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CHAPTER 1
Introduction

Organic electronics is a relatively young and very promising �eld of research. In
general, any compound that contains carbon is considered organic – with the exception
of some very simple compounds, such as carbon dioxide or carbonates. While it was
known since mid 19th century that some organic materials conduct electricity [57],
they were mostly considered insulators. Since the 1950’s, there were more reports on
conductive organic materials [49, 68, 71, 90]. The breakthrough of these materials was
the 1977 discovery by Shirakawa, MacDiarmid, Heeger and co-workers [29, 104]. They
reported a strong e�ect of chemical doping on the conductivity of certain polymers,
making it possible to reach conductivities comparable to metallic conductors . Their
work was awarded the Nobel prize in 2000 [84].

Organic materials have several advantages over their inorganic counterparts, in-
cluding easier processing, mechanical �exibility and the possibility to design organic
molecules for speci�c purposes. Among the numerous applications for these materi-
als are light-emmitting diodes (OLEDs [113]), photovoltaic devices (OPV [112]) and
�eld-e�ect transistors (OFET [52]).

As many new technologies, organic semiconductors pose challenges to science. In
this thesis we closely look at one aspect of these materials which is vital for their
function – namely charge transport. Despite the fact that microscale charge transport
has been modeled as a discrete stochastic process already in the 1980’s, to our knowledge
it has not yet been taken advantage of the methods and results of modern probability
theory, which is the aim of the present work.

The transition from micro- to macroscale is particularly important in organic semi-
conductors, since the properties of the molecules can easily be manipulated. We will
rigorously investigate the question of this upscaling via a scaling limit, i.e. we will
present a way to rescale the discrete space microscopic charge transport process in a
way, that the rescaled process converges to a continuous space one. In order not to miss
important e�ects, we have to be particularly careful in the choice of the scales here and
not choose them too coarse.

This kind of rescaling has not been done until now, leaving open the question of
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1 Introduction

validity of continuous space device models. In particular, since the most widely used ap-
proach, based on a drift-di�usion equation, can not account for the dispersive e�ects in
thin devices. Dispersion stems from a broad distribution of local transport parameters
and manifests in seemingly time- or thickness dependent macroscopic transport prop-
erties. This e�ect is observed in many similar situations in di�erent application areas
such as transport in porous media[65], polymer translocation[47] or chromatin-binding
proteins [118].

We will start our modeling of charge transport at the molecular level, building on
inputs from quantum chemistry. We �nd that the materials are amorphous. This means,
there is no long range order. Therefore, the charge carriers (more precisely, their wave-
fuctions) are strongly localized on (parts of) molecules. Hence, transport does not take
place in delocalized states, as it is the case in conventional semiconductors, but is, at a
fundamental level, discrete. Analyzing the structure of this model, we identify the main
ingredient, which we believe to cause the dispersive e�ects. We propose a simpli�ed
model based on this intuition which is then mathematically treated.

The mathematical treatment makes use of a decomposition of the charge transport
process into a spatial and a temporal component, both of which can be represented
as a sum of random variables. We use a modi�ed coarse graining scheme inspired by
Ben Arous & Černý [15] to treat the strong correlations in the temporal component.

We show, that our simpli�ed model admits a strongly dispersive regime. More par-
ticularly, we show that suitably rescaled trajectories of the charge carriers converge
to the fractional kinetics process FKα, a time change of Brownian motion by a stable
subordinator. This allows us to connect charge transport to time-fractional di�usion,
which governs the evolution of the density of FKα. While we rigorously treat only
the simpli�ed model, we provide theoretical and simulation based arguments for the
validity of our theory in the full, unsimpli�ed model.

The simpli�ed model we propose has been previously studied in mathematical physics,
mainly in the context of spin-glasses. It is known as Bouchaud’s trap model [23]. Typ-
ically, it is analyzed on the complete graph and with inverse power-law (IP) waiting
time distribution. In contrast to that, our model uses the graph Zd for d ≥ 3, and wait-
ing times will not be IP. The case of non-IP tails has been considered on the complete
graph by Gayrard [42] and the case of Zd but with IP tails by Ben Arous & Černý [15].
This last work has strongly inspired our main theorem and its proof. The di�erence
between their and our main theorem is in the assumption on the distribution of the
mean waiting times τx. While they assume

P (τx > u) = u−α(1 + L(u)), (1.1)

for some L(u) which goes to 0 as u goes to in�nity, we wish to extend their result
to the practically very relevant case of lognormal energies, i.e. we require instead (cf.
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cor. A.6.3) as n→∞,

P (τnx ≥ g(n)u) = (1 + L(n, u))
1√
2πα

g(n)−α/2σ̂(n)−1u−α, (1.2)

where τnx = (τx)
σ̂(n) are rescaled mean waiting times, σ̂(n) and g(n) deterministic

sequences. Here L(n, u)→ 0 as u→∞ uniformly in n.
The results and new contributions of this thesis are the following:

• We generalize the main theorem of Ben Arous & Černý [15] to the practically
very important case of lognormally distributed waiting times.
While we may adopt the structure of the proof of ref. 15, we are obliged to use
di�erent scales (see tab. 5.1 and e.g. eq. (5.17)) to ensure that the theorem still
holds and adapt the technical details (e.g. in eq. (5.27) and the proof of lem. 5.2.1).

• We thoroughly investigate the connection between charge transport in organic
semiconductors and fractional di�usion. In particular,

– we analyze the �nite size e�ect in kinetic Monte Carlo simulations and
suggest a way of simulating charge transport, that completely eliminates it.

– This enables us to computationally study the dispersive nature of charge
transport.

– We show, that a fractional di�usion coe�cient is an invariant of the micro-
scopic charge transport process (at least for the interesting time period) –
while the classical di�usion coe�cient is not (see �g. 1.1).

– Due to our generalization of the convergence result of ref. 15, we can rigor-
ously connect a simpli�ed charge transport model to fractional di�usion.

• We present our intuitions about generalizations of the model and show that a
simple correction in existing di�usive models can already describe the missing
dispersive e�ects (see �g. 1.2).
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Figure 1.1: “Normal” di�usion coe�cientD(t) (left) vs. anomalous di�usion coe�cient
D0.85 for di�erent times at e�ective disorder σ̂ = 7. See �g. 7.9, p. 88.

1.1 Overview of the thesis
The �rst part of this thesis is devoted to the physics of charge transport in organic

semiconductors and reviewing the approaches that have already been taken at the
problem.

In chap. 2: Charge transport in organic semiconductors, we start with the phys-
ical description of charge transport in organic materials. In sec. 2.1: Morphology and
disorder, we consider the microscale structure of the material. Upon this understand-
ing, we then build the physical charge transport models in sec. 2.2: Microscale charge
transport.

In chap. 3: Overview of macroscopic transport models, we present a brief over-
view of analytic approaches (sec. 3.1: Bottom-up/analytical approaches) and macro-
scopic charge transport models used in the literature. Many recent approaches are based
on Monte Carlo simulation studies of the so-called Gaussian disorder model (GDM, see
sec. 3.2: Simulation based aproaches, [13]), which is also the basis of our treatment. A
very common feature in macroscopic device models is the assumption that transport is
di�usive. For the sake of completeness, in sec. 3.3: Experimental/heuristic approaches,
we review heuristic models, which are frequently used to interpret experimental results.

In the second part of the thesis, we introduce a simpli�ed mathematical model and
apply methods of modern probability theory to show convergence of this model to the
fractional kinetics process.

In chap. 4: Mathematical model and main result, we introduce our simpli�ed
model and state the main result. Due to the discrete nature of the charge transport,
we model the motion of the charge carriers as a spatially discrete, continuous time
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Conventional di�usive model
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Augmented di�usive model

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10−1

100

101

102

Voltage [V]

Cu
rr
en
t[
m
A
cm

−
2
]

T=263K d=203nm
T=253K d=203nm
T=243K d=203nm
T=233K d=203nm
T=273K d=203nm
T=283K d=203nm
T=293K d=203nm
T=313K d=203nm
T=233K d=257nm
T=293K d=257nm
T=313K d=257nm
T=233K d=314nm
T=293K d=314nm
T=313K d=314nm

Figure 1.2: Solid lines: Di�usive (upper) and augmented di�usive model (lower),
dashed lines: Experimental data for di�erent temperatures and thicknesses.
See �gs. 7.7, p. 85 and 7.6, p. 84.

stochastic process. The transition rates are taken from the discussion in chap. 2 and
are random due to their dependence of the site energies. We follow the GDM and
model these energies as independent, zero-mean, normal random variables with vari-
ance σ2. We show that the physically motivated charge transfer rates have a common
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reversible structure, which we use to de�ne a simpli�ed model on the integer lattice
Z3 in sec. 4.1: Simpli�ed mathematical model. Furthermore, in sec. 4.2: Main result
and rough outline of the proof we state our main result and present a rough sketch of
its proof.
Chapter 5: Scaling limit contains the proof of the main theorem. Due to its length,

the proof is partitioned into several sections, sec. 5.1: The coarse graining procedure,
sec. 5.2: Approximation of the clock process and �nally sec. 5.3: Convergence of the
process.

In the third part of the thesis, we interpret our mathematical result and apply it to
the physical problem.

In chap. 6: The fractional kinetics process and fractional calculus, we collect
some of the properties of the fractional kinetics process we consider important in this
context, especially its connection to time-fractional di�usion. For this to make sense,
we introduce in sec. 6.1: Fractional calculus and fractional di�erential equations the
relevant methods and results to treat the equation. The properties then are collected
in sec. 6.2: Properties of the fractional kinetics process.

In chap. 7: Simulations and experiments we use the theoretical results of the
previous sections to interpret both, computationial and experimental results. In sec. 7.1:
The �nite-size e�ect, we introduce special kinetic Monte Carlo algorithm, which we
show is necessary to avoid computational artifacts.
In sec. 7.2: Dispersion, we investigate the change of transport parameters over time
(or sample thickness) with di�erent experimental and computational methods.
In sec. 7.4: Simpli�cations, we present evidence from literature, complemented with
theoretical and computational arguments of our own to justify the simpli�cations made
in sec. 4.1.
In sec. 7.3: Comparison with the continuum limit, we study the dispersive behavior
on both the micro- and the macroscale. The microscopic model is studied using the
algorithm introduced in sec. 7.1.
We also show how, based on the results of this thesis, a macroscopic device model can be
augmented with a simple trick, to get a correction which accounts for dispersive e�ects.
As a motivation for the relatively technical work, �g. 1.2 gives a pre-post comparison
for a realistic unipolar diode. While the di�usive model fails to take into account the
apparent density dependence of the transport, a model taking the dispersive behavior
into account yields better results.

In chap. 8: Conclusions and outlook, we propose some generalizations of the main
theorem to accommodate more realistic microscopic models (sec. 8.1: More realistic
models). We outline how we expect they can be proven. However, in many cases no
qualitatively di�erent result is expected. Furthermore, in sec. 8.2: Extensions, we o�er
some intuitions about how we expect the model to behave in the cases of multiple
interacting carriers and additional electric �elds.
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1.1 Overview of the thesis

In sec. A: Concepts of probability theory, we provide the reader with the de�-
nitions needed to formulate the problem, as well as some results from the literature
we need in the proof of our main theorem. Starting from sec. A.1: Fundamentals , we
consider Lévy proceses (sec. A.2: Lévy processes, subordinators and their inverses),
potential theory for the simple random walk on Zd (sec. A.3: Potential theory of the
simple random walk) and some limit theorems for sums of random variables (sec. A.4:
Limit theorems for sums of random variables), some of which are simpler predeces-
sors of our main result and thus provide us with the intuition it should be true – others
are needed as intermediate results for our proof. Because we deal with the convergence
of stochastic processes, we have to introduce Skorokhod spaces (sec. A.5: Skorokhod
spaces), which are the natural spaces for the analysis of stochastic processes. Finally, in
sec. A.6: Powerlaws and the lognormal distribution, we show that a triangular array
of rescaled lognormal random variables converges to a sequence of random variables
with inverse power law tail at in�nity. Appendix B contains a �owchart of the proof,
which gives an overview on the dependence of the various substeps needed to show
our main result.
In sec. C: Device simulation models, we present two state of the art continuum de-
vice models and suggest an augmentation based on the ideas of this thesis.
In sec. D: Some details on the kinetic Monte Carlo implementation, the imple-
mentation of our kinetic Monte Carlo method is described and some details on particu-
larly performance relevant aspects are discussed.
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CHAPTER 2
Charge transport in organic

semiconductors
In theory, organic semiconductor based devices can often outperform their inorganic

counterparts, because the material properties can be engineered on a molecular level.
This means, that in order to pro�t from this abilities, it is crucial to understand the
relationship between molecular properties and macroscopic behavior.

While not going into too much detail, this chapter introduces the physics of charge
transport in organic semiconductors. We assume familiarity with some basic chemistry,
such as molecular orbitals. A reference for basic chemistry is e.g. Tro [114].

There are two main types of organic semiconductors. One is based on polymers,
large molecules with a carbon-chain backbone. The other type are the so-called small
molecules. These materials have a much lower molecular weight compared to polymers
and consist of only few organic functional groups. This is the class we will focus on in
this work.

The individual molecules only interact weakly via the van-der-Waals (vdW) force
unlike most inorganic semiconductors or metals, which bond covalently (i.e. by sharing
electrons). Therefore, the materials only have a very weak long range order. They are
amorphic – the positions of the individual molecules are not following a regular pattern.
This lack of periodicity on the microscopic scale gives rise to the main di�erence in
transport mechanism compared to their inorganic counterpart.

2.1 Morphology and disorder
In the following, we sometimes take the perspective of electron transport. The same

arguments are true if we consider the absence of an electron – i.e. a positive charge,
called a hole – instead of an electron.

Charge transport on the molecular scale is governed by the Schrödinger equation for
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2 Charge transport in organic semiconductors

the state vector |ψ〉 in some separable Hilbert space1

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 . (2.1)

Here, ~ is the reduced Planck constant and Ĥ the Hamiltonian operator of the system,
which models the physics.

We will not go into further detail on how to solve this equation or why and how Ĥ
models to the physics. The interested reader is referred to the standard works in the
�eld, such as Dirac [36] or Shankar [103]. For the application to chemistry, see Levine
[58].

In principle this solves the problem. It is possible to have the state vector ψ describe
the whole physical system and include all (relevant) dynamics in the Hamilton operator
Ĥ. The problem is: if we do that, the equation for a full device is completely unsolvable
in practice. Therefore, simplifying assumptions are necessary.

There are unlimited possibilities in the choice of simpli�cations. The main idea
behind all of them is, to either get to a system less degrees of freedom or one with a
simpler Hamiltonian operator. For example, if we assume that the molecules themselves
do not move on the same timescale as the charges we are interested in, we can decouple
the dynamics of the molecules and charges (this is essentially the Born-Oppenheimer
approximation [22]). If this background (i.e. the positive charges modeling the nuclei of
the atoms making up the molecules) now were perfectly periodic, the Bloch-Theorem
(Ashcroft & Mermin [7, chap. 8]) would apply and we could e�ectively shrink the whole
system to one periodic box. This approach is very successful in explaining properties
of charge transport in crystalline inorganic semiconductors (such as Si, Ge, GaAs, see
Sze [110]). However, as we already mentioned, in organic semiconductors, there is no
long-range order, and this approach does not work.

Instead, we will �rst have to understand how neutral Molecules interact in a material.
Even further, to do this we will have to �rst understand a single molecule. We follow the
bottom-up approach chosen e.g. in the software package VOTCA (see Rühle et al. [95]).
We will brie�y comment on the way up here, a complete treatment of this procedure
and the underlying theories is again out of the scope of this thesis.

2.1.1 Morphology
The molecules interact mainly through their electron shells, repulsing each other (so

they do not get too close) and inducing dipoles (see �g. 2.1) – this is the van-der-Waals
force, the main adhesive force in the materials. Therefore, the main e�ort on this stage
is to understand the behavior of the electron shells of the molecules’. This is done
by solving the Schrödinger equation for a single molecule approximatively e.g. using

1this is not completely true, but it gives the right idea. For the full story, see Gadella & Gòmez [40].
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Figure 2.1: Illustration of the van-der-Waals force between two molecules. Internally,
the charges reassemble and a dipole is induced.

(hybrid) density functional theory (Hohenberg & Kohn [45] and Kohn & Sham [53]) or
semi-empirical methods (Ridley & Zerner [92]).

Once this is solved, external forces are added to investigate the molecules response
to deformation. This procedure is guided by heuristics – the idea is to capture the
response of a molecule to the main deformation processes it is subjected to in a solid.
These responses are parametrized and summarized in what is called the force �eld of
that molecule.

To get an idea how the materials are assembled on molecular scale, this force �eld is
now used in classical simulations with a large number of molecules, represented by the
centers of mass of their constituting atoms and some potentials taking into account the
interactions parametrized in the force�eld, as well as standard terms for electrostatic
interaction.

With this approach, it is possible to calculate with reasonable computational e�ort the
arrangement of about 4× 104 molecules. Because the arrangement of the molecules is
not completely static, one should more precisely speak of snapshots of the morphology,
since they change over time. We assume that the timescale for this change is much
slower than the one of charge transport. Another important point is that the dynamics
should be run until the statistical properties of the sample do not change signi�cantly
between snapshots.

We will later show that, in order to capture some properties of the transport, larger
simulation domains are necessary (cf. sec. 7.1). In order to overcome this problem, one
can use the statistical properties of the box and �nd an algorithm that generates a larger
morphology with the same properties. See Baumeier et al. [14] for a mathematical and
Kordt et al. [54] for a more physics based approach to this problem.
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2 Charge transport in organic semiconductors

2.1.2 Energetic disorder
After computing a sample morphology, we are not done yet. In order to understand

how charges are transported, we need to revisit each individual molecule, this time
with a static background given by the other molecules. We already mentioned earlier,
that because of the absence of long-range order and periodicity, the wavefunctions of
the electrons will be localized to a narrow spatial area – typically (some part of ) a
molecule.

Therefore, electron transport will happen by the transition of electrons from one
place of localization to another. This is referred to as hopping transport, or in terms
of chemistry, a red-ox reaction. The rates, at which these reactions take place are in-
vestigated in sec. 2.2. We anticipate that the rates will depend on the energy needed
to charge (positively or negatively) the particular localization site. Another in�uence
is the spatial proximity to the target, measured by the overlap of the wavefunctions
(i.e. corresponding solutions to the Schrödinger equation eq. (2.1)). This is called the
transfer integral.

Even if all molecules are of the same type (which need not be the case in actual
devices), the energy of an additional (or for the removal of an) electron on that molecule
will di�er from molecule to molecule. There are several reasons for this, the main ones
are the static dipole background and the non-constant polarizability of the surrounding.

The static dipole background stems from the molecules themselves, whose charge
distribution will most likely not be spherically symmetric, therefore creating a dipole
�eld. It has been shown by Dunlap et al. [37] that this leads to normally distributed
energies at the molecules. The non-constant polarizability directly follows from the
inhomogeneous distribution of the molecules and their random arrangement - therefore
the surrounding electron clouds (which are polarizable) will vary for di�erent positions
in space. The in�uence of this is usually smaller than that of the static dipoles. For a
more complete account of the di�erent types of disorder and their calculation see the
Ph.D. thesis of May [67].

Supported by the �ndings of ref. 37 and following the GDM (sec. 3.2), the energies
are modeled as normally distributed. The variance depends on the particular material
and can in principle, using the procedure we just outlined, be computed from just the
knowledge of the chemical formula of the molecule. However, since this involves many
computations and approximations, the results are not necessarily very accurate.
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2.2 Microscale charge transport

2.2 Microscale charge transport

Figure 2.2: Comic of charge transport in Alq3, a blue-emitting organic semiconductor

In the previous section, we have seen that transport in organic semiconductors hap-
pens via hopping of the charge carriers between localized states, this is illustrated in
�g. 2.2. The rates of these transitions depend on how energetically favorable it is for the
charge carrier to make that particular move. Therefore, the time spent on a molecule
before going to a neighbor is essentially a function of to the free energy Ex of the
carrier on that particular molecule, labeled by its center of mass at x here and in the
following. We will refer to Ex as the site energy at x.

We now look a bit more closely at two widely used rates:

i) The Miller-Abrahams (MA) rate (see Miller & Abrahams [73]),

r(MA)
x→y = ν0 exp (γdecaydxy) min

{
exp

(
−Ex − Ey

kBT

)
, 1

}
. (2.2)

This rate is also known as the Metropolis rate. ν0 is the attempt-to-escape fre-
quency, dxy the distance of origin an destination molecule γdecay is related to the
inverse of the wave function decay length. T is the absolute temperature and kB
the Boltzmann constant.

ii) The Marcus rate (see Marcus [64]),

r(Marcus)
x→y =

2π|Jxy|2
~
√

4πλkBT
exp

(
(Ex − Ey + λ)2

4λkBT

)
, (2.3)

Jxy is the transfer integral, computed from the wavefunction overlap of initial
and target state, λ the reorganization energy. The orbital overlap is symmetric, so
Jxy = Jyx. To understand λ and the rates involved, one can consider molecules
as harmonic potential wells, see �g. 2.3.
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Figure 2.3: The Marcus and Miller-Abrahams rates can be understood from considering
the molecules as harmonic oscillators (i.e. with a parabolic potential). The
energy barrier assumed in the MA rate is ∆E, the one in the Marcus rate
∆Eact.

More important for us than the explicit formula of the above rates is the fact that
both dynamics are reversible with respect to the same measure, which at x ∈ Z3 has
the weight e−βEx , with β = 1/kBT the inverse temperature. Indeed:

r(MA)
x→y = ν0 exp (γdecaydxy) exp

( |Ex − Ey|
2kBT

)
exp

(
−Ex − Ey

2kBT

)
= ν0 exp (γdecaydxy) exp

( |Ex − Ey|
2kBT

)
exp

(
Ex + Ey

2kBT

)
︸ ︷︷ ︸

symmetric

exp

(
− Ex
kBT

)
(2.4)

and

r(Marcus)
x→y =

2π|Jxy|2
~
√

4πλkBT
exp

(
− λ

4kBT

)
exp

(
−(Ex − Ey)2

4kbT

)
exp

(
−Ex − Ey

2kBT

)
=

2π|Jxy|2
~
√

4πλkBT
exp

(
− λ

4kBT

)
×

× exp

(
−(Ex − Ey)2

4kBT

)
exp

(
Ex + Ey

2kBT

)
︸ ︷︷ ︸

symmetric

exp

(
− Ex
kBT

)
.

(2.5)

In sec. 4.1, we will use this structure to justify using a simpler model for our analysis.
After the discussion of this section, we can describe charge transport at the micro-

scopic level as a hopping process, which hops from a site at x to y at rate rx→y. We
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2.2 Microscale charge transport

can calculate the current density, i.e. the number of charge carriers passing through a
plane in a given time interval either directly by simulating the above stochastic process
– this is called the Monte-Carlo approach (see sec. 7) or by solving the master equation
(Ambegaokar et al. [2]), setting p(x, t) := P (x is occupied at time t)

∂ p(x, t)

∂t
=
∑
y

ry→x(1− p(x, t))p(y, t)−
∑
y

rx→y(1− p(y, t))p(x, t), (2.6)

for all sites x in the simulation area.
Both methods are computationally prohibitive for full devices. It is however possible

to simulate a small part of a device – because the devices are often very thin, it is even
possible in some cases to simulate the full longitudinal dimension. However, since the
lateral dimensions are about 1mm, there are of the order of 106 sites along each of these
dimensions, full devices are not feasible.
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CHAPTER 3
Overview of macroscopic

transport models
We have discussed models for microscale transport in the previous chapter. In this

chapter we give an overview of models which have been used to describe charge trans-
port on the device scale.

Most of the literature on macroscopic transport models for organic electronics falls
into one of three categories – bottom-up, top-down and computational. The bottom-up
approach is concerned with deriving simpli�ed transport relations and analytic expres-
sions for the parameters in these equations. We review in sec. 3.1 some approaches
based on Green’s functions, percolation theory and the e�ective medium approxima-
tion, as well as more heuristic approaches based on the concept of transport energy.

The top-down approach is mainly concerned with reproducing experimental data.
Usually it is based on the assumption that transport on the scale it is observed, is
described by the drift di�usion equation, that is for the current j,

j = µρF +D∇ρ. (3.1)

Here, µ is the so-called mobility, D the di�usion constant, ρ the charge carrier density
and F the electric �eld. Di�usion constant and mobility are assumed to be connected
by a (generalized) Einstein relation

D = f(ρ)kBTµ, (3.2)

in the normal case, f(ρ) ≡ 1.
Most top-down approaches take into account in some heuristic way the nature of

microscale charge transport described in chap. 2. This usually includes assumptions
about the distributions of site energies, �eld- and density dependence of the mobility.
It is not possible to cover all mobility models, so we restrict to the most widely used
ones.

Finally, somewhere in between these two approaches are the computation focused
ones. These usually build upon the same microscopic models as the bottom-up models,
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3 Overview of macroscopic transport models

couple them with assumptions about the transport coming from experiments and try to
link the free parameters (such as the mobility) to the microscale physics by simulation.
The most in�uential line of work here is the family of Gaussian disorder models.

Digression: The density of states
A concept, which is widely used in solid state physics is the density of states (DOS)

[7]. It usually refers to the density of quantum mechanically possible states over e.g. an
energy or wavevector coordinate. However, the full density of states usually exists as
possible states anywhere in physical space (as long as the model considered holds for
this point in space).

In organic semiconductors, the same name is used to describe the probability distri-
bution of the site energies. However, one has to always keep in mind that in an actual
device, at any point in physical space, only one of these energies will be realized. Even
more, will be �xed for all time – i.e. when a charge carrier visits the place again, the
energy necessarily will be the same as on any visit before or thereafter.

It is not problematic to talk about the DOS of an organic semiconductor as long as one
keeps this in mind. However, some of the theoretical approaches confuse this at some
point, either assigning the full density of states to every molecule/site, or allowing one
particular point in space to have di�erent energies upon di�erent visits. Both could of
course be understood as an approximation technique, but it is rarely stated as such and
– at least in the �rst case – not a good approximation since it neglects the percolative
nature of charge transport.
Remark. We actually show (prop. 5.2.7) that the second technique can be a reasonable
approximation, as long as we keep the memory of the energy resp. waiting time while
the charge carrier is still nearby. Once it has been su�ciently far away, the waiting
times become essentially independent again.

3.1 Bottom-up/analytical approaches
It seems that there is not much recent literature on bottom-up approaches, most of the

work having been done in the 1980s and 1990s. However, the materials used in organic
semiconductors have changed. In particular, some materials – which are in the focus
of this work – exhibit a much stronger disorder than the �rst organic semiconductors
had. The large disorder is particularly pronounced in blue emitting, phosphorescent
molecules, which are very important for lighting applications.

Especially for those materials, there is a wide consensus that for materials with very
large disorder, hopping motion is the correct microscopic description. Some earlier
models, borrowing from inorganic semiconductors, assume a so-called “mobility edge”,
i.e. the existence of delocalized states, to which charge carriers can be excited and then
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3.1 Bottom-up/analytical approaches

transported e�ciently.
While not applicable to the microscopic problem as we have posed it, these theoreti-

cal considerations are still interesting, because they can lead to a fractional di�erential
equation as macroscopic description. In particular, most literature on fractional di�u-
sion equations contains references to the continuous time random walk (CTRW) model
we introduce in sec. 3.1.5.

3.1.1 E�ective medium theory
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e
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Figure 3.1: The e�ective medium approximation uses techniques from theoretical
physics to sum over all possible paths a charge carrier can take (three paths
shown as illustration).

A major line of theoretical investigation was carried out by Movaghar, Grünewald
and co-workers [44, 79–82]. Their approximation techniques are referred to as e�ective
medium approximation. The starting point of their theory are the Green’s functions of
the master equation (eq. (2.6)). They use perturbation theory for the Green’s functions,
which are expanded into the contributions of di�erent possible paths the charge carrier
can take, this approach is visualized in �g. 3.1. Via renormalization techniques devel-
oped for tight binding problems in solid state physics, they arrive at the conclusion that
hopping transport admits a dispersive regime which can formally explained by both
hopping and multiple trapping models.

