with the observed poor cytotoxic capacity of TIL 53 in the in vitro assays 

whereby basal lysis of CCR9+ve PANC-1 cells was observed at maximum of 10-20% which 

effectively doubled upon CCR9 inhibition. However, the in vivo delay in tumor growth upon 

CCR9 inhibition was also noted in the non-TIL treated animal group, indicating that stable 

knockdown of CCR9 itself retards tumor growth. CCR9-mediated signaling in PANC-1 cells 

has been shown to be important for cell survival (160), possibly involving the downstream 

activation of the PI3K-Akt signaling pathway as shown in the prostate cancer cells before 

(199). This goes in parallel with the findings of this thesis whereby involvement of the Akt 

pathway in CCR9-mediated signaling was observed in the MCF7 breast cancer cells. 

Therefore, it is possible that the in vivo delay of PANC-1 tumors upon long-term inhibition of 
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CCR9 might result from defects in the PI3K-Akt pathway. The extent of CCR9’s contribution 

to this pathway and the reliance of different tumor types, such as melanoma or beast tumors, 

on this pathway for survival is still not clearly known. Preliminary studies in our laboratory 

using xenotransplantation of control or CCR9 knockdown variants of M579 melanoma cells 

in NSG mice indicated no difference in tumor growth kinetics between the two cell types 

when followed until day 35 after tumor injection. Perhaps, the melanoma xenotransplant 

system, where no growth disadvantage is conferred to tumor cells upon CCR9 inhibition, 

would be a better model to uncouple the immunosuppressive function of CCR9 from its 

proliferative function and therefore could be used to independently assess the significance of 

CCR9 as an immunomodulatory target for adoptive cellular therapy. On the other hand, 

functional blocking antibody against CCR9, which hinders its interaction with the putative 

immunosuppressive interacting partner on the T cell without disrupting its intracellular 

signaling cascade, might be a better tool to inhibit CCR9’s immunosuppressive function than 

the gene knockdown strategy. Commercially available functional blocking antibodies against 

CCR9 have so far failed to elicit immune-activating response on T cells, stressing the need for 

undertaking hybridoma panning approach to generate and test multiple antibody clones for the 

desired effect. Notably, small molecule inhibitors for CCR9 developed by ChemoCentryx 

(Vercirnon/CCX282 and CCX8037) are been clinically tested in phase III trials for 

inflammatory bowel disease to inhibit the trafficking of CCR9+ IELs to the inflamed bowels 

(205, 206). These small molecule antagonists could additionally be tested for their potential to 

inhibit immunosuppressive role of tumor-associated CCR9 in the pre-clinical mouse models.  

 

Interestingly, injected TILs could be detected in the spleen and tumors of the treated mice, 

although at low frequency, even at 26th day after the last TIL injection. This was observed 

without any co-administration of cytokines, such as IL-2 or IL-15, which are generally 

employed in adoptive T cell transfer therapies to facilitate longer persistence of T cells (207, 

208). Systemic administration of IL-2 must be cautiously employed in CCR9 inhibition-based 

therapies as IL-2 and IL-4 have been shown to trigger the internalization of the CCR9 

receptor in MOLT-4 human leukemia T cell line (209). Given that central memory T cells 

(TCM), defined as CD62L+ CCR7+, are known to proliferate and persist longer in vivo upon 

adoptive transfer compared to the effector memory T cells (TEM; CD62L- CCR7-), it would be 

pertinent to assess the phenotype of the transferred TILs before and after adoptive transfer 

(210). Selective migration of the T cells to CCR9+ve or CCR9-ve tumors was not observed 
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when assessed at d35, indicating that both the tumors were equally susceptible to immune 

infiltrate. However, the number of mice was too less to get statistical significance between the 

two groups and should be thus replicated with larger cohorts. Additionally, time course 

kinetic needs to be performed to assess whether more TILs infiltrate CCR9-ve tumor during 

the earlier time-points after adoptive T cell transfer, given that a starker difference in tumor 

growth is observed during the early stages. It would be even more interesting to evaluate and 

compare the exhaustion status (via PD-1, TIM-3 staining) and effector functions (IL-2 and 

IFN-γ secretion capacity, CD107a degranulation marker) of the T cells infiltrating the 

CCR9+ve and CCR9-ve tumors in a time-course based study and to compare this with the 

observed tumor regression profile. Even though PANC-1 tumor cells and adoptively 

transferred TIL 53 immune cells were HLA-matched, one cannot completely exclude the 

possibility of allogenic T cell reactivity in this non-autologus system. Use of PDX tumor 

models with tumor and TIL cultures derived from the same patient could address this issue. 

