
DISSERTATION

submitted

to the

Combined Faculty for the Natural Sciences and Mathematics

of

Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

M.Sc. Le Van Quoc Anh. .

Born in: Hue, Vietnam .

Oral examination: .

ii

Pattern Discovery from Event Data

Advisor: Prof. Dr. Michael Gertz .

iv

Abstract

Events are ubiquitous in real-life. With the rapid rise of the popularity of social

media channels, massive amounts of event data, such as information about festivals,

concerts, or meetings, are increasingly created and shared by users on the Internet.

Deriving insights or knowledge from such social media data provides a semantically

rich basis for many applications, for instance, social media marketing, service rec-

ommendation, sales promotion, or enrichment of existing data sources. In spite of

substantial research on discovering valuable knowledge from various types of social

media data such as microblog data, check-in data, or GPS trajectories, interestingly

there has been only little work on mining event data for useful patterns.

In this thesis, we focus on the discovery of interesting, useful patterns from

datasets of events, where information about these events is shared by and spread

across social media platforms. To deal with the existence of heterogeneous event data

sources, we propose a comprehensive framework to model events for pattern mining

purposes, where each event is described by three components: context, time, and lo-

cation. This framework allows one to easily define how events are related in terms of

conceptual, temporal, and spatial (geographic) relationships. Moreover, we also take

into account hierarchies for contexts, time, and locations of events, which naturally

exist as useful background knowledge to derive patterns at different levels of abstrac-

tion and granularity. Based on this framework, we focus on the following problems:

(i) mining interval-based event sequence patterns, (ii) mining periodic event patterns,

and (iii) extracting semantic annotations for locations of events. Generally, the first

two problems consider correlations of events whereas the last one takes correlations

of event components into account.

In particular, the first problem is a generalization of mining sequential patterns

from traditional data, where patterns representing complex temporal relationships

among events can be discovered at different levels of abstraction and granularity.

The second problem is to find periodic event patterns, where a notion of relaxed

periodicity is formulated for events as well as for groups of events that co-occur.

The third problem is to extract semantic annotations for locations on the basis of

exploiting correlations of contexts, time, and locations of events. For the three prob-

lems above, we respectively propose novel and efficient approaches. Our experiments

clearly indicate that extracted patterns and knowledge can be well utilized in various

useful tasks, such as event prediction, semantic search for locations, or topic-based

clustering of locations.

v

vi

Zusammenfassung

Events sind im täglichen Leben allgegenwärtig. Mit der rasant wachsenden Beliebtheit

sogenannter Social Media Anwendungen werden sehr große Datenmengen über Events

von Benutzern im Internet generiert und geteilt. Beispiele hierfür sind Informationen

über Festivals, Konzerte, oder Meetings. Aus diesen Datensätzen der Social Media

Anwendungen abgeleitetes Wissen stellt eine semantisch reiche Grundlage für zahlre-

iche Anwendungen dar, beispielsweise für Social Media Marketing, Produkt- und

Dienstleistungsempfehlungen, aber auch für das semantische Anreichern vorhandener

Datenquellen. Trotz weitreichender Forschung um wertvolles Wissen aus verschiede-

nen Social Media Daten (z.B. Mikroblogs, Check-in-Daten, und GPS-Trajektorien)

zu extrahieren, gibt es aktuell nur wenige Arbeiten, die sich mit der Extraktion von

Mustern aus Eventdaten beschäftigen.

Der Schwerpunkt dieser Arbeit liegt auf dem Auffinden interessanter, nützlicher

Muster aus Event-Datensätzen, wobei die Informationen über Events über unter-

schiedliche Social Media Anwendungen geteilt und verbreitet werden. Zur Verar-

beitung der heterogenen Datenquellen stellen wir ein umfassendes Framework vor,

das Events für die Mustererkennung modelliert. Ein Event besteht dabei aus drei

Komponenten: Kontext-, Zeit- und Ortsinformation. Mithilfe dieses Frameworks

können konzeptionelle, zeitliche und räumliche Eventrelationen intuitiv definiert wer-

den. Zusätzlich werden Hierarchien für alle drei Dimensionen berücksichtigt, wobei

die Hierarchien gewöhnlich als nützliches Hintergrundwissen zur Verfügung stehen.

Mithilfe solcher Hierarchien können Muster auf verschiedenen Abstraktionsebenen

und verschiedenen Granularitäten erkennt werden. Basierend auf diesem Frame-

work adressieren wir die folgenden drei Probleme: (i) die Extraktion intervallbasierter

Eventsequenzmuster, (ii) die Extraktion periodischer Eventmuster sowie (iii) die Ex-

traktion semantischer Annotationen für die Ortsinformationen zu Events. Allgemein

gesprochen betreffen die ersten beiden Probleme Eventkorrelationen, während das

dritte Problem Korrelationen von Eventkomponenten betrachtet.

Insbesondere das erste Problem ist eine Verallgemeinerung der Erkennung se-

quenzieller Muster in traditionellen Datensätzen, in denen Muster komplexe zeitliche

Beziehung zwischen Events auf verschiedenen Abstraktionsebenen und verschiedener

Granularitäten darstellen. Das zweite Problem konzentriert sich auf die Suche nach

periodischen Mustern. Hierzu werden vereinfachte Periodizitäten für Events, aber

auch für Mengen von Events, die gemeinsam auftreten, zu Grunde gelegt. Das dritte

Problem befasst sich mit der Extraktion von semantischen Annotationen für Orte,

wobei Korrelationen von Zeit, Ort, und Kontext von Events ausgenutzt werden. Zur

vii

Lösung der oben dargestellten Probleme stellen wir neue und effiziente Methoden vor.

Unsere Experimente belegen klar, dass die gewonnenen Muster und das gewonnene

Wissen für zahlreiche Anwendungen nützlich sind, beispielsweise für die Vorhersage

von Events, für die semantische Suche nach Orten, oder einem Themen-basierte Clus-

tering von Orten.

viii

Acknowledgements

The accomplishment of this thesis would not have been possible without the support

of many people. First and foremost, I would like to express my deepest gratitude

to my supervisor, Prof. Dr. Michael Gertz, for his patient guidance and persistent

support throughout my PhD study. I extremely appreciate all his time, insightful

suggestions, and valuable comments to make this work possible. Moreover, I have

learned from him not only the right way to conduct research but also how to think

creatively and critically. Specially, his encouragement of thinking “out of the box” has

definitely helped me a lot to accomplish the goal. I feel very lucky for the opportunity

to be one of his PhD students.

Besides my supervisor, I would also like to thank the other committee members

for their time and feedback. Their constructive comments have been definitely useful

for me to clarify and refine the thesis.

I would like to acknowledge all my friends and colleagues for their interaction

and support, professionally as well as personally, during my four years of study.

The Database Systems Research Group at Heidelberg University has been a source

of friendships as well as good advice and collaboration. I want to thank Ayser,

Canh, Florian, Hamed, Christian, Jannik, and other members of the group for their

constructive discussions and enthusiastic help. It has been a great time for me to

work with those people. I also thank Chan, Nhu, and other friends for taking time

to proofread and give useful comments during the preparation of this manuscript.

I am also thankful to the Ministry of Education and Training (MOET) Vietnam

and Der Deutsche Akademische Austauschdienst (DAAD) for their financial support

granted through their scholarship program.

Last but not least, I am deeply grateful to my parents, younger sister, and younger

brother for their constant love, concern, and support. I could achieve nothing without

the support of my family.

ix

x

To my parents.

xi

xii

Contents

1 Introduction 1

1.1 Problems, Challenges, and Our Approaches 3

1.1.1 A Unified Event Model for Pattern Mining Tasks 3

1.1.2 Pattern Languages and Interestingness Measures 5

1.2 Contributions . 7

1.3 Thesis Organization . 9

2 Background and Related Work 11

2.1 The Pattern Mining Problem . 11

2.2 Mining Patterns from Spatial, Temporal, and Spatio-Temporal Data . 13

2.2.1 Co-location Pattern Mining 14

2.2.2 Sequential Pattern Mining . 17

2.2.3 Periodic Pattern Mining . 21

2.3 Concept Hierarchies and Pattern Mining 23

3 Event Data and Event Model 25

3.1 Preliminaries . 25

3.1.1 What is an Event? . 26

3.1.2 Event Data Sources . 26

3.1.3 Event Modeling . 28

3.2 Concepts, Hierarchies, and Event Contexts 29

3.2.1 Concepts . 29

3.2.2 Concept Hierarchies . 31

3.2.3 Event Contexts . 34

3.3 Location and Time . 36

3.3.1 Spatial Framework for Event Location 36

3.3.2 Temporal Framework for Event Time 39

3.4 Events and Event Templates . 43

xiii

3.4.1 Events . 44

3.4.2 Event Templates . 44

3.5 Event Relationships . 46

3.5.1 Spatial Relationships . 47

3.5.2 Temporal Relationships . 48

3.5.3 Conceptual Relationships . 50

3.6 Event and ET Constraints . 51

3.6.1 Spatial, Temporal, and Conceptual Constraints 52

3.6.2 Constraints on Event Templates 52

3.7 Discussion . 54

4 Mining Interval-based Event Sequence Patterns 55

4.1 Introduction . 56

4.2 Related Work . 57

4.3 Basic Concepts and Notations . 59

4.3.1 Interval-based Events . 59

4.3.2 Event Cliques . 60

4.4 Temporal Arrangements . 63

4.5 Pattern Definition . 68

4.5.1 Interval-based Event Sequence Patterns 68

4.5.2 Interestingness Measure . 69

4.5.3 Most Specialized Prevalent Patterns 71

4.6 Mining Most Specialized Prevalent Patterns 72

4.7 Experimental Evaluation . 75

4.7.1 YAGO2 Dataset . 76

4.7.2 Eventful Dataset . 79

4.8 Discussion . 83

5 Mining Periodic Event Patterns 85

5.1 Introduction . 86

5.2 Related Work . 87

5.3 Basic Concepts and Notations . 89

5.3.1 Event Occurrences and Constraints 89

5.3.2 Event Co-occurrences . 91

5.4 Formulating Periodic Event Patterns 91

5.4.1 Time Slots . 91

5.4.2 Support Segments . 93

xiv

5.4.3 Periodic Event Patterns . 95

5.5 Mining Periodic Event Patterns . 97

5.5.1 Detecting Periods . 97

5.5.2 Finding P-Patterns . 98

5.6 Experimental Evaluation . 101

5.6.1 Datasets and Experimental Setup 101

5.6.2 Periodicity Analysis . 103

5.6.3 P-Pattern Discovery . 105

5.7 Discussion . 108

6 Extracting Semantic Annotations for Locations from Event Data 111

6.1 Introduction . 112

6.2 Related Work . 115

6.3 Basic Concepts and Notations . 116

6.3.1 Events and Event Components 117

6.3.2 Location-Time-pair Instances and Classes 119

6.3.3 NPMI Estimation . 122

6.4 LT-Profiles and Applications . 124

6.4.1 Generating Location-Time-Profiles 125

6.4.2 Updating Location-Time-Profiles 127

6.4.3 Location Annotations . 130

6.4.4 Similarity Measure for Locations 130

6.4.5 Location Clustering based on Annotations 131

6.5 Experimental Evaluation . 131

6.5.1 Datasets and Experimental Setup 132

6.5.2 Annotation Extraction . 133

6.5.3 Location Clustering . 135

6.5.4 Runtime and LTP-Updater Efficiency 141

6.6 Discussion . 143

7 Conclusions and Future Work 145

7.1 Summary and Conclusions . 145

7.2 Future Work . 146

Bibliography 149

xv

xvi

Chapter 1

Introduction

We are living in the “Age of Big Data”, where the amount of data in our world has

been exploding. Analyzing such data to extract insights or knowledge is a funda-

mental research area, popularly known as Knowledge Discovery in Databases or Data

Mining, with many important applications to business intelligence, scientific explo-

ration, e-government, medicine, or education [43]. Consequently, various data mining

tasks have been addressed and realized for different applications, different analysis

requirements from different users, as well as different types of data. Basically, these

tasks differ in their goals, that is, the types of extracted knowledge they find.

Pattern mining [78] is one of the most important data mining tasks, where a pat-

tern (‘knowledge’ in this context) is a substructure, such as a subset, a subsequence,

or a subgraph, that significantly occurs in the analyzed data. For example, a pat-

tern can be a set of products frequently purchased together by customers, a sequence

of places most visited by tourists, or groups of social network users that share the

same interest. Generally speaking, pattern mining is to find ‘interesting ’ patterns

from a given dataset, where each pattern is formulated on the basis of a predefined

pattern language whereas the interestingness of that pattern is determined by a set

of predefined constraints. For different applications, such a pattern language as well

as pattern constraints can be defined in different ways.

A famous instance of pattern mining is frequent itemset mining [1], where a pat-

tern is defined as a set of items that often appear together in a transaction, and

the interestingness of a pattern is specified based on a frequency-based constraint.

For example, from customer transactions of an e-commerce company, one typically

finds many items that are frequently purchased together, e.g., iPad and tablet cover,

digital camera and memory card, or laptop and software. In other application do-

mains, patterns representing more complex substructures can be found. For example,

1

sequential patterns are often discovered from DNA sequences [116], GPS trajecto-

ries [16], or Web usage data [15]. Frequent subgraphs might be found in protein-

protein interaction networks [102], chemical compound structure data [123], or online

social networks [30]. A co-location pattern representing a group of features of objects

where objects exhibiting these features frequently co-occur is typically discovered

from spatio-temporal data [51].

Many approaches to the discovery of patterns as mentioned above have been

proposed and successfully applied in practice, for example, in identifying buying be-

haviors of customers for product and service recommendation, suggesting hypotheses

for scientists, or extracting regularities and trends from historical data for future

prediction. However, with the appearance and rapid growth of non-traditional data,

especially social media data, finding interesting, useful patterns from such data poses

many new challenging research issues.

With the rapid rise of the popularity of social media channels and near ubiquitous

mobile access, massive amounts of data have been increasingly created and exchanged

by users on the Internet. For example, people share their check-in locations on social

networks (e.g., Facebook, Twitter, or Foursquare), provide information about events

such as concerts or sports and share these events with other people (e.g., Last.fm,

Eventful.com, or Eventbrite.com), contribute articles to collaborative projects (e.g.,

Wikipedia), or share their GPS trajectories (e.g., OpenStreetMap). Although a single

data record of a social media source can be noisy, unreliable, and sometimes inac-

curate, valuable knowledge can reliably be derived from a large dataset consisting

of a significant number of data records. Additionally, with the rapid development

of the Linked Open Data (LOD) cloud [46], a large variety of such data is widely

available in the Resource Description Framework1 (RDF), a standardized, machine

processable form, e.g., DBPedia [11], LinkedGeoData [105], YAGO2 [48], or Event-

Media [109]. Accordingly, social media data become potential data sources to extract

valuable knowledge for many applications, such as online social network marketing,

service recommendation, sales promotion, or enrichment of existing data sources.

In this thesis, we focus on the discovery of interesting, useful patterns from event

data, where each event corresponds to “something that happens at a given place and

time” and information about it is provided and shared on social media channels.

For example, an event might be a public activity (e.g., a concert, festival, or sports

competition), a historical event (e.g., a war, conflict, or battle), or a meteorological

phenomenon (e.g., an observable weather event). Such data can be obtained from

1http://www.w3.org/RDF/

2

various sources, including popular social media channels sharing information about

events, Wikipedia, or LOD sources.

Basically, a description of an event represented in a dataset contains three main

components: (1) a context describing what that event is about, (2) a time compo-

nent describing when that event occurred/will occur, and (3) a location component

describing where that event occurred/will occur. For example, information about

the context, time, and location of an event called “Berlinale 2013 ” are described

as: “the 63rd Annual Berlin International Film Festival”, “from 7 to 17 February

2013 ”, and “Berlin, Germany”, respectively. Such information about events can be

provided as either raw textual data crawled from popular social media channels or

standardized RDF-based datasets from the LOD cloud. Although event data in these

sources are typically less noisy and more accurate than other types of social media

data such as check-in data or microblogs, there are still challenges in fully exploiting

such information. These challenges will be discussed in the next section.

The rest of this introductory chapter is organized as follows. First, Section 1.1

motivates and discusses the challenges related to the discovery of interesting, useful

patterns from event data. We also outline our approaches to tackle these challenges.

Next, the contributions of this thesis are summarized in Section 1.2. Finally, Sec-

tion 1.3 outlines the structure of the thesis.

1.1 Problems, Challenges, and Our Approaches

For mining interesting, useful patterns from event data, we first discuss the necessary

features of a comprehensive framework to model events in Section 1.1.1. Based on this

framework, we then introduce our approaches to different pattern mining problems

in Section 1.1.2.

1.1.1 A Unified Event Model for Pattern Mining Tasks

Similar to other types of social media data, a huge amount of event data has been

increasingly generated from many social media sites. These data sources provide

different information about events in terms of the number of attributes, data types,

and even the meaning of attributes. Moreover, some event data sources are presented

in the form of LOD sources employing different event ontologies, e.g., LODE [101],

YAGO2 [48], or SEM [112]. The existence of heterogeneous data sources of events

3

motivates a general, comprehensive framework to model events for pattern mining

purposes. Such a framework needs to address the following problems:

• Since there are various definitions for the term ‘event ’, one needs to precisely

specify what an event is and which attributes describe an event in the model.

• Basically, an event pattern represents significant correlations among events,

which are typically determined by exploiting conceptual, temporal, and spatial

relationships between events. Modeling events needs to retain these relation-

ships for pattern mining tasks.

• As useful background knowledge, concept hierarchies play an important role

in deriving patterns at different levels of abstraction. In the context of event

data, such hierarchies naturally exist for topics, time, and locations of events.

For example, the topic of the event “Berlinale 2013 ” mentioned earlier can be

generalized to topics “International Film Festival”, “Film festival”, “Festival in

Berlin”, or “Festival”, based on, e.g., the Wikipedia categorization. Interesting

patterns might consist of any of these topics. It is therefore necessary to support

concept hierarchies in the framework.

• As a type of spatio-temporal data, location and time components of an event

might be specified at different granularities, such as hour, day, or month for an

event time, and address, city, or country for an event location. For example,

a concert is often scheduled with a specific day and time and located at a

particular address whereas a festival often occurs during a time interval and

at different locations of a city. Thus, the framework needs to support multiple

granularities for locations and time of events.

• The interestingness of a pattern is often subjective and varies from user to user.

Moreover, in practice, the user might be interested in patterns that are valid in

a specific time interval, in a specific geographic region, and/or simply refer to a

specific concept. These requirements are typically specified as event constraints

supported by the framework.

To the best of our knowledge, none of the existing approaches to the discovery of

event patterns fully considers all these features as discussed above. For example, some

approaches do not consider concept hierarchies, e.g., [53, 64, 73, 117, 124], whereas

some others, e.g., [57, 58, 91, 92, 120], do not take into account geographic relation-

ships between events. These approaches seem ad-hoc, because they are proposed for

specific types of event data only.

4

Aiming at a comprehensive event model for the purpose of mining event patterns

and knowledge discovery, we address the above problems and propose a framework

to model events in Chapter 3. As shown later on, this framework is employed in all

approaches presented in this thesis, where each approach is designed for a specific

mining task.

1.1.2 Pattern Languages and Interestingness Measures

Since pattern mining is an application-oriented task, a pattern language and an in-

terestingness measure are often specified for a particular application. In this thesis,

we focus on three main research problems: (1) mining interval-based event sequence

patterns, (2) mining periodic event patterns, and (3) extracting semantic annotations

for locations of events. Although they employ the same unified event model as de-

scribed in the previous section to extract useful knowledge from event data, they are

different in terms of their objectives. We briefly describe these problems, including

their challenges, and our respective approaches as follows.

• Mining Interval-based Event Sequence Patterns: Occurrences of real-life

events often obey patterns. For example, a data mining conference frequently

follows some workshop sessions; a burst of flu-related queries submitted to an

on-line search engine appears before or during a flu outbreak; people are likely

to visit nearby tourist attractions while attending a particular annual festival

or cultural event. Finding patterns that exhibit significant correlations among

events plays an important role for various applications such as event prediction,

business intelligence, or user behavior analysis. However, this task is not trivial

for the following reasons.

First, one needs to define a pattern language that is powerful enough to express

not only timepoint-based but also interval-based temporal relationships, such

as before, overlaps, or during, between events. Moreover, most of the existing

approaches to the problem of mining sequential patterns, e.g., [53, 89, 131], only

allow one type of temporal relationships in a pattern. For example, a pattern “a

concert is followed by a cultural event, and this cultural event is followed by a so-

cial event” is typically described as concert → cultural event → social event.

However, that problem becomes more complicated if two or more types of tem-

poral relationships appear in a single pattern. For example, how to model a

pattern “a music concert is performed after a cultural event and both of them

occur during a festival” so that it can be discovered by an algorithmic approach?

5

Next, a suitable interestingness measure is important to distinguish useful, in-

teresting patterns from trivial or obvious ones. In addition, approaches to the

discovery of patterns from event data have to take hierarchies associated with

event components into account since interesting patterns might be obtained at

any level of granularity and abstraction. Finally, one needs an efficient algo-

rithm to discover such patterns from an event dataset, typically consisting of a

significant number of events and associated with large concept hierarchies.

For the above challenges, we propose an approach to the discovery of sequential

patterns from event data in Chapter 4.

• Mining Periodic Event Patterns: Periodicities commonly exist in real-life

event data, e.g., daily activities of an individual, weekly concerts, monthly

meetings, or annual festivals. Finding patterns that exhibit such periodicities

is important for tasks such as predicting future events, analyzing user behavior

for service suggestion, or identifying anomalies in data for fraud prevention.

Approaches to the discovery periodic patterns from event data need to address

the following problems.

First, one needs a relaxed definition of periodicity since real-life events rarely

obey perfect periodic patterns. For example, a particular concert is performed

every Sunday, but sometimes, it might be canceled or moved to another day.

Another problem is that sequences of events are typically not given but built by

exploiting conceptual, spatial, and temporal relationships between events. Ac-

cordingly, traditional approaches to the discovery of periodic patterns, e.g.,[18,

42, 75], cannot be directly applied to event data. Similar to the previous pat-

tern mining task, mining periodic patterns from event data also needs to take

hierarchies associated with event components into account to derive patterns at

different levels of granularity and abstraction.

We will detail our approach that addresses the above problems in Chapter 5.

• Extracting Semantic Annotations for Event Locations: Meaningful, de-

scriptive information about locations is essential for location-based services, e.g.,

location recommendation, location-based mobile advertising, or social event rec-

ommendation [29, 47, 93]. Unfortunately, such information tends to be poor in

many data sources. Therefore, in Chapter 6, we propose a novel approach to

extract semantic annotations for locations from event data. For this, we address

the following problems.

6

Figure 1.1: Overview of the major contributions of the thesis.

Given an event dataset, the key idea of annotating locations is to extract char-

acteristic information of these locations from that dataset. However, this poses

the first challenge: “What information from the event data is useful in seman-

tically annotating locations?”. Following this, another challenge arises: “How

to efficiently extract this information?”. Finally, assuming that annotations of

locations are extracted, one needs a systematic approach to measure how good

the extracted annotations are. This is also a big challenge since there is typically

no pre-existing ground-truth for location annotations.

Our approaches to the problems mentioned above make contributions that are

listed in the following section.

1.2 Contributions

Figure 1.1 illustrates the major contributions of this thesis. First, we propose a

comprehensive framework to model events in Chapter 3. Including all the features

listed in Section 1.1.1, this framework provides the basis for our approaches to the

three research problems of mining event patterns discussed in Section 1.1.2. These

approaches will be detailed in Chapters 4, 5, and 6. To summarize, this thesis makes

the following contributions:

• A Comprehensive Framework to Model Events: We propose a compre-

hensive framework to model events, where each event is described by three

components: context, time, and location. This allows one to flexibly define how

events are related in terms of conceptual, temporal, and spatial relationships.

In addition, these event components can be individually generalized to higher

7

levels of abstraction and granularity to derive event templates describing topics

of events. The concepts and notions of events and event templates are funda-

mental to define a pattern language and an interestingness measure for a specific

pattern mining approach later on. Finally, to guide the search for interesting

patterns, this framework also supports the user to specify constraints on events

and event templates.

• An Efficient Approach to the Discovery of Interval-based Event Se-

quence Patterns: Based on the above framework, we address the problem

of mining interval-based event sequence patterns. Different from traditional

approaches that consider only timepoint-based relationships between event oc-

currences, we introduce a pattern specification language that is able to express

complex temporal relationships for a set of interval-based events. For example,

a pattern “a music concert is performed after a cultural event and both of them

occur during a festival” can naturally be described with our pattern language.

Furthermore, we propose an interestingness measure and present an algorithmic

approach to efficiently extract complex patterns at different levels of abstrac-

tion and granularity based on hierarchies. We demonstrate the feasibility and

utility of our framework by using two different real datasets from YAGO2 and

the Website eventful.com.

• An Efficient Approach to the Discovery of Periodic Patterns: Here

we consider the problem of mining interesting periodic patterns in the presence

of hierarchies for contexts, time, and locations of events. We utilize the event

model introduced earlier to formulate periodic event patterns, which describe

relaxed periodicities of event topics. For this, we introduce a probabilistic mea-

sure called p-score to determine how likely an event topic occurs (or multiple

event topics co-occur) during a time window. We propose an effective algorithm

for the discovery of significant periodic event patterns from a dataset of events.

Finally, we demonstrate the feasibility and utility of our framework by using

datasets of real-life events, e.g., concerts, sports, or festivals.

• An Event-based Framework to Extract Semantic Annotations for Lo-

cations: We focus on the problem of enriching location information on the basis

of correlations among event topics, locations, and time. For this, we formu-

late Location-Time-Profiles (LTPs) and propose a measure based on Pointwise

Mutual Information to extract LTPs consisting of event topics that describe

characteristics of a particular location. For example, considering event topics

8

related to festivals, ‘Oktoberfest ’ and ‘Beer ’ are related to the city of Munich

(Germany) whereas ‘Opera’ and ‘Puccini festival ’ are related to the city of Torre

del Lago (Italy). We also present an efficient algorithm to extract semantic an-

notations for locations from event data. Such information of locations can be

exploited further for tasks such as topic-based search for locations or clustering

locations based on their semantic similarity. Since the number of locations for

annotating is often large, it is infeasible to manually validate the result. We

therefore propose an indirect method to evaluate how good the extracted anno-

tations are with hierarchical clustering. Additionally, taxonomies of locations

are then built from the analysis of location clusters. To deal with periodic up-

dates of event datasets, we furthermore give a scalable and efficient approach to

incrementally update location annotations. Finally, we use real event datasets

to demonstrate the performance of our approach.

1.3 Thesis Organization

The rest of this thesis is organized as follows.

In Chapter 2, we give a general introduction to the pattern mining problem. We

also discuss existing approaches to the discovery of patterns from spatial/temporal

data as well as existing approaches that utilize concept hierarchies to find patterns. In

Chapter 3, we describe a comprehensive framework to model events. Based on that,

we propose approaches to the discovery of interval-based event sequence patterns,

periodic event patterns, and semantic annotations for locations from event data in

Chapters 4, 5, and 6, respectively. Finally, we summarize the thesis and discuss some

interesting directions for future studies in Chapter 7.

9

10

Chapter 2

Background and Related Work

In this chapter, we first give a general introduction to the pattern mining problem.

We then discuss approaches related to the pattern mining problem in the context of

spatial and temporal data. Finally, we review pattern mining approaches exploiting

concept hierarchies since they are also related to our work.

2.1 The Pattern Mining Problem

In this section, we consider a theoretical perspective of the Pattern Mining Problem,

which is based on concepts and notations as introduced by Mannila and Toivonen [78].

Given a dataset D, a predefined pattern language L for expressing patterns, and

a predicate φ for evaluating whether a pattern ϕ ∈ L is ‘interesting ’ or not, the set

of all interesting patterns with respect to L, D, and φ is defined as

Th(L,D, φ) = {ϕ ∈ L | φ(D, ϕ) is true}. (2.1)

Based on this definition, the pattern mining problem is defined as to efficiently com-

pute the set Th(L,D, φ), i.e., finding the theory of D with respect to L and φ.

Generally speaking, a pattern is a substructure of data, e.g., an itemset, a subse-

quence, or a subgraph. A set L of patterns with the same structural characteristic

(e.g., set, sequence, or graph) is called a pattern language, which is application-

specific. The interestingness of a pattern is determined on the basis of a predefined

predicate φ, which is typically a single pattern constraint or a conjunction of several

pattern constraints. For example, in the frequent itemset mining problem [1, 43], a

pattern is defined as a set of items that often appear together in a transaction, and

the interestingness of a pattern ϕ is determined by φ(D, ϕ) := (Support(D, ϕ) ≥

11

min support), where Support(D, ϕ) is the number of transactions in the dataset D
that contain all items of the pattern ϕ, and min support is a user-defined threshold.

Based on Equation (2.1), it is straightforward to compute the set of all interesting

patterns by iterating through every element ϕ ∈ L and evaluate φ(D, ϕ). However,

this naive approach is clearly inefficient and sometimes infeasible. In particular, if

the set L is infinite, then this approach will not terminate. Therefore, computing the

set Th(L,D, φ) without exploring the (infinite) set L is often considered. Such an

approach is typically based on certain characteristics of the set L and the predicate

φ. That is, a partial order �, called specialization relation, is assumed over the set L,

and the predicate φ is monotonic/anti-monotonic with respect to �. The definitions

of monotonicity and anti-monotonicity properties are as follows.

Definition 2.1 (Monotonicity) Let D be a dataset and L be a set of patterns with

a partial order �. A predicate φ is monotonic with respect to � iff ∀ϕ, ψ ∈ L,

ϕ � ψ and φ(D, ϕ) is true ⇒ φ(D, ψ) is true.

Definition 2.2 (Anti-monotonicity) Let D be a dataset and L be a set of patterns

with a partial order �. A predicate φ is anti-monotonic with respect to � iff

∀ϕ, ψ ∈ L, ϕ � ψ and φ(D, ϕ) is false ⇒ φ(D, ψ) is false.

For example, in the context of the frequent itemset mining problem mentioned

above, the support constraint φ(D, ϕ) := (Support(D, ϕ) ≥ min support) is anti-

monotonic over itemsets with respect to the subset relation ⊆. This is commonly

known as the Apriori property, stated as “all nonempty subsets of a frequent itemset

must also be frequent” [43]. In other words, if an itemset is infrequent then every

superset of it is also infrequent.

The monotonicity (or anti-monotonicity) property is important to develop an ef-

ficient approach to compute the set Th(L,D, φ) without exploring the whole set L.

Such an approach is based on the following strategies:

(1) the patterns of the set L are considered in the order of the most gener-

alized patterns to the most specialized ones (vice-versa for the case of anti-

monotonicity), and

(2) if a pattern ϕ is not interesting (i.e., φ(D, ϕ) is false) then all elements of

the set L that are specializations of the pattern ϕ can be safely pruned.

These strategies allow developing efficient algorithms that utilize pattern space

pruning techniques for a specific pattern mining problem, such as the Apriori al-

gorithm [1, 43] for mining frequent itemsets, or various Apriori-like algorithms for

12

mining sequential patterns, e.g., [2, 104, 131]. As shown in Chapters 4 and 5, we also

employ these strategies to efficiently mine interesting patterns from event data.

Since pattern mining is an application-driven research problem, several pattern

mining approaches have been proposed for several applications and data types. Al-

though these approaches are typically based on the theoretical, general model as

described above, they differ in the types of patterns (pattern languages) as well

as interestingness constraints to deal with, for instance, mining sequential/periodic

patterns from time-related data or mining co-location/co-occurrence patterns from

spatial/spatio-temporal data. In the following, we review important approaches to

the pattern mining problem in the context of spatial, temporal, and spatio-temporal

data, which are closely related to our work.

2.2 Mining Patterns from Spatial, Temporal, and

Spatio-Temporal Data

With modern data acquisition technologies such as remote sensors, GPS tracking

systems, or mobile devices, huge amounts of spatial and spatio-temporal data (ST-

data), such as sensor data, trajectories of moving objects, event data, or data in sports

analytics, have increasingly been collected. The success of substantial research in

spatial and temporal data models and database systems gives rise to new approaches

for extracting useful patterns from such data, see, e.g., [31, 32, 40, 77, 97]. Many

types of patterns that are typically found in transaction data have been formulated

in the context of ST-data [81]. For example, co-location patterns [51], where each

pattern is defined as a set of spatial features that often co-occur, are equivalent to

frequent itemsets. Sequential and periodic patterns typically found in transaction

data also exist in trajectory data and event data, see, e.g., [53, 65, 66, 71].

Recent approaches show that patterns discovered from ST-data can be utilized

as well in various application domains. For example, co-location and co-occurrence

patterns are useful in understanding ecological predator-prey relationships, in trans-

portation planning, or in identifying tactics in battlefields, sports, and games [20].

Patterns extracted from user activity data (e.g., mobile phone usages, user trajecto-

ries, or check-in data) can infer social relationships of individuals and the behavior of

users [64, 72, 84]. In the computer network security domain, patterns describing spa-

tial and temporal correlations among network events are valuable for understanding

global network phenomena, such as fault cascading in communication networks [117].

13

Analyzing spatial and temporal trends of keywords from search engine query data can

improve early detection of infectious diseases, e.g., an approach employed by Google

to detect influenza epidemics [39].

Although many efficient approaches to the discovery of useful patterns from trans-

action data have been proposed, utilizing these approaches to fully exploit ST-data

for useful patterns has many challenges. For example, compared to transaction data,

mining ST-data needs to take spatial and temporal relationships into account. Ap-

proaches based on partitioning space/time for transactions might not be natural due

to the continuity of space and time [53]. In particular, spatial/temporal relation-

ships among objects across transactions might be lost when partitioning space/time

for transactions.

In the following subsections, we review key approaches related to the discovery of

patterns from ST-data, which are closely related to our work. Section 2.2.1 describes

prominent approaches related to co-location and co-occurrence patterns. Sections

2.2.2 and 2.2.3 discuss approaches to the discovery of sequential and periodic patterns,

respectively, where temporal relationships play an important role in building patterns.

2.2.1 Co-location Pattern Mining

In the context of spatial/spatio-temporal pattern mining, features (or object-types)

are key ingredients in constituting patterns, analogous to the concept of ‘item’ in the

frequent itemset mining problem. Some examples of features include species of plants

or animals, location types (e.g., hotel, restaurant, or parking lot), road types, crime,

and diseases.

Given a set F of features, a (spatial) co-location patterns is a subset of F con-

taining features that frequently appear nearby together in some geographic space.

For example, as illustrated in Figure 2.1, the set {‘gas’, ‘fast food’} is an exam-

ple of a co-location pattern describing that a gas station and a fast food restaurant

are often located together. Nile Crocodile and Egyptian Plover Bird constitute an-

other prominent example of a co-location pattern [51]. Note that in the problem of

mining co-location patterns, prevalent patterns mean interesting patterns. Existing

approaches to the discovery of interesting co-location patterns can be categorized into

three groups: statistics-based, clustering-based, and association rule-based approaches.

We review work in each group in the following.

Statistics-based approaches use statistical measures to estimate spatial correla-

tions between features, such as the cross-K function [27] or G-function [37]. A com-

14

Figure 2.1: Example spatial dataset. Instances of each feature in the set {‘gas’,
‘fast food’, ‘bus stop’, ‘hostel’, ‘parking’, ‘cafe’} are placed at different geographic
locations. An instance of the feature ‘gas’ and an instance of the feature ‘fast food’
tend to be located nearby.

mon limitation of these approaches is that computing all possible co-location patterns

is computationally expensive. Such approaches are therefore not scalable. Only few

works belonging to this category have been proposed.

Traditional data clustering techniques can be utilized to discover co-location pat-

terns. Clustering-based approaches are further divided into two subcategories: object-

clustering and feature-clustering. Castrol et al. [33, 34] use an object-clustering

approach to find prevalent co-location patterns. For each feature, objects exhibit-

ing this feature are clustered. Boundaries of clusters are also computed. Based on

the Apriori algorithm [43], candidates of co-location patterns are generated. From

these, interesting ones are obtained based on a prevalence measure computed from

the overlapping areas of respective cluster boundaries. Since this prevalence measure

is anti-monotonic, the above approach can utilize the strategies as discussed in the

previous section to efficiently prune the pattern space. However, the quality of results

heavily depends on the quality of clustering processes. Thus, such an object-clustering

approach fails in cases where objects of one or more features cannot be clustered well.

Instead of clustering objects, Huang et al. [54] cluster features to find co-location

patterns. The authors treat each feature as a layer and cluster these layers. They

define a density-based metric to compute the similarity between two layers. Basically,

this metric is computed from the area of overlapping regions of respective layers.

15

Discovered clusters are considered co-location patterns. The main drawback of this

method is that each feature is assigned to only one cluster. Consequently, one feature

occurs in at most one co-location pattern. This is not appropriate in many application

domains. Furthermore, the quality of results is impacted by the selected clustering

algorithm as well as the characteristics of the input data.

The third category consists of approaches motivated by frequent itemset mining

approaches. The Apriori Algorithm [43] is suitably applied for mining co-location pat-

terns. Following this, there are two main directions: transaction-based and instance-

based approaches.

The key idea of a transaction-based approach is to define transactions for the input

dataset so that the Apriori algorithm can be applied. Koperski and Han [61] propose

a method to define transactions based on a set of predefined predicates, e.g., is a(X,

house) or close to(X, beach). A transaction consisting of predicates is then generated

for each object belonging to a reference-feature specified by the user. For example,

{is a(X, house), close to(X, beach), is expensive(X)} is a transaction corresponding to

the object X of the reference-feature house. Prevalent patterns discovered by applying

the Apriori algorithm are relevant to the selected reference-feature. Generalizing this

approach to the case where no reference-feature is specified is nontrivial.

Different from transaction-based approaches, instance-based approaches do not

rely on defining transactions. Instead, instances of patterns are computed dynamically

based on spatial distances between objects exhibiting the relevant features. Such

instances are then utilized to compute the interestingness (here, the prevalence) of

patterns. Three common steps are: (1) candidate pattern generation, (2) instance

collection, and (3) prevalence evaluation. Most of the recent approaches use the

Apriori algorithm in the first step to generate candidates. However, they differ in

implementing and optimizing the last two steps.

Morimoto [83] enumerates instances for a co-location pattern based on space par-

titioning. In his approach, the interestingness of a co-location pattern is simply the

number of the corresponding instances. However, to obtain the anti-monotonic prop-

erty for this measure, the author assumes a non-overlapping instance constraint, that

is, any object must belong to only one instance. Thus, this approach might find an

incomplete set of patterns because of missing instances [51].

To obtain completeness and correctness in mining co-location patterns, Huang et

al. [51] define another prevalence measure, called the participation index, which not

only allows overlapping instances but also has the anti-monotonic property. Their

approach, known as a full-join approach, is based on joining instances of size-k pat-

16

terns to compute instances of size-(k+1) patterns. For example, instances of the

pattern {‘gas’, ‘fast food’, ‘cafe’} are computed based on instances of {‘gas’, ‘fast

food’} and {‘gas’, ‘cafe’}. This method is inefficient for dense datasets containing

a large number of instances. Therefore, recent approaches have been proposed to

improve the performance of the mining process, including partial-join approach [129],

joinless approach [130] and density-based approach [122].

Yoo et al. [129] propose a partial-join approach based on finding maximal cliques

to reduce the number of join operations in generating instances. However, finding

maximal cliques is also computationally expensive. Thus, the authors also propose

a joinless approach [130] based on an instance-lookup scheme. Instead of finding

maximal cliques, they build a table of so-called star instances to enumerate instances.

A disadvantage of this approach is the memory cost to store the table of star-instances.

Another direction to reduce the number of join operations in enumerating in-

stances is based on an upper bound of the prevalence measure. Xiao et al. [122]

propose a method to early prune false pattern candidates based on dividing space

into partitions, for example, cells of a grid. In the step of generating size-k instances,

these partitions are sorted by descending density of size-(k-1) instances. Instead of

considering all objects in the whole space, only objects of a partition are considered

to enumerate instances. Based on this, an upper bound of the prevalence is computed

for each pattern candidate, and false pattern candidates can be pruned early.

Note that all approaches mentioned above consider only the spatial dimension for

mining co-location patterns. For spatio-temporal data, co-location patterns can be

extended to co-occurrence patterns to represent features that frequently occur nearby

in space and time, e.g., [20, 115, 124]. Although these approaches take the temporal

dimension into account, they only consider temporal relationships between objects to

enumerate instances, i.e., at the instance level. Thus, their pattern language cannot

express temporal relationships, e.g., before, after, or follows, between features. In

the next section, we review well-known approaches to the discorvery of sequential

patterns where temporal relationships between features are taken into account.

2.2.2 Sequential Pattern Mining

Whereas co-location/co-occurrence patterns are subsets of object features, a sequen-

tial pattern is typically described as a sequence of features where the order of features

in this sequence is important. Sequential patterns are often extracted from sequence

data, e.g., customer purchasing records, stock data, web log of a click stream, or

17

DNA sequences. Approaches to the discovery of sequential patterns are reviewed in

the following.

