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Z U S A M M E N FA S S U N G

Teil I: Ist unser Universum auf den größten beobachtbaren Skalen räumlich homogen? Um
diese Frage zu untersuchen, entwickeln wir eine flexible Methode, die auf sphärisch sym-
metrischen, aber räumlich inhomogenen Lemaître-Tolman-Bondi-Modellen basiert. Diese
Methode ermöglicht es uns, eine Vielfalt alternativer kosmologischer Modelle zu studieren, die
nicht dem kopernikanischen Prinzip folgen. Wir verwenden einen Monte-Carlo-Algorithmus,
der das (lokale) Dichteprofil der theoretischen Modelle unter Berücksichtigung aktueller
Beobachtungsdaten systematisch variiert und optimiert. Nach einer ausführlichen Analyse
inhomogener Kosmologien mit und ohne kosmologischer Konstante kommen wir zu dem
Schluss, dass die betrachteten Beobachtungsdaten keinen statistischen Hinweis auf eine Abwei-
chung von räumlicher Homogenität auf großen Skalen enthalten. Es sind allerdings präzisere
Messungen erforderlich, um die Annahmen des kosmologischen Prinzips endgültig zu bestäti-
gen.

Teil II: Stehen die stärksten beobachteten Gravitationslinsen im Widerspruch zu den theore-
tischen Vorhersagen des kosmologischen Standardmodells? Um diese Frage zu diskutieren,
betrachten wir die Extremwert- und Ordnungsstatistik der kosmologischen Verteilung der
größten Einstein-Radien. Wir zeigen, dass Verschmelzungen von Galaxienhaufen die Einstein-
Radien der stärksten Gravitationslinsen substanziell vergrößern können. Ein Vergleich mit
aktuellen Beobachtungsdaten ergibt, dass es momentan keine verlässlichen statistischen Hin-
weise dafür gibt, dass die größten beobachteten Einstein-Radien die maximalen Erwartungen
des kosmologischen Standardmodells übertreffen.

A B S T R A C T

Part I: Is our Universe spatially homogeneous on the largest observable scales? To investigate
this question, we develop a flexible method based on spherically symmetric, but radially
inhomogeneous Lemaître-Tolman-Bondi models that allows us to study a wide range of
non-Copernican cosmological models. We employ a Monte Carlo sampler to systematically
vary the shape of the (local) matter density profile and determine the likelihood of the sampled
models given a selected set of observational data. After analysing non-Copernican models
with and without cosmological constant, we arrive at the final conclusion that the observational
data considered provide no statistical evidence for deviations from spatial homogeneity on
large scales. However, more accurate constraints are required to ultimately confirm the validity
of the cosmological principle.

Part II: Are the strongest observed gravitational lenses in conflict with the predictions of the
standard cosmological model? To address this question, we apply extreme value and order
statistics to the cosmological distribution of the largest Einstein radii. We show that cluster
mergers can substantially increase the Einstein radii of the strongest gravitational lenses.
A comparison with current observational data reveals that, presently, there is no reliable
statistical evidence for observed Einstein radii to exceed the theoretical expectations of the
standard cosmological model.
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I N T R O D U C T I O N

The standard cosmological model is remarkably successful: Based on only six para-
meters, some of which are fundamental, some are effective, the spatially flat Λ cold
dark matter (ΛCDM) model consistently explains the vast majority of cosmological
observations (Weinberg 2008; Bartelmann 2010a). This success, however, comes at a
high prize because the model requires that the cosmological constant Λ and cold dark
matter make up ∼ 95% of today’s energy density of the Universe, while only ∼ 5%
consist of baryonic matter explained by the standard model of particle physics (Planck
Collaboration et al. 2013). In other words, the standard cosmological model asserts that
the energy content of the current epoch is almost entirely dominated by non-standard
physics. Of course, this statement is deliberately provocative, but it is fair to say that
the physical origin of the two dark components is still speculative, and a satisfying
theoretical explanation has yet to be given (Peebles & Ratra 2003; Bertone et al. 2005;
Amendola & Tsujikawa 2010).

These open questions certainly do not falsify the standard cosmological model,
but they motivate to critically probe the theoretical foundations the model is built
upon. One of these foundations is the cosmological principle, which asserts that
our Universe is spatially isotropic and homogeneous when averaged over sufficiently
large scales (& 100 Mpc). This assumption is truly remarkable as if correct it implies
that the space-time geometry of our Universe – which is notably inhomogeneous on
small scales – should on large scales effectively be described by the simple class of
highly symmetric Friedmann-Lemaître-Robertson-Walker (FLRW) models (Friedmann
1922; Lemaître 1927; Robertson 1935; Walker 1935). Statistical isotropy about our
position seems to be well established, in particular given the observed distribution
of galaxies (Hogg et al. 2005; Sarkar et al. 2009; Pullen & Hirata 2010; Scrimgeour
et al. 2012) and the near-perfect isotropy of the cosmic microwave background (CMB;
Bennett et al. 2013; Planck Collaboration et al. 2013). In contrast, spatial homogeneity
cannot be directly observed. To this end, one would have to analyse the structure of
three-dimensional space-like hypersections with constant time, which is impossible
because all our observations are confined to the past null cone (PNC). As we look
down the PNC, we simultaneously observe temporal and spatial evolution. Thus, we
can hardly distinguish between a time-evolving homogeneous matter distribution and
a spatially inhomogeneous matter distribution with a different time evolution (see
Maartens 2011; Clarkson 2012, for detailed discussions). Therefore, it is perhaps fair to
say that spatial homogeneity is only a working assumption that is, however, in good
agreement with most cosmological observations.

Nonetheless, we can (and should) indirectly probe the fundamental assumption of
spatial homogeneity by means of statistical methods. Non-Copernican cosmological
models are one particular option to do this. We can theoretically construct spatially
inhomogeneous cosmologies, calculate observable consequences of these models, and
compare the corresponding predictions with observed data. The statistical likeli-
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2 introduction

hood of the non-Copernican cosmologies considered can then be compared with the
likelihood of the standard cosmological model, which eventually allows us to decide
whether or not there is statistical support for deviations from spatial homogeneity.

We adopt such an approach in the first part of this thesis. To this end, in Chap. 1, we
first introduce the Lemaître-Tolman-Bondi (LTB; Lemaître 1933; Tolman 1934; Bondi
1947) model, which is a spherically symmetric, but radially inhomogeneous dust
solution of Einstein’s field equations (Einstein 1915). If we assume that we – the
observer – are located at the distinguished symmetry centre of an LTB space-time, we
can construct non-Copernican cosmological models that conserve isotropy but may
otherwise exhibit interesting physical properties such as varying spatial curvature,
radially dependent expansion rates, or inhomogeneous matter density profiles.

This leads to the basic idea of Chap. 2: We assume that the space-time geometry
around us is described by the LTB metric and expand the matter density profile
of the (local) Universe in terms of flexible interpolation schemes and orthonormal
polynomials. A Monte Carlo (MC) sampler is used to systematically vary the shape of
the flexibly parametrised matter density profiles and maximise the likelihood given
a selected set of observational data. In doing so, we aim to answer questions of
the following kind: What does the statistically favoured matter density profile of
the observable Universe look like? Can we find statistical evidence for deviations
from spatial homogeneity on large scales? Could the observed (apparent) late-time
acceleration of the expansion rate of the Universe be explained by a Gpc-scale void
model without dark energy that is consistent with recent observational data?

After analysing various LTB models with and without cosmological constant, we
conclude that the observational data considered in Chap. 2 provide no evidence for
deviations from spatial homogeneity on large scales. However, our analysis is limited
by the fact that linear perturbation theory in LTB models is quite demanding and we
still lack the proper tools for numerically solving the linear perturbation equations
with realistic cosmological initial conditions. To be conservative, we thus have to
exclude all observables that depend on the details of structure formation. To ultimately
confirm the validity of the cosmological principle, however, it would be important to
include more observational data in future analyses. Given upcoming surveys such
as the Euclid mission (Amendola et al. 2013), we expect that studies of cosmological
weak lensing will meaningfully complement the observational data used in Chap. 2.
Therefore, in Chap. 3, we outline a simple framework for studying weak gravitational
lensing in linearly perturbed LTB models. This framework can readily be applied as
soon as our new numerical code for solving the linear perturbation equations on LTB
backgrounds has been finished (Meyer et al., in preparation).

In comparison to the first part, we adopt a completely different perspective in the
second part of this thesis. We no longer question the theoretical foundations the
standard cosmological model is based on but instead assume that the ΛCDM model
is a valid description of our Universe and study the statistics of strong-lensing events.
Before going into details, it is perhaps useful to explain why strong-lensing statistics
is a valuable cosmological probe.

At first, we note that only very massive objects can act as strong gravitational
lenses. Thus, typical strong-lensing phenomena, such as giant gravitational arcs or
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multiply imaged source galaxies, are mainly observed in massive galaxy clusters.
The frequency of strong-lensing events in a certain cosmological volume is hence
sensitive to the abundance of galaxy clusters, which in turn depends on the halo mass
function, the matter density parameter, and the normalisation of the power spectrum
(Bartelmann 2010a). Furthermore, the strong-lensing efficiency of individual clusters is
sensitive to their internal properties, such as the concentration of the inner core or the
detailed shape of the density profile (e. g. amount of triaxiality). These characteristics
encode important information about the fundamental properties of dark matter (e. g.
velocity dispersion) and the details of structure formation (formation time of clusters,
merging activity, etc.). Finally, we note that the lensing efficiency also depends on the
angular-diameter distances between the observer, the cluster, and the lensed source.
Consequently, strong lensing also probes the geometry of the Universe.

There are many more aspects that influence the statistical strong-lensing efficiency
of cosmological cluster populations (see Meneghetti et al. 2013, for a detailed review).
However, the effects outlined above already indicate that strong-lensing statistics is
sensitive to a wide range of theoretical assumptions concerning the foundations of the
cosmological model (e. g. nature of dark matter), the details of structure formation,
and the exact values of the cosmological parameters. It is precisely this large diversity
that makes the statistics of strong lensing such a powerful cosmological tool.

As recently reviewed by Meneghetti et al. (2013), there are two persistent problems
that have been controversially discussed over the last fifteen years: The arc statistics
problem denotes the ongoing debate whether or not the high rate of observed gravi-
tational arcs substantially exceeds the theoretically expected abundance of arcs. The
Einstein ring problem names the concern raised by several authors that the largest
observed Einstein radii are too large to be consistent with the ΛCDM model. In
essence, both problems question whether the strongest observed gravitational lenses
exceed the maximum theoretical expectations of the standard cosmological model.
This is the key issue of the second part of this thesis.

Our approach to this problem consists of several successive steps. At first, we briefly
summarise the basics of strong gravitational lensing in Chap. 4. In particular, we
define the strong-lensing cross section and the Einstein radius of a gravitational lens.

In Chap. 5, we explain the close link between the arc statistics problem and the
Einstein ring problem, which eventually allows us to only focus on the statistics
of the largest Einstein radii in the subsequent chapters. Moreover, we show that
cluster mergers are an important mechanism to boost the strong-lensing efficiency of
individual clusters. Based on a newly developed semi-analytic method, we demon-
strate that cluster mergers are particularly relevant for the statistics of the strongest
lenses, indicating that mergers might help to mitigate the tension between theory and
observations.

Is the largest observed Einstein radius consistent with the ΛCDM model? The
theory of extreme value statistics provides the proper mathematical framework for
quantitatively answering such questions. In Chap. 6, we show that the occurrence
probability of the largest observed Einstein radius in a concrete survey is well described
by the general extreme value distribution. Given the current state of the theory,
however, the extreme value distribution of the largest Einstein radius still is subject to
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many model uncertainties. Therefore, in Chap. 7, we explain that it is beneficial to
extend our statistical approach of Chap. 6 by considering the order statistics of the n
largest Einstein radii. This allows formulating more robust ΛCDM exclusion criteria
based on n observations instead of a single extreme event that might have been caused
by an extremely peculiar lensing system that was statistically not accounted for.

At last, in Chap. 8, we combine all our previously developed techniques and
calculate the extreme value and order statistics of the largest Einstein radii in a ΛCDM
model taking the effect of cluster mergers into account. A comparison with current
observational data reveals that, presently, there is no reliable statistical evidence
for the strongest observed gravitational lenses to exceed the maximum theoretical
expectations of the standard cosmological model.

Obviously, the two parts of this thesis discuss largely different topics. While the
first part focuses on a very fundamental principle, the second part simultaneously
probes a wide range of theoretical assumptions made within the framework of the
ΛCDM model. What they have in common, however, is the basic idea to probe the
standard cosmological model by means of statistical methods.

Unless stated otherwise, we set the speed of light to unity (c = 1) throughout this
thesis. Moreover, in mathematical expressions, bold typeface indicates vectors.

Parts of this thesis were published in the following articles:

• Redlich, M., Bolejko, K., Meyer, S., Lewis, G. F. & Bartelmann, M. (2014): Probing
spatial homogeneity with LTB models: a detailed discussion. A&A, in press, DOI:
10.1051/0004-6361/201424553

• Redlich, M., Bartelmann, M., Waizmann, J.-C. & Fedeli, C. (2012): The strongest
gravitational lenses. I. The statistical impact of cluster mergers. A&A, 547, A66

• Waizmann, J.-C., Redlich, M. & Bartelmann, M. (2012): The strongest gravitational
lenses. II. Is the large Einstein radius of MACS J0717.5+3745 in conflict with ΛCDM?.
A&A, 547, A67

• Waizmann, J.-C., Redlich, M., Meneghetti, M. & Bartelmann, M. (2014): The
strongest gravitational lenses. III. The order statistics of the largest Einstein radii. A&A,
565, A28

• Redlich, M., Waizmann, J.-C. & Bartelmann, M. (2014): The strongest gravitational
lenses: IV. The order statistics of the largest Einstein radii with cluster mergers. A&A,
569, A34

http://dx.doi.org/10.1051/0004-6361/201424553
http://dx.doi.org/10.1051/0004-6361/201219722
http://dx.doi.org/10.1051/0004-6361/201219944
http://dx.doi.org/10.1051/0004-6361/201323022
http://dx.doi.org/10.1051/0004-6361/201323022
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T H E L E M A Î T R E - T O L M A N - B O N D I M O D E L

abstract

This chapter briefly introduces the Lemaître-Tolman-Bondi model, which is a
spherically symmetric, but radially inhomogeneous dust solution of Einstein’s
field equations. After motivating the general form of the LTB metric in comoving-
synchronous coordinates, we outline the solution of Einstein’s field equations.
A short comparison between the LTB metric and the FLRW metric allows us to
highlight distinctive features of radially inhomogeneous cosmological models.
After that, we discuss the propagation of light in LTB space-times and define
cosmic distances as measured by a central observer. Finally, we describe some
practical details concerning the numerical implementation of LTB models.

This chapter closely follows the textbooks by Straumann (2004) and Plebański &
Krasiński (2006), the latter containing a complete chapter (Chap. 18) dedicated to LTB
models. A brief, introductory review article of LTB models is provided by Enqvist
(2008).

1.1 general ansatz for the ltb metric

Let us consider a four-dimensional, spherically symmetric Lorentz manifold M with
metric g. Spherical symmetry implies that the manifold admits the group SO(3)
as an isometry group, such that the group orbits are two-dimensional space-like
surfaces which can be identified with two-spheres S2. Consequently, we can naturally
foliate the manifold into M = M̃× S2 and introduce local coordinates (t, r) on the
two-dimensional submanifold M̃ as well as polar coordinates (θ, φ) on the two-spheres
S2. The coordinates (t, r) can always be chosen such that the metric tensor (in these
coordinates) has no time–space components. Based on these considerations, the
general ansatz for the metric of a four-dimensional, spherically symmetric space-time
can be written as

g = −e2a(t,r)dt2 +
[
e2b(t,r)dr2 + R2(t, r)

(
dθ2 + sin2 θdφ2)] . (1)

The areal radius R(t, r) is a free function that assigns an area A to the surfaces
{t = const, r = const} by the usual Euclidean relation A = 4πR2.

Let us further assume that the space-time M is exclusively filled with dust, that is,
a pressureless perfect fluid described by the energy-momentum tensor

Tµν = ρuµuν , (2)

7
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where ρ denotes the local energy density and uµ the four-velocity of the dust. With
vanishing pressure (p = 0), Einstein’s field equations imply that the dust particles
move along time-like geodesics, ∇uu = 0. In that case, the time coordinate t can
always be redefined such that gtt = 1. Therefore, the general ansatz for the metric of a
spherically-symmetric, dust-filled space-time can be written as

g = −dt2 + e2b(t,r)dr2 + R2(t, r)
(
dθ2 + sin2 θdφ2) . (3)

In the above synchronous-comoving coordinates, the four-velocity of freely-falling dust
particles is simply given by u = ∂t.

1.2 solution of einstein’s field equations

Einstein’s field equations including the cosmological constant Λ read

Gµν = 8πGTµν −Λgµν , (4)

where Gµν, G, Tµν and gµν are, respectively, the Einstein tensor, Newton’s gravitational
constant, the energy-momentum tensor and the metric tensor (Einstein 1915). Inserting
the above ansatz for the metric (3) and the energy-momentum tensor of dust (2) into
Eq. (4), we find the following components of the field equations:

G0
0 = − Ṙ2

R2 −
2ḃṘ

R
+ e−2b

(
R′2

R2 +
2R′′

R
− 2b′R′

R

)
− 1

R2 = −8πGρ−Λ , (5)

G1
0 =

2e−2b

R
(
ḃR′ − Ṙ′

)
= 0 , (6)

G1
1 = − Ṙ2

R2 −
2R̈
R

+ e−2b R′2

R2 −
1

R2 = −Λ , (7)

G2
2 = G3

3 = −ḃ2 − b̈− 1
R
(
ḃṘ + R̈

)
+

e−2b

R
(

R′′ − b′R′
)
= −Λ , (8)

where a dot and a prime indicate, respectively, differentiation with respect to time
and radial coordinate.

To simplify the further discussion, we only consider solutions that are interesting
for cosmology. We can therefore assume Ṙ 6= 0. If Ṙ was zero, Eq. (6) would either
require R′ = 0 (leading to the Nariai (1950) solution) or ḃ = 0, which, due to Eq. (5),
has temporally constant density. Furthermore, we assume R′ 6= 0 and refer to Hellaby
& Lake (1985) for a detailed discussion of shell crossings and regularity conditions, as
well as Sect. 19.4 of Plebański & Krasiński (2006) for the Datt-Ruban solution.

Under these assumptions (Ṙ 6= 0, R′ 6= 0), we can rewrite Eq. (6) as

d
dt

(
e−2bR′2

)
= 0 , (9)

and integrate Eq. (9) in time to find

e2b =
R′2

1 + 2E(r)
. (10)
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Here, E(r) formally appears as an arbitrary function fixing the boundary conditions of
the above integration. Substituting Eq. (10) into the general ansatz for the metric (3),
we see that E(r) determines the spatial curvature of the LTB space-time as a function
of r. If E(r) was set to zero, the t = const hypersurfaces would be flat. We require
E(r) > −1/2 for the metric (3) to have the right signature.

Next, we substitute Eq. (10) into Eq. (7), yielding

2R̈
R

+
Ṙ2

R2 −
2E(r)

R2 −Λ = 0 . (11)

After multiplying Eq. (11) with ṘR2, we find

d
dt

(
Ṙ2R− 2E(r)R− 1

3
ΛR3

)
= 0 , (12)

which can also be integrated in time with the result

Ṙ2 =
2M(r)

R
+ 2E(r) +

1
3

ΛR2 , (13)

where M(r) is one more arbitrary, non-negative function. M(r)/G is the active
gravitational mass that generates the gravitational field. In curved space-times, this
mass does not necessarily need to equal the integrated rest mass. In fact, depending
on the sign of the curvature E(r), M(r)/G may be larger than (E > 0), smaller than
(E < 0) or equal to (E = 0) the integrated rest mass (cf. Plebański & Krasiński 2006,
Sect. 18.3). This is the general-relativistic analogue of the mass defect known from
nuclear physics.

Equation (13) determines the time evolution of the areal radius R(t, r) as a function
of the mass M(r), the curvature E(r) and the cosmological constant Λ. After a
separation of variables, Eq. (13) can directly be integrated, yielding

t− tB(r) =
R(t,r)∫

0

1√
2M(r)

R̃ + 2E(r) + Λ
3 R̃2

dR̃ , (14)

where the bang time function tB(r) formally appears as yet another free function
defining the time of the Big Bang singularity, R [tB(r), r] = 0. From this it follows that,
generally, in LTB models, the age of the Universe can vary as a function of r, and
consequently the Big Bang does not need to occur simultaneously. We discuss this
property at greater length in Chap. 2.

Finally, by substituting Eqs. (6) and (10) into the last independent field equation (5),
we can relate the active gravitational mass M(r) to the local mass density ρ,

8πGρ =
2M′(r)

R2R′
. (15)

Equation (15) is of key importance for our approach presented in Chap. 2, where we
explain an algorithm that determines the LTB solution given a local matter density
profile.
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To conclude this section, we repeat the final form of the LTB metric in comoving
coordinates in the synchronous time gauge:

g = −dt2 +
R′2(t, r)

1 + 2E(r)
dr2 + R2(t, r)

(
dθ2 + sin2 θ dφ2) . (16)

This solution of Einstein’s field equations was first derived by Lemaître (1933), and
later reconsidered by Tolman (1934) and Bondi (1947).

1.3 comparison with flrw models

It is illustrative to compare the LTB metric (16) with the spatially isotropic and
homogeneous FLRW metric, in particular to highlight distinctive features of radially
inhomogeneous cosmological models that are important for the following sections.

First, we note that the homogeneous FLRW metric is a special case of the LTB metric.
Defining R(t, r) = a(t)r and 2E(r) = −kr2, we obtain

g = −dt2 +
a2(t)

1− kr2 dr2 + a2(t)r2 (dθ2 + sin2 θ dφ2) , (17)

which is the standard notation for the FLRW metric in reduced-circumference polar co-
ordinates (Weinberg 2008). The FLRW limit thus emerges by requiring a homogeneous
scale factor a(t) (∂r a(t) = 0) and constant spatial curvature.

Next, we slightly rewrite Eq. (13) to introduce the transversal Hubble rate HT(t, r),
which describes the angular expansion rate of individual spherical shells,

HT(t, r) ≡ Ṙ2(t, r)
R2(t, r)

=
2M(r)
R3(t, r)

+
2E(r)

R2(t, r)
+

Λ
3

. (18)

In the above-mentioned FLRW limit, we recover the well-known Friedmann equation
(Friedmann 1922) from Eq. (18),

H2 [a(t)] ≡ ȧ2(t)
a2(t)

=
8πG

3
ρ(t0)

a3(t)
− k

a2(t)
+

Λ
3

(19)

= H2
0

[
Ωm

a3(t)
+

Ωk

a2(t)
+ ΩΛ

]
, (20)

where we implicitly chose the standard gauge a(t0) = 1 and also inserted M(r) =
4
3 πGρ(t0)r3, which results from Eq. (15) for a homogeneous matter density. Equa-
tions (18)-(20) highlight an important consequence of radial inhomogeneities: While
the Hubble rate in FLRW models is spatially homogeneous and depends on time only,
the Hubble rate in LTB models may additionally vary as a function of r. Fluctuations
in M(r), E(r), or tB(r) can induce variations of the spatial expansion rate.

Finally, we combine Eqs. (5) and (7) to construct a generalised acceleration equation
(Enqvist 2008),

2
3

R̈(t, r)
R(t, r)

+
1
3

R̈′(t, r)
R′(t, r)

= −4
3

πGρ(t, r) +
Λ
3

. (21)
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The total acceleration – which is the weighted sum of the angular and radial accel-
eration – is negative unless the cosmological constant dominates (Λ > 4πGρ); this
result is familiar from FLRW models. However, even in pure dust universes (Λ = 0),
the radial acceleration may be positive

(
R̈′(t, r) > 0

)
if the angular scale R(t, r) is

decelerating fast enough, and vice versa. This helps to illustrate that the idea of
accelerated expansion is ambiguous in radially inhomogeneous models, which might
be important for the correct interpretation of cosmological observations. We elaborate
on this issue in more detail in Chap. 2.

1.4 radial null geodesics and distance-redshift relation

In the following chapter, we assume that the space-time geometry of the local Universe
is well approximated by an LTB solution and investigate observable consequences of
inhomogeneities in the radial matter density profile. To compare such LTB models
with current cosmological data, we need to describe the propagation of light and
construct a distance–redshift relation. For reasons to be clarified later, we only consider
observers that are located at the symmetry centre at r = 0, where R(t, r = 0) = 0 at all
times t. The distance–redshift relation of such observers is determined by the solution
of incoming radial null geodesics (dθ = dφ = 0).

The following considerations reproduce the simple derivation given by Bondi (1947).
A more general discussion of null geodesics, also valid for off-centre observers, can be
found in Alnes & Amarzguioui (2006) or Brouzakis et al. (2007).

From the LTB metric (16), we can directly deduce that the time along radially
incoming null geodesics (ds2 = 0) evolves according to

dt
dr

= − R′(t, r)√
1 + 2E(r)

. (22)

Consider now two radial light rays emitted by the same source with a short time
delay τ � 1. Let T(r) and T(r) + τ(r) denote the time coordinates along these rays.
Equation (22) specified to the second, slightly delayed light ray reads

d
dr

[T(r) + τ(r)] = −R′ [T(r) + τ(r), r]√
1 + 2E(r)

(23)

= − R′ [T(r), r]√
1 + 2E(r)

− Ṙ′ [T(r), r]√
1 + 2E(r)

τ(r) +O
[
τ2(r)

]
, (24)

where we used a first order Taylor expansion in the second step. Taking into account
that Eq. (22) for the first ray reads

dT(r)
dr

= − R′ [T(r), r]√
1 + 2E(r)

, (25)

we can rewrite Eq. (23) to the following differential equation:

dτ(r)
dr

= − Ṙ′ [T(r), r]√
1 + 2E(r)

τ(r) . (26)
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Equation (26) describes the evolution of time delays along the PNC – an effect that
gives rise to the notion of a cosmological redshift.

Suppose that a central observer measures the frequency τobs of a light ray originally
emitted by a source at position r with the initial frequency τ(r). The redshift is then
defined by

τobs

τ(r)
= [1 + z(r)] . (27)

Radial differentiation of Eq.(27) yields the evolution of redshift along the PNC, and
thus also the sought-for distance–redshift relation in LTB models,

1
1 + z(r)

dz(r)
dr

=
Ṙ′ [t(r), r]√

1 + 2E(r)
. (28)

Equations (22) and (28) can be numerically integrated. After solving for t(r) and z(r)
on the PNC, we can numerically invert these relations to arbitrarily transform between
t, r, and z. For instance, given a redshift z, we can infer the corresponding radius r(z)
and compute the time t[r(z)] at which an incoming radial null geodesic was at this
position.

Finally, as can be seen from the metric (16), the angular-diameter distance in LTB
models is simply given by the areal radius function,

dA(z) = R(z) = R [t(z), r(z)] . (29)

The luminosity distance then follows from the reciprocity theorem (Etherington 1933,
2007; Ellis 2009):

dL(z) = (1 + z)2 dA(z) . (30)

1.5 numerical solution of einstein’s field equations

The previous section summarises the set of equations needed for determining the
distance–redshift relation in LTB models. Obviously, the numerical integration of
null geodesics requires the areal radius R(t, r) (and its derivatives) along the PNC.
Concerning this, it is perhaps important to note that Eq. (14) fixes R(t, r) and all its
derivatives as soon as M(r), E(r), Λ, and tB(r) have been specified. Therefore, we
detail the numerical solution of Eq. (14) for two particular cases in the following
subsections.

1.5.1 Without cosmological constant

If Λ = 0, the integral in Eq. (14) can be solved parametrically and – depending on the
sign of the curvature E(r) – leads to an elliptic (E < 0), parabolic (E = 0) or hyberbolic
(E > 0) evolution:
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• Elliptic evolution: E(r) < 0

R(t, r) = −M(r)
2E(r)

(1− cos η) , (31a)

η − sin η =
[−2E(r)]

3
2

M(r)
[t− tB(r)] . (31b)

• Parabolic evolution: E(r) = 0

R(t, r) =
{

9
2

M(r) [t− tB(r)]
2
} 1

3

. (32)

• Hyperbolic evolution: E(r) > 0

R(t, r) =
M(r)
2E(r)

(cosh η − 1) , (33a)

sinh η − η =
[2E(r)]

3
2

M(r)
[t− tB(r)] . (33b)

The elliptic evolution is special in the sense that it first starts to expand at η = 0,
reaches the maximum areal radius Rmax(r) = M(r)/|E| at η = π, and recollapses
afterwards. In contrast, the other two solutions are ever-expanding, the parabolic
solution being the limiting case between the elliptic and hyperbolic evolution. Again,
we refer the interested reader to Chap. 18 of Plebański & Krasiński (2006) for more
details on these solutions.

For numerical computations to be discussed later (cf. Sect. 2.4.2), it is useful to
rewrite the parametric solutions as

t = tB +
M

(−2E)
3
2

[
arccos

(
1 +

2ER
M

)
− 2

√
−ER

M

(
1 +

ER
M

)]
,

0 ≤ η ≤ π , (34a)

t = tB +
M

(−2E)
3
2

[
π + arccos

(
−1− 2ER

M

)
+ 2

√
−ER

M

(
1 +

ER
M

)]
,

π ≤ η ≤ 2π , (34b)

for the expanding and collapsing elliptic cases, and

t = tB +
M

(2E)
3
2

[
2

√
ER
M

(
1 +

ER
M

)
− arcosh

(
1 +

2ER
M

)]
(35)
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for the hyperbolic case. Equations (34) and (35) can be numerically unstable in the
near parabolic limit (|E| � 1). In this case, we use an inverse series expansion as
explained in Appendix B of Hellaby & Krasiński (2006).

Finally, we note that the parametric solutions (31) - (33) can be combined to derive
an analytic expression for the radial derivative of the areal radius function,

R′ =
(

M′

M
− E′

E

)
R +

[(
3
2

E′

E
− M′

M

)
(t− tB)− t′B

]
Ṙ . (36)

This relation, together with the radial derivative of Eq. (13),

Ṙ′ =
1
Ṙ

[(
M′R−MR′

R2

)
+ E′

]
, (37)

allows us to analytically compute R′ and Ṙ′, which renders the numerical integration
of radial null geodesics more efficient.

1.5.2 With cosmological constant

If Λ > 0, no general parametric solution exists. Instead, the elliptic integral in Eq. (14)
can only be computed numerically, which for certain parameter combinations quickly
turns into a difficult numerical problem involving singularities, slow convergence (if
at all) and poor precision.

However, Valkenburg (2012) found an elegant method to transform integrals such
as the one in Eq. (14) to a special class of elliptic integrals, which can efficiently be
computed with specific numerical algorithms. To illustrate this method, we sketch
one particular transformation here. The readable work of Valkenburg (2012) contains
more examples, extensive derivations and many useful details (such as asymptotic
expansions) concerning the numerical implementation.

Let us first repeat Eq. (14) in the new form

t− tB(r) =

√
3
Λ

R∫

0

√
R̃√

(R̃− y1)(R̃− y2)(R̃− y3)
dR̃ , (38)

where we simple rewrote the polynomial in the denominator to

2M(r) + 2E(r)R̃ +
Λ
3

R̃3 =
Λ
3
(R̃− y1)(R̃− y2)(R̃− y3) . (39)

The complex roots yi of Eq. (39) should be computed with specific formulae for
depressed1 cubic functions that were arranged to minimise roundoff errors (Press
2007). If required, the Newton-Raphson method can be used to further improve the
numerical accuracy of the yi’s.

1 A depressed cubic function is a cubic function without a quadratic term.
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Next, we subsequently perform the substitutions R̃ → c = 1
R̃ and c → b = c− 1

R̃ ,
before we arrive at the final result:

t− tB(r) =

√
3
Λ

R∫

0

√
R̃√

(R̃− y1)(R̃− y2)(R̃− y3)
dR̃ (40)

=

√
3
Λ

∞∫

1
R

c−
5
2√

( 1
c − y1)(

1
c − y2)(

1
c − y3)

dc (41)

=

√
3
Λ

(−1)−
3
2

√
y1y2y3

∞∫

1
R

1

c
√
(c− 1

y1
)(c− 1

y2
)(c− 1

y3
)

dc (42)

=

√
3
Λ

(−1)−
3
2

√
y1y2y3

∞∫

0

1
(
b + 1

R

)√
∏3

m=1(b +
1
R − 1

ym
)

db (43)

=
2√
3Λ

(−1)−
3
2

√
y1y2y3

RJ

(
1
R
− 1

y1
,

1
R
− 1

y2
,

1
R
− 1

y3
,

1
R

)
. (44)

In Eq. (44), we identified the previous integral with the special function RJ, which
belongs to the set of Carlson’s symmetric forms. This canonical set of elliptic integrals
can be solved using iterative algorithms, which are fast, robust, and quickly converge
with machine precision (Carlson 1995).

Valkenburg (2012) showed that similar transformations lead to expressions for R′

and Ṙ in terms of Carlson’s symmetric forms. We implemented these formulae in
our numerical code, which enables us to quickly compute derivatives of the areal
radius with machine precision. Again, this is particularly important for the efficient
integration of null geodesics.
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P R O B I N G S PAT I A L H O M O G E N E I T Y W I T H LT B M O D E L S

abstract

Do current observational data confirm the assumptions of the cosmological
principle, or is there statistical evidence for deviations from spatial homogeneity
on large scales? To address these questions, we developed a flexible framework
based on LTB models with synchronous Big Bang. We expanded the (local) matter
density profile in terms of flexible interpolation schemes and orthonormal poly-
nomials. A Monte Carlo technique in combination with recent observational data
was used to systematically vary the shape of these profiles. In the first part of
this chapter, we reconsider giant LTB voids without dark energy to investigate
whether extremely fine-tuned mass profiles can reconcile these models with
current data. While the local Hubble rate and supernovae can easily be fitted
without dark energy, however, model-independent constraints from the Planck
2013 data require an unrealistically low local Hubble rate, which is strongly
inconsistent with the observed value; this result agrees well with previous studies.
In the second part, we explain why it seems natural to extend our framework by a
non-zero cosmological constant, which then allows us to perform general tests of
the cosmological principle. Moreover, these extended models facilitate explorating
whether fluctuations in the local matter density profile might potentially alleviate
the tension between local and global measurements of the Hubble rate, as derived
from Cepheid-calibrated type Ia supernovae and CMB experiments, respectively.
We show that current data provide no evidence for deviations from spatial
homogeneity on large scales. More accurate constraints are required to ultimately
confirm the validity of the cosmological principle, however.

