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Summary 

Human Immunodeficiency Virus type 1 (HIV-1) is the major causative agent of the 

AIDS epidemic. Several independent transmission events from monkeys to humans 

gave rise to different viral lineages that differ with respect to their ability to encode 

for accessory gene products that facilitate virus replication in the infected host. In 

particular, the vpu gene is unique to the HIV-1/SIVcpz lineage and not present in 

HIV-2 and most SIV isolates. Vpu is not essential for HIV-1 replication but 

intensively modulaties host immune components such as the HIV-1 primary entry 

receptor CD4, whose cell surface levels are reduced by Vpu. Uniquely, Vpu promotes 

the release of mature viral particle from infected cells by antagonizing the host 

restriction factor CD317/tetherin. Moreover, Vpu interferes with NF-ƙB signalling 

triggered by CD317/tetherin and reduces the cell surface exposure of MHC class I 

(MHC-I) and natural killer cells ligand NTB-A. While these Vpu activities have been 

established ex vivo, their relevance for HIV pathogenesis in the infected host remains 

unclear.  

In an attempt to correlate Vpu function with the clinical outcome of HIV-1 infection, 

we assessed here the functions of vpu alleles derived from two distinct clinical groups 

of treatment-naïve HIV-1 infected patients. While HIV-1 elite controllers (ECs) 

naturally control virus replication and keep the viral load below detectable level (<50 

copies/ml), chronic progressors (CPs) display viral loads of more than 2 000 

copies/ml. Both EC and CP Vpu alleles showed conserved and potent capacities to 

reduce cell surface levels of CD4 and CD317 molecules and to promote viral particle 

release. In contrast, EC Vpu alleles were less activitive in MHC-I and NTB-A 

downregulation than CP Vpu alleles and the antagonism of NF-kB signalling was not 

conserved in both patient groups. Sequence analysis of our Vpu alleles revealed the 

enrichment of killer-cell immunoglobulin-like receptor (KIR) KIR2DL2-associated 

footprints in EC Vpus, this polymorphism however did not explain the functional 

difference between EC and CP Vpus. 

These results suggest downregulation of cell surface CD4 and antagonism of the 

particle release restriction by CD317 as important in vivo functions of Vpu. Since 

attenuated Vpu alleles were more frequent in ECs than in CPs, at least a subgroup of 

EC Vpu alleles may be under selection pressure resulting in adaptation of Vpu that is 

associated with a mild fitness cost. Whether the functional constrains of EC Vpu 

alleles contribute to the suppression of HIV-1 in these patients warrants further 

investigation.  
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Zusammenfassung 

Das humane Immundefizienz-Virus 1(HIV-1) ist der Haupterreger der 

AIDS-Epidemie. Mehrere unabhängige Übertragungsereignisse von Affen zum 

Menschen sind der Ursprung verschiedener viraler Stämme, die sich in Bezug auf ihre 

Fähigkeit, für akzessorische Genprodukte zu kodieren, welche die virale Replikation 

im infizierten Wirt erleichtern, unterscheiden. Insbesondere das vpu Gen ist ein 

spezielles Charakteristikum der HIV-1/SIV cpz Linie, und ist nicht in HIV-2 und den 

meisten SIV Isolaten vorhanden. Vpu ist zwar für die HIV-1 Replikation nicht 

essentiell, aber es moduliert intensiv Immunkomponenten des Wirts, wie den 

Haupteingangsrezeptor CD4, dessen Zelloberflächenlevel durch Vpu reduziert 

werden. Vpu fördert auf einzigartige Weise die Freisetzung von reifen viralen 

Partikeln von infizierten Zellen, indem es dem wirtseigenen Restriktionsfaktor 

CD317/Tetherin entgegenwirkt. Darüber hinaus interferiert Vpu mit CD317/Tetherin 

vermittelter Signaltransduktion und reduziert die Zelloberflächenexposition von MHC 

Klasse I (MHC-I) und dem natürliche Killerzellliganden NTB-A. Da diese Aktivitäten 

von Vpu ex vivo etabliert wurden, bleibt ihre Relevanz für die HIV Pathogenese im 

infizierten Wirt ungeklärt. In einem Versuch, Vpu Funktion mit dem klinischen 

Verlauf der HIV Infektion zu korrelieren, untersuchten wir hier die Funktion von vpu 

Allelen, welche aus zwei unterschiedlichen klinischen Gruppen von 

behandlungsnaiven HIV-1 infizierten Patienten stammten. Während sogenannte HIV-1 

Elite Controller (EC) die Virusvermehrung auf natürliche Weise kontrollieren und 

dabei die Viruslast unterhalb der Nachweisgrenze halten (<50 Kopien/ml), zeigen 

chronische Progressoren (CP) eine Viruslast von mehr als 2000 Kopien/ml. Sowohl 

EC als auch CP Vpu Allele zeigten ein konserviertes wirkungsvolles Vermögen, die 

Oberflächenexpression von CD4 und CD317 Molekülen zu modulieren und die 

Freilassung von Viruspartikeln zu fördern. Im Gegensatz dazu waren EC Vpu Allele 

im Vergleich zu CP Allelen weniger aktiv in der Herabregulierung von MHC-I und 

NTB-A von der Zelloberfläche und der Antagonismus der NF-ƙB Signalkaskade war 

in beiden Patientengruppen nicht konserviert. Sequenzanalysen unserer Vpu Allele 

zeigten eine Anreicherung von Killerzell Immunglobulin-ähnlichen Rezeptoren (KIR) 

KIR2DL2-assoziierten Footprints, was jedoch nicht die Funktionsunterschiede 

zwischen den EC und CP Vpu Allelen erklärt. 

Diese Ergebnisse weisen darauf hin, dass die Herunterregulierung von 

Zelloberflächen-CD4 und der Antagonismus der CD317-vermittelten Hemmung von 

Partikelfreisetzung eine bedeutsame in vivo Funktionen von Vpu darstellen. Dass 

abgeschwächte Vpu Allele in EC häufiger auftraten als in CP, deutet darauf hin, dass 

zumindest eine Untergruppe von EC Vpu Allelen unter Selektionsdruck steht, was in 

einer Anpassung von Vpu auf Kosten von leicht abgeschwächter Fitness resultiert. Es 
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benötigt weiterer Untersuchungen, ob die funktionellen Einschränkungen von EC Vpu 

Allelen zur Unterdrückung von HIV-1 in diesen Patienten beiträgt. 
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1 Introduction of HIV/AIDS 

The human immunodeficiency virus (HIV) is a retrovirus that specifically infects cells 

of the human immune system (Maddon, Dalgleish et al. 1986) (Koenig, Gendelman et 

al. 1986) (Koppensteiner, Brack-Werner et al. 2012). The most deteriorative stage of 

the HIV infection constitutes the acquired immunodeficiency syndrome (AIDS). Both 

HIV-1 and HIV-2 are the causative agents of AIDS. More than 35 million people are 

living with HIV, and over 1.5 million have died from AIDS within the WHO region 

by the year of 2012 (WHO HIV/AIDS data and statistics, 2014). HIV/AIDS is 

considered as one of the major global public health issues (WHO media centre) 

because of its devastating effect on the human immune system, while still no 

therapeutic and prophylactic vaccines are currently available (Cohen and Dolin 2013). 

Since HIV-1 is the leading cause of the global HIV/AIDS pandemic (WHO, health 

topics HIV/AIDS), the scope of this introduction remains directed toward HIV-1. 

1.1 HIV-1 Virology  

1.1.1 Genome and structure of HIV-1 

HIV-1 is classified in the genus Lentivirus of the family Retroviridae based on its 

morphological, genetic and biological properties (Karlsson Hedestam, Fouchier et al. 

2008). It specifically infects human immune cells including CD4+ T cells, 

macrophages, and dendritic cells (Maddon, Dalgleish et al. 1986) (Cunningham, 

Donaghy et al. 2010) (Koppensteiner, Brack-Werner et al. 2012). HIV-1 is an 

enveloped virus possessing two identical copies of positive sense RNA genome. Each 

copy contains nine open reading frames encoding fifteen proteins, as well as two long 

terminal repeats (LTR) 5’-LTR and 3’-LTR serving as regulatory elements for the 

expression of viral RNA and proteins (Frankel and Young 1998) (Sierra, Kupfer et al. 

2005) (Watts, Dang et al. 2009). The three largest reading frames of the HIV-1 

genome encode three poly-proteins, which can be processed into viral structural 

constituents. The group specific antigen (Gag) is cleaved by the viral protease into the 

viral matrix (p17, MA), the capsid (p24, CA) and the nucleocapsid (p7, NC), which  
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Figure 1: Genome organization and structure of HIV-1. A: Organization of the 

HIV-1 genome (strain HXB2). HIV-1 RNA contains 9719 base pair nucleic acids 

(Accession number K03455.1). Nine open reading frames are shown as rectangles and 

the cleavage sites of Gag, Pol and Env polyproteins are shown as dash lines in each 

rectangle. Tat has two isoforms and rev gene is located in two exons. The numbers in 

the upper left corner represent the starting position of the gene and the numbers in the 

lower right corner record the ending position of the genes. B: Graphical depiction of a 

mature HIV-1 virion organization. HIV-1 virion consists of a virion core and an 

envelop membrane. The core is shelled by HIV-1capsid proteins. Two positive RNA 

strands in association with nucleocapsid proteins, as well as reverse transcriptase, 

integrase, and protease are encapisudated into the core. And the core is further shelled 

by HIV-1 matrix proteins, which is located in the interface of host-cell-derived 

membrane with the insertion of viral spikes composed by Env (SU and gp120) 

proteins. 

(A: adapted from Los Alamos National Laboratory database; B: adapted from 

Harriet L. Robinson, Nature reviews. Immunology, 2002(Robinson 2002) ) 
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are the major structural components of the virion core (Figure 1B). The processing of 

polymerase (Pol) polyprotein produces the enzymatic proteins including protease 

(p11, PR), reverse transcriptase (p66/p51, RT) and integrase (p31, IN), all of which 

remain encapsulated in the virion core, together with the viral RNA genome (Freed 

2001) (Robinson 2002). Cleavage of the envelop (Env) protein by cellular protease 

generates the transmembrane protein (TM, gp40) and the surface glycoprotein protein 

(SU, gp120), which are required for the formation of the surface spike (Freed 2001). 

The Env spikes are inserted into the host cell-derived lipidprotein-rich membrane 

which surrounds the virion core (Brugger, Glass et al. 2006) (Robinson 2002). 

Beyond the genes common to all retroviruses, HIV-1 possesses two regulatory genes 

tat and rev essential for the HIV-1 gene expression, as well as four multifunctional 

accessory genes vpr, vif, vpu, and nef being mainly responsible for antagonizing host 

restriction factors (Strebel 2013). Except for Vpu, the rest are incorporated to HIV-1 

particles (Sherman, de Noronha et al. 2003). All HIV-1 gene products have elaborate 

functions in the proceeding of the HIV-1 replication cycle and in circumventing 

restriction factors in the host environment. 

 

1.1.2 Replication Cycle of HIV-1 

The replication of HIV-1 can be arbitrarily divided into successive steps which are 

deeply networked. HIV-1 exploits not only the viral components but also a great 

number of host cellular factors for its own replication. The major events in a step of 

the replication cycle, together with the critical viral and accompanying cellular factors 

involved, are briefly summarized on the basis of the relevant literatures and reviews, 

and rendered in graphic form as shown in Figure 2. 

Viral Entry 

The entry of HIV-1 into a susceptible target cell is the first step toward a new 

infection. It is a coordinated multi-step process. Initially the HIV-1 attaches itself to 

the target cell via specific interactions of Env with adhesion factors such as α4β7 

integrin, and non-integrin DC-SIGN, or via unspecific interactions of positively 
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charged Env with negatively charged cell surface proteoglycans (Kuritzkes 2009) 

(Friedrich, Dziuba et al. 2011). The attachment is followed by the high-affinity 

binding of Env protruding protein gp 120 with its specific primary receptor CD4, 

which leads to the exposure of the chemokine receptor binding sites of gp120. And the 

binding of gp 120 with chemokine receptor then triggers the membrane fusion 

machinery in the gp41 subunit which pulls the viral and cellular membranes together 

termed as fusion (Wilen, Tilton et al. 2012). The main chemokine receptors that HIV-1 

utilizes are CCR5 and CXCR4 (Deng, Liu et al. 1996) (Feng, Broder et al. 1996), and 

HIV-1 can be classified into R5 HIV, X4 HIV and R5X4 HIV based on the chemokine 

receptor usage (Berger, Doms et al. 1998) (Berger 1997) (Bleul, Wu et al. 1997). In 

addition to the receptor-mediated fusion at the plasma membrane, HIV-1 could also 

infect cells via endocytosis and fuse with intracellular compartments (Miyauchi, Kim 

et al. 2009) (Pritschet, Donhauser et al. 2012). At the site of fusion occurs, a virion 

core is released into the host cell cytoplasm and then proceeds into the next step of its 

life cycle. 

Reverse Transcription  

After the viral core is released into the cytoplasm, the viral capsid first needs to be 

dissociated, a process termed as uncoating. It is known that uncoating is a dynamic 

process and is critical for the reverse transcription of viral RNA, while the timing and 

cellular factors remain poorly understood mainly due to the lack of available methods 

to label capsid molecules without perturbing the function of the viral capsid (Arhel 

2010) (Hulme, Perez et al. 2011). Uncoating ultimately results in the rearrangement of 

the virion core to form the reverse transcription complex (RTC), which contains 

genomic RNA, viral proteins MA and Vpr and various host factors such as 

tRNA(Lys)3 primers (incorporated into the virion during assembling) and the 

cAMP-dependent protein kinase (Lanchy, Isel et al. 2000) (Arhel 2010) (Karn and 

Stoltzfus 2012) (Giroud, Chazal et al. 2013). RTC is associated with actin 

microfilaments of the host cell cytoskeleton where the reverse transcription mainly 

occurs (Bukrinskaya, Brichacek et al. 1998). The reverse transcription is initiated with 

the binding of denatured primer tRNA(Lys)3 and the viral RNA (Wakefield, Wolf et al. 
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1995) (Mak and Kleiman 1997), then followed by a transcription of the viral RNA 

from the binding site to the LTR into a small fraction of DNA, while simultaneously the 

transcribed region of the template RNA is degraded by the RNase H activity of HIV-1 

RT. Then the resulting DNA fraction is transferred to the complementary region of the 

other RNA template thereby completing the synthesis. This RNA template is again 

degraded once it is copied by RNase H, but as the RNA polypurine tract (PPT) is 

resistant to the degradation it primes the other DNA synthesis by using the first strand 

of RNA as the template. All the remaining RNA is removed by RNase H. The double 

strands of DNA are then processed to be integrated into the host chromosomal DNA or 

form stable DNA circles that are not integrated into the host genome (reviewed in 

(Warren, Warrilow et al. 2009; Warrilow, Tachedjian et al. 2009; Arhel 2010) (Sloan 

and Wainberg 2011)). 

Integration 

Once the viral DNA is synthesized in the cytoplasm, it stably associates with the 

integrase (IN), which form the pre-integration complex (PIC) together with other viral 

and cellular proteins (Turlure, Devroe et al. 2004) (Suzuki and Craigie 2007). It is a 

prerequisite for the integration that PIC is transported into the nucleus to encounter 

the cellular DNA (Marchand, Johnson et al. 2006) (Craigie and Bushman 2012) The 

nuclear envelope lamina together with the associated proteins such as the well 

characterized emerin and barrier-to-auto-integration factor (BAF) mediate the entry of 

PIC into the nucleus and the proper localization within the nucleus (Jacque and 

Stevenson 2006) (Li and Craigie 2006). The integration of viral DNA into the host 

chromosomal DNA occurs precisely at the termini of the viral DNA but can also take 

place at many other locations in the host genome (Di Nunzio 2013). The linkage of 

viral integrase (IN) with the host chromatin via the co-activator lens epithelium 

derived growth factor (LEDGF) is essential for the integration (Llano, Saenz et al. 

2006) (Shun, Raghavendra et al. 2007). Two main actions are involved in this process. 

Firstly, IN catalyzes the removal of two nucleotides from each of the 3′ ends of the 

viral DNA in the region of LTR and generates the CAOH 3’-hydroxyl, and this 

provides the nucleophiles to the 5′-phosphates of the chromosomal DNA which is 



9 
 

then captured and cut by IN as well (Suzuki, Chew et al. 2012). Subsequently each 

junction with the un-ligated nucleotides is repaired by the cellular DNA repair 

machinery, which is considered as being a limiting step for integration (Van 

Cor-Hosmer, Kim et al. 2013) (Brady, Kelly et al. 2013). 

Transcription 

The proviral DNA can be transcribed into RNA by using the host cellular machineries 

during cycles of cell division along with the chromosomal DNA (Karn and Stoltzfus 

2012). The transcription is initiated by the binding of HIV-1 LTR with the host RNA 

polymerase II (RNAP II). HIV-1 Tat and the cellular transcriptional elongation factor 

P-TEFb play a critical role in enhancing the transcription efficiency via a mechanism, 

in which Tat binds with the transactivation responsive region (TAR) located 

downstream of LTR and directs P-TEFb to the nascent RNA polymerases for the 

transcription elongation (Frankel 1992) (Marshall and Price 1995). The transcription 

efficiency is tightly regulated via the interaction of the various binding sites 

embedded in LTR with corresponding cellular factors such as NF-ƙB (Burnett, 

Miller-Jensen et al. 2009) (Krishnan and Engelman 2012).  

mRNA Processing and Nucleus Export 

Along with the generation of nascent HIV-1 pre-mRNA transcripts, they are modified 

by capping 5’LTR with 7meGpppG and adding poly-adenyl at 3’LTR which are 

mediated by cellular enzymes and HIV-1 Tat (Chiu, Ho et al. 2002) (Wilusz 2013). 

Further, the modified pre-mRNA transcripts undergo extensive and complex 

alternative splicing to convert the premature mRNAs into the full range of mature 

multiple-spliced RNA species which include three major classes: 1) unspliced RNAs 

functioning as genomic RNA packaged into virions and the mRNAs for the Gag and 

Gag/Pol polyprotein precursors; 2) partially spliced mRNAs encoding Env/Vpu, Vif, 

Vpr and a truncated 72 aa form of Tat; 3) completely spliced mRNAs translating into 

the HIV-1 regulatory proteins Tat, Rev, and Nef (Purcell and Martin 1993; Stoltzfus 

and Madsen 2006) (Karn and Stoltzfus 2012). The processing and regulation of HIV-1 

mature mRNAs are dependent on a number of cis-acting elements within the HIV-1 

transcript and complex cellular factors referred to as the spliceosome (Kim and Yin 
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2005) (Chen and Manley 2009). The splicing patterns are distinct among different 

HIV-1 strains and clinical isolates, so the mRNAs splicing has a critical role in HIV-1 

infectivity (Purcell and Martin 1993; Ocwieja, Sherrill-Mix et al. 2012).  

 

 

 

 

Figure 2 Schematic view of HIV-1 replication cycle, critical accompanying 

cellular factors and host restriction factor of HIV-1 replication and HIV-1 drugs. 

This graph contains four sets of information: 1) Each step of the HIV-1 replication 

cycle is marked as numbers in order; 2) The critical accompanying cellular factors for 

the HIV-1 replication are indicated: CD4 and CCR5 for viral entry, LEDGF for 

integration, RNA Pol II for transcription, and ESCRT for viral protein transport; 3) 

Host restriction factors: TRIM5, APOBEC3G, SAMHD1, CD317 and SLFN11. 4) 

Drugs against HIV-1: inhibitors for fusion and CCR5, revers transcription inhibitors 

(NRTIs and NNRTIs), integrase inhibitor (INSTIs) and protease inhibitors. 

(Adapted from Alan Engelman & Peter Cherepanov, Nature reviews. 

Microbiology, 2012 (Engelman and Cherepanov 2012)) 
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To translate the mature mRNA into viral proteins, they need to be transported from the 

nucleus to cytoplasm. The completely spliced mRNAs are first exported constitutively 

to the cytoplasm via the endogenous cellular pathway used by host cellular mRNAs as 

well. However, the transport of HIV-1 unspliced and partially spliced mRNA species 

relies on the HIV-1 Rev by interacting with the Rev-responsive element (RRE) 

located in the env gene (Sodroski, Goh et al. 1986). This transport pathway is 

regulated by the level of Rev and the unspliced and incompletely spliced mRNAs in 

the nucleus (Malim, Hauber et al. 1989). Overall the maturation of HIV-1 mRNA 

transcripts and the following transport are dynamically and tightly regulated. 

Translation of HIV-1 mRNAs 

After entering the cytoplasm, HIV-1 exploits the cellular machineries to translate 

mRNAs to viral proteins (Freed 2001) (Friedrich, Dziuba et al. 2011). This process 

basically includes three phases: initiation, elongation and termination, which require 

the concerted interactions of the three classes of RNA (ribosomal RNA, transfer RNA 

and messenger RNA) with cellular translation factors in a timely manner (Chamond, 

Locker et al. 2010). The initiation is considered as the rate-limiting step, and there are 

distinct pathways according to the ribosome scanning model (Bolinger and 

Boris-Lawrie 2009). The conventional way is dependent on the recognition of the 

5’cap structure by the eukaryotic initiation factor 4E (eIF4E) and the recruitment of 

43S pre-initation complex which is consisting of the 40S ribosomal subunit, eIF3 and 

the ternary complex (eIF2, GTP, Met-tRNA)(Kozak 1989; Merrick 2004). The 

alternative initiation pathways involve the internal ribosome entry segment (IRES) 

and posttranscriptional elements (PCEs) in the viral gene sequence (Pelletier, Kaplan 

et al. 1988; Hellen and Sarnow 2001) (Chamond, Locker et al. 2010). The ratio of 

translated proteins needs to be regulated for the successful HIV-1 virion production. 

HIV-1 utilizes the ribosomal frame shifting program to produce the balanced ratio of 

Gag/ Pol polyproteins, which is generated when translating the ribosome shift into the 

-1 reading frame at a site near the 3′ end of the gag open reading frame, and then go 

on to translate the pol gene (Parkin, Chamorro et al. 1992) (Brakier-Gingras, 

Charbonneau et al. 2012). 
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Assembly, Budding, and Maturation  

The viral proteins, together with the viral genome RNA, must be directed to the site of 

virion assembly. HIV-1 virion assembly occurs at the plasma membrane and is 

fundamentally mediated by the HIV-1Gag/Pol polyprotein precursor (Gheysen, Jacobs 

et al. 1989) (Adamson and Freed 2007). The main events involved during this process 

are as follows: Gag N-terminal MA region binds the plasma membrane and recruits 

the viral Env protein. The central CA domain mediates the protein–protein 

interactions for the creation of the conical shell of the viral core. NC captures the viral 

genome via direct interactions with the RNA packaging sequence. The Gag p6 region 

recruits the late assembly motifs which could recognize the endosomal sorting 

complexes required for the transport machinery (ESCRT) of the host cell and 

therefore facilitates the budding of the immature assembled virion from the lipid 

membrane (Morita, Sandrin et al. 2007) (Bieniasz 2006) (Van Engelenburg, Shtengel 

et al. 2014). Along with the budding, the viral protease embedded in the Gag/Pol 

polyproteins is activated and cleaves Gag/pol into their own constituents. The 

proteolysis of Gag/Pol triggers conformational changes of both the virion structure 

and the RNA genome, which therefore leads to viral maturation (Adamson and Freed 

2007) (Ganser-Pornillos, Yeager et al. 2008) (Ivanchenko, Godinez et al. 2009; 

Sundquist and Krausslich 2012). To this point, the virus completes its replication 

cycle and new infectious viruses are generated. 

 

1.1.3 Host restriction factors of HIV-1 replication 

In contrast to the accompanying cellular machineries adding HIV-1 replication, five 

host cellular proteins were identified as the HIV-1 restriction factors which can 

intrinsically suppress HIV-1production and can be antagonized by HIV-1 proteins, as 

shown in Figure 2. The first identified one is the tripartite-motif-containing 5α 

(TRIM5α), a component of cytoplasmic body, has an effect on the uncoating of viral 

capsid and reverse transcription (Stremlau, Owens et al. 2004). HIV-1 employs its MA 

to overcome this restriction (Stremlau, Owens et al. 2004) (Huthoff and Towers 2008). 
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APOBEC3, one of the apolipoprotein B mRNA-editing enzyme catalytic 

polypeptide-like family proteins, could be encapsidated into viral particles and restrict 

reverse transcription by editing sense-stranded DNA in the absence of HIV-1 Vif 

(Sheehy, Gaddis et al. 2002) (Goila-Gaur and Strebel 2008). The membrane protein 

CD317 acts on the release of mature virions, which is counteracted by the accessory 

protein Vpu. Another two host restriction factors are recently identified. SAMHD1 

restricts the ability of HIV-1 to infect the dendritic and other myeloid cells and this 

restriction can be counteracted by SIVsmm/HIV-2 lineage which encodes the 

accessory protein Vpx (Lahouassa, Daddacha et al. 2012). The target step is again the 

reverse transcription by lowering the concentrations of intracellular deoxynucleoside 

triphosphates (dNTPs) to below the threshold needed for the synthesis of the viral 

DNA by reverse transcriptase (RT) (Lahouassa, Daddacha et al. 2012) (Ayinde, 

Casartelli et al. 2012). Last but not least, SLFN11, whose viral antagonist is not 

identified yet, acts at the point of virus protein synthesis by exploiting the unique viral 

codon bias towards A/T nucleotides (Razzak 2012).  

