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Röntgenquantenoptik mit Mößbauerkernen in Dünnschichtkavitäten — In dieser Arbeit wer-
den Dünnschichtkavitäten mit eingebetteten Mößbauerkernen, die nahe ihrer Resonanz mit Rönt-
genlicht wechselwirken, aus quantenoptischer Perspektive untersucht. Eine umfassende theore-
tische Beschreibung wird entwickelt und im linearen Anregungsraum, der für heutige Experi-
mente von Bedeutung ist, werden kompakte analytische Ausdrücke für die Observablen gewon-
nen. Auch komplexe Kavitäten können in sehr guter Übereinstimmung mit früheren Experi-
menten und semiklassischen Methoden modelliert werden. Es wird gezeigt, dass die spektrale
Antwort des Systems ohne magnetischer Hyperfeinstrukturaufspaltung der Kerne aus durch-
stimmbaren Fano-Resonanzen besteht. Diese Linienformkontrolle wird experimentell realisiert
und ermöglicht es in guter Übereinstimmung mit den Vorhersagen spektroskopische Eigen-
schaften mit hoher Präzision zu bestimmen und die Phase der Kernresonanz zu rekonstruieren.
Durch die Ausrichtung der Magnetisierung sowie der Lichtpolarisation können fortgeschrittene
quantenoptische Levelschemata realisiert werden. In diesen werden vakuuminduzierte Kohärenz-
effekte vorhergesagt und erfolgreich im Experiment bestätigt. Weiterhin wird gezeigt, dass die
Gruppengeschwindigkeit von Röntgenlichtpulsen in der Kavität gesteuert werden kann. Eine
Beobachtungsmethode dafür wird eingeführt und verwendet, um verlangsamtes Licht experi-
mentell zu demonstrieren. Zuletzt werden nichtlineare Effekte, die mit zukünftigen Lichtquellen
beobachtbar werden könnten, untersucht und ein nichtlinearer Mechanismus zur Linienformkon-
trolle wird diskutiert.

X-Ray Quantum Optics With Mössbauer Nuclei In Thin-Film Cavities — In this thesis thin-
film cavities with embedded Mössbauer nuclei probed by near-resonant x-ray light are studied
from a quantum optical perspective. A theoretical framework is developed and compact expres-
sions for the observables are derived for the linear excitation regime, which is encountered in
current experiments. Even advanced cavity layouts can be modeled in excellent agreement with
the results of previous experiments and semi-classical approaches. In the absence of magnetic
hyperfine splitting, the spectral response of the system is found to be formed by tunable Fano
profiles. An experimental implementation of this line shape control allows to extract spectros-
copic signatures with high precision and to reconstruct the phase of the nuclear transition in
good agreement with the theoretical predictions. The alignment of medium magnetization and
polarization control of the x-rays enable to engineer advanced quantum optical level schemes, in
which vacuum induced coherence effects are predicted and successfully demonstrated in an ex-
periment. Furthermore, it is shown that group velocity control for x-ray pulses can be achieved
in the cavity. A scheme for its observation is proposed and then employed to experimentally
confirm sub-luminal x-ray propagation. Finally, non-linear effects, which could become acces-
sible with future light sources, are explored and a non-linear line shape control mechanism is
discussed.
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Chapter 1

Introduction
Quantum mechanics is a seminal tool for various applications in our everyday life as well as for
our fundamental understanding of the universe. At its boundary to the science of light, the realm
of quantum optics has experienced a tremendous progress in the last decades. Counterintuitive
concepts to control light with matter or matter with light and the investigation of fundamental
issues in quantum mechanics are indicative of the vast range of aspects which can be realized in
the lab by now [1–3]. To put it in the words of Serge Haroche and Jean-Michel Raimond: “The
quantum has already delivered a lot.” [2]
This development in quantum optics has been very successful for microwaves, infrared or visible

light. However, until recently the study in higher frequency domains has been neglected, mostly
due to the lack of proper radiation sources. The currently emerging field of x-ray quantum optics
aims to establish the concepts of quantum optics in this new parameter regime [4], where we can
again expect that “the quantum will deliver a lot”.
Despite the fact that x-ray radiation is not conceptually different from visible light in terms

of the theory of electromagnetism, it is attended by a number of assets and drawbacks, since the
structures employed as target materials and the handling in experiments can strongly differ from
the lower frequency regime. X-rays, for example, allow to excite not only the valence, but also the
inner shell electrons in atomic media, and thus can be employed to study exotic systems under
extreme conditions. Due to their shorter wavelength, x-rays can be focused to the nanometer
range [5, 6] and explore physics at the nanoscale and applications therein [7], they provide high
spectral resolution as the diffraction limit of visible light is circumvented [8, 9] and experiments
can be operated with near 100% detection efficiency [4].
A distinct drawback, though, is the availability of coherent light sources in the x-ray domain

as required for most applications in the quantum optical context. However, recent developments
make this aim come into reach: 3rd generation synchrotron radiation sources offer unprecedented
beam qualities, such as a high beam brilliance, huge photon numbers, pulses in the range of
several ten picoseconds and a high beam collimation, which enables the study of previously
inaccessible systems [10]. Additionally, free-electron lasers can provide x-rays with even more
favorable characteristics [11–13]. Future facilities [14–18] and enhancement schemes such as self-
seeding [19] or two-color x-ray lasers [20] are expected to further enrich the spectrum of light
sources, which are suitable for quantum optical experiments in the x-ray regime.
Naturally, the advent of these high-performance x-ray radiation sources opened up a vast

field of applications in different disciplines, such as material science, condensed matter physics,
spectroscopy or imaging in structural biology. Celebrated examples include nanocrystallogra-
phy [21, 22], lensless imaging of single molecules [23–25] or viruses [26], femtosecond electronic
responses [27] and non-linear optical effects [28]. Quantum mechanical aspects have been touched
in experiments on parametric down conversion [9, 29–31], x-ray wave mixing [32], stimulated
emission [33], x-ray control with light [34] and atomic inner-shell lasing [35]. On the theory
side, numerous schemes have been suggested, such as x-ray frequency comb generation [36–38]
or implementation of electromagnetically induced transparency at x-ray frequencies [39].
In spite of this progress, it is important to realize that the novel x-ray light sources are in

many aspects inferior to, e.g., lasers in the visible regime. Samples in the x-ray domain cannot be
driven continuously, but only irradiated with short radiation pulses. At the same time, multiple
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Chapter 1: Introduction

sources with different x-ray frequencies are usually not available in a single lab. Additionally, 3rd
generation synchrotron sources provide a low resonant photon intensity [7], such that the light-
matter interaction is mainly characterized by linear processes. But perhaps most importantly,
current x-ray radiation suffers from low coherence properties compared to the light in the lower
frequency domain [40].
Full exploitation of quantum optics, however, requires coherent control, quantum effects and

non-linear light-matter interaction. Hence, the ideas, phenomena and applications known from
the visible regime cannot be directly transfered into the realm of x-ray physics. Rather, it is re-
quired to developed new approaches and techniques both on the theoretical and the experimental
side, in order to establish the field of x-ray quantum optics. In particular, a more sophisticated
control exploiting the concepts of coherence and interference is desirable.
While x-rays can in principle interact with the transitions of atomic inner-shell electrons,

driving nuclear resonances forms an interesting alternative [41–43]. In particular, Mössbauer
nuclei offer some unique features. Due to their recoilless transitions, they offer extremely narrow
resonance widths and a high quality factor, which is an important prerequisite for precision
spectroscopy [44, 45], precision measurements [46, 47] and quantum-assisted metrology at x-ray
energies [48]. Mössbauer transitions can be studied both in the time and frequency domain [49]
and the nuclei can be easily embedded in solid state or nanostructured targets. This way,
distortions like atomic movement or collisions like in atomic gases are avoided and systems can
be operated essentially decoherence-free [50]. Furthermore, in many situations the light-matter
interaction is boosted by cooperative effects between the nuclei [51, 52].
These distinct features render Mössbauer nuclei a perfect candidate for the purpose of x-ray

quantum optics. Especially the archetype Mössbauer nucleus 57Fe with its transition at 14.4 keV
and a line width of only 4.7 neV is understood in detail, the required technology and instrumenta-
tion is well established and it constitutes a proven setup in traditional experiments. Hence, it is no
surprise that this Mössbauer isotope facilitated a number of successful experiments with a quan-
tum optical context. Examples are single photon storage [53], γ-ray photon echos [54, 55], single
photon superradiance and the measurement of the cooperative Lamb shift in nuclei [52], realizing
the phenomena of electromagnetically induced transparency [56] and spontaneously generated
coherences [50], coherent control of photon waveforms [57], line shape control and interferometric
phase measurements on 57Fe nuclei [58] and group velocity control of x-ray pulses [59].
Also on the theoretical side, a number of proposals exploiting the distinct features of Mössbauer

nuclei for quantum optical purposes were suggested, such as creation of entanglement for x-ray
photons [60, 61] or between macroscopic solid objects [62], controlling nuclear decay channels [63],
storage and phase modulation of x-ray photons [64], field control of x-ray photons [65] and
analyses on nuclear lasing [66–68]. Other suggestions involving the interaction of x-rays with
nuclear transitions include nuclear population transfer by quantum optical means [69, 70] and
coherence-enhanced studies on novel clocks based on nuclear transitions [48].
These examples illustrate that Mössbauer and thus also x-ray science can profit from well-

established quantum optical concepts developed in the visible frequency range. However, as
already pointed out above, the experimental implementations do not rely on a simple transfer
of the setups from the optical to the x-ray frequency regime. Rather, the new domain requires
to develop fundamentally new ideas. This can be already seen from the fact that, unlike for the
visible regime, typically only a single beam with a single frequency is available for experiments
in the x-ray domain. This way, sophisticated schemes had to be developed, such as external
field control [53] or engineering tailored environments for the nuclei [50, 52, 56]. These novel
concepts can potentially be ported back to the optical frequency range and thus enrich the field
of traditional quantum optics as well.
While nuclei can, in principle, be driven directly by x-ray light sources [41, 69–71], it is

the tailored environment of the nuclei mentioned above, which facilitates the exploration of a
comprehensive set of quantum optical effects. In particular, embedding the Mössbauer isotopes
into nanostructured cavities has proven to form an eligible platform. Planar cavities consisting

2



of different layers of different materials with thicknesses in the nanometer range, known as thin-
film cavities, are probed in grazing incidence and have by now been utilized in a number of
experiments [50, 52, 56, 58, 59].
These thin-film cavities have the distinct advantage that they can “trap” the x-rays between

their mirrors and thereby significantly enhance the light-matter interaction, which becomes par-
ticularly important for experiments performed at current synchrotron radiation sources, where
the resonant intensity of the radiation is still weak. In this sense, the thin-film cavities can as
well be interpreted as waveguide structures. Waveguides have been studied in the context of
light propagation and focusing of x-rays [72, 73], and recently also x-ray waveguides based on
photonic crystals have been suggested [74]. Hence, synergistic effects of these two research fields
can be expected for the future.
Resonant Mössbauer nuclei embedded into thin-film cavities will constitute the basic platform

studied in this work. So far, this setting has been only investigated theoretically by means of
semi-classical theories [51, 52, 56, 75–77]. For the full exploitation of quantum optics, though,
also a theoretical framework based on the concepts of quantum mechanics is required [78]. Such
a quantum theory would provide an alternative point of view on the x-rays and resonant nuclei
in thin-film cavities. In particular, a microscopic understanding of the occurring processes would
be gained. At the same time, the established theories have the drawback that they are based
on a linear description of the light-matter interaction. Hence, these approaches are expected to
break down as soon as non-linear scenarios, encountered at novel free-electron laser sources, need
to be considered. In contrast, a self-consistent quantum description would naturally incorporate
this high intensity limit and support a potential transfer of the Mössbauer phenomenon into a
new regime in physics.
This work is dedicated to the development of such a theory. Moreover, the new theoretical

approach will be used to explore thin-film cavities with embedded resonant Mössbauer nuclei from
a quantum optical perspective, with the aim to control x-rays with matter as well as matter with
x-rays. To this end, a strong focus is put on a close relation to realistic implementations, such that
various experimental settings can be handled accurately. Throughout this work, the developed
quantum theory is successfully applied to previously conducted as well as to novel experiments,
which highlight the significance of thin-film cavities for the purpose of x-ray quantum optics.

Outline of this work

This thesis is structured as follows: In chapter 2 the general setting considered in this work is
introduced. The layout and the basic properties of thin-film cavities are discussed and it is shown
how the cavities together with the inclusion of resonant Mössbauer nuclei constitute a platform
for the study of light-matter interaction at x-ray energies. Further, a brief overview of radiation
sources and experimental schemes employed in the context of the Mössbauer effect is given. Next,
a special focus is put on two experiments which greatly inspired this work: Utilizing thin-film
cavities and Mössbauer nuclei, they were able to demonstrate the relation to the field of quantum
optics for the first time [52, 56]. Finally, this introductory chapter covers two frameworks, which
have been used so far in the theoretical modeling. The underlying principles of these descriptions
are given and their advantages as well as their drawbacks are highlighted.
Motivated by this discussion, a full quantum theory is developed in chapter 3. To this end,

a Hamiltonian for the system is set up and the model is generalized in terms of the density
matrix via the master equation approach, to also cover incoherent effects such as leaky cavity
modes or spontaneous emission of the nuclei. Since the full model can hardly be solved due
to the large dimensionality of the Hilbert space, two approximations well justified in current
synchrotron-based experiments are performed. The effective model is then applied to the case
of an unmagnetized 57Fe layer and compact expressions for the reflectance are derived and
discussed. In particular, a superradiant enhancement and a collective Lamb shift as observed
in Ref. [52] are reobtained. Finally, the relation between the stationary observables and the
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Chapter 1: Introduction

situation encountered in an realistic scenario is shown, which qualifies the theory to be applied
in experimental settings.
In chapter 4 the connection to such an experiment is explicitly achieved. In contrast to previ-

ous studies, the incidence angle of the driving x-ray field onto the cavity surface is exploited as
an additional degree of freedom and using our quantum optical theory developed in chapter 3, we
predict the possibility to engineer the spectral response in terms of tunable Fano resonances. This
line shape control was experimentally explored together with the group of Ralf Röhlsberger and
Hans-Christian Wille at the PETRA-III synchrotron source (DESY, Hamburg). Here, the mea-
sured data is analyzed, shows very good agreement to the theoretical predictions and furthermore
reveals the origin of the cooperative Lamb shift in more detail. In addition, we demonstrate that
the measured Fano resonances allow for the reconstruction of the phase of the nuclear response
to the x-ray beam.
The effect of the magnetic hyperfine structure of the 57Fe nucleus on the reflectance is studied

in chapter 5. A semi-classical approach as well as the quantum optical model is employed for the
description. With the latter theory, we can identify several distinct features in the spectra to stem
from effects induced by the quantum nature of the vacuum, such as spontaneous generation of
coherences. These predictions were confirmed in an experiment at the PETRA-III synchrotron
source together with the Hamburg group and the results explicitly demonstrate the quantum
optical characteristics.
In chapter 6 the theoretical description is extended to cover the complete experimental stage

including detection devices in the time domain. This way, we show that narrowband x-ray pulses
can be delayed due to the light-matter interaction the thin-film cavity. A scheme to generate such
spectrally narrow x-ray pulses from broadband synchrotron radiation with existing technology
is proposed. We utilized this scheme in collaboration with the group of Ralf Röhlsberger in an
experiment at the European Synchrotron Radiation Source (ESRF, Grenoble). The measured
data demonstrates the sub-luminal light propagation in good agreement with the theoretical
predictions and x-ray time delays up to 35 ns are observed. Furthermore, the extended formalism
is employed to provide an alternative point of view of measured spectra in Fourier space.
Up to this point, the theoretical description was limited to a single layer of resonant nuclei and

a single cavity mode. In chapter 7 we extend our quantum optical model to include both multiple
layers and multiple modes. It is shown that these additions enable a quantum optical description
of a setting in thin-film cavities, which was used to realize the phenomenon of electromagnetically
induced transparency [56]. A very good agreement to the predictions of the semi-classical theories
is found.
In chapter 8 a first insight into the physics of thin-film cavities beyond synchrotron-based

experiments is provided. High x-ray field strengths achieved with intense radiation sources
can give rise to non-linear effects and are studied theoretically in two different ways. First,
the stationary observables of an idealized system are studied by solving a Dicke-type model
analytically. In a second approach, a short excitation pulse is considered and emission spectra
for several configurations are computed numerically. This way, a novel control mechanism for
the line shape is discovered.
Finally, the findings of this thesis are summarized in chapter 9 and an outlook on possible

future working directions is presented.
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Chapter 2

Background
In this chapter the layout of x-ray thin-film cavities is presented and the general setting encoun-
tered in this thesis is described. Basic features of the cavities, such as its waveguide modes,
as well as the role of Mössbauer nuclei in the system are discussed and the typical observables
of interest are identified. After this, we give a short recap of the quantum optical phenomena
which have been observed in the light-matter interaction between the x-rays and the resonant
nuclei in the cavity in previous experiments. This way, the capability of the thin-film cavities to
constitute a platform for quantum optics in the x-ray domain is highlighted. Furthermore, the
x-ray sources which are typically employed are briefly discussed, together with their implications
in the related experiments.
We then turn to two frequently used and well established theoretical descriptions of the light-

matter interaction in the cavities: Parratt’s recursive method [75] and the layerformalism [77],
which is implemented in the software package conuss [79, 80]. We review these semi-classical
models, discuss their capabilities, but also identify some of their limitations to highlight the
requirement for a full quantum description.

2.1 Description of the system
2.1.1 Thin-film cavity layout & basic properties
A thin-film cavity is formed by a stack of stratified materials in planar geometry. Each of the
layers consists of a particular material with a typical thickness on the order of a few nanometers.
This layered structure can be chosen in such a way that a waveguide or cavity is formed. This
is achieved by combining materials with low electron density (e.g. carbon) in the center of the
structure, and materials with high electron density (e.g. platinum or palladium) at outer layers,
which then act as mirrors. The electron density directly translates into the index of refraction
experienced by the probing x-ray light [77]. The spatial modulation of the refractive index then
leads to reflection of the light at the boundaries, resulting in a waveguide-like or cavity structure.
Due to the small index of refraction variations at x-ray energies, the cavity is typically probed in

grazing incidence, with small incidence angle θ with respect to the cavity surface, as illustrated
in Fig. 2.1. This setting leads to total external reflection of the impinging light, whereas for
incidence angles larger than a few mrad the reflection entirely vanishes. This special grazing
incidence geometry represents the (000) Bragg reflection [77], for which a high intensity of the
reflected beam is generally expected. However, it is the stratified nature of the cavity which
renders the angular behavior more comprehensive.
Let us briefly analyze the reflection curve of the thin-film cavity as a function of the inci-

dence angle θ. For small angles θ, the reflectance is close to unity due to total reflection. This
is visualized in Fig. 2.2(a), where the field intensity distribution of the x-rays was calculated
numerically using Maxwell’s equations in an operator-split code on a two-dimensional grid, orig-
inally written by Jörg Evers. The corresponding cavity is formed by a Pt(2.6 nm)/C(7.9 nm)/
Fe(1.5 nm)/C(9.3 nm)/Pt layer system, in which the Pt layers act as waveguide mirrors. Beyond
several mrad, the reflected intensity severely diminishes. However, also for intermediate angles it
is possible for the reflection to vanish, as shown in the field intensity distribution in Fig. 2.2(b).
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X-ray

Polarizer
Analyzer

Nanometer-sized
x-ray cavity
with embedded
resonant nuclei  

Sample

θ

Figure 2.1: Schematic of the setup studied in this work: A thin-film cavity with embedded resonant Möss-
bauer nuclei is probed by hard x-rays, possibly under the influence of a magnetic field. The transmitted
light contains signatures of the quantum mechanical interactions within the sample.

There, the cavity is probed at grazing incidence angle θ = 3 mrad, far below the total reflection
edge. The reduced reflection seen in Fig. 2.2(b) arises since the x-rays can evanescently couple
into the cavity and can propagate in a guided mode until the light is finally fully transmitted
or absorbed by the cavity materials. This resonant coupling into the modes is possible only for
particular resonance angles. In Fig. 2.2(c) the complete reflection curve is shown for the range
0 ≤ θ ≤ 10 mrad and the features discussed above can be clearly observed. In the cavity ana-
lyzed here guided modes are resonantly driven, e.g, at the incidence angles θ ≈ 3 mrad, 4.2 mrad
and 5.8 mrad. The field intensity distribution in the cavity for the first three guided modes is
illustrated in the small panels of Fig. 2.2(c). Due to the multiple reflections at the cavity mirrors,
it is substantially enhanced and visualizes the character of the modes.
Embedding a thin layer of resonant Mössbauer nuclei at the positions of the intensity amplifi-

cations has recently facilitated a platform for observing quantum optical phenomena in the x-ray
regime [50, 52, 56, 58, 59]. But already before this route was developed, the system and related
geometries have been studied in regard of purifying the nuclear reflection of γ-rays. By tuning to
a guided mode resonance, the electronic reflection is suppressed by many orders of magnitude,
and only the narrowband resonant amplitude originating from the resonant nuclei constitutes
the signal. It is then monochromatized on the level of the natural line width of the nuclei and
can be used in a subsequent experiment. In this context, the thin-film cavities were known as
grazing incidence antireflection (GIAR) films [81–85].

2.1.2 Resonant Mössbauer nuclei
The recoilless emission or absorption of high energy photons in the x-ray or γ-ray regime from
nuclei is known as the Mössbauer effect. It was discovered by Rudolf Mössbauer in 1958 [86] and
was rewarded with the Nobel Prize in Physics three years after. Recoilless emission of γ quanta is
possible, if the atomic nuclei are situated in a solid state target, such that the whole lattice absorbs
the recoil, for which it is negligible due to its large mass [87]. The tiny line width of Mössbauer
transitions has enabled the field of Mössbauer spectroscopy [88], which is utilized, e.g., in the
analysis of mineralogical compounds and employed even in extraterrestrial environments [44].
A variant of this method has been used to measure the gravitational redshift predicted by the
theory of general relativity [46, 47], highlighting the significance of the Mössbauer effect in the
field of physics.
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Figure 2.2: (a), (b) The field intensity distribution of x-rays impinging on the thin-film cavity in the
absence of resonant nuclei is visualized. The reflection of the incident light is substantially suppressed
at certain resonance angles, at which the light can resonantly couple into a guided mode in the cavity.
Note that the scaling on the axes is different by several orders of magnitude. (c) The reflection curve
is shown as a function of the x-ray incidence angle θ. Total reflection occurs for small angles. The dips
in the reflection curve indicate resonant excitations of guided modes of the waveguide. The cavity field
distribution of the first three guided modes, shown in the panels on the right, is strongly enhanced. In
the three images of the intensity profiles only in the incidence angle differs. The panels cover a range
of 0.6 mm in horizontal and of 40 nm in vertical direction. The white horizontal lines illustrate the
boundaries of the cavity layers. Parameters are given in the main text.

So far, the waveguide introduced in the previous section has been discussed only in terms of
electronic scattering of the x-rays from the materials of the layer system. For the purpose of
x-ray quantum optics, layers of resonant Mössbauer nuclei can be embedded into the cavity in
addition [50, 52, 56, 58, 59]. Such layers contain a large ensemble of nuclei, which can coherently
interact with the probing x-ray light entering the waveguide. By carefully choosing the position of
the nuclei inside the layer structure, as well as the resonantly driven mode of the waveguide (see
Fig. 2.2(c)), the interaction between nuclei and the light inside the cavity can be controlled. In
particular, different layers of nuclei can interact in a different way with the same cavity mode [56].
It is the inclusion of resonant nuclei which qualifies the considered system for applications in x-
ray quantum optics. Close to nuclear resonances, the properties of the combined system of cavity
and nuclei lead to a strong polarization and energy dependence of the scattered light.
The archetype Mössbauer transition is found in the 57Fe isotope with a natural abundance

of ≈ 2%. It features a recoilless transition at ω0 = 14.4125 keV (~ = 1 used here and in the
following) with a line width of only γ = 4.66 neV [77]. In this work, we will primarily focus
on this Mössbauer isotope, however, the theory developed here is as well applicable for other
resonances.

2.1.3 X-ray sources
In order to perform experiments with Mössbauer nuclei, appropriate light sources in the x- or
γ-ray regime are required. Historically, the required radiation was obtained from the radioactive
decay of related elements. In his original experiment, Rudolf Mössbauer used the radioactive
element 191Os, which decayed into an excited state of the Mössbauer isotope 191Ir via β decay.
The subsequently emitted γ-ray photon then matched the Mössbauer transition frequency exactly
and could be used to probe the 191Ir nuclei in a second sample [86]. Also for the Mössbauer
transition in 57Fe, the decay of a 57Co sample can serve as a proper radiation source.
These Mössbauer radioactive sources were recently employed in a number of experiments

on quantum optical phenomena [54, 55, 57, 66, 89, 90], since they provide an unprecedented
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narrowband spectral resolution. Mounting the source on a moving Doppler drive further allows
to tune the frequency of the light. However, drawbacks are the non-deterministic emission of
the photons, their random polarization, a reduced signal rate and poor collimation due to the
emission into all directions (Ω = 4π). Additionally, radioactive sources do not exist for all
Mössbauer isotopes.
For this reason, it was suggested in 1974 to instead employ pulsed synchrotron radiation

as a tunable source to probe Mössbauer transitions, which can overcome many of the obstacles
mentioned above [91]. While photon science at synchrotron facilities was first performed parasitic
to applications in particle physics, today’s 3rd generation synchrotrons, in which undulators
serve as high brilliance radiation sources, exist especially for this purpose. Dedicated nuclear
resonance beamlines have been constructed at the large synchrotron facilities, the APS [92], the
ESRF [93], SPring-8 [94] and PETRA-III [95], and provide x-ray pulses with a brilliance orders
of magnitude higher than radioactive sources and pulse lengths on the order of several 10 ps.
Typical synchrotron radiation is spectrally broad and exceeds the tiny line width of Mössbauer
transitions by many order of magnitudes. Hence, in order to obtain spectrally narrow pulses,
sophisticated monochromatization schemes are required. Synchrotron Mössbauer sources with
resolutions in the range of the natural line width have been implemented, e.g., in Refs. [96–101].
But also the broadband synchrotron radiation can be used to probe Mössbauer resonances:

Resonant nuclear scattering in forward direction constitutes the time-domain counterpart to the
traditional Mössbauer spectroscopy [49, 102]. Due to the tiny line width of Mössbauer transitions,
their characteristic emission time is very long compared to the time range in which the electronic
dynamics takes place. For the Mössbauer isotope 57Fe, e.g., the life time is 1/γ = 141 ns. Thus,
the prompt electronic response after an excitation with a short synchrotron pulse can be well
separated from the nuclear signal, which then contains the desired information on the sample in
its time spectra. A variant of this technique is known as the nuclear lighthouse effect, in which
a rotating sample is used to map the time signal to an angular scale [103–105].
In the future novel light sources based on the concept of free-electron lasers [11] are expected

to further enrich the variety of Mössbauer science and could in particular enable the step to non-
linear interactions [7]. In this work, however, we will primarily focus on scenarios performed at
synchrotron radiation sources, only in Chap. 8 the influence of much higher intensities is studied.
In synchrotron experiments, the photon occupation of the modes resonant with the narrow line
width of 57Fe is usually low, such that each synchrotron pulse typically provides less than one
resonant photon on average. Hence, postselection via the detector counts effectively corresponds
to single photon realizations [7, 52, 106, 107].

2.1.4 Experiments with relation to quantum optics
During the excitation of a homogeneous target of resonant nuclei with a synchrotron pulse with
wave vector k, not a single nucleus will be excited, but rather the spatially coherent superposition

|ψ〉 = 1√
N

N∑
n=1

eik·R
(n)
|g1g2 . . . en . . . gN 〉 , (2.1)

in which the excitation is shared amongst the nuclei [51, 108]. The state |ψ〉 is known as nu-
clear exciton [51, 109], whereas in the quantum optical context it is known as the timed Dicke
state [110]. This state has the property that it emits a photon in forward direction upon de-
excitation, and hence this constitutes the nuclear forward scattering (NFS) setting. The decay,
however, contains a complicated time behavior and does not follow a simple exponential de-
cay. The reason for this is that the superposition given above is not a radiative eigenstate of
the system [51, 111–113] and the emission characteristics of different coupled eigenstates are
superimposed.
However, probing the resonant nuclei in the cavity setting introduced above, the excited state

is also an radiative eigenstate, which then features an exponential decay. This was observed
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|2〉 |3〉

|1〉
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γ2 γ3|2〉

|3〉

Figure 2.3: In the EIT scenario from Ref. [56] one resonant layer (“|2〉”) is located at the field node of
the driven mode, a second layer (“|3〉”) is placed at the anti-node. Only the nuclei in the second layer
are directly probed by an external field and are subjected to superradiance. An effective level scheme
illustrating the interpretation of Ref. [56] is shown at the right hand side. The thicknesses of the lines
denote the relative strength of the couplings. The formed system is equivalent to an EIT setting [116].
Notation adapted from Ref. [56].

by the group of Ralf Röhlsberger in the pioneering experiment described in Ref. [52], where
a single layer of 57Fe nuclei was embedded in a thin-film cavity. Interestingly, the decay rate
did not match the natural line width of a single nucleus, but was substantially increased due
to superradiance. Next to this cooperative phenomenon, the Purcell effect [114], which is the
modification of the emission rate of nuclei due to the cavity environment, could further increase
the line broadening observed in the experiment.
The decay rate of the timed Dicke state is predicted to be complex-valued and its imagi-

nary part corresponds to a shift of the resonance energy. This is known as the collective Lamb
shift [110], since it stems from the emission and absorption of virtual photons in the atomic en-
semble. The cooperative shift for the 57Fe nuclei was measured in the same experiment (Ref. [52])
by considering the spectral instead of the time resolved properties. Only after this observation
of the collective Lamb shift, the effect could also be observed in the visible regime [115]. In the
x-ray cavity setting the superradiant amplification and the magnitude of the Lamb shift sensi-
tively depends on the cavity field intensities at the position of the resonant nuclei. By placing
the material at the anti-node of the field intensity, a pronounced superradiance and Lamb shift
is observed. The reason for this is that, figuratively spoken, the virtual photons emitted and
reabsorbed by the nuclear ensemble can well transmitted via the cavity mode.
In a further experiment performed by the group of Ralf Röhlsberger, this targeted placement of

resonant layers in the cavity was explicitly exploited [56]. Instead of a single thin resonant layer,
two particularly placed layers of 57Fe nuclei were embedded in the cavity. With the upper layer
located at a field node and the lower one at an anti-node, it was possible to observe a distinct
minimum in the center of the spectrum. This could be explained in terms of the phenomenon of
electromagnetically induced transparency (EIT) [116, 117]. The interpretation given in Ref. [56]
is depicted in Fig. 2.3 and explained in the following: Since one of the layers is placed in the
field anti-node, the collective excited state of nuclei in this layer (“|3〉”) is subjected to a high
intensity of the cavity mode field and thus is strongly coupled to the ground state (“|1〉”) via the
x-ray pulse with strength ΩP . The nuclei located in the second layer, placed at the cavity field
node, are not driven directly. However, due to radiative couplings in the cavity, the two collective
excited states of the two respective layers are mutually coupled via the rate ΩC . At the same
time, the excited state in the node layer decays only with its natural line width γ2 = γ, while
the nuclei in the anti-node are subjected to superradiant enhancement, such that γ3 � γ. This
way, a system equivalent to a standard EIT setting is realized, for which the central minimum
in the spectrum is a key observable [116].
This experiment formed the first realization of EIT in the hard x-ray regime. Remarkably,
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the experiment could be conducted with only a single driving field, which was provided by the
synchrotron beam, whereas in standard EIT settings two coherent light sources are required. In
the cavity setting, though, this second field is intrinsically provided via an intra-cavity coupling
between the states in the two 57Fe layers. Since EIT is related to lots of important phenomena
such as creating slow light pulses [118], rendering a medium transparent on demand [119], and is
assisted by huge optical non-linearities [120–122], the single photon realization of EIT might be
a powerful tool to transfer the applications known from quantum optics in the visible regime to
the x-ray domain. At the same time, this technique could of course be ported back to the visible
regime in order to realize EIT related phenomena in an even broader class of systems.
The two experiments employing 57Fe in thin-film cavities discussed above highlight that these

cavities can form a platform for quantum optics in the x-ray domain. However, a complete
theoretical description of the processes in the language of quantum optics is still lacking. Instead,
semi-classical methods have been employed so far to model the experiments. In the next section,
an introduction to two of these models will be given.

2.2 Existing semi-classical theories
2.2.1 Parratt’s formalism
A well-established theoretical method to describe the reflection of x-rays from solid state targets
was developed by Lyman G. Parratt [75]. While it was first employed in the study of surfaces,
it was later also recognized that layered materials such as thin-film cavities can be described
with this technique [81, 82, 123]. The method is based on the basic Fresnel reflection and
transmission coefficients at the boundaries of the different materials occurring in the layer stack,
which are self-consistently employed such that the reflection is described in all orders. The
Fresnel coefficients are obtained from solving Maxwell’s equations and for their calculation only
the complex refractive indices as well as the x-ray frequency and the incidence angle are required.
With Parratt’s formalism it is possible to calculate reflection curves as a function of the

incidence angle. As we have seen before, this type of curve reveals the position of the guided
modes in the waveguide via deep reflection minima. Also, it is possible to use the formalism
to compute the field distribution inside the waveguide or cavity system [123]. However, it is
not restricted to these cases. In this work we are primary interested in the case where resonant
nuclei, i.e. 57Fe atoms, are embedded in the layer system and modify the reflection as a function
of the x-ray frequency. In fact, also this situation can be studied with Parratt’s formalism. The
transitions in the near-resonantly probed nuclei can be characterized via frequency dependent
scattering amplitudes. Since the scattering amplitude is directly connected to the refractive
index [77], the effect of the nuclei can straightforwardly be included in Parratt’s formalism.
The predictions obtained from this formalism can be expected to serve as a benchmark for other

theories, since it has proven to agree extremely well with experiments. Nevertheless, we want to
emphasize that this method can be considered to be only a semi-classical one. The description
of scattering amplitudes dates back to the origin of the development of quantum mechanics.
The so-called Kramers-Heisenberg formula for the scattering of light at atomic resonances was
published already in 1925 [124] and later extended to also include the finite lifetime of the atomic
states [125]. However, in all cases the radiation field was solely treated classically and therefore,
using Parratt’s formalism, the processes in our considered cavity cannot fully be interpreted in
the language of modern quantum mechanics.

Derivation of the cavity reflectance

In the following the essential expressions of Parratt’s method will be derived.
Let us start by considering a stack of three materials with refractive indices n1, n2 and n3

as sketched in Fig. 2.4. The bottom layer is considered to be infinitively thick, such that it
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Figure 2.4: Reflection and transmission at a layer boundary. The Fresnel coefficients for reflection and
transmission are denoted by r and t, respectively. The materials have the refractive indices n1, n2 and
n3. The thickness of centered layer is d2.

only absorbs radiation and no intensity enters from below. We assume that x-rays impinge from
material 1 onto the surface of the second layer and want to calculate the total reflection rate.
This can be done by noting that the total rate can be written as a sum over infinitely many
paths. The simplest one is a direct reflection on the surface, parametrized with the Fresnel
reflection coefficient r12. In the second possible path the light is transmitted into material 2
(“t12”), reflected at the boundary to layer 3 (“r23”) and finally transmitted into the topmost
material (“t21”). But additionally, during the propagation of the light in layer 2, it accumulates
a phase φ2 twice and hence the path amplitude is modified by exp (2iφ2). High order reflections
can be defined analogously.
Summing up all contributions, one obtains for the reflection coefficient including multiple

reflections

r′12 = r12 + t12r23t21e
2iφ2 + t12r23r21r23t21e

4iφ2 + . . .

= r12 + t12r23t21e
2iφ2

∞∑
k=0

(r21r23e
2iφ2)k = r12 + t12r23t21e

2iφ2

1− r21r23e2iφ2
. (2.2)

Applying the relations r2
12 + t12t21 = 1 and r21 = −r12 valid for the Fresnel coefficients, we find

r′12 = r12 + r23e
2iφ2

1 + r12r23e2iφ2
. (2.3)

This reflection coefficient is only valid at the bottom of the cavity, since for other layers the
possible multiple reflections are not taken into account yet. However, Eq. (2.3) can easily be
utilized for generalization in a recursive fashion, as we will show in the following. Let us assume
that our cavity consists of M layers, where the layer M is infinitely thick. Then from Eq. (2.3)
we know the full reflection coefficient at the boundary between layers M − 2 and M − 1

r′M−2,M−1 = rM−2,M−1 + rM−1,Me
2iφM−1

1 + rM−2,M−1rM−1,Me2iφM−1
. (2.4)

If we now want to calculate the full reflection amplitude between the next upper set of layers,
M − 3 and M − 2, we can employ the same formula, but with the plain reflection coefficient
rM−2,M−1 replaced with that including multiple reflections, r′M−2,M−1. This procedure can be
applied recursively, until the topmost layer is reached. The recursion relation, which is the key
of Parratt’s formalism, reads [75, 82]

r′m−1,m =
rm−1,m + r′m,m+1e

2iφm

1 + rm−1,mr′m,m+1e
2iφm

. (2.5)
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In addition to the cavity layers 1 to M , we artificially include a “vacuum layer” with refractive
index n = 1 and with layer index m = 0 in the scheme. Then, the reflection coefficient of the
whole cavity is given by

R = r′0,1 . (2.6)

Next, we want to give the explicit formulas for the accumulated phases φm and the Fresnel
coefficients. For this we note that in the hard x-ray regime, the refractive index is typically
written as [77]

n = 1− δ + iβ , (2.7)

where δ and β are small real numbers. The reason behind this is that the frequencies of hard
x-rays are typically well beyond any resonances, and electrons or dipoles in the material cannot
follow the fast oscillations of the radiation field [126]. Therefore, the dielectric susceptibility is
close to zero and determined by the off-resonant tails of the resonances at lower frequencies. The
refractive index of a material can be computed, e.g., with the xraylib-library [127].
With the refractive index at hand, we can now express the wave vector k inside the different

materials. We define our coordinate system such that the surface normal of the cavity is aligned
along z-direction. Maxwell’s equations imply continuity of the wave vector along x- and y-
component, hence we find for the transverse component in material m

k(m)
z =

√
(nmk)2 − (k2 − k2

z) , (2.8)

where k is the wave vector of the incident radiation in vacuum, kz = k sin(θ) is its z-component,
θ the incidence angle and nm is the refractive index of the material. From this, the Fresnel
coefficient for the reflection can be obtained as

rm1,m2 = k
(m1)
z − k(m2)

z

k
(m1)
z + k

(m2)
z

. (2.9)

Finally, the extra phase accumulated during propagation through material m is given by

φm = k(m)
z dm , (2.10)

where dm is the thickness of the layer.

Inclusion of the resonant nuclei

With the formulas presented so far it is possible to calculate the angular dependent reflection
curves for arbitrary cavity geometries. However, we are not yet able to also include the effect of
the resonant nuclei. For this, we have to modify the refractive index and include the nuclear scat-
tering amplitude [77]. Neglecting magnetic splitting and polarization dependence, the refractive
index with the nuclear scattering amplitude of 57Fe can be written as [52, 56, 77]

n57Fe = 1− δ + iβ − 2π ρN
k3

0

fLM
2(1 + α)

2Ie + 1
2Ig + 1

1
2∆/γ + i

, (2.11)

where ρN = 83.18 nm−3 is the nuclear density in α-iron, k0 = 73.039 nm−1 the wave vector of
the transition in 57Fe, fLM ≈ 0.8 the Lamb-Mössbauer factor, α = 8.56 the factor of internal
conversion, Ie = 3/2 [Ig = 1/2] the spins of the nuclear excited [ground] state, γ = 4.66 neV
is the transition width of the resonance and ∆ = ω − ω0 is the photon detuning from the
transition energy ω0 = 14.4125 keV [49, 77]. Note that in Eq. (2.11) we adjusted the sign of
the nuclear contribution for consistent notation. With our choice, the imaginary part is, like
the electronic contribution in β, positive. Also, in contrast to the grazing incidence theories in
Refs. [52, 56, 77], the denominator in Eq. (2.11) contains k3

0 instead of k3
0 sin(θ), since the effect

of the small incidence angle is already covered within the Parratt formalism.
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2.2.2 Layerformalism
While Parratt’s formalism gives accurate results for the reflection curves or simple spectra of
nuclei embedded in thin-film cavities, it is not possible to treat arbitrary polarization directions,
magnetic hyperfine or quadrupole splittings in the iron layer with the formulas given above.
For these situations a self-consistent theory including multiple scattering to all orders has been
developed. Instead of using a single scalar field amplitude to describe the intensity profile in the
cavity, it is based on multidimensional vectors, containing the amplitudes for different scattering
channels or polarizations. Since so-called layer matrices connect amplitude vectors at the different
layer boundaries, we will denote this theory “layerformalism” throughout this work.
Below a brief introduction to the formalism is given, a detailed description can be found

elsewhere [77]. Since this theoretical method allows to include a multitude of possible distortions
like material roughness at the layer boundaries, and a vast range of effects, such as magnetic
field distributions, it could be successfully used to model several experimental settings, such as in
studies on magnetism in nanoscale materials [128–130]. Important for this work is the study in
grazing incidence. The theory for this setting was developed in Ref. [76] and a numerical variant
has been implemented in the software package conuss [79, 80]. Since the theoretical predictions
have proven to agree extremely well with several experiments [52, 56, 128–131], conuss can be
considered as a benchmark for other theory descriptions of the reflection from thin-film cavities
with resonant nuclei.
In the following we restrict to the frequent setting without any magnetic splitting, incidence

angles where cavity modes are driven resonantly, i.e. no electronic reflection occurs, and to a thin
resonant layer. It was shown in Refs. [52] and [56] that in this case an analytic treatment of the
reflection amplitude is possible. Here we will review this calculation with the aim to introduce
the basic ideas and the capabilities of the layerformalism.

Reflectance for one resonant layer

The cavity layout with the notation used in the following is sketched in Fig. 2.5. An x-ray beam
with wave vector k0 impinges on the cavity surface under an incidence angle θ. The cavity
consists of multiple layers and has the total thickness D. A single resonant iron layer at depth
zFe will be included later. We denote ~A(z) = (A+(z), A−(z))T as the field amplitude at position
z, where A+ and A− are the transmitted and reflected parts, respectively. Note that we do
not include any polarization dependence here, since our sample is not magnetized and hence no
polarization rotation will take place. Otherwise, the field amplitude vector ~A(z) would consist
of twice as many components to take into account the 2-dimensional polarization basis for each
scattering channel.
The reflection coefficient is given by the ratio of the incident and the reflected field strength

at the cavity surface.

R = A−(0)
A+(0) . (2.12)

Note that in an experiment the reflectance |R|2 is usually measured. The amplitude in depth z
is related to the surface amplitude ~A(0) via

~A(z) = L(z) ~A(0) =
(
L++(z) L+−(z)
L−+(z) L−−(z)

)(
A+(0)
A−(0)

)
. (2.13)

Here L(z) is a matrix product of contributions from the individual layers. For each layer i
we can define the layer matrix Li, which connects the field amplitude vectors at its two layer
boundaries. The quantities Lab(z) denote the scattering rates from channel b to a at position z
in the respective layer. The layer matrix is calculated as Li(z) = eiF iz, where F is the so-called
propagation matrix and contains the scattering amplitudes and refractive indices of the material.
Hence, the physics of the light-matter interaction is contained in the propagation matrices.
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Figure 2.5: Schematic of a layer system with one resonant layer at depth zFe. A+(z) and A−(z) denote
the transmitted and reflected field amplitudes at depth z, respectively.

For now we do not take into account the resonant nuclei in the thin 57Fe layer, and only
consider the electronic reflection R0. From Eq. (2.13) we find

R0 = A−(0)
A+(0) = −A+(D)L−+(D)−A−(D)L++(D)

A+(D)L−−(D)−A−(D)L+−(D) . (2.14)

With the constraint that no field enters from below, i.e. A−(D) = 0, we thus obtain

R0 = −L−+(D)
L−−(D) . (2.15)

Let us now include the 57Fe nuclei in our analysis. We assume the iron layer has thickness d
and is located around position zFe in the cavity. Since the layer is thin, we can expand its layer
matrix

LFe(d) = exp (iF Fed) ≈ 1 + iF Fed . (2.16)

While in the absence of resonant nuclei the field amplitudes at the surface and the bottom of
the cavity were related by the product of layer matrices L(D), the relation is now augmented to

~A(D) = L(D)
[
L−1(zFe)LFe(d)L(zFe)

]
~A(0)

≈ L(D)
[
1 + idL−1(zFe)F FeL(zFe)

]
~A(0) . (2.17)

Now we will turn to the propagation matrix F Fe of the resonant layer. It can be written as

F Fe =
(
fN fN
−fN −fN

)
, (2.18)

where fN denotes the nuclear scattering amplitude, which is characterized by the nuclear res-
onances. Generally, the propagation matrix further contains electronic scattering contributions
and the phase shift due to free propagation on the diagonals. For an ultrathin layer, however,
these terms can be neglected due to the dominant effect of the nuclear scattering amplitudes.
Since we do not consider a medium magnetization, 57Fe features only a single transition and the
scattering amplitude is given by the Lorentzian

fN = f0

∆ + iγ2
, (2.19)
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2.2 Existing semi-classical theories

where ∆ = ω − ω0 is the detuning between the photon and the transition energy, γ is the
transition width of the nuclear resonance and f0 is an uninteresting prefactor.
With the nuclear scattering amplitude at hand, we can now evaluate the reflection coefficient.

