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1

Abstract

High-throughput technologies are powerful tools for studying fundamental biolog-
ical processes and for biomedical research. Analysis tools are needed to extract
the biological information contained in the generated data sets.

In this dissertation I describe methods that I developed for the analysis of data
from two high-throughput technologies. The first technology, Circularized Chro-
mosome Conformation Capture (4C), allows to study the 3D chromatin interac-
tions of a certain genomic region (viewpoint) with the rest of the genome. With
the second technique, high-throughput microscopy screening, large scale pheno-
typic screens can be performed to investigate the influences of perturbations, such
as compound treatment, on cell phenotypes.

Chapter 2 comprises the analysis of three studies which used 4C to study the
influence of chromatin 3D structure on gene regulation. The 4C signal shows a
strong dependence on the genomic distance from the viewpoint. To address the
computational tasks of finding specific interactions, which are superimposed on
the regular signal, and to detect changes between interaction profiles of different
conditions I developed the R package FourCSeq. The package has been submitted
to www.bioconductor.org.

Based on my analysis of the interaction profiles from 103 viewpoints, we could
show that long-range chromatin interactions were widespread throughout the com-
pact Drosophila genome. Furthermore, the comparison of the interaction profiles
from different developmental time points and tissue types revealed that the chro-
matin configuration was mostly stable across time points and tissue types.

In two further 4C sequencing projects, I analyzed the influence of large genomic
rearrangements on the chromatin structure of two genomic loci in mice. The
first project focused on the locus of the Shh. My analysis showed that upon
genomic inversion, the chromatin structure of the locus collapsed and contacts
were redistributed. The second project studied the chromatin structure of the
Ap2-γ and Bmp7 locus. By analyzing the 4C profiles of 4 viewpoints spaced
throughout this locus and determining the primary interaction domains for each
viewpoint, I showed that the locus is partitioned by a small transition zone into
two distinct domains. Analysis of the interaction profiles from alleles carrying
large chromosomal rearrangements further supported this view that the transition
zone played an important role in partitioning the locus. Together, both studies
show that the chromatin structure is important for long-range gene regulation and
allocation of enhancers to their target genes.

In Chapter 3, I describe the analysis of a high-throughput microscopy com-
pound screen in a panel of isogenic human colorectal cancer cell lines. In this Phar-
macogenetic Phenome Compendium (PGPC) project, we investigated chemical-
genetic interactions between compounds and the genetic backgrounds of the iso-
genic cell line panel. Using high-throughput microscopy, we screened 1280 bioac-
tive compounds in 12 isogenic colon cancer cell lines with specific mutations in
signaling pathways. After image segmentation and feature extraction, I used a fea-

http://www.bioconductor.org
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ture selection algorithm to select a non-redundant set of 20 phenotypic features for
further analysis. My analysis of the phenotypic chemical-genetic interaction data
allowed us to predict synergistic drug-combinations, uncover connections between
signaling pathways, and cluster functionally related compounds and biological pro-
cesses. Furthermore, I showed that the combined approach of high-throughput mi-
croscopy and chemical-genetic screening is more sensitive for interactome mapping
than either alone. For easy access to the data and reproducibility of the results, I
generated the PGPC R package that will be submitted to www.bioconductor.org.

http://www.bioconductor.org
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Zusammenfassung

High-throughput Technologien werden eingesetzt, um grundlegende biologische
Prozesse zu studieren und die biomedizinische Forschung voranzutreiben. Damit
die biologischen Informationen, die in den Datensätzen enthalten sind, extrahiert
und verwendet werden können, sind Methoden zur Analyse der Daten nötig.

In dieser Dissertation beschreibe ich die Methoden zur Datenanalyse von zwei
High-throughput-Technologien, die ich entwickelt habe. Die erste Technologie, Cir-
cularized Chromosome Conformation Capture (4C), ermöglicht es, die 3D Interak-
tionen von einer bestimmten genomischen Region (Viewpoint) mit dem restlichen
Genom zu erforschen. Bei der zweiten Technologie handelt es sich um High-
througput microscopy screening. Umfangreiche phänotypische Screenings wie dieses
werden durchgeführt, um die Einflüsse von äußeren Störungen, wie zum Beispiel die
Behandlung mit chemischen Substanzen, auf den Phänotyp der Zelle zu studieren.

Kapitel 3 enthält die Analyse von drei Projekten, bei denen die 4C Tech-
nologie eingesetzt wurde, um den Einfluss der 3D Chromatin-Struktur auf die
Genregulation zu untersuchen. Das 4C Signal ist stark von der genomischen Dis-
tanz zum Viewpoint abhängig. Um spezifische Interaktionen zu detektieren, die
dem normalen Signal überlagert sind, und um Veränderungen zwischen den Inter-
aktionsprofilen verschiedener Bedingungen zu detektieren, habe ich das R-Paket
FourCSeq entwickelt. Das Paket wurde bei www.bioconductor.org eingereicht.

Basierend auf meiner Analyse der Interaktionsprofile von 103 Viewpoints kon-
nten wir zeigen, dass Interaktionen mit langer Reichweite im Chromatin des kom-
pakten Drosophila-Genoms weit verbreitet sind. Außerdem hat der Vergleich der
Interaktionsprofile von verschiedenen Zeitpunkten und Gewebetypen ergeben, dass
die Konfiguration des Chromatins größtenteils stabil bleibt.

Für zwei weitere 4C Projekte habe ich den Einfluss von großen genomischen
Neuanordnungen auf die Chromatinstruktur von zwei Regionen im Mausgenom
analysiert. Der Schwerpunkt des ersten Projekts liegt auf der Region um das Shh
Gen. Meine Analyse zeigt, dass bei einer genomischen Inversion die Chromatin-
struktur dieser Region zusammenbricht und die Kontakte neu verknüpft werden.
Das zweite Projekt untersucht die Chromatinstruktur der Region um die beiden
Gene Ap2-γ und Bmp7 . Anhand der Analyse von 4C Profilen von vier Viewpoints,
die in dieser Region verteilt sind, und der Ermittlung primärer Interaktionsdomä-
nen für jeden dieser Viewpoints, konnte ich zeigen, dass diese Region von einer so-
genannten Übergangszone (transition zone) deutlich in zwei Domänen geteilt wird.
Desweiteren zeigt die Analyse der Interaktionsprofile von Allelen, die große chro-
mosomale Umordnungen aufweisen, dass die Übergangszone eine wichtige Rolle
für die Aufteilung der Region spielt. Alles in allem legen die beiden Studien dar,
wie wichtig die Chromatinstruktur für Genregulation über lange Reichweiten und
die Zuordnung von Enhancern zu ihren Zielgenen ist.

In Kapitel 4 beschreibe ich die Analyse eines High-throughput-Screens von
chemischen Substanzen mit isogenen menschlichen kolorektalen Krebszelllinien.
Mit diesem Pharmacogenetic Phenome Compendium (PGPC) Projekt haben wir

http://www.bioconductor.org
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chemisch-genetische Interaktionen zwischen chemischen Substanzen und dem genetis-
chen Hintergrund der jeweiligen isogenen Zelllinien untersucht. Mit Hilfe von
High-throughput-Mikroskopie haben wir 1280 bioaktive Stoffe in zwölf isogenen
Darmkrebszelllinien analysiert, die bestimmte Mutationen in Signalwegen aufweisen.
Nach der Bildsegmentierung und der Extrahierung von Bildinformationen habe ich
einen Algorithmus benutzt um einen redundanzfreien Satz von 20 phänotypischen
Bildinformationen für die weitere Analyse auszuwählen. Meine Untersuchung der
phänotypischen chemisch-genetischen Interaktionsdaten erlaubte es uns, die syn-
ergistischen Substanz-Kombinationen vorherzusagen, die Verbindungen zwischen
Signalwegen aufzudecken und funktional verwandte Substanzen und biologische
Prozesse zu gruppieren. Außerdem habe ich gezeigt, dass die kombinierte Anwen-
dung von High-throughput-Mikroskopie und chemisch-genetischem Screening sen-
sibler ist um das Interaktom zu entschlüsseln, als die jeweilige Methode allein. Für
einen leichten Zugang zu den Daten und die Möglichkeit die Ergebnisse zu repro-
duzieren habe ich das R-Paket PGPC entwickelt, welches bei www.bioconductor.org
eingereicht wird.

http://www.bioconductor.org
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Chapter 1

Introduction

In recent years, with the advent of high-throughput technologies, biology has
turned into a datadriven field. Nowadays, many areas can be covered by using
different high-throughput techniques, such as sequencing, mass spectrometry, and
automated microscopy, to name some examples. On the one hand, this allows one
to study fundamental biological processes, for instance, gene regulation, in more
detail, helping to increase our understanding and knowledge of these processes.
On the other hand, these technologies are used in biomedical research to reveal
the molecular basis of common diseases and the development of new therapeutics
to treat diseases.

The generation of huge and complex data sets has reached a scale where data
handling and analysis has become more and more challenging. These data sets
allow one to investigate cell systems, networks, and connections of biological path-
ways and processes. The bioinformatic analysis and integration of data from differ-
ent sources is central to our efforts to extract new biological findings and connect
data obtained from the different technologies (Figure 1.1). To cope with the data,
current methods need to be adapted and new analysis tools and pipelines have to
be developed.

Network
analysis

Proteomics Sequencing

High-throughput
microscopy

Many other
technologies

Bioinformatics

Figure 1.1: Bioinformatics is the connection between the different technology platforms.
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In the following I give a brief introduction to the biological background and
the technologies which were used to generate the data I analyzed.

1.1 Regulation of gene transcription

The genetic information stored in the DNA, is transcribed into complementary
RNA in the processes of transcription. RNA polymerases are the enzymes that
produce complementary RNA molecules from the DNA template. Several forms of
RNA polymerases exist, of which RNA polymerase II (polII) is responsible for the
transcription of coding transcripts from the nuclear DNA (Alberts et al., 2007).

Transcription consists of three molecular steps (Alberts et al., 2007). First,
during transcription initiation, RNA polymerase is recruited to the DNA at the
transcription start site (TSS) by the pre-initiation complex formed by general
transcription factors. After recruitment, the polymerase starts the synthesis of
the complementary RNA molecule with the first nucleotide. Second, during tran-
script elongation, the polymerase synthesizes the complementary RNA molecule
while moving along the DNA template. Third, transcription is terminated and the
polymerase stops the RNA synthesis and releases the RNA molecule for further
processing.

Transcription is regulated at each of the three steps (Alberts et al., 2007).
Before a DNA sequence from highly condensed chromatin can be transcribed it
has to be made accessible for binding of the polymerase. Next, the polymerase has
to be recruited to the TSS by the pre-initiation complex and other transcription
factors. After binding, the polymerase has to be enabled to move along the DNA
template for proper transcript elongation. Finally, the release of the synthesized
RNA molecule is controlled by the disassembly of the transcription machinery.

With more and more genomes being sequenced and improved methods to ex-
plore the transcriptome of cells in unbiased ways, there have been great advances in
recent years, uncovering the existence and function of non-coding RNAs. The first
of these studies used tiling arrays to identify the transcribed regions of the genome
(Bertone et al., 2004; David et al., 2006), followed by studies using RNA sequenc-
ing technology (Nagalakshmi et al., 2008). Nowadays, new protocols, combined
with sequencing, further investigate the complex transcriptome, shining light on
the complex transcriptome and function of non-coding RNAs (for current reviews
see (Pelechano and Steinmetz, 2013), (Hausser and Zavolan, 2014) and (Fatica and
Bozzoni, 2014)).

1.1.1 Histones and chromatin

In eukaryotes, DNA is tightly wrapped around nucleosomes in stretches of 146 bp,
forming highly condensed chromatin. Nucleosomes are protein octameres formed
by four dimeres of the H2A, H2B, H3 and H4 histone proteins. Enzymes can
modify the N-terminal tails of these proteins, which are protruding from the
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nucleosome. These modifications have implications on the interactions between
different nucleosomes and the binding of proteins to DNA wrapped around nu-
cleosomes. Chromatin Immunoprecipitation sequencing (ChIP-Seq) studies have
revealed functional consequences of histone modifications, for example activating
or repressing transcription (see (Bannister and Kouzarides, 2011) for a current
review).

1.1.2 Transcription factors and long-range gene regulation

Transcription factor (TF)s are proteins that bind to the DNA at promoter regions
or regulatory sequences. These regulatory sequences can be located far, as mea-
sured in linear genetic distance, from the actual TSS, acting as distal enhancers or
repressors depending on whether they enhance or repress transcriptional output.
TFs can bind to DNA directly, histones, or other TFs already bound to DNA.
The general or basal transcription factors are required to form the pre-initiation
complex and subsequently the transcription machinery. Other tissue specific TFs
are only expressed in certain tissues to regulate transcription and generate a tissue
specific transcriptional output. Temporal and spatial dynamics in binding of sev-
eral TFs to cis-regulatory module (CRM)s tightly regulate transcription during
development (for a current review see (Spitz and Furlong, 2012)).

1.1.3 The role of chromatin 3D structure in gene regulation

To which extent chromatin 3D structure, and its changes, influence gene transcrip-
tion is still unclear, but an increasing set of evidence links the spatial organization
of chromatin and the regulation of gene transcription.

During interphase the cell nucleus is compartmentalized. Individual chromo-
somes occupy distinct chromosome territory (CT)s in the nucleus (Cremer and
Cremer, 2001). Furthermore, it is known that the arrangement of CTs relative to
each other and in respect to the center and periphery of the cell nucleus is tissue
specific (Parada et al., 2004). Importantly, CTs were shown to display a marked
intermingling making inter-chromosomal interaction possible (Branco and Pombo,
2006).

The dialog between CRMs such as promoters, enhancers, silencers and insula-
tors was proposed to act through direct association via DNA looping. The devel-
opmental stagespecific transcriptome profile can thus be linked to a specific set of
DNA loops making up the cell type characteristic spatial arrangement of chromatin
during interphase. Indeed, it was shown that the spatial arrangement can change
during differentiation and a whole locus can be displaced in this process. For ex-
ample, the HoxB locus changes significantly during differentiation (Chambeyron
and Bickmore, 2004). After treatment of embryonic stem cells (ESCs) with retinoic
acid, the HoxB chromatin fiber decondenses and loops out of the MMU11 CT. This
process is accompanied by the sequential expression of the different HoxB genes,
suggesting a strong spatio-temporal correlation. Despite the compact Drosophila
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melanogaster genome it was shown that long-range interactions are established
between the two Hox complexes which are separated by 10 Mb of DNA on the
same chromosome arm (Bantignies et al., 2011). These contacts increase during
development depending on Polycomb group (PcG) proteins, showing that there
are changes in chromosome conformation. Just recently, a study showed that the
looping of the local control region (LCR) to the β-globin promoter, mediated by
GATA1, in erythroblasts is required for polII recruitment and phosphorylation
(Deng et al., 2012).

Further studies in a genome-wide context are needed to further understand the
influence of CRMs, epigenetic modifications, gene looping, and intra- and inter-
chromosomal interactions on chromatin 3D structure and to elucidate what are the
actual driving forces that organize the 3D structure of chromatin in the context of
gene regulation.

1.2 Chromosome conformation capture

The development of the Chromosome Conformation Capture (3C) protocol (Dekker
et al., 2002) dramatically increased the possibilities to study the 3D structure of
chromosomes in recent years. The combination of the 3C method with high-
throughput sequencing now provides the possibility to study chromatin interac-
tions on a genome-wide scale (Zhao et al., 2006; Stadhouders et al., 2013; Dostie
et al., 2006; Lieberman-Aiden et al., 2009; Fullwood et al., 2009). All protocols
consist of 5 main steps (Figure 1.2). First, interacting loci are captured using
formaldehyde cross-linking, followed by DNA fragmentation by either restriction
enzyme digestion or sonication. In the next step, fragments are ligated under
dilute conditions, which favor intra-complex ligation, generating unique ligation
products of interacting loci. These ligation products are then purified and further
processed and detected by different techniques.

The original 3C method employs regular PCR with two selected primers to
detect pairwise interaction products (Dekker et al., 2002). The Circularized Chro-
mosome Conformation Capture (4C) methods use inverse PCR amplification fol-
lowed by either microarray detection or high-throughput sequencing to detect all
fragments ligated to a viewpoint of choice (Zhao et al., 2006; Stadhouders et al.,
2013). The 5C protocol allows one to detect interactions for a large number of
fragments by employing multiplexed ligation mediated amplification with a pool
of primers for thousands of fragments (Dostie et al., 2006). The protocol of 3C
combined with paired-end high-throughput sequencing (Hi-C) first uses restric-
tion enzyme digestion to fragment the DNA after cross-linking, followed by filling
in the sticky ends with biotinylated nucleotides before ligation (Lieberman-Aiden
et al., 2009). The resulting ligation products are sheared and enriched for frag-
ments containing ligation junctions by pull-down with streptavidin-coated beads
(Lieberman-Aiden et al., 2009). The resulting library is directly sequenced using
paired-end high-throughput sequencing (Lieberman-Aiden et al., 2009). For the
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Cross-linking of
interacting loci

Fragmentation

Ligation

DNA purification

Ligation product
Detection

DNA shearing

Immunoprecipitation

DNA
sequencing

ChlA-PET 3C4C 5C Hi-C

Inverse PCR PCR Multiplexed LMA

DNA
sequencing

DNA shearing

Biotin labeling of ends

Restriction digestion

Current Opinion in Cell Biology

Figure 1.2: Schematic representation of the different 3C methods. Details on the different
methods are described in the text. Reproduced with permision from Sanyal et al. (2011).
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ChIA-PET protocol the cross-linked DNA is sheared, followed by an immunopre-
cipitation step to enrich for contacts mediated by a specific protein of interest
(Fullwood et al., 2009). Proximity ligation is performed with barcoded DNA link-
ers and the obtained paired-end tags are analyzed by high-throughput sequencing
(Fullwood et al., 2009).

The 4C sequencing technique was used for all projects presented in Chapter 2.

1.3 Synthetic genetic interactions
Synthetic genetic interactions were first described by Calvin Bridges in the form of
synthetic lethality in 1922. Crossing certain homozygous Drosophila melanogaster
strains, he noticed that some genes are lethal only in combination (Bridges, 1922).
In general, the term synthetic genetic interaction describes the fact that only
the combination of two genetic perturbations gives rise to a distinct phenotype,
while each genetic perturbation alone does not. This principle can be readily
transferred to different types of perturbations, e.g., over-expression of genes or
drug treatments. An schematic example for a synthetic lethal interaction is shown
in Figure 1.3.

Figure 1.3: Schematic representation of a genetic interaction. Inhibition of gene A or
gene B does not affect cell fitness, while the combined inhibition of A and B is lethal. In
cancer cells, which carry a mutation in gene B, the inhibition of gene A alone is lethal.

