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Abstract: In this thesis, gluon spectral functions in SU(3) gauge theory are calculated

at finite temperature. The temperature range covers the confining regime below Tc to

the high temperature regime, where perturbation theory is applicable. The numerical

tool is the Maximum Entropy Method (MEM) employing euclidean, non-perturbative,

Landau gauge gluon propagators, obtained with the Functional Renormalisation Group

and Lattice QCD, as input. The spectral function is related to the propagators by an

integral equation. MEM is a complex multidimensional optimisation algorithm to in-

vert such integral equations, corresponding to an analytic continuation of the numerical

data. A continuation of a discreet set of data cannot be unambiguous. The occuring

ambiguities are resolved by introducing a priori knowledge of the asymptotic shape of

the spectral function, in the form of a model function. Thereby, MEM simultaneously

optimizes the spectral function to the input propagators and the model, leading to a

unique model-dependent solution. Standard-MEM assumes positive definite spectral

functions, whereas gluons show a violation of positivity in the spectral function, due

to confinement. Therefore, an extended-MEM algorithm is proposed. The main ap-

plication of this thesis is the calculation of the shear viscosity in units of the entropy

density. A Kubo relation connects shear viscosity to the low frequency limit of a certain

energy-momentum tensor correlation function. For this correlation function a loop rep-

resentation of finite order in terms of gluon spectral functions is derived. That allows to

calculate η
s

from first principles in SU(3) for the first time for arbitrary temperatures.

Further, a mapping of the SU(3) results for η
s

to QCD is proposed.



Abstract: In dieser Arbeit werden Gluon-Spektralfunktionen bei endlicher Temper-

atur in der SU(3) Eichgruppe bestimmt. Der Temperaturbereich umfasst die farbge-

bundene Phase unterhalb der kritischen Temperatur bis in den Hochtemperaturbereich,

in dem Störungstheorie anwendbar ist. Das numerische Werkzeug ist die Maximum

Entropie Methode (MEM), die euklidische, nicht-störungstheoretische Gluon Propaga-

toren in Landau-Eichung als Input verwendet, die mit der Funktionalen Renormierungs-

gruppe und Gitter-Eichtheorie bestimmt wurden. Die Spektralfunktion kann über

eine Integralgleichung mit den Propagatoren in Verbindung gesetzt werden. MEM

ist ein komplexer mehrdimensionaler Optimierungsalgorithmus um solche Integralgle-

ichungen zu invertieren, was einer analytischen Fortsetzung der numerischen Daten

entspricht. Eine Fortsetzung von diskreten Datensätzen ist jedoch nicht eindeutig.

Die auftretenden Mehrdeutigkeiten werden aufgelöst durch das Einbringen von apri-

ori Informationen des asymptotischen Verhaltens der Spektralfunktion in Form einer

Modell-Funktion. So optimiert MEM die Spektralfunktion simultan auf die Input Prop-

agatoren und die Modell-Funktion, was zu einer eindeutigen Modell-abhängigen Lösung

führt. Der Standard-MEM Algorithmus setzt positiv-definite Spektralfunktionen vo-

raus, wohingegen Gluonen eine positivitätsverletzende Spektralfunktion besitzen, die

Folge der Farbbindung ist. Daher wird ein erweiterter MEM Algorithmus ausgear-

beitet. Die Hauptanwendung dieser Arbeit is die Berechnung der Scherviskosität in

Einheiten der Entropiedichte. Kubo-Relationen lieferen eine Beziehung zwischen der

Scherviskosität und dem Nieder-Frequenzverhalten einer bestimmten Korrelationsfunk-

tion des Energie-Impuls Tensors . Für diese Korrelationsfunktion wird eine Loop-

Dartellung mit endlicher Ordnung in Produkten von Gluon Spektralfunktionen hergeleitet.

All das erlaubt die erstmalige ab initio Berechnung von η
s

in SU(3) für beliebige Tem-

peraturen. Weiterhin wird eine Abbildung der SU(3) Ergebnisse für η
s

auf die volle

QCD vorgeschlagen.
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1 Introduction

’Eine neue wissenschaftliche Erkenntnis lässt sich gewöhnlich nicht so darstellen,

dass ihre Gegner überzeugt sind. Diese sterben vielmehr aus, und die nachwachsende

Generation ist von Anfang an mit der Wahrheit vertraut.’

Max Planck

1.1 General introduction

The strong interaction, the interaction that holds together nuclei and their constituents,

the protons and neutrons, is one of the four fundamental interactions in nature [1]. It

is described by Quantum Chromodynamics (QCD) [2], which claims the existence of

six fundamental particles, the quarks, carrying electric charge +2
3

(u,c,t) or −1
3

(d,s,b).

Quarks are Dirac fermions with spin s = 1
2
, also carrying a color charge, that can as-

sume three values (usually called ’red’, ’green’ and ’blue’). In addition, for each quark

there is an anti-quark with opposite quantum numbers.

The interactions between the quarks are mediated by spin s = 1, electrically neutral

gauge bosons, called gluons. However, gluons also carry color charge, and therefore can

interact with each other. That is a distinct feature of QCD compared to e.g. QED,

where the photons carry no charge, and do not generate pure photon vertices.

Even though quarks carry fractional electric charge, only particles with integer multi-

ples of the electron charge are observed freely. The reason points to another important

feature of QCD, confinement [3,4]. It explains the fact, that a colorneutral bound state

of particles carrying color charge, cannot be seperated into the free constituents by any

finite amount of energy. That feature distinguishes the strong interaction from inter-

actions like gravitation or electromagnetism, where a finite amount of energy suffices

to seperate i.e the electron from the proton in a hydrogen atom. If one tries, however,

1



1 Introduction

to seperate a meson, which is a color neutral quark anti-quark bound state, the energy

stored in the binding increases until it hits the pair production threshhold, leading to

the creation of a new quark-antiquark pair and instead of ending up with free quark

and anti-quark, one ends up with two mesons.

QCD is a SU(3) Yang-Mills gauge theory [5] coupled to the Dirac fermions in the

fundamental representation. SU(3) is asymptotically free1, meaning that in the limit

of high energy transfers (or short distances) the interaction strength tends to zero and

quarks and gluon become (quasi-)’free’ [7, 8]. Therefore, the hadronic phase of color-

less quark bound states with 2 quarks (mesons) or 3 quarks (baryons), undergoes a

phase transition as temperature is increased to a phase of free quarks and gluons, first

proposed by Perry and Collins [9] and independently by Cabibbo and Parisi [10]. This

phase is usually referred to as quark-gluon plasma (QGP) [11–14]. For reviews on the

QGP see e.g. [15–20].

The nature of this phase transtion is not conclusively explored for arbitrary values of

the baryon chemical potential µb. In colliders like the Large Hadron Collider (LHC) [21]

and the Relativistic Heavy-Ion Collider (RHIC) [22] a cross-over between the hadronic

phase and the QGP phase is observed for low µb [23]. By increasing µb one expects to

find a critical point, beyond which a first order phase transition line starts, ending at

the T = 0 axis [24].

The phase transition is two-fold. The intuitively understood confinement/deconfinement

transition is accompanied by a chiral phase transition [25]. Chiral symmetry is only

an approximate symmetry for finite quark masses, as mass breaks chiral symmetry on

the level of the Lagrangian explicitly [26]. Both symmetries are spontaneously broken

below their respective critical temperatures and are in principle distinct phase tran-

sitions with the expectation value of the Polyakov-Loop and the chiral condensate as

respective order parameters. However, in QCD the critical temperatures are found to

be suspiciously close to each other, so that the question of a possible deeper connection

is of interest. However, this question has not yet been conclusively answered [27–30].

The topic of phase transitions is discussed in more detail in chapter 2.

For low temperatures and high baryon densities, deconfined quark matter is expected

to exist in the interior of neutron stars, making the understanding of the QGP essential

for describing these stellar objects [31]. Comparable energy densities were also present

1For asymptotic freedom to occur, Yang-Mills fields are actually required [6]

2



1.1 General introduction

in the early universe, making the QGP dynamics also crucial for early universe mod-

els [32].

An obstacle for studying the QGP lies in its short life-time in any experimental setup

that can be realized so far. Direct measurements are therefore inaccessible. In the above

mentioned collider experiments, bunches of heavy-ion cores are accelerated to extremely

high energies and brought to collision. Besides the energy per nucleon (which is of the

order ≈ 100 GeV), the impact parameter b can be tuned. It describes the non-centrality

of the collision, i.e. the relative displacement of the two particle sheets2. After the col-

lision a highly non-equilibrium state is produced, that is found to thermalize rapidly

(tth ≈ 1fm) and to form a QGP in its core region [33,34].

Due to strong density gradients, the system expands rapidly and cools down in the pro-

cess. Once temperature drops below the confinement/deconfinement transition tem-

perature, hadrons are formed, that are eventually producing signals in the detectors.

Fortunately, the momentum distribution allows conclusions about the intermediate

Figure 1.1: Two colliding nuclei with finite impact parameter b form a elliptic overlap region, leading
to anisotropic density gradients after the collision, causing an anisotropic momentum distribution of
the detected particles.

dynamics: a non-central collision, i.e a finite impact parameter b leads to an anisotropic

momentum distribution of the final state particles (see. Fig. 1.1). The plane spanned

by the beam direction and the direction of the impact parameter is called the plane of

collision. Momentum anisotropy can be quantized by measuring the anisotropic flow

coefficients νn [35–38]. They are defined as the expansion coefficients of the momen-

tum distribution perpendicular to the beam direction in cos(nθ) (n ∈ N), where θ

measures the angle between the direction in the plane of collsion and the out-of-plane

2the highly accelerated particle bunches are approximately described by sheets, due to Lorentz length
contraction.

3



1 Introduction

direction. The efficiency of the conversion from an initial state spatial anisotropy to a

final state momentum anisotropy, i.e. the magnitude of νn (n 6= 0) is governed by the

internal dynamics of the QGP phase [39]. In particular, the elliptic flow coefficient ν2 is

the main experimental observable in anisotropic flow studies in heavy-ion collisions [40].

When the theory of a deconfined phase of quarks and gluons was first recognized in the

1970s, general agreement was, to expect a gas of weakly interacting quasi-particles, that

could be studied perturbatively [41, 42]. While poorly converging perturbation series

indicated, that in the vicinity of the critical temperature, strong coupling effects were

important, it still came as a surprise when the first results at RHIC showed [43, 44],

that the effective interaction in the QGP was quite strong. In fact, the limit of strong

interactions and small mean free paths - ideal hydrodynamics - was in much better

agreement with the data than a weakly interacting gas [45–49]. It even turned out,

that the QGP is very close to being a perfect liquid, defined be a minimal value for the

shear viscosity to entropy density ratio η
s

[50–56].

A strong motivation to study the η
s
-ratio further was delivered in 2004 when Kov-

tun, Son and Starinets claimed the existence of an universal (non-zero) lower bound
η
s
≥ 1

4π
. The conjecture is based on conformal arguments and is known as the AdS/CFT

conjecture [57]. Besides ultra cold atomic gases, QGP was the most promising candi-

date to saturate the bound3. Experimental data indeed suggests a small η
s
≡ (1− 5) 1

4π

for the QGP [58–62].

The minimum of η
s

is assumed in the vicinity of the critical temperature, where the

running coupling αs is large and perturbation theory does not converge. Thus, calcu-

lations of the shear viscosity require non-perturbative methods.

In principle two classes of methods exist, continuum methods and lattice QCD. They

mostly have in common to calculate euclidean correlation functions, i.e. time evolu-

tions can only be accessed by analytic continuation of the imaginary (Euclidean) time

back to real (Minkowski) time.

Lattice QCD [63] discretizes space and time and solves the equations of motion nu-

merically on a finite lattice. This brings about some immediate advantages: The

lattice spacing a implicitly introduces a cutoff, so that all quantities are finite and

3or to violate it, depending on each one’s personal trust in string theory
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1.1 General introduction

renormalization can be avoided (or at least postponed). Further, it is straight for-

ward to translate physical parameters into the lattice quantities and error handling

is well defined. However, there are also some serious drawbacks. The computing ef-

fort increases dramatically with lattice size, while too small lattices suffer from finite

size artifacts, that can show signals absent in a continuum approach, and vice versa.

Parallelization, the use of GPU’s and highly reduced hardware costs have however,

extended the feasible lattice sizes in the recent decade. Related to the issue of lattice

artifacts, is the extrapolation to continuum. Any quantity on the lattice will depend

on the lattice spacing and in order to compare to continuum quantities needs to be

extrapolated to a→ 0. The need for regularisation and renormalisation comes through

the backdoor, as the continuum limit will give the (possibly divergent) bare quantities.

Lattice QCD is further restricted to small baryon densities, due to the yet unsolved

sign problem [64]. It describes the numerical problem of integrating highly oscillatory

integrands to a predictive accuracy and occurs e.g. for a finite background density of

interacting fermions.

Examples for continuum methods are the Dyson-Schwinger equations (DSE’s) and the

Functional Renormalization Group (FRG) solving the full theory or effective models

as the Nambu Jona-Lasinio (NJL) model [65–68] or the quark-meson model [69–71].

DSE’s are the quantum field theory equivalent to the Euler-Lagrange equations of clas-

sical mechanics, and are thus the equations of motion for the correlation functions.

They are given by an infinite hierarchy of coupled differential equations that can be

solved approximately by introducing a suitable truncation [72].

FRG on the other hand solves the (exact) Wetterich flow equation [73] for the ef-

fective action. The flow equation interpolates between the classical action and the full

quantum action by successively integrating out momentum shells and rescaling the sys-

tem, which is an RG-transformation interpreted as a flow. In general, the flow equation

cannot be solved exactly and, similar to the DSE’s, truncations are necessary [74].

Once the euclidean correlation functions are computed by the method of choice, the

aim of this thesis is to connect them to transport coefficients, especially shear viscosity.

The relation is established by the Kubo relation [75], that yields - within linear response

theory - shear viscosity in terms of the zero frequency limit of the frequency derivative

of the spectral function ρππ of a certain energy-momentum tensor correlation function.
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1 Introduction

It will be shown, that ρππ can be expressed in terms of products of spectral functions of

the fundamental fields in a diagrammatic expansion with a finite number of diagrams.

The spectral functions of the fundamental fields are obtained from the (FRG and lat-

tice) euclidean correlation functions by analytic continuation.

Here, methods like the Tikhonov regularisation [76], Pade approximation or the Maxi-

mum Entropy Method (MEM) are feasible tools. In this thesis the latter is employed,

being a numerical method to determine the most likely analytic continuation given

the correlator and any available prior knowledge on the shape of the spectral function.

Originally, MEM was designed for image reconstruction [77,78], but is today also widely

used in High Energy Physics for analytic continuations of numerical data [79–82].

For gluon spectral functions, confinement imposes a complication, as it is reflected in a

positivity violation of the spectral function. As, in general, particle spectral functions

are positive definite, MEM was designed, to a priori assume a positive definite spectral

function. Here, an extension of standard-MEM is proposed, to allow the reconstruction

of spectral functions with (finite) violation of positivity.

1.2 Outline of the thesis

The thesis is structured as follows: In the following chapters 2-5 the needed theoretical

background is established. First, in chapter 2 a basic introduction to the quantum

field theory under consideration is given. Important features of quantum chromody-

namics like asymptotic freedom as a consequence of the non-abelian gauge group, the

phase diagram and the topic of conformal field theory are discussed. In particular, pure

(quarkless) SU(3) gauge theory is introduced, with special emphasis on the differences

to QCD.

Chapter 3 will introduce hydrodynamics. The theory is used to study the dynam-

ics of the quark-gluon plasma, which can be treated as an almost perfect liquid. Here,

the AdS/CFT conjecture of a lower bound for the viscosity over entropy ratio is intro-

duced. Further, Kubo formulae are derived within linear response theory. They relate

the viscosity to static correlation functions of the energy-momentum tensor, and thus

build a bridge between hydrodynamics and field theory.

Chapter 4 discusses thermal field theory i.e. field theory at finite temperature. There
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1.2 Outline of the thesis

are two conceptually different approaches. The ’imaginary time formalism’ trades the

time variable for temperature. It can thus only describe systems in thermal equilib-

rium. It is straightforward to apply, and does not create much calculational trouble.

The second approach, the ’real-time formalism’, treats temperature as an additional

variable. This allows to calculate non-equlibrium quantities. The inclusion of a thermal

bath, can be obtained by a doubling of the degrees of freedom for the field variables and

the sources. A generic loop intergral is evaluated in both formalisms to demonstrate

their equivalence.

In chapter 5, correlation functions are discussed, with special interest in the spectral

function, which will be the key object of this thesis. It will be shown, that in Minkowski

spacetime, the spectral function is related to the imaginary part of the retarded Greens

function, while after Wick rotation to Euclidean space, the spectral function is related

via an integral equation to the euclidean (imaginary time) correlation function. This

relation will be the starting point for the Maximum Entropy Method discussed in chap-

ter 7.

In chapter 6 the knowledge assembled in chapters 2-5 is combined to derive a dia-

grammatic expansion for the shear viscosity in terms of the spectral functions of the

fundamental fields and (Bose) distribution functions. The leading order and next-to-

leading order diagrams are classified and discussed in detail.

In chapter 7, the numerical method MEM will be discussed extensively. After the

introduction of the general algorithm, modifications are pointed-out to deal with gluon

spectral functions, which violate positivity as a consequence of confinement. Also a

proof for the uniqueness of the MEM solution is given, using Bayes’ theorem of condi-

tional probabilities.

Finally, in chapter 8, the results of the extended-MEM simulations for finite tem-

perature Yang-Mills theory are presented. In the first part of the chapter, sources for

systematic errors are analysed and quantified. In the second part, the features of the

gluon spectral functions are dicussed and compared to previous results. Both the limit

of zero temperature and high temperature are studied.

Chapter 9 presents the main application of gluon spectral functions in this thesis,
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1 Introduction

The shear viscosity over entropy density ratio η
s

is calculated, studied in the vicinity of

the critical temperature and extrapolated to the perturbative hard thermal loop (HTL)

results. To the author’s knowledge, η
s

is calculated for such a wide temperature range

from first principles for the first time.

The thesis is summarized in chapter 10 and an outlook to further interesting appli-

cations of spectral functions and the MEM algorithm is given.
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2 Quantum Chromodynamics and

Yang-Mills theory

’Die Gefahr, dass der Computer so wird wie der Mensch, is nicht so gross, wie dass

der Mensch so wird wie der Computer.’

Konrad Zuse

In this chapter, QCD is introduced, beyond the qualitative introduction given in the

preceeding chapter, with special emphasis on the gauge sector.

2.1 SU(N) gauge group

In this section the gauge group of Yang-Mills theory is introduced. The aim is to derive

gauge invariant tensors, that can be used to build the most simple Lagrangian, which

will be the Yang-Mills Lagrangian.

The special unitary group SU(N) is the Lie group of N ×N unitary matrices with de-

terminant 1. It is a continous, simple connected group, such that that any infinitesimal

group element1 g(ε) can be written in terms of Hermitian operators T a - the generators

- as

g(ε) = 1 + i εaT a +O(ε2) (2.1)

The generators span the space of infinitesimal group transformations, such that a basis

can be found. In particular, for such a basis {T a} the commutator of each pair of

generators can be written as:

[T a, T b] = i fabcT c (2.2)

The numbers fabc are characteristic for the group and are called structure constants.

The space of generators together with the operation (2.2) forms a Lie algebra usually

1infinitesimal with respect to deviations from the neutral element, which is the unity matrix
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2 Quantum Chromodynamics and Yang-Mills theory

denoted by su(N). Apart from the commutation relation (2.2) the generators have not

yet been further specified. In particular, their dimenionality is not fixed by the group.

The ’fundamental representation’ is a N -dimensional representation given by a basis

of the matrix group SU(N). An example is SU(2), for which the most commonly used

fundamental representation is given by the Pauli matrices

σ1 =

(
0 1

1 0

)
(2.3) σ2 =

(
0 −i
i 0

)
(2.4) σ3 =

(
1 0

0 −1

)
(2.5)

Another important representation is the (N2 − 1)-dimensional ’adjoint representation’

given by

(T aA)bc = −i fabc (2.6)

Let us now consider a local gauge transformation of a N−component Dirac field Ψ of

the form

Ψ(x)→ V (x)Ψ(x) (2.7)

with

V (x) = ei α
a(x)Ta (2.8)

Obviously, this is an example for a local SU(N) transformation, which shall leave the

Lagrangian invariant. As the local gauge transformation changes the phase of fields at

different positions independently, taking derivatives naively is no longer well defined:

nµ∂µΨ = lim
ε→0

1

ε
(ψ(x+ εn)− ψ(x)) (2.9)

The problem is solved by introducing the covariant derivative

nµDµΨ = lim
ε→0

1

ε
(ψ(x+ εn)− U(x+ εx, x)ψ(x)) (2.10)

in terms of the comparator U(y, x). The comparator is defined via its transformation

law under the local gauge transformation V (x)

U(y, x)→ V (y)U(y, x)V †(x) (2.11)

and the normalisation U(x, x) = 1. It ensures that only objects with the same trans-

formation properties are substracted. U(y, x) can be chosen to be unitary and thus can
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2.2 The Yang-Mills Lagrangian

be expressed in terms of the SU(N) generators for an infinitesimal seperation:

U(x+ εx, x) = 1 + i gεnνAaµT
a +O(ε2) (2.12)

Here, a new field Aaµ is introduced, called gauge field. From this point of view gauge

fields simply follow from the requirement of parallel transport for fields after local gauge

transformations. The covariant derivative reads in terms of the gauge fields

Dµ = ∂µ − i gAaµT a (2.13)

By construction, covariant derivatives of the Dirac fields transform under (2.7) accord-

ing to

DµΨ→ (1 + i αaT a)DµΨ +O(α2) (2.14)

One more object is needed to build the Yang-Mills Lagrangian, the field strength tensor

F a
µν . It is defined as

F a
µνT

a ≡ i
g
[Dµ, Dν ] (2.15)

or, expanding the covariant derivatives according to (2.13)

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (2.16)

Note, that the last term is only present in non-Abelian gauge theories and permits pure

gauge field vertices. The transformation law for the field strength tensor is

F a
µνT

a → V (x)F a
µνT

aV †(x) (2.17)

2.2 The Yang-Mills Lagrangian

Now, the Yang-Mills Lagrangian can be constructed. The scalar

Lg = −1

4
F a
µνF

µν
a (2.18)

is gauge invariant, which can simply be checked by performing a local gauge trans-

formation (2.7). It constitutes the kinetic energy term for the gauge fields Aaµ. Note,

however, that (2.18) describes a full interacting (gauge) field theory, due to the non-

Abelian nature of F a
µν in (2.16). This non-trivial gauge sector strongly distiguishes

SU(N) from abelian gauge theories like QED. Equation (2.18) is called Yang-Mills La-
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2 Quantum Chromodynamics and Yang-Mills theory

grangian (without quarks).

The coupling to Dirac fermions is achieved by adding the Dirac Lagrangian

LDirac =
∑

ψ̄(i(γµ∂µ)−m)ψ (2.19)

with the partial derivative ∂µ promoted to the covariant derivative Dµ:

LYM = Lg +
∑

ψ̄f (i( /Dµ)−mf )ψf (2.20)

Here, the quark fields ψf acquire an additional index for their flavor. The number of

flavour is denoted by nf . In particular, Quantum Chomodynamics is the current best

effective theory for the strong interaction with N = 3, nf = 6 and experimentally

determined masses for the quarks. Note, that the coupling between quarks and gauge

fields is generated by the gauge field dependence of the covariant derivative.

The phase diagram of QCD is very rich. In addition, interesting phenomena can occur,

when the number of colors, the number of flavours or the quark masses are varied. In

this thesis it is only possible to concentrate on the aspects of the phase diagram, that

will be of importance for the remainder of the thesis.

2.3 Aspects of the Yang-Mills Lagrangian

Figure 2.1: Qualitative sketch of the QCD phase diagram.

Figure 2.1 shows a sketch of the current understanding of the QCD-phase diagram,
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2.3 Aspects of the Yang-Mills Lagrangian

as a function of temperature and baryon chemical potential. In the first chapter, a

rough qualitative overview has already been given, with special emphasis on the his-

toric developement of the understanding of the strong interaction. Here, the topic of

symmetries and spontaneous symmetry breaking are discussed from a modern point of

view. Current methods of studying the QCD/Yang-Mills phases are discussed.

2.3.1 Phase transitions

A phase transition is the transformation of a system from a state of matter (phase)

to another. Common examples are the different phases of water: ice, liquid water

and vapor, or the phase transition in the ferromagnetic Ising model, from a ordered

phase, where all spins are aligned to a disordered phase signaled by a vanishing total

magnetisation. The two examples already cover many aspects of phase transitions.

The magnetisation in the Ising model is an example for an order parameter, that is

associated with any phase transition. This reflects, that a phase transition occurs, when

a symmetry of a system is spontaneously broken. A spontaneous symmetry breaking

describes the effect, that a system’s Lagrangian respects a certain symmetry but the

ground state does not. A simple example is again the square lattice Ising model with

zero external magnetic field h = 0 and a ferromagnetic coupling J > 0 in the nearest

neighbour approximation. Its Hamiltonian reads

H(~σ) = −J
∑
<ij>

σiσj (2.21)

and is symmetric under the flipping of all spins σi → −σi. However, below the Curie

temperature, the spins will align and spontaneously break the spin-flip symmetry. Thus,

in the symmetry broken phase, an additional parameter is needed to fully describe the

system, which is the value of the total magnetisation.

Phase transitions are divided in two classes: First order phase transitions, i.e phase

transitions associated with latent heat and second order (or continuous) phase transi-

tions, where the order parameter changes continuously across the transition.

In Yang-Mills theories, there are two symmetries associated with the transition be-

tween the hadronic phase and the QGP phase: Chiral symmetry and center symmetry.

The Yang-Mills Lagrangian would be chiral symmetric, if the matter part allows a
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2 Quantum Chromodynamics and Yang-Mills theory

decompostion into

ψ̄( /D −m)ψ = ψ̄L( /D −m)ψL + ψ̄L( /D −m)ψL (2.22)

with ψL = 1−γ5

2
ψ and ψR = 1+γ5

2
ψ. This decomposition is, however, only possible for,

m ≡ 0, i.e. finite quark masses break chiral symmetry explictly. In the case of vanishing

quark masses, left- and right-handed fields can be rotated separately in flavor space,

representing a UL(nf )×UR(nf ) symmetry. The order parameter of chiral symmetry is

the chiral condensate 〈q̄q〉. For physical quark masses, chiral symmetry can at least be

considered an approximate symmetry for the lightest (u− /d-)quarks.