The contents of this chapter were published in Redlich et al. (2014a).

2.1 introduction

While the discovery of the (apparently) accelerated expansion of the Universe estab-
lished a non-vanishing dark energy contribution in the framework of the standard
cosmological model (Riess et al. 1998; Perlmutter et al. 1999), these observations also
motivated many researchers to question the theoretical foundations the standard
model is built upon. One of these foundations is the cosmological principle, which
asserts that our Universe is spatially isotropic and homogeneous when averaged over
sufficiently large scales (& 100 Mpc). Statistical isotropy about our position has been
confirmed by the remarkable uniformity of the CMB spectrum (Bennett et al. 2013;

17
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Planck Collaboration et al. 2013). In contrast, statistical homogeneity on large scales
(i. e. Gpc scales) is hard to confirm, mainly because it is difficult to distinguish a
temporal from a spatial evolution on the past light cone (see Maartens 2011; Clarkson
2012, for reviews).

This uncertainty inspired many to study inhomogeneous cosmologies (see Marra
& Notari 2011; Bolejko et al. 2011, for comprehensive reviews), including non-Co-
pernican models that explain the apparent accelerated expansion of the Universe by
means of radial inhomogeneities without requiring any form of dark energy. The
basic idea behind these alternative models is quite simple because we know from
observations and numerical simulations that the large-scale structure of the Universe
consists of filaments and voids (Hogg et al. 2005; Springel et al. 2005; Labini 2010;
Einasto et al. 2011b,a; Labini 2011; Scrimgeour et al. 2012; Clowes et al. 2013; Nadathur
2013; Nadathur & Hotchkiss 2014; Sutter et al. 2014; Melchior et al. 2014). Einstein’s
General theory of Relativity tells us that the expansion rate in space-time regions
with lower matter density should be higher than in regions with a higher matter
density. If we were to live in a large-scale under-density, the local expansion rate
around us would be higher than the average expansion rate in the background.
Light-rays propagating from distant sources to us – the observer – would therefore
feel an accelerated expansion rate along their path. In comparison to the standard
cosmological model, these scenarios hence replace a cosmic acceleration in time (due
to dark energy) by a spatially varying expansion rate.

One particular, exact inhomogeneous cosmological model that has extensively been
studied is the LTB model. The spatial hypersections of LTB models are spherically
symmetric only about one point, and to conserve the remarkable uniformity of the
CMB spectrum, we would have to live very close to the symmetry centre (Alnes
& Amarzguioui 2006; Foreman et al. 2010). Interpreted as a faithful representation
of the Universe, these void models breach the Copernican principle and require a
tremendous fine-tuning of our position in the Universe. The plausibility of such
scenarios is therefore more than dubious (see Célérier 2012, however, for interesting
thoughts). The standard cosmological model also requires significant fine-tuning,
however, which gives rise to controversial philosophical discussions (see e.g. Durrer &
Maartens 2008; Amendola & Tsujikawa 2010). In this chapter, we simply demonstrate
that a quite general class of LTB void models without dark energy is inconsistent with
current observational data, which allows us to set the philosophical discussion aside.

The vast literature on inhomogeneous cosmologies – in particular LTB models –
is summarised in the review articles by Bolejko et al. (2011) and Marra & Notari
(2011), which allows us to only focus on the aspects that are particularly relevant
for this chapter. For reasons to be clarified later, we only discuss LTB models with
synchronous Big Bang throughout, meaning that the bang time function is constant
and the Universe has the same global age everywhere. In the first part of this chapter,
we additionally set the cosmological constant to zero.

It has long been known that LTB models without dark energy can easily fit su-
pernovae, explaining the apparent acceleration of the Universe by a Gpc-scale void
around us (Célérier 2000). In addition, these models can be tuned to fit the small-angle
CMB spectrum (Zibin et al. 2008). However, most recent studies agree that a good fit
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to the CMB requires an unrealistically low local Hubble rate of H0 . 60 km s−1 Mpc−1

(Biswas et al. 2010; Moss et al. 2011; Bull et al. 2012; Zumalacárregui et al. 2012), which
is strongly inconsistent with the observed value of H0 = (73.8± 2.4) km s−1 Mpc−1

measured with Cepheid-calibrated type Ia supernovae (Riess et al. 2011). We here
already anticipate that we shall finally arrive at the very same conclusion.

Nevertheless, we believe that our work meaningfully complements the current
literature mainly for the following reasons: For the first time, we compare LTB
models with the latest Planck 2013 data (Planck Collaboration et al. 2013). This is
interesting because the Planck data favour a lower Hubble rate than previous CMB
experiments. Moreover, we advocate the use of a recently developed technique for
analysing CMB spectra in a model-independent manner, which is particularly useful
for investigating alternative cosmological models. Secondly, most recent studies have
assumed certain functional forms for the mass or curvature profile of LTB models that
may be considered characteristic for voids. These empirical parametrisations might
simply be too restrictive, however, and certainly impose artificial constraints on the
models when performing maximum-likelihood estimates. To our knowledge, only
Zibin et al. (2008) and Moss et al. (2011) considered more flexible spline interpolations
for the mass profile of LTB voids.

We extend these ideas and introduce alternative, flexible parametrisations of the
local matter density profile, aiming to impose as little a priori constraints on the
detailed form as possible. A MC technique in combination with recent observational
data allows us to systematically vary the matter density profiles of LTB models and
derive statistical constraints on the favoured profile shapes. Moreover, we demonstrate
that even the enormous flexibility of radially fine-tuned models does not suffice to
simultaneously fit the observed local Hubble rate and the CMB.

After this detailed discussion, we provide simple theoretical arguments that explain
why not even heavily fine-tuned LTB models without dark energy can be reconciled
with current observational data. We then discuss why it seems most natural to extend
our models by a non-zero cosmological constant. The resulting ΛLTB models consti-
tute a powerful framework for conducting general tests of the cosmological principle
(Marra & Pääkkönen 2010). Recently, Valkenburg et al. (2014) proposed a new tech-
nique, based on ΛLTB models, for placing constraints on violations of the Copernican
principle. Furthermore, by marginalising over all possible inhomogeneities, these
authors derived first observational constraints on the cosmological constant that are
free of the usual homogeneity prior (see also Marra et al. 2013b, for a similar ansatz).
Marra et al. (2013a) used ΛLTB models to investigate whether fluctuations in the local
matter density profile can alleviate the well-known discrepancy between the high
local Hubble rate as measured by Riess et al. (2011) and the lower one derived from
the Planck 2013 data. Obviously, our previously developed, flexible parametrisations
of the local matter density profile in combination with a MC technique constitute an
ideal tool for conducting similar studies. Again, by imposing (almost) no a priori
constraints on the detailed shape of the density profiles, our approach is more general
than previous works on this field.

The structure of this chapter is as follows: In Sect. 2.2, we explain our general
ansatz for the metric of a Universe that may radially be inhomogeneous on large
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scales. Section 2.3 describes the observational data used to constrain LTB models
and also discusses some ambiguities that have to be taken into account when fitting
non-standard cosmological models to these data. In Sect. 2.4, we introduce flexible
parametrisations of the local matter density profile and describe the algorithm that
allows us to statistically constrain the shape of the profile functions. Section 2.5
summarises our main results of a long series of tests, comparing numerous LTB
models without cosmological constant with different combinations of observational
data. In Sect. 2.6, we provide some simple theoretical arguments that explain our
empirical results from Sect. 2.5. We then extend our models by a non-zero cosmological
constant and discuss general probes of the cosmological principle in Sect. 2.7. Finally,
we present our conclusions in Sect. 2.8.

2.2 ltb ansatz for the metric

We make the following simplified ansatz for the metric of the observable Universe:
We maintain the standard inflationary paradigm and assume that the early Universe
was highly homogeneous at least until the time of decoupling. Given the remarkable
uniformity of the CMB spectrum, we assume that spherical symmetry about our
position was conserved until the present epoch. However, we breach the cosmological
principle by allowing a fine-tuned, radially inhomogeneous matter density profile on
large scales. As an example, we could envisage to live at the centre of a Gpc-scale
void that emerged from an – admittedly extreme – under-density of the primordial
matter distribution.

Mathematically, this can be realised by describing the local Universe around us with
a spherically symmetric, but radially inhomogeneous LTB model that is asymptotically
embedded in a homogeneous FLRW background. As described in Chap. 1, the LTB
model is a dust solution of Einstein’s field equations with zero pressure (p = 0). This
should be an excellent approximation because the local Universe we observe is also a
Universe at a late evolutionary epoch, and at this stage, pressure should be completely
negligible for describing the large-scale matter distribution. Following the findings of
previous work (Biswas et al. 2010; Zumalacárregui et al. 2012), we generally allow the
FLRW background to be spatially curved to improve the fit to the CMB.

As explained in Sect. 1.2, LTB models generally depend on three functions: the
bang time function tB(r), the curvature function E(r), and the mass function M(r).
However, the metric and all formulae in Sect. 1.2 are invariant by diffeomorphism
symmetry, including coordinate transformations of the form r = f (r′). This gauge
freedom can be used to eliminate one function, implying that the physical evolution
of LTB models is fully determined by only two free functions.

In general, the bang time function tB(r) can be an arbitrary function of r, which
means that the Big Bang does not need to occur synchronously, as in FLRW models.
It can be shown, however, that fluctuations in the bang time function can be identified
with decaying modes in linear perturbation theory (Silk 1977; Zibin 2008). Thus, going
back in time, these decaying modes would correspond to inhomogeneities at early
times. To conserve the remarkable homogeneity of the CMB spectrum, fluctuations in
the age of the Universe must have been smaller than a few hundred years (Bolejko
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2009), which is substantially smaller than the present age of the Universe (tB(r)� t).
Complying with our initial assumption of a homogeneous, early Universe (even in
regions from which we do not observe CMB photons), we can thus safely neglect the
bang time function and assume that it is zero, tB(r) = const = 0. This assumption is
particularly important for the CMB analysis described in Sect. 2.3.3.

This leaves us with only one arbitrary function. In Sect. 2.4.2, we describe in detail
how the curvature and mass functions can be derived from a matter density profile at
a given time.

2.3 observational data

This section outlines what observational data we used to constrain LTB models. In
this context, two complications have to be considered.

Firstly, many cosmological data sets are routinely reduced under the implicit
assumption that our Universe is, on large scales, properly described by an FLRW
metric. When fitting alternative cosmological models to these data, special care has to
be taken that only model-independent observational constraints are used.

Secondly, linear perturbation theory in LTB models is substantially more complic-
ated than in FLRW models. This is mainly because scalar and tensorial perturbations
can couple on inhomogeneous backgrounds. Although there has been great progress
in developing a gauge-invariant linear perturbation theory for LTB models, the prob-
lem has yet to be fully solved (Zibin 2008; Clarkson et al. 2009; February et al. 2014).
To be conservative, we can therefore only use observables that do not depend on the
details of structure formation.

Perhaps we should emphasise this limitation of the present work. The current
state of the theory only allows us to explore constraints on the global structure of the
smooth, unperturbed space-time geometry on large scales. We cannot yet realistically
model the evolution of linear perturbations in radially inhomogeneous space-times
because we lack proper theoretical tools for predicting the statistical properties of
the perturbed matter density field, for example. Observations of the local matter
distribution, the large-scale structure (including voids and filaments), cluster number
counts, or galaxy-galaxy correlation functions can therefore not yet be taken into
account for constraining the underlying space-time geometry. We also have to exclude
constraints from weak-lensing spectra or baryonic acoustic oscillations, for instance,
which are widely used to constrain homogeneous and isotropic cosmologies. We are
currently working on advancing linear perturbation theory in LTB models and will
include some of the observables listed above in future work.

The lack of linear perturbation theory is not important for Sect. 2.5, where we show
that only constraints from the local Hubble rate and the CMB are sufficient to rule out
LTB models without cosmological constant. For the general probe of the cosmological
principle presented in Sect. 2.7, it would certainly be desirable to have more data. On
the other hand, Valkenburg et al. (2014) showed that the cosmological observables
used in this work are currently the most constraining.
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2.3.1 Local Hubble rate

Riess et al. (2011) used a nearby sample (0.023 < z < 0.1) of Cepheid-calibrated type
Ia supernovae to measure the local Hubble rate with a remarkable precision:

H0 = (73.8± 2.4) km s−1 Mpc−1 . (45)

Up to now, this is probably the most accurate determination of the local expansion
rate of the Universe. Although Efstathiou (2014) recently reanalysed the data from
Riess et al. (2011) and proposed a corrected, slightly lower value of H0 = (72.5±
2.5) km s−1 Mpc−1; we used the original measurement to constrain our models because
the proposed corrections are not significant for our main conclusions.

One essential property of LTB models is their radially dependent expansion rate.
More precisely, we can define a longitudinal Hubble rate, HL(t, r) = Ṙ′(t, r)/R′(t, r),
which describes the expansion rate along the radial direction, and a transversal Hubble
rate, HT(t, r) = Ṙ(t, r)/R(t, r), which describes the expansion rate of the individual
spherical shells (cf. Sect. 1.3). It is therefore not a priori clear how LTB models should
be compared with the above-mentioned measurement.

To mimic the procedure of Riess et al. (2011), we used the following approach: Inde-
pendent of the cosmological model, the (local) luminosity distance can be considered
an analytic function of redshift z and hence expanded in a Taylor series (z� 1),

dL(z) =
c

H0

[
z +

1
2
(1− q0) z2 − 1

6
(1− q0 − 3q2

0 + j0) z3
]
+O(z4) , (46)

where q0 and j0 are the deceleration parameter and the jerk, respectively. Like Riess
et al. (2011), we fixed these two parameters to q0 = −0.55 and j0 = 1. To compute the
effective local Hubble rate of a specific LTB model, we first tabulated the luminosity
distance dL(zi) (cf. Eq. (30)) at N equidistantly spaced steps in the considered redshift
range, 0.023 < z1 < ... < zN < 0.1, and then calculated the best-fitting (least-squares)
Hubble rate HLS through these data points using Eq. (46). The deviation from the
observed value is then quantified with a simple chi-square,

χ2
H0

=
(HLS − H0)

2

σ2
H0

(
σH0 = 2.4 km s−1 Mpc−1

)
. (47)

Using this approach, we defined an averaged, effective local Hubble rate for LTB
models that closely mimics the one measured with observed type Ia supernovae.

2.3.2 Supernovae

To constrain the shape of the luminosity distance at even higher redshifts, we used
the Union2.1 compilation released by the Supernova Cosmology Project (Suzuki et al.
2012). This catalogue contains 580 uniformly analysed type Ia supernovae and extends
out to redshift z ∼ 1.5. Currently, the Union2.1 compilation is the largest, and most
recent, publicly available sample of standardized type Ia supernovae.
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Although the shape of type Ia supernovae light-curves is empirically well under-
stood, their absolute magnitude is essentially unknown and needs to be calibrated.
Samples like the Union2.1 compilation are therefore reduced by fixing the Hubble
rate to an arbitrary value. It is important to remove this artificial constraint from the
data when fitting cosmological models. This can either be achieved by analytically
marginalizing over the assumed Hubble rate – or, equivalently, the absolute magnitude
– (see Bridle et al. (2002) or Appendix C.2 of Biswas et al. (2010)), or by using the
elegant weight matrix formalism described in the appendix of Amanullah et al. (2010).
The weight matrix is constructed from the full covariance matrix with systematics
(e.g. host mass correction) and incorporates the marginalization over various nuisance
parameters. In particular, the marginalization over the Hubble rate is included. We
use the weight matrix formalism to perform likelihood estimates in the following
sections.

Finally, we note that several authors argued that supernova samples reduced with
the SALT-II light-curve fitter from Guy et al. (2007) are systematically biased to-
wards the standard cosmological model and tend to disfavour alternative cosmologies
(Hicken et al. 2009; Kessler et al. 2009; Smale & Wiltshire 2011). The Union2.1 compil-
ation was reduced with the SALT-II fitter, and hence this potential penalty would also
affect the goodness-of-fit of LTB models. However, we can safely neglect this problem
for mainly two reasons. Firstly, we did not conduct a detailed, statistical comparison
(e.g. Bayesian model comparison) between the standard cosmological model and LTB
models here, and therefore the small, systematic corrections are irrelevant for our main
conclusions. Secondly, and more importantly, we demonstrate that the supernova
data do not impose tight constraints on LTB models anyway. Instead, supernovae can
easily be fitted with a variety of different density profiles and certainly do not cause
the tension between observations and LTB models that we focus on.

2.3.3 Cosmic microwave background

The standard approach for analysing CMB spectra is inherently based on the assump-
tion of a spatially isotropic and homogeneous Universe (Bennett et al. 2013; Planck
Collaboration et al. 2013). Primary anisotropies are calculated by numerically solving
the Boltzmann equations on an FLRW background (Lewis et al. 2000; Lesgourgues
2011). Secondary anisotropies are caused by different forms of interactions between
cosmic structures and the CMB photons after the time of decoupling, such as the
late integrated Sachs-Wolfe (ISW) effect or rescattering during reionisation. As such,
all these processes depend on the details of structure formation and are commonly
modelled using perturbation theory in FLRW models. It is obvious that our ansatz for
the metric in Sect. 2.2 strongly violates these usual assumptions. How then can we
self-consistently use CMB spectra to constrain LTB models?

We recall that we wish to retain the inflationary paradigm and assume that the
early Universe is highly homogeneous. This means that, even in our approach, the
early Universe can effectively be described by a FLRW metric. Thus, the modelling
of primary CMB anisotropies does not differ from the standard approach at least
until the time of decoupling. This was also the motivation for excluding variations
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of the bang time function tB(r) from Eq. (14). If we were to drop the assumption
of a homogeneous early Universe, we would have to develop a general relativistic
formalism for calculating CMB anisotropies on inhomogeneous backgrounds. Clearly,
this would go far beyond the scope of this work.

Properly treating secondary CMB anisotropies in LTB models is, however, more
complicated because linear perturbation theory is still being developed and cannot
yet be used to calculate these secondary effects. We can circumvent this problem by
following the elegant work of Vonlanthen et al. (2010), which describes a method
for analysing the CMB in a manner that is as independent as possible of late-time
cosmology. To this end, the authors begin with identifying the three dominant
imprints that the late cosmological model leaves on the observed CMB spectrum.
Firstly, CMB photons are lensed as they traverse non-linear structures. The late
ISW effect dominates the CMB spectrum on large scales (l . 40). Consequently,
low multipoles strongly depend on the detailed properties of the late cosmological
model. Secondly, the overall amplitude of the CMB spectrum at l � 40 is reduced
by scattering processes during the epoch of reionisation. This suppression is usually
parametrised by the factor e−2τ, where τ is the reionisation optical depth. Thirdly, the
angular-diameter distance to the last scattering surface (LSS) determines the angular
scales of the acoustic peaks. This is a simple projection effect. Variations of the
angular-diameter distance shift the CMB spectrum in multipole space.

If large scales (l . 40) are excluded from the CMB analysis, the dominant per-
turbations of the primordial CMB spectrum due to the late cosmological model can
therefore be parametrised by a rescaling factor α of the global amplitude and a shift
parameter β. Rephrased more mathematically, the expansion coefficients of the CMB
power-spectrum in multipole space transform as Cl → αCβl .

This simple approximation is already astonishingly accurate for large parts of the
CMB spectrum. But the crucial point is that this insight allowed Vonlanthen et al.
(2010) to encode unknown secondary effects in carefully chosen nuisance parameters
(e.g. the global amplitude of the CMB spectrum). These additional parameters can
be built into standard parameter estimation codes used for analysing CMB spectra.
To derive minimal constraints that do not depend on the detailed properties of the
late cosmological model, one simply has to marginalise over these newly introduced
nuisance parameters.

Except for excluding high multipoles (l > 800) from the analysis, Vonlanthen et al.
(2010) neglected the impact of gravitational lensing on the CMB spectrum. This was
well justified given the accuracy of CMB experiments at the time of publishing. Motiv-
ated by the improved accuracy of modern CMB experiments, however, Audren et al.
(2013a) extended the original method of Vonlanthen et al. (2010) by introducing a new
technique for additionally marginalising over the CMB lensing contamination at all
multipole orders. Initially, we used this advanced technique in combination with the
publicly available parameter estimation code Monte Python (Audren et al. 2013b) to
derive model-independent constraints from the latest Planck data (Planck Collabora-
tion et al. 2013). While we prepared this manuscript, Audren (2014) published another
slight refinement of their own method and also applied it to the Planck 2013 data. We
therefore used the results published in Audren (2014) to estimate likelihoods in the
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Table 1: Model-independent constraints from the Planck 2013 data published by Audren
(2014). ωb = Ωbh2 and ωc = Ωch2 denote the physical baryon and cold dark matter densities,
respectively. dA(z∗) is the angular-diameter distance to the surface of last scattering.

100 wb wc dA(z∗) [Mpc]

2.243± 0.040 0.1165± 0.0037 12.80± 0.068

following sections. The relevant model-independent constraints including one-sigma
errors are summarised in Table 1.

Finally, we need to explain how LTB models can actually be fitted to these constraints.
We begin by noting that the redshift of decoupling z∗ generally is a function of the
physical matter densities wb and wc. Assuming standard radiation content, however,
this dependence is only weak (Hu & Sugiyama 1996). For simplicity, we can thus
fix the decoupling redshift to z∗ = 1090. Following previous works (see e.g. Zibin
et al. 2008; Biswas et al. 2010; Moss et al. 2011, for detailed descriptions), we used an
effective FLRW observer approach for computing the angular-diameter distance dA(z∗)
to the LSS: Radial null geodesics are numerically integrated in LTB models only up to
an embedding redshift zb. This redshift has to be chosen such that the LTB models
are already sufficiently homogeneous (i. e. the gravitational shear σ2 = 2

3 (HL − HT)
vanishes) and radiation is still negligible. Typically, zb ≈ 150 fulfils these criteria.

After reaching this embedding redshift, we continued to compute the distance-
redshift relation in an effective FLRW background model up to the decoupling redshift
z∗ = 1090. The effective FLRW model was chosen such that a fictitious observer in
this background model would observe the same CMB spectrum. This approach
is beneficial because (1) solving the distance-redshift relation in FLRW models is
computationally substantially cheaper, and (2) radiation can be included. Lastly, the
appropriately scaled matter densities and the calculated angular-diameter distance
can be compared with the model-independent constraints from Table 1 using a simple
chi-square.

2.3.4 Kinetic Sunyaev-Zel’dovich

Cosmic microwave background photons traversing galaxy clusters interact with the
hot intra-cluster gas through inverse Compton scattering. These interactions cause
the Sunyaev-Zel’dovich effect, which manifests itself by characteristic distortions of
the energy spectrum of the rescattered photons. The dominant contribution in galaxy
clusters is due to the thermal Sunyaev-Zel’dovich effect (Sunyaev & Zeldovich 1970,
1972): thermal energy is transferred from the hot intra-cluster gas to the CMB photons,
causing a redistribution of photons from lower to higher energy states. A second-
order contribution is due to the kinetic Sunyaev-Zel’dovich (kSZ) effect (Sunyaev
& Zeldovich 1980): galaxy clusters moving with a non-zero peculiar velocity with
respect to the rest frame of the CMB observe an anisotropic CMB spectrum with
non-zero dipole moment. This dipole induces a characteristic shift in the spectrum
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of the reflected CMB photons, which is similar to the relativistic Doppler effect. In
principal, the kSZ effect of galaxy clusters can therefore be used to measure their
peculiar velocities relative to the CMB.

As was first shown by García-Bellido & Haugbølle (2008), the kSZ effect can be used
as a powerful probe of radially inhomogeneous LTB models. To understand this, we
recall that LTB models are isotropic only about the symmetry centre at the coordinate
origin. Off-centre observers therefore generally see an anisotropic CMB spectrum (see
Alnes & Amarzguioui 2006, for detailed calculations). To first order, the anisotropy
can be approximated as a pure dipole, which because of the symmetry of the problem
is aligned along the radial direction. This effect is depicted in Fig. 1, which shows an
off-centre galaxy cluster that rescatters CMB photons that arrive from the LSS.

Figure 1: Apparent kinetic Sunyaev-
Zel’dovich (kSZ) effect of off-centre gal-
axy clusters in radially inhomogeneous
LTB models. The redshift zin of CMB
photons that propagated through the
centre of the inhomogeneity generally
differs from the redshift zout of CMB
photons that arrived from outside.

The extreme redshifts (as seen from the gal-
axy cluster) are observed along the radial dir-
ection, for CMB photons with redshift zin that
propagated through the centre of the inhomo-
geneity and, in the opposite direction, for CMB
photons with redshift zout arriving from outside.
In the case of a giant void scenario, for instance,
photons arriving from inside the void travelled
the longest distance through an underdense re-
gion. Consequently, they also spent the longest
time in a space-time region with a higher ex-
pansion rate, so that their redshift zin reaches
the highest possible value. Vice versa, CMB
photons arriving from outside the void exhibit
the lowest redshift zout.

Note that the kSZ effect described here is only
an apparent kSZ effect; it is not caused by real
peculiar motions of the galaxy clusters. Instead, the effect only appears because the
space-time geometry around off-centre observers is anisotropic. Note also that the
kSZ effect has a distinguished feature in comparison with most other cosmological
probes. The galaxy clusters act as mirrors for CMB photons, reflecting radiation from
all spatial directions. By analysing the spectrum of the reflected light, we can therefore
extract information about space-time regions that would otherwise be inaccessible.
In this sense, by measuring the difference between the redshift zin and zout, the kSZ
effect allows us to (indirectly) look inside our PNC (cf. Fig. 1).

As already mentioned, to first order, the anisotropy observed by off-centre galaxy
clusters can be approximated as a pure dipole. This approximation is sufficiently
accurate as long as the effective size of the LTB inhomogeneity on the sky, as observed
by the galaxy cluster, is larger than ∼ 2π (Alnes & Amarzguioui 2006). The amplitude
of the dipole is then given by

β =
v
c
=

∆T
T

=
zin − zout

2 + zin + zout
. (48)

Measurements of the kSZ effect of individual galaxy clusters are extremely difficult
and suffer from low signal-to-noise ratios. Current data exhibit very large errors
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and therefore still need to be considered premature. However, even though the
uncertainties are huge, García-Bellido & Haugbølle (2008) and Bull et al. (2012)
showed that the currently available measurements already place tight constraints on
the depth and radial size of Gpc LTB voids. In this work, we use the kSZ data of
the nine galaxy clusters compiled by García-Bellido & Haugbølle (2008), assuming
a conservative scatter of σpv = 1600 km s−1 and zero systematic shift, vsys = 0; see
García-Bellido & Haugbølle (2008) and references therein for a detailed discussion of
the data, sources of errors, and the modelling of the likelihood.

To compute the expected kSZ effect for a given galaxy cluster, we first determined
the cluster coordinates (tcl, rcl, zcl) on the PNC of the central observer. Starting from
this position, we then solved for ingoing and outgoing radial null geodesics by
numerically integrating Eqs. (22) and (28) up to the LSS. This procedure yields the
two redshifts zin and zout, which quantify the CMB dipole as seen by the off-centre
galaxy cluster.

2.4 monte carlo approach for constraining the local density pro-
file

Most studies published so far have assumed certain functional forms for either the
mass profile or the curvature profile of LTB models that may be considered charac-
teristic for voids (see e.g. Garcia-Bellido & Haugbølle 2008; Bolejko & Wyithe 2009;
Biswas et al. 2010, for typical profiles). Of course, these empirical functional forms
impose artificial constraints on the models when performing maximum likelihood
estimates.

Our approach here is different because we parametrise the matter density profile of
LTB models as flexibly as possible, imposing few a priori constraints on its detailed
shape. To derive statistical constraints, we then use a parameter estimation code
to systematically vary the density profile. We wish to determine the shape of the
favoured profile, and also how tight the constraints on the detailed shape are. We also
investigate whether highly flexible profiles allow us to mitigate the reported tension
between measurements of the local Hubble rate and the CMB data (Biswas et al. 2010;
Moss et al. 2011; Bull et al. 2012; Zumalacárregui et al. 2012). To this end, we proceed
by first discussing our choices for the parametrisation of the local density profile,
continue with the algorithm that allows us to derive LTB models from these profiles,
and conclude this section by explaining some details of the parameter estimation
technique.

2.4.1 Flexible models for the local density profile

Broadly speaking, we have two options to parametrise the local density profile in the
most flexible way. We can represent the density profile by a general interpolation
scheme, or alternatively decompose the void profile function into a series of appropri-
ately chosen, orthonormal basis functions of the radial coordinate. After some initial
testing, we decided to use the following parametrisations:



28 probing spatial homogeneity with ltb models

L

Radial coordinate r

0.0

0.5

1.0
ρ
(r

)/
ρ

bg

length scale

Linear interpolation
Cubic spline interpolation
Laguerre polynomials

Figure 2: Illustration of the three
different parametrisations for
the local matter density profile
around the observer. The black
dots indicate the nodes of the in-
terpolation schemes. Note that
the representation by Laguerre
polynomials does not have a
fixed radial size, but only asymp-
totes to the homogeneous back-
ground density.

1. Linear interpolation: The first free model parameter is the radial size L of the
inhomogeneity. For radii r < L, we use linear interpolation, specified by pairs
of radial coordinates and corresponding matter densities: [(r0 = 0, ρ0), (r1, ρ1),
..., (rn, ρn)], where rn < L and all densities ρi are strictly positive. For radii
r ≥ L, the density profile is constant and equals the matter density ρbg of the
homogeneous FLRW background. M′(r) (cf. Eq. (15)), and thereby also radial
derivatives of the areal radius function R(t, r) (cf. Eq. (36)) are not smooth if
the density profile is linearly interpolated. All functions required for this work
remain continuous, however, which is sufficient for the computations.

2. Cubic spline interpolation: This model has the same free parameters as the linear
interpolation model: a radial size L, pairs of radial coordinates, and corres-
ponding matter densities [ri, ρi = ρ(ri)]. Cubic splines are used to interpolate
between these nodes. We chose the boundary conditions ρ(r ≥ L) = ρbg and
ρ′(r = 0) = ρ′(L) = 0 to enforce a smooth void profile at the origin and guar-
antee a smooth embedding into the homogeneous FLRW background. This is
essentially equivalent to the spline model used by Zibin et al. (2008) and Moss
et al. (2011).

3. Laguerre polynomials: Again, the first free model parameter is a radial length
scale L. We introduce the scaled radial coordinate x = r/L and define the matter
density profile as

ρ(t0, r) = ρbg

[
1 + exp(−x)∑

i
aiLi(x)

]
, (49)

where Li denote the Laguerre polynomials, which are an orthogonal basis with
respect to the inner product 〈Li, Lj〉 =

∫ ∞
0 Li(x)Lj(x) exp(−x)dx. In practice,

we used Laguerre polynomials up to fifth order, because more degrees of free-
dom were not constrained by the data. In contrast to the previous interpolation
schemes, the Laguerre models do not have a fixed size. Instead, their dens-
ity profiles only asymptote (characteristic length scale L) to the homogeneous
background density.

The different approaches are visualised in Fig. 2. We conducted detailed tests as
explained in Sect. 2.5 with each of the three parametrisations, finding qualitatively the
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same results. Because the meaning of the free model parameters of the interpolation
schemes is quite instructive while on the other hand the geometrical interpretation of
expansion coefficients of Laguerre polynomials is not straightforward, we focus our
discussion in the subsequent sections on the linear and cubic spline interpolations.

2.4.2 Algorithm

In our approach, LTB models are generally determined by the dimensionless Hubble
parameter h = H0/(100 km s−1 Mpc−1), the density parameter of the cosmological
constant ΩΛ, and the physical densities of baryonic and cold dark matter, ωb = Ωbh2

and ωc = Ωch2, of the homogeneous FLRW background, as well as a list of model
parameters (a1, ..., an) that parametrise the local matter density profile ρ(t0, r) at the
present time t0. If not stated otherwise, these are the base parameters that are later
sampled by the MC method that was used for fitting LTB models to observational
data. Given these base parameters, our algorithm for computing observables in the
LTB metric can be outlined as follows:

1. Age of the Universe: As emphasised before, we demand a homogeneous early
Universe and thus set the bang time function tB(r) to zero. Therefore, the LTB
patch and the homogeneous background have the same global age t0, which we
compute using the standard FLRW relation,

t0 =
1

H0

∫ 1

0

√
a√

Ωm + Ωka + ΩΛa3
da , (50)

where the curvature parameter is given by Ωk = 1−Ωm −ΩΛ.

2. Gauge freedom: All formulae given in Sect. 1.2 are invariant under coordinate
transformations of the form r̃ = g(r). We exploit this gauge freedom to scale the
radial coordinate r such that it equals the areal radius function at the present
time: R(t0, r) = r.

3. Mass profile: Given the parameters (a1, ..., an), we construct the matter density
profile at the present time ρ(t0, r). We reject combinations of parameters that
induce negative matter densities. This is important for the cubic spline interpol-
ation and the Laguerre polynomials. In our gauge, the effective gravitational
mass M(r) then directly follows from integrating Eq. (15),

M(r) = 4πG
r∫

0

ρ(t0, r̃) r̃2 dr̃ . (51)

4. Curvature profile: The curvature function E(r) is implicitly defined by Eq. (14)
and can only be computed numerically. We use the TOMS 748 root-bracketing
algorithm from Alefeld et al. (1995) to determine E(r) as a function of t0, r, and
M(r), see Krasiński & Hellaby (2002) for details on choosing the initial bracket.
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We reject mass models that require E(r) ≤ −1/2 because this would cause
singular line-elements (cf. Eq. (16)). The radial derivative E′(r) is numerically
computed using a standard fourth-order finite differencing scheme.

5. Distance–redshift relation: We use a fifth order Dormand-Prince method – which
is essentially a Runge-Kutta scheme with error control and adaptive step size
(Ahnert & Mulansky 2011) – to numerically integrate the ordinary differential
equations describing radial null geodesics on the PNC of a central observer (cf.
Eqs. (22) and (28)). The resulting relations t(r) and z(r) are then interpolated
and numerically inverted using smooth Akima splines (Akima 1970). This
allows us to arbitrarily transform between t, r, and z and, in particular, to
compute angular-diameter and luminosity distances (see Sect. 1.4). We discard
LTB models that exhibit shell-crossings or multivalued redshifts on the PNC
(Hellaby & Lake 1985).