To this end, we again use that A−(D) vanishes, since no field enters from below the cavity.
Additionally, we now employ that we operate the cavity at an incidence angle where a guided
mode is driven and no electronic reflection occurs. This can be expressed by setting R0, which
was found in Eq. (2.15) to zero. In turn, this implies L−+(D) = 0. Finally, we use that
L++(zFe)L−−(zFe) − L+−(zFe)L−+(zFe) = det(L(zFe)) = 1. This can be seen by noting that
det(exp(F )) = exp(tr(F )) and that the trace of the propagation matrices vanishes, c.f. Eq. (2.18).
In the notation of Ref. [52], this gives rise to the reflection coefficient

R = idp2

1
fN
− idpq

, (2.20)

with the field amplitude constants at depth zFe

p = L++(zFe) + L−+(zFe) , (2.21)
q = L+−(zFe) + L−−(zFe) . (2.22)

Inserting the nuclear scattering amplitude from Eq. (2.19), we can rewrite the expression as

R = idf0p
2

∆ + iγ2 − idf0pq
. (2.23)

From this form it can be seen that the shape of the reflectance is Lorentz-like. Compared to
the single-nucleus resonance, the line profile is broadened (“Re(pq)”) and shifted in frequency
(“Im(pq)”). These are exactly the effects which have been observed in Ref. [52], where a super-
radiant broadening and a cooperative Lamb shift was measured for the spectrum, as discussed
in Sec. 2.1.4.
From the analysis above it becomes visible that analytical expressions for the reflectance can be

obtained from the layerformalism. This provides the basis to describe the form of the spectra and
allows for a certain interpretation. However, the expression calculated in Eq. (2.23) lacks some
information. For example, it is unclear what the relation between superradiance and collective
Lamb shift is. They are both related to the field amplitude product pq, but Eq. (2.23) does not
provide insights which could be used to specifically engineer a cavity in which one or the other
effect dominates. Instead, this question can only be tackled with plain numerical simulations.
Also, it would be desirable if some more microscopic insight could be gained from a theoretical
description, i.e. in which way do the nuclei talk to each other in the sense that they exhibit
collective behavior. Hence, an additional model based on quantum mechanical principles is well
worth to be developed, such that the nuclear scattering in thin-film cavities can be understood
from a more fundamental point of view. As a matter of course, even more questions will come
up if more involved situations are considered. This covers the magnetization of the resonant
layers such that different Zeeman sublevels are driven [50], incidence angles not being restricted
to guided mode positions where the electronic reflection vanishes [58], or cavity layouts with
multiple resonant layers [56].

Reflectance for two resonant layers

In the case of two resonant layers, the cavity is known to exhibit EIT-like spectra in the re-
flectance as discussed in Sec. 2.1.4. This was shown experimentally and confirmed theoretically
by employing the layerformalism [56]. Similar to Eq. (2.17), the situation with two thin resonant
layers at positions z1 and z2 with respective thicknesses d1 and d2, can be described with the
layerformalism by relating the field amplitude vectors at different positions as

~A(D) ≈ L(D)
[
L−1(z2) (1 + id1F Fe)L(z2)

][
L−1(z1) (1 + id1F Fe)L(z1)

]
~A(0) . (2.24)
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Chapter 2: Background

Let us now restrict to the EIT-case discussed in Ref. [56]. There, the positions of the layers are
chosen such that the one closer to the surface is placed in a node of the cavity field, whereas the
second layer is located at an anti-node. Assuming that the field intensity at the first resonant
layer vanishes, one arrives at [56]

R = −id2fNE2−+

1 + id2fNE2−− − d1d2f2
NE1+−E2−+

(2.25)

=
−id2f0E2−+

(
∆ + iγ2

)(
∆ + iγ2

) (
∆ + iγ2 + id2f0E2−−

)
− d1d2f2

0E1+−E2−+
, (2.26)

where Ea·· are expressions involving field amplitudes at layer a. This result for the reflectance
resembles an EIT-like spectrum [116], and the setup thus forms a system equivalent to the EIT
case well known from the visible frequency regime.
Again, this analysis reveals that the layerformalism is capable of describing scenarios analyti-

cally. But the same restrictions as mentioned above hold and a complete microscopic insight to
the processes in the cavity cannot be obtained from this theoretical model.
Finally, we want to stress that both the Parratt formalism and simulations performed with

conuss, based on the layerformalism, yield identical results for reflection curves and spectra in
the respective limits, and reproduce experimentally obtained data extremely well. Both formal-
ism therefore ought to be considered as benchmarks for new theories. Apart from effects formed
by a distorted electromagnetically environment or advanced material properties such as isomer
shifts, the theories do not contain any adjustable parameters. On the other hand, the quantum
description, which we will develop in the next chapter, will contain several coupling parameters.
Generally, these coefficients need to be determined for each cavity geometry and cannot be cal-
culated from scratch. Rather, the parameters need to be obtained by fitting the expressions of
the quantum theory to the data obtained from the established self-consistent theories discussed
above. In this sense, both types of theories are crucial for the accurate modeling and the full
understanding of nuclear reflection from thin-film cavities.
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Chapter 3

Quantum Optical Description
In this chapter, we ab initio develop a quantum optical framework for the modeling of large
ensembles of nuclei embedded in thin-film cavities and probed in grazing incidence by hard x-
rays. We start with the derivation of a master equation for the ensemble of nuclei coupled to
the quantized cavity modes and include all magnetic sublevels, such that arbitrary alignments
of the magnetization as well as the input- and output polarization can be analyzed. This way, a
description for general purposes is obtained. In contrast to the existing approaches introduced in
Sec. 2.2, the model encompasses non-linear and quantum effects, which could become accessible
in future experiments.
Motivated by the present experimental state-of-the-art, we specialize to the case of lossy cavi-

ties and linear response. This allows us to derive analytic solutions by adiabatically eliminating
the cavity modes and by characterizing the large ensemble of nuclei using just a few many-
body quantum states. The corresponding master equation allows to fully identify and interpret
all physical mechanisms contributing to the obtained results. We illustrate our framework by
analyzing the archetype scenario of current experimental interest, which is the setting of a single
unmagnetized layer of 57Fe nuclei placed in the center of an x-ray cavity. Consistent with recent
experimental results, our analysis predicts cooperative Lamb shifts and superradiance.
We find that our approach yields analytically equivalent results to established models in the

respective limits. But it goes beyond the existing approaches by opening perspectives for the
engineering of advanced quantum optical schemes in the hard x-ray regime. It enables the
generalization to cases in which the quantum nature of the x-ray light is of relevance as, e.g., in
quantum information theory. Moreover, it can cover situations in which the light source delivers
many resonant photons per shot, such that non-linear effects become crucial, and offers full
interpretation in terms of the involved physical processes.

3.1 Theoretical model
3.1.1 Cavity
The system we investigate is a thin-film cavity probed by hard x-rays as introduced in Sec. 2.1.
On one hand, the probing incident light indicated by the field ain in Fig. 3.1 can be reflected
from the layer structure, with outgoing light indicated by photon operator aout. On the other
hand, the layer structure can be chosen in such a way that a cavity or waveguide is formed for the
probing light. In this case, the probing light in addition can evanescently couple into waveguide
modes, and eventually exit the layer structure to the side, as indicated by the photon operator
bout in Fig. 3.1. As already pointed out in Sec. 2.1, the incident x-ray beam can resonantly couple
to waveguide modes inside the cavity at particular values for the angle of incidence θ.
It is instructive to characterize these modes in terms of the resonant cavity wave vector kC .

First, we note that the external x-ray field with frequency ω and wave vector k can be divided
into components kz = |k| sin(θ) perpendicular and kx = |k| cos(θ) parallel to the surface. In order
to satisfy the continuity relations of Maxwell’s equations at boundaries, the parallel components
kCx inside and kx outside the cavity must be identical. In contrast, the perpendicular component
kCz of the mode is determined by parameters of the cavity such as the thickness of the layers and
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aout

bout

ain 

â2

θ

k̂

57Fe

Bhf

â1

Figure 3.1: Schematic of the considered setup. The cavity contains a layer of resonant nuclei as indicated
in the inset. It is probed by hard x-rays (red lines, ain) with propagation direction k̂. The angle of
incidence θ is of the order of a few mrad. The incident polarization in the (â1, â2) plane (blue) together
with the alignment of the magnetization Bhf of the nuclei (green) sensitively determine the properties
of the scattered light. Both, light reflected from the cavity (aout) at output angle θ and light exiting the
cavity on the front side (bout) are considered.

the refractive indices and the order of the guided mode [132, 133]. This means the cavity exhibits
resonances only in the direction perpendicular to the surface, while the parallel components of
total resonance wave vector can be chosen freely.
In this chapter we will restrict the discussion to only one guided mode and assume, without

loss of generality, that its resonance condition for kCz is fulfilled if an x-ray beam with the
resonance frequency of the 57Fe transition ω0 = c · k0 impinges on the layer surface under an
angle of incidence θ0. In this case kCz = k0z = k0 sin(θ0) and kCx = k0x, and we find that
the cavity mode is resonantly driven. If the angle of incidence is varied from θ0 to a general
angle θ, the perpendicular mode component kCz is still fixed by the same resonance condition
kCz = k0 sin(θ0) of the waveguide mode, while kCx = |k| cos(θ) can freely vary with θ. In other
words, the mode of interest is not only characterized by cavity parameters, but also by the
incident beam. For the total wave vector of the resonant cavity mode, this yields

|kC | =
√
|k|2 cos (θ)2 + k2

0 sin (θ0)2
. (3.1)

We now continue with the derivation of the Hamiltonian for this mode in the cavity and its
driving due to the external field. In a first step, we do not yet take into account any polarization
dependence. In the Schrödinger picture the Hamiltonian reads [1, 134–138]

H
(S)
M = ωCa

†a+ i
√

2κR
(
aine

−iωta† − a∗ineiωta
)
. (3.2)

Here a [a†] is the photon annihilation [creation] operator for the field in the cavity, ain charac-
terizes the driving of the cavity mode by the external classical x-ray field with frequency ω, the
coupling strength into the cavity mode is denoted by κR and ωC = c · |kC | is the mode resonance
frequency. In a next step we transform the system into an interaction picture to eliminate the
explicit time dependence in the Hamiltonian. We apply the unitary transformation

|Ψ(I)〉 = U†|Ψ(S)〉 (3.3)

given by

U = exp(−iHT t) , (3.4)
HT = ω a†a , (3.5)
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3.1 Theoretical model

and obtain the perturbation Hamiltonian in the interaction picture

H
(I)
M = U†H

(S)
M U −HT

= ∆Ca
†a+ i

√
2κR

(
aina

† − a∗ina
)
. (3.6)

Here we introduced the cavity detuning ∆C = ωC − ω. For a small angular deviation ∆θ =
θ − θ0 � 1 from the resonant incident angle θ0 and ω ≈ ω0 we find from Eq. (3.1)

∆C =
√
ω2 cos (θ0 + ∆θ)2 + ω2

0 sin (θ0)2 − ω
≈ −ωθ0∆θ , (3.7)

such that the detuning is proportional to the incidence angle and the frequency of the incident
light.
Now we generalize this Hamiltonian to the case including polarization. We denote the beam

propagation direction as k̂, where the “hat” indicates a normalized unit vector. Since θ0 � 1,
the direction of the incident, reflected and transmitted beam can be considered as equal, parallel
to k̂. As a consequence, their respective polarizations âin, âout and b̂out are located in the plane
defined by the layer surface normal â1 and â2 = â1 × k̂. Including both these polarizations as
different modes a1 and a2 in our calculation, the Hamiltonian in the interaction picture becomes

HM = ∆Ca1
†a1 + ∆Ca2

†a2

+ i
√

2κR
[
(â∗1 ·âin) aina†1 − (â∗in ·â1) a∗ina1

]
+ i
√

2κR
[
(â∗2 ·âin) aina†2 − (â∗in ·â2) a∗ina2

]
. (3.8)

Here, (â∗i ·âj) are scalar products between two different polarization unit vectors.
Next to the coherent dynamics described by Eq. (3.8), also incoherent processes need to be

considered. This is particular important as in typical experiments, the cavity has a relatively
low Q factor [52]. It is important to note that incoherent processes such as spontaneous emis-
sion evolve a pure quantum mechanical state into an incoherent mixture of states, which cannot
be described using a wave function. Therefore, we include incoherent processes using the mas-
ter equation approach [1, 139, 140] for the system’s density matrix ρ. In this framework, the
governing equation replacing the usual Schrödinger equation is

d

dt
ρ = −i[H, ρ] + L[ρ] , (3.9)

where the commutator part [·, ·] characterizes the coherent evolution by the Hamiltonian H, and
the Lindblad operator L[ρ] models incoherent processes. For arbitrary operators O+ and O−, a
contribution to the latter can be defined as

L[ρ,O+,O−] =
(
O+O−ρ+ ρO+O− − 2O−ρO+) . (3.10)

With this definition, the photon loss out of modes a1 and a2 can be written as [134–136, 139, 141]

LM [ρ] =− κL[ρ, a†1, a1]− κL[ρ, a†2, a2] . (3.11)

Note that cavity loss in the present framework not only arises due to incoherent scattering
or absorption in the layer structure, but also by outcoupling of the cavity field into the modes
characterizing reflectance and transmittance. The total rate κ contains all of these loss processes.
In the absence of nuclei, L[ρ] = LM [ρ]. With nuclei embedded in the cavity, further incoherent
processes associated with the nuclei arise, which we discuss in Sec. 3.1.4.
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3.1.2 Input-output relations
In an experiment not the internal modes in the cavity, but the reflected (aout) or transmitted
beams (bout) are observed. These output field operators can be calculated using the input-output
formalism [142, 143]. Assuming polarization-sensitive detection with detector polarization âout
they read

aout = −ain (â∗out ·âin)
+
√

2κR [(â∗out ·â1) a1 + (â∗out ·â2) a2] , (3.12)
bout =

√
2κT [(â∗out ·â1) a1 + (â∗out ·â2) a2] . (3.13)

Note that the transmission bout only receives contributions originating from the modes a1 and a2
inside the cavity, while aout also contains the part of the incident light ain directly reflected from
the cavity. The coupling constant κR in Eqs. (3.12) and (3.13) is equal to the corresponding one
in Eq. (3.8), as both describe the coupling between the same internal and external modes. This
parameter can be controlled by changing, e.g. the thickness of the topmost layer, see Sec. 3.3.1.
Further, we note that κ ≥ κR + κT , because the cavity is not only damped by coupling into
the outgoing modes, but also by internal loss, as discussed below Eq. (3.11). This condition is
crucial for fulfilling the energy conservation.

3.1.3 Observables
To guide the further analysis, it is useful to consider possible observables accessible in a typ-
ical experiment. These are primarily the reflectance (scattering into aout in Fig. 3.1) and the
transmittance (scattering into bout in Fig. 3.1). With the output field operators introduced in
Sec. 3.1.2 at hand, one can readily calculate the reflection and transmission coefficient as [137]

R = 〈aout〉
ain

, (3.14)

T = 〈bout〉
ain

. (3.15)

Note that in current experiments, the reflected (transmitted) intensity |R|2 (|T |2) is measured,
since phase information is often not accessible. By making use of an interferometric setup, also
phase information could be retrieved. We emphasize that the definitions for the observables pre-
sented above are only valid in the linear regime, realized in current experiments with synchrotron
radiation. A generalized discussion of the reflectance beyond the linear regime will be given in
Chap. 8.
Another observable of interest which can easily be accessed with the formalism developed here

is the photon correlation function [144–146]

g(2)(τ) = 〈a
†
out(0)a†out(τ)aout(τ)aout(0)〉

〈a†outaout〉2
. (3.16)

It can be used to determine the photon statistics (at τ = 0) as a function of any parameter or,
if the operators are evaluated at different times (τ 6= 0), photon (anti-)bunching [145, 146]. This
way, quantum properties of the scattered light can be accessed. It should be noted that Eq. (3.16)
characterizes temporal correlations between individual photons along the propagation direction
of the scattered light, rather than spatial correlations in a transverse cross section through the
propagating beam.
In this work we will focus on the reflectance |R|2 calculated with Eq. (3.14) since it is of interest

in current experiments.
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Figure 3.2: The Mössbauer transition in 57Fe. In the presence of a magnetic hyperfine field the two
levels split up and six M1 transitions can be driven.

3.1.4 Inclusion of the resonant nuclei
So far, we formulated the equations for an empty cavity. Next, we include the resonant nuclei
and focus on the most frequently used archetype Mössbauer isotope 57Fe, for which the level
scheme is illustrated in Fig. 3.2. This isotope features a transition from the ground state to
the first excited state at ω0 = 14.4 keV with single-nucleus line width γ = 4.7 neV. In the
absence of magnetic fields, it acts as a two-level system. In the presence of magnetic fields, the
ground and excited states with Ig = 1/2 and Ie = 3/2 split into multiplets shown in Fig. 3.2. In
general, six different transitions between ground and excited states are possible. Note that the
considered transition is a magnetic dipole (M1) transition. Since the polarization vectors of the
radiation are typically given in terms of the electric field component, we also chose this notation
for consistency. However, at the same time this means that the transition axes in the nuclei
should be redefined accordingly. An alternate way would be to identify the polarization vectors
with the magnetic component of the radiation. We furthermore specialize to the case of a single
layer of nuclei, which we place at a maximum of the field intensity distribution of the cavity,
in order to maximize the nucleus-field interaction. For the first guided mode, this maximum is
approximately located in the center of the cavity, as seen from Fig. 2.2(c).
But before we consider the general case with a magnetic hyperfine splitting, let us first con-

sider the simplest case of a single two-level nucleus with ground state |g〉, excited state |e〉 and
transition energy ω0 = ωe − ωg and only one cavity mode a. This amounts to omitting the
polarization dependence in this first step. In the Schrödinger picture the free time evolution of
the nucleus and its coupling to the cavity mode in rotating wave approximation can be written
as [1]

H
(S)
N = ωg|g〉〈g|+ ωe|e〉〈e|+ gS+a+ g∗a†S− . (3.17)

Here S+ = |e〉〈g| and S− = |g〉〈e| denote the nuclear raising and lowering operators, respectively,
and g is the coupling constant between the mode a and the nucleus. Note that effects beyond
the rotating-wave-approximation could be included in Eq. (3.17) by means of a unitary transfor-
mation as discussed in Refs. [111, 112], which would lead to corrections to the coupling constant
g and to the transition energy ωe − ωg. Since these parameters are typically obtained by fitting
the quantum optical model to experimental or numerical data, these corrections are assumed
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Table 3.1: Overview of the M1 allowed transitions in the 57Fe nucleus with transition index µ. Shown
are the involved states, the transition energy ∆E relative to the energy at vanishing magnetization ω0,
the Clebsch-Gordan coefficient cµ and the polarization type. Linear polarization is denoted by π0, right
(left) circular polarization as σ+ (σ−).

µ Transition ∆E cµ Polarization
1 |g1〉 ↔ |e1〉 −δg/2− 3/2δe 1 σ−

2 |g1〉 ↔ |e2〉 −δg/2− 1/2δe
√

2/3 π0

3 |g1〉 ↔ |e3〉 −δg/2 + 1/2δe
√

1/3 σ+

4 |g2〉 ↔ |e2〉 δg/2− 1/2δe
√

1/3 σ−

5 |g2〉 ↔ |e3〉 δg/2 + 1/2δe
√

2/3 π0

6 |g2〉 ↔ |e4〉 δg/2 + 3/2δe 1 σ+

to be already included in the respective quantities. In order to transform the Hamiltonian for
both the nuclei and the cavity modes into an time-independent interaction picture we alter the
transformation from Eq. (3.5) to

HT = ω a†a+ ωg |g〉〈g|+ (ωg + ω)|e〉〈e| . (3.18)

This yields

H
(I)
N = −∆|e〉〈e|+ gS+a+ g∗a†S− . (3.19)

Here, we defined the detuning ∆ = ω − ω0 as the energy difference between the external x-ray
field and the bare transition energy of the nucleus.
Now we will continue with the general case including a possible magnetic hyperfine splitting

caused by a field Bhf. When a ferromagnetically ordered layer of α-iron is placed in the cavity,
already a relatively weak external field can align a strong internal magnetization of ≈ 33 T,
resulting in a level splitting of several line widths γ. The energy difference between two adjacent
ground (excited) sub-states is denoted by δg (δe) in the following. For B ≈ 33 T the values of δg
and δe are 39.7γ and 22.4γ, respectively [51].
Using a similar transformation as above, the free evolution of N nuclei and their coupling to

the cavity modes a1 and a2 is given by the Hamiltonian

HN =
N∑
n=1

H
(n)
0 +H

(n)
C1

+H
(n)
C2

(3.20)

with the diagonal part

H
(n)
0 =

2∑
j=1

δg(j − 3
2 ) |g(n)

j 〉〈g
(n)
j |+

4∑
j=1

(
δe(j − 5

2 )−∆
)
|e(n)
j 〉〈e

(n)
j | . (3.21)

The coupling between the nth atom and the mode aj reads

H
(n)
Cj

=
6∑

µ=1

[
(d̂
∗
µ ·âj) g(n)

µ S
(n)
µ+aj + (â∗j ·d̂µ) g(n)

µ

∗
a†jS

(n)
µ−

]
, (3.22)

where the sums run over the six possible transitions (see Tab. 3.1). The operator S(n)
µ+ [S(n)

µ− ] acts
only on atom n and is the raising [lowering] operator on transition µ. The normalized dipole
moment d̂µ of transition µ is defined with respect to the quantization axis of the nuclei. As
mentioned before, we want to denote the electric field components of the fields by the polarization
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3.2 Effective master equation

vectors âin and âout. Since 57Fe features a M1 transition, the quantization axis π̂0 of the linearly
polarized transitions is not equal to the magnetic field axis B̂hf. Rather, to determine π̂0, the
vector B̂hf has to be rotated by 90◦ in the (â1, â2) plane perpendicular to the beam propagation
axis.
The coupling constant

g(n)
µ = g cµ e

i φ(n)
(3.23)

consists of the coupling constant g, the Clebsch-Gordan coefficient cµ of the transition and a
phase factor that accounts for the position R(n) of the nucleus.
Another contribution which has to be included in the description of the nuclei is spontaneous

emission. It can take place on each of the six transitions µ, weighted with their respective
Clebsch-Gordan coefficients c2µ. The effect of spontaneous emission is described with the Lindblad
operator [1, 140]

LSE[ρ] =
N∑
n=1
L(n)
SE [ρ] (3.24)

L(n)
SE [ρ] = −γ2

6∑
µ=1

c2µ L[ρ, S(n)
µ+ , S

(n)
µ− ] (3.25)

where L[ρ, ·, ·] is defined in Eq. (3.10). Note that the expressions in Eq. (3.25) characterize the
total line width of single nuclei. Therefore, the rate of spontaneous emission γ is taken as the
natural line width of the 57Fe nucleus, even though part of this line width arises from internal
conversion rather than from radiative decay.

3.1.5 The full model
The full master equation including the equations of motion of the nuclei as well as for the photonic
modes is

d

dt
ρ = −i[HM +HN , ρ] + LM [ρ] + LSE[ρ] . (3.26)

With this equation it is in principle possible to perform calculations for arbitrary settings. How-
ever, the size of the system’s Hilbert space a priori is infinite, because in general arbitrary occu-
pation numbers of the photon modes are possible. Restricting the maximum number of photons
per mode considered in the calculation to nph, the Hilbert space still scales as 6N (nph + 1)2

with N being the number of nuclei in the cavity, which is impractically large to be solved effi-
ciently even for relatively small nph. Next, we will therefore use a different ansatz to overcome
the obstacle of the fast growing Hilbert space, which in addition provides more insight in the
underlying physics as even analytic predictions can be made.

3.2 Effective master equation
In the last part we formulated the fundamental equations for our setup, which have the disad-
vantage that they cannot be directly solved analytically due to the large dimensionality of the
Hilbert space. In this section, we apply two physically motivated approximations. First, we make
use of the fact that for typical parameters, the dissipative dynamics dominates the cavity evolu-
tion, such that the occupation number of the photon modes in the cavity remains small. Then,
these photonic modes can be adiabatically eliminated to obtain effective equations of motion for
the nuclei only, as explained in detail in Sec. 3.2.1. Second, in the case of a weak probe field, i.e.
in linear response, the system of N nuclei can be transformed into a new basis where only few
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excited states are coupled to the ground state. As shown in section 3.3 and chapters 4 and 5,
relatively simple and compact analytic expressions can be found for the reflection coefficient in
this case.

3.2.1 Adiabatic elimination of the cavity modes
The thin-film cavities which are used in typical experiments have a low quality factor Q [52],
which corresponds to a large decay constant κ in our model, see Eq. (3.11). As κ is much larger
than the atom-field coupling strength g, the dynamics of the modes a1 and a2 is mainly governed
by fast dissipation, which is known as the bad-cavity regime [135, 136, 146]. This allows us to
adiabatically eliminate the modes [134, 135]. For this, we approximate d

dtaj = 0. Starting with
the Heisenberg equation of motion for the operator aj

d

dt
aj = i[HM +HN , aj ]− κaj (3.27)

we arrive at

aj =
√

2κRain(â∗j ·âin)− i
∑
n,µ(â∗j ·d̂µ)g(n)

µ

∗
S

(n)
µ−

κ+ i∆C
. (3.28)

Before we continue with the effective equations for the nuclei let us consider the reflection coef-
ficient as defined in Eq. (3.14). Inserting the expressions Eq. (3.28) for aj yields

R = 〈aout〉
ain

=
(

2κR
κ+ i∆C

− 1
)
â∗out ·âin

− i

ain

√
2κR

κ+ i∆C

∑
n,µ

(
â∗out ·1⊥ ·d̂µ

)
g(n)
µ

∗
〈S(n)
µ−〉 . (3.29)

Here, we defined 1⊥ = â1â
∗
1 + â2â

∗
2 = 1 − k̂k̂

∗
. Note that this expression contains outer

products rather than inner (scalar) products. We see that the reflection coefficient consists of two
contributions. Consistent with the layerformalism [77] we can identify the first term in Eq. (3.29)
with the electronic scattering contribution, which is isotropic. A particularly interesting case
arises if the cavity is operated exactly in resonance with the guided mode, i.e., ∆C = 0. If in
addition κ = 2κR is fulfilled, then the reflection originating from the cavity vanishes completely.
The latter condition is known as critical coupling condition [141]. If the total cavity decay rate is
not matched to the in- and out-coupling of light from the cavity, then the over- or undercritically
coupled regime is realized, in which the reflected light is not completely canceled on resonance.
The coupling regimes will be discussed in more detail in Sec. 3.3.1. The second term in Eq. (3.29)
describes the contribution to the reflection which is due to the nuclei. This contribution is not
isotropic or polarization-preserving in general, and can contribute even if the polarizations of the
incident beam and the detected radiation are orthogonal to each other.
We now continue with the adiabatic elimination of the cavity modes. Having established

expressions for the field operators aj and a†j , they can be inserted into the master equation (3.26)
to obtain the effective equations of motion for the nuclei. For the coherent dynamics, we obtain
the Hamiltonian

Heff =
N∑
n=1

(
H

(n)
0 +H

(n)
Ω

)
+

N∑
n,m=1

H
(n,m)
LS (3.30)

with free evolution H(n)
0 as defined in Eq. (3.21) and the new terms

H
(n)
Ω = Ω

∑
µ

(
d̂
∗
µ ·1⊥ ·âin

)
g(n)
µ S

(n)
µ+ + Ω∗

∑
µ

(
â∗in ·1⊥ ·d̂µ

)
g(n)
µ

∗
S

(n)
µ− , (3.31)

H
(n,m)
LS = δLS

∑
µ,ν

(
d̂
∗
µ ·1⊥ ·d̂ν

)
g(n)
µ g(m)

ν

∗
S

(n)
µ+S

(m)
ν− (3.32)

24



3.2 Effective master equation

arising from the adiabatic elimination procedure with parameters

Ω =
√

2κRain
κ+ i∆C

, (3.33)

δLS = − ∆C

κ2 + ∆2
C

. (3.34)

The Hamiltonian H(n)
Ω describes an effective coupling between ground and excited states for each

atom n. As expected, the transition dipole moments are not coupled to the polarization of the
external beam by a direct product, but the direction vectors are mediated via the tensor 1⊥
which reflects the intermediate light propagation in the two eliminated modes. To analyze the
effect of H(n,m)

LS we first consider the special case n = m and µ = ν, i.e., operators for the same
transition in the same atom. It can be seen that in this case, the product S(n)

µ+S
(m)
ν− reduces to

an operator of the form |e〉〈e| for atom n = m. Therefore, this term in the Hamiltonian is an
energy shift, which can be interpreted as an additional AC-Stark or Lamb shift emerging from
the coupling of the atom to the two modes in the cavity. The terms with n 6= m involving the
same transition in different atoms are known as dipole-dipole interactions [140, 147] and lead
to a collective Lamb shift [110]. In the cases µ 6= ν, a coherent coupling between two different
transitions emerge [140, 147, 148].
Apart from these Hamiltonian contributions, the adiabatic elimination also gives rise to inco-

herent dynamics beyond spontaneous emission as characterized by Eq. (3.25). The total Lindblad
operator is found as

Leff[ρ] =LSE[ρ] + Lcav[ρ] (3.35)

with the new term

Lcav[ρ] =− ζS
N∑

n,m=1

6∑
µ,ν=1

(
d̂
∗
µ ·1⊥ ·d̂ν

)
g(n)
µ g(m)

ν

∗
L[ρ, S(n)

µ+ , S
(m)
ν− ] , (3.36)

and

ζS = κ

κ2 + ∆2
C

. (3.37)

The contributions with n = m and µ = ν in Eq. (3.36) have the same form as those charac-
terizing spontaneous emission. As we will find in Sec. 3.3, they lead to superradiance, i.e., an
acceleration of the incoherent decay [52]. The terms with n = m and µ 6= ν are the so-called
cross-decay terms [140, 147] and give rise to an incoherent coupling between different transitions.
Interestingly, these terms can lead to coherences [140]. This will be discussed in more detail in
Chap. 5.
In both the coherent and the incoherent additions arising from the adiabatic elimination, the

dipole moments are not coupled via the usual free space scalar product d̂
∗
µ ·d̂ν , but by the form

d̂
∗
µ·1⊥·d̂ν . We emphasize that this generally permits non-vanishing couplings between orthogonal

states, which is fundamentally different from the situation in free space [149, 150]. This fact can
be exploited to engineer a variety of different quantum optical level schemes as will be shown in
Chap. 5.

Effect of quantum noise

In the derivation of the effective master equation above, we adiabatically eliminated the cavity
modes. To this end, the equation of motion for annihilation operators a were written as

d

dt
a = i[H, a]− κa . (3.38)
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Chapter 3: Quantum Optical Description

The commutator part denotes the coherent evolution of the operator, i.e. the Heisenberg equation
of motion [151]. The second term accounts for the incoherent dynamics, i.e. the cavity decay.
Strictly speaking, however, the latter part is incomplete, because the quantum noise operators
have been dropped. In the following we will shortly discuss their meaning and discuss why they
can be neglected in the first place.
Let us start by recalling that the cavity decay is a consequence of the coupling of the modes

to an environment, which in our case is a reservoir of harmonic oscillators. Using the density
matrix approach to describe the systems’ dynamics alone by tracing out the environment gives
rise to the incoherent part of the master equation. However, if one is not interested in working
with the density matrix but rather with quantum operators, the problem of the coupling to the
reservoir must be formulated differently. This is known as the Heisenberg-Langevin approach [1].
The result of the Heisenberg-Langevin approach for the case of damping via a reservoir of

closely spaced oscillators, forming the electromagnetic quantum vacuum, is required here. In
this situation, the equation of motion for the annihilation operator a is [1]

d

dt
a = −κa+ Fa(t) , (3.39)

where Fa is a noise operator and accounts for the reservoir. The noise operator satisfies the
relations

〈Fa〉 = 〈F †a 〉 = 〈FaFa〉 = 〈F †aF †a 〉 = 0 , (3.40)
〈F †a (t)Fa(t′)〉 = 2κnthδ(t− t′) , (3.41)
〈Fa(t)F †a (t′)〉 = 2κ(nth + 1)δ(t− t′) , (3.42)
〈F †aa〉 = 〈a†Fa〉 = κnth . (3.43)

Here nth is the usual thermal bosonic occupation number. This yields

d

dt
〈a〉 = −κ〈a〉+ 〈Fa〉 = −κ〈a〉 , (3.44)

d

dt
〈a†a〉 = −2κ〈a†a〉+ 〈a†Fa〉+ 〈F †aa〉 = −2κ〈a†a〉+ 2κnth . (3.45)

Since the thermal energy kT for room temperature is much smaller than the x-ray transition
energies, the thermal occupation number nth is negligible. Thus, we recover the same equations
of motion as if we had dropped the noise operator in the beginning and the use of Eq. (3.38) is
justified.

3.2.2 Linear response
Current experiments employing the 14.4 keV resonance line in 57Fe in thin-film cavities are
mostly performed at modern synchrotron light sources. As discussed in Sec. 2.1.3, typically less
than one resonant photon is provided in the narrow line width of 57Fe [7, 52, 106, 107]. Thus,
the driving field ain can be considered weak, which together with the moderate nucleus-cavity
coupling justifies a calculation of the reflectance in linear response. Of course, this ansatz has
to be revisited if future experiments are performed at an seeded x-ray free-electron laser [11] or
x-ray free-electron laser oscillator [15–18] with thousands of resonant photons per pulse, or if
better cavities could be designed.
Let us assume that the nuclei are initially in the collective ground state

|G〉 = |g(1)
1 〉 . . . |g

(N1)
1 〉︸ ︷︷ ︸

N1

|g(N1+1)
2 〉 . . . |g(N)

2 〉︸ ︷︷ ︸
N2

(3.46)

where |g1〉 and |g2〉 denote the two magnetic sublevels of the ground state, andNi is the number of
nuclei in ground state |gi〉 (i ∈ {1, 2}). Note that N1 +N2 = N , and at room temperature and in
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3.3 Application to an unmagnetized 57Fe layer

thermal equilibrium also N1 = N2, since the Boltzmann factor exp (−δg/kBT ) is approximately
one. Nevertheless, for now we consider the general case and keep N1 and N2 variable. Further,
we assume that due to the weak probe beam only one atom can be excited at a time and omit
higher excited states. In addition, we neglect other collective ground states as the nuclei will not
be redistributed due to the application of a weak probe field. We define the singly excited states

|E(n)
µe 〉 = S

(n)
µ+ |G〉 = |g(1)

1 〉 . . . |e(n)
µe 〉 . . . |g

(N)
2 〉 , (3.47)

in which the nth atom has been excited on transition µ. Further we define a collective state,
closely related to the timed Dicke state [51, 110, 152],

|E(+)
µ 〉 = 1√

Nµg

Nµg∑
n

ei φ
(n)
|E(n)
µe 〉 , (3.48)

which characterizes the coherent superposition of all possible excitations of the nuclei after ab-
sorption of a photon on transition µ where µg [µe] denote the state index of the ground [excited]
state of the transition. Note that atoms in ground state |gn〉 can only be excited along the
transition µ if their initial ground state match, i.e. |gn〉 = |gµg 〉, otherwise S

(n)
µ+ |G〉 = 0. With

these definitions the equations (3.31), (3.32) and (3.36) in the subspace of at most one excitation
simplify to

HΩ = Ωg
∑
µ

(
d̂
∗
µ ·1⊥ ·âin

)
cµ

√
Nµg |E(+)

µ 〉〈G|+ H.c. , (3.49)

HLS = δLS|g|2
∑
µ,ν

(
d̂
∗
µ ·1⊥ ·d̂ν

)
cµcν

√
NµgNνg |E(+)

µ 〉〈E(+)
ν | (3.50)

Lcav[ρ] = −ζS |g|2
∑
µ,ν

(
d̂
∗
µ ·1⊥ ·d̂ν

)
cµcν

√
NµgNνg L

[
ρ, |E(+)

µ 〉〈G|, |G〉〈E(+)
ν |

]
. (3.51)

In this basis only one ground and a maximum of six (collective) excited state are present. This
reduced basis allows for a considerable simplification of the analytical calculations since also the
reflection coefficient from Eq. (3.29) can be written in the reduced basis as

R =
(

2κR
κ+ i∆C

− 1
)
â∗out ·âin

− i

ain

√
2κR

κ+ i∆C
g∗
∑
µ

(
â∗out ·1⊥ ·d̂µ

)
cµ

√
Nµg 〈E(+)

µ |ρ|G〉 . (3.52)

This is a remarkable result, since the complicated system of N interacting nuclei and 2 cavity
modes is now reduced to an effective single-particle problem without loss of generality within the
applied approximations well justified at current experimental conditions.
To calculate the reflection coefficient in linear response we employ the following method. We

set 〈G|ρ|G〉 = 1, as population redistributions only occur in second order of the probe field.
Next, we consider the coherences 〈E(+)

µ |ρ|G〉 which are directly coupled to the ground state via
HΩ. These off-diagonal density matrix elements are the only ones which are non-vanishing in
first order in the probing x-ray field Ω. Their steady state is obtained from the equations of
motion by the condition 〈E(+)

µ | ddtρ|G〉 = 0. The corresponding set of linear equations can be
solved easily. Finally, the obtained steady state is inserted into Eq. (3.52) to obtain the desired
reflectance in linear response.

3.3 Application to an unmagnetized 57Fe layer
In a first step, we apply the general formalism to a particular experimental setup, in order to
demonstrate its capabilities and consistency with previous formalisms.

27



Chapter 3: Quantum Optical Description

We consider the simplest case without hyperfine splitting, i.e. Bhf = 0 and therefore δg =
δe = 0. In this case the result will be independent of the choice of the quantization axis. For
simplicity we set π̂0 ‖ âin such that only the linear polarized transitions µ = 2 (|g1〉 ↔ |e2〉) and
µ = 5 (|g2〉 ↔ |e3〉) are driven, see Tab. 3.1. We introduce the state

|+〉 =
√
N1

N
|E(+)

2 〉+
√
N2

N
|E(+)

5 〉 , (3.53)

and obtain

HΩ =
√

2
3NΩg|+〉〈G|+ H.c. (3.54)

HLS = 2
3NδLS|g|

2|+〉〈+| (3.55)

Lcav[ρ] = − 2
3NζS |g|

2 L
[
ρ, |+〉〈G|, |G〉〈+|

]
. (3.56)

Thus, we have transformed our system to an effective two-level system which consists only of one
ground state |G〉 and one excited state |+〉. In the same way, the sum in Eq. (3.52) reduces to
(â∗out·âin)

√
2
3N〈+|ρ|G〉. Consequently, only the coherence 〈+|ρ|G〉 has to be calculated in order

to obtain the reflectance. The equation of motion is

〈+|ρ̇|G〉 = −i
√

2
3NΩg + i

(
∆ + iγ2 + 2

3N |g|
2(iζS − δLS)

)
〈+|ρ|G〉 , (3.57)

where we used the populations in linear response 〈G|ρ|G〉 = 1 and 〈+|ρ|+〉 = 0. Since 〈+|ρ|G〉
is not coupled to any other density matrix elements in Eq. (3.57), its steady state can be readily
obtained from solving the single equation 〈+|ρ̇|G〉 = 0 for the coherence 〈+|ρ|G〉. The reflection
coefficient given by Eq. (3.52) evaluates to

R =
(

2κR
κ+ i∆C

− 1
)
â∗out ·âin −

i

ain

√
2κR

κ+ i∆C

(
â∗out ·âin

) 2
3 |g|

2NΩ
∆ + iγ2 + 2

3 |g|2N(iζS − δLS)

=
[(

2κR
κ+ i∆C

− 1
)
− i 2κR

(κ+ i∆C)2

2
3 |g|

2N

∆ + iγ2 + 2
3
|g|2N

∆C−iκ

] (
â∗out ·âin

)
. (3.58)

As a cross check we verified that this result is also obtained when choosing a different quantization
axis, such that other transitions couple to the incident light. The result, however, in general does
depend on the condition N1 = N2 of equal ground state population, as otherwise the different
transitions have different probabilities according to the ratio of N1 and N2. The polarization
dependence â∗out·âin is independent of the layer system, and solely determined by the incident and
the detection polarization. This is the expected result, as no direction in space is distinguished
in the layer system without magnetic quantization axis.

3.3.1 Reflection from the empty cavity
In order to interpret the spectrum of the reflectance, we first recall that the first addend obtained
in Eq. (3.58) represents the electronic scattering contribution from the waveguide. Considering
the expression in more detail, we note that its first contribution (“2κR/(κ+i∆C)”) stems from the
light which entered the cavity mode and is subsequently emitted again, the second part (“−1”) is
due to the direct reflection on the cavity surface. As mentioned above, in the case 2κR = κ, the
so-called critical coupling condition is realized [141], in which the electronic reflection completely
vanishes on resonance, i.e. ∆C = 0. For 2κR > κ [2κR < κ], the overcritical [undercritical]
coupling is realized.
Let us analyze these coupling conditions in more detail by considering the angular dependency

of the cavity reflection in the absence of resonant nuclei. As already shown in Sec. 2.1.1, the
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Figure 3.3: The reflectance around an over- (2κR > κ, red) and undercritically (2κR < κ, blue) coupled
cavity mode is shown. The solid curves are calculated with Parratt’s formalism, the dashed lines are
fits of the quantum optical theory. The two coupling conditions can be distinguished from the phase
behavior around the mode resonance. Parameters are given in the main text.

guided modes give rise to distinct minima in the reflection curve. Here, we consider two cavities
formed by the layer stack Pd/C (10 nm)/Fe (3 nm)/C (10 nm)/Pd and specify to the first guided
mode only. The thickness of the topmost Pd layer is 3.5 nm and 5.5 nm for the two cavities,
respectively. The reflection curve of the cavities was calculated using Parratt’s formalism, and
the quantum optical expression

R = A

(
−1 + 2κR

κ+ i∆C

)
(3.59)

with A ∈ C and ∆C ∼ (θ−θ0) as suggested by Eq. (3.7) was fitted to the numerical data. In this
procedure, the complex values of the reflection coefficient were used. This way, also the phase
behavior around the resonance of the guided mode is properly captured. The resulting curves
are shown in Fig. 3.3.
Interestingly, the fits to the numerical data revealed that two different regimes are realized

with the two cavities. In the case where the thickness of the upper Pd layer is 3.5 nm, we found
that 2κR > κ and thus the cavity mode is overcritically coupled. In contrast, the first guided
mode of the cavity with thickness 5.5 nm of the Pd layer is undercritically coupled.
Looking solely at the reflectance |R|2, the two cavities exhibit a similar shape and the two

coupling regimes cannot be distinguished. However, if the phase behavior around the guided
modes is considered, the regimes can be properly identified, as visualized in the right panel of
Fig. 3.3. The phase in the overcritical case changes more rapidly and asymptotically ends up in
different branches.
Thus, we see that the coupling regime can be controlled by choosing a suitable thickness

of the topmost layer in the cavity. This is also in accordance with an intuitive picture: The
thinner the topmost layer, the more light can couple from the external field to the cavity mode.
Mathematically, this corresponds to a large coupling constant κR, for which the overcritically
regime is realized in turn.

3.3.2 Nuclear reflection
We now continue with the reflection coefficient calculated in Eq. (3.58). Its second addend arises
from the resonant nuclei in the cavity. Defining the parameters

∆LS = 2
3 δLS |g|

2N = −2
3 |g|

2N
∆C

κ2 + ∆2
C

, (3.60)
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γS = 4
3 ζS |g|

2N = 4
3 |g|

2N
κ

κ2 + ∆2
C

, (3.61)

the nuclear part of the reflection coefficient can be rewritten as

RN ∼
1

∆−∆LS + i
2 (γ + γS)

. (3.62)

This shape is a Lorentzian which describes the response of an effective two-level system with
transition frequency shifted by ∆LS and spontaneous emission enhanced by γS . Consistent with
our theoretical modeling, the two levels correspond to the collective ground and the collective
excited state of the nuclear ensemble. Note that even though g is very small, the parameters
∆LS and γS will generally be of importance due to the large number of nuclei N � 1.
The adiabatic elimination of the cavity modes revealed couplings between the nuclei mediated

by the cavity, such that collective effects emerge. The spontaneous emission enhancement γS is
the well-known superradiance, and the energy shift ∆LS is a collective Lamb shift, both exper-
imentally observed in Ref. [52]. We see that both quantities contain contributions depending
on cavity parameters (δLS, ζS). These can be related to the Purcell effect [114], which is the
enhancement of spontaneous emission due to the cavity environment. The other contributions
describes the cooperative behavior, as evidenced by the scaling with N .

3.3.3 Numerical results
At this point it is instructive to discuss the actual values of the cavity parameters κ, κR, ∆C

and the coupling coefficient g. From the structure of Eq. (3.58) for the reflection coefficient, we
note that the final result will be invariant under a rescaling ξ of the parameters κ, κR, ∆C and
N |g|2. Using numerical data calculated by conuss [79, 80] for the cavity considered in Fig. 2.2
as a reference, we find that, consistent with our expectations from Eq. (3.7), ∆C depends on the
actual angle of incidence θ in the vicinity of the first order guided mode fulfilling the relation
∆C = δC · ∆θ, while all other parameters remain constant. In particular, we find the values
(in units of γ) κ = 45ξ, κR = 25ξ, δC = −0.5ξ/µrad and

√
N |g| =

√
1400ξ. By comparison

of ∆C = δC · ∆θ with Eq. (3.7), the actual value for the scaling factor can be determined as
ξ ≈ 18000. Note that this also justifies the adiabatic elimination performed in Sec. 3.2.1 since
using the obtained parameters, we explicitly find κ�

√
N |g|.

A sustained motivation in cavity electrodynamics is the realization of the strong coupling
regime, in which distinct quantum features such as vacuum Rabi splitting can be observed [2, 3,
146, 153]. It is encountered if the coupling strength g between an atom and a cavity mode exceeds
the decay rates κ and γ of the system. In our cavity, though, this is not the case. Nevertheless,
the so-called collective strong coupling regime is realized [154, 155], in which

|g|2N
κ γ

� 1 . (3.63)

Hence, the phenomena observed in the cavity can thus be expected to be governed by cooperative
effects.
The reflectance |R|2 calculated from Eq. (3.58) is shown in Fig. 3.4. Note that the data

shown in Fig. 3.4 does not contain any free scaling parameter, as the reflectance calculated from
Eq. (3.58) automatically yields the experimentally accessible values in the range between 0 and
1. In the upper panel we qualitatively recover the shape of a typical electronic reflectivity curve
across a single cavity resonance. To this end, we chose θ0 = 2.96 mrad which is also the angle
of the first guided mode in Fig. 2.2. In addition, we set the detuning ∆ = 103γ such that the
nuclear part of the reflection is strongly suppressed and only the electronic part contributes. As
a reference, we also show corresponding numerical results obtained with conuss. It is clearly
visible that in the vicinity of the first guided mode our theory matches the numerical data
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Figure 3.4: Reflectance of the cavity containing an unmagnetized 57Fe layer. The first panel shows |R|2
as a function of the grazing incidence angle θ. The nuclear part is strongly detuned such that only the
electronic reflectivity curve is visible. Parameters as in the main text and θ0 = 2.96 mrad. The dashed
line corresponds to the reflectivity curve from Fig. 2.2 calculated by conuss. The central panel shows
the reflectance for fixed θ = θ0. The narrow nuclear resonance is located in the center of the broad cavity
resonance, where it appears as a sharp spike. The right panel shows a magnification of the central panel
around the nuclear resonance. The nuclear spectrum is a Lorentzian which is significantly broadened
due to superradiance.

calculated with conuss very well. Since we included only one guided mode in our calculation,
only one minimum in the reflectivity curve is obtained instead of multiple dips in the conuss
data. Also, an overall envelope of the reflection, which in reality drops to smaller values for
angles larger than the critical angle of total reflection, is not included in the theory, but visible
in the conuss data. We emphasize that in our theory the width of the guided mode depends on
the order of the scaling parameter ξ. But since ξ was derived independently using Eq. (3.7), the
proper width and the agreement with the numerical data serves also as a consistency check for
our theory.
We now turn to the spectrum |R(∆)|2 at the cavity resonance, i.e. θ = θ0. We find that a

variation of the detuning ∆ = ω − ω0 also affects the cavity detuning ∆C , since it depends on
both ω and ω0 explicitly, see Eq. (3.7). Therefore we rewrite ∆C as a function of ∆ and other
constant parameters and show the results in the bottom panel of Fig. 3.4. In the bottom left
panel we observe that the guided mode formed by the cavity affects the spectrum over a very
large detuning range. Only in the center we observe the effect of the embedded nuclei, where the
typical Lorentzian line shape of the nuclear resonance is found. A magnification of this nuclear
response is shown in the bottom right panel. As expected from the theoretical predictions and in
contrast to the resonance curve of a single 57Fe nucleus in free space, it is significantly broadened
due to superradiance and the Purcell effect captured in γS .
We conclude from our analysis that if one is only interested in spectral ranges several 10γ

around the nuclear resonance, it is safe to assume that ∆C is independent of ∆. The reason is
that for any given angle θ, the cavity forms a nearly perfect flat background over the range of
the nuclear response, as seen from Fig. 3.4. In the following work, the cavity detuning ∆C will
thus be treated as a constant parameter.
Finally, we note that Eq. (3.60) implies that the Lamb shift ∆LS is zero for vanishing cavity

detuning, which is also visible from the right panel in Fig. 3.4. This is in contrast to the
experiment reported in Ref. [52], where a non-vanishing value was measured in an analogous
setting. This puzzle of the Lamb shift will be solved in Chap. 4.

