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Zusammenfassung: Bildverbesserung und Parameter Schätzung für
Time-of-Flight Kameras

Die Bestimmung der räumlichen Tiefe einer Szene, die für eine Reihe von
Anwendungen wichtige Informationen liefert, war mit bisherigen Technologien wie
Stereo-Kameras oder Laser-Scannern sehr aufwendig und bisweilen problematisch.
Mit Time-of-Flight Kameras steht heute eine Technologie zur Verfügung, die das
Erfassen dieser Daten erheblich vereinfacht. Mit dem Microsoft Kinect 2 Sensor
haben ToF Kameras kürzlich den Sprung in den Consumer-Markt geschafft. Leider
weisen diese Kameras derzeit aber noch verschiedene statistische und systematische
Fehlerquellen auf. Diese Arbeit zeigt wie die statistischen Fehler mit Hilfe von
Methoden aus der 2D Bildverarbeitung behoben werden können und liefert zum
ersten Mal Erklärungen für bisher nicht verstandene systematische Fehler durch eine
genaue Analyse der Sensor-Daten. Mit neu eingeführten Ansätzen und Modellen
können diese Fehler mit geringem Aufwand deutlich reduziert werden und führen
zu einer signifikant verbesserten Genauigkeit der Messungen.

Abstract: Image Enhancement and Parameter Estimation for
Time-of-Flight Cameras

The determination of the spatial depth of a scene, which supplies important
information for a number of applications, was a very complex matter with previous
technologies like stereo cameras or laser scanners and sometimes problematic. With
Time-of-Flight cameras there is a technology at hand today, that facilitates the
acquisition of these data tremendously. With the Microsoft Kinect 2 Sensor ToF
cameras have recently made the jump into the consumer market. Unfortunately
these cameras still exhibit different statistical and systematic errors. This thesis
shows how the statistical errors can be fixed with the help of methods from 2D image
processing and gives for the first time explanations of previously not understood
systematic errors by means of an exact analysis of the sensor data. With newly
introduced approaches and methods these errors can be reduced notably with little
effort and lead to a significant improvement in the accuracy of the measurements.
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“Sagredo: But of what kind and how great must we
consider this speed of light to be? Is it instantaneous
or momentary or does it like other motions require
time? Can we not decide this by experiment?”
“Salviati: If not instantaneous it is extraordinarily
rapid - I should call it momentary.”

from “Dialogues Concerning Two New Sciences”
by Galileo Galilei

1
Introduction

1.1 History

In a way, the first single pixel time-of-flight camera (cf. fig. 1.1) in history was
built in 1849 by the French scientist Hippolyte Fizeau, when he designed the first
known and working experiment to measure the speed of light on earth [10], which
Galilei had tried more than two centuries before without success [14].

Figure 1.1: Sketch of an experiment by Fizeau in 1849 to determine the speed of
light [10]. What is actually measured is the time of flight of the light signal from
the cogwheel to the mirror and back. The principle is astoundingly similar to ToF
cameras used today.

Fizeau put a strong light source behind the cogs of a rotating cogwheel and
observed the light reflected by a distant mirror from behind the rotating cogs as
well. With increasing rotational frequency the reflected light would be completely
occluded by the tooth following the gap and reach the maximum intensity again at
a frequency twice as high. With the number of the cogs known and by measuring

11



12 1.2. MOTIVATION

the rotational frequency of the wheel, he did essentially determine the time of flight
of the light signal from the cogwheel to the mirror and back. With the distance
known, the time of flight can be used to calculate the speed of light.

The speed of light is a well known scientific constant today and measured with
such a precision that the meter is actually defined by the speed of light and the
second. With the speed of light known, the time of flight can now be used to
calculate distances, which is exactly what Time-of-Flight (ToF) cameras do and
they use a principle that is astoundingly similar to the antique setup of Fizeau.

In the proposition for a ToF camera in 1995 by Schwarte et al. [51], the cog-
wheel is replaced with a radio frequency modulated Pockels Cell that controls the
intensity of the emitted and received light. Instead of visual inspection the re-
flected light is recorded with a CCD chip. With the appropriate optics this allows
the recording of an entire scene at once.

The technology has come a long way since its introduction in the 90s. Instead
of an optical modulation, the radio frequency signal is applied directly to the light
source and also the sensor, altering the sensitivity. A large diversity of models has
sprouted from these advances, with ToF cameras as small as webcams, integrated
in notebooks or large high resolution models with very strong illumination and
long reach (see fig. 1.2).

With the introduction of the Microsoft Kinect v2 as a gesture and motion
control for the new gaming and multimedia console Xbox One in 2013, millions of
ToF cameras reached the consumer market and private living rooms. It supersedes
the previous Kinect, which was not a Time-of-Flight camera but a structured light
depth sensor and broke the record of the fastest selling electronic device, selling
more than 8 million times in the first 60 days [55]. The move to Time-of-Flight
can be seen as a breakthrough for the technology.

(a) PMD CamCube 3 (b) Bluetechnix Argos 3D (c) Creative IGC

Figure 1.2: A selection of current Time-of-Flight cameras. The CamCube 3 uses
large LED arrays, while the other models have only a single LED to illuminate the
scene. The Creative Interactive Gesture Camera (IGC) is a typical webcam like
design with an additional RGB camera built in.
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1.2 Motivation

Time-of-Flight cameras have a couple of advantages compared to other distance
capturing devices such as stereo cameras or laser scanners.

Stereo cameras for example use very simple hardware but require complex image
processing algorithms to find correspondences in the two pictures and calculate the
depth from the disparity. In areas without texture or other suitable features they
have no means to determine the distance. The two cameras required to record
the data have to be aligned and calibrated precisely and need to have a certain
distance or baseline, circumventing a really compact system.

Laser scanners on the other hand are very complex and expensive devices. The
data they acquire is not a dense sampling, but only a sparsely spread number of
points or lines, which is subject to interpretation if a dense representation of the
scene is supposed to be reconstructed from it.

In contrast to those devices, Time-of-Flight cameras can be manufactured at low
cost and built in a compactness that allows the use even in endoscopic surgery.
There are no moving parts involved and the configuration of light source and
camera is only of minor importance for the distance measurements. The data is
recorded by an image sensor and represents a dense sampling of the scene (cf.
fig. 1.3). The distance determination also works on untextured surfaces and the
computational effort to process the data is minimal.

These properties make ToF cameras a perfect device for applications such as
gesture recognition for touchless human computer interaction, pose estimation for
motion capturing or medical surveillance, as well as 3D scene or object reconstruc-
tion.

But despite years of research and the growing distribution and availability, the
accuracy and reproducibility of ToF measurements is still inhibited by a number
of errors. While the statistical errors are well understood and share the same
origin as the noise in ordinary intensity images, the resulting noise in the depth
images has some special properties that limit the use of standard image processing
methods.

Figure 1.3: Color coded depth image.
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Among the systematic errors there is a number of errors of yet unknown origin.
They cause deviations in the measurements, depending on environmental, scene
or camera parameters and without an idea of the source of these errors they can
only be calibrated or corrected by extensive lookup tables or by fitting heuristic
functions which both require large amounts of reference measurements and have
to be repeated regularly.

The goal of this thesis is to provide image processing methods that successfully
cope with the special characteristics of ToF depth data and to finally uncover the
remaining sources of the systematic errors that have been puzzling the community
for years.

1.3 Outline

Chap. 2 briefly repeats the theory of the ToF raw data processing and the propa-
gation of the statistical errors.

The resulting noise in the depth data in general is quite large and a good
smoothing or denoising is desirable. A very common method to do so is the
bilateral filter, which is discussed in chap. 3.

The idea of the bilateral filter is to smooth the data without degrading discon-
tinuities or edges in the scene. The filter is adapted to the special properties of
ToF data, which greatly improves the performance. However, there are some scene
configurations for which the filter does not perform satisfactorily at discontinuities.
This puts the detection of depth edges into the focus of interest for chap. 4.

So far the number of publications on edge detection methods for ToF cameras
is very limited. Again the special properties of the ToF data limits the usabil-
ity of standard edge detection algorithms. Two very popular methods and their
suitability for ToF data are investigated. They are extended and combined into a
method that makes use of the full spectrum of data captured with ToF cameras,
as well as the geometric arrangement of camera and light sources. The results are
valuable input for dedicated adaptive denoising approaches.

While the smoothing algorithms are focused on removing the statistical depth
deviation by averaging over a local neighborhood, these methods can never account
for systematic depth deviations that affect a whole area.

In chap. 5 the raw data, which is used to calculate the depth values, is inves-
tigated in detail to find the properties responsible for the systematic errors. The
results and interpretations are to the best of the authors knowledge the first ex-
planations for a temperature dependent deviation of the depth values, a deviation
due to the integration time and a pixel specific depth deviation.

The new knowledge is incorporated into a camera calibration in chap. 6, that
can be completed in a matter of seconds without any scene or target requirements,
in contrast to complex and time consuming previous approaches.

The calibration however fails to fix the intensity related distance error, another
systematic error of unknown origin. The source of this error is identified in chap. 7
as in-camera light scattering. The calibration from the previous chapter enables the
introduction and parameterization of a new model for in-camera light scattering
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that is a lot simpler than previous propositions. It enables a significant reduction
of the scattering effects and with it the intensity related distance error.

1.4 Camera

Unfortunately the raw data, which is crucial for this thesis can not be accessed
with most cameras. If not otherwise specified, the datasets used in the thesis are
all acquired with the PMD CamCube 3 (cf. fig. 1.2a), because the API offers
access to the raw data.

The CamCube 3 has a square sensor with 200×200 pixels. Each of these pixels
has two taps, of which only one is recording at a time. The active tap is alternated
at 20 MHz. For each complete depth dataset or frame, the camera records four
consecutive subframes, resulting in 8 raw frames.

A 12.8 mm f/1.1 lens gives it about 40° field of view in horizontal and vertical
direction.

The camera illuminates the scene with two near infrared (870 nm) LED clusters,
mounted left and right of the camera lens. They are modulated at the same
frequency at which the tap sensitivity is switched, but with a sine signal instead
of a rectangular one.

1.5 Validation

Figure 1.4: 3D target box with interchangeable 3D structures.

Validating the depth data recorded with a ToF camera is a difficult matter.
It requires accurate reference data of the scene to compare to. In [37] this is
investigated in detail. To enable a simpler method of validation, the relative
accuracy of depth data can be judged by the consistency in a scene, if the local
scene properties are known. In most publications more or less random setups are
used to demonstrate success of proposed methods without an understanding of the
true scene properties. These considerations in the course of this thesis led to the
construction of a 3D target (cf. fig. 1.4) with simple and well known geometric
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properties that is used repeatedly as a test setup for the performed measurements.
The box has a width and height of 1 m and is 50 cm deep. It is built from medium-
density fiberboard because of the low specularity. The ramp offers a continuous
and the stairs a discrete depth progression. Both are coated with paper of varying
reflectivity because of the known intensity dependency of ToF measurements. A
number of simple polystyrene objects can be fixed with screws at a couple of
different locations in the box as additional 3D structures.



2
Theory

The experiment by Fizeau mentioned in the introduction (chap. 1) very effectively
shows the principle of pulse based Time-of-Flight cameras. For this thesis mainly
a camera with a sinusoidally modulated light source (PMD CamCube 3) was used.
This variation makes the distance calculations a little more complicated but also
more robust, at least in the given implementation. The current chapter will give the
theoretical foundation of the distance calculation with these cameras, sometimes
also called continuous wave ToF cameras.

2.1 Time-of-Flight Principle

Time-of-Flight cameras obtain their name from the process they measure distance
with. In principle the camera measures the time a light signal travels from the
source (usually close to the camera) to a target or scene and back to the imaging
sensor. Just emitting a short flash of light and measuring the time until the
reflected signal reaches the sensor would be the straight forward approach but is
technically not feasible. The required sampling rate to reach a reasonable distance
resolution would be exceptionally high (3 GHz for 10 cm), as well as the required
sensor sensitivity or illuminance respectively.

A feasible solution with current imaging sensor technology and non-hazardous
illumination requires exposure times in the order of milliseconds. The actual tem-
poral resolution for the distance measurement is achieved by modulating the light
signal with frequencies in the radio spectrum (some MHz) and measuring the delay
or phase shift of the reflected signal with respect to the emitted light.

To solve the problem of sampling high frequencies, the sensor sensitivity is
modulated with a reference signal at the same frequency as the light source, just
like the cogwheel in the experiment by Fizeau (cf. fig. 1.1). This is equivalent to
an internal convolution (cf. sec. 2.2) of the reflected and the reference signal. The
modulation can have various shapes. Sinusoidal modulation or rectangular (pulse

17



18 2.2. INTERNAL CONVOLUTION

shaped) signals are possible, as well as arbitrary, non-periodic modulations [4].
By modulating the sensor with the same frequency as the light signal, an inte-

gration over many periods of the signal can still be regarded as one single mea-
surement or sample. Assuming the target does not change until the next subframe
is recorded, this can be the second sampling point.

