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Abstract

The Standard Model (SM) of particle physics is complete with the discovery of the Higgs
particle. However the SM cannot be a complete theory of nature as it does not explain the
origin of neutrino mass, dark matter (DM), dark energy, matter-antimatter asymmetry
and smallness of the strong CP parameter. From theoretical point of view we do not un-
derstand the origin of the scale separation between the electroweak (EW) and the Planck
scale, and also the flavor puzzle. In this work we will tackle the hierarchy problem with
scale symmetry and the flavor puzzle with discrete flavor symmetries, charting new sym-
metry groups and their breaking, while investigating their implied phenomenologies along
the way. In the first part we provide two novel mechanisms to explain the origin of the
EW scale generated by quantum effects from an anomalous breaking of a classical scale in-
variant extension of the SM. For the first model we utilize a direct scale transmission from
condensation of a scalar, charged under a high representation of QCD, to trigger EW sym-
metry breaking (EWSB) dynamically. In the second model, we will use the indirect scale
transmission approach to generate the EW scale transmitted by a singlet scalar mediator
which couples to the SM and a strongly coupled hidden sector. Chiral symmetry in the
dark fermion sector is broken spontaneously due to nonperturbative effects of the running
coupling in the hidden sector, triggering indirectly EWSB due to dimensional transmuta-
tion and providing stable DM candidates in the form of dark pions. In the last part of this
work we focus on charting new discrete flavor symmetry groups to obtain experimentally
acceptable leptonic and quark mixing patterns. The interesting new discrete groups that
we have found are classified mathematically and provide a new starting point for model
building in discrete flavor symmetry.

Zusammenfassung

Das Standardmodell (SM) der Elementarteilchenphysik ist komplett mit der Entdeck-
ung des Higgs-Teilchens. Wir wissen aber dass das SM nicht die endgültige Theorie
der Natur sein kann; das SM enthält keine Dunkle Materie oder Dunkle Energie, und
hat keine Erklärung für Neutrinomassen und die Asymmetrie zwischen Teilchen und An-
titeilchen. Von theoretichen Seite, unbefriedigend ist die große Skalenhierarchie zwis-
chen elektroschwache und Planck-Skala, sowie die Herkunft der Flavorparameter im SM.
In dieser Arbeit versuchen wir die genannten Probleme mit Hilfe von Symmetrien zu
lösen. Im ersten Teil unserer Arbeit geht es um die Erweiterung des SM mit klassicher
Skaleninvarianz, und wie die elektroschwache Skala quantenmechanisch durch die anoma-
len Brechung der klassichen Skaleninvarianz erzeugt wird. Solche Skalenerzeugung lässt
sich in zwei Klassen einteilen, entweder durch direkte oder indirekte Skalenübertragung.
Bei der direkten Skalenübertragung erweitern wir QCD mit einem Skalar-Teilchen, das
ein Kondensat bei der TeV-Skala bildet und elektroschwache Symmetriebrechung verur-
sacht. In einem Modell mit indirekter Skalenübertragung wird die elektroschwache Sym-
metriebrechung dagegen durch die chirale Symmetriebrechung in einem verborgenen Sek-
tor erzeugt. Ein Stabiler Dunkle Materie-Kandidat ergibt sich durch die Pseudo-Nambu-
Goldstone-Bosonen von chiralen Symmetriebrechung. Als letztes konzentrieren wir uns
auf das Flavorproblem, und suchen systematisch nach neuen diskreten Symmetriegrup-
pen, welche die experimentell bevorzugten Mischungswinkeln für Leptonen und Quarks
vorhersagen können.
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S�a�n�g�i�o�v�e�s�eChapter 1

Introduction and Roadmap

The Standard Model (SM) of particle physics, which consists of the Glashow-Weinberg-

Salam theory of Electroweak (EW) interactions [1, 2] and Quantum Chromodynamics

(QCD) [3–5], has served as a successful low energy description of the subatomic physics

for the last forty years. With the Higgs-like particle being found in the ATLAS [6] and CMS

[7] detectors, the SM itself is now complete. However we know that the SM is not the full

description of our Universe. The neutrinos, for instance, are massless in the SM and hence

further extension is required to accommodate the well measured neutrino mass differences

in the neutrino oscillation experiments. Furthermore, the SM does not contain candidates

to explain the dark matter (DM) and the dark energy, which make up 95% of the energy

content of our Universe. Other problems such as the origin of the matter-antimatter asym-

metry, the strong CP problem, and the origin of inflation, also require solutions beyond the

SM if we demand that the solution is not fine-tuned but natural.

From the theoretical point of view, the SM parameters also contain some tantalizing

puzzles, which crave for simpler explanations. Aside from experimental observations which

deviate from the SM prediction, the theoretical problem of the SM in general can be divided

into two aspects: scales separation and flavor puzzles. To provide explanations for these

two puzzles under the banner of symmetry is the main focus of this thesis1. Let us start by

discussing the aspect of scales in fundamental physics. At the moment we only know three

fundamental energy scales in the nature, namely

• the QCD scale ΛQCD ≈ 300 MeV, where the QCD physics becomes strong and non-

perturbative,

• the EW scale v = 246 GeV, which generates masses for elementary particles,

• the Planck scale Mpl ≈ 1019 GeV, where gravity becomes strong.

Arranging in their strength, one notices that

ΛQCD ∼ v �Mpl, (1.1)

prompting the so-called hierarchy problem of energy scales. At the moment we are not

sure whether the Planck scale is something fundamental, or if gravity is some emergent

effect which is described by physics beyond Quantum Field Theory (QFT). The hierarchy

1And also to provide fine selections of red wine.
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between the QCD and Planck scale can be understood as a dynamical phenomenon, where

the smallness of ΛQCD,

ΛQCD = Mpl exp

(
− 8π2

bg2
s(Mpl)

)
�Mpl, (1.2)

is due to the renormalization group effect, with the beta function coefficient b calculated for

the QCD coupling gs. Such an explanation does not apply to the case of the EW scale v.

We will give a thorough explanation for the hierarchy problem regarding the EW scale later

in Chapter 2. It suffices to say that there is no symmetry in the SM to protect the EW scale

against the high energy scale QFT that the SM embedded into, unless a new symmetry is

introduced either in the form of supersymmetry or scale invariance. In this thesis we will

follow the latter approach, taking classical scale invariance as a new starting point to solve

the hierarchy problem. In Chapter 2 we will give an introduction to classical scale invariance

and its anomalous breaking, which will generate the EW scale quantum mechanically. We

will see that we can generate the EW scale dynamically from this approach, mimicking

the success of QCD. The additional fields charged under a non-abelian gauge group form

condensates that can trigger EW symmetry breaking (EWSB) either directly or indirectly.

We will present one model each for these two different approaches.

In Chapter 3 we will introduce a model based on direct scale transmission. An additional

scalar field charged under a higher representation of QCD can condense at the TeV regime,

generating the Higgs mass via dimensional transmutation. As this new particle is charged

under QCD, it can be easily produced at the LHC. Furthermore this new scalar field can

alter the production cross section of the SM Higgs, which can be detected or constrained

by ATLAS and CMS. The collider phenomenology and the nonperturbative aspects of this

new particle will be discussed in detail.

For the second approach based on indirect scale transmission, a model along this line

will be discussed in Chapter 4. Here additional fermions charged under fundamental rep-

resentation of a new non-abelian gauge group will be introduced. Similar to QCD, the

fermions form condensates when the chiral symmetry is broken by the nonperturbative ef-

fect of gauge coupling flow. The chiral symmetry breaking scale is transmitted via a singlet

scalar mediator to trigger EWSB indirectly. As an additional bonus, the pseudo Nambu-

Goldstone bosons (PNGB) due to this spontaneous chiral symmetry breaking can serve as

DM candidates. The DM phenomenology and the detection prospect of this model will be

discussed. Furthermore, we will discuss some of the early universe physics of this new sector,

particularly the order of the phase transition.

Hierarchy problem aside, the origin of flavor is also one of the important questions of

beyond the SM physics. All absolute entries of the lepton mixing matrix, or the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix

|UPMNS| ≈

 0.821 0.549 0.152

0.374 0.573 0.694

0.382 0.567 0.684

 , (1.3)
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are of order one. Comparing this to the Cabibbo-Kobayashi-Maskawa (CKM) matrix

|UCKM| ≈

 0.974 0.225 0.004

0.225 0.973 0.041

0.009 0.040 0.999

 (1.4)

of the quark sector whose off-diagonal entries are small [8], the very different form of the

PMNS matrix seems to suggest a different leptonic flavor origin. One popular approach to

solve the flavor puzzle is to invoke spontaneously broken discrete symmetries to describe the

observed patterns, where the leading-order (LO) leptonic mixing angles up to permutations

of rows and columns can be determined solely from flavor symmetry breaking. This approach

is based on the misaligned remnant symmetries between the charged lepton and neutrino

mass matrices. Since the recent discovery of the large reactor mixing angle θ13 [9–11], the

beloved simplest discrete group A4 [12–18] that has been utilized to build most of flavor

models is strongly disfavored. In Chapter 5 we will perform a systematical scan of discrete

symmetry groups up to order of 1536 to determine which discrete groups can generate LO

leptonic mixing angles compatible with the experiments. We extend also the discrete group

approach in the quark sector to search for groups that can predict the LO Cabibbo angle.

The leptonic mixing patterns may have a common origin with the quark mixing angles. If

both the quarks and leptonic mixing patterns originate from a common discrete group, they

could serve as a new model building approach, which could be embedded in a Grand Unified

Theory (GUT). We will also discuss the predictivity of discrete symmetry groups compared

to the anarchy approach.



P�i�n�o�t N�o�i�r�Chapter 2

Standard Model and Symmetries

The modern concept of relativistic Quantum Field Theory (QFT) constructed from prin-

ciple of quantum mechanics, relativistic invariance and cluster decomposition principle, con-

tains three fundamental concepts, namely dynamics, symmetries and scales, which has de-

scribed different physical systems successfully1. By dynamics we mean that QFT is based

on field operators whose structure is a result of quantum mechanics, relativistic invariance

and cluster decomposition principle. The dynamics of QFT give rise to the physical observ-

able of the theory. Of course with only dynamics, one can construct more general classes of

theories which are not as constrained. A QFT of our particular interest, namely the Stan-

dard Model (SM) of particle physics, possesses more structures of symmetries, consisting

the Poincaré invariance and the internal gauge symmetry SU(3)c × SU(2)L × U(1)Y . Fur-

thermore, the SM requires the notion of spontaneous symmetry breaking of scalar field and

the Higgs mechanism to generate the masses for the elementary fermions and electroweak

(EW) gauge bosons. We will provide a quick review of the SM in Sec. 2.2. Perhaps the

most characteristic feature of QFT is the applicability to physics of different scales. Physics

is about describing laws of nature at a certain scale. The fact that we can describe low

energy physics well without knowing much details about the high energy physics is due to

the principle of coarse graining. Most of the low energy physics will decouple from the high

energy modes, with the exception of the scalar mass. As we will discuss later, most of the

solutions proposed to solve such a hierarchy problem in the SM involve certain types of

new physics or energy scales near the TeV regime. In this chapter we will discuss a novel

solution that might serve as a good candidate in solving the hierarchy problem, namely

classical scale invariance. We will clarify the subtle difference between conformal symmetry

and scale/dilatation symmetry, and also explain the form of such symmetries in the classical

and quantum regime in more details. We will also highlight the conjectures and problems

arise in conformal field theory. A general model building approach along this line of thought

will be discussed and we will present two models with different approaches that yield dif-

ferent phenomenologies in Chapter 3 and 4. The current chapter provides an overview of

the latest research on solving the hierarchy problem by breaking classical scale invariance

anomalously. This chapter is based on the author’s understanding of the conceptual issue in

the hierarchy problem, scale invariance and attempts to cure the hierarchy problem starting

from the principle of classical scale invariance.

1This classification is often ignored in the modern QFT literature. For a more conceptual approach towards
QFT please refer to Ref. [19].
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2.1. Symmetries and Conservation Laws

In this section we will give a precise and general way of deriving Noether’s first theorem,

which states that symmetries of a physical system imply conservation laws. We follow

the notation of Refs. [19–21]. Consider a system with n general field variables Φa with

a = 1, . . . , n. The dynamics of the system is encoded in the action

S =

∫
U

d4xL(x,Φ, ∂µΦ), (2.1)

with L being the Lagrangian and U is a domain bounded by spacelike surfaces Σ1 and Σ2

which extend to infinity. The local field variation δΦa and total field variation ∆Φa are

defined as

δΦa = Φ′a(x)− Φa(x), ∆Φa = Φ′a(x
′)− Φa(x) = δΦa + ∆xµ∂µΦa, (2.2)

where the infinitesimal change of coordinates is given by

x′µ = xµ + ∆xµ. (2.3)

We differentiate the two cases in Eq. (2.2) because certain symmetry transformations act

on coordinate and field representation simultaneously. If we assume that L is unchanged by

the variations in Eq. (2.2) and Eq. (2.3), i.e.

L′(x′,Φ′, ∂′µΦ′) = L(x′,Φ′, ∂µΦ′), (2.4)

with ∂′µ = (∂x/∂x′) ν
µ ∂ν = ∂µ +O(∂ν∆xν∂µ), the total variation of the Lagrangian is given

by

∆L =L′(x′,Φ′, ∂µΦ′)− L(x,Φ, ∂µΦ) = (∂µL)∆xµ + ∂µ(πµa δΦa) + EaδΦa, (2.5)

with πµa = ∂L/∂(∂µΦa) as the momentum conjugate to Φa and Ea = ∂L/∂Φa − ∂µπµa the

Eulerian for field Φa. Now let us investigate the total variation of the action

∆S =

∫
U ′

d4x′ L′(x′,Φ′, ∂′µΦ′)−
∫
U

d4xL(x,Φ, ∂µΦ). (2.6)

Changing the measure with d4x′ = det(∂x′/∂x)d4x = (1 + ∂µ∆xµ)d4x and substituting

Eq. (2.5) in Eq. (2.6), we obtain

∆S =

∫
U

d4x [∂µ(L∆xµ + πµa δΦa) + EaδΦa] = Q(Σ2)−Q(Σ1) +

∫
U

d4x EaδΦa, (2.7)

where the Gauss theorem has been applied to the first term with Q given by

Q(Σi) =

∫
Σi

dσµ (πµa∆Φa −Θµ
ν∆xν) , (2.8)

with the canonical energy momentum tensor Θµν and σµ representing the normal vector to

the surface Σ.
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Eq. (2.7) serves as a core equation for investigating the dynamics and conservation laws of

a system. For instance if we demand that the total field variation vanishes at the boundary

Σi and the action principle ∆S = 0, the Euler-Lagrange equation Ea = 0 for the field Φa

is obtained. Let us now investigate Noether’s first theorem. We allow the most generic

transformation

∆xµ =ωµk(x)εk, ∆Φa = Rak(x,Φ)εk, (2.9)

on a Lagrangian where ωµk and Rak being representations of certain group transformations

in coordinate space and field space respectively. For an internal symmetry, ωµk = 0, while

for spacetime transformations, both ωµk and Rak are nontrivial. By demanding that the

transformation leaves ∆S = 0 and the equation of motion (EOM) is satisfied Ea = 0 in

Eq. (2.7), the charge of the transformation is conserved

Qk =

∫
Σ

dσµ (πµaRak −Θµ
νω

ν
k) = const, k = 1, . . . ,m. (2.10)

Noether’s first theorem states: Invariance of ∆S = 0 under a continuous transformation of

an m parameter group implies m global conservation laws with conserved currents

∂µJ
µ
k ≡ ∂µ(πµaRak −Θµ

νω
ν
k) = 0, k = 1, . . . ,m. (2.11)

If the Lagrangian is invariant up to a surface term ∂µK
µ, the current Jµk is modified to be

πµaRak −Θµ
νωνk +Kµ.

The above derivation is valid for classical field theory. After quantizing the classical field,

the validity of classical conservation laws induces the Ward identities

∂

∂yµ
〈T Jµ(y)Φ(x1) . . .Φ(xn)〉 =〈T ∂

∂yµ
Jµ(y)Φ(x1) . . .Φ(xn)〉

− i
∑
j

δ(xj − y)〈T Φ(x1) . . .∆Φ(xj) . . .Φ(xn)〉 (2.12)

among the Green functions. We remind the reader that the charge Q of a transformation

generate the total variation of the field:

[Q,Φ(y)] = ∆Φ(y), [J0(x, t),Φ(y, t)] = ∆Φ(y, t)δ3(x− y). (2.13)

The surface terms in Eq. (2.12) can lead to so-called anomalies in the quantum system even

though the classical currents are conserved. We will investigate this property in Sec. 2.4

later.

So far we only concerned ourselves with global symmetry and its implication on conser-

vation law, which only holds when the EOM Ea = 0 is applied. The εk parameter above is

independent of spacetime, however when it is promoted to a local parameter εk(x), the situ-

ation changes drastically as we would need to introduce additional gauge fields to maintain

the invariance of the transformation. This is the core of Noether’s second theorem: Suppose
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that the action is invariant under infinitesimal field internal transformation

∆Φa = Qak(x,Φ, ∂µΦ)εk(x) +Rµak(x,Φ, ∂µΦ)∂µε
k(x), (2.14)

where Qak and Rµak are functions of group transformation of kth parameter, then there exist

linear relation between Eulerians and their derivatives

QakEa = ∂µ(RµakEa). (2.15)

This equation is often not appreciated (or mentioned) in modern QFT literature albeit its

importance. The RHS of Eq. (2.15) usually is contributed by gauge field due to their affine

transformation structure in field space. Once the EOM of the gauge field is satisfied, the

current continuity equation on the LHS is derived, without the use of EOM from matters.

Quantizing the gauge fields however, particularly the non-abelian gauge fields, requires

tremendous mathematical machinery. We refer the reader to Ref. [22].

2.2. Quick Review of the Standard Model

In the previous section we have introduced the concept of symmetries and their implications

on conservation laws. Let us now investigate the symmetries of the SM. Essentially the

SM consists of the gauge group SU(3)c × SU(2)L × U(1)Y which dictates the fundamental

interactions of elementary particles mediated by the strong force and the EW force. The

particle content of the SM consists of the vector gauge bosons in the adjoint representation

and the fermionic sector constitutes the left-handed doublets (L and Q) and right-handed

singlets (E, U and D)

L =

(
νL
eL

)
∼(1,2,−1/2), Q =

(
uL
dL

)
∼ (3,2, 1/6), E = eR ∼ (1,1,−1),

U = uR ∼ (3,1, 2/3), D = dR ∼ (3,1,−1/3), (2.16)

in SU(3)c × SU(2)L ×U(1)Y representation. The SM Lagrangian can be divided into

LSM = Lkin + LH + LY, (2.17)

where the component of the sub-Lagrangian Lkin contains the kinetic terms of the SM gauge

and fermionic fields:

Lkin =− 1

4
GαµνG

αµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν + iL̄j /DLj

+ iĒj /DEj + iQ̄j /DQj + iŪj /DUj + iD̄j /DDj , (2.18)

where Gαµν , W a
µν and Bµν are the gauge field strengths of SU(3)c × SU(2)L × U(1)Y given

in terms of their respective gauge fields Gαµ, W a
µ and Bµ and the flavor index j is included.

As the three of the EW gauge fields and the fermions are not massless, the mass terms

can be generated by using the Higgs mechanism [23–25] to break SU(2)L×U(1)Y → U(1)em
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spontaneously. In the SM we have a Higgs SU(2)L doublet

H =

 G+

h+iG0

√
2

 ∼ (1,2, 1). (2.19)

The (G±, G0) are the would-be Nambu-Goldstone modes, while the neutral component h

represents the physical Higgs field. The Higgs Lagrangian is given by

LH = (DµH)†(DµH)−m2H†H − λH(H†H)2. (2.20)

In a well defined QFT, the potential must be bounded from below, i.e. λH > 0. When the

mass parameter m2 is positive, the potential has only a minimum at 〈H〉 = 0. To achieve

spontaneous symmetry breaking we have to demand that m2 < 0, i.e. the doublet acquires

a non-zero vacuum expectation value (VEV) and we can parameterize its value to be at the

neutral component of the doublet

〈h〉 = v =

√
|m2|
λH

= 246 GeV. (2.21)

Once the Higgs field acquires a non-zero VEV, EW symmetry is spontaneously broken and

three of the EW gauge bosons, W± and Z, acquire masses while the photon Aµ remains

massless. The weak mixing angle θW with

cos θW =
g2√
g2

1 + g2
2

, sin θW =
g1√
g2

1 + g2
2

, (2.22)

parameterizes the mixing between the third component of the SU(2)L gauge field and the Bµ.

The only remaining physical component of the scalar Higgs doublet in unitary gauge after

spontaneous symmetry breaking is the real scalar h, and its mass is given by m2
h = 2λHv

2.

The origin of mass for all the massive particles in the SM stems from the VEV of the SM

Higgs field. We see that the SM has only one dimensionful parameter, namely the mass

parameter m2. The SM Lagrangian enjoys an additional classical dilatation symmetry if

this parameter vanishes. We will investigate this very interesting possibility and its implied

phenomenology later in this chapter.

The last piece of the SM Lagrangian, the Yukawa sector LY is given by

LY = −Y E
ij L̄iHEj − Y D

ij Q̄iHDj − Y U
ij Q̄i(iσ

2H∗)Uj + h.c. , (2.23)

where the Yukawa matrix Y s
ij generates a complex 3 × 3 mass matrix Ms = vYs/

√
2 for

charged fermions s ∈ {E,D,U} after EWSB. By applying the bi-unitary transformation

V †sMsWs = diag(mI,mII,mIII), (2.24)

where {I, II, III} represents the fermion generation, the mass matrix Ms can be diagonalized.

The mixing between different flavors of the quarks is described by the unitary Cabibbo-
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Kobayashi-Maskawa (CKM) matrix [26],

VCKM = V †UVD. (2.25)

Similar mixing matrix can also be found for the leptonic sector, if neutrinos are not massless,

which would require already physics beyond the SM. We will discuss the structure of flavor

physics later in Chapter 5.

2.3. Puzzles and Problems of the Standard Model

Despite the success of the SM in describing the subatomic physics that we have observed,

there are observations and theoretical puzzles that require an extension of the SM. The

observations incompatible with the SM are:

Neutrino Mass

From pure experimental facts, neutrinos are proven to be massive from the oscillation ex-

periments [27, 28], contrary to the SM where neutrinos are treated as massless fields. Until

today, we do not know the absolute mass scale of the neutrinos, their mass hierarchy and

origin. The bound for the neutrino mass sum obtained from combined analysis of Planck,

WMAP and baryon acoustic oscillation [29] is found to be less than 0.23 eV at 95% C.L.,

while the future measurement of electron end point energy spectrum from beta decays by

KATRIN [30] should improve the neutrino mass scale bound. It is also not known whether

neutrinos are Majorana or Dirac particles, therefore neutrinoless double beta decay (0νββ)

experiments are crucial to determine such a distinction. Recently GERDA [31] has put a

lifetime τ1/2 > 2.1 × 1025 yr at 90% C.L. on 0νββ decay Germanium 76
32Ge isotope, future

run of this experiment could provide hints on the nature of neutrinos. We refer the reader to

some reviews [32, 33] for the current status of experimental searches for neutrino properties.

In this thesis we are interested in the role of discrete symmetry for the leptonic mixing

pattern and we will focus on the leptonic mixing structure for both cases when neutrinos

are Majorana and Dirac particles in Chapter 5.

Dark Matter

From the cosmic microwave background (CMB) [29] and large-scale structure observation

[34], we know that the energy density of the Universe consists of 25% pressureless fluid,

which can be explained by dark matter (DM). DM can also explain the flat angular rotation

curves of galaxies [35] and some gravitational lensing observations [36]. The SM also does

not have a good candidate for explaining the existence of DM, however. For a long time,

the weakly interacting massive particle (WIMP) has been a leading candidate in explaining

the DM. In the early universe, the WIMP annihilated with each other to produce the

SM particles, and this reversible process continued until the expansion rate of the Universe

exceeded the annihilation rate, i.e. a freeze-out process for the DM occurred. The remaining

thermal relics, acting as DM, served as the seed for structure formations at later stage of our

cosmological evolution. Various direct detection experiments with different techniques have
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Figure 2.1: This diagram illustrates all the
relevant interactions for a thermal DM. For
DM annihilation we read the diagram from
left to right, while the direct detection ex-
periment for DM can be represented by
looking at the diagram from top to bottom.
If DM can be produced at collider, we can
interpret the process happening from right
to left.

DM

DM

SM

SM

been built and customized to detect the WIMP interaction with the nuclei. The relevant

WIMP interaction for calculating the relic abundance, production rate at collider, direct

and indirect detection cross section can be compactly summarized in Fig. 2.1. The topic

of DM is vast and we cannot cover all its aspects, for a more comprehensive review on

DM candidates, direct and indirect detection experiments please refer to Ref. [37]. We

will discuss more on the DM candidate proposed in our model and its phenomenologies in

Chapter 4.

Baryogenesis

The fact that we exist today and were not annihilated into energetical radiation requires an

asymmetry in matter and antimatter. To achieve such a baryon asymmetry it is necessary

that the three Sakharov conditions [38], namely baryon number violation, C (charge) and CP

(charge-parity) violation, and out of equilibrium dynamics are satisfied. As the CP-violation

and the out-of-equilibrium dynamics is not enough to satisfy the Sakharov conditions in the

SM. the origin of the matter-antimatter asymmetry demands an explanation beyond the

SM. Several proposed solutions for baryogenesis such as Affleck-Dine mechanism [39], EW

baryogenesis [40] and leptogenesis [41] have been put forward. We will not discuss this topic

further in this thesis, but will briefly touch upon the out-of-equilibrium dynamics described

by phase transition in Chapter 4.

Strong CP-problem

The QCD sector in the SM contains the CP violating term

L ⊃ θQCD

32π2
εµνρσFµνFρσ (2.26)

in the Lagrangian due to the nontrivial structure of its vacuum. Writing down the most

general mass term in the Lagrangian and rotating all the spurious phases away in the SM,

one is left with a physical phase in the CKM matrix and an axial phase which induces a

similar term like Eq. (2.26). Hence a physical strong CP violating phase

θ̄ = θQCD + arg det(MuMd) . 10−11, (2.27)

is induced which a priori should not be small [42]. The delicate cancellation between the

two terms at the RHS of Eq. (2.27) requires extreme fine-tuning, unless there is a new

physical mechanism which can explain the reason for such a small value of θ̄. Solutions for
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strong CP-problem can be obtained by introducing an axion particle [43] with additional

symmetry, or imposing symmetries so that one of the term in RHS of Eq. (2.27) vanishes,

e.g. strong CP is spontaneously broken from flavor symmetry [44].

Dark Energy

From the CMB and supernova observations [45, 46] we know that the Universe is expanding,

requiring a negative pressure or dark energy. So far we do not know the nature of dark

energy, whether it is a constant, some new fields, or due to cosmic inhomogeneity. In this

thesis we will not deal with the expansion of the Universe and we refer the interested reader

to Ref. [47] for a more complete review.

Theoretical Problems of the Standard Model

From the theoretical point of view, the SM contains some of the puzzles which might hint

at the existence of new physics. These problems are not signaling the inadequacy of the

SM, rather their appearance has prompted us to rethink the SM and its possible embedding

in another perspective. The most interesting theoretical puzzles of the SM consist of the

hierarchy problem and the flavor puzzle. The stabilization of the Higgs mass against the

high energy correction in QFT remains one of the most puzzling problem in high energy

physics. We will first focus on the conceptual issue in the hierarchy problem in this chapter

and will provide our attempts to tackle this problem in Chapter 3 and Chapter 4. On the

other hand, the existence of different mass and mixing structure in the quark and leptonic

sector seems to crave for simpler explanation. The flavor puzzle and its possible solution

will be addressed in Chapter 5. The core of this thesis is to tackle both the theoretical

problems and to obtain their interesting phenomenological predictions, which are relevant

for explaining the above mentioned discrepancy from the SM prediction. But first let us

look at the general attempts to solve any problem in high energy physics.