This algorithm allowed us to compute all observable quantities that are required for
performing likelihood estimates of LTB models.

2.4.3 Efficient statistical sampling

We are confronted with a typical parameter estimation problem. Given observa-
tional data, we need to explore the posterior distribution in a high-dimensional
parameter space to estimate the most likely values of the free model parameters
(h, ΩΛ, ωb, ωc, a1, ..., an). Monte Carlo methods are the standard approach for solving
this kind of problem, and most commonly, variants of the simple Metropolis-Hastings
algorithm are used (Hastings 1970).

The Metropolis-Hastings algorithm has an important drawback, however: it requires
a fine-tuned proposal distribution to efficiently sample the posterior. If the proposal
distribution is thought of as a multivariate Gaussian, this means that each entry of
the covariance matrix needs to be tuned. In our case, the matter densities at different
radial coordinates can be correlated and hence the covariance matrix is non-diagonal.
Consequently, we would have to hand-tune N(N + 1)/2 unknown parameters (where
N is the dimension of the parameter space). This is an extremely time-consuming
task, in particular because the fine-tuned parameters strongly depend on the precise
parametrisation (e.g. number and position of interpolation nodes) of the matter
density profile.

After some testing, we decided to use an alternative MC sampler: the so-called
stretch-move technique, which was first introduced by Goodman & Weare (2010). This
technique is affine-invariant, meaning that it performs equally well under all linear
transformations of the parameter space. In particular, it is insensitive to covariances
between parameters and therefore requires no fine-tuning. Goodman & Weare (2010)
demonstrated the excellent performance of their algorithm (as measured by the
auto-correlation time) for several pathological posterior distributions.

In addition, the stretch-move sampler simultaneously explores the parameter space
with a whole ensemble of MC walkers. The time evolution of this ensemble can easily
be parallelised, which greatly reduces the required computing time (wall-clock time)
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on multi-core machines or large computing clusters (Akeret et al. 2013). Foreman-
Mackey et al. (2013) provided an excellent discussion of the stretch-move technique
and described a parallelised implementation in detail. Following this, we implemented
the ensemble sampler in C++ and parallelised it with the message-passing interface
(MPI) system. This enabled us to perform likelihood estimates of many different LTB
models within a significantly shorter computing time.

All parameter estimations in the remainder of this chapter were performed with
the stretch-move technique, typically using hundreds of walkers. The length of the
burn-in period was estimated by means of the exponential auto-correlation time τexp.
Convergence of the samples was ensured by letting the random walks proceed for
multiple integrated auto-correlation times τint after removing all samples drawn during
the initial burn-in period. This procedure was advocated by Akeret et al. (2013)
and Allison & Dunkley (2014), who provided a detailed discussion of convergence
diagnostics with the auto-correlation times described above.

2.5 comparing ltb models without cosmological constant with ob-
servational data

We now compare LTB models with consecutively different combinations of observa-
tional data. This stepwise analysis allows us to carefully explain why LTB models
with a constant bang time function and zero cosmological constant are inconsistent
with current data. The following results are representative. For each scenario dis-
cussed, we fitted numerous different LTB models, varying the radial size of voids,
changing the numbers and positions of interpolation nodes, or considering different
orders of the expansion in terms of the Laguerre polynomials. Our findings with
the different approaches agreed qualitatively well, therefore we only discuss simple
parametrisations that already show all important characteristics.

2.5.1 Constraints: H0 + supernovae

To begin with, we only analysed the constraints imposed by the local Hubble rate and
supernovae. We therefore considered LTB models of fixed radial size L = 3 Gpc and
parametrised the matter density profiles with linear and cubic spline interpolation
schemes with three equidistant nodes at radii r1 = 0, r2 = 1 Gpc, r3 = 2 Gpc. It is
convenient to express the matter densities at these nodes with respect to the matter
density ρbg of the FLRW background model, viz ai = ρ(ri)/ρbg. The priors for the
parameters ai were only bounded from below (ai ≥ 0), so that the stretch-move
walkers could essentially freely explore the physically relevant parameter space.

Anticipating the following results, we asymptotically embedded the LTB models in
Einstein-de-Sitter (EdS) backgrounds for this particular test, meaning that we explicitly
set the spatial curvature of the homogeneous background to zero (Ωk = 0). We did this
to demonstrate that good fits to the data can be achieved even with asymptotically flat
backgrounds. As can easily be verified, the models considered are fully determined
by the physical matter density ωm of the EdS background and the profile parameters
(a1, a2, a3).
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Figure 3: Statistical constraints on the shape of the local matter density profile at the present
time. LTB models with fixed radial size L = 3 Gpc and three equidistant interpolation nodes
were constrained by measurements of the local Hubble rate and supernovae. The blue error
bars and the grey-shaded band indicate the 68% confidence intervals for the cubic spline
and linear interpolation schemes, respectively. The black dashed line connects the means of
the best-fitting nodes for the linear interpolation scheme. The green solid curve shows the
best-fitting cubic spline density profile.

Figure 3 illustrates the preferred shape of the local matter density profile given the
local Hubble rate and supernova data. More precisely, we show the 68% confidence
intervals for the best-fitting linear and cubic spline interpolation models. Note that
the constraints for the two different approaches are almost identical. As expected, the
data clearly favour large and deep voids whose density profiles gradually decrease
towards the origin. This shape is required to account for the apparent acceleration
suggested by the supernova data. Typically, the density contrast at the origin is
δρ(t0, r = 0)/ρbg ≈ −0.75. It can also be seen that the constraints on the matter
density profile weaken at larger radii. This is naturally caused by the quality of
the data. Small radii correspond to low redshifts. In this range, the profiles are
simultaneously constrained by the measurement of the local Hubble rate (z < 0.1) and
also by many supernovae with comparably small error bars. At higher redshifts, the
amount of observed supernovae decreases, and at the same time, their errors increase
(mainly because the supernovae become fainter). Therefore, the matter density profile
can substantially fluctuate at larger radii without being penalised too strongly. This
freedom also demonstrates that the LTB models considered can easily fit the data
without a cosmological constant and zero background curvature. The best-fitting
cubic spline model has an excellent log-likelihood value of log (L) = −272.27 and fits
the data just as well as the best-fitting ΛCDM model with log (L) = −272.56.

Figure 4 reveals more details of the Markov Chain Monte Carlo (MCMC) simulation
specifically for the cubic spline model. While the marginalised posterior distributions,
the means, and the standard deviations of the density profile parameters ai confirm
the above discussion, the almost perfect linear correlations between the parameters
enforce the idea of a gradually decreasing density profile towards the symmetry centre:
If ai is increased, also ai+1 has to grow to generate the gradient of the expansion rate
required by the data. The physical matter density ωm determines the expansion
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Figure 4: Statistical constraints on the shape of the local matter density profile imposed by
measurements of the local Hubble rate and supernovae. ωm denotes the physical matter
density of the EdS background model. The local density profile was parametrised by a cubic
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Figure 5: Marginalised posterior distribution of the increase of the local Hubble rate HLS
(Eq. (45)) at the origin (due to the under-density) with respect to the Hubble rate Hbg of
the homogeneous background model, δH = HLS − Hbg. LTB models with fixed radial size
L = 3 Gpc and a local matter density profile represented by cubic splines with three equidistant
interpolation nodes were fitted to observational data of the local Hubble rate and supernovae.
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rate of the background EdS model through h =
√

ωm. This is why ωm and the
profile parameters ai are correlated: If ωm decreases, so does the expansion rate of
the background model, which means that the voids need to become even deeper to
maintain the required high local Hubble rate at the origin.

The average increase of the expansion rate around the central observer due to the
large-scale under-density is the last aspect worth being considered in more detail.
We therefore defined δH = HLS − Hbg, which measures the difference between the
effective local Hubble rate HLS (cf. Eq. 45) at the void centre and the global Hubble rate
Hbg of the background model. From the mean value of the physical matter density ωm

in Fig. 4, we extracted that the data favour Hbg ≈ 56 km s−1 Mpc−1, which requires an
average shift of δH ≈ 18 km s−1 Mpc−1 to fulfil the observationally measured Hubble
rate of H0 ≈ 74 km s−1 Mpc−1. The magnitude of this shift agrees well with previous
works (Enqvist & Mattsson 2007). The marginalised posterior distribution of δH is
plotted in Fig. 5. Even though the voids can become extremely deep, the local Hubble
rate rarely increases by more than ∼ 24 km s−1 Mpc−1. This tendency is also important
for Sect. 2.5.3.

2.5.2 Constraints: Cosmic microwave background

We proceed by analysing the implications of only the model-independent CMB
constraints from Table 1. As reference, we first ran an MCMC simulation to fit curved
FLRW models with vanishing cosmological constant to the data. These models can fit
the CMB constraints just as well as flat FLRW models with non-vanishing cosmological
constant. The data favour closed FLRW models with dimensionless Hubble parameter
h = 0.33± 0.01, matter density parameter Ωm = 1.26± 0.04, and consequently a
curvature parameter of Ωk ≈ −0.26. It is important to note that although curved
FLRW models can easily fit the minimal CMB constraints without a cosmological
constant, the required Hubble rate is extremely low and strongly contradicts the
expansion rate measured by Riess et al. (2011).

Next, we compared the same LTB models as in the previous section (L = 3 Gpc;
three equidistant interpolation nodes) with the CMB data. This time, however, we
asymptotically embedded the LTB models into curved FLRW backgrounds. Of course,
these cosmological models fit the data perfectly as well. The constraints on the
physical matter density ωm = ωb + ωc and the dimensionless Hubble parameter h
of the background model are essentially identical to those found without an LTB
inhomogeneity around the observer. Again, an extremely low expansion rate of
h = 0.33 ± 0.01 is favoured. The shape of the local matter density profile is not
constrained at all. The posteriors of the densities ρ(ri) at the interpolation nodes are
constant over the whole prior ranges, indicating that the MC walkers can vary the
shape of the local matter density profile without notably deteriorating the fit to the
CMB. Moreover, the best-fitting LTB models show almost arbitrarily shaped local
density profiles. These results are the same for LTB models with different radial
sizes, more or less interpolation nodes, or density profiles represented by Laguerre
polynomials.
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We conclude that the CMB data alone only constrain the global properties of the
background FLRW model. In particular, good fits without a cosmological constant
require an extremely low Hubble parameter of h < 0.4. The exact functional form of
the local curvature and the matter density profiles are essentially irrelevant. These
results agree well with the work of Clifton et al. (2009), who found that the small
angle fluctuations of the CMB spectrum only constrain spatial curvature near the
surface of last scattering.

2.5.3 Constraints: H0 + supernovae + cosmic microwave background

Finally, we simultaneously fitted LTB models to the local Hubble rate, supernovae,
and the CMB data. Before that, however, we fitted spatially flat FLRW models with
non-vanishing cosmological constant to the data. The best-fitting model has the
cosmological parameters (h, Ωm, ΩΛ) = (0.719, 0.265, 0.735) and a log-likelihood value
of log (L) = −273.45. This model – and in particular its log-likelihood value – serves
as a reference point for the following discussion.

We now considered LTB models with fixed radial size L = 3 Gpc and linearly
interpolated matter density profile with three equidistant interpolation nodes at the
radial coordinates r1 = 0, r2 = 1 Gpc and r3 = 2 Gpc. For these models, the data
favour an FLRW background with dimensionless Hubble parameter h = 0.39± 0.01
and matter density parameter Ωm = 1.09± 0.03, demonstrating that curved FLRW
backgrounds can indeed improve the fit to the CMB. The statistical constraints on
the local matter density profile at the present time t0 are shown in Fig. 6. While
the overall shape of the favoured profiles agrees well with our previous results from
Sect. 2.5.1, the voids become noticeably deeper when including the constraints from
the CMB. This change becomes most apparent for the matter density at the origin,
a1 = ρ (t0, r = 0) /ρbg(t0), indicating that the best agreement with the data can be
achieved with an almost vacuum solution around the observer at the coordinate
centre.

This tendency demonstrates the problem of LTB models with a constant bang
time function and zero cosmological constant: A reasonable fit to the CMB – most
importantly the angular-diameter distance to the LSS – requires an unrealistically low
background Hubble parameter of H0 ≈ 39 km s−1 Mpc−1. On the other hand, the LTB
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models also need to comply with the observationally measured, high local Hubble
rate of H0 ≈ 73.8 km s−1 Mpc−1. The MC walkers therefore minimise the matter
density at the origin to maximise the local expansion rate. However, Fig. 7 shows
that even though the voids can become extremely deep, the effective local Hubble
rate never exceeds ∼ 62 km s−1 Mpc−1. The best-fitting model, for instance, has the
profile parameters (a1, a2, a3) = (0.04, 0.22, 0.32), which means that the matter density
almost vanishes at the origin. The local Hubble rate still is much too low, HLS =

56.83 km s−1 Mpc−1, however, and the log-likelihood value of log (L) = −318.55
indicates that the model clearly cannot compete with simple, spatially flat FLRW
models with cosmological constant.

As discussed in Sect. 2.3.1, we computed the effective local Hubble rate HLS by
means of a least-squares fit to the Taylor-expanded luminosity distance for small
redshifts, z < 0.1. Legitimately, one might therefore ask whether a radially fine-tuned
matter density profile in the nearby range (0 < z(r) < 0.1) might be capable of
solving the above tension. We refute this idea by adding one additional interpolation
node at r = 500 Mpc and re-running the fitting procedure. The best-fitting model
improves only marginally, with a slightly higher effective local Hubble rate of HLS =

57.26 km s−1 Mpc−1 and a still inacceptable log-likelihood value of log (L) = −317.30.
Consequently, we note that even radial fine-tuning of the matter density profile cannot
mitigate the tension between the required high local Hubble rate and a good fit to the
CMB.

Lastly, we discuss the impact of the radial void size on the fit to the data. We
considered LTB models whose density profiles are represented by cubic spline inter-
polations with three equidistant nodes at the radial coordinates ri = (i− 1)× L/3.
Table 2 summarises the best-fitting models for ascending radial sizes, L = 3 Gpc,
L = 4.5 Gpc, and L = 7.5 Gpc. Obviously, the fit to the data significantly improves
as the voids become larger. The favoured scenarios are extremely deep Gpc-scale
under-densities, which are asymptotically embedded into increasingly dense FLRW
backgrounds.

This antipodal behaviour is caused by the constraints from the CMB; the background
FLRW models need to increase the convergence to decrease the angular-diameter
distance to the LSS. Again, even though the best-fitting models are essentially empty
at the origin, the effective local Hubble rate is clearly too low compared with the
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Table 2: Evolution of the best-fitting LTB models for varying radial size L in Gpc. h and
Ωm denote the dimensionless Hubble parameter and the matter density parameter of the
background FLRW model, respectively. The matter density profiles were parametrised by
cubic spline interpolation schemes with three equidistant nodes at the radial coordinates
ri = (i− 1)× L/3. The coefficients ai denote the matter densities at these nodes normalised
with respect to the background density today, viz. ai = ρ(t0, ri)/ρbg(t0). HLS is the effective
Hubble rate measured at the origin. The last column shows the log likelihood values. The LTB
models were fitted to observational data of the local Hubble rate, supernovae, and the CMB.

L h Ωm a1 a2 a3 HLS log (L)

3 0.39 1.10 0.07 0.27 0.45 56.01 -320.14

4.5 0.39 1.18 0.01 0.12 0.17 60.13 -299.95

7.5 0.39 1.37 0.01 0.12 0.44 62.52 -293.26

observed value. We thus note that even gigantic voids of radial size 7.5 Gpc with
radially fine-tuned matter density profile are inconsistent with current data. Clearly,
these models cannot compete with the standard cosmological model, which has a
log-likelihood value of log (L) = −273.45.

We could continue this procedure and construct ever larger voids with more free
interpolation nodes. Indeed, while testing our code, we observed that LTB voids
with radial sizes & 12 Gpc slowly converge to the same log-likelihood value as the
standard cosmological model. It does not make much sense, however, to seriously
consider even larger voids than those presented in Table 2 as faithful representations
of the observable Universe for mainly two reasons. Firstly, these models become yet
more implausible with growing size. We recall that we envisaged voids that emerged
from fluctuations of the primordial matter distribution. For these voids to reach a size
of several Gpc today, the primordial under-densities must have been extreme. These
scenarios are therefore highly unlikely within the standard inflationary paradigm (see
also Marra et al. 2013a). Secondly, as was shown for example by García-Bellido &
Haugbølle (2008), Zibin & Moss (2011) or Bull et al. (2012), large voids generate a
pronounced kSZ effect that is strongly inconsistent with current observational data.

The results of this section agree qualitatively well with previous works, which
consistently found that LTB models that fit the CMB data exhibit unrealistically low
local Hubble rates (e.g. Biswas et al. 2010; Moss et al. 2011; Bull et al. 2012). We now
seek a theoretical explanation for this empirical result.

2.6 theoretical arguments for considering Λltb models

2.6.1 Why vacuum solutions maximise the local Hubble rate

In the previous section, we found that huge Gpc-scale voids with almost constant
vacuum solution around the origin are favoured when the local Hubble rate and
the CMB data are to be fitted simultaneously. Intuitively, it is comprehensible that
such vacuum solutions indeed maximise the local Hubble rate. However, we can also
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understand this result using Raychaudhuri’s equation (Raychaudhuri 1955), which in
LTB models is

ḢL + 2 ḢT = − 1
3

θ 2 − σ2 − 4π G ρ , (52)

with expansion θ2 = (HL + 2HT)
2, shear σ2 = 2

3 (HL − HT)
2, and a dot indicating the

derivative with respect to an appropriately chosen affine parameter. Generally, the
shear in LTB models vanishes as r → 0, implying that the longitudinal and transversal
Hubble rates become identical close to the origin (Plebański & Krasiński 2006). For
Gpc-scale voids with almost constant density profile, however, the approximation
HL ≈ HT is accurate even for larger radii, in particular in the redshift interval (z < 0.1)
in which we determine the effective local Hubble rate (cf. Sect. 2.3.1). In the region
around a central observer, LTB solutions are then practically indistinguishable from
simple FLRW models, and Eq. (52) simplifies to

3Ḣ = −3H2 − 4πG ρ . (53)

Equation (53) describes the time evolution of the Hubble rate as a function of the
matter density. Starting from an initial Hubble rate Hi at an early time ti (e.g. a time
ti at which the Universe was still homogeneous), we can readily integrate Eq. (53) to
compute the expansion rate at a later time tf

H(tf) =
1

1
Hi

+
∫ tf

ti

(
1 + 1

2 Ωm(t′)
)

dt′
, (54)

where we introduced the common matter density parameter Ωm = 8πGρ
3H2 . Clearly, the

final Hubble rate is maximised by minimising the denominator of Eq. (54), which
is achieved by setting Ωm to zero. The local expansion rate of Gpc-scale voids with
slowly varying density profile is thus indeed maximised by vacuum solutions.

2.6.2 Why not even vacuum LTB solutions exhibit a sufficiently high local Hubble rate

Given the result of the previous section, we can now introduce a vast simplification
that helps us explain why not even empty LTB models (that simultaneously fulfil the
model-independent constraints from the CMB) exhibit an effective local Hubble rate
that comes close to the observationally measured value of H0 ≈ 73.8 km s−1 Mpc−1.
We recall that we work in the synchronous time gauge and with a constant bang
time function, meaning that the Universe has the same global age t0 everywhere.
We can now envisage a simplified top-hat scenario in which the Universe is globally
described by a curved FLRW model, but the observer is located at the centre of an
empty sphere (Ωm = 0, i. e. a Milne model) that was carved out of the homogeneous
background. For the purpose of this simplified scenario, technical details concerning
the embedding or smooth junction conditions are not relevant. The Hubble function
in both regions is given by

H2(a) = H2
0
(
Ωma−3 + Ωka−2) , (55)
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where a denotes the usual scale factor (with a(t0) = 1) and the curvature parameter is
determined by Ωk = 1−Ωm. Integrating Eq. (55) in time yields the standard FLRW
relation for the age of the Universe

t0 =
1

H0

∫ 1

0

1√
Ωma−1 + Ωk

da . (56)

As this age is assumed to be globally the same, we can directly relate the Hubble rate
Hin

0 inside the empty sphere surrounding the observer to the Hubble rate Hout
0 of the

curved background,

Hin
0 =

Hout
0

f (Ωout
m )

, f
(
Ωout

m
)
=
∫ 1

0

1√
Ωout

m a−1 + (1−Ωout
m )

da . (57)

Figure 8 shows the resulting relation between the Hubble rate Hin
0 and the matter

density parameter Ωout
m for a fixed background Hubble rate Hout

0 = 40 km s−1 Mpc−1,
which is the value that was favoured by the CMB data in Sect. 2.5.3. For instance,
if we embed the empty sphere into an Einstein-de Sitter (EdS) background, we find
f (Ωout

m = 1) = 2/3, such that the Hubble rate at the observer position becomes
Hin

0 = 60 km s−1 Mpc−1. This agrees well with several previous works, which empiric-
ally found that large and deep voids that are embedded into EdS backgrounds cannot
increase the local Hubble rate by more than ∼ 20 km s−1 Mpc−1 (Marra & Notari
2011). Our simple approximation also agrees surprisingly well with the results from
Table 2. Most importantly, however, Fig. 8 shows that unrealistically high values for
the matter density parameter Ωout

m are required to reach the observationally measured
local Hubble rate. These theoretical solutions are excluded by current observational
data (e.g. constraints from the CMB).

We can thus safely conclude that not even giant LTB voids with radial sizes of
several Gpc and vanishing matter density at the origin can simultaneously fit the
observed local Hubble rate and the CMB.

2.6.3 Inhomogeneous Big Bang or cosmological constant?

The decisive property that we exploited in the previous section to link the local
Hubble rate around the observer to the Hubble rate of the background model was the
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assumption of a constant global age throughout the whole Universe. The problem of
a too low local Hubble rate can easily be solved by dropping this assumption. To see
this very clearly, we used some trivial substitutions to rewrite Eq. (14) in the standard
form

t− tB(r) =
1

H0(r)

∫ 1

0

√
a√

Ωm(r) + Ωk(r)a + ΩΛa3
da , (58)

where the density parameters Ωx(r) can have an explicit radial dependence in LTB
models. Obviously, the local Hubble rate can be increased by decreasing the age of the
local Universe. Varying bang time functions that increase towards the origin (r = 0)
are thus yet another mechanism to mimic the apparent acceleration of the Universe.
In fact, Krasiński (2014) showed that the bang time function can be calibrated such
that LTB models exactly reproduce the distance–redshift relation of the standard
cosmological model (with dark energy).

These models have previously been discussed in the literature (Clifton et al. 2009;
Bull et al. 2012). They were shown to solve the tension between the local Hubble rate
and the CMB data. However, Bull et al. (2012) demonstrated that models with the
required fluctuations in the bang time function produce a pronounced kSZ effect in
galaxy clusters, which is strongly inconsistent with current data.

In addition, we have fundamental objections against LTB models with both flexible
density profile and fine-tuned bang time function. As we explained in Sect. 2.5,
the tension between the considered LTB models and current observational data
arises as soon as constraints from the CMB are taken into account. In Sect. 2.2,
we briefly discussed that variations in the bang time function can be identified
with decaying modes in linear perturbation theory, which in turn would imply
(strong) inhomogeneities at early times. However, such features strongly contradict
the standard CMB analysis, which is inherently based on the assumption of a spatially
isotropic and homogeneous early Universe. We do not believe that it makes sense
to introduce a new feature – the varying bang time function – only to reconcile our
theoretical model with the CMB, while at the same time this new feature violates the
basic assumptions the CMB analysis is based upon. Furthermore, from a statistical
point of view, LTB models with varying bang time function become yet more complex,
with additional degrees of freedom. Given current observational data, Ockham’s razor
would clearly favour the standard cosmological model.

These complications can be partially avoided by extending the considered LTB
models in a more natural way. Lovelock (1971; 1972) proved two remarkable, but often
overlooked theorems concerning the uniqueness of Einstein’s field equations. Among
other things, he showed that under very general simplicity conditions and in four
dimensions, any metric theory of gravity locally conserving energy-momentum must
have two coupling constants, and its metric must satisfy Einstein’s field equations,

Gµν = κTµν + Λgµν , (59)

where Gµν, Tµν and gµν are, respectively, the Einstein tensor, the energy-momentum
tensor, and the metric tensor. κ and Λ are the two coupling constants, which we
identify with Newton’s gravitational constant and with the cosmological constant.
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According to Lovelock’s theorems, the cosmological constant Λ thus appears natur-
ally not only in Einstein’s field equations, but also in the field equations of any other
metric theory of gravity. It could (and perhaps should) therefore be interpreted as a
second coupling constant of the metric to matter, on a par with Newton’s gravitational
constant. Numerous alternative cosmological models – such as LTB voids – have been
constructed to avoid the cosmological constant or dark energy. Nonetheless, from
the point of view of Lovelock’s theorem, such models must be considered incomplete
unless they justify why the cosmological constant should vanish.

Following this line of reasoning, we believe that considering LTB models with
non-zero cosmological constant is the most natural extension of our approach. This
is an interesting step because it slightly shifts the research focus away from the dark
energy problem to more general tests of the Copernican principle. For example,
using flexible parametrisations of the local matter density profile, ΛLTB models allow
us to derive statistical constraints on possible deviations from spatial homogeneity.
In addition, effects of varying spatial curvature along the PNC can be explored.
Finally, we can investigate whether fluctuations of the local matter density profile
can noticeably influence the statistical inference of the best-fitting parameters of the
standard cosmological model (see e.g. Marra et al. 2013b; Valkenburg et al. 2014). We
briefly discuss these applications of ΛLTB models in the next section.

2.7 probing spatial homogeneity with Λltb models

In this section, we constrain the cosmological models considered by all data sets
mentioned in Sect. 2.3, that is, we compute the likelihood given the local Hubble
rate, supernovae, model-independent CMB constraints and kSZ data. Again, as
a point of reference, we first detail the goodness-of-fit of the standard cosmolo-
gical model, which is usually assumed to be a spatially flat FLRW model with
non-zero cosmological constant. The best-fitting model with cosmological para-
meters h = 0.72, Ωm = 0.263, and ΩΛ = 0.737 exhibits a log-likelihood value
of log (L) = −275.1, with the individual contributions log [LH0 (1)] ≈ −0.3,
log [LSNe (580)] ≈ −272.9, log [LCMB (3)] ≈ −0.3 and log [LkSZ (9)] ≈ −1.6,
where we explicitly indicated the number of fitted data points in parenthesis. It is
remarkable how well the standard cosmological model agrees with these data. The
goodness-of-fit, which can be quantified in terms of the chi-squared per degree of
freedom, is truly impressive and hard to improve.

On the other hand, it is well-known that – even within the framework of the standard
cosmological model – there seems to be a slight tension concerning the Hubble rate:
While measurements with Cepheid-calibrated supernovae yield a local Hubble rate
of H0 = (73.8 ± 2.4) km s−1 Mpc−1 , the Planck CMB data (full analysis including
secondary anisotropies) favour a value of H0 = (67.3 ± 1.2) km s−1 Mpc−1 (Riess
et al. 2011; Planck Collaboration et al. 2013). This discrepancy is still debated, but
it could be taken as a further motivation to explore more complicated, radially
inhomogeneous ΛLTB models with spatially varying Hubble rates (Marra et al. 2013a).
Moreover, we can address questions concerning the assumption of spatial homogeneity,
such as:
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Figure 9: Marginalised posterior distribu-
tions of the effective locale Hubble rate as
measured by a central observer. The blue
dashed curve indicates the constraints as-
suming a flat FLRW model. The red curve
shows the constraints assuming a ΛLTB
model, with radial inhomogeneities in the
range r < 3 Gpc, asymptotically embedded
into a curved FLRW background. The grey-
shaded band indicates the local Hubble rate
(±1σ) measured by Riess et al. (2011). The
models were constrained by data from the
local Hubble rate, supernovae, the CMB,
and kSZ clusters.

• Can inhomogeneous cosmological models fit the data even more accurately?

• What limits do current data impose on fluctuations of the local matter dens-
ity profile? How strongly can we deviate in our assumptions from spatial
homogeneity?

• How do the constraints on dark energy or spatial curvature change if we drop
the assumption of spatial homogeneity and marginalise over all possible radial
inhomogeneities?

As discussed in Sect. 2.5.2, the CMB data do not constrain the detailed shape of the
local matter density profile, but primarily the global properties of the background
model and the spatial curvature close to the LSS. The kSZ data constrain the allowed
depth of radial inhomogeneities, but since we assumed large errors for the individual
measurements, current constraints are rather weak, at least when considering only
moderate deviations from homogeneity. We would therefore expect that fine-tuned
local matter density profiles can mainly improve the fit to the local Hubble rate and
supernovae. As the constraining power of supernovae decreases with increasing
redshift (cf. Sect. 2.5.1), it only makes sense to consider fluctuations well inside the
redshift range z < 1.5.

For these reasons, and also for a comparison with the previous sections, we now
exemplarily consider ΛLTB models whose density profile is represented by cubic
splines with three flexible nodes and a fixed radial size of L = 3 Gpc. While testing,
we also tried to treat the radial size L as a free parameter and vary it with the MC
sampler, but the observational constraints are too weak so that the MC chains did
not converge. We asymptotically embedded these ΛLTB models into curved FLRW
backgrounds.

In summary, the considered ΛLTB models are described by the cosmological para-
meters h, Ωm, ΩΛ, Ωk = 1−Ωm −ΩΛ of the background, and the three spline nodes
(a1, a2, a3) parametrising possible fluctuations of the matter density profile. In con-
trast to the flat FLRW model, we hence introduced one new degree of freedom for
the cosmological background (ΩΛ free instead of setting ΩΛ = 1−Ωm) and three
additional parameters for radial inhomogeneities. This way, our framework for testing
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Figure 10: Statistical constraints on devi-
ations from spatial homogeneity on ra-
dial scales r < 3 Gpc. The fluctuations
in the matter density profile were mod-
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the cosmological principle is most general and able to parametrise a broad class of
space-time geometries.

We now sequentially discuss these questions. The best-fitting ΛLTB model has
a log-likelihood value of log (L) = −274.7, which is only marginally better than
that of the FLRW model. The fits to all observables slightly improve. There is no
distinguished data set that is described significantly better. As an example, we show a
comparison of the marginalised posterior distribution of the effective local Hubble
rates in Fig. 9. As expected, the more flexible ΛLTB models fit the observed value
better than the flat FLRW models. More surprisingly, the best-fitting model is almost
perfectly homogeneous, with spline nodes a1 = 0.99, a2 = 1.01 and a3 = 0.99. The
cosmological parameters are also very similar to those of the standard model, with
h = 0.73, Ωm = 0.25, ΩΛ = 0.74, and Ωk = 0.01.

In summary, we can conclude that, of course, the more flexible models fit the data
even better. The improvement is almost negligible (∆ log (L) ∼ 0.4) , however, and
comes at the high price of introducing four additional free parameters. Ockham’s
razor penalises more complicated models and can be approximated for instance by
the Akaike information criterion or the Bayesian information criterion (Akaike 1974;
Schwarz 1978). In our case, these criteria suggest that not even one additional free
parameter would be justified. More meaningfully, we can thus conclude that the data
used in this work statistically favour the standard cosmological model.

The second question concerns statistical constraints on deviations from spatial
homogeneity. The mean values of the spline parameters are given by a1 = 1.02± 0.12,
a2 = 1.02± 0.07 and a3 = 0.96± 0.11. The corresponding variations of the density
profiles are depicted in Fig. 10. The density profiles were forced to converge to
the background value at r = 3 Gpc by construction, so the apparent constraints at
r > 2 Gpc are artificial. Clearly, the results agree well with the assumption of spatial
homogeneity. However, the scatter of ∼ 15 % indicates that we need more accurate
data to safely confirm the cosmological principle. This demonstrates the importance
of fully solving linear perturbation theory in LTB backgrounds (such that it can be
applied to predict cosmological observables), since this would allow us to include
more cosmological observables.
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Figure 11: Marginalised posterior distribu-
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For instance, it would be natural to expect that Gpc-scale variations of the mat-
ter density profile leave a characteristic imprint on the large-scale structure of the
local Universe. Such imprints could create non-vanishing amplitudes of the galaxy-
galaxy correlation function on Gpc-scales, which would be at odds with data from
current spectroscopic surveys (Labini 2011; Scrimgeour et al. 2012). Furthermore, Gpc-
variations of the local matter distribution should be well measurable with tomographic
weak-lensing methods (Schäfer & Heisenberg 2012). There are other promising observ-
ables related to cosmic structures that might help constrain deviations from spatial
homogeneity, but we need to advance the numerical algorithms for solving the linear
perturbation equations on LTB backgrounds before we are able to reliably calculate
these phenomena.

To answer the last question, in Figs. 11 and 12 we show the statistical constraints on
the cosmological constant and spatial curvature. It is important to stress that these
posterior distributions were marginalised over all possible fluctuations of the matter
density profile. In other words, these posteriors show constraints that are independent
of the assumption of spatial homogeneity, at least within the limits of our framework.
The constraints on the cosmological constant are essentially invariant, with a negligibly
larger scatter. This result differs from the findings of Valkenburg et al. (2014), who
calculated a shift of ∆ΩΛ ∼ 0.05 when marginalising over inhomogeneities. However,
these authors constrained their models by different data, chose another approach
for modelling spatial variations of the density profile and additionally included a
so-called Copernican prior. Amongst other details, these are important issues that
could well explain the difference with respect to our results. Finally, it is remarkable
how tightly the spatial curvature of the background model is constrained, even though
we considerably relaxed our prior assumptions. The constraints are consistent with
a flat background Universe, which agrees very well with the Planck results (Planck
Collaboration et al. 2013).