Center symmetry is related to gauge transformations, that are periodic in the temporal

direction modulo a twist belonging to the center of SU(3)2. In pure SU(N) gauge theory,

center symmetry is an exact symmetry of the action, however dynamical quarks break

center symmetry explictly. The order parameter of center symmetry is the expectation

value of the Polyakov loop

〈P (x)〉 ≡ Tr

T exp

i β∫
0

A0(~x, τ)dτ

 (2.23)

The center symmetric phase is the (confining) hadronic phase, while the center broken

phase is related to the deconfined phase3.

2.3.2 Phase transitions in Yang-Mills theory

The nature of the phase transitions in QCD is still under discussion. The reason for

the difficulty to explore the phase diagram is rooted in the behaviour of the running

coupling αs. In the vicinity of the phase transitions it is large and causes a breakdown

of perturbation series. The complexity of phenomena occuring in the vicinity of the

chiral phase transition and the confinement/deconfinement phase transition has lead

to a variety of effective theories, that, in principle, pursue the goal to neglect certain

effects of the full Yang-Mills or QCD Lagrangian to make one of the symmetries exact

in the symmetric phase.

2The centre Z of a group G is the set of elements g∗ ∈ G, such that g∗g = gg∗ for all g∗ ∈ G. The
center of SU(N) are the N -th roots of unity ZN = {zIN×N |zN = 1}.

3Again, this is exact for pure gauge theory only.
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2.3 Aspects of the Yang-Mills Lagrangian

The simplest approach is to drop the fermionic part of the Yang-Mills Lagrangian

entirely. The critical temperature was determined to [83]

T SU(3)
c ≈ 270± 10MeV (2.24)

by lattice QCD studies. The phase transition is first order [84]. Interestingly, in pure

SU(N) gauge theory the order of the phase transition depends on the dimensionality

of the gauge group. For SU(2) the phase transition is second order while the disconti-

nuity of the Polyakov loop expectation value, signaling a first order transition becomes

stronger with increasing N [85].

This limit is not to be mixed with the limit of infinite quark masses, where center

symmetry is excact, but chiral symmetry has no meaning. The reason for the restora-

tion of center symmetry is this limit is the absense of dynamical quarks. Thus the free

energy cost necessary to create a non-zero center charge (for example a test quark) is

infinite, as the color flux string cannot be broken by a static quark [86].

For physical quark masses, only the lightest quarks, ’up’, ’down’, ’strange’ are dynam-

ical at energies of the order of the confinement/deconfinement transition temperature

, as the other quarks are too heavy to have a quantitative effect on the phase transi-

tion. However, center symmetry is no longer exact and the transition broadens to a

crossover [87]. The QCD transition temperature has been calculated to [88–91]

TQCDc ≈ 150− 180MeV (2.25)

For finite baryon chemical potential available non-perturbative methods are sparse,

as lattice QCD suffers from the sign problem. Studies are mainly reduced to effective

models, as the Polyakov-quark-meson model [92,93] or the Polyakov-NJL-model [94,95].

Such studies suggest, that the crossover ends at a second order critical point. The po-

sition of the critical point depends strongly on the model and masses of quarks and

mesons [96–98]. From the critical point, towards larger chemical potentials, a first or-

der transition line starts. However, there is also debate on whether the critical point

is tricritical, and chiral and confinement/deconfinement transition split [99–101].

The last class of studies of Yang-Mills theories are the large N results. The idea is that

the N →∞ theory, unlike the naive expectation is for many cases is easier to solve, as
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Feynman amplitudes, that scale with inverse powers of N are suppressed. In two spa-

tial dimensions the meson spectrum could (semi-)analytically be computed [102]. Even

though the 4-d equivalent cannot be solved analytically, the large N limit is widely

used. The main idea is to expand the original theory in powers of 1
N

[103]. Interest-

ingly, the large N limit can be identified with a free string theory. Thus, the large N

expansion connects field theory with string theory [104]. The most well-known finding

is the AdS/CFT conjecture, that will be discussed in the next chapter.

2.4 The running coupling and asymptotic freedom

One of the most prominent features of QCD is the phenomenon of asymptotic freedom.

It can be understood by calculating the β-function, which describes the change of the

(renormalized) coupling constant under the change of the energy scale µ.

β(αs) = µ2∂αs
∂µ2

(2.26)

In perturbation theory the β-function is expanded in powers of the coupling:

β(αs) = −α2
s(β0 + β2αs + ...) (2.27)

The respective terms β0, β1, ... are the 1-loop,2-loop,... contributions. The 1-loop re-

sult for the running coupling is obtained by only keeping the first term in (2.27) and

integrating (2.26):

αs(µ
2) =

αs(µ
2
0)

1 + β0αs(µ2
0) Log(µ

2

µ2
0
)

(2.28)

This fixes the functional form of αs except its value αs(µ
2
0) at a scale µ2

0. Setting

Λ = µ2
0 exp

[
− 1

β0

1

αs(µ2
0)

]
(2.29)

(2.28) can be expressed in terms of the dimensionful parameter Λ:

αs(µ
2) =

1

β0 Log( µ
2

Λ2 )
(2.30)

The value of the expansion coefficient β0 can be obtained in several ways. The renor-

malisation Zα for αs can be calculated from the quark-gluon vertex, the ghost-gluon

vertex, or pure gluon vertices. For a SU(N) gauge group and nf fermion flavour the
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leading order coefficient is [105,106]:

β0 =
1

4π

(
11N

3
− 2

3
nf

)
(2.31)

Also higher-loop expressions for the β-function analytically known. The next coeffi-

cients are

β1 =
1

(4π)2

(
105N

3
− 38

3
nf

)
(2.32)

and

β2 =
1

(4π)3

(
2857N6− 5033

18
nf +

325

52
n2
f

)
(2.33)

Conventionally, for the reference scale µ2
0, the mass of the Z0 boson is chosen (MZ =

91.2GeV) and the current QCD value for the coupling is αs(MZ) = 0.1184±0.0007 [107].

In Fig.2.2 the QCD running coupling is shown in the perturbative regime. Towards

smaller energies, the coupling increases, until a perturbative treatment breaks down.

The plot is taken from [107] and constitutes the average over all relevant results for the

running coupling from 2009.

In pure gauge theory there is no experimental data to to fix the absolute scale of

the running coupling. This will be further discussed, when the non-perturbative re-

sults for η
s

is extrapolated to the Hard-Thermal-Loop regime.

The sign of the β-function is of particular interest. If it is negative the coupling strength

decreases with increasing energy scale. This is the case for QCD, as can be seen in

Fig. 2.2. The phenomenon of asymptotic freedom, is a unique property of non-Abelian

gauge sectors. It leads to converging perturbation series (2.27) at large energy scales.

Interestingly, the feature of asymptotic freedom depends on the ratio λ =
nf
N

. For

λ ≥ 11
2

the corresponding field theory is no longer asymptotically free.

At finite temperature far less is known about the running coupling, as αs(Q, T ) will

also be dependent on temperature. In the limit Q >> T , temperature will be not be a

relevant scale and

αs(Q >> T, T ) ≈ αs(Q) (2.34)

apart from this obvious limit, there are only few results for the finite temperature

running coupling. [108–111]. In this thesis for the two-loop diagrams in the viscosity

expansion, the running coupling is determined via the ghost-gluon vertex, employing
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Figure 2.2: World average for the perturbative QCD running coupling.

the same source as for the propagators. For the extrapolation to the perturbative

regime the zero temperature αs in two-loop approximation is employed.

2.5 Deconfined QCD matter

In this concluding section, examples for observable deconfined QCD matter are dis-

cussed.

From the previous section, it is obvious, that the best known part of the QCD phase

diagram is the high temperature and/or high baryon chemical potential region, as it

allows a perturbative description. In particular, two limits are of interest.
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In the radiation dominated early universe, free quarks and gluons, leptons and photons

made up the particle content. During its expansion the universe cooled and reached

the confinement/deconfinement transition temperature at t ≈ 10−6s. To study the

QCD phase transition, one needs observables in the today universe, that were affected

by the dynamics at temperatures of the order of the QCD critical temperature. For

example, the anisotropies of the cosmic mircrowave background (CMB) yields direct

information about the inflationary phase. The reason is, that during inflation the rele-

vant wavelengths became causally disconnected from microphysics, but re-entered the

Hubble radius after inflation but prior to photon decoupling. The remnants of the

QCD phase transition however occured after inflation. Therefore, they never got dis-

connected from equiblibrating effects and were washed out. Note, that the timescale of

the cosmic QCD phase transition is expected to be of the order tQCD ≈ 10−5s, whereas

the typical timescale for the strong interaction is ts ≈ 10−23s. Possible remnants of the

QCD phase transition can thus not be of radiative nature.

Indirect information about the QCD phase transition might be found in the baryon

asymmetry [112,113] or in primordial magnetic fields [114,115].

The second, opposite limit is the limit of high baryon densities and comparably small

temperatures. Such conditions are found in the interior of neutron stars. The decon-

fined QCD matter is in this context usually called ’quark matter’. Neutron stars can (to

some extend) be understood perturbatively with aid of the Pauli exclusion principle,

which will lead to the formation of a degenerate Fermi sea. If some kind of attractive

interaction is present, the quarks near the Fermi surface will condensate into Cooper

pairs inducing color Meissner effects, leading to color superconductivity. There are

many reviews found on this and related topics of the color-flavor-locked phase, mixed

phases and effective theories, which cannot be covered here [24,116,117]

The most well-known realisation of deconfined QCD matter is experimentally re-

alized the collider experiments at CERN and RHIC. As discussed qualitatively in the

introductory chapter of this thesis, heavy-ion cores are brought to collision at high ener-

gies, such that a highly non-equilibrated, dense plasma is created. A typical heavy-ion

collision is depicted in Fig.2.3. Spatial anisotropies due to a non-central collision, cause

an elliptic overlap region of the nucleons, participating in the collision. This leads to

anisotropic density gradients, which cause the expansion of the produced plasma to be

anisotropic as well. When the system is cooled down, such that it decouples, the final
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Figure 2.3: Sketch of a non-central heavy-ion collision. The initial state spatial anisotropy causes a
momentum anisotropy of the final state (see also Fig.1.1).

state particles are detected, and the momentum anisotropy can be calculated. The

anisotropy is quantified, by measrung the anisotropic flow coefficients νn, defined as

the expansion coefficients in

E
d3N

d3p
=

1

2π

d2N

ptdptdy

(
1 + 2

∞∑
n=0

νncos [n(φ−ΨR)]

)
(2.35)

with the particle energy E, momentum p, transverse momentum pt and rapidity y. φ

denotes the azimuthal angle and ΨR the reaction plane angle. The flow coefficients are

obtained by projection, and yield:

νn(pt, y) = 〈cos [n(φ−ΨR)]〉 (2.36)

The first coefficent ν1 is called directed flow and vanishes at midrapidity for the collision

of identical nuclei4, while the second coefficient ν2 is the elliptic flow. It is sensitive on

the early stage dynamics, and therefore constitutes a good probe for the quark-gluon

plasma. In particular, the dynamics of the quark gluon plasma is strongly influenced

by the ratio η
s
. In Fig.2.4 the dependence of the reaction plane eccentricity ε, which is

proportional to the elliptic flow coefficient ν2, on η
s

as a function of after-collision time.

The qualitative effect is, that a higher η
s
-ratio dampens the momentum anisotropy.

This is expected, as shear viscosity is a dissipative effect, that generally tends to smear

out signals.

The measurement of the elliptic flow has become an active field of research in the

preceeding decade, with the general agreement, that quark-gluon plasma is close to

being a perfect liquid [118–120]. With increasing accuracy, also higher anisotrpic flow

4Indeed, all odd coefficients vanish at midrapidity
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2.5 Deconfined QCD matter

Figure 2.4: Effect of η
s on the eccentricity ε for Au/Au collisions modeled within the MCGlauber

model.

coefficients are measured [121,122].

For the modelling of heavy-ion collisions the structure of the beams is an important

issue. The nucleons are highly located, such that a naive uniform distribution cannot

cover the real structure. As the elliptic flow is dependent on anisotropy effects in

the early dynamics, such pre-collision configurations will effect ν2 - even the averaged

result. Information on the effect of the nucleonic structure is obtained from event-by-

event analysis [123–125].
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3 Hydrodynamics

’It is impossible to convey the beauty of the laws of nature

to someone, who is not familiar with the principles of mathematics.

I regret it, but it seems true.’

Richard Feynman

In the first chapter, it was already mentioned that hydrodynamics is well-suited to

describe the dynamics of the quark-gluon-plasma stage in heavy-ion collisions [126,127].

Therefore, in this chapter an introduction is given to the main concepts of this theory,

following to some extend the review article [128] and references therein. Further, linear

response theory is introduced and the Kubo formulae are derived. They form the

basis of connecting experimental data of anisotropic flow coefficients to the theoretical

models for the shear viscosity over entropy density ratio η
s
. The issue of perfect fluidity

is adressed and the well-known AdS/CFT conjecture for a universal lower bound for η
s

is motivated.

3.1 Non-relativistic hydrodynamics

Hydrodynamics is based on the observation, that in fluids the behaviour of correlation

functions at small energy and momentum is dominated by the evolution of conserved

charges. “Conserved” indicate, that these charges cannot disappear locally, but will

propagate large distances compared to the mean free path of the fluid. For a classical

non-relativistic fluid the conserved quantities are energy, mass and momentum. These

quantities obey conservation laws:

∂ε

∂t
+ ~∇ ·~j = 0 (3.1)

∂ρ

∂t
+ ~∇ · ~g = 0 (3.2)
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3 Hydrodynamics

∂gi
∂t

+∇jΠij = 0 (3.3)

The conservation laws are easily understood: Equation (3.1) for example states, that a

change in the energy density ε at some position ~x can only occur if the net energy flow

~∇ ·~j(~x) to and from this position does not vanish. In integral form

∂

∂t

∫
V

d3x ε(x) = −
∫
∂V

~j · d~a (3.4)

this interpretation is even more intuitive: The energy of some volume V changes due

to energy flow through the boundary ∂V . Note, that the differential area element d~a

always points outwards, explaining the minus sign.

Equation (3.1) is retrieved by applying Gauss’ theorem to (3.4) and assuming the

validity for all volumes:

0 =
∂

∂t

∫
V

d3x ε(x) +

∫
∂V

~j · d~a (3.5)

=
∂

∂t

∫
V

d3x ε(x) +

∫
V

d3x ~∇ · ~j(x) (3.6)

=

∫
V

d3x (∂ε(x)
∂t

+ ~∇ · ~j(x)) (3.7)

(3.8)

Analog interpretations hold for (3.2) and (3.3). In general, equations (3.1) − (3.3)

cannot be solved analytically and approximations are needed. A common approach is

to solve them order by order in derivatives of the fluid velocity ~v and the thermody-

namic variables pressure P , energy density ε and mass density ρ. The conservation

laws are not sufficient to unambiguously determine the six unknown quantities, energy

density, mass density, pressure and fluid velocity. However, there is a sixth equation,

the equation of motion (EoM), to close the system.

The leading order result in the velocity gradient expansion is called ideal hydrody-
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3.1 Non-relativistic hydrodynamics

namics and yields

~j = ~v(ε+ P ) (3.9)

~g = ρ~v (3.10)

Πij = Pδij + ρvivj (3.11)

Ideal hydrodynamics is characterized by the absence of dissipative forces, i.e. irre-

versible processes in the fluid1. Dissipative processes can, however, occur at the next

order in the derivative expansion. The next-to-leading order is called viscous hydrody-

namics and is governed by new parameters: the transport coefficients η (shear viscos-

ity), ζ (bulk viscosity) and κ (thermal conductivity):

~ji = vi(P + ε) + vjδΠij + Yi (3.12)

~g = ρ~v (3.13)

Πij = Pδij + ρvivj + δΠij (3.14)

with Yi = −κ~∇T and δΠij = −η(∇ivj −∇jvi − 2
3
δij ~∇ · ~v)− ζδij ~∇ · ~v

Transport coefficients are proportional to the gradients of the fluid velocities, such

that they induce forces to dampen the gradients. In that sense, they are the fluid

analog to frictional forces. This was already discussed in the preceeding chapter in the

context of the interpretation of Fig.2.4. Bulk viscosity is proportional to the velocity

gradients along the flow direction of the fluid, i.e. it contains information on the non-

ideal behaviour of the fluid under compression. In particular, bulk viscosity vanishes

for incompressible fluids. Shear viscosity on the other hand contains information on

velocity gradients transverse to the flow direction of the fluid. Figure 3.1 shows the

intuitive definition of shear viscosity: A resting fluid is put between two plates. If one

of the plates is now set into constant motion, a velocity gradient in the fluid will build

up perpendicular to the plates. The reason is the shear force exerted by the plates.

The constant of proportionality between the shear force and the velocity gradient is

the shear viscosity.

Equation (3.3) with the shear stress tensor (3.14) is known as Navier-Stokes equation.

1In particular, the entropy of an ideal fluid is constant
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3 Hydrodynamics

Figure 3.1: A fluid is located between two plates, which are moving relative to each other. Shear
forces will indude a velocity gradient in the fluid, perpendicular to the plates.

3.2 Relativistic hydrodynamics

So far non-relativistic fluid were considered. For QCD matter, however, a Lorentz-

invariant formulation of hydrodynamics is required. The relativistic generalization

to non-relativistic hydrodynamics takes into account relativistic effects either due to

relativistic motion of the macroscopic system or due to relativistic motion of the fluid

constituents.

The central quantity is the fluid 4-velocity uµ(x), obeying

uµ(x)uµ(x) = 1. (3.15)

It is always possible to find a (local) Lorenz transformation such that

uµ(x) = (1,~0) (3.16)

and the corresponding frame is called local fluid rest frame.

All properties of the fluid are determined by its energy-momentum tensor T µν(x) and

- in case there is a conserved current - by the flux Jµ(x). Analog to non-relativistic

hydrodynamics, where the constitutive equations (3.1)-(3.3) were expanded in gradi-

ents of the fluid velocity, the energy-momentum tensor (and all conserved currents) is

expanded in gradients of the fluid 4-velocity. The leading order and next-to-leading

order results are called ideal relativistic hydrodynamics and viscous relativistic hydro-

dynamics, respectively.
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3.2 Relativistic hydrodynamics

The leading order result for the energy-momentum tensor reads

T µνLO = (ε+ P )uµuν + Pηµν (3.17)

which is diagonal T µν(LRF ) = Diag(ε, P, P, P ) in the local rest frame, where the convention

η = Diag(−1, 1, 1, 1) is employed2. The correction to the energy-momentum tensor

δT µν from next-to-leading order is

δT µν = −η∆µα∆νβ(∂αuβ + ∂βuα − 2
3
ηαβ∂ · u)− ζ∆µν∂ · u (3.18)

with ∆µν = ηµν + uµuν . The explicit form of the first order correction can vary, de-

pending on the precise definition of the fluid velocity. The above expression (3.18)

is consistent with the Landau frame, such that in the local rest frame T 00 = ε and

T 0i = 0. The complete viscous energy-momentum tensor reads

T µν = T µνLO + δT µν (3.19)

For future use, the traceless, spatial part of the energy momentum tensor is defined as:

πij = T ij − 1
3
δijT kk (3.20)

In principle, the expansion in derivatives of the flow velocity can be carried out fur-

ther [129]. In that sense the transport coeffcients of viscous hydrodynamics are only

the leading order of the transport coefficients of the full expansion. However, for

nearly perfect fluids, the leading order viscous coefficients are supposed yield already

quantitaively accurate results, because the derivative expansion can be thought of an

expansion in powers of the inverse Reynolds number, which is small for nearly perfect

fluids. Further, experimental results for the QGP’s viscosity do not yet have the pre-

cision beyond viscous hydrodynamics [130].

There are numerous studies of transport coefficients for various systems and tempera-

ture regimes. Here, only a short selection can be given. The most natural choice for a

first calculation of tranport coefficients are scalar field theories with different types of

interactions [131,132], the O(N)-symmetric model either for weak coupling or the large-

N limit [133,134] and the Linear sigma model in the large-N -limit [135]. The examples

2Here, η denotes the metric, not shear viscosity.
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3 Hydrodynamics

and restrictions already indicate, that the calculation of transport coefficients is not

a trivial problem, but rather needs elaborate methods, especially in non-perturbative

regimes.

Of particular interest is the non-perturbative region of non-abelian gauge theories in

the vicinity of the critical temperature, where the minimum of η
s

is expected. The

results so far are quite sparse, beyond the one’s mentioned already in the introduc-

tion. The perturbative regime of high temperatures gauge theories, however, is well

explored [132,136]. The main tool is the Hard Thermal Loop (HTL) expansion which,

in principle, is a reorganization of the perturbation series leading to improve conver-

gence. The detail of HTL perturbation theory will be discussed in chapter 4.

3.3 Linear response theory

In the previous section transport coefficients were defined as constants appearing in

the first order correction of the energy-momentum tensor in a derivative expansion

in gradients of the fluid velocity. They are characteristic for the fluid and depend

on the microscopic dynamics. The connection between the macroscopic fluid and the

microscopic details is established by Kubo relations, that use the concept of linear

response. In this section a short introduction to linear response theory is presented.

For simplicity, the non-relativistic case is considered. However, anything derived here

is also valid for relativistic fluids.

Consider a Hamiltonian H = H0 + λHext, with ground state |0〉 of H0 and an external

perturbation Hext, that is adiabatically switched on and off. Let us adress the problem

of how Hext changes the ground state of H0. This is frequently used in many fields of

physics: An isolated system H0 is to be probed. Therefore, the response of the system

to a small (external) perturbation λHext is studied.

Consider an observable A(~x, t). The expectation value is changed by Hext according to

〈0|A(~x, t)|0〉 → 〈0|U−1(t)A(~x, t)U(t)|0〉 (3.21)

with the time evoultion operator

U(t) = Te
−i λ

t∫
−∞

dt′Hext(t′)

(3.22)
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3.4 The Kubo relations

If λ > 0 is sufficiently small, the exponential can be expanded in powers of λ:

U(t) ≈ 1− i λ
t∫

−∞

dt′Hext(t
′) ≡ 1− λX(t) (3.23)

The leading order correction to (3.21) is

δ〈0|A(~x, t)|0〉 = 〈0|(1 + λX(t))A(~x, t)(1− λX(t))|0〉 − 〈0|A(~x, t)|0〉 (3.24)

= λ〈[X(t), A(~x, t)]〉+ O(λ2) (3.25)

≈ i λ

t∫
−∞

dt′〈[Hext(t
′), A(~x, t)]〉 (3.26)

Equation (3.26) is called the linear response to the perturbation λHext. Note, that

(3.26) explicitly obeys causality, as the observed time t is always later than the times

t′ during which the perturbation acts.

3.4 The Kubo relations

If A(~x, t) is a local observable, in general, Hext(t) constitutes an external source, that

couples linearly to A(~x, t):

Hext(t) =

∫
d3xA(~x, t)f(~x, t) (3.27)

Further, if the observable is defined, such that 〈0|A(~x, t)|0〉 = 0, i.e. A(~x, t) measures

fluctuations from the expecatation value, then

δ〈0|A(~x, t)|0〉 = i

t∫
−∞

dt′
∫
d3x′ 〈0|[A(~x′, t′), A(~x, t)]|0〉 f(~x′, t′) (3.28)

=

t∫
−∞

dt′
∫
d3x′χ(~x, t; ~x′, t′)f(~x′, t′) (3.29)

with the (generalized) susceptibility

χ(~x, t; ~x′, t′) ≡ iΘ(t− t′)〈0|[A(~x′, t′), A(~x, t)]|0〉 (3.30)
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If the fluid is further isotropic with respect to the observable A(~x, t), χ depends on the

differences ∆t = t− t′ and ∆~x = ~x− ~x′ only, giving rise to the definition

χ(~x, t) ≡ χ(~x, t; 0, 0) = −iΘ(t)〈0|[A(~x, t), A(~0, 0)]|0〉 (3.31)

The (generalized) susceptibility is nothing but the retarded Greens function of the

observable A(~x, t). It is often useful to Fourier transform (3.31) to momentum space

(such a Fourier transform is sometimes called Kubo transform)

χ(p0, ~p) = −i
∫
d4x ei pµx

µ〈[A(x), A(0)]〉ret (3.32)

In this thesis, in particular the imaginary part of χ(p0~p), the spectral function, is of

interest and will be discussed in greater detail in the next chapters. Here, two spectral

functions of particular interest are defined:

ρij,ij(p0, ~p) = −2 Im i

∫
d4x ei pµx

µ〈[πij(x), πij(0)]〉ret (3.33)

with the traceless, spatial part of the energy momentum tensor (3.20) and

ρii,jj(p0, ~p) = −2 Im i

∫
d4x ei pµx

µ〈[Tii(x), Tjj(0)]〉ret (3.34)

with the energy momentum tensor (3.19).

The Kubo relations connect the spectral functions to transport coefficient. The Kubo

relations follow from the fluctuation-dissipation theorem

ρ(p0, ~p)−
ω

T
S(p0, ~p) (3.35)

relating the dissipative effects described by the spectral function to the fluctuations

described by

S(p0, ~p) = 〈πijπij〉p0,~p (3.36)

for shear viscosity and

S(p0, ~p) = 〈TiiTjj〉p0,~p (3.37)
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3.5 Shear Viscosity, Reynolds number and the AdS/CFT conjecture

for bulk viscosity. The relations (3.33) and (3.34) follow from lengthy but standard

calculus. For the above spectral functions (3.33) and (3.34) the Kubo relations read:

η = 1
20

lim
p0→0

lim
~p→0

ρij,ij(p0, ~p)

p0

(3.38)

ζ = 1
18

lim
p0→0

lim
~p→0

ρii,jj(p0, ~p)

p0

. (3.39)

Note, that besides shear and bulk viscosity, there is a third transport coefficient, thermal

conductivity κ. While fluid characteristic shear and bulk viscosity assume convervation

of energy and momentum, thermal conductivity is an observable if there is a conserved

4-current in the system. In non-relativistic fluids, the conserved current is mass density

and the associated charge is the particle number. However, in relativistic fluids, par-

ticles can be created and annihilate. Mass is therefore no longer a suitable conserved

charge. A conserved current can be charge density or the baryon number density, with

the total charge and the net baryon number as associated conserved charges. Here,

however, thermal conductivity will not be discussed further.

Interestingly, in the original work of Kubo neither of these transport coefficients was

adressed. Kubo studied the electric conductivity σel, i.e the response of a system to

an external electric field. In contrast, transport coefficients are not direct responses to

external fields. They are responses to internal inhomogeneities of the fluid, that can be

provoked by external forces, but, are not genuinely related a specific external force.

