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Topic  in  German:  Die  kleinskalige  Struktur  des  intergalaktischen  Mediums  ist  grundlegend  für  das  Verständnis  von
Kosmologie  und  Strukturbildung.  Obwohl  die  Baryonen  den  Fluktuationen  der  dunklen  Matterie  auf  Skalen  in  der
Größenordnung  von  Megaparsec  folgen,  werden  auf  kleinen  Skalen  (~100  kpc)  die  Gaspertubationen  durch
hyrdodynamische Gleichungen reguliert. Es wird angenommen, dass sie unterhalb einer charaktersistischen Längenskala
aufgrund von Druckgradienten unterdrückt werden, analog zur klassischen Jeanslänge. Der Wert der Jeansfilterlänge λJ  wird
festgelegt  durch  ein  Gleichgweicht  zwischen  Druck  und  Gravitationskräften  und  hat  grundlegende  kosmologische
Anwendungen. Erstens liefert es einen thermischen Indiz für die zugeführte Wärme  von unltravioletten Photonen während
der Reionisation und bestimmt somit die thermische Geschichte des Universums.  Zweitens bestimmt es die Verklumpung
des IGM und die minimale gravitative Masse für den Kollaps des IGM, die eine zentrale Rolle in der Galaxienentstehung
und Reionisation spielt. Prinzpiell kann Jeansglättung durch rotverschobene Lyman-α Absorptionslinien in Spektren von
hoch  rotverschobenen  Quasaren  nachgewiesen  werden.  Leider  ist  dies  extrem  schwierig,  da  die  Auswirkungen  des
thermischen Dopplereffektes von Lyman-α Linien entlang der Beobachtungsrichtung von der Druckverbreiterung nicht klar
zu trennen sind. 
In dieser Arbeit zeige ich explizit, welche Entartungen zwischen den thermischen Parametern auftreten, wenn ausschließlich
Beobachtungen entlang einer Sichtlinie möglich sind. Dafür habe ich einen stabilen statistischen Alogrithmus basierend auf
Gaussprozessen und Markov Chain Monte Carlo Methoden entworfen, der auf einem Gitter eines semianalytischen Modells
des IGM beruht. Ich führe dann eine neue Methode zum Messen der Jeanslänge ein, indem ich die transverse Kohärenz in
Spektren  benachbarter  Quasarenpaare  berechne  (transverser  Abstand  <  1  Mpc).  Diese  Methode  basiert  auf  der
Phasendifferenz homologer Fouriermoden in dem Lyman-α Wald von Quasarenpaaren. Ich beweise,  dass dies maximal
empfindlich zu  λJ ist und nur schwach von anderen Parametern abhängt. Die verfügbare Stichprobe von Quasarenpaaren
wird  unter  sorgfältiger  Kalibration  des  Rauschens,  der  Auflösung  und  anderer  möglicher  systematischer  Effekte
ausgewertet. Unsere neue Methode auf diesen Datensatz angewendet gibt die erste Messung der Filterlänge des IGM.  Ein
erster Vergleich unserer Ergebnisse mit hydrodynamischen Simultaionen lässt darauf schließen, dass die vom thermischen
Standardmodell des IGM vorrausgesagte Filterlänge signifikant höher ist als beobachtet. Dies motiviert weitere theoretische
Studien zum Verständins dieser Diskrepanz. 

Topic in English: The small-scale structure of the intergalactic medium (IGM) is fundamental  to our understanding of
cosmology and structure formation. Although the baryons trace dark matter fluctuations on megaparsec scales, on small
scales (~100 kpc), gas perturbations are regulated by hydrodynamics and they are thought to be suppressed by pressure
below a characteristic filtering scale  λJ, analogous to the classic Jeans scale. The value of this Jeans filtering scale is set by
the  interplay  between  pressure  support  and  gravity  across  the  cosmic  history,  and  has  fundamental  cosmological
implications. First it provides a thermal record of heat injected by ultraviolet photons during cosmic reionization events, and
thus constraints the thermal and reionization history of the universe. Second, it determines the clumpiness of the IGM and
the minimum mass for gravitational collapse from the IGM, playing a pivotal role in galaxy formation and reionization. In
principle, the sign of  Jeans smoothing could be probed by  the  redshifted Lyman-α absorption lines in the spectra of high-
redshift quasars (the Lyman-α forest).   Unfortunately, this is extremely challenging to do because the thermal Doppler
broadening of Lyman- α lines along the observing direction is highly degenerate with pressure smoothing. 
In this work, I explicitly show what degeneracies hold among the thermal parameters of the IGM when only line-of-sight
observations are possible.  For this purpose, I  devised a rigorous statistical algorithm based on Gaussian processes and
Markov-Chain Monte Carlo methods, trained on a grid of semianalytical models of the IGM. I then introduce a novel
method  able  to  measure  the  Jeans  scale  by estimating  the  transverse  coherence  in  the  spectra  of  close  quasar  pairs
(transverse separation < 1  Mpc).  This method is based on the phase differences of homologous Fourier modes in the
Lyman-α forests of quasar pairs, and I prove that it is maximally sensitive to  λJ and only weakly dependent on the other
considered parameters. The available sample of quasar pairs is analyzed, after careful calibration of noise, resolution, and
other possible systematics. Our new method applied to this dataset provides the first measurement of the filtering scale of
the intergalactic medium.  A first comparison of our findings with hydrodynamical simulations suggests that the filtering
scale predicted by the standard thermal models of the IGM is significantly higher than what we observe, motivating further
theoretical studies to understand this discrepancy. 
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Overview

In this manuscript I present the bulk of the work that I have conducted during my PhD

under the supervision of Joseph F. Hennawi at the Max-Planck-Institut für Astronomie.

The initial goal of the project was to understand whether a recently discovered sample

of quasar pairs could be used to probe the small-scale structure of the intergalactic

medium (IGM), by studying the transverse coherence of the redshifted Lyα absorption

in quasar spectra. The scientific motivations behind this objective are numerous. It

opens the possibility of studying the structure evolution in the quasi-linear regime at

the smallest length ever reached, which could be sensitive to unconstrained aspects of the

cosmological models. In this work we focus on the relation with reionization and with

the thermal evolution of the IGM: the pressure of the heated and ionized gas is expected

to quench the growth of density perturbation below a characteristic scale called Jeans

scale, or filtering scale (we will use the term as synonyms throughout the manuscript).

This scale, although theoretically predicted, has never been constrained, and it may

provide precious insights on galaxy formation and on the early stage of the reionization

(a broader discussion is provided in chapter 1). This work represent the first attempt of

measuring it at the redshifts of the Lyα forest.

The project has been carried on in two stages.

In the first stage we explored theoretically the sensitivity of the Lyα forest to the pa-

rameters that describe the thermal state of the IGM and in particular on the Jeans

scale. We developed an algorithm that enables a systematic study of the sensitivity

and degeneracies of Lyα-forest statistics with respect to the thermal parameter of the

IGM, based on a set of semianalytical models. I describe this method and the models

on which it relies in chapter 2. We then devised a new statistic specifically tailored to

extract transverse-coherence information from quasar pairs. This statistic is based on

the phase differences of homologous Fourier modes of the Lyα forests of two companion

quasars, and we show in chapter 3 that it is maximally sensitive to the Jeans scale and

practically insensitive on the other parameters that we analyze.

ii



Overview iii

In the second part we applied the phase-difference method to the observed sample of

quasar pairs, in the attempt of constraining the filtering scale of the IGM at redshift

2 < z < 3. The main challenge in doing that was a proper treatment of noise, resolution

and of the systematics (chapter 3), as well as understanding the exact meaning of the

measured filtering scale and the extent to which our DM-based model could be trusted

(chapter 6). The results we achieved, presented in chapter 5, indicate that the Jeans

filtering scale is significantly smaller than what hydrodynamic simulation predicts for

standard assumptions on the thermal history. The potentially controversial consequences

of this finding demand further consideration of the possible systematic that could bias

our measurement, and motivates a deeper theoretical exploration of the nature of the

filtering scale and in particular of its relation with the thermal history.

The first three chapters present material that I have published in [Rorai et al., 2013],

slightly adapted and reorganized to be inserted in this thesis, while the rest is unpub-

lished. The work described in chapters 1-5 represent my personal contribution, except

when I explicitly report results or methods from other studies. Chapter 6 contains results

achieved in our research group in the past month, in particular in collaboration with

Jose Oñorbe and Girish Kulkarni, in which I have been actively involved. I personally

conducted the test described in § 6.2.2 to validate the calibration of my measurement

with dark-matter simulations. I contributed to the definition of filtering scale of the

IGM based on the Lyα absorption in 3d (§ 6.2), which will be published in Kulkarni et

al. (in prep.) and on the fitting procedure described in § 6.3 (to be published in Oñorbe

et al., in prep.).
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Chapter 1

Introduction

The imprint of redshifted Lyman-α (Lyα) forest absorption on the spectra of distant

quasars provides an exquisitely sensitive probe of the distribution of baryons in the in-

tergalactic medium (IGM) at large cosmological lookback times. Among the remarkable

achievements of modern cosmology is the ability of cosmological hydrodynamical sim-

ulations to explain the origin of this absorption pattern, and reproduce its statistical

properties to percent level accuracy [e.g. Cen et al., 1994, Miralda-Escudé et al., 1996,

Rauch, 1998]. But the wealth of information which can be gathered from the Lyα forest

is far from being exhausted. The thermal state of the baryons in the IGM reflects the

integrated energy balance of heating — due to the collapse of cosmic structures, radia-

tion, and possibly other exotic heat sources — and cooling due to the expansion of the

Universe [e.g. Hui & Gnedin, 1997, Hui & Haiman, 2003, Meiksin, 2009, Miralda-Escudé

& Rees, 1994]. Cosmologists still do not understand how the interplay of these physical

processes sets the thermal state of the IGM, nor has this thermal state been precisely

measured.

There is ample observational evidence that ultraviolet radiation emitted by the first

star-forming galaxies ended the ‘cosmic dark ages’ ionizing hydrogen and singly ionizing

helium at z ∼ 10 [e.g. Barkana & Loeb, 2001, Ciardi & Ferrara, 2005, Fan et al.,

2006, Zaroubi, 2013]. A second and analogous reionization episode is believed to have

occurred at later times z ∼ 3 − 4 [Croft et al., 1997, Jakobsen et al., 1994, Madau &

Meiksin, 1994, Reimers et al., 1997], when quasars were sufficiently abundant to supply

the hard photons necessary to doubly ionized helium. The most recent observations from

HST/COS provide tentative evidence for an extended He II reionization from z ∼ 2.7−4

[Furlanetto & Dixon, 2010, Shull et al., 2010, Worseck et al., 2011, Worseck et al. 2013,

in preparation], with a duration of ∼ 1Gyr, longer than naively expected. Cosmic

reionization events are watersheds in the thermal history of the Universe, photoheating

1



Chapter 1. Introduction 2

the IGM to tens of thousands of degrees. Because cooling times in the rarefied IGM gas

are long, memory of this heating is retained [Haehnelt & Steinmetz, 1998, Hui & Gnedin,

1997, Hui & Haiman, 2003, Miralda-Escudé & Rees, 1994, Theuns et al., 2002a,b]. Thus

an empirical characterization of the IGMs thermal history constrains the nature and

timing of reionization.

From a theoretical perspective, the impact of reionization events on the thermal state

of the IGM is poorly understood. Radiative transfer simulations of both hydrogen

[Bolton et al., 2004, Iliev et al., 2006, Tittley & Meiksin, 2007a] and helium [Abel &

Haehnelt, 1999, McQuinn et al., 2009, Meiksin & Tittley, 2012] reveal that the heat

injection and the resulting temperature evolution of the IGM depends on the details of

how and when reionization occurred. There is evidence that the thermal vestiges of H I

reionization heating may persist until as late as z ∼ 4 − 5, and thus be observable in

the Lyα forest [Cen et al., 2009, Furlanetto & Oh, 2009, Hui & Haiman, 2003], whereas

for HeII reionization at z ∼ 3, the Lyα forest is observable over the full duration of the

phase transition. Finally, other processes could inject heat into the IGM and impact

its thermal state, such as the large-scale structure shocks which eventually produce

the Warm Hot Intergalactic Medium [WHIM;e.g. Cen & Ostriker, 1999, Davé et al.,

2001, 1999], heating from galactic outflows [Cen & Ostriker, 2006, Kollmeier et al.,

2006], photoelectric heating of dust grains [Inoue & Kamaya, 2003, Nath et al., 1999],

cosmic-ray heating [Nath & Biermann, 1993], Compton-heating from the hard X-ray

background [Madau & Efstathiou, 1999], X-ray preheating [Ricotti et al., 2005, Tanaka

et al., 2012a], or blazar heating [Broderick et al., 2012, Chang et al., 2012, Pfrommer

et al., 2012, Puchwein et al., 2012]. Precise constraints on the thermal state of the IGM

would help determine the relative importance of photoheating from reionization and

these more exotic mechanisms.

Despite all the successes of our current model of the IGM, precise constraints on its ther-

mal state and concomitant constraints on reionization (and other exotic heat sources)

remain elusive. Attempts to characterize the IGM thermal state from Lyα forest mea-

surements have a long history. In the simplest picture, the gas in the IGM obeys a power

law temperature-density relation T = T0(ρ/ρ̄)
γ−1, which arises from the balance between

photoionization heating, and cooling due to adiabatic expansion [Hui & Gnedin, 1997].

The standard approach has been to compare measurements of various statistics of the

Lyα forest to cosmological hydrodynamical simulations. Leveraging the dependence of

these statistics on the underlying temperature-density relation, its slope and amplitude

(T0, γ) parameters can be constrained. To this end a wide variety of statistics have been

employed, such as the power spectrum [Viel et al., 2009, Zaldarriaga et al., 2001] or anal-

ogous statistics quantifying the small-scale power like wavelets [Garzilli et al., 2012, Lidz

et al., 2009, Theuns et al., 2002b] or the curvature [Becker et al., 2011]. The flux PDF
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[Bolton et al., 2008, Calura et al., 2012, Garzilli et al., 2012, Kim et al., 2007, McDonald

et al., 2000] and the shape of the b-parameter distribution [Bryan & Machacek, 2000,

Haehnelt & Steinmetz, 1998, McDonald et al., 2001, Ricotti et al., 2000, Rudie et al.,

2012, Schaye et al., 2000, Theuns et al., 2000, 2002a] have also been considered. Multiple

statistics have also been combined such as the PDF and wavelets [Garzilli et al., 2012],

or PDF and power spectrum [Viel et al., 2009]. Overall, the results of such comparisons

are rather puzzling. First, the IGM appears to be generally too hot, both at low (z ∼ 2)

and high (z ∼ 4) redshift [Hui & Haiman, 2003]. In particular, the high inferred temper-

atures at z ∼ 4 [e.g. Lidz et al., 2009, McDonald et al., 2001, Schaye et al., 2000, Theuns

et al., 2002b, Zaldarriaga et al., 2001] suggest that HeII was reionized at still higher red-

shift z > 4 [Hui & Haiman, 2003], possibly conflicting with the late z ∼ 2.7 reionization

of HeII observed in HST/COS spectra [Furlanetto & Dixon, 2010, Shull et al., 2010,

Syphers et al., 2012, Worseck et al., 2011, Worseck et al. 2013, in preparation]. Second,

Bolton et al. [2008] considered the PDF of high-resolution quasar spectra and concluded

that, at z ≃ 3 the slope of the temperature-density relation γ is either close to isother-

mal (γ = 1) or even inverted (γ < 1), suggesting “that the voids in the IGM may be

significantly hotter and the thermal state of the low-density IGM may be substantially

more complex than is usually assumed.” Although this result is corroborated by ad-

ditional work employing different statistics/methodologies [Calura et al., 2012, Garzilli

et al., 2012, Viel et al., 2009, but see Lee et al. 2012], radiative transfer simulations of

HeII reionization cannot produce an isothermal or inverted slope, unless a population

other than quasars reionized HeII [Bolton et al., 2004, McQuinn et al., 2009, Meiksin

& Tittley, 2012] , which would fly in the face of conventional wisdom. To summarize,

despite nearly a decade of theoretical and observational work, published measurements

of the thermal state of the IGM are still highly confusing, and concomitant constraints

on reionization scenarios are thus hardly compelling.

Fortunately, there is another important record of the thermal history of the Universe:

the Jeans pressure smoothing scale. Although baryons in the IGM trace dark matter

fluctuations on large Mpc scales, on smaller scales . 100 kpc, gas is pressure supported

against gravitational collapse by its finite temperature. Analogous to the classic Jeans

argument, baryonic fluctuations are suppressed relative to the pressureless dark matter

(which can collapse), and thus small-scale power is ‘filtered’ from the IGM [Gnedin

& Hui, 1998], which explains why it is sometimes referred to as the filtering scale.

Classically the comoving Jeans scale is defined as λ0J =
√

πc2s/Gρ(1 + z), but in reality

the amount of Jeans filtering is sensitive to both the instantaneous pressure and hence

temperature of the IGM, as well as the temperature of the IGM in the past. This arises

because fluctuations at earlier times expanded or failed to collapse depending on the

IGM temperature at that epoch. Thus the Jeans scale reflects the competition between
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gravity and pressure integrated over the Universe’s history, and cannot be expressed

as a mere deterministic function of the instantaneous thermal state. Heuristically, this

can be understood because reionization heating is expected to occur on the reionization

timescales of several hundreds of Myr, whereas the baryons respond to this heating

on the sound-crossing timescale λ0J/[cs(1 + z)] ∼ (Gρ)−1/2, which at mean density is

comparable to the Hubble time tH .

Gnedin & Hui [1998] considered the behavior of the Jeans smoothing in linear theory,

and derived an analytical expression for the filtering scale λJ as a function of thermal

history

λ2J(t) =
1

D+(t)

∫ t

0
dt′a2(t′)(λ0J (t

′))2×

(D̈+(t
′) + 2H(t′)Ḋ+(t

′))

∫ t

t′

dt′′

a2(t′′)
,

(1.1)

where D+(t) is the linear growth function at time t, a(t) is the scale factor, and H(t)

the Hubble expansion rate. Although this simple linear approximation provides intuition

about the Jeans scale and its evolution, Fourier modes with wavelength comparable to

the Jeans scale are already highly nonlinear at z ∼ 3, and hence this simple linear

pictures breaks down due to nonlinear mode-mode coupling effects. Thus given that

we do not know the thermal history of the Universe, that we expect significant heat

injection from HeII reionization at z ∼ 3 − 4 concurrent with the epoch at which we

observe the IGM, and that IGM modes comparable to the Jeans scale actually respond

non-linearly to this unknown heating, the true relationship between the Jeans scale and

the temperature-density relation at a given epoch should be regarded as highly uncertain.

Besides providing a thermal record of the IGM, the small-scale structure of baryons, as

quantified by the Jeans scale, is a fundamental ingredient in models of reionization and

galaxy formation. A critical quantity in models of cosmic reionization is the clumping

factor of the IGM C = 〈n2H〉/n̄2H [e.g. Emberson et al., 2013, Haardt & Madau, 2012,

Madau et al., 1999, McQuinn et al., 2011, Miralda-Escudé et al., 2000, Pawlik et al.,

2009], because it determines the average number of recombinations per atom, or equiv-

alently the total number of UV photons needed to keep the IGM ionized. The clumping

and the Jeans scale are directly related. Specifically,

C = 1 + σ2IGM ≡ 1 +

∫

d ln k
k3PIGM(k)

2π2
, (1.2)

where σ2IGM is the variance of the IGM density, and PIGM(k) is the 3D power spectrum

of the baryons in the IGM. Given the shape of PIGM(k), the integral above is dominated

by contributions from small-scales (high-k), and most important is the Jeans cutoff
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λJ , which determines the maximum k-mode kJ ∼ 1/λJ contributing. The small-scale

structure of the IGM strongly influences the propagation of cosmological ionization

fronts during reionization [Iliev et al., 2005]. Furthermore, several numerical studies

have revealed that the hydrodynamic response of the baryons in the IGM to impulsive

reionization heating is significant [e.g. Ciardi & Salvaterra, 2007, Gnedin, 2000a, Haiman

et al., 2001, Kuhlen & Madau, 2005, Pawlik et al., 2009], indicating that a full treatment

of the interplay between IGM small-scale structure and reionization history probably

requires coupled radiative transfer hydrodynamical simulations.

Reionization heating also evaporates the baryons from low-mass halos or prevents gas

from collapsing in them altogether [e.g. Barkana & Loeb, 1999, Dijkstra et al., 2004],

an effect typically modeled via a critical mass, below which galaxies cannot form [Ben-

son et al., 2002a,b, Bullock et al., 2000, Gnedin, 2000b, Kulkarni & Choudhury, 2011,

Somerville, 2002]. Gnedin [2000b] used hydrodynamical simulations to show that this

scale is well approximated by the filtering mass, which is the mass-scale corresponding

to the Jeans filtering length, i.e. MF (z) = 4πρ̄λ3J/3 [see also Hoeft et al., 2006, Okamoto

et al., 2008]. Finally, because the Jeans scale has memory of the thermal events in the

IGM (see eqn. 1.1), its value at later times can potentially constrain models of early

IGM preheating. In this scenario, heat is globally injected into the IGM at high-redshift

z ∼ 5 − 15 from blast-waves produced by outflows from proto-galaxies or miniquasars

[Benson & Madau, 2003, Cen & Bryan, 2001, Madau, 2000, Madau et al., 2001, Scan-

napieco et al., 2002, Scannapieco & Oh, 2004, Theuns et al., 2001, Voit, 1996] X-ray

radiation from early miniquasars [Parsons et al., 2013, Tanaka et al., 2012b], which sets

an entropy floor in the IGM and the raises filtering mass scale inhibiting the formation

of early galaxies.

A rough estimate of the filtering scale at z = 3 can be obtained from eqn. (1.1) and

the following simplified assumptions: the temperature at z = 3 is T (z = 3) ≈ 15000K

as suggested by measurements [e.g. Lidz et al., 2009, Ricotti et al., 2000, Schaye et al.,

2000, Zaldarriaga et al., 2001], temperature evolves as T ∝ 1+z, the typical overdensity

probed by the z = 3 Lyα forest is δ ∼ 2 [Becker et al., 2011]. One then obtains

λJ(z = 3) ≈ 340 kpc (comoving), smaller than the classical or instantaneous Jeans

scale λ0J by a factor of ∼ 3. This distance maps to a velocity interval vJ = HaλJ ≈
26 km s−1 along the line of sight due to Hubble expansion. Thermal Doppler broadening

gives rise to a cutoff in the longitudinal power spectrum, which occurs at a comparable

velocity vth ≈ 11.3 km s−1, for gas heated to the same temperature. The similarity of

the characteristic scale of 3D Jeans pressure smoothing and the 1D thermal Doppler

smoothing suggests that disentangling the two effects will be challenging given purely

longitudinal observations of the Lyα forest, as confirmed by Peeples et al. [2009a], who

considered the relative impact of thermal broadening and pressure smoothing on various
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statistics applied to longitudinal Lyα forest spectra. Previous work that has aimed to

measure thermal parameters such as T0 and γ from Lyα forest spectra, have largely

ignored the degeneracy of the Jeans scale with these thermal parameters. The standard

approach has been to assume values of the Jeans scale from a hydrodynamical simulation

[e.g. Becker et al., 2011, Lidz et al., 2009, Viel et al., 2009], which as per the discussion

above, is equivalent to assuming perfect knowledge of the IGM thermal history. Because

of the degeneracy with the Jeans scale, it is thus likely that previous measurements of the

thermal parameters T0 and γ are significantly biased, and their error bars significantly

underestimated, if indeed Jeans scale takes on values different from those assumed (but

see Zaldarriaga et al. 2001 who marginalized over the Jeans scale, and Becker et al.

2011 who also considered its impact). We will investigate such degeneracies in detail

in chapter 2 with respect to power-spectra, and we consider degeneracies for a broader

range of IGM statistics in a future work (A.Rorai et al., in preparation).

The Jeans filtering scale can be directly measured using close quasar pair sightlines

which have comparable transverse separations r⊥ . 300 kpc (comoving; ∆θ . 40′′ at

z = 3). The observable signature of Jeans smoothing is increasingly coherent absorption

between spectra at progressively smaller pair separations resolving it [Peeples et al.,

2009b]. The idea of using pairs to constrain the small scale structure of the IGM is

not new. However, all previous measurements have either focused on lensed quasars,

which probe extremely small transverse distances r⊥ ∼ 1 kpc ≪ λJ [e.g. McGill, 1990,

Petry et al., 1998, Rauch et al., 2001, Smette et al., 1995, Young et al., 1981] such

that the Lyα forest is essentially perfectly coherent, or real physical quasar pairs with

r⊥ ∼ 1 Mpc ≫ λJ [D’Odorico et al., 2006] far too large to place useful constraints on

the Jeans scale. Observationally, the breakthrough enabling a measurement of the Jeans

scale is the discovery of a large number of close quasar pairs [Hennawi, 2004, Hennawi

et al., 2009, 2006b, Myers et al., 2008] with ∼ 100 kpc separations. By applying machine

learning techniques [Bovy et al., 2011, 2012, Richards et al., 2004] to the Sloan Digital

Sky Survey [SDSS; York et al., 2000] imaging, a sample of ∼ 300 close r⊥ < 700 kpc

quasar pairs at 1.6 < z . 4.31 has been uncovered [Hennawi, 2004, Hennawi et al., 2009,

2006b].

In this paper we introduce a new method which enabled the first determination of the

Jeans scale from a dataset of close quasar pair. We explicitly consider degeneracies

between the canonical thermal parameters T0 and γ, and the Jeans scale λJ , which

have been heretofore largely ignored. To this end, we use an approximate model of the

Lyα forest based on dark matter only simulations, allowing us to independently vary all

thermal parameters and simulate a large parameter space. The structure of the thesis

is as follows: we describe how we compute the Lyα forest flux transmission from dark

1The lower redshift limit is corresponds to Lyα forest absorption being above the atmospheric cutoff.
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matter simulations, and our parametrization of the thermal state of the IGM in section

chapter 2. We focus in particular on the degeneracies between thermal parameters which

result when only longitudinal observations are available, and how the additional trans-

verse information provided by quasar pairs can break them. In chapter 3 we introduce

our new method to quantify absorption coherence using the difference in phase between

homologous longitudinal Fourier modes of each member of a quasar pair. We present

a Bayesian likelihood formalism that uses the phase angle probability distributions to

determine the Jeans scale, and we conduct a Markov Chain Monte Carlo (MCMC) anal-

ysis to determine the resulting precision on T0, γ, and λJ expected for realistic datasets,

explore parameter degeneracies, and study the impact of noise and systematic errors.

The sample of observed pairs and the treatment of noise, resolution and contaminants

are described in chapter 4, and the results obtained from the fully-calibrated phase

difference analysis are shown in chapter 5. We also test the robustness of these results

against a series of possible sources of bias. Chapter 6 addresses the problem of the

physical interpretation of the Jeans scale measurement, using a set of hydrodynamic

simulations, and illustrates a preliminary comparison of our estimate with the prediction

of the standard model of the IGM on λJ . We conclude and summarize in § 7.



Chapter 2

Parametric Study of the

Intergalactic Medium

Our goal is to quantitatively assess the sensitivity of the transverse coherence in quasar

pairs to the small-scale physics of the IGM, and to understand if the velocity-space

degeneracy between thermal broadening and pressure support could be broken. To do

this, we implement a machinery to rapidly predict Lyα-forest statistics in the space of

parameters that describe the thermal state of the IGM. This machinery is based on two

main components: a grid of thermal models of the IGM that sample the parameter space

and a fast and flexible interpolation algorithm.

The thermal models are based on a Nbody dark-matter simulation, assuming that

baryons trace dark matter and approximating the effect of pressure as a convolution

with a smoothing kernel (see § 2.1.2). The width of this kernel defines in our model

the Jeans filtering scale λJ . The temperature is obtained by assuming a deterministic

temperature-density relationship T = T0(1 + δ)γ−1. The triple {T0, γ, λJ} defines the

parameter space where the models reside.

A grid of models in this space constitutes the ”training grid” for the emulator(§ 2.2), an
algorithm based on principal component decomposition and Gaussian-processes inter-

polation that allows to efficiently predict the Lyα-forest statistics at any value of T0, γ

and λJ .

We conclude the chapter showing an application of this emulator to the line-of-sight

power spectrum and the cross power spectrum (§ 2.3), showing explicitly the degeneracy

between the thermal parameters.

8
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Here and in the next chapter we use the ΛCDM cosmological model with the parameters

Ωm = 0.28,ΩΛ = 0.72, h = 0.70, n = 0.96, σ8 = 0.82. All distances quoted are in

comoving kpc.

2.1 Simulation

2.1.1 Dark Matter Simulation

Our model of the Lyα forest is based on a Nbody dark matter only simulation. In this

scheme, the dark matter simulation provides the dark matter density and velocity field

[Croft et al., 1998, Meiksin & White, 2001], and the gas density and temperature are

computed using simple scaling relations motivated by the results of full hydrodynami-

cal simulations [Gnedin et al., 2003, Gnedin & Hui, 1998, Hui & Gnedin, 1997]. Our

objective is then to explore the sensitivity with which close quasar pairs can be used

to constrain the thermal parameters defining these scaling relations, and in particular

the Jeans scale. To this end, we require a dense sampling of the thermal parameter

space, which is computationally feasible with our semi-analytical method applied to a

dark matter simulation snapshot, whereas it would be extremely challenging to simulate

such a dense grid with full hydrodynamical simulations. We do not model the redshift

evolution of the IGM, nor do we consider the effect of uncertainties on the cosmological

parameters, as they are constrained by various large-scale structure and CMB measure-

ments to much higher precision than the thermal parameters governing the IGM.

We used an updated version version of the TreePM code described in White [2002] to

evolve 15003 equal mass (3×106 h−1M⊙) particles in a periodic cube of side length Lbox =

50h−1Mpc with a Plummer equivalent smoothing of 1.2h−1kpc. The initial conditions

were generated by displacing particles from a regular grid using second order Lagrangian

perturbation theory at z = 150. This TreePM code has been compared to a number of

other codes and has been shown to perform well for such simulations [Heitmann et al.,

2008]. Recently the code has been modified to use a hybrid MPI+OpenMP approach

which is particularly efficient for modern clusters.