3.3.4 Conservation of probability
With the linear result for the reflectance at hand, we can now also turn to the transmission T in
the waveguide. This observable was defined in Eq. (3.15) and from Eqs. (3.12) and (3.13) it can
be seen that it is closely related to the reflection coefficient R. The differences are the absence of
the reflection amplitude directly at the cavity surface and an overall scaling factor. In particular,
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we find

R =
(

2κR
κ+ i∆C

− 1
)
− i 2κR

(κ+ i∆C)2

2
3 |g|

2N

∆ + iγ2 + 2
3
|g|2N

∆C−iκ

, (3.64)

T =
(

2√κRκT
κ+ i∆C

)
− i

2√κRκT
(κ+ i∆C)2

2
3 |g|

2N

∆ + iγ2 + 2
3
|g|2N

∆C−iκ

. (3.65)

At this point it should be verified, if the probability is conserved, i.e. the sum of the reflectance
and the transmittance must not exceed unity. Computing the modulus squared of the expressions
above, we indeed find

|R|2 + |T |2 = 1−
12κR

[
4|g|2Nγ + 3(γ2 + 4∆2)(κ− κR − κT )

]∣∣6(κ+ i∆C)(∆ + iγ2 ) + 4i|g|2N
∣∣2 . (3.66)

Since κ− κR − κT ≥ 0 as explained in Sec. 3.1.2, this implies

0 ≤ |R|2 + |T |2 ≤ 1 . (3.67)

The remaining fraction to unity corresponds to the light which is absorbed in the cavity material
or emitted into other modes which were not considered here.

3.4 Emission spectrum after a δ-pulse excitation
In the sections above we derived the equations of motion which can be used to describe the cavity
system in the linear regime for arbitrary magnetization of the 57Fe layer. Using them, we are
able to calculate the frequency dependence of the reflection spectrum. However, so far it is yet
unclear if the results we derived above will directly compare to an realistic experimental setting
and the calculated reflectance is accessible in an experiment. The crucial point is the following:
Strictly speaking, we calculated the steady state, i.e. the system response at the time t → ∞
and the cavity was assumed to be continuously driven under the influence of a monochromatic
field with frequency ω.
This has to be compared to the situation encountered at current x-ray sources. They, in

contrast, deliver only extremely short pulses in the ranges of a few 10 ps, even shorter pulse
durations are achieved with free-electron lasers [15, 17]. At the same time, already the Fourier
limit implies that these δ-like pulses do not consist of a single frequency, but provide very broad,
nearly flat spectra over the energy range of the nuclear resonances. Therefore the steady state
case with a monochromatic driving field is clearly not met in current experimental settings.
However, the steady state solutions directly compare to the emission spectrum S(ω) after an

excitation with a δ-like pulse in the linear regime, as we will show in the following. Hence, they
directly correspond to the situation which is accessible in current synchrotron experiments. The
reason for this equivalence of the two types of spectra can be understood with the argument
given below.
The incident δ-like pulse can be written as a superposition of plain waves of all frequencies ω,

where we neglect prefactors for now. Operated in the linear regime, each of these plain waves
will interact with the cavity separately. Since the individual plain waves monochromatic and
correspond to a continuous wave, their reflection is given by the single frequency steady state
solution calculated in the previous sections. Combining all the frequency components again, the
steady state solution function RSS(ω) is obtained. On the other hand, the δ-pulse excitation of
the cavity system causes the emission spectrum S(ω). Hence, the two quantities directly compare
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3.4 Emission spectrum after a δ-pulse excitation

to each other in the linear regime. This is also illustrated in the following visualization.

pulse︷︸︸︷
δ(t) →

interaction with cavity︷ ︸︸ ︷
R(δ(t)) →

emission spectrum︷ ︸︸ ︷
S(ω)

∝
∑
ω

eiωt → R

(∑
ω

eiωt

)
=
∑
ω

R
(
eiωt

)
︸ ︷︷ ︸

linearity

→ RSS(ω)︸ ︷︷ ︸
steady state reflectance

Next to this intuitive picture on the agreement of the two spectra, it can be shown analytically
that the general emission spectrum S(ω) reduces to the reflection spectra calculated via the
steady state technique. This will be presented in the following.

Definition of the emission spectrum

Let us begin to define the emission spectrum properly. An exact definition often depends on the
type of the conducted experiment and has been discussed in the literature quite extensively [156].
In the following we will shortly motivate the definition chosen here. The general definition of the
time resolved reflection rate including non-linear effects (c.f. Sec. 8.1) is given by

〈aout(t)†aout(t)〉 , (3.68)

and corresponds to the number of photons detected at time t. In order to obtain any information
on the frequency behavior, it is necessary to transform the operators such as aout(t) into Fourier
space

aout(ω) = 1√
2π

∫
eiωtaout(t) dt . (3.69)

From this we can define

〈aout(ω)†aout(ω)〉 = 1
2π

∫
e−iω(t1−t2)〈aout(t1)†aout(t2)〉 dt1dt2 . (3.70)

In the spirit of Eq. (3.68), this expression corresponds to the number of photons with frequency
ω and thus is a meaningful quantity for the emission spectrum. Note that aout(ω)†aout(ω) is
hermitian and hence the expectation value is a real number. Taking the Fourier transform
of 〈aout(t)†aout(t)〉 directly will generally not result in a real value and therefore cannot be
considered as an observable. This is connected to the fact, that also for the classical radiation
field the amplitudes and not the intensities are required to transform between time and frequency
domain. Hence, we use for the emission spectrum

S(ω) = 〈aout(ω)†aout(ω)〉 . (3.71)

This choice is not restricted to continuous driving with monochromatic fields, but also holds
for arbitrary incident pulse shapes. As mentioned before, the definition of the spectrum of
a quantized field has been under debate, but Eq. (3.71) is considered appropriate for most
situations [157]. The emission spectrum contains two-time expectation values, which need to be
computed using more sophisticated techniques such as the quantum regression theorem [158].
Note that in the stationary case, the two-time expectation value depends only on the time
difference t1 − t2. Then, the well known Wiener-Khintchine theorem for the power spectrum
is obtained from Eq. (3.71) [157]. Note that the same definitions connected with input-output
operators have been used also in previous studies [159].
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Calculation of the emission spectrum in the linear regime

Let us now turn to an explicit analysis of the emission spectrum defined above. In the case of
weak driving, i.e. the linear regime, the two-time average in Eq. (3.70) separates as

〈aout(t1)†aout(t2)〉 ≈ 〈aout(t1)†〉〈aout(t2)〉 . (3.72)

This well be discussed in more detail in Sec. 8.1 when we analyze the non-linear features in our
model. With this approximation at hand, we obtain for the emission spectrum

S(ω) = |〈aout(ω)〉|2 . (3.73)

However, we are more interested in the spectrum as a function in the detuning ∆ = ω − ω0.
Therefore we have to calculate

aout(∆) = 1√
2π

∫
ei∆tãout(t)dt , (3.74)

with

ãout(t) = aout(t)eiω0t = −ain(t)eiω0t +
√

2κRa(t)eiω0t , (3.75)

according to Eq. (3.12) and neglecting polarization dependence for the moment.
Next, we restrict our analysis to the case of a δ-like incident pulse

ain(t) = ãinδ(t) . (3.76)

Since this pulse does not have a well-defined cw-frequency ω, we need to alter the transformation
Hamiltonian for the interaction picture in Eq. (3.18) from our model by replacing ω by ω0. As
a consequence, ∆ = 0 and ∆C = ωC − ω0 now holds. In this interaction picture we now obtain
for the input-output relation

ãout(t) = −ãinδ(t) +
√

2κRa(t) , (3.77)

where we have used that δ(t) = δ(t)eiω0t.
Assuming that the cavity equilibrates much faster than the nuclear dynamics changes, we can

again eliminate the cavity modes adiabatically and obtain (c.f. Eq. (3.52))

〈ãout(t)〉 = −ãinδ(t) +
√

2κR〈a(t)〉

=
(

2κR
κ+ i∆C

− 1
)

(â∗out ·âin)ãinδ(t)

− i
√

2κR
κ+ i∆C

g∗
∑
µ

(
â∗out ·1⊥ ·d̂µ

)
cµ

√
Nµg 〈E(+)

µ |ρ(t)|G〉 . (3.78)

For simplicity, we rewrite this equation in vector representation

〈ãout(t)〉 = A ãinδ(t) + ~B · ~ρ(t) , (3.79)

where ~ρ(t) consists of six, i.e. the number of transitions, elements

[~ρ(t)]µ = 〈E(+)
µ |ρ(t)|G〉 . (3.80)

Now we need to solve for ~ρ(t). As this vector contains only coherences, its initial value vanishes,
~ρ(0) = 0. Using the effective Hamiltonian and the effective Lindblad operators obtained from
the adiabatic elimination, we can set up the equations of motion for the coherences. These
equations of motion are identical to those in the steady state scenario, however, with the following
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3.4 Emission spectrum after a δ-pulse excitation

differences. First, the driving field ain is to be replaced by ãinδ(t) and as we discussed before, it
is ∆ = 0 and ∆C = ωC − ω0. The equations in vector representation take the form

d

dt
~ρ(t) = M · ~ρ(t) + ~K ãinδ(t) , (3.81)

where M is a matrix of size 6 × 6. We see that all time dependence is only contained in the
inhomogeneous part of the equation in terms of a δ-function. This makes it possible to solve for
the spectrum analytically. We recall that we are interested in the expression 〈aout(∆)〉 defined
in Eq. (3.74). We find

〈aout(∆)〉 = 1√
2π

∫
ei∆t〈ãout(t)〉dt

= 1√
2π

∫
ei∆t

(
A ãinδ(t) + ~B · ~ρ(t)

)
dt

= Aãin√
2π

+ 1√
2π

~B ·
∫
ei∆t~ρ(t)dt . (3.82)

To evaluate the integral we utilize the Laplace transform

L{f(t)}(s) =
∫ ∞

0
f(t)e−stdt , (3.83)

which has the property

L{ ddtf(t)}(s) = sL{f(t)}(s)− f(0) . (3.84)

Together with Eq. (3.81), we obtain

L{ ddt~ρ(t)}(s) = sL{~ρ(t)}(s) = M · L{~ρ(t)}(s) + ~Kãin , (3.85)

such that

L{~ρ(t)}(s) = (s1−M)−1 · ~Kãin . (3.86)

Noting that ~ρ(t) = 0 for t ≤ 0, we can identify the integral in Eq. (3.82) with L{~ρ(t)}(−i∆) and
we obtain

〈aout(∆)〉 = Aãin√
2π

+ ãin√
2π

~B ·
[
− (i∆1 +M)−1 · ~K

]
. (3.87)

Normalizing this spectral expression accordingly with

ain(∆) = 1√
2π

∫
ei∆tain(t)dt = ãin√

2π
(3.88)

yields the reflectance after an δ-pulse excitation

Rδ(∆) = 〈aout(∆)〉
ain(∆) = A+ ~B ·

[
− (i∆1 +M)−1 · ~K

]
. (3.89)

In particular, we see that the driving field strength ãin cancels, which is expected for the linear
regime we are considering.
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Comparison with the steady state reflectance

Let us now compare this result with the steady state solutions we calculated before. For this,
let us write the reflectance in a similar form as we did for the δ-pulse case (c.f. Eq. (3.79))

RSS(∆) = 〈aout〉
ain

= A+
~B · ~ρSS(∆)

ain
. (3.90)

At the same time, we can formally write the equations of motion in vector representation as well.
However, in contrast to Eq. (3.81), we need to take into account the detuning ∆ which does not
vanish in the steady state analysis. Since the detuning acts only on the elements itself and does
not couple different coherences, it can be included as an additional diagonal term

d

dt
~ρSS = (M + i∆1) · ~ρSS + ~K ain . (3.91)

Note that in the equations above, A, ~B, M and ~K are identical to the variables defined in the
analysis for the δ-pulse spectrum. The steady state of the coherences can now readily be solved
as

~ρSS(∆) = − (M + i∆1)−1 · ~K ain , (3.92)

which finally yields

RSS(∆) = 〈aout〉
ain

= A+ ~B ·
[
− (M + i∆1)−1 · ~K

]
. (3.93)

Comparing Eq. (3.89) and Eq. (3.93), it can be seen that the same result is obtained in both
cases and therefore

RSS(∆) = Rδ(∆) (3.94)

in the linear regime. This shows that a simple steady state analysis can be performed instead
of a more complicated time integration of the equations of motion and justifies the calculation
technique performed in many parts of this work.
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Chapter 4

Fano Line Shape Control & Interferometric
Phase Detection
The deterministic control of light-matter interactions is a longstanding vision with key challenges
and applications across all natural sciences. Close to resonances in matter, characteristic spec-
troscopic signatures are imprinted onto the radiation field. For an isolated system with a single
line resonance, this is the well-known Lorentzian profile given by the formula

σLorentz ∝
1

1 + ε2
, (4.1)

where ε denotes the energy detuning from the resonance in units of its transition width. In
high-energy physics the same shape is known as Breit-Wigner distribution. But as soon as
the probed system evolves on different indistinguishable quantum pathways, the line shape is
modified by interference. In particular, asymmetric Fano resonances [160] arise if a spectrally
broad continuum quantum-mechanically interferes with a spectrally narrow bound state, which
is provided by a matter resonance. Fano profiles are parameterized by the simple expression

σFano ∝
(q + ε)2

1 + ε2
. (4.2)

Determined by the parameter q, both symmetric and antisymmetric line shapes can be engi-
neered, possibly with very narrow characteristics.
Fano resonances have been predicted already in 1935 [161] and by now are recognized as

important tool across many disciplines such as atomic physics [162–165], solid-state physics [166–
170], and nuclear physics [171]. Recently, it was demonstrated that Fano interferences can be
interpreted in the time domain, which paves a way for the active and dynamical control of
spectroscopic line shapes [172].
A notable platform to study Fano resonances in the optical regime is the setting of waveguide

and cavity systems [169, 170, 173], where the continuum channel necessary for the interference
is straightforwardly provided. This suggests, that Fano interference might arise as well in the
x-ray domain using thin-film cavities.
Asymmetric line shapes for nuclear resonances at x-ray energies have previously been predicted

or observed [83, 85, 174–179]. However, they were neither analyzed or interpreted in the context
of Fano line shapes, nor was it clear whether the line shapes are Fano profiles at all.
In this chapter, we show that they are and demonstrate Fano line-shape control in the interac-

tion of Mössbauer nuclei in thin-film cavities. For this, we apply the quantum optical formalism
developed in Chap. 3 and theoretically show how Fano profiles can arise and how they can be
controlled dynamically. We then discuss the implementation, which we used to experimentally
explore the Fano line shapes together with the group of Ralf Röhlsberger, Hans-Christian Wille
(both from DESY, Hamburg), Thomas Pfeifer and Christian Ott (MPIK, Heidelberg).
In a first application, we extract spectroscopic signatures such as the cooperative Lamb shift

from the data, highlighting their dynamical aspects. Based on these signatures, we are able to
understand the thin-film cavities in greater detail and find how they can be modeled with even
higher accuracy. In this course, the Lamb shift observed in the spectra is understood in more
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∆
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Figure 4.1: Schematic setup and origin of the Fano interference. (a) X-ray light is reflected by a thin-
film cavity under a grazing angle θ. The Pt/Pd layers act as cavity mirrors and C as the guiding layer.
The reflection by the empty cavity (RC , blue) and from the embedded 57Fe nuclei in the center (RN ,
red) have a phase difference φ which can be controlled via the incidence angle θ. (b) The empty-cavity
reflection forms a broad spectral continuum (“1”, bottom), whereas the isolated “bound state” nuclear
response A(∆) (top) is of Lorentzian shape. (c) The interference of these two paths leads to Fano line
shapes, with asymmetry controlled by the phase φ.

detail. In a second application we demonstrate how the measured Fano spectra can be employed
to perform phase sensitive measurements of the nuclear resonances, which constitutes a first step
towards state tomography in the x-ray energy domain.

4.1 Fano line shape control
The general scheme which we discuss in the following is illustrated in Fig. 4.1. Resonant 57Fe
nuclei are placed in the x-ray cavity and the spectral response of the nuclei in the light reflected
in grazing incidence off the cavity is observed. To motivate this setup, we start with an intuitive
picture.
We interpret our cavity as an interferometer, since the x-ray reflectance can be divided into two

pathways as depicted in Fig. 4.1. In the first path, the light is reflected by the cavity alone. This
path acts as the continuum channel independent of the frequency on the scale of the spectrally
narrow Mössbauer absorption. In the second path, the x-rays interact with the resonant nuclei.
This leads to a Lorentzian reflection amplitude and acts as the bound state channel. Under these
conditions, the total reflectance can be written as

|R|2 ∝
∣∣1 + eiφA(∆)

∣∣2 , (4.3)

where A(∆) is a complex Lorentzian amplitude and ∆ = ω − ω0 is the frequency detuning
between x-ray frequency ω and nuclear resonance frequency ω0. Generally, these two channels
have a phase difference, which we will denote as φ in the following. Such a relative phase can
directly be mapped to the Fano q asymmetry parameter, which in turn determines the shape
of the resonance [172]. Thus, if the continuum contribution, formed by electronic scattering of
the cavity, interferes with the Lorentzian nuclear bound state contribution, we can expect to
observe Fano line shapes. Controlling the relative phase φ in an experiment would further allow
dynamical control of the line profile.

4.1.1 Theoretical description

Let us now continue with a more elaborated theoretical analysis. The distribution into the
two pathways introduced above can also be motivated theoretically. In Chap. 3 the reflection
amplitude for a single layer of unmagnetized 57Fe nuclei in the cavity has already been calculated.
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There, we found for the complex reflection coefficient R = RC +RN with (c.f. Eq. (3.58))

RC = 2κR
κ+ i∆C

− 1 , (4.4)

RN = −i 2κR
(κ+ i∆C)2

2
3 |g|

2N

∆ + iγ2 + 2
3
|g|2N

∆C−iκ

. (4.5)

Here, the first term RC characterizes the scattering from the cavity in the absence of nuclei, the
second term RN accounts for the nuclear part of the reflection. This shows that the reflection
spectrum indeed consists of the interference signal between a continuum channel and a bound
state contribution as required for Fano interference. However, at this stage it is not yet clear
if the line shape also resembles the formula from Eq. (4.2), which is the signature for the Fano
profile.
To address this question, we rewrite the reflectance in terms of the dimensionless energy ε in a

first step. In our case, though, the nuclear response is modified by cooperative phenomena. The
bound state Lorentzian is not centered on the nuclear resonance, but shifted by the collective
Lamb shift. Moreover, its width is superradiantly broadened from the natural line width. Hence,
we correct for the collective Lamb shift and the enhanced decay rate in the definition of the scaled
energy ε. Furthermore, we specialize to the critical coupling condition (2κR = κ, see Sec. 3.3.1),
which can be implemented experimentally, e.g., by adjusting the thickness of the topmost layer
of the cavity. Doing so, we obtain the reflectance

|R|2 = |ε+ q|2

1 + ε2
σ0 (4.6)

with

ε = ∆−∆LS

Γ/2 , (4.7)

q = Γ− γ
Γ

κ

∆C
+ i

γ

Γ , (4.8)

σ0 = (1 + κ2/∆2
C)−1 , (4.9)

∆LS = −2
3
|g|2N ∆C

κ2 + ∆2
C

, (4.10)

Γ = γ + 4
3
|g|2N κ

κ2 + ∆2
C

. (4.11)

This resembles exactly the anticipated expression for a Fano resonance. Note that q has an
imaginary component, which corresponds to an incoherent loss channel [180, 181]. We emphasize
that in the strongly superradiant case Γ � γ the loss channels can be neglected, such that an
ideal implementation of the Fano model is achieved. In contrast, in the opposite limit Γ ≈ γ,
without enhancement of the spectral line width, |R|2 ≈ σ0 without any spectral signatures. It is
therefore the collectively enhanced decay rate which enables the Fano implementation with full
visibility of the reflectance modulation.
In the intuitive interferometric picture developed above, we used that the continuum and the

bound state reflection channel have a phase difference φ which determines the asymmetry of the
spectral profile. Relating the Fano q parameter and the relative phase as φ = arg(q − i), we can
rewrite the reflectance to

|R|2 =
∣∣∣∣1 + eiφ

|q − i|
ε+ i

∣∣∣∣2 σ0 . (4.12)

This form resembles the interferometric model anticipated above and illustrated in Fig. 4.1,
in which a broad continuum channel (“1”) interferes with a Lorentzian bound state amplitude
formed by the ensemble of nuclei, controlled via the phase φ.
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Table 4.1: Equivalent notations for the cavity reflection coefficient in the absence of a magnetic field, the reflectance and
their respective interpretation. The coefficients are given in Tabs. 4.2 and 4.3.

Interpretation R |R|2

Quantum
optical theory

RC − i
2κR

(κ+ i∆C)2

2
3 |g|

2N

∆ + iγ2 + 2
3
|g|2N

∆C−iκ

RC − ia0e
iφ0

1
ε+ i

Fano spectrum −ia0e
iφ0

(
1

q − i
+ 1
ε+ i

)
a2

0
a2

1

|q + ε|2

1 + ε2

−ia0

a1
eiφ0

(
e−iφ + a1

ε+ i

)

Interferometer −ia0e
iφ0
(

1
a1
e−iφ + aNe

iφN
)

a2
0

(
a−2

1 + a2
N + 2aNa1

cos (φ+ φN )
)

Table 4.2: Coefficients in Tab. 4.1 for different parameter regimes.

Model assumptions RC q

no dispersion1,
critical coupling2,
no incoherent loss3

−1 + κ

κ+ i∆C

κ

∆C

no dispersion1,
critical coupling2 −1 + κ

κ+ i∆C

Γ− γ
Γ

κ

∆C
+ i

γ

Γ

no dispersion1 −1 + 2κR
κ+ i∆C

i+ ia0
κ− i∆C

κ− 2κR + i∆C

with dispersion,
RC(θmin) = 0 − 2κR

κ+ i∆C,min
+ 2κR
κ+ i∆C

Γ− γ
Γ

κ2 + ∆C∆C,min

κ (∆C −∆C,min) + i
γ

Γ

Table 4.3: Global variables in Tabs. 4.1 and 4.2.

a0 = 2κR
κ

Γ− γ
Γ a1 = |q − i| aN = 1√

1 + ε2

φ0 = 2 arg
(

κ

∆C
− i
)

φ = arg (q − i) φN = arg (ε− i)

ε = ∆−∆LS

Γ/2 ∆LS = −2
3
|g|2N ∆C

κ2 + ∆2
C

Γ = γ + 4
3
|g|2N κ

κ2 + ∆2
C

∆C = δC(θ − θ0) ∆C,min = δC(θmin−θ0)

1 θ0 = θmin,∆C,min = 0
2 2κR = κ
3 Γ � γ



4.1 Fano line shape control

A broader overview of the different forms for the reflection coefficient with their respective
interpretation is given in Tab. 4.1.
A similar phase mapping between the Fano q parameter and the phase φ was found in Ref. [172],

where absorption lines of auto-ionizing helium have been studied. However, it is different by a
factor 2 from the relation found here. The reason for this is that, in contrast to Ref. [172], our
continuum is not the free space vacuum, but situated in a cavity environment. The cavity vacuum
contribution to the reflectance also undergoes a phase shift upon a change of the incidence angle,
and thus the relative phase is reduced, as we will briefly show in the following. For simplicity,
we restrict to the superradiant limit Γ� γ, such that q = κ/∆C and φ = arg( κ

∆C
− i). Starting

from Eqs. (4.4) and (4.5), we find for the cavity continuum channel RC and the nuclear bound
state contribution RN

RC = −i 1
q + i

= −i eiφ 1√
1 + q2

, (4.13)

RN = −i q − i
q + i

1
ε+ i

= −i e2iφ 1
ε+ i

. (4.14)

From this we observe that the phase of the continuum path is shifted by φ, whereas the nuclear
contribution experiences a phase shift which is twice as large. Therefore, in our setup the relative
phase between the two channels is φ.
This Fano phase and, equivalently, the q parameter defined in Eq. (4.8) depends on the cavity

detuning ∆C . Close to the cavity eigenmode resonance at ∆C = 0, one can linearize ∆C ≈
δC · ∆θ0, where ∆θ0 = θ − θ0 is the deviation of the incidence angle θ from the angle θ0 at
which the cavity mode is driven resonantly. According to our theoretical model developed in
Chap. 3, θ0 is also the angle θmin at which the cavity reflectance would vanish in the absence of
any resonant nuclei. We will see later that this is not always the case and requires an extended
description of the cavity reflection amplitude. In any case, the fact that the incidence angle θ
enters the Fano q parameter, remains. Hence, it can be used to control the Fano line shape. We
note that a change in the incidence angle also modifies the cooperative Lamb shift ∆LS and the
superradiant transition width Γ, since a variation of the incidence angle θ leads to a different
initial excitation imprinted on the nuclei by the probing x-ray field [51, 112, 179].

4.1.2 Experimental realization

Guided by the group of Ralf Röhlsberger and Hans-Christian Wille (DESY, Hamburg) and
together with Thomas Pfeifer and Christian Ott (MPIK, Heidelberg), we have experimentally
explored the nuclear Fano line shape control at the Dynamics Beamline P01 of the PETRA III
synchrotron radiation source (DESY, Hamburg) [95]. Since the interferometric nature suggests
a dependence of the line profile on the optical material constants, the group of Ralf Röhlsberger
prepared two cavities with Pt and Pd as mirror materials, respectively (see Fig. 4.1).
We employed nuclear resonant scattering, where a short broadband incident pulse excites the

nuclei, and subsequently the delayed scattered photons are detected in a time window 40−190 ns
after excitation. Far-off-resonant background photons are suppressed using a high-resolution
monochromator for the incident light. To record the spectrum of the scattered light, a spectrally
narrow resonant absorber foil (consisting of a 6 µm thick stainless steel foil enriched to 95% in
57Fe) was used, which was scanned in energy across the nuclear resonance with the help of a
Doppler drive as described in more detail in Sec. 6.1.
Cavity 1 is formed by a Pt(2.1 nm)/C(32 nm)/Pt(12 nm) (top to bottom) layer system with

the Pt layers acting as the mirrors and the C as guiding layer. A 1.2 nm thick active layer of
57Fe was placed in the center of the carbon layer. Cavity 2 is a Pd(4 nm)/C(36 nm)/Pd(14 nm)
layer system, with a 1.2 nm thick 57Fe layer in the center.
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Figure 4.2: Fano line shape control with nuclei. The different panels show the reflected intensity at
different relative incidence angles ∆θ = θ − θmin of the probing x-ray field. A Lorentzian shape is
obtained for ∆θ ≈ 0 µrad. Asymmetric Fano line shapes are observed away from θmin. The narrow
spikes at ∆ ≈ 0 and ±130γ visible in all panels are artifacts of the measurement procedure. Note that
unnormalized experimental raw data is shown without baseline subtraction. Therefore the intensities
in the different panels cannot directly be compared. Black lines show experimental data, overlayed red
curves are theory fits. The blue horizontal lines at ∆θ ≈ 0 µrad serve as a guide to the eye and indicate
the slight asymmetry of the line shapes.

Results

Experimentally recorded spectra for cavity 1 and 2 are shown in Figs. 4.2(a) and 4.2(b), respec-
tively. In both cases, the reflection spectra were measured for several incidence angles θ around
θ = θmin, where the cavity reflectance assumes a deep minimum at frequencies far off the nuclear
resonance.
Clearly, the incidence angle acts as a knob to control the spectral response from a Lorentzian

shape for θ = θmin to strongly asymmetric line shapes. Already at ∆θ ≈ 50 µrad, almost inverted
line shapes are observed.
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Figure 4.3: Fano q parameter characterizing the line shape, cooperative Lamb shift ∆LS, and superradiant
line broadening Γ as a function of the relative incidence angle ∆θ = θ − θmin. Left [right] panel shows
results for cavity 1 [cavity 2]. Red dots are experimental data, extracted by fitting the generic Fano
line shape Eq. (4.15). Dashed black lines show theoretical predictions from Eqs. (4.8), (4.10) and (4.11)
assuming θmin = θ0. Solid blue lines show the predictions of the theory including a cavity dispersion
phase. The inset shows the non-vanishing Lamb shift at θmin for cavity 1 in more detail.

For a quantitative analysis of the experimental data, we fitted a generic Fano profile

|R|2 = a+ b
(q + ε)2

1 + ε2
, ε = ∆−∆LS

Γ/2 (4.15)

with free parameters {a, b, q,∆LS,Γ} to each experimentally recorded spectrum. This form is
independent of our theoretical model and only assumes a generic Fano profile. Each fit was re-
peated multiple times with randomly modified initial parameters to avoid bias, and the respective
results are indistinguishable within their error bars.
Clearly, these fits match the measured spectra very well, as seen from the red theory curves

in Figs. 4.2(a) and 4.2(b). But beyond the agreement of the fits with the overall spectral shape,
we can employ the fits to determine the superradiant decay width Γ, the cooperative Lamb shift
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∆LS, as well as the Fano q parameter as a function of the incidence angle θ independent of our
theoretical model.
In Fig. 4.3, we compare these experimental results (red) with the theoretical predictions from

Eqs. (4.8), (4.10) and (4.11) (gray dashed lines). The error bars along ordinates are 95% CL fit
errors, along abscissae an angular uncertainty of ±3 µrad accommodates for systematic uncer-
tainties in the experimental setting. Generally, the measured parameters have the same angular
dependency as the quantum optical theory predicts. For cavity 2, the agreement is very good,
whereas for cavity 1, the predictions for the superradiance and the cooperative Lamb shift ap-
pear to have a systematic shift compared to the measured data. In particular, as shown in the
inset, cavity 1 has a non-vanishing Lamb shift at ∆θ = 0, whereas the theory from Eq. (4.10)
predicts ∆LS = 0. This is also related to the puzzle why a non-zero value for the Lamb shift was
measured for the Lorentz spectrum in Ref. [52]. As we will show in the next sections, this effect
is caused by the material dispersion and strongly depends on the choice of the mirror material
of the cavity.
But before we turn to this problem, we first comment on the deviations for the superradiant

decay width Γ at large incidence angles in Fig. 4.3. Here, the experimental data apparently
show a tendency to much broader resonance lines. However, these values were obtained form
the fits and as one can see from Figs. 4.2(a) and 4.2(b), for large ∆θ the recorded spectra are
superimposed with an oscillatory structure. The reason for this is that in order to measure the
cavity spectra, a stainless steel foil is required as detection device (c.f. Sec. 6.1). Especially for
large ∆θ interferences between the scattering paths of this device and the cavity become promi-
nent. As soon as their oscillation period is comparable with the tiny spectroscopic signature of
the Fano line shape, these two structures overlap and the Fano resonance cannot unambiguously
be identified anymore. Hence, the discrepancy is largely caused by the detection method. In
Sec. 6.4.2 we will provide an alternative approach for obtaining spectral properties from the data
in these cases.

4.1.3 Influence of additional cavity dispersion phases
In the last section we have seen that the experimentally determined values for the Lamb shift
and the superradiant enhancement are systematically shifted from the theory predictions in the
case of cavity 1, whereas for cavity 2 no shift is visible. Since the main difference of the two
cavities employed in the experiment is the choice of the mirror materials, platinum and palladium,
respectively, this suggests that their material properties are crucial for the observed effect. In
the following, we will show that the shift can be explained in terms of an additional material
depended phase in one of the reflection channels.

Asymmetric empty-cavity line shapes

We begin with the analysis be considering the reflection curves in more detail. In Fig. 4.4 the
cavity reflection in the absence of resonant nuclei is shown as a function of the incidence angle θ.
It is readily seen that the response of cavity 1 is asymmetric around the reflection minimum,

whereas that of cavity 2 is almost symmetric. This was observed in the experiment and also
confirmed by numerical calculations using conuss [79, 80]. On the other hand, however, the
quantum optical theory we used so far, always predicts a symmetric behavior, since from Eq. (4.4)
and ∆C = δC(θ − θ0) (c.f. Eq. (3.7)) we find

|RC(θ)|2 = 1− 4κR(κ− κR)
κ2 + δ2

C(θ − θ0)2 . (4.16)

Clearly, this does not match the asymmetric reflection curve for cavity 1, as indicated in Fig. 4.4.
Hence, we need to extend our quantum optical theory to properly cover this aspect.
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Figure 4.4: Empty-cavity response |RC |2 around the first guided mode. Shaded areas depict the range
of experimentally accessed θ. Numerical data calculated with conuss is shown as solid black line. The
quantum optical models are fitted around the reflectance minimum. In contrast to |RC |2 (red dashed
curve), the models |R′C |2 including a material dispersion phase (blue dotted curve) can reproduce the
asymmetry around θmin. The insets show the minima in more detail. For cavity 1 the true guided mode
resonance angle θ0 (vertical blue dotted line) determined with the extended model clearly differs from
the experimentally accessible θmin (vertical gray line), while for cavity 2 the angles θ0 and θmin almost
coincide.

In order to include the asymmetry in our theory, we consider the cavity reflection RC from
Eq. (4.4) in more detail. First, we rewrite RC = RD +RM with

RD = −1 , (4.17)

RM = 2κR
κ+ i δC(θ − θ0) , (4.18)

and note that the amplitude RD describes the amplitude of light directly reflected from the cavity
surface, while RM corresponds to the light which enters the cavity mode and subsequently leaves
it again in reflection direction. Both amplitudes together form the broad continuum in our setup
relative to the narrow nuclear response. But since the two different paths are affected in different
ways by the cavity material dispersion, it is reasonable to include a relative phase between these
amplitudes. Possible origins include dispersion in the cavity or Goos-Hänchen phase shifts [182]
of the directly reflected amplitude.
In the following we denote this relative phase between the two cavity reflection channels by

φC . In our equations for the reflection coefficient, we augment RD = −1 to R′D = − exp (iφC),
which yields the modified continuum response

R′C = −eiφC + 2κR
κ+ i δC(θ − θ0) . (4.19)

Here, we assigned the relative phase φC to the amplitude of the direct reflection on the cavity
surface for simplicity. An analytically equivalent result would be obtained if the phase was
attributed to κR in the second term. Note, however, that then for consistency also the κR in the
nuclear amplitude RN from Eq. (4.5) needed to be changed accordingly.
Indeed, we found that with a suitably chosen phase φC in Eq. (4.19) the reflectance curve

agrees very well with excellent agreement to the one predicted by conuss over the relevant
range of incidence angles, see Fig. 4.4. We found that the asymmetry is more pronounced for a
larger phase φC .
Consistent with the interpretation that the relative phase arises from material dispersion, we

found that φC depends strongly on the thickness and the complex refractive index of the mirror
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been obtained by a fit of the numerical data to the extended model |R′C |2. Phase shifts for mirror layer
materials Pt, Au, Ta, Pa, and Mo are indicated in the figure.

layers. This is illustrated in Fig. 4.5(a), where different mirror materials have been chosen in an
otherwise identical cavity. The asymmetry of the reflection curve is strongly influenced by the
choice of the material. In Fig. 4.5(b), we analyzed the dependence of the phase φC on the cavity
mirror material in more detail.
To this end we varied the complex refractive index n = 1 − δ + iβ of the mirror material

and computed the respective reflection curves using Parratt’s formalism (see Sec. 2.2.1). For
each refractive index, the phase φC was obtained from a fit of Eq. (4.19) to the numerical
data. From Fig. 4.5(b) it can be seen that especially the imaginary part of the refractive index,
which is responsible for absorption in the material, influences the asymmetry, as revealed by
stronger variation of φC along this axis. In our experiment, we have used cavities with platinum
and palladium as mirror materials. Therefore, two different regimes of the phase φC could be
explored: The nearly symmetrical and the strongly asymmetrical case, realized by the Pd and
the Pt cavity, respectively.

Effect of asymmetric empty-cavity lines on the spectroscopy results

Apart from the asymmetry in the reflectance curve, the newly introduced phase φC also has an
influence on the line shape of the full cavity reflectance including the nuclear amplitude. To
illustrate this effect, let us first interpret Eq. (4.19) in a different context. Since the first part in
Eq. (4.19) is in general complex for φC 6= 0, and the second term is real for θ = θ0 at the guided
mode resonance angle, the cavity reflectance R′C(θ = θ0) cannot be zero any more. Rather, it
is minimized at a different angle θmin. Generally, the two angles θ0 and θmin do not coincide,
which is in contrast to the original theory developed in Chap. 3. Defining the cavity reflectance
to vanish at θmin, i.e. R′C(θmin) = 0, we can write

eiφC = 2κR
κ+ iδC (θmin − θ0) = 2κR

κ+ i∆C,min
. (4.20)

Here, we introduced

∆C,min = δC (θmin − θ0) . (4.21)
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Adding the nuclear contribution RN to obtain the full reflectance, we find

|R′|2 = |R′C +RN |2 = |ε+ q′|2

1 + ε2
σ′0 , (4.22)

ε = ∆−∆LS

Γ/2 , (4.23)

q′ = Γ− γ
Γ

κ2 + ∆C∆C,min

κ (∆C −∆C,min) + i
γ

Γ , (4.24)

σ′0 = (2κR (∆C −∆C,min))2

(κ2 + ∆2
C)(κ2 + ∆2

C,min) . (4.25)

Again, a Fano line shape is obtained, but with modified σ0 and q as compared to the symmetric
case where φC = 0 and ∆C,min = 0.
Now, the Lorentzian spectrum (q′ → ±∞) is not realized at ∆C = 0 ⇔ θ = θ0 anymore

(c.f. Eq. (4.8)), but at ∆C −∆C,min = 0 ⇔ θ = θmin, which can be seen from Eq. (4.24). This
is expected, since the symmetric Lorentzian line profile, as also understood from traditional
Fano theory [160, 161], arises in the absence of the continuum contribution. In contrast, the
bound state nuclear contribution is unaffected by the modification of the empty-cavity response.
Therefore, the Lamb shift ∆LS and the superradiant line width Γ are still centered around the
true cavity eigenmode resonance at the angle θ0.
Consequently, if θ0 deviates from θmin, the corresponding spectra are shifted, as observed for

cavity 1 in Fig. 4.3, for which our extended theory predicts a difference of ≈ 5 µrad between
θ0 and θmin. In contrast, cavity 2 made out of a different material has a negligible dispersion
phase, such that RC ≈ R′C and only an insignificant angular shift arises. Theory curves taking
into account a potential dispersion phase are shown in Fig. 4.3 as solid blue lines and match the
experimental results very well.
The deviation of θmin from θ0 also explains why a recent experiment observed a non-zero

collective Lamb shift at resonance [52], even though theoretically a vanishing Lamb shift is
predicted by our initial theory developed in Chap. 3. The experiment measured at θmin, which
did not coincide with the angle θ0 for resonant excitation of the cavity mode, for which the
vanishing shift would be theoretically predicted.

4.1.4 Concluding remarks
Summarizing the previous sections, we have demonstrated both theoretically and experimentally,
that the x-ray reflection spectra of thin-film cavities with embedded resonant nuclei exhibit
Fano interference. We exploited the full agreement between theory and experiment to access
spectroscopic signatures such as line broadenings or shifts. In this process, we could unravel the
origin of the Lamb shift on resonance. Hence, the setup might also provides an avenue towards
precision metrology at neV energy and Å distance scales.
Furthermore, we found that our cavity represents a versatile and robust x-ray interferometer,

with external phase control. This phase control concept provides access to a large application
potential of Fano processes in the x-ray region [169, 170]. In the next section we will exploit
the interferometric nature of the cavity and show that even phase sensitive measurements of the
nuclear resonances can be performed.

4.2 Interferometric phase detection
The full characterization of the light–matter interaction depends both on the intensity and the
phase of the light. Detectors in the x-ray domain, however, are only sensitive to the inten-
sity [183]. This lack of the phase knowledge is an omnipresent problem for many applications
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in the x-ray domain, such as in crystallography [21, 184–186] or lensless imaging [24]. Here, we
demonstrate phase-sensitive measurements on a quantum system in the x-ray regime.
As we have seen in the previous section, the Fano profiles in the thin-film cavity can be under-

stood from the theoretical expression which contains two different amplitudes for the reflected
light. The first channel is the reflection from the empty cavity, the second contribution is due
to the resonant 57Fe nuclei in the cavity. The setting with these two paths can therefore be
interpreted in terms of an interferometer with two arms. The technique of interferometry is an
important method with applications across all the natural sciences [187]. In our case, one arm
contains the resonant nuclei, which, in the absence of a magnetic field, act as a collective two-
level system as shown in Sec. 3.3. This realizes an archetype nuclear two-level quantum system
(TLS). Via the second interferometer path, the empty-cavity reflection, the phase of the TLS
can be determined as we will show in the following.
Regarding the interferometric nature of the cavities, the recorded spectra correspond to the

signal at one of the output ports of the interferometer. As the non-TLS arm is tuned, the relative
phase between the two channels is changed. This enables us to determine the amplitude and
the phase of the optical response of the TLS. In order to apply this ansatz, the non-TLS path
needs to be controllable by means of an external parameter, while at the same time the TLS-arm
should be unaffected by it. In our cavity, it is possible to use the incidence angle θ to control
both the amplitude and the phase of the non-TLS path as we have seen in the discussion of the
Fano line shapes above. However, also the nuclear response is modified upon a change of θ, since
the Lamb shift and the superradiant broadening depend on the incident angle (c.f. Fig. 4.3).
Hence, phase determination from the raw experimental data is not possible, rather, we first need
to rescale the measured spectra to the dimensionless energy ε = (∆−∆LS)/(Γ/2). Then, without
any approximations, the reflection coefficient can be written as

R ∝ 1
q − i

+ 1
ε+ i

. (4.26)

Here, the first summand corresponds to the non-TLS arm and depends on the incidence angle θ.
The second part describes the TLS arm of the interferometer, which now only depends on the
rescaled energy ε. In this formulation, it is now possible to determine the amplitude and phase
of the TLS by appropriately tuning the non-TLS arm of the interferometer, i.e. the empty-cavity
response.
In order to implement this phase retrieval with our experimental data, the measured spectra

need to be rescaled to the dimensionless energy ε. To this end, we use the generic Fano fits
obtained in the previous section. For the further analysis we make no assumptions that the
spectra are Fano profiles, as it would obviously spoil an unbiased determination of the phase.
Instead, we employed a general ansatz for the reflectance

|R(∆θ, ε)|2 ∼
∣∣∣rC(∆θ)e−iφ(∆θ) + rN (ε)eiφN (ε)

∣∣∣2 , (4.27)

where rC and rN are real functions. Furthermore, we assume that rN (ε→ ±∞) = 0 vanishes at
large detunings, which holds for any off-resonantly driven resonance. From this, we define

ξ(∆θ, ε) = |R(∆θ, ε)|2 − |R(0, ε)|2 − |R(∆θ,±∞)|2

2|R(0, ε)||R(∆θ,±∞)|
= cos (φ+ φN ) . (4.28)

Having ξ at hand for several values of ∆θ and for a fixed energy ε, the nuclear phase φN (ε)
can now be determined. To this end, the relation between ∆θ and the cavity phase φ(∆θ) =
arg (q(∆θ)− i), which is known from the quantum optical description, is employed. Inserting
the relation in Eq. (4.28), the nuclear phase is obtained by fitting the cosine to the measured ξ
for all available ∆θ values. Repeating this procedure for multiple ε yields the function φN (ε).
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Figure 4.6: Reconstructed nuclear phase (red) as a function of the scaled energy ε of the TLS formed by
the resonant nuclei in the two cavities. The shaded areas denote the error ranges of the retrieved TLS
phases. In the top panels the dispersion phase was not taken into account, in the lower panels it was
included to the phase model for the cavity. The theoretically expected phase of the Lorentzian typical
for a TLS is shown in blue. The insets show reconstructed phases where a model function for the nuclear
amplitude was used (see main text).

