
Bachelor's thesis

„Documentation of Decisions During the
Implementation Phase Through Code

Annotations“

Submitted by: Arthur Kühlwein

Registration number: 2900019

E-Mail: a.kuehlwein@stud.uni-heidelberg.de

Supervisors: Prof. Dr. Barbara Paech*, Tom-Michael Hesse*

*Chair of Software Systems
of the Faculty of Mathematics and Computer Science

at the Heidelberg University

29.07.2014

Abstract

Many decisions which are made during the implemetation phase of software projects are
documented either not at all or through unstructured comments within the source code.
This makes the rationale, i.e. the underlying issue with its context, alternative solutions and
criteria behind the decision implicit. As a consequence, reproducing the decision later on
becomes very difficult. It is thus necessary to make as much of this decision knowledge as
possible explicit, since decisions made during the earlier stages are frequently re-
evaluated, changed or discarded during the evolution of a software project.

This thesis investigates the possibilities and limitations of documenting decision
knowledge through annotations in the source code within the Eclipse IDE. For this, an
annotation schema is developed and implemented as an Eclipse plug-in. It is investigated,
how this schema can be made flexible in the sense that project-specific adjustments to the
structure of the decision knowledge should be possible with as less time and effort as
possible. Also, annotated decisions are mapped to and kept consistent with an external
UNICASE documentation.

Kurzbeschreibung

Viele Entscheidungen, die innerhalb der Implementierungsphase von Softwareprojekten
getroffen werden, werden oft entweder gar nicht oder nur stichpunktartig in
unstrukturierten Kommentaren beschrieben. Dadurch bleibt das Entscheidungswissen,
d.h. der Problemkontext mit seinen Alternativen und Kriterien, implizit, was es im
Nachhinein sehr schwierig macht, die Entscheidung nachzuvollziehen. Im Rahmen der
Softwareevolution werden viele Entscheidungen neu bewertet, verändert oder verworfen.
Deshalb ist es notwendig, so viel Entscheidungswissen wie möglich explizit zu machen.

Diese Arbeit untersucht die Möglichkeiten und Einschränkungen, Entscheidungswissen
über Annotationen im Quellcode der Eclipse IDE zu dokumentieren. Dafür wird ein
Annotationsschema entwickelt und als Eclipse Plug-in implementiert. Es wird untersucht,
inwieweit das Annotationsschema flexibel verändert werden kann, sodass
projektspezifische Anpassungen an der Wissensstruktur mit so wenig Aufwand wie
möglich umgesetzt werden können. Ferner werden annotierte Entscheidungen in eine
externe UNICASE-Dokumentation überführt und mit dieser konsistent gehalten werden.

Eidesstattliche Erklärung zur Bachelorarbeit

Hiermit erkläre ich, dass ich die Bachelorarbeit selbständig verfasst und keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt und die aus fremden Quellen direkt oder
indirekt übernommenen Gedanken als solche kenntlich gemacht habe.

Die Arbeit habe ich bisher keinem anderem Prüfungsamt in gleicher oder vergleichbarer
Form vorgelegt. Sie wurde bisher nicht veröffentlicht.

Heidelberg, den

(Arthur Kühlwein)

Contents

1 Introduction 1
1.1 Background and Aim of this Thesis . 1
1.2 Structure of this Thesis . 1

2 Basic Concepts 2
2.1 The Life Cycle of a Software Project . 2
2.2 Decision-Making During the Implementation Phase 3

2.2.1 Naturalistic and Rational Decision-Making 3
2.2.2 Information Needs in Design Decisions 4

2.3 The Decision Documentation Model . 5
2.4 Java Code Annotations . 8
2.5 Eclipse . 8

2.5.1 Resource Markers . 9
2.5.2 Resource Markers vs. Java Code Annotations 10
2.5.3 Extensions and Extension Points . 11

2.6 Existing Approaches . 11
2.6.1 CM2 . 11
2.6.2 Lougher and Rodden’s Approach . 13
2.6.3 SEURAT . 14
2.6.4 Comparison and Evaluation . 15

3 Approach 17
3.1 Annotation Classes . 19

3.1.1 Core Annotations . 19
3.1.2 Augmented Annotations . 21

3.2 Granularity . 22
3.3 Locality . 23
3.4 Mapping Actions on Annotations to Decision Elements 24

3.4.1 Creating a New Annotation . 25
3.4.2 Modifying an Annotation . 25
3.4.3 Deleting an Annotation . 26

3.5 Mapping Actions on Decision Elements to Annotations 26
3.5.1 Creating a New Decision Element . 26
3.5.2 Modifying a Decision Element . 27
3.5.3 Deleting a Decision Element . 27

4 Requirements Analysis 28
4.1 Use Cases . 28

4.1.1 Manage Augmented Annotation Types 29
4.1.2 Associated System Functions . 29

4.2 UI Workflow and Mock-ups . 33
4.2.1 Core Annotations . 33
4.2.2 Augmented Annotations . 33
4.2.3 Code Associations . 33

4.3 Non-Functional Requirements . 37
4.3.1 Performance . 37
4.3.2 Intuitive UI and Workflow . 37
4.3.3 Robustness . 38
4.3.4 Extensibility . 38
4.3.5 UNICASE Look and Feel . 38

5 Design and Implementation 39
5.1 Model and Program Logic . 39

5.1.1 Annotation Nature and Annotation Builder 40
5.1.2 Annotations and the Annotation Manager 41

5.2 User Interface . 43
5.2.1 Text Hover . 43
5.2.2 Code Associations View . 45
5.2.3 Augmented Annotation Manager . 45
5.2.4 Dialogs . 47

5.3 Interaction . 47
5.3.1 Creating a Core Annotation . 47
5.3.2 Creating a New Decision Element . 48

5.4 Quality Assurance . 49
5.4.1 Component Tests . 49
5.4.2 Integration Tests . 50
5.4.3 System Tests . 50

6 Discussion 51

7 Conclusion 54
7.1 Future Work . 54

References 55

List of Figures 57

Appendix A Package Diagram 59

Appendix B Class Diagrams 60
B.1 Class Diagram for org.unicase.decision.annotations 60
B.2 Class Diagram for org.unicase.decision.annotations.builders 61
B.3 Class Diagram for org.unicase.decision.annotations.model 62
B.4 Class Diagram for org.unicase.decision.annotations.model.commands 63
B.5 Class Diagram for org.unicase.decision.annotations.dialogs 64
B.6 Class Diagram for org.unicase.decision.annotations.hover 65
B.7 Class Diagram for org.unicase.decision.annotations.providers 66
B.8 Class Diagram for org.unicase.decision.annotations.views 67
B.9 Class Diagram for org.unicase.decision.annotations.util 68

1 Introduction

1.1 Background and Aim of this Thesis

Rationale is the reasoning underlying the creation and use of artifacts [1, p. 3]. In the con-
text of software development, an artifact can be anything ranging from the software project
itself to a class diagram or even a single line of code. The value of documenting the ratio-
nale behind design decisions, especially in software projects, is widely acknowledged and
a number of tools and frameworks exist which support the management of rationale. One
such tool is UNICASE [2], which is a knowledge management tool integrating project and
system knowledge directly into the Eclipse IDE [3, 5].
However, the rationale of decisions made during the implementation phase of a software
project, which are referred to as implementation decisions, is either documented with un-
structured comments within the source code or not documented at all. As a result, the
rationale remains implicit, which makes it very difficult for developers to reproduce the de-
cisions later on. This becomes particularly problematic during the evolution of a software
project, where the composition of the development team can change and decisions made
during earlier stages are subject to frequent re-evaluation, which may lead to a modification
or rejection of the original decision.
In order to effectively use the rationale of implementation decisions, it is necessary to make
this rationale explicit, with as less effort for the developer as possible. Java, which is the
main programming language to be used in the Eclipse IDE, permits the creation and use
of custom code annotations as of release 5.0 of the Java Platform [6]. The aim of this
thesis is to investigate the possibilities and limitations of using Java-style code annotations
to document decision knowledge during the implementation phase, while providing a high
degree of flexibility and simplicity regarding project-specific adjustments to the structure of
the decision knowledge. Also, annotated decisions are mapped to and kept consistent with
an external UNICASE documentation. This structures the decision knowledge while making
it explicit as well as easily accessible to all members of the development team.
For this, a custom annotation schema is developed and implemented as an Eclipse plug-in.
To prove the functionality of the developed annotation schema and plug-in, decision knowl-
edge regarding the plug-in itself is annotated using the schema.

1.2 Structure of this Thesis

Section 1 served as an introduction to the thesis’ context, motivation and aim. Section 2 ex-
plains the basic concepts and provides detailed background knowledge. Section 3 describes
the approach towards the development of the annotation schema. Section 4 explains the
analysis of requirements for the implementation of the previously introduced schema, while
Section 5 describes the implementation of the schema as a plug-in for the Eclipse IDE.
We will discuss the results of our work in Section 6. Section 7 concludes this thesis and
discusses future work.

1

2 Basic Concepts

In the following sections, we will explain the basic concepts which are relevant to our thesis.

2.1 The Life Cycle of a Software Project

The life cycle of a software project, which might last many years, consists of a number of
phases. Figure 1 illustrates the different phases of a software project’s life cycle along with
examples of the rationale that is associated with each development phase. The main focus
of our annotation schema lies in the implementation phase.

Software Life Cycle Rationale

Requirements

- Functional requirements,
non-functional requirements
- Scheduling, re-use
- User interface

Analysis

- Use cases
- Collaboration diagrams

Design

- Class diagrams
- Sequence diagrams, for each
use case

Implementation

- Translation of design into source
code
- Error handling, persistent storage,
logic/control/brancing, algorithms
...

Verification and Validation

- Tests (unit, integration, system)
- Verification: "are we building the
product right?"
- Validation: "are we building the right
product?"

Maintenance

- Corrective, apadtive, enhancive
maintenance

Retirement

- Reason ("why") for requirements,
application, domain, customer
specific
- Alternative or rejected requirements
with rationale

- Reason ("why") for use cases
- Alternative or rejected use cases
with rationale
- Why these classes and interactions

- Why these classes
- Why these attributes and methods
- Why these relationships
- Why this order
- Why these messages
...

- Why this kind of error handling
- Why this type of storage
- Why these control structures
- Why this algorithm
...

Development
Phases

Post-
Development

Phases

- Why this test methodology
- Why these particular tests cases
...

- Rationale from the development phases
...

- Why not continue to maintain it
- Why retire the project

Annotation Schema

Figure 1: The different phases in the life cycle of a software project along with the rationale associ-
ated with each development phase. Adapted from [14, Figure 2-1]

All phases can be categorized into development phases and post-development phases. We

2

will only describe the implementation phase in detail, as this is the development phase our
thesis is primarily concerned with.
During the implementation phase, all decisions made in the earlier phases are translated into
executable source code. Naturally, there are still important decisions to be made. Capturing
these decisions can be especially useful for software maintenance, where understanding
the reasoning behind implementation decisions is important (see Section 2.6). The focus of
application for our annotation schema lies in this phase.

2.2 Decision-Making During the Implementation Phase

To our knowledge, there exists no work explicitly dealing with the way programmers make
decisions and which decision knowledge is of importance in the context of implementation
decisions. However, a lot of research has been done on the subject of decision-making
and relevant decision knowledge in the context of design decisions. The boundary between
those neighboring development phases is blurred, i.e. the design phase contains activities
related to the implementation phase and vice versa. Therefore, we can use the rich pool of
knowledge regarding design decisions to - at least partially - describe the nature of imple-
mentation decisions.
In this section, we will present two papers on the nature of design decisions which are
significant to our thesis, and apply this knowledge to implementation decisions.

2.2.1 Naturalistic and Rational Decision-Making

One key finding was made by Zannier et al. [4], who identified two seemingly opposing ap-
proaches by which software developers make decisions, naturalistic decision making (NDM)
and rational decision making (RDM). Table 1 gives a short comparison of both approaches.
As a result of their multi-case study among 25 software designers, they concluded that the
approach which was chosen to make a design decision depended on the structure of the
underlying problem.

