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Dimensioneller BCS-BEC-Crossover in ultrakalten Fermigasen

Wir untersuchen die Thermodynamik und Phasenstruktur ultrakalter Fermigase.
Diese können mit modernen Fallentechniken im Labor realisiert und vermessen
werden. Dabei nähern wir uns dem System sowohl vom theoretischen als auch ex-
perimentellen Standpunkt. Ein zentraler Punkt der Analyse ist der systematische
Vergleich des BCS-BEC-Crossovers zweikomponentiger Fermionen in drei und
zwei Dimensionen. Eine Reduktion der Dimensionalität lässt sich im Experiment
mit stark anisotropen Fallen verwirklichen. Die Funktionale Renormierungsgrup-
pe (FRG) erlaubt beide Fälle in einem einheitlichen theoretischen Rahmen zu
beschreiben. In drei Dimensionen diskutieren wir mit der FRG den Einfluss von
Teilchen mit hohem Impuls auf die Dichte, erweitern bisherige Zugänge zum
unitären Fermigas um quantitative Präzision zu erreichen, und untersuchen den
Zusammenbruch der Superfluidität aufgrund einer Asymmetrie in der Besetzung
der zwei fermionischen Komponenten. In diesem Zusammenhang untersuchen
wir auch die Stabilität der Sarmaphase. Für den Übergang zum zweidimensio-
nalen System spielt die Streuphysik in reduzierter Dimension eine entscheidende
Rolle. Wir legen theoretisch und experimentell relevante Aspekte dessen dar.
Nach einer qualitativen Untersuchung des Phasendiagrams und der Zustands-
gleichung in zwei Dimensionen mit der FRG, beschreiben wir die experimentelle
Bestimmung des Phasendiagramms des zweidimensionalen BCS-BEC-Crossovers
in Zusammenarbeit mit der Gruppe von S. Jochim am PI Heidelberg.

Dimensional BCS-BEC crossover in ultracold Fermi gases

We investigate thermodynamics and phase structure of ultracold Fermi gases,
which can be realized and measured in the laboratory with modern trapping
techniques. We approach the subject from a both theoretical and experimental
perspective. Central to the analysis is the systematic comparison of the BCS-
BEC crossover of two-component fermions in both three and two dimensions.
A dimensional reduction can be achieved in experiments by means of highly
anisotropic traps. The Functional Renormalization Group (FRG) allows for a
description of both cases in a unified theoretical framework. In three dimensions
we discuss with the FRG the influence of high momentum particles onto the den-
sity, extend previous approaches to the Unitary Fermi Gas to reach quantitative
precision, and study the breakdown of superfluidity due to an asymmetry in the
population of the two fermion components. In this context we also investigate
the stability of the Sarma phase. For the two-dimensional system scattering
theory in reduced dimension plays an important role. We present both the the-
oretically as well as experimentally relevant aspects thereof. After a qualitative
analysis of the phase diagram and the equation of state in two dimensions with
the FRG we describe the experimental determination of the phase diagram of
the two-dimensional BCS-BEC crossover in collaboration with the group of S.
Jochim at PI Heidelberg.
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1 Introduction

Pushing the experimental frontier in physics has always refreshed and deepened
our understanding of the fundamental laws of nature. With the achievement of
quantum degeneracy in ultracold quantum gases (Anderson et al. [1995], Davis
et al. [1995]) an exciting new chapter of research at the interface of few- and many-
body quantum physics has been opened. Most characteristic for the corresponding
experiments is an unprecedented degree of control and tunability of the atomic
ensembles. This enables both a systematic study of the mechanisms governing
these systems and a solid benchmarking of their theoretical description.

The big interest in ultracold quantum gases is twofold. First, anticipating the
idea of Feynman [1982] of a quantum simulator, we can hope that the realization
of atomic clouds in the laboratory will shed light on outstanding questions such
as high temperature superconductivity in solid state materials, the properties of
dense nuclear matter in neutron stars, thermalization in heavy-ion collisions, or
particle production in the early universe. Second, and this will be the focus of this
thesis, ultracold atoms as a new system in the field of condensed matter physics
promise to reveal how the rich and often surprising macroscopic phenomenology
of quantum few- and many-body systems emerges from a given, relatively simple
Hamiltonian.

Typical ultracold quantum gases consist of 103−106 alkali or earth alkali atoms
trapped by electromagnetic fields (Ketterle et al. [1999], Dalfovo et al. [1999],
Grimm et al. [2000]). With a succession of laser and evaporative cooling techniques
it is possible to reach the sub-µK regime (Pethick and Smith [2002], Pitaevskii
and Stringari [2003]). At those low temperatures the complex interatomic col-
lisions can be described by effective contact interactions. Moreover, by diluting
the ensemble it is possible to suppress three-body processes which would result in
clustering of particles and eventually solidify the sample. As a consequence the
low-energy physics of the gas, irrespective of its atomic details, is faithfully de-
scribed by a simple many-body Hamiltonian with pointlike interactions between
the particles (Bloch et al. [2008]). This model is often applied to other systems,
where, however, it is only an approximation.

The artificial character of the systems just described is also their key feature. By
modifying the preparation or trapping of the gas, experimentalists can nowadays
engineer a large class of many-body systems which are of high general interest.
The cold atoms tool box contains a variety of isotopes whose scattering properties
are classified and well-understood. Interacting quantum gases with Fermi or Bose
statistics, or mixtures thereof, can be designed by populating distinct hyperfine
states of fermionic (e.g. 6Li or 40K) or bosonic atoms (e.g. 7Li or 87Rb). Ap-
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1 Introduction

plying an external magnetic field operated close to a Feshbach resonance of the
trapped species (Chin et al. [2010]), the coupling constant between particles can
be tuned almost at will, thereby connecting perturbative and nonperturbative
regimes (Giorgini et al. [2008], Gurarie and Radzihovsky [2007]). Interference ef-
fects of the electromagnetic trapping fields can be employed to create effectively
two- or one-dimensional systems, or to simulate Hubbard model physics in optical
lattices (Jaksch and Zoller [2005], Lewenstein et al. [2006]).

In this work we will mainly be interested in the thermodynamic properties of
interacting Fermi gases. However, many other promising directions in the field
of cold atoms have appeared in the past two decades, out of which we want to
present a small selection.

The study of finite quantum systems with a well-controlled particle number ad-
dresses fundamental questions concerning the transition from few- to many-body
physics. Starting with three particles, where the famous Efimov-effect (Efimov
[1970, 1973]) has been studied in detail (Ferlaino et al. [2011]), the subsequent
adding of particles to the system (Serwane et al. [2011], Wenz et al. [2013]) allows
to enter the mesoscopic regime, which is relevant, for instance, in nuclear physics.
It is also possible to generate long-range interacting systems by trapping Rydberg
atoms or polar molecules (Baranov [2008], Carr and Ye [2009], Saffman et al.
[2010], Baranov et al. [2012]). Furthermore, there are many theoretical proposals
on the implementation of SU(N) quantum magnetism or lattice gauge theories
with ultracold atoms (Ye et al. [2008], Gorshkov et al. [2010], Daley [2011], Baner-
jee et al. [2013], Goldman et al. [2013], Celi et al. [2014]).

Another exciting direction is the study of systems out of thermal equilibrium.
On the one hand, this comprises generic non-equilibrium phenomena in closed
systems such as (pre-)thermalization (Berges et al. [2004], Gasenzer et al. [2005],
Hofferberth et al. [2007], Cramer et al. [2008], Rigol et al. [2008]) or the response
to parameter quenches (Greiner et al. [2002], Sadler et al. [2006], Calabrese and
Cardy [2006], Kollath et al. [2007]). In particular, the interest in integrable one-
dimensional systems was renewed with the experimental realization of cold atom
ensembles in cigar shaped potentials. Cold atoms are also promising setups to
investigate dynamical critical phenomena. On the other hand, ultracold quantum
gases naturally represent open quantum systems. Whereas the loss of particles
is often an unwanted effect, its influence can also be used to reveal interesting
physics. By adjusting the pump of particles or energy into the system with the
corresponding loss, such driven systems may eventually reach a non-equilibrium
steady state (Diehl et al. [2008b], Verstraete et al. [2009], Diehl et al. [2010b],
Dalla Torre et al. [2010]). Many interesting aspects of closed system like phase
transitions or scaling phenomena are to a large part unexplored in open quantum
systems.

Here we investigate the BCS-BEC crossover in two-component Fermi gases (Ea-
gles [1969], Leggett [1980], Zwerger [2012], Randeria and Taylor [2014]). It de-
scribes the s-wave pairing of fermions with pointlike interactions in two distinct
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hyperfine states, labelled |1〉 and |2〉. The nature of the pairs can be of very differ-
ent form. In the BCS-limit, the system is fermionic and Cooper pairing between
states on antipodal points of a sharp Fermi surface modify the low-energy physics
on exponentially small scales. The theory of Bardeen, Cooper, and Schrieffer
(BCS) for conventional superconductivity of weakly attractive fermions yields a
good approximate account of the many-body state. In contrast, in the BEC-
limit, every two fermions are bound into a diatomic molecule, and the fermion
chemical potential is negative. The corresponding system of composite particles
is well-described by a gas of weakly repulsive bosons, which may eventually form
a Bose–Einstein condensate (BEC).

Remarkably, both limits can be connected continuously by varying the micro-
scopic coupling strength. In the intermediate regime a strongly correlated super-
fluid emerges. At zero temperature the transition from the BCS- to the BEC-limit
is a crossover, which explains the name of the system. In most systems where
fermion pairing is relevant, such as superconductors or neutron stars, the pairing
is, however, of one particular form. In those cases the corresponding microscopic
coupling is fixed, and it determines the nature of the superfluid or superconductor
under consideration. In contrast, for cold atoms the whole BCS-BEC crossover
can be addressed by varying an external magnetic field in the vicinity of an in-
teratomic Feshbach resonance. This allows in a unique fashion to experimentally
study the transmutation from an atomic to a molecular superfluid by crossing the
strongly correlated regime. At the same time this calls for a complete theoretical
description which captures the rich phase diagram in all its facets.

Such a theoretical framework is offered by the Functional Renormalization
Group (FRG) (Wetterich [1993], Berges et al. [2002], Pawlowski [2007], Gies [2012],
Delamotte [2012], Kopietz et al. [2010], Metzner et al. [2012]). The method is
built on the functional integral formulation of quantum field theory. In the cold
atoms context we work with the coherent state path integral representation of the
grand canonical partition function. A characteristic feature of the FRG is that
it not only allows to resolve critical phenomena and scaling behavior, but also
non-universal properties of a given Hamiltonian like phase diagrams or thermo-
dynamic functions. During the renormalization group flow, the complexity of the
many-body system is treated in a length scale resolved fashion: The impact of
fluctuations on microscopic length scales is well-separated from the many-body
effects and long-wavelength excitations on large length scales. In this way the
often complicated substructure of correlation functions can be explained by the
running of couplings and the decoupling of modes when going from microscopic
to macroscopic scales.

The three-dimensional (3D) BCS-BEC crossover has been investigated exten-
sively with the FRG after the seminal works by Birse et al. [2005] and Diehl
et al. [2007a]. Landmarks are for instance the description of universality due to
an ultraviolet fixed point (Diehl et al. [2007a,b]), the correct description of the
second order superfluid phase transition in the whole crossover with critical ex-
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1 Introduction

ponents in the O(2) universality class, the inclusion of particle-hole fluctuations
in the description of the strongly correlated regime (Floerchinger et al. [2008]),
and a study of the influence of dimer-dimer- and dimer-atom-scattering onto the
many-body system (Floerchinger et al. [2010]). The corresponding approach is
technically parallel to FRG treatments of the quark-meson model (Berges et al.
[2002], Schaefer and Wambach [2005, 2008]) or partially bosonized versions of the
Hubbard model (Metzner et al. [2012]). This often leads to a fruitful mutual
influence of these fields.

In this thesis we extend these earlier works in three directions. First we attempt
to reach the level of quantitative precision which can compete with state-of-the-art
experiments and theoretical methods such as Quantum Monte Carlo calculations
or Luttinger–Ward approaches. This also aims at a solid benchmarking of our
approach and at finding possible shortcomings or missing ingredients. Second we
allow for an imbalance in chemical potential or population of |1〉- and |2〉-atom
states. In this way it is possible to destroy superfluidity at zero temperature in
either a first or second order phase transition. The qualitative resolution of this
effect requires sophisticated methods for the computation of the effective potential
of the system. Third we confine the system to two spatial dimensions (2D). This is
experimentally relevant for cold atoms, as it can be emulated in highly anisotropic
pancake traps, and may also shed light on unconventional superconductivity in
solid state materials. Due to the enhanced role of fluctuations, the theoretical
description of 2D systems is often plagued by infrared divergences. We show that
those are absent in the FRG approach and apply the methods which have been
successful in the investigation of the 3D system to the 2D BCS-BEC crossover.

In our quest for quantitative precision we mostly address the phase diagram and
the equation of state of the system. The phase diagram consists in the critical
temperature of superfluidity, Tc(µ, a) or Tc(n, a), as a function of the chemical
potential µ or density n, respectively, and the s-wave scattering length a. The
latter fully characterizes the atomic interactions, which we assume to be of zero
range. The thermodynamic information of the system is contained in the equation
of state, which can be expressed in terms of the pressure as a function of the
chemical potential and the temperature, P (µ, T, a). First or second order phase
transitions manifest themselves as non-analyticities in the equation of state. Thus
the knowledge of P (µ, T, a) allows to determine the phase diagram in those cases.

It is a beautiful and remarkably simple insight into thermodynamics in a large
external potential that the equation of state of the homogeneous gas can be ob-
tained from an in-situ density profile of the trapped gas (Ho and Zhou [2010]).
For this to hold we have to assume that there exists a local equation of state for
the gas at each point ~r in the trapping potential V (~r). We then find that the
measured in-situ density at point ~r is given by n(µ0− V (~r), T, a), where µ0 is the
chemical potential in the center of the trap. Besides good statistics for the optical
density, a precise measurement of the equation of state requires an accurate deter-
mination of µ0 and T . This is a key challenge for experiments. There have been
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equation of state measurements for the BCS-BEC crossover in both 3D (Horikoshi
et al. [2010], Nascimbène et al. [2010], Navon et al. [2010], Ku et al. [2012]) and
2D (Makhalov et al. [2014]), which focus on different parameter regimes.

By introducing a chemical potential (or spin) imbalance δµ = (µ1 − µ2)/2 be-
tween atoms in state |1〉 and |2〉, pairing becomes energetically less favourable.
In particular, for a very large imbalance, the density of minority atoms vanishes.
At zero temperature, this happens at the so-called polaron chemical potential.
For intermediate values superfluidity breaks down at a critical imbalance δµc. At
this point, pairing is no longer related to a gain in energy, and thus the system
enters a normal phase with unequal densities of |1〉- and |2〉-atoms. Within BCS-
theory, the associated Chandrasekhar–Clogston limit appears for exponentially
small mismatches of the Fermi spheres with µ1 6= µ2 (Clogston [1962], Chan-
drasekhar [1962]). However, as we cross the resonance, the Fermi surfaces soften
and superfluidity persists even for rather large imbalances.

From the mean field analysis of the spin-imbalanced BCS-BEC crossover, and
also from experiments, it is apparent that the breakdown of superfluidity often
manifests itself in a first order phase transition (Sheehy and Radzihovsky [2006],
Parish et al. [2007], Navon et al. [2013]). A computation of the effective potential
U(φ) of the pairing field φ thus has to account for the competition of local minima.
In the FRG framework this can be resolved in several ways, e.g. by higher-order
Taylor expansions of U(φ) beyond the φ4-approximation, or by projecting U(φ)
onto a complete function set like Chebyshev polynomials. Here we resolve the
effective potential on a grid of typically 100 values of φ. The FRG analysis of
the effective potential goes beyond the mean field approximation as it includes
the feedback of U(φ) onto its own RG flow. This leads to a highly coupled set
of equations, in sharp contrast to the mean field analysis, where the one-loop
integral for the effective potential is readily integrated. We reproduce the correct
perturbative limiting cases in the BCS-BEC crossover and find the transition of
the Unitary Fermi Gas (UFG) to be of first order at zero temperature.

The breakdown of superfluidity due to a mismatch of Fermi surfaces is also of
interest for neutron stars, where the imbalance between up- and down-quarks (due
to an isospin chemical potential) results from a majority of neutrons over protons.
Besides the relativistic dispersion relation of the fermions, the Lagrangian of the
system and its mean field phase diagram are strikingly similar to those of the
BCS-BEC crossover. Motivated by the finding that fluctuations beyond mean field
theory induce a Sarma phase (Sarma [1963]) in the relativistic system (Kamikado
et al. [2013], Boettcher et al. [2014b]), we search for the Sarma phase in the
nonrelativistic setting. In the Sarma phase the system is a homogeneous superfluid
with gapless fermionic excitations. Our analysis shows that in the 3D cold atoms
case fluctuations rather destroy the parameter range which allows for a Sarma
phase. Moreover, the Sarma phase only appears on the BEC-side of the crossover,
where it describes a molecular BEC sprinkled with unpaired excess atoms.

The 2D BCS-BEC crossover (Randeria et al. [1989], Drechsler and Zwerger
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1 Introduction

[1992], Loktev et al. [2001], Iskin and de Melo [2009], Bertaina and Giorgini [2011],
Bauer et al. [2014]) is similar to its 3D counterpart in the sense that it has a
fermionic limit with sharp Fermi surfaces (called BCS side), and a bosonic limit
of diatomic molecules with negative fermion chemical potential (called BEC side).
Both regimes are connected by a strongly correlated superfluid. However, there
are also inherent differences. Whereas a vacuum two-body bound state in 3D
only exists on the BEC side, there is always such a bound state in 2D. From the
corresponding binding energy εB it is then possible to define the 2D scattering
length a according to εB = −~2/Ma2, where M is the mass of the atoms. The
proper crossover parameter is given by log(kFa) with Fermi momentum kF =
(2πn)1/2. For log(kFa) = 0 the interparticle spacing is of the same order as the
interaction strength. Hence the system is strongly correlated. There is no non-
trivial unitary regime in the 2D case (Nussinov and Nussinov [2006]).

The famous Mermin–Wagner theorem forbids long-range order in the 2D BCS-
BEC crossover at nonzero temperature (Mermin and Wagner [1966], Hohenberg
[1967]). For a trapped system this is only partially relevant due to the finite extent
of the cloud. One then expects a nonzero condensate fraction which only vanishes
logarithmically with the system size. But even in the truly 2D case there is still
the possibility of a transition from a low-temperature superfluid phase to a high-
temperature normal phase by means of the Berezinskii-Kosterlitz–Thouless (BKT)
mechanism (Berezinskii [1972], Kosterlitz and Thouless [1973], José et al. [1977],
Fröhlich and Spencer [1981]). Below the transition temperature phase correlations
decay algebraically. It is thus in accordance with the Mermin–Wagner theorem.
The decay exponent is related to the anomalous dimension, which is nonzero below
the transition temperature.

We approach the 2D BCS-BEC crossover from both a theoretical and an ex-
perimental side. The theoretical description is performed with the FRG in close
analogy to the 3D case. The beta functions governing the 2D system are the same
as in 3D, however, with spatial dimension d = 2. Further modifications concern
the initial conditions of the flow due to 2D scattering physics. For the experimen-
tal part there has been a close collaboration with the experimental group of Selim
Jochim at PI Heidelberg, which realized the 2D BCS-BEC crossover using 6Li-
atoms in a highly anisotropic pancake trap. One of the experimental highlights is
the determination of the phase diagram of the system. We outline the important
steps which have been necessary for its extraction.

This thesis is organized as follows. In Sec. 2 we review the basics of ultra-
cold atomic physics. In particular, after a discussion of Feshbach resonances we
introduce the two-channel model for the BCS-BEC crossover which is employed
throughout this thesis. In Sec. 3 we discuss functional approaches to interacting
many-body systems with focus on applications to ultracold atoms. The frame-
work of Functional Renormalization is then applied in Sec. 4 to the BCS-BEC
crossover. We investigate the 3D and 2D BCS-BEC crossover in Secs. 5 and 6,
respectively. In 3D we consider the Tan contact, the balanced Unitary Fermi Gas,
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and the spin-imbalanced BCS-BEC crossover with the FRG. The discussion of the
2D system is based on a systematic comparison to the FRG-approach to the 3D
system and the experimental realization of the setup using 6Li-atoms. We draw
our conclusions in Sec. 7, where we also indicate possible directions of future
research.

The compilation of this thesis is solely to the author. The results and presen-
tations have been obtained in collaboration with many other coworkers, which
is highly appreciated by the author. Large parts of this thesis are published or
available as preprint. The related works are:

• Ultracold atoms and the Functional Renormalization Group
with S. Diehl and J. M. Pawlowski
Nuclear Physics B - Proceedings Supplements 228 63 - 135 (2012)

• Tan contact and universal high momentum behavior of the fermion propa-
gator in the BCS-BEC crossover
with S. Diehl, J. M. Pawlowski, and C. Wetterich
Physical Review A 87 023606 (2013)

• Critical temperature and superfluid gap of the Unitary Fermi Gas from Func-
tional Renormalization
with J. M. Pawlowski and C. Wetterich
Physical Review A 89 053630 (2014)

• Phase structure of spin-imbalanced unitary Fermi gases
with J. Braun, T. K. Herbst, J. M. Pawlowski, D. Roscher, and C. Wetterich
e-print available from arXiv:1409.5070 (2014)

• Sarma phase in relativistic and non-relativistic systems
with T. K. Herbst, J. M. Pawlowski, N. Strodthoff, L. von Smekal, and C.
Wetterich
e-print available from arXiv:1409.5232 (2014)

• Observation of pair condensation in a strongly interacting two-dimensional
Fermi gas
with M. G. Ries, A. N. Wenz, G. Zürn, L. Bayha, D. Kedar, P. A. Murthy,
M. Neidig, T. Lompe, and S. Jochim
e-print available from arXiv:1409.5373 (2014)
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2 Basics of ultracold atomic physics

2.1 Scales and interactions

The physics of ultracold quantum gases is governed by the interplay of several
scales. Tuning their relative size, it is possible to access different regions of the
phase diagram of the system, and thereby explore the underlying physics. In this
section, we show which scales are relevant in the context of alkali atoms. In par-
ticular, we will discuss the conditions under which we have an ultracold quantum
gas. These model-independent considerations will also reveal why it is possible to
formulate a simple effective Hamiltonian, described by a few experimentally mea-
surable parameters only, which governs all alkali (single valence electron) atoms.

Given a homogeneous gas of atoms with density n in d spatial dimensions, we
may write

n = `−d, (2.1)

with ` being the interparticle spacing. Indeed, consider a homogeneous system
in a box of volume V . We divide this volume into cells of size `d each. Putting
exactly one atom into each cell, it is possible to distribute N = V/`d particles.
Thus we arrive at the density n = N/V = `−d. For two-component fermions it is
common to associate a momentum scale kF ∝ `−1 to the density such that

kF =

{
(3π2n)1/3 (d = 3)

(2πn)1/2 (d = 2).
(2.2)

This quantity coincides with the Fermi momentum of a noninteracting system.
For an interacting system kF = kF(n) is still referred to as Fermi momentum for
convenience, but it is not related to the presence of a Fermi surface. We also
introduce the Fermi energy and Fermi temperature associated to the density by
means of εF = ~2k2

F/2M and TF = εF/kB, respectively.
Experiments on cold atoms are performed in either magnetic or optical traps,

see e.g. Pethick and Smith [2002], Pitaevskii and Stringari [2003], Ketterle et al.
[1999], Grimm et al. [2000] and references therein. As a consequence, the state
of the many-body system is not homogeneous. In particular, the local density
depends on the point in space. However, there are many cases where the picture
of a locally homogeneous system is still valid and useful (Dalfovo et al. [1999]).
In order to understand this, we consider a time-independent external trapping
potential of harmonic shape. We have

Vext(~x) =
M

2
ω2

0r
2 (2.3)
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2.1 Scales and interactions

with r = |~x| and M being the mass of the atoms. The potential is characterized
by the trapping frequency ω0. Equivalently, we may write Vext(~x) = ~ω0

2 (r/`osc)
2

with the oscillator length

`osc =

(
~

Mω0

)1/2

. (2.4)

Thus, ~ω0 and `osc are the characteristic energy and length scales of the trap,
respectively. We will later see that in a typical situation `osc constitutes the
by far largest length scale in the system. (It will, however, act as an infrared
(IR) cutoff for very long wavelength fluctuations present e.g. at a critical point.)
Accordingly, ~ω0 usually provides the smallest energy scale of the problem.

If the physics under consideration takes place on much shorter distances than
`osc, we can use this separation of scales to work with the so-called local density
approximation: Consider the density at points ~x1 and ~x2, respectively. We can
then expand n(~x1) = n(~x2)(1+O(|~x1−~x2|/`osc)). Obviously, for both points being
close to each other we can neglect the correction and assume the density to be
locally constant. In particular, for large values of `osc this may hold for subvolumes
of the trapped cloud which contain many particles. The rules of thermodynamic
equilibrium can then be applied to these small homogeneous subvolumes. We will
come back to this point in the section on thermodynamics of cold quantum gases.

The statistical behavior of the trapped cloud is determined by the ratio between
the interparticle spacing and the so-called thermal or de Broglie wavelength. To
get an intuition for the latter quantity, consider a gas of atoms coupled to a heat
bath of temperature T . The nonvanishing temperature induces a nonzero average
kinetic energy 〈p2〉T /2M per spatial direction of the particles. The thermal wave-

length is the length scale associated to this energy according to λT = h/〈p2〉1/2T .
More precisely, using p = ~k = h/λ, with k and λ being the wave number and
length, respectively, we define λT as the de Broglie wavelength of a particle with
kinetic energy p2/2M = πkBT . (The factor of π is purely conventional but stan-
dard.) This leads to

λT =

(
2π~2

MkBT

)1/2

. (2.5)

Note that λT ∼ T−1/2 becomes large for decreasing temperature. The quantities
` = `(n) and λT = λT (T ) constitute the many-body length scales of the system
due to nonzero density and temperature, respectively.

