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Summary 
 

 Release of synaptic vesicles (SV) is a process that is orchestrated by proteins 

present in the presynaptic terminus called the active zone (AZ). Knowledge of the 

placement of proteins is necessary to understand how SV release occurs. There is 

limited information on the location of the AZ proteins from studies of biochemical 

assays or immuno-electron microscope.  

 Developments in fluorescence light microscopy are capable of reaching sub-

nanometer resolution and therefore can be used to image multiple proteins of the AZ. 

For instance, a technique called direct Stochastic Optical Reconstruction Microscopy 

(dSTORM) can reach a resolution of 20 nm in the x-y plane, which is an order of 

magnitude greater than conventional light microscope. This work is devoted to 

developing techniques, which enables the use of dSTORM on thick brain tissue 

samples. In this respect, two thick tissue handling techniques have been explored, 

namely tomoSTORM and Tokuyasu’s ultracryotomy. Using tomoSTORM, we could 

construct a super-resolution 3D structure of the calyx of Held synapse. In addition, we 

also demonstrate multicolor capability by being able to localize the abundantly 

distributed mitochondria to the synaptic compartment of the calyx of Held. Due to 

antibody staining limitations, Tokuyasu’s ultracryotomy was explored. Using this 

approach we gathered dual-color super-resolution data in the calyx of Held on the 

distribution of Bassoon with respect to Piccolo. In agreement with the standard-

resolution microscopy, overview image of Bassoon and Piccolo show that both 

proteins exist together in the majority of the AZs. In addition we can show at the 

nanoscopic level in a given AZ that the two proteins not only exist as separate entities 

but are also found to be colocalized. We also gathered data on the distribution of 

Septin 5 and Piccolo and found that at P7 Septin 5 and Piccolo colocalize while at 

P17 they do not colocalize. This observation is consistent with the finding that Septin 

5 may cluster voltage gated calcium channels at P7 at the AZ. 

 In addition, as dSTORM is limited to photoswitching of 2 dyes, efforts were 

made to extend this. To this extent, we show efficient photoswitching of phalloidin 

conjugated to ATTO 488, TRITC and BODIPY 650. 



 In summary, this thesis is focused on adapting dSTORM to thick tissue 

samples and developing multicolor photoswitching probes to explore multiple protein 

distribution in the synaptic compartments of mammalian brain tissue.  



Zusammenfassung 
 

 Die Freisetzung synaptischer Vesikel (SV) ist ein Prozess, der durch Proteine 

im präsynaptischen Terminus, auch aktive Zone (AZ) genannt, vermittelt wird.  

Kenntnis der Proteinverteilung ist zum Verständnis des Mechanismus der 

Vesikelfreisetzung notwendig.  

 Biochemische Analysen oder immunoelektronische Mikroskopiestudien haben 

bisher nur wenig Aufschluss über die Lokalisation von Proteinen in der aktiven Zone 

liefern können. 

 Durch die Entwicklungen in der Fluoreszenzmikroskopie sind Auflösungen im 

Nanometer-Bereich und darunter erreichbar, die zur Auflösung von Proteinen der 

aktiven Zone fähig sind. Die dSTORM-Methode (direct Stochastic Optical 

Reconstruction Microscopy; dt.: direkt stochastische optische 

Rekonstruktionsmikroskopie) erreicht etwa eine Auflösung von 20nm in der XY-

Achse, und liegt damit um den Faktor 10 unter der Auflösung konventioneller 

Lichtmikroskopie. 

 Diese Arbeit befasst sich mit der Entwicklung von Methoden, die den 

Gebrauch von dSTORM mit dicken Gewebeschnitten aus dem Säugetierhirn. In 

diesem Kontext wurden 2 Methoden zur Verarbeitung dicker Proben untersucht, 

tomoSTORM und Tokuyasu´s Ultracryotomie.  

 Durch tomoSTORM konnte eine hochauflösende 3D Struktur der Calyx von 

Held Synapse konstruiert werden. Zusätzlich konnte die Fähigkeit, mehrere Farben zu 

verarbeiten, durch die Lokalisation stark verteilter Mitochondrien im synaptischen 

Bereich der Calyx von Held gezeigt werden. Mit diesem Ansatz konnten zweifarbige, 

hochauflösende Daten der Calyx von Held im Bezug auf die Verteilung von Bassoon 

im Verhältnis zu Piccolo gesammelt werden. Übereinstimmend mit 

normalauflösender Mikroskopie zeigen die Daten eine Coexistenz von Bassoon und 

Piccolo in der Mehrheit der AZs. Zusätzlich konnte auf nanoskopischem Level 

gezeigt werden, dass beide Proteine nicht nur als separate Einheiten existieren 

sondern auch kolokalisieren.  

 Daten zur Kolokalisation von Septin 5 und Piccolo haben gezeigt, dass Septin 

5 und Piccolo bei P7 kolokalisieren, während dies bei P17 nicht der Fall ist. Diese 



Beobachtung bestätigt die Erkenntnis, dass Septin 5 essentiell für die räumliche 

Ansammlung spannungsabhängiger Kalziumkanäle in der ektiven Zone bei P7 ist.  

Zusätzlich wurde versucht, die Kapazität von dSTORM zu erhöhen, die derzeit bei 2 

Farbstoffen liegt. Effizientes Auflösen von Phalloidinkonjugaten mit ATTO488, 

TRITC und BODIPY 650 konnte gezeigt werden.   

 Zusammenfassend konzentriert sich diese Arbeit auf die Anpassung von 

dSTORM auf dicke Gewebeschnitte und die Entwicklung von mehrfarbigen 

Photoswitching Proben um die Verteilung von mehreren Proteinen in den 

synaptischen Bereichen des Säugetiergehirns zu untersuchen.  
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1 Introduction 
 

Sensory information such as the smell of an odor perceived at the periphery is 

processed by higher areas of the brain leading to the formation of a percept, which 

may further be translated into an appropriate muscle action such as avoidance of an 

object. This form of information processing that occurs in the nervous system of 

organisms is mediated by synaptic transmission. Information is passed on from one 

neuron to another neuron at special sites of contact called synapses. Synapses are 

specialized junctions where one neuron contacts and communicates with another 

neuron or cell type. The first neuron is said to be presynaptic and the second neuron is 

said to be postsynaptic. There are two types of synaptic contacts found in the nervous 

system, namely electrical synapses and chemical synapses. Electrical synapses occur 

at gap junctions where the membranes from the presynaptic and postsynaptic neurons 

are separated by a gap of 3 nm. Most synaptic transmission in the central nervous 

system (CNS) is, however, chemical in nature. The presynaptic and postsynaptic 

neurons at the chemical synapse are separated by a synaptic cleft, which is 20-50 nm 

wide. The cleft is filled with a matrix of fibrous extracellular protein. The presynaptic 

side also known as the axon terminal contains synaptic vesicles that store 

neurotransmitters.  

 

The chemical synapse is characterized by dense protein accumulations that make it 

electron dense within membranes on either side of the cleft (Figure 1.1). 

Neurotransmitters, once released, bind to membrane receptors at the postsynaptic 

density (PSD). These receptors convert the chemical signal into an electrical signal 
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Figure 1.1: Electron micrograph showing a synaptic junction, which is characterized by an electron 

dense accumulation marking the active zone and a postsynaptic black smear marking the post synaptic 

density with vesicles in close proximity to the active zone. The presynaptic density and the post 

synaptic density are separated by the synaptic cleft. Courtesy: Heinz Horstmann  

 

The basic requirements of chemical synaptic transmission comprises the following: 

1) synthesis of neurotransmitter 

2) packing it into synaptic vesicles 

3) a mechanism to make synaptic vesicles fuse with the plasma membrane to 

release its contents into the cleft in response to an action potential 

4) a mechanism for producing a postsynaptic current 

5) a mechanism for removing neurotransmitter from the synaptic cleft 

6) to be useful for sensation, perception and control of movement they should 

occur rapidly 

 

Neurotransmitter release into the synaptic cleft is triggered by an action potential in 

the axon terminal. Voltage gated calcium channels, which are present at the site of 

release open upon depolarization in the active zone. Alteration of protein 

conformation makes the plasma membrane fuse releasing the contents of vesicles.  

 

An understanding of the synaptic vesicle (SV) release process requires the 

characterization of synaptic proteins requires the characterization of the synaptic 

protein organization. The investigation on molecular scale necessitates the use of 

tools that provide nanometer scale resolution. Tools such as gold-EM, EM 

tomography and super-resolution light microscopy have the power to address this 

issue. Each technique has its advantages and disadvantages. EM for instance offers 
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the superior resolution and provides morphological information. However, it is 

cumbersome and limited in field of view. Super-resolution light microscopy has a 

plenty of molecular information but has no morphological information. However, 

super-resolution light microscope provides larger fields of view and therefore makes 

investigation of a population of synapses feasible. In this thesis, methods are 

developed to study the distribution of active zone protein organization  

 

1.1 The Presynaptic Cytomatrix of the Active Zone 
 

The synaptic protein architecture has been characterized by a combination of 

complementary methods that allowed for the construction of an average model of the 

placement of various proteins.  Super-resolution light microscopy, where used, has 

revealed differences in active zone protein organization thereby underlining its use. 

 

The active zone is a detergent insoluble protein matrix that is composed of 

evolutionarily conserved proteins such as Septins, RIM, Munc13, RIM-BP, α-liprin 

and ELKS. Moreover, in vertebrate synapses there are two additional cytomatrix 

proteins called Bassoon and Piccolo (Südhof, 2012).  

 

The active zone has at least 4 important functions: First, it docks and primes synaptic 

vesicle for its release. Second, the active zone proteins recruit calcium channels to the 

presynaptic membrane so that the calcium influx happens as close to the synaptic 

vesicle as possible. Third, presence of cell adhesion molecules enables the positioning 

of presynaptic and postsynaptic protein machinery opposite each other. Lastly, 

presynaptic proteins mediate short and longterm plasticity that is observed in synapses 

(Südhof, 2012). 
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Figure 1.2: A schematic showing all the components that are needed at the active zone to mediate the 

release of a synaptic vesicle. Adapted from Südhof and Rizo, 2011 

 

1.1.1 Molecular components of the AZ 
 

Electron micrographs of presynaptic structures appear as cone-shaped particles, which 

are interconnected by a meshwork of filamentous structures that extend into the 

cytoplasm (Bloom and Aghajnian 1968; Phillips et al. 2001). In addition, electron 

microscope tomography of the frog neuromuscular junction reveals a highly ordered 

presynaptic structure composed of “pegs”, “ribs” and “beams”. “Pegs” are the 

putative calcium channels, which link to synaptic vesicles and the “rib”. The “ribs” in 

turn contact “beams” (Harlow et al. 2001). Both the “beams” and the “ribs” are part of 

the cytomatrix of the active zone.  

 

Most proteins that compose the matrix are multidomain proteins where each domain 

has its corresponding binding partner (Figure 1.2). This renders them to perform 

multiple functions. RIM, for instance, is a protein, which is needed for vesicle 

docking and priming (Koushika et al., 2001; Schoch et al., 2002; Gracheva et al., 

2008; Kaeser et al., 2011; Deng et al., 2011; Han et al., 2011).  

 

Munc13 has two functions in the active zone. It enables the SNARE/SM complex 

fusion machinery for exocytosis (Basu et al., 2005; Stevens et al., 2005) and it is 

involved in short-term memory formation by regulating this priming activity.  
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α-liprin keeps the active zone as a cohesive unit (Zhen and Jin, 1999; Dai et al., 

2006). This protein was also shown to link trans-synaptic cell-adhesion to presynaptic 

active zone assembly. This is done via binding of α-liprin to LAR type receptor 

phosphotyrosine phosphatase (Ackley et al., 2005).  

 

ELKS has multiple binding partners such as RIM, α-liprin, and Rab6. Interestingly, an 

active zone protein in Drosophila called Bruchpilot is organized in such a way that it 

is a fusion protein where its N-terminal domain is related to ELKS while its C-

terminal is related to plectin. Deletion of Bruchpilot causes a loss of t-bar, which is a 

characteristic of Drosophila synapses (Wagh et al., 2006).  

 

As proteins of target for this thesis Bassoon, Piccolo, Septin 5 and voltage-gated 

calcium channels are described in more detail. 

 

1.1.2 The CAZ Proteins Bassoon and Piccolo 
 

Bassoon and Piccolo/Aczonin are active zone proteins and they are known to cluster 

synaptic vesicles as partial deletion of both of them disrupts vesicle clusters 

(Mukherjee et al. 2010). They are the largest active zone proteins identified so far 

weighing 420 and 530 kDa respectively (tom Dieck et al., 1998; Cases-Langhoff et 

al., 1996; Fenster et al., 2000; Wang et al., 1999). Both proteins have 10 regions in 

common called the Piccolo Bassoon homology (PBH) domains (Figure 1.3). The first 

2 regions have 2 zinc finger domains. Regions 4, 6, 8 of the PBH domain have CC 

regions. The C-terminal region of Piccolo is composed of a PDZ-domain and 2 C2-

domains (C2A and C2B), which are structurally related to those found in RIMs and 

the N-terminus is composed of a proline-rich Q-domain.  

 

 
 
Figure 1.3: Bassoon and Piccolo are highly homologous and share between them many domains 

namely: Zinc finger domain, coiled-coil domains and Piccolo-Bassoon-Homology sequence. Adapted 

from Schoch S et al. 2006 
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Mutant mice with truncated Bassoon (weighing 180 kD), which lacks the central 

region had been generated. Electrophysiology on hippocampal cultures reveal that a 

significant fraction of glutamatergic synapses are inactive but active synapses have 

normal release probability when compared to wild type synapses. At the ultrastructure 

level inactive synapse has a comparable appearance to wild type synapses. These 

mutant mice, however, undergo epileptic seizures. In photoreceptors and inner ear 

hair cells, a truncated version of Bassoon causes the synaptic ribbons to float and thus 

impairs neurotransmission. Therefore, Bassoon plays a role in anchoring synaptic 

ribbons (Altrock et al., 2003; Dick et al., 2003; Dresbach et al., 2003).  