The problem of mining sequential patterns has been introduced by Agrawal and

Srikant [2] for the purpose of extracting all frequent subsequences from time-related

data. In their approach, a sequence is a list of transactions ordered by transaction

time, and a transaction is a set of items. They propose an algorithm, called AprioriAll,

that employs the Apriori property, i.e., any super-pattern of an infrequent pattern

cannot be frequent. To improve the performance of AprioriAll, the authors present a

new algorithm called GSP, which employs a hash structure for fast support counting

in their subsequent work [104]. The algorithms GSP and AprioriAll create a large

number of pattern candidates and also make multiple passes over the database. In

other words, these approaches are not efficient.

For the purpose of improving the sequential pattern mining performance, several

approaches have been proposed. Zaki [131] proposes a lattice-based approach, called

SPADE (Sequential PAttern Discovery using Equivalence classes), to minimize the

computational cost. In addition, this approach can discover frequent subsequences of

subsets of items (e.g., {a, b} → {c} → {a, d, e}), not just subsequences of single items

(e.g., a → c → b) as in the approach of Agrawal et al. [2]. In the SPADE approach,

a vertical layout of the sequence database, called id-list, is built for fast instance

counting and also reducing the number of database scans. Based on the id-list, a

lattice of patterns is constructed on-the-fly with an initialization based on size-1 and

size-2 frequent subsequences, which are precomputed using an Apriori-like method.

To solve the problem that the lattice may not fit in main memory, this approach

partitions the lattice into disjoint subsets, where each subset, called an equivalence

class, can be separately processed in main memory. The lattice can be traversed

in either breadth-first (BFS) or depth-first search (DFS). BFS takes advantage of

more information available for pruning since the frequent patterns at the current

level (size) must be completely discovered before processing the next level. On the

other hand, DFS requires less memory than BFS, and therefore, it may be the only

feasible approach when the number of frequent patterns is large.

Similar to SPADE, another approach, called SPAM [8], employs a data structure

that is assumed to fit in main memory, called a vertical bitmap, for efficient support

counting. This approach also assumes a transaction database as input. Each item

appearing in transactions of the database is represented by a bitmap, where the

i-th bit of the bitmap corresponds to the presence or absence of the item in the i-th

transaction. A pattern tree is constructed as follows. The root of the tree is an empty

18

sequence. The children of a node in the tree are created by extending the sequence

corresponding to the node using either sequence-extension step (i.e., increasing the

sequence length) or itemset-extension step (i.e., increasing the number of items for

the itemsets of the current sequence). SPAM traverses the tree in depth-first-search

and utilizes the vertical bitmaps to efficiently prune infrequent patterns. Experiments

show that SPAM outperforms SPADE in terms of computation time, but it is less

efficient than SPADE in terms of memory consumption [76].

An alternative to the generate-and-test method appearing in Apriori-based

approaches is the pattern-growth method introduced in some approaches such as

FreeSpan [44] or PrefixSpan [89]. Generally, these approaches generate as few pattern

candidates as possible by growing longer patterns from shorter ones. Such approaches

are typically based on projected-databases to partition the search space. Let α be

a subsequence and D be a dataset of sequences. In the approach FreeSpan [44],

sequences of the α-projected-database are derived from sequences of D that have α as

a subsequence. In the approach PrefixSpan [89], the α-projected-database contains

sequences where each one is a postfix of some sequence in D that has α as a prefix.

For each pattern α, only the α-projected-database is considered to compute the

support for α and to generate super-patterns of α. Experimental results show that

PrefixSpan outperforms FreeSpan [89]. In the experiments of Ayres et al. [8], both

PrefixSpan and FreeSpan do not perform well for large datasets.

To reduce the computation time and also to find only patterns that satisfy the

requirements of the user, constraint-based approaches are often considered. Mannila

et al. [79] propose an approach to mine frequent episodes in a sequence of events,

where each episode follows some predefined template. A template is defined as a

directed acyclic graph of event types. For example, type A event → type B event

is an example of a serial episode template. Another direction to constrain types

of patterns in the output is using regular expressions, such as an approach called

SPIRIT [36]. Generally, the efficiency of a constraint-based approach depends on the

properties of the constraints (i.e., monotonicity or anti-monotonicity). Such proper-

ties allow pushing constraints inside the pattern mining process so that false pattern

candidates can be pruned early. However, some constraints are neither monotonic

nor anti-monotonic (e.g., regular expression constraints). For such a constraint, a

possible solution might be based on relaxing that constraint [36] or generalizing the

monotonic/anti-monotonic properties, e.g., to prefix-anti-monotonicity [90].

All the approaches mentioned above consider only the temporal dimension, i.e., in

terms of chronological order of transactions. Moreover, these approaches assume that

19

sequences explicitly exist in the input dataset. For example, a → {b, c, d} → {a, c}
is a sequence of 3 transactions, where the first transaction consists of an item a, the

second transaction consists of items b, c, and d, and the last transaction consists of

two items a and c. In the context of spatio-temporal data, such sequences are typically

not given or simply do not make sense. Indeed, such sequences will be derived from

both spatial and temporal relationships among events in the spatio-temporal dataset.

Thus, new approaches come into play for the purpose of mining sequential patterns

from spatio-temporal data.

One direction to tackle the problem in which sequences of events are not explicitly

given is a method based on partitioning the space into discrete locations. For each

location, events occurring at this location constitute a sequence. For example, an

approach proposed by Tsoukatos and Gunopulos [110] uses a grid and a reverse-z order

to enumerate sequences of environmental events, e.g., temperature or atmospheric

pressure. Subsequently, sequential patterns can then be discovered by one of the

approaches such as SPADE or PrefixSpan. Another direction is based on identifiers

of objects producing events to build event sequences from moving object datasets

[16, 17]. Generally, approaches in both directions are designed for only specific spatio-

temporal data types, e.g., moving object data or environmental data. As mentioned

earlier, partitioning space for transactions is not natural, and object identifiers might

not exist in some cases.

Huang et al. [53] propose a general framework to discover sequential patterns

from a dataset of events in which both spatial and temporal relationships between

events are considered. Based on the concept of a spatio-temporal neighborhood of

events, significant sequential event patterns can be extracted without explicitly defin-

ing event sequences. We also employ this idea to model event patterns and instances

in Chapter 4. However, different from their approach where they consider only fol-

lows-relationships between time point-based events, our approach can discover event

patterns expressing complex combinations of multiple temporal relationships, e.g.,

before, during, or overlaps, among interval-based events. Furthermore, with the pres-

ence of topic-based, spatial, and temporal hierarchies of events, our approach is able

to derive spatio-temporal patterns at different levels of abstraction and granularity.

This has not been considered by the approach of Huang et al. This idea will be

detailed in Chapter 4.

20

2.2.3 Periodic Pattern Mining

Generally, periodic patterns describe regular appearances of some elements in a long

sequence, such as a time series or a moving object trajectory. Different from mining

sequential patterns as mentioned in the previous section, mining periodic patterns

is to find patterns that occur in some regularity. For example, some data mining

and machine learning conferences annually co-occur, or an individual tends to follow

the same route from his home to his office every working day of the week. Finding

such patterns is important for many applications, for instance, forecasting upcoming

events, predicting user behavior for service suggestion, or for better understanding

the inherent characteristics of the underlying dataset. In the following, we discuss

problems and existing approaches related to mining periodic patterns from time-

related data.

First, periodicity needs to be explicitly modeled. Given a sequence of elements

(features as mentioned in Section 2.2.1), if an element periodically appears in that

sequence, then it will be found in that sequence in every fixed time interval, called

cycle. A period is a duration of one cycle that an element re-occurs. Most of the

traditional approaches to the discovery of unknown periods from time series or se-

quence data are typically based on the Discrete Fourier Transform (DFT) and its

variations [113]. Since in Chapter 5 we will employ one of these methods as a tool

to detect periods for periodic patterns, we briefly describe the DFT in the context of

periodicity analysis for time series data as follows.

Given a time series of N real values, denoted x(n), n = 0, 1, 2, ..., N − 1, the DFT

of a sequence is a sequence of N complex numbers defined as:

X(k) :=
N−1∑
n=0

x(n)e−i2πkn/N k = 0, 1, 2, ..., N − 1. (2.2)

Note that each X(k) is a complex number that encodes the amplitude and phase

of a sinusoidal component of the original data x(n). The frequency, amplitude and

phase of this sinusoid are k
N

, |X(k)|
N

, and arg(X(k)), respectively. Based on X(k), the

original data x(n) can be represented as

x(n) =
1

N

N−1∑
k=0

X(k)ei2πkn/N n = 0, 1, 2, ..., N − 1. (2.3)

The DFT of a given time series can be efficiently computed in O(N log(N)) time,

where N is the length of the time series, with a Fast Fourier Transform (FFT), e.g.,

21

the Cooley-Tukey algorithm [113]. Based on the DFT, the power spectral density at

a frequency k
N

can be estimated as PSD(k) = |X(k)|2. This value represents how

much the expected signal power at that frequency is. Since period is the inverse

of frequency, significant periods can easily be detected by selecting the frequencies

carrying most of the energy. For sparse data, the Lomb-Scargle periodogram [74, 99],

known as a variation of the Fourier transform, can improve the performance.

Another method to detect significant periods is using the circular AutoCorrelation

Function (ACF) [114] defined as

ACF (t) =
1

N

N−1∑
n=0

x(t).x(n+ t) t = 0, 1, ..., N − 1. (2.4)

Generally, the valueACF (t) represents how similar the sequence x(n) is to its previous

values for different t lags. The higher the ACF (t) is, the more likely t is a true period.

Thus, based on this, significant periods can be automatically identified.

For each period t that is detected by any of the methods mentioned above, a

periodic pattern is then a length-t subsequence of the original sequence. However,

such a pattern is only able to represent a full-cycle periodicity in the sense that all

points in a cycle have to be repeated. In cases where only some points have a cyclic

behavior, approaches to the discovery of partial periodic patterns [42, 45, 75] can

be employed. For example, a music event that occurs every Monday and Saturday

but might or might not occur on other days of the week can be represented as a

pattern (music,*,*,*,*,music,*). A more flexible model of partial periodic patterns is

a model of asynchronous periodic patterns [126]. An asynchronous periodic pattern

is a subsequence of the original sequence that only repeats in some disjoint segments

of the original sequence, and two consecutive segments are allowed to be separated

by at most a time distance threshold. Some other variations of periodic patterns are

surprising periodic patterns modeled by an information gain metric [125], partial pe-

riodic patterns with gap penalties [127], cyclic association rules [85], or representative

trends based on relaxed periods [55].

In each approach mentioned above, periodic patterns are discovered from a long

sequence that is assumed to obey some periodicity. Such an approach cannot directly

be applied to spatio-temporal data for the following reasons. As mentioned in Sec-

tion 2.2.2, sequences are not typically given in a spatio-temporal dataset (e.g., event

data) but are often derived from spatial and temporal relationships between events.

Although in the context of moving object data, an object trajectory can be consid-

ered a sequence of geo-coordinates, a coordinate rarely repeats itself exactly in such

22

a sequence [18, 77]. Therefore, new approaches are needed for spatio-temporal data.

Since such approaches are closely related to our approach presented in Chapter 5,

they will be discussed in more detail and compared with our work there.

2.3 Concept Hierarchies and Pattern Mining

As useful background knowledge, concept hierarchies play an important role in pattern

mining approaches to the discovery of patterns at different levels of abstraction. Such

hierarchies naturally exist in various real-world application domains, typically in the

form of a taxonomy tree or a more complex structure such as a directed acyclic graph

(DAG). In this section, we review recent approaches to the discovery of patterns at

different levels of abstraction in the presence of concept hierarchies.

Srikant and Agrawal [103, 104] generalize the problem of mining frequent itemsets

and association rules for cases where hierarchical relationships (is-a relationships)

between items are available. Their approach aims at finding generalized association

rules consisting of items at different levels of the underlying hierarchy. Since this

approach uses a single support threshold for all levels of abstraction, many uninter-

esting rules will be included in the result if the threshold is rather low, but many

interesting rules will be discarded if the threshold is rather high. Instead of using

a uniform threshold for support, Han and Fu [41] propose an approach using multi-

ple support thresholds, where each threshold corresponds to a particular level of the

hierarchy. Consequently, each pattern discovered by this approach only consists of

items at the same level of the hierarchy [92]. Moreover, explicitly specifying support

thresholds based on hierarchy levels might not always be trivial, especially in cases

where concept hierarchies are represented by DAGs.

Several approaches to the discovery of patterns from multi-dimensional databases

can be considered related to this field. Pinto et al. [91] propose an approach to find

sequential patterns in the presence of multi-dimensional information for sequence

data. For example, multiple attributes of a customer (e.g., job, age-group, or income-

group) can be embedded in his transaction sequence, such as 〈(business, middle-aged,

high-income), 〈abacb〉〉, where 〈abacb〉 is a sequence of products purchased by that

customer. This approach allows attributes to be generalized to a meta-symbol ‘*’

(referred to ALL) in a pattern. For example, the pattern 〈(*, *, high-income), 〈ab〉〉
describes that customers belonging to the high-income group will buy item ‘b’ after

buying item ‘a’. Thus, this approach can be considered a special case of multilevel

23

pattern mining, where only two levels are considered, namely the most specific level

and the most generalized one (denoted by ‘*’).

A more general approach to the discovery of multilevel patterns from multidimen-

sional databases is proposed by Plantevit et al. [92]. Similar to our approach that will

be detailed in Chapter 4, their approach can deal with sequential patterns in which

each item can be a tuple of multiple attributes. However, although their approach can

handle concept hierarchies, their patterns are only able to represent timepoint-based

relationships. Moreover, they do not consider spatial relationships and therefore their

approach cannot be applied for spatio-temporal data.

In the Semantic Web, ontologies, often described within the Resource Description

Framework (RDF), can be considered promising sources to obtain concept hierarchies.

In such RDF-based data sources, an RDF statement is the basic element consisting

of a subject, a predicate, and an object. Based on RDF, hierarchical relationships

between concepts can be defined with special predicates, e.g., is-a, sub-class-of, or

type. Jiang and Tan [57, 58] propose an approach based on traditional algorithms for

mining frequent itemsets from transaction databases to discover frequent relationsets

(sets of RDF statements) from RDF data. Using concept hierarchies embedded in

RDF data, this approach can find patterns containing not only original RDF state-

ments in the RDF dataset but also generalizations of such RDF statements. However,

since this approach defines a transaction as an RDF document that contains RDF

statements, it cannot be applied for spatio-temporal data. As mention earlier, in

the context of spatio-temporal data, defining transactions is not natural due to the

continuity of space and time.

In summary, pattern mining is an application-driven problem which is often ad-

dressed and realized for a particular application and data type. In this chapter, we

reviewed prominent approaches that are closely related to our work. Briefly, none of

these approaches can be applied to event data which are provided and shared by so-

cial media platforms. Before describing our approaches, we introduce a comprehensive

framework to model events in the next chapter.

24

Chapter 3

Event Data and Event Model

For the purpose of data mining and knowledge discovery from event data, one needs a

comprehensive framework to model events. With the explosive growth of the Linked

Open Data cloud of datasets, various event ontologies have been proposed to describe

event information. However, to the best of our knowledge, there is no model in

existing work that fits the pattern mining tasks we focus on in this thesis well, even

there are still various definitions for the term ‘event ’. The importance of an event

model for the pattern mining approaches described in the later chapters motivates us

to conduct a systematic study of a comprehensive and flexible model.

In following section, we define the term ‘event ’ that will be used in this thesis.

We then sketch an event model consisting of context, time, and location components.

These three components will be described in detail in Section 3.2 and Section 3.3.

Based on that, Section 3.4 formulates events and introduces the concept of event

templates to describe event topics. Finally, we introduce event relationships and

event constraints in Sections 3.5 and 3.6.

3.1 Preliminaries

Since there is no single agreed upon formal definition for the term ‘event ’, we first

specify what an event is in our context. We then discuss the availability and hetero-

geneity of event data sources on the Internet. Finally, we propose an event model for

the purpose of pattern mining and knowledge discovery, which is simple but flexible

to deal with the heterogeneity of such event data.

25

3.1.1 What is an Event?

The term ‘event ’ is used in many domains and it has several meanings. In general,

an event refers to an observable occurrence or a phenomenon in the real world. For

example, an event might be a festival, a live concert, or a sports competition. In me-

teorology and climatology, meteorological phenomena are observable weather events

such as hurricanes, blizzards, or floods. In social media data, a check-in, a tweet, or

a comment of a user might also be considered an event. In software development,

an event can be a user action (e.g., a keystroke or a mouse click) or a system occur-

rence (e.g., running out of memory or a firewall event). Moreover, an event might

be a collections of other subevents, for example, a conference event consists of multi-

ple presentations. In brief, ‘event ’ might have different definitions and semantics in

different application domains and contexts.

Despite the fact that there are various definitions and meanings for the

term ‘event ’, in this thesis, we simply take this definition from WordNet1: “something

that happens at a given place and time”. This definition is also commonly used in

the Information Retrieval community [35], and especially in Topic Detection and

Tracking [3].

From such a definition, an event, or more precisely, a spatio-temporal event, is

typically described with three types of information: context, time, and location. They

are considered three core components of an event description to answer the three

following questions about the corresponding fact in the real world: “What happened?”,

“When did it happen?”, and “Where did it happen?”.

For example, Figure 3.1 depicts an event about a performance of the band Scor-

pions in Stuttgart, described using an RDF-based event description. One can see

different related information about the events represented as properties, such as the

title, the category, or the venue. Such properties can be classified as either contextual,

temporal, or spatial information, such as the grouping shown in Figure 3.1.

In the following sections, we will discuss from where to obtain such event data,

and how to utilize the data for the purpose of mining interesting event patterns.

3.1.2 Event Data Sources

Nowadays, there is a huge number of data sources available on the Internet that

provide event data where each record consist of information about the context, time

1Princeton University “About WordNet.” WordNet. Princeton University. 2010.
http://wordnet.princeton.edu

26

Figure 3.1: Example of an event described using an RDF-based event description.

and location of an event. A media event such as a concert, sports competition,

or festival, describing a public activity at a certain place and time, is reported by

several websites such as eventful.com or eventbrite.com. Historical events like wars,

battles, or conflicts, where each event consists of an event description, a time interval,

and a location, can be found at Linked Open Data sources such as DBPedia [7] or

YAGO2 [49]. Data about music performances including titles, descriptions, ticket

prices, venues, scheduled time, etc., can be accessed from several websites such as

last.fm or eventim.de. The above data sources are either available for download or

they provide flexible APIs for developers to access.

Since there are heterogeneous event data sources, as mentioned above, it is nec-

essary to transform such sources into event data in a uniform format for the purpose

of data mining and knowledge discovery. Figure 3.2 shows an overview of our frame-

work for event data processing, where raw event data can be from either a traditional

(relational) database or an RDF-based data source using some event ontology such as

LODE [101], Event Ontology2, or the event class of DBpedia [7]. Such an RDF-based

data source is obtained from the Linked Open Data cloud using SPARQL endpoints,

2http://purl.org/NET/c4dm/event.owl

27

Figure 3.2: Overview of event data processing for data mining and knowledge discov-
ery tasks.

an RDF crawler, or RDF dumps. This process can be considered a preprocessing step

including extraction and normalization of raw event data.

The extracted event information together with concept hierarchies, which are also

obtained from the Linked Open Data cloud, are input to the data mining and knowl-

edge discovery tasks. These tasks will be the focus of Chapters 4 to 6. The results or

outputs of these tasks, i.e., event patterns, knowledge, or semantic annotations, are

utilized further in different applications such as recommendation services or business

intelligence. In addition, the results can be encoded in RDF, linked to other LOD

sources, and published on the Linked Open Data cloud, as shown in Figure 3.2.

In the following section, we build a comprehensive and flexible framework to model

events. This framework provides the basis to formulate event patterns which will be

discussed in the later chapters.

3.1.3 Event Modeling

As mentioned before, an event description consists of three core components: con-

text, time, and location. To be more specific, an event is described as a tuple

〈e id, C, T, L〉, where e id is an event identifier, and C, T , and L are the con-

28

text, time, and location components, respectively. The last three components are

described as follows.

• Context: Typically, a context is described as a tuple of concepts. Here a concept

is considered a unit of thoughts, expressed as a linguistic term, e.g., ‘Metallica’,

or ‘Heavy metal ’. A context is the component containing information to answer

the ‘What-question’ about an event. For example, YAGO2 [48] describes an

event as a quintuple 〈Subject, Predicate, Object, Time, Location〉, where the

first three components, i.e., 〈Subject, Predicate, Object〉, can be considered

a context of an event, for instance, 〈‘Madly-in-Anger-with-the-World Tour’,

‘performed by ’, ‘Metallica’〉. Generally, the context component is the basis to

specify conceptual relationships among events.

• Time: This component is typically described as a time point or time inter-

val to answer the ‘When-question’ about an event. The time component is

fundamental to specify temporal relationships among events.

• Location: This component contains information to answer the ‘Where-

question’ about an event. Basically, spatial relationships among events are

specified on the basic of their location components.

In the following sections, we describe the above concepts in more detail.

3.2 Concepts, Hierarchies, and Event Contexts

A context of an event description typically contains one or more concepts. In this

section, we first specify the term ‘concept ’ used in this thesis. We then formulate hi-

erarchical relationships among concepts to build the basis for conceptual relationships

among events.

3.2.1 Concepts

There are various points of view to understand the term ‘concept ’, e.g., as a mental

representation, as an ability, or as an abstract object [80]. For the purpose of data

mining and knowledge discovery, we simply consider a concept a linguistic term de-

noting a class of things in the real world. For example, the concept ‘scientist ’ denotes

a class of persons who are scientists (e.g., Albert Einstein, Louis Pasteur, Otto Hahn).

The concept ‘rock concert ’ refers to a class of musical performances in the genres of

29

Figure 3.3: An example using a Venn diagram to illustrate entity-category and
category-category relationships among 3 entities (Albert Einstein, Mileva Mari, and
Angela Merkel) and 8 categories (person, scientist, physicist,...). The entities are
represented as elements (squares), and the categories are represented as sets (circles).

Rock ‘n’ Roll music. Such a class (or concept) is called a category, and an instance

(e.g., an individual person, a particular music performance, etc.) is called an entity.

Typically, a category might contain one or more entities, and an entity might

also belong to one or more categories. For instance, the entity ‘Albert Einstein’

belongs to the both categories ‘physicist ’ and ‘philosopher ’. In addition, the belongs-

to relation can also be applied to categories. For example, both categories ‘physicist ’

and ‘philosopher ’ belong to the category ‘scientist ’.

To illustrate such belongs-to (or is-a) relationships, we can use sets and elements

like in the following example. Figure 3.3 shows a Venn diagram, where a set represents

a category (e.g., ‘scientist ’, ‘person’, or ‘politician’), and an element represents an en-

tity (e.g., ‘Albert Einstein’, ‘Mileva Mari ’, or ‘Angela Merkel ’). For example, the set

‘scientist ’ is {‘Albert Einstein’, ‘Mileva Mari ’, ‘Angela Merkel ’}; the set ‘physicist ’ is

{‘Albert Einstein’, ‘Mileva Mari ’}. The fact that an entity belongs to a category is

described using a membership relation (∈), e.g., ‘Albert Einstein’ ∈ ‘scientist ’. And

the fact that a category belongs to another category is described using a set inclusion

(⊂), e.g., ‘scientist ’ ⊂ ‘person’.

Note that the set inclusion (⊂) can be applied for entity-category relationships

as well if we describe an entity as a unit set, e.g., {‘Albert Einstein’} ⊂ ‘scientist ’

instead of ‘Albert Einstein’ ∈ ‘scientist ’.

30

Based on that idea, an entity is also considered a special concept, whose instance

is the entity itself. This allows one to uniformly formulate hierarchical relationships

between either two categories or a category and an entity. For this, the notations

and operators defined for hierarchical relationships among concepts can be applied to

both category-category and entity-category relationships. This will be shown in the

next section.

In summary, a concept here refers to either an entity or a category; an entity refers

to an individual instance; and a category refers to a class of instances.

3.2.2 Concept Hierarchies

As mentioned before, a concept might belong to one or more other concepts. All

these belongs-to relationships among concepts constitute a concept hierarchy. In the

literature, there are several ways to specify a concept hierarchy, from a simple solution

such as using a taxonomy tree [98, 103] to a more formal, complex one such as

using a poset (partially ordered set) [26, 69]. Here we focus on concept hierarchies

extracted from Linked Open Data (LOD) sources, where hierarchical relationships

among concepts are defined using predicates such as ‘is-a’, ‘type’, or ‘sub-class-of ’.

Such predicates can be naturally modelled as edges of a directed graph. In addition,

a concept hierarchy from LOD sources typically contains no circular relationships

among concepts. Therefore, we simply take directed acyclic graphs (DAGs) to model

concept hierarchies. The formal definition is as follows.

Definition 3.1 (Concept Hierarchy) A concept hierarchy H is a directed

acyclic graph (V , E), where:

• V is a set of concepts, and

• an edge e ∈ E from a node c1 ∈ V to another node c2 ∈ V represents a

direct generalization relationship between the concept c1 and the concept

c2, denoted c1 ` c2.

Figure 3.4 shows a simple concept hierarchy regarding persons, represented as a

DAG, for the concepts in Figure 3.3. In this graph, a node represents a concept

(either an entity as a square or a category as a circle), and an edge represents a di-

rect generalization relationship between two concepts, for instance, ‘Albert Einstein’

` ‘physicist ’, or ‘scientist ’ ` ‘person’. From such edges, a set of direct ancestors

of a concept can be computed. For example, direct ancestors of the concept ‘Al-

bert Einstein’ are ‘philosopher ’ and ‘physicist ’, based on the hierarchy in Figure 3.4.

31

Figure 3.4: Example of a concept hierarchy. Squares represent entities (persons),
circles represent categories.

Besides, an indirect generalization relationship between two concepts (e.g., ‘Al-

bert Einstein’ and ‘person’) can be derived from the hierarchy. We give a formal

definition for direct and indirect generalization relationships as follows.

Definition 3.2 (Ancestors) Let H be a concept hierarchy, and c ∈ H be a concept.

• A concept c′ ∈ H is called a direct ancestor of the concept c iff c ` c′.

• A concept c′ ∈ H is called an ancestor (direct or indirect) of the concept c,

denoted c
 c′, iff either c′ is a direct ancestor of c or there exist concepts

a1, a2, ..., an (ai ∈ H, 1 ≤ i ≤ n) such that c ` a1 ` ... ` an ` c′.

In other words, there is an indirect relationship from a concept to another concept

if and only if there exists a directed path from the first one to the second one. For ex-

ample, because of the path ‘Albert Einstein’ ` ‘physicist ’ ` ‘scientist ’ ` ‘person’, we

say that the concept ‘person’ is an indirect ancestor of the concept ‘Albert Einstein’

(or in other words, the concept ‘Albert Einstein’ belongs to the concept ‘person’).

Note that there might exists two or more paths to determine the indirect generaliza-

tion relationships between two concepts. For example, there are two paths between

‘Albert Einstein’ and ‘person’ in the hierarchy depicted in Figure 3.4.

As mentioned before, concepts in an event context specify topics of the correspond-

ing event. To generate event topics later on, we define two generalization operators

(↑ and ⇑) for computing the set of ancestors of a concept.

Definition 3.3 (Concept Generalization Operators) Let H be a concept hier-

archy, and c ∈ H be a concept. The two sets c↑ and c⇑ consisting of ancestors of the

concept c are defined as

32

Figure 3.5: Example of concept levels in a hierarchy.

• c↑ := {c′ ∈ H | c ` c′},

• c⇑ := {c′ ∈ H | c
 c′}.

In brief, the set c↑ consists of all direct ancestors of the concept c, whereas the

set c⇑ consists of both direct and indirect ancestors of the concept c. For example,

based on the concept hierarchy shown in Figure 3.4, we have ‘Albert Einstein’↑ =

{‘philosopher ’, ‘physicist ’}, and ‘Albert Einstein’⇑ = {‘philosopher ’, ‘physicist ’, ‘sci-

entist ’, ‘person’}.
In the pattern mining approaches that will be discussed in this thesis, entities are

typically generalized to their ancestors to obtain higher levels of abstraction. Since

concept hierarchies might be large, considering all ancestors in a pattern mining

approach is very time-consuming. On the other hand, the user might be interested in

only some specific concept levels. Thus, the levels for concepts need to be specified

for the purpose of setting conceptual constraints, i.e., how far a concept can be

generalized. They are recursively defined as follows.

Definition 3.4 (Concept Level) Let H be a concept hierarchy H. The levels 0, 1,

2,... of H, denoted H[0],H[1],H[2], ..., respectively, are the sets of concepts recursively

defined as

• H[0] := {c ∈ H | @c′ ∈ H : c′ ` c},

• H[i] := {c ∈ H | ∃c′ ∈ H[i− 1] : c′ ` c} (i ≥ 1).

Given a concept c ∈ H[i] (i ≥ 0), c is called at the level i of the hierarchy H. The

largest value i such that H[i] 6= {} is called the top level of H.

33

Generally speaking, the level 0 of a concept hierarchy consists of all entities, and

the levels i ≥ 1 consist of categories. Figure 3.5 shows the concept levels for the

hierarchy in Figure 3.4, where the set H[0] including all entities is computed first; the

set H[1] is computed from the set of H[0]; and so on. Note that in this example, the

set of H[i] where i ≥ 4 is empty, and i = 3 is the top level of the concept hierarchy.

Summing up, Section 3.2.1 and Section 3.2.2 describe a framework of concepts

and concept hierarchies, designed for the purpose of pattern mining from event data.

This framework consists of fundamental components to formulate event contexts,

described next.

3.2.3 Event Contexts

As shown in Section 3.1.3, the event context is one of the three core components

describing an event. Based on the framework of concepts and concept hierarchies in

the previous sections, we consider a context as a thematic component in an event

description. We also define generalization operators (↑ and ⇑) to specify hierarchical

relationships among event contexts.

An event description might contain many properties, for instance, an event title,

a full description, a topic, participants, etc. For a particular application domain, the

user might be interested in only some properties describing the context of an event.

Thus, we model an event context as a tuple of event properties of interest, where

each component of the tuple is taken from an individual concept hierarchy. A formal

definition of event contexts is given as follows.

Definition 3.5 (Event Context) Given n concept hierarchies H1, H2,...,Hn, an

event context is described as a tuple 〈c1, c2,...,cn〉, where ci ∈ Hi (1 ≤ i ≤ n).

A context framework CF is a set of event contexts, defined as

CF := {〈c1, c2, ..., cn〉 | ∀i ∈ {1, 2, ..., n}, ci ∈ Hi}.
A subset of CF , called the most specialized event contexts (MSECs), con-

sists of event contexts whose concepts are entities, defined as

CF [0] := {〈c1, c2, ..., cn〉 | ∀i ∈ {1, 2, ..., n}, ci ∈ Hi[0]}.

Generally, we use event contexts to describe event topics. Specially, the most

specialized ones (MSECs) are used to formulate event instances, which are crucial to

define instances of patterns later on.

Based on Definition 3.5, we now describe hierarchical relationships among event

contexts. Similar to concepts, we first define two generalization operators (↑ and ⇑)

for contexts.

34

〈c1, c2〉

〈c∗1, c2〉 〈c1, c∗2〉

〈c∗∗1 , c2〉 〈c∗1, c∗2〉 〈c1, c∗∗2 〉

〈c∗∗1 , c∗2〉 〈c∗1, c∗∗2 〉

〈c∗∗1 , c∗∗2 〉

c1

c∗1

c∗∗1

c2

c∗2

c∗∗2

Concept Hierarchies

Figure 3.6: Example of a context lattice generated from a context 〈c1, c2〉.

Definition 3.6 (Context Generalizations) Given n concept hierarchies H1,

H2,...,Hn, and an event context C = 〈c1, c2,...,cn〉, where ci ∈ Hi (1 ≤ i ≤ n), the

two sets C↑ and C⇑ consists of event contexts, defined as

• C↑ :=
⋃n
i=1 Fi, where Fi = {〈c1, c2,...,c′i,...,cn〉 | ∀c′i ∈ Hi : ci ` c′i},

• C⇑ := {〈c∗1, c∗2,...,c∗n〉 | ∀i ∈ {1, 2, ..., n}, c∗i = ci ∨ ci
 c∗i } \ {〈c1, c2,...,cn〉}.

In Definition 3.6, the set C↑ consists of contexts obtained from the context C

by replacing only one component by its direct ancestor (i.e., ci by c′i) whereas the

set C⇑ consists of contexts obtained from the context C by replacing one or more

components by their ancestors. Obviously, the set C↑ is a subset of the set C⇑.

Based on the operators ↑ and ⇑ for contexts, generalized/specialized relationships

among contexts can be described as follows. Given two event contexts C1 and C2,

we say that C1 is more specialized than C2 (or C2 is more generalized than C1) if

and only if C2 ∈ C⇑1 . In that case, the context C2 is called a generalization of the

context C1. Specially, the context C2 is called a direct generalization of the context

C1 if C2 ∈ C↑1 . Following this, event contexts can be generated step-by-step from the

specialized ones to the more generalized ones.

To illustrate how to generate generalizations step-by-step for a given context, we

use two simple hierarchies for concepts in Figure 3.6. This figure shows a lattice

generated from a context in the form of a pair of two components 〈c1, c2〉, where the

concepts c1 and c2 can be generalized as c1 ` c∗1 ` c∗∗1 and c2 ` c∗2 ` c∗∗2 , respectively.

In this example, 〈c1, c2〉↑ is a set consisting of two elements, i.e., {〈c∗1, c2〉, 〈c1, c
∗
2〉}.

Next, the ↑ operator is again applied for the contexts in that set to generate the

next direct generalizations, i.e., {〈c∗∗1 , c2〉, 〈c∗1, c∗2〉, 〈c1, c
∗∗
2 〉}, and so on. Finally,

35

the generated lattice of contexts contains all generalization of the original context

〈c1, c2〉, as shown in Figure 3.6.

In some applications, patterns related to specific concepts (e.g., ‘scientist ’) are

more interesting and meaningful than other patterns related to general concepts (e.g.,

‘person’). However, the latter patterns dominate in mining results that employ a

statistical interestingness measure like the support [65]. Therefore, the step-by-step

context generation method mentioned in the previous paragraph is crucial to develop

an algorithm that eliminates redundancies and produces only patterns containing the

most specialized event contexts.

3.3 Location and Time

Location and Time are two other core components of an event description. In the fol-

lowing, we introduce respective frameworks to represent locations and time of events.

3.3.1 Spatial Framework for Event Location

This section describes a framework to model locations of events in the presence of

multiple granularities.

Basically, locations can be specified at different levels of granularity. A spatial

granularity such as country, state, or city represents a partition of the space (spatial

domain) in regions, called spatial entities. We give a formal definition of spatial

granularities, and based on that, we define locations as follows.

Definition 3.7 (Spatial Granularity) A spatial granularity GS is a finite set of

disjoint regions, called spatial entities, of the space.

For example, if we define a spatial granularity ‘Country ’ as a set of countries and

‘City ’ as a set of cities in the world, then ‘Germany’, ‘France’, or ‘USA’ are spatial

entities of the granularity ‘Country ’, whereas ‘Heidelberg’, ‘Paris ’, or ‘Las Vegas ’ are

spatial entities of the granularity ‘City ’. Generally, a spatial entity is identified in

combination with a granularity. For example, ‘Berlin’ can be considered a state or a

city of Germany. For this, a location is defined as a pair of a spatial granularity and

a spatial entity. A formal definition is as follows.

Definition 3.8 (Location) Given a spatial granularity GS, a location is a pair

〈GS , g〉, where g is a spatial entity in GS .

36

Figure 3.7: Example of a location hierarchy. A representation based on relationships
among spatial entities is on the left, where locations of the finest granularity are
marked with squares, and other locations of the coarser granularity are marked with
circles. On the right, a schema-based representation is shown for the hierarchy.

In a location representation, the spatial entity g, typically represented as an iden-

tifier, can be used to lookup the spatial extent for the corresponding region. Spatial

relationships between two locations are then determined based on their spatial ex-

tents. The mappings from the set of identifiers to the set of spatial extents might be

explicitly provided in knowledge base datasets or can obtained using geo-tagger tools

such as Google Places3.

For convenience, in our examples from now on, we use strings (semantic names)

to represent spatial entities in location representations when no ambiguity of such

names exists, for instance, 〈‘Country ’, ‘Germany ’〉 or 〈‘City ’, ‘Heidelberg ’〉.
A spatial framework, denoted SF , is a set of locations, formally defined as follows.

Definition 3.9 (Spatial Framework) Given a set of spatial granularities GS, a

spatial framework is a set of locations SF = {l1, l2, ...}, where each location li =

〈G, g〉 is a pair of a granularity G ∈ GS and a spatial entity g ∈ G.

Similar to concepts, locations can be organized in hierarchies, called spatial hier-

archies. Figure 3.7 shows an example of a spatial hierarchy consisting of hierarchical

relationships among spatial entities. Here, each spatial entity of the granularity ‘Ad-

dress ’ is mapped to a spatial entity of the granularity ‘City ’; each spatial entity of the

granularity ‘City ’ is mapped to a spatial entity of the granularity ‘State’; and so on.

3https://developers.google.com/places

37

On the right, Figure 3.7 also depicts another representation of the hierarchy, which is

based on hierarchical relationships among spatial granularities (e.g., ‘Address ’, ‘City ’,

‘Country ’). Such a representation is called a schema hierarchy.

Different from concept hierarchies, a spatial hierarchy is typically provided by the

user for data mining and knowledge discovery tasks in the form of a schema hierarchy,

instead of a DAG of spatial entities. However, hierarchical relationships among spatial

entities, e.g. ‘Heidelberg ’ → ‘Baden-Wüttemberg ’ → ‘Germany ’, need to be known

in mining algorithms. The question is how to derive hierarchical relationships among

spatial entities from a schema hierarchy.

To solve the above problem, we first specify relationships among spatial granu-

larities. Based on that, we then define spatial hierarchies. Finally, we describe how

to infer relationships among spatial entities on the basis of containment relationships

(see the 9-intersection model [32]) among spatial extents.

Given two spatial granularities (e.g., ‘City ’ and ‘Country ’), a common question

is, which one is finer (or coarser). For this, we define finer-than relationships among

spatial granularities as follows.

Definition 3.10 (Spatial Finer-than Relationship) Given two spatial granular-

ities G1 and G2 of the same space, G1 is finer than G2 (or G2 is coarser than G1),

denoted G1 < G2, iff for each region r1 ∈ G1, there exists a region r2 ∈ G2 such that

r1 is covered by r2.

Definition 3.10 specifies a finer-than relationship between two spatial granularities

based on containment relationships among spatial entities. For example, since each

city is contained in some country, the granularity ‘City ’ is finer than the granularity

‘Country ’. Note that there is at most one spatial entity of the coarser granularity

covering a given spatial entity of the finer granularity, since spatial entities of the

same granularity do not overlap.

Considering such finer-than relationships allows one to define a valid schema hi-

erarchy. For example, ‘Address ’ → ‘City ’ → ‘Country ’ is a valid hierarchy, whereas

‘City ’→ ‘Address ’ is not. A formal definition of valid schema hierarchies for locations,

or in short, spatial hierarchies, is given as follows.

Definition 3.11 (Spatial Hierarchy) Let GS be a set of spatial granularities of

the same space. A spatial hierarchy is defined as a directed acyclic graph where a

node is a spatial granularity in GS, and an edge between two spatial granularities G1

and G2 (G1 < G2) represents a direct generalization relationship, denoted G1 ` G2.

38

If there is a path from G1 to G2 in the hierarchy GS, then we say that they have a

generalization relationship, denoted G1
 G2.

Typically, there is a node in a DAG of a spatial hierarchy such that other nodes

have a path to it. That node is called ‘All Loc’, and it represents for the coarsest

granularity of the hierarchy.

Based on a spatial hierarchy, locations of a granularity can be mapped to ones

of coarser granularities. Such mappings are based on two generalization operators

(↑ and ⇑) formally defined as follows.

Definition 3.12 (Location Generalizations) Let HS be a spatial hierarchy, and

l = 〈G, g〉 be a location of the granularity G ∈ HS . The two sets l↑ and l⇑ consisting

of locations are defined as

• l↑ = 〈G, g〉↑ := {〈G ′, g′〉 | G ` G ′ ∧ g′ ∈ G ′ ∧ g is covered by g′ },

• l⇑ = 〈G, g〉⇑ := {〈G ′, g′〉 | G
 G ′ ∧ g′ ∈ G ′ ∧ g is covered by g′ }.

For example, based on the hierarchy in Figure 3.7, we have

〈‘City ’, ‘Heidelberg ’〉↑={〈‘State’, ‘Baden-Württemberg ’〉}, and

〈‘City ’, ‘Heidelberg ’〉⇑={ 〈‘State’, ‘Baden-Württemberg ’〉, 〈‘Country ’, ‘Ger-

many ’ 〉, 〈‘Continent ’, ‘Europe’〉, 〈‘All Loc’, ‘* ’〉},

〈‘All Loc’, ‘* ’〉↑={}.

We now have a comprehensive framework to model locations of events. Simi-

larly, we formally define time and a temporal framework to model event time in the

next section.

3.3.2 Temporal Framework for Event Time

Similar to locations, a time instance can be specified at different granularities such as

day, month, or year. To formalize temporal granularities, we start with the concept

of chronons, as follows.