 

1.1.4 HIV-1 Latency 

One striking feature of HIV-1 infection is that it can fall into the latency stage during 

the life cycle. There are two situations of latency depending on the afferent or the 

efferent stage of the replication cycle. The afferent one exists as the pre-integration 

complex which is generated after transcription in the cytoplasm and mainly locates in 

the resting CD4+ T lymphocytes. Once the CD4+ T lymphocytes become activated, the 

latent pre-integration complex produces infectious viruses and so they are considered 

as the major HIV-1 reservoir. The efferent one refers to the integrated HIV-1 provirus 

of which the transcription is ceased regardless of the activation status of the infected 

cell (Butera 2000) (Jordan, Bisgrove et al. 2003). HIV-1 latency limits the benefits 

from the highly active antiretroviral therapy (HAART) and therefore puts a 

formidable obstacle for eradiation of HIV-1 in resting T cells. However, the 
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mechanisms behind need to be further elucidated for developing the therapeutic 

strategies. 

 

1.1.5 HIV-1 Genetic Diversity and Subtypes 

Clinical HIV-1 isolates represent great genetic diversity which is up to 30%, and this 

sets a formidable obstacle to control HIV/AIDS (Spira, Wainberg et al. 2003) (Santoro 

and Perno 2013). There are four types of HIV-1: main (M), outliner (O), non-M and 

non-O (N), and proposed (P), which have different geographic distributions but show 

similar symptoms (Robertson, Anderson et al. 2000) (Vallari, Holzmayer et al. 2011) 

(Santoro and Perno 2013). The M group which is responsible for the globe HIV/AIDS 

epidemic can be split further into nine clades (A-J) (Perrin, Kaiser et al. 2003) 

(Wainberg and Brenner 2012). Besides, over 58 HIV-1 circulation recombinant forms 

(CRF) have been identified (HIV lanl data base; 

http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html). Several factors 

contribute to the high variability. First of all, HIV-1 RT is an error-prone enzyme lack 

of proofreading functions. It generates much mutation in the HIV-1 genome at a rate 

of 1:2 000-10 000 (Mansky 1998). And further, the recombination of the mutated 

genome increases the genetic variability (Hu and Temin 1990) (Moutouh, Corbeil et 

al. 1996). Last but not least, the rate of HIV-1 replication being high, this gives rise to 

the immune escape mutations due to selection pressure from the host. However, the 

rate of genetic diversity varies among the different regions of HIV with a relatively 

low level in pol but a much higher level within the region of vpu/env (Santoro and 

Perno 2013). Overall, the genetic diversities between HIV-1 isolates, especially 

specific regions, lead to changes of antigenicity with impediments for the 

development of HIV-1 vaccines (Santoro and Perno 2013). 

 

1.2 HIV/AIDS Epidemics 

Since the recognition of AIDS in 1981 and the identification of its causative agents 

HIV-1 and HIV-2 in 1983, HIV/AIDS becomes a worldwide HIV/AIDS pandemic. 
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According to the latest data the world health organization (WHO) released by 2012, 

approximately 36 million people live with HIV, including about 2.0 million 

adolescents. 1.6 million people died of HIV/AIDS related diseases worldwide by 

2012. Currently the global prevalence is around 0.8%, with the highest ratio in Africa 

reaching up to 4.8% (WHO, http://www.who.int/topics/hiv_aids/en/). More than four 

decades of intensive basic and translational research make the treatments against 

HIV/AIDS available. However, the development of vaccines remains confined mainly 

due to the complicated properties of HIV-1. With an increase of preventive 

interventions and HIV-1 testing and counselling, as well as the global cooperation 

between nations, the new HIV-1 incidents have declined with the result, that the 

quality of life for people with contracted HV-1 is seen to improve.  

 

 

 

Figure 3: HIV/AIDS distribution in WHO region. The number of people living 

with HIV is recorded corresponding to different regions marked with different colours 

in the map (The colours do not apply into any opinion.) (Adapted from WHO, 2013) 
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1.3 HIV-1 Pathogenesis  

1.3.1 Acquisition of HIV-1 Infection 

HIV-1 can be transmitted from an infected person to another via several channels: 1) 

mucosal surfaces of the oropharynx, rectum, and genital. They can trap antigens and 

virus particles for they are rich in langerhans cells; 2) accidental blood transfusion 

from HIV infected donors; 3) mother-to-infant. A number of factors contribute to the 

risk of HIV infection. The risk of infection via the blood transfusion approaches 

100%. Trans-mucosal infection risks vary according to the site of exposure, with the 

highest risk through the rectum and the lowest risk across the oral mucosa. Beyond 

that, the high levels of plasma HIV RNA enhance mother-to-infant transmission of 

HIV. The acquisition of HIV infection is also influenced by the viral load of infected 

donor individual. The viral load is defined as the viral titres in the blood and described 

as the number of copies of HIV genetic RNA or DNA per millilitre (copies/ml) (CDC, 

HIV/AIDS; http://www.cdc.gov/hiv/default.html). Especially, the viral set point, 

defined as the stable level of viral loads after acute phage of HIV-1 infection, is good 

marker to predict the probability of transmission and the disease progression (Fraser, 

Hollingsworth et al. 2007).  

 

1.3.2 General Clinical Courses of Untreated HIV-1 Infection  

HIV infection is typically classified as a three-stage process ranging from an initial 

infection to the development of AIDS based on the criteria put forward by the Centers 

for Disease Control and Prevention (CDC).  

Acute Stage  

The acute stage of HIV-1 infection is defined as the time period from the initial 

acquisition of HIV-1 to the development of an antibody response detectable by 

standard tests (McMichael, Borrow et al. 2010). This stage may last from a few days 

to several weeks, with the mild or severe flu-like symptoms of fever fatigue, 

lymphadenopathy, headache, and rash. During the early period of the stage, the 

viruses replicate extensively in activated CD4+ T lymphocytes which are then 
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destructed, and this leads to high viral load and a widespread dissemination of HIV-1 

to the lymphoid organs and other sites including the dramatic fall of CD4+ T 

lymphocytes counts in the blood. Meanwhile, a reservoir of HIV-1 infected resting 

CD4+ lymphocytes is established. During the later stage, the virus titer in the blood 

falls and CD4+ lymphocyte counts begin to increase, with the development of 

HIV-1-specific CD8+ cytotoxic T cells (CTLs). After this stage, the HIV-1 set point is 

reached. This value varies widely between patients and is reversely correlated with the 

breadth and strength of HIV-1-specific CTL response. Therefore, it serves as a 

significant mark for predicting the progression of the disease and the probability of 

HIV-1transmission (Mellors, Munoz et al. 1997) (Fraser, Hollingsworth et al. 2007) 

(Huang, Chen et al. 2012). 

Asymptomatic Stage 

After the acute stage of HIV-1 infection, there is usually a relatively long period that 

is characterized by little or no clinical manifestations, and we refer it as the 

asymptomatic stage or clinical latency (Ford, Puronen et al. 2009). The time duration 

varies among infected individuals, averaging around about 10 years, even in the 

absence of treatments. This stage is characterized as the persistent immune activation 

which is fueled by the translocation of microbial products because of the CD4+ T 

lymphocytes loss resulted from the acute HIV-1 infection at the gut sites (Ford, 

Puronen et al. 2009). The immune activation has profound influences on HIV-1 

replication and the host immune system because it speeds up HIV-1 production by 

stimulating the tremendous naïve and central memory CD4+ T cell repertoire (Zhang, 

Wietgrefe et al. 2004) (Klatt, Villinger et al. 2008). The enormous HIV-1 replication, 

with its high viral mutation propensity, leads to the accelerated viral evolution, which 

is mainly responsible for the alterations in the target cellular trophism from 

CCR5-trophic to dual trophic or dominantly CXCR4 trophic strains with increased 

virulence and broader target cell trophism (Grossman, Meier-Schellersheim et al. 

2006) (Mogensen, Melchjorsen et al. 2010). From another aspect, the immune 

activation is disadvantageous to the host because of the damage to the adaptive 

immune system and the dysregulated innate immune defence. HIV-1 infection induces 
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resting T cells into increased T-cell turnover because of the enhanced immune 

activation by antigens and inflammation (Ho, Neumann et al. 1995) (Sachsenberg, 

Perelson et al. 1998) (Grossman, Meier-Schellersheim et al. 2002), as well as 

abnormalities of B-cell activation and immunoregulation (Lane, Masur et al. 1983) 

(Moir, Malaspina et al. 2001). HIV-1 infection could also causes the hyperactivation 

of innate immune system, hence leading to the production of a range of cytokines and 

chemokines, which in turn contributes to the persistent immune activation (Boasso, 

Hardy et al. 2008) (Boasso and Shearer 2008). All of these contribute to the 

progressive loss and ultimate depletion of CD4+ T lymphocytes. As summarized in the 

review of Ford, "The asymptomatic chronic phase of HIV infection is a dynamic 

balance between host and virus, the outcome of which determines an individual's 

course of disease" (Ford, Puronen et al. 2009). 

AIDS 

AIDS is the final and most deteriorate stage of the HIV-1 infection. The median time 

from initial infection to the development of AIDS among untreated patients ranges 

from 8 to 10 years (Vergis and Mellors 2000). This clinical stage is defined primarily 

on the CD4+ T lymphocytes count of below 200 cells/mm3 (CDC criteria). In the 

absence of anti-retroviral treatments (ART) to fight off the opportunistic infections 

and neoplasms the patients would die because of the HIV-induced immune deficiency. 

The initiation of ART is highly recommended to start when CD4+ T lymphocyte- 

counts remain lower than 350 cells/mm3. 

 

1.3.3 Variable Disease Progression of HIV-1 Infection 

In the absence of antiretroviral therapy, various patterns of HIV-1 related disease 

progression are recognized among HIV-1 infected individuals (Langford, 

Ananworanich et al. 2007) (Hogg, Yip et al. 2001). A variety of viral and host factors 

are associated with the rate at which the disease progresses (Shankarappa, Margolick 

et al. 1999) (Bello, Casado et al. 2005) (Fellay, Shianna et al. 2007) (Pereyra, Addo et 

al. 2008). Because of the variations of the related factors, the plasma viral load (VL)  
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CP   Asymptomatic phase duration up to 10 years 
 Viral set point above 2000 copies/ml in the absence of ART 

RP  CD4+ T lymphocytes below 350/mm3 within 3 years 
 AIDS-related symptoms within 3 years 

LTNP-EC  Asymptomatic phase duration up to 10 years 
 Plasma VL below 50 copies by ultrasensitive PCR in the 

absence of ART 

LTNP-VC  Asymptomatic phase duration up to 10 years 
 Plasma VL below 2000 copies/ml by ultrasensitive PCR in the 

absence of ART 

LTNP-NC  Asymptomatic phase duration up to 10 years  
 Plasma VL above 2000 copies/ml by ultrasensitive PCR in the 

absence of ART 

 

Table 1: Categories of HIV-1 infected clinical groups and the major parameter(s) 

CP: chronic progressors; RP: rapid progressors; LTNP-EC: long-term nonprogressors, 

elite controllers; LTNP-VC: long-term nonprogressors, viremic controllers; 

LTNP-NC: long-term nonprogressors, viremic non-controllers. (Adapted from 

Concepcion Casado et al. PLoS ONE, 2010) 

 

 

and CD4+ T lymphocytes count are the most widely used ones for predicting the stage 

of disease and initiating anti-retroviral treatments, which are well established 

(Langford, Ananworanich et al. 2007) (Hessol, Lifson et al. 1989) (Goujard, Bonarek 

et al. 2006). Based on the asymptomatic duration, the measurement of vial load and 

CD4+ T lymphocyte counts, HIV-1 infection is categorized into five classes as shown 

in table 1: rapid progressors (RP), chronic progressors (CP) and long-term 

nonprogressors which can be further divided into elite controllers (LTNP-EC), 

viremic controllers (LTNP-VC) and viremic non-controllers (LTNP-NC) (Casado, 

Colombo et al. 2010) (Hunt 2009). CPs progress toward AIDS within 10 years and a 

maintained viral set point above 2000 copies/ml in the absence of ART, a portion of 

around 70-80% of patients is affected. RP indicates a dramatic decline of CD4+ T 

lymphocytes below to 350/mm3 and the occurrence of AIDS-related events within a 

few years after infection. The LTNP are rare, especially for the LTNP-EC, which are 

found around 0.1% of the patients. They could naturally suppress HIV-1 replication to 
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a level below standard detection (< 50 copies/ml by ultrasensitive PCR), and therefore 

do not ultimately progress toward AIDS (Deeks and Walker 2007) (Hubert, Burgard et 

al. 2000). Shown below are the clinical evidences for CP and EC patients (Figure 4). 

The HIV-1 Vpu alleles are derived from the HIV-1 isolates circulating in these two 

clinic groups. 

 

 

 

Figure 4: Clinical records of chronic progressors and elite controllers. Viral loads 

(in red) and CD4+ T cells count (in blue) are shown. (a) Chronic progressors. three 

typical clinical stages including acute phase, clinical latency and AIDS. (b) Elite 

controllers. Following the acute phase, the natural suppression of HIV-1 takes place. 

(Adapted from Karen A. O’Connell et al. Trends in Pharmacological Sciences, 

2009) 

 

 

1.3.4 Treatments of HIV/AIDS 

No prophylactic and therapeutic vaccines against HIV are on the horizon due to its 

inherent plasticity and capacity for mutation to escape the host immune clearance and 

surveillance (Cohen and Dolin 2013). In the course of the discovery of the association 

between HIV-1 plasma viral RNA level and the progression of the disease together 

with the unmasking of the molecular mechanisms of HIV-1 replication, the 

development of drug interventions, targeting different steps of its life cycle as shown 
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in Figure 2, have been advancing. To date, an arsenal of 24 Food and Drug 

Administration (FDA)-approved small molecule anti-retroviral drugs are used for 

HIV-1 treatment regimes, which have evolved into cocktail therapies from the 

mono-therapy in the early 1900s (Arts and Hazuda 2012). The drugs target different 

steps of HIV-1 replication cycle (Figure 2), they are categorized into six classes 

according to the different interactions they target: 1) CCR5 inhibitors; 2) fusion 

inhibitors; 3) nucleotide reverse transcriptase inhibitors, NRTIs; 4) non-nucleotide 

inhibitors reverse transcriptase inhibitors, NNRTI; 5) integrase inhibitors; 6) protease 

inhibitors (PIs) (Arts and Hazuda 2012). The drug-based treatments can, in the best 

cases, control the HIV viral loads down to undetectable levels, however, not all people 

can bear the side effects and afford the high cost and, moreover, ART cannot undo the 

HIV infection and eliminate the risk of transmission. Efforts to decipher and fight 

HIV are still on the way. 

 

1.4 Natural Control of HIV/AIDS: Elite Controllers 

A rare and striking phenotype of HIV-1 infection is the natural control of HIV-1 

replication by around 0.1% of infected individuals, referred to as HIV-1 Elite 

controllers (EC) (Deeks and Walker 2007) (Hubert, Burgard et al. 2000). ECs are 

different from other patients because of three parameters: 1) Their plasma viral RNA 

load is lower than 50 copies/mm3 in the absence of anti-retroviral therapy (ART), a 

range below the detectable level of traditional PCR; 2) The CD4 counts remain 

normal and stay at a stable level with respect to these infected individuals; 3) They do 

not progress toward AIDS for at least 10 years and typically there is no need to apply 

the antiviral therapies for them (Deeks and Walker 2007) (Hubert, Burgard et al. 

2000) (O'Connell, Bailey et al. 2009). 

ECs bring the hope that HIV-1 can be controlled without antiviral therapies, which are 

expensive and require a life-time commitment. Understanding the mechanisms of 

natural HIV-1 control could contribute to the development of the vaccine design. 

Based on different cohort studies, no single virological or immunological factor is 
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defined to explain the virus control status. It’s universally admitted that heterogeneous 

factors are responsible for the natural suppression of HIV-1, including viral elements, 

host genetic backgrounds, and host immune-system properties.  

 

1.4.1 Viral Genetics in Different EC cohorts 

One possibility to cause asymptomatic HIV-1 infection and thus EC status is of 

infection with less pathogenic and attenuated viruses. Indeed, nef-deficient HIV-1 

isolates were found and the infected individual do not progress or progress very 

slowly to AIDS (Brambilla, Turchetto et al. 1999) (Casartelli, Di Matteo et al. 2003) 

(Geffin, Wolf et al. 2000). While the infection with less fit HIV-1 could not explain all 

the ECs. HIV-1 isolates from our cohorts and other groups showed there are no 

common mutations or significant deletions in the plasma RNA sequences compared 

with the HIV-1 isolates from chronic progressors (CPs) (Miura, Brockman et al. 2008). 

Very recently, a paper proposed that 33% of the variation in disease progression is 

attributed from the viral genetic by summarizing the published literatures. They 

proposed that the evolutionary capacity of HIV-1 had an underscored impact in its 

virulence and pathogenesis which is critical for the set point in the early stage of 

infection (Fraser, Lythgoe et al. 2014). 

 

1.4.2 Heterogeneous Host genetic Factors Determine the Spontaneous Control 

Host genetics strongly influences the susceptibility and resistance of an individual to 

HIV-1. The scanning of single-nucleotide polymorphisms (SNPs) on whole genome 

scale dissected two major genetic determinants for the viral set point level in a 

consortium of nine cohorts including hundreds of patients with a clear background. 

The polymorphisms located at the HLA-B and HLA-C loci could explain around 15% 

of the variation in HIV-1 set point (Fellay, Shianna et al. 2007). The following 

large-scale epidemiological studies confirmed the enrichment of HLA-B*57, 

HLA-B*27, HLA-B*13 and HLA-B*58:01 in HIV-1 elite controllers compared with 

HIV-1 progressors (International, Pereyra et al. 2010) (Limou, Le Clerc et al. 2009). 
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By contrast, certain HLA alleles, particularly subtypes of HLA-B*35 and HLA-B*07, 

are highly enriched in HIV-1 rapid progressors (Carrington, Nelson et al. 1999) (Gao, 

Nelson et al. 2001) (International, Pereyra et al. 2010). Not only the special HLA 

genotype but also its epistatic interactions with killer immunoglobulin-like receptors 

(KIRs) on natural killer (NK) cells are also correlated to disease progression. The 

combined pairs including KIR3DS1&HLA-Bw4-80I, KIR3DL1&HLA-Bw4-80I, 

KIR3DL1&HLA-B*57 were shown to have effects on the HIV-1 plasma RNA level 

(Flores-Villanueva, Yunis et al. 2001) (Martin, Gao et al. 2002). In addition to the 

special protective genotypes, the high expression level of HLA-C is independently 

associated with low viral set points and control of HIV-1 (Fellay, Shianna et al. 2007) 

(Thomas, Apps et al. 2009). The spontaneous control of HIV-1 can also result from 

the reduced susceptibility of the infection for new target cells in the population of a 

mutant chemokine receptor CCR5 with a 32-basepair (bp) deletion (Martinson, 

Chapman et al. 1997). 

 

1.4.3 Adaptive Immune Responses in ECs 

Strong and effective HIV-1-specific CD4+ and CD8+ T cell responses are generally 

regarded as the best weapons of antiviral immune activity, and they might define the 

biological characteristics of an effective T cell response against HIV-1 (Ogg, Jin et al. 

1998) (Oxenius, Price et al. 2004). Currently available data suggest stronger CD8+ T 

cell-mediated antiviral response is the backbone for the EC status because CD8+ T 

cells from ECs have higher capacity to proliferate and synthesize greater amounts of 

cytotoxic granule components (Migueles, Osborne et al. 2008) (Hersperger, Pereyra et 

al. 2010) (Chen, Ndhlovu et al. 2012). Moreover, HIV-1-specific CD4+ T cells from 

ECs seem to have higher functional avidities and they secrete multiple cytokines, such 

as IL-2 and IL-21 that increase the antiviral activities of HIV-1-specific CD8+ T cells 

(Chevalier, Julg et al. 2011). It’s generally recognized, although controversial with 

respect to early studies, that neutralizing antibody (NAb) has no obvious role in viral 
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suppression (Pereyra, Addo et al. 2008) (Doria-Rose, Klein et al. 2010) (Bailey, 

Lassen et al. 2006) (Lambotte, Ferrari et al. 2009). 

 

1.4.4 Role of Innate Immunity in ECs 

Natural Killer Cells  

In addition to the effectiveness of CD8+ T cell-mediated responses, the relevance of 

natural killer (NK) cells was reported to have an impact on the control of HIV-1 

disease progression. There are two major phenotypes of NK cells in the peripheral 

circulation. The majority are CD56dim NK cells which can directly lyseHIV-1 infected 

cells via cytolytic granules. The less population are poorly cytotoxic CD56bright NK 

cells which secrete cytokines and shape the adaptive immune responses. The 

functions of NK cells are delicately regulated by the in interaction of its activating or 

inhibitory receptors on the surface with ligands on target cells or (Fauci, Mavilio et al. 

2005) (Alter and Altfeld 2009). NK cells can also be activated directly through 

binding of specific antibody to particular Fc-receptors on NK cells, a process known 

as antibody dependent cellular cytotoxicity (ADCC). The role of NK cells in HIV-1 

disease control has been observed. One cohorts study showed that NK cells from ECs 

displayed higher levels of interferon-gamma, activation markers, and cytolytic activity 

than NK cells from CPs (Lichtfuss, Cheng et al. 2012). Another group displayed NK 

cells from ECs had increased level of activating receptor NKG2D which is critical for 

the lytic function. Very strikingly, these NK cells had higher capacity to maintain the 

stable level of one receptor NKp44 which is related to CD4 maintenance (Marras, 

Nicco et al. 2013). Further another group characterized the CD38 expression in the 

cytolytic CD56dim NK cells, and its association with HIV-1 disease progression in 

treatment naïve ECs, CPs and AIDS subjects, and they claimed that the activation of 

NK cells was reversely associated with HIV-1 disease progression (Kuri-Cervantes, 

de Oca et al. 2014). This is inherent with a former study showing the the strong NK 

cell-mediated inhibition of viral replication is not necessary for the immunological 

control of HIV-1 in all ECs (O'Connell, Han et al. 2009). The results about NK cells 
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role in suppress HIV-1 infection so far are quite conflicting in different cohorts. In 

some studies, ECs had the trend to maintain higher cytolytic effects via higher 

activation level, while in some ECs, they maintain the similar activation level as 

healthy donors. These facts just reflect that the mechanism to suppress the viral 

replication in ECs can be different among each individual. 

 

Antibody Dependent Cellular Cytotoxicity (ADCC)  

ADCC is carried out by the effector cells of innate immune system bearing Fc 

receptors, such as NK cells and macrophages, through their interaction with antibody 

coated cells. ADCC is considered as one of the efficient protective mechanisms and 

regains the attraction in the HIV-1 field mainly because its level inversely correlates 

with infection risk in the ALVAC-HIV/AIDSVAX-B/E RV144 vaccine trial (Haynes, 

Gilbert et al. 2012). Higher levels of ADCC antibodies were found in ECs, especially 

in HLA-B57 positive controllers (Lambotte, Ferrari et al. 2009). Other cohort studies 

also showed that the broader ADCC response was correlated with disease progression 

(Baum, Cassutt et al. 1996) (Wren, Chung et al. 2013). Very strikingly, the 

Vpu-derived epitopes could stimulate ADCC, and moreover, they were only 

recognized by long term slow progressors but not CP patients (Wren, Chung et al. 

2013).  

 

Overall, the spontaneous control of HIV-1 in ECs could be established via virological, 

genetic and immunologic factors. The mechanisms for the natural control of HIV-1 

replication among all patients are heterogeneous. Nevertheless, research of this rare 

group could provide valuable implications for the control of HIV-1(Fraser, Lythgoe et 

al. 2014). 
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2 Review of HIV-1 Vpu 

2.1 General Properties of HIV-1 Vpu 

2.1.1 Vpu Gene and its Role in HIV-1 Pathogenesis  

HIV-1 has a set of accessary genes including vpu, vif, vpr, and nef that are dispensable 

for the replication in the cell culture system but are required for optimal infectivity in 

vivo (Malim and Emerman 2008). The gene of vpu is only present in HIV-1/SIVcpz 

lineages but absent in HIV-2 and the most of SIV such as isolated rhesus macaque and 

sooty mangabeys (Cohen, Terwilliger et al. 1988) (Strebel, Klimkait et al. 1988) 

(Dazza, Ekwalanga et al. 2005) (Jia, Serra-Moreno et al. 2009). Vpu gene is 

overlapped at its3’end with the env gene, and so Vpu is encoded from the bicistronic 

env mRNAs that contains the Rev-responsive element. And the expression level of 

Vpu is regulated by the abundance of different isoforms of env mRNAs (Schwartz, 

Felber et al. 1990) (Karn and Stoltzfus 2012). 