Problem Solving with Symmetry

In high energy physics we are trained to tackle an issue or a problem from different perspec-

tives. However most of the toolbox can be classified into three categories:

• Symmetry,

• Geometry,

• Dynamics,

where typically one is forced to utilize more than one item in the toolbox. Under dynamics

we usually assume some additional field operators that can “align” certain field or vacuum

configurations in a desired solution plane. However to engineer such a solution we usually

assume that there are some underlying symmetries or geometrical configurations in extra

dimension that provide the desired field configuration naturally. The geometrical approach

is sometimes not a satisfactory solution, as typically one does not address the reason why

certain field configurations are stuck in a certain layer of brane or bulk [48, 49], except just to

generate a proper solution set favored by experiments. In this thesis, we instead focus on the
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approach based on symmetries and dynamics, where the phenomena and theoretical puzzle

that require physics beyond the SM can be addressed with simple reasoning of symmetry

and its breaking. Let us now look into the conceptual problem of scales in QFT and its

implication for the SM and its possible embedding.

2.3.1. The Hierarchy Problem

With the Higgs boson discovered at the LHC, the SM is complete. At the present all

the properties measured for this new boson seem to indicate that the newly discovered

scalar boson is SM-like. The SM Higgs field provides a simple mechanism to generate all

the masses for the massive elementary particles in the SM, when the Higgs field obtained a

nonvanishing vacuum expectation value (VEV). At the moment with all the measured values

of other SM couplings, the SM could possibly survive up to the Planck scale by analyzing the

renormalization group equation (RGE) [50–55]. In the language of renormalization group

(RG), some classes of operators can contribute towards the low energy observables, while

some will decouple and become irrelevant for macroscopic phenomenology. Operators that

decouple from high energy modes are called irrelevant operators, while operators that are

always sensitive to the ultraviolet (UV) physics are known as relevant operators. Weakly

coupled operators with d = 4 canonical dimension in a 4-dimensional spacetime are known

as marginal operators and they may contribute to the macroscopic physics depending on

the RGE.

The Higgs mass, being the coupling of the relevant operator φ2, is sensitive to UV physics.

Historically, the large separation between the EW scale and the very high energy scale,

e.g.Mpl is known as the hierarchy problem, making it mandatory to fine-tune the cancellation

between the couplings to obtain the low energy EW mass scale. However, one should be

careful with the subtle details involved.

First of all we need to distinguish the difference between the two fine-tuning notion ap-

pearing in the scalar field theory, best illustrated by an example. Let us consider two singlet

scalar fields that are coupled to each other by potential

V = m2
1φ

2
1 +m2

2φ
2
2 +

λ1

4!
φ4

1 +
λ2

4!
φ4

2 +
λ3

4
φ2

1φ
2
2, (2.28)

where we have imposed a Z2 parity for each of the scalar fields. Suppose that all the

couplings are positive so that spontaneous symmetry breaking does not occur, the one-loop

correction for the φ1 mass can be written as

δm2
1 ∼ C1λ1m

2
1 ln

(
m2

1

µ2

)
+ C2λ3m

2
2 ln

(
m2

2

µ2

)
, (2.29)

where Ci represents some pure number coefficients. The parameter µ represents the renor-

malization scale of our theory. Suppose that m1 � m2, then we would obtain the so-called

hierarchy problem between the mass scales. However one can fine-tune the coupling λ3 such

that λ3 � 1 in order to ameliorate the hierarchy between the two mass scales. Such a

delicate cancellation suffers from the subjective naturalness problem2, but it is technically

2Also known as strong naturalness problem, real naturalness problem, bottom-up naturalness problem,
Dirac naturalness problem by some authors [56, 57].
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Figure 2.2.: (Left) Phase diagram of vacuum stability/metastability depending on the top and Higgs
mass [54]. (Right) Planck scale boundary conditions for the Higgs quartic coupling and their Higgs
mass predictions [52].

natural3 [58], because the beta function for the portal coupling λ3 is multiplicative

dλ3

d lnµ
∼ λ3g(λ3, λi), (2.30)

and therefore the coupling λ3 stays small once it is set to be small at a certain energy. The

function g(λ3, λi) contains all the relevant couplings. The theory suffers from subjective

naturalness problem as a priori one should not expect the coupling to be so small to cancel

out the large contribution of φ2 to the mass of φ1. If the parameter m2
1 is negative, the

field φ1 would obtain a nonvanishing VEV v and trigger spontaneous symmetry breaking.

Depending on the renormalization scheme either the mass parameter m2
1 or the VEV v is

sensitive to the correction of m2
2. Again we could fine-tune the λ3 parameter to be small

such that it is protected by technical naturalness, yet the problem of subjective naturalness

remains.

We now like to discuss some of the confusion regarding the subjective naturalness problem

in the high energy physics community. The couplings for relevant operators suffer from

subjective naturalness problem as they are sensitive to the high energy modes, like our

example above. As we know that the SM Higgs doublet undergoes spontaneous symmetry

breaking, the Higgs VEV or its mass parameter is sensitive against high energy correction,

parameterized by

δm2 ∼ f(λi)Λ
2 ln

(
Λ2

µ2

)
. (2.31)

The term Λ in this case represents the sensitivity of new QFT physics scale, and it is not

a regulator4 that can be sent to infinity after renormalization has been carried out. The

3These two different notions of naturalness have caused so much confusions in the high energy physics
community.

4In fact we should stop talking about the misleading quadratic divergence from technical cutoff, which is
just a regulator and has no meaning.
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quantum correction in Eq. (2.31) contributes to the RGE of the Higgs mass

dm2

d lnµ
= m2γ(λi) + f(λi)Λ

2, (2.32)

where we have neglected some irrelevant numerical coefficients. The term γ dictates the

running of the Higgs mass if the EW scale is the only scale of nature. If we extend the SM

with new physics of scale Λ stemming from high energy QFT physics, one would necessar-

ily run into the subjective naturalness problem. Conventional solution for the subjective

naturalness problem is to invoke a new symmetry (supersymmetry) [59] to cancel out the

function f or to postulate new structure such as extra dimension [48, 49] or compositeness

[60–63] such that the new physics scale Λ is near the scale of m. Applying the argument

to the case of the SM, we should observe new physics at TeV scale. However with only the

Higgs-like particle discovered and no new particle beyond the SM being found, generally

proposed solutions to the hierarchy problem are pushed towards fine-tuned corner. With

the current measured Higgs mass and the top quark mass, the SM could even survive up to

the Planck scale [53, 64], see Fig. 2.2. It seems that the experimental results so far do not

provide any evidence for the conventional solutions of the hierarchy problem and we may

ask ourselves whether traditional view of subjective naturalness is correct.

As we have stressed earlier, Λ represents the scale of new heavy QFT modes which couple

to the SM Higgs field. From the traditional Wilsonian view of QFT, low energy physics

is a remnant of physical degrees of freedom after integrating out the high scale physics.

Embedding the SM in another high energy QFT may risk of running into subjective natu-

ralness problem when the m is fine-tuned against the correction of high energy modes. Even

the minimal supersymmetric version of the SM suffers from such fine-tuning problem if the

supersymmetry breaking scale is large enough. However, the Wilsonian view might not be

applicable when the only high scale physics is beyond the concept of QFT, which could be

the scenario for quantum gravity as a priori we have no idea what this new physics might be,

and the SM might just be a boundary condition of an unknown non-QFT quantum gravity.

One might ask, which boundary condition from quantum gravity might be reasonable to

explain the SM? Since we do not want a fine-tuning between two widely separated energy

scales, then we should perhaps start from a fundamental theory with no explicit energy

scale, with the resulting EW scale generated quantum mechanically. That is, we assume

that m(Mpl) = 0. Looking back at the SM Lagrangian, the only explicit mass scale in the

Lagrangian is the Higgs bare mass parameter that breaks classical scale invariance and from

the observation that m/Mpl � 1, the SM in a full embedded theory with gravity exhibits

classical scale invariance from UV perspective due to the smallness of m [65]. Therefore it

is possible that the EW scale is generated quantum mechanically via anomalous breaking

of the classical scale symmetry. Embedding the SM in a new QFT with very high energy

between the EW and Planck scale would invalidate our argument, hence we need to assume

that new physics at TeV regime which break classical invariance anomalously in the second

term of Eq. (2.32) should be generated radiatively. Why we have a classically invariant

Lagrangian as boundary conditions of Planck scale physics, this has to be justified in an

UV complete quantum gravity framework. In this thesis we will assume that this is the

case, and investigate the implied phenomenologies. This idea is not as far fetched as it
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seems as the QCD hadronic length ΛQCD is generated by dimensional transmutation from

the dimensionless strong coupling. Perhaps classical scale invariance is a good starting point

to rethink about the hierarchy problem, and that the EW scale is generated by quantum

phenomenon.

2.4. Scale Invariance Versus Conformal Symmetry

Scale invariance is a special property of an object or a law that preserves its form after a

scaling of length or energy is performed, i.e. the object preserves its form when we zoom in

or out on it. Since we are dealing with fields in modern high energy physics, a multicompo-

nent field Φ(x) with d as scale dimension is said to possess classical scale invariance if the

transformation

∆sΦ(x) = λs(x
µ∂µ + d)Φ(x), (2.33)

with λs as dilatation parameter, leaves the classical action of the theory invariant. The scale

current associated with the above symmetry is defined as

Jµ = xνΘµν , and ∂µJ
µ =W, (2.34)

with W as some function of the fields and their derivatives after performing the transfor-

mation in Eq. (2.33). The term Θµν is the improved symmetric energy momentum tensor

[66]. The classical scale current in Eq. (2.34) is conserved iff W vanishes

Θµ
µ = ∂µJ

µ = 0. (2.35)

Suppose that we restrict ourselves in considering only the scalar, spinor and vector fields

with canonical dimension 1, 3/2 and 1 respectively, the quantity W will only consist of

combinations of fields with dimension d 6= 4, e.g. W = mψψ̄ψ + m2
φφ

2 + ρφ3 if we write

down all the possible renormalizable terms allowed by the symmetry of the theory (we have

restricted our dimensionality to d = 4 in the Lagrangian). It is clear from the analysis of

W that all terms with dimensionful parameters break classical scale invariance.

What about conformal symmetry? Mathematically speaking conformal symmetry con-

tains scale transformation as its subgroup. The action is classically conformal invariant

if it is invariant under the Poincaré transformation, scale transformation and the special

conformal transformation

∆cΦ(x) = (2x · λcxν − x2λνc )∂νΦ(x) + 2(x · λcd− xνΣνµλ
µ
c )Φ(x), (2.36)

where Σµν represents the Lorentz rotations on the components of Φ(x) and λµc is a special

conformal transformation parameter. The conformal group with D conformal transforma-

tions is SO(D, 2). Naively one would think that a classically conformal invariant physical

theory is necessary different than classically scale invariant theory. However physical theory

may contain more surprises than mathematical intuition. Under some assumptions, scale

invariant QFT always seems to be conformal invariant too. It is the dynamic of the theory

that promotes the scale invariant QFT to conformal QFT. For d = 2 scale invariant QFT,
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it has been proven that such QFT possesses the enhanced conformal symmetry, guaranteed

by Zamolodchikov-Polchinski theorem [67, 68] under the following assumptions

• unitarity,

• Poincaré invariance,

• discrete spectrum in scaling dimension,

• existence of scale current,

• unbroken scale invariance.

It is conjectured that with the above assumptions, the symmetry enhancement from scale

invariant theory to conformal symmetry theory should be also valid for d = 4, which up until

today, no counter example has been found5. We will not distinguish the difference between

scale invariance/dilatation symmetry and conformal symmetry in this thesis as most of the

models constructed for high energy physics satisfy the required assumptions listed above,

but readers should keep in mind the assumptions in play.

2.4.1. Breaking Scale Invariance

In low energy physics, scale invariance must be broken, otherwise particles would have con-

tinuous mass spectra or be massless. There are several ways to account for global symmetry

breaking. One way is to write down the explicit symmetry breaking term in the Lagrangian

with small coupling such that the symmetry is explicitly broken. Another way to achieve

symmetry breaking is via spontaneous symmetry breaking, where the ground state of the

theory does not respect the original symmetry. Depending on the underlying symmetry, one

may obtain Nambu-Goldstone bosons, domain walls or cosmic strings if the symmetry is

broken spontaneously. On the other hand, the dynamical equations still possess the desired

symmetry and the Ward identities are still valid. Lastly a classical symmetry in a theory

can be broken anomalously, where quantum corrections to the classical theory break the

underlying symmetry. In this approach, anomalies occur and the quantum correction to the

classical theory does not respect the Ward identity (2.12). Scale invariance is interesting

as it is possible to achieve the breaking of such symmetry with all the methods mentioned

above. For the SM, dilatation symmetry is broken explicitly by the m2H†H term. Suppose

that we assume m2 term is zero at classical level, perturbative quantum corrections will

require us to renormalize the theory at a specific energy scale, hence breaking the scale

symmetry anomalously. If we insist on breaking scale invariance spontaneously [70], we are

not allowed to introduce an energy scale in our renormalized theory, therefore one has to

find a method to keep scale invariance at quantum level, and only break the ground state

symmetry. A theory with spontaneous broken scale invariance would contain a massless

Nambu-Goldstone boson known as dilaton in the spectrum, whereas if scale invariance is

broken anomalously, such dilaton particle would not appear. To maintain quantum scale

invariance and break it spontaneously, nonrenormalizable terms or some nonperturbative

aspects of QFT are usually required and it is not known however if such an approach is

5See Ref. [69] for more detailed discussions.
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Figure 2.3: The running of generic couplings
with some generic perturbative boundary
conditions. The theory flows to a CFT at
around µ ∼ 5 TeV, where all the generic cou-
plings of a particular theory begin to flow to
a set of fixed points. This would solve the
hierarchy problem as the VEV of the Higgs
only receives contribution at most at the TeV
range. No further mass scale exists above the
TeV regime.

consistent. We will not pursue model building along this direction in the thesis, and instead

focus on breaking scale invariance anomalously.

2.4.2. Anomalies

Depending on how the classical scale invariant theory is defined, i.e. whether it is defined

on a curved spacetime or how additional gauge group and representations are introduced,

the anomaly from breaking dilatation symmetry anomalously would increase with much

complexity. Simply put, the anomalous Ward identity of scale symmetry is badly violated,

and even the partially conserved dilatation current (PCDC) in perturbation theory does not

exist6 [71]. The general anomalous Ward identity for the scale/dilatation current can be

cast in the following form [69, 72]

〈Θµ
µ〉 = βIOI +A+ V, (2.37)

where βI is the corresponding beta function for operator OI7. We can see that the nonva-

nishing RHS of Eq. (2.37) can contribute to the violation of dilatation current. The term

A only arises when the theory is defined on curved spacetime, stemming from the Weyl

anomaly. We will not discuss the Weyl anomaly as the scale invariant extensions of our

models are only defined on a flat spacetime. The term V contains vector beta functions

which describe the RGE for the vector background source. This term is also irrelevant

for our discussion. The most important contribution to the anomalous breaking of scale

invariance stems from the RGE of the couplings involving the d = 4 operators.

There exists a class of theories where the beta functions of the couplings always vanish,

which is known as conformal field theory (CFT). For instance the N = 4 Super Yang-Mills

theory [73] is a pure CFT due to the cancellation of the terms contributing towards the beta

function. Alternatively there is another scenario to restore scale invariance at high energy.

A theory is called asymptotically safe if the couplings of the theory flow to a set of fixed

points at high energy [74, 75], i.e. the beta functions vanish at the UV of the theory, see

Fig. 2.3. If this scenario is possible, then scale invariance is restored at the high energy.

For a successful implementation of this idea in the case of the SM, the transition scale for

a theory to a CFT has to be around the TeV scale in order to avoid the hierarchy problem.

6Compared to anomalous breaking of axial current in a generic fermionic QFT with flavor chiral symmetry,
at least a partially conserved axial current (PCAC) can be defined.

7Remember that W vanishes as we have a classical scale invariant theory from the start.
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Model building along this direction so far has been unsuccessful, as it is nontrivial for all

the couplings in the SM with extensions to flow towards a set of fixed point. Furthermore,

quantum gravity might play a role in the RGE at the Planck scale, potentially spoiling the

asymptotic safety scenario.

2.4.3. Boundary Condition or Symmetry?

If we suppose that we have no CFT as our UV completion in our model, at first glance

classical scale invariance seems to be a bad symmetry to begin with, as the dilatation current

for an interacting theory is anomalous. There is an alternative way to interpret a classically

scale invariant theory in another language, namely that all the renormalized dimensionful

couplings vanish at some high energy scale, i.e. the vanishing renormalized dimensionful

couplings at certain high energy scale are just a specific set of boundary conditions for the

RGE of the couplings. One might still worry about the fine-tuning problem between the

cancellation of Planck scale value to obtain the EW scale. However if quantum gravity is a

new concept beyond QFT, then such a Wilsonian view might not apply to the argument on

the sensitivity of EW scale against the Planck scale physics. If we accept such an assumption,

then classical scale invariance provides a set of special boundary conditions for the RGE of

the SM and its extension, which is obtained from the non-QFT physics. This argument also

explains the appearance of the dimensionful counterterm in the Lagrangian8, as one would

have naively thought that such terms should not be there due to scale invariance.

The model building with the assumption of scale invariance is hence now straight forward.

We will demonstrate how dimensional transmutation is obtained from a concrete φ4 example,

starting with a classically scale invariant Lagrangian

L ⊃ (Dµφ)†(Dµφ)− λ

4
(φ†φ)2, (2.38)

where the scalar field φ is charged under some gauge group. Next, the effective action

with quantum correction taken into account is calculated and depending on the dynamics

of the theory, dimensional transmutation can occur perturbatively or via strongly coupled

dynamics. The former can be achieved when quantum corrections to the effective potential

cause a nonzero VEV to arise9

V ∼ λ

4!
φ4
c + Cλ2φ4

c

[
ln

(
φ2
c

µ2

)
−D

]
+ . . . , (2.39)

where the field φc represents the flat direction of the potential. Notice the appearance of the

renormalization scale µ, which breaks the dilatation symmetry due to the renormalization

procedure. The renormalized mass appears due to the renormalization conditions and hence

one can say that the scale of this theory appears radiatively. This radiative correction as

the origin of spontaneous symmetry breaking for the scalar sector is called the Coleman-

Weinberg mechanism [76]. Simply put, the anomalous breaking of scale invariance triggers

8We need the counterterms to obtain renormalized quantities.
9There is a saying that log = quantum in QFT folklore.
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Figure 2.4: The scalar field φc obtains a
nonzero VEV in the effective potential (red)
after quantum correction. The classical po-
tential (blue) is plotted for comparison.

the spontaneous symmetry breaking of the scalar sector, which can be summarized as

〈Θµ
µ〉 6= 0→ 〈φc〉 6= 0. (2.40)

The effect of mass scale generation by a nonzero VEV in the effective potential can be seen

in Fig. 2.4.

On the other hand, dimensional transmutation can also be achieved by strong dynamics.

From the example given in Eq. (2.38), suppose that the gauge coupling g of a non-abelian

gauge group under which φ is charged becomes nonperturbative at some energy scale due

to RGE, the theory becomes strongly coupled and a bound state of the scalar field φ can

be formed due to confinement. The resulting condensate 〈φ†φ〉 6= 0 generates a mass scale

of the low energy theory, realizing dimensional transmutation in a nonperturbative way.

Again, like the perturbative method explain above, the mass scale generation for the scalar

field can be achieved via the anomalous breaking of classically scale invariant theory

〈Θµ
µ〉 6= 0→ 〈φ†φ〉 6= 0. (2.41)

2.5. Scale Invariance and the SM

It is interesting that the SM contains only one dimensionful parameter, namely the mass

squared term m2 in Eq. (2.20). Therefore it is intriguing to extract the SM Higgs mass

prediction if the SM possesses classical scale invariance as an additional symmetry. If we

accept that classical scale invariance represents a special boundary conditions imposed by

quantum gravity beyond QFT, we can extract the SM Higgs mass prediction at low energy,

generated by quantum effects. The SM effective potential for the Higgs field is given by

V = −m
2

2
h2 +

λ

4
h4 + βλh

4 ln

(
h2

v2

)
, (2.42)

where we sum over only the EW gauge bosons, the Higgs and the top quark contributions

for the beta function βλ of λ. We have chosen the renormalization scale µ = v. From

the minimum conditions at h = v and the classical scale invariant condition m2 = 0, the
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predicted Higgs mass

m2
h =

∂2V

∂h2

∣∣∣∣
h=v

= 8βλv
2 (2.43)

turns out to be imaginary as the beta function for quartic Higgs coupling is negative due to

the heavy top quark mass. Therefore classically scale invariant SM is completely ruled out

and if classical scale invariance is a boundary condition predicted by quantum gravity, the

SM has to be extended.

2.6. Scale Invariant Extension of the SM

With only the SM Higgs like particle discovered and no new particle beyond the SM been

found so far, there is no evidence for any of the generally proposed solutions to the hierarchy

problem. With the current measured Higgs mass and the top quark mass, the SM could

even survive up to the Planck scale [53, 64]. A possible solution to the hierarchy problem is

based on classical scale invariance, which is violated at the quantum level and hence a scale

is generated. Suppose that we extend the SM with a new classically scale invariant sector,

then the EW scale can be generated by the anomalous breaking of dilatation symmetry.

Essentially the dimensional transmutation can be achieved in two classes of theories10:

• Coleman-Weinberg mechanism [77–94],

• Nonperturbative scale generation in a strongly coupled sector [95–102],

where renormalizability is assumed. Many of these attempts rely on the Higgs portal

λHSS
†SH†H, (2.44)

where the additional scalar field S (charged or neutral under a certain gauge group) obtains a

VEV either directly or indirectly. It is also possible to generate the EW scale if a condensate

of 〈S†S〉 is formed due to some underlying strong dynamics [102].

For the case of the Coleman-Weinberg mechanism, the EW scale is generated when the

whole effective potential has a global minimum at nonvanishing field value after taking

quantum corrections into account. From Eq. (2.42), we see that by minimizing the effective

potential at the nonvanishing VEV, the physical Higgs mass with quantum correction has

the form of Eq. (2.43). For the SM case, the beta function for λ is negative due to the

large top quark contribution. Hence in order to obtain the desired mh ≈ 125 GeV [6, 7],

extra bosonic degrees of freedom have to be introduced in order to cancel out the top quark

contribution. An additional scalar S can accomplish this task and depending on whether the

new scalar is charged under certain gauge group or not, one can obtain richer phenomenology

in DM or collider searches.

In this thesis we will focus on some other possibilities to generate the EW scale nonper-

turbatively from a strongly coupled sector. In general a non-abelian gauge sector with some

matter representations charged under this gauge group is introduced in order to achieve it.

10At least up until this thesis was written.
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The dimensional transmutation method is similar to QCD, where the strong gauge coupling

grows to nonperturbative regime at ΛQCD and subsequently confinement takes place with

nontrivial condensates making up the low energy vacuum of QCD. The condensation scale

from a strongly coupled sector is transmitted to the EW sector to trigger EWSB, either

directly or indirectly.

2.6.1. Direct Scale Transmission

Consider the Higgs portal term in Eq. (2.44), the difference between direct and indirect

scale transmission depends on the role of the scalar field S that couples to the Higgs. In

a direct scale transmission scenario, we demand that this additional scalar forms a con-

densate, generating a scale via dimensional transmutation from a strongly coupled sector

and subsequently triggers EWSB. We can consider an additional scalar S charged under a

representation of a non-abelian gauge group, which is introduced in addition to the SM. The

Higgs portal term always exists as it is a renormalizable term. In general, the condensation

of S, i.e. 〈S†S〉 6= 0, takes place when

C2(S)α(Λ) & 1, (2.45)

with C2 representing the quadratic Casimir of the certain representation R of S and α is the

gauge coupling of the chosen non-abelian gauge group. Condensation of S takes place when

Eq. (2.45) is satisfied, generating a condensation scale 〈S†S〉 = Λ2
c which serves effectively

as the Higgs mass parameter at low energy

λHSS
†SH†H → λHS〈S†S〉H†H = λHSΛ2

cH
†H ∼= m2H†H. (2.46)

This mechanism followed the idea of Eq. (2.41) and we will provide a concrete model in

Chapter 3.

2.6.2. Indirect Scale Transmission

Contrary to the direct scale transmission scenario above, the role of the new scalar field in

this case is more passive. In general this scalar particle acts as a mediator that transmits a

scale from another sector, with the assumption that the new scalar boson couples to both

the SM and the additional strongly coupled sector. For example we could insist on using

a condensate formed by fermion pair, which is generated by spontaneous chiral symmetry

breaking in the hidden sector, to trigger the EWSB. A scalar mediator S, which coupled to

both the hidden and SM sector as follows

L ⊃ ySψ̄ψ + λHSS
2H†H, (2.47)

is needed in order to make the theory renormalizable, as the direct coupling

〈ψ̄ψ〉H†H (2.48)

requires the nonrenormalizable operator ψ̄ψH†H. Instead we achieve the scale transmission

via an additional scalar field as mediator, where this scalar field S is coupled to the fermions
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that form a condensate through the Yukawa interaction. Once the fermionic condensate is

formed, the S field obtains a nonzero VEV and subsequently transmits the condensation

scale to the EW sector. Schematically this process is summarized as

〈ψ̄ψ〉 → 〈S〉 → 〈H〉, (2.49)

where the EW scale generation proceeds as follows

λHSS
2H†H → λHS〈S〉2H†H. (2.50)

Note that 〈S†S〉 is an condensate in Eq. (2.46) while 〈S〉 represents a VEV in Eq. (2.50).

We will discuss a concrete model along this approach in Chapter 4.

2.7. Summary

In this chapter we have provided an explanation for the hierarchy problem and scrutinized

it in a detailed way. We have proposed a scale invariant extension of the SM to solve the

hierarchy problem. The EW scale is generated quantum mechanically and does not suffer

from UV sensitivity, assuming that there is no mass scale in a strict QFT sense between the

EW and the Planck scale. As the SM without the mass term could not generate the correct

Higgs mass, an extension of the SM is necessary if we assume that classical scale invariance

is the right candidate to solve the hierarchy problem. In general there are two ways to

generate mass scale from a classically scale invariant theory, either through a perturbative

(Coleman-Weinberg) approach or a strongly coupled theory. In this thesis we will focus on

the latter and we have classified the general approach to generate mass scale from a strongly

coupled sector, either directly or indirectly. In the next two chapters we will show some

models on how to implement these core ideas.
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Electroweak Symmetry Breaking by QCD

In this chapter we propose a model to trigger electroweak symmetry breaking (EWSB)

by the condensation of a scalar charged under the QCD gauge group. We start off with

the classically scale invariant Standard Model (SM) plus an additional scalar field which

only couples to the Higgs sector. To obtain a condensate at the TeV regime, the scalar

field has to be necessarily charged under higher-dimensional representation of SU(3)c. As

the scalar field is charged under QCD, it can be produced at the LHC. We will discuss the

collider phenomenology relating to the production and decay channels of the QCD scalar

field. Additionally the production cross section of the Higgs particle in the gluon fusion

channel will also be modified and such deviation can be detected also at the LHC. We will

discuss some of the nonperturbative aspects of the model and highlight the challenges that

we need to tackle to obtain information in the nonperturbative regime. The structure and

results presented in this chapter are based on our work with Jisuke Kubo and Manfred

Lindner [102], accepted for publication by Physical Review Letters.