We model the time line as a set of non-decomposable units of time, called chronons,

with a total order ≤t. Note that the meaning of the term ‘chronon’ here is different

from in other sciences such as Quantum Physics. Here, chronon is the smallest unit

of time that can be represented in a particular application, for instance, second, day,

or month.

39

Definition 3.13 (Chronons) A time domain is a finite set T of non-decomposable

units of time, called chronons, with a total order ≤t.

Since the set of chronons T is totally ordered under ≤t, the following statements

hold for all chronons a, b, and c in T :

• If a ≤t b and b ≤t a then a =t b (antisymmetry);

• If a ≤t b and b ≤t c then a ≤t c (transitivity);

• a ≤t b or b ≤t a (totality).

The relation ≤t among chronons is important to define temporal relationships

between time instances such as the Allen’s relationships [4] later on.

Based on the concept of chronons, we now define temporal granularities.

Definition 3.14 (Temporal Granularity) Given a time domain T , a temporal

granularity GT of T is a finite set of disjoint subsets of T , each subset is called

time instances.

For example, if a day is chosen as a chronon, and a time domain T is the set of

all days from 2000 to 2013, then the granularities GMonth and GY ear are two sets:

GMonth = {{2000-01-01, 2000-01-02, ..., 2000-01-31},
{2000-02-01, 2000-02-02, ..., 2000-02-31}, ...,
{2013-12-01, 2013-12-02, ..., 2013-12-31}}

GY ear = {{2000-01-01, 2000-01-02, ..., 2000-12-31},
{2001-01-01, 2001-01-02, ..., 2001-12-31}, ...,
{2013-01-01, 2013-01-02, ..., 2013-12-31}}.

That is, the set GMonth consists of 168 (12*14) elements (an element represents a

time instance), where each element is a set of days in a month (e.g., January 2000,

February 2000, or December 2013). The set GY ear consists of 14 elements, where each

element is a set of days in a year (e.g., 2000, 2001, or 2013).

Typically, an event occurrence can be described as a time point or a time inter-

val. Thus, we first formalize time points on the basis of the definition of temporal

granularities, and we then define time intervals. A time point is modeled as a time

instance of some granularity, formally defined as follows.

40

Definition 3.15 (Time Point) A time point is a pair 〈GT , I〉, where GT is a tem-

poral granularity and I is a time instance in GT .

For example, 〈GMonth, ‘January 2012’〉 and 〈GY ear, ‘2012’〉 are two time points

of the granularity GMonth and GY ear, respectively. From now on, we use names for

temporal granularities in our examples, e.g., Day for GDay, or Month for GMonth.

Based on time points, we now define time intervals. For this, we first specify order

relationships among time points as follows.

Given two time points t1 = 〈G1, I1〉 and t2 = 〈G2, I2〉, we say that t1 is less than t2

(t1 <t t2) if and only if each chronon in I1 has a <t relationship with each chronon in

I2. A time interval is specified based on two time points ts and te (called start-point

and end-point, respectively) such that ts ≤t te. We give a formal definition as follows.

Definition 3.16 (Time Interval) A time interval of a temporal granularity GT is

a tuple 〈GT , Is, Ie〉 where Is and Ie are time instances of GT , and 〈GT , Is〉 ≤t 〈GT , Ie〉.
The time points 〈GT , Is〉 and 〈GT , Ie〉 are called start-time and end-time, respec-

tively.

For example, the time interval 〈Year, 2011, 2013〉 represents a time interval of

three years, from 2011 to 2013.

Based on a particular application domain, time components of events can be

specified using either time points or time intervals. For this, we define two different

temporal frameworks, one for time points and another one for time intervals.

Definition 3.17 (Time Point Framework) Given a set of temporal granularities

GT , a time point framework T FP is a set of time points 〈G, I〉, where G ∈ GT
and I ∈ G.

Definition 3.18 (Time Interval Framework) Given a set of temporal granulari-

ties GT , a time interval framework T F I is a set of time intervals 〈G, Is, Ie〉,
where G ∈ GT , Is ∈ G, Ie ∈ G, and Is <t Ie.

Similar to spatial granularities, temporal granularities can be organized in a hier-

archy as well. To define such a hierarchy, we specify a finer-than relationship among

temporal granularities on the basis of inclusion of chronon sets as follows.

Definition 3.19 (Temporal Finer-than Relationship) Given two temporal

granularities G1 and G2 of the same time domain, G1 is finer than G2 (or G2 is

coarser than G1), denoted G1 < G2, iff for each time instances I1 ∈ G1, there exists

a time instance I2 ∈ G2 such that I1 ⊂ I2.

41

Figure 3.8: Example of a temporal hierarchy.

Figure 3.9: Example of a temporal hierarchy represented as a DAG.

For example, the granularity Month is finer than the granularity Year, and it is

coarser than the granularity Day. Such finer-than relationships allow one to define

a temporal hierarchy, where the lowest level is the finest granularity and the highest

level of the hierarchy is the coarsest one. Typically, the highest level of a temporal

hierarchy is called All Time. On the right, Figure 3.8 depicts a temporal hierarchy,

where the finest granularity is Day and the coarsest one is All Time. On the left, one

can see each time instance at a lower level of the hierarchy is mapped to one time

instance at the higher one.

Similar to spatial hierarchies, a temporal hierarchy can be a DAG, for example,

the one shown in Figure 3.9. A formal definition is given as follows.

Definition 3.20 (Temporal Hierarchy) Let GT be a set of temporal granularities

of the same time domain. A temporal hierarchy is defined as a directed acyclic

graph where a node is a temporal granularity in GT , and an edge between two temporal

granularities G1 and G2 (G1 < G2) represents a direct generalization relationship,

denoted G1 ` G2.

If there is a path from G1 to G2 in the hierarchy GT , then we say that they have a

generalization relationship, denoted G1
 G2.

42

For example, Figure 3.9 shows some generalization relationships such as Hour `
Day, Day ` Month, and Day
 Y ear, whereas Hour 0 Month, Week 1 Month,

and Week 1 Y ear.

Based on a temporal hierarchy, a time point (or a time interval) can be generalized

to coarser granularities. Similar to locations, we also use the generalization operators

↑ and ⇑ to convert a time point or a time interval into coarser granularities. They

are formally defined as follows.

Definition 3.21 (Time Point Generalizations) Let HT be a temporal hierarchy,

and t = 〈G, I〉 be a time point of the granularity G ∈ HT . The two sets t↑ and t⇑

consisting of time points are defined as

• t↑ = 〈G, I〉↑ := {〈G ′, I ′〉 | G ′ ` G ∧ I ′ ∈ G ′ ∧ I ′ ⊃ I },

• t⇑ = 〈G, I〉⇑ := {〈G ′, I ′〉 | G ′
 G ∧ I ′ ∈ G ′ ∧ I ′ ⊃ I }.

Definition 3.22 (Time Interval Generalizations) Let HT be a temporal hier-

archy, and t = 〈G, Is, Ie〉 be a time interval of the granularity G ∈ HT . The two sets

t↑ and t⇑ consisting of time intervals are defined as

• t↑ = 〈G, Is, Ie〉↑ := {〈G ′, I ′s, I ′e〉 | G ′ ` G ∧ I ′s, I
′
e ∈ G ′ ∧ I ′s ⊃ Is ∧ I ′e ⊃ Ie },

• t⇑ = 〈G, Is, Ie〉⇑ := {〈G ′, I ′s, I ′e〉 | G ′
 G ∧ I ′s, I
′
e ∈ G ′ ∧ I ′s ⊃ Is ∧ I ′e ⊃ Ie }.

For example, using the hierarchy in Figure 3.8, we have

〈Day, ‘2012-01-09 ’〉↑={〈Month, ‘January 2012 ’〉},

〈Day, ‘2012-01-09 ’〉⇑={ 〈Month, ‘January 2012 ’〉, 〈Quarter, ‘Q1 2012 ’〉, 〈Year,

‘2012 ’〉, 〈All Time, ‘* ’〉}, and

〈Day,‘2012-01-09’,‘2012-01-20 ’〉↑={〈Month, ‘January 2012 ’, ‘January 2012 ’〉}.

3.4 Events and Event Templates

Based on the frameworks for concepts, time, and locations described in the previous

sections, we now formulate events and then introduce the notion of event templates

to describe topics of events. Both concepts of events and event templates build the

basis for our pattern mining approaches in the later chapters.

43

3.4.1 Events

As mentioned before, an event description includes three core components: a context,

a time instance, and a location. Based on the framework for concepts, time, and

locations, we formally define events as follows.

Definition 3.23 (Event) Let CF , SF , and T F be a context framework, a spatial

framework, and a temporal framework, respectively.

An event is specified as a tuple 〈e id, C, T, L〉, where e id is an identifier to dis-

tinguish an event from another, C ∈ CF is a context, T ∈ T F is a time point (or a

time interval), and L ∈ LF is a location.

For example, the event describing the marriage between Albert Einstein and Mil-

eva Mari is described as the tuple 〈#00347, 〈‘Albert Einstein’, ‘isMarriedTo’, ‘Mil-

eva Mari’ 〉, 〈Year, 1903, 1920〉, 〈Country, ‘Switzerland’ 〉〉, where 〈‘Albert Einstein’,

‘isMarriedTo’, ‘Mileva Mari’ 〉 is the context, 〈Year, 1903, 1920〉 is the time interval,

and 〈Country, ‘Switzerland’ 〉 is the location of the event.

Based on the definition of events, we now define event datasets, which are input

for pattern mining approaches, as follows.

Definition 3.24 (Event Dataset) Let CF , SF , and T F be a context framework,

a spatial framework, and a temporal framework, respectively.

An event dataset, denoted DE, is a set of events, where each event is a tuple

〈e id, C, T, L〉, where C ∈ CF , T ∈ T F , and L ∈ LF .

Generally, all events in the same event dataset are described by using the same

context framework, the same spatial framework, and the same temporal framework.

The context, time, and location components of these events can be generalized to

higher level of abstractions based on the operators ⇑, ↑ mentioned in earlier sections.

This feature is the basis of formulating event templates to describe event topics in

the next section.

3.4.2 Event Templates

Events as introduced above can be considered base facts in a knowledge base, and

they build the basis for our pattern mining approaches. Components of such patterns

are obtained by generalizing contexts, time, and locations by their direct or indirect

generalizations to obtain so-called event templates.

44

Definition 3.25 (Event Template) Let CF , SF , and T F be a context framework,

a spatial framework, and a temporal framework, respectively.

An event template (ET) is specified as a triple 〈C, T, L〉, where C ∈ CF is a

context, T ∈ T F is a time point (or a time interval), and L ∈ SF is a location.

Obviously, in comparison to events, ETs, whose context, time, and location can be

taken at any level of abstraction on the basis of given hierarchies, do not explicitly

exist in a dataset but are to be derived from events. An event might “produce”

many different ETs and an ET might be derived from different events. The follow-

ing definition makes this aspect more precise, utilizing the generalization operators

introduced earlier.

Definition 3.26 (ET Instance) Given an event template f = 〈C∗, T ∗, L∗〉, the

ET f is supported by an event e = 〈id, C, T , L〉 (or e is an instance of f), denoted

e
 f , iff (C∗ ∈ C⇑ ∪ {C}) ∧ (T ∗ ∈ T ⇑ ∪ {T}) ∧ (L∗ ∈ L⇑ ∪ {L}).

To avoid duplicates in deriving event templates as parts of patterns later in our

approaches, we assume a total order ≺ on the set of ETs. Without loss of generality,

we assume a total order on each CF , SF , and T F . The total order ≺ on ETs is then

defined as the lexicographical order on the elements of the Cartesian product CF×
SF × T F .

As in an event template, the elements of the components can be taken from any

levels of the underlying hierarchies, it is reasonable to introduce a (generalization)

relationship between ETs. Given an ET f , the set f ↑ consists of all ETs obtained

from f by replacing one component, i.e., context, time, or location, by its direct

generalizations based on the underlying hierarchies. The set f⇑ then simply is the

closure of f .

Definition 3.27 (ET Generalizations) Given an ET f = 〈C, T, L〉 specified

based on a given context framework CF , a temporal framework T F , and a spatial

framework SF , the generalizations of f , denoted f ↑ and f⇑, are defined as:

• f ↑ := {〈C ′, T, L〉 | C ′ ∈ C↑} ∪ {〈C, T ′, L〉 | T ′ ∈ T ↑} ∪ {〈C, T, L′〉 | L′ ∈ L↑}.

• f⇑ := {〈C∗, T ∗, L∗〉 | C∗ ∈ C⇑ ∪ {C}, T ∗ ∈ T ⇑ ∪ {T}, L∗ ∈ L⇑ ∪ {L}} \
{〈C, T, L〉}.

To illustrate how to obtain event templates from an event, we use an example

shown in Figure 3.10, where the first ET (i.e., f = 〈C, T, L〉) is obtained by com-

bining the components C, T , and L of a given event e = 〈id, C, T, L〉. Next, the

45

〈C, T , L〉

〈C∗, T , L〉 〈C, T ∗, L〉 〈C, T , L∗〉

〈C∗∗, T , L〉 〈C∗, T ∗, L〉 〈C∗, T , L∗〉 〈C, T ∗∗, L〉 〈C, T ∗, L∗〉 〈C, T , L∗∗〉

〈C∗∗, T ∗, c3〉 〈C∗∗, T , L∗〉 〈C∗, T ∗∗, L〉 〈C∗, T , L∗∗〉 〈C∗, T ∗, L∗〉 〈C, T ∗∗, L∗〉 〈C, T ∗, L∗∗〉

〈C∗∗, T ∗∗, L〉〈C∗∗, T ∗, L∗〉〈C∗∗, T , L∗∗〉〈C∗, T ∗∗, L∗〉〈C∗, T ∗, L∗∗〉〈C, T ∗∗, L∗∗〉

〈C∗∗, T ∗∗, L∗〉 〈C∗∗, T ∗, L∗∗〉 〈C∗, T ∗∗, L∗∗〉

〈C∗∗, T ∗∗, L∗∗〉

C

C∗

C∗∗

T

T ∗

T ∗∗

Generalizations for
C, T, and L

L

L∗

L∗∗

Figure 3.10: Example of an ET lattice generated from an event 〈id, C, T, L〉.
Generalizations of C, T, and L are obtained based on the sub-figures on the right.

generalization ↑ is applied on the ET f to generate the next generations of ETs. This

process repeats until the topmost generalizations of C, T and L (i.e., C∗∗, T ∗∗ and

L∗∗) are considered. We finally obtain a lattice of ETs consisting of all generalizations

of the first ETs. Note that the event e is an instance of any ET in the lattice.

After introducing the notions of events and event templates as basis for our pattern

mining approaches, we now focus on relationships among events that are determined

by context, time, and location components of events. Such relationships are important

to model instances of event patterns in the pattern mining approaches that we focus

on in this thesis.

3.5 Event Relationships

As mentioned before, events are modeled with three core components (Context, Time,

and Location). Given two events, considering relationships between their locations

allows one to determine spatial relationships between the two events (e.g., the prox-

imity of locations using the Euclidean distance) on the basis of the corresponding

spatial extents. Similarly, their contexts and their time instances help to determine

conceptual and temporal relationships between events. Suitably combining the three

kinds of relationships allows one to determine how related two events are for a specific

46

application. Moreover, based on such relationships, different kinds of constraints can

be specified for the mining approaches to obtain interesting results with respect to

some user requirements. We describe spatial, temporal, and conceptual relationships

between events in the following.

3.5.1 Spatial Relationships

The spatial framework described in Section 3.3.1 supports mapping a location to a

spatial extent. For a particular application, spatial extents can be one of basic spa-

tial data types such as points, lines, or regions [40]. For example, the location Berlin

(Germany) can be considered a point in the Euclidean plane or a region with a bound-

ary. Specifying relationships between spatial extents is fundamental to determine how

spatially related the corresponding events are.

Representing spatial objects and formulating spatial relationships among them

are well studied in existing work [32, 40, 119]. In such approaches, spatial predicates

describing relationships among spatial objects such as INSIDE, ADJEACENT, or

INTERSECTS are formally defined. Utilizing these predicates allows one to flexibly

deal with various kinds of relationships among locations of events. Since this chapter

aims at building a general framework for an event model, we use an abstract relation

Rs to represent a spatial relationship for event locations. Such a relationship can be

one of the following basic classes [40]:

• Distance-based relationships: for example, if the Euclidean distance of two

point-based locations is no less than a given threshold (e.g., 1 km), then the

locations has a Rs-relationship.

• Topological relationships: the relation Rs is specified by some predicates such

as INSIDE, OVERLAP, or DISJOINT, and these predicates are given on the

basis of a specific application domain.

• Directional relationships: similar to topological relationships, the relation Rs is

specified by some given predicates such as ABOVE, BELOW, or SOUTH OF.

Based on the notation of a relation Rs for locations, we give a formal definition

of spatial relationships between two events.

Definition 3.28 (Spatial Relationship) Given two events 〈e1, C1, T1, L1〉 and

〈e2, C2, T2, L2〉, the events e1 and e2 have a spatial relationship, denoted

(e1, e2) ∈ Rs, iff the locations L1 and L2 have an Rs-relationship.

47

Using Definition 3.28, one can determine spatial relationships among events by

employing a given relation Rs for spatial extents. These relationships are crucial to

define instances of patterns later on.

3.5.2 Temporal Relationships

Section 3.3.2 describes two temporal frameworks to formulate event time, one for

time points and the other for time intervals. Thus, we here introduce temporal

relationships among events by employing the relationships between either two time

points or two time intervals, described as follows.

In a time point framework, a time point is specified as a pair of a temporal

granularity (e.g., Month) and a time instance (e.g., June 2013). We formulate a

relation ≤t for time points by using relationships between chronons that are described

in Section 3.3.2.

Definition 3.29 (Time Point Orders) Given two time points P1 = 〈G, I1〉 and

P2 = 〈G, I2〉 of the same granularity G, we say that P1 ≤t P2 iff ∀c1 ∈ I1, c2 ∈ I2 :

c1 ≤t c2.

Given two time points Q1 = 〈G1, I1〉 and Q2 = 〈G2, I2〉 of two different granulari-

ties, assume G1
 G2, we say that Q1 ≤t Q2 iff Q′1 ≤t Q2, where Q′1 = 〈G2, I
′
1〉 is the

mapping of Q1 to the granularity G2.

The relation ≤t can be applied for both cases, i.e., two time points of the same

granularity and two time points of different granularities, for example,

〈Month, ‘June 2013’〉 <t 〈Month, ‘July 2013’〉,

〈Month, ‘June 2013’〉 <t 〈Y ear, ‘2014’〉, and

〈Month, ‘June 2013’〉 =t 〈Y ear, ‘2013’〉.

Using the relation ≤t for time points, we extend the basic predicates for time

points and time intervals [4] to support multiple granularities, as given in Table 3.1.

These predicates are utilized further to define a temporal relationship Rt for events

later on.

Similar to distance-based relationships for locations, a temporal relationship Rt

for events can be defined by employing a “distance” function between two time points.

Such a function will be used to specify the length of time windows in which two events

are to be related, for example, two events are temporally related if the duration

48

Predicate Meaning

For time points P1 and P2

EQUAL(P1, P2) P1 =t P2

BEFORE(P1, P2) P1 <t P2

AFTER(P2, P1)

For time intervals I1 and I2

EQUAL(I1, I2) start-time(I1) =t start-time(I2)
∧ end-time(I1) =t end-time(I2)

BEFORE(I1, I2) end-time(I1) <t start-time(I2)
AFTER(I2, I1)

MEET(I1, I2) end-time(I1) =t start-time(I2)
MET BY(I2, I1)

OVERLAPS(I1, I2) start-time(I1) <t start-time(I2)
OVERLAPPED BY(I2, I1) ∧ start-time(I2) <t end-time(I1)

∧ end-time(I1) <t end-time(I2)

STARTS(I1, I2) start-time(I1) =t start-time(I2)
STARTED BY(I2, I1) ∧ end-time(I1) <t end-time(I2)

DURING(I1, I2) start-time(I2) <t start-time(I1)
CONTAINS(I2, I1) ∧ end-time(I1) <t end-time(I2)

FINISHES(I1, I2) start-time(I2) <t start-time(I1)
FINISHED BY(I2, I1) ∧ end-time(I1) =t end-time(I2)

Table 3.1: Temporal predicates for time points and time intervals. The predicates for
time intervals are formulated on the basis of the Allen’s temporal relations [4].

between their occurrence time is not more than 3 days. To handle such conditions,

we define a distance function, called t-dist.

Definition 3.30 (Time Point Distances) Given two time points P1 = 〈G, I1〉 and

P2 = 〈G, I2〉 of the same granularity G (assume P1 ≤t P2), the distance between P1

and P2, denoted t-dist(P1, P2) or t-dist(P2, P1), is defined as

t-dist(P1, P2) = t-dist(P2, P1) := | {Q = 〈G, I〉 | P1 ≤t Q <t P2} |.
Given two time points Q1 = 〈G1, I1〉 and Q2 = 〈G2, I2〉 of two different granulari-

ties, assume G1
 G2, the distance between Q1 and Q2 is defined as

t-dist(Q1, Q2) = t-dist(Q2, Q1) := t-dist(Q′1, Q2),

where Q′1 = 〈G2, I
′
1〉 is the mapping of Q1 to the granularity G2.

If two given time points are of the same granularity, then the distance between

them is calculated by counting the time points between them of that granularity.

Because the set of time points of a granularity is finite, this value is either zero or

a positive, definite integer. For example, the distance between 〈Y ear, ‘2011’〉 and

〈Y ear, ‘2012’〉 is 1 (year).

49

If two given time points are of different granularities, the time point of the

finer granularity will be converted so that both time points have the same

granularity before calculating the distance. For example, the distance between

〈Month, ‘June 2011’〉 and 〈Y ear, ‘2012’〉 is 1 (year) because 〈Month, ‘June 2011’〉 is

mapped to 〈Y ear, ‘2011’〉, and t-dist(〈Y ear, ‘2011’〉, 〈Y ear, ‘2012’〉) = 1.

In summary, an Rt relation for event time can be defined in various ways such

as using temporal predicates or a distance function, depending on the particular

application domain. Based the Rt relation, we finally give a formal definition of

temporal relationships between two events.

Definition 3.31 (Temporal Relationship) Given two events 〈e1, C1, T1, L1〉 and

〈e2, C2, T2, L2〉, the events e1 and e2 have a temporal relationship, denoted

(e1, e2) ∈ Rt, iff the time components T1 and T2 have an Rt-relationship.

3.5.3 Conceptual Relationships

Similar to time and locations, contexts can be utilized to specify relationships among

events. The relationships derived from contexts are called conceptual relationships,

specified on the basis of relationships among concepts in a given hierarchy. In this

section, we first describe some measures of similarity and relatedness for concepts

and then define conceptual relationships for contexts of events.

Measuring the semantic similarity and relatedness of concepts is a generic problem

for many Natural Language Processing (NLP) tasks [88]. For example, the concept

‘heavy metal ’ is considered more similar to the concept ‘rock ’ than to the concept

‘jazz ’ when employing a music genre hierarchy. Generally, relatedness is more gen-

eral than similarity since two concepts can be related even they are not similar. For

example, the concept ‘heavy metal ’ is considered related to concepts such as ‘drum-

mer ’, ‘bassist ’, or ‘music performance’. A similarity or relatedness measure is a

measure that quantifies the degree of similarity or relatedness between two concepts

on the basis of the underlying concept hierarchy.

The importance of such measures to many NLP applications has led to many

proposals, such as, such as path based approaches [68, 121] or information content

based approaches [70, 56, 96]. Since we are focusing on how to specify conceptual

relationships among events for the purpose of pattern mining approaches, not aiming

at proposing a new measure for concepts, we utilize the state-of-the-art measures in

the existing work for concepts to formulate conceptual relationships for contexts. The

availability of open source software packages such as WordNet::Similarity [88] allows

50

one to consider a similarity/relatedness measure as an abstract function that outputs

a real value for two given concepts. Such a function can be implemented using any

state-of-the-art measure based on a particular application. Based on that, we assume

a function, called sim(c1, c2) ∈ [0, 1], to compute the similarity/relatedness between

two concept c1 and c2. Using this function for concepts, we define a similarity measure

for event contexts.

Definition 3.32 (Context Similarity) Given two event contexts C = 〈c1, c2, ..., cn〉
and C ′ = 〈c′1, c′2, ..., c′n〉 in the same context framework CF , the similarity between

C and C ′ is defined as

c-sim =

n∑
i=1

αisim(ci, c
′
i)

n
∈ [0, 1], (3.1)

where α1, α2, ..., αn ∈ [0, 1] are weighting factors such that
n∑
i=1

αi = 1.

The context similarity between two event contexts is computed by using the sim

function for concepts, with some weighting factors that are defined for a particular

application scenario. For example, assume that contexts are of the form 〈Subject,

Predicate, Object〉, and if we focus only on the Subject component, the weighting

factors are set to α1 = 1, α2 = 0, and α3 = 0.

Using the c-sim function for contexts, we formally define conceptual relationships

for events.

Definition 3.33 (Conceptual Relationship) Given two events 〈e1, C1, T1, L1〉
and 〈e2, C2, T2, L2〉, and a threshold θ ∈ [0, 1], the events e1 and e2 have a concep-

tual relationship, denoted (e1, e2) ∈ Rc, iff c-sim(C1, C2) ≥ θ.

In summary, to specify conceptual relationships among event contexts, a similar-

ity/relatedness measure for concepts is employed. The flexibility of our framework is

that one can select such a measure from various existing approaches that is suitable

for a specific application scenario.

3.6 Event and ET Constraints

In this section, we introduce constraints that can be specified by the user in order to

guide the search for interesting patterns. These constraints are formulated for either

events or event templates.

51

3.6.1 Spatial, Temporal, and Conceptual Constraints

In practice, users might be interested in patterns that are valid in a specific time

interval and/or in a specific geographic region and simply refer to a specific concept.

These requirements can be specified as the following constraints on events.

• Temporal Constraint: A temporal constraint specifies a time interval of in-

terest with a start-time and an end-time, where only events occurring in this

interval are considered to mine patterns. To specify this constraint, the user

can select either a pair of a start-time and an end-time (e.g., from 2011-01-01 to

2012-12-31) or a start time and a duration (e.g., from 2011-01-01 for 2 years).

• Spatial Constraint: The user might be interested in events occurring in a

specific geographic region. Such a region of interest can be specified by using a

rectangle (e.g., the user draws a bounding box on a map), or simply by giving

names of instances (e.g., ‘Germany’ or ‘Munich’).

• Conceptual Constraint: From the concept hierarchies for event contexts,

the user might select some concepts that she is interested in. Then only events

related to these concepts, i.e., events having paths to one of the concepts, are

considered when mining for respective patterns.

Generally, the user can specify multiple constraints of the above types and combine

them using logical connectives. Only events satisfying such conditions are considered

further to mine patterns.

3.6.2 Constraints on Event Templates

As discussed before, event templates (ETs), generalized from events by using hier-

archies, play an important role in constituting patterns. Based on the constraints

described in the previous section, events of interest can be selected to generalize ETs.

However, the user might also want to specify how far an event can be generalized.

For example, in some case patterns related to concepts that are too general might

not be of interest to the user. For this, we describe the following constraints on ETs

based on time, location, and context components.

Typically, time and location hierarchies are given in a schema-based representa-

tion, such as Day→Month→Year or City→State→Country. Thus, specifying how

far time and locations can be generalized is simply specifying level names, e.g., only

generalize time components to Month, and location components to State.

52

〈c01, c02〉

〈c11, c02〉 〈c01, c12〉

〈c21, c02〉
〈c11, c12〉

〈c01, c22〉

〈c21, c12〉 〈c11, c22〉

〈c21, c22〉

c01

c11

c21

c02

c12

c22

Concept Hierarchies

Level 4

Level 3

Level 2

Level 1

Level 0

Figure 3.11: Example of contexts generalized from a context 〈c0
1, c

0
2〉 at different levels.

A superscript indicates the level of the corresponding concept.

Recall that an event context is a tuple of concepts, where each component can

be generalized based on a respective concept hierarchy. Different from hierarchies for

time and locations, a hierarchy for concepts is given as a DAG, where a node is a

concept, and an edge represents an ‘is-a’ relationship between two concepts. There

is no ‘level name’ like in schema-based hierarchies for time and locations. However,

based on Definition 3.4, one can compute a number (e.g., 0, 1, 2, etc.) to indicate the

level of a given concept. Rather than individually specifying how far each component

in an event context can be generalized, we first define levels for event contexts, and

then specify a maximum level for them.

Generally speaking, the level of a given context is the minimum number of steps to

obtain that context from a tuple of respective entities. Here, replacing one component

of the tuple by its direct ancestor is considered a step. Recall that the level of an

entity is zero (the lowest level), and the level of a category is recursively computed

from the levels of its descendants, as described in Definition 3.4. As an example,

Figure 3.11 shows a context lattice generated from a context in the form of a pair

〈c0
1, c

0
2〉, where c0

1 and c0
2 are entities that can be generalized as c0

1 ` c1
1 ` c2

1 and

c0
2 ` c1

2 ` c2
2, respectively. Note that in this example, a superscript indicates the level

of the corresponding concept. One can see that the level of a context is the sum of

the levels of the components of that context. For example, the levels of the contexts

〈c1
1, c

0
2〉, 〈c1

1, c
1
2〉, and 〈c2

1, c
1
2〉 are 1, 2, and 3, respectively. We formally define context

levels as follows.

53

Definition 3.34 (Context Level) Given a context C = 〈c1, c2, ..., cn〉, the level of

C is defined as

level(C) :=
n∑
i=1

level(ci), (3.2)

where level(ci) is the level of the i-th concept of the context C (i ∈ {1, 2, ..., n}).

Using a threshold gmax ≥ 0, one can now specify to what extent event contexts

can be generalized. For example, one can set gmax = 2 to specify that only event

contexts generalized with no more than two steps are considered to form patterns.

3.7 Discussion

This chapter describes a comprehensive framework for an event model that is funda-

mental for the pattern mining approaches presented in the following chapters. De-

scribing an event with three separate components, i.e., context, time, and location,

allows one to flexibly define how events are related in terms of conceptual, temporal,

and spatial relationships. Moreover, the three components of events can be individ-

ually generalized to higher levels of abstraction to derive event templates describing

topics of events. The notations of events and event templates as well as different rela-

tionships among them will be utilized to define pattern languages and interestingness

measures for the pattern mining approaches presented in the next chapters. To guide

the search for interesting patterns, we also allow the user to specify constraints on

events and event templates.

Aiming at building a general, flexible framework, all the concepts, notations and

relationships here are very generally defined. However, they can easily be specialized

for a particular pattern mining approach, as shown in the following chapters.

54

Chapter 4

Mining Interval-based Event

Sequence Patterns

Sequential pattern mining is a problem frequently addressed by the data mining

community, where a pattern is in the form of a sequence representing insights or

knowledge gained from temporal or spatio-temporal data. Finding such patterns plays

an important role for applications such as user behavior analysis, business intelligence,

or event prediction. For example, patterns discovered from data of events, such as

concerts, festivals, or sports, are often exploited to provide location based services, to

suggest products and services to customers, or to predict the behavior of customers.

Traditional spatio-temporal data for mining sequential patterns are typically ob-

tained through observations and simulations where positions of objects, such as areas,

vehicles, or persons, are collected over time. In the past couple of years, however,

massive amounts of event data have been increasingly created and shared by users

on social media channels. Compared to traditional data, as discussed in Chapter 1,

exploiting event data for interesting, useful patterns poses additional challenges for

several reasons, for example, the presence of hierarchies associated with event compo-

nents, and the existence of not only spatio-temporal relationships but also conceptual

relationships between events.

In this chapter, we utilize the event model described in Chapter 3 to build a

framework in support of the discovery of interesting patterns from datasets of events.

Different from traditional approaches to mining spatio-temporal data, we focus on

mining sequential patterns at different levels of granularity and abstraction by ex-

ploiting conceptual, temporal, and spatial hierarchies, which naturally exist as useful

background knowledge for event data. We introduce a pattern specification language

and propose an algorithmic approach to efficiently extract complex patterns. We

55

demonstrate the feasibility and utility of our framework using two different real-world

datasets from YAGO2 and the Website eventful.com.

Some initial ideas and results presented in the following appeared in a paper

by Le and Gertz [65]. Here we extend these ideas by giving: (1) more elaborate

explanations for the notations and definitions, (2) more comprehensive experiments,

and (3) discussions in more detail about the runtime and experimental results.

4.1 Introduction

Traditional approaches to the discovery of interesting patterns from spatial and spatio-

temporal datasets primarily focus on datasets that have been obtained through ob-

servation of objects or simulations, e.g., [43, 73, 81]. With the rise of the Semantic

Web and the Linked Open Data (LOD) cloud [46, 10], new data sources come into

play. These data sources come in the form of knowledge bases typically consisting of

billions of facts. Mining such a large-scale datasets itself presents a challenge (see,

e.g., [57]). Additionally, some knowledge bases have recently extended descriptions

of facts by spatial and temporal components, such as YAGO2 [48]. Such extensions

to facts describe when and where a fact was or will be valid, often resembling the

description of an event. Finding interesting spatio-temporal patterns in such event

data presents a challenge for several reasons. Some of them originate from mining

traditional spatio-temporal datasets, such as the absence of transactions for mining

co-locations or establishing suitable (statistical) measures to characterize interesting,

useful patterns.

A new challenge, however, is that knowledge bases as mentioned above provide

concept hierarchies or category systems, e.g., Wikipedia categories. Similar to the role

of object features in, e.g., co-location pattern mining, categories embedded in hierar-

chies can now be used to specify patterns that include concepts from such hierarchies,

thus, allowing to derive patterns at different levels of granularity and abstraction.

For the purpose of mining spatio-temporal patterns from knowledge base data, this

chapter specializes the concepts and notations for events and event templates that

are generally defined in Chapter 3. Event templates, basically derived from events

by using concept, time, and location hierarchies, play an important role for forming

complex patterns that are the focus of this work. We present an approach for mining

interesting patterns from knowledge base data about events, where the durations of

events play an important role in formulating interval-based patterns, for example, in

formulating a pattern “a music concert is performed after a cultural event and both of

56

them occur during a festival”. For this, we define a class of patterns, called interval-

based event sequence patterns, where each pattern represents both spatio-temporal

proximity and conceptual relatedness of events.

In summary, the contributions of this chapter are as follows:

• We propose a novel approach to the discovery of patterns representing spatio-

temporal proximity and conceptual relatedness of events. For this, we specialize

the concepts and notations of events and event templates generally defined in

Chapter 3.

• We introduce a pattern specification language to describe interval-based rela-

tionships among events.

• We propose a suitable interestingness measure for candidate patterns that allows

an efficient pruning during the process of generating candidate patterns from

events.

• We demonstrate the feasibility and utility of our approach using subsets of the

YAGO2 knowledge base and event data from the Website eventful.com.

In the next section, we review related work. In Section 4.3, we detail the notations

of events and event templates by employing the concepts and notations introduced

in Chapter 3. In Section 4.5, we present our pattern specification language, followed

by algorithms to mine such patterns in Section 4.6. After presenting experimental

results in Section 4.7, we summarize this chapter in Section 4.8.

4.2 Related Work

Our work is closely related to approaches in co-location pattern mining, sequential

pattern mining, and multilevel sequential pattern mining. Chapter 2 already provided

a comprehensive survey of existing approaches related to these topics. Here we briefly

describe and relate these approaches to our work that is presented in this chapter.

Spatial co-location patterns are subsets of object features where objects exhibiting

these features are frequently located nearby in geographic space, see, e.g., [122, 130]

for some recent approaches. One of the challenges to apply traditional frequent item-

set mining techniques to spatial datasets is that one has to define interestingness

measures without having transactions like in transactional datasets. To tackle this

problem, Huang et al. [51] proposed a statistical measure, called participation index,

57

to identify prevalent co-location patterns. This measure works well if features have

similar frequencies but it fails in datasets where some features are rare [52]. Further-

more, this measure does not consider concept hierarchies according to which object

features are organized. In this chapter, we extend this measure to support event

datasets where concept hierarchies play an important role.

Whereas spatial co-location patterns are subsets of object features, sequential

patterns are sequences where the order of object features in each sequence is impor-

tant. Several approaches have been proposed to mine sequential patterns, such as

SPADE [131], SPAM [8], or PrefixSpan [89]. Since all these approaches assume that

datasets consist of sequences of objects, they cannot be applied to spatio-temporal

datasets in which object sequences are not given and simply do not make sense.

For the purpose of mining patterns from spatio-temporal datasets, Huang et al. [53]

proposed a framework in which both spatial and temporal relationships among ob-

jects are considered. A limitation of this approach is that patterns are time point

based sequences. Thus, interval based relationships such as CONTAINS, OVER-

LAPS, or DURING cannot be handled. Moreover, the framework is not flexible

enough to extend patterns to interval based sequences consisting of multiple tem-

poral relationships. To handle interval based relationships, Wu and Chen [120] use

sequences of endpoints to represent relationships among time intervals. With some

modifications to their approach to support different temporal granularities, we define

temporal arrangements to describe temporal relationships among time intervals, as a

part of our pattern language.

The problem of mining multilevel sequential patterns from multidimensional

databases, introduced by Plantevit et al. [92], is also related to our work. Dif-

ferent from other approaches in which patterns are sequences of atomic objects,

their approach can cover sequential patterns in which each object is a tuple of

attributes. Although their approach can handle concept hierarchies, their patterns

are only able to represent time point based relationships. Moreover, they do not

consider spatial relationships and, therefore, their approach cannot be applied for

spatio-temporal data.

Similar to our work in terms of mining patterns from knowledge base datasets,

previous work such as an approach by Jiang and Tan [57] adopts traditional algo-

rithms to mine association rules from RDF data by assuming that RDF documents

are transactions containing facts. In the context of spatio-temporal data, defining

transactions is not natural due to the continuity of space and time [53]. Furthermore,

58

some problems arise such as overlapping transactions or loosing spatio-temporal re-

lationships among objects across transactions.

Before presenting our approach, we introduce some basic concepts and notations

in the following section.

4.3 Basic Concepts and Notations

In Chapter 3, we presented a comprehensive framework to model events, where nota-

tions such as events, event templates, and event relationships are in general described.

As an instance of the framework, this section specializes these notations for the pur-

pose of mining spatio-temporal patterns from a dataset of interval-based events.

In the following, we formulate interval-based events by employing the event model.

We then introduce the notation of event cliques that is fundamental to compute

instances of patterns later on.

4.3.1 Interval-based Events

An event occurrence might be described with a start time and an end time to represent

its duration. For example, the Second World War is generally considered to have

lasted from 1 September 1939 to 2 September 1945. A football match is typically

scheduled at a certain time with a duration of about 2 hours. A concert tour of

a rock band might last for few months, announced with a specific start date and

end date.

An event described with a start time and an end time, called an interval-based

event, will be the focus of this chapter. Let CF , SF , and T F be a context framework,

a spatial framework, and a time interval framework (Definitions 3.5, 3.9, and 3.18),

respectively. An interval-based event is specified as a tuple 〈e id, C, T, L〉, where the

components of the tuple are detailed as follows.

• e id is an identifier to distinguish an event from another in a given dataset.

• C is a context described as an n-tuple of concepts based on the context frame-

work CF .

• T is a time interval in the time interval framework T F , described as a triple

〈GT , Is, Ie〉, where GT is a temporal granularity (e.g., Year), Is and Ie are two

time instances in GT such that Is ≤t Ie (e.g., 1939 and 1945). Two time points

59

that are the start-time and end-time of T are denoted as start-time(T) = 〈GT ,

Is〉 and end-time(T) = 〈GT , Ie〉, respectively.

• L is a location in the spatial framework LF , described as a pair 〈GS, g〉, where

GS is a spatial granularity, and g is a spatial entity. In this chapter, we focus

on distance-based relationships for locations, that is, two events are considered

spatially related if they are nearby in space. For this, we assume that the spatial

proximity of two events can be determine by some distance function, e.g., the

Euclidean distance.

The context, time, and location components of an event can be generalized by

using the operators computing direct (↑) and all (⇑) generalizations. Such a general-

ization of an event is called an event template (ET). Obviously, multiple ETs can be

derived from a single event. Generally speaking, an ET is considered an “event type”

or an event topic representing a group of events having some common ancestor.

In our approach, the notion of ETs is the basis for formulating event patterns,

where each pattern is a combination of several ETs. This will be described in detail

in Section 4.5. Since the number of such combinations is often large, one needs an

interestingness measure to filter out uninteresting ones. Such a measure is typically

defined based on a concept of pattern instances, where each instance is simply a

combination of events satisfying some temporal, spatial, and conceptual constraints.

Consequently, in the following section, we focus on temporal, spatial, and concep-

tual constraints for events, and then introduce a notation of event cliques to formulate

instances of patterns.

4.3.2 Event Cliques

The objective of our proposed approach is to derive combinations of event templates

from events (as instances of these templates) such that the events satisfy some “inter-

esting” temporal, spatial, and conceptual properties. Basically, such properties are

formulated in terms of conditions on the temporal, spatial, and conceptual relation-

ships of events. In the following, we detail the idea by introducing these relationships

between events.