To evaluate ξ(∆θ, ε) from the experimental data without making assumptions about to the
line shape to be reconstructed, we fitted a general rational function Rrat = (a0 +a1ε+a2ε

2)/(b0 +
b1ε + b2ε

2) to the data, normalized it to 0 ≤ Rrat ≤ 1, and evaluated it at the according values
for ∆θ and ε. Since the angle ∆θ = 0 was not measured for the second cavity, we obtained
|R(0, ε)| from the mean of the results for ∆θ = ±1 µrad. To take into account the errors of the
determined ξ(∆θ, ε), 1000 fits with data values sampled from the individual error ranges of the
variables in Rrat and of ∆θ were performed for each given ε. Each of the fits results in a value
φ

(i)
N ±∆φ(i)

N for the nuclear phase. We weighted each φ(i)
N with (∆φ(i)

N )−2 and for the subsequent
work the mean and standard error of this set were used.
Clearly, the phase retrieval depends on the model employed for the empty-cavity response,

i.e. the non-TLS arm of the interferometer which is used to scan the TLS. As we have seen
before, the Fano line shape results indicate the presence of a dispersion phase in the cavity
path. Hence, the model function of the non-TLS arm and also the nuclear phase, which is to be
reconstructed, depends on the choice if we include this dispersion phase or not.
In the top panels of Fig. 4.6, the nuclear phases retrieved without including the dispersion

phase are shown for both cavities. Clearly, their shape is similar to the expected Lorentzian
phase profile arg ((ε+ i)−1) typical for a TLS. However, a constant offset in the phase for cavity
1 is observed. The reason for this is that cavity 1 exhibits a large dispersion phase in the
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non-TLS path and the Fano q parameter is modified to q′ given in Eq. (4.24). Including the
dispersion phases to the model function by using the relation φ = arg (q′(∆θ)− i), a much
better agreement with the theoretical prediction of a Lorentz profile is found, as shown in the
lower panels of Fig. 4.6. The phase of the TLS in cavity 2 is largely unaffected by this, since
its dispersion phase is insignificant. However, for both cavities we observe deviations form the
expected Lorentzian shape for large values of ε. We found that the discrepancy is mainly caused
by a numerical artifact. For large ε, the reflectance |R(0, ε)| becomes very small. As this value
appears in the denominator of Eq. (4.28), already a small absolute error in the reflectance can
result in a large error in ξ. Consequently, the TLS phase obtained from these ξ deviates from the
expected result. This is exemplified in the following. Replacing the critical reflectance |R(0, ε)|
in the denominator of Eq. (4.28) with the theoretically expected value (1 + ε2)−1/2, the phase
reconstruction scheme is repeated and the results are shown in the insets of Fig. 4.6. It can
be seen that this procedure, in combination with including the dispersion phase, yields perfect
agreement with the expected TLS phase. Additionally, the error bars are significantly reduced.
This highlights that the small value in the denominator is indeed the main cause for the observed
discrepancy.
We emphasize that the method demonstrated here does not depend on the Lorentzian line

profile, but can be used to reconstruct the phase of arbitrary nuclear line shapes. For example, it
can be employed for advanced x-ray quantum optical level schemes involving multiple magnetic
hyperfine states with selectively coupled resonances [50, 56]. To do so, as demonstrated above,
the measured spectra have to be normalized to the dimensionless energy ε. This can be achieved
by first characterizing the cavity by measuring the Fano line shapes with the known relations
for the cooperative Lamb shift and the superradiant enhancement. Once the cavity properties,
in particular the relation between the incidence angle θ and the cavity phase φ, are known, a
magnetic splitting could be induced and the phase of the potentially non-trivial nuclear response
could be reconstructed employing the same ansatz as used above.

4.2.1 State tomography at x-ray energies
To fully exploit quantum effects, an essential requirement is the capability to determine the
quantum state of a given system. The techniques of phase-sensitive measurements are a pre-
requisite for the development of quantum state tomography, i.e. the reconstruction of quantum
states [188, 189]. This quantum state tomography has been successfully demonstrated at optical
frequencies [190], but remains an open challenge in the x-ray regime.
In our setup the quantum state of interest is the TLS formed by the collective behavior of

he 57Fe nuclei in the cavity. Further, the incident x-ray pulse has a duration in the 10-100 ps
range, whereas the natural life time of the single nuclei is 141 ns. Hence, the preparation of
the TLS state in the low-excitation regime is near-instantaneous and the measurement of the
subsequently emitted light, which we can use for its characterization, is independent.
A full state tomography would comprise a measurement of the TLS density matrix [189]. Due

to the time gating used in the present experiment, the absolute values of the density matrix
elements are not directly accessible from our data. However, we can characterize the vital prop-
erties of the off-diagonal density matrix elements. The x-ray photons are coherently scattered,
preserving their energy. Selecting all detection events of a particular photon energy ε therefore
provides access to a large number of identically prepared TLS states. Repeated measurements
on the light emitted by identically prepared TLS states then enables us to determine the char-
acteristics of the off-diagonal density matrix element ρeg = 〈e|ρ|g〉, where |g〉 [|e〉] denotes the
ground [excited] state of the TLS. Up to an unknown scaling factor, it can be decomposed into

ρeg(∆) ∼ σeg(∆) · eiφρ(∆) , (4.29)

where σeg(∆) contains the spectral form and φρ is the phase of the density matrix element.
The spectral shape is trivially obtained from the pure nuclear spectrum shown in Figs. 4.2(a)
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and 4.2(b). In addition, our phase-sensitive measurements provides a handle to determine the
desired phase of the off-diagonal density matrix elements, since ρeg is directly proportional to
the light amplitude emitted by the TLS. This can already be seen by noting that the nuclear
contribution to the reflected field amplitude RN ∝ rN exp (iφN ) is directly proportional to the
off-diagonal density matrix element ρeg, see Chap. 3. In a more general way, this relation is also
obtained by considering the radiation emitted from a dipole transition as [148]

E
(+)
scat = k2

4πε0r
ei(kr−ωt) (r̂ × d)× r · S− , (4.30)

where d is the TLS dipole moment assumed parallel to the polarization, and S− the transition
operator from the upper to the lower state. Since 〈S−〉 = ρeg, the measured nuclear phase φN
can be identified with the phase φρ of the off-diagonal density matrix elements.
The phase-sensitive interferometric measurement of the optical response of a TLS demon-

strated here opens a number of promising research directions. Combinations of the techniques
developed here with measurements of the magnitude of the density matrix elements, either via
detecting light intensity or conversion electrons [191], could lead to the development of complete
quantum state tomography at x-ray energies.
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Chapter 5

Vacuum Induced Coherences In 57Fe
In the previous chapters we have discussed properties and effects of the thin-film cavity with
an embedded 57Fe layer. However, so far a possible magnetization in the layer of resonant
nuclei and its influence on the reflection spectrum was not considered. Since a magnetic field
induces a hyperfine splitting of the nuclear resonances, different transitions can be driven in
principle and the interpretation of the system clearly goes beyond the physics of two-level systems.
At the same time, a magnetization in the layer will define a quantization axis, such that the
polarization invariance is broken. Thus, the polarization of the incident radiation and at the
detector have to be treated explicitly in the theoretical descriptions. These new aspects offer a
great potential, since the systems under investigation posses additional degrees of freedom, which
can be controlled externally. Hence, it can be expected that flexible schemes can be engineered,
and additionally new physical phenomena will be observed if a magnetic control of the setup is
exploited.
On the theory side, the layerformalism we introduced in Sec. 2.2.2 is capable of covering the

magnetization and polarization dependence [77] and hence the software package conuss [79, 80]
can again serve as a benchmark for other theories. In this chapter we will show that even compact
analytical expressions for the cavity reflectance can often be found employing the layerformalism.
But as emphasized before, a quantum description is highly desirable in order to understand the
microscopic effects in the cavity and to provide a proper interpretation. The quantum optical
description we developed in Chap. 3 has been designed to also allow for magnetic hyperfine
splittings and covers the full polarization dependency. Therefore, it is well suited to be applied
in this advanced scenario as well.
As a main result we will see that, surprisingly, the vacuum itself spontaneously induces co-

herences in the 57Fe nuclei [140, 147, 148], which manifests itself in characteristic spectral line
shapes. Finally, we will present experimental results for the spectra, which were obtained in col-
laboration with the group of Ralf Röhlsberger, Hans-Christian Wille (both at DESY, Hamburg),
the Institute for Optics and Quantum Electronics in Jena and the Helmholtz Institute Jena.

5.1 Geometrical settings
As mentioned in the introduction, the focus of this chapter is a cavity in which the magnetic
hyperfine splitting of the nuclei is explicitly considered. An iron layer in the cavity will spon-
taneously build up ferromagnetic order, if its thickness exceeds a few nanometers. In turn, the
internal magnetization can be aligned already by applying relatively weak external magnetic field.
The internal field strength in α-iron is typically around 33 T [51], which results in a Zeeman
splitting of the ground and excited states of the nuclear transition as illustrated in Fig. 3.2.
In addition to the magnetically induced splitting of the nuclear resonances, the polarization

of the incoming x-ray beam as well as of the detected radiation plays a crucial role. The rela-
tive orientation of the incident polarization with respect to the quantization axis in the cavity
determines which transitions in the Zeeman-splitted 57Fe nuclei are driven. Also, the relative
strength of the different excitations channels can be controlled this way. The same holds for the
reflected radiation. Since each transition in the nucleus emits radiation only along its polariza-
tion axis, a suitable choice of the detector’s polarization orientation allows to selectively read out
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Bhf

âin
âout

k̂

ˆ

π

σ

Figure 5.1: The setup discussed in this chapter is sketched. The thin-film cavity with the embedded
57Fe nuclei marked in red is subjected to a magnetic field, such that different transitions in the nuclei
can be driven. In addition, the polarization dependence is taken into account. Experimentally, it can be
controlled, e.g., with a polarimeter as shown in blue color above.

different combinations of the transitions. Experimentally, dedicated x-ray polarization optics as
illustrated in Fig. 5.1 can be employed to exploit this degree of control. The polarization plane
of the incident and the detected x-rays can be defined by linear x-ray polarizer crystals before
and behind the sample [192–194].
In this chapter we will consider different geometrical configurations of the magnetization direc-

tion and polarization choices. The orientations are defined with respect to the beam propagation
axis k̂, the layer surface normal π and σ = (k̂ × π). The vectors π and σ correspond to the
directions â1 and â2 defined Fig. 3.1 and used in the derivation of the quantum optical descrip-
tion in Chap. 3. However, for consistency with the notation of the layerformalism [77], we will
use the axes π and σ in the following. Denoting the polarization of the incident [outgoing] x-ray
beam by âin [âout] and the magnetization, and thus quantization axis by B̂hf, we consider the
following configurations:

π geometry: âin ‖ âout ‖ π, B̂hf ‖ σ
In this simple geometry, the magnetic component of the incident light is parallel to the
magnetization axis of the nuclei. Therefore, only linearly polarized ∆m = 0 transitions are
driven.

σ geometry: âin ‖ âout ‖ B̂hf ‖ σ
Here, the magnetic component is perpendicular to the quantization axis and hence only
circular polarized σ± transitions are driven.

Faraday geometry: âin ‖ σ, âout ‖ π, B̂hf ‖ k̂
In this configuration, the polarizer and analyzer setting suppresses any background signal,
consisting of photons whose polarization has not been rotated upon an interaction with
the nuclei in the cavity. Since the magnetization is perpendicular to the magnetic field
component of the incident pulse, again only ∆M = ±1 transitions are driven. However,
due to the different polarization choice compared to the σ geometry, a differing optical
response is expected.

Half-Faraday geometry: âin ‖ σ, âout ‖ π, B̂hf ‖ σ + k̂
Also here, only photons resonantly scattered at the 57Fe layer will arrive at the detector.
All six transitions in the 57Fe nucleus will be driven by the x-ray beam.

45◦-Voigt geometry: âin ‖ π + σ, âout ‖ π − σ, B̂hf ‖ σ
The properties of this configuration are similar to those of the Half-Faraday geometry. Due
to different polarizations of the incident and outgoing beam, the interaction in the cavity
and the observed spectra are expected to be different.
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Figure 5.2: Spectra of the cavity with a magnetized 57Fe layer calculated with conuss are shown for the
different geometrical configurations introduced in the main text.

Note that in a realistic experimental situation, the magnetic field can only be aligned in the (σ, k̂)
plane of the layer as the layer thickness along π is too small for an unspoiled spin alignment.
However, nearly arbitrary choices for the magnetization direction can be mimicked by rotating
the polarizer and analyzer instead.
In order to get a first impression on the spectra of the configurations defined above, we perform

numerical simulations with the software package conuss for the layer system defined in Tab. 5.1.
The computations are performed at θ = 3.35 mrad, where the first guided mode of the cavity is
excited. The results are shown in Fig. 5.2. Clearly, the spectra go beyond the Lorentzian response
of a two-level system and indicate, that multiple transitions in the 57Fe nuclei contribute to the
observed reflectance.
A prominent feature of the spectra in Fig. 5.2 are repeatedly occurring maxima and minima,

found in all spectra. At some of the minima, the reflected signal even drops to the baseline. This
observation is an explicit sign of interference effects, which occur between the involved transitions
in the cavity. However, at this point it is unclear which kind of physical phenomenon gives rise
to those interferences and how the presence of the deep minima can be interpreted. Answering
this question is the central subject of this chapter.

5.2 Semi-classical derivation of the reflectance
We have seen above that the reflectance spectra in the presence of a magnetic splitting of the
57Fe nuclei can become rather complex. Accordingly, also the theoretical treatment of these cases
is slightly more involved. In this section, we will derive expressions for the reflection coefficient
using the layerformalism (see Sec. 2.2.2), which is also the basis for conuss. To this end, the

Table 5.1: Toy level system used to analyze the influence of magnetization.

Material Thickness [nm]
Pt 2.5
C 6

57Fe 2
C 6
Pt ∞
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perturbative ansatz of Refs. [52, 56], where the reflection coefficient was calculated in the absence
of a magnetization, is generalized here.
We start by recapitulating the basic elements of this analytic approach, which was introduced

in Sec. 2.2.2. The field amplitudes of the transmitted and reflected light at depth z of the layer
system are combined in the two-dimensional vector ~A(z). Products of so-called layer matrices L
connect the field amplitudes at different positions. Each layer contributes to this product with
its layer matrix Li, which depends on its material composition. In particular, for the resonant
layer, the matrix can be written as LFe(z) = exp (iF Fez), where F Fe is the propagation matrix
and contains the nuclear scattering amplitude fN . The reflection coefficient is obtained from the
ratio of the reflected and incident field amplitude at the surface of the cavity.
Let us briefly sketch how the polarization and magnetization can be included in this treatment.

Since any polarization can be written as a linear combination of components along the two axes
π and σ perpendicular to the beam propagation direction k̂, the field amplitude vector ~A(z) can
simply be extended to four components. Then, it contains the field amplitudes for the transmitted
and reflected light for two polarization directions each. Consequently, the layer- and propagation
matrices are to be extended to the size 4 × 4. Instead of a scattering amplitude fN , we use a
2× 2 scattering matrix fN to properly take the polarization dependence into account. The form
of the scattering matrix is determined by the magnetization of the 57Fe layer. Generally, the
propagation and layer matrices couple all individual amplitudes in ~A with each other, such that
a straightforward computation as performed in Sec. 2.2.2 is not possible. However, in the special
case in which fN can be diagonalized, so-called eigenpolarizations can be defined. In a physical
picture, their property is that they do not mix with the respective second eigenpolarization upon
scattering in the cavity. For the case of eigenpolarizations, the situation reduces to the case
without magnetization in the analysis: The reflection coefficient of each eigenpolarization can
be calculated separately and by projecting the incident light polarization, as well as the detector
axis onto the eigenpolarizations, the coefficients for the respective reflectivities are found.

5.2.1 Decomposition into two eigenpolarizations
Next, the fact that the diagonalized scattering matrix fN allows for the calculation of amplitudes
for two independent eigenpolarizations, will be discussed in more detail. For the field amplitude
vector we write ~A = (A+σ, A+π, A−σ, A−π)T , where A± denotes the transmitted and reflected
field amplitudes in the canonical polarization basis (σ,π). Let us assume that the scattering
matrix fN can indeed be diagonalized and write for the scattering matrix in the canonical basis

fN = Uf̃NU
† , (5.1)

with the diagonal scattering matrix

f̃N =
(
fNη 0

0 fNζ

)
. (5.2)

The unitary matrix U transforms between the canonical polarization basis and the eigenpolariza-
tions (η, ζ), in which the scattering matrix is diagonal. Including polarization, the propagation
matrix F Fe from Eq. (2.18) becomes

F Fe =
(
fN fN
−fN −fN

)
=
(
U 0
0 U

)(
f̃N f̃N
−f̃N −f̃N

)(
U† 0
0 U†

)
, (5.3)

and for the layer matrix we find

LFe(z) = exp (iF Fe z) =
(
U 0
0 U

)
L̃Fe(z)

(
U† 0
0 U†

)
, (5.4)

56
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with

L̃Fe(z) = exp
(
i

(
f̃N f̃N
−f̃N −f̃N

)
z

)
=


1 + ifNηz 0 ifNηz 0

0 1 + ifNζz 0 ifNζz
−ifNηz 0 1− ifNηz 0

0 −ifNζz 0 1− ifNζz

 .

(5.5)

Finally, let us now transform the field amplitude vector ~A into the diagonal basis via

~̃A = (A+η, A+ζ , A−η, A−ζ)T =
(
U† 0
0 U†

)
~A (5.6)

We find that in the new basis the field amplitudes at different positions are related by (see
Eq. (2.13))

~̃A(z) = L̃Fe(z) ~̃A(0) . (5.7)

From the form of the matrix L̃Fe in Eq. (5.5), we immediately notice that only the transmitted
and reflected field amplitudes of the same eigenpolarization are mutually coupled. Hence, the
equation for a single eigenpolarization ρ = η, ζ can be written in the reduced form(

A+ρ(z)
A−ρ(z)

)
=
(

1 + ifNρz ifNρz
−ifNρz 1− ifNρz

)(
A+ρ(0)
A−ρ(0)

)
= exp

(
i

(
fNρ fNρ
−fNρ −fNρ

)
z

)(
A+ρ(0)
A−ρ(0)

)
. (5.8)

This is exactly the same form as we found in the discussion without polarization dependence in
Sec. 2.2.2. Therefore, the solution of the reflection coefficient for a single eigenpolarization can
be reused in this analysis. In particular, in the case where the electronic reflection vanishes since
the cavity is driven at a guided mode, the reflection coefficient is given in Eq. (2.20). In this
expression, fN has now to be replaced with the eigenvalues fNρ of the scattering matrix. Thus,
the remaining task is the diagonalization of the nuclear scattering matrix and the according
projection of the driving and detector polarization onto the axes of the eigenpolarizations.
Above, we neglected terms stemming from the electronic contribution of non-resonant layers

for clarity. Their scattering matrices are always diagonal and have identical eigenvalues, though,
and do not rotate the polarization of the x-rays. Therefore their responses to the light field seen at
different polarization directions is always identical. Naturally, also no polarization mixing occurs
in the basis of the eigenpolarizations. Hence, the layer matrices with the electronic contributions
can simply be multiplied to Eq. (5.8) at the according positions.

5.2.2 The nuclear scattering matrix

The nuclear scattering in the canonical polarization basis is characterized by the scattering
matrix fN . As we have seen above, the reflection coefficient can be expressed analytically if it
can be diagonalized. Here we consider the pure nuclear contribution to the scattering matrix
and neglect the non-resonant electronic part. Following Ref. [77], it can then be written as

fN ∝
(
Nσσ Nσπ
Nπσ Nππ

)
, (5.9)
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where Nρξ denotes the scattering from channel ξ into channel ρ. The coefficients read (see
Eq. (4.15) in Ref. [77])

Nσσ = F+1 + F−1 + (π · B̂)2(2F0 − F+1 − F−1)
Nσπ = −i(k̂ · B̂)(F+1 − F−1)− (σ · B̂)(π · B̂)(2F0 − F+1 − F−1)
Nπσ = i(k̂ · B̂)(F+1 − F−1)− (σ · B̂)(π · B̂)(2F0 − F+1 − F−1)
Nππ = F+1 + F−1 + (σ · B̂)2(2F0 − F+1 − F−1) . (5.10)

From the matrix above, it can be seen that for general choices of the magnetization axis B̂ a
strong polarization mixing occurs. The scattering functions FM contain the scattering amplitudes
of the corresponding ∆m = M transitions, e.g. F−1 describes the scattering of the x-rays at σ−
transitions in the nucleus. Following Eq. (4.78) in Ref. [77], they consist of the sum over the
two ground states g in the 57Fe resonance, i.e. the sum over the two transitions with ∆m = M .
The resonance frequencies of the transitions are defined with respect to the transition energy at
vanishing magnetization ω0. Their energy shifts were already given in Tab. 3.1. In the same
notation we can write for the scattering functions (me = mg +M)

FM ∝
∑
g

〈 12 ,mg; 1,M | 32 ,me〉
2

∆− (meδe +mgδg) + iγ/2 , (5.11)

where 〈 12 ,mg; 1,M | 32 ,me〉 denotes the Clebsch-Gordan coefficient of the respective transition. In
particular, neglecting the global scaling factor, they read

F−1 = 1/3
∆ + iγ2 + 1

2δg −
1
2δe

+ 1
∆ + iγ2 −

1
2δg −

3
2δe

,

F0 = 2/3
∆ + iγ2 + 1

2δg + 1
2δe

+ 2/3
∆ + iγ2 −

1
2δg −

1
2δe

,

F+1 = 1
∆ + iγ2 + 1

2δg + 3
2δe

+ 1/3
∆ + iγ2 −

1
2δg + 1

2δe
. (5.12)

From Eqs. (5.10) and (5.12), we can immediately see that for vanishing magnetization, i.e. where
no Zeeman splitting occurs and δe = δg = 0, all scattering functions F±1, F0 coincide and
therefore the scattering matrix in Eq. (5.9) is diagonal with identical eigenvalues. Hence, the
polarization-insensitivity of the scenario without a magnetic splitting is recovered.
Let us now calculate the eigenvalues fNη and fNζ of the scattering matrix fN for the cases

B̂ ⊥ k̂ and B̂ ‖ k̂. This corresponds to most geometries we defined in Sec. 5.1. We find

f B̂⊥k̂Nη ∝ F−1 + F+1 ,

f B̂⊥k̂Nζ ∝ 2F0 ,

f
B̂‖k̂
Nη ∝ 2F−1 ,

f
B̂‖k̂
Nζ ∝ 2F+1 . (5.13)

The proper normalized eigenvectors are denoted by f̂Nη and f̂Nζ . These are required in the
following, since the projection of the incident and outgoing polarization onto the eigenpolarization
axes also plays a crucial role for the full reflectance.
With the knowledge of the scattering matrix eigenvalues and the reflection coefficient for a

single eigenpolarization (see Eq. (2.20)), it is now possible to construct the total response as

R = REigenpol (fNη)
(
â∗out ·f̂Nη

)(
f̂
∗
Nη ·âin

)
+REigenpol (fNζ)

(
â∗out ·f̂Nζ

)(
f̂
∗
Nζ ·âin

)
, (5.14)
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with

REigenpol(T ) = idp2

1
T − idpq

. (5.15)

Note that, in contrast to Sec. 2.2.2, the coefficients p and q are now rescaled parameters to
compensate for the factors of proportionality in the nuclear scattering amplitude. Moreover,
these constants are independent of the chosen eigenvalue and depend only on the cavity geometry.
Finally, we consider the case where the incident or the detected beam are not fully polar-

ized. For example, this is of interest if no analyzer is used in the optical path, but all photons
independent on their polarization arrive at the detector. We construct the reflection tensor

R = REigenpol (fNη)
(
f̂Nηf̂

∗
Nη

)
(5.16)

+REigenpol (fNζ)
(
f̂Nζ f̂

∗
Nζ

)
, (5.17)

where the vector products denote outer products. In the case of a linear polarized beam and a
polarization sensitive detector we can calculate the reflection as the scalar quantity

R = â∗out ·R · âin (5.18)

in agreement with Eq. (5.14). For a general incoming and outgoing polarization the reflection
can be calculated with Eq. (4.73) in Ref. [77] as

|R|2 = Tr
(
ρoutRρinR

†
)
. (5.19)

Here ρin and ρout denote the density matrix of the initial and final polarization state, respectively.

5.2.3 Analytical solutions for the reflection coefficients
We are now able to compute the reflection coefficients for the geometries defined in Sec. 5.1.
Using the decomposition into eigenpolarizations, we find

Rπ = REigenpol(2F0) ,
Rσ = REigenpol(F−1 + F+1) ,

RFaraday = i
2REigenpol(2F+1)− i

2REigenpol(2F−1) ,
RVoigt = 1

2REigenpol(2F0)− 1
2REigenpol(F−1 + F+1) . (5.20)

Since for the Half-Faraday geometry the scattering matrix does not decompose into two eigen-
polarizations, its reflection coefficient cannot be written in this simple form with the methods
presented here, but only computed numerically.
The expressions for the reflectance we derived in Eq. (5.20) are shown in Fig. 5.3. All curves

have been created with the same set of parameters and agree to the predictions calculated by
conuss very well, indicating the consistency of our derivation above. Since in the Faraday and the
45◦-Voigt geometry the incident polarization is chosen perpendicular to the detected polarization,
all electronic scattering signal is suppressed. Only the nuclear scattering signal arrives at the
detector. In the other two geometrical settings shown in Fig. 5.3, though, the electronic signal
is only minimized since the cavity is operated in the first guided mode minimum. Any residual
electronic effect contributes to the reflection coefficient beyond the one given in Eq. (5.20).
Allowing for a complex offset for the reflectivity, this can be compensated.
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Figure 5.3: Spectra of the cavity with a magnetized 57Fe layer calculated from Eq. (5.20) (solid lines)
and simulations by conuss (dashed lines) are shown for different geometrical configurations. For all
curves the parameters dpq = (−7.8 + i2.7)γ and |dp2| = 7.7γ were used. Additionally, for the π and the
σ geometry, an offset r = 0.006 + i0.065 in the reflection coefficient accounts for the residual response
of the electronic scattering, which is blocked by polarization filtering in the geometries depicted in the
right panel.

5.3 Quantum optical approach
Even though we found analytical expressions for most of the geometrical configurations defined
in Sec. 5.1, it is yet unclear which is the underlying mechanism that causes the sharp minima
observed in the reflection spectra. This question will be resolved in the next sections. In contrast
to the previous analysis which was based on the semi-classical layerformalism, we will apply our
quantum optical model to the scenario with a magnetized 57Fe layer, in which then multiple
Zeeman-splitted transitions can be driven. It will be shown that the occurrence of the interference
minima are caused by vacuum induced coherences. But before we turn to this effect in detail,
we first apply the quantum description to our setting.

5.3.1 Quantum model for a magnetized 57Fe layer
In this section we include the magnetic hyperfine splitting to the quantum optical model devel-
oped in Chap. 3. There, we formulated the equations of motion for the general case including a
possible magnetization. However, so far, only for Bhf = 0 explicit expressions for the reflection
coefficient were calculated. Since in the absence of a Zeeman splitting only one ground and one
excited state has to be taken into account, for these calculation essentially only the solution of a
two-level system was required. Here, the degeneracy of the ground and excited states in the 57Fe
nucleus is lifted and thus multiple resonances in the spectrum of the reflectance are expected.
Since the magnetization tags one direction in space, the rotational invariance observed in the
results for the unmagnetized layer will break down. In Secs. 3.2.1 and 3.2.2 we found that an
analytic treatment is still feasible in the linear regime as only one collective ground state |G〉 is
coupled to up to six collective excited states |E(+)

µ 〉, each one resembling one transition µ. Ac-
cording to Eq. (3.52), the steady state values of the coherences 〈E(+)

µ |ρ|G〉 need to be calculated
to obtain the reflection coefficient, which corresponds to the task of solving a linear system of
equations with up to six unknown variables.
If the six collective transitions were independent of each other, the nuclear part of the reflection

coefficient would be the sum of the respective Lorentz curves. However, this is not the case here
as the transitions are mutually coupled via the Hamiltonian HLS and via the Lindblad operator
Lcav[ρ] in Eqs. (3.50) and (3.51). These couplings depend on the orientation of B̂hf. Moreover,
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Figure 5.4: Engineering of nuclear level schemes. Depending on the choice of the input polarization and
the nuclear magnetization axes, different level schemes are obtained. The configurations (a) π geometry,
(b) σ geometry, (c) 45◦-Voigt geometry and (d) Half-Faraday geometry are shown. The obtained level
scheme are shown on the left, and the right column shows the corresponding reflectance. The excited
states |E(+)

µ 〉 are mutually coupled due to HLS and Lcav (red curly arrows) and coherently probed by
HΩ (blue). Spontaneous decay channels and Lamb shifts are not shown in the level diagram for clarity.
The vertical lines in the reflectance plots indicate the resonance frequencies of the six transitions. Other
parameters are as in Fig. 3.4.

the incidence and detection polarizations âin and âout influence the obtained spectra in a non-
trivial way. Therefore, we expect significant deviations in the spectra from a naive sum of
Lorentzians and a strong dependence on the relative orientation of the axes B̂hf, âin and âout.
Effective level schemes for different choices of the polarization and magnetization alignment

are shown in Fig. 5.4. The number of excited states and, equally important, their respective
couplings induced by the cavity modes are modified considerably. This indicates that a vast
range of different quantum optical level schemes can be engineered in a single sample, only
by suitably choosing the different polarization and magnetization axes. Accordingly, also the
reflectances differ from each other as can be seen in the right panel of Fig. 5.4. Comparing the
spectra with those calculated numerically with conuss in Fig. 5.2 or with the layerformalism in
Fig. 5.3, the agreement is excellent.
This is a first indication that our quantum optical model is applicable also in the case of

magnetized 57Fe layers. But the consistency between the models goes beyond the similarities
observed in the figures above. We calculate the analytical expressions for the reflection coefficient
using the equations of motion for the coherences defined in Eqs. (3.49)–(3.51) for the different
geometrical settings. Note that in our notation introduced in Chap. 3, the equations are given
for the coupling of the electrical polarization vectors âin and âout to the electric components of
the transition axes π̂0 and σ̂±. Since 57Fe features a M1 transition, the quantization axis π̂0

is therefore not identical to the magnetization direction B̂hf, but rotated by 90◦ in the (π, σ)
plane.
Solving for the steady state coherences 〈E(+)

µ |ρ|G〉, we find for the reflection coefficients
(c.f. Eq. (3.52))

Rπ = RC +RT (2F0) ,
Rσ = RC +RT (F−1 + F+1) ,

RFaraday = i
2RT (2F+1)− i

2RT (2F−1) ,
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RVoigt = 1
2RT (2F0)− 1

2RT (F−1 + F+1) , (5.21)

with

RC = 2κR
κ+ i∆C

− 1 , (5.22)

RT (T ) = κR |g|2N
2i (κ+ i∆C)2

1
1
T + |g|2N

4(∆C−iκ)

, (5.23)

and F0, F±1 as in Eq. (5.12). Comparing these results with the reflection coefficient in Eq. (5.20)
which we obtained previously with the layerformalism, we find perfect agreement even on the an-
alytical level. The quantum optical approach naturally includes the electronic scattering response
RC for the π and σ geometry, which in case of the layerformalism had to be added manually in
the curves shown in Fig. 5.3. For the nuclear response, a direct mapping of the functions RT (T )
and REigenpol(T ) in Eq. (5.15) can be found for the two respective results by identifying

√
d p ∼ |g|

√
N
√

2κR
2(∆C − iκ) ,

√
d q ∼ i|g|

√
N

2
√

2κR
. (5.24)

In particular, from these relations it can be seen that the atom number scaling of both theories
is in accordance as d ∝ N .
Our analysis reveals that the two methods yield identical results for the reflectance in the

linear regime even on the analytical level, despite their completely independent approaches. It
is instructive to compare the central elements in the two descriptions. In the layerformalism,
the scattering amplitudes for two transitions coupling to linearly and four transitions coupling
to circularly polarized light enter. Also within the quantum optical framework, we naturally
obtain these six transitions. This analogy is expected, since both the approaches are linear in
the probing field. Another analogy exists in the couplings between the different transitions. As in
the quantum optical description they are mediated via the tensor 1⊥ (c.f. Eqs. (3.50) and (3.51)),
it is easy to see that for (anti-) parallel or orthogonal orientation of Bhf with respect to k̂, the
excited states split into distinct subsets which are not mutually coupled. This is visualized in
the effective level diagrams shown in Fig. 5.4, where in particular the scheme of the 45◦-Voigt
geometry consists of two groups of excited states. This corresponds to the situation in which the
scattering matrix in the layerformalism decomposes as it can be written as a combination of two
eigenpolarizations (see Sec. 5.2.1).
Interestingly, the quantum optical calculation presented here does not rely on this decom-

position into subsets of excited states. Even for the most general case a linear system of six
coupled equation has to be solved, still allowing for analytic expressions for the reflectance. This
includes the setting of the Half-Faraday geometry, where, using the layerformalism, it was not
possible to find an expression with the ansatz employed in this work. In contrast, the quantum
optical approach enables analytic calculations for general choices of the axes and agrees with the
previous numerical results. Note, however, that the obtained analytical results are too bulky to
be presented here.

Detailed discussion of the π geometry

In the section above we found analytic solutions of our quantum optical model for different
geometrical settings. Here, we will theoretically discuss an exemplary case in more detail with
the aim to understand the origin of the spectral features in more detail. To this end, we consider
the π geometry shown in Fig. 5.4(a), where âin ‖ âout ‖ π, B̂hf ‖ σ. Here, only the linearly
polarized transitions (µ = 2, 5, c.f. Tab. 3.1) are driven. For simplicity we set N1 = N2 = N/2
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Figure 5.5: The effective level system obtained if the linearly polarized transitions are driven by the
probing field in the presence of a magnetic splitting. Collective Lamb shifts are not considered in
the figure for clarity. (a) The collective ground state |G〉 is coherently coupled to the two possible
excited states (solid blue arrows). Both states decay superradiantly (singly-headed red curly arrows)
and are coupled via cross-decay terms (double-headed curly arrow). (b) After a basis transition, only
the symmetric state |+〉 is probed by the incident field. It is coupled to the antisymmetric state |−〉,
which is metastable on the superradiantly accelerated decay time scale of |+〉 since it decays only at the
single-nucleus incoherent decay rate.

for the distribution of the nuclear ground states in the following. Similar to the analysis without
magnetization discussed in Sec. 3.3, we introduce the states

|+〉 = 1√
2

(
|E(+)

5 〉+ |E(+)
2 〉

)
, (5.25)

|−〉 = 1√
2

(
|E(+)

5 〉 − |E(+)
2 〉

)
. (5.26)

The full Hamiltonian written in this basis is found from our general theory as

H =−∆
(
|+〉〈+|+ |−〉〈−|

)
+ 1

2 (δg + δe)
(
|+〉〈−|+ |−〉〈+|

)
+
(√

2
3NΩg|+〉〈G|+ H.c.

)
+ 2

3NδLS|g|
2|+〉〈+| . (5.27)

This form reveals that only the fully symmetric state |+〉 of all allowed singly excited states
is driven by the applied probe field. But in contrast to the case without magnetic field, the
symmetric state |+〉 is coupled to a different state |−〉 in the presence of the magnetic field
splitting, such that now a system of two linear equations needs to be solved. For the full treatment
one has to consider the decay of the two involved excited states in addition. It turns out that the
density matrix element 〈+|ρ|G〉 decays exponentially due to spontaneous emission and enhanced
by superradiance with rate 1

2γ + 2
3NζS |g|

2, while 〈−|ρ|G〉 decays only with rate γ/2. Since the
superradiant decay is much faster than intrinsic spontaneous emission, |−〉 is metastable on the
evolution timescale of |+〉. The origin of the suppression of the decay lies in the special form of
the incoherent dynamics in Eq. (3.51). Due to the presence of the cross-decay terms (the parts
with µ 6= ν), not the bare excited states |E(+)

2 〉 and |E(+)
5 〉, but the (anti-)symmetrized states

|+〉 and |−〉 are the radiative eigenstates with respect to the total decay. Hence, the cross-decay
terms naturally induce a coherence between the excited states which is known as spontaneously
generated coherence (SGC). These SGC will be discussed in detail in the next section.
The full level scheme for this particular orientation of polarizations and magnetization is shown

in more detail in Fig. 5.5. The complexity of the large ensemble of nuclei readily visible in the
single-nucleus basis |E(+)

µ 〉 is entirely hidden in the description with |+〉 and |−〉. In the latter
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basis, the nuclear ensemble can be identified with a typical V or Λ level scheme, as required for
electromagnetically induced transparency (EIT) [116]. Therefore, it is clear that we rediscover
the well known transparency dip known from EIT also in the reflectance of our system. The
deep interference minima in other geometric realizations can be understood in a similar way.

5.3.2 Spontaneously generated coherences
Before we continue with our analysis of the x-ray cavity, we will give a brief excursus on sponta-
neously generated coherences (SGC) in this section and illustrate their role in quantum optical
systems and their influence on related phenomena.

A short review of SGC

The seemingly simple process of spontaneous emission (SE) is surprisingly complex [148]. It is
not an inevitable intrinsic immutable property of a given quantum system, but can be tailored to
one’s advantage. Already the golden rule expression γ ∼ |d|2D(ω), where d is the dipole moment,
and D(ω) the bath mode density, points to two fundamentally different approaches. On the one
hand, the environment or bath can be modified. For example, increasing the mode density via a
cavity leads to enhanced emission (Purcell effect [114]), whereas band gaps in photonic crystals
can suppress SE. On the other hand, the dipole moment d by which the system couples to the
bath provides another handle to manipulate spontaneous emission. Decoherence-free subspaces
are a prominent example for this approach [195, 196]. However, somewhat surprisingly, the
vacuum itself can induce cancellation of SE in this spirit. Ironically, the interaction with the
vacuum which is the origin of spontaneous emission trips itself up by inducing a dynamics which
eventually leads to a cancellation of the emission.
In a multi-level quantum system virtual photons can in principle be emitted on one transition,

and re-absorbed on another transition. This leads to an atomic coherence between the upper
states involved, which is known as a spontaneously generated coherence (SGC) [140, 147, 148].
This coherence in turn leads to destructive interference between the emission channels from the
upper to the common lower state, effectively modifying or even canceling SE – a key challenge
in quantum engineering. A multitude of fascinating applications have been suggested in this
context, such as lasing without inversion [197–199], modifying the resonance fluorescence [200,
201], enhancing non-linear responses [202], quantum control of light propagation [203, 204],
quantum coherence in semiconductor-based devices [205, 206], creation of entanglement [207],
stabilization of coherence in quantum computation schemes [208, 209] or increasing the efficiency
of solar cells [210] or quantum heat engines [211].
The archetype model system for SGC is a three-level system with two upper and one common

lower state (V -configuration) [140, 147, 148]. If SGC between upper states is established, the
system can be trapped in the excited states despite its coupling to the environment.
However, so far, stringent conditions on the appearance of SGC have hindered an experi-

mental realization, even though a number of setups have been suggested to circumvent these
conditions [140, 147], however, at the cost of requiring complex geometries [150, 212], or ex-
tended level schemes and external driving fields [213–215]. One experiment aimed at observing
SGC in a V -type level structure [216], but its results could not be reproduced [217]. Previously,
it has been shown that observations in artificial quantum systems [205] can be interpreted in
terms of SGC [199].
The reason for this lack of experimental evidence are two major requirements on the structure

of the quantum system, which are hardly ever fulfilled simultaneously, hindering an experimen-
tal implementation. First, the dipole moments of the transitions absorbing and emitting the
virtual photon must be nonorthogonal. Second, the involved transition energies have to be near-
degenerate on the level of the respective transition widths. Otherwise, the virtual photon emitted
by the first transitions cannot be absorbed on the second. More fundamentally, the conditions
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are related to the fact that it must not be possible to know in principle which of the different
decay pathways was taken [218].
An alternative route to observing vacuum-induced coherences is to switch to Λ-type atoms in

which a common excited state decays to multiple lower states. In Λ-type atoms, the requirement
of non-orthogonal dipole moments can be alleviated, if an extra interaction is used to erase the
knowledge to which of the different lower states the atom has decayed. Only then, interference can
occur. For example, detection of a spontaneously emitted photon in a particular direction with
particular polarization can project the atom into a superposition of two ground states [219, 220],
as the photon does not allow to extract the information of the emission pathway. Also quantum
eraser like setups can remove the which-way information in the atomic state after SE, such that
the transient vacuum-induced coherence does affect the dynamics [221–223]. Alternatively, the
stringent conditions of near-degenerate transitions with non-orthogonal quantum systems have
recently been realized in an artificial three-level quantum system in Λ-configuration [224]. But
all of these approaches have the drawback that the SE of the excited state cannot be suppressed
in Λ-type setups, prohibiting most desirable applications.

SGC in a toy model

In order to show some properties of a system exhibiting the SGC phenomenon, we consider an
archetype level scheme in V -configuration in the following. It consists of a ground state |g〉 and
two excited states |1〉 and |2〉. This is very similar to the setting resembling the π geometry,
which we discussed in the previous section. A general master equation is then used to describe
the time evolution of the density matrix ρ for this multi-level system. Following the discussion
and notation in Ref. [140], it reads

d

dt
ρ = − i

~
[H, ρ]− 1

2

2∑
i,j=1

γijL [ρ, Si+, Sj−] . (5.28)

The first part constitutes the von-Neuman equation [151], responsible for the coherent evolution
of the density matrix. The Lindblad-type operators

L [ρ, Si+, Sj−] = Si+Sj−ρ+ ρSi+Sj− − 2Sj−ρSi+ (5.29)

in the second term cover the incoherent process such as spontaneous emission. Here, Si+ = |i〉〈g|
[Si− = |g〉〈i|] denotes the raising [lowering] operator on transition i. Let us first take a look
at the Lindblad terms in Eq. (5.28) with i = j. These parts yield the well-known process of
spontaneous emission from the upper levels |i〉 to the ground state |g〉. Setting up the equations
of motion for the populations, we obtain

d

dt
〈i|ρ|i〉 = −γii〈i|ρ|i〉 ∀i ∈ {1, 2} , (5.30)

d

dt
〈g|ρ|g〉 = γ11〈1|ρ|1〉+ γ22〈2|ρ|2〉 , (5.31)

which correspond to the exponential decays of the two excited states to the ground state, as one
would expect.
Next, we include the terms from Eq. (5.28) with i 6= j, which are known as cross-damping or

cross-decay terms [140, 147]. In free space, the decay rates γij are found as

γij = √γiiγjj
di · d∗j
|di||d∗j |

. (5.32)

Here di is the dipole moment of the transition |g〉 ↔ |i〉. It can be immediately recognized
that the cross-damping terms only contribute if the dipole moments are nonorthogonal, as states
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above. For simplicity, we set γ11 = γ22 = γ and denote the cosine between the transition dipole
moments by p, such that γ12 = γ21 = pγ. This results in the master equation

d

dt
ρ = − γ

2 (|1〉〈1|ρ+ ρ|1〉〈1| − 2|g〉〈1|ρ|1〉〈g|)

− γ

2 (|2〉〈2|ρ+ ρ|2〉〈2| − 2|g〉〈2|ρ|2〉〈g|)

− pγ

2 (|1〉〈2|ρ+ ρ|1〉〈2| − 2|g〉〈2|ρ|1〉〈g|)

− pγ

2 (|2〉〈1|ρ+ ρ|2〉〈1| − 2|g〉〈1|ρ|2〉〈g|) . (5.33)

A straightforward interpretation of this equation cannot be gained, hence, we transform the
system into a symmetrized basis. We introduce the states

|±〉 = 1√
2

(|1〉 ± |2〉) (5.34)

and obtain for the master equation [140, 147]

d

dt
ρ = −γ2 (1 + p) (|+〉〈+|ρ+ ρ|+〉〈+| − 2|g〉〈+|ρ|+〉〈g|)

−γ2 (1− p) (|−〉〈−|ρ+ ρ|−〉〈−| − 2|g〉〈−|ρ|−〉〈g|) . (5.35)

In this form it is easily recognized that the decay rate of the symmetric state is enhanced, while
for the antisymmetric state it is suppressed. In the limit of parallel transition dipole moments,
i.e. p = 1, the state |−〉 is even immune to spontaneous emission.
The effect, that coherences are spontaneously generated can be best seen from the long time

behavior of this system. If the atom is initially prepared in the bare excited states, this can be
rewritten in the symmetrized basis

|ψi〉 = |1〉 = 1√
2

(|+〉+ |−〉) . (5.36)

Consequently, upon free propagation of this system, the population in state |+〉 will decay, but
a fraction of the atom will always reside in the excited states due to the non-zero initial overlap
with the stable state |−〉. Hence, for long times the system the system will be in the state

ρf = 1
2 |g〉〈g|+

1
2 |−〉〈−|

= 1
2 |g〉〈g|+

1
4 |1〉〈1|+

1
4 |2〉〈2| −

1
4 |1〉〈2| −

1
4 |2〉〈1| . (5.37)

This way, population has been transfered to the second excited state |2〉 [201] and a coherence
between the two upper states is spontaneously built up, which is commonly denoted as sponta-
neously generated coherence. This is a remarkable result, since the cross-damping terms does
not obey a unitary time evolution and thus can be seen as an incoherent process.
Finally, we extend our discussion to the non-degenerate case of the excited states and shift the

resonance energies by ±δ. Further, we apply a weak coherent driving field Ω in the Hamiltonian
and calculate the susceptibility, i.e. the response of the system to the radiation field, given by
χ ∝ −〈1|ρ|g〉 − 〈2|ρ|g〉. Results with included and omitted cross-damping terms are shown in
Fig. 5.6. Without the effect of SGC, the result is a plain superposition of two Lorentzians,
each one resembling one of the resonances, without any interference phenomena. The outcome
drastically changes if the cross-damping terms are included in the calculation. In the center
of the two resonances the imaginary part of the susceptibility completely vanishes, indicating
the absence of absorption. As we have already shown in the last section, this is reminiscent of
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Figure 5.6: The susceptibility of an archetype 3-level SGC scheme in V -configuration is shown. Dashed
curves indicate the relations for a system with SGC turned of. In the SGC case, the absorption vanishes
one resonance. Parameters used: Ω = 0.1γ, δ = γ.

electromagnetically induced transparency (EIT). In EIT, interference occurs due to the coherent
couplings in the Hamiltonian. Here, despite the analytical equivalence to the EIT case, the
underlying effect differs. The cross-damping terms induce SGC between the excited states which
in turn is reflected in interference appearances.

5.3.3 SGC in the x-ray cavity setting
On the basis of the discussion on the π geometry, we have exemplarily seen that cross-damping
terms spontaneously generate coherences in the 57Fe nuclei. In addition, it was shown that these
SGC cause deep interference minima in the medium response. Therefore, it is expected that
SGC are the reason for the prominent minima observed in the reflectance of our cavity in the
different geometrical settings as well.
Employing the layerformalism, which is based on the semi-classical description of the light-

matter interaction in the cavity, the different physical processes contributing to the spectrum can
not be distinguished in detail. Furthermore, the model does not provide a handle to interpret
the signatures in the reflectance. The quantum optical description, however, allows us to clearly
identify, separate and characterize all physically relevant processes contributing to the result.