In this and in the next chapter, we analyze the snapshot at z = 3

2.1.2 Description of the Intergalactic Medium

The baryon density field is obtained by smoothing the dark matter distribution; this

smoothing mimics the effect of the Jeans pressure smoothing. For any given thermal
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model, we adopt a constant filtering scale λJ , rather than computing it as a function of

the temperature, and this value is allowed to vary as a free parameter (see discussion

below). The dark matter distribution is convolved with a window functionWIGM, which,

in Fourier space, has the effect of quenching high-k modes

δIGM(~k) =WIGM(~k, λJ)δDM(~k) (2.1)

For example a Gaussian kernel with σ = λJ ,WIGM(k) = exp(−k2λ2J/2), would truncates

the 3D power spectrum at k ∼ 1/λJ .

Because we smooth the dark matter particle distribution in real-space, it is more con-

venient to adopt a function with a finite-support

δIGM(x) ∝
∑

i

miK(|x− xi|, RJ ) (2.2)

where mi and xi are the mass and position of the particle i, K(r) is the kernel, and

RJ the smoothing parameter which sets the Jeans scale. We adopt the followoing cubic

spline kernel

K(r,RJ ) =
8

πR3
J


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
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(
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(
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r
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0 r
RJ

> 1

. (2.3)

In the central regions the shape of K(r) very closely resembles a Gaussian with σ ∼
RJ/3.25, and we will henceforth take this RJ/3.25 to be our definition of λJ , which

we will alternatively refer to as the ‘Jeans scale’ or the ‘filtering scale’. The analogous

smoothing procedure is also applied to the particle velocities; however, note that the ve-

locity field has very little small-scale power, and so the velocity distribution is essentially

unaffected by this pressure smoothing operation. As we discuss further in Appendix A,

the mean inter-particle separation of our simulation cube δl = Lbox/N
1/3
p sets the min-

imum Jean smoothing that we can resolve with our dark matter simulation, hence we

can safely model values of λJ > 42kpc.

At the densities typically probed by the Lyα forest, the IGM is governed by relatively

simple physics. Most of the gas has never been shock heated, is optically thin to ionizing

radiation, and can be considered to be in ionization equilibrium with a uniform UV

background. Under these conditions, the competition between photoionization heating

and adiabatic expansion cooling gives rise to a tight relation between temperature and
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density which is well approximated by a power law [Hui & Gnedin, 1997],

T (δ) = T0(1 + δ)γ−1 (2.4)

where T0, the temperature at the mean density, and γ, the slope of the temperature-

density relation, both depend on the thermal history of the gas. We thus follow the

standard approach, and parametrize the thermal state of the IGM in this way. Typ-

ical values for T0 are on the order of 104 K, while γ is expected to be around unity,

and asymptotically approach the value of γ∞ = 1.6, if there is no other heat injection

besides (optically thin) photoionzation heating. Recent work suggests that an inverted

temperature-density relation γ < 1 provides a better match to the flux probability dis-

tribution of the Lyα forest [Bolton et al., 2008], but the robustness of this measurement

has been debated [Lee, 2012].

The optical depth for Lyα absorption is proportional to the density of neutral hydrogen

nHI , which, if the gas is highly ionized (xHI ≪ 1) and in photoionization equilibrium,

can be calculated as [Gunn & Peterson, 1965]

nHI = α(T )n2H/Γ (2.5)

where Γ is the photoionization rate due to a uniform metagalactic ultraviolet background

(UVB), and α(T ) is the recombination coefficient which scales as T−0.7 at typical IGM

temperatures. These approximations result in a power law relation between Lyα optical

depth and overdensity often referred as the fluctuating Gunn-Petersonn approximation

(FGPA) τ ∝ (1+ δ)2−0.7(γ−1), which does not include the effect of peculiar motions and

thermal broadening. We compute the observed optical depth in redshift-space via the

following convolution of the real-space optical depth

τ(v) =

∫ ∞

−∞
τ(x)Φ(Hax+ vp,‖(x)− v, b(x))dx, (2.6)

where Hax is the real-space position in velocity units, vp,‖(x) is the longitudinal com-

ponent of the peculiar velocity of the IGM at location x, and Φ is the normalized Voigt

profile (which we approximate with a Gaussian) characterized by the thermal width

b =
√

2KBT/mc2, where we compute the temperature from the baryon density via the

temperature-density relation (see eqn. 2.4). The observed flux transmission is then given

by F (v) = e−τ(v).

We apply the aforementioned recipe to 2 × 1002 lines-of-sight (skewers) running par-

allel to the box axes, to generate the spectra of 1002 quasar pairs, and we repeat this

procedure for 500 different choices of the parameter set (T0, γ, λJ ). Half of the spectra

(the first member of each pair) are positioned on a regular grid in the y − z plane,
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Figure 2.1: An example of three simulated spectra. The left and the right panels
represent the same spectra in the simulation calculated for two models with different
Jeans smoothing length λJ . The middle and the lower panel represent two spectra
respectively at separation 0.5 Mpc and 1 Mpc from the top one. The coloured sine
curves track homologous Fourier modes in each spectrum, with rescaled mean and
amplitude to fit the range [0, 1]. The wave shifts provide a graphical visualization of
phase differences, which we will use to quantify spectral coherence and probe the Jeans
scale (see chapter 3). The right panels suggest that a larger λJ results in greater spectral

coherence and generally smaller phase differences between neighboring sightlines.

in order to distribute them evenly in space. Subsequently, a companion is assigned to

each of them, and our choice for the distribution of radial distances warrants further

discussion. Our goal is to statistically characterize the coherence of pairs of spectra as

a function of impact parameter, and near the Jeans scale this coherence varies rapidly

with pair separation. Hence computing statistics in bins of transverse separation is un-

desirable, because it can lead to subtle biases in our parameter determinations if the

bins are too broad. To circumvent these difficulties, we focus our entire analysis on 30

linearly-spaced discrete pair separations between 0 and 714 kpc. For each of the 1002

lines-of-sight on the regular grid, a companion sightline is chosen at one of these discrete

radial separations, where the azimuthal angle is drawn from a uniform distribution.

We follow the standard approach, and treat the metagalactic photoionization rate Γ as

a free parameter, whose value is fixed a posteriori by requiring the mean flux of our Lyα

skewers 〈exp(−τ)〉 to match the measured values from Faucher-Giguere et al. [2007].

This amounts to a simple constant re-scaling of the optical depth. The value of the

mean flux at z = 3 is taken to be fixed, and thus assumed to be known with infinite

precision. This is justified, because in practice, the relative measurement errors on the

mean flux are very small in comparison to uncertainties of the thermal parameters we

wish to study. In a future work, we conduct a full parameter study using other Lyα

forest statistics, and explore the effect of uncertainties of the mean flux (A.Rorai et al.

2013, in preparation). Examples of our spectra are shown in Figure 2.1.
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To summarize, our models of the Lyα forest are uniquely described by the three pa-

rameters (T0, γ, λJ), and we reiterate that these three parameters are considered to be

independent. In particular the Jeans scale is not related to the instantaneous tempera-

ture at mean density T0. Although this may at first appear unphysical, it is motivated

by the fact that λJ depends non-linearly on the entire thermal history of the IGM

(see eqn. 1.1), and both this dependence and the thermal history are not well under-

stood, as discussed in the introduction. Allowing λJ to vary independently is the most

straightforward parametrization of our ignorance. However, improvements in our theo-

retical understanding of the relationship between λJ and the thermal history of the IGM

(T0,γ) could inform more intelligent parametrizations. Furthermore, inter-dependencies

between thermal parameters can also be trivially included into our Bayesian methodol-

ogy for estimating the Jeans scale as conditional priors, e.g. P (λJ , T0), in the parameter

space.

2.2 emulator

Our goal is to define an algorithm to calculate ζ(k, r⊥|T0, γ, λJ ) as a function of the

thermal parameters, interpolating from the values determined on a fixed grid. As we

will also compare Jeans scale constraints from the phase angle PDF (eqn. 3.13), to those

obtained from other statistics, such as the longitudinal power P (k) and cross-power

π(k, r⊥) (see § 3.2), we also need to be able to smoothly interpolate these functions as

well. To achieve this, we follow the approach of the ’Cosmic Calibration Framework’

(CCF) to provide an accurate prediction scheme for cosmological observables [Habib

et al., 2007, Heitmann et al., 2006]. The aim of the CCF is to build emulators which act

as very fast – essentially instantaneous – prediction tools for large scale structure ob-

servables such as the nonlinear power spectrum [Heitmann et al., 2009, 2010, Lawrence

et al., 2010], or the concentration-mass relation [Kwan et al., 2012]. Three essential

steps form the basis of emulation. First, one devises a sophisticated space-filling sam-

pling scheme that provides an optimal sampling strategy for the cosmological parameter

space being studied. Second, a principle component analysis (PCA) is conducted on the

measurements from the simulations to compress the data onto a minimal set of basis

functions that can be easily interpolated. Finally, Gaussian process modeling is used

to interpolate these basis functions from the locations of the space filling grid onto any

value in parameter space. A detailed description of our IGM emulator will be described

in a forthcoming paper (A.Rorai et al., in preparation). Below we briefly summarize the

key aspects.
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2.2.1 Models

Whereas CCF uses more sophisticated space filling Latin Hypercube sampling schemes

[e.g. Heitmann et al., 2009], we adopt a simpler approach motivated by the shape of

the IGM statistics we are trying to emulate, which change rapidly at scales comparable

to either the Jeans or thermal smoothing scale. We opt for an irregular scattered grid

which fills subspaces more effectively than a cubic lattice. We consider parameter values

over the domain {(T0, γ, λJ ) : T0 ∈ [5000, 40000]K; γ ∈ [0.5, 2]; λJ ∈ [43, 572] kpc}. The
lower limit of 43 kpc for the Jeans scale is chosen because this is about the smallest value

we can resolve with our simulation (see Appendix A), while the upper limit of 572 kpc

is a conservative constraint deduced from the longitudinal power spectrum: a filtering

scale greater than this value would be inconsistent with the high−k cutoff, regardless of

the value of the temperature. The ranges considered for T0 and γ are consistent with

those typically considered in the literature and our expectations based on the physics

governing the IGM. We sample the 3D thermal parameter space at 500 locations, where

we consider a discrete set of 50 points in each dimension. A linear spacing of these points

is adopted for γ, whereas we find it more appropriate to distribute T0 and λJ such that

the scale of the cutoff of the power spectrum kf is regularly spaced. Since kf ∝ λ−1
J for

Jeans smoothing and kf ∝ T
−1/2
0 for thermal broadening, we choose regular intervals of

these parameters after transforming λJ → 1/λJ and T0 → 1/
√
T0. Each of the 50 values

of the parameters is then repeated exactly 10 times in the 500-point grid, and we use 10

different random permutations of their indices to fill the space and to avoid repetition.

For each thermal model in this grid, we generate 10,000 pairs of skewers at 30 linearly

spaced discrete pair separations between 0 and 714 kpc.

2.2.2 PCA

We then use these skewers to compute the IGM statistics ζ(k, r⊥), P (k), and π(k, r⊥)

for all k and r⊥ for each thermal model. A PCA decomposition is then performed in

order to compress the information present in each statistic and represent its variation

with the thermal parameters using a handful of basis functions φ. A PCA is an orthog-

onal transformation that converts a family of correlated variables into a set of linearly

uncorrelated combinations of principal components. The components are ordered by the

variance along each basis dimension, thus relatively few of them are sufficient to describe

the entire variation of a function in the space of interest, which is here the thermal pa-

rameter space. To provide a concrete example, the longitudinal power spectrum P (k)

is fully described by the values of the power in each k bin, but it is likely that some

of these P (k) values do not change significantly given certain combinations of thermal
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parameters. The PCA determines basis functions of the P (k) that best describe its

variation with thermal parameters, enabling us to represent this complex dependence

with an expansion onto just a few principal components

P (k|T0, γ, λJ ) =
∑

i

ωi(T0, γ, λJ )Φi(k), (2.7)

where {Φ(k)} are the basis of principal components, and {ω} are the corresponding

coefficients which depend on the thermal parameters. The number of components for

a given function is set by the maximum tolerable interpolation errors of the emulator,

and these are in turn set by the size of the error bars on the statistic that one is

attempting to model. We note that the number of PCA components we used to fully

represent the functions ζ(k, r⊥), P (k), and π(k, r⊥) were 25, 15, and 25, respectively

(phase distribution and cross power spectrum are 2D functions, so they need more

components). We verified that adding further components did not change significantly

our main results, indicating that we achieve convergence.

2.2.3 Gaussian Process Interpolation

Gaussian process interpolation is then used to interpolate these PCA coefficients ωi(T0, γ, λJ )

from the irregular distribution of points in our thermal grid to any location of interest

in the parameter space. The only input for the Gaussian interpolation is the choice of

smoothing length, which quantifies the degree of smoothness of each function along the

direction of a given parameter in the space. We choose these smoothing lengths to be a

multiple of the spacing of our parameter grid. The choice of these smoothing lengths is

somewhat arbitrary, but we checked that the posterior distributions of thermal param-

eters (eqn. 3.13) inferred do not change in response to a reasonable variations of these

smoothing lengths. A full description of the calibration and testing of the emulator is

presented in an upcoming paper (Rorai et al., in prep).

2.3 Power Spectra and Their Degeneracies

Although many different statistics have been employed to isolate and constrain the ther-

mal information contained in Lyα forest spectra, the flux probability density function

(PDF; 1-point function) and the flux power spectrum or auto-correlation function (2-

point function), are among the most common[e.g. Kim et al., 2007, McDonald et al.,

2000, Viel et al., 2009, Zaldarriaga et al., 2001]. But because the Lyα transmission F

is significantly non-Gaussian, significant information is also contained in higher-order

statistics. For example wavelet decompositions, which contains a hybrid of real-space
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and Fourier-space information, have been advocated for measuring spatial temperature

fluctuations [Garzilli et al., 2012, Lidz et al., 2009, Zaldarriaga, 2002]. Several studies

have focused on the on the b-parameter distribution to obtain constraints on thermal

parameters [McDonald et al., 2001, Ricotti et al., 2000, Rudie et al., 2012, Schaye et al.,

2000], and recently Becker et al. [2011] introduced a ‘curvature’ statistic as an alternative

measure of spectral smoothness to the power spectrum.

As gas pressure acts to smooth the baryon density field in 3D, it is natural explore power

spectra as a means to constrain the Jeans filtering scale. A major motivation for working

in Fourier space, as opposed to the real-space auto-correlation function, is that it is much

easier to deal with limited spectral resolution in Fourier space. The vast majority of close

quasar pairs are too faint to be observed at echelle resolution FWHM ≃ 5 km s−1 where

the Lyα forest is completely resolved. Instead, spectral resolution has to be explicitly

taken into account. But to a very good approximation the smoothing caused by limited

spectral resolution simply low-pass filters the flux, and thus the shape of the flux power

spectrum is unchanged for k-modes less than the spectral resolution cutoff kres. Thus

by working in k-space, one can simply ignore modes k & kres and thus obviate the need

to precisely model the spectral resolution, which can be challenging for slit-spectra.

Finally, another advantage to k-space is that, because fluctuations in the IGM are only

mildly non-linear, some of the desirable features of Gaussian random fields, such as the

statistical independence of Fourier modes, are approximately retained, simplifying error

analysis. In what follows we consider the impact of Jeans smoothing on longitudinal

power spectrum, as well as the simplest 2-point function that can be computed from

quasar pairs, the cross-power spectrum.

2.3.1 The Longitudinal Power Spectrum

It is well known that the shape of the longitudinal power spectrum, and the high-k

thermal cutoff in particular, can be used constrain the T0 and γ [Viel et al., 2009,

Zaldarriaga et al., 2001]. This cutoff arises because thermal broadening smooths τ in

redshift-space (e.g. eqn. 2.6). In contrast to this 1D smoothing, the Jeans filtering

smooths the IGM in 3D, and it is exactly this confluence between 1D and 3D smoothing

that we want to understand [see also Peeples et al., 2009a,b]. We consider the quantity

δF (v) = (F − F̄ )/F̄ , where F̄ is the mean transmitted flux, and compute the power

spectrum according to

P (k) = 〈|δF̃ (k)|2〉, (2.8)



Chapter 3. Thermal Parameters of the IGM 17

0 100 200 300 400 500 600 700
r⟂ [kpc]

cross power

cross modulus

10-2 10-1

k [s/km]

10-3

10-2

P
(k
)k
/
π

T0 =13000 K, γ=0.9, λJ =214 kpc

 T0 =18000 K, γ=1.6, λJ =100 kpc

McDonald et al. 2000

Croft et al. 2002

Figure 2.2: Left panel: The 1D dimensionless power spectrum of the Lyα forest at
z = 3. In our large grid of thermal models, we can identify two very different parameter
combinations, represented by the solid (blue) and dashed (green) curves, which provide
an equally good fit to the longitudinal power spectrum measurements from McDonald
et al. [2000] (red squares) and Croft et al. [2002] (cyan circles), illustrating the strong
degeneracies between these parameters (T0,γ,λJ). In light of these degeneracies, it
is clear that it would be extremely challenging to constrain these parameters with
the longitudinal power alone. Right panel: The dimensionless cross power spectrum
π(k; r⊥)k/π (solid line) at k ≈ 0.05 s/km from our simulated skewers, as a function
of r⊥ for the same two thermal models shown at left, with error bars estimated from
a sample of 20 pairs. The degeneracy afflicting the 1D power is broken using the new
information provided by close quasar pairs, because the different Jeans scales result
in differing amounts of transverse spectral coherence, providing much better prospects
for measuring λJ . We also show the cross modulus 〈ρ1(k)ρ2(k)〉k/π (dashed lines) for
the same two models, which show flat variation with r⊥, and a very weak dependence
on the Jeans scale. Most of the information about the 3D Jeans smoothing resides
not in the moduli, but rather in the phase differences between homologous modes (see

discussion in § 3.1.3).

where δF̃ (k) denotes the Fourier transform of δF for longitudinal wavenumber k, and

angular brackets denote an suitable ensemble average (i.e. over our full sample of spec-

tra).

In Figure 2.2 we compare two thermal models in our thermal parameter grid to measure-

ments of the longitudinal power spectrum of the Lyα forest at z ≃ 3 [Croft et al., 2002,

McDonald et al., 2000]. The blue (solid) curve has a large Jeans scale λJ = 214 kpc,

a cooler IGM T0 = 13, 000K, and a nearly isothermal temperature-density relation

γ = 0.9, which is mildly inverted such that voids are hotter than overdensities. Such

isothermal or even inverted equations of state could arise at z ∼ 3 from He II reion-

ization heating [McQuinn et al., 2009, Tittley & Meiksin, 2007b], and recent analyses

of the flux PDF [Bolton et al., 2008] as well joint analysis of PDF and power-spectrum

[Calura et al., 2012, Garzilli et al., 2012, Viel et al., 2009] have argued for inverted or

nearly isothermal values of γ. The green (dashed) curves have a smaller Jeans scale

λJ = 100 kpc, a hotter IGM T0 = 18, 000K, and a steep γ = 1.6 temperature-density

relation consistent with the asymptotic value if the IGM has not undergone significant
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recent heating events [Hui & Gnedin, 1997, Hui & Haiman, 2003]. Thus with regards to

the longitudinal power spectrum, the Jeans scale is clearly degenerate with the amplitude

and slope (T0, γ) of the temperature-density relation. One would clearly come to erro-

neous conclusions about the equation of state parameters (T0,γ) from longitudinal power

spectrum measurements, if the lack of knowledge of the Jeans scale is not marginalized

out [see e.g. Zaldarriaga et al., 2001, for an example of this marginalization].

This degeneracy in the longitudinal power arises because the Jeans filtering smooths the

power in 3D on a scale which project to a longitudinal velocity

vJ =
H(z = 3)

1 + 3
λJ ≈ 26

(

λJ
340 kpc

)

km s−1, (2.9)

resulting in a cutoff of the power at kJ ≈ 0.04 s km−1 (for the typical values assumed in

the introduction1). The thermal Doppler broadening of Lyα absorption lines smooths

the power in 1D, on a scale governed by the b-parameter

b =

√

2kBT

µmp
≈ 15.7

(

T

1.5× 104 K

)1/2

km s−1, (2.10)

which results in an analogous cutoff at kth =
√
2/b ≈ 0.09 s km−1 for a temperature of

15000 K. Above kB is the Boltzmann constant, mp the proton mass, and µ ≈ 0.59 is

the mean molecular weight for a primordial, fully ionized gas. The fact that the two

cutoff scales are comparable results in a strong degeneracy which is very challenging

to disentangle with longitudinal observations alone. Similar degeneracies between the

Jeans scale and (T0,γ) exist if one considers wavelets, the curvature, the b-parameter

distribution, and the flux PDF, which we explore in an upcoming study (Rorai et al.

2013, in prep). In the next section we show that this degeneracy between 3D and

1D smoothing can be broken by exploiting additional information in the transverse

dimension provided by close quasar pairs.

2.3.2 Cross Power Spectrum

The foregoing discussion illustrates that the 3D (Jeans) and 1D (thermal broadening)

smoothing are mixed in the longitudinal power spectrum, and ideally one would measure

the full 3D power spectrum to break this degeneracy. For an isotropic random field the

1We caution that this estimate assumes a thermal history where T ∝ 1 + z, without considering the
effect of HeII reionization. In that case the deduced value for the filtering scale λJ would probably be
smaller.
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1D power spectrum P (k) and the 3D power P3D(k) are related according to

P3D =
1

2π

1

k

dP (k)

dk
. (2.11)

However, in the Lyα forest redshift-space distortions and thermal broadening result in

an anisotropies that render this expression invalid.

With close quasar pairs, transverse correlations measured across the beam contain infor-

mation about the 3D power, and can thus thus disentangle the 3D and 1D smoothing.

Consider for example the cross-power spectrum π(k, r⊥) of two spectra δF1(v) and δF2(v)

separated by a transverse distance r⊥

π(k; r⊥) = ℜ[δF̃ ∗
1 (k)δF̃2(k)]. (2.12)

When r⊥ → 0 then δF2 → δF1 and the cross-power tends to the longitudinal power P (k).

The cross-power can be thought of as effectively a power spectrum in the longitudinal

direction, and a correlation function in the transverse direction [see also Viel et al., 2002].

Alternatively stated, the cross power provides a transverse distance dependent correction

to the longitudinal power P (k), reducing it from its maximal value at ‘zero lag’ r⊥ = 0.

This further implies that measuring the cross power of closely separated and thus highly

coherent spectra amounts to, at some level, a somewhat redundant measurement of the

longitudinal power which could be simply deduced from isolated spectra. In the next

chapter, we will explain how to isolate the genuine 3D information provided by close

quasar pairs using a statistic that is more optimal than the cross-power. Nevertheless,

Figure 2.2 shows the cross-power spectrum for the two degenerate models discussed in

the previous section, clearly illustrating that even the sub-optimal cross-power spectrum

can break the strong degeneracies between thermal parameters that are present if one

considers the longitudinal power alone.



Chapter 3

Phase Analysis of the Lyman-α

Forest of Quasar Pairs

In the previous chapter I described the general method that we use to estimate the capa-

bility of a given Lyα-forest statistic of discriminating among different thermal models.

Now we need to decide which statistic we want to apply to quasar pairs in order to

extract the transverse coherence information. Our assessment of the ability of quasar

pairs in pinpointing the Jeans scale will be strongly dependent on this choice.

The ideal statistic would have the property of being sensitive to the real-space coherence

of density structure, while being independent on the velocity-space effect such as thermal

broadening and redshift distortions due to peculiar velocities. In doing so, we will elimi-

nate part of the information contained in the spectra which is intrinsically 1-dimensional.

There are at least two good reasons to proceed in this way: the 1-d properties of the

Lyαforest can be studied more effectively in spectra of individual QSOs at the same red-

shifts, which are more frequent and brighter than pairs; along the line of sight, real-space

and velocity-space effects exhibit degeneracies which are difficult to treat. Moreover, an

high sensitivity to redshift-space distortions would raise the requirements on our theo-

retical understanding and on the details of our model, challenging the capabilities of the

simple models that we employ.

In this chapter I will explain how this is achieved by adopting the phase-difference

statistic, whereas the use of the most obvious transverse statistic, i.e. the cross power

or the cross correlation function, would have been ineffective.

20
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3.1 A New Statistic: Phase Differences

Although the cross-power has the ability to break the degeneracy between 3D and 1D

smoothing present in the longitudinal power, we demonstrate here that the cross-power

(or equivalently the cross-correlation function) is however not optimal, and indeed the

genuine 3D information is encapsulated in the phase differences between homologous

Fourier modes.

3.1.1 Drawbacks of the Cross Power Spectrum

Let us write the 1D Fourier transform of the field δF as

δF̃ (k) = ρ(k)eiθ(k) (3.1)

where the complex Fourier coefficient is described by a modulus ρ and phase angle θ,

both of which depend on k. Note that for any ensemble of spectra P (k) = 〈ρ2(k)〉, hence
the modulus ρ(k) is a random draw from a distribution whose variance is given by the

power spectrum. From eqn. (2.12), the cross-power of the two spectra δF1(v) and δF2(v)

is then

π12(k) = ρ1(k)ρ2(k) cos(θ12(k)), (3.2)

where θ12(k) = θ1(k)− θ2(k) is the phase difference between the homologous k−modes.

The distribution of the moduli ρ1 and ρ2 are also governed by P (k), but at small im-

pact parameter they are not statistically independent because of spatial correlations.

Nevertheless, the moduli contain primarily information already encapsulated in the lon-

gitudinal power, and are thus affected by the same thermal parameter degeneracies

that we described in the previous section. For the purpose of constraining the Jeans

scale, we thus opt to ignore the moduli ρ1 and ρ2 altogether, in an attempt to isolate

the genuine 3D information, increasing sensitivity to the Jeans scale, while minimizing

the impact of thermal broadening, removing degeneracies with the temperature-density

relation parameters (T0,γ).

The foregoing points are clearly illustrated by the dashed curves in the right panel of

Figure 2.2, which compares the quantity 〈ρ1(k)ρ2(k)〉 as a function of impact parameter

r⊥ for the same pair of thermal models discussed in § 2.3.1, which are degenerate with

respect to the longitudinal power. The similarity of these two curves reflects the degen-

eracy of the longitudinal power for these two models, and one observes a flat trend with

r⊥ and a very weak dependence on the Jeans scale λJ , substantiating our argument that

the moduli contain primarily 1D information.
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Figure 3.1: Schematic representation of the heuristic argument used to determine
the phase difference distribution: phase are determined by density filaments crossing
the lines of sight of two quasars. If the orientation of the filaments ϕ is isotropically
distributed then θ′, dependent on the longitudinal distance L = r⊥ tanϕ, follows a

Cauchy distribution.

As the moduli contain minimal information about the 3D power, we are thus motivated

to explore how the phase difference θ12(k) can constrain the Jeans scale. In terms of

Fourier coefficients, θ12(k) can be written

θ12(k) = arccos





ℜ[δF̃ ∗
1 (k)δF̃2(k)]

√

|δF̃1(k)|2|δF̃2(k)|2



 . (3.3)

Note that because the phase difference is given by a ratio of Fourier modes, it is com-

pletely insensitive to the normalization of δF , and hence to quasar continuum fitting

errors, provided that these errors do not add power on scales comparable to k. In the

remainder of this section, we provide a statistical description of the distribution of phase

differences and we explore the properties and dependencies of this distribution. To sim-

plify notation we will omit the subscript and henceforth denote the phase difference as

simply θ(k, r⊥) = θ1(k) − θ2(k), where r⊥ is the transverse distance between the two

spectra δF1(v) and δF2(v).

3.1.2 An Analytical Form for the PDF of Phase Differences

The phase difference between homologous k-modes is a random variable in the domain

[−π, π], which for a given thermal model, depends on two quantities: the longitudinal

mode in question k and the transverse separation r⊥. One might advocate computing
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the quantity 〈cos θ(k, r⊥)〉 analogous to the cross-power (see eqn. 2.12), or the mean

phase difference 〈θ(k, r⊥)〉, to quantify the coherence of quasar pair spectra. However,

as we will see, the distribution of phase differences is not Gaussian, and hence is not

fully described by its mean and variance. This approach would thus fail to exploit all

the information encoded in its shape. Our goal is then to determine the functional form

of the distribution of phase differences at any (k, r⊥), and relate this to the thermal

parameters governing the IGM. This is a potentially daunting task, since it requires

deriving a unique function in the 2-dimensional space θ(k, r⊥) for any location in our

3-dimensional thermal parameter grid (T0, γ, λJ ). Fortunately, we are able to reduce

the complexity considerably by deriving a simple analytical form for the phase angle

distribution.

We arrive at a this analytical form via a simple heuristic argument, whose logic is more

intuitive in real space. Along the same lines, we focus initially on the IGM density

distribution along 1D skewers, and then later demonstrate that the same form also

applies to the Lyα flux transmission. Consider a filament of the cosmic web pierced

by two quasar sightlines separated by r⊥, and oriented at an angle ϕ relative to the

transverse direction. A schematic representation is shown in Figure 3.1. This structure

will result in two peaks in the density field along the two sightlines, separated by a

longitudinal distance of L = r⊥ tanϕ. If we assume that the positions of these density

maxima dictate the position of wave crests in Fourier space, the phase difference for a

mode with wave number k can be written as θ′ = kL = kr⊥ tanϕ. We can derive the

probability distribution of the phase difference by requiring that p(θ′)dθ′ = p(ϕ)dϕ, and

assuming that, by symmetry, ϕ is uniformly distributed. This implies that θ′ follows the

Cauchy-distribution

p(θ′) =
1

ǫπ

1

1 + (θ′/ǫ)2
, (3.4)

where ǫ parametrizes the distribution’s concentration. As a final step, we need to redefine

the angles such that they reside in the proper domain. Because tanϕ spans the entire

real line, so will θ′; however, for any integer n, all phases θ′ + 2πn corresponding to

distances L+2πn/k will map to identical values of θ, defined to be the phase difference

in the domain [−π, π]. Redefining the domain, requires that we re-map our probabilities

according to

P[−π,π](θ) =
∑

n∈Z

p(θ + 2πn), (3.5)

a procedure known as ‘wrapping’ a distribution. Fortunately, the exact form of the

wrapped-Cauchy distribution is known:

PWC(θ) =
1

2π

1− ζ2

1 + ζ2 − 2ζ cos(θ − µ)
, (3.6)
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where µ = 〈θ〉 is the mean value (in our case µ = 0 by symmetry), and ζ is a concentra-

tion parameter between 0 and 1, which is the wrapped analog of ǫ above. In the limit

where ζ → 1 the distribution tends to a Dirac delta function δD(x), which is the behav-

ior expected for identical spectra. Conversely, ζ = 0 results in a uniform distribution,

the behavior expected for uncorrelated spectra. A negative ζ gives distributions peaked

at θ = π and is unphysical in this context.