 

In addition, Bassoon knockout mice show severe deficits in vesicle replenishment and 

voltage-gated calcium channel clustering. For instance, in cerebellar mossy fiber to 

granule cell synapses, it was found that short-term depression was enhanced in the 

absence of Bassoon. Further analysis revealed that vesicle-reloading rate was halved 

at these synapses (Hallermann, S. et al, 2010). In ribbon synapses, Bassoon in 

conjunction with synaptic ribbon was found to create release-sites by organizing 

voltage-gated calcium channels and the synaptic vesicles. Lack of Bassoon in these 

synapses interfered with vesicle replenishment (Frank T. et al 2010). In another 

similar study, Bassoon localizes voltage-gated calcium channels to the active zone via 

molecular interaction with the RIM-binding proteins (Davydova D et al, 2014).  

 

Lastly, the importance of both Bassoon and Piccolo in the active zone is underscored 

by the fact that their leads to degradation of synapses (Waites et al. 2013). 

 

1.1.3 Septins and the Voltage-Gated Calcium Channels 
 

Septins are a conserved family of GTP/GDP binding proteins encoded by 14 genes. 

They are associated with secretion, phagocytosis, cytokinesis, sperm motility and 

neurological diseases like Parkinsons and Schizophrenia (Ihara et al., 2003; Barral 

and Kinoshita, 2008; Weirich et al., 2008; Suzuki et al., 2009). These filamentous 

proteins have been implicated in docking or priming of vesicles for release in 

secretory cells (Hirokawa et al., 1989, Beites et al., 2005). They are 8.25 nm in 

diameter and are multiples of 25 nm in length (Hsu et al., 1998). They function by 
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braking release by binding to syntaxin of the t-SNARE complex in secretory cells 

(Beites et al., 1995, 2005).  

 

From the time of onset of hearing at P8-P12 till completion of development at P17-

P19 the nature of coupling between synaptic vesicles and voltage gated calcium 

channels (VGCCs) changes from a microdomain configuration where there is loose 

coupling so that a single vesicle is released by a cluster of VGCCs to a nanodomain 

configuration where there is tight coupling so that a single vesicle is released by one 

VGCC (Fedchyshyn and Wang, 2005). (Figure 1.4) 

 

   
 
Figure 1.4: Left is a schematic of an immature synapse where predominantly loose coupling between 

the calcium channels and the vesicles exist. Vesicles sense an overlapping cloud of calcium from a 

microdomain of calcium channels. Vesicles in this configuration are on average farther than 10 nm 

from the plasma membrane. Right is a schematic of a mature synapse where predominantly tight 

coupling between the calcium channels and the vesicles exist. Vesicles sense a calcium cloud from a 

single channel. Vesicles in this configuration are as close as 5 nm to the plasma membrane. Adapted 

from Lu-Yang Wang, 2007 

 

These findings suggest that microdomain and nanodomain configurations are distinct 

physical modalities and Septin 5 could play a possible role in determining the 

configurations (Figure 1.5). Septin 5 antibody, for instance, colocalizes with vGlut1 at 

the release plate of immature synapse (P8-P12) and does not colocalize with vGlut1 in 

mature synapse at P16-P19. Moreover, Bassoon antibody colocalizes with vGlut1 at 

all age levels. Therefore, Septin 5 plays a role in SV organization near active zone 

(Yi-Mei Yang et al., 2010).  
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In mature synapses 22 % of SVs are docked versus 10.5 % in immature synapses are 

within 5 nm of release plate. Between 5 nm and 20 nm from the active zone more SVs 

in immature synapse are found than in mature synapse. In Septin 5 knockout animals 

the above-discussed parameters are similar across all developmental stages and they 

are similar to those found in mature synapses. Evoked EPSCs are larger in septin 5 

knockout immature synapses than in wild type immature synapses. No difference, 

however, was found in mature synapses between the 2 genotypes. EGTA binds 

calcium ions and attenuates release when SVs and VGCCs are further apart as occurs 

under microdomain conditions and is hardly effective when SVs and VGCCs are 

tightly coupled under nanodomain conditions. In Septin 5 knockout animals however, 

EGTA is has no effect suggesting tight coupling (Yi-Mei Yang et al., 2010). 

 

 
 
Figure 1.5: Schematic of a vesicle, which is primed for release. Septin 5 is present at P-8 as shown in 

the left panel. It interacts with syntaxin motif of the SNARE protein to brake the release of the vesicle. 

At P17 there is no Septin 5 interacting with SNAREs and therefore the vesicle is closer to the plasma 

membrane. Adapted from Yi-Mei Yang et al, 2010 

 

1.2 The calyx of Held as a model synapse 
 

The calyx of Held is an excitatory gigantic axosomatic terminal in the auditory 

brainstem that attracted physiologists because of the ease to perform patch-clamp 

recording simultaneously from the pre- and post-synaptic cell (Borst JGG. et al., 

1995). The calyx of Held is formed by axons originating from the globular bushy cells 

(GBCs) of AVCN (Thompson AM, Schofield BR, 2000) (Figure 1.6). Almost all cells 

of MNTB are excited by contralateral sounds. The heavily myelinated axons of GBC 

allows for fast transmission of nerve signal. Due to large number of vesicles present at 
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the release site a single input can trigger a spike without failure. From a 

developmental perspective the calyx is needed for the survival of the principal cell 

(Jean-Baptiste M., Morest DK., 1975). 

 

QuickTime™ and a
 decompressor

are needed to see this picture.

 
 
Figure 1.6: A) A dorso-ventral section of the brain-stem showing the auditory pathway which begins 

with the hair cell contacting the cochlear spiral ganglion which provide input to the globular bushy 

cells whose terminals end in the MNTB as the calyx of Held B) A schematic of the calyx of Held and 

its postsynaptic partner. The calyx of Held contains multiple active zones acting in parallel. Adapted 

from von Gersdorff, H. and Borst, JGG, 2002 

 

The calyx of Held allows the principal cell to provide well-timed and sustained 

inhibition to other auditory nuclei. This is made possible by special adaptation found 

in the calyx of Held which include a large number of release sites with release 

probability, a large readily releasable pool, fast presynaptic calcium clearance, a large 

quantal size and fast AMPA-type glutamate receptors. Because there are so many 

active zones acting in parallel per principal cell, the calyceal currents are dominant. 

The number of active zones is estimated to be between 300 and 700 and about 100 

vesicles on average are released with a single action potential (Borst J. G. G.; van 

Hoeve J. S. 2012). Synaptotagmin 2 is involved in the rapid release of vesicles at the 

calyceal terminal. In the principal cell, the AMPA and NMDA glutamate receptors 

mediate the current. AMPA receptors show fast gating due to abundance of flop 

variant of GluA4 subunit.  

 

Due to the ease of recording, the calyx of Held has been the model synapse for the 

electrophysiological analysis of mammalian synaptic transmission. Moreover, as the 

soma of the neuron containing the calyx of Held is located much further apart, it is 
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also a convenient system for genetic manipulation. In other words injection of 

recombinant virus into the soma does not damage the calyx itself. In addition to all 

this, the calyx of Held has lent itself well to developmental analysis. For instance, 

starting at the onset of hearing the synapse develops from a cup shaped structure into 

a highly fenestrated structure. This developmental change is also accompanied by 

changes in the protein levels and hence the electrical properties of the synapse. Given 

the convenience of investigation and that a wealth of information about this synapse 

has been harnessed we chose to investigate protein distribution with super-resolution 

light microscopy in the calyx of Held. The calyx of Held has been chosen as standard 

synapse for the synaptic protein distribution investigation so that data gathered can be 

correlated with the existing information to enrich our understanding of the workings 

of calyx of Held. 

 

1.3 Imaging technologies for tissue imaging 
 

In the section below, various imaging techniques are described that have the potential 

to reach nanoscopic resolution. Techniques, which have the ability to reach 

nanoscopic resolution are important for the molecular characterization of synaptic 

proteins present in the active zone.  

 

1.3.1 Characterization of Molecules by Electron Microscopy 
 

Despite advances made from biochemical and molecular biological investigations, 

there is still a need for the molecules to be visualized as where they are located with 

respect to a substructure of a cell. Electron microscope is well suited for visualizing 

the various components of cells at a very high resolution (1 nm). It is from EM studies 

the average vesicle size is determined to be 40 nm at the synaptic terminus. Though 

conventional EM provides morphological information, it lacks molecular information. 

In order to obtain molecular information, one performs immunogold-labeling using 

gold nanoparticles which exist in different sizes like 10 nm, 20 nm, etc. A gold 

nanoparticle is easily visualized in EM as a dark particle as it is an electron rich metal. 

Under practical considerations, use of immunogold-labeling allows one to look at one 

molecule at a time.  
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EM tomography offers another way to unravel the identity molecules in biological 

sample in native conditions (Medalia O, et al., 2002). Conventional EM on 

chemically fixed biological material uses heavy metal staining to provide contrast. 

EM tomography on thick biological specimen is limited by the lack of contrast in the 

specimen and therefore cannot be used to determine the organization of molecules 

inside a cellular compartment in tissue (Fernández-Busnadiego R, et al., 2013). 

 

1.3.2 Characterization of Molecules by Light Microscopy 
 

Fluorescence light microscope offers an option to deal with the ability to 

simultaneously label multiple proteins.  

 

In 1873 Ernst Abbe discovered that microscopic things when examined under a lens-

based optical microscope if present as close as a half the wavelength of light cannot 

be discerned. A point source of light when focused through lens based system forms a 

diffraction limited spot with a full width at half maximum of λ/(2nsin2θ). All 

fluorophores within this spot emit at the same time and therefore cannot be separated 

from each other (Hell, S. W., 2007). As a result, molecules mediating vesicle release 

when stained with fluorescent markers and viewed with fluorescent microscope which 

is diffraction limited appear as a blur prohibiting one to precisely localize them with 

subnanometer precision – a prerequisite to understanding their function (Figure 1.7) 

 

   
 
Figure 1.7: A calyx of Held is labeled for active zone scaffold proteins Bassoon and piccolo and 

viewed in the conventional fluorescence microscope. Due to diffractional limitation of the conventional 
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microscope, synaptic proteins appear blurred and therefore lack exact positional information. 

Dondzillo, A. et al., 2010 

 

1.3.3 Diffraction-Unlimited Light Microscopy 
 

Entering the scene is an array of next generation light microscopy techniques which 

are famous for circumventing the diffraction barrier of conventional light microscope 

with the ability to reach resolutions of 20 -50 nm in the x-y plane which can resolve 

protein aggregates that compose macromolecular structures such as viruses (Muranyi 

W, et al., 2013) and nuclear pore complex (Szymborska A, et al., 2013) (Figure 1.8). 

 

 
 
Figure 1.8: The above schematic illustrates dimensions of objects probed by optical microscope. 

Conventional optical microscopes can visualize objects down to the size of a bacterium. Protein 

aggregates and viral particles can be visualized or resolved with the aid of super-resolution light 

microscopy. Molecules down to the size of a small molecule requires X-ray diffraction. Adapted from 

http://www.npl.co.uk/biotechnology/research/super-resolution-imaging/ 

 

There are two general schemes in which this is accomplished: one is done 

deterministically like Stimulated Emission Depletion (STED) (Hell, S. W., Wichman, 

J., 1994; Hell, S. W., Kroug, M., 1995) while the other is done stochastically (Rust, 

M. J. et al., 2006; Betzig, E. et al., 2006; Heilemann et al., 2008) such as stochastic 

optical reconstruction microscopy (STORM). 
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STED 
 

In the 1990s an idea arose which harnessed the molecular states of fluorophores for a 

subdiffraction imaging microscope called Stimulated Emission Depletion (STED) 

(Hell, S. W., Wichman, J., 1994; Hell, S. W., Kroug, M., 1995). Typically 

fluorescence involves exciting an electron by light from ground state (S0) to an 

excited state (S1).  

 

         
Figure 1.9: Electrons in a fluorescent dye are excited from ground state (S0) to excited state (S1) by 

absorption of photons (green arrow = higher energy). Both S0 and S1 are made of vibrational states. 

Relaxation of electrons to ground state causes emission of photons as fluorescence (yellow arrow = 

lower energy). In stimulated emission (red arrow) electrons are forced to relax onto higher vibrational 

states of the ground state thereby emitting photons with energy lower than conventional fluorescence. 

 

The electron falls back to the ground state by releasing a photon of higher 

wavelength. Recording of this fluorescence by a conventional microscope leads to the 

diffraction blurring of the point source of fluorescence. As the purpose of super-

resolution microscopy is to discriminate point sources within the diffraction limited 

spot, in STED, a second beam in the shape of a donut called the depletion beam 

(Figure 1.9), is used to quench the fluorescence around a given point source giving 

rise to a superior resolution of 20 nm. This is accomplished by making sure that the 

electrons from the molecules outside the point source of interest fall back to a higher 

vibrational state of the ground state (Figure 1.10). As a result, less energy is required 

to give away thereby emitting a photon in the higher wavelength region than photons 

emitted by the fluorophores present in the point source of interest. 
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Figure 1.10: A schematic of STED microscope. A depletion beam is overlaid on an excitation beam 

that results in fluorescence image, which is diffraction-unlimited. 

 

Repeating this process by scanning across the entire sample gives rise to super-

resolution image. STED is an ensemble technique, as it cannot discriminate between 

individual fluorescent molecules composing the point source. Moreover, it is 

deterministic in that each point of sample is scanned sequentially analogous to a 

scanning confocal microscope.  

 

dSTORM 
 

Single molecule detection offers another way to overcome the diffraction barrier of 

light microscope. In single molecule detection the accuracy of the position of the 

fluorophore depends on the number of photons collected (Gelles, J. et al., 1988). 

Based on this principle, fluorescence imaging with one-nanometer accuracy (FIONA) 

has been demonstrated to study the mechanism of movement on actin and tubulin 

filaments (Yildiz, A. et al., 2003). However, FIONA in itself does not lend to 

overcoming the diffraction barrier, due to the presence of multiple emitters in close 

proximity.  
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Therefore, a method called stochastic optical reconstruction microscopy (STORM) 

was introduced where fluorophores from a densely labeled sample are switched on 

and off stochastically (Rust, M. J. et al., 2006; Betzig, E. et al., 2006; Heilemann et 

al., 2008). A typical STORM imaging consists of acquisition of several thousand 

frames where each frame comprises a fraction of fluorophores that are switched on so 

that each fluorophore is sparsely distributed and thus optically resolvable. As a result, 

the position of each fluorophore can be determined with a high accuracy. Repeating 

this procedure on all frames allows the determination of the position of all 

fluorophores and an image is reconstructed. The resolution obtained from this process 

is about 20 nm. (Figure 1.11) 

             
     
Figure 1.11: (A) This graph depicts a fluorescent spot – the x-y plane shows the extent of spread of the 

fluorescent spot and the z-axis depicts the number of photons gathered. (B) A spot from each frame is 

fitted to a 2D gaussian and its center localized forming a collection of spots. (C) the collection of spots 

is drift corrected and (D) the standard deviation is calculated which is the precision of localization. 