NDM RDM

Characterized by Appreciation for real-
time scenarios

Appreciation for
mathematical com-
putation

Judgment bias, no or
few alternatives con-
sidered

Utility functions, prob-
abilities, many alter-
natives considered

Problem structure Ill-structured Well-structured

Solution quality Satisfactory Optimal

Table 1: Comparison between NDM and RDM

RDM was primarily used for well-structured problems (WSPs), while NDM was primarily
used for ill-structured problems (ISPs). A WSP is characterized by having apparent criteria

3

by which an optimal solution can be achieved. A game of chess, for example, is a WSP. An
ISP on the other hand is a problem which requires problem structuring, i.e. converting the
ISP to a WSP. There exist no optimal solutions for an ISP, only ”good” or ”bad” ones. An
example for an ISP is the design of a new house, where ”decisions made in early design
sketches of the house establish structures under which following decisions are made”.
It is thus important that our annotation schema caters to both approaches, as we do not
know a priori how a particular problem for an implementation decision is structured and
which decision-making approach developers are going to use in order to solve this problem.

2.2.2 Information Needs in Design Decisions

Ko et al. [15], as a result of their two-month field study of 17 software developer teams at
Microsoft, identified the information needs of software developers, including those involved
in making design decisions. The knowledge sought in design (di) and writing code (ci) was:

d1: What is the purpose of this code?

d2: What is the program supposed to do?

d3: Why was the code implemented this way?

d4: What are the implications of this change?

c1: What data structures or functions can be used to implement this behavior?

c2: How do I use this data structure or function?

c3: How can I coordinate this code with this other data structure or function?

A ranking of the most frequent unsatisfied information needs was compiled out of the iden-
tified information needs. The information need d3 was ranked on number 2 with 44% of
queries being unsatisfied and a maximum observed search time of 21 minutes; note how-
ever that this ranking ”may reflect that 11 of the 17 participants’ teams were in a bug fixing
phase”. Also, d3 was rated as important by 61%, as unavailable by 37% and as inaccurate
by 39% of the participating developers.
These findings prove that explicit documentation regarding the rationale of an implementa-
tion decision is generally regarded as important; however, this information need often re-
mains unsatisfied.
Falessi et al. [16] made a number of deliberations regarding the utility of design decision
rationale documentation (DDRD) depending on its purpose, i.e. the role of the DDRD con-
sumer. The different roles are represented by five different DDRD use cases, of which the
use case ”identification of wrong knowledge on the solution space” comprises designers and
architects as beneficiaries of the DDRD.
They confirmed their deliberations in two independent studies [16, 17], showing that some
DDRD information was commonly regarded as ”required” by participants belonging to differ-
ent roles (see Figure 2).
As can be seen in Figure 2, issues, decisions, positions and arguments were rated as ”re-
quired” not only by more than 60% of the participating designers and architects, but also

4

Required Information

0 20 40 60 80 100Iss
ue

Decis
ion

Sta
tu

s
Ass

um
pt

ion
sCons

tra
int

sPos
itio

nsArg
um

en
t

Im
pli

ca
tio

ns

Relat
ed

de
cis

io
ns

Relat
ed

re
qu

ire
m

en
ts

Relat
ed

 a
rti

fa
cts

Relat
ed

pr
in

cip
les

Notes

C
at

eg
o

ry
 o

f
D

D
R

D

in
fo

rm
at

io
n

Percentage of subjects that felt required a specific DDRD Information

Wrong soluton space Wrong problem space Decision verification

Conflicts detection Impact evaluation

Figure 2: Rating of different DDRD information categories as ”required” by subjects. From [16]

by a similar percentage of participants belonging to different roles. This implies that the ex-
plicit documentation of the rationale behind design decisions, and thus - to a certain extent -
implementation decisions will be beneficial to all members of the development team.

2.3 The Decision Documentation Model

The Decision Documentation Model (DDM) was introduced by Hesse and Paech [5]. The
model serves as a structure for documenting decision knowledge and primarily consists of
two elements: DecisionStatements and DecisionComponents. A DecisionStatement repre-
sents a decision in its entirety along with all administrative information needed. It may de-
pend on other DecisionStatements via the dependsOn-relation and can contain any number
of DecisionComponents, which represent knowledge related to the decision. Each Deci-
sionComponent can contain further DecisionComponents itself and may be linked to other
knowledge elements via the concerns-relation. It is the parent class of all knowledge ele-
ments that describe the decision more in detail, such as arguments, questions, solutions,
etc. An AbstractKnowledgeElement represents any knowledge element in the system. The
general structure of the model is illustrated in Figure 3.
The DecisionComponents belonging to a DecisionStatement form a hierarchy among them-
selves. Also, they form a network of different relations.
While the DDM has been originally designed to support design decisions on a high level
of abstraction, the model can be just as well used on implementation decisions; a short

5

AbstractKnowledgeElement
-name: String
-description: String
-creationDate: date

DecisionStatement
-progress: ProgressStatus
-implementation: Impleme...
-classification: String
-takenBy: AbstractKnowled...

DecisionComponent
-identifiedBy: AbstractKnowl...

1...*

1...*

- contains

*

0...1

- concerns

*

*

- dependsOn

1

* - contains

Context
-isCriterion: boolean
-scenario: String
-deadline: Date
-budget: float
-orgUnit: AbstractKno...
-requirement: Abstrac...
-other: AbstractKnowl...

Argument
- supports,
attacks,
comments
1...*

*

Solution
**

- isAssessedIn
Question

- isBoundTo

* *

*
*

- resolves - resolvingArgument

Assumption Constraint

Alternative

When a solution resolves a question,
a resolving argument is bound to the resolves
relation.

This element represents
any knowledge element in
the system.

<<enumeration>>
ProgressStatus
Pending
Accepted
Rejected
PreliminaryAccepted

<<enumeration>>
ImplementationStatus
Envisioned
Applied
NotApplied
Obsolete

Figure 3: Structure of the DDM. Adapted from [5]

6

example shall illustrate this.
We assume there is a document export plug-in for a CASE tool, which exports model ele-
ments from a project into a PDF file. This functionality is provided to the user via a document
export wizard, in which he or she can select the model elements that are to be exported.
However, no functionality to export a project in its entirety exists at the moment, so the deci-
sion is made to implement this functionality. As the back-end functionality to export a project
is already there, it is only necessary to add a wizard for users who want to export a project.
The structure of applying the model to this decision is illustrated in Figure 4.

Decision Knowledge

Decision Statement

A wizard for exporting an
entire project is added.

Solution

Solution

Implement a new wizard
from scratch.

Rationale

Argument

A lot of additional code
has to be written.

Argument

The wizard can be kept
very flexible.

A B A contains B attacks-relation
set

supports-relation set
comments-relation set

Context Information

Constraint
As less code as possible
should be added to the
project.

Constraint

Code duplication should
be avoided.

Solution

Alternative
Change the existing
wizard to support a
mode for exporting a
project.

Argument

Currently, a project
export is only a lighter
version of the standard
document export.

Rationale

1

4

5

6

2

3

8

7

Figure 4: The DDM applied on the example. Adapted from [5]

We see that in the first iteration, the decision along with all contextual information regarding
the decision is added to the decision knowledge (steps 1, 2 and 3). The contextual infor-
mation consists of two constraints, stating that code addition and code duplication should
be minimized. In the second iteration, a solution is proposed, suggesting that a new wizard
should be implemented from scratch (step 4). An attacking argument is then added, stating
that in order to do this, a lot of additional code has to be written, a lot of which might also
be duplicated code from the existing wizard (step 5). A supporting argument is also added,
which claims that implementing the wizard in this fashion will keep it very flexible (step 6).
In the third iteration, the supporting argument in step 6 is commented by another argument,
which states that in the software’s current version, a project export is only a lighter version of
the standard document export, eliminating the need for flexibility (step 7). To reflect this, an
alternative solution is provided, suggesting that the existing document export wizard should
be adjusted to support a mode for exporting a project (step 8).
The model has been partially implemented in UNICASE and will serve as the basis for both
design and implementation of the annotation schema introduced in this thesis.

7

2.4 Java Code Annotations

In the Java platform, annotations are a form of meta data used on Java source code.
Annotation-dependent behavior is triggered on annotated source code during compilation.
Annotations start with an at-sign (@), followed by the annotation type. The Java platform
provides a set of built-in annotations and, as of release 5.0 of the Java platform, permits the
definition of custom annotations [6]. Figure 5 shows an example of a typical Java annotation.
Here, the @Override annotation is used to mark methods which override a method of their
super class.

Figure 5: An example of a Java annotation

In order to be able to use a custom annotation, the annotation needs to be declared and
an annotation processor associated with this annotation needs to be implemented [8]. This
annotation processor is then responsible for handling source code decorated with this anno-
tation.
The annotation processors are called by the Annotation Processing Tool (apt), which first
determines what annotations are present on the source code at hand and then looks for
any annotation processor factories that process the found annotations. If apt has found an
annotation processor factory for an annotation, the respective annotation processor is run.
In order to develop a custom annotation processor, the AnnotationProcessor interface in
the package com.sun.mirror.apt needs to be implemented. This interface has the method
process() which is used by the apt tool to invoke the processor, which may be responsible
for processing more than one annotation type.
Also, AnnotationProcessorFactory needs to be implemented, which returns an instance of
the processor. The method getProcessorFor() is called by apt to get the processor, which
gets an AnnotationProcessorEnvironment from apt. This environment provides all neces-
sary contextual information for the processor, including references and means to communi-
cate and cooperate with apt.
Processor factories can be found either by specifying the ”-factory” command line option or
using the apt discovery procedure.

2.5 Eclipse

Eclipse is a highly extensible integrated development environment (IDE), which can, by
means of various plug-ins, support a number of different programming languages. It also
serves as a tool platform which can be used to develop and run applications, such as UNI-
CASE. This is made possible by Eclipse’s Rich Client Platform (RCP), which comprises

8

� the core platform,

� the Equinox OSGi1,

� the Standard Widget Toolkit (SWT)2,

� JFace3 and

� the Eclipse Workbench.

The Eclipse Workbench contains all views, perspectives, wizards and editors within Eclipse.
A typical configuration for the Eclipse Workbench can be seen in Figure 6.

Package Explorer

Editor Outline

Figure 6: The Eclipse Workbench. From left to right: Package Explorer, Editor, Outline

One interesting feature of the Eclipse Workbench, and the editor in particular, is the possi-
bility to decorate resources within the Workbench using resource markers.

2.5.1 Resource Markers

Markers are light-weight objects, which are used to decorate any resource contained in the
Eclipse Workbench [9]. These resources, for example, can be source code files, or the
source code contained in these files as they are being displayed in the editor.
By default, the editor uses a number of different markers, for example to warn users about
problematic sections or errors in their source code. An example of warning and error markers
in the editor can be seen in Figure 7. Markers can show an icon on the small vertical bar
on the left hand side of the editor and underline relevant code sections in that particular line
with color.

1http://www.eclipse.org/equinox/
2http://www.eclipse.org/swt/
3http://wiki.eclipse.org/index.php/JFace

9

Figure 7: Active error and inactive warning markers in the Eclipse editor

Plug-ins may contribute custom markers to the Eclipse editor via the Resources plug-in [10].
These markers have to inherit their type from at least one existing marker type, which can
be either from one of the five standard types defined in the Resources plug-in, or any other
marker type defined in external plug-ins. The five standard types defined in the Resources
plug-in are:

� org.eclipse.core.resources.marker

� org.eclipse.core.resources.taskmarker

� org.eclipse.core.resources.problemmarker

� org.eclipse.core.resources.bookmark

� org.eclipse.core.resources.textmarker

A marker can contain any number of attributes, which are maintained as name/value pairs,
where the names are strings and the values can be any one of the supported value types.
Supported value types are boolean, integer and string.
Plug-ins that contribute markers are solely responsible for creating markers, changing their
attributes and removing them when they are not needed anymore.

2.5.2 Resource Markers vs. Java Code Annotations

There are similarities between Java’s code annotations and Eclipse’s resource markers, but
also a number of differences.
Annotations mainly serve as instructions for the Java compiler and each annotation type
has to be defined in a separate file. This makes the creation of annotation types during
runtime difficult. Also, placing multiple annotations of the same type on one element is only
supported in the Java Platform 8.0, which is the newest release as of June 2014.
Markers are more light-weight and fully utilize Eclipse’s plug-in system. Marker types are
defined by the plug-in and can be created and removed during runtime through Eclipse’s ad-
dContribution() and removeExtension() methods. This vastly enhances flexibility compared
to Java annotations.