The reason that such synthetic genetic interactions can be observed lies in the
ability of cells and organisms to buffer genetic and environmental perturbations
(Hartman et al., 2001). With the possibility of high-throughput methods, ge-
netic interactions were systematically studied in yeast by looking at the fitness of
yeast double mutant colonies (Costanzo et al., 2010). The result of this study is
a comprehensive genetic interaction network for yeast. Furthermore, a functional
mapping of genes was possible, because the interaction profiles of genes involved
in the same or similar processes tended to cluster together. Using combinatorial
RNAi, genetic interactions were recently studied in higher organisms and mam-
malian systems (Horn et al., 2011; Roguev et al., 2013; Laufer et al., 2013). With
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the use of the identified genetic interactions, these studies were able to reconstruct
protein complexes and signaling pathways.

1.3.1 Implications for cancer therapy and drug discovery

As it is often difficult to target the known oncogenes driving cancer development,
the use of synthetic genetic interactions, especially synthetic lethality, provides a
new strategy for cancer therapy (Kaelin, 2005). The specific killing of BRCA1/2
mutated cancer cells with PARP inhibitors (Bryant et al., 2005) represents a major
milestone for this strategy of drug discovery. In recent years, several screens for
synthetic lethal interactions of oncogenic mutations were performed. Examples are
screens for synthetic lethal interactions of oncogenic RAS with different approaches
in isogenic cell lines (Barbie et al., 2009; Luo et al., 2009) that identified different
potential targets.

While compound screens for synthetic lethal interactions provide a direct lead
compound, the target of the compound might not be known and secondary screens
to detect the compound targets are required. On the other hand, RNAi screens
directly reveal synthetic lethal interactions between targeted genes. Although an
inhibitor for the identified target might not be available, RNAi screens reveal the
connections of cellular pathways which might provide the possibility to inhibit
other targets within the same pathway for which inhibitors are available. Fur-
thermore, understanding the connections of pathways has become more and more
important to understand the development of resistance mechanisms upon targeted
therapies. For a recent review on using synthetic lethality for drug discovery see
(Chan and Giaccia, 2011).

1.4 High-throughput microscopy screening
Automated fluorescence microscopy screening has become one of the most pow-
erful tools to investigate cellular processes (see the recent review by (Conrad and
Gerlich, 2010)). By using different fluorescent dyes or antibodies to label cellu-
lar components, high-content microscopy images allow one to identify sub-cellular
structures in cells and track their changes upon perturbations. This technology
was used successfully to characterize drugs and delineate drug targets based on the
induced phenotypic changes (Perlman et al., 2004; Young et al., 2007). Combined
with RNAi technology, high-throughput microscopy was used to investigate cellu-
lar processes on a genome wide level (Fuchs et al., 2010; Neumann et al., 2010).
In recent years, high-throughput microscopy has been employed to study genetic
interactions across multiple phenotypic features (Horn et al., 2011; Laufer et al.,
2013).
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Chapter 2

Analysis of 4C sequencing data

This chapter comprises three projects which used 4C sequencing to study the
chromatin 3D structure during Drosophila and mouse embryogenesis. The content
of this chapter is also described in the following manuscripts: Ghavi-Helm et al.
(2014); Klein et al. (submitted for publication); Tsujimura et al. (submitted for
publication); Symmons et al. (in preperation).

Several analysis analysis tools have been developed for 4C sequencing data
already (Splinter et al., 2012; van de Werken et al., 2012; Thongjuea et al., 2013).
However, none of these methods provide a statistical method to perform differential
4C sequencing analysis between different tissue types or developmental stages. To
address this need I generated the R package FourCSeq to process and analyze the
obtained data. The processing steps and functionality of the package are described
together with other developed methods in Section 2.1.

The results of the three projects are the content of Section 2.2. In the first
project we studied 4C sequencing data from Drosophila embryos obtained at two
developmental stages and from two types of tissues. The project aimed to investi-
gate how interactions between enhancers and promoters are established and how
they change between developmental time points and tissue types. Therefore, it was
necessary to detect specific enhancer promoter interactions and to quantitatively
compare interaction profiles. To get a genomewide overview, we used over 100
viewpoints spaced throughout the Drosophila genome. The wet lab experiments
in this project were all performed by Yad Ghavi-Helm from the Furlong group
at EMBL. Starting from my interaction calls and differential interaction analysis,
follow-up analysis were done by Tibor Pakozdi from the Furlong group.

Both, the second and third project, studied the influence of genomic rearrange-
ments on gene expression and chromatin structure in mouse embryos. The aim
of these projects was to understand how 4C interactions profiles change when the
genomic structure is reshuffled. This required tools to handle the genomic rear-
rangements and to visualize global interaction profile changes.

In the second project we focused on the genetic locus of the Shh gene, which
is important for proper limb development. In this project the experiments were
performed by Orsolya Symmons and Silvia Remeseiro in the Spitz group at EMBL.

17
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The mouse Ap2-γ - Bmp7 locus was studied in the third project. This locus
contains two genes which are both important during embryogenesis. Taro Tsu-
jimura performed the experiments for this project in the Spitz group at EMBL.

2.1 Materials and Methods

2.1.1 Chromosome conformation capture assays

For the projects presented in this chapter, my collaborators used 4C sequencing
protocols (see Section 1.2) which all included a second round of restriction enzyme
digestion in order to generate smaller fragments that can be more efficiently cir-
cularized and amplified by PCR. An overview of the workflow of the FourCSeq
package used to analyze the obtained 4C sequencing data is shown in Figure 2.1.

Counting at
restriction fragments

Sequencing of 
the 4C library

Demultiplexing &
primer trimming

Alignment to
reference genome

Variance stabilizing
transformation & trend fitting

Identify interactions
within a sample

Call differential interactions
between sample groups

Figure 2.1: Workflow of the 4C sequencing analysis.

2.1.2 Data processing

2.1.2.1 Demultiplexing and trimming of primer sequences

The starting point for my analysis were the sequencing files in FASTQ format from
Illumina HiSeq sequencing runs. In each run several viewpoints had been multi-
plexed. I demultiplexed the libraries using the corresponding viewpoint primer
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sequences and, if present, additional barcodes that were used. In this step the
barcodes and viewpoint primer sequences were trimmed, keeping the sequence of
the restriction enzyme at the start of the read.

After demultiplexing, I aligned the remaining sequences to the corresponding
full reference genome using the alignment tool Bowtie (Langmead et al., 2009)
for the mouse data and Novoalign (http://www.novocraft.com) for the Drosophila
data.

The alignment output files in the binary alignment/map (BAM) format are the
starting point for the analysis in R with the FourCSeq package.

2.1.2.2 Generating a fragment reference

For the statistical analysis, I generated a count table, with one row for each restric-
tion fragment, and one column for each sample, with the table entries indicating
how many reads have been assigned to each restriction fragment in each sample.
By restriction fragment I mean the sequence in between two cutting sites of the
first restriction enzyme used in the protocol. To assign the reads to the restriction
fragment where they originate from I cut the reference genome in-silico using the
recognition sequences of the restriction enzymes used in the protocol. The second
restriction enzyme cuts these fragments again, creating smaller fragment ends,
that can be more efficiently circularized and amplified by PCR. Correspondingly,
fragment ends were defined as the sequence between the start or end position of a
restriction fragment and the closest cutting site of the second restriction enzyme
within the fragment sequence (Figure 2.2 a). The size of the fragment ends were
defined by the length of the corresponding sequences. In the case of 100 % restric-
tion enzyme cutting efficiency, only fragments that contained a cutting site of the
second restriction enzyme would be amplified. Therefore, the fragments defined
by the first restriction enzyme were categorized into two classes:

1. visible fragments, that contain at least one cutting site of the second cutter.

2. blind fragments, that do not contain a cutting site of the second cutter.

For further analysis blind and small fragments can be filtered out. In the
current implementation I used the following classifications of fragments, which is
visualized in Figure 2.2:

1. valid fragments that contain at least one cutting site of the second cutter.

2. invalid fragments that do not contain a cutting site of the second cutter or
for which the length of both fragment ends are smaller than a threshold.
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a) Reference based classfication
of possible fragments

first cutter

second cutter

valid/  invalid
fragment end

valid/  invalid
fragment

b) Assigning aligned sequencing 
reads to restriction fragments

viewpoint primer starting at:

first cutter second cutter

Figure 2.2: Schematic of the rules to define valid fragments that are used subsequently
in the analysis.
a) The pink fragment end is smaller than the defined threshold, but since the other frag-
ment end is valid, the fragment is kept for analysis. The red fragment is invalid because
it does not contain a cutting site of the second restriction enzyme.
b) For viewpoint sequencing primers starting at the first restriction enzyme cutting site,
reads (green arrows) that start at the fragment ends and are oriented towards the frag-
ment middle are kept for analysis.
For viewpoint sequencing primers starting at the second restriction enzyme cutting site,
reads (green arrows) that start right next to the cutting site of the second restriction
enzyme and are directed towards the ends of the fragment are kept for analysis.
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2.1.2.3 Mapping of primer sequences

In order to find the viewpoint fragment, I mapped the primer sequences to the ref-
erence genome. This also served as a sanity check that the used primer sequence in
the protocol was unique in the reference genome. The corresponding fragment was
used to calculate the genomic distance to all fragments on the same chromosome.
The distance between the viewpoint and a fragment was calculated as the genomic
distance between the middle of the viewpoint fragment and the middle of the other
fragment. These distances to the viewpoint were used for further analysis.

2.1.2.4 Assigning aligned reads to the fragment reference

In order to generate a count table with the number of counts observed at each
fragment, I assigned the aligned reads to the generated fragment reference. To
filter out non-informative reads, I used the following criteria, which are motivated
by the 4C sequencing protocol.

First, the reads must start directly at a restriction enzyme cutting site of the
first or second restriction enzyme, depending on whether the sequencing primer
started at the first or second restriction enzyme cutting site of the viewpoint frag-
ment respectively. Second, the orientation of the read at the fragment end is de-
fined by the sequencing primer (Figure 2.2 b). The reads must be directed towards
the middle of the fragment, if the library was prepared with a sequencing primer
starting at the first restriction enzyme cutting site of the viewpoint fragment. For
libraries prepared with primers starting at the second restriction enzyme cutting
site of the viewpoint fragment, the reads must be directed towards the fragment
ends. For subsequent analysis I only counted reads at fragments ends that fulfilled
these criteria. Additionally, I summed up the reads counted at each fragment end
to obtain one count value per fragment.

2.1.2.5 Correcting the genomic distances for modified genomic regions

The reads of samples from mice carrying large genomic rearrangements were aligned
to the normal reference genome and assigned to the generated fragment reference
as described in the two previous sections. However, for these samples the genomic
distance to the viewpoint had changed for the modified genomic regions. In order
to correct this for an inversion, I in-silico inverted the modified region by linearly
transforming the genomic coordinates of the fragments in the regions between the
two break points of the inversion.

xinv = p2 − (x− p1), (2.1)

where xinv is the new genomic coordinate after in-silico inversion, p1 and p2 are
the genomic positions of the break points (p1 < p2), and x is the original genomic
coordinate.
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After this in-silico inversion, the 4C profiles showed the expected signal decay
with genomic distance from the viewpoint. The two fragments that contained the
breakpoints of the inversion were removed because the distances were ambiguous
with respect to the corresponding fragment ends.

For the samples with deletions, I used a similar approach. Here the deleted part
was removed in-silico including the fragments that contained the two breakpoints.
The genomic coordinates after the deletion break points were shifted according to
the genomic size of the deletion.

xdel =

{
x if x < p1
x− (p2 − p1 + 1) if x > p2

, (2.2)

where xdel is the new genomic coordinate after in-silico deletion, p1 and p2 are
the genomic position of the break points (p1 < p2), and x is the original genomic
coordinate.

The 4C profiles showed the expected signal after this in-silico deletion. In
some cases I shifted the whole 4C profile for visualization so that the viewpoint
positions of samples with inverted or deleted genomic regions aligned with the
viewpoint position of the wild-type samples.

2.1.2.6 Quality control

To check the quality of a 4C library, I calculated several statistics when the aligned
reads were assigned to the fragment reference. For each library the following
numbers were calculated:

1. the total number of reads in the library

2. the number of aligned reads in the library

3. the number of low quality reads, if a threshold on the alignment quality was
used

4. the number of reads that assigned to the fragment reference

5. the ratio of reads assigned to the fragment reference and number of aligned
reads after removal of low quality reads

For the data I worked on, the percentage of aligned reads that could be assigned
to the fragment reference was typically around 70-95 %. A value in that range
should be a reasonable target for further 4C sequencing libraries.

2.1.2.7 RPM normalization

The easiest way to normalize the 4C signal between different libraries was the reads-
per-million (RPM) normalization. In this method all read counts were divided by
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the number of all reads mapped to either the reference genome or the viewpoint
chromosome and then multiplied by one million.

RPM i =
ci
n
· 1× 106, (2.3)

where i is the index of the fragments, ci is the count value observed for fragment i,
and n is the total number of reads assigned to either the whole reference genome
or the viewpoint chromosome.

2.1.3 Detecting interactions

2.1.3.1 Variance stabilizing transformation

The count values per fragment usually spanned several orders of magnitude. If
the raw data is used for analysis, the standard deviation across samples are very
large for fragments with a high number of counts. However, if the count values
are transformed with a simple logarithmic transformation, fragments with a low
number of counts show large standard deviations across samples. Both approaches
are unsatisfactory because the analysis would skew the analysis towards fragments
very close or very far from the viewpoint. Therefore, I used the variance stabilizing
transformation introduced by Anders and Huber (2010) and implemented in the
DESeq2 package (Love et al., 2014), to transform the count kij of fragment i in
sample j to v(kij). The standard deviations (SDs) showed less dependence on the
fragment abundance after this transformation as shown in Figure 2.3.

2.1.3.2 Trend fitting

With genomic distance from the viewpoint, the 4C signal decays towards a constant
background level. This decay trend fj(di) is fitted using the transformed count
values v(kij) as a function of the logarithm of the genomic distance di from each
fragment i to the viewpoint.

Because the signal should monotonously decrease with increasing distance to
the viewpoint, I used the smooth monotone fit implemented in the fda package
(Ramsay et al., 2014). Further, I assumed that the profile decay is symmetric
around the viewpoint. Therefore, I combined the transformed count values of
both sides to calculate the distance dependence fit. An example for the symmetric
monotone fit is shown in Figure 2.4.
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Figure 2.3: Variance-stabilizing transformation. For each fragment, the standard devia-
tion of its count data was computed across all samples for the apterous CRM viewpoint.
The plots visualize the distributions of these values for all fragments. Fragments close to
the viewpoint are on the right side with higher count values. When the untransformed
count data are considered (upper panel), the standard deviations are very large for high
abundance fragments (close to the viewpoint). When the count data are considered
on the logarithmic scale (middle panel), the standard deviations are very large for low
abundance fragments (far from the viewpoint). Both effects would make the analysis
highly susceptible to noise either close or far from the viewpoint respectively. When the
data are transformed using a variance stabilizing transformation, the standard devia-
tions show less dependence on the fragment abundance, allowing for a more consistent
statistical treatment across the whole dynamic range of the data.
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Figure 2.4: An example symmetric monotonous fit of the variance stabilized count data
over log10 distance from the viewpoint. The red line shows the fit and the blue dashed
line is the fit + 3σ of the fit residuals.

2.1.3.3 z-scores of residuals

To detect specific interactions that have a higher interaction frequency than ex-
pected at a given distance from the viewpoint, I calculated z-scores from the fit
residuals and looked for large positive z-scores. I calculated the z-scores in the
following way:

zij =
v(kij)− fj(di)

σj
, (2.4)

where σj = MADi(v(kij) − fj(di)), the median absolute deviation, is a robust
estimator of scale, i runs over all fragments and j over all samples.

Assuming that the calculated z-scores follow Normal distribution under the null
hypothesis, I calculated one sided p-values. To adjust for multiple testing, I used
the method of Benjamini-Hochberg (Benjamini and Hochberg, 1995) to control for
the false-discovery rate.

Specific interactions could then be detected by looking for fragments with large
positive z-scores and low adjusted p-values.
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2.1.4 Detecting changes

I observed that the distance dependence of the 4C signal was variable between
samples. These differences were most likely due to technical differences in the
cross-linking, restriction enzyme digestion, and PCR amplification steps. For com-
parisons between different samples of different conditions this had to be taken into
account.

To address this problem I calculated a matrix of normalization factors nij,
such that the scaled read counts nijkij for fragment i became comparable across
the samples j. For this, the normalization factors had to present the distance
dependence on the scale of raw counts. Hence, I back transformed the fitted
values fij to the scale of raw counts, using the inverse of the variance stabilizing
transformation, and scaled these values to the geometric mean across samples to
obtain the normalization factors.

nij =
v−1(fj(di))

J

√∏J
j=1 v

−1(fj(di))
, (2.5)

where nij is the normalization factor, v−1(fj(di)) is the back transformed fitted
value at the genomic distance di. The index i runs over all fragments and j over
all samples.

With these normalization factors I used the model implemented in the DESeq2
package to detect differences between conditions (Love et al., 2014). In this ap-
proach, the normalized fragment counts for each single fragment were quantita-
tively compared between conditions. Using the Wald-test statistic, the estimated
fold-changes between conditions were compared to the variability observed between
biological replicates. A change in interaction frequency for a fragment was only
called significant if the observed fold-change between conditions was significantly
higher than expected from the size of the changes seen between replicates.

2.1.5 Quantifying asymmetries

2.1.5.1 Segmentation of the 4C signal

For analyzing changes in the global interaction patterns upon genomic rearrange-
ments, it is important estimate the primary interaction domain of a viewpoint.
This is the genomic domain where the 4C signal is clearly above the background
signal. To estimate the primary interaction domain for each viewpoint, I used the
implementation by Huber et al. (2006) of a well established segmentation approach
for the analysis of microarray data. This approach fits piecewise constant func-
tions to the input data. The resulting change points of these fits define the segment
boundaries. I used this algorithm on the 4C signal of each viewpoint, segment-
ing the signal into 3 segments (primary interaction domain, left and right region
outside the primary interaction domain). For each viewpoint I removed a 10 kb
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window around the viewpoint and all fragments that contained 0 counts across all
experiments before applying the algorithm to each experiment individually.

2.1.5.2 Using the cumulative 4C signal

To quantifiy asymmetries in the interaction frequencies of viewpoints I calculated
cumulative count distributions to each side of the viewpoint. Fragments with a
genomic distance of less than 10 kb to the viewpoint, which have a high number
of counts, were removed to reduce their strong influence on the cumulative distri-
bution. To make the different libraries comparable, I normalized the cumulative
signal to the total counts obtained for each library in the selected window size.
With this normalization the cumulative signal in both direction sums up to 1.