Nevertheless, the single preliminary in vivo experiment presented here needs to be repeated to 

get more meaningful insights into the relevance of CCR9 as a tumor immune suppressor. 

  

Further development of CCR9 as an immunotherapeutic target for cancer treatment would 

require toxicological analysis based on the CCR9 knockout mouse model. Besides reduction 

in the γδ IELs, CCR9 knockout mouse has been reported to show no adverse side effects 

(159). However, given that CCR9 is important for the homing of effector T cells to the gut, 

systemic targeting of CCR9 would be a contraindication for gut-associated tumors. On the 

other hand, CCR9 was found to be expressed on only a small minority of survivin-specific T 

cells (~ 6%) and was undetectable on peripheral blood TCs from healthy donors. Its 

expression in other immune cell subsets and that on healthy tissue remains to be examined.  

5.3 Identification of tumor-associated immune activators by the RNAi screen 

This study primarily focused on the validation of tumor-associated negative immune 

regulators that were identified as a result of the screening strategy. An equally interesting and 

opposite side of the same coin is the discovery of the positive immune regulators from the 

high-throughput screen, such as CXC-chemokine ligand 9 (CXCL9 or MIG) that facilitate 

anti-tumor activity of the CTLs. CXCL9 is an IFN-γ-inducible T cell chemoattractant that 

binds to the chemokine receptor CXCR3 (211). CXCL9 deficient tumors, as well as CXCL9 
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knockout mice, have been reported to inhibit the activation of tumor-reactive T cells (212, 

213). Moreover, tumor-specific expression of CXCL9 has been reported to correlate with 

higher immune (CD8+ T cell) infiltrate and better prognosis in the colorectal cancer patients 

(214). Identification of such established immune activators lends support to the use of this 

screening approach for further identification of similar tumor-associated ligands that are vital 

for anti-tumor immunity. Along this line, GRM4 and GRK5 were found to be positively 

associated with the anti-tumor immunity in all the three screens.  

 

GRM4 or metabotropic glutamate receptor 4 (mGluR4) is one of the eight receptors belonging 

to the glutamate receptor family that binds to L-glutamate, a neurotransmitter, which leads to 

the inhibition of the cyclic AMP cascade. Expression of GRM4 has been reported in non-

neuronal tissues recently whereby normal epithelia of the upper respiratory tract, 

gastrointestinal tracts, breast, uterine cervix, urinary bladder and skin show GRM4 expression 

whereas thyroid, lung alveoli, liver, testis or prostate lacked any expression (215). 

Correspondingly, GRM4 expression has also been reported in colorectal cancer, malignant 

melanoma, laryngeal carcinoma and breast cancer, although expression was found to be 

associated with poor survival in CRC patients (215). Role of GRM4 in anti-tumor immunity 

has not been studied so far. However, by using GRM4-/- mice, investigators working on 

autoimmune encephalomyelitis have shown that the expression of GRM4 on conventional 

DCs is important for the IFN-γ and IL-2 secretion by WT CD4 T cells upon stimulation (216). 

Further experimental validations of the role of tumor-specific expression of GRM4 on 

effector functions of antigen-specific T cells will be necessary in order to shed more light on 

the matter. 

 

G protein-coupled receptor kinase 5 (GRK5) is a serine/threonine kinase that phosphorylates 

and deactivates GPCRs by allowing the binding of arrestin proteins that block receptors from 

activating downstream G protein pathways (217). Besides the regulation of GPCR activity, 

GRK5 has also been demonstrated to phosphorylate p53 transcription factor, inhibiting p53-

mediated apoptotic pathway (218). Lately it has also been shown to positively regulate the 

NF-kB signaling pathway by phosphorylating IκBα (inhibitory kB; which binds to and 

represses NK-kB in the cytoplasm) leading to the release of NF-kB transcription complex and 

subsequent activation of the NF-kB pathway (219). Interestingly, activated NF-kB in lung 

tumors of mice has been shown to orchestrate T-cell mediated rejection of immunogenic 

tumors and a similar correlation between the lung tumor NF-kB activity and the T cell 
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infiltration has been documented in patient tumor samples (220). Whether this activation of 

the NF-kB activity in tumor samples, which correlates with an enhanced immune 

surveillance, is dependent on GRK5 remains to be examined.  