The arguments and results are often complex and stated on the level of Laplace
transforms. This makes it hard to understand, as Baranovskii et al. [9] put it, the results
are reached “by very sophisticated and nontransparent analytical calculations”.

Therefore, it is not always easy to tell the exact mathematical assumptions that enter
the approximations borrowed from other branches of theoretical physics and sometimes
argued not as approximations, but rather as analogies. Nevertheless, they develop a
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3 Overview of macroscopic transport models

powerful formal machinery which reaches tractable expressions keeping both, the dif-
fusive and the percolative nature of the problem. Powerful enough to both predict a
dispersive regime and the correct Temperature dependence of the equilibrium transport
parameters of the system.

However, maybe due to the lack of transparency in the statement of the results
criticized in ref. 9, most of their work is only rarely used in contemporary approaches
to the problem. Another drawback is, that it is hard to “modularize” these methods and
add di�erent organic materials or physical e�ects, such as charge carrier interaction or
boundary conditions.

Note. We hope that the relatively simple to state results of this work do not su�er the
same fate despite the rather technical route we have to go to rigorously prove them.

3.1.2 Percolation theory
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Figure 3.2: Percolation theory applied to charge transport: most current is assumed to
�ow along a percolating cluster of high conductances. The smallest conduc-
tance needed to get a percolating cluster is the critical conductance (circled
red).

Percolation theory is based on the idea that most current �ows through a few highly
conducting paths (in the language of this work, paths that do not contain deep traps).
These paths are found by removing all connections and successively adding them back
starting with the best conducting ones until a percolation cluster is formed – see �g. 3.2.

Ambegaokar et al. [2] were among the �rst to apply this idea to a charge transport
problem, they assumed a uniform distribution of energies over an interval. Vissenberg
& Matters [117] applied it to an exponential distribution of the site energies.

Recently, Cottaar et al. [34] and Cottaar et al. [35] picked up this idea and applied it to
a Gaussian distribution of energies, comparing in addition Miller-Abrahams (eq. (2.2))
and Marcus (eq. (2.3)) rate expressions. They augment the pure percolation theory by
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3.1 Bottom-up/analytical approaches

adding some paths, which are “nearly critical” – the concept is called fat percolation
and was introduced by Schrøder & Dyre [102].

3.1.3 Multiple trapping models
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Figure 3.3: Illustration of charge transport in the multiple trapping and release model.

The multiple trapping and release (MTR) models assume the existence of some “ex-
tended states”, i.e. delocalized quantum states, in which charges can be transported
e�ciently [4, 93, 94]. This transport is assumed to be interrupted, as charge carriers
get trapped in localized, low energy states, usually these states are assumed to have
an exponential energy distribution. The carriers are assumed to stay trapped for an
exponentially distributed time with mean eE/kBT until they are released.

In order to reproduce time-dependent signals [111], or to take into account dispersion
e�ects (see sec. 7.2), sometimes trapping models are coupled to drift-di�usion mobility
models such as the EGDM or ECDM . Another reason to do this is the actual presence
of traps due to impurity or degradation e�ects [100].

3.1.4 Transport energy based approaches
The concept of transport energy can be viewed as an attempt to make the arguments

of percolation theory local in some sense, while arguing more along the lines of physi-
cal plausibility than abstract mathematics. However, one still needs to be careful when
interpreting the transport energy. While physical plausibility is at the core of its deriva-
tion, its quantitative value di�ers from the actual energy charge carriers have when
transported [86].

The concept was developed by Monroe [76] for hopping among exponentially dis-
tributed energies. The work shows, that even though no extended states are assumed to
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Figure 3.4: Illustration of charge transport in the transport energy model

exist, a multiple trapping model (see sec. 3.1.3) adequately describes charge transport,
when the mobility edge is replaced by a certain transport energy.

The idea is that hops with higher energies are unlikely, since these energies are
not populated, while hops at lower energies are unlikely, because the waiting times at
sites with low energy are exponentially longer – we will see this theme again more
rigorously in our proof, when we introduce the coarse graining scheme in sec. 5.1 – the
idea is visualized in �g. 3.4.

Baranovskii et al. [9] use a similar concept to simplify the transport problem for a
Gaussian energy distribution – they correctly acknowledge, that their approach only
works if the relaxation time of the charge carriers is smaller than the time needed to exit
the device. This approach can also account for the temperature dependence of mobility.
It was extended to include density- and �eld dependence e�ects [5, 10]. Oelerich et al.
[86] investigates how the transport energy can be extracted from computer simulations.

3.1.5 Continuous time random walk
The continuous time random walk (CTRW) is a stochastic model for transport in

disordered media introduced by Montroll & Weiss [77] as a random walk on a lattice
with random waiting times, drawn from a waiting time distribution independently in
every step.
Remark. In a mathematical sense, the original CTRW [77] is the “completely annealed”
[15] version of the model we consider in chap. 4. Completely annealed means in this
context that the randomness of the energies is not �xed and attached to the sites as we
do in our model (this also-called the quenched case). In the annealed model, the spatial
correlations in the time increments are completely neglected, which makes the scaling
limit considerably easier (though the result is the same).
This gives another way to interpret the main result of this work. One can also read it as
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Figure 3.5: Illustration of charge motion in the CTRW model.

“the spatial correlations in the waiting times vanish faster than the dispersive e�ects”
(i.e. the incomplete sampling of the statistics of the waiting times).

The idea was extended by Scher & Lax [98] and Scher & Montroll [99] to include
arbitrary distributions of spatial increments and applied successfully to charge transport
in inorganic amorphous semiconductors. Figure 3.5 illustrates the continuous space
version of this model.

Noolandi [85] shows the formal equivalence of CTRW and MTR (see sec. 3.1.3) mod-
els. In the light of our results, it is worth mentioning that under certain conditions, the
CTRW has exactly the same continuum limit as the process we consider here [70].

3.1.6 Fractional di�usion
The idea of fractional di�usion has been around for a long time and was rediscovered

on di�erent occasions. However, this work is the �rst to rigorously connect fractional
di�usion with the full 3-dimensional microscale process.

Fractional di�usion, as already mentioned, emerges naturally in CTRW models (see
e.g. Metzler & Klafter [72]) and has been applied to charge transport in organic semi-
conductors by Sibatov & Uchaikin [105]. They show how it can explain many transport
phenomena and in a the review paper [106], they give an overview of fractional ap-
proaches to charge transport problems.

In a later paper [107], they suggest an integral operator with exponentially trun-
cated Lévy kernels instead of fractional derivatives. This approach covers the long time
regime which is di�usive too while have the correct intermediate scale behavior (disper-
sive). However, the type of transition (exponential truncation) is completely heuristic
and no connection between molecule properties and transport parameters is made.
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3 Overview of macroscopic transport models

3.2 Simulation based aproaches
A very straightforward way to transition from micro- to macroscale is simulation.

While devices are only a few hundred nm (i.e. molecules) across in transport direc-
tion, their size is several mm in the other directions, which makes direct simulation
computationally impossible.

What can be done, is either periodic boundary conditions in all directions or the full
size in transport direction and periodic boundary conditions in the others. However, as
we will see, with a large disorder, �nite size e�ects can be really severe, even in those
cases. This problem is addressed e.g. by Lukyanov & Andrienko [61]. In sec. 7.1 we
present a modi�cation of the kMC algorithm, which can be used to investigate these
e�ects in simpli�ed situations.
Remark. The main result of this thesis can, loosely speaking, be seen as kind of the
inverse to the above problem. Models found as long time limits of the system are free
of �nite size e�ects, but real world, thin �lm devices, are not.

3.2.1 The Gaussian disorder model
Discrete stochastic models for charge transport with rates depending on an energy

coordinate, which has Gaussian distribution, are in the literature often referred to as the
Gaussian disorder models. It is a widely used theoretical approach (see secs. 3.1.1, 3.1.4).
Besides analytical calculations, one can use the kinetic Monte Carlo technique with this
model to extract di�usion constants or charge carrier mobilities from the microscopic
model [101] – a good summary of this line of work is the review by Bässler [13].

This, of course relies on the assumption that the corresponding macroscopic model
is a di�usive one. Typically, drift-di�usion-Poisson systems [116] are used to describe
charge transport on the device level.

The three dimensional case was studied computationally in ref. 13, where the results
of kinetic Monte Carlo computations are compared to experimental ToF data and found
in good agreement. A slight drawback (see ref. 41) is that the Poole-Frenkel behavior
(i.e. log µ ∼

√
F ) is only found for a narrow range of electric �elds. This contradicts

experimental data, which is described well using this kind of relationship (see sec. 3.3.2).
While the model is stochastic, to our knowledge it has not yet been treated with the

methods of probability theory anywhere prior to this thesis.

3.2.2 Extensions to the GDM
Gartstein & Conwell [41] extend the GDM to the case of spatially correlated disorder

(correlated disorder model (CDM)). Their simulations with this model exhibit the Poole-
Frenkel type �eld dependence over a wider range, resolving this controversy.
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Pasveer et al. [88] add charge carrier interaction e�ects to the computational model.
To e�ciently solve the model for high carrier densities, an iterative solution of the
master equation is used rather than kinetic Monte Carlo. The same work gives the
mobility as a relatively simple function approximating the computation results – this
approximation is known as the extended GDM mobility function (EGDM). Coehoorn
et al. [33] compares the new model to various other mobility functions, giving a good
review of those approaches.

The same is done for the CDM by Bouhassoune et al. [24], extending the CDM to
multiple carriers as well. Again, an approximate mobility function in compact form
is given, which is known as the extended correlated disorder model (ECDM) mobility
function.

In both cases a strong dependence of the mobility on the charge carrier density
is found. The physical origin of this e�ect is the gradual �lling of the deep traps as
the charge carrier density is increased. Once most of the deep states are occupied, all
but a few (those in the traps) carriers can move at a much higher speed because the
probability of getting trapped approaches zero.

The resulting mobility models are considered the state-of-the-art for macroscopic
modeling and are incorporated into commercial device modeling software (see Knapp
et al. [51], Nitsche et al. [83]).

It has on many occasions been demonstrated (see e.g. refs. [50, 100, 115]) that drift-
di�usion-Poisson equations with mobility/di�usion coe�cients extracted from kMC
data are capable of describing realistic devices to some extent.

3.3 Experimental/heuristic approaches
We want to mention here two widely used transport models, which are not directly

connected to the microscopic transport. While the e�ects they describe are observed
in experiments, the mechanics behind the emergence of these e�ects are di�erent as
the models were developed for inorganic semiconductors.

3.3.1 Space charge limited current
The concept of space charge limited current (SCLC) was �rst considered by Child

[30] for vacuum. Mott & Gurney [78] show, how to extend the idea to insulators resp.
semiconductors with a constant mobility. Leading to the Current-Voltage relation

jSCLC =
9

8
εrε0µ

V 2

d3
. (3.3)

The idea behind this approximation is that one would expect ohmic behavior at very
high voltages (i.e. j ∼ V ), when the �eld is strong enough to ionize the molecules.
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3 Overview of macroscopic transport models

However, at small �elds, charges are still bound to the molecules and build up a �eld
acting against the external potential. This charge is basically integrated up over the
device and subtracted from the external potential. Finally the �eld is assumed to be
constant throughout the device, and we arrive at the above expression for the current.

This is obviously a coarse approximation, nevertheless it is still widely used because
it is a step in the right direction coming from the ohmic law.

3.3.2 Poole-Frenkel
The Poole-Frenkel e�ect (Frenkel [39]) describes the in�uence of an electric �eld on

charge carrier mobility. The physical reasoning behind this is, that in the presence of
a �eld, the typical energetic barrier a charge carrier has to overcome is smaller. The
relationship between �eld and mobility is assumed to be exponential in the square root
of the �eld

µ ∝ exp
(
γ
√
F
)
. (3.4)

Here,γ is some constant that depends mainly on the dielectric properties of the material.
The original argument was that thermal excitation into the conduction band is aided

by being pulled by the �eld. In our microscopic model, the �eld would directly enter
the rate, and this can be seen as a try to capture the average additional nonlinear e�ect
of this (in addition to the linear response – drift motion – considered anyway).

The general idea to include an exponential dependence on the squre root of the
electric �eld has been quite fruitful in describing charge transport in organic electronics
– see for example the Gaussian disorder models sec. 3.2.
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CHAPTER 4
Mathematical model and main

result
In this part, we use the information about the microscopic physical process of charge

transport (sec. 2.2) to formulate a simpli�ed mathematical model. Within this model, we
will then show, that on certain scales (for time, space and energy) the interaction-free
charge transport process admits a continuum limit whose evolution is governed by a
fractional di�usion equation. We now introduce the model and discuss the simplifying
assumptions we make. Then we state the principal theorem and give an outline of the
proof. The rigorous proof is given in chap. 5.

We recall the Marcus (eq. (2.3)) and Miller-Abrahams rates (eq. (2.2)) are both re-
versible w.r.t. the measure with weights e−βEx . In order to make the model more easily
treatable, we will completely drop the symmetric part in the mathematical model. This
can be made plausible in several ways:

• Within the organic electronics community, the choice of the correct rate is still
subject to discussion. One thing both rate-expressions have in common is the
reversible measure.

• Handwavingly, one can say that the symmetric part can not trap the random walk,
since the probability to go into an area where all outgoing rates are low is small.
This is supported by the simulation study of Cottaar et al. [35] and Massé et al.
[66], who �nd no qualitative impact of the particular choice of rate function. We
go even further and show that completely dropping the symmetric part doesn’t
change the essential properties of charge transport (see �g. 7.10).

• For a similar model, it has been shown that the scaling limit is the same, regardless
of the symmetric part of the rates by Barlow & Černý [11].

Furthermore, we reduce the real locations and connectivity of the molecules to a
lattice. This approach has usually been taken already for Monte Carlo studies (e.g. [13,
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24, 32]). The e�ect of replacing a realistic morphology by a simple cubic lattice was
investigated in refs. 35, 66 and found to not make a qualitative di�erence.

We will comment on on the treatment of the model without some of these simpli�-
cations in chap. 8.

Before starting, we introduce some general notation and de�nitions.

• We say that for x→ m ∈ R̄, that

f(x) = O (g(x)) :⇔ lim sup
x→m

g(x)−1f(x) ≤ ∞.

• Similarly, f(x) = o(g(x)) if limx→m g(x)−1f(x) = 0.

• f(x)� g(x) :⇔ there exists some δ > 0 such that g(x) = O
(
f(x)e−δx

)
.

• It is often convenient to use a ∧ b := min {a, b} and a ∨ b := max {a, b}.

• By Bx(r) we denote a ball of radius r around x:

Br(x) = {y : dist2 (x, y) < r} .

• By Qr(x) we denote the cube with side-length r centered at x

Qr(x) = {y : dist∞ (x, y) < r} .

De�nition 4.0.1. The gamma function is de�ned for all x ∈ C as

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Remark. The gamma function can be understood as the continuous extension of the
factorial, since x! = Γ(x+ 1) for all x ∈ N.

4.1 Simpli�ed mathematical model
The basis of our simpli�ed model for charge transport is the graph Z3 with nearest

neighbor edges. One can picture each vertex as a molecule, or a part of the molecule,
which can hold a charge carrier. We consider i.i.d. normal random variables Ẽx ∼
N (0, σ) de�ned on the vertices of the graph, which model the energy landscape.
For a more uni�ed treatment, we introduce the family Ex ∼ N (0, 1) on Zd and work
with Ẽx ∼ σEx in the following. This way, the mean waiting times τx have the simple
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4.1 Simpli�ed mathematical model

form e−σ̂Ex , where we used the e�ective disorder σ̂ = βσ, giving us the opportunity to
rescale them with a sequence σ̂(n) later on.

The charge transport process is a combination of two processes, namely a simple
random walk (SRW)

(
X

(x)
t

)
t∈N

on Z3 starting in x ∈ Z3 (see def. A.3.1), which jumps
to every neighbor with probability 1/6 and the so-called clock process, which records
the physical time that has passed during the �rst k steps.

De�nition 4.1.1. The clock process (S(k))k∈N for the e�ective disorder σ̂ is de�ned as

Sσ̂(k) :=
k∑
i=1

ei exp (−σ̂EXi) =
k∑
i=1

ei (τx)
σ̂ . (4.1)

The ei are i.i.d. exponential random variables with mean 1.

This sum has a complicated correlation structure, because we are summing the inde-
pendent ei and Ex along Xi, which is random itself and may backtrack, i.e. revisit sites
with the same mean waiting time.

In the following we will write for realization of the random environment τ :=
(τx)x∈Zd and we will denote the probability measure on the space of environments with
P(·), which is due to the independence of the energies just a Z3-fold lognormal product
measure with parameters 0 and 1.

Since all the increments of the clock process are strictly positive, there exists a right
inverse S− : R→ N. The charge transport process Y (t) : R→ Z3 is then de�ned as

Y (t) := X
(
S− (t)

)
. (4.2)

The goal of this work is to �nd a continuous description for this discrete process in order
to model charge transport in organic semiconductor devices. As discussed in chap. 3,
the focus in continuous modeling has been on di�usive transport. This, however, does
not always give a satisfactory description for very thin �lm devices when the disorder
(measured by the parameter σ̂) is large compared to the size of the device. In these
devices the mobility seems to depend on the thickness (see e.g. �g. 7.3, p. 82).

The physical process behind this behavior is the relaxation of the charge carriers.
As they move through the device they “discover” molecules with successively more
favorable, i.e. lower, energies Ex. In terms of waiting times, this means they discover
longer and longer waiting times as they move. If the device is very thin, they do not
have the time to fully discover the statistics of the energy landscape before exiting the
device again. The thickness dependence of the transport properties stems from this fact
- the thicker the device is, the more chance the carriers have to encounter a particularly
low energy and therefore long waiting time.

It is a well known fact in statistics, that a broad lognormal distribution is in the
“bulk” very close to a power law distribution [89]. This means, judging from the waiting
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times encountered along a trajectory until exiting the device, it may not be possible to
distinguish whether they are drawn from a lognormal or a powerlaw distribution. In
chap. 5, we will show that there exists a rescaling of the process, such that it converges
to a continuous process that is not a di�usion. The next chapter gives an overview of
how we will achieve this.

4.2 Main result and rough outline of the proof
First, we introduce the limiting process.

De�nition 4.2.1. The fractional kinetics process with index α in dimension d, FKd,α

is de�ned as

FKd,α(t) := BMd

(
V −1
α (t)

)
,

where BMd(t) is a d-dimensional Brownian motion and Vα(t) an independent α-stable
subordinator.

For more details on Brownian motion and inverse subordinators, see sec. A.2, the
properties of FKd,α are investigated in chap. 6. The scaling we use is motivated by a
result for the distribution of triangular arrays of rescaled lognormal variables.

Note (see cor. A.6.3). For g(n) := exp (ασ̂(n)2), Ex ∼ N (0, 1) and any sequence σ̂(n),
which goes to∞ as n→∞, it holds that,

P (exp (−σ̂(n)Ex) ≥ g(n)u) = (1 + L(n, u))
1√
2πα

g(n)−α/2σ̂(n)−1u−α,

where L(n, u)
u→∞−−−→ 0 uniformly in n.

With this result in mind, we de�ne

Y (n)(t) :=

√
d

Cd,αr(n)
= X(n)

((
S(n)

)−1
(t)
)
, (4.3)

where

X(n)(t) :=

√
d

Cd,αr(n)
X
(⌊
C2
d,αr(n)2t

⌋)
, (4.4)

S(n)(t) :=
1

g(n)
S̃σ̂(n)

(⌊
C2
d,αr(n)2t

⌋)
, (4.5)
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and

Cd,α =

√
(2πα)1/2

Γ(1 + α)Γ(1− α)Gd(0)α
,

σ̂(n) = σ̂0

√
n, r(n) = σ̂(n)−1/2eα

2σ̂(n)2/4, g(n) = eασ̂(n)2 .

(4.6)

Here,Gd(0) is the full-space Green’s function of the simple random walk on the integer
lattice Zd (see sec. A.3).

Now we can formulate the main theorem.

Theorem 4.2.2 (Convergence to fractional kinetics). For P-almost every τ , α < 1,

Y (n)(t)→ FKd,α(·), (4.7)

weakly in distribution on D([0, T ],Rd), equipped with the uniform topology.

D([0, T ],Rd) is a Skorokhod space (see sec. A.5). For more on the fractional kinetics
process FKd,α and its properties, see chap. 6.

Note that in addition to time and space, we also rescale temperature resp. energy –
or from a mathematical viewpoint – the distribution of waiting times, in order to get
an interesting limit.

The additional rescaling is needed to make the intermediate behavior “survive” in the
limit. This intermediate behavior can be characterized as the regime where the clock
process is dominated by very few, very large contributions, whose expected depth
depends on the time. The time dependence is caused by the fact that over time, the
process can “discover” lower energies.

This is important, because in realistic, small devices, the charge carriers do not have
the opportunity to completely explore the statistics of the waiting time landscape. The
scaling limit shows, that in this situation, modeling the charge transport as a di�usion
is not optimal. Instead, for either small devices, low temperatures, or large energetic
disorder, a fractional time derivative is a better approach, as it can account for relaxation
e�ects.

This becomes clear from looking at the de�nition the fractional derivative (def. 6.1.2).
It is an integral over time, and thus introduces temporal memory into the equation.
This nicely corresponds to the physical intuition of charge carriers slowing down over
time, because they encounter successively lower energies.

However, we would like to point out, that on the microscopic scale, the picture of
gradual relaxation is wrong. Due to the discrete nature of transport, every charge carrier
will wildly jump up and down in energy as it traverses the device. The quantity that
does indeed gradually change over time is the probability of �nding a particularly low
energy resp. long waiting time. This statistical behavior is, what is actually modeled
by the fractional derivative.
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4 Mathematical model and main result

Figure 4.1: Illustration of the coarse graining procedure.

Before we start with the technical details, we give the heuristics that will guide the
proof. In this part, we will bold references, in order to facilitate mapping between the
heuristic and the rigorous part. For an actual map of the proof, see �g. B.1, p. 129.

Our approach for showing convergence of Y is to show convergence of the tuple
(S(n), X(n)) on a suitable product space. We pick the time horizon such that we observe
the process only before it exits a ball with radius R(n) = mr(n) for some m ∈ N. This
way we will, for every n, only have to deal with a �nite subset of the trapping landscape
τ . Our approach for showing weak convergence of the trajectories of the processes is
proving convergence of the �nite dimensional distributions (lem. 5.3.3) and tightness
of the sequence (S(n), X(n)) (lem. 5.3.4).

If we rescale X(n)(t) := 1/f(n)X (t/f(n)2) for some f , which goes to in�nity as
N → ∞, the limit is Brownian motion started at x (cf. [48, thm. 4.20]). The situation
for the clock process S(n) is not as straightforward, but due to the representation of S
as a sum of random variables, we are in a good shape. Assuming i.i.d. summands, S
would converge to a stable subordinator (thm. A.4.9). This scaling also motivates our
scaling for the dependent case.

To show convergence of the �nite dimensional distributions, we approximate the
processes by sums of suitable random variables, i.e. Xn ≈∑ rn resp. Sn ≈∑ sn (see
prop. 5.2.7 for the approximation ofSn; the approximation ofXn is considerably easier
– cf. eq. (5.36)). The way we de�ne these approximating random variables is based on
the coarse-graining method introduced in ref. 15. We will describe this method now –
the full formal description can be found in sec. 5.1.

• We group the waiting times between successive exits of the spatial process X of
balls with a radius ρ(n). We will refer to the trajectory between two successive
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4.2 Main result and rough outline of the proof

exits as a segment. This is illustrated in �g. 4.1

• We show, that with su�ciently high probability, these coarse grained segments
have good properties. Su�ciently high in our case means 1− o (h−2) as n→∞,
with h(n) = r(n)/ρ(n). This is the content of prop. 5.1.4:

– The process visits either no or exactly one deep trap on each segment. Deep
trap in this context means a location x ∈ Zd with average waiting time τx
of order g(n) (see def. 5.1.1).

– This trap is not near the end of the segment nor is it near another trap
(measured by the “proximity scale” ν(n)).

– The probability to actually hit a deep trap is exactly of the order h(n)−2.
– The trap may be visited multiple times, but once the process is at a distance
ν(n), it does not return.

– Furthermore, every segment ends at least ν(n) away from a trap.

• We then show (prop. 5.2.7) that the RVs (sn(x))x∈Z, which are essentially de�ned
as the time spent in the set of deep traps on a segment started at x, are good
approximations of the total time the charge carrier spends on that segment (i.e.
they can be used to approximate the increments of Sn).

• Similarly, the RVs (rn(x))x∈Z, which are de�ned as having the same distribution
as the endpoint of a segment started at x, approximate the increments of Xn

(eq. (5.36)).

• By getting a �ne control on the depth of the �rst (and, with probability 1−o (h−2),
only) trap in lem. 5.2.1, we can show that the (conditional) Laplace transform of
the sn(x), rescaled with g(n) converges to 1 + Fd(λ)/h(n)2 (lem. 5.2.3) – Fd is
a function that converges to a constant multiple of λα.

• As an analogue for the spatial process, we show that the (conditional) Laplace
transform of the rn(x) rescaled by r(n) converges to 1−ξ2/2dh(n)2 (lem. 5.3.1).

• In lem. 5.3.2, we extend this to the convergence of the joint Laplace transform
of the tuple (rn/r(n), sn/g(n)) to 1 + Fd(λ)/h2 − |ξ| /2dh2.

Using the coarse graining procedure, we have now shown thatXn andSn can be well
approximated by

∑
rn and

∑
sn respectively. Further we have computed the (rescaled,

conditional) Laplace transforms of the rn and sn. In lem. 5.3.3 we use this knowledge,
to conclude the convergence of the �nite dimensional distributions of (Xn, Sn) to those
of (BMd, Vα).
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4 Mathematical model and main result

The basic idea in this is, that the number of segments (i.e. steps with length ρ in a
random direction) before reaching the boundary of a disk of size of R = mr is by the
law of large numbers proportional to h2 = r2/ρ2 for large n. Using the Markov property
of the tuple (Xn, Sn), the joint Laplace transform of the increments can be transformed
into a product. Then, we approximate the increments with the independent families
rn resp. sn which turns the Laplace transform into a power. Thus, the joint Laplace
transform of the tuple (Xn, Sn) looks like(

1 + Fd(λ)/h2 − |ξ|2 /(dh2)
)h2 h→∞−−−→ eFd(λ)−|ξ|2/d.

Because Fd(λ)
n→∞−−−→ λα, this converges to the joint Laplace transform of a stable

subordinator and an independent d-dimensional Brownian motion.
What is left to show for the convergence of (Xn, Sn), is tightness of this sequence.

This is done in lem. 5.3.4 and allows us to conclude that the tuple also converges in
distribution on the product space of the space- and time-trajectory spaces, equipped
with the product topology. The �nal step is to show that convergence of Sn also im-
plies convergence of its inverse, and that the composition of Xn and the inverse of Sn
converges to the composition of the individual limits. Both of these are achieved using
the continuous mapping approach, introduced in sec. A.5, which �nishes the proof.

We need to modify the original method used by Ben Arous & Černý [15], to accom-
modate the changed scales and in particular the fact that we work with a sequence of
random environments instead of a �xed one.
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CHAPTER 5
Scaling limit

While we are mainly interested in the process on Z3, we will in the following use the
more general graph Zd, d ≥ 3. We expect the result in the case d = 1 to be di�erent (see
Fontes et al. [38] for a similar case) and similar for d = 2 with logarithmic correction
in the scaling to account for the recurrence of the SRW on Z2 (see Ben Arous & Černý
[15]). But since our physical motivation is in 3 dimensions and the correction terms
would invoke additional technical di�culties (we will already need an extra correction
term for the rescaling of the random environment, which would interfere), we do not
consider this case here.

Note. In the following we will frequently use C,C1, C2, . . . to denote positive real
constants. The actual value of these constants may change from line to line. They
are generally assumed to be independent of all parameters that are important in the
immediate context unless explicitly stated otherwise.