3.5 Shear Viscosity, Reynolds number and the

AdS/CFT conjecture

In this section the magnitude of shear viscosity η is studied in more detail. For non-

relativistic fluids, a fluids ’quality’ is judged by the (non-relativistic) Reynolds number,

whose definition is to some extend phenomenological and thus not unique. Here, the

following definition is used

Re =
n

η
vL (3.40)

with the mass density n, characteristic velocity v and characteristic length scale L of

the fluid. The size of the Reynolds number gives indication to what extend the fluid

tends to exhibit laminar and turbulent flows. Naturally, if the charateristic velocity is
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increased, the fluid’s flow will more likely to be turbulent. Let us, however, assume,

that vL is held constant. Then, the Reynolds number, is governed by η
n
. Larger shear

viscosities will decrease Re, keeping the flow laminar. Thus, the ’quality’ of a non-

relativistic fluid can be measured by η
n
, and the question arises, whether a non-zero

lower bound exists.

The relativistic equivalent to η
n

is η
s
, with entropy density s and a lower bound of

η

s
≥ 1

4π
(3.41)

was conjectured by the famous AdS/CFT conjecture. To understand the correspon-

dence of string-theory in certain Anti-de-Sitter spaces to conformal field theory some

definitions are necessary. Let M(n, 1) be a (n + 1)-dimensional flat (Minkowski-

)spacetime. The n-dimensional Anti-de-Sitter spaceAdSn is defined as the n-dimensional

hyperbolic hypersurface of M(n, 1) given by

(x1)2 + ..+ (xn)2 − (xn+1)2 = −1 (3.42)

On the other hand, a conformal transformation is a change of coordinates, xµ → x̃µ(x)

such that the metric transforms as

gµν(x)− > Ω2(x)gµν(x) (3.43)

A field theory is conformal, if it is invariant under such transformations. The idea of

the AdS/CFT correspondence is that the boundary of specific AdS-spaces is locally

equivalent to a certain conformal field theory. Sometimes this is also called holographic

duality [137]. The name was given, because the conformal field theory is one dimension

lower than its AdS dual. Thus, the relationship is similar to a hologram and its holo-

graphic image. The AdS/CFT correspondence was first explored in many publications

around the year 2000 [104,138,139].

On a first glance it looks far fetched to obtain information on transport coefficient from

a theory of gravitation. On a second look, however, one realizes the connection, that

is based on the energy-momentum tensor. It is coupled to gravity an is also related to

transport coefficients by the Kubo relations.

In particular, the 5-dimensional Anti-de-Sitter space with 5 compactified extra dimen-

sions AdS5 × S5 is equivalent on its boundary to N = 4 Supersymmetric Yang-Mills
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3.5 Shear Viscosity, Reynolds number and the AdS/CFT conjecture

theory. For this theory in the conformal limit Nc →∞ and finite g2Nc, first calculations

yielded [140,141]
η

s
=

1

4π
(1 +

135ζ(3)

8(2g2Nc)3/2
+ ...) (3.44)

with the Apery constant ζ(3) = 1.20205.... A few months later Kovtun, Son and

Starinets conjectured, that the lower bound (3.41) hold for ’all relativistic quantum field

theories at finite temperature and zero chemical poential’ [57]. To support what they

called ’speculation’, a simple motivation based on Heisenbergs uncertainty principle

was given: Consider a fluid of particles with energy density ε, particle density n and

mean free time τ . Shear viscosity is proportional to η ≈ ετ and entropy density s ≈ n.

Thus η
s
≈ τε

n
. From the uncertainty principle one gets, that the energy per particle

ε
n

times the mean free time τ is larger than 1 and it follows η
s
≥ c. With a universal

constant c > 0. In particular, for N = 4 Supersymmetric Yang-Mills theory c = 1
4π

was

found. The validity of the conjecture with this certain lower bound should be taken as

a qualitative statement. Whether c = 1
4π

will hold for all geometries is yet to be shown.

Even though there is no strict mathematical proof yet for c = 1
4π

the conjecture has

not been disproven by experiment [142, 143], either. From the theory side, there is

controversal discussion, and counterexamples were pointed-out [144,145]. Nevertheless,

for the quark-gluon plasma, which seems to be the best candidate for a perfect fluid,

that can experimentally be realized, also theoretical predictions obey the KSS-bound

[146,147].

An important task is to study the temperature dependence of η
s

to find the position of

the minimum. Many findings indicate, that the minimum will be assumed in the vicinity

of the critical temperature [148,149], but also counterexamples are known [150–153].
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4 Thermal field theory

’Auch für den Physiker ist die Möglichkeit einer Beschreibung

in der gewöhnlichen Sprache ein Kriterium für den Grad des Verständnisses,

das in dem betreffenden Gebiet erreicht worden ist.’

Werner Heisenberg

This chapter conveys an introduction yo thermal field theory following the general

derivations and arguments given in the introductory books by Das [154] and LeBel-

lac [155].

4.1 Introduction to TFT

Quantum field theories are usually formulated for zero temperature. In an experimen-

tal setup such a description is valid, for temperatures small compared to the relevant

energy scales, like particles masses or dynamically generated scales. There are how-

ever situations, where temperature is not small at all. Examples are the early universe

or heavy-ion collisions. Indeed, both system develop from a temperature dominated

regime to a regime where temperature, again, becomes an irrelevant scale and zero

temperature field theory is applicable.

Thermal Field Theory (TFT), or finite temperature field theory, is a generic quan-

tum field theory to describe interacting many-body systems in a thermodynamical

environment. TFT was developed in the early 1970’s in the context of early universe

studies where the quark-gluon-plasma, before the confinement transition, was almost

perfectly thermalized [156]. Especially the discussion of spontaneously broken gauge

theories at finite temperature demonstrated the applicability of TFT for the first time

in High Energy Physics [157,158]. TFT has become a central tool also in astrophysics
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4 Thermal field theory

where in the core of neutron stars and super novae a very dense plasma is present [159].

There are two conceptually different approaches to TFT: The imaginary-time formalism

and the real-time formalism. The imaginary-time formalism, or Matsubara formalism,

exploits the similarity between the density matrix for a system in thermal equilibrium

and the time evolution operator for imaginary times. Within the ITF the time variable

is traded in for temperature, so that dynamical, time dependent processes can only be

studied after a non-trivial analytic continuation. The real-time formalism on the other

hand can deal with time-dependent quantities but is formally more demanding. Here,

both formalisms are discussed and applied to a generic one-loop expression.

Further, for a non-Abelian gauge theory like SU(N), for suffficiently high temperatures,

the theory can be described perturbatively, due to asymptotic freedom. However, there

are some sublteties involved, and conventional perturbation theory breaks down early,

because of infrared divergencies. By resumming certain subsets of diagrams over all

orders of perturbation theory, a finite series is obtained, called Hard Thermal Loop

expansion (HTL). The theory is introduced and a HTL result for the shear viscosity is

derived.

4.2 Imaginary-time Formalism

The imaginary time formalism dates back to the work of Matsubara [160] and is based

on a close connection of finite temperature field theory and statistical equilibrium

thermodynamics. Therefore it is enlightening to review the basictypes concepts of

statistical thermodynamics. The central quantity of this theory is the density matrix

(for the canonical ensemble)

ρ(β) = e−βH (4.1)

where H is the respective Hamiltonian for the system under consideration and β = 1
T

is the inverse equilibrium temperature. One can define the partition function

Z(β) = Tr ρ(β) (4.2)
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where the trace is taken over a complete set of states. The (ensemble) average of any

operator A in the Schrödinger picture is

〈A〉β = Z−1(β)Tr ρ(β)A =
Tr e−βHA

Tr e−βH
(4.3)

After switching to the Heisenberg picture by dressing the Schrödinger operator with

time evolution

AH(t) = eiHtAe−iHt (4.4)

and considering the special case AH(t− t′) = BH(t)CH(t′) one finds after inserting into

(4.3):

〈BH(t)CH(t′)〉β = Z−1(β)Tr ρ(β)BH(t)CH(t′) (4.5)

= Z−1(β)Tr e−βHBH(t)eβHe−βHCH(t′) (4.6)

= Z−1(β)TrBH(t+ iβ)e−βHCH(t′) (4.7)

= Z−1(β)Tr e−βHCH(t′)BH(t+ iβ) (4.8)

= 〈CH(t′)BH(t+ i β)〉β (4.9)

Here, one already observes the aforementioned connection between temperature and

imaginary time. By setting B = C = A, equation (4.9) yields:

〈AH(t)AH(t′)〉β = 〈AH(t′)AH(t+ i β)〉β (4.10)

Equation (4.10), the so called Kubo-Martin-Schwinger (KMS) relation, describes a

periodicity condition for correlation functions at finite temperature, or equivalent a

compactification of the (euclidean) 0-component. The similarity between temperature

and a compactified imaginary time evolution might just be a coincidence rooted in the

form of the time evolution operator. There might also be some deeper connection, that

has not yet been fully understood. To connect the above to field theory the following

is observed: If the Hamiltonian can be split into a free part H0 and a part containing

all interaction H ′ so that the full Hamiltonian is H = H0 + H ′, the same can be done

(artificially) for the density matrix (4.1):

ρ(β) = ρ0(β)ρint(β) (4.11)
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with

ρ0(β) = e−βH0 , ρint(β) = eβH0e−βH (4.12)

It it obvious from (4.11) and (4.12) that ρ0(β) and ρint(β) satisfy ’time evolution

equations’

∂ρ0(τ)

∂τ
= −H0ρ0(τ) (4.13)

∂ρint(τ)

∂τ
= −Hint(τ)ρint(τ) (4.14)

with the interaction Hamiltonian

Hint(τ) = ρ−1
0 (τ)H ′ρ0(τ) (4.15)

and the interpretation of 0 < τ ≤ β as a continuous variable. Equation (4.14) can be

integrated to yield

ρint(β) = Tτ e
−
β∫
0

dτHint(τ)
(4.16)

with the ordering operator Tτ . For T → 0 (4.16) gives the zero temperature expression

for the S-matrix. Therefore, (4.16) is its thermal equivalent and is well-suited to derive

a diagrammatic expansion of the theory, simililar to zero-temperature field theory.

Let us consider a complex scalar field theory with field φ. The aim is to calculate

2-point correlation functions Gβ(τ − τ ′). To straighten the notation, the β-subscript is

dropped for all correlation functions and expectation values for the remaining part of

this chapter. The 2-point correlation function yields

G(τ − τ ′) = 〈TτφH(τ)φ†H(τ ′)〉 =
〈Tτφint(τ)φ†int(τ)ρint(β)〉0

〈ρint(β)〉0
(4.17)

with φH(τ) = ρ−1
int(τ)φint(τ)ρint(τ). Further, the cyclicity of the trace operator was

used. The subcript ’0’ denotes that the average is calculated with respect to the non-

interacting system. Let us first observe, that the thermal Greens function (4.17) is

periodic: The (imaginary) time arguments are restricted to the interval 0 ≤ τ, τ ′ ≤ β.

Therefore, the Greens function is defined for −β ≤ τ − τ ′ ≤ β. However, identifying

τ = −i t, the KMS relation (4.10) yields:

G(−τ) = G(τ + β) (0 ≤ τ ≤ β) (4.18)
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4.2 Imaginary-time Formalism

As a direct consequence, only a dicrete set of frequencies contribute to the Fourier

transform of (4.17):

G(τ) =
1

β

∑
n

e−i ωnτG(ωn) (4.19)

In equation (4.19) ωn are the (bosonic) Matsubara frequencies

ωn =
2πn

β
(4.20)

Note, that a similar derivation is possible for fermionic fields with slightly more no-

tational effort, due to the their Grassmannian nature. However, (4.19) is valid for

fermionic fields with the fermionic Matsubara frequencies

ωn =
(2n+ 1)π

2β
(4.21)

4.2.1 Scalar example: Imaginary-time Formalism

In this paragraph the scalar field theory example from [132] with Euclidean Lagrangian

L =
1

2
∂µφ∂

µφ+ U(φ2). (4.22)

is considered. The corresponding energy-momentum tensor is given by

T µν =
δS

δgµν
= ∂µφ∂νφ− ηµνL. (4.23)

The spatial traceless part - according to (3.20) reads

πij = ∂iφ∂jφ− 1

3
δij∂kφ∂kφ (4.24)

and gives rise to vertices (p and q denote incoming momenta of the scalars)

V ij
πφφ(p, q) = −piqj +

1

3
δijp · q (4.25)

The (leading order contribution to the) Euclidean correlation function of the energy-

momentum tensor is obtained by evaluating a 1-loop diagram

GE
ππ(p) = T

∑
n

∫
d3q

(2π)3
V ij
πφφ(q, q + p)V kl

πφφ(q + p, q)GE
φ (q + p)GE

φ (q). (4.26)
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4 Thermal field theory

Inserting the spectral representation

GE
φ (q0, ~q) =

∫
dω

(2π)

ρ(ω, ~q)

ω − i q0
(4.27)

for the boson propagator one can write

GE
φ (q)GE

φ (q + p) =

∫
dω

(2π)

∫
dω′

(2π)

ρ(ω, ~q)ρ(ω′, ~q + ~p)

(ω − i q0)(ω′ − i q0 − i p0)
. (4.28)

Next, the Matsubara sum is evaluated still for Euclidean external momentum 1

T
∑

q0=2πnT

1

(ω − i q0)(ω′ − i q0 − i p0)
=
nB(ω)− nB(ω′)

ω′ − ω − i p0
, (4.29)

where the periodicity nB(ω + i p0) = nB(ω) for p0 = 2πnT is exploited. Thus one gets

GE
ππ(p) =

∫
d3q

(2π)3

∫
dω

(2π)

∫
dω′

(2π)
V ij
πφφ(q, q + p)V kl

πφφ(q + p, q)ρ(ω, ~q)ρ(ω′, ~q + ~p)

(4.30)

×nB(ω)− nB(ω′)

ω′ − ω − i p0
(4.31)

The aim is to calculate the spectral function (3.33) of the spatial traceless part of the

energy-momentum tensor:

ρππ(ω, ~p) = −2 ImGR
ππ(ω, ~p) = 2 lim

ε→0+
ImGππ(−i (ω + i ε), ~p), (4.32)

where the ε prescription ensures the occurrence of the retarded propagator. Applying

the Sokhotski-Plemelj theorem [161]

lim
ε→0+

∫ b

a

f(x)

x± i εdx = ∓i πf(0) + P
∫ b

a

f(x)

x
dx, (4.33)

the imaginary part in (4.32) picks out the delta function contribution, yielding

ρijklππ (ω, ~p) =

∫
d4q

(2π)4
V ij
πφφ(q, q+p)V kl

πφφ(q+p, q)ρ(q0, ~q)ρ(q0+ω, ~q+~p)(nB(q0)−nB(q0+ω)).

(4.34)

1This step has to involve terms from the vertex if they- unlike here- depend on the zeroth component
of the momentum.
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4.3 Real-time Formalism

In particular for vanishing spatial external momentum and after taking the trace over

external indices and including a symmetry factor of 2 one finds

ρππ(ω,~0) =
4

3

∫
d4q

(2π)4
(~q · ~q)2ρ(q0, ~q)ρ(q0 + ω, ~q)(nB(q0)− nB(q0 + ω))

=
4

3

∫
d4q

(2π)4
(~q · ~q)2ρ(q0, ~q)

(
ρ(q0 + ω, ~q)− ρ(q0 − ω, ~q)

)
nB(q0),

(4.35)

which matches [132].

4.3 Real-time Formalism

As in the imaginary-time formalism, the starting point to develop the real-time formal-

ism is the density matrix of a generic quantum system with Hamiltonian H(t), that

- unlike in the imaginary time formalism - is allowed to be time dependent. Here,

however, not the connection between imaginary time evolution and classical statistical

mechanics is exploited, but time is treated as a real variable:

ρ(t) = U(t, 0)ρ(0)U †(t, 0) (4.36)

describes the (real-)time evolution of the density matrix, with the time evolution op-

erator defined by

i
∂U(t1, t2)

∂t1
= H(t1)U(t1, t2) (4.37)

with the normalisation condition U(t, t) = 1. Let us prepare the system in some

equilibrium state at (inverse) temperature β at some large negative time −T given by

a time independent (initial) Hamiltonian Hin, so that for time t = 0 the density matrix

reads

ρ(0) =
e−βHin

Tr e−βHin
=

U(−T − i β,−T )

Tr U(−T − i β,−T )
(4.38)

For t ≥ 0 the time-dependent Hamiltonian H(t) is (adiabatically) switched on such

that the full Hamiltonian can be written as:

H(t) =

{
Hin : t < 0

H(t) : t ≥ 0
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4 Thermal field theory

When equation (4.38) is inserted into (4.36) one finds

ρ(t) =
U(t, 0)U(−T − i β,−T )U(0, t)

Tr U(−T − i β,−T )
(4.39)

This allows to calculate expectation values of arbitrary operators A:

〈A〉(t) = Trρ(t)A (4.40)

=
U(t, 0)U(−T − i β,−T )U(0, t)A

Tr U(−T − i β,−T )
(4.41)

=
U(−T − i β,−T )U(0, t)AU(t, 0)

Tr U(−T − i β,−T )
(4.42)

=
U(−T − i β,−T )U(0, t)AU(t, 0)U(0,−T )U(−T, 0)

Tr U(−T − i β,−T )
(4.43)

=
U(−T − i β,−T )U(−T, 0)U(0, t)AU(t, 0)U(0,−T )

Tr U(−T − i β,−T )
(4.44)

=
U(−T − i β,−T )U(−T, t)AU(t,−T )

Tr U(−T − i β,−T )
(4.45)

(4.46)

where a 1 was inserted in the form 1 = U(0,−T )U(−T, 0). Further the cyclicity of the

trace operator as well as commutation of the time evolution operators U(−T − i β,−T )

and U(−T, 0) was used. Now, another 1 = U(−T, T )U(T,−T ) is inserted both in

numerator and denominator to yield:

〈A〉(t) =
U(−T − i β,−T )U(−T, T )U(T,−T )U(−T, t)AU(t,−T )

Tr U(−T − i β,−T )U(−T, T )U(T,−T )
(4.47)

=
U(−T − i β,−T )U(−T, T )U(T, t)AU(t,−T )

Tr U(−T − i β,−T )U(−T, T )U(T,−T )
(4.48)

The meaning of(4.48) is straightforward: The time evolution of any operator average

at finite temperature can be computed by evaluating the evolution of the system along

the time path given by the RHS of (4.48): The system evolves from large negative time

-T to some time t at which the operator A is inserted. Then it evolves further to large

positive time T and backwards along the real time axis to the initial negative time.

Finally the system evolves along the imaginary axis to −T − i β.

This is realized by shifting the backwards branch of the contour by −i σ with 0 < σ < β.

The choice of σ defines different classes of real-time formalisms, with advantages and

disadvantages in notational effort. Popular choices are the Keldysh-contour with σ = ε
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4.3 Real-time Formalism

for some infinitesimal ε > 0 and the symmeric contour for σ = β/2. As any averages

obviously do not depend one the choice of σ, the Keldish contour is used in this thesis.

The different branches of the contour are denoted by C±, C2, C4 as shown in Fig.4.1, so

that the complete path in the complex plane is C = C+⊕C2⊕C−⊕C4. For the scalar

field theory of the previous section, (4.48) gives rise for the definition of the generating

functional

Z[JC ] =

∫
Dφe

i
∫
C

dt
∫
d3x(L+JCφ)

(4.49)

with the branch dependent sources Jc. It can be shown that the contribution of

C+

C-

-iβ

C4

T
C2

-T

Figure 4.1: Keldysh countour in the real-time formalism.

C24 = C2⊕C4 factorizes and can be absorbed in a temperature dependent normalisation

[155]. For the averages, the normalisation both appears in numerator and denominator

(see (4.48)) and cancels. Therefore the respective sources are set to zero, and one

remains with the Keldysh closed time path given by C+− = C+ ⊕ C− and the sources

J±. There are two implementations of the two contour branches. In the first, one
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4 Thermal field theory

attaches a label to the time variable, defining the branch it lies on. The second, which

will be used here, is to double the field degrees of freedom and introduce φ± living on

the respective branches. By this trick, time can be treated as a real valued variable

without any indexing and the two branches are absorbed into the fields. Irrespective of

the implementation, the 2-point functions become matrix valued due to the doubling

of fields (or of the time indices):

G±±(x, y) = −i 〈TCφ±(x)φ±(y)〉 (4.50)

with the time ordering operator along the contour TC . The matrix elements are:

G++(x, y) := 〈Tφ+(x)φ+(y)〉 =: GF (x, y) (4.51)

G+−(x, y) := 〈φ−(y)φ+(x)〉 =: G<(x, y) (4.52)

G−+(x, y) := 〈φ−(x)φ+(y)〉 =: G>(x, y) (4.53)

G−−(x, y) := 〈T ∗φ−(x)φ−(y)〉 =: GF̃ (x, y) (4.54)

(4.55)

where T now denotes the usual time ordering operator and T̃ the anti-time ordering

operator. Using the definition of the retarded propagator one obtains

GR(x, y) = G++(x, y)−G+−(x, y) . (4.56)

4.3.1 Symmetry relations for the propgator

The Real-Time formalism constitutes a key method to derive the diagrammatic expres-

sions for the spectral function of the energy-momentum tensor correlation functions.

Therefore, in this section the symmetry properties of G±,±(x, y) are discussed in some

detail.

The components G±,± of the propagator obey some very convenient relations. In par-

ticular,

G∗−+(x, y) = −G+−(x, y) . (4.57)

First, note that for a real, classical scalar field, the corresponding quantum field is a

self-adjoint operator (at least symmetric), i.e. φ† = φ, and so is the Hamiltonian. Then
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4.3 Real-time Formalism

one can deduce

G∗−+(x, y) =

(
−i Tr

(
e−βH φ(x)φ(y)

)
Tr e−βH

)∗
= i

∑
n

〈fn , e−βHφ(x)φ(y) fn〉∗
Tr e−βH

=i
∑
n

〈e−βHφ(x)φ(y)fn , fn〉
Tr e−βH

= i
∑
n

〈fn , φ(y)†φ(x)†
(
e−βH

)†
fn〉

Tr e−βH
(4.58)

=i
∑
n

〈fn , e−βHφ(y)φ(x) fn〉
Tr e−βH

(4.59)

=−G+−(x, y) (4.60)

which proves equation (4.57). In the above proof fn is a complete set of asymptotic

states. Further, it is used that the operators are symmetric, that the exponential of a

symmetric operator is again symmetric and the cyclicity of the trace.

The above identity can also be proven using the machinery of thermo field dynamics,

where one constructs a finite temperature vacuum state f0,β. With such a state one can

simply generalize the definition of correlation functions at zero temperature to finite

temperature ones by

〈A1...An〉 := 〈f0,β , A1...Anf0,β〉 . (4.61)

With this formalism at hand, relation (4.57) is derived via

G∗−+(x, y) = (−i 〈f0,β , φ(x)φ(y)f0,β〉)∗ = i 〈φ(x)φ(y)f0,β , f0,β〉
=i 〈f0,β , φ(y)†φ(x)†f0,β〉 = i 〈f0,β , φ(y)φ(x)f0,β〉 (4.62)

=−G+−(x, y) . (4.63)

By Fourier transform this can be written in momentum space

G∗−+(p, q) =FT {G−+(x, y)}∗ =

(∫
x

∫
y

eipxeipyG−+(x, y)

)∗
=

∫
x

∫
y

e−ipxe−ipyG∗−+(x, y)

=−
∫
x

∫
y

e−ipxe−ipyG+−(x, y) = −G+−(−p,−q) . (4.64)

Note that the tilde is dropped that indicates the Fourier transform since the arguments

are written out explicitly. Under the assumption that the system is space-time transla-

tion invariant, the position space propagator is not an arbirtary function of (x, y), but

depends only on the difference, i.e.

G(x, y) = G(x− y) . (4.65)
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4 Thermal field theory

Therefore a Fourier-transform can be carried out with respect to z := x− y:

FT {G(x− y)} =

∫
z

eipzG(z) = G(p) . (4.66)

With this at hand, and using the obvious relation G−+(x, y) = G+−(y, x) (following

immediately from (4.52) and (4.53)) , which now translates into G−+(z) = G+−(−z)

one immediately arrives at

G−+(p) =

∫
z

eipzG−+(z) =

∫
z

eipzG+−(−z)

=

∫
z

e−ipzG+−(z)

=G+−(−p) (4.67)

and therefore

G∗−+(p) =

(∫
z

eipzG−+(z)

)∗
=

∫
z

e−ipzG∗−+(z) = −
∫
z

e−ipzG+−(z)

=−
∫
z

e−ipzG−+(−z) = −
∫
z

eipzG−+(z) = −G−+(p) . (4.68)

Analog to (4.27) the real-time Greens functions can be related to the spectral function.

These relations are derived in chapter 5, but are used here without proof:

G++(p0, ~p) =

∫
dp0′

2πi

ρ(p0′, ~p)

p0 − p0′ + i ε
− n(p0)ρ(p0, ~p)

= P
∫
dp0′

2πi

ρ(p0′, ~p)

p0 − p0′ − (n(p0) + 1
2
)ρ(p0, ~p) (4.69)

G+−(p0, ~p) = G< = −ρ(p0, ~p)n(p0) (4.70)

G−+(p0, ~p) = G> = −ρ(p0, ~p)(n(p0) + 1) (4.71)

G−−(p0, ~p) = −
∫
dp0′

2πi

ρ(p0′, ~p)

p0 − p0′ − i ε − n(p0)ρ(p0, ~p) (4.72)

= −P
∫
dp0′

2πi

ρ(p0′, ~p)

p0 − p0′ − (n(p0) + 1
2
)ρ(p0, ~p). (4.73)

Spectral and statistical function are related to G< and G> via

ρ(p0, ~p) = G< −G> = GA −GR

F (p0, ~p) =
1

2i
(G< +G>) = −i ρ(p0, ~p)

(
n(p0) + 1

2

)
,

(4.74)
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4.3 Real-time Formalism

where the the KMS condition (4.10) is used, and the retarded/advanced propagators

are given by

GR/A(p0, ~p) = G++(p)−G±∓(p)

= P
∫
dp0′

2πi

ρ(p0′, ~p)

p0 − p0′ ±
1
2
(G>(p0, ~p)−G<(p0, ~p))

(4.75)

Furthermore, the following relations hold and are obvious corollaries from the derivation

of the spectral representation derived in chapter 5:

G++(p) +G−−(p) = G+−(p) +G−+(p) (4.76)

G++(p)∗ = −G−−(p) G±±(−p) = G±±(p) (4.77)

G±∓(p)∗ = −G±∓(p) G±∓(−p) = G∓±(p) (4.78)

F ∗(p) = F (p) ρ∗(p) = −ρ(p) = ρ(−p) (4.79)

GR(p)∗ = GA(p) GR(−p) = GA(p) (4.80)

nB(−x) = −1− nB(x) (4.81)

4.3.2 Scalar Example: Real-time formalism

The 1-loop example of section 4.2.1 is recalculated in the real-time formalism. The

one-loop contribution to the retarded Greens function GR
ππ(p) of the energy-momentum

tensor (4.24) is given in the real-time formalism by

GR
ππ(p) = i

∫
q

(i Vπφφ)2 (G++(q + p)G++(q)−G+−(q + p)G−+(q)) (4.82)

Using the relations from the previous section the propagators are expressed in the

Keldysh basis via F , GA and GR,

G±± = i F ± 1
2

(
GA +GR

)
(4.83)

G±∓ = i F ± 1
2

(
GA −GR

)
= G≶, (4.84)

which leads to

∆GR
ππ(p) =

i

2

∫
q

V 2
πφφ(GA(q + p)GA(q) +GR(q + p)GR(q) (4.85)

− 2i (F (q + p)GA(q) +GR(q + p)F (q))). (4.86)
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The first two contributions vanish as one can close the integration contour in the

upper/lower halfplane where are no poles. The imaginary part is now given by

2Im∆GR
ππ(p) = i

∫
q

V 2
πφφ

(
F (q + p)GA(q)− F (q + p)GR(q) +GR(q + p)F (q)−GA(q + p)F q

)
(4.87)

= i

∫
q

V 2
πφφ (ρ(q)F (q + p)− ρ(q + p)F (q)) (4.88)

=

∫
q

V 2
πφφρ(q)ρ(q + p)(n(q0)− n(q0 + p0)), (4.89)

where the definition of the spectral function and the KMS condition was used.