3.1. Scale Invariant Extension with Scalar QCD

We would like to explain the electroweak (EW) scale from quantum phenomena, and since

the SM alone with m2 → 0 predicts an incorrect value for the Higgs mass, the SM necessarily

needs to be extended. In this chapter we propose a model with an additional scalar field S

which is charged under a non-abelian gauge group, forming a condensate when the gauge

coupling becomes nonperturbative. As we have mentioned in Sec. 2.6.1, in general the

condensation of S, i.e. 〈S†S〉 6= 0, occurs when [103–105]

C2(S)α(Λ) & 1, (3.1)

with C2 representing the quadratic Casimir of a gauge group representation R for S particle,

and α is the gauge coupling of a chosen non-abelian gauge group. The important point here

is that confinement1 can occur even if the gauge coupling α is relatively small, provided

that the representation of S is large enough to satisfy Eq. (3.1). This important fact is

often ignored in the introductory lecture and literature of QCD or strongly coupled QFT.

For the case of ordinary QCD, the C2 of quarks is small due to the fact that it belongs to

1Though there are subtle differences, we assume that the confinement scale is the same as the condensation
scale in this thesis.
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the fundamental representation of SU(3)c, and an energy scale of O(1 GeV) is generated

by the quark condensates. Hence according to Eq. (3.1), QCD can generate much more

higher energy condensates in principle, if new colored degrees of freedom charged under a

larger representation of QCD exist, One might wonder whether this approach agrees with

traditional view of dimensional transmutation, where a gauge coupling is exchanged with a

dimensional quantity. We would like to clarify that this view of one-to-one exchange of di-

mensionless parameter to dimensional quantity is wrong. In fact, dimensional transmutation

mechanism can generate different mass scales from a single dimensionless gauge coupling.

The crucial point for this situation to occur is the existence of different particles in different

representations under a non-abelian gauge group. One can also view the different mass scale

generation from a different perspective, where the higher mass scale is generated from the

running of the lowest mass scale obtained from the condensates of particles in fundamental

representation, with the running dictated by the beta function. Intuitively for the case of

QCD we have

ΛQCD → ΛQCD exp

(
−
∫

d lnµ

βQCD+6(µ)

)
︸ ︷︷ ︸

Λ6

→ ΛQCD exp

(
−
∫

d lnµ

βQCD+6+8(µ)

)
︸ ︷︷ ︸

Λ8

→ . . . , (3.2)

if particles with larger representation such as 6 or adjoint exist2. Exotic quarks which

generate higher energy condensate have been considered before in Refs. [106, 107]. However,

most of these exotic fermions which are charged under the EW gauge group cannot generate

the correct EW scale without running into large discrepancy with the EW precision tests.

The situation will be different if we consider a colored EW singlet scalar field.

The idea presented above works for any arbitrary non-abelian gauge group, for simplicity

we would like extend the success of QCD minimally and see whether it is possible to generate

the EW scale from QCD condensates. We assume that the SM with a new scalar charged

under QCD is classically scale invariant. The EW scale is dynamically generated via the

condensation scale of S once Eq. (3.1) is fulfilled. We remind the reader that the strong

sector of the SM itself is scale invariant before EWSB, contrary to ordinary QCD with

explicit massive quarks after EWSB. The full Lagrangian for our model is given as

L =LSM,m2→0 + (Dµ,ijSj)
†(Dµ

ikSk) + λHSH
†HS†S − λ1i

[
S̄ × S × S̄ × S

]
1i
, (3.3)

where Dµ
ij = δij∂

µ − igs(TR)kijG
µ
k is the covariant derivative of S, and TR represents the

generator for the S field in representation R of SU(3)c. The quartic scalar coupling λ1i

denotes the ith invariant singlet term formed by the contraction of four tensor products in

the S representation.

Due to classical scale invariance, quadratic and cubic terms of S do not appear in Eq. (3.3).

Hence one can see that the Lagrangian (3.3) exhibits an accidental U(1) symmetry for the

S field, which is a priori an accidental global symmetry. This accidental U(1) symmetry for

the S sector has very interesting phenomenology if it is identified with the gauged U(1)Y

2In principle, the scale generated by fermions in fundamental representation of QCD should differ from the
gluon condensation scale. The fact that both the scales are of similar order is due to the small difference
between the quadratic Casimirs of fundamental and adjoint representations in SU(3)c.
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Rep (R) C2(R) C(R) Λ (GeV)

3 4/3 1/2 0.3

8 3 3 1

10 6 15/2 20

15 16/3 10 10

15′ 28/3 35/2 1000

21 40/3 35 105

Table 3.1: Values for the quadratic Casimir
and index of certain representations in
QCD are listed. We list down the approxi-
mate confinement scale Λ for each represen-
tation, calculated from Eq. (3.1). Similar
table for different gauge groups and repre-
sentations can be found in Refs. [108, 109].

hypercharge symmetry of the SM, which we will discuss later.

The EWSB triggered by QCD comes with the following steps: First, the strong coupling gs
runs from a finite value fixed at high energy scale (e.g. the Planck scale) to the condensation

scale of S. The scalar condensate 〈S†S〉 is formed when Eq. (3.1) is satisfied for O(1 TeV)

where the small value of strong coupling αs(Λ = 1 TeV) ≈ 0.09 is compensated by the large

value of C2 for S in higher representation, say R = 15′. The condensation scale is fixed

once a representation for S is chosen as the strong gauge coupling is well measured and

constrained. Table 3.1 shows a list of representations and the order of confinement scale for

QCD. The condensate then generates a scale Λ, triggering EWSB dynamically:

λHS〈S†S〉H†H → λHSΛ2H†H. (3.4)

The Higgs mass can be determined from

m2
h = 2λHSΛ2, (3.5)

after EWSB and this subsequently dictates the Higgs quartic coupling λH

λH
λHS

=
Λ2

v2
, (3.6)

where v = 246 GeV is the Higgs vacuum expectation value (VEV). Note that the coupling

λHS is determined once the condensation scale Λ is set to be any energy value higher than

the EW scale, as we require the condensate to form before EWSB. There is no upper limit

on Λ in general, except that one would require a larger representation of S to trigger EWSB

if λ is larger, as αs decreases with higher energy and λHS is getting more fine-tuned in order

to match the experimentally observed Higgs mass. The core idea above is to generate the

EW scale by direct transmission of condensation scale of a new colored scalar field which

couples to the Higgs directly, realizing the radiative EW scale generation by anomalous scale

symmetry breaking

〈Θµ
µ〉 6= 0→ 〈S†S〉 6= 0→ 〈H〉 6= 0. (3.7)

Our new additional field does not alter the low energy QCD as the effect of S decou-

ples from the running of strong coupling at low energy. The coupling of S (in higher

representation) with the quarks (in fundamental representation) to form a singlet typically

requires higher-dimensional operators, therefore the effect of S on hadronic physics is al-

ways suppressed. It is crucial to remember that a large C2 value for larger representation
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accomplished two things for us:

• It gives a large contribution to Eq. (3.1) such that condensation can take place at scale

of O(TeV) despite the small coupling of αs.

• It suppresses the interaction between S and quarks as more quarks fields (higher-

dimensional operators) are needed to contract the group indices.

As we can see from Table 3.1, the representation 15′ is suitable for EWSB as it generates the

desired condensation scale at O(1 TeV) naturally without fine-tuning of λHS . The choice

of 15′ is unique as smaller representations cannot generate a correct Higgs mass mh at

perturbative level. The coupling λHS has to be larger than 20 even for the next possibility

10, which would render the theory nonperturbative.

3.2. Theoretical Constraints and RGE

Let us discuss the phenomenology of this new colored scalar particle S charged under 15′

of the QCD representation. Without imposing some constraints on the parameters based

on the experimental measurements, we can first impose some theoretical constraints on

the coupling λ1i and λHS from the requirement that all the relevant scalar couplings do

not destabilize the vacuum or hit a Landau pole. For a 15′ representation, three quartic

couplings λ1i exist in the scalar potential as three invariants can be formed from the tensor

products

15′ ⊗ 15′ ⊗ 1̄5′ ⊗ 1̄5′ = 145⊗4̄5 + 160⊗6̄0 + 115′⊗1̄5′ + nonsinglet, (3.8)

where for instance 145⊗4̄5 stems from symmetrical tensor product of 45s⊗ 4̄5s. The invari-

ants formed by the tensor products can be calculated by considering all the Clebsch-Gordan

coefficients. From there we can calculate the one-loop beta functions for all the scalar quartic

couplings [110]. A priori these three λ1i couplings are independent of each other and one has

to perform experiments to obtain them independently. However, since we do not have any

prior information about them, and experiments at first stage can only measure the S parti-

cle’s mass, we have to make some assumptions regarding λ1i . We simplify our calculation by

assuming that each λ1i has roughly the same order, i.e. we normalize λ1i ≈ λS/3 such that

the mass mS of S can be obtained from the Lagrangian. Attentive reader may have noticed

already that the bare mass term mS does not appear in Eq. (3.3) due to scale invariance.

The mass of S field is also generated radiatively and can be obtained from self-consistent

mean field (SCMF) approximation [111] after 〈S†S〉 is formed, where the condensate mean

field serves as a backreaction source to the S field. The mass for S is obtained from

λS
2

(S†S)(S†S)→ λS〈S†S〉S†S = λSΛ2S†S. (3.9)

The SCMF technique is known as bosonization in condensed matter theory and it is usually

applied to the fermionic condensate. We will study SCMF also in Chapter 4 and we refer the

reader to Appendix B for more details. We can think of the mass term of S as being sourced

by the background vacuum of the 〈S†S〉 condensate. Once the dimensional transmutation
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Figure 3.1: The running of scalar couplings
with some generic boundary conditions at the
scale of 1 TeV. Increasing the mass of S
will increase the coupling λS , which will drive
the theory into the nonperturbative regime at
O(10) TeV.

occurs, the coupling λS dictates the mass m2
S = λSΛ2, while the mixing parameter λHS

determines mh. As the couplings and the masses are related, our model is very predictive.

Note that the large mS will cancel the negative contribution from λHS term after EWSB,

preventing the S field from obtaining nonzero VEV and hence the SU(3)c symmetry is not

spontaneously broken.

From the RGE analysis we obtain the running of scalar couplings once the condensation

scale is set. The resulting RGE for certain generic values of λS(Λ = 1 TeV) is shown in

Fig. 3.1. Remember that the coupling λHS is set once the condensation scale is fixed, as

they are related by the measured Higgs mass mh. As we demand that theory is perturbative,

and since the mass mS is proportional to λS , we cannot tune the mass term to be heavier

like most of the beyond the SM extension due to the emergence of Landau pole. The upper

bound on mS is obtained by demanding perturbativity in our simplest scenario, and other

more realistic model with additional particles would alter the upper bound significantly.

The mass lower bound can be obtained from collider searches, as we will discuss in the next

section. The running of λHS is relatively slow as it is technically nature in the RGE and will

become nonperturbative when λS hits the Landau pole. The coupling λH is subsequently

driven to a Landau pole once λHS and λS become nonperturbative.

At the RGE analysis it seems that our model does not solve the hierarchy problem, as we

would require new physics at O(10) TeV. We would like to stress that Fig. 3.1 is obtained

by our simple assumptions from above, and other RGE scenarios will be obtained if the

parameters λ1i and the confinement scale Λ are varied independently, which is possible

as the coupling λ1i should be a priori independent. In this thesis we have introduced

the simplest extension of a QCD scalar boson to achieve EWSB, realistic models which

include dark matter (DM) and neutrinos that coupled to the new sector might change the

RGE for λS substantially. For instance adding new fermions which couple to our colored

scalar will decrease the running of λS . The existence of Landau pole might be a signal of

nonperturbativity, or it might signal the need for more realistic models. We will leave the

UV completion issue for the future, and stress that more realistic model building would need

to take other physics beyond the SM into account. But we stress that our simple model

with minimalistic assumptions and the requirement of low UV scale with the assumption of

perturbativity can be tested or ruled out at the LHC.
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Figure 3.2.: (Left) The contribution of S to the Higgs production in the gluon fusion channel. (Right)
The Higgs production cross section from the gluon fusion channel at NLO is calculated for different
values of λHS and mS . The solid (dashed) curves represent the σ(gg → h) prediction at

√
s = 14 TeV

(8 TeV). The combined signal strength µ for ATLAS [112] and CMS [113] is shown where we have
assumed a SM-like BR.

3.3. Collider Phenomenology

3.3.1. Higgs Production Cross Section in Gluon Fusion

As the scalar S is coupled to the gluon, it can alter the Higgs production rate in the gluon

fusion channel due to Eq. (2.44). We have calculated σ(pp → h + X) to next-to-leading

order (NLO) with this additional scalar, with the general formula for the hadronic cross

section of the Higgs production via gluon fusion given as

σ(pp→ h+X) =
∑
a,b

∫ 1

0
dx1dx2dz fa(x1, µ

2
F )fb(x2, µ

2
F )δ

(
x− τh

x1x2

)
σ̂ab(z), (3.10)

with τh = m2
h/s, where s is the center-of-mass energy squared. The term µF represents

the factorization scale for the parton density function (PDF) fa,b. The cross section σ̂ab
includes all the partonic processes of ab→ h+X at the center-of-mass energy ŝ = x1x2s with

a, b = g, q, q̄. The additional color scalar S in our model contributes to the Higgs production

in gluon fusion via loop, see Fig. 3.2. We followed the calculation of Ref. [114] and utilized

the heavy scalar approximation. For the case of the SM, we have checked our calculation

against the automated calculation from HDECAY [115], HIGLU [116], and iHixs [117]. The

PDF parameterization of MSTW2008 [118] implemented in LHAPDF [119] has been utilized in

our computation, where we have set the factorization scale µF and the renormalization scale

µR to be at mh. The zero-width approximation for the Higgs boson has been utilized to

simplify the calculation. The leading-order (LO) partonic cross section of the gluon fusion

process depends on the couplings in the following way:

σ̂gg =
Gµα

2
s(µR)

128
√

2π

∣∣∣∣C(3)Gt + C(S)
λHSv

2

2m2
S

GS
∣∣∣∣2 , (3.11)
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where C(R) is the index of the R representation for bosons and fermions listed in Table 3.1.

The MS strong coupling αs is evaluated at the scale of µR. We only consider the top quark

and S scalar contributions, with their Harmonic Polylogarithms GS,t given as

Gt = −m
2
t

m2
h

8− 4

(
1− 4

m2
t

m2
h

)
ln2


√

1− 4m2
t /m

2
h − 1√

1− 4m2
t /m

2
h + 1

 ,
GS = 4

m2
S

m2
h

1 +
m2
S

m2
h

ln2


√

1− 4m2
S/m

2
h − 1√

1− 4m2
S/m

2
h + 1

 . (3.12)

For this thesis, we have calculated the Higgs production cross section via gluon fusion up to

NLO including the Altarelli-Parisi splitting function. The result is too tedious to be shown

and we refer the reader to Ref. [114] for the technical details. The resulting NLO production

cross section is shown in Fig. 3.2 (Right).

Since our simplest extension of QCD does not modify the branching ratio (BR) of the

SM Higgs3, the signal strength µ times σ(pp → h)SM from our model’s prediction can be

compared to the measurements by ATLAS [112] and CMS [113]. Depending on the coupling

λHS and the mass of S, the S field decreases the Higgs gluon fusion production rate, to

almost half the SM rate for large value of λHS (small Λ) and small mS . Contrary to the usual

color scalar extension of the SM [120], we obtain a suppression of the gg → h production

rate instead of enhancement due to the negative sign of λHS , which is crucial for EWSB.

3.3.2. Colored Scalar Boson Production

As the LHC is mainly a gluon collider, our colored S boson can be produced at the LHC,

with the dominating LO production channel gg → S∗i Sj given by

+ + + . (3.13)

The LO pair production of colored scalars charged under higher QCD representation in the

gluon fusion channel has been calculated in Refs. [121–125] and the relevant result for our

case is given by

σ(pp→ SS∗) =

∫ 1

0
dx1dx2dz fg(x1, µ

2
F )fg(x2, µ

2
F )σ̂(gg → SS∗), (3.14)

with the partonic cross section given as

σ̂(gg → SS∗) =
πα2

s(µR)

96s

[
y(41− 31y2) + (18y2 − y4 − 17) ln

∣∣∣∣y + 1

y − 1

∣∣∣∣] , (3.15)

3The decay h → γγ is modified with the U(1) accidental symmetry which we will discuss later, but this
loop induced decay is very small compared to the tree-level decays.
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Figure 3.3: The S pair production cross section
from gluon fusion channel is calculated for dif-
ferent values of mS . The 95% confidence level
exclusion limit on σ × BR for

√
s = 7 TeV by

ATLAS is plotted for the lower mass bound. We
assume 100% BR of 〈S†S〉 into two jets.
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where y =
√

1− 4m2
S/s. The resulting two S particles will form a bound state pair each,

with each pair decaying predominantly to gg (2 jets) or to Higgs particles. As we demand

the condensate 〈S†S〉 to trigger EWSB, it has to be heavier than the Higgs, and therefore

will decay to Higgs particles or two gluons. For the case when the condensate mixes with

the Higgs, the BR of h → bb̄ for the final state dominates. While if 〈S†S〉 decays into

two gluons, we would expect two jets emerge as final state decay products. Taking both

possibilities into account, we would expect almost 70% for S∗S → jjjj in the total cross

section.

The prediction of the production cross section times branching ratio for our model is given

in Fig. 3.3. Like in previous section, the MSTW2008 parameterization of PDF implemented in

LHAPDF is utilized in our calculation with the factorization scale µF and the renormalization

scale µR set to be at mS . The width of the color band in Fig. 3.3 represents the theoretical

uncertainty on factorization and renormalization scale and the αs uncertainty from RGE

with extra S contribution. Note that we did not consider the bound state and fragmentation

study in our analysis, which would require a dedicated study. As every 〈S†S〉 bound state

will decay predominantly into 2 jets and only events with more than 2 jets will be triggered

at the LHC, we can only compare the model’s prediction with hadron collider experimental

results if we consider the production of more than one condensate. For the simplest case

we consider the production of two condensates resulting from the processes in Eq. 3.13. We

can impose a lower mass limit on our colored scalar with the ATLAS exclusion limit on pair

production of massive colored scalar decaying to four jets [126]. We have assumed 100%

BR to four jets for the sake of comparison. From the ATLAS searches, mS . 350 GeV is

excluded at 95% confidence level and serves as our lower bound on mS . Combining this

result with the perturbative upper bound from the triviality bound in Sec. 3.2, the mass

parameter of S in our simple model is constrained from both ends, i.e.

350 GeV . mS . 3 TeV, (3.16)

which can be probed or ruled out by the LHC.

In principle exotic condensate such as condensate of S and quarks can be formed, it turns

out that to contract the 15′ index with the fundamental 3 to form a singlet, at least four

quarks are needed, i.e. 〈qqqqS∗〉 can be formed. In principle this exotic condensate can

be produced at the LHC. However, as the S sector contains an accidental U(1) symmetry
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Figure 3.4: The signal strength of h → γγ
branching ratio with the additional colored S
contribution relative to the SM prediction are
shown for different electric charges e and λHS
for S. The large e has to compensate the sup-
pression of production cross section for µγγ en-
hancement.

(see below) and if this global symmetry is not broken, such exotic bound state are required

to be pair produced. We therefore expect that the production of this exotic particles is

a subleading effect as the exotics are much heavier than the simplest 〈S†S〉 state. Let us

discuss some other interesting phenomenologies regarding this accidental symmetry.

3.3.3. Accidental Symmetry

The colored S field in Eq. (3.3) possesses an accidental U(1) symmetry

S → eiθS (3.17)

due to the absence of a cubic term as classical scale invariance is imposed in the Lagrangian.

We can have interesting phenomenology depending on how this accidental symmetry is

identified. Let us imagine a scenario where the scalar “proton”, i.e. a bound state of 〈SSS〉
exists. Due to the accidental U(1) symmetry, this particle is stable, and can serve as a

good DM candidate. However, like the case of baryon, we need to explain the origin of

〈SSS〉 − 〈SSS〉 asymmetry, which is usually very involved.

A more interesting possibility for rich collider phenomenology is when the accidental sym-

metry is identified with the local U(1)Y of the SM, i.e. the S particle is electromagnetically

charged. For instance the h→ γγ decay channel is enhanced by the additional S running in

the loop. Enhancement of h→ γγ is obtained due to the minus sign of λHS [120], contrary

to the usual suppression factor obtained in other typical scalar extension with positive cou-

pling between the Higgs and the additional scalar particle [127]. Strong enhancement of the

signal strength µγγ for different values of mS , λHS and electric charge can be obtained, with

the result normalized to the SM prediction shown in Fig. 3.4. As we have mentioned before

in Sec. 3.3.1, the negative sign in the λHS term suppresses the Higgs production cross section

in gluon fusion channel, while enhancing the signal strength µγγ . The combined effect of

σ × BR can be only enhanced by increasing the electric charge of S or λHS to compensate

the suppression of production cross section. Comparing to µγγ ≈ 1.57 (1.13) reported by

ATLAS [112] (CMS [113]) with the average µγγ ≈ 1.35, our simplest model would require

relatively large electric charge to explain the large h → γγ anomaly for large mS . If the

accidental symmetry is indeed a local abelian electromagnetic gauge group, the large elec-

tric charge provides another possibility to study the S particle production via Drell-Yan

processes in a linear collider, which we postpone for future analysis.
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3.4. Confinement of Strongly Coupled Scalar Field

In the previous sections we have discussed the perturbative aspects of the colored scalar

S. We have restricted the nonperturbative aspect of the model to the upscaling of the gap

equation in Eq. (3.1). Note that it is highly nontrivial to obtain the inequality of Eq. (3.1)

and it turns out that the condition in Eq. (3.1) is even harder to be proven for the scalar

QCD case. But before we highlight the challenges, let us turn to the example of fermionic

QCD.

An analytical way to understand confinement of QCD in the quark sector is to calculate

the scaling of the gap equation from the Dyson-Schwinger equation (DSE)

−1

=
−1

+ , (3.18)

where simplification with rainbow-ladder approximation has been utilized and only the LO

contribution is kept in our analysis, i.e. we have dropped the dressed propagator for the gluon

in the last term of Eq. (3.18). Without further simplification, we would require the DSE

of the gluon propagator and the three-point function, which would make this equation very

hard to solve. We will approximate the one-particle irreducible (1PI) three-point function

by the tree level value −igsγν . Written in full equation

iS−1(p) = /p−m− ig2
s

∫
d4k

(2π)4
γµGµν(p− k)S(k)γν , (3.19)

with the dressed propagator for the quark given as

S(p) =
i

Z(p)/p− Σ(p)
. (3.20)

The wave function Z(p) and self-energy Σ(p) are both scalar functions of momentum. As

it turns out, the self-energy Σ(p) is the crucial part that determines the effective mass

generated by dimensional transmutation of QCD coupling gs. From the matrix structure

of the /p, the wave function and the self-energy term can be separately solved. Rearranging

Eq. (3.19) and working in Landau gauge, the wave function Z(p) = 1 for any self-energy

value, while the self-energy becomes

Σ(p) =m+ 3g2
sC2

∫
d4k

(2π)4

Σ(k)

(p− k)2(k2 + Σ2(k))

=m+
C2αs
2X

∫ p

0
dk

k3Σ(k)

p2(k2 + Σ2(k))
+
Csαs
2X

∫ ∞
p

dk
kΣ(k)

k2 + Σ2(k)
, (3.21)

after the angular variables are integrated. The value X is π/3 in our case, however it is

gauge and truncation scheme dependent and different values ranging from 0.6 to π/3 have

been obtained [103–105]. We will keep X to be free in our general analysis. Differentiating

Eq. (3.21) and rearranging the terms, we obtain the differential equation

p2Σ′′ + 3pΣ′ +
C2αs
X

p2Σ

p2 + Σ2
= 0, (3.22)
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which can be further linearized to a Fredholm integral equation [103, 128, 129] for large p

when Σ in the denominator of the last term is neglected. Using the ansatz Σ ∼ (p)a, we

obtain that the power a must satisfy

a = −1 +

√
1− C2αs

X
. (3.23)

Within certain truncation scheme, in order to know whether dynamical chiral symmetry is

broken and confinement has taken place, we need to obtain the critical value X in

C2(ψ)α(Λ) & X. (3.24)

Intuitively, if C2α(Λ) > X, we can satisfy the finite boundary condition at the UV for the

oscillatory differential equation, even if m→ 0. For the case of C2α(Λ) < X, the boundary

condition cannot be satisfied and hence dynamical chiral symmetry breaking is excluded.

Now comes the subtlety that one has to be careful in obtaining the exact bound of X as the

value X is gauge and truncation scheme dependent. Lowering X will enable us to consider

lower representation of S but throughout our analysis in this chapter we have assumed the

conservative bound X > 0.8. We refer the reader to Refs. [103–105] for more details.

Let us turn to the case of our interest in this thesis, i.e. the nonperturbative aspects of

scalar QCD. The DSE for scalar QCD is given as

−1

=
−1

+ + . . . , (3.25)

where we have dropped all the subleading terms without gauge coupling. Written in full

equation form

Z(p)p2 + Σ2(p) =p2 +
3C2αs

2π

(∫ p

0
dq

q5

p2(Z(q)q2 + Σ2(q))
+

∫ ∞
p

dq
qp2

Z(q)q2 + Σ2(q)

)
,

(3.26)

we notice that the wave function and the self-energy term for scalar DSE are not separable

as the scalar field does not possess the γ matrix structure in the DSE, contrary to the case

for quarks. Furthermore, the scalar DSE integral equation is not linearizable, contrary to

the DSE for quark. The main reason for such difficulty is due to the lack of a confinement

order parameter for scalar QCD. Comparing to the case of ordinary QCD with fermions, the

order parameter for confinement can be related to the degree of chiral symmetry breaking.

Although we cannot solve Eq. (3.25), numerical lattice QCD may shed light on the solution,

which we leave for the experts.

We instead try to understand confinement from a perturbative perspective. We have uti-

lized the scaling Σ ∼ (p)a from Eq. (3.23) to obtain Eq. (3.24) for the case of fermionic DSE.

The a parameter is actually the negative part of anomalous dimension γ〈ψ̄ψ〉 = −a for the

self-energy Σ(p) of the quark condensate. From the perturbative calculation, the anomalous

dimension of operator 〈S†S〉 can be calculated from the wave function renormalization of S
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and renormalization of the composite operator S†S:

= + + . (3.27)

It turns out that when we calculate the anomalous dimension for 〈ψ̄ψ〉 in the same repre-

sentation with the scalar case above, both the anomalous dimensions turn out to be the

same

γ〈ψ̄ψ〉 = γ〈S†S〉 +O(λS). (3.28)

up to the correction subleading correction of O(λS). Hence we can conjecture that the rele-

vant order parameter C2αs at LO for determining confinement in QCD should be the same

for both fermion and scalar in the same representation, which we have assumed through-

out the thesis. In fact it has been argued that the scaling property for scalar and quark

propagator in the infrared is identical [130] and this result can be verified in lattice QCD.