3.1.3 The Probability Distribution of Phase Differences of the IGM

Density

We now show that this wrapped-Cauchy form does a good job of describing the real

distribution of phase differences for our simulated IGM density skewers. Note that for our

simple heuristic example of randomly oriented filaments, the concentration parameter

ζ only depends on the product of kr⊥; whereas, in the real IGM, one expects the

spectral coherence quantified by ζ to depend on the Jeans scale λJ . Because we do not

know how to directly compute the concentration parameter in terms of the Jeans scale

from first principles, we opt to calculate ζ from our simulations. At any longitudinal

wavenumber k, pair separation r⊥, and Jeans scale λJ , our density skewers provide a

discrete sampling of the θ distribution. We use the maximum likelihood procedure from

Jammalamadaka & Sengupta [2001] to calculate the best-fit value of ζ from an ensemble

of θ values, as described further in Appendix B. Figure 3.2 shows the distribution of

phases determined from our IGM density skewers (symbols with error bars) compared

to the best-fit wrapped-Cauchy distributions (curves) for different longitudinal modes k,

transverse separations r⊥, and values of the Jeans scale λJ . We see that the wrapped-

Cauchy distribution typically provides a good fit to the simulation data points to within

the precision indicated by the error bars. For very peaked distributions which correspond

to more spectral coherence (i.e. low-k or large λJ), there is a tendency for our wrapped-

Cauchy fits to overestimate the probability of large phase differences relative to the

simulated data, although our measurements of the probability are very noisy in this

regime. We have visually inspected similar curves for the entire dynamic range of the

relevant k, r⊥ and λJ , for which the shape of the wrapped-Cauchy distribution varies

from nearly uniform (ζ ≃ 0) to a very high degree of coherence (ζ ≃ 1), and find similarly

good agreement.

It is instructive to discuss the primary dependencies of the phase difference distribution

on wavenumber k, separation r⊥, and the Jeans scale λJ illustrated in Figure 3.2. At a

fixed wavenumber k, a large separation relative to the Jeans scale results in a flatter dis-

tribution of θ, which approaches uniformity for r⊥ ≫ λJ . The distribution approaches

the fully coherent limit of a Dirac delta function for r⊥ ≪ λJ , and the transitions from
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Figure 3.2: Phase difference probability functions of the density fields at different
separations r⊥, wavenumbers k and Jeans scale λJ . Points with errorbars represent the
binned phase distribution of the density field as obtained from the simulation, while
the solid lines are the best-likelihood fit using a wrapped-Cauchy distribution. When
the spectra are highly correlated the phases are small and the distribution is peaked
around zero, whereas independent skewers result in flat probability functions. The
error are estimated from the number of modes available in the simulation, assuming a
Poisson distribution. By symmetry p(θ) must be even in θ, hence it is convenient to
plot only the range [0, π], summing positive and negative probabilities (clearly obtaining
p(|θ|) ) to increase the sampling in each bin. We express the scale of each mode both
giving the wavelength λ in Mpc and the wave number k (in s km−1) in the transformed
velocity space. The wrapped-Cauchy function traces with good approximation the
phase distribution obtained from the simulation, showing less accuracy in the cases
of strongly concentrated peaks, where low-probability bins are noisy. Each color is
a different smoothing length: λJ = 50, 100 and 200 kpc (respectively black, red and
blue). It is important to notice that the relative distributions are different not only
at scales comparable to λJ , but also for larger modes, because the 3D power of high-k
modes when projected on a 1D line contributes to all the low-k components (see the
text for a detailed discussion). Secondly, it is clear that the most relevant pairs are the
closest (r⊥ . λJ), because for wide separations the coherence is too low to get useful
information. These two consideration together explain why close quasar pairs are the
most effective objects to measure the Jeans scale, even if they cannot be observed at

high resolution.
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a strongly peaked distribution to a uniform one occurs when r⊥ is comparable to the

Jeans scale λJ . We see that quasar pairs with transverse separations r⊥ . 3λJ , contain

information about the Jeans scale, whereas this sensitivity vanishes for larger impact

parameters. At fixed r⊥, lower k-modes (i.e. larger scales) are more highly correlated

(smaller θ values) as expected, because sightlines spaced closely relative to the wave-

length of the mode kr⊥ ≪ 1, probe essentially the same large scale density fluctuation.

Overall, the dependencies in Figure 3.2 illustrate that there is information about the

Jeans smoothing spread out over a large range of longitudinal k-modes. Somewhat sur-

prisingly, even modes corresponding to wavelengths & 100 times larger than λJ can

potentially constrain the Jean smoothing.

This sensitivity of very large-scale longitudinal k-modes to a much smaller scale cutoff

λJ in the 3D power merits further discussion. First, note that the range of wavenum-

bers typically probed by longitudinal power spectra of the Lyα forest lie in the range

0.005 s km−1 < k < 0.1 s km−1 (see Figure 2.2), corresponding to modes with wave-

lengths 60 km s−1 < v < 1250 km s−1 or 830 kpc < λ < 17Mpc. Here the low-k cutoff

is set by systematics related to determining the quasar continuum [see e.g. Lee, 2012],

whereas the high-k cutoff is adopted to mitigate contamination of the small-scale power

from metal absorption lines [McDonald et al., 2000]. In principle high-resolution (echelle)

spectra FWHM= 5km s−1 probe even higher wavenumbers as large as k ≃ 3, however

standard practice is to only consider k . 0.1 in model-fitting [see e.g. Zaldarriaga et al.,

2001]. Thus even the highest k-modes at our disposable k ≃ 0.1 correspond to wave-

lengths ≃ 830 kpc significantly larger than our expectation for the Jeans scale ∼ 100 kpc.

Furthermore, we saw in § 2.3.1 that degenerate combinations of the Jeans smoothing

and the IGM temperature-density relation can produce the same small-scale cutoff in

the longitudinal power. Thus both metal-line contamination and degeneracies with ther-

mal broadening imply that while it is extremely challenging to resolve the Jeans scale

spectrally, the great advantage of close quasar pairs is that they resolve the Jeans scale

spatially, provided they have transverse separations r⊥ comparable to λJ . We will thus

typically be working in the regime where k/k⊥ ≪ 1, where we define k⊥ ≡ x0/aHr⊥,

where aHr⊥ is the transverse separation converted to a velocity and x0 = 2.4048 is a

constant the choice of which will become clear below.

In this regime, it is straightforward to understand why the phase differences between

large-scale modes are nevertheless sensitive to the Jeans scale. Consider the quantity

〈cos θ(k, r⊥)〉, which is related to the cross-power discussed in § 3.1.1. This ‘moment’ of

the phase angle PDF can be written

〈cos θ(k, r⊥)〉 =
∫ π

−π
P (θ(k, r⊥)) cos θ(k, r⊥)dθ, (3.7)
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which tends toward zero for totally uncorrelated spectra (P (θ) = 1/2π) and towards

unity for perfectly correlated, i.e. identical spectra (P (θ) = δD(θ)) spectra. Following

the discussion in § 3.1.1, we can write

π(k, r⊥) = 〈ρ1(k)ρ2(k) cos θ(k, r⊥)〉 ≈ (3.8)

〈ρ1(k)ρ2(k)〉〈cos θ(k, r⊥)〉 ≈ P (k)〈cos θ(k, r⊥)〉,

where the first approximation is a consequence of the approximate Gaussianity of the

density fluctuations, and the second from the fact that 〈ρ1ρ2〉 ≈ P (k) for k/k⊥ ≪ 1, as

demonstrated by the dashed curves in the right panel of Fig 2.2. Thus we arrive at

〈cos θ(k, r⊥)〉 ≈
π(k, r⊥)

P (k)
=

∫∞
k dqqJ0(r⊥

√

q2 − k2)P3D(q)
∫∞
k dqqP3D(q)

, (3.9)

where J0 is the cylindrical Bessel function of order zero. The numerator and denominator

of the last equality in eqn. (3.9) follow from the definitions of the longitudinal and cross

power for an isotropic 3D power spectrum [see e.g. Hui et al., 1999, Lumsden et al.,

1989, Peacock, 1999, Viel et al., 2002]. The denominator is the familiar expression

for the 1D power expressed as a projection of the 3D power. Note that 1D modes

with wavenumber k receive contributions from all 3D modes with wavevectors ≥ k,

which results simply from the geometry of observing a 3D field along a 1D skewer. A

long-wavelength (low-k) 1D longitudinal mode can be produced by a short-wavelength

(high-k) 3D mode directed nearly perpendicular to the line of sight [see e.g. Peacock,

1999]. The numerator of eqn. (3.9) is similarly a projection over all high-k 3D modes,

but because of the non-zero separation of the skewers the 3D power spectrum is now

modulated by the cylindrical Bessel function J0(x). Because J0(x) is highly oscillatory,

the primary contribution to this projection integral will come from arguments in the

range 0 < x < x0. Here x0 = 2.4048 is the first zero of J0(x), which motivates our

earlier definition of k⊥ ≡ x0/aHr⊥. For larger arguments x, the decay of J0(x) and

its rapid oscillations will result in cancellation and negligible contributions. Thus for

k/k⊥ ≪ 1, we can finally write

〈cos θ(k, r⊥)〉 ≈
∫ k⊥
k dqqJ0(r⊥

√

q2 − k2)P3D(q)
∫∞
k dqqP3D(q)

. (3.10)

This equation states that the average value of the phase difference between homologous k

modes is determined by the ratio of the 3D power integrated against a ‘notch filter’ which

transmits the range [k, k⊥], relative to the total integrated 3D power over the full range

[k,∞]. Hence phase angles between modes with wavelengths & 100 times larger than

λJ , are nevertheless sensitive to the amount of 3D power down to scales as small as the

transverse separation r⊥. This results simply from the geometry of observing a 3D field
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Figure 3.3: Same plot of figure 3.2 but for the Lyα transmitted flux field instead of
density. We vary the Jeans scale λJ , keeping fixed the equation-of-state parameters,
T0 = 10000 K and γ = 1.6. The properties of the distributions are analogous to the
previous plot, they follow with good approximation a wrapped-Cauchy profile and they
exhibit the same trends with r⊥, k and λJ . Overall, the flux shows an higher degree of

coherence and a slightly smaller sensitivity to λJ .

along 1D skewers, because the power in longitudinal mode k is actually dominated by

the superposition of 3D power from much smaller scales ≫ k. Provided that quasar pair

separations resolve the Jeans scale r⊥ ∼ λJ , even large scale modes with k ≪ k⊥ ∼ 1/λJ

are sensitive to the shape of the 3D power on small-scales, which explains the sensitivity

of low-k modes to the Jeans scale in Figure 3.2.

Finally, the form of eqn. (3.10) combined with eqn. (3.7) explains the basic qualitative

trends in Figure 3.2. For large r⊥ (small k⊥) the projection integral in the numer-

ator decreases, 〈cos θ(k, r⊥)〉 approaches zero, indicating that P (θ(k, r⊥)) approaches

uniformity. Similarly, as r⊥ → λJ , 〈cos θ(k, r⊥)〉 grows indicating that P (θ(k, r⊥)) is

peaked toward small phase angles, and in the limit r⊥ ≪ λJ 〈cos θ(k, r⊥)〉 → 1 and

P (θ(k, r⊥)) approaches a Dirac delta function. At fixed r⊥, lower k modes will result in

more common pathlength in the projection integrals in the numerator and denominator

of eqn. (3.10), thus 〈cos θ(k, r⊥)〉 is larger, P (θ(k, r⊥)) is more peaked, and the phase

angles are more highly correlated.
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To summarize, following a simple heuristic argument, we derived a analytical form for

the phase angle distribution in § 3.1.2, which is parametrized by a single number, the

concentration ζ. We verified that this simple parametrization provides a good fit to the

distribution of phase differences in our simulated skewers, and explored the dependence

of this distribution on transverse separation r⊥, wavenumber k, and the Jeans scale λJ .

Phase differences between large-scale modes with small wavenumbers k ≪ 1/λJ , are

sensitive to the Jeans scale, because geometry dictates that low-k cross-power across

correlated 1D skewers is actually dominated by high-k 3D modes up to a scale set by

the pair separation k⊥ ∼ 1/r⊥.

3.1.4 The Probability Distribution of Phase Differences of the Flux

Having established that the wrapped-Cauchy distribution provides a good description

of the phase difference of IGM density skewers, we now apply it to the Lyα forest flux.

Figure 3.3 shows the PDF of phase differences for the exact same transverse separations

r⊥, wavenumbers k, and Jeans smoothings λJ that were shown in Figure 3.2. The

other thermal parameters T0 and γ have been set to (T0, γ) = (10, 000K, 1.6). Overall,

the behavior of the phase angle PDF for the flux is extremely similar to that of the

density, exhibiting the same basic trends. Namely, the flux PDF also transitions from

a strongly peaked distribution (r⊥ . λJ) to a flat one (r⊥ ≫ λJ) at around r⊥ ≃ λJ .

Lower k-modes tend to be more highly correlated, and low-k modes corresponding to

wavelengths & 100λJ are nevertheless very sensitive to the Jeans scale, in exact analogy

with the density field. Note that because the 3D power spectrum of the flux field is

now anisotropic, the assumptions leading to the derivation of eqn. 3.10 in the previous

section breaks down for the flux. Nevertheless, the explanation for the sensitivity of low-

k modes to the Jeans scale is likely the same, namely the low-k power across correlated

skewers is actually dominated by projected high-k 3D power up to a scale k⊥ ∼ 1/r⊥,

which is set by the pair separation.

The primary difference between the phase angle PDF of flux versus the density appears

to be that the flux PDF is overall slightly less sensitive to the Jeans scale. In general, we

do not expect the two distributions to be exactly the same for several reasons. First, the

flux represents a highly nonlinear transformation of the density: according to the FGPA

formula δF ∼ exp [−(1 + δ)β ] where β = 2 − 0.7(γ − 1). Second, the flux is observed

in redshift space, and the peculiar velocities which determine the mapping from real to

redshift space, can further alter the flux relative to the density. Finally, the flux field

is sensitive to other thermal parameters T0 and γ, both through the nonlinear FGPA

transformation, and because of thermal broadening. In what follows, we investigate
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Figure 3.4: Phase difference probability density functions for different separations r⊥
and wavenumbers k. All models have the same Jeans scale λJ = 140 kpc. For clarity we
plot only the best-fit wrapped-Cauchy function without simulated points with errorbars.
The black and the red lines are the phase angle PDFs for the transmitted flux of the
Lyαforest and the IGM density field, respectively. The green line represents the case of
the Lyαforest flux where peculiar velocities are set to zero. By comparing the green and
the black lines we see that in peculiar motions always increase the coherence between
the two sightlines, which partly explains the differences between the flux and density
distributions, since the latter is calculated in real space. The flux and density further
differ because of the non-linear FGPA transformation, which has a stronger effect on

smaller scale modes.

each of these effects in turn, and discuss how each alters the phase angle PDF and its

sensitivity to the Jeans scale.

In Figure 3.4 we show the flux PDF (black) alongside the density PDF (red) for various

modes and separations, again with the thermal model fixed to (T0, γ, λJ ) = (20, 000 K, 1.0, 140)

kpc. To isolate the impact of peculiar velocities, we also compute the phase angle PDF

of the real-space flux, i.e. without peculiar velocities (green). Specifically, we disable

peculiar velocities by computing the flux from eqn. (2.6) with vp,‖ set to zero. Overall,

the PDFs of the real-space flux and density (also real-space) are quite similar. For low

wavenumbers, the real-space flux skewers are always slightly more coherent than the

density (P (θ) more peaked) for all separations. However, at the highest k, the situation
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Figure 3.5: Phase difference probability density functions for different separations
r⊥, wavenumbers k and equation-of-state parameters T0 − γ. Points with errorbars
(estimated Poisson error) are the results of our simulations, while the coloured lines are
the best-likelihood fit using a wrapped-Cauchy distribution. All models have the same
Jeans scale λJ = 140 kpc. This plot shows the most remarkable property of phases:
they do not exhibit any relevant sensitivity to the equation of state, so they robustly

constrain the spatial coherence given by pressure support.

is reversed with the density being more coherent than the real-space flux. A detailed

explanation of the relationship between the phase angle PDF of the real-space flux and

the density fields requires a better understanding of the effect of the non-linear FGPA

transformation on the 2-point function of the flux, which is beyond the scope of the

present work. Here we only argue that the 3D power spectrum of the real-space flux

has in general a different shape than that of the density, and using our intuition from

eqn. (3.10), this will result in a different shape for the distribution of phase angles. The

net effect of peculiar velocities on the redshift-space flux PDF is to increase the amount

of coherence between the two sightlines (P (θ) more peaked) relative to the real-space

flux. This likely arises because the peculiar velocity field is dominated by large-scale

power, which makes the 3D power of the flux steeper as a function of k. Again based

on our intuition from eqn. (3.9), a steeper power spectrum will tend to increase the

coherence (〈cos(θ(k, r⊥))〉 closer to unity), because the projection integrals in the nu-

merator and denominator of eqn. (3.9) will both have larger relative contributions from
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the interval [k, k⊥]. Note that the relative change in the flux PDF due to peculiar ve-

locities is comparable to the differences between the real-space flux and the density. At

the highest k-values where the real-space flux is less coherent than the density (lowest

panel of Figure 3.4), peculiar velocities conspire to make the redshift-space flux PDF

very close to the density PDF.

Finally, we consider the impact of the other thermal parameters T0 and γ on the distri-

bution of phases in Figure 3.5. There we show the PDF of the phase angles for the flux

for a fixed Jeans scale λJ = 140 kpc, and three different thermal models. Varying T0 and

γ over the full expected range of these parameters has very little impact on the shape

of the phase angle PDF, whereas we see in Figure 3.3 that varying the Jeans scale has

a much more dramatic effect. The physical explanations for the insensitivity to T0 and

γ are straightforward. The thermal parameters T0 and γ can influence the phase angle

PDF in two ways. First, the FGPA depends weakly on temperature T−0.7 through the

recombination coefficient. As a result the non-linear transformation between density and

flux depends weakly on γ δF ∼ exp [−(1 + δ)β ] where β = 2− 0.7(γ − 1). We speculate

that the tiny differences between the thermal models in Figure 3.5 are primarily driven

by this effect, because we saw already in Figure 3.5 that the non-linear transformation

can give rise to large differences between the density and flux PDFs. This small variation

of the PDF with γ then suggests that it is actually the exponentiation which dominates

the differences between the flux and density PDFs in Figure 3.5, with the weaker γ

dependent transformation (1 + δ)2−0.7(γ−1) playing only a minor role, which is perhaps

not surprising. Note that there is also a T−0.7
0 dependence in the coefficient of the FGPA

optical depth, but as we require all models to have the same mean flux 〈exp(−τ)〉, this
dependence is compensated by the freedom to vary the metagalactic photoionization

rate Γ. Second, both T0 and γ determine the temperature of gas at densities probed by

the Lyα forest, which changes the amount of thermal broadening. The insensitivity to

thermal broadening is also rather easy to understand. Thermal broadening is effectively

a convolution of the flux field with a Gaussian smoothing kernel. In k-space this is simply

a multiplication of the Fourier transform of the flux δF̃ (k) with the Fourier transform

of the kernel. Because all symmetric kernels will have a vanishing imaginary part1, the

convolution can only modify the moduli of the flux but the phases are invariant. Thus

the phase differences between neighboring flux skewers are also invariant to smoothing,

which explains the insensitivity of the flux phase angle PDF to thermal broadening, and

hence the parameters T0 and γ.

The results of this section constitute the cornerstones of our method for measuring the

Jeans scale. We found that the phase angle PDF of the flux has a shape very similar to

1The imaginary part of the Fourier transform of the symmetric function W (|x|) is ℑ[W (k)] =∫
W (|x|) sin(kx)dx which is always odd and will integrate to zero.
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Figure 3.6: Logarithm of the phase k − k correlation for separations r⊥ = 70 kpc
(left) and r⊥ = 430 kpc (right). This matrices are calculated for a model with λJ = 143
kpc, T0 = 20000 K and γ = 1. Phases are more correlated when the impact parameter
is smaller than the jeans scale and at high k where nonlinear growth of perturbations
couples different modes. Even in this cases we rarely find correlations higher than ≈ 3%,
for which reason we will work in the diagonal approximation. This approximation may

break out if the measured Jeans scale will be significantly larger than expected.

that of the density, and that both are well described by the single parameter wrapped-

Cauchy distribution. Information about the 3D smoothing of the density field λJ , is

encoded in the phase angle PDF of the flux, but it is essentially independent of the other

thermal parameters governing the IGM. This results because 1) the non-linear FGPA

transformation is only weakly dependent on temperature 2) phase angles are invariant

under symmetric convolutions. The implication is that close quasar pair spectra can be

used to pinpoint the Jeans scale without suffering from any significant degeneracies with

T0 and γ. Indeed, in the next section we introduce a Bayesian formalism for estimating

the Jeans scale, and our MCMC analysis in § 3.2 will assess the accuracy with which the

thermal parameters can be measured, and explicitly demonstrate the near independence

of constraints on λJ from T0 and γ.

3.1.5 The Covariance of the Phase Differences

In the previous section, we showed that the PDF of phase differences between homol-

ogous longitudinal modes of the flux field are well described by the wrapped-Cauchy

distribution (see eqn. 3.6). However, the one-point function alone is insufficient for char-

acterizing the statistical properties of the stochastic field θ(k, r⊥), because in principle

values of θ closely separate in either wavenumber k or real-space could be correlated.

Understanding the size of these two-point correlations is of utmost importance. Any

given quasar pair spectrum provides us with a realization of θ(k, r⊥), and we have seen
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that the distribution of these values depends sensitively on the Jeans scale λJ . In order

to devise an estimator for the thermal parameters in terms of the phase differences, we

have to understand the degree to which the θ(k, r⊥) are independent.

It is easy to rule out the possibility of spatial correlations among the θ values deduced

from distinct quasar pairs. Because quasar pairs are extremely rare on the sky, the

individual quasar pairs in any observed sample will typically be ∼ Gpc away from each

other, and hence different pairs will never probe correlated small-scale density fluctua-

tions. However, the situation is much less obvious when it comes to correlations between

θ values for different k-modes of the same quasar pair. In particular, nonlinear structure

formation evolution will result in mode-mode coupling, which can induce correlations

between mode amplitudes and phases [e.g. Chiang et al., 2002, Coles, 2009, Watts et al.,

2003]. We are thus motivated to use our simulated skewers to directly quantity the size

of the correlations between phase differences of distinct longitudinal k-modes.

We calculate the correlation coefficient matrix of θ between modes k and k′ defined as

Cθ(k, k
′; r⊥) =

〈θ(k, r⊥)θ(k′, r⊥)〉
√

〈θ2(k, r⊥)〉 〈θ2(k′, r⊥)〉
. (3.11)

Our standard setup of 330 pairs at each discrete separation r⊥ results in a very noisy

estimate of Cθ(k, k
′; r⊥), so we proceed by defining a new set of 80,000 skewers at two

distinct discrete transverse separations of r⊥ = 70 kpc and r⊥ = 430 kpc for a single

thermal model with (T0, γ, λJ ) = (20, 000K, 1, 143 kpc).

Figure 3.6 displays the correlation coefficient matrix for the two separations r⊥ that we

simulated. We find that the off-diagonal correlations between k-modes are highest at

high k values and for smaller impact parameters. This is the expected behavior, since

higher longitudinal k-modes will have a larger relative contributions from higher-k 3D

modes, which will be more non-linear and have larger mode-mode correlations. Likewise,

as per the discussion in § 3.1.3, phase differences at smaller pair separations r⊥ are

sensitive to higher k 3D power ∼ k⊥, and should similarly exhibit larger correlations

between modes. Note however that over the range of longitudinal k values which we will

use to constrain the Jeans scale 0.005 < k < 0.1, the size of the off-diagonal elements

are always very small, of the order of ∼ 1− 3%.

The small values of the off-diagonal elements indicates that the mode-mode coupling

resulting from non-linear evolution does not result in significant correlations between

the phase angles of longitudinal modes. This could result from the fact that the intrinsic

phase correlations of the 3D modes is small, and it is also possible that the projection of

power inherent to observing along 1D skewers (see § 3.1.3) dilutes these intrinsic phase

correlations, because a given longitudinal mode is actually the average over a large
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range of 3D modes. From a practical perspective, the negligible off-diagonal elements in

Figure 3.6 are key, because they allow us to consider each phase difference θ(k, r⊥) as

an independent random draw from the probability distributions we explored in § 3.1.4,

which as we show in the next section, dramatically simplifies the estimator that we will

use to determine the Jeans scale.

3.1.6 A Likelihood Estimator for the Jeans Scale

The results from the previous sections suggest a simple method for determining Jeans

scale. Namely, given any quasar pair, the phase angle difference for a given k-mode

represents a draw from the underlying phase angle PDF determined by the thermal

properties of the IGM (as well as other parameters governing e.g. cosmology and the

dark matter which we assume to be fixed). In § 3.1.4 we showed that the phase angle

PDF is well described by the wrapped-Cauchy distribution and in § 3.1.5 we argued that

correlations between phase angle differences θ(k, r⊥), in both k-space and real-space can

be neglected. Thus for a hypothetical dataset θ(k, r⊥) measured from a sample of quasar

pairs, we can write that the likelihood of the thermal model M = {T0, γ, λJ} given the

data is

L ({θ}|M) =
∏

i,j

PWC(θ(ki, rj)|ζ(k, r⊥|M)). (3.12)

This states that the likelihood of the data is the product of the phase angle PDF eval-

uated at the measured phase differences for all k-modes and over all quasar pair sep-

arations r⊥. Note that the simplicity of this estimator is a direct consequence of the

fact that there are negligible θ correlations between different k-modes and pair separa-

tions. All dependence on (T0, γ, λJ ) is encoded in the single parameter ζ, which is the

concentration of the wrapped-Cauchy distribution (eqn. 3.6).

We can then apply Bayes’ theorem to make inferences about any thermal parameter, for

example for λJ

P (λJ |{θ}) =
L ({θ}|λJ )p(λJ)

P ({θ}) (3.13)

where p(λJ) is our prior on the Jeans scale and the denominator acts as a renormalization

factor which is implicitly calculated by a Monte Carlo simulation over the parameter

space. The same procedure can be used to evaluate the probability distribution of

the other parameters. Throughout this work, we assume flat priors on all thermal

parameters, over the full domain of physically plausible parameter values.

In § 3.2 we will use MCMC techniques to numerically explore the likelihood in eqn. (3.13)

and deduce the posterior distributions of the thermal parameters. In order to do this,

we need to be able to evaluate the function ζ(k, r⊥|T0, γ, λJ) at any location in thermal
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parameter space. This is a non-trivial computational issue, because we do not have a

closed form analytical expression for ζ which can be evaluated quickly, and thus have to

resort to our cosmological simulations of the IGM to numerically determine it for each

model, as described in Appendix B. In practice, computational constraints limit the size

of our thermal parameter grid to only 500 thermal models, and we thus evaluate ζ at

only these 500 fixed locations. The fast procedure described in the previous chapter

(the emulator) allows us to interpolate ζ from these 500 locations in our finite thermal

parameter grid, onto any value in thermal parameter space (T0, γ, λJ ).

To summarize, our method for measuring the Jeans scale of the IGM involves the fol-

lowing steps:

• Calculate the phase differences θ(k, r⊥) for each k-mode of an observed sample of

quasar pairs with separations r⊥.

• Generate Lyα forest quasar pair spectra for a grid of thermal models in the parame-

ter space (T0, γ, λJ ), using our IGM simulation framework. For each model, numer-

ically determine the concentration parameter ζ(k, r⊥|T0, γ, λJ ) at each wavenum-

ber k and separation r⊥, from the distribution of phase differences θ(k, r⊥).

• Emulate the function ζ(k, r⊥|T0, γ, λJ ), enabling fast interpolation of ζ from the

fixed values in the thermal parameter grid to any location in thermal parameter

space.

• Calculate the posterior distribution in eqn. (3.13) for λJ , by exploring the likeli-

hood function in eqn. (3.12) with an MCMC algorithm.

3.2 How Well Can We Measure the Jeans Scale?

Our goal in this section is to determine the precision with which close quasar pair spec-

tra can be used to measure the Jeans scale. To this end, we construct a mock quasar

pair dataset from our IGM simulations and apply our new phase angle PDF likelihood

formalism to it. A key question is how well constraints from our new phase angle tech-

nique compare to those obtainable from alternative measures, such as the cross-power

spectrum, applied to the same pair sample, or from the longitudinal power spectrum,

measured from samples of individual quasars. In what follows, we first present the likeli-

hood used to determine thermal parameter constraints for these two additional statistics.

Then we describe the specific assumptions made for the mock data. Next we quantify the

resulting precision on the Jeans scale, explore degeneracies with other thermal param-

eters, and compare to constraints from these two alternative statistics. We explore the



Chapter 3. Phase Differences 37

impact of finite signal-to-noise ratio and spectral resolution on our measurement accu-

racy, and discuss possible sources of systematic error. Finally, we explicitly demonstrate

that our likelihood estimator provides unbiased determinations of the Jeans scale.