 

Further investigations into the role and mechanism of such newly discovered immune-

activating ligands and their counterparts on the T cell side would be essential to exploit them 

as potentially suitable targets for agnostic antibody-based therapy in order to stimulate the 

anti-tumor immune surveillance in patients. 

5.4 Outlook 

In this thesis a screening methodology for uncovering novel immune modulators expressed by 

MCF7 breast tumor cell lines has been described. Given that tumors are heterogeneous, even 

in their expression of immune modulatory candidates, it would be essential to extend the 

screening approach to other tumor entities in order to identify overlapping as well as unique 

immunosuppressive signatures amongst different tumor types. As described in section 4.22, 

preliminary ground work has been laid down for replicating the screen in colorectal cancer 

using SW480 as the target cell line. Furthermore, application of the Luc-CTL assay to 

uncover immune-modulatome in metastatic melanoma and pancreatic carcinoma have been 

undertaken in our laboratory by Tillmann Michels and Antonio Sorrentino, respectively, 

under my supervision. To adapt the screen as close to the patient setting as possible, tumor 

infiltrating lymphocyte cultures, established from melanoma and pancreatic cancer patients 

(TIL 412 and TIL 53 from the respective tumor types; described in section 4.11 and 4.12), 

were used as effector cells in the RNAi screen. TILs, which directly encounter the 

immunosuppressive tumor microenvironment, represent one of the best suited models for 

studying the dependency of T cell’s cytotoxic capacity in response to tumor-specific 

expression of immune modulators. In a step further, primary melanoma cell cultures have 

been established from resected tumor of syngeneic patient and used as targets cells for the 

melanoma screen. Using siRNA libraries enriched in surface receptors and kinases that 

covered a total of 2800 gene targets, both the screens have identified a range of novel 

immunomodulatory candidates along with the well-reported immunosuppressors, such as 

JAK2 (103) and LPA (221), lending strength to the sensitivity and the detection capacity of 

the screening approach. Furthermore, CCR9 popped up as a strongly immunosuppressive hit 
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in the melanoma screen as well, while in-depth analysis of the pancreatic cancer screen is 

currently underway. Further functional validations of the novel candidate genes identified 

from both the screens are required and is being actively pursued. 

  

Systematic dissection of the rather complex immune regulatory circuit mediated by different 

tumor types offers a great promise for therapeutic translation. The possibility and feasibility 

of using patient-derived pairs of primary tumor and T cells for immune-modulatome 

screening ushers this approach to the frontline of personalized medicine. In such a setting, 

tumor samples from a post-operative patient could be screened for relevant 

immunosuppressors which affect patient-specific anti-tumor immune response and these 

could then be targeted clinically to induce durable and protective responses in the patients. 

Nevertheless, increased immune reactivity upon checkpoint blockade requires a pre-existing 

immune response. Therefore, combining checkpoint blockade with immune response-

inducing therapies, such as vaccination strategies, chemotherapy or radiotherapy that facilitate 

the mounting of T cell responses, would be an effective way for future treatments. Homing of 

the effector T cells to the tumor site might be improved by employing gene modified T cells 

(such as chimeric antigen receptor bearing T cells or CART cells expressing homing 

chemokine receptors) that are especially equipped to migrate to the tumor niche. Toxicities, 

which might be a limiting factor for the success of such immune-stimulatory approaches, 

might be restricted by considering local administration over systemic therapy, as has been 

demonstrated in the case of anti-CTLA4 antibody to control autoimmunity (222). Based on 

the above rationales, multi-combinatorial trials employing a cocktail of different therapeutic 

options are currently being tested with great vigor to maximize the therapeutic advantage for 

the patients.  
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Concluding remarks 

 