 

 

 
 

Figure 5: Gene maps of HIV-1 and HIV-2/SIV. The genes to encode prototypical 

proteins (Gag, Pol Env) for retroviruses are present in HIV-1 and HIV-2/SIV. HIV-1 

dese not possess vpx. Vpu gene is unique to HIV-1, marked in red. (Adaped from 

Stephan Bour and Klaus Strebel, Microbes and Infection, 2003) 

 

 

Vpu is not incorporated into the mature viral particles, and it is not required for the 

viral replication in the cell culture system as other accessory proteins. It has two 

classic two functions: down-regulating the primary HIV-1 receptor CD4 molecules  
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and enhancing the viral particle release (Willey, Maldarelli et al. 1992) (Bour, Perrin 

et al. 1999) (Strebel, Klimkait et al. 1989) (Neil, Eastman et al. 2006). The 

contribution of Vpu to HIV-1 pathogenesis is a central issue which is not elucidated 

yet. The main obstacle is due to the lack of a suitable animal model because the vpu 

gene is not present in most SIV viruses especially SIVmac which could infect the 

widely used animal model for HIV-1 study-rhesus macaque. Nevertheless, the animal 

model researches using the HIV-1/SIV chimeric virus strongly suggest that Vpu plays 

a role in HIV-1 pathogenesis. It was shown that macaques infected with vpu-negative 

simian-human immunodeficiency virus chimeras (SHIV) had lower virus loads than 

vpu-positive virus (Li, Halloran et al. 1995). Another group demonstrated that deletion 

of Vpu significantly affects virus infectivity of HIV-1 by using severe combined 

immunodeficient mouse (SCID) model (Jamieson, Aldrovandi et al. 1996).  

 

2.1.2 Molecular Aspects of HIV-1Vpu 

Vpu is composed of around 80 amino acids, with the molecular weight around 16kDa 

(Cohen, Terwilliger et al. 1988) (Strebel, Klimkait et al. 1988). Is a type I integral 

trans-membrane protein capable of homooligomerization (Hussain, Das et al. 2007), 

consisting of a short luminal N-terminal hydrophobic domain (NTD), a 

trans-membrane domain (TMD) serves as the membrane anchor and a hydrophilic 

C-terminal domain (CTD) protruding into the cytoplasm. The CTD contains two 

amphipathic helixes (α-helix) opposite polarity, and they are separated by an 

unstructured region containing two conserved serine residues at the sites of 52 and 56 

amino acids (DSGxxS), which are phosphorylated by protein kinase CK-II and 

essential for its basic functions which will be introduced in the next sections (Cohen, 

Terwilliger et al. 1988) (Strebel, Klimkait et al. 1988) (Schubert, Henklein et al. 1994) 

(Marassi, Ma et al. 1999).  

The localization of HIV-1 varies among different subtypes. The subtype B Vpu is 

accumulated in the and trans-golgi-net (TGN), and this is critical for enhancing the 

virion release. However, the subtype C Vpu was found to localize at the plasma 
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membrane and TGN (Dube, Roy et al. 2009) (Pacyniak, Gomez et al. 2005). The 

determinants for raft association and TGN localization (R30 and K31) are embedded 

in the region of TMD (Fritz, Tibroni et al. 2012) (Dube, Roy et al. 2009; Bruce, 

Abbink et al. 2012). The conservation of TMD, especially the alanine residues, 

together with the subcellular trafficking motif ExxxLV present in the second α-helix 

and the tryptophan (W) in the end of CTD are critical for the virion release 

enhancement (Petit, Blondeau et al. 2011). (Vigan and Neil 2010) (Kueck and Neil 

2012) (Jafari, Guatelli et al. 2014). The determinants for multifaceted functions of 

Vpu are spanned from its N- to C-terminus. 

 

 

 

 

Figure 6: Schematic presentation of HIV-1 NL4.3 Vpu. A: Secondary structure and 

predicted tertiary fold of Vpu. Vpu is composed of a short N terminal domain (1-4 

amino acids), a transmembrane domain spanning from the 4 to 27 amino acid residue, 

and a relatively long cytoplasmic domain containing two α-helixes. The two 

phosphorylation sites for recruiting β-TrCP are marked in yellow. B: Sequence 

presentation of Vpu and important motifs. The prototypic NL4.3 Vpu consists of 81 

amino acids. The functional motifs for antagonizing CD317 (or tetherin), raft 
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association, trans-Golgi localization, β-TrCP binding, KIR-2DL2 recognition and two 

major CTL epitopes are indicted. (A: adapted from Mathieu Dube, et al. 

Retrovirology, 2010) 

 

 

2.2 Vpu-Mediated Removal of the HIV-1 Receptor CD4  

Vpu is not required for the replication of HIV-1 in the cell culture system, but it 

modulates a broad array of cellular factors. Strikingly it is one of proteins HIV-1 

exploits to reduce the surface level of the primary receptor CD4 molecules in infected 

cells. The modulation of CD4 seems critical for HIV-1 because it utilizes three of its 

proteins (Vpu, Nef and Env) to interfere with the surface level of CD4 via distinct 

mechanisms. Vpu retains newly synthesized CD4 molecules at endoplasmic reticulum 

(ER) and consequently induces proteasomal degradation (Buonocore and Rose 1990) 

(Willey, Maldarelli et al. 1992) (Piguet, Chen et al. 1998) (Crise, Buonocore et al. 

1990). Vpu-mediated CD4 downregulation starts with the interaction of the cytosolic 

domains of both proteins and relies on the phosphorylation of Vpu at the two serine of 

the DSGxxS motif (Bour, Schubert et al. 1995) (Schubert, Henklein et al. 1994). The 

phosphorylated Vpu binds with β-TrCP, leading to the recruitment of the cytosolic 

SCFβ-TrCP E3 ubiquitin ligase complex, which then results in the poly-ubiquitination of 

CD4 at its cytosolic tail (Margottin, Bour et al. 1998). The ubiquitinated CD4 is 

directed for degradation by cytosolic proteasomes (Schubert, Anton et al. 1998).  

The physiological relevance of CD4 down-modulation is partially understood. One 

benefit for HIV-1 is to prevent super-infection and premature cell death in order to 

expand the period of effective virus production (Benson, Sanfridson et al. 1993). 

Another benefit was proposed based on the propensity of Vpu in that it targets 

newly-made CD4 and therefore results the release of HIV-1 Env protein to enhance 

viral production (Lama, Mangasarian et al. 1999). More recently study revealed a role 

of Vpu in the evasion of killing by NK cells via removing CD4 molecules from the 

HIV-1 infected cells (Pham, Lukhele et al. 2014). 



30 
 

2.3 HIV-1 M Vpu: Competent Antagonist of CD317/tetherin 

2.3.1 Dual-faced CD317/tetherin: Viral Restriction Factor and Viral Sensor 

The initial biological phenotype of vpu-deficient HIV-1 was that the virion particles 

were retained on the plasma membrane of infected cells (Strebel, Klimkait et al. 1988) 

(Bour, Perrin et al. 1999). This phenotype was only observed in some cell lines such 

as human T cell lines but not in African green monkey cell line COS-7 (Geraghty, 

Talbot et al. 1994), which raised the searching and identification of the specific 

cellular factor. Finally in 2008 the IFN-stimulated BST-2 gene product (known as 

bone marrow antigen 2) was identified as the factor for the cell type dependent 

phenotype, designated as CD317/tetherin (Neil, Zang et al. 2008). CD317/tetherin is a 

lipid raft-associated type II integral membrane glycoprotein, consisting of 180 amino 

acids with the molecular weight of 30-36 kDa (Chiang, Wang et al. 2010) (Kawai, 

Azuma et al. 2008) (Kupzig, Korolchuk et al. 2003). It is of an unusual topology 

containing an N-terminal cytoplasmic tail, a conventional trans-membrane helix and a 

C-terminal glycosylphosphatidylinositol (GPI) membrane anchor connected by a 

coiled-coil extracellular domain. It further forms stable parallel dimers in the 

extracellular domain (Kupzig, Korolchuk et al. 2003) (Andrew, Miyagi et al. 2009) 

(Evans, Serra-Moreno et al. 2010). CD317/tetherin is constitutively expressed on 

various cells of the immune system including T lymphocytes, macrophages, and 

plasmacytoid dendritic cells (pDCs) at low level. Its expression can be strongly 

increased upon the stimulation of type I IFNs (Erikson, Adam et al. 2011). Since its 

identification as a restriction factor for HIV-1 release, CD317/tetherin was found to 

block the release of a variety of enveloped viruses (Jouvenet, Neil et al. 2009). And 

also various viral antagonists to counteract CD317 were identified, such as HIV-1 

Vpu, HIV-2 Env and SIV Nef (Neil, Eastman et al. 2006) (Hauser, Lopez et al. 2010) 

(Gupta, Mlcochova et al. 2009) (Jia, Serra-Moreno et al. 2009) (Sauter, Schindler et 

al. 2009).  

CD317/tetherin functions not only as an intrinsic restriction factor to block the release 

of viral particles but also as a viral sensor to stimulate innate immune responses. The 

gene encoding CD317/tetherin was early reported as a potential activator of the 
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transcription factor NF-κB in a cDNA screening before the identification of its 

restriction activity (Matsuda, Suzuki et al. 2003). The subsequent researches 

demonstrated the role of CD317 as a pattern-recognition receptor to stimulate the 

activation of NF-κB via a mechanism independent of its restriction of virion release 

(Galao, Le Tortorec et al. 2012) (Tokarev, Suarez et al. 2013). NF-κB is the major 

transcriptional control factor which plays a pivotal role in immune and inflammatory 

responses. It is sequestered in cell cytoplasm by its inhibitor IƙB as an inactive form 

in the cell cytosol. Upon various stimulations such as TNFα, bacterial 

lipopolysaccharide (LPS) and the growth factors, NF-κB is free of IƙB sequester and 

then transported to the nucleus where it regulates a list of gene expression including 

immunoregulatory proteins and cytokines (Gilmore 2006) (Oeckinghaus and Ghosh 

2009). The motif studies showed that the restriction of virus release and induction of 

NF-κB by CD317/tetherin are uncoupled activities. Activation of NF-κB by 

CD317/tetherin is dependent on the YxY motif in the CTD but not the GPI anchor of 

CD317/tetherin, while the GPI anchor but not the YxY motif is essential for the 

restriction of virion release (Galao, Le Tortorec et al. 2012) (Tokarev, Suarez et al. 

2013). How HIV-1 Vpu counteracts these two antiviral activities of CD317/tetherin 

and what HIV-1 could benefit from the antagonism of CD317/tetherin are unsolved 

issues. 

 

2.3.2 Antagonism of CD317 by HIV-1 Vpu 

Vpu-mediated Virion Release Enhancement and CD317 Surface Downregulation 

HIV-1 utilizes Vpu to antagonize CD317/tetherin and facilitate virion particle release. 

The molecular mechanism of how CD317/tetherin tethers mature virions at the plasma 

membrane of infected cells and how Vpu counteracts the restriction are partially 

determined. It’s clear that the membrane anchor GPI and extracellular coiled-coil 

domain of CD317/tetherin are involved in crosslinking the virions on the cell 

membrane, and also Vpu TMD domain is essential for facilitating the virion release. 

The Paul D. Bieniasz group demonstrated that HIV-1 Vpu directly bind with 
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CD317/tetherin via TM domains of both proteins and displaced CD317/tetherin from 

the sites of viral assembly, leading to the failure of CD317/tetherin tethering into the 

viral envelop and the decreased surface level of CD317/tetherin (Venkatesh and 

Bieniasz 2013) (McNatt, Zang et al. 2013).The required molecule determinants of 

Vpu were identified. The highly conserved AxxxAxxxA motif embedded in the TM 

domain, together with the its β-TrCP binding motif DSGxxS and a trafficking motif 

ExxxLV located in the CTD domain, as well as a tryptophan (W) residue in the end of 

Vpu CTD are essential for the optimal virion release enhancement (Vigan and Neil 

2010) (Kueck and Neil 2012) (Jafari, Guatelli et al. 2014). Apart from its capacity to 

antagonize the virion restriction activity of CD317/tetherin, Vpu could reduce the 

level of CD317/tetherin from the cell surface. The proposed mechanism is that Vpu 

interacts with CD317/tetherin and targets it to TGN for lysosomal degradation, or 

traps CD317/tetherin molecules in TGN and blocks the anterograde trafficking 

(Schmidt, Fritz et al. 2011). Ambiguously, surface down-modulation and total 

intracellular depletion of CD317/tetherin are not essential for neutralizing 

CD317/tetherin-restricted release of viral particles, which indicates that the 

antagonism of CD317/tetherin restriction and downregulation of CD317 are separable 

activities of Vpu (Goffinet, Homann et al. 2010). 

Inhibition of NF-ƙB Signalling in the Presence or Absence of CD317/tetherin by 

Vpu 

In addition to counteract the restriction of virion particle release imposed by 

CD317/tetherin, Vpu could also inhibit CD317/tetherin-induced NF-ƙB signalling. 

NF-ƙB can be activated by the presence of CD317, whose expression level is 

increased due to the enhanced type I interferon upon the infection of HIV-1. Vpu has a 

negative effect on the stimulation of NF-ƙB in this pathway due to its effect on 

CD317/tetherin. This inhibitory activity requires the β-TrCP binding motif DSGxxS 

of Vpu (Tokarev, Suarez et al. 2013). A former study also observed Vpu interfered the 

NF-ƙB signalling independent of CD317/tetherin. And this capacity of Vpu is 

attributed to its affinity with β-TrCP which is required for the degradation of NF-ƙB 

inhibitor-IƙB. In the presence of Vpu, the degradation of IƙB is suppressed, because 
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the phosphorylated Vpu has high affinity with the adaptor protein β-TrCP of SCFβ-TrCP 

E3 ubiquitin ligase complex which is needed for marking the phosphorylated IƙB to 

degradation (Perkins 2007), and thus the activation of NF-ƙB is inhibited (Bour, 

Perrin et al. 2001; Gilmore 2006). 

 

2.4 Surface Down-modulation of Antigen Presenting Molecule: MHC-I 

In addition to the enhancement of viral particle release and the inhibition of NF-ƙB 

signalling, Vpu may disturb the presentation of HIV-1-derived peptides to CD8+ 

cytotoxic T lymphocytes (CTL) by down-regulating the surface expression of major 

histocompatibility complex I (MHC-I) (Kerkau, Bacik et al. 1997). One of the 

primary antiviral functions of MHC-I is to present pathogen-derived peptides to the 

specific CTLs (Yewdell and Bennink 1992), which consequently induces the killing of 

pathogen-invaded cells. MHC-I plays a critical role in eradication of virus infected 

cells and viruses have evolved strategies to interfere the MHC-I mediated immune 

responses (Yewdell and Hill 2002). One of the strategies is to decrease the surface 

expression level of mature MHC-I molecules. HIV-1 utilizes three of its proteins Vpu, 

Nef and Tat to down-modulate MHC-I (Petersen, Morris et al. 2003). The accessory 

protein Nef blocks the transport of MHC-I and leads to the surface level reduction and 

by doing so, Nef enables HIV-1 to evade CTL killing and contributes to the 

pathogenicity of HIV-1 (Collins, Chen et al. 1998) (Swann, Williams et al. 2001) 

(DeGottardi, Specht et al. 2008). However, the mechanism and functional relevance 

of Vpu-mediated downregulation of MHC-I has not been investigated since its effect 

on the surface expression level of MHC-I was observed (Kerkau, Bacik et al. 1997). 

One group proposed that Nef and/or Vpu played the major role on the surface 

reduction of MHC-I during HIV-1 infection to evade the CTLs (Schmokel, Sauter et 

al. 2011). In this scenario, Vpu may have a positive effect on viral survival during the 

HIV-1 infection if not directly on the HIV-1 replication, as the pathogenic factor Nef. 

It is worthwhile to mention that Vpu could target MHC-I, but Vpu-derived peptides 

are very rarely presented to CTLs (Addo, Altfeld et al. 2002) (Addo, Yu et al. 2002) 
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(Hasan, Carlson et al. 2012). 

 

2.5 Vpu-mediated Interceptions of NK cells Antiviral Activity 

Not only the adaptive immune responses dysfunction during HIV-1 infection, but also 

the innate immune system is perturbed, as increasing evidences have showed (Alter, 

Teigen et al. 2005) (Fogli, Costa et al. 2004). As a major component of innate 

immunity, the phenotypes of NK cells was altered by HIV-1 infection (Iannello, 

Debbeche et al. 2008). The surface levels of membrane markers such as CD56, as 

well as members from killer-cell immunoglobulin-like receptors (KIR), present on the 

surface of NK cells, can be dysregualted during the infection of HIV-1 (Mavilio, 

Benjamin et al. 2003) (Naranbhai, Altfeld et al. 2013) (Milush, Lopez-Verges et al. 

2013). All these evidences attract the researchers to decipher the mechanisms how 

HIV-1 could escape the first line of host antiviral the surveillance-innate immunity. 

The Vpu-mediated evasion of NK cells immunity is described as follows. 

 

2.5.1 Vpu Impedes NK cells Killing via NTB-A and PVR Downregulation 

NK cells express a repertoire of activating and inhibitory receptors which regulate the 

functions of NK cells by interacting with their corresponding ligands. In normal 

conditions, a delicate balance is maintained by the interactions of NK cell receptors 

and their ligands (Lanier 2008). Upon infection or other stimuli, NK cells could 

initiate the cytolytic activity by sensing the surface level changes of NK cell ligands 

on target cells such as tumours and virus-infected cells via the interactions with 

specific NK cell receptors (Alter and Altfeld 2009). HIV-1 could shape these 

interactions and thus evade the killing by NK cells. One target is NK-T-B antigen 

(NTB-A) which is a co-activating receptor required for NK cell degranulation. 

NTB-A can be downregulated from HIV-1 infected cells specifically by Vpu, which 

leads to the failure of NK cell degranulation and consequently inability of killing 

HIV-1 infected cells (Shah, Sowrirajan et al. 2010). Another NK cell ligand PVR 

(CD155) for the activating receptor DNAM-1 (CD226) expressed by all NK cell, is 
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also modulated in HIV-1 infection and therefore contributes to the evasion of the 

cytolytic effect imposed by NK cells. The major viral component responsible for this 

downregulation activity is HIV-1 Nef, while the optimal downregulation needs the 

presence of HIV-1 Vpu (Matusali, Potesta et al. 2012). Overall, Vpu is not strictly 

required for the HIV-1 replication, but it modulates the expression level of the ligands 

for NK cells functioning and thus leads to the inability of innate immune responses, 

which adds the strength of HIV-1 to persist in the complicated host cell immune 

surveillance. 

 

 

 

 

Figure 7: Biological functions of HIV-1 Vpu. ① Vpu enhances HIV-1 particle 

release HIV-1 particle release by antagonizing CD317. ② Vpu inhibits the NK 

cell-mediated ADCC response. ③ Vpu traps CD317 at TGN and reduces the surfacel 

level of CD317. ④ Vpu inhibits CD317-induced NF-ƙB signalling. ⑤ Vpu induces 

the degradation of newly sythesized CD4. ⑥, ⑦ Vpu disables NK cell killing by 
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down-regulating NK cell ligands NTB-A and PVR. ⑧ Vpu inhibits NF-ƙB signalling 

via the inhibition of IƙB. ⑨, ⑩ Vpu decrease the surface expression level of MHC-I 

or CD1d. 

 

 

2.5.2 Vpu Modulates NK cell function via its KIR-associated Footprints 

In addition to regulate the expression level of NK cells ligands, Vpu was shown to 

directly adapt to the receptors on NK cells during the co-evolution of HIV-1 and the 

host. One epidemiology study showed evidences that HIV-1 evolved under the NK 

cell mediated selection pressure and adapted to KIR receptors present on the surface 

of NK cells and thus neutralize the lytic effects imposed by NK cells. Two amino 

acids at the C-terminal of Vpu 71M/74H were found to be associated with one of the 

inhibitory KIR receptors KIR2DL2. The specific Vpu footprints, together with the 

corresponding KIR genotype, enable HIV-1 to escape the recognition and killing by 

NK cells (Alter, Heckerman et al. 2011).  

 

2.5.3 Vpu Protects HIV-1 Infected Cells from NK cell-mediated ADCC  

As introduced in 1.4.4, ADCC is increasingly recognized as a potentially powerful 

anti-HIV response. Recently, two groups observed that Vpu could circumvent the 

effects of NK cell-mediated ADCC. The Cohen group showed that Vpu, 

synergistically with HIV-1 Nef, decreased NK cell-mediated ADCC by antagonizing 

CD317/ tetherin and preventing CD4 accumulation from the infected cells, which may 

contribute to the persistence of HIV-1 in vivo (Pham, Lukhele et al. 2014). The other 

study showed that Vpu protected infected cells from ADCC via the antagonism of 

CD317/tetherin. They proposed that CD317/tetherin retains virions on the infected 

cells surface and therefore enhances the chances of recognition and binding of HIV-1 

particles with HIV-1 specific ADCC antibodies in the absence of Vpu, which makes 

the infected cells more susceptible to NK cells (Arias, Heyer et al. 2014).  
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2.6 Functional Discrepancy of Primary Vpu from Different HIV-1 Groups 

Only the HIV-1 M group, which is responsible for the global pandemic, has evolved 

the full functional Vpu to modulate the immune components or pathways described in 

previous sections. The rare HIV-1 N group Vpu alleles could counteract 

CD317/tetherin to a very limited extent, but they are inactive to reduce the cell surface 

level of CD4 due to the lack of determinants in cytoplasmic domain (Sauter, 

Unterweger et al. 2012). HIV-1 O and P group Vpu alleles are active for CD4 

downregulation but deficient to enhance vial particle release (Vigan and Neil 2011). 

All these evidences suggest that Vpu could be one of the factors to promote the spread 

in the population level and contribute to the HIV-1 pathogenesis. However, the central 

issue about the role of Vpu in HIV-1 pathogenicity is not defined yet, which motivates 

us to give more insights into this issue. 
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3 Aims of This Study 

Vpu is not essential for HIV-1 replication but intensively modulates host immune 

components including the HIV-1 primary entry receptor CD4, whose cell surface 

levels are reduced by Vpu. Uniquely, Vpu promotes the release of mature viral 

particle from infected cells by antagonizing the host restriction factor CD317/tetherin. 

Moreover, Vpu interferes with NF-ƙB signalling triggered by CD317/tetherin and 

reduces the cell surface exposure of MHC class I (MHC-I) and natural killer cells 

ligand NTB-A. While these Vpu activities have been established ex vivo, their 

relevance for HIV pathogenesis in the infected host remains unclear.  

In an attempt to correlate Vpu function with the clinical outcome of HIV-1 infection, 

we designed to generate the vpu alleles derived from two distinct clinical groups of 

treatment-naïve HIV-1 infected patients. While HIV-1 elite controllers (ECs) naturally 

control virus replication and keep the viral load below detectable level (<50 

copies/ml), chronic progressors (CPs) display viral loads of more than 2 000 

copies/ml. Several aspects concerning these two groups of Vpu alleles were to be 

addressed in the course of this study: 

1) Sequence diversity of patient-derived Vpu alleles. 

2) If the activities of CD4, CD317, MHC-I, and NTB-A downregulation are 

conserved among EC and CP Vpus? 

3) Whether the Vpu alleles still possess the activities to enhance virion release 

and inhibit NF-ƙB signalling or not?  

4) Is there any systematic difference regarding these functions between EC and 

CP Vpus? If these functions of Vpu are correlated with each other? 

5) Is any activity correlated with disease outcomes? 

6) Based on the natural Vpu alleles, define novel functional motifs for the listed 

activities. 
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4 Materials and Methods 

4.1 Materials 

4.1.1 Study Subjects 

Fifteen HIV-1 ECs (pVL< 50 RNA copies/ml; median [interquartile range, IQR] CD4 

counts 843 [654–955]cells/mm3) and sixteen CPs (median [IQR] CD4 count 284 

[36.75–433] cells/mm3) were selected from two cohorts described previously 

(Pereyra, Addo et al. 2008) (Miura, Brockman et al. 2008) (Miura, Brockman et al. 

2009) (Brumme, Li et al. 2011) (Mwimanzi, Markle et al. 2013). Briefly, all 

participants were recruited on the basis of viral load from outpatient clinics at local 

Boston hospitals and also referred from provides throughout the United States, after 

institutional review board approval and written informed consent. At the time of 

plasma sample collection, all patients were treatment naïve. HIV-1 ECs were defined 

as having plasma HIV RNA levels below the level of detection for the available 

ultrasensitive assays (< 75 copies/mL by multiple branched DNA (bDNA) or < 50 

RNA copies/mL by ultrasensitive PCR) without ART. HIV-1 CPs were defined as 

having plasma HIV RNA levels above 10,000 copies/mL without ART (Pereyra, Addo 

et al. 2008).  

4.1.2 Viral RNA Isolation and RT-PCR Amplification 

Prior to the vpu gene amplification, plasma collection, viral RNA isolation and 

RT-PCR amplification were performed by the researcher from the group of Bruce D. 

Walker (Ragon Institute of Massachusetts General Hospital, Massachusetts Institute 

of Technology and Harvard University, Boston, MA, USA) (Pereyra, Addo et al. 

2008) (Miura, Brockman et al. 2009). The RT-PCR products for our research project 

were kindly provided by Takamasa Ueno (Center for AIDS Research, Kumamoto 

University, Japan) who was authorized to have the patients’ samples as described 

below. The plasma collection and viral RNA isolation were described previously 

(Pereyra, Addo et al. 2008) (Miura, Brockman et al. 2009). Briefly, HIV-1 plasma 

virus from EC and CP was isolated by ultracentrifugation. Viral RNA was extracted 

by using the Qiagen viral RNA mini kit with the treatment of RNase-free DNase set 
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and was eluted in DNase- and RNase-free water and stored at -80°C. HIV-1 gene 

regions were amplified using nested reverse transcriptase PCR (RT-PCR) followed by 

the treatment of DNase, as described (Miura, Brockman et al. 2008). Genbank 

accession numbers for primary vpu sequences are EU517721-EU873004 (EC) and 

FJ469688-FJ469764 (CP). 