2.1.6 Visualization of the 4C signal

2.1.6.1 Smoothing

The raw 4C signal of read counts observed at fragments can show spikes at certain
fragment positions. In order to visualize the interaction profile more robustly, the
signal can be smoothed in fragment windows. For our data I implemented this
smoothing in such a way that a window with an odd number of fragments was
used. The average read count observed for the fragments in this windows was
assigned to the middle fragment. The result was a smoother interaction profile
from the 4C data.

2.1.6.2 Hit fraction

When only a small starting amount of cells is available for the 4C protocol, the large
number of PCR cycles can result in PCR artifacts. This will be visible as strong
peaks along the genome, which are not reproducible between replicates. In such
cases, it is not possible to directly use the 4C signal for the analysis of chromatin
interactions. To address this problem I used an adaption of the transformation
to unique coverage, which meant to collapse the whole coverage to 1 if at least
one read was observed per fragment (Splinter et al., 2012). Instead of using only
1 as a single threshold, I used several threshold values. Fragments for which the
observed number of reads exceeded these thresholds were called hits. To estimate
the contact propensity of a region with the viewpoint, I used different window sizes
of fragments to calculate the fractions of hits observed in a given window. This
number was then assigned to the middle fragment of each window as a hit fraction.
A schematic of this procedure is shown in Figure 2.5.
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Figure 2.5: Schematic representation of the hit fraction calculation. Fragments for which
the number of observed reads exceed the threshold are called hits. For the shown window
of 11 fragments the hit fraction is calculated as 6

11 .

2.2 Results

2.2.1 Investigation of the chromatin interactome in devel-
oping Drosophila embryos

Drosophila embryogenesis is a well studied process, especially in the field of tran-
scriptional regulation (Gregor et al., 2014). After egg lay, the process proceeds
very rapidly and the first instar larvae hatches after 21-22 hours (Campos-Ortega
and Hartenstein, 1985). Gene transcription is very dynamic during embryoge-
nesis (Graveley et al., 2011). The robust process requires tight regulation of the
dynamic gene transcription by enhancer and insulator elements (Levine and David-
son, 2005). To which extent the 3D chromatin structure, especially in enhancer
looping, is involved in the dynamic regulation of transcription is unclear. To ad-
dress this point, my collaborators generated 4C sequencing data for 103 viewpoints,
spaced throughout the Drosophila genome. As viewpoints my collaborators chose
developmental enhancers which showed diverse dynamics during embryogenesis
(Zinzen et al., 2009), priming our study to detect dynamic changes in chromatin
3D structure. Samples were taken from embryos at 2-4 h and 6-8 h after fertiliza-
tion, at which time the embryos undergo marked morphological and transcriptional
changes. In addition to whole-embryo samples from the two developmental time
points, my collaborators also adapted the BiTS-ChIP method by Bonn et al. (2012)
to perform mesoderm-specific 4C experiments. For the 4C sequencing experiment
my collaborators used two restriction enzymes that cut double stranded DNA at
specific 4 bp long recognition sequences. The first restriction enzyme used was
DpnII and the second NlaIII.

After sequencing, my analysis started with demultiplexing the 4C sequencing
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libraries as described in Section 2.1.2.1. Because the obtained sequencing reads
were 105 bp long, I observed reads of short fragments that included the religation
site and additional sequences from the ligated fragments. Because of the ambiguity
of the two sequences in these reads, they could not be aligned unambiguously to the
reference genome. Therefore, I scanned unaligned reads for the restriction fragment
sequence and if such a site was present, the read was trimmed after this position,
leaving the cutting site. After this trimming step a new alignment was attempted
with the remaining sequence. With this strategy, on average approximately 10 %
of the reads for each library could be aligned in a second step.

To assign the aligned reads to a fragment reference, I generated a reference
of restriction fragments, as described in Section 2.1.2.2. The aligned reads were
assigned to this reference as described in Section 2.1.2.4. For most libraries the
percentage of aligned reads that could be assigned to a fragment is between 70 and
90 %. For further analysis I only kept valid fragments and removed all fragments
that did not contain a cutting site of the second restriction enzyme and for which
both fragment ends were smaller than 20 bp (Section 2.1.2.2).

To test if biological replicates were consistent, I generated scatter plots. For the
103 viewpoints, these plots showed good agreement for high count values. Higher
variation was observed at lower count values, where the data are dominated by
noise. An example plot for the apterous CRM viewpoint (ap viewpoint) is shown
in Figure 2.6.

2.2.1.1 Detecting interactions

To find strong interactions that stand out from the general decay trend I proceeded
as described in Section 2.1.3. As a first step I removed all fragments for each
viewpoint that either contained a low number of reads or that were too close to
the viewpoint. The latter fragments showed a high signal due to ligation caused
by close linear proximity. In the first case, I excluded fragments from further
analysis which had less than 40 counts on average across samples. For the second
case, I automatically defined the first valid fragments as those that occurred after
the initial signal decrease, starting from the viewpoint, where the signal began to
increase again.

The parameters of the variance stabilizing transformation (see Section 2.1.3.1)
were estimated on the count data of the fragments that passed these filter steps.
Using the method described in Section 2.1.3.2, I fitted a smooth monotone sym-
metric curve to the data to estimate the general decay trend. A fit example is
shown in Figure 2.4. From the fit residuals I calculated z-scores and associated
p-values as described in Section 2.1.3.3.

The distribution of z-scores obtained for two libraries of the ap CRM viewpoint
are shown in Figure 2.7. For the second replicate MESO 68h 2 a second peak is
observed in the histogram. This is due to fragments that contain 0 counts in this
library which has a lower coverage. Since we are interested in finding strong inter-
actions on the positive side of the distribution, we can continue with our approach
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Figure 2.6: Scatter plot between two biological replicates of the apterous CRM viewpoint
for whole-embryo tissue at 6-8 h after fertilization. In the plot a density estimate of the
pairwise distribution of count values per fragment is shown. The x- and y-axes (drawn in
logarithmic scale, with zero) correspond to the counts for the fragment in two biological
replicate libraries for the same viewpoint and biological condition. The replicates show
good concordance for higher count values. Fragments with 0 counts for both replicates
are removed.
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and capture the strongest contacts. However, if the shift of the distribution to-
wards smaller values gets more extreme this might lead to an overestimation of
the median absolute deviation and hence an underestimation of z-scores. It is
therefore important to check the distribution of the calculated z-scores.
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Figure 2.7: Distribution of z-scores calculated for two libraries of the ap CRM viewpoint.

For the follow-up analysis, we defined interacting regions using the following
thresholds. For each fragment both replicates z-scores must be larger than 3 and
in at least one replicate the adjusted p-value must be smaller than 0.01. Figure 2.8
shows the interacting fragments for the two replicates of the whole embryo 6-8 h
condition of the ap CRM viewpoint. The interaction between the viewpoint and
the apterous (ap) gene promoter on the right side of the viewpoint is captured
in both replicates. Additional interactions that could not be directly linked to
specific genomic elements are captured as well.

2.2.1.2 Long-range interactions in the Drosophila genome

For further analysis my collaborators merged interactions into interacting regions
if interacting fragments were less than 1 kb apart. With these parameters we
identified 1036 interacting regions based on 4247 interacting fragments (Ghavi-
Helm et al., 2014). On average, each viewpoint interacted with ten distinct genomic
regions, of which 41% were annotated enhancers or promoters (Ghavi-Helm et al.,
2014). We observed, that 73% of the interactions span a distance of more than
50 kb to the viewpoint (Ghavi-Helm et al., 2014). This shows that there are
extensive long-range interactions throughout the compact Drosophila genome.
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Figure 2.8: 4C signal of the ap CRM viewpoint on the variance stabilized scale. The
green line shows the fitted values and the dashed blue lines show the interval of ±3σ of
the fit residuals. Interacting fragments are highlighted by red dots.

2.2.1.3 Detecting changes between conditions

To detect differences between conditions, I used the method described in Section
2.1.4. For the following discussion I will focus on the changes between conditions
for the ap CRM viewpoint.

To illustrate the effect of the distance dependent normalization factors, I first
calculated the differences between conditions using a normalization that only ac-
counted for the different library sizes. The resulting MA plot is shown in Fig-
ure 2.9. It shows the log2-fold change between mesoderm tissue and whole-embryo
for Drosophila embryos 6-8 h after fertilization as a function of the logarithmic
transformed mean value. The distribution of log2-fold changes is skewed towards
the mesoderm condition for high count values.

This influence of the distance dependence in the different libraries was captured
by the normalization factors (see Section 2.1.4). In Figure 2.10 the values are
distributed more symmetrically after normalization for the distance dependence.

An overview plot showing the 4C signal on the variance stabilized scale as well
as the calculated log2-fold changes between the conditions is shown in Figure 2.11.
Fragments that have an adjusted p-value of less than 0.01 for the Wald test statistic
are highlighted by blue points, or orange points if they additionally are called as
an interaction.

For the strong interaction at the ap promoter my method estimated a fold
change of 2.25 between the conditions. Stronger contacts in the mesoderm tissue
could be due to the fact that the ap gene is only expressed in the mesoderm
(Ghavi-Helm et al., 2014).
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Figure 2.9: MA plot of the comparison between two conditions for the ap CRM view-
point from our data set (Ghavi-Helm et al., 2014) without normalizing for the distance
dependence.The y axis shows the difference between log interaction counts for a given
fragment plotted against the average log interaction per fragment on the x-axis. Red dots
represent fragments that show differential interactions (p-adjusted < 0.01, Wald test)
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Figure 2.10: MA plot of the comparison between two conditions for the ap CRM view-
point from our data set (Ghavi-Helm et al., 2014) normalized for the distance dependence.
The y axis shows the difference between log interaction counts for a given fragment plot-
ted against the average log interaction per fragment on the x-axis. Red dots represent
fragments that show differential interactions (p-adjusted < 0.01, Wald test)
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Figure 2.11: Detection of interactions and differences for the ap CRM viewpoint: The
upper four, wide tracks show the variance stabilized counts for 2 biological replicates
in two different conditions. The fit is shown as green solid line and the dashed blue
lines represent the fit ± 3σ. Interactions detected by z-score > 3 in both replicates and
p-adjusted < 0.01 for one replicate are shown as red or orange points per condition.
Fragments represented by orange points additionally show differential interactions (p-
adjusted < 0.01, Wald test). Differential changes in the contact profile that are not
called as interactions are shown as blue points (p-adjusted < 0.01, differential Wald
test). The color bar in the middle shows whether the upper condition (green) or the
lower condition (red) has a higher signal for the detected differences (p-adjusted < 0.01,
Wald test). The calculated log2 fold-change of the differential testing per fragment are
shown as a track. The track at the bottom shows the gene model for the region.
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2.2.1.4 Changes of chromatin 3D structure during embryogenesis

In general, we observed that the effect sizes for differential changes are very
small and the overall pattern of the interaction profiles remains largely unchanged
(Ghavi-Helm et al., 2014). This was also the case for enhancer-promoter interac-
tions of genes that switched from on to off or vice versa between the two investi-
gated developmental time points at 3-4 h and 6-8 h after fertilization (Ghavi-Helm
et al., 2014). For example, this was the case for the ap CRM viewpoint already
mentioned in the previous section. The ap gene is not expressed in the 3-4 h con-
dition, but it is highly expressed at 6-8 h as shown in Figure 2.12 (Ghavi-Helm
et al., 2014). The interaction between the viewpoint and the ap promoter in the
whole-embryo tissue is observed at both time points and does not significantly
change between the 3-4h and 6-8h time point (Figure 2.12). The estimated log2-
fold change is -0.175 with a standard error of 0.117. Although the gene is not
expressed at 2-4 h, my collaborators observed a polII signal at the ap promoter
(Ghavi-Helm et al., 2014) and paused polII defined by genomic run-on sequencing
(GRO-seq) (Saunders et al., 2013).
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Figure 2.12: Normalized 4C interaction profile of the ap locus at 3-4 and 6-8 h in whole-
embryo tissue. The tracks are listed top to bottom. polII CHiP-Seq signal from 2-4 h
embryos (reads per genomic content (RPGC)), GRO-seq signal from 2-2.5 h embryos
(plus strand in red, minus strand in blue), RNA-Seq signal (reads per kilobase per mil-
lion mapped reads (RPKM)) from 2-4 and 6-8 h embryos, 4C interaction profile (back
transformed to count scale and normalized) from 3-4 h (mauve) and 6-8 h (blue) em-
bryos, the viewpoint is indicated by the red triangle. Differential 4C signal is shown in
red. Detected 4C interactions and known enhancers are indicated at the bottom. Taken
from Ghavi-Helm et al. (2014).
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2.2.2 Long-range chromatin interactions within the Shh lo-
cus

The expression of Shh is important for proper limb development in the developing
mouse embryo (Riddle et al., 1993). It is expressed in the Zone of Polarising
Activity (ZPA), which resides at the posterior part of the developing limb (Riddle
et al., 1993). Shh is activated by the conserved ZPA Regulatory Sequence (ZRS),
a very distant limb-specific enhancer (Lettice et al., 2003). A schematic of the
genomic locus around the Shh gene is shown in Figure 2.13.

100 kb

CEN TEL

Rbm33 Rnf32 Lmbr1 Mnx1Nom1Shh

ZRS

Figure 2.13: Schematic representation of the Shh locus. The Shh gene and other genes
in the region are represented as gray boxes. The ZRS is highlighted as orange ellipse.

Because animals with limb malformations are viable and limb development is
sensitive to quantitative and qualitative gene expression changes, the limb for-
mation in mice embryos is a good model system to study parameters which can
influence the efficiency of promoter-enhancer interactions. We therefore used the
limb bud of the developing mouse embryo to study the effects of genomic rear-
rangements on gene regulation.

To get an overview of the regulatory landscape of Shh locus, my collaborators
used several mouse lines that contain individual regulatory sensors (GROMIT sys-
tem, Ruf et al. (2011)) in the genomic region around the Shh gene. The GROMIT
system is based on a sleeping beauty transposon (SB transposon) that contains a
regulatory sensor in form of a LacZ reporter gene under the control of the minimal
promoter of the human β-globin gene and a loxP site. The mouse lines were gen-
erated by making use of the local hopping property of the SB transposon system.
This allowed a systematic analysis of tissue specific regulatory input captured in
the Shh locus.

2.2.2.1 Interaction of Shh and ZRS

The interaction of Shh and the ZRS has been shown in limb tissue using 3C and
3D-FISH (Amano et al., 2009).

Published Hi-C data from mouse ESCs provides a coarse view of the chromatin
structure for the whole region and is shown in Figure 2.14. There is a large
topological domain or topologically associating domain (TAD), which represents
a domain of preferred chromatin interactions identified by HiC data (Dixon et al.,
2012), with Shh at the left and the Lmbr1 promoter at right boundary. On each
side the TAD is flanked by another TAD. In this Figure the inserted reporter genes
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are highlighted. They show activity throughout a region that overlaps with the Shh
topological domain observed in the Hi-C data (Symmons et al., in preperation).

Figure 2.14: Hi-C map for the Shh locus generated from published mouse ESC data
(Dixon et al., 2012). The inserted regulatory sensors (blue and labeled constructs) are
highlighted. Courtesy of Orsolya Symmons.

My collaborators generated 4C sequencing data for 5 viewpoints spread through-
out the Shh locus using a 4bp-cutter to investigate the chromatin structure at
higher resolution. The first restriction enzyme used in the experiment was NlaIII
and the second restriction enzyme was DpnII. I assigned the aligned reads to a
reference of NlaIII fragments as described in Sections 2.1.2.2 and 2.1.2.4. For all
libraries the percentage of aligned reads that could be assigned to a fragment was
above 90 %.

Unfortunately, the amount of starting material was very limited in the case
of mouse embryo limbs. Because of this I observed spikes in the 4C signal for
fragments that were not reproducible between replicates. This was most likely
due to sampling effects in the PCR amplification cycles of the protocol. In order
to prevent the influence of PCR artifacts on the analysis, I transformed the raw
4C signal into hit fractions as described in Section 2.1.6.2. As bin width I used
51 fragments, and as thresholds 10 and 100 counts per fragment. The resulting
4C hit fraction profiles are shown in Figure 2.15 for the 5 viewpoints investigated
in the Shh locus. In order to have consistent hit fraction values for the different
replicates of a viewpoint, I sub-sampled the aligned reads in each library to match
the number of reads obtained for the smallest library. This is no optimal strategy,
however the loss of data could be tolerated because the largest fold-change between
libraries was 3.25 and for all viewpoints the smallest libraries contained a sufficient
number of reads.

The Rbm33 viewpoint had an 4C hit fraction interaction profile that is asym-
metric. It extended primarily towards the centromere and the signal over the Shh
TAD was reduced. The Shh viewpoint showed a hit fraction profile that extended
over the whole Shh TAD and showed interactions in the region of the ZRS. It also
slightly extended into the neighboring TAD on the centromeric site. The 4C hit
fraction profile of the Rnf32 and ZRS viewpoint were very similar. They both
showed a broad extension over the Shh TAD with a peak at the position of the
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Shh ZRS

Figure 2.15: 4C hit fraction profiles of the viewpoints in the Shh locus. The legend at
the top shows the gene model of the genomic region. The small bars below represent the
positions of the regulatory sensor insertions. The Shh promoter and ZRS enhancer are
highlighted. Small triangles mark the position of the viewpoints. The genes marked by
the blue dashed vertical lines are outside the Shh TAD. Taken from Symmons et al. (in
preperation).

Shh promoter. This peak was especially pronounced for the ZRS viewpoint. Both
also extended into the neighboring TADs on the centromeric and telomeric side.
For the Nom1 viewpoint an asymmetric interaction profile was observed. It was
strongly reduced over the Shh TAD and extended towards the telomere.

The profiles therefore recapitulated the TAD structure observed in the Hi-C
data shown in Figure 2.14.

2.2.2.2 Influences of genomic inversion in the Shh locus

In order to investigate the influence of genomic rearrangements on the regulation
of Shh by the ZRS, my collaborators generated mice with a genomic inversion in
the region of the ZRS. For this they made use of the loxP site that is inserted with
the transposon and used CRE-mediated recombination (Hérault et al., 1998; Spitz
et al., 2005). This resulted in alleles carrying either large deletions, duplications or
inversions in the region of interest. A schematic of the investigated Inv inversion
is shown in Figure 2.16.