2.8 conclusions

What do cosmological observations tell us about the shape of the local matter density
profile? Can current data confirm the cosmological principle? These were two central
questions that we discussed in this chapter.
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First, we reconsidered LTB models without cosmological constant to investigate
whether highly flexible, radially fine-tuned mass profiles allow us to simultaneously fit
the high local Hubble rate and the CMB data from the Planck satellite (Riess et al. 2011;
Planck Collaboration et al. 2013). To this end, we consecutively compared numerous
LTB models with different combinations of observational data. The main results of
this first part can be summarised as follows:

1. H0 + supernovae: As was already well-known, LTB models without cosmological
constant can easily fit the observed local Hubble rate and supernovae just as
well as the standard cosmological model. These models mimic the apparent
acceleration of the Universe by means of large Gpc-scale voids whose matter
density profile gradually decreases towards the observer. Having said that,
we would like to stress an important issue concerning the interpretation of
supernova observations. Interpreted in the framework of a spatially homogeneous
FLRW model, supernovae favour a non-zero cosmological constant. Similarly,
supernovae favour Gpc-scale LTB voids if and only if we set the cosmological
constant to zero and require a synchronous Big Bang. In fact, Célérier et al. (2010)
demonstrated that local over-densities (i. e. giant local humps) are favoured if
the bang time function is allowed to vary. We mention these ambiguities only
to emphasise that the interpretation of supernovae is strongly biased by prior
assumptions about the underlying cosmological model.

2. Cosmic microwave background: The CMB data alone do not constrain the shape of
the local matter density profile. Indeed, the density profiles can substantially
be varied without notably deteriorating the fit to the data. However, current
CMB data impose tight constraints on the geometry and expansion rate of the
asymptotic background models. Without a cosmological constant, good fits to the
data require asymptotically curved FLRW backgrounds with an unrealistically
low Hubble rate of H0 ≈ 33 km s−1 Mpc−1.

3. H0 + supernovae + CMB: The separate CMB analysis clearly highlighted the
problem of the considered class of LTB models: A good fit to the CMB requires
an extremely low background Hubble rate, which is in strong tension with the
observed local Hubble rate of H0 = (73.8± 2.4) km s−1 Mpc−1 (Riess et al. 2011).
In the last part of our analysis, we thus focused on the question whether or not
radially tuned matter density profiles can be found that simultaneously comply
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with all observational constraints. However, even though we considered a wide
variety of huge, extremely deep and heavily fine-tuned void profiles, the effective
local Hubble rate remained too low, H0 . 62 km s−1 Mpc−1. To make matters
worse, we note that we merely used minimal, model-independent constraints
from the CMB data to arrive at these conclusions (see Sect. 2.3.3, for details). We
did not even use the complete information contained in the full CMB spectra,
which appear to be even more problematic for void models (Moss et al. 2011).

After this detailed analysis, we presented simple theoretical arguments that explain
why not even heavy fine-tuning of the radial matter density profile can solve the
tension between the local Hubble rate and the CMB. Various solutions, such as varying
bang time functions, dynamical effects of radiation, or modifications of the primordial
curvature power-spectrum, were proposed to reconcile giant void scenarios with cur-
rent data (Clarkson & Regis 2011; Nadathur & Sarkar 2011; Bull et al. 2012). However,
all these modifications require deviations from the standard inflationary paradigm or
introduce more complexity, resulting in fine-tuned, alternative cosmological models.
Ockham’s razor would clearly favour the standard cosmological model. In addition,
according to Lovelock’s theorems, the cosmological constant appears naturally in the
field equations of general relativity and of any other metric theory of gravity (Lovelock
1971, 1972). We thus argued that considering LTB models with non-zero cosmological
constant seems to be the most natural step.

In the final part, we therefore analysed LTB models with non-zero cosmological
constant, which can be considered as the simplest, spatially isotropic, but radially
inhomogeneous extension of the standard cosmological model. ΛLTB models are
a valuable framework to systematically study deviations from spatial homogeneity,
verify or falsify the cosmological principle, or simply explore effects of varying
curvature along the PNC. We showed that the data used in this chapter provide
no evidence for radial inhomogeneities on Gpc-scales. Instead, spatially flat FLRW
models with homogeneous matter distribution are favoured. These results statistically
support the Copernican principle. However, we also showed that fluctuations of
∼ 15% with respect to a homogeneous matter density profile are still compatible with
current data.

As emphasised in the previous sections (cf. Sects. 2.3 and 2.7), our analysis was
limited by the fact that substantial additional efforts are required before linear perturb-
ations on LTB backgrounds can reliably be computed in realistic cosmological settings.
We therefore had to neglect all cosmological observables that depend on the details of
linear structure formation. For instance, we had to neglect important cosmological
probes such as baryonic acoustic oscillations and weak-lensing spectra, which are
widely (and successfully) used to constrain homogeneous and isotropic cosmologies.
We will focus our research on advancing linear perturbation theory in LTB models to
tighten observational constraints on the shape of the local matter density profile in
future works.
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W E A K G R AV I T I O N A L L E N S I N G I N LT B S PA C E - T I M E S

abstract

This chapter outlines a simple approach that could serve as a starting point for
future weak-lensing studies in perturbed LTB space-times. At first, we recall the
equation of geodesic deviation and derive the Sachs equation for the evolution of
the Jacobi map along a fiducial null geodesic. We explain the link between the
Jacobi map and the weak lensing magnification matrix. Next, as a preparatory step,
we sketch the standard solution of the Sachs equation in linearly perturbed FLRW
models. During the derivation, we highlight the most important simplifications
that are commonly made before arriving at a closed-form expression for the
Jacobi map. After that, we explain how the evolution of the Jacobi map can be
calculated in linearly perturbed LTB models, particularly emphasising the main
complications that arise due to the LTB metric being radially inhomogeneous. To
give an explicit example, we calculate the Sachs equation for the Jacobi map in
a linearly perturbed LTB metric. Finally, we conclude with a short outlook for
future studies.

3.1 introduction

The results of the previous chapter clearly demonstrated the need to include more
observational data in our analysis of ΛLTB models to ultimately confirm the validity
of the Copernican principle. As repeatedly emphasised, we were mainly limited by
the fact that linear perturbation theory in LTB models is quite demanding, and we
still lack the proper tools for numerically solving the linear perturbation equations.

To make progress in this direction, we considered the remarkable work by Clarkson
et al. (2009), in which the authors developed a fully gauge-invariant linear perturbation
theory in LTB models. Within their framework, the evolution of linear perturbations is
described by a complicated set of partial differential equations, which reveal that scalar,
vectorial, and tensorial modes are coupled on inhomogeneous backgrounds. Recently,
February et al. (2014) for the first time proposed a method for solving these equations
numerically and calculated the evolution of linear perturbations for simplified toy
models. Independently of these authors, we also developed a new framework for
numerically solving the linear perturbation equations derived by Clarkson et al. (2009).
Our code successfully reproduces the results published by February et al. (2014).
Furthermore, we implemented a technique that allows us to seed the perturbation
equations with realistic cosmological initial conditions for the Bardeen potentials

47
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shortly after the time of decoupling. This step is almost finished and will soon be
presented in a separate work (Meyer et al., in preparation).

Our numerical algorithm allows us to compute the linearly perturbed LTB metric
at any space-time point (t, r, θ, φ) and, in particular, along the PNC of a fictitious
observer placed in a LTB cosmology. We shall therefore be able to include additional
cosmological observables that depend on the details of structure formation in future
analyses of ΛLTB models.

One particular phenomenon that we have in mind is weak gravitational lensing. To
our knowledge, up to now, there are no numerical studies of weak gravitational lensing
in perturbed LTB backgrounds. A few works studied aspects of gravitational lensing
in unperturbed LTB models (see e.g. Brouzakis et al. 2007; Fanizza & Nugier 2014).
Only Dunsby et al. (2010) briefly discuss weak gravitational lensing in perturbed LTB
models in the appendices of their work, but these authors do not present a numerical
solution either. More importantly, their formalism for describing the evolution of
linear perturbations in LTB cosmologies is substantially different from the perturbation
theory developed by Clarkson et al. (2009).

In this chapter, we aim to sketch a simple framework for numerically studying
weak gravitational lensing in perturbed LTB models. However, already here, we
would like to stress that this chapter describes work in progress and should rather
be considered as a preparatory step for future studies. We cannot yet numerically
compute weak lensing spectra because we first need to finalise the code for solving
the linear perturbation equations on LTB backgrounds. However, as soon as this goal
has been accomplished, the formalism outlined below can readily be employed.

3.2 equation of geodesic deviation

This section briefly discusses the evolution of optical properties along a bundle of null
geodesics. We begin with the equation of geodesic deviation and finally arrive at the

screen
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deformed
screen

kµ = dxµ

dλ

ηµ = dγµ

dσ

curve γµ(σ)

Figure 13: Evolution of a bundle
of null geodesics.

Sachs equation for the Jacobi map. Our presentation
closely follows the articles by Bartelmann (2010b) and
Clarkson et al. (2012), both of which are more rigor-
ous and contain interesting additional details that we
skipped for brevity.

Let us consider the evolution of a bundle of null-
geodesics in an arbitrary space-time as illustrated in
Fig. 13 and suppose that the light rays converge at
a freely falling observer with four-velocity uµ

obs. We
select one of the light rays as a fiducial ray and para-
metrise it by the affine parameter λ, which can always
be chosen such that the projection of the tangent vec-
tor kµ = dxµ

dλ on the four-velocity uµ
obs is unity at the

time of observation, viz. kµuµ
obs = 1. This choice is be-

neficial mainly because then (a) the affine parameter
coincides in an infinitesimal neighbourhood of the
observation point with the Euclidean distance in the
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rest frame of the comoving observer (which is important for the definition of obser-
vation angles; see below), and (b) the redshift with respect to the observer is given
by 1 + z = kµuµ, where uµ is the four-velocity of a fictitious light source along the
fiducial ray.

The space-like plane perpendicular to the four-velocity uµ
obs and the tangent vector

kµ defines the screen in the rest frame of the observer. The screen is spanned by
the orthonormal vectors nµ

a (a = 1, 2), which are commonly called the Sachs basis.
The basis vectors nµ

a are parallel-transported along the fiducial ray
(
kµ∇µnν

a = 0
)

and satisfy the relations gµνnµ
a nν

b = δab, kµnµ
a = 0, uµnµ

a = 0 (where uµ denotes the
four-velocity of comoving observers) for all λ.

Let us now envisage a curve γµ(σ) in the screen space and suppose that this curve
connects the fiducial ray with its neighbouring geodesics. Since the Sachs basis is
parallel-transported along the fiducial ray, the curve also remains in the screen space
for all λ. The tangent vector ηµ = dγµ

dσ measures the distance to neighbouring geodesics
and hence also the physical size and shape of the bundle as one follows the fiducial
light ray. The equation of geodesic deviation determines the evolution of the connecting
vector ηµ along the fiducial ray,

kαkβ∇α∇βηµ = Rµ
ναβkνkαηβ , (60)

where Rµ
ναβ denotes the Riemann curvature tensor. We can now expand the vector ηµ

in the Sachs basis, ηµ = η1nµ
1 + η2nµ

2 , and substitute this representation into Eq. (60),

d2ηa

dλ2 = Rµναβnµ
a kνkαnβ

b = Tabηb . (61)

In the second step, we introduced the optical tidal matrix Tab. It is convenient to
decompose the Riemann curvature tensor into

Rαβγδ = Cαβγδ + gα[γRδ]β − gβ[γRδ]α +
R
3

gα[γgδ]β (62)

where R, Rαβ and Cαβγδ are, respectively, the Ricci scalar, the Ricci tensor and the Weyl
curvature tensor (Straumann 2004). Using this decomposition, we rewrite the optical
tidal matrix to

Tab = −
1
2

Rµνkµkνδab + Cµναβnµ
a kνkαnβ

b . (63)

While the Ricci focusing Rµνkµkν is generated by matter inside the bundle, the Weyl
focusing Cµναβnµ

a kνkαnβ
b is caused by matter outside the bundle, which can generate a

non-vanishing Weyl curvature tensor along the fiducial ray (Clarkson et al. 2012).
The linearity of Eq. (61) together with the condition that the bundle of null geodesics

converges at the observer (ηµ (λ) |λ=0 = 0) imply that the components of the connect-
ing vector ηµ along the fiducial ray are related to the initial values of their derivatives
by a linear transformation,

ηa (λ) = Dab (λ)
dηb (λ)

dλ

∣∣∣∣
λ=0

. (64)
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The Jacobi map Dab describes the deformation of the light bundle as one follows the
fiducial ray. From Eq. (61), we deduce that Dab evolves according to

d2Dab (λ)

dλ2 = Tac (λ)Dcb (λ) ,
dDab (λ)

dλ

∣∣∣∣
λ=0

= δab . (65)

Equation (65) is called the Sachs equation for the Jacobi map and is of key importance
for the following sections.

3.3 link with the weak lensing magnification matrix

The Jacobi map Dab introduced in Eq. (64) is closely related to the Jacobian matrix
Aab of the lens mapping (cf. Bartelmann 2010b, Sect. 1.6), which is also commonly
called (weak) lensing magnification matrix. We adopt the latter nomenclature in the
following to clearly distinguish between Dab and Aab.

Given our choice of the affine parameter λ
(

kµuµ
obs

∣∣
λ=0 = 1

)
, we define the direction

of observation with respect to the fiducial ray in the rest frame of the observer by

θa =
dηa (λ)

dλ

∣∣∣∣
λ=0

. (66)

Suppose that the ray observed in the angular direction θ originated from a light source
that, in the unlensed case, would appear at the angle

βa =
ηa (λs)

DA (λs)
=
Dab (λs)

DA (λs)
θb , (67)

where DA (λs) denotes the angular-diameter distance to the source. Equation (67)
describes the linear relation between a variation of the viewing angle (with respect
to the fiducial ray) and the resulting variation of the source position. Precisely this
relation is described by the weak lensing magnification matrix, hence we find

Aab =
Dab

DA
=

(
1− κ − γ1 γ2 −ω

γ2 + ω 1− κ + γ1

)
, (68)

where we made the common decomposition of Aab into the convergence κ, the shear
(γ1, γ2), and the rotation ω. This decomposition (with ω = 0) is applicable for central
observers in FLRW and LTB cosmologies, which are the only cases that are discussed
in the remainder of this work. In arbitrary space-times, it is more useful to relate the
convergence, the shear, and the rotation to the Sachs optical scalars (Sachs 1961); see
Clarkson et al. (2012) for a detailed derivation.

The above consideration highlights the importance of the Jacobi map for future
weak-lensing studies in LTB cosmologies: the shear components, for instance, are given
by γ1 = (D22 −D11) /(2DA) and γ2 = (D12 +D21) /(2DA). Therefore, as soon as we
have solved for Dab using Eq. (65) along the PNC, we can statistically correlate the
shear at different viewing angles and lookback times λ, and compare the theoretically
expected weak-lensing spectra with observed data to constrain LTB models.



3.4 weak lensing in perturbed flrw models 51

3.4 weak lensing in perturbed flrw models

We now sketch the standard approach for solving the Sachs equation (65) on linearly
perturbed FLRW backgrounds. Our presentation is deliberately brief; see Bartelmann
(2010b) for a detailed derivation.

As already argued in Sect. 2.2, the large-scale matter distribution of the late Universe
should well be described by a dust solution with zero pressure and zero anisotropic
stress. Moreover, we restrict the following discussion to scalar perturbations, which
are characterised by their (weak) Newtonian gravitational potential φ

(
φ = Φ/c2).

In addition, we assume that the inhomogeneities are slowly moving, that is, their
peculiar velocities with respect to the cosmic flow are small compared to the speed of
light (v� c). Under these assumptions, the linearly perturbed FLRW metric in the
Newtonian gauge is

ds2 = a2(τ)
[
−(1 + 2φ)dτ2 + (1− 2φ)

(
dw2 + f 2

k (w)dΩ2)] , (69)

where τ is the conformal time (adτ = dt) and the comoving angular-diameter distance
fk(w) as a function of the comoving radial distance w is given by

fk(w) =





√
k sin(

√
kw) (k > 0)

w (k = 0)
1√
−k

sinh(
√
−kw) (k < 0)

. (70)

Assuming that we can split the optical tidal matrix and the Jacobi map into a
background and a first-order contribution, Tab = T (0)

ab + T (1)
ab and Dab = D(0)

ab +D
(1)
ab , the

Sachs equation (65) reduces to

d2D(0)
ab (λ)

dλ2 = T (0)
ac (λ)D(0)

cb (λ) , (71)

d2D(1)
ab (λ)

dλ2 = T (0)
ac (λ)D(1)

cb (λ) + T (1)
ac (λ)D(0)

cb (λ) . (72)

Before we continue, we would like to stress a detail that might first appear trivial
but is indeed an important simplification in comparison with radially inhomogeneous
LTB models (cf. Sect. 3.5). From kµkµ = 0 and kµuµ = (1 + z) = a−1, we deduce that
radial null geodesics satisfy

dτ = dw, dλ = a2dτ ⇒ dλ = a2dw . (73)

These relations show that we can trivially transform between τ, w, a, z, and λ along
the fiducial light ray, which allows us to simply rewrite the Sachs equations in terms
of either of these parameters. In what follows, we make use of the relation dλ = a2dw
to rewrite the Sachs equations in terms of the comoving radial coordinate w instead of
the affine parameter λ.

Let us first consider the unperturbed Sachs equation (71). Using Einstein’s field
equations, Eq. (71) can be brought to the form (cf. Bartelmann 2010b, Sect. 1.3)

(
d2

dw2 + k
)

D(0)
ab
a

= 0 , (74)
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which can readily be solved using the angular-diameter distance from Eq. (70),

D(0)
ab (w) = a(w) fk(w)δab = DA(w)δab . (75)

The physical interpretation of this result is quite intuitive: At background level, the
Weyl curvature tensor vanishes due to the symmetries of the FLRW metric. Light rays
therefore only experience an isotropic Ricci focusing (if ρ > 0), and the diameter of
light bundles scales with the angular-diameter distance.

To solve the first-order Sachs equation (72), we use Born’s approximation: Com-
plying with our prior assumption of weak gravitational potentials, we assume that
the perturbations (e. g. deflection angles) along the line-of-sight are very small, and
consequently the linear corrections to the Jacobi map can approximately be calculated
by integrating along the unperturbed fiducial ray. Typically, Born’s approximation is
remarkably accurate (Bernardeau et al. 2010; Schäfer et al. 2012).

Given the solution of the Jacobi map at background level (Eq. (75)), the first-order
Sachs equation (72) reduces to the simple form

(
d2

dw2 + k
)

D(1)
ab (w)

a(w)
= a(w) fk(w)T (1)

ab (w) . (76)

Equation (76) is a second-order linear differential equation with constant coefficient k.
The Green’s function to the linear operator

(
d2/dw2 + k

)
is

G
(
w− w′

)
=

1√
k

sin
[√

k
(
w− w′

)]
Θ
(
w− w′

)
= fk

(
w− w′

)
Θ
(
w− w′

)
, (77)

which allows us to write the solution of Eq. (76) in a closed-form expression,

D(1)
ab =

∫ w

0
fk
(
w− w′

)
a
(
w′
)

fk
(
w′
)
T (1)

ab

(
w′
)

dw′ . (78)

The above integral is evaluated along the unperturbed fiducial ray due to Born’s
approximation. To calculate the linearly perturbed optical tidal matrix T (1)

ab along the
line-of-sight, we assume that the inhomogeneities are well localised and their spatial
extent is much smaller than the curvature scale of the background universe. Then,
spatial curvature does not influence the local perturbations, and the problem reduces
to working out the Ricci and Weyl focussing terms in a perturbed FLRW metric (69)
with fk(w) ≈ w. We find T (1)

ab = −2∂a∂bφ, where ∂x indicates differentiation along the
Sachs basis vectors (i. e. perpendicular to the line-of-sight). Thus, the final solution for
the Jacobi map is

Dab = DA(w)δab − 2
∫ w

0
fk
(
w− w′

)
DA
(
w′
)

∂a∂bφ
(
w′
)

dw′ . (79)

This solves the basic lensing problem in perturbed FLRW models and usually serves
as a starting point for the weak lensing formalism.
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3.5 weak lensing in perturbed ltb models

We can now try to reproduce the same approach as outlined in the previous section
to solve for the Jacobi map in a linearly perturbed LTB model. Again, for simplicity,
we restrict our discussion to slowly moving, weak scalar perturbations characterised
by their Newtonian gravitational potential Φ. Then, the perturbed LTB metric in the
Regge-Wheeler gauge is (Clarkson et al. 2009; February et al. 2013)

ds2 = − (1 + 2Φ)dt2 + (1− 2Φ)

[
R′2

1 + 2E
dr2 + R2 (dθ2 + sin2 θ dφ2)

]
. (80)

Fluctuations in the gravitational potential Φ are naturally closely related to perturb-
ations of the matter density field. Correspondingly, the perturbed energy-momentum
tensor reads

Tµν = ρ (1 + ∆) uµuν , (81)

where the gauge-invariant matter density perturbation ∆ can be calculated by means
of a generalised Poisson equation in LTB space-times (February et al. 2013).

For simplicity, but also to conserve isotropy, we only consider central LTB observers.
Moreover, we again use Born’s approximation and assume that the first-order con-
tributions to the Jacobi map can be calculated by integrating along the unperturbed
fiducial ray. In particular, we also neglect linear perturbations of the wave vector
kµ and the Sachs basis nµ

a . As a first step, we thus need to find an appropriate set
of differential equations that describes the evolution of the fiducial ray along the
line-of-sight. From Sect. 1.4 and kµuµ = 1 + z, we deduce that radial null geodesics
satisfy the following differential equations:

dt
dλ

= − [1 + z (λ)] , ( t (λ)|λ=0 = t0) (82)

dr
dλ

=

√
1 + 2E [r (λ)]

R′ [t (λ) , r (λ)]
[1 + z (λ)] , ( r (λ)|λ=0 = 0) (83)

dz
dλ

= [1 + z (λ)]2 HL [t (λ) , r (λ)] , ( z (λ)|λ=0 = 0) (84)

where we chose the affine parameter λ such that it increases monotonically as one
follows the fiducial ray backwards in time, and HL = Ṙ′/R′ is the longitudinal Hubble
rate along the radial direction. Equations (82) - (84) highlight the first complication of
the lensing formalism in LTB models: By construction, the Sachs equation (65) is a
second-order differential equation in the affine parameter λ. In homogeneous FLRW
models, we could trivially transform between w and λ along the PNC, which allowed
us to simply rewrite the Sachs equation in terms of the comoving radial coordinate w.
In radially inhomogeneous LTB models, the differential relations between t, r, z, and
λ are more complicated because they depend not only on time, but also on the radial
coordinate. There is no simple way to rewrite the Sachs equation in terms of the radial
coordinate r, for instance. For the weak-lensing studies intended, it should therefore
be beneficial to numerically integrate Eqs. (82) - (84) in terms of the monotonically
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increasing affine parameter λ, tabulate intermediate values along the line-of-sight,
and interpolate between the parameters t, r, z, and λ on the PNC.

As in the previous section, we now make the fundamental assumption that we can
split the Jacobi map and the optical tidal matrix into a background and a first-order
contribution. Again, we first solve the unperturbed Sachs equation (65). Just like
in FLRW models, the Weyl focusing vanishes at background level. This can easily
be understood because for central observers the LTB space-time looks isotropic and
consequently, for symmetry reasons, the shear along radial geodesics must vanish.
The unperturbed Sachs equation thus reads

d2D(0)
ab (λ)

dλ2 = T (0)
ac (λ)D(0)

cb (λ) = −
1
2

Rµνkµkν Dab (λ) , (85)

which is solved by (see e.g. Dunsby et al. 2010; Clarkson et al. 2012)

D(0)
ab (λ) = DA (λ) δab . (86)

This is the same result as in the previous section: At background level, light bundles
only experience an isotropic Ricci focusing. The convergence along the fiducial ray is
described by the angular-diameter distance.

Next, we try to solve the first-order Sachs equation,

d2D(1)
ab (λ)

dλ2 = T (0)
ac (λ)D(1)

cb (λ) + T (1)
ac (λ)D(0)

cb (λ) (87)

= −1
2

Rµν (λ) kµ (λ) kν (λ) δacD(1)
cb (λ) + T (1)

ac (λ) DA (λ) δcb (88)

= −4πG ρ (λ) [1 + z (λ)]2D(1)
ab (λ) + DA (λ) T (1)

ab (λ) , (89)

where we inserted Einstein’s field equations in the last step, which is possible because
kµ (λ) is a null vector. Equation (89) indicates the second complication of the lensing
formalism in LTB models: In FLRW models, the Sachs equation could be brought to
the simple form (76), which is a second-order linear differential equation with constant
coefficient k. Such differential equations can be solved by means of analytically
constructed Green’s functions, which eventually allowed us to write the solution of
the first-order Jacobi map as a simple line-of-sight integral (cf. Eq. (78)). In contrast,
Eq. (89) is a second-order linear differential equation with varying coefficients, for
which it is in general difficult to analytically construct a Green’s function. Therefore,
we cannot write the solution of Eq. (89) as a simple line-of-sight integral. Instead, we
can only formulate the problem in terms of a system of coupled differential equations
(Eqs. (82) - (84) and Eq. (89)) that need to be solved using an appropriate numerical
integration scheme.

To this end, we finally have to calculate the first-order contributions to the optical
tidal matrix T (1)

ab along the unperturbed fiducial ray. In the equatorial plane (θ = π/2),
we find the following first-order components:

T (1)
11 (λ) = 4 [1 + z (λ)]2

[
4
3

πGρ (λ)Φ (λ)− M (λ)

R3 (λ)
Φ (λ)− πGρ (λ)∆ (λ)

]
(90)

− [1 + z (λ)]2

R2 (λ)

(
∂2

∂θ2 −
∂2

∂φ2

)
Φ (λ) ,
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T (1)
22 (λ) = 4 [1 + z (λ)]2

[
4
3

πGρ (λ)Φ (λ)− M (λ)

R3 (λ)
Φ (λ)− πGρ (λ)∆ (λ)

]
(91)

+
[1 + z (λ)]2

R2 (λ)

(
∂2

∂θ2 −
∂2

∂φ2

)
Φ (λ) ,

T (1)
12 (λ) = T (1)

21 (λ) = − 2 [1 + z (λ)]2

R2 [t (λ) , r (λ)]
∂2Φ (λ)

∂θ∂φ
. (92)

Equations (90) - (92) reveal that fluctuations in the Newtonian gravitational potential
Φ and the matter density ∆ contribute to the isotropic focusing, while derivatives of
the potential Φ perpendicular to the line-of-sight induce shear. The above components
of the first-order optical tidal matrix can readily be substituted into Eq. (89), which
shall allow us to numerically solve for the first-order Jacobi map and hence also to
determine the convergence κ as well as the shear γ along the line-of-sight of a central
observer in a linearly perturbed LTB space-time.

3.6 conclusions and outlook

In this chapter, we described a simple approach that could serve as a starting point
for future studies of weak gravitational lensing in linearly perturbed LTB space-times
within the gauge-invariant framework of Clarkson et al. (2009). We emphasised the
main complications that arise due to the LTB metric being radially inhomogeneous
but also showed that the first-order contributions to the Jacobi map can be calculated
by means of a set of coupled ordinary differential equations.

Because we are still in the process of finalising our numerical code for solving the
linear perturbation equations on LTB backgrounds with realistic cosmological initial
conditions, we cannot yet present first numerical results. However, as soon as our
numerical algorithm has been completed, we shall be able to calculate the Newtonian
gravitational potential Φ and the matter density perturbation ∆ at any space-time
point (t, r, θ, φ), insert these quantities into Eqs. (90) - (92), and numerically calculate
the linear corrections to the Jacobi map.

In future works, we intend to proceed as follows: In Meyer et al. (in preparation), the
numerical framework for solving the linear perturbation equations will be presented
in detail. Moreover, we intend to study the strength of the coupling between scalar,
vectorial, and tensorial perturbation modes. If the coupling is strong, we additionally
need to include the contributions due to vectorial and tensorial perturbations in the
lensing formalism described in Sect. 3.5. However, this extension is straightforward
because it essentially boils down to including vectorial and tensorial modes (at linear
order) in the calculation of the perturbed optical tidal matrix (cf. Eqs. (90) - (92)).
Alternatively, if the coupling is weak, it is probably well justified to study only the
evolution of scalar perturbations (cf. February et al. 2013) and readily solve the system
of coupled differential equations presented in Sect. 3.5.
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S T R O N G G R AV I TAT I O N A L L E N S I N G I N A N U T S H E L L

abstract

Since the theory of strong gravitational lensing is well-known, we abstain from
giving a detailed introduction here. Instead, we merely define the most import-
ant quantities required for our discussion of strong-lensing phenomena in the
following chapters. First, we summarise the assumptions that justify the thin lens
approximation. We then introduce the effective lensing potential and derive the
convergence, the shear, and the magnification of the lens mapping. We discuss
critical points of the lens mapping, which give rise to critical curves in the lens
plane and caustics in the source plane. Finally, we define the lensing cross section
and the Einstein radius, both of which are important concepts to characterise the
strength of a gravitational lens.

This chapter closely follows the pedagogic lecture notes by Narayan & Bartelmann
(1996). See also Schneider et al. (1992); Bartelmann (2010b) for comprehensive intro-
ductions to the theory of gravitational lensing.

4.1 thin lens approximation

The typical strong-lensing scenario is illustrated in Fig. 14: A source (e. g. a galaxy)
emits light that first propagates in unperturbed space-time, is then deflected in the
vicinity of a gravitational lens (e. g. a galaxy cluster), and continues travelling through
unperturbed space-time before reaching the observer, who perceives a (strongly)
distorted image of the source. The deflection of light is described by the lens equation,

β = θ− α (θ) , (93)

where β and θ denote, respectively, the angular position of the source and the distorted
image, and α (θ) is the deflection angle at the position of the image.

In line with the assumptions of Sect. 3.4, we assume that the gravitational lens
is slowly moving with respect to the reference frame of the CMB (peculiar velocity
v� c) and induces only a weak perturbation of the background metric. Accordingly,
the perturbation is well characterised by its Newtonian gravitational potential φ.
Moreover, the spatial extent of the gravitational lens is typically much smaller than the
distances between observer and lens and between lens and source. Most of the light
deflection occurs within a tiny fraction ∆z of the total line-of-sight. It is therefore well
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Figure 14: Illustration of light deflection due to the presence of a strong gravitational lens.

justified to use the thin lens approximation, which asserts that the spatial extent of the
gravitational lens along the line-of-sight is completely negligible, and any deflection
of light occurs in the lens plane. The gravitational lens is then fully specified by the
line-of-sight projection of its Newtonian potential onto the lens plane (see Sect. 4.2).
For simplicity, we additionally assume that the sources are located in a single plane,
the so-called source plane. This is not a severe restriction because extended source
redshift distributions can simply be accounted for by multiple source planes. Within
these approximations, gravitational lensing essentially reduces to a simple (however
non-linear) mapping between the lens plane and the source plane.

4.2 effective lensing potential

It is convenient to introduce the effective lensing potential ψ (θ), which is the appropri-
ately scaled, projected Newtonian gravitational potential of the lens. In the thin lens
approximation, the effective lensing potential is

ψ (θ) = 2
Dls

DlDs

∫
φ (Ddθ, z) dz , (94)

where Dl, Ds and Dls are, respectively, the angular-diameter distances to the lens,
the source plane, and between lens and source plane. The deflection angle α is the
gradient of ψ with respect to θ (Bartelmann 2010b). Thus, the lens equation (93) can
be written as

β = θ−∇θ ψ (θ) . (95)

The local properties of the lens mapping are described by its Jacobian matrix Aij,

Aij =
∂β

∂θ
=

(
δij −

∂2ψ (θ)

∂θi∂θj

)
=

(
1− κ − γ1 −γ2

−γ2 1− κ + γ1

)
, (96)



4.3 critical points of the lens mapping 61

where we decomposed the Jacobian matrix into the convergence κ and the shear γ (cf.
decomposition of the Jacobi map, Sect. 3.3).

We can use Poisson’s equation to relate the convergence κ = (ψ11 + ψ22) /2 to the
projected surface mass density Σ (θ),

κ (θ) =
1
2
∇2

θψ (θ) =
DlDls

Ds

∫
∇2

xφ (Ddθ, z) dz (97)

=
DlDls

Ds

∫
4πGρ (Ddθ, z) dz =

DlDls

Ds
4πG Σ (θ) (98)

=
Σ (θ)

Σcrit
, (99)

where we first assumed that the z-component of the Poisson equation is negligible
when integrating along the line-of-sight (due to the boundary conditions) and intro-
duced the critical surface mass density Σcrit ≡ (4πG)−1 Ds (DlDls)

−1 in the last step.
The shear components can be written as

γ1 =
1
2
(ψ11 − ψ22) , γ2 = ψ12 = ψ21 ⇒ γ =

√
γ2

1 + γ2
2 . (100)

convergence (κ > 0) shear (γ > 0)

Figure 15: Illustration of image distor-
tions due to convergence and shear.

As illustrated in Fig. 15, convergence causes
an isotropic focusing of the light rays (cf. Ricci
focusing, Sect. 3.2); consequently, the observer
perceives an isotropically magnified image of
the source. Shear causes an anisotropic distor-
tion of the image along a preferred direction;
initially circular sources are imaged as ellipt-
ical objects on the observer’s sky.

The magnification µ of the lens mapping is given by

µ =
1

detAij
=

1
λtλr

=
1[

(1− κ)2 − γ2
] . (101)

In Eq. (101), we used the relation detAij = λtλr, where λt and λr are, respectively, the
the tangential and radial eigenvalues of the Jacobian matrix,

λt = 1− κ − γ, λr = 1− κ + γ . (102)

4.3 critical points of the lens mapping

Strong gravitational lensing of extended sources gives rise to spectacular image
distortions: Originally circular sources can appear as highly elongated, thin arcs,
which are commonly called (giant) gravitational arcs. Observers may see multiple
images of a single source. Or, in the case of an axially symmetric lens, a source can
even be imaged as a closed ring, called Einstein ring (cf. Sect. 4.5).

Strong-lensing phenomena occur close to critical points of the lens mapping, which
are points in the lens plane where at least one eigenvalue vanishes. Equation (101)
indicates that the magnification of the lens mapping formally diverges at these
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Figure 16: Illustration of the critical curves (left figure) and the caustics (right figure) of an
exemplary gravitational lens with an elliptical surface mass density profile. The grey-shaded
area in the left figure indicates the region in which gravitational arcs with length-to-width
ratio larger than 7.5 can occur. The grey-shaded region in the right figure indicates the lensing
cross section σ7.5 (cf. Sect. 4.4).

points. This is, however, only true for idealised point sources; extended sources may
be strongly – but certainly not infinitely – magnified. We can refine the previous
definition of critical points by amending that points in the lens plane where the
tangential (radial) eigenvalue vanishes are called tangential (radial) critical points.
This refined nomenclature was originally introduced for axially symmetric lenses,
where images close to the tangential (radial) critical curves are highly elongated along
the tangential (radial) direction. Nonetheless, the distinction between tangential and
radial critical points is also useful for more general lenses whose mass distribution is
not exactly axially symmetric.