The CamCube 3 records 4 subframes with an internal phase shift increased by
90° (cf. fig. 2.1) between each subframe. From the relative brightness changes in
these pictures, the time of flight can be calculated on a single pixel level. The
second tap can be used to reduce the statistical error or, with a special calibration
as in [49] to calculate depth from only two subframes.

2.2 Internal Convolution

This section explains the internal convolution of a ToF camera with a sinusoidally
modulated light source in detail. It can also be found for example in [49] or [48].
The deduction is performed here again for the sake of completeness.

The sensor modulation that switches the taps on and off has the same influence
on the recorded intensity as a Heaviside step function multiplied with the sine of
the light source (cf. eq. 2.1). The reflected light signal sin(ωt) is delayed by an
angle φ, proportional to the traveled distance.

I =

tint∫
0

(a sin(ωt− φ)) ·H (sin(ωt)) dt =

T
2∫

0

a sin(ωt− φ)dt =

[
−a
ω

cos(ωt− φ)

]T
2

0

=
T

2π
a (cos(−φ)− cos(π − φ)) =

T

π
a cos(φ).

(2.1)

The light signal can of course not be negative, so the light source needs a
constant offset io. To reach a radiance that is detectable even at the minimum
of the sine wave, the added offset has to be larger than the amplitude a of the
modulation. This changes our measured intensity after the integration only by a
constant offset:

I = io
T

2
+
T

π
a cos(φ). (2.2)

To calculate the three parameters (φ,io,a) at least three measurements are nec-
essary. Four are technically and mathematically advantageous and allow a fit, with
a compensating effect on errors in contrast to an exact solution with only three
sampling points. The four measurements are done with different internal phase
shifts (θn = nπ

2
with n = 0..3) of the reference signal (cf. fig. 2.1). Additionally,

the time of a single period at 20 MHz is too short to get a reliable measurement.
Therefore, the signal is integrated over several thousand (m) periods:

I(θn) =
mT

2
io +

mT

π
a cos(φ+ θn) = I + A cos(φ+ θn). (2.3)
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ta
p

A
ta

p
B

time
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frame time τ = 1/f delay ∆t
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tap B

tap A

internal reference signal

Figure 2.1: Schematic of the data recording process. In each frame the camera
records four consecutive subframes at different phase shifts of the reference sig-
nal. Every pixel is divided into two taps and thus records two of those sequences
simultaneously with opposing phase shifts.

The actual length of the integration for each measurement is later specified as the
integration time

tint = m · T. (2.4)

To simplify the notation I(θn) will be written as In from now on.
The three parameters intensity I, amplitude A and phase φ can now be found by
minimizing the least squares formulation of the problem:

min
I,A,φ

3∑
n=0

((I + A cos(φ+ θn))− In)2. (2.5)

The results for the three parameters are found to be:

I =
I0 + I1 + I2 + I3

4
(2.6)

A =
1

2

√
(I0 − I2)2 + (I3 − I1)2 (2.7)

φ = arctan2((I3 − I1), (I0 − I2)). (2.8)

The results or notations in previous work (cf. [43, 49, 13, 49]) is slightly varying,
which is why the formulas were deduced again and can be found in sec. A.1.
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The phase shift φ can of course be transformed linearly into the distance d as:

d =
1

2
t · c =

1

2

φ

ω
· c (2.9)

where t is the actual time of flight and c the speed of light. The factor 1
2

is due to
the light traveling from the camera to the target and back. It should also be noted
here, that the distance or phase is of course not the same as the z-component in
Cartesian coordinates but rather the radial distance to the camera.

Because of the periodicity of the illumination the algorithm can not distinguish
between angle φ and φ+ 2π, which is why

da =
1

2

2π

ω
· c =

1

2

c

f
(2.10)

is called the non-ambiguity range of a ToF camera. For the CamCube 3 with
f = 20 Hz it is at about 7.5 m.

2.3 Poisson Noise

An ideal imaging sensor will suffer only from poisson noise, due to the finite prob-
ability of the photon transfer process. The poisson distribution has a variance σ2

equal to the expected value (cf. [19]).

As written in [43] and [13], the variance of the vector ~f(In) = (I, A, φ)T can be
calculated as

V ar
(
~f(~I)

)
=


∑

n
∂I
∂In
σ2
In

∂I
∂In

..∑
n
∂A
∂In
σ2
In

∂A
∂In

..
∑

n
∂φ
∂In
σ2
In

∂φ
∂In

 . (2.11)

The diagonal elements account for the variances of I,A and φ. The expected value
and variance is now the respective intensity value In:

V ar
(
~f(~I)

)
=


∑

n
∂I
∂In
In

∂I
∂In

..∑
n
∂A
∂In
In

∂A
∂In

..
∑

n
∂φ
∂In
In

∂φ
∂In

 . (2.12)

In the previous deductions (cf. [43, 13]) the same variance σ2 is used for all raw
frames. Because of that and some typos in the deductions, it is carried out again
in sec. A.2.
Using eq. 2.6-2.8, it results in:

σ2
I =

I

4
(2.13)

σ2
A =

I

2
(2.14)

σ2
φ =

I

2A2
. (2.15)
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It turns out that the assumtion of a constant variance gives the same results as
using different variances for each subframe.

The non-linearity of the variance of φ with respect to the amplitude has to be
emphasized here. It is responsible for the very high noise levels for areas in the
scene with low reflectivity.
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3
Bilateral Filtering

As we have seen in sec. 2.3, even a perfectly calibrated ToF camera suffers from
noise of variable magnitude, depending on the intensity and amplitude of the
recorded signal. For further processing of the data, a denoising method is required.

The simplest approach would be a Gaussian filter, taking the weighted local
mean value of a neighborhood. But the Gaussian does not only smooth the noise.
It is essentially a low pass filter and will also round off the actual depth discontinu-
ities (cf. fig. 3.1 center), which are very important for the geometric representation
of a scene, that is the heart of a depth image. A much better filter for piecewise
smooth geometric structures would be a truncated Gaussian, cut off at disconti-
nuities. A fairly good approximation was first introduced by Aurich and Weule
in 1995 [2] as non-linear Gaussian filter, that later became known as the bilateral
filter (cf. [54]).

Figure 3.1: Depth data (left) filtered with standard Gaussian (center) and bilateral
filter (right) with the same spatial parameter. The bilateral filter reduces noise
effectively in most of the frame while keeping the edges sharp, but the small area
in the bottom right with strong noise is hardly smoothed at all.

The filter is non-iterative and local, making it ideal for a fast, parallel imple-
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24 3.1. STANDARD BILATERAL FILTER

mentation. It is widely popular in image processing today and some new ToF
cameras can already apply it to the depth data directly in the camera firmware.

In the following sections the bilateral filter will be explained in detail with a
couple of extensions, making it better suited for ToF data.

3.1 Standard Bilateral Filter

(a) Noisy edge data (b) Bilateral filter kernel

(c) Smoothed with Gaussian (d) Smoothed with bilateral filter

Figure 3.2: Example for the shape of a bilateral filter kernel. The spatial part of the
bilateral filter used for the smoothing in this figure has the same σ as the Gaussian.
The bilateral filter can be a good approximation of a truncated Gaussian.

The bilateral filter (fig. 3.2) is a combination of two Gaussian filters:

d̃(~x) =
∑
~y∈Ω(~x)

Gx(~x, ~y)Gz(~x, ~y)d(~y). (3.1)

One is the standard spatial Gaussian Gx, averaging over the surrounding pixels
Ω(~x), weighted with the distance:

Gx(~x, ~y) =

 ∑
~y∈Ω(~x)

e
− ‖~x−~y‖

2σ2
x

−1

e
− ‖~x−~y‖

2σ2
x (3.2)
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and the second Gaussian, weighted with the difference in the data domain, the
depth or phase data in this case:

Gz(~x, ~y) =

 ∑
~y∈Ω(~x)

e
− |d(~x)−d(~y)|

2σ2
z

−1

e
− |d(~x)−d(~y)|

2σ2
z . (3.3)

This increases the weight of pixels similar to the center pixel in the averaging
process. An exemplary kernel and smoothing process at a step edge can be seen
in fig. 3.2.
Two small measures increase the effectivity of the filter. First, as proposed in [41],
the filtering process can be repeated several times - thrice for example - while σz
is decreased in every step. This smooths the noise more effectively and reduces
the smoothing of edge discontinuities.
The second is proposed in [25]. If the currently filtered pixel is a strong outlier,
it will hardly be smoothed at all, because every other surrounding pixel would
be weighted only weakly. Setting the weight of the central pixel (~y = ~x) to 0
greatly increases the smoothing of such pixels without compromising the smoothing
process for other cases.
While the spatial width of the filter is not very critical, the proper width of the
second Gaussian σz is crucial for a good result. It has to be above the noise level
to effectively smooth the data. At the same time it should be below the smallest
step expected in the data d, to prevent the filter from smoothing actual image
structures. This can be a very tough decision for data with a low signal to noise
ratio or strong variations in the noise magnitude (cf. fig. 3.1). It also makes the
bilateral filter unsuitable to smooth images or areas of images, where the noise has
a similar magnitude as the depth discontinuities.

3.2 Joint Bilateral Filter

As written above, σz has to be set above the noise level for effective denoising.
For ordinary intensity images the noise level is usually rather uniform across the
frame. For ToF depth data this is not the case. As eq. 2.15 shows, the standard
deviation of the depth measurement depends on the intensity and especially the
amplitude of the signal. This makes it very difficult, if not impossible to set a
good σz for the filtering process. In areas with low reflectivity the depth data can
basically vary through the whole ambiguity range of the camera. A σz suitable
for this area would smooth out any other depth structures as well, while a σz for
fine depth structures leaves the strong noise in dark areas of the image almost
unchanged.

One possible solution is a method proposed in [26] to upsample RGB images,
where a second, higher resolution image is used as weighting for the non-spatial
domain. This method can also be transferred to ToF data (cf. [56]), if a second
image of the same scene with better signal to noise ratio is available from an
ordinary RGB-camera for example.
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Figure 3.3: Exemplary results of a joint bilateral filter. Depth data (right) filtered
with weighting from the intensity data (left). Compared to the standard bilateral
filter (center), the strong noise int the bottom right is smoothed quite well, but
the edges of the sphere in the top left are blurred.

In fig. 3.3 the intensity channel is used as the the second weighting domain:

d̃(~x) =
∑
~y∈Ω(~x)

Gx(~x, ~y)GI(~x, ~y)d(~y). (3.4)

The better signal to noise ratio helps to smooth the noisy area in the bottom right,
where the standard bilateral filter failed. But at the same time the borders of the
sphere in the top left are blurred because of the small intensity difference.

Another issue of the joint bilateral filter is shown in fig. 3.4, where lots of
reflectivity changes appear without a change in depth. These texture edges are
copied into the smoothed depth data.

Figure 3.4: Another issue of the joint bilateral filter (right) is shown here. The
texture edges in the intensity data (left) are copied into the depth data. The
standard bilateral filter (center) does not suffer from these artifacts.

3.3 Adaptive Bilateral Filter

In [6] the texture copying issues are attended with a blending function α(∆Ω) that
shifts the weighting of the bilateral filter between the additional image and the
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depth data:

d̃(~x) =
∑
~y∈Ω(~x)

Gx(~x, ~y) (α(∆Ω) Gz(~x, ~y) + (1− α(∆Ω)) GI(~x, ~y)) d(~y), (3.5)

where α depends on the range of the depth values in the local neighborhood Ω
after a Gaussian smoothing:

α(∆Ω) =
(
1 + e−ε(∆Ω−τ)

)−1
. (3.6)

In this algorithm from [6] ε controls the width of the transition region and τ the
center of it. The idea is to rely on the depth data for areas with homogeneous
depth and switch to the intensity data in areas with depth edges. Fig. 3.5 shows,
that texture copying is indeed successfully avoided. But it also shows how this
model can easily fail. At depth edges that are not visible in the intensity data the
smoothing kernel is not properly cut off and the edges are blurred. The perfor-
mance is actually equally good or even better, if α is fixed to 0.5 for the whole
image, as previously published in [32]:

GzI(~x, ~y) =

 ∑
~y∈Ω(~x)

e
− |d(~x)−d(~y)|

2σ2
z +

∑
~y∈Ω(~x)

e
− |I(~x)−I(~y)|

2σ2
I

−1(
e
− |d(~x)−d(~y)|

2σ2
z + e

− |I(~x)−I(~y)|
2σ2
I

)
.

(3.7)
This way the depth difference at the depth edges invisible in the intensity lead to
a better preservation of the structure.

3.4 Discussion

The bilateral filter is a great improvement over isotropic Gaussian smoothing of
ToF depth data. Because of the low resolution of ToF cameras any smearing has
to be avoided. While the standard approach can be improved by using additional
channels available from the ToF camera, there is no real solution that will work
perfectly in any scenario. An approach sensitive only to depth values will struggle
with the varying noise levels, while a filter sensitive to intensity data can cause
false details in the depth data or smooth obvious depth edges. Even a combination
of both channels is difficult, because the discontinuity can disappear in either of
them.