In order to match the result obtained in the imaginary-time formalism (4.35), the zero-

component of the loop intergation is shifted by p0 in the second term on the RHS of

(4.89). This proofs finishes the proof of the equivalancy of both formalisms for the

evaluation of the presented one-loop integral. For higher loop integrals the is more

cumbersome to establish the equivalency, but it holds nevertheless.

4.4 Hard Thermal Loop expansion

The main result of this thesis, the temperature depedence of η
s
, is extrapolated to the

perturbative regime of high temperatures. It turns out, that conventional perturbation

theory can be improved by reorganizing the perturbation series. The reason is, that at

finite temperature, infrared divergencies occur, such that diagrams with superficially

higher order have contributions of equal magnitude compared to lower order diagrams.

In this section a short introduction of the main ideas of HTL resummed perturbation

theory is given. For simplicity, in what follows φ4-theory is employed. Consider the

2-loop contribution to the scalar self-energy diagram in Fig.4.2. It is proportional to

Figure 4.2: Double-bubble contribution to the self-energy in φ4-theory.
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4.4 Hard Thermal Loop expansion

F2−loop ≈ g4

(
T
∑
n

∫
d3~p

(2π)3

1

ω2
n + ~p2

)2

T
∑
n′

∫
d3~q

(2π)3

1

(ω2
n′ + ~q2)2

(4.90)

The second integral in (4.90) is infrared divergent due to the middle loop. In particular,

the source for the divergence comes form the the zeroth Matsubara mode. Similar

divergencies also appear in diagrams of higher orders. However, in practice the IR-

divergence is screened by a thermally generated mass

m2
th =

g2

24
T 2. (4.91)

This can be incorporated by an effective propagator

G(p) =
1

p2 +m2
(4.92)

For hard momenta p ≈ T the thermal mass can be omitted, while it constitutes an ef-

fective cutoff for soft momenta. The contribution of the two-bubble in Fig.4.2 with the

effective propagator (4.92) contributes at order g3 instead of g4, as naively expected.

It can be shown, that at any order of conventional perturbation series, there are dia-

grams, that effectively contribute to order g3. Clearly, that signals, that a conventional

perturbative series, will not converge. To get a consistent series, an infinite subset of

superficially higher order must be resummed. The details are found in [162].
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5 Spectral functions

’Nothing in life is to be feared, only to be understood.

Now is the time to understand more, so less is to be feared.’

Marie Curie

The spectral function is the central object of this thesis. In this chapter the basic

definitions are established and the spectral representations of the two-point correlation

functions in the Real-Time formalism and the Imaginary-Time formalism are derived.

It will be shown that the both the real-time 2-point correlation functions and the

Matsubara 2-point correlation functions can be expressed in thermal equilibrium by a

single spectral function.

5.1 Spectral Representation in the real-time formalism

In this section the spectral representation for real-time two-point correlation functions

is derived.
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5 Spectral functions

5.1.1 Off-diagonal elements of the real-time propagator

With a complete set fi of generalized eigenfunctions of Hamiltonian H with eigenvalues

Ei, the spectral representation for G−+(x, y) is derived as follows,

G−+(x, y) =
−i
Zβ

Tr
(
e−βH φ(x)φ(y)

)
=
−i
Zβ

∑
n

〈fn , e−βHφ(x)φ(y) fn〉

=
−i
Zβ

∑
n

∑
m

e−βEn〈fn , φ(x)fm〉〈fm , φ(y)fn〉 (5.1)

=
−i
Zβ

∑
n

∑
m

e−βEn〈fn , e−iPxφ(0)eiPxfm〉〈fm , e−iPyφ(0)eiPyfn〉

=
−i
Zβ

∑
n

∑
m

e−βEn〈eiPxfn , φ(0)eiHxfm〉〈eiPyfm , φ(0)eiPyfn〉

=
−i
Zβ

∑
n

∑
m

e−βEneipnxe−ipmxeipmye−ipny〈fn , φ(0)fm〉〈fm , φ(0)fn〉

=
−i
Zβ

∑
n

∑
m

e−βEneipn(x−y)e−ipm(x−y) |〈fn , φ(0)fm〉|2 ,

with the partition function

Zβ = Tr e−βH . (5.2)

In the above equation it is used that the energy-momentum operator P has eigenvalues

p, generates space-time translations and acts as

φ(0) = eiPxφ(x)e−iPx (5.3)

on the fields, that P is symmetric and the anti-linearity of the complex inner product.

The spectral density of the −+ two-point function in momentum space is defined as

ρ̃−+(p) :=
1

Zβ

∑
n

∑
m

e−βEn(2π)4δ(pn − pm + p) |〈fn , φ(0)fm〉|2 , (5.4)

which is obviously a real (in momentum space!), and positive(-semi) definite quantity.

The two point function G−+ in momentum space is now obviously proportional to the

spectral density:

G−+(p) =
−i
Zβ

∫
(x−y)

eip(x−y)
∑
n

∑
m

e−βEneipn(x−y)e−ipm(x−y) |〈fn , φ(0)fm〉|2

=− iρ̃−+(p) . (5.5)
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Clearly, the above derivation can be repeated for G+− just with x and y interchanged

and one arrives at

ρ̃+−(p) :=
1

Zβ

∑
n

∑
m

e−βEn(2π)4δ(−pn + pm + p) |〈fn , φ(0)fm〉|2 (5.6)

and

G+−(p) = −iρ̃+−(p) . (5.7)

By using the symmetry of the delta function in (5.4), the obvious relation

ρ̃+−(p) = ρ̃−+(−p) . (5.8)

is established. Moreover, by relabeling the dummy indices m and n in (5.4), making

use of the zero component of the delta function, which is nothing but the energy

conservation Em − En + p0 = 0 and using the invariance of the matrix element under

interchange of m and n one arrives at

ρ̃−+(p) =
1

Zβ

∑
m

∑
n

e−βEm(2π)4δ(4)(pm − pn + p) |〈fm , φ(0)fn〉|2

=eβp
0

ρ̃+−(p) . (5.9)

The above equation is nothing but the well-known KMS-condition, which is usually

formulated for the two-point functions itself,

G−+(p) = eβp
0

G+−(p) , (5.10)

and can also be obtained from the periodicity condition in time-direction (recall (4.10)).

Note that this holds only in equilibrium, since the perodicity as well as the represen-

tation for the correlation functions with the density matrix e−βH do not hold in non-

equlilibrium. A more convenient quantity than the spectral densities defined above is

the standard spectral function ρ(p) known from QFT textbooks, since all components

of the propagator matrix G, as well as the retareded and advanced ones can be ex-

pressed in terms of this spectral function. Thus, in position space the spectral function
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is defined as:

ρ(x, y) :=〈[φ(x), φ(y)]〉
=〈φ(x)φ(y)〉 − 〈φ(y)φ(x)〉
=i (G−+(x, y)−G+−(x, y))

=ρ̃−+(x, y)− ρ̃+−(x, y) . (5.11)

In terms of this spectral function the off-diagonal elements of the propagator are given

by

G−+(p) = −iρ̃−+(p) =− i ρ(p)

1− e−βp0

=− i ρ(p) eβp
0

eβp0 − 1
(5.12)

=− i
ρ(p)

(
eβp

0 − 1 + 1
)

eβp0 − 1
(5.13)

=− i
(
ρ(p) +

ρ(p)

eβp0 − 1

)
(5.14)

=− i ρ(p)
(
1 + nβ(p0)

)
, (5.15)

and similarly

G+−(p) = −iρ̃+−(p) = −i ρ(p)nβ(p0) (5.16)

with the Bose-Einstein distribution

nβ(p0) =
1

eβp0 − 1
. (5.17)

5.1.2 Diagonal elements of the Real-time propagator

The derivation of the diagonal element of the real-time propagator matrix is slightly

more demanding. Considering the time-ordered, i.e. Feynman progagator and making

the time-ordering explicit one has to deal with

G++(x, y) = −i
(
θ(x0 − y0)〈φ(x)φ(y)〉+ θ(y0 − x0)〈φ(y)φ(x)〉

)
, (5.18)

with the Heaviside step function θ. The correlation functions appearing in (5.18)

were already calculated above. However, the Fourier-transform is now a little more

complicated due to the θ functions with pure time-arguments, so that the Fourier
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transformations for space arguments z := x−y and time arguments z0 := x0−y0 must

be performed seperately. The spectral representation for G++ is given by

G++(p) =
−i
Zβ

∫
z

∫
z0

e−ipzeip
0z0

θ(z0)
∑
n

∑
m

e−βEneipnze−ipmz |〈fn , φ(0)fm〉|2

−i
Zβ

∫
z

∫
z0

e−ipzeip
0z0

θ(−z0)
∑
n

∑
m

e−βEne−ipnze+ipmz |〈fn , φ(0)fm〉|2 .

For further evaluation it is useful to insert the following integral representations for the

θ function:

θ(x) = lim
ε→0

i

2π

∫
τ

e−ixτ

τ + iε
, (5.19)

and

θ(−x) = lim
ε→0

−i
2π

∫
τ

e−ixτ

τ − iε , (5.20)

taking care of the issue of appropriate iε-prescriptions in the Fourier transforms. Ma-

nipulating the first term in the above expression for G++(p), i.e. the term proportional

to θ(z0), yields

−i
Zβ

i

2π

∑
m

∑
n

e−βEn |〈fn , φ(0)fm〉|2
∫
z

∫
z0

eiz
0(p0+p0

n−p0
m)e−iz(p+pn−pm)

∫
p0′

e−iz
0p0′

p0′ + iε

=
−i
Zβ

i

2π

∑
m

∑
n

e−βEn |〈fn , φ(0)fm〉|2 (2π)3δ(3) (p + pn − pm)

∫
p0′

1

p0′ + iε

∫
z0

eiz
0(p0−p0′+p0

n−p0
m)

=
−i
Zβ

i

2π

∑
m

∑
n

e−βEn |〈fn , φ(0)fm〉|2 (2π)3δ(3) (p + pn − pm)

∫
p0′

2π

p0′ + iε
δ(p0 − p0′ + p0

n − p0
m)

=
−i
Zβ

i

2π

∑
m

∑
n

e−βEn |〈fn , φ(0)fm〉|2 (2π)3δ(3) (p + pn − pm) (2π)
1

p0 − p0
n − p0

m + iε
,

where the limit ε −→ 0 is, of course, implicitly understood. Eventually, the aim is to

express the above in terms of the spectral function ρ, which contains a four dimensional

θ function. Therefore it helps rewrite the above according to

−i
Zβ

i

2π

∑
m

∑
n

e−βEn |〈fn , φ(0)fm〉|2 (2π)3δ(3) (p + pn − pm)

∫
p0′

2π

p0 − p0′ + iε
δ(p0′ + p0

n − p0
m)

=
1

2π

∫
p0′

ρ̃−+(p0′,p)

p0 − p0′ + iε
. (5.21)

The analog steps can be performed for the term proportional to θ(−z0), which produces

an additional overall minus sign and a minus sign in the iε prescription due to the
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different integral representation of the θ function and interchanges the labels m and n

in the delta functions. Obviously this can then be expressed in terms of ρ̃+−(p0′, p0),

leading to

G++(p) =
1

2π

∫
p0′

(
ρ̃−+(p0′,p)

p0 − p0′ + iε
− ρ̃+−(p0′,p)

p0 − p0′ − iε

)
.

Similar to the off-diagonal elements, two additional representations of the above in

terms of the usual spectral function ρ are desired, such that one regains the usual

Feynman propagator in the limit T −→ 0. In order to do so, the Sokhotski-Plemelj

theorem [161] is employed:

lim
ε→0

∫
x

f(x)

x− x0 ± iε
= ∓iπf(x0) + P

∫
x

f(x)

x− x0

. (5.22)

where P denote the Cauchy principal value. Applying this to the identity (5.22) leads

to

G++(p) =
1

2π
P
∫
p0′

(
ρ̃−+(p0′,p)− ρ̃+−(p0′,p)

p0 − p0′

)
− 1

2π
iπ
(
ρ̃−+(p0,p) + ρ̃+−(p0,p)

)
.

Using the KMS condition for the spectral densities and the definition ρ = ρ̃−+ − ρ̃+−,

yields the relation

1

2π
iπ
(
ρ̃−+(p0,p) + ρ̃+−(p0,p)

)
=

1

2π
iπ
(
ρ(p0,p) + 2ρ̃+−(p0,p)

)
=

1

2π
iπ
(
ρ(p0,p) + 2nβ(p0)ρ(p0,p)

)
(5.23)

=iρ(p0,p)

(
1

2
+ nβ(p0)

)
, (5.24)

and therefore

G++(p) =
1

2π
P
∫
p0′

(
ρ(p0′,p)

p0 − p0′

)
− iρ(p0,p)

(
1

2
+ nβ(p0)

)
. (5.25)

In addition, this representation can be rewritten, such that the zero-temperature Feyn-

man propagator appears, and that one gets back the zero-temperature spectral rep-

resentation of the time-ordered propagator. In order to achieve this, the Sokhotski-

Plemelj theorem (5.22) is employed once more, and principal value is rewritten again
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with an iε- prescription. Here, only the part with the principal value is considered :

1

2π
P
∫ ∞
−∞

dp0′
(
ρ(p0′,p)

p0 − p0′

)
=

1

2π

∫ ∞
−∞

dp0′
(

ρ(p0′,p)

p0 − p0′ + iε

)
+

1

2π
iπρ(p0,p) .

Together with (5.25) the intermediate result is

G++(p) =
1

2π

∫ ∞
−∞

dp0′
(

ρ(p0′,p)

p0 − p0′ + iε

)
− inβ(p0)ρ(p0,p) , (5.26)

which is also quite frequently used in the literature, and maybe the most convenient

one. However, proceeding with bringing the above into the analog of the well-known

zero-temperature form of the spectral respresentation of the time-ordered propagator

is also useful. Now, only the the iε part is considered:

G++(p) =
1

2π

∫ ∞
−∞

dp0′
(

ρ(p0′,p)

p0 − p0′ + iε

)
− inβ(p0)ρ(p0,p)

=
1

2π

∫ ∞
−∞

dp0′
(

p0 + p0′ − iε(
p0 −

(
p0′ − iε

)) (
p0 +

(
p0′ − iε

))) ρ(p0′,p)− inβ(p0)ρ(p0,p)

=
1

2π

∫ ∞
−∞

dp0′
(

p0 + p0′ − iε
(p0)2 −

(
p0′ − iε

)2

)
ρ(p0′,p)− inβ(p0)ρ(p0,p)

=
1

2π

∫ ∞
−∞

dp0′
(

p0 + p0′ − iε
(p0)2 −

(
p0′
)2

+ 2p0′iε− i2ε2

)
ρ(p0′,p)− inβ(p0)ρ(p0,p)

(5.27)

Now one can use that the limit ε −→ 0 is implicitly understood and that the iε in the

numerator does not change the value of the integral, since it is not connected to any

pole description, i.e. there is no principle value description necessary. Hence it can be

dropped. Morevover, the term of order ε2 in the denominator is subleading and can be

dropped as well. Furthermore, it helps to rewrite the integral as an integral over
(
p0′)2

instead of p0′. This transformation, however, is diffeomorphic only on the negative and
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the positve branch separately. Therefore,first, one needs to rewrite the above as

1

2π

∫ ∞
−∞

dp0′
(

p0 + p0′

(p0)2 −
(
p0′
)2

+ 2p0′iε

)
ρ(p0′,p)− inβ(p0)ρ(p0,p)

=
1

2π

∫ 0

−∞
dp0′

(
p0 + p0′

(p0)2 −
(
p0′
)2

+ 2p0′iε

)
ρ(p0′,p) (5.28)

+
1

2π

∫ ∞
0

dp0′
(

p0 + p0′

(p0)2 −
(
p0′
)2

+ 2p0′iε

)
ρ(p0′,p)− inβ(p0)ρ(p0,p) . (5.29)
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Substituting the integration variable p0′ in the integrals that range from −∞ to 0 by

−p0′ and using ρ(−p0) = −ρ(p0), leads to

=− 1

2π

∫ 0

∞
dp0′

(
p0

(p0)2 −
(
p0′
)2 − 2p0′iε

)
ρ(−p0′,p) (5.30)

+
1

2π

∫ ∞
0

dp0′
(

p0

(p0)2 −
(
p0′
)2

+ 2p0′iε

)
ρ(p0′,p) (5.31)

+
1

2π

∫ 0

∞
dp0′

(
p0′

(p0)2 −
(
p0′
)2 − 2p0′iε

)
ρ(−p0′,p)

+
1

2π

∫ ∞
0

dp0′
(

p0′

(p0)2 −
(
p0′
)2

+ 2p0′iε

)
ρ(p0′,p)− inβ(p0)ρ(p0,p) (5.32)

=− 1

2π

∫ ∞
0

dp0′
(

p0

(p0)2 −
(
p0′
)2 − 2p0′iε

)
ρ(p0′,p)

+
1

2π

∫ ∞
0

dp0′
(

p0

(p0)2 −
(
p0′
)2

+ 2p0′iε

)
ρ(p0′,p) (5.33)

+
1

2π

∫ ∞
0

dp0′
(

p0′

(p0)2 −
(
p0′
)2 − 2p0′iε

)
ρ(p0′,p)

+
1

2π

∫ ∞
0

dp0′
(

p0′

(p0)2 −
(
p0′
)2

+ 2p0′iε

)
ρ(p0′,p)− inβ(p0)ρ(p0,p) (5.34)

=− 1

2π

∫ ∞
0

dp0′
(

p0

(p0)2 −
(
p0′
)2 − iε

)
ρ(p0′,p) (5.35)

+
1

2π

∫ ∞
0

dp0′
(

p0

(p0)2 −
(
p0′
)2

+ iε

)
ρ(p0′,p) (5.36)

+
1

2π

∫ ∞
0

dp0′
(

p0′

(p0)2 −
(
p0′
)2 − iε

)
ρ(p0′,p)

+
1

2π

∫ ∞
0

dp0′
(

p0′

(p0)2 −
(
p0′
)2

+ iε

)
ρ(p0′,p)− inβ(p0)ρ(p0,p) , (5.37)

where the 2p0′ were dropped in the iε parts in the last step since now all integrals are

performed over an interval with p0′ > 0 and the sign of the iε terms is therefore fixed.

In the expressions above, integral transformation

u : p0′ −→ u
(
p0′
)

=
(
p0′
)2

, (5.38)
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can be applied, which is now a diffeomorphism. The measure transforms as

dp0′ =
du

2p0′ , (5.39)

and one arrives at

G++(p) = − 1

2π

1

2

∫ ∞
0

du

(
p0

√
u

ρ(
√
u,p)

(p0)2 − u− iε

)
+

1

2π

1

2

∫ ∞
0

du

(
p0

√
u

ρ(
√
u,p)

(p0)2 − u+ iε

)
(5.40)

+
1

2π

1

2

∫ ∞
0

du

(
ρ(
√
u,p)

(p0)2 − u− iε

)
+

1

2π

1

2

∫ ∞
0

du

(
ρ(
√
u,p)

(p0)2 − u+ iε

)
− inβ(p0)ρ(p0,p) .

In addition to the integration over
(
p0′)2

and the squares in the denominator, which are

already present in the equation above, eventually a representation entirely based on the

Feynman +iε description is desired. Once more the Sokhtsky Plemely theorem [161] is

employed to rewrite the above in the desired way. Note that the principal value parts in

the terms proportional to p0 cancel each other, and therefore these terms contribute only

terms with delta functions. This is expected, since if one had dropped the iεp0′ terms

in the denominator in (5.27), i.e. if one had a standard principal value, this principal

value would be zero in the first place since there the integration is performed over a

symmetric interval while the spectral function is antisymmetric and all other terms are

symmetric. Hence, this cancellation of the principal values is just a manifestation of

this fact and one is left with “pole-contributions” of these terms only. In summary, the
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(5.40) is manipulated according to

G++(p) = − 1

2π

1

2
iπ

∫ ∞
0

du ρ(
√
u,p)

p0

√
u
δ
(
u−

(
p0
)2
)

− 1

2π

1

2
iπ

∫ ∞
0

du ρ(
√
u,p)

p0

√
u
δ
(
u−

(
p0
)2
)

+
1

2π

1

2
PV

∫ ∞
0

du
ρ(
√
u,p)

(p0)2 − u

+
1

2π

1

2
iπ

∫ ∞
0

du ρ(
√
u,p) δ

(
u−

(
p0
)2
)

+
1

2π

1

2

∫ ∞
0

du
ρ(
√
u,p)

(p0)2 − u+ iε
− inβ(p0)ρ(p0,p)

= − 1

2π

1

2
iπ

∫ ∞
0

du ρ(
√
u,p)

p0

√
u
δ
(
u−

(
p0
)2
)

− 1

2π

1

2
iπ

∫ ∞
0

du ρ(
√
u,p)

p0

√
u
δ
(
u−

(
p0
)2
)

+
1

2π

1

2

∫ ∞
0

du
ρ(
√
u,p)

(p0)2 − u+ iε

+
1

2π

1

2
iπ

∫ ∞
0

du ρ(
√
u,p) δ

(
u−

(
p0
)2
)

+
1

2π

1

2
iπ

∫ ∞
0

du ρ(
√
u,p) δ

(
u−

(
p0
)2
)

+
1

2π

1

2

∫ ∞
0

du
ρ(
√
u,p)

(p0)2 − u+ iε
− inβ(p0)ρ(p0,p)

= − i
2

∫ ∞
0

du ρ(
√
u,p)

p0

√
u
δ
(
u−

(
p0
)2
)

+
i

2

∫ ∞
0

du ρ(
√
u,p) δ

(
u−

(
p0
)2
)

+
1

2π

∫ ∞
0

du
ρ(
√
u,p)

(p0)2 − u+ iε
− inβ(p0)ρ(p0,p) . (5.41)

The delta-functions are not carried out yet, since they contain a little subtlety. For

the following analysis, it is more convenient to use u =
(
p0′)2

. Before the integral

transformation was introduced, the p0′-integrals were along the positive real line, p0′ >

0. The delta functions contain the squares, δ
((
p0′)2 − (p0)

2
)

, but the argument of

the spectral function ρ is without the square, i.e. ρ(p0′,p). Since p0′ > 0, the delta

functions enforce

p0 = p0′ > 0 or p0 = −p0′ < 0 . (5.42)

First, let us consider p0 > 0,⇐⇒ p0 = p0′:

In this case, obviously
p0

√
u

=
p0

p0′ = 1 , (5.43)

and the two terms in the first line after the last equality sign in (5.41) cancel, and one

is left with the last line.

Considering p0 < 0,⇐⇒ p0 = −p0′, the above fraction is −1 and the two terms do not

cancel, but are equal. Considering the two terms together with the last, one finds for
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the p0 = −p0′ case in the delta function

− i
2

∫ ∞
0

du ρ(
√
u,p)

p0

√
u
δ
(
u−

(
p0
)2
)

+
i

2

∫ ∞
0

du ρ(
√
u,p) δ

(
u−

(
p0
)2
)
− inβ(p0)ρ(p0,p)

= iρ(−p0,p)− inβ(p0)ρ(p0,p)

=− iρ(p0,p)− inβ(p0)ρ(p0,p) = inβ(−p0)ρ(p0,p) = inβ
(∣∣p0

∣∣) ρ(p0,p) , (5.44)

where the last equality is true since p0 < 0. Therefore, the final result is:

G++(p) =
1

2π

∫ ∞
0

d
(
p0′
)2 1

(p0)2 −
(
p0′
)2

+ iε
ρ(p0′,p)− i sgn(p0)nβ

(∣∣p0
∣∣) ρ(p0,p) .

(5.45)

In the limit T −→ 0 the distribution function nβ(p0) becomes zero and one obtains the

usual spectral representation in zero-temperature QFT. The above can be evaluated

for the case of a free massive scalar field, where the spectral function is just given by

ρfree(p
2) = 2π sgn(p0) δ

(
p2 −m2

)
= 2π sgn(p0) δ

((
p0
)2 − p2 −m2

)
, (5.46)

yielding

G++,free(p) =
1

p2 −m2 + iε
− 2πi δ

(
p2 −m2

)
nβ
(∣∣p0

∣∣) , (5.47)

which is exactly the result given e.g. in [154]. In the limit T −→ 0 also yields the

standard Feynman propagator in T = 0 perturbative QFT.

Note that usually the Feynman propagator is defined just as the correlation function

〈Tφ(x)φ(y)〉, and the free propagator is then i times the above result, while here was

calculated −i 〈Tφ(x)φ(y)〉. So by multiplying the conventional result with the i in the

numerator by −i, the above result is reproduced, constituting a consistency check that

all signs and factors of i seem to be correct. The convention used here is equivalent of

the one in [154], but differs from the one in [155].