Now we compare the length scales set by the interparticle spacing and the
thermal wavelength. Thinking of particles as being represented by wave packets
rather than pointlike objects, λT determines the spread of these lumps. The ratio
`/λT is large if the wave packets of the individual particles are widely separated
and do not overlap. In this case the quantum nature of the particles does not play a
role. Indeed, we may follow the trajectory of an individual particle by subsequent
images, such that position and momentum are determined simultaneously, i.e. the
gas can be described classically. However, for `/λT . 1, we are dealing with wave
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2 Basics of ultracold atomic physics

2a

λT

ℓ

Figure 2.1: Quantum degeneracy is reached when the thermal wavelength λT is of
the same order as the interparticle spacing ` = n−1/d. In this regime
it is important for the statistics whether the particles are identical or
not, leading to quantum many-body phenomena such as Bose conden-
sation or Fermi surface formation. We also indicate a typical order
of magnitude for the scattering length a, which, in the perturbative
regime, roughly corresponds to the radius of equivalent hard-core par-
ticles with contact interactions and cross section σ ∝ a2. Figure taken
from Boettcher et al. [2012].

packets which strongly overlap. The gas is then called quantum degenerate, or
ultracold. Clearly, it is then no longer possible to distinguish the single atoms and
their trajectories. In this case we rather have to deal with the whole many-body
quantum system. The behavior is then determined by quantum mechanics, with
statistics resulting from the spin of the constituents; ultracold atoms allow for
exploring both degenerate Bose and Fermi gases.

The transition from the classical to the quantum degenerate regime occurs for
nλdT ' 1, i.e.

`/λT ' 1. (2.6)

We visualize this situation in Fig. 2.1. The combination

ω̄ = nλdT = (λT /`)
d (2.7)

is called the phase space density. It indicates the number of particles contained in
a cube with linear extension set by the de Broglie wavelength. For two-component
Fermi gases it is common to work with the ratio

T

TF
=

{
1.31(nλ3

T )−2/3 (d = 3),

2(nλ2
T )−1 (d = 2),

(2.8)

which is small for large phase space density.

Interactions and effective Hamiltonian

So far our considerations did not depend on the interactions of the particles. The
alkali atoms used in ultracold gas experiments are neutral and interact electro-
magnetically through van der Waals forces. A typical interaction potential U(r) of
two atoms separated by a distance r has a strongly repulsive part for small r. The
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r

U

true interatomic
potential U(r)

model potential with
same scattering length

Figure 2.2: The interatomic potential U(r) between two neutral atoms is of the
Lennard–Jones type, with an attractive van der Waals tail ∼ 1/r6 at
large separations. From U(r) we can calculate the scattering length a,
which is the only parameter relevant for low energy scattering. The δ-
like potential from Eq. (2.16), which is shown here in red, is an equally
good description (and more handy for practical calculations), as long
as it has the same scattering length. The reason is that under ultracold
conditions the short distance details of U(r) are never resolved. Figure
taken from Boettcher et al. [2012].

physical origin of the latter is Pauli’s principle which forbids the electron clouds of
the two atoms to overlap. This repulsive part can typically be modelled by a term
U(r) ∼ 1/r12, but a hard-core repulsion with infinite strength works as well. For
larger distances, two atoms experience an attraction due to mutual polarization
of the electron clouds. Each atom then acts as a small induced dipole, and they
attract each other according to a van der Waals interaction U(r) ∼ −1/r6. (We
show the generic shape of the total interatomic potential, the Lennard–Jones po-
tential, in Fig. 2.2.) We thus approximate the microscopic interaction potential
to be

UvdW(r) =

{
∞ (r ≤ r0),

−C4/r
6 (r > r0).

(2.9)

We can use this expression to construct a typical length scale, the van der Waals
length, which characterizes the interatomic interactions. The typical length scale
for zero energy scattering is obtained from equating the kinetic energy of a particle
with momentum p = ~/`vdW and reduced mass M/2, and the potential energy
UvdW(r = `vdW). This results in

`vdW =

(
MC6

~2

)1/4

. (2.10)

For typical values of C6, we find that `vdW = (50...200)a0 (a0 = 0.53× 10−10m
the Bohr radius), which crucially is much smaller than the interparticle spacing
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and the thermal wavelength (cf. Tab. 2.1):

`, λT � `vdW. (2.11)

The many-body effects in an ultracold gas we are interested in thus never resolve
physics beyond the van der Waals length. As a consequence, we will be able to
specify an effective low energy Hamiltonian, valid on length scales & `vdW, as the
microscopic starting point of our calculations.

After indicating the rough scale associated to interactions, we now identify
the relevant physical parameter which can be extracted from scattering experi-
ments, the scattering length. This length scale characterizes two-body collisions
and emerges universally as the sole parameter characterizing low energy collisions
in potentials of sufficiently short range, such as 1/r6 as we deal with here. To see
this, let us consider low energy elastic scattering of two particles in a quantum
mechanical framework. (As we explain below, we can assume only elastic two-
body processes to be relevant; further note that our meaning of “low energies”
is quantified by Eq. (2.11).) Restricting ourselves to three dimensions for con-
creteness, the relative wave function of two quantum particles colliding along the
z-axis in a short range potential can be written as

ψp(~x) = eipz/~ + f(p, θ)
eipr/~

r
. (2.12)

The scattering amplitude f(p, θ) depends on the center of mass energy p2/2mr (mr

is the reduced mass) and the scattering angle θ. Solving the scattering problem
for a particular potential U(r) consists in determining f(p, θ) or, equivalently, all
partial wave scattering amplitudes fl(p) in the expansion f(p, θ) =

∑∞
l=0(2l +

1)fl(p)Pl(cos θ) with Legendre polynomials Pl. A nonvanishing relative angular
momentum l of the scattering particles introduces a centrifugal barrier term ~2l(l+
1)/2mrr

2 in the Schrödinger equation of relative motion. As a lower estimate for
the corresponding energy, we can replace r2 → `2vdW and find that this barrier
is far too high for particles with energies p2/2mr � ~2/`2vdW. Therefore, only
isotropic s-wave-scattering (l = 0) occurs in ultracold alkali quantum gases.

With p = ~k, the low momentum expression of the s-wave scattering amplitude
is given by

f0(p) =
1

− 1
a + 1

2rep2 − ip+ . . .
. (2.13)

In this expansion, a is the scattering length anticipated above. It constitutes the
most important parameter quantifying scattering in ultracold quantum gases in
three dimensions. The coefficient re is referred to as effective range. It represents
a correction which for the available p in ultracold gases is subleading, and thus
we work with f ' −a. From Eq. (2.12) we then have ψ(~x) ∼ −a/r for large r
and low momenta.

The limitation to s-wave scattering has drastic consequences for ultracold gases
of identical fermions. They are necessarily noninteracting. Collisions would only
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2.1 Scales and interactions

be possible in the p-wave or higher channels, but these cannot be reached due to
the low energies. In order to have interactions between ultracold alkali fermions,
we therefore always need at least two different species.

From a low energy expansion of the s-wave scattering amplitude in one and
two dimensions, respectively, it is possible to derive parameters similar to a which
quantify scattering in reduced dimensionality. Such low dimensional geometries
can be designed in experiments by choosing a highly anisotropic harmonic poten-
tial with strong confinement in either two or one directions. We refer to Sec. 6.1.1
for scattering theory in two dimensions.

Let us briefly comment on the role of inelastic collisions. For collisions which
do not change the spin of the particles, the most important inelastic mechanism is
the formation of a molecule: If two atoms come close to each other, there may be
energetically lower lying bound states and it is desirable for both atoms to build
a molecule. However, without a third partner which allows for conservation of
energy and momentum in this process, the excess energy from binding cannot go
anywhere. Therefore, in two-body processes molecule formation is ruled out. If
a third atom is involved, we end up with a high kinetic energy of both the third
atom and the molecule. These fast particles are then expelled from the trap.
This three-body loss results in a finite lifetime of the gas. Due to diluteness and
the contact interaction nature of ultracold atoms, such processes are suppressed
and we find stable gases even at extremely low temperatures, where solidification
would be expected. Increasing the density, we have to ensure the typical time
scale of three-body recombination to be much larger than the experimental time
of observation.

Equipped with the length scale characterizing interactions, we give a concrete
meaning to the notion of “weak” interactions by requiring the scattering length
to be much smaller than the interparticle spacing in this case. This is equivalent
to the gas parameter |a|n1/3 being small. The criterion for weak interactions

|a|n1/3 � 1 (2.14)

is often referred to as diluteness condition. This interpretation is motivated by
the fact that the scattering length provides the typical extent of a particle as far
as its collisional properties are concerned. We indicate this in Fig. 2.1. In the
dilute regime it is possible to perform perturbation theory in the gas parameter.

For short range interaction potentials and low energy scattering, the s-wave
scattering length can be calculated within the Born approximation. It is then
given by the Fourier transform of the interaction potential at zero wave vector,

a =
M

4π~2

∫
d3xU(r). (2.15)

In particular, this formula can be applied to the Lennard–Jones potential for cold
atoms introduced above. Importantly, from Eq. (2.15) we learn (i) that value
and sign of the scattering length may depend sensitively on the short distance

21
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physics of the interatomic potential and (ii) that we do not need to know these
details, since very different shapes of the interaction potential will have the same
scattering length, i.e. the same low energy scattering behavior. Quite remarkably,
it is therefore possible to replace the microscopic Lennard–Jones potential by any
other model potential producing the same scattering length (cf. Fig. 2.2). For
practical reasons, it is often convenient to work with completely local contact
potentials

UΛ(r) = gΛδ(~x). (2.16)

This simple model potential needs regularization at short distances and a subse-
quent renormalization procedure. We remind to this fact with the index referring
to an ultraviolet cutoff Λ. The cutoff-independent renormalized coupling constant
g is related to the physically measured scattering length by the simple formula

a =
M

4π~2
g. (2.17)

The above considerations on ultracold atoms can be summarized in the effective
Hamiltonian

Ĥ =

∫
~x

(
â†(~x)

(
− ∇

2

2M
+ Vext(~x)

)
â(~x) + gΛn̂(~x)2

)
, (2.18)

where the operators â†(~x) and â(~x) create and annihilate an atom at point ~x,
respectively, and n̂(~x) = â†(~x)â(~x) is the local particle density operator. Note
that the power of two in the interaction term ∼ gn̂2 stems from the fact that
two particles have to meet at one point in order to interact. The trapping po-
tential Vext(~x) lifts the energy of the particles at the point ~x and thus this term
is proportional to n̂(~x). This rather universal Hamiltonian provides an accurate
description for all ultracold alkali atoms.

It is a key feature of ultracold quantum gases that they are accurately described
by effective microscopic Hamiltonians which depend only on a few system parame-
ters. The latter can be measured in experiments to a high precision, e.g. by spec-
troscopic methods or by measurement of the collisional cross sections (Grimm
et al. [2000]), without the need to resolve the full interatomic potentials. This
situation is very distinct from condensed matter systems, where the underlying
microscopic model is not known to such precision, and often has to be approxi-
mated by an educated guess. Moreover, realizations of ultracold quantum gases
allow to change the system parameters continuously and thus to understand their
influence on the many-body state.

In Table 2.1 and Fig. 2.3 we summarize our discussion by indicating the stan-
dard scale hierarchy, which is built up from the scattering length a, the inter-
particle distance (density) `, the thermal wavelength (temperature) λT and the
oscillator length `osc. Moreover, the system has a natural UV cutoff Λ−1 � `vdW.
Microscopic details on shorter length scales are irrelevant for our purposes because
none of the many-body length scales can resolve the underlying physics.
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2.1 Scales and interactions

Scattering length Particle spacing Th. wavelength Trap size

a ` λT `osc

(3 . . . 10)nm (0.1 . . . 1)µm (0.5 . . . 5)µm (0.5 . . . 20)µm

Table 2.1: Standard scale hierarchy in ultracold quantum gases with typical val-
ues. The ratios of scales have the following physical meaning. a/`� 1:
weakly interacting or dilute. `/λT � 1: ultracold. As long as `osc is
the largest length scale, the local density approximation is valid (except
for long distance physics in the vicinity of a critical point). In order to
simulate a 2D geometry, the transverse z-direction may be confined to
`osc,z = 0.5µm with a radial trapping `osc,r = 10µm. This results in an
aspect ratio η = ωz/ωr = 400.

Figure 2.3: Violations of the scale hierarchy which do not invalidate the effective
Hamiltonian since all length scales are still much larger than `vdW.
Figure taken from Boettcher et al. [2012].

It is both experimentally and theoretically appealing that ultracold atoms can
be tuned such that they violate the scale hierarchy, allowing to reach strongly
interacting regimes – crucially, without loosing the validity of the above discussion.
One way is provided by Feshbach resonances of the scattering length. Here, we
can loosen the condition |a| � ` and explore new regimes of the many-body
system which are not captured by mean field theory or perturbative expansions.
Such resonances are realized in cold atoms if a bound state is located close to the
zero energy scattering threshold, and is tuned to resonance due to the variation
of an external magnetic field B. From this we infer that a Feshbach resonance is
a result of a specific fine-tuning of the microphysics. The scattering length can
then be parametrized according to

a(B) = abg

(
1− ∆B

B −B0

)
, (2.19)

where abg, ∆B and B0 are background scattering length, width and position of the
resonance, respectively. Obviously, approaching B0 we can obtain an anomalously
large scattering length, meaning that, by virtue of fine-tuned microphysics, it

23



2 Basics of ultracold atomic physics

greatly exceeds the generic scale set by the van der Waals length,

|a| � `vdW. (2.20)

We discuss Feshbach resonances in more detail in Sec. 2.4 when introducing our
effective model for the BCS-BEC crossover.

Another way to reach an interaction dominated regime is by superimposing an
optical lattice (Lewenstein et al. [2006], Bloch et al. [2008]). This is a standing
wave of counterpropagating laser beams in each spatial direction, which provides
a conservative periodic potential landscape for the atoms. Tuning the depth
of the lattice wells via the laser intensity, we can withdraw the kinetic energy
more strongly then the interaction energy and thus arrive at a strongly correlated
system. The lattice spacing is related to the wavelength of the light used for the
optical lattice. By engineering neighboring sites close to each other, we can reach
high densities (“fillings”). Each of these effects enhances the correlations in the
system.

Recall that the validity of the effective Hamiltonian in Eq. (2.18) is restricted
to length scales sufficiently larger than `vdW. Since the mentioned scale violations
happen at larger scales, the faithful microscopic modelling is not touched. There-
fore, the pointlike description of the interactions is also applicable in the dense
and strong coupling regimes.

For a more detailed presentation of low energy universality in atomic few-body
systems and from the viewpoint of quantum field theory we refer to Braaten and
Hammer [2006].

2.2 Thermodynamics

In this section we review a few thermodynamic concepts which are of relevance
for experiments with ultracold atoms. We derive general thermodynamic state-
ments, which hold independently of the particular system under consideration.
We will see that the phase diagram and the equation of state encode important,
experimentally accessible information about a many-body system and thus are
desirable quantities to be computed from first principles. This also serves as one
of the motivations to investigate cold atoms with the Functional Renormalization
Group.

For thermodynamics to be applicable, we require the internal processes of a
many-body system to be such that the system is in equilibrium on the time scale
of observation. Strictly speaking, thermodynamic statements and, in particular,
the theory of phase transitions are only valid in infinitely large systems. But this
requirement is less severe as it might seem at first sight because any thermody-
namic relation can be expressed in terms of intensive quantities only, like particle
density, entropy density, or magnetization per particle. Taking these densities to
be local quantities, we can apply the laws of thermodynamics locally for small
subsystems of finite volume and particle number. This procedure works perfectly

24



2.2 Thermodynamics

at room temperature with large particle numbers N ∼ 1023, and is still justified
for trapped gases with typically N ∼ 103 − 106. In addition, systems with low
atom loss rate and long lifetime can indeed be assumed to be thermodynami-
cally equilibrated over the period of observation. Such a system is provided by
two-component fermions in the BCS-BEC crossover.

We recall that the full thermodynamic information of a system is stored in the
equation of state P (µ, T ), which can be expressed in terms of the pressure as a
function of chemical potential and temperature. Using the Gibbs–Duhem relations
dP = ndµ + sdT and ε = Ts − P + µn we can calculate all other intensive
thermodynamic quantities from the pressure. Here, n = N/V , s = S/V and
ε = E/V are the densities of particle number, entropy and energy, respectively.
The chemical potential µ is a parameter which determines the particle number
N(µ) for a given temperature. Eliminating µ for the density n(µ, T ), the equation
of state can also be formulated in terms of the free energy density f(n, T ), which
is the Legendre transform of the pressure according to f = µn− P .

In order to understand the influence of a trap, we consider a cloud in a time-
independent external potential Vext(~x) which varies on much larger length scales
than the typical atomic ones (e.g. interparticle spacing and scattering length).
Picking two neighboring small but yet macroscopic subvolumes V1 and V2 of the
cloud, thermal and chemical processes between them will result in the equality of
their temperature and chemical potential. Since the subvolumes were arbitrary, we
conclude that temperature and full chemical potential are constant inside the trap.
However, from the Gibbs-Duhem relation we infer that the full chemical potential
corresponds to the Gibbs free energy G = F + PV per particle: µ = G/N . The
latter is spatially inhomogeneous due to the trap and we find µ = µhom(n(~x), T )+
Vext(~x) = const. In this formula, µhom(n, T ) is the internal chemical potential
obtained from a calculation in a homogeneous setting, e.g. a box of volume V
containing N particles.

We conclude that a system where the thermodynamic quantities are replaced
according to

P (µ, T )→ P (µ− Vext(~x), T ) (2.21)

behaves like a system trapped in a potential of large spatial extent. This prescrip-
tion is called local density approximation (LDA). The above derivation provides
an intuitive understanding why this procedure should give reasonable results. Of
course, if we cannot pick small, yet macroscopic subvolumes, the argument breaks
down. The applicability of LDA is therefore limited to systems where the trap
`osc provides the largest length scale. This agrees with our earlier considerations.
From a field theory perspective it is very promising that properties of homoge-
neous systems can be obtained from trapped gases and, indeed, there have already
been beautiful measurements of the equation of state of the BCS-BEC crossover
to a high precision using LDA (Nascimbène et al. [2010], Navon et al. [2010], Ku
et al. [2012]).

The equation of state also contains information about possible phase transi-
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Figure 2.4: Within LDA, the inner regions of the trapped cloud correspond to
higher local chemical potentials: µloc(r) = µ− Vext(r). We show here
the density profile of a weakly interacting Bose gas in an external
harmonic confinement. The inset shows a typical phase diagram in
the (µ, T )-plane, where the blue region represents the superfluid phase.
We cross the critical line of the superfluid phase transition for fixed
temperature T at a certain chemical potential µc(T ). This corresponds
to a kink in the density profile at a critical value nc(T ). Note, however,
that LDA breaks down in the outer regions of the cloud, where the
gas is extremely dilute. Figure taken from Boettcher et al. [2012].

tions appearing in the many-body system. Phases consist of extended parameter
regimes which can be distinguished from each other by macroscopic observables.
As an example, we consider the element iron. Despite the difference of solid,
liquid and gaseous phase we can independently also distinguish the ferromagnet-
ically from the antiferromagnetically ordered phase, or furthermore the crystal
structures of γ-Fe and α-Fe. Phase transitions manifest themselves through kinks
and jumps in the thermodynamic functions, typically in the higher derivatives of
P (µ, T ). These root in non-analyticities contained in the partition function. It
is easy to see that true phase transitions need a continuum of degrees of free-
dom, i.e. occur only in the thermodynamic limit. Indeed, the partition function
is Z = Tre−βH =

∑
n e
−βEn , En the eigenenergies of the system. Each of the

contributions is analytic. Non-analyticities can only be generated in the case of
infinitely many states entering the sum.

More formally, we distinguish two phases by an order parameter ρ0(µ, T ), which
depends on the thermodynamic variables. In different phases, it is either zero or
nonzero, which gives rise to the phase diagram in the (µ, T )-plane. For a fixed
value of the chemical potential, we define the critical temperature Tc(µ) at a
second order phase transition via the relation ρ0(µ, Tc(µ)) = 0+. Of course, we
can also fix the density n to obtain the critical temperature Tc(n) as a function
of n.

In the regime where LDA is applicable, the local chemical potential µloc(~x) =
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µ− Vext(~x) has its largest value at the minima of the trapping potential. Accord-
ingly, an increase of the potential reduces µloc. For this reason, we can scan the
phase diagram over a certain region from a density image in a harmonic potential
Vext(~x) = M

2 ω
2
0r

2, see Fig. 2.4. From our above considerations we conclude that
the corresponding path in the (µ, T )-plane is an isothermal line. In particular,
we may cross the phase boundary when the local chemical potential reaches the
critical value µc(T ). For this reason, we can have a superfluid gas in the inner
regions of the cloud, whereas the outer shell is in its normal phase. The lobes in
the phase diagram of the Bose-Hubbard model lead to a wedding cake structure
of the density profile (Fölling et al. [2006]).

2.3 Noninteracting Bose and Fermi gases

After these general remarks on thermodynamics we turn our attention to degener-
ate, noninteracting Bose and Fermi gases. The notions of Bose–Einstein conden-
sation and Fermi surfaces are introduced. They constitute the two cornerstones
of quantum statistical phenomena and are crucial for understanding interacting
gases.

The state of a single particle can be addressed by its momentum ~p and spin-
projection σ. The corresponding occupation numbers n~p,σ are restricted to 0, 1 for
fermions due to Pauli’s principle, whereas they can have arbitrary integer values
0, 1, 2, . . . for bosons. As is known from statistical mechanics, we then find for the
equation of state

P (µ, T ) = ∓gkBT

∫
ddp

(2π~)d
log
(

1∓ e−β(εp−µ)
)
, (2.22)

where εp = ~p2/2M and g is the spin degeneracy of the momentum states. We
have g = 1 for spinless bosons considered here, and g = 2 for spin-1/2 fermions.
The upper (lower) sign in Eq. (2.22) holds for bosons (fermions). As we will see
below, for bosons, this expression is only valid in the absence of a condensate.

Free bosons and Bose–Einstein condensation

To understand the appearance of condensation as a purely quantum statistical
effect, we consider an ideal gas of identical bosons. At zero temperature, we
expect all bosons to be in the single particle state with energy ε = 0. In particular,
this means that the occupation number N0 of that state is extensive, N0 ∼ V .
We say that the zero mode ε = 0 is occupied macroscopically. At low nonzero
temperature some particles will be thermally excited into the higher states. At
very high temperatures we approach the Boltzmann limit, where all occupation
numbers are small (in particular, none of them is occupied macroscopically) and
the distribution function n(ε) is very broad. Therefore, there must be a critical
temperature Tc below which macroscopic occupation of the single particle ground
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state sets in. Since this particular behavior is due to quantum statistics and absent
in a classical gas, we can estimate the critical temperature very roughly to satisfy
λTc ' `.

We obtain the particle number in a three-dimensional box of volume V by virtue
of a µ-derivative of Eq. (2.22) as

N(T, V, µ) =
∑
~q

〈â†~qâ~q〉 =
V

λ3
T

1

Γ(3/2)

∫ ∞
0

dε
√
ε

eε−βµ − 1
. (2.23)

For fixed temperature and volume, this formula has a maximum Nmax at µ = 0.
However, if we decide to put more than Nmax particles into the box, the expression
necessarily becomes invalid. The critical temperature Tc(n) where this happens
is determined by the critical phase space density

ω̄c = nλ3
Tc

= (λTc/`)
3 !

= ζ(3/2) ' 2.612, (2.24)

i.e. λTc/` is indeed of order unity as anticipated above.
Since our starting point was physically sound, but we ended up with an unphys-

ical result, we must have made an error. This led Einstein and Bose to treating
the zero momentum mode separately. Indeed, in Eq. (2.23) we did not appropri-
ately incorporate the states with ε = 0: Replacing the quantized momenta of the
finite system, ~p~n = 2π~~n/L, in the naive continuum limit

1

V

∑
~n∈Z3

→
∫

d3p

(2π~)3
∼
∫ ∞

0
dε
√
ε, (2.25)

we multiply the contribution from the zero energy state with ε = 0 (or equivalently
p2 = 0). This corresponds to a vanishing occupation of the single particle ground
state, which constitutes a bad approximation, as is apparent from our above
considerations.

Therefore, the situation at temperatures T < Tc(n) is as follows. Formula (2.23)
with µ = 0 describes the excited particles in the states with ε > 0. The remaining
N0(T ) = N −Nex(T ) particles are condensed to the zero energy state, leading to
its macroscopic occupation. This resolves the puzzle from above. If we put more
than Nmax particles into the box, they will add to the condensate. The particle
number below Tc is given by

N(T, V ) = 〈â†~0â~0〉+
gV

λ3
T

ζ(3/2). (2.26)

Obviously, N0(T ) = 〈â†~0â~0〉 ∼ V is extensive. The condensate fraction N0(T )/N
is an order parameter for the Bose–Einstein condensation phase transition. From
Eq. (2.24) we conclude

N0(T )

N
= 1−

(
T

Tc

)3/2

for T ≤ Tc. (2.27)
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T

µ(n, T )

d = 3

d = 2

Tc,3d

Figure 2.5: We plot the chemical potential µ(n, T ) from Eq. (2.22) for an ideal
Bose gas at fixed density n. In three spatial dimensions, the function
hits zero at Tc(n) > 0. Since Eq. (2.22) cannot be applied for positive
µ, the chemical potential remains zero and condensation sets in. In
contrast, the chemical potential in two dimensions is negative for all
T > 0 and thus there are always enough thermally excited states and
condensation is absent. Figure taken from Boettcher et al. [2012].

It vanishes continuously for T → Tc, which signals a second order phase transition.

In Eq. (2.25) we used the three-dimensional density of states ρ(ε) ∼ √ε to show
why condensation appears. In d spatial dimension, we have ρ(ε) ∼ εd/2−1 and the
ground state contribution is not multiplied by zero for d ≤ 2. Indeed, a similar
calculation shows that for one- and two-dimensional systems the particle number
N(T, V, µ) does not have a maximum at nonzero temperatures and thus Bose–
Einstein condensation is absent. For d = 1 this also holds at zero temperature.
In Fig. 2.5, we plot the chemical potential as a function of temperature. Whereas
µ(Tc) = 0 for a nonzero Tc in three dimensions, we find Tc = 0 for d = 2.
Our finding for noninteracting particles is a special case of the generally valid
Mermin–Wagner theorem (Mermin and Wagner [1966], Hohenberg [1967]), which
states that there is no spontaneous breaking of a continuous symmetry in d ≤ 2
(noncompact) dimensions. The ingredients to this theorem are the locality of the
underlying Hamiltonian, and the universal relativistic long-wavelength form of the
dispersion relation. The long-range order is then destroyed by fluctuations with
very long wavelengths. However, in atomic gas experiments the trap provides
the largest length scale `osc, such that these fluctuations are not present and
condensation can be observed in lower-dimensional geometries.