The struggle of the algorithm at depth edges triggers the idea of a dedicated
edge detection algorithm to find these critical regions beforehand. This is exactly
the goal of the next chapter.
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Figure 3.5: The transition function α(∆Ω) (top left) shows a good response to the
depth edges. Still the step edges in the dark stripes are blurred (center) due to
the weak intensity difference. The same algorithm with a fixed α = 0.5 shows an
equal or even better performance (right). The two depth images in the bottom
row are crops from above, as marked in the intensity data (bottom left). At the
vertical step edges the result with a fixed α retains slightly more sharpness.



4
Edge Detection

Edge detection has been an important field in image processing from the start.
The edges already hold a large part of the information of a scene, as they mark
the locations where properties like color and brightness change. Most scenes or
objects can be recognized by humans just by looking at the edges.

In case of depth data, the edges are even more important, because there are no
textures in depth data and an edge always represents a spatial discontinuity of an
object.

Standard edge detection works fine for “good” scenes, where the depth steps at
edges are large and well beyond the noise level. But this is not the case for every
scene and the unique properties of the depth data, especially the varying noise (cf.
sec. 2.3) that can exceed the signal in weakly reflecting or illuminated areas, pose
a strong challenge for standard edge detection algorithms.

To the best of the authors knowledge, there have only been two papers dedicated
to general edge detection in ToF data so far. First a paper by Lejeune et al. [31]
and one paper written in the course of this thesis [47]. Ye and Hegde [57] suggested
an algorithm for ToF data that was limited to straight edges and other related work
is edge detection in data from range scanners (cf. [7, 20, 3, 42]), which is different
from ToF data since it is not densely sampled and not as close to 2D images.

The algorithm proposed in [31] is a variation of Canny’s algorithm (cf. sec. 4.2.1),
but it is limited to the depth data because it is also used on depth data from the
KinectTM. The work presented here is making use of the multiple channels ToF
data offers with the goal of increasing the sensitivity to edges at shallow depth
steps without diluting the results by introducing false positives into the edge map.

4.1 Structure Tensor

One way to find edges in an image is the structure tensor approach, as previously
described in [17, 12]. In the course of this thesis an algorithm was implemented,
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where the structure tensor is used to detect edges in ToF data. This edge infor-
mation can be used for adaptive denoising of the depth data (cf. [32]).

4.1.1 Theory

The theory of the structure tensor from [12] is briefly repeated here. A more
complete and comprehensive explanation can be found in [19]. The structure
tensor J is the Cartesian product of the gradients, locally smoothed:

J = Gσ ∗
(
Ix
Iy

)(
Ix
Iy

)T
= Gσ ∗

(
I2
x IxIy

IyIx I2
y

)
, (4.1)

with Gσ representing a Gaussian filter with standard deviation σ and Ix denoting
the gradients ∂I/∂x in x direction, Iy in y direction respectively. The structure
tensor is symmetric and can be diagonalized into

J =

(
u1 v1

u2 v2

)(
λ1 0
0 λ2

)(
u1 u2

v1 v2

)
(4.2)

where ~u and ~v are the normalized Eigenvectors to the Eigenvalues λ1 and λ2 of J
respectively.

The structure tensor gives both, an orientation of the local values of an image,
where the Eigenvector of the larger Eigenvalue points in the normal direction of
the orientation and a degree of the orientation of the local neighborhood as the
relation of the Eigenvalues λ2/λ1. A large value for λ2/λ1 is a good indication for
a high and elongated gradient, typical for an edge structure in the image data.

In [27] it is suggested, that for correct processing in the calculation of the
structure tensor, the gradients have to be sampled with twice the resolution of the
image. The reason is the doubling of the frequency when the point wise product of
two signals is formed (cf. fig. 4.1), as in eq. 4.1 the products of the gradients. The
upsampling of the gradients is done by sampling the gradient at every half-pixel
position by applying a gradient filter of equal and unequal width and length. For
example:

∇1 =
(
1 −1

)
(4.3)

∇2 =
(
1 0 −1

)
(4.4)

∇3 =

(
1 −1
1 −1

)
(4.5)

∇4 =

(
1 0 −1
1 0 −1

)
. (4.6)

The image itself will of course not contain any component with a frequency above
the Nyquist limit and neither will the gradients. But the product of two gradients
might.

Another extension proposed in [27] is an adaptive region for the smoothing of
the structure tensor components. The standard procedure is a Gaussian filter.
But this can cause local smearing between two adjacent edge structures, which
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is why an hour-glass shaped filter is suggested (cf. fig. 4.2). The hour-glass is
supposed to be aligned along the orientation of the local structure. This means
the structure tensor has to be calculated twice: once, to find the orientation with
a standard isotropic filter and a second time with the anisotropic filter, aligned
with the orientation found before.
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Figure 4.1: sin x and sin2 x to illus-
trate the frequency doubling when a
signal is multiplied pointwise with it-
self.

Figure 4.2: Grey-value representa-
tion of an hour-glass shaped filter
kernel as suggested in [27].

4.1.2 Structure Tensor and Time-of-Flight Data

The approach is now applied to the depth and intensity data from the CamCube
3 (cf. fig. 4.3). The different properties of the depth and intensity data result in
very different edge confidences for the two datasets. Due to the 1/r2 decrease of
illumination power, the depth edges in the left part of the scene, much closer to the
camera, are very well detected in the intensity image (cf. fig. 4.3 left), although
the depth difference is not very large. The low reflectivity of the chair to the right
and the increasing distance of the wall behind it almost cancel each other out in
the intensity data. This causes very weak edges in the intensity data (cf. fig. 4.3
left). But the edges are very well visible and detectable in the depth data (cf.
fig. 4.3 right).

With ToF it is possible to combine the edge information from both images
without a complicated geometric calibration in a dual camera setup. The simplest
way to do this is to add the resulting edge confidence maps. Despite the enhance-
ments in sec. 4.1.1, the dark areas and the resulting strong noise still gives a strong
response in the edge image and simply adding them would carry these false re-
sponses over into the final image (cf. fig. 4.4 left, bottom right corner). Adding
the structure tensors one step earlier on the other hand gives very good results.
It still enables control over the parameters for each dataset individually, like the
size of the smoothing parameter for the structure tensor components. Structures
or edges, that are not present in the second image are greatly diminished this way
(cf. fig. 4.4 right).
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Figure 4.3: Intensity and depth image of a scene, with the according eigenvalues
of the structure tensor. The approach works much better on the intensity data
and struggles with the noisy areas in the depth image. The values displayed in the
bottom row are the relation off the eigenvalues, which can be taken as a measure
for the likelihood of an edge at a certain pixel.
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Figure 4.4: Left: sum of the two edge images from fig. 4.3. The noisy parts of
the depth image are carried over without attenuation. Right: edges from the two
images combined at the structure tensor level. The strong features from both
datasets are carried over, while the noise of the depth data is suppressed quite
well.

4.1.3 Application

The results off the structure tensor approach can be used as a guidance for adaptive
denoising like in [32]. It gives a local likelihood of an edge and its orientation, used
as an input for an adaptive total variation approach. The goal is to smooth the
data along an edge, but not across it. However, because of the local smoothing,
the likelihood of a present edge is spread over several pixels in cross-edge direction
and a continuous classification of edge likelihood is prone to degrade the sharpness
of weaker edges. The logical conclusion is an algorithm that comes to a final
decision whether a pixel is an edge or not. Such an approach will be discussed in
the following sections.

4.2 Structure Tensor and Canny Combined

In [27] a combination of the structure tensor approach and the algorithm by Canny
[5] was suggested for edge detection. The idea is to use the eigenvalues of the struc-
ture tensor as an input to the Canny algorithm, instead of the gradient maximums.
This makes the algorithm more robust to slight variations of the gradient and in-
creases the sensitivity for elongated structures.

4.2.1 Canny’s Algorithm

Canny’s algorithm [5] is still a very popular approach for edge detection. It is
divided into several steps. The first step is a calculation of the gradients in the
image. In a second step local maximums of the gradients are detected as possible
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edge pixel candidates and in a third step called the hysteresis, connected lines of
these maximums are identified as edges. The critical part is the connection of the
local maximums. To avoid detecting every small maximum in the gradients as an
edge, two thresholds are set (cf. fig. 4.5). One is the lower threshold tl, that is
supposed to include most maximums that could be an edge. The second threshold
th is higher, to include only maximums that definitely are edges. A connected
segment of maximums higher than tl is only interpreted as an edge, if at least
one of the maximums is also higher than the second threshold th. This makes the
selection of the thresholds the most crucial part of the algorithm. The result is a
one pixel wide line, denoting edges in the image.

Figure 4.5: Left: Pixels marked as edges. Grey pixels are above the lower threshold
tl, white pixels above the higher threshold th. Edges without at least one white
pixel are dimissed. Right: Edges after the hysteresis step.

4.2.2 Adapting Canny’s Algorithm for ToF Data

The strong noise in Time-of-Flight depth data makes it very difficult to set ap-
propriate thresholds tl and th. Using the structure tensor edge indication instead
of the gradients directly is already an advantage. Further steps to make the al-
gorithm more robust to noise are introduced here in the hysteresis step. Sudden
changes in the edge orientation are prohibited. A measure is the scalar product
of the eigenvectors of the two consecutive pixels. A threshold ts ≤ 1 is assigned
to break edges in case of a sudden change of orientation. A positive side effect is
the break up of edges that run around corners into two separately detected edges.
This will be very useful later on. Another extension is to exclude edges with a
length below a certain threshold nm. Because of the strong noise in ToF depth
data high gradients can also occur in areas of uniform depth, but usually only very
short ones. This feature comes at a cost of course, because actual short edges in
the scene are either removed or limit the parameter to a very low value. Still,
depending on the scene it is a very useful additional selection parameter.
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4.3 Shadow Removal

Figure 4.6: The light sources mounted to the left and right of the lens cast strong
shadows on the background next to an object.

One advantage of ToF cameras are the multiple channels they provide. For
instance, the intensity and depth data provided are both perfectly aligned because
they are recorded from the same raw data. This offers the possibility to fuse
the edges detected in the different channels without problems of alignment. The
intensity data suffers a lot less from noise than the depth data and is therefore
much more suited for edge detection. A problem of the intensity data however is,
due to the light sources of the camera mounted left and right of the lens, vertical
depth edges occlude one of the two light sources for areas next to them (cf. fig. 4.6).
The result is a strong change of intensity at the edge of this shadow, although the
reflectivity in the scene is possibly constant. Detecting these shadow edges offers
two advantages:

1. the shadow edges can be removed from the intensity edges and

2. the edges causing the shadows have to be real depth edges.

4.3.1 Finding the Shadow Edges

To identify shadow edges as such in the intensity data, the shadow casting edge
in the depth data must be found. Since the positions of the light sources with
respect to the lens are known and the ToF camera can measure the distance, this
connection can be formed by calculating the angle α′ between the edge pixel and
the light source (cf. fig. 4.7). This angle has to be identical for both, the shadow
edge and the depth edge:

tanα′1 =
d1

a+ x1

=
d1

a+ x2

= tanα′2. (4.7)
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Figure 4.7: Schematic of the shadows cast by a depth edge due to the light sources
mounted left and right of the camera. Shadow- and depth-edge share the same
angle α′ towards the light source.

The two angles α1 and α2 are the respective angles of the depth edge and the
intensity edge here. To find the correspondences, this angle is assigned to all edge
pixels with respect to both light sources. The pairs are then found by conducting
a search along each row of the two edge maps. The criteria for a match are:

1. The edges have a vertical component above a certain threshold.

2. Matching angles according to eq. 4.7 with a certain tolerance for the width
of the light source and the inaccuracy of the depth measurement.

3. For angles calculated towards the left light source the shadow edge has to be
to the right of the depth edge and vice versa.

4. Once two corresponding pixels are found, all pixels that are part of both
edges are checked for correspondences. Only if a certain percentage fulfill the
former correspondence criteria, they are considered as a depth and shadow
edge pair.

Fig. 4.8 shows an example for detected depth and shadow edges.

4.3.2 Smartly Combining Intensity and Depth Edges

As suggested before (cf. sec. 4.2.2), the depth edges are a difficult matter, because
of the high noise level. To find all relevant depth edges the thresholds even for the
adapted algorithm usually have to be set so low, that also many false edges are
detected. The shadow removal part can help here though.
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Figure 4.8: Example scene for detected shadow edges. Previously published in
[47].

To find all possible shadow casting depth edges, an edge map is created from the
depth data with very low thresholds and a low confidence for the detected edges (cf.
fig. 4.9e). Because of the high number of falsely detected edges, they are not fused
directly into the final result, but only the depth edges with a corresponding shadow
in the intensity edges (cf. fig. 4.9f) are selected. The result of this operation is an
edge map that consists of the intensity edges, but the shadow edges are exchanged
with the corresponding depth edges (cf. fig. 4.9h).