5.1 The coarse graining procedure
The di�cult object in this limit is the clock process Sn(t). Due to the correlation

introduced by the spatial structure, we can not directly use the rich theory available for
i.i.d. sums of random variables. We need to partition the sum into blocks in a way that
the correlation between the blocks becomes negligible. As already mentioned, for the
coarse graining, we follow Ben Arous & Černý [15]. We recall that the main di�erence
is, that they assume

P (τx > u) = u−α(1 + L(u)), (5.1)

for some L(u) which goes to 0 as u goes to in�nity. Whereas in this work, we have
lognormal energies and therefore (cf. cor. A.6.3) as n→∞,

P (τnx ≥ g(n)u) = (1 + L(n, u))
1√
2πα

g(n)−α/2σ̂(n)−1u−α, (5.2)
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5 Scaling limit

where τnx = (τx)
σ(n) are rescaled mean waiting times. Here L(n, u) → 0 as u → ∞

uniformly in n.
In this section we introduce the adapted coarse graining procedure and prove its

properties.

5.1.1 Notation and de�nitions
Tab. 5.1 contains the de�nitions of the various scales that will be used. To simplify

notation, we introduce the additional quantity ŝ(n) := eα
2σ̂(n)2 . The scale exponents

are

γ = 1/4− 1/12d−1, (5.3)
κ = 1/4d−1, (5.4)

µ = 1/4− 1/6d−1. (5.5)

Name Symbol Choice using ŝ

spatial scale r σ̂1/2eα
2σ̂2/4 σ̂1/2ŝ1/4

trap energy scale g eασ̂
2

ŝ1/α

coarse graining scale ρ eγα
2σ̂2

ŝγ

proximity scale ν eκα
2σ̂2

ŝκ

intermediate scale i eµα
2σ̂2

ŝµ

observation scale R mr(n) mσ̂1/2ŝ1/4

coarse graining ratio h r(n)/ρ(n) σ̂1/2ŝ1/4−γ

“expansion” scale h−2 (ρ(n)/r(n))2 σ̂−1ŝ2γ−1/2

Table 5.1: Overview of the scales involved.

De�nition 5.1.1. The set of deep traps is de�ned as

TMε (n) := {x ∈ B0(R(n)) : εg(n) ≤ τnx ≤Mg(n)} .
Similarly, we de�ne the very deep traps TM and shallow traps T ε, setting the upper
bound to∞ resp. the lower bound to 0.
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5.1 The coarse graining procedure

We will later show that the time spent in the deep traps is responsible for the main
increments of the clock process. It is important to note that we can easily control the
probability for some x to be a deep trap. Setting pMε = (2π)−1/2 α−1

(
ε−α −M−α), we

have
P
(
x ∈ TMε

)
= P (τnx > εg(n))− P (τnx > Mg(n))

cor. A.6.3
= (1 + o(1))pMε σ̂(n)−1g(n)−α/2.

(5.6)

We want to exclude conglomerates of traps – which we can do as long as we show
that the probability of encountering several deep traps in a small spatial region is
su�ciently small. We will call these traps “bad” in the following.

De�nition 5.1.2. The set of bad traps is de�ned as

B(n) :=
{
x ∈ TMε (n) : (Bx(ν(n)) \ {x}) ∩ TMε 6= ∅

}
. (bad traps)

Another set we will need is the set of sites, which are not themselves near a trap
(measured by the proximity scale ν).

De�nition 5.1.3. We de�ne the tame sites as

E(n) :=
{
x ∈ B0(R(n)) : dist

(
x, TMε

)
> ν(n)

}
. (tame sites)

To formally treat the increments of the clock process over the segments, we have to
introduce some stopping times. We set jn1 := 0,

jni := min
{
k > jni−1 : dist

(
X(k), X(jni−1

)
> ρ(n)

}
. (partition of the trajectory)

The jni partition the trajectory into parts con�ned to a ball of radius ρ(n) centered at the
last exit point of such a ball. We are now interested in the statistics of the waiting times
typically encountered on such a segment. To this end, we de�ne additional random
times,

λni,1 := min
{
k ≥ jni : Y (k) ∈ TMε

}
, (1st deep trap)

the time of the �rst visit to the set of deep traps on a segment, we denote this trap by
xni := X(λni,1). Then we de�ne some additional times which formalize the dependence
structure, namely

λni,2 := min
{
k ≥ λni,1 : dist (X(k), xni ) > ν(u)

}
, (escape from 1st trap)

i.e. the time, when we are no longer within a proximity scale of this trap. The last
important stopping time is when the random walk visits the second trap on a segment
or the same trap again after escaping from it.

λni,3 := min
({
k > λni,1 : X(k) ∈ TMε \ {xni }

}
∪
{
k ≥ λni,2 : X(k) = xni

})
(hitting 2nd trap or returning to 1st after escape)
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5 Scaling limit

We will approximate the increment of the clock process over one segment by the so-
called score of the segment,

s̃ni :=

λni,2∑
k=λni,1

ekτ
n
k 1{X(k)=xni }, (5.7)

where ek is a sequence of i.i.d. exponential RVs with mean 1. This is the contribution
of the visits to the �rst deep trap encountered on the segment. We later work with
something very similar to this to approximate the whole time increase over the segment.
It is not a good approximation for all segments, we will introduce some conditions for
a segment to be good and show that with su�ciently high probability, all segments are
good. We call a segment good if the following conditions are ful�lled:

Starting point of i-th segment jni−1

Traps TMε

First trap hit λni,1

Point of Escape from 1st Trap λni,2

End of segment ni

ν

ρ

Figure 5.2: Illustration of a good segment

GS1 The distance to the observation horizon (i.e. the boundary of a ball with radius
R(n) around the origin) is at least one coarse graining scale:

dist (xni , ∂B0(R(n))) > ρ(n).

GS2 The segment starts and ends on a tame site:

X(jni ), X(jni+1) ∈ E(n).
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5.1 The coarse graining procedure

GS3 The �rst trap is not near the boundary (measured again by the proximity scale):

dist
(
xni , ∂BX(jni ) (ρ(n))

)
> ν(n).

GS4 The trap is not a bad trap: xni /∈ B(n).

GS5a We want the process to �nd a trap on the segment, to escape from it and then
leave to the next segment. Neither another trap, nor the same trap should be
visited again:

λni,1 < λni,2 < jni+1 ≤ λni,3.

GS5b The other possibility where the approximation is still good is when no trap is
encountered:

λni,1 ≥ jni+1.

See �g. 5.2 for an illustration of the concept of a good segment. Obviously, when
GS1,GS2 and GS5b hold, s̃ni = 0. In any other case, if one of GS1–GS5 fails, we set
it to in�nity. The scores we are going to work with are

sni =


0 , if GS1,GS2 and GS5b hold,
s̃ni , if GS1–GS5a hold,
∞ , otherwise.

(5.8)

Finally we can de�ne the family (sn(x))x∈Zd , as the family with the same law as the
law of sni conditional on X(jni ) = x.

For X , we introduce the family (rn(x))x∈Zd , de�ned by their law being the same as
the law of Xn(jni+1)−Xn(jni ) conditional on X(jni ) = x.

In order to avoid explicitly dealing with GS1, we will show the properties only for
starting points su�ciently far from the boundary and later argue that the error near
the boundary is negligible, simply by choosing m large. To this end, we introduce

E0 := {x ∈ E | dist (x, ∂B0(R)) > ρ} . (5.9)

Halfway of the proof for the scaling limit is the following.

Proposition 5.1.4 (Coarse Graining). Conditional on the waiting time landscape τ , the
probability that sn(x) =∞ is o (h−2) uniformly for all x ∈ E0 for P-a.e. τ .

To prove this we will check each of the conditions separately. The proposition follows
from the assertions of the next section. Before going into the proof, we show a corollary.
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5 Scaling limit

Corollary 5.1.5 (First bad segment appears late). Let

J(n) := min {i : sni =∞} .

For all δ, T ≥ 0, there exists anm independent of ε andM , such that P-a.s. for large n,

P
(
h(n)−2J(n) ≥ T

∣∣τ) ≥ 1− δ.

Proof. We have

P (0 /∈ E0) =
∑

x∈B0(ν)

P
(
x ∈ TMε

)
≤ Cνdσ̂−1g−α/2 = O

(
ŝ−1/2

)
,

which is summable. Thus we can apply the Borel-Cantelli lemma to conclude that for
large n, 0 ∈ E0. We apply prop. 5.1.4, which yields P (sn0 =∞) = o (h−2). If sn0 < ∞,
we know that (GS2) is ful�lled and thus the �rst segment ends on a site in E .

Even more, since dist(E \ E0, 0) ≥ mr − ρ � ρ, the �rst segment ends in E0. We
can repeat this argument inductively for all parts of the trajectory until we reach the
boundary of B0(R).

By the law of large numbers and the fact that the expected number of steps to reach
∂B0(R) is m2h2(1 + o(1)),we can chose a large m which guarantees that, with proba-
bility larger than 1− δ/2, Th2, segments of the trajectory stay in B0(R− ρ). By using
the discussion above, the probability that at least one of this segments has a score of
in�nity is Th2o (h−2) = o(1).

5.1.2 Proof of proposition 5.1.4
We frequently need to locally control the density of the traps, which is achieved in

the next lemma. In the following, to keep the equations more readable, we will often
omit the dependence of the quantities on n explicitly.

Lemma 5.1.6 (Control of the trap-density). Let An be a sequence of subsets of Zd, such
that |An| � Ceα

2σ̂(n)2/2 = ŝ1/2. Then

|An ∩ TMε (n)| ∈ |An|pMε σ̂(n)−1g(n)−α/2 (1− δ, 1 + δ) .

for large n.

Proof. We show the above by proving that the bounds are only violated �nitely often.
We apply the exponential Chebyshev inequality, that is, for λ > 0,

P
(
|A ∩ TMε | ≥ (1 + δ)pMε |A|σ̂−1g−α/2

)
≤ E

[
eλ|A∩T

M
ε |
]
e−λ(1+δ)pMε |A|σ̂−1g−α/2 .

(5.10)
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5.1 The coarse graining procedure

Similarly,

P
(
|A ∩ TMε | ≤ (1− δ)pMε |A|σ̂−1g−α/2

)
= P

(
−|A ∩ TMε | ≥ −(1± δ)pMε |A|σ̂−1g−α/2

)
≤ E

[
e−λ|A∩T

M
ε |
]
eλ(1−δ)pMε |A|σ̂−1g−α/2 .

(5.11)

We compute the expectation using cor. 5.6,

E
[
e±λ|A∩T

M
ε |
]

=
(
1 +

(
e±λ − 1

) (
1 + o(1)

)
pMε σ̂

−1g−α/2
)|A|

. (5.12)

Together with log(1 + x) ≤ x, and inserting into eq. (5.10) this yields the bound

P
(
|A ∩ TMε | ≥ (1 + δ)pMε |A|σ̂−1g−α/2

)
≤ e|A|p

M
ε σ̂
−1g−α/2(−λK+(1+o(1))(eλ−1)).

The term
(
−λK + (1 + o(1))

(
eλ − 1

))
is 0 for λ = 0 and

∂

∂λ

(
−λ(1 + δ) + (1 + o(1))

(
eλ − 1

))
= −(1 + δ) + (1 + o(1)) eλ,

which is negative for a small λ and large n. By Taylor expansion, we can see that the
expression itself will be negative for small λ and large n. By the growth condition on
the An, |A|pMε σ̂−1g−α/2 < pMε e

δn for large n. Altogether this gives us

P
(
|A ∩ TMε | ≤ KpMε |A|σ̂−1g−α/2

)
≤ e−Ce

δn

. (5.13)

Therefore, the probability for violating the upper bound is summable and by the Borel-
Cantelli lemma, it is only violated for �nitely many n.

We use the same strategy for the lower bound. Equation (5.11) together with eq. (5.12)
gives

P
(
|A ∩ TMε | ≥ (1− δ)pMε |A|σ̂−1g−α/2

)
≤ e|A|p

M
ε σ̂
−1g−α/2(λ(1−δ)+(1+o(1))(e−λ−1)).

The expression
(
λ(1− δ) + (1 + o(1))

(
e−λ − 1

))
is also negative for small λ. This can

be seen by expanding the exponential function in a series. The constant term cancels
with the −1, the linear term almost cancels with the �rst part, but for large n, the
expression will remain negative.

Corollary 5.1.7 (Uniform control of the trap density). Inspecting the proof, one can see
that the bound holds uniformly for collections

(
A(m)
n

)
m∈In as long as |In| � ee

δn .

Proof. This can simply be achieved by taking the union over In before applying the
Borel-Cantelli lemma in eq. (5.13).
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5 Scaling limit

Now we can show the �rst property of the segments.

Lemma 5.1.8 (GS2). The probability that the SRW on Zd started at x ∈ E0 exits Bx(ρ)
at a site that is not in E is P-a.s. o (h−2) as n→∞.

Proof. Let Ax = Bx(ρ + ν) \ Bx(ρ − ν). Since |Ax| ∼ ρd−1ν = ŝ(d−1)γ+κ � ŝ1/2, we
can use the upper bound from lem. 5.1.6. For some δ > 0 and su�ciently large n

|Ax ∩ TMε | ≤ (1 + δ)ρd−1νσ̂−1g−α/2. (5.14)

Therefore, there can be at mostO
(
ρd−1νσ̂−1g−α/2νd−1

)
points on ∂Bx(ρ), that are not

in E . Namely in the case where all traps are exactly on ∂Bx(ρ) and at least 2ν apart -
every trap contributes O

(
νd−1

)
points. By prop. A.3.19, the probability for a site on

∂Bx(ρ) to be hit is O
(
ρ1−d). Hence the probability to exit near a trap is

O
(
ρ1−dνσ̂−1g−α/2νd−1ρd−1

)
= O

(
σ̂−1ŝdκ−1/2

)
= o

(
σ̂−1ŝ2γ−1/2

)
= o

(
h−2
)
.

With a similar argument, we can show that traps near the boundary of Bx(ρ) are
not important.

Lemma 5.1.9 (GS3). The probability that a SRW on Zd started in x ∈ B0(R) hits the set
TMε ∩ (Bx(ρ) \Bx(ρ− ν)) before exiting Bx(ρ) is o (h−2).

Proof. Since Bx(ρ) \Bx(ρ− ν) ⊂ Ax, we know from eq. (5.14), that there are at most
O
(
ρd−1νσ̂−1g−α/2

)
traps near the boundary. By lem. A.3.18, the probability to hit a

certain site y before exiting Bx(ρ) is O
(
|x− y|2−d

)
. For the traps near the boundary,

this is O
(
ρ2−d), because |x− y| > ρ− ν.

The probability, that a segment of a trajectory contains a trap near the boundary is
therefore

O
(
ρd−1νσ̂−1g−α/2ρ2−d) = O

(
σ̂−1ŝγ+κ−1/2

)
= o

(
h−2
)
.

To show the other properties of the segments, we �rst need more technical results.

Lemma 5.1.10 (Cumulative probability to hit a trap). For all segments starting in E0,
for any δ > 0, the following holds P-a.s. for large n∑

y∈TMε

P
(
Hit{y}x < Hit∂Bx(ρ)

x

)
∈ h−2pMε (1− δ, 1 + δ) .
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5.1 The coarse graining procedure

Note. This lemma (more precisely, this type of lemma, lem. 5.2.1 later improves on this
lemma, using the same techniques) is the only time where we do not only have o (h−2)
but where a quantity is exactly h−2. Therefore this lemma is crucial in determining the
right scales.

Proof. We partition the sum into three parts

Σ1 =
∑

Bx(ρ−2i)\Qx(i)

P
(
Hit{y}x < Hit∂Bx(ρ)

x

)
, (main part)

Σ2 =
∑
Qx(i)

P
(
Hit{y}x < Hit∂Bx(ρ)

x

)
, (inner part)

Σ3 =
∑

Bx(ρ)\Bx(ρ−2i)

P
(
Hit{y}x < Hit∂Bx(ρ)

x

)
. (outer part)

To treat the main contribution (Σ1) we use a covering of the main part with cubes of
side-length i:

Σ1 ≤
∑
z∈H+

∑
y∈Qz(i)∩TMε

P
(
Hit{y}x < Hit∂Bx(ρ)

x

)
,

H+ =
{
z ∈ iZd \ {x} : Qz(i) ∩Bx(ρ− 2i) 6= ∅

}
,

for the other inequality, we use H− =
{
z ∈ iZd \ {x} : Qz(i) ⊂ Bx(ρ− 2i)

}
.

By cor. 5.1.7, we can bound the number of traps in Qx(i) uniformly for all x ∈
B0(R −

√
2i). This is possible because |Qx(i)| = O

(
id
)

= ŝd/4−1/6
d≥3� ŝ1/2 and

|B0(R−
√

2i)| ∼ O (r2) = o
(
ee
δn
)

. We get

|Qx(i) ∩ TMε | ∈ idpMε σ̂−1g−α/2 (1− δ, 1 + δ) . (5.15)

By lem. A.3.18, the probability to hit a certain trap at y before exiting Bx(ρ) is

ad
(
|y|2−d − ρ2−d +O

(
|y|2−d

)) (
1 +O (ρ− |y|)2−d

)
,

with ad = d
2
Γ
(
d
2
− 1
)
πd/2. For y ∈ Qz(i), y, z bounded away from 0, we use a Taylor

series

|y|2−d = |z|2−d + (2− d)|z|1−d(|y| − |z|) +O
(
|z|−d

)
= |z|2−d +O

(
i|z|1−d

)
.

(5.16)

Now we can exchange |y|2−d for |z|2−d in the summation

Σ1 ≤ ad
∑
z∈H+

∑
y∈Qz(i)∩TMε

(
|z|2−d − ρ2−d +O

(
i|z|1−d

)) (
1 +O (ρ− |y|)2−d

)
.
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5 Scaling limit

Using the upper bound for the number of traps in each Qz(i) (eq. (5.15)),

Σ1 ≤ ad(1 + δ)pMε σ̂
−1g−α/2

∑
z∈H+

(
|z|2−d − ρ2−d +O

(
i|z|1−d

)) (
1 +O (ρ− |y|)2−d

)
.

Since |y| < ρ− i, we have (ρ− |y|)2−d = O
(
i2−d

)
= o(1).

The summand is smooth away from zero, therefore
∫
Bx(ρ−2i)\Qx(i)

can be approxi-
mated by

∑
H+ +O

(
i|z|1−d

)
(resp.

∑
H− +O

(
i|z|1−d

)
for the lower bound), thus

Σ1 ≤ ad(1 + δ)pMε σ̂
−1g−α/2

∫
Bx(ρ−2i)\Qx(i)

(
|z|2−d − ρ2−d +O

(
i|z|1−d

))
dz

+O
(
i|z|1−d

)
≤ ad(1 + δ)pMε σ̂

−1g−α/2
(
1 + o(1)

)
ρ2ωd

(
1

2
− 1

d

)
≤ (1 + 2δ)pMε h

−2,

(5.17)

because adωd = 2d/(d− 2) = (1/2− 1/d)−1 and σ̂−1g−α/2ρ2 = h−2.

Note. This step determines the exact relation between the scales r, ρ and g.

This �nishes the upper bound for Σ1. For the lower bound we use the lower sum,
eq. (5.16) and approximate it by an integral again to arrive at

Σ1 ≥ (1− 2δ)pMε h
−2.

Now, all that is left is to show that the inner and outer parts Σ2, resp. Σ3 are o (h−2).
For the inner part Σ2, we proceed in a similar way and use a covering of Qx(i).

However, we need a more elaborate covering this time to control the contributions of
the sites close to x.
We let kmax = min {k ∈ N : ŝ(k)ν ≥ i}, hence kmax ≈ (µ− κ)n. The covering we use
is

Qx(i) ⊂

kmax⋃
k=0

⋃
y∈{−1,0,1}d\{0,0,0}

Qŝ(k)νy(ŝ(k)ν)

 ∪Qx(ν).

We need to bound the number of traps in one of these cubes. Since P (x /∈ E0) = o (h−2)
by lem. 5.1.8 and Qx(ν) ⊂ Bx(ν), we can assume |Qx(ν) ∩ TMε | = 0. For the other
cubes, we have

|Qx(ŝ(k)ν) ∩ TMε | ≤ nmax
{

1, ŝ (k)d νdσ̂−1g−α/2
}

= nmax
{

1, σ̂−1ŝ (dk + (dκ− 1/2)n)
}
.

(5.18)
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5.1 The coarse graining procedure

To show this, we need to slightly modify the proof of lem. 5.1.6, but the ingredients are
the same. The exponential Chebyshev inequality yields, together with log(1 + x) ≤ x,

P
(
|Qx(ŝ(k)ν) ∩ TMε | ≥ nmax

{
1, ŝ (k)d νdσ̂−1g−α/2

})
≤ e−λnmax{1,σ̂−1ŝ(dk+(dκ−1/2))}e(eλ−1)(1+o(1))pMε σ̂

−1ŝ(dk+(dκ−1/2))

≤ C1e
−C2λn.

The last inequality holds because the argument of the �rst exponential grows faster
than the one of the second by an additional factor of n, the other terms have the same
growth behavior with di�erent constants.

There is enough room to get the bound uniformly for all x ∈ B0(R) and k ∈
{1, . . . , kmax}, because C1nr

de−C2λn is still summable for su�ciently large λ and there-
fore the inequality is only violated �nitely often by the Borel-Cantelli lemma.

Using eq. (5.18) together with lem. A.3.18, we get

Σ2 ≤ Cn

kmax∑
k=0

max
{

1, ŝ (k)d νdσ̂−1g−α/2
}

(ŝ (k) ν)2−d .

If 1 > ŝ (k)d νdσ̂−1g−α/2, the summand is decreasing in k, thus we can replace that
case simply by ŝ(0)2−dν2−d . This yields the bound

Σ2 ≤ C1n
2 max

{
C2ν

d−2, ŝ (k)2 ν2σ̂−1g−α/2
}
.

Both of the possibilities are o (h−2), thus we are done. Indeed,

ν2−d = ŝ(2−d)κ = o(ŝ2γ−1/2) ⇔ (2− d)κ < 2γ − 1/2 ⇔ d ≥ 8/3,

and

ŝ (k)2 ν2g−α/2 ≤ ŝ2(µ−κ)+2κ−1/2 = ŝ2µ−1/2 � ŝ2γ−1/2,

because µ < γ. The σ̂−1 term does not play a role here because the other terms are
exponential in σ̂ and σ̂ ∼ n.

The outer sum Σ3 can be bounded easily. Since

|Bx(ρ) \Bx(ρ− 2i)| ∼ ρd−1i = ŝ(d−1)γ+µ � ŝ1/2,

we can apply lem. 5.1.6. Using that together with the fact that by lem. A.3.18, for x ≈ ρ,
all summands are P

(
Hit{y}x < Hit∂Bx(ρ)

x

)
= O

(
ρ2−d), we get

Σ3 ≤ ρipMε σ̂
−1g−α/2 = o

(
h−2
)
.

Indeed, ρig−α/2 = ŝγ+µ−1/2 � ŝ2γ−1/2, because µ < γ.
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5 Scaling limit

Now we can turn to GS4.

Lemma 5.1.11 (GS4). The probability for the SRW started at x ∈ E to hit a bad trap
before exiting Bx(ρ) is o (h−2).

Proof. This time the quantity we are interested in is∑
y∈B(n)

P
(
Hit{y}x < Hit∂Bx(ρ)

x

)
. (5.19)

We split up the sum again, keeping the notation the same as in the proof of lem. 5.1.10.
This already eliminates Σ2 and Σ3 because B ⊂ TMε . Now we bound the main part

Σ1 ≤
∑
z∈H+

∑
y∈Qz(i)∩B(n)

P
(
Hit{y}x < Hit∂Bx(ρ)

x

)
.

We will show that

|Qx(i) ∩ B(n)| ≤ n2νdrdσ̂−2g−α=: φ(n), (5.20)

uniformly for all x ∈ B0(R). We again use a covering for better control. If there exists
x ∈ B0(R) such that the Inequality 5.20 is violated, there also exists a cube Qz(2i)
centered on G := iZd∩B0(R) which violates it. Therefore it su�ces to show that there
exists no cube with side-length 2i centered on G violating (5.20) for su�ciently large
n. We have, because the (Qx(2i))x∈G do not intersect,∑

x∈G
P (|Qx(2i) ∩ B| ≥ φ(n)) ≤ |G|P (|Q0(2i) ∩ B| ≥ φ(n)) .

Now we estimate the probability for x ∈ B using the union bound

P (x ∈ B) ≤ P
(
x ∈ TMε

) ∑
y∈Bx(ν)

P
(
y ∈ TMε

)
= O

(
νdσ̂−2g−α

)
.

This and the Markov inequality yield

|G|P (|Q0(2i) ∩ B| ≥ φ(n)) ≤ |G|φ(n)−1E

 ∑
x∈Q0(2i)

1{x∈B}


= O

(
(r/i)d

)
O
(
n−2ν−dr−dσ̂2gα

)
O
(
(2i)dνdσ̂−2g−α

)
= O

(
n−2
)
.

Since n−2 is summable, eq.5.20 follows from Borel-Cantelli. Therefore we have

|Qx(i) ∩ B(n)| = O
(
νdrdg−α

)
= O

(
ŝdκ+d/4−1

) d≥3
= o

(
ŝdκ−1/2

)
= o

(
idg−α/2

)
,

(5.21)
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5.1 The coarse graining procedure

which is su�cient for showing Σ1 = o (h−2), because in the proof of lem. 5.1.10, Σ1 was
of the exact order h−2. However, in that case, we were summing equal contributions
over a set of size idg−α/2. Since by eq. (5.21) the set we are summing over is of negligible
size compared to that, the quantity we are looking for is o (h−2).

Now we turn to proving (GS5). To show this, we �rst show that the number of distinct
traps visited on one segment is typically equal to 1.

Lemma 5.1.12 (GS5a) 1st part). The probability for the SRW on Zd started in x ∈ E0 to
hit two di�erent traps before exiting Bx(ρ) is P-a.s. o (h−2).

Proof. We denote by Xb
a :=

⋃
a≤t≤bXt the set of sites visited by the SRW between

steps a and b. We get an upper bound on the probability of hitting multiple traps on a
segment by considering the cases where at least one good trap is hit and at least one
bad trap is hit separately

P
(
|Xjni+1

jni
∩ TMε | ≥ 2

)
≤ P

(
|Xjni+1

jni
∩ TMε | ≥ 2

∣∣∣|Xjni+1

jni
∩ TMε \ B| ≥ 1

)
︸ ︷︷ ︸

(I)

P
(
X
jni+1

jni
∩ TMε \ B| ≥ 1

)
︸ ︷︷ ︸

(II)

+ P
(
|Xjni+1

jni
∩ TMε | ≥ 2

∣∣∣|Xjni+1

jni
∩ B| ≥ 1

)
︸ ︷︷ ︸

(III)

P
(
X
jni+1

jni
∩ B| ≥ 1

)
︸ ︷︷ ︸

(IV)

.

By lem. 5.1.11, (IV) = o (h−2) – since (III) is bounded, this is also true for the product.
For (II) lem. 5.1.10 and the union bound,

P
(
X
jni+1

jni
∩ TMε \ B| ≥ 1

)
≤
∑
x∈TMε

1{
x∈X

jn
i+1
jn
i

} = O
(
h−2
)
.

This bound is not enough, because we need o (h−2). This can be achieved by noting
that independent of the location of the �rst trap xni , Bx(ρ) ⊂ Bxni

(2ρ). Using this and
the strong Markov property,

P
(
|Xjni+1

jni
∩ TMε | ≥ 2

∣∣∣|Xjni+1

jni
∩ TMε \ B| ≥ 1

)
≤
∑
z∈TMε

P
(
Hit
{z}
xni
≤ Hit

∂Bxn
i

(2ρ)

xni

)
.

This means that for (I), we can use lem. 5.1.10. Therefore (I) = O (h−2). Hence, the
product (I) × (II) = O (h−4) = o (h−2). The reason we can apply lem. 5.1.10 here is,
that instead of x ∈ E we now use x 6∈ B which guarantees there is no trap in Bxni

(v).
Furthermore, doubling the radius will only change the prefactor, not the asymptotic
behavior in n.
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5 Scaling limit

The only thing that is left now, is to bound the probability of returning to the same
trap after escaping it (i.e. after being more than ν away).

Lemma 5.1.13 (GS5a) 2nd part). The probability that the SRW started at x ∈ E0 hits a
trap y ∈ Bx(ρ) ∩ TMε , exits By(ν) and then hits y again is P-a.s. o (h−2).