The spectral representation for G−−(p) can be obtained analog to the above deriva-

tion, just with the role of the θ functions interchanged due to anti-time ordering instead

of time-ordering. Repeating the derivation, shows that the thermal part remains un-

changed, while the principle value part gets an additional minus sign compared to

(5.25), and, if written with an iε prescription, the sign changes compared to (5.26).
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5.1 Spectral Representation in the real-time formalism

Therefore

G−−(p) =− 1

2π
PV

∫
p0′

(
ρ(p0′,p)

p0 − p0′

)
− iρ(p0,p)

(
1

2
+ nβ(p0)

)
=− 1

2π

∫ ∞
−∞

dp0′
(

ρ(p0′,p)

p0 − p0′ − iε

)
− inβ(p0)ρ(p0,p) . (5.48)

5.1.3 Retarded and advanced propagators

To conclude the derivation, the representations for the retarded an advanced propaga-

tors are considered. These are defined as

GR(x, y) = G++(x, y)−G+−(x, y) , (5.49)

and

GA(x, y) = G++(x, y)−G−+(x, y) . (5.50)

With the expressions derived above, both retarded and advanced propagator yield:

GR(p) =
1

2π

∫ ∞
−∞

dp0′
(

ρ(p0′,p)

p0 − p0′ + iε

)
=

1

2π
PV

∫ ∞
−∞

dp0′
(
ρ(p0′,p)

p0 − p0′

)
− 1

2
i ρ(p0,p) ,

(5.51)

and

GA(p) =
1

2π

∫ ∞
−∞

dp0′
(

ρ(p0′,p)

p0 − p0′ + iε

)
+ i ρ(p0,p)

=
1

2π
PV

∫ ∞
−∞

dp0′
(
ρ(p0′,p)

p0 − p0′

)
+

1

2
i ρ(p0,p) (5.52)

Note that there are no thermal distributions functions in the retarded or advanced

propagator, and therefore the free causal propagatorsGR,free andGA,free are temperature

independent, since the free spectral functions has this property. The full retarded and

advanced propagtors get of course a temperature dependence from the full spectral

function. From the spectral representation (5.51) of the retarded propagator it is

obvious that

ρ(p0,p) = −2 ImGR . (5.53)
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5 Spectral functions

5.2 Spectral representation in the imaginary-time

formalism

The derivation of the spectral representation in the imaginary time formalism is now

straight forward. The euclidean (Matsubara) correlation function is obtained by Wick

rotation from the retarded Greens function:

GE(p0,p) = GR(i p0 − i ε) (5.54)

Inserting the first representation of (5.51) immediately yields:

GE(p0,p) =

∞∫
∞

dp0′

2π

ρ(p0′,p)

i p0 − p0′ (5.55)

Note, that according to (4.20) the Matsubara correlation function is relevant only at

the discrete set of Matsubara frequencies.

For future use in the Maximum Entropy Method, the mixed representation G(τ,p)) is

derived, by partially Fourier transforming (5.55) with respect to the zero-component.

G(τ,p) =
1

β

∑
n

e−i ωnτG(ωn,p) (5.56)

=
1

β

∑
n

e−i ωnτ
∞∫
∞

dω′

2π

ρ(ω′,p)

i ω − ω′ (5.57)

=
1

β

∞∫
∞

dω′

2π
ρ(ω′,p)

∑
n

e−i ωnτ
1

i ω − ω′ (5.58)

The Matsubara summation can be carried out by the following trick: Consider an

analytic function f(z) for z ∈ C \ {iωn} that has first order poles at z = iωn. Then the

Matsubara sum for a function g(iωn) can be written as:

∑
g(i ωn) =

1

2πi

∮
g(z)f(z)dz (5.59)

where the contour is made out of circles around the Matsubara frequencies. These

circles can be topologically deformed, such that the contour integration is given by
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5.2 Spectral representation in the imaginary-time formalism

(see. e.g. [155]):
1

2πi

∮
g(z)f(z)dz =

∑
z∈Poles of g(z)

Res g(z)f(z) (5.60)

A common choice for f(z) is:

f(z) = βnβ(z) (5.61)

in terms of the Bose distribution function nβ(z) at temperature 1
β

for convergence in

Re(z) > 0 and

f(z) = β(1 + nβ (z)) (5.62)

for convergence in Re(z) < 0. For the case of (5.56) the only (relevant) pole is at z = ω.

Thus, the integral must be divided into positive and negative frequency part. The result

after evaluating the Matsubara sum, i.e. after setting z = ω in all expressions:

G(τ,p) =

∞∫
0

dω

2π
ρ(ω,p)(1 + n(ω))eωτ + n(ω)e−ωτ (5.63)
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6 Diagrammatics

’Es kommt nicht darauf an, mit dem Kopf durch die Wand zu rennen, sondern mit

den Augen die Tür zu finden.’

Werner von Siemens

In this chapter a diagrammatic expansion of the spectral function of the energy-

momentum tensor correlation function in terms of spectral functions of the fundamental

fields is derived. The central tool is the magic formula, which yields general correlation

functions in terms of propagators and field derivatives. With some calculational effort

it can be applied for the Greens functions in the real-time formalism. It then becomes

obvious, that the expansion consists of a finite number of diagrams in full propagators.

6.1 The magic formula

Consider a field theory with fundamental fields ϕa (a = 1, .., N), corresponding sources

Ja and expectation values φa ≡ 〈ϕa〉. Further, consider a composite operator Φ~b[φa]

with some given index structure ~b. Then, the expectation value with respect to the

sources ~J = (J1, ..., JN) is

Φ̄~b = 〈Φ~b[φa]〉 ~J = Φ~a[Gϕaϕb

δ

δϕb
+ φa] (6.1)

with the relation
δ

δJa
= Gϕaϕb

δ

δϕb
(6.2)

The magic formula (6.1) is thouroughly derived in [74]. In particular, relation (6.1)

allows to break down the correlation functions of the spatial traceless part of the energy-

momentum tensor defined in (3.20) to full propagators of the gluon and ghost fields,

by setting

Φij,ij

[
Â
]

= πij[Â]πij[Â] (6.3)
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6 Diagrammatics

where the hats denote the expectation values of the fluctuation field A. The magic

formula yields

〈πij[Â]πij[Â]〉 = πij[GAϕa ·
δ

δϕa
+ A] πij[GAϕa ·

δ

δϕa
+ A] , (6.4)

where ~ϕ = (A,C, C̄). In particular, the classical (traceless part of the) of the energy-

momentum tensor is employed in momentum space

πij(p) = (F a
µi ∗ F aµ

j )(p)− 1

3
δij(F

a
µk ∗ F aµk)(p) (6.5)

in terms of the Fourier transform of the field strength tensor (2.16). Here, (·∗·) denotes

the convolution

(f ∗ g)(p) =

∫
d4q

(2π)4
f(q)g(p− q) (6.6)

Note, the convention in (6.5) to use latin letters for three dimensional and color indices

and greek letters for four dimensional indices. It is obvious, that (6.5) is indeed trace-

less.

πij can be decomposed into three classes, given by the number of gluon fields attached

to the EMT-vertex, depending on whether the the abelian part (with 1 gluon field) or

the non-abelian part (with 2 gluon fields) of the field-stength tensor is picked. If both

abelian parts are chosen, the EMT-vertex has two leg, if both non-abelian parts are

picked four legs are outgoing, and for the mix of abelian part and non-abelian part an

EMT with three legs is obtained. It is convenient to seperate the generic diagrammatic

part from the EMT-specific tensor structure:

πij = α
(2)~c
ij,~µ,(p,

~k)A(2)~c~µ(~k) + α
(3)~c
ij,~µ,(p,

~k)A(3)~c~µ(~k) + α
(4)~c
ij,~µ,(p,

~k)A(4)~c~µ(~k) (6.7)

where the α(n)’s contain the tensor structure and A(n) denotes the n gluon fields, in the

sense that:

A(n)~c~µ(~k) = Ac1,µ1(k1)...Acn,µn(kn) (6.8)

Further, in a slight abuse of notation vectors for Lorentz indices, color indices and

momenta of length n are introduced, such that i.e.

α
(2)~c
ij,~µ,(p,

~k) = α
(2) c1,c2
ij,µ1,µ2

(p, k1, k2) (6.9)
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6.1 The magic formula

In addition to the usual Einstein summation rule, integration of the ki-momenta is

implied in (6.7). The α′s are calculated as the Taylor coefficients of (6.5) about A = 0.

Below, the explicit expressions are given:

α
(2) c1,c2
ij,µ1,µ2

(p, k1, k2) = −δc1c2δ(q − k1)δ(p− q − k2) (6.10)

×[δµν(qi(pj − qj)) + q · (p− q)(δiµ1δjµ2) (6.11)

−qi(pµ1 − (qµ1)δjµ2 + qµ2(pi − qi)δjµ1)] (6.12)

+i←→ j, (µn, cn, kn) sym., subtract trace (6.13)

α
(3) c1,c2,c3
ij,µ1,µ2,µ3

(p, k1, k2, k3) = i gf c1,c2,c3δ(q − k1)δ(p− q − k2 − k3)δjµ3(qµ2δiµ1 − qiδµ1µ2)

(6.14)

+i←→ j, (µn, cn, kn) sym., subtract trace (6.15)

α
(4) c1,c2,c3,c4
ij,µ1,µ2,µ3,µ4

(p, k1, k2, k3, k4) = g2fac1c2fac3,c4δ(q − k1 − k2)δ(p− q − k3 − k4) (6.16)

+i←→ j, (µn, cn, kn) sym., subtract trace (6.17)

In each expression, the convolution integration variable is denoted by q and as above in-

tegration is implied. All other appearing convolutions are already carried out. Further,

the adequate symmetrization for the α′s as Taylor coefficients is achieved, by adding

up all permutations of the triples (µn, cn, kn). The trace is subtracted symmetrically

from each diagonal element.

For the tensor structure of the EMT correlation function, each combination of pairs of

α′s are multiplied. Such a term is labelled by

α
(n,m) ~c=~c1_~c2
~µ= ~µ1_~µ2

(~k = ~k1 _ ~k2) ≡ α
(n)~c1
ij,~µ1,

(p,~k1)⊗ α(m),~c2
ij,~µ2,

(p,~k2) (6.18)

where ~v = ~v1 _ ~v2 denotes the concatenation of vectors ~v1 = (v1
1, .., v

n
1 ) and ~v1 =

(v1
2, ..., v

m
2 ) to the vector ~v = (v1

1, ..., v
n
1 , v

1
2, ..., v

m
2 ).

The expressions for α
(n,m) ~c
~µ (~k) are too lengthy to be given explicitly. Note, however,

that there is no more dependence on i, j.

Let us now turn to the diagram part, and study the different diagram types sorted

by the number of loops.
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6 Diagrammatics

6.2 Notation and classification

Note, that the classical tensor structure of the energy-momentum tensor is considered.

Thus, ghost propagators, in this approximation cannot be connected directly to the

EMT-vertices. In particular, there is no term in the magic formula, giving rise to ghost

contributions up to 2-loop order.

First, the notation is made explicit. For sake of convenience the hat is dropped for

the field expecation values. Gluon propagators in momentum space are denoted by

Gε1,ε2,c1,c2
µν (q1, q2) = δc1,c2δ(4)(q1 + q2)Gε1,ε2

µν (q1) (6.19)

with the branch indices ε1, ε2 ∈ {+,−}. The field derivatives in (6.1) act on fields,

propagators and Yang-Mills vertices according to

δ
δAε1,c1µ1 (q1)

Aε2,c1µ2
(q2) = δc1c2δε1ε2δµ1µ2δ

(4)(q1 − q2) (6.20)

δ
δAε,cµ (q)

Gε1,ε2,c1,c2
µ1µ2

(q1, q2) = −Gε1,ε,c1c̃1
µ1ν1

(q1, r)Γ
ε,ν1µν2,c̃1,c,c̃2(r, q, s)Gε,ε2,c̃2c2

ν2µ2
(s, q2) (6.21)

δ

δAε,cµ (q)
Γε1,µ1,µ2,µ3,c1,c2,c3(q1, q2, q3) = δεε1Γε,µ1µ2µ3,µ,c1,c2,c3,c(q1, q2, q3, q) (6.22)

δ
δA

ε,c1
µ (q)

Γε1,µ1µ2µ3,µ4,c1,c2,c3,c4(q1, q2, q3, q4) = 0 (6.23)

with the classical structure for the 3-gluon Yang-Mills vertex

Γε,c1,c2,c3µ1,µ2,µ3
(q1, q2, q3) = εgf c1c2c3(gµ1µ2(q3−q1)µ3 +gµ2µ3(q1−q2)µ1 +gµ3µ1(q2−q3)µ2) (6.24)

and the 4-gluon Yang-Mills vertex

Γε,c1,c2,c3,c4µ1µ2µ3µ4
(q1, q2, q3, q4) =− εig2δ(4)(q1 + q2 + q3 + q4) (6.25)

(f c1c2ef c3c4e(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3) (6.26)

+f c1c3ef c2c4e(gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3) (6.27)

+f c1c4ef c2c3e(gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)) (6.28)

Note, that the branch index determines the sign of the Yang-Mills-vertex. Each of the

EMT-vertices is connected to either two, three or four gluon lines, imposing a natural

classification for the diagrams. However, the number of loops varies within each class.

70



6.3 1-loop diagram

Therefore,

Dε1,ε2
n1,n2

(L) (6.29)

denotes the diagrammatic part with branch indices ε1, ε2, the number n1 of legs of the

left EMT-vertex, the number n2 of legs of the right EMT-vertex and L loops. The free

Lorenz indices ~µ, color indices ~c and momentum variables ~q from the decomposition

(6.7) are not explicitly carried along inDε1,ε2
n1,n2

(L) in order to avoid overloading of indices.

For given n1, n2, the minmum number of loops is given by

Lmin = bn1+n2−1
2
c (6.30)

with the Gaussian bracket bxc = max{n ∈ Z|n ≤ x}, while the maximum number of

loops is

Lmax = n1 + n2 − 2. (6.31)

The validity of equations (6.30) and (6.31) can be checked by explicit evaluation of (6.4)

with the deomposition (6.7) of the spatial traceless part the EMT (6.5). In particlar, the

overall minimum number of loops is 1, while the maximum is assumed for n1 = n2 = 4,

yielding Lmax,total = 6. In the following sections the diagrams up to 2-loop order are

evaluated and classified.

6.3 1-loop diagram

There obviously is merely a single 1-loop diagram, which is shown in 6.1. Its calculation

works as a instructive application of the magic formula. The 1-loop contribution is

Figure 6.1: Unique 1-loop contribution to the correlation function 〈πijπij〉 of the spatial traceless part
πij of the energy momentum tensor. The full Yang-Mills vertices are denoted by filled black circles,
whereas the EMT vertices are depicted by gray squares.
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6 Diagrammatics

obtained by picking the abelian parts of the field strength tensors. This corresponds to

picking the first term in (6.7) which is proportional to α(2). Thus, the magic formula

is evaluated for

Dε1,ε2
2,2 (1) ≡ 〈Ac1,ε1µ1

(k1)Ac2,ε1µ2
(k2)Ac3,ε2µ3

(k3)Ac4,ε2µ4
(k4)〉1−loop (6.32)

with Dε1,ε2
2,2 (1) defined in (6.29). Note, that the former two fields belong to the left

EMT-vertex in Fig. 6.1 while the latter two fields belong to the right EMT-vertex.

Dε1,ε2
2,2 (1) = [(Gε1ε̄1 · δ

δAε̄1
+ Aε1)(Gε1ε̄2 · δ

δAε̄2
+ Aε1) (6.33)

×(Gε2ε̄3 · δ

δAε̄3
+ Aε2)(Gε2ε̄4 · δ

δAε̄4
+ Aε2)]1−loop (6.34)

Again, the Lorenz and momentum structure has been dropped for better readability.

For each field two terms can be picked, leading to 24 = 16 combinations. Further,

each combination can produce a number of different diagrams, as the derivatives can

act on any object to the right. However, there is no finite background field, and any

terms with surviving fields will vanish. Similarly, terms with remaining field derivatives

vanish trivially. In particular, only the field in the rightmost term and the derivative

in the leftmost term will give rise to non-vanishing contributions:

Dε1,ε2
2,2 (1) = [Gε1ε̄1 · δ

δAε̄1
(Gε1ε̄2 · δ

δAε̄2
+ Aε1)(Gε2ε̄3 · δ

δAε̄3
+ Aε2)Aε2 ]1−loop (6.35)

Expanding (6.35) will also produce numerous 2-loop diagrams (but no higher loop

diagrams according to (6.31)), that will be considered below. For now, let us consider

the 1-loop term by picking one more field, and one more field derivative. The only

contributions then are the 1-loop diagram in Fig.6.1 and a disconnected diagram, which

is 2-loop. The 1-loop diagram is obtained for the combination:

Dε1,ε2
2,2 (1) = [Gε1ε̄1 · δ

δAε̄1
Gε1ε̄2 · δ

δAε̄2
Aε2Aε2 ] (6.36)
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6.3 1-loop diagram

At this point it cannot be avoided to reintroduce all tensor structures for the gluon

fields.

Dε1,ε2
2,2 (1) =Gε1,ε̃1,c1c̃1

µ1µ̃1
(k1, k̃1) · δ

δAε̃1,c̃1µ̃1
(k̃1)

(6.37)

×Gε1,ε̃2,c2c̃2
µ2µ̃2

(k2, k̃2) · δ

δAε̃2,c̃2µ̃2
(k̃2)

Aε2,c3µ3
(k3)Aε2,c4µ4

(k4) (6.38)

=Gε1,ε2,c1c3
µ1µ3

(k1,−k3)Gε1,ε2,c2c4
µ2µ4

(k2,−k4) (6.39)

+Gε1,ε2,c1c4
µ1µ4

(k1,−k4)Gε1,ε2,c2c3
µ2µ3

(k2,−k3) (6.40)

=Gε1,ε2,c1c3
µ1µ3

(k1,−k3)Gε1,ε2,c2c4
µ2µ4

(k2,−k4) + {3←→ 4} (6.41)

The notation {3 ←→ 4} indicates the exchange of all indices with the respective sub-

scripts. As expected the magic formula produces two terms for the one loop diagram.

Both terms are identical under exchange of the gluon lines of one of the EMT vertices.

Thus, the magic formula already naturally takes care of any symmetry factors.

Equation (6.41) can be contracted with the corresponding EMT tensor structure (6.18)

for n = m = 2. The number of terms blows up during the calculation,which therefore

cannot be shown here. The calculation is performed using Mathematica 9 employing

the ’x-tensor package [163]. Here, only a sketch of the calculation is given:

The tensor structure for the finite temperature gluon propagators in Landau gauge is

given in (8.1). In the real time formalism each scalar propagator receives the branch

indices from the full tensorial propagator. The longitudinal and transverse scalar propa-

gators are then expressed in terms of their respective spectral functions (review chapter

5). In a last step, the imaginary part of the full expression is taken in order to get

the spectral function of the EMT. The EMT spectral function depends on the four

momentum components. For the main application of this thesis, the determination of
η
s
, the zero spatial momentum limit is needed. However, this limit of ~p → 0 can be

trivially taken.

ρππ(ω) =
2dA
3

∫
d4k

(2π)4
[n(k0)− n(k0 + ω)]

×{V1(k, ω)ρT (k0, ~k )ρT (k0 + ω,~k )

+V2(k, ω)ρT (k0, ~k )ρL(k0 + ω,~k )

+V3(k, ω)ρL(k0, ~k )ρL(k0 + ω,~k )} , (6.42)
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6 Diagrammatics

2-loop diagram gEMT gYM gTotal
Sunset 2 0 2
Maki-Thompson 0 2 2
Eight 0 2 2
Squint 1 1 2
vertex corr. 2 0 2

Table 6.1: Dependence of the two-loop diagram on the running coupling.

with dA = N2
c − 1, and

V1(k) = 7(k2)2 − 10k2
0
~k 2 + 7k4

0

V2(k) = 6k2
0(k2

0 − ~k 2)

V3(k) = 2(k2
0 − ~k 2)2 . (6.43)

6.4 2-loop diagrams

2 - loop

contributions

a.) b.)

c.) d.) e.)

Figure 6.2: 2-Loop contributions to the correlation function 〈πijπij〉 of the spatial traceless part πij
of the energy momentum tensor: Sunset (a), Maki-Thompson (b), Eight (c), Squint (d), 1-loop with
a single vertex correction (e).The full Yang-Mills vertices are denoted by filled black circles, whereas
the EMT vertices are depicted by gray squares.

At two loop order the contributions to the correlation function 〈πijπij〉 of the spatial

traceless part πij of the energy momentum tensor, are given by the diagrams shown in

Fig.6.2. Once again, for the classical energy-momentum tensor, no ghost propagators

can occur at two loop level. While, the 1-loop diagram was independent of the running

coupling, the 2-loop expressions are proportional to g2 = 4παs. However, the source of

the g-factors differs among the 2-loop diagrams: The sunset diagram and the 1-loop di-

agram with a single vertex correction contain no Yang-Mills vertices. The dependence
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6.4 2-loop diagrams

on αs comes from the g-factors in the field-strength tensor. Whereas Maki-Thompson

and Eight are contributions of the Abelian part of the field strength tensor containing

no g-factors. But their g2-dependence originates from the two 3-gluon vertices and

the 4-gluon vertex, respectively. The squint contribution is hybrid in this sense, with

one g coming from the 3-leg EMT vertex and the other coming from the 3-gluon vertex.

The distinction is interesting, as it allows to study the results with respect to the

vertex dressing. The Yang-Mills vertices were obtained from the full propagators, thus

it seems reasonable to employ a temperature dependent running coupling. For the

EMT vertices on the other hand, the classical ghost-free tensor expression is employed.

A dressing with a running αs has at least to be discussed. This discussion is found in

9 in the context of the discussion of the 2-loop correction to η
s
.

Analog to the 1-loop diagrammatic part of (6.36) which led after contraction of all

indices to the diagrammatic exression (6.41), in the 2-loop case all diagrams are be

studied seperately.

6.4.1 Sunset

For the sunset diagram the α(3)-α(3) contribution is picked. The diagrammatic part

reads:

Dε1,ε2
3,3 (2) ≡ 〈Ac1,ε1µ1

(k1)Ac2,ε1µ2
(k2)Ac3,ε1µ3

(k3)Ac4,ε2µ4
(k4)Ac5,ε2µ5

(k5)Ac6,ε2µ6
(k6)〉sunset (6.44)

For the fields coming from the left EMT, i.e. the first three A-fields in (6.44), the field

derivative is picked, whereas for the latter three fields the average is picked. The only

non-vanishing contribution arises from each derivative hitting an expectation value (no

background field). Analog to equation(6.41), the sunset diagrammatic part yields

Dε1,ε2(3, 3)(2) =Gε1,ε2,c1c4
µ1µ4

(k1,−k4)Gε1,ε2,c2c5
µ2µ5

(k2,−k5)Gε1,ε2,c3c6
µ3µ6

(k3,−k6) (6.45)

+ {symmetrize 4, 5, 6} (6.46)

The fully contracted expression,however, is too lengthy to be given explicitly, even after

seperation of combinations of longitudinal and transverse propagators.
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6.4.2 Eight

For the diagram ’Eight’ the α(2)-α(2) contribution is picked. The diagrammatic part is

given by expression (6.32). However, this time a different choice for the combination

of field derivatives and field expectation values is picked. Obviously, for the eight, all

gluon lines form a 4-gluon vertex. This is obtained by picking the three field derivatives

for the three fields on the left.The first derivative hits the field generating a propagator.

The second derivative, hitting the propagator generates a 3-gluon vertex, and the third

derivative finally generates the 4-gluon vertex:

Dε1,ε2
2,2 (2, ′Eight′) = [Gε1ε̄1 · δ

δAε̄1
Gε1ε̄2 · δ

δAε̄2
Gε2ε̄3 · δ

δAε̄3
Aε2 ]eight (6.47)

The 4-gluon vertex carries a branch index ε ∈ {+,−}. In particular, ’Eight’ is the first

diagram that contains diagonal elements of the real-time propagator matrix. The part

of the Eight containing transverse gluon only is shown for vanishing external frequency

as an example for a typical term.

−128

135
g2(5k2 − 7k2

0)(5q2 − 7q2
0)ρT (k0, k)ρT (q0, q) (6.48)

(n(k0)2(2n(q0) + 1) (6.49)

FT (q0, q)ρT (k0, k) + n(k0)((2n(q0) + 1) (6.50)

× FT (q0, q)ρT (k0, k) + 2n(q0)(n(q0) + 1) (6.51)

× FT (k0, k)ρT (q0, q)) + n(q0) (6.52)

× (n(q0) + 1)FT (k0, k)ρT (q0, q)) (6.53)

6.4.3 Maki-Thompson

Maki-Thomspon is another α(2)-α(2) contribution. Similar to the ’Eight’, three field

derivatives are picked. This time, however, two of the field derivatives hit propagators.

There are two distinct classes of Maki-Thompson diagrams, which are called ’pure’

and ’mixed’. The pure Maki-Thompson diagrams are the diagrams with either two

+ internal Yang-Mills vertices or two − vertices. These diagrams have three diagonal

propagator elements (either three G++ propagators or three G−− propagators) and

two off-diagonal elements. On the other hand, there are the mixed Maki-Thompson

diagrams with either +/− or −/+ combination of internal Yang-Mills vertices. Mixed

Maki-Thompson diagrams do not contain any diagonal propagator elements.
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6.4 2-loop diagrams

The distinction is of interest, as it raises the question of convergence of each diagram

type. While the off-diagonal propagator elements ensure convergence by occurence of

distribution functions, the convergence of loops containing diagonal elements has to be

studied more carefully. The topic of convergence is discussed in chapter 8.

6.4.4 Squint

The squint is the only 2-loop contribution of the α(3)-α(2) (α(2)-α(3)) diagrams. The

diagrammatic part of the 3-2 diagram reads:

Dε1,ε2
3,2 (2) ≡ 〈Ac1,ε1µ1

(k1)Ac2,ε1µ2
(k2)Ac3,ε1µ3

(k3)Ac4,ε2µ4
(k4)Ac5,ε2µ5

(k5)〉squint (6.54)

The odd number of gauge fields immediately requires the appearance of at least one

internal Yang-Mills vertex. To obtain a non-vanishing contribution, the number of

field derivatives picked must exceed the number of field expectation values. Picking

four field derivatives leads to a 3-loop diagram. Thus, the squint contribution is ob-

tained by picking three field derivatives. Similar to the one-loop case, this does not

fully determine the squint diagram. The are also occuring disconnected diagrams or

one gluon exchange diagrams. In Fig.6.3 the two classes of diagrams are shown. They

Figure 6.3: The 2-loop contribution contains one more diagram types beside the squint: The one-gluon
exchange (a). Further, a fully disconnected 3-loop contribution is possible (b).

both do not contribute to the EMT spectral function. For diagram a.) it suffices to

study the color structure: The 2-leg EMT-vertex in diagram (a.) is proportional to

δc1c2 . The two propagators attached to it form a 3-gluon vertex with one line of the

3-leg EMT-vertex. The 3-gluon vertex is, however, is proportional to f c1c2a. Thus,

contracting the color structure forces the diagram to vanish.

The disconnected diagram b.) vanishes, when taking the commutator of the EMT

correlator. This shows, that the only non-vanishing contribution is indeed the squint.
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6 Diagrammatics

It is obtained by the field derivatives for the three gauge fields to the left of (6.54).