The QCD coupling αs also becomes nonperturbative in the TeV regime even though the

coupling is pretty small. From the perturbative RGE of αs, the one-loop beta function

guarantees asymptotic freedom for αs with our additional 15′ scalar field. However at

two-loop order, the asymptotic freedom is lost. This comes from the large C2 value which

is responsible for high energy condensation and as a consequence, the exact evolution of

strong coupling cannot be perturbatively calculated in the TeV regime. One has to rely on

nonperturbative methods such as Functional Renormalization Group (FRG) [131] or lattice

QCD to obtain the running of αs. The strong coupling may become perturbative again for

sufficiently small αs or with additional vector bosons charged under QCD at high energy

such that perturbative asymptotic freedom is restored. A similar conclusion was made

also in Ref. [107]. On the other hand, measuring αs at high energy will provide another

independent test for our model, and the plan of the LHC is to probe αs up to 2 TeV.

3.5. Summary

In this chapter we have introduced a minimalistic classically scale invariant extension of the

SM to trigger EWSB radiatively by the condensation of a new scalar charged under QCD.

The condensation scale of the colored scalar particle, which is obtained by the running of

strong coupling, generates the EW scale dynamically. As the LHC is essentially a gluon

collider, this new colored scalar particle can be pair produced and can be probed by ATLAS

and CMS. With the theoretical and experimental constraints imposed, the mass of this

scalar particle should be in the range of 350 GeV to 10 TeV. Additionally, the production

cross section of the SM Higgs particle in gluon fusion channel will be modified if such a

colored scalar boson exists. We have seen that the model proposed in this chapter generates

the EW scale from a direct condensation scale transmission. In the next chapter, we will

discuss another model based on indirect scale transmission.
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Scale Invariance and Dark Sector

In this chapter we will introduce an indirect scale transmission mechanism to trigger elec-

troweak symmetry breaking (EWSB) radiatively from a classically scale invariant extension

of the Standard Model (SM). We will introduce a classically scale invariant model with a

strongly coupled hidden sector, mimicking the success of QCD. Additional fermions charged

under this hidden gauge group, which are invariant under the additional continuous flavor

symmetry, will undergo spontaneous chiral symmetry breaking when the hidden gauge cou-

pling evolves to nonperturbative regime. The breaking scale is then transmitted to the SM

Higgs sector, triggering the EWSB. The model contains dark matter (DM) candidates, which

are pseudo Nambu-Goldstone bosons (PNGB) resulting from spontaneous chiral symmetry

breaking. The phase transition in the dark and electroweak (EW) sector will be discussed.

This chapter follows the original works [100, 101] resulted from collaboration with Martin

Holthausen, Jisuke Kubo, and Manfred Lindner. As the results of Ref. [100] precede those

in Ref. [101], this chapter will contain more accurate analysis and we will present only

the updated plots, leaving those which are obsolete. All the relevant plots and results are

reproduced from Refs. [100, 101] with reprint permission.

4.1. A Scale Invariant Hidden Sector Extension of the SM

As we have mentioned in Sec. 2.6, the key to transmit the scale of chiral symmetry breaking

from a dark sector to the Higgs sector is the Higgs portal term

L ⊃ λHSS†SH†H, (4.1)

where S could be a real or complex scalar, charged or neutral under certain gauge groups.

For simplicity we only consider a real singlet S field which is the only field that communicates

between the SM (via Higgs portal) and the dark sector. We propose a model with a hidden

SU(3)H gauge sector coupled to the SM via this real singlet scalar S, similar to Refs. [96–

98]. Our work goes beyond Refs. [96–98] as the Nambu-Jona-Lasinio (NJL) [132] method is

utilized throughout this work to calculate the mass spectrum of the relevant fields and the

couplings in a coherent and consistent manner. The work in Refs. [96–98] used the effective

field theory (EFT) approach to describe the low energy interactions of the new particles,

resulting in more low energy parameters which are free and in general not restrictive. The

scarcity of parameters in our approach allows us to relate and exclude certain low energy
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EFT parameters in Refs. [96–98].

The hidden sector Lagrangian is given by

LH = −1

2
TrF 2 + Tr ψ̄(iγµDµ − yS)ψ , (4.2)

where the hidden sector fermion ψ transforms under fundamental representation of SU(3)H

and possesses a chiral SU(3)L × SU(3)R symmetry. The F term is the usual kinetic term

for the hidden SU(3)H gauge field. The trace is taken over the flavor and hidden color

indices with or without spinor indices, which should be clear from the context. The co-

variant derivative is defined as Dµ = ∂µ − ig4λ
aGaµ and λa are the usual SU(3) Gell-Mann

matrices. The total Lagrangian LT = LH +LSM+S consists of the hidden sector and the SM

interactions, along with the modified scalar potential

VSM+S =λH(H†H)2 +
1

4
λSS

4 − 1

2
λHSS

2(H†H), (4.3)

where H is the SM Higgs doublet field defined in Eq. (2.19). No mass term and dimensionful

parameter appears in the classical Lagrangian above due to the requirement of classical scale

invariance, which itself is anomalous. This symmetry is violated at quantum level by the

nonperturbative effect of dynamical chiral symmetry breaking, which generates a conden-

sation scale. This scale is transmitted to the SM sector by the singlet S and subsequently

a mass term in the Higgs potential is generated. The whole scale generation process can be

summarized as

〈ψ̄ψ〉 → 〈S〉 → 〈H〉. (4.4)

The EWSB scale is dynamically generated. After spontaneous chiral symmetry breaking,

the dark pions exist in the form of PNGB and have the mass scale of the order of the

condensation scale, close to the EW scale. As we have nonvanishing Yukawa interaction

between ψ and S, a hidden Yukawa coupling y breaks the chiral SU(3)L×SU(3)R symmetry

of ψ explicitly to the diagonal SU(3)V , and hence only PNGBs are obtained instead of

massless Nambu-Goldstone particles. The dark pions are stable due to the unbroken SU(3)V
symmetry and they could serve as DM candidates. Unlike most of the DM models, no

additional discrete symmetry is required to guarantee the stability of dark sector in our

model. The scale tumbling mechanism described above provides a good motivation on the

common origin for the EW and DM scale, which is largely motivated by the WIMP miracle.

Note that in our model we have chosen a gauge group of SU(3)H and 3 flavors of hidden

sector fermions charged under the fundamental representation of this non-abelian gauge

group, this is because we can rescale the NJL parameters from ordinary QCD to fit our

model in order to analyze some nonperturbative aspects such as confinement, condensation

and chiral symmetry breaking without utilizing nonperturbative calculations. In principle

other non-abelian gauge groups with a different number of fermions charged under different

representation can also be used to construct models for explaining the origin of the EW and

DM scale, however one would require to calculate the NJL parameters nonperturbatively.

Our simple model, which mimics the success of QCD, serves as a prototype of EW scale

generation via an indirect scale transmission from a strongly coupled hidden sector.
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4.1.1. NJL Treatment of the Low Energy Hidden Sector

Dynamical chiral symmetry breaking can be analyzed with the NJL approach

LNJL = Tr ψ̄(iγµ∂µ − yS)ψ + 2GTr Φ†Φ +GD(det Φ + h.c.), (4.5)

which we will use as a low-energy approximation for Eq. (4.2) similar to QCD, where

Φij =ψ̄i(1− γ5)ψj =
1

2
λaji Tr ψ̄λa(1− γ5)ψ,

(Φ†)ij =ψ̄i(1 + γ5)ψj =
1

2
λaji Tr ψ̄λa(1 + γ5)ψ, (4.6)

and λa are the Gell-Mann matrices with λ0 =
√

2/3 1. The second term in Eq. (4.5)

describes four-fermion interactions while the last term describes six-fermion interactions,

which breaks the axial U(1)A symmetry [133–135]. We refer the reader to Appendix B for

a quick relevant review of the NJL approach. For a more thorough review please refer to

Refs. [111, 136–139]. The essence of NJL is as follows, the chiral symmetry in the dark

sector is spontaneously broken due to nonperturbative effects of strongly interacting dark

sector, dictated by the renormalization group of the hidden gauge coupling. The vacuum

of the dark sector becomes nontrivial and subsequently the scalar condensates are formed.

The dark fermion constituent mass is also dynamically generated. Also due to the explicit

breaking of chiral symmetry by the Yukawa coupling y, PNGBs are obtained. All of this

relevant physics happen simultaneously in the NJL model. Note that however NJL does not

describe confinement.

Let us investigate the relevant parameters in the NJL approach for our model in more

details. The effective Lagrangian LNJL possesses four parameters, y [0], G [−2], GD [−5],

and the cutoff Λ [1], with the canonical mass dimension for each parameter given in the

bracket. The parameters G,GD and Λ are not independent as LH has only two independent

parameters and can be related by the NJL approach, typically

G1/2Λ ∼ |GD|1/5Λ ∼ O(1). (4.7)

In principle G,GD,Λ can be calculated from lattice QCD or Dyson-Schwinger equation

(DSE), which is highly nontrivial for arbitrary gauge group with different fermionic repre-

sentation. Instead, as we utilize a SU(3) gauge group for our hidden sector with 3 flavors

of fermions, we can use the relations from observed hadron physics in QCD to scale up

G,GD,Λ to obtain the NJL parameters for our model. This allows us to circumvent the

nonperturbative calculation.

To obtain the condensates from Eq. (4.5) we will use a self-consistent mean field (SCMF)

approximation [111, 136, 137] to calculate the hadron spectrum in QCD. In essence, SCMF

approach is a trick to integrate out the heavy modes of the fermions to obtain the bosonic

condensate, while leaving the interaction between the condensates and heavy fermions intact.

SCMF is known as bosonization approach in condensed matter physics or Hartree-Fock

approximation in many-body physics. We refer the reader to the Appendix B for a quick

review of relevant tools in bosonization in the NJL approach. Here we briefly outline this

approximation method.
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As the coupling g4 becomes nonperturbative in the infrared (IR) region, a chiral symmetry

breaking condensate

〈ψ̄iψj〉 ≡ ̂̄ψiψj =− 1

4G
diag(σ, σ, σ), (4.8)

is generated by the dynamics of our theory. This condensate is a CP-even classical field

σ(x). The contraction denoted by ̂ is defined w.r.t. the nontrivial mean field vacuum

|VAC〉 = |[σ, φa]〉, which one can think of as the bosonic bound state of the fermion pair.

The CP-odd effective field counterparts are given by the dark pions

φa =− 2iG ¯̂ψγ5λaψ, (4.9)

normalized with the constant G such that φ has a proper mass dimension. We collect the

relevant mean fields in

Φ̂ ≡ϕ = − 1

4G

(
diag(σ, σ, σ) + i(λa)Tφa

)
, (4.10)

ignoring the analogous η or ρ mesons in our theory, and systematically normal order each

fermion pair in Eq. (4.5) (see Appendix B) until the whole equation is divided into the sum

LNJL = L0 + LI , (4.11)

where L0 represents the mean field dynamics which is of interest to us, and LI describes the

fluctuations. For consistency we require 〈VAC|LI |VAC〉 = 0, i.e. we need to average out the

fluctuations w.r.t. |VAC〉. Once the normal ordering is completed, we find the mean field

Lagrangian to be

L0 =iTr ψ̄γµ∂µψ −
(
σ + yS − GD

8G2
σ2

)
Tr ψ̄ψ − iTr ψ̄γ5φψ −

1

8G

(
3σ2 + 2

8∑
a=1

φaφa

)

+
GD
8G2

(
−Tr ψ̄φ2ψ +

8∑
a=1

φaφa Tr ψ̄ψ + iσTr ψ̄γ5φψ +
σ3

2G
+

σ

2G

8∑
a=1

(φa)
2

)
. (4.12)

with the notation

φ =
8∑

a=1

φaλ
a. (4.13)

Note that the trace acts on the dark color space, the spinor indices as well as the flavor

structure, e.g. a full form of Tr ψ̄ψ is written as Tr ψ̄ψ = ψ̄αiaψαia with α representing

the spinor index, i the dark color index, and a the flavor index. The Lagrangian (4.12)

determines the dynamics of the effective condensate fields and their interaction with the

heavy fermions. The bosonic fields have to be considered as propagating fields, even though

they lack proper kinetic terms. This is because they are the physical degrees of freedom

in low energy regime after bosonization. Eq. (4.12) determines all the coupling necessary

for computing the mass spectrum for the bosons and serves as a starting point for us to

calculate all the relevant effective couplings for DM interactions.
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4.1.2. The Effective Potential and Symmetry Breaking

Now let us study the condensation in the hidden sector due to dimensional transmutation.

We integrate out the fermion fields in L0 given in Eq. (4.12) to obtain the one-loop effective

potential:

VNJL(σ, S) =
3

8G
σ2 − GD

16G3
σ3 − 3nc

∫
d4k

i(2π)4
ln det(/k −M), (4.14)

where the “constituent mass” M is given by1

M = σ + yS − GD
8G2

σ2. (4.15)

The first two terms in Eq. (4.14) are obtained from “tree level” effective Lagrangian (4.12),

while the last term encodes the one-loop contribution of the heavy fermion to the effective

potential. See Appendix B for a short introduction to path integral bosonization approach.

In this thesis we evaluate all the loop integrals with four-dimensional momentum cutoff Λ,

in contrast to the three-dimensional momentum cutoff introduced in Refs. [111, 136, 137].

The potential is asymmetric in σ due to the anomaly term (the determinant) in Eq. (4.5).

The full effective potential for our model is

V = VSM+S + VNJL, (4.16)

which gives a full picture of how the scale transmission from chiral symmetry breaking to

EWSB really works. The σ condensate formed by spontaneous chiral symmetry breaking

influences the potential by shifting the S field in last term of Eq. (4.14). Hence S obtains

a nonzero vacuum expectation value (VEV) and subsequently the Higgs field undergoes

EWSB. As a consistency check, the spontaneous chiral symmetry breaking scale is not

transmitted for y → 0, as the scalar mediator S will not feel the shift in Eq. (4.14). In this

case, the dark pions remains massless as they are true Nambu-Goldstone bosons.

The dimensionless parameters in our theory, y, λH , λHS , λS , remain as primary free pa-

rameters in our effective NJL theory. Once their values are given, the form of the effective

potential is determined and the global minimum of the potential can be obtained. The

vacuum subsequently determines the amount of scaling required for the dimensionful quan-

tities G,GD,Λ with the constraint that 〈h〉 = 246 GeV. The parameters G, GD and the

phenomenological cutoff Λ for our models are determined from rescaled QCD values2

(GQCD)−1/2 = 461 MeV, (−GQCD
D )−1/5 = 437 MeV, ΛQCD = 924 MeV, (4.17)

according to their dimensions as

G = f−2GQCD , GD = f−5GQCD
D , Λ = fΛQCD, (4.18)

by a common rescaling factor f . We scale up all the dimensional parameters w.r.t. a fixed

Higgs VEV. Again we stress that G,GD,Λ are not free parameters in our theory. Once the

1M is the constituent dark fermion mass when all the bosonic fields obtain their VEVs.
2For the determination of QCD parameters we refer the reader to Refs. [100, 111, 136, 137].
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dimensionless parameters are specified and the absolute minimum of the effective potential

is determined, the mass spectrum of particles in the model can be calculated. At low energy

we have three CP-even scalars h, S, σ, and eight CP-odd DM φa. The former mix with each

other, and the SM Higgs-like particle with mh ≈ 125 GeV has to be identified with one of

the mass eigenstates of the CP-even particles.

We remind the reader that h and S are propagating fields already at tree-level, but the

bosonized fields, e.g. σ and φa, only become dynamical at one-loop order. The bosonized σ

and φ do not have canonically normalized kinetic terms in the lowest order, therefore we can

only determine the masses from the poles of the propagators ∆ij(p
2) = i(Γ−1)ij(p

2). At one-

loop order the contributions to the inverse propagators Γij (i, j = h, S, σ) are determined

via

Γhh(p2) =p2 − 3λH〈h〉2 +
1

2
λHS〈S〉2, ΓhS = λHS〈h〉〈s〉, Γhσ = 0,

ΓSS(p2) =p2 − 3λS〈S〉2 +
1

2
λHS〈h〉2 − 3ncy

2

∫
d4k

i(2π)4

Tr(k +M)(/k − /p+M)

(k2 −M2)((k − p)2 −M2)
,

ΓSσ(p2) =− 3ncy

(
1− GD〈σ〉

4G2

)∫
d4k

i(2π)4

Tr(k +M)(/k − /p+M)

(k2 −M2)((k − p)2 −M2)
,

Γσσ(p2) =
3GD〈σ〉

8G3
− 3

4G
− 3nc

(
1− GD〈σ〉

4G2

)2 ∫ d4k

i(2π)4

Tr(k +M)(/k − /p+M)

(k2 −M2)((k − p)2 −M2)

+ 3nc
GD
G2

∫
d4k

i(2π)4

M

(k2 −M2)
, (4.19)

where the constituent mass M is determined from Eq. (4.15) with all the bosonic fields

obtaining their VEVs. The integrals in Eq. (4.19) have to be regulated with a cutoff,

which can be further simplified with the cutoff version of Passarino-Veltman functions [140],

see Appendix C for more details. Once the propagators are diagonalized, the physical

mass spectrum from the poles m̃2
1, m̃

2
2 and m̃2

3 can be obtained, and the corresponding

eigenvectors ξ(i) can be computed from

Γij(m̃
2
k) ξ

(k)
j =0, (4.20)

which can be used to rotate the flavor eigenstates (h, S, σ) to the mass eigenstates (s1, s2, s3) h

S

σ

 =

 ξ
(1)
1 ξ

(2)
1 ξ

(3)
1

ξ
(1)
2 ξ

(2)
2 ξ

(3)
2

ξ
(1)
3 ξ

(2)
3 ξ

(3)
3


 s1

s2

s3

 . (4.21)

Once we have rotated the fields to the mass basis, the wave function renormalization Z for

each field can be calculated as

Z−1
i =

dΓi(p
2)

dp2

∣∣∣∣
p2=m2

i

. (4.22)

As we have argued in Sec. 2.6, we requires that any scale invariant extension of the SM

needs to survive up to the Planck scale, should classical scale invariance be the solution to

the hierarchy problem. This requirement restricts a sizable amount of parameter space in



4.1. A Scale Invariant Hidden Sector Extension of the SM 41

ΛH

g4

ΛS
y

ΛHS

g3

g2

gY

3 5 7 9 11 13 15 17 19
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

log H Μ� GeV L

co
u

p
lin

gs

ΛHS = 0.2

ΛHS = 0

0.00 0.05 0.10 0.15 0.20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Λs

y

Figure 4.1.: (Left) The RG running for g24 = 4π, λH = 0.13, λS = 0.15, λHS = 0.1, y = 0.3 with
the boundary conditions given at µ = 1 TeV are shown. We also show the running of the SM gauge
couplings gY =

√
5/3g1, g2 and g3. (Right) The allowed parameter regions for λS and y (µ = 1 TeV)

for a given value of λHS .

low energy EFT approach of Refs. [96–98]. We require that all parameters do not destabilize

the scalar potentials, and all the couplings do not hit a Landau pole up to the Planck scale

in accordance to the RGE, i.e.

0 < λH < 4π, 0 < λS < 4π, 4λHλS − λ2
HS > 0. (4.23)

These theoretical considerations restrict the parameter regions of λH , λS , λHS and y mas-

sively. We have calculated the relevant one-loop RGE for our model:

16π2βλH = λH(−9g2
2 − 3g2

1 + 12y2
t ) + 24λ2

H +
3

4
g4

2 +
3

8
(g2

1 + g2
2)2 − 6y4

t +
1

2
λ2
HS ,

16π2βλHS = −2λHS

(
2λHS − 3λS +

9

4
g2

2 +
3

4
g2

1 − 3y2
t − 6λH − 18y2

)
,

16π2βλS = 2λ2
HS + 18λ2

S + 72y2λS − 18y4,

16π2βy = 3y(7y2 − 4g2
4),

16π2βg4 = −9g3
4. (4.24)

The remaining SM RGEs are unchanged.

We can go beyond the perturbativity and vacuum stability requirement and restrict some

boundary conditions based on theoretical reasoning. Since g4 becomes nonperturbative at

the vicinity of µ ≈ 1 TeV, we demand that g4(µ = 1 TeV) ≈
√

4π for simplicity. Next we

fix λH and λHS from the experimental Higgs mass measurement [6, 7]. Lowering λH(µ =

1 TeV) < 0.13 will make the Higgs vacuum unstable before Planck scale while increasing

λH(µ = 1 TeV) > 0.15 will require a larger mixing with the S field to generate the correct

Higgs mass, this scenario is strongly constrained [112, 113]. Therefore we restrict λH(µ =

1 TeV) ∈ (0.13, 0.14) in our analysis. The λHS , λS and y couplings are restricted by the

requirement of perturbativity and vacuum stability. At one-loop order, the RG evolution of

the Yukawa coupling y is only influenced by the value of y and g4. Hence with the boundary

condition of g4 fixed as mentioned above, the range of y valid up to Planck scale is naively
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determined to be y(µ = 1 TeV) ∈ (0, 0.6), as shown in Fig. 4.1 (right). As for the quartic

S coupling, λS(µ = 1 TeV) ∈ (0, 0.2) is sufficient to guarantee the running of coupling up

to the Planck scale, without violating the vacuum stability and perturbativity constraint.

Lastly once the range of λS is known, it is easy to determine the range of λHS from the

last vacuum stability condition in Eq. (4.23), which typically has the same parameter space

as λS . In Fig. 4.1 (left) the running of the relevant couplings are shown for some generic

boundary conditions imposed within the discussed allowed range. The gauge coupling g4 for

the dark sector possesses a similar value to the SM QCD gauge coupling g3 at the Planck

scale. This observation is intriguing if we assume that both the strongly coupled sectors

possess a common origin at the Planck scale, as this might explain why

ΛQCD ∼ Λ�Mpl, (4.25)

which can be traced back to the different running of strong couplings due to a different num-

ber of fermions charged under the hidden gauge group. The strong hidden sector coupling

g4 grows nonperturbative at a higher scale than QCD due to the smaller number of flavors.

This observation is also fascinating for the DM phenomenology, as the similarity for both

strongly coupled sectors could explain the similar magnitude of relic abundance

Ωcĥ
2 ∼ Ωbĥ

2, (4.26)

for the DM and baryons. Once the parameter space is fixed from the constraints above, the

masses and couplings for the scalars can be calculated as described in the previous section

and furthermore, the properties of our DM candidate can be determined, which we now

describe.

4.2. Dark Pions as Dark Matter Candidates

Before we move on to calculate the relevant interaction for the DM, let us briefly discuss

the folklore of the theoretical limit imposed on strongly interacting DM and how such naive

estimation could be misleading. In general the leading-order (LO) relic abundance of the

DM from thermal production can be approximated to be

Ωch
2 ∼ mDM

〈v̄σ〉Tf
, (4.27)

where Tf denotes the freeze out temperature and mDM denotes the mass of the DM particle.

The quantity 〈v̄σ〉 represents the velocity-averaged annihilation cross section of the DM

particles into the SM particles.

There exist a common folklore in the DM model building community that strongly inter-

acting DM will require that the mass of such DM candidate to heavier than ∼ 20 TeV [141]

in order to produce the correct relic abundance. This is because the DM, in a form of bound

state, generally has mDM ∼ Λ and the cross section 〈v̄σ〉 ∼ Λ−2 from naive dimensional

analysis. One can compare the case of proton and its self interaction in the QCD case. The

mass and the annihilation cross section of the DM determine the relic abundance directly

and there is no way to escape the estimation that Λ ∼ 20 TeV. This conclusion is however
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incorrect, if the strongly interacting DM is a PNGB [142]. In this case, the mass of the DM

particle is separated from the annihilation cross section, enabling us to have more freedom

to obtain a TeV scale DM in a very natural way. The lightness of the PNGB DM is due to

the approximate chiral symmetry of the fermionic sector and the coupling that determines

the annihilation cross section is determined by the nonperturbative confinement scale Λ. As

a comparison, one observes that the QCD pions are significantly lighter than the baryonic

counterparts.

One might worry that it is difficult to build a model with interacting dark pions as DM

candidates. As we have learned from QCD, the QCD pions can decay into two photons and

hence are not stable over cosmological evolution. However, one has to be careful on the

type of PNGB in a certain model. If the PNGB is a condensate of chiral fermions charged

under a certain gauge group, the only possibility to assure the DM stability is by imposing a

discrete parity or by demanding a gauge group that has real or pseudo-real representations

[142]. For vectorial fermions, life is much more simpler, as we do not have an anomaly that

generates the decay of pions to two photons, which is the case for our model.

As our DM consists of mesonic bound states, one would think that hidden sector baryons

could also be stable due to hidden baryon number conservation, and can contribute addition-

ally to the DM abundance. However, like the ordinary SM scenario, one would also need to

explain the excess of dark baryons over their antiparticles. With the assumption of no such

asymmetry in our model, let us estimate the hidden baryon abundance by using the strongly

coupled cross section for the hidden sector σhb ∼ 4π/m2
hb ∼ 5 × 10−7 GeV−2 for a 5 TeV

hidden baryon mass. The relic hidden baryon density is estimated to be Ωhbĥ
2 ∼ 10−4, too

small to explain the cold DM relic abundance on its own. Hence we will neglect the dark

baryons in our work.

4.2.1. Dark Matter Mass and Couplings

As we have mentioned above, our DM candidates, i.e. the dark pions, are CP-odd particles.

Like the bosonized σ field discussed in Sec. 4.1.2, the DM φa do not contain tree-level kinetic

terms. The DM mass is generated at one-loop level and is defined as the solution of the

inverse propagator:

ΓDM(p2) =− 1

2G
+
GD〈σ〉

8G3
+
GDnc
G2

∫
d4k

i(2π)4

M

(k2 −M2)

+ 2nc

(
1− GD〈σ〉

8G2

)2 ∫ d4k

i(2π)4

Tr
[
(/k − /p+M)γ5(/k +M)γ5

]
((k − p)2 −M2)(k2 −M2)

, (4.28)

where the constituent fermion mass M is given in Eq. (4.15) with all the scalar fields

obtaining VEVs. The DM mass mDM and the wave function renormalization ZDM

ΓDM(m2
DM) =0 , Z−1

DM =
dΓDM(p2)

dp2

∣∣∣∣
p2=m2

DM

, (4.29)

can be calculated from the inverse propagator in Eq. (4.28).

The DM mass mDM vanishes for y → 0 as the chiral symmetry is not explicitly broken

in this limit (pure Nambu-Goldstone bosons are obtained). To imitate the success of NJL
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Figure 4.2.: Relevant one-loop contributions to the effective φφS coupling are shown.

in describing hadron physics, we take mDM < 2M . The fermion modes are not allowed

to be integrated out if the constituent mass M is lighter. The DM mass will develop an

imaginary part in the one-loop amplitude when M < mDM < 2M . The imaginary part of

the two-point function is related to the real part due to dispersion relation

Re Γ(p2) =
1

π
P
∫ ∞

0
ds

Im Γ(s)

p2 − s + subtractions, (4.30)

where we only take the principal part of the integral [111, 136]. This requirement of mDM <

2M will constrain our parameter space for y later.