As a result of this inversion, the ZRS is moved approximately 160 kb closer to
the Shh gene. The regulatory sensor which moved along with the inversion still
captured LacZ expression in the posterior limb, suggesting that the ZRS was still
active (Symmons et al., in preperation). However, the ZRS was not able to activate
Shh any more and Shh expression was lost in the Inv mouse embryos (Symmons
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Figure 2.16: Schematic representation of the Inv inversion in Shh locus. The inverted re-
gion is marked by a blue line. The Shh gene and other genes in the region are represented
as gray boxes. The ZRS is highlighted as orange ellipse.

et al., in preperation). The lost expression of Shh lead to truncated limbs in the
Inv animals (Symmons et al., in preperation).

To test how the inversion affects the chromatin structure, my collaborators
performed 4C experiments from limbs of Inv mouse embryos. For visualizing the
4C signals of the inversion, I corrected the genomic coordinates of the inversion
for these libraries as described in Section 2.1.2.5. The obtained 4C hit fraction
profiles are shown in Figure 2.17 together with the wild type profiles.

Although the ZRS was closer to the Shh promoter, the contacts of the ZRS
and Shh promoter were reduced in Inv samples. The 4C hit fraction profile of the
of the ZRS is increased in the telomeric direction compared to the wild type (WT)
samples. The same was true for the Shh viewpoint. The interactions with the
region of the ZRS were lost. Instead, three new interacting regions were observed
that fall in the region of the three gene promoters of Mnx1, Nom1 and Lmbr1. The
hit fraction profile of the Rbm33 viewpoint did not change dramatically and was
still asymmetric towards the centromeric direction. Only the interactions in the
region around the ZRS are slightly reduced. For the Nom1 viewpoint the direction
of the 4C hit fraction profile was inverted. The extension towards the telomere
was lost and it was asymmetric in the direction of the centromere, with slightly
increased interactions at the Shh promoter.

To further quantify the changes of the ZRS and Nom1 viewpoint upon genomic
inversion, I calculated the cumulative 4C signal as described in Section 2.1.5.2 using
a 2 Mb window to each side of the viewpoint. The resulting distributions are shown
in Figure 2.18.

For both viewpoints a shift in the primary direction of interaction was observed.
For the ZRS viewpoint the primary contacts towards the Shh gene were flipped
towards the telomere as a consequence of the genomic inversion. The primary di-
rection of interaction changed in the opposite way for the Nom1 viewpoint. In the
wild-type case the viewpoint primarily interacted towards the telomere, whereas
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Figure 2.17: 4C hit fraction profiles of the viewpoints in the Shh locus with inversion.
Wild-type profiles are shown in blue and Inv profiles are shown in red for the reference
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Small triangles mark the position of the viewpoints. Taken from Symmons et al. (in
preperation).
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its interactions were primarily directed towards the Shh gene and centromere in
the Inv configuration.

In summary, the results indicated that the inversion moved the ZRS to a po-
sition where it could not contact Shh anymore, which was consistent with the
limb phenotype and loss of Shh expression in the ZPA. Shh instead contacted the
three genes Mnx1, Nom1 and Lmbr1. The broad interactions, especially between
ZRS and Shh, that previously defined the TAD structure were strongly reduced
in the inversion genotype, even for the regions that were not directly affected by
the inversion. This suggests that the compact wild-type TAD structure in general
collapsed to a less compact chromatin structure.
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Figure 2.18: 4C cumulative signal of the ZRS and Nom1 viewpoint in a 2 Mb window
to each side of the viewpoint.
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2.2.3 The two domain structure of the Ap2-γ - Bmp7 locus

The Ap2-γ- Bmp7 locus spans a genomic region of approximately 0.5 Mb. It
contains two different genes, Ap2-γ and Bmp7 , which are expressed during mouse
development and show overlapping expression patterns for some tissues (Chazaud
et al., 1996; Danesh et al., 2009), but also unique expression patterns in others. The
locus therefore constitutes a nice model to study the specificity of gene regulation
and expression in different tissues.

2.2.3.1 Regulatory landscape of the Ap2-γ - Bmp7 locus

To investigate the regulatory landscape of the Ap2-γ - Bmp7 locus, my collab-
orators employed the GROMIT system (Ruf et al., 2011) of regulatory sensors
described already in Section 2.2.2. The positions of the regulatory sensor inser-
tions is shown schematically in Figure 2.19.

Bmp7Tfap2c100 kb

SB-A1 SB-A2 SB-B(in) SB-B(up)SB-B(3end)

LacZ

loxP loxP

CEN TEL

Figure 2.19: Schematic representation of the Ap2-γ - Bmp7 locus. The positions of the
regulatory sensors insertion sites are shown as black triangles. Taken from Tsujimura
et al. (submitted for publication).

Scanning the interval with the regulatory sensor defined two distinct, non-
overlapping regulatory domains. The first, with SB-A1/A2 overlaps with the ex-
pression patterns of Ap2-γ (Tsujimura et al., submitted for publication). The
second, from SB-3end to SB-5up, shared several, but not all, expression specifici-
ties with Bmp7 (Tsujimura et al., submitted for publication; Helder et al., 1995;
Adams et al., 2007).

A combination of chromatin profiling for enhancer-associated marks (H3K27Ac
and EP300 binding) in forebrain and heart tissue, as well as direct transgenic as-
says, identified two enhancers in the intergenic interval that drove expression in the
forebrain (enhancer FB1) and in the heart (enhancer mm75), respectively (Tsu-
jimura et al., submitted for publication; Visel et al., 2007). mm75 was annotated
according to the VISTA Enhancer Browser (Visel et al., 2007). These enhancers
could be assigned to the two separated regulatory domains.

As a next step, we wanted to test whether this separation is reflected in the
chromatin structure of the locus. A coarse view on the chromatin 3D structure
of this locus could be generated from published Hi-C data in mouse ESCs (Dixon
et al., 2012). It is shown in Figure 2.20.
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Figure 2.20: Hi-C map for the Ap2-γ - Bmp7 locus generated from published mouse
ESC data (Dixon et al., 2012). Taken from Tsujimura et al. (submitted for publication)

While there are prominent TADs to each side of the Ap2-γ - Bmp7 locus, for
the TAD structure of the locus itself it is not clear, whether there is one larger
TAD or two small TADs. This might be due to the limited resolution of 10 kb
that cannot resolve fine structures.

In order to investigate the locus at a higher resolution, my collaborators gen-
erated 4C sequencing data with viewpoints spread throughout this locus. The
Ap2-γ and Bmp7 promoter were chosen as viewpoints and two additional view-
points located in the region between the two genes. In this experiment the NlaIII
restriction enzyme was used as the first cutter and DpnII as the second. Us-
ing their cutting sequences the reference genome was cut in-silico to generate the
corresponding fragment reference as described in Section 2.1.2.2. To generate a
fragment count table, I assigned the aligned reads to this fragment reference, as
described in Section 2.1.2.4. The percentage of aligned reads that could be as-
signed to a fragment was above 90 % for all libraries. I corrected the genomic
distance to the viewpoint for modified genomic regions in libraries generated from
mice carrying large genomic rearrangements as described in Section 2.1.2.5.

To normalize for the different library sizes, I used the RPM normalization
method for the counts on the viewpoint chromosome (chr2). For better visual-
ization, I smoothed the count values with a smoothing window of 11 fragments,
assigning the average within the window to the middle fragment. The resulting
4C profiles are shown in Figure 2.21

The 4C interaction profiles observed in the different tissues were very similar
for each of the viewpoints. This suggested, that the overall chromatin structure
did not change dramatically between different tissues for this locus. Only for the
Ap2-γ viewpoint in the limb bud the 4C signal in the region of the known brain
enhancer seemed to be reduced.
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Figure 2.21: 4C profiles of the viewpoints at the Ap2-γ promoter (A, blue), the Bmp7
promoter (B, green), and two viewpoints in between the two genes (C, light green and D,
grey) in different tissues. The legend at the bottom shows the gene model of the genomic
region. The known forebrain and heart enhancer are highlighted. The bar at the bottom
of each profile the shows the estimated primary interaction domain. The transition zone
(TZ) of the two regulatory domains is highlighted by dashed lines. Taken from Tsujimura
et al. (submitted for publication)
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The Ap2-γ viewpoints had asymmetric interaction profiles. They only extended
approximately 100 kb towards the centromere, whereas in the direction of the
telomere they extended approximately 300 kb followed by a abrupt decrease of the
signal (Figure 2.21 A).

For the Bmp7 viewpoints the 4C signal was more symmetric. The signals were
strong over the Bmp7 gene body and extend towards the centromere until a sudden
decrease (Figure 2.21 B).

The profiles in between the two genes were dramatically different. The view-
point that was closer to the Bmp7 gene showed strong asymmetry in the 4C signal
with no centromeric extension, but broadly extended over the Bmp7 gene (Fig-
ure 2.21 C). The other viewpoint on the other hand showed symmetric contacts
towards both genes (Figure 2.21 D).

In general, the 4C profiles recapitulated the two regulatory domains that were
observed for the expression profiles. In order to estimate the primary interaction
domains of the viewpoints, I used the segmentation approach described in Section
2.1.5.1. An example for segmentation result of Ap2-γ is shown in Figure 2.22.
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Figure 2.22: Segmentation of the 4C profile in whole-embryo of the Ap2-γ viewpoint into
three segments using a piecewise constant function. The upper and lower breakpoints of
the estimated piecewise function are shown with uncertainty estimates as blue and red
bars.

Despite the main separation of the primary interaction domains from Ap2-γ and
Bmp7 , there seemed to be a small overlap (Figure 2.21). We defined this overlap
as transition zone (TZ) between the two domains. The genomic coordinates of the
TZ are approximately 172635000 ± 10000 to 172655000 ± 10000.
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2.2.3.2 Influence of the transition zone on enhancer contacts and gene
expression

In order to investigate how this TZ contributed to the regulatory and structural
separation of the two gene domains, my collaborators generated additional alleles
with deletions and inversions containing the TZ.

Using CRE-mediated recombination (Hérault et al., 1998; Spitz et al., 2005)
between the loxP site of the SB-A1 insertion and a static loxP site at the end of
Bmp7 , my collaborators generated the del1 deletion. A schematic of this deletion
is shown in Figure 2.23. The deleted region included the TZ and the known
forebrain and heart enhancers. As a result of the deletion, LacZ expression was
lost in heart and forebrain, however expression in the limb and jaw was contained
(Tsujimura et al., submitted for publication). RT-qPCR on del1 embryos showed
that Ap2-γ expression is lost in the forebrain and Bmp7 expression is lost in the
heart (Tsujimura et al., submitted for publication). This was in concordance with
the loss of the known enhancers driving forebrain and heart expression of the
respective gene.

SB-Sall4 BA0758 SB-A1

FB1 mm75

del1
Sall4 Tfap2c Bmp74 Mb

SB-B(3end)

Figure 2.23: Schematic of the deletion del1 in the Ap2-γ-Bmp7 locus. The deleted
region contained the transition zone and annotated enhancers that drive forebrain and
heart expression. Taken from Tsujimura et al. (submitted for publication).

The 4C signals obtained after the deletion of the TZ are shown in Figure 2.24.
Upon deletion of the TZ we observed an extension of the chromatin contacts for
both genes in the direction of the deleted region. The 4C signal of the Ap2-γ view-
point extended towards the telomere, whereas the signal of the Bmp7 viewpoint
extended towards the centromere over the Bmp7 gene body and other genes. For
both viewpoints the profiles on the unaffected side remained highly similar to WT
profiles. In this configuration the 4C profiles of Ap2-γ and Bmp7 showed a large
overlap. This overlap could be the result of merging the two domains into one
larger domain by deletion of the boundary element.

To further assess how the observed TZ contributed to the regulation and struc-
ture of the Ap2-γ and Bmp7 locus my collaborators generated additional alleles
carrying inversions that contained the TZ.
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Figure 2.24: 4C signal of the Ap2-γ and Bmp7 viewpoints after deletion of a region
containing the TZ. The upper two tracks show the signal for WT embryos (Ap2-γ blue,
Bmp7 green). At the top the TZ and known enhancers are highlighted. The lower two
tracks show the signal of embryos with the deletion. The deleted region is highlighted in
the schematic at the bottom. The bar at the bottom of each profile shows the estimated
primary interaction domain. Taken from Tsujimura et al. (submitted for publication).
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Inv-M was a balanced inversion between the loxP sites of the SB-A2 and SB-
B(3end) insertion. A schematic of this inversion is shown in Figure 2.25. The
regulatory sensor stayed next to the heart enhancer and showed the corresponding
expression (Tsujimura et al., submitted for publication). In this configuration the
mm75 heart enhancer was approximately equidistant from the two genes (187 kb
versus 207 kb, compared to 80kb and 312kb in the wild-type allele).

Heart
Ptgis Tfap2c Bmp7

Inversion

Forebrain
4.6Mb 0.7Mb

INV-M

TZ

Figure 2.25: Schematic of the inversion Inv-M in the Ap2-γ-Bmp7 locus. The inverted
region contained the transition zone and the annotated mm75 enhancer that drove ex-
pression of Bmp7 in the heart. Taken from Tsujimura et al. (submitted for publication).

Inv-L2 was a large balanced inversion between the loxP sites of the SB-L2 and
SB-B(3end) insertion. A schematic of this inversion is shown in Figure 2.26. As for
the Inv-M inversion, the regulatory sensor stayed next to the heart enhancer and
showed the corresponding expression (Tsujimura et al., submitted for publication).
The relative distance of Ap2-γ to the FB1 and mm75 enhancers and the TZ did
not change in this configuration, whereas the distance between the mm75 heart
enhancer and Bmp7 was increased to 1.1 Mb.

INV-L2

Inversion

HeartPtgis Tfap2c Bmp7TZ4.6Mb 0.7Mb
Forebrain

Figure 2.26: Schematic of the inversion Inv-L2 in the Ap2-γ-Bmp7 locus. In the inverted
region, the distance of Ap2-γ to the two enhancers and the transition zone was preserved.
Adapted from Tsujimura et al. (submitted for publication).
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To investigate how the inversion influenced the chromatin structure of the locus,
my collaborators generated 4C profiles from Inv-M and Inv-L2 embryos. The 4C
profiles of Inv-M (B) and Inv-L1 (C) are shown in Figure 2.27 along with the WT
(A) profiles. Because the Inv-L1 inversion spanned several Megabases the profiles
are shown at a large scale that allows one to investigate the global changes of the
interaction profiles. The primary interaction domains are highlighted in the figure
for the respective viewpoints. The change in the direction of the interactions for
the viewpoint located between the mm75 enhancer and the TZ in Inv-M and Inv-L1
embryos is nicely visualized by the flip of the direction of the primary interaction
domain compared to WT.

First I focused on the 4C profiles of the Inv-L2 embryos. The 4C profile of the
Ap2-γ viewpoint in Inv-L2 embryos was flipped compared to WT, but in general
resembled the WT profile. It extended until the TZ and only base line contacts
were observed for the region of the mm75 heart enhancer across the TZ. In the
direction away from the TZ the contacts only showed a short extension. This was
consistent with the observation that Ap2-γ was expressed at WT levels in the heart
(Tsujimura et al., submitted for publication). This suggested, that the TZ located
between the mm75 enhancer and Ap2-γ, prevented the enhancer from regulating
Ap2-γ in this configuration, as in the WT case.

For the Bmp7 viewpoint the relocation of the TZ lead to a large extension
of the interaction domain towards the centromere in Inv-L2 embryos. The mm75
enhancer was moved over 1 Mb away from Bmp7 and no chromatin contacts were
established in this configuration. This was in agreement with the observation that
Bmp7 expression was strongly reduced in the heart of Inv-L2 embryos (Tsujimura
et al., submitted for publication).

In Inv-L2 embryos the chromatin interactions of the other two viewpoints
showed a strong extension of more than 1 Mb in the direction of the centromere.
A peak close to the end of the Dok5 gene was observed for both viewpoints. In
the telomeric direction the profiles resembled the WT profiles. The profile of the
viewpoint between the mm75 heart enhancer and the TZ did not cross the TZ,
whereas the profile of the viewpoint in the TZ extended over the Ap2-γ gene. In
the Inv-L2 configuration Dok5 was the closest gene to mm75 away from the TZ.
However, my collaborators could not detect increased expression of Dok5 in the
heart (Tsujimura et al., submitted for publication).

The interaction profiles of the four viewpoints in Inv-M embryos are shown in a
smaller window of the locus in Figure 2.28. For direct comparison, the WT profiles
are plotted on top and the Inv-M profiles below.

Ap2-γ (blue, A) showed strong contacts with the region of the FB1 and mm75
enhancer, with the latter being closer to the gene because of the inversion. In con-
trast to that, Bmp7 (B, green) only showed baseline contacts with the new position
of the heart enhancer. This agreed with the observed ectopic expression of Ap2-γ
in the heart, which was driven by the mm75 enhancer in the Inv-M configuration
(Tsujimura et al., submitted for publication). Accordingly Bmp7 expression was
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Tfap2c Bmp7Dok5

500 kbA

C

B

WT
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Figure 2.27: 4C signal of the four viewpoints in WT (A), Inv-M (B) and Inv-L2 (C)
embryos. The 4C signal of Ap2-γ is colored in blue, Bmp7 in green, viewpoint outside the
TZ in light green and viewpoint inside the TZ in grey. The estimated primary interaction
domain for each profile is shown as a bar at the bottom. The genomic coordinates
are shown for the each allele at the bottom of the corresponding profiles. The TZ is
highlighted by a red bar and the red dashed boxes represent the inverted region. Taken
from Tsujimura et al. (submitted for publication).



52 CHAPTER 2. 4C SEQUENCING ANALYSIS

dramatically reduced in the heart and it seemed likely that the regulation by the
mm75 enhancer was lost, although the genes were approximately at an equivalent
genomic distance to the heart enhancer (Tsujimura et al., submitted for publica-
tion). These observations suggested that the relative position of the enhancer and
genes in respect to the transition zone were important for chromatin interactions
and regulatory action.

The viewpoint located between the mm75 enhancer and the TZ (C, light green)
still had an asymmetric interaction profile, but it was mirrored at the TZ com-
pared to WT. The interaction profile of the viewpoint in the TZ (D, grey) stayed
symmetric and did not show strong changes.

To compare the changes in the read distribution for the two viewpoints in the
TZ in a more quantitative way, I calculated counts in different windows. For this,
I used RPM normalized data and excluded a 10 kb window around the viewpoint.
The inverted region on chromosome 2 was used as window and two adjacent 400
kb windows to the centromeric and telomeric side. For each window I calculated
the fraction between the number of counts within the window and the sum of
counts in all 3 windows. The fractions are shown, as percentages, in Figure 2.28.
The fractions reflect the observation that the interaction profile of the viewpoint
between the mm75 enhancer and the TZ was mirrored at the TZ, keeping approx-
imately the same ratios in the read distribution. For the viewpoint within the TZ
the profile stayed symmetric and the numbers were nearly unchanged.