Effect of SGC on the reflectance

In the general master equation characterizing the dynamics of the cavity and the embedded
nuclei, it is possible to artificially switch off the effect of SGC by omitting the cross-damping
terms in Eq. (3.51). Note that an according procedure cannot be applied for the semi-classical
methods. We performed calculations with and without SGC and the results are summarized in
Fig. 5.7. The blue curves in the upper panels correspond to the reflectance spectra calculated for
the Faraday geometry, the Half-Faraday geometry and the 45◦-Voigt geometry, showing the same
structure as already observed in the simulations by conuss (Fig. 5.2) and by the layerformalism
(Fig. 5.3). The red curves correspond to the spectra where the effect of SGC was artificially
turned off. Clearly, the results are different. In particular, the two deep minima in the Half-
Faraday geometry and, interestingly, the disappearance of the central dip in the Faraday geometry
are clear indications of SGC.
For the 45◦-Voigt geometry, however, the spectra including and omitting SGC agree up to

a scaling factor and the deep interference minimum in the center occurs for both cases. The
reason for this is connected with the polarization for the reflected x-rays, which is chosen by an
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Figure 5.7: Calculated reflection spectra for the Faraday geometry, the Half-Faraday geometry and the
45◦-Voigt geometry. The blue curves represent the full reflectance obtained by the quantum optical
model, red curves show simulations where the SGC couplings were omitted. In the top row the polar-
ization of the reflected x-rays was included, in the lower row it was not taken into account, mimicking a
polarization-insensitive detection. Scaled parameters are κ = 45γ, κR = 25γ, |g|2N = 2500γ2,∆C = 0.

analyzer crystal. This polarization-sensitive measurement can act as an interferometer, which
effectively induces interferences between different scattering paths in the polarimeter. This can
lead to spectral signatures which can overlap with the desired SGC structures. Note that the
first polarizer in the setup alone cannot induce such spectral signatures, as it merely prepares
a well-defined polarization state. Only the second analyzer crystal can erase the which way
information and therefore give rise to interference structures.
To disentangle this interference effect from the influence of SGC on the reflection spectra,

we performed further simulations, in which a polarization-insensitive detector is assumed. This
can be achieved in the same way as presented in Eq. (5.19) for the layerformalism. The results
are shown in the lower panels in Fig. 5.7. The effect of the analyzer crystal is particularly
well visible in the case of the 45◦-Voigt geometry. Comparing the two curves with and without
analyzer crystal for the case without SGC, one finds that the analyzer crystal alone can already
induce a deep interference minimum at zero detuning. Only by removing the analyzer in the
optical path, the central dip in the spectrum can be fully attributed to the presence of SGC.

Origin of SGC

Having identified the process leading to the prominent structures in the reflectance, this raises the
question, why the SGC contributions are crucial in our setting, whereas they do not contribute,
e.g., for atoms in free space. Interestingly, in our setup, SGC emerge due to two fundamentally
different mechanisms.
The first contribution visualized in Fig. 5.8(a) occurs on the basis of single nuclei, and arises

from the fact that for certain parameter choices, the nuclei experience a spatially anisotropic
photonic density of states in the cavity. To illustrate this, suppose a quantization axis parallel to
π, induced by a perpendicular magnetization direction B̂hf. The two-dimensional polarization
space in the cavity transverse to the propagation direction k̂ can be described by the orthonormal
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(a) (b)

σ

π

Figure 5.8: Origin of the spontaneously generated coherences. (a) For certain orientations of B̂hf rela-
tive to k̂, the relevant nuclear transitions couple only to a single cavity polarization, giving rise to an
anisotropic cavity vacuum and SGC between orthogonal transition dipoles. (b) In a collective effect
photons are exchanged between different transitions in different nuclei. Probing the cavity as a whole
results in effective SGC.

basis vectors π and σ. In this configuration, the ∆m = 0 transitions have dipole moments parallel
to π, whereas the ∆m = ±1 transitions have dipole moments proportional to σ ± ik̂. Thus,
the circularly polarized photons can only interact with the cavity mode polarized along σ, but
not with that along π. As a result, the cavity appears as having only one polarization, and
thus a spatially anisotropic density of states. As predicted theoretically in Refs. [150, 212], an
anisotropy of this type leads to SGC. In contrast, in free space, two polarization modes would
contribute, and the two (non-zero) SGC contributions of the two polarizations cancel each other.
This mechanism can also be interpreted in terms of a “hidden metastable state” [225]. In our
case, the anisotropic vacuum leads to the formation of a nuclear state which is metastable with
respect to the cavity mode. Note, however, that this state is not metastable with respect to
the remaining free space vacuum modes, and, therefore, does not exist in free space. Finally,
we note that even though being a single-nucleus effect, it is assisted by cooperativity, since
superradiant line broadening larger than the energetic splitting of the two transitions renders
them indistinguishable.
The second mechanism giving rise to SGC is a collective effect involving multiple nuclei [226],

see Fig. 5.8(b). Suppose, a photon is emitted by one nucleus with linear polarization on a
me = 1/2 → mg = 1/2 transition. It can be re-absorbed in a different nucleus on the mg =
−1/2→ me = −1/2 transition with dipole moment (anti-)parallel to the emitting dipole moment.
On this microscopic level, this constitutes an interaction between two different nuclei. The probe
beam, however, does not resolve the dynamics of the individual nuclei, but probes the ensemble-
cavity system as a whole. As a consequence, this exchange process inside the cavity appears
as an effective coupling between different excited states within the level scheme of the single
effective nucleus. In this sense, the complicated many-body dynamics of the ensemble of nuclei
mediated by the cavity acts as a “quantum simulator” [227], which mimics a single effective
quantum system with properties which go beyond those of each of the individual nuclei. Here,
we specifically exploit this simulation technique to induce SGC in the effective level scheme
observed by the x-ray beam probing the total ensemble-cavity system.

5.4 Experimental realization and results
To verify the SGC experimentally, a planar x-ray cavity consisting of a Pd(5 nm)/C(40 nm)/
Pd(20 nm) layer system with a 2.5 nm thick 57Fe layer placed in the center of the carbon layer
was prepared by the group of Ralf Röhlsberger. In order to avoid perturbing nuclear hyperfine
interactions at the 57Fe/C interface, the 57Fe was sandwiched between two 0.6 nm layers of 56Fe,
which in the present context has identical properties except for the resonance that we probe.
At the total thickness of 3.7 nm the Fe layer orders ferromagnetically with the magnetization
confined to the plane of the film due to the magnetic shape anisotropy. In this environment
the magnetic hyperfine field at the 57Fe nucleus amounts to ≈ 33 T that lifts the degeneracy of
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the magnetic sublevels, resulting in up to six dipole-allows transitions with specific polarization
properties. The spectral response of the system is probed via the reflectance of the cavity for
near-resonant x-rays impinging on the cavity in grazing incidence.
Managed by the group of Ralf Röhlsberger, Hans-Christian Wille, and with support from the

Institute for Optics and Quantum Electronics in Jena and the Helmholtz Institute Jena, we per-
formed the experiments at the PETRA III synchrotron radiation source (DESY, Hamburg) [95]
employing the method of nuclear resonant scattering. This technique relies on the pulsed broad-
band excitation of nuclear levels followed by the time-resolved detection of the delayed photons
that are emitted on a timescale τ = 1/γ after resonant excitation. To determine the energy
spectrum of the cavity reflection signal from the time-resolved data, we used a resonant analyzer
foil (1 µm stainless steel, enriched to 95% in 57Fe, providing a single line transmission with a
spectral width of ≈ 10 neV) that was mounted on a Doppler drive. Single photons were counted
as function of energy detuning ∆ within a time window from 50 - 190 ns after excitation. Under
these conditions one obtains a very close correspondence of the measured data with the energy
spectra of the cavity reflectivity, similar to the method reported in Ref. [52]. This approach will
be discussed in more detail in Sec. 6.1.4. For the detection we employ two different approaches.
First, a polarimetry setup provided by the Institute for Optics and Quantum Electronics in Jena
and the Helmholtz Institute Jena was integrated into the experiment [194] in order to fully take
advantage of the six possible polarization-sensitive transitions resulting from the magnetic hy-
perfine splitting. The polarimeter consists of two Si(840) polarizer crystals in crossed setting
with the sample in-between, so that it ideally only transmits photons whose polarization has
been rotated (σ → π) upon the interaction with the nuclei. This way, the polarization state
of the scattered photons can be selected while off-resonant background photons are suppressed
by almost 10 orders of magnitude. Experimentally, we explore the Faraday geometry, the Half-
Faraday geometry and the 45◦-Voigt geometry. In all three configurations strong orthogonal
scattering σ → π takes place.
However, for certain geometries, the polarimeter setup can act as an interferometer, thereby

hindering the unambiguous detection of SGC as shown in the previous section. In particular,
the central dip predicted for the 45◦-Voigt geometry caused by SGC is superimposed with an
interference structure induced by the detection setup if the analyzer is used. To clearly separate
the effect of SGC, the analyzer was omitted in a second detection approach and the spectrum
for the 45◦-Voigt geometry was recorded using a high resolution monochromator for the incident
light to suppress the non-resonant background. This way, all interference structures can directly
be attributed to SGC.
The experimental data was evaluated by Ralf Röhlsberger, and the measured spectra are

shown in Fig. 5.9 in combination with calculated spectra obtained by conuss. Taking into
account the detection technique, the numerical simulations reproduce the data very well. In
particular, the deep interference minima due to SGC are clearly visible. In the case of the
Faraday geometry it turned out that the spectrum can be explained only if, quite conceivable,
a slight misalignment of the internal magnetic field is assumed. As calculations indicate, this
causes further minima already for small angles, as shown in the red curve in the upper left
panel in Fig. 5.9. Interestingly, we found that these minima also arise due to the presence of
SGC. The remaining difference between the simulation and the data is mainly due to time-gating
effects during the measurement process. Note that since the data for the 45◦-Voigt geometry was
recorded without the analyzer crystal to suppress non-interacting photons, the background rate
is significantly higher despite the time gating.
The reduction of the reflected intensity at certain detunings can directly be traced back to the

presence of non-decaying metastable excited states, formed due to the presence of SGC [201]. Our
measurements therefore amount to a direct observation of SGC between excited states, inducing a
modified spontaneous decay. It should be noted that we observe near-perfect interference minima
in the Half-Faraday and 45◦-Voigt geometry in the sense that the reflected intensities drop down
to the baseline. In the language of quantum optics, this indicates that the system is essentially
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Figure 5.9: Theoretical predictions and experimental results. The three columns show data for three
magnetization geometries. Theoretical predictions obtained with conuss are presented in the upper row.
In the lower row the experimental data and simulations taking into account the scattering geometry,
the measurement process and the sample parameters are shown. The additional red curve in the top
left panel shows the result predicted with a small angular deviation used to model the experimental
data in the bottom right panel. The dips in the reflected intensity down to the background baseline
for the Half-Faraday and the 45◦-Voigt geometry clearly indicate the presence of SGC in an essentially
decoherence-free system. Image adapted from Ref. [50].

decoherence-free over the experimental time scales, as any perturbation would inevitably lead to
loss of coherence, and therefore, of a reduction of the interference leading to the SGC minimum
in the spectra.
Our results not only provide an avenue to the exploitation of SGC, but also demonstrate that

genuinely new systems like high-grade noise free quantum optical level schemes can be engineered
in the nuclear regime. The capitalization of the hyperfine splitting together with a suitable choice
of the polarization and the magnetization in particular enables us to realize continuously tunable
and dynamically reconfigurable quantum optical level schemes in the hard x-ray regime. A single
simple solid state target system thus can be manipulated dynamically and on demand to perform
different tasks. The range of accessible level schemes becomes even richer if the hyperfine splitting
is combined with cavities involving multiple ensembles of resonant atoms [56], possibly subject
to individually differing magnetizations. Future setups could also involve dynamical control of
the physical target structure [55]. Finally, it should be noted that our approach to realize SGC
is not restricted to nuclear resonances, but can also be applied with atoms, ions, or artificial
quantum systems properly placed in cavities.
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Chapter 6

Time Domain Control Of X-Ray Pulses
Manipulation of light propagation is a well-recognized technique with applications in different
branches in optics. In particular, sub-luminal light pulses are known to undergo enhanced non-
linearities [121], enable quantum entanglement schemes [122] and allow for optical switching
or light storage [228]. First demonstrated in the visible frequency regime [229–231], slow light
has by now been implemented in a number of platforms [232, 233], particularly also in cavity
settings [234, 235]. Slowing down light pulses, or more precisely, reducing their group velocity,
is possible if the refractive index changes rapidly as a function of the wavelength in a suit-
able dielectric material. Ideally, the absorption of the light should be small at the same time.
Such a dispersion relation can be found, e.g., in systems featuring electromagnetically induced
transparency (EIT) [116, 118].
Manipulation of light propagation has also been reported in the x-ray regime. In Ref. [90], a

delayed peak in the transmitted x-ray light intensity has been observed. In this case, however,
the pulse delay is induced by the propagation of the light through a doublet absorber structure
rather than electromagnetically induced transparency or related effects, and can be interpreted
as arising from transitions between super- and subradiant states. Also coherent storage of light
via rapid control of the applied quantization field has been reported [53]. Other experiments with
nuclei observed electromagnetically induced transparency [56], related spontaneously generated
coherences with equivalent susceptibilities [50], or other transparency mechanisms [66, 89]. How-
ever, these experiments concentrated on spectral properties and did not study the delay or the
actual pulse propagation.
Here, we investigate the reflection of spectrally narrow x-ray pulses from a thin-film cavity

in the time domain. We find that by engineering a suitable nuclear level scheme in the cavity,
the time-resolved response of the x-ray pulse can be manipulated, such that sub-luminal light
propagation is realized. Furthermore, we introduce a scheme in which this time delay can be
observed using broadband synchrotron light instead of spectrally narrow x-rays and, hence, is
easily accessible with existing equipment. Our implementation includes a conventional Mössbauer
drive, which is typically placed in the optical path to measure the reflectance spectrum. We show
that this additional element can as well be exploited for the desired time-domain study.
In this chapter we will first perform a theoretical analysis of a full experimental stage including

the Mössbauer drive and show how it can be used to access the spectral properties of the cavity
in an experimental setting. Next, we discuss the basic concepts of sub-luminal light propagation
and show its relation to the x-ray pulse reflection from our cavity. This allows us to tailor cavity
designs in which the time-domain related effects are maximized. In a next step, we present
the experimental implementation, in which we observed x-ray time delays up to 35 ns. This
experiment was carried out together with the group of Ralf Röhlsberger (DESY, Hamburg),
Rudolf Rüffer (ESRF, Grenoble) and with support from the Institute for Optics and Quantum
Electronics in Jena and the Helmholtz Institute Jena. In the last section, our theoretical analysis
is extended to describe the measured time-resolved signal in Fourier space. Distinct features of
this representation are discussed and an alternate method to extract spectroscopic signatures is
introduced. Finally, this novel method is applied to experimental data.
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6.1 Analysis of the complete experimental stage
With the theory developed in the previous chapters, we are able to calculate the response of
the cavity with embedded resonant nuclei for a vast range of settings, including arbitrary mag-
netization of the sample and adjustable polarization of the incident and reflected light. The
focus of this part will be the question which properties of this response can actually be observed
experimentally. In chapters 4 and 5 we already showed measurement results for the reflection
spectra, however, a detailed description how they could be obtained is still lacking. In order to
address this problem we will review the typical scheme employed in experimental settings.
An incident x-ray pulse formed by synchrotron radiation closely resembles a δ-like pulse in the

time domain. Current synchrotron sources produce pulse lengths of several 10-100 ps. On the
timescale of the lifetime of the nuclear transition which is several orders of magnitudes larger,
the δ-like pulse description can be considered valid. Already from its Fourier limit it is clear
that the x-ray pulse contains many frequencies. As calculated in Sec. 3.4, the spectrum of the
reflected light is given by the reflectance |RCavity(∆)|2. Naively, the spectral components could be
analyzed in a spectrometer or separated by a grating, such that different positions on the detector
screen correspond to different frequencies. However, this is essentially an impossible task due
to the lack of suitable optical elements in the x-ray regime and also since the characteristic line
width γ = 4.66 neV is much too small to be resolved in this fashion.
Alternatively, the time response can be measured in an experiment relatively simple. The

narrow properties in the frequency domain translate directly in long time scales. The time
response RCavity(t) is given by the Fourier transform of RCavity(∆) and detectors with time
resolution of some ns are well suited to record such time spectra. A time spectrum was measured,
for example, in Ref. [52] in order to prove the existence of a superradiant state in the cavity. The
time response of a Lorentz-like spectrum as we found for the reflectance in Sec. 3.3 in the case
of an unmagnetized layer would be given by an exponential decay. The time spectrum for the
case of magnetized layers is slightly more advanced, since we found that SGC features appear
in the reflectance, see Chap. 5. However, only the absolute value |RCavity(t)| and not the phase
information is experimentally accessible in this way. This prohibits to obtain the full spectral
information. For example, the collective Lamb shift measured in Ref. [52] would only manifest
in an inaccessible global phase in the time domain response.
Hence, in order to measure spectral properties of the light reflected from the cavity, other

techniques have to be applied. One method would be not to probe the cavity with broadband
synchrotron radiation, but with spectrally narrow x-ray pulses. Such pulses are provided in the
radioactive emission from 57Co sources like in traditional Mössbauer spectroscopy. Alternatively,
various schemes exist in which a narrowband pulse is created from synchrotron radiation, see
Sec. 2.1.3. But both approaches typically suffer from a low signal rate. In order to measure the
cavity spectrum, another method is often employed: An additional frequency-selective element
is placed in the optical path of the experiment, which allows to determine spectral properties of
the cavity.
The device which we discuss here is a stainless steel foil enriched in 57Fe which is operated

in nuclear forward scattering (NFS) geometry. In this setting, the x-ray impinges parallel to
the foil’s surface normal and excites a collective nuclear state in the sample, which is known as
nuclear exciton [51, 109]. This state relaxes by emitting radiation primarily in forward direction.
Similar as the cavity, a frequency dependent response function is mapped to the light field by
the NFS foil and we denote this response by TNFS(∆). In order for the foil to be operated as
a frequency-selective device, it is mounted on a Doppler- or Mössbauer drive. In this case, if
the foil is moving with velocity v, the frequency seen by the sample is shifted by the Doppler
detuning ∆D as

ω′ = ω
(

1 + v

c

)
= ω + ∆D . (6.1)

Due to the large magnitude of the radiation frequency ω, only velocities in the range of some
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6.1 Analysis of the complete experimental stage

mm/s are required to scan the interesting ranges of the spectra several line widths around the
resonance frequency. In the laboratory frame the response function of the foil can be written as
TNFS(∆−∆D) and the combined response of the cavity and the 57Fe foil is simply the product
of the two response functions in frequency domain

Rtotal(∆,∆D) = RCavity(∆)︸ ︷︷ ︸
Cavity reflection

· TNFS(∆−∆D)︸ ︷︷ ︸
57Fe foil transmission

. (6.2)

If a time sensitive avalanche photo detector is used in the experiment, the measured signal is the
absolute value of the Fourier transform of the full response

I(t,∆D) =
∣∣∣∣ 1√

2π

∫
e−i∆tRCavity(∆) · TNFS(∆−∆D) d∆

∣∣∣∣2 . (6.3)

In contrast to the time spectrum of a cavity alone, the intensity measured with the 57Fe foil
in the optical path depends on the externally controllable parameter ∆D. As we will show in
Sec. 6.1.4, for large times I(t,∆D) ∼ |RCavity(∆D)|2 and hence the spectrum of the cavity can
be retrieved.

6.1.1 Time-domain interpretation
In the discussion above we used that the combined response of the cavity and the 57Fe foil is the
product of the individual response functions in frequency domain. This shall be motivated in the
following. To this end, the time-resolved signal at the detector is calculated in the time domain
picture. We will assume that the driving field strength is weak and the light-matter interaction
can be treated linearly.
Let us assume an arbitrary input pulse shape in time domain defined by the complex field E(t).

If the pulse is reflected at the cavity, the process of reflection can be considered independently at
each point of time due to linearity. Combining the individual responses of the field at different
times, we can write the full amplitude via a convolution of the input pulse and the time domain
response of the cavity E(t)∗RCavity(t). At the next stage, the pulse interacts with the Mössbauer
drive. Denoting its time domain response by TNFS(t,∆D), the signal behind the drive is given
by

I(t,∆D) ∝ |E(t) ∗RCavity(t) ∗ TNFS(t,∆D)|2 . (6.4)

At this point we can apply the convolution theorem reversely, which states that the Fourier
transform of a convolution in time domain is equivalent to a multiplication of the corresponding
functions in frequency domain. Thus, we obtain from Eq. (6.4)

I(t,∆D) ∝
∣∣∣∣∫ e−i∆t E(∆) ·RCavity(∆) · TNFS(∆,∆D) d∆

∣∣∣∣2 . (6.5)

If the incident x-ray pulse is δ-like, i.e. E(t) ∝ δ(t), the pulse described in frequency domain is
a constant and the expression above reduces to Eq. (6.3) from the last section.
The time-domain formulation of the interaction sequence might give a more intuitive picture

why the frequency domain responses can simply be multiplied. Though, we emphasize that this
holds only in the linear regime. As soon as the radiation field reflected from the cavity, i.e. aout,
exhibits non-linear or quantum mechanical features such as photon (anti-)bunching, the two
devices in the optical path cannot be considered independently. Rather, the Mössbauer drive
then needs to be “driven” with the operator aout(t) instead of the classical field 〈aout〉(t), such
that the quantum properties are correctly transfered between the two devices. Then, in addition,
a full quantum theory for the NFS setting of the 57Fe foil which includes non-linear effects would
be required to adequately model the Mössbauer drive.
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6.1.2 Theoretical description
Now we consider a realistic experimental setup, in which the thin-film cavity is placed in the
optical path together with a thin stainless steel foil, mounted on a Doppler drive. The foil
contains resonant 57Fe nuclei and constitutes an additional frequency-selective element. In this
setting, the incident light is reflected from the cavity and is sent through the stainless steel foil in
forward scattering geometry. Subsequently, the x-rays are detected. The theoretical description
of this setting is discussed in the following.

Cavity reflection coefficient

With the quantum optical theory presented in Chap. 3, the spectral properties of the x-rays
reflected from the cavity can be calculated. In Chap. 5, it was shown how the theory can also
be applied in the case of a magnetic hyperfine splitting of the resonant 57Fe nuclei and arbitrary
polarization settings. The complex reflection coefficient of the cavity is denoted by RCavity(∆).
Accordingly, we write for the response in the time domain, i.e. its Fourier transform, RCavity(t).
For a plain cavity without magnetization, the reflectance consists of an energy-independent

part given by the cavity background as well as the nuclear response, yielding a Lorentzian
line shape modified by cooperative phenomena, see Eq. (3.58). The spectral expression can be
transformed into time domain as

RCavity(t) = 1√
2π

∫
RCavity(∆) e−i∆td∆

=
(
−1 + 2κR

κ+ i∆C

) √
2π δ(t)−

4
3κR|g|

2N

(κ+ i∆C)2

√
2π θ(t) exp

(
−
(
γ
2 + 2

3
|g|2N
κ+i∆C

)
t
)
,

(6.6)

where the second term constitutes an exponentially decaying function characteristic of a Lorentz
spectrum. Note that the Fourier transform is sometimes defined with a different sign convention
in the exponent. However, since the nuclear resonances have the form (∆ + iγ/2)−1, our choice
is required in order to imply causality, as indicated in the Heaviside step function θ(t).
Another important cavity setting is a configuration featuring spontaneously generated coher-

ences (SGC), see Chap. 5. In the simplest scenario, a magnetic field causes a splitting in the 57Fe
nuclei and with suitable polarization choice, only the linearly polarized transitions are driven.
This is denoted as the π geometry (c.f. Sec. 5.1). The corresponding reflection coefficient is given
in Eq. (5.21). In order to calculate its Fourier transform, we consider the spectral expression

R̃(∆) =
[

2
(

c1
∆ + δ1 + iγ2

+ c2
∆ + δ2 + iγ2

)−1
+ c0

]−1

(6.7)

which has an equivalent structure as the cavity reflection coefficient. Its Fourier transform is
found as

R̃(t) = 1√
2π

∫ ∞
−∞

R̃(∆) e−i∆td∆

=
√

π
2 e
− Γ̃

2 t Θ(t)
[
2 ∂Ω̃
∂c0

sin
(

Ω̃t
2

)
− i(c1 + c2) cos

(
Ω̃t
2

)]
(6.8)

with the constants

Γ̃ = γ − i
2c0(c1 + c2)− i(δ1 + δ2) , (6.9)

Ω̃ =
[
(δ1 − δ2)2 + ( c0

2 )2(c1 + c2)2 + c0(δ1 − δ2)(c1 − c2)
] 1

2 . (6.10)

Eq. (6.8) can easily be verified by transforming this expression back into the frequency domain.
Note that the time domain response of the Faraday geometry can be calculate using this result
as well, as its spectral reflection coefficient consists of two summands of the form of R̃.

76



6.1 Analysis of the complete experimental stage

Transmission function of the 57Fe foil

In frequency domain, the influence of the stainless steel foil enriched in 57Fe, i.e. the Mössbauer
drive, can be described with the single-line transmission function [236–241]

TNFS(∆) = exp
(
− iLγ/4

∆−∆D + i
2γ

)
, (6.11)

where ∆ = ω − ω0 is the detuning from the nuclear resonance, ∆D accounts for an additional
detuning due to the Doppler shift of the moving drive, L = σ0fLMnd denotes an effective thickness
consisting of cross section σ0 = 2464 kbarn, Lamb-Mössbauer factor fLM ≈ 0.8, number density
of resonant nuclei n = 75 nm−3 and foil thickness d. In the time domain, the response of the
stainless steel foil is given by the Fourier transform of Eq. (6.11) and reads

TNFS(t) =
√

2πδ(t)− θ(t)e−
γ
2 t−i∆Dt

√
πLγ

2t J1

(√
Lγt

)
. (6.12)

Here δ(t) denotes the Dirac delta function, θ(t) the Heaviside step function and J1 the Bessel
function of first order.

6.1.3 Time-resolved intensity at the detector
As explained above, the frequency domain signal arriving at the detector can be described via
the product of the cavity reflection coefficient and the transmission function of the Mössbauer
drive

I(∆,∆D) ∝ |RCavity(∆) · TNFS(∆,∆D)|2 . (6.13)

Transforming the amplitude into the time domain yields the time-resolved signal at the detector

R(t,∆D) = 1√
2π

∫ ∞
−∞

RCavity(∆)TNFS(∆,∆D) e−i∆td∆ , (6.14)

I(t,∆D) ∝ |R(t,∆D)|2 . (6.15)

This expression was already given in Eq. (6.3) and corresponds to the quantity which is accessible
in experiments. While the Fourier integral can be straightforwardly computed numerically for
general choices of the cavity reflection coefficient, it is instructive to perform an analytical study.
To this end, we use the series representation of the transmission function

TNFS(∆,∆D) = exp
(
− iLγ/4

∆−∆D + i
2γ

)
=
∞∑
n=0

(−iLγ/4)n

n! (∆−∆D + iγ/2)−n . (6.16)

Next, we split the sum in two parts, where the first summand covers n = 0 and the second the
rest. For the full temporal response, we obtain

R(t,∆D) = Rδ(t) +RSNXP(t,∆D) , (6.17)

with

Rδ(t) = (2π)−
1
2

∫
RCavity(∆) e−i∆td∆ , (6.18)

RSNXP(t,∆D) =
∞∑
n=1

(−iLγ/4)n

n! (2π)−
1
2

∫
RCavity(∆)(∆−∆D + iγ/2)−n e−i∆td∆ . (6.19)
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The abbreviations chosen for the indices denote that the respective quantities form the responses
of δ-like and spectrally narrow x-ray pulses (SNXP) interacting with the cavity. This will become
apparent in Sec. 6.3.1. The contribution Rδ(t) corresponds to the temporal responses of photons
which did not interact with the Mössbauer drive, while RSNXP(t,∆D) is the amplitude of those
photons which did interact. From Eq. (6.18) it can be seen that Rδ(t) is the Fourier transform
of the cavity response only. Hence, often, it can be easily calculated with the expressions given
above.
Let us now turn to the second part RSNXP(t,∆D). Since the integral in each summand of

RSNXP contributes mainly in the small range around ∆ ≈ ∆D we expand the cavity reflection
coefficient RCavity(∆) around ∆D. Since the cavity spectrum is typically broadened due to
superradiance, it can be assumed that the amplitude in this range is constant. However, the
phase of the reflection coefficient demands for a more thorough treatment, since first, it can
change rapidly, and second, the phase in the Fourier transform is known to typically carry more
information [242]. Hence, we expand the phase up to first order and our approximation reads

RCavity(∆) ≈ RCavity(∆D) ei(∆−∆D)τ , (6.20)

where we have defined

τ = ∂ arg[RCavity]
∂∆

∣∣∣
∆D

. (6.21)

We will see in Sec. 6.2.2 that this quantity is also the delay, which a pulse experiences during the
propagation through the cavity [243]. Inserting the approximation from above into Eq. (6.19),
we obtain

RSNXP(t,∆D)

≈
∞∑
n=1

(−iLγ/4)n

n! (2π)−
1
2

∫
RCavity(∆D)(∆−∆D + iγ/2)−n ei(∆−∆D)τ e−i∆td∆

=
∞∑
n=1

(−iLγ/4)n

n! (2π)−
1
2

∫
(∆ + iγ/2)−nRCavity(∆D) e−i∆Dt e−i∆(t−τ)d∆

=
∞∑
n=1

(−iLγ/4)n

n! RCavity(∆D)e−i∆Dt(2π)−
1
2

∫
(∆ + iγ/2)−n e−i∆(t−τ)d∆

=
∞∑
n=1

(−iLγ/4)n

n! RCavity(∆D)e−i∆Dt(2π)−
1
2

(
2π(−i)ne−

γ
2 (t−τ)Θ(t− τ) (t− τ)n−1

(n− 1)!

)

=− e−
γ
2 (t−τ)Θ(t− τ)RCavity(∆D)e−i∆Dt

√
πLγ

2(t− τ)J1

(√
Lγ(t− τ)

)
. (6.22)

The exponential envelope and the Bessel function shape could already be seen in Eq. (6.12) and
represent the well-known structure from the time response in nuclear forward scattering. Apart
from the prompt part contained in Rδ(t), Eq. (6.12) would be reobtained in the absence of the
cavity, i.e. RCavity = 1 and thus τ = 0.

6.1.4 Measuring the cavity spectrum
The total field signal detected in an experimental setting is given by Eq. (6.17) and contains
the significant information related to the cavity. In general, both summands Rδ and RSNXP
contribute to the observed intensity. However, for large times t, the second term outlives the
first contribution. The reason for this is that its response decays exponentially with the rate of
the natural line width γ which can be seen from Eq. (6.22), whereas Rδ decays much faster due
to the superradiant enhancement, c.f. Eq. (6.6).
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Therefore, the summand RSNXP determines the observed signal at large times. Since it is
proportional to the cavity reflection coefficient, the cavity spectrum can be measured by recording
the signal in a suitable time gating window [t1, t2] as

|RCavity(∆D)|2 ∝
∫ t2

t1

I(t,∆D)dt . (6.23)

This procedure to measure the cavity spectrum was successfully employed in Secs. 4.1.2 and 5.4
as well as in Refs. [50, 52]. From Eq. (6.17) it becomes clear that a late starting point t1 for the
time gating is desirable, since for times shortly after the initial excitation Rδ will also contribute
to the recorded signal and interference terms appear. On the other hand, a late starting point is
at the cost of counting statistics. Hence, it is advisable to record the data in the complete time
range and select an optimized time gating window in the subsequent data analysis. Further, this
would allow to employ alternative schemes to measure the energy-resolved spectra, such as the
one described in Ref. [240].
Going beyond integrating over the available time range to determine the reflectance spectrum,

let us take a closer look at the time dependence of the recorded intensity. As already noted before,
the long-time signal RSNXP shows the characteristics of the NFS time signal. In particular, the
Bessel function in Eq. (6.22) causes a beating pattern due to its roots where J1 = 0. In contrast
to the typical NFS spectrum, however, the signal is shifted by the time τ . Obviously, this shift is
induced by the cavity. As we will show in the next sections, this reveals sub-luminal propagation
of x-ray pulses in the cavity.

6.2 Slow light and delayed x-ray pulses
Since the result in the previous section suggests a possible time delay, we will review the basic
theory describing the propagation of light pulses and the related group velocity control. Addi-
tionally, we study the reflection of x-ray pulses in the time domain and show the relation between
those two effects.

6.2.1 Propagation of light pulses in dispersive media
Let us assume a spectrally narrow pulse E(ω), centered around the frequency ω0, which propa-
gates through a dispersive medium of length L and with refractive index n(ω) =

√
1 + χ(ω) ≈

1 + χ(ω)/2. Behind the medium, the pulse can be described in time domain by

E(L, t) = 1√
2π

∫
E(ω)ei(kL−ωt)dω , (6.24)

with complex wave vector k = n(ω)ω/c = kR+ ikI . Close to the resonance in an atomic EIT-like
medium, the susceptibility χ allows for the expansion

kR(ω) ≈ kR(ω0) + ∂kR
∂ω

∣∣∣
ω0

(ω − ω0) , (6.25)

kI(ω) ≈ kI(ω0) , (6.26)

in which the linear order of kI vanishes. Then, the field becomes

E(L, t) = 1√
2π
e−kI(ω0)L e−i(ω0t−kR(ω0)L)

∫
E(ω)e

i(ω−ω0)
(
∂kR
∂ω

∣∣
ω0
L−t
)
dω , (6.27)

where the first exponential accounts for absorption, the second for a global phase velocity and
the integral covers the pulse envelope propagating with the group velocity vgr. According to
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Eq. (6.27), it reads [116]

vgr =
(
∂kR
∂ω

∣∣∣
ω0

)−1
=
(
∂

∂ω

ω nR
c

)−1 ∣∣∣
ω=ω0

= c

nR + ω ∂nR∂ω

∣∣∣
ω=ω0

. (6.28)

From this expression it can be seen that a suitable tailored refractive index allows for the control
of the pulse propagation velocity vgr. A dispersion relation in which ω ∂nR∂ω � 1 can give rise to
extremely reduced group velocities.

6.2.2 Time delay in pulse reflection
Now let us turn to a related setting, in which we assume the reflection of light pulses from
complex structures, such as a cavity. This covers the setting in this work, however the following
discussion is not restricted to the x-ray regime.
Again, we assume a spectrally narrow pulse E(ω) with central frequency ω0. It is reflected by a

cavity with complex reflection coefficient RCavity(ω). For an analogy with the pulse propagation
discussed in the previous section, we also describe it in time domain as

E(t) = 1√
2π

∫
E(ω)RCavity(ω)e−iωtdω , (6.29)

where we omitted the phase k · L of free propagation for simplicity. If the incident pulse E(ω)
is spectrally narrow on the scale of the reflection coefficient, the latter can be approximated by
(c.f. Eq. (6.20))

RCavity(ω) ≈ RCavity(ω0) ei(∆−∆D)τ , (6.30)

τ = ∂ arg[RCavity]
∂ω

∣∣∣
ω0
. (6.31)

With this approximation, we obtain for the reflected pulse

E(t) = 1√
2π
RCavity(ω0)e−iω0t

∫
E(ω)ei(ω−ω0)(τ−t)dω . (6.32)

Similar as in the last section, the first parts describe a global phase change and account for
absorption, while the integral covers the propagation of the pulse envelope. From the equation
above it can immediately be recognized that the envelope propagation is influenced by the cavity,
as it is shifted in time. This means, the pulse is delayed by the time τ compared to the case
where a reflection structure is absent.
We thus find that the pulse is delayed by the time τ , defined in Eq. (6.31), due to the cavity

dispersion without distortion of the pulse shape, as it is well known from cavities and waveguides
in the visible regime [244, 245]. Depending on the exact phase relation in R, light pulses slower
(τ > 0) and also faster (τ < 0) than the speed of light can be obtained in general.
Comparing results of the envelope propagation for the reflected pulse in Eq. (6.32) and for the

slow light in dispersive media in Eq. (6.32), we can identify

∂ Re(χ)
∂ω

∣∣∣
ω0
∼ 2c
ω0L

∂ arg(R)
∂ω

∣∣∣
ω0
. (6.33)

Similar, from the comparison of the absorption factors we find

Im (χ(ω0)) ∼ − 2c
ω0L

log (|R(ω0)|) . (6.34)

From these relations we can directly see that the phase and the modulus of the complex reflection
coefficient effectivly take the role of the real and imaginary part of the atomic susceptibility,
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respectively [243]. Hence, a direct mapping between the theories for light propagation in atomic
gases and for nuclear reflection is obtained. Finally, we note that relations (6.33) and (6.34) are
directly found by comparing

exp
(
i
ω0L

2c χ

)
∼ R . (6.35)

6.2.3 Calculation of the x-ray time delay in different cavity settings
In the section above we have seen that spectrally narrow pulses can experience a time delay
upon the reflection from structures such as a thin-film cavity. In the following, we calculate the
expected time delay of such x-ray pulses with the aim to find a setting in which this time domain
effect is strongly pronounced and at the same time is suited for a realistic experimental setting.
In order to calculate the time delay, the complex reflection coefficient R has to be determined.

However, so far, our quantum description of the light-matter interaction was only compared
to the established methods in terms of the absolute value of the reflection, but not yet via its
phase, which is required for the time delay calculation. Therefore, we performed benchmarking
simulations with Parratt’s formalism and the software package conuss.
Further, we solve for the reflection coefficient by explicitly solving for the stationary field

distribution with Maxwell’s equations on a 2-d grid. To this end, an operator-split method is
applied and the paraxial approximation is employed. The effect of the nuclear resonances can be
included in the refractive index, as we already did for the simulations with Parratt’s formalism
(see Sec. 2.2.1). An example of a calculation field intensity in the absence of resonant nuclei is
shown in Fig. 2.2(a) and (b). Performing this simulation with different x-ray energies as initial
conditions, the complex reflection coefficient is obtained by evaluating the field amplitude far
behind the cavity.
With those four different approaches the phase characteristics of the reflection were calculated

and, apart from an insignificant global phase factor, we found very good agreement amongst the
methods, indicating the consistency of our analysis. For the description with the quantum optical
model, we had to take into account the dispersion phase effect discovered in Chap. 4 as well.
In the following discussion on different cavity settings, we restrict ourselves to only one theory
curve in the figures. Exemplarily, we analyzed the cavity defined in Tab. 6.1 with platinum
and palladium as mirror material. In a first setting, we omitted any magnetic splitting and
probed the cavity in the first guided mode minimum, such that the system exhibits a Lorentzian
line profile. The corresponding time delay is shown in Fig. 6.1 for different pulse frequencies.
Clearly, sub-luminal light propagation is realized, since the time delay around the resonance is
positive. Interestingly, the predictions for the Pt and Pd cavities strongly differ. To understand
this disparity, we introduce

T =
∫ ∞
−∞

τ(∆)d∆ (6.36)

as a measure how well a time delay in the cavity is realized. By noting that the reflection
coefficient of a plain cavity can be written in the form R ∝ (q − i)−1 + (ε+ i)−1 where q is the

Table 6.1: Cavity parameters used in the time delay analysis (top to bottom).

Material Thickness [nm]
Pt/Pd 2.92

C 7.58
57Fe 1.75
C 9.33

Pt/Pd ∞

81



Chapter 6: Time Domain Control Of X-Ray Pulses

complex Fano q parameter (c.f. Tab. 4.1), and

d

d∆ arg
(
R(∆)

)
= d

d∆ arctan
(

Im(R(∆))
Re(R(∆))

)
, (6.37)

we find

T =
∫ ∞
−∞

1
1 + ε2

dε−
∫ ∞
−∞

Im(q)
Im(q)2 + (Re(q) + ε)2 dε . (6.38)

The first integral evaluates to π, while the result of the second integral depends on the sign of
Im(q). In total, we find

T =


0 , if Im(q) > 0
π , if Im(q) = 0
2π , if Im(q) < 0

. (6.39)

For the cavities considered above, the case Im(q) > 0 is realized for Pt mirrors, while with Pd
for the mirror materials, Im(q) < 0 and consequently a much stronger pronounced time delay is
observed on average. For typical cavity settings, the condition of a negative imaginary part of the
Fano q parameter reduces to the requirement of an overcritically coupled cavity (see Sec. 3.3.1).
Hence, engineering a cavity with a thin surface layer often results in a more distinct time delay
which is desired for an unambiguous observation in an experiment.
Next, we apply a magnetic field to the 57Fe nuclei in the cavity under discussion, such that

the π geometry from Sec. 5.1 featuring the phenomenon of spontaneously generated coherences
(SGC) is realized. In this setting, the two linearly polarized transitions are driven. The predicted
time delays for narrowband pulses are shown in the right panel in Fig. 6.1. The features of the
time domain effects are evidently more pronounced as in the analysis of the unmagnetized cavity.
In addition to the time delay already observed before, the cavity with the Pt mirrors even has
a broad range in which τ < 0. This corresponds to x-ray pulses with group velocities faster
than the speed of light. Note, however, that this does not violate the principles of special
relativity as information cannot be transmitted this way [244, 246]. Also, the super-luminal light
propagation is typically accompanied by a high absorption, rendering its detection complicated.
For propagation in dispersive media, this can be seen from the susceptibility behavior shown in
Fig. 5.6. A negative slope in the real part corresponding to fast light goes along with a high
absorption, visible from the imaginary part of the susceptibility. Similar characteristics can be
observed for the reflection of x-ray pulses from the cavity.
Also for the cavity layouts including magnetized 57Fe nuclei, we can calculate the quantity T

as a measure for the total time delay. For the cavity with Pt as mirrors, we obtain T = 0, while
for the Pd cavity one finds T = 4π. This indicates, that suitably engineered cavities operated in
SGC settings are a promising candidate for observing distinct values for the time delay τ .
We emphasize that a much broader range of cavities could be analyzed in terms of their

time delay. For example, the time domain control can further be manipulated by changing the
incidence angle θ, thereby causing strongly asymmetric line shape profiles, or by considering more
complex magnetization and polarization directions. It is important to note that the time delay
τ is only well defined if a definite polarization arrives at the detector, since for its calculation the
phase of the reflection coefficient is required. For an incoherent mixture of the field polarization
as described in Eq. (5.19), the phase arg(R) and hence the delay τ is not well defined. In
addition to the cavity layouts mentioned above, also the EIT-cavity employed in Ref. [56] should
be mentioned here. Since the smoking-gun-signature of EIT is sub-luminal light propagation, it
should be expected that also in this setting a large time delay is observed. Indeed, we find very
pronounced values close to the resonance. However, the frequency range of the extreme values
is very narrow and overlaps with the EIT minimum in the reflection rate, such that the signal
arriving at the detector is strongly suppressed. Therefore, in summary, a well-suited candidate
for observing slow light in the x-ray domain is a cavity operated in a SGC setting.

82



6.3 Experimental implementation

−100 0 100

−10

0

10

20

Detuning ∆ [γ ]

T
im

e
d
el
a
y
τ
[n
s]

plain cavity

0 100

Detuning ∆ [γ ]

SGC cavity

Figure 6.1: Time delay τ for pulses with central frequency ∆, reflected from the cavity defined in Tab. 6.1
for Pt (blue) and Pd (red) as mirror material. In the right panel a magnetization in the 57Fe layer causes
a Zeeman splitting and the π geometry (see Sec. 5.1) is realized. In this case even super-luminal light
propagation can be realized.

6.3 Experimental implementation
6.3.1 Narrowband x-ray pulse generation schemes
We have seen in the previous section that our thin-film cavity can be employed to modify the
time domain characteristics of reflected x-rays. However, the desired group velocity control with
sub- or super-luminal light propagation and subsequent applications require a spectrally narrow
x-ray pulse (SNXP) in the first place. Below, we will briefly review some existing schemes how
such pulses can be created and introduce a novel method, in which an SNXP is effectively created
from broadband synchrotron radiation (SR).
In the x-ray regime, narrow-band radiation is provided by Mössbauer radioactive sources.

However, they are not pulsed, except for scenarios where special modulation schemes are ap-
plied [57]. Pulsed x-ray sources of choice are SR sources which provide high-brilliance beams
and repetition rates in the order of some 10 − 100 ns. Here, the technique of nuclear resonant
spectroscopy is an established method [49]. It relies on broadband excitation of nuclear levels
and subsequent detection of the delayed nuclear decay signal. However, narrowband filtering of
a single line from SR with sufficient rejection ratio, which is required for group velocity control,
is challenging since the beam has a bandwidth orders of magnitude larger than the nuclear reso-
nance. One approach in this direction has been recently successfully demonstrated [97, 98, 101].
In this case, a narrowband, pure nuclear reflection from a 57FeBO3 crystal is employed to sup-
press the enormous fraction of non-resonant photons in the incident beam. Other approaches for
suppression of the off-resonant photons rely on polarization filtering [50, 192] or on a high-speed
mechanical chopper [247]. In the latter method, an 57Fe foil acts as a bandpass filter and adds
a tail of delayed narrow-band light scattered by the nuclei to the x-ray pulse, as shown in in
Fig. 6.2(a). The chopper is operated such that it blocks the temporally short broadband incident
pulse, but lets the delayed signal pass. As a result, the absorption dip induced by the iron foil is
converted into a SNXP, which can then be used in an subsequent experiment. We note that the
characteristics of the generated SNXP spectrum are primarily determined by the thickness of
the iron foil. A thin or less enriched foil results in a single peak structure, whereas for enriched
thicker foils effectively a double-hump distribution well-known from nuclear resonance scattering
is created [248, 249]. These two cases are illustrated as dashed and solid lines, respectively, in
the insets of Fig. 6.2(a).
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Figure 6.2: (a) Possible setup for the generation of SNXP from broadband synchrotron radiation. A
single line 57Fe foil imprints an absorption band on the initially flat spectrum. This absorption is
converted into a SNXP by a mechanical chopper which suppresses the unscattered prompt response, but
not the delayed nuclear response. The insertions depict the frequency- and time-resolved amplitude of
the field at the corresponding stages of the scheme for a thick (solid lines) and thin (dashed lines) 57Fe
foil. (b) Actual implementation of the pulse generation scheme in our experiment. A polarimeter blocks
the background photons such that neither a mechanical chopper nor a high-resolution monochromator
for the SR is required. The variable a posteriori time gating facilitates the analysis of the delayed SNXP.