10

2.5.3 Extensions and Extension Points

Each Eclipse plug-in may provide extension points. An extension point allows other plug-ins
to contribute extensions to the extension point.
Plug-ins that provide extension points are also responsible for evaluating the extensions. A
contribution to an extension point can comprise source code or data.
Eclipse, for example, provides a number of extension points that, among others, allow plug-
ins to add additional views or extend the IDE’s functionality.
Our plug-in will provide a number of extension points to enable extensibility.

2.6 Existing Approaches

In this section, we will present a selection of three existing approaches which support the
documentation of decisions through annotating source code. None of these approaches
deal with implementation decisions explicitly. Instead, the first two approaches mainly focus
on decisions made during the maintenance phase of a software project’s life cycle, while the
third approach focuses on the decisions made during the design phase.
Finally, we will compare and evaluate the presented approaches with our approach.

2.6.1 CM2

Canfora et al. [7] introduced the Cooperative Maintenance Conceptual Model (CM2), which
structures information about design rationale ”as a network of linked comments and defines
a maintenance rationale that extends the idea of design rationale to cover both rationale
concerned with analysis and design activities (rationale in the large) and rationale concerned
with implementation activities (rationale in the small)”.
Of primary concern here is the representation of rationale in the small. The proposed model
allows the annotation and the linkage of both source code and its design documentation
using the same flexible mechanism. Every maintenance programmer can ”develop a net-
work of comments to record and transmit the decisional dynamics concerned with the im-
plementation decisions he or she made”. When the programmer starts with his or her job
on a maintenance request, CM2 associates an implementation folder to the maintenance
request, to which all comments made by the maintenance programmer team will be auto-
matically linked. Figure 8 summarizes the annotation mechanism for the rationale in the
small.
The gray boxes represent comments which have been created during a single maintenance
process. These comments, which are used to annotate the source code, are associated to
the corresponding implementation folder. In addition, ”each comment can be linked to one
or more other comments also belonging to different implementation folders”.
An example of source code that has been annotated using CM2 can be seen in Figure 9.
In this example, the maintenance team is to update a supermarket chain’s information sys-
tem in accordance to the change of the country’s currency from Lira to Euro. The supermar-
ket’s application software as well as its underlying database should be modified to handle the
new currency. Out of the available proposals, the best one was selected and implemented.

11

Implementation✁

Folder “P2”✂

Implementation
Folder “P1”✂System Software

✄

Module
and☎ Documentation

Figure 8: Overview over CM2’s annotation mechanism. From [7]

...
bill = bill + item_price;
bill_lire = bill * euro_value;
print_bill(bill);
...
print_bill(bill_lire);
...
...
...
void print_bill(long bill) {

...
}

Rationale in the Large

Identifier: 1381
Name: Print rules

Author: Andrea Porta
Date: 01/03/93
Class: Macro

Type: Transversal
Contents: The instructions linked
to this comment are responsible
for printing the bill both in Liras

and Euros.
Link: QOC design

Identifier: 1235
Name: print_bill

Author: Andrea Porta
Date: 10/02/99
Class: Micro

Type: Rationale in the small
Contents: This instruction calls

the function print_bill to print the
bill with Euros.

Link: Print Format (0032)

Identifier: 0032
Name: Print Format

Author: Claudio Ciccone
Date: 03/02/99
Class: Micro

Type: Rationale in the Small
Contents: The bill is printed on

50 columns.
Link: None

Figure 9: Example of a source code segment that has been annotated using CM2. Adapted from [7]

12

The traversal link in Figure 9 directly links the comment to the rationale in the large, so main-
tenance programmers can quickly understand the solution to the problem in the example
by analyzing the rationale in the large, links that connect this rationale to the corresponding
rationale in the small and the rationale in the small itself.

2.6.2 Lougher and Rodden’s Approach

Lougher and Rodden [13] presented a system which allows ”members of a maintenance
team to easily construct and structure a shared pool of maintenance information”. The
system’s configuration can be seen in Figure 10.

User Interface

Annotator

Definitions

MarkupSource Code +
Documentation

Hypertext Network

User

Figure 10: The configuration of the system behind Lougher and Rodden’s approach. Adapted from
[13]

The source code is annotated by attaching comments to the source code using a markup
language ”which specifies, among other things, how to recreate the hypertext network”. The
hypertext network allows the linkage between the maintenance rationale with the parts of
the system that this rationale deals with. When the source code is loaded, it is passed up
to the markup component, which consists of a parser and a generator. The parser extracts
the documentation from the source code and passes it to the annotator, which incrementally
builds the hypertext network from this information.
The user interface comprises an interactive editor, through which ”the maintenance engi-
neer can browse and edit the hypertext network”. Source code can be freely edited, while
references to annotations are kept consistent. Once the project has been saved, the ”mod-
ified source code and hypertext network is passed back to the markup component, which
generates the source code and embedded markup information for writing to file”.
The comments are attached ”by hypertext style links to various parts of the source code”.
These links are bi-directional and can be either linked to arbitrary sections within the source
code, or arbitrary code fragments. Comments can also be attached to other comments,
which enables ”notes to be added quickly during modification”.

13

2.6.3 SEURAT

Software Engineering Using RATionale (SEURAT) is a system ”developed to explore uses of
design rationale” and was introduced by Burge and Brown [11]. ”It supports both the display
of and inferencing over the rationale to point out any unresolved issues of inconsistencies”.
SEURAT is integrated into the Eclipse IDE as a plug-in, allowing to ”connect the rationale
with the code and design artifacts that it explains”.
Two additional views are contributed to the Eclipse workspace by SEURAT, which can be
seen in Figure 11.

Figure 11: SEURAT and Eclipse. From [11]

The Rationale Explorer serves as the main navigational tool for the rationale. The hierarchi-
cal tree view allows the user to display and edit the rationale. The Rationale Task List shows
”a list of errors and warnings about the rationale”. Indicators are used for the files in the Java
Package Explorer to show where rationale is available.
The Rationale Task List can be used to viewed in an editor, which allows the specification of
the class, method or instance variable that is associated with the rationale.
Bookmarks, which are a feature of the Eclipse IDE, are used to connect the rationale with
the source code [12]. The Bookmarks List can be seen in Figure 12.

14

Figure 12: The Bookmarks List. From [12]

It lists the file, folder and line number of each bookmark. Double-clicking on a bookmark
opens the source code in the editor.

2.6.4 Comparison and Evaluation

In this section, we will evaluate and compare each approach with our approach.

2.6.4.1 CM2

While the rationale in the large is using a well-structured model to represent the decision
knowledge, the annotations inside the source code which are representing the rationale in
the small are not; instead, a network of comments is used which only link to elements in the
rationale in the large, but do not use these elements themselves. This allows the linkage of
source code to the rationale in the large, but not a well-structured representation of rationale
in the small, i.e. decisions made in the implementation phase.
Instead, our approach will use a well-structured model, namely the DDM for both the docu-
mentation of implementation decisions as well as the documentation of decisions made on
a higher level of abstraction. In this sense will not discern between the rationale in the large
and the rationale in the small.

2.6.4.2 Lougher and Rodden’s Approach

A strong point of the system is the ability for users to define custom comment objects to suit
their documentation style and to ”reflect what they wish to document”. While the comment
objects can be defined for any type of information, it remains unclear whether a well-defined
structure is imposed on these comments and the generated documentation in general.
In principle, UNICASE is very similar to the hypertext network. However, the system pre-
sented here was introduced in late 1993 and unlike UNICASE, the system is not integrated

15

in an IDE. We will apply the bi-directional nature of links in the system to the annotations in
our approach, as we agree with the authors that ”the simple concept of linking” is ”suprisingly
powerful” [13].

2.6.4.3 SEURAT

This approach utilizes Eclipse’s marker system to create simple links between the rationale
and the source code, which are both fully integrated in the IDE. In our annotation schema,
we will extend this idea by enhancing the functionality of these links.

16

3 Approach

In this section, we will describe our approach as well as the concept of the resulting annota-
tion schema along with all key decisions.
An annotation schema which is to help programmers and developers (users) document their
implementation decisions has to be both light-weight and flexible. It has to be light-weight,
because the overhead for documenting implementation decisions has to be kept as low
as possible and flexible, because the schema has to support project- and problem-specific
adjustments to the structure of the decision knowledge.
The DDM (see Section 2.3), which is the basis for our annotation schema, already supports
a wide number of knowledge elements and can be easily extended to support additional
elements. We use the term decision element as a general term for decision statements and
decision components which make up the decision knowledge in the DDM. So far, this model
has been applied for decisions on a higher level of abstraction, so some types of decision
elements are more likely to be used in the context of implementation decisions than others
(cf. Section 2.2). However, it is still necessary to include all types of decision elements to
guarantee flexibility.
With this information in mind, we developed the annotation schema. Figure 13 gives an
overview over the relations between annotations in our schema and the decision elements
in the DDM.
We take annotations as they are defined in the Java platform as the basis for our definition
of an annotation in our schema. An at-sign (@) indicates the beginning of an annotation,
followed the annotation type, which reflects the types of decision elements the annotation
refers to. Each annotation type contains a certain set of attributes. In order to avoid obscur-
ing source code, some attributes may be hidden and may only made visible to users through
a detail view, which also allows the hidden attributes to be edited.
We chose to use this particular notation for our annotations, as it conforms with the notation
of both the Java programming language and the Javadoc tool4.
Initially, we intended to use annotations to provide a basic one-to-one mapping to decision
elements in the DDM. However, we soon realized that the potential of these annotations is
limited. Thus, there exist two classes of annotations in our schema: core annotations and
augmented annotations.
Core annotations provide a basic one-to-one mapping to the decision elements in the DDM,
i.e. they represent the highest level of granularity. Each type of decision element has a
respective core annotation type associated with it. The type-specific attributes of these core
annotations correspond with the type-specific attributes of the respective decision elements,
i.e. each core annotation is linked to exactly one decision element.
Augmented annotations provide extended functionality compared to core annotations; they
may contain any number of attributes and execute any number of augmented annotation
commands, which can create, refer to or modify decision elements. Our annotation schema
provides a core set of predefined augmented annotation types, but the user may freely define
augmented annotations as well. Augmented annotations represent the medium to low levels

4Widely used tool for generating API documentation in HTML format - http://www.ora-
cle.com/technetwork/java/javase/documentation/index-jsp-135444.html

17

Decision Documentation Model (UNICASE)

Source Code (Eclipse)

Decision Element

Decision Statement

Decision Component

contains

is a

Set of type-specific
attributes

1...*

1

Annotation

Core Annotation

Set of type-specific
attributes

corresponds with

Augmented Annotation

is a

Augmented Annotation
Command

creates/
referes to

executes
1 1...*

creates/
refers to/
modifies

1

1

isHardLinked

1 1...*

Figure 13: Relations between annotations and decision elements (Chen’s notation)

18

of granularity. We introduced augmented annotations, because we wanted to exploit the
potential of annotations in our schema beyond the basic one-to-one mapping that is provided
by core annotations.
Both core annotations and augmented annotation commands may be hard-linked to their
decision elements. In the context of core annotations, a hard link means that changes in
the annotation will be applied to the referred decision element and vice versa. Also, if the
core annotation is deleted, the referred decision element is deleted as well. In the context of
augmented annotation commands, a hard link means that the command creates the referred
decision element. If the augmented annotation that contains the command is deleted, the
referred decision element is deleted as well.
Annotations in our schema can be used to

1. document implementation decisions, i.e. decisions concerned with the implementation
phase. This is the primary use case for our schema. Here, annotations primarily create
decision elements.

Examples for this, which are based on our example implementation decision from Sec-
tion 2.3, can be seen in Section 3.2.

2. comment on or refer to existing decisions elements. These decision elements may
belong to all phases of the project’s life cycle, including the implementation phase. In
this case, annotations primarily refer to decision elements.

Using our aforementioned example implementation decision, implementers could link
the implementation decision to the underlying design decision by referring to the re-
spective decision element.