Proof. Because of lem. 5.1.9, we can assume (making an o (h−2) error) that y is at least
ν away from ∂Bx(ρ), thus, By(ν) ⊂ Bx(ρ).

We group the visits to y before exiting By(ν) and those after. Using the Green’s
function (cf. eq. A.3.14), we get

GBx(ρ)(y, y) = E

Hit
∂Bx(ρ)
y∑
i=0

1{
X

(y)
i =y

}


= E

Hit
∂By(ν)
y∑
i=0

1{
X

(y)
i =y

}
+ E

 Hit
∂Bx(ρ)
y∑

i=Hit
∂By(ν)
y

1{
X

(y)
i =y

}
 .

The �rst term is GBy(ν)(y, y). The second term only counts the visits to y after exiting
By(ν). The probability we are looking for is the probability to visit y at all after leaving
By(ν). We denote this probability by Preturn(x, y). Only those trajectories that return at
all do contribute to the second term, thus we can factor out Preturn(x, y), since all other
trajectories do not contribute. Those who return may however visit y several times
before exiting Bx(ρ) again. This quantity is exactly GBx(ρ)(y, y). Hence

GBx(ρ)(y, y) = GBy(ν)(y, y) + PreturnGBx(ρ)(y, y)

⇒ Preturn(x, y) = 1− GBy(ν)(y, y)

GBx(ρ)(y, y)
.

We have GBy(ν)(y, y) = GB0(ν)(0, 0) and GBx(ρ)(y, y) ≤ GB0(2ρ)(0, 0). This yields

Preturn(x, y) ≤ 1− GB0(ν)(0, 0)

GB0(2ρ)(0, 0)
= O

(
ν2−d) = o

(
h−2
)
.

Indeed, by lem. A.3.18

GB0(ν)(0, 0)

GB0(2ρ)(0, 0)
=
G(0) +O

(
ν2−d)

G(0) +O (ρ2−d)
= 1 +O

(
ν2−d) ,

and ν2−d = ŝ(2−d)κ � ŝ2γ−1/2.

This concludes the proof of prop. 5.1.4.
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5.2 Approximation of the clock process

5.2 Approximation of the clock process
We have already shown that for �xed ε and M , P

(
0 ∈ TMε

)
converges to an inverse

power law. In the following, we will get a �ner control on the depth of the �rst trap
on a segment. To achieve that, we partition TMε into smaller parts. The partition will
depend on the parameter n, therefore we will need to make the deviation from a true
power law explicit and control it. We recall that by cor. A.6.3, we have

P (τnx ≥ g(n)u) = (1 + L(n, u))
1√
2πα

g(n)−α/2σ̂(n)−1u−α,

where L(n, u)→ 0 as u→∞, uniformly in n. We set

θ(n) =
1

n
+

(
max
x≥ε
|L(n, g(n)x)|

)1/2

.

For every �xed ε,

θ(n) ≥ 1

n
, and lim

n→∞
θ(n) = 0.

Furthermore, due to the construction, maxx≥ε |L(n, g(n)x)| = o(θ(n)).
Let (zn(k))k∈{1,...Rn} be a strictly increasing, equidistant sequence with zn(0) = ε and
zn(Rn) = M , such that

θ(n) < zn(k + 1)− zn(k) < 2θ(n). (5.22)

Finally, we set

pnk :=
1√
2πα

(
zn(k)−α − zn(k + 1)−α

)
.

Lemma 5.2.1 (Fine control on trap density). For any δ > 0, almost every τ and n large,

i) P
(

0 ∈ T zn(k+1)
zn(k)

)
∈ pnk σ̂−1g−α/2(1− δ, 1 + δ),

ii) ∀x ∈ B0(R), k ∈ {0, . . . , Rn − 1},∣∣∣Qx(i) ∩ T zn(k+1)
zn(k)

∣∣∣ ∈ pnk idσ̂−1g−α/2(1− δ, 1 + δ).
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5 Scaling limit

Proof. With the notation introduced above, we have

P
(

0 ∈ T z(k+1)
z(k)

)
=

1√
2πα

σ̂−1g−α/2
(

1 + L(n, gz(k))

zn(k)α
− 1 + L(n, gz(k + 1))

zn(k + 1)α

)

= σ̂−1g−α/2

pnk +
1√
2πα

(
L(n, gzn(k))

zn(k)α
− L(n, gzn(k + 1))

zn(k + 1)α

)
︸ ︷︷ ︸

(I)

 .

As n → ∞, (I) is negligible compared to pnk , which behaves as zn(k)−α − zn(k)−α.
Indeed, omitting the dependences on n,

L(k)

z(k)α
− L(k + 1)

z(k + 1)α
=

L(k)

z(k)α
− L(k)

z(k + 1)α
+

L(k)

z(k + 1)α
− L(k + 1)

z(k + 1)α

= L(k)︸︷︷︸
=o(1)

(
1

z(k)α
− 1

z(k + 1)α

)
︸ ︷︷ ︸

o(z(k)−α−z(k+1)−α)

+
L(k)− L(k + 1)

z(k + 1)α︸ ︷︷ ︸
(II)

.

For (II), we show convergence to zero for

(II)
z(k)−α − z(k + 1)−α

=
z(k + 1)−α (L(k)− L(k + 1))

z(k)−α − z(k + 1)−α

=
L(k)− L(k + 1)(

z(k)
z(k+1)

)−α
− 1

.

We expand
(

z(k)
z(k+1)

)−α
=
(
z(k+1)
z(k)

)α
into a Taylor series in θ – due to eq. (5.22) for

some c ∈ (1, 2),

L(k)− L(k + 1)

1 + αcθ
ε

+O (θ2)− 1
=
L(k)− L(k + 1)

ε−1αcθ +O (θ2)
=

o(θ)

Cθ +O (θ2)
= o(1).

Thus, for every δ > 0 we can make the modulus of (I) smaller than δpnk by choosing n
large.

Since |Qx(i)| ∼ id = ŝ1/4d−1/6 � ŝ1/2, a version of lem. 5.1.6 applies, where all
occurrences of P

(
x ∈ TMε

)
and its estimates are replaced with the equivalent versions

for P
(
x ∈ T zn(k+1)

zn(k)

)
, which have exactly the same asymptotic behavior. This proves

the second part of the lemma.

54



5.2 Approximation of the clock process

Now we can get a control on the depth of the �rst deep trap that is hit on a segment.

Lemma 5.2.2 (Control on depth of �rst trap). For any δ > 0, x ∈ B0(R), P-a.s. there
exists n0 such that for n > n0 and k ∈ {0, . . . , Rn − 1},

Px(n, k) := P
(
Hit

T
zn(k+1)
zn(k)
x < Hit∂Bx(ρ)

x

)
∈ pnkh(n)−2(1− δ, 1 + δ). (5.23)

Proof. We mimic the proof of lem. 5.1.10, this time summing over T zn(k+1)
zn(k) instead of

TMε , ∑
y∈T zn(k+1)

zn(k)

P
(
Hit{y}x < Hit∂Bx(ρ)

x

)
.

We then apply the procedure used to prove lem. 5.1.10, using lem. 5.2.1 to replace the
estimate on P

(
x ∈ TMε

)
to get∑

y∈T zn(k+1)
zn(k)

P
(
Hit{y}x < Hit∂Bx(ρ)

x

)
∈ pnkh−2(1− δ, 1 + δ).

This yields the upper bound for Px(n, k).
For the lower bound, we �rst subtract all the doubly counted probabilities (actually

more, because we subtract twice the triple hits etc., but it still yields a lower bound)

Px(n, k)

≥
∑

y∈T zn(k+1)
zn(k)

P
(
Hit{y}x < Hit∂Bx(ρ)

x

)
−

∑
y,y′∈T zn(k+1)

zn(k)

P
(
Hityx ∧ Hity

′

x < Hit∂Bx(ρ)
x

)
,

and note that∑
y,y′∈T zn(k+1)

zn(k)

P
(
Hityx ∧ Hity

′

x < Hit∂Bx(ρ)
x

)
= P

(∣∣∣Xjni+1

jni
∩ T zn(k+1)

zn(k)

∣∣∣ ≥ 2
)

≤ P
(∣∣∣Xjni+1

jni
∩ TMε

∣∣∣ ≥ 2
)
,

which is o (h−2) by lem. 5.1.12. Thus for any δ > 0 there exists n0, such that for n ≥ n0,

Px(n, k) ≥
∑

y∈T zn(k+1)
zn(k)

P
(
Hit{y}x < Hit∂Bx(ρ)

x

)
− P

(∣∣∣Xjni+1

jni
∩ TMε

∣∣∣ ≥ 2
)

≥ (1− δ)pni h−2,

which �nishes the proof.
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5 Scaling limit

Now we show an important property of the family of conditional scores (sn(x))x∈Zd .
Lemma 5.2.3 (Laplace transform of scores). The following holds P-a.s. as n→∞

E
[
e−λs

n(s)/g(n)
∣∣sn(x) <∞, τ

]
= 1− Fd(λ)

h(n)2
+ o

(
h−2
)

where

Fd(λ) = pMε −
1√
2π

∫ M

ε

z−(α+1)

1 + λG(0)z
dz.

Proof. We start by computing the conditional Laplace transform

E
[
e−λs

n(x)/g(n)
∣∣τy, 0 < sn(x) <∞

]
,

where τy is the (unscaled) mean waiting time at the trap that is hit on this segment.
This makes sense because for 0 < sn(x) < ∞, there is exactly one trap contributing
to sn(x). This trap is possibly visited multiple times before exiting Bx(ν). In fact, after
each visit, the random walk escapesBy(ν) with probability P

(
Hit∂By(ν)

y < Hit{y}y

)
and

conditional on sn <∞, never returns. Therefore, the number of hits follows a geometric
distribution.

The expected number of hits is exactly the Green’s function GBy(ν)(y, y) (cf. eq. A.9).
On every visit, the time spent in the trap is exponentially distributed with mean τny ,
which is deterministic in this calculation, due to the conditioning. With the above
discussion, sn(x) is distributed as

∑M
i=0 Zi, where M is a geometric RV with parameter

GBy(ν)(y, y)−1 and Zi is an independent collection of i.i.d. exponential variables with
parameter 1/τny . Thus, we have

E
[
e−λs

n(x)/g(n)
∣∣τy, 0 < sn(x) <∞

]
=

1

GBy(ν)(y, y)λg(n)−1τny + 1
. (5.24)

Indeed, we let G := GBy(ν)(y, y)

E
[
e−λs

n(x)/g(n)
∣∣τy, 0 < sn(x) <∞

]
= E

[
e−λ

∑M
i=1 Zi/g(n)

]
=

∫
dP (M)

∫
dP (Zi) e

λ
∑M
i=1 g

−1Zi)

=
∞∑
y=1

(
1

G

(
1− 1

G

)y−1 ∫ ∞
0

1

τny
e−x/τ

n
y dzie

−λ∑y
i=1 g

−1zi

)

=
∞∑
y=1

((
1

λg−1τny + 1

)y
1

1 +G

(
1− 1

G

)y−1
)

=
1

Gλg−1τny +G

∞∑
y=0

(
G− 1

Gλg−1τny +G

)y
.

56



5.2 Approximation of the clock process

The last sum is a geometric series and can be evaluated, leading to

1

Gλg−1τny +G

1

1− G− 1

Gλg−1τny +G

=
1

1 +Gλg−1τny
.

By prop. A.3.17, GBy(ν)(y, y) = G(0) + O
(
ν2−d), and since G(0) does not depend

on n, this means that also GBy(ν)(y, y) = G(0) (1 + o(1)).
By prop. 5.1.4, P (sn(x) =∞) = o (h−2) and the argument of the expectation is

bounded between 0 and 1, thus we can remove the conditioning and get

E
[
e−λs

n(x)/g(n)
∣∣τ , sn(x) <∞

]
= E

[
e−λs

n(x)/g(n)
∣∣τ ] (1 + o

(
h−2
)
). (5.25)

The expectation conditional only on τ can be estimated from below using lem. 5.2.2
and eq. (5.24),

E
[
e−λs

n(x)/g(n)
∣∣τ ] ≥ (1− (1 + δ)pMε h

−2
)

+ h−2

Rn∑
k=1

pnk(1− δ)
1 + λzn(k)G(0) (1 + o(1))

,

where we used that

E
[
e−λs

n(x)/g(n)
∣∣τ ] = e0P (sn(x) = 0)︸ ︷︷ ︸

(I)

+
Rn∑
k=1

P
({
τy ∈ T zn(k+1)

zn(k)

}
∩ {sn(x) <∞}

)
×

× E
[
e−λs

n(x)/g(n)
∣∣τy, 0 < sn(x) <∞

]
≥ P

(
Hit∂Bx(ρ)

x < HitT
M
ε
x

)
+ h−2

Rn∑
k=1

pnk(1− δ)
1 + λτny g(n)G(0) (1 + o(1))

.

Furthermore, conditional on hitting T zn(k+1)
zn(k) , τny g(n) is bounded from above by zn(k)

and from below by zn(k + 1).
The probability to exit Bx(ρ) before hitting a trap is bounded by lem.5.1.10 from

above, resp. below, by (1− (1∓ δ)h−2pMε ).
Since the probability to hit TMε is at most (1+δ)σ̂−1pMε h

−2, (I) can be estimated from
below by

(
1− (1 + δ)σ̂−1pMε h

−2
)
.

In a completely analogous way, we get the upper bound

E
[
e−λs

n(x)/g(n)
∣∣τ ]

≤
(
1− (1− δ)pMε h−2

)
+ h−2

Rn∑
k=1

pnk(1 + δ)

1 + λzn(k + 1)G(0) (1 + o(1))
.
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5 Scaling limit

The sum can in both cases be approximated with an integral, yielding

1− h−2

(
pMε −

1√
2π

∫ M

ε

1

1 + λG(d)z
z−(α+1)dz + o

(
h−2
))
± δCh−2pMε .

We let δ → 0 and choose n large. This completes the proof.

We already know that the probability for a bad segment is o (h−2). If a segment is
not bad, there are still two cases possible – either a trap is being hit or not. The next
lemma gives the probability that a segment actually contains a trap.

Lemma 5.2.4 (Probability for nonzero score). As n → ∞, P-a.s., we have, uniformly
in x ∈ E0,

P (sn(x) 6= 0|τ ) = (1 + o(1))h(n)−2pMε .

Proof. Just as we bounded the probability to hitT zn(k+1)
zn(k) before exitingBx(ρ) in lem. 5.2.2,

we can use the same kind of reasoning (even easier because the bounds do not depend
on n) to show that

P
(
HitT

M
ε
x < Hit∂Bx(ρ)

x

)
∈ h−2pMε (1− δ, 1 + δ).

Obviously, if a trap is hit, sn(x) = 0 is no longer possible and we get a lower bound
that is of order h−2.

To get the upper bound, we remind ourselves that the two cases where sn 6= 0 are
either when the segment is good and TMε is hit before exiting Bx(ρ), or the proper-
ties are violated in a way such that sn(x) = ∞. But we have already shown that
P (sn(x) =∞) = o (h−2). We get an upper bound (1 + δ)h−2pMε + o (h−2) which
asymptotically behaves as h−2pMε , too.

Now we want to show that the scores approximate the clock process. It follows from
cor. 5.1.5 that the probability for the “good” event Gn :=

{
snj <∞∀ j ≤ Th2

}
can be

made arbitrarily large by choosing m large. Therefore, it su�ces to approximate the
clock process conditional on Gn. The main work here is to show that the time spent in
the shallow traps T ε and deep traps TM can be neglected.

Lemma 5.2.5 (Time spent in shallow traps negligible). For any δ > 0 there exists an
ε > 0 such that for almost every τ and large n

P


jn
Th(n)2∑
i=0

eiτ
n
x 1{Xi∈T ε} ≥ g(n)δ

 ∩ Gn
 ≤ δ,

where (ei)i∈N is an i.i.d. family of exponential RVs with mean 1.
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5.2 Approximation of the clock process

Proof. Given that the eventGn occurs, the �rstTh(n)2 segments are inB0(R(n)). There-
fore, conditionally on Gn, we get an upper bound by summing up to ζn := Hit

∂B0(R(n))
0 .

We want to apply the Markov inequality – to do this, we compute E
[∑ζn

i=1 eiτ
n
x

]
.

We split up the expectation into di�erent parts, starting with the time spent in traps
with τnx ≤ 1:

E

[
ζn∑
i=1

eiτ
n
x 1{τXi≤1}

]
=

∑
x∈B0(R(n))

τnxGB0(R(n))(0, x)1{τnx≤1}

≤
∑

x∈B0(R(n))

GB0(R(n))(0, x) = E [ζn]

= O
(
R2
)

= O
(
σ̂ŝ1/2

) α<1
= o(ŝ1/α) = o(g). (5.26)

Where we have used∑
x∈B0(R)

GB0(R)(0, x) =
∑

x∈B0(R)

E

[
ζn∑
j=1

1{
X

(0)
j =x

}
]

= E

 ζn∑
j=1

∑
x∈B0(R)

1{
X

(0)
j =x

}
 = E [ζn] .

The remaining part of T ε is divided into disjoint sets T ε̃k−1

ε̃k
, where ε̃k := g(−k) =

εe−ασ̂
2
0k and k ranges from 1 to kmax := min

{
k : e−ασ̂

2
0 ≤ g(−k)εg(n) < 1

}
. Obvi-

ously, by this, kmax ∼ n. We have

Pn,k := P
(

0 ∈ T ε̃k−1

ε̃k

)
≤ P

(
τnx ≥ ge−kασ̂

2
0ε
)
≤ C (1 + o(1)) σ̂−1g−α/2ε−αekα

2σ̂2
0 .

(5.27)

In the following, we will show that the probability to have a large expected waiting
time in the sets T ε̃k−1

ε̃k
is small. To do this, we �x a k, and consider for some K ′,

P := P

(
E

[
ζn−1∑
j=1

ejτ
n
Xj

1{
Xj∈T

ε̃k−1
ε̃k

}
∣∣∣∣∣τ
]
≥ K ′ε1−αek(α−1)ασ̂2

0g(n)

)
.

The conditional expectation can be bounded from above using τnx ≤ e(−k+1)ασ̂2
0εg(n),

E

[
ζn−1∑
j=1

ejτ
n
Xj

1{
Xj∈T

ε̃k−1
ε̃k

}
∣∣∣∣∣τ
]

=
∑

x∈B0(R(n))

GB0(R(n))(0, x)τnx 1{
x∈T ε̃k−1

ε̃k

}

≤
∑

x∈B0(R(n))

GB0(R(n))(0, x)e(−k+1)ασ̂2
0εg(n)1{

x∈T ε̃k−1
ε̃k

},
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5 Scaling limit

therefore, P is bounded from above by

P

 ∑
x∈B0(R(n))

GB0(R(n))(0, x)e(−k+1)ασ̂2
0εg(n)1{

x∈T ε̃k−1
ε̃k

} ≥ K ′ε1−αek(α−1)ασ̂2
0g(n)

 .

We multiply both sides by g(n)−1e(k−1)ασ̂2
0ε−1. The terms disappear on the left side and

the right becomes K ′ε−αe(kα−1)ασ̂2
0 . We apply the exponential Chebyshev inequality,

this time allowing λ to be chosen di�erent for each n,

P ≤ e−λnK
′ε−αe(kα−1)ασ̂20

∏
x∈B0(R(n))

(
(1− Pn,k) + Pn,ke

λnGB0(R(n))(0,x)
)

︸ ︷︷ ︸
(I)

. (5.28)

The term (I) can be bounded using eq. (5.27) and log(x+ 1) ≤ x

(I) ≤
∏

x∈B0(R(n))

(
1 + C (1 + o(1)) σ̂−1g−α/2ε−αekα

2σ̂2
0
(
eλnGB0(R(n))(0,x) − 1

))

≤ exp

 ∑
x∈B0(R(n))

C (1 + o(1)) σ̂−1g−α/2ε−αekα
2σ̂2

0
(
eλnGB0(R(n))(0,x) − 1

) .

(5.29)

To estimate the Green’s function in the exponential, we divide the sum in a part
close to the origin, B0(n2/(d−2)), which we will control by the smallness of the set,
and B0(R(n)) \B0(n2/(d−2)), where we can bound the Green’s function.

We start with the inner sum. We set

λn := α2σ̂2
0n/(4GB0(R(n)))(0, 0)).

SinceGB0(R(n)))(0, 0) converges toG(0), this means that λn ∼ n. Furthermore, we note
that GB0(R(n)))(0, x) ≤ GB0(R(n)))(0, 0), arriving at

(I)inner ≤ exp

 ∑
x∈B0(n2/(d−2))

Cσ̂−1g−α/2ε−αekα
2σ̂2

0

(
eα

2σ̂2
0n/4 − 1

)
≤ exp

(
Cn2d/(d−2)σ̂−1ε−αeα

2σ̂2
0(−n/2+k)

(
eα

2σ̂2
0n/4 − 1

))
= eo(1).

For x ∈ B0(R(n)) \B0

(
n2/(2−d)

)
, thm. A.3.13 yields GB0(R(n))(0, x) ≤ cn−2. There-

fore λnGB0(R(n))(0, x) = O (n−1) and we can use for large n that ex − 1 ≤ 2x as
x→ 0.

eλnGB0(R(n))(0,x) − 1 ≤ cnGB0(R(n))(0, x).
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5.2 Approximation of the clock process

By plugging this into eq. (5.29), we get for the terms away from zero,

(I)outer ≤ exp

 ∑
x∈B0(R(n))\B0(n2/(d−2))

Cσ̂−1ε−αg−α/2ekα
2σ̂2

0nGB0(R(n))(0, x)

 .

Since the Green’s function is the only expression depending on x and∑
x∈B0(mr(n)2)

GB0(R(n))(0, x) ∼ r(n)2 ∼ σ̂gα/2,

we can cancel σ̂−1g−α/2 against the sum of the Green’s functions to arrive at

(I)outer ≤ eCnε
−αeα

2σ̂20k .

Inserted into eq. (5.28), this yields

P ≤ e−C1nK′ε−αeC2k eC3nε−αeC2k︸ ︷︷ ︸
=(I)outer

eo(1)︸︷︷︸
(I)=inner

.

By choosing K ′ > C3C
−1
1 , this exponentially decreases in n for every k and ε. Taking

the union over all k we get an additional factor n. The expression remains summable
and by the Borel-Cantelli lemma, we have for su�ciently large n, for almost every τ ,
uniformly in k,

E

[
ζn−1∑
j=1

ejτ
n
Xj

1{
Xj∈T

ε̃k−1
ε̃k

}
∣∣∣∣∣τ
]
< K ′ε1−αek(α−1)αβ2

g(n).

This, together with eq. (5.26) yields

E

[
ζn∑
i=0

eiτ
n
Xi

1{Xi∈T ε}

]
≤ Kε1−αg(n).

Therefore, by the Markov,

P


jn
Th(n)2∑
i=0

eiτ
n
x 1{Xi∈T ε} ≥ g(n)δ

 ∩ Gn
 ≤ Kε1−αg(n)

g(n)δ
.

We choose ε ≥ K−1δ2/(α−1). This �nishes the proof.

Now we have to deal with the very deep traps. Obviously, if such a trap is ever hit,
the contribution to the clock process is very large. So our strategy is, to show that TM
is never hit.
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5 Scaling limit

Lemma 5.2.6 (Very deep traps not hit). For every δ > 0 there existM > ε > 0 such
that for large n and almost every τ

P
({

HitTMx < jnTh(n)2

}
∩ Gn

∣∣∣τ) ≤ δ.

Proof. As in the proof of lem. 5.2.5, we can assume that the complement of Gn is arbitrar-
ily small and replace jnTh(n)2 by ζn. We again use the exponential Chebyshev inequality
to prepare the application of the Borel-Cantelli lemma

P
(
P
({

HitTMx < ζn
}
∩ Gn

∣∣τ) ≥ δ
)
≤ e−λnδE

[
e
λnP

(
Hit

TM
x <ζn

∣∣∣τ)]
. (5.30)

Using P (x ∈ TM) ≤ Cσ̂−1g−α/2M−α and log(1 + x) ≤ x,

logE
[
e
λnP

(
Hit

TM
x <ζn

∣∣∣τ)] ≤ logE
[
e
λn
∑
y∈B0(R(n)) P(Hit

y
x<ζn|τ)1{y∈TM}

]
≤

∑
y∈B0(R(n))

log
(

1 + Cσ̂−1g−α/2M−α
(
eλnP(Hit

y
x≤ζn) − 1

))
≤

∑
y∈B0(R(n))

Cσ̂−1g−α/2M−α
(
eλnP(Hit

y
x≤ζn) − 1

)
. (5.31)

Again, just as for the proof of lem. 5.2.5, we control the contributions by splitting them
up in an inner, spatially small part near the starting point and an outer part, where the
Green’s function is small. We start with the inner part, that is B0(n2/(d−2)). We choose
λn = α2σ̂(n)2/4, leading to

(5.31)inner ≤
∑

y∈B0(n2/(d−2))

Cσ̂−1g−α/2M−α
(
eα

2σ̂2/4P(Hityx≤ζn) − 1
)

≤ Cn2d/(d−2)σ̂−1e−α
2σ̂2/2M−α

(
eα

2σ̂2/4 − 1
)
.

This tends to 0 as n → ∞ exponentially, thus the contribution of B0(n2/(d−2)) to the
expected value in eq. (5.30) is eo(e−Cn).

For the part far from the origin, we use lem. A.3.18 for the argument of the exponential
where y /∈ B0(n2/(d−2)) and therefore |y|2−d ≤

(
n2/(d−2)

)2−d,

α2σ̂2

4
P (Hityx ≤ ζn) ≤ Cn

(((
n2/(d−2)

)2−d −R(n)2−d
)

+O
((
n2/(d−2)

)1−d))
= O

(
n−2
)
.
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5.3 Convergence of the process

Thus, we can use ex − 1 ≤ 2x for large n and get

(5.31)outer ≤
∑

y∈B0(R(n))\B0(n2/(d−2))

C1σ̂
−1g−α/2M−α

(
e−C2|y|−2 − 1

)
≤ C σ̂−1g−α/2︸ ︷︷ ︸

=r−2

M−αn
∑

y∈B0(R(n))\B0(n2/(d−2))︸ ︷︷ ︸
∼r2

|y|2−d︸ ︷︷ ︸
≤1

≤ CM−αn.

Put into eq. (5.30), this yields

P
(
P
({

HitTMx < ζn
}
∩ Gn

∣∣τ) ≥ δ
)
≤ C1e

−δn+o(e−C2n)+C3M−αn,

which is summable when M is chosen su�ciently large. We can now apply Borel-
Cantelli and the proof is complete.

Now we can quantify the approximation error of the scores for approximating the
clock process.
Proposition 5.2.7 (Scores approximate clock process). Let δ > 0, T > 0. Then there
exist ε, M, m such that P-a.s. for large n,

P

(
1

g(n)
max

{∣∣∣∣∣S(jnk )−
k−1∑
j=0

snj

∣∣∣∣∣ : k ∈
{

1, . . . h2T
}}
≥ δ

)
< δ.

Proof. As mentioned, we can make the probability for the complement of Gn smaller
than δ/2 by chosing m su�ciently large. Conditional on Gn, the di�erence is positive
and increasing in k, since the score only counts contributions to the clock process
when it is in deep traps. Therefore it can be bounded with the di�erence at k = Th2.
By lem. 5.2.5 and lem. 5.2.6 this is done and the proof is �nished.

5.3 Convergence of the process
We have shown that the coarse graining scheme has good properties and we have

used these properties, to show that the scores approximate the clock process and that
their Laplace transform converges to Fd(λ) within an o (h−2) error. In this chapter, we
show how this translates into convergence of the rescaled process Y n.

First, we will show a result for the Laplace transform of the spatial processXn similar
to lem. 5.2.3 for the clock.
Lemma 5.3.1 (Laplace transform of spatial increments). For all x ∈ E(n), ξ ∈ Rd, as
n→∞,

E
[
e−ξ·r

n(x)/r(n)
]

= 1 +
|ξ|2

2dh(n)2
+ o

(
h−2
)
.
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5 Scaling limit

Proof. We recall that rn(x) has the same law as the spatial increment of a coarse grain-
ing segment, which was de�ned by partitioning the trajectory into successive exits of
spheres with radius ρ. Therefore, |rn(x)| = ρ (1 + o(1)). We expand the expectation as
a Taylor series w.r.t rn(x), where, due to the symmetry of the distribution only even
powers play a role

E
[
e−ξ·r

n(x)/r(n)
]

= 1 + E

[
1

2
h(n)−2

(
ξ · r

n(x)

ρ(n)

)2
]

+ o
(
h−2
)
.