As visualised in Fig. 16, the set of critical points forms closed curves, which are
called critical curves. Their images (under the lens mapping) on the source plane are
called caustics. Sources located close to caustics are strongly magnified by the lens
mapping. A galaxy that lies on top of the tangential caustic, for instance, is likely to
appear as highly elongated image in the vicinity of the tangential critical curve (cf.
grey-shaded region in Fig. 16).

4.4 lensing cross section

The lensing cross section σp is an important quantity to measure the strong-lensing
efficiency of a lens. It is formally defined as the area of the region on the source plane
where a source with given characteristics (morphology, orientation, surface brightness
profile, etc.) has to lie in order to produce at least one image with properties p. This
definition is obviously quite general and needs to be further specified for applications
in the following chapter. Throughout, we exclusively compute the lensing cross section
σ7.5, which measures the efficiency of a gravitational lens to produce highly elongated
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images (i. e. giant arcs) with length-to-width ratios exceeding 7.5. Given our remarks
of the previous section, the area contributing to the lensing cross section σ7.5 should
be concentrated around the caustics in the source plane; this assumption is indeed
confirmed by the grey-shaded region in the right panel of Fig. 16.

In Redlich et al. (2012), we described in detail three different methods for computing
the lensing cross section σ7.5 of a gravitational lens. All results presented in the re-
mainder of this work were computed with a ray-tracing technique, named “method B”
in Redlich et al. (2012). Briefly, this method works as follows: The source plane is
covered with a Cartesian grid, which is adaptively refined close to the caustics. The
algorithm then loops over each grid cell and places an extended elliptical source
(with random orientation and random minor-to-major axis ratio) at the cell centre.
The lensed image(s) of the source is (are) simulated using a ray-tracing technique,
following bundles of light rays through the lens plane. If at least one of the simulated
images has a length-to-width ratio exceeding 7.5, the (appropriately weighted) area of
the grid cell in the source plane is added to the lensing cross section σ7.5.

After looping over all grid cells in the source plane, and assuming that the resolution
of the adaptive grid was sufficiently high, one ends up with an accurate estimate of
the lensing cross section σ7.5. Since the randomly sampled properties of the individual
sources affect the length-to-width ratio of the lensed image – and therefore also
whether or not the considered grid cell is added to the lensing cross section – it is
perhaps useful to think of the technique as a kind of MC integration of the lensing
cross section, which explains the fluctuations visible in Fig. 16.

See Redlich et al. (2012), and references therein, for a detailed introduction of the
three different methods for computing lensing cross sections, in particular regarding
the algorithmic measurement of the length-to-width ratio of lensed images and the
statistical modelling of the source population.

4.5 einstein radius

The second important concept to characterise the strength of a gravitational lens is the
Einstein radius, which measures the size of the tangential critical curve. The statistics
of the largest Einstein radii in the observable Universe is a valuable cosmological
probe; this is the key issue of the following chapters.

The Einstein radius was originally defined for axially symmetric lenses, which
exhibit circular tangential critical curves. Following Schneider et al. (1992), we first
write the shear of an axially symmetric lens as

γ (θ) = κ (θ)− κ (θ) , (103)

where κ (θ) denotes the mean convergence within a circle of radius θ. Substituting
this relation into Eq. (102), and recalling that the tangential eigenvalue vanishes at
points belonging to the tangential critical curve, we find

λt (θE) = 1− κ (θE)
!
= 0 . (104)
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Accordingly, the Einstein radius θE is defined as the radius of the circle enclosing a
mean convergence of unity. Using the above relation (97) between the convergence
and the surface mass density, we can formulate the definition of θE as

κ (θE) =
Σ (θE)

Σcrit
= 1 , (105)

implying that the mean surface mass density Σ (θE) within the Einstein radius equals
the critical surface mass density. This highlights two important details: (1) in the
limiting case of axial symmetry, only very massive objects (such as galaxy clusters)
with supercritical surface mass density can act as strong gravitational lenses, and (2)
generally, the size of the Einstein radius encodes important information about the
concentration of the inner surface mass density profile.

While the definition of the Einstein radius is quite natural in the case of axially
symmetric lenses, observed gravitational lenses or numerically simulated clusters
exhibit highly asymmetric and irregularly shaped tangential critical curves (Zitrin et al.
2011; Meneghetti et al. 2011). It is therefore not obvious how the notion of an Einstein
radius can be generalised to more realistic lenses. Amongst the various alternatives
proposed in the literature (see e.g. Broadhurst & Barkana 2008; Oguri & Blandford
2009; Zitrin et al. 2011; Meneghetti et al. 2011), the following geometrically motivated
definition turned out to be most useful for our purposes.

Let A denote the area enclosed by the tangential critical curve of an arbitrary
gravitational lens. The effective Einstein radius θeff of this lens is then defined by

θeff ≡
√

A
π

, (106)

so that a circle with radius θeff has the same area A. We adopt this definition
throughout the remainder of this work.
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abstract

For more than a decade now, it has been controversial whether or not the high rate
of giant gravitational arcs and the largest observed Einstein radii are consistent
with the standard cosmological model. Recent studies indicate that mergers
provide an efficient mechanism to substantially increase the strong-lensing effi-
ciency of individual clusters. Based on semi-analytic methods, we investigate
the statistical impact of cluster mergers on the distribution of the largest Einstein
radii and the optical depth for giant gravitational arcs of selected cluster samples.
Analysing representative all-sky realizations of clusters at redshifts z < 1 and
assuming a constant source redshift of zs = 2, we find that mergers increase the
number of Einstein radii above 10′′ (20′′) by ∼35% (∼55%). Exploiting the tight
correlation between Einstein radii and lensing cross sections, we infer that the
optical depth for giant gravitational arcs with a length-to-width ratio ≥ 7.5 of
those clusters with Einstein radii above 10′′ (20′′) increases by ∼45% (∼85%).
Our findings suggest that cluster mergers significantly influence in particular the
statistical lensing properties of the strongest gravitational lenses. We conclude
that semi-analytic studies must inevitably take these events into account before
questioning the standard cosmological model on the basis of the largest observed
Einstein radii and the statistics of giant gravitational arcs.

The contents of this chapter were published in Redlich et al. (2012). Sections that were part
of the author’s diploma thesis were removed here. In some paragraphs, we therefore refer to
Redlich et al. (2012) for more details.

5.1 introduction

Both the distribution of Einstein radii and the abundance of gravitational arcs probe the
strong-lensing efficiency of galaxy clusters and are thus valuable cosmological probes
(Bartelmann 2010b). Therefore, the result of Bartelmann et al. (1998), who reported
that we observe ten times as many giant gravitational arcs on the sky as theoretically
expected, poses a serious challenge. Various aspects of strong gravitational lensing
that could potentially mitigate the tension between theory and observations were
studied in a long series of subsequent works; see Sect. 5.2 of Bartelmann (2010b) or
Meneghetti et al. (2013) for comprehensive reviews. Here, we only summarise those
works particularly relevant for this chapter.
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Analysing numerically simulated mergers of galaxy clusters, Torri et al. (2004)
found that mergers substantially change the shape of the critical curves and can
boost a cluster’s efficiency to produce giant arcs by an order of magnitude. Fedeli
et al. (2006) employed semi-analytic methods to estimate that mergers approximately
double the statistical strong-lensing efficiency of clusters at redshifts z > 0.5. These
authors argued that mergers might possibly explain the excess of gravitational arcs in
observed galaxy clusters at moderate and high redshifts. However, Fedeli et al. (2006)
made several simplifying assumptions that we revise here: First, galaxy clusters were
described by elliptically distorted spherical lens models instead of adopting more real-
istic triaxial density profiles (Jing & Suto 2002; Oguri et al. 2003). This approximation
reduces the required computing time substantially, since the calculation of deflection
angles for triaxial density profiles involves numerical integrations (Schramm 1990),
while simple analytic expressions exist in the case of elliptically distorted density
profiles (Schneider et al. 1992). Second, all mergers were simulated with a fixed
direction of motion and relative orientation of the merging clusters, neglecting two
important degrees of freedom (Redlich et al. 2012).

Furthermore, recent studies indicate that the distribution of Einstein radii might
also be in conflict with theory. More precisely, the largest observed Einstein radii
(e.g. Halkola et al. 2008; Umetsu & Broadhurst 2008; Zitrin et al. 2011) were claimed
to exceed the maximum possible expectations of the standard cosmological model
(Broadhurst & Barkana 2008; Oguri & Blandford 2009; Meneghetti et al. 2011). These
conclusions were drawn by either comparing the largest observed Einstein radii to
those found in numerical simulations or by semi-analytically estimating the probability
of finding the strongest observed lens systems in a ΛCDM universe. While studies of
Einstein radii in numerical simulations are probably most realistic, they always suffer
from a limited sample size. The simulated boxes might simply be too small to contain
a sufficient number of extraordinarily strong gravitational lenses, which forbids solid
statistical conclusions. In Chap. 6, we show that this limitation is indeed decisive in
the context of extreme value statistics. Semi-analytic methods – admittedly based
on a set of simplifying assumptions – can overcome this limitation because they are
computationally less demanding and hence can be used to analyse large samples of
particularly strong gravitational lenses within a comparably short time. However, we
note that so far all semi-analytic studies of cosmological distributions of Einstein radii
have only considered samples of isolated galaxy clusters. One important goal of this
chapter is to extend these previous approaches and to present a new semi-analytic
method for studying distributions of Einstein radii that incorporates the impact of
cluster mergers.

Findings of Meneghetti et al. (2011) suggest that the excess of giant arcs and the
problem of too large Einstein radii are closely related. Analysing selected samples
of strong gravitational lenses in the MareNostrum simulation (Gottlöber & Yepes
2007), Meneghetti and collaborators discovered a remarkably tight correlation between
lensing cross sections and Einstein radii of cluster-sized dark matter haloes. The
correlation discovered by Meneghetti et al. (2011) plays an important role for the line
of reasoning of this work, and eventually justifies why we can focus on the statistics
of the largest Einstein radii in Chaps. 6 - 8.
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This chapter is structured as follows: In Sect. 5.2, we introduce the semi-analytic
model of triaxial gravitational lenses that we adopt in the remainder of this work.
In Sect. 5.3, we use a simple toy model to illustrate the importance of mergers for
the strong-lensing efficiency of individual clusters. Section 5.4 describes methods for
sampling representative cosmological distributions of triaxial dark matter haloes and,
in particular, introduces our new semi-analytic method for populating the PNC of a
fictitious observer with merging galaxy clusters. In Sect. 5.5, we compute the impact
of cluster mergers on the statistics of the largest Einstein radii and the optical depth
for giant gravitational arcs of a selected cluster sample. Our conclusions are presented
in Section 5.6.

Throughout this chapter, we adopt the best-fitting cosmological parameters obtained
from the Wilkinson Microwave Anisotropy Probe seven-year data (WMAP7; Larson
et al. 2011), (ΩΛ0, Ωm0, Ωb0, h, σ8) = (0.727, 0.273, 0.0455, 0.704, 0.811).

5.2 triaxial gravitational lenses

5.2.1 Density profile of triaxial dark matter haloes

Jing & Suto (2002, hereafter JS02) performed a detailed analysis of the density profiles
of dark matter haloes found in large cosmological simulations. These authors sug-
gested that the universal, spherical density profile discovered by Navarro et al. (1996,
hereafter NFW) can be generalized to a triaxial model and showed that this generaliz-
ation significantly improves the fit to simulated haloes. Moreover, by analysing large
cluster populations in their cosmological simulations, JS02 derived probability density
functions for the profile concentrations and axis ratios of triaxial dark matter haloes.
The statistical description provided in JS02 allows constructing random catalogues
of triaxial dark matter haloes that resemble realistic cosmological populations in
numerical simulations.

Jing & Suto (2002) parametrized the spatial density profile of a triaxial dark matter
halo by means of Cartesian coordinates x′ = (x′, y′, z′) in the principal axis frame.
Using this parametrisation, they proposed a generalization of the NFW density profile,

ρ(R) =
δce ρcrit(z)

(R/R0)α(1 + R/R0)3−α
, (107)

R2 ≡ x′2

(a/c)2 +
y′2

(b/c)2 + z′2 (a ≤ b ≤ c) , (108)

where z denotes the halo redshift, R0 is the scale radius (cf. Eq. (117)), δce is the
characteristic density (cf. Eq. (118)), ρcrit(z) denotes the critical density of the universe,
and a, b, and c are the lengths of the semi-principal axes. The exact numerical value of
the inner slope α of the density profile is still being discussed. While NFW originally
proposed α = 1.0, other authors argued that steeper profiles with values up to α = 1.5
provide a better fit to observations and numerical simulations (Moore et al. 1999;
Jing & Suto 2000; Power et al. 2003; Navarro et al. 2004; Limousin et al. 2008). In
contrast, recent combined strong- and weak-lensing analyses of selected clusters
indicate shallower mass profiles with inner slopes α < 1 (see Newman et al. 2011, for
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instance). Following Oguri et al. (2003), we consider both α = 1.0 and α = 1.5 to cover
a broad range of the predicted values, and to discuss some consequences of varying
inner slopes on strong-lensing statistics.

To draw a random triaxial dark matter halo of virial mass M at redshift z, we first
sample its axis ratios using the empirically derived probability density functions from
JS02,

p(a/c) =
1√

2πσs
exp

[
− (asc − 0.54)2

2σ2
s

]
dasc

d(a/c)
, (109)

p(a/b | a/c) =
3

2(1− rmin)

[
1−

(
2a/b− 1− rmin

1− rmin

)2
]

, (110)

where the best-fitting parameter for the width of the axis ratio distribution p(a/c) is
σs = 0.113 (JS02), Eq. (110) holds for a/b ≥ rmin and is zero otherwise, and

asc =
a
c

(
M
M∗

)0.07[Ωm(z)]0.7

, rmin = max (a/c, 0.5) . (111)

Here, M∗ is the characteristic non-linear mass scale where σ(M∗, z) = δc(z).
The concentration ce of the halo is defined by ce ≡ Re/R0, where Re is determined

such that the mean density within the ellipsoid of the major axis radius Re equals
∆e(z)Ω(z)ρcrit(z), where

∆e(z) = 5∆vir(z)
(

c2

ab

)0.75

. (112)

∆vir(z) is the overdensity of objects virialized at redshift z, which we approximate
according to Nakamura & Suto (1997). JS02 found a log-normal distribution for the
concentration,

p (ce) =
1√

2πσc
exp

{
− [ln(ce)− ln(c̄e)]

2

2σc

}
1
ce

, (113)

with a dispersion of σc = 0.3. Following Oguri et al. (2003), we include a correlation
between the axis ratio a/c and the mean concentration,

c̄e = fc Ae

√
∆vir(zc)

∆vir(z)

(
1 + zc

1 + z

)3/2

, (114)

fc = max

{
0.3, 1.35 exp

[
−
(

0.3
asc

)2
]}

. (115)

In Eq. (115), we adopted a correction introduced by Oguri & Blandford (2009), forcing
fc ≥ 0.3 to avoid unrealistically low concentrations for particularly low axis ratios
asc. Additionally, as noted earlier by Oguri & Keeton (2004), triaxial haloes with
particularly low axis ratios asc (and hence also low concentrations ce) are highly
elongated objects whose lens potential is dominated by masses well outside the virial
radius. Previous studies tried to avoid these unrealistic scenarios by simply truncating
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the density profile outside the virial radius (Baltz et al. 2009; Oguri & Blandford 2009).
In contrast, we employ a statistically motivated approach and suppress particularly
small axis ratios from the tail of the underlying distribution. More precisely, if not
stated otherwise, we force all sampled axis ratios asc to lie within the 99% confidence
interval of the axis ratio distribution (109). We investigate the impact of this truncation
on the statistics of the largest Einstein radii in Sect. 6.3.2. The numerical value of
the free parameter Ae depends on the underlying cosmology. Again, if not stated
otherwise, we set Ae = 1.1, which was proposed by JS02 for a standard ΛCDM model.
The above expressions only apply to an inner slope of α = 1.0. In the case of α = 1.5,
we use the simple relation c̄e(α = 1.5) = 0.5× c̄e(α = 1.0) (Keeton & Madau (2001);
JS02). Finally, zc denotes the typical collapse redshift of a dark matter halo of mass M
and is computed using the complementary error function together with the condition

erfc

{
ω(zc)−ω(0)√

2 [σ2( f M)− σ2(M)]

}
=

1
2

. (116)

Here, σ2(M) is the top-hat smoothed variance of the power-spectrum extrapolated
to the redshift z = 0 and ω(z) = δc(z)/D(z), where D(z) is the linear growth factor.
Following JS02, we adopt f = 0.01. The typical collapse redshift can be derived
within the framework of the extended Press-Schechter theory (Lacey & Cole 1993). It
corresponds to the typical time when the most massive progenitor of a dark matter
halo contained the mass fraction f M. However, note that JS02 defined the typical
collapse redshift such that it does not depend on the halo’s actual redshift.

All other profile parameters can be inferred from the axis ratios and the concentra-
tion. Using an empirical relation (found by JS02) between Re and the spherical virial
radius rvir, Re/rvir ≈ 0.45, the scale radius R0 is given by

R0 = 0.45
rvir

ce
=

0.45
ce

[
3M

4π∆vir(z)Ωm(z)ρcrit(z)

]1/3

. (117)

Finally, the characteristic density δce of the density profile (107) is defined in terms of
the concentration,

δce =
∆e(z)Ωm(z)

3
c3

e
m(ce)

, (118)

where

m(ce) =





ln (1 + ce)−
ce

1 + ce
(α = 1.0)

2 ln
(√

ce +
√

1 + ce
)
− 2
√

ce

1 + ce
(α = 1.5)

. (119)

5.2.2 Gravitational lensing by triaxial dark matter haloes

Equation (107) defines the density profile of a triaxial dark matter halo in its principal
axis frame. To evaluate the strong-lensing signal of an arbitrarily oriented halo,
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however, we need to project its spatial density profile along the observer’s line-of-
sight. We therefore need to introduce an appropriate coordinate transformation
between the principal axis frame of the halo and the reference frame of the observer.

Adopting the notation of Eq. (107), x′ = (x′, y′, z′) denote the Cartesian coordinates
in the principal axis frame of the halo, so that the z′-axis lies along the major axis
of the ellipsoid. Moreover, we assume that the z-axis is aligned with the observer’s
line-of-sight direction. Then, we can locally construct another Cartesian frame for the
observer’s coordinate system, denoted by x = (x, y, z). The origins of both coordinate
systems are placed at the centre of the halo. A general coordinate transformation
between the two frames can then be parametrised by three Euler angles (ψ, θ, φ). We
adopt the so-called z-x′-z′′-convention: We first rotate about the z-axis by the angle ψ,
then about the new x′-axis by the angle θ, and finally about the new z′′-axis by the
angle φ. The transformation is then simply given by x′ = Rx, with

R ≡




cos φ sin φ 0

− sin φ cos φ 0

0 0 1







1 0 0

0 cos θ sin θ

0 − sin θ cos θ







cos ψ sin ψ 0

− sin ψ cos ψ 0

0 0 1


 (120)

Using this coordinate transformation, we can express the density profile of an arbitrar-
ily oriented triaxial dark matter halo in terms of the observer’s coordinates.

From here on, the derivation of all lensing properties (deflection angles, eigenvalues
of the lens map, etc.) of triaxial dark matter haloes is identical to that given by Oguri
et al. (2003), hence we refer the reader to their work. We note, however, that the
coordinate transformation introduced above is more general than that used by Oguri
et al. (2003) because for mergers, the relative orientation of the merging haloes in
the x–y-plane is important, while Oguri et al. (2003) only considered isolated haloes
whose orientation in the x–y-plane can be fixed at will. Therefore, some algebraic
coefficients are more complicated in our approach. See the Appendix of Redlich
et al. (2012) for the relevant expressions and a method for speeding up the numeric
computation of deflection angles.

In the following sections, we analyse strong-lensing properties of randomly drawn
cosmological populations of triaxial dark matter haloes. Therefore, we also need to
sample random halo orientations. For that purpose, special care must be taken, since
we cannot simply uniformly distribute the three angles (ψ, θ, φ) in the corresponding
angle bins. Instead, we have to apply the correct Haar measure (Haar 1933). Only ψ

and φ can be uniformly distributed in the range [0, 2π]. To sample θ, we first draw a
uniformly distributed random number r in the range [0, 1) and then compute

θ = arccos(1− 2r) . (121)

5.2.3 Correlation between Einstein radii and lensing cross sections

Performing a statistical analysis of strong lenses extracted from the MareNostrum

Universe (Gottlöber & Yepes 2007), Meneghetti et al. (2011) found a remarkably tight
correlation between lensing cross sections σ7.5 and Einstein radii θE. The correlation
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is well described by a linear relation in the log (θE) − log (σ7.5) plane, log(σ7.5) =

a log (θE) + b, where a and b are free parameters that need to be fitted to the data.
In Redlich et al. (2012), we demonstrated that the tight correlation between lensing

cross sections and Einstein radii can be reproduced with the semi-analytic model of
triaxial gravitational lenses presented in Sect. 5.2.1. Moreover, we investigated the
functional form of the correlation for different cosmologies and varying properties
of the triaxial density profile, finding that the simple linear relation was remark-
ably accurate in all cases considered as long as the lenses were sufficiently strong
(θE & 10′′).

As already noted by Meneghetti et al. (2011), the tight correlation between Einstein
radii and lensing cross sections clearly indicates the strong connection between the
problem of too large Einstein radii and the arc statistics problem. A particularly
strong gravitational lens, whose Einstein radius is too large for the ΛCDM model, will
most likely also have a lensing cross section that exceeds the maximum theoretical
expectations. Hence, if we were to observe too large Einstein radii, we would also
expect an excess of gravitational arcs. Vice versa, if the largest observed Einstein
radii were consistent with the ΛCDM model, the abundance of gravitational arcs
in the strongest lenses should not exceed the theoretical expectations either. On the
other hand, we note that care must be taken because both problems are not exactly
identical. Even if there were a way to explain the strongest lenses with particularly
large Einstein radii within the ΛCDM model, this would not necessarily solve the
arc statistics problem. While the distribution of largest Einstein radii only tests the
extreme cases, an arc statistic additionally measures the cumulative lensing efficiency
of the entire halo population, so that it is also sensitive to the pure abundance of
relatively unspectacular lenses, for instance. Thus, if the observed Universe simply
contained more strong gravitational lenses than theoretically predicted, we could
hypothetically still observe an excess of gravitational arcs without having the problem
of too large Einstein radii.

Moreover, the correlation enables us to compute arc statistics for certain halo
samples employing a new approach. The calculation of lensing cross sections for
large halo samples is a computationally demanding problem since complete maps
of deflection angles have to be computed for each individual lens. In comparison,
the calculation of Einstein radii can be fast because only few deflection angles near
critical curves need to be computed (cf. Sect. 5.5.1). Hence, it is beneficial to sample
cosmological distributions of dark matter haloes, compute their Einstein radii, and
finally infer their lensing cross sections by means of the correlation. We employ this
new approach in Sect. 5.5.

5.3 importance of cluster mergers

Torri et al. (2004) numerically simulated cluster mergers and found that these events
are capable of boosting the lensing cross sections for giant arcs by about one order of
magnitude. In a subsequent work, Fedeli et al. (2006) showed that these events are
not only important for the lensing cross sections of individual clusters, but also for
the overall statistical strong-lensing efficiency of the cosmic cluster population.



72 the statistical impact of cluster mergers

d1 d2 < d1 d3 < d2

Figure 17: Evolution of the tangential critical curves during a merger of two massive triaxial
dark matter haloes. Starting with an initial separation d1 in the left panel, the distance between
the two haloes is successively reduced (d1 > d2 > d3).

To illustrate this important mechanism, let us briefly discuss the evolution of the
tangential critical curves of two massive triaxial haloes during a merger by means of
the following simplified toy model: Suppose that the main halo Mmain rests at the
coordinate origin, while the second halo Msub is placed at an initial starting distance
d1 from the centre of the main halo. Since the precise properties (mass, axis ratios,
orientation, etc.) of the two haloes do not matter for the following discussion, we
simply state that their shape and orientation were chosen such that both lensing
potentials were considerably elliptical. We simulated the merger by successively
reducing the separation between the haloes and computed the resulting tangential
critical curves at each step.

Figure 17 illustrates the evolution of the tangential critical curves for three inter-
mediate steps of the simulated merger. The main halo rests at the coordinate centre
on the left, and the subhalo approaches the main halo coming from the right. In the
beginning (left panel), the separation between the haloes is large so that both have
their own isolated and almost unperturbed tangential critical curves. As soon as
the haloes approach, the shear in the region between them grows and stretches both
tangential critical curves along the direction of motion (middle panel) until they finally
merge to build one large, highly elongated structure (right panel). Given the tight
correlation between Einstein radii and lensing cross sections, these configurations are
also particularly efficient in producing thin arcs.

This description of the evolution of critical curves during cluster mergers was first
given by Torri et al. (2004), and we refer the reader to their work for more details.
It goes without saying that there are more sophisticated studies of cluster mergers
that take virialization and other important physical processes properly into account.
However, these models clearly go beyond the scope of our fast, semi-analytic approach
to investigate the statistical strong-lensing properties of large cosmological populations
of triaxial dark matter haloes.

In Redlich et al. (2012), we performed a detailed series of tests to investigate the
evolution of strong-lensing properties during mergers of triaxial dark matter haloes.
Our most important results can be summarized as follows: A notable enhancement
of the strong-lensing efficiency can only be observed during major mergers (i. e.
Msub/Mmain � 0.05). If the mass ratio Msub/Mmain is too low, the elongation of the
tangential critical curve enclosing the main halo is negligible. Conversely, the effect is
particularly strong for mergers of clusters with comparable mass. Furthermore, the
relative orientation of the merging haloes plays a dominant role. The most prominent
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enhancement of the strong-lensing efficiency can be observed shortly before the
two initially separated tangential critical curves merge to form one large, extremely
elongated structure. This effect is especially pronounced when the direction of motion
of the subhalo is aligned with the semi-major axis of the ellipsoidal surface mass
density profile of the main halo, because then the elongation of the two separated
tangential critical curves sets in relatively early and the diameter of the merged critical
curve is particularly large. Finally, we could reproduce an increase of the lensing cross
section by factors of ∼ 2 for typical mass ratios Msub/Mmain ∼ 0.25 if and only if the
most favourable merger configuration (relative halo orientation) was chosen and the
surface mass density profiles of both haloes were appreciably elliptical. In all other
cases, the enhancement caused by mergers was notably smaller. Clearly, we could not
reproduce the order-of-magnitude increase found by Torri et al. (2004). Precisely why
this is the case is difficult to answer. Merging clusters in numerical simulations might
be substantially more elongated than the semi-analytic triaxial lenses considered here.
Furthermore, substructures – which our model neglects – might play an important
role. It would certainly be interesting to investigate this discrepancy in future works.

5.4 sampling cosmological populations of dark matter haloes

In the following sections and chapters, we need to be able to efficiently sample realistic
catalogues of dark matter haloes, where realistic means that their mass and redshift
distribution should come close to those of halo populations in numerical simulations
and the observed Universe. To this end, we first describe a technique for sampling
representative populations of individual haloes from a given mass function. After
that, we introduce a new semi-analytic method for populating a fictitious observer’s
PNC with merging galaxy clusters.

5.4.1 Isolated dark matter haloes

To sample individual dark matter haloes from a given mass function, we adopt
the following common MC approach (cf. Oguri & Blandford 2009). Suppose we
intend to draw a random population of dark matter haloes within the mass range
[Mmin, Mmax] and the redshift interval [zmin, zmax]. To this end, we first subdivide the
mass and redshift range into smaller, equidistant bins, adopting typical bin sizes of
∆(log(M)) = 0.02 and ∆z = 0.02. Next, we calculate the mean expected number N̄
of haloes in each bin using the theoretical mass function dn(M, z)/dM (the Press &
Schechter (1974) mass function, for instance),

N̄ =
d2N

dM dz
∆M ∆z =

dn(M, z)
dM

∆M× dV
dz

∆z , (122)

where dV/dz denotes the differential comoving volume. Finally, we generate a
random integer number N from the Poisson distribution with mean N̄, and sample N
haloes whose masses and redshifts are uniformly distributed in the bin considered.
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Figure 18: Sketch illustrating our new algorithm for projecting merging galaxy clusters onto
the PNC of a fictitious observer.

This MC method is simple and efficient. It reliably generates random halo catalogues
whose deviations from the theoretical mass function remain within the limits of
Poisson noise.

5.4.2 Merging dark matter haloes

While large cosmological N-body simulations are probably the most realistic frame-
work for studying the impact of mergers on the statistical lensing properties of selected
cluster samples, they are computationally costly. As an alternative, we now introduce
a fast, semi-analytic method that allows us to study the statistical impact of mergers
within a fraction of the computing time required for N-body simulations. We follow
this approach because we aim to be able to repeat our calculations for large cosmic
volumes, varying a multitude of boundary conditions (i. e. different properties of
the triaxial density profile, cosmological parameters, etc.), within a reasonably short
computing time (cf. Chap. 8).

In this chapter, we require our new approach to be fully self-consistent within the
framework of the extended Press-Schechter theory (Lacey & Cole 1993), which means
that in particular the predicted merger rates and the Press & Schechter (1974) mass
function must be reproduced accurately. This way, results based on our new method
should agree reasonably well with those derived from numerical simulations; see the
discussion at the end of this section for more details.

Suppose that we intend to analyse the strong-lensing properties of a representative
all-sky realization of dark matter haloes in the mass and redshift range [Mmin, Mmax]
and [zmin, zmax], respectively. To do this, we sequentially perform the following steps:

1. Initial halo population: We use a slight variation of the MC technique described in
the previous section to populate the considered cosmic volume with an initial
sample of dark matter haloes at the present time (z = 0). We subdivide the mass
range into logarithmically equidistant bins of typical size ∆ (log(M)) = 0.02
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and calculate the mean expected number N̄ of haloes in each bin using the
Press-Schechter mass function dn(M, z = 0)/dM,

N̄ =
dn(M, z = 0)

dM
∆M×V(zmin, zmax) . (123)

Here, V(zmin, zmax) denotes the comoving volume of the spherical shell between
the minimum and the maximum redshift (with respect to an observer at the
coordinate origin). We then generate a random integer number N from the
Poisson distribution with mean N̄, and sample N haloes with logarithmically
uniformly distributed masses in the corresponding bin. Since strongly lensing
clusters are rare objects that are generally separated by large distances, we
can neglect any kind of large-scale structure correlation and simply uniformly
distribute these N sampled haloes in the considered cosmic volume. To this
end, we assign each halo a random position on the sky, generate a uniformly
distributed random number x in the range [0, 1) and then compute the comoving
distance r with respect to the observer, r =

[
xr3(zmax) + (1− x)r3(zmin)

]1/3,
where r(zmin) and r(zmax) denote the comoving distance to the minimum and
maximum redshift, respectively. This formula takes the varying volume (as a
function of radius) of spherical shells into account. Given the comoving radius r,
we can readily infer each halo’s redshift zobs with respect to the observer.

2. Reverse time evolution: We evolve the initial halo population backwards in time.
More precisely, we adopt the efficient MC approach proposed by Zhang et al.
(2008, see “method B”) to simulate a representative merger tree of each individual
halo up to its previously determined observation redshift zobs. Since Zhang et al.
(2008) provide a nicely written step-by-step description of “method B”, we refer
the reader to their work for details. Generally, merger tree algorithms generate
representative formation histories by evolving the initial halo mass backwards
in time taking discrete time steps (typical step size ∆z ≈ 0.02). At the first time
step, the halo is split into smaller progenitors by means of the conditional mass
function (Lacey & Cole 1993). At the next time step, these new progenitors
are again split into yet smaller progenitors using the same recipe, and so forth.
Applying that scheme to all arising progenitors, this finally yields the full,
tree-like formation history (i. e. the merger tree) of the initial halo. Given our
predefined mass range, however, we discard all progenitors with masses below
Mmin. We note that we verified that our implementation accurately reproduces
the Press-Schechter mass function as well as the theoretically predicted merger
rates at any look-back time.

3. Kinematics of merger trees: To follow the trajectories of all arising progenitors in the
considered cosmic volume, we additionally need to describe the kinematics of
the merger trees. For that purpose, we adopt the following simplistic approach,
which was first introduced by Fedeli & Bartelmann (2007). Each time a merger
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between two haloes of masses M1 and M2 occurs, we estimate its duration using
the dynamical time scale

Tdyn =

√
(rvir,1 + rvir,2)

3

G (M1 + M2)
, (124)

where rvir,1 and rvir,2 denote the virial radii of both haloes. These dynamical
time scales are typically of the order of a several hundred Myr, which agrees
well with merger durations measured in numerical simulations (see Torri et al.
2004, for instance). Assuming a uniform linear motion, we compute the relative
velocity of the two haloes, vrel = (rvir,1 + rvir,2) /Tdyn, and finally sample a
random direction of motion. We apply this scheme to all mergers. This way,
we can easily compute the spatial positions of all progenitors of the considered
merger tree at the observation redshift zobs.

The above procedure is illustrated in Fig. 18: We first populate the considered
cosmic volume with an initial halo sample at redshift z = 0, evolve that sample
backwards in time using extended Press-Schechter merger trees combined with a
simplistic model to describe the kinematics, and finally project the resulting halo
configurations onto the PNC of a fictitious observer.

We would like to emphasise that our kinematic model of cluster mergers is clearly
simplistic. For instance, we implicitly assumed central cluster collisions although the
centres of merging clusters can typically be separated by up to several hundred kpc
(see e.g. Sarazin 2002, for a semi-analytic approximation). Finite impact parameters
may certainly influence the detailed evolution of the strong-lensing properties during
individual cluster mergers, and it would be interesting to study refinements of our
simplified model in future works.