Before we calculate the annihilation cross section of our DM, we need to know how it

communicates with the SM sector. The dark pion is connected to the SM sector only

through loop-suppressed interactions, with the S and σ particles acting as messenger fields,

which mix with the SM Higgs. The σ field is very heavy for our allowed parameters and

can be ignored. The dominating channel of DM interaction which is relevant for calculating

the relic abundance and the direct detection cross section is contributed by φφS and φφSS

interactions. The φφS coupling is generated from the one-loop diagrams shown in Fig. 4.2,

where the three-point vertex function is given by

ΓφφS(p, p′,M) =4ncy

(
1− GD〈σ〉

8G2

)2

Ia(p, p
′,M) + ncy

GD
4G2

Ib(p, p
′,M), (4.31)

where the integrals

Ia(p, p
′,M) =

∫
d4k

i(2π)4

Tr
[
(/k +M)γ5(/k − /p+M)(/k + /p′ +M)γ5

]
((k − p)2 −M2)(k2 −M2)((k + p′)2 −M2)

,

Ib(p, p
′,M) =

∫
d4k

i(2π)4

Tr
[
(/k − /p′ +M)(/k + /p+M)

]
((k − p′)2 −M2)((k + p)2 −M2)

, (4.32)

can be recasted in the cutoff version of Passarino-Veltman integrals (Appendix C). For the

calculation of the relic abundance of DM and its interaction cross section with matter, we

require ΓφφS(p, p′,M) for p = p′ = (mDM,0) and for p = −p′:

Γsa = Ia(p, p
′,M)

∣∣
p=p′=(mDM,0)

, Γta = Ia(p, p
′,M)

∣∣
p=−p′,p2=m2

DM
,

Γsb = Ib(p, p
′,M)

∣∣
p=p′=(mDM,0)

, Γtb = Ib(p, p
′,M)

∣∣
p=−p′,p2=m2

DM
, (4.33)
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Figure 4.3.: One-loop contributions to the φφSS coupling.

which after performing the integration, the effective φφS couplings

κs ≡ncy
[

4

(
1− GD〈σ〉

8G2

)2

Γsa +
GD
4G2

Γsb

]
, (4.34)

κt ≡ncy
[

4

(
1− GD〈σ〉

8G2

)2

Γta +
GD
4G2

Γtb

]
, (4.35)

are obtained

Next we consider the four-point vertex function which, depending on the dimensionless

parameters, can be dominant effect for the relic abundance. This channel only contributes

to the direct detection cross section as subleading effect due to t-channel suppression. The

four-point vertex function φφSS is given as

ΓφφSS =2ncy
2

∑
i 6∈Equiv
{p,p′,q,q′}

[(
1− GD〈σ〉

8G2

)2

Iic(p, p
′, q, q′,M) +

GD
4G2

Iid(p, p
′, q, q′,M)

]
, (4.36)

where we sum over all the topologically inequivalent loop diagrams shown in Fig. 4.3 by

taking the crossing symmetry into account. The integral Ic represents the loop integral in

left figure while Id the right one. We only need the four-point vertex function in computing

the relic abundance of DM, hence we only consider the case for p = p′ = (mDM,0)

Γsc =
∑

i 6∈Equiv
{p,p′,q,q′}

Iic(p, p
′,M)

∣∣
p=p′=(mDM,0)

, Γsd =
∑

i 6∈Equiv
{p,p′,q,q′}

Iid(p, p
′,M)

∣∣
p=p′=(mDM,0)

, (4.37)

and denote the effective φφSS vertex coupling as

κs =2ncy
2

[(
1− GD〈σ〉

8G2

)2

Γsc +
GD
4G2

Γsd

]
. (4.38)

The effective κs only contributes significantly to the DM annihilation cross section when

the Yukawa coupling y becomes large and mS < mDM. In this parameter region, the one-

loop diagrams contain an imaginary part, which is not a pathological problem in the NJL

approach as it can be related to the real part via Eq. (4.30). The inclusion of the imaginary

part for the calculation has proven to be a successful approach in the NJL approach for QCD

[111, 136, 137]. In our previous paper [100], this channel was ignored and as a consequence,

a fine-tuned parameter space was needed in order to explain the relic abundance of the DM.
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Figure 4.4.: Relevant annihilation modes of DM into the SM particles in calculating the DM relic
density. The relevant s-channel φφS (left and middle) coupling is κs given in Eq. (4.34), while φφSS
coupling (right) given as κs is obtained from Fig. 4.3.

The inclusion of κs provides a more experimentally accessible phenomenology, which we will

discuss below.

4.2.2. Dark Matter Relic Abundance and its Direct Detection

We will now focus on the DM annihilation to the SM particles, predominantly to the Higgs

particle, the top quark, the S particle, and the EW gauge bosons in the early universe. We

utilize the approximation for calculating the relic density [143]

Ωcĥ
2 =8× 3.8xfs0√

g∗Mpl〈v̄σ〉ρc
ĥ2, (4.39)

where s0 = 2970 cm−3 is the entropy density at present, ρc = 1.05× 10−5ĥ2 GeV/cm3 is the

critical density with ĥ ≈ 0.7 the dimensionless Hubble parameter and g∗ = 115.75 is the

number of the effectively massless degrees of freedom at the freeze-out temperature. The

prefactor 8 in Eq. (4.39) stems from the fact that we have eight DM pions in the model

due to spontaneous chiral symmetry breaking. Furthermore xf = mDM/Tf at the freeze-out

temperature Tf can be obtained from [143]

xf = ln

(
0.1Mpl〈v̄σ〉mDM√

g∗xf

)
. (4.40)

The next task is to obtain the annihilation cross section 〈v̄σ〉 from our theory.

In Fig. 4.4 we show the effective diagrams for DM annihilation into the SM particles.

The leading effect in DM annihilation is given by the s-channel interaction, as the t-channel

contributions are small due to two κt coupling insertions with φ propagating in between,

which can only dominate if the total four-momentum of the incoming DMs is approximately

the mass of the DM. Hence they are typically negligible compared to the dominant channel

in Fig. 4.4.

Let us consider first the s-wave contribution to the thermal average 〈v̄σ〉, as shown in

Fig. 4.4. Since our DM candidates are cold relics, we can utilize the low velocity approxi-

mation of the annihilation cross section

〈v̄σ〉 ≈ Z2
DM

32πm3
DM

[
(m2

DM −m2
W )1/2aW + (m2

DM −m2
Z)1/2aZ + (m2

DM −m2
t )

3/2at

+(m2
DM −m2

h)1/2ah + (m2
DM −m2

S)1/2|κs|2
]
, (4.41)
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where ZDM is given in Eq. (4.29) and

aW =4 |∆hs|2m4
W

(κs
v

)2
(

3 + 4
m4

DM

m4
W

− 4
m2

DM

m2
W

)
,

aZ =2 |∆hs|2m4
Z

(κs
v

)2
(

3 + 4
m4

DM

m4
Z

− 4
m2

DM

m2
Z

)
,

at =24
(κs
v

)2
|∆hs|2m2

t ,

ah =
1

2

(
κsmW

vg

)2 ∣∣∣∣ 24λH∆hs − 4λHS
〈S〉
v

∆ss

∣∣∣∣2 , (4.42)

with v = 246 GeV and

∆hs =
ξ

(2)
2 ξ

(2)
1

4m2
DM −m2

S + iγSmS
+

ξ
(1)
2 ξ

(1)
1

4m2
DM −m2

h

,

∆ss =
ξ

(2)
2 ξ

(2)
2

4m2
DM −m2

S + iγSmS
+

ξ
(1)
2 ξ

(1)
2

4m2
DM −m2

h

. (4.43)

Here κs and ξ′s are given in Eq. (4.34) and Eq. (4.21), respectively, g ' 0.63 is the SU(2)L
gauge coupling, and

γS =
λ2
HS〈S〉2
8πm2

S

√
m2
S

4
−m2

h (4.44)

is the decay width of S. For y & 0.4, the annihilation cross section is dominated by φφSS

interactions. This channel was previously ignored in our paper [100] as we have imposed

that M < mDM, which is too restrictive. In later publication [101], we restore the φφSS

as in this parameter region, we have M < mDM < 2M and the κs effective coupling is no

longer negligible. The M < mDM < 2M constraint is valid, as this also occurs in ordinary

QCD (compared the constituent mass of strange quark and the η′ meson mass).

If we assume that the DM is thermally distributed in our galaxy with a certain profile,

we can in principle detect its interaction with ordinary matter with a DM direct detection

experiments. The DM direct detection is a very rich subject and we refer the reader to

Ref. [144] for a review. The thermal DM can propagate to the detector and scatter off a

nuclei, leaving its imprint in the form of nuclear recoil. We can compute the interaction

cross section of our DM candidate with nuclei. The spin-independent elastic scattering cross
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Figure 4.6.: The DM mass mDM against the spin-independent cross section σSI with the relevant
satisfying additional constraints are shown. The XENON100 limit [147] and the LUX limit [148] is
∼ 10−44 cm2 for mDM ∼ 700 GeV. The XENON1T [149] and the LUX 300 days run [150] will probe
or exclude the natural parameter space of our model.

section off the nucleon σSI shown in Fig. 4.5 is calculated to be [145]

σSI =
Z2

DM

π

[
κtf̂mN

2vmDM

(
ξ

(2)
2 ξ

(2)
1

m2
S

+
ξ

(1)
2 ξ

(1)
1

m2
h

)]2(
mNmDM

mN +mDM

)2

, (4.45)

where κt is the effective φφS coupling is given in Eq. (4.35), mN represents the nucleon mass,

and f̂ ∼ 0.3 stems from the nucleonic matrix element [146]. Before we scan for parameter

space for our DM that can yield sizable spin-independent elastic cross section, we need

to constrain the parameters from relic abundance of DM Ωcĥ
2 ≈ 0.119 from cosmological

observation [29].

We are ready to scan the parameter space for our model. We impose that all the dimen-

sionless parameters y, λS , λH and λHS satisfy the theoretical bounds described in Sec. 4.1.2

and experimental constraints v = 246 GeV, mh = 125.9 GeV, Ωcĥ
2 ≈ 0.119, and |ξ(1)

1 | & 0.9,

and allow the uncertainties up to 3σ. The phenomenology of our model is very promising

as the spin independent annihilation cross section is just below the XENON100 [147] and

LUX [148] constraints and above the XENON1T sensitivity [149], see Fig. 4.6 for more

details. The mass of the DM shift towards 700 − 900 GeV region and can be probed with

future XENON1T experiment or LUX 300 days run [150]. The annihilation cross section

is mainly contributed by the φφSS interaction for large Yukawa coupling y. The allowed

natural region on the σSI −mDM plane is restricted to a small strip due to the very con-

straining parameters imposed by experiments, e.g. Higgs masses, relic density, etc., and also

by theoretical constraints such as vacuum stability and triviality bound. As we are not

allowed to utilize NJL approach for MDM > 2M , we obtain an upper bound for the DM

mass. The lower bound of DM mass comes from y & 0.4, while lowering y would require

very fine-tuned parameter mS ' 2mDM to satisfy the correct relic abundance. Therefore

with the restrictive natural parameter space, our model is very predictive and easily probed

or excluded by future direct detection experiments.
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Figure 4.7.: DM annihilation to two photons or two Z bosons in addition to the annihilation channel
in Fig. 4.3.

4.2.3. Electromagnetically Charged Dark Fermions and Gamma-ray Line

Our simple model described so far should be viewed as a prototype for model building

along the direction of indirect scale transmission. We have scaled up the known QCD

values to simplify some calculations. There are many possible ways to extend the classically

scale invariant model which contain richer phenomenology. One possible way to extend the

model is by introducing another value of nf and nc, which would yield different spectrum

and constraints of the model, but comes with the disadvantage that one is not allowed to

scale up the known QCD values and must determine the NJL parameters by solving the

DSE. Another possible interesting extension of our model is to assign a U(1)Y hypercharge

Q to the hidden sector fermions so that they are electrically charged

LH = −1

2
TrF 2 + Tr ψ̄(i/∂ + g4λ

a /G
a

+ gYQ/B − yS)ψ. (4.46)

Strictly speaking the hidden sector is not dark anymore due to the electric charge assignment.

The coupling is vector-like and hence does not break the U(1)Y after dynamical chiral

symmetry breaking has taken place. The changes to the LNJL are minimal, as only the first

term in Eq. (4.12) is augmented with extra covariant derivative of U(1)Y . The U(1)Y does

not contribute to the effective potential, hence the mass spectrum of the CP-even scalar and

DM remain the same at lowest order.

The additional U(1)Y provides an interesting phenomenology, particularly in astroparticle

physics. After EWSB has taken place, the neutral component of the SU(2)L mixes with the

U(1)Y , hence the DM could annihilate into γ-rays or Z bosons via a one loop process, see

Fig. 4.7 for more details. The annihilation cross section of DM into γ-rays or Z bosons can

be calculated as

〈v̄σ〉φφab =
α2Q4Z2

DM

16π3m2
DM

A2(γγ)×


a b

(1/2) for γ γ

t2W (1−m2
Z/4m

2
DM) for γ Z

(3/4)t4W (1−m2
Z/m

2
DM)1/2 for Z Z

, (4.47)

where tW = tan θW and A(γγ) contains the sum of all topologically nonequivalent loop

integrals in Fig. 4.7. The structure of A is highly nontrivial, because we need a renormal-

ization prescription to restore gauge invariance, as NJL method introduces a cutoff that

breaks gauge invariance explicitly. We propose a new renormalization procedure within the

framework of NJL to restore gauge invariance, which we call least subtraction procedure.

This method is developed by one of our collaborators, J. Kubo, and we refer the reader
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to our paper [101] for a step-by-step introduction to this new approach. This procedure is

crucial to describe our DM annihilation into γ-rays or Z bosons within the NJL framework.

Note that in principle the annihilation modes in Fig. 4.7 are required to be included in the

relic abundance calculation in Sec. 4.2.2. However, as the annihilation cross section to SS is

proportional to y4 while the annihilation cross section to γγ, γZ and ZZ is only a function

of α2Q4, the latter will only contribute significantly if the charge Q & 1. We will consider

an example with Q = 1/3 and calculate the annihilation cross section of the DM to γ-rays.

The γ-rays produced from DM annihilation can be detected by the Fermi LAT [151] and

the H.E.S.S. experiments [152]. The energy Eγ of a γ-ray line produced in the annihilation

into γZ is given by mDM(1 − m2
Z/4m

2
DM). The finite detector energy resolution usually

cannot distinguish this line from the line obtained from φφ→ γγ, hence both cross sections

are added

〈v̄σ〉γγ+γZ = 〈v̄σ〉φφγγ + 〈v̄σ〉φφγZ . (4.48)

We take the electric charge Q = 1/3 and we scan for viable parameter space in the

〈v̄σ〉γγ+γZ −mDM plane, taking the constraints mentioned in Sec. 4.2.2 into account. Note

that one can scale up our result to obtain the cross section for another charge by including a

factor of (3Q)4. The result is shown in Fig. 4.8 (right) and can be compared to the H.E.S.S.

limit (left). As we have mentioned in Sec. 4.2.2, our model predicts a DM mass in the

range of 700 − 900 GeV due to the tight theoretical and experimental constraints on the

dimensionless couplings. For Q = 1/3 the majority of the predicted 〈v̄σ〉γγ+γZ lies around

10−27 cm3/s. Increasing the strength of the charge Q will yield a larger cross section than

10−27 cm3/s and is already disfavored by H.E.S.S. limit. We have not included the annihi-

lation modes into γγ, γZ, ZZ in calculating the relic abundance in our Q = 1/3 example,

as such annihilation modes are negligible compared to the φφ→ SS channel. Therefore the

information on the annihilation cross section producing the γ-ray spectrum of DM in our

example can be obtained independently, provided that the electric charge is small. Once

Q & 1, the annihilation channel to photons and Z will start to contribute significantly to

the relic abundance calculation and one would need to do a thorough analysis.

The analysis of the differential γ-ray flux

dΦ

dEγ
∝〈v̄σ〉γγ

dNγγ

dEγ
+ 〈v̄σ〉γZ

dNγz

dEγZ
' 〈v̄σ〉γγ+γZ δ(Eγ −mDM) (4.49)

has not been carried out, however the prospects of observing such a line spectrum is discussed

in detail in Refs. [153, 154]. Observations of γ-ray lines of energies between 700− 900 GeV

not only fix the charge of the hidden sector fermion, but would also yield a first experimental

hint on the hidden sector for our model.

4.3. Phase Transition at Finite Temperature

So far there are no direct evidence that temperature above O(1) MeV existed in the early

universe. The observation probe for early universe so far only confirms the physics of our

Universe up to the epoch of Big Bang Nucleosynthesis (BBN). However, it is natural to
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CGH dataset.
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20%, depending on the energy and the statistics in the
individual spectrum bins. The maximum shift is ob-
served in the extragalactic limit curve and amounts to
40%. In total, the systematic error on the flux upper
limits is estimated to be about 50 %. All flux upper
limits were cross-checked using an alternative analysis
framework [24], with an independent calibration of cam-
era pixel amplitudes, and a different event reconstruction
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annihilation into two photons calculated from the CGH flux
limits (red arrows with full data points). The Einasto density
profile with parameters described in [20] was used. Limits ob-
tained by Fermi-LAT, assuming the Einasto profile as well, are
shown for comparison (black arrows with open data points)
[15].

and event selection method, leading to results well con-
sistent within the quoted systematic error.

For the Einasto parametrization of the DM density
distribution in the Galactic halo [20], limits on the
velocity-weighted DM annihilation cross section into γ
rays, 〈σv〉χχ→γγ , are calculated from the CGH flux limits
using the astrophysical factors given in [8]. The result is
shown in Fig. 4 and compared to recent results obtained
at GeV energies with the Fermi-LAT instrument.

SUMMARY AND CONCLUSIONS

For the first time, a search for spectral γ-ray signatures
at very-high energies was performed based on H.E.S.S.
observations of the central Milky Way halo region and ex-
tragalactic sky. Both regions of interest exhibit a reduced
dependency of the putative DM annihilation flux on the
actual DM density profile. Upper limits on monochro-
matic γ-ray line signatures were determined for the first
time for energies between ∼ 500 GeV and ∼ 25 TeV, cov-
ering an important region of the mass range of particle
DM. Additionally, limits were obtained on spectral sig-
natures arising from internal bremsstrahlung processes,
as predicted by the models BM2 and BM4 of [14]. It
should be stressed that the latter results are valid for
all spectral signatures of comparable shape. Besides, all
limits also apply for potential signatures in the spectrum
of cosmic-ray electrons and positrons.

Flux limits on monochromatic line emission from the
central Milky Way halo were used to calculate upper lim-
its on 〈σv〉χχ→γγ . Limits are obtained in a neutralino

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88
m

DM
 [ TeV ]

10
-30

10
-29

10
-28

10
-27

10
-26

<
 v

 σ
 >

γ
γ
+

γ
Z
 [

 c
m

 3
 /

 s
 ]

Figure 4.8.: (Left) The Fermi LAT [151] (black) and H.E.S.S. [152] (red) upper bounds on the
velocity-averaged DM annihilation cross section for monochromatic γ-ray lines. (Right) the velocity-
averaged DM annihilation cross section 〈v̄σ〉γγ+γZ as a function of mDM with Q = 1/3, where

Ωcĥ
2 = 0.1187± 0.005(3σ) [29] is imposed.

assume that the Universe had much higher temperature in its history, i.e. the Universe had

different phases (ground state configurations) at different epoch. As the temperature of the

Universe cooled down to T ∼ ΛQCD and below, the QCD chiral symmetry is spontaneously

broken [155] with a phase transition from quark-gluon plasma to hadronic matters expected

to occur.

At a certain finite temperature of O(1) TeV, the chiral symmetry for our dark sector is

expected to be restored, and hence the EW symmetry must be restored above the critical

temperature as our model relates both symmetry breaking. The nature of the EWSB could

be related to baryon asymmetry in the Universe [156–159] and it is interesting to find

out whether the allowed parameter space in Sec. 4.2.2 can generate a strong first order

phase transition, which would be natural if it can be realized without extra fine-tuning.

A strong first order phase transition is a crucial ingredient for EW baryogenesis and we

would like to know whether the chiral symmetry breaking and the EWSB process are highly

nonequilibrium as the temperature decreases, which could leave an imprint in the thermal

history of the universe.

We continue our analysis with the NJL approach and include the quantum effects at a

finite temperature. An effective potential at a finite temperature consists of five components

VEFF(φc, T ) = VSM+S(φc)︸ ︷︷ ︸
Tree level

+VNJL(φc) + VCW(φc)︸ ︷︷ ︸
Quantum correction

+VFT(φc, T ) + VRing(φc, T )︸ ︷︷ ︸
Finite temperature

, (4.50)

is obtained, where φc represents a collection of the classical scalar fields h, S and σ. We have

followed the calculation in Refs. [160–163]. The term VSM+S(φc) is the tree-level contribution

given in Eq. (4.3), VNJL(φc) is the one-loop effective potential in Eq. (4.14) when the heavy

dark fermions are integrated out. VCW(φc) is the effective potential (Coleman-Weinberg

potential) with one-loop quantum corrections from the relevant fields at T = 0. The finite

temperature contribution consists of VFT from bosonic and fermionic contributions while

VRing is the ring contribution or plasmon contribution for the bosons, which can be treated

as thermal mass contribution sourced by the heat bath. At the one-loop order they are
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Figure 4.9: The temperature de-
pendence of 〈h〉/T near the criti-
cal temperature is analyzed for the
allowed parameter space. The SM
phase transition (in red) is plot-
ted for comparison. Weak first
order phase transition for the al-
lowed parameters occurs around
T = 150 GeV.
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given by

VCW(φc) =
1

64π2

∑
i

ni

{
m4
i (φc)

(
ln

[
m2
i (φc)

m2
i (〈φc〉)

]
− 3

2

)
+ 2m2

i (〈φc〉)m2
i (φc)

}
, (4.51)

VFT(φc, T ) =
T 4

2π2

(∑
i

nBi JB(m2
i (φc)/T

2) +
∑
i

nFi JF (m2
i (φc)/T

2)

)
, (4.52)

VRing(φc, T ) =− T

12π

∑
i

nBi

[
(M2

i (φc, T ))3/2 − (m2
i (φc))

3/2
]
, (4.53)

where nBi = 1 for a real scalar, nBi = 3 for a vector boson, and nFi = −4 for a Dirac fermion.

Note that we include only the relevant contributions from the top quark, the W±, Z gauge

bosons and the scalars h and S in the Coleman-Weinberg potential and the ring correction.

Contributions from Nambu-Goldstone bosons and the rest of the SM particles are negligibly

small. The relevant tree level field dependent masses m2
i (φc) are given as

m2
W (h) =

g2
2

4
h2, m2

Z(h) =
g2

2 + g2
1

4
h2, m2

t (h) =
y2
t

2
h2, (4.54)

while the masses for m2
h(h, S) and m2

S(h, S) are given in Eq. (4.19).

The crucial part of the potential for a phase transition to occur stems from the finite

temperature contribution VFT and VRing. For a strong first order phase transition to occur,

the parameter 〈φ〉/T has to be larger than 1. The relevant thermal functions JB and JF
are defined as

JB(r2) =

∫ ∞
0

dx x2 ln
(

1− e−
√
x2+r2

)
, JF (r2) =

∫ ∞
0

dx x2 ln
(

1 + e−
√
x2+r2

)
,

(4.55)

where we have also utilized the high temperature expansion to simplify our calculation.

Essentially the most important term determining whether phase transition could happen

stems from JB, as we require the odd polynomial term in T to have a bump in the effective

potential. An additional contribution from the hidden constituent quark is also present in

the VFT potential, where the fermions in the hidden sector is integrated out and we obtain



4.3. Phase Transition at Finite Temperature 53

250 252 254 256 258 260 262 264
0.0

0.1

0.2

0.3

0.4

THGeVL

<
s>

�T

250 252 254 256 258 260 262 264
0.00

0.01

0.02

0.03

0.04

THGeVL

<
Σ

>
�T

Figure 4.10.: The temperature dependence of 〈S〉/T (left) and 〈σ〉/T (right) near the critical temper-
ature for the allowed parameter region. In this parameter space, only second order phase transition
is obtained with critical temperature ranging from T = 254 GeV to 262 GeV.

the contribution to

VFT ⊃ −6nc
T 4

π2
JF (M2/T 2) ' 3nc

T 2

12
M2 +

3nc
16π2

[
M4 ln

(
M2

π2T 2e3/2−γE

)]
, (4.56)

where the constituent mass M is given in Eq. (4.15). The ring contributions are usually

small, but we will include them for completeness. In addition to the field dependent mass

m2
i (φc), the ring contributions also require the thermal mass M2

i (φc, T ) for i boson [164]:

M2
WL/ZL

(h, T ) = m2
W/Z(h) +

11

6
g2

2T
2,

M2
hh(h, S, T ) = m2

hh(h, S) +

(
3g2

2

8
+
λH
2

+
y2
t

4
− λHS

24

)
T 2,

M2
SS(h, S, T ) = m2

SS(h, S) +

(
λS
4
− λHS

6

)
T 2,

M2
hS(h, S, T ) ≈ m2

hS(h, S). (4.57)

We have ignored the contribution from Nambu-Goldstone bosons and U(1)Y as they are

negligibly small. The mass eigenstates for M2
hh,M

2
SS are given by

M2
1,2(h, S, T ) ≈1

2

(
M2
hh +M2

SS ∓
√

(M2
hh −M2

SS)2 − 4M2
hS

)
, (4.58)

where only the longitudinal part of W±, Z contributes to their thermal masses.

The temperature dependence of 〈h〉/T near the critical temperature for the parameter

space that predicts acceptable relic abundance is shown in Fig. 4.9. The EW phase transition

for the SM (in red) is plotted for comparison. From the parameter space that predicts

acceptable relic abundance, the EW phase transition is weakly first order and that the critical

temperature of the present model is around 150 GeV. The shift of critical temperature from

the SM is caused by the nonnegligible value of λHS . We can conclude that our model cannot

account for EW baryogenesis, which would require a strong first order phase transition of
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〈h〉/T > 1. A nonperturbative calculation is required for a more accurate analysis however.

What about the chiral phase transition in the dark sector? The temperature dependence

of 〈S〉/T and 〈σ〉/T is shown in Fig. 4.10. The phase transition in the dark sector occurs at

around T ∼ 250 GeV and all of them are of the second order type. No bubble nucleation can

occur during the thermal expansion of the universe. However, we would like to stress that

our result is based on the NJL approach. Nonperturbative analysis could alter the result.

4.4. Summary

In this chapter we have presented a model where a scale generated via dimensional transmu-

tation in a classically scale invariant hidden sector is transmitted to the SM sector indirectly

via a scalar mediator coupled to the SM Higgs. The indirect scale transmission from a TeV

scale hidden sector triggers the EWSB radiatively. The origin for such a dimensional trans-

mutation stems from spontaneous chiral symmetry breaking in the hidden fermion sector,

which also provides the PNGB as DM candidates. We have utilized the NJL approach to

calculate all the relevant scalar mass spectrum and their couplings. In this approach, most

of the couplings are interrelated and the parameter space for generating experimentally

allowed observations is very restrictive. The predicted DM direct detection cross section

can be probed or excluded by the future XENON1T and LUX experiment. Furthermore,

we have extended our model to include electrically charged hidden fermions, which could

provide striking monochromatic γ-ray line signature in indirect detection experiments. Our

model serves as a prototype for model builders who would like to construct more inter-

esting models involving classically scale invariant extensions of the SM and indirect scale

transmission.
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Discrete Flavor Symmetry

In this chapter we will leave the domain of scale invariance and the electroweak (EW)

sector and discuss another type of symmetry, namely the discrete flavor symmetry, which

could provide a solution to the flavor puzzle in the quark and leptonic sector. We will first

review the flavor puzzle, e.g. comparing and contrasting the mixing structure between the

quark and leptonic sector. We will introduce the idea of utilizing a discrete group, broken

in a specific vacuum alignment, to explain the mixing pattern for both quarks and leptons.