There are a number of important aspects to consider for our annotation schema. Due to the
nature of decision-making for implementation decisions, there are different levels of gran-
ularity at which an implementation decision may be documented. At the same time, the
source code that is of significance for a given decision may be scattered across any number
of source code files. Thus, the granularity and locality of annotations plays an important role.
Finally, we need to consider how to map user actions to annotations and decision elements
respectively.
We will discuss granularity and locality in Sections 3.2 and 3.3, and the mapping of user
actions to annotations and decision elements in Sections 3.4 and 3.5 respectively.

3.1 Annotation Classes

In this section, we will present the two classes of annotations in detail.

3.1.1 Core Annotations

Each decision element available in the DDM is mapped to exactly one core annotation type
in order to guarantee a high degree of flexibility. All core annotation types share a common
set of attributes, of which all but one of these common attributes are hidden, as most of them
are only used for internal purposes, such as referencing and persistent storage. The only

19

common attribute which is not hidden is the core annotation’s description, which refers to
the description of the referred decision element.
In the following sections, the available types of core annotations will be described in detail.

3.1.1.1 @Decision

This annotation type represents a decision statement, which is the top-level decision el-
ement. In order to document an implementation decision, it is necessary to create this
annotation first. It contains the following attributes:

Progress The decision’s progress status. Possible values are rejected, pending, prelimi-
nary accepted and accepted.

Implementation The decision’s implementation status. Possible values are not applied,
envisioned, applied and obsolete.

3.1.1.2 @Alternative

This annotation type represents a solution alternative for a decision statement. To indicate
that the alternative solution has been accepted as a solution for the decision at hand, it is
resolved by a resolving argument. It contains no specific attributes.

3.1.1.3 @Argument

This annotation type represents an argument either supporting or attacking a decision ele-
ment. It contains the following attributes:

Supports A list of decision elements the argument is supporting.

Attacks A list of decision elements the argument is attacking.

3.1.1.4 @Constraint

This annotation type represents a constraint on the given decision. It contains the following
attributes:

Is Criterion Flag to indicate indicate whether the constraint is to be treated as a criterion.

Measure The measure of the criterion. Possible values are qualitative and quantitative.

Type The type of the constraint. Possible values are as is, to be and not to be.

Scenario The scenario of the constraint.

Deadline The deadline of the constraint.

3.1.1.5 @Assumption

This annotation type represents contextual information that states expectations towards the
decision’s environment. It contains the same attributes as the @Constraint annotation.

20

3.1.1.6 @Goal

This annotation type represents a positive aim that shall be reached when deciding how to
solve the decision’s problem. It contains no specific attributes.

3.1.1.7 @Issue

This annotation type represents a given decision problem. It contains the following attribute:

Error Details The error details of the issue.

3.1.1.8 @Context

This annotation type represents a description of the decision’s environment. It contains the
same attributes as the @Constraint annotation.

3.1.1.9 @Implication

This annotation type represents contextual information describing expected outcomes or
effects of the decision. It contains the same attributes as the @Constraint annotation as
well as:

Effect The effect of the implication. Possible values are positive, indifferent, negative and
unknown.

3.1.1.10 @Assessment

This annotation type represents a solution with respect to a given criterion. It contains the
following attributes:

Quantity The quantity of the assessment.

Quality The quality rating of the assessment. Five step rating ranging from very good to
very poor. Additional value inapplicable.

Supports A list of decision elements the assessment is supporting.

Attacks A list of decision elements the assessment is attacking.

3.1.1.11 @Claim

This annotation type represents a solution aspect that already worked out formerly. It con-
tains the following attribute:

Type The type of claim. Possible values are as is, to be and not to be.

3.1.2 Augmented Annotations

Augmented annotations extend the functionality of core annotations. The behavior of the
augmented annotation is defined by the commands it contains. The commands are executed

21

automatically as soon as the augmented annotation is created. The behavior of a type of
augmented annotation can be defined by users, either programmatically or by means of an
editor.
Our annotation schema provides a set of predefined augmented annotations, but users are
able to create their own or edit the predefined augmented annotation types. Our annotation
schema will provide an editor allowing users to create augmented annotations that perform
a number of simple commands.
In the following sections, the available types of predefined augmented annotations will be
described in detail.

3.1.2.1 @Pro

This augmented annotation creates a supporting argument. It contains only one attribute,
which is the supporting argument’s description. It searches upwards for the nearest instance
of a core annotation inside the source code. If one such annotation has been found, it
creates a supporting argument as a direct child of the decision element the core annotation
refers to. If no such annotation could be found within the source code, it does nothing.

3.1.2.2 @Contra

This augmented annotation creates an attacking argument. It contains only one attribute,
which is the attacking argument’s description. It searches upwards for the next instance of
a core annotation inside the source code. If one such annotation has been found, it creates
an attacking argument as a direct child of the decision element the core annotation refers to.
If no such annotation could be found within the source code, it does nothing.

3.1.2.3 @ResolvedBy

This augmented annotation indicates that an alternative has been accepted as a solution for
a decision. It contains only one attribute, which is a reference to the resolving argument; this
attribute is hidden and may be viewed and edited in a detail view. It searches upwards for the
next instance of an @Alternative annotation inside the source code. If one such annotation
has been found, it refers the resolving argument to the decision element the @Alternative
annotation refers to. If no such annotation could be found within the source code, it does
nothing.

3.2 Granularity

Users may want to document their implementation decisions with different levels of granular-
ity, depending on the severity and significance of the decision. Thus, our annotation schema
supports different levels of granularity.
We illustrate this using our example implementation decision from the DDM, where we will
use our annotation schema to document the decision.

@Decision("A wizard for exporting an entire project is implemented. We
chose to just adjust the existing document export wizard, because it
was the simplest solution.")

22

[source code]

Listing 1: The lowest level of granularity

Listing 1 shows the lowest level of granularity for our schema. This basically equates to an
extended comment, where only the major parts of an implementation decision are captured.
The overhead for programmers is minimal.

@Decision("A wizard for exporting an entire project is implemented.")
@Alternative("Implement a new wizard from scratch.")
@Pro("The wizard can be kept very flexible.")
@Contra("This produces a lot of duplicate code.")
@Contra("High cost.")
@Alternative("Adjust the existing wizard to support a project export.")
@ResolvedBy
[source code]

Listing 2: The medium level of granularity

Listing 2 shows the medium level of granularity. Here, the two alternatives are described,
along with attacking and supporting arguments for the first alternative using the @Contra
and @Pro augmented annotations. The second alternative has been accepted, which is
indicated by the @ResolvedBy augmented annotation. The overhead for this level of granu-
larity is somewhere in the middle ground between the lowest and highest level of granularity.

@Decision("A wizard for exporting an entire project is implemented.")
@Constraint("As less code as possible should be added to the project.")
@Constraint("Code duplication should be avoided.")
@Alternative("Implement a new wizard from scratch.")
@Argument("A lot of additional code has to be written.")
@Argument("The wizard can be kept very flexible.")
@Argument("Currently, a project export is only a lighter version of the

standard document export.")
@Alternative("Adjust the existing wizard to support a project export.")
[source code]

Listing 3: The highest level of granularity

Listing 3 shows the highest level of granularity. Here, every decision element in our example
has been mapped to a core annotation. Note that only the descriptions are visible here, all
other attributes are hidden. They can be accessed and edited via a detail view. This level
of granularity has the highest overhead for programmers but also provides the most detailed
insight into the decision.
The borders between the different levels of granularity are blurred. For example, users might
document the constraints for their implementation decisions, but use augmented annotations
or a mixture of @Argument, @Pro and @Contra annotations to formulate supporting and
attacking arguments for the given alternatives.

3.3 Locality

In the listings above, we wrote our annotations in one consistent block. In some cases, it
might be beneficial to clarity to write annotations right above the lines of source code that are

23

directly concerned with them. Our annotation schema allows annotations to be distributed
in this fashion. We shall illustrate this using Listing 3 as our example.

@Decision("A wizard for exporting an entire project is implemented.")
@Constraint("As less code as possible should be added to the project.")
@Constraint("Code duplication should be avoided.")
[source code]

@Alternative("Implement a new wizard from scratch.")
@Argument("The wizard can be kept very flexible.")
/*[source code] //Source code from the first
*[source code] //alternative, which has been
*[source code] //rejected and commented out
*
*[source code]
*/

@Argument("A lot of additional code has to be written.")
@Argument("Currently, a project export is only a lighter version

of the standard document export.")
@Alternative("Adjust the existing wizard to support a project

export.")
[source code] //Source code from the accepted alternative

Listing 4: Distributed annotations, highest level of granularity

Listing 4 shows a distributed version of the annotations in Listing 3. The source code from
the originally proposed alternative has been commented out. Directly below, the attacking
arguments to the original alternative are mentioned along with the alternative.

3.4 Mapping Actions on Annotations to Decision Elements

Based on the actions users are able to perform on the annotation schema, Table 2 gives a
general overview over the different cases to consider when mapping annotations in source
code to decision elements. In the following sections, we will describe the individual cases in
detail; if not otherwise specified, the descriptions apply to all classes of annotations.

User action Cases to consider

Creating a new annotation Link to existing decision element
Create new decision element

Modifying an annotation
Change content
Change referred decision element(s)
Change annotation

Deleting an annotation

Table 2: Overview over the general cases to consider when mapping annotations to decision ele-
ments

24

3.4.1 Creating a New Annotation

Creating a new annotation is done by writing an at-sign followed by the type of annotation
and, where applicable, the content of the relevant visible attributes in parentheses into the
source code.
The annotation is yet to be linked to a decision element and users have two options: either
link the annotation to an existing decision element or create a new decision element.
Augmented annotations: The linkage to existing decision elements or creation of decision
elements is done automatically for all predefined augmented annotations.

3.4.1.1 Link to an Existing Decision Element

Users select the decision element that is to be linked to the newly created annotation. The
content of attributes contained in the annotation, if available, is appended locally to the deci-
sion element’s attributes and the decision element is linked to the annotation. The decision
element itself or any of its attributes cannot be changed.

3.4.1.2 Create a New Decision Element

Users either select the location of the decision element that is to be created or create the
decision element in a default location. Once the decision element has been created, it is
linked to the annotation and the decision element’s attributes are filled with the content of
the annotation’s attributes. In this case, there exists a hard link between the annotation and
the decision element, i.e. if the decision element is deleted or modified, the annotation is
deleted or modified as well, and vice versa.

3.4.2 Modifying an Annotation

Once an annotation has been created, it may of course be modified. We have to differentiate
between three general types of modifications.

3.4.2.1 Change Content

Changing the content of an annotation’s attributes is done by making the respective changes
in the annotation. If the annotation refers to existing decision elements, the changes will have
no effects on the referred decision elements; only the appended content is changed. If the
annotation has created a decision element, i.e. a hard link exists between the annotation
and one of the referred decision elements, the content of the decision element will change
with the annotation.

3.4.2.2 Change Referred Decision Element(s)

Changing one of the referred decision elements is done by selecting the new decision ele-
ment. Naturally, the selected decision element has to be of the same type as the old one.
Again, the content of the annotation’s attributes is appended locally to the decision element’s
attributes, if the selected decision element already exists. If a new decision element is cre-

25

ated instead, a hard link between the annotation and the newly created decision element is
established. If a hard link existed between the annotation and one of the referred decision
elements and the decision element is changed, the old decision element is deleted.

3.4.2.3 Change Annotation

Changing the annotation may or may not be done without deleting or changing its attributes
and their contents. This depends on whether the old and new annotation type have a in-
tersection with their specific set of attributes. Once the annotation has been changed, any
linkage to decision elements have to be respecified. If hard links existed between the an-
notation and the referred decision elements and the annotation type is changed, the old
decision elements are deleted and new decision elements corresponding to the annotation
are created and hard linked.
Augmented annotations: It is possible to edit an augmented annotation types in an editor.
When instances of a certain augmented annotation type exist in the source code and the
augmented annotation type is edited, users will have two options: they can either keep the
existing instances or delete them.