Finally, we comment on the decision to base the above algorithm on the Press &
Schechter (1974) mass function, although improved variants of the mass function with
better accuracy have been proposed (cf. Jenkins et al. 2001; Sheth & Tormen 2002;
Warren et al. 2006; Tinker et al. 2008). The Press-Schechter mass function is based
on the theory of spherical collapse and only within this framework exact analytic
expressions for the conditional mass function – which is the fundamental quantity for
the computation of merger trees – can be derived. In contrast, most improved variants
of the mass function are empirical fits to numerical simulations and hence there is
no theoretical framework to derive the corresponding expressions for the conditional
mass function. Since we aim to compare the statistics of Einstein radii of samples of
isolated haloes to those of halo samples that incorporate cluster mergers using two
completely independent methods (to cross-check our new merger algorithm) and in a
fully self-consistent way, we are restricted to the mass functions based on the spherical
collapse. The moderate deviations of the Press-Schechter mass function are negligible
for our principal conclusions in this chapter. In contrast, if we were to perform a
detailed comparison between our theoretical predictions and observations, the precise
choice of the mass function would play an important role (cf. Sect. 6.3.1). We discuss
an alternative merger algorithm for generating mass functions that agree well with
those found in numerical simulations in Chap. 8.
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5.5 impact of cluster mergers on the statistics of the largest ein-
stein radii and inferred optical depths

5.5.1 Computation of Einstein radii

In the previous section, we described two independent algorithms for populating the
PNC of a fictitious observer with individual and merging dark matter haloes. Before
presenting our final results, we now describe an efficient method for computing the
distribution of Einstein radii.

Given a lens system, we first sort the masses of all haloes in descending order
and begin with the computation of the Einstein radius of the most massive halo
M1. To this end, we scan the region around that halo for neighbouring subhaloes
Mi whose distance d is shorter than the sum of both virial radii, d ≤ (rvir,1 + rvir,i).
If any surrounding subhaloes satisfy this condition, they are taken into account for
the computation of deflection angles. All other haloes that are farther away do not
influence the strong-lensing properties of the considered massive halo M1 and can
safely be ignored.

Next, we assign a random triaxial density profile and a random orientation with
respect to the observer to each relevant halo. This enables us to determine the tangen-
tial critical curve that encloses the massive halo M1. To do this, we place halo M1 at
the coordinate centre of a Cartesian grid whose side length is chosen to be sufficiently
long to contain all relevant subhaloes. Instead of computing the deflection angle map
of the complete field and determining the tangential critical curve afterwards, we
simply need to detect the first tangential critical point left of the coordinate origin
and employ a standard friend-of-friend algorithm to identify the entire tangential
critical curve. This way, we only have to compute deflection angles in small stripes
surrounding the critical curve, which renders the algorithm very fast. If we aimed at
computing the lensing cross section of the considered configuration, we would not
be able to use this efficient method but instead would have to calculate the complete
deflection angle map. This important difference illustrates why the determination of
Einstein radii is computationally far less expensive and why it is of great advantage to
infer lensing cross sections from Einstein radii using the discussed correlation between
both quantities.

Finally, we detect all haloes which are enclosed by the computed tangential critical
curve and mark them as haloes which do not have an independent Einstein radius.
We repeat the above procedure for all remaining, unmarked haloes of the sorted mass
list so that we end up with a complete catalogue of Einstein radii of the lens system
considered.

5.5.2 Statistics of the largest Einstein radii and inferred optical depths

We can now quantify the statistical impact of cluster mergers on the strongest grav-
itational lenses (θeff ≥ 10′′). To this end, we generated a first sample of individual
dark matter haloes and a second sample using our newly developed technique to
incorporate cluster mergers. Since the largest observed Einstein radii, which may
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Figure 19: Comparison of the distributions of the largest Einstein radii including (blue
patterned histogram) and excluding (red solid histogram) cluster mergers. The left (right) plot
shows the histograms of all Einstein radii larger than 10′′ (20′′).

challenge the standard cosmological model, were all found at redshifts well below
unity (cf. Broadhurst & Barkana 2008; Zitrin et al. 2011), we focused our analysis on
the redshift range z ∈ [0, 1]. In anticipation of the following results, we note that
the masses of all single haloes with effective Einstein radii above 10′′ are larger than
1014 M�/h. Recalling that the mass ratio Msub/Mmain of two merging clusters at
least needs to exceed 5% to notably boost the strong-lensing efficiency of the main
halo (cf. Sect. 5.3), we could therefore safely ignore all haloes with masses below
Mmin = 5× 1012 M�/h. In particular, we pruned all branches (i. e. progenitors) of the
merger trees whose masses dropped below that threshold. We modelled all haloes by
means of triaxial density profiles with an inner slope α = 1.0 and assumed a source
redshift of zs = 2.0.

Figure 19 and Table 3 (p. 81) clearly demonstrate that cluster mergers do have a
significant impact on the distribution of the largest Einstein radii. While we find 4132
Einstein radii larger than 10′′ in the single halo run, that number increases by 36% up
to 5622 haloes if mergers are taken into account. The effect is even more significant if
we only consider the number of systems with Einstein radii above 20′′, in which case
we find an increase of 74%.

Another interesting aspect to be analysed is the frequency of cluster mergers. To
do this, we classified observed systems as being actively merging if more than one
halo is enclosed by the tangential critical curve. Clearly, this definition does not cover
those cases where merging clusters are already close to each other, but still have their
own, highly elongated critical curves. Nevertheless, our choice should be sufficiently
accurate for a qualitative estimate. We find that 35% of the systems with Einstein
radii larger than 10′′ are actively merging. This number increases to 55% if we only
consider those clusters with Einstein radii larger than 20′′. Given these results and the
above number counts of Einstein radii, we can conclude that (1) cluster mergers are an
important mechanism to increase the statistical lensing efficiency of cosmological halo
populations and that (2) these events become increasingly dominant for particularly
strong gravitational lenses.

Additional evidence in favour of these conclusions is provided by considering
the very largest lenses in detail. In the simulation including mergers, eight out of
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Figure 20: Tangential critical curves of the systems with the largest (left diagram), second
largest (middle diagram), and third largest (right diagram) Einstein radius in our simulation
including cluster mergers. The black cross in the centre indicates the position of the main halo.
The red crosses mark the positions of all subhaloes that are enclosed in the tangential critical
curve.

the ten largest Einstein radii stem from actively merging systems. Moreover, the
largest Einstein radius in the single halo run has the size θeff = 38.5′′, while we find
a notably larger maximum of θeff = 50.8′′ in the run with mergers. Needless to
say, these maxima are subject to statistical fluctuations. Since the considered halo
populations were randomly drawn, it may well be that for other realizations the single
halo maximum is larger than the one found with merging haloes. However, we can
safely conclude that cluster mergers need to be taken into account in semi-analytic,
statistical studies that aim to challenge the standard cosmological model on the basis
of the largest observed Einstein radii.

The left panel of Fig. 20 shows the critical curve of the largest observed Einstein
radius, which belongs to an extraordinary system at redshift z = 0.43. Starting
with an initial mass of M = 1.8× 1015 M�/h at redshift z = 0, the halo was split
into 20 progenitors with masses above the minimum mass threshold Mmin before
it finally reached the observer’s PNC. Six of these 20 progenitors are enclosed in
the critical curve shown. The most massive halo in the centre has a mass of M =

1.1 × 1015 M�/h. The masses of the five surrounding subhaloes lie in the range
6.7× 1012 − 1.5× 1014 M�/h. To further demonstrate the importance of mergers, we
removed these subhaloes and computed the Einstein radius of the main halo alone,
finding that it drops by ∼ 20′′ to now only θeff = 30.9′′. Moreover, we can use that
system to verify our choice of the minimum mass threshold Mmin = 5.0× 1012 M�/h.
The smallest enclosed subhalo has a mass of M = 6.7× 1012 M�/h, which is close to
Mmin. If we ignore that halo for the computation of the tangential critical curve, the
Einstein radius drops only slightly by ∼ 1.4% to θeff = 50.1′′, confirming that our mass
cut-off only leads to negligible errors. There are mainly two reasons for introducing
such a mass cut-off in general: (1) we can discard a considerable amount of small-mass
branches of the merger trees and (2) we can limit the number of (irrelevant) subhaloes
that need to be taken into account for the computation of the critical curves. Both
aspects substantially improve the performance of our algorithm.

The framework of hierarchical structure formation suggests that relatively young
clusters at intermediate and high redshifts (z & 0.5) are dynamically more active
than older systems at low redshifts. Therefore, it is to be expected that mergers
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Figure 21: (Normalized) redshift distribu-
tion of the strong lenses with Einstein radii
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mainly increase the number of strong lenses in the upper redshift range of our
simulation volume. Although Fig. 21 confirms this expectation, the net shift of the
overall population of strong-lensing clusters to higher redshifts due to mergers is only
moderate. Instead, the redshift distribution of the strongest lenses is predominantly
determined by the chosen lensing geometry with sources at redshift zs = 2.0.

Finally, we used the correlation between Einstein radii and lensing cross sections
to infer the impact of cluster mergers on the statistics of giant gravitational arcs
from the distributions of Einstein radii just computed. Since we concentrated on the
strongest gravitational lenses only, we are well inside the regime where the correlation
between both quantities is particularly tight and hence our following estimate should
be reasonably accurate (Redlich et al. 2012). First, we randomly picked ∼ 400 haloes
of our catalogue with Einstein radii above 10′′ and computed their lensing cross
sections σ7.5. We then used these results to calibrate the best linear fit relation for the
correlation:

log(σ7.5) = (2.12± 0.06) log(θeff)− (5.24± 0.07) . (125)

The cumulative lensing efficiency of cluster samples is usually characterized by their
optical depth τ for giant gravitational arcs, which is given by the sum of the individual
lensing cross sections σ7.5,i divided by the size of the entire source sphere,

τ ≡
(

∑
i

σ7.5,i

)
×
(
4πD2

s
)−1

, (126)

where Ds denotes the angular-diameter distance to the source plane. Assuming
that the individual lensing cross sections do not overlap in the source plane, the
optical depth corresponds to the probability that an arbitrarily placed source with the
specified characteristics (cf. Redlich et al. 2012, Sect. 3.1) produces a gravitational arc
with a length-to-width ratio higher than 7.5.

As summarised in Table 3, cluster mergers increase the optical depth of all haloes
with Einstein radii above 10′′ by approximately 45%. Furthermore, as was to be
expected, the impact on those systems with Einstein radii above 20′′ is even stronger:
We find that mergers statistically increase the number of giant arcs produced by these
particularly strong lenses by approximately 85%.
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Table 3: Comparison of the strong-lensing statistics of two representative samples of dark
matter haloes

(
M > 5× 1012 M�/h, z ∈ [0, 1]

)
including and excluding cluster mergers. We

show the maximum effective Einstein radius max(θeff), the number of Einstein radii above a
certain threshold X, N (θeff ≥ X), and the optical depth τ(θeff > X) (for gravitational arcs) of
all haloes with Einstein radii above the threshold X.

single haloes merging haloes

max(θeff) 38.5′′ 50.8′′

N (θeff ≥ 10′′) 4132 5622 (+36%)

N (θeff ≥ 20′′) 133 231 (+74%)

τ(θeff > 10′′) 2.9× 10−7 4.2× 10−7 (+45%)

τ(θeff > 20′′) 3.3× 10−8 6.1× 10−8 (+85%)

5.6 conclusions

In this chapter, we mainly focused on developing the theoretical tools needed for the
applications in the remainder of this work. We introduced the semi-analytic model
of triaxial gravitational lenses and discussed the tight correlation between lensing
cross sections and Einstein radii. This correlation is important for our approach in
the following three chapters where we discuss the extreme value and order statistics
of the largest Einstein radii, finding that there is no statistical evidence for claiming
that the largest observed Einstein radii are in tension with the standard cosmological
model. Given the tight correlation between lensing cross sections and Einstein radii,
this result also implies that the abundance of giant gravitational arcs in the strongest
observed lenses – which are the focus of this part of the thesis – should agree well with
the theoretical expectations. However, it is important to bear in mind that this does
not necessarily solve the general arc statistics problem (cf. Sect. 5.2.3).

We highlighted the importance of cluster mergers for the strong-lensing efficiency
of individual clusters and thereupon developed a new semi-analytic algorithm for
projecting merging galaxy clusters onto the PNC of a fictitious observer. Using this
new technique, we were able to compare the statistical strong-lensing properties of
one sample of single (isolated) dark matter haloes and a second sample of dark matter
haloes that includes the effect of cluster mergers.

Studying representative all-sky realizations of clusters at redshifts z < 1 and
assuming a constant source redshift of zs = 2, we found that cluster mergers increase
the theoretically expected number of Einstein radii above 10′′ (20′′) by approximately
36% (74%), indicating that these events provide a highly efficient mechanism to
enhance the lensing efficiency of particularly strong gravitational lenses. These results
clearly show that semi-analytic studies need to take cluster mergers into account
if they aim to question the standard cosmological model by comparing the largest
observed Einstein radii to theoretical expectations.

Furthermore, we estimated that the optical depth for giant gravitational arcs of
those haloes with Einstein radii above 10′′ (20′′) increases by approximately 45% (85%),
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which also highlights the importance of cluster mergers for the statistics of giant
gravitational arcs. Still, we were unable to reproduce the doubling of the optical
depth found by Fedeli et al. (2006). However, this discrepancy can be attributed to the
following important differences between both studies:

• Instead of adopting triaxial density profiles with varying properties (i. e. con-
centration and axis ratios), Fedeli et al. (2006) modelled clusters as spherically
symmetric density profiles and elliptically distorted their lensing potentials by
a constant amount. Moreover, these authors used an alternative concentration-
mass relation. Consequently, their lens model produces surface mass densities
with different properties, which are decisive for the strength of the boost of the
strong-lensing efficiency during cluster mergers (Redlich et al. 2012).

• Analyses of cluster mergers in numerical simulations reveal that (1) the major
axes of infalling substructures are intrinsically aligned with the major axis of
the main halo due to its tidal field and (2) subhaloes preferentially approach the
main halo along its major axis (Lee et al. 2005; Altay et al. 2006; Zhang et al. 2009).
Motivated by these findings, Fedeli et al. (2006) throughout modelled mergers by
perfectly aligning the major axes of both haloes and assuming that the subhalo
always approaches the main halo exactly along its major axis. As shown in
Redlich et al. (2012), these orientations are most favourable and produce the
strongest possible enhancement of the strong-lensing efficiency during cluster
mergers. On the other hand, this assumption clearly is an idealization that might
lead to an overestimation of the net effect of mergers. Since there is no reliable
theoretical framework that allows us to predict those alignments realistically,
we chose the fairly conservative approach to sample the relative orientations of
merging haloes randomly, without taking their possible axis correlations and
preferred directions of motion into account. Hence, we expect that our results
slightly underestimate the net effect of mergers.

• While we only computed the optical depth of particularly strong lenses with
Einstein radii above 10′′, Fedeli et al. (2006) determined the optical depth of all
clusters at redshifts z > 0.5. Hence, their computation additionally incorporates
the following important effect: Cluster mergers tend not only to increase the
lensing cross section of the strongest gravitational lenses, but are also capable
of transforming clusters to strong gravitational lenses that would otherwise be
subcritical. More precisely, it may well be that two relatively small clusters with
vanishing individual lensing cross sections produce a nonvanishing, joint lensing
cross section while merging. Consequently, mergers are an effective mechanism
to substantially increase the optical depth of clusters in the lower mass range.
Given the steepness of the mass function, these objects dominate the total optical
depth and thus their contribution is likely significant for the doubling of the
optical depth found by Fedeli et al. (2006).

Given these remarks, we conclude that our findings do not disagree substantially with
the previous results of Fedeli et al. (2006).
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abstract

Does the largest observed Einstein radius exceed the maximum theoretical expect-
ations of the standard cosmological model? We show that the theory of extreme
value statistics provides the proper mathematical framework for studying such
questions and describe a semi-analytic method for calculating the general extreme
value (GEV) distribution of the largest Einstein radius in a given cosmological
volume. We find that the GEV distribution is very sensitive to several theoretical
model assumptions, such as the precise choice of the halo mass function, lens
triaxiality, the inner slope of the halo density profile, and the mass-concentration
relation. We study the occurrence probability of the largest known Einstein ra-
dius, which was observed in the galaxy cluster MACS J0717.5+3745, finding that
this system is not in conflict with the ΛCDM model. A much larger Einstein
radius (& 100′′) would have to be observed to claim tension between theory and
observations.

The contents of this chapter were published in Waizmann et al. (2012b). In comparison to the
published article, we shortened and rewrote several sections.

6.1 introduction

Galaxy clusters are extreme objects: They are amongst the most massive collapsed
structures in the observable Universe and flag the rarest peaks of the initial density
field. The gas contained in their gravitational potential wells is heated up to extremely
high temperatures of ∼ 107 − 108 K, resulting in the emission of X-ray radiation.
Furthermore, they can act as strong gravitational lenses, causing spectacular image
distortions of background sources. Individually and as a population, galaxy clusters
contain rich information on the formation of structure in the Universe.

Recently, the interest in the extremest among the extreme, the most massive clusters,
has substantially increased. This development was mainly triggered by the detection
of very massive galaxy clusters at high redshifts (Mullis et al. 2005; Rosati et al. 2009;
Jee et al. 2009; Marriage et al. 2011; Menanteau et al. 2012; Foley et al. 2011; Williamson
et al. 2011). Several works studied the probability to find such objects in a standard
ΛCDM cosmology (Holz & Perlmutter 2012; Baldi & Pettorino 2011; Cayón et al. 2011;
Hotchkiss 2011; Mortonson et al. 2011; Chongchitnan & Silk 2012; Waizmann et al.
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2012a). All these studies focused on the mass of galaxy clusters, which is unfortunately
not a direct observable. Moreover, the mass of a galaxy cluster, ill defined in the
first place, is subject to substantial scatter and biases. Hence, it is desirable to study
extremes in direct, better defined observables, such as strong lensing signals.

A particularly interesting case from this point of view is the extremely large critical
curve of the X-ray luminous galaxy cluster MACS J0717.5+3745 located at redshift
z = 0.546, which has been independently detected by the Massive Cluster Survey
(MACS) (Ebeling et al. 2001, 2007) and as a host of a diffuse radio source (Edge
et al. 2003). A strong-lensing analysis revealed that the effective Einstein radius, with
θeff = (55± 3)′′ for an estimated source redshift of z ' 2.5, is the largest known at
redshifts z > 0.5 (Zitrin et al. 2009, 2011). It is unclear whether or not such a large
Einstein radius is consistent with the ΛCDM cosmology (Zitrin et al. 2009).

In this chapter, we aim to answer precisely this question, that is, we aim to investigate
whether or not the largest observed Einstein radius is consistent with the theoretical
predictions of the standard cosmological model. To this end, we proceed as follows:
In Sect. 6.2, we concisely introduce the basic elements of extreme value statistics
that are relevant for the remainder of this work. We then describe a semi-analytic
method for studying the statistical distribution of the largest Einstein radius in a given
cosmological volume and show that the distribution converges to the general extreme
value distribution. In Sect. 6.3, we discuss several theoretical model assumptions that
strongly affect the distribution of the largest Einstein radius. In Sect. 6.4, we assess the
occurrence probability of the large Einstein radius of MACS J0717.5+3745 within the
framework of extreme value statistics. Finally, in Sect. 6.5, we present our conclusions.

For reasons to be clarified later (cf. Chap. 8), we neglect the impact of cluster mergers
in the present and also in the following chapter. Because cluster mergers significantly
shift the distribution of Einstein radii to larger values, all estimates presented in the
following two chapters should be considered conservative.

Throughout this chapter, we adopt the best-fitting cosmological parameters obtained
from the Wilkinson Microwave Anisotropy Probe seven-year data (WMAP7; Larson
et al. 2011), (ΩΛ0, Ωm0, Ωb0, h, σ8) = (0.727, 0.273, 0.0455, 0.704, 0.811).

6.2 applying extreme value statistics to the distribution of the

largest einstein radius

The theory of extreme value statistics models the stochastic behaviour of extremes
and provides a rigorous framework for determining the likelihood of rare events
(see e.g. Gumbel 1958; Kotz & Nadarajah 2000; Coles 2001; Reiss & Thomas 2007, for
comprehensive introductions). In particular, the theory defines the mathematical recipe
for quantitatively answering questions of the following kind: Given a cosmological
model, how likely is it that the largest observed Einstein radius in a survey of a certain
cosmological volume is as large as X′′?

In the framework of extreme value statistics, there are two approaches to the
modelling of rare events. The first one, also known as the Gnedenko approach (Fisher
& Tippett 1928; Gnedenko 1943), models the distribution of block maxima, while the
second one, known as the Pareto approach (Pickands 1975), models the distribution
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of excesses over high thresholds. Because we are interested in the distribution of the
largest Einstein radius and do not intend to calculate the likelihood for large Einstein
radii to exceed a predefined threshold, we discuss the first approach in the following.

6.2.1 Gnedenko approach

Given a set of independent identically distributed (i.i.d.) random variables Xi, the
block maximum Mn is defined as

Mn = max(X1, . . . Xn) . (127)

Under very general conditions, the limiting cumulative distribution function (CDF)
of the renormalised block maxima for n → ∞ is given by one of the extreme value
families: Gumbel (Type I), Fréchet (Type II), or Weibull (Type III) (Fisher & Tippett
1928; Gnedenko 1943). These three families can be unified as a general extreme value
(GEV) distribution (von Mises 1954; Jenkinson 1955),

Gγ, β, α(x) =





exp
{
−
[
1 + γ

(
x−α

β

)]−1/γ
}

, for γ 6= 0,

exp
{
− e−

(
x−α

β

)}
, for γ = 0,

(128)

with the location, scale, and shape parameters α, β, and γ. In this generalisation,
γ = 0 corresponds to the Type I, γ > 0 to the Type II, and γ < 0 to the Type
III distributions. The corresponding probability density function (PDF) is given by
gγ, β, α(x) = dGγ, β, α(x)/dx and reads (for γ 6= 0)

gγ, β, α(x) =
1
β

[
1 + γ

(
x− α

β

)]−1−1/γ

exp

{
−
[

1 + γ

(
x− α

β

)]−1/γ
}

. (129)

The mode of the GEV distribution – which is the most likely value – is given by

x0 = α +
β

γ

[
(1 + γ)−γ − 1

]
. (130)

The expected value of the GEV distribution is

EGEV = α− β

γ
+

β

γ
Γ (1− γ) , (131)

where Γ denotes the Gamma function.

6.2.2 Modelling the distribution of the largest Einstein radius with the GEV

Due to the complexity of the modelling of the Einstein radius distribution, it is
not possible to find analytic relations for the GEV parameters, as can be done for
halo masses, for instance (Davis et al. 2011; Waizmann et al. 2011). Therefore, we
adopt the following semi-analytic approach: Suppose we intend to calculate the GEV
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Figure 22: Distribution in mass
and redshift of 4 000 maxima of
the Einstein radius in the redshift
interval 0.5 ≤ z ≤ 1.0, assuming
full sky coverage. The colour en-
codes the size of the individual
largest Einstein radius from each
simulation run.

distribution of the largest Einstein radius in a certain cosmological volume. We then
use the MC technique described in Sect. 5.4.1 to populate the volume with a mock
catalogue of triaxial gravitational lenses, and compute their Einstein radii. We note the
largest Einstein radius θ1

eff of the current realisation, and repeat this random process n
times. After this procedure, we have a set of n largest Einstein radii extracted from an
ensemble of n representative realisations of surveys of the considered cosmological
volume, M =

(
θ1

eff, ..., θn
eff

)
. For large n, the empirical CDF of these maxima converges

to the GEV distribution. Vice versa, for sufficiently large n, we can fit the GEV
distribution to the empirically sampled CDF. This fit allows us to derive analytic
relations for probabilities and exclusion criteria, and also enables us to smoothly
extrapolate to regions that are only sparsely sampled by the empiric data.

To optimise our semi-analytic approach for the following applications, we need to
discuss some preliminary issues. For instance, the choice of the redshift interval and
the allowed halo mass range is decisive to keep computational costs under control.
Moreover, we have to determine how many mock realisations we need to sample
to yield accurate estimates of the location, shape and scale parameter of the GEV
distribution.

To investigate these questions, we focus our study of the distribution of the largest
Einstein radii on clusters in the redshift range 0.5 ≤ z ≤ 1, assuming a source redshift
of zs = 2.0. This choice already drastically reduces the number of haloes that have
to be simulated, and was motivated by the fact that the 12 MACS clusters analysed
by Zitrin et al. (2011) were observed at redshifts z > 0.5. Next, we need to identify
a lower mass limit Mlim for the MC algorithm that draws random halo populations,
which must be chosen such that the inferred sampled maxima distribution is not
biased. To do so, we simulated 4 000 mock realisations of the considered cosmological
volume, based on the Tinker et al. (2008) mass function, and adopting a lower mass
limit of M > 2× 1014 M�/h. Figure 22 shows the mass and redshift distribution of
the 4 000 largest Einstein radii, confirming that the chosen mass limit is sufficiently
low; this is in good agreement with the results of Oguri & Blandford (2009). Unless
stated otherwise, we adopt Mlim = 2× 1014 M�/h throughout this chapter.

We note that Fig. 22 also shows that the maxima stem from a wide range of masses.
It is not unlikely that a rather low-mass cluster exhibits the largest Einstein radius.
Because we are modelling triaxial haloes, this result is a first indication that several
other properties of the strongest lenses – such as the orientation of the halo with
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Figure 23: CDFs of the largest Einstein radius for a different number of maxima in the range
between 125 and 4 000. The left panel shows the CDFs directly based on the MC simulations,
and the right panel presents the corresponding fits of the GEV distribution. The small lower
panels show the difference ∆CDF with respect to the high-resolution run based on 4 000
maxima.

respect to the observer, the lensing geometry, and the concentration – are more
important than the mass. Finally, most of the maxima are found in the lower redshift
range; this is a consequence of the chosen lensing geometry (zs = 2.0).

Having fixed the mass and redshift range, the last step in optimizing the com-
putational cost is to understand how many independent maxima actually have to
be sampled in order to construct the CDF of the largest Einstein radius. To this
end, we computed the respective CDFs for different sample sizes Nsamp between 125
and 4 000. Each CDF was computed at 50 linearly equidistant points between the
largest and the smallest value. The results of these computations are presented in the
left panel of Fig. 23. As expected, the noise of the CDFs decreases with increasing
Nsamp. For Nsamp ≥ 1 000, the difference with respect to the high resolution run
with Nsamp = 4 000 is . 0.02, corresponding to an over-estimation of the occurrence
probability of a given Einstein radius by less than two per cent. Hence, we utilise
Nsamp = 1 000 for all computations in the remainder of this chapter, unless stated
otherwise.

The right panel of Fig. 23 indicates that the GEV distribution fits the MC-simulated
distributions very well. In Table 4 (p. 88), we additionally present the fitted GEV
parameters as well as the root mean square of the residuals for the individual runs.
Anticipating the results of the following sections, we note that the fitted shape para-
meters γ for most distributions discussed in this chapter are found to be in the range
of 0.05 < γ < 0.2, which means that the distribution of the largest Einstein radius
can in general be described by a Fréchet (Type II) distribution and is consequently
bounded from below. The location parameter α is always very close to the mode, the
most likely maximum, with the two values differing only by ∼ one per cent. It is
noteworthy that the location parameter α can be estimated very well with rather small
sample sizes, whereas the shape parameter γ is subject to larger uncertainties. Even
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Table 4: Values of the location, scale, and shape parameters, α, β, and γ of the GEV distribu-
tions fitted (at 50 equally linearly space points; see text) to the CDFs of the largest Einstein
radius for different sample sizes Nsamp. We additionally quote the number of degrees of
freedom (DoF) of the fit and the root mean square (rms) of the residuals.

Nsamp α [arcsec] β [arcsec] γ DoF rms

125 43.17± 0.066 5.12± 0.101 0.35± 0.020 47 1.234× 10−2

250 43.69± 0.050 6.04± 0.077 0.23± 0.014 47 8.665× 10−3

500 43.81± 0.044 6.19± 0.067 0.15± 0.012 41 6.394× 10−3

1000 43.83± 0.026 6.16± 0.039 0.14± 0.007 41 3.736× 10−3

2000 43.52± 0.017 6.14± 0.026 0.13± 0.005 41 2.442× 10−3

4000 43.58± 0.015 6.07± 0.023 0.13± 0.004 34 2.036× 10−3

for only 125 samples, the difference of the mode with respect to the Nsamp = 4 000
case is less than two arcsec. This result is similar to the findings of Waizmann et al.
(2011), who reported the same behaviour for the case of halo masses.

In what follows, we use the GEV fits for any subsequent analysis like the calculation
of CDFs, PDFs, modes or quantiles.

6.3 distribution of the largest einstein radius

6.3.1 Impact of the mass function

The choice of the mass function must have an impact on the distribution of the largest
Einstein radius because it alters the size of the halo population from which the maxima
are drawn. This effect is particularly important for galaxy clusters since the expo-
nentially suppressed tail of the mass function is naturally very sensitive to modifica-
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Figure 24: Number of massive haloes predicted
by different mass functions with respect to the
Tinker mass function.

tion. As previously shown in Fig. 22,
the maxima stem from a relatively broad
range of masses. Hence, the larger the
halo population in this mass range, the
more likely it is to sample a particularly
large Einstein radius.

To quantify the influence of different
mass functions, we sampled the CDFs of
the largest Einstein radii for four differ-
ent mass functions, namely the Press
& Schechter (1974) (PS), Tinker et al.
(2008) (Tinker), Sheth & Tormen (1999)
(ST), and the Crocce et al. (2010) (Crocce)
mass functions. The differences between
these mass functions are visualised in
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Figure 25: CDFs and PDFs of the largest Einstein radius for different mass functions.

Fig. 24. We decided to use the Tinker mass function as a reference because the halo
masses are defined as spherical overdensities with respect to the mean background
density, a definition that is closer to theory and actual observations than the friend-of-
friend masses that were used for the Crocce mass function. We added the Crocce mass
function to our analysis because it predicts substantially more haloes at the high-mass
end (Bhattacharya et al. 2011). It is based on simulations with a box size much larger
than the horizon scale, which gives more statistics at the high-mass end at the price of
leaving the realm of the Newtonian approximation. However, Green & Wald (2012)
argue that the Newtonian approximation for N-body simulations might also be valid
on super-horizon scales.

The resulting extreme value distributions for the four different mass functions
are presented in Fig. 25, based on the simulation of 1 000 maxima in the redshift
range 0.5 ≤ z ≤ 1.0 on the full sky. The results clearly show that the effect of
different mass functions is substantial. The CDFs based on the ST and the Crocce
mass functions exhibit the strongest difference with respect to the PS one. The modes
of the distributions are 36.1′′ (PS), 43.0′′ (Tinker), 48.4′′ (ST), and 49.9′′ (Crocce), that is,
they can differ by more than ten arcsec, which implies that the inferred occurrence
probability for a given Einstein radius is highly sensitive to the precise choice of the
mass function. For completeness, we note that Fig. 25 and the numerical values of
the shape parameters γ indicate that the shape of the best-fitting GEV distributions
is almost constant. We thus conclude that a change of the mass function primarily
causes a shift and a broadening of the distributions along the θeff-direction.

6.3.2 Impact of lens triaxiality

The triaxiality of gravitational lenses has an important impact on the distribution of
the maxima. For instance, a highly elongated halo whose major axis is aligned along
the line-of-sight of the observer exhibits a highly concentrated, projected surface mass
density profile, which gives rise to a large tangential critical curve (see e.g. Oguri et al.
2003; Dalal et al. 2004; Meneghetti et al. 2007, 2010). Therefore, when sampling axis
ratios a/c and b/c from the distributions (109) and (110), particularly small axis ratios
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Figure 26: CDFs and PDFs of the largest Einstein radius for different cut-offs of the axis-ratio
distribution as labelled in the figure.

can potentially propagate into extreme strong-lensing events. Since the empirical fits
from JS02 were only based on few data points in this regime, it is unclear how reliable
the fitted axis-ratio distributions are.

Table 5: Shape parameter γ and the
mode of the CDFs for different cut-offs
in the axis-ratio distribution.

cut acut
sc γ Mode

1σ 0.427 −0.014 37.7′′

2σ 0.314 0.098 39.8′′

3σ 0.201 0.149 44.2′′

none – 0.151 44.8′′

To study the impact of this uncertainty, we
introduced a cut-off in the distribution (109)
for the scaled axis ratio asc to remove extreme
cases. More precisely, we cut off the distribu-
tion at different confidence levels n, according
to

acut
sc = 0.54− nσs , (132)

selecting values of 1σ, 2σ, 3σ and comparing
them to the case without any cut-off. We sim-
ulated the distributions of the largest Einstein radius for the different cut-offs based on
1 000 maxima, assuming a lower mass limit of Mlim = 2× 1014 M�/h and the Tinker
mass function.

Table 5 and Fig. 26 show that the effect of the above cut-off is indeed substantial.
In comparison to the previous section, the cut-off value not only strongly affects the
mode but also the shape of the CDFs. For the 1σ cut-off, the shape parameter becomes
negative. Consequently, the CDF of the largest Einstein radius is then described by a
Weibull (Type III) distribution, indicating that the underlying distribution is bounded
from above. For decreasing values of n, that is, by enforcing less extreme axis ratios,
the CDF steepens, indicating that large Einstein radii become less likely.

Motivated by these results, we investigated whether or not the largest Einstein radii
are always produced by highly elongated haloes with extreme axis ratios. To this
end, we studied the distribution of random halo samples in scaled axis ratio asc and
concentration ce. The left panel of Fig. 27 compares the distribution of the full halo
sample of a single realisation with the distribution of the asc minima based on 1 000
all-sky realisations. As expected (cf. Sect. 5.2.1), highly elongated haloes exhibit low
values of the concentration parameter. Typical values for the minima scatter around
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Figure 27: Distribution in scaled axis ratio asc and concentration ce of sampled haloes, accord-
ing to different selection criteria. The left panel shows the distribution of a full halo sample
of a single realisation (blue dots) and the sample of the asc minima (red dots) extracted from
1 000 independent halo samples. The right panel shows the corresponding distribution of the
haloes that give rise to the 1 000 largest Einstein radii. The small arrows indicate the same
cut-offs as in Fig. 26.

āmin
sc ≈ 0.08. As a comparison, the right panel of Fig. 27 shows the corresponding

distribution of the largest Einstein radii extracted from the 1 000 realisations. Evidently,
the largest Einstein radii stem by no means exclusively from the haloes with minimal
asc, but from a rather broad range of asc. More precisely, Fig. 27 indicates that the
largest Einstein radii either stem from lowly concentrated and highly elongated haloes,
or from less elongated but higher concentrated ones. Nonetheless, we note that the
largest maxima, which are represented by the dark red to black dots in the right
panel of Fig. 27, are confined to the region of particularly small asc and low ce. This
explains the strong impact of the cut-off on the shape parameters of the fitted GEV
distributions because the cut-off effectively removes the largest maxima and thus leads
to steeper CDFs.