6.4.5 1-loop with single vertex correction

The 1-loop with single vertex correction is the single 2-loop contribution of the α(4)-α(2)

(α(2)-α(4)) diagrams. The diagrammatics of the 4-2 case reads:

Dε1,ε2
4,2 (2) ≡ 〈Ac1,ε1µ1

(k1)Ac2,ε1µ2
(k2)Ac3,ε1µ3

(k3)Ac4,ε1µ4
(k4)Ac5,ε2µ5

(k5)Ac6,ε2µ6
(k6)〉vertexcorr (6.55)

This diagram is of certain interest for two reasons. The first is, that its structure is very

similar to the leading oder 1-loop contribution with a correction of one of the EMT-

vertices (even though it differs due to the different tensor structures of the EMT with

2(4) legs). Thus, its size will also be an indicator for the size of higher loop correction

as the 1-loop with two vertex corrections. Secondly, the convergence of the correction

loop integral will be regulated by the behaviour of the spectral function.
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7 Maximum Entropy Method

’Menschen, die wie wir an die Physik glauben, wissen,

dass die Unterscheidung zwischen Vergangenheit, Gegenwart und Zukunft

nur eine besonders hartnäckige Illusion ist.’

Albert Einstein

In many branches of science the problem occurs to reconstruct objects from measure-

ment data. Here, the term ’ojbect’ includes a functional dependence, that is inferred

from measurement as well as the determination of an animal species from DNA testing.

Such a problem can be ambiguous in two ways. The first ambiguity, of course, lies in

unavoidable measurement errors, which can be of stochastic and systematic nature.

The second ambiguity, being more subtle, originates in an uncomplete measurement,

in the sense, that not all information necessary for the reconstruction could be mea-

sured. Suppose, for example, the general problem of image reconstruction formulated

by Frieden [164]:’Given M sampled values of an incoherent object, what can be deduced

to be the most likely object?’. The word ’incoherent’ is used to describe both types of

ambiguity. The statement also implies, that the best reconstruction can only be the

most likely, compatible with the data and contraints from a priori available informa-

tion, which will be called the ’model’.

This brings about some issues: Assuming, the measurement cannot be improved, what

is the best known model? How can this model be incorporated in the reconstruction?

How to weigh the data with respect to the model?

An algorithm dealing with all these issues is the Maximum Entropy Method (MEM).

Today, MEM is a widely applied tool in high energy physics for analysing i.e. quan-

tum Monte Carlo data, lattice data or the reconstruction of spectra from continuum

methods [165–172]. In this chapter, the algorithm will be discussed in detail. Fur-

ther, an extension to non-positive images is introduced, to allow the application of the

extended-MEM to gluon spectral functions.
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7 Maximum Entropy Method

7.1 General challenge

In this short section the general challenge to invert an integral equation is introduced.

Suppose, there is some measured correlation function G(τ), that is related to some

(unknown) positive (semi)-definite function ρ(ω) - which we call spectral function in

anticipation of the main application - by the integral equation

G(τ) =

∫
dωK(τ, ω)ρ(ω) (7.1)

where, for now, K(τ, ω) is a known and well-behaved1 but otherwise arbitrary inte-

gral kernel. Suppose further, G(τ) is known by measurement at τi(i = 1, ..., Nτ ), with

uncertainties σ(τi). The aim is to calculate the best (educated) guess for the spectral

function considering any a priori knowledge on its shape. Such knowledge can be the

asymptotic behaviour ρ(ω →∞). In the case of gluons the this asymptotic behaviour

is fixed by perturbation theory.

First, a naive approach to the inversion problem is introduced, to point out the diffi-

culties of ambiguity and of over-weighting the a priori knowledge.

7.2 Naive approach to image reconstruction

It has been proposed to make a parametric ansatz ρmodel(ω, b1, ...bm) in terms of the

parameters bi for ρ(ω) [173] and minimize the likelihood L defined as2

L =
1

N

Nτ∑
i=1

1

(σi)2
(G(τi)−Gmodel(τi, b1, ..., bm))2 (7.2)

with

Gmodel(τ, b1, ..., bm) =

∫
dωK(τ, ω)ρmodel(ω, b1, ...bm) (7.3)

However, this naive approach has the inherent disadvantage of limiting the search space

to the space spanned by the parameters bi(i = 1, ...,m). Therefore, on the one hand,

the resulting spectral function can only be as good, as the initial guess, and secondly,

no estimate on the quality of the result is possible, as there can be a different ansatz

1In the sense, that K(τ, ω) is meromorphic
2In general, the likelihood will be non-diagonal, due to non-independent measurement uncertainties.

For now, however, a diagonal likelihood is assumed for convenience. The extension to non-diagonal
likelihoods is found later in this chapter.
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7.2 Naive approach to image reconstruction

ρ̄model(ω, b̄1, ...b̄m̄) with |L̄| << |L|. An example illustrates that issue: Consider the

integral kernel

K(τ, ω) = e−τω (7.4)

and a mock spectral function ρ(ω) = 1
2
ω2Θ(ω). The correlation function is

G(τ) =
1

2

∞∫
−∞

dωe−τωω2Θ(ω) (7.5)

=
1

2

∞∫
0

dωe−τωω2 (7.6)

=
1

2

∂2

∂τ̄ 2

∞∫
0

dωe−τ̄ω|τ̄=τ (7.7)

=
1

2

∂2

∂τ̄ 2

1

τ̄
|τ̄=τ (7.8)

=
1

τ 3
(7.9)

(7.10)

Further, a mock measurement at N values of τ in the interval I = [0, τmax] yields

Gmeas(τi) =
1 + δi
τ 3
i

(7.11)

with |δi|
τ3
i
≤ σi. For convenience the limiting case of |δi|

τ3
i

= σi is considered:

Gmeas(τi) =
1

τ 3
i

+ sign(δi)σi (7.12)

The likelihood obtained with the true correlator as model correlator yields

L =
1

N

Nτ∑
i=1

1

(σi)2

(
1

τ 3
i

+ sign(δi)σi −
1

τ 3
i

)2

= 1 (7.13)

Now, however a different ansatz is chosen for the model spectral function:

ρmodel(ω, b1) = b1ωΘ(ω) (7.14)
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7 Maximum Entropy Method

Obviously, the ’true’ spectral function is not part of the search space. The correspond-

ing correlator is calculated as above

G(model)(τ, b1) = b1
1

τ 2
(7.15)

Even though a reasonable result cannot be expected, let us evaluate the likelihood

function

L =
1

N

Nτ∑
i=1

1

(σi)2

(
1

τ 3
i

+ sign(δi)σi − b1
1

τ 2
i

)2

(7.16)

=
1

N

Nτ∑
i=1

(
1 + sign(δi)

1− b1τi
|δi|

)2

(7.17)

(7.18)

In all practical measurements the likelihood (7.17) will be greater than 1, but never-

theless it is possible to construct examples, such that a model function with a wrong

asymptotic behaviour can yield lower likelihoods, than the true spectral function. This

observation even worsens the problem, and demonstrates the need for a better al-

gorithm, especially, when one keeps in mind, that in general one does not seek to

reconstruct designed mock measurements, and the spectral function truely is unknown.

7.3 Extension of the naive approach

In this section the standard-MEM algorithm is derived. It will be shown that the in-

troduction of an entropy term will remove the ambiguities of the MEM-image.

It is interesting to ask, why the naive method can fail in many scenarios? The answer

is quite simple. Introducing a priori information of the shape of the spectral function

by including adequate basis functions in the search space is not sufficient. There is no

term, that explicitly punishes deviations from the correct asymptotic behaviour as the

correlation data alone cannot fix the asympotics.

That becomes clear, by observing, that the large ω behaviour of ρ is governed by

the correlation function in the vicinity of τ = 03. For discrete data, this usually im-

plies, that only a single data point contains most information on the asymptotics.

3This statement is true for the kernel (7.4) and will be true for all kernels considered in this thesis.

82



7.3 Extension of the naive approach

A punishment term can be introduced in the form of an entropy, which was first for-

mulated by Shannon [174] and subsequently applied to statistical physics by Jaynes

[175, 176] and is therfore known as Shannon-Jaynes entropy. By introducing the

Shannon-Jaynes entropy

S =

∞∫
0

dω

(
ρ(ω)−m(ω)− ρ(ω) log

(
ρ(ω)

m(ω)

))
(7.19)

and minimising the combined quantity

Q(α) = L− αS, (7.20)

the naive approach is extended to punish deviations form the model. The model func-

tion m(ω) introduced in (7.19) is chosen, such that it contains the a priori known shape

of the spectral function. The Lagrange multiplier α, regulates the relative weight of

the data to the a priori model. In the limit α → 0 the naive approach is retrieved,

while for α → ∞ the result of the extended algorithm will be ρ(ω) = m(ω). Note,

that the entropy S is always non-positive, such that Q(α) is bounded from below by

Q(α) = 0. To see this, both spectral function and model function are assumed to be

positive definite, so that the spectral function, can be written without loss of generality

as

ρ(ω) = m(ω)ef(ω) (7.21)

Inserting (7.21) into (7.19) one finds for all ω ∈ [0,∞]:

ρ(ω)−m(ω)− ρ(ω) log

(
ρ(ω)

m(ω)

)
= m(ω)

(
ef(ω)(1− f(ω))− 1

)
(7.22)

with exhibits a global maximum at f(ω) = 0 with value 0. This immediately follows

by differentiation with respect to f(ω). In particular, the maximum is assumed for

ρ(ω) = m(ω), following from (7.21).

The Maxiumum entropy method is obtained by a certain choice for the parametrization

of the spectral function. This parametrization is discussed in Section7.5. For let us

assume, this choice is picked, and the naive approach, also called, Minimum Likelihood

Method (MLM) is promoted to MEM.

The minimization of Q(α) simultaneously optimizes the image with respect to the cor-
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7 Maximum Entropy Method

relation data and the model. However, so far the result will depend on the choice of

α. The dependence can be eliminated, by suitably averaging over α, which is discussed

now in terms of Bayesian probability theory.

7.4 Bayes’ theorem of conditional probability

Bayes’ theorem is a general statement about conditional likelihoods. Suppose two

events X, Y that occur with likelihoods P [X], P [Y ]. Then, the likelihood P [X|Y ] of

event X occuring given Y is [177]:

P [X|Y ] =
P [Y |X]P [X]

P [Y ]
(7.23)

It is useful to translate the MEM idea of Section7.3 into the language of conditional

probabilities. Let D be the measured correlation data including its uncertainties and

M be all prior knowledge about the spectral function ρ. Then, using Bayes’ theorem

(7.23):

P [ρ|DM ] =
P [D|ρM ]P [ρ|M ]

P [D|M ]
(7.24)

The four conditional probabilities are easily related to the MEM quantities. The LHS

gives the probability for a spectral function given data and model. The aim is to

calculate the most likely spectral function, i.e:

δP [ρ|DM ]

δρ
= 0 (7.25)

On the RHS, P [D|M ] is merely a ρ-independent normalization factor, that does not

play a role in (7.25). Assuming the measurement data is Gaussian distributed around

some central value, P [D|ρM ] can be written as

P [D|ρM ] =
1

ZL
e−L (7.26)

with a normalisation factor ZL and the likelihood L defined in (7.2). Finally, if P [ρ|M ],

could be interpreted as αS with the entropy (7.19), the MEM algorithm would be

very simple. However, the weight parameter α and the model function m are to be

distinguished from the prior information M . To clarify this: The prior knowledge

M describes the abstract collection of prior information, while the model function

is an explicit representation of M . Therefore, the entropy connects to the Bayesian
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7.5 MEM algorithm

probability

P [ρ|Mαm] =
1

ZS
eαS (7.27)

To obtain the most likely spectral function ρopt both α and m must be integrated out.

In practice, however, only the α average is performed, such that ρopt remains model

dependent. The most likely spectral function is given by

ρopt(ω) =

∫
[dρ]

∫
dαρ(ω)P [ρ|DMαm]P [α|DMm] (7.28)

where P [ρ|DMαm] is given by (7.24) and is usually assumed to be peaked around some

α = α̂, and (7.28) is written as

ρopt(ω) =

∫
dαρα(ω)P [α|DMm] (7.29)

Further the probability P [α|DMm] is given by

P [α|DMm] = P [α|Mm] exp
[

1
2
c(α) + αS(ρα̂)− L(ρα̂)

]
(7.30)

in terms of an α-dependent constant c(α) calculated below and an integral measure,

P [α|Mm], which cannot be further constrained. Common choices are Jeffrey’s rule

P [α|DMm] = 1
α

and Laplace’s rule P [α|DMm] = 1. The freedom of choice for the

integral measure represents, that introducing α supplemented the system with an ar-

ticficial degree of freedom. However, for a sharply peaked ρα in α-space, the form of

the measure is not relevant.

7.5 MEM algorithm

To allow a numerical approach to the problem of reconstructing the spectral image, the

ω-interval is disretized to a grid of Nω points. Thus, the kernel reduces to a Nτ ×Nω

matrix. The discretized version of the Shannon-Jaynes entropy (7.19) reads

S ≈
Nω∑
j=1

ρ(ωj)−m(ωj)− ρ(ωj) log

(
ρ(ωj)

m(ωj)

)
(7.31)

The MEM-parametrisation, already mentioned before, of ρ(ω) is directly related to the

transpose of the integral kernel KT (τ, ω). To span the most general search space for the
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7 Maximum Entropy Method

spectral function, a (thin) singular value decomposition [178] of KT (τ, ω) is performed.

KT = USV T (7.32)

where U is a (pseudo)-orthogonal Nω × Nτ matrix, S is a diagonal Nτ × Nτ matrix

and V is an orthogonal Nτ ×Nτ matrix. The singular value decomposition is unique,

if the non-negative entries of S (the so called singular values) are sorted. Usually, the

sorting is done in decreasing magnitude. The entries of U are denoted by ujl(j =

1, ...Nω; l = 1, ..., Nτ ). The spectral function is parametrised by an Nτ -dimensional

parameter vector ~b as

ρMEM(ωi,~b) = m(ωi)e
uilbl (7.33)

For a positive model function, the ansatz (7.33) gives a positive ρ. As the aim is to

minimize (7.20), one needs to evaluate the derivatives:

∂Q

∂bl
=

∂L

∂bl︸︷︷︸
1

−α∂S
∂bl︸ ︷︷ ︸
2

(7.34)

The two summands are considered separately

∂L

∂bl
=

∂L

∂G(τi)

∂G(τi)

∂ρ(ωj)

∂ρ(ωj)

∂bl
=

∂L

∂G(τi)
Kijρ(ωj)ujl (7.35)

−α∂S
∂bl

= −α ∂S

∂ρ(ωj)

∂ρ(ωj)

∂bl
= α log(

ρ(ωj)

m(ωj)
)ρ(ωj)ujl = αujkbkρ(ωj)ujl (7.36)

Inserting the Singular Value Decomposition one finds

0 =
∂Q

∂bl
= ujk

(
(SV T )ki

~∂L

∂G(τi)
+ αbk

)
︸ ︷︷ ︸

=0

ρ(ωj)ujl (7.37)

In order for this expression to vanish, the underbraced part must vanish. That is a

suitable starting point for a multidimensional non-linear minimisation algorithm, as

the expression inside the braces can be written as

~g(~b) ≡ (SV T )ki
~∂L

∂G(τi)
= −αbk (7.38)

Non-linear optimisation is cumbersome, and can easily lead to instabilities. Therefore,

equation (7.38) is expanded to linear order in an arbitrary adjustment of ~b → ~bnew =
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7.6 Uniqueness of the MEM solution

~b+ ~δb, about ~b:

(XT + αINτ )~δb = −(α~b+ g(~b)) (7.39)

with the b-independent matrix

X = SV T ∂2L

∂G(τi)∂G(τj)
V S (7.40)

and the b-dependent matrix

T = UTDiag(ρ)U (7.41)

While a Newton solver could already attack (7.39), the algorithm is unstable. The

reason is, that there is no regulation of the magnitude of adjustments ~δb, so too large

adjustments can occur and the linearisation (7.39) is not justified. However, the Newton

algortihm can be promoted to the Levenberg-Marquardt algorithm [179] by introducing

the so called Levenberg-Marquardt parameter µ into (7.39):

(XT + (α + µ)INτ )~δb = −(α~b+ g(~b)) (7.42)

The adjustment is calculated for some (small) value for the Levenberg-Marquardt pa-

rameter. If the calculated adjustment exceeds some fixed upper bound, µ is increased

and the adjustment is recalculated. Once the adjustment satisfies the bound condition

it is accepted and the Levenberg-Marquart parameter is reset to its initial value. Obvi-

ously, the size of each component of the increment ~δb decreases, as µ is increased. The

procedure is repeated until the parameter vector ~b has converged to ~bopt(α). The resulting

spectral function ρ(ω,~bopt(α)) represents the α-dependent optimal spectral function ρα(ω)

in (7.29).

In a second step the α-integral (7.30) is performed, where the calculation of the constant

c(α) remains.

7.6 Uniqueness of the MEM solution

The simultaneous minimisation of Q with respect to the data and the model function

exhibits a unique global minimum. The proof is given in this section. For the proof a

theorem of basic analysis is employed.

Theorem:
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7 Maximum Entropy Method

Consider a real valued, smooth function f(x1, ..., xn) with xi ∈ R, such that

∑
i,j

yi
∂2f

∂xi∂xj
yj < 0 (7.43)

for all yi ∈ R\{0}4.Then f either exhibits only one maximum or f is unbounded from

above.

To proof the theorem, assume, there are 2 distinct zeros

∂f(~x)

∂xi
= 0 (i = 1, .., n) (7.44)

labeled by ~x1, ~x2. Then there is a path connecting the zeros: x(t) = x1 + t(x2 − x1)

with t ∈ [0, 1]. The function

g(t) = f(~x(t)) (7.45)

is smooth with the property

g′(0) = g′(1) = 0 (7.46)

Therefore, it exists a t̄ ∈ (0, 1) such that g′′(t̄) = 0 contradicting (7.43) and establishing

the proof.

To proof the uniqueness of the MEM solution, it is sufficient to show, that −Q(α)[ρ]

has a negative definite hessian matrix with respect to ρl = ρ(ωl), and that −Q(α)[ρ]

is bounded. The boundedness trivially follows from the bounds of L and S. The

negative-definiteness of the Hessian is shown for αS and −L seperately. From (7.31)

immediately follows
Nω∑
i,j=1

yi
∂2(αS)

∂ρi∂ρj
yj = −α

Nω∑
i=1

y2
i

ρi
< 0 (7.47)

for positive definite spectral functions. On the other hand the Hessian matrix for the

likelihood yields
Nω∑
i,j=1

yi
∂2(−L)

∂ρi∂ρj
yj = −

Nω∑
i=1

ȳ2
i

σ2
i

≤ 0 (7.48)

with

ȳi =
Nω∑
l=1

Kilyl. (7.49)

4In other words, the Hessian matrix of f is negative definite
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7.7 α-average

The Hessian matrix of the likelihood is only negative semi-definite. Once more, this

demonstrates, why Minimum Likelihood Method does not provide unique results for

the spectral function. However, the sum (7.20) is negative definite, guaranteeing a

unique solution.

7.7 α-average

To arrive at equation (7.30), Bayes’s theorem (7.23) is used once more:

P [α|DMm] =
P [D|Mαm]P [α|Mm]

P [D|Mm]
(7.50)

and the spectral function is introduced by de-marginalisation

P [α|DMm] =

∫
[dA]

P [D|AMαm]P [A|Hαm]P [α|Mm]

P [D|Mm]
(7.51)

As above, P [D|Mm] is a normalisation constant, which plays no role for the extrema.

Inserting the likelihood and the entropy one finds

P [α|DMm] ≈ P [α|Mm]

∫
[dρ]

eQ(α,ρ)

ZLZS(α)
(7.52)

The quantity Q(α, ρ) is expanded about the minimum Q(ρ̂α) to next-to-leading order:

Q(α, ρ) = Q(ρ̂α) +
1

2

∑
ij

δρi
∂2Q

∂ρi∂ρj
δρj +O(δρ3) (7.53)

Coveniently, in the previous section the second order partial derivatives of Q were

already calculated (see (7.47) and (7.48), such that:

Q(α, ρ) ≈ Q(ρ̂α)− 1

2

∑
ij

δρi√
ρi

(αIij + Λij)
δρj√
ρj

(7.54)

with

Λij =

[√
ρk

∂2L

∂ρk∂ρl

√
ρl

]
ij

(7.55)
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7 Maximum Entropy Method

Inserting (7.54) with rescaled coordinates ρ̄i = 2
√
ρi into (7.52) yields

P [α|DMm] ≈ P [α|Mm]
eQ(ρ̂α)

ZLZS(α)

∫
[dρ̄]e−

1
2
δρ̄·(αI+Λ)·δρ̄ (7.56)

= P [α|Mm]
eQ(ρ̂α)

ZLZS(α)

(2π)
Nω
2√

det(αI + Λ(Âα))
(7.57)

Using ZS = (2π)Nω/2

α
the result can be further simplified:

P [α|DMm] ≈ P [α|Mm]
eQ(ρ̂α)

ZL

√
det(αI)

det(αI + Λ)
(7.58)

Comparing this expression to (7.30) finally yields

c(α) =
1

2

∑
i

log

[
α

α + λi

]
(7.59)

with the eigenvalues λi of Λ.

This concluded the derivation of the standard-MEM algorithm. However, so far a

diagonal likelihood is assumed. In the next section this constraint will be lifted.

7.8 Measurement uncertainties

In most practical scenarios, the correlator on the LHS of (7.1) will be subjected to mea-

surement uncertainties, which will not be independent of each other. For example are

measured quantities on the lattice of neighboring lattice sites correlated. So far, this is

not included in the MEM algorithm. Suppose a series of Nmeas identical measurements

G(n) of the correlator G is performed and the average is calculated:

Ḡ(τi) =
1

Nmeas

Nmeas∑
n=1

G(n)(τi) (7.60)

Then the measurement uncertainties can be estimated by the covariance matrix:

Cij =
1

Nmeas(Nmeas − 1)

Nmeas∑
n=1

(G(n)(τi)− Ḡ(τi))(G(n)(τj)− Ḡ(τj)) (7.61)
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7.9 Non-positive spectral functions

which also takes into account correlations between the measurements of different grid

points. For that case the likelihood cannot immediately be cast in the form of (7.2),

but needs to include the off-diagonal elements of the covariance matrix:

L =
1

2

Nτ∑
i,j=1

(G(τi)−Gmodel(τi, b1, ..., bm))C−1
ij (G(τj)−Gmodel(τj, b1, ..., bm)) (7.62)

Since C is a real symmetric matrix, there exists an orthogonal matrix R such that

RTCR = Diag[(σi)
2] (7.63)

is diagnonal with real valued eigenvalues σi. Transforming both kernel and correlator

by RT such that

K → K̄ = R−1K, G→ Ḡ = R−1G (7.64)

casts the likelihood into the form (7.2) with σi given by (7.63). Thus the occurence of

off-diagonal contributions in the covariance matrix can be reduced to the diagonal case

by redefinition of correlater and integral kernel in the likelihood. Note, that MEM can

also operate, if merely the averages of the correlation function with respective average

errors are known. For that case (7.2) is used directly with errors included by the choice

of the σi. The derivation of (7.59) is not affected by a non-diagonal covariance matrix,

as no assumptions on the matrix (7.55) were made.

7.9 Non-positive spectral functions

While correlated errors can be included straightforwardly into MEM, the extension to

non-positive semi-definite spectral functions needs some adjustments. First, note that

the ansatz for the spectral function (7.33) can change its sign only if this is incorporated

a priori in the model function. In principle, that is a feasible path, however it strongly

limits one of the main strengths of MEM, namely the ability to find the spectral function

without hard-limiting the search space. Therefore a different approach is chosen, by

making the following assumption: Even if there is a part of the spectral function that

violates positivity, the minimum of ρ will still be finite. Thus, poles and essential

singulaties are excluded.

If however the minimum is finite, a shifted spectral function

ρs(ω) = ρ(ω) + s(ω) (7.65)

91



7 Maximum Entropy Method

can be found, where s(ω) is called shift function with the necessary condition

∆G(τ) ≡
∫
dωK(τ, ω)s(ω) <∞ (7.66)

Then the shifted correlator can be defined in a natural way as

Gs(τ) = G(τ) + ∆G(τ) (7.67)

and MEM is performed for Gs. Once the Maximum Entropy Method result for the

positive spectral function ρs is found, the shift function is substracted again and the

true spectral function is obtained.

Obviously the shift function is a second input besides the model function, that can in

principal influence the spectral image. Therefore, it is necessary to check the magnitude

of the shift-function dependence for any results. This generelisation of standard-MEM

will in the following be called extended-MEM.
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8 Gluon spectral functions

’In science, all new discoveries start with someone murmuring

“Huh,... that’s strange!”’

Isaac Asimov

Here, the results for the gluon spectral functions are presented. Both the high tem-

perature limit and the extrapolation to zero temperature is discussed. Further, the

importance of the violation of posivity is demonstrated by comparing the gluon spec-

tral functions obtained with extended-MEM to those obtained by standard-MEM, i.e.

positive definite spectral functions.

8.1 MEM input correlators

8.1.1 finite temperature gluon propagators

Within this thesis euclidean, Landau gauge gluon propagators at finite temperature

are employed as input for extended-MEM. At finite temperature the gluon propagator

is given in terms of two scalar functions, the chromoelectric mode GL(q) and the chro-

momagnetic mode GT (q). The chromoelectric mode is longitudinal with respect to the

spatial momentum, while the chromomagnetic mode is transverse with respect to the

spatial momentum. Naturally, both modes are 4-d transverse, obeying the Slavnov-

Taylor identities. In Landau gauge, the finite temperature gluon propagator can be

written as:

Gab
µν(q) = δab

(
PL
µν(q)GL(q) + P T

µν(q)GT (q)
)

(8.1)

with the longitudinal and transverse polarization tensors

P T
µν(q) = (1− δµ0)(1− δν0)

(
δµν −

qµqν
~q2

)
(8.2)

PL
µν(q) = δµν −

qµqν
q2
− P T

µν(q) (8.3)
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8 Gluon spectral functions

The input for extended-MEM, the chromomagnetic and chromoelectric modes in pure

SU(3) gauge theory are obtained by means of the Functional Renormalization Group.

Such calculations are performed in euclidean space and yield the Matsubara propagators

with a discretized zero-component in momentum space (see, Section 4.2). Therefore,

for each Matsubara mode the propagator can be understood as a function of spatial

momentum. The extra label for the n-th mode is denoted as GT/L(n, ~q). For conve-

nience, the label for the zero mode is dropped, such that GT/L(0, ~q) ≡ GT/L(~q). In

Fig.8.1 and Fig.8.2 the zero Matsubara modes of the longitudinal and transverse gluon

propagator are shown for different temperatures as functions of spatial momentum.