Free fermions and Fermi surface

Whereas the appearance of a Bose–Einstein condensate is closely related to the
fact that identical bosons can have arbitrarily large occupation numbers, the no-
tion of a Fermi surface is a consequence of Pauli’s principle for many-fermion
systems.
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2 Basics of ultracold atomic physics

To get an intuition, we consider an ideal gas of N identical fermions and ask:
What is the ground state of the quantum many-body system? (This state is
realized at zero temperature.) Obviously, each of the particles seeks to minimize
its energy. But since every single particle state can only be occupied by at most
one fermion, the ground state will be such that precisely the N energetically
lowest lying states are occupied. Equivalently, due to rotation symmetry, all
states with momenta inside a sphere of radius pF in momentum space will be
occupied. Restricting to three dimensions, we can count states by dividing the
classical phase space into cells of volume h3. This yields

N
!

=
gV

(2π~)3

4π

3
p3

F. (2.28)

We call pF = ~kF the Fermi momentum and deduce

kF(n) = (6π2n/g)1/3. (2.29)

From pF we construct the Fermi energy and temperature, εF = εpF = p2
F/2M and

TF = εF/kB, respectively.
Our simple picture of the many-body ground state is correct, because from Eq.

(2.22) we have

n =
∂P

∂µ
= g

∫
d3p

(2π~)3

1

eβ(εp−µ) + 1

T→0−−−→ g

∫
d3p

(2π~)3
θ(µ− εp) =

g

6π2~3
(2Mµ)3/2. (2.30)

On the other hand, from the zero temperature limit of the Fermi–Dirac distribu-
tion we infer that the highest energy present in the system is εF = µ and thus we
find pF = (2Mµ)1/2. As before, we eventually arrive at kF = (6π2n/g)1/3. The
Fermi–Dirac distribution at zero temperature is shown in Fig. 2.6.

What happens to this picture at nonzero temperature? The Fermi–Dirac distri-
bution nF(ε) = (e(ε−µ)/kBT + 1)−1 is no longer a sharp step function but is rather
smeared out around ε = µ. Nevertheless, the smeared out region is of order kBT ,
whereas the distance of the edge from ε = 0 is of order µ ' εF = kBTF. Therefore,
as long as T/TF � 1, the distribution function looks approximately like a step
function. We visualize this situation in Fig. 2.6. For T > 0, there are thermally
excited particles with energies close to the chemical potential. We conclude that
the low lying excitations of a Fermi gas are not at zero momentum but rather at
momenta close to the Fermi surface, which consists of the momenta |~p| = pF.

2.4 Feshbach resonances and BCS-BEC crossover

In this section we introduce the BCS-BEC crossover of two-component ultracold
fermions. For this purpose we discuss the underlying physics of a Feshbach res-
onance (FR), and then motivate the two-channel model for a field theoretical
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Figure 2.6: The Fermi–Dirac distribution at zero temperature (solid line) consti-
tutes a step function. For T > 0 (dashed line), broadening appears in a
region of width kBT around the Fermi edge located at ε = εF = kBTF.
If the distance of the edge from the origin is much larger than the area
of broadening, the distribution function still displays the characteris-
tic step-like behavior. Clearly, this picture is valid for the dimension-
less parameter T/TF being small. Figure taken from Boettcher et al.
[2012].

description of the BCS-BEC crossover. We also discuss its relation to the single-
channel model in the case of a broad FR. We refer to Boettcher et al. [2012] for a
pedagogical introduction to the BCS-theory of superfluidity and the Bogoliubov
description of the BEC-limit.

Feshbach resonances and microscopic model

There are two cornerstones of quantum condensation phenomena in the weak
coupling regimes: On the one hand, attractive interactions lead to superfluidity
of two-component fermions via the formation of Cooper pairs. The momenta of
two fermions constituting such a pair are located on opposite points of the Fermi
surface. This locality in momentum space implies that the spacing between them
may be large in position space. On the other hand, there is Bose condensation of
weakly repulsive bosons, which are microscopically pointlike objects localized in
position space. Such bosons could effectively be realized as tightly bound pairs of
two fermions.

There exists an experimental knob to connect these two scenarios, the atomic
FR (Grimm et al. [2000]), which allows to change the scattering length through
the variation of an external magnetic field B. We write

a(B) = abg

(
1− ∆B

B −B0

)
, (2.31)

where abg, ∆B and B0 are parameters which can be determined experimentally.
This formula is a decent parametrization in a range of order ∆B around B ≈

31



2 Basics of ultracold atomic physics

B0. In particular, at B = B0 the scattering length changes sign and becomes
anomalously large, |a| � `vdW. Recall that this does not invalidate our effective
Hamiltonian and the fact that scattering can be assumed to be pointlike, see the
discussion at the end of Sec 2.1.

Sufficiently stable ultracold quantum gases of two-component fermions are built
from either 6Li or 40K, which are alkali atoms. Their internal structure is relevant
in order to have fermionic s-wave interactions at all, but also manifests itself in
the appearance of Feshbach resonances. To understand this, we consider a single
alkali atom. We can approximate the system to consist of an atomic core and a
valence electron. The ground state of the system is given by the electron being in
the s-orbital. Accordingly, the orbital angular momentum of the valence electron
vanishes (` = 0) and thus a fine structure does not appear. However, the electron
spin S couples to the spin of the nucleus I. The resulting quantum number F
introduces a (tiny) hyperfine splitting of the ground state. Since S = 1/2, the
value of F is given by F = I ± 1/2. In addition, every hyperfine state has a
(2F + 1)-fold degeneracy mF = −F, . . . , F . Thus, alkali atoms in their electronic
ground state can be distinguished according to their hyperfine state |F,mF 〉.

Now suppose that two atoms in different hyperfine states scatter off each other.
Due to the internal (spin) structure of the colliding partners, we call this a multi-
channel scattering process. The two-body system of atoms will be in a superpo-
sition of the singlet and the triplet state. Depending on the species of atoms, the
former will have a higher or a lower energy than the latter, while the first option
is more generic. Moreover, due to the hyperfine coupling there will in general be a
mixing between both states. For our purpose it is enough to restrict our consider-
ations to two relevant channels, an open and a closed channel, which have different
magnetic moments. We normalize the potential such that two atoms in the open
channel at infinite distance have zero energy; this sets the scattering threshold.
The closed channel is separated from the open one by a large energy gap ∆E (cf.
Fig. 2.7). It thus cannot be accessed by atoms in the lower channel. The relevant
feature of the closed channel is a bound state lying close to the open channel scat-
tering threshold. It is evident that this situation is not particularly generic since
typical bound state level spacings are much larger than typical collision energies
in ultracold gases, and thus requires specific, fine-tuned conditions.

Due to a difference in magnetic moment ∆µ, open and closed channel couple
differently to an external magnetic field B. For this reason, the difference in
energies between both channels can be tuned according to ∆E → ∆E + ∆µ · B.
Consider a particular bound state from the closed channel. Its energetic distance
from the scattering threshold E = 0 is called the detuning

ν(B) = ∆µ · (B −B0) . (2.32)

Due to second order processes, where two colliding atoms virtually enter the closed
channel and then leave it again, a bound state with small ν affects the scattering
properties of the alkali atoms. In particular, changing the magnetic field such
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r

U

closed channel

open channel
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Figure 2.7: Interatomic potential U between two fermions in distinct hyperfine
states separated by a distance r. The closed channel consists of bound
states. Low energy scattering can only take place in the open channel.
However, by changing the external magnetic field B, we can drive one
of the bound states close to the scattering threshold at U(r →∞) = 0.
The energy distance related to this particular bound state is denoted
as ν(B) = ∆µ · (B − B0). The resulting scattering length a = a(B)
is parametrized according to Eq. (2.31). For B ≈ B0, it becomes
anomalously large, and thus it can largely exceed the interparticle
spacing: |a| � `vdW ⇒ |(kFa)−1| . 1. Figure taken from Boettcher
et al. [2012].

that ν → 0, both channels become resonant and we obtain a strongly interacting
system.

We will see below that the scattering physics in the vicinity of a broad Feshbach
resonance will effectively look like that of pointlike fermions, however, with a
magnetic field dependent scattering length a(B) as in Eq. (2.31). The scattering
properties can thus be controlled by an external knob. This constitutes the most
important application of Feshbach resonances in ultracold atomic physics. For
more detailed discussions we refer to Chin et al. [2010].

We now incorporate the physics of a Feshbach resonance for two-component
fermions on the level of the microscopic action. The action for a fermionic theory
with pointlike interactions is given by

Sψ[ψ∗, ψ] =

∫
X

(
ψ†
(
∂τ −

∇2

2M

)
ψ +

λbg

2
(ψ†ψ)2

)
, (2.33)

with Grassmann fields ψ = (ψ1, ψ2), see Eq. (2.18) and Sec. 3.1.1. Eq. (2.33)
constitutes a single-channel model. To simplify notation we drop the dependence
on the chemical potential in the following.

The closed channel can be included explicitly in terms of a microscopic bosonic
field ϕ, which constitutes a composite degree of freedom resulting from the in-
terconversion of two fermions into a closed channel molecule. The action for this
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boson field is modelled as

Sϕ[ϕ∗, ϕ] =

∫
X
ϕ∗
(
∂τ −

∇2

4M
+ ν
)
ϕ . (2.34)

The most important term is the detuning ν, which acts as a mass term for the
bosons. In addition, we allow for a Galilean invariant kinetic term, where the
prefactor of 1/4M is related to the mass 2M of the composite object. As we will
see in a moment, the microscopic kinetic term is, however, unimportant for the
case of broad Feshbach resonances which are studied here, and could be equally
well omitted. The full microscopic action from which we will extract the physics
of the BCS-BEC crossover is then given by (Holland et al. [2001])

S[ψ∗, ψ, ϕ∗, ϕ] =

∫
X

(
ψ†
(
∂τ −

∇2

2M

)
ψ +

λbg

2
(ψ†ψ)2

+ ϕ∗
(
∂τ −

∇2

4M
+ ν
)
ϕ− h

(
ϕ∗ψ1ψ2 − ϕψ∗1ψ∗2

))
. (2.35)

The Yukawa-type cubic coupling ∼ hϕ∗ψ1ψ2 (called Feshbach coupling in the cold
atom context) allows for the interconversion of two fermions of opposite spin into
one molecule.

The parameters λbg, ν and h of the microscopic action can be measured in exper-
iment. We show here that they correspond to the three parameters in Eq. (2.31)
for the scattering length a(B) across a Feshbach resonance in the broad resonance
limit. For this purpose, we consider the functional integral Z =

∫
DϕDψ e−S[ψ,ϕ].

For fixed ψ and ψ∗, we can perform the Gaussian integral in ϕ∗ and ϕ. This is
equivalent to the saddle-point approximation about the solution of the mean field
equations of motion,

δS

δϕ∗
= 0 ⇒ ϕ =

h

∂τ −∇2/4M + ν
ψ1ψ2 . (2.36)

As the action is quadratic in ϕ, the saddle-point approximation is exact. If we
formally insert this into the partition function and integrate out the bosonic fields,
we arrive at the action

S[ψ∗, ψ] = Sψ +

∫
X
ψ1ψ2

h2

∂τ −∇2/4M + ν
ψ∗1ψ

∗
2 , (2.37)

with Sψ from Eq. (2.33). We emphasize that the procedure described here cor-
responds to reversing a Hubbard–Stratonovich transformation for a slightly more
complicated inverse boson propagator; this is possible due to the fact that in Eq.
(2.34) we work with a quadratic bosonic action. We now take the broad reso-
nance limit, where h2, ν → ∞ with h2/ν kept fixed. Then, we can neglect the
derivatives corresponding to frequency and momentum dependence of the effective
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2.4 Feshbach resonances and BCS-BEC crossover

four-fermion vertex. More precisely, we scale ν ∼ h2 for h→∞, while leaving the
derivative coefficients of order unity. We then obtain the action

S[ψ∗, ψ] = Sψ[ψ∗, ψ]− 1

2

h2

ν

∫
X

(ψ†ψ)2 . (2.38)

Apparently, this coincides with a purely fermionic action with an effective coupling

λeff = λbg −
h2

ν
. (2.39)

We conclude that in the broad resonance limit the two-channel and the single-
channel model become equivalent (Diehl and Wetterich [2006, 2007], Gurarie and
Radzihovsky [2007]). The single channel model, however, acquires an additional
effective contribution to the coupling constant. The Feshbach resonances in 6Li
and 40K are broad. The narrow resonance limit is conceptually interesting, as
it can be solved exactly (Diehl and Wetterich [2006], Gurarie and Radzihovsky
[2007]). Moreover, recently, examples of narrow resonances have been studied
experimentally (Kohstall et al. [2012]). In an RG language, it corresponds to a
Gaussian fixed point, while the broad resonances are governed by an interacting
fixed point (Diehl et al. [2007b]). The broad resonance fixed point is characterized
by a large degree of universality (Nikolić and Sachdev [2007], Diehl et al. [2007b]).

Assuming the couplings in Eq. (2.39) to be the renormalized ones, we can relate
them to the scattering length according to λ = 4πa/M .1 We find

a =
M

4π

(
λbg −

h2

ν

)
. (2.40)

Comparing this to Eqs. (2.31) and (2.32), we find that indeed ν = ∆µ · (B −
B0) corresponds to the detuning from resonance. The four-fermion coupling λbg

is related to the background scattering length in the usual manner via abg =
Mλbg/4π. With ∆B = h2∆µ/λbg, the Yukawa/Feshbach coupling h is seen to
determine the width of the resonance. We also remark here that the sign of h is
irrelevant.

For magnetic fields close to B0, the scattering length becomes anomalously
large and the background scattering length can be neglected. In what follows, we
assume abg = 0 throughout the whole crossover.

As anticipated above, only the value of the scattering length plays the role of
a relevant parameter for the crossover in the broad resonance limit. Given the
density n of atoms, we build the dimensionless parameter (kFa)−1. Since the
interparticle spacing is given by ` ≈ k−1

F , we find the following scheme for the 3D
BCS-BEC crossover:

1) kFa→ −∞ : weakly interacting fermions,

1Note the difference in convention to identical bosons, where λ = 8πa/M .
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2 Basics of ultracold atomic physics

2) |(kFa)−1| ≤ 1: strong interactions, dense regime,

3) (kFa)−1 →∞: weakly interacting molecules.

The regions a < 0 and a > 0 are called BCS and BEC side of the crossover,
respectively. We call (kFa)−1 the crossover parameter. An analogous classification
scheme can be given in the 2D-case, where the crossover parameter log(kFa) =
1
2 log(εF/|εb) expresses the ratio of fermionic (εF) and bosonic (εB = −~2/Ma2)
properties of the system.

The 3D system with a−1 = 0 is referred to as the Unitary Fermi gas (UFG).
The origin of this term is the following. The cross section of two-body scattering
in the s-wave channel is given by σl=0 = 4π|fl=0|2. For the perturbative regions
with p|a| � 1, where p is the relative momentum of scattering particles, we
then find σ = 4πa2. Naively extrapolating this to the resonance |a|−1 → 0, this
would imply a divergent cross section, which is excluded from the fact that the
scattering matrix is unitary. Recalling however Eq. (2.13), we find in the latter
limit that σ ' 4π|(−1/a− ip)|−2 → 4π/p2. Since scattering is meaningful only for
nonzero relative momenta, the expression on the right hand side constitutes the
upper limit on possible s-wave scattering; in the UFG, the typical scale for the
scattering momentum are kF,

√
T . This effect has been observed by Gupta et al.

[2003]. We note that exactly at the unitary point, a−1 = 0, the scale associated to
interactions drops out and the only remaining scales are interparticle spacing and
temperature. This hints at highly universal properties in this regime (Ho [2004])
(distinct from the broad resonance universality described above). However, at
this point and in its vicinity where |kFa|−1 � 1, the gas parameter Eq. (2.14)
is large and cannot be used as a control parameter for systematic expansions. In
this regime, where the interaction length scale greatly exceeds the interparticle
spacing, we deal with a strongly coupled and dense quantum system.

Note that the crossover from the BCS- to the BEC side in 3D is driven by
interactions, since only for a > 0 there is a two-particle bound state with energy
εB = −~2/Ma2. This makes the BEC-side inaccessible to be reached by tuning
many-body parameters such as kF alone. One may also rephrase this in the
observation that a sign-change of the crossover parameter (kFa)−1 can only be
achieved by changing the sign of a. In contrast, there always is a two-body bound
state with binding energy εB = −~2/Ma2 in 2D. Hence the BCS- and BEC-sides
are not qualitatively distinct in vacuum. In fact, the 2D crossover parameter
log(kFa) can be tuned at will by changing the density of the sample. In this way
the overlap between pairs can be increased, which makes the system atomic for
sufficiently large n.

At zero temperature the system with equal number of |1〉- and |2〉-atoms is a
homogeneous superfluid in both 3D and 2D. For sufficiently large nonzero tem-
perature there is a second order transition to the disordered phase for all values
of kFa. The value of the critical temperature Tc/TF as a function of kFa is partic-
ularly interesting. In 3D in the deep BEC regime, we expect the noninteracting
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formula (2.24) to hold, with a shift due to the small, but nonvanishing diluteness
parameter kFa. On the BCS side, the BCS prediction for the critical temperature
will turn out to be insufficient, because it is lowered by a factor of approximately
two due to particle-hole fluctuations. One of the great challenges in many-body
theory consists of the calculation of Tc/TF at unitarity from first principles and
the determination of the phase diagram of the 2D BCS-BEC crossover.
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3 Functional methods for ultracold
atoms

3.1 Functional methods in quantum field theory

3.1.1 Functional integral and effective action

In this section, the quantum field theoretical formulation of interacting cold atoms
is put forward. Starting from the functional integral representation of the quan-
tum partition function Z(µ, T ), we introduce the effective action Γ, which is a
functional of the mean field. It stores the same information as the partition
function or generating functional, however, in a way that is more intuitive. In
particular, it naturally provides the classical limit. The effects of both quantum
and thermal fluctuations on physical observables can be derived from it in the
few- and many-body context. Moreover, it allows for a transparent discussion of
spontaneous symmetry breaking, and allows to leverage the power of symmetry
considerations from the classical action over to the full quantum theory. We set
~ = kB = 1. For the moment, we keep the nonrelativistic mass M in our formu-
lation, but later we will set 2M = 1 in the same spirit as for the fundamental
constants.

Functional integral

As we have shown in section 2.1, a system of ultracold atoms is accurately de-
scribed by the effective Hamiltonian

Ĥ =

∫
~x

(
â†(~x)

(
− ∇

2

2M
+ Vext(~x)

)
â(~x) +

g

2
n̂(~x)2

)
, (3.1)

where â†(~x) and â(~x) are operators which create and annihilate an atom at po-
sition ~x, respectively. Depending on whether we consider bosons or fermions,
these operators satisfy commutation or anti-commutation relations. The density
operator is given by n̂(~x) = â†(~x)â(~x).

The Hamiltonian in Eq. (3.1) defines a quantum field theory with operators â
and â† on each point of space. Physical observables are derived from expectation
values of functions of these operators. However, the corresponding quantum field
theory can also be formulated in terms of a functional integral. The latter does no
longer depend on the notion of field operators. In the context of quantum many-
body systems, a possible derivation starts from the grand canonical partition
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function

Z(µ, T ) = Tr
(
e−β(Ĥ−µN̂)

)
, (3.2)

where the trace is taken over Fock space. This trace can be represented in the
basis of so-called coherent states, which are eigenstates of the annihilation operator
â(~x). We then obtain

Z(µ, T ) =

∫
Dϕ∗Dϕe−S[ϕ∗,ϕ]. (3.3)

We call the expression in Eq. (3.3) a functional or path integral. It contains the
microscopic action S[ϕ∗, ϕ] of a field theory, which in our case is a nonrelativistic
one.

The explicit construction of the functional integral representation of the par-
tition function for a generic many-body Hamiltonian is carried out in Boettcher
et al. [2012]. We summarize here the two main findings.

1) Bosonic atoms are represented by complex fields ϕ(τ, ~x), whereas fermions
are described in terms of Grassmann valued fields ψ(τ, ~x).

2) The non-commutativity of operators introduces the imaginary time τ , which
is restricted to the interval [0, β]. Bosonic fields are β-periodic in time, i.e.
ϕ(β, ~x) = ϕ(0, ~x). In contrast, fermionic fields satisfy ψ(β, ~x) = −ψ(0, ~x).

The second property implies that the Fourier transform of the fields ϕ and ψ
in imaginary time direction reduces to a Fourier series with discrete Matsubara
frequencies

ωn =

{
2πnT (bosons)

2π(n+ 1/2)T (fermions)
, n ∈ Z. (3.4)

We say that the imaginary time direction is compactified to a torus of circum-
ference β. In this way, introducing a chemical potential µ and compactifying the
time direction to 0 ≤ τ ≤ β, we can describe the equilibrium properties of the
quantum field theory at nonzero density and temperature. The action of the field
theory is related to the normal ordered Hamiltonian Ĥ = H[â†(~x), â(~x)] according
to

S[ϕ∗, ϕ] =

∫ β

0
dτ

(∫
~x
ϕ∗(τ, ~x)(∂τ − µ)ϕ(τ, ~x) +H[ϕ∗(τ, ~x), ϕ(τ, ~x)]

)
(3.5)

with inverse temperature β = T−1. For the particular choice of the effective
Hamiltonian in Eq. (3.1), we have

S[ϕ∗, ϕ] =

∫ β

0
dτ

∫
~x

(
ϕ∗(τ, ~x)

(
∂τ −

∇2

2M
− µ

)
ϕ(τ, ~x) +

g

2
(ϕ∗(τ, ~x)ϕ(τ, ~x))2

)
.

(3.6)
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Generating functional and effective action

Starting from the functional integral representation for the partition function Z,
we now construct the corresponding effective action. The procedure outlined here
focuses on the application to systems of ultracold atoms. However, additional
insights into these concepts can be obtained from a comparison to classical Ising
magnets on a discrete lattice. We refer to Boettcher et al. [2012] for a comparison
of the setup for classical magnets and ultracold atoms. Therein, the continuum
limit is performed and the notions of functional differentiation and integration
are reviewed. In our discussion of functional methods we mostly restrict to the
bosonic case of a complex scalar field. There are only minor modifications for
fermions, which are discussed at the end of the section.

The bosonic functional integral in Eq. (3.3) allows for the definition of a prob-
ability measure on the set of fields ϕ. Given an observable O({ϕ}) which depends
on the field, we define

〈O〉 =
1

Z

∫
Dϕ∗DϕO({ϕ})e−S[ϕ∗,ϕ]. (3.7)

Herein, the action S acts as a weight. For instance, from O = ϕ(X) or O =
ϕ∗(X)ϕ(Y ) we obtain the one- and two-point correlation functions of the theory,
respectively. More generally, we obtain averages of observables by introducing a
complex source field j(X) according to

Z[j∗, j] =

∫
Dϕ∗Dϕe−S[ϕ∗,ϕ]+

∫
X j∗XϕX+

∫
X ϕ∗XjX . (3.8)

We write X = (τ, ~x) and
∫
X =

∫ β
0 dτ

∫
~x. We call Z[j∗, j] the generating functional

and have

φ(X) = 〈ϕ(X)〉j =
δ logZ

δj∗(X)
, (3.9)

〈ϕ∗(X)ϕ(Y )〉j =
1

Z

δ2Z

δj(X)δj∗(Y )
, (3.10)

etc. The subscript j indicates that the external source is not yet set to zero. For
a physical picture of this situation, the external source j(X) can be thought of as
a (static) pump or loss of atoms such that the mean field of atoms at position X
is engineered to the particular value φ(X).

Generalizing Eqs. (3.9) and (3.10), we find the representation of a general
expectation value to be

〈O〉j =
1

Z
O
({ δ

δj

})
Z[j∗, j]. (3.11)

We conclude that all correlation functions of interest can be obtained from the
generating functional Z or the Schwinger functional

W [j∗, j] = logZ[j∗, j]. (3.12)
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3.1 Functional methods in quantum field theory

The latter constitutes the generating functional of connected n-point functions.
For instance, we find that the connected two-point function is related to W ac-
cording to

W (2)[j](X,Y ) =
δ2W

δj∗(X)δj(Y )
= 〈ϕ(X)ϕ∗(Y )〉j − φ(X)φ∗(Y ). (3.13)

This object is also called (time-ordered) Green’s function or propagator of the
theory. Imposing time-ordering onto the propagators leads to general time-ordered
correlation functions in Eq. (3.11).

The field expectation value carries a direct physical significance. For example,
for a three-dimensional Bose gas φ(X) describes the condensate. Therefore, it
seems desirable to implement it into the theory in a more direct way. In fact, this
is possible by the aid of a Legendre transformation, which gives rise to the effective
action. We introduce the latter as the generating functional which depends on
the mean field φ defined by

φ(X) = 〈ϕ(X)〉j =
δW

δj∗(X)
. (3.14)

Assume we have solved this equation for j and j∗. We can then construct the
effective action according to the Legendre transformation

Γ[φ∗, φ] =

∫
X

(φ∗XjX + j∗XφX)−W [j∗, j], (3.15)

where j and j∗ are defined implicitly by Eq. (3.14).1 Note that while the active
variable for the partition function is the source, Z = Z[j], the active variable for
the effective action is the field expectation value, Γ = Γ[φ]. The effective action is
thus parametrized directly in terms of a physical observable. Applying the chain
rule for functional differentiation we find

δΓ

δφ(X)
[φ∗, φ] = j∗(X). (3.16)

Technically speaking, the effective action is the generating functional of one-
particle irreducible (1PI) correlation functions. They can be obtained from Γ
by taking successive functional derivatives with respect to φ(X) and φ∗(X). Dia-
grammatically the 1PI correlation functions are given by all diagrams that cannot
be split by cutting one (internal) line, hence the name. Often, we are mainly in-
terested in the situation of vanishing source. Then, given the effective action, we
have to solve the equations of motion

δΓ

δφ(X)
[φ∗0, φ0] = 0 (3.17)

1More generally we define Γ[φ∗, φ] = supj∗,j(
∫
X

(φ∗XjX + j∗XφX) −W [j∗, j]), see Eq. (3.45) for
the case of a real scalar.
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3 Functional methods for ultracold atoms

to obtain the thermodynamic equilibrium state φ0 = 〈ϕ〉j=0 of the theory. The
reference to the external field is no longer present and also not needed, because it
is already included in Γ[φ∗, φ]. Often, especially for the purposes of this thesis, the
solution φ0 to Eq. (3.17) is constant in space-time. This will be explained in more
detail below Eq. (3.28). However, in general there also might be inhomogeneous
solutions φ0 to the nonlinear partial differential equation Eq. (3.17), such as
instantons, vortices, or inhomogeneous pairing fields (see Sec. 3.1.2).