Due to the limited knowledge of the statistics of extremely small axis ratios, it is not
possible to clearly define a proper choice of the cut-off (if present) until the triaxiality
distributions of large halo samples (covering the largest cluster masses) are studied
in numerical simulations. In the study of JS02 (see their Figure 9), scaled axis ratios
below ∼ 0.2 were not found for any of the studied redshifts. The value of amin

sc ∼ 0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

|c
o
s
(θ

)
|

scaled axis ratio asc

30
40
50
60
70
80
90

θ e
ff

[a
rc

se
c]

Figure 28: Spatial orientation of the haloes
producing the largest Einstein radius as a
function of the scaled axis ratio asc. Here,
θ denotes the angle between the major axis
of each halo and the line-of-sight direction
of the observer.
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Figure 29: CDFs and PDFs of the largest Einstein radius for different values of the inner slope
αNFW of the triaxial density profile.

corresponds to the cut-off on the 3σ level. It should be noted, however, that in general
asc also depends on the underlying cosmology (cf. Eq. (110)).

Finally, Fig. 28 demonstrates the importance of the projection effect mentioned at
the beginning of this section: The majority of the largest Einstein radii is produced
by strong lenses whose major axis is aligned along the line-of-sight of the observer.
Particularly those lenses with favourable alignment and small axis ratio asc exhibit the
largest Einstein radii.

6.3.3 Impact of the inner slope and the c–M relation

Figure 29 shows the impact of the inner slope αNFW of the triaxial density profile on the
GEV distribution of the largest Einstein radius. The distribution for the steeper inner
density profile is shifted to smaller Einstein radii, confirming the findings reported in
Oguri & Keeton (2004, p. 669). At first, this result seems a bit unexpected because on
average, steeper density profiles lead to slightly larger Einstein radii (see e.g. Oguri
2004). However, as discussed in the previous section, highly elongated haloes that are
projected along the line-of-sight crucially affect the shape of the GEV distribution. For
αNFW = 1.0, the density profiles are slightly shallower, leading to even more extended
haloes in the case of small axis ratios. Therefore, the projection effect is even more
pronounced, which explains the shift visible in Fig. 29.

Finally, also the concentration–mass (c–M) relation assumed for modelling the
triaxial density profile influences the statistics of the largest Einstein radii. We mimic
a variation in the c–M relation by computing the GEV distributions for different
values of the normalisation parameter Ae for the mean concentration ce (cf. Eq. (113)).
Assuming a fixed value for the scaled axis ratio asc, smaller Ae correspond to lower
values of the mean concentration, implying that lower concentrations ce are more
likely to be sampled. Following Oguri et al. (2003), we vary the value of Ae between
0.8 and 1.6, with Ae = 1.1 being the ΛCDM standard value.

Figure 30 indicates that large values of Ae shift the GEV distribution to smaller
Einstein radii. As before, this result can be explained by the strength of the projection
effect. Most importantly, we conclude that also the assumed c–M relation significantly
influences the GEV distribution of the largest Einstein radius.
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Figure 30: CDFs and PDFs of the largest Einstein radius for different values of the normalisa-
tion parameter Ae of the mass-concentration relation from Eq. (114).

6.3.4 Other important effects

By presenting the detailed discussion in the previous sections, we mainly intended
to highlight the numerous theoretical uncertainties that strongly affect the GEV
distribution of the largest Einstein radius. In particular the statistical description of
triaxial dark matter haloes (e. g. distribution of axis ratios) needs to be improved.

In addition to the uncertainties discussed above, there are more effects that strongly
influence the statistics of the largest Einstein radius. In Chap. 8, we show that
the inclusion of cluster mergers significantly shifts the GEV distribution to larger
values. Closely related and to some extent equivalent, the inclusion of substructures
is expected to have a similar effect. Finally, the brightest cluster galaxy (BCG) can lead
to an increase of the strong-lensing effect, but to a lesser extent than the previously
discussed effects (Puchwein et al. 2005; Meneghetti et al. 2007; Giocoli et al. 2012).

6.4 macs j0717 .5+3745 – a case study

The X-ray luminous galaxy cluster MACS J0717.5+3745, independently observed at
redshift zobs = 0.546 by the MACS survey (Ebeling et al. 2001, 2007), and as a host
of a diffuse radio source by Edge et al. (2003), is a quite remarkable system. It is
connected to a 4 Mpc long large-scale filament (Ebeling et al. 2004) that leads into the
cluster and exhibits ongoing merging activity (Ma et al. 2008). Furthermore, the cluster
possesses the most powerful known radio halo (Bonafede et al. 2009) and has also
been observed via the Sunyaev-Zel’dovich effect (LaRoque et al. 2003; Mroczkowski
et al. 2012). A strong-lensing analysis of this highly interesting system revealed that,
with θeff = (55± 3) ′′ for an estimated source redshift of zs ∼ 2.5, the effective Einstein
radius is the largest known at redshifts z > 0.5 (Zitrin et al. 2009, 2011).

To assess the occurrence probability of the observed effective Einstein radius of
MACS J0717.5+3745, we computed the CDF of the largest Einstein radius for the
redshift range 0.5 ≤ z ≤ 1.0 based on the Tinker mass function, assuming the
nominal MACS survey area (As = 22 735 deg2) as well as full sky coverage (As =

41 153 deg2), and a source redshift of zs = 2.5. We decided to use the conservative
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Figure 31: CDFs of the largest Einstein radius for the redshift range 0.5 ≤ z ≤ 1.0, a source
redshift of zs = 2.5, and the nominal MACS survey area (left panel) as well as the full sky
(right panel). The dashed-dotted lines, together with the yellow shaded area, illustrate the
impact of the uncertainty in the WMAP7 value of σ8 on the CDFs. The grey shaded area
indicates the uncertainty in the measurement of the Einstein radius.

cut-off acut
sc = 0.249, corresponding to the inclusion of 99% of the possible axis ratios

from the distribution (110). In doing so, we even cut off the distribution above the most
likely minimum of amin

sc = 0.2. Consequently, the estimated CDF is steeper, resulting
in a more conservative estimate of the occurrence probability of a given Einstein
radius. In comparison to the previously discussed distributions that assumed a source
redshift of zs = 2.0, the higher source redshift assumed here shifts the distribution to
larger Einstein radii due to the modified lensing geometry (Oguri & Blandford 2009).

Like the mass function, the uncertainty in the normalisation σ8 of the matter power
spectrum also influences the distribution of the largest Einstein radii, because it
influences the number of haloes from which the maxima are drawn. To incorporate
the uncertainty in the measured value of σ8, we also computed the distributions for
the upper and lower 1σ limits σ8 = (0.811± 0.023) of the WMAP7+BAO+SNSALT
dataset (Komatsu et al. 2011).

The left panel of Fig. 31 shows that, for the nominal MACS survey area, we find an
occurrence probability of ∼ (16− 32) per cent based on the uncertainty of the observed
Einstein radius θeff alone. When the additional uncertainty of the precision of σ8 is
included, this range widens to ∼ (11− 42) per cent. When the survey area is extended
to the full sky, the CDFs are shifted to larger values, and consequently the occurrence
probability for a given observation increases. In the case of MACS J0717.5+3745, we
find an occurrence probability of ∼ (18− 61) per cent when taking the uncertainty of
σ8 into account.

From the above ranges of occurrence probabilities, it can be directly inferred that
the large critical curve of MACS J0717.5+3745 cannot be considered in tension with
the ΛCDM model. This finding is supported by the results of the previous sections,
which showed that the uncertainty of the mass function, particularly at the high-
mass end, and the uncertainty in the shape of galaxy clusters allow a wide range
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of distributions. Moreover, the inclusion of cluster mergers (cf. Chap. 8) further
strengthens our conclusions.

With this in mind, the occurrence probabilities inferred above should just be con-
sidered a rough estimate. Because of the uncertainties in modelling the distribution of
Einstein radii, an observed critical curve should exhibit a much larger extent in order
to be taken as clearly in tension with the ΛCDM model. To quantify this statement, we
used the previously derived CDFs for MACS J0717.5+3745 to calculate the values of
the Einstein radius θeff for which the CDFs take values that correspond to confidence
levels nσ with n ∈ [1, 5]. Figure 32 indicates that in order to lie beyond the 3σ level,
corresponding to an occurrence probability of ∼ 0.3 per cent, and to account for the
uncertainty stemming from σ8, the Einstein radius θeff should be larger than ∼ 115′′.

6.5 conclusions

In this chapter, we described a new semi-analytic approach for applying the theory of
extreme value statistics to the distribution of the single largest Einstein radius in a
given cosmological volume. Our work can be divided into three distinct parts: first, a
preparatory study; second, a study of the effects that impact on the distribution of the
maximum Einstein radius; and third, a case study for MACS J0717.5+3745.

In the first preparatory part, we showed that ∼ 1 000 independently sampled
maxima are sufficient to accurately estimate the distribution of the largest Einstein
radius, and that the resulting distribution converges to the GEV distribution. In
general, we found that the distribution of the largest Einstein radius can be well
described by a Fréchet (Type II) distribution, indicating that the distribution is bounded
from below. Furthermore, we confirmed the findings of Oguri & Blandford (2009)
that the sample of maxima is distributed in a wide range in the mass–redshift plane,
revealing that the single largest Einstein radius has its origin by no means necessarily
in the most massive halo of a given mock realisation. This shows that other properties
of the strongest lenses (such as profile shape, orientation, etc.) have a stronger impact
on the GEV distribution than mass.
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We demonstrated that the precise choice of the mass function, the normalisation of
the matter power spectrum σ8, the concentration–mass relation assumed for modelling
the haloes, the statistics of (small) axis ratios, and the inner slope of the triaxial density
profile strongly affect the resulting GEV distribution of the largest Einstein radius.
Many of these theoretical uncertainties should carefully be studied in future works
before the extreme value statistics of the largest Einstein radius can be used for a
reliable consistency test of the ΛCDM model.

In the last part, we studied the occurrence probability of the largest known Ein-
stein radius observed in the galaxy cluster MACS J0717.5+3745 (Zitrin et al. 2009).
Accounting only for the uncertainty in σ8, we found an occurrence probability of
∼ (11 − 42) per cent for the MACS survey area and of ∼ (18 − 61) per cent for
the full sky, indicating that this observation cannot be considered in conflict with
ΛCDM. This conclusion is supported by the fact that the probability range would
widen further if accounted for the uncertainties in the underlying assumptions (e. g.
extreme axis ratios), and also considering that cluster mergers additionally shift the
GEV distribution to larger Einstein radii (cf. Chap. 8), rendering any claim of tension
with ΛCDM untenable.
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abstract

In the previous chapter, we focused on the extreme value distribution of the
single largest Einstein radius. Here, we show that our previous approach can
meaningfully be extended by studying the order statistics of the n largest Einstein
radii. This extension is advantageous because it allows formulating more robust
ΛCDM exclusion criteria based on n observations instead of a single extreme
strong-lensing event, which might be caused by a highly unlikely, very peculiar
lensing system (e. g. a statistical outlier). We apply these exclusion criteria to a
selected sample of twelve MACS clusters, finding that their remarkably large
Einstein radii do not exceed the theoretical expectations of the ΛCDM model. This
conclusion is further corroborated by the large uncertainties that enter the semi-
analytic lens modelling and to which the largest Einstein radii are particularly
sensitive.

The contents of this chapter were published in Waizmann et al. (2014). In comparison to the
published article, we shortened and rewrote several sections.

7.1 introduction

The previous chapter discussed the idea to formulate ΛCDM exclusion criteria based
on the extreme value statistics of the largest Einstein radius in a certain cosmological
volume. However, inference based on a single observation is difficult for it is a priori
unknown whether the maximum was really drawn from the supposedly underlying
distribution, or whether the event was caused by a very peculiar situation in the
concrete survey that was statistically not accounted for. This is particularly important
for strong-lensing systems, which are heavily influenced by a number of different
physical effects (extreme axis ratios, projection effects, mergers, etc.). It is therefore
desirable to formulate ΛCDM exclusion criteria that are based on a number of
observations instead of a single event.

This goal can be accomplished by applying order statistics to the distribution of
the n largest Einstein radii. To outline this idea, we first introduce the mathematical
prerequisites of order statistics in Sect. 7.2. Using (almost) the same approach as
in the previous chapter, we obtain the order statistics by semi-analytically sampling
the hierarchy of the largest Einstein radii in a predefined cosmological volume. We
summarise this semi-analytic approach in Sect. 7.3 and also briefly characterise the
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population of those clusters producing the largest Einstein radii. By fitting the GEV
distribution to the empirically sampled distribution of maxima, we can derive analytic
expressions for the lower order distributions (e. g. the distribution of the second largest
Einstein radius), and eventually use these relations to formulate ΛCDM exclusion
criteria. In Sect. 7.4.1, we demonstrate the practicality of this ansatz: We compute
the theoretically expected order statistics for the cosmological volume containing the
twelve MACS clusters analysed by Zitrin et al. (2011), formulate explicit exclusion
criteria, and compare these results with the large observed Einstein radii of the MACS
sample. Finally, in Sect. 7.5, we present our conclusions.

Throughout this chapter, we adopt the best-fitting cosmological parameters obtained
from the Wilkinson Microwave Anisotropy Probe seven-year data (WMAP7; Larson
et al. 2011), (ΩΛ0, Ωm0, Ωb0, h, σ8) = (0.727, 0.273, 0.0455, 0.704, 0.811). Moreover, we
set the inner slope α of the triaxial density profile to the conservative value of α = 1.0
(cf. Eq. (107)), fix the normalisation of the concentration-mass relation to Ae = 1.1
(cf. Eq. (114)), and force the scaled axis ratio asc (minor axis) to lie within the 99%
confidence interval of the distribution (110) to avoid unrealistic density profiles with
extremely small axis ratios and too low concentrations (cf. Sect. 6.3.2).

7.2 order statistics

In this section, we briefly summarise the mathematical prerequisites of order statistics
that are needed for the remainder of this work. A more thorough treatment can be
found in the excellent textbooks of Arnold et al. (1992) and David & Nagaraja (2003)
or, in a cosmological context, in Waizmann et al. (2013).

Suppose that {X1, X2, . . . , Xn} is a random sample of a continuous population with
the PDF f (x) and the corresponding CDF F(x). Then, the order statistic is given by
the random variates ordered by magnitude X(1) ≤ X(2) ≤ · · · ≤ X(n), where X(1) is
the smallest (minimum) and X(n) denotes the largest (maximum) variate in the sample.
The PDF of the i-th order X(i) (1 ≤ i ≤ n) is then found to be

f(i)(x) =
n!

(i− 1)!(n− i)!
[F(x)]i−1 [1− F(x)]n−i f (x) . (133)

Correspondingly, the CDF of the i-th order is given by

F(i)(x) =
n

∑
k=i

(
n
k

)
[F(x)]k [1− F(x)]n−k . (134)

The distribution functions of the special cases of the lowest and the highest values are
then readily found to be

F(1)(x) = 1− [1− F(x)]n , (135)

and

F(n)(x) = [F(x)]n . (136)

For large sample sizes, both F(1)(x) and F(n)(x) can be described by a member of the
GEV distribution (see Sect. 6.2.1).
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The distribution functions of the single-order statistics can be generalised to n-
dimensional joint distributions. In this chapter, we do not go beyond the two-order
statistics for which the joint PDF X(r), X(s) (1 ≤ r < s ≤ n) reads

f(r)(s)(x, y) =
n!

(r− 1)!(s− r− 1)!(n− s)!
f (x) f (y)

× [F(x)]r−1 [F(y)− F(x)]s−r−1 [1− F(y)]n−s , (137)

where we assumed x < y. The joint CDF can be derived by integrating the above PDF,
or by a direct argument (Arnold et al. 1992, Sect. 2.2), and is given by

F(r)(s)(x, y) =
n

∑
j=s

j

∑
i=r

n!
i!(j− i)!(n− j)!

× [F(x)]i [F(y)− F(x)]j−i [1− F(y)]n−j . (138)

We refer to Appendix A of Waizmann et al. (2013) for more details on the implement-
ation of the single-order and two-order statistics.

Finally, we need to emphasise an important ambiguity concerning the nomenclature
used in the following sections. In line with the previous chapters, we exclusively focus
on the order statistics of the strongest lenses. Adopting the standard convention of
the mathematical literature, and also following the above definitions, we would have
to refer to the statistics of the n-th order, the (n− 1)-th order, the (n− 2)-th order, and
so on, to denote the statistics of the largest, the second largest, and the third largest
Einstein radius. However, this nomenclature would unnecessarily complicate our
discussion in some paragraphs or the labelling of figures. From here on, we therefore
define to additionally use the term rank to refer to Einstein radii in descending order,
that is, we define that the i-th rank corresponds to the (n + 1− i)-th order. To refer to
the statistics of the fourth largest Einstein radius, for instance, we could either simply
refer to the statistics of the fourth rank or, equivalently, to the (n− 3)-th order.

7.3 sampling the order statistics

The approach for sampling the order statistics of Einstein radii is identical to the
one used in the previous chapter: We create a large number of mock realisations of
the cluster population on the PNC, compute their strong-lensing characteristics, and
collect the Einstein radii of the highest orders. Throughout this chapter, we used the
Tinker et al. (2008) mass function to sample representative halo populations. Because
we eventually intend to compare our sampled distributions with the twelve MACS
clusters observed at redshifts z > 0.5, we focused our analysis of the order statistics of
the largest Einstein radii on clusters in the redshift range 0.5 ≤ z ≤ 1. In line with the
strong-lensing analysis by Zitrin et al. (2011), we assumed a fixed source redshift of
zs = 2.0.

In the previous chapter, we showed that ∼ 1 000− 2 000 independent maxima are
sufficient for accurately sampling the CDF of the largest Einstein radius and that the
maxima stem from haloes with masses M > 2× 1014 M�/h. While the first statement
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Figure 33: Mass and redshift distributions of the gravitational lenses that exhibit the twelve
largest Einstein radii. The distributions were extracted from 2 000 mock realisations of Einstein
radii in the redshift interval 0.5 ≤ z ≤ 1.0 on the full sky.
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Figure 34: Sample mean (blue lines) and relative scatter (red lines) of the halo mass (upper-left
panel), the redshift (lower-left panel), the alignment | cos(θ)| (upper-right panel), and the
scaled axis ratio asc (lower-right panel) as a function of the rank.

will certainly also hold for the order statistics, the second might not be valid any
more for distributions of lower orders of the Einstein radius. To verify the second
assumption, we decided to sample 2 000 mock realisations of the cosmological volume
considered, adopting a lower mass limit of Mlim = 1014 M�/h. The distribution in
mass and redshift for the twelve largest Einstein radii is shown in Fig. 33, which
clearly demonstrates that, also for the lower orders, only a few values fall below the
previous limit of M > 2× 1014 M�/h. In the following, we thus adopt the more
conservative lower mass limit of Mlim = 1014 M�/h.

Figure 33 indicates that all orders stem from a wide range of masses. This tendency
is further confirmed by Fig. 34, which shows the dependence of the sample mean and
the relative scatter in mass and redshift for the first twelve ranks. It can be seen that
the sample mean in mass (upper-left panel) weakly drops with increasing rank and
exhibits a large relative scatter of ∼ 40 per cent. Although, on average, the sample of
the largest Einstein radii stems from massive clusters with masses M ∼ 1015 M�, the
large scatter indicates that also notably less massive clusters likely contribute to this
ordered list of very large Einstein radii. The sample mean of the clusters’ redshifts
(lower-left panel) is independent of the rank and shows a relative scatter of ∼ 20 per
cent. This is because the distribution in redshift is mainly determined by the lensing
geometry, which is, of course, independent of the considered order.

In addition to the mass and redshift distributions, it is interesting to examine how
the orientation of the haloes and their scaled axis ratios depend on the different orders.
For this purpose, we also calculated the sample mean and the relative scatter of the
alignment | cos(θ)| and the scaled axis ratio, asc (cf. Sect. 6.3.2). A value of | cos(θ)| = 1
corresponds to a perfect alignment of the halo’s major axis with the line-of-sight of the
observer. The upper-right panel of Fig. 34 indicates that the mean alignment for the
first twelve ranks is high (> 0.9), but slightly decreases with increasing rank. Thus,
the higher the rank, the more likely it happens that the haloes are slightly misaligned
with the line-of-sight. This result can be easily understood. For the very largest
Einstein radii, all parameters (mass, orientation, concentration, etc.) simultaneously
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Figure 35: CDFs of the twelve
largest Einstein radii. The black
solid lines depict the empiric-
ally sampled CDFs. The orange
dashed lines indicate the GEV fits
to the CDFs.

need to be most beneficial in terms of the strong-lensing efficiency. For higher ranks, a
slightly disadvantageous setting of one parameter (e. g. a slightly misaligned halo) can
still be compensated for by other halo properties. Nevertheless, the smallness of the
relative scatter of the alignment with respect to the observer demonstrates that this
property is an important characteristic of the sample of the strongest lenses. Closely
related to the alignment is the elongation of the lensing-halo, which is encoded in
the scaled axis ratio. In the lower-right panel of Fig. 34, we therefore present the
dependence of the mean and relative scatter of asc on the rank. A low value of asc

indicates a very elongated system, while a halo with asc = 1 is spherical. The increase
of the mean with increasing rank indicates that the higher ranks likely stem from less
elongated haloes.

We summarise that, on average, the twelve largest Einstein radii stem from haloes
with masses M ∼ 1015 M�. However, halo orientation and triaxiality (i. e. elongation)
are influential factors that individually allow clusters with lower masses to produce
very large Einstein radii.

7.4 comparison with observations

7.4.1 Theoretical distributions of the order statistics

Employing the semi-analytic approach described in Sect. 7.3, we now sample the order
statistics of the largest Einstein radii in the redshift range 0.5 ≤ z ≤ 1.0, assuming full
sky coverage.

Figure 35 reveals that the CDFs of the twelve highest orders steepen as the order
decreases; a similar effect was found by Waizmann et al. (2012a), who studied the
order statistics of the most massive and most distant galaxy clusters. In comparison
to the highest order F(n), which is broad and allows the largest Einstein radius to
be realised in a wide range, the lower orders are confined to an increasingly narrow
range of Einstein radii. Therefore, the higher order CDFs can, in principle, be used to
formulate tighter exclusion criteria.

The orange dashed curves in Fig. 35 depict analytic fits to the empirically sampled
CDFs. These fits were computed using the following recipe: We first fitted the GEV
distribution (cf. Sect. 6.2.1) to the distribution of the maxima F(n), finding the best-fit
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parameters α = (43.52± 0.017), β = (6.14± 0.026) and γ = (0.13± 0.005). Then,
using the relation from Eq. (136), we inferred the underlying distribution F(θeff),
which can in turn be used to derive analytic relations for the order statistics of the
n largest Einstein radii. Figure 35 confirms that the fitted order statistics match the
empirically sampled distributions very well, confirming the consistency of the higher
order CDFs.

Applying order statistics to Einstein radii allows exclusion criteria to be formulated
as a function of rank, as presented in Fig. 36. Choosing the 98 percentile as ΛCDM
exclusion criterion, for instance, one would need to find approximately twenty Einstein
radii with θeff & 30′′, ten with θeff & 35′′, five with θeff & 42′′, or one with θeff & 74′′

on the full sky, in order to claim tension with the ΛCDM expectations. We recall that
these exclusion criteria can be considered conservative because here we modelled the
distribution of Einstein radii using the simple semi-analytic method that does not
incorporate cluster mergers.

For convenience, we use the fitted distributions in what follows. Any small er-
ror introduced by this choice is negligible in comparison to the numerous model
uncertainties (cf. Sect. 6.3).

7.4.2 Comparison with the MACS sample

We now compare the theoretical order statistics with the Einstein radii of the twelve
high-redshift (z > 0.5) MACS clusters reconstructed by Zitrin et al. (2011). The results
of their strong-lensing analysis are summarised in Table 6 (p. 104).

Figure 37 compares the theoretical order statistics with the observed Einstein radii
in the form of a box-and-whisker diagram. Defining outliers with respect to the
ΛCDM expectations as observations that exceed the 98 percentile, none of the twelve
observed Einstein radii falls outside the expectations for the full sky. The result that
all observed Einstein radii with rank larger than five fall below the 2 percentile, with a
much steeper slope, is a clear indication that the MACS sample is incomplete in terms
of the largest Einstein radii that are expected to be found in on the full sky. Because
the strongest lenses stem from a wide range in mass, a much larger sample than that
covered by the MACS survey (which only focused on very massive clusters) would be
required to extract a complete statistic of the largest Einstein radii.
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Figure 37: Box-and-whisker diagram for the comparison of the theoretically expected order
statistics with the twelve observed Einstein radii of the MACS cluster sample as listed in
Table 6. For each rank, the red lines denote the median (Q50), the blue bordered grey boxes
give the inner-quartile-range (IQR), and the black whiskers mark the range between the 2
and 98 percentile (Q2, Q98) of the theoretical distribution. The green error bars represent the
observed Einstein radii (Zitrin et al. 2011).

Table 6: Summary of the strong-lensing
analysis of the twelve MACS clusters
analysed by (Zitrin et al. 2011). The
clusters are ordered (descending) by
their Einstein radius.

MACS z θeff [arcsec]

J0717.5+3745 0.546 55± 3

J0257.1-2325 0.505 39± 2

J2129.4-0741 0.589 37± 2

J0744.8+3927 0.698 31± 2

J0025.4-1222 0.584 30± 2

J0647.7+7015 0.591 28± 2

J1149.5+2223 0.544 27± 3

J0018.5+1626 0.545 24± 2

J2214.9-1359 0.503 23± 2

J1423.8+2404 0.543 20± 2

J0454.1-0300 0.538 13+3
−2

J0911.2+1746 0.505 11+3
−1

It is important to stress that we computed
the order statistics of the largest Einstein
radii for (fictitious) all-sky realisations, al-
though the nominal survey area of the MACS
survey comprises only a fraction of the full
sky (As = 22 735 deg2). By reducing the ef-
fective survey area, we would decrease the
cluster sample from which the largest Ein-
stein radii are drawn, and consequently the
theoretical distributions would be shifted to
slightly lower values of θeff. In addition, we
could try to mimic the same selection criteria
that were applied to define the cluster sample
covered by the MACS survey. This is, how-
ever, a fairly complicated procedure, which
is additionally subject to many uncertainties.

On the other hand, it is also important
to stress that we completely neglected the
impact of cluster mergers here, which sub-
stantially increase the Einstein radii of the
strongest lenses (cf. Chap. 5). In addition,
recent measurements of the Planck satellite
(Planck Collaboration et al. 2013) indicate
higher values of the matter density parameter Ωm0 and the normalisation σ8 of



7.4 comparison with observations 105

20

40

60

θ e
ff
,i
[a
rc
se
c]

20 40 60
θeff,1 [arcsec]

20 40 60
θeff,1 [arcsec]

20 40 60
θeff,1 [arcsec]

20 40 60
20

40

60

θ e
ff
,i
[a
rc
se
c]

θeff,1 [arcsec]

1st vs. 2nd 1st vs. 3rd 1st vs. 4th 1st vs. 5th

1st vs. 6th 1st vs. 7th 1st vs. 8th

0 1/2 max max

joint pdf f(r)(s) (θeff,i, θeff,1)

1st vs. 9th

observed θeff of MACS sample

Figure 38: PDFs of the joint two-order statistics for different combinations of the first rank
θeff,1 (x-axis) with higher ranks θeff,i (y-axis). The distributions were calculated for the redshift
range 0.5 ≤ z ≤ 1.0 on the full sky. The color bar is set to range from zero to the maximum
of the individual joint PDF in each panel. The red error bars indicate the observed Einstein
radii as listed in Table 6. The PDFs are limited to a triangular domain due to the ordering
constraint θeff,i < θeff,1 (cf. Eq. (137)).

the matter power-spectrum than the WMAP7 values used in this chapter. Higher val-
ues of Ωm0 and σ8 would increase the abundance of high-mass haloes, which in turn
would shift the order statistics to larger Einstein radii and consequently render the
MACS sample even more likely. Finally, we recall that several theoretical uncertainties
(such as extreme axis ratios; cf. Sect. 6.3) affect the semi-analytic modelling of the
distribution of the largest Einstein radii.

Taking these remarks into account, we conclude that there is no reliable statistical
evidence for the large Einstein radii of the twelve MACS clusters to exceed the
theoretical expectations of the ΛCDM model. In the following chapter, we explicitly
demonstrate that this conclusion is further strengthened by including cluster mergers.

7.4.3 Joint distributions

Apart from the study of the individual order statistics, it is also possible to derive joint
distributions for different orders by means of Eqs. (137) and (138). We exemplarily
present the joint PDFs for combinations of the highest order with lower orders in
Fig. 38.

It can be seen that the largest and the second largest Einstein radius are likely
equally large (upper-left panel), while Einstein radii of higher ranks are, on average,
notably smaller than the maximum. Furthermore, the peak of the joint PDF narrows
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for the smaller Einstein radii (y-axis) with increasing rank, which is a consequence of
the steepening of the CDFs as shown in Fig. 35. Finally, we note that the observed
Einstein radii (red crosses) fall increasingly below the peak of the joint PDFs. Similarly
as in Fig. 37, this is a manifestation of the incompleteness of the observed sample.

The joint PDFs shown in Fig. 38 also imply that the ratio of Einstein radii of different
orders could itself be an important diagnostic. It may even be more robust than the
Einstein radii themselves because the absolute calibration may drop out.

Finally, we note in passing that the joint PDFs considered above can easily be
extended to higher dimensions. Waizmann et al. (2013) outlined this approach for the
order statistics of clusters in mass and redshift.

7.5 conclusions

In this chapter, we presented a new framework for calculating the individual and joint
order distributions of the n largest Einstein radii in a given cosmological volume. The
method can easily be adapted to different conditions (e. g. survey size, redshift range,
cosmological parameters) and potentially constitutes a valuable consistency check of
the underlying cosmological model.

The order statistics of the largest Einstein radii can be considered an extension
of the extreme value statistics of the maximum Einstein radius studied in the pre-
vious chapter and allows formulating ΛCDM exclusion criteria that are based on n
observations instead of a single one. The CDFs of the twelve largest Einstein radii
steepen with decreasing order, indicating that the lower orders are, in principle, more
constraining. Moreover, we found that the twelve strongest lenses stem from a wide
range in mass, but are, on average, well aligned along the line-of-sight and exhibit
highly elongated, triaxial density profiles. These findings support the notion that,
for the sample of the largest Einstein radii, triaxiality and halo alignment along the
line-of-sight matter more than mass.

Most importantly, we demonstrated that large Einstein radii of the twelve high-
redshift MACS clusters analysed by Zitrin et al. (2011) do not exceed the theoretical
expectations of the ΛCDM model. Taking current theoretical uncertainties into
account, much larger Einstein radii would have to be observed to seriously challenge
the concordance model.
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abstract

Based on techniques developed in the previous chapters, we investigate the
impact of galaxy-cluster mergers on the order statistics of the largest Einstein
radii. We show that the inclusion of mergers significantly shifts the extreme value
distribution of the largest Einstein radius to higher values, typically increasing the
expected value by ∼10%. A comparison with current data reveals that the largest
observed Einstein radius agrees excellently well with the theoretical predictions
of the ΛCDM model at redshifts z > 0.5. At redshifts z < 0.5, our results
are somewhat more controversial. Although cluster mergers also increase the
expected values of the order statistics of the n largest Einstein radii by ∼10%,
the theoretically expected values are notably lower (∼3σ deviation for n = 12)
than the largest Einstein radii of a selected sample of SDSS clusters in the redshift
range 0.1 ≤ z ≤ 0.55. The uncertainties of the observed Einstein radii are still
large, however, and thus the measurements need to be carefully revised in future
works. Therefore, given the premature state of current observational data, overall,
there is still no reliable statistical evidence for observed Einstein radii to exceed
the theoretical expectations of the standard cosmological model.

The contents of this chapter were published in Redlich et al. (2014b).

8.1 introduction

Do the strongest observed gravitational lenses exceed the theoretical expectations
of the standard cosmological model? This question has long been debated in the
literature (see Bartelmann 2010b; Meneghetti et al. 2013, for reviews), and was the
central theme of the previous chapters.

However, so far, our analysis is still incomplete in the following sense: while
we explicitly emphasised the importance of cluster mergers for the statistics of the
strongest lenses in Chap. 5, we did not include mergers in our computations of
Chaps. 6 and 7. This decision was motivated by several factors. Firstly, particularly in
Chap. 6, we investigated the properties of triaxial lenses (such as orientation and profile
shape) that decisively affect the extreme value distribution of the largest Einstein
radius. For these studies, it was important to isolate individual effects, and therefore
it was neither desirable nor required to include cluster mergers. Secondly, we aimed
to derive conservative exclusion criteria. We were able to show that the strongest
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observed lenses do not exceed the theoretical expectations of the standard cosmological
model even if cluster mergers are neglected. Because mergers additionally boost the
strong lensing efficiency, including these events should additionally consolidate this
conclusion. Thirdly, including cluster mergers is computationally very expensive.
A typical realisation of a mock universe requires MC simulations of ∼ 106 merger
trees. In addition, lensing computations with multiple haloes in the field of view
are substantially more expensive than those with single haloes. To estimate the
order statistics of the largest Einstein radii with an acceptable precision, ∼ 103

mock universes have to be sampled. This whole procedure is computationally very
demanding, even though our semi-analytic method was specifically tailored to be fast.

In this sense, this chapter completes our discussion of the strongest gravitational
lenses. Based on previously developed techniques, we compute the impact of cluster
mergers on the order statistics of the largest expected Einstein radii in the Universe.
This is not only interesting in itself, but also because it differs from the analysis
performed in Chap. 5, where we investigated the impact of cluster mergers on
averaged quantities such as the optical depth for giant gravitational arcs. Moreover,
we compare our theoretical results to another, independent set of observational data
at redshifts z < 0.5 (Zitrin et al. 2012), finding that the observed lenses in this
cosmological volume might either be somewhat stronger than theoretically expected,
or the substantial extrapolation employed by Zitrin et al. (2012) to infer the Einstein
radii is dubious.