Taken together, in all configurations the position of the TZ was important
for the distribution of the 4C contacts. Especially the asymmetric profile of the
viewpoint located between the mm75 heart enhancer and the TZ in the direction
opposite of the TZ was conserved.
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Figure 2.28: 4C signal of the four viewpoints in Inv-M embryos. The signal of WT
embryos is shown as well. The genomic coordinates are shown for the Inv-M and WT
case. 4C signal of Ap2-γ in blue (A), Bmp7 in green (B), viewpoint outside the TZ in
light green (C) and viewpoint inside the TZ in grey (D). For C and D the fraction of
reads in the TZ and adjacent 400 kb windows is calculated. Taken from Tsujimura et al.
(submitted for publication).
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2.3 Discussion

2.3.1 Comparison of FourCSeq with other methods

The FourCSeq package, in combination with general sequence alignment software,
contains the functionality to perform a full end-to-end analysis of 4C sequencing
data (Figure 2.1). The included Python program can be used to demultiplex and
trim the primer sequences from the FASTQ output of the sequencing machine.
After alignment to the corresponding reference genome and generation of BAM-
files, the statistical analysis is performed in R.

As a reference genome any FASTA file or Bioconductor BS.genome package
can be used by the FourCSeq package . For example, in Section 2.2.1 I used the
dm3 Drosophila reference genome and the Sections 2.2.2 and 2.2.3 the mm9 mouse
reference genome. The r3cseq package (Thongjuea et al., 2013) offers only the
mm9, hg18 and hg19 genomes as reference genomes.

In general, my approach to detect peaks is similar to the method implemented
in the r3cseq package (Thongjuea et al., 2013). However, instead of using the
data on a raw count scale, I use a variance stabilizing transformation on the count
data for a more consistent statistical treatment. The approach of Thongjuea et al.
(2013) on the count scale has less power to detect interactions at large distances
from the viewpoint region, where the signal is orders of magnitudes smaller com-
pared to the viewpoint region. To find specific interactions in the 4C signal, I
fitted the decay of the 4C signal on the variance stabilized data as function of the
genomic distance to the viewpoint. z-scores for each sample were calculated by
dividing the fit residuals by the median absolute deviation (MAD) observed for all
residuals of the corresponding sample. Specific interactions were defined by setting
thresholds on the z-scores and associated p-values. This approach allowed me to
detect interactions at short and larger distances from the viewpoint in a consistent
way.

To compare the 4C profiles of different conditions, the r3cseq package simply
uses the log2 fold-changes between conditions. In the FourCSeq package I made
use of the framework for differential expression analysis implemented in the DESeq2
package (Love et al., 2014). With this approach the variability of the data was
taken into account for the comparison between conditions. Differential interactions
were only called if the observed fold change between conditions was significantly
larger than expected, given the level of noise in the data. This allowed for a
quantitative comparison that takes the noise of the data into account.

In contrast to FourCSeq and r3cseq, a customized approach for the alignment
of sequencing reads to a restriction fragment reference is used in the method by
van de Werken et al. (2012). This count data is further normalized and visualized
by the provided tool. The results are presented as 4C profile plots and domaino-
grams, generated by analyzing the data in different bin sizes. For the comparison
of different experimental conditions this approach only provides a qualitative com-
parison of the interaction profiles and domainogram patterns.
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To summarize, the FourCSeq package provides tools for the analysis of 4C
sequencing data that are statistically sound, were not available before and should
be useful for other researchers interested in analysing this type of experimental
data.

2.3.2 Implementation of FourCSeq

The FourCSeq package is implemented within the Bioconductor framework of Ge-
nomicRanges (Lawrence et al., 2013). This makes the package available across
different computer platforms and easily accessible to many users.

It is easy to integrate called interactions and differences in interaction frequen-
cies between different conditions with other genomic data using the Bioconductor
framework. Furthermore the package allows to export interaction profiles and
downstream results as bigWig or bedGraph files for visualization in a genome
browser, in which additional tracks can be inspected in parallel. Flexible and
automatable visualizations are also possible in R, as shown in many of the plots
generated for this dissertation.

In summary, the FourCSeq package provides the tools to perform an end-to-
end analysis of 4C sequencing data and to easily integrate the results with other
genomic features. Its potential to be widely used makes it a promising tool that
will help to better understand what role the chromatin 3D structure plays in
transcription and other biological processes.

2.3.3 Long-range interactions and interaction changes in the
developing Drosophila embryo

Using the FourCSeq package, I could detect specific chromatin interactions in
the 4C sequencing profiles of developing Drosophila embryos. With the approach
described in Section 2.1.3, ten known enhancer-promoter interactions could be
confirmed (Ghavi-Helm et al., 2014). Furthermore, the analysis revealed that there
is quite extensive 3D connectivity throughout the compact Drosophila genome
and complex interaction patterns between several enhancers and promoters were
observed (Ghavi-Helm et al., 2014). This is in agreement with recent observations
from Hi-C experiments in human fibroblast cells (Jin et al., 2013). We found
several pairs of co-regulated genes that contacted common enhancers, where in
some cases the enhancer-promoter interactions spanned distances greater than 200
kb (Ghavi-Helm et al., 2014). Such long range chromatin interactions are known in
mammalian genomes (Lettice et al., 2003). In general, these observations suggest
that the 3D organization of the gene-dense 180 Mb Drosophila genome into TADs
(Sexton et al., 2012) is similar to the organization of mammalian genomes (Dixon
et al., 2012).

Looking at the fold-changes between the different developmental time points
and tissue contexts, calculated with the FourCSeq package, we observed that en-
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hancer interaction profiles remain largely unchanged (Ghavi-Helm et al., 2014).
Focusing on genes that changed their expression status from off in 3-4 h to on in
6-8 h embryos, we found that chromatin interactions were already established and
polII was recruited to the promoters in a poised state (Ghavi-Helm et al., 2014).
Such preformed chromatin structures have already been observed in human cells
and they are proposed to allow rapid transcription activation upon the binding of
specific transcription factors (Jin et al., 2013). Such poised configurations seem
very reasonable in the fast developing Drosophila embryo as they provide a scaffold
for fast and precise spatio-temporal gene regulation by specific transcription factor
patterns.

2.3.4 TAD organization defines long-range enhancer inter-
action specificity

With the analysis of the 4C sequencing data of the Shh and Ap2-γ - Bmp7 locus, I
showed, that in both wild-type cases the interactions between enhancer and target
genes were defined by the 3D chromatin structure of the respective locus. The
ZRS enhancer interacted with Shh in a large Mb size TAD with both elements
being close to the TAD boundaries (Dixon et al., 2012). The Ap2-γ - Bmp7
locus clearly was separated by a small region which we called the transition zone
(TZ). It is unclear, whether this separation corresponded to two small TADs in an
unstructured region or to adjacent sub-TADs (Dixon et al., 2012; Phillips-Cremins
et al., 2013). Moreover, the true biological situation might be more complex than
these two simple idealizations that might only reflect the chromatin folding at a
certain scale Mirny (2011).

The ZRS contacts Shh in the whole limb bud of developing mouse embryos
but is only expressed in the ZPA (Amano et al., 2009). In the ZPA, the ZRS
and Shh loop out of their chromosome territory only in a few cells (Amano et al.,
2009). Likewise Shh is only expressed in a subset of cells in the ZPA (Amano et al.,
2009). The ZPA is defined by specific transcription factors, and point mutations
within the ZRS lead to different binding patterns causing limb malformation and
polydactyly (Lettice et al., 2012). After disrupting the interactions of the ZRS
and Shh by genomic inversion, we also observed a phenotype of limb malforma-
tion (Symmons et al., in preperation). Although the ZRS was moved closer to the
Shh promoter, Shh expression was lost as a consequence of the inversion, although
the ZRS was still active since the regulatory sensor still captured enhancer activ-
ity. The observed redistribution of contacts for the 4C interaction profiles of the
viewpoints throughout the locus showed that the long-range interaction between
the ZRS and Shh was lost upon inversion in the locus. The preferred direction of
interaction was inverted for the ZRS and Nom1 viewpoint, which showed that the
sequence between ZRS and Nom1 gene was important for defining the chromatin
structure of the locus. These observations correspond to a permissive model of
enhancer-gene interaction where the enhancer contacts its target promoter within
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a preconfigured chromatin interaction domain (de Laat and Duboule, 2013).
It was recently shown that the genomic distance between an enhancer and a

promoter does not have a strong influence on whether the enhancer can interact
with the promoter, but rather the chromatin domain configuration in which they
reside (Symmons et al., 2014). New data from an inversion that moved the ZRS
even closer to Shh promoter showed a partial rescue of the limb malformation
phenotype observed in the presented Inv inversion (Symmons et al., in prepera-
tion). This suggests, that random collisions can occur at short genomic distances
between separated TADs, while for large genomic distances the TAD organization
favors the possible chromatin interactions within the TADs.

The observed separation of the Ap2-γ - Bmp7 locus into two regulatory do-
mains also seemed to be defined the TZ. This TZ was important for the specificity
of allocating the correct enhancer to the respective target gene, by defining two
distinct domains of gene regulation (Tsujimura et al., submitted for publication).

The 4C profiles of different tissues showed high similarities independent of
whether the gene was expressed in the respective tissue or not. This indicated
that the locus formed a stable 3D configuration which remained largely unchanged.
Gene activity and the enhancer contacts were regulated within this predefined
domains as recently reported for other loci and organisms (Montavon et al., 2011;
Jin et al., 2013; Ghavi-Helm et al., 2014).

The extension of the interaction profiles upon deletion of the TZ region shows
that the TZ is important for the separation of the two domains. The strong
overlap of the Ap2-γ and Bmp7 interaction profiles indicate, that the two domains
are fused into one larger domain. This fusion of neighboring TADs, upon deletion
of the boundary element between them, has been observed for deletions in the Xist
loci (Nora et al., 2012).

The inversions in the Ap2-γ-Bmp7 locus indicated, that the TZ acted as bound-
ary irrespective of the surrounding sequences. For example, in the Inv-M config-
uration, the interaction profile of the viewpoint located between the TZ and the
mm75 enhancer was mirrored at the TZ. Due to its new position, the mm75 en-
hancer could activate Ap2-γ, which resulted in strong ectopic expression of Ap2-γ
in the heart (Tsujimura et al., submitted for publication). In the Inv-L2 configu-
ration the interaction profiles of the viewpoint in the TZ and between the TZ and
mm75 enhancer extended towards the centromere until the end of the Dok5 gene.
The end of this extension coincided with a TAD boundary (Dixon et al., 2012).
Interestingly, the viewpoint sitting inside the TZ had an interaction profile that
extended into both directions in all configurations and respected the boundaries
of the two neighboring domains. This suggests that the TZ does not function as
an interaction blocker, but rather as an interaction sink or decoy. This behav-
ior of strong interactions into both directions has often been observed at TAD
boundaries (Dixon et al., 2012).

In summary, both loci suggest a fixed chromatin structure that restricts the
range of enhancers into regulatory domains and thereby defines enhancer speci-
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ficity. The transition between the neighboring domains seems to be defined by
the sequence of a TZ. However, what exactly is responsible for establishing this
configuration has yet to be studied in detail. CCCTC-binding factor (CTCF),
cohesin and Mediator are proteins involved in the 3D organization of the nucleus
and they are proposed to play an important role in organizing the chromatin 3D
structure at different length scales (Phillips-Cremins et al., 2013). However, a re-
cent study showed that depletion of CTCF and cohesin had only a weak influence
on TAD boundaries (Zuin et al., 2014). To functionally dissect the role of each of
the involved factors, more specific experiments will have to be performed.

It has been shown recently for the HoxD cluster (Noordermeer et al., 2014) that
these boundaries are not completely fixed and can change to some extent between
tissue types and developmental stages. The observed changes are only local within
the HoxD cluster and the long-range interactions with neighboring TADs remain
stable, showing that local changes within a larger stable 3D configuration are
possible (Noordermeer et al., 2014).

In contrast to this permissive model of chromatin 3D conformation, some loci
were found, where de novo formation of chromatin 3D structure is triggered by
tissue specific factors. Examples for this are the α- and β-globin locus during
the maturation of erythroid cells (Drissen et al., 2004; Vernimmen et al., 2007).
A recent study showed that de novo looping of the LCR to the promoter of the
β-globin gene is required and is sufficient for the initiation of transcription in
erythroid cells (Deng et al., 2012).

Taken together, the predefined chromatin structure enables the formation of
robust systems for gene expression which are required for development. These
stable configurations allow for tight spatial and temporal regulation of gene activity
by TF gradients and patterns. On the other hand, de novo formation of chromatin
contacts upon binding of tissue specific factors contributes to cell maturation and
stable establishment of new cell identities.

2.3.5 Relevance in cancer and disease

Long-range gene regulation is also the underlying molecular mechanism for some
diseases, causing both Mendelian and complex disease traits. The effect sizes
of these regulatory mutations range from small to large and their frequencies
range from rare to common (Hindorff et al., 2009). Approximately 90 % of SNPs
from genome-wide association studies (GWASs) are variants in non-coding regions,
which attributes these variants an important role in common diseases (Hindorff
et al., 2009).

In our analysis of genomic rearrangements and gene regulation in mouse we
focused on non-coding enhancer regions. We observed limb malformations upon
inversion of the region containing the ZRS, which is a result of the disruption of
Shh expression in the developing limb (Symmons et al., in preperation). Similarly,
point mutations in the ZRS region are linked to heritable pre-axial polydactyly
in human families (Lettice et al., 2003). Despite disrupting existing enhancer
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sequences, it also has been shown that point mutations are capable of forming
new cis-regulatory sequences which regulate neighboring genes. An example is the
inherited blood disorder α-thalassemia, which is caused by de novo formation of
a promoter-like element that interferes with the regular expression of the α-globin
genes (De Gobbi et al., 2006).

In addition to point mutations, larger genomic rearrangements can disrupt the
regulation of long-range enhancers. For example, in the Inv-M configuration of the
Ap2-γ - Bmp7 locus, the mm75 heart enhancer is moved into the regulatory domain
of Ap2-γ which results in ectopic expression of Ap2-γ and loss of Bmp7 expression
in the heart (Tsujimura et al., submitted for publication). This phenomenon of
enhancer reallocation has been observed in several cases (Hérault et al., 1997;
Lower et al., 2009). The relevance to cancer has been shown by Gostissa et al.
(2009) in the case of Igh–c-myc translocations in B-cell lymphomas. Along this
line, a recent study showed that genomic structural variants in group 3 and 4
medulloblastomas, which account for most paediatric cases, moved oncogenes of
the GFI1 family into domains of active enhancers, causing the activation of GFI1
family oncogenes (Northcott et al., 2014).

In summary, point mutations and genomic rearrangements of non-coding se-
quences can have profound molecular consequences for long-range gene regulation.
To better understand and functionally dissect the influence of genomic rearrange-
ments and point mutations on long-range gene regulation, 4C profiles need to be
generated from the respective tissues and compared to control samples. This might
help to narrow down the target genes of the non-coding variant and understand
the molecular impact of the altered regulatory sequences.

2.3.6 Outlook

Most of the current chromosome conformation capture experiments require sev-
eral million cells as starting material and only measure chromatin structure as an
ensemble average. The protocols have to be improved in terms of sensitivity, to
be able to use the techniques on cell or tissue samples for which only a few cells
are available. A recent approach in this direction was the generation of single-cell
Hi-C data (Nagano et al., 2013). In this study they showed that single cells show
variable chromosome structures that, when averaged over all single cells, resemble
the signal obtained from bulk Hi-C experiments. Additional RNA- or GRO-seq
data on the same individual cells would be of great value to understand the link
of chromatin structure and gene regulation.

The cell to cell variability in chromosome structure has also been observed
in single-cell microscopy studies (Amano et al., 2009; Noordermeer et al., 2011).
These observations have to be integrated with the data obtained from 3C based
experiments to refine the role of chromatin 3D structure in gene regulation.

A problem with all methods mentioned before is the requirement of cell fixation
by cross-linking. This only allows the investigation of snap-shots of 3D chromatin
dynamics. Further approaches are necessary to uncover the dynamics of chromatin
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structure in live cells. A recent study gave first insights into these dynamics by
tagging distal regions with Tet-operator binding sites in pro-B cells and tracing
their trajectories with Tet-repressor-EGFP (Lucas et al., 2014). They showed
that distal elements bounce back and forth in a spring like fashion until they meet
each other and form stable chromatin contacts. Furthermore, the time until these
contacts are established for the first time mainly depends on the 3D confinement
of TADs (Lucas et al., 2014). However, to obtain a more global view on chromatin
structure dynamics, high-throughput methods are necessary that can be used on
many cells and cell types. Additionally, visualization of nascent RNA molecules
from the corresponding gene in such a system would be of great value to completely
understand the dynamics of chromatin structure and gene expression.



Chapter 3

The Pharmacogenetic Phenome
Compendium (PGPC) resource

3.1 Description

In this chapter I describe the analysis of a high-throughput microscopy project
carried out in collaboration with Marco Breinig from the Boutros group at the
German Cancer Research Center (DKFZ). Marco Breinig performed the screen
and provided the microscopy data on which this analysis is based. Subsequent
follow-up experiments were performed by Marco Breinig, and I performed the
statistical analysis of data from the high-throughput screen and the follow-up ex-
periments. The content of this chapter is based on the manuscript Integration of
pharmacogenetic and phenotypic profiling predicts drug synergism and compound
mode-of-action, which we currently prepare for journal publication (Breinig et al.,
in preperation), and on the R package PGPC which will be submitted to Biocon-
ductor once the paper is accepted.

The aim of the screen was to find chemical-genetic interactions by screening
the LOPAC drug library (Sigma, www.sigmaaldrich.com) of 1,280 pharmacolog-
ically active compounds against a panel of isogenic cell lines. It included two
parental HCT116 colon cancer cell lines (P1 and P2), that each have three het-
erozygous driver mutations in the KRAS, PI3KCA, and β-catenin (CTNNB1)
genes. Three cell lines were generated for KRAS, PI3KCA and CTNNB1 with a
knockout (KO) of a single oncogenic mutant allele, leaving only one copy of the
respective WT allele. These cell lines are referred to as KRAS WT, PI3KCA WT
and CTNNB1 WT in this chapter. All other cell lines contain additional knockouts
of AKT1, AKT1/2 together, PTEN, MAP2K1 (MEK1), MAP2K2 (MEK2), TP53,
and BAX. HCT116 P1 was obtained from ATCC (www.lgcstandards-atcc.org) and
all other cell lines from Horizon Discovery Ltd. (www.horizondiscovery.com/). An
overview of the cell line genotypes and the affected pathways is shown in Figure
3.1.
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Figure 3.1: Overview of knockout alleles in the HCT116 colon cancer cell line panel on
the left. The right panel shows the affected pathways. Taken from (Breinig et al., in
preperation).