Adapted from Rust, M.J. et al 2006 

 

The resolution of the image depends on the accuracy with which a given fluorophore 

has been localized as it undergoes a number of switching events. Summation of all the 
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localizations of a given fluorophore would give a point-spread function as the one 

depicted in (Figure 1.11). This is fitted to a Gaussian to calculate the standard 

deviation. The standard deviation calculated from a drift corrected positions gives on 

average 8 nm. This value corresponds to the uncertainty in the localization of single 

switch per imaging cycle. Full-width half maximum of such a distribution translates 

to 18 nm. Therefore, when an image is reconstructed under the above mentioned 

localization uncertainity two photoswitches, which are 20 nm apart can be resolved 

(Rust, M. J. et al., 2006). 

 

Direct STORM uses Cy5 directly as a photoswitch (Figure 1.12). The authors report 

switching on and off of Cy5 but reactivation of Cy5 requires a high power of 532 nm 

laser (Heilemann, M. et al., 2008). In a typical dSTORM imaging session, a densely 

labeled structure is irradiated with 633 nm laser to which switches Cy5 on and then 

off. Activation of Cy5 is made possible by shining 532 nm laser. The fluorophore 

turns on and then turns off with a rate constant Koff that linearly scales with the 

power of red laser while rate constant Kon linearly scales with the power of green 

laser. Linear dependence of rate constants enables the experimentator to adjust the 

density of probes populating an imaging cycle by adjust the intensity of red and green 

laser (Heilemann, M. et al., 2008). 

 

dSTORM can be used in combination with SNAP-tag technology. Moreover, probes, 

which are smaller in size than a conventional antibody can afford to be conjugated 

with only one fluorophore molecule thereby bringing the dye as close to the target as 

possible. Hence, dSTORM is well suited for subdiffraction measurements of samples 

labeled with small nano-probes. 
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Figure 1.12: In the dSTORM scheme, the fluorophore is turned from a light state to dark state in 

presence of reducing agents like MEA (A). Each spot is detected (B) and fitted to a Gaussian (D) to 

localize is its center (C). Collection of many localization events (E) produces a super-resolved 

structure. (Adapted from Heilemann et al, 2008) 

 

There exists an optical trick, which can be performed to better the resolution along the 

z-axis (Huang B. et al., 2008). This trick, however, is an intrinsic property of 

STORM. As mentioned before, in STORM there are randomly distributed spots of 

fluorescence. These spots are spots, which are in the focal volume. A focal volume 

consists of a focal plane where the fluorescent spot is at its brightest. As the 

fluorescent spot moves away from the focal plane its brightness diminishes as the 

point spread function (PSF) of spot increases. This increase in PSF is symmetric 

meaning just from the increase one cannot say if the spot is below or above the focal 

plane. One can destroy this symmetry by introducing a cylindrical lens, which 

introduces an asymmetric PSF. (Figure 1.13) 

 

 
 
Figure 1.13: Cylindrical-lens-based astigmatism discriminates positions of single fluorophores in the 

focal volume.  
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For instance, depending on how the cylindrical lens is installed along the optical path, 

spots above the focal plane could be horizontally elliptical while spots below the focal 

plane are vertically elliptical and spots at the focal plane are perfectly round. By 

engineering the PSF in this fashion people have reported a z resolution along the z-

axis of 50 nm (Huang B. et al, 2009). A reconstructed 3D STORM image is typically 

color-coded, where color is used to code for depth. (Figure 1.14)  

 

    
 
Figure 1.14: (A) 3D STORM reconstruction of mitochondria in a whole cell. The distance in z is color 

coded. (B) represents optical sections along x-z plane. Adapted from Huang B. et al, 2009 

 

Alternatively, a light microscopic technique called Array Tomography pioneered in 

Steven Smith’s lab accomplishes improvement of the z-resolution by physically 

sectioning the sample. The resolution here is then dictated by the thickness of the 

physical section, which can be as low as 40 nm (Micheva, K. and Smith, S. 2007). In 

Array Tomography, a tissue sample is embedded in a plastic resin. Hydrophilic resins 

such as LR White when solid can be cut using a diamond knife into sections as thin as 

40 nm. And subsequently they can be immunolabeled with fluorescent antibodies for 

light microscope. Serial sections forming a ribbon can be collected, imaged and 

overlaid on top of eachother to form 3 D structures with a voxel size of 200 nm x 200 

nm x 70 nm. (Figure 1.15) 
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Figure 1.15: A schematic of Array Tomography. Adapted from Micheva and Smith 2007 

 

This technique can be combined with dSTORM to obtain the 2 dimensional super-

resolution images on thin sections and subsequently arriving at a voxel size of 20 nm 

x 20 nm x k nm, where k is limited by the thickness to which the plastic resin section 

can be made. 

 

For the work of presynaptic protein investigation in this thesis, dSTORM is preferred 

to STED due not only to the fact that single molecule localization microscopy allows 

for the possibility of superior z-resolution but also to the convenience in setting up a 

STORM microscope. 

 

1.3.4 Alternative Photoswitches for Multicolor dSTORM 
 

Lastly, as the active zone is a multi-protein complex, it is important to develop 

switching strategies, which enable switching of multiple fluorophores in one buffer 

condition. Due to redox potential considerations, a maximum of two fluorophores, 

namely Alexa 532 and Alexa 647, can be switched on and off in dSTORM. Therefore, 

inspired by nature, the switching properties of fluorophores conjugated to phalloidin 

were explored. 
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Fluorophores in close proximity to a quencher such as tryptophan undergo quenching 

by photoinduced electron transfer. In PET electron-transfer from donor to acceptor 

occurs via nonradiative dissipation of excited state energy.  Free-energy of reaction 

and distance between donor and acceptor determines the electron-transfer. PET 

quenching can happen through transient molecular collision, which is also called 

‘dynamic quenching’ or by formation of stable molecular complexes in a process 

called ‘static quenching’. It is static quenching that provides the necessary contrast for 

analysis in single-molecule spectroscopy and fluorescence correlation spectroscopy 

(PET-FCS). The hetero-dimer complex formation between donor and acceptor in PET 

results from differences in oxidation and reduction potentials of the interacting 

compounds undergoing PET.   

 

This form of fluorescence quenching can be used to report on conformational changes 

in macromolecules. Tryptophan and guanine are compounds among amino-acids and 

nucleic acids that efficiently quench fluorescence from oxazine and rhodamine 

fluorophores. Polypeptides with the appropriate fluorophore/quencher pair are used in 

PET-FCS to study fast conformational changes with nanosecond time resolution. 

(Figure 1.16) 

  

   
Figure 1.16: The effect of photon-induced-electron transfer combined with fluorescence correlation 

spectroscopy is exploited in the study of protein folding dynamics. Use of PET-FCS enables detection 

of folding events with nanosecond temporal resolution. Adapted from Neuweiler et al, 2009  

 



 21

Probes such as phalloidin where fluorophores are in close proximity to a quencher 

such as tryptophan are predicted to make good photoswitches. Investigation of 

different phalloidin-fluorophore conjugates could enable expansion of the number of 

already existing photoswitches to more than two. 

 

1.4 Investigation of neuronal protein assemblies by Single Molecule 

Localization Microscopy (SMLM) 
 

Super-resolution light microscopy has already been used for studying how proteins in 

neurons are organized. These studies, as reviewed below, highlight the importance of 

the use of super-resolution light microscopy for correlating nanoscopic structure with 

function. 

 

Actin cytoskeleton  
 

STORM has been used to look at actin distribution in axons and dendrites. It was 

found that actin in axons was organized as rings spaced about 190 nm in distance 

(Figure 1.17). In dendrites the actin filaments were not rings but filaments. The 

periodicity of actin rings also determines the periodicity of sodium channels (Xu, K et 

al., 2012).  

 

 
 
Figure 1.17: Actin in axons do not form continuous filaments but form rings which are spaced about 

190 nm. Connecting the rings are spectrin filaments. Adapted from Xu, K. et al 2012 
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In auditory hair cells Bassoon was shown to cluster calcium channels (Frank, T. et al., 

2010). The mammalian brain tissue is challenging. Nevertheless three color STORM 

performed on brain tissue revealed a highly oriented presynaptic distribution of active 

zone proteins (Dani, A. et al. 2010). STORM analysis to map the synaptic proteins 

with respect to each other was limited to those synapses, which were oriented 

perpendicular to the synaptic plane. This way not only pre- and postsynaptic proteins 

could be resolved from each other to reveal the synaptic cleft but proteins within one 

compartment could also be assigned a specific location within the compartment. For 

instance, calcium channel binding protein RIM1 was found to be closer to the 

synaptic cleft compared to vesicle organizing scaffold protein Bassoon and piccolo. 

(Figure 1.18) 

 

  
 
Figure 1.18: STORM imaging of various synaptic proteins in the mammalian brain, when viewed from 

the side reveals an ordered arrangement of the various pre- and postsynaptic proteins. Adapted from 

Dani et al 2010 
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Post synapse: Spine Morphology and Actin dynamics 
 

Actin dynamics was monitored as a way to reveal changes in spine morphology. 

Actin dynamics was followed using live-PALM with spt (single particle tracking) 

PALM (Urban, N. T. et al., 2011). This showed actin filament polymerization was 

toward the center of the spine head from multiple perisynaptic sites of assembly, 

which is useful for repositioning of glutamate receptors (GluRs).  

 

Quantum dot tracking of AMPARs between synaptic and extrasynaptic compartments 

showed rapid replacement of desensitized receptors was found (Choquet, D., 2010). 

FRAP in addition also showed that majority of AMPARs are stable even though the 

structure of PSD is dynamic. 

 

1.5 Chapter summary and Aims of the thesis: 
 

The multidomain property enables the active zone protein to interact with multiple 

binding partners thereby rendering cohesion to the active zone cohesion. In addition 

this multidomain property also allows each protein to play multiple roles as can be 

seen from individual domain deletion studies. 

 

Though we have an average model of the way proteins are organized, all studies 

addressed the role of a protein either in isolation or at best looked at the interaction 

with another partner. Therefore, there still is a need to obtain in one snapshot the 

placement of many proteins composing the active zone. The mammalian brain tissue 

is organized in a more complicated manner that requires development of technology 

to facilitate complete labeling of synaptic proteins. 

 
In this thesis, efforts made in developing tissue processing methods and labeling 

technologies are described to enable us to perform super-resolution light microscopy 

on multiple proteins of the active zone so that we can from looking at the way they 

are organized understand the role of synaptic release that they partake in. 
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2 Materials and Methods 
 

2.1 Stereotaxic surgery 
 

All experiments were conducted in accordance with the German animal welfare 

guidelines and approved by the responsible authority (Regierungspräsidium 

Karlsruhe, Germany). All necessary steps were taken to ameliorate suffering of the 

rats, including systemic anesthesia (isofluorane) and local wound anesthesia 

(Lidocaine), post-surgery pain treatment, professional handling, behavioural 

observation and housing in individually ventilated cages at 21° C and 55% humidity. 

The stereotaxic injections into the ventral cochlear nucleus (VCN) of two Sprague 

Dawley rats and tissue processing were done as reported previously (Wimmer V. C. et 

al., 2004), but using isoflurane inhalation anesthesia (Schwenger D. B. et al., 2010).  

 

Briefly, the VCN of P3 Sprague Dawley rats were injected with rAAV particles in the 

following manner. Injection capillaries were pulled from micropipettes and collected 

in a box. A rat pup is anasthesized with 5 % isoflurane (Baxter, Deerfield, IL) in 

oxygen for approximately 5 min (Vaporizer: Isotec4, Sugivet, Dublin, OH). 

Approximately, 30 µl of Lidocain is administered into the head (the area of surgery) 

to alleviate pain. The pup is then mounted on a stereotax (Kopf Instruments, Tujunga, 

CA). The skin covering the skull is cut to expose the skull. A craniectromy in the 

occipital lobe is performed using a dental drill to open a window of size 2 x 3 mm. 

Rat Ringer’s solution (in mM: 135 NaCl, 5.4 KCl, 5 HEPES, 1.8 CaCl2, 1 MgCl2) is 

used from time to time to keep the surgery area from drying. Using an electronic 

leveler (eLeVeLeR, Sigmann Elektronik, Hüffenhardt, Germany) the head was 

leveled in such a way that the roof of the skull is parallel to the ground plate of the 

stereotax. 

 

2.5 µl of virus solution is collected in injection capillaries. The tip of the capillary is 

placed at the bregma for the zero. The capillary is then lifted to a height of 0.45 mm 

and moved to positions to inject in the following manner: 
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X (mm) Y (mm) Z (mm) 

-6.6 0.7 6.5 

-7.0 0.7 6.5 

-7.4 0.7 6.5 

-6.8 0.9 6.5 

-7.2 0.9 6.5 

-7.6 0.9 6.5 

Table 2.1: Stereotaxic coordinates to inject in the VCN of P3 rat brain 

 

After in vivo protein expression for the time period of 8 days rats were transcardially 

perfused with 20 ml of isotonic PBS followed immediately with 50 ml of 4% 

paraformaldehyde in phosphate buffer 0.1 M pH 7.4. The brain was directly removed 

and stored over night at 4° C in the same fixative. 100 mm sections were cut on a 

Leica VT1400 vibratome through the MNTB region and further processed as 

described below. 

 

2.2 Molecular Biology 
 

The gene of interest is amplified with PCR using forward and reverse primers that 

contain 20-30 bases complementary to the gene of interest. In addition the primers 

also have sequences of 10-20 bases that specify the digestion site for restriction 

enzymes. 

 
AAV pAM vector 
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Membrane targeted GFP (memGFP) 
 
memGFP gene was amplified from template DNA pBKS (from Anna Dondzillo’s 

Thesis) by PCR with following restriction sites for subcloning in pAM-vector: BamHI 

and HindIII 

  

Primer sequence: 5’ to 3’ 

memGFP BamHI Forward: 

CATAGCGGATCCATGGGTTGCTGTTTCTCC 

memGFP HindIII Reverse: 

CATAGCAAGCTTTTACTTGTACAGCTCGTCCAT 

  

mEos2 
 
mEos2 (Addgene) was subcloned to replace eGFP from the pAM vector containing 

Synaptophysin-eGFP (Wimmer et al., 2004) to generate Synaptophysin-mEos2. 