When examining temporal relationships among events, users might want to specify

the length of time windows in which two events are to be (temporally) related, similar

to concepts employed in mining sequences [22, 79, 104]. To handle such conditions,

we define an interval distance function between two events, as an extension of the

time point distance function described in Definition 3.30 (Section 3.5.2). Basically,

60

a distance between two time intervals is defined as the duration between two time

points; one is either the start-time or end-time of a time interval, and the other is also

either the start-time or end-time of the other time interval. In particular, choosing the

start-time or end-time for each interval to compute the time point distance depends

on the interval relationship between the time intervals. Such an interval relationship

is specified using one of Allen’s predicates, given in Table 3.1 (Section 3.5.2). We now

give a formal definition of the interval distance between events.

Definition 4.1 (Interval Distance) Let e1 = 〈id1, C1, T1, L1〉 and e2 = 〈id2,

C2, T2, L2〉 be two events specified using the same conceptual, temporal, and spatial

frameworks. The interval distance between e1 and e2, denoted i-dist(e1,e2), is

determined as follows:

• if the relationship between T1 and T2 is BEFORE, then i-dist(e1,e2) = start-

time(T2) − end-time(T1).

• if the relationship between T1 and T2 is AFTER, then i-dist(e1,e2) = start-

time(T1) − end-time(T2).

• if the relationship between T1 and T2 is any other case (such as OVERLAPS or

DURING), then i-dist(e1,e2) = 0.

Note that the ‘−’ operator between two time points in the above definition is

specified using the t-dist function defined in Definition 3.30 (Section 3.5.2).

Given the length tw of time-windows as a threshold, two events e1 and e2 are said

to be related in time, denoted (e1, e2) ∈ Rt, if and only if i-dist(e1,e2) ≤ tw. We call

Rt a temporal relationship.

Although two events might be in temporal proximity, the events might be geo-

graphically far apart. In order to allow for constraints on the spatial proximity of

events, a threshold for the minimum spatial neighborhood between events involved

in building a potential pattern needs to be specified. Recall that distance-based re-

lationships for locations of events are assumed. Thus, in our approach, a spatial

relationship Rs between two events e1 and e2, denoted (e1, e2) ∈ Rs, is formulated by

a distance function for the locations and a predefined threshold. That is, two events

e1 and e2 are said to be related in space, denoted (e1, e2) ∈ Rs, if and only if the

distance between the two event locations is no less than the threshold value.

Similarly, one can define how two events are conceptually related by employing

the context similarity function (c-sim), described in Section 3.5.3. Given a threshold

61

a

b

c

d

e f

R
c

R
s

R
t

R
c

R
s

R
t

R
c

R
s

R
t

R
c

R
s

R
t

R
c

R
s

R
t

Figure 4.1: Example of maximal event cliques. A node represents an event. An edge
between two nodes represents spatial, temporal, and conceptual relationships between
the corresponding events satisfying thresholds. Maximal event cliques are enclosed
by dashed lines.

for context similarity, two events e1 and e2 are said to be conceptually (or topically)

related, denoted (e1, e2) ∈ Rc, if and only if the context similarity of the two event

contexts is no less than the threshold value.

To complete the basis for our pattern definition and mining, we finally combine

the above conditions on the temporal proximity, spatial proximity, and conceptual

similarity of events forming an instance of a pattern by introducing the notion of an

event clique.

Definition 4.2 (Event Clique) Let DE be an event dataset. Let Rt, Rs, and Rc be

a temporal, spatial, and conceptual relationship, respectively.

A set of events E ⊂ DE, forms an event clique, or a clique for short, iff

∀e1, e2 ∈ E, e1 6= e2, the relations (e1, e2) ∈ Rs, (e1, e2) ∈ Rt, and (e1, e2) ∈ Rc hold.

Obviously, if a set of events E is an event clique then all subsets of E are also

event cliques. Consequently, enumerating all possible cliques from an event dataset

often produces redundancies. Thus, a compact set of cliques with no redundancy is

more efficient to present the cliques computed from an event dataset. For this, we

define the notation of a maximal event clique.

Definition 4.3 (Maximal Event Clique) Given an event dataset DE, an event

clique E is called a maximal event clique, or a maximal clique for short, iff

their is no event clique E ′ ⊂ DE such that E ⊂ E ′.

Figure 4.1 depicts a graph-based representation for a dataset consisting of six

events, where a node represent an event, and an edge shows that the two correspond-

ing events have all spatial, temporal, and conceptual relationships (Rs, Rt, Rc). One

62

can see that the concepts of event cliques and maximal event cliques are similar to the

concepts of cliques and maximal cliques in graph theory [12]. Thus, state-of-the-art

algorithms for finding maximal cliques in graph, such as the Bron-Kerbosch [14], can

be used here.

After introducing the basic concepts and notations that are fundamental to de-

scribe event patterns and instances later on, we now focus on how to formulate tempo-

ral relationships for a set of interval-based events. For this, we introduce the notation

of temporal arrangements.

4.4 Temporal Arrangements

In his seminal paper, Allen [4] identifies thirteen possible temporal relations between

two time intervals, such as BEFORE, OVERLAPS, or MEETS, which are widely

used in temporal reasoning. Recall that in Section 3.5.2, we already extended these

relations to support multiple granularities. Basically, in our approach, mapping to

the coarser granularity is used to determine the temporal relationship between two

time intervals of different granularities. Accordingly, all thirteen temporal relations

of Allen can be extended, as shown in Table 3.1.

However, from a semantic point of view, some of them such as MEETS, EQUAL,

STARTS, or FINISHES do not make sense in some cases. For example, one cannot

say that the two intervals 〈Year, 2011, 2012〉 and 〈Month, December 2011, January

2012〉 are equal, even though they are identical when the second interval is mapped

to the coarser granularity Year. Thus, we consider only six types of Allen relations:

BEFORE, AFTER, OVERLAPS, OVERLAPPED BY, DURING, and CONTAINS.

The other relations are considered specific cases of these relations. For example,

MEETS is considered a specific case of BEFORE, and FINISHES is considered a

specific case of DURING, as depicted in Figure 4.2.

Using Allen’s relations, the temporal relationship between two events can be de-

termined. However, it is more complicated to express temporal relationships for a

set of more than two events because the Allen relations are binary. A naive method

using nested combinations of binary relations can be used to express complex rela-

tionships among multiple events [59]. For example, complex relationships such as

“event a is during event b, and both of them are before event c” is represented in

an expression ((a DURING b) BEFORE c). However, such an expression might be

ambiguous. For example, Figure 4.3 shows two different cases for the same expression

((a BEFORE b) OVERLAPS c).

63

a

b
time

a

b
time

(a) MEETS vs BEFORE

a

b
time

a

b
time

(b) FINISHES vs DURING

Figure 4.2: MEETS is considered a specific case of BEFORE. FINISHES is considered
a specific case of DURING.

Figure 4.3: Two different temporal relationships can be represented by the same
expression ((a BEFORE b) OVERLAPS c).

Although there are various approaches proposed to deal with the ambiguity prob-

lem above, such as a matrix of relations [50] or an augmented representation [87],

most of them require specialized data structures and algorithms for finding patterns,

and as a result, the discovered patterns are also difficult to interpret for the user [82].

Aiming at a simple but unambiguous representation for temporal relationships

among a set of events, we introduce the concepts of start-points and end-points,

similar to the work of Wu and Chen [120]. However, based on our framework, we

constrain our representation to the description of the six relations mentioned above.

Definition 4.4 (Event Start-point and End-point) An event-point of an event

e is either a start-point, denoted e+, or an end-point, denoted e−. The timestamps

of e+ and e−, denoted time(e+) and time(e−), are the start-time and the end-time

of the time interval of e.

Given an event-point p (either a start-point or an end-point), the event of p is

denoted by event(p). The sign of p (‘+’ if p is a start-point, ‘−’ otherwise) is denoted

by sign(p).

64

The temporal order of two event-points is basically specified by using the order

(≤t) of their timestamps. However, if their timestamps are equal, other criteria based

on the event components of the event-points need to be considered. This is crucial

to obtain a unique expression of relationships for a given set of events later on. For

this, we assume a syntactical order ≺e among specifications of events, similar to the

syntactical order ≺ for event templates introduced in Section 3.4.

Definition 4.5 (Event-point Order) An event-point p1 has a �-relation with a

event-point p2, denoted p1 � p2 (p1 followed by p2, or p2 follows p1), iff one of the

following conditions is satisfied:

1. time(p1) <t time(p2),

2. time(p1) =t time(p2) and p1 is an end-point and p2 is a start-point,

3. time(p1) =t time(p2) and p1 and p2 are both start-points (or both end-points)

and event(p1) ≺e event(p2).

Now, using time-point representations, we are able to define an event-point se-

quence describing temporal relationships among events.

Definition 4.6 (Event-point Sequence) Let E be a set of n events, and Ω be the

set of event-points defined as Ω = {e+ | e ∈ E} ∪ {e− | e ∈ E}.
The event-point sequence of E is an arrangement of the 2n elements in Ω,

denoted Seq(E) = p1 � p2 � ... � p2n, with pi ∈ Ω, ∀i ∈ {1, ..., 2n}, such that the

condition pi � pj holds for all 1 ≤ i < j ≤ 2n.

Lemma 4.1 Given a set of events E, the event-point sequence Seq(E) is unique.

Proof : We prove this lemma by contradiction. Suppose, there are two different

event-point sequences S1 = p1 � p2 � ... � p2.|E| and S2 = q1 � q2 � ... � q2.|E|. Let i

(1 ≤ i ≤ 2.|E|) be the smallest index such that pi 6= qi, that is, pj = qj(∀j, 1 ≤ j < i).

Without loss of generality, we assume that pi � qi. Then, pi � qj ∀j ≥ i, because

S2 is an event-point sequence. Thus, pi /∈ {qi, qi+1, ..., q2.|E|}. On the other hand,

pi /∈ {p1, p2, ..., pi−1} = {q1, q2, ..., qi−1}, because S1 is also an event-point sequence.

Therefore, pi /∈ {q1, q2, ..., qi−1}∪{qi, qi+1, ..., q2.|E|} = Ω. This contradicts that pi ∈ Ω

since pi is an event-point of an event in E. 2

65

Figure 4.4: Event-point representations for Allen’s interval relations. Assume that
two events a and b have a syntactical order a≺eb.

Lemma 4.1 shows that for a given set of events, there is only one expression

describing temporal relationships. Following this, the thirteen Allen relations can be

reduced to six organized in three pairs; for each pair, only one expression is given, as

shown in Figure 4.4.

Moreover, the uniqueness of event-point sequences prevents the ambiguity problem

mentioned before. For example, the two cases in Figure 4.3 are presented by two

different event-point sequences: (a) a+ � c+ � a− � b+ � b− � c−, and (b) a+ � a− �

b+ � c+ � b− � c−.

Note that for any event e, we always have e+ � e−.

Similar to the concept of event-points, we also define ET-points as ingredients to

formulate event patterns.

Definition 4.7 (ET Start-point and End-point) Given an event template f , the

start-point and end-point of the ET f are denoted as f+ and f−, respectively. Both

f+ and f− are called the ET-points of the ET f .

Given an ET-point p (either a start-point or an end-point), the event template

of p is denoted by ET(p). The sign of p (‘+’ if p is a start-point, ‘−’ otherwise) is

denoted by sign(p).

66

Employing the idea of event-point sequences for events, we introduce the concept

of temporal arrangements for event templates, which will be used in our pattern

definition later on.

Definition 4.8 (Temporal Arrangement) Let F be a tuple of n event templates,

and Ω be a set of ET-points, defined as Ω = {f+ | f ∈ F} ∪ {f− | f ∈ F}.
A temporal arrangement (TA) of the tuple F is a sequence S = p1 � p2 � ..�

p2n, where pi ∈ Ω, ∀i ∈ {1, .., 2n}.
A temporal arrangement S of a tuple of event templates F is called a valid tem-

poral arrangement iff for each event template f ∈ F , f+ occurs before f− in the

sequence S.

As an example, the sequence f+
2 � f+

1 � f−1 � f−2 is a valid temporal arrangement

for ETs f1 and f2, whereas the sequence f+
2 �f−1 �f+

1 �f−2 is not (because f−1 occurs

before f+
1).

Different from event-point sequences, there are many possible TAs that are valid

with respect to a set of event templates. For example, for a set of two ETs f1 and f2,

there are six valid TAs corresponding to six relations BEFORE, AFTER, DURING,

CONTAINS, OVERLAP, OVERLAPPED BY, e.g., f+
1 � f−1 � f+

2 � f−2 represents

[f1 BEFORE f2], or f+
1 � f+

2 � f−2 � f−1 represents [f1 CONTAINS f2].

From a syntactic point of view, Definition 4.8 allows one to define a valid tem-

poral arrangement describing (temporal) relationships among event templates. How-

ever, such a temporal arrangement might not be (statistically) significant. For ex-

ample, a TA describing [workshop-sessions AFTER a-data-mining-conference] might

be less significant than a TA describing [workshop-sessions BEFORE a-data-mining-

conference]. To determine how significant a temporal arrangement is, we introduce

the concept of instances for temporal arrangements.

Definition 4.9 (Temporal Arrangement Support) Let F = 〈f1, f2, ..., fn〉 be a

tuple of n ETs, and S = p1 � p2 � ...� p2n be a temporal arrangement of F . Assume

fi ≺ fj, i < j(∀i, j ∈ {1, 2, ..., n}).

A tuple of n events E = 〈e1, e2, ..., en〉, with the event-point sequence T = q1�q2�

...� q2n, supports S, or E is an instance of S, iff the following conditions hold

1. the event ei is an instance of the ET fi, ∀i ∈ {1, 2, ..., n},

2. event(pi) is an instance of ET(qi), ∀i ∈ {1, 2, ..., 2n}, and

3. sign(pi)= sign(qi), ∀i ∈ {1, 2, ..., 2n}.
67

time

f
1

f
2

f
1

f
3

e
1 e

4
e

3

e
2

Figure 4.5: Example of a temporal arrangement of four events.

Generally speaking, the first condition states that each event in E is an instance

of an ET in F , and the last two require that the sequences S and T describe the same

temporal relationships.

To get a better understanding of the above concepts, consider Figure 4.5, which

illustrates the relationships of time intervals for four events e1, e2, e3, and e4. Assume

the events e1, e4 are instances of an ET f1, the event e2 is an instance of an ET f2,

and the event e3 is an instance of an ET f3. We then have:

• 〈e1, e2〉 supports S1 = f+
2 � f+

1 � f−1 � f−2 (f1 DURING f2), but

〈e4, e2〉 does not,

• 〈e1, e3〉 and 〈e4, e3〉 both support S2 = f+
1 � f−1 � f+

3 � f−3

(f1 BEFORE f3),

• 〈e1, e2, e3〉 supports S2 = f+
2 � f+

1 � f−1 � f−2 � f+
3 � f−3

((f1 DURING f2)BEFORE f3).

4.5 Pattern Definition

Employing the concepts and definitions introduced in the previous sections, we now

define so-called Interval-based Event Sequence Patterns (IESPs). Such patterns are to

be discovered from a given dataset of events. We also provide a measure to determine

the interestingness of patterns.

4.5.1 Interval-based Event Sequence Patterns

Interval-based Event Sequence Patterns, or IESPs for short, are patterns representing

spatio-temporal proximity and conceptual relatedness, as well as temporal arrange-

ments of events. Instances of a pattern are tuples of events supporting the pattern.

We give formal definitions of patterns and instances as follows.

68

Definition 4.10 (IESP) Given a tuple of event templates F (|F | ≥ 2) and a tem-

poral arrangement S of the set F , a pair 〈F, S〉 is called an interval-based event

sequence pattern, or IESP, for short.

Given an IESP P = 〈F, S〉, the size of the pattern P is the number of event

templates in F .

For example, a pattern [(f1 overlap f2) before f3], where f1, f2, and f3 are some

ETs, is represented as a size-3 pattern 〈〈f1,f2,f3〉, f+
1 � f+

2 � f−1 � f−2 � f+
3 � f−3 〉.

Definition 4.11 (IESP Instance) Given an IESP P = 〈F, S〉, with F =

〈f1, f2, ..., fn〉 (fi ≺ fj, ∀i < j, i, j ∈ {1, 2, ..., n}) and a temporal arrangement

S = p1 � p2 � ...� p2n. A tuple of n events E = 〈e1, e2, ..., en〉 is a row-instance of

P iff the following conditions hold

1. the events of E forms an event clique,

2. ei is an instance of fi,∀i ∈ {1, 2, ..., n}, and

3. E supports S.

This definition provides us with the basis for introducing an interestingness mea-

sure for an IESP, or, in other words, to determine which patterns are significant.

4.5.2 Interestingness Measure

A meaningful IESP is a pattern whose number of instances is statistically significant.

Huang et al. [51] propose the participation ratio and participation index measures to

determine whether or not a pattern (in their case co-location pattern) is statistically

significant. These measures are computed from the number of events of a given event-

type participating in the pattern and the total number of events having this type in

the dataset. These measures work well if event-types have significant numbers of

instances but they fail if some event-types are rare, as discussed in [52]. Furthermore,

these measures do not take concept hierarchies of entities (objects forming co-location

instances) into account. Since in most knowledge base datasets, concept hierarchies

play an important role, we cannot directly apply the above measures for our approach

and, therefore, have to do some adjustments.

Before giving formulas, we introduce the notion of a table-instance of an IESP

P = 〈F, S〉, denoted T (P). Such a table consists of all row-instances of the pattern

P , and each column corresponds to an ET f ∈ F . We use a notation T (P)[f] to

69

f1 f2 fn

e1 e2

e1 e3

e2 e3

Row Instances

Columns

T (P)[f1] = {e1, e2}
T (P)[f2] = {e2, e3}

...

...

...

...

...

...

...

Figure 4.6: Example of a table-instance of a pattern P = 〈{f1, f2, ..., fn}, S〉. Here,
e1, e2, e3 are events. The sets T (P)[f1] and T (P)[f2] consist of events participating
in columns corresponding to f1 and f2, respectively.

denote the set of instances participating in T (P) at the column corresponding to

the ET f . Figure 4.6 illustrates the concepts of table-instances, row-instances, and

columns. One can see that an event can participate more than once in different

row-instances, since an event may be a member of more than one event clique. A

participation ratio is now defined as follows.

Definition 4.12 (Participation Ratio) Given an IESP P , the participation ra-

tio of an event template f ∈ P is determined as

pr(P, f) :=
|T (P)[f]|

|{e : e
 g, ∀g ∈ f⇑}| ∈ [0, 1]. (4.1)

Generally speaking, the value of pr(P, f) is the ratio of the number of events

participating in a row-instance of the pattern P (in the column corresponding to the

ET f) to the total number of events related to the ET f in the input dataset. For

this, we enumerate all events that are instances of any generalization of the ET f . For

example, if f is an ET with a context related to ’heavy metal’, then all events related

to ’music’ are enumerated, assume that the concept ’music’ is at the top level of the

underlying hierarchy, and we do not care about the time and location components.

With the proposed formula, the more related events to an ET f participate in

the table instance of P , the larger pr(P, f) is. Based on participation ratios, the

prevalence of a pattern is then the minimum value of all participation ratios.

Definition 4.13 (Prevalence) The prevalence of an IESP P is determined as

prev(P) := min
∀f∈P
{pr(P, f)}. (4.2)

Given a threshold δ ∈ [0, 1], P is called prevalent if prev(P) ≥ δ.

70

Figure 4.7: Generalizations of a pattern P= 〈{ET1, ET2, ...}, S〉. The set P ↑ is marked
by the dashed line. Assume that the pattern P1 is the first prevalent pattern generated
from P , marked by the box. Patterns derived from the pattern P1 are marked within
the solid line.

4.5.3 Most Specialized Prevalent Patterns

The prevalence measure is obviously useful to prune infrequent patterns during can-

didate generation. However, if a pattern is prevalent with respect to this measure

and a given threshold, then a pattern derived from it by generalizing some compo-

nents (ETs) is also prevalent with respect to the same threshold. Thus, the latter

pattern is included in the resulting set, and it is then considered redundant. To ad-

dress this problem, we introduce the concept of redundant patterns by formulating

the generalization operators (↑ and ⇑) for patterns, as detailed below.

Given a pattern P , P ↑ is the set of patterns obtained from P by generalizing only

one ET in P , i.e., replacing ET by an element in ET↑. As an example, Figure 4.7

depicts a lattice of patterns generated from a pattern P , where the set P ↑ is marked

by the dashed line.

Analogously, the set P ⇑ consists of all patterns obtained from a pattern P by gen-

eralizing any ETs of P , i.e., replacing any ET by an element in ET⇑. In the example

in Figure 4.7, the set P ⇑ consists of all the patterns (excluding P) in the lattice.

We now specify (hierarchical) relationships between two patterns to determine

which one is redundant.

Given two patterns P and Q, the pattern P is said to be more generalized than Q

(or Q is more specialized than P) if and only if P ∈ Q⇑. If a result set contains both

P and Q, it has a redundant pattern. Since the generalized pattern P can be inferred

from the specialized one Q, P is a redundant pattern.

71

Definition 4.14 (Redundant Pattern) Given a set of patterns SP and a pattern

P ∈ SP, the pattern P is called redundant in SP iff there exists a pattern Q ∈ SP
such that P ∈ Q⇑.

The definition above allows one to remove redundancies and keep only the most

specialized ones in a pattern set. We use the term most specialized prevalent patterns

or MSPPs, for short, to refer to prevalent patterns that do not have any prevalent

specializations.

Definition 4.15 (Most Specialized Prevalent Patterns) A pattern P is a most

specialized prevalent pattern (MSPP) iff the following conditions hold

1. P is prevalent, and

2. there exists no prevalent pattern Q such that P ∈ Q⇑.

To avoid the computation of redundant patterns, we eventually include only

MSPPs in result pattern sets.

In Figure 4.7, we assume the pattern P1 marked by the box is the first prevalent

pattern generalized from the pattern P , i.e., P1 is a MSPP. Let P2 be a pattern

derived from the pattern P1, i.e., P2 is one of the patterns in the set marked by the

solid line. Obviously, every event tuple supporting P1 also supports P2, and since

P1 is prevalent, P2 is also prevalent. However, P2 is not a MSPP because P1 is a

prevalent pattern.

Exploiting the idea from the above example, if hierarchies for concepts, time, and

locations are considered from the lowest levels to the highest ones, one can efficiently

eliminate branches of a pattern lattice that cannot produce MSPPs. This will be

described in detail in the next section.

4.6 Mining Most Specialized Prevalent Patterns

Like for mining spatio-temporal patterns from “traditional” datasets, mining such

patterns from knowledge base datasets is computationally expensive. This is due to

not only the large number of events in the datasets but also because of the oftentimes

large concept hierarchies. Therefore, existing methods for generating candidate pat-

terns from the set of all possible ETs (i.e., by incrementally replacing contexts, time,

locations of events by their direct or indirect generalizations in respective hierarchies)

are very inefficient or even infeasible.

72

Figure 4.8: Overview of the proposed approach to mine MSPPs.

In our studies, we observed that the number of events in a dataset is much smaller

than the number of ETs that can be generated. Thus, in our approach, we start with

instances and then generate patterns from combinations of such instances. Since

an instance is required to be an element of at least one event clique, enumerating

instances can be done by finding maximal event cliques. Figure 4.8 gives an overview

of our approach consisting of two stages to mine MSPPs. The first stage is to find

maximal event cliques, and the second one is to generate and test candidate patterns.

These stages are detailed as follows.

The first stage is to find maximal event cliques. For this, an undirected graph is

built from the set of events where each event is a vertex and two events share an edge if

they have spatial, temporal, and conceptual relationships Rs, Rt, and Rc, respectively.

Any state-of-the-art algorithm for finding maximal cliques in graphs, such as the Bron-

Kerbosch algorithm [14] or its variants (e.g., [108]), can be employed here. We omit

respective details because this is not the focus of our work. For enumerating maximal

event cliques, we simply assume a function called Compute Maximal Clique from an

event dataset, as shown in Line 2 of Algorithm 4.1.

In the second stage, each maximal clique is examined to generate MSPPs in two

steps: (1) generating instances from the current clique, and (2) generating patterns for

each created instance, as shown in Figure 4.8 and also in Lines 3-20 of Algorithm 4.1.

73

Algorithm 4.1: MSPP-Miner
Input:
(a) D: an event dataset
(b) H: a set of hierarchies (for context, time, location)
(c) Rs, Rt, Rc: spatial, temporal, and conceptual relationships
(d) δ: a prevalence threshold
Output: a set of all MSPPs

1 result = {};
2 CliqueSet=Compute Maximal Cliques(D, Rs, Rt, Rc);
3 foreach Clique C in CliqueSet do
4 L1 = { 〈e〉 | ∀e ∈ C};// a set of size-1 instances;
5 k = 1;
6 while Lk 6= {} do
7 Lk+1 = {};
8 foreach Instance Ik ∈ Lk do
9 foreach Instance I ′k ∈ Lk do

10 Ik+1 = Ik ./ I
′
k; // join-operator combining two size-k instances ;

11 if Ik+1 6= null then
12 Patterns from Ik+1={};
13 Compute I↑k+1 from Ik+1 and H;

14 foreach Candidate Pattern P ∈ I↑k+1 do

15 L=Search In Lattice(P, δ, H);
16 Patterns from Ik+1 = Patterns from Ik+1 ∪ L;

17 Remove redundancies in Patterns from Ik+1;
18 if Patterns from Ik+1 6= {} then
19 Lk+1 = Lk+1 ∪ {Ik+1};
20 result = result ∪ Patterns from Ik+1;

21 k = k + 1;

22 return result;

Algorithm 4.2: Search In Lattice(P, δ, H)

/* return a set of all MSPPs having paths on the lattice from P */

1 result={}; Queue=[P];
2 while Queue is not empty do
3 P ′=Queue.dequeue();

4 Compute the set P ′↑ from P ′ and H;

5 foreach Pattern Q ∈ P ′↑ do
6 if Q is prevalent with respect to δ then
7 result = result ∪ {Q};
8 else
9 Queue.enqueue(Q);

10 return result;

74

For the step of generating instances, instead of inefficiently generating all subsets

of each clique, we employ an Apriori-like method that works as follows. We start

generating a set of size-1 instances L1 from the current clique C, that is, each event

in C becomes an instance in L1 (Line 4). For k ≥ 1, size-(k+1) instances are computed

by joining two size-k instances in Lk (Line 10). Similar to the join-step in any Apriori-

like algorithm [43], joining an instance Ik = 〈e1, e2, ..., ek〉 (ei ≺e ej, 1 ≤ i < j ≤ k)

with an instance I ′k = 〈e′1, e′2, ..., e′k〉 (e′i ≺e e′j, 1 ≤ i < j ≤ k), denoted Ik ./ I
′
k, works

as follows: if (ei = e′i, 1 ≤ i ≤ k − 1) and (ek ≺e e′k) then Ik ./ I
′
k = 〈e1, e2, ..., ek, e

′
k〉,

otherwise Ik ./ I
′
k = null. Here we use null to indicate no size-(k + 1) instance is

generated from Ik and I ′k, or the instances Ik and I ′k cannot be joined.

For each new instance Ik+1, the set of MSPPs that can be derived from Ik+1 is

computed by using Breadth-First-Search on the lattice of patterns (Line 13-16). Such

a lattice is generated using the hierarchies for the components involved in the instance

as shown in Algorithm 4.2. One can see that when in the lattice a node with respect

to a pattern Q is visited, the prevalence of Q is computed (using Equation 4.2). If Q

is prevalent then Q is a MSPP and, therefore, all generalizations of Q can be ignored.

Otherwise, the routine continues searching in Q↑.

Results of Algorithm 4.2 are used in Lines 15 and 16 of Algorithm 4.1 to compute a

set of all MSPPs from a size-(k+1) instance. All redundant patterns (Definition 4.14)

in this set are removed in Line 17. Next, all size-(k + 1) instances that can produce

MSPPs are included in Lk+1 for the next iteration (Line 19). Algorithm 4.1 stops if

no more new instances are created, i.e., Lk+1 = {}.
The runtime of our approach heavily depends on the size and the characteristics

of the input dataset. In particular, the more candidate patterns are generated (or the

more nodes in the pattern lattice are visited), the more CPU time is consumed. In the

worst-case, all nodes of the pattern lattice are visited, and these can be many. How-

ever, the number of candidate patterns generated in practice is often much smaller

than the size of the pattern lattice. Therefore, similar to other pattern mining ap-

proaches that employ the Apriori method, we only analyze the experimental runtime

of Algorithms 4.1 and 4.2 for real datasets, as shown in the next section.

4.7 Experimental Evaluation

We demonstrate the utility of our approach using two datasets. The first dataset is

extracted from YAGO2, and the second one is crawled from the Website eventful.com.

Our objective is to show how to apply the framework to mine interesting patterns

75

from different datasets. In the following, we describe the setup of our experiments,

and we present some interesting patterns extracted from each dataset. Our framework

was implemented in Java and run with 24GB heap size. All experiments were run

on an Intel Xeon 2.27GHz with 48GB RAM, running Ubuntu 64bit. We describe in

order the experiments for each dataset in the following sections.

4.7.1 YAGO2 Dataset

Dataset Description

YAGO2 [48] is known as a large knowledge base extracted from Wikipedia in which

each fact is described as a subject-predicate-object triple. To employ our event model,

such a triple is considered an event context.

In YAGO2, some facts are also anchored in space and time. Since we are inter-

ested in not only the context, but also in time and location components of events in

finding patterns, we consider only facts for which both spatial and temporal compo-

nents are specified. For example, in YAGO2, facts describing historical events use

the ‘happenedOnDate’ predicate. We selected such facts to demonstrate our frame-

work. We also extracted a concept hierarchy from the facts that use the ‘type’ and

‘subClassOf’ predicates. To prevent meaningless patterns, and also to reduce the

size of the concept hierarchy we excluded some categories that are too general, e.g.,

wordnet object 10002684 can be a physical object, a property, or a work of art.

Through that procedure, we finally obtained a dataset, called HOD-YG (hap-

penOnDate-facts from YAGO2), consisting of 1,869 facts (events) and a hierarchy of

27,462 concepts used for subjects in the events. Table 4.1 shows the number of con-

cepts at each level, where the level of a concept is specified by Definition 3.4. One can

see that Level 0 of the hierarchy contains entities corresponding to the subjects of the

facts. Levels 1 and 2 consist of categories originating from either Wikipedia or Word-

Net. Most of concepts are at Level 1, and they are typically Wikipedia categories.

Since the events have the same ‘happenedOnDate’ predicate and objects in the

events are dates (the same values as time components), we omit predicates and objects

in representing events and event templates. That is, the context of an event contains

only the subject of the corresponding fact.

Experimental Setup

The HOD-YG dataset consists of historical events such as wars and battles, where the

temporal granularity is typically ‘Year’. Thus, we consider two levels of abstraction

76

Table 4.1: Distribution of concepts at different levels in the concept hierarchy for the
dataset HOD-YG.

Level Number of Concepts
0 1,869
1 25,472
2 121

N
um

be
r o

f e
ve

nt
s

0
10

20
30

40
50

60

13
08

13
48

15
00

15
45

15
77

15
98

16
31

16
56

17
00

17
22

17
64

17
95

18
15

18
38

18
61

18
88

19
15

19
39

19
63

19
85

20
06

Figure 4.9: Spatial and temporal distributions of the HOD-YG dataset.

for generalizing time, i.e., Y ear and Alltime. Analogously, since most of the locations

refer to countries, we consider Country and Allloc for generalizing locations.

Since the selected facts from YAGO2 are historical events like wars, battles, con-

flicts, etc., they are considered conceptually related. We consider only spatial and

temporal proximity (i.e., Rs, Rt relationships) for events to compute maximal event

cliques. Figure 4.9 illustrates the spatial and temporal distributions of the HOD-YG

dataset. In our experiments, the spatial relationship Rs is defined using the Euclidean

distance and a distance threshold d. For the temporal relationship Rt, we set the value

for the time window size tw. To choose suitable values for d and tw, we tried different

settings, ranging from 1 to 10 km, for the distance threshold, and from 1 to 5 years,

for the time window size. Basically, the smaller the thresholds, the more interesting

the patterns should be. However, no pattern or only size-2 patterns will be found

when low threshold values are used. Since changing values for these thresholds affects

the result of finding maximal event cliques, one can select suitable values for d and

tw by sampling maximal event cliques from the result. For the HOD-YG dataset, as

shown in experimental results below, when d is set to 1 km, and tw is set to 2 years,

we obtain some interesting patterns.

For the prevalence threshold δ, we run the algorithm with different settings of

δ ranging from 0 to 1. Obviously, the smaller the threshold, the more patterns are

found. When δ > 0.5, no pattern is found and when δ ≤ 0.01, some patterns with

77

Table 4.2: The number of patterns and the runtime for the dataset HOD-YG.
Dataset δ Candidates Patterns Pattern Sizes Runtime

0.02 15,405 641 2-8 82 seconds
HOD-YG 0.05 102,465 174 2-6 557 seconds
(1,869 events, 0.1 143,228 54 2-6 792 seconds
231 max.cliques) 0.2 19,207 12 2-3 14 seconds

0.3 6,347 5 2 11 seconds

Table 4.3: Sample patterns extracted from the HOD-YG dataset. Alltime and Allloc
are denoted by * . The values in [] represent participation ratios of ETs in the
patterns.

Some patterns extracted from HOD-YG Prev.
Y1. {wordnet conflict.*.*(0), wordnet battle.*.*(1)}

0+ � 1+ � 0− � 1− [pr(0):515/1818, pr(1):467/1363] 0.28

Y2. {wordnet conflict.*.*(0), wordnet battle.*.*(1)}
1+ � 0+ � 1− � 0− [pr(0):232/1818, pr(1):227/1363] 0.13

Y3. {wordnet conflict.*.*(0), wordnet battle.*.*(1)}
0+ � 0− � 1+ � 1− [pr(0):171/1818, pr(1):129/1363] 0.09

Y4. {wordnet conflict.*.*(0), wordnet battle.*.*(1)}
1+ � 1− � 0+ � 0− [pr(0):144/1818, pr(1):153/1363] 0.08

Y5. {wikicategory NATO operations.*.Afghanistan(0), wordnet operation.*.Afghanistan(1)
1+ � 1− � 0+ � 0− [pr(0):7/96, pr(1):8/96] 0.07

Y6. {wikicategory Naval battles involving pirates.*.Somalia(0), wordnet incident.*.Somalia(1)}
0+ � 1+ � 0− � 1− [pr(0):8/225, pr(1):6/38] 0.04

only few instances are discovered. For example, the number of patterns and runtime

for different δ are shown in Table 4.2.

This table also illustrates the relationships between the runtime and the number of

generated candidates. One can see that the number of generated candidates heavily

depends on a particular value of δ. For example, the number of candidates when

δ = 0.1 is about nine (eight) times larger than when δ = 0.02 (δ = 0.2). Recall that

all direct generalizations of a candidate P will be new candidates for the next iteration

if the candidate P does not satisfy the threshold δ. Thus, increasing the value of δ

might not decrease the number of the total candidates generated. However, increasing

the value of δ will clearly decrease the maximum size of candidate patterns. As shown

in Table 4.2, although the number of candidates when δ = 0.2 is larger than when

δ = 0.02, the runtime of the first case is about six times smaller than the runtime of

the latter case. The reason is that in the first case, only size-2 and size-3 candidates

are generated, whereas candidates in the latter case are generated up to size-8.

Experimental Results

We obtained from the HOD-YG dataset about 380 patterns, where the prevalence

of each pattern is no less than δ = 0.02. Most of these patterns relate to battles,

78

Conflict

Battle

time

Conflict

Battle time

A battle occurs after a conflict.

(prev = 0.09)

(a) (b)

(c) (d)

Conflict

Battle

time

A battle is overlapped by a conflict.

(prev = 0.28)

Conflict

Battle

time

A battle overlaps with a conflict.

(prev = 0.13)

A battle occurs before a conflict.

(prev = 0.08)

Figure 4.10: Illustrations of patterns Y1(a), Y2(b), Y3(c) and Y4(d) in Table 4.3.

wars, or conflicts like the patterns shown in Table 4.3. Since ETs are obtained by

generalizing subjects, time, and locations, we represent ETs of patterns in the form

of subject.time.location. The pattern Y1, for example, can be interpreted as: “28%

(515/1818) of conflicts are nearby to and overlaps a battle” and “34% (467/1363)

of battles are nearby to and overlapped by a conflict”. The patterns Y2, Y3, Y4 are

similar to the pattern Y1 in terms of the topics ‘conflict’ and ‘battle’, but they describe

different temporal relationships, as shown in Figure 4.10. Among these patterns, the

first two (Y1 and Y2) are more prevalent than the other ones (Y3 and Y4). Thus,

one can infer that the two concepts ‘conflict’ and ‘battle’ are closely related.

Besides, we also found other interesting patterns such as patterns that describe

relationships between pirates and incidents in Somalia, or between NATO operations

and other military actions in Afghanistan, as shown in Table 4.3.

We also found some patterns consisting of more than three event templates. How-

ever, in such patterns, all temporal relationships are of type OVERLAPS and the

elements are the same, for example, “a battle overlaps two other battles” or “a con-

flict overlaps two other conflicts”.

4.7.2 Eventful Dataset

Dataset Description

We use another dataset, called EVF, crawled from the Website eventful.com to demon-

strate the feasibility and utility of our framework. This Website provides services for

users to find, track, and share information about events. Each event consists of an

event identifier, title, time, location, and a list of tags. Tags are keywords attached

to events to categorize events. For our experiments, the EVF dataset contains about

7 million events from 2009 to 2013 for many different topics such as music, sports,

79

N
um

be
r o

f e
ve

nt
s

(x
10

00
)

0
10

0
20

0
30

0
40

0

20
09

-0
9

20
09

-1
1

20
10

-0
1

20
10

-0
3

20
10

-0
5

20
10

-0
7

20
10

-0
9

20
10

-1
1

20
11

-0
1

20
11

-0
3

20
11

-0
5

20
11

-0
7

20
11

-0
9

20
11

-1
1

20
12

-0
1

20
12

-0
3

20
12

-0
5

20
12

-0
7

20
12

-0
9

20
12

-1
1

20
13

-0
1

20
13

-0
3

20
13

-0
5

20
13

-0
7

Figure 4.11: Spatial and temporal distributions of the EVF dataset.

and politics. Figure 4.11 shows the spatial and temporal distributions of this dataset

where most of the events are located in the US and Europe in three years, 2010, 2011,

and 2012.

Experimental Setup

For efficiently computing maximal event cliques, we considered conceptual constraints

(Rc) in a data preprocessing step. That is, we selected several topics from the EVF

dataset and for each topic, we created a sub-dataset. For example, to mine patterns

related to the topic ‘election’, a sub-dataset is created by selecting all events whose

tag list contains ‘election’. Such a dataset is an input for the mining algorithm.

Similar to the dataset YAGO2, we considered each event as a spatio-temporal

fact, where the predicate is ‘happenedOnDate’, the subject is the event identifier and

the object is the start-time. Each tag is also considered a category of events.

In a data pre-processing step, tags were stemmed and all stop words were removed.

We computed the sub-class-of relationships between two tags by using the following

assumption: a tag T1 is a subclass of a tag T2 if the set of events having tag T1 is a

subset of the set of events having tag T2. For example, from the same event dataset,

the set of events related to ‘jazz’ is obviously a subset of the set of events related to

‘music’. From the directed graph where nodes are tags and edges represent sub-class-

of relationships, we eliminated transitive links. For example, ‘heavy metal’→‘music’

is removed since we have two links: ‘heavy metal’→‘rock’ and ‘rock’→‘music’.

Table 4.4 shows the number of concepts at each level for three hierarchies used

for datasets EVF-EL, EVF-GM, and EVF-CP that are extracted for three topics

‘election’, ‘music in Germany’, and ‘charity & politics’, respectively.

80

Table 4.4: Distributions of concepts at different levels in the concept hierarchy for the
datasets EVF-GM (music in Germany), EVF-CP (charity & politics), and EVF-EL
(election).

Level
Number of Concepts

EVF-GM EVF-CP EVF-EL
0 2,583 4,228 7,977
1 5,109 3,903 4,788
2 1,007 1,161 1,093
3 80 85 69
4 14 14 12

Table 4.5: Statistics of experiment results for the datasets extracted from the EVF
dataset. The prevalence threshold δ is set to 0.1 for each dataset.
Dataset Events Max.Cliques Candidates Patterns Pattern Sizes Runtime
EVF-GM 2,583 718 276,600 227 2-5 3 mins
EVF-CP 4,228 819 343,883 207 2-6 8 mins
EVF-EL 7,977 2,615 1,381,409 268 2-4 261 mins

Based on the spatial and temporal granularities for time and locations of events in

the EVF dataset, we specify the time and location hierarchies as (Day →Month→
Y ear → Alltime) and (City → State→ Country → Allloc), respectively.

Experimental Results

To demonstrate that not only the number of events but also the number of maximal

cliques affects the runtime of the mining process, we present results from the three

datasets EVF-EL, EVF-GM, and EVF-CP as described above. The number of events

and the number of maximal cliques for each dataset is presented in Table 4.5. One

can see that the dataset EVF-EL is the largest in terms of the number of events and

the number of maximal cliques.