By prop. A.3.19 and (asymptotic) rotational symmetry, the distribution of rn(x)/ρ(n)
converges as n→∞ to the uniform distribution on the sphere of radius one. Therefore

E

[
1

2

(
ξ · r

n(x)

ρ(n)

)2
]

= −|ξ|
2

2d
.

Now we are ready to prove convergence of the joint conditional Laplace transforms.

Lemma 5.3.2 (Joint Laplace transform). For P-almost every τ , and all λ < 0, ξ ∈ Rd,
as n→∞,

E
[
exp

(
−λs

n(x)

g(n)
− ξ · rn(x)

r(n)

)∣∣∣∣sn(x) <∞, τ
]

= 1− Fd(λ)

h(n)2
+

|ξ|2
2dh(n)2

+ o
(
h−2
)
.

Proof. By prop. 5.1.4, the probability that sn(x) = ∞ is o (h−2) and the contribution
of those is bounded – thus we can remove the conditioning at an error of o (h−2). We
decompose the expectation upon whether a trap is hit on the segment or not

E
[
exp

(
−λs

n(x)

g(n)
− ξ · rn(x)

r(n)

)∣∣∣∣τ] = E
[
exp

(
−ξ · r

n(x)

r(n)

)
1{sn(x)=0}

∣∣∣∣τ]︸ ︷︷ ︸
(I)

(5.32)

+ E
[
exp

(
−λs

n(x)

g(n)
− ξ · rn(x)

r(n)

)
1{sn(x)6=0}

∣∣∣∣τ]︸ ︷︷ ︸
(II)

.

Since |rn(x)| = ρ (1 + o(1)),

e−
ξ·rn(x)
r(n) = e|ξ|O(h(n)−1) = (1 + o(1)) .

By using this,

(II) = E
[
exp

(
−λs

n(x)

g(n)

)
1{sn(x)6=0}

∣∣∣∣τ] (1 + o(1)) . (5.33)
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5.3 Convergence of the process

When no trap is hit on a segment we can use lem. 5.3.1 to get

(I) = E
[
exp

(
−ξ · r

n(x)

r(n)

)∣∣∣∣τ]− E
[
exp

(
−ξ · r

n(x)

r(n)

)
1{sn(x)6=0}

∣∣∣∣τ]
= 1 +

|ξ|2
2dh(n)2

+ o(h(n)−2)− (1 + o(1))P (sn 6= 0) .

For eq. (5.33), we apply lem. 5.2.3

E
[
exp

(
−λs

n(x)

g(n)

)
1{sn(x)6=0}

∣∣∣∣τ]
= E

[
exp

(
−λs

n(x)

g(n)

)∣∣∣∣τ] d− E
[
exp

(
−λs

n(x)

g(n)

)
1{sn(x)=0}

∣∣∣∣τ]
= 1− h(n)−2Fd(λ) + o(h(n)−2)− P (sn(x) = 0)

= −h(n)−2Fd(λ) + o(h(n)−2) + P (sn 6= 0) .

We put these results into eq. (5.32) and arrive at

E
[
exp

(
−λs

n(x)

g(n)
− ξ · rn(x)

r(n)

)∣∣∣∣τ]
= 1 +

|ξ|2
2dh(n)2

− Fd(λ)

h(n)2
+ P (sn(x) 6= 0) (1 + o(1)− 1)︸ ︷︷ ︸

=o(h−2) by lem. 5.2.4

+o(h(n)−2),

which �nishes the proof.

The following lemma is where it all comes together. We will prove the convergence
of the processes themselves. However, we only show the convergence of the �nite di-
mensional marginal distributions. Then we extend this, �rst to joint weak convergence,
and �nally convergence of the original process Y n = Xn(S−1(t)).

Lemma 5.3.3 (Convergence of �nite dimensional marginals). The �nite dimensional
distributions of (Sn, Y n) converge to those of (Vα,BMd).

Proof. We recall the de�nitions of Xn (eq. (4.4)) and Sn (eq. (4.5))

Xn(t) =

√
d

Cd,αr(n)
X
(⌊
C2
d,αr(n)2t

⌋)
,

Sn(t) =
1

g(n)
S̃σ̂(n)

(⌊
C2
d,αr(n)2t

⌋)
.

We want to approximate the processes by their increments rnk and snk in a �rst step
and then show that, due to the Markovian structure, we can use the families (rn(x))x∈Zd
resp. (sn(x))x∈Zd instead, for which we have a control on the Laplace transforms.
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5 Scaling limit

By lem. A.3.20, E [jn1 ] = ρ(n)2 (1 + o(1)) and E
[
(jn1 /ρ(n)2)

2
]

is bounded. Hence,
by the law of large numbers for triangular arrays (see thm. A.4.3), jn

C2
d,αh(n)2u

strongly
converges to C2

d,αr(n)2u and for any δ′ > 0, u ≤ T and large n, almost surely,

C2
d,αr(n)2u ∈

[
jn(1−δ′)C2

d,αh(n)2u, j
n
(1+δ′)C2

d,αh(n)2u)

]
. (5.34)

Due to the monotonicity of Sn(·), this is also true if we apply Sn to both sides of the
inclusion (5.34).

From prop. 5.2.7, it follows that

P


∣∣∣∣∣∣∣

1

g(n)
Sn
(
j(1±δ′)C2

d,αh(n)2u

)
−

j
(1±δ′)C2

d,α
h(n)2u∑

k=0

snk

∣∣∣∣∣∣∣ ≥ δ

∣∣∣∣∣∣∣τ
 ≤ δ, (5.35)

and it is easy to see that also for large n,

P


∣∣∣∣∣∣∣
√
d

Cd,αr(n)
X
(
j(1±δ′)C2

d,αh(n)2u

)
−

√
d

Cd,αr(n)

j
(1±δ′)C2

d,α
h(n)2u∑

k=0

rnk

∣∣∣∣∣∣∣ ≥ δ

 ≤ δ. (5.36)

Indeed, we can just pull out the constant, which has r(n) in the denominator, and note
that the di�erence we see now is at most ρ(n), due to the de�nition of the rnk . Therefore
the quantity in question behaves as ρ(n)/r(n) = h(n)−1 which goes to 0 as n→∞.

We chose a partition of [0, T ]: let 0 = u0 < u1, . . . , < uq = T and consider the joint
Laplace transform of the increments of both processes on this partition

E

[
exp

(
− 1

g(n)

q∑
i=0

λi
(
S
(
C2
d,αr(n)ui

)
− S

(
C2
d,αr(n)ui−1

))
−
√
d

Cd,αr(n)

q∑
i=0

ξi ·
(
X
(
C2
d,αr(n)ui

)
−X

(
C2
d,αr(n)ui−1

)))∣∣∣∣∣τ
]
.

By the eqs. (5.35) and (5.36), it is su�cient to show convergence of

E

exp

− q∑
i=0

∑
k∈S±δ′ (n,i)

λis
n
k

g(n)
−

q∑
i=0

∑
k∈S±δ′ (n,i)

√
dξi · rkn

Cd,αr(n)

∣∣∣∣∣∣τ
 , (5.37)

where

S±δ′(n, i) :=
{⌊

(1± δ′)C2
d,αh(n)2ui−1

⌋
, . . . ,

⌊
(1± δ′)C2

d,αh(n)2ui
⌋
− 1
}
.

66



5.3 Convergence of the process

Now we consider each possible trajectory separately. Let c0(I) :=
{

(xl)l∈I ⊂ Zd
}

and
set In :=

{
1, . . . ,

⌊
C2
d,αh(n)2uq

⌋}
. Then, the expextation in eq. (5.37) is equal to

∑
(xl)∈c0(In)

P (X(jnl ) = xl ∀l ∈ In)×

× E

exp

− q∑
i=0

∑
k∈S±δ′ (n,i)

λis
n
k

g(n)
−

q∑
i=0

∑
k∈S±δ′ (n,i)

√
dξi · rkn

Cd,αr(n)

∣∣∣∣∣∣τ , X(jnl ) = xl ∀l ∈ In

 .
Because of cor. 5.1.5, the sequences where one of the xl is not in E0 contribute at most
o(h(n)−2) and can thus be neglected.

For the other sequences, all theX(jnk ) are in E0. In this case, lem. 5.3.2 can be applied.
In order to do that, we �rst have to replace the rkn and skn by suitable members of the
families (rn(x))x∈Zd and (sn(x))x∈Zd .

Let ω :=
⌊
C2
d,αh(n)uq

⌋
− 1. Due to the Markovian structure of the process, condition-

ally on τ and the event that X(jnω) = xω , the distribution of (snω, r
n
ω) is independent of

the rest of the process and, by de�nition, its distribution is the same as the distribution
of (sn(xω), rn(xω)). Therefore,

E

exp

− q∑
i=0

∑
k∈S±δ′ (n,i)

(
λis

n
k

g(n)
−
√
dξi · rkn

Cd,αr(n)

)∣∣∣∣∣∣τ , X(jnl ) = xl ∀l ∈ In



= E

exp

− q∑
i=0

∑
k∈S±δ′ (n,i)
k≤ω−1

(
λis

n
k

g(n)
−
√
dξi · rkn

Cd,αr(n)

)
∣∣∣∣∣∣∣∣τ , X(jnl ) = xl ∀l ∈ In

×
× E

[
exp

(
−λqs

n(xω)

g(n)
−
√
dξq · rn(xω)

Cd,αr(n)

)∣∣∣∣∣τ
]
.

By lem. 5.3.2, the last expectation – with only sn(xω) and rn(xω) appearing – is, uni-
formly in xω, bounded from above, resp. below, by

1 + (1± δ′)h(n)−2

(
|ξq|2
2d

d

C2
d,α

− Fd (λq)

)
.

We iterate backwards, i.e. use the same procedure for ω − 1, ω − 2, . . . , 2, 1. This gives
us an upper resp. lower bound of the joint Laplace transform of the score and spatial
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5 Scaling limit

increment at all ui, as

P (X(jnl ) = x∀l ∈ In)P (X(jnl ) ∈ E0∀l ∈ In)×

×
q∏
i=1

∏
k∈S±δ(n,i)

1 + (1± δ′)h(n)−2

(
|ξq|2
2d

d

C2
d,α

− Fd (λq)

)
︸ ︷︷ ︸

(I)

. (5.38)

Because the families (sn(x))x∈Zd and (rn(x))x∈Zd are i.i.d. and using the fact that
|S±δ(n, i)| = C2

dh(n)2 (ui − ui−1), we get,

(I) =

(
1 + (1± δ′)h(n)−2

(
|ξq|2
2d

d

C2
d,α

− Fd (λq)

))C−2
d,αh(n)2(ui−ui−1)

=

(
1 +

(1± δ′)
(
|ξq|2 / (2d)− Cd,α2Fd(λq)

)
C2
d,αh(n)2

)C2
d,αh(n)2(ui−ui−1)

. (5.39)

As C2
d,αh(n)2 →∞, this converges to an exponential function,

(I)→ exp

(
(1± δ′)

(
|ξq|2
2d
− C2

d,αFd(λq)

))
. (5.40)

Putting this back into eq. (5.38), we get the lower, resp. upper, bound

P (X(jnl ) = xl∀l ∈ In)P (X(jnl ) ∈ E0∀l ∈ In)×

×
q∏
i=1

exp

((
(1∓ δ′) |ξi|

2

2
− (1± δ′)C2

d,αFd (λi)

)
(ui − ui−1)

)
(1 + o(1)) .

(5.41)

We now let δ′ → 0 and see that upper and lower bound coincide. Further, we note that

lim
ε↓0,M↑∞

Fd(λ) =
1√
2πα

(Gd(0)λ)α Γ(1 + α)Γ(1− α). (5.42)

Indeed,

1√
2πα

(
ε−α −M−α)− 1√

2π

∫ M

ε

1

1 + λGd(0)z
z−(α+1)dz

=
1√
2π

(∫ M

ε

x−1−αdx−
∫ M

ε

1

1 + λGd(0)z
z−1−αdz

)
= − 1√

2π

∫ M

ε

λGd(0)

1 + λGd(0)z
z−αdz.
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5.3 Convergence of the process

Changing variables z → (λGd(0))−1z and letting ε ↓ 0 and M ↑ ∞, this equals

(λGd(0))α√
2π

∫ ∞
0

z−α

1 + z
dz.

This integral can be evaluated and simpli�ed using [1, eqs. 6.2.1, 6.2.2],

(λGd(0))α√
2π

Γ(1− α)Γ(α) =
(λGd(0))α√

2πα
Γ(1− α)Γ(1 + α).

Therefore,

C2
d,αFd (λ)

ε↓0,M↑∞−−−−−→= λα.

Inserting this into eq. (5.41), summing over all possible sequences xl and using that by
cor. 5.1.5,

P (X(jnl ) ∈ E0∀l ∈ In) = 1 + o(h−2),

we end up with a formula for the limit of the joint Laplace transform of spatial and
temporal process – except for an event with a probability that can be made arbitrarily
small (cf. eqs. 5.36 resp. 5.35) – which reads

(1 + o(1))

q∏
i=1

exp

((
|ξi|2
2d
− λαi

)
(ui − ui−1)

)
,

which is the Laplace transform of the increments of a Brownian motion and an inde-
pendent α-stable subordinator at �nitely many points (see prop. A.2.10 and prop. A.2.9).
Since the Laplace transform uniquely determines the distribution, this concludes the
proof.

To extend the convergence to almost sure convergence of the whole trajectory in
the D([0, T ],M1)×Dd([0, T ], U) product-topology (see sec. A.5 for the de�nition of
these spaces and the topologies), we will show tightness of the individual components.

Lemma 5.3.4 (Tightness.). The sequences Sn and Xn are tight in D([0, T ],M1) resp.
Dd([0, T ], U).

Proof. We will use the characterization from lem. A.5.6. We start with the clock process
Sn. We will show that it ful�lls the assumptions of the lemma, i.e.

i) ∀ε > 0∃c : P (‖Sn(·)‖ > c) < ε,

ii) ∀ε > 0,η > 0,∃δ > 0 : P (ω′(Sn(·), δ) ≥ η) ≤ ε.
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5 Scaling limit

BecauseSn(·) is increasing, it is su�cient to check condition i) forSn(T ). From lem. 5.3.3,
we know that Sn(T )→ Vα(T ) in distribution, which ful�lls i).

To check ii), we treat the three possible values of ω′(Sn(·), δ) separately, starting
with ωw(Sn(·), δ)

sup
0≤t≤T

sup
(0∨t−δ)≤t1≤t2≤t3≤(t+δ∧T )

{‖Sn(t2)− [Sn(t1), Sn(t3)]‖∞} .

Due to the monotonicity of Sn(·), Sn(t2) is always contained in [Sn(t1), Sn(t3)] and
thus the expression is always zero. Next, we consider

v̄(x, 0, δ) = sup
0≤t1≤t2≤δ

{‖Sn(t1)− Sn(t2)‖∞} , and

v̄(x, T, δ) = sup
T−δ≤t1≤t2≤T

{‖Sn(t1)− Sn(t2)‖∞} .

Again we use lem. 5.3.3 to replace the distributions of Sn(·) with those of Vα(·). The
distribution of a single process trivially ful�lls the conditions - since the distribution
of the Sn(·) is close to this in the limit, this is su�cient to show it for all n ≥ 1 by
adjusting the constant c if necessary.

For the spatial process Xn(·), tightness immediately follows from prop. A.4.7.
Tightness in both components implies tightness in the product topology on the

product space D([0, T ],M1)×D([0, T ], U) because both spaces are polish (Whitt [119,
thm. 11.6.7]).

Together with the convergence of the �nite dimensional distributions, tightness of
(Sn(·), Xn(·)) yields weak convergence by [48, thm. 4.15]. To �nish the proof of our
main theorem, we recall that Y n(·) = Xn(Sn)−1(·).

By prop. A.5.8, the inversion map from Du,↑([0, T ],M2), the subset of increasing
functions to Du,↑([0, T ], U) is continuous at strictly increasing functions. Since the M2

topology is coarser than the M1 topology, this implies the same statement for the M1

topology.
Since the limiting process Vα(·) has almost surely strictly increasing paths, we can

conclude, that (Sn)−1 (·) → V −1
α (·) weakly in distribution on Du,↑([0, T ], U) – since

we applied a continuous map to both sides. In contrast to Vα, which has jumps the
inverse subordinator V −1

α is almost surely continuous – the jumps translate to constant
parts. The same is true for the paths of Brownian motion.

Therefore we can use that the composition as a mapping from Dd([0, T ], U) ×
D([0, T ], U) to Dd([0, T ], U), (f, g) 7→ f ◦ g is continuous at Cd × C . Indeed, in the
topology of uniform convergence, continuity of the composition is implied by showing
that

(fn → f) ∧ (gn → g) =⇒ fn ◦ gn → f ◦ g.
This is true, because all the fn and f are continuous and fn uniformly converges to f .

Therefore weak convergence of Xn(·) to FKd,α follows.
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CHAPTER 6
The fractional kinetics process

and fractional calculus
In this chapter, we will look into the limiting process and investigate its properties,

including the equation governing the evolution of its probability density. To state some
of the results, we �rst need to develop the toolbox for it – fractional calculus.

6.1 Fractional calculus and fractional
di�erential equations

The name fractional calculus is a bit of a a misnomer, since it usually refers to the
generalization of derivative and integral to any order α ∈ R and not only fractions.
Even more, we will see that from a mathematical-systematical viewpoint the name
fractional di�erential equation is misleading too. A more appropriate name would be
“integro-di�erential equations with convolution-type integral operator with a weakly
singular kernel of powerlaw type” – but since the term fractional is widely used and
more catchy than this, we will use it here too.

Both the name and the general idea stem from mathematical curiosity that goes back
to the time of Leibnitz, who was asked by l’Hôpital in 1695 about the meaning of Dnf
for the fraction n = 1/2. We will not further pursue the historical path, but directly
introduce modern fractional calculus as it applies to our situation. For a more complete
account on the history and the subject itself, the reader is referred to Oldham & Spanier
[87].

We start by introducing the fractional integrals, then we will de�ne fractional deriva-
tives as a conjunction of integer order derivatives and a fractional integral. Because the
two operations don’t commute, there will be di�erent types of fractional derivatives.
Finally we consider fractional di�erential equations, which govern the evolution of the
density of the fractional kinetics process.

We will be using Dn for both di�erential n > 0 and integral n < 0. We �rst de�ne
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6 The fractional kinetics process and fractional calculus

the fractional integral and the class of functions, we want to use.
De�nition 6.1.1. We de�ne the class C as the class of functions that are continuous
on [0,∞) and integrable on every compact interval contained in [0,∞).

Whenever needed, we extend these functios to −∞ by setting them equal to 0 for
x < 0 (such functions are called causal).
De�nition 6.1.2. For f ∈ C, we de�ne the fractional integral of order α > 0, aD−αx , as

(aD
−α
x f)(x) :=

1

Γ(α)

∫ x

a

f(ξ) (x− ξ)α−1 dξ.

For α = 0, we set aD0
x = I.

The choice of the lower bound is somewhat arbitrary. In Miller & Ross [74], the
version with lower boundary c ∈ R as parameter is called Riemann version, the version
with −∞ as lower boundary is called Liouville version. The version we will mainly use
is the Riemann-Liouville version, where we set a = 0. In that case, we just write Dα

x .
Remark. Another possibility is to �x the upper bound at∞ and put x as a lower bound
– this is called the Weyl fractional integral.
Remark. We can change variables ζ = (x− ξ), leading to

Dα
xf(x) =

1

Γ(α)

∫ x

−∞
f(ξ) (x− ξ)α−1 dξ =

1

Γ(α)

∫ ∞
0

f(x− ζ)ζα−1dζ.

Note that because f(ξ) = 0 for x < 0 we can just extend the integral to −∞ without
changing its value. This is the formula used e.g. in Meerschaert & Sche�er [70], which
we later cite for some results.

This formula can be understood e.g. by recalling the Cauchy formula (see e.g. Miller
& Ross [74, pp. 24–25]) for repeated integration, which states, that for n ∈ N,

D−nx f(x) =

∫ x

a

(x− ξ)n−1

(n− 1)!
f(ξ)dξ.

In other words, the n-fold iterated integral operator D−nx can be understood as a con-
volution operator with kernel K(x) = xn−1/(n− 1)! – our de�nition of the fractional
integral for arbitrary order is just the extension of this kernel to non-integer values of
n.

Another way to arrive at the formula which will be useful for us is via Laplace
transforms. It is well known that the Laplace transform of the n-fold iterated integral
of f is given by s−nL[f ](s). Again, it is straightforward to replace n by a non-integer.
Inverting this transform, we would arrive at the formula in def. 6.1.2.

There are several other ways to �nd the above formula (see Miller & Ross [74,
chap. II]). The way we de�ne fractional integration now is via conjunction of integer-
order di�erentiation and a fractional integration.
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6.1 Fractional calculus and fractional di�erential equations

De�nition 6.1.3. We de�ne the Riemann-Liouville fractional derivative of order α ≥ 0
as

(Dα
xf) (x) =

(
Ddαex

(
Dα−dαe
x

)
f
)

(x).

Unfortunately, fractional integration and di�erentiation do not commute (for a coun-
terexample, see [74, pp. 104]). This also means, that the choice of the order of di�eren-
tiation and integration in def. 6.1.3 is not arbitrary. Indeed, if we change the order, we
end up with the so-called Caputo fractional derivative.

Just as the integral, the fractional derivative generalizes the Laplace transform of
integer order derivatives.

Proposition 6.1.4. For the Laplace transform of a fractionally di�erentiated function,
the following holds

L [Dα
xf ] (s) = sαL [f ] (s)−

bαc∑
k=0

sk Dα−1−k
x f(0). (6.1)

Proof. See Oldham & Spanier [87, pp. 134].

Remark. In the important case (actually the only case we will consider) of 0 < α < 1,
the formula above simpli�es to

L [Dα
xf ] (s) = sαL [f ] (s)− Dα−1

x f(0). (6.2)

The additional term is completely analogous to the additional terms that appear in the
transforms of regular derivatives. Intuitively, it tells us that we need initial conditions
for these objects if we want to solve di�erential equations – of integer order for integer
derivatives, and of fractional order for fractional derivatives.
Remark. If fractional order initial conditions are a problem, one can switch to the Caputo
formulation, which only needs integer order initial conditions.

The (partial-,integro-) di�erential equation, we want to solve is the so-called time-
fractionial di�usion equation

Dα
t f = ∆f + δ(0)

t−α

Γ(1− α)
, (6.3)

because it – as we will soon �nd out – governs the evolution of the density of the
fractional kinetics process (thm. 6.2.3). Therefore we want to study its solutions now.

Theorem 6.1.5. The time-fractional di�usion equation (6.3) possesses a solution, which
can be expressed as

u(x, t) =
t

α

∫ ∞
0

k(x, ξ)gα

(
t

ξ1/α

)
dξ, (6.4)
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6 The fractional kinetics process and fractional calculus

where gα is the density of a stable subordinator and k(x, y) is the convolution kernel of
the heat semigroup.

Proof. See Baeumer & Meerschaert [8, thm. 3.1] and replace the general Lévy process
with Brownian motion.

In the next chapter, we connect the fractional di�usion equation to the fractional
kinetics process FKd,α. This will also give us another representation for a solution
eq. (6.3).

We now present another, computationally more accessible representation of the so-
lution. While it is less easily interpretable and generalizable than the representation
of thm. 6.1.5, a convergent series expansion and asymptotics are available and can eas-
ily be implemented. It is centered on the following representation of the fundamental
solution.

Theorem 6.1.6. The fundamental solutionGα(x, t) of the time fractional di�usion equa-
tion (eq. (6.3)) for 0 < α < 1 is given by

Gα(x, t) = t−α/2Kα

( |x|
tα/2

)
, (6.5)

where

Kα(x) =
1

2

∞∑
n=0

(−1)nxn

n!Γ (−αn/2 + (1− α/2))
. (6.6)

Proof. See Mainardi & Pagnini [62, eqs. (2.6) and (3.11)].

To be able to still e�ciently compute Kα(x) for large values of x, we need the fol-
lowing asymptotic representation.

Proposition 6.1.7. Asymptotically, as x→∞,

Kα(x) ∼ Axae−bc
c

, (6.7)

where

A =
√

2π(2− α)2α/(2−α)α(2−2α)/(2−α),

a =
2α− 2

2(2− α)
, b = (2− α)2−2/(2−α)αα/(2−α), c =

2

2− α.

Proof. See Braaksma [26] as in Mainardi & Pagnini [62, eq. (3.12)].
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6.2 Properties of the fractional kinetics process

6.2 Properties of the fractional kinetics process
We start o� with self similarity and regularity properties.

Proposition 6.2.1. For the fractional kinetics process FKd,α the following holds

i) FKd,α neither has stationary nor stable increments.

ii) FKd,α is self-similar: FKd,α(t) = r−α/2FKd,α(rt).

iii) FKd,α is γ-Hölder continuous for any γ < α/2.

Proof. i) see Meerschaert & Sche�er [70, cor. 4.3, thm. 4.3].

ii) We use the scaling properties of Vα (see A.2.12 i)) and BMd (see A.2.9 i))

FKd,α(λt) = BMd

(
V −1
α (λt)

)
= BMd

(
λ−αV −1

α (t)
)

= λ−α/2BMd

(
V −1
α (t)

)
.

iii) Just as the self-similarity, this immediately follows from the properties of Brow-
nian motion and the inverse subordinator prop. A.2.9 ii) and prop. A.2.12 iii)
respectively.

The exponent for the self-similar rescaling is less than 1/2 (which would be the case
for Brownian motion). Such processes are called subdi�usive, because they spread in
space slower than a di�usive process would.

Now, we connect the fractional kinetics process to the fractional di�usion equation.

De�nition 6.2.2. We say that a stochastic processX is a stochastic solution to a (partial-
/integro-) di�erential equation, if its density ρX(t, x) solves the PDE.

Theorem 6.2.3. The fractional kinetics process is a stochastic solution to the fractional
di�usion equation (6.3).

Proof. See Meerschaert et al. [69, main theorem].
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CHAPTER 7
Simulations and experiments

In this chapter, we connect the mathematical results to practice. To do this, we will
frequently make use of kinetic Monte Carlo (kMC) [43] simulations. To be con�dent
that what we see are not numerical artifacts, we study in sec. 7.1 the in�uence of a
�nite simulation domain. We show that gives rise to numerical problems which lead to
errors similar to the physical e�ect we want to investigate. Therefore we suggest and
implement an algorithm which does not assume a priori �nite simulation domains

In a next step we analyze lab experiments, which show that the postulated dispersive
e�ect indeed appears in practice. If the same material is measured with varying thick-
ness, the transport properties (the di�usion constant resp. mobility) seem to change.
This work clearly shows that this dependence is not an artifact of boundary e�ects or
a measurement error, but an inherent property of bulk transport in strongly disordered
materials.

To make sure our simpli�ed model qualitatively captures the dispersive behavior,we
check in sec. 7.4 the simplifying assumptions made in sec. 4.1.

To get a better grasp of the validity of our scaling limit, we compare the evolution
of the density of simulations with the evolution of solutions to the limit equation for
di�erent timescales and disorder stengths in sec. 7.3.

7.1 The �nite-size e�ect
Within the (possibly correlated) GDM, the computational results can depend on the

size of the computation domain. This is called a �nite size e�ect. The �nite size e�ect
strikes, when the realization of the trapping landscape is too small to contain traps
below a certain depth, which leads to an overestimation of the mobility.

A more unlikely, but possible case would be, if very deep traps are indeed present but
then are hit too often due to the limited size. The second error can be easily avoided,
by using di�erent realizations of the disordered energy landscape. It is very unlikely
that atypically deep traps occur independently in several morphologies. However, for
every �xed size of a morphology, there exists an e�ective disorder σ̂ such that the
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Figure 7.1: The �nite size e�ect: The right tail of the empirical transit time distribution
depends on the realisation and is incorrectly reproduced.

morphology is too small to properly account for the broadness of the rate resp. waiting
time distribution.