3.2.1 The Likelihood for P (k) and π(k, r⊥)

For the longitudinal power P (k), we assume that the distribution of differences, between

the measured band powers of a k-bin and the true value, is a multi-variate Gaussian

[see e.g. McDonald et al., 2006], which leads to the standard likelihood for the power-

spectrum

L (Pd|M) = (2π)−N/2 det (Σ)−1/2 (3.14)

exp

[

−1

2
(Pd − PM )TΣ−1(Pd − PM )

]

,

where Pd is a vector of N observed 1D band powers, PM is a vector of power spectrum

predictions for a given thermal model M = (T0, γ, λJ ), and

Σ(k, k′) = 〈[P (k)− PM (k)][P (k′)− PM (k′)]〉, (3.15)

is the full covariance matrix of the power spectrum measurement. As we describe in the

next subsection, we will choose a subset of the skewers from a fiducial thermal model

to represent the ‘data’ in this expression, which are then compared directly to thermal

models (T0, γ, λJ ), where the same emulator technique described in § 2.2 is used to

interpolate PM (k|T0, γ, λJ ) to parameter locations in the thermal space. To determine

the covariance of this mock data Σ(k, k′), we use the full ensemble of 2 × 10, 000 1D

skewers for the fiducial thermal model, directly evaluate the covariance matrix, and then

rescale it to the size of our mock dataset by multiplying by the ratio of the diagonal terms

σ2dataset/σ
2
full. This procedure of evaluating the covariance implicitly assumes that the

only source of noise in the measurement is sample variance, or that the instrument

noise is negligible. For the high-resolution and high signal-to-noise ratio spectra used

to measure the longitudinal power spectrum cutoff [Croft et al., 2002, McDonald et al.,

2000], this is a reasonable assumption. For reference, the relative magnitude of off-

diagonal terms of the covariance, Σ(k, k′)/
√

Σ(k, k)Σ(k′, k′), are at most 20− 30% with

the largest values attained at the highest k.

For the cross-power spectrum π(k, r⊥), we follow the same procedure. Namely, a mock

dataset is constructed for the fiducial thermal model by taking a subset of the full

ensemble of quasar pair spectra. We again assume that the band power errors are

distributed according to a multi-variate Gaussian, but because we must now account for
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the variation with separation r⊥, the corresponding likelihood is

L (π|M) =
∏

i

L (πd(k, r⊥,i)|M), (3.16)

where L (πd(k, r⊥,i)|M) has the same form as the longitudinal power in eqn. (3.15).

In exact analogy with the longitudinal power, we compute the full covariance matrix

Σ(k, k′|r⊥) of the cross-power using our full ensemble of simulated pair spectra for our

fiducial model, but now at each value of r⊥.

3.2.2 Mock Datasets

To determine the accuracy with which we can measure the Jeans scale and study the

degeneracies with other thermal parameters, we construct a dataset with a realistic size

and impact parameter distribution, and use an MCMC simulation to explore the phase

angle likelihood in eqn. (3.12). We compare these constraints to those obtained from

the cross-power spectrum for the same mock pair dataset, by similarly using an MCMC

to explore the cross-power likelihood in eqn. (3.16). We also compare to parameter

constraints obtainable from the longitudinal power alone, by exploring the likelihood

in eqn. (3.15), for which we must also construct a mock dataset for longitudinal power

measurements.

For the mock quasar pair sample, we assume 20 quasar pair spectra at z = 3, with

fully overlapping absorption pathlength between Lyα and Lyβ. Any real quasar pair

sample will be composed of both binary quasars with full overlap and projected quasar

pairs with partial overlap, so in reality 20 represents the total effective pair sample,

whereas the actual number of quasar pairs required could be larger. The distribution of

transverse separations for these pairs is taken to be uniform in the range 24 < r⊥ < 714

kpc. Specifically, we require 200 pairs of skewers in order to build up the necessary path

length for 20 full Lyα forests, and these are randomly selected from our 10,000 IGM

pair skewers which have 30 discrete separations. We draw these pairs from a simulation

with a fiducial thermal model (T0, γ, λJ ) = (12, 000K, 1.0, 110, kpc), which lies in the

middle of our thermal parameter grid. Note that follow-up observations of quasar pair

candidates has resulted in samples of > 400 quasar pairs in the range 1.6 < z . 4.3

with r⊥ < 700 kpc, and for those with > 50% overlap, the total effective number of fully

overlapping pairs is ≃ 300 [Hennawi, 2004, Hennawi et al., 2009, 2006b, Myers et al.,

2008]. Many of these sightlines already have the high quality Lyα forest spectra required

for a Jeans scale measurement [e.g. Hennawi & Prochaska, 2007, 2008, Hennawi et al.,

2006a, Prochaska & Hennawi, 2009, Prochaska et al., 2012], hence the mock dataset
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we have assumed already exists, and can be easily enlarged given the number of close

quasar pairs known.

Longitudinal power spectrum measurements which probe the small-scale cutoff of the

power have been performed on high-resolution (R ≃ 30, 000 − 50, 000; FWHM=6 −
10 km s−1) spectra of the brightest quasars. Typically, the range of wavenumbers used

for model fitting is 0.005 s km−1 < k < 0.1 s km−1 (see Figure 2.2), where the low-k

cutoff is chosen to avoid systematics related to quasar continuum fitting [Lee, 2012], and

the high-k cutoff is adopted to mitigate contamination from metal absorption lines [Croft

et al., 2002, Kim et al., 2004, McDonald et al., 2000]. Because quasar pairs are very rare,

one must push to faint magnitudes to find them in sufficient numbers. In contrast with

the much brighter quasars used to measure the small-scale longitudinal power [Croft

et al., 2002, Kim et al., 2004, McDonald et al., 2000], quasar pairs are typically too faint

to be observable at echelle resolution (FWHM=6 − 10 km s−1) on 8m class telescopes.

However, quasar pairs can be observed with higher efficiency echellette spectrometers,

which deliver R ≃ 10, 000 or FWHM= 30km s−1. The cutoff in the power spectrum

induced by this lower resolution is kres = 1/σres = 2.358/FWHM = 0.08 s km−1, which

is very close to the upper limit k < 0.1 s km−1 set by metal-line contamination. For

these reasons, we will consider only modes in the range 0.005 s km−1 < k < 0.1 s km−1

in the likelihood in eqn. (3.12). We initially consider perfect data, ignoring the effect of

finite signal-to-noise rate and resolution. Then in § 3.2.4, we will explore how noise and

limited spectral resolution influence our conclusions.

For the mock sample used to study the longitudinal power, we assume perfect data,

which is reasonable considering that such analyses are typically performed on spectra

with signal-to-noise ratio S/N ∼ 30 and resolution FWHM= 6km s−1 [Croft et al., 2002,

Kim et al., 2004, McDonald et al., 2000] such that the Lyα forest, and in particular

modes with k < 0.1, are fully resolved. For the size of this sample, we again assume 20

individual spectra at z = 3 with full coverage of the Lyα forest, which is about twice

the size employed in recently published analyses [Croft et al., 2002, Kim et al., 2004,

McDonald et al., 2000]. However, the number of existing archival high-resolution quasar

spectra at z = 3 easily exceeds this number, so samples of this size are also well within

reach. Also, adopting a sample for the longitudinal power with the same Lyα forest

path length as the quasar pair sample, facilitates a straightforward comparison of the

two sets of parameter constraints.
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Figure 3.7: Constraints on the γ − λJ and T0 − λJ planes. The contours show
the estimated 65% and 96% confidence levels obtained with the longitudinal power
(blue) and the phase difference (red). The white dot marks the fiducial model in the
parameter space. The degeneracy affecting the 1D power already shown in figure 2.2
can now be seen clearly in the parameter space through the inclination of the black
contours. Conversely, the fact that constraints given by the phase difference statistic
are horizontal guarantees that this degeneracy is broken and that the measurement of

the Jeans scale is not biased by the uncertainties on the equation of state.

3.2.3 The Precision of the λJ Measurement

Given our mock dataset and the expression for the phase angle likelihood in eqn. (3.12),

and armed with our IGM emulator, which enables us to quickly evaluate this likelihood

everywhere inside our thermal parameter space, we are now ready to explore this likeli-

hood with an MCMC simulation to determine the precision with which we can measure

the Jeans scale and explore degeneracies with other thermal parameters.

We employ the publicly available MCMC package described in Foreman-Mackey et al.

[2012], which is particularly well adapted to explore parameter degeneracy directions.

The result of our MCMC simulation is the full posterior distribution in the 3-dimensional

T0−γ−λJ space for each likelihood that we consider. It is important to point out that,

in general, these posterior distributions will not be exactly centered on the true fiducial

thermal model (T0, γ, λJ ) = 12, 000K, 1, 110, kpc. Indeed, the expectation is that the

mean or mode of the posterior distribution for a given parameter will scatter around the

true fiducial value at a level comparable to the width of this distribution. Nevertheless,

the posterior distribution should provide an accurate assessment of the precision with

which parameters can be measured and the degeneracy directions in the parameter space.

In § 3.2.6 we will demonstrate that our phase angle PDF likelihood procedure is indeed

an unbiased estimator of the Jeans scale, by applying this method to a large ensemble of

mock datasets, and showing that on average, we recover the input fiducial Jeans scale.
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Figure 3.8: Constraints on the γ − λJ and T0 − λJ planes. The contours show the
estimated 65% and 96% confidence levels obtained with the longitudinal power (blue)
and the cross power (green). The white dot marks the fiducial model in the parameter
space. Comparing this plot with figure 3.7 makes clear why the cross power spectrum
is not the optimal statistic for measuring λJ since the phase information is diluted and

the degeneracy is not efficiently broken.

The red shaded regions in Figure 3.7 show the constraints in thermal parameter space

resulting from our MCMC exploration of the phase angle likelihood (eqn. 3.12). The

results are shown projected onto the T0−λJ and γ−λJ planes, where the third parameter

(γ and T0, respectively) has been marginalized over. The dark and light shaded regions

show 65% and 96% confidence levels, respectively. The phase difference technique (red)

yields essentially horizontal contours, which pinpoint the value of the Jeans scale, with

minimal degeneracy with other thermal parameters. This is a direct consequence of

the near independence of the phase angle PDF of T0 and γ shown in Figure 3.4, and

discussed in § 3.1.4. The physical explanation for this independence is that 1) the non-

linear FGPA transformation in only weakly dependent on temperature 2) phase angles

are invariant to the thermal broadening convolution. This truly remarkable result is the

key finding of this work: phase angles of the Lyα forest flux provide direct constraints

on the 3D smoothing of the IGM density independent of the other thermal parameters

governing the IGM.

The blue shaded regions in Figure 3.7 show the corresponding parameter constraints for

our MCMC of the longitudinal power spectrum likelihood (eqn. 3.15). Considering the

longitudinal power spectrum alone, we find that significant degeneracies exist between

λJ , T0 and γ, which confirms our qualitative discussion of these degeneracies in § 2.3.1

and illustrated in Figure 2.2. These degeneracy directions are easy to understand. The

longitudinal power is mostly sensitive to thermal parameters via the location of the sharp

small-scale cutoff in the power spectrum. This thermal cutoff is set by a combination of

both 3D Jeans pressure smoothing and 1D thermal broadening. The thermal broadening
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component is set by the temperature of the IGM at the characteristic overdensity probed

by the forest, which is δ ≈ 2 at z = 3 [Becker et al., 2011]. One naturally expects a

degeneracy between T0 and γ, because it is actually the temperature at T (δ ≈ 2) that

sets the thermal broadening. A degeneracy between λJ and T (δ ≈ 2) is also expected

because both smoothings contribute to the small-scale cutoff. Thus, a lower Jeans scale

can be compensated by more thermal broadening, which can result from either a steeper

temperature density relation (larger γ) or a hotter temperature at mean density T0, since

both produce a hotter T (δ ≈ 2).

Previous work that has aimed to measure thermal parameters such as T0 and γ, from the

longitudinal power spectrum [Viel et al., 2009, Zaldarriaga et al., 2001], the curvature

statistic [Becker et al., 2011], wavelets [Garzilli et al., 2012, Lidz et al., 2009, Theuns

et al., 2002b], and the b-parameter distribution [Bryan & Machacek, 2000, Haehnelt &

Steinmetz, 1998, McDonald et al., 2001, Ricotti et al., 2000, Rudie et al., 2012, Schaye

et al., 2000, Theuns et al., 2000, 2002a], have for the most part ignored the degeneracies

between these thermal parameters and the Jeans scale (but see Zaldarriaga et al. 2001

who marginalized over the Jeans scale, and Becker et al. 2011 who also considered its

impact). Neglecting the possible variation of the Jeans scale is equivalent to severely

restricting the family of possible IGM thermal histories. Because the phase angle method

accurately pinpoints the Jeans scale independent of the other parameters, it breaks the

degeneracies inherent to the longitudinal power spectrum and will enable accurate and

unbiased measurements of both T0 and γ, as evidence by the intersection of the red and

black contours in Figure 3.7. Similar degeneracies between the Jeans scale and (T0,γ)

exist when one considers other statistics such as the flux PDF [Bolton et al., 2008,

Calura et al., 2012, Garzilli et al., 2012, Kim et al., 2007, McDonald et al., 2000], which

we will explore in an upcoming study (Rorai et al., in prep). In light of these significant

degeneracies with the Jeans scale, it may be necessary to reassess the reliability and

statistical significance of previous measurements of T0 and γ.

Figure 3.8 shows the resulting thermal parameter constraints for our MCMC analysis of

the cross-power spectrum likelihood (eqn. 3.16) in green, determined from exactly the

same mock quasar pair sample that we analyzed for the phase angles. The confidence

regions for the longitudinal power are shown for comparison in blue. The cross-power

spectrum is a straightforward statistic to measure and fit models to, and the green confi-

dence regions clearly illustrate that it does exhibit some sensitivity to the Jeans scale, as

discussed in § 2.3.2 and shown in the right panel of Figure 2.2. However, a comparison

of the cross-power confidence regions in Figure 3.8 (green) with the phase angle PDF

confidence regions in Figure 3.7 (red) reveals that there is far more information about

the Jeans scale in quasar pair spectra than can be measured with the cross-power. The

cross-power produces constraints which are effectively a hybrid between the horizontal
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Jeans scale contours for the phase angle distribution and the diagonal banana shaped

contours produced by the longitudinal power, which reflects the degeneracy between

Jeans smoothing and thermal broadening. This quantitatively confirms our argument

in § 3.1.1, that the cross-power is a product of moduli, containing information about the

1D power, and the cosine of the phase, which depends on the 3D power.

The results of this section indicate that among the statistics that we have considered,

the phase angle PDF is the most powerful for constraining the IGM pressure smooth-

ing, because it is more sensitive to the Jeans scale and results in constraints that are

free of degeneracies with other thermal parameters. We demonstrate this explicitly in

Figure 3.9, where we show the fully marginalized posterior distribution (see eqn. 3.13)

of the Jeans scale for each the statistics we have considered. The probability distri-

butions quantify the visual impression from the contours in Figures 3.7 and 3.8, and

clearly indicate that the phase angle PDF is the most sensitive. The relative error on

the Jeans scale σλ/λJ = 3.9%, which is a remarkable precision when compared to the

typical precision ∼ 30% of measurements of T0 and γ in the published literature [see e.g.

Figure 30 in Lidz et al., 2009, for a recent compilation], especially when one considers

that only 20 quasar pair spectra are required to achieve this accuracy.

We close this section with a caveat to our statements that our Jeans scale constraints are

free of degeneracies with other thermal parameters. The phase angle PDF is explicitly

nearly independent of the temperature-density relation because 1) the non-linear FGPA

transformation is only weakly dependent on temperature and 2) the phase angle PDF is

invariant to the thermal broadening convolution (see § 3.1.4). However, in our idealized

dark-matter only simulations, the Jeans scale is taken to be completely independent

of T0 and γ; whereas, in reality all three parameters are correlated by the underlying

thermal history of the Universe. In this regard, the Jeans scale may implicitly depend

on the T0 and γ at the redshift of the sample, as well as with their values at earlier

times. We argued that because the thermal history is not known, taking the Jeans scale

to be free parameter is reasonable. However, the validity of this assumption and the

implicit dependence of the Jeans scale on other thermal parameters is clearly something

that should be explored in the future with hydrodynamical simulations.

3.2.4 The Impact of Noise and Finite Spectral Resolution

Up until this point we have assumed perfect data with infinite signal-to-noise ratio and

resolution. This is unrealistic, especially considering, as discussed in § 3.2.2, that that

close quasar pairs are faint, and typically cannot be observed at echelle resolution or

very high signal-to-noise ratio & 20, even with 8m class telescopes. In this section we
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Figure 3.9: Estimated accuracy on the measurement of λJ , obtained marginalizing
over T0 and γ the posterior distribution from the MCMC analysis. The phase difference
statistic (red) sets tighter constraints than the cross power (blue) and the longitudinal
power (black), which are affected by parameter degeneracies. In this case we do not
account for the effect of noise and limited resolution, and we find a relative precision

of 3.9% for λJ .

explore the impact of noise and finite resolution on the precision with which we can

measure the Jeans scale.

We consider the exact same sample of 20 mock quasar spectra, but now assume that

they are observed with spectral resolution corresponding to FWHM = 30km s−1, and

two different signal-to-noise ratios of S/N ≃ 5 and S/N ≃ 10 per pixel. These values

are consistent with what could be achieved using an echellette spectrometer on an 8m

class telescope. To create mock observed spectra with these properties, we first smooth

our simulated spectra with a Gaussian kernel to model the limited spectral resolution,

and interpolate these smoothed spectra onto a coarser spectral grid which has 10 km s−1

pixels, consistent with the spectral pixel scale of typical echellette spectrometers. We

then add Gaussian white noise to each pixel with variance σ2N determined by the relation

S/N = F̄ /σN, where F̄ is the mean transmitted flux. This then gives an average signal-

to-noise ratio equal to the desired value.

As we already discussed in § 3.1.4 in the context of thermal broadening, phase angles

are invariant under a convolution with a symmetric Gaussian kernel. Thus we do not

expect spectral resolution to significantly influence our results, provided that we restrict

attention to modes which are marginally resolved, such that we can measure their phases.

Indeed, the cutoff in the flux power spectrum induced by spectral resolution is kres =

1/σres ≈ 2.358/FWHM = 0.08 s km−1, is comparable to the maximum wavenumber

we consider k = 0.1 s km−1, and hence we satisfy this criteria. Note further that this

invariance to a symmetric spectral convolution implies that we do not need to be able
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Figure 3.10: The effect of noise and resolution in the measurement of λJ . The plots
shows the posterior distribution of the Jeans scale, marginalized over T0 and γ. Each
line represent a different degree of noise, assuming a resolution of FWHM=30 km/s.
We selected a different subsample of the simulation as our mock dataset which has a
precision of 3.6% for S/N=∞ (black solid), 4.8% for S/N=10 (green dot-dashed) and

7.2% for S/N=5 (red dashed).

to precisely model the resolution, provided that it has a nearly symmetric shape and

does not vary dramatically across the spectrum. This is another significant advantage

of the phase angle approach, since the resolution of a spectrometer often depends on the

variable seeing, and can be challenging to accurately calibrate.

Although our results are thus likely to be very independent of resolution, noise intro-

duces fluctuations which are uncorrelated between the two sightlines, and this will tend

to reduce the coherence of the flux that the phase angle PDF quantifies. Noise will

thus modify the shape of the phase angle PDF away from the intrinsic shape shown in

Figure 3.3. In order to deal with noise and its confluence with spectral resolution, we

adopt a forward-modeling approach. Specifically, for each thermal model we smooth

all 10,000 IGM skewers to finite resolution, interpolate onto coarser spectral grids, and

add noise consistent with our desired signal-to-noise ratio. We then fit the resulting

distribution of phase angles to the wrapped-Cauchy distribution, determining the value

of the concentration parameter ζ(k, r⊥), at each k and r⊥ as we did before. We again

emulate the function ζ(k, r⊥|T0, γ, λJ ) using the same thermal parameter grid, but now

with noise and spectral resolution included, enabling fast evaluations of the likelihood in

eqn. (3.12). Thermal parameter constraints then follow from MCMC exploration of this

new likelihood, for which the impact of noise and resolution on the phase angle PDF

have been fully taken into account.

In Figure 3.10 we show the impact of noise on the fully marginalized constraints on

the Jeans scale from the phase angle PDF. The solid curve represents the posterior
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distribution for a mock dataset with infinite resolution and signal-to-noise ratio, which

is identical to the red curve in Figure 3.9. The dotted and dashed curves illustrate

the impact of S/N = 10 and S/N = 5, respectively. Note that the slight shift in the

modes of these distributions from the fiducial value are expected, and should not be

interpreted as a bias. Different noise realizations generate scatter in the phase angles

just like the intrinsic noise from large-scale structure. The inferred Jeans scale for any

given mock dataset or noise realization will not be exactly equal to the true value, but

should rather be distributed about it with a scatter given by the width of the resulting

posterior distributions. The relative shifts in the mode of the posterior PDFs are well

within 1σ of the fiducial value, and are thus consistent with our expectations.

The upshot of Figure 3.10 is that noise and limited spectral resolution do not have a

significant impact on our ability to measure the Jeans scale. For a signal-to-noise ratio

of S/N = 10 per pixel we find that the relative precision with which we can measure

the Jeans scale is σλ/λJ = 4.8%, which is only a slight degradation from the precision

achievable from the same dataset at infinite signal-to-noise ratio and resolution σλ/

λJ = 3.9%. The small impact of noise on the Jeans scale precision is not surprising. For

the 10 km s−1 spectral pixels that we simulate, the standard deviation of the normalized

Lyα forest flux per pixel is
√

〈δF 2〉 ≃ 32%, whereas for S/N = 10 our Gaussian noise

fluctuations are at a significantly smaller ≃ 10% level. Heuristically, these two ‘noise’

sources add in quadrature, and thus the primary source of ‘noise’ in measuring the phase

angle PDF results from the Lyα forest itself, rather than from noise in the data. For a

lower signal-to-noise ratio of S/N = 5 per pixel, the precision is further degraded to σλ/

λJ = 7.2%, which reflects the fact that noise fluctuations are becoming more comparable

to the intrinsic Lyα forest fluctuations.

These numbers on the scaling of our precision with signal-to-noise ratio S/N provide

intuition about the optimal observing strategy. For a given sample of pairs, it will

require four times more exposure time to increase the signal-to-noise ratio from S/N ≃ 5

to S/N ≃ 10, whereas the same telescope time allocation could be used to increase the

sample size by a factor of four at the same signal-to-noise ratio (assuming sufficient close

pair sightlines exist). For the latter case of an enlarged sample, the precision will scale

roughly as ∝
√

Npairs, implying a σλ/λJ = 3.6% for a sample of 80 pairs observed at

S/N = 5. This can be compared to σλ/λJ = 4.8% for 20 pairs observed at S/N ≃ 10.

There is thus a marginal gain in working at lower S/N ≃ 5 and observing a larger pair

sample, although we have not considered various systematic errors which could impact

our measurement. However, higher signal-to-noise spectra are usually preferable for

the purposes of mitigating systematics, and hence one would probably opt for higher

signal-to-noise ratio, a smaller pair sample, and tolerate slightly higher statistical errors.
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Figure 3.11: The effect of overestimating the signal-to-noise ratio by a 20% factor
(red, dashed line) when the real value is S/N= 10: we do not find any significant bias

on the measured value of the Jeans scale.

3.2.5 Systematic Errors

We now briefly discuss the systematic errors which could impact a measurement of

the Jeans scale. First, consider the impact of errors in the continuum normalization.

Because the phase angle is a ratio of Fourier modes of the normalized flux eqn. (3.3),

it is completely insensitive to the continuum normalization of δF , provided that the

continuum is not adding significant power on the scale of wavelength of the k-mode

considered. In the previous section, we argued that finite spectral resolution does not

have a significant impact the phase angle PDF, because phase angles are invariant under

convolutions with symmetric kernels. We do take resolution into account in our forward-

modeling of the phase angle PDF, but precise knowledge of the spectral resolution or

the line spread function is not required, since the line spread function will surely be

symmetric when averaged over several exposures, thus leaving the phase angles invariant.

The only requirement is that we restrict attention to modes less than the resolution cutoff

k . kres whose amplitudes are not significantly attenuated, such that we can actually

measure their phase angles.

Noise does modify the phase angle PDF, but our forward-modeling approach takes this

fully into account provided the noise estimates are correct. One potential systematic is

uncertainty in the noise model. The typical situation is that the standard-deviation of

a spectrum reported by a data reduction pipeline is underestimated at the ∼ 10− 20%

level (S/N overestimated), because of systematic errors related to the instrument and

data reduction [see e.g. Lee et al., 2013, McDonald et al., 2006]. To address this issue

we directly model the impact of underestimated noise for a case where we think the

S/N ≃ 10, but where in reality it is actually 20% lower S/N ≃ 8. Specifically, using
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our same mock dataset we generate 20 quasar pair spectra with S/N ≃ 8. However,

when forward-modeling the phase angle PDF with the IGM simulations, we take the

signal-to-noise ratio to be the overestimated value of S/N ≃ 10. Excess noise above

our expectation would tend to reduce the coherence in the spectra (less peaked phase

angle PDF) mimicking the effect of a smaller Jeans scale. We thus expect a bias in the

Jeans scale to result from the underestimated noise. Figure 3.11 compares the posterior

distributions of the Jeans scale for the two cases S/N ≃ 10 (black curve) and signal-to-

noise ratio overestimated to be S/N ≃ 10 but actually equal to S/N ≃ 8 (red curve).

We see that ≃ 20% level uncertainties in the noise lead to a negligible bias in the Jeans

scale.

The only remaining systematic that could impact the Jeans scale measurement is metal-

line absorption within the forest. Metal absorbers cluster differently from the IGM, and

it is well known that metals add high-k power to the Lyα forest power spectrum because

the gas traced by metal lines tends to be colder than H I in the IGM [Croft et al., 2002,

Kim et al., 2004, Lidz et al., 2009, McDonald et al., 2000]. As this metal absorption is

not present in our IGM simulations, it can lead to discrepancies between model phase

angle PDFs and the actual data, resulting in a biased measurement. This is very unlikely

to be a significant effect. We restrict attention to large scale modes with k < 0.1 s km−1,

both because this is comparable to our expected spectral resolution cutoff, and because

below these wavenumbers metal line absorption results in negligible contamination of

the longitudinal power [Croft et al., 2002, Kim et al., 2004, Lidz et al., 2009, McDonald

et al., 2000]. Since the metal absorbers have a negligible effect on the moduli of these

large scale modes, we also expect them to negligibly change their phase angles.

We thus conclude that the phase angle PDF is highly insensitive to the systematics

that typically plague Lyα forest measurements, such as continuum fitting errors, lack of

knowledge of spectral resolution, poorly calibrated noise, and metal line absorption.

3.2.6 Is Our Likelihood Estimator Unbiased?

Finally, we determine whether our procedure for measuring the Jeans scale via the phase

angle likelihood (eqn. 3.12) outlined at the end of § 2.2, produces unbiased estimates. To

quantify any bias in our Jeans scale estimator we follow a Monte Carlo approach, and

generate 400 distinct quasar pair samples by randomly drawing 20 quasar pair spectra

(allowing for repetition) from our ensemble of 10,000 skewers. Note that the distribution

of transverse separations is approximately the same for all of these realizations, since we

only simulate 30 discrete separations, and the full sample of 20 overlapping pair spectra

requires 200 pairs of skewers, which are randomly selected from among the 30 available
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pair separations. We MCMC sample the likelihood in eqn. (3.12) for each realization,

and thus generate the full marginalized posterior distribution (eqn. 3.13; red curve in

Figure 3.9). The ‘measured’ value of the Jeans scale for each realization is taken to the

be the mean of the posterior distribution. We conducted this procedure for the case

of finite spectral resolution (FWHM = 30km s−1) and signal-to-noise ratio S/N ≃ 5,

where our forward-modeling procedure described in § 3.2.4 is used to model the impact

of resolution and noise on the phase angle PDF.

The distribution of Jeans scale measurements resulting from this Monte Carlo simulation

is shown in Figure 3.12. We find that the distribution of ’measurements’ is well centered

on the true value of λJ = 110 kpc, and the mean value of this distribution is λJ = 111.1

kpc, which differs from the true value by only 1%, confirming that our procedure is

unbiased to a very high level of precision. The relative error of our measurements from

this Monte Carlo simulation is σλJ
/λJ = 6.3%, which is consistent with the value of

σλJ
/λJ = 7.2%, which we deduced in § 3.2.3 from an MCMC sampling of the likelihood

for a single mock dataset. This confirms that the posterior distributions derived from

our MCMC do indeed provide an accurate representation of the errors on the Jeans scale

and other thermal parameters. However, we note that there is some small variation in

the value of σλJ
/λJ inferred from the posterior distributions for different mock data

realizations, as expected. Given that we only generated 400 samples, the error on our

determination of the mean of the distribution in Figure 3.12 is ≃ σλJ
/λJ/

√
400 = 0.3%,

and thus our slight bias of 1% constitutes a ∼ 3σ fluctuation. We suspect that this is too

large to be a statistical fluke, and speculate that a tiny amount of bias could be resulting

from interpolation errors in our emulation of the IGM. It is also possible that choosing

an alternative statistic of the posterior distribution as our ‘measurement’ instead of the

mean, for example the mode or median, could also further reduce the bias. But we

do not consider this issue further, since the bias is so small compared to our expected

precision.

We conclude that our phase angle PDF likelihood procedure for estimating the Jeans

scale has a negligible ≃ 1% bias. We would need to analyze a sample of ≃ 500 − 1000

quasar pair spectra for this bias to be comparable to the error on the Jeans scale.

Furthermore, it is likely that we could, if necessary, reduce this bias even further by

either reducing the interpolation error in our emulator or by applying a different statistic

to our posterior distribution to determine the measured value.