Similar to the method described for the experiments using the YAGO2 data, we

tried different settings for the parameters. Based on the analysis of the maximal

event cliques, we finally selected 1 km for the distance threshold and 3 days for the

time window tw. Using these settings, we obtained interesting patterns, as presented

in the following.

Table 4.5 summarizes the experimental results. One can see that the runtime

closely related to the number of generated candidates. Obviously, the number of

generated candidates depends on characteristics of the input dataset, including the

number of maximal cliques, and the number of events and event templates in each

maximal clique. Accordingly, among the three datasets, the runtime of the dataset

EVF-EL is largest, as shown in Table 4.5.

81

Table 4.6: Selected patterns extracted from the EVF dataset. Alltime and Allloc are
denoted by *. The values in [] represent participation ratios of ETs in the patterns.

Pattern Prev.
Some patterns extracted from EVF-EL
E1. {barackobama.2010.US(0), politics.2010.US(1)}

0+ � 0− � 1+ � 1− [pr(0):2692/7546, pr(1):2693/7878] 0.34

E2. {barackobama.2010-10.US(0), dnc.2010-10.US(1)}
0+ � 0− � 1+ � 1− [pr(0):2630/7546, pr(1):2656/7546] 0.35

E3. {campaign.2010.US(0), politics.2010.US(1), barackobama.2010.US(2)}
0+ � 0− � 1+ � 2+ � 1− � 2− [pr(0):987/7878, pr(1):980/7878, pr(2):980/7546] 0.12

Some patterns extracted from EVF-GM
G1. {music.*.Berlin-DE(0), berlin.*.Berlin-DE(1)}

1+ � 1− � 0+ � 0− [pr(0):434/2580, pr(1):430/1256] 0.17

G2. {show.2010-12.Neukoelln-Brandenburg-DE(0), christmas.2010-12.Neukoelln-Brandenburg-DE(1)}
1+ � 1− � 0+ � 0− [pr(0):19/155, pr(1):19/58] 0.12

G3. {music.*.DE(0), rock.*.DE(1), jazz.*.DE(2)}
0+ � 0− � 1+ � 1− � 2+ � 2− [pr(0):454/2580, pr(1):258/2580, pr(2):262/2580] 0.10

Some patterns extracted from EVF-CP
C1. {volunteer.2011.SDiego-Cali-USA(0), community services.2011.SDiego-Cali-USA(1)}

0+ � 1+ � 0− � 1− [pr(0):313/1187, pr(1):301/1182] 0.25

C2. {politics.*.US(0), community.*.US(1)}
1+ � 1− � 0+ � 0− [pr(0):605/4226, pr(1):589/3631] 0.14

C3. {nonprofit.2011.Cali-US(0), volunteer.2011.Cali-US(1)}
1+ � 0+ � 0− � 1− [pr(0):419/4102, pr(1):279/1187] 0.10

From the Table 4.5, one can see that the sizes of discovered patterns are from 2

to 6. We present only some typical ones for each dataset in Table 4.6.

In EVF-EL dataset, since most of events relate to the president of the United

States, Barack Obama, many patterns related to this president were found. One

can see that patterns related to the president and ‘politics’, ‘democratic’, ‘campaign’,

etc., have high prevalence values.

In the EVF-GM dataset, we found some interesting patterns related to Germany

and music. For example, we interpret pattern G1 in Table 4.6 as: “34% (430/1256) of

the events in Berlin are nearby to and followed by a musical event” and “17%

(434/2580) musical events in Berlin are nearby to and follow another event”. Pat-

tern G3 is an example of a size-3 pattern, representing a series of musical events like

common for music festivals.

In the third dataset EVF-CP, patterns related to ‘volunteer’, ‘nonprofit’, etc. were

found. Pattern C1, can be interpreted as follows: “In 2011, 26% (313/1187) of the

events related to volunteer in San Diego are nearby to and overlap with another event

related to community services” and “In 2011, 25% (301/1182) of the events related to

community services in San Diego are nearby to and overlapped by another event re-

lated to volunteer”. Note that in most of the patterns related to ‘volunteer’, time and

82

locations are generalized to ‘2011’ and ‘San Diego-California-US’ because all ‘volun-

teer’ events originally come from the Website http://www.volunteersandiego.org.

4.8 Discussion

Linked Open Data sources and respective knowledge bases will become a valuable

source for mining spatial and spatio-temporal patterns from non-traditional data. In

this chapter, we presented an approach to discover such patterns from facts describ-

ing events that consist of context, time, and location components. In particular,

we showed how hierarchies associated with respective components of events can be

exploited to derived interesting spatio-temporal patterns at different levels of granu-

larity and abstraction. We demonstrated the feasibility and utility of our framework

using real datasets.

Similar to other approaches to the discovery of frequent patterns, the pattern

explosion problem also arises in our experiments, that is, the mining result often

consists of massive amounts of prevalent patterns. Selecting the top most ‘interest-

ing’ patterns from that result is not trivial since the interestingness of a pattern is

clearly subjective. One obvious direction of future work is to investigate methods

that summarize or compress the set of discovered patterns, that is, to find as small

as possible subsets of (prevalent) patterns that can fully describe the characteristics

of the original dataset.

83

84

Chapter 5

Mining Periodic Event Patterns

Periodic behaviors commonly exist in real-life event data, such as daily human ac-

tivities, weekly TV programs, monthly meetings, seasonal sales, or annual festivals.

The discovery of patterns exhibiting periodicities from such data is important for

several applications, for instance, forecasting future events, predicting user behavior

from social media data for service suggestion and product promotion, or identifying

anomalies in data for fraud prevention.

Existing approaches to the discovery of periodic patterns mostly focus on tra-

ditional data such as time series, genome sequence data, or trajectories of moving

objects. However, with the rapid growth of social media channels, numerous data

sources managing information about events are now available. The presence of spa-

tial, temporal, and conceptual relationships between events described in such data

sources gives rise to new approaches for discovering interesting periodic patterns.

In this chapter, we present an approach aiming at the discovery of interesting

periodic patterns in the presence of conceptual, temporal, and spatial hierarchies.

Similar to Chapter 4, we utilize the event model introduced in Chapter 3 to formulate

events and event topics in considering hierarchies for time, locations, and concepts

associated with event descriptions. Periodic event patterns are then recurring patterns

of event topics that co-occur and have temporal regularities. We demonstrate the

feasibility and utility of our framework using real event datasets extracted as RDF

facts from the Website eventful.com.

Some initial ideas and results presented in the following sections appeared in a

paper by Le and Gertz [66]. In this chapter, we extend these ideas by providing: (1)

lemmas and proofs for the method, (2) more elaborate explanations for the notations

and definitions, (3) more comprehensive experiments on larger event datasets, and

(4) discussions in more detail about the runtime and experimental results.

85

5.1 Introduction

Sequential pattern mining and periodic pattern mining are two problems aiming at

the discovery of insights or knowledge from time-related data [43, 118]. While Chap-

ter 4 focuses on the problem of sequential pattern mining, this chapter addresses

the problem of the discovery periodic patterns from event data, where the user is

interested in events co-occurring in some periodicity. Such patterns are useful in sev-

eral applications, such as event prediction, service suggestion and product promotion

for the user, or anomaly detection. For example, if a user searches for information

about a music concert, and we know the fact that such a concert usually co-occurs

with other events in some periodicity, e.g., the last Saturday every month, then these

events might be good suggestions for that user at some suitable time.

Although many approaches have been proposed for the discovery of periodic pat-

terns from time-related data, e.g., [45, 75, 85], existing approaches mostly deal with

traditional sequence data, such as time series, symbolic sequences, or trajectories of

moving objects. In these approaches, event relationships are simply specified on the

basis of the order of events in a sequence. Different from these approaches, we aim at

mining periodic patterns from event data sources, where relationships between events

are not only a temporal order but also spatial and conceptual relationships. Beside

traditional challenges (e.g., sparse, noisy data, or incomplete observations [73]), the

presence of such relationships poses some new challenges. One of these challenges

is that one needs to specify how events can be linked in a sequence by exploiting

the temporal, spatial, and conceptual relationships between events for the purpose

of detecting periodicities. Another challenge is that with each event component (the

context, time, or location), ontologies are associated in which concepts are generalized

and organized in hierarchies. Approaches to the discovery of periodic event patterns

thus have to take such hierarchies into account to derive patterns at different levels

of granularity and abstraction.

By employing the concepts and notations for events and event templates intro-

duced in Chapter 3, we present a novel approach to the discovery of periodic event

patterns from event data. That is, from a set of event instances, using conceptual,

temporal, and spatial hierarchies, we want to determine (a) periodicities associated

with event topics (specified by event templates) and (b) periodicities associated with

co-occurring event topics. Such information can be used to make predictions about

upcoming events, to detect outliers in a given dataset, or to explicitly add information

about periodicity and co-occurrence to event descriptions.

86

In order to guide the search for interesting periodic patterns, we allow the user to

specify constraints related to the conceptual, temporal, and geographic information

associated with event descriptions. For example, from a large dataset, it might be

trivial to derive that some music event is happing every Saturday (independent of

the location), but if one is looking for patterns in music event (‘music’ being a

generalization of music related events) that periodically occur in the same region or

place, then such constraints can narrow down the search and allow for a more efficient

discovery of patterns.

In summary, the contributions of this chapter are as follows:

• We model periodic event patterns where a pattern consists of event topics that

co-occur and repeat over time. For this, we formulate periodicities for event

topics by introducing the concepts of time slots and segments.

• We propose a suitable interestingness measure for the selection of significant

periodic event patterns based on the concepts of p-scores and event instance

vectors (EIV).

• We define constraints for events and event templates to find only patterns that

satisfy conditions specified by the user.

• We propose an effective approach to the discovery of periodic event patterns.

• Finally, we demonstrate the feasibility and utility of our approach using a large-

scale event dataset extracted as RDF facts from the Website eventful.com.

We show that in fact interesting periodic patterns can be extracted from such

event data, which then can be used, e.g., to enrich the existing RDF dataset by

further facts.

In the following section, we discuss related work. In Section 5.3, we formulate event

occurrences and constraints for events. In Section 5.4, we introduce a specification

language for periodic patterns. We then describe our method to mine such patterns in

Section 5.5. After presenting some experimental results in Section 5.6, we summarize

this chapter in Section 5.7.

5.2 Related Work

Our work is closely related to approaches developed in (1) periodicity detection from

symbolic sequences and time series data, (2) cyclic association rule mining from tem-

poral databases, and (3) periodic pattern mining from spatio-temporal data.

87

In Section 2.2.3, we introduced existing approaches to automatically detect un-

known periods for time series and symbolic sequences. Briefly, traditional approaches

such as the Fast Fourier Transform or autocorrelation [114] can be utilized for se-

quences exhibiting full-cycle periodicities. Other approaches are proposed for spe-

cific cases, such as partial periodicity [42, 45, 75], asynchronous periodicity for noisy

data [126], or periodicity for data with incomplete observation [73]. Although our

focus is on (1) types of data different from those studied in the above approaches and

(2) on periodic patterns representing co-occurrences of multiple event topics, we still

can employ any of the above methods to detect periods for single events and then use

this information to find periodic patterns.

The problem of mining cyclic association rules has been introduced by

Özden et al. [85] where an association rule R is cyclic with respect to a posi-

tive integer p if the rule R holds every p time units. This approach aims at finding

perfect periodicities and, therefore, it is impractical as patterns in real life are often

imperfect [45]. Han et al. [42] consider partial periodic patterns where periodicities

satisfying some confidence threshold are allowed. In general, all the above approaches

are designed for time-related datasets, but not for datasets that also include spatial

information or where explicit sequences of events do not exist.

In the context of moving object data, a trajectory of an object can be viewed as a

sequence of geo-coordinates. Typically, a moving object rarely appears at exactly the

same coordinate as in the previous cycle. Therefore, applying traditional approaches

on such raw trajectories might not work. For example, although an individual uses

the same walking route from his home to his office on a daily basis, he might start

earlier than usual or stop somewhere, e.g., to buy a newspaper. Thus, to deal with

trajectory data, existing approaches typically transform raw trajectory data into a

less noisy form. Mamoulis et al. [77] propose an approach in which raw trajectories

are transformed into sequences of regions, e.g., districts or mobile communication

cells. Periodic patterns are then cyclic sequences of visited regions. A limitation of

this approach is that it assumes a set of predefined regions to convert a trajectory to

a symbolic sequence. Rather than assuming predefined regions, Li et al. [71] propose

a method to detect important regions, called reference spots, using a kernel method,

from which then periodic behaviors are determined.

Different from the approaches mentioned above, we focus on the discovery of

periodic patterns from event data where explicit sequences of events do not exist.

Furthermore, our approach is able to derive periodic patterns at different levels of

88

Figure 5.1: Example of hierarchies for concepts, time, and locations.

abstraction, using hierarchies associated with the description of event components,

which are not considered by existing approaches.

Before presenting our approach, we introduce some basic concepts and notations

in the following section.

5.3 Basic Concepts and Notations

To model periodic event patterns, we specialize the notations and definitions of events

and event templates from the event model presented in Chapter 3. They are described

in the following.

5.3.1 Event Occurrences and Constraints

Similar to formulating interval-based event patterns in the previous chapter, we em-

ploy the event model presented in Chapter 3 to define a pattern specification language

for the discovery of periodic event patterns. While Chapter 4 focuses on interval-based

relationships among events where event durations play an important role, this chap-

ter primarily focuses on relationships among occurrences (not durations) of events.

Thus, the time point framework described in Definition 3.17 (Section 3.3.2 - Page 41)

is employed to represent event time.

By using our event model, an event is specified as a tuple 〈eid, Context, Time,

Location〉, where the first component is an event identifier, and the last three com-

ponents can be generalized to higher levels of abstraction and granularity, based on

underlying hierarchies, to obtain so-called event templates (ETs).

As an example, the tuple “〈#001, DevilDriver in Frankfurt, 〈Day,‘August 9, 2013’ 〉,
〈City,‘Frankfurt’ 〉〉” describes a music event with an identifier #001, on 9th of Au-

gust 2013, in the city of Frankfurt. This event can be generalized to ETs, for instance,

89

〈Heavy Metal, 〈Year, ‘2013’ 〉, 〈State, ‘Hesse’ 〉〉, or

〈Music, 〈Month, ‘August, 2013’ 〉, 〈Country, ‘Germany’ 〉〉,
by using the conceptual, temporal, and spatial hierarchies shown in Figure 5.1.

Such event templates are key ingredients of patterns describing periodicities of event

topics. The efficient discovery of these patterns is the focus of this chapter.

Typically, periodicities are determined from a sequence of events. However, such

sequences do not explicitly exist in an event dataset as described above. Thus, for the

purpose of mining periodic patterns from an event dataset, one needs to specify how

events can be linked in a sequence. For this, we allow the user to specify temporal,

spatial, and conceptual constraints on events, as introduced in Section 3.6.1 (Page

52). These constraints represent the requirement of the user for the discovery of

periodic patterns. For example, in practice, users might be interested in patterns

that exhibit periodicities in a specific time interval and/or in a specific geographic

region and simply refer to a specific concept. Briefly, a sequence of events of interest

is built by utilizing the following constraints.

• Temporal Constraint: The user specifies a time interval of interest with a start-

time and an end-time, where only events occurring in this interval, e.g., from

2011-01-01 to 2012-12-31, are considered to analyze periodicity and to mine

periodic patterns.

• Spatial Constraint: The user specifies a region of interest with a bounding box

on a map or simply by giving names of instances (e.g., ‘Germany’ or ‘Munich’).

Only events occurring in this region are considered in mining periodic patterns.

• Conceptual Constraint: From the concept hierarchies for event contexts, the

user selects some concepts that she is interested in. Then only events related to

these concepts, i.e., events having paths to one of the concepts, are considered

when mining for respective patterns.

In this chapter, we use C to denote the set of event constraints (temporal, spatial

and conceptual constraints) specified by the user. Events that satisfy these constraints

are used to build an event sequence for mining periodic patterns. We will detail this

idea in Section 5.4.

As discussed before, event templates, generalized from events by using hierarchies,

are key ingredients of periodic event patterns. However, a hierarchy for concepts of

events is often large. Moreover, in some case patterns related to concepts that are

too general might not be of interest to the user. Thus, we allow the user to specify

90

how far an event can be generalized by using a threshold gmax ≥ 0 by employing the

definition of context levels introduced in Section 3.6.2. More precisely, this threshold

is used to constrain the specificity of periodic event patterns to be discovered. For

example, if the user set the threshold gmax to 2, then the mining process will generate

only contexts of Levels 0, 1, or 2 for event templates.

5.3.2 Event Co-occurrences

Aiming at periodic event patterns where a pattern consists of event topics that co-

occur and repeat over time, this section describes how to determine which events

in a given dataset co-occur. Basically, the user can specify how two events are re-

lated in space and time based on spatial and temporal relationships as introduced in

Section 3.5 (Page 46). We detail this idea as follows.

• Spatial proximity: Given a spatial relationship Rs (Definition 3.28 - Page 47),

two events e1 and e2 are said to be related in space iff (e1, e2) ∈ Rs. For example,

the user specifies an Euclidean distance threshold (e.g., 1 km) for locations to

define Rs.

• Temporal proximity: Given a temporal relationship Rt (Definition 3.28 -

Page 50), two events e1 and e2 are said to be related in time iff (e1, e2) ∈ Rt.

Basically, the user specifies a time duration, for instance, 1 day, then two events

are said to be related in time if they occur within a day.

Summing up, given a spatial relationship Rs and a temporal relationship Rt, two

events are said to be related in space and time (or they co-occur) if and only if they

have both relationships Rs and Rt.

5.4 Formulating Periodic Event Patterns

We now define periodic event patterns, or p-patterns for short, which describe regular-

ities of event topics (specified by event templates) over time. Before giving a formal

definition of p-patterns, we introduce the notations of time slots, support segments,

and event instance vectors.

5.4.1 Time Slots

Given a time interval of interest (e.g., 3 years) and a temporal granularity chosen

as a time unit (e.g., a day), the time interval is divided into time slots where the

91

1 2 30 4 5 6 7 8 9 ... [slot] ...

Segment 0 Segment 1 Segment [n/7]

a1 a2 a3

... [date] ...

Time interval of interest

b1 b2

fa

19
99

-0
3-
01

19
99

-0
3-
02

20
02

-0
3-
31

... [day of the week] ...

19
99

-0
3-
03

20
02

-0
3-
30

Mon
Tue

Wed
Thu

Fri
Sat

Sun
Mon

Tue
Wed

Thu
Fri

Sat
Sun

Mon
Tue

Wed
Thu

Fri
Sat

Sun

20
02

-0
3-
29

... [event template] ...

... [event] ... b3

fb fa fa fb fb

1 2 30 4 5 6 1 2 30 4 5 6

n-7 n-2 n-1

1 2 30 4 5 6... [relative slot] ...

time

... [segment] ...

Figure 5.2: Illustration of time slots and segments. The time interval of interest is
divided into slots (days). The first segment (the first week) consists of the first 7
slots. The second segment (the second week) consists of the next 7 slots, and so on.
The event template fa (whose instances are events a1, a2, a3, etc.) is periodic but the
event template fb (whose instances are events b1, b2, b3, etc.) is not.

duration of each slot is a time unit. For example, the time interval of about 3 years

from 1999-03-01 to 2002-03-31 shown in Figure 5.2 consists of 1106 days, and each

day corresponds to a time slot. We now give a formal definition of time slots.

Definition 5.1 (Time Slots) Given a time interval T of interest, and a time unit

tu, the interval T is divided into consecutive time slots, or slots, for short, where

the duration of each slot is tu. The i-th slot of the interval T is called the time slot i.

To formulate instances of patterns later on, we assume that the time unit is chosen

for the input dataset of events such that each event is anchored at only one slot based

on its occurrence time. For example, if the occurrence time of each event of a given

dataset is specified at (or can be mapped to) the granularity day, then a day can be

chosen as a time unit. The notation of time slots allows formulating t-Segmentation

to model periodicities later on.

Definition 5.2 (t-Segmentation) Let T be a time interval of interest, and n be

the number of time slots of T . Given an integer t > 0, a t-segmentation is a

segmentation of the time interval T such that the k-th segment (k ∈ {0, 1, .., bn
t
c}),

denoted Ik, consists of slots from slot (t ∗ k) to slot ((t− 1) + t ∗ k).

Given a set of event constraints C, the set of events occurring in the i-th slot (i ∈
{0, 1, .., t− 1}) of a segment Ik and satisfying all constraints in C is denoted as Ik[i].

Generally speaking, given a positive integer t and a time interval T , each segment

of a t-Segmentation consists of t consecutive slots of the time interval T , where the

92

first segment consists of the first t slots, i.e., slots 0 to (t − 1); the second segment

consists of the next t slots, i.e., slots t to (2t− 1); and so on. Note that if the number

of slots n is not a multiple of t then some last slots will be truncated.

As an example, Figure 5.2 illustrates a 7-segmentation of 3 years from 1999-03-01

to 2002-03-31. In this figure, each segment consists of seven slots, where each slot

corresponds to a day of the week (Monday, Tuesday,..., Sunday). Following this,

the first segment represents the first week; the second segment represents the second

week; and so on. The set of events found in the second slot of the first segment (I0),

for instance, is I0[1] = {a1}, while the set of events found in the fourth slot of the

first segment is I0[3] = {b1} (assume that a1 and b1 satisfy all event constraints in C).
With a given t-segmentation, an event template f is said to be periodic if there

exists i ∈ {0, 1, .., t − 1} such that an instance of f is found in the i-th slot of every

segment (strictly periodic) or in most segments (relaxed periodicity). In Figure 5.2,

the event template fa is periodic because its instances (events a1, a2, and a3) are

found in every second slot (Tuesday) of the segments. However, the event template

fb is not periodic since its instances (b1, b2, and b3) occur randomly.

Obviously, using such a strict form of periodicity like in the above example to

formulate periodic patterns is not practical since real life patterns are often imperfect.

Therefore, we take a relaxed form of periodicity into account in this chapter. For this,

we introduce the notion of support segments in the next section.

In the following, we assume that a positive integer t is chosen for the segmentation

of the time interval of interest T . That is, all the segments mentioned in the following

section have the same length (duration), and each segment consists of t time slots.

5.4.2 Support Segments

In practice, instances of an event template f might be found in the i-th slot of most

but not all segments. To relax the notion of periodicity, we define support segments

and then introduce a p-score for an event template.

Definition 5.3 (ET Support) Let f be an event template and I be a segment. The

segment I supports the event template f at the i-th slot iff the condition ∃e ∈ I[i] :

e
 f holds.

In other words, a segment supports an event template f at the i-th slot iff one can

find an instance of the event template f in the i-th slot of the segment. For example,

the first segment in Figure 5.2 supports an event template fa at the second slot and

93

Figure 5.3: Schematic representations of the EIVs for three event templates A, B,
and C, which are shown by using bar charts and color gradient. With a threshold
δ = 0.6, A and C are considered periodic, but B is not.

supports an event template fb at the fourth slot because instances of fa and fb (a1

and b1) are found in the second and fourth slots, respectively, of this segment.

To characterize the periodicity of an event template with respect to the i-th slot,

we compute a p-score as the ratio of the number of the support segments to the total

number of segments as follows.

Definition 5.4 (p-score) Let SI be the set of all segments based on a t-segmentation

of a time interval T of interest. The p-score of an event template f with respect to

the i-th slot is defined as

p-score(f, i) :=
|{I ∈ SI : I supports f at the i-th slot}|

|SI |
∈ [0, 1]. (5.1)

In other words, the p-score(f ,i) is simply the probability that instances of the

event template f are found at the i-th slot of a segment. Since the function can be

applied for any i ∈ {0, 1, ..., t − 1}, we define a vector V , where V [i]=p-score(f ,i),

to represent the periodic behavior of an event template f . The vector V is called an

event instance vector (EIV) of the event template f .

Definition 5.5 (Event Instance Vector) Let SI be the set of all segments based

on a t-segmentation of a time interval T of interest. An event instance vector

(EIV) of an event template f is a vector of t components where the value of the i-th

component is p-score(f, i).

From a semantic point of view, one can analyze the periodicity of an event template

based on its EIV. As an example, assume an event template A in the left side of

Figure 5.3, whose instances are events related to ‘soccer ’, has an EIV [0.15, 0.45,

0.15, 0.1, 0.07, 0.7, 0.8]. This EIV shows that it is very likely to find events related

94

to ‘soccer ’ on Saturday and Sunday every week since the respective p-scores (0.7 and

0.8) are much higher than the p-scores of other slots.

Given a threshold δ ∈ [0, 1], an event template f is called to be periodic if there

exists a component of the EIV of f such that the respective p-score is no less than

δ. For example, the event templates A (whose instances are events related to ‘soc-

cer’) and C (whose instances are events related to ‘fund-raising’) in Figure 5.3 are

periodic with respect to a threshold δ = 0.6, but the event template B (whose in-

stances are events related to ‘jazz’) is not. We now introduce a definition of periodic

event templates.

Definition 5.6 (Periodic ET) Let f be an event template whose event instance

vector is V , and δ ∈ [0, 1] be a predefined threshold. The event template f is called

periodic iff there exists a component V [i] of V such that V [i] ≥ δ.

If there exists an event template f that is periodic with respect to a given threshold

and a t-segmentation, then t is called a period for the event template f .

Since our aim is to find periodic patterns consisting of multiple event templates

that co-occur, we will extend the definitions and notations above to model periodici-

ties of a set of event templates in the next section.

5.4.3 Periodic Event Patterns

We now extend Definition 5.3 to the support of a set of event templates (ETs) and

then formulate periodic event patterns.

Definition 5.7 (Pattern Support) Let F = {f1, f2, ..., fk} (fi ≺ fj, i < j) be a

set of event templates and I be a segment. The segment I supports the set F at

the i-th slot iff there exists an instance in the form of a tuple of k events E =

〈e1, e2, ..., ek〉 ⊆ I[i] such that the following conditions hold:

1. ∀j ∈ {1, 2, ..., k}, ej ∈ I[i] ∧ ej
 fj,

2. ∀e, e′ ∈ E (e 6= e′), (e, e′) ∈ Rs ∧ (e, e′) ∈ Rt, where Rs and Rs are spatial and

temporal relationships predefined by the user.

With this definition, the p-score of a set of event templates is defined similarly to

the p-score of a single event template (Definition 5.4). That is, given a set of segments

SI , the p-score of a set F of event templates is computed as

p-score(F, i) :=
|{I ∈ SI : I supports F at the i-th slot}|

|SI |
∈ [0, 1]. (5.2)

95

The vector V where V [i]=p-score(F ,i) (i = 0..t−1) is then called an event instance

vector (EIV) of F . Following this, we define periodic event patterns, or p-patterns,

for short.

Definition 5.8 (P-Pattern) Let F be a set of event templates and V be an event

instance vector. A pair 〈F, V 〉 is called a periodic event pattern, or p-pattern,

for short.

Given a threshold δ ∈ [0, 1], a p-pattern P = 〈F, V 〉 is significant iff the following

condition holds: ∃i ∈ {0, 1, ..., t− 1}, V [i] ≥ δ.

From the above definition, one can infer that if a p-pattern P = 〈F, V 〉 is signifi-

cant with respect to a given threshold δ, then a derived pattern P ′ = 〈F ′, V ′〉, where

F ′ is derived from F by replacing one or more elements (ETs) by their generalizations,

is also significant with respect to δ. This fact is stated in the following lemma.

Lemma 5.1 Let P = 〈{f1, f2, ..., fk}, V 〉 and P ′ = 〈{f ′1, f ′2, ..., f ′k}, V ′〉 be two p-

patterns such that ∀i ∈ {1, 2, ..., k}, (f ′i = fi) ∨ (f ′i ∈ f⇑i). If the p-pattern P is

significant with respect to a given threshold δ, then P ′ is also significant with respect

to δ.

Proof : Since every ET f ′ ∈ F ′ is a generalization of a respective ET f ∈ F , every

segment supporting F at the i-slot also supports F ′ at the i-th slot. Therefore, p-

score(F ′,i) ≥ p-score(F ,i) (∀i ∈ {0, 1, ..., t− 1}).
On the other hand, since F is significant with respect to δ, there exists an integer

i ∈ {0, 1, ..., t−1} such that p-score(F ,i) ≥ δ. Thus, p-score(F ′,i) ≥ p-score(F ,i) ≥ δ.

Hence, F ′ is significant with respect to δ. 2

Lemma 5.1 motivates us to find only the most specialized p-patterns that are

significant. From such a compact set of results, it is trivial to generate the full set

of all significant p-patterns by using the generalization operators (↑, ⇑) on ETs. In

summary, we describe the problem of mining p-patterns as follows:

Given:

• a dataset D consisting of event instances of the form 〈eid, Context, Time,

Location〉,
• a set of hierarchies H for context, time, and location components,

• a time unit tu and an interval of interest T ,

96

• a set of event constraints C (temporal, spatial and conceptual constraints),

• a generalization threshold gmax for event templates,

• a spatial relationship Rs and a temporal relationship Rt for event co-

occurrences,

• a p-score threshold δ.

Find: all most specialized p-patterns that are significant with respect to the

threshold δ, the relationships Rs, Rt, and the event constraints in C such that

the level of each event context in the patterns is less than or equal to gmax.

We describe our approach to the discovery of all p-patterns that meet the above

requirements in the following section.

5.5 Mining Periodic Event Patterns

Our approach to the discovery of significant p-patterns from an event dataset consists

of two stages. In the first stage, all possible periods are identified for mining p-patterns

by analyzing the occurrences of events. For each period detected in the first stage,

significant p-patterns with respect to this period are then discovered in the second

stage. The two stages are detailed in the following sections.

5.5.1 Detecting Periods

Although the user can specify a period t corresponding to the kinds of periodicities

of p-patterns (e.g., weekly or monthly) that she is interested in, we also include

a step for automatically detecting periods from a dataset of events to make our

framework more general. This task can be executed independently and helps the user

to select meaningful periods for finding p-patterns. For this, we propose an approach

to detecting all possible periods based on a lemma described below.

Lemma 5.2 Let P = 〈F, V 〉, and P ′ = 〈F ′, V ′〉 be two p-patterns. If P is significant

with respect to a given threshold δ and F ′ ⊂ F , then P ′ is also significant with respect

to the threshold δ.

Proof : Since F ′ ⊂ F , for each segment I supporting F at the i-th slot, it is trivial to

show that I also supports F ′ at the i-th slot. Hence, the set of segments supporting F

is a subset of the set of segments supporting F ′, at the i-th slot. From Equation 5.2,

97

we then have p-score(F ′,i) ≥ p-score(F ,i) (∀i ∈ {0, 1, ..., t− 1}).
On the other hand, since P is significant with respect to δ, there exists an integer

i ∈ {0, 1, ..., t − 1} such that p-score(F ,i)≥ δ. So, p-score(F ′,i) ≥ p-score(F ,i)≥ δ.

Therefore, F is significant with respect to δ. 2

Lemma 5.2 states that the Apriori property can be exploited to find all significant

p-patterns. Accordingly, if one can find a significant p-pattern P = 〈F, V 〉 with

respect to a threshold δ, then all size-1 p-patterns where each p-pattern consists of a

single ET f ∈ F are also significant with respect to the threshold δ. Therefore, one

can identify all possible, meaningful periods for p-patterns by separately considering

periodicities of (single) ETs generated from events.

A straightforward method to detect periods for an ET f is to construct a binary

sequence S from its instances (events), and then identify periods from that sequence.

The binary sequence S is a sequence of n elements (n is the number of time slots),

where S[i] = 1 (0 ≤ i ≤ n− 1) if the time slot i contains an event that is an instance

of f , and S[i] = 0 otherwise. The binary sequence S is processed further to detect

periods by using any periodicity analysis method mentioned in Section 5.2.

However, considering all generated ETs for detecting periods might be time con-

suming since the number of ETs is often large. However, by applying Lemma 5.1 for a

special case where both the p-patterns P and P ′ are of size-1, one can infer that if an

ET f is periodic with respect to a threshold δ, then every ET f ′ ∈ f⇑ is also periodic

with respect to δ. This consequence allows one to obtain all possible periods of an

ET by analyzing the periodicity of its generalizations. Hence, instead of considering

all possible ETs that can be generated from events, we detect periods only for most

generalized ETs (according to the threshold gmax).

Through the above procedure, we finally obtain a set of all possible periods and

then the user can use all of these periods or just select the periods that she is interested

in for the next stage.

5.5.2 Finding P-Patterns

Since each period is considered separately, this section describes a process to mine

p-patterns under the assumption that the current period is t. Based on Lem-

mas 5.1 and 5.2, we propose an approach to the discovery of significant p-patterns

from an event dataset.

Basically, our approach consists of two steps. The first step is to generate candi-

dates of p-patterns in the order of the size of candidates (number of ETs), that is,

98

size-1 candidates (consisting of one ET) are first generated from events; following that,

size-2 candidates are generated by using the analysis of the size-1 candidates; and so

on. At each size, the next step is performed to generate generalizations of candidates

in the order of most specialized to most generalized ones. For each candidate, its EIV

is computed and tested with the threshold δ for termination of the procedure.

For the first step and second step, we propose Algorithms 5.1 and 5.2, respectively.

They are described in detail in the following.

Algorithm 5.1: P-Pattern-Miner

Input:
(a) D: event dataset
(b) H: set of hierarchies
(c) t: time period
(d) δ: threshold for periodic score
(e) C: set of constraints
(f) Rs,Rt: spatial, temporal relationships
(g) gmax: maximum level of generalization for event templates
Output: Set of most specialized p-patterns

1 Dc = {e ∈ D : e satisfies C}; /* only consider events satisfying constraints */

2 L1={};
3 foreach Event e ∈ Dc do
4 foreach Event Template f ∈ e↑ do
5 Create a size-1 candidate P1 from f and t;
6 L1= L1

⋃
Search PPatterns(P1, Dc, H , δ, gmax);

7 result = L1; k=1;
8 while Lk 6= {} do
9 Lk+1 = {};

10 foreach Pk = 〈F, V 〉 ∈ Lk do
11 foreach P1 = 〈{g}, V ′〉 ∈ L1 do
12 if g is not a generalization of any f ∈ F then
13 Create size-(k+1) candidate Pk+1 from F ∪ {g} and t;
14 Lk+1 = Lk+1

⋃
Search PPatterns(Pk+1, Dc, H, δ, gmax);

15 result = result
⋃
Lk+1;

16 k = k + 1;

17 return result;

Algorithm 5.1, named P-Pattern-Miner, is the main procedure to find significant

p-patterns for a given period t. First, a subset Dc of events that satisfy the constraints

in C is created from the dataset D (Line 1). The rest of P-Pattern-Miner consists of

two phases: (1) to find size-1 p-patterns that are significant, and (2) to generate and

99

test to find size-k (k ≥ 2) p-patterns (consisting of k ETs that are to be checked for

co-occurrence).

Lines 2-6 of Algorithm 5.1 show the process to discover size-1 significant p-patterns

(the first phase). For each event in Dc, ETs are generated by employing the (di-

rect) generalization operator ↑. For each generated ET, a size-1 candidate is cre-

ated with an EIV initialized to zero. Most generalized, significant p-patterns derived

from such a candidate are discovered by a function shown in Algorithm 5.2, called

Search PPatterns. This function is detailed as follows.

Algorithm 5.2: Search PPatterns(P, Dc, H, δ, gmax)

/* Breadth-first Search from P to find p-patterns satisfying threshold δ */

1 result={}; Queue=[P];
2 while Queue is not empty do
3 q=Queue.dequeue();
4 Compute the EIV V of q from Dc;
5 if maxt−1

i=0{V [i]} ≥ δ then
6 result = result

⋃{q};
7 else
8 Compute the set q↑ from q and H;
9 foreach Pattern r ∈ q↑ do

10 if level(r) ≤ gmax then
11 Queue.enqueue(r);

12 return result;

Generally, the function Search PPatterns uses a Breadth-First-Search to find

the most specialized generalizations of a candidate P that are significant with re-

spect to the threshold δ. As shown in Algorithm 5.2, a queue is employed to store

candidates generalized from a given candidate P . In Lines 3-4, the EIV of each can-

didate in the queue is sequentially computed to determine how significant the current

candidate is. If a candidate is significant, it is stored in the result set (Lines 5-6).

Otherwise its direct generalizations satisfying the threshold gmax will be added to

the queue for further iterations (Lines 8-11). This process stops when the queue of

candidates is empty.

We now return to Algorithm 5.1. The rest of Algorithm 5.1 (Lines 7 to 16)

describes the second phase containing a while-loop to find p-patterns of size-2, size-3,

etc. At an iteration step k (k ≥ 1), size-(k+1) p-patterns are discovered by using a

size-k p-pattern Pk and a size-1 p-pattern P1. To ensure the size of new p-patterns

is (k + 1), each ET in Pk must not be a generalization of the ET in P1 (Line 12).

100

Then a size-(k+1) candidate (Pk+1) is created and passed to the Search PPatterns

function to find size-(k+1) p-patterns (Lines 13 and 14). Finally, a set of p-patterns

of all sizes is returned.

The runtime of our approach depends on the number of generated candidates, and

this number heavily depends on the characteristics of the input dataset and given

hierarchies. Estimating the number in the worst-case is meaningless since all possible

candidates might be a very large number but the real number in practice is often

much smaller. Therefore, similar to other pattern mining approaches that employ the

apriori method, we only analyze the experimental runtime for real datasets, as shown

in the next section.

5.6 Experimental Evaluation

We demonstrate the utility of our approach using events, e.g., festivals, concerts,

sports, etc., crawled from the Website eventful.com from 2009 to 2013. Such events,

stored as RDF facts, are transformed to the form 〈eid, Context, T ime, Location〉 for

the purpose of utilizing the event model introduced in Chapter 3. The objective of our

evaluation is to show how to effectively apply the framework to mine p-patterns from

RDF data and to demonstrate that interesting periodic event patterns can be discov-

ered from such a dataset. In the following, we describe the setup of our experiments

and present some interesting patterns extracted from different datasets. Our frame-

work is implemented in Java and runs with 24GB heap size. All experiments were

performed on an Intel Xeon 2.27GHz with 48GB RAM, running Ubuntu 64bit.

5.6.1 Datasets and Experimental Setup

In this section, we describe the data source, named EVF, used in our experiments

as well as the pre-processing steps to make such datasets available for our mining

framework.

As mentioned in Section 4.7.2, each event in the EVF source consists of multiple

attributes. Similar to the experiments described in the previous chapter, the context,

time, and location components of an event are mapped to the following attributes:

the event identifier, start-time, and venue identifier, respectively. Note that event

identifiers are used for two purposes, i.e., to distinguish an event from others and to

attach event contexts to a concept hierarchy built from event tags. From the venue

101

Table 5.1: Top countries consisting of most events in the EVF dataset. The column
‘All’ corresponds to the number of events related to a specific topic (‘sports’, ‘festival’,
and ‘religion’). The column ‘Recur.’ corresponds to the number of only recurring
events related to that specific topic.

Country
Total Events Topic ‘sports’ Topic ‘festival’ Topic ‘religion’
for all topics All Recur. All Recur. All Recur.

United States 5,160,952 395,021 69,850 94,567 16,489 70,483 7,189
United Kingdom 419,641 14,645 447 12,125 987 3,627 234
Canada 230,219 8,968 1,427 5,716 718 3,372 555
Germany 189,395 3,337 88 3,088 244 100 27
Australia 111,605 3,061 217 4,502 371 976 105
France 68,883 5,567 196 5,612 290 38 0
India 38,049 1,618 45 2,967 122 226 97
Italy 37,704 2,324 17 1,047 99 45 4
Ireland 33,025 585 25 1,734 152 89 16
Switzerland 32,749 424 2 967 46 20 2

identifier, one can retrieve geographic attributes of the corresponding location for

checking spatial constraints later on.

To determine the time interval T of interest, we counted the events in each month.

Based on the result (see Figure 4.11), we considered events only in three years, 2010,

2011, and 2012, for our experiments. The number of events in this time interval is

about 7 million.

Among the attributes of events, the attribute “recur-string” describes that the cor-

responding event is either a singleton or recurring event. The values for this attribute

might be empty (for singleton events) or a string describing a periodicity (recurring

events), such as “monthly on the 1st Friday for 3 times”, or “weekly on Mondays and

Wednesdays until December 31, 2011”. Although we are interested in both types of

events, this attribute helps us to determine which regions and event topics (tags) are

potentially useful to discover periodic event patterns. Before detailing this idea, we

describe a concept hierarchy for event tags in the following.

To employ concept hierarchies and conceptual constraints later on, we utilize tags

associated with events. A concept hierarchy for tags was built using the same method

as described in Section 4.7.2. Basically, a sub-class-of relationship between two tags

is specified by using the following assumption: a tag T1 is a subclass of a tag T2 if

the set of events having the tag T1 is a subset of the set of events having the tag

T2. Through this process, we obtained a hierarchy consisting of about 5000 tags of 5

levels, where the last three levels contain only few tags (about 2%), and most of them

do not produce interesting patterns, such as ‘photo’, ‘program’, or ‘member’. Thus,

we set the threshold gmax to 2 for this hierarchy.

102

We now use the concept hierarchy described above to select events based on topics

(tags). Table 5.1 shows the numbers of events occurring in several countries for all

topics and for some particular topics that are prevalent and common (in this case,

‘sports’, ‘festival, and ‘religion’) in the EVF data source. This table also shows the

number of recurring events for each pair of a country and a topic. Since the number

of (recurring) events in the United States is the largest, we will consider events in

this area to create datasets for our experiments later on.