Higher derivatives of the effective action with respect to the fields φ, φ∗, denoted
by Γ(n) for the nth derivative, provide the 1PI vertices. The second derivative of
the effective action,

Γ(2)(X,Y ) =
δ2Γ

δφ∗(X)δφ(Y )
, (3.18)

plays a special role, as it is the inverse propagator. This is easily proven by∫
Z

Γ(2)(X,Z)W (2)(Z, Y ) =

∫
Z

(
δj∗(Z)

δφ∗(X)

δφ∗(Y )

δj∗(Z)
+

δj(Z)

δφ∗(X)

δφ∗(Y )

δj(Z)

)
= δ(X − Y ), (3.19)

where we have used (3.14), (3.16), and the completeness relation of derivatives
with respect to j , j∗.

In principle, Eq. (3.16) can be taken as a starting point to calculate the effective
action Γ[φ∗, φ] in certain approximations. However, the definition of Γ implies an
exact identity, which is equivalent to Eq. (3.16), but more useful. Applying Eqs.
(3.15), (3.16) and W = logZ, we arrive at

e−Γ[φ∗,φ] = e−
∫
X(j∗φ+φ∗j)+W = e−

∫
X(j∗φ+φ∗j)

∫
Dϕ∗Dϕe−S[ϕ∗,ϕ]+

∫
X(j∗ϕ+ϕ∗j)

=

∫
Dϕ∗Dϕe−S[ϕ∗,ϕ]+

∫
X(j∗(ϕ−φ)+(ϕ∗−φ∗)j) (3.20)

=

∫
Dϕ∗Dϕe

−S[ϕ∗,ϕ]+
∫
X( δΓ

δφ
[φ]·(ϕ−φ)+(ϕ∗−φ∗)· δΓ

δφ∗ [φ])
.

This equation is called the background field identity for the effective action. For
φ = φ0 with φ0 satisfying Eq. (3.17) we recover

Z(µ, T ) = e−Γ[φ∗0,φ0], (3.21)

i.e. the effective action then corresponds to the grand canonical potential. Fur-
thermore, by performing a shift of the integration variable, we rewrite Eq. (3.20)
as

e−Γ[φ∗,φ] =

∫
Dδϕ∗Dδϕe

−S[φ∗+δϕ∗,φ+δϕ]+
∫
X( δΓ

δφ
[φ]·δϕ+δϕ∗· δΓ

δφ∗ [φ])
. (3.22)

This functional integral representation of the effective action gives rise to the
intuitive picture that the effective action encodes the complete information on the
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3.1 Functional methods in quantum field theory

euclidean field theory by means of summing over all possible field configurations
δϕ deviating from the classical one (φ).

We now show that in the classical limit, the effective action and the classical ac-
tion coincide. Reintroducing Planck’s constant ~, we have Γ/~ and S/~ appearing
in Eq. (3.22). The classical limit is obtained for ~→ 0 at fixed Γ. The integrand
is then sharply peaked around the solution to the classical equations of motion
δS/δϕ = 0. This results in Γ = S, which physically is the classical approximation.

It is clear that the effective action lends itself ideally for semiclassical approx-
imations, and also systematic improvements thereof. From Eqs. (3.20) or (3.22)
we can easily go one step beyond the classical approximation by expanding the
exponent in the functional integral around its minimum value ϕ0 determined from

− δS

δϕ∗
[ϕ0] +

δΓ

δφ∗
[φ] = 0 = −δS

δϕ
[ϕ0] +

δΓ

δφ
[φ]. (3.23)

For the particularly simple case where φ = ϕ0, the linear derivatives cancel and
we obtain

e−Γ[ϕ0] ' e−S[ϕ0]

∫
Dϕ∗Dϕe

− 1
2

∫
(ϕ,ϕ∗)·S(2)[ϕ0]·( ϕϕ∗) (3.24)

with S(2) the second functional derivative of S with respect to ϕ,ϕ∗.
More generally, employing the rules of Gaussian integration to the functional

integral, the Gaussian approximation to Eq. (3.22) can be evaluated at any field
φ which ensures the path integral to be dominated by small fluctuations δϕ. This
leads to the so-called one-loop formula

Γ[φ∗, φ] ' S[φ∗, φ] +
1

2
Tr logS(2)[φ∗, φ]. (3.25)

In this order of approximation, the linear derivative terms cancel due to the tree
level relation Γ ' S. Note that the effective action equals the classical action also
in the case of a free, noninteracting theory. Expanding the Tr log expression in
powers of the field, we generate one-loop perturbation theory. We may therefore
expect Eq. (3.25) to give good results in the perturbative regime of small coupling.

Our considerations can easily be extended to fermions as well. We introduce
independent Grassmannian source terms η(X) and η∗(X) into the generating
functional Z[j∗, j, η∗, η], which couple linearly to the fields ψ∗(X) and ψ(X), re-
spectively. The effective action is defined in the same manner as before via the
Legendre transformation of logZ with respect to the mean fields. The ground
state of the theory necessarily satisfies 〈ψ(X)〉η=0 = 〈ψ∗(X)〉η=0 = 0, since Pauli’s
principle forbids macroscopic occupation of fermionic states. However, the gener-
ating functional Γ depends on nonvanishing fermionic “mean fields”. Such fields
ψ̄(X) can be constructed by applying a source η(X) = δΓ/δψ̄(X). They must
not be regarded as physical objects, but rather as bookkeeping parameters used
to generate the 1PI correlation functions via Grassmannian functional differenti-
ation.
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3 Functional methods for ultracold atoms

Eq. (3.25) is also valid for fermionic fields, but with an additional minus sign
in front of the trace. For a mixed theory of both bosons and fermions we employ
the supertrace, STr, which takes into account the appropriate sign for fermionic
loops. Thus we arrive at the one-loop formula

Γ[φ, ψ̄] ' S[φ, ψ̄] +
1

2
STr logS(2)[φ, ψ̄]. (3.26)

More detailed presentations on functional integrals, with emphasis on quan-
tum many-body systems, can be found in Negele and Orland [1998], Altland and
Simons [2010].

3.1.2 Effective potential and spontaneous symmetry breaking

In this section, we discuss how phase transitions and spontaneous symmetry break-
ing (SSB) find their natural description in terms of the effective potential U(ρ).
The latter is the part of the effective action which does not contain derivatives
of the field. It includes both quantum and thermal fluctuations, and typically
changes its shape by tuning the system parameters like temperature, chemical
potential, or interaction strength. For parameter regions where the minimum of
the effective potential is nonzero, small perturbations can drive the system into an
equilibrium ground state which does not respect the symmetry of the underlying
physical theory. The symmetry is then broken spontaneously. We exemplify this
important concept of many-body physics on systems with Z2- and U(1)-symmetry,
respectively.

An intuitive picture of SSB is provided by a simple daily life observation. Sup-
pose a pencil is balanced on its tip to stand upright. Due to the cylindrical
symmetry, the pencil should stay in this position. Indeed, the underlying physics,
here given by the gravitational force pointing downwards, does not prefer any
direction. However, if there is a small perturbation of this symmetry due to the
environment, the pencil will immediately fall to the side and thereby minimize its
energy. Even if the perturbation is removed now, the pencil will remain in the
horizontal position.

Thermodynamics from the effective action

In order to study the properties of the thermodynamic equilibrium state we con-
sider a system of bosons. We assume the trapping potential Vext(~x) to vanish and
the external source to be constant, j(X) = j. Hence the setting is homogeneous in
space-time. We learned in Eq. (3.21) that the grand canonical partition function
Z(µ, T ) is related to the effective action according to

Γ[φ0] = − logZ(µ, T ). (3.27)
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3.1 Functional methods in quantum field theory

Herein, the field expectation value φ0(X) minimizes the effective action, as can
be seen from Eqs. (3.15) and (3.17). The effective action Γ[φ] has the structure

Γ[φ] =

∫
X

(
terms containing derivatives

)
+

∫
X
U(φ(X)) . (3.28)

If the part containing derivatives is minimal for constant fields, φ0 is a constant
field which additionally minimizes the effective potential U(φ) according to

U(φ0) = min
φ

[
U(φ)

]
. (3.29)

Since the effective potential depends on both the external parameters µ and T ,
the same will be true for the field expectation value: φ0 = φ0(µ, T ). In the
presence of a nonvanishing background source field, we also have an explicit de-
pendence on j. Note that the above argument does not exclude the existence
of inhomogeneous ground states as they result from a nontrivial structure of the
derivative-term which favours nonconstant field configurations. The existence of
such inhomogeneous ground states is common in low dimensions, in particular in
1+1 dimensions, see e.g. Thies and Urlichs [2003] for the class of models under
discussion here.

Using Eq. (3.21) the effective potential at its minimum value is related to the
pressure according to

P (µ, T ) = −U(φ0, µ, T ). (3.30)

This constitutes the equation of state of the system. Often we are mainly inter-
ested in the density n(µ, T ), which is found from dP = ndµ+ sdT . The relevant
thermodynamic information contained in the effective potential can thus be sum-
marized in the two equations by Eps. (3.29) and (3.30). These equations are
generally valid and constitute the main building blocks for the evaluation of the
phase diagram of the many-body problem. In particular, the above discussion
is not limited to bosons, but can be applied to an arbitrary many-body system
or quantum field theory, since the effective action approach is applicable to all
of these system. For instance, the field ϕ(X) may as well describe the degrees
of freedom in a Heisenberg ferromagnet with magnetic moments, ~mi or ~m(~x), on
a lattice or in the continuum, respectively. However, in the following we keep
denoting the fields by ϕ and φ.

Spontaneous symmetry breaking

As a preparation for the more formal discussion of SSB, we first relate symmetries
of the microscopic action to those of the effective action. To this end, we recall
the definition of the effective action to be

e−Γ[φ] =

∫
Dϕe−S[ϕ]+

∫
X j[φ]·(ϕ−φ). (3.31)
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Setting the external source j to zero, we see that any symmetry of the microscopic
action which is respected by the functional measure, will also be a symmetry of
the effective action. A nonvanishing source j(X), instead, typically leads to terms
in the effective action which explicitly break the microscopic symmetry. This is
accompanied by a nonzero expectation value φ(X), because j(X) either introduces
a non-homogeneity in space-time or at least singles out a direction in field space
ϕ.

Spontaneous breaking of a symmetry refers to a different scenario. In this case,
the external source vanishes such that the effective action manifestly shares the
symmetry of the microscopic action. Nevertheless, the ground state of the theory
(or, more generally, the thermodynamic equilibrium state), may spontaneously
break this symmetry due to a nonzero expectation value according to

φ0 = 〈ϕ〉j→0 6= 0. (3.32)

The symmetry is then broken because of the field expectation value transform-
ing nontrivially under the symmetry transformation. Whenever the state of the
system does not respect the symmetries of the underlying physics (i.e. effective
action), we say that the symmetry is broken spontaneously.

We illustrate this discussion with examples. First, we consider classical Ising
magnets on a lattice. The symmetry transformation exerted on the Ising vari-
ables mi is a global reflection, mi → −mi for all i. The Hamiltonian H[m] =
−J∑imimi+1 is reflection symmetric, meaning that

H[m] = H[−m]. (3.33)

Since the functional measure
∫ ∏

i dmiδ(m
2
i − 1) does not break this symmetry,

we have for the effective action

Γ[m̄] = Γ[−m̄] (3.34)

with mean field m̄i = 〈mi〉. We call this a Z2-symmetry.
Analogously, the microscopic action of cold atomic bosons given in Eq. (3.6) has

a global U(1)-symmetry, meaning that it is invariant under the following global
transformation of the fields

ϕ→ ϕ′ = eiαϕ, ϕ∗ → (ϕ∗)′ = e−iαϕ∗ (3.35)

with real parameter α. In the basis of real fields, ϕ = ϕ1 + iϕ2, this corresponds
to a rotation (

ϕ′1(~x)
ϕ′2(~x)

)
=

(
cosα − sinα
sinα cosα

)(
ϕ1(~x)
ϕ2(~x)

)
(3.36)

in field space. Since the functional measure
∫

Dϕ∗Dϕ shares this symmetry, the
effective action Γ[φ∗, φ] possesses the global U(1)-symmetry as well.
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3.1 Functional methods in quantum field theory

By virtue of Noether’s theorem, the global U(1)-symmetry in conjunction with
a linearly appearing time derivative in the kinetic term of the microscopic action
leads to the conservation of total particle number N =

∫
~x〈ϕ∗(~x)ϕ(~x)〉. This is a

characteristic feature of nonrelativistic field theories. A brief review of Noether’s
theorem in the classical and quantum case is provided by Boettcher et al. [2012].

The above mentioned properties of the effective action for vanishing external
source have a profound consequence for the effective potential U . Indeed, from
Eq. (3.28) we deduce that the latter is not a function of the individual fields φ
and φ∗, but we rather have

U = U(ρ), (3.37)

where ρ is the most general combination of fields allowed by symmetry. For
instance, we have

ρ =

{
m̄2 (Z2 − symmetry),

φ∗φ (U(1)− symmetry).
(3.38)

We plot the effective potential U(ρ) for a second and first order phase transition
in Figs. 3.1 and 3.2, respectively. The critical temperature Tc(µ) is defined such
that the location of the minimum ρ0(µ, T ) approaches zero – either continuously or
discontinuously. In particular, for a second order phase transition we distinguish
the following three cases:

(i) ρ0 6= 0, U ′(ρ0) = 0: phase with broken symmetry,

(ii) ρ0 = 0, U ′(ρ0) = 0: critical point,

(iii) ρ0 = 0, U ′(ρ0) 6= 0: symmetric phase.

In the broken phase, the location of the minimum ρ0 of the effective potential
does not necessarily completely determine the state of the system under consider-
ation. In the case of magnets, we have m̄2

0 6= 0 and thus there is still the freedom
to choose the sign of m̄0, which is a Z2-transformation. For the case of bosons,
the condition |φ0|2 6= 0 only fixes the amplitude of the complex field φ0 = |φ0|eiθ,
whereas the phase θ can still be chosen arbitrarily. In the latter case the possible
nonequivalent choices are given by θ ∈ [0, 2π) ' U(1). We say that the condition
on ρ0 singles out a manifold of possible ground states φ0, which in our examples is
given by Z2 and U(1), respectively. In the absence of explicit symmetry breaking
terms, the precise choice of the ground state in the degenerate manifold indeed
happens spontaneously – it is induced by fluctuations or perturbations due to
the environment, which we can neither resolve nor control (Nambu [1960]). Nev-
ertheless, this phenomenon is ubiquitously observed experimentally; for example,
spontaneous phase symmetry breaking can be detected in BEC-interference exper-
iments of initially disjunct condensates (Andrews et al. [1997]), or the Josephon
effect in superconductor junctions.
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Figure 3.1: The effective potential U(ρ) for vanishing external sources is a func-
tion of the symmetry invariant ρ. The latter is given by ρ = m̄2 or
ρ = |φ|2 for magnets or ultracold bosons, respectively. Throughout
a second order phase transition the location of the minimum of the
effective potential changes from ρ0 = 0 to ρ0 > 0 in a continuous
manner. We have chosen here the temperature to be the control pa-
rameter. However, since the effective potential depends on µ, T , and
the microscopic parameters of the theory (e.g. coupling constants),
we may also drive the phase transition differently. Figure taken from
Boettcher et al. [2012]
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Figure 3.2: At a first order phase transition we find a jump in the order parameter
ρ0 as we cross T = Tc. From the plot of the effective potential we see
how this discontinuous behavior can arise, although we smoothly vary
the system parameters. Note that the effective potential is actual a
convex function, as the effective action originates from the Legendre
transform of the Schwinger functional. Therefore, the nonconvex parts
should rather be replaced by straight lines according to the Maxwell
construction, but this does not invalidate the overall picture of first
order phase transitions. Figure taken from Boettcher et al. [2012].
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In Fig. 3.3, we plot the boson effective action in the tree level approximation
Γ[φ] ' S[φ] for a constant field in the complex φ-plane. The microscopic action
S is given in Eq. (3.6). For constant φ we have

U(φ) =
1

βV
Γ[φ] = −µ|φ|2 +

g

2
|φ|4. (3.39)

For obvious reasons U(φ) is called Mexican hat potential. Without loss of gen-
erality we assume the ground state φ0 to be real, such that real and imaginary
components of φ = φ1 + iφ2 are distinct directions in the complex plane. The
ground state singles out the point (φ0, 0). Now consider the field ϕ to be fluctu-
ating around this point. We write

ϕ(τ, ~x) = φ0 + δϕ(τ, ~x) (3.40)

with 〈δϕ〉 = 0. The fluctuations δϕ are complex and can vary in both amplitude
and phase of ϕ. However, the fluctuations which increase the amplitude away
from φ0 have to climb up the hill and thus are energetically unfavorable, i.e. they
are suppressed in the functional integral by a term∫

Dϕ1e
−m2

1δϕ
2
1 . (3.41)

We call them radial or gapped excitations. In contrast, fluctuations of the phase
are not hindered energetically, i.e. “gapless”, because they vary along the well of
the Mexican hat.

The existence of a massless or gapless mode in a symmetry broken phase ob-
served in the example above is a general phenomenon. In fact, it is an exact
property of the full theory, as has been established by Goldstone [1961]. More pre-
cisely, Goldstone’s theorem states that any spontaneous breaking of a continuous
symmetry results in the appearance of gapless modes in the excitation spectrum
of the system. The proof of Goldstone’s theorem is very simple in the effective
action framework. Since we are interested in a statement about the masses of
the theory, i.e. properties of the system in the homogeneous limit of vanishing
frequencies and momenta, we can restrict ourselves to the effective potential U .
As we have seen above, U(ρ) only depends on the symmetry invariant ρ = |φ|2.
Consider the field equation δΓ

δφ1
= 0 for the radial field. Since we assumed a

homogeneous setting, this reduces to

0 =
∂U

∂φ1
(φ0) = φ0U

′(ρ0)
SSB
=⇒ U ′(ρ0) = 0. (3.42)

Here, a prime denotes differentiation with respect to ρ. The mass of the Goldstone
mode δϕ2 is then found to be

m2
2 =

∂2U

∂φ2
2

(φ0) =

(
∂2ρ

∂φ2
2

U ′(ρ) +
(∂2ρ

∂φ2

)2
U ′′(ρ)

)∣∣∣∣
φ=φ0

=
(
U ′(ρ) + φ2

2U
′′(ρ)

)∣∣∣
φ=φ0

= U ′(ρ0) = 0. (3.43)
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Figure 3.3: The Mexican hat potential from Eq. (3.39) only depends on the
amplitude of the complex field φ = φ1 + iφ2. Thus it reflects the
U(1)-symmetry of the bosonic theory, which is invariant under phase
rotations φ → eiαφ. The ground state of the system will, however,
spontaneously break this symmetry, e.g. by choosing φ0 ∈ R. Figure
taken from Boettcher et al. [2012].

We used the continuity of the symmetry by requiring ρ to depend smoothly on φ1,2.
We have carried out the proof for the symmetry U(1) ' O(2). The above steps
can be performed analogously for larger symmetry groups such as O(N), leading
to N − 1 massless Goldstone modes. In the above case, the vanishing of the
mass term allows for strong fluctuations of the phase field in the phase of broken
symmetry. In particular, they question the assumption of small fluctuations δϕ
in the functional integral, which lead to the one-loop formula given in Eq. (3.25).

3.2 Dyson–Schwinger equations

Dyson–Schwinger equations (DSE) are an exact rewriting of the generating func-
tional logZ[J ] in terms of an infinite hierarchy of equations for the n-point func-
tions of the theory. They provide a solid starting point for physical approximations
in terms of truncations of the set of equations. A diagrammatic representation of
the DSE can be derived, with the characteristic feature that each diagram in a
DSE contains exactly one microscopic vertex which is obtained from the classical
action S. Here we give a self-contained derivation of the DSE for a real scalar field
denoted by ϕ. In Sec. 5.1.2 we investigate the DSE for the fermion propagator in
the BCS-BEC crossover.

Given the microscopic action S[ϕ], the generating functional is given by

Z[J ] =

∫
Dϕe−S[ϕ]+J ·ϕ, (3.44)
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where J · ϕ =
∫
X JXϕX =

∫
Q J−QϕQ. The generating functional is a rather

unintuitive object as it is parametrized in terms of the external source J . As
a consequence, physically motivated approximations are difficult. We therefore
introduce the effective action by a Legendre transform according to

Γ[φ] = sup
J

{
J · φ− logZ[J ]

}
. (3.45)

Assuming logZ[J ] to depend smoothly on J , the optimal Jφ is found from

0
!

=
δ

δJX

{
J · φ− logZ[J ]

}
Jφ

= φX −
δ logZ

δJX
[Jφ] = φX − 〈ϕX〉Jφ . (3.46)

Here 〈. . . 〉J denotes the average in the presence of the source J . Hence this
equation states that the external field Jφ(X) is adjusted such that 〈ϕX〉Jφ = φX
for a given φX . Taking a functional derivative of Γ[φ] with respect to φX we
obtain

δΓ

δφX
[φ] =

δ

δφX

{
Jφ[φ] · φ− logZ[Jφ[φ]]

}
=

δJφ
δφX

[φ] · φ+ Jφ[φ]X −
δ logZ

δJ
[Jφ]︸ ︷︷ ︸

φ

· δJφ
δφX

[φ] = Jφ[φ]X . (3.47)

This allows to eliminate J in Eq. (3.46) to arrive at

φX = 〈ϕX〉J= δΓ
δφ

[φ]. (3.48)

We write ϕ = φ+ δϕ with 〈δϕ〉Jφ = 0.

We then have

Z[Jφ[φ]] =

∫
Dϕe−S[ϕ]+Jφ[φ]·ϕ, (3.49)

e−Γ[φ] = Z[Jφ[φ]]e−Jφ[φ]·φ. (3.50)

Putting both expressions together we again arrive at the one-loop formula for the
effective action,

e−Γ[φ] =

∫
Dϕe−S[ϕ]+Jφ[φ]·(ϕ−φ) =

∫
Dδϕe

−S[φ+δϕ]+ δΓ
δφ

[φ]·δϕ
. (3.51)

To arrive at the DSE we take the functional derivative of this equation. We
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then obtain

δΓ

δφX
[φ] = −e

δΓ
δφ

[φ]·φ

Z[Jφ]

δ

δφX

∫
Dδϕe

−S[φ+δϕ]+ δΓ
δφ

[φ]·δϕ

=
e
δΓ
δφ

[φ]·φ

Z[Jφ]

∫
Dδϕ

(
δS

δϕX
[φ+ δϕ]− δ2Γ

δφXδφ
[φ] · δϕ

)
e
−S[φ+δϕ]+ δΓ

δφ
[φ]·(ϕ−φ)

=
1

Z[Jφ]

∫
Dϕ

(
δS

δϕX
[ϕ]− δ2Γ

δφXδφ
[φ] · δϕ︸ ︷︷ ︸

∼〈δϕ〉Jφ=0

)
e
−S[ϕ]+ δΓ

δφ
[φ]·ϕ

. (3.52)

The DSE or quantum equations of motion thus read

δΓ

δφX
[φ] =

〈
δS

δϕX

〉
Jφ= δΓ

δφ
[φ]

. (3.53)

3.3 Functional Renormalization Group

In this section we provide an introduction to the basic concepts of the FRG. It
is based on the continuum version of Kadanoff’s block-spinning transformations
on the lattice (Kadanoff [1966]), and has been formulated for the continuum by
Wilson [1971a,b]. Its modern functional form for the effective action used in the
present work has been put forward by Wetterich [1993].

For the description of ultracold atom experiments, the action S derived from
the Hamiltonian in Eq. (3.1) is a microscopic starting point. It is related to
an ultraviolet momentum scale Λ. The relevant physics, however, takes place at
momentum scales k far smaller than Λ, and the respective quantum and thermal
fluctuations have to be included. In the FRG framework, these fluctuations are
included successively at a given momentum scale k starting at Λ, with ΓΛ = S,
leading to the effective average action Γk. The latter already includes all quantum
and thermal fluctuations above the momentum scale k. It can be interpreted as
a microscopic action for the physics below the scale k in the very same way S has
been introduced as the microscopic action of ultracold gases. After the inclusion
of all fluctuations we arrive at the full effective action Γ:

Γk=Λ = S, (3.54)

Γk=0 = Γ. (3.55)

The effective action Γk interpolates smoothly between the microscopic (or initial
effective) action ΓΛ and the full effective action Γ = Γk=0.

An infinitesimal change of the effective action with the scale k is described by
a flow equation ∂kΓk, which depends on the correlation functions of the theory at
the scale k as well as the specific way the infrared modes with momenta smaller
than k are suppressed. Such an RG-step has similarities to a coarse graining where
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details on short distances are continuously washed out, the difference being that
the effective action Γk still keeps the information about the fluctuations between
Λ and k. At the end of the process, for k → 0, we include fluctuations with large
wavelength. These are the problematic modes which cause infrared divergences in
other approaches. Due to the stepwise inclusion of fluctuations, the renormaliza-
tion group procedure is not plagued by such divergences. In conclusion, a given
initial effective action ΓΛ and the flow equation (3.66) define the full quantum
theory analogously to the setting with classical action and the path integral.

We derive the flow equation for Γk and discuss its practical solution. To that
end we specify a suppression of low frequency and momentum fluctuations with
|q0|, q2 ≤ k2. (In the following we write q2 = ~q2.) This can be achieved via a mass-
like infrared modification of the dispersion relation, while the ultraviolet modes
remain unchanged: We add a regulator or cutoff term ∆Sk[ϕ] to the microscopic
action S[ϕ] which is quadratic in the fields,

S[ϕ]→ S[ϕ] + ∆Sk[ϕ]. (3.56)

The field ϕ is general and may be a collection of fields. For concreteness, we will
use a notation analogous to ultracold bosons and write φ(X) = 〈ϕ(X)〉. We have

∆Sk[ϕ] =

∫
Q
ϕ∗(Q)Rk(Q)ϕ(Q). (3.57)

The requirement of the suppression of low momentum modes entails that Rk(Q→
0) 6= 0. In turn, for large momenta (in comparison to k), the regulator has to
vanish, Rk(Q→∞)→ 0. These properties can be summarized in the conditions

lim
q2/k2→0

Rk(Q) = k2 , lim
q2/k2→∞

Rk(Q) = 0 . (3.58)

For the sake of simplicity, we have restricted ourselves in Eq. (3.58) to regulators
that only depend on q2, and that have a standard normalization Rk(0) = k2 in the
infrared. The extension to general regulators is straightforward. In particular, in
this thesis we will also apply regulators which depend on both q0 and q2.