3.2 Materials and Methods

3.2.1 Screening protocol

A workflow of the screening protocol is shown in Figure 3.2. The cells of each
cell line were seeded and treated in 384 well plates. On average 1,250 cells were
seeded in each well and incubated for 24 h. The compounds, dissolved in DMSO
Dimethyl sulfoxide (DMSO), were added at a final concentration of 5 µM. After
the compound treatment, cells were incubated for 48 h. Then, the cells were fixed
and stained with Hoechst (DNA) and TRITC-Phalloidin (Actin). In the following
step, the plates were imaged using an IN Cell Analyzer 2000 microscope (GE) with
10x magnification. For each well, we obtained four 12 bit gray scale images each
of the Hoechst and TRITC channel. The size of the images was 2048 x 2048 px.
In total, approximately 295,000 images were recorded.

3.2.2 Image and data processing

I processed the images using the Bioconductor packages EBImage (Pau et al.,
2010a) and imageHTS (Pau et al., 2010b) following previously established ap-
proaches (Fuchs et al., 2010; Horn et al., 2011).

Due to low excitation and decreased signal at the image boarders, I cropped
150 px at each side of each image before processing. As a first step, nuclei in the
DNA channel images were segmented by adaptive thresholding and subsequent
morphological opening on the obtained segmentation mask. Next, a cell mask was
generated from the Actin channel using a combination of a fixed and an adaptive
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Figure 3.2: Workflow of the performed drug screen. Taken from (Breinig et al., in
preperation).
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threshold. To segment cells, nuclei were used as seeds for a Voronoi tessellation
and inflated into the cell mask (Jones et al., 2005). To filter out small debris and
large staining artifacts, candidate nuclei objects with a size of less than 100 px or
more than 3000 px, and candidate cell objects with a size of more than 15000 px
were removed from the segmentation masks.

After nuclei and cell segmentation, I extracted morphological and texture fea-
tures from each single cell by using the nuclei and cell segmentation masks. The
single cell features were summarized per well. The number of segmented cells per
well was used as a surrogate for cell number or growth. I calculated the trimmed
mean across all cells in a well for each feature, discarding the bottom and top 10 %
of the values. Additionally, the standard deviation of each feature was calculated
across the cell in each well. For some features additional quantiles at 1 %, 5%,
95% and 99% were calculated. In total 395 features were extracted for each well.

It is convenient to transform the feature data to a logarithmic scale for model
fitting with a multiplicative interaction model, which was used in previous studies
(Mani et al., 2008; Costanzo et al., 2010; Horn et al., 2011). To avoid singularities
with negative feature values, I used a so-called generalized logarithm transforma-
tion (Huber et al., 2002):

f(x, c) = log

(
x+
√
x2 + c2

2

)
. (3.1)

For c = 0, this corresponds to the regular logarithm. For c > 0, the function is
smooth for all real values of x, avoiding singularities at zero and negative values.
For x� c the function is approximately equivalent to the regular logarithm. For
c, I used the 5% quantile of the empirical distribution of each feature. In some
cases, when the quantile was zero, I used 0.05 times the maximum as parameter c.

To assess the reproducibility for each feature, I calculated the correlation be-
tween the two replicates. All features that had a correlation coefficient of less than
0.7 between the replicates were removed from further analysis.

3.2.3 Feature selection and display of phenotypic profiles as
phenoprints

The data set contained partially redundant features. Therefore I adapted an ap-
proach to select a subset of the feature containing the least redundant information,
as described in a previous study (Laufer et al., 2013). Starting from the prese-
lected cell number feature, this approach iteratively selected the feature that had
the highest residual information. For this, each feature was fitted by a linear model
of the previously selected features and the correlation between the model residuals
of the replicates was used as surrogate for the residual information. This process
was stopped when the number of residual feature correlation coefficients with a
positive value was smaller than the number of negative values. At this point the
sampling of new information switched over to sampling from random noise for
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which one expects to have approximately 50 % positively and 50 % negatively
correlated features.

The isogenic cell lines had varying proliferation rates that gave rise to differ-
ences in the final number of cells detected an the endpoint of the protocol. To
account for this effect, the cell number values were scaled, by affine transforma-
tion, for each cell line and replicate to the dynamic range defined by the median
values of the negative (DMSO) and positive (Paclitaxel) controls. The value of
the negative controls was set to 1 and the value of the positive controls was set to
0. With this approach scaled values below 0 and above 1 were possible.

For visualization of compound phenotypes from the extracted features, I scaled
the features using the following formula:

yij =
xij

MADj

, (3.2)

where xij is the mean value of the two replicates for each well i and feature j, and
MADj is the mean of the median absolute deviation calculated across all wells for
each replicate. These scaled feature values yij were further transformed with an
affine transformation to the interval from 0 to 1, so that, after the transformation,
the minimum value for each scaled feature is 0 and the maximum value 1. These
final values of selected features, which we termed phenotypic profiles, were shown
in radar plots, which we also called phenoprints (Section 3.3.2).

3.2.4 Detection of gene-drug interactions

To detect chemical genetic interactions I fitted the data with a multiplicative
model as previously described (Costanzo et al., 2010; Horn et al., 2011; Laufer
et al., 2013). The model was fitted using robust L1 regression implemented in the
medpolish function of theR package stats. In this iterative process row and column
medians were subtracted alternately until the relative change of the residuals falls
below a predefined threshold. The drug and cell line effects were represented by
the final row and column values respectively. The residual terms represented the
chemical genetic interaction coefficients. The process was performed separately on
both replicates for each individual feature.

To detect significant interactions, I used a moderated t-test, implemented in
the limma Bioconductor R package (Smyth, 2005) on the interaction coefficients
of both replicates with null hypothesis µ = 0. The p-values of this test were
multiple testing corrected using the method of Benjamini and Hochberg (Benjamini
and Hochberg, 1995) to control the false discovery rate. All interactions with an
adjusted p-value below the chosen threshold of 0.01 were selected as significant
interactions.
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3.2.5 Clustering of drugs and cell lines based on their inter-
action profiles

To display the interaction profiles, I calculated robust z-scores of the interaction
coefficients, scaling them in the same way as described in Formula (3.2).

Cell lines or compounds were clustered using the correlation between robust
z-score interactions calculated for cell lines and compound profiles respectively.
The following distance metrics were used between cell line and compound profiles:

dcell line(y1, y2) = exp(−cor(y1, y2))− exp(−1). (3.3)

dcompounds(y1, y2) = 1− cor(y1, y2), (3.4)

where y1 and y2 are the scaled interaction profiles of the respective cell lines or
compounds.

The cell lines and drugs were clustered using hierarchical clustering with the
calculated distances between cell line and drug profiles respectively.

3.2.5.1 Chemical similarity of compounds

To include information about the chemical similarity of compounds, I calculated
the chemical distance between compounds using Tanimoto coefficients (Tanimoto,
1957). I used the implementation in the ChemmineR Bioconductor R package (Cao
et al., 2008) to perform this task. This chemical similarity information is displayed
together with the drug interaction profile similarities.

3.2.5.2 Correlation between interaction profiles of shared drug targets

To test whether the combined approach of high-content imaging and using a panel
of isogenic cell lines was superior to using each approach alone, I calculated the
empirical distribution of correlation coefficients between scaled drug interaction
profiles. As inputs I used the following three data sets. First, the whole data
set, representing the combined approach, second, the data set of all features for
the parental cell line HCT116 P1, representing a high-content approach with one
single cell line, and third, the data set of only the cell number features for all 12 cell
lines, representing a viability screen of a cell line panel. The correlation coefficients
were categorized into the classes shared or non-shared target selectivity based on
whether they are annotated to share the same drug target. The difference in
the area under the curve (AUC) of the empirical cumulative distribution function
between the classes was calculated. This value served as an surrogate for how well
each approach could separate the two classes.

In a second categorization, correlation coefficients were classified into similar or
different based on their chemical structure similarity. If the chemical distance, cal-
culated with the ChemmineR R package, was below 0.6, compounds were assigned
to the similar chemical structure class.
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3.2.6 Follow-up: Quantification of synergistic compound com-
binations

To test predicted synergistic drug combinations, my collaborator measured the
influence of pairwise compound combinations on cell viability. He mimicked the
cell line genotype of a certain gene knockout, for which a chemical genetic interac-
tion was observed with a compound, by treating the parental HCT116 P1 cell line
with a combinatorial treatment of this compound and an inhibitor of the knocked
out gene. As a readout my collaborator used a CellTiterGlo assay (Promega).
Compounds were combined and then diluted in a 1:2 dilution series to cover 10
concentrations. In the final concentration of drug treatment they cover a con-
centration range of 10 µM to 0.0195 µM. For the assay 1000 cells were seeded in
384 well plates and incubated for 24 h. After the compound treatment cells were
incubated for additional 72 h, followed by the CellTiterGlo assay readout using a
Mithras LB940 plate reader (Berthold Technologies).

For data normalization, I used the cellHTS2 Bioconductor R package. The
plate reader data was first log transformed and then normalized with the normal-
ized percent inhibition (NPI) method. This means that, for each plate, the value
of each measurement is subtracted from the mean value of the positive controls
and then divided by the difference between the mean values of the positive and
negative controls.

To quantify synergistic drug combinations, I used the Bliss independence (BI)
and the highest single agent (HSA) previously described in large-scale combinato-
rial compound screens for drug synergism (Borisy et al., 2003; Tan et al., 2012).

In the multiplicative BI model, the expected value of combined drug inhibition
is the sum of the individual inhibitions on the log scale:

Icombination,BI = IdrugA + IdrugB. (3.5)

For the HSA model the expected value is the maximum inhibition of the two
individual drug inhibitions:

Icombination,HSA = max(IdrugA, IdrugB) (3.6)

The inhibition is calculated from the measured NPI values in the following way:

Idrug x = 1− NPIdrug x (3.7)

To detect statistically significant synergistic drug combinations, the measured
inhibition values of the drug combinations were compared to the expected values
using a one-sided two-sample Student t-test with the alternative that the mean of
the measured values is smaller than the mean of the expected values.
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3.2.7 Follow-up: Quantification of the proteasome inhibi-
tion of compounds

To test whether the compounds found in one of the drug clusters affect protea-
some activity, my collaborator performed a cell-based proteasome activity assay.
For this, HCT116 cells were seeded in a 384 well plate at a concentration of ap-
proximately 3000 cells per well and incubated for 24 h. Then the compounds
ZPCK, Disulfiram, CAPE, tyrphostin AG555, AG1478, DAPH (all from Sigma),
Bortezomib (from NEB) and MG132 (from MerckBioscience) were added at a final
concentration of 5 µM and 0.1 % DMSO. After additional incubation for 24 h the
caspase-like, trypsin-like and chymotrypsin-like proteasome activity was measured
with the Proteasome-GloTM Cell-Based Assay Kit (Promega). The readout was
done with a Mithras LB940 plate reader (Berthold Technologies). To normalize for
compound effects on cell viability, a CellTiterGlo assay (Promega) was performed.

For the data analysis, I calculated the mean value of the two wells for each
assay-drug combination on the 5 plates. These values were corrected for viabil-
ity effects by dividing the corresponding value of the CellTiterGlo assay on the
plate, thereby setting the values of the CellTiterGlo assay to 1 on each plate for
each assay. The proteasome activity was then calculated relative to the DMSO
controls by dividing each value by the corresponding DMSO value, setting the
proteasome activity of all DMSO measurements to 1 on each plate for each assay.
The inhibition Idrug for each drug was calculated as the difference from this value:

Idrug = 1− NPAdrug , (3.8)

with NPAdrug being the normalized proteasome activity for the given drug.
To test for statistically significant proteasome inhibition of the compounds, I

performed a Student’s t-test comparing inhibition values of each compound against
the null hypothesis of zero effect.

3.3 Results
We established a high-throughput microscopy approach to quantitatively measure
the genotype dependent phenotypes in response to compound treatment. The
LOPAC library of 1280 pharmacologically active compounds was screened against
a panel of isogenic HCT116 colon cancer cell lines (overview in Figure 3.1).

The images were processed as described in Section 3.2.2. For each well 395
features were extracted that describe the phenotype of cells treated with the com-
pound in the respective well.

3.3.1 Data quality control and feature selection

In this section I describe three quality control steps that I performed on our data
set. First, I checked the reproducibility of features between replicates, followed by
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the selection of a non-redundant set of features. For the selected features I checked
that no obvious technical biases were present.

The reproducibility between replicates was high for many features. In total
310 features exceeded the threshold of 0.7 for the Pearson correlation coefficient.
The distribution of these correlation coefficients is shown in Figure 3.3. For three
features individual scatter plots are shown in Figure 3.4. They represent the
feature cell number, which is highly reproducible, the feature 1 % quantile of nuclei
eccentricity, which falls just below the chosen threshold of 0.7, and the feature
mean position of cell nuclei on the x-axis, which, as expected, has essentially zero
correlation.
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Figure 3.3: Distribution of correlation coefficients for all extracted features. The hor-
izontal line represents the threshold of 0.7 used to filter out features that were not re-
producible across replicates. The colored points represent the single features shown in
Figure 3.4.

The 310 features that were left after the filtering step were partially redun-
dant. In order to select a non-redundant subset of features, I used the iterative
feature selection algorithm described in Section 3.2.3, using cell number as the
first preselected feature. This algorithm selected a set of 20 features before the
stop criterion was reached. The residual correlation of the selected feature at each
iteration is shown in Figure 3.5 (a). Except for the second iteration, where the first
free feature is chosen after the preselected cell number, the values of the residual
correlations decreased with the number of iterations, representing a decrease of
the residual information that was contained in the remaining features.
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Figure 3.4: Scatter plots of individual features. Cell number, which was highly correlated
(a), 1 % quantile of the nuclei eccentricity, which was just below the threshold of 0.7 (b),
and the mean position of cell nuclei on the x-axis with a low correlation (c)
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Figure 3.5: Result of the feature selection algorithm. Correlation of the residual feature
values at each step of the iterative feature selection algorithm (a). Fraction of positively
correlated residual features at each step of the iterative feature selection algorithm (b).
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The fraction of positively correlated residual features, which was used for the
stop criterion of the algorithm is shown in Figure 3.5 (b). All features for which
the number of positively correlated residual features was greater than 0.5 were
selected.

To check for potential batch effects and spatial plate effects I generated box
plots and screen plots of the whole plate for the transformed data of all selected
features. In Figure 3.6 the box plots for the cell number is shown. The pattern of 4
plates per cell line is clearly visible in this plot and the plates were very consistent
per replicate.

11

12

13

14

11

12

13

14

01
02

00
1

00
2

00
3

00
4

00
5

00
6

00
7

00
8

00
9

01
0

01
1

01
2

01
3

01
4

01
5

01
6

01
7

01
8

01
9

02
0

02
1

02
2

02
3

02
4

02
5

02
6

02
7

02
8

02
9

03
0

03
1

03
2

03
3

03
4

03
5

03
6

03
7

03
8

03
9

04
0

04
1

04
2

04
3

04
4

04
5

04
6

04
7

04
8

Plate

C
el

l n
um

be
r

Figure 3.6: Box plots of the transformed cell number for each plate. The upper panel
shows the values for replicate 1 and the lower for replicate 2.

A screen plot of the cell number is shown in Figure 3.7 of all plates for replicate
1. The controls on the left side of the plates could be seen, as well as the periodic
pattern of 4 plates per cell line. No strong spatial effects over any plate could be
observed in this plot. Similar plots were observed for the other features, showing
that the analysis is not strongly influenced by possible plate or batch effects.

To account for the different proliferation rates of the isogenic cell lines (see
Figure 3.6), I scaled the cell number feature using the median values of the positive
and negative controls for each cell line as described in Section 3.2.3. A scatter plot
of the scaled cell number is shown in Figure 3.8. By comparison to the unscaled cell
number shown in Figure 3.4 (a), we can see that the effect of different proliferation
rates has been removed.
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Figure 3.7: Screen plot showing the cell number feature on all plates of replicate 1 in
the screen. The plot represents robust z-scores, calculated per plate by subtracting the
plate median and scaling by the median absolute deviation of each plate.

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

n

replicate 1

re
pl

ic
at

e 
2

Figure 3.8: Scatter plot of cell number scaled by the median values of the positive and
negative controls of each cell line. The positive controls are shown in red and the negative
controls in blue.
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3.3.2 Representation of phenotypes by phenoprints

To visualize the extracted features for different drugs, the values for each of the
20 features were scaled and transformed to the interval from 0 to 1 as described
in section 3.2.3. The 20 features were grouped into the 5 phenotypic categories,
namely cell number, DNA texture and intensity, nuclear shape, cell shape, and
actin texture and intensity. The phenotypes were displayed as radar plots named
phenoprints with the features ordered according to their phenotypic group (Figure
3.9).

We first focused on phenoprints of different drugs observed in the parental
cell line HCT116 P1. The phenoprint for a DMSO control is shown in Figure
3.9 (b). This phenoprint was similar to many compound phenoprints that did
not show a compound phenotype. An example for this was the phenoprint of the
MEK-inhibitor PD98.059 shown in Figure 3.9 (c). For other compounds that in-
duced a strong phenotype the phenoprint changed accordingly compared to the
DMSO control phenoprint. These changes were consistent for compounds which
gave rise to the same phenotype. For tubulin-targeting compounds the pheno-
type corresponded to cell death and condensed apoptotic nuclei. The phenoprints
for the two tubulin-targeting compounds Vinblastine and Vincristine represented
this phenotype and were highly similar (Figure 3.9 (d), (e)). The same was true
for the topoisomerase-targeting compounds Etoposide and Amsacrine. For those,
the phenoprint represented the phenotype of increased nuclear and cell size, at-
tributed to mitotic catastrophe (Maskey et al., 2013). Both compounds had similar
phenoprints as shown in Figure 3.9 (f), (g). Other captured phenotypes were, for
example, cell death with abnormal nuclei and strongly decreased actin signal, ob-
served for the compound Ouabain (Figure 3.9 (h)), and elongated cells for the
compound Rottlerin (Figure 3.9 (i)).

The different phenotypes inherent to the different genetic backgrounds were
also captured by phenoprints as shown in Figure 3.10. However, the differences
are only modest for most isogenic cell lines compared to the parental cell lines.
The strongest differences were observed for the double AKT1/2 knockout cell line,
which exhibited strongly reduced actin signals.

Taken together, this showed that our approach was capable of detecting dif-
ferent phenotypes induced upon compound treatment or based on the underlying
genotype of the isogenic cell line and that these phenotypes could be represented
by the selected features as phenoprints.