A second set of depth edges detected with higher thresholds for a very low false
positive rate (cf. fig. 4.9d) is combined with these edges for the final result (cf.
fig. 4.9i).

4.4 Texture Removal

Another issue with edges from intensity data are possible textures that result in
intensity edges without a change in depth (cf. fig. 4.10), just like shadow edges.
Because of the fusion of depth and intensity edge maps, they will also end up in the
final result of the algorithm proposed above. But since the depth data is known,
a straight forward examination of the depth values on either side of the edge can
help to identify these texture edges.

To reduce the effects of noise and mixed pixels at edges, the area of the com-
parison can be extended to a small neighborhood on both sides of the edge E to
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(a) RGB image of the scene

(b) Depth data (c) Intensity data

(d) High confidence
depth edges

(e) Low confidence
depth edges

(f) Intensity edges

(g) As fig. 4.9d (h) Fig. 4.9e and 4.9f smartly combined

(i) Fig. 4.9g and 4.9h combined

Figure 4.9: Overview of the steps in the edge detection procedure. The photo
(fig. 4.9a) is included for a better comprehension of the scene.
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Figure 4.10: Intensity data (left) with marked intensity edges (red) and detected
shadows (green). The second image (right) shows the depth data with the edges
overlaid after applying the texture removal algorithm. Most of the texture edges
can be removed successfully.

N = 2 pixels for example. The depth difference can then be calculated as

ddiff =
1

|E|N
∑
~x∈E

N∑
j=1

|d(~x+ j~n)− d(~x− j~n)|, (4.8)

where ~n is the normal vector of the edge. The formula in Eq. 4.8 calculates the
absolute value of the difference at each pixel and then adds the values along the
edge. On first glance just taking the average depth on both sides seems more
accurate, but the sign of the depth difference can change, like in the case of two
ramps running in opposite directions next to each other. The local absolute value
is a more robust measure, as long as the result is normalized with the length |E| of
the edge and the width N of the neighborhood. A threshold td has to be assigned
to separate real depth edges and texture edges, where local noise or systematic
errors can still result in a small depth difference (cf. chap. 6).

Averaging the depth difference along the whole detected edge is a big advantage
compared to a local edge detection algorithm, that decides about a possible depth
edge on a pixel scale. The algorithm can fail, if a texture edge turns into a depth
edge along the way, without interruption.

4.5 Discussion

The combination of depth and intensity data, as well as geometric information of
the scene and the camera setup has led to a combined approach for a depth edge
detection in ToF data. This smart combination of provided information makes
it possible to exceed the limits of standard edge detection algorithms as they are
used in usual image processing.
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The goal of the investigations was to provide reliable edge locations for adaptive
denoising algorithms of the depth data, as in [32] or [47].

A problem of the approach is also connected to the nature of the ToF data.
Although the depth and intensity data is measured with the same sensor, the
location of detected edges of the same object can vary slightly and cause a double
edge, when combining both into one edge map. These mismatched edges have two
reasons.

First, the maximum gradient in the intensity data, which is usually considered
to be at the border of an object, can appear slightly inside the object boundaries,
if the object does not have a flat surface towards the camera, but the surface is
convex and reaches an angle parallel to the optical axis. The camera mounted
light source, as well as the reflectivity properties of the surface can cause a strong
gradient on the object itself and make the actual transition to the background less
pronounced, like the intensity data of the polystyrene sphere in fig. 4.10.

And second, the pixels that are neither completely part of the foreground, nor
of the background and therefore mix the intensities or depth values, behave dif-
ferently for depth and intensity data. While the intensities mix linearly according
to the ratio of fore- and background, the depth value of such a mixed pixel is a
combination of two complex numbers with phase and amplitude, that combine in
this matter. The result of these different mixing behaviors are object boundaries
that appear to vary slightly between the depth and the intensity data and can
cause the location of detected edges to differ slightly between the intensity and
depth data.

The decomposition of these mixed pixels for a more accurate edge location, as
well as the removal of systematic errors in the depth data, which is not possible
with smoothing algorithms that simply form the average over a local neighborhood,
requires a thorough analysis of the raw sensor data, which is exactly what the next
chapter will focus on.



5
Systematic Errors

To reach a better accuracy, reproducibility and consistency in the recorded depth
maps than possible with local denoising algorithms like the bilateral filter (cf.
chap. 3) or an adaptive method utilizing the depth edges from chap. 4, systematic
errors in the depth data have to be eliminated.

These systematic errors include deviations of the depth data dependent on the
real distances, the integration time, the intensity and the camera temperature.
A number of publications have investigated these phenomenons and suggested
calibration methods in recent years. [11] gives a good overview of the errors and
publications. But with the exception of the distance related distance error, also
called wiggling error, there exists no explanation for the origin of these errors. The
calibration is usually a time consuming task and has to be repeated before every
measurement, because of the temperature dependency.

This chapter takes another look at the systematic depth errors. Most of the
previous publications are limited to an examination of the processed phase, ampli-
tude and intensity data. This chapter reveals for the first time the common origin
of the previously unexplained errors in the raw data of the sensor.

Because of the required raw data access, the investigations are limited to the
CamCube 3. But the appearance of the same systematic errors in other ToF
camera systems is a strong indicator for similar sources in other models.

Parts of the research in this chapter were already published in [46].

But

5.1 LED Modulation

The distance calculated from the camera shows a periodic deviation from the actual
physical distance. This error is usually referenced as the “wiggling error” (cf. [49])
and considered to cause the largest deviation from the real distance for continuous

41



42 5.1. LED MODULATION

wave ToF cameras. It was already investigated in [29, 50, 43, 45, 13] for example.
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Figure 5.1: Actual intensity modulation of the PMD CC3 LED arrays, measured
with a photo diode.

The primary reason for this error is a deviation of the illumination modulation
from a perfect sine-wave (cf. fig. 5.1). The algorithms for the depth calculation
usually assume a perfectly sinusoidal light signal but in the real modulation higher
order frequencies up to at least 5 times the base frequency occur with a considerable
amplitude (cf. fig. 5.2).

The work of Lange in [29] suggests that the higher harmonics are due to the
fact that the LEDs are actually modulated with the same digital signal as the
sensor, but the internal capacities cut off most of the frequencies above 20 MHz,
resulting in an almost sine-shaped function with minor residuals of the higher order
frequencies.

Because of the sensor modulation, which is equivalent to an integration over
half of the main frequency period, the even multiples (40 MHz and 80 MHz) do
not contribute to the measured intensities. The uneven multiples (60 MHz and
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100 MHz) on the other hand clearly change the measurement:
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(5.1)

where φn denote the phase shifts of the different higher harmonics compared to
the base signal. This greatly attenuates the influence of the higher frequencies and
a least squares fit with the 3rd and 5th order frequencies is a quite accurate fit
(cf. fig. 5.3). The resulting depth deviation has a periodicity of about 1/4 of the
non-ambiguity range (cf. fig. 5.4) and 0.1 rad amplitude.
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Theoretically the knowledge of the exact illumination modulation function, or
an accurate enough approximation, should allow a permanent calibration of the
wiggling error. Yet, no proposed calibration method has taken this approach and
for good reason. As will be shown in the following sections, there are other error
sources that result in a deviation of the same periodicity. So while the effects of
the illumination can be compensated with exact modeling, a part of the wiggling
error will remain.

5.2 Heat Model

A variety of publications has shown the sensitivity of ToF cameras to the camera
temperature. In [22] a differentiation is made for the internal temperature, which
reaches a steady state if the camera runs more or less at the same frame rate and
the external temperature, that will cause an additional offset in the depth mea-
surement. A plot (cf. fig. 5.5), previously published in [30] for example shows how
the calculated intensity, amplitude and phase shift or depth of the CamCube 3
changes during the warm-up period of the device. Other papers discussing tem-
perature effects are [21, 38]. But an explanation for the temperature dependency
of the values has not been given yet.

Temperature Drift
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Figure 5.5: Change of intensity, amplitude and depth during warm-up of the
camera. Previously published in [30].

To make reliable measurements of the influence of the integration time on the
depth measurements, mentioned in [21] for example, it is necessary to record at
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different integration times, but with the same camera temperature.

Camera Housing

Sensor

TA TS

TH

λex λin

Figure 5.6: Schematic of the camera for the heat model. For the steady case
and constant heat conductivities λin and λex, the temperature of the sensor TS is
linearly dependent on the ambient temperature TA and the housing temperature
TH .

The heat generated by ToF cameras during recording is quite substantial. Some
of them even require active cooling. To understand and control the amount of
thermal power with different recording parameters a heat model is formulated
that assumes three major heat sources:

� the thermal power in standby P0,

� the thermal energy released in one readout operation Er and

� the thermal power when the sensor is active Pa.

While the contribution of the standby power is constant, the contribution of the
readout operations depends on the frame rate at which the camera is operated and
the contribution of the active sensor and camera depends on both, the frame rate
and the current integration time. The total thermal power Ph can be summarized
as:

Ph = P0 + fEr + 4 · tintfPa (5.2)

with the frame rate f and the integration time tint.
If frequency and frame rate are kept constant, the camera and sensor will reach

a steady state after the warm-up phase, assuming the heat conductivities λex
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between the camera and the surrounding and λin between the sensor and the
camera housing (cf. fig. 5.6) are constant. In this steady state the heating power
Ph and the cooling power Pc will be equal:

Ph = Pc

⇔ Ph = λin(TS − TH)

⇔ Ph = λex(TH − TA)

⇔ Ph = λex∆T.

(5.3)

The actual sensor temperature can not be measured, but the measurement of
the temperature of the camera housing and the ambient temperature is enough
to determine relative sizes of the different thermal power sources. The length of
the heat conducting paths are both unknown and irrelevant, which is why the
conductivities λin and λex can be considered as integrated values with the units
[W/K].

Measurements of the ambient temperature and the camera housing temperature
are carried out for different frame rates and integration times in the steady state
(cf. tab. 5.1). The temperature of the camera housing was measured with an
attached Greisinger GMH 3710 digital thermometer, the ambient temperature
with a conventional alcohol thermometer.

A combination of eq. 5.3 and eq. 5.2:

∆T =
P0

λex
+ f

Er
λex

+ 4 · tintf
Pa
λex

= P ′0 + fE ′r + 4 · tintfP ′a (5.4)

can be used for a least squares fit of the relative thermal power parameters to the
data in tab. 5.1. A plot of the data and the fit is shown in fig. 5.7.

f [Hz] tint [µs] TA [°C] TH [°C] ∆T [K]

0 0 24.1 29.9 5.8
0 0 24.5 29.7 5.2
10 1000 24.1 31.4 7.3

12.5 2000 24.5 31.8 7.3
12.5 4000 24.6 33.7 9.1
20 2500 24.6 33.8 9.5
20 4000 22.3 33.4 11.1
25 1000 24.0 32.3 8.3
25 1000 23.7 32.1 8.4
25 2000 24.7 34.2 9.5
25 4000 24.3 37.4 13.1

Table 5.1: Recorded data to fit the different contributions to the thermal power
of the CC3.

The resulting values are:

P ′0 = (5.61± 0.21)K, E ′r = (0.051± 0.015)K s, P ′a = (14.8± 1.2)K, (5.5)
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Figure 5.7: 3D Plot of the temperature data from tab. 5.1 with fit of the heat
model from eq. 5.4.

which are the relative values, scaled with the heat conductivity λex (cf. eq. 5.4).
They suffice to compensate a change of the thermal power due to a different
integration time with a changed frame rate. It is also interesting to note, that
the fixed amount of thermal energy generated by the readout process for every
frame is equal to an active sensor with an integration time of:

tint,eq =
E ′r
4P ′a
≈ 3400

4
µs = 850 µs. (5.6)

The exact adjustments for the compensation can be calculated with the help of
eq. 5.4:

∆T1 = ∆T2

P ′0 + f1E
′
r + 4 · tint,1f1P

′
a = P ′0 + f2E

′
r + 4 · tint,2f2P

′
a

f1E
′
r + 4 · tint,1f1P

′
a = f2(E ′r + 4 · tint,2P ′a)

f2 =
f1(E ′r + 4 · tint,1P ′a)
E ′r + 4 · tint,2P ′a

.

(5.7)

The compensation is limited by the possible integration times (11-4000 µs) and
frame rates (0-40 fps). High frame rates are also limited to shorter than maximum
integration times.

The accuracy of the thermal parameters measured here is very low (cf. eq. 5.5).
This is in part due to the long warm-up periods required to reach a steady camera
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temperature, making the acquisition of data points for the fit very time consum-
ing and in part also due to the limited accuracy of the measurements with the
thermometer attached to the outside of the housing. But the acquired data is
good enough for a minor thermal stabilization for a limited period of time and to
separate the temperature dependency of the measurements from other parameters.
A stabilized camera temperature over a longer period of time can not be granted
anyway without active control of the ambient temperature.