Actual implementation

The group velocity control could thus be explored using a combination of the SNXP generation
in Fig. 6.2(a) with the actual nuclear delay line formed by the thin-film cavity. Moving the
cavity allows to selectively tune the desired pulse delay. Instead, here, we employ a related
approach which avoids the need for a mechanical chopper. In our scheme shown in Fig. 6.2(b),
the initial broadband SR pulse is directed into a high purity x-ray polarimeter [194], which
embeds the cavity containing the nuclei. After the polarimeter, the x-rays pass the 57Fe foil, and
subsequently are detected in the time domain by an avalanche photo diode.
Compared to the setup in Fig. 6.2(a), in our scheme, the order of the cavity and the 57Fe foil

are reversed. This is possible, since all responses are linear. Second, instead of moving the cavity
to tune the group delay, the 57Fe foil is moved, which is easier to realize and equivalent via a
change of reference frame since both the source and the detection are spectrally broad. Most
importantly, the mechanical chopper essential for the setup in Fig. 6.2(a) is not required in our
scheme, since the polarimeter is operated in crossed setting. Thus, only those photons arrive
at the detector, whose polarization has been rotated throughout the interaction with the nuclei.
Thereby, the non-resonant background is removed, such that no high-resolution monochromator
for the incident SR pulse is required, and the remaining signal can be detected without time
gating. Apart from the simplification of the experimental setup, this also opens the possibility to
a posteriori choose arbitrary time gatings in the data analysis. This is of interest, since after the
57Fe foil, the resulting detection signal becomes R(t) = Rδ(t) +RSNXP(t) in the notation of the
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Figure 6.3: Slow and fast light can be observed using suitable cavities. At late times, the full signal is
essentially given by the response of a spectrally narrow x-ray pulse. The time delay τ of such pulses is
clearly observed in the shifted minima, which is a well-suited signature for an experimental realization.
Parameters are explained in the main text.

theory description already established in Sec. 6.1.3. Here, Rδ(t) corresponds to the response of the
photons which passed the 57Fe foil without interacting. The photons, however, which interacted
with the foil are distinguished and constitute the SNXP as illustrated in Fig. 6.2. Therefore, their
response RSNXP(t) forms the signal of a SNXP that has interacted with the cavity. In Sec. 6.1.4
we have already seen that the desired delayed part RSNXP(t) can be separated from Rδ(t) by
time gating, as the part Rδ(t) decays significantly faster for long times, and our approach allows
to optimize this time gating throughout the data analysis.
An alternate point of view of the two schemes can be given by means of the theoretical

description in the time domain. In the SNXP generation scheme from Ref. [247] visualized in
Fig. 6.2(a), the sequence can be described by

RSNXP(t) = [TNFS(t) · θ(t− t0)] ∗RCavity(t) . (6.40)

Here, the first part describes the SNXP generation using a chopper in time domain, where t0
denotes the time from which the light can pass the chopper. Subsequently, the pulse interacts
with the cavity, expressed via a convolution. In our implementation from Fig. 6.2(b), the full
stage corresponds to the expression

R(t) = [RCavity(t) ∗ TNFS(t)] · θ(t− t0) . (6.41)

In this scheme, the signal is chopped in time domain only after the interaction with the two
devices in the optical path. A thorough calculation of this signal was performed above, starting
at Eq. (6.17). Here, we perform a simplified analysis.
Generally, the responses obtained in the two schemes characterized via Eq. (6.40) and Eq. (6.41)

differ from each other. However, as mentioned before, they agree in certain limits. To illustrate
this, we note that the time response of the cavity RCavity(t′) mainly contributes at t′ = 0 due to
its superradiant decay. Then, RCavity(t′) θ(t− t0 − t′) ≈ RCavity(t′) θ(t− t0) and we can rewrite
the convolution integral in Eq. (6.40) to

RSNXP(t) =
∫
TNFS(t− t′)θ(t− t′ − t0)RCavity(t′)dt′

≈
∫
TNFS(t− t′)θ(t− t0)RCavity(t′)dt′

= [TNFS(t) ∗RCavity(t)] · θ(t− t0) = R(t) (6.42)
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Clearly, the approximation used here is very crude and should only be seen as an supportive
argument to our statement: The true pulse generation scheme and our approach are closely
related and our implementation can indeed be used to obtain the desired information on a
SNXP reflected by the cavity.
To also deliver a more reliable argument, we turn to numerical calculations of the responses of

the two schemes. To this end, we consider the cavity defined in Tab. 6.1, operated in π geometry
SGC setting. The time resolved intensities are shown in Fig. 6.3. In the left [right] panel the
cavity with Pd [Pt] as mirror material with Doppler detuning of the 57Fe foil ∆D = −40γ [0γ]
was chosen. In both cases the thickness of the foil was taken as 5.6 µm.
The first important thing to note from Fig. 6.3 is that at late times, the full response R(t)

is indeed essentially given by the SNXP contribution only. This now gives a clear numerical
argument that the two discussed schemes are equivalent on large time scales. Second, we notice
that the SNXP response is indeed shifted in the time domain, indicating a delay which is induced
by the nuclei in the cavity. This way, both a positive and a negative time delay can be engineered,
which corresponds to slow and fast light in the cavity.
The dispersion of the nuclei in the cavity result in a delay of the pulse without distortion. This

can be seen already from the structure of RSNXP(t) calculated in Eq. (6.22), where the delayed
pulse is unaffected apart from a scaling factor and the time delay τ . The same behavior can be
observed from the simulations shown in Fig. 6.3.
The time delay can be best seen from the shifted minima of the Bessel envelope in the response

RSNXP(t). In order to exploit this feature in an experiment, a relatively thick iron foil should
be utilized, such that multiple beatings can be observed in the time spectrum. Additionally, the
employed cavity should exhibit a large superradiant enhancement, because in this situation the
unwanted response part Rδ(t) is diminished.

6.3.2 Measurements of the time delay
Guided by the group of Ralf Röhlsberger (DESY, Hamburg) and Rudolf Rüffer (ESRF, Greno-
ble), we performed the experiment at the ID18 nuclear resonance beam line at the European
Synchrotron Radiation Source (ESRF, Grenoble) [93] using the setup sketched in Fig. 6.2(b).
The x-ray cavity consists of a Pd(2 nm)/C(20 nm)/57Fe(3 nm)/C(21 nm)/Pd(10 nm)/Si layer
system which is probed in grazing incidence such that the fundamental guided cavity mode is
resonantly excited. The high purity x-ray polarimeter provided by the Institute for Optics and
Quantum Electronics in Jena and the Helmholtz Institute Jena is described in more detail in
Ref. [194]. A magnetic field is applied along the beam propagation direction, defining the quan-
tization axis for the magnetic hyperfine splitting in the 57Fe layer. In this setting, the Faraday
geometry as defined in Sec. 5.1 is realized and vacuum-mediated couplings between the differ-
ent hyperfine levels arise, which lead to steep linear dispersions as in EIT systems such that
large time delays τ are expected. Note that in contrast to previous experiments focusing on
the measurement of the absorption spectra [50, 52, 56], here, a full transparency of the medium
on resonance is not desirable, as it would correspond to zero intensity in reflection, prohibiting
a detection of the propagated pulse. Therefore, the cavity system is chosen such that steep
dispersion is obtained while maintaining sufficient intensity in reflection direction to enable the
pulse detection. The additional stainless steel foil with 57Fe for the SNXP generation with thick-
ness 10 µm was mounted on a Doppler drive, such that pulses with different central frequencies
ωSNXP = ω0 + ∆D could be generated (see Fig. 6.2(b)).
Due to the narrow nuclear linewidth, the SNXP consists, on average, of less than one photon.

Triggering data acquisition on the detection of a photon at the detector thus essentially leads
to post-selection of single photon SNXP. In the experiment, we registered the photon time of
arrival together with the Doppler drive velocity for each signal photon separately. This enables
us to analyze the intensity of the light registered by the detector as function of the pulse center
frequency and time, as shown in Fig. 6.4. Clearly, the time spectra of near-resonant pulses
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Figure 6.4: Photon counts registered by the detector as function of time and Doppler detuning of the
57Fe foil. White dashed lines indicate theoretical predictions for beating minima positions without pulse
delay. Solid white curves show corresponding predictions including the delay. Close to resonance ∆D ≈ 0,
the temporal response is clearly shifted compared to the off-resonant case. The additional oscillatory
structure superimposing the data is due to the residual response Rδ of the incident synchrotron pulse.
The bleached area covering times t ≤ 50 ns contains mostly data from this initial δ-pulse excitation and
is excluded from the data analysis.

(∆D ≈ 0) are delayed compared to those of the off-resonant pulses, which can best be seen from
the shifted beating minima at t ≈ 60 ns and 120 ns. This is illustrated in more detail in Fig. 6.5(a),
where time spectra at resonance and far off-resonance are shown. From the theoretical analysis,
we could identify the additional oscillatory structures superimposing the simple temporal shift
of the registered intensity by τ predicted in RSNXP(t) as arising from residuals of Rδ(t) in the
data.
To determine the free parameters of our theory from the experimental data shown in Fig. 6.4,

we minimized the deviation from the recorded data and the theoretical values calculated numer-
ically with Eq. (6.15). To account for the steep gradient along the time axis, the intensities were
normalized along the detuning axis for each given time step. The best agreement was found for
the scaled cavity parameters κ = 45γ, |g|2N = 3285γ2, ∆C = −28.1γ and the effective thick-
ness L = 126.3 corresponding to a foil with thickness 10 µm enriched to ≈ 85% in 57Fe in the
Mössbauer drive.
From the experimental data shown in Fig. 6.4, we extracted the time delay τ of the x-ray pulses

by fitting the analytical response function with variable τ to the data. The result is shown in
Fig. 6.5(b). As expected, around the cavity resonance where the nuclear susceptibility exhibits
a steep positive linear dispersion, substantial pulse delays up to 35 ns are observed. Away from
the nuclear resonance, the delay reduces until it becomes zero off-resonance.
The experimental time delay was determined by fitting the analytic expression for the time

spectrum using Eqs. (6.17), (6.18) and (6.22) to the measured data for each Doppler detuning
∆D. In Eq. (6.18) the Fourier transform of the reflection coefficient is calculated. This can
be done analytically, since the in the Faraday geometry it can be expressed as a sum of two
π geometry-like spectra, for which the Fourier transform was already calculated in Sec. 6.1.2.
In our analysis, the cavity parameters determined above and a global scaling factor were kept
constant, such that the only free parameter is the time delay τ entering Eq. (6.22). In order to
extract the delay of the SNXP only, we suppress the contribution of the incident δ-like pulse by
restricting the fit range to times t ≥ 50 ns.
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Figure 6.5: (a) Sections through Fig. 6.4 at constant energies ∆D. Close to resonance, the time spectrum
is clearly shifted compared to the off-resonant case. Solid lines are theoretical predictions for the pulse
part RSNXP only, which is expected to deviate from the experimental data at initial times due to the
omission of Rδ(t). (b) Time delay for the SNXP as function of the detuning ∆D between SNXP and
the nuclear resonance. Black dots show the delay extracted from the experimental data. The red solid
curve shows the corresponding theoretical prediction. Error bars are described in the main text.

We found that due to the oscillatory structure of the data, the fit result can be affected by
the starting value chosen for τ . To extract unbiased values for τ from the data, we employed
the following method: First, the best fit τ0 over 50 equidistantly distributed initial values in the
range from τ = −0.1/γ to 0.4/γ was determined. Second, we performed another 50 fits with
initial values in the range ± 0.25/γ around the previously determined τ0. Third, from these fits
only the ones with −0.1/γ ≤ τ ≤ 0.4/γ were kept, since values outside this range clearly indicate
an artifact caused by the oscillatory structure. Finally, we weight each τ with the inverse of its
fit’s variance to take into account the fit quality. From this final set of time delays τ the mean
value and its standard error were determined.
Small distortions in the experiment, such as imperfect magnetization of the 57Fe layer, can

result in a difference of the actual and the theoretically predicted spectrum. Far off-resonance,
where RCavity(∆D) � 1, this can lead to a large relative error. Since RSNXP(t,∆D) in the fit
function also depends on the spectrum RCavity(∆D), its amplitude is affected by the same error.
Since the global scaling factor was kept constant, the time delay τ obtained from the fit might
therefore be distorted. This explains the discrepancies to the theoretical predictions in Fig. 6.5(b)
at large detunings.
In summary, we have demonstrated group velocity control for spectrally narrow hard x-ray

pulses, yielding controllable pulse delays of up to 35 ns via sub-luminal light propagation. From
simulations of the x-ray pulse dynamics, in which Maxwell’s equations were solved numerically
(c.f. Sec. 6.2), we determined an upper bound for the propagation length of the pulse inside the
cavity of about 1 mm, which translates into an upper bound for the reduced group velocity of the
SNXP of vgr < 10−4c. The group velocity control was enabled by a powerful method to measure
the response of an SNXP, which requires neither mechanical choppers nor a high-resolution
monochromatization of the incident SR light, and thus provide a route towards nuclear quantum
optics experiments beyond dedicated nuclear resonance beam lines. This way, slow light, EIT
and related phenomena in the future could enable the coherence-based enhancement of non-linear
interaction between x-rays and nuclei [116]. Next to this primary goal, our scheme presented
here could also be used to measure the phase of the response of an unknown sample, since the
observed time delay is directly related to the phase of the optical response of the cavity-nuclei
system.
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6.4 Time-resolved intensity in Fourier space
We have seen above, that in order to measure the spectrum which is reflected from a thin-film
cavity, a Mössbauer drive, i.e. a vibrating foil with 57Fe nuclei, is typically placed in the optical
path. If the latter is moving with velocity v, its resonance frequency is Doppler shifted by
∆D = ω0v/c and thus the cavity spectrum is scanned by means of an externally controllable
frequency ∆D. In frequency domain this setup is fully characterized by the product of the
complex reflection and transmission coefficients of the respective elements in the optical path.
Since we are often interested in the spectral properties, such as Lamb shifts and superradiant
decays, it would be desirable to directly have access to this frequency space product in an
experiment. However, as discussed before, only the absolute value of its Fourier transform is
measured, from which the properties of the system are to be reconstructed. Since the phase
information of the time response is lost, it is not possible to obtain the original spectrum via the
inverse transformation. A method of second choice, though, is to transform the real-valued data
back into frequency domain, hoping that signatures of some spectral properties remain. The
procedure is roughly illustrated below.

RCavity(∆) · TNFS(∆−∆D)︸ ︷︷ ︸
spectral information

FT−1

−→ R(t,∆D) |·|
2

−→ I(t,∆D)︸ ︷︷ ︸
experimentally

available

FT−→ I(ω,∆D)︸ ︷︷ ︸
remaining
spectral

information?

In the following, we will first perform a theoretical analysis and calculate the Fourier picture of
the time-resolved intensity. Then, we will exemplarily identify a property in this domain which
allows us to extract the Lamb shift in the cavity with an alternate method to the one used before
in Sec. 4.1.2. Finally, we will apply our analysis to real experimental data.

6.4.1 Theoretical analysis
Let us begin with a short recap of the formal theoretical description. As discussed in Sec. 6.1.2,
the response of the 57Fe foil upon the transmitted x-rays can be described with the transmission
function

TNFS(∆,∆D) = exp
(
− iLγ/4

∆−∆D + i
2γ

)
, (6.43)

and the cavity reflection spectrum is generally taken as RCavity(∆). The time resolved intensity
at the detector is given by (c.f. Eq. (6.3))

I(t,∆D) = 1
2π

∣∣∣∣∫ ∞
−∞

RCavity(∆)TNFS(∆,∆D) e−i∆td∆
∣∣∣∣2 . (6.44)

This is the quantity which is directly measurable in an experiment. Now, we aim to exploit the
complementarity of time and frequency, and evaluate this function in Fourier space

I(ω,∆D) = 1√
2π

∫ ∞
−∞

I(t,∆D)eiωtdt . (6.45)

In Sec. 6.1.3 it was shown that the time resolved intensity I(t,∆D) can be approximated as
(c.f. Eq. (6.17))

I(t,∆D) = |Rδ(t) +RSNXP(t,∆D)|2 , (6.46)

where Rδ(t) is the Fourier transform of the cavity spectrum RCavity(∆) and

RSNXP(t,∆D) = −e−
γ
2 (t−τ)θ(t− τ)RCavity(∆D)e−i∆Dt

√
πLγ

2(t− τ)J1

(√
Lγ(t− τ)

)
. (6.47)
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Next, let us look at the cavity reflection coefficient RCavity(∆) and its Fourier transform Rδ(t)
in more detail. In the case without a magnetic splitting in the 57Fe nuclei, the cavity spectrum
has a general Fano profile (see Tab. 4.3). Hence, in frequency space, the cavity reflection ampli-
tude consists of a constant continuum contribution and a Lorentz profile. In time domain, this
translates into a δ(t)-pulse and a part with an exponential decay. The δ(t)-pulse, however, is
usually not recorded in the experiment and suppressed by a time gating mechanism. Thus, we
will neglect this contribution in the following analysis. Keeping the term would not affect our
results, since the transformation of the time signal ∝ δ(t) into Fourier space only results in a
constant offset.
In the case where the magnetic splitting gives rise to SGC (see Chap. 5), the cavity spectrum

and thus its time domain response is more complex. But as shown in Sec. 6.1.2, the simplest
case with two interacting resonances featuring SGC can also be transformed into time domain
analytically. The result can be written as a sum of multiple exponential decays and thus, the
situation is comparable to the case without magnetic splitting. In the following we will, for
simplicity, restrict our analysis to a cavity response of the form

Rδ(t) = RLorentzθ(t)e−zt , Re (z) > 0 . (6.48)

This expression could easily be extended to SGC-type time spectra by adding additional terms
∝ θ(t)e−z′t with different z′. For an unmagnetized cavity, which we consider here, the constants
in Eq. (6.48) are given by

RLorentz =
√

2π 4κR|g|2N
3(∆C − iκ)2 (6.49)

z = γ

2 + 2|g|2N
3(κ+ i∆C) = Γ

2 + i∆LS , (6.50)

where Γ and ∆LS correspond to the superradiantly enhanced decay rate and the collective Lamb
shift.
Now let us transform the time resolved intensity into Fourier space. For this, we expand the

modulus squared in Eq. (6.46) into three parts

I(t,∆D) =
∣∣RLorentzθ(t)e−zt +RSNXP(t,∆D)

∣∣2
= |RLorentz|2θ(t)e−2 Re (z)t (6.51)

+ |RSNXP(t,∆D)|2 (6.52)

+ 2 Re
(
R∗Lorentzθ(t)e−z

∗tRSNXP(t,∆D)
)

(6.53)

= I1(t) + I2(t,∆D) + I3(t,∆D) , (6.54)

and calculate their corresponding Fourier transformations. The first expression can be computed
straightforwardly as

I1(ω) = 1√
2π

∫ ∞
−∞

I1(t)dt = |RLorentz|2√
2π

1
2 Re (z)− iω . (6.55)

In order to calculate the second Fourier integral we use the relations [250]

J1

(√
Lγt

)2
=
∞∑
n=1

2(−1)n+1Γ(2n)
Γ(n)2Γ(n+ 1)Γ(n+ 2)

(
Lγt

4

)n
, (6.56)∫ ∞

0
e−attndt = a−(n+1)Γ(n+ 1) , (6.57)
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and obtain

I2(ω,∆D) = 1√
2π

∫ ∞
−∞

2π|RCavity(∆D)|2e−γ(t−τ)θ(t− τ) Lγ

4(t− τ)J1

(√
Lγ(t− τ)

)2
eiωtdt

=
√

2π|RCavity(∆D)|2eiωτ
∫ ∞

0
e−γt

Lγ

4t J1

(√
Lγt

)2
eiωtdt

=
√

2π|RCavity(∆D)|2eiωτ
∞∑
n=1

2(−1)n+1Γ(2n)
Γ(n)2Γ(n+ 1)Γ(n+ 2)

(
Lγ

4

)n+1 ∫ ∞
0

e−(γ−iω)ttn−1dt

=
√

2π|RCavity(∆D)|2eiωτ
∞∑
n=1

2(−1)n+1Γ(2n)
Γ(n)2Γ(n+ 1)Γ(n+ 2)

(
Lγ

4

)n+1
· Γ(n)

(γ − iω)n

=
√

2π|RCavity(∆D)|2eiωτ Lγ4

(
1− e−

Lγ/2
γ−iω

(
J0

(
iLγ/2
γ − iω

)
− iJ1

(
iLγ/2
γ − iω

)))
. (6.58)

Finally, we need to transform the interference term I3(t,∆D) = 2 Re[Ĩ3(t,∆D)] into frequency
domain. Using basic Fourier transform properties, we rewrite

I3(ω,∆D) = Ĩ3(ω,∆D) + Ĩ3(−ω,∆D)∗ . (6.59)

Hence, it is sufficient to calculate the Fourier transform of Ĩ3(t,∆D) only. Assuming τ ≥ 0, such
that θ(t)θ(t− τ) = θ(t− τ), this yields

Ĩ3(ω,∆D) = 1√
2π

∫ ∞
−∞

R∗Lorentzθ(t)e−z
∗tRSNXP(t,∆D)dt

= −R∗LorentzRCavity(∆D)
∫ ∞
−∞

e−(z∗+i∆D)t θ(t− τ)e−
γ
2 (t−τ)

√
Lγ

4(t− τ)J1

(√
Lγ(t− τ)

)
dt

= −R∗LorentzRCavity(∆D)e−(z∗+i∆D−iω)τ
∫ ∞

0
e−(z∗+i∆D+γ

2−iω)t
√
Lγ

4t J1

(√
Lγt

)
dt .

(6.60)

We use the series representation of the Bessel function to evaluate the integral∫ ∞
0

e−(z∗+i∆D+γ
2−iω)t

√
Lγ

4t J1

(√
Lγt

)
dt

=
∞∑
n=0

(−1)n

n!(n+ 1)!

(
Lγ

4

)n+1 ∫ ∞
0

e−(z∗+i∆D+γ
2−iω)ttndt

=
∞∑
n=0

(−1)n

n!(n+ 1)!

(
Lγ

4

)n+1
n!

(z∗ + i∆D + γ
2 − iω)n+1

= 1− exp
(

−iLγ/4
ω −∆D + iz∗ + iγ2

)
, (6.61)

and we finally obtain

Ĩ3(ω,∆D) = −R∗LorentzRCavity(∆D)ei(ω−∆D+iz∗)τ
(

1− exp
(

−iLγ/4
ω−∆D+iz∗+i γ2

))
. (6.62)

Now we have the Fourier transformations of all three parts in Eq. (6.54) at hand.
While the Fourier transformations here were carried out without approximations, it is impor-

tant to remember that Eq. (6.47), which did enter the initial expression I(t,∆D), was obtained
under the assumption that the cavity reflectance amplitude does not rapidly change, while the
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Figure 6.6: The numerical simulation and the analytic approximation of the time-resolved intensity in
Fourier space is shown. The analytic calculation breaks down as expected in the range of small ∆D. The
additional features, in particular the diagonal structure and the overall scaling agree very well. Scaled
parameters: κ = 45, κR = 25, |g|

√
N =

√
1400,∆C = 0, L = 78.

phase was linearized, see Sec. 6.1.3. This leads to the time delayed signal of the Bessel-type
response function and caused an unphysical discontinuity at t = τ . Roughly, the erroneous area
can be narrowed down to small times 0 ≤ t ≤ τ and values of the Mössbauer drive detuning lim-
ited to −50γ . ∆D . 50γ, since a time delay τ occurs only close to the resonances of the nuclei
in the cavity. From this we can expect, that the time-resolved intensity in Fourier space shows
deviations from exact numerical results as well. In particular, the erroneous range is expected
at large ω and small ∆D. To test the validity of our analytical result, we compare it to an exact
numerical solution. To this end, the response in time domain was computed numerically. In
order to match the realistic scenario, the δ-like pulse was suppressed in the obtained data and
finally, the modulus of the time resolved intensity was transformed back into frequency domain.
Both the numerical and the analytical results are shown in Fig. 6.6. Apart from the expected

range already discussed above, the analytic model captures the essential parts of the structure
from the numerical simulation extremely well. Probably the most dominant pattern is the V -
type diagonal shape, visible both in the amplitude and the phase representation. Due to the
agreement of the numerical data with the model we can identify its origin by examining the
different parts of the theory. In fact, the diagonal structure originates from

exp
(

−iLγ/4
±ω−∆D+iz∗+i γ2

)
(6.63)
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6.4 Time-resolved intensity in Fourier space

in Eqs. (6.59) and (6.62). The exponential becomes minimal for ±ω−∆D+Im(z) = 0. From this
we observe that the diagonal structure in Fig. 6.6 is actually shifted from the center by Im(z),
which, according to Eq. (6.50), is the collective Lamb shift of the nuclei in the cavity. Thus,
correctly identifying the diagonals offers an alternate method to extract the Lamb shift from the
measurement data.
In principle, choosing a data section at large negative drive detuning ∆D, then identifying its

mirrored counterpart for positive detuning will allow us to reconstruct the Lamb shift ∆LS =
Im(z) from their center. However, this naive approach will generally fail. The reason is that in
the cases where one would expect a non-zero Lamb shift, the Fourier spectra for large negative
and large positive Mössbauer detunings ∆D are not comparable, as their relative amplitude can
strongly differ from each other. Hence, only the signature of the diagonals and not the structure
of the circumjacent data may be used to obtain the Lamb shift in this fashion.
In order to apply this understanding to an experimental situation, we have to take into account

that in a realistic scenario a time gating is usually applied during the measurement. While
the theoretical considerations above only neglected the prompt δ-like pulse, in an experiment
often the first several nanoseconds are suppressed. From numerical simulations, we observe that
the time-resolved spectrum in Fourier space still contains the diagonals, but also oscillatory
structures in the amplitude. For the phase, we find that the time gating causes the a linear
rise along the ω-coordinate, which is superimposed with the structure shown in Fig. 6.6. This
can easily be understood by noting that a shift in time domain corresponds to a linear slope
of the phase in frequency domain. Indeed, we find from numerical simulations that the phase
behavior is consistent with an additional global phase factor exp (iωtstart), where tstart denotes
the beginning of the time gating window.

6.4.2 Lamb shift measurements revisited
Let us now see how the Lamb shift can be obtained in practice. We apply our analysis to the
experimental data sets, which we also used in the analysis on Fano line shape control in Sec. 4.1.2.
We choose the data sets of two different cavities measured at different incidence angles ∆θ, in
which the diagonals in the Fourier spectra are well pronounced. In Fig. 6.7 we show their time
resolved intensity as well as the amplitude in Fourier space.
As described above, we choose a suitable region around the diagonals and try to find its

counterpart based on the diagonal structure only. This is illustrated in Figs. 6.8(a) and 6.8(b)
for cavities 1 and 2, respectively. From the center of these two counterparts, the Lamb shift of
the respective cavity setting is obtained. The accuracy of this procedure, however, is limited by
the rather large pixel size along the ∆D-axis. In Figs. 6.7, 6.8(a) and 6.8(b), the binning along
the abscissa was chosen such that the frequency difference of two adjacent pixels corresponds to
∆∆D

≈ 2.05γ, such that the error in the Lamb shift is of the order of ∆∆D
/2 ≈ 1γ. In principle,

one could choose a smaller step size, however at the cost of less statistics for each bin. The Lamb
shift from this analysis as well as the Lamb shift we obtained earlier from the fits performed in
Sec. 4.1.2 are shown in the following table (in units of γ).

Cavity 1 Cavity 2
∆θ = 100 µrad ∆θ = −46 µrad

Fourier space analysis 14.4± 1.0 −16.3± 1.0

Fano fit method (Sec. 4.1.2) 9.1± 1.6 −13.3± 1.3

Clearly, the Lamb shifts obtained with the two different methods are in the same range but
do not agree very well. The reason for the discrepancy is most likely due to distortions in
the recorded spectra which can strongly modify the Fano profile fits. We have already seen in
Sec. 4.1.2 that the oscillatory structure in the spectra for large ∆θ superimpose the narrow Fano
spectra. As a consequence, the superradiantly broadened width of the nuclear resonances could
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Figure 6.7: Experimentally measured time resolved spectrum (top row) and its Fourier representation
(bottom) for two cavities at different incidence angles ∆θ is shown. The diagonal structures in Fourier
space are predicted by the theory and can be used to determine the Lamb shifts of the cavities.

not be detected properly. Thus, it is conceivable to assume that in the same parameter range
also the exact position of the resonances, i.e. the Lamb shift, cannot be determined with high
accuracy, since the measured data in the relevant frequency range is diffuse.
Based on this observation we can distinguish two complementary parameter ranges: For small

∆θ, the spectra obtained via the time gating technique are undistorted and Lamb shifts can
be extracted by fitting a generic Fano curve to the data as performed in Sec. 4.1.2. The lack
of characteristic oscillations in this parameter regime, however, limits the applicability of the
Fourier space method described here. Conversely, in the range of large ∆θ, the situation is
reversed. The pronounced oscillations in the data render an analysis via a Fano fit complicated,
while in Fourier space the diagonal lines can in turn be identified with very high precision.
Hence, these two fundamentally different methods to determine the Lamb shift from measured
data complement one another as they are best applied in situations where the other method is
expected to fail.
Finally, we want to emphasize that an analysis in Fourier space does not only reveal the Lamb

shift of the nuclear resonances. For example, the diagonals mentioned before are true diagonals
in the sense that their slope is unity, which can be seen from Eq. (6.63). Thus, their behavior in
ω-∆D-space can serve as a crosscheck on the calibration of the time and frequency axis in the
experiment. Apart from the features discussed here, it can be expected that more information
is hidden in the Fourier space data. It could be promising to explore the general scaling of the
amplitude in Fourier space, since Eq. (6.55) suggests that its behavior along the ω direction is
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Figure 6.8: Time resolved intensity in Fourier space for two recorded data sets. The marked sections are
mirrored counterparts. Their center is not located at ∆D = 0 (dotted line), but at the Lamb shift of the
cavity (dashed line).

Lorentz-like with its width connected with the superradiant decay rate in the cavity. Another
feature which could be worth investigating, is the underlying linear slope in the phase visible in
Figs. 6.8(a) and 6.8(b). This might serve as a tool to determine the exact time gating window
used in the experiment.
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Chapter 7

Quantum Optical Model Extended
In the previous chapters we covered the description of cavities with a single layer of resonant
57Fe nuclei. Already in this scenario a rich set of phenomena and effects, such as Fano line
shape control or magnetically controllable reflection spectra modified by spontaneously generated
coherences, could be observed. However, there is an additional cavity configuration which has
sparked interest recently. In a setting with two particularly placed resonant layers in the cavity
it was possible to observe a reflection spectrum with a deep interference minimum in the center
due to the phenomenon of electromagnetically induced transparency (EIT) [56, 116, 117]. This
is a remarkable result, since typically two coherent driving fields are required for this effect to
emerge. In Ref. [56], however, the EIT experiment was established in a thin-film cavity with only
a single excitation from a synchrotron beam, whereas the second field was intrinsically provided
by intra-cavity couplings between the two 57Fe layer. This experiment and the EIT interpretation
was described in more detail in Sec. 2.1.4.
The quantum optical description we developed so far is not yet capable of describing this EIT

experiment, or more generally spoken, it does not yet cover cavity settings with multiple resonant
layers. But motivated by the expected significance of multilayer configurations, it would be highly
desirable to also have a microscopic theory at hand, which allows for a deeper understanding, such
as the nature of the intrinsic cavity-mediated coupling of the different resonant layers mentioned
above. We note that other approaches based on scattering theory were employed to tackle this
problem [251], however, so far they remained unsuccessful to provide a quantitative description
of the EIT experiment.
In the following sections we will generalize our theory with the aim to describe the single

photon EIT [56] and related settings. To this end, we will first extend the description to include
multiple guided modes and later to multiple layers. As we will see, each of these extensions on
its own will not give rise to fundamentally new effects in the nuclear reflection spectra. Only if
both extensions are considered simultaneously, we can recover the new class of EIT-like spectra
and this way provide a full quantum optical description for the EIT experiment in thin-film
cavities [56].

7.1 Generalization to multiple modes
So far we included only one guided mode in the theoretical analysis of the cavity. This is
typically justified, since guided modes are usually well separated from each other in terms of
their respective resonant incidence angle. For example, from the reflection curve show in Fig. 2.2
it can be seen that the modes’ resonance angles are separated by ≈ 1 mrad, which results
in large cavity detunings ∆C . Nevertheless, as we will show below, the additional modes can
sometimes be of importance, since the nuclei can in principle scatter into them. Therefore, we
will also include them into our theoretical description. In this part, we will discuss the influence
of multiple modes on the reflectivity, while we still restrict ourselves to a single thin layer of
resonant nuclei in the cavity.
We start by revisiting the input-output relation of the electromagnetic field. Compared to

the initial analysis in Sec. 3.1.1, the input field does not only drive one mode a, but multiple
modes a[j]. At the same time, the output field is driven by these modes and, naturally, also
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the resonant nuclei will interact with the different cavity field modes. This means, we also have
to distinguish the coupling coefficients and decay rates for each cavity mode. In the following
we will denote these rates by an upper index [j] in squared brackets, which indicates that the
respective quantity is related to the jth guided mode (“a[j]”) in the theory.
Generalizing Eq. (3.12) from the original theory, we write for the input-output relation

aout = −ain (â∗out ·âin) +
∑
j

√
2κ[j]

R

[
a

[j]
1

(
â∗out ·â

[j]
1

)
+ a

[j]
2

(
â∗out ·â

[j]
2

)]
(7.1)

and for the Hamiltonian describing the dynamics of the modes

HM =
∑
j

∆[j]
C

(
a

[j]
1
†
a

[j]
1 + a

[j]
2
†
a

[j]
2

)
+ i
∑
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√
2κ[j]

R

×
[
aina

[j]
1
† (
â

[j]
1
∗
·âin

)
− a∗ina

[j]
1

(
â∗in ·â

[j]
1

)
+ aina

[j]
2
† (
â

[j]
2
∗
·âin

)
− a∗ina

[j]
2

(
â∗in ·â

[j]
2

) ]
. (7.2)

In a similar fashion, the couplings with nuclei are modified to include the sum over all modes j.
The interaction with atom n or, more precisely, with its transitions µ, is given by

HC =
∑
µ

∑
j

[(
d̂
∗
µ ·â

[j]
1

)
g(n)[j]
µ S

(n)
µ+a

[j]
1 +

(
d̂
∗
µ ·â

[j]
2

)
g(n)[j]
µ S

(n)
µ+a

[j]
2

]
+ h.c. . (7.3)

Here, we denoted the coupling coefficient between the mode j and the transition µ of an atom n

by g(n)[j]
µ . This coupling constant can be decomposed into

g(n)[j]
µ = g[j]cµe

iφ(n)
, (7.4)

where cµ is the Clebsch-Gordan coefficient of the transition µ, φ(n) accounts for a potential
phase imprinted on the nucleus by the field due to the atomic position, and g[j] denotes a global
coupling constant between mode j and all nuclei and transitions. Note that this factorization
is possible in this way only because we assumed a single thin layer of resonant nuclei in this
analysis.
Next, we perform the adiabatic elimination as in the case with only one guided mode. The

main difference is that we do not eliminate the two modes a1 and a2 for the two polarization
directions only, but a total of 2j modes. Since the different modes are not mutually coupled,
they can be eliminated independently and their contributions to the effective master equation
sum up. In the same notation as in Sec. 3.2, we obtain the effective Hamiltonian contributions
and the Lindblad terms

H
(n)
Ω =

∑
µ

(
d̂
∗
µ ·1⊥ ·âin

)∑
j

(
Ω[j]g(n)[j]

µ

)
S

(n)
µ+ + h.c. , (7.5)

H
(n,m)
LS =

∑
µ,ν

(
d̂
∗
µ ·1⊥ ·d̂ν

)∑
j

(
δ

[j]
LSg

(n)[j]
µ g(m)[j]

ν

∗)
S

(n)
µ+S

(m)
ν− , (7.6)

Lcav[ρ] =
∑
n,m

∑
µ,ν

(
d̂
∗
µ ·1⊥ ·d̂ν

)∑
j

(
−ζ [j]

S g(n)[j]
µ g(m)[j]

ν

∗)
L[ρ, S(n)

µ+ , S
(m)
ν− ] . (7.7)

Furthermore, we find that after the adiabatic elimination the reflection coefficient is given by

R =

−1 +
∑
j

2κ[j]
R

κ[j] + i∆[j]
C

 (â∗out ·âin)− i

ain

∑
n,µ
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j

√
2κ[j]

R g
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κ[j] + i∆[j]
C

(â∗out ·1⊥ ·d̂µ) 〈S(n)
µ−〉 .

(7.8)

98



7.1 Generalization to multiple modes

At this point it is useful to consider the nuclear contribution to the reflectance only. Comparing
the effective master equation for one guided mode with the result above, we find that we can
identify the corresponding expressions in each part

HΩ : Ωg(n)
µ →

∑
j

Ω[j]g(n)[j]
µ , (7.9)

HLS : δLSg
(n)
µ g(m)

ν

∗
→
∑
j

δ
[j]
LSg

(n)[j]
µ g(m)[j]

ν

∗
, (7.10)

Lcav : ζSg
(n)
µ g(m)

ν

∗
→
∑
j

ζ
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S g(n)[j]

µ g(m)[j]
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∗
, (7.11)
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√
2κ[j]

R g
(n)[j]
µ

∗

κ[j] + i∆[j]
C

. (7.12)

Apart from these modifications no further changes are present in the newly derived effective
master equation. The extensions above are only on the level of coefficients and, e.g., do not
introduce additional operators. This is a consequence of the adiabatic elimination performed
above. Therefore, we can use the upper set in Eq. (7.12) and simply replace the respective
corresponding quantities in the results we already calculated from the single mode theory. Do-
ing so for the linear reflectance without magnetic hyperfine splitting and neglecting the trivial
polarization dependency (â∗out ·âin), this yields

R = −1 +
∑
j

2κ[j]
R

κ[j] + i∆[j]
C

− i2N3

∑
j

√
2κ[j]
R
g[j]

κ[j]+i∆[j]
C

·
∑
j

√
2κ[j]
R
g[j]∗

κ[j]+i∆[j]
C

∆ + iγ2 + 2N
3

(∑
j

∣∣g[j]
∣∣2 (iζ [j]

S − δ
[j]
LS

)) . (7.13)

We observe that the general structure of the nuclear part is unaffected by including multiple
modes. It constitutes a Lorentzian line shape, shifted due to a collective Lamb shift and broad-
ened due to superradiance. In comparison to the single mode result, it can be seen from the
denominator that each mode induces its own Lamb shift and line broadening. But typically for
any angle of incidence, all except (at most) one modes are driven far off-resonantly as mentioned
above. Then, the according values for the cavity detuning ∆C become large and their respective
contributions to the Lamb shift and to the superradiance diminish. From the numerator of the
nuclear part, we find that the strength of the nuclear signal is typically determined by one domi-
nant mode with the smallest ∆C . However, in general interferences between the different modes
can arise. Nevertheless, the general Lorentzian structure of the line profile is unaffected by this
and hence no qualitatively different features appear in the spectrum.
The main difference to the single mode result is found in the cavity contribution to the re-

flectance. Since we included multiple guided modes in the analysis above, it is clear that the
resonances of these modes should become apparent in the reflection curve, i.e. when considering
the cavity reflectance in dependence on the incidence angle θ. Indeed, the expression we derived
in Eq. (7.13) highlights these resonances in its first sum. The resonance of a guided mode j is
encountered at ∆[j]

C = 0, and the reflection curve will exhibit a local minimum in its vicinity.
At this point it is of interest, how well the actual reflection curve can be described by the cavity

part of the reflectance. To this end, we compare the numerical results obtained with Parratt’s
formalism to the analytical expression of the multimode theory above. First, we note that in the
numerical data an envelope of the reflection curve, formed by the total reflection range, appears.
However, this is an effect of the bulk material properties and not related to the structure of the
cavity, and hence it is not taken into account by the analytic expression found from our quantum
optical theory. Therefore, we will heuristically combine the analytical formula, describing the
guided modes, with the reflectivity of the cavity’s mirror material, which approximately takes
into account the total reflection envelope.
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Furthermore, we have already seen in Sec. 4.1.3 that a dispersion phase is necessary to describe
the asymmetry of the reflection curve around the minima of the guided modes. It can be
included by simply generalizing the contribution which stems from the direct reflection on the
cavity surface (“−1”) with an additional phase factor exp (iφC). Here, we want to handle the
asymmetric behavior along a wider range of incidence angles. Also, to take into account possible
effects of far off-resonant modes, which would give rise to a small constant contribution to the
reflection coefficient, we allow for a complex variable r instead of the cavity surface amplitude
−1 with |r| ≈ 1.
With the heuristic modifications described above, the reflection curve reads

R(θ) = REnvelope(θ)

r +
∑
j

2κ[j]
R

κ[j] + i∆[j]
C (θ)

 , (7.14)

with the cavity detuning (c.f. Eq. (3.7))

∆[j]
C (θ) = ω0

[√
cos (θ)2 + sin (θ[j]

0 )
2
− 1
]
. (7.15)

Let us now see how well this ansatz performs in practice. As we later aim to describe the EIT
scenario from Ref. [56], which we mentioned in the introduction of this section, we specialize to
this particular cavity. The cavity parameters are given in Tab. 7.1. Note that the two resonant
iron layers cannot be described with the tools developed so far, however, for the description of the
reflection curve, the nuclear resonances are omitted anyway. In the specified cavity platinum
acts as cavity mirrors, therefore REnvelope(θ) is the reflection coefficient of a single infinitely
thick Pt layer. It can be calculated, e.g., using Parratt’s formalism and the Fresnel formulas, see
Sec. 2.2.1. We fitted Eq. (7.14) to the expected reflection curve for the cavity, which was obtained
using Parratt’s formalism. The result is shown in Fig. 7.1. Clearly, the quantum optical model
together with the heuristic extensions, is well suited to describe the reflection curve. Interestingly,
we find that also the phase behavior is reproduced very well. This is remarkable, because only
absolute values were taken into account in the fit procedure. The analytic formula in Eq. (7.14)
has only been corrected for a global phase to match the phase behavior predicted by the Parratt
formalism.
From Fig. 7.1 we can see that for angles θ > 5 mrad the two reflection curves do not agree

anymore. This is expected, since we included only five guided modes in Eq. (7.14) and restricted
ourselves to the range of the incidence angle 0 ≤ θ ≤ 5 mrad in the fit. Thus, guided modes
beyond the angle θ = 5 mrad are not taken into account. Considering the phases of the reflection
curves, a clear deviation can be seen at the second guided mode at θ ≈ 3 mrad. In contrast to
Parratt’s formalism, the curve obtained with the quantum optical model features an apparent
phase jump of 2π at the resonance. As we already discussed in Sec. 3.3.1, this is a sign that

Table 7.1: Cavity parameters for the two-layer cavity in node-anti-node configuration, which shows an
EIT-like spectrum [56] (top to bottom).

Material Thickness [nm]
Pt 3
C 10.5

57Fe 3
C 6.5

57Fe 3
C 21
Pt 10

100



7.1 Generalization to multiple modes

0 2 4 6
0

0.5

1

Incidence angle θ [mrad]

R
efl

ec
ta
n
ce

|R
|2

0 2 4 6
−π

0

π

Incidence angle θ [mrad]

P
h
a
se

a
rg

(R
)

Figure 7.1: Cavity reflectance as a function of the incidence angle θ. The minima denote resonance angles
at which guided modes are driven resonantly. Including a dispersion phase and the heuristic extension
of an envelope given by the topmost layer (gray dashed line), the quantum optical theory (blue) can
reproduce the exact result calculated with Parratt’s formalism (red) very well. In the quantum optical
model only the first five guided modes were taken into account. Although only the absolute value of the
reflectance was fitted in the range 0 ≤ θ ≤ 5 mrad, the behavior of the phases calculated with the two
descriptions are very similar.

the cavity mode is overcritically coupled, i.e. 2κR > κ. Looking solely at the modulus, however,
the overcritical case cannot be distinguished from the undercritical situation where 2κR < κ
and no phase jump occurs. This is the reason why the quantum optical theory can predict a
different phase behavior. Generally, it might be beneficial to not fit absolute values, but the
complex values of the reflection curve directly. In this case also the over- and undercritically
coupled resonances should be captured correctly by the quantum optical theory. However, since
we are interested mainly at the third guided mode later on, which is the mode at which the
EIT spectra have been measured in Ref. [56], we can use the parameters obtained in the fit
discussed above for our further analysis. The cavity parameters we obtained from fitting the
reflection curve are listed in Tab. 7.2. For the asymmetry parameter r in Eq. (7.14) we obtained
r ≈ −0.981387 + 0.363327 i ≈ 1.046 ei(π−0.355). We will use these parameters later when we look
at the EIT scenario in more detail. Then, in addition to the discussion here, we will include the
effect of the resonant nuclei in the two iron layers as well.
We conclude this section with a few remarks. First, we found that the energy spectrum

of the nuclear reflection is not qualitatively affected by taking into account multiple modes in
the theory. However, from Eq. (7.13) it becomes apparent that the relative phase and weight
between the nuclear part and the cavity contribution to the reflectance can change from the
relation we obtained in the single mode theory, see Sec. 4.1.1. This modification is expected to
be small, because usually all but one modes are driven far off-resonantly and their contributions
vanish. Nevertheless, a residual effect could distort the ideal Fano spectrum, which was discussed

Table 7.2: Cavity parameters of the EIT cavity (Tab. 7.1) for the quantum optical model.

Mode θ0 [mrad] κ [γ] κR [γ]
1 2.55947 143979 6063
2 2.99212 533490 311541
3 3.54938 614951 275657
4 4.14851 784506 373773
5 5.07939 1718304 767598
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in Chap. 4 and potentially give a contribution to the Lamb shift measured for the Lorentzian
spectrum, similar to the dispersion phase φC discussed in Sec. 4.1.3. But in any case, the
extension to multiple cavity modes is not able to explain the asymmetry of the reflectance curves
and the dispersion phase is still a necessary part to the theory. Finally, it should be mentioned
that it is not meaningful to extend the quantum optical descriptions to very large incident angles
θ. Reasons for this are the fact, that the theoretical description of the perpendicular polarization
directions might break down, and that distinct non-grazing incidence effects are expected, since
the cavity is no longer probed in (000) Bragg geometry. The angular cutoff should therefore be
around the total reflection edge, which for typical cavity settings limits the number of guided
modes to ≈ 5.

7.2 Multiple layers
In this part we will extend our theoretical description to additionally cover the cases where
multiple layers of resonant nuclei are embedded in the cavity. So far, a thin resonant layer was
assumed in the analysis and consequently the coupling factor g between the cavity mode and
all resonant nuclei were identical up to a phase factor which, however, could be transformed
away using collective states. As soon as we consider multiple layers, the assumption of uniform
coupling strengths is clearly no longer justified. Roughly, an intensity profile with sin2 shape can
be expected along the cavity for the guided modes. Different layers at different positions will
thus experience different field strengths and the coupling coefficient g to the cavity mode cannot
be considered as a constant anymore. Also, we want to emphasize that the same argument holds
if a very thick layer of resonant nuclei is present in the cavity. Here, the nuclei close to the
two layer boundaries might be exposed to strongly differing field strengths and the respective
coupling coefficients become spatially dependent.
For simplicity, we will discuss the case, in which we include only one guided mode in the cavity.