In the next sections, we first analyze periodicities existing in the EVF data and

then show typical p-patterns of the periods obtained from the periodicity analysis.

5.6.2 Periodicity Analysis

As discussed before, we selected the time interval of interest of three years, 2010,

2011, and 2012. For the time unit tu, we select a day as duration for slots. We now

employ the method described in Section 5.5.1 to detect meaningful periods for the

discovery of p-patterns.

For each pair of a region (country) and an event topic (tag), we generate a binary

sequence, where the i-th element is either 0 or 1 depending on whether or not an

event related to that topic occurs at the i-th slot of the time interval of interest. Such

a sequence is then analyzed to detect periods with any state-of-the-art method (see

Section 2.2.3). In our experiments, we tried the following methods: (1) computing

raw periodogram using the Fast Fourier Transform [113], (2) computing the autocor-

relation [114], and (3) using the Lomb-Scargle algorithm [74]. For all these methods,

significant periods are easily detected based on the peaks. For example, Figure 5.4

shows the result for the topic ‘fleamarket’, where one can see that the period 7 days

is much more significant than other periods. For some event topics that are very

common, such as ‘music’, ‘training’, or ‘fitness’ (shown in Figure 5.5), no significant

period is detected.

Through this process, we obtained different types of periods, such as 3 days, 5

days, or 10 days. However, the periods in most cases are either 7 days (weekly) or

28-30 days (monthly).

Selecting a period obtained from this process as an input, we then find significant

p-patterns for that period. We detail this in the following section.

103

Binary Sequence for 'fleamarket'

0
1

20
10

-0
1-

01

20
10

-1
0-

28

20
11

-0
2-

05

20
12

-0
6-

19

20
12

-1
2-

31 0.0 0.1 0.2 0.3 0.4 0.5

1e
-0

4
1e

-0
1

frequency [1/day]

S
pe

ct
ru

m

Raw Periodogram

bandwidth = 0.000257

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

period [day]

A
C

F

Auto correlation

0.0 0.1 0.2 0.3 0.4 0.5

0
20

40
60

Lomb-Scargle Periodogram

frequency [1/day]

P
ow

er
 S

pe
ct

ra
l D

en
si

ty

freq=0.14 (7 days)

7 days

freq=0.14 (7days)

Figure 5.4: Periodicity analysis for the topic ‘fleamarket’ in the US. The most likely
period is 7 (days).

Binary Sequence for 'fitness'

0
1

20
10

-0
1-

01

20
10

-1
0-

28

20
11

-0
2-

05

20
12

-0
6-

19

20
12

-1
2-

31 0.0 0.1 0.2 0.3 0.4 0.5

1e
-0

4
1e

-0
1

frequency [1/day]

S
pe

ct
ru

m

Raw Periodogram

bandwidth = 0.000257

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

period [day]

A
C

F

Auto correlation

0.0 0.1 0.2 0.3 0.4 0.5

0
10

0
20

0

Lomb-Scargle Periodogram

frequency [1/day]

P
ow

er
 S

pe
ct

ra
l D

en
si

ty

Figure 5.5: Periodicity analysis for the topic ‘fitness’ in the US. No significant period
is detected for this topic.

Table 5.2: List of exprimental datasets. S.Events represent singleton events, where
each event consists of one instance. R.Events represent recurring events, where each
event consists of multiple instances. An E.Instance is an instance of either a singleton
or a recurring event.

Dataset Events related to S.Events R.Events E.Instances
Religion ‘religion’ 63,294 7,189 102,131
Festival ‘festival’ 78,078 16,489 107,399
Clubs & Associations ‘clubs & associations’ 306,865 5,471 352,922
Sports ‘sports’ 325,171 69,850 431,045
Community ‘community’ 425,451 98,517 563,755

104

5.6.3 P-Pattern Discovery

For the purpose of interpreting the results of p-patterns later on, we only consider

weekly and monthly patterns. For weekly patterns, we select a day as a time unit

for slots. For monthly patterns, a month is divided into 3 sections of around 10 days

(early: 1-10, middle: 11-20 and late: 21-end), and each such section is considered a

time unit.

Table 5.2 shows a list of the datasets created for our experiments. One can see

that the size of a dataset is determined by the total instances of events, where each

event is either a singleton (consists of one instance) or recurring (consists of multiple

instances). Note that the time interval of interest for both datasets is from 2010 to

2013, and all selected events occurred in the US.

To specify the spatial and temporal relationships (Rs and Rt), we simply assume

that two events are said to be related in space and time if they occur at the same

address and in the same time slot.

Event templates describing topics of events are generalized by using the concept

hierarchy described in Section 5.6.1. The time and location hierarchies are specified

as (Day → Month → Y ear → Alltime) and (Address → City → State → Allloc).

We omit country in the location hierarchy since all the events are in the same country,

here the US.

0.3 0.5 0.7 0.9

0
10

20
30

40
50

P-Score threshold δ

R
un

tim
e

(m
in

ut
es

)

Weekly pattern mining
Monthly pattern mining

0.3 0.5 0.7 0.9

0
20

0
40

0
60

0
80

0
10

00

P-Score threshold δ

N
um

be
r o

f c
an

di
da

te
s

(x
10

00
) Weekly pattern mining
Monthly pattern mining

0.3 0.5 0.7 0.9

0
20

0
60

0
10

00

P-Score threshold δ

N
um

be
r o

f p
at

te
rn

s

Weekly pattern mining
Monthly pattern mining

Figure 5.6: The runtime, number of candidates, and number of discovered p-patterns
for the dataset ‘Religion’, at different p-score thresholds.

For each dataset, we ran the algorithm presented in Section 5.5 with different

settings for the threshold δ, ranging from 0 to 1. Obviously, the smaller the value,

the more p-patterns are found. However, a large number of candidates might be

105

Table 5.3: Statistics of experimental results (δ = 0.5).

Dataset
Event

Period
Time

Candidates Patterns
Runtime

Instances Slots (Minutes)

Religion 102,131
Weekly 1,105 156,180 149 13.8
Monthly 108 172,243 376 7.4

Festival 107,399
Weekly 1,105 145,592 239 13.8
Monthly 108 408,231 694 22.1

Clubs &
352,922

Weekly 1,105 167,719 188 38.7
Associations Monthly 108 254,846 501 35.4

Sports 431,045
Weekly 1,105 1,670,806 1,842 584.7
Monthly 108 655,860 1,565 189.9

Community 563,755
Weekly 1,105 1,922,107 2,102 621.1
Monthly 108 877,110 1,965 233.9

generated for a small value for δ. As a result, the runtime will be large. In our

experiments, more than 20 millions candidates are generated in more than 50 hours

when δ ≤ 0.2. As an illustration, one can see in Figure 5.6 that decreasing the value

for δ causes increasing the number of candidates, the number of patterns, and thus,

the runtime for mining the dataset ‘Religion’.

Table 5.3 shows the number of candidates, the number of patterns, and execution

times for δ = 0.5 and for each dataset listed in Table 5.2. One can see that the

numbers of candidates generated from the two datasets ‘Sports’ and ‘Community’

are much larger than from the others, and thus, the runtimes for these datasets are

also much larger than the runtimes for the others.

Since the interestingness of a p-pattern is subjective, it is not trivial to rank the

discovered p-patterns and select the top most “interesting” ones. Here we manually

selected p-patterns to present by considering the distributions of their p-scores and

event topics. Table 5.4 shows typical weekly patterns found using the threshold

δ = 0.5, that is, a p-pattern is significant if there are more than 50% of the segments

(weeks) supporting it. Since our datasets consists of events in only 3 years (2010, 2011,

and 2012), to satisfy that threshold, all time components are obviously generalized to

Alltime. Thus, we present event templates of p-patterns in the form of subject.location.

As shown in Table 5.4, sports events related to ‘boxing ’ are likely to be found on

Fridays whereas sports events related to ‘walking ’ or ‘cycling ’ are likely to be found

on Saturdays and Sundays. Besides, some p-patterns consisting of two or more event

templates describe co-occurrences. For example, we found that co-occurrences of

an event related to ‘kid ’ and another event related to ‘church’ most likely appear on

Sundays, as shown in the results of the dataset ‘Religion’. Moreover, some patterns are

only valid at a specific location, for instance, a pattern describing concerts on Fridays

106

Table 5.4: Selected patterns with their p-scores extracted from the experimental
datasets. Time components are omitted; ‘*’ denotes “for all locations”. P-scores
satisfying the threshold δ = 0.5 are shown in boldface.

Event templates Mon Tue Wed Thu Fri Sat Sun
Some patterns extracted from the dataset ‘Sports’

{boxing.*} 0.02 0.01 0.04 0.08 0.51 0.38 0.08
{walking.*} 0.34 0.04 0.09 0.15 0.17 0.77 0.72
{cycling.*} 0.23 0.44 0.37 0.41 0.41 0.92 0.66
{fundrais.Arizona} 0.10 0.09 0.06 0.11 0.18 0.53 0.15
{marathon.*} 0.40 0.36 0.30 0.37 0.53 0.75 0.74
{education.*; outdoor & recreation.*; food.*} 0.08 0.30 0.36 0.56 0.54 0.70 0.47
{fishing.*; outdoor & recreation.*} 0.42 0.54 0.41 0.41 0.30 0.68 0.47

Some patterns extracted from the dataset ‘Religion’
{meditation.Atlanta,Georgia} 0.07 0.04 0.18 0.05 0.07 0.51 0.09
{taichi.*} 0.23 0.55 0.01 0.06 0.03 0.27 0.22
{church.Houston,Texas} 0.44 0.14 0.42 0.29 0.21 0.19 0.57
{pray.*} 0.65 0.61 0.65 0.65 0.63 0.66 0.97
{yoga.*; support.*} 0.11 0.32 0.03 0.56 0.03 0.26 0.28
{kid.*; church.*} 0.00 0.00 0.01 0.00 0.01 0.02 0.53

Some patterns extracted from the dataset ‘Community’
{kid.Atlanta,Georgia} 0.65 0.68 0.77 0.57 0.41 0.77 0.17
{pubtrivia.*} 0.00 0.02 0.34 0.65 0.31 0.00 0.01
{concert.Milwaukee,Wisconsin} 0.11 0.18 0.23 0.35 0.75 0.39 0.32
{visitomaha.Omaha,Nebraska} 0.22 0.25 0.19 0.51 0.58 0.72 0.54
{learning.*; family.*} 0.58 0.34 0.44 0.22 0.19 0.24 0.19
{drink.*; outdoor & recreation.*} 0.19 0.03 0.05 0.03 0.21 0.51 0.10

Some patterns extracted from the dataset ‘Festival’
{fleamarketsal.California} 0.02 0.36 0.03 0.03 0.06 0.34 0.71
{food.Missouri} 0.03 0.03 0.04 0.04 0.18 0.51 0.09
{music.Arizona} 0.04 0.08 0.16 0.23 0.45 0.54 0.34
{beer.*} 0.09 0.11 0.12 0.24 0.43 0.59 0.24
{familyfun.*} 0.09 0.09 0.28 0.27 0.43 0.53 0.34

Some patterns extracted from the dataset ‘Clubs & associations’
{metaphysical.The Crystal Closet,Sanford,Florida} 0.00 0.00 0.34 0.00 0.00 0.54 0.01
{fundrais.Texas} 0.11 0.22 0.18 0.51 0.19 0.46 0.45
{business.Washington} 0.15 0.32 0.42 0.62 0.25 0.14 0.10
{jazz.California} 0.02 0.37 0.46 0.21 0.53 0.16 0.10
{technology.*} 0.64 0.58 0.59 0.56 0.39 0.39 0.20
{meeting.*} 0.53 0.34 0.39 0.44 0.29 0.49 0.16
{basketball.*} 0.08 0.07 0.11 0.17 0.07 0.14 0.53
{conferenc.*; club & association.*} 0.37 0.44 0.54 0.34 0.19 0.37 0.33

in Milwaukee - Wisconsin (from the dataset ‘Community’) or a pattern describing flea

markets on Sundays in California (from the dataset ‘Festival’). In addition, several

p-patterns describe that event topics frequently appear most days of the week, except

for one or two days. For example, events related to ‘technology ’ or ‘meeting ’ usually

occur on most days of the week but not on Sundays, as shown in the results of the

dataset ‘Clubs & associations’.

Also monthly patterns were found in our experiments. Table 5.5 shows some typ-

ical p-patterns extracted from the five datasets. From this table, one can see several

patterns describing co-occurrences of event topics, for instance, a co-occurrence of an

event related to ‘fundrais ’ (fundraising) and another event related to ‘fishing ’ mostly

appears early each month. Interestingly, a p-pattern whose p-scores at all slots satis-

fying the threshold δ can be interpreted as a correlation between an event topic and

107

Table 5.5: Selected patterns with their p-scores extracted from the experimental
datasets. Time components are omitted; ‘*’ denotes “for all locations”. P-scores
satisfying the threshold δ = 0.5 are shown in boldface.

Event templates Early Mid Late
Some patterns extracted from the dataset ‘Sports’

{kid.Georgia} 0.53 0.36 0.08
{business.*; sport.*} 0.28 0.69 0.42
{fundrais.*; fishing.*} 0.50 0.06 0.03
{beerpong.California; outdoor & recreation.California} 0.53 0.00 0.00
{trips.*; bik.*; fundrais.*} 0.61 0.22 0.22
{trips.*; fishing.*; fundrais.*; outdoor & recreation.*; sal.*} 0.58 0.22 0.22

Some patterns extracted from the dataset ‘Religion’
{spirituality.Florida} 0.33 0.39 0.75
{singing.*} 0.61 0.42 0.25
{party.*; religion & spirituality.*} 0.25 0.36 0.64
{art.*; music.*} 0.19 0.14 0.58
{spiritual.*; religion & spirituality.*; learning.*} 0.17 0.53 0.11

Some patterns extracted from the dataset ‘Community’
{art.Missouri} 0.83 0.47 0.28
{cooking.*} 0.56 0.92 0.61
{vendor.*} 0.72 0.53 0.33
{family.*; music.*} 0.81 0.53 0.39
{performing & art.*; local.*} 0.25 0.72 0.56
{club.*; local.*; art.*} 0.75 0.39 0.72

Some patterns extracted from the dataset ‘Festival’
{livemusic.Florida} 0.50 0.36 0.22
{filmfestival.,Los Angeles,California} 0.61 0.56 0.61
{concert.*; art.*} 0.56 0.31 0.19
{food.Florida; outdoor & recreation.Florida} 0.53 0.31 0.08
{comedy.*; music.*; festival & parad.*} 0.19 0.56 0.53
{singl & social.*; concert.*; festival.*; performing & art.*} 0.11 0.14 0.50

Some patterns extracted from the dataset ‘Clubs & associations’
{donation.*} 0.53 0.14 0.28
{technology.Michigan} 0.03 0.78 0.17
{animal.Maryland} 0.08 0.50 0.11
{politics.Texas} 0.28 0.61 0.19
{smallbusiness.*} 0.14 0.42 0.50
{book.*; club & association.*} 0.33 0.67 0.75
{conferenc.*; club & association.*; singl & social.*} 0.19 0.64 0.25

a location. For example, as shown in the results of the dataset ‘Festival’ in Table 5.5,

one can infer that film festivals and Los Angeles have a relationship because it is very

likely (high probability) that an event related to film festivals is found any time at

that location.

5.7 Discussion

In this chapter, we presented a framework to mine periodic patterns from datasets

of events in the presence of conceptual, temporal, and spatial hierarchies. Such pat-

terns represent topics of events that co-occur and repeat over time. Event topics are

modeled based on event templates that were introduced in Chapter 3. The experi-

mental results show that interesting p-patterns can be effectively discovered based on

108

the proposed approach. These patterns can be further exploited to predict upcoming

events, for service and product suggestions, or to detect outliers in a dataset.

From the experiments, one can see some patterns whose p-scores at slots are all

high. Although less information about periodicities are gained from such patterns,

they can be used to extract correlations between an event topic and a particular

location, e.g., as seen in the last example of film festivals and Los Angeles in the

previous section. Furthermore, this kind of information can be exploited to annotate

locations. For example, a tag ‘film festival ’ can be attached to the location Los

Angeles if one knows the pattern describing that film festivals usually occur in Los

Angeles. However, all patterns that consist of very common topics, such as ‘music’

or ‘sport ’ might have the same characteristic, i.e., the p-score of each slot is high.

For the purpose of extracting semantic annotations for locations, we propose another

approach, as described in the next chapter.

109

110

Chapter 6

Extracting Semantic Annotations

for Locations from Event Data

In Chapters 4 and 5, we exploited correlations of events for interesting patterns.

Here we demonstrate that correlations of event components can be utilized for valu-

able knowledge as well. In particular, we focus on the problem of extracting semantic

annotations for locations from event data. Such information about locations pro-

vides a semantically rich basis for location search, topic-based location clustering or

recommendation services. However, little work has been done yet to extract such

correlations from event datasets to annotate locations.

By employing the event model introduced in Chapter 3, in this chapter, we present

our approach to the discovery of semantic annotations for locations from event data.

We demonstrate the utility of extracted annotations in hierarchical clustering for

locations, where the similarity between two locations is defined on the basis of their

common event topics. Additionally, taxonomies of locations are then built from the

analysis of location clusters. To deal with periodic updates of event datasets, we

furthermore give a scalable and efficient approach to incrementally update location

annotations. To demonstrate the performance of our approach, we use real event

datasets crawled from the Website eventful.com.

In a paper by Le et al. [67], we presented some initial ideas of extracting semantic

annotations for locations from event data. In this chapter, we provide more elaborate

explanations for the notations, definitions, algorithms, and experimental results. We

also discuss how to employ the framework in real applications.

111

6.1 Introduction

The main difference between a ‘place’ and a position is that a place is represented as

a human-readable description of a geographic location rather than just a geographic

coordinate. Such descriptive information about locations is essential for location-

based services (LBS), for instance, location recommendation, location-based mobile

advertising, or social event recommendation [29, 47, 93]. Typically, a data source

managing information about locations provides various attributes of a location for an

LBS application, including the name, address, description, comments of users, and

metadata such as tags. From a semantic perspective, especially attributes such as a

description or tags associated with a location are useful in semantic location search,

e.g., “Find all bars that feature live music on weekends”.

Unfortunately, such descriptive attributes detailing location information tend to

be poor in many data sources. For example, our analysis shows that there are about

one million locations in a dataset of events crawled for the years 2011 and 2012 from

the Website eventful.com, but only about 10% of them contain descriptions or tags.

Moreover, querying based on simple text matching of descriptions or tags cannot

take into account concept hierarchies that might exist for locations, time, or event

topics. For example, using suitable concept hierarchies, the description “live jazz on

Saturdays” may be considered a matching for the query “live music on weekends”.

Therefore, enriching information about events at different levels of granularity and

abstraction is necessary and useful.

Several methods have been proposed to extract semantic annotations for locations.

However, some of them heavily depend on the location data provided by external

sources such as Wikipedia or the Google Maps API [19]. Other approaches exploit

either user-tags of Flickr data, e.g., [94, 95], or the check-in data of users from online

social networks, e.g., [47, 128]. Such types of user generated content are often sparse,

noisy and sometimes even inaccurate. We will discuss these approaches in detail in

Section 6.2.

On the other hand, numerous data sources managing information about events are

available on the Internet. This includes popular Websites such as last.fm, eventim.de,

or eventful.com. Although in these sources the event data are less noisy (and more

accurate) than in other georeferenced social media, there are still challenges in fully

exploiting such information, as concept hierarchies, either explicitly or implicitly, exist

for event topics, locations, and time.

112

In this chapter, we aim at extracting semantic annotations for locations from

event data by exploiting correlations among geographic locations, time and event

topics. Intuitively, some events occur more likely at some place/time than at other

places/times. For example, events related to the topics ‘live music’, ‘dance’ or ‘party ’

likely occur at a bar or club at weekends, whereas events related to ‘conference’ or

‘talk ’ likely occur at a university on working days. Identifying and exploiting such

correlations from event data is important to enrich data sources of locations with

meaningful descriptions. However, to the best of our knowledge, such an approach

has not been developed yet.

To determine correlations as the ones mentioned above, we distinguish three kinds

of event topics (ETs) with respect to a given location: (1) ETs that are prevalent

at that location but uncommon at other locations, (2) ETs that are popular at all

locations, and (3) ETs that rarely occur at that location but commonly occur at other

locations. Clearly, the ETs of the first category are more important and descriptive

to represent the characteristics of a location. Such event topics are called significant

topics. They will be the focus of this chapter to extract semantic annotations for

locations. Identifying ETs for the first category, however, is not trivial. A naive

method such as ranking ETs by counting their occurrences does not work, because

the results will be dominated by very common, generic topics. That is, ETs of the

second category will also be included. Thus, a suitable measure for the relevance of

an ET is fundamental. Moreover, an ET might be significant only with respect to a

given location at a particular time, e.g., on Saturdays. Therefore, temporal aspects

need to be considered as well. Another challenge is that hierarchies exist not only

for ETs but also for locations and time, and they need to be considered in deriving

meaningful location annotations.

To tackle the above challenges, we propose a framework to extract location anno-

tations from event data. For this, we introduce the concept of a Location-Time-pair

Class (LTC) to describe a group of location-time pairs that have the same location and

time concepts, e.g., [‘Stadium’,‘Weekend ’]. We define a measure to identify significant

event topics with respect to an LTC, based on Pointwise Mutual Information [86].

A set of significant topics with respect to an LTC is called a Location-Time-pair

Profile (LTP). LTPs are utilized further to derive semantic annotations for locations,

where an annotation is a pair of an event topic and a time concept, e.g., 〈‘Live-

music’,‘Weekend ’〉. Figure 6.1 shows the components of our framework. LTProfile-

Miner is an algorithm to extract LTPs from event datasets. Since extracting LTPs

consumes most of the time in the overall process, running LTProfile-Miner whenever

113

Figure 6.1: Conceptual framework for annotating event locations.

new events are added is very inefficient. Hence, to deal with periodic updates of

the input dataset, we also present another algorithm, called LTProfile-Updater, to

update the current set of location annotations. With the latter algorithm, we also

provide a scalable, efficient and ‘anytime’ approach to deal with large datasets that

do not fit in main memory and take a long time to process. Here, ‘anytime’ means

the algorithm can be interrupted at any time with a valid solution and resumed later

by using support-data stored on secondary storage.

Using external sources such as Wikipedia or Google Search, extracted annotations

of the famous locations, e.g., stadiums, museums, or theatres, can be manually val-

idated. Since there is no pre-existing ground-truth to validate all results obtained

from a given dataset, we indirectly measure how good the extracted annotations are

with location clustering.

In summary, the contributions of this chapter are as follows:

• We model semantic annotations for locations based on the concepts of events

and event components as introduced in Chapter 3.

• We propose a measure based on Pointwise Mutual Information to identify sig-

nificant ETs from event datasets.

• We develop an approach called LTProfile-Miner to derive location annotations

from event datasets. An approach called LTProfile-Updater is used to efficiently

deal with periodic updates of the datasets.

• We demonstrate the utility of extracted annotations in semantic location search

and clustering by using real event data crawled from the Website eventful.com.

In the following section, we discuss related work. In Section 6.3, we introduce the

basic concepts and notations. We describe our method to extract semantic annota-

tions for locations in Section 6.4. After presenting experimental results in Section 6.5,

we summarize the chapter in Section 6.6.

114

6.2 Related Work

Basically, the term ‘annotation’ means to attach information (metadata) to existing

data. An example is that Flickr users add tags to photos to describe what is shown

or the meaning of photos. However, such human effort-based annotation systems as

classified by a survey [6] are often noisy and incomplete.

Therefore, there have been many approaches to automatically annotate objects

in different formats such as textual documents, photos or videos, e.g., [9, 23, 62].

However, extracting annotations from spatio-temporal data like event data raises

many challenges, e.g., annotations might differ among regions as well as over time,

as discussed in [29]. Thus, such approaches cannot be directly applied to extract

location annotations from event datasets. Nevertheless, the idea of word-context

matrices and a statistical measure successfully used in annotating textual documents,

called Pointwise Mutual Information [86, 111], can be utilized to estimate correlations

among locations, time, and event topics. This will be described in more detail in

Section 6.3.2.

There are some approaches similar to our work in extracting annotations from

spatio-temporal data. One direction of research relies on location information from

external sources, such as the Google Maps API to annotate locations [5, 19, 21]. These

approaches first extract points of interest (e.g., stops from trajectory data), and then

annotate them with place categories (e.g., ‘hotel ’, ‘touristic place’, or ‘supermarket ’)

using external sources. Different from these approaches, we aim at extracting not

only place categories but also relevant event topics with respect to a given location,

important information that cannot be obtained from the above data sources.

Another direction of research aims at exploiting georeferenced social media to

describe and annotate geographic space. Rattenbury and colleagues proposed several

spatial clustering methods to identify Flickr tags corresponding to places and/or

events [94, 95]. Such tags can then be used to annotate geographic space on the

basis of discovered clusters. Similarly, the approach in [100] aims at extracting latent

geographic place semantics from Flickr data. Geographic space can then be annotated

using spatial distributions and coefficients of extracted features. Although the above

approaches focus on extracting annotations from spatio-temporal data, they are only

able to annotate geographic space in general and not specific locations. Furthermore,

these approaches do not explicitly model locations, in particular, they do not consider

location hierarchies.

115

To the best of our knowledge, little work has been done yet to annotate locations

with semantic tags. One of the most related work is [128], where the authors propose

a technique to annotate places with categorical tags such as ‘restaurant ’ or ‘cinema’

by exploiting social network data. They build a support vector machine classifier for

each predefined tag by learning from user check-in data with labeled places. Given

an unlabeled place, the classifiers predict the missing tag to categorize the place.

Similarly, the approach in [47] exploits check-in data to enrich places with semantic

tags that are extracted from user interest-profiles on social networks. Since interest-

profiles of users are often sparse and contain only a few keywords, they also extend

interest profiles with related information based on Wikipedia links.

Since the approaches as mentioned above basically rely on characteristics of check-

in data consisting of hidden user behaviors, they cannot be applied for event datasets

for the following reasons. First, these approaches require a significant number of

check-in records at a particular location and time to derive user behaviors. However,

only few events occur at a particular location and time in an event dataset. The

second reason is that a check-in record as described in their approaches is a triple

〈user, time, location〉 that does not contain semantic tags like an event description.

Thus, in their approaches, a candidate set of tags for locations needs to be either pre-

defined or obtained from an external source (user interest-profiles). Such a predefined

set of tags is often small and only contains generic tags describing place categories,

e.g., ‘restaurant ’ or ‘cinema’. Rather than focusing on generic tags describing place

categories like the above approaches, we aim at extracting more informative tags that

can be used to discriminate one location from another. Then, place categories can be

derived later on using clustering. Finally, we also take concept hierarchies for time,

locations and event topics into account, an important and useful piece of information

not considered by the above approaches.

6.3 Basic Concepts and Notations

In the following section, we specialize the notations and definitions of events and event

topics that utilize our event model for the purpose of extracting semantic annotations

for locations. Section 6.3.2 introduces the concepts of a Location-Time-pair Instance

and Class, and a measure based on normalized pointwise mutual information (npmi)

to model Location-Time-Profiles. Finally, in Section 6.3.3, we detail how to compute

npmi values from an event dataset.

116

Figure 6.2: Example of a concept hierarchy (event topics) related to football
games. Boxes represent event instances (event ID and names), circles represent
higher level topics.

6.3.1 Events and Event Components

Recall that we model an event as a tuple 〈eid, Context, Time, Location〉. The con-

text, time, and location components of an event can be generalized to higher levels

of abstraction and granularity, based on hierarchies. While Chapters 4 and 5 employ

this event model for the discovery of patterns that describe spatial, temporal, and

conceptual relationships among events, this chapter aims at the discovery of signifi-

cant correlations among the event components at different levels of abstraction and

granularity. Before describing our approach, we first specialize the context, location,

and time frameworks introduced in Sections 3.2, 3.3.1, and 3.3.2, respectively, for the

purpose of extracting semantic annotations for locations.

Briefly, the context component of an event represents a topic for that event. In

data sources that manage information about public activities (e.g., festivals, sports,

or concerts), an event context is typically provided as a textual description of the

corresponding event, e.g., ‘#10202 Borussia Dortmund vs Bayern Munich’ for a foot-

ball game. A context can be generalized to higher levels of abstraction, based on a

given concept hierarchy. For example, Figure 6.2 shows a simple hierarchy related to

football, where the context ‘#10202 Borussia Dortmund vs Bayern Munich’ can be

generalized to ‘DFL Supercup’, ‘National Game’, and then ‘Football Game’. Such a

hierarchy might be explicitly provided by the event data source, or it can be built

using a learning approach, e.g., an approach described by Cimiano et al. [26].

We employ the operator ⇑ (for event contexts, defined in Section 3.2.3) to compute

the set of all generalizations for a context in a given hierarchy. For example, ‘DFL Su-

117

Figure 6.3: Hierarchies for locations and time.

percup’⇑ is the set {‘National Game’, ‘Football Game’} based on the hierarchy shown

in Figure 6.2. In this chapter, event contexts and their generalizations are called

event topics (ETs), which are key ingredients of semantic annotations for locations.

The time component of an event is typically specified as a time point (e.g., ‘2013-

06-27 ’) of a temporal granularity (e.g., Day). In this chapter, since we focus on

events such as festivals, sports, or concerts, we assume that the time of an event is

specified at (or can be mapped to) the granularity Day. By utilizing a predefined time

hierarchy, an event time can be generalized to time concepts. For example, a time

point ‘2013-06-27 ’ can be generalized to ‘Friday ’ → ‘BusinessDay ’ → ‘All Time’,

or ‘June’ → ‘Summer ’ → ‘All Time’, based on the time hierarchy in Figure 6.3(a).

We use the operator ⇑ (for time components of events, introduced Section 3.3.2) to

compute the set of all generalizations of a time point. By applying this operator on

the time point in the previous example, we obtain a set {‘Friday ’, ‘BusinessDay ’,

‘June’, ‘Summer ’, ‘All Time’}.
Finally, the location component of an event describing where the event occurred

is specified at a location granularity. Since an event like a concert or a football

game takes place at a particular location, e.g., an arena or a stadium, we assume

that locations of events are of granularity Address. They can be generalized to a

coarser granularity like City or to a location concept (place category) like ‘Stadium’,

based on a predefined hierarchy. For example, based on the location hierarchy shown

in Figure 6.3(b), a location ‘Signal Iduna Park ’ (a football stadium in Dortmund,

Germany), is generalized as: ‘Signal Iduna Park ’ → ‘Dortmund ’ → ‘Germany ’ →
‘All Loc’, or ‘Signal Iduna Park ’→ ‘Stadium’→ ‘All Loc’. Note that ‘Place Category ’

in Figure 6.3(b) might be replaced by a location taxonomy. For example, ‘Signal Iduna

Park ’ can be generalized to ‘Football venue in Germany ’, ‘Football venue’, and then

‘Sports venue’, based on a taxonomy of locations, e.g., the Wikipedia categorization.

118

We again use the ⇑ operator to specify the generalizations of a location. For exam-

ple, ‘Signal Iduna Park ’⇑ is the set {‘Dortmund ’, ‘Germany ’, ‘Stadium’, ‘All Loc’},
based on the hierarchy in Figure 6.3(b).

Given an event topic f 1(e.g., ‘Football Game’), a time concept T (e.g., ‘Weekend ’),

and a location L (e.g., ‘Stadium’), one might find some events whose respective com-

ponents are related to f , T , and L from a given event dataset. The more such events

are found, the more significant the association of f , T , and L is. In reality, some

associations are more significant than others. For example, it is more likely to find

events related to ice skating in Winter than in Summer, or it is more likely to find

a rock festival in some cities (such as Nürburg or Munich) than in other cities. To

model such associations, we introduce the concepts of a Location-Time-pair Instance

and a Location-Time-pair Class in the following section.

6.3.2 Location-Time-pair Instances and Classes

Using the above notations of events and event topics, we now introduce the concepts

of a Location-Time-pair Instance and Class to model Location-Time-Profiles.

Let D be a dataset of events as 〈eid, Context, Time, Location〉 tuples, where

the time and location components of each event are of granularity Day and Address,

respectively. To formulate the probability to find an event topic at a given location

and time later on, we define a Location-Time-pair Instance (LTI) as a pair [l, t], where

l and t are the location and time of some event in D. The set of LTIs with respect to

a given dataset D of events is defined as below.

Definition 6.1 (LTI Set) Given a dataset D of events, the LTI set of D is de-

fined as:

I(D) := {[l, t] | ∃e ∈ D, e.Location = l ∧ e.Time = t}. (6.1)

Given an LTI [l, t] ∈ I(D), D[l, t] denotes a subset of D where the location and time

of each event in D[l, t] are l and t, respectively, i.e.,

D[l, t] := {e ∈ D|e.Location = l ∧ e.Time = t}. (6.2)

As mentioned before, a location l can be generalized to a concept L based on

a given location hierarchy, e.g., ‘Signal Iduna Park ’ → ‘Stadium’ → ‘Sports-venue’.

Similarly, a time point t can be generalized to a time concept T , based on a time

hierarchy, e.g., ‘2013-07-28 ’ → ‘Sunday ’ → ‘Weekend ’. The pair [L, T] is called a

1In this chapter, we often use ‘e’ to denote an event and ‘f ’ to denote an event topic.

119

Location-Time-pair Class (LTC) and the LTI [l, t] is called an instance of that LTC.

Continuing the examples above, one can infer that [‘Signal Iduna Park ’, ‘2013-07-28 ’]

is an instance of [‘Stadium’, ‘Weekend ’]. A formal definition of LTCs is as follows.

Definition 6.2 (LTC Set) Given a dataset D of events, a time hierarchy, and a

location hierarchy, the LTC set of D is defined as:

C(D) := {[L, T] | ∃[l, t] ∈ I(D), L ∈ l⇑ ∧ T ∈ t⇑}. (6.3)

Given an LTC Ω = [L, T] ∈ C(D), an LTI ω = [l, t] ∈ I(D) is an instance of the

LTC Ω iff L ∈ l⇑ and T ∈ t⇑.

Given an LTC, it is straightforward to retrieve the set of its instances (LTIs). For

each LTI, event topics can then be generated from events in that LTI. Therefore,

it is reasonable to determine the correlation between a given LTC and an ET by

analyzing the occurrences of that ET in the LTC. Clearly, ETs that are strongly

related to an LTC are important to represent the characteristics of that LTC. For

example, topics such as ‘football ’, ‘sport ’, or ‘celebration’ are expected for the LTC

[‘Stadium’, ‘Weekend’], whereas ‘drink ’, ‘live music’, or ‘shows ’ are expected for the

LTC [‘Bar/Club’,‘Weekend ’].

To formulate the correlations as mentioned above, we borrow an idea from Compu-

tational Linguistics to compute the correlation between a word and a context [25, 111].

Here, we consider an LTC a word and an ET a context. A word-context matrix (here

called LTC-ET matrix) has the following properties:

(1) Each row corresponds to an LTC.

(2) Each column corresponds to an ET.

(3) The value of the element at a row Ω and a column f is the probability to find an

LTI of the LTC Ω containing an instance (event) of the ET f . In other words,

it is the joint probability P(f ,Ω).

A measure to compute the correlation between a word and a context, called Point-

wise Mutual Information (pmi), is proven to work well to compute semantic similar-

ities among words [86]. Also considering semantic similarities among locations later

on, we employ this measure to compute the correlation between an LTC and an ET.

The pmi value for an ET f with respect to an LTC Ω is computed from the two

following probabilities:

120

(1) the probability to find f at any instance (LTI) of Ω, i.e., the conditional prob-

ability P(f |Ω), and

(2) the probability to find f at any LTI in the dataset, i.e., P(f)

The measure is defined as below.

Definition 6.3 (Pointwise Mutual Information) Given an ET f and an LTC

Ω, the pointwise mutual information (pmi) of f and Ω is defined as:

pmi(f ; Ω) := log

(
P (f |Ω)

P (f)

)
= log

(
P (f,Ω)

P (f)P (Ω)

)
. (6.4)

In the above definition, a pmi value of an ET f with respect to an LTC Ω represents

the logarithmic difference between the two probabilities P(f |Ω) and P(f). Thus, the

pmi can be zero, positive or negative. If it is zero, i.e., P(f |Ω) = P(f), f and Ω are

independent. If the value is positive, i.e., P(f |Ω) > P(f), the events related to f

occur more likely at Ω than at other LTCs. If the value is negative, i.e., P(f |Ω) <

P(f), the events related to f more rarely occur at Ω than at other LTCs.

The pmi measure can be normalized to a value between [-1,+1], where -1 means

negatively correlated, 0 for independence, and +1 for perfectly correlated [13].

Definition 6.4 (Normalized Pmi) Given an event topic f and an LTC Ω, the

normalized pointwise mutual information (npmi) of f and Ω is defined as:

npmi(f ; Ω) :=
pmi(f ; Ω)

− log(P (f,Ω))
∈ [−1, 1]. (6.5)

As shown in Formulas (6.4) and (6.5), the npmi measure represents the difference

between the probabilities P(f |Ω) and P(f). Therefore, the npmi measure typically

gives an ET a high score with respect to a given LTC if the ET frequently occurs

at that LTC but rarely at other LTCs. For example, in our experiments with sports

events crawled from the Website eventful.com, the topics ‘borussia’ or ‘bundesliga’

get higher npmi scores than the topics ‘football ’ or ‘soccer ’ with respect to an LTC

[‘Signal Iduna Park ’, ‘Weekend ’]2. One can see that the first three topics are better

to identify that LTC, and thus, they have priority over the last two topics to annotate

the location ‘Signal Iduna Park ’. In addition, if a rare ET is found only at a given

LTC, the npmi measure also gives the ET a high score with respect to that LTC,

2Signal Iduna Park is the home stadium of the Borussia Dortmund football team playing in the
German Bundesliga.

121

even if the ET contains very few instances. Such ETs are common in real event

datasets, for instance, annual festivals at a particular location (e.g., ‘Oktoberfest ’ in

Munich - Germany, or ‘Puccini Festival ’ in Torre del Lago - Italy). This is different

from using a frequency-based measure such as the tf-idf (term frequency - inverse

document frequency). Although the measure tf-idf increases the score of a rare ET

with the idf factor, it still gives low scores for very rare ETs because of the tf factor.

Another advantage of the npmi measure is as follows. Since a frequency-based

measure like the tf-idf always gives a non-negative value, it is not trivial for the user

to pick a good threshold in order to filter out irrelevant ETs. On the other hand, a

non-positive npmi value indicates an insignificant correlation between an ET and an

LTC, thus, one can use any positive threshold δ to filter out irrelevant ETs (whose

npmi values are zero or negative). With a positive threshold δ, one can select only

ETs that have significant correlations to a given LTC. A set of such event topics is

called a Location-Time-Profile.

Definition 6.5 (Location-Time-Profile) Let D be a dataset of events and Ω be

an LTC in C(D). The profile of Ω with respect to a given threshold δ > 0 is a set of

ETs, defined as:

Profile(Ω) := {f ∈ e.Context⇑| e ∈ D ∧ npmi(f ; Ω) ≥ δ}. (6.6)

For a particular purpose such as location clustering where feature selection can

be viewed as a form of weighting, both the npmi and tf-idf can be used. However, as

shown in our experiments later, the npmi measure performs better than tf-idf when

considering semantic similarity between locations.

In the next section, we present a method to compute the npmi from the observed

events in the input dataset D.

6.3.3 NPMI Estimation

To estimate the probabilities in Formulas 6.4 and 6.5, we define support of an

event topic.

Definition 6.6 (Support) Let D be a dataset of events and f be an ET. An LTI

[l, t] supports f iff there exists an event e ∈ D[l, t] such that e is an instance of f .

For example, because the event e = 〈‘#10202’,‘Borussia Dortmund vs Bayer

Munich’, ‘2013-06-27’, ‘Signal Iduna Park’ 〉 is an instance of an ET f =‘Football

Game’, one can infer that [‘Signal Iduna Park ’, ‘2013-06-27 ’] supports f .

122

instances of A (x3)

instances of B (x10)

instances of C (x15)

T T’

L

L’

t1 t2 t3 t4 t5 t6

l1

l2

l3

l4

l5

l6

Time

Location

Figure 6.4: A toy dataset to illustrate the npmi measure. There are 6 locations (l1,
l2, ..., l6) and 6 time points (t1, t2, ..., t6) in the dataset. The locations l1, l2, l3 are
generalized to a location concept L; the other locations are generalized to a location
concept L′. The time points t1, t2, t3 are generalized to a time concept T ; the other
time points are generalized to a time concept T ′. The LTC of interest is marked as a
box. A, B, C are event topics, where all instances of A (3

3
), 60% instances of B (6

10
),

and 20% instances of C (3
15

) occur inside the box.

Given an event dataset D, an ET f , and an LTC Ω, we now estimate the proba-

bilities P(f ,Ω), P(f), and P(Ω) in Formulas 6.4 and 6.5.