5.3 Dark Signal

According to the EMVA Standard 1288 [9], the only camera parameter with a
strong temperature dependency is the dark current. This indicates, that a tem-
perature dependency of the ToF measurements must be strongly related to the
dark current of the sensor. A recording of the intensity with a covered lens (cf.
fig. 5.8) reveals a very similar profile and difference compared to the open lens
intensity in fig. 5.5.

 4800

 5000

 5200

 5400

 5600

 5800

 6000

 6200

 0  500  1000  1500  2000  2500  3000  3500

in
te

n
s
it
y
 [
1
]

time [s]

PMD CC3 Intensity During Warm-Up

Tap A
Tap B

Figure 5.8: Dark signal of the different taps during camera warm-up. The plots
show a large temperature dependency of the dark signal that changes for the two
taps differently. The change of intensity is very similar to the measurement in
fig. 5.5 without covering the lens.

A look at an image representation of a single subframe also reveals some very
strong fixed pattern structures (cf. fig. 5.9). That is not a surprise and probably
the result of variations in the pixel properties due to variances during the manu-
facturing process, the readout circuits or the heat propagation within the camera
(cf. [1, 39]).

Unexpected is certainly the high intensity of the dark signal. In a scene with
badly reflecting areas the mean value around 6000 of the dark signal can easily
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account for the better part of the total intensity recorded there.

Figure 5.9: Dark signal of the CC3, tap A, first subframe, averaged over 100
frames. The mean value is at about 6000 with a standard deviation in the order
of magnitude of 1%

the
An evaluation of the dark signal at different integration times (cf. fig. 5.10)

shows, that the largest part of it is actually integration time independent and can
therefore not be caused by a dark current. This behavior suggests to split the dark
signal into a constant offset Ido and an integration time dependent dark current
part Idc:

Ids = Ido + Idc(tint). (5.8)

Because every Ii in eq. 2.8 is made up of measurements from both taps A and
B, the different intensities of the signals (cf. fig. 5.8) do not contribute to any
depth error. And while also the fixed pattern in the dark signal (cf. fig. 5.9) can
not explain the temperature dependency of the depth measurements or any other
systematic error, the recordings in fig. 5.10 also show an undeniable non-linearity
of the integration time dependent part. The influence of this property will be
discussed in the next section.

5.4 Signal Nonlinearity

The new heat model (cf. sec. 5.2) allows it to make measurements at different
integration times but at the same sensor temperature. The expectations for such
a measurement would be a linear dependency on the integration time. However,
a measurement of the dark signal (cf. fig. 5.10) reveals an exponential behavior.

The measurements were made by warming up the camera for one hour with
tint = 100 µs and repeated at two different frame rates f1 = 20 Hz and f2 = 30 Hz.
The frame rates for the measurements at higher integration times are adjusted
according to eq. 5.2 to compensate the change in thermal power.
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how well the temperature compensation worked.
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An exponential function of the form

I(tint) = (a · tint)b + c = Il(tint)
b + Ido (5.9)

is fitted to the data and the resulting parameters can be found in tab. 5.2. It is
interesting to note that the dark current a and the offset c change significantly
between the two measurements, while the exponent b seems to stay constant. It
can also be interpreted as a linear intensity Il, subject to the exponent b and a
constant offset Ido.

Tap f [Hz] a [1/µs] b [1] c [1]

A 20 0.034± 0.003 1.32± 0.03 5985± 2
B 20 0.081± 0.007 1.15± 0.02 5934± 2
A 30 0.040± 0.004 1.31± 0.03 6110± 2
B 30 0.089± 0.008 1.16± 0.02 6058± 2

Table 5.2: Fit results of the data in fig. 5.10. While the offset of the signal (c) and
the dark current (a) increases significantly, the exponent (b) stays constant (a in
1/µs).

A look at the results for the whole image domain gives an average exponent of
b̄A = 1.32± 0.08 for Tap A and b̄B = 1.19± 0.05 for Tap B.

To verifiy the constant sensor temperature, the measurement at 100 µs is re-
peated consecutively between the other data points. There is a slight decrease of
the dark signal there, indicating an overcompensation of the increased integration
time (cf. fig. 5.11). This might cause the exponents to be slightly underestimated.

The influence of a non-linear photo response on the measured depth was already
investigated in [49]. The simulations revealed a periodical offset of the depth with
a periodicity of 1/4 the non-ambiguity range, just like the higher harmonics of the
illumination. With exponents between 1 and 2 the influence on the depth is only
in the range of millimeters.

So while the non-linearity of the sensor gives a minor contribution to the wig-
gling error, it offers no explanation for any of the unexplained errors like the
intensity related distance error or the temperature dependency of the depth mea-
surements.

5.5 Subframe Offset

A close look at the equation responsible for the phase shift calculation (eq. 2.8)
should be enough to see, that only a systematic offset of the different intensity
data Ii can cause an error in the depth data. A mere offset of the two taps will
cancel out, as all Ii contain data from both taps. A non-linearity has very limited
effects, because all of the values are affected by it. So there has to be something
else that is different between the recorded subframes.
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A deviation in the recorded data is very hard to identify, because the recorded
intensities are at very different levels due to the modulated illumination and sensor.
But another look at the dark signal reveals a very interesting behavior.

Once the camera is in a steady state with respect to the temperature, the dark
signal is only affected by Poisson noise. The signal to noise ratio can be greatly
improved by averaging over several recorded frames. A look at the different taps
and subframes of a pixel is shown in fig. 5.12. The data, recorded in a thermal
steady state shows a small but clear offset between the different subframes. The
two taps show a very different behavior.
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Figure 5.12: Dark signal difference of the subframes compared to the first subframe.
The data is averaged over 100 frames at a single pixel, to reduce the Poisson noise.
The error bars show the statistical error of the mean value for each subframe. The
data is recorded at a frame rate of f = 30 Hz and tint = 200 µs integration time.

To better understand what is going on a precise time scale for the recorded
subframes is very important. To determine the delay of the different subframes at
different integration times, a textured cardboard attached to a motor rotating at
different speeds is recorded (cf. fig. 5.13). The analysis reveals a constant time ∆t
of about 3.75 ms in between the consecutive subframes (cf. fig. 2.1).

The different subframes can now be put into an exact time scale. Further mea-
surements of the dark current difference at different integration times and frame
rates (cf. fig. 5.14) show, that the offsets change with these parameters. There is a
tendency for larger differences at slower frame rates and shorter integration times.
Every pixel and tap has a slightly different profile, but in the thermal steady state
the offsets remain constant.
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Figure 5.13: Single subframe (left) and intensity image (right) of a textured card-
board mounted to a motor to determine the time between subframes. An analysis
reveals a constant time of about 3.75 ms between the end of one and beginning of
the next subframe, which is about the length of the maximum possible integration
time of the CC3 (4000 µs).
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Figure 5.14: Dark signal difference of the subframes compared to the first subframe.
This shows a clear increase in intensity, probably due to a short-term thermal effect.
The effect is more pronounced for short integration times (solid lines: t = 200µs)
and less for long integration times (dashed lines: t = 2000µs). The x-axis shows
the time passed since the end of the last frame, making the sets recorded at different
frame rates distinguishable and giving an idea of the temporal distribution of the
subframes.
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A possible explanation for the offsets is a short-term temperature effect. The
thermal power of the active sensor found in sec. 5.2 could generate an oscillating
temperature in the pixels, causing a periodic variation of the dark current. A
possible heat source are the currents required for the sensor modulation at 20
MHz. But the largest part of the heat for short integration times is generated
by the readout process, which is about as much as the sensor being active for
3400 µs (cf. eq. 5.6). The heat generated by the active sensor can be assumed
to be generated while the frames are recorded. But when exactly the heat of the
readout process is generated or how it is spread over the period of the recording
of a whole frame can not be easily determined.

While the general camera temperature at low frame rates or short integration
times is lower, a local heat source only active for a limited time would cause a
stronger temperature gradient than at a higher frame rate or integration time,
where the passive periods of the sensor are shorter and the opportunity to cool
down is reduced. Thus, the dark current shows a stronger variation for lower frame
rates and shorter integration time. For long integration time a large part of the
heat is generated over an elongated time period.

In the following section the influence of these subframe offsets on the depth
calculation will be discussed.

5.6 Effects on the Phase Calculation

The variations in the dark current uncovered in the previous section look rather
small on first glance, with an intensity change of about 5 to 15 counts. And the
combination of the different subframes (cf. tab. 5.3) for the intensities Ii of eq. 2.8
reduces it even further.

tap A tap B

I0 subframe 0 subframe 2
I1 subframe 1 subframe 3
I2 subframe 2 subframe 0
I3 subframe 3 subframe 1

Table 5.3: Overview of how the subframes combined into one frame Ii for the
calculation of φ as in eq. 2.8 (cf. fig. 2.1).

A reformulation of eq. 2.8 including the different subframes can help to under-
stand the influence of the offsets on the calculated depth:

φ = arctan2((I3 − I1), (I0 − I2))

= arctan2(((IA3 + IB1)− (IA1 + IB3)), ((IA0 + IB2)− (IA2 + IB0)))

= arctan2((IA3 + IB1 − IA1 − IB3), (IA0 + IB2 − IA2 − IB0))

= arctan2(((IA3 − IB3) + (IB1 − IA1)), ((IA0 − IB0) + (IB2 − IA2))

= arctan2((∆I3 −∆I1), (∆I0 −∆I2)), (5.10)
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where ∆Ii denotes the difference of the two images recorded in the two taps A
and B in the same subframe i. This reformulation shows that only the differences
of the two taps of each subframe contribute to the arguments. Likewise only the
differences of the subframe offsets ∆Di = DAi −DBi (cf. fig. 5.14) will matter:

φ = arctan2(((∆I3 + ∆D3)− (∆I1 + ∆D1)), ((∆I0 + ∆D0)− (∆I2 + ∆D2)))

= arctan2(((∆I3 −∆I1) + (∆D3 −∆D1)), ((∆I0 −∆I2) + (∆D0 −∆D2)))

= arctan2(((∆I3 −∆I1) + (∆D3 −∆D1)), ((∆I0 −∆I2) + (−∆D2))). (5.11)

∆D0 is 0 because the first subframe is used as the reference point.
Modeled intensities of different subframes (cf. fig. 5.15) with exemplary sub-

frame offsets from fig. 5.14 exhibit only a very small change due to these offsets.
In the well exposed range of a couple of thousand counts over the offset it is not
noticeable at all. Only a zoom in on the very low intensity area of the simulation
shows how the different offsets mix up the order of the recorded intensities.
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Figure 5.15: Subframe intensities, modeled as Ii(tint) = (ai · tint)b + ci. The ai
are calculated from a cosine function with an offset of 0.4, and amplitude of 0.2.
The exponent b is set to 1.3, the phase shift to 1 rad. The subframe offset values
approximately correspond to those in fig. 5.14 at f = 10 Hz and tint = 200 µs are
added to these intensities. The deviation only shows in the very low integration
time or intensity range (right), where the intensities actually change their order.

Despite this very small effect on the recorded intensities, the influence on the
calculated phase shift is noticeable even for higher intensities (cf. fig. 5.17). For
an increasing integration time or intensity, the influence of the subframe offsets
disappears and the phase shift converges towards the result only incorporating the
non-linearity. But towards low intensities the calculated phase deviates more and
more.

Essentially the calculated signal is a superposition of the optical signal recorded
by the camera and a second signal of the subframe offsets (cf. fig. 5.16). Both
of these have a phase and an amplitude. Usually, the signal of the subframe
offsets is very weak and hardly has an influence in the superposition. Only for low
amplitudes of the optical signal it will cause an increasing error. In the thermal
steady state it is constant within the limits of the noise and for a vanishing intensity
of the optical signal it will be the phase of the subframe offsets that is calculated.
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Figure 5.16: Phase diagram of combined optical signal (I) and signal off subframe
offsets (D) according to eq. 5.11.

Very important to note here is, that the subframe offsets vary from pixel to
pixel and change with the integration time, frame rate and temperature. The
error induced by it also oscillates with the distance, because the offset phase φD
is fixed. The induced error is the largest for a phase difference of π/2 or 3π/2. A
plot of the simulated error with respect to the phase shift is shown in fig. 5.18.
The periodicity is 1/2 the non-ambiguity range and thus different from that of
the higher harmonics (cf. sec. 5.1) or the error induced by the nonlinearity (cf.
sec. 5.4).

The two simulations in fig. 5.17 also show, that although the absolute values
of subframe offsets for the 10 Hz measurement are higher, the influence on the
calculated phase is larger with the values from the 20 Hz measurement. Real mea-
surements will of course differ greatly from the simulation, because the intensity
and amplitude will hardly be the same for the whole non-ambiguity range. And
also the non-sinusoidal modulation was not incorporated into the model.

The exemplary simulations given here show, that a description of the errors the
subframe offsets will cause is very complicated because of all the parameters that
have to be taken into account. The good thing about the subframe offsets is, that
they can be measured with a relatively small effort. This offers the foundation of a
new and very quick calibration method that will be proposed in the next chapter.