The general situation of multiple layers and multiple modes at the same time will be examined
in the next section. In principle, the equations can be formulated by noting that every atom n
couples to the cavity mode with a different coefficient g(n). However, we are not only interested
in the microscopic description, but compact expressions for our observables of interest, such as
the reflectance, are desirable. Therefore, we aim at repeating the analysis covering the linear
regime, i.e. the case where at most one nucleus is excited. To this end, different kinds of basis
transformations to introduce the collective states like in Chap. 3 have to be performed. Since
the full procedure of the adiabatic elimination and the subsequent simplification to the linear
regime is lengthy and does not provide new insights, the calculation is shortened and instead we
start to generalize Eqs. (3.49)–(3.52) to include the multiple resonant layers in the cavity. In the
following, we will mark an index related to a layer with curly brackets, whereas normal brackets
denote an atomic index.
In the analysis with only one resonant layer, we introduced the collective states |E(+)

µ 〉 which
describe the state in which the whole ensemble of nuclei shares one excitation on transition
µ. Here, we now generalize these states and denote a collectively excited state in layer l on
transition µ by |E{l}µ 〉. This is possible, because each nucleus in a given layer couples to the field
mode with the same strength and the basis transformations we performed in Sec. 3.2.2 can be
performed for the subset of nuclei as well. However, by doing so, we have to take into account
that Eqs. (3.49)–(3.52) include the number of nuclei Nµg which is the number of atoms initially
in the ground state of the given transition µ. It has been already discussed that due to the small
energy difference of the ground states, we can safely use Nµg = N/2 for all practical purposes,
where N is the total number of resonant nuclei in the cavity. Naturally, we have to write N{l}/2
here instead, where N{l} is the number of nuclei in the particular layer l.
Exemplarily, we show how the driving part of the Hamiltonian in adiabatic elimination and

linear response changes upon including multiple layers l. Instead of coupling the collective ground
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state |G〉 to the excited state |E(+)
µ 〉 with coupling coefficient g, each layer is now independently

coupled with its respective coupling constant. This is visualized in the equation below as

HΩ = Ω g
∑
µ

(
d̂
∗
µ ·1⊥ ·âin

)
cµ

√
N
2 |E

(+)
µ 〉〈G|+ h.c.

→ Ω
∑
l

g{l}
∑
µ

(
d̂
∗
µ ·1⊥ ·âin

)
cµ

√
N{l}

2 |E
{l}
µ 〉〈G|+ h.c. . (7.16)

Other parts of the Hamiltonian and the incoherent part of the master equation are modified
accordingly.
Now we want to analyze the case without magnetic hyperfine splitting in more detail. In this

setting, the ground and excited states of the nuclei are degenerate, respectively, and we choose
the quantization axis such that only the linear transitions µ = 2 and µ = 5 with Clebsch-Gordan
coefficient cµ =

√
2/3 are driven, see Tab. 3.1. Further, we won’t distinguish the two transitions

and transform our equations such that only the state |E{l}〉 = 1/
√

2 (|E{l}2 〉 + |E{l}5 〉), which
consists of the symmetric combination of the two linearly polarized transitions, is used. In the
relevant subspace, the Hamiltonian and the Lindblad operators then read

HΩ = Ω
√

2
3

∑
l

g{l}
√
N{l}|E{l}〉〈G|+ h.c. , (7.17)

HLS = δLS
2
3

∑
l,k

g{l}g{k}
∗√

N{l}N{k}|E{l}〉〈E{k}| , (7.18)

Lcav[ρ] = −ζS 2
3

∑
l,k

g{l}g{k}
∗√

N{l}N{k}L[ρ, |E{l}〉〈G|, |G〉〈E{k}|] , (7.19)

and for the reflection coefficient we find

R =
[(

2κR
κ+ i∆C

− 1
)
− i

ain

√
2κR

κ+ i∆C

√
2
3

∑
l

g{l}
∗√

N{l}〈E{l}|ρ|G〉

]
(â∗out ·âin) . (7.20)

In the next step we will further simplify this set of equations by introducing a new state which
resembles a collective excitation which is distributed among the different layers. We define the
collective layer state

|E{+}〉 = 1√
A

∑
l

g{l}
√
N{l}|E{l}〉 (7.21)

with the normalization factor

A =
∑
l

∣∣∣g{l}∣∣∣2N{l} . (7.22)

With this new collective state we obtain

HΩ = Ω
√

2
3

√
A |E{+}〉〈G|+ h.c. , (7.23)

HLS = δLS
2
3A |E

{+}〉〈E{+}| , (7.24)
Lcav[ρ] = −ζS 2

3A L[ρ, |E{+}〉〈G|, |G〉〈E{+}|] , (7.25)

R =
[(

2κR
κ+ i∆C

− 1
)
− i

ain

√
2κR

κ+ i∆C

√
2
3

√
A 〈E{+}|ρ|G〉

]
(â∗out ·âin) . (7.26)

From the last expression it can be seen that the nuclear part of the reflectance is determined
by the coherence 〈E{+}|ρ|G〉 only. Looking at the equations of motion in detail and keeping in
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mind that we work in the linear regime where 〈G|ρ|G〉 ≈ 1, it can be readily seen that the time
evolution of the coherence of interest is not coupled to any other density matrix elements and
the coherence can be obtained straightforwardly as in Sec. 3.3. At the same time, due to the
linearity of 〈E{+}|ρ|G〉 and the detuning ∆ in the upper expressions, it becomes clear that the
form of the steady state of the coherence cannot go beyond a Lorentzian line shape. An explicit
calculation shows that we obtain the reflection coefficient

R =
[
−1 + 2κR

κ+ i∆C
− i 2κR

(κ+ i∆C)2

2
3A

∆ + iγ2 + 2
3A(iζS − δLS)

]
(â∗out ·âin) , (7.27)

where the nuclear reflectance part indeed constitutes a Lorentz profile. Restricting ourselves to
only one layer, the coefficient A reduces to |g|2N and we recover the result which we already
derived in Sec. 3.3.
Even though we included multiple layers in our analysis, we see from Eq. (7.27) that it is not

possible to explain an EIT-like spectrum as reported in Ref. [56]. Rather, it is the combined
extension of multiple layers and multiple guided modes to the theory, which will be able to
explain the EIT phenomenon. This will be shown in the following sections.

7.3 Multiple layers and multiple modes
In the last two sections we extended the theoretical description to include multiple modes
and multiple resonant layers, respectively. In the results for the reflectance in linear response,
i.e. Eqs. (7.13) and (7.27), we observed that both extensions give rise to additions in the nu-
clear amplitude and to the collective effects, while, however, leaving the general structure of a
Lorentzian line shape unaffected.
A straightforward combination of the two results cannot be done. The reason for this is that

both extensions require modifications in the coupling coefficient g. In the reflectance obtained
from the two theories, different sums involving different combinations of the coupling constants
appeared. Thus, the two modifications to the Lorentzian line shape cannot be added indepen-
dently. Rather, it can be anticipated that the structure of the nuclear resonance will be more
complicated and fundamentally different from a Lorentzian profile.
We will elaborate on this conjecture by setting up the Hamiltonian and the incoherent Lindblad

term in the case of linear response and without magnetic hyperfine splitting in order to derive
the reflection coefficient from first principles. We start with Eqs. (7.17)–(7.20), which we derived
in the analysis of the multilayer extension. At this stage no basis transformation to introduce
collective states was applied yet. Such a transformation could potentially interfere with the
multimode extension, since for the definition of the collective layer state |E{+}〉 in Eq. (7.21) we
explicitly used the decisive coupling constant g. Hence, we first extend the multilayer equations
given in Eqs. (7.17)–(7.20) and modify them according to the multimode replacement rules from
Eqs. (7.9)–(7.12). Only after this step, a basis transformation can be applied. In the following
analysis we again mark a layer index in curly brackets {l} and indices of guided modes are
denoted by squared brackets [j]. This yields

HΩ =
∑
j

Ω[j]
√

2
3

∑
l

g[j]{l}
√
N{l}|E{l}〉〈G|+ h.c. , (7.28)

HLS =
∑
j

δ
[j]
LS

2
3

∑
l,k

g[j]{l}g[j]{k}∗
√
N{l}N{k}|E{l}〉〈E{k}| , (7.29)

Lcav[ρ] = −
∑
j

ζ
[j]
S

2
3

∑
l,k

g[j]{l}g[j]{k}∗
√
N{l}N{k}L[ρ, |E{l}〉〈G|, |G〉〈E{k}|] , (7.30)

R =
[
− 1 +

∑
j

2κ[j]
R

κ[j] + i∆[j]
C
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κ[j] + i∆[j]
C

√
2
3

∑
l

g[j]{l}∗
√
N{l}〈E{l}|ρ|G〉

]
(â∗out ·âin) . (7.31)

To simplify this set of equations, it would be desirable to perform a basis transformation which
converts the different states |E{l}〉 which describes an excitation in a single layer into a collective
layer state, similar to the transformation we performed in Eq. (7.21). For that purpose, one
would have to sum over the layers l, which then contains the coupling factor g[j]{l}. But since
this coupling coefficient now also depends on the guided mode index j, the basis transformation
must also involve the sum over the modes

∑
j . However, it can be easily seen from the equations

above that this sum would be different for every contribution to the equations of motion, since
the prefactors depending on j are mutually different. Hence, it is not possible to transform the
system into a form in which only one collectively excited state is needed. Rather, in a cavity
configuration with l resonant layers the equations of motion need to be solved for the l coupled
states |E{l}〉. This implies that the response of the nuclear ensemble will generally not follow a
Lorentzian line profile.
The different coupling coefficients g[j]{l} required for the extended theory need to be deter-

mined by fitting the analytical expressions to numerical data, obtained, e.g., from Parratt’s
formalism. To reduce the number of free parameters, however, it might be beneficial to derive
them independently. In the future, this could be achieved by performing an eigenmode analysis
for the given cavity geometry [72, 73, 252, 253].

7.3.1 Application to the EIT setting
Next, we will now consider a particular case, namely we will analyze a setting with two resonant
layers in the cavity, which is the situation from Ref. [56]. In this work it was shown that
the reflectance is an EIT spectrum. A detailed discussion on this cavity setting and the EIT
interpretation was already given in Sec. 2.1.4.

Theoretical analysis

With our quantum optical theory and its extensions to multiple layers and multiple modes, we
can now treat this scenario analytically as well. To this end, we restrict ourselves to two layers
l = 1, 2, but we still allow for an arbitrary number of cavity modes j. As before, we consider
the linear response case without magnetization and omit the trivial polarization dependence in
the following. We rewrite the effective Hamiltonian from Eqs. (7.28) and (7.29) as well as the
detuning part from Eq. (3.21) as

H =
(

Ω̃{1}|E{1}〉〈G|+ h.c.
)

+
(

Ω̃{2}|E{2}〉〈G|+ h.c.
)

+ (δ̃{1} −∆)|E{1}〉〈E{1}|+ (δ̃{2} −∆)|E{2}〉〈E{2}|

+
(
δ̃{1,2}|E{1}〉〈E{2}|+ h.c.

)
. (7.32)

Here, the first line covers the driving of the two layers, the second line accounts for the Lamb
shifts and the detuning and the last line describes a coherent coupling between the two layers.
Later, we will see that the last contribution can in parts be identified with the control field ΩC
from the EIT interpretation in Ref. [56]. The incoherent Lindblad terms in our description are
given by

L = −
(γ

2 + γ̃{1}
)
L[ρ, |E{1}〉〈G|, |G〉〈E{1}|]−

(γ
2 + γ̃{2}

)
L[ρ, |E{2}〉〈G|, |G〉〈E{2}|]

− γ̃{1,2}L[ρ, |E{1}〉〈G|, |G〉〈E{2}|] − γ̃{1,2}
∗
L[ρ, |E{2}〉〈G|, |G〉〈E{1}|] . (7.33)
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Here, the first line accounts for spontaneous emission and superradiance. The other two terms
describe an incoherent cross-damping term, which will contribute to the control field coupling in
the EIT interpretation as well. The coefficients in Eqs. (7.32) and (7.33) are given by

Ω̃{l} =
∑
j

Ω[j]
√

2
3g

[j]{l}
√
N{l} , (7.34)

δ̃{l} =
∑
j

δ
[j]
LS

2
3

∣∣∣g[j]{l}
∣∣∣2N{l} , (7.35)

δ̃{1,2} =
∑
j

δ
[j]
LS

2
3g

[j]{1}g[j]{2}∗
√
N{1}N{2} , (7.36)

γ̃{l} =
∑
j

ζ
[j]
S

2
3

∣∣∣g[j]{l}
∣∣∣2N{l} , (7.37)

γ̃{1,2} =
∑
j

ζ
[j]
S

2
3g

[j]{1}g[j]{2}∗
√
N{1}N{2} . (7.38)

Before we continue with our analysis, let us briefly look at the scaling of these coefficients. In
the EIT setting, one of the layers does not couple to the driven guided mode. In our quantum
optical language, we can represent this by setting the respective coupling constant to zero, for
example g[1]{1} = 0. At the same time, all other modes j 6= 1 are driven strongly off-resonantly,
such that ∆[j]

C becomes large for j 6= 1. In a simplified notation used to denote this scaling, we
find

Ω̃{1} , δ̃{1} , δ̃{1,2} ∼ 1
∆C

,

γ̃{1} , γ̃{1,2} ∼ 1
∆2
C

, (7.39)

whereas Ω̃{2}, δ̃{2} and γ̃{2} are not suppressed due to the mode detuning, as they still contain the
non-zero coupling coefficient g[1]{2} for the resonantly driven mode. From these scalings we can
already anticipate the EIT behavior in accordance with the interpretation discussed Sec. 2.1.4:
Only the nuclei in the second layer decay superradiantly. The collective decay of atoms in the
first layer and the cross-damping terms are suppressed quadratically in the detunings of the
additional cavity modes and can be neglected in a naive picture. However, other contributions
due to the presence of further cavity modes can have a substantial influence on the system, such
as the coherent driving δ̃{1,2} between the two layers, which can give rise to the coupling field
required for EIT.
The effective level scheme of the system defined above is visualized in Fig. 7.2. The couplings

between the collective ground and the two excited states are denoted by thick, solid and dashed
lines and indicate the scaling behavior in terms of the cavity detunings ∆C . Also from this, a
close similarity with the EIT level scheme shown in Fig. 2.3 can be observed.
Hence, from only considering the cavity detuning scalings we can expect that the cavity behaves

indeed like an EIT system. However, it is yet unclear how the additional driving terms and inter-
layer coupling terms affect the spectrum. In order to answer this question in full detail, we will
treat the problem more strictly by continuing with the solution of our theoretical description.
From Eqs. (7.32) and (7.33) we find that the equations of motion for the density matrix

elements

ρ1G = 〈E{1}|ρ|G〉 ,
ρ2G = 〈E{2}|ρ|G〉 ,
ρ12 = 〈E{1}|ρ|E{2}〉 , (7.40)
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Figure 7.2: Level scheme in the EIT scenario. Two collective excited states are coupled to the ground
state. Coherent couplings and Lamb shifts are marked in blue, superradiant spontaneous emission is
denoted by red single headed arrows, cross-damping between the excited states by red double headed
arrows. [Thick solid / solid / dashed] lines denote the cavity mode detuning scalings ∼ [1 / ∆−1

C / ∆−2
C ]

and mark the relative magnitude of the different couplings.

form a closed set of equations in the limit of linear response, i.e. where ρGG ≈ 1 and ρ11 = ρ22 ≈ 0.
The equations of motion read

d

dt
ρ1G =

[
i(∆− δ̃{1})− γ̃{1} − γ

2

]
ρ1G − iΩ̃{1} + iΩ̃{2}ρ12 − (iδ̃{1,2} + γ̃{1,2})ρ2G , (7.41)

d

dt
ρ2G =

[
i(∆− δ̃{2})− γ̃{2} − γ

2

]
ρ2G − iΩ̃{2} + iΩ̃{1}ρ∗12 − (iδ̃{1,2}

∗
+ γ̃{1,2}

∗
)ρ1G , (7.42)

d

dt
ρ12 = −

[
γ + γ̃{1} + γ̃{2} + i(δ̃{1} − δ̃{2})

]
ρ12 − iΩ̃{1}ρ∗2G + iΩ̃{1}

∗
ρ1G . (7.43)

The limit of weak driving Ω̃{l} additionally implies that no coherence between the excited states
is built up. Hence, we can set ρ12 = 0 and find the steady state solutions

ρ1G =
∆̃{2}Ω̃{1} −

(
−δ̃{1,2} + iγ̃{1,2}

)
Ω̃{2}

∆̃{1}∆̃{2} + Ω2
C

, (7.44)

ρ2G =
∆̃{1}Ω̃{2} −

(
−δ̃{1,2}∗ + iγ̃{1,2}

∗) Ω̃{1}

∆̃{1}∆̃{2} + Ω2
C

, (7.45)

where

∆̃{l} = ∆− δ̃{l} + i (γ2 + γ̃{l}) , (7.46)

Ω2
C =

(
γ̃{1,2} + iδ̃{1,2}

)(
γ̃{1,2}

∗
+ iδ̃{1,2}

∗)
. (7.47)

The same steady state solution is obtained if ρ12 is kept during the calculation and only the
linear part in Ω̃{1} and Ω̃{2} is considered in the full solution.
With the solutions for the coherences at hand, we can now turn to our main observable, the

complex reflection coefficient. According to Eq. (7.31), it is given by

R = −1 +
∑
j

2κ[j]
R

κ[j] + i∆[j]
C

+R{1}ρ1G +R{2}ρ2G , (7.48)

with

R{l} = − i

ain

∑
j

√
2κ[j]

R

κ[j] + i∆[j]
C

√
2
3g

[j]{l}∗
√
N{l} . (7.49)
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At this point it is instructive to discuss the scaling related to the cavity detuning ∆C once again.
As before, we assume that g[1]{1} = 0, i.e. the first layer does not couple to the cavity mode
j = 1 since it is located at an intensity node. In this case we find that R{1} ∼ 1/∆C , while R{2}
is not suppressed due to a cavity detuning, since the second layer can couple to the resonantly
driven mode as g[1]{2} 6= 0. Furthermore, from Eqs. (7.44) and (7.45) we find that ρ1G ∼ 1/∆C ,
whereas the ρ2G is not suppressed in this fashion. Therefore, for a qualitative understanding of
the reflectance, it is well justified to drop the quadratically suppressed contribution R{1}ρ1G and
only consider the signal which originates from the second layer.
Keeping only terms up to linear order in 1/∆C in the numerator of the reflectance and ne-

glecting the tiny Lamb shift and superradiance of the nuclei in the first layer, we obtain

R =− 1 +
∑
j

2κ[j]
R

κ[j] + i∆[j]
C

+R{2} Ω̃2
∆ + i γ2(

∆ + i γ2
) (

∆− δ̃2 + i (γ2 + γ̃2)
)

+ Ω2
C

. (7.50)

The nuclear contribution to the reflectance is revealed in the second line. Its spectral shape
is essentially that of a system featuring EIT. Hence, we recover the same result as in Ref. [56]
which was described in Sec. 2.1.4: In a cavity with two resonant layers it is possible to realize
the phenomenon of electromagnetically induced transparency.

Comparison to the semi-classical analysis

In Ref. [56], a semi-classical theory based on transfer matrix techniques was used to derive an
expression for the nuclear reflectance and the result was given in Eq. (2.26). Comparing it with
the quantum optical expression given in Eq. (7.50), we notice the agreement of the shapes of the
two formulas. However, it is still to be verified if the scaling with the number of nuclei in the two
layers agrees as well. In the semi-classical theory it was shown that the amplitude of the reflection
coefficient and the superradiance of the nuclei in the second layer scale linear with the thickness
of the second layer d2, furthermore the control field ΩC was shown to be proportional to

√
d1d2.

In our quantum optical theory we did not consider the thicknesses d1, d2 of the respective layers,
but the total number of nuclei N{1}, N{2}. However, they differ only by a constant factor and
thus it is sufficient to show that the scaling relations also hold for the number of nuclei. From
Eqs. (7.34)–(7.38) and (7.49) it can indeed be seen that the relations are correctly reproduced
by our theory.
This is an important result, since it is a strong hint that the two independently derived results

do not coincide by chance, but also agree on a more fundamental level. Hence, the quantum
description presented here can now be employed to shine light on the EIT scenario from a
completely different perspective as in the semi-classical theory.
In the nuclear reflectance calculated in Eq. (7.50), the coupling Rabi frequency occurs as Ω2

C

in the denominator, whereas in real EIT settings it appears as a positive real-valued variable
|ΩC |2. Taking a closer look at our definition of the coupling Rabi frequency in Eq. (7.47), we
note that in our case Ω2

C can generally be complex. Also in the semi-classical theory the complex
field amplitudes and transfer matrix elements allow for complex values. The results of Ref. [56],
though, seem to imply that the imaginary component is very small and an EIT situation is well
realized. However, from the theoretical analysis of the semi-classical models, this fact could
not be understood and the influence of the imaginary component was unclear [107]. With our
quantum theory, though, it is now possible to examine the complex nature of the coupling in
more detail. From Eq. (7.47) we know that it is not only given by the coherent coupling δ̃{1,2}
between the two layers as written in the Hamiltonian in Eq. (7.32), but is also affected by the
incoherent cross-damping term γ̃{1,2} between the two layers. In the discussion on the scalings we
have already seen that in contrast to the coherent contribution, the incoherent term is suppressed
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quadratically with the detuning of the cavity modes which are not driven resonantly. Thus, the
incoherent part plays only a minor role and the real component of the coupling frequency ΩC
dominates. With this understanding, it might be possible in the future to specifically tailor
systems in which a selected aspect, such as coherent versus incoherent couplings, dominates.
Furthermore, the microscopic ansatz of our quantum optical theory enables one to interpret

the origin of the coupling between the layers. While in Ref. [56] it was shown that the EIT
control field arises from radiative coupling between the two resonant layers, it can now be pinned
down from Eqs. (7.36), (7.38) and (7.47) to

Ω2
C =

( 2
3
)2
N{1}N{2}

∑
j

g[j]{1}g[j]{2}∗

κ[j] + i∆[j]
C

∑
j

g[j]{1}∗g[j]{2}

κ[j] + i∆[j]
C

 . (7.51)

Since we assumed that the first layer does not couple to the first guided mode, i.e. g[1]{1} = 0,
we observe that the coupling field is only mediated via the remaining guided modes j 6= 1 in
the cavity. This way, it becomes now also clear why the EIT phenomenon was not obtained in
Sec. 7.2, where only one guided mode was included in the theoretical analysis. The fact that
the additional cavity modes can be of importance is supported by the following experimental
observation: If the cavity is driven at the resonance angle θ[j]

0 of one guided mode j, the reflected
signal is not only observed at the emission angle π−θ[j]

0 , but also small bumps seem to occur at the
angles π− θ[k]

0 , corresponding to the respective resonance angles of the other modes k 6= j [254].

Numerical analysis

Let us now see how well our analytical expression for the reflectance derived above performs in
practice. In particular, we aim to describe the spectrum of the EIT cavity defined in Tab. 7.1
with our quantum optical model. Moreover, we include a second cavity into the analysis: While
the EIT cavity has its resonant layers in a node and anti-node of the field of the resonantly
driven mode, respectively, we also consider a cavity in which the situation is reversed. Namely,
the first resonant layer is located at a field anti-node and the second ensemble of nuclei at the
field node. These two cavity layouts correspond to the cases discussed in Ref. [56], where it was
shown that the first cavity exhibits the EIT phenomenon, while for the second system the control
coupling ΩC vanishes and only a Lorentz-like spectrum is measured. The layout parameters for
this non-EIT cavity employed in this analysis are given in Tab. 7.3.
In order to determine the free parameters related to the cavities defined in Tabs. 7.1 and 7.3

for the quantum optical model in a consistent way, we employed the method discussed below.
First, we restricted ourselves to the first five guided modes in the theory and did not take into
account the resonant nuclei yet. For each of these modes the angles θ[j]

0 , at which the modes
are driven resonantly, and the decay and coupling rates κ[j] and κ

[j]
R have to be determined.

Table 7.3: Cavity parameters for the two-layer cavity in anti-node-node configuration, which does not
show an EIT-like spectrum [56] (top to bottom).

Material Thickness [nm]
Pt 3
C 3.5

57Fe 3
C 7.5

57Fe 3
C 27
Pt 10
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Table 7.4: Cavity parameters of the non-EIT cavity (Tab. 7.3) for the quantum optical model.

Mode j θ
[j]
0 [mrad] κ[j] [γ] κ

[j]
R [γ]

1 2.44583 83492 2365
2 3.04302 326053 68417
3 3.53440 483792 286075
4 4.32412 1008149 464919
5 4.97965 2374218 967166

Table 7.5: Coupling parameters of the EIT cavity defined in Tab. 7.1 (left columns) and of the non-EIT
cavity defined in Tab. 7.3 (right columns) for the quantum optical model.

Mode j g
[j]{1}
EIT

√
N{1} [γ] g

[j]{2}
EIT

√
N{2} [γ] g

[j]{1}
non-EIT

√
N{1} [γ] g

[j]{2}
non-EIT

√
N{2} [γ]

1 1884 + 140 i −1391 + 2737 i 833 + 490 i 86 + 445 i
2 3950− 4516 i −304 + 2698 i 302 + 4130 i −195 + 5213 i
3 −1562− 429 i 4883− 1840 i 964 + 4919 i 1326 + 324 i
4 2061 + 2629 i 221 + 2186 i 1961 + 4465 i 3580− 2994 i
5 −1376 + 5991 i 599− 5777 i 5246 + 1545 i 100− 3733 i

The parameters can be found by fitting Eq. (7.14) to the angular dependent reflection curve as
it was already done in Sec. 7.1. The cavity parameters for the EIT cavity were already given
in Tab. 7.2, for the non-EIT cavity we found the values given in Tab. 7.4 and the asymmetry
parameter r ≈ −0.969764 + 0.37942 i ≈ 1.041 ei(π−0.373).
Having the cavity parameters at hand, the complex coupling coefficients g[j]{l} between the

jth guided mode and the layer l of resonant nuclei have to be determined. Since we expect
our theory to perform well in the case with only one resonant layer where only a Lorentzian
line shape is expected for the nuclear contribution to the reflectance, we included the nuclear
resonances of only one iron layer at a time. To account for the asymmetry and the envelope of
the reflection curve, we extended the reflection coefficient given in Eq. (7.13) by the modifications
from Eq. (7.14). From a subsequent fit to the numerical data calculated with Parratt’s formalism,
the coupling coefficients to the five guided modes could be determined for each resonant layer
individually. In this procedure, the fit ranges have been restricted to 2 ≤ θ/mrad ≤ 5 and
−40 ≤ ∆/γ ≤ 40. This way, we obtained the coupling parameters for the EIT cavity as well
as for the non-EIT cavity, given in Tab. 7.5. Note that the couplings between the layers in the
node and the 3rd guided mode, characterized by the coefficients g[3]{1}

EIT and g
[3]{2}
non-EIT, do not

completely vanish due to the finite thickness of the layers and a potential misplacement in the
cavity. However, they are much smaller than the coupling coefficients of the respective layers in
the cavity field anti-node.
Now we are able to benchmark our analytical result for the case of two resonant layers, which

was calculated in Eqs. (7.44)–(7.49). A comparison with the frequency- and angular-dependent
reflectance for the EIT and the non-EIT cavity is shown in Fig. 7.3(a) and Fig. 7.3(b), respec-
tively. Clearly, the agreement between the two different models is very good. We stress that this
is not an obvious result, since the parameters for the quantum optical model were determined
independently and not obtained from a simultaneous fit to the numerical data.
The deviations at small incidence angles θ are probably caused by non-unique parameters in

the fits. For instance, it cannot be distinguished if a mode is over- or undercritically coupled
by considering the absolute value of the reflectance only, see Sec. 3.3.1. For the result with
included resonant nuclei, though, this can give rise to differences. Another range in the figures
where deviations can be found is the domain around ∆ ≈ 0. Here, the exact numerical solution
obtained from Parratt’s formalism shows an additional structure. This can be understood from

110



7.3 Multiple layers and multiple modes

-40 -20 0 20 40
2

3

4

5

Detuning ∆ [γ]

In
ci
d
en
ce

a
n
g
le

θ
[m

ra
d
]

Quantum optical theory

-20 0 20 40
Detuning ∆ [γ]

Parratt formalism

0

0.5

1

(a) EIT cavity

-40 -20 0 20 40
2

3

4

5

Detuning ∆ [γ]

In
ci
d
en
ce

a
n
g
le

θ
[m

ra
d
]

Quantum optical theory

-20 0 20 40
Detuning ∆ [γ]

Parratt formalism

0

0.5

1

(b) Non-EIT cavity

Figure 7.3: The reflectance in the EIT scenario is shown as a function of the detuning ∆ and the
incidence angle θ. The results derived with the extended quantum optical model agree very well with
the predictions from Parratt’s formalism. The dashed line at θ ≈ 3.5 mrad marks the angle at which
the 3rd cavity minimum is expected. A cut along this line corresponds to the spectrum measured in
Ref. [56] and is shown in Fig. 7.4.

the following considerations. If the x-rays are not resonant to the transition in the 57Fe nuclei,
they will primarily be damped due to the electronic absorption in the cavity, before they can
reach the lower resonant layer. If, however, their frequency is close to resonance, they will
additionally be absorbed by the nuclei in the upper layer. Consequently, the field seen by the
nuclei in the second layer is strongly modified compared to the off-resonant case, which would
result in a smaller value for the coupling coefficient g, as its approximate sin2-shape is distorted.
This effect, however, is not captured in our model description. Rather, it is assumed that the
coupling coefficients are constants, whereas in reality they might depend on the frequency due
to prior absorption of the radiation. An approach for future studies could thus be to comprise
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Figure 7.4: Spectra of the EIT (a) and the non-EIT (b) cavity at incidence angle θ ≈ 3.5 mrad, at which
the third guided mode is excited. The quantum optical description is in accordance with the exact result
derived with the Parratt formalism. In the case of the EIT cavity, the dip in the center of the spectrum
is well reproduced.

this effect self-consistently into the quantum optical theory for an even better agreement with
the numerical data.
Let us now turn to the most interesting part, which is the spectrum measured at the incidence

angle corresponding to the third guided mode. This corresponds to the situation from Ref. [56].
The spectra for both the EIT and the non-EIT cavity defined in Tab. 7.1 and Tab. 7.3, respec-
tively, are shown in Fig. 7.4. Again, we observe a very good agreement of our theory with the
numerical data obtained with Parratt’s formalism, which could already be anticipated from the
accordance in Fig. 7.3. But in any case, the fact that the EIT as well as the non-EIT spectrum
is well reproduced, supports the validity of our theoretical description. We note that the square
of the coupling field Ω2

C does not vanish in the non-EIT case. Rather, its imaginary component
dominates and it is the interplay with the other contributions to the reflection coefficient which
results in the Lorentzian spectrum.
In summary, this shows that our quantum optical theory in the case of including both multiple

layers and multiple guided modes is capable of describing the EIT experiment in Ref. [56]. Similar
to the situations in the previous chapters, it could be used to provide a deeper understanding
from a microscopic and quantum mechanical point of view. Most importantly, the question on
the nature of the radiative coupling between the two resonant layers in the EIT cavity could be
answered.
Finally, we emphasize that the extended theory description developed in this chapter is not

restricted to a vanishing magnetization in the resonant layers. Rather, it is possible to include all
Zeeman sublevels properly. This way, both the EIT phenomenon discussed above and the effect
of spontaneously generated coherences discussed in Chap. 5 will emerge at the same time, giving
rise to more elaborate reflection spectra. Also, from a theoretical point of view, the magnetization
direction of the different layers do not necessarily have to agree. Therefore, it can be expected
that a vast set of quantum optical level schemes with advanced features can be realized.
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Chapter 8

Exploring The Non-Linear Regime
This chapter is devoted to the solution of the quantum optical model in cases where the external
driving field is not necessarily weak. This is of particular interest if experiments are carried out
at novel radiation sources. Current experiments on quantum optics in thin-film cavities, such as
the ones reported in chapters 4, 5 and 6, are mostly performed at 3rd generation synchrotrons.
Despite the high beam brilliance achieved with these light sources, the average photon number
per pulse in the range of the nuclear resonance is well below one [7, 52, 106, 107]. This way,
a maximum of only a single photon interacts with the combined system of cavity and nuclei at
a time, thereby realizing the weak probe limit. This has been exploited in Chap. 3, where the
quantum optical description could be significantly simplified for settings in the linear regime.
If, however, future experiments are performed using light sources with an even higher bril-

liance, the phenomena in the light-matter interaction are expected to go well beyond the linear
regime. Examples of such intense sources are x-ray free-electron lasers [11], such as LCLS [12],
SACLA [13], or the upcoming European XFEL [14]. With a possible self-seeding upgrade
scheme [19], the latter could deliver several 103 photons per pulse in the tiny nuclear resonance
bandwidth of 57Fe [16]. About the same fluence could as well be generated by the proposed
XFELO [15, 17, 18].
Hence, with these prospects in mind, it is worth to study the non-linear domain of the light-

matter interaction. We emphasize, that the existing semi-classical theories discussed in Chap. 2
are not capable of describing this regime. The quantum theory developed in Chap. 3, however,
provides a direct avenue to explore the non-linear effects, which emerge in the cavity. Addition-
ally, other quantum approaches beyond the single-excitation regime could elucidate the non-linear
setting from a different point of view [255].
In this chapter we will first review and generalize the definition of our main observable, the

reflectance. Next, an approximation of our quantum optical description is mapped to a Dicke
model, for which the stationary state can then be solved analytically for arbitrary field strengths
and numbers of resonant nuclei in the cavity. Finally, we will numerically explore the more
realistic scenario, in which a short, but intense x-ray pulse excites the system. As main results,
we find that saturation effects of the nuclei excitation modify the reflectance and that the strength
of incident pulse can be used to control the profile of the emission spectrum, reminiscent of the
Fano line shape control observed in Chap. 4.

8.1 Generalization of the observables
The main observable, which is discussed in this work, is the reflectance |R|2, since it is easily
accessible in an experiment. In our theory from Chap. 3 it is calculated as follows: The internal
cavity mode operator a is related to the external quantities ain and aout, describing the incident
and the reflected field. The operators are connected via the input-output relation (c.f. Eq. (3.12)),
which reads

aout = −ain +
√

2κR a . (8.1)
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In a next step, the reflection coefficient was calculated as R = 〈aout〉/ain, and the reflectance as
its modulus squared

|R|2 = |〈aout〉|
2

|ain|2
. (8.2)

However, this expression is implicitly based on the assumption of the weak driving regime, as we
will show in the following.
In a real-world scenario, a detector measures “single clicks”, created by the absorption of

light quanta. As shown, e.g., in Ref. [145], the counting probability will be proportional to the
expectation value 〈a†outaout〉. Properly normalized, we obtain the exact reflectance as

|Ra†a|2 = 〈a
†
outaout〉
|ain|2

. (8.3)

Clearly, this result differs from the reflectance in Eq. (8.2) we used so far. Hence, it is a vital
task to discuss the validity and range of applicability of the definition which was used up to now.
In a first approach, we write the output operator

aout = 〈aout〉+ δaout (8.4)

as the sum of its expectation value and an fluctuation operator, for which 〈δaout〉 = 0 by defini-
tion. Inserting this ansatz into Eqs. (8.2) and (8.3) yields

|Ra†a|2 = |R|2 ⇔ 〈δa†outδaout〉 = 0 . (8.5)

From this, we see that the two definitions of the reflectance coincide, if the fluctuation contribu-
tion vanishes. This condition is unhandily, though, as it is difficult relate it to the parameters
which characterize the system. Thus, we will employ a second approach below.
We assume that the cavity modes can been adiabatically eliminated as shown in Sec. 3.2.1.

We know that in this case aout becomes the sum of a constant cavity contribution and a nuclear
part, formed by the lowering operators S−. For simplicity, we specialize to the case of a single
nucleus and symbolically write for the cavity output operator

aout ∼ const + S− . (8.6)

From this, we find the condition

|Ra†a|2 = |R|2 ⇔ 〈S+S−〉 = 〈S+〉〈S−〉 , (8.7)

which allows to transfer the interpretation to statements on the nuclei. Assuming a state vector
|Ψ〉 = cg|g〉+ ce|e〉 for the single nucleus system, one easily finds

〈S+S−〉
〈S+〉〈S−〉

= 1
1− |ce|2

, (8.8)

which approaches unity in the case where the nucleus is only weakly probed and hardly excited.
As we have discussed before, this situation is fulfilled in current experiments and also allowed
us to calculate the reflectance in linear response without the need to solve the complete N -body
system formed by the nuclei in the cavity. As soon as a stronger probe intensity is employed, a
significant amount of nuclei can be excited and the reflectance needs to be calculated with the
expression given in Eq. (8.3) instead.
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8.2 Steady state solution in the superradiant limit
The problem of N nuclei in the cavity is associated with a large Hilbert space. If, e.g., both
ground states and all four excited states of the 57Fe nucleus are considered, its dimension scales
as 6N . Thus, for a large number of atoms both a numerical and an analytical solution of the
quantum optical model is rendered complicated. Here, we consider a simple, but important
setting of the model. We will omit a possible magnetization in the 57Fe layer, such that every
nucleus can be described by a two-level system. Additionally, we will assume strong superradiance
on the transitions, such that the single atom spontaneous emission rate γ can be neglected. In
this case, the system can be mapped to a Dicke-type model, which then can be solved exactly
on an analytical level. We emphasize that neglecting the spontaneous emission rate is a model
assumption and its validity in a realistic setting is to be determined.

8.2.1 Mapping to the Dicke model
As mentioned above, we will restrict ourselves to the non-magnetized situation, i.e. each 57Fe
nucleus can be described by single ground state |g〉 and excited state |e〉. In the Chap. 3, we
defined all parameters, such as coupling constants, for the nuclei with six hyperfine levels. Addi-
tionally, we considered two cavity modes to accommodate for the two perpendicular polarization
directions. Here, we can simplify the calculation to only a single cavity mode a, as we can freely
choose its polarization parallel to the incident beam. The second perpendicular mode is never
coupled to the physical system of interest and can be omitted in the following analysis. Further,
attention needs to be payed to the coupling constant between the cavity mode and the nuclear
transition. We write the coupling Hamiltonian between the nuclei and the mode

HC =
N∑
n=1

g̃
(
S

(n)
+ a+ a†S

(n)
−

)
, (8.9)

with the nuclear raising [lowering] operator for the nth atom S
(n)
+ [S(n)

− ] and g̃ = g
√

2
3 . This

ensures that the Clebsch-Gordan coefficient of the linearly polarized transition in 57Fe is properly
taken into account.
With these modifications to the general theory in Chap. 3, the cavity mode can again be

adiabatically eliminated, and with the same notation as in Sec. 3.2.1 we obtain the effective
Hamiltonian and the incoherent Lindblad terms

H =−∆
∑
n

S
(n)
+ S

(n)
− + Ωg̃

∑
n

(
S

(n)
+ + S

(n)
−

)
+ δLSg̃

2
∑
n,m

S
(n)
+ S

(m)
− , (8.10)

L[ρ] = −γ2
∑
n

L[ρ, S(n)
+ , S

(n)
− ]− ζS g̃2

∑
n,m

L[ρ, S(n)
+ , S

(m)
− ] . (8.11)

Specializing to the weak probe regime, we reobtain the reflection coefficient from the analysis of
the general model. Hence, Eqs. (8.10) and (8.11) form the N -body model for two-level nuclei in
consistent notation with the previous theory. Note that in this section we are interested in the
steady state of the observables. Therefore, the adiabatic elimination on the level of operators
will not affect the final results.
Next, we will map the upper equations to a Dicke model [256]. To this end we introduce the

collective operators

J+ =
∑
n

S
(n)
+ , (8.12)

J− = J†+ =
∑
n

S
(n)
− , (8.13)
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Figure 8.1: Level scheme of the system with N atoms in the Dicke basis. The symmetric states |j〉 on
the left, resembling collective states with j excitations, are mutually coupled by the coherent driving
in the Hamiltonian (blue arrows) and the superradiant decay (thick red arrows). The much weaker
process of spontaneous emission (thin red arrows) can additionally couple the symmetric Dicke states to
non-symmetric states. For the analytic solution in this chapter, this coupling is neglected such that all
dynamics takes place only in the symmetric subspace.

Jx = 1
2 (J+ + J−) = 1

2

∑
n

(
S

(n)
+ + S

(n)
−

)
, (8.14)

Jz = 1
2 [J+, J−] = 1

2

∑
n

(
S

(n)
+ S

(n)
− − S

(n)
− S

(n)
+

)
. (8.15)

In order to rewrite the equations of motion in terms of these new operators, we first add a
constant to the Hamiltonian. This corresponds to an energy offset only and hence does not
affect any physical predictions. We change

H → H + ∆
2 1 = H + ∆

2

∑
n

(
S

(n)
+ S

(n)
− + S

(n)
− S

(n)
+

)
, (8.16)

and attribute the new component to the detuning part of the Hamiltonian, such that

H∆ = −∆
∑
n

S
(n)
+ S

(n)
− + ∆

2

∑
n

(
S

(n)
+ S

(n)
− + S

(n)
− S

(n)
+

)
,

= −∆
2

∑
n

(
S

(n)
+ S

(n)
− − S

(n)
− S

(n)
+

)
= −∆Jz . (8.17)

The full Hamiltonian and the Lindblad terms from Eqs. (8.10) and (8.11) now become

H = −∆ · Jz + 2Ωg̃ · Jx + ∆LS/N · J+J− , (8.18)

L[ρ] = −γ2
∑
n

L[ρ, S(n)
+ , S

(n)
− ]− γS

2NL[ρ, J+, J−] , (8.19)

with the collective Lamb shift and the superradiant decay rate

∆LS = δLSg̃
2N , (8.20)

γS = 2ζS g̃2N . (8.21)

Now we will perform the key approximation of this section and omit the incoherent decay
due to spontaneous emission by neglecting the first Lindblad term. In the linear regime we
have seen that the system features a superradiantly enhanced decay rate, which is dominating
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8.2 Steady state solution in the superradiant limit

over the natural line width γ. In particular, this becomes visible in the measurements of the
full transition width shown in Fig. 4.3. Dropping the spontaneous emission terms, Eqs. (8.18)
and (8.19) can be written solely in terms of the collective operators introduced above. These
operators are closely connected to the angular momentum operators and fulfill the canonical
commutation relations [257]. The quantity

〈J2〉 = 〈J+J−〉+ 〈J2
z 〉 − 〈Jz〉 (8.22)

is conserved which can easily be seen by calculating Tr[ρ̇J2] and using the cyclicity of the trace,
and equals j(j + 1) with 2j = N [258, 259]. Thus, the system obeys a symmetry. In particular,
the symmetric excitation states, also known as Dicke states [256], form a closed set of equations,
which is also visualized in Fig. 8.1. This can be exploited to solve the system with less effort,
since the numbers of states in the Hilbert space can be reduced from 2N to only N + 1. But
before we continue, we comment on a simplification we have implicitly made in our calculation
so far. In Eq. (8.9), the local phase exp (iφ(n)) for the nth nucleus was neglected, in contrast
to the original model. However, this is not a problem since the phases can be absorbed in the
definition of the collective operators J± [67, 136]. The commutation relations and therefore also
the following arguments are unaffected by this.

Solution of the Dicke model

The general solution of the upper set of equations was calculated in Ref. [259]. The steady state
density matrix reads

ρ(SS) = 1
A

N∑
n,m=0

amnJ
m
− J

n
+ , (8.23)

amn = (−iṽ)−m (iṽ∗)−n
(1 + iε̃)m (1− iε̃∗)n

m!n! , (8.24)

with the parameters

ṽ =
√

2κR ain
g̃

, (8.25)

ε̃ = −∆ (κ+ i∆C)
g̃2 = iN∆

∆LS − iγS2
, (8.26)

the Pochhammer symbol (a)n = Γ(a+ n)/Γ(a), and A being the proper normalization factor

A =
N∑
n=0

ann Tr
(
Jn−J

n
+
)

=
N∑
n=0
|ṽ|−2n|(1 + iε̃)n|2(n!)−2 Tr

(
Jn−J

n
+
)
. (8.27)

In Sec. 3.3, we found that in the linear regime the results are invariant under a rescaling of

κ→ κ · ξ ,
κR → κR · ξ ,
∆C → ∆C · ξ ,

g̃ → g̃ ·
√
ξ . (8.28)

It can be easily seen that the stationary density matrix above has the same property. Note that
ain does not take part in this rescaling and thus is a fixed parameter. The quantity |ain|2 has
the unit frequency and corresponds to the rate of photons impinging on the cavity.
Let us now introduce a set of basis states. As mentioned before, the equations of motion form

a closed system within the symmetric states. We denote the collective ground state, in which no
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nucleus is excited, by |0〉. The symmetric state |j〉 with j excitations can be created by j-times
applying the operator J+ to the ground state. From angular momentum algebra we find

J+|j〉 =
√

(j + 1)(N − j) |j + 1〉 , (8.29)

J−|j〉 =
√
j(N − j + 1) |j − 1〉 , (8.30)

Jn+|j〉 =

j+n−1∏
k=j

√
(k + 1)(N − k)

 |j + n〉 , (8.31)

Jn−|j〉 =

 j∏
k=j−n+1

√
k(N − k + 1)

 |j − n〉 , (8.32)

and we obtain the following relations

Tr
(
Jm− J

n
+
)

= 0 for n 6= m , (8.33)

Tr
(
Jn−J

n
+
)

=
N∑
j=0
〈j|Jn−Jn+|j〉 =

N∑
j=0
‖Jn+|j〉‖2 =

N∑
j=0

j+n−1∏
k=j

(k + 1)(N − k)

= Tr
(
Jn+J

n
−
)

=
N∑
j=0

j∏
k=j−n+1

k(N − k + 1)

= (n!)2(1 + n+N)!
(1 + 2n)!(N − n)! = (n!)2

(
N + n+ 1
N − n

)
. (8.34)

8.2.2 Observables
With the solution for the stationary density matrix at hand, we are now able to turn to particular
observables and calculate their expressions.

Reflectance

In Sec. 8.1 it was shown that going beyond the linear limit requires a different definition of the
reflectance. Here, we consider both the linear reflectance |R|2 as well as the general expression
|Ra†a|2. We begin by rewriting the observable from Eq. (3.29) in Sec. 3.2.1 in terms of the
collective operators

aout
ain

=
(
−1 + 2κR

κ+ i∆C

)
+
(
−i
√

2κR
κ+ i∆C

g̃

ain

)
J− =: RC +BNJ− , (8.35)

a†out
a∗in

= R∗C +B∗NJ+ , (8.36)

|R|2 =
∣∣∣∣ 〈aout〉ain

∣∣∣∣2 =
∣∣RC +BN 〈J−〉

∣∣2 , (8.37)

|Ra†a|2 = 〈a
†
outaout〉
|ain|2

= |RC |2 + 2 Re
(
R∗CBN 〈J−〉

)
+ |BN |2〈J+J−〉 . (8.38)

We find that the expectation values 〈J−〉 and 〈J+J−〉 have to be evaluated. Using Eqs. (8.23)–
(8.27) yields

〈J−〉 = Tr(J−ρ(SS)) = 1
A

N∑
n=1

an−1,n Tr(Jn−Jn+) , (8.39)
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〈J+J−〉 = Tr(J−ρ(SS)J+) = 1
A

N∑
n=1

an−1,n−1 Tr(Jn−Jn+) . (8.40)

Nuclear excitation

A second observable of interest is the average number of excited nuclei in the cavity. This quantity
might be experimentally accessible via measurements of the conversion electrons [191]. Here, it
is of interest from a fundamental point of view as it can help to provide a proper understanding
of the observed effects. The number of excited nuclei can be expressed in terms of the angular
momentum operator Jz as

N̂e =
N∑
n=1

S
(n)
+ S

(n)
− = N

2 1 + Jz . (8.41)

With the knowledge of the action of Jz on the system, the observable can in principle be evaluated
employing Eqs. (8.23)–(8.27). However, we use a different method here. For this we use the basis
states |j〉 introduced above. By definition, N̂e|j〉 = j|j〉 as the state contains j (symmetrized)
excited nuclei, and we find

〈N̂e〉 = Tr(ρ(SS)N̂e) = 1
A

N∑
n=0

ann Tr
(
Jn−J

n
+N̂e

)
= 1
A

N∑
n=0

ann

N∑
j=0
〈j|Jn−Jn+N̂e|j〉

= 1
A

N∑
n=0

ann

N∑
j=0

j‖Jn+|j〉‖2 = 1
A

N∑
n=0

ann

N∑
j=1

(j + n)!(N − j)!
(j − 1)!(N − j − n)!