Despite the capacity of the immune system to recognize and eliminate cancerous cells, 

effective immunotherapy based on the adoptive transfer of reactive T cells is opposed by the 

immunosuppressive interactions between the tumor and the T cells. Findings from the 

presented thesis have added to the functional characterization of the immunosuppressive 

nature of the tumor cells by establishing an immune function-based RNAi screen that 

systematically uncovers the repertoire of immune modulatory surface ligands on the tumor 

cells. This could serve as a great diagnostic tool for identifying patients that are best suited to 

benefit from a particular checkpoint blockade therapy or a cocktail of it thereof based on the 

expression of the repertoire of checkpoint candidates identified as a result of this screening 

system. Personalized immune screening in the future for tumor immune modulators could be 

employed to rapidly assess the patient-specific immune-modulatome before devising 

immunotherapeutic treatment strategies. As a proof-of-principle of the screening 

methodology, the novel involvement of CCR9 - one of the top hits identified from the 

screening approach - in mediating immune suppression via differential regulation of the 

STAT pathways in antigen-experienced T cells is highlighted in this study. Given that CCR9 

is well reported to be involved in cancer metastasis and in some instances tumor growth, 

targeting it clinically would mean hitting three birds with one stone: tumor growth, tumor 

metastasis and immune-resistance, making it an attractive target for further clinical and 

pharmaceutical investigations.  
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7. Appendix 

Supplementary Table 1: Lethal siRNAs used as viability controls with reported function of their targeted genes 

siRNA Target Function 

COPB2 
Constitutes the coat of nonclathrin-coated vesicles and is essential for Golgi budding, 

vesicular trafficking. 

PLK1 
Serine/threonine-protein kinase that regulates centrosome maturation and spindle 

assembly. 

UBC 
Polyubiquitin precursor, involved in DNA repair, cell-cycle regulation, protein 

degradation. 

CHK1 Required for checkpoint mediated cell cycle arrest in response to DNA damage. 

ELMO2 Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells. 
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Supplementary Figure 1. Filtered hit-list of candidate immune modulatory genes identified from the RNAi 

screen. Genes that satisfied the screen-specific threshold criteria (detailed in text and methods) for the toxicity 

and the viability values in two screens or more were shortlisted and the sum of their loess differential score in all 

three screens was calculated. Based on this sum, genes were ranked for their immunomodulatory strength and 

defined as negative (Σloess>2.0) or positive (Σloess<-3.3) immune regulatory candidates. The individual loess 

scores of the shortlisted candidate genes across the three different screen setups are represented herein as 

heatmaps. Note the difference in the coloring scales of the individual heatmaps used for highlighting the relative 

performance of candidate genes across the three setups. 
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8. Abbreviations and definitions 
 
%  percentage 

~  approximately 

°C  degree celsius 
51Cr  radioactive chromium 

isotope 51 
7-AAD 7-amino actinomycin D 

AB  human serum type AB 

ACK  ammonium chloride 
potassium phosphate 

APC  antigen presenting cell 

ATCC  American Type Culture 
Collection 

BCECF  2',7'-bis-(2-carboxyethyl)-5-
(and-6)-carboxyfluorescein 

BD  Becton Dickinson 

bp(s)  base pair(s) 

BSA  bovine serum albumin 

bsAb bi-specific antibody 

Ca2+  calcium 

CCL25  chemokine (C-C motif) 
ligand 25 

CCR9  chemokine (C-C motif) 
receptor 9 

CD  cluster of differentiation 

cDNA complementary DNA 

CEACAM  carcinoembryonic antigen 
related cell adhesion 
molecule 

CFSE carboxyfluorescein 
succinimidyl ester 

CISH cytokine inducible SH2-
containing protein 

CLM  complete lymphoma 
medium 

cm2  square centimeter 

CO2  carbon dioxide 

CTG CellTiter-Glo 

CTL(s)  cytotoxic T cell(s) 

CTLA-4  cytotoxic T lymphocyte 
associated antigen 4 

d  day(s) 

DC  dendritic cells 

ddH2O  double distilled water 

DKFZ  German Cancer Research 
Center 

DMEM  dulbecco's modified Eagle's 
medium 

DMSO  dimethyl sulfoxide 

DNA  deoxyribonucleic acid 

DTT  dithiothreitol 

E. coli  Escherichia coli 

E:T  effector to target ratio 

ECL  enhanced chemiluninescent 

EDTA  ethylenediaminetetraacetic 
acid 

EFNA1 ephrin-A1 

EGFP  enhanced green fluorescent 
protein 

ELISpot  enzyme-linked immunospot 
assay 

env  envelope proteins gene 

EpCAM  epithelial cell adhesion 
molecule 

et al.  Latin “et alii”, - “and others” 