Chapter 3. Phase Differences 50

80 90 100 110 120 130 140
λJ  [kpc]

0.00

0.02

0.04

0.06

0.08

0.10

p
(λ

J
)

Figure 3.12: Probability distribution of the measured value of λJ for 400 different
mock datasets drawn from the fiducial simulation. This plot confirms that our method
is not biased, since the distributions is be centered at the true value, marked with
a vertical dashed line. This test is performed assuming S/N= 5. The red line is
the posterior distribution deduced from our MCMC sampling of the phase angle PDF
likelihood for one of these 400 mock dataset realizations. Its similarity in shape to
the distribution of mock measurements illustrates that our MCMC simulations provide

reliable error estimates.



Chapter 4

Data Analysis

In the previous chapter, I described how a sample of quasar pairs at separations in the

range ≈ 50 − 500 ckpc can be used to constrain the filtering scale down to precision of

few percents. This prediction is based on a set of semi-analytical models based on a

N-body dark matter simulation. The next goal is to do the same analysis on a sample

of observed quasar pairs in order to measure λJ at different redshifts and provide a

rigorous estimation of its uncertainty.

To accomplish this task we have to face two main challenges:

• the formalism described in the previous chapters must be generalized to include a

consistent treatment of noise, resolution and other possible systematics present in

the data;

• we need to proof that our set of simplified IGM models, that do not include full

hydrodynamic, are accurate enough to yields meaningful results.

The present chapter focuses on how we address the first problem, while a discussion on

the second one is deferred to 6.

Although in § 3.2.4 we have discussed the effect of noise on phase distributions, this have

been done in a very simplified manner, by assuming a constant noise and resolution across

the whole box. Such analysis is not suitable for the sample of observed pairs that we

want to analyze. Their spectra have been collected using different instruments and under

different conditions, and therefore they have a wide range of resolutions and signal-to-

noise ratios (S/N), which are also wavelength-dependent. This diversity motivates a

specific calibration of phase differences for each single pair.

This chapter is structured as follows: in section 4.1 we briefly illustrate the pair sample

that we use and we specify the requirement we set on data. We describe in section

51



Chapter 5. Data Analysis 52

4.2 the method we adopt to calculate phases from the spectra and in § 4.3 how the

simulations are calibrated to the data sample in order to produce predictions for the

PDFs of observed phases.

4.1 Data sample

This project is based on a large sample of quasar pairs drawn mostly from the SDSS

[Abazajian et al., 2009] and BOSS[Ahn et al., 2012] and (in few cases) from the 2QZ[Croom

et al., 2004] surveys. Beside studying the transverse coherence of the Lyα forest, such

objects have been used for a number of scientific goals. Examples are the measure-

ment of the small-scale clustering of quasars [Hennawi et al., 2006b, Myers et al., 2008,

Shen et al., 2010] and the characterization of the circumgalactic medium of quasar hosts

[Hennawi & Prochaska, 2007, 2008, Hennawi et al., 2006a, Prochaska & Hennawi, 2009,

Prochaska et al., 2013, 2012].

Surveys such as SDSS and BOSS select against small separations of quasar pairs due to

fiber collision, setting a lower limit to the angular separation of 55′′, 62′′ and 30′′ for the

SDSS, BOSS and the 2QZ survey, respectively. These angles are unfortunately too wide

to probe the Jeans scale, thus follow-up spectroscopy is necessary in order both to dis-

cover close companions around quasars and to obtain science-quality spectroscopic data.

An alternative possibility to find close pairs is to use the SDSS five-band photometry to

select candidate companions around known quasars. A number of such candidates have

been spectroscopically confirmed using the Apache Point Observatory (APO)[Hennawi

et al., 2006b].

4.1.1 Spectroscopic Observations

A significant fraction of our dataset rely on spectra from SDSS and BOSS which have

a resolution of R ≈ 2000 and wavelength coverage of λ ≈ 3800 − 9000 Åand λ ≈
3600 − 10000 Å, respectively. The rest of the spectra have been collected with follow-

up spectroscopy on large-aperture telescopes, using instruments with a wide range of

capabilities which I list below.

Part of objects were observed at the Keck 10m telescope, including data from the

Echellette Spectrometer and Imager (ESI, Sheinis+2002), the Low Resolution Imag-

ing Spectrograph (LRIS; oke et al 1995), and the High Resolution Echelle Spectrom-

eter (HIRES, Vogt+94). Other spectra were collected using the Gemini MultiObject

Spectrograph (GMOS, hook+2004) on the 8m Gemini North and South telescopes, the
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Magellan Echellette Spectrograph (MagE, Marshal+08) and the Magellan Inamori Ky-

ocera Echelle (MIKE, Bernstein+2003) on the 6m Magellan telescopes. Few pairs were

observed through the Multi-Object Double Spectrograph (MODS, Pogge+2012) on the

Large Binocular Telescope (LBT). We recently obtained new data from the X-Shooter

spectrometer at the Very Large Telescope (VLT), specifically selected for this project.

The GMOS spectra have been observed in the context of two different programs, in which

gratings of 600 lines/mm (GMOS600) and 1200 lines/mm (GMOS1200)were used.

An exhaustive description of the properties of the data sample can be found in Hennawi

& Prochaska [2008], Hennawi et al. [2006a], Prochaska et al. [2013].

4.1.2 Selection Criteria

We apply a first broad cut to select pairs suitable for the science goal of this study.

An obvious requisite is the existence of a segment of coeval Lyα forest, which can be

expressed as (1 + zfg)λLyα > (1 + zbg)λLyβ. However, we want to avoid cases where this

segment is too small to calculate meaningful statistics, especially considering that we

cannot use the wavelengths too close to the Lyα and Lyβ emission lines. We define the

”overlapping fraction” of the Lyα forest as

fov =
(1 + zfg)λLyα − (1 + zbg)λLyα

(1 + zfg)(λLyα − λLyβ)
(4.1)

and we set a lower threshold at fov = 0.3, removing in this way part of the projected

pairs with the highest redshift separation.

A second criterion is established according to the transverse separation. Our study of the

sensitivity of phases with simulations (see chapter 3) indicated that the most informative

pairs are those with impact parameter comparable to the Jeans scale. Considered that

the line-of-sight power of the forest excludes Jeans scales larger than ≈ 300−400kpc, we

focus our analysis on pairs closer than 500 kpc (comoving) at the f/g redshift. Only at

redshift z > 3 we loose this restriction up to 700 kpc, since the sample at this redshift is

considerably smaller and even the weak constraints coming from wide pairs are valuable.

We than exclude from the sample all pairs for which no science-quality spectra is available

because they have not been observed with one of the instrument listed in the previous

paragraph. Future programs of follow-up spectroscopy will allow this objects to be used

in the measurement.

The set of pairs selected at the end of this process is then visually inspected in order to

find contaminants. Some of the QSOs exhibit strong associated absorption lines known

as Broad Absorption Lines (BAL), which are thought to be produced in the vicinity of
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the black hole and may reach velocities up to v & 10000 km/s. For this reason they

could be blueshifted into the Lyα forest, causing blending with IGM absorption. Since

we are not able to model this blending, we remove from the sample all the pairs in

which one of the two spectrum is contaminated by BAL. DLAs and LLSs may also pose

problems, since they fall out of the optically thin approximation where our model is

valid. Therefore we isolate and mask those regions of the spectra where we can identify

such absorbers. This is unfortunately not easy to do with LLSs, however we reckon

that their impact on phase difference should be small, given that their contribute to the

Lyα-forest absorprtion is very small [McDonald et al., 2005].

We decide also to exclude all pairs which are known to be lenses, i.e. they are just a

double image of the same source. In principle they can be used if the lens redshift is

precisely known, in which case the dependence of the impact parameter with redshift

could be easily modeled. However, this generally leads to very small separations at Lyα

forest redshift (. 10 kpc), which might be too tiny to probe the Jeans scale and sensitive

to the physics of very small scales which we are not capturing in our models. For this

reasons, we leave the transverse analysis of lenses to future projects.

We do not set tight limits on the signal-to-noise ratio, since we try to model noise and

we expect to detect signal from large-scale modes also for noisy data. We preliminary

demand S/N & 5 for 1-Åpixels or equivalent, but we apply a further cut based on a test

we perform a posteriori which will be described in § 5.1.5.

The final sample obtained through this procedure is illustrated in figure 4.1, where each

pair is depicted as a black line. The lines trace the coeval forest in pairs, following

the evolution of the impact parameter as a function of redshift. The extension of the

overlapping segments depends on redshift, on fov and on the removals of contaminants,

which appear as ’holes’ in the lines. The vertical red dashed lines delimit the three

redshift bins on which we perform our analysis [1.8, 2.2], [2.2, 2.7] and [2.7, 3.3]. The

lower limit z = 1.8 is set to avoid the forest close to the atmospheric cutoff, and the bins

are wider at higher z to enclose a sufficiently large sample of pairs. New observations are

required to extend the measurement to z > 3.3. A complete list of the coeval Lyα-forest

chunks is provided in table 4.1, together with all the relevant parameters. Note that

the forest of a quasar pair may be split in more than a chunk if we need to remove a

segment due to contaminants.
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Figure 4.1: The distribution of our sample in redshift z and in transverse separation
r⊥. Each line represents a segment of overlapping Lyα forest in a pair. The length of
a segment depends on the redshifts of the two quasars and on the presence of DLAs
or other contaminants that require to exclude part of the forest. The atmospheric
cutoff sets a lower limit for all pairs at z ≈ 1.7. The lines are curved because the
impact parameter evolves with redshift converging toward us. The four red dotted

lines delimit the three redshift intervals in which we split the sample.
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Table 4.1: Complete list of the chunks of overlapping Lyα forest in the pair sample we analyze

Name zbg
a zfg

b zmin
c zmax

d θe r⊥
f Instrument Rbg/fg

g S/Nbg/fg
h

SDSSJ0034-1049 1.95 1.83 1.61 1.77 7.6 177 LRIS/LRIS 180/180 6.9/33.7

SDSSJ0054-0946 2.12 2.12 1.67 2.05 14.1 347 LRIS/LRIS 174/174 133.5/28.0

SDSSJ0117+3153 2.64 2.62 2.33 2.55 11.3 322 ESI/ESI 64/64 30.9/20.0

SDSSJ0214+0105 2.29 2.21 2.03 2.14 16.4 428 MODS/MODS 205/205 9.6/6.0

SDSSJ0332-0722 2.11 2.10 1.66 2.00 18.1 440 LRIS/LRIS 175/175 16.5/17.4

SDSSJ0735+2957 2.08 2.06 1.63 1.99 5.4 131 LRIS/LRIS 176/176 53.7/34.6

SDSSJ0750+2724 1.80 1.77 1.60 1.71 13.1 299 LRIS/LRIS 182/182 6.6/14.3

SDSSJ0752+4011 2.12 1.87 1.67 1.81 12.6 298 LRIS/LRIS 178/178 15.3/6.3

SDSSJ0813+1014 2.08 2.06 1.65 1.99 7.1 173 LRIS/LRIS 176/176 18.3/15.0

SDSSJ0814+3250 2.21 2.17 1.85 2.11 10.3 261 GMOS1200/GMOS1200 191/191 6.5/12.7

SDSSJ0837+3837 2.25 2.05 1.78 1.99 10.3 255 LRIS/LRIS 174/174 8.0/37.5

SDSSJ0853-0011 2.58 2.41 2.12 2.33 13.2 358 MAGE/MAGE 62/62 38.3/8.6

SDSSJ0913-0107 2.92 2.75 2.35 2.63 10.8 311 GMOS600/GMOS600 192/192 9.3/11.7

SDSSJ0920+1310 2.43 2.42 2.06 2.35 6.2 168 MAGE/MAGE 62/62 25.8/37.7

SDSSJ0924+3929 2.08 1.88 1.64 1.82 12.2 286 LRIS/LRIS 180/180 13.1/16.1

SDSSJ0937+1509 2.55 2.54 2.14 2.47 11.7 324 GMOS600/GMOS600 201/201 6.4/11.1

SDSSJ0938+5317 2.32 2.07 1.84 2.00 5.6 140 LRIS/LRIS 171/171 23.0/6.2

SDSSJ0956+2643 3.08 3.08 2.49 3.00 16.5 498 ESI/ESI 64/64 16.4/25.1

SDSSJ1006+4804 2.60 2.30 2.08 2.23 10.6 281 LRIS/LRIS 161/161 22.7/12.2

SDSSJ1009+2500 1.99 1.88 1.64 1.82 14.6 342 LRIS/LRIS 180/180 16.7/24.2

SDSSJ1021+1112 3.85 3.83 3.15 3.73 7.4 247 ESI/ESI 64/64 56.5/26.2

SDSSJ1026+0629 3.12 2.89 2.64 2.74 9.5 283 MAGE/MAGE 62/62 6.1/6.0

SDSSJ1053+5001 3.08 3.05 2.49 2.96 2.1 63 ESI/ESI 64/64 8.4/9.6

2QZJ1056-0059 2.13 2.12 1.71 1.94 7.2 175 LRIS/LRIS 177/177 13.2/10.5

SDSSJ1116+4118 3.00 2.94 2.49 2.63 13.8 402 LRIS/LRIS 130/130 22.4/45.9

SDSSJ1116+4118 3.00 2.94 2.71 2.86 13.8 419 LRIS/LRIS 123/123 26.0/52.9
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Name zabg zbfg zcmin zdmax θe rf⊥ Instrument Rh
bg/fg S/N i

bg/fg

SDSSJ1135-0221 3.02 3.01 2.77 2.92 11.6 357 GMOS600/GMOS600 175/175 6.0/6.0

SDSSJ1141+0724 3.79 3.55 3.10 3.32 16.7 541 GMOS600/GMOS600 160/160 9.6/7.8

SDSSJ1150+0453 2.52 2.52 2.10 2.44 7.0 191 GMOS600/GMOS600 204/204 7.2/9.6

SDSSJ1204+0221 2.53 2.44 2.02 2.36 13.3 357 MAGE/MAGE 62/62 19.2/28.5

SDSSJ1225+5644 2.39 2.38 1.90 2.31 6.1 159 LRIS/LRIS 163/163 13.2/34.0

SDSSJ1240+4329 3.26 3.25 2.65 2.93 3.1 95 GMOS600/GMOS600 177/177 6.6/11.6

SDSSJ1306+6158 2.17 2.10 1.73 1.85 16.3 390 LRIS/LRIS 177/177 6.1/5.8

SDSSJ1306+6158 2.17 2.10 1.91 2.04 16.3 413 LRIS/LRIS 169/169 9.6/11.1

SDSSJ1307+0422 3.04 3.01 2.46 2.70 8.2 241 MAGE/MIKE 62/8 33.0/29.7

SDSSJ1358+2737 2.11 1.89 1.66 1.83 10.2 241 LRIS/LRIS 179/174 10.5/23.7

SDSSJ1405+4447 2.22 2.20 1.75 2.13 7.4 187 LRIS/LRIS 172/172 13.8/52.6

SDSSJ1409+5225 2.11 1.88 1.69 1.82 19.5 462 LRIS/LRIS 177/177 21.9/6.0

SDSSJ1420+2831 4.31 4.29 3.54 4.18 10.9 380 ESI/ESI 64/64 17.8/14.6

SDSSJ1420+1603 2.06 2.01 1.81 1.95 12.0 295 MAGE/LRIS 62/169 9.0/14.6

SDSSJ1427-0121 2.35 2.27 1.87 2.20 6.2 161 MAGE/MAGE 62/62 25.1/20.0

SDSSJ1428+0232 3.02 3.01 2.43 2.57 19.0 548 GMOS600/GMOS600 191/191 10.0/9.6

SDSSJ1428+0232 3.02 3.01 2.69 2.86 19.0 576 GMOS600/GMOS600 178/178 11.0/11.5

SDSSJ1443+2008 2.67 2.65 2.14 2.58 11.7 328 SDSS/SDSS 150/150 6.9/10.1

SDSSJ1508+3635 2.10 1.84 1.65 1.78 15.2 356 LRIS/LRIS 179/179 8.1/29.9

SDSSJ1514+2101 2.24 2.19 1.79 2.10 9.2 231 MODS/MODS 215/215 6.1/5.2

SDSSJ1541+2702 3.63 3.62 2.96 3.52 6.4 208 ESI/ESI 64/64 9.5/13.9

SDSSJ1613+0808 2.39 2.38 1.90 2.31 9.6 253 MAGE/MAGE 62/62 31.9/18.3

SDSSJ1613+1616 2.76 2.76 2.22 2.68 12.3 350 GMOS600/GMOS600 194/194 12.7/11.6

SDSSJ1622+0702 3.26 3.23 2.76 3.05 5.8 180 ESI/ESI 64/64 115.9/18.0

SDSSJ1657+3105 2.39 2.14 1.90 2.07 11.3 289 MODS/MODS 212/211 10.1/18.2

SDSSJ1719+2549 2.17 2.17 1.82 2.00 14.7 365 GMOS1200/GMOS1200 196/196 9.4/9.5

SDSSJ2103+0646 2.57 2.55 2.18 2.48 3.8 106 GMOS600/GMOS600 200/200 7.6/8.8

SDSSJ2128-0617 2.07 2.06 1.89 1.99 8.3 208 LRIS/LRIS 170/170 35.0/9.7
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Name zabg zbfg zcmin zdmax θe rf⊥ Instrument Rh
bg/fg S/N i

bg/fg

SDSSJ2214+1326 2.01 2.00 1.57 1.93 5.8 138 LRIS/LRIS 179/179 29.1/31.8

SDSSJ2243-0613 2.59 2.58 2.07 2.50 9.5 260 GMOS600/GMOS600 203/203 7.1/12.6

SDSSJ2300+0155 2.95 2.91 2.38 2.68 10.7 309 MAGE/MAGE 62/62 11.9/21.6

aRedshifts of b/g quasar.
bRedshifts of f/g quasar.
cMinimum redshift of the chunk.
dMaximum redshift of the chunk.
eAngular separation between f/g and b/g quasar (arcsec).
fImpact parameter at f/g quasar redshift (comoving kpc).
gMean resolution in the chunk (b/g-f/g).
hMean signal-to-noise ration in the chunk (b/g-f/g).
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4.1.3 Continuum Fitting and Data Preparation

We fitted the continuum manually for those pairs which were not already fitted for

other projects. We used a fitting algorithm that perform a cubic spline interpolation

between manually-inserted guiding points. We stress the fact that the statistic we use

is not particularly sensitive to continuum-placement, as we will explicitly show in the

next chapter. In particular, it is completely insensitive to its renormalization, while it

could be affected by fluctuation on scales . 2000 km/s which we do not expect to find

in quasar spectra. The noise has been estimated following the standard pipeline of the

instruments.

We exclude the parts of spectrum close to the Lyαand Lyman−β emission lines, re-

stricting the analysis to the rest-frame wavelength interval [1040, 1190] nm. The over-

lapping forest in a pairs on which we calculate phases is thus defined by λ ∈ [1040(1 +

zbg), 1190(1 + zfg)], which is slightly narrower than the one implied by the fov defined

above.

Since phase differences are calculated in velocity space, we transform from wavelengths

to velocities according to the formula

∆v = c log(λ1/λ2), (4.2)

where ∆v is the relative velocity between two points responsible of resonant Lyα ab-

sorption at observed wavelengths λ1 and λ2. In the limit where peculiar velocities are

negligible, this corresponds to a comoving distance of

∆x =
(1 + z)∆v

H(z)
. (4.3)

where the H(z) is the Hubble parameter at the observed redshift.

4.2 Calculation of Phases from Real Spectra

Applying Fourier-space statistics, such as phase difference, to the observed Lyα forest

is not a straightforward operation. While in simulations we generate mock spectra on

perfectly regular grids in velocity space, the pixels of observed spectra are in most of

the cases unevenly distributed. Since the discrete Fourier transformation is defined

for evenly-sampled functions, we have either to interpolate or rebin the data onto a

regular grid, or to use approximate methods without modifying the sampling. The two

methodologies have opposite advantages and disadvantages, so we decided to implement

both and check that they lead to consistent results.
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4.2.1 Method 1: Least-Square Spectral Analysis

A widely-used approach to generalize Fourier transformation to irregularly-sampled se-

ries is the so called least-square spectral analysis (LSSA). Practically speaking, it con-

sists in fitting a function f(xi) with a linear combinations of trigonometric functions

cos(kjxi) and sin(kjxi), where {xi} is the set of points where f is sampled and {kj} are

the wavenumbers of the modes that we want to fit. This leads for example to the Lomb-

Scargle periodogram [Lomb, 1976], a method often employed to calculate the power

spectrum of a signal. It is also possible to follow this strategy to recover the phase

information, which is what we want to calculate in quasar spectra. We follow for this

purpose the method described in Mathias et al. [2004] which I briefly report here.

As mentioned above, the decomposition can be view as the minimization, for each dif-

ferent kj of

||f(x)− cj cos(kjx) + sj sin(kjx)|| (4.4)

where in our case x is the array of the velocity-space pixels in a spectrum, f is the

transmitted flux of the Lyα forest, ||g(x)|| = ∑i g
2(xi) denotes the squared norm and

(cjsj) are the coefficients that we need to determine. Otherwise stated, we want to find

the projection of f on the functional subspace defined by the linear combinations of

cos(kjx) and sin(kjx). In the case where xi are evenly spaced and kj = 2πj/L, with

L being the total length of the spectrum, this is equivalent Fourier decomposition. For

generic {xi} and {kj} the linear subspaces relative to different k may not be orthogonal

and may not form a complete functional base, so this fitting procedure cannot be properly

regarded as a decomposition.

The minimization of expression 4.4 is obtained via the Moore-Penrose pseudo-inverse

matrix [Penrose, 1955] applied to the linear system

f(x) = (cj sj)Ωj (4.5)

where Ωj is defined as

Ωj =

(

cos(kjx1) ... sin(kjxn)

sin(kjx1) ... sin(kjxn)

)

. (4.6)

The pseudo inverse is then Ω+
j = ΩT

j (ΩjΩ
T
j )

−1 and the coefficients are estimated by

(cj sj) = f(x)Ω+
j . (4.7)

According to the pseudo-inverse properties, this coefficients are exactly the ones that

minimizes ||f(x)− (cj sj)Ωj||, i.e. expression 4.4. When the system has a solution this
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norm is zero, but for our problem this is never the case. Note also that this definition

of the pseudo-inverse requires that ΩjΩ
T
j is invertible, which is however always satisfied

for reasonable pixel distributions.

By writing explicitly eq. 4.7 we obtain

(cj sj) =

(

∑

i f(xi) cos(kjxi)
∑

i f(xi) sin(kjxi)

)T (
∑

i cos
2(kjxi)

∑

i cos(kjxi) sin(kjxi)
∑

i cos(kjxi) sin(kjxi)
∑

i sin
2(kjxi)

)−1

(4.8)

where the diagonal terms are nonzero because sin(kjx) and cos(kjx) are not orthogonal

in general. Nevertheless it is possible to apply a phase shift to the coordinates such that,

for a given kj , the non diagonal terms vanish [Lomb, 1976]. It can be shown that the

shift is equal to

Tj =
1

2k
arctan

∑

i sin(kjxi)
∑

i cos(kjxi)
. (4.9)

After diagonalization, the equation above simplifies in

(cj sj) =

(∑

i f(xi) cos(kj(xi − Tj))
∑

i cos
2(kj(xi − Tj))

∑

i f(xi) sin(kj(xi − Tj))
∑

i sin
2(kj(xi − Tj))

)

(4.10)

Which is the expression are looking for. The power spectrum immediately follow from

this result as P (kj) = c2j + s2j .

If we need to recover phase information we must consider that phases are changed by

the Lomb shift, therefore we have to apply at each k the inverse translation. This is

easily done by defining the Fourier coefficients in the complex representation as

F (kj) = (cj + isj)e
ikjTj . (4.11)

We are now ready to calculate phase differences in the usual way

θ12(k) = arccos

(

ℜ[F̃ ∗
1 (k)F̃2(k)]

|F̃1(k)||F̃2(k)|

)

(4.12)

where F1 and F2 are the transmitted fluxes of the Lyα forest in the two spectra of the

pair.

A final caveats concerns non-orthogonality: if the Fourier components have non zero

cross products Cl,m =
∑

i exp(−i(km−kl)xi), then the estimated Fourier coefficients are

correlated. This would be an undesirable complication when calculating the likelihood

function of phases, which we consider to be independent on the wake of or test in § 3.1.5.
We solve this problem recursively: after calculating F̃ (k0) we subtract this component
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from the original function

F ′(x) = F (x)− F̃ (k0)e
−ik0x (4.13)

and then we calculate the next coefficient F̃ (k1) on the residual function F ′(x). We

iterate this steps until all the coefficients are calculated. This algorithm is equivalent to

a Grahm-Schmidt process, and requires to specify the order on which the components

are subtracted. The most natural choice for us is starting with the large scale modes, i.e.

with the lowest wavenumber, which are the least affected by noise and other systematics.

4.2.2 method 2: Rebinning on a Regular Grid

A second possibility is to rebin the observed flux pixels into a regular grid, to allow the

standard calculation of the Fourier coefficients. The advantage of this method is that

we avoid approximations deriving from the least-square evaluation of the phases, but on

the other hand, we do not have a clear control on how the rebinning modifies the Fourier

phases. The pros and cons of this approach are complementary to the LSSA procedure

described in the previous section, therefore we decide to adopt both of them and check

that the results are consistent, assuring in this way that rebinning or LSSA are not a

source of bias (§ 5.3.1.1).

In order to consistently calculate phase differences, one need not only to bin the pixels

of each spectrum in a regular grid in velocity space, but also to use the same regular

grid for the two spectra of a pair. The common regular grid is defined from the original

arrays via a simple procedure. for a single spectrum with N irregular pixels located

at {v0i }, the step of the regularized array would be defined as ∆v = (v0N − v01)/N and

the full vector would be {vi = v01 + i∆v}. When considering two spectra with different

pixels arrays {u0i } and {w0
i }, having respectively N and M points, we define the grid

in the common velocity interval I = [max(u01, w
0
1),min(u0N , w

0
M )]. We then count the

number of pixels encompassed within this interval for each of the two spectra, and we

take the smallest of two numbers to be the cardinality of the common grid grid ng. In

this way we avoid oversampling in the rare cases where one spectra is observed with

a smaller pixel density than the other. The spacing is then simply |I|/ng, where |I|
is clearly the length of the interval. We finally rebin the transmitted fluxes onto the

newly-defined pixel vector and we are set to compute the phase differences by standard

Fourier analysis.
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4.3 Calibrated Phase Analysis

In the previous section we described two ways of calculating phase differences from the

observed Lyα forest in quasar pairs. The final goal of this calculation is to quantitatively

assess the similarity of the measured phase distributions with those expected from the

simulations for different IGM parameters, following the statistical formalism we devised

in chapter 3.

However, we cannot calculate phase distributions directly from the simulated skewers.

The simple reason is that the differences between the phase PDFs of data and simulations

are also driven by non-astrophysical factors such as noise and resolution limit. If we want

to exploit the sensitivity of phases to the filtering scale, we need first to understand and

correct for the contribution of these disturbances. To this end, two different approaches

are possible: find a way of subtracting them directly from data, or adding them to the

simulations such that they are calibrated to the observations (forward-modeling). For the

purposes of the Jeans scale measurement we choose to follow the latter, motivated by the

simplicity of implementing forward-modeling in the context of our Bayesian machinery.

The calibration is done by creating, for each observed pair, an entire ensemble of simu-

lated pairs with the same data properties, in particular the same transverse separation,

the same noise amplitude and the same resolution. The next paragraphs of this section

are dedicated to illustrate in details this procedure.

4.3.1 Transverse Separation

Two quasars separated in the sky by an observed angle ψ have a transverse distance de-

pendent on their redshift. If we are studying Lyα absorption, the transverse separation

between the coeval forest in the two spectra is an evolving function of the wavelength,

since the sightlines are convergent toward us. The exact function depends on the cos-

mology, and can be written as

r⊥(zabs) = DA(zabs))ψ(1 + zabs) (4.14)

where zabs = λ/λα−1 is the Lyα absorption redshift andDA is the correspondent angular

distance. The variation of r⊥ across our redshift bins is not negligible, especially for the

longer chunks of forest, as figure 4.1 suggests. Since we know that phases are dependent

on r⊥, we should take this fact into account. Calculating the optical along arbitrary

directions in the simulation would be complicated to implement, so we prefer to follow

an alternative strategy. We keep choosing sightlines parallel to the box coordinates, but
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for each observed pair we compute a full ensemble of synthetic pairs with separations

uniformly distributed over the range covered by r⊥(zabs) within the redshift limits of

the chunk. In practice, if the coeval Lyαforest of the pair lies between zmin and zmax, we

simulate 400 pairs randomly located in the box and with separation {r = r⊥(zi)}, where
the 400 redshifts zi are logarithmically spaced between zmin and zmax. The logarithmic

spacing is chosen to achieve linear spacing in v(z), which is the coordinate on which

Fourier coefficients are calculated.

4.3.2 Resolution

We know that phases have the mathematical property of being invariant under convolu-

tion with symmetric kernels. For this reason one may think that no corrections for the

resolution are required. Unfortunately, this invariance does not hold in presence of noise,

analogously to a general deconvolution problem. In fact, phase scattering due to noise

is enhanced at high-k where the signal from the forest is suppressed due to resolution

limit. Phases lose their alignment and their intrinsic probability distributions is flat-

tened depending on the noise level and the resolution kernel. A more precise description

of the relation between noise, mode amplitudes and phase dispersion is given in § 4.4.

The conclusion we draw from this argument is that the combined effect of resolution and

noise must be always taken into account, unless the data have exquisite signal-to-noise

ratio. We also conclude that when the power of the signal drops due to resolution, our

measurement are unreliable or in the best case useless, because we are only sensitive to

noise. For this reason we must set as an upper limit on the usable k−range near the

resolution cutoff, which is kR = 1/σR ≈ 2.355/FWHM, where σR is the width of the

resolution kernel and FWHM the relative width at half maximum. The exact choice of

this threshold will be discussed in the next chapter (§ 5.1.5).