3.4.3 Deleting an Annotation

Deleting an annotation is done by simply removing the annotation and its contents from the
source code. We have to differentiate between two cases.
If the annotation has created a decision element, i.e. a hard link exist between the annotation
and one of the referred decision elements, both the annotation and the hard-linked decision
element are deleted. If the decision element has any children, they are deleted as well.
If the annotation refers to an existing decision element, only the annotation is deleted. The
decision element remains unchanged.

3.5 Mapping Actions on Decision Elements to Annotations

Based on the actions users are able to perform on the DDM, we need to consider only the
following general cases when mapping decision elements to annotations.

1. Creating a new decision element

2. Modifying a decision element

3. Deleting a decision element

The individual cases will be described in detail in the following sections.

3.5.1 Creating a New Decision Element

Creating a new decision element has no effects on any annotations inside the source code.
An interesting feature to have would be the possibility for users to specify locations within

26

the source code, which correspond to the newly created decision element, creating core
annotations of the corresponding type at the specified locations inside the source code.
These core annotations will then be hard-linked to the newly created decision element.
While this would not really be of benefit for programmers, as they should rarely have to
leave the source code domain, we believe that personnel involved in decision making at
higher levels would benefit from this feature, as they could link their decisions to source
code without leaving their domain.

3.5.2 Modifying a Decision Element

Modifying a decision element has no effect on any annotations that refer to it, unless the
decision element has been created by an annotation.
If the decision element has been created by an annotation, i.e. a hard link exists between the
annotation and the decision element, and the decision element is modified, the modification
is also transferred to the annotation. This means that all attributes of the decision element
that have been modified, are also modified in the same manner on the annotation.

3.5.3 Deleting a Decision Element

Deleting a decision element will render all annotations that refer to it invalid. Users may
decide whether all affected annotations are deleted or their referred decision elements are
manually respecified.
If the decision element has been created by an annotation, i.e. a hard link exists between
the annotation and the decision element, and the decision element is deleted, the annotation
is deleted as well. Any additional annotations that refer to the deleted decision element are
rendered invalid.

27

4 Requirements Analysis

In the following sections, we will analyze the requirements of the implementation of our
annotation schema.

4.1 Use Cases

Figure 14 illustrates the use cases and system functions we were able to identify based
on our considerations from Sections 3.4 and 3.5. The use cases concerning the creation,

Programmer/
Developer

Create new decision element(s)

Refer to existing decision element(s)

Change content(s)

Change referred decision element(s)

Change annotation
type

Create annotation

Modify annotation

Delete annotation

Create decision
element

Link decision element to
annotation

Change annotation
attribute

Delete annotation

Delete decision element

Change decision element
attribute

Compute attribute
intersection

Reset links to decision
elements

Reset annotation
attributes

Manage augmented annotation
types

Create a new augmented annotation
type

Edit augmented annotation
type

Delete augmented annotation
type

Create augmented annotation
type

Change augmented annotation
type's attribute

Delete augmented annotation
type

Change annotation
type

System Layer

Figure 14: The use case diagram for our annotation schema

modification and deletion of annotations have already been described in Section 3.4. In the
following sections, we will describe the remaining use cases along with all system functions
associated with each use case in detail.

28

4.1.1 Manage Augmented Annotation Types

The management of augmented annotation types is done in an editor, allowing the creation,
modification and deletion of augmented annotation types.

4.1.1.1 Create a New Augmented Annotation Type

Users create a new augmented annotation type and define its behavior. A new augmented
annotation type with the specified name, attributes and behavior is created.

4.1.1.2 Edit Augmented Annotation Type

Users edit a augmented annotation type. After they are satisfied with their modifications,
the modifications are applied to the augmented annotation type. All existing instances of
this augmented annotation types within the source code are modified accordingly. This may
trigger the deletion of decision elements.

4.1.1.3 Delete Augmented Annotation Type

Users delete a augmented annotation type. The augmented annotation type along with all
of its instances within the source code are deleted. This may trigger the deletion of decision
elements.

4.1.2 Associated System Functions

In the following sections, we will describe the system functions associated with each use
case in detail.

4.1.2.1 Create Decision Element

This function creates a decision element. Its type is based on the type that is provided as
an argument. The description of the decision element is provided by the calling annotation,
the name of the decision element and its location within the underlying UNICASE project is
provided by the user. Annotations calling this system function may provide a set of attribute-
value pairs as an additional argument to this function, based on which the decision element’s
attributes are set.
The decision element is then hard-linked to the calling annotation by executing the ”link
decision element to annotation” function.
Arguments:

1. Type of the decision element

2. Name of the decision element

3. Calling annotation

4. Optional: set of attribute-value pairs

29

Result: a decision element is created, which is hard-linked to the annotation that called this
function.

4.1.2.2 Link Decision Element to Annotation

This function creates a hard-link between a decision element and an annotation, both are
given as arguments to this function.
Arguments:

1. Decision element

2. Calling annotation

Result: a hard link is established between the decision element and the annotation.

4.1.2.3 Change Annotation Attribute

This function modifies an attribute of an annotation. If the attribute concerns a hard-linked
decision element, the modification has to be performed on the hard-linked decision element’s
attribute as well, which is done by executing the ”change decision element attribute” function.
Arguments:

1. Calling annotation

2. Attribute to change

3. New attribute value

Result: the annotation’s and, where applicable, decision element’s attribute has been mod-
ified accordingly.

4.1.2.4 Change Decision Element Attribute

This function modifies the attribute of a decision element.
Arguments:

1. Decision Element

2. Attribute to change

3. New attribute value

Result: the decision element’s attribute has been modified accordingly.

4.1.2.5 Change Annotation Type

This function changes the type of an annotation. First, it computes the intersection between
the old and new annotation types’ attribute sets using the ”compute attribute intersection”
function. All attributes inside the intersection are transferred, all other attributes are reset
using the ”reset annotation attributes” function.
Arguments:

30

1. Old annotation type

2. New annotation type

Result: the annotation type has been changed accordingly.

4.1.2.6 Compute Attribute Intersection

This function computes the intersection between the attribute sets of two annotation types.
Arguments:

1. First annotation type

2. Second annotation type

Result: the intersection of attribute sets of the two annotation types.

4.1.2.7 Reset Annotation Attributes

This function resets the attributes of an annotation. If a set of attributes is given as an
argument to the function, only the given attributes are reset, otherwise all of the annotation’s
attributes are reset. Any links to decision elements are reset as well using the ”reset links to
decision elements” function.
Arguments:

1. Annotation whose attributes are to be reset

2. Optional: set of attributes that are to be reset

Result: the annotation’s attributes are reset.

4.1.2.8 Reset Links to Decision Elements

This function resets the links between an annotation and a decision element. If the link is a
hard link, the decision element is deleted using the ”delete decision element” function.
Arguments:

1. Annotation to delete the links for

2. Decision element to unlink

Result: the link between the annotation and the decision element is unset.

4.1.2.9 Delete Annotation

This function deletes an annotation. Any links to decision elements are reset using the ”reset
links to decision elements” function.
Arguments:

1. Annotation to delete

Result: the annotation is deleted.

31

4.1.2.10 Delete Decision Element

This function deletes a decision element. Any decision element which are direct or non-direct
children of the decision element are deleted as well.
Arguments:

1. Decision element to delete

Result: the decision element is deleted.

4.1.2.11 Create Augmented Annotation Type

This function creates a new augmented annotation type. The type’s name and attributes are
provided by the user as well as its behavior.
Arguments:

1. Name of the augmented annotation type

2. Behavioral description

Result: the augmented annotation type is created.

4.1.2.12 Change Augmented Annotation Type’s Attribute

This function changes an attribute of a augmented annotation type if the attribute which is to
be changed has been provided; if it is left out, the attribute is added to the augmented anno-
tation type. Calls the ”change annotation type” function to compute the attribute intersection
and reset the old attributes.
Arguments:

1. Name of the augmented annotation type

2. Affected states

3. Optional: Attribute to change

4. New attribute

Result: the augmented annotation type’s attribute is changed.

4.1.2.13 Delete Augmented Annotation Type

This function deletes a augmented annotation type. Any instances of this type within the
source code are deleted using the ”delete annotation” function.
Arguments:

1. Augmented annotation type to delete

Result: the augmented annotation type is deleted along with all its instances within the
source code.

32

4.2 UI Workflow and Mock-ups

In the following sections, we will describe the UI workflow with mock-ups for each annotation
class in detail.

4.2.1 Core Annotations

Once a core annotation has been created in the source code, users will have to decide
whether they want to create a new decision element associated with this core annotation or
link the core annotation to an existing decision element.
We found that using a combination of hovers and dialogs would provide the best possible
workflow. Initially, we considered a separate view which would allow users to edit annota-
tions. This option was discarded, because we found that hovers would feel more natural to
users.

4.2.1.1 Creating a New Decision Element

Figure 15 shows the UI mock-up for the workflow for creating a new decision element. The
decision element’s properties can be edited in the detail view.

4.2.1.2 Referring to an Existing Decision Element

Figure 16 shows the UI mock-up for the workflow for referring to an existing decision element.
The decision element’s properties cannot be edited in the detail view; instead, users will have
to open the decision element in UNICASE and make their modifications there.

4.2.2 Augmented Annotations

Figure 17 shows the UI mock-up for the workflow for managing augmented annotation types.
Users may create, edit and delete augmented annotation types. When creating or editing an
augmented annotation type, users are able to edit the augmented annotation type’s behavior.
Initially, we decided not to show a hover for augmented annotations. We soon realized that
this would leave users in the dark on whether the execution of the augmented annotation’s
commands was successful or failed. We thus decided to show a small hover for augmented
annotations providing generic information, which can be seen in Figure 18.

4.2.3 Code Associations

In order to visualize the linkage between a given decision elements and annotations, we will
introduce a code association view. A mock-up for this view can be seen in Figure 19.
This view creates a bidirectional linkage between decision elements and annotations.

33

Figure 15: UI workflow for creating a new decision element

34

Figure 16: UI workflow for referring to an existing decision element

35

Figure 17: UI workflow for managing augmented annotation types

Figure 18: UI mock-up for the augmented annotations hover

36

Figure 19: UI mock-up for the code associations view

4.3 Non-Functional Requirements

We identified a number of nun-functional requirements, which we believe our implementation
has to fulfill in order to maximize the implementation’s usability as well as the benefits to
users of the implementation. In the following sections, we will describe these non-functional
requirements in detail.

4.3.1 Performance

In order to minimize the interruption of the general implementation workflow, users should
be able to create annotations and link them with decision elements in real time, independent
of the project’s size, i.e. the number and size of source code files and the number of annota-
tions. UI elements should be responsive under all circumstances. Saving and restoring the
state of annotations between user sessions should not take more than a few seconds on an
average computer, even for large projects with a high number of annotations.

4.3.2 Intuitive UI and Workflow

UI elements should be easy to read and understand. It should be clear right away what a UI
element does and how users are supposed to use it. The same rules apply to the workflow
of our implementation. The workflow should be tailored to support the quick creation and
modification of annotations in source code with as less overhead for users as possible. The
interruption of the general implementation workflow should be as minimal as possible.

37

4.3.3 Robustness

The implementation of our annotation schema should be as bug-free as possible. Erroneous
user input should be either handled or ignored, but should never break the implementation
or even cause data loss.

4.3.4 Extensibility

In order to make the implementation flexible, users should be able to add new core and aug-
mented annotations either at runtime or programmatically using extension points provided
by our implementation. For this, our implementation needs to provide extension points.

4.3.5 UNICASE Look and Feel

Since the DDM is implemented in UNICASE and our annotation schema is designed to work
in conjunction with the DDM, our implementation should conform to the visual appearance
and layout of UNICASE.

38

5 Design and Implementation

The implementation of our annotation schema was developed as a plug-in for Eclipse 3.7
”Indigo” with UNICASE 0.52. We will refer to this plug-in as the Annotations plug-in.
We will first describe the results and issues for the design and implementation of the plug-in’s
model and program logic and then proceed with the design and implementation of the user
interface and worfklow. We will then describe the interactional dynamics of the components
in our plug-in and finally describe the quality assurance process.
Note that due to size constraints and in order to improve comprehensibility, we will primar-
ily show generalized versions of diagrams illustrating only the core classes, attributes and
methods and their interactions. See Appendix A for a package diagram and Appendix B for
complete versions of each class diagram.
Figure 20 illustrates the different components of the Annotations plug-in.