For comparison, lattice results for the respective temperatures are shown as well. The

details about the calculational method and tools are found in [180]. In particular the
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[G
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Longitudinal Propagator GL

FRG: T = 0

FRG: T = 0.36Tc

FRG: T = 0.98Tc

FRG: T = 1.81Tc

Lattice: T = 0

Lattice: T = 0.36Tc

Lattice: T = 0.98Tc

Lattice: T = 1.81Tc

Figure 8.1: Zero Matsubara mode of the longitudinal gluon propagator GL(p) at different temperatures
as a function of spatial momentum.

behaviour of the gluon propagators at low momentum is of interest. Clearly, both for

FRG and lattice propagators, the seond derivative is negative in this region. This al-

ready requires, that the corresponding spectral function violates positivity. [181, 182].
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8.1 MEM input correlators
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Figure 8.2: Zero Matsubara mode of the transverse gluon propagator GT (p) at diffepropertyrent
temperatures as a function of spatial momentum.

8.1.2 Zero-mode approximation

It turns out, that the higher Matsubara modes GT/L(n 6= 0, ~q) are well-approximated

by the zero mode:

GT/L(n, ~q) ≈ GT/L(
√
ω2
n + ~q2) (8.4)

with the n-th (bosonic) matsubara frequency ωn defined in (4.20). The actual accuracy

of the approximation (8.4), is studied in Fig.8.3 for transverse gluons at T = 1.44Tc

and in Fig.8.4 for longitudinal gluons at T = 1.44Tc. The black lines show the zero

Figure 8.3: Test of the validity of equation (8.4) for the transverse gluon propagator at T = 1.44Tc.
The black, blue and dashed red lines show the zeroth, first and second Matsubara mode.
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8 Gluon spectral functions

Figure 8.4: Test of the validity of equation (8.4) for the longitudinal gluon propagator at T = 1.44Tc.
The black, blue and dashed red lines show the zeroth, first and second Matsubara mode.

mode, which shows a slight deviation from the first and the second mode at low spatial

momenta of the order of 1%. The quality of the approximation slightly decreases with

temperature. However, at the highest available temperature T = 4.7Tc the approxi-

mation is still well within 1.5% at the largest deviation.

Even though, the zero mode approximation is quantitatively justified for the prop-

agator, the dependence on derived quantities must be studied as well. It is well known,

that e.g. the zero crossings of the Schwinger function sensitively depend on the propa-

gator [183].

8.1.3 Matsubara imaginary time functions

In order to employ the propagators as input for extended-MEM (see equation (7.1))

the partial the Fourier transformation

ĜT/L(τ, ~p) = T
∞∑

n=−∞

e−iωnτGT/L(n, ~p) (8.5)
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8.1 MEM input correlators

with respect to the frequency/imaginary-time component is performed. Note, that

ĜT/L(τ, ~p) is real, as GT/L(−n, ~p) = GT/L(n, ~p). Thus:

ĜT/L(τ, ~p) = T
−1∑

n=−∞

e−iωnτ GT/L(n, ~p) + T GT/L(~p) + T

∞∑
n=1

e−iωnτ GT/L(n, ~p) (8.6)

= T GT/L(~p) + T
∞∑
n=1

(
e−iωnτ + eiωnτ

)
GT/L(n, ~p) (8.7)

= T GT/L(~p) + 2T
∞∑
n=1

cos(ωnτ)GT/L(n, ~p) (8.8)

For the extended-MEM reconstruction the dependence of (8.5) on the spatial momen-

tum is merely parametric, in the sense that, for each fixed value of p = |~p| there is a

Matsubara imaginary time function ĜT/L(τ) as in (4.19).

In principle, all Matsubara modes are needed for the Fourier transform. The approx-

imation (8.4), however, allows to perform the Fourier transformation with the zero

mode only according to:

ĜT/L(τ, ~p) = T GT/L(~p) + 2T
∞∑
n=1

cos(ωnτ) , GT/L(
√
ω2
n + (~p)2) (8.9)

This leads to the complication, that the FRG (or lattice) input, given in the momentum

interval [0, pmax] with pmax = 35GeV must be extrapolated to arbitrary large spatial

momenta. Fortunately, the UV-behavior is known from perturbation theory, and is

given by

Gpert(p) ∼ 1
p2

[
Log

(
p2

µ2

)]− 13
22

(8.10)

for p → ∞. For the extrapolation, a continuous join of the perturbative curve to the

Matsubara propagator is reached, by matchting the value of Gpert(p) to the Matsubara

propagator at the scale pscale � 1. This corresponds to introducing the extrapolation

propagator

Gext,L/T (p) = λL/T (pscale)Gpert(p) (8.11)

with the matching coefficient

λL/T (pscale) =
GL/T (pscale)

Gpert(pscale)
(8.12)
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8 Gluon spectral functions

The scale is chosen at pscale = 25GeV which lies deep in the perturbative region, and

therefore cannot affect any non-perturbative properties of the propagator. In Fig.8.5 the

extrapolation propagator is shown for the transverse gluon propagotor at T = 1.44Tc

(dashed blue). It it matched to the input propagator (red) at pscale. Clearly, both

propagators show the same functional dependence, such that the the extrapolation will

approximately be smooth. The extrapolated gluon propagator for arbitrary momenta

0 5 10 15 20 25 30 35

0.000

0.005

0.010

0.015

0.020

p(GeV)

Figure 8.5: Transverse gluon propagator at T = 1.44Tc (red) and the extrapolation propagator, with
the scale fixed at p = 25GeV (dashed blue).

is defined as:

GL/T (p) =

{
Gdata,L/T (p) : p < pscale

Gext,L/T (p) : p ≥ pscale

With the extrapolated zero mode of the gluon propagator, the Matsubara imaginary

time function ĜT/L(τ, p) can now be calculated. In Fig.8.6 ĜT (τ, p) is shown for vari-

ous temperatures, whereas in Fig.8.7 the respective functions are shown for longitudinal

gluons.

The imaginary time axis covers the interval [0, β
2
) and thus captures the full range

of independent values of ĜT/L(τ, p) (see, (4.18)). Note again, that for the spectral

reconstruction, extended-MEM is employed for each slice with constant spatial mo-

mentum. Studying such a slice more carefully, from (8.8) it follows, that the zero mode

contributes a constant to G(τ). Thus, all information about the shape of the spectral

function is encoded in the n 6= 0 Matsubara modes. In particular, it follows, that in

the limit T → ∞, where the higher mode contributions decrease relative to the zero
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8.1 MEM input correlators

(a) T = 0.79Tc. (b) T = 1.59Tc.

(c) T = 2.77Tc. (d) T = 3.96Tc.

Figure 8.6: Thermal dependence of the transverse gluon Matsubara imaginary time function.

mode, the systematic errors of MEM will increase. Fig.8.6(d) and Fig.8.7(d) already

indicate, that the main contribution to the Matsubara function is the constant from the

zero mode. For Fig.8.6(d) the difference between Ĝ(τ = 0, 0) and Ĝ(τ = β
2
, 0) is 5%.

This means, that the actual relevant information is small compared to the constant

’background’, and will be even more suppressed by the extended-MEM shift. There-

fore, it will be interesting to see, how well extended-MEM can reconstruct the spectral

functions of these high temperature propagators.

8.1.4 On systematic errors

For the discussion of systematic errors of the spectral functions, the systematic errors

of the input correlators are studied. An obvious systematic error arises from the zero-

mode approximation (8.4). Above, the accuracy in momentutm space was already

discussed. However, a Fourier transform can amplify the errors.

In Fig. 8.8 the Matsubara function for the transverse gluon at T = 1.44Tc is shown.

Diagram (a) is obtained with the the zero mode approximation, while diagram (b)

employs the Matsubara modes up to n = 2, and uses the zero-mode approximation for

n > 2. There is no immediately visible difference to be observed. Nevertheless, it is

of interest to see what quantivative difference is imprinted in the Matsubara function

99



8 Gluon spectral functions

(a) T = 0.79Tc. (b) T = 1.59Tc.

(c) T = 2.77Tc. (d) T = 3.96Tc.

Figure 8.7: Thermal dependence of the longitudinal gluon Matsubara imaginary time function.

by the zero mode approximation. In particular, as the constant part of the Matsubara

function is the same for (a) and (b), the relevant difference should be studied for the

Matsubara functions with the constant part substracted. Therefore, the difference,

normalized to the Matsubara function in diagram (a) with constant part substracted

∆G(τ, p) =
|G0(τ, p)−G2(τ, p)|

Ḡ0(τ, p)
(8.13)

is shown in Fig.8.9. For fixed p the difference grows when τ is increased. That is in

agreement with the observation, that the deviation of the higher modes from (8.4) is

largest for small frequencies. The Fourier transform encodes the small frequency be-

haviour of the propagator in the large τ behaviour of the Matsubara function.

Thus, the small frequency resolution of the spectral function suffers from the zero mode

approximation. Consequently, in this thesis, the improved zero-mode approximation is

used, such that, the approximation is applied only for n > 2.

Further, the relative difference grows with increasing p. At p = 4GeV the devia-

tion reaches 5% at τ = β
2
. Beyond, the deviation is growing fast. Here, spatial mo-

menta are considered for 0 ≤ p ≤ 15T . For T = 1.44Tc the maximum momentum is

pmax = 5.7GeV. Thus, the large p behavior of the spectral function has to be treated
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8.2 Model function and shift function

with some care, even though the improved zero-mode approximation will strongly re-

duce this systematic effect. Generally, the growing of the difference between zero mode

approximation and the improved approximation rises at p ∼ 12T − 15T . The effect of

including even higher modes in the transform (8.5) will probably not be of quantitative

relevance, Nevertheless, the largest systematic error of the spectral function due to the

improved zero mode approximation is expected at the low frequency behaviour at large

spatial momenta.

Another source of systematic errors is, of course, the systematic error of the gluon

(a) (b)

Figure 8.8: Matsubara imaginary time functions for transverse gluons at T = 1.44Tc for the zero
mode apprimation (a) and the improved zero mode approximation (b).

propagators. They are judged in this thesis, by comparing the MEM spectral functions

obtained from gluon propagators of both lattice and FRG.

8.2 Model function and shift function

In this section, the model functions m(ω) and shift functions s(ω) used in the extended-

MEM reconstruction of the gluon spectral functions are introduced. In principle, these

functions can be chosen seperately for each slice of the spatial momentum. However,

here, they are chosen independent of the spatial momentum. The justification is, that

only the perturbative behaviour for large frequencies will be encoded in both model and

shift function, in order to not overly restrict the spectral function. The large frequency

behaviour of the spectral function, however, is approximately p-independent.
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8 Gluon spectral functions

Figure 8.9: The difference of the Matsubara functions in Fig.8.8 normalized with respect to Fig.8.8
(a) subracted by the constant zero-mode contribution.

8.2.1 Model function

In order to find a suitable model function, it is helpful to consider a situation, where

no prior information is available. What is the model function, encoding this in MEM?

The answer is, that without prior information the introduction of the entropy term in

(7.20) is obsolete. The limit of no prior information is α → 0 and results in the naive

approach introduced in Section 7.2. This just reflects the original problem of image

reconstruction from incomplete data sets.

But the intention of the question of no prior information usually is meant differently:

Which model function imposes the least contraints on the spectral function? The

answer to this question, is that a constant model function m(ω) = ω0 only imposes

smoothness on the spectral function. Thus, adding prior information results in deform-

ing the model function from a constant function. In particular, here, the perturbative

behaviour is known [184]:

ρpert(ω) ∼ − 1

ω [Log (ω)]35/22
(8.14)

Clearly, the perturbative tail of the gluon spectral function is negative. Such a negative

tail cannot be incorporated in the model function, which is assumed to be positive (see

the discussion in Section 7.9). This, however, was expected and led to the introduction

of extended-MEM in the first place.
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8.2 Model function and shift function

The negative tail is shifted by a shift function s(ω) with the correct asymptotics,

assuming |s(ω)| > |ρ(ω)| for the asymptotic tail ω > ω0, which is an necessary condition

for the shift function. Then, the shifted spectral function exhibits a positive tail, with

the asymptotic decay:

ρshifted,pert(ω) ∼ 1

ω [Log (ω)]35/22
(8.15)

This behaviour is imprinted on the model function as:

m(ω) = m0 Θ(ω0 − ω) +

m0
1

ω
ω0

[
Log(ω)
Log(ω0)

] 35
22

Θ(ω − ω0) (8.16)

The two parameters, namely m0 (normalization) and ω0 (begin of asymptotic tail) can

be varied to test the influence of the model function on the extended-MEM spectral

function. For the step function Θ(x) a smooth representation is chosen:

Θk(x) =
1

1 + e−2kx
(8.17)

Further, the parameters of the model function are both temperature and polarization

dependent. In Fig.8.10 the generic shape of the model function (8.16) is shown in
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frequency ω

0.2
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0.6

0.8

1.0

m(ω)

Figure 8.10: Generic form of the extended-MEM model function employed for the reconstruction of
finite temperature gluon spectral functions in arbitrary units.

arbitrary units. The sharpness of the onset of the asymptotic decay can be regulated

by Θk(x).
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8 Gluon spectral functions

8.2.2 Shift function

The asymptotic behavior of the shift function was already discussed in the preceeding

section. Otherwise the shift function is arbitrary with the constraints of minimality

and finiteness discussed in Section 7.9. For the shift function three parameters are

introduced. The maximum value s0 (note, that s(ω) is defined positive in (7.65)) and

two scale parameters ω0, ω1 at which the asymptotic tail and the decay towards ω → 0

starts, respectively. Further, the choice of the decay law towards ω = 0 introduces a

degree of freedom in the shift function.

The shift function used throughout this thesis for gluon spectral functions reads:

s(ω) = h(ω)Θ(ω1−ω)+s0 Θ(ω−ω1)Θ(ω0−ω)+

s0
1

ω
ω0

[
Log(ω)
Log(ω0)

] 35
22

Θ(ω−ω0) (8.18)

with the requirements ω0 > ω1 and h(ω1) = s0. A generic representation is shown

in Fig. 8.11 for h(ω) = s0

(
ω
ω1

)2

. The shift (7.66) of the Matsubara function for
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Figure 8.11: Generic form of the extended-MEM shift function employed for the reconstruction of
finite temperature gluon spectral functions in arbitrary units.

s0 = 1, ω0 = 20 and ω1 = 1 is shown in Fig.(8.12). Note, that ∆G(τ) is convex

everywhere, indicating a positive spectral function. To reduce the parameter space, a

natural choice for the normalisation of the model function is m0 = s0. Also, the onset

of the asymptotic tails for both model and shift function are chosen identical.

In conclusion, there are 3 input parameters from the prior knowledge: the maximum

shift s0, the decay scale ω1 of the shift function and the onset of the asymptotic tail

ω0. In addition the precise form of the decay law towards vanishing frequency can be
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Figure 8.12: Shift of the Matsubara function G(τ), due to the shift function s(ω).

chosen freely (as long as (7.66) holds). In this thesis both algebraic and exponential

decays were employed. However, the spectral functions were remarkably insensitive on

the precise form.

8.3 Finite temperature gluon spectral functions

8.3.1 Simulation setup

Here, the extended-MEM results for the finite temperature gluon spectral functions are

presented. For each temperature T , Np = 30 independent extended-MEM simulations

were performed for the spatial momenta pn = 0.5T (n− 1) with (n = 1, ..., 30). Thus,

for all temperatures the momentum range 0 ≤ p
T
≤ 14.5 is covered.

Further, the Matsubara functions (8.5) were calculated at Nτ = 40 points in the in-

terval τ = [0, β
2
), using a linear grid. The frequency was discretized on a linear grid

with Nω,lin = 1000 in the interval 0 ≤ ω
T
≤ 20. To reliably fix the asymptotic be-

haviour, a logarithmically spaced grid extends the linear interval to ωmax = 106. Here,

Nω,log = 200 was chosen.
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8 Gluon spectral functions

The normalisation s0 of the shift function was chosen p-independent, such that, the

shifted Matsubara correlator (7.67) is convex as a function of frequency for all (fixed)

spatial momenta. To achieve this, s0 was set to an initial (small) value. Then it was

increased in stepwise until the shifted correlator exhibited convexity. This procedure

was a trade-off between allowing extended MEM to scan as much of the function space

as possible, and not supressing the actual data by adding a too large shift (be reminded

of the discussion of constant off-sets of the Matsubara correlators at high temperatures

in Section 8.1.3).

An expamle of a typical shift is shown in Fig.8.13. In diagram (a) the unshifted trans-

(a) (b)

Figure 8.13: Example for the effect of a propagator shift for the transverse gluon propagator at
T = 0.77Tc. In diagram a.) the unshifted Matsubara function is shown. In diagram b.) the shift is
added. The shifted Matsubara function is convex as a function of frequency.

verse gluon Matsubara correlation function at T = 0.77Tc is shown for comparison.

The function in diagram (b) is obtained by minimally shifting the Matsubara function

as explained above. In particular for larger spatial momenta, the shift is substantially

larger than the data. This, however, does not seems to affect the extended-MEM re-

contruction, so that after re-substraction of the the shift function, the spectrum will

reliably be recontructed.

For the onset of the asymptotic decay of both model and shift function ω0 = 15T

is chosen, while for the IR decay scale of the shift function ω1 = 0.5T is chosen. Both

parameters were varied to study their dependence on the extended-MEM results.
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8.3 Finite temperature gluon spectral functions

8.3.2 Spectral functions of transverse gluons

(a) T = 0.39Tc. (b) T = 2.35Tc.

(c) T = 0.78Tc. (d) T = 2.75Tc.

(e) T = 1.57Tc. (f) T = 3.53Tc.

(g) T = 1.96Tc. (h) T = 3.92Tc.

Figure 8.14: Thermal dependence of transverse gluon spectral functions.

In Fig.8.14 the transverse gluon spectral functions are shown for various tempera-

tures. The axes are scaled in units of temperature. This allows to directly study the

non-trivial temperature scaling. All spectral functions show common features:

For small spatial momenta the spectral functions exhibit an approximately p-independent

maximum at ω = 2.8T . Towards larger momenta the height of the maximum smears
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8 Gluon spectral functions

out and bends towards the diagonal ω = p. Further, there is a region where the spectral

functions are negative (darkest blue region). This region is found in all gluon spectral

functions at larger frequencies than the maxiumum peak. The violation of positivity

seems to inhibit the bending of the central peak towards the main diagonal for low

to intermediate momenta. To understand this better, observe the spectral function

in Fig.8.15 a.). It shows the transverse gluon spectral function at T = 1.96Tc from

a different angle. Further the region, where the spectral function assumes negative

values is colorcoded in violet (darker violet represents lower values). In diagram b.)

a transverse gluon spectral function at T = 1.44Tc is shown in the dynamical quasi-

particle model [185]. In a quasi-particle model (DQPM), the spectral function is a

priori positive. Clearly, the peak is sharper and the bending of the peak already sets

in at lower spatial momenta, while the qualitative behavior is similar to the extended-

MEM results. In diagram c.) a lower resolution standard-MEM reconstruction of the

transverse gluon spectral function at 3.5Tc is shown, where the extension of MEM to

non-positive spectral function was not used. The reconstructed spectral function re-

markably well reproduces the features of the DQPM spectral function. This suggests

that the violation of positivity has an important impact of the structure of the spectral

function. The quasi-particle model seems not to cover all features of gluon spectral

functions in the vicinity of the crititcal temperature. In particular, the extended-MEM

spectral functions are broader compared to both the DQPM spectral function and the

standard-MEM result for an a priori positive spectral function.

The extended-MEM results are remarkably stable to small variations of the extended-

MEM setup. The normalization of the model function has no impact on the spectral

function, whereas, slight changes of the position of the zero crossings are observed,

when the onset of the asymptotic tail is varied. Changing the onset for transverse

gluons at T = 1.96Tc for p = 0 from ω0 = 15 to ω0 = 10, resulted in a change of

the position of the zero-crossing by 5% towards lower frequency, whereas, a variation

to ω0 = 20 only changed the zero-crossing by 0.5% towards larger frequencies. This

finding suggests, that a too early asymptotic onset can have a systematic effect of the

reconstructed spectral function. This is expected, as the entropy term punishes a de-

viation of the spectral function from the model function. If the asymptotic tail in the

model function sets in before it is present in the spectral function, extended-MEM will

find a trade-off between model and input data, that systematically pushes the spectral

function towards the model.

108



8.3 Finite temperature gluon spectral functions

(a) (b)

(c)

Figure 8.15: Extended-MEM transverse gluon spectral function at T = 1.96Tc (a) from an angle
that shows the bending of the peak. Further, the violation of positivity is colorcoded in violet for
better visibility. Diagram (b) shows a model spectral function within the Dynamical quasi-particle
model at T = 1.44Tc. The standard-MEM reconstruction of the transverse gluon spectral function at
T = 3.92Tc (c) shares the properties of (b).

Further it turned out, that the logarithmic grid for large frequencies had a stabiliz-

ing effect on the asymptotic tail of the spectral function. For a purely linear grid,

either more data points were neccesary, to cover a sufficiently large interval, at the

cost of performance, or the resolution at intermediate frequencies suffered. A mixed

linear/logarithmic grid was also succesfully used in [186] for the reconstruction of ultra-

cold atomic spectral functions.
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8 Gluon spectral functions

8.3.3 Zero temperature limit

Another interesting aspect of the gluon spectral functions is the limit T → 0. It turnes

out, that extended-MEM could not reconstruct spectral functions below T ≈ 100MeV.

In Fig.8.16 such a reconstruction is shown for T = 0.18Tc. The spectrum exhibits

Figure 8.16: Extended-MEM reconstruction of the transverse gluon spectral function at T = 0.18Tc.

highly located structures at ω ≈ 0, which signal instabilities in the reconstruction.

One reason for this behavior can be, that at zero temperature the spectral function

is no longer analytic [187]. Maximum entropy reconstructions are known to become

cumbersome in such cases [188,189].

Nevertheless, the spectral function for the transverse gluon at T = 0.39Tc already in-

dicates, that the regime of almost linear T-scaling of the spectral function has been

left. This can be seen, in the position of the maximum for zero spatial momentum.

Clearly, there will be a non-zero freezeout temperature, below which the T = 0 limit is

effectively reached. At this point, the position of the peak is no longer T -dependent.

Thus in units of ω̂ = ω/T the peak position will move to larger ω̂. This behaviour

can be seen here. At T = 0.39Tc the peak is at ω̂ = 4.1 (compared to ω̂ ≈ 2.8 for

larger temperature). Figure 8.17 visualizes this effect. It shows the p = 0 slices for

different temperatures. The curves with maximum at ω̂ = 2.8 correspond to tempera-

tures T = 0.72Tc...3.92Tc. (from top to bottom). The remaining curve corresponds to

T = 0.39Tc with the shifted maximum.

It would be interesting to extract further information about the zero temperature

spectral function from the available finite temperature extended-MEM results. In par-
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8.3 Finite temperature gluon spectral functions

Figure 8.17: Transverse gluon spectral functions ρ(ω, p = 0) for T = 0.39Tc...T = 3.92Tc. The
maxima decrease with increasing temperature.

ticular, besides the maximum position, the position of the zero crossing, i.e. the scale

at which the violation of positivity sets in, can be studied. In the zero temperature

limit these position are expected to converge towards the same value. This was shown

in a DSE framework in [187]. Fig.8.18, taken from this reference, shows the gluon

spectral function in the zero temperature limit. Note, that for T = 0 the distinction

between transverse and longitudinal tensor structure is obsolete, as there is no heat

bath. Clearly, the non-analyticity, that was discussed above is visible in Fig.8.18. In

the discussion of [187] the range for the position of the zero crossing is given by

ωc = 600MeV − 700MeV. (8.19)

For the extended-MEM spectral functions, both minimum position and zero-crossing

can be traced as a function of temperature. The respective results are found in Fig.8.19.

Note, that the frequency axes is given in GeV. Once more, it becomes obvious, that

the linear T -scaling of both maximum position (a) and zero crossing (b) is present even

below the critical temperature. There seems to be a relatively sharp transition to the

low temperature regime. At T = 0.39Tc the zero crossing is found at ωc = 1.1GeV,

while the maximum position is at ωm = 0.41GeV. It seems reasonable to assume, that

towards the zero temperature limit, both values will converge to a value within this

interval. Whether agreement with (8.19) would be made, cannot be deduced further

from the available data, apart from the observation, that (8.19) is indeed contained in
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8 Gluon spectral functions

Figure 8.18: Zero temperature ghost and gluon spectral function from [187].

the rather large interval [ωm, ωc].

(a) (b)

Figure 8.19: Thermal dependence of the position of the maximum (a) and the zero crossing (b) of the
transverse gluon spectral function ρ(ω, p = 0).

8.3.4 Limit of high temperatures

The opposite limit of high temperatures is of interest as well. Due to asymptotic

freedom, gluons will become free (quasi-)particles in this limit. The quasi-particle,

transverse gluon spectral function reads [132,190]

ρ(ω, p) = 2π Z(p) (δ(ω − ωD(p)) + δ(ω + ωD(p))) + β(ω, p) (8.20)
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8.4 Longitudinal gluon spectral function

with the dispersion relation ωD(p) and residue

Z(p) =
ωD(p) (ω2

D(p)− p2)

3ω2
plωD(p)− (ω2

D(p)− p2)2
(8.21)

in terms of the plasma frequency ωpl = 1
3
g2T 2. Thus, HTL perturbation theory pre-

dicts a non-analytic spectral function with a spatial momentum dependent δ-pole. For

the extended-MEM spectral functions, a narrowing of the peak towards larger tem-

peratures cannot be found. A possible explanation can be, that the high temperature

narrowing sets in at even higher temperatures, that were not available for the extended-

MEM reconstruction. This, however, is in contradiction with common lore, that HTL

resummed perturbation theory gives qualitatively accurate results for T ≈ 4Tc [191].

Another interpretation is the apparent problem of extended-MEM to reconstruct spec-

tral functions in the high temperature regime, due to the suppression of information

in the Matsubara imaginary time function. In Section 8.1.3 the dominance of the

constant contribution from the zero-mode was discussed. Further, the developing non-

analyticity in the high temperature gluon spectral function is certainly a cumbersome

issue for extended-MEM in the first place. Nevertheless, it is interesting to see, whether

the position of the peak of the extendend-MEM spectral functions agrees with (8.20).

The dispersion relation ωD(p) behaves for small spatial momentum p ≈ 0 as [132]

ω2
D(p) ∼ ω2

pl +
6

5
p2 (8.22)

For the T = 3.92Tc and the zero temperature running coupling evaluated at scale T ,

the plasma frequency in units of temperature is ωpl = 2.53. This agrees reasonably

well with Fig.8.14(j). This suggests, that extended-MEM at high temperatures suffers

from a systematic over-broadening of the spectral functions, which has been observed

before [80]. Nevertheless, the position of the peak is a gauge-invariant information, as

it corresponds to the pole of the retarded propagator, which extended-MEM seems to

reconstruct reliably even in the high temperature regime.