The plan for this chapter is as follows: Section 8.2 describes the new merger tree
algorithm used for this chapter, and also contains some information on speeding
up the computations. The impact of cluster mergers on the order statistics of the
largest Einstein radii is analysed in Sect. 8.3. Thereafter, in Sect. 8.4, we compare our
theoretical predictions with current observational data. In Sect. 8.5, we summarise
our main results and finally conclude.

Throughout this chapter, we adopt the best-fitting cosmological parameters derived
from the Planck 2013 data, (ΩΛ0, Ωm0, Ωb0, h, σ8) = (0.685, 0.273, 0.047, 0.673, 0.829)
(Planck Collaboration et al. 2013). Moreover, we set the inner slope α of the triaxial
density profile to the conservative value of α = 1.0 (cf. Eq. (107)), fix the normalisation
of the concentration-mass relation to Ae = 1.1 (cf. Eq. (114)), and force the scaled axis
ratio asc (minor axis) to lie within the 99% confidence interval of the distribution (110)
to avoid unrealistic density profiles with extremely small axis ratios and too low
concentrations (cf. Sect. 6.3.2).

8.2 algorithm for including cluster mergers

8.2.1 Extended Press-Schechter merger tree algorithm

In Chap. 5, we developed a semi-analytic method that allows us to project merging
galaxy clusters onto a fictitious observer’s PNC and calculate their strong-lensing
properties. Moreover, we emphasised that we employed two completely independent
algorithms to compute the strong-lensing statistics: (1) a standard MC approach to
sample isolated haloes from a given mass function, and (2) our new method that
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incorporates cluster mergers. We did so in preparation of the following applications,
but also to independently cross-check the new merger algorithm. For self-consistency,
the two methods had to be based on the original mass function of Press & Schechter
(1974).

On the other hand, in Sect. 6.3.1 we found that the precise choice of the halo mass
function has a significant impact on the GEV distribution of the largest Einstein radius.
Because it is based on the overly idealistic theory of spherical collapse, the mass
function of Press & Schechter (1974) is known to underestimate the abundance of
high-mass haloes, which in turn leads to lower expectation values for the largest
Einstein radius in a given cosmological volume. Conversely, the mass function of
Sheth & Tormen (1999) over-predicts the number of high-mass haloes, which shifts the
GEV distribution to too high values. The Tinker et al. (2008) (Tinker) mass function is
a compromise between these two extremes and is broadly accepted as a more accurate
representation of the mass function determined from N-body simulations. Therefore,
all calculations of Chap. 7 were based on the Tinker mass function.

In this chapter, we aim to calculate the order statistics of the largest Einstein radii as
realistically as possible, so that our results can be compared with real observations. It
would therefore be desirable to replace the original merger algorithm by an alternative
algorithm that generates halo catalogues consistent with the Tinker mass function.

Jiang & van den Bosch (2014) recently compared several different merger tree codes,
finding that the algorithm proposed by Parkinson et al. (2008) (PCH) reproduces the
merger rates measured in N-body simulations most accurately. The basic idea of the
PCH algorithm is quite simple: although merger algorithms based on the original
extended Press-Schechter formalism are slightly inaccurate, they are certainly not
completely unacceptable. Instead, they exhibit statistical properties (such as trends
with mass and redshift) that agree well with those of merger trees constructed from
N-body simulations. Parkinson and co-workers thus proposed to take the Press-
Schechter merger rate as a starting point, and slightly perturb this quantity using an
empirically motivated function. The probability for drawing a progenitor of mass M1

from a parent halo of mass M0 at redshift z is then modified according to

dN
dM1

→ G (M0, M1)
dN

dM1
, G (M0, M1) = G0

[
σ (M1)

σ (M0)

]γ1
[

δ (z)
σ (M0)

]γ1

, (139)

where δ(z) is the linear density threshold for collapse and σ (M) denotes the rms
linear density fluctuation extrapolated to redshift z = 0 in spheres containing mass
M (Lacey & Cole 1993). G0, γ1 and γ2 are free empirical parameters of this ansatz,
which PCH constrained by fitting their algorithm to merger trees extracted from the
Millennium simulation (Springel et al. 2005).

While testing our implementation of the PCH algorithm, we observed that the
algorithm calibrated with the best-fitting parameters given by PCH still notably under-
predicts the abundance of high-mass haloes (∼ 1015M�/h). More accurate results can
be achieved with the parameters given by Benson (2008), who employed a slightly
different fitting procedure. In this chapter, we thus used the values derived by Benson
(2008): G0 = 0.605, γ1 = 0.375 and γ2 = −0.115.

The performance of our algorithm for projecting merging galaxy clusters onto the
PNC is visualised in Fig. 39. We show a random halo catalogue in the redshift range
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Figure 39: Comparison between a Monte-
Carlo sampled halo catalogue in the red-
shift range 0.5 < z < 1.0 (full sky) and the
corresponding theoretically expected values
of different halo mass functions. The ran-
dom halo catalogue was generated with the
merger tree algorithm of Parkinson et al.
(2008). The red dashed, solid black, and
green dotted curves indicate the mass func-
tions proposed by Press & Schechter (1974)
(PS), Tinker et al. (2008) (Tinker), and Sheth
& Tormen (1999) (ST).

0.5 < z < 1.0 (full sky) that was generated with the PCH merger algorithm. As
a reference, we also plot the theoretically expected values of the mass functions of
Press-Schechter, Tinker, and Sheth-Tormen. The initial haloes at redshift z = 0 were
drawn from the Tinker mass function. Figure 39 confirms that the sampled catalogue
agrees well with the expectations of the Tinker mass function at the considered redshift
range. Yet, even with the parameters from Benson (2008), the generated mass function
falls slightly short of high-mass haloes. The deviation is only moderate, however,
and to fix this problem, one would have to run large N-body simulations containing
sufficiently many clusters with masses M > 1015M�/h and re-fit the PCH algorithm.
Clearly, this would go beyond the scope of the present work. For the following
sections, it is only important to remember that the generated halo catalogues lack
a few high-mass objects, which renders our estimates of the order statistics more
conservative. Moreover, if one is only interested in haloes with redshifts z� 0, the
problem of too few high-mass haloes can be mitigated by starting the merger tree
simulations at higher initial redshifts, zini > 0, because this decreases the interval over
which the haloes have to be evolved backwards in time and hence also reduces the
overestimated mass loss.

We cannot use an independent approach here to sample single haloes (without
mergers) because the PCH algorithm does not exactly reproduce the Tinker mass
function. Whenever we compute the statistics of Einstein radii neglecting cluster
mergers, we simply take the catalogues generated by the merger algorithm instead
and ignore the spatial correlations of the haloes, that is, we simply treat all haloes as
isolated objects.

8.2.2 Suggestions to reduce the computing time

Increasing computational complexity is one main difficulty in estimating the order
statistics of the largest Einstein radii including clusters mergers. As was shown in
Sect. 6.2.2, about 103 mock universes have to be sampled for accurate fits of the
GEV distribution. For each realisation, typically ∼ 106 merger trees need to be
simulated, and subsequently, their strong-lensing signals have to be evaluated. This
whole procedure is computationally quite demanding. The computation of the results
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presented in the following section, for instance, required approximately 2800 CPU
hours on a large computing grid.

However, there are several steps that greatly reduce the required wall-clock time.
Since future studies will probably face similar problems, it might be useful to list
some of these steps here:

• Mass thresholds: As shown previously (and again verified for this chapter), only
massive haloes contribute to the order statistics of the largest Einstein radii. We
therefore only sample haloes with masses M > 1014 M�/h at the initial redshift.
While simulating their merger trees, we discard all progenitors whose mass falls
below 5× 1012 M�/h, because subhaloes at least need to exceed 5% of the main
halo mass to notably perturb the Einstein radius (cf. Sect. 5.3).

As described in Sect. 5.4.2, for each initial halo, our merger routine projects
a list of progenitors onto the PNC. If the total mass of all progenitors falls
below 1014 M�/h, we discard the system. Otherwise, we sort the progenitors
in descending mass order, determine the Einstein radius of the most massive
halo, and flag all progenitors that have been enclosed by the tangential critical
curve. Next, we check if the total mass of the remaining unenclosed progenitors
is larger than 1014 M�/h. If that is the case, we again sort them in descending
mass order and compute the next Einstein radius. We repeat this procedure
until no relevant unenclosed progenitors remain.

• Maximum separation: When computing the tangential critical curve that sur-
rounds a certain progenitor, we only take the neighbouring haloes into account
(superposition of deflection angles) whose distance is smaller than the sum of
both virial radii, d ≤ (rvir,1 + rvir,2). Haloes that are farther away can safely be
neglected because they do not notably perturb the lensing signal.

• Einstein radius threshold: From experience, we know that the n-th largest Einstein
radius of a mock realisation will certainly be larger than a lower threshold θmin

eff .
Then, prior to computing the detailed shape of the tangential critical curve of a
lens system, we first quickly estimate the size of the resulting Einstein radius
using the following steps:

We loop over all relevant haloes in the field of view and treat them as isolated
gravitational lenses. Because of their triaxial density profile, the projected surface
mass density is ellipsoidal. We determine the major axis of the isodensity ellipses
and compute the radius θest

E at which the tangential eigenvalue λt vanishes. A
circle with radius θest

E encloses the full tangential critical curve of the halo and
accordingly certainly over-estimates the real effective Einstein radius, θest

eff > θeff.

If the sum of all estimated Einstein radii (plus some tolerance) is smaller than
the threshold θmin

E,eff, we can safely discard the system and skip the expensive
detailed lensing computations.
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Figure 40: Mass and redshift distributions of the gravitational lenses that produce the largest
and the twelfth-largest Einstein radius. The distributions were extracted from 2 000 mock
realisations of Einstein radii in the redshift interval 0.5 ≤ z ≤ 1.0 on the full sky. The
calculations incorporated the impact of cluster mergers. The plotted mass denotes the total
mass of all haloes enclosed by the corresponding tangential critical curves.

• Shoelace formula: The effective Einstein radius is derived from the area enclosed
by the tangential critical curve. This area A can efficiently be computed using
Stokes’ theorem in two dimensions,

A =
∫

A
dA =

∫

A
rot~v dA =

∫

∂A
~v ds , (140)

where ~v must be a vector field with rot~v = −∂yvx + ∂xvy = 1, such as ~v =

1/2 (−y, x)T. The calculation of the area thus reduces to a simple line integral,
which is far cheaper than standard connected-component labelling algorithms.
Practically, the line integral is implemented by means of a loop over all boundary
points, summing up the contributions using the so-called shoelace formula.

• Parallelisation: The calculations can optimally (and trivially) be parallelised
with OpenMP/MPI. The wall-clock time decreases inversely proportional to the
number of CPUs used.

8.3 extreme value and order statistics with cluster mergers

We now study the impact of cluster mergers on the order statistics of the largest
Einstein radii in a certain cosmological volume. For comparison with the previous
chapter, we exemplarily consider full-sky realisations of the cluster population in the
redshift range 0.5 ≤ z ≤ 1.0, which contains the twelve high-redshift (z > 0.5) MACS
clusters analysed by Zitrin et al. (2011). In agreement with these authors, we assume
a constant source redshift of zs = 2.0 throughout this chapter. We sampled 2 000 mock
realisations of the cluster population and collected the largest Einstein radius of each
run. These data allowed us to accurately estimate the order statistics of the twelve
largest Einstein radii.

Figure 40 shows the mass and redshift distributions of the clusters that produce
the largest and the twelfth-largest Einstein radius. Because our analysis also includes
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Figure 41: CDFs of the twelve largest Ein-
stein radii, including the impact of cluster
mergers. The black dashed curve indicates
the fit of the GEV distribution to the CDF
of the largest Einstein radius.

merging clusters, it is important to stress that the mass referred to in Fig. 40 is
the total mass of all haloes enclosed by the corresponding tangential critical curves.
Generally, we note that cluster mergers do not significantly alter the mass and redshift
distributions of the strongest gravitational lenses. The plots shown here are almost
identical to those presented in Sect. 7.3, which did not include the impact of cluster
mergers. This is why we only show the plots of the first and the twelfth rank
here. Most importantly, however, Fig. 40 confirms that the lower mass threshold of
Mmin = 1014 M�/h discussed in Sect. 8.2.2 is well justified.

Figure 41 shows the CDFs of the twelve largest Einstein radii extracted from the
2 000 mock realisations sampled. While cluster mergers notably shift the CDFs to
larger Einstein radii, the general characteristics discussed in Sect. 7.3 are conserved.
The CDFs steepen with decreasing order, implying that lower orders are, in principle,
more constraining. The black dashed line indicates the excellent fit of the GEV to the
CDF of the 2 000 maxima sampled.

Next, we quantify the impact of cluster mergers on the GEV distribution of the
largest Einstein radius. With mergers, the best-fitting parameters of the GEV distribu-
tion are given by α = (50.85± 0.02)′′, β = (6.61± 0.03)′′, and γ = (0.100± 0.005). Ex-
cluding mergers, the best-fitting parameters are α = (45.88± 0.02)′′, β = (6.52± 0.02)′′,
and γ(0.105± 0.004). The CDFs and the PDFs of these distributions are compared
in Fig. 42. In both cases, the shape parameters γ are positive, indicating that the
GEV distributions are bounded from below. Most importantly, mergers increase the
location parameter α by ∼ 5′′ (∼11%), which means that the GEV distribution is
significantly shifted to higher values. The mode of the GEV distribution (cf. Eq. (130))
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Figure 42: Impact of cluster mergers on the CDF and the PDF of the largest Einstein radius.
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Figure 43: Box-and-whisker diagram com-
paring the order statistics of the twelve
largest Einstein radii including and exclud-
ing cluster mergers. For each rank, in the
upper plot the red lines indicate the median
(Q50), the blue bordered grey boxes give
the interquartile range (IQR), and the black
whiskers mark the range between the 2 and
98 percentile (Q2, Q98) of the order statist-
ics including the impact of cluster mergers.
The green errors bars indicate the 68% con-
fidence intervals of the order statistics ex-
cluding mergers. The lower plot shows the
percentage increase of the medians caused
by mergers.

increases from 45.2′′ without mergers to 50.2′′ with mergers. Similarly, the expectation
value (cf. Eq. (131)) increases from 50.4′′ to 55.4′′.

The impact of cluster mergers on the order statistics of the twelve largest Einstein
radii is summarised by the box-and-whisker diagram presented in Fig. 43. We
chose this representation to simplify the comparison with the results of Chap. 7, but
also because these diagrams compactly visualise important properties of statistical
distributions. All medians of the twelve (six) highest orders are higher than 36′′

(43′′), indicating that the ΛCDM model predicts a dozen Einstein radii as large as
∼ 35′′− 55′′ in the considered cosmological volume. If the 98 percentile was defined as
exclusion criterion, one would need to observe approximately ten Einstein radii with
θeff & 41′′, five with θeff & 48′′, or one large system with θeff & 80′′, to claim tension
with the expectations of the ΛCDM model. Current observational data certainly do
not exceed these expectations (Zitrin et al. 2011). Finally, the lower panel of Fig. 43
reveals that not only the expected value of the largest Einstein radius, but also those
of the lower orders increase by 10− 12% because of the impact of cluster mergers.

In summary, the results of this section agree well with the findings of Chap. 5:
cluster mergers are significant for the statistics of the strongest lenses. As a rule of
thumb, mergers increase the expected values of the largest Einstein radii by ∼10%.

8.4 comparison with observational data

8.4.1 Galaxy cluster MACS J0717.5+3745

As discussed in Chap. 6, the X-ray luminous galaxy cluster MACS J0717.5+3745 is a
remarkable system: it is extremely massive, actively merging, and exhibits the largest
known Einstein radius (Zitrin et al. 2009, 2011; Limousin et al. 2012). The cluster
was re-observed as part of the Cluster Lensing And Supernova survey with Hubble
(CLASH; Postman et al. 2012), a 524-orbit Hubble Space Telescope (HST) multi-cycle
treasury program. Thereupon, Zitrin and collaborators revised their initial mass
model from 2009 as published in Medezinski et al. (2013). The latest strong-lensing
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Figure 44: Comparison between the theor-
etically expected GEV distribution of the
largest Einstein radius in the redshift range
0.5 ≤ z ≤ 1.0 and the Einstein radius of the
galaxy cluster MACS J0717.5+3745.

analysis of MACS J0717.5+3745 was conducted as part of the Hubble Frontier Fields
program 1, yielding an Einstein radius of θeff = (55± 6) ′′ for a source redshift zs = 2.0
(Zitrin et al., in preparation; private communication).

Although our case study in Sect. 6.4 already revealed that the Einstein radius of
MACS J0717.5+3745 is not in tension with the expectations of the ΛCDM model, for
completeness, we briefly update our results with the latest cosmological parameters
from Planck (Planck Collaboration et al. 2013), and include the impact of cluster
mergers. The cosmological volume analysed in the previous section was purposely
chosen to contain the twelve MACS clusters discussed before. We can therefore use
the best-fitting GEV parameters derived in Sect. 8.3.

Figure 44 shows that cluster mergers further confirm our main conclusion from
Chap. 6: The large Einstein radius of MACS J0717.5+3745 clearly does not exceed the
theoretical expectations of the ΛCDM model. In contrast, the probability for observing
a maximum Einstein radius even larger than 55′′ amounts to ∼42%. Neglecting
cluster mergers, this probability decreases to ∼24% (as can easily be verified by
evaluating the GEV distribution with the best-fitting parameters given in Sect. 8.3).
The 98 percentile of the GEV distribution is located at θeff = 82′′, indicating that
extraordinarily strong lenses would have to be observed to claim disagreement with
the ΛCDM model. Interestingly, when cluster mergers are included, the Einstein
radius of MACS J0717.5+3745 (accidentally) coincides with the expectation value
θeff = 55′′ of the theoretical GEV distribution (cf. Eq. (131)).

There is no need to revise the order statistics of the twelve MACS clusters discussed
in Sect. 7.4, because we already showed that most Einstein radii of the lower orders
lie below the theoretically expected values, even if cluster mergers are excluded. As
indicated by Fig. 43, the inclusion of mergers would not add any new insight.

8.4.2 SDSS clusters

Hao et al. (2010) applied a cluster-finding algorithm to the Sloan Digital Sky Survey
(SDSS) Data Release 7 (DR7) data (Abazajian et al. 2009) and assembled a large optical
galaxy cluster catalogue consisting of over 55 000 rich clusters in the redshift range
0.1 ≤ z ≤ 0.55. Zitrin et al. (2012) proposed a new method for performing a simplistic
extrapolation of a strong-lensing analysis of these clusters in an automated way, and

1 http://www.stsci.edu/hst/campaigns/frontier-fields/

http://www.stsci.edu/hst/campaigns/frontier-fields/
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Figure 45: Box-and-whisker diagram comparing the theoretically expected order statistics of
the twelve largest Einstein radii in the redshift range 0.1 ≤ z ≤ 0.55 (full sky) and the largest
Einstein radii in the SDSS sample analysed by Zitrin et al. (2012). For each rank, the red lines
indicate the median (Q50), the blue bordered grey boxes give the interquartile range (IQR),
and the black whiskers mark the range between the 2 and 98 percentile (Q2, Q98) of the order
statistics. The green error bars indicate the estimated 68% confidence intervals of the Einstein
radii in the SDSS sample.

Table 7: Comparison between the twelve largest Einstein radii in the SDSS sample analysed
by Zitrin et al. (2012) and the theoretically expected order statistics for the redshift range
0.1 ≤ z ≤ 0.55 (full sky). The error bounds of columns two and three indicate the 1σ confidence
intervals. Q98 denotes the 98 percentile of the theoretical order statistics.

SDSS theory

rank θeff [arcsec] θeff [arcsec] Q98 [arcsec]

1st 69± 12 59± 9 92

2nd 69± 12 52± 5 68

3rd 65± 11 49± 4 60

4th 62± 10 47± 3 56

5th 62± 10 46± 3 53

6th 60± 10 44± 3 51

7th 58± 10 43± 2 49

8th 58± 10 43± 2 48

9th 58± 10 42± 2 47

10th 57± 10 41± 2 46

11th 57± 10 41± 2 45

12th 56± 10 40± 2 44
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applied their technique to a subsample of 10 000 clusters to estimate their Einstein
radii.

The method proposed by Zitrin et al. (2012) is based on the simple assumption that
the light distribution observed in galaxy clusters generally traces their mass distribu-
tion well. The starting points are the red cluster member galaxies, which are assigned
simple parametric mass profiles. The superposition of these individual profiles rep-
resents the galaxy component of the mass distribution. The dark matter component
is constructed by smoothing the galaxies’ distribution with a two-dimensional cubic
spline interpolation. The sum of the two components serves as an indicator for the
total projected matter density map of the cluster. The crucial point of the method is
the calibration of the mass-to-light (M/L) ratio, which sets the normalisation of the
projected surface mass density. Zitrin et al. (2012) calibrated this M/L ratio using a
subsample of ten well-studied galaxy clusters that were covered by both high-quality
HST images and the SDSS, and assumed that this calibration is (approximately) valid
for the entire SDSS sample. Using this procedure, Zitrin and co-workers automatically
(and blindly) processed the 10 000 SDSS clusters, derived simple lens models from the
photometry of the cluster member galaxies and estimated the corresponding Einstein
radii for sources at redshift zs = 2.0.

To compare their results with the theoretically expected order statistics of the largest
Einstein radii, we sampled 2 000 mock realisations of the redshift range 0.1 ≤ z ≤ 0.55,
assuming full sky coverage. Note that this choice was purposely too optimistic,
because the SDSS DR7 only covered approximately one fourth of the full sky and,
additionally, Zitrin et al. (2012) analysed only ∼20% of the discovered clusters to
reduce the required computing time. Our theoretical estimates should therefore be
expected to exceed the distribution of Einstein radii determined for the subsample of
SDSS clusters.

However, Fig. 45 and Table 7 reveal exactly the opposite trend. The mean estimated
Einstein radii extracted from the SDSS sample significantly exceed the expected values,
and the difference increases with increasing rank. Starting with the second rank,
the mean estimated Einstein radii even exceed the 98 percentiles of the theoretical
distributions. On the other hand, the errors of the SDSS Einstein radii are still
large. Zitrin et al. (2012) suggested to assume an uncertainty of at least ∼17% for
the 1σ-boundary. From this point of view, all observed Einstein radii agree with
the theoretically expected values within the 3σ confidence interval. However, we
recall again that our theoretical estimates were computed for a substantially larger
cosmological volume.

These results may imply that the observed lenses at low redshifts are somewhat
stronger than theoretically expected, which would agree with the findings of Horesh
et al. (2011), for example. Given the current state of the observational data, however,
this conclusion would certainly be premature. The uncertainties of the method used by
Zitrin et al. (2012) are still significant. Most importantly, the reliability of the assumed
functional form for the M/L ratio needs to be verified and re-calibrated with a larger
sample of well-studied lenses. Furthermore, Zitrin and co-workers mainly focused on
the universal distribution of Einstein radii, instead of analysing the strongest lenses of
their sample in detail (A. Zitrin, private communication).
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More cautiously, we therefore conclude that the results of this section might indicate
a discrepancy between theory and observations at low redshifts, and that it should
certainly be interesting to carefully re-analyse the SDSS sample. Given the current
state of the data and also the theoretical uncertainties influencing the modelling of
the order statistics, there is, however, no reliable statistical evidence for claiming that
these observations seriously challenge the predictions of the standard cosmological
model.

8.5 conclusions

In this chapter, we focused on the question whether or not the strongest observed
gravitational lenses exceed the theoretical predictions of the standard cosmological
model. We combined all previously developed techniques and calculated the impact
of cluster mergers on the order statistics of the largest Einstein radii. Moreover, we
compared the theoretical results with observational data at different redshifts.

In the first part of this chapter, we demonstrated that cluster mergers shift the
GEV distribution of the largest Einstein radius to significantly higher values, typically
increasing the location parameter and expected values by ∼10%. Furthermore, we
showed that the order statistics of the n largest Einstein radii are also shifted by a
similar amount. This confirmed our findings of Chap. 5, where we argued that cluster
mergers are particularly important for the statistics of the strongest gravitational
lenses.

In the second part of this chapter, we compared the order statistics of the largest
Einstein radii, including the impact of cluster mergers, with recent observational data.
As already shown in Chaps. 6 and 7, at redshifts z > 0.5, we see no evidence for
a tension between the strength of observed gravitational lenses and the theoretical
predictions of the ΛCDM model. On the contrary, we actually find that the largest
known Einstein radius at redshifts z > 0.5, which was observed in the galaxy cluster
MACS J0717.5+3745 (Zitrin et al. 2009, 2011; Limousin et al. 2012; Medezinski et al.
2013), agrees excellently well with the theoretical expectation value.

At redshifts z < 0.5, the situation is a little more controversial. We compared the
largest Einstein radii of the 10 000 SDSS clusters analysed by Zitrin et al. (2012) to the
theoretically expected order statistics, finding that the observed gravitational lenses in
this redshift range appear to be stronger than expected. However, in this context, it is
important to stress that the errors of the Einstein radii estimated for the SDSS sample
are still large. Thus, given the premature state of current data, there is still no reliable
statistical evidence for claiming disagreement with the ΛCDM model. Nevertheless,
the SDSS sample might contain extraordinarily strong gravitational lenses, and it
should certainly be interesting to carefully re-analyse these systems in future studies.



S U M M A RY A N D C O N C L U S I O N S

This thesis treated two largely different topics. In the first part, we employed radially
inhomogeneous LTB models to probe the validity of the Copernican principle. In
the second part, we investigated whether or not the strongest observed gravitational
lenses exceed the maximum theoretical expectations of the ΛCDM model. Although
we already presented detailed conclusions at the end of the individual chapters, we
now try to summarise the most important results and provide a short outlook.

The line of reasoning of the first part can be summarised as follows: Current
observational data, in particular the remarkable uniformity of the CMB spectrum,
seem to confirm the fundamental assumption that the Universe is statistically isotropic
about our position. In contrast, the assumption of spatial homogeneity on large
scales is hard to confirm, mainly because it is difficult to disentangle a temporal
from a spatial evolution along the PNC. Can we construct spherically symmetric, but
radially inhomogeneous cosmologies that fit current data even more accurately than
the standard cosmological model?

To this end, we first envisaged to live at the centre of a Gpc-scale LTB void whose
matter density profile is tuned to fit current observational data. At first sight, these
giant void scenarios appear very tempting because they are able to explain the ap-
parent accelerated expansion of the Universe without resorting to any form of dark
energy. On the other hand, these models obviously breach the Copernican principle,
require radially fine-tuned matter density profiles, and are highly unlikely within the
framework of the standard inflationary paradigm. Irrespective of these important
(philosophical) issues, we showed that a quite general class of void models is ruled
out by a very limited set of observational data. More precisely, we demonstrated
that LTB models with constant bang time function and zero cosmological constant
cannot simultaneously fit the small-angle CMB spectrum and the high local Hubble
rate observed by Riess et al. (2011).

Several authors who found similar results proposed various extensions such as
varying bang time functions that could help to reconcile the simplest LTB void models
with current data (see e.g. Clarkson & Regis 2011; Nadathur & Sarkar 2011; Bull
et al. 2012). However, we argued that we have fundamental objections against most
modifications proposed, mainly because they eventually lead to even more fine-tuned,
alternative cosmological models that would clearly be penalised by Ockham’s razor
in comparison with the much simpler ΛCDM model. In addition, according to
Lovelock’s remarkable theorems, the cosmological constant appears naturally in the
field equations of general relativity and of any other metric theory of gravity, provided
they satisfy very general simplicity conditions (Lovelock 1971, 1972). We thus argued
that considering LTB models with non-zero cosmological constant seems to be the
most natural extension of our approach. This is an interesting step because it shifts
the research focus away from the dark energy problem to more general tests of the
Copernican principle.
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Based on this idea, we considered ΛLTB models with flexibly parametrised matter
density profiles and used a Monte Carlo sampler in combination with recent obser-
vational data to systematically vary (and optimise) the shape of these profiles. Our
analysis revealed that radially inhomogeneous models with fine-tuned matter density
profiles do not noticeably improve the fit to the data. From a statistical point of view,
the increased complexity of these models is not justified. Surprisingly, even without
imposing any prior constraints on the detailed shape of the matter density profiles,
the best-fitting ΛLTB models are almost perfectly homogeneous. Clearly, we could not
find any statistical evidence for deviations from spatial homogeneity on the largest
observable scales. On the contrary, we can conclude that the data considered in the
first part of this thesis statistically favour the standard cosmological model and hence
also provide (indirect) statistical support for the validity of the Copernican principle.

However, we also showed that more accurate constraints are required to ultimately
confirm (or refute) the assumption of spatial homogeneity on the largest scales. Of
course, future surveys containing more observational data will improve the situation.
In this work, for instance, we used the Union2.1 compilation containing 580 type Ia
supernovae to constrain ΛLTB models. New surveys such as the Dark Energy Survey
(DES)2 or the Large Synoptic Survey Telescope (LSST)3 are expected to observe at least
two orders of magnitude more supernovae up to redshifts z ∼ 1.2 (Hook 2013). These
data will impose much tighter constraints on the detailed shape of the luminosity
distance and thus also help to constrain inhomogeneous cosmological models.

More importantly, however, we expect that the completion of our new numerical
code for solving the linear perturbation equations on LTB backgrounds (Meyer et al.,
in preparation) will make a big difference. First, we intend to study the strength of
the coupling between scalar, vectorial, and tensorial modes on LTB backgrounds with
realistic cosmological initial conditions. If the coupling is sufficiently strong, it will be
interesting to investigate whether this induces observable effects (e. g. a significant
excitation of tensorial modes) which could help to quantify possible deviations from
spatial homogeneity. Furthermore, we shall be able to extend our analysis of ΛLTB
models by several observables that depend on the details of linear structure formation.
This includes important cosmological probes such as cluster number counts, baryonic
acoustic oscillations, or (tomographic) weak-lensing surveys (Schäfer & Heisenberg
2012; February et al. 2013). These observables contain a wealth of cosmological
information and should certainly help to confirm (or refute) the Copernican principle.

In the second part of this thesis, we focused on the question whether or not the
strongest observed gravitational lenses are in conflict with the concordance ΛCDM
model. Our most important results of this part can be summarised as follows.

We showed that the theory of extreme value statistics provides a rigorous math-
ematical framework for studying the occurrence probability of the largest Einstein
radius in a certain cosmological volume. In particular, the description in terms of
the GEV distribution allows formulating exact ΛCDM exclusion criteria based on the
largest observed Einstein radius in a concrete survey. However, inference based on a
single observation is subject to several statistical peculiarities (e. g. statistical outliers)

2 http://www.darkenergysurvey.org
3 http://www.lsst.org

http://www.darkenergysurvey.org
http://www.lsst.org
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and might thus be dubious. Therefore, we argued that it is beneficial to extend our
approach by considering the order statistics of the n largest Einstein radii, which
allows formulating more robust ΛCDM exclusion criteria based on n observations
instead of a single extreme event.

We developed fast, semi-analytic tools for forecasting the statistical strong-lensing
properties of cosmological cluster populations. In particular, these tools allowed us
to model the theoretically expected order statistics of the n largest Einstein radii in a
predefined cosmological volume. While developing these methods, we demonstrated
that cluster mergers are an important mechanism to substantially boost the lensing ef-
ficiency of the strongest lenses. For this reason, future semi-analytic studies inevitably
need to take the impact of cluster mergers into account before questioning the validity
of the ΛCDM model based on extreme strong-lensing events.

Furthermore, we found that the order statistics of the n largest Einstein radii is
strongly influenced by a wide range of theoretical assumptions of the ΛCDM model.
This property can both be interpreted as a strength and a weakness. It can be seen as
a strength because it renders the order statistics a powerful cosmological probe that
sensitively reacts to changes of the cosmological parameters (e. g. Ωm and σ8), certain
details of structure formation (e. g. merger rates and halo mass function), and the
internal properties of galaxy clusters (e. g. concentration and triaxiality). On the other
hand, it can be seen as a weakness because due to this sensitivity, the order statistics
is currently still subject to many theoretical uncertainties. Given the current state of
the theory, it is certainly difficult to formulate reliable exclusion criteria that seriously
challenge the underlying cosmological model.

There are, however, many details that can (and certainly will) be improved in future
works. From a theoretical point of view, our analysis of the order statistics of the
largest Einstein radii revealed that the following aspects of the semi-analytic modelling
require substantial improvement: (1) the accuracy of the halo mass function, (2) the
mass–concentration relation of massive clusters, and (3) the statistical description
of triaxial dark matter haloes. In addition, we adopted a clearly simplistic picture
of galaxy clusters, neglecting, for instance, substructures and the brightest cluster
galaxies (BCG), both of which are known to further boost the strong-lensing efficiency
(Meneghetti et al. 2013). At last, our simplistic model for the kinematics of cluster
mergers could be improved by taking into account that (1) the major axes of infalling
substructures are intrinsically aligned with the major axis of the main halo due to its
tidal field, (2) subhaloes preferentially approach the main halo along its major axis
(Lee et al. 2005; Altay et al. 2006; Zhang et al. 2009), and (3) impact parameters during
cluster collisions are finite (Sarazin 2002).

From an observational point of view, it will be important to have homogeneous
cluster surveys with well defined selection functions. Since we showed that the
strongest gravitational lenses stem from a wide range in mass, it would be desirable
to have surveys that not only observe the most massive galaxy clusters but ideally
monitor complete samples of clusters with masses M & 1014 M�/h. Given current
and upcoming surveys (e. g. DES, LSST, the Euclid satellite4; see Meneghetti et al.

4 http://www.euclid-ec.org

http://www.euclid-ec.org
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(2013) for a comprehensive review), we are optimistic that this can be achieved in the
near future.

What can be said for sure is that (1) the discussion of the arc statistics problems and
the Einstein ring problem certainly improved (and will improve) our understanding
of cluster physics and structure formation, and (2) the statistics of strong-lensing
events can be used as an important consistency check of the underlying cosmological
model. Finally – and this is probably the most important result of the second part
of this thesis – we can conclude that there is no statistical evidence at present for
claiming that the largest observed Einstein radii exceed the theoretical expectations of
the ΛCDM model.

Summarising both parts, we can conclude that the standard cosmological model
successfully passed all statistical probes discussed in this thesis. From this point of
view, the flat ΛCDM model remains a remarkable success. Nevertheless, we shall
keep on questioning its foundations.
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