= 1
A

N∑
n=0

ann(n+ 1)!n!
(
N + n+ 1
N − n− 1

)
= 1
A

N∑
n=0

ann Tr
(
Jn−J

n
+
) N − n

2

= N

2 −
1

2A

N∑
n=0

annnTr
(
Jn−J

n
+
)
. (8.42)

Here, the second part in the last equation corresponds to 〈Jz〉, which is identical to the result
obtained in Ref. [259].

Photons in the cavity

Even though the photonic mode a in the cavity was adiabatically eliminated, it is possible to
recover connected observables. From the elimination procedure, we know that (c.f. Eq. (3.28))

a = 1
κ+ i∆C

(√
2κR ain − ig̃J−

)
, (8.43)

and thus the mean photon number in the cavity becomes

NPh = 〈a†a〉 = 1
κ2 + ∆2

C

(
2κR|ain|2 − 2 Re

(
ig̃
√

2κRa∗in〈J−〉
)

+ |g̃|2〈J+J−〉
)
. (8.44)

Note that this observable changes upon a rescaling as defined in Eq. (8.28). It is therefore
necessary to perform all calculations with the correct scaling factor ξ.

Photon correlation function

The input-output formalism yields operators aout for the reflected light, even though if the in-
cident field is purely classical. The reason for this is that the light interacts with a quantized
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system and its quantum nature can be devolved to the reflected radiation. The operator for-
mulation makes it possible to calculate advanced quantum mechanical observables, such as the
photon correlation function g(2) given in Eq. (3.16). A value of unity for the correlation func-
tion corresponds to Poisson photon statistics, g(2) > 1 or g(2) < 1 to super- and sub-Poissonian
statistics [1, 145]. The latter indicates a non-classical state of the electromagnetic field [146].
Note that the correlation function could be extended to the probability of two photons arriving
with a certain time difference, characterizing bunching and antibunching of the photons.
In our equations, the external driving field is treated as a classical plane wave, which obeys

Poissonian statistics. Thus, any deviation from g(2) = 1 can be traced back to an interaction
with the nuclei in the cavity.
Using Eq. (8.35), we find for the photon correlation function

g(2) = 〈(R
∗
C +B∗NJ+)(R∗C +B∗NJ+)(RC +BNJ−)(RC +BNJ−)〉

〈(R∗C +B∗NJ+)(RC +BNJ−)〉2

=
|RC |4 + |BN |4〈J2

+J
2
−〉+ 4|RCBN |2〈J+J−〉
|Ra†a|4

+
2 Re

(
R∗C

2B2
N 〈J2

−〉+ 2|RC |2R∗CBN 〈J−〉+ 2|BN |2R∗CBN 〈J+J
2
−〉
)

|Ra†a|4
. (8.45)

Thus, the expectation values 〈J2
+J

2
−〉, 〈J+J

2
−〉, 〈J2

−〉 are required in addition. Similar as the
expectation values in Eqs. (8.39) and (8.40), the expressions can be calculated from the density
matrix given in Eqs. (8.23)–(8.27).

8.2.3 Linear limit of observables
Before we turn to the observables in the case of a strong external driving field, we take a step back
and consider the limit of a weak input pulse again. Up to the neglected spontaneous emission rate
γ, the results from the non-linear solution should agree to the expressions obtained previously.
For a proper comparison, the scaling in the sums, e.g. in Eq. (8.39) and Eq. (8.40) need to be

understood. For simplicity, let us consider the case ∆ = 0, i.e. ε̃ = 0. In this case, the coefficient
ann reduces to |ṽ|−2n. Thus, a weak probe pulse, corresponding to |ṽ|2 � 1, will favor terms
with a large summation index n. Additionally, the summands ann are weighted with Tr(Jm− Jn+).
From Eq. (8.34) can be deduced, that this further increases the significance of terms with large
n. Therefore, in the weak probe limit, the expectation values from Eqs. (8.39) and (8.40) can be
reduced to

〈J−〉 ≈
aN−1,N Tr(JN− JN+ )
aN,N Tr(JN− JN+ )

= aN−1,N

aN,N
= −iṽN
N + iε̃

, (8.46)

〈J+J−〉 ≈
aN−1,N−1

aN,N
= N2|ṽ|2

|N + iε̃|2
. (8.47)

Indeed, if we use these expressions for the reflectance defined in Eqs. (8.37) and (8.38), we
obtain identical results to the linear model. The only (expected) difference is the absence of the
spontaneous emission rate γ. As the reflectance agrees with the previous result in the respective
limit, this can be seen as a cross-check of the general non-linear solution.
With the knowledge of the scaling in the sums of Eqs. (8.39) and (8.40), we are now able to

estimate when a deviation from the result obtained in the linear regime is expected. Taking the
ratio of the two largest summands at ∆ = ε̃ = 0 yields

aN−1,N−1 Tr(JN−1
− JN−1

+ )
aN,N Tr(JN− JN+ )

= |ṽ|2 2
N

= 4κR|ain|2

g̃2N
. (8.48)
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Figure 8.2: The critical driving strength required to observe non-linear effects is shown in dependency
on the atom number N . The non-linear regime is defined via an excitation of ≥ 25% of the nuclei. Red
crosses are results from numerical simulations, dashed line is the lower limit condition from Eq. (8.48),
solid line is the asymptotic behavior from Eq. (8.50). Parameters: κ = 45γ, κR = 25γ,∆C = 0, g2 = 40γ2.

Thus, for non-linear effects to become important, this ratio must be at least of the order one,
i.e. a large probing field intensity is required to overcome the 1/N scaling. Note, however, that
at the same time this argument hold for the normalization factor A in Eqs. (8.39) and (8.40).
Thus, the condition given above is only a lower bound for the probe field strength. The crossover
to the non-linear regime will be discussed in more detail below.
Next, let us consider the linear limit of the second observable, the number of excited nuclei

defined in Eq. (8.42). With the same argument as above, we need to consider only one term in
the sum, which immediately yields

〈N̂e〉 ≈
N

2 −
aNNN Tr(JN− JN+ )
2aNN Tr(JN− JN+ )

= 0 . (8.49)

We see that also this observable takes the expected limit if a weak probe field is considered.

8.2.4 Results of the general model

Occurrence of non-linear effects

In the last section we already found a first condition which indicates when non-linear effects are
expected, see Eq. (8.48). However, it forms only a lower boundary, since the argument is based
on mathematical considerations and it is not clear if the observable of interest already exhibit
non-linear phenomena.
Here, we tackle the question when non-linear effects occur by numerical means. For this, a

quantity characterizing the non-linear crossover has to be defined. For weak probe beams the
number of excited nuclei vanishes, while for a very strong driving it approaches N/2. Thus, we
coarsely define the crossover to non-linearity as the point when the fraction of excited nuclei
exceeds 1/4.
We calculated the nuclear excitation with Eq. (8.42) for several sets of parameters in the

detuning range −100γ ≤ ∆ ≤ 100γ. Thereby, we increased the driving field strength ain until
our criterion, i.e. 〈N̂e〉 ≥ N/4 was reached. We found that in the asymptotic limit of large N
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the crossover to the non-linear regime can be approximated by the equation

|ain,C |2 ≈
g̃2

10κR
·N2 . (8.50)

This is illustrated in Fig. 8.2, where both the numerically obtained data and the asymptotic
formula is plotted. The asymptotic behavior can be understood as follows. The cavity mode is
driven with the rate

√
2κRain, c.f. Eq. (3.8). As soon as this rate is comparable with the coupling

coefficient g between the cavity mode and a nucleus, non-linear effects set in. In the case of N
nuclei in the cavity, the cavity pump rate has to compete with N · g. From this consideration,
Eq. (8.50) is qualitatively obtained.
With the condition found above, this raises the question if non-linear effects can be observed

at high-intensity x-ray light sources, such as free-electron lasers. Solving for the critical driving
rate |ain,C | with the parameters of the toy-model cavity discussed in Sec. 3.3, we obtain the
critical driving rate

|ain,C |2 ∼ 4N · 107 photons/s . (8.51)

Unfortunately, the exact number of nuclei taking part in the light-matter interaction is unknown,
as only the product |g|2N can be deduced from experimental data or from comparison with semi-
classical theories. Thus, no value for the critical rate can be given this way. We emphasize, that
the calculations in this section are based on the steady state analysis of the system, therefore
implying a continuous driving field. X-ray free-electron laser sources, tough, provide extremely
short laser pulses and a comparison of their performance to the continuously required photon
rate is not meaningful. An analysis of such short pulse excitations will be performed in Sec. 8.3.
Finally, we want to mention that other criteria for the non-linear crossover could be defined.

For example, in future studies the deviation of the linear and the non-linear spectrum, integrated
along the detuning axis, could be employed instead of the nuclear excitation condition used above.

Observables in the non-linear regime

We now turn to the observables introduced above and their dependence on the driving field
strength |ain|2. Simulation results for N = 1000 atoms are shown in Fig. 8.3.
For the reflectance we observe that the spectrum becomes flatter as the driving field strength

is increased. In the limit of very large |ain|2, the reflectance approaches the empty-cavity limit.
Mathematically, this can be understood as follows. For large ain, the coefficients anm for the
density matrix given in Eq. (8.23) converge to anm = δn0δm0, where δ denotes the Kronecker
symbol. Hence, the expectation values 〈J−〉 and 〈J+J−〉 in this limit do not depend on the
driving strength. On the other hand, the coefficient BN in the reflectance (c.f. Eq. (8.35)) is
suppressed due to its a−1

in scaling. Thus, the nuclear contribution to the reflectance vanishes and
only the empty-cavity response persists.
At this point it is instructive to calculate the exact single atom solution, and for simplicity,

we consider the observable |R|2. The solution for the nuclear part in the reflectance differs
from the result R = RC + RN , which we obtained in the linear theory. Here, RC denotes the
cavity part and RN the nuclear contribution to the reflectance as in Chap. 4, but with neglected
spontaneous emission rate γ. The reason for the discrepancy is the normalization factor A for the
density matrix defined in Eq. (8.27). Generally, it covers two summands 2 + a11 and restricting
the analysis to the second term only, the linear result would be recovered exactly. For the full
solution, however, we find

R
∣∣
N=1 = RC − i

2κR
κ

κ− i∆C

κ+ i∆C

γS
2 (∆−∆LS − iγS2 )

(γS2 )2 + (∆−∆LS)2 + |ain|2γS 2κR
κ

, (8.52)

where ∆LS is the collective Lamb shift and γS corresponds to the superradiant decay rate. From
this expression it can be seen that an increasing field strength ain gives rise to a smaller value
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Figure 8.3: The observables are shown in dependence on the driving field strength |ain|2. In the large
panels a cavity detuning ∆C = 0 was used, the smaller insets show results for ∆C = κ and cover the same
range along the axes. Other parameters: N = 1000, κ = 45ξγ, κR = 25ξγ, g2N = 1400ξγ2, ξ = 18000.

for the nuclear reflectance, since the denominator increases. Setting ain = 0 in Eq. (8.52), the
linear result from Sec. 3.3 is reobtained. The effect observed here can be identified as power
broadening [146]. The physical origin of the decreasing reflectance can be understood with the
following intuitive picture. The nuclei can, in contrast to a cavity mode, only store a finite
amount of excitations. As soon as the nuclei are saturated, their emission in the direction of
the detector cannot keep up with the driving rate and the relative nuclear contribution to the
reflectance decreases. As a consequence, the incident light is mainly reflected from the empty-
cavity scattering channel.
The second observable shown in Fig. 8.3 is the number of excited nuclei. Not surprisingly,

upon a stronger driving strength, it increases towards N/2, which corresponds to full saturation
of the nuclear transitions. Also the number of photons in the cavity steadily increases, which is
expected already from the first contribution in Eq. (8.44) that implies NPh ∼ |ain|2.
Next, let us look at the photon correlation function g(2) and how it depends on the driving field

strength. The result for different |ain|2 is shown in the lower right panel of Fig. 8.3. Obviously,
it does not differ much from Poissonian statistics. Only in a small frequency range a super-
Poissonian behavior can be observed. However, we note that the result in the correlation function
strongly depends on the number of atoms N . It turns out that a large N gives rise to a flat
g(2). On the other hand, for a rather small number of atoms, ranges of both sub- and super-
Poissonian statistics appear. This behavior is also related to saturation effects of the nuclei. For
strong driving fields, the empty-cavity path is the dominant reflection channel and the Poissonian
statistics of the incident light is directly transfered to the output field.
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Finally, we want to focus on the observables in the case of a strong cavity detuning ∆C = κ,
for which the simulation results can be seen in the insets of Fig. 8.3. Here, several sharp edges
occur in the center. We find that this property is the stronger pronounced, the larger the number
of atoms N is in the simulation. A sharp feature in the spectrum hints to a long time range,
which is required until such a characteristic shape can be created. Here, the sharp edge can be
seen since we consider the steady state of the observables, i.e. the state of the system after an
infinite time.

8.2.5 Non-linear numerical solution in SGC setting

In this part we will analyze how an increased driving field strength will affect the system in the
presence of a magnetic hyperfine splitting in the nuclei. Under the influence of a magnetic field,
the ground and excited state of the 57Fe nuclei split up into Zeeman sublevels. In Chap. 5 it was
shown that the phenomenon of spontaneously generated coherences (SGC) arises in this setting,
resulting in more complex reflectance spectra with, e.g., distinct interference minima. Here, for
simplicity, we restrict the discussion to the π geometry defined in Sec. 5.1, in which only the two
linearly polarized transitions in the nuclei are driven. This choice restricts the atomic subspace
to four levels, i.e. two ground and two excited states, which are mutually coupled as described
by the Hamiltonian in Eq. (3.30) and the Lindblad terms in Eq. (3.36). To our knowledge, no
analytic solution for the stationary density matrix exists for this situation. Therefore, we will
perform a numerical study in the following.
We include four nuclei in our simulation. As each nucleus consists of four internal states,

this results in 4N ·2 = 216 coupled density matrix elements. To solve the system numerically, we
employ the method gsl_odeiv2_step_rkf45 from the gsl software package [260]. Initially, the
four atoms are distributed equally over the two ground states and we propagate the system up
to t = 10/γ, such that the steady state is reached. All observables shown in the following are
evaluated at this time. As a crosscheck, we set the magnetization to zero and verified that the
numerically obtained steady state observables agree with the analytical results discussed above.
The observables for the system with four atoms subjected to a magnetic splitting are shown

in Fig. 8.4. Generally, the same trend as in the cases without a magnetization is observed. The
spectrum of the reflectance decreases and approaches the empty-cavity limit. Interestingly, the
central dip in the spectrum stemming from interference due to SGC remains visible even for
strong driving fields |ain|2. At the same time, the number of excited nuclei and the number of
photons in the cavity increase as we already observed for the non-magnetized case. Next, we
focus on the photon correlation function g(2). It can be seen from Fig. 8.4 that ranges for both
super- and sub-Poissonian statistics occur. However, this is most likely an artifact of the limited
number of atoms. In calculations with the analytic solution for the non-magnetized case, we
found that increasing the number of atoms leads to reduced features in g(2) and the overall result
will eventually approach unity.
In summary, we have seen how the steady state of the observables is affected if a strong driving

field is applied. However, this way of exploring the non-linear regime assumes a continuous
monochromatic driving field on the time scale which is needed for the observables to converge.
As mentioned above, this time range can be rather larger in the situation where the sharp edges
are observed in the spectrum. From a theoretical point of view, these long times might interfere
with the assumption that the single atom spontaneous emission rate γ was neglected in the
analysis. Additionally, the requirements on the probing light are not met by current synchrotron
radiation or upcoming x-ray free-electron laser sources. The required light can only be achieved
with devices, which work in a much lower frequency regime. Therefore it is unlikely, that the
cavity with embedded 57Fe nuclei and their resonance at ω0 = 14.4 keV can be probed this way.
However, it might be feasible to use other Mössbauer nuclei instead, which then offer a lower
transition frequency.
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Figure 8.4: Numerical results for the setting of SGC atoms in the cavity. The observables for different
field strengths |ain|2 are shown (Values are shown in the upper left panel). In the large panels a cavity
detuning ∆C = 0 was used, the smaller insets show results for ∆C = κ and cover the same range along
the axes. Other parameters: N = 4, κ = 45ξγ, κR = 25ξγ, g2N = 1400ξγ2, ξ = 18000. The photon
correlation g(2) is not shown for the lowest ain due to numerical instabilities during its evaluation.

8.3 Emission spectra after a δ-like pulse excitation
In this section we do not consider non-linear effects induced by a strong continuous driving field,
but discuss the more realistic scenario of a short incidence pulse. This compares to the situation
encountered in a realistic experimental setting. For example, a pulse delivered by an x-ray free-
electron laser with short pulse durations in the pico- or even femtosecond range, together with a
high photon number could be used to probe the thin-film cavity in the future. Clearly, this does
not match the scenario discussed in the previous section, and therefore a thorough analysis for
short incident pulses must be carried out. In this section, we restrict ourselves to the spectrum
in the reflectance as the desired observable.

Theoretical considerations

In a first step, we review the definition of the spectrum, which can be observed in the reflected
light. It was detailedly discussed in Sec. 3.4 and reads

|Rδ|2 = 〈a
†
out(ω)aout(ω)〉
|ain(ω)|2 , (8.53)

where aout(ω) denotes to Fourier transform of the output field operator aout(t). The denominator
in Eq. (8.53) provides the proper normalization. For an input pulse ain(t) ∼ δ(t), the denominator
is a constant, while in realistic scenarios the Fourier transform of the incident pulse needs to be
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Chapter 8: Exploring The Non-Linear Regime

taken into account properly. Next, let us look at the numerator in Eq. (8.53) in more detail. It
describes the emission spectrum and can be written as

S(ω) = 〈a†out(ω)aout(ω)〉 = 1
2π

∫
e−iω(t1−t2)〈a†out(t1)aout(t2)〉 dt1dt2

= 1
π

Re
[∫ ∞
−∞

dt′
∫ ∞

0
dτeiωτ 〈a†out(t′ + τ)aout(t′)〉

]
. (8.54)

Hence, solving the time dependence of the system provides access to the desired reflection spec-
trum.
In our quantum optical description of the cavity, which we developed in Chap. 3, we adiabat-

ically eliminated the internal cavity modes. This elimination can again be applied here. The
reason for this are the relevant time scales. The cavity mode equilibrates on the time scale 1/κ,
where κ is its decay rate. In Sec. 3.3, we found a typical value of κ ≈ 8 · 105γ, which translates
in a characteristic time scale of 1/κ ≈ 175 fs. In the following, we assume that the probing pulse
has a longer duration, such that the adiabatic elimination of the cavity modes is justified.
Further, we will for simplicity consider an incident pulse with rectangular shape and with pulse

duration t0, given by the input field

ain(t) = ãinθ(t)θ(t− t0) . (8.55)

Its Fourier transform is required for the normalization in the reflectance, which was defined in
Eq. (8.53). We find

|ain(ω)|2 = 1− cos (ωt0)
πω2 θ(t0) . (8.56)

Next, we denote the sum of the transition lowering operators of the individual atoms as
J− = J†+ =

∑
n S

(n)
i , and similar as in the previous section, we can write for the output field

operator (c.f. Eq. (8.35))

aout(t) =
(
−1 + 2κR

κ+ i∆C

)
ain(t)− i

√
2κR

κ+ i∆C
g
√

2
3 J−(t)

= RC ain(t) + bN J−(t) , (8.57)

where the output field is now distributed into a cavity component and a contribution from the
embedded nuclei. For the expectation value in Eq. (8.54) we then obtain

〈a†out(t′ + τ)aout(t′)〉 = |RC |2ain(t′)ain(t′ + τ)
+R∗Cain(t′ + τ)bN 〈J−(t′)〉
+ b∗N 〈J+(t′ + τ) [RCain(t′) + bNJ−(t′)]〉 . (8.58)

The first term in this sum is readily obtained from the definition of the incident pulse. The
second part can be found by solving the equations of motion numerically. The last term, however,
involves a two-time expectation value, for which the computation is more involved. In order to
evaluate this expectation value, we employ the quantum regression theorem [158]. This theorem
states, that the two-time average follows the same equations of motion as the one-time averages.
We illustrate this for the case of a single atom with ground state |g〉 and excited state |e〉. The

operators and the density matrix elements characterizing this two-level system are

~σ = (|g〉〈g|, |e〉〈g|, |g〉〈e|, |e〉〈e|)T , (8.59)
〈~σ〉 = ~ρ = (ρgg, ρge, ρeg, ρee)T . (8.60)
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8.3 Emission spectra after a δ-like pulse excitation

We assume that the equations of motion can be written as

d

dt
~ρ(t) = d

dt
〈~σ(t)〉 = M(t) · 〈~σ(t)〉 , (8.61)

whereM(t) is a matrix. According to the quantum regression theorem, the same equation holds
for a two time expectation value

d

dτ
〈~σ(t′ + τ)σi(t′)〉 = M(t′ + τ) · 〈~σ(t′ + τ)σi(t′)〉 , (8.62)

where σi is any operator of the vector ~σ. Now, in order to evaluate a two-time expectation value,
one can use the upper equation, for which the initial state at τ = 0 is known form the one-time
solution and propagate the operator until the time τ is reached. Note that the second and the
third component in Eq. (8.61) are their respective complex conjugates due to the hermiticity of
the density matrix, and therefore the size of the problem can be reduced. However, this is no
longer valid in Eq. (8.62) and therefore the complete matrix M(t) is required.

Numerical implementation

In order to calculate the emission spectrum S(ω) defined in Eq. (8.54) numerically, we apply
the following technique. First, the integral along dt′ is discretized. Since the incident pulse is
non-zero only for times t ≥ 0, the lower boundary of the integral can be set to zero, since the
contribution of the expectation value vanishes for smaller times. The upper boundary of the
integral is determined by the time when the pulse ended and all excitations in the system have
decayed.
Next, we numerically integrate the density matrix element of the system along t′. At each

discretization step we integrate the two-time expectation values along τ such that 〈a†out(t′ +
τ)aout(t′)〉 is known for the current time t′ and the relevant range in τ . Taking the Fourier
transform of these values, the inner integral in Eq. (8.54) is obtained. The Fourier integrals for
the different t′ are finally added up and the real part is taken to obtain the desired emission
spectrum S(ω).
We benchmarked our calculation technique in the linear regime, where we could compare the

results with the exact analytic solution. This way, different choices of the discretization variables
could be tested. Obviously, a high accuracy in the calculated spectrum comes with a trade-off
of a fast numerical computation. As a reasonable compromise, we found the following numerical
parameters. The integral over t′ was discretized from 0 to 1/γ with a step size 10−4/γ. The
same step size was used along τ . The grid size of the discretization along τ was chosen as
216 corresponding to the range |τ | . 3.28/γ, such that the Fourier transform can be computed
quickly. The resulting spectrum is then obtained for steps ≈ 0.96γ along the frequency axis.
Using this technique, we explored the setting of a cavity without magnetization. In this case,

the nuclei act as two-level systems and their dynamics is described by Eqs. (8.10) and (8.11). In
contrast to the calculations in the last section, the spontaneous emission rate was not neglected in
the simulations here. We performed numerical computations with the method described above
for up to 4 nuclei in the cavity. Even though the size of the Hilbert space is moderate, the
calculation of the two-time expectation values combined with the required small step sizes in t′
and τ are time-consuming.
In the numerical simulations presented below, we used a pulse length t0 = 0.01/γ and the

parameters g =
√

1400ξ/Nγ, κ = 45γξ, κR = 25γξ and ξ = 18000. This corresponds to the
situation encountered in Sec. 3.3. For the cavity detuning ∆C = 0 and ∆C = κ was used.

Contributions to the emission spectrum

Before we turn to the numerical results, let us first look at the two-time expectation value in more
detail. By describing an operator O by its average value and a fluctuation operator 〈O〉 + δO,
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the expectation value in Eq. (8.54) can formally be rewritten as

〈a†out(t′ + τ)aout(t′)〉 = 〈a†out(t′ + τ)〉〈aout(t′)〉+ 〈δa†out(t′ + τ)δaout(t′)〉 . (8.63)

In the study of resonance fluorescence, the contribution to the emitted radiation which stems
from the first part in this sum is known as the coherent, while the second term is called the
incoherent contribution. The reason for this is that for a continuous coherent driving field, the
coherent part of the radiation is emitted with the same frequency as the driving laser. This
is comparable with the picture of a classical dipole. In this sense, the incoherent part of the
radiation accounts for non-classical effects beyond the classical dipole radiation. In the case of
resonance fluorescence, this results in the celebrated Mollow triplet [261].
By omitting the fluctuation operators in Eq. (8.63), the two-time average reduces to one-time

averages and the reflection spectrum of Eq. (8.54) becomes

Scoh =
∣∣∣∣ 1√

2π

∫ ∞
−∞

eiωt〈aout(t)〉dt
∣∣∣∣2 , (8.64)

and in turn we can define the coherent reflectance as

|Rδ,coh|2 = Scoh
|ain(ω)|2 = |aout(ω)|2

|ain(ω)|2 . (8.65)

This expression also resembles an intuitive picture of the emitted spectrum often used in the
context of spectroscopy: In the weak driving regime, the spectrum is given by the Fourier
transform of the complete time-dependent response function, possibly including the initial δ-
like pulse as in Refs. [172, 262, 263]. From the equations above, we observe that this intuitive
interpretation can break down as soon as the incoherent contribution of the emitted radiation
becomes important. In this case, the spectrum must be described with the complete expression
given in Eq. (8.54).

Results

Both the full spectrum and its coherent part can be computed numerically, the incoherent con-
tribution to the reflection spectrum can easily be obtained by subtraction. The coherent part,
the incoherent part as well as the full reflection spectrum is shown in Fig. 8.5 for different driving
strengths ain. In the left panel, the cavity is driven at the resonance angle of the first guided
mode, such that ∆C = 0. With an increasing field strength, we observe the saturation effect
already noticed in the previous section, where the steady state of the system was analyzed. Now,
in addition we also recognize that the incoherent part, i.e. the non-classical contribution, has a
huge impact on the reflection spectra. At ãin ≈ 35√γ, the emitted signal is nearly completely
determined by the incoherent contribution to the spectrum. Interestingly, the shape of the in-
coherent contribution seems to be always given by a Lorentzian line profile and its width agrees
with the expected superradiantly broadened decay rate Γ = γ + 4

3 |g|
2Nκ/(κ2 + ∆2

C) very well.
Also in the case where the incident angle of the pulse is changed, such that the cavity is

driven off-resonantly with cavity detuning ∆C = κ, the incoherent part of the spectrum plays
a crucial role. Again, we find that the shape of the incoherent spectra is roughly given by a
Lorentzian, and its width is in accordance the superradiant width Γ. In contrast to the setting
before where ∆C = 0, the line profiles are now shifted approximately by the collective Lamb
shift ∆LS = − 2

3 |g|
2N∆C/(κ2 + ∆2

C). This surprising result could be confirmed also for larger
number of atoms and suggests that this effect is an universal property of our system. A possible
explanation is that the incoherent part of the spectrum emitted by the nuclei has, by definition,
no fixed phase relation with the driving field. Hence, no interference with the prompt part of
the reflection occurs, and only the nuclear shape with superradiant broadening and the collective
Lamb shift remains.
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Figure 8.5: Reflection spectra after a δ-like pulse excitation with one resonant nucleus in the cavity
are shown for different field strengths ãin and for two cavity detunings ∆C . In the strong driving limit
the spectrum becomes flat due to saturation effects in the nucleus. For increasing field strengths, the
asymmetric Fano profile observed for ∆C = κ changes its form significantly. The coherent and the
incoherent parts of the spectra are shown in the upper panels in the same scale as the main figures.
Parameters are given in the main text.

Line shape control

Next, we want to look into a particular feature which is observed in the full and the coherent
spectrum in more detail. In Fig. 8.6, a small subset of the spectra from Fig. 8.5 with ∆C = κ
is shown. Both for the coherent and the full spectrum it can be seen that the line shape and its
symmetry can be strongly affected by already a moderate change in the driving field strength ain.
Since especially the coherent spectrum shows a distinct behavior, we focus on this part. We recall
that it is given by the Fourier transform of the time resolved reflection signal. This time domain
signal consists of a short δ-like cavity contribution and the delayed nuclear signal. In Chap. 4 it
was shown that the interference of these to channels can give rise to Fano interference. The line
shape was determined by the relative phase between the two amplitudes and could be controlled
via the incidence angle. Here, however, the angle of incidence is kept constant. Therefore, it
can be expected that a new mechanism causes a relative phase between the contributions to
the reflectance, and consequently determines the spectral line profile. In fact, we find that the
new control mechanism stems from nuclear excitation in the cavity. We emphasize that this is
a non-linear feature, since any population of the nuclei could be safely neglected in the linear
regime.
For the four different driving strengths shown in Fig. 8.6 we present the time resolved nuclear

excitation in Fig. 8.7. Initially, the atoms reside in their ground state and during the pulse
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Figure 8.6: The full reflectance (left panel) and the coherent contribution (right panel) from Fig. 8.5
with ∆C = κ is shown in more detail. Already moderate changes in the driving field strength can result
in different spectral profiles.

duration they will be excited. During this time range, the large driving strength ãin dominates
over the other coupling parameters, such that the atoms will undergo characteristic Rabi oscilla-
tions [1]. From our quantum optical theory, we know that each nucleus is driven with the Rabi
frequency (c.f. Eq. (8.10))

ΩR =
√

2κR
κ+ i∆C

√
2
3 g ãin . (8.66)

In a simplified picture we consider a single nucleus subjected to a driving with this frequency.
Then, the equations correspond to the Rabi model and the solution reads [1]

H = ΩR|e〉〈g|+ Ω∗R|g〉〈e| , (8.67)
|ψ〉 = cg(t)|g〉+ ce(t)|e〉 , (8.68)

cg(0) = 1 , ce(0) = 0 , (8.69)
cg(t) = cos (|ΩR|t) , (8.70)
ce(t) = −iei arg (ΩR) sin (|ΩR|t) . (8.71)

The nuclear excitation obtained with this simple model is given by

Nexc(t) = |ce(t)|2 = sin (|ΩR|t)2
, (8.72)

and is shown as dashed curves in Fig. 8.7(a). Clearly, it matches the exact numerical simulation
well, the differences are due to the neglected collective effects and the incoherent processes. From
Fig. 8.7(a), we also see that after the pulse duration, marked as the shaded red area, the Rabi
oscillations are differently advanced in time. This time progress effect also manifests in the phase
of the nuclear contribution to the reflectance. In our simple Rabi model, the nuclear phase after
the driving pulse is given by

arg (J−(t0)) = arg
(
− i

2e
i arg (ΩR) sin (2|ΩR|t0)

)
. (8.73)

From this expression, we see that the phase is particularly affected by the sinusoidal contribution.
Its sign can flip if its argument exceeds a multiple of π, i.e. as soon as half a Rabi cycle is complete.
This can be achieved by either increasing the pulse duration t0 or the driving strength ãin, as it
is proportional to the Rabi frequency ΩR. The nuclear phase as a function of ãin is visualized
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Figure 8.7: (a) The nuclear excitation in the cavity is shown. The shaded area denotes the time range in
which the system is driven by the pulse. After t0 = 0.01/γ the population of the excited nuclei decays
exponentially. Depending on the driving strength ãin, the Rabi cycling of the population is differently
advanced which influences the nuclear phase after the driving pulse. The solution of an ideal Rabi
flopping without decay is given by the dashed lines. (b) The nuclear phase arg (J−) at t = t0 is shown
for simulations with different number of atoms N . The dashed lines show the result of the simple Rabi
model. Whenever half a Rabi cycle is complete, the nuclear phase changes by ≈ π. The gray vertical
lines denote the driving strength from (a) and Fig. 8.6. Parameters are as in Fig. 8.6.

in Fig. 8.7(b). Again, the simple Rabi model covers the essential behavior of the numerical
simulations very well. We performed this analysis with up to four nuclei in our simulations while
keeping |g|2N constant, and always found a good agreement with our intuitive interpretation
based on the Rabi model, see Fig. 8.7(b), despite the complicated interatomic couplings. Thus,
the discussed effect can indeed rapidly change the phase of the nuclear contribution in general
settings, which in turn gives rise to modified line shapes, c.f. Chap. 4 or Ref. [172].
Even though the analysis here was carried out for the coherent part of the spectrum, the

signatures of the modified line shapes also remain visible for the full spectrum, which can be
observed from Fig. 8.6. Therefore, the intensity-dependent line shape asymmetry constitutes a
well-suited characteristic for an experimental study in the non-linear regime. Since the spectrum
is very sensitive to the nuclear states in the cavities, it can also be understood as a signature
for Rabi flopping. We emphasize that this line shape control mechanism is not restricted to the
nuclear domain, but can be realized also in settings in different energy regimes, such as in the
study of auto-ionizing helium systems with femtosecond pulses in the XUV range [172, 262, 263].
Finally, we note that a clear observation of the effect in the spectra poses a significant challenge

to the light sources. While we performed our numerical simulations with a clean rectangular
pulse, the situation encountered in (X)FEL experiments requires different models for the more
noisy pulse shapes [40, 264]. With a possible self-seeding upgrade, though, the shape quality is
expected to be enhanced significantly [16, 19]. Furthermore, we note that the analysis above was
performed with adiabatically eliminated cavity modes, which is valid if the modes equilibrate
fast on the time scale of the driving pulses. However, with ultrashort pulse durations in the
10 fs range provided by XFEL sources, this assumption might have to be revisited and the cavity
dynamics might have to be taken into account. The influence of both the realistic pulses shapes
as well as the explicit treatment of the cavity dynamics on the features in the spectrum could
thus be analyzed in future works.
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Chapter 9

Summary & Outlook

Summary
In this thesis a quantum optical framework for thin-film cavities, containing layers of resonant
Mössbauer nuclei and probed by hard x-rays, was presented. This setting has recently been
used in several experiments exploring the foundations of x-ray quantum optics. Compared to
previously existing theoretical descriptions, the approach of this work allows for a quantum me-
chanical interpretation of all physical processes contributing to the observed signals on the basis
of a full understanding of the involved states and their mutual couplings from a microscopic
point of view. Additionally, a strong focus was put on a close relation to realistic implementa-
tions. In collaboration with experimental groups, several quantum optical phenomena could be
successfully demonstrated.
The basic model was developed in chapter 3 by describing the x-ray light-matter interaction

by quantum optical means. Special attention was given to the archetype Mössbauer isotope 57Fe
which is presently also in the focus of interest in experimental implementations. To overcome
the difficulty of the large Hilbert space in the initial formulation of our theory, two well justified
approximations were made. First, we adiabatically eliminated the cavity modes to obtain effec-
tive equations of motion for the nuclei. While there is no direct interaction among the nuclei
initially, this procedure gives rise to mutual couplings in the equations. This way, an intuitive
understanding of the relevant physical processes contributing to the coupling of the nuclei and
thus to collective phenomena can be gained. In particular, it was found that the cavity leads
to an enhanced decay rate and energy shifts due to cooperativity and the Purcell effect. The
second approximation was to consider the system only in first order of the driving field, which
is sufficient to describe current synchrotron-based experiments. This allowed for a description of
the cavity and the collective behavior of the nuclei by one ground and up to only six collective
excited states in the presence of a magnetic hyperfine splitting. In the respective limits, we found
excellent agreement with previous semi-classical models as well as with numerical simulations
throughout this thesis.
In chapter 4 the setting of a plain cavity without magnetic splitting of the resonant nuclei was

studied. With the quantum optical theory we could show that tunable Fano resonances arise
in the spectrum of the reflectance, which are externally controllable via the angle of incidence.
This line shape control stems from the interference of two scattering channels, the empty-cavity
reflection and scattering at the resonant nuclei, and was successfully demonstrated in an ex-
periment. From the measured spectra we could extract spectroscopic signatures such as the
cooperative Lamb shift or the superradiant decay rate with high precision, which opens up an
avenue to metrology at x-ray energies with neV precision. During the data analysis we found
that an additional phase depending on the cavity material is present in the system, which gives
rise to asymmetric cavity mode resonances and a non-vanishing Lamb shift for the symmetric
Lorentz spectrum. Including this phase shift in the theoretical description, a very good agree-
ment to the experimental data was achieved. The line shape control mechanism with its two
scattering channels can also be interpreted in terms of an x-ray interferometer setup. This way,
phase-sensitive measurements of the nuclear resonance were demonstrated with good agreement
to the theoretically expected phase of a Lorentz profile. The phase retrieval forms a first step

133



Chapter 9: Summary & Outlook

towards x-ray quantum state tomography.
A more involved scenario was studied in chapter 5 by introducing a magnetic hyperfine splitting

in the 57Fe nuclei. We observed that distinct minima in the spectral response are formed. How-
ever, their origin could not be understood by means of the semi-classical descriptions. Applying
our quantum optical model, we showed that these modifications in the reflected signal are caused
by interatomic interaction effects originating from the quantum nature of the vacuum. So-called
spontaneously generated coherences (SGC) are formed, which is a hardly observed phenomenon
in quantum optics since it requires stringent conditions naturally not met in atoms. In our x-
ray setup, SGC occur due to the presence of cooperative effects and a magnetically controlled
anisotropy of the cavity vacuum. SGC enable interference between different decay channels and
allow to suppress the seemingly inevitable process of spontaneous emission. Therefore, SGC are
a powerful resource in quantum engineering with numerous fascinating applications. We could
demonstrate the effect of SGC experimentally and show that the cavity system can be operated
essentially decoherence-free. On the theoretical side, we further found that a large set of level
schemes can be engineered and controlled by suitable choices of the magnetization and polariza-
tion axes. This opens perspectives for the realization of advanced quantum optical level schemes
with nuclei.
In chapter 6 the typical scheme employed in experiments on thin-film cavities was described in

more detail and the time-dependent reflection intensity, which is experimentally accessible, was
derived. In the process we found that the group velocity of the x-ray pulses can be controlled. We
showed that large time delays can be engineered in cavities featuring SGC and with thin surface
layers, and even super-luminal light propagation can be achieved with suitable cavity layouts.
Since the concept of group velocity control requires spectrally narrow pulses, we proposed a
scheme in which such narrowband pulses are created from broadband synchrotron radiation.
Experimentally, we could observe x-ray pulse delays up to 35 ns employing this scheme. Since
slow light is usually accompanied by huge optical non-linearities, our implementation motivates
the study of related phenomena in the x-ray regime. Furthermore, a theory was formulated in
order to analyze the time-resolved signal in Fourier space. This way, an alternative method to
extract the Lamb shift from the measured data was introduced.
In chapter 7 the theoretical model was extended to cover multiple cavity modes as well as

multiple resonant layers, such that a broader set of cavity layouts can be handled appropriately.
Our analysis revealed that each of the two extensions individually does not yield new effects
in the spectral line shapes beyond Lorentz and Fano profiles, but in combination qualitatively
different reflection spectra emerge. This way, a recent experiment featuring electromagnetically
induced transparency (EIT) in thin-film cavities [56] could be successfully modeled, the coupling
coefficients in the scheme could be understood from a quantum optical point of view and their
scaling laws could be reproduced.
In the main part of this thesis the quantum optical formalism was applied to situations studied

in synchrotron experiments, where the linear response approximation is valid. The model, how-
ever, is not limited to the linear regime and can be applied to describe future experiments with
much higher probe intensities, performed, e.g., at x-ray free-electron lasers. Non-linear effects
emerging in this new parameter regime were investigated in chapter 8. In a first approach we
approximated the system by neglecting the small spontaneous emission rate as it is dominated
by the superradiant behavior and could find analytic solutions of the stationary observables for
arbitrary x-ray driving strengths and atom numbers by mapping the equations of motion to
a Dicke-type model. That way, saturation effects of the nuclear excitation could be observed.
Second, a numerical study was performed in order to compute the emission spectrum after the
excitation with a short, but intense x-ray pulse, which corresponds to the situation encountered
in typical experimental scenarios. Here, a novel line shape control mechanism based on the
dynamics of the nuclear phase was discovered. This effect might also serve as a signature for
nuclear Rabi flopping.
In conclusion, our formalism allows to predict, observe and interpret a variety of quantum

134



optical phenomena and provides a promising platform for the further exploration of x-ray quan-
tum optics with nuclei embedded in thin-film cavities. At the same time, this work supports
the ongoing effort to establish a new domain of Mössbauer physics at the boundary of quantum
optics and x-ray science.

Outlook
The results presented in this work invite for a broad range of promising research directions. Both
on the theoretical and the experimental side, exciting physics can be expected in future studies
on x-ray thin-film cavities.
A highly advantageous platform for further phenomena and applications of quantum optics

can be formed by merging the two cavity layouts featuring EIT and SGC: The combination of
multiple resonant layers in the cavity with suitably chosen magnetization to induce a hyperfine
splitting in the nuclei would enable the engineering of a new class of quantum optical level schemes
in the x-ray domain. Particularly desirable would be the formation of N -type level structures,
which can be exploited to obtain huge Kerr non-linearities in the optical response [120]. Using
other Mössbauer nuclei instead of the isotope 57Fe, which was considered in most parts of this
work, might provide an alternative road to access a broader collection of realizable level schemes.
The quantum optical model developed here is suitable for any resonant nucleus with arbitrary
hyperfine level structure and thus can be applied to such scenarios as well.
Next to the realization of novel level schemes, other extensions could encompass moving or

vibrating cavities with the aim of controlling the waveform via sideband modulation, as it has
been demonstrated in nuclear forward scattering setups [55, 57]. Also the spectral redistribution
of the field intensity might be feasible in a related setting [172]. In a different application the
interferometric nature of the x-ray cavity can provide access to fundamental questions of quantum
mechanics. Currently, some effort is made to utilize the cavity setup to observe the violation of
Bell-like inequalities [265].
Besides, a deepened analysis of several topics covered in this thesis offers great potential. Since

the Fano spectra discussed in Chap. 4 were measured employing a time-resolved method, it could
be possible to use our data to study the temporal build-up of Fano resonances [266] and compare
it with results of different frequency regimes [267]. In Chap. 6 we introduced a method to extract
the Lamb shift from these time dependent measurements via evaluation in Fourier space. The
analysis of all available data sets as well as the identification of other spectroscopic parameters
could be envisaged for the future. In particular, it would be interesting to investigate if the
Fourier space analysis of the time-dependent Fano spectra allows for advanced characterization
of the couplings as in Ref. [263]. It might be also beneficial to apply our technique of phase
sensitive measurements based on Fano resonances to cases with more complex line shapes. A
thorough study of the nuclear phases allows to specifically design cavities with distinct dispersion
relations, which is of importance for the implementation of group velocity control as discussed
in Chap. 6. Ultimately, this could lead to the realization of super-luminal x-ray pulses. A topic
which was not yet extensively considered is the photon correlation function g(2). In contrast to
previous models we used a quantized field description in our theoretical approach, which renders
g(2) an accessible observable. Its features, however, have been only touched briefly in Chap. 8. A
comprehensive analysis of the second-order correlations induced by the light-matter interaction of
Mössbauer nuclei in thin-film cavities, possibly in combination with the properties of synchrotron
radiation [268] or free-electron laser sources [269], constitutes a worthwhile subject for upcoming
studies.
Even though the quantum optical model developed in this work has proven very successful

in describing various realistic scenarios, some open questions in the foundations of the theory
should be addressed in future works. An important point would be the self-consistent calculation
of the coupling constants g between the different cavity modes and nuclear transitions. An in-
dependent approach via an eigenmode analysis could performed here. Since in the present work
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Chapter 9: Summary & Outlook

only the product g
√
N is known from comparison with experimental data or semi-classical mod-

els, this would allow to determine the absolute number of nuclei N taking part in the collective
light-matter interaction. Due to the limited coherence of the x-rays beams in experiments the
question arises if the coupling to the nuclei is homogeneous due to the formation of a uniform
cavity mode, or if the nuclei are divided into smaller blocks with a certain coherence volume,
which in turn determine the collective behavior [68]. Next to this question, also the emission
characteristics require a deeper understanding. While the nuclear signal is coherently emitted in
forward direction along the expected reflection channel, it has to be examined if this still holds
true in the non-linear regime. There, the intermediately excited state in the nuclear ensemble
strongly differs and the angular properties of the emission could be investigated by means of
scattering theory or a radiative eigenstate analysis. Especially, it would be important to know
if the coherent and incoherent part of the emission spectrum found in Chap. 8 exhibit differ-
ent characteristics. This could facilitate the observation of the discovered line shape control
mechanism in the coherent part of the emission spectrum.
The non-linear mechanism to control the line profiles further provides a signature for nuclear

Rabi flopping as described in Chap. 8. Hence, its verification can be expected to fuel the field
of nuclear quantum optics. An easier implementation of the same scheme could probably be
achieved in lower frequency domains, such as in the study of helium with femtosecond pulses
in the XUV range. Nevertheless, a more sophisticated theoretical study is required beforehand.
Both the effects of the x-ray pulse shape and its partial coherence were not included in the
analysis yet. Also, the adiabatic elimination of the cavity modes cannot be performed if pulses
with a duration of less than ≈ 150 fs probe the system. Also the second non-linear scenario
investigated in this work, the stationary case of a continuously driven cavity, opens up some
challenges. On the theoretical side it could be analyzed if the approximations in the model are
valid in the considered parameter ranges. In particular, it would be important to know if the
non-symmetric Dicke states affect the system. Next, the question if the scheme is realizable is
still to be answered. For this, the time scale of the system, determined by the decay rate of the
Mössbauer nuclei, and the parameters of suitable future light sources need to be related.
Finally, we emphasize that the rapid development of new x-ray instrumentation increases

the experimental possibilities and therefore allows to implement many more quantum optical
phenomena in the next years, not necessarily restricted to settings in thin-film cavities. Examples
of such novel equipment are diamond-based mirrors with near 100% reflectivity operating in
normal incidence [270, 271] or Bragg beam splitters for hard x-rays [272]. Additionally, pulsed
magnetic fields with controlled strengths up to 30 T [273] offer a tool to modify the hyperfine
splitting of Mössbauer nuclei, such that the nuclear level schemes can be dynamically tuned.
This way, innovative concepts of x-ray quantum optics can be expected to be realized in the
future.
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