3.3.3 Cell line specific responses to compound treatment

As already mentioned, the phenoprints for the different isogenic cell lines repre-
sented some differences between the isogenic cell lines. For example, the phenoprint
of the CTNNB1 wild-type cell line represented the protrusions of the cell bodies
and aberrant nuclear shape compared to the parental cell line (Figure 3.11)
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Figure 3.9: Phenotypes and phenoprints of different compounds. The features are
ordered according to their phenotypic group, as shown in the legend (a). Phenoprint
for DMSO control (b), MEK-inhibitor PD98.059 (c), tubulin-targeting compounds Vin-
blastine (f) and Vincristine (e), topoisomerase-targeting compounds Etoposide (f) and
Amsacrine (g), Na/K pump inhibitor Ouabain (h) and PKC inhibitor Rottlerin (i). Scale
bars, 20 µm. Taken from (Breinig et al., in preperation).
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Figure 3.10: Phenoprints of the different isogenic cell lines for one DMSO control well.
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Figure 3.11: Phenotypes and phenoprints for DMSO, Etoposide, Colchicine and
BIX01294 in the parental cell line (CTNNB1 mutant (mut)) and CTNNB1 mutant knock-
out cell line (CTNNB1 WT). Taken from (Breinig et al., in preperation).

Compound treatments either induced genotype-dependent or genotype-indepen-
dent phenotypic alterations in the different isogenic cell lines. For example, cellular
and nuclear size increased in parental HCT116 cells and CTNNB1 WT cells upon
Etoposide treatment. In both cases the corresponding phenoprints changed accord-
ingly, displaying comparable changes (Figure 3.11). Colchicine, a spindle toxin,
on the other hand, induced apoptosis in parental HCT116 cells and led to inflated
cells in the CTNNB1 WT background (Figure 3.11). Furthermore, BIX01294, a
histone methyltransferase inhibitor, induced strong cell condensation in CTNNB1
WT cells while only having a slight effect on parental HCT116 cells (Figure 3.11).
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In both cases these phenotypic differences were observed as different changes in
the shapes of the corresponding phenoprints shown in Figure 3.11.

In order to quantitatively assess such differences in the response to compound
treatment between the genetic backgrounds, I calculated compound-cell line inter-
action coefficients for the 20 selected features as described in section 3.2.4.

As an example, the obtained interaction coefficients are shown in Figure 3.12
for cell number. The interaction terms clustered around the origin and only a few
statistically significant interactions were observed, colored in blue if the adjusted
p-value was below 0.05 and colored in red if the adjusted p-value was below 0.01.
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Figure 3.12: Interaction coefficients calculated for cell number. Points with an adjusted
p-value below the threshold of 0.05 are colored in blue and below 0.01 in red.

After multiple testing correction and using a stringent threshold of 0.01 for
the adjusted p-values, 2359 significant interactions were scored. In total, the 2359
significant interactions represented 0.8 % of all possible interactions. 193 com-
pounds showed at least one significant interaction for one of the features, which
represented 15.1 % of the 1280 compounds tested. The distribution of the number
of drugs that had at least one interaction with one or up to twelve cell lines is
shown in Figure 3.13 (a). The total number of significant interactions and num-
ber of drugs having at least one significant interaction varied strongly between
the different isogenic cell lines (Figure 3.13 b and c). We observed that the cell
lines that already showed different phenotypes, e.g., the AKT1/2 knockout and
CTNNB1 WT cell line, showed the highest number of interactions, whereas the
lowest number of interactions was observed for the two parental HCT116 cell lines.
This is in line with previous studies in yeast, where the number of interactions per
gene correlated with the strength of the effect of the single gene deletion (Costanzo
et al., 2010).
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Figure 3.13: Distribution of the number of drugs that had at least one significant inter-
action in a certain number of cell lines out of the 12 possible cell lines (a). Distribution
of the total number of significant interactions per cell line (b). Number of compounds
that had at least one significant interaction per cell line (c).
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Since we calculated interactions for all 20 selected features, we looked at the
overlap of called interactions from the 5 phenotypic categories. As shown in Figure
3.14, there were many interactions specific to one of the 5 phenotypic categories.
Thereby, the use of a multi-parametric feature space strongly increased the tested
interactome space for compound-cell line interactions.
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Figure 3.14: Venn diagram of interactions shared between the 5 phenotypic categories.
Blank field represent zero values that have been removed for the visualization. Taken
from (Breinig et al., in preperation).

3.3.3.1 Specific interaction of the KRAS WT cell line and Ganciclovir

To benchmark the quality of our approach to call cell line specific interactions,
I made use of a positive control that was contained in our data set. The KRAS
WT cell line expresses a viral Thymidine Kinase (TK) that was used as selection
marker during genetic engineering of the cell line and left as a fingerprint. The
compound Ganciclovir is converted into a highly toxic compound upon TK activity
(Crumpacker, 1996). Therefore Ganciclovir selectively impaired cell fitness for the
KRAS WT cell line, affecting the cell number and causing phenotypic changes of
increased cell nuclei and body (Figure 3.15).

The interaction profiles of Ganciclovir are shown in Figure 3.16 as starplot.
In this representation the interaction coefficient of each feature is represented as
segment from the origin (0) to the corresponding value. The scale is defined by the
maximum value observed across the features. Specifically for the KRAS WT cell
lines interactions were observed. For all other cell lines the calculated interaction
coefficients were extremely small. Therefore, our approach clearly identified the
specific interaction of Ganciclovir and the KRAS WT cell line. In this respect
Ganciclovir served as a good positive control.
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Figure 3.15: Phenotype of the KRAS WT cell line upon Ganciclovir treatment (left
panel). Cell nuclei and body are increased in comparison to DMSO treated cells and the
cell number is reduced (negative control, right panel). Scale bars, 20 µm.
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Figure 3.16: Starplots of the interaction coefficients observed for the different cell lines
upon Ganciclovir treatment. The KRAS WT cell lines shows strong interactions for
several of the selected features. (*) adjusted p-value < 0.01, red and turquoise define
whether the sign of the interaction coefficient was positive or negative.
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3.3.3.2 Specific interactions of the CTNNB1 WT cell line

Examples for cell line specific changes upon compound treatment were the inter-
actions between the CTNNB1 WT cell line and the compounds Colchicine and
BIX01294, already mentioned at the beginning of Section 3.3.3. For these com-
pound cell line combinations the interaction profiles are shown in Figure 3.17.

CTNNB1 mut CTNNB1 wt

0
10
20
30
40
50

In
te

ra
ct

io
n 

sc
or

e

Direction
negative
positive

Interactions of Colchicine

CTNNB1 mut CTNNB1 wt

0

20

40

60

80

In
te

ra
ct

io
n 

sc
or

e

Direction
negative
positive

Interactions of BIX

Figure 3.17: Starplots of the interaction coefficients observed for the parental cell
line HCT116 P1 and the CTNNB1 WT cell lines and the compounds Colchicine and
BIX01294. (*) adjusted p-value < 0.01, red and turquoise define whether the sign of the
interaction coefficient was positive or negative.

The observed phenotypic changes were therefore captured by the selected set
of features and detected as cell line specific interactions with our approach. Of
importance is the fact that in both cases no chemical genetic interaction was
observed for the cell number. Therefore, these interactions would not be detected,
if only cellular fitness was used as a readout.

3.3.3.3 Compound cell line interaction network

Integrating all detected interactions, we created a phenotypic chemical-genetic
interaction map. For this map, I filtered out compounds that showed an interaction
for only one single feature or with more than 3 cell lines to reduce over-plotting.
The resulting map is shown in Figure 3.18.
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Figure 3.18: Interaction map of chemical-genetic interactions observed in our data set.
The colored edges in the network represent the different phenotypic classes. Boxes high-
light compounds for which the chemical structures are shown and that are discussed in
more detail in the text. Taken from (Breinig et al., in preperation).
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Several examples of biologically relevant interactions are highlighted. The PI3K
inhibitor Wortmannin was interacting with KRAS WT cells. This suggests that
cells with WT KRAS signaling are more dependent on PI3K signaling and are
particularly affected by the inhibition of PI3K.

The Casein Kinase 2 (CK2) inhibitors TBBz (4,5,6,7-Tetrabromobenzimidazole)
and DMAT (2-Dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole) showed in-
teractions with the PI3K WT cell line but not with the AKT1 and AKT1/2 KO
cell lines, suggesting that CK2 could compensate perturbations at the level of
PI3K and potentially further upstream in the PI3K-AKT pathway. This is in line
with the known function of CK2 as a direct activator of AKT and its inhibitory
function on PTEN (Torres and Pulido, 2001; Di Maira et al., 2005). In addition,
the recent finding that a combinatorial inhibition of CK2 and epidermal growth
factor receptor (EGFR) is synergistic, agrees with our data (Bliesath et al., 2012).

The MNK1 inhibitor CGP 57380 (N3-(4-fluorophenyl)-1h-pyrazolo[3,4-d]pyrimi-
dine-3,4-diamine) showed interactions with the KRAS WT and PI3K WT cell line.
This suggests that the MAPK- and PI3K-signaling pathway meet at the level of
MNK1. MNK1 has been shown to be activated by MAPK signaling through Erk1
and Erk2 and to modulate cell growth and proliferation through the interaction
with eIF4E (Waskiewicz et al., 1997; Pyronnet et al., 1999). The observed link
between MAPK/MNK1 and PI3K/mTOR signaling is further supported by the
discovery that mTOR inhibition induces eIF4E phosphorylation via PI3K and Mnk
(Wang et al., 2007).

In summary, these observations showed that our phenotypic chemical-genetic
interaction map captured known connections of signaling pathways. It further
revealed new potentially druggable interactions of signaling pathways relevant to
cancer.

3.3.4 Prediction of synergistic drug combinations based on
cell line specific interactions affecting cell number

As a direct application of harvesting the potentially druggable interactions that
we identified, we looked for compound cell line interaction that showed a synthetic
lethal interaction affecting the observed cell number. Focusing on drugs that are
used in the clinic we found two of such interactions (highlighted as red blocks in
Figure 3.18).

First, the DNA-alkylating agent Bendamustine showed a synthetic lethal inter-
action with the AKT1/2 KO cell line. Bendamustine is approved for the treatment
of Chronic Lymphocytic Leukemia (CLL) and it does not show cross-resistance
with other alkylating agents (Keating et al., 2008).

Second, the Aldehyde Dehydrogenase inhibitor Disulfiram and the MEK1 KO
cell line showed a synthetic lethal interaction. Disulfiram is used in clinic for the
treatment of alcoholism (Lövborg et al., 2006).

For both compounds several interactions affecting other features were observed
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for the cell line with the corresponding synthetic lethal response. The complete
interaction profiles of these drugs across all cell lines are shown in Figure 3.19 and
3.20.
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Figure 3.19: Interaction profiles of the drug Bendamustine. Bendamustine has a syn-
thetic lethal interaction with the AKT1/2 KO cell line. (*) adjusted p-value < 0.01,
red and turquoise define whether the sign of the interaction coefficient was positive or
negative.

To test if these synthetic lethal interactions could be used for improved treat-
ments, we tested for drug synergism of Bendamustine with AKT inhibitors and
Disulfiram with MEK inhibitors as described in Section 3.2.6. Indeed, we could
show that the combination of Bendamustine with AKT inhibitors significantly re-
duced cell viability of parental HCT116 cells as shown in Figure 3.21. The same
was true for the combination of Disulfiram with MEK inhibitors as shown in Figure
3.22. This observation was consistent for the BI and HSA model used to estimate
the synergistic effect. Additionally, we were able to show the synergism of these
drug combinations in another colon cancer cell line (DLD-1).

In summary, this demonstrated that our chemical-genetic interaction map al-
lowed us to predict synergistic drug combinations whose discovery would not have
been immediately obvious by other means.
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Figure 3.20: Interaction profiles of the drug Disulfiram. Disulfiram has a synthetic lethal
interaction with the MEK1 KO cell line. (*) adjusted p-value < 0.01, red and turquoise
define whether the sign of the interaction coefficient was positive or negative.
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Figure 3.21: Synergistic drug combinations of Bendamustine and AKT inhibitors. Single
drug effects, estimated combined effect (BI model) and measured combined effect are
shown for several drug concentrations. (*) p-value < 0.05, one-sided t-test.
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Figure 3.22: Synergistic drug combinations of Disulfiram and MEK inhibitors. Single
drug effects, estimated combined effect (BI model) and measured combined effect are
shown for several drug concentrations. (*) p-value < 0.05, one-sided t-test.

3.3.5 Discovery of connected biological processes, drug mode-
of-action and off-target effects

Our data set could be used to assess information of connected biological pro-
cesses, drug mode-of-action and off-target effects, by using a guilt-by-association
approach. These approaches were used previously to characterize compounds, in-
cluding chemical similarity of compounds (Young et al., 2008), phenotypic similar-
ity of compound responses (Perlman et al., 2004), and compound-gene interaction
similarity (Parsons et al., 2006).

I used hierarchical clustering as described in Section 3.2.5 to cluster cell lines
and compounds based on their interaction profiles.

3.3.5.1 Clustering cell lines based on their interaction profiles

The distance between cell line interaction profiles was calculated using Equa-
tion (3.3) and used for hierarchical clustering. The resulting cluster tree is shown
in Figure 3.23.

The two parental cell lines clustered closely together as expected. The cluster
tree split into three main branches. Interestingly, the KRAS WT and MEK1
KO cell line clustered together and away from the MEK2 KO cell line, which is
consistent with the finding that MEK1 is the essential regulator in the MAPK-
signaling cascade (Catalanotti et al., 2009).
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Figure 3.23: Cluster tree from hierarchical clustering of cell lines based on their inter-
action profiles.
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3.3.5.2 Clustering of compounds based on their interaction profiles

To cluster the compounds based on their interaction profile, I calculated the dis-
tances between compound interaction profiles using Equation 3.4. Additionally, I
calculated the chemical similarity of compounds as described in Section 3.2.5.1.
To integrate both sources, the interaction profile similarity and chemical similarity
were displayed together in Figure 3.24.
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Figure 3.24: Interaction profile similarity and chemical similarity matrix of compounds.
Compounds were clustered by hierarchical clustering of the interaction profiles. Above
the diagonal the distance between compound interaction profiles is shown. Below the
diagonal the distance between Tanimoto coefficients is shown as measure for chemical
similarity. Several clusters which were linked to functionally related compounds or bio-
logical processes are highlighted. Taken from (Breinig et al., in preperation).

From the exploration of this combined similarity matrix we could draw conclu-
sions about drug mode of action and interlinked biological processes in compound
sets that clustered together. The chemical similarity information showed that these
sets contained chemically similar as well as divergent compounds. A complete list
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of annotated clusters can be found in Table 1 in the Appendix.
For example, we found numerous tubulin targeting compounds to share highly

similar interaction profiles (C1, Figure 3.24). This cluster included structurally
similar as well as structurally unrelated compounds. Likewise, we observed a
cluster of two different MEK inhibitors (C2, Figure 3.24). Hence, our approach
identified drugs sharing the same target despite structural divergence.

We could further use the clustering result to predict off-target effects or the
primary mode-of-action of compounds. Cluster C17 and C18 were examples for
this.

In cluster C17 the compounds niclosamide and rottlerin clustered together.
Niclosamide is an anti-helmitic compound, which uncouples oxidative phosphory-
lation (Weinbach and Garbus, 1969; MacDonald et al., 2006). Rottlerin is classified
as a PKC-δ inhibitor, however our data suggested that its primary mode-of-action
is linked to uncoupling oxidative phosphorylation. This is in agreement with the
results of a recent study (Soltoff, 2001).

Cluster 18 contained Disulfiram, the chymotrypsin inhibitor ZPCK, the EGFR
inhibitor tyrphostin AG555 and the NF-κB inhibitor CAPE. A potential link be-
tween ZPCK and CAPE is the fact, that NF-κB is regulated via pathway compo-
nents of the proteasome (Kisselev et al., 2012). It is also known that Disulfiram
impairs proteasome activity (Lövborg et al., 2006). This suggests, that these
compounds cluster together because they all affect proteasome activity. This has
not yet been reported for tyrphostin AG555 which is also in the cluster. To test
this hypothesis, we performed an assay in parental HCT116 cells, measuring the
caspase-like, chymotrypsin-like, and trypsin-like proteasome activity as described
in Section 3.2.7. The result of this assay is shown in Figure 3.25. We observed
significant inhibition of the chymotrypsin-like and trypsin-like proteasome activity
in cells treated with Disulfiram, ZPCK, tyrphostin AG555, and CAPE. Compared
to the established proteasome inhibitors MG132 and bortezomib, the proteasome
inhibition was smaller for all compounds of the cluster. Additionally, AG1478 and
DAPH, two structurally different EGFR inhibitors did not affect proteasome func-
tion. In summary, our results indicate that the EGFR inhibitor tyrphostin AG555
shows an off-target effect by impairing proteasome function.

3.3.5.3 Correlation between interaction profiles of shared drug targets

To test the value of our integrated approach of high-content phenotypic and phar-
macogenetic profiling, I generated interaction similarity matrices mimicking other
screening methodologies. First, I used only the data set of all features for the
parental cell line HCT116 P1, representing a high-content approach with one sin-
gle cell line, and second the data set of only the cell number of all 12 cell lines,
representing a viability screen of a cell line panel. These matrices are shown in
Figure 3.26 ordered in the same way as the interaction similarity matrix for the
whole data set in the right panel and in Figure 3.24. The delineation of clusters
is best for the whole data set and gets noisier for the other approaches. Only the
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Figure 3.25: Proteasome inhibition upon compound treatment. The Chymotrypsin-like
(CT-L), trypsin-like (T-L), and caspase-like (C-L) activity of different compounds was
measured. The signals were normalized to DMSO control and corrected for cell viability
measured by a CellTiterGlo assay. (*) p-value < 0.05.

tight cluster of tubulin targeting compounds was stable in all approaches.

Figure 3.26: Interaction profile similarities for the whole data set (left panel), interaction
profile similarity mimicking a high-content screen (all features of the parental HCT116
P1 cell line, middle panel) and a pharmacogenetic screen (cell number feature of all cell
lines, right panel)

Next, I tested how well interaction profile similarities agreed with shared target
selectivity and chemical similarity as described in Section 3.2.5.2. After classifying
compound pairs into the classes of shared or non-shared selectivity and likewise
similar and different structure, the distribution of correlation values between the
compound pairs was investigated. In Figure 3.27 the correlation density is plotted
for each class of the target annotation.

The differences in the AUC values calculated from the empirical cumulative
distribution function are used to separate the two classes. In Figure 3.28 the result
is shown for the separation of the two classes defined by either target selectivity
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Figure 3.27: The density of correlation coefficients is plotted for the two classes of shared
or non-shared target selectivity. (a) using the whole data set, (b) using only the parental
cell line and all features, and (c) using only cell number as a feature for all cell lines.
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or chemical similarity.
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Figure 3.28: The difference in the AUC of the empirical cumulative distribution function
between the classes shared target and non-shared target (left panel) and between the
classes chemical similar and divergent (right panel).