Annotations Plug-in

Builders

TextHover

Dialogs AnnotationsPreferencePage
Annotations

CodeAssociationView

IMarker

AnnotationNature AnnotationBuilder
runs

AnnotationsTextHover AnnotationsTextHover
InformationControl

hoverInfo

AnnotationManager

CoreAnnotation

AugmentedAnnotation

coreAnnotations

augmentedAnnotations

AugmentedAnnotation
Command

executes

uses

org.eclipse.ui.views

org.eclipse.ui.preferencePages

org.eclipse.jdt.ui.
javaEditorTextHovers

org.eclipse.core.
resource.builders

org.eclipse.core.
resource.natures

org.eclipse.core.
resource.markers

AnnotationUtil

ModelElement
Util

Figure 20: Component diagram for the Annotations plug-in

5.1 Model and Program Logic

In the following sections, we will describe the implementation and design for the key compo-
nents of the plug-in’s model and program logic.

39

Source CodeJava Project

Annotation Nature Annotation Builder

Markers
Annotations

(Core/Augmented)

is associated with

calls

contains

detects annotations

contains

creates

link to

Figure 21: Configuration of the system behind the Annotations plug-in

5.1.1 Annotation Nature and Annotation Builder

For detecting and creating annotations we use Eclipse’s project natures and project builders
extension points. A Java project can be linked to any number of project natures. Each nature
has a project builder associated with it. Each time a source code file within a Java project is
saved, the project natures that are linked to it are notified. The project natures then call their
respective project builders which are responsible for handling the saved source code.
Initially, all existing Java projects were automatically associated with our annotation nature.
We soon decided it would be better to allow users to associate and unassociate individual
Java projects with our annotation nature, as this also allows us to specify a UNICASE project
with which a given Java project is associated.
Our annotation nature can be associated and unassociated with a Java project via a context
menu. Each time a Java source code file is saved and the annotation nature is associated
with the file’s project, the annotation builder is called. The annotation builder scans the
saved source code for any instances of annotations and creates an annotation marker at the
location of the annotation each time it finds such an instance. It also manages the linkage
between the annotation markers and the annotation instances. The configuration of our
system is illustrated in Figure 21.
However, this approach means that the source code has to be handled without using the
underlying object model, which is used by Eclipse’s default Java editor. Any modifications
to the source code in the Java editor also affect the object model and are handled by the
editor’s reconciler. The reconciler is responsible for updating the object model on-the-fly
and an incremental or even full build of the source code is only executed when the source
code file is saved. We initially wanted to use the object model to handle the source code,
but to our knowledge there exists no way to add a custom reconciler to Eclipse’s default
Java editor, so using a project builder was the next best alternative. Directly working with
the source code added a number of issues, especially when updating source code and
keeping the descriptions of model elements and hard-linked annotations and their markers
synchronized.
In Sections 3.2 and 3.3, we wrote our annotations as ”pure” Java code annotations. We
discovered that this approach raised a number of issues during the implementation. Because
every Java code annotation type needs to be declared in its own class file, the creation
of annotation types at runtime becomes very difficult, as the class files would need to be
created or modified at runtime as well. Also, the descriptions of these Java code annotations
have to be written in parentheses as well as in quotation marks, which adds unnecessary

40

overhead. Finally, we use the Java Platform 7.0 as the basis for our implementation, which
does not support multiple Java code annotations of the same type in the same scope. To
bypass these issues, we embed our annotations in Java comments. This also removes the
need to put annotation descriptions in parentheses and quotation marks, which eases the
workflow.
The class diagram for the annotation nature and the annotation builder can be seen in Figure
22.

<<interface>>
IProjectNature

+configure(): void
+deconfigure(): void
+getProject(): IProject
+setProject(project:IProject): void

IncrementalProjectBuilder
+build(kind:int,args:Map<String, String>,monitor:IProgressMonitor): IProject[]

AnnotationBuilder
+BUILDER_ID: String = "org.unicase.decision.annotations.AnnotationBuilder"

-incrementalBuild(delta:IResourceDelta,monitor:IProgressMonitor): void
-performDeltaBuild(f:IFile,i:InputStream,
d:IResourceDelta): void
-updateMarkerRange(doc:IDocument,m:IMarker,
line:String,lineNumber:int,
descriptor:AnnotationDescriptor): void
-getMarkerAtLine(markers:IMarker[],lineNumber:int): IMarker
-markerExists(descriptor:AnnotationDescriptor,
markers:IMarker[],lineNumber:int): boolean
-setLineContext(line:String,context:int): int
-consistsOfWhitespaces(substring:String): boolean
-fullBuild(monitor:IProgressMonitor): void
-performFullBuild(f:IFile,i:InputStream): void
-applyChangeDescriptors(m:IMarker,descriptor:AnnotationDescriptor,
lineNumber:int): void

AnnotationBuilderNature
+NATURE_ID: String = "org.unicase.decision.annotations.AnnotationBuilderNature"
-project: IProject

calls

1

1

Figure 22: The class diagram for the annotation nature and the annotation builder.

A project is associated with the AnnotationBuilderNature via the setProject() and configure()
methods and unassociated with the deconfigure() method. Our AnnotationBuilderNature
then calls the AnnotationBuilder each time a source code file is saved. The Annotation-
Builder’s main method is the performDeltaBuild() method, which scans the source code for
annotations and creates, modifies or deletes annotation markers accordingly. As is apparent
from the diagram, a number of helper methods had to be written for the AnnotationBuilder
in order to properly handle the detection of annotations in the source code.

5.1.2 Annotations and the Annotation Manager

Figure 23 shows the generalized classes for the annotations and the annotations manager.
The AbstractAnnotation is the parent class for both the AugmentedAnnotation and CoreAn-
notation classes. Each annotation refers to a marker and is identifiable by a UUID5. Each
marker refers to its associated annotation using the string representation of its UUID, out of
which the UUID can be reconstructed.
Each CoreAnnotation refers to exactly one model element. The hardLinked flag indicates
whether the CoreAnnotation is hard-linked to the referred model element.

5Universally unique identifier - http://docs.oracle.com/javase/1.5.0/docs/api/java/util/UUID.html

41

CoreAnnotation

-referredME: UnicaseModelElement
-hardLinked: boolean

+CoreAnnotation(element:UnicaseModelElement,
m:IMarker,hardLinked:boolean)

AugmentedAnnotation

-annotationType: String
-description: String
-executionStatus: int
-commands: List<AugmentedAnnotationCommand>
-internalLinks: Map<String, AugmentedAnnotationCommand>

+AugmentedAnnotation(annotationType:String)
+executeCommands(): void

AbstractAnnotation
#annotationID: UUID
#marker: IMarker

+setNewAnnotationID(): void
+toPersistentData(): void
+fromPersistentData(): void

AnnotationManager
-instance: AnnotationManager
-coreAnnotations: List<CoreAnnotation>
-augmentedAnnotations: List<AugmentedAnnotation>
-augmentedAnnotationTypes: List<AugmentedAnnotation>
-annotationDescriptorMapping: Map<String, AnnotationDescriptor>
-annotationMapping: Map<String, List<AbstractAnnotation>>
-commandRegistry: List<AugmentedAnnotationCommand>
-projectMapping: Map<IProject, ProjectSpace>

+toPersistentData(): void
+fromPersistentData(): void

manages

AugmentedAnnotationCommand
#parent: AugmentedAnnotation
#data: Object
#isHardLinkedToData: boolean
#fullIdentifier: String
#isValid: boolean

+execute(): boolean
+getEditDialog(parentShell:Shell,command:AugmentedAnnotationCommand,
parent:AugmentedAnnotation,
searchIndex:int): AugmentedAnnotationEditDialog
+toPersistentData(): void
+fromPersistentData(): void

contains

GetCommand

CreateCommand

SetAttributeCommand

AddReferenceCommand

AnnotationUtil ModelElementUtil

Contain various utility methods which are commonly
used by all classes in the Annotations plug-in.

10...*

0...*

1

0...*

AnnotationAdapter

-marker: IMarker
-markerLineNumber: int
-object: EObject

+notifyChanged(notification:Notification): void

Figure 23: Generalized class diagram for the annotations and the annotation manager

Each AugmentedAnnotation contains a number of AugmentedAnnotationCommands, which
are executed by the executeCommands() method. After its completion, the executionStatus
attribute is set depending on whether the execution of the commands was successful or
failed. The shared references between the commands are managed by the internalLinks
attribute.
An AugmentedAnnotationCommand is the parent class for all commands. Each command
refers to the containing AugmentedAnnotation via the parent attribute. The command may
store its data with its data attribute. Analogously to the hardLinked flag in the CoreAnnotation
class, the isHardLinkedToData flag indicates whether the command is hard-linked to its data.
Each command provides a unique fullIdentifer which is used to refer to the command via the
internalLinks attribute of the containing AugmentedAnnotation. The isValid flag indicates
whether the command’s references and data are valid. This flag is used when the parent
AugmentedAnnotation is executing its command. When one of the commands is not valid,
the AugmentedAnnotation’s command status will be set to failed. The command is executed
with the execute() method, which returns true or false depending on whether the execution
of the command was successful or failed.
We implemented four different commands. The GetCommand searches for an annotation
which refers to a decision element of a given type within the source code. The CreateCom-
mand creates a decision element of a given type as a child of a decision element. The
SetAttributeCommand sets the attribute of a given decision element to a given value. The
AddReferenceCommand sets the reference of a given decision element to the given target
element if it is single-valued or adds the target element to the reference if the reference
is multi-valued. Additional commands can be added via the org.unicase.decision.annota-
tions.addCommand extension point.
All Core- and AugmentedAnnotations are managed by the singleton AnnotationManager
class, which is also responsible for data persistence with the toPersistentData() and fromPer-

42

sistentData() methods. The toPersistentData() method makes the data persistent while
the fromPersistentData() reconstructs the data from the persistent data generated by the
toPersistentData() method. The AbstractAnnotation and AugmentedAnnotationCommand
classes have to implement their own versions of the toPersistentData() and fromPersistent-
Data() methods, as the AnnotationManager delegates the persistence handling for Core-
and AugmentedAnnotations to the annotations themself.
Persistence was a big issue as most of the data used by the annotation manager and the
annotations could not be made persistent using Java’s Serializable interface6. Instead, we
make the data persistent by using string identifiers and reconstruct the data from these
identifiers when the Plug-in is started again.
The AnnotationUtil and ModelElementUtil classes provide commonly used functionality that
is used by all classes in the Annotations plug-in.
The AnnotationAdapter is a listener class that is attached each hard-linked decision element
and the corresponding core annotation via its object and marker attributes respectively. Ev-
ery time the decision element’s description is changed, the listener is notified via the noti-
fyChanged() method and the core annotation’s description in the source code is refreshed
accordingly.

5.2 User Interface

In this section, we will describe the implementation and design for the key components of
the plug-in’s user interface (UI).

5.2.1 Text Hover

Source Code

Annotations Text Hover
Information Control

Markers
Annotations

(Core/Augmented)contains link to

Annotations Text Hover

gets hover part

opens

displays data

Figure 24: Configuration of the rich text hover system

For displaying the hidden attributes of our annotations in the source code, we use Eclipse’s
rich text hovers. Rich text hovers allow the definition of user-defined hover controls, which
are displayed when users hover over a certain text part in the source code with the mouse.
The classes associated with the text hover can be seen in Figure 25.

6Interface for serialization - http://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html

43

AnnotationsTextHover
-editor: IEditorPart
-athic: AnnotationsTextHoverInformationControl

+getHoverInfo2(textViewer:ITextViewer,hoverRegion:IRegion): Object

<<interface>>
IJavaEditorTextHover

<<interface>>
ITextHoverExtension

<<interface>>
ITextHoverExtension2

AnnotationsTextHoverInformationControl
-m: IMarker
-annotation: AbstractAnnotation

+AnnotationsTextHoverInformationControl(parentShell:Shell,
isResizable:boolean,
m:IMarker)
+createContent(parent:Composite): void

AbstractInformationControl <<interface>>
IInformationControlExtension2

opens
1

1

Figure 25: Generalized class diagram for the text hover

The AnnotationsTextHover class is responsible for opening the AnnotationsTextHoverInfor-
mationControl with the getHoverInfo2() method. This method gets the mouse hover region
of the currently active text editor. If the hover region represents an annotation type, the An-
notationsTextHoverInformationControl is opened with the marker that is associated with the
hover region. The content of the AnnotationsTextHoverInformationControl is created with its
createContent() method. The content of the AnnotationsTextHoverInformationControl varies
depending on the annotation that is linked to the marker. Figure 26 illustrates the different
contents of the text hover.