If we interpret the action in Eq. (3.56) as the microscopic action of a physical
theory, it has a trivial infrared sector: The fields are gapped with gap k2. The
generating functional of this theory is given by

Zk[j] =

∫
Dϕe−S−∆Sk+

∫
j·ϕ . (3.59)

From Eq. (3.58) we infer that Zk=0[j] is the full generating functional of the theory
introduced in Eq. (3.3). For k → Λ, the regulator term dominates the path integral
as all physical scales are far smaller and we are left with a trivial Gaussian integral.
Moreover, for a given k, the correlation functions 〈ϕ(Q1) · · ·ϕ(Qn)〉 tend towards
the full correlation functions for |q0,i|, q2

i � k2 for all i = 1, ..., n. In turn, for
|q0,i|, q2

i � k2, the correlation functions are trivial, as the fields are gapped.
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For explicit computations, it is more convenient to deal with the effective av-
erage action Γk, which is obtained via a modified Legendre transform according
to

Γk[φ] =

∫
j · φ− logZk[j]−∆Sk[φ] , (3.60)

where j = jk[φ] satisfies (δ logZk/δj)[j] = φ. We have already shown that the
effective action has the simple physical interpretation of the grand canonical po-
tential in a given background φ. Diagrammatically, it generates all one-particle
irreducible diagrams. As in the case without regulator term, Γk satisfies a func-
tional integro-differential equation similar to Eqs. (3.20), (3.22). Applying the
definitions of Zk and Γk we find

e−Γk[φ] =

∫
Dϕ exp

(
−S[φ+ ϕ]−∆Sk[ϕ] +

∫
X

δΓk
δφ

[φ] · ϕ
)
, (3.61)

where

j[φ] =
δ(Γk + ∆Sk)

δφ
, (3.62)

following from the definition of the Legendre transform (3.60). Eq. (3.61) makes
the suppression of the fluctuations even more apparent. Note first that the action
S in the exponent depends on the sum φ+ϕ, whereas the cutoff term only depends
on the fluctuation ϕ. Hence, for large cutoff scales k → Λ, the functional integral
in Eq. (3.61) gets Gaussian and the effective action tends towards the microscopic
action, Γk→Λ → S. For k → 0, the regulator vanishes, Rk → 0, and we are left
with Eq. (3.22).

For a successive integration of momentum modes we need to know the “flow”
∂kΓk. Applying the k-derivative to Eq. (3.60) leads to

∂kΓk[φ] = −∂k
∣∣
j

logZk[j]− ∂k∆Sk[φ]. (3.63)

The notation signals that j is k-dependent but the terms proportional to ∂kj
cancel. We have ∂k∆Sk[φ] =

∫
Q ∂kRk(Q)φ(Q)φ∗(Q). The generating functional

Zk only depends on k via the cutoff term ∆Sk. Taking the k-derivative of Eq.
(3.59), we can compute ∂k|j logZk to arrive at

∂kΓk[φ] =

∫
Q
∂kRk(Q)

[〈
ϕ(Q)ϕ∗(Q)

〉
k
− φ(Q)φ∗(Q)

]
. (3.64)

Herein, we have restricted ourselves to bosonic fields ϕ. In the case of fermions, a
global minus sign occurs due to the Grassmann nature of the fermions. The ex-
pression in the square bracket in Eq. (3.64) is the full, field-dependent propagator,
which reads in terms of the effective action〈

ϕ(Q′)ϕ∗(Q)
〉
k
− φ(Q′)φ∗(Q) =

1

Γ
(2)
k +Rk

(Q′, Q) . (3.65)
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In Eq. (3.65), we have used the property of Legendre transforms that the second
derivatives of a functional and its Legendre transform are inversely related. In the
present case, we note that the Legendre transform of logZk is Γk+∆Sk, as defined
in Eq. (3.60). Hence, we are led schematically to δ2 logZk/δj

2 · (Γ(2) + Rk) = 1,
which we have used in Eq. (3.65).

The momentum integral in Eq. (3.64) can be conveniently written in terms of
a trace. Including also the possibility of internal indices and different species of
fields, we are led to the final expression for the flow equation for Γk,

∂tΓk =
1

2
STr

[
1

Γ
(2)
k +Rk

∂tRk

]
, (3.66)

the Wetterich equation. The supertrace includes the momentum integration and
the summation over internal indices and field species. In Eq. (3.66) we have
introduced the RG-time t = log k/k0 with some reference scale k0, typically being
either the ultraviolet scale, k0 = Λ, or some physical scale. For a given quantity
Ok, the logarithmic scale derivative ∂tOk = k∂kOk has the same properties under
RG-scaling as the quantity itself. It is also a convenient parametrization of the
running of couplings as one usually integrates the flow over several orders of
magnitude in the momentum scale k. Henceforth we shall use the standard choice
t = log k/Λ.

Above we have argued that regulators with the properties (3.58) lead to a sup-
pression of the infrared physics of the theory. Moreover, since the finite initial
effective action ΓΛ at the initial scale Λ already includes all fluctuations of mo-
mentum modes with momenta larger than Λ, no ultraviolet divergences should
be present. These properties have to be reflected in the flow equation (3.66): It
has to be both infrared and ultraviolet finite. Here, we show this explicitly for
the case of bosonic fields. For low momenta, the regulator adds a positive mass

to Γ
(2)
k in the denominator. The typical size of this mass is k2, in Eq. (3.58) we

have normalized it to k2. For the sake of simplicity, consider a classical dispersion

Γ
(2)
k ' iq0+q2 (with 2M = 1) for small momenta which tends to zero for vanishing

momentum. Schematically, we then have for small momenta

1

Γ
(2)
k (Q) +Rk(Q)

Q→0−→ 1

iq0 + q2 + k2
, (3.67)

which is finite for Q → 0. For fermions, the infrared singularities arise close to
the Fermi surface. Accordingly, the propagators have to be regularized there. In
summary, this implies infrared safe flows.

In turn, for large momenta, the scale-derivative ∂tRk(Q) vanishes due to Eq.
(3.58). If this happens sufficiently fast,

lim
q2/k2→∞

q2∂tRk(Q)→ 0 , (3.68)
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1

k2
~q2

R/k2

Ṙ/2k2

Figure 3.4: We plot a typical cutoff function Rk(Q) = Rk(q
2), which only depends

on the spatial momentum. The function is nonzero for q2 . k2 and
thus provides an infrared cutoff for the propagators. For large mo-
menta, it falls off rapidly, thus becoming inactive in the UV. The scale
derivative Ṙk(Q) = k∂kRk(Q) is sharply peaked at q2 ≈ k2. For this
reason, the loop integral on the right hand side of the flow equation
is dominated by these modes. This provides the mechanism how mo-
mentum shells are successively integrated out in the FRG framework.
Figure taken from Boettcher et al. [2012].

the momentum integral in Eq. (3.66) is finite. In the following, we shall show
results for regulators that satisfy Eq. (3.68). We also remark that mass-like
regulators, i.e. Rk = k2, do not satisfy Eq. (3.68) and hence require UV renor-
malization. The related flows are functional Callan–Symanzik equations as first
derived by Symanzik [1970]. They are sometimes used due to computational sim-
plicity, see e.g. Diehl et al. [2007b]. The generic shape of a cutoff is shown in Fig.
3.4.

It is apparent from the derivation that Γk[φ] depends on the shape of the regula-
tor. This regulator-dependence disappears for k → 0, hence physical observables
are independent of the choice of Rk, but the trajectory Γk from k = Λ to k = 0
depends on Rk, see. Fig. 3.5. This leaves us with some freedom for the choice
of the regulator. Indeed, its choice can be optimized to the approximation un-
der investigation (Litim [2000, 2001b,a], Pawlowski [2007]). In general, such a
choice is further guided by computational simplicity, as in complicated systems
the computational costs can be high. Typical choices are functions Rk(Q) which
decay exponentially or even vanish identically for high Q. A slight complication
for nonrelativistic system is provided by the fact that frequencies and spatial mo-
menta appear differently. The Galilei symmetric combination is given by iq0 + q2,
in contrast to the O(4)-symmetric combination qµqµ = q2

0 + q2 for relativistic
systems. At nonvanishing temperature, Galilei symmetry is broken. In the Mat-
subara formulation used in the present work, the coupling to the heat bath leads
to periodicity in the imaginary time τ with period β. Therefore, we may also
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Γ0 = Γ

g1 g2

g3

{gi}

ΓΛ = S

R
(1)
k R

(2)
k R

(3)
k

Figure 3.5: The flow of Γk connects the microscopic action to the effective action
in the theory space of all possible action functionals. The latter is
of infinite dimension since the effective action is characterized by an
infinite set of couplings (or correlation functions). This is indicated
here schematically by the couplings g1, g2, g3 and {gi}. For different

choices of regulators, R
(i)
k , the trajectories in theory space differ, as is

indicated in the figure. At k = 0, however, the particular paths merge
again and eventually terminate at the full effective action. Figure
taken from Boettcher et al. [2012].

choose a regulator which only depends on frequency or momentum space. More-
over, we may sacrifice Galilei symmetry in order to obtain simpler expressions for
the flow equation.

Here briefly introduce a few common regulator choices for bosons with disper-

sion Γ
(2)
k (Q) ∼ iq0 + q2, and discuss their advantages and limitations.

For instance, exponential cutoffs are

Rk(Q) =
k2

e(q2/k2)n + 1
,

k2

e(|q0|/k2)n + 1
. (3.69)

The power of n can be chosen such that the cutoff falls off sufficiently fast for
high Q. For n = 1 the cutoff insertion ∂tRk(q

2) is not peaked at q2 ≈ k2 but is a
monotonously decaying function. Only for n > 1 we get peaked cutoff insertions.
On the other hand, a rapid decay of Rk as a function of q0 can pose problems
for computing thermodynamic quantities. The best stability and quantitative
precision in the context of Yang–Mills thermodynamics was found for n = 2 by
Fister and Pawlowski [2011]. In this work we often employ the Q-exp cutoff
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defined by

Rk(Q) = (iq0 + q2)r
(q2

0 + q4

k4

)
, r(Y ) =

1

eY − 1
. (3.70)

They provide regularization of both frequencies and momenta, and thus lead to
particularly local Q-integrals contributing to beta functions. This is important
for the success of a derivative expansion.

A particularly useful cutoff is the q2-opt or Litim cutoff (Litim [2001b], Litim
and Pawlowski [2006])

Rk(Q) = (k2 − q2)θ(k2 − q2), (3.71)

which effectively reduces the momentum integration to q2 ≤ k2 and replaces q2 by
k2. It facilitates the analytic derivation of flow equations for correlation functions
in the derivative expansion, and hence leads to important computational simpli-
fications. Its analytic property also allows an easy access to the structure and
interrelation of the flows (and hence the correlation functions). These properties
make it the standard choice within (lower orders of) the derivative expansion.
Moreover, in three-dimensional theories, the cutoff in Eq. (3.71) provides an
optimal choice (Litim [2000], Pawlowski [2007]) within the lowest order of the
derivative expansion scheme.

A manifestly Galilei symmetric regulator is provided by

Rk(Q) =
k2

1 + c
( iq0+q2

k2

)n , (3.72)

where n determines the algebraic decay for large momenta and c is a prefactor
of order unity (Floerchinger [2014]). Eq. (3.72) can be extended to more general
rational functions in the Galilei invariant iq0 + q2. Its key advantages are its
Galilei invariance as well as its analytic structure. The latter allows to continue
the results to real time, and hence may give access to transport properties or more
generally dynamics of ultracold gases. Similar choices in relativistic theories can
be used for computing decay properties (Floerchinger [2012]).

Note that the flow equation (3.66) has a one-loop structure, which can be traced
back to the quadratic form of the regulator in Eq. (3.57). Indeed, we may rewrite
Eq. (3.66) as

∂tΓk[φ] =
1

2
STr ∂̃t log

(
Γ

(2)
k [φ] +Rk

)
, (3.73)

where the derivative ∂̃t only acts on the k-dependence of the regulator, i.e. we
have

∂̃t = ∂t

∣∣∣
Γ

(2)
k

. (3.74)
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In Eq. (3.73), we identify the one-loop formula for the effective action (3.26) on
the right hand side. Therein, we have to substitute S(2) with the full two-point

function Γ
(2)
k +Rk.

Eq. (3.73) is a very convenient form of Eq. (3.66) for deriving the flows for cor-

relation functions, e.g. ∂tΓ
(n)
k . It also allows for an easy access to the fluctuation-

dependence of specific correlation functions without performing any calculation.
To see this we note that the flow equation for any correlation function (e.g. a cou-
pling constant) can be obtained by deriving all one-loop diagrams which contribute
to the expression, replace the propagators and vertices by the full regularized ones
according to

1

S(2)
→ 1

Γ
(2)
k +Rk

, S(n>2) → Γ
(n)
k , (3.75)

and then take the ∂̃t-derivative. Remarkably, this renders the one-loop expression
an exact (flow) equation. Note that this only holds true for additive IR regu-
larizations of the one-loop formula for the effective action (3.26), see Litim and
Pawlowski [2002]. Note also that one has to take into account perturbative one-
loop diagrams where the involved vertices vanish classically, i.e. S(n) = 0. Still
this one-loop structure is very useful: If the loop expansion of a given correlation
function does not exhibit a one-loop diagram, this correlation function is not sen-
sitive to quantum fluctuations. This either happens due to internal symmetries or
the pole structure of the diagrams. The latter is characteristic for nonrelativistic
theories, and in the case of ultracold atoms it leads to strong simplifications for
vacuum scattering properties in certain truncation schemes (Diehl et al. [2010a],
Floerchinger [2014]).

The Wetterich equation (3.66) is an equation for a functional and thus may be
evaluated for any (possibly inhomogeneous) mean field φ(X). It is a functional
integro-differential equation and its full solution is, in most theories, beyond reach.
Instead, one has to use approximation schemes to the full effective action Γk,
which include the physics at hand already at a low order of the approximation.
The systematics of a given approximation scheme and the control of the related
systematic error is of chief importance when it comes to the discussion of the
reliability of results. This point is tightly linked to the discussion of optimal
choices of regulators mentioned above.

Here, we briefly discuss the most important approximation schemes which cover
(in variations) all approximation schemes used in the literature. The most im-
portant scheme, which is partially behind all approximations used, is the vertex
expansion about a specific background φ̄, schematically written as

Γk[φ] =
∑
n

1

n!

∫
Γ

(n)
k [φ̄](X1, ..., XN )

n∏
i=1

[
φ(Xi)− φ̄(Xi)

]
. (3.76)

The information about the effective action is encoded in the vertices Γ
(n)
k . The
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related flow can be derived from that of the effective action according to

∂tΓ
(n)
k [φ̄](X1, . . . , Xn) =

δn

δφ(X1) . . . δφ(Xn)
∂tΓk[φ̄]. (3.77)

On the right hand side, we have to take the nth derivative of the one-loop diagram
in Eq. (3.66),

δn

δφ(X1) . . . δφ(Xn)

1

2
STr

[
1

Γ
(2)
k +Rk

∂tRk

]
, (3.78)

which produces all possible one-loop diagrams with cutoff insertions. Evidently,

the diagrams for the flow of Γ
(n)
k depend on Γ

(m)
k with m ≤ n+2. Hence, within the

vertex expansion described above, we arrive at an infinite hierarchy of equations,
because the flow equation for Γ(n) requires input from Γ(n+1) and Γ(n+2). The
flow of the latter two quantities depends again on higher correlation functions
and eventually the system never closes. We should not be surprised about this, as
the effective action necessarily contains infinitely many independent terms, and we
have just rewritten the functional integro-differential equation in terms of infinitely
many partial integro-differential equations. In most interesting cases, it will not
be possible to derive a closed expression for the functional Γ[φ]. Practically, one
truncates the hierarchy of flow equations at a given order n, i.e. approximates

Γ
(m>n)
k ≈ 0, and solves the restricted, finite set of partial integro-differential

equations for Γ
(m≤n)
k (Q1, ..., Qm). Examples for this scheme can be found from

e.g. Metzner et al. [2012], Benitez et al. [2012], Husemann et al. [2012], Fister and
Pawlowski [2011], Dupuis [2009b,a], Sinner et al. [2009, 2010], Schmidt and Enss
[2011]. The self-consistency of this approximation can be checked by computing

the flow ∂tΓ
(m>n)
k as a function of Γ

(m≤n)
k . This provides some error control.

A further important approximation scheme is the derivative expansion. Formu-
lated in momentum space, it is an expansion of the vertices in powers of frequencies
and momenta. Its nth order relates to the nth-order in iq0 + q2. In contrast to
the vertex expansion, all orders of vertices are present already at the lowest order
of the derivative expansion. Here, we exemplify this expansion for the case of the
effective action Γk of a Bose gas. An often used ansatz for this theory is provided
by

Γk[φ
∗, φ] =

∫
X

(
φ∗(Zk∂τ −Ak∇2)φ+ Uk(φ

∗φ)
)
. (3.79)

Herein, U(φ∗φ) is the full effective potential. It is a general function of ρ = φ∗φ.

Accordingly, we have U (n) 6= 0 and thus vertices Γ
(n)
k to all orders in n. For

Zk = Ak ≡ 1, the ansatz in Eq. (3.79) has the same momentum dependence
as the classical action and is the lowest order in the derivative expansion. The
derivative expansion, and, in particular, the above ansatz in Eq. (3.79) assumes
lower orders of the differential operators to be more relevant than the higher ones.

60



3.3 Functional Renormalization Group

In the presence of a mass gap mgap, this is expected to be valid in the infrared,
because

(∂τ/m
2
gap)n ∼ (∇2/m2

gap)n ∼ |q2/m2
gap|n → 0. (3.80)

Hence, within the derivative expansion, we make an expansion of the effective
action about the low energy effective action. Besides the ansatz in Eq. (3.79), we
also have to specify a projection description which determines the flow equations
Żk, Ȧk and U̇k(ρ) from Eq. (3.66). Examples for the full lowest order derivative
expansion in bosonic as well as mixed fermionic-bosonic theories can be found
from e.g. Berges et al. [2002], Schaefer and Wambach [2005, 2008].

Most applications to ultracold atoms discussed in the present work are done
within low orders of the derivative expansion with or without an additional field
expansion of the effective potential Uk(ρ) up to the nth order of the fields. Of
course, such an expansion can also be interpreted as the nth order of the vertex
expansion with an additional expansion in powers of momenta and frequencies.
Indeed, as has been mentioned before, any approximation scheme used in the
literature can be seen as combination, deformation or further approximation of
the vertex expansion and the derivative expansion. In any case, when using such
an approximation, we restrict the space of functionals. For this reason, although
we started from an exact flow equation, we may accumulate errors. In particular,
given the exact flow equation, every regulator satisfying the mentioned properties
should give the same result. But since we never integrate the full flow, we may
end up at two different “effective actions” Γk=0 if we used two different regulators.
This regulator dependence can be applied to partially test the stability of results,
see e.g. the discussion in Schnoerr et al. [2013]. The approximate independence
of the results at vanishing cutoff, k = 0, guarantees the self-consistency of the
approximation. In turn, the independence of Γk=0 of the chosen regulator Rk or
the chosen trajectory in theory space can be utilized for devising regulators that
are best-suited (optimal) for the given order of a given approximation scheme
at hand, see Liao et al. [2000], Latorre and Morris [2000], Litim [2000, 2001b,a],
Canet et al. [2003], Pawlowski [2007], Salmhofer [2007].

In summary, the Functional Renormalization Group approach for the effective
average action constitutes a fully nonperturbative approach to quantum field the-
ory. It is neither restricted to small couplings nor to small amplitudes. For this
reason, it can be applied to many strongly correlated systems such as quantum
dots, the Hubbard model, graphene, QCD, quantum gravity, or – in our case –
the Unitary Fermi Gas.
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4 BCS-BEC Crossover from Functional
Renormalization

4.1 Ansatz for the effective average action

Every truncation of the renormalization group flow can be characterized in terms
of a set of running coupling {gk}, accompanied by a corresponding set of beta
functions {βg} and initial values {gΛ}. The latter ensure ΓΛ = S in the beginning
of the flow. Here, Λ is a large momentum cutoff scale. It has to be chosen much
larger than the physical scales set by chemical potential, temperature, and scat-
tering length. On the other hand, Λ has to be much smaller than the momentum
scale where details of the atomic interactions are resolved, typically given by the
inverse van-der-Waals length.

We present a systematic truncation scheme for the effective average action,
starting with only a few running couplings which are necessary to describe the
superfluid transition, then including more couplings which give subleading quan-
titative corrections. As the proposed set of improvements is based on a physical
picture of the mechanisms in the crossover, the convergence of results verifies the
corresponding intuition. Deviations, on the other hand, hint on missing ingredi-
ents, and can be employed for error estimates. The truncations described here
are expected to work best for a sufficiently local RG flow, i.e. one-loop integrals
which are peaked at scale k in both frequencies and momenta.

4.1.1 Truncation

Our ansatz for the effective average action Γk consists of a kinetic part, which
comprises the fermion and boson dynamics, and an interaction part:

Γk = Γkin + Γint. (4.1)

In terms of the renormalized fields ψ = A
1/2
ψ ψ̄ and φ = A

1/2
φ φ̄, the kinetic part is

given by

Γkin[ψ, φ] =

∫
X

(∑
σ=1,2

ψ∗σ

(
Sψ∂τ −∇2 +m2

ψ

)
ψσ + φ∗

(
Sφ∂τ − Vφ∂2

τ −
1

2
∇2
)
φ

)
.

(4.2)

Here and in the following, the k-dependence of the couplings is understood implic-
itly. The coefficients of the gradient terms are normalized to constants by means
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4.1 Ansatz for the effective average action

of the wave function renormalizations Aψ and Aφ. The latter two quantities do
not explicitly enter the RG flow, but rather appear via the anomalous dimensions

ηψ = −k∂k logAψ, ηφ = −k∂k logAφ. (4.3)

In the following, unrenormalized quantities are denoted with an overbar, renor-
malized ones without an overbar.

Interactions are parametrized according to

Γint[ψ, φ] =

∫
X

(
U(φ∗φ)− h

(
φ∗ψ1ψ2 − φψ∗1ψ∗2

))
. (4.4)

The effective average potential U(ρ) only depends on the U(1)-invariant ρ =
φ∗φ. It describes higher order bosonic scattering processes. A nonzero minimum
ρ0 of Uk=0(ρ) indicates the spontaneous breaking of U(1)-invariance, and, thus,
superfluidity. In a Taylor expansion scheme we write

U(ρ) = m2
φ(ρ− ρ0) +

λφ
2

(ρ− ρ0)2 +

N∑
n=3

un
n!

(ρ− ρ0)n, (4.5)

where ρ0,k = 0 in the symmetric regime of the flow (m2
φ,k > 0), and m2

φ,k = 0
for ρ0,k > 0. A truncation of the effective potential to order N will be referred
to as a φ2N -truncation throughout this thesis. We always work at least with a
φ4-truncation.

It is important to note that, besides an ansatz for Γk, the truncation of the flow
equation also consists in projection prescriptions for the running couplings. The
corresponding equations are given in Sec. 4.2.

We can classify our truncations by means of the diagrams which are included
on the right hand side of the flow equation. Those containing only fermionic (F)
lines (or propagators) reproduce the mean field result. Including those with two
bosonic (B) lines is important to resolve the impact of boson fluctuations on the
critical temperature. The renormalization effects on the fermion propagator are
given by mixed (M) diagrams with both boson and fermion lines. We visualize this
hierarchy of diagrams in Fig. 4.1. By elaborating the truncation according to the
inclusion F → FB → FBM, we successively incorporate higher order terms while
keeping the physical content of the lower truncations in this hierarchy. Within
a class of diagrams, we still have the freedom to keep several couplings at their
classical level.

In this work we restrict to the following five truncation schemes:

• F: Fermion diagrams,
Running couplings: U(ρ), Aφ

• FB0: Fermion and boson diagrams,
Running couplings: U(ρ), Aφ, Sφ
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B F

M

-1

-1

Figure 4.1: The truncations employed in this work can be classified according to
the diagrams which appear on the right hand side of the flow equa-
tion. Here, as an example, we show the flow equations for the boson
propagator (dashed line) and the fermion propagator (solid line), re-
spectively. All lines and vertices are fully dressed. The cross indicates
a regulator insertion Ṙk. The particle-particle loop of fermionic (F)
atoms corresponds to the F-truncation. Within the latter, the fermion
propagator does not get renormalized. The same holds for the FB-
truncations, where, in addition, purely bosonic diagrams (B) are also
taken into account. Eventually, our highest truncations also include
mixed diagrams (M) with both a fermion and a boson line. Figure
taken from Boettcher et al. [2014c].

• FB: Fermion and boson diagrams,
Running couplings: U(ρ), Aφ, Sφ, Vφ

• FBM0: Fermion, boson, and mixed diagrams,
Running couplings: U(ρ), Aφ, Sφ, Vφ,m

2
ψ

• FBM: Fermion, boson, and mixed diagrams,
Running couplings: U(ρ), Aφ, Sφ, Vφ,m

2
ψ, Aψ, h

2.

The subscript 0 in the second and fourth truncation indicates that we leave out
some running couplings which are included at a higher level of the truncation
hierarchy with the same diagrams. For the last truncation we still keep Sψ = 1.
The effective potential U(ρ) can be elaborated independently of the other running
couplings. In the study of the spin-balanced BCS-BEC crossover we will mostly
restrict to a φ4- or φ8-truncation, whereas this is inappropriate for the imbalanced
system. In the latter case we resolve the effective potential on a grid of field values.
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4.1 Ansatz for the effective average action

4.1.2 Regularization schemes

For choosing the cutoff function Rk(Q) in the context of the BCS-BEC crossover,
mainly two strategies can be applied. On the one hand, since the flow equation
is valid for every appropriate regulator, one may choose a particularly simple
function Rk(Q) which is sufficient to yield finite loop-integrals. A convenient
choice consists in the optimized cutoff, which only cuts off spatial momenta q2 =
|~q|2. For bosons and fermions, respectively, it is given by

q2-opt:

Rφ,k(Q) =
(
k2 − q2

2

)
θ
(
k2 − q2

2

)
, (4.6)

Rψ,k(Q) =
[
sgn(q2 − µ)k2 − (q2 − µ)

]
θ
(
k2 − |q2 − µ|

)
, (4.7)

where θ is the step function. (The notation q2-opt shall indicate that this is
a purely momentum cutoff.) The bosonic regulator Rφ takes into account that
the boson mass is twice the fermion mass, whereas the fermionic function Rψ
regularizes around the Fermi surface. For a k-dependent running Fermi surface,
one has to replace the chemical potential µ with a running coupling. In the spin-
imbalanced case we employ either Rψσ,k(Q) = Rψ,k(Q) with Rψ,k from Eq. (4.7)
and µ = (µ1 + µ2)/2 for the fermions in hyperfine state |σ〉 (symmetric scheme),
or

Rψσ,k(Q) =
[
sgn(q2 − µσ)k2 − (q2 − µσ)

]
θ
(
k2 − |q2 − µσ|

)
(4.8)

(asymmetric scheme). For details we refer te the discussion in Sec. 5.3.2.