Let N be the size of the LTI set of D (i.e., N = |I(D)|), Nf be the number of LTIs

in I(D) that support f , NΩ be the number of LTIs in I(D) that are instances of Ω,

and Nf,Ω be the number of instances of Ω in I(D) that support f . The probabilities

P(f ,Ω), P(f), and P(Ω) are estimated as:

P (f,Ω) =
Nf,Ω

N
, P (f) =

Nf

N
and P (Ω) =

NΩ

N
.

Thus,

pmi(f ; Ω) = log

(
P (f,Ω)

P (f)P (Ω)

)
= log

(
Nf,Ω

N
Nf

N
∗ NΩ

N

)
= log

(
Nf,Ω ∗N
Nf ∗NΩ

)

and

npmi(f ; Ω) =
pmi(f ; Ω)

− log(P (f,Ω))
=

log
(
Nf,Ω∗N
Nf∗NΩ

)
− log

(
Nf,Ω

N

) =
log
(
Nf,Ω∗N
Nf∗NΩ

)
log
(

N
Nf,Ω

) . (6.7)

We illustrate the npmi measure by using a toy dataset shown in Figure 6.4. One

can see that in comparison to instances of the event topic B, instances of event topics

123

A and C are more likely to occur at a location and time related to the LTC Ω = [L, T]

(marked as a box). We now show how to verify this fact with the npmi measure. For

this, we compute the npmi values for A, B, and C with respect to the LTC Ω, as

shown below.

npmi(A; Ω) =
log
(
NA,Ω∗N
NA∗NΩ

)
log
(

N
NA,Ω

) =
log
(

3∗36
3∗9

)
log
(

36
3

) = 0.56

npmi(B; Ω) =
log
(
NB,Ω∗N
NB∗NΩ

)
log
(

N
NB,Ω

) =
log
(

6∗36
10∗9

)
log
(

36
6

) = 0.49

npmi(C; Ω) =
log
(
NC,Ω∗N
NC∗NΩ

)
log
(

N
NC,Ω

) =
log
(

3∗36
15∗9

)
log
(

36
3

) = −0.09

Clearly, the values of npmi(A; Ω) and npmi(B; Ω) are positive whereas the value

of npmi(C; Ω) is negative. Moreover, since the value of npmi(A; Ω) is larger than the

value of npmi(B; Ω), one can infer that the correlation between the event topic A and

the LTC Ω is stronger than the correlation between the event topic B and the LTC

Ω. This is reasonable because instances of A can be found only at a location and

time related to the LTC Ω while instances of B are sometimes found at a location and

time not related to the LTC Ω. The event topic A in this example is an illustration

of rare events that can be found only at a particular location and time.

In conclusion, the npmi is useful to determine the correlation between an ET and

an LTC, and a positive npmi threshold can be used to filter out insignificant ETs

with respect to a given LTC.

6.4 LT-Profiles and Applications

We now introduce our approach to generate LT-Profiles from an event dataset, and

a scalable and efficient method to deal with periodic updates of the input data. We

then show how to convert such profiles into location annotations. Finally, we describe

how to exploit such information in semantic location search and clustering.

124

6.4.1 Generating Location-Time-Profiles

Given a dataset D of events, a set H of hierarchies for generating ETs from events

and for generating location and time concepts, and a npmi threshold δ, this section

describes a procedure to find all profiles as defined in Definition 6.5.

The process of generating profiles for LTCs consists of two steps: (1) generate

LTCs and their ET candidates, and (2) for each LTC, filter out ETs in the candidate

set whose npmi value does not satisfy the threshold.

Algorithm 6.1: LTProfile-Miner

Input:
(a) D: event dataset
(b) H: set of hierarchies (with support of ⇑ operation)

(c) δ: npmi threshold

Output: set of all LTPs
/* Step 1: Generate LTCs and ET candidates */

1 LTI Set = {[e.Location, e.T ime] | e ∈ D} ;
2 LTC Set = {};
3 foreach LTI ω = [l, t] ∈ LTI Set do
4 foreach LTC Ω = [L, T] ∈ l⇑ × t⇑ do
5 if Ω /∈ LTC Set then
6 LTC Set = LTC Set ∪ {Ω};

// initialize the set of ET candidates for Ω
7 Candidates[Ω] = {};
8 Candidates[Ω] = Candidates[Ω] ∪ {f ∈ e.Context⇑ | e ∈ E[l, t]};

/* Step 2: Filter out insignificant ETs */

9 compute the support set for each ET f ∈ Candidates (Support ET [f]);
10 compute the support set for each LTC Ω ∈ LTC Set (Support LTC[Ω]);
11 initialize the list Profile[];
12 N =| LTI Set |;
13 foreach Ω ∈ LTC Set do
14 Profile[Ω] = {};
15 foreach f ∈ Candidates[Ω] do
16 Nf = | Support ET [f] |;
17 NΩ = | Support LTC[Ω] |;
18 Nf,Ω = | Support ET [f]

⋂
Support LTC[Ω] |;

19 npmi=log(
Nf,Ω∗N
Nf∗NΩ

)/log(N
Nf,Ω

) ;

20 if npmi ≥ δ then
21 Profile[Ω] = Profile[Ω] ∪ {f};

22 return Profile;

Lines 1-8 in Algorithm 6.1 show the pseudocode of the first step. In Line 1, a set

of LTIs (LTI Set) is computed by scanning all events in the dataset D. The set of

LTCs (LTC Set) are then generated from these LTIs, as shown in Lines 3-6. For each

125

Table 6.1: Descriptions of the variables used in Algorithm 6.1
Variable Type Description
LTI Set set of LTIs set of all LTIs extracted from the input dataset D (I(D))
LTC Set set of LTCs set of all LTCs derived from the LTI Set
Candidates[Ω] set of ETs set of topic candidates for each LTC Ω ∈ LTC Set (C(D))
Support ET [f] set of LTIs set of LTIs that support an ET f ∈ Candidates
Support LTC[Ω] set of LTIs set of LTIs that are instances of an LTC Ω ∈ LTC Set
Profile[Ω] set of ETs set of significant ETs for each LTC Ω ∈ LTC Set
N numeric number of all LTIs in the input dataset
Nf numeric number of LTIs that support an ET f ∈ Candidates
NΩ numeric number of instances of an LTC Ω ∈ LTC Set
Nf,Ω numeric number of instances of Ω that support f

LTC Ω derived from an LTI ω, a set of ET candidates (Candidates[Ω]) is generated

from the set of events in the LTI ω (Line 8).

To filter out insignificant ETs with respect to an LTC, the npmi of an LTC and

an ET candidate needs to be computed. A naive method is to consider separately

each LTC-ET pair. However, such a method is inefficient since the LTI Set will

be scanned multiple times for counting LTIs to compute the npmi by employing

Equation (6.7). Thus, to compute npmi values efficiently, we use two data structures,

called Support ET and Support LTC, where each one is a hash table mapping keys

to LTI sets. The first hash table (Support ET) maps ETs to LTI sets. Given an ET

f , the set of LTIs that support f is retrieved by using the hash table Support ET .

This set is denoted Support ET [f]. The second hash table (Support LTC) maps

LTCs to LTI sets. Similarly, given an LTC Ω, Support LTC[Ω] is a set of LTIs that

are instances of the LTC Ω. As shown in the pseudocode, the hash tables Support ET

and Support LTC are computed in Lines 9 and 10. Utilizing these data structures

allows the npmi for each pair of an LTC and an ET candidate to be computed with

several set operations, as shown in Lines 16-19. Finally, the profile of each LTC Ω

in the LTC Set is computed by selecting all ETs in the candidate set whose npmi

values satisfy the threshold δ (Lines 20-21).

The (runtime) complexity of Algorithm 6.1 is closely related to the characteristic

of the dataset D. In particular, it depends on the following elements:

1. number of events (ne) in D,

2. number of LTIs (ni) that are derived from the events,

3. average number of events (nei) in an LTI,

4. total number of LTCs (nc) that are derived from the LTIs,

126

5. average number of LTCs (nci) that are derived from an LTI,

6. number of ETs (nf) that are generalized from the events,

7. average number of ETs (nfc) generalized from the events of an LTC.

By using these variables, we analyze the complexity of Algorithm 6.1 as de-

tailed below.

The complexity of Algorithm 6.1 consists of five components: (1) generate

LTI Set in Line 1, (2) generate the LTC Set and ET candidates in Lines 3-8,

(3) compute Support ET in Line 9, (4) compute Support LTC in Line 10, and

(5) filter out insignificant ETs in Lines 13-21. They are individually analyzed in

detail as follows.

Clearly, the complexities of the components (1) and (2) are O(ne) and O(nincinfc),

respectively. The complexity to build Support ET (the third component) is

O(nfninei), since each element (corresponding to an ET) is computed by scanning

through all the LTIs and considering all events inside each LTI. The complexity to

build Support LTC (the fourth component) is O(ncni), with an assumption that

checking generalization relationships between an LTI and an LTC can be done with

one instruction.

With the two data structures in Lines 9 and 10, the time to compute each npmi

depends on only a few set operations, and it can be considered small if sets are imple-

mented as hash sets. Therefore, the complexity of the fifth component is O(ncnfc).

Thus, the overall complexity of the algorithm is O(ne + nincinfc + nfninei + ncni +

ncnfc). In real datasets, the number of events ne, the number of LTIs ni and the

number of LTCs nc are much larger than the other variables. Thus, the complexity

can be simplified to O(ne + ninc).

6.4.2 Updating Location-Time-Profiles

In the previous section, we presented an algorithm to mine LTProfiles from a given

dataset of events. Such a dataset consists of events in a certain time-interval (e.g.,

[2011,2012]), thus, the extracted profiles are only valid in this interval. In reality,

datasets are incrementally updated. For example, events in 2013 are added to a

dataset of events in [2011,2012]. Running again LTProfile-Miner for the merged

dataset is a possible solution, which, however, is neither efficient nor scalable. To

adapt to periodic updates of event data, we propose another algorithm, called

LTProfile-Updater.

127

Algorithm 6.2: LTProfile-Updater

Input:
(a) D∗: dataset of new events to update (event delta)
(b) H∗: set of hierarchies for the events in D∗

(c) δ: npmi threshold

Output: set of all LTPs
1 Load the following variables from a secondary storage: {LTC Set, Candidates,
Support ET Size, Support LTC Size, Support LTC ET Size, N};
/* Step 1: Update the LTC Set and Candidates */

2 LTI Set∗ = {[e.Location, e.T ime] | e ∈ D∗};
3 foreach LTI ω = [l, t] ∈ LTI Set∗ do
4 foreach LTC Ω = [L, T] ∈ l⇑ × t⇑ do
5 if Ω /∈ LTC Set then
6 LTC Set = LTC Set ∪ {Ω};

// initialize the set of ET candidates for Ω
7 Candidates[Ω] = {};
8 Candidates[Ω] = Candidates[Ω] ∪ {f ∈ e.Context⇑ | e ∈ E[l, t]};

/* Step 2: Filter out insignificant ETs */

9 compute Support ET ∗[f] for each ET f , and Support LTC∗[Ω] for each LTC Ω from D∗
and H∗;

10 initialize the list Profile[];
11 N = N + |LTI Set∗|;
12 foreach Ω ∈ LTC Set do
13 Profile[Ω] = {};
14 foreach f ∈ Candidates[Ω] do
15 Nf = Support ET Size[f]+ | Support ET ∗[f] |;
16 NΩ = Support LTC Size[Ω]+ | Support LTC∗[Ω] |;
17 Nf,Ω = Support LTC ET Size[f,Ω] + | Support ET ∗[f]

⋂
Support LTC∗[Ω] |;

18 npmi=log(
Nf,ΩN
NfNΩ

)/log(N
Nf,Ω

) ;

19 if npmi ≥ δ then
20 Profile[Ω] = Profile[Ω] ∪ {f};
21 Support ET Size[f] = Nf ;
22 Support ET Size[Ω] = NΩ;
23 Support LTC ET Size[f,Ω] = Nf,Ω;

24 Store the following variables to a secondary storage: {LTC Set, Candidates,
Support ET Size, Support LTC Size, Support LTC ET Size, N};

25 return Profile;

128

Assume that after executing LTProfile-Miner (Algorithm 6.1), the follow-

ing intermediate values are stored on secondary storage: LTC Set, Candidates,

Nf (as an element of a list Support ET Size[f]), NΩ (as an element of a list

Support LTC Size[Ω]), Nf,Ω (as an element of a matrix Support LTC ET Size[f,Ω]),

and N . One can find the descriptions of these values in Table 6.1. Such data, called

support-data, contain sufficient information to extract profiles without considering

the original (previous) dataset D.

As shown in Line 1 of Algorithm 6.2, LTProfile-Updater first loads the support-

data and then combines it with the update (D∗, H∗) to update the current location

profiles. Note that in Algorithm 6.2, we use ‘*’ to denote values computed from the

update. Basically, LTProfile-Updater is similar to LTProfile-Miner, but it utilizes the

support-data so that only the update D∗ is scanned (Line 2-8).

It is reasonable to assume that each event in D∗ occurred after all events in D,

i.e., events in D∗ are newer than events in D. Therefore, there is no overlap between

the LTI sets of the two datasets. Thus, the values of N , Nf , NΩ and Nf,Ω can be

computed as shown in Line 11-17. For future updates, such variables are also updated

and stored on secondary storage (Line 21-24).

In Algorithm 6.2 (Lines 18-20), one can see that the npmi of each LTC-ET pair

is recomputed and compared to the threshold δ. Therefore, with new events from

the update (D∗, H∗), LTProfile-Updater might add new ETs to a profile and remove

from it all ETs that become irrelevant. In other words, the profiles that are previously

computed might change after updating. Consequently, the annotations derived from

these profiles are also updated. Although the algorithm LTProfile-Updater is designed

for the purpose of making annotations of locations up-to-date, it is trivial to extend

this algorithm to also maintain the history of annotations for each location.

By employing LTProfile-Updater, an anytime approach to deal with very large

datasets works as follows. First, the events in a (large) dataset D are sorted by

the time attribute and partitioned in increasing order into sub-datasets D0, D1,

D2,. . . such that each Di fits into main memory. LTProfile-Miner is then called to

compute the support-data from D0. Finally, LTProfile-Updater is iteratively called

for each Di (i ≥ 1). If the mining process is interrupted after processing Di, the

results are valid until the latest time in Di.
Since the complexity of LTProfile-Updater and LTProfile-Miner can be analyzed

in an analogous way, we omit the complexity analysis for LTProfile-Updater here.

129

6.4.3 Location Annotations

In the previous sections, we presented efficient methods to extract and update

Location-Time-Profiles from event datasets. In this section, we describe how to

utilize such profiles in annotating locations.

Location-Time-Profiles, each consisting of significant ETs at an LTC, can be ex-

ploited to annotate locations. Here, we define a location annotation as a set, where

each element is a pair of an event topic and a time concept. For example, anno-

tation elements for a bar/club might be 〈jazz, Tuesday〉, 〈live music,Weekend〉 or

〈dancing,All Time〉. We now give a formal definition of location annotations.

Definition 6.7 (Location Annotation) Let D be an event dataset. The annota-

tion of a location (or location concept) L is a set defined as:

Annotation(L) := {〈f, T 〉 | Ω = [L, T] ∈ C(D), f ∈ Profile(Ω)}. (6.8)

Once the set of profiles is generated, generating annotation for a location L is

straightforward. First, a set of all profiles related to L (i.e., their LTCs are of the

form [L,*]) is selected. The annotation of L is a set consisting of elements of the form

of 〈f, T 〉, where T is a time concept and f is an ET in the profile of the LTC [L, T].

From a given dataset of events, all location annotations are generated in two steps.

First, profiles are generated with Algorithm 6.1 or updated with Algorithm 6.2. Next,

for each location appearing in some LTC, its annotation is generated by the process as

described above. In the next section, we will describe how to exploit such annotations

in semantic location search and clustering.

6.4.4 Similarity Measure for Locations

Typically, a location-based service manages information about a large number of

locations. To efficiently categorize and organize these locations, one needs a measure

to determine how similar two locations are. For this, we define a similarity measure

for locations based on events. Basically, the more common event topics two locations

have, the more similar they are. We detail this idea in the following.

Given two locations L1 and L2, and their annotations AL1 and AL2, respectively,

the similarity between the two locations is defined by using the Jaccard Index as:

sim(L1, L2) :=
|AL1 ∩ AL2|
|AL1 ∪ AL2|

∈ [0, 1]. (6.9)

130

This measure allows one to find locations that are similar to a given location or

just to rank the results, for example in the query “Find all cities in the US like Munich

(in Germany) in terms of festivals”. For such a query, the system typically provides

a graphical user interface that enables the user to specify a location of interest (e.g.,

Munich), an event topic of interest (e.g., festival), and spatial/temporal constraints

(e.g., in the US, or from 2010 to 2012).

6.4.5 Location Clustering based on Annotations

Cluster analysis is a useful task to organize a large number of objects [43]. In this

section, we utilize location annotations to cluster locations. Our goal is to cluster

locations on the basis their semantic similarity. For example, stadiums are expected

to be the same cluster. For this, we define a (semantic) distance function between

two locations L1 and L2 as

dist(L1, L2) := 1− sim(L1, L2), (6.10)

where sim(L1, L2) is the similarity between the locations L1 and L2, computed by

employing Equation 6.9. With this distance function, locations can then be clustered

with one of the various clustering algorithms such as hierarchical clustering.

In Section 6.3.1, we assumed that locations can be generalized to location concepts

based on a given simple taxonomy (e.g., ‘Signal Iduna Park’ → ‘Stadium’). To build

a more complex taxonomy for locations, a hierarchical clustering method is used, and

then labels of clusters are automatically generated from the set of annotations. For

example, a label might be a combination of the top-k most frequent ETs of annota-

tions in the corresponding cluster. These labels can be refined further by the user, for

example, a cluster of locations related to ‘football’, ‘soccer’ and ‘bundesliga’ might

be labeled as ‘German football stadium’. Following that, taxonomies of locations are

generated. Such taxonomies can be encoded in RDF and linked to other data sources,

e.g., point-of-interest (POI) data, to enrich them.

6.5 Experimental Evaluation

We demonstrate the utility and efficiency of our approach using datasets crawled from

the Website eventful.com for different topics from 2011 to 2012. Our framework is

implemented in Java and runs with 24GB heap size. All experiments were run on an

131

Table 6.2: Properties of datasets used in experiments.

Dataset Topic Area
Number of Events Number of

2011 2012 Total Locations
DE-Sports sports Germany 1,335 1,673 3,008 960
DE-Festival festival Germany 1,278 1,654 2,932 1,515
EU-Festival festival Europe 13,592 20,561 34,143 18,018
DE-Music music Germany 24,756 32,398 57,154 12,591
DE-All all topics Germany 72,672 85,995 158,667 20,141

Figure 6.5: Hierarchies for locations and time used in the experiments.

Intel Xeon 2.27GHz with 48GB RAM, running Ubuntu 64bit. In the following, we

first describe the setup of our experiments and then present the experimental results.

6.5.1 Datasets and Experimental Setup

To determine how good an annotation extracted for a particular location is, one needs

background knowledge about that location. Therefore, we consider events in Germany

and only festivals (as one event topic) in Europe in our experiments to easily validate

the results later on. These events were crawled by using the eventful.com API. As

raw data, each event consists of an event identifier, title, time, location, and a list of

tags. Tags can be considered keywords attached to events to categorize events. Based

on tags, one can select events for a particular topic, e.g., ‘sport ’, ‘festival ’, or ‘music’.

As mentioned in the complexity analysis, the runtime complexity of Algorithm 6.1

depends on not only the number of events but also the number of locations (more

precisely, LTIs). Hence, for evaluation purposes, we consider different datasets of

various topics and sizes in terms of the number of events and the number of locations.

Table 6.2 shows the datasets used in our experiments, where the first two datasets

(DE-Festival and DE-Sports) are smaller than the last three. All events took place

in Germany or Europe in the years 2011 and 2012.

132

Similar to the experiments presented in the previous chapter, the raw data of

events are transformed into the form 〈eid, Context, T ime, Location〉, where eid is the

event identifier and the last three components are the following attributes: the event

identifier3, start-time, and venue identifier, respectively. Following that, the context

of an event can be generalized to higher levels of abstraction by utilizing the mapping

from the set of event identifiers to the set of tags. We also employ the hierarchy for

tags described in the previous chapter (see Section 5.6.1 - page 101).

For locations, we use the hierarchy as shown in Figure 6.5(a), and we aim at

extracting annotations for locations at the following levels of abstraction: Address,

City, and Place Category. For time, we use the hierarchy as shown in Figure 6.5(b),

where the time component of an event in Day is generalized to Day of the Week

(Mon, Tue, etc.), then Businessday/Weekend (BD/WE), and finally All Time(AT).

With the above settings, we conducted a series of experiments to evaluate our

framework. In the following section, we present the results obtained from extracting

location annotations for the five datasets. We then demonstrate the utility of these

annotations in location clustering in Section 6.5.3. Finally, we show the efficiency of

Algorithms 6.1 and 6.2 in Section 6.5.4.

6.5.2 Annotation Extraction

First, we run Algorithm 6.1 to obtain LT-Profiles for the five datasets for the two years

(2011-2012). Then, annotations for locations are obtained using the method described

in Section 6.4.3. Table 6.3 shows the result statistics, where the five datasets are run

with different npmi thresholds (δ). Basically, the larger the threshold δ, the less

locations are annotated, but the more confident the annotations are. With δ = 0.1,

about 70-90% of the locations were annotated, whereas less than 30% of the locations

were annotated when δ > 0.5.

Since there is no pre-existing ground-truth, we manually validate only the ex-

tracted annotations of the famous locations in the datasets by using external data

sources (e.g., Google Search or Wikipedia). Table 6.4 shows annotations of some fa-

mous locations that we obtained. Note that the words describing topics are stemmed,

and an item of a location annotation is followed by its npmi value, e.g., socc WE:0.39

for ‘soccer ’ on Weekends.

By utilizing the annotations, one can easily find locations related to some given

event topics. For example, NürnbergMesse (Germany) will be found when we search

3Event identifiers are used for two purposes: to distinguish an event from others and to link event
contexts to tags.

133

Table 6.3: Result Statistics.

Dataset
Total The number of annotated locations

locations δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.5
DE-Sports 960 808 798 769 451 331

(84%) (83%) (80%) (46%) (34%)
DE-Festival 1,515 1,163 1,154 988 790 539

(76%) (76%) (65%) (52%) (35%)
EU-Festival 18,018 16,237 15,101 13,636 10,877 7,144

(90%) (83%) (75%) (60%) (39%)
DE-Music 12,591 8,848 7,385 6,123 4,811 3,757

(70%) (58%) (48%) (38%) (29%)
DE-All 20,141 15,767 12,097 10,368 7,561 5,511

(78%) (60%) (51%) (37%) (27%)

Table 6.4: Annotations of some famous locations, extracted from the experimental
datasets. Items in each annotation are sorted by their npmi values.

Location/Granularity Annotation
DE-Sports

Signal Iduna Park -
Dortmund (Address)

{borussia Sat:0.66, borussia WE:0.61, borussia AT:0.56, bundesliga Sat:0.46,
bundesliga WE:0.42, football WE:0.32, socc WE:0.29,...}

Oschersleben Sachsen-
Anhalt (City)

{circuitracing AT:0.81, circuitracing WE:0.77, motorsport AT:0.71, au-
tosport AT:0.70, racing AT:0.69, motorsport WE:0.68,...}

DE-Festival
Kino Babylon Mitte -
Berlin (Address)

{filmfestival BD:0.63, filmfestival Thu:0.63, movi BD:0.59, movi Thu:0.59,
film BD:0.55, film Thu:0.55, filmfestival AT:0.54, movi AT:0.50,...}

Messe Essen GmbH
(Address)

{expo Thu:0.66, fashion Sat:0.66, convention Thu:0.66, fashion WE:0.64, home-
exhibition Fri:0.58, industry AT:0.49, expo BD:0.48,...}

DE-Music
Bar/Night Club (Place
category)

{elektronic WE:0.55, hardstyl WE:0.55, nightlif WE:0.52, tranc WE:0.45,
rhythmnblu BD:0.43, elektronic AT:0.42, hardstyl AT:0.42,...}

Concert Hall (Place
category)

{philharmonieess AT:0.67, doommetal Tue:0.49, epic Tue:0.49, jamses-
sion Mon:0.48, monstrosity Wed:0.46, greatesthit Mon:0.46,...}

DE-ALL
Nürnberg Messe (Ad-
dress)

{softwar AT:0.62,expopromot AT:0.53,school&alumni AT:0.52, tool AT:0.42,
tradeshow AT:0.41,scienc AT:0.41, business AT:0.41,...}

Philharmonie Berlin
(Address)

{klassischekonzert AT:0.64, cultur AT:0.54, klassisch AT:0.54, classical AT:0.53,
cultur WE:0.49, symphony WE:0.44, violin Mon:0.42,...}

EU-Festival
Torre del Lago - Tus-
cany - Italy (City)

{art&theatr AT:0.87, art&theatr BD:0.84, art&theatr WE:0.73, opera AT:0.27,
opera BD:0.26, opera Fri:0.24, opera WE:0.22,...}

LilianBaylisTheatre -
London (Address)

{ballet AT:0.80, ballet BD:0.77, ballet WE:0.69, clubbing WE:0.47,
nightlif WE:0.47, danc AT:0.40, theatr Wed:0.32, art Wed:0.28,...}

134

for places related to ‘technology ’ and ‘exhibition’, as shown in Table 6.4. This can

be explained by annual events related to computer software/hardware or electronic

systems that are located here, such as ‘embedded world ’. Similarly, one can discover

that Oschersleben, a town in Sachsen-Anhalt, Germany, is strongly related to moto

and auto sports.

From the extracted annotations, one can see that some annotations are obvious.

For instance, the annotation of a cinema (e.g., Kino Babylon Mitte - Berlin) contains

event topics related to film and movie festivals; the annotation of a football stadium

in Germany (e.g., Signal Iduna Park) contains event topics related to ‘soccer ’ and

‘bundesliga’; or an exhibition centre (e.g., Messe Essen GmbH) contains event topics

related to ‘expo’, ‘industry ’, and ‘tradeshow ’. Besides, we also found some interesting

relationships, such as a relationship between the exhibition centre Messe Essen GmbH

and the topic ‘fashion’. This relationship can be explained by a series of Modatex

Fashion Fair events frequently occurring at that location.

We also discovered some cities in Europe that are famous for their annual festivals

from the dataset EU-Festival. For instance, Torre del Lago, Peraso (Italy), and

Montpelier (France) are famous for opera festivals.

At the Place Category level, one can see many generic topics, for example,

‘nightlife’ or ‘electronic’ in Bar/Night Club extracted from the dataset DE-Music.

6.5.3 Location Clustering

We exploit the extracted annotations to cluster locations. Such clusters will be uti-

lized further to assign higher level semantic tags to locations or to build taxonomies

of locations, as described in Section 6.4.5. For this purpose, we employ hierarchical

clustering. We tried with three common merging methods: Single-Link, Complete-

Link, and Group-Average. The quality of a clustering solution is evaluated by a

F-score measure, as commonly used in document clustering [63, 132]. Before detail-

ing this F-score measure, we describe how to obtain datasets with ground-truth for

clustering evaluation.

Since a location in our dataset can be generalized to a place category (e.g., ‘Ho-

tel ’, ‘Restaurant ’), we use such categories as ground-truth labels to evaluate location

clustering, that is, locations of the same label are expected to be in the same cluster.

However, our analysis shows that only 5% of the locations that are labeled with cat-

egorical tags might help for clustering evaluation. Other locations labeled as ‘postal

code’, ‘address ’, or ‘named place’ produce meaningless results in the clustering eval-

135

Table 6.5: Top place categories for two datasets DE-All and EU-Festival.
DE-ALL EU-Festival

Category Number of locations Category Number of locations
1. Bar/NightClub 174 1. Bar/NightClub 285
2. ConcertHall 79 2. ConcertHall 111
3. Stadium 71 3. Theatre 109
4. Theatre 33 4. Stadium 83
5. Restaurant 17 5. Park 62
6. Hotel 17 6. Museum 44
7. Museum 17 7. Outdoors Field 43

uation method. To increase the number of locations with meaningful labels, we also

utilized DBPedia4, an LOD data source, to assign place categories for well-known

locations, such as stadiums, hotels, or theatres. Based on simple text matching, we

additionally assigned categorical tags (obtained from DBPedia) to about 100 loca-

tions (+25%) of the dataset DE-All and about 250 locations (+30%) of the dataset

EU-Festival. Table 6.5 shows the top categories for the two datasets DE-All and

EU-Festival in terms of the number of locations after performing this step. Using

locations belonging to these categories, one can generate dataset with ground-truth

for clustering evaluation.

We use Lk{C1,C2,...,Ck} to denote a dataset consisting of locations of k categories C1,

C2,..., or Ck, e.g., L2
{Stadium,Theater}. If one obtains k clusters S1, S2, ..., Sk (k ≥ 2) from

a given dataset Lk{C1,C2,...,Ck}, then the quality of this clustering solution is measured by

the F-score [132]. In the following, we briefly describe how to compute this measure.

First, the Precision, Recall, and F-score for each pair of a category Ci and a cluster

Sj are computed as

Pr(Ci, Sj) :=
nij
nj
, Re(Ci, Sj) :=

nij
ni
,

F (Ci, Sj) :=
2 ∗ Pr(Ci, Sj) ∗Re(Ci, Sj)
Pr(Ci, Sj) +Re(Ci, Sj)

,

where ni is the number of locations belonging to the category Ci, nj is the size of

the cluster Sj, and nij is the number of locations belonging to the category Ci in the

cluster Sj. The F-score of each category Ci is then defined as the maximum F-score

value for all clusters. That is,

F (Ci) := max
1≤j≤k

F (Ci, Sj).

4We used the version 3.9 downloaded from http://dbpedia.org.

136

Finally, the F-score of the entire clustering solution for an input dataset Lk{C1,C2,...,Ck}

is defined as

F-score(Lk{C1,C2,...,Ck}) :=
k∑
i=1

ni
n
F (Ci), (6.11)

where ni is the number of locations belonging to the category Ci, and n is the number

of locations in the input dataset.

As mentioned in Section 6.3.2, an alternative to npmi is tf-idf that can be em-

ployed to weight event topics for location clustering. Therefore, by employing the

F-score described above, we now compare the performance of the npmi measure to

the following versions of tf-idf that are widely used in document clustering [24]. Given

an event topic f and an LTC Ω, two versions of tf-idf, denoted tf-idf1 and tf-idf2, are

defined as

tf-idf1(f,Ω) = Nf,Ω ∗ log(N
Nf

) and

tf-idf2(f,Ω) = (1 + log(Nf,Ω)) ∗ log(N
Nf

),

where the values N , Nf , and Nf,Ω are

• N : the number of LTCs,

• Nf : the number of LTCs that contain ET f ,

• Nf,Ω: the number of instances of the LTC Ω that support f .

Similar to the npmi measure, profiles of LTCs can be computed with Equation (6.6),

where npmi is replaced by either tf-idf1 or tf-idf2. For a particular dataset and a

particular measure, the threshold δ is selected so that the F-score in Formula (6.11)

is the largest.

We use locations of the datasets DE-All and EU-Festival to assess the performance

of location clustering since they cover all locations of the other datasets (i.e., DE-

Sports, DE-Festival, and DE-Music). Using the place categories shown in Table 6.5,

we generate datasets of locations for clustering evaluation. Instead of presenting the

F-score for each generated dataset, we show the mean F-score for each group Gk of

datasets containing the same number of categories (i.e., k categories). For example,

with 7 categories as shown in Table 6.5, F-score(G2) denotes the mean F-score for

(7
2) = 21 datasets created by selecting 2 from the 7 categories, e.g., L2

{Stadium,Museum},

L2
{Hotel,Museum}, or L2

{Stadium,Theater}.

Figure 6.6 shows the comparison of the npmi measure with tf-idf1 and tf-idf2 in

location clustering. In general, using the npmi measure gives the best result. A closer

137

G2 G3 G4 G5

Single-Link

F-
S

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TF-IDF1
TF-IDF2
NPMI

G2 G3 G4 G5

Complete-Link

F-
S

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TF-IDF1
TF-IDF2
NPMI

G2 G3 G4 G5

Group-Average

F-
S

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TF-IDF1
TF-IDF2
NPMI

Dataset: DE-All

G2 G3 G4 G5

Single-Link

F-
S

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TF-IDF1
TF-IDF2
NPMI

G2 G3 G4 G5

Complete-Link

F-
S

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TF-IDF1
TF-IDF2
NPMI

G2 G3 G4 G5

Group-Average

F-
S

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TF-IDF1
TF-IDF2
NPMI

Dataset: EU-Festival

Figure 6.6: Comparison of the measures tf-idf1, tf-idf2, and npmi with various merging
methods (Single-Link, Complete-Link, and Group-Average) of hierarchical clustering.
The mean F-Score of each dataset group (G2, G3, G4, and G5) is shown for each
measure. The best result is achieved with the npmi measure.

look at the generated profiles shows that a profile generated by the npmi measure

contains more event topics presenting the characteristics of the corresponding loca-

tion, as discussed in Section 6.3.2. Note that the main purpose of the npmi measure

is to extract semantic annotations for locations. Although the npmi measure slightly

outperforms the tf-idf measures, the above results indicate that one can indirectly

evaluate how good the extracted annotations are by clustering. In addition, one can

see from Figure 6.6 that clustering on locations of the dataset DE-All gives better re-

sults than clustering on locations of the dataset EU-Festival. This is reasonable since

it is more difficult to categorize locations of the latter dataset consisting of narrow

topics, i.e., event topics related to ‘festival ’.

In Section 6.4.4, we introduced a dissimilarity distance for locations based on the

Jaccard Index. Here, we compare the performance of this distance with the Cosine

138

G2 G3 G4 G5

TF-IDF1

F-
S

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard
Cosine
Euclidean

G2 G3 G4 G5

TF-IDF2

F-
S

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard
Cosine
Euclidean

G2 G3 G4 G5

NPMI

F-
S

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard
Cosine
Euclidean

Dataset: DE-All

G2 G3 G4 G5

TF-IDF1

F-
S

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard
Cosine
Euclidean

G2 G3 G4 G5

TF-IDF2
F-

S
co

re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard
Cosine
Euclidean

G2 G3 G4 G5

NPMI

F-
S

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jaccard
Cosine
Euclidean

Dataset: EU-Festival

Figure 6.7: Comparison of the distance metrics Jaccard, Cosine, and Euclidean in
hierarchical clustering with the Group-Average merging method. The mean F-Score
of each dataset group (G2, G3, G4, and G5) is shown for each metric. The best result
is achieved with the Jaccard distance.

distance and the Euclidean distance, two distance metrics commonly used in docu-

ment clustering [111]. Figure 6.7 shows the result, where one can see that the Eu-

clidean distance performs worst. This result agrees with several experimental results

of text document clustering (e.g., [38, 107]). Generally, the Jaccard distance slightly

outperforms the Cosine distance for the both datasets DE-All and EU-Festival.

Figure 6.8 shows an example of clustering based on location annotations extracted

from the dataset DE-All. In general, locations in a cluster are of the same category.

However, some locations are assigned to wrong clusters. For example, one can see

that two locations of the category ‘Bar/Club’ are misclassified as ‘ConcertHall ’. After

examining their annotations, we found that these locations have event topics related

to music and performing art very similar to locations of the category ‘ConcertHall ’.

For the other datasets, we also found many clusters that can be validated by using

external sources (Google Search and Wikipedia). For example, we found clusters of

bars/night clubs regarding their music genres (e.g., jazz or r&b/soul) such as the

139

P
hi
lh
ar
m
on

ie
E
ss
en

_E
ss
en

_C
on

ce
rtH

al
l

G
ro
ße

Fr
ei
he

it3
6_

H
am

bu
rg
_C

on
ce

rtH
al
l

Ze
ch

e_
B
oc

hu
m
_C

on
ce

rtH
al
l

M
at
rix

_B
oc

hu
m
_C

on
ce

rtH
al
l

To
nh

al
le
_M

ün
ch

en
_C

on
ce

rtH
al
l

C
ol
um

bi
ah

al
le
_C

on
ce

rtH
al
l

Ze
ni
th
_M

ün
ch

en
_C

on
ce

rtH
al
l

B
ill
ys
Iri
sh

P
ub

_S
ch

le
sw

ig
_B

ar
N
ig
ht
C
lu
b

B
ar
in
to
nL

iv
eM

us
ic
C
lu
b_

E
hr
en

fe
ld
_B

ar
N
ig
ht
C
lu
b

U
TC

on
ne

w
itz
_L

ei
pz

ig
_C

on
ce

rtH
al
l

B
ro
tfa

br
ik
_F

ra
nk

fu
rta

m
M
ai
n_

C
on

ce
rtH

al
l

Ju
ge

nd
ku

ltu
rh
au

sC
ai
ro
_W

ür
zb

ur
g_

C
on

ce
rtH

al
l

H
ol
id
ay

In
nM

un
ic
h_

M
un

ic
h_

H
ot
el

M
A
R
IT
IM

pr
oA

rte
H
ot
el
_B

er
lin
_H

ot
el

Ju
ge

nd
he

rb
er
ge

_H
oc

hs
pe

ye
r_
H
ot
el

M
er
cu

re
H
ot
el
B
ris

to
l_
S
in
de

lfi
ng

en
_H

ot
el

S
te
ig
en

be
rg
er
H
ot
el
M
et
ro
po

lit
an

_S
ta
dt
Fr
an

kf
ur
t_
H
ot
el

R
ad

is
so

nB
lu
H
ot
el
_H

am
bu

rg
_H

ot
el

H
ot
el
V
ie
rJ
ah

re
sz
ei
te
nK

em
pi
ns

ki
_M

ün
ch

en
_H

ot
el

Li
nd

ne
rC

on
gr
es

sH
ot
el
_D

üs
se

ld
or
f_
H
ot
el

E
ne

rg
ie
te
am

A
re
na

_P
ad

er
bo

rn
_S

ta
di
um

H
ei
de

w
al
ds

ta
di
on

_G
üt
er
sl
oh

_S
ta
di
um

C
ar
l-B

en
z-
S
ta
di
on

_M
an

nh
ei
m
_S

ta
di
um

E
rd
ga

sS
po

rtp
ar
k_

H
al
le
_S

ta
di
um

Fr
an

kf
ur
te
rV
ol
ks

ba
nk

S
ta
di
on

_F
ra
nk

fu
rta

m
M
ai
n_

S
ta
di
um

E
rz
ge

bi
rg
ss
ta
di
on

_A
ue

_S
ta
di
um

H
ol
st
ei
n-
S
ta
di
on

_K
ie
l_
S
ta
di
um

B
rit
a-
A
re
na

_W
ie
sb

ad
en

_S
ta
di
um

E
is
st
ad

io
n_

In
ze

ll_
S
ta
di
um

A
ud

iS
po

rtp
ar
k_

In
go

ls
ta
dt
_S

ta
di
um

E
S
P
R
IT
ar
en

a_
D
üs

se
ld
or
f_
S
ta
di
um

Im
te
ch

A
re
na

_H
am

bu
rg
_S

ta
di
um

A
lli
an

zA
re
na

_M
un

ic
h_

S
ta
di
um

G
ot
tli
eb

-D
ai
m
le
r-
S
ta
di
on

_S
tu
ttg

ar
t_
S
ta
di
um

B
ay

A
re
na

_L
ev

er
ku

se
n_

S
ta
di
um

B
or
us

si
a-
P
ar
k_

M
ön

ch
en

gl
ad

ba
ch

_S
ta
di
um

M
er
ce

de
s-
B
en

zA
re
na

_S
tu
ttg

ar
t_
S
ta
di
um

E
in
tra

ch
t-S

ta
di
on

_B
ra
un

sc
hw

ei
g_

S
ta
di
um

Fr
an

ke
ns

ta
di
on

_N
ür
nb

er
g_

S
ta
di
um

H
ar
dt
w
al
ds

ta
di
on

_S
an

dh
au

se
n_

S
ta
di
um

O
P
E
R
A
K
R
A
K
O
W
S
K
A
_T

he
at
re

S
ch

au
sp

ie
l_
K
öl
n_

Th
ea

tre
P
rin

ce
E
dw

ar
dT

he
at
re
_T

he
at
re

A
ct
or
sS

pa
ce

_B
er
lin
_T

he
at
re

Th
ea

te
rW

ai
ds

pe
ic
he

r_
Th

ea
tre

N
ea

nd
er
th
al
M
us

eu
m
_M

et
tm

an
n_

M
us

eu
m

S
pr
en

ge
lM

us
eu

m
_H

an
no

ve
r_
M
us

eu
m

M
us

eu
m
fü
rM

od
er
ne

K
un

st
_F

ra
nk

fu
rta

m
M
ai
n_

M
us

eu
m

M
us

eu
m
Fo

lk
w
an

g_
E
ss
en

_M
us

eu
m

M
us

eu
m
fü
rK
un

st
un

dG
ew

er
be

_H
am

bu
rg
_M

us
eu

m
B
ig
7C

lu
b_

Fr
ei
bu

rg
im

B
re
is
ga

u_
B
ar
N
ig
ht
C
lu
b

A
lte

M
üh

le
_E

ut
in
_B

ar
N
ig
ht
C
lu
b

B
la
ck
so

un
ds

_L
an

ds
tu
hl
_B

ar
N
ig
ht
C
lu
b

B
la
ck
w
at
er
Iri
sh

P
ub

_W
in
te
rb
er
g_

B
ar
N
ig
ht
C
lu
b

B
er
ns

te
in
B
ar
_H

am
bu

rg
_B

ar
N
ig
ht
C
lu
b

B
ea

t-B
ox

_K
on

st
an

z_
B
ar
N
ig
ht
C
lu
b

B
oi
le
rR

oo
m
_R

eg
en

sb
ur
g_

B
ar
N
ig
ht
C
lu
b

Cluster Dendrogram - LinkType: Group-Average

 Concert Hall Hotel Stadium Theatre Museum Bar/Club

Figure 6.8: Example of clustering based on location annotations for the dataset DE-
All. Locations are of granularity Address. Each location is shown with its place-
category. Two locations (marked in boxes) of the category ‘Bar/Club’ are in the
same cluster as locations of the category ‘ConcertHall ’.