 

4.1.3 Oligonucleotide Primers for Vpu Sequences Amplification 

Based on the primary vpu sequences, forward and reverse primers were designed by 

tracking the nucleotide sequences for editing the first and the last four amino acids 

respectively. All the primers were listed in Table 2-1 and 2-2. 

Table 2-1: List of forward primers for vpu gene amplification. 

Eco-MQSL 5'-CGCGGAATTCATGCAATCCTTA- 3' 

Eco-MQPL 5'-GCCGGAATTCATGCAACCTTTA- 3' 

Eco-MQSI 5'-GCCGGAATTCATGCA ATCTATA- 3' 

Eco-MQTL 5'-GCCGGAATTCATGCAAACTTTA- 3' 

Eco-MQSV 5'-GCCGGAATTCATGCA ATCTGTA- 3' 

Eco-MQAL 5'-GCCGGAATTCATGCAAGCTTTA- 3' 

Eco-MQTT 5'-GCCGGAATTCATCA AACCA A- 3' 

Eco-MIPL 5'-GCCGGAATTCATGATACCTTT A- 3' 

Eco-MPSL 5'-GCCGGAATTCATGCCATCTTTA- 3' 

Eco-MSPL 5'-GCCGGAATTCATGTCACCTTTA- 3' 

Eco-MQLL 5'-GCCGGAATTCATGCAATTGTTA- 3' 

Eco-MNSL 5'-GCCGGAATTCATGAACTCTCTA- 3' 

Eco-MNAL 5'-GCCGGAATTCATGAATGCCTTA- 3' 

Eco-MQYL 5'-GCCGGAATTCATGCAATATTTA- 3' 

Eco-MQPI 5'-CGCGGAATTCATGCAACCAATC- 3' 

Eco-MQPIQI 5'-CGCGGAATTCATGCAACCTATACAAATA- 3' 

Eco-MHVS 5'-GCCGGAATTCATGCATGTATG- 3' 

Eco-MYSL  5'-GCCGGAATTCATGTACTCTTTA- 3' 

Eco-MLSL 5'-GCCGGAATTCATGCTCTCTTTA- 3' 
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Table 2-2: List of reverse primers for vpu gene amplification. 

VDDL BamRev 5'-GCGCGGATCCAGATCATCAAC- 3' 

WDVDDL BamRev 5'-GCTCGGATCCAGATCATCAACATCCCA- 3' 

WDIDDL BamRev 5'-GCGCGGATCCAGATCATCAATATCCCA- 3' 

IDDL BamRev 5'-GCGCGGATCCAGATCATCAAT- 3' 

VNDL BamRev 5'-GCGCGGATCCAGAT ATTAAC- 3' 

INDL BamRev 5'-GCGCGGAT CAGATCATTAAT- 3' 

NDNL BamRev 5'-GCGCGGATC CAGATTATCATT- 3' 

INNM BamRev 5'-GCGCGGATCCATATTATTAAT- 3' 

GDDIG BamRev 5'-GCGCGGATCCCCTATATCATCACC- 3' 

INDM BamRev 5'-GCGCGGATCCATATCATTAAT- 3' 

VDNL BamRev 5'-GCGCGGATCCAGATTATCAAC- 3' 

TDDL BamRev 5'-GCGCGG ATCCAGATCATCAGT- 3' 

IDDQ BamRev 5'-GCGCGGATCCTGATCATCAAT- 3' 

DINDM BamRev 5'-GCGCGGATCCATATCATTAATATC- 3' 

 

4.1.4 Specific Primers for Site-directed Mutagenesis 

All the primers used for searching novel molecular determinants of Vpu are listed in 

Table 3. They were designed for site-directed mutagenesis under these conditions: 1) 

The primer length is in the range of 25-45 bases of nucleotides; 2) The primer 

contains at least 40% cytosine (C) and guanine (G), starting with a C or G; 3) Melting 

temperature (Tm) should be above 78°C; 4) The target sequence for mutation should 

be in the middle of the primer (Laible and Boonrod 2009). 

Table 3-1: List of forward primers for mutagenesis from NL4.3 Vpu to MEF 

NL4.3Vpu I17V 5'-GCAATAGTAGCATTAGTAGTAGCAATAGTA

ATAGCAATAGTTGTGTGGTCCATAG- 3'    

NL4.3Vpu V26I 5'-GCAATAATAATAGCAATAGTTGTGTGGTCC

ATAATAATCATAGAATATAGGAAAATATTAAG- 

3'   

NL4.3Vpu 49V 5'-GGTTAATTGATAGACTAATAGAAAGAGTAG

AAGACAGTGGCAATGAGAGTGAAGG- 3' 

NL4.3Vpu 77H 5'-GGCACCATGCTCCTTGGCATGTTGATGATC

TG- 3'   

 



42 
 

Table 3-2: List of reverse primers for mutagenesis from NL4.3 Vpu to MEF 

NL4.3 Vpu I17V 

 

5'-CTATGGACCACACAACTATTGCTATTACTATTGCTAC

TACTAATGCTACTATTGC- 3'  

NL4.3 Vpu V26I 

 

5'-CTTAATATTTTCCTATATTCTATGATTATTATGGACCA

CACAACTATTGCTATTATTATTGC- 3'   

NL4.3 Vpu A49V 

 

5'-CCTTCACTCTCATTGCCACTGTCTTCTACTCTTTCTA

TTAGTCTATCAATTAACC- 3'   

NL4.3 Vpu D77H 5'-CAGATCATCAACATGCCAAGGAGCATGGTGCC- 3' 

Table 4-1: List of forward primers for mutagenesis MEF to NL4.3 Vpu  

MEF V17I 5'-GCAATAGTAGCATTAGTAGTAGCAGCAATACTAGCA

ATAGTTGTGTGGTCCATAATAC- 3' 

MEF I26V 5'-GCAGCAGTACTAGCAATAGTTGTGTGGTCCATAGTA

CTCATAGAATATAGGAAAATATTAAG- 3' 

MEF V49A 

 

5'-GATTGATAGAATAGCAGAAAGAGCAGAAGACAGTG

GCAATGAGAG- 3' 

MEF D77H 5'-GGCATGATGCTCCTTGGGATGTTAATGATCTGGATC

C- 3' 

Table 4-2: List of reverse primers for mutagenesis from MEF to NL4.3 Vpu  

MEF V17I 

 

5'-GTATTATGGACCACACAACTATTGCTAGTATTGCTGC

TACTACTAATGCTACTATTGC- 3' 

MEF I26V 

 

5'-CTTAATATTTTCCTATATTCTATGAGTACTATGGACCA

CACAACTATTGCTAGTACTGCTGC- 3' 

MEF V49A 

 

5'-CTCTCATTGCCACTGTCTTCTGCTCTTTCTGCTATTCT

ATCAATC- 3' 

MEF D77H 5'-GGATCCAGATCATTAACATCCCAAGGAGCATCATGC

C- 3' 

 

4.1.5 Reagents 

Enzymes and Buffers for Molecular Cloning  

Pfu polymerase/10× Pfu buffer New England Biolabs 

Endonuclease / the digest buffer New England Biolabs 

T4 ligase/ligation buffer New England Biolabs 

Kits for Molecular Cloning 

NucleoBond AX 100 Kit   Macherey-Nagel 
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NucleoSpin Extract II Kit Macherey-Nagel 

PCR Purification Kit Macherey-Nagel 

Plasmid Miniprep/Max-prep Macherey-Nagel 

Markers 

Protein Standards, pre-stained   New England Biolabs 

DNA molecular marker, 1kb DNA ladder  MBI Fermentas, St. Leon-Roth 

Inhibitors and Drugs 

MG-132  Sigma 

Protease Inhibitor Cocktail  Sigma 

Recombinant Human TNF-α Peprotech 

Antibodies for Western Blotting, Fluorescence-activated Cell Sorting (FACS) and 

Immunology Fluorescence Microscopy 

Table 5-1: List of primary antibodies 

Antibodies Usage/Dilution Source 

Rabbit-anti-Vpu         WB 1:1000 Vpu-101AP; FabGennix Inc.        

Mouse-anti-GFP         WB 1:1000 G6539; Sigma                  

Rat-anti-GFP            WB 1:1000 3H9 a-GFP; Chromotek            

Sheep-anti-HIV-1capsid WB 1:5000 Babara Müller, Uni. Heidelberg 

Mouse-anti-CD317       FACS 1: 500 Clone 26F8; BD Bioscience         

CD4-APC         FACS 1: 20 RPA-T4; BD Bioscience      

MHC-I-APC            FACS 1: 20 555555; BD Bioscience            

Mouse-anti-NTB-A       FACs 3μg/ml  MAB19081; R&D        

594 WGA IF 10 μg/μl Invitrogen 

Mouse-anti-Tfr WB 1:1000 Zymed Laboratories 

Tfr: Transferrin receptor 
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Table 5-2 List of secondary antibodies 

4.1.6 Plasmids 

pEGFP N1   

Origin: Clontech 

Descritption: It is used for the expression of enhanced green fluorescent protein 

(eGPF) in mammalian cell lines under the Cytomegalovirus (CMV) promoter. 

Usage: Construction of the expression plasmids for non-codon optimized natural vpu 

alleles and reference NL4.3 vpu. The vpu gene with the restriction cites (EcoRI and 

BamHI) was inserted into upstream of the eGFP sequence. Vpu was expressed as a 

fusion to the N-terminus of GFP tag. 

pIRESGFP   

Origin: Clontech 

Descritption: It contains the internal ribosome entry site (IRES) of the 

encephalomyocarditis virus (ECMV) between the multiple cloning sites (MCS) and 

the GFP coding region. This permits both the gene of interest (cloned into the MCS) 

and the EGFP gene to be translated simultaneously from a single bicistronic mRNA. 

Usage: Construction of the expression plasmids for non-codon optimized natural vpu 

alleles and reference NL4.3 vpu. The vpu gene with the restriction cites (EcoRI and 

BamHI) was inserted into upstream of the eGFP sequence. Vpu was expressed as a 

fusion to the N-terminus of GFP tag. 

pcDNA-SynVpu 

Descritption: It contains a codon-optimized HIV-1 NL4.3 vpu. It was from Klaus 

Strebel (Nguyen, llano et al. 2004). 

Antibodies Usage/Dilution Source 

Mouse-APC       FACS 1: 200 Jackson ImmunoResearch  

Goat-anti-mouse peroxidase  WB 1:5 000 Dianova 

Goat-anti-rat peroxidase     WB 1:5 000 Dianova 

Goat-anti-rabbit peroxidase  WB 1:5 000 Dianova 

Duck-anti-sheep peroxidase  WB 1:5 000 Dianova 
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Usage: Served as a positive control for the infectivity assay in the pre-test. 

pNL4.3 VpuEGFP, pNL4.3 VpuIRESGFP and pNL4.3 VpuS/A IRESGFP 

They were constructed as the same procedure with natural vpu alleles described in 4.2. 

pNL4.3VpuS/AIRESGFP was generated by site-directed mutagenesis from 

pNL4.3VpuIRESGFP. pNL4.3VpuS/AIRESGFP encodes for the Vpu protein 

containing two serine mutations at the amino acids of 52 and 56. They all served as 

controls for the functional analysis of natural vpu alleles. 

pHIV-1NL4.3 wt (BH10 Env) 

Origin: Valerie Bosch (DKFZ, Germany)  

Descritption: provirus plasmids (Bosch and Pawlita 1990) 

Usage: Infectivity assay 

pHIV-1 NL4.3ΔVpu (BH10 Env) 

Origin: Valerie Bosch (DKFZ, Germany)  

Descritption: Based on pHIV-1NL4.3 wt (BH10 Env), Vpu expression was abolished 

by mutating the vpu initiation codon to ATT (Pfeiffer, Pisch et al. 2006). 

Usage: Infectivity assay 

 

The following plasmids were from Daniel Sauter (Ulm University, Germany). The 

related experiments were performed by his group. 

pCG-WITO Vpu 

Description: It is derived from a transmitted/founder subtype B HIV-1 group M strain 

and it is highly active for CD4 downregulation and CD317/tetherin counteraction(Li, 

Gao et al. 2005) (Doehle, Chang et al. 2012) 

Usage: Positive control for the inhibition of NF-κB activation  

pCG-human tetherin IRES DsRed2 

Description: Human CD317/Tetherin was cloned into the CMV promoter-based pCG 

expression vector co-expressing DsRed2 as previously described (Sauter, Schindler et 

al. 2009). 

Usage: activation of NF-ƙB signalling. 
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pNF-ƙB(3x)-Firefly Luciferase 

Description: It contains three NF-κB binding sites kindly provided by Bernd 

Baumann. 

Usage: NF-κB reporter plasmid 

pTAL-Gaussia Luciferase 

Description: It contains the minimal promoter-TATA-like promoter (pTAL) region 

from the Herpes simplex virus thymidine kinase (HSV-TK) that is not responsive to 

NF-κB (Sauter, Hotter et al. 2013). 

Usage: The internal control for transfection efficiency, that is, used for the 

normalization of the NF-ƙB-induced expression of firefly luciferase. 

pTAL-Firefly Luciferase 

Description: The gaussia luciferase in pTAL-Gaussia Luciferase constructwas 

replaced by firefly luciferase (Sauter, Hotter et al. 2013) 

Usage: The negative control for the NF-κB reporter plasmid 

IKKβ 

Description: constitutively active mutant 

Usage: activation of NF-ƙB signalling. 

4.1.7 Eukaryotic Cell Lines  

HEK293T  

Origin: Human Embryonic Kidney cell line expressing the large T antigen of SV40  

Cell culture medium: DMEM (high) 

Usage: Check the expression of Vpu alleles 

A3.01  

Origin: Human T cell line, CD4 and CD8 double positive 

Cell culture medium: RPMI1640 complete 

Usage: CD4/CD317/MHC-I/NTB-A downregulation 

TZM-bl 
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Origin: Hela cell lines introduced separate integrated copies of the luciferase and 

ß-galactosidase genes under control of the HIV-1 promoter. The TZM-bl cell line is 

highly sensitive to infection with diverse isolates of HIV-1. 

Cell culture medium: DMEM (high) 

Usage: Check the expression of Vpu alleles; downregulation of CD4/CD317; 

infectivity assay 

Freezing medium: 90% (v/v) heat inactivated fetal calve serum supplemented with 

10% (v/v) DMSO 

Trypsin/EDTA: 10% (v/v) trypsin/EDTA (10×, Biochrom), 90% PBS 

 

4.1.8 Bacterial strains 

DH5α  

Origin: Invitrogin 

Genotype: F- φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(rk-, mk+) 

phoA supE44 thi-1 gyrA96 relA1 λ- 

Usage: Amplification of plasmids DNA 

Stab II 

Origin: Invitrogin 

Genotype: F- mcrA Δ(mcrBC-hsdRMS-mrr) recA1 endA1lon gyrA96 thi supE44 

relA1 λ- Δ(lac-proAB) 

Usage: Amplification of HIV-1 proviral plasmids  

4.1.9 Buffers and Solutions 

DNA loading Buffer  

Tris HCl (pH7.5)       50mM 

EDTA                   50mM 

Glycerol                  50% (v/v) 

Bromphenol blue                  0.25% 

Paraformaldehyde (PFA) pH7.3  

Paraformaldehyde                 3% (v/v) in PBS 
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PBS pH7.4  

Sodium Chloride (NaCl)                 96mM 

Sodium potassium phosphate (Na2HPO4)    10mM 

Monosodium phosphate (NaH2PO4 )          2.3mM 

PBS-T  

Sodium Chloride (NaCl)                 96mM 

Sodium potassium phosphate (Na2HPO4)    10mM 

Monosodium phosphate (NaH2PO4 )          2.3mM 

Tween 20                               1mM 

Luria Bertani (LB) Medium pH7.5  

Tryptone                             1% (w/v) 

Yeast extract                          0.5% (w/v) 

Sodium chloride (NaCl)                 170mM 

NaOH                               5mM 

Autoclaved at 121°C for 20 min  

SDS-PAGE Running gel  

30% acrylamide (0.8% bisacrylamide)      2.5 ml 

1.88 M Tris/HCL, pH 8.8                1.2 ml 

0.5% SDS                            1.2 ml 

Water                                1.1 ml 

APS 10%                              30 μl 

TEMED                                5 μl 

SDS-PAGE Stacking gel  

30% acrylamide (0.8% bisacrylamide)       330 μl 

0.625 M Tris/HCL, pH 6.8                400 μl 

0.5% SDS                             400 μl 

Water                                 870 μl 

APS 10%                               10 μl 

TEMED                                2 μl 
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2× SDS Sample Buffer  

Tris-HCl (pH6.8)                        130mM 

β-Mercaptoethanol                       10% (v/v) 

Glycerol                              10% (v/v) 

SDS                                  6% (w/v) 

Bromphenol  blue tip of a spatula 

6× SDS Sample Buffer  

Tris-HCl (pH6.8)                        390mM 

β-Mercaptoethanol                       30% (v/v) 

Glycerol                               30% (v/v) 

SDS                                  10% (w/v) 

Bromphenol blue                        blue tip of a spatula 

50× TAE Buffer  

Tris-acetic acid, pH7.8                    2M 

Sodium acetate                          250mM 

EDTA                                 500μM 

Tris-buffered Saline (TBS)  

Tris-HCl (pH7.6)                         20mM 

NaCl                                   140mM 

TBS-T  

Tris-HCl (pH7.6)                         20mM 

NaCl                                   140mM 

Tween 20                               1mM 

Transfer Blotting Buffer  

Tris.HCl, pH8.8                          25mM 

Glycine                                192mM 

Methanol                               20% (v/v) 

SDS                                   0.05%(w/v) 
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4.1.10 Lab Equipments, Chemicals and Consumption Items 

Table 6-1: List of Lab Equipment. 

Equipment Source 

Balance Ohaus Explorer, Germany 

Centrifuge Megafuge 1.0R                  Heraeus 

Centrifuge Biofuge fresco                   Heraeus 

Electroporator GenePulser X Cell TM           BioRad, USA 

Electrophoresis Power Supply                Amersham Biosciences 

Flow cytometer FACScalibur                BD, Germany 

Fluorescence Microscopy IX70               Olympus, Japan 

Microscopy Olympus CK2                  Olympus, Japan 

Freezer -80°C                            Thermo Scientific, USA 

LIEBHERR refrigerator and Freezer          LIEBHERR, UK 

Hera cell 150i CO2 incubator                Thermo Scientific, Germany 

Incubator Infors HT                        Infors, Bottmingen, Switzerland 

LSM510 confocal Microscopy               Zeiss, Germany 

Microplate Luminometer        Thermo Scientific, Germany 

Multi Channel Pipettes                     Thermo Scientific, Germany 

Minigel Twin (SDS PAGE) Biometra, Germany 

Nanophotometer   IMPLEN, Germany 

Odyssey Infrared Imaging System            Li-cor Biosciences, USA 

pH meter                                Knick, Germany 

Pipettes Labmate                          Abimed, Germany      

PCR Thermocycler                        Biometra, Germany      

Power PAC 200                           Bio-Rad, USA              

Srerile Hood  The Baker Company, USA 

UV Transilluminatoren                     INTAS, Germany 

 

Table 6-2: List of Chemicals and Consumption Items. 

Acrylamide bis aqueous solution 40 (29:1) Roth, Karlsruhe 

Acetone         Zentralbereich INF, Heidelberg 

Ammonium chloride (APS)                  Bio-Rad; München 

Blotting paper (Whatman)                   Schleicher&Schuell; Dassel 

Dishes/bottles/tube for cell culture            Neolab; Heidelberg 

Agar                                    BD falcon, Heidelberg 

Agarose NEEO Ultra quality                 Roth, Karlsruhe 

Ampicillin   Roth, Karlsruhe               
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Coverslips (12mm)                        Marienfeld 

DMEM/OptiMEM/RPMI1640               Invitrogen 

Electroporation cuvettes (4 mm gap)          Invitrogen, Karlsruhe 

Ethanol 100% (v/v)                        JT Baker, Deventer, Netherlands 

Ethidium bromide                         Merck, Darmstadt 

Fetal calf serum (FCS)                     Invitrogen 

Glycerol Zentralbereich INF, Heidelberg 

Isopropanol   Zentralbereich INF, Heidelberg 

Kanamycin Roth, Karlsruhe               

Lipofectamine 2000 Invitrogen, Karlsruhe 

Metafectene Biontex, Martinsried 

Milk powder                             Roth, Karlsruhe 

Mowoil Calbiochem 

β-Mercaptoethanol                         Sigma- Aldrich, München 

Nitrocellulose, Protran Transfer Membrane     Schleicher&Schuell, Dassel 

Penicillin/Streptomycin Sigma-Aldrich, München 

Protease inhibitor Mix                      Sigma-Aldrich, München 

Sodium acetate (NaCH3CO2)                Grüssing, Filsum 

Sodium chloride (NaCl)                    AppliChem; Darmstadt 

Sodium dodecyl sulfate (SDS)               Serva; Heidelberg 

Sodium hydroxide(NaOH)                  Merck; Darmstadt 

Sodium pyruvate                          Invitrogen; Karlsruhe 

Tris (hydroxymethyl aminomethane)          Roth; Karlsruhe 

Triton X-100                            Pharmacia Biotech; Erlangen 

Trypsin-EDTA                            Biochrom; Berlin 

TEMED Roth; Karlsruhe 

Trypan Blue                              Invitrogen; Karlsruhe 

Tween-20                               Roth; Karlsruhe 

Cell Culture Lysis Reagent (5×) Promega, Wisconsin, USA 

Luciferase assay Substrate Promega, Wisconsin, USA 

White polystyrene (Luc. Assay)              Corning, New York, USA 

Plastic materials for cell culture              Costar 

Penicillin and Streptomycin (50U/ml)          Invitrogen 
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4.2 Methods 

4.2.1 Cloning and Analysis of vpu genes from RT-PCR Products 

To amply the vpu gene sequences, polymerase chain reaction (PCR) was performed to 

amply the region of vpu gene from the RT-PCR samples with specific primers listed in 

Table 2-1 and 2-2. The amplified PCR fragments were digested with EcoRI and 

BamHI and then ligated into the vector pEGFP-N1 which was digested with the same 

enzymes. The PCR reaction system, PCR procedure, enzyme restriction digestion of 

PCR products/vector plasmids were as follows. 

PCR Reaction System 

Components           Ultimate concentration Volume (50.0μl) 

Templates (RT-PCR)  0.1μg/μl                 1.0 μl 

Forward primer         0.5 μM                 1.5 μl 

Reverse primer         0.5 μM                 1.5 μl 

dNTPs                10mM     1.0 μl 

Pfu                   0.2 U/μl                 1.0 μl 

10×Pfu buffer          1×                     5.0 μl 

H2O                   39.0 μl 

PCR procedure 

                     Cycles Temperature  Time 

Initial denaturation      1   98 °C         30 seconds 

Denaturation           30   98 °C         10 seconds 

Annealing             30 58 °C         30 seconds 

Elongation            30 72 °C         15 seconds 

Final elongation        1     72 °C         10 minutes 
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Restriction Endonuclease Digest of vpu PCR products/vector plasimds 

The reaction system was as follows and incubated at 37°C for 60-90 minutes. Then it 

was stopped by addition of 6× DNA loading buffer for further electrophoresis and 

purification. 

PCR products/Plasmids           10.0 μl/3.0 μl 

EcoR I                         2.0 μl (2.0 units) 

BamH I                        2.0 μl (2.0 units) 

NEB Buffer 4                   5.0 μl 10.0× 

Add H2O  to total volume         50.0 μl 

Gel Electrophoresis and Purification of PCR Products 

To purify the restriction-endonucleases-digested PCR fragments and vectors, they 

were separated by the agarose gels consisting of 1.5% (w/v) agarose and 0.7 μg/ml 

ethidium bromide in TAE buffer for 20-30 minutes, with the voltage of 85V 

electricity. The gels were then visualized under UV light. The bands at the indicated 

size were sliced and purified by NucleoSpin Extract II kit according to the 

manufacturer’s protocol. In the end, the purified products were dissolved in H2O. 

Ligation of pEGFP and Vpu Fragments  

Vpu gene were introduced into pEGFP N1 vector by the ligation of vpu PCR products 

and pEGFP N1 plasmid via their complementary base pairs in the ends which were 

generated from the endonuclease (EcoR I/BamH I) restriction digest as described 

above. The ligation mixture contained a molar ratio of 1:3 pEGFP N1 to vpu and 

catalysed by 2 units of T4 ligase (1.0 unit/μl). As a control, the vector fragments were 

incubated with no vpu insertion to estimate the percentage of ligated vector fragments. 

The ligation mixture was incubated at room temperature for 2 hours or 4°C for 

overnight. Then 10.0 μl of the ligation mixture was further performed for 

transformation described as below. 
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Heat Shock Transformation 

To amplify the ligated pVpuEGFP products or other plasmids, they were transformed 

into bacterial competent cells DH5α or StabII. The experimental procedure was as 

follows: 

① Took competent cells DH5α 50.0 μl or StabII 50.0 μl (for provirus plasmids 

production) from -80°C freezer, incubated on ice for thaw the competent cells 

② Added ligation reaction mixture 10.0 μl or plasmids 1.0 μl (1.0 μl/μg) 

③ Incubated the mixture of competent cells and DNA for 20-30 minutes on ice 

④ Heat shock the reaction in water bath at 42°C for 90 seconds to  

⑤ Incubate the reaction on ice for 2 minutes to reduce damage to cells 

⑥ Added 1.0 ml of LB (with no antibiotic) to the mixture and then incubated the for 

1 hour at 37°C 

⑦ Evenly plated 100 μl of the resulting culture on LB plates (with appropriate 

antibiotic added – usually ampicillin or kanamycin). Incubated at 37°C overnight. 