(eq. 2.8)
the
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Figure 5.17: Phase φ = arctan2((I0−I2)/(I3−I1)) with (red) and without (green)
the offset variations. The blue line is the input phase shift. The plots show, that
the phase deviation due to the subframe offsets is also dependent on the input
phase shift. It can either reduce or increase the deviation due to the non-linearity
(cf. sec. 5.4).
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Figure 5.18: Phase error due to the non-linearity (green) and additionally the
subframe offset. The data is modeled with the same parameters as in fig. 5.17 at a
fixed integration time of 200 µs (top). The subframe offsets add another periodic
deviation with a periodicity of 1/2 the non-ambiguity range (blue). The bottom
plot shows the error with the same parameters except for the subframe offsets,
which are from the 20 Hz recording in fig. 5.14.



6
Calibration

In the previous chapter a couple of signal or sensor properties were investigated.
The new insight gained there allows a new fast and flexible calibration of the
camera raw data. Previous suggestions for ToF camera calibration (cf. [34, 35,
52, 21, 33, 18, 39]) were limited to the a posteriori data and done in the form of
polynomial or spline fits, or with lookup tables to compensate the deviations for
different integration times and intensities.

The raw data based approach presented here is not an absolute calibration
but removes or reduces the effect of temperature dependency, integration time
dependency and fixed pattern depth noise. It is still necessary to repeat parts of
the calibration before every measurement, but the data required is recorded with a
covered lens. There are no calibration targets required and the process is a matter
of seconds.

A brief description of the method was already published in [46].

6.1 Calibration Model

The model used for the calibration is an intensity following eq. 5.9 but extended by
a differentiation of the light current signal Ilc and the dark current signal Idc. To
better differentiate the parts of the signal and the dependencies on the parameters,
they are added to the intensity components in brackets. tint as integration time
is obvious, θ denotes the internal phase shift or the respective subframe and m
differentiates between the taps A and B:

I(tint, θ,m) = Ioff (m) + (Idc(tint, θ,m) + Ils(tint, θ,m))b(m) . (6.1)

To calibrate the model there are 3 measurements that have to be made:

1. a determination of the exponent b of each tap

61



62 6.2. EXPERIMENTS AND DISCUSSION

2. a measurement of the offset Ioff (m) of each tap

3. a measurement of the dark current intensity Idc(tint, θ,m) of each tap and
subframe.

Since the exponent b(m) is a temperature independent parameter it can be acquired
beforehand and saved in a parameter file for each pixel and tap.

The offset Ioff (m) of each pixel and tap can be approximated by a dark signal
measurement at the shortest integration time the camera allows (11 µs in case of
the CC3).

Now the dark current intensity Idc(tint, θ,m) is the most important part because
it incorporates the subframe differences of the short-term temperature drift. It can
also be recorded by a dark signal measurement of which the offset Ioff (m) has to
be subtracted.

It is important to separate offset and dark current since the dark current is
subject to the exponential function while the offset is not. Because of their tem-
perature dependency both the offset and the dark current should be measured
just before the actual measurement, after the camera had enough time to reach a
thermal steady state.

Both values are subject to noise and to reduce the effect of it an average value
should be recorded for several frames. Depending on the frame rate this requires a
different amount of time. For the measurements presented in the following section
200 frames were recorded for each value, requiring 10 seconds for each measurement
at 20 Hz. Combined with the effort of putting a cap on the lens and back off, the
calibration process can be finished within 30 seconds. The measurement of the
offset should not be extended for too long because it is recorded at a different
integration time and would change the camera temperature in the long run.

With the three parameters known, eq. 6.1 can be transformed to give the linear
incident light dependent signal that is actually relevant for the depth calculation:

Ilc(tint, θ,m)) = (I(tint, θ,m)− Ioff (m))1/b(m) − Idc(tint, θ,m) (6.2)

6.2 Experiments and Discussion

The following figures show the effects of the calibration on the raw and processed
data. The data was recorded at an integration time tint = 130 µs and is averaged
over 200 frames to reduce the Poisson noise. In fig. 6.1 the raw and phase data is
shown uncalibrated (left column) and calibrated (right column). As raw data two
subframes of tap A (top row) and tap B (center row) with an identical internal
phase shift of θ = π are picked.

The calibration greatly increases the apparent noise in the intensity subframes,
since the pixels are not calibrated photometrically, but only the consecutive sub-
frames of each tap are calibrated against each other and linearized. Because the
depth is calculated on a pixel base, calibrating pixels against each other is not
important for the depth measurement. The fixed pattern vertical stripes, very
noticeable in the uncalibrated tap A image (top left) are completely gone after the
calibration.
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Figure 6.1: Raw data and phase before (left) and after (right) calibration. The
raw intensity images (gray) are normalized separately. The phase images (bottom
row) share the same color scale. Crops marked in the top left can be found in
fig. 6.2 and 6.3.
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A look at the phase data (bottom row) calculated from the raw values with eq.
2.8 shows that the noise is reduced here, especially in the areas of lower intensity.
Tab. 6.1 gives a bit of statistics about the phase data. The strong decrease of
the variance is a result of the decreased noise in the background. The mean phase
value stays almost the same, as can be seen in the phase image. The mean depth
of the different box parts is also the same before and after the calibration.

value uncalibrated calibrated difference

mean 2.47 2.44 0.035
minimum 0.80 0.30 −2.86
maximum 5.31 5.35 4.23
variance 0.11 0.05 0.053

Table 6.1: Statistics of the phase data in fig. 6.1 in [rad]. Interesting to note is
the decrease in the variance of the phase by 50%, while the total range of the data
actually increases. Also the mean phase changes only slightly.

These effects become even more obvious with a look at a crop of the box interior
in fig. 6.2 and tab. 6.2. Because of the better exposure here the noise is a lot weaker
even before the calibration, compared to the dark area around the box. The major
part of the variance is due to the different distances of the box interior and the
reduced noise does not show up in a change of the variance. The missing shift of
the mean phase shows, that the calibration does not affect the average depth.

Figure 6.2: Crop of the phase images from fig. 6.1. Both images use the same
color scale again. The lower noise in the calibrated data (center) is more obvious
now. A difference image (right) shows the most changes happen in the areas with
low intensity (cf. fig. 6.1). The color scale for the difference image uses the same
color spread as the phase images, but is centered at 0.

It can also be seen in fig. 6.2, that the calibration has the strongest effect in
the dark and areas. Because of the weaker intensity and amplitude, the Poisson
noise has a much larger magnitude here (cf. eq. 2.15). But also the influence of
the subframe offsets is increased as predicted in sec. 5.6. The result is a strong
reduction of the noise in the depth data by the calibration.
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value uncalibrated calibrated difference

mean 2.482 2.478 0.004
minimum 2.00 2.02 −0.31
maximum 3.15 2.79 0.77
variance 0.018 0.017 0.001

Table 6.2: Statistics of the phase data in fig. 6.2. While the changes are noticeable
in the images to the naked eye, there is hardly a change to the statistics here
because the highly noisy areas around the box are cut off.

In a crop of the flat dark patch in the lower left corner the calibration reduces
the variance of the phase from 0.0016 to 0.0010 (cf. fig. 6.3). Since the variance
of the phase values is governed by the noise and not by actual 3D-structures the
calibration affects the variance noticeably here.

Figure 6.3: Small crop of the flat dark patch in the lower left corner of the phase
images from fig. 6.1. Both images use the same color scale again. The variance
of the phase in this flat area is reduced considerably from 0.0016 to 0.0010 (cf.
tab. 6.3) by the calibration.

The fact, that the dark patches in the bottom left corner still exhibit clear
edges in the depth data (cf. fig. 6.2) reveals that, while the error caused by the
subframe offset is intensity dependent, it does not contribute to a systematic shift
of areas with different intensities. The explanation is simple: the specific error
by which the subframe offset changes the measured depth depends among other
things on the exact relation of the subframe offsets. These are not uniform from
pixel to pixel and slight variations can make a huge difference. So there must
be yet another source for the intensity related distance error. One of these error
sources is investigated in the next chapter.
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value uncalibrated calibrated difference

mean 2.501 2.498 0.003
minimum 2.40 2.40 −0.12
maximum 2.69 2.63 0.17
variance 0.0016 0.0010 0.0011

Table 6.3: Statistics of the phase data in fig. 6.3.



7
Internal Scattering

It is found (cf. [30]), that a bright object in the foreground will cause the whole
background in a ToF image to appear closer to the camera than without the bright
foreground object, even if it is not directly visible to the camera. The source of
this behavior is usually suspected to be in the lens, where the incident light can
deviate from the theoretical path due to multiple reasons: scattering in optical
glasses, reflections on optical or other surfaces, diffraction on aperture blades or
reflections at the sensor or film (cf. [53, 44, 28, 36, 30]). All these possible effects,
also known as lens flare are very hard to measure or to model, which is why
a simplified homogeneous diffuse scattering is assumed for the scattering model
presented here.

For standard imaging and image processing diffuse scattering is not of very high
importance. In the case of Time-of-Flight imaging on the other hand, the effects
can cause serious errors in the recorded data.

Previous work on in-camera scattering (cf. [40, 24, 23]) investigated the effects
of scattering on processed data (amplitude and phase) while here the raw data is
analyzed directly. Furthermore the previous papers assumed the scattering to be
mainly due to internal reflections between the sensor and the rear surface of the
lens. The resulting calibration and correction algorithms are highly complicated
and claim to decrease the scattering effect by 70% in the most recent work, but
there are areas in the image with no apparent improvement at all.

The approach described here and previously published in [46] improves the
estimated depth in every area of the scene. It must be noted though, that different
cameras were used for the former publications, which inhibits a direct comparison.
While the occurrence of multiple reflections can be ruled out as a dominant effect
and diffuse scattering is considered more accurate for the CamCube 3, the findings
can not be transfered to other systems without reservation.

In this chapter all Ixx denote intensity values of single pixels, taps and sub-
frames. The Īxx are the mean values of the whole image domain, but still only of
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a single tap and subframe.

7.1 Decomposing the Signal

SensorLensScene

Diffuse 
Scattering

Sharp Image
Field of View

Invisible 
Scattering 
Source

Figure 7.1: Diffuse scattering in a lens. In the model presented here it is assumed
that a fraction of the incident light is spread homogeneously over the sensor. In-
visible scattering sources have to be avoided, because the model can not correct
their contribution to the signal.

If it is assumed (cf. fig. 7.1), that a fraction of the incident light from the
scene is scattered diffusely inside the lens of the camera and spread out over the
sensor, this effect will change the raw data of each pixel and tap. The effect on
the calculated phase will be more severe for dark areas because the additional
intensity is larger in comparison. It will of course also depend on the difference
in distance of the pixel under consideration and the mean distance of the whole
scene, weighted with the intensity of each point.

The scattering contributes to the light signal Ilc (cf. Eq. 6.2), which can now
be separated into a sharp optical image of the scene Ilci and the scattered light
Ilcs:

Ilc = Ilci + Ilcs. (7.1)

In the approach presented here a uniform spread of the scattered light over the
whole sensor is assumed, making the scattered part of the intensity Ilcs constant
over the whole image domain. If there are no strong scattering sources outside the
field of view of the camera that scatter light back into the lens, the scattering can
be modeled as

Ilcs = s · Īlci, (7.2)
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with s being the scattering parameter of the lens and Īlci the mean incident light
without the scattered part. Accordingly, the unscattered signal can be calculated
as

Ilci = Ilc − s · Īlci. (7.3)

Ilci is the value of interest, while Ilc can be obtained with the calibration from
chap. 6. Locally corrected intensities can not be obtained without an estimate of
s but the mean value of the corrected data Īlci can be calculated from Eq. 7.3 with
known s:

1

n

∑
Ω

Ilci =
1

n

∑
Ω

(
Ilc − s · Īlci

)
⇔ Īlci =

1

n

∑
Ω

Ilc − s · Īlci

⇔ Īlci(1 + s) = Īlc

⇔ Īlci =
Īlc

1 + s
. (7.4)

With Eq. 7.4 and Eq. 7.3 the sharp image without scattering can be calculated
from the calibrated data Ilc data with only the scattering parameter s unknown:

Ilci = Ilc − s ·
Īlc

1 + s
. (7.5)

s has to be determined separately. A possible method is suggested in the following
section.

7.2 Measuring the Scattering Parameter

What remains to be done is a determination of the scattering coefficient s. To do
so, a scene is set up with a target in the background and a white board in the
foreground, covering about half of the frame (cf. fig. 7.2) as a large scattering
object. The room is darkened and the whole area around the scene is covered in
black cloth, to avoid changing ambient light and invisible scattering sources.

If there is a scene with a bright object between the camera and the rest of the
scene, the scattering effects can be observed quite well. If the bright object is
covered with a dark, non-reflective tissue for a second recording, the scattering
can be determined from the two datasets by comparing the identical parts of the
scene:

Ilci,1
!