We will introduce an algorithm and implementing it inside the computer algebra program

GAP [165–168] to systematically scan all the finite discrete groups up to the order of 1536

which can generate leading-order (LO) mixing patterns that are experimentally favored

with the assumption that neutrinos are Majorana particles. The search is then extended to

the case when neutrinos are Dirac particles and also to the quark sector. A mathematical

classification will be introduced to categorize all the predictive finite discrete groups. Finally

we will develop a method to quantify the predictivity of discrete symmetry groups and test

their goodness-of-prediction against flavor anarchy. The results and presentation in this

chapter follow Refs. [169, 170] stemming from a collaboration with Martin Holthausen and

Manfred Lindner. All the relevant plots and results are reproduced with reprint permission.

5.1. Motivation and Introduction

The origin of flavor structure for the Standard Model (SM) fermions is one of the puzzle that

requires solutions beyond the SM. Neutrinos, which are massless in the SM, necessary require

extension of the SM to explain their mass terms and mixing with the flavor eigenstates. From

the mass spectrum point of view, neutrinos have very tiny masses compared to the quarks.

Their mass hierarchy is not as obvious as the quarks, as only the mass square difference

between the neutrino masses are known. The absolute ordering of the masses, whether

the hierarchy is normal (m2
3 > m2

2 > m2
1) or inverted (m2

2 > m2
1 > m2

3), is still currently

unknown. From the mixing pattern perspective, i.e. how the different flavors between quarks

or the leptons mix with each other, all the absolute entries of the lepton mixing matrix or

the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

|UPMNS| ≈

 0.821 0.549 0.152

0.374 0.573 0.694

0.382 0.567 0.684

 , (5.1)
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Leptonic Mixing Angles

sin2 θ12 sin2 θ23 sin2 θ13 δ
[10−1] [10−1] [10−2] [π]

3.20+.16−.17 6.13+.22−.40 2.46+.29−.28 0.8+1.2
−.8

Quark Mixing Angles

sin2 θ12 sin2 θ23 sin2 θ13 δ
[10−2] [10−3] [10−5] [10−1π]

5.09± 0.04 1.72± 0.09 1.23± 0.14 3.8± 0.3

Table 5.1.: (Left) Global fit of neutrino oscillation parameters for the case of normal ordering of
neutrino masses with the 1σ error adapted from Ref. [171]. There are two nearly degenerate minima
at sin2 θ23 = 0.430+.031−.030 in the global fit. (Right) The quark mixing parameters converted to sin θij
format, which will be useful later [8].

are of order one. Compared to the quark mixing matrix, or the Cabibbo-Kobayashi-Maskawa

(CKM) matrix [8]

|UCKM| ≈

 0.974 0.225 0.004

0.225 0.973 0.041

0.009 0.040 0.999

 , (5.2)

whose absolute off-diagonal entries are small, we can see that neutrinos mix strongly unlike

the case for quarks. The different mixing patterns between these two sectors at first would

naively let us to conjecture that both sectors have different origin, which is usually the case

for most of the models proposed to explain the flavor structure. This assumption is naive,

as both the different structures of quarks and leptons could have a common origin, which

we will see later.

Before we start to discuss the different approaches to tackle the flavor problem, let us

first define a convention to parameterize the mixing pattern. Both the UPMNS and UCKM

matrices can be parameterized as

Umix =

 1 0 0

0 c23 s23

0 −s23 c23

×
 c13 0 s13e

−iδCP

0 1 0

−s13e
iδCP 0 c13

×
 c12 s12 0

−s12 c12 0

0 0 1

 , (5.3)

where cij = cos θij and sij = sin θij describe the mixing between ith and jth fermion

generations. The Dirac CP phase is parameterized by δCP. If neutrinos are Majorana

particles, additional phase matrix P = diag(eiα, eiβ, 1) is multiplied to the RHS of Eq. (5.3).

The best fit result for neutrino oscillation parameters from global fit [171–173] and the

experimentally measured quark mixing parameters are given in Table 5.1.

For the leptonic mixing angles, the s12 ≈ 1/
√

3 is measured from the solar neutrino

oscillation [28] while s23 ≈ 1/
√

2 represents the amplitude of atmospheric neutrino mixing

flux [174]. Until year 2012 the reactor angle s13 was not measured but only limited by

CHOOZ experiment [27]. It was thought that the reactor mixing angle is small, possibility

zero. This has spark a lot of interest in the high energy physics community to build model

based on A4 [12–18] and S4 [175–177] discrete symmetries that can lead to the tri-bimaximal
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mixing pattern (TBM)

UPMNS ∼ UHPS ≡


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3
− 1√

2

 , (5.4)

proposed by Harrison, Perkins and Scott [178, 179]. It is only until recently that the reactor

mixing angle is measured by DAYA BAY [9], RENO [10] and DOUBLE CHOOZ [11],

with the value s13 ≈ 0.15. For the quarks mixing patterns, most of the mixing angles are

determined from decays of mesons and they have been measured very precisely compared

to the leptonic sector. For a thorough review of the quark mixing patterns and how they

are measured please refer to the PDG review [8].

In general the ansatz to explain the flavor structure can be classified into two categories:

• Symmetry based approach,

• Anarchy based approach [180–182].

For the latter the occurrence of mixing pattern consists of random variables drawn from the

distribution of U(3) Haar measure

dV = dc4
13ds2

12ds2
23. (5.5)

The crucial hypothesis here is that there is no underlying symmetry in the flavor structure,

and nature chooses a specific point in the mixing angle space from the above probability

distribution. We would not pursue this idea further in this thesis, except that we will provide

a test of goodness-of-prediction for flavor symmetry against anarchy to see how predictive

both the approaches are.

We assume that the underlying Yukawa matrices and mixing patterns in the leptonic

and quark sectors result from certain symmetries. In general, in order to build a flavor

model, one needs to explain the mass hierarchy between the fermions and also the mixing

patterns. This is typically done by spontaneous symmetry breaking by certain flavon fields

charged differently under a symmetry group. All the approaches to solve the flavor problem

using symmetry groups require flavon fields, whether in the form of additional scalar fields

or multi-Higgs fields1. To explain the mass hierarchy one typically requires mass matrices

with certain texture zeros, which are motivated by flavor symmetry groups. In the sim-

plest scenario, a U(1) group is utilized with the charges of left-handed and right-handed

fermions chosen in an appropriate way to generate mass hierarchy2. The small Yukawa cou-

pling/mass term of certain generations are generated from higher-dimensional operators,

when the flavon fields obtain a certain configuration of vacuum expectation value (VEV).

This approach is known as Froggatt-Nielsen mechanism [184] and is only useful to generate

the mass hierarchical structure. To obtain the nontrivial mixing pattern, non-abelian sym-

metry groups are typically assumed to provide the vacuum alignment of the flavon fields.

Continuous non-abelian symmetry such as U(2) [185], SO(3) [186] and SU(3) [187] have

1By Higgs field we mean scalar field charged under the EW gauge symmetry.
2For a good introduction to this approach please refer to Ref. [183].
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been studied extensively to explain the nontrivial mixing patterns, however they are gen-

erally complicated as additional auxiliary symmetries are required to suppress undesired

operators. These problems can be solved in a simpler approach when a discrete non-abelian

symmetry is chosen as a starting point, which is the main focus of this chapter. For a more

comprehensive review on discrete flavor symmetries and model building in this direction we

refer the reader to Refs. [188–190].

With so many flavor parameters to be explained, the actual model building regarding

discrete flavor symmetry is very involved. Let us look at the prototype model building for

leptonic sector with an A4 discrete group [12–18] , which is the smallest group that contains

a 3-dimensional representation. Rather than writing out a specific A4 model explicitly, we

just want to present the idea and model building approach in flavor symmetry. Let us assign

the EW singlet leptons, {eR, µR, τR} with the following representations {11,11′,11′′} with

11 as the trivial representation of A4. For simplicity let us introduce two real scalar fields

χ and φ charged under 3-dimensional representation 3, under which also the EW lepton

doublet L are charged. The LO lepton mass operators are given by

L ⊃ −yeχL̄HeR
Λ

− yµχL̄HµR
Λ

− yτχL̄HτR
Λ

− xφLcH̃∗H̃†L
Λ2

+ h.c, (5.6)

with H̃ = iσ2H∗ and notice that the LO charged mass Lagrangian consists of dimension

5 operators while Majorana neutrino mass matrix is described by dimension 6 operators.

Once all the flavon fields obtain their VEVs and break the discrete flavor symmetry, the

LO mass matrices for the leptons are obtained. After diagonalizing the mass matrices with

the flavor rotation matrices, the mixing matrix UPMNS can be obtained. Now comes the

crucial point, if the VEV configurations are random and have no specific structure, we

have no predictions of the mixing patterns. This is clear as we did not solve anything

with the additional flavon fields, but rather just reparameterizing the Yukawa couplings in

another way. This argument changes if the mass matrices contain certain structures. For our

example let us assume that the scalar field χ obtains a VEV in direction 〈χ〉 ∼ v′(1, 1, 1)T .

Notice that with this VEV configuration, there is a Z3 residual exchange symmetry of the

charged lepton VEVs. Similarly we can work out an interesting VEV configurations for the

neutrino sector, say 〈φ〉 ∼ u(1, 0, 0)T and we notice that we have a Z2 symmetry for the two

zeros. The residual symmetry of the VEV implies the same residual symmetry of the mass

matrices for the leptons. Why we emphasize so much on the nontrivial residual symmetry

of the broken flavor group? As the PMNS matrix is determined from the product of unitary

and orthogonal rotation matrix that diagonalizes the charged leptons and neutrinos mass

matrices, the residual symmetries remain invariant after diagonalizing the mass matrices,

and the mismatch amongst them dictate the PMNS matrix up to permutations of rows and

columns. The mixing matrix can be determined solely from a given discrete flavor symmetry

group and its breaking to the residual subgroups. The crucial ingredient to obtain the mixing

patterns without looking at the dynamics of the model depends on the representations of

the fields in a certain discrete group and the structure of mass matrix which preserves the

residual symmetry.

Let us be more precise with this approach. We start with a finite discrete flavor group

Gf , under which the left-handed fermion (lepton or quark) doublets transform under a
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Gf

Ge Gν

Gu Gd

PMNS

CKM

Figure 5.1: Sketch of remnant symmetry ap-
proach in this thesis. The flavor group Gf
is broken down to different remnant symme-
tries of the different mass matrices, with the
CKM and PMNS matrices generated by the
mismatch of the subgroups.

faithful unitary 3-dimensional representation. Assuming that the flavons obtain their VEVs

in such a way that the misaligned remnant symmetries between the charged lepton (u-type

quark) and neutrino (d-type quark) mass matrices emerge, we can obtain a LO prediction

for the leptonic (quark) mixing patterns. The crucial point is that Gf is broken to discrete

subgroups Ge and Gν for the leptonic sector, with the mass matrices of charged leptons and

neutrinos respecting the symmetries of the subgroups Ge and Gν respectively. Similarly

the u-type and d-type quark mass matrices still enjoy the remnant symmetry of Gu and Gd
respectively in the quark sector. The mismatch between Ge and Gν generates the leptonic

mixing patterns while misalignment betweenGu andGd creates the CKM matrix, see Fig. 5.1

for a clear sketch of the idea. We abbreviate the idea above as remnant symmetry approach

[169, 170, 175–177, 191–193]. Of course the flavor group Gf in the leptonic sector can be

different from the quark sector, and we can treat those two flavor groups independently.

However it turns out that most of the interesting flavor groups that we will encounter

later can yield both experimentally favored CKM and PMNS matrices at LO. The spirit of

this chapter is to find common discrete groups that can explain leptonic and quark mixing

patterns simultaneously.

In the leptonic flavor sector, the small discrete flavor symmetry groups such as A4 and S4

were popular approaches in model building as they predict the TBM mixing pattern at LO.

With the recent nonzero reactor mixing angle θ13 measured (see Table 5.1), TBM is strongly

disfavored and one needs to rethink the discrete flavor symmetry approach to explain lepton

flavor. In general there are two possibilities to reconcile the discrepancy. One possibility is

to construct models which can lead to LO TBM structure and allow for large next-to-leading

order (NLO) corrections, which usually involves breaking some of the remnant symmetry

groups and severely limits the predictivity of the models. Another alternative approach is

to start with new (larger) discrete groups that can predict a different type of mixing pattern

at LO. In this thesis, we will pursue the second route and give a model independent list of

discrete groups that can generate mixing patterns for leptons and quarks at LO. But before

that let us first define our conventions and some basic notations in group theory which will

be useful for classifying the relevant discrete groups.

5.2. PMNS and CKM Matrices from Remnant Symmetries

As we have seen in Fig. 5.1, lepton mixing can be obtained from the breaking of a discrete

flavor symmetry group to some remnant symmetries in the charged lepton and neutrino
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masses respectively. Analogously the CKM matrix can be derived in similar way where the

remnant symmetries remain for the u-type and d-type quarks mass matrices. The sponta-

neous symmetry breaking is usually achieved in concrete models with the relevant flavon

fields obtaining VEVs in some vacuum alignment configurations, as we have seen above. The

actual models to achieve such symmetry breaking with specific vacuum configuration will

not be considered in this thesis, but rather we want to search for discrete symmetry groups

containing relevant residual symmetry groups which can predict acceptable LO PMNS and

CKM matrices, i.e. we need to find discrete flavor groups that can be broken down to some

nontrivial residual subgroups for the mass matrices. We first assume that neutrinos are

Majorana particles, and will generalize our approach later to include Dirac neutrinos.

The mass matrices for the fermions are defined as

L = −eLMeeR −
1

2
νTMνν − dLMddR − uLMuuR, (5.7)

after EW symmetry breaking (EWSB). Here we do not assume any specific mechanism to

generate the Majorana neutrino mass. The PMNS and CKM matrices

UPMNS = V †e Vν , UCKM = V †d Vu (5.8)

are obtained from the product of the unitary matrices Vs and Vν which diagonalize the mass

matrices

V †sMsM
†
sVs = diag(m2

I ,m
2
II,m

2
III), V T

ν MνVν = diag(m1,m2,m3). (5.9)

We denote the symbol s ∈ {e, d, u} as the type of matrix and the numeral I, II and III as

the fermion’s generation for charged leptons, u-type and d-type quarks. For the case where

neutrinos are Dirac particles, s ∈ {e, d, u, ν}, i.e. neutrino mass matrix can be diagonalized

like the LHS of Eq. (5.9).

In this thesis we follow the notations in Refs. [169, 170, 175–177, 191–193]. We assume

a discrete symmetry group Gf in the leptonic sector, under which the left-handed lepton

doublets L = (ν, e)T transform under a faithful unitary 3-dimensional representation ρ :

Gf → GL(3,C):

L→ ρ(g)L, g ∈ Gf . (5.10)

Similarly for the quarks we assume that there is a discrete symmetry group GQ under which

the left-handed quark doublets Q = (u, d)T transforms:

Q→ ρ(g)Q, g ∈ GQ. (5.11)

In general the discrete group Gf for leptonic sector is not the same as GQ and we can classify

the different cases for Gf and GQ into two settings:

• Gf and GQ are independent, in this case we treat the both the discrete groups as sep-

arate starting point to obtain PMNS and CKM matrices independently. The leptonic

discrete group Gf is broken into remnant symmetry subgroups {Ge, Gν} for charged

lepton and neutrino sectors. Analogously the argument applies for GQ → {Gu, Gd}.
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• GQ ⊂ Gf or GQ ⊃ Gf , which we can identify the larger group to be a common discrete

group that can simultaneously yield the LO PMNS and CKM matrix, following the

idea in Fig. 5.1.

For the first scenario we focus only on the breaking of Gf → {Ge, Gν} and classify all the

discrete groups that predict experimentally favored LO leptonic mixing patterns. For the

latter, as all the quark and lepton masses are different, the flavor symmetry group is required

to be broken into two set of different subgroups, i.e. {Gd, Gu} for the quark and {Ge, Gν}
for the leptonic sector. In general the generators of Gd and Gu only generate the group

GQ, which is a proper subgroup of Gf , if we assume that Gf is larger. Since we would like

to find a unified discrete symmetry group Gf which can predict the LO PMNS and CKM

matrix simultaneously, we will only consider a direct breaking Gf → {Gd, Gu}, i.e. we look

for groups Gf that can be broken into discrete subgroups {Ge, Gν , Gu, Gd}.
As all lepton masses are unequal and the mixing amongst all three mass eigenstates

are nontrivial, the discrete flavor symmetry group Gf cannot be a global symmetry of the

Lagrangian but has to be broken to different subgroups Ge and Gν (with trivial intersection)

in the charged lepton and neutrino sectors respectively, and to nonequal subgroups Gu and

Gd in the u-type and d-type quark sectors. Subgroups from different subgroup set, e.g. Ge
and Gd can have nontrivial intersection. An intersection of two subgroups contains the

same elements. Note that within a set of the residual leptonic subgroups {Ge, Gν}, the

intersection between subgroups in each set has to be trivial as we would like to predict

three different mixing angles in the leptonic sector. However, this condition is relaxed for

subgroups {Gd, Gu} in the quark sector as we do not find any group that can predict three

different quark mixing angles at LO. For the quark mixing patterns, all the interesting

discrete groups can only predict the LO Cabibbo angle.

As a consequence of the breaking of Gf → {Ge, Gν} and Gf → {Gu, Gd}, the mass

matrices have to fulfill

ρ(gs)
†MsM

†
sρ(gs) = MsM

†
s and ρ(gν)TMνρ(gν) = Mν , (5.12)

where gs ∈ Gs and gν ∈ Gν . The transformation matrix ρ(gs) only acts on the flavor space

of the respective left-handed fermion. Choosing non-abelian subgroups for Gs,ν will lead to

degenerate mass spectrum, as representations of non-abelian groups cannot be decomposed

into three inequivalent 1-dimensional representations ofGs,ν . This scenario is not compatible

with the experiments as all three neutrinos and charged fermions are distinguishable. We

therefore restrict the subgroups Gs,ν to the abelian case. So what are the constraints on

the subgroups Gs,ν? As the charged leptons and quarks are distinguishable, the Gs group

cannot be smaller than Z3, i.e. all abelian subgroups of Gf with |Gs| ≥ 3 can serve as

good remnant symmetry group. This also applies for neutrinos if they are of Dirac nature.

For the case when neutrinos are Majorana particles, we cannot have complex eigenvalues

from the matrix ρ(gν), and therefore ρ(gν)2 = 1 has to be satisfied. We can further choose

det ρ(gν) = 1 and by requiring all three Majorana neutrinos to be distinguishable, the group

Gν is restricted to be the Klein group Z2 × Z2. In fact the Klein group is the only unique

group that satisfy Eq. (5.12) for three distinguishable 1-dimensional representation of Gν .

Higher Zn2 (n > 2) product groups are redundant as the Klein group is the maximal group
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to accommodate three inequivalent generations of neutrinos.

Once the generators of all the residual subgroups are specified for a given representation,

the mixing patterns of quark and leptonic sector can be determined from the product of the

unitary matrices Ωs and Ων satisfying

Ω†s,νρ(gs,ν)Ωs,ν = ρ(gs,ν)diag. (5.13)

The unitary matrices Ωs and Ων are determined up to permutation matrices Ps,ν and a

diagonal phase matrix Ks,ν , i.e.

Ωs,ν → Ωs,νKs,νPs,ν . (5.14)

The PMNS and CKM matrix up to the permutations of rows and columns can be obtained

from

UPMNS = Ω†eΩν , UCKM = Ω†dΩu. (5.15)

The Dirac CP phases of the PMNS and CKM matrices can also be determined from this

method. However the Majorana phases cannot be determined from the remnant symmetry

approach. We stress that it is not possible to obtain the unique mixing matrix in the

remnant symmetry approach, but only up to the permutations of rows and columns as it is

not possible to predict lepton masses. In this sense, the remnant symmetry approach allows

us to obtain a manifold of mixing pattern configurations independent of the explicit mass

matrices.

5.2.1. Simple Example for Leptonic Mixing Patterns

We will now apply the machinery above to some interesting cases by focusing on the leptonic

mixing pattern only. Again we assume in this section that neutrinos are Majorana particles.

As we have argued above that the smallest residual symmetry in the charged lepton sector

is given by a Ge =
〈
T |T 3 = E

〉 ∼= Z3. The bracket notation represents the presentation

of a group generated by the element inside. For a relevant introduction to group theory

particularly in discrete groups we refer the reader to Refs. [189, 194]. Next we need to

specify the basis for the generators. As it will turn out to be useful later, we assume that

Ge = Z3 is in a basis where the generator in 3-dimensional representation is given by

ρ(T ) = T3 ≡

 0 1 0

0 0 1

1 0 0

 . (5.16)

We denote ρ for a general representation, and T3 for this special 3-dimensional matrix. The

matrix ρ(T ) is diagonalized by

Ω†eρ(T )Ωe = diag(1, ω2, ω) with Ωe = ΩT ≡
1√
3

 1 1 1

1 ω2 ω

1 ω ω2

 , (5.17)
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and ω = ei2π/3. For the Klein group Gν , one of the generator S of Gν , satisfying ρ(S)2 = 1

and det ρ(S) = 1, is given by

ρ(S) = S3 ≡

 1 0 0

0 −1 0

0 0 −1

 . (5.18)

Due to the degenerate eigenvalues (−1), we still have a two-parameter freedom in the matrix

Ων . It turns out to be useful for classifying our result later if we rotate the diagonal matrix

ρ(S)

Ω†νρ(S)Ων = diag(−1, 1,−1) with Ων = ΩUU13(θ, δ), (5.19)

where

ΩU =

 0 1 0
1√
2

0 − i√
2

1√
2

0 i√
2

 and U13(θ, δ) =

 cos θ 0 eiδ sin θ

0 1 0

−e−iδ sin θ 0 cos θ

 . (5.20)

The degeneracy of the eigenvalues appears because the S generator only generates a Z2

group with the degeneracy parameterized by a rotation θ in the 1-3 space. As we require

three distinguishable Majorana neutrinos, we need the subgroup Gν to be the Klein group,

which requires additional generator U with

ρ(U) = U3 ≡ −

 1 0 0

0 0 1

0 1 0

 , with Ω†Uρ(U)ΩU = diag(−1,−1, 1). (5.21)

This fixes the value of θ to zero. The discrete group S4 = 〈S3, T3, U3〉 with S3, T3 and U3

given in our example above generates the famous TBM pattern

UPMNS = Ω†eΩU = UHPS, (5.22)

introduced in Eq. (5.4). Until very recently, this pattern gave a good LO description of

the leptonic mixing matrix. However the recent measurements of a nonvanishing θ13 have

strongly disfavored the TBM pattern and to reconcile with this discrepancy, three general

approaches are considered within the flavor physics community:

• Give up on flavor symmetry, which would imply flavor anarchy. We will not discuss

flavor anarchy in details, but rather we will test its goodness-of-prediction against

flavor symmetry in Sec. 5.4.

• Take TBM as starting point and break some residual symmetries with higher order

corrections. This approach will not determine the full mixing pattern, but only partial

mixing angles with certain sum rules. For instance if the remnant symmetry in the

neutrino sector Gν is taken to be Gν = 〈S〉 ∼= Z2, i.e. U generator is broken, then the

leptonic mixing matrix is given by UPMNS = UHPSU13(θ, δ) [195–201]. This mixing

pattern leads to sin2 θ12 > 1/3 and is known as tri-maximal pattern TM2 [196, 202–
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204]. Similarly we would obtain different sum rules if T generator is broken. This

approach however only predicts a partial set of mixing angles but can accommodate

the experimental results more easily. A group scan based on this assumption has been

performed in Ref. [193].

• Start with new discrete symmetry group. Instead of breaking the residual symmetries

and losing some predictivities of flavor symmetry group, we start with a (larger) new

discrete symmetry group that generates experimentally allowed LO leptonic mixing

angles. This idea can be generalized to the quark sector and we can chart new ter-

ritories of possible interesting discrete groups. Utilizing this approach is the spirit of

this chapter.

5.3. Charting New Discrete Flavor Symmetries

We will now survey a large group of discrete flavor groups that predict acceptable LO mixing

patterns. First we will focus solely on the leptonic mixing pattern with the assumption that

neutrinos are Majorana particles in Sec. 5.3.1. We then move on to apply our technique to

search for discrete symmetry groups that simultaneously predict LO CKM and PMNS struc-

ture allowed by experimental measurements in Sec. 5.3.2. In Sec. 5.3.3 we will assume that

neutrinos are Dirac particles and perform a scan of discrete groups that predict acceptable

leptonic and quark mixing patterns.

To perform such a large survey we would require the computer algebra program called

GAP [165] with the additional packages such as REPSN [166] to construct representations for

finite groups, and SmallGroups [167] for accessing the subgroups of discrete groups. The

procedure to perform and speed up such a group scan is laid out as follows:

1. We fix the relevant Gs1 and Gs2 where si ∈ {e, u, d, ν} and look for groups which

contain these two subgroups. For instance if we want to find discrete groups that

explain the leptonic mixing pattern when neutrinos are Majorana particles, Gs1 =

Ge = Z3 and Gs2 = Gν = Z2 × Z2 are good candidates, as mentioned previously.

2. As all the discrete groups (for our purpose) are known and classified, we systematically

look for a group Gf that contains Gs1 and Gs2 as its subgroups in a certain order,

starting with the smallest. In general there are more than one group with the same

order, and for simplicity we follow the ordering of SmallGroups in GAP. For example

we loop from · · · → [11, 1] → [12, 1] → [12, 2] → . . . , with the first number represents

the order of the group while the second represents the identification of a certain group

in this order. Every discrete group (up to order 1536) in SmallGroups is labeled in

this way.

3. Some group theoretical result can be exploited to speed up the scanning process. For

instance the Lagrange theorem can be used to skip over groups with order which is not

divisible by |Gs1 | and |Gs2 |, while the dimension theorem can be utilized to discard

groups with order not divisible by 3. This is because we only consider groups which

possess at least one irreducible 3-dimensional representation of the group generators.
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For our example we skip over groups with order that is not divisible by 4 (order of

Klein group) and 3 (order of Z3).

4. For a specific group, all the 3-dimensional representations for the generators {ρs1(Sj)}
and {ρs2(Sk)} are then recorded. The unitary matrices, Ωs1 and Ωs2 that diagonalize

the generators are then being multiplied to obtain the desired mixing patterns as

shown in Eq. (5.15). All the matrices with permutations of rows and columns for the

mixing matrices were recorded. In the example, all the 3-dimensional representations

ρ(U), ρ(S) and ρ(T ) for generators U , S (Klein group) and T (Z3 group) are recorded.

With each set of generators for the Klein group, we determine the unitary matrix Ων

which simultaneously diagonalizes both ρ(S) and ρ(U). In the same representation, a

unitary matrix Ωe that diagonalizes the ρ(T ) matrix is obtained. The corresponding

Ων and Ωe will be multiplied to obtain a PMNS matrix. We repeat the process for all

the different combinations of Ων and Ωe obtained from different sets of {ρ(U), ρ(S)}
and ρ(T ) respectively.

5. We then repeat process (2) for the next group Gf .

5.3.1. Leptonic Mixing Patterns for Majorana Neutrinos

In Sec. 5.2 we have shown that in order to (up to permutations of rows and columns)

determine the leptonic mixing patterns from pure group theory approach, the most crucial

ingredients are the unbroken remnant symmetries in the neutrino and charged lepton mass

matrices. It is also important that there are three inequivalent 1-dimensional representations

for each sector, such that we have no degeneracy among the generations. As we have argued

above, we require that the neutrino sector possesses a Klein group symmetry Z2 × Z2, as

we require three distinguishable generations of Majorana neutrinos. For the charged lepton

sector we require an abelian group. We first consider the smallest relevant Z3 group, and

generalize our search to general finite abelian groups later.