Figure 26: The different contents of the text hover. Number 1: core annotation is hard-linked to a
decision. Number 2: annotation is not linked. Number 3: augmented annotation

Number 1 in Figure 26 shows a core annotation that is hard-linked to a decision. Widgets
to modify the decision’s attributes and references are created dynamically. If the core anno-
tation is not hard-linked, the widgets are created, but set to inactive, so users have to open
the decision in UNICASE’s editor in order to modify it.
Number 2 in Figure 26 shows a core annotation that is yet to be linked to a decision element.
This can be the case if the annotation has either been just created or the referred decision
element has been deleted, rendering the annotation invalid.
Number 3 in Figure 26 shows an augmented annotation. The augmented annotation type’s
name and its description are shown. Links to decision elements which are referred to or

44

have been created by the augmented are shown as well.

5.2.2 Code Associations View

The code associations view shows all annotations that link to a given decision element (see
Figure 27).

Figure 27: The code associations view

The linkage is established with the AnnotationManager’s annotationMapping, which keeps
track of the annotations that link to a given decision element.

5.2.3 Augmented Annotation Manager

The augmented annotation manager allows the modification of augmented annotation types.
The classes associated with the augmented annotation manager can be seen in Figure 28.
We decided it would be best to place the augmented annotation manager in the workbench
preference page of the Annotations plug-in (see Figure 29), because this conforms to the de-
fault methodology of setting plug-in preferences in both Eclipse and UNICASE. The contents
of the preference page are created with the createContents() method of the AnnotationsPref-
erencePage class. The EditAugmentedAnnotationsCommandsDialog can be opened from
the preference page. This dialog allows users to edit an augmented annotation type’s name,
description and commands.
Commands are created and edited using the AugmentedAnnotationCommandEditDialog,
which is the super class for all command edit dialogs. All AugmentedAnnotationCommands
have to provide their own implementation of the AugmentedAnnotationCommandEditDialog.
The implementation should allow users to edit all of the command’s parameters.
The augmented annotation manager and the various dialogs associated with it can be seen
in Figure 29.
The left hand side of Figure 29 shows the preference page for the Annotations plug-in with
the augmented annotation manager implemented as a table. Augmented annotation types
can be added, edited or removed with a right-click context menu.

45

AnnotationsPreferencePage
+createContents(parent:Composite): Control

<<interface>>
IWorkbenchPreferencePage PreferencePage

AugmentedAnnotationCommandEditDialog
#command: AugmentedAnnotationCommand
#parent: AugmentedAnnotation
#searchIndex: int

+AugmentedAnnotationCommandEditDialog(parentShell:Shell,
command:AugmentedAnnotationCommand,
parent:AugmentedAnnotation,
searchIndex:int)
+createDialogArea(parent:Composite): Control

TitleAreaDialog

EditAugmentedAnnotationCommandsDialog
+createDialogArea(parent:Composite): Control

opens

opens

GetCommandEditDialog

CreateCommandEditDialog

SetAttributeCommandEditDialog

AddReferenceCommandEditDialog

1

1

1

1

Figure 28: Generalized class diagram for the augmented annotation manager

Figure 29: The various elements of the augmented annotation manager. Left: the manager in the
plug-in’s workbench preference page. Right: the edit dialog for the @Pro augmented annotation

Figure 30: The various elements of the augmented annotation manager. Left: the command selec-
tion dialog. Right: the edit dialog for the add reference command

46

The right hand side of Figure 29 shows the augmented annotation editor for the @Pro aug-
mented annotation. As with the augmented annotation manager, commands can be created,
edited, inserted or removed with a right-click context menu.
The left hand side of Figure 30 shows the command selection dialog, which allows users to
select the command they want to add to the augmented annotation type. The list of available
commands is retrieved from the commandRegistry of the AnnotationManager.
The right hand side of Figure 30 shows the command editor for the add reference command.
Its parameters can be adjusted using combo boxes.

5.2.4 Dialogs

We also implemented a number of different dialogs, which we will describe shortly here.

5.2.4.1 Model Element Selection Dialog

This dialog is used by the text hover for core annotations to either select the location of
a decision element that is to be created or to select the decision element that the core
annotation is to refer to. The selection is done with a selection tree which displays the
contents of the UNICASE project the source code file’s Java project is linked to. In the former
case, the dialog also contains a text field to specify the name of the decision element.

5.2.4.2 Project Linkage Dialog

This dialog is shown whenever users relink a Java project, that is already linked to a UNI-
CASE project. It gives users the option to disable annotations in the given Java project - in
which case all annotations and any hard-linked decision elements are deleted - or to change
the linked UNICASE project.

5.3 Interaction

To illustrate the interactional dynamics of the components in our plug-in, we will use a typical
usage scenario. In our scenario, a programmer wants

1. to create a core annotation (see Figure 31) and

2. create a new decision element, which is hard-linked to the core annotation (see Figure
32),

in order to document an implementation decision.

5.3.1 Creating a Core Annotation

Figure 31 shows a generalized sequence diagram describing the key components and inter-
actions involved in the creation of a core annotation.

47

Figure 31: Generalized sequence diagram for the build process

The programmer in our scenario first writes the core annotation and a small description
in the source code and then saves the source code file, which triggers the build process.
The AnnotationBuilder is called and scans each line of the source code file with its perfor-
mDeltaBuild() method. First, the line context is set using the setLineContext() method. The
line context determines the type of comment the given line is embedded in. We differentiate
between no comment, single-line comment (//) and multi-line comment (/**, /* and *).
Then, the annotation at the given line is determined using the getAnnotationForLine() method,
which returns an AnnotationDescriptor or null if no annotation could be found for the given
line. An AnnotationDescriptor contains all the necessary information to create a marker for
an annotation. Using this information, a marker for the annotation is created at the given
line using the createMarker() method of the containing source code file. To draw a colored
box around the annotation, the updateMarkerRange() method is called. Finally, the marker’s
description is set to the description given in the source code file using the setMarkerDescrip-
tion() method.

5.3.2 Creating a New Decision Element

Figure 32 shows a generalized sequence diagram describing the key components and in-
teractions involved in the linkage of a core annotation to a decision element. After the pro-
grammer in our scenario has created a core annotation, he hovers over the annotation with
the mouse. This calls the AnnotationsTextHover, which creates a new instance of the An-

48

Figure 32: Generalized sequence diagram for the linking process

notationsTextHoverInformationControl, i.e. the text hover. The content of the text hover is
created with its createContent() method. Since our core annotation is yet to be linked, the
text hover will look like Number 2 in Figure 26. The programmer selects the option to create
a new decision element and selects the appropriate location and name for the new decision
element with the ModelElementSelectionDialog.
This triggers the createDecisionElement() method of the AnnotationManager, which creates
a new decision element of the given type. A new instance of CoreAnnotation is created,
which is hard-linked to the new decision element and refers to the marker that is the input of
the text hover. The link between the marker and the core annotation is established by setting
the marker’s UUID to the UUID of the core annotation using the marker’s setMarkerAttribute()
method. The core annotation is registered in the AnnotationManager by adding it to the list
of core annotations, which is accessed by calling getCoreAnnotations(). Finally, the code
associations view is refreshed using the refreshCodeAssociationsView() method.

5.4 Quality Assurance

Throughout the implementation, small tests were conducted manually each time a new fea-
ture was implemented or an existing feature was modified. As the implementation neared
its completion, we designed and performed a number of tests. The full documentation of the
conducted tests along with the corresponding test protocols can be found in the UNICASE
documentation that accompanies this thesis.

5.4.1 Component Tests

The component tests were conducted manually. Clearly, automated unit tests with a testing
framework like JUnit7 would have been the better choice, but setting up the testing environ-
ment was found to be too time and resource consuming.

7JUnit testing framework - http://junit.org/

49

The tested functionality included the correct detection of all core annotations as well as
predefined and user-defined augmented annotations.

5.4.2 Integration Tests

Inter-class communication within this plug-in is manageable, so integration tests were not
deemed necessary in the context of this implementation.

5.4.3 System Tests

To test the interplay of critical UI and system components with the underlying classes, a
number of system tests were conducted. The tests were conducted by manually performing
the actions specified in the test case description. The system test cases included

� creating a core annotation,

� creating an augmented annotation,

� executing an augmented annotation with valid data,

� executing an augmented annotation with invalid data,

� creating a new decision element with an unlinked core annotation,

� creating a new decision element with a linked core annotation,

� creating a new decision element with a hard-linked core annotation,

� referring to a decision element with an unlinked core annotation,

� referring to a decision element with a linked core annotation,

� referring to a decision element with a hard-linked core annotation,

� changing the description of a hard-linked core annotation from within the source code,

� changing the description of a hard-linked core annotation from within the decision ele-
ment,

� converting a single-line description into a multi-line description,

� changing the description of a linked core annotation,

� changing an attribute of a hard-linked decision element,

� deleting a core annotation and

� deleting an augmented annotation.

Because most of the major issues, especially those regarding the program logic, had been
already fixed during the implementation, most of the system tests were conducted success-
fully.

50

6 Discussion

In order to test the usability and effectiveness of our annotation schema and its implementa-
tion, we used it to document the key implementation decisions made during the design and
implementation of the Annotations plug-in. Two examples can be seen in Figure 33.

Figure 33: Two example decisions regarding the annotation builder from the source code of the
Annotations plug-in with the corresponding decision elements in the UNICASE project

We found that the annotation schema was easy to use. The workflow is simple: first, the
annotation and its description have to be written in a comment block. Then, the source code
file has to be saved, so the annotation is registered. Finally, the annotation has to be linked
to a decision element and, if necessary, its attributes have to be adjusted.
We found that the use of our predefined @Pro and @Contra augmented annotations rapidly
sped up the documentation process when providing supporting or attacking arguments for an
alternative. For augmented annotations, the linkage of the annotation to a decision element
is automated, which removes the need to use UI elements altogether.
The code associations view allows a quick traversal between a decision element and the
annotations that refer to it. We also found that it gave a concise overview over the relations
between decision elements and annotations.
However, there are a number of issues. The decision elements in the DDM form an implicit
multi-level hierarchy with a decision as the root element. While this relationship is easy to
visualize with a tree view, it becomes very difficult to visualize in the source code with the
given editor. Our implementation does not visualize this relationship in the source code at
all.
Using Eclipse’s rich text hovers for the modification of annotations, while easy to use, do in-
terrupt the workflow, because users have to constantly switch between keyboard and mouse
in order to document their implementation decisions.
This interruption could be minimized by allowing all attributes and references of referred
decision elements to be edited from within the source code by introducing separate anno-
tation types which allow the modification of the referred decision element’s attributes and

51

references. Listing 5 illustrates this approach for the decision from our example in Section
2.3.

[start of comment block]
* ...
* @Decision A wizard for exporting an entire project is implemented.
* @Decision#progress pending
* @Decision#implementation envisioned
* ...
[end of comment block]
[source code]

Listing 5: Setting attributes using annotations

In Listing 5, users can type in the annotation followed a number sign (”#”) and the attribute’s
or reference’s internal name to indicate that they want to set the referred model element’s
attribute or reference to the specified value.
However, this approach would also require users to have detailed knowledge about the at-
tributes and references of each decision element, as this information cannot be seen in the
source code perspective. Users would need to switch between the UNICASE and source
code perspectives if they wanted to see which attributes and references the referred decision
element has. This issue could be resolved by using Eclipse’s content assist feature, which
can be seen in Figure 34. The content assist is shown in a small hover window when users
type in methods or attributes of class instances in Eclipse. In the context of annotations,
the content assist could show the available attributes and references as well as the possible
values for each attribute and reference when users type annotations in the source code.