⑧ Picked colonies about 12-16 hours post transformation 

Plasmid DNA Isolation (Mini-prep) 

To identify the resulted natural vpu clones from the former steps or other DNA 

plasmids from the single clone, DNA plasmids need to be isolated. The DNA plasmids 

preparation was based on the manufactory’s protocols. 

①  Grew bacterial (DH5α or StabII) culture in LB medium with appropriate 

antibiotics at 37 °C overnight with shaking in 4.0 ml medium.  

② Harvest the bacterial culture into 1.5ml tube, spinning at maximum speed for 20 

seconds, then discarded the supernatant. 

③ Suspended the bacterial cells pellets with 300 μl of ice cold solution 1 (50 mM  

Tris-HCl, 10 mM EDTA, 100 μg/mL RNase A, pH 8.0).  

④ Lysed the bacterial cells with 300 μl of solution 2 (200 mM NaOH, 1%SDS) at 

room temperature (RT). Mixed the solutions by inverting them a few times gently, 

leaving the mixture at RT for less than 5 minutes. 

⑤ For neutralization, 300 μl of ice-cold solution 3 (2.8 M potassium acetate, pH 5.1), 

was added, leaving the mixture on ice for 5 minutes. 
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⑥ After spinning the mixture at maximum speed for 10 minutes, the supernatant was 

transferred to a new 1.5 ml tube, around 900 μl. 

⑦ After another spinning, 600μl isopropanol was added to the 900 μl supernatant to 

precipitate the DNA nucleic acids. 

⑧ Spin at maximum speed for 10 minutes in cold centrifuge, harvest the plasmids 

DNA pellets and discarded the supernatant. 

⑨ Plasmids DNA pellet was washed with 75% ethanol. Dry the plasmid DNA pellet 

at room temperature. 

⑩ Plasmid DNA was dissolved with 50 μl brown water. 

Quality Control of Plasmid DNA 

Before sending the isolated plasmids to sequence or performing further experiments, 

the plasmid DNA was first evaluated by the endonuclease restriction digest agarose 

gel (1.5%) electrophoresis (as described above) to see whether the plasmid showed 

the right bands and whether the target gene was in the right size. 

Sequencing  

Five vpu single clones derived from one patient were picked up for mini-prep. The 

isolated DNA plasmids were fist restricted by endonuclease digest (EcoR I/BamH I) 

as described above. The clones showing the right insertion were sent to GATC biotech 

for sequencing via the primer for pEGFP N1 promoter CMV provided by the 

company. The homepage is referred to http://www.gatc-biotech.com/en/home.html. 

Plasmid DNA Isolation (Max-prep) 

To extract DNA plasmids in a large scale, the NucleoBond A× 500 kit, which empolys 

a modified alkaline /SDS lysis procedure to prepare the bacterial cell pellet for plasmid 

purification, was used according to the manufacture’s protocol. The NucleoBond PC 

500 column was used for the purification of plasmid DNA, the basic principle is The 

experimental procedure was as follows: 

①  Grew bacterial (DH5α or StabII) culture in LB medium with appropriate 

antibiotics at 37 °C overnight with shaking in 400 ml medium.  

② Harvest of the bacterial cells and successional treatments with solution 1/2/3 (12 

ml of each solution per one extraction) were identical with the mini-prep. 
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③ Resulted bacterial lysate was centrifuged 4000 rpm for 10 minutes for clearing the 

lysate. At this period, equilibrated DNA binding column (NucleoBond PC 500) with 

the equilibration buffer N2 (100 mM Tris, 15% ethanol, 900 mM KCl, 0.15% Triton 

X-100, adjusted to pH6.3 with H3PO4) 6 ml.  

④ The cleared lysate was applied to the equilibrated NucleoBond Column PC500 

through a wet folded filter in order to remove remaining particles before loading the 

column. The plasmid DNA is bound to the anion-exchange resin. 

⑤ The column was washed with buffer N3 (100 mM Tris, 15 % ethanol, 1.15 M KCl, 

adjusted to pH 6.3 with H3PO4) 

⑥ Plasmid DNA was eluted from the column into a new 50 ml tube with 15ml 

elution buffer (100 mM Tris, 15 % ethanol, 1 M KCl, adjusted to pH 8.5 with H3PO4). 

⑦  Plasmid DNA was precipitated by the adding 15 ml of room temperature 

isopropanol to to avoid spontaneous co-precipitation of salt. 

⑧ After centrifugation at 4000rpm for 45 minutes at 4°C, the plasmid DNA was 

pelleted. It was washed with 75% ethanol and dried at RT. 

⑨ Plasmid DNA was dissolved within 300 μl Braun water. 

Measurement of DNA Concentration and Purity 

The concentration and purity of plasmid DNA solution were determined by measuring 

absorbance (optical density (OD)) at the absorbance at 260 nm and 280 nm 

respectively using NanoDrop™ spectrophotometer. The ration of OD260/OD280 within 

the range of 1.8-2.0 was considered as quality plasmid for further application. 

4.2.2 Home-made Site-directed Mutagenesis 

Primer Phosphorylation 

5’ end of the primers need to be phosphorylated. The reaction system is as follows: 

Primer 5.0 µl 

MgSO4 100mM 0.5 µl 

ATP 10mM 10.0 µl 

T4-PNK (5U) 0.5 µl 

10× Kinase Buffer A 5.0 µl 

Add water to  50.0 µl 
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The mixture was incubated at 37°C for 60 min, then heat inactivated and stored in 

-20°C. The PCR reaction system was the same principle described in 4.2.1. The thermo 

cycling procedure is different with normal PCR amplification. The annealing 

temperature was 55°C, and elongation time at 72°C was 10 min. The cycling was 

shortened to 18 (Laible and Boonrod 2009). 

DpnI digestion 

To get rid of the background, DpnI.restriction endonuclease was used to digest the 

methylated template plasmid before tansformation. For each reaction, 2U of DpnI was 

incubated with the PCR products at 37°C for 2 hours. Transformation was described 

in 4.2.1. 

 

4.2.3 Analysis of Vpu sequences 

Validation of Vpu Sequences  

More than one vpu allele is circulating in HIV-1 infected patient, and the 

contamination was a major concern for the cloning procedure. To exclude the 

contamination and pick up the predominant vpu allele circulation in each patient, the 

phylogenetic tree was generated based on the primary sequences in the databse and 

clonal vpu sequences (GATC sequencing results of pVpuEGFP plasmids) by using of 

the maximum-likelihood method (DNAml, PHYLIP), which was performed by our 

colleagues Takamasa Ueno group (Center for AIDS Research, Kumamoto University, 

Japan). The clonal vpu alleles, which assembled the primary sequences, were selected 

for functional analysis. And also, the intact enzyme restriction sites, open reading 

frame and the GFP tag for each construct were checked by using the software Clone 

Manager. 

Multiple Sequence Alignment 

All the validated vpu alleles, the sequences of their encoding amino acid were aligned 

against NL4.3 Vpu by using ClustalW2 from EMBL-EBI. The home page is referred 

to http://www.ebi.ac.uk/Tools/msa/clustalw2/. 

Mutation Frequency of Candidate Amino Acids  
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The candidate amino acids, which were suspected to be critical for Vpu functions, 

were determined by calculating the mutation frequencies out of all HIV-1 clade B 

subtype Vpu proteins extracted from Los Alamos National Laboratories 

(http://www.hiv.lanl.gov). The amino acids with mutation frequency lower than 0.1% 

were arbitrarily selected for further site-mutagenesis and functional analysis. 

4.2.4 Delivery of Plasmid DNA to Mammalian Cells 

Distinct methods were applied to deliver plasmid DNA into mammalian cells 

depending on cell lines and size of plasmid DNA. A3.01 cells, derived from human T 

lymphoblast, were transfected with vpu allele plasmids by electroporation. The 

delivery of provirus plasmids were mediated by lipofectamine 2000. 

Polyethylenimine (PEI) and metafectene were also used for the transfection of 

TZM-bl and 293T cells respectively. The methods and protocols used in this study 

were described as follows. 

Transfection of HEK 293T Cells  

The expression of natural vpu alleles was first evaluated in HEK 293T cells. 

Metafectene was used to transfect HEK 293T cells with pVpuEGFP plasmids.  

① One day prior to transfection, cells were seeded in 6 well-plate, 5×105 cells/well. 

② To remove the cell debris in old culture medium, fresh DMEM complete medium 

were added to the cells. 

③ The following solutions were prepared in EP tubes: Solution A: 3 μg of expression 

plasmid in 100 μl Opti-MEM medium. Solution B: 6 μl metafectene100 μl Opti-MEM 

medium. The solutions were gently mixed. 

④ The solutions were then combined with no mixture procedure, and then incubated 

the complex at room temperature for 25 minutes. 

⑤ The complex was then drop gently to the cells with gently swirling afterwards. 

Incubate at 37°C in a CO2 incubator.  

⑥ 24 hours post transfection, the cells were harvested for evaluating the expression 

of Vpu alleles. 
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Electroporation of A3.01 Cells  

① One day prior to electroporation, A3.01 cells were cultured in fresh medium. 

② 8×106 cells per one electroporation, the cells were harvested by centrifugation and 

dissolved in 500 µl pre-warmed RPMI1640 medium with no supplements of FCS and 

antibiotics. 

③ The suspended cells were transferred to the 4.0 mm cuvelte and added 30μg 

pVpuEGFP or pVpuIRESGFP plasmid. 

④  Electroporation was performed by using the Bio-Rad Genepulser under the 

procedure: voltage: 250 volts, capacitance: 950 microfarads (µF). 

⑤ Electroporated A3.01 cells were cultured in 4.0 ml RPMI1640 complete medium. 

Incubate at 37°C in a CO2 incubator.  

⑥ 24 or 48 hours post electroporation, cells were harvested for further analysis. 

Transfection of TZM-bl Cells by PEI  

① One day prior to transfection, TZM-bl cells were seeded in 12 well-plate, 7×104 

cells/well. 

② To remove the cell debris in old culture medium, fresh DMEM complete medium 

were added to the cells. 

③ 3 μg of expression plasmids were first added to a 1.5 ml EP tube with 100 μl 

Opti-MEM medium, briefly vortex the mixture, then 9 μl PEI was added, gently 

mixing and leaving the mixture at room temperature for 35-50 minutes 

④ DNA/PEI mixture was then transferred to cells, with gently swirl afterwards. 

Incubate at 37°C in a CO2 incubator.  

⑤ 24 hours post transfection, harvest the cells were harvested for further analysis. 

Transfection of TZM-bl Cells with Provirus Plasmids by Lipofectamine 2000  

PEI is widely used for the transfection of mammalian cells. However, it did not 

mediate the delivery of provirus plasmids in my hands (data not show). Then 

lipofectamine 2000 was used to co-transfect the TZM-bl cells with provirus and vpu 

expression plasmids for the infectivity assay, which was described in 4.2.7. 
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4.2.5 Confocal Microscopy 

A3.01 T cells adhered to poly-lysine coated coverslips were fixed with 3% PFA. 

Coverslips were mounted with mowiol medium and analysed with a Zeiss LSM510 

confocal microscope with a 100x PLAN-APO objective lens. Images were recorded 

with the Zeiss proprietary software LSM5 and processed with Adobe Photoshop 4.0.  

 

4.2.6 Biochemical Assays 

Preparation of Cell lysates 

For the separation and detection of target proteins, the transfected cells were lysed 

using SDS sample buffer or KEB lysis buffer in this study. Briefly, cells were washed 

and subjected to ice-cold KEB buffer (100 μl for 8×106 cells) followed by swirling at 

4°C. After centrifugation (10 min at 12,000 rpm at 4°C), supernatants were transferred 

into a new tube, stored at -20°C or immediately subjected to the applications such as 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). 

Discontinuous SDS-PAGE 

Cell lysates were denatured by treating with 2× SDS sample buffer and heating (95°C 

for 5 min). The proteins were separated by discontinuous SDS-PAGE. Equal amounts 

of cell lysates were loaded into the polyacrylamide gel and first run in the stacking gel 

(4.0% polyacrylamide), and then the stacked proteins were separated in the resolving 

gel (12.5% polyacrylamide) according to their relative molecular mass. The 

electrophoresis ran at 25 milliamps (mA), with the indication of a pre-stained protein 

marker ranging from 6 to175 kDa. Gels were subsequently applied to western 

blotting. 

Western Blotting 

After electrophoretic separation of proteins, gels were performed semi-dry proteins 

blotting to transfer the proteins to a nitrocellulose membrane according to the standard 

blotting flow. The nitrocellulose membrane, filter paper (Whatman blotting paper) and 

gel were soaked in the transfer blotting buffer and then assembled in a strict order to 

set the gel was close to cathode (-) and the membrane was close to anode (+). The gel 
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and membrane were sandwiched by the soaked blotting paper, then the whole 

component ran for electronic transfer under the current of 100 mA per Gel for 45-60 

minutes. 

The nitrocellulose membrane, with blotted proteins, was then detected for the 

expression of proteins by using antibodies and the reporter enzyme, horseradish 

peroxidase (HRP) in this study. The experimental procedure was described below. 

① Membranes were incubated with 5% milk to block unspecific binding sites. 

② Membrane were incubated with primary antibody overnight at 4°C after washing 

with PBST. 

③ To remove the unbinding primary antibody, membranes were washed for three 

times wash with PBST (15 min per time). 

④ The respective secondary antibody conjugated with HRP (diluted in 5% milk) was 

then added to membranes and incubated for 1 hour at RT. For the detection of proteins 

by LiCor Odyssey, the secondary antibody coupled with Alexa 700 (dilution of 

1:10,000 in 2% BSA) was added to the membrane and incubated in dark for 1 hour. 

Afterwards, the membrane was washed to remove the remaining secondary antibody 

and milk. 

⑤ The expression of target proteins was evaluated by enhanced chemiluminescent 

substrate (ECL) (Pierce), which was reflected on a photosensitive film. Membranes 

incubated with Alexa 700 conjugated antibody were scanned on Licor Odyssey with a 

wavelength of 700 nm. The quantification was assessed using Licor Odyssey 

software. 

 

4.2.7 Fluorescence-Activated Cell Sorting (FACS) 

To evaluate the surface level of CD4, CD317, MHC-1, NTB-A molecules in cells 

expressing Vpu alleles, FACS analysis was performed as the following steps: 

① A3.01 or TZM-bl cells were transfected with plasmid DNA in a 6-well plate or 

12-well plate scale as described in 4.2.4. Untransfected cells from the same batch 
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were served as control for FACS settings. They were harvest and suspended at 48 

hours or 24 hours post transfection. 

② All samples were divided to 4 aliquots, each aliquot of cells were stained with 100 

µl of diluted CD4-APC, CD317-APC, MHC-I-APC or NTB-A –APC respectively 

listed in Table 6, then were incubated in dark and on ice for 45 min. 

③ After staining, the cells were washed with PBS (3000rpm, 5 minutes, 4°C), and 

the pellets were suspended with 150 μl-300 μl PBS in each tube for performing FACS 

analysis. 

④The FACS analysis procedure was: firstly, untransfected and unstained sample was 

used to define the population of living cells; then, transfected but unstained control 

sample, together with transfected and stained sample, was used to adjust the detectors; 

finally, run samples after setting gates for GFP positive and negative cells to 

determine the CD4, CD317, MHC-I or NTB-A surface level in those two population 

of cells. 

4.2.8 Infectivity Assay 

Vpu has no effect on HIV-1 infectivity in cell culture system. Vpu-mediated virus 

release enhancement was evaluated by infectivity assay in TZM-bl cells. 

Transfection of TZM-bl Cells by Lipofectamine 2000  

① One day prior to transfection, TZM-bl cells were seeded in 12 well-plate, 7×104 

cells/well. 

② To remove the cell debris in old culture medium, fresh DMEM medium with no 

serum and antibiotics were added to the cells. 

③ The following solutions were prepared in EP tubes: Solution A: 2.7 µg of provirus 

and pVpuIRESGFP or pIRESGFP plasmids in 50 μl Opti-MEM medium. The amount 

of plasmids was shown below. Solution B: 2.7 μl lipofectamine 2000 in 50 μl 

Opti-MEM medium. The solutions were gently mixed. Triplicates were performed for 

each transfection. 
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Table 7: Co-transfection of TZM-bl cells with proviral plasmid and Vpu 

construct or empty vector. 

HIV-NL4.3 wt 1.2 μg  pIRESGFP  1.5 μg 

HIV-1 NL4.3 ΔVpu 1.2 μg  pIRESGFP  1.5 μg 

HIV-1 NL4.3 ΔVpu 1.2 μg  pVpuS/AIRESGFP  1.5 μg 

HIV-1 NL4.3 ΔVpu 1.2 μg  pVpuIRESGFP  1.5 μg 

HIV-1 NL4.3 ΔVpu 1.2 μg  EC and CP pVpuIRESGFP alleles 1.5 μg 

④ The solutions were then combined with no mixture procedure, and then incubated 

the complex at room temperature for 25 minutes. 

⑤ The complex was then drop gently to the cells with gently swirling afterwards. 

Incubate at 37°C in a CO2 incubator.  

⑥ The plates were then transferred to P3 lab and was changed to the fresh DMEM 

complete medium. 

⑦ 48 hours post transfection, the cell culture supernatant was harvested for the 

infection of newly-seeded TZM-bl cells which were then used for infectivity assay. 

The transfected cells were lysed and subjected to Western blotting for the evaluating 

the expression of Vpu or GFP, viral capsid p24 and p55. To detect the real expression 

level of those proteins in one single transfection, we avoided to detach the TZM-bl 

cells by trypsin/EDTA, which could break the syncytia cells or fragile cells then 

consequently loss proteins. The 2× SDS sample buffer was directly added into two of 

the triplicates for each sample and the cells were harvested by scrapping. TZM-bl 

cells in one of the triplicates were detached by by trypsin/EDTA, washed with PBS 

and then fixed with 3% PFA for 1 hour at room temperature, and the fixed cells were 

performed FACS analysis for determining the surface level of CD317. Infection of 

new TZM-bl cells, harvest and fixation of transfected cells were done in P3 lab. 

Western blotting and FACS analysis were done in P2 lab, and the procedures were the 

same as described in 4.2.7 and 4.2.8 respectively. 

Infectivity Assay 

① Prior one day of infection, TZM-bl cells were seeded in 96-well plates, 5×103 

cells/well. 
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② 50 μl the cell culture supernatant was added to the fresh TZM-bl cells, and 

incubated the infected cells for 72 hours. 

③ The infected cells were harvested with 40 μl cell lysis buffer (1:5 diluted in H2O) 

per well.  

④ The cell lysate was transferred to a new 96-well plates and brought to P2 lab. 

⑤ Transfer 10μl cell lysis to white plate, add 50 μl luciferin substrate per 10 μl cell 

lysis sample 

⑥ Measure the luciferase units in luminoskan ascent. 

 

4.2.9 Software 

Table 8: List of software used in this study. 

Software Version Source 

Adobe Illustrator  CS4 Adobe System 

Clone Manager Professional suite 8 Sci-Ed Software 

CellQuestPro 4.0.2 BD Biosciences 

Cyflogic 1.2.1 http://www.cyflogic.com/ 

Endnote  X5.0 Thomson  Reuters 

GraphPad Prism  5.0 GraphPad Software 

Image J ̶ http://imagej.nih.gov/ij/ 

LSM Image Browser LSM 5 http://www.zeiss.com/ 

 

4.2.10 Statistical Evaluation  

All statistical analysis were evaluated using GraphPad Prism 5 and statistical 

significance was determined using the Mann-Whitney U test (* p ≤ 0.05, ** p ≤ 0.01). 

Correlations between data sets were evaluated by applying Spearman’s or Pearson 

coefficient analysis (* p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001).  
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5 Results 

5.1 Validation of Patient-derived Vpu Genes 

All vpu alleles were amplified from the RT-PCR products provided by Takamasa 

Ueno (Center for AIDS Research, Kumamoto University, Japan). The acquisition of 

the RT-PCR products from the plasma HIV-1 isolates were previously described 

(Fellay, Shianna et al. 2007) (Miura, Brockman et al. 2008. Patient-derived Gag, Env, 

and Nef from the same EC and CP cohorts were characterized {Miura, 2009 #25) 

(Brumme, Li et al. 2011) (Mwimanzi, Markle et al. 2013). To evaluate the properties 

of the vpu alleles, the amplicons were cloned into pEGFP N1 expression vectors 

respectively. Five Vpu clones per patient were sequenced and then validated by 

maximum-likelihood phylogenetic tree to exclude the contamination. A single colone 

that closely resembled the original primary sequence in the database was picked up 

for further functional analysis. Genbank accession numbers for primary Vpu 

sequences are EU517721- EU873004 (EC) and FJ469688-FJ469764 (CP). 

Altogether 15 EC and 16 CP Vpu alleles were selected based on the validated 

sequences and comparable expression levels. All the sequences were assembled into a 

maximum likelihood phylogenetic tree (Figure 8). As shown, each representative 

patient Vpu allele has unique sequence, and all EC and CP Vpu sequences distributed 

equally to the reference NL4.3 Vpu, which indicated that there is no correlation 

between Vpu sequence diversity and disease progression. Clonal Vpu sequences from 

EC showed no evidence of gross defects or recent shared ancestry, which is consistent 

with previous analyses of bulk plasma HIV RNA sequences from our EC cohort 

(Miura, Brockman et al. 2008).  
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Figure 8: Maximum-likelihood phylogenetic tree of plasma HIV RNA-derived 

vpu clonal sequences. EC-derived Vpus are red, CP-derived Vpus are blue, and 

control strain NL4.3 Vpu is black. (This figure was performed by Takamasa Ueno, 

Center for AIDS Research, Kumamoto University, Japan) 

 

5.2 Alignment and Sequence analysis of Vpu Alleles 

With the validated Vpu alleles, we aligned and analyzed their amino acid sequences. 

Sequence variations for both groups were in the range of 16% to 24% (calculated by 

the software Clone Manager), which is similar to another study showing that the 

diversity of intra-patient Vpu alleles was around 20% (Pickering, Hue et al. 2014). 

Even though the representative Vpu sequences were highly variable, the documented 

critical motifs for CD4 downregulation and CD317 antagonism were principally 

conserved (Figure 9). Strikingly, no natural mutation occurred in the DSxxES motif, 

which is the target for CK-II phosphorylation and essential for CD4 degradation and 

CD317/tetherin antagonism (Margottin, Bour et al. 1998) (Goffinet, Allespach et al. 

2009) (Mangeat, Gers-Huber et al. 2009). In the transmembrane domain, the indicated 

determinants for CD317/tetherin counteraction were well conserved, especially the 
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central ones A10/A14/A18/W22 for CD317/tetherin contact (Vigan and Neil 2010), in 

addition, I4/A7 showing conservation to a slightly less extent. Two positively charged 

residues 30R and 31K critical for trans-Golgi network localization, located in the 

hinge region between the TM domain and the cytoplasmic domain, together with the 

residues V25/Y29 crucial for lipid raft association (Fritz, Tibroni et al. 2012) (Dube, 

Roy et al. 2009), were highly conserved. In the C-terminal domain, the trafficking 

motif ExxxLV displayed mild diversity. For example, MEF and E00452 showed 

insertion or deletion at the last amino acid, and the mutations at the variable xxx sites 

also gave rise to relatively higher diversity in the C-terminal domain. The recently 

identified 76W residue, which was shown unique importance for virion release 

enhancement (Jafari, Guatelli et al. 2014), was conserved among both group Vpus, 

except for E00452 with 76R. Enrichment of KIR2DL2-adapted polymorphism at 

71M/74H in EC Vpus was a striking property. Only 3 of 15 EC Vpus, including 

CTR183, MEF and FW048, displayed mutation of 74R/D/L, whereas, 11 of 16 CP 

Vpus showed 74R/D/L. The CTL targeting epitope EYRKILRQR was highly 

conserved. However, the other one HAPWDVNDL showed high variations in the first 

amino acid and flanking amino acids, such as E00449 and E00452. Last but not least, 

61S for Vpu stability (Estrabaud, Le Rouzic et al. 2007), was principally conserved, 

except for FW048 and E00468 with the mutation of K and A respectively. Altogether, 

the key functional motifs were generally preserved, the sequence variations mainly 

come from the N-terminal and C-terminal (Figure 9). 
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Figure 9: Sequence alignment and analysis of patient-derived Vpu alleles. Amino 

acid sequence alignment of the Vpu proteins analyzed generated using Clustal Omega 

(EMBL-EBI). HIV-1 NL4.3 Vpu on the top serves as reference sequence. Boxes 

indicate the position of functionally relevant residues and motifs. Different colours 

present the properties of the amino acid: red colours for small side chains and 

aromatic Y, blue for acidic residues, green for hydroxyl, sulfhydryl, amine groups and 

G, magenta for basic-H bonding or positive charged groups.  