In the forward-modeling approach we convolve the simulated spectra with a Gaussian,

with the FWHM defined by the resolution of the spectrograph. Although the resolution

is wavelength-dependent, we use a constant width for each Lyαforest chunk which is

specified in table 4.1. This width corresponds to the FWHM at the average wavelength

of each chunk, where the average is defined as the median in velocity space, which can

be shown to be

λ̄ =
λ1λ2 ln(λ2/λ1)

λ2 − λ1
, (4.15)

where λ1 and λ2 are respectively the minimum and the maximum observed wavelength

of the chunk.
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Figure 4.2: Transmitted flux as a function of wavelength (in Å) for a pair in our
sample. The two spectra have been observed with MAGE, and the two quasars are both
at z = 2.38 and have a comoving separation of 272 kpc. The noise level is marked with
a blue dashed line. Both the transmitted flux and the noise have been renormalized
by the continuum emission. The red dotted lines delimit the wavelengths of the Lyα

forest in the two spectra.

4.3.3 Noise

The quality of the data is significantly variable within our sample, with the S/N per

Agström varying in the range between approximately 5 and 35 (we define the signal-

to-noise of a chunk as the minimum between those of the two companions, calculated

in the redshift interval of the used Lyα forest). As discussed above, noise alters phases

by blurring the alignment and by flattening their distributions. For a fixed S/N , this is

analogous to convolving the intrinsic phase probability function at a given k and r⊥ with

a kernel determined by the noise power (see § 4.4 for more details). Phases calculated

from pairs with different S/N are scattered at different levels and so their distributions

are not directly comparable, demanding a specific calibration for each object.

Another complication stems from the wavelength-dependent nature of the noise, which

is typically higher at smaller λ (see for example figure 4.2). Although the variation is

not strong and this is probably a second order effect, we model it by applying to the

synthetic spectra the same noise vector estimated, pixel by pixel, in real data. This

operation is complicated by the fact that skewers drawn from the simulation all have

the same length (50 Mpc/h) and the same pixel spacing, while each observed spectrum

has its own. We solve this problem by periodically replicating each simulated spectrum

until its size matches that of the forest chunk on which it is calibrated (see figures 4.3

and 4.4).
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The procedure of extending the segments of Lyα-forest reduces the fundamental fre-

quency in Fourier space and thus increases the density of modes. This new modes would

introduce spurious and redundant information which have a substantial effect on phase

distributions. The correct way of calculating phases after the extension is to split the

final spectra in chunks of size equal or smaller than the box length (the number of

replications may be a non-integer number), and extract their phases separately. The

sample created in this way can then be used to determine the probability distribution

function. Although there is still redundant information, such redundancy will only affect

the variance and not the mean of phase probability, since this procedure is equivalent

of resampling the same region of space more than once. The same chunking technique

cannot be done on data, since phases from consecutive segments of Lyα forest are likely

to be correlated, and such correlation is not included in our likelihood estimator. There-

fore phases are extracted from the observed spectra by applying the Fourier analysis to

the full length of the chunks.

The flux of the spectrum obtained after the periodical extension is finally rebinned into

the same pixel grid of the observed spectrum, which is always coarser than the one used

in our simulation. Once this is done, we are set to generate Gaussian noise matched

pixel by pixel to the estimated wavelength-dependent noise of data. The noise in the

Lyα forest is always renormalized by the continuum.

4.3.4 Forward-Modeling of the Simulation

The steps illustrated in the three previous paragraphs constitutes the forward-modeling

of our simulation. This consists in applying to the simulated transmitted flux the same

alterations that affect the real spectra when they are observed through a telescope with

finite resolution and integration time. Forward-modeled simulations can be safely com-

pared to observations, and allows to implement the same Bayesian formalism described

in chapter 3. The forward-modeling need to be tailored separately for each pair, and

must be applied to all the IGM models that we want to test. It is useful to summarize

the general procedure that we follow to perform the phase-difference analysis on our

data sample.

Suppose that we want to calibrate a model T0, γ, λJ to estimate the PDF of phases

measured from the Lyα forest of two quasars Q1 and Q2 separated in the sky by an

angle ψ, in the a redshift bin Z = [z1, z2]. This operation can be structured as follows:

• we determine the overlapping portion of the Lyα forest of the two QSOs which

intersects Z. This segment will have a comoving separation varying with redshift
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as r⊥(z) = DA(z)ψ(1 + z) (see section § 4.3.1). From now on we will use the

velocity-space notation r⊥(v) for the impact parameter and F1(v), F2(v) for the

transmitted fluxes of the two spectra.

• we generate 400 pairs from the simulated box distributed in transverse separations

r⊥ depending on r⊥(v) as described in § 4.3.1.

• As in chapter 2, the optical depth is globally renormalized in order to match the

observed mean flux.

• All the 400 pairs are forward-modeled according to the properties of Q1 and Q2. In

each simulated pair one companion is associated to Q1 and the other to Q2, which

have in general different resolutions and S/N. This is done through the following

four steps:

1. convolving the flux skewers with a gaussian kernel, with FWHM defined by

the spectral resolution.

2. Replicating them periodically until they equal the length of the observed

segments of forest.

3. rebinning the simulated flux into the same pixel grid of data.

4. adding gaussian, uncorrelated noise to the simulated flux. The S/N matches

at each pixel the one estimated in the observed spectrum.

• We finally calculate phases from the skewers and estimate the wrapped-Cauchy

concentration parameters ζ at each bin in k. We predict in this way the probability

distribution of phases P (θ; k) as a function of k for the considered pair. Note that

having rebinned the skewers at step 3, we have to calculate phases with the LSSA

method as we do with data.

• Following the method elaborated in § 3.1.6 we write the likelihood as

L (θ|M) =
∏

i

PWC(θ(ki)|ζ(k|M)) (4.16)

where θ(ki) are the phases of the real pair and ζ(k|M) the wrapped-Cauchy param-

eters estimated for the model M via forward modeling. Note that differently than

equation 3.12 there is no index over r⊥, because this likelihood refers to only one

observed pair. This likelihood is evaluated only below the limiting wavenumber

kMAX, which is the minimum between kR (resolution limit) and 0.1 s/km (limit

set by metal contamination).

This procedure is then repeated for each observed pair, for each IGM model and at each

redshift bin. This provides values of the likelihood function for all the pairs through the
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Figure 4.3: Example of our forward-modeling procedure at z=2.4. The top panel
shows an ESI spectrum with resolution of 64 km/s at FWHM and average signal-to-
noise ratio of 7.7 per Å. A random sightline from the snapshot at z = 3 is selected
and plotted in the second panel. This synthetic spectrum is then smoothed according
to the data resolution (third panel), extended periodically to match the length of the
observed segment and rebinned into the same pixel grid of data (fourth panel). Finally,
Gaussian noise is added according to the estimated error at each pixel (green line),
which completes the process of forward-modeling (bottom panel). The vertical dotted
line marks the length of the simulated box. Phases are calculated in the simulation for
each of the segments separated by the vertical lines, while in data they are extracted

from the full chunk.

whole parameter space, allowing us to make inference on the thermal properties at the

different redshifts.

4.4 Effect of Noise on Phase Distribution

In this section we give an analytic expression for the scattering of phases in the presence

of noise. It is not used in our forward-modeling scheme, where the PDFs are calculated

after adding noise to the skewers, but it provides useful insights on the behavior of phase

differences on real data and it will be useful for further discussion in the next chapter.

We assume that the noise is described by Gaussian random fluctuations with a con-

stant power spectrum PN (k) = PN . Let us consider a mode of a noiseless spectrum

at wavenumber k with amplitude ρ(k) and, without loss of generality, phase φ0 = 0.

Noise can be modeled as a stochastic variable zN = aN + ibN in the complex plane,

with a uniform distribution in phase and a Gaussian distribution in modulus. It can be

shown that the probability function of the phase φ of the complex stochastic variable
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Figure 4.4: Same as Figure 4.3 but at redshift z = 2. The top spectra was observed
with MAGE at resolution of 62 km/s (FWHM) and signal to noise of 17.7 per Å. Com-
pared to the previous plot the data quality is higher, there is sensibly less absorption

and the forest segment is longer, so we need to replicate the skewer more times.

F = F0 + FN is

pN (φ|η) = e−1/2η2

2π
+

cosφ
√

8πη2
e
−

sin2(φ)

2η2 erfc

(

− cosφ
√

2η2

)

, (4.17)

where we define the ”noise parameter” η =
√
PN/ρ(k). The full derivation is given

in appendix , but it is interesting to note that the distribution follows the expected

behavior in the limiting cases. When the noise is very high (η → +∞), it reduces to

a flat distributions pN (φ) = 1/2π, meaning that phases have totally lost the original

coherence information. Conversely, when the signal dominates (η → 0), pN is well

approximated by a Gaussian in sinφ with variance η2.

Formula 4.17 expresses the noise scattering of the phase of a single mode. If we want

the dispersion of the phase difference of two homologous modes in a pair, we would need

to calculate the distribution of the sum of the noise phases φ1 and φ2, and that is given

by the convolution of the pN for the two modes. We do not attempt to derive a general

expression for this convolution, but we note that in the limit of low noise (η ≪ 1) it

reduces to a convolution of two Gaussians, which leads to another Gaussian with the

variances added in quadrature η2∆φ = η2φ1
+ η2φ2

.
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Results

We have now developed all the tools that are needed to attempt a measurement of the

Jeans scale on quasar pairs.

In chapter 3 we showed that phase difference analysis applied to close quasar pairs is

capable of optimizing the sensitivity to the spatial coherence of the low-density IGM

and minimize the degeneracies with the thermal parameters T0 and γ. We devised a

statistical procedure that allows a rigorous probabilistic inference in parameter space,

estimating a potential precision of . 5% on the filtering scale λJ with a realistic sample

of 20 full high-quality pairs.

The current data set of quasar pairs described in the previous chapter does not reach

the same level of quality and quantity, but it allows the first step in the direction of a

high-precision measurement of the Jeans scale, setting for the first time constraints on

λJ . We illustrated how we calibrate the simulations to take into account the wide range

of noise and resolution of the spectra we want to analyze, following a forward-modeling

approach § 4.3. Such calibration enables the prediction of the expected phase difference

distributions for each of the pairs in our sample, given a theoretical (i.e. noiseless) model

for the IGM.

The combination of forward modeling and statistical analysis of phase-differences lead

to the results that we present in this chapter. The details of the implementation of the

statistical analysis are specified in § 5.1, and the constraints on the parameters at the

three redshift intervals are given in § 5.2. Finally we test the robustness of our results

for a series of possible bias source (§ 5.3).

70



Chapter 6. Results 71

5.1 Implementation of the Statistical Analysis

5.1.1 Simulation

This measurement was conducted using a Nbody simulation analogous to that described

in § 2.1.2, but on a smaller box, capable of resolving smaller Jeans scales. This choice

is motivated by preliminary results that indicated unexpectedly low values for λJ . We

use a cube of 30 Mpc/h of size and 20483 DM particles, which according to the criterion

established in appendix A enables to study Jeans scales of λJ ≈ 15 kpc. We also updated

the cosmological parameter to Planck results [Ade et al., 2014], i.e. ΩΛ = 0.68,Ωm =

0.32, h = 0.67. We focus on three snapshot at z = 2, 2.4, 3, approximately at the centers

of the redshift intervals in which we bin the data.

5.1.2 Parameter Grid

As explained in chapter 2, the interpolation of statistics in parameter space (i.e. the

emulator) takes great benefit from a careful designing of the training grid. In particular

it is important that the grid has good filling properties in parameter space, meaning

that all subspaces are sampled homogeneously and as densely as possible, which is not

achieved neither with regular nor with randomly generated sets of points. To conduct

our data analysis we employ e parameter grid of nm = 405 points in the T0 − γ − λJ

space. The fact that we use a smaller grid than in our theoretical study is motivated by

the fact that we expected a smaller precision from data compared to the perfect spectra

of simulation. It is anyway possible to refine such grid if required, either a posteriori

because the results do not converge or because of an improvement of the data sample.

We use a more efficient algorithm to generate a space-filling grid compared to what we

employed in Chapter 3. The properties of the parameter grids are the following:

• we use nm different values of T0 and nm different values of γ uniformly distributed

within the chosen range.We have only nJ = 45 values for the Jeans scale λJ , since

it is more computationally expensive to vary than the other two parameters. Each

of these value is used 9 times.

• we divide the T0 and γ ranges in 9 regular intervals (which we will call segments),

each with 45 points, and the λJ range in 5 segments, each with 81 points. This

subdivision defines in the T0 − γ 2d subspace a grid of 9 × 9 cells (from now on

quadrants). Each quadrant of this plane is populated with 5 points. Analogously,
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we define two 5×9 grids in the λJ−T0 and in the λJ−γ planes, with each quadrant

having 9 points.

• the full 3d space T0 − γ − λJ is now naturally divided in 9 × 9 × 5 cells. Each of

them contains one point.

The three points express respectively the conditions for 1d,2d and 3d homogeneity for

all possible subspaces. A precise description of the details on how this grid is devised

are beyond the scope of this work.

5.1.3 Likelihood

In chapter 3 we have introduced the likelihood estimator for the phase difference statistic

as

L ({θ}|M) =
∏

k,r⊥

PWC(θ(k, r⊥)|ζ(k, r⊥|M)) (5.1)

where θ(k, r⊥) is the phase difference between the k-modes of a quasar pair with impact

parameter r⊥, and ζ is the concentration parameter of the wrapped-Cauchy distribution.

ζ depends on k, r⊥ and on the IGM modelM = {T0, γ, λJ}. We now apply this likelihood

function to the phases calculated from real pairs with the least-square spectral analysis

technique (see § 4.2). The ζ parameters are obtained through our grid of DM-based

models, after careful calibration of noise and resolution (as described in § 4.3). The range
in k available for the analysis depends on one hand on the size of the simulated box, which

sets the lower mode, and on the other hand on the resolution of the instruments, that cuts

the signal of high-k modes. Regardless of the resolution, we never consider wavenumber

greater than k = 0.1 s/km due to metal contamination. A detailed description on how

we establish the limiting k as a function of the resolution will be given in § 5.1.5. The

ζ parameters are calculated for each r⊥ and for 13 different bins in k-space. This bins

are equally spaced in log k between k = 0.005 s/km and k = 0.1 s/km.

5.1.4 Interpolation

Analogous to our study in chapters 2-3 we use the models in the discrete set of 405

points in the grid to make prediction in the continuum of parameter space, by means of

Gaussian-processes interpolation. Differently than what we have done there, we do not

use the emulator to interpolate the full statistic that we are using, i.e. phase difference

distributions. We follow the simpler method of calculating the likelihood at each point

of the parameter grid with equation 5.1 and we interpolate only that single number.

This choice allows a much faster calculation than emulating the full statistic, which is
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not required since we only need the likelihood probability to perform the measurement.

Moreover, if the results are converged they should be independent from the choice of

the interpolation algorithm.

The convergence of the emulator is achieved when the density of the training grid in

parameter space is consistent with the smoothness of the interpolated variable. If this is

not fulfilled, a refinement of the parameter grid is necessary. In the case of the likelihood,

the smoothness depends on the dimension of the sample: the more constraining the data,

the higher the requirements on the grid density. To make a simple example, if the in-

ferred 1σ region contains only one point of the parameter grid, the size and the shape

of our confidence levels would entirely depend on the choice of the interpolation param-

eters, and could not be trusted. In the context of Gaussian processes, the error would

be set by the correlation length in parameter space which determines the correlation

matrix. It is therefore required that we populate with enough grid points the regions of

parameter space where the posterior probability is not negligible. Instead of determining

a general criteria of ”filling density”, we adopt a simple a posteriori consistency check:

we use correlation lengths larger than the typical model-model separation in parameter

space and check that the results of the measurement do not sensibly change when we

vary these parameters (§ 5.3.4.2). In typical Gaussian process implementations this hy-

perparameters are determined by maximizing the likelihood of the sampled points, i.e.

in the training grid. We consider this approach too arbitrary for our study, since we use

GP for interpolation purposes but we do not have any good reason to believe that the

values of the likelihood are effectively drawn from a Gaussian process.

5.1.5 Resolution Limit on k||

Based on previous study on the line-of-sight power spectrum [McDonald et al., 2000],

we argued in chapter 3 that the Fourier modes in the forest with wavenumber k|| > 0.1

s/km should be excluded from the analysis because of contamination of narrow metal

lines. We also know that according to the instrument resolution the power of the signal

drops exponentially as exp[−(kσr)
2], assuming that the resolution can be modeled as

a constant Gaussian kernel with width σr ≈FWHM/2.355. As the noise has a white

power spectrum, it will be the dominating source of power beyond this cutoff, erasing the

sensitivity to the Jeans scale. If we trusted completely our forward-modeling procedure,

these noisy high-k modes should not represent a problem, since they are consistently

calibrated in the simulation. In that case, including them in the analysis would only

add uninformative phases with flat distributions, with no effect on the final inference.

However, it could be that our assumption on the shape of the resolution kernel (Gaussian

with constant width) or on the properties of the noise (white Gaussian noise) are not
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precise enough in the delicate conditions where phase distributions are more sensitive

to these effects than to the thermal parameters because of a low signal. Therefore we

find preferable to remove these modes from the likelihood,since they could lead to biased

results if our forward modeling is imprecise.

Our goal is then to define a ”safe” dynamic range k < kres to which applying phase

analysis. The definition of kres should take into account the S/N level: we have shown in

chapter 3 that phases are invariant under convolutions with symmetric kernels, meaning

that the effect of resolution should be irrelevant in the limit of S/N= ∞. It is reason-

able to believe that higher quality data should allow a more extended dynamic range

than noisier spectra. This argument can be better motivated using formula 4.17. The

parameter that regulates phase noise as a function of k, and thus the alteration of phase

PDFs, is the ”noise parameter” η defined by

η(k)2 =
PN (k)

ρ2(k)
, (5.2)

where PN (k) is the noise power spectrum and ρ(k) the amplitude of the examined Fourier

k-mode. Regardless of the resolution, η is always zero in absence of noise, but in the

realistic case of finite noise its value increases exponentially with k. In fact, we can

assume that the noise follows a white power spectrum PN (k) ∝ (S/N)−2, and that the

squared amplitudes of the modes are set (on average) by the LOS power spectrum and

by the resolution as

〈ρ2(k)〉 = PLOS(k) exp[−(kσr)
2]. (5.3)

With these assumptions we can write the noise parameter as

η(k)2 ∝ PLOS
exp[(kσr)

2]

(S/N)2
, (5.4)

which diverges exponentially at high k, as claimed above. PLOS introduce a second cutoff

due to thermal broadening and Jeans smoothing.

The last equation suggests a criterion to fix the maximum k as a function of the signal-to-

noise ratio. Since the quality of phase PDFs is set by η, we can request this parameter to

be smaller than a certain threshold η̄. By imposing the condition η > η̄ and by inverting

equation 5.4 we obtain

k < kres ≡
1

σr

√

2 log(S/N)− ξ, (5.5)

where the free parameter ξ encompasses all the proportionality factors, the LOS power

and the choice η0. For simplicity, we are also assuming that the intrinsic power of the

forest is flat, which is reasonable as long as the thermal cutoff occurs at higher k than the

typical resolution cutoff of our sample. To take into account the noises of both spectra
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Figure 5.1: Calibration of ξ using the λJ posterior distributions. We run MCMCs
assuming a set of values of ξ for the three redshift bins in our analysis. This set
ranges between 2.5 amd 4.5, as the legend shows. We select the value of ξ according
to the convergence and the width of the posterior distributions: high values of ξ are
more conservative and might reject constraining modes, while a low ξ would include
uninformative distributions or give rise to bias due to wrong noise modeling and degrade
the constraints. An example of such a degrade can be seen in the right panel when
adopting ξ = 2.5 (red line). Based on this plot we opt for ξ = 4, for which the posteriors

are reasonably converged in all the three redshift bins.

of a pairs, we can assume that η1 and η2 of the two companions add in quadrature, i.e.

η2 = η21 + η22 . This is justified by the fact that phase dispersion is well approximated

by a Gaussian when η is small (see § 4.4) and that the dispersion of phase differences is

given by the convolution of the dispersion kernels of the two individual phases. In this

case, based on equation 5.4 we can define the effective signal-to-noise of a pair as

S/N =
(S/N)1(S/N)2

√

(S/N)21 + (S/N)22
(5.6)

where (S/N)1 and (S/N)2 are the signal-to-noise ratios of the two companions.

We leave for future work a better treatment and optimization of kres(S/N) at different

redshifts. Note that our criterion authomatically sets a lower cut on the signal level, by

demanding a positive argument of the square root:

S/N > exp(ξ/2). (5.7)

Higher values of ξ are more conservative, since they fix the S/N cut at higher levels and

they are more restrictive with respect to the k dynamic range.

We determine ξ by looking at the posterior distributions of λJ obtained from a series

of MCMC runs that assume different values of ξ (figure 5.1). If our forward modeling
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Figure 5.2: Dependence of kres on the S/N of a pair for the adopted value of ξ = 4.
The lower cut on S/N is set to exp(ξ/2) ≈ 7.4.

is correct, as we decrease ξ we include more modes in the likelihood and therefore we

expect one of the following behavior:

• The new modes retain information about the Jeans scale and thus our accuracy

improves;

• The new modes are dominated by noise and our constraints do not change.

If, on the other hand, the precision degrades at low ξ (i.e. the width of the posterior

distribution increases), it is likely that our modeling of the noise and resolution is not

fails at the noisiest modes. Based on this argument and on the results shown in figure

5.1 we adopt the parameter ξ = 4, which is the most conservative value at which the

posteriors look reasonably converged in all the redshift bins. Figure 5.2 explicitly shows

the dependence of the maximum wavenumber kres as a function of S/N when we set

ξ = 4. The threshold on the signal to noise is (S/N)min = exp(ξ/2) ≈ 7.4.

5.2 Results

5.2.1 Phase Distributions of Real Pairs

It is useful to directly look at the phase difference distributions of quasar pairs, since

on them is based our inference on the Jeans scale. The main problem in doing that

is acquiring an homogeneous and statistically significant sample of phases in order to

construct the probability density function. Ideally, a PDF is meaningful if it is derived
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Figure 5.3: Phase difference probability distributions calculated from our data sample
in the redshift interval z ∈ [1.8, 2.2] (Black squares). In order to have a significant
sampling we need to group phases into r⊥ and k|| bins. The panels from left to the right
correspond to the r⊥−intervals [100−200], [200−300] and [300−400] kpc, respectively,
while from top to bottom phases are split in the k||−intervals [0.005, 0.01], [0.01, 0.04]
and [0.04, 0.07]. The values marked in the plot refers to the central values of the bins
(logarithmical in the case of k||). It is worth reminding that the phases present in
each bin are not homogeneous, i.e. they derive from data with different resolution
and signal-to-noise ratio. We compare these distributions with the prediction of two
fully forward-modeled simulations, with λj = 30 kpc (red diamonds) and λJ = 70 kpc
(green diamonds). Using the calibrated models instead of the original ones assures
that the PDFs can be directly compared, since they are obtained from analogous pair
samples.The solid lines are the wrapped-Cauchy fit of the models, which trace almost

perfectly the underlying distributions.
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Figure 5.4: Same as figure 5.3 but for the redshift interval [2.2, 2.7]

from phases with the same physical and instrumental parameter, which in our case

are z, k||, r⊥, the resolution and the signal-to-noise ratio. Unfortunately, our sample is

not large enough to allow such an high-dimensional splitting, so we adopt a different

approach. For each of the three analyzed redshifts we divide our data in relatively

large r⊥ bins (∆r⊥ = 100 kpc) and we calculate the phase distributions in three k||

intervals [0.005, 0.01], [0.01, 0.04] and [0.04, 0.07] km−1 s. The bins in k|| are defined

somehow arbitrarily in order to have a comparable number of modes in each of them.

The subsamples defined in this way are still hybrid, because they contain information

obtain from data of sparse quality. However, our forward-modeling procedure allows us

to produce analogous samples from the synthetic pairs of our simulations, which we can

compare with observations. The results are shown in figures 5.3, 5.4 and 5.5.

The black squares are the PDFs obtained from data, while the red and the green dia-

monds are calculated respectively from the models {T0 = 8000 K, γ = 1.3, λJ = 42 kpc}
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Figure 5.5: Same as figure 5.3 but for the redshift interval [2.7, 3.3]. Given the
different distribution in r⊥ we choose to plot phases in the bins [0 − 100], [100− 200]
and [200 − 300] kpc,from left to the right. Note that the sample is smaller at high

redshift, so some bins are empty as in the top panels.

(which has the smallest Jeans scale of our grid) and {T0 = 8000 K, γ = 1.5, λJ =

100 kpc}. The pairs in the simulations are modified by adding noise and convolving

with the resolution kernel so that they form a sample statistically comparable with the

observed pairs. More precisely, for each pair we use 400 mocked pairs that are replicated

proportionally to the length of the overlapping forest in data (see § 4.3 for details). This

guarantees in particular that phases are correctly weighted accordingly to the extent of

the observed segment of Lyα forest. The solid lines represent the best-fit of this mock

phase distributions with the wrapped-Cauchy function, which falls overall very close to

the actual values.

The behavior of phase PDFs follows the theoretical expectations described in chapter 3.

Phases are generally more coherent at low k|| and at small separations r⊥. The shape of
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Figure 5.6: Constraints on the λJ -γ and λJ -T0 planes at z = 2. The contours show
the 65% and 96% confidence levels obtained by applying the phase difference statistic
to our sample of quasar pairs between z = 2.7 and z = 3.3. As expected from our
study described in chapter 3, there is no degeneracy neither with γ nor with T0 at this

redshift. Temperatures below 25000 K are slightly favored.

the measured distributions are also broadly consistent with a wrapped-Cauchy function,

although the scatter looks still significant. We caution however that the errorbars plot-

ted on data points are simple Poisson estimates and do not have a rigorous statistical

meaning, given the hybrid nature of the sample inside each bin.

Despite of the illustrative purpose of these three figures, one can already see that the

model with the smaller Jeans scale (red curve) provides in most cases a best fit to data

points than the high-λJ simulation. We may also guess that models with λJ < 42 kpc,

which would correspond to flatter distributions, are not ruled out by our dataset.

5.2.2 Constraints

We now present the results of the parametric study we have performed on data. The full

Bayesian treatment allow us to draw quantitative conclusions from the phase-difference

analysis.

The results in the redshift interval z ∈ [2.7, 3.3] are shown in figure 5.6. The red contours

are the confidence levels obtained from the MCMC run in the T0-γ-λJ space, projecting

the posterior probability distribution in the λJ -γ and λJ -T0 subspaces. These results

meet our theoretical expectations in that the phase difference statistic at redshift 3 is

insensitive on the temperature-density relationship. The confidence levels are horizontal

as in figure 3.7, with which this plot can be compared. With the current sample we

achieve a precision of about 30%. The full inference on λJ , marginalized over the

other parameter, is shown in figure 5.7. The estimated value of the Jeans scale is

λJ = 66± 20 kpc, where the expected value and the error are calculated respectively as
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Figure 5.7: Accuracy on the Jeans scale measurement at z = 3. The plot shows
the posterior probability distribution from the MCMC fully marginalized over the pa-
rameters γ and T0. The expected value is λJ = 66 kpc, and the estimated 1-σ error is

∆λJ = 20 kpc, giving a relative uncertainty of 30%.

Figure 5.8: Same as figure 5.6, but in the redshift interval [2.2, 2.7]. Differently than
z = 3, a tilt appears in the λJ -γ contours, implying a degeneracy between the two
parameters whose origin is still under research (see the text for a discussion). Similarly
to z = 3, there is no degeneracy between λJ and T0, and low temperatures are favored.
The sharp edge at λJ = 22 kpc correspond to the lower border of our parameter grid.

the mean and the standard deviation of the MCMC chain. As a consequence of phase

sensitivity, no constraints are set on γ and on T0, except a very shallow preference for

lower temperatures.

In figure 5.8 we present the same contours at redshift z = 2.4, obtained from the pair

sample in the interval z ∈ [2.2, 2.7]. The most significant difference with z = 3 is the tilt

of the confidence levels on the λJ -γ plane, revealing a significant degeneracy between

the two parameters. This degeneracy is an unexpected result, given our study at z = 3

and our understanding of phase difference statistic. It is somehow undesirable, since
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Figure 5.9: Same as figure 5.7, but at z = 2.4. As a consequence of the λJ -γ
degeneracy at this redshift the posterior is wider and not fully covered at the low-λJ
tail. The expected value and the standard deviations are λJ = 52 kpc and ∆λJ = 17

kpc, respectively.

it loosen the constraints on λJ such that at this redshift we cannot rule out extremely

low Jeans scales (λJ < 20 kpc !). We have not reached a clear understanding of how

this degeneracy is originated. It could be that the forest at this redshift has different

properties than at at z = 3, so the conclusion drawn in chapter 3 cannot be generalized.

Alternatively, it may be that since the signal is smaller than at redshift 3, the phase

statistic is more sensitive to noise and thus to the parameter η. According to equation

5.4, this would introduce a dependency on the LOS power spectrum, which in turn is

sensitive to T0 and γ. A precise explanation of this issue will require further quantitative

analysis. However, we can notice that the degeneracy between λJ and γ that we find

with phase differences lies in a different direction than the degeneracy expected from the

line-of-sight power spectrum(see figure 3.7). We can thus argue that crossing our results

with line-of-sight measurement might significantly improve the constraining power of

both statistics.

In the λJ -T0 plane the confidence levels are not significantly tilted, meaning that no

degeneracy holds. Temperatures at mean density higher than 35000 K are excluded at

2-σ level.

The constraints on λJ after marginalization of T0 and γ are shown in figure 5.9. As

a consequence of the degeneracy with γ, the posterior has a wider and flatter shape

than its counterpart at redshift 3. The probability does not drop to zero at the low-λJ

tail, implying that filtering scales smaller than our current limit in the parameter grid

(λJ ≈ 22 kpc) are not ruled out by the current measurement. Increasing the sample and

understanding the λJ -γ degeneracy are necessary steps in order improve the accuracy of
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Figure 5.10: Same as figure 5.6 and 5.8, but in the redshift interval [1.8, 2.2]. The
λJ -γ degeneracy appears as at redshift 2.4, shifted towards higher values of λJ . Tem-

peratures at mean density above 25000 K are ruled out at 2-σ level.
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Figure 5.11: Same as figures 5.7 and 5.9, but at z = 2. The width of the distribution
and the relative flatness of its top part are due to the degeneracy with γ. The expected
value and the standard deviations are λJ = 64 kpc and ∆λJ = 17 kpc, respectively.

the filtering scale estimation. The expected value and standard deviation are λJ = 52

kpc and ∆λJ = 17 kpc, but we must stress that they are calculated within the parameter

range covered by our simulation. Otherwise stated, we are assuming a prior λJ > 22

kpc, which is not justified looking at figure 5.8.