Whereas the q2-opt regulators provide an efficient regularization of spatial mo-
menta, they do not limit the range of summation for the Matsubara frequencies.
Thus, at every scale k, both very large and very small frequencies contribute to
the flow of Γk. This, however, spoils the separation of scales discussed above. As a
result, the frequency and momentum structure of the k-dependent propagators is
complicated. Precision then requires a sophisticated (numerical) treatment. For
successful implementations with the nonperturbative RG in the context of the
Kardar–Parisi–Zhang equation see Canet et al. [2010, 2011], Kloss et al. [2012].

A second possibility consists in the use of regulators which implement the idea
of frequency and momentum shells, thereby depending on Q = (q0, ~q). In order to
implement such regulators for a nonrelativistic system, we face the problem that
the Galilean invariants for bosons and fermions are given by iq0 + q2/2 and iq0 +
q2 − µ, respectively. Due to the imaginary frequency dependence, the regulators
frequently employed for Lorentz invariant relativistic systems cannot be applied
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4 BCS-BEC Crossover from Functional Renormalization

here. We choose the regulators

Q-exp:

Rφ,k(Q) =
(

iq0 +
q2

2

)
r
(q2

0 + q4/4

cφk4

)
, (4.9)

Rψ,k(Q) =
(

iq0 + q2 − µ
)
r
(q2

0 + (q2 − µ)2

k4

)
, (4.10)

with an exponential shape function

r(X) = (eX − 1)−1. (4.11)

(The notation is again chosen to indicate that the Rk are now frequency and mo-
mentum cutoffs.) This particular choice respects all requirements on appropriate
FRG regulators, cuts off frequencies efficiently, and has shown to be numerically
convenient.

The relative cutoff scale cφ in Eq. (4.9) allows to regularize bosons and fermions
on slightly different scales ∼ k. Given the different shapes of the dispersion
relations and the somewhat arbitrary parametrization of the regulator functions,
cφ = 1 is not necessarily a natural or distinguished choice. In particular, earlier
works found rather strong dependences of observables on relative cutoff scales in
two-species systems (Diehl et al. [2008a], Krippa et al. [2010], Birse et al. [2011]).
Since exact results do not depend on cφ, the residual dependence found with a
given truncation gives some indication of the error due to the truncation, see e.g.
Schnoerr et al. [2013]. For the truncations employed in this work with the Q-exp
regulator we find that both ∆/µ and Tc/µ for the UFG show only 5%-variations
with respect to 0.2 ≤ cφ ≤ 1.

Regularized Loop Integrals

For spatial cutoffs which only depend on q2, the Matsubara summation can be per-
formed analytically. The remaining momentum integral can often be performed
analytically for the q2-opt regulator. This is outlined in Secs. 4.3.2 and 4.3.2. For
frequency and momentum dependent regulators, however, the Q-integral has to
be performed numerically. Here we discuss how this can be implemented in prac-
tice and how the cutoff substantially simplifies the integration. For concreteness
we consider the Q-exp example relevant for the following analysis.

We consider the frequency and momentum regulator

R̄Q = A(iq0 + ξq)r(Y ), Y =
q2

0 + ξ2
q

k4
, (4.12)

where ξq = q2/2 for bosons and ξq = q2 +m2
ψ for fermions. All one-loop integrals

entering the beta functions become UV finite due to the insertion of

˙̄RQ = A(iq0 + ξq)
[
−ηr(Y )− 4Y r′(Y )

]
=: A(iq0 + ξ)ṙ(Y ). (4.13)
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4.1 Ansatz for the effective average action

A typical diagram contributing to the flow has the form∫
Q

˙̄RQ

(PQ +RQ)n
∝
∫
Q

(iq0 + ξq)ṙ(Y )

(iq0 + ξq)n(1 + r)n
∼
∫
Q

ṙ(Y )

Y (n−1)/2(1 + r)n
. (4.14)

The integrand is cut off for a sufficiently large value of Y , such that only terms
with Y ≤ N contribute, whereN depends on the particular choice of the regulator.
Accordingly, we find that the frequency and momentum integrals can be restricted
to the domains

Y = q̂2
0 + ξ̂2

q ≤ N ⇒
{
|q̂0| ≤ N1/2, |q̂2 + m̃2

ψ| ≤ N1/2 (fermions),

|q̂0| ≤ N1/2, |q̂| ≤ 21/2N1/4 (bosons).
(4.15)

Herein, q̂0 = q0/k
2, ξ̃q = ξq/k

2, q̂2 = q2/k2, and m̃2
ψ = m2

ψ/k
2. For the Q-exp

cutoff, we found that N = 25 is a good choice. Enlarging N allows for a check of
the stability of the numerical integrations. For the fermions, the spatial condition
translates to

q ∈ [Kψ,min,Kψ,max], (4.16)

where

Kψ,min =

{√
−(N1/2 + m̃2

ψ) if N1/2 + m̃2
ψ < 0

0 else
, (4.17)

Kψ,max =

{√
N1/2 − m̃2

ψ if N1/2 − m̃2
ψ > 0

Kψ,min else
. (4.18)

Finite temperature flow

At nonzero temperatures the loop integration over frequencies turns into an in-
finite Matsubara sum over frequencies ωn = 2π(n + 1/2)T and ωn = 2πnT for
fermions and bosons, respectively. However, it is an interesting property of the
renormalization group that, for large k2 � T , the flow can be approximated by
the zero temperature flow. In fact, the system at scale k can only resolve the
actual value of the temperature once k2 is comparable to T . We detail here how
this feature is reflected in the flow equations and how it can be implemented
numerically.

Given a function f(q̂0) ∝ ˙̄R(Q) which has finite support due to the frequency
and momentum regulator R̄(Q), the Matsubara summation is restricted to a finite
domain according to

T̃

∞∑
n−=∞

f(ω̂n) = T̃

M∑
n=−M

f(ω̂n), (4.19)
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4 BCS-BEC Crossover from Functional Renormalization

where the number M depends on the choice of the regulator and the value of
T̃ = T/k2. With the choice of N from Eq. (4.15), the number of bins which are
summed in Eq. (4.19) is given by

M(T̃ ) ' N1/2

∆ω̂n
=
N1/2

2πT̃
=
k2

T
O(1). (4.20)

In particular, for large T or small k2, we have

T̃
∞∑

n=−∞
f(ω̂n)

T̃�1−→
{
T̃ f(0) (bosons)

0 (fermions)
. (4.21)

Our strategy is as follows: We search for the lowest number of bins M(T̃ )
such that the area of the Matsubara sum is still well approximated by the zero
temperature integral. This will be the case in the early stages of the flow. Once
the rescaled temperature T̃ gets too high, we evaluate the sum. However, due

to the finite support of ˙̄R(Q), this will involve only a few terms. Eventually, for
k2 → 0, we only have to take into account the lowest modes, say n = 0,±1.

We define a transition temperature T̃tr such that

T̃
∑
n

f(ω̂0) =


∫ N1/2

−N1/2
dq̂0
2π f(q̂0) T̃ ≤ T̃tr

T̃
∑M(T̃ )

n=−M(T̃ )
f(ω̂n) T̃ > T̃tr

(4.22)

during the evolution of the flow, where

M(T̃ ) =
[N1/2

2πT̃

]
> 0. (4.23)

Herein, [x] defines the ceiling function, which maps x to the smallest integer not
less than x. With this choice, we keep more terms than are actually necessary
from the consideration in Eq. (4.21). For the Q-exp regulator T̃tr = 0.01 is a good
choice. Thus we switch from an integration over continuous frequencies to a sum
over finite frequencies once the number of Matsubara frequencies has decreased
to M(T̃tr) = 80. By decreasing T̃tr we can check for the stability of our numerical
computations.

4.1.3 Physical content

We now discuss the physical content of the running couplings introduced above.
The momentum dependence of the inverse bosons propagator

P̄φ(Q) = Aφ

(
iSφq0 + Vφq

2
0 + q2/2

)
(4.24)

is generated during the early stages of the RG flow for a broad Feshbach resonance.
It parametrizes the Q-dependence of the particle-particle channel of the four-
fermion vertex. The coefficients Aφ, Sφ, and Vφ can be regarded as the expansion
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4.1 Ansatz for the effective average action

coefficients of a derivative expansion of the boson self-energy for each scale k
individually.

For large k and a sufficiently large initial Feshbach coupling h2, the running of
couplings is attracted to a universal vacuum fixed point with ηφ? = 4− d. Then,
Aφ in 3D scales as

Aφ,k ∼ k−ηφ? ∼ k−1. (4.25)

Accordingly, Aφ,kq
2 ' Aφ,qq

2 ∼ q in the early stages of the flow. In fact, the
inverse boson propagator can be integrated analytically in this regime, yielding
P̄φ(Q) ∼

√
iq0/2 + q2/4− µ, which indeed scales linear in q. We see that, al-

though we pushed the truncation into a q2-dependence of the propagator, the
running couplings react in such a manner as to undo this forcing. The character-
istic running of ηφ, Sφ, and Vφ in 3D is visualized in Fig. 4.2. In 2D the propagator
in the scaling regime is given by P̄φ(Q) ∼ log(iq0/2+q2/4−µ), corresponding to an
anomalous dimension of ηφ? = 2. To see this note that (xd−2−1)/(d−2)→ log(x)
for d→ 2. The behavior of Sφ is very distinct in reduced dimension. We discuss
this in more detail in Sec. 6.1.1, where we also derive the analytic expressions for
the boson propagator in vacuum.

The quadratic frequency dependence Vφq
2
0 in the boson propagator constitutes

the first nonvanishing frequency dependent term of the real part of the boson self-
energy. Deep in the infrared Goldstone regime, it is expected to be dominant over
the linear frequency term. This is well-known from purely bosonic systems, most
pronounced in reduced dimensionality d ≤ 2 (Wetterich [2008], Dupuis [2009b]).
The Vφ-term is important for the two-dimensional BCS-BEC crossover. In 3D we
find a rather mild dependence of the overall flow on the presence of Vφ for the
Q-exp regulators. This indicates that the frequency and momentum regulators
work sufficiently well, such that already the truncation without Vφ captures the
leading frequency dependence. In contrast, for purely momentum regulators, the
influence of Vφ turns out to be stronger.

In order to capture the physics of the second order superfluid phase transition,
a Taylor expansion of the effective potential U(ρ) needs to be at least of order
φ4. We start at large k with a non-vanishing boson “mass term” (or detuning)
m2
φ,k > 0. The field expectation value is zero in this symmetric regime of the flow,

ρ0,k = 0. Scattering between bosons is described by the boson-boson coupling
λφ, and n-boson scattering processes are encoded in un for n ≥ 3. Due to a
nonzero chemical potential, the boson mass term decreases during the flow and
may reach zero for a nonzero symmetry breaking scale ksb. This is equivalent to
the Thouless criterion of a diverging four-fermion vertex, however, at a given scale
k. Typically, the symmetry breaking scale is slightly above the chemical potential,
k2

sb & µ. The origin of this divergence can be rooted in large contributions of
fermion fluctuations due to an approximate zero of the inverse fermion propagator
iq0 + q2 − µ, which occurs as soon as the typical momenta become of the order
of the chemical potential. The flow of the boson-boson coupling λφ at T = 0 is
displayed in Fig. 4.3.

69



4 BCS-BEC Crossover from Functional Renormalization

- 8 - 6 - 4 - 2 0

0.0

0.5

1.0

1.5

2.0

t

Η
Φ
,

S
Φ
,

V
Φ

Figure 4.2: Typical running of the couplings which parametrize the boson prop-
agator Pφ(Q), shown here for the spin-balanced UFG. Units are such
that µ = 1. From top to bottom we show the t = log(k/Λ)-dependence
of ηφ (blue, solid upper curve), Sφ (red middle curve), and Vφ (green
lower curve) at T = 0. The initial values correspond to t = 0 (k = Λ),
and the infrared regime is found for t → −∞ (k → 0). Many-body
effects strongly influence the flow at k2 ' µ, which corresponds to
t = −6.9 in this plot. We also show the anomalous dimension ηφ
for T = Tc (blue, dashed), which does not vanish in the infrared but
settles at the critical exponent η = 0.05(1) for a φ4-truncation. This
value is expected in the O(2)-universality class within this order of the
truncation. Figure taken from Boettcher et al. [2014c].

For k < ksb a nonzero expectation value ρ0,k of the boson field indicates local
order on length scales ∼ k−1. Within our truncation, this results in an anomalous
fermion self-energy

Σan,k(Q = 0) = ∆k = (h2
kρ0,k)

1/2, (4.26)

which enters the fermion propagator as a gap, hence removing the zero in the
denominator. The fate of the k-dependent gap ∆k depends on the temperature of
the system. For T = 0 one finds a superfluid ground state with ρ0 6= 0 at k = 0 in
the balanced case. For higher temperatures, thermal fluctuations may destroy the
local order, such that ρ0,k > 0 for some k > 0, but ρ0,k=0 = 0 at the end of the flow.
We call this temperature range the precondensation region. The local expectation
value ρ0,k of bosons can then be regarded as indicator for bosonic correlations on
scales of order k, which do not yet suffice to produce a true long-range order.
It is closely related to the notion of a pseudogap ∆pg, see also the discussion in
Sec. 5.3.2. We may use the nonvanishing value of ρ0,k at intermediate scales k
to estimate roughly the size of the pseudogap according to ∆pg = maxk ∆k or
∆pg = ∆k=kF

. The former choice is illustrated in Fig. 4.4. A more accurate
resolution of the size of the pseudogap can be obtained by computing the fermion
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Figure 4.3: Zero temperature running of the boson-boson coupling λφ (blue, upper
curve) for the UFG. We can clearly identify three regimes in the flow:
For t ' 0 the coupling follows the scaling solution with constant λ̃φ =
kλφ. This behavior would continue in vacuum, where µ = T = 0. For
a nonzero µ > 0, however, the flow is influenced by many-body effects
at k2 ' µ (t ' −6.9). For smaller scales, the flow enters the Goldstone
regime, where all contributions to the running of couplings come from
infrared Goldstone fluctuations, whereas the chemical potential µ/k2

is gapped out due to k → 0. The behavior exemplified here for λφ is
found for all running couplings. We also show the running of ∆k =
(h2ρ0)1/2 in the red lower curve. It has a nonvanishing value below
the symmetry breaking scale tsb = −6.7. Figure taken from Boettcher
et al. [2014c].

spectral function from the full fermion propagator. For temperatures above the
precondensation temperature, no local order emerges during the flow and we have
ρ0,k = 0 for all k.

The gap parameter is defined as

∆ = lim
k→0

∆k. (4.27)

Superfluidity corresponds to ρ0,k=0 > 0, and thus is equivalent to a nonzero gap
parameter in our truncation of the effective action. The critical temperature for
the phase transition to superfluidity is defined as the highest temperature such
that a precondensate ρ0,k > 0 appearing during the flow survives at k = 0. In
the BCS-limit, no precondensation occurs, and the rise of bosonic correlations is
in one-to-one correspondence with bosonic condensation. On the BEC side, in
contrast, the precondensation region is huge. The running of ∆k for the balanced
UFG is shown in Fig. 4.3. The continuous behavior of ∆(T ) for all T is shown in
Fig. 4.4. It indicates a second order phase transition.

Whereas the phase transition and thus the critical temperature is mainly driven
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Figure 4.4: Temperature dependence of the minimum ρ0(T ) of the effective po-
tential U(ρ) for the UFG within a FBM0-truncation (blue solid curve,
multiplied by a factor of 5 for better visibility). The continuous behav-
ior of this order parameter at Tc is found for all of our truncations and
results from the inclusion of bosonic fluctuations, which become dom-
inant close to criticality. Units are such that µ = 1. In our bosonized
model we define the gap parameter according to ∆ =

√
h2ρ0 (red,

dashed curve), where h2 is the Yukawa coupling. The actual gap in
the single-fermion spectrum persists even above the critical temper-
ature, where it constitutes a pseudogap. Within our approach we
observe the pseudogap behavior as a temperature region with ρ0,k 6= 0
during the flow, but ρ0 = ρ0,k=0 = 0 in the infrared. Here we estimate
its value by ∆pg = maxk ∆k, shown in the green long-dashed curve.
The pseudogap ceases to exist above Tpc/µ = 0.50 in this truncation.
For zero temperature we have ∆ = ∆pg. Figure taken from Boettcher
et al. [2014c].

by the bosons, we expect the renormalization of the fermion propagator to be
important for the density of the system due to the Tan contact effect, see Sec.
5.1. When employing purely momentum regulators, the diagrams renormalizing
the fermion propagator vanish in vacuum. This is a result of the possibility to
analytically perform the frequency integrations, which have all poles in the same
half-plane. When employing frequency and momentum regulators, the fermion
propagator gets renormalized in vacuum. This effect can be controlled by means
of an appropriate vacuum renormalization of the initial “fermion mass term”,
m2
ψΛ(µ = 0) = CΛ2, where C is a regulator-dependent constant.

The physical many-body chemical potential µmb = µ − εB/2 vanishes in vac-
uum. The association of m̄2

ψ − m̄2
ψ,vac with µmb is only meaningful for a constant

difference

m̄2
ψ,k − m̄2

ψ,k,vac ' −µmb (4.28)
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in the early stages of the many-body flow, i.e. for large k. (The vacuum flow for
the fermion mass term is given by the canonical running m2

ψ,vac = Ck2 for the
UFG.) If Eq. (4.28) is not satisfied, the relation between the chemical potential
and the fermion mass term m2

ψ is not obvious.

The Feshbach coupling h2 receives small corrections in the ordered regime of
the flow where ρ0 > 0. We include this effect in our highest truncation. In this
thesis we only employ truncations with Sψ = 1.

4.1.4 Universality and initial conditions

To initialize the set of ordinary differential equations for the running couplings
{gk}, we have to equip the system with appropriate initial conditions {gΛ}. This
is particularly simple for the UFG, where the initial conditions for the running
couplings are found as the zeros of the beta functions for the dimensionless renor-
malized running couplings.

The standard procedure for solving the flow equation for the effective average
action consists in ensuring the initial ΓΛ to agree with the microscopic action S.
For instance, this would result in the initial values Aφ = Sφ = Vφ = 0 for a single-
channel model of the BCS-BEC crossover. The parameters of the microscopic
action, here the boson and fermion mass terms m2

φΛ and m2
ψΛ, have to be chosen

such that we arrive at the right vacuum scattering physics. In 3D we have

m2
φ,k=0,vac = − h2

8πa
θ(−a), (4.29)

m2
ψ,k=0,vac = −1

2
εB =

1

a2
θ(a). (4.30)

Accordingly, bosons (fermions) are gapped on the atomic (bosonic) side of the
crossover in vacuum. In the unitary limit both masses vanish. Eqs. (4.29) and
(4.30) are actually valid in both 3D and 2D, where a corresponds to the 3D and
2D scattering length, respectively. We refer to Sec. 6.1.1 for a detailed discussion
of the corresponding scattering theory.

For a sufficiently broad Feshbach resonance, the running couplings are attracted
to a scaling solution (Diehl et al. [2007a,b, 2010a]), for which the renormalized
dimensionless couplings take constant values. The anomalous dimensions obey
4 − d − ηφ − 2ηψ = 0, as for this choice ∂kh̃

2 = 0 in our truncation. Depending
on the deviation of the relevant boson and fermion mass terms from their UFG
initial values, the system will stay sufficiently long (i.e. many k-steps) at this
fixed point. At the fixed point, all other couplings acquire their corresponding
fixed point values. We call this regime the scaling regime. For any nonzero a−1,
µ, or T , the system will eventually leave the scaling solution. However, memory
of the precise initial condition is lost, as all couplings acquired their fixed point
values. Accordingly, we might as well start directly at the scaling solution.

Due to this property, the initial conditions for the UFG can now be found for any
given truncation-, regularization- and specification-prescription by simply solving
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a fixed point equation. Indeed, for a−1 = 0, Eqs. (4.29) and (4.30) can be solved
by ensuring the dimensionless boson and fermion mass terms to be constant and
given by their fixed point values, m̃2

φ = m2
φ/k

2 = m̃2
φ? and m̃2

ψ = m2
ψ/k

2 = m̃2
ψ?.

(Dimensionless running couplings, which are divided by their canonical power of
k, will be denoted by a tilde. The subscript ? indicates the fixed point.) We then
trivially have m2

φ,m
2
ψ ∼ k2 → 0 for k → 0. The other running couplings are

attracted to their fixed point values. To simplify the ultraviolet flow, we let them
start directly at the scaling solution: ΓΛ = Γ?.

Thus, given a truncation in terms of a set of dimensionless running couplings
{g̃k}, the initial conditions for the UFG are found from the zeros g̃? of the beta
functions for the dimensionless running couplings in vacuum (µ = T = 0). We set
T = 0 in the following. For the UFG we then have

˙̃g(µ = 0) = βg̃(µ̃ = 0) = 0 (4.31)

for g 6= m2
ψ, with µ̃ = µ/k2, and m2

ψΛ = m̃2
ψ?Λ

2 − µ. In the F, FB0, and FB-

truncations we have m̃2
ψ? = 0. Away from unitarity, or in 2D, m2

φΛ and m2
ψΛ have

to be tuned such as to satisfy Eqs. (4.29) and (4.30). A finite scattering length or
a nonzero µmb = µ − εB/2 define relevant perturbations which drive the system
away from the fixed point. The initial scale Λ has to be chosen large enough such
that many-body and interaction effects do not influence the ultraviolet flow.

The initial conditions for the running couplings except for m2
ψΛ do not necessar-

ily need a modification due to the chemical potential, as the corresponding terms
are generated automatically during the ultraviolet flow. To simplify the latter
for the numerically challenging analysis of the UFG with the Q-exp regulators,
however, we choose them to be on their corresponding fixed point values as well.
Thus we arrive at

g̃Λ = g̃? + g̃µ?µ/Λ
2, (4.32)

where the subscript µ indicates the µ-derivative of the respective running coupling,
with m̃2

ψµ = −1.
For the sake of completeness we present here the rather technical way of ob-

taining the g̃µ? in Eq. (4.32) for the UFG. Upon introducing a chemical potential,

m2
ψΛ(µ) = m2

ψ? − µ, (4.33)

we slightly deviate from the fixed point in Eq. (4.31), and expect deviations from
the scaling solution as soon as k2 ' µ. In terms of beta functions, the UV flow
(large k) is governed by the set of equations

˙̃g(µ) = βg̃(µ̃) ' ∂βg̃
∂µ̃

(0) · µ̃+ · · · =
∑
i

∂βg̃
∂g̃i

(0) · g̃i,µ · µ̃+ . . . (4.34)

We used that the leading term vanishes and introduced the notation

gµ = ∂µg. (4.35)
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4.1 Ansatz for the effective average action

The dimensionless running couplings g̃µ are then found in the UV from the equa-
tions

˙̃gµ = ∂t

(∂g̃
∂µ̃

)
= 2g̃µ +

∑
i

∂βg̃
∂g̃i

(0) · g̃i,µ.

⇒ ˙̃gµ,i = Aij · g̃µ,j . (4.36)

The matrix

A = 2 · 1 + {∂β/∂g̃} (4.37)

is solely determined by the fixed point values g̃?. We will be interested in a
situation where

g̃µ ' g̃µ,? = const. in the UV. (4.38)

Most importantly, we have to ensure

αψ = m̃2
ψµ =

∂m2
ψ

∂µ
' −1 in the UV, (4.39)

because otherwise the value of the chemical potential loses its meaning due to an
anomalous running in the UV.

The behavior of the set of equations (4.36) depends on whether we allow for a
running fermion mass or not. If we allow for a running fermion mass, then αψ
is a free parameter in (4.36), and, consequently, ˙̃gµ = A · g̃µ = 0 will in general
not have a nontrivial solution, as A has full rank: We have a homogeneous set of
equations, with the only solution g̃µ,? = 0. This conflicts αψ = −1. In contrast, if
we do not allow for a running fermion mass, thereby enforcing αψ = −1 by hand,
we find a scaling solution with fixed point values g̃µ,?. The UV flow is then very
simple:

g̃k(µ) ' g̃? + g̃µ? · µ/k2. (4.40)

In particular, m̃2
ψ ' −µ̃ for large k.

In order to have αψ = −1 in the UV, we need A not to be of full rank, i.e. A
must have an eigenvalue 0. Then, the variables in A · g̃µ = 0 are not independent,
and there are nontrivial solutions. The matrix A is fully determined by the vac-
uum scaling values g̃?. The values of g̃?, however, depend on the regularization
procedure. With the relative cutoff scale cφ in Eq. (4.9), we have a knob to tune
the behavior of the UV running of the couplings. In particular, we find that for
cφ = c0 = 0.2454 ' 1/4 we have a zero eigenvalue of A, and m2

ψ −m2
ψ,? ' −µ in

the UV.
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4 BCS-BEC Crossover from Functional Renormalization

4.2 Flow equations for general regulators

4.2.1 Flow equation building blocks

In this section we collect the building blocks which are required to efficiently
compute beta functions within our truncation. The expressions derived in the
following assume frequency and momentum independent vertices. They are in-
dependent of the regularization scheme and many assumptions on the boson and
fermion dynamics. This section also introduces the notation used in the remainder
of this thesis.

We generalize the ansatz for the kinetic part of the effective average action in
Eq. (4.2) according to

Γ̄kin[ψ̄, φ̄] =

∫
X

(∑
σ=1,2

ψ̄∗σP̄ψσ(∂τ ,−i∇)ψ̄σ + φ̄∗P̄φ(∂τ ,−i∇)φ̄

)
. (4.41)

The inverse propagators P̄ψσ and P̄φ are assumed to be of the form

P̄ψσ(∂τ ,−i∇) = −Aψσ∇2 + . . . , (4.42)

P̄φ(∂τ ,−i∇) = −Aφ
1

2
∇2 + . . . , (4.43)

such that the gradient coefficients Aψσ and Aφ can be used to define renormalized

fields via ψσ = A
1/2
ψσ ψ̄σ and φ = A

1/2
φ φ̄, respectively. This is in line with the

truncation presented in Sec. 4.1.1 for a particular choice of P̄ψ and P̄φ. We then
define renormalized couplings through an appropriate rescaling by powers of Aψσ
and Aφ such that

Γ̄[ψ̄, φ̄] = Γ[ψ, φ]. (4.44)

This equation also allows to generate their RG-running from the flow of Γ̄k. In
fact, the flow equation for the effective average action should be expressed in
terms of Γ̄k, see Eq. (4.52) below. The flow of Γ[ψ, φ] receives additional terms
proportional to the anomalous dimensions defined in Eq. (4.3). We indicate
unrenormalized quantities by an overbar, renormalized ones are denoted without
an overbar.