 
 

5.3 Expression and Detection of Natural Vpu Alleles 

Besides the representative Vpu sequence for each patient, the following limited steps 

for further functional analysis are whether the expression of the non-codon-optimized 

Vpu clonal constructs can be detected and whether they express on the comparable 

level. We first checked the expression and detection of all generated pVpu.GFP 

constructs in 293T cells (data not shown), together with the sequence information, a 

set of 31 constructs is confirmed for further analysis. Then we evaluated the 

expression of the 15 EC and 16 CP vpu alleles in more relevant cell lines. Briefly, 

A301 cells transfected with pVpu.GFP or TZM-bl cells transfected with 

pVpuIRESGFP were collected and western blot analysis was performed. The 
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transferin receptor showed equal loading (Figure 10A, B; lower panel). As non-fusion 

proteins, the similar intensity of GFP bands reflected comparable transfection 

efficiency and comparable Vpu expression level for each allele (Figure 10B; middle 

panel). Whereas, Vpu probe showed more variant bands in fusion and non-fusion 

version of Vpu alleles by using the rabbit polyclonal Vpu antibody (Figure 10A, B; 

upper panel). This antibody was generated against a peptide encompassing amino 

acids 58-80 (EGD QEE LSA LME MGH HAP WNV ND). The failure of detection by 

Vpu antibody mainly resulted from the mutation from H to R/D/L at the position 74 

which is one of KIR2DL2 footprints. CP Vpus showed more sequence diversity at this 

position compared with EC Vpus, which was reflected by the more frequent detection  

 

 

 

Figure 10: Expression and detection of non-codon-optimized vpu alleles. A: A301 

cells were electroporated with Vpu.GFP plasmids (30 μg). B: TZM-bl cells were 

transfected with VpuIRESGFP plasmids (3 μg). 24 hours post-transfection cells were 

harvested and the cell lysates were analyzed by immunoblotting for Vpu, GFP, and 

transferin receptor. 
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of EC Vpus (Figure 10A, B; Upper panel). In addition, the insertion of HHA at 

C-terminal for E00449 and insertion of NII at N-terminal for E00456 could be the 

reasons for the poor detection or expression (Figure 2, 3). CTR183, E00452, E00462 

and E00466 showed less pronounced bands as fusion proteins. Nevertheless, they 

displayed similar bands as non-fusion proteins (Figure 2A). Overall, the expression 

levels of all alleles as fusion protein were comparable, which made us move on the 

further analysis. 

 

5.4 Subcellular Localization Patterns of Natural Vpu Alleles 

The subcellular distribution of Vpu in ER and TGN are essential for Vpu-induced 

CD4 degradation and virion release enhancement (Dube, Roy et al. 2009) (Vigan and 

Neil 2011). We analyzed the subcellular localization in A301 cells expressed with 

Vpu.GFPs. The plasma membrane was defined by WGA594, localization of Vpu 

alleles was indicated by GFP. The control NL4.3 Vpu.GFP was accumulated in the 

cellular compartment(s) (Figure 11). The majority of the EC and CP Vpus shown the 

similar cellular accumulation pattern as the reference NL4.3 Vpu.GFP, but CTR112 

from EC group displayed plasma membrane patches (Figure 11). Based on the 

comparable expression levels and localization in relevant cell lines, we investigated 

the functional analysis of the patient-derived Vpu alleles. 

 

5.5 Conservation of CD4 and CD317 Modulation Activities 

5.5.1 Surface Modulation of CD4 and CD317 by Vpu.GFPs 

We first analyzed the downregulation of CD4 and CD317 molecules from the surface 

of A301 cells. Vpu.GFPs were transiently expressed in A301 cells, and cell surface 

levels of CD4 and CD317 were examined by FACS 48 hours post transfection. eGFP 

and NL4.3 Vpu.GFP were set as negative and positive controls respectively. The y 

axis showed the mean fluorescence intensity (MFI) of CD4-APC or CD317-APC, and 

x axis represented GFP expression level (Figure 12A, 13A). MFI ratio of GFP positive  
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Figure 11: Subcellular localization of Vpu alleles. A3.01 cells were electroporated 

with Vpu.GFP expression constructs, harvested and fixed on coverslips after 24 hours. 

The plasma membrane was defined by WGA-594. Coverslips were analyzed with a 

Zeiss LSM510 confocal microscope with a 100x PLAN-APO objective lens. Images 
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were recorded with the Zeiss proprietary software LSM5 and processed with Adobe 

Photoshop 4.0. Scale bar: 10 μm. 

 

 

cells/MFI of GFP negative cells was first subtracted from the background of eGFP 

and the resulted value for each Vpu was further normalized to NL4.3 Vpu that was 

then arbitrarily set as 100% (Figure 12B, 13B). The ability to reduce surface levels of 

CD4 was conserved among the majority of analysed Vpus, except CTR183 and MEF 

from EC group, which showed obvious impairment, less than 50% of the NL4.3 Vpu 

(Figure 12B). Median with interquartile range (IQR) was evaluated to compare the 

downregulation potency of both groups. EC Vpus displayed lower capacity (median 

116.0 [IQR 77.0–129.0]%) to decrease the surface expression level of HIV-1 receptor 

CD4 molecules than CP Vpus (median 135.0 [IQR 119.0–149.8]%) (p< 0.01; Figure 

12 C).  

Downregulation of CD317 was analysed as the same procedure described before with 

the same batch of transfected cells. The positive control NL4.3 Vpu removed around 

80% of CD317 from the cell surface (Figure 13A). CP Vpus showed comparable 

activity with NL4.3 Vpu. However, EC Vpus had more impaired alleles, such as 

CTR183 and 8227 with lower than 50% of NL4.3 Vpu ability (Figure 13 B). 

Statistically, EC Vpus displayed lower capacity (median 76.7 [IQR 65.2–82.4]%) to 

decrease the surface expression level of HIV-1 receptor CD317 molecules than CP 

Vpus (median 97.4 [IQR 84.8–97.1]%) (p< 0.01; Figure 13C). It indicated that CD4 

and CD317 downregulation activities of patient-derived Vpu alleles are principally 

conserved with few impaired ones in EC group. And the statistical differences resulted 

from the higher frequencies of alleles with reduced ability in EC Vpus. 
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Figure 12: CD4 downregulation activity of Vpu.GFP alleles. A3.01 cells were 

electroporated with Vpu.GFP expression constructs, harvested after 48 hrs, and 

stained for cell surface CD4. A: Flow cytometry plots of eGFP and NL4.3 Vpu.GFP: 

CD4-APC (y-axis) vs. GFP (x-axis). Downregulation activity (R3/R2 ratio) was 

normalized to NL4.3 Vpu that was arbitrarily set to 100%. B: Graph showing the CD4 

downregulation activity of patient derived Vpu alleles relative to NL4.3 Vpu. Shown 

are mean values of triplicate transfections with the indicated standard deviation. The 

result is a representative of three independent experiments. C: Comparison of CD4 

downregulation activity of EC Vpus and CP Vpus. 
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Figure 13: CD317 downregulation activity of Vpu.GFP alleles. A3.01 cells were 

electroporated with Vpu.GFP expression constructs, harvested after 48 hrs, and 

stained for cell surface CD317. A: Flow cytometry plots of eGFP and NL4.3VpuGFP:  

CD317-APC (y-axis) vs. GFP (x-axis). Downregulation activity (R3/R2 ratio) was 

normalized to NL4.3 Vpu that was arbitrarily set to 100%. B: Graph showing the 

CD317 downregulation activity of patient derived Vpu alleles relative to NL4.3Vpu. 

Shown are mean values of triplicate transfections with the indicated standard 

deviation. The result is a representative of three independent experiments. C: 

Comparison of CD317 downregulation activity of EC Vpus and CP Vpus. 

 

5.5.2 Surface Modulation of CD4 and CD317 by VpuIRESGFPs 

We further evaluated the capacity of Vpu to modulate CD4 and CD317 in the 

non-fusion context. EC and CP VpuIRESGFPs were transiently expressed in TZM-bl 

cells. Surface CD4 and CD317 remaining levels were determined by FACS  
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Figure 14: CD4 downregulation activity of VpuIRESGFP alleles. TZM-bl cells 

were transfected with VpuIRESGFP constructs, harvested after 24 hours, and stained 

for cell surface CD4. A: Flow cytometry plots of IRESGFP and NL4.3 VpuIRESGFP: 

CD4-APC (y-axis) vs. GFP (x-axis). Downregulation activity (R3/R2 ratio) was 

normalized to NL4.3 Vpu that was arbitrarily set to 100%. B: Graph showing the CD4 

downregulation activity of patient derived Vpu alleles relative to NL4.3 Vpu. Shown 

are mean values of triplicate transfections with the indicated standard deviation. The 

result is representative of three independent experiments. C: Comparison of CD4 

downregulation activity of EC Vpus and CP derived Vpus. 

 

 

as described in 5.3.1. As shown in the primary data for controls, the reference NL4.3 

Vpu removed 80% of CD4 or CD317 from the surface (Figure 14A, 15A). The 

following evaluation showed that majority of patient-derived Vpus showed 

comparable potency to reduce CD4 surface levels as the reference strain NL4.3 Vpu  
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Figure 15: CD317 downregulation activity of VpuIRESGFPs alleles. TZM-bl cells 

were transfected with VpuIRESGFP constructs, harvested after 24 hours, and stained 

for cell surface CD317. A: Flow cytometry plots of IRESGFP and NL4.3 

VpuIRESGFP: CD317-APC (y-axis) VS. GFP (x-axis). Downregulation activity 

(R3/R2 ratio) was normalized to NL4.3 Vpu that was arbitrarily set to 100%. B: 

Graph showing the CD317 down-regulation activity of patient derived Vpu alleles 

relative to NL4.3 Vpu. Shown are mean values of triplicate transfections with the 

indicated standard deviation. The result is representative of three independent 

experiments. C: Comparison of and CD317 downregulation activity of Vpus and CP 

derived Vpus. 

 

 

(Figure 14B). Few alleles from EC group, such as CTR183, MEF and FW048, 

displayed lower than 80% of NL4.3 Vpu activity (Figure 14B). EC Vpus maintained 

significantly lower activity (median 94.5 [IQR 84.7–97.5]%) than CP Vpus (median 
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98.6 [IQR 95.2–101.6]%) (p< 0.05; Figure 14C). Similarly, majority of primary Vpus 

displayed potent abilities as reference NL4.3 Vpu to interfere with CD317 surface 

expression (Figure 15B). While unlike in the fusion version, EC Vpus showed similar 

CD317 downregulation activities (median 107.6 [IQR 93.2–112.7]%) as CP Vpus 

(median 102.4 [IQR 92.3–11.3]%). There was no statistically significant difference 

between these two groups (p˃ 0.05; Figure 15 C). The data generated in both fusion 

and non-fusion contexts showed the basic CD4 and CD317 downregulation activities 

were well conserved among all Vpus. 

 

5.6 EC Vpus Displayed Lower MHC-I and NTB-A Downregulation Activities 

5.6.1 Downregulation of MHC-I by Vpu.GFP and VpuIRESGFPs 

Vpu is one of the proteins that HIV-1 exploits to modulate the surface level of antigen 

presenting molecules MHC-I (Petersen, Morris et al. 2003). Downregulation of 

MHC-I by HIV-1 Nef was one of the strategies that HIV-1 escapes CTL killing 

(Collins, Chen et al. 1998) (Kirchhoff, Schindler et al. 2008). EC Nefs showed 

attenuated MHC-I downregulation activities compared with CP Nefs (Mwimanzi, 

Markle et al. 2013). Up-to-data, MHC-I reduction mediated by patient-derived Vpu 

alleles has not been investigated yet. We evaluated surface modulation of MHC-I in 

A301 cells transiently expressed fusion or non-fusion Vpu proteins. The experimental 

procedure and data analysis were the same with 5.3.1. Since the expression level of 

MHC-I and NTB-A on TZM-bl cells were low (data not shown). The data in this 

section were generated in A301 cells. NL4.3 Vpu removed 30%～40% of MHC-I 

from the cell surface level as fusion or non-fusion protein (Figure 16A, 17A). The 

majority of CP Vpus alleles showed comparable abilities as NL4.3 Vpu to reduce 

MHC-I molecules (median 98.2 [IQR 88.2–106.3]%) or (median 87.4 [IQR 

77.9–110.0]%) as fusion or non-fusion proteins (Figure 16A, 17A). However, EC  
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Figure 16: MHC-I downregulation activity of Vpu.GFP alleles. A301 cells were 

electroporated with Vpu.GFP expression constructs, harvested after 48 hours, and 

stained for cell surface MHC-I. A: Flow cytometry plots of GFP and NL4.3Vpu.GFP: 

MHC-I-APC (y-axis) vs. GFP (x-axis). Downregulation activity (R3/R2 ratio) was 

normalized to NL4.3Vpu that was arbitrarily set to 100%. B: Graph showing the 

MHC-I downregulation activity of patient derived Vpu alleles relative to NL4.3Vpu. 

Shown are mean values of triplicate transfections with the indicated standard 

deviation. The result is representative of two independent experiments. C: 

Comparison of MHC-I activity of EC Vpus and CP Vpus.  

 

 

Vpus displayed more variable and attenuated MHC-I reduction activity (median 

67.1[IQR 45.5–96.2]%) or (median 65.4 [IQR 52.7–90.4]%) (Figure 16B, 17B). The 

different patterns for EC and CP groups were reflected in the t test. There was 
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statistically significant difference between EC and CP Vpu alleles as fusion or 

non-fusion proteins (p< 0.05; Figure 16C, 17C). 

 

 

 

Figure 17: MHC-I downregulation activity of VpuIRESGFP alleles. A301 cells 

were electroporated with VpuIRESGFP expression constructs, harvested after 48 

hours, and stained for cell surface MHC-I. A: Flow cytometry plots of GFP and 

NL4.3Vpu.GFP: MHC-I-APC (y-axis) vs. GFP (x-axis). Downregulation activity 

(R3/R2 ratio) was normalized to NL4.3Vpu that was arbitrarily set to 100%. B: Graph 

showing the MHC-I downregulation activity of patient derived Vpu alleles relative to 

NL4.3Vpu. Shown are mean values of triplicate transfections with the indicated 

standard deviation. The result is representative of two independent experiments. C: 

Comparison of MHC-I activity of EC Vpus and CP Vpus. 
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5.6.2 Downregulation of NTB-A by Vpu.GFP alleles 

NTB-A is a co-activating ligand for NK cell activation and degranulation. Vpu is the 

only protein that HIV-1 utilizes to decrease NTB-A cell surface levels and 

consequently avoid the recognition of NK cells (Shah, Sowrirajan et al. 2010). It is 

unknown whether this activity of Vpu is conserved among natural Vpu alleles and 

whether there is any systematic difference between EC and CP Vpus. We analysed the 

NTB-A surface modulation activity mediated by patient-derived-Vpu alleles in A301 

cells as fusion and non-fusion proteins. Our positive control NL4.3Vpu decreased 

NTB-A surface expression by about 40% (Figure18A), which confirmed the previous 

result (Shah, Sowrirajan et al. 2010) (Bolduan, Hubel et al. 2013). Among both EC 

and CP Vpu alleles, NTB-A downregulation activity showed high degree of variation 

compared with CD4 and CD317 downregulation activity. In EC groups, there were 

more impaired ones again, such as 53, CTR112, CTR149, CTR183 and MEF showing 

around 25% of NL4.3 activity (Figure18A). Overall, the EC Vpus showed more lower 

NTB-A downregulation activity (median 60.7 [IQR 28.4–78.8]%) than CP Vpus 

(median 98.6 [IQR 57.5–109.4]%) (p< 0.01; Figure 18C). All non-fusion constructs, 

including our positive control NL4.3 Vpu, could only remove up to 10% of NTB-A 

from the A301 cell (data not shown). 

 

5.7 Vpu-mediated Enhancement of HIV-1 Virion Release  

5.7.1 Defect of GFP fused Vpu Proteins to Enhance HIV-1 Virion Release 

Vpu was shown to promote HIV-1 virion release by antagonizing the restriction of 

CD317/tetherin (Neil, Eastman et al. 2006). We evaluated the virion release 

enhancement mediated by Vpu alleles in TZM-bl cells which are introduced in 

integrated copies of luciferase genes under control of the HIV-1 promoter and 

sensitive to HIV-1 infection. Briefly, TZM-bl cells were co-transfected with HIV-1 

NL4.3 ΔVpu proviral plasmids and indicated Vpu alleles, empty vector or negative 

control VpuS/A mutant. The resulting supernatant was used to infect newly-seeded 

TZM-bl cells. The transfected cells were harvested for GFP, p24 and p55 immunology  
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Figure 18: NTB-A downregulation activity of Vpu.GFP alleles. A301 cells were 

electroporated with Vpu.GFP expression constructs, harvested after 48 hours, and 

stained for cell surface NTB-A. A: Flow cytometry plots of GFP and NL4.3Vpu.GFP: 

NTB-A-APC (y-axis) vs. GFP (x-axis). Downregulation activity (R3/R2 ratio) was 

normalized to NL4.3Vpu that was arbitrarily set to 100%. B: Graph showing the 

NTB-A downregulation activity of patient derived Vpu alleles relative to NL4.3Vpu. 

Shown are mean values of triplicate transfections with the indicated standard 

deviation. The result is representative of two independent experiments. C: 

Comparison of NTB-A activity of EC Vpus and CP Vpus. 
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blotting. The infected cells lysate was assayed for luciferase units which was the 

readout of the quantity of the infectious virions in the supernatant. Vpu was shown no 

effect on the infectivity of released HIV-1 virions, so quantity of the infectious virions 

in the supernatant indicated the quantity of the released virions. We first tested this 

activity of NL4.3 Vpu.GFP at a series of concentrations. The 0.8 μg non-codon 

optimized NL4.3 Vpu.GFP was expressed at the comparable level of the positive 

control 0.1μg of codon-optimized SynVpu. NL4.3 Vpu.GFP could not promote virion 

release but the non-fusion Vpu protein was able to enhance the virion release at 

proper concentration (Figure 19). This directed us to go for non-fusion Vpu proteins 

for the full panel of virion release evaluation. 

 

 

 

Figure 19: Virion release enhancement mediated by Vpu as fusion and 

non-fusion protein. TZM-bl cells were transiently transfected with HIV-1NL4.3 

ΔVpu provirus plasmid and the indicated Vpu allele. NL4.3 BH10 served as one 
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positive control. 48 hours post transfection, the cell supernatants containing viral 

particles were assayed for infectivity on TZM-bl reporter cells to determine the 

amount of infectious virions produced. TZM-bl cell lysates were subjected to Western 

blot detection. 

 

 

5.7.2 Virion Release Enhancement is Conserved among Patient-derived Vpus  

To examine whether patient-derived Vpus are able to enhance HIV-1 particle release 

or not, all indicated individual VpuIRESGFPs, together with HIV-1 NL4.3 ΔVpu 

proviral plasmids, were co-transfected TZM-bl cells and then processed for infectivity 

assay, western blotting and downregulation of CD317/tetherin as described in 5.7.1. 

Most of EC and CP Vpus displayed well-conserved abilities to enhance virion particle 

release similar to NL4.3 Vpu, with the exception of impaired EC 8227 and CP 

E00456. (Figure 20a, upper bars). To preclude the possibility of different levels of 

virion production and Vpu expression among different transfections, we analysed 

GFP, p24 and p55 levels in the transfected cells. The p24 and p55 antigen in the lysate 

from transfected cells from each Vpu allele were identical, which reflected similar 

virion production for each transfection of HIV-1 NL4.3 ΔVpu proviral plasmids 

(Figure 20a, lower panel); the expression levels of GFP were similar to each other 

(Figure 20a, upper panel), and this was used to define expression levels of Vpus as the 

Vpu antibody displayed different degree of affinity towards the Vpus (Figure 10). EC 

Vpus displayed a lower trend of virion release enhancement activity (median 4.6 [IQR 

[3.2–6.6] fold of HIV-1 NL4.3 ΔVpu) than CP Vpus (median 6.7 [IQR [5.2–13.3] fold 

of HIV-1 NL4.3 ΔVpu), but the statistic evaluation showed no significant different 

between these two groups (Figure 20a B; p=0.07). The activity to enhance HIV-1 

release was well conserved in both EC and CP Vpus and showed no systematic 

difference. 
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Figure 20a: Rescue of HIV-1 particle release by patient-derived Vpu alleles. 

TZM-bl cells were transiently transfected with HIV-1NL4.3 ΔVpu provirus plasmid 

and the indicated Vpu allele or control. 48 hours post transfection the cell 

supernatants containing viral particles were assayed for infectivity on TZM-bl 

indicator cells to determine the amount of infectious virions produced. TZM-bl cell 

lysates from one replicate of the assay were subjected to Western blot analysis. 

TZM-bl cells from the same replicate were harvested and assayed for cell-surface 

level of CD317. A: The yield of infectious HIV-1 in the supernatant and 

cell-associated levels of GFP, p24CA, and p55Gag were analyzed. HIV-1 particle 

release in the supernatant was assessed by measuring the induction of Luciferase units 

(top) in infected TZM-bl cells. Values (y axis) are normalized to that of control 

NL4.3ΔVpu, which was set to 1, error bars are standard error of the mean (SEM) for 

three independent experiments. Western blot results show the expression level of GFP, 

p24, and p55 in one representative experiment. B: Comparison of enhancement of 

virion release mediated by EC and CP Vpu alleles. Statistical significance was 

assessed using two-tailed Mann–Whitney U-Test (p= 0.07), bars represent median and 

inter-quartile ranges. 
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Figure 20b: CD317 cell surface downregulation by patient Vpu in the context of 

infection. TZM-bl cells transfected with HIV-1 NL4.3 ΔVpu and the indicated 

VpuIRESGFP plasmids were harvested 48 hrs post-transfection and CD317 cell 

surface levels quantified by flow cytometry. A: Flow cytometry plots of IRESGFP 

and NL4.3 VpuIRESGFP: CD317-APC (y-axis) VS. GFP (x-axis). Downregulation 

activity (R3/R2 ratio) was normalized to HIV-1 NL4.3 ΔVpu that was arbitrarily set to 

100%. B: The y-axis represents the relative CD317 cell surface levels remaining 

normalized to control cells transfected with NL4.3ΔVpu and IRESGFP (set to 100%). 

Shown are mean values of triplicate transfections with the indicated standard 

deviation. The result is representative of three independent experiments. C: 

Comparison of CD317 cell surface levels in TZM-bl cells producing viral particles 

and expressing EC or CP Vpu alleles. Statistical significance was assessed using 

two-tailed Mann–Whitney U-Test (p= 0.29), bars represent median and inter-quartile 

ranges.  
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5.7.3 Correlation of Vpu-mediated Virion release Enhancement and 

CD317/tetherin Surface Downregulation 

Vpu expression ultimately leads to the surface reduction of CD317/tetherin, while 

whether the removal of CD317/tetherin from an infected cell surface is required for 

overcoming the barrier of the virion release is contradictory from the reports of 

different groups (Strebel 2014). We investigated the surface level of CD317 in the 

presence of HIV-1 proviral constructs and individual Vpu alleles. In our system, 

reference NL4.3 Vpu reduced about 35% of CD317/tetherin from the cell surface in 

the presence of proviral HIV-1 plasmids (Figure 20b, A), the negative control NL4.3 

VpuS/A, with two serine mutations in DSGxxS motif, was shown activity to 

downregulate surface CD317/tetherin molecules but inactive to enhance virion release 

(Figure 20a, 20b). Analysis for patient-derived Vpus showed that Vpu-mediated 

surface reduction of CD317/tetherin was not strongly correlated with Vpu-mediated 

enhancement of virion release in our system (Figure 20a, 20b). First of all, E00450, 

CTR185 and FW048 showed the evidence high level of virion release did not require 

stronger CD317/tetherin downregulation activities. CTR123 and 8227, which showed 

very slight removal of CD317/tetherin, promoted virion release to a moderate extent. 

Overall, majority of EC and CP Vpus could reduce the cell surface level of 

CD317/tetherin in the presence of HIV-1 proviral constructs with no systematic 

difference (Figure 20b C; p=0.29), and the trend was similar in the absence of HIV-1 

proviral constructs (Figure 13, 14). 

 

5.8 Vpu Antagonizes NF-ƙB Activation 

5.8.1 Equal Efficiency to Inhibit CD317/tetherin-induced NF-ƙB Activation 

Prior to the identification of a host restriction factor to retain viral particles at the 

plasma membrane, CD317/tetherin was shown to activate the central transcriptional 

factor NF-ƙB in a cDNA screening (Matsuda, Suzuki et al. 2003). Recently the role of 

CD317/tetherin sensing virions and stimulating NF-ƙB activation was described. Vpu, 
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as the specific antagonist, could counteract the induction of NF-ƙB by CD317/tetherin 

(Galao, Le Tortorec et al. 2012) (Tokarev, Suarez et al. 2013).  

 

 

Figure 21: Antagonism of CD317-induced NF-kB signaling. A: Inhibition of 

CD317-induced NF-ƙB activation by Vpu alleles. Luciferase activity of the NF-ƙB 

reporter was determined 40 hours post transfection of HEK293T cells with expression 

plasmids for CD317 or filler, the indicated VpuIRESGFP expression plasmids and 

luciferase reporter plasmids. HIV-1 NL4.3 Vpu and HIV-1 M WITO Vpu served as 

controls. Mean values of 6-9 transfections are shown with the indicated standard 

deviation. B: Effect of EC and CP Vpu alleles on CD317-induced NF-ƙB activation. 