For the case of Gν = Z2×Z2, Ge = Z3

We first assume that the charged lepton sector has a Z3 symmetry while the neutrino sector

has a Z2 × Z2 symmetry, and perform a scan for all discrete groups of size smaller than

1536 using the algorithm above. The total number of 1336749 finite discrete groups (with

an additional group of ∆(6 · 162)) has been scanned, and only groups which contain the

Klein group and Z3 as their subgroups are kept. All the permutations of rows and columns

for the corresponding PMNS matrices are generated and we order the PMNS matrices with

the smallest 1-3 entry and an additional condition such that the 1-1 entry is larger or equal

to 1-2 entry. This sorting algorithm removes a huge amount of irrelevant and duplicated

matrices.

The flavor mixing angles are extracted from the resulting PMNS matrices and the results

are plotted as black circles in Fig. 5.2. From over one million finite discrete groups that we

have scanned, only three finite discrete groups up to the order of 1535 including ∆(6 · 162)

can generate the leptonic mixing angles allowed by the experimental values up to 3σ. The

strongest constraint comes from the recently measured reactor mixing angle θ13. We observe
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n G n G n G n G

4 ∆(6 · 42) 9 (Z18 × Z6) o S3 13 ∆(6 · 262) 18 (Z18 × Z6) o S3

5 ∆(6 · 102) 10 ∆(6 · 102) 14 ∆(6 · 142) 24 Z3 ×∆(6 · 82)
7 ∆(6 · 142) 11 ∆(6 · 222) 15 Z3 ×∆(6 · 102)
8 ∆(6 · 82) 12 Z3 ×∆(6 · 42) 16 ∆(6 · 162)

Table 5.2.: Interesting groups generated by T3, S3 and U3(n, k = 1) that predict acceptable leptonic
mixing structures. The number n defines the U3(n, k = 1) generator for generalized Klein group.
We observe that only groups of (Zn ×Zn′) o S3 generate leptonic mixing structure that are favored
by the experiments.

that many of the discrete finite groups with Ge = Z3 and Gν = Z2 × Z2 predict leptonic

mixing patterns that lie on a parabola in the mixing angle plane. Note that Fig. 5.2 is a

zoom-in plot where we have ignored mixing angles that lie beyond the plotted region. The

mixing angles lying outside the zoom-in region will be shown in Fig. 5.3. The mixing angles

predicted by TBM are given as the minimum of the parabola. All the groups scanned up

to order 1536 predict solar mixing angle sin2(θ12) ≥ 1/3.

Can we classify all those discrete groups that lie on the parabola in a simple systematic

way? In Sec. 5.2.1, we had shown that if the Z3 remnant symmetry in the charged lepton

sector is generated by the matrix T3 given in Eq. (5.16), and the Klein group is generated by

the S3 and U3 in Eq. (5.18) and Eq. (5.21), the resulting mixing matrix is a TBM as shown

in Eq. (5.22). It turns out that all the new mixing patterns in Fig. 5.2 can be parameterized

as

UPMNS = UHPSU13(θ =
1

2
arg(z), δ = 0), (5.23)

with U13 defined in Eq. (5.20), i.e. they are all just TBM matrix rotated with certain angle

in 1-3 angle plane. This result can be understood as a misalignment between the remnant

symmetry T3 in the charged lepton sector and the “generalized” Klein group generated by

S3 and U3(n, k = 1) in the neutrino sector, with

U3(n, k) = −

 1 0 0

0 0 zn,k
0 z∗n,k 0

 , with zn,k = e2πik/n, k ≤ n ∈ N. (5.24)

We think of U3(n, k = 1) as one of a generalized generator for the Klein group. Note that

the awkward notation k will be useful for Sec. 5.3.2. It is easy to see that for any |z| = 1,

we have [S3, U3(n, k = 1)] = 0 and U3(n, k = 1)2 = 13 and therefore the group generated by

S3 and U3(n, k = 1) is always a Klein group. The leptonic mixing pattern generated by T3,

S3, and U3(n, k = 1) has to be of the form given in Eq. (5.23) with zn,k=1 parameterizing

the rotation away from TBM. Note that 〈zn,k=1〉 ∼= Zn is a cyclic group. Different nth

root of zn,k will in general generate different leptonic mixing angles according to Eq. (5.23),

with the results shown in Fig. 5.2. We list down the names of the groups generated for

n = 4, . . . , 16 in Table 5.2. From a first glance one might be tempted to think that all of

the interesting groups on the parabola can be classified as ∆(6 · n2) [205, 206], however the
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Figure 5.2.: The leptonic mixing angles determined from group scan up to order 1536 are plotted in
black circles. The red dots represent the mixing angles determined from the generator S3, T3 and
U3(n, k = 1), with the red labels represent the integer n for generator U3(n, k = 1). The interpolating
parabola is colored according to the value of θ as defined in Eq. (5.20).

correct classification should be of the form of (Zn×Zn′)oS3, which we will discuss shortly.

The predictions for mixing angles using our classification are calculated to be

|UPMNS| =
1√
3


√

2 cos(π6 − π
n) 1

√
2 sin(π6 − π

n)√
2 cos(π6 + π

n) 1
√

2 sin(π6 + π
n)√

2 sin(πn) 1
√

2 cos(πn)

 , for sin2(θ23) ≥ 1

2
, (5.25)

or =
1√
3


√

2 cos(π6 − π
n) 1

√
2 sin(π6 − π

n)√
2 sin(πn) 1

√
2 cos(πn)√

2 cos(π6 + π
n) 1

√
2 sin(π6 + π

n)

 , for sin2(θ23) <
1

2
. (5.26)

Note that we consider only the absolute value of the resulting matrices shown in the form

above. The result is shown (red dots) in Fig. 5.2 with the relevant result shown in Table
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n G GAP-Id sin2(θ12) sin2(θ13) sin2(θ23)

5 ∆(6 · 102) [600, 179] 0.3432 0.0288 0.3791/0.6209
9 (Z18 × Z6) o S3 [648, 259] 0.3402 0.0201 0.3992/0.6008
16 ∆(6 · 162) n.a. 0.3420 0.0254 0.3867/0.6134

Table 5.3.: Mixing angles predicted by interesting groups which are compatible with 3σ experimental
results are shown. The group identification function in SmallGroups is not available for group with
order 1536.

5.3, and all of them agree with our simple classification. Some of the groups such as ∆(96)

(n = 4) and ∆(384) (n = 8) have been obtained before in [192], however they do not predict

acceptable mixing angles and hence are of no further interest. All the groups restricted to

those shown in Fig. 5.2 predict δCP = π or 0. The parabola depicted in Fig. 5.2 will be

densely covered for groups with arbitrary size. The mixing patterns corresponding to n = 5,

n = 9 and n = 16 predict experimentally favored leptonic mixing patterns.

For the case of Gν = Z2×Z2, |Ge| > 3

We now relax the condition on the charged lepton subgroups by allowing Ge to be any

abelian group which is a subgroup of Gf . We keep the Klein group for Majorana neutrino

sector. As the number of groups are larger due to the less constraining assumption, a

complete search to large order of groups is computationally expensive. Therefore, we have

restricted our scanning process of all the discrete finite groups Gf only up to order 511. The

result is shown in Fig. 5.3 and to our surprise, only the leptonic mixing patterns predicted

by finite modular groups and their subgroups [192] are obtained. Note that in general other

groups which lie outside the region shown in Fig. 5.2 do give nontrivial Dirac CP phases,

unlike those predicted by (Zn × Zn′) o S3.

Can we understand heuristically why from all the discrete groups up to order 1536 scanned

above, only those with (Zn × Zn′) o S3 predict acceptable leptonic mixing angles? It turns

out that we can naively expect that most of the groups that can yield experimentally favored

mixing patterns have the form of TBM, as TBM already provides a relatively good starting

point for LO mixing angles compared to other finite modular groups such as A5, PSL(2, Z7).

From the group structure, the group (Zn × Zn′) o S3 can be broken into

(Zn × Zn′)︸ ︷︷ ︸
↓

Z2 × Z2

o S3︸︷︷︸
↓
Z3

, (5.27)

where we can observe that the resulting deviation from TBM described by the parabola in

Fig. 5.2 stems from the misalignment of the generalized Klein group and Z3. Of course the

actual breaking of (Zn×Zn′)oS3 is more involved than what we have shown in Eq. (5.27),

and the reader should take such a naive argument as an idea on how the discrete groups are

broken in such a way that we obtain a deviation pattern from TBM.
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Figure 5.3.: Mixing patterns obtained from Gf up to order 511 by considering all the abelian sub-
groups for Ge. We also plotted the mixing patterns obtained from groups with Ge = Z3 for the
sake of comparison, shown in black dots. Only the mixing patterns predicted by finite modular
groups and their subgroups are obtained for |Ge| > 3 [192]. The mixing patterns from Ge = Z3

outside the parabola are also generated by finite modular groups (e.g. A5, PSL(2, Z7)) and their
subgroups. Nontrivial Dirac CP-phases are predicted for some of the discrete groups lying outside
of the experimentally 3σ range.

5.3.2. Leptonic and Quark Mixing Patterns from Unified Symmetries

In this section we extend our scanning algorithm to search for discrete groups that predict

acceptable LO quark mixing angles. The Cabibbo angle θc is of similar size as the reactor

mixing angle θ13 ' θc/
√

2 ' 9.2◦, therefore it would be interesting if all the leptonic and the

Cabibbo angle are produced at LO as a result of remnant symmetries from the breaking of

a common discrete group. Since other angles in CKM matrix are smaller than the Cabibbo

angle, we can assume that they are obtained as a result of NLO corrections. From the finite

discrete groups with order less than 1536 in Sec. 5.3.1, only three interesting groups predict

LO leptonic mixing patterns within 3σ of current best fit. Since we are looking for discrete

groups that can predict both the LO leptonic mixing angles and Cabibbo angle, perhaps

these three groups, namely ∆(6 · 102), (Z18 ×Z6)o S3 and ∆(6 · 162), could provide a good
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n Gf GAP-Id sin θ̃ type

5 ∆(6 · 102) [600, 179] 0.156 I
0.309 II

9 (Z18 × Z6) o S3 [648, 259] 0.259 I
16 ∆(6 · 162) n.a. 0.195 I

Table 5.4.: LO Cabibbo angles sin θ̃ generated by flavor groups up to order 1536 compatible with
experimental results are shown. Type I and II refers to different breaking of Gf into residual
symmetry groups (see Sec. 5.3.2).

starting point for us to look for their predicted LO Cabibbo angle. By searching all the

abelian subgroups contained in these three groups, all the LO CKM matrices obtained are

in the following form:

UCKM =

 cos θ̃ sin θ̃ 0

− sin θ̃ cos θ̃ 0

0 0 1

 . (5.28)

The values of sin θ̃ are given in Table 5.4 and the form may be compared to the the CKM

experimental values in Eq. (5.2). We also extend our searches to find generic GQ that can

predict three different mixing angles in the quark sector at LO, however no such group

has been found. We conclude that no discrete group can predict three distinguished LO

CKM mixing angles, as a consequence the Dirac CP phase for the CKM matrix cannot be

determined from this approach.

We will now classify our result for the quark mixing patterns in group theory language

analogue to the leptonic mixing patterns in Sec. 5.3.1. From the searches, we found two

different types of residual subgroups which are relevant. From Eq. (5.28) with the LO CKM

matrix, the intersection between Gu and Gd must be nontrivial, otherwise there would be

full 3× 3 mixing as in the leptonic case. It turns out to be useful to pick S as the generator

for the intersection. As a result, we found 2 types of remnant symmetries generated by:

• type I:

Gd = 〈S,U(n, p)〉 ∼= Z2 × Z2,

Gu = 〈(ST )2TU(n,m)〉 ∼= Z4.

• type II:

Gd = 〈S,U(n, p)〉 ∼= Z2 × Z2,

Gu = 〈S, (U(n,m)T 2)2(U(n,m)T )2U(n,m)〉 ∼= Z2 × Z2.

where the 3-dimensional irreducible representations for S, T and U(n, p) are defined in

Eq. (5.18), Eq. (5.16) and Eq. (5.24) respectively. Observe that abelian groups of order 4

play an important role in predicting the acceptable Cabibbo angle.

Let us discuss the case of type I residual symmetries. The LO CKM matrix in Eq. (5.28) is
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obtained from the breakdown of Gf down to residual subgroups Gd = 〈S,U(n,m)〉 ∼= Z2×Z2

and Gu = 〈(ST )2TU(n, p)〉 ∼= Z4, with m 6= p. The element ((ST )2TU(n, p))2 = S belongs

to both Gd and Gu as it is the generator for the intersection. The generator of the group

Gu is given by

R3(n, p) ≡ ρ((ST )2TU(n, p)) =

 1 0 0

0 0 −zn,p
0 z∗n,p 0

 (5.29)

with zn,p defined in Eq. (5.24). In a same unified group Gf , typically a different nth root in

Eq. (5.24) and Eq. (5.29) is required to generate experimentally favored leptonic and quark

mixing matrices. For example, if we choose zn,m in Eq. (5.24) and zn,p in Eq. (5.29), the

LO CKM matrix

UCKM =Ω†dΩu =
1

2

 1 + ie−2πi(m−p)/n 1− ie−2πi(m−p)/n 0

1− ie−2πi(m−p)/n 1 + ie−2πi(m−p)/n 0

0 0 2

 . (5.30)

is generated by

Ωu =
1√
2

 0 0
√

2

ie2πip/n −ie2πip/n 0

1 1 0

 , Ωd =
1√
2

 0 0
√

2

e2πim/n −e2πim/n 0

1 1 0

 ,

(5.31)

where Ωu diagonalizes R3(n, p) while Ωd diagonalizes S3 and U3(n,m). The resulting

Cabibbo angle can be expressed as

sin θ̃ =
1

2

√
2− 2 sin

(
2π(m− p)

n

)
. (5.32)

For case of type I, the interesting cases shown in Table 5.4 correspond to (n = 5, p = 1,m =

2), (n = 9, p = 1,m = 4) and (n = 16, p = 1,m = 2), respectively. Since Gu and Gd have

a nontrivial intersection, the full flavor group generated by the elements of Gu and Gd is

not Gf , but rather a subgroup of U(2), depending on the values of n, p and m. The three

groups generated by (n = 5, p = 1,m = 2), (n = 9, p = 1,m = 4) and (n = 16, p = 1,m = 2)

are isomorphic to (Z10 × Z2) o Z2, (Z6 × Z2) o Z2 and QD32
3, respectively. See Ref. [189]

for a comprehensive review on the groups described above. For the case of type II, applying

the analogous methods and arguments above we find

sin θ̃ =

∣∣∣∣cos

(
π(m− 4p)

n

)∣∣∣∣ , (5.33)

where only ∆(6 · 102) predicts acceptable Cabibbo angle prediction, shown in Table 5.4.

The corresponding subgroup is generated by (n = 5, p = 1,m = 1), which is a D20, dihedral

group of size 20 [207].

3The quasi-dihedral group of order 32.
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The structure of the LO CKM mixing (5.28) stems from symmetry breakdown to the

remnant symmetry subgroups of type I and type II, which are all abelian groups of order 4.

The groups ∆(6 · 102), (Z18 × Z6) o S3 and ∆(6 · 162) are all of the form (Zn × Zn′) o S3,

where they are generated by:

Zn ∼= 〈(ST )2(U(n, 1)T )4T 〉,
Zn′ ∼= 〈STSU(n, 1)T 2U(n, 1)T 2U(n, 1)TU(n, 1)〉,
S3 = 〈R′, T 2R′TR′〉, with R′ = (U(n, 1)T 2)2(U(n, 1)T )2U(n, 1). (5.34)

Using this structure, one can work out the mathematical structure of the groups. Is there

a heuristic way to understand the origin symmetry breaking to type I and II subgroups? It

turns out that from the examples we have studied above, the groups of type I and II are

subgroups of type (Zm × Zm′) o Z2, which are always subgroups of (Zn × Zn′) o S3 with

n(′) ≥ m(′). One of the Zm can be trivial, e.g. the dihedral group. Schematically we can

understand the flavor symmetry breaking as follows

(Zn × Zn′)︸ ︷︷ ︸
↓

Zm × Zm′

o S3︸︷︷︸
↓
Z2

. (5.35)

We remind the reader that discrete groups that predict acceptable leptonic mixing angles

in Sec. 5.3.1 are always in the form of (Zn × Zn′) o S3, given in Eq. (5.27). Therefore the

1-2 mixing structure of Eq. (5.28) is always a by-product from the leptonic flavor symmetry,

i.e. the Cabibbo angle always comes for free in the remnant symmetry approach, provided

that we consider group of type (Zn × Zn′) o S3. Of course we would need to choose a

flavor group Gf wisely to find the one that predicts both LO CKM and PMNS closer to

the experimental values. One might ask whether it is possible that GQ * GL = 〈Ge, Gν〉
but rather as subgroup of yet larger group Gf = 〈GQ, GL〉. However, from all the discrete

groups that we have found, GQ is always a proper subgroup of GL ≡ Gf , and hence an

extension to larger group is not necessary. The group generated by Gu and Gd is not Gf
but typically a smaller proper subgroup GQ ⊂ Gf . As all the groups we have scan cannot

predict three distinguished quark mixing angles which are experimentally acceptable, it is

better to think that the 3-dimensional representation 3 of Gf is always decomposable into

3 = 2+1, where the doublet 2 of GQ is responsible for generating the Cabibbo angle4. This

scenario should be kept in mind when we look for quark mixing angles using the remnant

symmetry approach.

As we have seen above we can only obtain one mixing angle in the quark sector from

our approach. Having Eq. (5.28) as a LO CKM matrix is better than having no mixing

angle, i.e. a unit matrix, as we only require small NLO corrections to obtain the correct

CKM matrix. NLO corrections of the order of Ucb ∼ λ2
C ∼ 0.04 are needed if we have a LO

prediction of the form in Eq. (5.28). Compared to the case of A4 where only UCKM = 13

is predicted at LO, the NLO corrections have to be of the size Ucs ∼ λC ≡ sin θc ∼ 0.22,

which is large.

4Remember that doublet mixing is described by only an angle.
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Gf GAP-Id {Ge, Gν} {Gd, Gu} sin2(θ12) sin2(θ13) sin2(θ23) sin θ̃

∆(6 · 52) [150, 5] {Z10, Z3} {Z10, Z10} 0.3428 0.0289 0.6217 0.309
0.3428 0.0289 0.3794

Σ(3 · 33) o Z2 [162, 10] {Z6, Z9} {Z6, Z6} 0.3403 0.0202 0.6013 0.5
(Z9 × Z3) o S3 [162, 12] {Z18, Z9} {Z18, Z18} 0.3403 0.0202 0.3996

[162, 14] {Z18, Z3} {Z18, Z18}

Table 5.5.: Lepton mixing parameters and LO Cabibbo angles predicted by finite discrete groups of
order 150 and 162. We show also the smallest generators for relevant {Ge, Gν} and {Gd, Gu} in the
middle columns.

As a quick summary for this section: We systematically scanned for groups that can

predict experimentally acceptable leptonic mixing patterns with the assumption of Majorana

neutrinos. From over one million groups, only groups of type (Zn×Zn′)oS3 are interesting

and they also predict decent LO Cabibbo angles in the quark sector. Those discrete groups

might provide an interesting opportunity for model building.

5.3.3. Leptonic Mixing Patterns for Dirac Neutrinos

In this section we drop the Majorana assumption for neutrinos and assume that they are

Dirac particles, as a priori we have no evidence that neutrinos are of Majorana nature. Like

previous section, we scan for the smallest finite discrete group that can yield experimentally

favored quark and leptonic mixing patterns by assuming that neutrinos are Dirac particles.

As we have previously mentioned in Sec. 5.2, the residual symmetry group of neutrino masses

may now be an arbitrary abelian group, when we dropped the assumption of Majorana

neutrinos. As the amount of group is large and we cannot utilize Lagrange theorem to skip

some of the groups, we only perform a scan for all the abelian subgroups of discrete group

Gf up to the size of 200. It turns out that the two smallest discrete groups interesting for our

purpose are of the order of 150 and 162, with the resulting structure of the relevant remnant

groups given in Table 5.5. The 3-dimensional generators for the relevant groups are given

in Table 5.6 where we gave the smallest relevant subgroups {Ge, Gν} and {Gu, Gd} that

can predict acceptable PMNS and CKM mixing parameters. One can ignore the Cabibbo

angle if one is only interested in the smallest discrete flavor group that can yield acceptable

leptonic mixing patterns by assuming that neutrinos are Dirac particles. For the first time,

the discrete groups that predict acceptable LO leptonic mixing angles with Dirac neutrinos

and CKM matrix up to order 200 are completely charted.

Let us discuss some interesting properties of the found groups. To be concrete, we focus

on the group ∆(6× 52) as an illustrative example5. The group ∆(6× 52) may be generated

by

A = (TU(5, 1))4T 2, B = (U(5, 1)T 2)2U(5, 1), (5.36)

5Note that the group ∆(6 · 52) is also discussed in Ref. [208], however they only consider a Z2 as one of the
residual subgroup, which will not give full leptonic mixing angle predictions.
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Gf [GAP− Id] Generators of subgroups

∆(6 · 52) 〈Ge, Gν〉 =

〈 0 −(−1)3/5 0

0 0 − 5
√
−1

− 5
√
−1 0 0

 ,

 (−1)3/5 0 0

0 0 5
√
−1

0 5
√
−1 0

〉

[150, 5] 〈Gu, Gd〉 =

〈 (−1)3/5 0 0

0 0 −(−1)2/5

0 −1 0

 ,

 (−1)3/5 0 0

0 0 (−1)3/5

0 −(−1)4/5 0

〉

Σ(3 · 33) o Z2 〈Ge, Gν〉 =

〈 0 0 −1

0 − 3
√
−1 0

−1 0 0

 ,

 0 0 (−1)2/3

(−1)2/3 0 0

0 − 3
√
−1 0

〉

[162, 10] 〈Gu, Gd〉 =

〈 0 0 −1

0 − 3
√
−1 0

−1 0 0

 ,

 0 0 3
√
−1

0 −1 0

−1 0 0

〉

(Z9 × Z3) o S3 〈Ge, Gν〉 =

〈 0 0 (−1)5/9

0 (−1)8/9 − (−1)5/9 0

(−1)5/9 0 0

〉
,

[162, 12]

〈 0 0 (−1)5/9 − (−1)8/9

−(−1)5/9 0 0

0 −(−1)5/9 0

〉

〈Gu, Gd〉 =

〈 0 0 (−1)5/9

0 (−1)8/9 − (−1)5/9 0

(−1)5/9 0 0

〉
,

〈 0 0 (−1)8/9 − (−1)5/9

0 (−1)8/9 − (−1)5/9 0

−(−1)8/9 0 0

〉

(Z9 × Z3) o S3 〈Ge, Gν〉 =

〈 0 0 (−1)5/9

0 −(−1)8/9 0

(−1)5/9 0 0

〉
,

[162, 14]

〈 0 9
√
−1− (−1)4/9 0

0 0 (−1)4/9

9
√
−1− (−1)4/9 0 0

〉

〈Gu, Gd〉 =

〈 0 0 (−1)5/9

0 −(−1)8/9 0

(−1)5/9 0 0

〉
,

〈 0 0 −(−1)8/9

0 −(−1)8/9 0

(−1)8/9 − (−1)5/9 0 0

〉

Table 5.6.: The relevant group generators for each group listed in Table 5.5 that predicts acceptable
mixing patterns with the assumption of Dirac neutrinos are shown.

where again we remind the reader that the 3-dimensional irreducible representations for S, T

and U(n, p) are defined in Eq. (5.18), Eq. (5.16) and Eq. (5.24) respectively. After breaking

the flavor symmetry to subgroups Ge = 〈A〉 ∼= Z3 and Gν = 〈B〉 ∼= Z10, the PMNS mixing

angles of the first line in Table 5.5 are realized. Analogously the Cabibbo angle can be

obtained from the breakdown to Gd = 〈A2B3A2B2〉 ∼= Z10 and Gu = 〈ABA2BA2B3A〉 ∼=
Z10. Now comes the interesting part, subgroups of type I and II are constructed from

generators of ∆(6·102) (see Sec. 5.3.1), and therefore ∆(6·52) is a subgroup of ∆(6·102). Both

discrete flavor groups predict the same PMNS matrix, despite that the remnant symmetries

in the mass matrices are different. The only difference is that we have assumed that neutrinos

are of Majorana nature in Sec. 5.3.1, and the group ∆(6·102) is the smallest one that predicts
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acceptable leptonic mixing patterns in 3σ region. By dropping the Majorana assumption and

allowing for Dirac neutrinos, the order of Gf is reduced by a factor of 4, while retaining the

same leptonic mixing pattern prediction. This observation indicates that the leptonic mixing

pattern does not depend on whether neutrinos are Dirac or Majorana particles (i.e. whether

Z2×Z2 ⊂ Gf or not), but rather on the representation of the group generators. Our results

indicate that different subgroups can give rise to the same mixing patterns, independent of

the nature of neutrinos. The same argument also applies for (Z9×Z3)oS3 and Σ(3 ·33)oZ2

as these groups are subgroups of (Z18 × Z6) o S3. Interested reader can use the relevant

group generators in Table 5.6 for model building. All the interesting groups in Table 5.5

predict a trivial Dirac CP phase in the leptonic sector, as in the case when neutrinos are

Majorana particles.

Combining the argument above and the results in Sec. 5.3.2 and Sec. 5.3.1, we conclude

that only groups of type (Zn × Zn′) o S3 can predict LO leptonic mixing patterns which

are experimentally favored, if the discrete flavor symmetry group Gf is broken in such a

way that remnant symmetries in the leptonic masses are preserved, independent of whether

neutrinos are of Dirac or Majorana nature. Additionally we can obtain the LO Cabibbo

angle from groups of type (Zn × Zn′) o S3 as by-product if the size is sufficiently large,

as we have pointed out in Sec. 5.3.2. All of the interesting groups predict a trivial Dirac

CP phase for the case of lepton mixing, which is already in mild tension with the recent

T2K experimental data [209, 210]. Future experiments will shed further light on the fate of

discrete symmetry.

5.4. Flavor Symmetry Versus Anarchy

The core of this chapter centered upon the search for new discrete groups that can predict

acceptable LO mixing patterns for the lepton and quark sector. So far to be able to explain

the experimental results, all the qualified discrete groups are found to be large. As larger

flavor groups generically have many different abelian subgroups, very large flavor groups

should be able to be reproduce any sort of mixing patterns. From the aesthetical point of

view, one should prefer to start from a small flavor group to explain the mixing patterns,

which is usually less cumbersome from a model building point of view. However, as we

have seen from our scan in Sec. 5.3, only groups with order larger than 100 can predict

experimentally favored leptonic and quark mixing pattern at LO. These groups are generally

large compared to the simple A4 or S4 and one may wonder what is the difference between

building models from such a large group and an anarchical [180–182] approach by randomly

drawing three angular values from the Haar measure6.