Table 6.6: Example of bars/clubs (location instances) categorized by music genres of
their events.

Jazz Rock & Metal
Badehaus Szimpla Musiksalon - Friedrichshain Hard Rock Berlin
Jazzclub Unterfahrt - München Atomic Cafe - München
Hot Jazz Club - Münster TNT Rock & Metal Pub - Niederkrüchten
Domkeller - Aachen Kukuun Club - Hamburg
Mister B’s München Cafe Hahn - Koblenz
... ...
R&B/Soul Rap & Hiphop
Löwensaal Stein bei Nürnberg Tower Musikclub Bremen
Quasimodo - Berlin LaViola Cafe & Weinbar - Siegburg
Live Club Barmen - Wuppertal Discothek Halifax - Himmelkron
Engelsburg Bar/Night Club - Erfurt Monofaktur - Muenchen
Little Stage - Kneipe Bühne Lounge Neukölln Live - Berlin Club Metropolitain - Traunstein
... ...

four clusters presented in Table 6.6; or a cluster of cities in Europe famous for opera

festivals like Montpellier (France), Torre del Lago (Italy), or Pesaro (Italy), as shown

in Figure 6.9.

140

M
un

ic
h_

G
er
m
an

y
Fl
or
en

ce
_I
ta
ly

K
oe

ln
_G

er
m
an

y
C
he

m
ni
tz
_G

er
m
an

y
D
ar
m
st
ad

t_
G
er
m
an

y
E
rfu

rt_
G
er
m
an

y
K
ie
lc
e_

P
ol
an

d
S
tu
ttg

ar
t_
G
er
m
an

y
B
rn
o_

C
ze
ch
R
ep

ub
lic

Li
m
a_

G
er
m
an

y
Li
lle
st
rø
m
_N

or
w
ay

K
ie
v_
U
kr
ai
ne

B
ul
lR
in
gC

ro
ss
R
oa

ds
_I
re
la
nd

V
ill
ag

ar
cí
ad

eA
ro
sa
_S

pa
in

N
ür
nb

er
g_

G
er
m
an

y
M
ila
n_

Ita
ly

K
ar
ls
ru
h_

G
er
m
an

y
Fr
an

kf
ur
ta
m
M
ai
n_

G
er
m
an

y
D
üs
se
ld
or
f_
G
er
m
an

y
H
an

no
ve
r_
G
er
m
an

y
Le

ip
zi
g_

G
er
m
an

y
P
es
ar
o_

Ita
ly

G
ly
nd

e_
U
ni
te
dK

in
gd

om
B
re
sc
ia
_I
ta
ly

C
re
sp
an

od
el
G
ra
pp

a_
Ita

ly
N
an

te
s_
Fr
an

ce
V
er
vi
er
s_
B
el
gi
um

To
rr
ed

el
La

go
P
uc
ci
ni
_I
ta
ly

R
ue

de
sP

er
rin
s_
Fr
an

ce
A
ix
-e
n-
P
ro
ve
nc
e_

Fr
an

ce
B
or
de

au
x_
Fr
an

ce
P
on

td
eP

et
ite
S
yn
th
e_

Fr
an

ce
P
la
cé
_F

ra
nc
e

R
ue

de
P
is
so
t_
Fr
an

ce
M
on

tp
el
lie
r_
Fr
an

ce
P
ol
la
_I
ta
ly

La
V
ill
e_

B
el
gi
um

B
au

gé
_F

ra
nc
e

C
iv
ita
no

va
A
lta
_I
ta
ly

Le
ed

s_
U
ni
te
dK

in
gd

om
C
ol
ch
es
te
r_
U
ni
te
dK

in
gd

om
B
yd
go

sz
cz
_P

ol
an

d
B
ea

co
ns
fie
ld
_U

ni
te
dK

in
gd

om
R
ed

hi
lls
_U

ni
te
dK

in
gd

om
N
ew

br
id
ge

_I
re
la
nd

S
ta
rn
be

rg
_G

er
m
an

y
C
on

ve
rs
an

o_
Ita

ly
Tr
en

to
_I
ta
ly

W
in
ch
m
or
eH

ill
_U

ni
te
dK

in
gd

om
Lo

nd
on

_U
ni
te
dK

in
gd

om
G
al
w
ay
_I
re
la
nd

D
ub

lin
_I
re
la
nd

Tr
om

sø
_N

or
w
ay

Tu
rin
_I
ta
ly

M
id
lo
th
ia
n_

U
ni
te
dK

in
gd

om
H
as
le
m
er
e_

U
ni
te
dK

in
gd

om
Fa

rn
sf
ie
ld
_U

ni
te
dK

in
gd

om
W
an

st
ea

d_
U
ni
te
dK

in
gd

om

Cluster Dendrogram - LinkType: Group-Average

fair, tradeshow, expo opera, ballet film, movie

Figure 6.9: Example of clustering cities in the dataset EU-Festival based on their
festival events. The left cluster contains cities that are related to event topics ‘fair ’,
‘tradeshow ’, and ‘expo’. The middle cluster contains cities that are related to event
topics ‘opera’ and ‘ballet ’. The right cluster contains cities that are related to event
topics ‘film’ and ‘movie’.

6.5.4 Runtime and LTP-Updater Efficiency

In this section, we show the runtime of LTProfile-Miner for each dataset and also

demonstrate the utility and efficiency of LTProfile-Updater. To do so, we split each

dataset in Table 6.2 into two parts, each corresponding to one year. For example, from

the dataset DE-Sports, we create two subdatasets DE-Sports[2011] and DE-Sports[2012],

where the first one consists of events in 2011 and the latter one consists of events in

2012 of the dataset DE-Sports. From Table 6.2, one can see that the number of events

in 2012 is about 20 to 50% larger than in 2011.

For each triple of datasets (D, D[2011] and D[2012]), we measure the runtime t1

for LTProfile-Miner on D[2011], the runtime t2 for LTProfile-Miner on D, and the

runtime t3 for LTProfile-Updater onD[2012] (with support-data extracted fromD[2011]).

Figure 6.10 shows such runtimes for each dataset, where the datasets are sorted by

the number of events. The first two datasets take only a few seconds to process. The

cases of EU-Festival and DE-Music illustrate that the number of LTIs also affects

the runtime, as mentioned in the complexity analysis of Algorithm 6.1. Although the

number of events of the dataset EU-Festival is smaller than the dataset DE-Music,

141

DE-Sports DE-Festival EU-Festival DE-Music DE-All

M
in

ut
es

0
5

10
15

20
25

t1: mine-[2011]
t2: mine-[2011-2012]
t3: update-[2012]

Figure 6.10: Runtime of LTP-Miner and LTP-Updater. For each dataset, t1 is the
runtime to mine events in 2011, t2 is the runtime to mine events in [2011-2012], and
t3 is the runtime to update with events in 2012.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0

1

2

3

4

5

6

7

8

9

10

Dataset Partitions

S
up

po
rt-

da
ta

 (M
eg

ab
yt

es
)

DE-Sports
DE-Festival
DE-Music
DE-All
EU-Festival

Figure 6.11: Increase of support-data size after a step of updating 10% of a dataset.

the number of locations of the dataset EU-Festival is larger, as shown in Table 6.2.

In all cases, the runtime t3 is larger than t1, because the number of events in 2012

is larger than in 2011. However, in comparison to t2, the runtime t3 is much smaller

for both datasets. This shows that using the LTProfile-Updater is an efficient and

scalable approach to update the current location profiles with new data.

We finally conducted several experiments related to the size of the support-data.

Since the support-data is sparse, we use a data structure that employs a hash-table

142

Figure 6.12: Example of a graphic user interface that enables the user to refine the
result of searching for locations. The user can select topics of interest from a taxonomy
that is automatically generated based on the input query, and/or specify a bounding
box on the map to constrain the search space.

to save space and also to efficiently access the data. For each dataset in Table 6.2, we

sort the events by time and equally divide them into 10 partitions. We run LTProfile-

Miner for the first partition and LTProfile-Updater for the others. After each step,

we store the support-data to files for the next update. Figure 6.11 shows the size of

support-data after each step. One can see that the size of support-data is linear with

respect to the size of the dataset. Additionally, the support-data size depends on how

sparse its content is. Thus, for a dataset related to a specific topic (like EU-Festival),

the content of its support-data tends to be denser than for a dataset consisting of

various topics (like DE-All). Thus, as one can see in the Figure 6.11, the size of the

support-data for EU-Festival is slightly larger than for DE-All.

6.6 Discussion

Event-based annotations of locations describe the event topics that are most related

to a location, together with the time when the events of such topics most likely occur.

In this chapter, we presented a comprehensive framework to extract such annotations

from event datasets. We also proposed a scalable and efficient method to deal with

periodic updates of event data. Our experimental results clearly indicated that the

extracted annotations can be utilized for semantic location search as well as clustering.

143

The above framework is clearly fundamental to develop a location-based service

application or a recommender system. For example, Figure 6.12 illustrates a graphic

user interface that utilizes location annotations to guide the user to perform semantic

search for locations. Based on keywords (e.g., ‘music’, ‘bar ’, ‘weekend ’) specified

by the user, a taxonomy of relevant topics is automatically generated for the user

to refine the list of locations. The user might also specify a bounding box on the

map to constrain the geographic search space. In such a system, a database that

manages information about locations plays a very important role in the back end.

Our framework provides fundamental components to create and incrementally update

that database by exploiting and monitoring some external data source of events.

144

Chapter 7

Conclusions and Future Work

This chapter summarizes the thesis and provides a discussion of open research prob-

lems for future work.

7.1 Summary and Conclusions

Knowledge and patterns derived from event data are clearly valuable in providing a

semantically rich basis for real-world applications such as location-based services or

recommender systems. In this thesis, we presented novel approaches to the discovery

of interesting, useful patterns from event data. In particular, we built a comprehensive

framework to model events, where each event is described by three components: con-

text, time, and location. Accordingly, conceptual, temporal, and spatial (geographic)

relationships between events can flexibly be formulated, and various constraints on

events can naturally be specified. Moreover, the three components of an event can

be individually generalized to higher levels of abstraction to derive event templates,

which represent topics of events and play an important role in building event patterns.

Aiming at a flexible framework to model events, the notations of events and event

templates as well as different relationships among them are very generally defined.

However, they can easily be specialized for a particular pattern mining approach, as

demonstrated in Chapters 4, 5, and 6.

By employing the above framework, we addressed the research problem of mining

interval-based event sequence patterns (IESPs) from event data. This problem can be

considered a generalization of mining sequential patterns from traditional data (i.e.,

sequences of items or sequences of transactions) for the following reasons. First, our

pattern language is able to express not only time point-based but also interval-based

relationships between events. Second, supporting multiple temporal predicates, e.g.,

145

before, after, or overlaps, in a single pattern enables the pattern language to express

complex temporal relationships among events. As a type of spatio-temporal patterns,

IESPs also capture spatio-temporal relationships between events. Furthermore, our

approach utilizes concept hierarchies associated with event components to find IESPs

at different levels of abstraction and granularity. As shown in the experiments, beside

obvious patterns, we also obtained patterns that describe interesting and meaningful

relationships among events from real datasets.

The second research problem that we focused on is to find periodic event patterns

from event data. In particular, we formulated a notion of relaxed periodicity for single

event topics as well as for sets of event topics that frequently occur together. For this,

we proposed a probabilistic measure to determine how likely an event topic occurs or

multiple event topics co-occur during a time window. In addition, our approach can

find interesting periodic patterns at different levels of abstraction and granularity, as

demonstrated with real event datasets.

In the last approach presented in this thesis, we demonstrated that not only corre-

lations among events but also correlations among event components can be exploited

to extract valuable knowledge. For this, we presented a comprehensive framework

to extract semantic annotations for locations. Our framework provides the basis to

efficiently derive characteristic, discriminative information for locations, and make

this information up-to-date when new events are added to the current dataset. We

demonstrated the utility and efficiency of the framework with real event datasets.

In conclusion, we showed that data sources of events provided by social media

channels can be well exploited for valuable knowledge. Our experiments clearly indi-

cated that extracted patterns and knowledge can be well utilized in various practically

relevant tasks, such as event prediction, semantic search for locations, or topic-based

location clustering. Furthermore, this study on mining patterns from event data

provides a foundation for several interesting, promising directions of future work, as

discussed next.

7.2 Future Work

Based on the results presented in this thesis, several promising directions of future

work can be conducted. They can be categorized into the following aspects:

• Extensibility: Generally, event relationships are fundamental to formulate

patterns of events. As shown through this thesis, we derived event relationships

146

on the basis of spatial and temporal proximities as well as of topic-based similar-

ity of the corresponding events. Besides these familiar relationships, additional

semantic relationships, such as part-whole or meronymic relationships [106], be-

tween events might be explicitly provided by some data sources of events. For

example, a workshop session is a part of a data mining conference; a festival of-

ten consists of multiple sub-events; or a disease might consist of several phases.

The existence of such relationships between events in a dataset gives rise to new

approaches to the discovery of more complex types of patterns, such as tree-like

or graph-like patterns, of events. Therefore, integrating semantic relationships

as mentioned above into the event model is a promising direction of future work

to fully exploit that type of event data.

Another direction that might be an interesting and promising investigation is

to adapt and extend the approaches described in this thesis to find patterns

from event data of other domains, such as for scientific data. For example, in

the context of weather and climate event data, spatio-temporal teleconnection

patterns [60] are commonly known as connections between climate phenomena

of two distant regions that are correlated with each other. Such patterns can be

discovered at different levels of abstraction and granularity by employing our

event framework. However, further research needs to be conducted, for example,

to transform sensor observation data to events, to generate concept hierarchies

for these events, and to design a good measure for interesting patterns.

• Applicability: Exploiting event patterns for other data mining tasks, such

as pattern-based classification, outlier detection, or event prediction, is an in-

teresting direction of future work. For example, information about sequential

and periodic patterns derived from an event dataset might be valuable for pre-

dicting events or for identifying anomalies in similar datasets of events. Loca-

tion annotations as described in Chapter 6 can be exploited to automatically

build taxonomies of locations. Furthermore, utilizing event patterns to real-life

problems such as location-based services or recommender systems still needs to

be investigated.

• Scalability: In reality, new events are periodically inserted into the current

database of events. One therefore needs a scalable, efficient approach to make

discovered patterns up-to-date instead of re-performing the whole process for

both old and new events. For this, we already proposed an incremental ap-

proach in Chapter 6 to update annotations of locations. Recall that we formu-

147

lated annotations of locations on the basic of correlations among components

of events. The key point of the approach is that significant correlations among

event components can be individually computed and then aggregated from the

set of existing events and the set of only new events. For other types of event

patterns that are formulated by exploiting correlations among events (not event

components), partitioning event data like that might not work since new rela-

tionships might appear not only between two new events but also between a new

event and an existing one. Therefore, investigating an incremental approach for

these event patterns is still an open problem.

Another obvious direction is to parallelize the process of pattern mining to

support large-scale, distributed databases of events. Employing an existing

parallelization framework, such as the MapReduce [28], might be an efficient

solution for such large-scale data. However, creating and managing parallel

tasks in such an approach are not trivial since the pattern pruning that performs

on a task requires the previous pattern computations of some other tasks. Thus,

efficiently sharing that information across parallel tasks is necessary and still

an open problem.

148

Bibliography

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Asso-
ciation Rules in Large Databases. In VLDB, pages 487–499. Morgan Kaufmann,
1994.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Mining Sequential Patterns. In
ICDE, pages 3–14. IEEE Computer Society, 1995.

[3] James Allan and Ron Papka. On-line New Event Detection. In SIGIR, pages
37–45. ACM, 1998.

[4] James F. Allen. Maintaining Knowledge about Temporal Intervals. Commun.
ACM, 26:832–843, 1983.

[5] Luis Otavio Alvares, Vania Bogorny, Bart Kuijpers, Jose Antonio Fernandes
de Macedo, Bart Moelans, and Alejandro Vaisman. A Model for Enriching
Trajectories with Semantic Geographical Information. In ACM GIS, pages
22:1–22:8. ACM, 2007.

[6] Pierre Andrews, Ilya Zaihrayeu, and Juan Pane. A Classification of Semantic
Annotation Systems. Semantic Web, 3(3):223–248, 2011.

[7] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-
niak, and Zachary Ives. DBpedia: A Nucleus for a Web of Open Data. In
Semantic Web Conference, pages 722–735. Springer-Verlag, 2007.

[8] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential Pattern
Mining Using a Bitmap Representation. In KDD, pages 429–435. ACM, 2002.

[9] Lamberto Ballan, Marco Bertini, Alberto Bimbo, Lorenzo Seidenari, and
Giuseppe Serra. Event Detection and Recognition for Semantic Annotation
of Video. Multimedia Tools and Applications, 51(1):279–302, 2010.

[10] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The Story So
Far. International Journal on Semantic Web and Information Systems, 5(2):1–
22, 2009.

[11] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. DBpedia - A Crystal-
lization Point for the Web of Data. Web Semantics: Science, Services and
Agents on the World Wide Web, 7(3):154–165, 2009.

149

[12] J.A. Bondy and U.S.R. Murty. Graph Theory, volume 244 of Graduate texts in
mathematics. Springer, 2008.

[13] Gerlof Bouma. Normalized (Pointwise) Mutual Information in Collocation Ex-
traction. In From Form to Meaning: Processing Texts Automatically, Proceed-
ings of the Biennial GSCL Conference, pages 31–40, 2009.

[14] Coen Bron and Joep Kerbosch. Algorithm 457: Finding All Cliques of an
Undirected Graph. Commun. ACM, 16(9):575–577, 1973.

[15] Alex G. Büchner and Maurice D. Mulvenna. Discovering Internet Marketing
Intelligence through Online Analytical Web Usage Mining. ACM SIGMOD
Record, 27(4):54–61, December 1998.

[16] Huiping Cao, N. Mamoulis, and D.W. Cheung. Mining Frequent Spatio-
Temporal Sequential Patterns. In ICDM, pages 82–89. IEEE Computer Society,
2005.

[17] Huiping Cao, Nikos Mamoulis, and David Cheung. Discovery of Collocation
Episodes in Spatiotemporal Data. In ICDM, pages 823–827. IEEE Computer
Society, 2006.

[18] Huiping Cao, Nikos Mamoulis, and David Cheung. Discovery of Periodic Pat-
terns in Spatiotemporal Sequences. TKDE, 19(4):453–467, 2007.

[19] Xin Cao, Gao Cong, and Christian S Jensen. Mining Significant Semantic
Locations From GPS Data. Proceedings of the VLDB Endowment, 3(1-2):1009–
1020, 2010.

[20] Mete Celik, Shashi Shekhar, James P. Rogers, and James a. Shine. Mixed-
Drove Spatiotemporal Co-Occurrence Pattern Mining. TKDE, 20(10):1322–
1335, 2008.

[21] Dipanjan Chakraborty, Stefano Spaccapietra, and Christine Parent. SeMiTri: A
Framework for Semantic Annotation of Heterogeneous Trajectories. In EDBT,
pages 259–270, 2011.

[22] Y Chen and Y Hu. Constraint-based Sequential Pattern Mining: the Considera-
tion of Recency and Compactness. Decision Support Systems, 42(2):1203–1215,
2006.

[23] ChongWang, David Blei, and Li Fei-Fei. Simultaneous Image Classification and
Annotation. IEEE Conference on Computer Vision and Pattern Recognition,
pages 1903–1910, 2009.

[24] Christopher D. Manning, Raghavan Prabhakar, and Hinrich Schütze. Introduc-
tion to Information Retrieval. Cambridge University Press, 2009.

150

[25] Kenneth Ward Church and Patrick Hanks. Word Association Norms, Mutual
Information, and Lexicography. Comput. Linguist., 16(1):22–29, 1990.

[26] Philipp Cimiano, Andreas Hotho, and Steffen Staab. Learning Concept Hierar-
chies from Text Corpora using Formal Concept Analysis. Artificial Intelligence
Research, 24:305–339, 2005.

[27] N. Cressie. Statistics for Spatial Data. Wiley Series in Probability and Mathe-
matical Statistics, 4:613–617, 1992.

[28] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM, 51(1):107–113, January 2008.

[29] Leon R. a. Derczynski, Bin Yang, and Christian S. Jensen. Towards Context-
aware Search and Analysis on Social Media Data. In EDBT, pages 137–142.
ACM, 2013.

[30] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kal-
nis. GRAMI: Frequent Subgraph and Pattern Mining in a Single Large Graph.
Proceeding of the VLDB Endowment, 7(7):517–528, 2014.

[31] Martin Erwig, Ralf Hartmut Güting, Markus Schneider, and Michalis Vazir-
giannis. Abstract and Discrete Modeling of Spatio-temporal Data Types. In
ACM GIS, pages 131–136. ACM, 1998.

[32] Martin Erwig and Markus Schneider. Spatio-temporal Predicates. TKDE,
14(4):881–901, 2002.

[33] Vladimir Estivill-Castrol and Ickjai Lee. Data Mining Techniques for Au-
tonomous Exploration of Large Volumes of Geo-referenced Crime Data. In
International Conference on Geocomputation. GeoCompuatation, 2001.

[34] Vladimir Estivill-Castrol and Alan Murray. Discovering Associations in Spa-
tial Data - An Efficient Medoid Based Approach. In PAKDD, pages 110–121.
Springer-Verlag, 1998.

[35] Jonathan G Fiscus and George R Doddington. Topic Detection and Tracking
Evaluation Overview. In Topic detection and tracking, pages 17–31. Kluwer
Academic Publishers, 2002.

[36] Minos N Garofalakis. SPIRIT: Sequential Pattern Mining with Regular Expres-
sion Constraints. In VLDB, pages 223–234. Morgan Kaufmann, 1999.

[37] Arthur Getis and J. Keith Ord. The Analysis of Spatial Association by Use of
Distance Statistics. Geographical Analysis, 24(3):189–206, 1992.

[38] J Ghosh and A Strehl. Similarity-Based Text Clustering: A Comparative Study.
In Jacob Kogan, Charles Nicholas, and Marc Teboulle, editors, Grouping Mul-
tidimensional Data, pages 73–97. Springer Berlin Heidelberg, 2006.

151

[39] Jeremy Ginsberg, Matthew H Mohebbi, Rajan S Patel, Lynnette Brammer,
Mark S Smolinski, and Larry Brilliant. Detecting Influenza Epidemics Using
Search Engine Query Data. Nature, 457(7232):1012–4, February 2009.

[40] Ralf Hartmut Güting. An Introduction to Spatial Database Systems. The
VLDB Journal, 3(4):357–399, October 1994.

[41] Jiawei Han and Yongjian Fu. Discovery of Multiple-Level Association Rules
from Large Databases. In VLDB, pages 420–431. Morgan Kaufmann, 1995.

[42] Jiawei Han, Wan Gong, and Yiwen Yin. Mining Segment-Wise Periodic Pat-
terns in Time-Related Databases. In KDD, pages 214–218. ACM, 1998.

[43] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and
Techniques, 3rd ed. Morgan Kaufmann, 2011.

[44] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar Dayal,
and Mei-Chun Hsu. FreeSpan: Frequent Pattern-projected Sequential Pattern
Mining. In KDD, pages 355–359. ACM, 2000.

[45] Jiawei Han and Yiwen Yin. Efficient Mining of Partial Periodic Patterns in
Time Series Database. In ICDE, pages 106–115. IEEE Computer Society, 1999.

[46] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global
Data Space. Synthesis Lectures on the Semantic Web: Theory and Technology.
Morgan & Claypool, 2011.

[47] Vinod Hegde, Josiane Xavier Parreira, and Manfred Hauswirth. Semantic Tag-
ging of Places Based on User Interest Profiles from Online Social Networks. In
ECIR, pages 218–229. Springer-Verlag, 2013.

[48] Johannes Hoffart, Edwin L-Kelham, Fabian.M Suchanek, Gerard de Melo,
Klaus Berberich, and Gerhard Weikum. YAGO2: Exploring and Querying
World Knowledge in Time, Space, Context, and Many Languages. In WWW,
pages 229–232. ACM, 2011.

[49] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.
YAGO2: A Spatially and Temporally Enhanced Knowledge Base from
Wikipedia. Research Report MPI-I-2010-5-007, Max-Planck-Institut für In-
formatik, 2010.

[50] Frank Höppner. Discovery of Temporal Patterns. Learning Rules about the
Qualitative Behaviour of Time Series. In PKDD, pages 192–203. Springer-
Verlag, 2001.

[51] Y. Huang, S. Shekhar, and H. Xiong. Discovering Colocation Patterns from
Spatial Data Sets: A General Approach. TKDE, 16(12):1472–1485, 2004.

152

[52] Yan Huang, Jian Pei, and Hui Xiong. Mining Co-Location Patterns with Rare
Events from Spatial Data Sets. GeoInformatica, 10(3):239–260, 2006.

[53] Yan Huang, Liqin Zhang, and Pusheng Zhang. A Framework for Mining Sequen-
tial Patterns from Spatio-Temporal Event Data Sets. TKDE, 20(4):433–448,
2008.

[54] Yan Huang and Pusheng Zhang. On the Relationships between Clustering and
Spatial Co-location Pattern Mining. In IEEE International Conference on Tools
with Artificial Intelligence, pages 513–522. IEEE Computer Society, 2006.

[55] Piotr Indyk, Nick Koudas, and S. Muthukrishnan. Identifying Representative
Trends in Massive Time Series Data Sets Using Sketches. In VLDB, pages
363–372. Morgan Kaufmann, 2000.

[56] Jay J Jiang and David W. Conrath. Semantic Similarity Based on Corpus
Statistics and Lexical Taxonomy. In International Conference on Research in
Computational Linguistics, pages 19–33, 1997.

[57] Tao Jiang and Ah-Hwee Tan. Mining RDF Metadata for Generalized Associa-
tion Rules. In DEXA, number 4080 in LNCS, pages 223–233. Springer-Verlag,
2006.

[58] Tao Jiang, Ah-hwee Tan, and Ke Wang. Mining Generalized Associations of
Semantic Relations from Textual Web Content. TKDE, 19(2):164–179, 2007.

[59] Po-shan Kam and Ada Wai-Chee Fu. Discovering Temporal Patterns for
Interval-Based Events. In DaWaK, pages 317–326. Springer-Verlag, 2000.

[60] Jaya Kawale, Snigdhansu Chatterjee, Dominick Ormsby, Karsten Steinhaeuser,
Stefan Liess, and Vipin Kumar. Testing the Significance of Spatio-temporal
Teleconnection Patterns. In KDD, pages 642–651. ACM, 2012.

[61] Krzysztof Koperski and Jiawei Han. Discovery of Spatial Association Rules
in Geographic Information Databases. In Proceedings of the 4th International
Symposium on Advances in Spatial Databases, pages 47–66. Springer-Verlag,
1995.

[62] Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan, and Soumen Chakrabarti.
Collective Annotation of Wikipedia Entities in Web Text. In KDD, pages 457–
466. ACM, 2009.

[63] Bjornar Larsen and Chinatsu Aone. Fast and Effective Text Mining Using
Linear-time Document Clustering. In KDD, pages 16–22. ACM, 1999.

[64] Hady W Lauw, Ee-peng Lim, and Teck-tim Tan. Mining Social Network from
Spatio-Temporal Events. Computational and Mathematical Organization The-
ory, 11(2):97–118, 2005.

153

[65] Anh Le and Michael Gertz. Mining Spatio-temporal Patterns in the Presence
of Concept Hierarchies. In ICDM Workshops, pages 765–772. IEEE Computer
Society, 2012.

[66] Anh Le and Michael Gertz. Mining Periodic Event Patterns from RDF Datasets.
In ADBIS, volume 8133 of Lecture Notes in Computer Science, pages 162–175.
Springer-Verlag, 2013.

[67] Anh Le, Michael Gertz, and Christian Sengstock. An Event-based Framework
for the Semantic Annotation of Locations. In ADBIS, Lecture Notes in Com-
puter Science. Springer-Verlag, 2014.

[68] C. Leacock and M. Chodorow. Combining Local Context and WordNet Simi-
larity for Word Sense Identification, pages 305–332. MIT Press, 1998.

[69] Fritz Lehmann. Big Posets of Participatings and Thematic Roles. In Proceed-
ings of the 4th International Conference on Conceptual Structures: Knowledge
Representation as Interlingua, pages 50–74. Springer-Verlag, 1996.

[70] Michael Lesk. Automatic Sense Disambiguation Using Machine Readable Dic-
tionaries: How to Tell a Pine Cone from an Ice Cream Cone. In Proceedings
of the 5th annual international conference on Systems documentation, pages
24–26. ACM, 1987.

[71] Zhenhui Li, Bolin Ding, Jiawei Han, Roland Kays, and Peter Nye. Mining
Periodic Behaviors for Moving Objects. In KDD, pages 1099–1108. ACM, 2010.

[72] Zhenhui Li, Cindy Xide Lin, Bolin Ding, and Jiawei Han. Mining Significant
Time Intervals for Relationship Detection. In SSTD, pages 386–403. Springer-
Verlag, 2011.

[73] Zhenhui Li, Jingjing Wang, and Jiawei Han. Mining Event Periodicity from
Incomplete Observations. In KDD, pages 444–452. ACM, 2012.

[74] N.R. Lomb. Least-squares Frequency Analysis of Unequally Spaced Data. As-
trophysics and Space Science, 39:447–462, 1976.

[75] Sheng Ma and J.L. Hellerstein. Mining Partially Periodic Event Patterns with
Unknown Periods. In ICDE, pages 205–214. IEEE Computer Society, 2001.

[76] Nizar R. Mabroukeh and C. I. Ezeife. A Taxonomy of Sequential Pattern Mining
Algorithms. ACM Computing Surveys, 43(1):1–41, November 2010.

[77] Nikos Mamoulis, Huiping Cao, George Kollios, Marios Hadjieleftheriou, Yufei
Tao, and David W. Cheung. Mining, Indexing, and Querying Historical Spa-
tiotemporal Data. In KDD, pages 236–245. ACM, 2004.

[78] Heikki Mannila and Hannu Toivonen. Levelwise Search and Borders of Theories
in Knowledge Discovery. Data Mining and Knowledge Discovery, 1(3):241–258,
1997.

154

[79] Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo. Discovery of Frequent
Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1(3):259–
289, 1997.

[80] Eric Margolis and Stephen Laurence. Concepts. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. The Metaphysics Research Lab - Center
for the Study of Language and Information - Stanford University, fall 2012
edition, 2012.

[81] Harvey J. Miller and Jiawei Han, editors. Geographic Data Mining and Knowl-
edge Discovery, Second Edition. CRC Press, 2009.

[82] Fabian Mörchen. Unsupervised Pattern Mining from Symbolic Temporal Data.
ACM SIGKDD Explorations Newsletter, 9(1):41–55, June 2007.

[83] Yasuhiko Morimoto. Mining Frequent Neighboring Class Sets in Spatial
Databases. In KDD, pages 353–358. ACM, 2001.

[84] D.O. Olguin, B.N. Waber, Taemie Kim, A. Mohan, K. Ara, and A. Pentland.
Sensible Organizations: Technology and Methodology for Automatically Mea-
suring Organizational Behavior. Systems, Man, and Cybernetics, Part B: Cy-
bernetics, IEEE Transactions on, 39(1):43–55, February 2009.

[85] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic Association Rules. In
ICDE, pages 412–421. IEEE Computer Society, 1998.

[86] Patrick Pantel, Dekang Lin, and Alberta T H Canada. Discovering Word Senses
from Text. In KDD, pages 613–619. ACM, 2002.

[87] Dhaval Patel, Wynne Hsu, and Mong Li Lee. Mining Relationships Among
Interval-based Events for Classification. In SIGMOD, pages 393–404. ACM,
2008.

[88] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Word-
Net::Similarity - Measuring the Relatedness of Concepts. In Demonstration
Papers at HLT-NAACL’04, pages 38–44, 2004.

[89] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, and Helen Pinto. PrefixSpan:
Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In
ICDE, pages 215–224. IEEE Computer Society, 2001.

[90] Jian Pei, Jiawei Han, and Wei Wang. Constraint-based Sequential Pattern Min-
ing: the Pattern-growth Methods. Intelligent Information Systems, 28(2):133–
160, January 2005.

[91] Helen Pinto, Jiawei Han, Jian Pei, Ke Wang, Quiming Chen, and Umeshwar
Dayal. Multi-dimensional Sequential Pattern Mining. In CKIM, pages 81–88.
ACM, 2001.

155

[92] Marc Plantevit, Anne Laurent, Dominique Laurent, Maguelonne Teisseire, and
Yeow Wei Choong. Mining Multidimensional and Multilevel Sequential Pat-
terns. ACM TKDD, 4(1):1–37, January 2010.

[93] Daniele Quercia, Neal Lathia, Francesco Calabrese, Giusy Di Lorenzo, and Jon
Crowcroft. Recommending Social Events from Mobile Phone Location Data. In
ICDM, pages 971–976. IEEE Computer Society, 2010.

[94] Tye Rattenbury, Nathaniel Good, and Mor Naaman. Towards Automatic Ex-
traction of Event and Place Semantics from Flickr Tags. In SIGIR, pages
103–110. ACM, 2007.

[95] Tye Rattenbury and Mor Naaman. Methods for Extracting Place Semantics
from Flickr Tags. ACM Transactions on the Web, 3(1):1–30, January 2009.

[96] Philip Resnik. Semantic Similarity in a Taxonomy: An Information-Based
Measure and its Application to Problems of Ambiguity in Natural Language.
Journal of Artificial Intelligence Research, 11:95–130, 1999.

[97] John F. Roddick and Myra Spiliopoulou. A Bibliography of Temporal, Spa-
tial and Spatio-temporal Data Mining Research. ACM SIGKDD Explorations
Newsletter, 1(1):34–38, June 1999.

[98] Mark Sanderson and Bruce Croft. Deriving Concept Hierarchies from Text. In
SIGIR, pages 206–213. ACM, 1999.

[99] Jeffrey D Scargle, Jay Norris, and Brad Jackson. Statistical Aspects of Spectral
Analysis of Unevenly Spaced Data. Astrophysical Journal, 1982.

[100] Christian Sengstock and Michael Gertz. Latent Geographic Feature Extraction
from Social Media. In SIGSPATIAL, pages 149–158. ACM, 2012.

[101] Ryan Shaw and Lynda Hardman. LODE: Linking Open Descriptions of Events.
In Proceedings of the 4th Asian Conference on The Semantic Web, pages 153–
167. Springer-Verlag, 2009.

[102] Ru Shen, Nalin C W Goonesekere, and Chittibabu Guda. Mining Functional
Subgraphs from Cancer Protein-protein Interaction Networks. BMC systems
biology, 6(3):1–14, January 2012.

[103] Ramakrishnan Srikant and Rakesh Agrawal. Mining Generalized Association
Rules. In VLDB, pages 407–419. Morgan Kaufmann, 1995.

[104] Ramakrishnan Srikant and Rakesh Agrawal. Mining Sequential Patterns: Gen-
eralizations and Performance Improvements. In EDBT, pages 3–17. Springer-
Verlag, 1996.

[105] Claus Stadler, Jens Lehmann, Konrad Höffner, and Sören Auer. LinkedGeo-
Data: A Core for a Web of Spatial Open Data. Semantic Web Journal, 3(4):333–
354, 2012.

156

[106] Vede C. Storey. Understanding Semantic Relationships. The VLDB Journal,
2(4):455–488, October 1993.

[107] Alexander Strehl, Joydeep Ghosh, and Raymond Mooney. Measures on Web-
page Clustering. In Workshop on Artificial Intelligence for Web Search, pages
58–64, 2000.

[108] Etsuji Tomita and Tomokazu Seki. An Efficient Branch-and-bound Algorithm
for Finding a Maximum Clique. In Proceedings of the 4th International Confer-
ence on Discrete Mathematics and Theoretical Computer Science, pages 278–
289. Springer-Verlag, 2003.

[109] Raphaël Troncy, Bartosz Malocha, and André T. S. Fialho. Linking Events
with Media. In Proceedings of the 6th International Conference on Semantic
Systems, pages 1–4. ACM, 2010.

[110] Ilias Tsoukatos and Dimitrios Gunopulos. Efficient Mining of Spatiotemporal
Patterns. In SSTD, pages 425–442. Springer-Verlag, 2001.

[111] Peter D Turney and Patrick Pantel. From Frequency to Meaning: Vector Space
Models of Semantics. Journal of Artificial Intelligence Research, 37(1):141–188,
January 2010.

[112] Willem Robert van Hage, Véronique Malaisé, Roxane Segers, Laura Hollink,
and Guus Schreiber. Design and use of the Simple Event Model (SEM). Web
Semantics: Science, Services and Agents on the World Wide Web, 9(2):128–
136, July 2011.

[113] Charles Van Loan. Computational Frameworks for the Fast Fourier Transform.
Society for Industrial and Applied Mathematics, 1992.

[114] Michail Vlachos, Philip Yu, and Vittorio Castelli. On Periodicity Detection and
Structural Periodic Similarity. In SDM, pages 449–460. SIAM, 2005.

[115] Junmei Wang, Wynne Hsu, and Mong Li Lee. A Framework for Mining Topo-
logical Patterns in Spatio-temporal Databases. In CIKM, pages 429–436. ACM,
2005.

[116] Ke Wang, Yabo Xu, and Jeffrey Xu Yu. Scalable Sequential Pattern Mining for
Biological Sequences. In CIKM, pages 178–187. ACM, 2004.

[117] Ting Wang, Mudhakar Srivatsa, Dashi Agrawal, and Ling Liu. Spatio-temporal
Patterns in Network Events. In Co-NEXT, volume 5, pages 3:1–3:12. ACM,
2010.

[118] W. Wang and J. Yang. Mining Sequential Patterns from Large Data Sets.
Advances in Database Systems. Springer, 2006.

157

[119] Michael F. Worboys. A Generic Model for Planar Geographical Objects. Inter-
national journal of geographical information systems, 6(5):353–372, September
1992.

[120] Shin-Yi Wu and Yen-Liang Chen. Mining Nonambiguous Temporal Patterns
for Interval-Based Events. TKDE, 19:742–758, 2007.

[121] Zhibiao Wu and Martha Palmer. Verbs Semantics and Lexical Selection. In
Proceedings of the 32nd annual meeting on Association for Computational Lin-
guistics, pages 133–138. Association for Computational Linguistics, 1994.

[122] Xiangye Xiao, Xing Xie, Qiong Luo, and Wei-Ying Ma. Density Based Co-
location Pattern Discovery. In SIGSPATIAL, pages 29:1–29:10. ACM, 2008.

[123] X. Yan and Jiawei Han. gSpan: Graph-Based Substructure Pattern Mining. In
ICDM, volume 3, pages 721–724. IEEE Computer Society, 2002.

[124] Hui Yang, Srinivasan Parthasarathy, and Sameep Mehta. A Generalized Frame-
work for Mining Spatio-temporal Patterns in Scientific Data. In KDD, pages
716–721. ACM, 2005.

[125] Jiong Yang, Wei Wang, and Philip S Yu. InfoMiner: Mining Surprising Periodic
Patterns. In KDD, pages 395–400. ACM, 2001.

[126] Jiong Yang, Wei Wang, and Philip S. Yu. Mining Asynchronous Periodic Pat-
terns in Time Series Data. TKDE, 15(3):613–628, 2003.

[127] Jiong Yang, Philip S Yu, and Unc-chapel Hill. InfoMiner+: Mining Partial Pe-
riodic Patterns with Gap Penalties. In ICDM, pages 725–728. IEEE Computer
Society, 2002.

[128] Mao Ye, Dong Shou, Wang-Chien Lee, Peifeng Yin, and Krzysztof Janowicz.
On the Semantic Annotation of Places in Location-based Social Networks. In
KDD, pages 520–528. ACM, 2011.

[129] Jin Soung Yoo, Shashi Shekhar, John Smith, and Julius P. Kumquat. A Partial
Join Approach for Mining Co-location Patterns. In Proceedings of the 12th
annual ACM international workshop on Geographic information systems, pages
241–249. ACM, 2004.

[130] J.S. Yoo and S. Shekhar. A joinless approach for mining spatial colocation
patterns. TKDE, 18(10):1323–1337, October 2006.

[131] Mohammed J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Se-
quences. Machine Learning, 42(1):31–60, 2001.

[132] Ying Zhao and George Karypis. Evaluation of Hierarchical Clustering Algo-
rithms for Document Datasets. In CIKM, pages 515–524. ACM, 2002.

158