 

mEos2 was amplified from the template DNA mEos2 vector Addgene by PCR with 

following restriction sites for subcloning im 

pAM-vector: BamHI and SacI 

  

Primer sequence: 5’ to 3’ 

mEos2-Pml-Forward: 

GTAGGATCCATGAGTGCGATTAAGCCAGACATGAAGAT 

mEos2-SacI-Reverse: 

GAGAGCTCTTATCGTCTGGCATTGTCAGGCAATCCAGA 

 

Subclone SyPhy BamHI Fragment from fusion construct pAM-SyPhy-EGFP in pAM-

mEos2 to get pAM-SyPhy-mEos2  

 

2.3 Virus Production 
 

AAV production is a 5-day process. On day one cells at a density of 4x106 cells per 

14 cm plate in 20 ml DMEM are seeded. Cells, passaged for not more than 12 times, 

are used. On day two the cells are transfected in the following manner. Equimolar 
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amounts of pAM and helper constructs are mixed to a weight of 37.5 µg and mixed 

with CaCl2 in a 50 ml falcon. HeBS (280 mM NaCl, 50 mM HEPES, 1.5 mM 

Na2HPO4, and pH is adjusted with NaOH to 7.05) is added to DNA-CaCl2 solution 

mixture while vortexing the falcon for 70 seconds. This constitutes the transfection 

solution, 2 ml of which is added to the cell culture plate. The plates are swirled gently 

for uniform distribution and transferred to the incubator. On day three the medium is 

completely removed and replaced with 25 ml fresh DMEM. On day four the cells are 

harvested in the following manner. Cells are collected in a 50 ml falcon tubes by 

scraping them off with a cell scraper. The falcon tubes are spun at 1050 rpm at room 

temperature for 15 min. The supernatant is discarded and 1 ml of lysis buffer per plate 

is added. The cells are subjected to three rounds of freeze/thaw cycle between dry ice/ 

ethanol bath and 37° C water bath for 10 min each. For further purification, 50 U of 

benzonase per plate is added and incubated for 2 h at 37° C. The falcon is spun at 

4500 rpm at 4° C 15 min. The supernatant is collected in a syringe and pushed 

through a 0.45 µm filter into a 15 ml falcon tube. The collected fluid forms the crude 

lysate. For further purification of crude lysate is done by passing the crude lysate 

through heparin agarose column attached to Amicon-ULTRA filter. 

 

2.4 Resin Embedding 
 

Resin embedding with LRWhite was done as described by Micheva et al (2007). 

Briefly, the fixed tissue was further immersion fixed at 4° C overnight. After rinsing 

with PBS the tissue was dehydrated in a graded series of ethanol until complete 

dehydration with 100% ethanol. The tissue was then infiltrated with LRWhite resin 

(three times, 5 mins at 4° C and left overnight), embedded in gelatin capsules and 

polymerized at 50°C. 

 

For Lowicryl HM20, tissue sections were high pressure frozen as described (Bubeck 

D et al., 2008). Freeze substitution was performed in a mixture of 3% uranyl acetate 

and methanol at -85° C for 70 h, followed by 3 washes in methanol at -85° C after 

which sections were warmed upto -40° C at 5° C/h. Tissue sections were infiltrated 

and embedded in Lowicry HM20 at -40° C and UV polymerized for 36 h at -40° C 

after which temperature was raised to room temperature. UV polymerization was 
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continued for another 24 h. 

 

2.5 Ribbon Making 
 

Ultrathin sections (40 nm) were cut with an ultramicrotome (Ultracut E, Reichert 

Jung, NY) using the procedure described by Harris et al (2006). The ribbons obtained 

were mounted on coverslips, which were made hydrophilic by treatment with a 

mixture of 1:1 sulphuric acid and hydrogen peroxide. The ribbons were then further 

processed for immunostaining. 

 

2.6 Immunostaining for tomoSTORM 

Following mounting on coverslips, the ribbons were washed in PBS (5 min) and 

immunostained following established protocols (Tse FW et al. 1997). This was 

followed by blocking with 5% FCS in PBS. Primary antibodies were diluted in 5% 

FCS in PBS and applied on the ribbon for 2 hours. Samples were washed 3 times with 

PBS. The appropriate secondary antibody diluted in 5% FCS in PBS was applied for 

30 min followed by washing in PBS for 3 times. The antibodies used for 

tomoSTORM are listed below. 

Primary 

Antibodies 

Catalog 

Number 

Dilution Species Embedding 

Material  

Anti-GFP Abcam ab6556 1:200 rabbit HM 20 

Anti-

cytochrome C 

oxidase 

Sigma C9616 1:500 sheep HM 20 and LR 

White 

Anti-PSD 95 Neuromab 75-

348 

1:200 mouse 

monoclonal 

HM 20 

Bassoon Enzo 

Lifesciences 

SAP7F407 

1:200 mouse 

monoclonal 

HM 20 

Anti-GFP Life 

technologies 

A11122 

1:200 rabbit LR White 

Table 2.2: Primary antibodies used for immunostaining for tomoSTORM 
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Secondary 

Antibodies 

Catalog Number Dilution Fluorophore 

Anti-rabbit Life technologies 

A21236 

1:500 Alexa 647 

Anti-sheep Life technologies 

A21245 

1:500 Alexa 647 

Anti-mouse Life technologies 

A11002 

1:500 Alexa 647 

Anti-rabbit Life technologies 

A11009 

1:500 Self-conjugated 

with ATTO 520 

AD 520-31 
 

Table 2.3: Secondary antibodies used for immunostaining for tomoSTORM 

 

2.7 Tokuyasu’s Cryosections 
 

The region of interest (ROI) is cut out and immersed in 2.3 M sucrose. Sucrose acts as 

a cryoprotectant thereby preventing ice-crystal formation. After overnight immersion 

a piece is fished out and placed on a sample holder. The piece with the sample holder 

is then plunged into liquid nitrogen so that the piece becomes solid and ready for 

cutting thin sections. 

 

The ultracryotome is prepared by bringing the cutting chamber to the desired 

temperature. For instance, to cut 4 µm thin sections, a chamber temperature of -80° C 

is desired to make sections of 100 nm – 300 nm thickness. The temperature is lowered 

by introducing liquid nitrogen into the cutting chamber. 

 

Once, the desired temperature is reached the block is cut into ultrathin sections with a 

cryo diamond knife (Diatome). The cut sections are picked up with a sucrose loop and 

placed on a coverslip. These sections are subsequently immunostained for dSTORM 

imaging. 
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2.8 Immunostaining for Tokuyasu Cryosectioning 
 

The section placed on the coverslip is washed until the sucrose is completely 

dissolved. The section is dismounted and remounted to obtain flat sections. This was 

followed by blocking with 5% FCS in PBS. Primary antibodies were diluted in 5% 

FCS in PBS and applied on the ribbon for 2 hours. Samples were washed 3 times with 

PBS. The appropriate secondary antibody diluted in 5% FCS in PBS was applied for 

30 min followed by washing in PBS for 3 times. The antibodies used for staining are 

listed below. 

 

Primary Antibodies Catalog Number Dilution Species 

Anti-Bassoon Enzo lifesciences 

SAP7F407 

1:200 Mouse monoclonal 

Anti-Piccolo Synaptic Systems 1:200 Guinea pig 

Anti-Septin 5 Santa Cruz 

Biotechnology 

1:50 Mouse monoclonal 

Anti-vGlut1 Synaptic Systems 1:200 rabbit 

GFP nanotrap Chromotek 1:200 Recombinant 

probe, origin: 

Alpaca 
Table 2.4: Primary antibodies used for immunostaining on Tokuyasu’s cryosections 
 

Secondary 

Antibodies 

Catalog Number Dilution Fluorophore 

Anti-mouse Life technologies 

A21245 

1:500 Alexa 647 

Anti-rabbit Life technologies 

A21448 

1:500 Alexa 647 

Anti-mouse Life technologies 

A21236 

1:500 Alexa 532 

Anti-rabbit Life technologies 

L43000 

1:500 Alexa 532 

Table 2.5: Secondary antibodies used for immunostaining on Tokuyasu’s cryosections 
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2.9 Dye-antibody Conjugation 
 

40 µl of unconjugated at a concentration of (0.5 -2 mg/ml) was aliquoted in a fresh 1.5 

ml Eppendorf tube. 10 µl of 1.5 ml NaHCO3 was added to make the pH to 8.5. 5 µl of 

dye NHS ester dissolved in methanol or DMSO to a concentration of 1 µg/µl was 

added to the antibody and NaHCO3 mixture. The entire reaction is allowed take place 

in the dark for one hour. After one hour a illustra NAP-5 column (GE Healthcare Life 

Sciences) is prepared by washing the column with 2 ml of PBS. Then, the reaction 

volume is pipetted onto the surface of the column and allowed to seep into the 

column. 200 µl of PBS is added initially to ensure formation of a crisp band. This is 

followed by filling the column with more PBS for separation of free dye from dye-

antibody conjugate. The separation process can be tracked by eye. The dye-antibody 

conjugate, owing to higher molecular weight, elutes out first, which is collected in a 

fresh 1.5 ml Eppendorf tube. A volume of 300-400 µl of the dye-antibody conjugate 

should be present. 

 

2.10 Electron Microscopy 
 

LR White 
 

70 nm sections of LR White embedded MNTB were cut with a diamond-knife 

(Diatome) in an ultramicrotome (Ultracut E, Reichert Jung, NY). The sections are 

collected on a Formvar-coated copper grid (Plano). Subsequently, for contrast 

enhancement, sections were treated with Reynold’s Pb-citrate (Sigma) and 

uranlyacetate (Sigma) for 25 min in the dark. 

 

HM 20 
 

70 nm sections of HM 20 embedded MNTB were cut with a diamond-knife in an 

ultramicrotome. Tissue sections made from HM 20 embedded tissue block already 

contains uranyl-acetate, which is the contrast enhancement agent. Therefore, no 

further processing of thin tissue for contrast enhancement is required. 
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Transmission Electron Microscopy of the sections on the formvar grid were taken 

using Leo 906 E microscope. 

 

2.11 dSTORM Imaging 
 

dSTORM images were recorded on a custom-built microscope using experimental 

protocols that were described earlier Heilemann et al. 2008. Briefly, a multi-line laser 

(Innova 70C, Coherent, USA) was coupled into an inverted microscope (IX71, 

Olympus, Japan), and the fluorescence signal was detected using an electron-

multiplying charge-coupled device (EMCCD) (Ixon, Andor, Ireland) and appropriate 

filters and dichroic mirrors (AHF, Tübingen, Germany). Alexa Fluor 647 was 

photoswitched in oxygen-free aqueous buffer containing 100 mM 

mercaptoethylamine and using two illumination wavelengths, 405 nm (0.1–1 

kW/cm2) for activation, 532 nm (1-5 kW/cm2), 561 nm  (1-5 kW/cm2) and 647 nm 

(1–5 kW/cm2) for read-out. Image reconstruction was performed using the 

rapidSTORM software package Wolter S et al. 2010. Typically, 8000 frames were 

recorded to reconstruct a dSTORM image.  

 

Dual-color dSTORM imaging for tomoSTORM 
 

Dual-color dSTORM imaging was performed by sequentially imaging Alexa Fluor 

647. As a first target, cytochrome c oxidase was labeled, imaged and bleached. 

Successful bleaching was verified in control experiments to exclude that Alexa Fluor 

647 was driven into long-lived dark states and recovered to fluorescence. In a next 

round, the ribbon was stained for anti GFP with Alexa 647 and imaged. For alignment 

of the dSTORM images, we recorded wide field images of memGFP distribution in 

each of these steps. To achieve this in the first step, memGFP was stained and 

visualized with ATTO520. 

 

Dual-color dSTORM imaging for Tokuyasu’s Cryosections 
 

Dual-color dSTORM imaging was performed by sequentially imaging Alexa Fluor 

647 followed by imaging Alexa Fluor 532.  
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3D dSTORM imaging 
 

3D dSTORM measurements were recorded by installing a 500 mm focal length 

cylindrical lens (LJ1144RM-A, Thorlabs) in the detection pathway to introduce the 

necessary astigmatism.  

 

2.12 Image Reconstruction  
 

There are slight variations in the way images acquired using different procedures 

were reconstructed. This section describes how the reconstruction was done for 

images acquired through each procedure. 

 

2.12.1 Image Reconstruction for tomoSTORM 
 

The localization files containing the final super-resolved images were aligned using 

the MultiStackReg plugin of ImageJ (Micheva et al., 2010). The MultiStackReg 

plugin works by performing cross-correlations between pairs of adjacent images in 

the stack. It applies a transformation to one image and adjusts the parameters of the 

transformation to maximize the cross-correlation between the two adjacent images. 

To achieve dual color super-resolution imaging, staining of the membrane-bound GFP 

(memGFP) was carried out using both Alexa Fluor 647 (used for dSTORM) and 

ATTO520 (standard-resolution image used as reference image for registering multiple 

channels). By way of reference images, registration between two distinct (cytochrome 

c and memGFP) super-resolution channels could be achieved. The aligned and 

surface rendered image stacks were visualized in 3D using Amira 4.1.2 software 

(Visage Imaging, Richmond, Victoria, Australia) (see also Figure S1). 
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QuickTime™ and a
 decompressor

are needed to see this picture.

 
 
Figure 2.1: Image registration procedure for one-color imaging. In a first step (i), the sum-TIRF 

images of individual sections were registered using MultiStackReg, producing a transformation matrix 

for consecutive sections. In a second step (ii), the transformation matrix was applied to register the 

corresponding super-resolution images of consecutive sections. (B) Image registration procedure for 

two-color imaging. As a reference image, a cellular structure was recorded in a spectrally separate 

channel for each section and prior to super-resolution imaging (i). The super-resolution image of the 

same section was recorded on another spectral channel, and after the recording, the fluorophores were 

photobleached. To image a second structure, the sample was re-stained, and the series of sections was 

recorded following the same procedure (ii). Registration of each super-resolution stack was performed 

using the transformation matrix obtained from registering the reference images recorded in each round 

of imaging (iii). As the same reference structure was used for each recording of a stack of super-

resolution images, the different stacks could be overlaid. 