FACS  fluorescence activated cell 
sorting/flow cytometry 

FCS  fetal calf serum 

FDA  Food and Drug 
Administration 

Fluc  firefly luciferase 

Foxp3  forkhead box P3 

g  gram(s) 
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G protein  guanosine nucleotide 
binding proteins 

G418  geneticin sulfate 

gag  group antigens gene 

GM-CSF  granulocyte macrophage 
colony-stimulating factor 

gp100  glycoprotein 100 

GPCR  G protein-coupled receptor 

h  hour(s) 

HEPES  2-[4-(2-
hydroxyethyl)piperazin-1-
yl]ethanesulfonic acid 

HLA-A2  human leukocyte antigen A2 

HRP  horseradish peroxidase 

HRP  horseradish peroxidase 

hu  human 

i.v.  intraveneous 

ID1 inhibitor of DNA binding 1 

IDO  indoleamine 2,3 
dioxygenase 

IFN  interferon 

IgG  immunoglobulin G 

IL  interleukin 

IL2RA Interleukin-2 receptor alpha 

ITGA2 integrin, alpha 2 

IVC  individually ventilated cages 

kb  kilobase 

kd  knockdown 

kDa  kilodalton 

L  liter 

LAG3  lymphocyte-activation gene 
3 

LTA Lymphotoxin alpha 

luc  luciferase 

M  molar 

mA  milliampere 

mAb(s)  monoclonal antibody(ies) 

MART-1  melanocytic differentiation 
antigen 

MDSC  myeloid-derived suppressor 
cells 

mg  milligram 

Mg2+  magnesium 

MHC  major histocompatibility 
complex 

min  minute(s) 

miRNA micro-RNA 

ml  milliliter 

mm  millimeter 

mM  millimolar 

mRNA  messanger RNA 

MUH 4-Methylumbelliferyl 
heptanoate 

n  number 

NEAA  non-essential amino acid 

NF-kB nuclear factor 'kappa-light-
chain-enhancer "of activated 
B-cells) 

NK  natural killer 

nm  nanometer 

NOD  non-obese diabetic 

ns  not significant 

NSG  NOD scid gamma 

nt  nucleotides 

OKT-3  Muromonab-CD3 

p  p-value 

P/S  penicillin/streptomycin 

PAGE  polyacrylamide gel 
electrophoresis 

PBMC  peripheral blood 
mononuclear cells 

PBS  phosphate buffered saline 

PBS-T  PBS-Tween 
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PCR  polymerase chain reaction 

PD-1  programmed cell death 1 

PD-L1  programmed cell death 1 
ligand 1 

PerCPCy5.5 
5.5 

peridinin-
chlorophyllprotein- 
complex-cyanine 

pH  Latin “potentia hydrogenii” 

pol  reverse transcriptase, RNase 
H and integrase gene 

PTX pertussis toxin 

PVDF  polyvinylidene difluoride 

r  recombinant 

RFP  red fluorescent protein 

RLU  relative luminescence units 

RNA  ribonucleic acid 

RNAi RNA interference 

rpm  rounds per minute 

RPMI  Roswell park memorial 
institute 

RT  room temperature 

s.c.  subcutaneous 

S.O.C. super optimal broth medium 
with catabolite repression 

SCID  severe combined 
immunedeficient 

SDS  sodium dodecyl sulfate 

SEM  standard error of the mean 

shRNA  short hairpin RNA 

siRNA  small interfering RNA 

SOCS1 suppressor of cytokine 
signaling 1 

STAT signal transducers and 
activators of transcription 

TAE  Tris-Acetate-EDTA 

TAP  transporter associated with 
antigen processing 

TCR  T cell receptor 

TH1  T helper type-I 

TIL(s)  tumor infiltrating 
lymphocyte(s) 

TOB1 transducer of ERBB2, 1 

TRAIL  TNF-related apoptosis 
inducing ligand 

Treg  regulatory T cells 

U  unit 

UV  ultraviolet 

V  volt 

VEGF  vascular endothelial growth 
factor 

VSV-G  vesicular stomatitis indiana 
virus-G protein 

w/v  weight/volume 

WB  western blot 

WHO  World Health Organization 

wt  wild type 

X  x-fold 

α  alpha 

β  beta 

γ  gamma 

µg  microgram 

µm  micrometer 

 