The results showed that our combined approach was superior to either of the
two approaches alone, revealing the added information of our combined approach
of integrating high-content phenotypic profiling with pharmacogenetic interaction
profiling.
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3.4 Discussion

We generated the Pharmacogenetic Phenome Compendium PGPC resource by
combining chemical-genetic screening with high-throughput microscopy based phe-
notypic profiling. Our data set is of high quality and allowed us to identify geno-
type specific responses to drug treatment, potential drug synergism, connections
between signaling pathways, and drug mode-of-action or potential off-target ef-
fects. By using more phenotypic features, we greatly expanded the possible inter-
action space. Notably, some drugs only affected a single phenotypic class. Such
interactions would be missed if only cellular fitness was used as readout.

Using our interaction map, we were able to uncover connections between signal-
ing pathways. Understanding pathway structure could be used to predict possible
combination therapy. For example, the link between MAPK and PI3K signaling
that we observed in our data has been recently reported (Vizeacoumar et al., 2013).
The connections between these signaling pathways are important for understand-
ing drug resistance and predicting possible synergistic effects of combined drug
treatments (Lehár et al., 2007).

With our data set we predicted drug synergism of Bendamustine and AKT in-
hibitors on a rational basis and we further validated this link through combinatorial
drug screens. AKT inhibitors have recently entered the clinic and Bendamustine
is used clinically to treat several cancer types (Keating et al., 2008). Based on
the fact that AKT inhibitors and Bendamustine inhibit cell growth through differ-
ent pathways, a clinical study investigates the combination of Bendamustine and
the AKT inhibitor MK2206 in CLL patient (NCT01369849 at ClinicalTrials.gov)
(Ding et al., 2014).

Additionally, we predicted and verified a synergistic drug combination of MEK
inhibitors and Disulfiram, which is studied in clinical trials as an anti-cancer drug
(e.g. studies NCT00742911, NCT01907165, NCT01777919 at ClinicalTrials.gov).
The mode-of-action of Disulfiram is not clear and with our approach we showed
that Disulfiram inhibits the activity of the proteasome. This finding is in agree-
ment with previous findings, which showed that Disulfiram inhibits 26S proteasome
activity (Lövborg et al., 2006).

Along this line we identified a previously unknown off-target effect of the EGFR
inhibitor Tyrphostin AG555 on the proteasome. Furthermore, we were able to
render drug mode-of-action by hierarchical clustering of interaction profiles. These
are important steps in early drug development (Hopkins, 2008; Al-Lazikani et al.,
2012). Building on our scalable approach and harvesting the information obtained
from further screens will help to improve the development of effective drugs for
specific genetic backgrounds as well as synergistic drug combinations at early stages
of the development process.
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3.4.1 Comparison with other high-throughput drug screens

Genetic interaction screens have already been performed in different eukaryotic
systems. In Saccharomyces cerevisiae a genome-scale genetic interaction map was
created by studying the effect of double mutant fitness compared to the expected
fitness estimated from the single mutant effects (Costanzo et al., 2010). Clustering
of interaction profiles from this interaction map clustered genes into subgroups
that are involved in similar biological processes and revealed connections between
different cellular processes (Costanzo et al., 2010). The generation of a chemical-
genetic interaction map for 12 compounds and a Saccharomyces cerevisiae single
deletion library identified genes involved in drug sensitivity (Parsons et al., 2004).
Integration of this data with genetic interaction profiles allowed the identification of
drug targets or target pathways for the different compounds (Parsons et al., 2004).
Another study performed a screen for drug resistance using a yeast deletion library
and additionally haploinsufficient strains of the essential yeast genes (Lee et al.,
2014). All approaches allowed the researchers to link drug response and sensitivity
to specific genes or pathways. A drawback of these approaches is the fact that only
colony formation was used as a readout.

For higher eukaryotic systems, the generation of double knockouts in a system-
atic way has not been possible so far. A complementary approach is the use of
double gene knockdown by RNAi to generate genetic interaction maps. Investi-
gation of ricin susceptibility by genetic interaction mapping with double-shRNA
constructs recapitulated known pathways and further revealed previously unknown
links and functions (Bassik et al., 2013). The readout for the double-shRNA screen
is the enrichment of shRNA barcodes in bulk experiments, missing out on the pos-
sibility to capture phenotypic changes in individual cells.

Microscopy readouts of combinatorial siRNA treatments are possible using
combinatorial siRNA treatments plated onto screening plates by robotics. This
approach has been used in mouse fibroblasts, focusing on genes involved in chro-
matin regulation (Roguev et al., 2013). Roguev et al. (2013) showed that similar
interaction profiles of genes could be linked to physical interactions of the corre-
sponding proteins and that the interaction map identified connected pathways and
complexes.

A similar approach was used to generate a genetic interaction map in hu-
man cancer cells by high-throughput imaging and combinatorial RNAi treatment
(Laufer et al., 2013). Using multi-parametric interaction mapping Laufer et al.
(2013) identified known protein complexes.

These studies show how powerful genetic interaction approaches are in higher
eukaryotes. They provide a rich data set that can be integrated with chemical-
genetic interaction data, like our data set, to identify pathways involved in drug
response, drug mode-of-action, and possible off-target effects.

A different approach to study drug resistance or susceptibility is the screening of
large cell line panels of different backgrounds against a drug library. This strategy
has been employed recently by several groups.
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The Cancer Cell Line Encyclopedia (CCLE) integrated gene expression and
mutation data with pharmacological profiles of 24 anti-cancer drugs for approxi-
mately 500 human cancer cell lines (Barretina et al., 2012). Based on this data
set, Barretina et al. (2012) identified genetic and gene-expression based predictors
of drug sensitivity.

In a similar setup, the Cancer Genome Project (CGP) screened approximately
650 human cancer cell lines from diverse tissues against 130 drugs which are either
used already in clinic or are at a preclinical stage (Garnett et al., 2012). Garnett
et al. (2012) also linked frequently mutated genes and expression profiles with drug
sensitivity for a broad range of drugs based on their data.

The Cancer Therapeutics Response Portal (CTRP) is another study that screen-
ed 242 well characterized cancer cell lines against a set of 354 small molecules (Basu
et al., 2013). This study revealed associations between sensitivity to treatment by
small molecules and specific cancer mutations (Basu et al., 2013).

The aim of these studies was to provide a rich database that allows one to
find associations between drug sensitivity and specific cancer mutations or cancer
types. Testing and verifying these associations will help to find new biomarkers
by which patients can be stratified into responsive or non-responsive groups for a
given drug treatment.

All these studies use only cellular fitness as a phenotype measured across several
concentrations of each drug. The biggest drawback, however, is the small overlap
of findings between the different studies. A systematic comparison of the CCLE
and CGP study, using common drugs and cell lines, revealed that the correlation
between drug responses of cell lines was very low, while the genomic data were
highly correlated (Haibe-Kains et al., 2013). To improve the concordance between
these large scale studies a more standardized protocol for measuring drug response
seems necessary (Haibe-Kains et al., 2013).

One possibility along these lines would be to increase the phenotype space
using high-throughput microscopy following our approach. In this way, compound
effects can be identified for several phenotypes, possibly improving the consistency
between different studies.

3.4.2 Drawbacks and possible improvements of our screen-
ing system

In general, all screening approaches have certain drawbacks depending on the
specific protocol used for screening. In our approach, we only used one fixed drug
concentration. Therefore, interactions that would have been observed at a lower
or higher drug concentration might have been missed. The same applies to the
single time point used in our screen. Multiple time points would allow insights
into the dynamics of drug responses, adding additional information.

Furthermore, we only used two microscopy channels for imaging the cells. With
the actin and DNA signal we could already extract information on nuclear and
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cellular features. Further improvements could be achieved by making use of ad-
ditional microscopy channels. For example, certain stress responses or pathway
specific responses could be imaged by using corresponding fluorescent markers.

Although the interaction of Ganciclovir and the KRAS WT cell line served
as a positive control, it directly showed that remaining fingerprints from the ge-
netic engineering process can influence the chemical genetic interactions observed
for the different cell lines. This observed interaction is due to the expression of
the Thymidin Kinase rather then the KO of the KRAS mutant allele. Therefore,
conclusions drawn from screens with cell lines which contain remaining selection
cassettes should be interpreted with care. For future experiments cell lines with
minimal fingerprints from genomic engineering should be used to avoid these prob-
lems.

3.4.3 Outlook

Recent advances in genome editing have first been driven by Zinc-finger nucle-
ases (ZFNs) and transcription activator-like effector nucleases (TALENs). These
techniques offer the possibility to generate site-specific double-strand breaks in the
DNA (Gaj et al., 2013). In combination with the endogenous repair mechanisms
for DNA double-strand breaks, non-homologous end joining (NHEJ) orhomology-
directed repair (HDR), this offers many possibilities for genome editing (Gaj et al.,
2013). A more recent genome editing technique makes use of clustered, regularly
interspaced, short palindromic repeats (CRISPR) and Cas nucleases to introduce
DNA single- or double-strand breaks (Sander and Joung, 2014; Hsu et al., 2014).
Using these techniques the generation of genetically modified cell lines becomes
much easier and can be performed in higher throughput. This provides the tools
to generate cell line panels with well defined mutations in specific genes that can
be used for chemical-genetic screening approaches.

The CRISPR-Cas technology has already been employed to perform genome-
wide gene knockout screens, which enable screening for positive and negative
selection for a given treatment (Wang et al., 2014; Shalem et al., 2014). This
screening methodology provides a complementary approach for chemical-genetic
screening. Since it makes use of bulk experiments, it will be possible to investigate
genetic drug resistance and sensitivity for different drugs using high-throughput
approaches in the future.

To better reflect the disease model of interest, the generation of patient-derived
induced pluripotent stem cells (iPS cells) seems a promising approach to generate
disease models that can be used for high-throughput screening. First steps in
this direction have been taken, e.g., for studying cardiovascular disease (Matsa
et al., 2014). Patient-derived iPS cells are already comercially available and used
as a model system for drug screening and testing for cell toxicity of candidate
drugs (Oksana et al., 2014). Furthermore, if the disease can be causally linked
to a mutation, the genomic loci containing this mutation could be corrected or
introduced by the previously mentioned genetic engineering approaches in patient-
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derived iPS cells. This provides the possibility of screens with paired study designs
of disease and WT alleles which might be particularly informative.

The generation of cell lines carrying variants or mutations that were identified
by GWAS approaches would also allow for better functional characterization and
identification of the responsible variant.

A combination of the mentioned approaches and building up a resource of
high quality microscopy images for various drug screens in different disease or
toxicity models will be a valuable resource for further research and drug discovery.
Integrating the data from such a resource in early drug development will improve
the development process. Based on the data, toxicities could be identified and
possibly circumvented at an early stage. Genotype-specific responses should be
tested additionally and could be used for better patient stratification in clinical
trials, leading to more successful outcomes.

Combining all the mentioned approaches and possibilities will help to improve
patient-stratified medicine, where patients will receive specific drug treatments
based on their individual genotype.
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Chapter 4

Conclusions

Science has always been driven by the development of new technologies. Nowa-
days, in the genomic era, high-throughput studies using automated microscopy or
sequencing technology are powerful tools to further enhance our understanding of
fundamental biological processes and how the are connected. Today, more and
more of these studies are performed, generating a huge amount of data. Handling
and analyzing these data has become a challenge. Ever improving experimental
protocols require constant adaptation and development of new methods to ana-
lyze the generated data. This has led to many collaborative projects in which
experimentalists and data analysts work together to tackle these challenges.

After working on such collaborative projects which used high-throughput mi-
croscopy and sequencing technologies, I provided a comprehensive description of
the biological and technological background and described my contributions to
the analysis and results of these projects. I discussed the challenges and methods
required for the analysis of the different data types and which conclusions can
be drawn from them. In summary, this dissertation provides a good overview of
the potential of the respective projects and which hypotheses can be addressed by
similar projects.

A ongoing problem with large scale high-throughput studies is the lack of re-
producibility for the results. This is due to missing data or analysis tools, which
are not publicly provided. To address this problem, open source software and
publishing of the data and analysis pipelines is becoming more and more impor-
tant. For example, the Bioconductor platform provides a great open source tool
set in the R programming environment for the analysis of high-throughput exper-
iments. To address these needs, I developed the two R packages FourCSeq and
PGPC which both include vignettes that can be used to rerun the analysis pipelines
and reproduce the results.

A current challenge is the integration of multivariate data from different tech-
nology platforms, which will become more and more important to further un-
derstand biological processes and networks. Good examples of these studies are
the large Pan-Cancer studies, such as the TCGA (http://cancergenome.nih.gov),
where different cancer samples are profiled using different high-throughput tech-
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nologies and integrated with clinical data to improve the understanding of the
molecular basis of different cancer types.

Having worked a lot on chromosome conformation capture data, I think that
especially its integration with live cell super-resolution microscopy data will be
important to obtain a more complete picture of the dynamics involved in gene
regulation.

Other currently fast developing fields with a strong need for analysis tools are
metagenomics, single-cell technologies and super-resolution microscopy. The latter
two provide the possibility to access the cell to cell variability and hence will need
a kind of probabilistic description in the future to describe the biology of the
observed states.
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Appendix

Table of clusters from the drug-cell line interaction
profiling.
The following table was taken from (Breinig et al., in preperation).

Table 1: Table of clusters from the drug-cell line interaction profiling.

Cluster Compounds Target selectivity / Bio-
logical process

Associated references

C1 Podophyllotoxin

microtubule

-
Colchicine
Vinblastine
Vincristine
Taxol
CHM-1 hydrate
Nocodazol

C2 U0126 MEK1/2 -
PD98,059

C3 PD169316 p38 MAPK -
SB202190

C4 Betamethasone steroidal anti-inflammatory -
Beclomethasone glucocorticoids

C5 DMAT CK2 -
TBBz

C6 5’dFUrd DNA/RNA metabolism (Lum et al., 2004) this study
used yeast chemo-genomics
and identified that 5-FU pref-
erentially interferes with RNA
metabolism

5-FU
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C7 Etoposide Topoisomerase (Iorio et al., 2010) this study
used transcriptional profiling
and identified a link between
CDK2 inhibitors and topoiso-
merase inhibitors;

Amsacrine Topoisomerase (Pourquier et al., 2000) this
study identified a link between
ara-c and topoisomerase

NU2058 CDK2
Ara-c DNA metabolism
Cyclo-c DNA metabolism

C8 Mitoxantrone Topoisomerase (Bertrand et al., 1991) this
study identified links between
calcium levels and topoiso-
merase inhibitor activity

Camptothecin Topoisomerase
Thapsigargin Increased intracellular cal-

cium levels (SERCA in-
hibitor)
Increased intracellular cal-
cium levels (Ca ionophore)

Calcimycin
C9 Carboplatin DNA alkylating -

CB1954
C10 Bendamustine DNA alkylating (Leoni et al., 2008) this

study showed that bendamus-
tine has a different mode-of-
action as compared to stan-
dard DNA alkylating agents;

Iodoacetamine Alkylating (Strom et al., 2006) this study
identified pifithrin-µ as a com-
pound that interferes with p53
signaling;

Pifithrin-µ P53 (Kwok et al., 2001) this study
showed that parthenolide in-
terferes with IKKbeta due to
modifying cysteine residues;

Parthenolide IKKbeta, Cysteine modifying (Macpherson et al., 2007) this
study identified compounds,
including supercinnamalde-
hyde and iodoacetamide, that
interfere with TRPA1 due to
modifying cysteine residues

Supercinnamal-
dehyde

TRPA1, Cysteine modifying
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C11 Ouabain Na/K ATPase (Farr et al., 2009) this study
showed Golgi mediated trans-
port of Na/K pump subunits
to the plasma membrane

Dihydro-
Ouabain

Na/K ATPase

Brefeldin Golgi/ER
C12 CGP-74514A CDK1 (Boutros et al., 2007) this

review summarizes the inter-
play between CDK1, cdc25,
and translational control dur-
ing the cell cycle

Emetine Translation
NSC95297 Cdc25

C13 BAY11-7082 IKB-α (Grivennikov and Karin,
2010) this review summarizes
the links between NFκB
signaling and JAK/STAT
signaling

BAY11-7085 IKB-α
STATTIC STAT3

C14 YC-1 guanylyl cyclase activator (Lubbe et al., 2009) this study
showed a link between guany-
lyl cyclase activity and MMPs

ARP101 MMP2
C15 Cantharidic acic PP2A (Hernandez et al., 2010) this

study showed a link between
PP2 and GSK3

Cantharidin PP2A
BIO GSK3 > CDKs

C16 Phenanthroline Iron chelator (Oppenheim et al.,
2000)(Crider et al., 2012)
this study and review
summarize links between
iron metabolism, folate
metabolism and DNA methy-
lation

5-azacytidine DNA methyltransferase
Aminopterin Folate metabolism/DHFR
Methotrexate Folate metabolism/DHFR
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C17 Rottlerin PKCδ (MacDonald et al.,
2006)(Maioli et al., 2012)
this study and review high-
light that rotterlin does not
inhibit PKC and interferes
with oxidative phosphoryla-
tion;

Niclosamide Oxidative phosphorylation (Weinbach and Garbus,
1969) this study showed
that niclosamide uncouples
oxidative phosphorylation

C18 Disulfiram ALDH (Kisselev et al., 2012)(Griven-
nikov and Karin, 2010) these
reviews address proteasome
functions and NFκB signaling

ZPCK Chymotrypsin-A
Tyrphostatin
AG555

EGFR

CAPE NFκB
Arrow
1

Ara-c DNA metabolism (Christman, 2002) this re-
view summarizes the DNA
methyltransferase activity of
5-azacytidine

5-Azacytidine DNA methyltransferase
Arrow
2

BIO GSK3 > CDKs (Meijer et al., 2003) this
study revealed that indiru-
bin derivatives can inhibit
GSK3 as well as CDKs
and showed that BIO pref-
erentially inhibits GSK3
whereas indirubin-3-oxime
preferentially inhibits CDKs

Indirubin-3-
oxim

CDKs > GSK3

References in table:
Bertrand, R., Kerrigan, D., Sarang, M., and Pommier, Y. (1991). Cell death induced
by topoisomerase inhibitors. Role of calcium in mammalian cells. Biochem. Pharmacol.
42, 77–85.

Boutros, R., Lobjois, V., and Ducommun, B. (2007). CDC25 phosphatases in cancer
cells: key players? Good targets? Nat. Rev. Cancer 7, 495–507.
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