 

The resolution of the dSTORM image thus gathered was calculated as follows: a 

localization of a spot of fluorescence was z-projected and fitted to a Gaussian to 
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calculate its standard deviation. From the standard deviation the full width at half 

maximum, which is a measure of the resolution was calculated to be 28 nm in the x 

and y plane Figure 2.2. The resolution along the z-axis is determined by the section 

thickness, which is 40 nm. Though a resolution of 20 nm is reported in the literature, 

we obtained a value, which is greater. This can be attributed to the fact that sections 

carried autofluorescence that increased background levels. As localization precision is 

a function not only of the number of photons gathered but also to the background 

count, we observed a worsening of resolution. This could in future be tackled by 

using buffer conditions, which increase the number photons from the dye. Use of 

heavy water has an influence on the photon output of fluorophores (Klehs K et al. 

2014) 

 

              
 
Figure 2.2: Determination of the spatial resolution. (A) point-spread function of a single fluorophore, 

(B) localization pattern of one single fluorophore that was localized multiple times through reversible 

photoswitching, (C) histogram of the standard deviation of localizations of 66 single-molecule point-

spread functions (average standard deviation 12 nm) and (D) histogram of the full-width half-

maximum (FWHM) of 66 single-molecule point-spread functions (average FWHM 28 nm). 
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2.12.2 Image Reconstruction for Tokuyasu’s Cryosections 
 

2D dSTORM 
 

Reconstruction for 2D dSTORM was done as described above for tomoSTORM. The 

alignment between Alexa 647 channel and Alexa 532 channel was done using 

autofluorescent spots, which was detected in both channels. 

 

3D dSTORM 
 

A cylindrical lens with a focal length of 500 mm was placed between the tube lens 

and the camera of the OlympusIX81 to introduce astigmatism for 3D-dSTORM. A z-

stack of fluorescent microspheres was recorded with 10 nm steps. The corresponding 

PSF widths in x and y were determined by fitting an elliptical Gaussian function and 

were plotted against the z-position (Figure 2.3 a). The ratio of the width in x to the 

width in y at different z-values yielded a calibration curve (Figure 2.3 b). For every 

detected localization, the z position was determined by fitting an elliptical Gaussian 

function. The z position was assigned to the respective localization and a 3D-

dSTORM image was reconstructed with axial position color-coded for a range of 600 

nm with a localization precision in z of 63.8 nm. 

 

          
 
Figure 2.3: 3D-dSTORM imaging by astigmatism. The PSF width in x and y of fluorescent 

microspheres are plotted against the z-value (A) and yield a calibration curve for z-position 

determination (B). 
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2.13 Transgenic Mouse 
 

GFP-P/Q-Type calcium channel knock-in transgenic mouse (Mark MD et al., 2011) 

was a kind gift from Stefan Herlitz to Thomas Kuner. 

 

2.14 Primary Cultured Hippocampal Neurons 

Primary cultures of rat hippocampal neurons were prepared from E19 rat embryos as 

described previously (Dresbach et al., 2003). Cells from the embryonic brains were 

dissociated in calcium- and magnesium-free Hank’s balanced salts solution (HBSS) 

by 20 min incubation with 0.25% trypsin (Sigma). These were plated onto poly-L-

lysine-coated coverslips at a density of 60000 cells/cm2 in Dulbecco’s Modified Eagle 

Medium (DMEM) (Life Technolgies) including 10% fetal calf serum (FCS) (Life 

Technologies). Antibiotics (100 U/ml penicillin, 100 µg/ml streptomycin) (Life 

Technologies), and glutamine (2 mM) (Life Technologies). Twenty-four hours after 

plating, the medium was exchanged for Neurobasal (Life Technologies) including 2% 

B27 (Life Technologies), antibiotics (Life Technologies), and 0.5 mM glutamine 

(Life Technologies). Cells were kept in a humidified 95% air, 5% CO2 incubator and 

were used for imaging experiments after 12 days in culture. 

 

2.15 Hela Cells 

A cell culture stock of Hela cells was washed with PBS (1 mL) (Life Technologies). 

Trypsin (1.5 mL, Sigma) was added. After 2 minutes of incubation, trypsin was 

removed from the cells. 5 mL of medium DMEM, 10% FCS, 5% PenStrep (Life 

Technologies), 5% L-glutamine (Life Technologies) was added. The cells have been 

diluted to a final concentration of 37.5 cells per µL. 400 µL of this suspension were 

added into each chamber of an 8-well LabTek (Nunc). Cells have been incubated over 

night at 37°C and 5% carbon dioxide until 70% confluency.  

 

2.16 Transfection  

The transfection of 9-day-old neuronal cultures was done as per the protocol from 

Invitrogen for Lipofectamine 2000 Transfection Reagent. Briefly, 4 aliquots of 
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lipofectamine reagent were diluted in Opti-MEM Medium (Life Technologies). DNA 

for synaptophysin-mEos2 was then diluted in the above mix and incubated for 15 

min. The DNA-lipid-complex was subsequently added to cells and incubated for 3 

days.  

 

2.17 Fixation and Staining  

Both Hela cells and hippocampal neuronal cultures were first washed in 1 X PBS 

(Crystal PBS Buffer, Bioline) and fixed in 4 % PFA (paraformaldehyde, Sigma) with 

0.5% glutaraldehyde (Serva) for 15 min. Cells were then blocked in 0.1 % Triton 

(Merck) mixed in 5 % FCS (Life Technologies) for 15 min. The cells were then 

treated for 2 hours at room temperature with 1:200 phalloidin-dye conjugate 

(phalloidin-ATTO 488, phalloidin-Tetramethylrhodamine B isothiocyanate (TRITC) 

(Sigma) with initial concentration 10 nmol and phalloidin-BODIPY 650 (Invitrogen) 

with initial concentration 300 U) in the blocking solution. After 5 min washing with 

PBS, the cells were imaged in PBS immediately. Samples stained with phalloidin-

Alexa 647 were imaged in oxygen-free aqueous buffer containing 100 mM 

mercaptoethylamine (MEA, Sigma) 

 

2.18 Super-resolution Microscopy for Phalloidin-dye Conjugates  

A multi-line argon-krypton laser (Innova 70C; Coherent, USA) was coupled into an 

inverted microscope (IX71, Olympus, Japan) equipped with a 60x oil immersion 

objective (PlanApo 60x, NA 1.45, Olympus) and operated in total internal reflection 

fluorescence (TIRF) mode. Excitation and fluorescent light was separated using a 

dichroic mirror. Here either FF560/659-Di01 (AHF, Germany) or 

FF410/504/588/669-Di01 (AHF, Germany) or HC576/661 (AHF, Germany) were 

used. The fluorescence signal was read out with an electron-multiplying CCD camera 

(EMCCD; Andor Ixon DU 897, Belfast, Ireland). Illumination intensities were 

adjusted to 1 – 5 kW/cm² (488 nm and 647 nm) and 5 - 7.5 kW/cm2 (568 nm). Images 

were acquired with an integration time of 30 ms and EM gain of 200. Typically, 

between 10000 and 100000 images were recorded. Images were reconstructed with 
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rapidSTORM (Wolter et al., 2010) with the following settings: FWHM of 300 nm, 

pixel size of 20 nm for the reconstructed image. 

Super-resolution imaging was performed in PBS. Samples stained with phalloidin-

ATTO 488 were irradiated at 488 nm, phalloidin-TRITC at 568 nm and phalloidin-

BODIPY 650 at 647 nm. Appropriate emission filters were used (BrightLine HC 

550/88, ET Bandpass 610/60 and ET Bandpass 700/75; AHF Analysentechnik, 

Germany). Alexa Fluor 647 was imaged both in PBS as well as in the presence of 100 

mM MEA in oxygen-depleted PBS at pH 7.4 according to the dSTORM protocol 

(Heilemann et al., 2008).  

Dual-color super-resolution imaging was performed sequentially. First, 

synaptophysin-mEos2 was imaged by illumination at 568 nm. Subsequently, 

phalloidin-ATTO 488 was imaged by illumination at 488 nm. The two spectral 

channels were registered using multispectral beads (dilution 1:1000, TetraSpeck, Life 

Technologies), which were imaged separately before the experiment, and the 

MultiStackReg plugin of ImageJ. 

 

2.19 Ensemble Spectroscopy  
Quantum yields were determined using a UV-VIS spectrometer (Cary 4E, Varian, 

Germany) and a fluorescence spectrometer (Typhoon 9400, GE Healthcare, 

Germany). ATTO 488 and TRITC as well as the corresponding dye-phalloidin-

conjugates were diluted in either PBS or unfolding buffer (7M guanidinium chloride, 

20 mM tris-HCl, 10 mM DTT, pH 7.5) down to concentrations of 2.2 – 2.9 µM 

(ATTO 488) and 0.5 – 0.9 µM (TRITC), respectively, and excited at 488 nm 

(ATTO488) or 561 nm (TRITC). At the given concentration range, the optical density 

(OD) of the dyes was kept below 0.05, to guarantee linearity in the absorption and 

emission processes. Note that the same excitation wavelengths were chosen as in 

single-molecule localization microscopy experiments. 
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3 Results 
 

In this section two approaches are described to prepare sections from brain tissue, 

which can be used for making dSTORM measurements. The first approach termed 

tomoSTORM is a resin-based approach using which a series of 2D images are 

obtained. The 2D images are subsequently registered to form a 3D image. The second 

approach is a resin-free approach where a 3D dSTORM is used to obtain the final 3D 

image. The second approach is preferred to the first approach due to ease of use and 

its ability to deal with unspecific binding. Using the second approach the distribution 

of synaptic proteins such as Bassoon, Piccolo, Septin 5 and voltage-gated calcium 

channels at the calyx of Held were investigated. In addition, results describing 

photoswitching properties of phalloidin-dye conjugates are described. These 

approaches in the end are essential to build a multicolor 3D nanoscopic map of 

synaptic protein architecture. 

 

3.1 TomoSTORM 
 

TomoSTORM is an approach where tissue is cut into a series of ultra-thin sections, 

which are immunostained, imaged with dSTORM and later aligned together to 

construct a 3D image (Nanguneri S, et al. 2012). Using tomoSTORM an isotropic 

super-resolution light microscopy data of proteins of the calyx of Held synapse is 

demonstrated. This is made possible by physically sectioning the sample down to 40 

nm to allow for a superior resolution compared to conventional light microscopy in 

the z-axis and get uniform accessibility of the antibody into the tissue. The procedure 

for doing tomoSTORM is as follows: a rat pup, as old as P10, is transcardially  
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          Figure 3.1: A schematic of the tomoSTORM procedure. 

 

perfused with 4% paraformaldehyde (Figure 3.1). The brain is dissected out and 

vibratome sectioned coronally. The section containing the MNTB is isolated and the 

MNTB is cut out. The cut out region is high pressure frozen and freeze-substituted 

with HM20, a lowicryl based resin, and subsequently polymerized. The resin-

embedded tissue is shaped and mounted on a ultramicrotome. Using a diamond knife 

the shaped block is sectioned into a series of sections forming a ribbon. The ribbon is 

transferred to a coverslip for immunostaining. After immunostaining the section is 

mounted on the microscope to perform dSTORM.  

 

A resin called LR White was initially tested. Embedding tissue in LR White did not 

preserve the ultrastructure of the tissue. The dSTORM images of plasma membrane 

that delineates cells looked distraughted (Figure 3.2). Therefore, the resin was 

changed to HM20, whose infiltration into the tissue requires ultra low temperatures (-

80° C). Such conditions preserve the morphology of the tissue after resin infiltration 

(McDonald KL, 2009). This is verified using transmission electron microscopy of 

samples prepared with both LR White and HM 20 resin (Figure 3.3).  

    



 43

   

 

 
 
Figure 3.2: dSTORM image of calyx of Held expressing membrane bound GFP. The GFP signal 

recorded with anti-GFP conjugated to Alexa 647 looks highly clumped implying that tissue 

morphology is distraughted. Scale: 3 µm 

 

Because dSTORM is a super-resolution light microscopy technique, which ideally 

achieves a resolution of 20 nm, it is very important that the structures that are imaged 

resemble those seen in the electron microscope. In other words the ultrastructure of 

the sample needs to be well preserved to obtain any meaningful interpretation of the 

dSTORM data. Therefore, high pressure freezing was employed which was followed 

by freeze-substitution where the sample is gradually dehydrated with methanol and 

subsequently infiltrated with HM 20 resin for embedding. 

 

    
              

Figure 3.3: Comparison of electron micrographs of LRWhite embedded tissue of the auditory brain 

stem (A, C) and HM 20 embedded brain tissue (B, D). The high pressure-frozen HM 20 sections show 
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much better ultrastructure preservation compared to LR White embedded sections. Scale bars in A and 

B 2 µm, in C and D 250 nm. 

 

A series of 53 sections were imaged. Calyces were membrane labeled with GFP and 

immunostained for GFP with an antibody conjugated to Alexa 647. Each section was 

2 dimensional dSTORM datum. Features such as membrane-to-membrane distance of 

the presynaptic compartment match those seen with electron microscope. This is 

proof that performing dSTORM this way gives information about structurally well 

preserved biological synaptic compartments (Figure 3.4).    
 

        
 

Figure 3.4: Structure of the calyx of Held on an overview scale (left panels) and on the scale of 

synaptic contacts (right panel). (A, B) Schematic representation, calyx (yellow), principal cell (orange), 

nucleus (orange). (C, D) Electron micrograph of the calyx of Held (yellow). (E, F) dSTORM images of 

the calyx of Held. (G, H) Widefield images of the calyx of Held. Scale bars 5 µm (left panels), 250 nm 

(right panels). 

 

The GFP distribution along the membrane is not continuous. This could arise because 

of two reasons: 1) the labeling efficiency of the antibody is not optimum 2) the GFP 

distribution in reality is very spotty owing to the fact that myristoylated GFP gets 

segregated into lipid rafts. Such features of lipid-raft like distribution of GFP are not 

seen in standard light microscope because of its poor resolution. This could be 

ascertained by taking 15 consecutive sections of the dSTORM dataset and overlaying 

them to make a z-projection. The 15 consecutive sections correspond to a distance of 

600 nm, which is the theoretical resolution along z-axis of a confocal microscope. The 

overlaid image has a continuous membrane structure as obtained with a confocal 
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microscope. Despite the presence of crude membrane outline of the calyx of Held 

synapse, its boundaries were outlined nevertheless and a crude 3D representation was 

created. The 3D representation resembles 3D calyceal structures created with EM 

datasets Figure 3.5. 