We are not the �rst to point out this e�ect. In fact, Lukyanov & Andrienko [61, �g. 1]
very nicely show that the size of the morphology needed to accurately reproduce charge
transport grows exponentially in the e�ective disorder parameter σ̂. In the same paper
[61], it is suggested to simulate at higher temperatures, thus lower σ̂, and extrapolate.
This approach works perfectly �ne for the equilibrium (t→∞) mobility resp. di�usion.

However, since we are interested in the short time behavior, we have to be very
careful to separate numerical �nite-size e�ects from the e�ects of the actual smallness
of the devices we are considering. Using the extrapolation approach suggested in ref. 61,
we solve the numerical problem, but we also completely get rid of the physical e�ect.

Therefore, we choose a di�erent approach. We have developed an algorithm which
does not use precomputed morphologies of a �xed size, but rather generates the environ-
ment along the trajectories of the charge carriers. This way we can simulate virtually
in�nitely large devices.

In a next step, we can restrict the size of the device in one dimension and study the
e�ects of the smallness in this direction without needing to worry about interfering
numerical �nite-size e�ects.

Figure 7.1 shows the di�erence of the di�usive (no external potential applied) transit
times of a 20nm slab. On the left we use our algorithm, 20 layers in x direction, in�nite
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Figure 7.2: Comparison of the trajectories generated in the kMC simulations of a Slab.

in the other two. On the right, we use a 10× 10× 10 box, periodic in y and z direction,
which is traversed two times in x direction, see �g. 7.2. We used σ̂ = 7, which is a
typical value for relevant devices at room temperature. In all kMC simulations we use
105 trajectories as sample size.

Obviously, the tails of the distribution are not correctly reproduced in the �nite sim-
ulation, while, as we will see later (sec. 7.2), for σ̂ = 7, normal di�usion (i.e. equilibrium
transport) is far from being attained in a 20nm device. Due to the strong in�uence of
the far right tail on the expected value, the relatively small di�erences in tail lead to
�uctuations of the expected value by orders of magnitude (note that the x-axis scaling
is logarithmic). Therefore it is important to properly account for these e�ects when
doing Monte Carlo simulations.

81



7 Simulations and experiments

7.2 Dispersion
In this section we will introduce some data on the phenomenon that motivated our

research – namely dispersion. By dispersion, we mean transport properties which are
changing over time, speci�cally the di�usion constant resp. mobility in our case.

Direct experimental measurement – Impedance
spectroscopy

Besides measuring IV-curves, another way to extract charge transport parameters
is by impedance spectroscopy. We do not go into further detail how this is done here,
neither will we model it. However, we want to include this because it is a very straight-
forward way to see that the e�ect we are describing is important.

Figure 7.3 shows �eld dependent mobilities extracted for three di�erent device thick-
nesses. It is obvious that the extracted mobility parameter – thus by the Einstein relation
(eq. (3.2)) also the di�usion constant – varies with the thickness of the sample.

Figure 7.3: Mobility extracted from impedance spectroscopy (courtesy of M. Al-Helwi).
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7.2 Dispersion

Indirect experimental measurement – IV curves
This investigation is a bit less rigorous compared to the rest of the thesis. Mostly,

because here, it is hard to determine rigorously where e�ects come from and which
parameters in�uence what kind of behavior exactly. We are going to model a full device,
trying to reproduce actual IV curve (i.e. current density vs. voltage) measurements. We
still want to include this discussion, because it shows that the ideas and results of this
thesis can be applied to current cutting edge engineering problems.

The data consists of 9 IV curves for the same material, measured at di�erent temper-
atures and with di�erent thicknesses of the intrinsic (i.e. undoped) middle layer (see
�g. 7.4 for a schematic of the diode). We apply a state of the art model (ECDM) and
estimate several parameters (including the ECDM mobility parameters, doping concen-
trations for the injection layers and energy barriers) in order to describe the data.The
model is presented in chap. C; For the numerical procedure used to solve the model
equations, see Stodtmann et al. [109].

doped dopedintrinsic
(undoped)

electrode electrode

~5-40nm ~5-40nm~20-100nm

Figure 7.4: Schematic of a unipolar organic device

The initial �t shows a systematic failure to describe the correct variation of the
IV curves with the varied thickness of the intrinsic layer – see �g. 7.5. If we �t each
thickness independently, we get a good agreement for the temperature and voltage
dependence, but of course the �t of the other thicknesses becomes even worse. This is
shown in �g. 7.7.

To remedy this problem, we augment the model, by adding an additional state for
charge carriers, which we call traps in the following. The parameters for the traps are
energetic depth and concentration. In each step of the drift di�usion computation, the
charge carriers are split up into free and trapped species according to the Fermi-Dirac
distribution. The trapped carriers only contribute to the �eld, while the free carriers
also enter into the expression for the current density. The result of this is shown in
�g. 7.6. Adding the traps makes it possible to reproduce the correct variation of the
current density with the thickness. The model is described in more detail in sec. C.2.
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Figure 7.5: Best �t for the IV curves using the ECDM model. Dashed/empty square are
the experimental curves, solid/dots the model response.
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Figure 7.6: Best �t for the IV curves using the augmented ECDM model.
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Figure 7.7: Best �t for the IV curves using the ECDM model. Here, the parameters are
extracted for one thickness at a time, thick (left) to thin (right).
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7.3 Comparison with the continuum limit
We test the validity of our proposed continuum model by comparing an invariant of

the limit equation with the microscopic motion. We consider instead of the empirical
di�usion coe�cient

DEmp.(t) :=
X(t)2 −X(0)

t
, (7.1)

an empirical anomalous di�usion coe�cient

DEmp.
α (t) :=

X(t)2 −X(0)

tα
. (7.2)

As we have shown in sec. 7.1, we have to be careful about �nite size e�ect. Therefore,
we can not resort to other charge transport simulation packages, but have to use our own
code which uses an in�nitely large morphology. We will investigate the distribution of
the empirical di�usion coe�cient, again using a histogram for 105 realizations – the
results are shown in �g. 7.9.

Motivated by the scaling limit, we use logarithmically spaced points in time. We
�nd that for large values of the e�ective disorder σ̂, the distributions change relatively
uniformly between these times if plotted on a logarithmic scale too. This is exactly what
one would expect from the scaling limit, since both, time and energy, are exponentially
scaled.

We also see that for medium values of σ̂ this behavior saturates eventually and
di�usion will be a good description of the process at long times. Even more, for very
low or no disorder, the distribution only changes slightly resp. not at. This is what
one would expect, since the model then degenerates to the simple random walk on Z3,
which rapidly converges to Brownian motion.

In �g. 7.8, we compare the evolution of the histograms of the particle positions for
kMC simulations of the simple model for various e�ective disorders σ̂with the evolution
of the solution to the fractional di�usion equation (eq. (6.3)) for di�erent dispersion
exponent α. Note that the case α = 1 corresponds to normal di�usion and, again, the
case σ̂ = 0 corresponds to the simple random walk.
One can clearly see that increasing σ̂ corresponds to decreasing α and thus a more
anomalous behavior. What we mainly are interested in in these images is the qualitative
similarities, as we would not expect perfect agreement. In the beginning there are
still residuals of the discreteness of the model, and eventually a di�usive limit will
be attained. However, it is apparent that for large disorder at intermediate times, the
density is much closer to a fractional than a normal di�usive evolution.
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Figure 7.8: (left) Evolution of the probability density of a 1-dimensional projection (ar-
bitrary due to rotational symmetry) of the simpli�ed process for di�erent
e�ective disorder strengths σ̂. (right) Solutions of the fractional di�usion
equation for di�erent dispersion exponentsα. Time is measured in multiples
of the (generalized) di�usion constant D.

87



7 Simulations and experiments

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

·10−5

100

101

102

103

104

105

DEmp., [space2/time]

fre
qu

en
cy

[1
0−

5
]

DEmp., σ̂ = 7

t=1.00e+08, E=9.75e-07
t=2.00e+08, E=9.19e-07
t=3.00e+08, E=9.63e-07
t=4.00e+08, E=9.69e-07
t=7.00e+08, E=9.29e-07
t=1.20e+09, E=8.50e-07
t=2.10e+09, E=7.48e-07
t=3.50e+09, E=6.52e-07
t=5.90e+09, E=5.55e-07
t=1.00e+10, E=4.67e-07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10−3

100

101

102

103

104

105

D
Emp.
0.85 , [space2/time0.85]

fre
qu

en
cy

[1
0−

5
]

D
Emp.
0.85 , σ̂ = 7

t=1.00e+08, E=1.55e-05
t=2.00e+08, E=1.62e-05
t=3.00e+08, E=1.80e-05
t=4.00e+08, E=1.89e-05
t=7.00e+08, E=1.97e-05
t=1.20e+09, E=1.96e-05
t=2.10e+09, E=1.87e-05
t=3.50e+09, E=1.76e-05
t=5.90e+09, E=1.62e-05
t=1.00e+10, E=1.48e-05

Figure 7.9: Distribution of “normal” di�usion coe�cient D(t) (upper) vs. anomalous
di�usion coe�cient D0.85 (lower) for di�erent times at e�ective disorder
σ̂ = 7.
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7.4 Simpli�cations
We recall the simpli�cations we have made in our model of bulk charge transport

for organic materials:

• complex amorphous morphology replaced by simple cubic lattice,

• long range transfers neglected (only nearest neighbor),

• Marcus/Miller-Abrahams reaction rates replaced by simple holding times τx.

These simpli�cations have in some cases recently been treated in the literature. Where
we feel, that additional justi�cation is needed, we perform our own kinetic Monte Carlo
simulations to study the e�ect of these simpli�cations.

Simpli�ed geometry
The impact of using di�erent geometries was studied by Cottaar et al. [34] and Massé

et al. [66]. Both works compare simple cubic lattice with face centered cubic lattice
geometry as well as Miller-Abrahams and Marcus rates. In all cases, they only observe a
change of the transport behavior by a constant factor. This is expected anyway because
of the di�erent parametrization of the models. Therefore, we can conclude that for
qualitative aspects, it is not necessary to distinguish.

In particular, if we still allow for a constant factor as �t parameter when comparing
to experimental data and concentrate on whether or not certain e�ects, their direction
and relative magnitude are included in the model, it is justi�able to go to the simplest
case, which is done in this thesis.

Simpli�ed rate expressions
As already pointed out above, refs. 34, 66 compare Marcus and Miller-Abrahams rate

expressions and do not �nd a qualitative di�erence. Inspired by the fact that both of
these rate expressions have a common invariant measure (cf. eqs. 2.4, 2.5), we introduced
a simpli�ed model in sec. 4.1, which is the simplest rate with this reversible measure.

In �g. 7.10, we compare the evolution of the charge carrier density for the Miller-
Abrahams against our simpli�ed rate expressions. Furthermore we investigate the
distribution of the normal and fractional empirical di�usion constant. For the Miller-
Abrahams rates, the distance dxy are assumed to be normally distributed, this corre-
sponds to a lognormal distribution of the overlap parameter eγdecaydxy ∼ Jxy (cf. May
[67, �g. 2.9]).

As expected, the results for the full rate and the simpli�ed rate are qualitatively similar.
They di�er in a constant in time and space scaling. While we already accounted for the
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additional constants in the rate expressions (i.e. rescaled to prefactor 1), the additional
stochastic terms in the full model are not taken account for. Furthermore we sampled
for a more restricted time range in the full model, because the memory requirements
for longer trajectories grow much faster than for the simpli�ed model. Still the basic
features – the sharp peaked density and the fact that a fractional di�usion coe�cient
better describes the motion – persist in the general case too.
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Figure 7.10: Comparison of transit times for the full Miller Abrahams rate expression
(left) against the simpli�ed model proposed in sec. 4.1 (right).
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CHAPTER 8
Conclusions and outlook

Starting out from a physically motivated microscale model, we have used mathemat-
ical and intuitive arguments to deduce a simpli�ed stochastic microscale model. We
identi�ed this model as a variant of the Bouchaud trap model with lognormally dis-
tributed mean waiting times. Generalizing a previous result for the BTM by Ben Arous
& Černý [15], we show that, on carefully chosen scales, the microscopic model admits
a scaling limit. The density of the stochastic process which occurs as the limit, can
be computed using a time-fractional di�usion equation. This is particularly appealing,
since it gives a explanation for dispersive transport e�ects, which is intuitively easy to
understand.

We have chosen the term “intermediate asymptotics” to point out that due to our
choice of scales, the limit is most suited for the description of the process on scales which,
while they are large compared to molecules, are still macroscopically small. In particular,
both mathematical and experimental arguments suggest that on large scales, the process
will behave di�usively. However, we show in simulations, that for a 20nm thick device
with e�ective disorder σ/kbT = 7, the fractional di�usion coe�cient D0.85 = x2/t0.85

(x is the distance traveled, t time) yields a more reliable characterization of the charge
transport than the conventional di�usion coe�cient D = x2/t.

To be able to study the dispersive e�ects postulated by the scaling limit numerically,
we develop a Monte Carlo algorithm, which does not su�er from the �nite size e�ect.
This is important because dispersion can be considered a physical �nite size e�ect. Due
to the broad distribution of a local transport parameter (here the waiting time) the
small macroscopic dimensions of the device do not allow a complete sampling of the
statistics of the microscopic properties. Via the scaling limit, we can extract the e�ect
of this incomplete exploration on a typical charge carrier. As suggested by the results
of our simulations, the limit is valid for devices with large energetic disorder or at low
temperatures at the practically relevant time- and lengthscales.

Another advantage of the scaling limit is, that in principle, full device simulations
similar to drift-di�usion models, which were very successful in the past, are possi-
ble. The only modi�cation needed is replacing the time derivative in those equations
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by a fractional one. A minor drawback here is, that we only rigorously considered a
highly simpli�ed situation in this work. Still, we are con�dent that this approach can
be generalized to those situations, such as the full physical rate expressions or realistic
morphologies. In the following, we outline how we expect that this could be achieved.
Furthermore we explore extensions that include the e�ects of charge carrier interaction
and electrostatic potential.

8.1 More realistic models
In this section, we look at models closer to the microscopic physical model (cf. sec. 2.2)

and how they can be treated. We expect the result to be the same in almost all cases.The
arguments are similar to those, we used to justify our simpli�ed model in sec. 4.1.
Having seen the details of the proof, we can be more precise now.

Realistic rates
In order to treat realistic rates (eqs. (2.2) and (2.3)), we have to take into account the

symmetric part too, which depends on the energy at both, the origin and the target of
the jump. Furthermore through the wavefunction overlap, an additional (symmetric)
randomness would need to be introduced . A case, which has a simple dependence of
both origin and target and yet the same reversible measure is the one with transition
rates

τxy = τa−1
x τay , (8.1)

for some a ∈ [0, 1]. It is known in the literature as Bouchauds asymmetric trap model.
This case is treated by Barlow & Černý [11], again with IP tails for the τx, which still are
the reversible measure, but can no longer be interpreted straightforwardly as waiting
times.

Note. This is the model treated here fora = 0, and almost looks like the Metropolis/Miller-
Abrahams rate for a = 1/2 (except for the cuto� when the rate exceeds 1). This case
has the rates e−β/2(Ex−Ey). They are sometimes referred to as Boltzmann factor.

Remark. This treatment only deviates from Miller-Abrahams rates, when the transitions
are exceptionally fast. Since even in the case where fast transitions are not cut o�, sub-
di�usive behavior emerges, we can expect this to hold as well in the case when we cut
o� the transition rates at a maximum.

In fact, the proof is very similar to the proof in chap. 5. The only di�erence being the
spatial object, which is not the simple random walk, but a more complicated process –
one, which jumps from x to y with rate τax τay (instead of 1/6). This process is referred to
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as the variable speed random walk (VSRW) for the random conductance model (RCM)
or a random walk among random conductances (RWRC) and is harder to deal with
than the simple random walk.

For the particular case of IP-distributed mean waiting times which additionally are
almost surely bounded away from zero, Green’s function estimates are given by Barlow
& Deuschel [12] (here, the estimates themselves are random, which complicates the
coarse graining procedure). The proof for this particular case by Barlow & Černý [11]
makes use of those Green’s function estimates and introduces a more abstract coarse
graining procedure which only needs those random bounds as input.

The limit is up to a constant the same as in the model we considered here. Therefore,
we would expect that using the full rate expressions does not change the result in our
case as well.

To really prove this, one has to check that the triangular array methods we have used
here are compatible with the methods used in ref. 11. Additionally, Green’s function
estimates in the spirit of ref. 12 would be required for non-IP waiting times which
furthermore are not bounded away from zero. A result in this direction is the invariance
principle for the RWRC by Andres et al. [3]. Their result only assumes �nite moments
of the conductances of order q ∈ (1,∞) and �nite moments of the inverses of order
p ∈ (1,∞) for 1/q + 1/p < 2/d.

The Marcus and Miller-Abrahams rates also include transfer integrals and additional
symmetric terms which would be covered by the invariance principle too, as they are
all assumed to have distributions for which all moments exist.

Realistic morphology
In this work, we assumed a simple cubic lattice with only nearest neighbor transitions.

This choice is mainly due to the readily available sharp Green’s function bounds in this
case. For (even simple) random walks on more general graphs like face centered cubic
lattices, next-nearest-neighbor hopping or even morphology snapshots from molecu-
lar dynamics computations, these estimates are not available. At least, if bounds are
available, they are not as sharp as the ones used in the proof.

Nevertheless, we expect no qualitative di�erence as long as the number of neighbors
stays �nite and the longest possible jump is still small compared to the dimensions of
the device – or in the terms of the proof, the observation horizon. Due to the exponential
decay of the wavefunctions, these assumption is not violated in realistic systems.

The important e�ect of the morphology is the in�uence on the transition rates resp.
site energies, which we already have decoupled from it by explicitly modeling the
energies as random variables and not computing it from the geometry.
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Correlated energies

This case is particularly hard to treat mathematically, but we want to mention it
for the sake of completeness. It is sometimes assumed that the random energies are
spatially correlated [41]. This makes sense e.g. if one assumes that the major part of
the randomness is caused by a random dipolar background [37].

If the correlation is very strong and the scale is comparable to the scale we want
to observe charge transport on, we probably do not have much of a chance to get the
same scaling limit. We expect, that in this case, the correlation will in�uence the limit.

If the correlation is very short ranged (i.e. small compared to the observation scale),
we can probably just include it in the proof by introducing a correlation scale χ expo-
nentially smaller than the proximity scale ν and use balls with radius χ around traps
instead of traps themselves. The arguments should be similar in this case.

Very long ranged correlations can probably be considered as macroscopic electro-
static �eld in the limit equation, neglecting the in�uence on the neighbor transitions
on the microscale. The consequences of electrostatic �elds are discussed later.

8.2 Extensions
Naturally, once we have understood the behavior of a single carrier in the absence

of an electric �eld, we want to go beyond this and study the in�uence of charge carrier
interactions and electrostatic potential. We will sketch here, how this could be done in
our framework.

Low density

For small densities, we conjecture that the exact same limiting equation holds. This
could be proven by choosing a density which goes to∞ as n→∞ in such a way that
the probability of two carriers meeting before exiting B0(R) is o(h−2).

If this is ful�lled, we can introduce the Pauli principle – or site-exclusion as it is often
called in mathematics – as an additional interaction mechanism for the charge carriers.
Due to our choice of the density, we can condition on the event that no two charge
carriers ever meet while keeping the error introduced by the conditioning negligible
compared to h−2. Therefore the proof could be essentially carried out as before, only
that now, one would consider the joint distribution functions and Laplace transforms
of multiple trajectories, which, due to our diluteness assumption can be treated as
independent at an o (h−2) error.
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High density
We again consider site exclusion as interaction mechanism, but this time choose the

density in a way, such that the number of deep traps is small compared to the density.
If we do that, we can assume that a typical charge carrier does not spend any time in
the set of deep traps, therefore no jumps in the clock process will typically occur and
the charge transport is di�usive, even on small spatial scales and for large disorder.

Larger scales
For the a CTRW-model with the same energetic landscape as we use (which leads to

essentially the same model without the correlation in the waiting times, see sec. 3.1.5),
Kotulski [55] shows, that the density is asymptotically Gaussian. On longer scales, the
e�ect of dependence plays even less a role than in this work. Here, the limit already
does not qualitatively deviate from the limit assuming independence. Therefore, we
expect that the result from the CTRW case carries over and that the limit on a di�usive
scale exists and is Brownian motion – this is not too surprising, since all moments of
the waiting time (and also the spatial increment) distribution exist �nitely.

Digression: Possible continuous models with extended range of validity

Considering our intuition for low density, high density and large scales, a model,
which interpolates between fractional behavior at low densities and short times and
normal di�usion at high densities or on large scales, would be a good candidate for a
continuum model with an extended range of validity. We will now brie�y introduce
two such models.

The �rst model has been introduced in Mantegna & Stanley [63] and has been applied
to the problem of charge transport in organic semiconductors recently by Sibatov &
Uchaikin [107]. They suggest exponentially truncating the (Lévy) integral kernel in the
fractional derivative, therefore making the operator essentially local on large scales.
While it does not come naturally with a density dependence, it captures the relaxation
behavior over time well. The corresponding probability distributions of the time steps
are called tempered stable.

The second model has been proposed by Mommer & Lebiedz [75] and introduces an
adaptive model with multiple species with di�erent di�usion constants. Over time, the
faster species are converted into the slower ones. With appropriate rates, it is shown
that this can mimic fractional behavior on short timescales while “essentially returning
to normal di�usion” on large ones [75].
By adding density constraints for the slow species, it is also possible to naturally include
the e�ect of density dependence in these models. However, neither of the two models
presented here has been rigorously connected to the microscale. Therefore it is not
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clear which one is the better description or how the macroscopic model parameters
depend on the molecular properties of the material.

We will later show (see sec. 7.2) that a very simplistic version of the second model
already yields a correction of the drift di�usion equations which can help to better
describe lab experiments. However, in doing this we sacri�ce the possibility to micro-
scopically interpret the model parameters.

While it is not in the scope of this thesis, we believe that a further investigation
into this type of models (i.e. structured population dynamics/di�usion models) could
re-establish this connection and make them valuable methods for modeling charge
transport in organic devices, or more generally, (initially) dispersive transport.

Electrostatic potential
Typically, one is not only interested in the pure di�usion of charge carriers, but also

migration due to an applied electrostatic potential di�erence – and thus an electric
�eld.

Including the �eld can in principle be done at the microscopic scale - by adding
the electrostatic potential to the random energies Ex. This would in�uence both the
Green’s functions and the mean waiting times.

For small �elds, the qualitative behavior is not likely to change until the e�ect of the
�eld becomes such, that either the paths become almost straight lines or the potential
gain in between two sites is of the order of the typical (deep) trap depth.

In the �rst case, the number of di�erent sites visited will become smaller, thus making
the device thinner e�ectively. This enhances the deviation from long time equilibrium
(i.e. di�usive behavior) further.
In the second case, the �eld cancels the e�ect of being in a deep trap, in this case,
fractional di�usion is not expected, since it is the signature of the broad trap depth
distribution.

If the applied potential di�erence is small, a natural approach to incorporate the
e�ect of the �eld would be using a fractional drift-di�usion equation [59], denoting with
ψ the electrostatic potential

∂α ρ

∂tα
= µ∇ψ · ∇ρ+D∆ρ. (8.2)

Coulomb interaction
We have already discussed adding the Pauli principle as interaction mechanism. One

could go even further and consider Coulomb interaction. The problem with handling
this type of interaction is that it is relatively long range.
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Obviously, if we add an assumption on the diluteness of the system which ensures
that the interactions are negligible, the result will not di�er from the low density limit
described above. While medium or higher densities will be very hard to handle ana-
lytically, the Coulomb interaction can be taken into account on the macroscopic scale
simply by solving a Poisson equation for the electrostatic potential, where the boundary
values are given by the applied voltage and the source density by the charge carrier den-
sities. Thus, if we know how to handle electric �elds, the mean �eld e�ect of Coulomb
interaction can be easily added to the model.
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APPENDIX A
Concepts of probability theory

In this appendix, we introduce the mathematical concepts used in the work. These
are mainly drawn from probability theory and adjacent areas like potential theory or
Skorokhod spaces. Even in those cases, our approach will be a probabilistic one.

We start from the very basic concepts in sec. A.1, but in later sections we will also
introduce specialized results that are needed as ingredients for the proof of the principal
theorem. In sec. A.2, we introduce Lévy Processes, with a particular focus on subor-
dinators. These are then used to de�ne the fractional kinetics process which appears
as scaling limit of the charge transport process (cf. thm. 4.2.2). Section A.3 treats the
potential theory of the simple random walk. The proof of the main result will heavily
make use of the estimates derived in this section. Some limit theorems for sums of ran-
dom variables we will use for intermediate steps are formulated in sec. A.4. For some
steps in the proof, we will have to work in so-called Skorokhod spaces. We give some
results and de�nitions about these spaces in sec. A.5. Finally, sec. A.6 discusses the
similarities of distributions with inverse polynomial tail at in�nity and the lognormal
distribution. This section motivates the scaling used to derive our result.

A.1 Fundamentals
This work is aimed to be as self contained as possible, but it is not meant to be

educational. A good introduction to measure and elementary probability theory can
be found e.g. in Breiman [27] and Billingsley [19].

The general arena where probability theory is set is a complete �ltrated probability
space. In order to de�ne this space, we need some other de�nitions �rst.

De�nition A.1.1. A σ-algebraA on a space Ω is a family of subsets of Ω, which ful�lls

i) Ω ∈ A,

ii) A ∈ A =⇒ AComp ∈ A,

iii) Ai ∈ A∀i ∈ N =⇒ ⋃
i∈NAi ∈ A.
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De�nition A.1.2. A �ltration F := (Fi)i∈I , is a family of σ-algebras, which ful�lls
Fs ⊂ Ft for all s ≤ t ∈ I .

Remark. The index set I of the �ltration is typically either N for discrete time or R+

for continuous time.

De�nition A.1.3. A tuple (Ω,A) is called measurable space, a function µ : A → R is
called a measure, if

i) For all A ∈ A, µ(A) ≥ 0,

ii) µ(∅) = 0,

iii) Ai ∈ A,∀i ∈ N , Ai ∩ Aj = ∅ ∀i 6= j =⇒ µ

(⋃
i∈N

Ai

)
=
∑
i∈N

µ (Ai).

De�nition A.1.4. A measure P : A → [0, 1] on (σ,A) ful�lling P (Ω) = 1 is called a
probability measure. The triple (Ω,A,P) is called a probability space.

De�nitionA.1.5. A triple (Ω,F ,P) is called a �ltrated probability space. If additionally,
all P (·) nullsets are contained in F0, it is called complete.

Now that we have set up the arena, we will introduce the objects we are going to
study, namely random variables, stochastic processes and stopping times.

De�nition A.1.6. Let (Ω,A), (Ω′,A′) be measurable spaces. A map f : Ω→ Ω′ such
that for all A ∈ A′, f−1(A) ∈ A is called measurable.

De�nition A.1.7. A measurable map from a probability space to a measurable space
is called random variable (RV).

Note. We will not go into the topics of versions, distinguishability and modi�cations
here. If we say a process has some property, what we usually mean is, that it has a
modi�cation which has the property.

Furthermore, since all processes we are interested in are right continuous, this already
implies that they are indistinguishable, which means that the probability for a sample
path of the modi�cation to be di�erent from the original process is 0.

Therefore it would make some of the upcoming statements more technical without
adding any further information. So, if in doubt, all properties hold only for modi�cations
of the processes and we always chose the most regular modi�cation of the processes
in question.

See e.g. Karatzas & Shreve [48, sec. 1.1] for a discussion.

De�nition A.1.8. Let X : (Ω,F ,P)→ (Ω′,F ′). The measure PX(·) := P (X−1(·)) is
called the distribution or the law of X .
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Remark. It is easy to check, that this turns (Ω′,F ′,PX) into a probability space.

De�nition A.1.9. For a random variable X , the σ-algebra generated by X , denoted
σ(Xi), is the smallest σ-algebra w.r.t. which Xi is measurable.

De�nition A.1.10. A family (Ai)i∈I ⊂ A is called independent if for all J ⊂ I ,

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P (Ai) .

A family of random variables is called independent, if the σ-algebras it generates are
independent.