When evaluated for homogeneous mean fields, the n-th functional derivative

Γ̄
(n)
k (X1, . . . , Xn) of the effective average action is proportional to n delta functions
δ(X1 −X2) . . . δ(X1 −Xn), where Xi is the argument of the i-th field derivative.
Within the momentum representation of the fields,

Ψ̄(P ) =

∫
X

Ψ̄(X)e−iPX , (4.45)

the vertices transform according to

Γ̄
(n)
k [Ψ̄](P1, . . . , Pn) =

∫
X1,...,Xn

Γ̄
(n)
k [Ψ̄](X1, . . . , Xn)eiP1X1 . . . eiPnXn . (4.46)
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4.2 Flow equations for general regulators

This results in an overall delta function δ(P1+· · ·+Pn) for a homogeneous setting.
We assume frequency and momentum independent vertices for n > 2, see Eq.
(4.76) below. We denote 4-momenta as Q = (q0, ~q) with∫

Q
= T

∑
n

∫
~q

= T
∑
n

∫
ddq

(2π)d
. (4.47)

The delta function δ(Q) is defined from
∫
Q δ(Q)f(Q) = f(0) for any function

f(Q). We often denote the dependence on Q by a superscript, i.e. fQ := f(Q).
The frequency q0 is always understood as a Matsubara frequency with

q0 =

{
2πnT (bosons)

2π(n+ 1/2)T (fermions)
(4.48)

for nonzero temperatures, and q0 ∈ R for zero temperature. In the latter case we
have

T
∑
n

=
2πT

2π

∑
n

=
∑
n

∆q0

2π

T→0−→
∫

dq0

2π
. (4.49)

We work with supermatrices according to the field vector

Ψ̄ = (φ̄1, φ̄2, ψ̄1, ψ̄2, ψ̄
∗
1, ψ̄

∗
2), (4.50)

where the complex boson field is given in the real field basis according to φ̄ =
φ̄1 + iφ̄2. Any supermatrix M can then be decomposed according to

M =

(
M2×2
BB M2×4

BF

M4×2
FB M4×4

FF

)
, strM = trMBB − trMFF , (4.51)

where (s)tr denotes a (super)trace. For an introduction to the notions of superal-
gebra we refer to Zinn-Justin [1993]. The flow equation for the effective average
action in this notation is given by

∂tΓ̄[φ̄, ψ̄] =
1

2
STr

[(
Γ̄

(2)
BB[φ̄, ψ̄] + R̄φ Γ̄

(2)
BF [φ̄, ψ̄]

Γ̄
(2)
FB[φ̄, ψ̄] Γ̄

(2)
FF [φ̄, ψ̄] + R̄ψ

)−1( ˙̄Rφ 0

0 ˙̄Rψ

)]
. (4.52)

The mean fields φ̄X and ψ̄X have to be arbitrary and Γ̄BF , Γ̄FB 6= 0 in order to
derive flow equations for higher n-point functions.

The effective average potential Uk(ρ) = Ūk(ρ̄) is defined by Γ̄k[φ̄] = βV · Uk(ρ)
for a constant field φ. Herein, V is the d-dimensional volume. The inverse prop-
agators Ḡ−1

φ (Q), Ḡ−1
ψ (Q) are found from

Γ̄
(2)

φ̄iφ̄j
(X,Y, ρ̄) =

δ2Γ̄

δφ̄i(X)δφ̄j(Y )
[φ̄], (4.53)

Γ̄
(2)

ψ̄
(∗)
α ψ̄

(∗)
β

(X,Y, ρ̄) =

→
δ

δψ̄
(∗)
α (X)

Γ̄

←
δ

δψ̄
(∗)
β (Y )

[φ̄] (4.54)
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for an arbitrary constant background field ρ = φ∗φ = 1
2φ

2
1. We assume the boson

background field φ to be real-valued. In momentum representation we have

Γ̄
(2)
BB(Q′, Q) = δ(Q′ +Q)Ḡ−1

φ (Q), (4.55)

Γ̄
(2)
FF (Q′, Q) = δ(Q′ +Q)Ḡ−1

ψ (Q). (4.56)

We first consider the spin-balanced case with µ1 = µ2. The modifications for the
imbalanced case are presented below. For the above ansatz (4.41) for the effective
average action we find

Ḡ−1
φ (Q) = AφG

−1
φ (Q) = Aφ

(
PS,Qφ + U ′ + 2ρU ′′ iPA,Qφ

−iPA,Qφ PS,Qφ + U ′

)
, (4.57)

Ḡ−1
ψ (Q) = AψG

−1
ψ (Q) = Aψ

(
−hφε −P−Qψ 1

PQψ 1 hφε

)
. (4.58)

Herein, 1 = ((1, 0), (0, 1)) and ε = ((0, 1), (−1, 0)), and primes denote derivatives
with respect to ρ. Moreover, for a given function f(Q) we define the symmetrized
and anti-symmetrized components, respectively, according to

fS,A(Q) =
1

2

(
fQ ± f−Q

)
. (4.59)

Note that fQf−Q = fS(Q)2 − fA(Q)2. The regulators read

R̄Qφ = AφR
Q
φ = Aφ

(
RSφ(Q) iRAφ (Q)

−iRAφ (Q) RSφ(Q)

)
, (4.60)

R̄Qψ = AψR
Q
ψ = Aψ

(
0 −R−Qψ 1

RQψ1 0

)
. (4.61)

The regularized propagators are given by

GQφ = AφḠ
Q
φ =

1

detQB

(
LS,Qφ + U ′ −iLA,Qφ

iLA,Qφ LS,Qφ + U ′ + 2ρU ′′

)
, (4.62)

GQψ = AψḠ
Q
ψ =

1

detQF

(
hφε L−Qψ 1

−LQψ1 −hφε

)
, (4.63)

where we introduce the notation

LQψ = PQψ +RQψ , (4.64)

LQφ = PQφ +RQφ + U ′(ρ) + ρU ′′(ρ), (4.65)

detQF = LQψL
−Q
ψ + h2ρ, (4.66)

detQB = LQφL
−Q
φ − (ρU ′′)2. (4.67)
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4.2 Flow equations for general regulators

We do not distinguish in our notation between the regularized and non-regularized
propagators, i.e. (Γ(2) +Rk)

−1 and (Γ(2))−1, since it will always be clear from the
context what is meant.

The boson propagator can also be represented in the conjugate field basis
{φ, φ∗}. The corresponding matrix will be denoted by a widehat, i.e.

MBB =

(
Mφ1φ1 Mφ1φ2

Mφ2φ1 Mφ2φ2

)
, M̂BB =

(
Mφφ Mφφ∗

Mφ∗φ Mφ∗φ∗

)
. (4.68)

We can change bases according to the transformation

Ĝ−1 = UG−1U t (4.69)

with

U =
1√
2

(
1 −i
1 i

)
, U t =

1√
2

(
1 1
−i i

)
. (4.70)

This is inverted by

G−1 = U †Ĝ−1U∗ (4.71)

with

U † = U−1 =
1√
2

(
1 1
i −i

)
, U∗ = (U t)−1 =

1√
2

(
1 i
1 −i

)
. (4.72)

In this way we obtain

Ĝ−1
φ (Q) =

(
ρU ′′(ρ) L−Qφ
LQφ ρU ′′(ρ)

)
, R̂φ(Q) =

(
0 R−Qφ
RQφ 0

)
. (4.73)

The propagator becomes

Ĝφ(Q) =
1

detB(Q)

(
−ρU ′′(ρ) L−Qφ
LQφ −ρU ′′(ρ)

)
. (4.74)

Higher n-point functions are represented by supermatrices with additional ex-
ternal indices, i.e. each Γ(n≥2) is either BB, BF , FB, FF , and carries further
indices. We introduce a vertical bar, |, to separate those fermion derivatives which
act from the left from those which act from the right, e.g.

(
Γ̄

(5)

ψ̄∗1 ψ̄3F |Fφ̄1
(X1, . . . , X5)

)
AB

=

→
δ

3

δψ̄∗1(X1)δψ̄3(X2)δψ̄A(X3)
Γ̄

←
δ

2

δψ̄B(X4)δφ̄1(X5)
.

(4.75)
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For bosons the order of the functional derivatives does not play a role. In our
truncation we assume momentum independent vertices. We write

Γ̄(n>2)(Q1, . . . , Qn) = γ̄(n)δ(Q1 + · · ·+Qn). (4.76)

The boson matrices can be given either in the real field basis {φ̄1, φ̄2} or in the
conjugate field basis {φ̄, φ̄∗}. We again label the latter case with a widehat. For
a constant real background field φ =

√
ρ we have

γ̄
(3)

φ̄1BB
= A

3/2
φ

(
u

(3)
111 0

0 u
(3)
122

)
, γ̄

(3)

φ̄2BB
= A

3/2
φ

(
0 u

(3)
122

u
(3)
122 0

)
,

γ̄
(4)

φ̄1φ̄1BB
= A2

φ

(
u

(4)
1111 0

0 u
(4)
1122

)
, γ̄

(4)

φ̄1φ̄2BB
= A2

φ

(
0 u

(4)
1122

u
(4)
1122 0

)
,

γ̄
(4)

φ̄2φ̄2BB
= A2

φ

(
u

(4)
1122 0

0 u
(4)
2222

)
,

γ̄
(3)

φ̄1F |F
= AψA

1/2
φ

h√
2

(
−ε 0
0 ε

)
, γ̄

(3)

φ̄2F |F
= AψA

1/2
φ

ih√
2

(
ε 0
0 ε

)
,

γ̄
(3)

φ̄F |F = AψA
1/2
φ h

(
0 0
0 ε

)
, γ̄

(3)

φ̄∗F |F = AψA
1/2
φ h

(
−ε 0
0 0

)
, (4.77)

with

u
(3)
111 = 3(2ρ)1/2U ′′ + (2ρ)3/2U (3), u

(3)
122 = (2ρ)1/2U ′′,

u
(4)
1111 = 3U ′′ + 12ρU (3) + (2ρ)2U (4), u

(4)
1122 = U ′′ + 2ρU (3), u

(4)
2222 = 3U ′′.

The mixed diagrams read

γ̄
(3)

ψ̄∗1B|F
= AψA

1/2
φ

h√
2

(
0 0 0 1
0 0 0 i

)
, γ̄

(3)

BF |ψ̄1
= AψA

1/2
φ

h√
2

(
0 1 0 0
0 −i 0 0

)
,

γ̄
(3)

ψ̄1B|F
= AψA

1/2
φ

h√
2

(
0 −1 0 0
0 i 0 0

)
, γ̄

(3)

BF |ψ̄2
= AψA

1/2
φ

h√
2

(
−1 0 0 0
i 0 0 0

)
,

(4.78)

and

γ̄
(3)

F |Bψ̄1
= AψA

1/2
φ

h√
2


0 0
1 −i
0 0
0 0

 , γ̄
(3)

ψ̄∗1 |FB
= AψA

1/2
φ

h√
2


0 0
0 0
0 0
1 i

 ,

γ̄
(3)

F |Bψ̄2
= AψA

1/2
φ

h√
2


−1 i
0 0
0 0
0 0

 , γ̄
(3)

ψ̄1|FB
= AψA

1/2
φ

h√
2


0 0
−1 i
0 0
0 0

 . (4.79)
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We also give the purely bosonic vertices in terms of the conjugate field basis
(φ̄, φ̄∗). We have

̂̄γ(3)

φ̄iBB
= Uγ̄

(3)

φ̄iBB
U t, ̂̄γ(4)

φ̄iφ̄jBB
= Uγ̄

(4)

φ̄iφ̄jBB
U t, ̂̄γ(3)

φ̄(∗)BB
= ̂̄γ(3)

φ̄1BB
± î̄γ(3)

φ̄2BB
.

(4.80)

We conclude that

̂̄γ(3)

φ̄1BB
= A

3/2
φ

(
u

(3)
1φφ u

(3)
1φφ∗

u
(3)
1φφ∗ u

(3)
1φφ

)
, ̂̄γ(3)

φ̄2BB
= A

3/2
φ

(
u

(3)
2φφ 0

0 −u(3)
2φφ

)
,

̂̄γ(4)

φ̄1φ̄1BB
= A2

φ

(
u

(4)
11φφ u

(4)
11φφ∗

u
(4)
11φφ∗ u

(4)
11φφ

)
, ̂̄γ(4)

φ̄1φ̄2BB
= A2

φ

(
u

(4)
12φφ 0

0 −u(4)
12φφ

)
,

̂̄γ(4)

φ̄2φ̄2BB
= A2

φ

(
u

(4)
22φφ u

(4)
22φφ∗

u
(4)
22φφ∗ −u

(4)
22φφ

)
, (4.81)

with

u
(3)
1φφ = (2ρ)1/2U ′′ + ρ(2ρ)1/2U (3), u

(3)
1φφ∗ = 2(2ρ)1/2U ′′ + ρ(2ρ)1/2U (3),

u
(3)
2φφ = −i(2ρ)1/2U ′′, u

(4)
11φφ = U ′′(ρ) + 5ρU (3) + 2ρ2U (4),

u
(4)
11φφ∗ = 2U ′′ + 7ρU (3) + 2ρ2U (4), u

(4)
12φφ = −iU ′′ − i2ρU (3),

u
(4)
22φφ = −U ′′ + ρU (3), u

(4)
22φφ∗ = 2U ′′ + ρU (3). (4.82)

Moreover, for external indices φ̄ or φ̄∗ we find

̂̄γ(3)

φ̄BB
= A

3/2
φ

(
u

(3)
φφφ u

(3)
φφφ∗

u
(3)
φφφ∗ u

(3)
φφφ∗

)
, ̂̄γ(3)

φ̄∗BB
= A

3/2
φ

(
u

(3)
φφφ∗ u

(3)
φφφ∗

u
(3)
φφφ∗ u

(3)
φφφ

)
,

̂̄γ(4)

φ̄φ̄BB
= A2

φ

(
u

(4)
φφφφ u

(4)
φφφφ∗

u
(4)
φφφφ∗ u

(4)
φφφ∗φ∗

)
, ̂̄γ(4)

φ̄φ̄∗BB
= A2

φ

(
u

(4)
φφφφ∗ u

(4)
φφφ∗φ∗

u
(4)
φφφ∗φ∗ u

(4)
φφφφ∗

)
,

̂̄γ(4)

φ̄∗φ̄∗BB
= A2

φ

(
u

(4)
φφφ∗φ∗ u

(4)
φφφφ∗

u
(4)
φφφφ∗ u

(4)
φφφφ

)
, (4.83)

with

u
(3)
φφφ = ρ3/2U (3), u

(3)
φφφ∗ = 2ρ1/2U ′′ + ρ3/2U (3), u

(4)
φφφφ = ρ2U (4),

u
(4)
φφφφ∗ = 3ρU (3) + ρ2U (4), u

(4)
φφφ∗φ∗ = 2U ′′ + 4ρU (3) + ρ2U (4).

4.2.2 Constitutive equations

In order to solve the flow equation for the effective average action in practice, we
need to translate it to a set of coupled equations for correlation functions, which
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4 BCS-BEC Crossover from Functional Renormalization

is then truncated in a suitable manner. A convenient way of organizing this
procedure is to start from a few constitutive or master equations which describe
the flow of the effective potential, the inverse fermion and bosons propagator, and
the Feshbach coupling, respectively. Those equations can be expressed in closed
form with very few assumptions on the form of the effective action, and they hold
for every choice of regulator. With appropriate projection descriptions we then
arrive at flow equations for the individual running couplings {gk}.

We start with the spin-balanced equations. The flow equation for the effective

average potential Ūk(ρ̄) = γ̄
(0)
k (ρ̄) takes the simple form

˙̄Uk(ρ̄) =
1

2
tr

∫
Q
ḠQφ

˙̄RQφ −
1

2
tr

∫
Q
ḠQψ

˙̄RQψ

=
1

2

∫
Q

1

Aφ

LQφ
˙̄R−Qφ + L−Qφ

˙̄RQφ

detQB
−
∫
Q

1

Aψ

LQψ
˙̄R−Qψ + L−Qψ

˙̄RQψ

detQF
. (4.84)

We write

˙̄U(ρ̄) = U̇ (B)(ρ) + U̇ (F )(ρ) (4.85)

to indicate the contributions from bosonic (B) and fermionic (F) diagrams, see
Fig. 4.1. The flow of the renormalized effective average potential defined from
U(ρ) = Ū(ρ̄) reads

U̇(ρ) = ηφρU
′(ρ) + U̇ (B)(ρ) + U̇ (F )(ρ). (4.86)

The flow of the inverse boson propagator (assuming frequency and momentum
independent vertices) reads

˙̄G−1
φ̄iφ̄j

(P ) =
1

2
tr

∫
Q
Ḡφ(Q)γ̄

(3)

φ̄iBB
Ḡφ(Q+ P )γ̄

(3)

φ̄jBB
Ḡφ(Q) ˙̄Rφ(Q)

+
1

2
tr

∫
Q
Ḡφ(Q)γ̄

(3)

φ̄jBB
Ḡφ(Q− P )γ̄

(3)

φ̄iBB
Ḡφ(Q) ˙̄Rφ(Q)

− 1

2
tr

∫
Q
Ḡφ(Q)γ̄

(4)

φ̄iφ̄jBB
Ḡφ(Q) ˙̄Rφ(Q)

− 1

2
tr

∫
Q
Ḡψ(Q)γ̄

(3)

φ̄iF |F
Ḡψ(Q+ P )γ̄

(3)

φ̄jF |F
Ḡψ(Q) ˙̄Rψ(Q)

− 1

2
tr

∫
Q
Ḡψ(Q)γ̄

(3)

φ̄jF |F
Ḡψ(Q− P )γ̄

(3)

φ̄iF |F
Ḡψ(Q) ˙̄Rψ(Q), (4.87)
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or, in the conjugate field variables,

˙̄G−1
φ̄∗φ̄

(P ) =
1

2
tr

∫
Q
Ḡφ(Q)γ̄

(3)

φ̄∗BB
Ḡφ(Q+ P )γ̄

(3)

φ̄BB
Ḡφ(Q) ˙̄Rφ(Q)

+
1

2
tr

∫
Q
Ḡφ(Q)γ̄

(3)

φ̄BB
Ḡφ(Q− P )γ̄

(3)

φ̄∗BB
Ḡφ(Q) ˙̄Rφ(Q)

− 1

2
tr

∫
Q
Ḡφ(Q)γ̄

(4)

φ̄∗φ̄BB
Ḡφ(Q) ˙̄Rφ(Q)

− 1

2
tr

∫
Q
Ḡψ(Q)γ̄

(3)

φ̄∗F |F Ḡψ(Q+ P )γ̄
(3)

φ̄F |F Ḡψ(Q) ˙̄Rψ(Q)

− 1

2
tr

∫
Q
Ḡψ(Q)γ̄

(3)

φ̄F |F Ḡψ(Q− P )γ̄
(3)

φ̄∗F |F Ḡψ(Q) ˙̄Rψ(Q). (4.88)

Analogous to Eq. (4.85) we split the flow into bosonic and fermionic contributions
according to

˙̄G−1
φ̄iφ̄j

= ˙̄G
−1,(B)

φ̄iφ̄j
+ ˙̄G

−1,(F )

φ̄iφ̄j
. (4.89)

The flow of the inverse fermion propagator is given by

˙̄G−1
ψ̄Aψ̄B

(P ) =
1

2
tr

∫
Q
Ḡφ(Q)γ̄

(3)

ψ̄AB|F
Ḡψ(Q+ P )γ̄

(3)

F |Bψ̄B
Ḡφ(Q) ˙̄Rφ(Q)

− 1

2
tr

∫
Q
Ḡφ(Q)γ̄

(3)

BF |ψ̄B
Ḡψ(Q− P )γ̄

(3)

ψ̄A|FB
Ḡφ(Q) ˙̄Rφ(Q)

− 1

2
tr

∫
Q
Ḡψ(Q)γ̄

(3)

ψ̄A|FB
Ḡφ(Q+ P )γ̄

(3)

BF |ψ̄B
Ḡψ(Q) ˙̄Rψ(Q)

+
1

2
tr

∫
Q
Ḡψ(Q)γ̄

(3)

F |Bψ̄B
Ḡφ(Q− P )γ̄

(3)

ψ̄AB|F
Ḡψ(Q) ˙̄Rψ(Q). (4.90)

We split the flow equation in a Tan (T) and Hartree (H) contribution via

˙̄G−1
ψ̄Aψ̄B

= ˙̄G
−1,(T )

ψ̄Aψ̄B
+ ˙̄G

−1,(H)

ψ̄Aψ̄B
. (4.91)

Here the Tan and the Hartree diagram are the loops where the regulator insertion
appears in the boson and fermion line, respectively. This labelling indicates their
contribution to the characteristic shape of the fermion self-energy given by the
Tan contact and the Hartree shift, see the discussion in Sec. 5.1.

The flow equations for the inverse boson and fermion propagators are then most
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easily parametrized by introducing

XQ
ψ =

(h2ρ)1/2

Aψ

(
LQψ

˙̄R−Qψ + L−Qψ
˙̄RQψ

)
, (4.92)

Y Q
ψ =

1

Aψ

(
(LQψ )2 ˙̄R−Qψ − h2ρ ˙̄RQψ

)
, (4.93)

XQ
φ =

−ρU ′′
Aφ

(
LQφ

˙̄R−Qφ + L−Qφ
˙̄RQφ

)
, (4.94)

Y Q
φ =

1

Aφ

(
(LQφ )2 ˙̄R−Qφ + (ρU ′′)2 ˙̄RQφ

)
, (4.95)

such that

ḠQφ
˙̄RQφ Ḡ

Q
φ =

1

Aφ

1

det2
B(Q)

(
XQ
φ Y −Qφ

Y Q
φ XQ

φ

)
, (4.96)

ḠQψ
˙̄RQψ Ḡ

Q
ψ =

1

Aψ

1

det2
F (Q)

(
XQ
ψ ε Y −Qψ 1

−Y Q
ψ 1 −XQ

ψ ε

)
. (4.97)

The flow of the fermion self-energy reads

˙̄G−1
ψ∗1ψ1

(P ) = −Aψh2

∫
Q

Y Q
φ L

Q+P
ψ

(detQB)2detQ+P
F

−Aψh2

∫
Q

Y Q
ψ L

Q−P
φ

(detQF )2detQ−PB

, (4.98)

and the anomalous fermion self-energy flow is given by

˙̄G−1
ψ1ψ2

(P ) = Aψ(h2ρ)3/2U ′′

(∫
Q

1

Aφ

LQφ
˙̄R−Qφ + L−Qφ

˙̄RQφ

(detQB)2detQ+P
F

+

∫
Q

1

Aψ

LQψ
˙̄R−Qψ + L−Qψ

˙̄RQψ

(detQF )2detQ+P
B

)
. (4.99)

The flow of the Feshbach coupling h̄ is given by

˙̄h = −AψA1/2
φ h3U ′′ρ

(∫
Q

1

Aφ

LQφ
˙̄R−Qφ + L−Qφ

˙̄RQφ

(detQB)2detQF
+

∫
Q

1

Aψ

LQψ
˙̄R−Qψ + L−Qψ

˙̄RQψ

(detQF )2detQB

)
.

(4.100)

For the flow of the inverse boson propagator we turn to the real (φ̄1, φ̄2)-basis.
The advantage of this choice is explained below. We have

˙̄G−1
φ2φ2

(P ) = −Aφ
1

2

∫
Q

(2U ′′ + ρU (3))(Y Q
φ + Y −Qφ )

det2
B(Q)

+Aφ2ρ(U ′′)2

∫
Q

2ρU ′′XQ
φ + L

−(Q+P )
φ Y Q

φ + LQ+P
φ Y −Qφ

(detQB)2detQ+P
B

+Aφh
2

∫
Q

2(h2ρ)1/2XQ
ψ + L

−(Q+P )
ψ Y Q

ψ + LQ+P
ψ Y −Qψ

(detQF )2detQ+P
F

(4.101)

84
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for the 22-component. The tadpole diagram in the first line is momentum in-
dependent due to our choice of momentum independent vertices. The first line
corrects the tadpole contribution in Eq. (B18) in Boettcher et al. [2014c]. For the
12-component we find

˙̄G−1
φ1φ2

(P ) = 2iAφρU
′′
∫
Q

1

(detQB)2detQ+P
B

×
[
−LQ+P

φ

(
(2U ′′ + ρU (3))XQ

φ + (U ′′ + ρU (3))Y −Qφ

)
+ L

−(Q+P )
φ

(
(2U ′′ + ρU (3))XQ

φ + (U ′′ + ρU (3))Y Q
φ

)
− ρU ′′(2U ′′ + ρU (3))

(
Y Q
φ − Y

−Q
φ

)]

− iAφh
2

∫
Q

Y −Qψ LQ+P
ψ − Y Q

ψ L
−(Q+P )
ψ

(detQF )2detQ+P
F

. (4.102)

We remark that for both the F- and B-contributions to the inverse boson propa-
gator we have

˙̄G−1
φ1φ2

(P ) =
i

2

(
˙̄G−1
φ∗φ(P )− ˙̄G−1

φ∗φ(−P )
)
, (4.103)

˙̄G−1
φ2φ2

(P ) =
1

2

(
˙̄G−1
φ∗φ(P ) + ˙̄G−1

φ∗φ(−P )
)
− 1

2

(
˙̄G−1
φφ(P ) + ˙̄G−1

φφ(−P )
)
, (4.104)

We now derive the constitutive equations for the effective potential and the
inverse boson propagator in the presence of spin-imbalance δµ = (µ1 − µ2)/2. Of
course, the bosonic diagrams remain unchanged. We assume Aψ1 = Aψ2 = Aψ to
keep the overall renormalization constants in the diagrams simple. We have

Rψ(Q) =

(
0 −R−Qψ
RQψ 0

)
=


0 0 −R−Qψ1 0

0 0 0 −R−Qψ2

RQψ1 0 0 0

0 RQψ2 0 0

 , (4.105)

and

Gψ(Q) =
1

detQF

(
A B
C D

)
(4.106)

with

A = hφ

(
0 detQF12

−det−QF12 0

)
, B =

(
L−Qψ2 detQF12 0

0 L−Qψ1 det−QF12

)
, (4.107)

C =

(
−LQψ2det−QF12 0

0 −LQψ1detQF12

)
, D = hφ

(
0 −det−QF12

detQF12 0

)
. (4.108)
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We introduce the abbreviations

detQF12 = L−Qψ1 L
Q
ψ2 + h2ρ, detQF = detQF12det−QF12. (4.109)

Note that det−QF = detQF , but det−QF12 6= detQF12. In the following we will often drop
the subscripts ’ψ’ and ’F ’ to shorten the expressions.