 

  
           
Figure 3.5: memGFP outlining the calyx membrane. (A) Four consecutive sections from a dataset of 

53 sections containing segments of an entire calyx. Scale bars 2 µm. (B) Magnified views of the boxes 

illustrated in (A). Scale bars 250 nm. (C) Superposition of 15 consecutive aligned sections. Z-position 

of each section is color-coded (top: blue, bottom: purple). Scale 250 nm. (D) Two 3D views of the 

reconstructed segment shown in (C). 

 

Because a system is needed where multicolor imaging could be performed the one-

color imaging scheme was modified as described in the following manner: for each 

super-resolution image obtained a standard-resolution image was obtained. Though 

the super-resolution images represented different structures, the standard-resolution 

image, which is the reference image, remained the same. The standard-resolution 

image is aligned and the transformation matrix is applied to the super-resolution 

image so that both super-resolution images are in very good registration. After 

imaging the first color super-resolution image, the signal was bleached and ready to 

use for immunolabeling for subsequent dSTORM measurements. The first super-

resolution image obtained this way corresponded to the mitochondrial protein 

cytochrome C and the second super-resolution image corresponded to the membrane. 

The bleaching scheme is successful as there is little overlap of signal from the two 

super-resolution images (Figure 3.6).  
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Figure 3.6: Dual color dSTORM images of mitochondria and their localization within the calyx of 

Held. (A) Anti-cytochrome c oxidase stain. Nucleus spared. The soma of the principal neuron is 

densely populated with mitochondria. (B) Anti-GFP stain of a single section through the calyx of Held. 

(C) Overlay of (A) and (B). (D) 3D rendering of a mitochondrion (blue) and surrounding membrane 

(yellow). Scale bars are 250 nm. 

 

The tomoSTORM approach, which performs fluorescence light microscopy on resin 

embedded sections, is suitable for proteins, which are either abundantly found such as 

cytochrome C or over-expressed such as membrane labeled GFP. Labeling proteins 

which are sparsely distributed is difficult to detect because of the poor signal to noise 

ratio.  

 

   
 
Figure 3.7: Antibody labeling of synaptic proteins on a thin section. (A) dSTORM Bassoon (red) 

signal reaches the size of unspecific labeling. (B) dSTORM PSD 95 (red) signal like Bassoon signal 

reaches the size of unspecific labeling. The membrane in both panels is delineated by the membrane 

bound GFP (green) and imaged in standard-resolution mode. Scale: 5 µm 
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The poor signal to noise ratio is due to unspecific labeling of the antibody. When the 

labeling density is high especially while labeling proteins found in great abundance 

the signal from unspecific labeling, which are isolated fluorescent signal, it is 

convenient to separate clusters (true signal) from randomly distributed isolated 

fluorescent events (false signal). When the true signal begins to get increasingly 

isolated (eg.: labeling of active zone proteins such as Bassoon or post synaptic density 

95 such as PSD 95) fishing out the true signal from false signal based on the criterion 

mentioned above becomes difficult (Figure 3.7) .  

 

3.2 Tokuyasu Ultracryotomy 
 

From the past experience it is known that labeling for active zone proteins works well 

when performed on plain PFA fixed tissue. Therefore 4 µm thin cryosections were 

made and 3D dSTORM measurements were performed on it. Thin sections are 

especially useful for this purpose as they remain, when placed on the coverslip, stuck 

perfectly flat. This property is very essential for doing dSTORM as dSTORM uses 

total internal reflection microscopy with objectives whose effective sample 

penetration is about 4 µm.  And the sample is subsequently immunolabeled so that 

fluorescence microscopy could be performed. The 4 µm thick sections of the MNTB 

was made as follows: the region of interest containing the MNTB which was cut out 

is dropped into 2.3 M sucrose. Sucrose acts as a cryoprotectant. The sucrose-

infiltrated pieces of tissue are dropped into a vessel containing liquid nitrogen in order 

to freeze the sample to solidity. A cryo-chamber is set up in the ultramicrotome. The 

cryo-chamber is connected to the liquid nitrogen tank and the temperature of the cryo-

chamber is dropped to -40° C by introducing liquid nitrogen into it. Once the chamber 

is as cold as -40° C, the sample is mounted onto the sample holder in the chamber and 

using a cryo diamond knife 4 µm thick sections were made which were subsequently 

flattened and made to undergo immunostaining for super-resolution fluorescence light 

microscopy (Figure 3.8). 
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             Figure 3.8: A schematic of Tokuyasu cryosectioning 

 

Unlike in the tomoSTORM approach, in a typical 3D dSTORM setup, the 

fluorescence emission is made to go through a cylindrical lens so that an astigmatism 

is created based on which fluorophores’ z distance could easily be discriminated. This 

kind of imaging offers a z-resolution of 50 nm (Huang B. et al, 2009). For instance 

the vesicular protein vGlut1 was imaged under 3D dSTORM conditions and the 3D 

position of the fluorophores is color-coded (Figure 3.9). As can be discerned from the 

color-coding the vesicles occupy a highly 3 dimensional space in a volume covering 

600 nm. As immunostaining for many proteins on this kind of sample preparation is 

feasible, the 3D relationship of active zone proteins in the calyx of Held synapse was 

probed. 

 

        
 
Figure 3.9: (A) 3D dSTORM imaging of vGlut1 staining in the calyx of Held, an overview. The z-axis 

information is color-coded (0-600 nm). Scale: 2 µm. (B) magnified view of a compartment shows that 

the vesicular organization has a discrete nanostructural organization. Scale: 250 nm. 
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As staining of active zone proteins such as Bassoon is feasible with this method 3D 

dSTORM imaging was done on Bassoon. Super-resolution image of Bassoon in the 

calyx of Held reveals that Bassoon is clustered. This feature is also evident in normal 

standard-resolution fluorescence microscopy. What is not evident in the normal 

standard-resolution fluorescence microscopy, however, is that magnified view of a 

super-resolution Bassoon cluster reveals that Bassoon is not uniformly distributed 

along the active zone. It has a perforated structure, which cannot be revealed with 

standard wide field fluorescence microscopy cannot resolve the perforations (Figure 

3.10). 

 

      
 
Figure 3.10: (A) 3D dSTORM imaging of Bassoon staining in the calyx of Held, an overview. The z-

axis information is color-coded (0-600 nm). Scale: 2 µm. (B) Magnified view of a compartment shows 

that the vesicular organization has a discrete nanostructural organization. Scale: 250 nm. 

 

In addition, the resin free approach is suitable for photoactivated localization 

microscopy (PALM) (Betzig, E. et al., 2006, McKinney, SA., et al., 2009), which is in 

principle similar to dSTORM but makes use of photoswitchable fluorescent proteins 

such as mEos2. 300 nm and 4 µm cryosections were imaged with calyces expressing 

membrane bound mEos2. 2D PALM of mEos2 on 300 nm thin cryosections show 

sharp membrane features such as the presynaptic compartment (Figure 3.11 B).  
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Figure 3.11: (A) 2D PALM image on a 4 µm section containing the calyx of Held labeled with mEos2. 

The image looks fuzzy owing to a high density of mEos2 molecules. Scale: 5 µm. (B) 2D PALM 

image of a compartment of calyx of Held labeled with mEos2 on a 300 nm section. Scale: 500 nm.  

 

The sharpness is due to the fact that on a 300 nm thin section few molecules need to 

be photoswitched, which is a prerequisite for doing single molecule localization 

microscopy (SMLM) such as dSTORM or PALM. Active zones span larger than 300 

nm. As a result, fluorescence signal from antibody staining of active zones is 

undersampled. Therefore, 2D PALM was performed on 4 µm thick sections. 2D 

PALM on 4 µm thick sections covers mEos2 signal that spans an optical volume of 

600 nm. However, the challenge of trying to photoswitch a larger number of 

molecules remained which is far from an ideal situation for dSTORM or PALM. As a 

result calyceal compartments look fuzzy (Figure 3.11 A).  

 

The large density of fluorophores also is an obstacle for doing 3D SMLM. The 

necessary astigmatism for 3D SMLM is destroyed owing to overlapping fluorophore 

signals. As a result performing 3D PALM proved to be difficult owing to poor signal 

to noise ratio (Figure 3.13). This could be overcome with bleaching the sample so that 

only a few fluorescent proteins turn on. Bleaching, however, leads to loss of signal as 

some of the mEos2 molecules get irreversibly bleached. Future experiments should 

take into consideration the expression levels of mEos2 in the membrane. For instance, 

decreasing virus titer can lead to a decrease in the mEos2 molecules and thus lead to a 

increase in the signal to noise ratio. This would then result in sharper optical sections 

of membrane compartment.  
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Figure 3.13: 3D PALM on a 4 µm thick section containing the calyx of Held expressing mEos2 as a 

membrane marker. The z-axis information is color-coded (0-600 nm). High density of mEos2 

molecules required excessive bleaching for clear single molecule detection leading to a loss of signal 

due to irreversible photobleaching of some mEos2 molecules. Scale 3 µm. 

 

In conclusion, antibody labeling of less abundant proteins such as the proteins of the 

active zone are better addressed with Tokuyasu’s ultracryotomy. Moreover, as this 

method avoids resin, preservation of fluorescence from fluorescent proteins is 

possible. Therefore, this method is preferred to tomoSTORM to make dSTORM 

measurements of active zone proteins possible. 

 

3.2.1 Bassoon and Piccolo 
 

Bassoon and Piccolo are two proteins of the cytomatrix that play a role in clustering 

synaptic vesicles (Mukherjee et al. 2010). Using a diffraction-limited microscope, 

namely a confocal microscope, on the calyx of Held it was found that Bassoon and 

Piccolo form clusters whose size resembles that of the active zone and that majority 

of the clusters overlap. Dual color dSTORM was performed on this to gather more 

information. 

 

In order to probe the distribution of different proteins in the synaptic terminus multi-

color dSTORM were performed for more proteins. Typically, owing to the variation 
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in redox potential, a maximum of two dyes can be photoswitched, enabling dSTORM 

imaging of two synaptic proteins. Therefore, this possibility was exploited to study 

the nanoscopic organization of the two active zone proteins namely Bassoon and 

Piccolo. Both Bassoon and Piccolo are presynaptic proteins, which are known to 

organize the cytomatrix of the active zone.  

 

In agreement with the work there is overlap between the Piccolo and Bassoon clusters 

(Figure 3.14). As it is already ascertained that the two proteins are essential for 

organizing the vesicle pool in the synapse it can be concluded that the two 

overlapping signals are presynaptic in origin.  

                                           

   
 
Figure 3.14: Dual color 2D dSTORM of cytomatrix proteins Bassoon (green) and Piccolo (red). (A) 

Overview shows that they overlap most of the time. (B, C) Magnified views show a mixture of unitary 

Bassoon and Piccolo signals, and colocalized signals of Bassoon and Piccolo. 

 
The calyx of Held synapse, owing to its unitary gigantic nature with multiple release 

sites, also yields itself well to image analysis. As the majority of active zones contain 

both Bassoon and Piccolo clusters, this information can be used to correct for 

misalignment between the two channels. Co-staining of Bassoon and Piccolo show 

highly overlapping distribution of the two presynaptic proteins. Magnified view of the 

clusters reveal that the two proteins also overlap within the cluster indicating that they 

are intermingled in the cytomatrix. 
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Figure 3.15: (A) Overview of dual color 2D dSTORM of Piccolo (green) and Bassoon (red) at P7. 

Scale: 1 µm. (B, C) Magnified view is a 3D rendering of the inset depicting Piccolo (blue) distribution 

with respect to Bassoon (orange). Scale: 200 nm (see inset) 

 

In addition to 2D dual color dSTORM imaging, 3D dual color dSTORM imaging of 

Bassoon and Piccolo distribution was performed (Figure 3.15). Information from 3D 

dual color dSTORM images of Bassoon and Piccolo distribution compliments those 

of 2D dual color dSTORM. 

 

In conclusion, besides, the presence of colocalization at the standard-resolution scale, 

there is as well colocalization at the nanoscopic level indicating that Bassoon and 

Piccolo perform redundant function. In addition unitary Bassoon and Piccolo signals 

can also be visualized, but the significance of these signals can only be speculated. 

They may well arise due to molecular crowding effects that leads to exclusion of one 

of the antibody species from another. This makes an argument for the use of 

nanobodies, which have the potential of overcoming steric hindrance. 

 

In addition, they may also arise from the fact that there are differences in molecular 

organization of active zones where one of the two active zone proteins may dominate. 

This may not necessarily lead to differences in function as the two proteins are 

homologous and play similar roles at the active zone 
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3.2.2 Septin 5 
 

Septin 5 at the calyx of Held active zone brakes the synaptic vesicles from readily 

releasing. It is known to have differential effects during maturation. It is present at the 

release site at the onset of hearing at P7 and is completely removed by the time 

maturation is finished at P17. As a result, these two maturational points were used for 

dSTORM analysis. To visualize the distribution of Septin 5 in the AZ, dual color 

dSTORM on Septin 5 and Piccolo was performed to see what additional information, 

if present, can be obtained. Dual color dSTORM images show, at P7 Septin 5 

colocalizes with the active zone protein Piccolo. Not only does Septin 5 colocalize 

with Piccolo, but because of the super-resolution capability of dSTORM it can be 

visualized that Septin 5 occupies only a fraction of the active zone. Calcium channel 

cluster as well has been modeled to occupy a fraction of the active zone (Meinrenken 

et al., 2003). Therefore, release of vesicles could happen in designated zones. As 

Septin 5 has been implicated in applying the necessary brakes (Yi-Mei Yang et al., 

2010), it follows that Septin 5 needs to be present only where vesicle release takes 

place Figure 3.16.  

 

   
 
Figure 3.16: (A) Overview of dual color 2D dSTORM of Septin 5 (red) and Piccolo (green) at P7. 

Scale: 1 µm. (B, C, D) Magnified view reveals that Septin 5 is highly colocalized with Piccolo at this 

age. Scale: 200 nm. 
 

In P17, however, there is very little overlap between Piccolo and Septin 5 (Figure 

3.17). Moreover, dSTORM apparently shows Septin 5 still exists in the 

neighbourhood of the active zone although it does not seem to colocalize with it.  
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Figure 3.17: (A) Overview of dual color 2D dSTORM of Septin 5 (red) and Piccolo (green) at P17. 