= Ilci,2

⇔ Ilc,1 − s · Īlci,1 = Ilc,2 − s · Īlci,2
⇔ Ilc,1 − Ilc,2 = s · Īlci,1 − s · Īlci,2

⇔ s =
Ilc,1 − Ilc,2
Īlci,1 − Īlci,2

⇔ s =
Ilc,1 − Ilc,2
Īlci,1 − Īlci,2

(7.6)
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Figure 7.2: Scene to determine the scattering parameter s. The large white scat-
tering object (left image) is covered with a black cloth (right image), while the
rest of the scene is left unchanged. From the differences in the left half of the
image the scattering parameter can be calculated. The white board is positioned
at an angle to avoid overexposure by direct specular reflections of the light sources.
Previously published in [46].

Since homogeneous scattering is assumed for the model, Eq. 7.6 can be averaged
over the whole identical part of the image (left half in fig. 7.2), denoted as Ω′:

s =
1
n′

∑
Ω′ (Ilc,1 − Ilc,2)

Īlci,1 − Īlci,2

⇔ s =
Ī ′lc,1 − Ī ′lc,2
Īlci,1 − Īlci,2

. (7.7)

And with Eq. 7.6, the scattering coefficient s can be calculated directly from the
two calibrated measurements in fig. 7.2 as:

s =
Ī ′lc,1 − Ī ′lc,2

1
s+1

(
Īlc,1 − Īlc,2

)
⇔ s− s Ī

′
lc,1−Ī

′
lc,2

Īlc,1−Īlc,2
=
Ī ′lc,1 − Ī ′lc,2
Īlc,1 − Īlc,2

⇔ s

(
1−

Ī ′lc,1 − Ī ′lc,2
Īlc,1 − Īlc,2

)
=
Ī ′lc,1 − Ī ′lc,2
Īlc,1 − Īlc,2

⇔ s =
Ī ′lc,1 − Ī ′lc,2
Īlc,1 − Īlc,2

· Īlc,1 − Īlc,2(
Īlc,1 − Īlc,2

)
−
(
Ī ′lc,1 − Ī ′lc,2

)
⇔ s =

Ī ′lc,1 − Ī ′lc,2(
Īlc,1 − Īlc,2

)
−
(
Ī ′lc,1 − Ī ′lc,2

) . (7.8)
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It is found to be

s = 0.017± 0.002, (7.9)

which means that about 1.7% of the light recorded by the sensor are diffusely
scattered.

7.3 Experiments

To confirm the scattering model the HCI box is now recorded with different scat-
tering sources in the foreground. Bright objects are places on a tripod close to the
camera (cf. fig. 7.3).

Figure 7.3: Experimental setup to verify the scattering model (left). And camera
view. The two images on the right show the same raw data with different linear
gray scales to illustrate the strong brightness difference between foreground and
background, due to the camera mounted light source. In the following figures the
scales will be adjusted nonlinearly to make the whole scene visible.

The camera is set to record at a certain frame rate and integration time, chosen
low enough to avoid overexposure. Once a steady temperature is reached, the offset
and dark current are measured to perform a calibration according to chap. 6.
Immediately after that raw data of the three different scenes are recorded (cf.
fig. 7.4). To reduce the Poisson noise 200 frames are recorded for each dataset.

With the offset, the dark current and the previously measured exponents and
scattering parameter, the data can be calibrated and corrected for scattering,
according to Eq. 6.2 and 7.4. Fig. 7.5 shows the phase shifts calculated from
the uncorrected data, from the calibrated data and calculated after the scattering
correction in the bottom row. As expected, the scattering object in the foreground
causes the back of the scene to appear closer to the camera. The effect is also more
obvious in the areas of the scene with bad reflectivity and increases with the size
of the scattering object. The results are a very noticeable depth offset of the dark
patches in the lower left corner, most obvious in the setup with the cylinder. But
also the dark stripes of the stair and ramp structure show a decreased phase shift
in the different uncorrected images.
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Figure 7.4: The three different variations of the scene to verify the scattering
model.

The depth inconsistencies in the corners for example are due to in-scene scat-
tering or multi-reflections, which are not discussed in this thesis. The reader is
referred to [16, 8, 30].

Fig. 7.6 shows a crop of the back wall off the box, where the patches with
different reflectivity meet. In these images the different phase shift of the darker
patches is much more obvious, as well as the qualitatively very good correction
by the scattering compensation. The increase in depth or phase shift towards the
top left is due to the angle at which the surface is towards the camera, as well as
multi-reflection artifacts in the corners and under the stair structure.

Tab. 7.1 gives the mean phase shifts of the crops in fig. 7.6. The offset introduced
here by scattering is quite large, shifting the dark area in the cylinder scene about
0.07 rad towards the camera, which corresponds to about 8 cm. For the cone setup
the shift is less severe because of the smaller size of the cone.

Data / Scene Empty Cone Cylinder

Uncalibrated 2.512 2.503 2.481
Calibrated 2.510 2.501 2.479
Corrected 2.511 2.512 2.511

Table 7.1: Mean values of the phase shift (in Radian) from the crops in fig. 7.6.
The empty scene can be taken as a reference without scattering.

7.4 Discussion

It must be noted, that the correction of the scattering in raw data is impossible
without the calibration presented in chap. 6, especially the isolation of the optical
signal from the dark current and the signal offset. And the calibration on the
other hand would not be possible without access to the raw data. This also offers
the advantage of very simple processing steps, compared to a scattering correction
from the intensity, amplitude and phase data. The only weakness of the approach
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is the possible presence of invisible scattering sources (cf. fig. 7.1) and of course
the need to access the raw data.

Fig. 7.7 shows the presence of a scattering object causes very similar behavior
also in other camera models.

The in camera scattering model presented here is also the first theoretical expla-
nation and model based correction of an intensity related distance error. The per-
formed experiments support this claim. A thorough calibration and correction of
internal scattering will also facilitate further research on in-scene multi-reflections.
The internal scattering basically causes an additional contribution to the phase
diagram (cf. fig. 5.16). Although the corresponding light is regarded as constant
for the entire sensor in the presented model, the different pixel properties can cause
a slight variation of the resulting signal for each pixel.

The multi-reflection error ([8, 15, 30]), that was not addressed in this thesis
is the largest remaining error source. The research performed in the previous
chapters strongly suggests and incorporation of raw data analysis into the solution
of these problems as well.

A very interesting value in this regard is the quotient I/A of intensity I (cf.
Eq. 2.6) and amplitude A (cf. Eq. 2.7). The theoretical value of this quotient
is constant on the whole image domain for single return signals. But with un-
calibrated data there is no point in evaluating this because of the high offset (cf.
sec. 5.4) in the intensity data. After the calibration and the scattering correction
however, the quotient is much more informative (cf. fig.7.8). An increased value is
now a good indication for multiple returns, for example at the borders of the white
cylinder in the data. There is also a more subtle increase of the values towards the
area beneath the stairs or in the top right corner, areas where increased in-scene
scattering would be expected.
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(a) Empty, no correction (b) Cone, no correction (c) Cylinder, no correction

(d) Empty, calibrated (e) Cone, calibrated (f) Cylinder, calibrated

(g) Empty, corrected (h) Cone, corrected (i) Cylinder, corrected

Figure 7.5: Phase image of the scenes in fig. 7.4. The colors are normalized
to fig. 7.5a without considering the background, which is very noisy due to the
extremely low reflectivity. In this representation of the scene it can be seen already,
how the calibration reduces the noise, especially in the dark areas (cf. fig. 7.4 for
intensity data) but the dark areas still appear closer to the camera. The deviation
also increases with the size of the scattering object. A crop of the large patches in
the bottom left area are shown in fig. 7.6.
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(a) Empty, uncorrected (b) Cone, no correction (c) Cylinder, no correction

(d) Empty, calibrated (e) Cone, calibrated (f) Cylinder, calibrated

(g) Empty, corrected (h) Cone, corrected (i) Cylinder, corrected

Figure 7.6: Crop from the phase data in the lower left area of fig. 7.5. The
color range is normalized to fig. 7.6a. The area displayed is flat but has different
intensities, which leads to a strong offset of the phase shift in the uncorrected data,
most obvious with the cylinder (cf. fig. 7.6c). The calibration reduces the noise
but not the systematic offset of the dark areas. Only the scattering correction
effectively removes this systematic error.
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Figure 7.7: For comparison the same scene as in fig. 7.3 recorded with the Argos
3D ToF camera (cf. fig. 1.2b). It shows similar behavior with a scattering object in
the foreground of the scene (cf. fig. 7.5c), shifting the whole background towards
the camera, especially the dark parts. But like most models the camera does not
allow access to the single subframes, making a calibration as proposed in chap. 6,
necessary for accurate scattering correction, impossible. The bottom row shows a
crop of the lower left area of the box.
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I/A [1]0.0 50.0

I/A [1]1.0 1.5

Figure 7.8: Quotients of intensity and amplitude I/A for the uncalibrated (top),
calibrated (left) and scattering corrected data (right) of a crop of the respective
values from fig. 7.5 c, f and i. The values in the uncalibrated image mostly resemble
the change in amplitude. The calibrated and scattering corrected quotients return
much more reasonable values which increase in areas where mixed signals can be
expected.
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“Salviati: What a sea we are gradually slipping into
without knowing it! With vacua and infinities and
indivisibles and instantaneous motions, shall we ever
be able, even by means of a thousand discussions,
to reach dry land?”

from “Dialogues Concerning Two New Sciences”
by Galileo Galilei

8
Conclusion

In the presented thesis a couple of new methods to enhance the depth images of
ToF cameras were introduced.

An adaptation of image processing algorithms for image smoothing and edge
detection was provided, tailored for the special properties and the additional in-
formation available from ToF cameras.

With a thorough analysis of the sensor raw data all previously unknown sources
of systematic errors could be identified and corrected.

8.1 Summary

After a quick introduction of the basic theory for continuous wave ToF cameras in
chap. 2, the performance of the bilateral filter for edge preserving smoothing of the
depth data was analyzed in chap. 3. It was shown how this popular method for
smoothing ToF depth data struggles with the strong variation of the noise level. An
incorporation of the intensity data for the calculation of the local kernels improved
the performance, especially in areas of very strong noise. But there remained some
configurations of data where the filter caused a smoothing of depth edges due to the
inconsistent causality of depth and intensity edges, because both discontinuities
can sometimes appear without the other.

To improve the handling of depth discontinuities, edge detection algorithms
were investigated in chap. 4. The common method by means of the structure
tensor exhibited bad results in noisy areas, just like the bilateral filter before. Also
here a combined approach incorporating the intensity data greatly improved the
results but also added unwanted intensity edges.

This led to the incorporation of the edge detection algorithm by Canny. Using
the output of the structure tensor applied to either the intensity or the depth data
as an input, Canny’s algorithm returned a binary map with edge lines only one
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pixel wide. The Canny part was extended with a couple of additional parameters
to make it more robust to the noise in ToF data.

With separate edge maps from the intensity and depth data, the geometric
information of the light sources and camera location as well as the depth measured
with the ToF camera, the different intermediate results could be fused into one
final edge image. The introduced process detects shadows cast by the light sources
and incorporates them as additional information into the fusion process. It is the
first approach for edge detection specifically tailored for ToF depth data and gives
much better results than the standard algorithms on their own.

The goal of the edge detection was to provide reliable information about dis-
continuities for adaptive smoothing algorithms. But any smoothing operation is
just forming a local average and can therefore only correct noise but no systematic
errors in the data.

To gain a better understanding of the errors, the raw data was thoroughly
analyzed in chap. 5. A heat model was introduced and parameterized to decouple
the temperature dependency of the dark current and the integration time. This
allowed the measurement of the non-linearity of the sensor with a dark signal
recording.

Further analysis revealed offsets in the dark signal of consecutive subframes,
recorded by the same pixel and tap. The variation of these offsets with respect to
integration time and frame rate, which both influence the sensor temperature, is
the first reasonable explanation for the temperature dependency of the measured
depth values. It also suggests that the integration time dependency is just a
secondary temperature effect.

The new insight led to the proposal of a dark signal based calibration method in
chap. 6. It is scene independent and can be performed within less than a minute,
making it much more practical than any of the previously suggested methods. It
significantly reduces the depth noise, especially for dark areas in the frame by more
than 30% (cf. tab. 6.3). It is not a complete calibration though, as the deviations
of the light source modulation is not yet incorporated.

Although the pixel based depth variation that is fixed by the calibration is
intensity dependent, the so called intensity related distance error that shifts darker
areas in total is not affected by it. But the calibration enabled the measurement of
a scattering parameter for the camera in chap. 7. The scattering model presented
is different from previous publications, as the assumption is a homogeneous diffuse
spread of the scattered light due to various reasons. Prior work assumed only
multiple reflections between the sensor and the lens as a source, which should be
strongly localized.

The measurements suggest that in-camera light scattering actually is the source
of the intensity related distance error. Despite the simple model, which can be
considered a first order approximation of the scattering properties of the optics, the
compensation applied directly to the raw data gave very good results and removed
the scattering effects, i.e. the intensity dependent error, almost completely (cf.
tab. 7.1).
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8.2 Outlook

The new insight into the raw data and the provided new explanations and solutions
for the systematic errors can not only increase the accuracy of the measurements,
but also greatly facilitate the research on other challenging topics in the ToF
imaging field.