Statistical significance was assessed using two-tailed Mann–Whitney U-Test (p= 

0.29), bars represent median and interquartile ranges. C: Correlation of Vpu-mediated 

block of CD317-induced NF-ƙB activity and Vpu-mediated release of infectious 



88 
 

virions. Statistical analyses were done using Spearman’s correlation. (Data generated 

by Daniel Sauter, Ulm University) 

 

 

Inhibition of CD317/tetherin-induced NF-ƙB activation by Vpu was assessed in a 

reporter system in which the expression of firefly luciferase is driven by a promoter 

response to NF-κB. The transient expression of CD317 in HEK293T cells, which lack 

endogenous CD317, induced NF-κB activity up to 6 fold compared to the negative 

control in the absence of CD317 as shown by the white bars (Figure 21A). Expression 

of NL4.3 Vpu and also another more active WITO Vpu from founder HIV-1 virus 

could inhibit the CD317/tetherin-induced NF-ƙB activation. This inhibition activity 

does not differ between the EC and CP Vpus, with around 50% of them in each group 

able to suppress the CD317/tetherin-induced NF-ƙB activation in both groups (Figure 

21B). There was very mild correlation between Vpu-mediated virion release 

enhancement and NF-ƙB activation measuring the Spearman R (Figure 21C; R= 

-0.41, p=0.02). We suspect that other host factors may be involved in Vpu-mediated 

inhibition of CD317-induced NF-ƙB activation and Vpu-mediated recovery of virion 

release.  

 

5.8.2 Majority of Vpus Failed to Inhibit IKKβ-induced Activation of NF-kB 

NF-ƙB activation could also be initiated by the stimulation of catalytic unit IKKβ, 

which is critical for the phosphorylation and subsequent degradation of the inhibitor 

of NF-ƙB (IkB) by β-TrCP E3 ubiquitin ligases (Perkins 2007). Vpu could interfere 

with this NF-ƙB signalling pathway via competing the binding with β-TrCP (Bour, 

Perrin et al. 2001). We investigated whether the Vpus were able to inhibit 

IKKβ-induced activation of NF-ƙB in the similar reporter system used in 5.8.1. 

NF-ƙB was activated in the presence of IKKβ, as shown in white bars (Figure 22A). 

The pCG-WITO Vpu was set as a further positive control, in contrast to WITO Vpu, 

reference NL4-3 Vpu was inactive in this experiment and even enhanced NF-ƙB 

activation. This is in agreement with previous experiments using expression vectors  
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Figure 22: Antagonism of IKKβ-induced NF-kB signaling. A: Effect of EC and CP 

Vpu alleles on IKKβ-induced NF-ƙB activation. Luciferase activity of the NF-ƙB 

reporter was determined 40 hours post transfection of 293T cells with expression 

plasmids for IKKβ or filler, the indicated VpuIRESGFP expression plasmids and 

luciferase reporter plasmids. HIV-1 M WITO Vpu served as positive control. B: 

Comparison of inhibition IKKβ-induced NF-ƙB activation mediated by EC and CP 

Vpu alleles. Statistical significance was assessed using two-tailed Mann–Whitney 

U-Test (p= 0.27), bars represent median and interquartile ranges. C: Correlation of the 

Vpu-mediated block of CD317-induced NF-ƙB activity and IKK-ß-induced NF-ƙB 

activity among all Vpu alleles analysed. Statistical analyses were done using 

Spearman’s correlation. (Data generated by Daniel Sauter, Ulm University) 
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driven CMV promoter (Jafari, Guatelli et al. 2014). Only few of the alleles, including 

CTR29, CTR123, CTR185 and 8227 from EC group, as well as E00436, E00440, 

E00454, E00463, E00466, E00468, displayed slight inhibitory activities (Fig. 15 A). 

There was no significant difference between EC and CP Vpus (Figure 22B). 

Vpu-mediated inhibition of CD317/tetherin-induced NF-ƙB and IKKβ-induced NF-ƙB 

activation was not conserved among primary Vpus, while these two inhibitory 

functions of Vpu were well correlated (Figure 22C; R= 0.61, p=0.02), which suggest 

the two pathways may be integrated at some point. 

 

5.9 Scanning of Novel Functional Determinants of Vpu 

Loss of function for some alleles can be explained by lack of motifs, for some alleles. 

The assignment was not possible, indicating the existence of important yet  

un-characterized motifs of Vpu. Based on the results of functional analyses and 

natural amino acid variants, MEF allele from EC group interested us as its ability to 

modulate CD4, MHC-I, and NTB-A cell surface levels was significantly impaired, 

while MEF displayed full activity for CD317 downregulation and virion release 

enhancement. We first compared its expression level with NL4.3 Vpu to preclude the 

possibility that impaired activities did not result from the expression level. The 

expression of NL4.3 Vpu and MEF were comparable (Figure 23A), so the functional 

differences come from the inherent properties existing in the amino acid sequence. 

Since all described motifs critical for Vpu functions are conserved in MEF (Figure 9), 

we first aligned MEF and NL4.3 Vpu sequences. The variable regions or single amino 

acid were marked in red, then we referred to all the HIV-1 M group Vpu sequences in 

Los alamos national laboratory database (http://www.hiv.lanl.gov/content/index) and 

checked the mutation frequencies for these variable regions. The amino acids marked 

in the green box showed rare mutation frequencies, and were collected for further 

analysis (Figure 23B). 
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Figure 23: Identification of critical amino acids for full functionality. A: 

Validation of comparable expression level of NL4.3 Vpu and MEF. A301 cells were 

transfected with non-code optimized NL4.3 Vpu.GFP and MEF.GFP plasmids (30 

μg). 24 hours post-transfection cells were harvested and the cell lysates were analyzed 

by immunoblotting for Vpu and transferin. B: Sequence alignment and mutation 

frequency calculation. The potential amino acids in red were compared with all HIV-1 

clade B sequences in HIV-1 database (http://www.hiv.lanl.gov/content/index). 

 

We constructed a set of MEF alleles with single or grouped amino acid mutations, as 

well as a corresponding set of NL4.3 Vpu mutants by site-directed mutagenesis. 

Downregulation of CD4 and MHC-I was assessed by FACs. For NL4.3 Vpu, V25I 

and A49V impaired the CD4 downregulation activity, but I16V and D77H had no 

effect (Figure 24A). Single substitute of V17I, I26V and V50A increased rescued CD4 

downregulation activity of MEF, especially V50A almost making MEF as active as 

NL4.3 Vpu (Figure 24A). Interestingly, All the single mutants displayed impaired 

MHC-I downmodulation, whereas, the corresponding mutants V17I, I26V and V50A 

MEF did not rescue this ability, except H78D showing mild effect (Figure 24B). 

Within the grouped mutations, all listed single amino acids are required for optimal 

CD4 downregulation activity in the context of NL4.3 and MEF (Figure 24B). The 

grouped NL4.3 Vpu mutant showed almost comparable potency as a wild type to 

reduce MHC-I cell surface level. However, the MEF IVA rescued its ability while the  
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Figure 24: CD4 and MHC-I downregulation activity of mutated NL4.3 Vpu and 

MEF. A3.01 cells were electroporated with the indicated Vpu.GFP expression 

constructs, harvested after 48hrs, and stained for cell surface CD4 and MHC-I.  

Downregulation activity was normalized to eGFP that was set to 100%. A, C: Graphs 

showing the CD4 downregulation activity of Vpu alleles relative to eGFP. Shown are 

mean values of triplicate transfections with the indicated standard deviation. B, D: 

Graphs showing the MHC-I downregulation activity of Vpu alleles relative to eGFP. 

Shown are mean values of triplicate transfections with the indicated standard 
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deviation. E: A301 cells were transfected the indicated Vpu.GFP alleles (30 μg). 24 

hours post-transfection, The GFP positive cells were isolated, and the cell lysates were 

analyzed by immunoblotting for Vpu, and transferin. 

 

 

single mutant MEF V50A did not. Moreover, the full grouped mutant MEF IVAD 

completely recovered this activity (Figure 24D). To summarize, all listed single amino 

acids are required for optimal CD4 downregualtion, especially, 25V and 49A. While 

for MHC-I downmodulation, the grouped mutant MEF IVAD totally recovered for its 

activity, but the corresponding NL4.3 Vpu VIVH only showed little effect. The 

preliminary western blotting data showed the grouped mutants expressed at similar 

levels (Figure 24E). While the mechanism by which the listed amino acids affect 

Vpu’s activity in different alleles need to be further elucidated. 
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5.10 Summary of the Results 

The results were summarized in the following Table. Downregulation of CD4 and 

antagonism of CD317/tetherin were well conserved among EC and CP Vpus. IN 

contrast, inhibition of NF-ƙB signalling was not conserved in both patients. More EC 

Vpus showed impaired activity to modulate MHCI and NTB-A. 

C 1 C 2 7 1M 7 4 H

C TR 2 9 ＋ ＋ ＋ / － ＋ / － ＋  ＋  ＋ C 0 4 0 1  C 17 0 1 －

C TR 5 3 ＋ ＋ － － ＋ － － C 0 2 0 2  C 0 7 0 1 u.d .
C TR 112 ＋ ＋ － － ＋ － － C 0 7 0 1 C 0 6 0 2 －

C TR 12 3 ＋ ＋ / － ＋ ＋ / － ＋  ＋  ＋ C 0 3 0 4   C 12 0 2 ＋

C TR 14 9 ＋ ＋ ＋ / － － ＋ － － C 0 3 0 4  C 0 6 0 2 －

C TR 18 3 ＋ / － ＋ － － ＋ － － C 0 4 0 1  C 14 0 2 7 1M 7 4 R u.d .
C TR 18 5 ＋ ＋ ＋ ＋ ＋＋  ＋  ＋ C 0 2 0 2  C 12 0 3 －

M EF ＋ / － ＋ － － ＋ － － C 0 2 0 5  C 0 3 0 3 7 1M 7 4 D u.d .
J LS ＋ ＋ ＋ ＋ ＋  ＋  － C 0 4  C 12 ＋

F W0 4 1 ＋ ＋ ＋ ＋ ＋  ＋  － C 16 0 1  C 16 0 1 u.d .
F W0 4 8 ＋ / － ＋ ＋ ＋ / － ＋＋ － － C 0 7 0 2  C 0 4 0 1 7 1M 7 4 D ＋

F W0 5 7 ＋ ＋ ＋ － ＋ － － C 0 10 2  C 0 6 0 2 u.d .
8 2 2 7 ＋ ＋ / － － － －  ＋  － C 14 0 2  C 18 0 1 u.d .
8 2 5 2 ＋ ＋ ＋ / － ＋ / － ＋ － － C 0 4 0 1 C 0 7 0 1 u.d .
8 2 6 0 ＋ ＋ ＋ ＋ ＋ － － C 0 8 0 2  C 16 0 1 u.d .

C P

 E0 0 4 3 6 ＋ ＋ ＋ / － ＋ / － ＋ － ＋ C 0 3  C 0 8 7 1M 7 4 L ＋

 E0 0 4 3 8 ＋ ＋ ＋ ＋ ＋＋ ＋ － C 0 4  C 0 7 7 1R 7 4 L u.d .
 E0 0 4 3 9 ＋ ＋ ＋ － ＋ － － C 0 5  C 15 u.d .
 E0 0 4 4 0 ＋ ＋ ＋ ＋ ＋ ＋ ＋ C 0 7  C 0 7 7 1M 7 4 L u.d .
E0 0 4 4 2 ＋ ＋ ＋ / － ＋ ＋ － － C 0 3  C 0 4 －

E0 0 4 4 4 ＋ ＋ ＋ － ＋ ＋ － C 0 2 0 2  C 0 6 7 1M 7 4 D u.d .
E0 0 4 4 9 ＋ ＋ ＋ ＋ ＋ ＋ － C 0 4  C 0 5 －

E0 0 4 5 0 ＋ ＋ ＋ ＋ / － ＋＋ ＋ － C 0 1  C 0 7 7 1M 7 4 D u.d .
E0 0 4 5 2 ＋ ＋ / － ＋ ＋ ＋ － － C 0 4  C 0 7 7 1M 7 4 L ＋

E0 0 4 5 4 ＋ ＋ ＋ ＋ / － ＋ ＋ －  C 0 2  C 12 7 1M 7 4 D －

E0 0 4 5 5 ＋ ＋ ＋ ＋ ＋ － － C 0 7  C 0 8 7 1M 7 4 D －

E0 0 4 5 6 ＋ ＋ ＋ ＋ － － － C 0 2  C 0 4 －

E0 0 4 6 2 ＋ ＋ ＋ ＋ ＋ ＋ － C 0 2  C 0 4 7 1R 7 4 L u.d .
E0 0 4 6 3 ＋ ＋ ＋ ＋ / － ＋＋ ＋ ＋ C 0 4  C 0 7 7 1M 7 4 D u.d .
E0 0 4 6 6 ＋ ＋ ＋ ＋ ＋ ＋ ＋ C 0 6  C 0 7 u.d .
E0 0 4 6 8 ＋ ＋ ＋ ＋ ＋ ＋ ＋ C 0 7  C 0 7 7 1R 7 4 L u.d .

N TB -A ↓
R e le a s e  

a s s a y
 N F -ƙB  
C D 3 17  

 N F -ƙB  
IKKβ

KIR 2 D L2
KIR -a s s o c ia te d  po lym o rphis m

EC C D 4  ↓ C D 3 17 ↓ M HC -1↓
HLA  C

 

Table 10: Summary of Vpu alleles function, HLA background and HLA or KIR 

associated amino acid polymorphisms. The activity of patient derived vpu alleles 

was rated relative to that of NL4.3 Vpu and the following activity classes were 

defined: CD4 and CD317: ＋: more than 80% of NL4.3 Vpu activity, +/－: 50% - 

80% of NL4.3 Vpu activity, －:  lower than 50% activity of NL4.3 Vpu. MHC-I and 

NTB-A downregulation: ＋: more than 75% activity of NL4.3 Vpu, ＋/－: 75% - 

50% of NL4.3 Vpu activity, －: lower than 50% activity of NL4.3 Vpu. Virion 

release: ＋＋ : fold increase over NL4.3�vpu ˃ 12, ＋ : fold increase over 

NL4.3�vpu ˃ 3, －: fold increase over NL4.3�vpu < 3. Interference with NF-kB 

activation by CD317: ＋: equally or more active than NL4.3 Vpu (significant 

difference to IRESGFP), p ˃ 0.001, －: inactive (not different from IRESGFP, p˃ 

0.01. Interference with NF-kB activation by IKKβ: ＋: significant reduction relative 

to IRESGFP, p< 0.01, －: no significant reduction relative to IRESGFP, p˃ 0.01. n.d., 

not determined. 
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6 Discussion 

The aim of this study was to assess whether there are systematic differences between 

Vpu alleles derived from EC and CP HIV-1 infected individuals, and further evaluate 

whether variation of Vpu functions could contribute to host control of virus 

replication and thus disease progression in EC HIV patients (see summary of all 

results in Table 10). 

We assessed the surface downmodulation of CD4, CD317, MHC-I and NTB-A, as 

well as enhancement of virion particle release and antagonism of NF-кB signalling by 

using clonal plasma HIV RNA sequences from 15 EC and 16 CP in the in vitro 

system. We observed that all Vpu alleles were generally functional for the most 

characteristic activities of CD4/CD317 downregulation and virion particle promotion. 

In contrast, inhibition of NF-кB signalling was not conserved and showed no 

significant difference between EC and and CP Vpus. It was the first time that 

downregulation of MHC-I and NTB-A by patient-derived Vpus was investigated. We 

showed that EC Vpus displayed higher frequencies of attenuated ones regarding these 

activities, resulting in significantly lower median activities of EC Vpus than those of 

CP Vpus. The enrichment of KIR2DL2 footprints in EC Vpus was the most 

significant sequence difference compared with CP Vpus. Whether the different 

frequencies of adaption to the KIR2DL2 receptor had an impact on the individual 

analysed functions or could have other possible but not-yet-studied effects will be 

discussed. Moreover, natural mutations in Vpus and the effect on functions, 

correlation of individual activities, and implications of conserved and un-conserved 

functions will be discussed in the following sections.  

 

6.1 Patient-derived Vpu alleles Displayed Comparable Activities as GFP fusion 
and non-fusion Proteins 

In the beginning, we constructed vpu gene to the expression vector pEGFP N1 as 

fusion aiming to facilitate detection of the expression and the subcellular localization 

of Vpus. As shown in Figure 19, Vpu.GFP protein was not functional for the virion 

release enhancement. As a commonly used tag, GFP-associated defects were observed 
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in actin-myosin interaction, NF-ƙB and JNK signalling (Agbulut, Coirault et al. 2006) 

(Baens, Noels et al. 2006). Very interestingly, one early report showed that 

actin-myosin interaction was involved in HIV-1 release (Sasaki, Nakamura et al. 

1995), which then could explain how the GFP tag disabled the Vpu-mediated virion 

particle release. From another point of view, GFP tag may affect this activity of Vpu 

by stimulating miss-folding or blocking the functional residues of its C-terminus. 

Indeed GFP tag is very close to the 76W residue which is required for the promotion 

of virion release. 

To evaluate the Vpu-mediated virion release enhancement, we constructed the vpu 

gene to the pIRESGFP expression vector which allows the simultaneous and separate 

expression of Vpu and GFP. With all pVpuIRESGFP constructs, we performed the 

analysis of all downregulation activities of Vpu as well. To assess whether the 

modulation abilities of Vpu alleles were disturbed by the GFP tag, we analysed the 

correlation for CD4, CD317 and MHC-I downregulation activities of our alleles as 

Vpu.GFP and VpuIRESGFP proteins. Pearson’s correlation (r) was measured for the 

two data sets of each activity. Both CD4 and CD317 downregulation by all primary 

Vpu alleles were highly correlated as fusion or non-fusion proteins. MHC-I 

downregulation showed moderate correlation efficiency (r=0.38, p< 0.05; Figure 25). 

Overall, the general trend of CD4, CD317 and MHC-I downregulation mediated by 

Vpus was similar as fusion or non-fusion proteins, which indicated that the different 

levels of a specific downregulation ability among Vpus resulted from the inherited 

property of Vpus. Moreover, this validation analysis supported that the functional 

comparison of EC and CP Vpus based on Vpu.GFP proteins was valid. 

 

6.2 The Effects of Natural Amino Acid Variations on Functions of Vpus 

As shown in Figure 9, sequence of patient-derived Vpus displayed high diversity, 

especially in the N- and C-terminus, which is identical with former reports  
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Figure 25: Comparison of CD4, CD317 and MHC-I downmodulation activities 

by Vpu.GFP and VpuIRESGFP. Pearson correlation coefficient between data sets of 

CD4, CD317, and MHC-I downregulation by Vpu.GFP (x-axis) and by VpuIRESGFP 

(y-axis) was calculated by GraphPad prism. 

 

 

(Pickering, Hue et al. 2014) (Jafari, Guatelli et al. 2014). The natural changes, 

occurring at the amino acids critical for its functions defined based on NL4.3 Vpu, 

had some effects on the loss or gain of functions. CTR123, with a mutation at the 

amino acid 18 from alanine (A) to asparagine (N), was impaired in reducing CD317 

surface levels and in enhancing virion particle release. This finding is consistent with 

former studies showing A18 was required for antagonism of CD317 (Vigan and Neil 

2010). An A14L mutation previously displayed impaired ability to antagonize CD317 

(Vigan and Neil 2010), while the substitution of A14V or A14G did not show negative 

effect for any of the functions, such as CTR185 and FW048. The mutations at the 

residue of A7 only occurred in CP Vpus including E00438, E00444, E00452, E00454, 

E00455 and E00456. The Neil group showed A7 was one of the residues to interact 

directly with CD317 (McNatt, Zang et al. 2013). The substitutions of A7 in E00438, 

E00444, E00454 and E00455 did not result in the loss of function in enhancing viral 

particle release (Figure 20a), and this may be because other variations in the Vpu 

protein could compensate the adverse effect. The impairment of E00452 in the 

promotion of virion release is very likely a result from the mutation of W76R which 

was identified recently (Jafari, Guatelli et al. 2014). For E00456, the reason is very 
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likely due to the insertion of three amino acids in N-terminus adjacent to the CD317 

interacting domain.  

Our results confirmed the role of recently-defined V25 for CD4 downregulation 

activity (Magadan and Bonifacino 2012). MEF, with a substitution of Isoleucine (I) at 

position 25, showed suboptimal activity to induce CD4 degradation (Figure 12). 

However, the replacement of Val by Ala had no effect on E00440. These two 

observations are consistent with a former study based on NL4.3 Vpu, which 

demonstrated that the mutation of Val to Iso impair the Vpu-mediated CD4 

downregulation by reducing the extent of Vpu-induced CD4 polyubiquitination which 

is essential for CD4 degradation (Magadan and Bonifacino 2012). We contributed one 

new residue A48 that is required for optimal CD4 and MHC-I downregulation but not 

for CD317 downregulation. A48 is located in the end of the first cytoplasmic α-helix 

responsible for the physical binding with CD4 and adjacent to the β-TrCP binding 

motif DSGxxS (Margottin, Bour et al. 1998) (Magadan, Perez-Victoria et al. 2010). 

The mutation at this residue could have an impact on the binding of CD4 or β-TrCP 

and therefore lead to the impairment of CD4 downregulation activity. 

Principally, our sequences and functional analysis confirmed the key residues for each 

of the Vpu activities. The compensation from other amino acids in a specific allele 

should be taken account into the overall effect.  

 

6.3 Enrichment of KIR2DL2 Footprints 71M/74H and the Implications 

Adaption to KIR2DL2 receptor on NK cells was shown in several regions of HIV-1 

genome, especially in the overlapped segment of vpu and env. The adaption of HIV-1 

to the inhibitory receptor KIR2DL2 could enhance the inhibitory ability of KIR2DL2+ 

NK cells and consequently escape the NK cell killing. In contrast, the viruses 

containing variations from these adaptions were strongly inhibited by KIR2DL2+ NK 

cells (Alter, Heckerman et al. 2011). The different frequencies of the adaption to NK 

cell receptors, together with the specific KIR genotype, are thus very likely to have 

different impact on the viral replication. However, the sequences and genetic 
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information in our hands do not support the specific association of KIR2DL2 and 

71M/74H as reported before. For example, the alleles derived from KIR2DL2 

negative patients, such as CTR29, CTR112, CTR149, E00449 and E00456, have the 

71M/74H polymorphisms. In contrast, FW048 and E00436, which were derived from 

KIR2DL2 positive patients, do not have the adapted 71M/74H footprints.  

The most striking difference of amino acid sequences was the higher frequency of 

KIR-associated polymorphisms at 71M/74H in EC Vpus (12 out of 15) than CP Vpus 

(5 out of 16) (Figure 9). To test whether the composition of the M/H determines the 

functional differences, all alleles were grouped according to their genotype. No 

significant difference was observed for any of the downregulation activities or the 

inhibition of NF-кB among the Vpus (p˃ 0.05; Figure 26A-E). However, Vpu 

71M/74H (+) alleles showed slightly lower activity to reduce CD317 cell surface 

levels and promote virion particle release than Vpu 71M/74H (-) alleles (p< 0.05; 

Figure 26F-G). Taken together, the 71M/74H polymorphisms generally did not cause 

loss of functions and do not explain the functional differences observed between EC 

and CP Vpus. With the genetic background information and data sets, we are not able 

to define the driving force responsible for the differences between EC and Vpus. 

In addition to the KIR-associated polymorphisms in Vpu sequence, they were also 

extensively found throughout the HIV-1 genome, such as the KIR2DL2-associated 

footprints in Nef 9S and Gag 138L (Alter, Heckerman et al. 2011). Similar with the 

effect of Vpu 71M/74H on NK cell recognition, the genotype of Nef 9S or Gag 138L, 

together with the presence of the KIR2DL2 receptor, could inhibit the killing of 

HIV-1 by NK cells (Alter, Heckerman et al. 2011). We analysed the available 

sequences of Nef and Gag proteins from the same two cohorts herein studied. The 

KIR2DL2 footprints Nef 9S and Gag 138L displayed higher frequencies in EC than in 

CP (Table 11). It seemed the accumulation of KIR2DL2-associated amino acids is a 

general property for HIV-1 isolates form EC cohort. Whether the different frequencies 

have an impact on different viral replication potency in more physiologic conditions 

need to be further elucidated. 
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Clinical cohorts Frequencies of KIR2DL2-associated footprints 

 Vpu 71M/74H Nef 9S Gag 138L 

Elite controllers 61% 78% 75% 

Chronic progressors 31% 57% 63% 

 

Table 11: Frequency of KIR2DL2-associated footprints in ECs and CPs proteins 

The ratio was calculated from the sequences with KIR2DL2-associated amino acid(s) 

out of all available sequences. (All sequences were provided by Takamasa Ueno 

(Center for AIDS Research, Kumamoto University, Japan) 

 

Even though the observed differences in the Vpu function is not a result from the 

71M/74H polymorphism, the different levels of 71M/74H conservation may have an 

impact on the efficiency of immune responses in EC and CP patients due to different 

levels of adaption to immune pressure(s). Among the Vpu alleles studied, the majority 

of the differences concerned H74, which is the first residue of the HLA-Cw1 

restricted epitope HL9 of Vpu (HAPWDVDDL) (Liu, McNevin et al. 2007) (Liu, 

McNevin et al. 2011). As known, HLA-Cw1 is the ligand of KIT2DL2 receptor of NK 

cells (Wagtmann, Rajagopalan et al. 1995) (Symons and Fuchs 2008) (Moesta, 

Norman et al. 2008) and HLA-C-presented peptides have an impact on the binding 

and stablization with the KIR2DL2 (Snyder, Brooks et al. 1999) (Blais, Dong et al. 