Scale: 1 µm. (B, C, D) Magnified view reveals that Septin 5 is not as much colocalized with Piccolo at 

this age as it is at P7. Scale: 200 nm. 
 

Quantification of colocalization has been carried out for the 2 ages using Manders 

Colocalization Analysis (MCA). MCA is particularly used in situations where the 

quantity of the objects in the two images is not same. For instance, there is clearly 

more Septin 5 than Piccolo at the release face.  

 

  
 
Figure 3.18:  Manders colocalization analysis reveals that the amount of Piccolo colocalizing with 

Septin 5 at P7 and P17 is insignificant. However, the amount of Septin 5 colocalizing with piccolo at 

P7 and P17 is significant. 
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MCA gives out 2 values, namely m1 and m2. m1 denotes the extent of colocalization 

of green (Piccolo) with red (Septin 5), while m2 denotes the extent of colocalization of 

red with green (Figure 3.18). The difference in colocalization of green with red is not 

significant for the 2 ages meaning a large fraction of Piccolo does not colocalize with 

Septin 5. The difference in colocalization of red with green is significant between the 

2 age groups. There is more Septin 5 colocalizing with Piccolo at P7 than at P17.  

 

In addition, 3D dual color dSTORM imaging of Septin 5 and Piccolo was performed. 

3D images reveal that the release face, which is marked by Piccolo, is spotted with 

Septin 5 (Figure 3.19). This indicates that Septin 5 mediated calcium channel 

microdomain clusters are sparsely distributed over the release zone (Meinrenken et al 

2003). 

     
Figure 3.19: (A) Overview of dual color 2D dSTORM of Septin 5 (green) and Piccolo (red) at P7. 

Scale: 1 µm. (B,C) Magnified view is a 3D rendering of the inset depicting Septin 5 (blue) distribution 

with respect to Piccolo (orange). Scale: 200 nm (inset). 

 

In summary, the data obtained with dSTORM images conform well to the published 

results implying that information obtained with dSTORM provide a biologically 

meaningful information. Moreover, a population of active zones can be analysed from 

one image as large fields of view can be obtained with a light microscopy.  

 

3.2.3 Calcium Channel Localization 
 

Calcium channels are clustered at the active zones. These clusters are tethered in 

place by the active zone proteins where synaptic vesicles exocytosis happens. Due to 

molecular crowding accessing channels would be challenging.  
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Figure 3.20: 2D dSTORM image of P/Q type calcium channel tagged with GFP and labeled with GFP 

nanobody tagged with Alexa 647. Low density of true signal makes it difficult to separate true signal 

from false signal from unspecific nanobody labeling if any. Scale: 3 µm 

 

GFP nanobodies owing to their small size (1-2 nm) have been used to address this 

problem. These nanobodies are tagged with a fluorescent dye such as Alexa 647 can 

be used to label GFP tagged proteins in cells. Moreover, as there are many transgenic 

lines, which express proteins tagged with GFP, it is now feasible to use GFP 

nanobodies to target these proteins for performing dSTORM (Ries et al., 2012) 

 

P/Q type calcium channels in the calyx of Held are clustered in a microdomain 

scenario, which occupy a tiny fraction of the active zone (Meinrenken et al., 2003). 

Though antibodies exist, labeling P/Q type calcium channels has proven extremely 

difficult. This could be due to molecular crowding at the active zone because 

nanobodies extend 1-2 nm in diameter they can especially navigate a highly crowded 

space (personal communication). As a result, labeling for the P/Q calcium channel 

tagged with GFP using GFP nanobody was performed (Figure 3.20). Fluorescence 

immunohistochemistry is plagued with unspecific binding of the antibody. In the case 

that a certain protein exists as a cluster, solitary unspecific label (false signal) can be 

separated from clustered label (true signal) with ease. However, the moment a true 

signal begins to get solitary in nature such as the case seen in calcium channel 

distribution, separating true signal from false signal becomes problematic. Moreover, 
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there is also no control to verify if the nanobody can truly overcome molecular 

crowding. In conclusion, dSTORM image of P/Q type calcium channel tagged with 

GFP and labeled with nanobody is hard to interpret.  

 

Labeling strategies need to be developed that can increase the signal to noise ratio. 

One way this could be accomplished is by an energy transfer mechanism such as 

FRET or PET. A donor could be placed on a protein in close proximity to the calcium 

channel, which contain the acceptor. This way, for instance, only the signal from the 

channels present in the active zone could be read out. 

 

3.3 Alternative Photoswitches for Multicolor dSTORM 
 

As conventional buffer mediated dSTORM can accommodate only two 

photoswitching dyes, namely Alexa 532 and Alexa 647, an attempt is made to expand 

this by investigating the photoswitching property of fluorophores tagged to phalloidin. 

 

                   
         

Figure 3.20. Super-resolution imaging of actin structures with various phalloidin probes.  (A) – 

(C) Widefield images of Hela cells stained for actin with phalloidin conjugated to ATTO 488 (A), 

TRITC (B) and BODIPY 650 (B). (D) – (F) Super-resolution images of the same cells recorded in PBS 

as imaging buffer. (G) – (I) Magnified views of regions selected from (D) – (F). 
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As mentioned earlier, as the probe gets smaller in dimensions, quenching of 

fluorescence can be observed. The amino acid tryptophan when in close proximity  

(1-2 nm) to the fluorescent dye is known to interact with the excited state of the 

fluorescent dye and quench its fluorescence. Experience with imaging actin filaments 

labeled with phalloidin-ATTO 488 told us that phalloidin-ATTO 488 makes a good 

photoswitch in plain PBS. This is due to the close proximity of the conjugated dye to 

the quencher tryptophan, which occurs as a special case in phalloidin. This 

observation and selected 3 dyes that were conjugated to phalloidin namely ATTO 

488, TRITC and BODIPY 650 (Figure 3.20) was exploited. The sample was imaged 

by increasing laser intensity. Quenching led all 3 probes photoswitch at appropriate 

laser intensities. Quenching can occur by static and dynamic means. Static quenching 

can be due to stable complex formation lasting many milliseconds while dynamic 

quenching is merely collisional lasting nanoseconds in timescale. 

 

Bulk quenching, which is the sum of static and dynamic quenching that a fluorophore 

undergoes, can be observed by measuring the relative fluorescence quantum yields. 

Bulk quenching, however, cannot differentiate between static versus dynamic 

quenching. Fluorescence lifetime measurements, on the other hand, is sensitive only 

to dynamic quenching. Therefore, both these measurements were conducted while 

assessing for bulk quenching, a relative quantum yield of 48 % for ATTO 488 and a 

relative quantum yield of 27 % for TRITC was obtained. As quenching in PET is 

mediated by hydrophobic interactions between the molecules, addition of 

guanidinium chloride should restore the relative quantum yield to 100 %.  This effect 

was confirmed. In addition, fluorescence lifetime measurements of 2.2 ns for free 

TRITC dye and 2.3 ns for phalloidin conjugated to TRITC was obtained implying that 

static quenching is the modus operandi. For ATTO 488 free dye, fluorescence lifetime 

of 4.1 ns was observed. When measured in presence of tryptophan a biexponential 

decay was observed with fluorescence lifetimes of 3.0 ns (82%) and 0.7 ns (18%). 

Phalloidin-ATTO 488 as well gave a biexponential decay 3.4 ns (78%) and 1.2 ns 

(22%). 

 



 60

These observations are in agreement with published results. A stable dye-tryptophan-

complex is the nature of the non-fluorescent OFF-state is assumed. Therefore, the 

kinetics of photoswitching is governed by association and dissociation dynamics of 

this complex.  

 

Photoswitching performance for SMLM depends on ON/OFF switching kinetics of 

the fluorophore (Sauer, M. 2013). A good quality SMLM image needs a long-lived 

OFF state and short-lived ON state. The ratio of kon/koff needs to be sufficiently high 

for SMLM. The ON and OFF times were determined and the rate constants were 

extracted and kon/koff ratios for the 2 dyes were determined. For ATTO 488, a 

kon/koff of 883 and TRITC a kon/koff of 1023 was reported (Figure A1 – A4, 

Appendix). The ratios are sufficiently large to allow imaging of dense structures such 

as cellular actin filaments. Moreover, a photon count of 822 photons for a molecule of 

ATTO 488 and 939 photons for a molecule of TRITC were determined. These values 

correspond to theoretical localization accuracy of 10 nm.  

              

Figure 3.27: Super-resolution imaging of actin structures labelled with Alexa Fluor 647 in two 

different imaging buffers. (A), (C) Widefield images of Hela cells stained for actin with phalloidin-

Alexa Fluor 647. (B) Super-resolution image of the cell shown in (A) in PBS as imaging buffer. (D) 
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Super-resolution image of the cell shown in (C) recorded in the presence of 100 mM MEA according 

to the dSTORM protocol. 
 

The redox potential of cyanine dyes does not favor reduction by tryptophan. A control 

experiment was performed where phalloidin-Alexa 647 was used to label filamentous 

actin. As expected, no photoswitching in PBS was observed. Upon addition of 100 

mM of MEA, however, good switching was seen (Figure 3.27). Oxazine dyes are 

known to form stable dye-tryptophan complexes. As a result, phalloidin-oxazine dye 

conjugates are less suitable for fluorescence nanoscopy. 

 

   
 

Figure 3.28. Dual-color imaging of actin and synatophysin in neuronal cells. Super-resolution 

images of primary cultured hippocampal neurons labelled for actin with phalloidin-ATTO 488 (A) and 

synaptophysin by expressing synaptophysin-mEos2 (B). (C, D) Magnified view of the boxed regions 

shown in (A, B). (E) Dual-color visualization of actin and synaptophysin. 
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Many photoswitchable proteins are quenched when imaged with MEA. Taking 

advantage of the capability of performing dSTORM in PBS, two-color experiment 

was performed where mEos2 tagged to synaptophysin – vesicular protein and 

phalloidin-ATTO 488 labelling the filamentous actin was imaged. Synaptic vesicles 

are clustered at the active zone. The molecular mechanism ensuring clustering is 

under debate. F-actin is a candidate molecule. It has been reported using dSTORM 

that actin forms rings in axons, which are spaced about 190 nm (Xu, K. et al., 2012). 

Super-resolution image shows a dense network of actin and vesicle cluster containing 

different densities of synaptic vesicles (Figure 3.28). 

 

In summary, quenching-based photoswitching offers an alternative to buffer-mediated 

photoswitching and can be a potential tool for performing multicolor dSTORM. The 

study on quenching-based photoswitching in phalloidin-fluorophore conjugates is 

limited to performing super-resolution microscopy on actin. Therefore, probes need to 

be designed in a special manner that can mimic the properties of phalloidin-

fluorophore conjugates for a more general usage of quenching-based photoswitching 

for super-resolution light microscopy. 
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4 Discussion 
 

The present work comprises developing technology to perform dSTORM 

measurements on thick vibrotome sectioned brain tissue. Such as thick specimen, 

whose thickness is in the range to 100 to 200 µm, is not only able to attach itself to 

the cover-slip but also not conducible for performing dSTORM measurements 

because thick specimen contributes to enormous background autofluorescence, which 

spoils the localization precision of dSTORM. The cause of autofluorescence is the 

fixation of proteins with paraformaldehyde (PFA). PFA fixed biological matter when 

excited with light in the visible range lead emission of fluorescence. Therefore, a 

technique called tomoSTORM was developed that entailed performing ultrathin 

physical sections (40 nm in thickness) of the sample. These ultrathin sections not only 

allowed for easy epitope accessibility and but also contributed to a gain in resolution 

in z-axis. The gain in z resolution arises from the fact that the thickness of the section 

alone determines the resolution in z-axis. The resolution along the z-axis of an optical 

setup under ideal conditions is 600 nm. Therefore, the gain by physical sectioning is 

by many orders of magnitude greater. Limitations in staining for proteins with 

tomoSTORM, however, proved to be enormous. As a result, another technique was 

developed, which adopted Tokuyasu ultracryotomy for thin tissue sectioning (4 µm) 

for the use in dSTORM. Improvement in z-resolution is accomplished by performing 

3D dSTORM microscopy as opposed to physical sectioning. As sections in this 

approach were resin-free antigenicity is better preserved. 

 

4.1 TomoSTORM 
 

In this study, Array Tomography (AT) was combined with dSTORM for the study of 

synaptic protein organization in the calyx of Held. As described in the protocol of AT, 

LR White was used as the resin to perform embedding of the brain tissue. While using 

nanoscopic techniques such as electron microscope and dSTORM, one needs to 

ensure that the ultra-structure of the tissue is well maintained to ensure the protein 

distribution at the synapse is as less disturbed as possible. dSTORM images of LR 

White sections immunostained for the membrane bound GFP showed a distorted 

organization of the plasma membrane. Electron micrograph of LR White sections 
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confirmed that the tissue preservation is poor. Therefore, the decision was taken to 

use another resin called HM 20, which is equally suitable for doing immunolabeling. 

Unlike LR White, tissue infiltration with HM 20 requires extremely low temperature 

conditions. Moreover, high-pressure frozen samples are known to keep their 

ultrastructure well preserved devoid of damaging ice crystal formation (McDonald 

KL, 2009). This allowed use of high-pressure frozen samples. High-pressure frozen 

HM 20 sections examined with electron microscope showed well-preserved ultra-

structure of the brain tissue. Therefore, HM 20 was chosen for performing dSTORM 

measurements. dSTORM images of HM 20 sections immunostained for the 

membrane bound GFP clearly showed the membrane leaflets bounding the synaptic 

compartment of the calyx of Held. The width of the synaptic compartment is similar 

in dimensions to what is obtained with electron microscope measurements (Figure 

3.4). From these observations it is concluded that use of HM 20 embedded brain 

tissue under high pressure frozen condition is well suited for obtaining super-

resolution images (Nanguneri et al 2012) where proteins probed are as less displaced 

as possible.  

 

Using dSTORM, single color dSTORM images were obtained. Multicolor dSTORM 

imaging was achieved by making use of a standard-resolution reference image. The 

widefield reference images thus obtained were aligned using an ImageJ plugin, which 

allows the user to save the transformation matrix. Subsequently, the transformation 

matrix is applied to the super-resolution image that needs to be transformed leading to 

a registration between the two different dSTORM datasets. This way it is 

demonstrated that the presynaptic mitochondrial cytochrome C signal is confined to 

the two leaflets of the synaptic compartment. This process though described for two 

colors can be extended in principle to obtaining well-registered (numbers) multicolor 

dataset (lit). Therefore, with tomoSTORM a super-resolution voxel size of 28 nm x 28 

nm x 40 nm could be demonstrated. 