An easy to prove, but immensely powerful result we will use very often is the fol-
lowing.

Lemma A.1.11 (Borel-Cantelli Lemma). Let (Ω,A,P) be a probability space, Ai ∈ A
for all i ∈ N. We de�ne

A := lim supAn =
⋂
n∈N

∞⋃
i=n

Ai.

Then

i)
∑
n∈N

P (An) ≤ ∞ =⇒ P (A) = 0,

ii)
∑
n∈N

P (An) = ∞ =⇒ P (A) = 0, if additionally the family (An)n∈N is indepen-

dent.

Proof. see Breiman [27, chap. 3, sec. 3].

Remark. The eventA can be described as the event that in�nitely many of theAn occur.
This means, if P (A) = 0, only �nitely many of the An can occur and therefore it is
possible to choose some n0, such that for n ≥ n0 An does not occur with probability 1.

De�nition A.1.12. Collections of random variables X = (Xi)i∈I are called stochastic
process. If Xi is Fi measurable, for all i ∈ I , the process is called adapted to F .

Note. For some applications, e.g. to conclude the measurability of stopped processes
(see A.1.14 for the de�nition of stopping times) to be adapted, a stronger property -
progressive measurability is in principle needed. However, all processes we consider are
càdlàg (see def. A.1.20), and càdlàg, adapted processes are progressively measurable.
Therefore we can skip this and rest assured that all stopped processes we consider are
adapted.
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We will often refer to stochastic processes just byX and to �ltrations byF , omitting
the index in cases where no confusion can arise.

De�nition A.1.13. The �ltration (σ(Xi))i∈I is called natural for the process X .

De�nition A.1.14. A random variable τ : Ω → N ∪ {∞} is called a random time.
A random time is called stopping time w.r.t. a �ltration F , if {τ = t} ∈ Ft ∀t ∈ I . A
process (Xt∧τ )t∈I is called a stopped process.

An example for a stopping times, we will use throughout the work is the hitting
times of a set A for a stochastic process (Xi)i∈I :

HitAx := inf
{
i ∈ I : X

(x)
i ∈ A

}
is a stopping time for the natural Filtration associated to (X

(x)
i )i∈N. An important way

to create stopping times is the following.

LemmaA.1.15. Let τ1, τ2 be stopping times for a �ltrationF , then τ1∨τ2, τ1∧τ2, τ1 +τ2,
and ατ1 (α ≥ 1) are stopping times for F as well.

Proof. see Sato [97, prop. 4.0.8].

We need some more concepts to formulate our results.

De�nition A.1.16. The sigma algebra at a stopping time τ is de�ned as

Fτ := {A ∈ F∞ : A ∩ {τ ≤ n} ∈ Fn∀n ≥ 0} .

This de�nition makes sense, becauseFτ is indeed aσ-algebra (see Sato [97, prop. 4.0.8]).

De�nition A.1.17. A �ltration F is called right continuous, i.e. Ft =
⋂
s>tFs.

This property is of course not applicable for countable I , because in that case, only a
constant Filtration can have the property. However, in that case we also never need it.

De�nition A.1.18. We de�ne left and right limit f(t−) resp. f(t+) as

f(t−) := lim
s↑t

f(s), resp. f(t+) := lim
s↓t

f(s).

↑ and ↓ denote the one-sided limits.

De�nition A.1.19. A process is called right/left continuous if X(t±) = X(t) for all
t ∈ I .

De�nition A.1.20. A stochastic process X is called càdlàg if the sample paths – the
maps i 7→ Xi for �xed ω ∈ Ω – are almost surely right continuous and have left limits.
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Càdlàg processes with some additional properties, so-called Lévy processes are treated
in sec. A.2, the spaces of càdlàgfunctions as such, so-called Skorokhod spaces in sec. A.5.

We now want to introduce the expected value and conditional expected value, culmi-
nating in the de�nition of martingales, a very important class of stochastic processes.

De�nition A.1.21. We de�ne the expected value of a random variable X as

E [X] =

∫
Ω

X(ω)dP (ω) .

If E [X] exists and is �nite, we say that X is integrable and write X ∈ L1.

De�nitionA.1.22. The conditional expectation of a random variableX w.r.t a σ-algebra
A, E [X|A] is de�ned as as the A-measurable random variable, which ful�lls

E
[
1{A} E [X|A]

]
= E

[
1{A}

]
, for all A ∈ A.

Note. It is justi�ed to speak of “the” conditional expectation, as it can be shown that
it is almost surely unique (see e.g. Billingsley [19, p. 445]).

De�nition A.1.23. A real-valued, F-adapted process X is called a martingale w.r.t F ,
if X ∈ L1(P (·)) and for s ≤ t,

E [Xt|Fs] = Xs almost surely.

Since we will not use them, we skip for better readability the treatment of sub- and
supermartingales. However, many results for martingales hold in these cases, too. An
important property of martingales is, that their expectation at any bounded stopping
time is the same as in the beginning.

TheoremA.1.24 (Optional sampling). Let (Ω,F ,P) be a �ltrated probability space,Mn

a F-adapted L1-martingale, τ an a.s. �nite stopping time. Then,∫
{τ>n}

|Mn|dP n→∞−→ 0 =⇒ E [Mτ ] = E [M0] .

Proof. See Breiman [27, thm. 5.10].

Another property that gives rise to a rich structure for stochastic processes is the
so-called Markov property – or intuitively – memorylessness of the process.

De�nition A.1.25. Let (Ω,F ,P) be a �ltrated probability space, (Ω′,F ′) a measurable
space. A Ω′-valued stochastic process adapted to F is called Markov, if for eachA ∈ F ′,
and s < t

P (Xt ∈ A|Fs) = P (Xt ∈ A|Xs) .
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A subtly stronger property, which extends the above property from constant points
in time to random ones, is the strong Markov property.

De�nition A.1.26. In the situation of def. A.1.25, X is said to have the strong Markov
property, if for each stopping time τ , conditionally on {τ <∞}, for all t > 0,

P (Xτ+t ∈ A|Fτ ) = P (Xτ+t ∈ A|Xτ ) .

Remark. Since every constant is also a stopping time, the strong Markov property
implies the Markov property.

De�nition A.1.27. For a random variable X , the characteristic function φX is de�ned
as

φX(λ) = E
[
eiλX

]
.

De�nition A.1.28. For a random variable X , the moment generating function ψX is
de�ned as

ψX(λ) = E
[
eλX
]
.

Both uniquely determine the function. Even more, we will see, that convergence of
either of them implies convergence of the random variables.

The moment generating and characteristic function are the values of the Laplace
transform along the real and imaginary axes.

De�nition A.1.29. The Laplace transform of a real valued function f is de�ned for
s ∈ C as

L[f ](s) =

∫ ∞
0

f(x)e−sxdx.

Note. To see that this is indeed related to the moment generating and characteristic
functions, assume the random variable X has a density f .

Theorem A.1.30. Both, characteristic and moment generating function uniquely deter-
mine the distribution of X .

Proof. See Ash & Doléans-Dade [6, cor. 7.1.4] for the characteristic function and Billings-
ley [19, p. 147] for the moment generating function.

Proposition A.1.31. Let X1, . . . , Xn be indepentent random variables, then

φ∑n
i=1Xi

=
n∏
i=1

φXi .

The same is true for the moment generating function.
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Proof. Straightforward computation yields

E
[
eηλ

∑n
i=1Xi

]
= E

[
n∏
i=1

eηλXi

]
indep.
=

n∏
i=1

E
[
eηλXi

]
.

Setting η = i, yields the result for characteristic functions η = 1, the result for moment
generating functions.

Remark. As it can be seen from this proof, we can essentially just switch between
moment generating and characteristic function – by exchanging adding a factor of i in
the exponent. However, when doing so, we must make sure that the moment generating
function exists, which fails in many cases. So, it is safer to work with the characteristic
function.

We now de�ne, what we mean by positive de�nite functions and state a theorem that
establishes a one-to-one correspondence between these functions and characteristic
functions of real valued random variables. This will enable us to de�ne the characteristic
exponent.

De�nition A.1.32. A function on R is called positive de�nite, if f(0) = 0 and f(x) > 0
for all x 6= 0.

Theorem A.1.33 (Bochner). Every characteristic function of a real valued random vari-
able is positive de�nite. Conversely, for every positive de�nite, normalized (i.e.

∫
R f = 1)

function, there exists a random variable, which has f as its characteristic function.

Proof. See Loève [60, pp. 220–222].

Now that we know that φX(λ) is positive away from 0, we can de�ne the character-
istic exponent, which uses the logarithm of φX(λ).

De�nition A.1.34. The characteristic exponent of a random variable is de�ned as
ΦX(λ) := − log (φX(λ)).

Similarly, the Laplace exponent is de�ned as the logarithm of the moment generating
function ΨX(λ) = − log (ψX(λ)).

We now introduce some modes of convergence for random variables we will use. For
all of the following de�nitions, we let (Xn)n∈N be a sequence of random variables and
X a random variable on the same space.

De�nition A.1.35. We say that Xn converges to X almost surely, if

P
(

lim
x→∞

Xn = X
)

= 1.
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De�nition A.1.36. We say that Xn converges to X in probability, if

lim
n→∞

P (|Xn −X| ≥ ε) .

De�nition A.1.37. We say that Xn converges to X in distribution, if for all A ∈ A,

lim
n→∞

PXn(A) = PX(A).

There is a connection between convergence in distribution and convergence of the
characteristic and moment generating functions.

TheoremA.1.38 (Continuity theorem). Let (Xn)n∈N be a sequence of random variables.

• φXn → φX pointwise =⇒ Xn → X weakly in distribution.

• ψXn → ψX pointwise =⇒ Xn → X weakly in distribution.

Proof. For (i), see Billingsley [19, thm. 26.3] – for (ii), see Billingsley [18, ex. 5.5].

A.2 Lévy processes, subordinators and their
inverses

Lévy processes are a very important class of processes, closely related to scaling
limits of sums of random variables. We have this structure in both, the spatial process
X and the clock process S. Thus, it is not surprising that Lévy processes indeed play
an important role in the limit.

We start with some de�nitions.

De�nition A.2.1. A stochastic process X is called a Lévy process, if it

i) is càdlàg,

ii) has independent increments: For any 0 = t0 < t1 . . . < tk ≤ ∞, the family
(Xti −Xti−1

)i∈I is independent,

iii) has stationary increments: for s > 0 the law of Xt+s −Xt is independent of t.

Due to the restrictions posed, the �xed-time distributions of Lévy processes belong
to the class of in�nitely divisible distributions (see Sato [97, sec. 2.7]).

De�nition A.2.2. A probability measure µ on Rd is called in�nitely divisible, if for
each n ∈ N there exists a probability measure µn on Rd such that for (Xi)

n
i=1 which

are i.i.d. distributed with law µn,
∑n

i=1Xi is distributed with law µ.
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De�nitionA.2.3. The Lévy process starting at 0 with continuous paths andX1−X0 ∼
N (0, 1) is called Brownian motion (BM).

In the following, we mainly focus on the subclass of subordinators.

De�nition A.2.4. A Lévy process with almost surely increasing paths is called a sub-
ordinator.

This means, that the distribution of the increments of this process must be supported
on R+ only. The following theorem gives a complete characterization of in�nitely di-
visible distributions with support on R+. A similar theorem for Rk-valued distributions
can be found in Reed & Simon [91, thm. XIII.55].

Theorem A.2.5 (Lévy-Kintchine for R+). A R+-valued random variableX is in�nitely
divisible, i� its Laplace exponent has the form

ΨX(λ) = cλ−
∫ ∞

0

(
1− e−λx

)
µ(dx), (A.1)

where c ≥ 0 and µ is a measure on (0,∞) ful�lling∫ ∞
0

x ∧ 1µ(dx) ≤ ∞. (A.2)

The measure µ is called the Lévy measure of X .

Proof. See Bertoin [17, thm. 1.2].

Remark. Here, we did not use the characteristic function for the characterization, but
the moment generating function (see defs. A.1.28, A.1.27). This is possible, because for
distributions supported only on R+ it always exists.

We have shown in prop. A.1.31, that S(t) :=
∑t

i=1Xi for i.i.d. Xi has the so-called
semigroup property φSt+s(λ) = φSt(λ)φSs(λ). By analogy, due to the independent,
stationary increments, the characteristic resp. moment generating functions of Lévy
processes at time t are the same as the ones of their increments over one unit of time
multiplied by et. Therefore, it makes sense to speak of the characteristic exponent of
the process, when we refer to Φ(λ) = −t−1 log

(
φX(t)

)
resp. the Laplace exponent

Ψ(λ) = −t−1 log
(
ψX(t)

)
.

We now introduce the class of stable random variables.

De�nition A.2.6. A random variable X is called stable, if there exists a number n ≥ 2
i.i.d. random variables (Yi)

n
i=1 and constants an ∈ R and bn ∈ R+, such that

n∑
i=1

Yi ∼ an + bnX.
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Remark. Stable distributions are a subclass of in�nitely divisible distributions.
We have a characterization in terms of characteristic functions for these distributions.

Proposition A.2.7. A random variable X is stable, i�

ΦX(λ) =

{
σα |λ|α

(
1− iβ sgn(λ) tan

(
πα
2

))
+ icλ , for α ∈ (0, 2] \ {1} ,

σα |λ|α
(
1− iβ 2

π
sgn(λ) log (|λ|)

)
+ icλ , for α = 1,

(A.3)

where β ∈ [−1, 1], σ2 ∈ R+, c ∈ R are uniquely determined constants.

Proof. See Samoradnitsky & Taqqu [96].

Remark. A distribution with characteristic exponent of the form (A.3) called α-stable.
We now de�ne the inverse of a subordinator.

De�nition A.2.8. The inverse (or hitting time process) of a subordinator V is de�ned
as

V −1(s) := inf {t > 0 : V (t) > s} .

Obviously, this process is non-decreasing. However, we will later see that this process
itself is no longer a Lévy process (cf. prop. A.2.12). If a subordinator is also stable with
exponent α we write Vα.

We now compute the Laplace exponents and investigate the properties of three pro-
cesses we will need later – Brownian motion, α-stable subordinators and their inverses.
Note that only the �rst two of them are actually Lévy processes, the inverse of a stable
subordinator itself is not Lévy as we will see.

Proposition A.2.9 (Properties of Brownian motion). For the Brownian motion in d
dimensions BMd, the following holds

i) The Laplace exponent of d-dimensional Brownian motion is
1

2
λ2.

ii) BMd is γ-Hölder continuous for γ < 1/2.

iii) BMd is self-similar: BMd(t) = c−1/2BMd(ct) in law.

Proof. For i), note all moments of Xt exist, therefore so does the moment generating
function, which can easily be computed. In fact we can compute the Laplace transform.
Let X ∼ N (0, 1), then

E
[
e−λX

]
=

∫ ∞
−∞

e−λx
1√
2π
e−x

2/2dx.
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We can complete the square by adding 1

2
λ in the exponential. We end up with

1√
2π

∫ ∞
−∞

e
− 1√

2
(x+λ)2

e
1
2
λdx.

The last term does not depend on x and can be taken out of the integral, then we
substitute x x− λ – the limits don’t change and the integral is

√
2π, which cancels

with the prefactor, leading to

E
[
e−λX

]
= e−

1
2
λ2 . (A.4)

For ii), see Karatzas & Shreve [48, thm. 2.8], for iii), lem. 9.4, (i) in the same book.

Proposition A.2.10 (Properties of Vα). For the subordinator Vα, the following holds:

i) its Laplace exponent is kλα.

ii) Vα is not continuous.

iii) Vα is self-similar: Vα(t) = r−1/αVα(rt) in law.

Proof. For i), we work with the Laplace transform. Therefore can use the results of both
prop. A.2.7 and thm. A.2.5, to conclude that the Laplace exponent has the form

Ψ(λ) = kλα. (A.5)

ii) It follows from the Lévy-Itô-decomposition (see e.g. Sato [97, thms. 19.2, 19.3 and
discussion]) that Brownian motion is the only continuous Lévy process.

For iii), we notice that the Laplace exponent of r−1/αVα(rt) is kλα. Since it uniquely
determines the distribution, this su�ces.

Remark. The Laplace exponent in prop. A.2.10 i) corresponds to the Lévy measure
ν(dx) =

kα

Γ(1− α)
x−1−αdx. We will use the symbol Vα to refer to the process with

this Laplace exponent and k = 1.
As we already mentioned, inverse subordinators are not Lévy processes, therefore, it

is not a good idea to consider their Laplace exponent. As we will see, their Laplace trans-
forms are not of exponential type. We will actually need to de�ne a class of functions
�rst before we can describe it.

De�nition A.2.11. The Mittag-Le�er function Eα(x) is de�ned as

Eα(x) =
∞∑
k=0

xk

Γ(αk + 1)
.
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Remark. Note that for α = 1 this is just the exponential function. Other notable cases
include

• α = 1/2, whence E1/2(x) = ex
2
(1 − erf(x)) and erf(x) is the Gaussian error

function (recall that erf(x) := 2π−1/2
∫ x

0
e−ξ

2
dξ),

• α = 2, whence E2(x) = cosh (
√
x).

Proposition A.2.12. The inverse V −1
α (·) of an α-stable subordinator has the following

properties

i) It does not have stationary increments, therefore it is also not a Lévy process.

ii) Its Laplace transform is given in terms of Mittag-Le�er functions

E
[
−λV −1

α (t)
]

= Eα (λtα) .

iii) V −1
α is a.s. Hölder continuous for all γ < α.

iv) V −1
α is self-similar: V −1

α (t) = r−αV −1
α (rt).

Proof. For i), see Meerschaert & Sche�er [70, cor. 3.2]. The second statement, is shown
in Bingham [20, prop. 1(a)]. For iii), see Bertoin [16, thm. III.17]. For iv), see Meerschaert
& Sche�er [70, prop. 3.1].

Having studied the constituent processes, we recall the de�nition of the fractional
kinetics process.

Note. (def. 4.2.1) The fractional kinetics process with index α in dimension d, FKd,α is
de�ned as

FKd,α(t) := BMd

(
V −1
α (t)

)
,

where BMd(t) is a d-dimensional Brownian motion and Vα(t) an independent α-stable
subordinator.

We will explore the process and its properties later in chapter 6.2.
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A.3 Potential theory of the simple random walk
In this section, we will derive some needed results on the potential theory of the

simple random walk on Zd. For most of this, we will follow the book of Lawler [56].

De�nition A.3.1. Let (Zi)i∈N be a family of independent, uniformly distributed vari-
ables on

{
x ∈ Zd : |x| = 1

}
. We de�ne the simple random walk (SRW) on Zd started

in x, as

X(x)(t) = x+
t∑
i=1

Zi.

We will proceed along the lines of Lawler [56]. First, we introduce some notation.

De�nition A.3.2. We say that x and y have the same parity and write x ↔ y if
‖x‖1 + ‖y‖1

2
∈ Z.

De�nition A.3.3. We de�ne the n-step kernel of the SRW, pn(x, y) := P
(
X(x)(n) = y

)
.

De�nition A.3.4. The kernel of Brownian motion at time n is de�ned as

p̄n(x) = 2

(
d

2πn

)d/2
e−

d|x|2
2n .

De�nition A.3.5. The error for the approximation of the n-step kernel of the simple
random walk with the kernel of a di�usion at time n is

E(n, x) = (p(n, x)− p̄(n, x))1{x↔n} .

De�nition A.3.6. The discrete di�erence∇y and second di�erence∇2
y are given for

f : Rd → R by

∇yf(x) = f(x+ y)− f(x),

∇2
yf(x) = f(x+ y) + f(x− y)− 2f(x).

TheoremA.3.7 (Local central limit theorm). ForE(n, x) de�ned as above the following
holds:

|E(n, x)| = O
(
n−(d+2)/2

)
,

|E(n, x)| = O
(
|x|−2n−(d)/2

)
.

Proof. See Lawler [56, thm. 1.2.1].
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Proposition A.3.8 (Strong Markov Property). The SRW has the strong Markov property.

Proof. See Lawler [56, thm. 1.3.2].

Now we can get started on the potential theory of the simple random walk. The
central object of the study will be the discrete Laplacian, ∆ := 1/(2d)

∑d
j=1∇2

ej
f(x),

where e1, . . . , ed are the d-dimensional unit vectors. This operator can be related to the
simple random walk via

∆f(x) = E
[
f(X

(x)
1 )− f(x)

]
.

De�nition A.3.9. A function is called (sub-, super-) harmonic on A if for all x ∈ A,
∆f(x) = 0 (resp. ≥ 0, ≤ 0).

Harmonic functions have a close relationship with martingales.

Proposition A.3.10. Let f be a harmonic function on A, τ := Hit∂Ax the exit time for
the SRW started in x, then f(Xmax{τ,n}) is a martingale w.r.t the natural �ltration of the
SRW.

Proof. See Lawler [56, prop. 1.4.1].

An easy way to validate the almost sure �niteness of a exit times is to check bound-
edness of the set in question as the following lemma shows.

Lemma A.3.11. For any �nite A ⊂ Zd and for all x ∈ A,

P
(
Hit∂Ax ≥ n

)
≤ Cρn,

for some C > 0, 0 < ρ < 1.

Proof. See Lawler [56, lem. 1.4.4].

For the proof of the main result of the thesis, we mainly need estimates for the Green’s
function.

De�nition A.3.12. The n-step Green’s function is de�ned as

Gn(x, y) = E

[
n∑
j=0

1{
X

(x)
j

} = y

]
=

n∑
j=0

pj(x, y). (A.6)
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For d ≥ 3 the limit n→∞ of this expression exists �nitely (Lawler [56, p. 29]) and
we write

G(x, y) := lim
n→∞

Gn(x, y). (A.7)

The Green’s function is essentially translation invariant, in the sense that if we shift
the starting point and the endpoint by the same amount, the value of the Green’s
function doesn’t change. Therefore we introduce the notationG(x) := G(0, x), whence
G(y, z) = G(y − z). As in classical PDE theory, the Green’s function solves a discrete
analogue of Poisson’s equation (here solved on the full space Zd with δ RHS)

∆G(x) = E

[ ∞∑
j=1

1{Xj=x}

]
− E

[ ∞∑
j=0

1{Xj=x}

]
= E

[
−1{X0=x}

]
= −δ0(x).

As already suggested by this equation, many results from elliptic PDE theory carry over
to the discrete Laplacian, like the maximum principle and, to some degree, existence
and uniqueness of solutions. For a discussion of this, see Lawler [56, sec. 1.4-1.7].

Now we will state the �rst of a series of estimates on the decay of the Green’s function.

Theorem A.3.13 (Decay of the full space Green’s function). For d ≥ 3,

G(x) ∼ ad|x|2−d, as |x| → ∞,

where

ad =
d

2
Γ

(
d

2
− 1

)
π−d/2 =

2

(d− 2)ωd
, (A.8)

ωd being the volume of the unit ball in Rd. More precisely, for any α < d,

lim
|x|→∞

|x|α
(
G(x)− ad|x|2−d

)
= 0.

Proof. See Lawler [56, thm. 1.5.4].

What we will mainly need for the proof of the principal theorem, are estimates for
the Green’s function of a random walk, killed on exiting some set A.

De�nition A.3.14. For A ⊂ Zd, the Green’s function on A, GA(x, y) is the expected
number of visits to y before leaving A of a SRW started at x:

GA(x, y) := E

Hit∂Ax∑
j=1

1{
X

(x)
j =y

}
 =

∞∑
j=1

P
(
X

(x)
j = y, τ > j

)
. (A.9)
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Another important concept is the harmonic measure, which basically gives the dis-
tribution of the di�erent exit points for a set A.

De�nition A.3.15. We de�ne the harmonic measure for y ∈ ∂A as

H∂A(x, y) := P
(
X

(x)

Hit∂Ax
= y
)
,

the measure induced by the hitting distribution of the SRW started at x.

The harmonic measure can be used to relate the Green’s function killed on exit of a
set to the full space Green’s function.

Proposition A.3.16. Let A ⊂ Zd, d ≥ 3 be �nite, x, z ∈ A. Then,

GA(x, z) = G(z − x)−
∑
x∈∂A

H∂A(x, y)G(z − y).

Proof. The proof is a straightforward application of de�nitions:

GA(x, z) = E

Hit∂Ax −1∑
j=0

1{
X

(x)
j =z

}
 = E

 ∞∑
j=0

1{
X

(x)
j =z

}−
∞∑

Hit∂Ax

1{
X

(x)
j =z

}


= G(0, z − x)−
∑
y∈∂A

H∂A(x, y)G(0, z − y).

Finally, we can state the estimates for the Green’s functions of the simple random
walk killed on the exit of a ball around its starting point.

PropositionA.3.17 (Killed GF and return probability). Letx ∈ B0(r),τ := Hit∂B0(r)∪{0}
x ,

then

P
(
X(x)
τ = 0

)
=

ad
G(0)

(
|x|2−d − r2−d)+O

(
|x|1−d

)
. (A.10)

Furthermore, for the Green’s function,

GB0(r)(0, 0) = G(0) +O
(
r2−d) , and (A.11)

GB0(r)(x, 0) = ad
(
|x|2−d − r2−d)+O

(
|x|1−d

)
. (A.12)

Proof. Since G(x) is harmonic on Zd \ {0}, M (x)
j := G

(
X

(x)
max{j,τ}

)
is a martingale by

prop. A.3.10. By the optional sampling theorem, G(x) = E
[
M

(x)
0

]
= E

[
M

(x)
τ

]
. This

expectation can be computed

E
[
M (x)

τ

]
= G(0)P

(
X(x)
τ = 0

)
+ E

[
G(X(x)

τ )
∣∣X(x)

τ ∈ ∂B0(r)
]
P
(
X(x)
τ ∈ ∂B0(r)

)
.

(A.13)

118



A.3 Potential theory of the simple random walk

For all y ∈ ∂B0(r), |y| ∈ [r, r + 1], hence by thm. A.3.13,

G (y) = adr
2−d + o

(
r1−d) .

Since this is true for all terms of the conditional expectation, we also have

E
[
G(X(x)

τ )
∣∣X(x)

τ ∈ ∂B0(r)
]

= adr
2−d +O

(
r1−d) .

We plug this into eq. (A.13) and rearrange to get the �rst result. For the second we note
that

GB0(r)(x, 0) = P
(
X(x)
τ = 0

)
GB0(r)(0, 0). (A.14)

Indeed, if a trajectory hits the boundary before returning to 0, this trajectory will not
contribute toG(x, 0). Therefore, what we see here is actually a decomposition on those
trajectories who hit the boundary �rst, and those who go to 0 at least once before
leaving, just that all trajectories of the second summand don’t contribute at all. For
those who hit 0 before the boundary, the successive visits have the same distribution
as the visits of trajectories already starting at 0.

Furthermore,

GB0(r)(0, 0) = E

Hit
∂B0(r)
0∑
i=0

1{
X

(0)
i =0

}


= E

[ ∞∑
i=0

1{
X

(0)
i =0

}
]
− E

 ∞∑
i=Hit

∂B0(r)
0

1{
X

(0)
i =0

}
 .

In the last expectation we only sum hits to 0 after hitting the boundary, therefore
the term is the same as

∑
x∈∂B0(r) G(x, 0). Using thm. A.3.13, we see that this term is

O
(
r2−d), thus

GB0(r)(0, 0) = G(0) +O
(
r2−d) . (A.15)

This together with eq. (A.14) and the �rst part of the proposition yields

GB0(r)(x, 0) =

(
ad
G(0)

(
|x|2−d − r2−d)+O

(
|x|1−d

)) (
G(0) +O

(
r2−d)) ,

and thus the second part is proven too.