8.4 Longitudinal gluon spectral function

To conclude the discussion of gluon spectral functions, the longitudinal spectral func-

tions are presented. Fig.8.20 show the thermal dependence of the longitudinal gluon
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8 Gluon spectral functions

spectral functions. While the qualitative features are similar to the transverse spectral

functions of Fig.8.14, there are also differences. The peak position at zero spatial mo-

mentum is assumed at slightly larger frequency (ωLpeak ≈ 3.2T − 3.5T , compared to

ωTpeak ≈ 2.8T ).

Further, it is interesting to study the violation of positivity of both longitudinal and

(a) T = 0.39Tc. (b) T = 2.35Tc.

(c) T = 0.78Tc. (d) T = 2.75Tc.

(e) T = 1.57Tc. (f) T = 3.53Tc.

(g) T = 1.96Tc. (h) T = 3.92Tc.

Figure 8.20: Thermal dependence of longitudinal gluon spectral functions.
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8.4 Longitudinal gluon spectral function

transverse gluons. The degree of positivity violation is measured by the ratio |ρmax
ρmin
|,

where ρmax and ρmin denote maximum and minimum of the spectral function. Fig.8.21

shows the thermal evolution for transverse and longitudinal gluons. Both polarizations

show a qualitatively similar increase of the ratio towards higher temperatures until a

saturation sets in and the ratios remain constant. However, the interpretation, that

high temperature gluons show a stronger violation of positivity would not be correct.

The region of a negative spectral function merely gets more located compared to the

maximum peak. Fig.8.14 and Fig.8.20, show, that the positive peak broadens over-

proportional to T , while the negative dip does not.

Below Tc, the curves in 8.21 show a different behaviour, even though towards T → 0,

they seem to converge again, as expected.

Figure 8.21: Thermal dependence of the violation of positivity of longitudinal gluons (blue) and
transverse gluons (yellow) measured by the ratio of maximum to minimum of the spectral functions.
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9 Shear viscosity to entropy density

ratio

’Science is a field which grows continuously with ever expanding frontiers.’

John Bardeen

Science is a field which grows continuously with ever expanding frontiers. In this chap-

ter, the results for the ratio η
s

are presented, calculated from the Landau gauge gluon

spectral function obtained with extended-MEM using the diagrammatic representation

derived in Chapter 6 for the spectral function of the EMT (3.33). First, the one loop

approximation is considered, which yields already all qualitative features of η
s
. The

inclusion of the two loop diagrams turns out to be a correction, important for the

quantitative precision. Of particular interest will be the extrapolation to the HTL

perturbative regime and the discussion of a fitting function.

9.1 One loop η
s

In Fig.9.1, the extended-MEM one loop result for η
s

is shown. It was calculated from the

extended-MEM gluon spectral functions presented and discussed in chapter 8 employing

the one-loop representation of the shear viscosity (6.43) and lattice entropy from [192].

The entropy density is shown in Fig.9.2 in units of T 3. At high temperatures s
T 3

approaches the Stefan-Boltzmann limit

sSB
T 3

=
32

45
π2 ≈ 7.018 (9.1)

At Tc the entropy density collapses, due to the change of degrees of freedom from quarks

and gluons to hadrons1. The black data points in Fig.9.1 represent the extended-MEM

1In pure gauge theory, the degrees of freedom change from (quasi-)free gluons to glueballs.
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9 Shear viscosity to entropy density ratio
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Figure 9.1: Thermal dependence of the viscosity over entropy density ratio η
s .
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Figure 9.2: SU(3) entropy density in units of T 3 as a function of temperature in units of Tc.

results, while the black line interpolates the data points. The errors are systematic

errors of the extended-MEM reconstruction. They are estimated, by varying the model

function, the shift function and the precise form of the grid in frequency direction. In

particular, for the model function and the shift function both overall normalisations

and the onset of the asymptotic tail were varied. It turned out, that η
s

is insensitive to

the precise form of the decay of the shift function towards zero frequency. The system-

atic extended-MEM error shows a slight temperature dependence, increasing towards
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9.2 Two loop η
s

higher temperatures, but does not exceed 10% for T = 4.5Tc.

There is also a systematic error from the one-loop approximation. In [193] it has

been discussed that higher loop corrections in an expansion in full propagators and

full vertices can be minimized within an optimized RG–scheme for temperatures about

Tc. Note, that even though this argument has been put forward in the context of the

Polyakov loop potential, it has been applied to the effective action, that generates all

correlation functions. Accordingly, the weighted difference of the full computation of

the Polyakov loop potential and the one loop computation in full propagators can be

used as an estimate for the systematic error of the one-loop aprroximation. However,

this error estimate breaks down for high temperatures. For T < 2.1Tc the system-

atic error estimation via the Polyakov loop potential is added to the extended-MEM

systematic error. Above T = 2.1Tc, only extended-MEM errors are shown and the

one-loop approximation of η
s

should be interpreted as a qualitative result. In particular

in the high temperature region, higher loop corrections are expected to become rele-

vant [131,194]. The quantivative corrections are calculated in the next section.

For comparison, lattice results for η
s

are shown in Fig.9.1 as well [146, 195, 196]. The

blue points are calculated for SU(2) and are expected to lie above the SU(3) results.

(see (3.44)). The red points qualitatively agree with the extended-MEM results. Since

the computational methods are different and independent, the agreement provides a

non-trivial support for both computations.

The minimum value for the one-loop shear viscosity to entropy density ratio is found

at Tmin = 1.25Tc with the value:[η
s

(Tmin)
]

SU(3),1−loop
= 0.115(17) (9.2)

This is close to, but well above the AdS/CFT bound.

9.2 Two loop η
s

The extension to two-loop order of the expansion of the EMT spectral function (3.33)

takes into account the diagrams of Fig.6.2, that were already discussed in Section 6.4.

All diagrams are proportinal to g2. However, as discussed in the context of Table 6.1,
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9 Shear viscosity to entropy density ratio

the origin of the coupling differs among the diagrams. Thus, the question of a consistent

evaluation scale for the running coupling arises.

The finite temperature running coupling αs(Q, T ) is computed from the results for the

dressing zc̄Ac of the ghost-gluon vertex in [180]. It seems reasonable to employ the

running coupling from this source, as it also supplied the SU(3) gluon propagators.

Explicitly, the running coupling is given by

αs(Q, T ) =
zc̄Ac
4π

(
Q2Gc(Q, T )

)2 (
Q2GT (Q, T )

)
(9.3)

in terms of the ghost and transverse gluon propagators Gc, GT . In Fig.9.3 the running

coupling is shown.

Before integration, each two-loop diagram depends on 5 loop variables: The two d4p-

integrations can be simplified in polar coordinates. All but one angular integrals can

be carried out analytically. Only the angle Θ between the spatial momentum vectors

remain. Thus, there are two frequency integrations, two spatial momentum integrations

and one angular integrations2. A generic two-loop integral reads

D =

∫
dω1

∫
dω2

∫
dk1

∫
dk2

∫
dΘI(ω1, k1, ω2, k2,Θ) (9.4)

with the diagram specific integrand I(ω1, k1, ω2, k2,Θ). To find a sensible evaluation

scale for the running coupling, for each 2-loop diagram type, the angular integration

and one of the loop integrations is carried out, such that the reduced integrand

Î(ω1, k1) =

∫
dω2

∫
dk2

∫
dΘI(ω1, k1, ω2, k2,Θ) (9.5)

only depends on a single set of loop integrations variables. The reduced integrand

Î(ω1, k1) is found to be peaked for all diagrams around some diagram specific and

temperature dependent (ωpeak, kpeak). The running coupling, originated from internal

Yang-Mills vertices is evaluated at Q2 = (2πωpeak)
2 + k2

peak. In Fig. 9.4 Î(ω1, k1) is

shown for the Eight at T = 500MeV. For this diagram, the peak values are ωpeak ≈ T

and kpeak ≈ 3T . This procedure seems reasonable, as it picks out the relevant energy

scale of each diagram. Note, that the main contribution comes from the momentum

region, where the bending of the peak of the spectral function sets in. Thus, in par-

ticular the effect of the violation of positivity of the spectral function to inihbit the

2Note, that, the angular integration can also be carried out for the Eight and the 1-loop with a single
vertex correction, due to the seperation of loops.
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9.2 Two loop η
s

bending toward the main diagonal has a strong effect on shear viscosity. This is true

for all two-loop diagrams.

On the other hand, the couplings that come from the non-Abelian part of the field

0

2

4

pHGeVL
0.0

0.5

1.0

THGeVL
0.0
0.5
1.0

1.5

2.0

Α_s

Figure 9.3: Finite temperature SU(3) running coupling αs(Q,T ).

strength tensor are treated differently. Naively, one could argue, that the classical

energy-mometum tensor is used. Therefore, the couplings should not run at all. How-

ever, it turned out, that the vertex correction diagram would then show an insensible

strong rise towards higher temperatures, which is supressed by the decay of αs towards

larger energy scales, if αs is taken running. Also, a mere classical, undressed EMT is

not RG scale invariant. Thus, the dressing of the EMT vertices, cannot be negected.

However, an scale invariant EMT can be obtained by a running αs. This, again raises

the question of a reasonable scale, at which the running coupling is evaluated. In this

thesis, the running coupling for the EMT vertices is evaluated at Q = 2πT . However,

the precise scale only slightly changes the absolute size of the one-loop with a vertex

correction, but does approximately not affect the high temperature behaviour.

This concludes the technical aspects of the two-loop diagrams. In Fig.9.5 the tem-

perature dependence of two-loop contributions is shown. All points are normalized

to the leading-order one-loop result. The points represent: Maki-Thompson(red),

Eight(green), vertex correction(blue) and Sunset(grey). The Squint numerically turned

out to contribute less then 1% of the the size of the Sunset diagram, and is not shown.
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9 Shear viscosity to entropy density ratio

Figure 9.4: Reduced integrand Î(ω1, k1) for the Eight at T = 500MeV. The peak is located at
ωpeak ≈ T and kpeak ≈ 3T .

The total size of all contributions is represented by the black points. It exhibits a min-

imum in the vicinity of Tc, which constitutes a direct confirmation of the argument of

the minimization of higher loop contributions near Tc. In particular, the 10% correction

is within the systematic error estimate of the one-loop approximation. Further, the size

of the two-loop corrections increases towards higher temperatures. This indicates, that

the corrections change the overall temperature dependence of η
s

in the high temperature

regime. The Maki-Thompson diagram is subleading at high temperatures, followed by

the Eight. Both diagrams show a steeper rise with temperature, than the one-loop

contribution. This is in accordance with the discussion in [131]. Another confirmation

of the validity of the diagrammatic approach is given by the vertex correction contribu-

tion. It has similar structure as the one-loop diagram and the extra loop at one of the

EMT vertices cannot change the high temperature scaling. This is confirmed by the

almost constant relative size vertex correction diagram towards higher temperatures.

In Fig.9.6 the absolute size of the full 2-loop extended-MEM result for η
s

is shown

(red). For comparison, the one-loop result from Fig.9.1 is shown once more. Clearly,

in the vicinity of Tc, the 2-loop corrections are within the systematic errors of the
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Figure 9.5: Thermal dependence of the two-loop contributions to η
s normalized to the one-loop con-

tribution. The diagrams are: Maki-Thompson(red), Eight(green), vertex correction(blue) and Sun-
set(grey). In addition the total size of all two loop contributions is shown(black).

one-loop approximation and the extended-MEM reconstruction. Towards higher Tc

the relevance of the two-loop contributions grows. It is interesting that all two-loop

contributions are positive corrections. This was not apriori clear, and is a numerical

result. The Maki-Thompson diagram can be split into two classes: pure and mixed (as

discussed in chapter 6. The mixed part is a negative correction, but the sum of pure

and mixed is positive.

In the following two section the issues of the perturbative behaviour of η
s

and of a global

fitting function are discussed. After that, an attempt is made, to map the SU(3) results

on full QCD.

9.3 Extrapolation to the perturbative regime

A first step to find a global fit function, is the extrapolation of the extended-MEM

results to high temperatures. There are available calculations of η in SU(3) and QCD

in a leading-log approximation [197] and beyond leading-log [198]. For leading-log the

high temperature form of η is

η = κ
T 3

g4log(1
g
)

(9.6)

where κ depends on the number of fermions.

The beyond leading-log shear viscosity is shown in [198] as a function of the Debye mass
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Figure 9.6: Thermal dependence of the two-loop result of η
s . For comparison, also the one-loop result

is shown.

in units of temperature mD/T = g. In order to obtain η as a function of temperature,

the thermal dependence of the running coupling is needed. Note, that the available

data for αs(Q, T ) from [180] is limited to Q < 5GeV and T < 5Tc. Extrapolation of

the data is possible, however, while the limit Q → ∞ for fixed T is given by the zero

temperature running coupling, the behaviour of αs for Q ≈ T is not obvious. Thus, an

extrapolation would induce large systematical errors and a different approach is chosen.

Inspecting the leading log shear viscosity (9.6) another issue is raised: What is the

correct energy scale for the running coupling? Previous works use different conven-

tions, see [199] and references therein. As in the high temperature limit, obviously

temperature is the only available scale, it is reasonable to set Q = cT with some con-

stant c of order 1. Common choices are c = 1 and c = 2π, with regard to the factor

of 2π in the Matsubara frequencies (4.20). In this thesis, c is taken as a variational fit

parameter, to match the HTL viscosity to the extended-MEM data.

For the running coupling the zero-temperature perturbative αs obtained from the two-

loop β-function is employed (see Section 2.4):

αs(Q, T ) ≈ αs(Q = cT, 0) (9.7)
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9.3 Extrapolation to the perturbative regime

In turns out, that the beyond leading log shear viscosity (divided by the lattice entropy

density [192]) can be approximated by

η

s
(T ) ≈ aLog

(
cT

Λ

)γ
(9.8)

where Λ = 0.7GeV is the SU(3) scale and a, c, γ are variational parameters. In Fig.9.7

the data points are obtained from the beyond leading-log viscosity, with the scales

c = π, 2π, 4π for the running coupling (9.7). Clearly, the absolute value of η
s

is strongly

dependent on the choice of the scale matching. The functional form, on the other hand

is not. For all three choices of c, it was found that γ = 1.457− 1.462 is approximately

constant. In particular, γ determines the high temperature functional dependence.

Thus it seems reasonable to fix this temperature dependence for the high temperature

fitting function of the extended-MEM η
s

to the HTL value γHTL = 1.46.

For the high temperature regime the fitting function thus assumes the form:

(η
s

)
fit,pert

(T ) = aLog

(
cT

Λ

)γ
HTL

(9.9)

The temperature dependence of the shear viscosity to entropy density ratio below Tc

can be approximated by the Hadron Resonance Gas model [200, 201]. Within this

model of non-interacting hadrons and resonances, the low temperature behaviour of η
s

can be calculated analytically: (η
s

)
fit,HRG

(T ) ∼ e−
∆
T (9.10)

where ∆ depends on the number of fermions, but will here be used as a variational

parameter. The two limiting cases (9.9) and (9.10) with the parameters ∆, a, c are

almost sufficient to fit the extended-MEM results for η
s

by(η
s

)
fit

(T ) =
(η
s

)
fit,HRG

(T ) +
(η
s

)
fit,pert

(T ) (9.11)

However, the logarrithm is not real at sufficiently low temperatures. To avoid this,

the perturbative part of the fitting function can be switched off by a Heavyside-step

function Θ(Tswitch − T ) for T < Tswitch. Similarly, the resonance gas part can be

switched of above Tswitch. To obtain a smooth curve, a mollified representation of the

step function is used:

Θm(x, k) =
1

1 + e−kx
(9.12)
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9 Shear viscosity to entropy density ratio

Figure 9.7: Perturbative η
s as a function of temperature for c = π(blue), c = 2π(yellow), c = 4π(green).

The points are obtained from the beyond leading-log viscosity in [198]. The fitting functions have the
form (9.9).

which approaches Θ(x) in the limit k → 0. The switch temperature Tswitch is deter-

mined by Log
(
cT
Λ

)
= 0, whereas the mollification paramter k is an additional variational

parameter. The final fitting function reads:(η
s

)
fit

(T ) = Θm(Tswitch − T, k)
(η
s

)
fit,HRG

(T ) + Θm(T − Tswitch, k)
(η
s

)
fit,pert

(T )

(9.13)

In Fig. 9.8 the optimal fit is shown (blue), with ∆ = 3.06, a = 0.313, c = 0.82π, k =

0.764. The orange curve in addition shows the perturbative HTL prediction of Fig.9.7

for c = 0.82π. By construction, the fit function exhibits the correct HTL high temper-

ature behavior. The minimum is slightly shifted to higher temperatures. The fitting

function assumes the minimum at 1.35Tc (compared to 1.25Tc from extended-MEM).

This is well within the systematic extended-MEM error. Fixing the minimum at the

extended-MEM position would require additional fit parameters. However, in the spirit

of minimizing the number of fit parameters, equation(9.13) seems to fit the data rea-

sonably well. Note, that the comparison to HTL effectively represents a comparison of

η, as the entropy density is taken from the same source for extended-MEM and HTL re-

sults. The choice of comparing η
s

is merely due to the importance of this dimensionless

quantity.
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Figure 9.8: Fit of the extendend-MEM results (blue points) for η
s (blue curve). The values for the fit

paramters are: ∆ = 3.06, a = 0.313, c = 0.82π, k = 0.764. The orange curve shows the perturbative
HTL-ηs with c = 0.82π.

9.4 Translation to QCD

In this concluding section a mapping of the pure gauge η
s

to full QCD is proposed.

The idea extends the general argument put forward in [196]. In this reference, shear

viscosity was computed on the lattice at T = 2.3Tc for pure SU(3) gauge theory. Then

a ’fugde’ was proposed, by scaling the result by the ratio of the pertubative shear

viscosity to entropy density ratio of SU(3) and QCD. It was argued, that it at least

gives a qualitative mapping. Here, a slightly different mapping is proposed. In the high

temperature regime, the entropy density is approximately constant. Thus, η
s

for SU(3)

can be approximately written as a function of the running coupling with the beyond

leading-log result from [198] for nf = 0. In particular, for the 1-loop running coupling

(2.28), the perturbative part (9.9) of the fit (9.13) is:

(η
s

)SU(3)

fit,pert
(T ) = aLog

(
cT

ΛSU(3)

)γHTL
= a

(
1

2β0

)γHTL ( 1

α s

)γHTL
(9.14)

Now, the 1-loop QCD running coupling is inserted. Both the one-loop coefficient

β
SU(3)
0 → βQCD

0 and the scale ΛSU(3) → ΛQCD change. Thus, the perturbative part

of the mapping is:

(η
s

)QCD
fit,pert

(T ) = aLog

(
cT

ΛQCD

)γHTL
=

(
β

SU(3)
0

βQCD
0

)γHTL

aLog

(
c T

ΛSU(3)

)γHTL
(9.15)
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9 Shear viscosity to entropy density ratio

For the low temperature part of the fit, the calculation of η
s

in the HRG model is taken

from [202]. Thus, this part is not explicitly fitted to the extended-MEM results. As for

SU(3), a smooth matching of the perturbative and the HRG contribution is mediated

by a mollified step function. The form of the QCD-fit equals (9.13). In Fig.9.9 the

resulting mapping is shown. The QCD-η
s

is shown in blue, while the pure gauge result

from Fig.9.8 is shown in yellow. At 2.3Tc the ratio between η
s

of SU(3) and QCD is

r =
[
η
s

]
QCD

/
[
η
s

]
SU(3)

= 1.14 (9.16)

This strongly deviates from the result of r = 1.53 in [196]. The reason for the deviation

can be the effect of the entropy, that has not been considered here. It seems resonable,

to take r = 1.53 as a reference and rescale the the QCD-η
s
, accordingly. The rescaled

QCD-viscosity is shown in Fig.9.10. Thus, the best guess for the minimum value of η
s

in QCD is: [
η
s

]QCD
min

= 0.21 (9.17)

Figure 9.9: Mapping of η
s of SU(3) to QCD, by considering η

s approximately as a function of αs, and

the exchange α
SU(3)
s → αQCD

s .
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Figure 9.10: Mapping of η
s of SU(3) to QCD, by considering η

s approximately as a function of αs,

and the exchange α
SU(3)
s → αQCD

s . Further, the mapping is matched at T = 2.4Tc to the result[
η
s

]
QCD

/
[
η
s

]
SU(3)

= 1.53 from [196].



130



10 Summary and Outlook

In this thesis gluon spectral functions were calculated from finite temperature gluon

propagators in pure SU(3) gauge theory. While many previous calculations of gluon

spectral functions assumed a quasi-particle description with a positive definite spectral

function, it could be shown here, that the violation of positivity in the spectral function

plays a crucial role for gluons, even above the confinement/deconfinement temperature.

The violation of positivity is a direct consequence of confinement, and is visible on the

level of the propagators. While propagators of free particles are convex, gluon prop-

agators exhibit a concave region at low momenta. It was motivated, that a concav

propagator requires negative contributions in the spectral function.

Compared to spectral functions in the Dymnamical quasi-particle model, where the

peak of the spectral function approaches the main diagonal in the frequency-momentum

plane at low momenta, the bending of the spectral functions calculated in this thesis

towards the main diagonal was inhibited by the region of negativity. This deviation

from the quasi-particle behavior strongly influenced derived quantities as the shear vis-

cosity to entropy density ratio η
s
. It was shown that the leading order contribution was

peaked in the frequency-momentum plane, where the bending did not set yet in. Above

the critical temperature, the violation of positivity decreased, signaling, that the quasi-

paricle picture becomes more accurate in the high temperature phase, as expected.

However, a narrowing of the peak of the spectral function at high temperatures, as

predicted by HTL perturbation theory could not be observed. Whether the narrowing

sets in at higher temperatures than the highest temperature available in this thesis,

or whether an unknown systematic effect on the spectral functions is present, cannot

be decided conclusively. It was argued, that the loss of information in the Matsubara

imaginary time function can be a reason for larger systematical errors of extended-

MEM at high temperatures.

The numerical tool to compute the spectral functions has been an extended Maxium

131



10 Summary and Outlook

Entropy Method. While standard MEM assumes a positive definite spectral function,

the violation of positivity of the gluonic spectral functions required a revision of MEM.

It turned out, that shifting the propagator with respect to a shift spectral function was

able to lift the violation of positivity, without overly suppressing the data. The intro-

duction of the shift function promoted MEM to extended-MEM, an algorithm capable

of reconstructing general spectra, as long as the violation of positivity is finite.

Further applications of extended-MEM could reconstruct quark spectral functions at

finite temperature in full QCD or other effective theories involving fermions. Here,

however, the particle spectrum is expected to show multiple poles on top of a continu-

ous background. This certainly will be a cumbersome goal for extended-MEM.

The main application of this thesis, the determination of η
s

for arbitrary (finite) tem-

peratures yielded a first-principle calculation for this intriguing quantity. A loop repre-

sentation of η in terms of gluon and ghost spectral functions was derived. Interestingly,

the total number of diagrams is finite, even though the explicit evaluation of higher

loop contributions turned out impractical. It was argued, that in the vicinity of the

critical temperature, the higher loop contributions are supressed, while they become

important in the perturbative regime. This was checked, by calculating both the lead-

ing order (one-loop) contribution and the two-loop diagrams. Indeed, the corrections

due to the next-to-leading order contributions were within the systematic error of the

one-loop approximation in the vicinity of Tc. For higher temperatures, the two-loop

contributions grew relative to leading order, such, that they were relevant for the ex-

trapolation to the HTL-limit. In particular, it turned out, that the Maki-Thompson

diagram is subleading - in accordance with predictions.

Even higher loop contributions are not expected to change the picture qualitatively.

Nevertheless, the evaluation of at least the diagrams that are expected to be leading

among the three-loop contributions would be desireable. In particular, the question of

renormalization could be studied. To two-loop order all diagrams are finite. The ques-

tion, whether this is rather a coincidence or whether η is finite within this expansion

in the first place is interesting to pursue further.

The minimum of η
s

is assumed for T = 1.25Tc and lies close to, but well above the

AdS/CFT bound. Further, the extended-MEM study for η
s

agrees with results from

the lattice. This agreement constitutes a non-trivial support for both results. A fit

function was provided, to both interpolate an extrapolate the extended-MEM results.
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Apart from a smooth approximation for the Heavyside-step function merely three pa-

rameters were needed. Below the critical temperature, the physical degrees of freedom

of QCD are hadrons, and the temperature dependence of η
s

can be described by a single

scale parameter within the Hadron Resonance Gas (HRG) model. For pure gauge the-

ory, there are obviously no hadrons. However, the HRG-model can still be employed

with glueballs as relevant degrees of freedom. Note, that the loop representation of the

spectral function of the energy-momentum tensor in terms of gluon spectral functions

is also valid below Tc.

In the opposite limit of high temperatures, two parameters were needed to fit the

extended-MEM results to the HTL prediction, where gluons are expected to be domi-

nant even in a theory including fermions.

A mapping of the SU(3) results to QCD was proposed, employing next-to-leading

order pertubative calculations for shear viscosity and a QCD entropy density. It will

be interesting to see what predictions can be extracted from the QCD fit for the in-

terpretation of the physics involved in heavy-ion collisions. Simulations of heavy-ion

collisions create initial state density configuration for particle sheets, which are subse-

quently brought to collision. For the after collision dynamics in the QGP phase (after

local thermal equilibrium is reached) η
s
(T ) is a critical input. In this thesis the sensitive

dependence of the final state spatial anisotropy on η
s

was already discussed. Thus, the

fit function can help to improve HIC-simulations.

It would also be interesting to extend the framework of this thesis to full QCD. As

mentioned above, the reconstruction of quark spectral functions will most probable be

the strongest obstacle to overcome. Apart from that, there is, however, no fundamental

or methodological issue, preventing the framework to be readily extended to full QCD.

Also, in pure SU(3) gauge theory further investigations of η
s

are of interest. The

energy-mometum tensor was assumed with its classical tensor structure. In partic-

ular, no explicit ghost field dependence was present. Thus, ghost fields could only

enter in higher loop contributions via the field derivatives in the magic formula. Fur-

ther, the Yang-Mills vertices were supplied with the classical tensor structure, whereas

for the coupling, a temperature and diagram dependent evaluation scale was chosen.

The choices led to a consistent picture for η
s
, leave, however, also space for further

refinement.
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10 Summary and Outlook

Lately, new Bayesian reconstruction methods were proposed, using an extended search

space for the spectral function [82,203–205]. It was argued, that there are cases, where

MEM cannot find the correct spectral function. For gluon spectral functions, there are

no indications, that the extended-MEM employed in this thesis ran into a pathological

case. Even though, it would be interesting to have an independent reconstruction tech-

nique available. Whether the new Bayesian method can reconstuct positivity violating

spectral functions remains to be seen.
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