 

Though the resin approach has been particularly useful in overcoming the limitations 

in the z-resolution, it is nevertheless not devoid of nonspecific labeling of the 

antibody. As long as a protein, which is found in great abundance, is labeled, 

clustering of true signal makes the discrimination between true versus false  

immunostaining signal possible. As the abundance of the proteins such as those 
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present in the active zone starts to decrease, it becomes increasingly hard to 

discriminate between true versus false signal, as the density of true signal becomes 

the same as that of the false signal. 

 

From prior experience, labeling of active zone proteins works well in nonresin 

embedded tissue, which is not physically sectioned. In addition, resin infiltration 

requires dehydrating conditions, which denatures proteins. Denaturation of 

fluorescent proteins such as GFP, mEos2 leads to loss of fluorescence. Therefore, the 

step was taken to avoid resin and find an alternative way to improve resolution in the 

z-axis. 

 

4.2 Tokuyasu’s Cryosectioning Approach 
 

Overcoming limitations with tomoSTORM required an alternative approach, which 

avoided resin. The alternative approach should have the benefit of labeling for 

proteins found in less abundance, have minimum autofluorescence and the sample 

needs to stay adhered to the coverslip. Therefore, the fixed brain sample was 

cryoprotected in sucrose and frozen it in liquid nitrogen to cut 1-4 µm thick samples 

under a temperature of -40° C using a cryo-diamond knife. Avoiding resin in this 

manner runs the risk of poor z-resolution. This is addressed by using a cylindrical lens 

in the emission pathway to discriminate the positions of single molecules along the z-

axis with a resolution of 50 nm which is comparable to that obtained by physical 

sectioning the sample. This approach is termed 3D dSTORM (Huang B. et al., 2008), 

which has a voxel size of 20 nm x 20 nm x 50 nm. 

 

As a proof of principle, ultra-cryosections thus obtained were labeled for various 

synaptic proteins found in the calyx of Held such as Bassoon, Piccolo, vGlut1 and 

Septin 5. Single color 3D dSTORM was successfully performed on the vGlut1 and 

bassoon distribution in the calyx. Bassoon at nanoscopic level has a donut shaped 

topology. In addition, avoiding denaturing resin condition allows one to use 

photoswitchable fluorescent proteins such as mEos2 for performing single molecule 

localization experiments. Use of mEos2 on thick samples, however, is problematic 

because an abundance of mEos2 leads to enormous background fluorescence from 
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mEos2 present in the out of focus zone. As a result acquiring single molecule imaging 

of such an mEos2 sample would entail bleaching mEos2 molecules not only present 

in the focal volume but also those present in the out of focus region. Such a bleaching 

scheme would leave very few functional mEos2 molecules in the focal volume 

thereby leading to a highly discontinuous structure (Figure 3.13). There are two 

possible solutions to overcome the problem of abundance of mEos2 in the sample. 

One is to use ultrathin cryosections (100 nm - 300 nm) and the other is to reduce the 

expression levels of mEos2 in the sample. A 300 nm ultrathin section containing 

mEos2 has been successfully imaged. Membrane features are discontinous, which fits 

well in comparison to sections obtained from tomoSTORM method. As active zones 

span in diameter greater than 300 nm, working with such thin sections for active zone 

protein labeling leads to a high under sampling of the active zone. Future work needs 

to focus on reducing the expression levels of mEos2 so that working with thick 

samples does not become prohibitive. 

 

4.3 Bassoon and Piccolo 
 

Bassoon and Piccolo are two active zone proteins that compose the cytomatrix of the 

active zone and play a role in the clustering of vesicles (Mukherjee et al. 2009). In the 

calyx of Held, Bassoon and Piccolo are organized so that there is a significant overlap 

of the two proteins as confirmed by confocal imaging (Dondzillo A, et al., 2010). As 

the two proteins are homologous these two proteins perform redundant function at the 

active zone of clustering the vesicles.  

 

Dual color 3D dSTORM analysis of the two proteins has revealed a similar overlap of 

the two proteins not only at the macroscopic level but also at the nanoscopic level. In 

addition, there exists at the nanoscopic level within a given active zone regions which 

are occupied by only Bassoon and devoid of Piccolo and vice versa. The functional 

relevance of this may not be very significant as the two proteins have highly similar 

function causing a redundancy of their function in the active zone. A multiplexing of 

antibody staining for additional proteins maybe needed to unravel other molecular 

partners of Bassoon and Piccolo to explain if there is a difference in the manner in 

which these two proteins cluster at the nanoscopic level.  
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4.4 Septin 5 at the Active Zone 
 

The calyx of Held transforms from a microdomain configuration at the onset of 

hearing to a nanodomain configuration at the age of P17 marking the completion of 

maturation. Septin 5 a filamentous protein is known to retard vesicle release via its 

association with SNARE complex. Septin 5 knock-out mice at P7 show phenotype 

similar to P17. Therefore, lack of Septin 5 pushes the synaptic vesicles closer to the 

release plate. As a model it is shown that the Septin 5 is found in between the vesicle 

and the calcium channel functioning to keep the vesicle a certain distance apart from 

the calcium channels (Yi-Mei Yang et al., 2010). Dual color dSTORM was performed 

to see the extent of colocalization between Septin 5 and Piccolo, an active zone 

marker at the two ages. Dual color dSTORM showed that at P7 the release face of the 

active zone is dotted by Septin 5. At P17, however, Septin 5 is increasingly found not 

at the release face but in the neighbourhood of the release face. In addition 3D dual 

color dSTORM of P7 show that Septin 5 dots the release face of the active zone. The 

implication of this could be that as Septin 5 is probably needed to keep the vesicles 

and calcium channels apart, Septin 5 could in essence be contacting the calcium 

channels (Yi-Mei Yang et al., 2010) and in doing so causing them to cluster 

(Meinrenken et al., 2003). 

 

4.5 Voltage-Gated Calcium Channel 
 

Calcium channel labeling with conventional antibody has been particularly 

challenging due to molecular crowding of proteins at the active zone (personal 

communication). Therefore, making use of P/Q type calcium channel tagged to GFP, 

the calcium channel distribution was probed with GFP nanobodies. Because calcium 

channels are not as densely clustered as Bassoon, the challenge was to fish the true 

signal from the unspecifically labeled signal. This is the same problem as that 

encountered with labeling for less abundant proteins on resin embedded thin sections. 

The density of the true signal is close to the density of unspecific labeling. Future 

work should focus on developing smaller tags such as SNAP-tags that could be 

conjugated to the calcium channels. This way the dye molecule would specifically 

bind to where the tag is located. Alternatively, voltage-gated channels in general have 
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been better accessed when approached from the extracellular side of the membrane 

(Lorincz and Nusser, 2010). Perhaps, tissue-processing approaches need to be 

developed that retain all the components of a given cell and destroy all neighbouring 

components that way epitope accessibility from outside a cell is possible. 

 

4.6 Alternative Photoswitching Strategies for Multicolor dSTORM 
 

Fluorophores such as ATTO 488, TRITC and BODIPY 650 when conjugated to 

phalloidin show photoswitching capability in PBS. This form of photoswitching is 

mediated by tryptophan-induced quenching. Conventional way of performing 

dSTORM experiments requires the use of reducing buffer environment. As each dye 

has its unique buffer recipe for photoswitching, there is a need to use a compromise 

buffer to enable two or more dyes to photoswitch. Such a buffer condition is not ideal 

for any one dye. As phalloidin-dye conjugates photoswitch in plain PBS, they offer an 

alternative approach to perform dSTORM experiments. There is, however, a caveat. 

Phalloidin probes are limited to doing dSTORM measurements on actin filaments. 

Therefore, in order to exploit this form of photoswitching one needs to rationally 

design probes that mimic phalloidin. This would entail finding a to place a quencher 

within a distance of 1-2 nm of the dye. Besides the amino acid tryptophan, amino acid 

histidine and nucleic acid guanosine are also known to quench dyes. Recombinant 

proteins such as nanobodies carry a histidine tag, which helps in their purification 

using nickel column. Aptamers are probes, which are purely based on nucleic acids. 

Therefore, conjugating dyes to nanobodies and aptamers should form a potential 

avenue for developing quenching-based photoswitching probes.  

 

4.7 Outlook 
 

In this study, we have made an attempt to use the diffraction-unlimited light 

microscopy (dSTORM) to look at the distribution of proteins at the calyx of Held 

synapse. Two tissue-processing approaches have been presented namely 

tomoSTORM and Tokuyasu’s ultracryotomy. tomoSTORM can only be used for 

proteins which exist in great abundance, those that are either over-expressed like 

membrane bound GFP or endogenous protein as cytochrome C. In a recent approach 
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thin section light microscopy has been combined with isotopic imaging to 

characterize the turn over of proteins. The future of tomoSTORM depends on how 

efficiently the experimenter can deal with unspecific labeling. On the other hand 

Tokuyasu’s ultracryosections gets away with thin sections as it benefits in z-

resolution by using 3D dSTORM. Tokuyasu’s approach is limited to only dual color 

dSTORM images. This is due to the fact that in dSTORM only two dyes can be 

photoswitched and multiplexing by stripping antibodies is difficult as it requires harsh 

conditions that may be damaging to the tissue. However, it is superior to 

tomoSTORM as it can better characterize the less abundantly present active zone 

proteins. The future of Tokuyasu’s approach depends on implementing new concepts 

of doing single molecule localization microscopy. One approach called DNA-PAINT 

has multiplexing capacity and therefore is well suited to be combined with 

Tokuyasu’s method to look at a population of proteins (Jungmann R, et al., 2014). 
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5 Abbreviations 
 

2D     2 Dimensional 

3D     3 Dimensional 

AMPA     α-Amino-3-hydroxy-5-methyl-4-  

     isoxazolepropionic acid receptor 

ATTO     Name of the dye produced by ATTO-Tec,  

     Germany  

AVCN     Anterior Ventral Cochlear Nucleus 

AZ     Active Zone 

BODIPY    Boron-dipyrromethene 

CAZ     Cytomatrix of Active Zone 

CNS     Central Nervous System 

dSTORM    direct Stochastic Optical Reconstruction  

     Microscopy 

EGTA     Ethylene Glycol Tetra Acetic Acid 

EM     Electron Microscope 

EPSC     Excitatory Post Synaptic Current 

GBC     Globular Bushy Cells 

GFP     Green Fluorescent Protein 

GluA4     Glutamate Receptor type 4 

HM20     Lowicryl HM20 is a acrylate-and methacrylate 

     based embedding media 

Kon     Rate at which a fluorophore turns ON 

Koff     Rate at which a fluorophore turns OFF 

memGFP    membrane bound GFP 

MCA     Manders Colocalization Analysis 

MNTB     Medial Nuclear Trapezoid Body 

NMDA    N-Methyl-D-aspartic acid receptor 

PALM     Photoactivated Localization Microscopy 

PBS     Phosphate Buffer Saline 

PFA     Paraformaldehyde 

PET     Photon-induced Electron Tranfer 
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PSD     Post Synaptic Density 

PSF     Point Spread Function 

SMLM     Single Molecule Localization Microscopy 

SNAP-tag    a technology, where a 20 kDa mutant of the  

     DNA repair protein O6-alkylguanine-DNA  

     alkyltransferase that reacts specifically and  

     rapidly with benzylguanine (BG) derivatives 

STED     Stimulated Emission Depletion  

SV     Synaptic Vesicle 

TRITC     Tetramethylrhodamine B isothiocyanate 

tSNARE    trans-soluble N-ethylmaleimide-sensitive-factor 

     attachment receptor 

tomoSTORM    Tomographic Stochastic Optical Reconstruction 

     Microscopy 

VGCC     Voltage-gated calcium channels 

vGlut1     Vesicular glutamate receptor type 1 
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8 Appendix 
 

 
 
Figure A1: Estimation of time phalloidin-ATTO 488 was in ‘on’ state. The histogram depicts the 

distribution of time intervals during which the fluorophore is in ‘on’ state per blinking event. The x-

axis stands for time in seconds and the y-axis stands for the occurrences of ‘on’ state intervals. It has 

been fitted to a mono-exponential function of the form y=exp(-x/τ ) to derive the characteristic rate 

constant koff  = 1/τon = 61.8 s-1. 
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Figure A2: Estimation of time phalloidin-ATTO 488 was in ‘off’ state. The histogram depicts the 

distribution of time intervals during which the fluorophore is in ‘off’ state between two blinking events.  

The x-axis stands for time in seconds and the y-axis stands for the occurrences of ‘off’ state intervals. It 

has been fitted to a mono-exponential function of the form y=exp(-x/τ ) to derive the characteristic rate 

constant  kon  = 1/τoff =  0.07 s-1. 
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Figure A3: Histogram of phalloidin-ATTO 488 molecules undergoing blinking. The x-axis stands for 

the number of blinking events per molecule and the y-axis stands for the number of molecules. The 

experiment lasted 10000 frames with frame duration of 30 ms. The curve was fitted to a mono-

exponential y=exp(-x/τ ) and gives a characteristic τ = 1.21 blinking events per molecule. 
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Figure A4: Estimation of time phalloidin-TRITC was in ‘on’ state. The histogram depicts the 

distribution of time intervals during which the fluorophore is in ‘on’ state per blinking event. The x-

axis stands for time in seconds and the y-axis stands for the occurrences of ‘on’ state intervals. It has 

been fitted to a mono-exponential of the form y=exp(-x/τ) function to derive the characteristic rate 

constant koff = 1/τon = 33.43 s-1. 
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Figure A5: Estimation of time phalloidin-TRITC was in ‘off’ state. The histogram depicts the 

distribution of time intervals during which the fluorophore is in ‘off’ state between two blinking events.  

The x-axis stands for time in seconds and the y-axis depicts the occurrences of ‘off’ state intervals. It 

has been fitted to a mono-exponential function of the form y=exp(-x/τ ) to derive the characteristic rate 

constant kon = 1/τoff = 0.0327 s-1. 
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Figure A6: Histogram of phalloidin-TRITC molecules undergoing blinking. The x-axis stands for the 

number of blinking events per molecule and the y-axis stands for the number of molecules. The 

experiment lasted 10000 frames with frame duration of 30 ms. The curve was fitted to a mono-

exponential of the form y=exp(-x/τ ) and gives a characteristic τ = 1.35 blinking events per molecule. 
 