From this proposition, we deduce now the probability for a simple random walk to
hit a certain site x before exiting a ball around the origin. In contrast to the previous,
the following is not taken from Lawler [56] but from Ben Arous & Černý [15].
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Lemma A.3.18 (Probability to hit before exiting a ball). Denote by Pr(0, x) the proba-
bility that X(0) hits x before exiting B0(r). Then

Pr(0, x) ≥ ad
G(0)

(
|x|2−d − r2−d)+O

(
|x|1−d

)
, (A.16)

Pr(0, x) ≤ ad
(
|x|2−d − r2−d)+O

(
|x|1−d

)
. (A.17)

Another upper bound is given by

Pr(0, x) ≤
(

ad
G(0)

(
|x|2−d − r2−d)+O

(
|x|1−d

))(
1 +O

(
(r − |x|)2−d

))
. (A.18)

Proof. The same way as we discussed in the proof of prop. A.3.17, we can decompose
GB0(r)(0, x) into a part with zero contribution, and the part where x is hit before exiting
B0(r), whence the contribution is the same as if the walk had started at x

GB0(r)(0, x) = Pr(0, x)GB0(r)(x, x). (A.19)

Since furthermore 1 ≤ GB0(r)(x, x) ≤ G(0, 0) - the �rst inequality is because the walk
starts at x, the second one becauseG(0, 0) = G(x, x) ≥ GA(x, x) for anyA ⊂ Zd - the
�rst two bounds on Pr(0, x) immediately follow from eq. (A.19) and the second part of
prop. A.3.17.

For the second upper bound, we again use eq. (A.19) and

GB0(r)(x, x)−1 ≤ GBx(r−|x|)(x, x)−1 = GB0(r−|x|)(0, 0)−1 = G(0)−1 +O
(
(r − |x|)2−d) ,

where we again used eq. (A.15).

We need two more statements about the SRW for our main theorem, which we state
now.

Proposition A.3.19 (Harmonic measure on spheres). For the harmonic measure on a
sphere, it holds that

H∂B0(r)(0, y) � r1−d.

Proof. See Lawler [56, Lem 1.7.4].

LemmaA.3.20 (Exit time for SRW). The exit time of SRW for a ball with radius r behaves
as r2 for large r.

Proof. See Ciesielski & Taylor [31, p. 445] for the proof of the same statement for Brow-
nian motion. Together with the local limit theorem A.3.7, the result follows for large r.
Sketch:
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A.4 Limit theorems for sums of random
variables

In this section, we discuss limit theorems for sums of independent variables. The the-
ory here is not strong enough to treat the charge transport process itself, but the results
are needed in intermediate steps. Particularly, in addition to the usual limit theorems
for sequences of random variables we treat triangular arrays. We immediately state the
results for triangular arrays, since they contain their counterparts for sequences as a
special case. A good introduction to generalized limit theorems and techniques can be
found in Bovier [25].

De�nition A.4.1. A triangular array is a sequence of �nite sequences, where each row

is only as long as its own index, we write
(
a

(n)
i

)
n∈N

=

((
a

(n)
i

)
i=1,...,n

)
n∈N

.

We start with the strong law of large numbers. For that we need the notion of stochas-
tic domination.

De�nitionA.4.2. We say say that a family (Xi)i∈I of random variables is stochastically
dominated by a random variable X , if

P (|Xi| ≥ x) ≤ P (|X| ≥ x) for all i ∈ I.

TheoremA.4.3 (Strong LLN for triangular arrays). Let
((

X
(n)
i

)
i=1,...,n

)
n∈N

be a trian-

gular array of rowwise independent random variables such that E
[
X

(n)
i

]
= 0 for all i, n.

Furthermore, suppose that the X(n)
i are uniformly dominated by some random variable

X ∈ L2p, for some p ∈ [1, 2]. Then

n−1/p

n∑
i=1

X
(n)
i → 0 a.s. as n→∞.

Proof. This is the main result of Hu et al. [46]. In fact they prove an even stronger
result, namely complete convergence, which via Borel-Cantelli implies almost sure
convergence.

We now prove a variant of the central limit theorem – Donsker’s Theorem (also-
called a functional central limit theorem). Because we will use a very similar technique
for the spatial evolution of the charge transfer, we will cover its proof in more detail.

Donsker’s theorem is a limit theorem for the measure on the space of trajectories
of processes – the theory of these spaces is covered in sec. A.5. Since the measures do
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not neccessary live in �nite dimensional spaces, boundedness of a sequence will not
su�ce to extract a convergent subsequence. To show compactness in these spaces of
measures, we introduce the concept of tightness and relate it to compactness.

De�nition A.4.4. A collection of probability measures (µi)i∈I on a topological space
is called (uniformly) tight if for any ε > 0, there exists a compact set Kε such that for
all i ∈ I µi(Kε) > 1− ε.
Theorem A.4.5 (Prohorov). A family of probability measures on a complete, separable
space is compact, i� it is tight.

Proof. See Billingsley [18, thm. 5.1, 5.2]

Lemma A.4.6 (FDD and tight implies weak). If a sequence (Xn)n∈N of RVs is tight and
the �nite dimensional distributions converge to some limit X , it converges weakly to X .

Proof. See Karatzas & Shreve [48, thm. 4.15].

Remark. A single measure on a complete, separable space is always tight (see. Billings-
ley [18, thm. 1.3]). All spaces we will consider are polish, i.e. completely metrizable,
spaces. For de�nitions and properties of (in�nite dimensional) spaces (separability, com-
pleteness, metrizability, etc.) the reader is referred to Yoshida [120]. They are important
for the underlying structure, but not needed explicitly once we know that all spaces
considered in this work have these properties.

We now show a result, which is su�ciently general to be used for the coarse grained
spatial process later, as well as to prove a functional central limit theorem. The estimate
is used to show uniform tightness of the process.

Proposition A.4.7 (Tightness forL2 zero mean RV). For S(t) =
∑t

i=1 ξi, where (ξi)i∈N
is an i.i.d. sequence with mean zero and variance σ <∞, we have that for any T > 0,

lim
δ↓0

lim sup
n→∞

1

δ
P

 max
1≤j≤bnδc+1
0≤k≤bnT c+1

|S(j + k)− S(k)| > εσ
√
n

 = 0.

Proof. See Karatzas & Shreve [48, lem. 4.19].

Theorem A.4.8 (Donsker’s invariance principle). Let ξi be a collection of Rk-valued
mean zero random variables with �nite variance σ > 0. We de�ne

S(t) :=

btc∑
i=1

ξi, X(t) := S(t) + (t− btc)ξt+1.

Then, X̃n(t) :=
1√
nσ

X(nt) converges in distribution onC([0,∞),Rk) (with the uniform

topology) to BMd.
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A.4 Limit theorems for sums of random variables

Proof. Sn(t) ful�lls the requirements of prop. A.4.7, so we can show that

P

 max
|s−t|≤δ
0≤s,t≤T

∣∣∣X̃n(s)− X̃n(t)
∣∣∣ > ε

 = P

 max
|s−t|≤nδ
0≤s,t≤nT

|X(s)−X(t)| > ε


≤ P

 max
1≤j≤bnδc+1
0≤k≤bnT c+1

|Sn(j + k)− Sn(j)| > ε

→ 0,

where we used that by the piecewise linearity of X ,

max
|s−t|≤nδ
0≤s,t≤nT

|X(s)−X(t)| ≤ max
|s−t|≤bδnc+1
0≤s,t≤bnT c+1

|X(s)−X(t)| ≤ max
1≤j≤bδnc+1
0≤j≤bnT c+1

|S(j + k)− S(k)| .

Hence, X̃n is tight in the uniform topology. Furthermore, one can show that the �nite
dimensional distributions converge to those of Brownian motion (see Karatzas & Shreve
[48, thm. 4.17]). This, together with lem. A.4.6 �nishes the proof.

To conclude this section, we state a generalized triangular array version of the func-
tional CLT for convergence to a stable subordinator. It will not be explicitly used, but
it motivates our approach to treat the lognormal waiting time landscape.

Theorem A.4.9. Let X(n)
i be a triangular array of random variables, i.i.d. for �xed n

and with support in R+. Assume there exists α ∈ (0, 1) and sequences cn, an such that

anP (Xn
1 > cnx)→ x−α,

furthermore, let them satisfy

lim
ε↓0

lim sup
n↑∞

c−1
n anE

[
1{Xn

1 ≤cnε}X
n
1

]
= 0.

Then,

Sn(t) := c−1
n

btanc∑
i=1

Xn
i → Vα(t),

in distribution on D(R+, J1).

Proof. See Bovier [25, thm. 4.1.7].
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A.5 Skorokhod spaces
We give the basic de�nitions and properties of Skorokhod spaces needed for the

proof of the main theorem. A more detailed discussion can be found in Whitt [119],
Billingsley [19] or the original article by Skorokhod [108].

De�nition A.5.1. The Skorokhod spacesD(I,Rk) are de�ned as the spaces of all right-
continuous Rk-valued functions with left limits (càdlàg) de�ned on I ⊂ R+.

Remark. To understand why theorems about convergence of random variables and
Skorokhod spaces are interesting for the treatment of stochastic processes, note that a
stochastic process on Rd observed up to a time T is a random variable on D([0, T ],Rd).

In the case of d = 1, we omit the second argument – in fact, where no confusion can
arise, we frequently use second argument to denote the topology.

These spaces are important because they are su�ciently regular to still allow us to do
analysis on them, while they are rich enough to contain the trajectories of all stochastic
processes of interest for us.

As already pointed out, the space D(I) can be equipped with various topologies,
leading to di�erent convergence and compactness properties. The �nest topology we
will use is the uniform topology, generated by the max-norm ‖·‖∞. However, while
the space of continuous functions C0(I) ⊂ D(I) is complete with this norm, the space
D(I) itself is not.

To deal with this problem, Skorokhod introduced in his seminal paper [108] several
other metrics which generate coarser topologies. We will only discuss one of these
metrics here, namely the M1 metric, which we will use later for our limit.

De�nition A.5.2. The completed graph of a function x(t) is de�ned as

Γx :=
{

(z, t) ∈ Rd × I : z ∈ Conv {x(t−), x(t)}
}
,

where Conv(A) := {∑∞i=1 αiai :
∑∞

i=1 αi = 1, ai ∈ A} is the convex hull of the set A.

One can de�ne an order on Γx:

(z1, t1) ≤ (z2, t2) :⇔ (t1 < t2) ∨ ((t1 = t2) ∧ (|x(t1−)− z| ≤ |x(t2−)− z2|)) .

De�nition A.5.3. A map Γx → [0, 1] is called a parametric representation of Γx i� it is
continuous and nondecreasing.

We let Π(x) be the set of parametric representations for Γx.

De�nition A.5.4. The M1 metric is de�ned as

distM1(x1, x2) := inf
(u1,r1)∈Π(x1)
(u2,r2)∈Π(x2)

{|u1 − u2| ∨ |r1 − r2|} .
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A.5 Skorokhod spaces

Remark. See ref. 119, thm. 12.3.1 for the fact, that the above is indeed a metric
We can extend this to D(I,Rd) in two ways, either by replacing |·| by ‖·‖∞, leading

to the strong M1 topology. The other possibility is to identify D(I,Rk) = D(I,R)k

and use the product topology induced by the metric

distProd(x, y) :=
d∑
i=1

dist
(
x(i), y(i)

)
.

Since convergence in this topology is implied by convergence in the strong topology,
we call it the weak (M1) topology. However, in the following, will either work in one
dimension when using Skorokhod spaces or d dimensional ones equipped with the
uniform topology. In both cases, this distinction is not necessary (obvious for one
dimension, see Whitt [119, p. 83] for the uniform topology).

To show convergence of measures on Skorokhod spaces we will, similar to treatment
in Donsker’s theorem (thm. A.4.8), appeal to tightness of the sequence. Since this is
hard to check explicitly, we will now give an alternative characterization of tightness
for the M1 topology.

De�nition A.5.5. The standard segment is de�ned as as

[a, b] := {αa+ (1− α)b : 0 ≤ α ≤ 1} .

We introduce several oscillation functions

v̄(x, t, δ) := sup
(0∨t−δ)≤t1≤t2≤(t+δ∧T )

{‖x(t1)− x(t2)‖∞} , (A.20)

ωs(x, t, δ) := sup
(0∨t−δ)≤t1≤t2≤t3≤(t+δ∧T )

{‖x(t2)− [x(t1), x(t3)]‖∞} , (A.21)

where ‖x− A‖ := infy∈A ‖x− y‖. Finally, we let

ωs(x, δ) := sup
0≤t≤T

ωw(x, t, δ), (A.22)

ω′s(x, δ) := max (ωw(x, δ), v̄(x, 0, δ), v̄(x, T, δ)) . (A.23)

Now we have what we need to give a characterization of tightness in the M1 topology.

Lemma A.5.6 (Characterization of tightness). A sequence µn of probability measures
on D([0, T ]) is tight in the strongM1 topology i�

i) For each ε > 0 there exists c such that

µn ({x ∈ D([0, T ]) : ‖x‖ ≥ c}) ≤ ε.
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ii) For each ε > 0 and η > 0, there exists a δ > 0 such that

µn ({x ∈ D([0, T ]) : ω′(x, δ) ≥ η}) ≤ ε.

Proof. See Whitt [119, thm. 12.12.3].
Another approach to conclude convergence of complicated processes is, to write it as

a continuous function of simpler processes. This is the so-called continuous mapping
approach, which relies on the following theorem.
TheoremA.5.7 (Continuous mapping). Let (S,m) and (S ′,m′) be metric spaces,Xn →
X weakly in (S,m) and g : (S,m) → (S ′,m′) continuous, then also g(Xn) → g(X)
weakly in (S ′,m′).

Proof. See Whitt [119, thm. 3.4.1].

Later we will use one particular function, namely the one mapping strictly increasing
trajectories onto their inverses. To make the continuous mapping theorem applicable,
we now show continuity of this mapping with respect to the topologies we need.
Proposition A.5.8 (Inverse is continuous). The inversion map from the subspace of
strictly increasing functions D↑↑(M1) ⊂ D(M1) to D(U) is continuous.

Proof. This immediately follows from Whitt [119, cor. 13.6.4], which states that the
inverse map from D(M2) to D(U) is continuous and the fact that the M1 topology is
�ner than the M2 topology (see Skorokhod [108, eq. 2.9]).

A.6 Powerlaws and the lognormal distribution
We start with a classical bound for the probability of a standard normal variable to

exceed a certain level.
Lemma A.6.1. For X ∼ N (0, 1), it holds that

u

1 + u2

e−u
2/2

√
2π
≤ P (X ≥ u) ≤ 1

u

e−u
2/2

√
2π

.

Proof. We note that because for ξ ∈ (x,∞), 1 < ξ/x,

P (X ≥ u) =

∫ ∞
u

1√
2π
e−

1
2
ξ2dξ <

∫ ∞
0

1√
2π

ξ

u
e−

1
2
ξ2dξ.

Substituting η = ξ2/2, we get

P (X ≥ u) <

∫ ∞
u2/2

1√
2πu

e−ηdη = − 1√
2πu

[
e−η
]η=∞
η=u2/2

=
1√
2π

1

u
e−

1
2
u2 .
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A.6 Powerlaws and the lognormal distribution

For the other inequality, we start with(
1 +

1

u2

)
P (X ≥ u) =

∫ ∞
u

(
1 +

1

u2

)
1√
2π
e−

1
2
ξ2dξ

>

∫ ∞
u

(
1 +

1

ξ2

)
1√
2π
e−

1
2
ξ2dξ = −

[
e−

1
2
ξ2

√
2πξ

]ξ=∞
ξ=u

=
e−

1
2
u2

√
2πu

.

Rearranging this leads to the desired result.

The following lemma motivates introducing an energy scale in addition to the spatial
and temporal scales.
Lemma A.6.2. There exist sequences σ̂(n), c(n) and g(n), such that for Ex ∼ N (0, 1),
as n→∞,

c(n)P (exp (−σ̂(n)Ex) ≥ g(n)u) = u−α (1 + L(n, u)) ,

where L(n, u)
u→∞−→ 0 uniformly in n.

Proof. Since the Ex are normally distributed, we can use the bounds from lem. A.6.1
for the tail probabilities to get(

u2

1 + u2

)
︸ ︷︷ ︸

1+o(1)

1

u
exp

(
−u

2

2

)
≤
√

2πP (Ex ≥ u) ≤ 1

u
exp

(
−u

2

2

)
. (A.24)

Then, we have

c(n)P (exp (−σ̂(n)Ex) ≥ g(n)u) = c(n)P
(
Ex ≤

− log u− log g(n)

σ̂(n)

)
symmetry

= c(n)P
(
Ex ≥

log u+ log g(n)

σ̂(n)

)
.

Using the asymptotics derived in eq. (A.24), the above probability will behave as

(1 + o(1))
1√
2π
c(n) exp

(
− log2 u

2σ̂(n)2

)
exp

(
− log u log g(n)

σ̂(n)2

)
×

× exp

(
− log2 g(n)

2σ̂(n)2

)
σ̂(n)

log g(n) + log u
.

We set c(n) =
√

2π exp

(
log2 g(n)

2σ̂(n)2

)
log g(n)

σ̂(n)
, arriving at

(1 + o(1)) exp

(
− log2 u

2σ̂(n)2

)
exp

(
− log u log g(n)

σ̂(n)2

)
log g(n)

log g(n) + log u
.
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The middle term can be rewritten as

exp

(
− log u log g(n)

σ̂(n)2

)
= exp

(
log u

(
− log g(n)

σ̂(n)2

))
= u

(
− log g(n)

σ̂(n)2

)
.

We choose g(n) := exp (ασ̂(n)2), whence the expression simply becomes u−α. The
remaining two expressions are

ασ̂(n)2

log u+ ασ̂(n)2
exp

(
− log2 u

2σ̂(n)2

)
σ̂(n)→∞−→ 1.

Remark. The above proof works for any sequence σ̂(n) resp. a(n), which goes to in�nity
as n→∞.

Writing down the dependence of c(n) on σ̂(n) and g(n) explicitly

c(n) =
√

2π exp

(
log2 g(n)

2σ̂(n)2

)
log g(n)

σ̂(n)

=
√

2π exp

(
log2 exp (ασ̂(n)2)

2σ̂(n)2

)
log exp (ασ̂(n)2)

σ̂(n)

=
√

2π exp

(
α2σ̂(n)4

2σ̂(n)2

)
ασ̂(n)2

σ̂(n)

=
√

2πασ̂(n) exp

(
1

2
α2σ̂(n)2

)
,

and since g(n) = exp (ασ̂(n)2),

c(n) =
√

2πασ̂(n)g(n)α/2.

Thus, we get the result in the form we will use it throughout the rest of this work.
Corollary A.6.3. For g(n) := exp (ασ̂(n)2), Ex ∼ N (0, 1) and any sequence σ̂(n),
which goes to∞ as n→∞, it holds that,

P (exp (−σ̂(n)Ex) ≥ g(n)u) = (1 + L(n, u))
1√
2πα

g(n)−α/2σ̂(n)−1u−α,

where L(n, u)
u→∞−−−→ 0 uniformly in n.
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APPENDIX C
Device simulation models

The di�usive model used in this work (e.g. sec. 7.2) can be formulated as a system
of coupled partial di�erential equations. We will give here the full model, including
boundary conditions and a model for the mobility and di�usion coe�cient, starting
with the conventional drift di�usion device model.

C.1 The drift di�usion device model
For our simulations we use the steady state version of the equations, in the general

case, the 0 on the left side of the continuity equation (eq. (C.1)) is replaced by a time
derivative. The equations for charge carrier density ρ and electrostatic potential ψ read

0 = ∇ · (−µρ∇ψ +D∇ρ) , (C.1)
0 = ε0εr∆ψ + eNsitesρ, (C.2)

ρ(0) =

∫ ∞
−∞

DOS(E)fEElectrode,0(E)dE, (C.3)

ρ(L) =

∫ ∞
−∞

DOS(E)fEElectrode,L(E)dE, (C.4)

ψ(0) = 0, (C.5)
ψ(L) = Vappl − Vbi. (C.6)

Here Vappl is the applied voltage, Vbi the built in voltage, EElectrode,0/L, the workfunction of
the electrode at 0 resp. L and Nsites is the volume density of hopping sites.

We assume a Gaussian density of states:

DOS(E) =
N√
2πσ2

exp

(
− E

2

2σ2

)
, (C.7)

and Fermi-Dirac-statistics

fEF (E) =

(
exp

(
E − EF
kbT

)
− 1

)−1

. (C.8)
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C Device simulation models

Using this kind of occupation statistics instead of Maxwell-Boltzmann, we have to
consider the generalized Einstein relation

D = µ
ρ
∂ ρ
∂EF

, (C.9)

instead of the conventional Einstein relation

D = µkBT. (C.10)

The derivative ∂ ρ
∂EF

can be computed from the relationship

ρ =

∫ ∞
−∞

DOS(E)fEF (E)dE. (C.11)

C.1.1 The EGDM mobility function
In the EGDM [88], the mobility µ = µ0g1g2, where µ0 is a constant and

g1(T, ρ) = exp
(
−0.44σ̂2

)
exp

(
1

2
(σ̂2 − σ̂)(2ρ)δ

)
1{ρ≤0.1}+g1(T, 0.1)1{ρ>0.1}

(C.12)

g2(T,−∇ψ) = exp

{
0.44(σ̂

3
2 − 2.2)

[√
1 + 0.8

ea−∇φ
σ2

− 1

]}
1{−∇ψ≤ 2σ

ea} (C.13)

+ g2(T,
2σ

ea
)1{−∇ψ> 2σ

ea}, (C.14)

with

δ = 2
ln(σ̂2 − σ̂)− ln(ln(4))

σ̂2
. (C.15)

Note that the dependence on T is via σ̂ = σ/kBT .

C.1.2 The ECDM mobility function
The ECDM mobility [24] is similar, but has several di�erent regimes. Here,

g1(T, c) = exp
(
−0.29σ̂2

)
exp

(
0.25σ̂2

)
× (C.16)

× exp
(
0.7σ̂(2ρ)δ

)
1{ρ≤0.025}+g1(T, 0.025)1{ρ>0.025}, (C.17)
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C.2 Augmented model

where

δ = 2.3
ln (0.5σ̂2 + 1.4σ̂)− ln(ln(4))

σ̂
. (C.18)

The �eld dependence g2 uses the �eld parameter F = ∇ψ
σ̂a

, then, we let

h =


e

(
(4/0.48)F

((
1.05−1.2ρ0.7/σ̂

0.7
)
(σ̂3/2−2)(

√
1+2F)−1

))
if F ∈ [0, 0.08),

e

(
(1−4/3)(F/0.16−1)2

((
1.05−1.2ρ0.7/σ̂

0.7
)
(σ̂3/2−2)(

√
1+2F)−1

))
if F ∈ [0.08, 0.16),

e

(((
1.05−1.2ρ0.7/σ̂

0.7
)
(σ̂3/2−2)(

√
1+2F)−1

))
if F ∈ [0.16,∞).

(C.19)

Finally,

g2(T,−∇ψ) =
(
h−2.4/(σ̂−1) + (Fg1(T,−∇ψ)/(1− ρ))2.4/(σ̂−1)

)−1

. (C.20)

C.2 Augmented model
In order to take into account that in short devices, even in the steady state, a certain

fraction of carriers is trapped in atypically deep traps, we split the density ρ into ρfree
and ρtrapped according to

ρfree =

∫ ∞
−∞

DOS(E)fEF (E)dE, ρtrapped =

∫ ∞
−∞

DOStrap(E)fEF (E)dE. (C.21)

Then, only the free carriers ρfree are used in the continuity equation (eq. (C.1)), while
the sum ρfree + ρtrapped is used in the Poisson equation (eq. (C.2)).

This is completely equivalent to the situation when charge carriers can reach equi-
librium and actual traps are present. However, one must be aware, that the states in-
troduced in DOStrap are not physical states, but merely a way to introduce dispersive
behavior into a non-dispersive model. A typical choice for DOStrap is a simple delta
function (more precisely, point measure) at some trap energy Etrap which is su�ciently
deep and an intensity Ntrap. Using these two parameters (i.e. trap depth and concen-
tration), dispersive behavior can be emulated by the drift di�usion model as shown in
sec. 7.2.
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APPENDIX D
Some details on the kinetic Monte

Carlo implementation
As we have mentioned, the kMC code used throughout chap. 7 has been speci�cally

written to study the dispersive nature of charge transport without the �nite-size e�ect
artifacts. While it is not the core of this thesis, some original work has also been done to
achieve this. More precisely, the author could not �nd any of these tools or methods.

D.1 General remarks on the implementation
The implementation is done in C++, using the MATLAB/C++ interface mex to seam-

lessly integrate the method with a powerful visualization tool. We have used an object-
oriented approach, the main object being the Site, where information on the neigh-
bors, the energy and the rates are stored. When the rates do not only depend on the
initial site (as in our simpli�ed model) but also on the target and the edge (as it is the
case for MA/Marcus rates), we additionally need an Edge class. In this case, we collect
the site and edge objects in a Morphology class.

The simulation is initialized with a set of visited sites, the only member of which is a
site at the origin (and the neighbors in case the rates depend on them). Then a random
variable is drawn to decide to which neighbor the charge carrier is transferred. In the
simple model all probabilities are 1/6, while in the MA/Marcus model these probabilities
are computed from the Energies and transfer integrals of the participating sites and
edges. For all random number generators, the Mersenne Twister implementation of the
boost library is used.

After each step, we check if the site we now visit is contained in the set of visited sites.
If it is not, a new site is generated and added. Again, the procedure is more complicated
in the case of MA/Marcus rates, because additionally the edges and all neighbors need
to be checked for (they may already exist) and generated if they do not exist. Since this
requires many searches through the set of sites and edges, it is crucial to have a very
fast way to search through the sites. This is achieved via an identi�cation of Z3 with
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D Some details on the kinetic Monte Carlo implementation

N described in sec. D.2.
Since this method generates the morphology along the trajectory of the charge carrier,

we do not need to worry about the numerical �nite size e�ect interferring with the
physical �nite size e�ect, i.e. dispersion, which we want to study.

D.2 An e�cient way to search in a set of Z3

indexed objects
In order to e�ciently check, if a certain site is already visited we use a way to iden-

tify each point on the integer lattice Z3 with a natural number. While it is common
konwledge that there exists a bijection between Z3 and N, the author did not �nd any
literature which actually contained an example for this – though we can not imagine
this has not been done before.

What we do is enumerating the points in Zd on increasingly large cube surfaces. It
is implemented as follows: Given x = (x1, x2, x3) ∈ Zd

• Find r = max {x1, x2, x3}.

• x is on the surface of a cube with sidelength 2r + 1 centered at the origin. We
now use the convention that

– we start enumerating at the left (x = −r) surface of the cube. Enumerating
on a �nite surface is easy, we just go row-by-row.

– next we consider the right (x = r surface) in the same fashion.
– the remaining “open cube” is partitioned into rings. We enumerate the rings

in ascending x, �rst treating the case y = r, then y = −r, and �nally z = r
resp. z = −r. While in each of these cases we only enumerate lines, we
must be careful not do double-count the points on the edge, thus we only
enumerate points where |y| < r in the last two cases.

This function can now be used as (perfect) hash function in order to �nd a newly
visited site in the set of already visited sites.

D.3 Identi�cation and treatment of
computational traps

In the general case, when dealing with the full physical rate expressions, there is
a case of trapping which is physically not of importance, but severely slows down
computations. Namely the case when two neighboring molecules have a very good
connection, while the connection to the other molecules is not extraordinary good.
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D.3 Identi�cation and treatment of computational traps

In this case, the charge carrier will hop back and forth between these two molecules
very often before going to another one. While, due to the good connection, this happens
in very short physical time, the cost for computing a step in the kinetic Monte Carlo
method is the same as for any other. Therefore, a lot of computation time will be
required.

This can easily be prevented. When our algorithm has fully discovered a molecule
at z1 and its neighbor at z2, we compare the rates bewteen z1 and z2 with those of z1

and z2 to their other neighbors. If we �nd that the probability to go from z1 to z2 and
the probability to go from z2 to z1 are both greater than 95%, we mark both z1 and z2

a trap and handle them di�erently when a charge carrier arrives at either of them.
Instead of performing a normal kMC step, we compute the number of back-and-forth

hops as a geometric random variable with success probability (minimum of escape
attempts at z1 and z2)

P (escape from trap z1z2) = 1− (1− P (escape from z1)) (1− P (escape from z2)) .
(D.1)

Then we compute the time those steps needed as the sum of two Erlang distributions
(sum of exponential distributions) with rz1→z2 resp. rz2→z1 as rate parameter and the
result of the geometric random variable as the number of trials.

This way of computing this special case is not an approximation, but is exact because
we only used the properties of the exponential, Erlang and geometric distribution to
get an easier way of computing steps when we already know that most of the steps
will occur between two sites. A similar approach has been proposed very recently by
Brereton et al. [28].
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