2011). In this scenario, the alteration at 74H may influence the interaction of 

HLA-Cw1 and KIR2DL2 and thus lead to the inhibition or the activation of NK cells, 

which needs to be further characterized. 

From another point of view, higher mutation frequency of CP 74H could just facilitate 

the escape of HLA-Cw1-mediated CTL killing, and this may contribute to the 

establishment of server HIV-1 infection in CP patients. Interestingly, H74 is highly 

enriched in transmission-founder viruses (present in 100% of founder virus sequences 

vs. 53% of subtype B sequences), indicating that the underlying selection pressures 

may be particularly relevant during the acute phase of HIV infection. 
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Figure 26: Comparison of activities mediated by Vpu 71M/74H positive and 

negative alleles. A-C, F: Comparison of CD4, MHC-I, NTB-A and 

CD317downregulation activities between Vpu 71M/74H positive and negative alleles. 

D, E, G: Comparison of inhibition of NF-кB signalling and enhancement of virion 

particle release mediated by Vpu 71M/74H positive and negative alleles. Statistical 

significance was assessed using two-tailed Mann–Whitney U-test, bars represent 

median and interquartile ranges. 

 

 

6.4 Moderate Association between Downregulation Activities of Aatient-derived 
Vpus 

For all the activities imposed by natural Vpus, we evaluated their correlation with 

each other by measuring the Spearman R. The correlation between activities of 
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CD317 and MHC-I downregulation was significant (R= 0.69, p< 0.0001; Figure 27E), 

which suggests that Vpu may use similar mechanisms to downmodulate these two 

molecules. Vpu reduces the cell surface levels of CD317 by perturbing anterograde 

transport of newly synthesized CD317 and retaining CD317 molecules in 

Golgi-apparatus(Schmidt, Fritz et al. 2011). The mechanism of Vpu-mediated MHC-I 

downregulation has not been elucidated yet, but it was hypothesized that Vpu acts on 

newly-synthesized MHC-I molecules in ER and directs them for proteasomal 

degradation as how Vpu induces CD4 surface downregulaton (Kerkau, Bacik et al. 

1997). While the correlation between CD4 and MHC-I downregulation was 

intermediate (R= 0.52, p=0.003; Figure 27B). Taken together, our data suggests that 

Vpu may interfere with the trafficking of MHC-I similarly with CD317 in 

Golgi-apparatus. 

There was mild correlation between CD4 and CD317 downregulation (R= 0.41, 

p=0.02; Figure 27A), which is reasonable and not surprising from the knowledge 

based on the studies of the lab-adapted NL4.3 Vpu. The mechanisms of Vpu-mediated 

CD4 and CD317 surface level reduction are different as described above, but some of 

the amino acids or motifs are required for both of the activities. The determinants 

located in Vpu TMD, such as W22, A14 and A18 are essential for the downregulation 

of CD4 and CD317. Our data generated from natural Vpus principally supports that 

these two activities of Vpu are separable. 

The correlation between NTB-A and MHC-I downregulation was significant (R= 

0.53, p=0.002; Figure 27F), which may reflect Vpu over-layered mechanisms for 

these two activities. Vpu was shown to slow down the anterograde transport of the 

NTB-A and retain it in the Golgi-apparatus, distinct from the block of anterograde 

transport of CD317 (Bolduan, Hubel et al. 2013). Our two sets of correlation analyses 

suggest Vpu  
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Figure 27 Correlation between different functions of patient-derived Vpus. 

Correlation of Vpu functions were assessed by the strength of the spearman R 

coefficient. A-C: Correlation of CD4 with CD317, MHC-I or NTB-A. D, E: 

Correlation of CD317with MHC-I or NTB-A. F: Correlation of MHC-I with NTB-A.  
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may also affect the trafficking of MHC-I molecules as it does for CD317 or NTB-A. 

While since Vpu-mediated MHC-I and NTB-A downregulation are not as potent as 

the other activities, the correlation between them could be simply from the narrow 

dynamic range. Interestingly, there was no or very mild correlation between NTB-A 

and CD4 or CD317 downregulation (Figure 27C, D), which reflects the distinct 

mechanisms as described above. All together, the varying degrees of correlation 

reflect that Vpu uses different structural and functional domains and mechanisms to 

modulate the surface levels of these molecules. 

 

6.5 Conservation and Variation of Functions Mediate by EC and CP Vpus 

6.5.1 Implications from Conservation of Vpu-mediated CD4 Degradation and 

Difference between EC and CP Vpus 

Both EC and CP Vpus had conserved abilities to down-regulate CD4 despite high 

sequences diversity (Figure 12, 14). The Neil group also showed the conservation of 

CD4 downreguation activities of Vpu alleles derived from different clinical stages of 

15 HIV-1 infected individuals including rapid progressors, normal progressors and 

long-term non-progressors at different stages (Pickering, Hue et al. 2014). Similar 

observations were made in a cohort of acutely infected patients (Jafari, Guatelli et al. 

2014). This conservation may reflect that surface removal of HIV-1 CD4 receptor is 

strictly required for the preservation and persistence of HIV-1 in the infected 

individuals and even in EC patients who can naturally control HIV-1 replication but 

not elimination. The importance of CD4 down-modulation for HIV-1 fitness in the in 

vivo environment is also reflected by the fact that HIV-1 utilizes a combination of 

three proteins Nef, Vpu and Env to diminish its primary receptor CD4 molecules, and 

each activity implies different relevance for HIV-1 survival according to their 

respective expression patterns (Chen, Gandhi et al. 1996) (Wildum, Schindler et al. 

2006). Vpu acts on newly-synthesized CD4 molecules in the relatively late stage of 

HIV-1 life cycle, which was proposed to be critical for liberating Env from the 

Env-CD4 complex in the ER and thus facilitating the Env processing and viral 
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production and infectivity (Willey, Maldarelli et al. 1992) (Lama, Mangasarian et al. 

1999) (Levesque, Zhao et al. 2003) (Gautam and Bhattacharya 2013). In contrast, Nef 

plays the major role on reducing CD4 surface level by enhancing CD4 internalization 

from the plasma membrane and subsequent degradation in the early phase of HIV-1 

infection (Piguet, Chen et al. 1998), which is important for effective viral replication 

by preventing superinfection (Wildum, Schindler et al. 2006).  

The evidences from cohorts studies showed that HIV-1 Nef alleles from long term 

non-progressors were attenuated in down-regulating CD4 molecules (Tobiume, 

Takahoko et al. 2002) (Mwimanzi, Markle et al. 2013). Moreover, the study 

performed on pig-tailed macaque showed that Vpu-mediated CD4 degradation is 

associated with pathogenesis of HIV-1 (Stephens, McCormick et al. 2002). Our EC 

Vpu alleles maintained lower ability to decay CD4 surface expression levels than CP 

Vpu alleles. With all these evidences, we could deduce that full CD4 down-regulation 

by Vpu is very likely to add the strength of HIV-1 to combat with the host, and the 

different potency to remove CD4 from the cell surface may cause different clinical 

outcomes.  

 

6.5.2 Benefits from the Conservation of CD317 Antagonism by Vpus 

Vpu is the only protein that HIV-1 exploits to antagonize the host restriction factor 

CD317 by reducing its surface expression or displacing it from nascent virion 

particles at the plasma membrane (Neil, Zang et al. 2008). Surface downregulation of 

CD317 and promotion of virion particles were well conserved among EC and CP 

alleles, which is again identical with other cohorts studies  (Pickering, Hue et al. 

2014) (Jafari, Guatelli et al. 2014). Our data suggest surface removal of CD317 was 

not strictly required for enhancing virion release (Figure 20a, 20b), which indicates 

that Vpu-mediated virion particle release and CD317 downregulation are separable 

activities. How HIV-1 could benefit from these two Vpu-mediated functions is 

unknown. Recent reports provide new interpretations for the functional relevance and 

importance of CD317 antagonism during HIV-1 infection. CD317 molecules could 



106 
 

provide a platform for host NK cells to recognize the retained HIV-1 virions from the 

infected cell surface and facilitate the recognition and killing by NK cells via ADCC 

(Arias, Heyer et al. 2014) (Pham, Lukhele et al. 2014).  

The in vivo relevance of virion release was puzzling in the beginning because cell-free 

virions are not the only way for HIV-1 spreading. It is even more efficient for HIV-1 

spreading from cell to cell via virological synapses (Chen 2012). However, it was 

elucidated later that the quantity of cell free virions were associated with the 

efficiency of virion distribution and expansion in a humanized mice model, by this 

way the virion propagation was boosted especially in the early phase (Sato, Misawa et 

al. 2012). All together, the conserved abilities of CD317 surface downregulation and 

virion release enhancement among Vpus derived from different clinical outcomes just 

implies the important role of these conserved activities in the establishment and 

persistence of HIV-1 infection.  

 

6.5.3 Vpu-mediated MHC-I Down-modulation and its Functional Consequences 

MHC-I is responsible for loading pathogen-derived peptides and presenting them to 

Cytotoxic T lymphocytes (CTLs). Interference with MHC-I antigen-presentation is a 

general strategy used by many viruses to escape the CTL killing, such as HIV-1, HCV 

and HSV (Yewdell and Bennink 1999). HIV-1 Nef-mediated MHC-I downregulation 

and its consequences were well studied. In the presence of HIV-1 Nef, CTL killing is 

inefficient due to reduced MHC-I surface expression levels (Collins, Chen et al. 1998) 

(Petersen, Morris et al. 2003). Furthermore, CP Nef alleles from the same cohort 

studied herein displayed significantly higher capacities to down-regulate MHC-I 

surface expression level than EC Nef alleles (Mwimanzi, Markle et al. 2013). No 

further studies were followed to elucidate the functional relevance and the mechanism 

since the first report about HIV-1 Vpu-mediated MHC-I downregulation (Kerkau, 

Bacik et al. 1997). Our data showed that most EC Vpus was attenuated in MHC-I 

downregulation compared with our reference NL4.3 Vpu or majority of CP Vpus 

(Figure 16, 17). The relatively stable and higher MHC-I level may be advantageous to 
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the control of HIV-1 because more viral peptides can be loaded and presented on the 

infected cells surface via MHC-I and should consequently lead to more efficient CTL 

responses. And indeed the antigen loading is associated with disease progression. 

From this point of view, the potent downregulation of MHC-I by CP Vpus may help 

HIV-1 infected cells to escape CTL surveillance and therefore allow disease 

progression. Whether the attenuated MHC-1 downregulation by EC Vpus is the 

consequence or one of the reasons for natural HIV-1 suppression or due to the 

interaction is complicated to be investigated. 

 

6.5.4 Modulation of NTB-A: Selection Pressure from Innate Immunity 

A listing of increasing evidences support that the accessory protein Vpu is widely 

involved in the interference with NK cells functioning during HIV-1 infection (Shah, 

Sowrirajan et al. 2010) (Matusali, Potesta et al. 2012) (Arias, Heyer et al. 2014) 

(Pham, Lukhele et al. 2014). Apart from the adaption to specific KIR receptors to 

avoid the recognition of NK cells, Vpu has the capacity to modulate NK cell ligands 

including NTB-A and PVR on the surface of HIV-1 infected cells and thus disturbs 

the recognition and killing by NK cells (Shah, Sowrirajan et al. 2010) (Matusali, 

Potesta et al. 2012). However, whether these two activities of Vpu are conserved 

among natural Vpu alleles has not been investigated before. In this study we assessed 

NTB-A modulation by patient-derived Vpu alleles. Our data displayed that 

down-modulation of NTB-A was not conserved among natural Vpu alleles. The 

majority of EC Vpu alleles were attenuated but most of the CP Vpu alleles still were 

shown optimal or suboptimal activity in modulating NTB-A molecules (Figure 18). It 

is unknown how the autologous NK cells will react to decreased surface levels of 

NTB-A ligands in HIV-1 infected cells. Very likely, CP Vpus may have stronger 

potency to inhibit the activation of NK cells than EC Vpus by suppressing the 

activating factor-NTB-A, which is logically right at the time point of sample 

collection when all patients had established infection status. 

The variations observed in NTB-A downregulation activity may also indicate that the 
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patient-derived Vpu alleles were undergone different degrees of immune pressure(s) 

imposed by NK cells. And indeed it was proposed that NK cells are involved in the 

immune control of HIV-1 infection (Iannello, Debbeche et al. 2008). NK cells may 

play a central role in the acute stage of the HIV-1 infection because the drop in the VL 

of patients occurs before the CTL response is fully activated (Alter, Teigen et al. 

2007), and HIV-1 has undergone selection pressure imposed NK cell at this stage 

prior to entering to the chronic phage when our samples were collected. The 

variations of Vpu-mediated NTB-A may just reflect the different potency of NK cells 

selection of each patient. Even though the phenotypic background of the NK cells in 

our cohorts is unknown, the attenuated NTB-A downregulation activities by EC Vpu 

alleles may be a result from strong NK cells pressures, and the impairment of Vpu in 

turn contributes to the suppression of HIV-1 infection.  

 

6.5.5 Vpu-mediated inhibition NF-ƙB activation: An agonist or antagonist? 

As a central transcriptional factor for regulation of a specific gene expression, NF-ƙB 

plays a pivotal and dynamic role in innate and adaptive immunity upon virus infection 

(Gilmore 2006) (Ghosh and Hayden 2012). Induction of NF-ƙB is a double-edged 

sword for it can enhance HIV-1 replication and also induce gene expression of 

antiviral factors (Hiscott, Kwon et al. 2001) (Chan and Greene 2012). The HIV-1 

infection can be sensed by a diversity array of pattern recognition receptors (PPRs) in 

the immune system, which leads to the activation of NF-ƙB (Hiscott, Kwon et al. 

2001). The virion release restriction factor CD317 can also serve as a PPR to 

stimulate NF-ƙB signalling and consequently induces the downstream 

proinflammatory responses (Galao, Le Tortorec et al. 2012) (Tokarev, Suarez et al. 

2013). Vpu-mediated surface downregulation and viral antagonism of CD317 were 

well conserved among natural alleles, while half of our Vpu alleles, no matter derived 

from ECs or CPs, lost the inhibitory effect on CD317-induced NF-ƙB activation 

(Figure 21). The variations of Vpu-mediated inhibition of CD317-induced NF-ƙB 

signalling were also observed from Vpu alleles collected from CPs and long-term 
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non-progressors (LNTP) from the point of initial infection to five years during HIV-1 

infection, which was reported by the Neil group (Pickering, Hue et al. 2014). Among 

the patients they studied, Vpus, derived from 3 out of 4 CPs and 3 out of 5 LTNPs, 

displayed significant decreasing capacities to inhibit NF-ƙB signalling. But there were 

also Vpu alleles derived from two patients showing increased activities to suppress 

NF-ƙB signalling. All these cohort studies indicate that inhibition of NF-ƙB signalling 

can be fine-turned depending on the stage of the infection and the micro-environment 

in a specific patient. 

Our Vpu alleles were inactivated to intercept IKKβ stimulated NF-ƙB activation. This 

might be due to the CMV promoter in our constructs, which was reported that the 

expression of constructs with CMV promoter was disturbed in the presence of 

interferon (Harms and Splitter 1995). In our system, the production of interferon can 

be triggered by the over-presence of IKK-β. 

Regarding the mechanisms, it was proposed that CD317-mediated restriction of virion 

release and stimulation of NF-ƙB signalling are separable activities because they 

require different structural domains of CD317 (Galao, Le Tortorec et al. 2012) 

(Tokarev, Suarez et al. 2013) (Sauter, Hotter et al. 2013). This fact adds the 

complexity of the mechanism of how Vpu antagonize CD317-induced NF-ƙB 

activation, which is not defined yet. The study from scanning the molecular 

determinants revealed that these two activities of Vpu are uncoupled (Pickering, Hue 

et al. 2014). The Neil group showed that the motif such as E29 required for the 

promotion of virion particle release was not needed for suppression of NF-ƙB 

activation, but the mutations at 59G and E62 were defect for inhibition of NF-ƙB 

activation but not enhancement of virion particle release. While both activities 

involved residue A18 located in TMD of Vpu. CTR123, with a substitution of 

asparagine (N) at 18, was inactive for the antagonism of CD317. For the rest of 

alleles, the molecular determinants rendering the loss of ability to suppress NF-ƙB 

activation need to be further identified. 

Overall, our result suggests that Vpu-mediated inhibition of NK-ƙB signalling is not a 

must for the persistence of the HIV-1 infection at the time point of sample collection. 
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However, this does not exclude the importance of Vpu-mediated inhibition of NF-ƙB 

signalling in the early stage of the HIV-1 infection. Since NF-ƙB activation could 

benefit both HIV-1 replication and host antiviral immune responses, it is not 

surprising that the inhibitory effect of Vpu alleles on NF-ƙB is quite various, which is 

probably dependent on the stage of the infection and the immune environment of the 

patient. The loss or gain of this function may be associated with the kinetics of HIV-1 

replication or host antiviral responses. 

 

6.6 EC Vpu alleles may be more conserved under CTL pressure  

Unlike HIV-1 accessory protein Nef, which has partially overlapped functions with 

Vpu and is intensively targeted by CTLs (Schmokel, Sauter et al. 2011) (Price, 

Goulder et al. 1997) (Leslie, Kavanagh et al. 2005). HIV-1 Vpu was rarely targeted by 

CTLs and the sequence diversity does not majorly result from the CTL-associated 

selective pressures (Addo, Yu et al. 2002) (Addo, Altfeld et al. 2002) (Altfeld, Addo et 

al. 2001) (Hasan, Carlson et al. 2012). However, at least four Vpu-derived epitopes, 

such as LAIVALVVA, EYRKILRQR, ALVEMGHHV and HAPWDVNDL, which are 

spanning from the transmembrane domain and the end of cytoplasmic tail (HIV lanl 

database), can be recognized by HIV-1 specific CD8+ T cells and elicit immune 

responses. Among them, the HLA-Cw0102 restricted CTL epitope HAPWNVND 

showed a significantly higher variation frequency in CP Vpus than EC Vpus (Figure 

9). Our data showed the variation in this epitope did not cause the loss of Vpu 

functions but rather slightly higher capacity to antagonize CD317 than the Vpu alleles 

with founder epitope, which is consistent with previous study that the epitope of 

HAPWNVND was undergone positive selection which is no cost for viral fitness and 

beneficial to HIV-1itself (Liu, McNevin et al. 2007) (Liu, McNevin et al. 2011). 

The dynamics of CTL responses and the evolution of this epitope were assessed over 

the first four years of HIV-1 infection in an ART-naïve patient. This founder epitope 

was undergone positive selections, and the CTL responses declined dramatically 

around 400 days post onset of the primary infection due to the epitope evolution (Liu, 
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McNevin et al. 2011). So the maintenance of this epitope keeps the consistent effect 

of initially developed CTLs which is critical for the control of HIV-1 infection. Under 

this scenario, frequent variations in this CTL recognition epitope may reduce the 

recognition of HIV-1 infected cells in CP patients. While the conservation of EC Vpus 

CTL epitope may facilitate the CTL responses and thus contribute to the undetectable 

viral loads status. 

   

In summary, functions of Vpu were generally conserved among all patient-derived 

alleles except for the antagonism of NF-ƙB activation. All of the experiment data sets 

and analysis showed slight systematic differences between EC and CP Vpu alleles 

regarding CD4, MHC-1 and NTB-A downregulation based on our rather small sample 

size. The driving force for these differences is undefined but not due to the KIR 

associated polymorphisms. The functional relevance of these differences needs to be 

elucidated in more relevant or physiological conditions. 

 

7 Perspectives  

To give more insight into the unsolved issue whether Vpu is a pathogenic factor of 

HIV-1 or not, we compared the sequences and functions of Vpu alleles derived from 

two distinct and treatment naïve HIV-1 clinical groups. Our results, together with the 

studies performed in the cell culture system, support that Vpu enhances the 

persistence and pathogenesis of HIV-1, even though it is not strictly required for the 

viral replication in vitro. Based on my knowledge, several aspects are proposed for 

further investigations into Vpu. 

7.1 Implications from the Studies of Animal Models 

Recently, the Bieniase group showed HIV-1 could establish AIDS like phenotype by 

successively passaging CCR5 strain HIV-1 in the pigtailed macaque and with the 

treatment of CD8 antibody during the acute infection, which has never been achieved 

previously. The adaption of Vpu to the macaque CD317/tetherin is one of the key 

factors to establish that phenotype (Hatziioannou, Del Prete et al. 2014). Their model 
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provides direct evidences that the viral adaption or genotype, as well as the 

immunological events during early infection, are crucial for the disease outcomes. In 

line with this, the role of HIV-1 genetics is proposed as important as host factors in 

the pathogenesis and virulence of HIV-1 (Fraser, Lythgoe et al. 2014).  

The TMD of Vpu is critical for the acquired ability to antagonize CD317/tetherin, as 

the Bieniase group observed. However, the DSGxxSG motif, which is essential for its 

functions, is not studied. It could be worthwhile to introduce the Vpu S/A mutant into 

the macaque-adapted HIV-1 strain to assess the significance of the DSGxxSG-related 

functions using their model. 

 

7.2 Biological and Clinical Relevance of KIR-associated Footprints in Vpu alleles 

The Vpu 71M/74H polymorphism has an effect on the NK cell killing through the 

interaction with specific type of KIRs. Based on our sequence information and data 

sets from all functional analysis, the 71M/74H footprints do not explain the impaired 

or optimal functions of Vpu alleles. To further look into the relevance of biological 

and clinical relevance of KIR-associated footprints in Vpus, we are trying to obtain 

the genetic information of each patient. First, it’s necessary to check if the adaption to 

KIR2DL2 is also true for our cohorts. In our EC cohort, not only for Vpu, but also in 

Gag and Nef, the frequency of adaption to a specific KIR receptor is generally lower 

compared with those from CP cohort (Table 8). If there is a strict adaption in our 

cohorts, then we could evaluate the possible consequences of the adaption in each 

patient. If the adaption to KIR2DL2 does not fit our cohorts, the higher frequency of 

Vpu with 71M/74H in EC might come from other immune selection pressures, which 

can only be elucidated by further epidemiological and experimental data. 

 

7.3 Critical Motifs of Vpu-mediated Inhibition of virion sensing 

Vpu is the only protein that HIV-1 exploits to antagonism CD317 which functions as 

both the restriction factor and virion sensor. These two activities of Vpu is not well 

correlated, and we can get some hints from our alleles. E00456, which is active for 
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CD317 surface downregulation but inactive for recovery of virion release 

enhancement and inhibition of NF-ƙB, has around three amino acid insertion in its 

N-terminal compared with clade B HIV-1 isolates. This insertion might be responsible 

for its inability for these two activities. Fw048 is a good example for the discrepancy 

of these two activities, which was active for recovery of virion release enhancement 

but inactive for inhibition of NF-ƙB signalling, the 61K could be one of the reasons. 

The two mentioned candidate motif, together with the relatively variable C-terminal, 

are potential determinants for inhibit NF-ƙB signalling in my opinion. Further study 

can be done to verify these motifs and the mechanism. 

 

7.4 Disability of NK cell Degranulation by EC and CP Vpus 

NK cell degranulation is triggered via the interactions of activation receptors and 

co-activation receptors with their specific ligands .This process releases cytotoxic 

granule contents towards the bounded target cells and is of central importance in NK 

cell-mediated killing. However, NK cell degranulation is compromised in HIV-1 

infection. The reason behind this is that Vpu blocks the transport of the co-activator 

NTB-A to surface of infected cells. Since the Vpu-mediated inhibition of NK cell 

degranulation and lysis is a prominent phenotype from lab-adapted Vpu, and there is a 

significant difference between EC and CP Vpu alles regarding this activity, it might be 

worthwhile to perform further functional assays to check: 1) Could all patient-derived 

Vpu alleles inhibit the NK cell killing? 2) If the Vpu-mediated inhibition of NK cell 

killing is associated with viral loads or other clinical parameter or patient genetic 

information or not? 3) Is the NTB-A down-modulation between EC and CP correlated 

with differentiated NK cell cytolytic ability?  

7.5 Interference of ADCC by Vpu: a Potential Candidate for Vaccine Design? 

As mentioned in the introduction, ADCC showed protection in macaques and in the 

Thai trail (Gomez-Roman, Patterson et al. 2005) (Florese, Demberg et al. 2009) 

(Haynes, Gilbert et al. 2012). The higher ADCC antibody titres and broader ADCC 

responses may partially contribute to the viral suppression in EC (Baum, Cassutt et al. 
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1996) (Lambotte, Ferrari et al. 2009). Vpu derived peptides were shown to induce 

IFN-γ expression of NK cells as well as Env-derived peptides (Stratov, Chung et al. 

2008) (Johansson, Rollman et al. 2011). And this property of Vpu may put it as a 

candidate for vaccine design. It would be very interesting to uncover the following 

issues: 1) Define the peptides eliciting ADCC antibodies in each individual Vpu 

alleles and compare whether there are amino acids different among the known 

peptides, especially in C-terminal 19mer one. It was shown even one single amino 

acid change in C-terminal of Vpu could totally abort NK cell-mediated ADCC 

responses (Stratov, Chung et al. 2008). 2) Evaluating the magnitude and breadth of 

ADCC response elicited by potential patient-derived Vpu peptides. 3) Systematically 

compare the difference between EC and CP groups regarding the peptides that can be 

recognized and evaluated the contribution of Vpu-elicited ADCC for viral control. 
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