Figure 34: Eclipse’s content assist feature

Due to the current technical limitations of the annotation builder, annotations have to be
placed in well-formed Java comments, or else the building process will fail. Listing 6 shows
well-formed Java comments while Listing 7 shows ill-formed comments.

52

// Well-formed
/*
* Well-formed
*/

Listing 6: Well-formed Java comments

/* Ill-formed */
/*

Ill-formed
*/
int n = 0; // Ill-formed
int n = 0; /* Ill-formed */

Listing 7: Ill-formed Java comments

Another issue lies with the implementation of our annotation schema itself. We think that
the rationale of many of the decisions made during the implementation phase of our plug-in
does not require explicit documentation, as we believe that the benefit of documenting this
rationale is outweighed by the overhead from creating the documentation.
For example, we think that the rationale behind the choice of data structures in our imple-
mentation is not worth documenting. While there exists a non-functional requirement that
dictates a reasonable level of performance, we discovered that the choice of data structures
did not have a significant impact on the performance of our implementation.
Naturally, the benefit gained from documenting these seemingly ”trivial” implementation de-
cisions depends on the impact that these decisions have on the project’s functionality within
the context of its requirements. For example, we believe that projects in the field of high per-
formance computing would benefit greatly from the explicit documentation of the rationale
behind the choice of data structures and algorithms.
For each project, the apparent benefits of explicitly documenting implementation decisions
and the generated overhead have to be weighed up. We tried to minimize the overhead with
our annotation schema and its implementation in particular, but there will always be some
overhead, as making a decision and documenting the rationale behind it are two separate
processes.

53

7 Conclusion

In this thesis, we introduced and implemented an annotation schema which allows the ex-
plicit documentation of implementation decisions. Annotations are written in the source code
and linked to decision elements. We implemented our annotation schema as a plug-in for
Eclipse 3.7, which works in conjunction with UNICASE 0.52.
The functionality and usability of our annotation schema and its implementation was tested
on the source code of the implementation itself by documenting key decision made during
its design and implementation phase using our annotations. We found that the annotation
schema and its implementation in particular were easy to use and had considerable poten-
tial.

7.1 Future Work

An important aspect that received little attention in our thesis was the aspect of collaboration.
By nature, software projects are highly collaborative, as there often is a large team behind
these projects, where team members share information and work on separate pieces of
source code in parallel. While UNICASE already supports collaboration through the use of
the EMF-Store framework [18], the Annotations plug-in currently does not. The difficulty of
implementing this collaboration aspect for the Annotations plug-in remains in question.
To truly assess the functionality and usability as well as the effectiveness of our annotation
schema and its implementation, we will need to use this schema in a variety of different
software projects.
Of particular interest are projects, whose implementation and the decisions behind the im-
plementation have a great impact on the functionality of the project.
UNICASE comprises a number of elements that model different aspects of the software
engineering process. In principle, our annotation schema could be used to refer to these
model elements as well. System functions for example are modeled as the element System-
Function in UNICASE. Our annotation schema could be used to link system functions in the
actual source code to the corresponding system functions in UNICASE.

54

References

[1] J.E. Burge, J.M. Carroll, R. McCall, and I. Mistrı́k, ”Rationale-Based Software Engineer-
ing”. Springer-Verlag, 2006.

[2] UNICASE (Unified CASE-Tool), https://teambruegge.informatik.tu-muenchen.de/wik-
i/projects/unicase/. Retrieved on April 2014.

[3] Eclipse Integrated Development Environment, https://www.eclipse.org/. Retrieved on
April 2014.

[4] C. Zannier, M. Chiasson and F. Maurer, ”A Model of Design Decision Making Based on
Empirical Results of Interviews with Software Designers” in Information and Software
Technology, Vol. 49, No. 6, pp. 637-653, Elsevier, 2007.

[5] T. Hesse and B. Paech, ”Supporting the Collaborative Development of Requirements and
Architecture Documentation” in Proceedings of the third International Workshop on the
Twin Peaks of Requirements and Architecture (TwinPeaks’13), pp. 22-26, IEEE, 2013.

[6] Annotations, http://docs.oracle.com/javase/1.5.0/docs/guide/language/annotations.html.
Retrieved on April 2014.

[7] G. Canfora, G. Casazza, and A. De Lucia, ”A Design Rationale Based Environment for
Cooperative Maintenance” in Internation Journal of Software Engineering and Knowl-
edge Engineering, Vol. 10, No. 5, pp. 627-645, World Scientific Publishing, 2000.

[8] Getting Started with the Annotation Processing Tool (apt), http://docs.oracle.com/-
javase/1.5.0/docs/guide/apt/GettingStarted.html. Retrieved on May 2014.

[9] Resource Markers - Eclipse Help, http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.
eclipse.platform.doc.isv%2Fguide%2FresAdv markers.htm. Retrieved on May 2014.

[10] IMarker Interface - Eclipse Help, http://help.eclipse.org/indigo/index.jsp?topic=
%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fcore%
2Fresources%2FIMarker.html. Retrieved on May 2014.

[11] J.E. Burge and D.C. Brown, ”An Integrated Approach for Software Design Checking
Using Design Rationale” in 1st International Conference on Design Computing and Cog-
nition (DCC’04), pp. 557-576, Kluwer Academic Press, 2004.

[12] SEURAT: Software Engineering Using Design Rationale, dissertation defense by J.E.
Burge, http://web.cs.wpi.edu/∼dcb/Papers/SEURAT/Burge-Diss-Defense.pdf. Retrieved
on May 2014.

[13] R. Lougher and T. Rodden, ”Group Support for the Recording and Sharing of Mainte-
nance Rationale” in Software Engineering Journal, Vol. 8, No. 6, pp. 295-306, IET, 1993.

[14] J.E. Burge, ”Software Engineering Using design RATionale”. Dissertation submitted to
the Faculty of the Worcester Polytechnic Institute, 2005.

55

[15] A.J. Ko, R. DeLine and G. Venolia, ”Information Needs in Collocated Software Devel-
opment Teams” in 29th International Conference on Software Engineering (ICSE 2007),
pp. 344-353, IEEE, 2007.

[16] D. Falessi, G. Cantone and P. Kruchten, ”Value-Based Design Decision Rationale Doc-
umentation: Principles and Empirical Feasibility Study” in Seventh Working IEEE/IFIP
Conference on Software Architecture (WICSA 2008), pp. 189-198, IEEE, 2008.

[17] D. Falessi, R. Capilla and G. Cantone, ”A Value-Based Approach for Documenting De-
sign Decisions Rationale: A Replicated Experiment” in Proceedings of the 3rd Interna-
tional Workshop on Sharing and Reusing Architectural Knowledge (SHARK 2008), pp.
63-70, ACM, 2008.

[18] M. Koegel and J. Helming, ”EMFStore - a Model Repository for EMF models” in Pro-
ceedings of the 32nd International Conference for Software Engineering (ICSE 2010),
pp. 307-308, IEEE, 2010.

56

List of Figures

1 The different phases in the life cycle of a software project along with the ra-
tionale associated with each development phase. Adapted from [14, Figure
2-1] . 2

2 Rating of different DDRD information categories as ”required” by subjects.
From [16] . 5

3 Structure of the DDM. Adapted from [5] . 6
4 The DDM applied on the example. Adapted from [5] 7
5 An example of a Java annotation . 8
6 The Eclipse Workbench. From left to right: Package Explorer, Editor, Outline 9
7 Active error and inactive warning markers in the Eclipse editor 10
8 Overview over CM2’s annotation mechanism. From [7] 12
9 Example of a source code segment that has been annotated using CM2.

Adapted from [7] . 12
10 The configuration of the system behind Lougher and Rodden’s approach.

Adapted from [13] . 13
11 SEURAT and Eclipse. From [11] . 14
12 The Bookmarks List. From [12] . 15
13 Relations between annotations and decision elements (Chen’s notation) . . . 18
14 The use case diagram for our annotation schema 28
15 UI workflow for creating a new decision element 34
16 UI workflow for referring to an existing decision element 35
17 UI workflow for managing augmented annotation types 36
18 UI mock-up for the augmented annotations hover 36
19 UI mock-up for the code associations view . 37
20 Component diagram for the Annotations plug-in 39
21 Configuration of the system behind the Annotations plug-in 40
22 The class diagram for the annotation nature and the annotation builder. . . . 41
23 Generalized class diagram for the annotations and the annotation manager . 42
24 Configuration of the rich text hover system . 43
25 Generalized class diagram for the text hover 44
26 The different contents of the text hover. Number 1: core annotation is hard-

linked to a decision. Number 2: annotation is not linked. Number 3: aug-
mented annotation . 44

27 The code associations view . 45
28 Generalized class diagram for the augmented annotation manager 46

57

29 The various elements of the augmented annotation manager. Left: the man-
ager in the plug-in’s workbench preference page. Right: the edit dialog for the
@Pro augmented annotation . 46

30 The various elements of the augmented annotation manager. Left: the com-
mand selection dialog. Right: the edit dialog for the add reference command 46

31 Generalized sequence diagram for the build process 48
32 Generalized sequence diagram for the linking process 49
33 Two example decisions regarding the annotation builder from the source code

of the Annotations plug-in with the corresponding decision elements in the
UNICASE project . 51

34 Eclipse’s content assist feature . 52
A.1 Package diagram for the Annotations plug-in 59
B.1 Class diagram for the org.unicase.decision.annotations package 60
B.2 Class diagram for the org.unicase.decision.annotations.builders package . . 61
B.3 Class diagram for the org.unicase.decision.annotations.model package . . . 62
B.4 Class diagram for the org.unicase.decision.annotations.model.commands pack-

age . 63
B.5 Class diagram for the org.unicase.decision.annotations.dialogs package . . . 64
B.6 Class diagram for the org.unicase.decision.hover package 65
B.7 Class diagram for the org.unicase.decision.annotations.providers package . . 66
B.8 Class diagram for the org.unicase.decision.annotations.views package 67
B.9 Class diagram for the org.unicase.decision.annotations.util package 68

58

A Package Diagram

Figure A.1: Package diagram for the Annotations plug-in

org.unicase.decision.annotations: This package contains classes responsible for control-
ling the Annotation plug-in’s life cycle.

org.unicase.decision.annotations.builders: This package contains the builder and na-
ture classes.

org.unicase.decision.annotations.model: This package contains the annotation manager
as well as the core and augmented annotations.

org.unicase.decision.annotations.model.commands: This package contains the augmented
annotation commands.

org.unicase.decision.annotations.dialogs: This package contains all dialogs used in the
Annotations plug-in.

org.unicase.decision.annotations.hover: This package contains the text hover and hover
controls.

org.unicase.decision.annotations.providers: This package contains content and label
providers for the dialogs.

org.unicase.decision.annotations.views: This package contains the views used in the
Annotations plug-in.

org.unicase.decision.annotations.util: This package contains various utility classes.

59

B Class Diagrams

B.1 Class Diagram for org.unicase.decision.annotations

Figure B.1: Class diagram for the org.unicase.decision.annotations package

60

B.2 Class Diagram for org.unicase.decision.annotations.builders

Figure B.2: Class diagram for the org.unicase.decision.annotations.builders package

61

B.3 Class Diagram for org.unicase.decision.annotations.model

Figure B.3: Class diagram for the org.unicase.decision.annotations.model package

62

B.4 Class Diagram for org.unicase.decision.annotations.model.com-
mands

Figure B.4: Class diagram for the org.unicase.decision.annotations.model.commands package

63

B.5 Class Diagram for org.unicase.decision.annotations.dialogs

Figure B.5: Class diagram for the org.unicase.decision.annotations.dialogs package

64

B.6 Class Diagram for org.unicase.decision.annotations.hover

Figure B.6: Class diagram for the org.unicase.decision.hover package

65

B.7 Class Diagram for org.unicase.decision.annotations.providers

Figure B.7: Class diagram for the org.unicase.decision.annotations.providers package

66

B.8 Class Diagram for org.unicase.decision.annotations.views

Figure B.8: Class diagram for the org.unicase.decision.annotations.views package

67

B.9 Class Diagram for org.unicase.decision.annotations.util

Figure B.9: Class diagram for the org.unicase.decision.annotations.util package

68