The experiments during this thesis suggest a raw data calibration should be
performed for any kind of measurement where the accuracy and consistency is of
importance. But that would first of all require access to the camera raw data,
which is not possible with most models.

The problem of multiple returns for example is caused by in-scene scattering or
mixed pixels at depth edges. A compensation requires a decomposition of the signal
into the different parts, according to the scene geometry. The decomposition will
be a lot easier and more accurate if the additional components due to the subframe
offset and the in-camera scattering have already been subtracted, not to mention
the non-linearity that differs even among the two taps of a single pixel.

Manufacturers try to solve the problem of low amplitude and intensity areas
especially in the background of a scene with new cameras that record at multiple
integration times, like the Argos 3D (cf. fig. 1.2b), which reduces the statistical
error of the single pixels. The investigation of the subframe offsets presented here
suggests it will also increase the temperature variations and induce new systematic
deviations.

With a physical shutter in the cameras the dark signal measurements could
be greatly facilitated. It could even enable an automatic performance of the cal-
ibration suggested here. With detailed information about the sensor design and
one or more internal temperature sensors maybe even a dynamic modeling of the
temperature dependency is possible.

With the sources of all the systematic errors now revealed, it will be very inter-
esting to see where Time-of-Flight cameras will take us in the future.
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A
Deductions

A.1 Intensity, Amplitude and Phase

The minimum least squares for Intensity, Amplitude and Phase of the residual

r(I, A, φ) = min
I,A,φ

N−1∑
n=0

(I(θn)− In)2 =

min
I,A,φ

N−1∑
n=0

((I + A cos(φ+ θn))− In)2

(A.1)
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is found with the derivative to the respective variable. This gives the solution for
the Intensity I:

∂

∂I
r(I, A, φ) = 0

⇔ ∂

∂I

N−1∑
n=0

((I + A cos(φ+ θn))− In)2 = 0

⇔
N−1∑
n=0

2 ((I + A cos(φ+ θn))− In) = 0

⇔ 4I −
N−1∑
n=0

In + A(cos(φ) + cos(φ+ π) + cos(φ+ π/2) + cos(φ+ 3π/2)) = 0

⇔ 4I =
N−1∑
n=0

In − A(cos(φ)− cos(φ) + cos(φ+ φ/2)− cos(φ+ φ/2))

⇔ I =
1

4

N−1∑
n=0

In

⇔ I =
1

4
(I0 + I1 + I2 + I3).

(A.2)
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The derivative with respect to φ:

∂

∂φ
r(I, A, φ) = 0

⇔ ∂

∂φ

N−1∑
n=0

((I + A cos(φ+ θn))− In)2 = 0

⇔
N−1∑
n=0

2 ((I + A cos(φ+ θn))− In) (−A sin(φ+ θn))) = 0

⇔
N−1∑
n=0

2
(
AIn sin(φ+ θn)− A2 cos(φ+ θn) sin(φ+ θn)− AI sin(φ+ θn)

)
= 0

⇔
N−1∑
n=0

A (In sin(φ+ θn)− A cos(φ+ θn) sin(φ+ θn)− I sin(φ+ θn)) = 0

⇔ A

N−1∑
n=0

(In sin(φ+ θn)− A cos(φ+ θn) sin(φ+ θn)) = 0

⇔ A
N−1∑
n=0

In sin(φ+ θn)− A2

N−1∑
n=0

1

2
sin(2φ+ 2θn) = 0

⇔ A (sin(φ)(I0 − I2) + cos(φ)(I1 − I3)) = 0

⇔ sin(φ)(I0 − I2) = cos(φ)(I3 − I1)

⇔ sin(φ)

cos(φ)
=
I3 − I1

I0 − I2

⇔ tan(φ) =
I3 − I1

I0 − I2

.

(A.3)

A can be eliminated from the equation, because A = 0 is not a relevant solution.

The straight forward approach would now be to use the arctan() to calculate
φ. However, this would return only values in the interval [−π/2;π/2], while the
actual values should be in a range of 2π. Using the arctan2() gives the desired
value in [−π; π]:

φ = arctan2((I3 − I1), (I0 − I2)). (A.4)
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The derivative with respect to A gives an equation dependent on φ:

∂

∂A
r(I, A, φ) = 0

⇔ ∂

∂A

N−1∑
n=0

((I + A cos(φ+ θn))− In)2 = 0

⇔
N−1∑
n=0

2 ((I + A cos(φ+ θn))− In) cos(φ+ θn) = 0

⇔
N−1∑
n=0

(
I cos(φ+ θn) + A cos2(φ+ θn)− In cos(φ+ θn)

)
= 0

⇔
N−1∑
n=0

(
A cos2(φ+ θn)− In cos(φ+ θn)

)
= 0

⇔ A

N−1∑
n=0

cos2(φ+ θn)−
N−1∑
n=0

In cos(φ+ θn) = 0

⇔ A
(
2 cos2(φ) + 2 sin2(φ)

)
=

N−1∑
n=0

In cos(φ+ θn)

⇔ 2A = I0 cos(φ)− I2 cos(φ) + I1 cos(φ+ π/2) + I3 cos(φ+ 3π/2)

⇔ 2A = cos(φ)(I0 − I2) + cos(φ+ π/2)(I1 − I3)

⇔ A =
1

2
(cos(φ)(I0 − I2) + sin(φ)(I3 − I1)) .

(A.5)

If this is combined with eq. A.3, the solution for A is found to be:

A =
1

2
(cos(φ)(I0 − I2) + sin(φ)(I3 − I1))

⇔ A =
1

2

(
cos

(
arctan

(
I3 − I1

I0 − I2

))
(I0 − I2)+

sin

(
arctan

(
I3 − I1

I0 − I2

))
(I3 − I1)

)

⇔ A =
1

2

 I0 − I2√
1 +

(
I3−I1
I0−I2

)2
+

(I3−I1)2

I0−I2√
1 +

(
I3−I1
I0−I2

)2


⇔ A =

1

2

(I0 − I2)2 + (I3 − I1)2√
(I0 − I2)2 + (I3 − I1)2

⇔ A =
1

2

√
(I0 − I2)2 + (I3 − I1)2.

(A.6)

A.2 Poisson Noise

As mentioned in sec. 2.3, in [43] and [13] the variances of I,A and φ are already
deduced with constant variances σ2 for the subframes In. Because of this and some
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inconsistencies in the results the process is repeated here with variable variances:

V ar
(
~f(~I)

)
= J(~f)V ar(~I)J(~f)T =

 ∂I
∂I0

∂I
∂I1

∂I
∂I2

∂I
∂I3

∂A
∂I0

∂A
∂I1

∂A
∂I2

∂A
∂I3

∂φ
∂I0

∂φ
∂I1

∂φ
∂I2

∂φ
∂I3



σ2
I0

0 0 0
0 σ2

I1
0 0

0 0 σ2
I2

0
0 0 0 σ2

I3




∂I
∂I0

∂A
∂I0

∂φ
∂I0

∂I
∂I1

∂A
∂I1

∂φ
∂I1

∂I
∂I2

∂A
∂I2

∂φ
∂I2

∂I
∂I3

∂A
∂I3

∂φ
∂I3

 =


∑

n
∂I
∂In
σ2
In

∂I
∂In

..∑
n
∂A
∂In
σ2
In

∂A
∂In

..
∑

n
∂φ
∂In
σ2
In

∂φ
∂In

 .

(A.7)

Calculating σ2
I is quite simple:

σ2
I =

(
∂I

∂I0

)2

I0 +

(
∂I

∂I1

)2

I1 +

(
∂I

∂I2

)2

I2 +

(
∂I

∂I3

)2

I3 =(
1

4

)2

I0 +

(
1

4

)2

I1 +

(
1

4

)2

I2 +

(
1

4

)2

I3 =

1

16
(I0 + I1 + I2 + I3) =

I

4
.

(A.8)

In [43] the final result is identical, but there is a misleading error before the final
step. In [13] it is denoted as I

2
because it was confused with σ2

A.
This also explains the inconsistency for σ2

A in the two publications, wich is derived
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as:

σ2
A =

(
∂A

∂I0

)2

I0 +

(
∂A

∂I1

)2

I1 +

(
∂A

∂I2

)2

I2 +

(
∂A

∂I3

)2

I3 =(
(I0 − I2)

2
√

(I0 − I2)2 + (I3 − I1)2

)2

I0 +

(
(I1 − I3)

2
√

(I0 − I2)2 + (I3 − I1)2

)2

I1+(
(I2 − I0)

2
√

(I0 − I2)2 + (I3 − I1)2

)2

I2 +

(
(I3 − I1)

2
√

(I0 − I2)2 + (I3 − I1)2

)2

I3 =

(I0 − I2)2I0 + (I1 − I3)2I1 + (I2 − I0)2I2 + (I3 − I1)2I3

4((I0 − I2)2 + (I3 − I1)2)
=

(I0 − I2)2(I0 + I2) + (I1 − I3)2(I1 + I3)

4((I0 − I2)2 + (I3 − I1)2)
=

A2(cos(φ+ θ0)− cos(φ+ θ2))2(2I + A(cos(φ+ θ0) + cos(φ+ θ2)))

4(A2(cos(φ+ θ0)− cos(φ+ θ2))2 + A2(cos(φ+ θ3)− cos(φ+ θ1))2)
+

A2(cos(φ+ θ1)− cos(φ+ θ3))2(2I + A(cos(φ+ θ1) + cos(φ+ θ3)))

4(A2(cos(φ+ θ0)− cos(φ+ θ2))2 + A2(cos(φ+ θ3)− cos(φ+ θ1))2)
=

(cos(φ+ θ0) + cos(φ+ θ0))2(2I + A(cos(φ+ θ0)− cos(φ+ θ0)))

4((cos(φ+ θ0) + cos(φ+ θ0))2 + (cos(φ+ θ3) + cos(φ+ θ3))2)
+

(cos(φ+ θ1) + cos(φ+ θ1))2(2I + A(cos(φ+ θ1)− cos(φ+ θ1)))

4((cos(φ+ θ0) + cos(φ+ θ0))2 + (cos(φ+ θ3) + cos(φ+ θ3))2)
=

(2 cos(φ+ θ0))2(2I) + (2 cos(φ+ θ1))2(2I)

4((2 cos(φ+ θ0))2 + (2 cos(φ+ θ3))2)
=

(2I)((cos(φ+ θ0))2 + (cos(φ+ θ1))2)

4((cos(φ+ θ0))2 + (cos(φ+ θ3))2)
=

I((cos(φ+ θ0))2 + (−sin(φ+ θ0))2)

2((cos(φ+ θ0))2 + (sin(φ+ θ0))2)
=
I

2
.

(A.9)

The variance of φ, probably the most interesing one, was consistend from the
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beginning. What follows is the deduction with variable variances:

σ2
φ =

(
∂φ

∂I0

)2

I0 +

(
∂φ

∂I1

)2

I1 +

(
∂φ

∂I2

)2

I2 +

(
∂φ

∂I3

)2

I3 =∂atan
(
I3−I1
I0−I2

)
∂I0

2

I0 +

∂atan
(
I3−I1
I0−I2

)
∂I1

2

I1+

∂atan
(
I3−I1
I0−I2

)
∂I2

2

I2 +

∂atan
(
I3−I1
I0−I2

)
∂I3

2

I3 =


(

I3−I1
(I0−I2)2

)
1 + ( I3−I1

I0−I2 )2

2

I0 +


(

−1
(I0−I2)

)
1 + ( I3−I1

I0−I2 )2

2

I1+


(
− I3−I1

(I0−I2)2

)
1 + ( I3−I1

I0−I2 )2

2

I2 +

(
1

(I0−I2)

1 + ( I3−I1
I0−I2 )2

)2

I3 =


(

I3−I1
(I0−I2)2

)
1 + ( I3−I1

I0−I2 )2

2

(I0 + I2) +

(
1

(I0−I2)

1 + ( I3−I1
I0−I2 )2

)2

(I3 + I1) =

(
(I3 − I1)

((I3 − I1)2 + (I0 − I2)2)

)2

(I0 + I2) +

(
(I0 − I2)

(I3 − I1)2 + (I0 − I2)2

)2

(I3 + I1) =(
(cos(φ+ θ1))

A((cos(φ+ θ1))2 + (cos(φ+ θ0)2)

)2

(2I + A(cos(φ+ θ0) + cos(φ+ θ2)))+(
(cos(φ+ θ0)

2A((cos(φ+ θ1))2 + (cos(φ+ θ0)2)

)2

(2I + A(cos(φ+ θ1) + cos(φ+ θ3))) =(
(cos(φ+ θ1))

2A

)2

(2I) +

(
(cos(φ+ θ0)

2A

)2

(2I) =

I

2A2

(
(−sin(φ+ θ0))2 + (cos(φ+ θ0))2

)
=

I

2A2
.

(A.10)
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