The results at redshift 2 (figure 5.10) are qualitatively similar to z = 2.4. An analogous γ-

λJ degeneracy holds, but overall the contours lie at higher values of λJ , excluding filtering

scales smaller than 22 kpc at 2-σ level. The confidence levels are overall narrower than

at z = 4, consistently with the larger sample size. Again, there is no degeneracy with T0,

and high values are more significantly ruled out (T0 < 25000 K at 2-σ). The posterior

probability distribution of λJ is broadened by the degeneracy with γ, preventing a precise
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Figure 5.12: 65% and 96% confidence levels in the λJ -γ and λJ -T (∆̄), where T (∆̄)
is the temperature at the ”typical” overdensity of the Lyα forest ∆. In calculating
these contours we assume a flat prior in T (∆̄) instead that in T0, which explains the
difference of the left panels of this figure and figure 5.10 (see the text for a discussion).
Differently than figure 5.10, the degeneracy with the temperature is now comparable

with that with γ.

determination of the filtering scale. The expected value and standard deviation are

λJ = 64 kpc and ∆λJ = 17 kpc, implying a relative precision of 27%. The distribution

however is not symmetric, and the highest probability is reached at λJ = 55 kpc.

It might sound puzzling that the filtering scales is degenerate with the index γ of the

temperature-density relationship, but not with the temperature at mean density T0.

As stated above, understanding this degeneracy will require further study, but we can

argue that the Lyα forest at redshift 2 is not very sensitive to T0 because it probes

density significantly higher than the mean. It is therefore interesting checking whether

a degeneracy holds after reparametrizing the T -ρ relationship with respect to the typical

overdensities of the Lyα forest ∆̄ and its temperature T (∆̄) = T0∆̄
γ−1, or simply T∆̄. ∆̄

is not precisely defined or measured, but an indicative value has been estimated in Becker

et al. [2011] in the context of a measurement of the IGM temperature, giving ∆̄ ≈ 4.11

at z = 2. Figure 5.12 shows the confidence levels obtained after this transformation in

parameter space. We find that the degeneracy of λJ with T (∆̄) is indeed as significant

as the one with γ.

For consistency, in doing this study we adopt a flat prior in T (∆̄) instead of a flat

prior in T0. This choice explain the slight difference of the left panel of figure 5.12

with its equivalent in figure 5.10. since the Jacobian of the parameter transformation

is ∂T∆̄/∂T0 = ∆̄γ−1, the probability transform according to p(T0) = p(T∆̄). This last

relation implies that a flat prior in T∆̄ implies higher probabilities at high γ compared

to the flat prior in T0 that was assumed in figure 5.10.
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5.3 Consistency Tests

The method presented in this study is completely new, and therefore its possible system-

atic errors have not been explored before. In particular the phase difference statistic has

never been used in the contest of the Lyα forest, and given the unexpected results that

we obtained it is necessary to carefully ponder all the possible effects that may change

our conclusions and to revise our main assumptions. For sake of clarity, we classify the

sources of uncertainty we could think of into four broad categories:

• Data-originated : calculating phases from the Lyα forest of observed pair is not a

straightforward operation, partly for mathematical reasons (see § 4.2) and partly

for the presence of contaminants and the uncertainty on the continuum emission;

• Calibration errors : we employ a forward-modeling approach in order to adapt

our set of simulation to the observations. This process involves several steps and

assumptions with which we could inadvertently introduce sources of bias;

• Model assumptions : we base our phase-distribution prediction on a grid of ther-

mal models built on top of a dark matter simulation. This clearly involves strong

assumptions on the distribution of gas in the IGM, raising doubts on the applica-

bility of this method to real data;

• Statistical approximation : the present method makes use of statistical tools such

as Gaussian process interpolation and MCMC, which are approximated algorithms

whose accuracy need to be tested.

In the following we will explain the test we perform in order to check the robustness

of our method against these potential source of biases and error. However we caution

that the validity of several of these tests is limited to the current level of accuracy. As

it is natural, when the amount and the quality of the data will permit measurements of

percent-level precision, also the requirements on the theoretical understanding and on

the modeling of biases will be tighter.

5.3.1 Data-Originated

5.3.1.1 Phase Calculation

In chapter 4 we presented two possible ways of calculating phases of irregularly sampled

functions: one employs least-square spectral analysis (LSSA), the other consists in re-

binning the function into a regular grid and subsequently applying the standard discrete
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Figure 5.13: Phases of real data calculated at redshift z = 2 with three different
methods: least square spectral analysis (black squares), rebinning on a regular grid
and FFT (magenta crosses) and LSSA without continuum renormalization. (blue dia-
monds). The correspondent wrapped-Cauchy best fits are shown as solid lines, matched
by color. We show the comparison for the same r⊥ and k bins of figure 5.3. The three
methods agree remarkably well in all cases, and the wrapped-Cauchy fits are essentially
overlapping, implying that the phase distributions in the three cases are statistically
equivalent. This proofs that the approximated method that we use to calculate phases
are solid, and that the phase statistic is insensitive to uncertainties on continuum place-

ment.
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Fourier transformation. Since the two methods imply complementary approximation,

checking that they lead to consistent phase distributions is a good check of the stability

of this calculation. In figure 5.13 we show phases of the observed forest of quasar pairs

binned as we have done for figure 5.3, adopting both the LSSA method (black squares)

and the rebinning procedure (magenta crosses). In almost all cases the two methods

agree extremely precisely, and most importantly the statistical estimator that we use in

the likelihood, i.e. the wrapped-Cauchy concentration parameters, are practically iden-

tical. This can be seen by comparing the best-fit wrapped-Cauchy functions of the two

distribution (black and magenta solid lines), which are indistinguishable at all r⊥ and

k||. We also stress that the approximated Fourier transformation enters the forward-

modeling of simulations, so even in the case where there was a significant effect on phase

distributions, it would have been taken into account in our calibration.

5.3.1.2 Continuum Fitting

Among the properties of phases listed in chapter 3 we claimed that they are robust

against uncertainties on continuum fitting. This was argued based on the mathematical

definition of phases, which are invariant under a global renormalization of the function.

If continuum error could be described as an uncertainty on the renormalization than

our statement would be exact. In the realistic case of a fluctuating continuum, phase

distributions are still untouched in an approximated sense if such continuum fluctuations

occur on scales larger than the typical modes that we want to use (v|| & 1500 km/s).

This could not be true in the presence of associated lines, like BALs, or near the Lyα

and Lyβ emission lines. As explained above, we exclude from the sample quasars with

recognizable BALs, and we do not attempt to use the forest in the vicinity of the two

emission lines. To proof explicitly that phases are not sensitive to continuum errors,

we estimated phase distributions without fitting the continuum of the spectra, directly

from the observed flux, and we compare them with the standard case of continuum-

renormalized spectra. The results of the calculation are shown as blue diamonds in

figure 5.13. The agreement is remarkable at all r⊥ and k||, both with the interpolation

and LSSA methods. Even where there are differences on the actual distribution, the

fitted wrapped-Cauchy function almost coincides with the continuum-corrected phases.

This test proofs that phases are insensitive to variation of the continuum, unless for some

reason other than BAL there are neglected fluctuations and wiggles at small velocity

scales.
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5.3.1.3 Contaminants

It is possible that part of the absorption in the Lyα forest of our spectra is not caused

by neutral hydrogen in the diffuse IGM but from other systems that are not modeled in

our simulation. An examples are broad absorption lines (BAL) associated with quasars,

which can have high velocities and be blueshifted in the Lyα forest. As we have just

reminded, all the QSOs that exhibit such lines have been removed from the sample.

Similarly, we have excluded all the region of the forest where we could identify a Damped

LyαAbsorber (DLA), since they are not described by the optically-thin approximation

that we adopt. For the same reason also Lyman Limit Systems (LSS) should be removed,

but this is not possible because they are practically indistinguishable from the forest.

However, we doubt that they can generate a strong bias, given that they contribute to

the forest absorption by only a tiny amount [McDonald et al., 2005]. A similar arguments

holds for metal contamination. Moreover, metal lines are narrow, and they affect mostly

Fourier modes with k > 0.1 s/km [McDonald et al., 2000] which we exclude precisely

for this reason.

If metal contamination and LLSs have a stronger impact than expected, they might

cause a decrease in the transverse coherence of pairs, since they would not be strongly

correlated in space. This effect would lead to an underestimation of the Jeans filtering

scale, henceforth we plan for the future a more careful and quantitative test of the

robustness of our results with respect to these contaminants.

5.3.2 Calibration

5.3.2.1 Resolution

The first step of the forward modeling consists in convolving the simulated skewers

with a Gaussian kernel whose width is regulated according to the estimated resolution.

This operation does not change phase differences initially, but it cuts the longitudinal

power exponentially at high k, which have a significant effect on phases when noise is

added (see discussion in § 5.1.5). Moreover, the estimation of the resolution also set

the maximum k|| we will use in the phase likelihood for that pair. It is then natural to

ask what kind of bias we would get if the resolution we are assuming is underestimated

or overestimated. In order to explicitly check this, we perform a test using a mock

data sample from our simulation at z = 3. We generate skewers with S/N=10 and

resolution FWHM=100 km/s, which are average values for our quasar sample, chosen

from a fiducial model with λJ = 80 kpc. We then try to ”measure” the Jeans scale

of this mock sample applying our standard technique, but calibrating the simulations
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Figure 5.14: Bias on the Jeans scale measurement deriving from a wrong resolution
estimation. We perform a ”measurement” of the Jeans scale from a mock sample of
skewer pairs taken from a fiducial model with λJ = 80 kpc. The correct Jeans scale
is marked by the dashed red line. The blue points represent the estimated Jeans scale
as a function of the assumed resolution kernel width σR ≈FWHM/2.335 relative to

the one of the mock data σ
(0)
R . This plot suggests that the result are stable especially

for underestimation of σR (i.e. overestimation of the resolution), but a significant
overestimation of λJ is possible if the noise is overestimated by & 30%.

with the wrong resolution kernel. We test a 10% and 30% error on the resolution,

both by underestimation and overestimation. For comparison, we also do the test with

the correct FWHM. The results are shown in figure 5.14, where we plot the estimated

Jeans scale against the assumed width of the resolution kernel σR, expressed relative

to the correct one σ
(0)
R . The Jeans scale of the fiducial model is marked by the red

dashed line. From this test we conclude that the measurement is relatively robust with

respect to resolution uncertainties, although a significant bias would be caused by an

overestimation of σR (i.e. an underestimation of the resolution) of the order of 30%.

As a further test of our resolution calibration, we split the data sample at z = 2 in

two sets with high (FWHM< 100 km/s) and low (FWHM> 100 km/s) resolution and

compare the separate constraints on the Jeans scale. If our calibration is correct for all

the instruments used to observe the pairs, the results of a measurement from the two

dataset should be consistent. Figure 5.15 shows that this is verified for our test, at least

for the achievable degree of precision.

5.3.2.2 Skewer Extension

In section 4.3.3 we described how we extend the simulated skewers by replication in

order to match the length of the observed Lyα forest chunks, arguing that this should
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Figure 5.15: Posterior probability distribution for λJ for the subsamples with res-
olution lower and higher than FWHM=100 km/s at z = 2. The constraints from the

two subsets are fully consistent.

not create artifacts in phase distributions. We do a simple test to verify our statement,

by applying the extension to simulated pairs and by comparing the final phase statistic

with that of the unextended spectra. The results are shown in figure 5.16. We generate

pairs with LRIS resolution of about FWHM= 150 km/s and a S/N of 10, building a mock

sample at a chosen transverse separation and redshift. We do the test using a sample

at z = 2 at r = 132 kpc (black lines), and one at redshift 3 and impact parameter

r = 432 kpc (red lines). We then calculated the phase distributions at all k-bins and

the relative wrapped-Cauchy ζ parameters. These are marked as a function of k by

the thick lines in the figure, and represent the ”original” phase distribution. We then

extend the skewers as illustrated in 4.3.3 by a factor 3.2 and 2.6 in the z = 2 and z = 3

cases, respectively. Before calculating phases, we need to preliminary split the extended

skewers into chunks of the length of the original box, in order to preserve the Fourier

bases. We then calculate phases separately in each chunk and use the ensemble obtained

in this way to calculate the ζ parameters. These are shown as thin lines, and agree in

both cases with those of the original box, implying that the phase statistic is correctly

preserved. The dotted-dashed lines refer to the case where the preliminary chunking has

been neglected, and clearly show how this would cause an artificial decrease in coherence.
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Figure 5.16: Effect of the periodical extension of skewers in the simulation. We
calculate the Cauchy ζ parameters of phase differences for all the k-bins in two cases.
The black lines represent a set of skewers from the snapshot at z = 2 and at r⊥ = 132
kpc, where the grid has been extended 3.25 times. The red lines are calculated at z = 3,
from skewers at separation of 432 kpc and extended by a factor 6.1. A S/N of 10 per
pixel has been assumed in both case, with a resolution limit (correspondent to LRIS)
marked by the vertical dashed lines (the discrepancy between the resolution limits is
due to the different wavelength range at different z). The Cauchy parameters calculated
after extension (thin lines) are fully consistent with those of the unextended box (thick
lines), meaning that the extension procedure does not alter significantly the statistical
distribution of phases, as long as we follow the correct procedure of separately calculate
phases on chunk of the same size of the original box. The dotted-dashed line shows the
error one could commit by extracting phases directly from the extended grid, without

the preliminary chunking.

5.3.2.3 Noise

Noise is taken into account in our model by adding random fluctuations to the simulated

spectra according to the estimated error σN . Since the coherence of phases is significantly

decreased by noise, it is important to test what bias might arise in the case of a inaccurate

estimation of such errors. We do an analogous test to what we have done in § 5.3.2.1

to test the robustness to resolution estimation. We used the same mock sample of pairs

with S/N=10 and resolution FWHM=100 km/s from the fiducial model with λJ =

80 kpc. This time we repeat the ”measurement” on the mocks varying the assumed

noise level. We calibrate skewers by adding Gaussian noise with standard deviation σN

underestimated or overestimated by 10% and 30% compared to the exact width σ
(0)
N ,

and we limit the dynamic range to k < 1/σR. The results are shown in figure 5.17,

where the correct Jeans scale is marked as a red dashed line. The bias deriving from a

wrong assumption on the noise is stronger than a comparable error on the resolution. In
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Figure 5.17: Bias on the Jeans scale measurement deriving from a wrong noise
estimation. We perform a ”measurement” of the Jeans scale from a mock sample of
skewer pairs taken from a fiducial model with λJ = 80 kpc. The correct Jeans scale is
marked by the dashed red line. The blue points represent the estimated Jeans scale as
a function of the assumed noise level σN relative to the exact noise level of the mock
data σ

(0)
N . This plot suggests that the result are relatively stable for underestimation

of noise, but a significant overestimation of λJ is possible if the noise is overestimated
by & 10%.

particular an overestimation of the noise would lead to a significant overestimation of the

Jeans scale, up to almost a factor 100% in the worst case of a 30% overestimation of σN .

Interestingly, the underestimation of the Jeans scale due to an underprediction of noise is

much weaker. Similarly to what we have done in § 5.3.2.1, we test the consistency of our

noise modeling by splitting the z = 2 sample in high-quality (S/N> 20 per Angström)

and low-quality (S/N< 20 per Angström) pairs, where the S/N of a pair is defined

according to eq. 5.6. The comparison of the constraints from the two subsamples shows

some tension, but not at a statistically significant level.

5.3.3 Model Assumptions

We obtain the prediction of phase differences in function of λJ from a simplified IGM

model built on a DM simulation. In the next chapter we will test this model using

hydrodynamical simulations to verify its accuracy. Here we check its internal consistency

by exploring the sensitivity of different parts of the dynamic range. If the models we

use are a sensible representation of the IGM, pair at different impact parameter r⊥

and modes at different wavenumbers k|| should provide compatible constraints on the

physical parameters. In the first test, we perform the measurement of the Jeans scale

separately on close (r⊥ < 200 kpc) and wide (r⊥ > 200 kpc) pairs at z = 2 and we

subsequently compare the inferred posterior distributions for λJ . The results are shown
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Figure 5.18: Posterior probability distribution for λJ for the subsamples with signal-
to-noise ratio lower and higher than 20 (per Angstrom). There is a slight tendency
of higher-S/N data of pointing towards lower Jeans scales, but the two distributions
are statistically consistent, suggesting that there are no significant biases due to S/N

estimation at the current level of accuracy.

in figure 5.19. The plot visually suggests close pairs tend to favor smaller value of λJ ,

but the two distributions are still statistically consistent. As a second test, we do a

similar analysis by using separately phases relative to low-k modes (k|| < 0.017 s/km)

and phases at high-k (k|| > 0.017). The result is shown in figure 5.20, and indicates

good agreement between the two subsamples.

5.3.4 Statistical Approximations

5.3.4.1 Wrapped-Cauchy Distribution

The likelihood function employed in our Bayesian analysis assumes that the predicted

phase distributions are precisely described by the wrapped-Cauchy function. This is

particular convenient since it allows us to compress the information of the full phase

PDF into a single number (the ζ-parameter) at each r⊥ and k||, but it could be a

source of bias if the phase probabilities are not faithfully traced by the wrapped-Cauchy

fit. In figure 5.21 we demonstrate the level of agreement that we get between the full

simulated distributions and our fits. In this plot we have assumed a combination of
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Figure 5.19: Posterior probability distributions for λJ for the subsamples of pairs
at separation larger and smaller than 200 kpc. Data from closer pairs seems to favor
slightly lower Jeans scales, but also in this case the two distributions are statistically

consistent.

resolution and S/N correspondent to our data sample, analogous to what we have done

in figure 5.3. The differences between the wrapped-Cauchy fits (solid lines) and the

actual distributions (diamonds) are almost unnoticeable for all the values of λj, r⊥ and

k that we show in the figure.

5.3.4.2 Emulator

We explained in § 5.1.4 that our emulator is reliable if the training grid is dense enough

with respect to the smoothness of the interpolated function in the parameter space.

When this condition is not fulfilled our results could be sensitive to the parameters we

choose in implementing the Gaussian-process interpolation. These parameters are the

smoothing lengths, which express the degree of correlation we assume when interpo-

lating in parameter space. Choosing large smoothing lengths prevent the interpolated

variable to vary strongly between the grid points, while small smoothing lengths cause

the prediction to fall quickly to zero when no neighbor points are present. To check that

our results are independent of this choice we repeat the measurement after varying the

smoothing length by ±20%. We then looked at the confidence levels and verify that they
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Figure 5.20: Posterior probability distributions for λJ splitting the phases by
wavenumber. The constraints originated from the phases with k|| < 0.017 s/km are

statistically consistent with those obtained from phases at k|| > 0.017 s/km.
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Figure 5.21: Example of wrapped-Cauchy fits to the distributions predicted by our
simulations. This figure show the phase PDFs at z = 2 for λJ = 42 kpc (red) and
λJ = 100 kpc (green). The panels refer to the impact-parameter bins [100, 200] kpc
and [200, 300] kpc (left to right) and the k-bins [0.005, 0.01] s/km and [0.01, 0.04] s/km
(top to bottom). The wrapped-Cauchy function traces the actual distributions with

excellent agreement in all cases.
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Figure 5.22: Convergence of the emulator. We plot the 65% (solid lines) and 95%
(dashed lines) confidence level in the λJ -γ plane, for three choices of the smoothing

lengths. The default choice is represented by the red lines, while the blue/green contours
are obtained by assuming 20% larger/smaller smoothing lengths. The lines trace each
other with high accuracy, implying that the emulator interpolation does not affect our

results.
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Figure 5.23: Convergence of the MCMC chains for the posterior at z = 3. The
histograms are calculated from chains with 180000 (blue) and 45000 (red) points.

are converged. We show this test for the most delicate case of the λJ -γ plane at z = 2,

where the contours are narrower and thus have the most demanding requirement on the

density of the training grid. Figure 5.22 demonstrates that the emulator is converged at

much higher precision than the accuracy of the measurement.
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5.3.4.3 MCMC convergence

We check that our MCMCs are converged by running a longer chains and comparing the

posterior distribution for λJ . The calculation of the likelihood is relatively fast, since

it only requires the interpolation of one number (the logarithm of the likelihood on the

grid), and our parameter space has only 3 dimensions. Moreover, the likelihood function

is relatively smooth in the parameter space at the current level of precision. All these

factors favor a fast convergence of MCMC runs, as it is shown in figure 5.23.



Chapter 6

Interpretation and Discussion

In the previous chapter we presented our estimation of the IGM Jeans scale achieved

by calibrating phase differences on a set of models based on a dark matter N-body

simulation. In the context of our model, λJ is the width of the kernel with which we

smooth the dark matter density field in order to obtain the baryon distribution. In

a CDM universe, where dark matter has no smoothing length, this identifies λJ with

the smoothing length of baryons, or thinking in Fourier space, as the scale where the

3d matter power spectrum is truncated. This interpretation however only holds if the

assumptions made to build such models are a good approximation of the real IGM. We

need to understand if this smoothing length exists in the universe and if we are able to

probe it using our phase-difference method.

In this chapter we try to address this problem by means of full hydrodynamical simula-

tions (which I briefly present in § sims). By doing so we complete the task left open in

chapter 4 of demonstrating the validity of our method, and we also gain useful under-

standing on the meaning of the measured λJ . The key idea is that the Jeans filtering

can be identified once the appropriate density range is selected: in general density peaks

of collapsed objects dominate the matter power spectrum at small scales, and the sup-

pression due to pressure is completely concealed. Once the high densities are removed

from the analysis the power spectrum of the IGM emerges and the truncation due to

pressure support clearly appears. The fact the Lyα forest is only sensitive to the low-

density regions motivates this reasoning from an observational point of view, indicating

this filtering scale as a natural interpretation of the quantity we measure with quasar

pairs.

The properties of the Jeans filtering scales are still poorly understood, in particular its

sensitivity to the thermal history and the expected value at the Lyα-forest redshifts.

These and other related theoretical questions are now under research in our group, an

98
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effort in which I have been directly involved in the last part of my PhD. I will illustrate

in the second part of this chapter some preliminary results that we obtained in this

direction, in particular the possible ways of defining the filtering scale in hydrodynamical

simulations (§ 6.3), and finally the comparison of the measured filtering scales with the

expected values for a set of thermal histories in § 6.4.

6.1 Hydrodynamical Simulations

I this section I will refer to a set of hydrodynamic simulations that have been run

for multiple IGM-related science goals. We used both the Lagrangian code Gadget3,

an improved version of the publicly available code Gadget2 [Springel, 2005], and the

recently developed Eulerian code Nyx [Almgren et al., 2013].

Gadget3 was run with 2 × 5123 gas and dark matter particles in a 10 Mpc/h box. To

optimize the calculation, we used the ”quick Lyα” flag, that converts gas into stars

above an overdensity threshold (in our case ∆ > 1000). This method does not affect the

IGM and speeds up significantly the simulation.

Nyx simulations are run on 10 Mpc/h size cube with 5123 cells. This boxsize and

resolutions are chosen in order to achieve convergence in the low-density IGM and in

particular of the phase-difference statistic of quasar pairs (Oñorbe et al.,in prep.)

In both simulations we assume the gas to be optically thin and in ionization equilibrium

with a spatially homogeneous ultraviolet background (UVB). We adopt the UVB from

the the model of Haardt & Madau [2012]. In order to study different thermal history we

follow the procedure used in Becker et al. [2011]. The photoheating rates for HI,HeI and

HeII are rescaled in a density-dependent manner as ǫ = A∆Bǫ0, where ∆ = ρ/ρ̄ is the

overdensity and ǫ0 the Haardt and Madau photoheating rates. A detailed description

of the simulation will be given in Oñorbe et al. (in prep.) and Kulkarni et al. (in

prep.). For what concerns this chapter, we will use the results from the Nyx simulation

with B = 0 and A = 1, 0.5, 0.1, to which we will refer as NHM, N0.5HM and N0.1HM

respectively, and from Gadget 3 using B = 0 and A = 1 (GHM).

In these simulation we use the cosmological parameter Ωm = 0.275,Ωb = 0.046,ΩΛ =

0.725, h = 0.702 and σ8 = 0.816. The other details of the four simulations are specified

in table 6.1.



Chapter 6. Interpretation and Discussion 100

Name Code Np L [Mpc/h] A B T0 [K] γ λJ,fit [kpc]

NHM Nyx 2× 5123 10 1 0 10919 1.56 82
N0.5HM Nyx 2× 5123 10 0.5 0 7029 1.56 67
N0.1HM Nyx 2× 5123 10 0.1 0 2504 1.58 46
GHM Gadget3 2× 5123 10 1 0 9507 1.59 77

Table 6.1: List of the simulations discussed in this chapter. A and B are the parameter
regulating photoheating rate of the IGM ǫ = A∆Bǫ0, where ǫ0 are the photoheating
rates of the Hardt and Madau model [Haardt & Madau, 2012]. λJ,fit is the value of the
Jeans scale obtained from the fit of the real-flux power specutrm (see 6.3). The values of
T0, γ and λJ refer to the snapshot at z = 3. The parameters of the temperature-density
relation T0 and γ are obtained by fitting the (volume-weighted) probability distribution

in the T -∆ space from the simulations.

6.2 The Filtering Scale in the Real-Flux Field

Our method to measure the Jeans scale relies on a set of simplified models of the IGM,

based on the particle distribution of Dark-Matter simulations. In particular, we are

assuming that baryons faithfully trace dark matter density, with the only difference of

a characteristic smoothing length set by the pressure. The second strong hypothesis is

that the smoothing scale λJ is a constant value across the volume, independent on the

temperature and on the density. We acknowledge that in this way we neglect a number

of relevant physical processes which would require hydrodynamics and radiative transfer

to be correctly taken into account. Moreover, treating the Jeans scale as a fixed quantity

is unphysical, given that it is expected to scale as λJ ∝
√

T/ρ (although the effect of

thermal history at different densities is not clear).

The technical difficulties in running large grid of models with full treatment of hydrody-

namics are the main justification of our approach, but one may wonder not only whether

our measurement is reliable, but also if the whole problem has a well-defined physical

meaning. If the Jeans scale is dependent on the local physical parameters, there would

not be any global Jeans scale in nature, and our attempt to measure it might thus appear

pointless.

In this section we tackle these two questions, clarifying what is the physical meaning

of our measurement and that under this perspective our simplified DM models are

sufficiently accurate.
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6.2.1 Is there any Jeans Scale of the IGM?

The classical argument defines the Jeans scale in the context of linear theory, where

density and temperature are effectively constant over the space. Under this conditions,

the Jeans scale is also constant and can be regarded as a global parameter. However,

the same definition does not apply to the real universe at the typical redshifts of the

Lyα forest (2 < z < 4), for the simple reason that both temperature and densities are

not expected to be homogeneous. In particular the values of the Jeans scale estimated

in our measurement are well below the nonlinear scale at this epoch. This degree of

complexity requires a generalization of the definition of λJ . One possibility is simply to

consider it as a local quantity and preserve the classical definition based on the local

physical condition of density and temperature. As discussed in chapter 1, this choice

does not have a clear physical meaning in the context of the IGM, where the dynamical

time and the sound-crossing time λJ/cs are of the order of the Hubble time, and the

combined effect of expansion and thermal history must be taken into account. Moreover,

it would be our task more difficult since we would need to predict a full distribution of

Jeans scales, instead of a single values.

The most natural approach for our purposes is to extend the definition of λJ as a geo-

metric property of the density, i.e. as the smoothing length of the baryonic component,

commonly known as filtering scale. Such smoothing length can be defined starting from

the correlation function or from the power spectrum, where we expect a cut-off at the

correspondent scale. From now on we will only reason in terms of the power spectrum

in Fourier space, consistently with the rest of this work.

Providing a precise definition it is not a straightforward operation for several reasons.

First of all, if the filtering scale depends on pressure it has to share with the classical

Jeans scale the property of being density-dependent, in a way which is however not

understood, neither from theory nor from observations. We need to define a sort of

effective filtering scales across densities and temperature, but it is not obvious that such

a scale should emerge when the full density range is considered. Secondly, if such scale

exists, one needs to make assumptions on the intrinsic shape of the power spectrum and

on the filtering function in order to associate a scale to an observed cutoff, as will be

discussed in § 6.3.

Figure 6.1 answers the question raised above: the 3d power spectrum of baryons (∆ <

1000) does note exhibit any cutoff. This can be view as a consequence of the contribution

of collapsed objects to the power at small scales. This contribution, although dominant

at high k, is not relevant in the context of IGM studies as collapsed structures occupy

only a tiny portion of the volume, despite containing a significant fraction of the mass.
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Figure 6.1: From Kulkarni et al.(in prep.). The plot shows the 3d dimensionless
power spectrum of gas (thin lines) and the real flux (thick line) in the GHM simulation.
The three gas power spectra are calculated assuming three different density threshold
∆th = 1000, 100 and 10. The highest threshold correspond to the density at which
the code transforms gas into stars. As the threshold decreases lower densities are
selected, and the Jeans cutoff emerges. Analogously, the transmitted Lyα flux in real
space naturally suppresses the contribution of high densities, and its power spectrum
is therefore strongly dependent on the effect of pressure. The upturn at k > 102h/Mpc

is due to a simulation artifact.