In this section we aim to compare the predictivity of discrete flavor symmetry approach

and the anarchical approach with a quantitative measure, i.e. we want to test the goodness-

of-prediction of flavor symmetry against anarchy. We will not provide a mathematically

rigorous analysis like Bayesian model selection, but rather we suggest a physically intuitive

measure to quantify our test. Essentially we want to reward groups which can predict

accurate experimental values, while punish them if their size is getting larger. That is, we

do not prefer a large group which can predict everything. We assume that the LO quark and

6See also Ref. [211, 212] for a critical remark on anarchy approach.
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(a) S4 (b) (Z18 × Z6) o S3

Figure 5.4.: The distribution µ(Gf ) is plotted for groups S4(left) and (Z18 × Z6) o S3(right). The
width of Gaussian Distribution in 1σ deviation is plotted in green. The blue (red) region represents
the 3σ global fit region for the leptonic (quark) mixing pattern. The small group S4 predicts less
mixing angles and requires large NLO correction to cover the experimental values, while larger group
(Z18 × Z6) o S3 generates more mixing patterns and requires smaller NLO correction.

lepton mixings are determined from mismatched remnant symmetries, where we take each

possible LO mixing pattern predicted by a discrete flavor group to be equally probable, i.e. all

the predictions of Ω†s1Ωs2 including all the permutations of rows and columns are equally

probable for a chosen discrete group. NLO corrections are assumed to be randomly scattered

around the LO values, such that the mixing angle predictions from discrete flavor groups

should approach the experimental values at NLO uncertainties. This is well motivated from

a model building perspective as typically we have numerous higher-dimensional operators

contributing to NLO corrections7. The comparison of CP phases is discarded as the leptonic

Dirac CP phase is not measured while the CKM CP phase is not predicted in the remnant

symmetry approach.

We remind the reader that we work in the coordinates c4
13 ≡ cos4 θ13, s2

12 ≡ sin2 θ12 and

s2
23 ≡ sin2 θ23 for which the invariant SU(3) Haar measure is flat, see Eq. (5.5). Under

the anarchy hypotheses, each point in the selected angular coordinate space is uniformly

distributed:

pdV = 1[0,1]3dc4
13ds2

12ds2
23. (5.37)

In this sense, the anarchy hypothesis acts as a flat prior in Bayesian statistics. Let us com-

pare it with the case of flavor symmetry. Without NLO corrections, the discrete flavor group

would predict a sum of Dirac delta functions pfdV =
∑

i δ
(3)(~x− ~xi)dc4

13ds2
12ds2

23 centered

about all the possible LO predictions ~xi = (c4
13, s

2
12, s

2
23)T generated by misalignment of all

possible remnant symmetry groups. The LO predictions must either be accepted or rejected

7In typical models (e.g. [16, 18, 213, 214]), usually these higher-dimensional operators will break the remnant
symmetries. However, we stress in some models the structure of NLO corrections are predictive [203, 215],
which is usually the case when additional structure such as supersymmetry is included in the theory.
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when compared to the experimental values. But since we expect that the NLO correc-

tions exist and they are randomly distributed around the LO predictions, for simplicity we

parameterize the NLO corrections as 3-dimensional Gaussian distribution

p
(i)
f = exp

[
−(~x− ~xi)2

σ2

]
, (5.38)

centered around the ith LO mixing, i.e. we have

pfdV =
∑
i

p
(i)
f dc4

13ds2
12ds2

23 (5.39)

as the probability distribution for a discrete group Gf to predict NLO mixing patterns. The

variance of the Gaussian distribution is given by

σ2 = Min(σ2
CKM) + Min(σ2

PMNS), (5.40)

i.e. we take the the quadratic sum of the shortest distance

Min(σCKM/PMNS) ≡ inf
i
|~xi − ~xCKM/PMNS|, (5.41)

between the best fit CKM angles ~xCKM and PMNS angles ~xPMNS to a LO prediction of the

group. We need to normalized the distribution pf of a discrete group Gf by integrating

the sum of p
(i)
f and dividing it by the total volume. Let us explain our approach in more

details, we assume that for each discrete group, all its mixing angle predictions are generated

on the angular coordinate space. Once the points are given, we then look for the shortest

distance between one of the points to the experimental points and treat this distance as

the NLO corrections. The shorter the distance is, the smaller the NLO corrections should

be, such that the LO + NLO prediction of a certain discrete group should be within the

error of experimental values. For illustration in Fig. 5.4 we show the pf distribution for the

group S4 and (Z18×Z6)oS3 in the angular coordinate space. The small group S4 predicts

less mixing angles and requires large NLO correction (σ) to cover the experimental values,

while larger group (Z18 × Z6) o S3 generates more mixing patterns and requires smaller

NLO correction. The model building community members who favor large discrete groups

usually argue that such large groups are better, as their LO predictions are accurate and

the required NLO corrections are smaller (shorter distance); while those who favor small

discrete groups will argue the other way round, claiming that such large groups predict

better LO value because they simply just “fill up” the angular coordinate space. It is our

task to quantify this problem and tackle it in meaningful way.

We introduce a measure of predictivity with the integration of pf within the 3σ region

from global fits of experimental values Vexp:

µ(Gf ) ≡
∫
Vexp

pf (c4
13, s

2
12, s

2
23) dc4

13ds2
12ds2

23, (5.42)

as a measure for goodness-of-prediction in mixing angles up to the NLO correction by a

particular flavor symmetry group. For our example we have calculated µ(S4) = 1.8× 10−3
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Figure 5.5.: The goodness-of-prediction µ(Gf ) for discrete flavor symmetry groups Gf is plotted.
µ((Z18 × Z6) o S3) is the discrete group that predict the closest experimental values. µ(Gf ) for
anarchy is represented by a black square in the plot. Groups that are relevant for our analysis are
highlighted.

and µ((Z18×Z6)oS3) = 4×10−3. The larger group that needs smaller NLO corrections beat

smaller groups that require larger NLO corrections. The absolute value of µ(Gf ) alone has no

intrinsic meaning, rather it serves as a comparison yardstick for the goodness-of-prediction

between different flavor groups. Groups that predict values far from the experimental results

have smaller values of µ(Gf ). The goodness-of-prediction for each discrete group up to the

order 200 and other larger interesting groups identified in Sec. 5.3.1 are plotted with blue

points in Fig. 5.5. Some of the groups yield the same µ(Gf ) as the lower order group, this

is usually the case when the lower order group is their subgroups. For example S4×Z2 and

S4 × Z3 yield the same value of µ(Gf ) as S4. From our construction, groups with higher

values of µ(Gf ) predict better mixing patterns. However here is the catch, even though

larger groups tend to predict better mixing patterns, their larger order would in general

reduce or “dilute” the value of µ(Gf ). From Fig. 5.5 we see that ∆(6 · 162) yields a lower

value of µ(Gf ) than (Z18 × Z6) o S3 and ∆(6 · 102), even though ∆(6 · 162) predicts better

mixing pattern compared to the experiments. Essentially as the group gets too large, it will

be punished for every other wrong “prediction” generated. Therefore an optimal discrete

group should be predictive (generates the best LO mixing patterns) and simple (small and

easy for model building). By this measure the group (Z18 ×Z6) o S3 is the most predictive

for groups smaller than 1536.

We can now pitch the discrete groups against the predictivity of anarchy

µ(anarchy) =

∫
Vexp

1[0,1]3 dc4
13ds2

12ds2
23 = 3.22× 10−4, (5.43)

which as our measure has shown, anarchy turns out to be the least predictive theory. Any
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Figure 5.6.: The goodness-of-prediction µ(Gf ) for discrete flavor symmetry groups Gf is plotted,
with only the leptonic mixing patterns considered.

flavor theory should certainly be more predictive than anarchy, as anarchy essentially “pre-

dicts” every point in the mixing space. Neglecting the CKM contributions, a similar plot in

Fig. 5.6 can also be obtained with σ2 = Min(σ2
PMNS), i.e. we only consider the predictivity

of discrete groups in the leptonic sector. The resulting µ(Gf ) for each flavor group follows

the same trend as in Fig. 5.5. Notice that by combining different subgroups of a fixed Gf in

pairs, we essentially give up the information on the nature of neutrinos, otherwise we only

restrict the subgroups to Klein group if this additional assumption is made.

One might argue that the our measure of NLO given in Eq. (5.40) is not the best one,

as the variance of the Gaussian distribution defined in Eq. (5.40) is arbitrary. Typically

the NLO corrections to the leptonic mixing angles are of the order of σ = λ2
C ≡ sin2 θc or

σ = λ4
C . The result of µ(Gf ) obtained with these assumptions is plotted also for the sake of

comparison, and the only significant changes in Fig. 5.5 and Fig. 5.6 stem from the group S4,

∆(6·42), ∆(6·52), (Z9×Z3)oS3 and Σ(3·33)oZ2. The deviations result from larger volume

covered by the integration due to narrower Gaussian spread. With σ = λ2
C , the width of the

Gaussian distribution is larger, making smaller groups which predict next-to-best mixing

patterns to yield higher values of µ(Gf ). However, the Gaussian spread is too narrow for

the case of σ = λ4
C , hence only groups that predict very accurate LO leptonic mixings will

generate higher µ(Gf ) values. In fact, µ(Gf ) for anarchy is higher than certain groups such

as S4 and ∆(6 ·42) in this case. The decreasing µ(Gf ) w.r.t. the increasing size of the group

agrees with our intuition that larger groups tend to generate smaller µ(Gf ) values, as more

combinations of the mixing patterns can be generated by larger groups. While we admit

that our measure is not unique and not rigorous, it is to our knowledge, the first attempt

to quantify such a problem and address it in an intuitive physical way.
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5.5. Summary

In conclusion, we have performed a class of systematical searches for finite discrete groups

which predict experimentally favored mixing patterns for the leptonic and the quark sector.

Our approach only relies on the residual symmetries in the fermionic mass matrices and is

model independent. By assuming that neutrinos are Majorana particles, we have scanned

all the discrete groups up to the order of 1536 and only three groups, namely ∆(6 · 102),

(Z18 × Z6) o S3 and ∆(6 · 162) can generate LO leptonic mixing angles within 3σ region

of global fits. Furthermore they can also generate sizable Cabibbo angle which is close to

the experimental value. While for the case of Dirac neutrinos, all the discrete groups up

to the order of 200 have been surveyed and only three groups listed in Table 5.6 can give

rise to acceptable leptonic and quark mixing patterns. Those groups are subgroups of the

groups found in the Majorana case, leading us to conclude that mixing patterns predicted

by discrete groups are independent of the nature of neutrinos, whether they are Majorana

or Dirac particles. All of the interesting groups found predict a trivial Dirac CP phase in the

leptonic and quark sector, with the prediction of leptonic case to be the most interesting,

as it can be confirmed or ruled out in the future experiments. All the group theoretical

classifications have been carried out for our interesting groups, and we conclude that only

groups of type (Zn ×Zn′)o S3 are relevant as a new starting point for model building with

flavor symmetry. And finally we have provided a measure to test the goodness-of-prediction

for flavor symmetry against the anarchy hypothesis, with the relatively unknown group

(Z18 × Z6) o S3 stands out to be the most predictive.
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Conclusion and Outlook

In this thesis we have focused on the theoretical puzzles in the Standard Model (SM),

namely the separation of fundamental scales and the flavor puzzle. We have provided some

possible solutions to solve both puzzles, guided by the principle of symmetry. Regarding

fundamental scales in high energy physics, the large separation of 17 orders of magnitude

between the electroweak (EW) and the Planck scale is known as the hierarchy problem. We

have provided two aspects of naturalness, namely the subjective naturalness and technical

naturalness, and carefully formulated the hierarchy problem in this context. Given that

generic predictions from traditional approaches to solve the hierarchy problem, be it super-

symmetry, extra dimension or partial compositeness, have not appeared at the LHC or any

other experiment, new ideas and their phenomenologies must be considered.

In the first part of our thesis we have introduced the concept of classical scale symmetry,

which could serve as a possible solution to the hierarchy problem. If classical scale symmetry

is manifest in nature, its anomalous nature could provide a mechanism to generate the EW

scale radiatively. In general there are two ways to generate the EW scale via this anomalous

scale symmetry breaking mechanism: either perturbatively with the Coleman-Weinberg

mechanism or nonperturbatively through a strongly coupled sector, as we have shown in

Sec. 2.6. We have focused on the nonperturbative EW scale generation in this thesis and

classified the models which implement this idea into two classes; direct and indirect scale

transmission. We have presented a model for each of these approaches.

In Chapter 3 we utilized the direct scale transmission approach to explain the EW scale

from dimensional transmutation of a strongly coupled sector that is well known, namely the

QCD. We have extended QCD minimally by only one scalar particle charged under a higher

representation of QCD. Due to the running of the strong coupling, the new scalar particle

forms a condensate at the TeV regime and generates a condensation scale which triggers the

EW symmetry breaking (EWSB) dynamically. With this minimalistic scenario, the mass of

the new scalar particle is bounded from above due to the perturbative renormalization group

equation (RGE) constraint. Our model is predictive as the parameter space is constrained

by the principle of classical scale invariance. The new QCD scalar particle can be probed

by searching for four jets events due to the decay of the condensate pair, while the sizable

coupling term for the SM Higgs with the colored scalar can influence the Higgs production

cross section in the gluon fusion channel significantly. Furthermore the colored scalar sector

in our model possesses an accidental U(1) symmetry, which yields interesting phenomenology

particularly in the signal strength of Higgs decaying into two photons, if the accidental
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symmetry is identified with the abelian gauge group of electromagnetism. The existence of

Landau pole for the colored scalar quartic coupling could signal a need for more realistic

models, which could also reconcile the dark matter (DM) problem and explain the origin of

neutrino mass. For instance we could introduce additional fermions charged under higher-

dimensional representation of QCD to alter ameliorate the Landau pole problem, while

providing a good DM candidate. We leave this exciting possibility for future work.

As for the indirect scale transmission mechanism to generate the EW scale, we have

proposed a model in Chapter 4 with a hidden sector and three flavors of dark fermions

charged under the fundamental representation of a new SU(3) gauge group, similar to QCD.

A scalar singlet mediator, which couples to the hidden sector via Yukawa interaction with

the dark fermion and the SM via the Higgs portal, is introduced. The chiral symmetry

of the dark fermion sector is spontaneously broken once the gauge coupling in the hidden

strong sector becomes nonperturbative due to RGE. As a consequence mesonic condensates

are formed and subsequently the scalar mediator obtains a nontrivial vacuum expectation

value (VEV), which triggers EWSB when this VEV is transmitted to the Higgs sector.

Due to spontaneous chiral symmetry breaking, dark pions in the form of pseudo Nambu-

Goldstone bosons can serve as good DM candidates. We utilized the Nambu-Jona-Lasinio

(NJL) approach to calculate the relevant masses and couplings for the scalars and the DM.

The advantage of utilizing such a QCD-like model is that we can scale up all the massive

NJL couplings from ordinary QCD. As NJL relates the relevant couplings and masses of the

theory, the parameter space of our model is very restrictive, where the resulting DM direct

detection cross section and the predicted mass can be probed or ruled out by the future

XENON1T and LUX experiments. Our model serves as a prototype for model building

along the line of indirect scale transmission from a classically scale invariant theory, and

further extensions to explain the neutrino mass, or the asymmetry of matter over antimatter

have not been charted, which could provide an interesting opportunity for us to investigate

further.

In Chapter 5 we tried to provide a solution to the flavor puzzle in the leptonic and quark

sector based on the approach of discrete symmetries. With the discovery of a nonzero re-

actor mixing angle in the leptonic sector, simple discrete groups such as A4 are strongly

disfavored and it is necessary to search for new discrete flavor groups which can yield ex-

perimentally compatible mixing patterns. The crucial ingredient for a successful prediction

of leading-order (LO) leptonic mixing angles from a discrete flavor symmetry relies on the

residual symmetries which remain in the mass matrices of the charged lepton and the neu-

trino sector. Once the residual symmetries in the mass matrices are identified, the LO

leptonic mixing matrix can be obtained without an explicit model. We have systematically

searched all the discrete flavor groups up to order 1536 that yield acceptable leptonic mixing

angles if neutrinos are Majorana particles. It turns out that from over a million discrete

flavor groups, only three can explain the experimental values. The success of these three

groups can also be extended to the quark sector, where acceptable LO Cabibbo angle can be

obtained. Furthermore we have also perform a group scan for the case when neutrinos are

Dirac particles, and all discrete groups up to order 200 are charted. It turns out that those

groups which generate mixing patterns compatible with experiments are subgroups of those

three interesting groups found for the case of Majorana neutrinos. Our result implies that
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the mixing patterns generated by discrete flavor symmetries are independent of whether

neutrinos are Dirac or Majorana particles, but rather rely on the representations of the dis-

crete groups. All the interesting discrete groups, which are all of the type (Zn × Zn′) o S3,

and their breaking to residual symmetries, can be classified by simple mathematical rea-

soning. Combined with the measure of goodness-of-prediction proposed by us, we conclude

that discrete flavor symmetry is more predictive than flavor anarchy. All the interesting

groups that we have found pave a new model building direction, and indeed several authors

have started pursuing this new idea [206, 216].

With no new physics appearing so far, the traditional approach towards naturalness and

flavor symmetry should be scrutinized. We should keep an open mind for different possibil-

ities in solving the hierarchy and the flavor puzzle. In this thesis we have proposed several

unconventional and interesting new ideas to tackle the two problems. Our ideas are general

and can serve as new starting points in model building, whether to solve the hierarchy prob-

lem, to explain the origin of the EW scale, to provide a DM stable candidate, or to look for

new discrete symmetries for the flavor puzzle. This is not the end of our journey, but only

the beginning towards new uncharted territories.



Appendices
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Abbreviations and Notations

We list down some of the abbreviations and notations used throughout the thesis. This

compilation is useful also in case the reader is feeling a bit rusty with the high energy physics

jargons.

BR Branching ratio

CKM Cabibbo-Kobayashi-Maskawa

DM Dark matter

DSE Dyson-Schwinger equation

EFT Effective field theory

EOM Equation of motion

EW Electroweak

EWSB Electroweak symmetry breaking

GUT Grand Unified Theory

IR Infrared (low energy)

LO Leading order

NJL Nambu-Jona-Lasinio

NLO Next-to-leading order

PCAC Partially conserved axial current

PCDC Partially conserved dilatation current

PMNS Pontecorvo-Maki-Nakagawa-Sakata

PNGB Pseudo Nambu-Goldstone boson

QCD Quantum chromodynamics

QFT Quantum field theory

RGE Renormalization group equation

SCMF Self-consistent mean field

SM Standard Model

TBM Tri-bimaximal mixing

UV Ultraviolet (high energy)

VEV Vacuum expectation value

WIMP Weakly interacting massive particle

1PI One-particle irreducible

0νββ Neutrinoless double beta decay
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Bosonization and NJL Methods

Bosonization of a fermionic theory provides a description of the transformation of the

original Lagrangian into an equivalent description with only bosonic degrees of freedom.

This is particularly useful in describing the bound state formed by fermionic pair, and has

been extensively used in condensed matter physics. Bosonization provides a relation between

physical observables at low energy and the UV parameters, and hence is more predictive

than just parameterizing the low energy degrees of freedom such as the linear or nonlinear

sigma model. The Nambu-Jona-Lasinio (NJL) approach belongs to one of the bosonization

methods, suitable for describing low energy physics of scalar bounded system formed by two

underlying fermions. In the NJL model for QCD or strongly coupled theory, nonzero vacuum

condensate is formed by such a fermionic pairing, subsequently the Nambu-Goldstone bosons

and the chiral partners are formed. The fermion mass is dynamically generated and all of

the dynamics described above happen simultaneously in the NJL model. NJL however,

does not describe confinement in QCD. For a more complete review we refer the reader to

Refs. [111, 136–139].

Let us illustrate the path integral bosonization technique for a free one fermion flavor

system. For the NJL approach to work, we introduce the nonrenormalizable operators, say

the four fermions operator to our example Lagrangian

L = ψ̄(i/∂ −m)ψ +G
[
(ψ̄ψ)2 + (ψ̄iγ5ψ)2

]
. (B.1)

One needs to eliminate the heavy fermionic degrees of freedom and this can be achieved by

introducing auxiliary bosonic fields, e.g. in our case one scalar σ and a pseudoscalar φ which

transforms according to

σ → σ +

√
2G

µ
ψ̄ψ, φ→ φ+

√
2G

µ
ψ̄iγ5ψ. (B.2)

Rearranging and simplifying some terms in the path integral, the functional determinant

can be integrated out, resulting in a pure bosonic theory with potential

V =
µ2

2

(
σ2 + φ2

)
− 2

∫
d4k

i(2π)4
ln
(
σ2 + φ2 − k2

)
. (B.3)

The constituent mass of the fermion is given by M = m+µ
√

2G 〈σ〉 the mass of the conden-

sate is given by µ. So far our approach seems easy for a one fermion system. Complications
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occur if we consider multi-flavored fermionic system with interactions. To describe the

bosonization with interacting system, we will utilize the self-consistent mean field (SCMF)

approach, introduced by Kunihiro and Hatsuda [111, 136, 137].

B.1. Bosonization with the SCMF Approximation

In many branches of physics such as solid state physics, many-body physics or high energy

physics, the complication of many-body interaction can be usually simplified to mean field

approximation. In our case, the fermions are interacting in the background field where chiral

symmetry is broken. Although one should think that chiral symmetry is broken dynamically,

the mean field approach allows us to investigate the condensates and the fermions in a self-

consistent picture at leading-order (LO) approximation. In the NJL approach, we divide the

Lagrangian (B.1) into quadratic part L0 and interacting part LI . The background vacuum

consists of the mesonic spectrum, i.e. |VAC〉 = |[σ, φ]〉 where the interacting LI is normal

ordered w.r.t. this nontrivial vacuum. The price that we need to pay for such a trick is the

necessity to include c-number terms in the quadratic L0. In our example above, let us try

to obtain the time-ordered product of the potential of Lagrangian (B.1)

〈T {ψ̄aψaψ̄bψb}〉 =: ψ̄aψaψ̄bψb : +2̂̄ψaψaψ̄bψb + ̂̄ψaψâ̄ψbψb, (B.4)

where the : represents normal ordering and ̂ denotes the contraction w.r.t. the vacuum

|VAC〉. The spinor index is given by a and b explicitly. The second term contains a factor 2

as there are two pairs of ψ̄ψ that need to be normal ordered. As the second term is quadratic

in fermion fields, it should be considered as part of L0. Adding and subtracting terms

2gϕψ̄bψb − 2ĝ̄ψaψaψ̄bψb = 2gϕψ̄bψb − 2ĝ̄ψaψa : ψ̄bψb : −2ĝ̄ψaψâ̄ψbψb, (B.5)

to Eq. (B.4) where we have normal ordered the last term in the LHS of the equation, the

mean field Lagrangian L0 is given as

L0 = ψ̄i/∂ψ + 2gϕψ̄ψ − gϕ2, (B.6)

with the bosonic field ϕ = −(σ + iφ)/g representing the resulting condensate. The rest

of the terms are included in the interacting part LI of the total Lagrangian, satisfying

〈VAC|LI |VAC〉 = 0. Eq. (B.6) serves as a starting point to calculate all the relevant coupling

and interaction.

Let us now apply our formalism to our relevant model in Chapter 4. With the given

Lagrangian (4.5), the interaction part 2GTr Φ†Φ in Eq. (4.5) can be written as

2GTr Φ†Φ =G
8∑

a=0

[
(ψ̄λaψ)2 + (iψ̄γ5λ

aψ)2
]
, (B.7)



88 B. Bosonization and NJL Methods

while the second term of the RHS of Eq. (B.7) is given as

G
8∑

a=0

(
iψ̄γ5λ

aψ
)2

= G
8∑

a=0

(
iψ̄γ5λ

aψ +
1

2G
φa

)2

− 1

4G

8∑
a=0

φaφa −
8∑

a=0

iψ̄γ5λ
aψφa. (B.8)

We regard the first term of Eq. (B.8) as an interaction term and according to the SCMF

approximation, it can be rewritten as normal products:

G

8∑
a=0

(
iψ̄γ5λ

aψ +
1

2G
φa

)2

=G

8∑
a=0

:
(
iψ̄γ5λ

aψ
)2

: +G

8∑
a=0

(
i ¯̂ψγ5λaψ +

1

2G
φa

)2

+ 2G
8∑

a=0

: iψ̄γ5λ
aψ :

(
i ¯̂ψγ5λaψ +

1

2G
φa

)
. (B.9)

Similarly the scalar part (first term of Eq. (B.7)) can be rewritten in the same way. Like

Eq. (B.6), we can package the bosonic fields as a condensate of fermionic pair

Φ̂ = ϕ = − 1

4G

(
diag(σ, σ, σ) + i(λa)Tφa

)
. (B.10)

The axial anomaly term can also be treated in a similar manner. Using the result of Cayley-

Hamilton theorem for operator

det Φ =
1

3
Tr Φ3 − 1

2
Tr Φ2 Tr Φ +

1

6
(Tr Φ)3, (B.11)

we obtain

GD

(
Trϕ2Φ− TrϕΦ Trϕ− 1

2
Trϕ2 Tr Φ +

1

2
(Trϕ)2 Tr Φ

)
− 2GD(detϕ) + h.c., (B.12)

and this term should be added to the quadratic part L0 of the Lagrangian. Adding all the

relevant terms together yields the quadratic part L0 of the Lagrangian

L0 = Tr ψ̄(iγµ∂µ − yS)ψ + 2GTr(ϕ†Φ + h.c)− 2GTrϕ†ϕ− 2GD(detϕ+ h.c.)

+GD

(
Trϕ2Φ− TrϕΦ Trϕ− 1

2
Trϕ2 Tr Φ +

1

2
(Trϕ)2 Tr Φ + h.c.

)
, (B.13)

while 〈VAC|LI |VAC〉 = 0, as required.
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Useful Passarino-Veltman Integrals for NJL

All the relevant messy integrals found in Chapter 4 can be cast into some basic integral

functions, known as the Passarino-Veltman integrals [140]. Typically the Passarino-Veltman

functions are expressed with dimensional regularization already been carried out, which are

not that useful in the NJL approach. We follow the FeynCalc [217] notations and recast

some of the relevant integrals with a cutoff here.

The one-point function is given as

A0(m2) =
1

iπ2

∫
d4k

k2 −m2
= −

∫ Λ2

0
dk2

E

k2
E

k2
E +m2

=− Λ2 +m2 ln

(
1 +

Λ2

m2

)
. (C.1)

The relevant two-point function is calculated to be

B0(p2,m2,m2) =
1

iπ2

∫
d4k

(k2 −m2)((k + p)2 −m2)

=

∫ 1

0
dx ln

(
1 +

Λ2

∆2
B

)
− Λ2

Λ2 + ∆B

= ln

(
1 +

Λ2

m2

)
− 2

√
m2

p2
− 1 tan−1

(√
p2

m2 − p2

)

+
(Λ2 − 2p2 + 2m2)

p2
√

Λ2 − p2 +m2
tan−1

(√
p2

Λ2 − p2 +m2

)
, (C.2)

where ∆B = m2 − x(1− x)p2.

The interesting three-point function related to our model is given as

C0(p2
1, p1 · p2, p

2
2,m

2,m2,m2) =
1

iπ2

∫
d4k

(k2 −m2)((k + p1)2 −m2)((k + p2)2 −m2)

=−
∫ 1

0
dx

∫ 1−x

0
dy

Λ4

∆C(∆C + Λ2)2
, (C.3)

with ∆C = m2 + x(x− 1)p2
1 + y(y − 1)p2

2 + 2xyp1 · p2.
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Lastly the important four-point function is given as

D0(p2
1, p

2
2, p

2
3, p1 · p2, p2 · p3, p1 · p3,m

2,m2,m2)

=
1

iπ2

∫
d4k

(k2 −m2)((k + p1)2 −m2)((k + p2)2 −m2)((k + p3)2 −m2)

=

∫ 1

0
dx

∫ 1

1−x
dy

∫ 0

1−x−y
dz

Λ4(3∆D + Λ2)

∆2
D(∆D + Λ2)3

, (C.4)

where ∆D = m2 + (xp1 + yp2 + zp3)2 − xp2
1 − yp2

2 − zp2
3.
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