Most important they are not probed by the Lyα forest since they gives raise to completely

saturated lines. It is convenient to remove them from the analysis by clipping the matter

field, i.e. setting an upper threshold to the overdensity ∆th. This consists in the simple

transformation

∆c =







∆ if ∆ ≤ ∆th

0 if ∆ > ∆th

. (6.1)
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Figure 6.1 shows how the cutoff appears and evolves as the overdensity limit ∆th de-

creases, corresponding to an increased suppression of structures. This behavior is ex-

pected for two reasons: the contribution of collapsed regions vanishes and pressure

support is more effective at low density, where gravity is weaker. It is natural to con-

sider the location of this cutoff as the filtering scale of the IGM, however the fact that

it shifts with ∆th brings us back to our initial problem of defining unambiguously the

filtering scale.

The Lyα forest offers a very natural solution to this problem. In a broad sense, the

transmitted flux can be considered as a clipped version of the density field, where the

suppression of high densities is originated in the exponentiation F = exp(−τ) and not as

a sharp threshold, but it is equally effective in removing the contribution of high densities

and isolating the property of the IGM. This suggests the possibility of applying the same

type of transformation to the density field of our simulation and define the IGM filtering

scale based on the geometrical properties of this field, in particular on the location of its

3d power spectrum. An important caveat is represented by the redshift-space nature of

the Lyα forest: the absorption is distorted along the sightline by thermal broadening and

the motion of the gas, so it does not faithfully trace the underlying matter distribution

and it is not an isotropic 3d field. We circumvent this problem by defining the real-

space transmitted flux Fr, i.e. the optical depth to Lyα absorption at each point in real

space. This quantity is equivalent to the Lyα forest absorption in the limit of a cold and

steady IGM, and it is given by the Fluctuating Gunn-Petersonn approximation [Gunn

& Peterson, 1965]:

Fr = exp

[

− πe2

mec
fαλαH

−1(z)nHI

]

(6.2)

where fα is the oscillator strength of the Lyα line and nHI the density of neutral hy-

drogen. Studying this quantity has several advantages:

• it is by construction sensitive to the properties of the IGM and independent on

the physics of galaxies and high-density regions in general;

• the way it weights different densities is neither ambiguous nor arbitrary;

• differently than the velocity-space flux, it has no sensitivity to thermal broadening,

which would introduce degeneracies in the power spectrum and in particular on

the cutoff, as we have discussed in detail in chapter 2

• it is closely connected to the observed Lyα forest. Although relating the latter with

the real-space flux requires a precise modeling of peculiar motions and temperature,

we have shown that the phase difference statistic is practically independent on

them,suggesting that Fr can be directly probed using quasar pairs.
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This properties lead us to conclude that the filtering scale obtained through our mea-

surement should be identified with the filtering scale of the real-space flux 3d field, as it

will be explained in the next section.

A minor disadvantage is due to the evolution of the Lyα absorption with redshift: as

the forest becomes more transparent due to expansion the range of densities probed by

Fr moves to higher values, making less intuitive the comparison between filtering scales

at different epochs.

6.2.2 Validation of the Dark-Matter Models

The identification of the Jeans scale λJ of our DM models with the cutoff of the power

spectrum of Fr is motivated following a logic analogous to the previous section. By

construction, the filtering scale of the density field is a constant parameter in our models.

As a consequence, the 3d power spectrum of the density exhibit a cutoff whose location

is invariant under the choice of different density ranges. As shown in the previous

section, this is very different than what we expect to find in the IGM and what we see in

hydrodynamical simulations. We must then explicitly state what is the equivalent of λJ

in the real universe, i.e. what is the physical meaning of our measurement. Equivalently,

we must specify at which density we expect our estimate for λJ to match the filtering

scale of the IGM. The fact that the statistic we are using, phase differences, is measured

on the Lyα forest and is insensitive to thermal broadening naturally leads us to conclude

that Fr defines the desired range of densities.

To be precise, Fr is the transformed of the density field that we expect to have the

smoothing length to which our method is sensitive to. Since Fr does not select exactly

one density, we could still expect a variable filtering scale. If this variability is significant,

our fixed-λJ approximation may be too imprecise. This is one of the reasons why we

need to test the method with simulations, but we can use the classic Jeans formula to

get a broad intuition of the dispersion of the Jeans scale in the Lyα forest. Using a

temperature-density relationship T ∝ ργ−1 and assuming λJ ∝
√

T/ρ, one gets λJ ∝
ρβ, with β = γ/2 − 1. For typical values of γ ∼ 1.2 − 1.6, this dependence is quite

shallow. Figure 6.1 shows that in any case an effective cutoff is clearly present in

the power spectrum of Fr in the simulation GHM. If we could proof that,despite of the

approximated models, our method is able to correctly predict the position of such cutoff,

than we would demonstrate its validity, also showing that the interpretation we propose

is correct.
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We do this by ”measuring” the filtering scale in the hydrodynamical simulation GHM

at redshift 3 and by comparing the outcome with the cutoff of the 3d real-flux power

spectrum calculated from the simulation. Our test consists in the following:

• We draw synthetic pairs of skewers from the hydrodynamical simulation at various

separations, defining our mock (noiseless) dataset.

• We calculate phase differences for all the pairs in the mock sample, in the same

dynamical range utilized in data (k < 0.1 s/km).

• We evaluate the likelihood of the obtained set of phases using the probability

distributions predicted by our grid of DM-based models.

• The filtering scale of the simulation is defined as the Jeans scale λJ of the maximum-

likelihood DM model.

• Finally, we compare the 3d power spectrum of the real flux Fr for the hydrodynam-

ical simulation with that of the best-likelihood DM model. We remind that this

implies smoothing the DM particle distribution using a pseudo-Gaussian kernel

with σ = λJ and applying the FGPA to the field obtained in this way.

We performed this test on the GHM simulation (Figure 6.2) and on the NHM run

(Figure 6.3). Although the general shape of the power spectra generally differ between

hydros and our models, the location of the cutoff is remarkably well aligned in both

cases. The Jeans scales estimated for the two simulations are approximately 110 and

128 kpc for GHM and the NHM run, respectively. This test confirms our hypothesis on

the nature of the filtering scale measured via phase differences, and shows that no bias

arises from the approximations assumed on the DM models which we use to calibrate

phase distributions, at least at the current level of accuracy (∼ 20%).

6.3 Definition of the Jeans Scale in Hydrodynamical Sim-

ulations

In the previous section we have argued that the Jeans filtering scale should be defined

based on the cutoff of the 3d power spectrum of the real-flux field Fr. We have also

shown that the location of this cutoff is what the phase difference statistic is mostly

sensitive to. However, we have not provided yet a quantitative expression that defines

λJ in simulations and allows a direct comparison with the measurement. The most
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Figure 6.2: Comparison of the 3d flux power spectrum as calculated from the sim-
ulation GHM (red) and the one predicted by a ”measurement” conducted with our
method on a set of pairs extracted from the hydro run (black). The dashed vertical

line explicitly mark the expected position of the cutoff, kJ = 1/λJ .

simple way of defining the cutoff is parametrizing the real-flux power spectrum as a

truncated power law

P (k) = Akn exp[−(kλJ,fit)
2] (6.3)

where the normalization A, the index n and the filtering scale λJ,fit are the fitted param-

eter. Note that with the Gaussian-truncation assumption, the relation between filtering

scale and cutoff is kJ = 1/λJ and not kJ = 2π/λJ . Figure 6.3 shows how well this fit

(dashed red line) follows the true power spectrum of Fr in the z = 3 snapshot of the

NHM run, corroborating the ansatz of a truncated power law. The fit gives a value of

λJ,fit = 82.4 kpc, significantly lower than what we obtain by ”measuring” the jeans scale

with phase difference of pairs of skewers from the same simulation, which is λJ,pairs = 128

kpc.

It is likely that this discrepancy is due to the different slope of the power spectra of the

two models (hydrodynamic and DM-based) at low-k, which alters the definition of the

cutoff. We stress that boxes have slightly different cosmologies, and they are only 10

Mpc/h large, therefore low-k modes could be affected by cosmic variance. A rigorous

and consistent definition of the filtering scale in hydrodynamical simulations is still under

research, as well as its relation to that measured with our current quasar-pair method.

For the moment we adopt a phenomenological approach and we apply a correction to

translate the Jeans scale λJ,fit obtained from the fit to the 3d real-flux power spectrum
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Figure 6.3: From Oñorbe et al., in prep. The plot shows the 3d dimensionless power
spectrum of the real flux for the hydrodynamical simulation NHM (red solid line) and
for the model based on the dark matter distribution smoothed with the filtering scale
λJ,pairs. Here, λJ,pairs is the Jeans scale measured from a set of synthetic pairs extracted
from the same hydro simulation, using the same method we applied to data. The red
dotted line is the fit to the red solid line obtained assuming a truncated power law
P (k) = Akn exp[−(kλJ,fit)

2]. The position of the cutoff is again well matched, although
the values of the parameters λJ,pairs = 128 kpc and λJ,fit = 82.4 kpc differ.

in simulations with the one estimated with the pairs method λJ,pairs. We assume this

correction to be a multiplicative factor, which we tune on the snapshot at z = 3 of NHM

(figure 6.3), giving

λJ,pairs ≈ 1.4λJ,fit. (6.4)

We will apply this relation in the next section in order to compare the results of our

measurement with the prediction of the set of hydrodynamic simulation.

6.4 Redshift Evolution and Comparison with Simulation

Little attention has been devoted in the past in defining and predicting the filtering

scale of the IGM. For this reason we are not yet in the condition of stating whether

or not the results of our measurement meet the theoretical expectations of the typical

IGM models. With the recent work described in the previous sections, however, we

developed a consistent and physically motivated definition which allows us to draw the

first conclusions.
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Figure 6.4: Evolution of the Jeans scale as measured from the sample of observed
quasar pair (red dots) and predicted from different models. The red dotted line use the
classical definition of the Jeans scale as a function of temperature and density, assuming
a temperature of 104 K and a density equal to the mean of the universe. The green and
the blue dashed lines also use the classic Jeans formula, but they are calculated using
the typical density of the Lyα forest ∆̄ and the relative temperature T∆̄, as estimated
in Becker et al. [2011] and Boera et al. [2014], respectively. The solid lines represent the
filtering scale calculated in the simulations NHM,N0.5HM and N0.1HM (from top to
bottom) by fitting the 3d power spectrum of the real flux and applying the correcting

factor of 1.4 (see § 6.3 for details).

As a start, it is useful to consider the values expected if we identified the filtering scale

with the instantaneous Jeans scale λ
(0)
J =

√

c2s/4πGρ(1 + z), where the factor 4π in the

denominator derives from the Gaussian truncation hypothesis. In figure 6.4 we plot in

red (solid) the value of the classic Jeans scale at the mean density, assuming a constant

temperature of T = 104 K. This curve is clearly too high to be consistent with our

measurement (red dots), unless we impose unreasonable low temperatures (T < 103

K). We can slightly refine this calculation by considering that the Lyα forest probes

densities higher than the mean, and thus we expect λ
(0)
J to be lower. This is true given

that the temperature is expected to scale with density as T ∝ ∆γ−1, with γ < 2. The

typical density of the Lyα forest as a function of redshift ∆̄(z) and the temperature

at such density T∆̄(z) have been estimated recently using the ”curvature” statistic by

Boera et al. [2014] and Becker et al. [2011]. We use the two sets of values they obtain

(labeled as ∆̄a, T∆̄,a and ∆̄b, T∆̄,b, respectively) to produce the blue and the green curves.

Despite of the slight improvement, the predictions from the classic Jeans formula are

still overestimating the value of the filtering scale by about a factor of three.
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The fact that the filtering scale should be smaller then the instantaneous Jeans scale

has already been shown by Gnedin & Hui [1998] in the context of linear theory (see also

chapter 1). The correction is typically a number between 1.5 and 3, but the precise value

depends on the past thermal history. Moreover, linear theory is not reliable to model

the Lyα forest, and hydrodynamic simulations are required to understand the precise

relation between filtering scale and temperature evolution.

The solid lines in figure 6.4 represent the filtering scale fitted in the simulations at

different redshifts and rescaled according to the procedure described in § 6.3. The NHM
and N0.5HM simulations predict a higher Jeans scale then what we observe, and we need

to assume a photoheating rate 10 times smaller than the standard Haardt and Madau

model if we want to fit the measurement. Unfortunately, this model has a temperature

at the mean density of T0 = 2505 K, almost an order of magnitude than all the current

estimates (see chapter 1). However, we stress again that this comparison relies on

tuning the ratio λJ,pairs/λJ,fit1.4 between the the fitted cutoff of the real-flux power

spectrum of simulation and the value that would be defined using the phase difference

distributions calibrated on the set of DM-models. This correction has been tuned on

the z=3 snapshot of NHM and it may not apply at other redshifts and in different runs.

A rigorous comparison would require measuring the Jeans scale of the other simulations

by applying the phase method to mock samples of pairs at all redshifts, a test we defer

to future work.

Understanding the origin of such a small filtering scale will require more theoretical

exploration, however we can speculate on possible explanations.

The Jeans filtering scale is sensitive to the past thermal history, and responds to temper-

ature changes on timescales of the Hubble time. If at higher redshifts the temperature

was lower than what assumed in the simulations, λJ would retain memory of this cold

stage and remain at lower values. Whether this could quantitatively explain the dis-

crepancy shown in figure 6.4 should be verified in the future by means of hydrodynamic

simulation with different thermal history. An alternative explanation would be some

cosmological factor that enhanced the power of perturbations at small scales. It has

been argued that primordial magnetic fields could have produced a similar effect [Sub-

ramanian & Barrow, 1998, Wasserman, 1978].

From the observational point of view, it is possible that there are systematic in the

data which we are not correctly accounting for that decreases the coherence, inducing

an underestimation of the Jeans scale. The most obvious candidates are metals and

LLSs. Although their contribution to the Lyα forest absorption is modest, we have not

explicitly demonstrated that their effect on phases is negligible.
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6.5 Future Work

The work conducted so far has opened several important questions and posed few puzzles

to our understanding of the IGM. The most relevant to solve is the explanation of the

tiny Jeans scale that quasar pairs seem to indicate. The answer should be sought on a

double track: theoretically and observationally. From the theoretical point of view, it is a

priority to reach a consistent definition of the Jeans filtering scale of the IGM that could

be used in hydrodynamic simulation and that could be related to the phase-difference

method. In doing this, we might explore further the reliability of the approximated

DM-based models on which the measurement is calibrated and characterize precisely

the differences with hydrodynamic simulations. We will also need to understand to

which extent the filtering scale is sensitive to the thermal history of higher redshifts,

and whether a filtering scale consistent with our measurement can be achieved without

making the IGM exceedingly cold.

From the observational perspective, it will be important to assess quantitatively the

impact of systematic that we have not modeled properly, such as metals and LLSs. It

is also crucial to understand the origin of the degeneracy between λJ and γ that holds

at z = 2 and z = 2.4, and whether this degeneracy can be broken by crossing the phase

difference statistic with line-of-sight statistics. At the same time, we will collect new

data in order to extend the analysis to higher redshifts z > 3.3 and to improve the

statistical significance of the results presented here.



Chapter 7

Concluding Remarks

In this thesis I presented the first measurement of the Jeans filtering scale of the inter-

galactic medium. This filtering scale corresponds to the coherence length of the baryons

set by the interplay between gravity and pressure across the history of the universe. It

has fundamental cosmological implications: it provides a thermal record of heat injected

by ultraviolet photons during cosmic reionization events, determines the clumpiness of

the IGM, a critical ingredient in reionization models, and sets the minimum mass of

galaxies to gravitationally collapse from the IGM. We elaborated a novel method to di-

rectly estimate the Jeans scale from the transverse coherence of Lyα absorption in quasar

pair spectra. Our technique is based on the probability distribution function (PDF) of

phase angle differences of homologous longitudinal Fourier modes in the spectra of the

pair.

To study the efficacy of this new method, we combined a semi-analytical model of the

Lyα forest with a dark matter only simulation, to generate a grid of 500 thermal models,

where the temperature at mean density T0, slope of the temperature-density relation γ,

and the Jeans scale λJ were varied. A Bayesian formalism is introduced based on

the phase angle PDF, and MCMC techniques are used to conduct a full parameter

study, allowing us to characterize the precision of a Jeans scale measurement, explore

degeneracies with the other thermal parameters, and compare parameter constraints

with those obtained from other statistics such as the longitudinal power and the cross-

power spectrum.

The primary conclusions of this study are:

• The longitudinal power is highly degenerate with respect to the thermal parameters

T0, γ and λJ , which arises because thermal broadening smooths the IGM along the

line-of-sight (1D) at a comparable scale as the Jeans pressure smoothing (3D). It is
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extremely challenging to disentangle this confluence of 1D and 3D smoothing with

longitudinal observations alone. Similar degeneracies are likely to exist in other

previously considered statistics sensitive to small-scale power such as the wavelet

decomposition, the curvature, the b-parameter distribution, and the flux PDF.

Hence it may be necessary to reassess the reliability and statistical significance of

previous measurements of T0 and γ.

• The cross-power measured from close quasar pairs is sensitive to the 3D Jeans

smoothing, and can break degeneracies with the unknown Jeans scale. However,

it is not the optimal statistic, because it mixes 1D information in the moduli

of longitudinal Fourier modes, with the 3D information encoded in their phase

differences. We show that by focusing on the phase differences alone, via the

full PDF of phase angles, one is much more sensitive to 3D power and the Jeans

smoothing.

• Based on a simple heuristic geometric argument, we derived an analytical form for

the phase angle PDF. A single parameter family of wrapped-Cauchy distributions

provides a good fit to the phase differences in our simulated spectra for any k, r⊥,

the full range of T0,γ and λJ .

• Our phase angle PDFs indicate that phase differences between large-scale longi-

tudinal modes with small wavenumbers k ≪ 1/λJ , are nevertheless very sensitive

to the Jeans scale. We present a simple analytical argument showing that this

sensitivity results from the geometry of observing a 3D field along 1D skewers:

low-k cross-power across correlated 1D skewers is actually dominated by high-k

3D modes up to a scale set by the pair separation k⊥ ∼ 1/r⊥.

• The phase angle PDF is essentially independent of the temperature-density relation

parameters T0 and γ. This results because 1) the non-linear FGPA transformation

is only weakly dependent on temperature 2) phase angles of longitudinal modes

are invariant to the symmetric thermal broadening convolution.

• Our full Bayesian MCMC parameter analysis indicates that a realistic sample of

only 20 close quasar pair spectra observed at modest signal-to-noise ratio S/N ≃ 10

and resolution of FWHM=30 km/s, can pinpoint the Jeans scale to ≃ 5% precision,

fully independent of the amplitude T0 and slope γ of the temperature-density

relation. The freedom from degeneracies with T0 and γ is a direct consequence of

the near independence of the phase angle PDF of these parameters.

• Our new estimator for the Jeans scale is unbiased and insensitive to a battery

of systematics that typically plague Lyα forest measurements, such as continuum
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fitting errors, imprecise knowledge of the noise level and/or spectral resolution,

and metal-line absorption.

Motivated by these results, we applied the phase-difference technique to the existent

sample of close quasar pairs. Adapting the method to real spectra requires significant

modifications, among which:

• Calculation of phase differences on irregular grids by means of least-square spectral

analysis. We have checked that alternative approximate methods (interpolation

on regular grids) lead to the same results, guaranteeing their reliability

• Careful modeling of noise and resolution, and removal of the most evident con-

taminants such as broad absorption lines systems and damped Lyα absorbers.

• Calibration of the dynamic range in Fourier space according to the noise and

resolution property of each spectrum, in order to exclude the noisiest mode at

high k.

We performed the measurement in three different redshift bins, defined by the intervals

[1.8, 2.2], [2.2, 2.6] and [2.7, 3.3]. The phase difference analysis gives λJ = 66± 20 kpc at

z = 3, λJ = 52±17 kpc at z = 3 and λJ = 64±17 kpc at z = 3. The current accuracy is

at the level of 30% at all redshifts. At z = 2 and z = 2.4 the precision is decreased by a

slight degeneracy of λJ with γ. Interestingly, the direction of this degeneracy appears to

be almost perpendicular to the same degeneracy expected from the line-of-sight power

spectrum, a promising result in the perspective of crossing our constraints with other

Lyα forest statistics.

We have tested that the results are stable with respect to the estimation of noise and

resolution with a tolerance of about 10%. Most important, in the light of our results,

the Jeans scale is hardly underestimated due to wrong noise/resolution assumptions.

We also verified that phase differences are not sensitive to uncertainties on continuum

placement.

In order for the parameter study presented here, with a large grid (500) of thermal

models, to be computationally feasible, we had to rely on a simplified model of the

IGM, based on a dark-matter only simulation and simple thermal scaling relations. In

particular, the impact of Jeans pressure smoothing on the distribution of baryons is

approximated by smoothing the dark-matter particle distribution with a Gaussian-like

kernel, and we allowed the three thermal parameters T0, γ, and λJ to vary completely

independently. Although the Gaussian filtering approximation is valid in linear theory

[Gnedin et al., 2003], the Jeans scale is highly nonlinear at z ≃ 3, hence a precise
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description of how pressure smoothing alters the 3D power spectrum of the baryons

requires full hydrodynamical simulations. Furthermore, the three thermal parameters

we consider are clearly implicitly correlated by the underlying thermal history of the

Universe. Indeed, a full treatment of the impact of impulsive reionization heating on

the thermal evolution of the IGM and the concomitant hydrodynamic response of the

baryons, probably requires coupled radiative transfer hydrodynamical simulations.

Our approximate IGM model is thus justified by the complexity and computational cost

of fully modeling the Jeans smoothing problem, and despite its simplicity, it provides

a good fit to current measurements of the longitudinal power (see Figure 2.2). Most

importantly, by analyzing the spatial structure of the real-space flux in hydrodynamic

simulation, we proofed that calibrating phases on our simplified models is sufficient to

locate the cutoff in the power spectrum of the low-density IGM.

A preliminary comparison with the expectations from hydrodynamic simulations indi-

cates that the filtering scale we measured is too small to be explained with the standard

assumptions on the thermal history and on the small-scale physics of the IGM. This

discrepancy motivates further work to understand the theoretical implications of our

findings, and demands a careful search for further systematics that could affect the

phase difference statistic.



Appendix A

Resolving the Jeans Scale with Dark-Matter Simulations

The Lyα forest probes the structure of the very low density regions of the IGM, setting

strict requirements on the resolution of our dark-matter only simulation. In particular,

because our simulation is discrete in mass, each dark-matter particle represents a fixed

amount of gas distributed according to the gravitational softening length and the size

of the smoothing kernel that we use to represent Jeans smoothing (eqn. 2.3). At very

low densities, it is possible that a very large region is described by a single particle,

and that most of this void region is left empty. This undesirable situation occurs when

the mean inter-particle separation ∆l = Lbox/N
1/3
p , which defines the typical size of

regions occupied by each particle, is much larger than the Jeans scale λJ , which is the

minimum scale we want to resolve. Under such circumstances the density profile of

skewers through our simulation cube will have many pixels which are nearly empty,

because they have few or no neighboring particles. This insufficient sampling of the

volume due to large mean inter-particle separation will then manifest itself through the

appearance of artifacts in the volume-weighted probability distribution function (PDF)

of the density. On the other hand, if the inter-particle separation is sufficiently small,

the density field will be sufficiently sampled, and further decreasing the inter-particle

separation will not alter the density PDF. Therefore we can define our resolution criteria

for the mean inter-particle separation to be smaller than some multiple of the Jeans scale

∆l < αλJ , where the exact value of this coefficient α is determined by checking that

convergence is achieved in the density PDF.

We estimate α by plotting the PDF of log(∆) from our IGM skewers for a set of simula-

tions with varying mean inter-particle separation, where ∆ = ρ/ρ̄ = 1+ δ is the density

in units of the mean. The employed simulations have mean inter-particle separations

∆l = {86, 171, 653} kpc, corresponding to box sizes Lbox = {100, 250, 720} Mpc/h with

Np = {15003, 20483, 18003} particles, respectively. In Figure A.1 we check for conver-

gence using three different values of λJ . The results indicate that a safe criterion for

resolving the jeans scale is ∆l < λJ or α ≃ 1. The simulation employed in this work
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Figure A.1: The probability distributions of the relative baryonic density ∆ = ρ/ρ̄
in our simulations. Each panel represent a different filtering scale λJ , which was used
to smooth the dark matter density for the same three simulations, which have different
mean inter-particle separations ∆l. When ∆l is too large relative to λJ the IGM density
is poorly resolved at low densities, and the PDF is not converged. Empirically, we find
that a safe criterion for convergence is ∆l < λJ , which allow us to resolve Jeans scales

down to 50 kpc with our Lbox = 50 h−1Mpc and Np = 15003 simulation.

has Lbox = 50h−1 Mpc and Np = 15003 particles, or a mean inter-particle separation

of ∆l = 48kpc. This simulation thus allows us to study pressure smoothing down to a

Jeans scale as small as ≃ 50 kpc. Note however that the results of this paper rely on our

estimation of the Jeans scale from various Lyα forest statistics around the fiducial value

of λJ = 110 kpc, so we are confident that the Jeans scale is resolved in our simulations

and that our results are not impacted by resolution effects.



Appendix B

Determining the Concentration Parameter ζ of the Wrapped-Cauchy

Distribution

For a given sample of phases {θ} we employ a maximum-likelihood algorithm to deter-

mine the best-fit concentration parameter ζ, which uniquely specifies a wrapped-Cauchy

distribution. This procedure is described in detail in Jammalamadaka & Sengupta

[2001]. Briefly, we first reparametrize the wrapped-Cauchy distribution (eqn. 3.6) by

writing ν = 2ζ/(1 + ζ2), which gives

P (θ) ∝ 1

1− ν cos(θ)
≡ w(θ|ν). (B.1)

Following the standard recipe of maximizing the logarithm of the likelihood with respect

to the desired parameter, we sum the logarithms of the probability of all angles and

impose the condition that its derivative with respect to ν is zero, resulting in the equation

n
∑

i=1

w(θi|ν)[cos(θi)− ν] = 0, (B.2)

which can be solved iteratively. The concentration parameter is then easily determined

by inverting the above relation to get ζ = (1 −
√
1− ν2)/ν. This procedure is repeated

for each distinct population of phases, parametrized by transverse separation r⊥ and

k-mode, θ(r⊥, k), and for each model in the thermal parameter grid (T0, γ, λJ ) that we

consider.
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Phase Noise Calculation

In this appendix we show the derivation of formula 4.17. This formula expresses the

probability distribution of the phase variation due to noise on a Fourier mode with

coefficient F0. We assume for simplicity that F0 is real, without loss of generality since

the calculation that follows is invariant under rotation of the complex plane. The noise in

Fourier space FN can be regarded as a Gaussian 2d stochastic variable with variance σ2.

To simplify the calculation, we renormalize all the moduli (the distances in the complex

plane) such that |F0| = 1. This operation is allowed because it does not change angles.

With these assumptions F0 = 1 is real and has unitary modulus. The rescaled variance

of the noise will be η2 = σ2/|F0|2. We now want to obtain the probability distribution

function in the complex plan of the variable F ′ = F0 + FN , which represent the Fourier

coefficient after adding noise. Writing F ′ = x + iy in the Cartesian representation and

with the aforementioned assumption of the noise, we get

pN (x+ iy) =
1

2πη2
exp

[

−(1− x)2 + y2

2η2

]

. (C.1)

We now transform this probability function in polar coordinates, that gives

pN (r, φ) =
r

2πη2
exp

[

−r
2 + 1− 2r cosφ

2η2

]

. (C.2)

where φ is exactly the phase variation with respect to the noiseless mode (see also

figure C.1). If we want to calculate the distribution for φ we need to integrate in r to

marginalize it out:

pN (φ) =

∫ +∞

0
pN (r, φ)dr. (C.3)

To solve the integral, we first rewrite the exponent using the identity r2+1− 2r cosφ =

(r − cosφ)2 + sin2 φ, which leads to the expression

pN (φ) =
e− sin2 φ/2η2

2πη2

∫ +∞

0
re−(r−cosφ)2/2η2dr. (C.4)
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Figure C.1: Schematic representation in the complex plane of the relation of the
noise displacements and the variation φ induced on the phase of the noiseless Fourier
coefficient F0. Since we are interested in the angular information, we scaled all the
moduli and we rotate the plane such that F0 = 1. x and y are the coordinates in the
complex plane of the noisy mode F ′ = F0 + FN , while r and φ are the modulus and

the phase of the polar representation of F ′.

We then apply the change of variable t = r − cosφ to the integral is split in two parts:

pN (φ) =
e− sin2 φ/2η2

2πη2

[
∫ +∞

− cosφ
te−t2/2η2dt+ cosφ

∫ +∞

− cosφ
e−t2/2η2dt

]

. (C.5)

The first of the two integral can be easily solved with standard techniques, while the

second can be recognized to be the complementary error function of the Gaussian dis-

tribution. After few lines of calculation, we finally obtain formula 4.17:

pN (φ) =
e−1/2η2

2π
+

cosφ√
8π
e− sin2 φ/2η2erfc

(

− cosφ
√

2η2

)

. (C.6)
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Hoeft, M., Yepes, G., Gottlöber, S., & Springel, V. 2006, MNRAS, 371, 401

Hui, L., & Gnedin, N. Y. 1997, MNRAS, 292, 27

Hui, L., & Haiman, Z. 2003, ApJ, 596, 9

Hui, L., Stebbins, A., & Burles, S. 1999, ApJ, 511, L5

Iliev, I. T., Mellema, G., Pen, U.-L., Merz, H., Shapiro, P. R., & Alvarez, M. A. 2006,

MNRAS, 369, 1625

Iliev, I. T., Scannapieco, E., & Shapiro, P. R. 2005, ApJ, 624, 491

Inoue, A. K., & Kamaya, H. 2003, MNRAS, 341, L7

Jakobsen, P., Boksenberg, A., Deharveng, J. M., Greenfield, P., Jedrzejewski, R., &

Paresce, F. 1994, Nature, 370, 35

Jammalamadaka, S. R., & Sengupta, A. 2001



Bibliography 124

Kim, T.-S., Bolton, J. S., Viel, M., Haehnelt, M. G., & Carswell, R. F. 2007, MNRAS,

382, 1657

Kim, T.-S., Viel, M., Haehnelt, M. G., Carswell, R. F., & Cristiani, S. 2004, MNRAS,

347, 355
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