For the flow of the effective potential we have

U̇ (F )(ρ) = −1

2
Tr
(

˙̄RψḠψ

)
= −1

2

∫
Q

1

Aψ

1

detQF,12det−QF,12

tr

(
0 − ˙̄R−Qψ
˙̄RQψ 0

)(
A B
C D

)

= −
∫
Q

1

Aψ

L−Q1
˙̄RQ2 + LQ2

˙̄R−Q1

detQF,12

. (4.110)

The derivatives are given by

U̇ (n),(F )(ρ) = −n!(−h2)n
∫
Q

1

Aψ

L−Q1
˙̄RQ2 + LQ2

˙̄R−Q1

(detQF,12)n+1
. (4.111)

For the flow of the boson propagator we need the product ḠQψ
˙̄RQψ Ḡ

Q
ψ . Analogous

to the balanced case we define

XQ
ψ,12 =

(h2ρ)1/2

Aψ

(
LQψ1

˙̄R−Qψ2 + L−Qψ2
˙̄RQψ1

)
, (4.112)

Y Q
ψ,12 =

1

Aψ

(
(LQψ1)2Ṙ−Qψ2 − h2ρ ˙̄RQψ1

)
, (4.113)

Y Q
ψ,21 =

1

Aψ

(
(LQψ2)2 ˙̄R−Qψ1 − h2ρ ˙̄RQψ2

)
. (4.114)

We then arrive at

ḠQψ
˙̄RQψ Ḡ

Q
ψ =

1

Aψ

1

(detQ12det−Q12 )2
(4.115)

×


0 XQ

12(detQ12)2 Y −Q21 (detQ12)2 0

−X−Q12 (det−Q12 )2 0 0 Y −Q12 (det−Q12 )2

−Y Q
21(det−Q12 )2 0 0 −X−Q12 (det−Q12 )2

0 −Y Q
12(detQ12)2 XQ

12(detQ12)2 0

 .

For the flow of the boson propagator we find

˙̄G
−1,(F )
φ2φ2

(P ) = −Aφ
1

2
tr

∫
Q

ih√
2

(
ε 0
0 ε

)
GQ+P
ψ

ih√
2

(
ε 0
0 ε

)
1

Aψ
GQψ

˙̄RQψG
Q
ψ

+ {P → −P} (4.116)

= Aφ
h2

2

∫
Q

2hφX−Q12 + Y Q
21L

−(Q+P )
1 + Y −Q12 LQ+P

2

(detQ12)2detQ+P
12

+ {P → −P}.
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In the balanced limit we reproduce the fermionic contribution in Eq. (4.101) due
to XQ

ψ = X−Qψ and detQF = det−QF . For the off-diagonal contribution we find

˙̄G
−1,(F )
φ1φ2

(P ) = −Aφ
1

2
tr

∫
Q

[
h√
2

(
−ε 0
0 ε

)
GQ+P
ψ

ih√
2

(
ε 0
0 ε

)

+
ih√

2

(
ε 0
0 ε

)
GQ−Pψ

h√
2

(
−ε 0
0 ε

)]
1

Aψ
GQψ

˙̄RQψG
Q
ψ

= −Aφ
ih2

2

∫
Q

LQ+P
2 Y −Q12 − L−(Q+P )

1 Y Q
21

(detQ12)2detQ+P
12

− {P → −P}. (4.117)

In the balanced limit we recover the fermion part of Eq. (4.102). Again we used
the symmetry detQF = det−QF .

4.2.3 Derivative expansion

Given the constitutive or master equations, the flow of running couplings is ob-
tained through suitable projection prescriptions. Here we derive the flow of the
expansion coefficients of the effective potential and a apply derivative expansion
of the inverse fermion and boson propagator according to

P̄ψσ(Q) = Zψσiq0 +Aψσq
2 + m̄2

ψσ = Aψσ

(
Sψσiq0 + q2 +m2

ψσ

)
, (4.118)

P̄φ(Q) = Zφiq0 + V̄φq
2
0 +Aφ

1

2
q2 = Aφ

(
Sφiq0 + Vφq

2
0 +

1

2
q2
)
. (4.119)

Typically, there are several candidates for these projection of running couplings,
which superficially seem equivalent within a truncation, but result in distinct flow
equations. The reason for this ambiguity is that the flow equation incorporates
all terms in the full effective average action, in particular all higher order terms.
Therefore, when specifying a particular projection procedure, we always neglect
certain higher order couplings in a particular way. The dependence of the running
of couplings on the projection can be used to estimate the accuracy of a given
truncation. Within a truncation which includes the most important effects, the
precise projection should only result in minor modifications of observables. A
strong dependence, however, signals a shortcoming of a particular truncation.

In the following derivation we assume that

Aψ1 = Aψ2 = Aψ, Sψ1 = Sψ2 = Sψ. (4.120)

This is valid in the spin-balanced case and still a reasonable approximation for
the slightly imbalanced case. However, for the strongly imbalanced regime (e.g.
polaron physics), the propagator of the majority atoms will not be renormalized,
whereas we have strong fluctuation effects on the minority species. However, we
will mostly be interested in a perturbative fermion propagator with Sψ = Aψ = 1
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4 BCS-BEC Crossover from Functional Renormalization

anyway. Furthermore, our detailed presentation should allow for an extension to
the more complicated scheme in a straightforward fashion.

Within a Taylor expansion scheme for the effective potential, we project the
corresponding flow equation (4.84) onto the coefficients in an expansion

Uk(ρ) = m2
φ(ρ− ρ0) +

λφ
2

(ρ− ρ0)2 +
∑
n>2

un
n!

(ρ− ρ0)n. (4.121)

In the symmetric regime of the flow we have ˙̄m2
φ = ˙̄U ′(0). This flow equation is

replaced by ˙̄ρ0 = − ˙̄U ′(ρ̄0)/λ̄φ in the ordered regime. We write u2 = λφ. We have

ūn = Ū
(n)
k (ρ̄0,k). Accordingly, for n ≥ 2,

˙̄un = ∂t

(
Ū

(n)
k (ρ̄0,k)

)
= ˙̄U

(n)
k (ρ̄0) + ūn+1 ˙̄ρ0. (4.122)

The second term is important to obtain quantitative precision of the results. The
flow of the renormalized couplings

m2
φ =

m̄2
φ

Aφ
, ρ0 = Aφρ̄0, un =

ūn
Anφ

(4.123)

is given by

ṁ2
φ = ηφm

2
φ +

˙̄m2
φ

Aφ
, ρ̇0 = −ηφρ0 +Aφ ˙̄ρ0, u̇n = nηφun +

˙̄un
Anφ

. (4.124)

The running couplings entering the fermion propagator are projected according
to

˙̄m2
ψσ = ˙̄G−1

ψ∗σψσ
(P, ρ0)

∣∣∣
P=0,

, (4.125)

Żψ =
1

i

∂

∂p0

˙̄G−1
ψ∗1ψ1

(P, ρ0)
∣∣∣
P=0

, (4.126)

Ȧψ =
∂

∂p2
˙̄G−1
ψ∗1ψ1

(P, ρ0)
∣∣∣
P=0

=
1

2

∂2

∂p2
˙̄G−1
ψ∗1ψ1

(P, ρ0)
∣∣∣
P=0

. (4.127)

Similar to the expansion coefficients of the effective potential, one could first start
from m̄2

ψσ = Ḡ−1
ψ∗σψσ

(0, ρ̄0) and then take the t-derivative of this expression. In

addition to Eq. (4.125), this generates a term proportional to ˙̄ρ0 in the ordered
regime. However, we will neglect such contributions in this work. The flow of the
renormalized couplings m2

ψσ = m̄2
ψσ/Aψ, Sψ = Zψ/Aψ reads

ṁ2
ψσ = ηψm

2
ψσ +

˙̄m2
ψσ

Aψ
, Ṡψ = ηψSψ +

Żψ
Aψ

. (4.128)

88



4.2 Flow equations for general regulators

We write

ηψ = η
(T )
ψ + η

(H)
ψ , (4.129)

ṁ2
ψσ = ηψm

2
ψσ + ṁ

2(T )
ψσ + ṁ

2(H)
ψσ , (4.130)

Ṡψ = ηψSψ + Ṡ
(T )
ψ + Ṡ

(H)
ψ (4.131)

in generalization of Eq. (4.91).
For our parametrization of the boson dynamics we employ

Żφ = − ∂

∂p0

˙̄G−1
φ1φ2

(P, ρ0)
∣∣∣
P=0

, (4.132)

˙̄Vφ =
∂

∂p2
0

˙̄G−1
φ2φ2

(P, ρ0)
∣∣∣
P=0

=
1

2

∂2

∂p2
0

˙̄G−1
φ2φ2

(P, ρ0)
∣∣∣
P=0

, (4.133)

Ȧφ = 2
∂

∂p2
˙̄G−1
φ2φ2

(P, ρ0)
∣∣∣
P=0

=
∂2

∂p2
˙̄G−1
φ2φ2

(P, ρ0)
∣∣∣
P=0

. (4.134)

The renormalized couplings Sφ = Zφ/Aφ and Vφ = V̄φ/Aφ evolve according to

Ṡφ = ηφSφ +
Żφ
Aφ

, V̇φ = ηφVφ +
˙̄Vφ
Aφ

. (4.135)

We again write

ηφ = η
(B)
φ + η

(F )
φ , (4.136)

Ṡφ = ηφSφ + Ṡ
(B)
φ + Ṡ

(F )
φ , (4.137)

V̇φ = ηφVφ + V̇
(B)
φ + V̇

(F )
φ (4.138)

to distinguish bosonic from fermionic contributions within our notation.

The reason for choosing the (φ̄1, φ̄2)-basis of ˙̄G−1
φ to project onto the boson

coefficients consists in the following. To be consistent with our truncation of
ρ̄-independent couplings Z ∈ {Zφ, V̄φ, Aφ}, we have to project them such that
terms which arise from Z ′(ρ̄) are absent. In fact, if we would include the latter,
we should also incorporate momentum dependent vertices which are proportional
to Z ′(ρ̄). To this see let us start from the more general ansatz

Γ̄kin[φ̄] =

∫
X

1

2
Z(ρ̄)

(
φ̄∗Pφ(∂τ ,−i∇)φ̄+ φ̄Pφ(−∂τ , i∇)φ̄∗

)
(4.139)

for the kinetic term of the bosons, where Pφ(Q) = iq0, q
2
0, q

2, . . . is some monomial
in Q. For the second functional derivative of Eq. (4.139) we obtain

̂̄G−1,{φ,φ∗}
φ (Q, ρ̄) =

 ρ̄Z ′(ρ̄)PSφ (Q)
(
Z(ρ̄) + ρ̄Z ′(ρ̄)

)
Pφ(−Q)(

Z(ρ̄) + ρ̄Z ′(ρ̄)
)
Pφ(Q) ρ̄Z ′(ρ̄)PSφ (Q)


(4.140)

89



4 BCS-BEC Crossover from Functional Renormalization

in the (φ̄, φ̄∗)-basis, and

Ḡ
−1,{φ1,φ2}
φ (Q, ρ̄) =

 (Z(ρ̄) + 2ρ̄Z ′(ρ̄)
)
PSφ (Q) i

(
Z(ρ̄) + ρ̄Z ′(ρ̄)

)
PAφ (Q)

−i
(
Z(ρ̄) + ρ̄Z ′(ρ̄)

)
PAφ (Q) Z(ρ̄)PSφ (Q)


(4.141)

in the (φ̄1, φ̄2)-basis. Herein, PS,Aφ (Q) = 1
2(PQφ ± P

−Q
φ ) are the symmetrized and

anti-symmetrized kinetic terms, respectively, see Eq. (4.59). Since the terms
proportional to Z ′(ρ̄) are included in the full flow equation, they appear on the

right hand side of the flow equation for Γ̄
(2)
k ∼ Ḡ−1

φ . To avoid their influence

on the beta functions, we project the coefficients V̄φ, Aφ of the even functions
PSφ (Q) = q2

0, q
2 from the 22-component of Eq. (4.141). Equivalently, as can be

seen from Eq. (4.104), we may define them from the symmetrized part of Ḡφ∗φ
and subtract Ḡφφ. The situation is less simple for Zφ, which appears as the
coefficient of PAφ (Q) = iq0. No projection is preferred in this case, and we choose
the 12-component. Since the overall impact of Sφ on the flow is rather small in
3D, this only results in small quantitative deviations. In 2D, instead, we found
that changes in the projection of Sφ induce substantial (though only quantitative)
changes.

The regulators in this work are chosen such that R̄φ depends on Aφ, and R̄ψ
is both Aψ- and m2

ψ-dependent. This dependence is necessary to account for the
right scaling of correlation functions and to regularize around a flowing Fermi
surface. Moreover, it provides for an efficient resummation of flow equations.

If we incorporate the flow of Aψ and m2
ψ, the fermionic regulator insertion

˙̄Rψ/Aψ depends linearly on both ηψ and ṁ2
ψ. Hence, we arrive at a set of equations ηφ

ṁ2
ψ

ηψ

 =

A0

B0

C0

+

A1 A2 A3

B1 B2 B3

C1 C2 C3

 ηφ
ṁ2
ψ

ηψ

 , (4.142)

where the coefficients are one-loop integrals which depend on the remaining run-
ning couplings. The linear set is solved by ηφ

ṁ2
ψ

ηψ

 =

1−A1 −A2 −A3

−B1 1−B2 −B3

−C1 −C2 1− C3

−1A0

B0

C0

 . (4.143)

The need for evaluating more one-loop integrals numerically makes an inclusion
of even more couplings into R̄φ and R̄ψ (e.g. Sφ, Sψ, Vψ) less attractive, although
promising a further improved resummation of diagrams.

4.3 Flow equations for optimized regulators

In this section we derive the flow equations in the F, FB0, and FB-truncations for
q2-opt regulator, both for the spin-balanced and spin-imbalanced case.
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4.3 Flow equations for optimized regulators

4.3.1 Derivative expansion

For purely spatial cutoffs, i.e. cutoffs which only depend on q2 = ~q2, the Mat-
subara summation in the constitutive equations can be performed analytically.
However, by interchanging the derivative projection with the Matsubara sum-
mation in those cases, the expressions become much simpler. We explain here
how this particular feature can be implemented in practice, and derive the corre-
sponding loop integral expressions for the boson propagator within the derivative
expansion scheme outlined in the previous section.

The idea of how to extract the flow of running couplings from the flow of the
inverse boson propagator coefficients for spatial cutoffs is simple and efficient: We
write the diagram in matrix-form with the trace not yet being evaluated. Therein
only G(Q±P ) depends on the external momentum P . We expand this expression
in powers of p0 and p, and can then read off the flow of the coefficient. Due
to the “G(Q + P ) − G(Q − P )”-structure of the flow equations, we often have
cancellations which simplify the result.

Fermionic contributions

We first consider the balanced fermionic case. We expand

LS,Q+P
ψ = LS,Qψ + (1 +Rx

ψ)(2pqx+ p2) +
1

2
Rxx
ψ (2pqx)2, (4.144)

detQ+P
F = detSF + 2S2

ψq0p0 + S2
ψp

2
0

+ 2LS,Qψ

(
(1 +Rx

ψ)(2pqx+ p2)2 +
1

2
Rxx
ψ (2pqx)2

)
+ (1 +Rx

ψ)2(2pqx)2.

(4.145)

Herein ~p · ~q = pqx and

Rx
ψ(q2) =

∂Rψ
∂q2

(q2), Rxx
ψ (q2) =

∂Rx
ψ

∂q2
(q2). (4.146)

The terms with Q−P are obtained according to p0 → −p0, x→ −x. Note that in
order to project onto higher coefficients ∼ p0p

2, p4, . . . , a higher order expansion
of the propagator would be necessary. In order to implement

Ż
(F )
φ = − ∂

∂p0

˙̄G
−1,(F )
φ1φ2

∣∣∣
P=0

, ηφ = − 1

Aφ

∂2

∂p2
˙̄G−1
φ2φ2

∣∣∣
P=0

, ˙̄Vφ =
1

2

∂2

∂p2
0

˙̄G−1
φ2φ2

∣∣∣
P=0

,

(4.147)

we define

A(±) = − ∂

∂p0
GQ±Pψ

∣∣∣
P=0

, B(±) = − ∂2

∂p2
GQ±Pψ

∣∣∣
P=0

, C(±) =
1

2

∂2

∂p2
0

GQ±Pψ

∣∣∣
P=0

.

(4.148)
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4 BCS-BEC Crossover from Functional Renormalization

Due to the Taylor expansions of LSψ and detF in Eqs. (4.144) and (4.145), the
matrices A, B, C are rather simple. We have

Ṡ
(F )
φ = −1

2

∫
Q

tr
(
γ

(3)
φ1FF

A(+)γφ2FF + γ
(3)
φ2FF

A(−)γφ1FF

) 1

Aψ
GQψ

˙̄RQψG
Q
ψ , (4.149)

η
(F )
φ = −1

2

∫
Q

tr
(
γ

(3)
φ2FF

B(+)γφ2FF + γ
(3)
φ2FF

B(−)γφ2FF

) 1

Aψ
GQψ

˙̄RQψG
Q
ψ , (4.150)

V̇
(F )
φ = −1

2

∫
Q

tr
(
γ

(3)
φ2FF

C(+)γφ2FF + γ
(3)
φ2FF

C(−)γφ2FF

) 1

Aψ
GQψ

˙̄RQψG
Q
ψ . (4.151)

The resulting expressions can typically be further simplified by using S2
ψq

2
0 =

detQF − (LS,Qψ )2 −∆2, which eliminates unnecessary Matsubara summations. We
eventually arrive at

Ṡ
(F )
φ = −2h2Sψ

∫
Q

˙̄Rψ(q2)

Aψ

( 1

det2
F (Q)

− 2h2ρ

det3
F (Q)

)
, (4.152)

η
(F )
φ = 4h2

∫
Q

˙̄Rψ(q2)

Aψ

(1 +Rx
ψ + 2q2x2Rxx

ψ

det2
F (Q)

−
4q2x2(1 +Rx

ψ)2LSψ(Q)

det3
F (Q)

)
opt
=

8h2

d

∫
Q

˙̄Rψ(q2)

Aψ

q2Rxx
ψ

det2
F (Q)

, (4.153)

V̇
(F )
φ = −2h2S2

ψ

∫
Q

˙̄Rψ(q2)

Aψ

LSψ(Q)

det3
F (Q)

. (4.154)

In the expression for the anomalous dimension we used that∫
~p
f(p2)x2 =

1

d

∫
~p
f(p2) (4.155)

for d = 3, 2, 1. Moreover, in the third line we employed the fact that (1 +Rx
ψ) ≡ 0

for the q2-opt cutoff under the integral.
Now we turn to the imbalanced fermionic contributions to the boson propa-

gator. There are two possibilities to regularize the fermions, either Rψ1 = Rψ2

(symmetric scheme), or Rψ1 6= Rψ2 (asymmetric scheme), see Sec. 4.1.2.
We start with the symmetric scheme. The propagator matrix reads

GQψ =
1

detQ12det−Q12

(
A B
C D

)
, (4.156)

with the matrices A, . . . ,D given in Eqs. (4.107) and (4.108), and detQ12 =

L−Qψ1 L
Q
ψ2 + ∆2. We write

LQ+P
ψσ = LQψσ + iSψp0 + (1 +Rx

ψ)(2pqx+ p2) +
1

2
Rxx
ψ (2pqx)2,

L
−(Q+P )
ψσ = L−Qψσ − iSψp0 + (1 +Rx

ψ)(2pqx+ p2) +
1

2
Rxx
ψ (2pqx)2. (4.157)
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4.3 Flow equations for optimized regulators

It is the key ingredient of the symmetric scheme that LQψ1 and LQψ2 can be treated
almost identically. We also have

detQ+P
F12 = L

−(Q+P )
ψ1 LQ+P

ψ2 + ∆2 +
(

detQF12 − L
−Q
ψ1 L

Q
ψ2 −∆2

)
,

det
−(Q+P )
F12 = LQ+P

ψ1 L
−(Q+P )
ψ2 + ∆2 +

(
det−QF12 − L

Q
ψ1L

−Q
ψ2 −∆2

)
. (4.158)

The remaining terms are obtained according to p0 → −p0, x → −x. After the
trace has been performed we apply the simplifications

L−Qψ1 L
Q
ψ2 → detQF12 −∆2, LQψ1L

−Q
ψ2 → det−QF12 −∆2,

LQψ1 + L−Qψ2 → 2LSψ(Q), L−Qψ1 + LQψ2 → 2LSψ(Q). (4.159)

Note that LSψ(Q) = q2 − µ + Rψ(q2) in the symmetric scheme. Furthermore, for
the anomalous dimensions we apply

S2
ψq

2
0 − 2iSψq0 → detQF12 − (LSψ)2 + δµ2 −∆2,

S2
ψq

2
0 + 2iSψq0 → det−QF12 − (LSψ)2 + δµ2 −∆2. (4.160)

We eventually arrive at

Ṡ
(F )
φ = −2h2Sψ

∫
Q

˙̄Rψ(q2)

Aψ

( 1

(detQF12)2
− 2h2ρ

(detQF12)3

)
, (4.161)

η
(F )
φ = 4h2

∫
Q

˙̄Rψ(q2)

Aψ

(1 +Rx
ψ + 2q2x2Rxx

ψ

(detQ12)2
−

4q2x2(1 +Rxx
ψ )2LSψ(Q)

(detQ12)3

)
opt
=

8h2

d

∫
Q

˙̄Rψ(q2)

Aψ

q2Rxx
ψ

(detQ12)2
, (4.162)

V̇
(F )
φ = −2h2S2

ψ

∫
Q

˙̄Rψ(q2)

Aψ

LSψ(Q)

(detQF12)3
. (4.163)

We obtain the correct spin-balanced limit with detQ12 → detQF .
For the asymmetric regularization of the fermion contribution we have to include

the appropriate regulator insertion

˙̄RQψ =


0 0 − ˙̄Rψ1(q2) 0

0 0 0 − ˙̄Rψ2(q2)
˙̄Rψ1(q2) 0 0 0

0 ˙̄Rψ2(q2) 0 0

 . (4.164)

Furthermore, we have to modify Eqs. (4.157) according to

LQ+P
ψσ = LQψσ + iSψp0 + (1 +Rx

ψσ)(2pqx+ p2) +
1

2
Rxx
ψσ(2pqx)2. (4.165)
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4 BCS-BEC Crossover from Functional Renormalization

The remaining steps are the same as for the symmetric scheme. However, we
cannot apply LQψ1 + L−Qψ2 = 2LSψ(Q). We arrive at

Ṡ
(F )
φ = −2h2Sψ

∫
Q

( ˙̄Rψ1 + ˙̄Rψ2)

2Aψ

( 1

(detQF12)2
− 2h2ρ

(detQF12)3

)
, (4.166)

η
(F )
φ = 2h2

∫
Q

1

Aψ

( ˙̄Rψ1(1 +Rx
ψ2 + 2q2x2Rxx

ψ2) + ˙̄Rψ2(1 +Rx
ψ1 + 2q2x2Rxx

ψ1)

(detQF12)2

−
4q2x2[ ˙̄Rψ1L

−Q
ψ1 (1 +Rx

ψ2)2 + ˙̄Rψ2L
Q
ψ2(1 +Rx

ψ1)2]

(detQF12)3

)
, (4.167)

V̇
(F )
φ = −2h2S2

ψ

∫
Q

( ˙̄Rψ1 + ˙̄Rψ2)

2Aψ

LSψ(Q)

(detQF12)3
+ 2h2S2

ψ

∫
Q

( ˙̄Rψ1 − ˙̄Rψ2)

2Aψ

iSψq0 + δµ

(detQF12)3
.

(4.168)

For Rψ1 = Rψ2 we recover the symmetric scheme.

Bosonic contributions

We now compute the contribution to the flow of Aφ and Sφ within a derivative
expansion with inverse boson propagator

P̄Qφ = Aφ

(
iSφq0 +

1

2
q2
)
. (4.169)

The case with additional Vφ-term will be discussed below. We expand ĜQ±Pφ in

powers of p0 and p2 by writing

LQ+P
φ = LQφ + iSφp0 +

(1

2
+Rx

φ

)
(2pqx+ p2) +

1

2
Rxx
φ

(
2pqx

)2
,

detQ+P
B = L

−(Q+P )
φ LQ+P

φ − (ρU ′′)2 +
(

detQB − L
−Q
φ LQφ + (ρU ′′)2

)
. (4.170)

We then arrive at

Ṡ
(B)
φ = −4SφρU

′′
∫
Q

˙̄Rφ(q2)

Aφ

(
U ′′ + ρU (3)

det2
B(Q)

+
2ρU ′′[ρU ′′(U ′′ + ρU (3))− (2U ′′ + ρU (3))LSφ(Q)]

det3
B(Q)

)
, (4.171)

η
(B)
φ = 4ρ(U ′′)2

∫
Q

˙̄Rφ(q2)

Aφ

(
1 + 2Rx

φ + 4q2x2Rxx
φ

det2
B(Q)

−
2q2x2(1 + 2Rx

φ)2LSφ(Q)

det3
B(Q)

)
.

(4.172)

In order to include the quadratic frequency term,

P̄Qφ = Aφ

(
Vφq

2
0 + iSφq0 +

1

2
q2
)
, (4.173)
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we write

LQφ = Vφq
2
0 + iSφq0 +

1

2
q2 +Rφ(q2) + U ′ + ρU ′′︸ ︷︷ ︸

fφ

= Vφq
2
0 + iSφq0 + fφ(q). (4.174)

The determinant becomes

detQB = L−Qφ LQφ − (ρU ′′)2 = V 2
φ q

4
0 + (S2

φ + 2Vφfφ)q2
0 + f2

φ − (ρU ′′)2. (4.175)

We expand

LQ+P
φ = LQφ + Vφ(2q0p0 + p2

0) + iSφp0 +
(1

2
+Rx

φ

)
(2pqx+ p2) +

1

2
Rxx
φ

(
2pqx

)2
,

detQ+P
B = L

−(Q+P )
φ LQ+P

φ − (ρU ′′)2 +
(

detQB − L
−Q
φ LQφ + (ρU ′′)2

)
. (4.176)

This results in

Ṡ
(B)
φ = −4SφρU

′′
∫
Q

˙̄Rφ(q2)

Aφ

(
U ′′ + ρU (3)

det2
B(Q)

+
2ρU ′′[ρU ′′(U ′′ + ρU (3))− (2U ′′ + ρU (3))LSφ(Q)]

det3
B(Q)

)
, (4.177)

η
(B)
φ = 4ρ(U ′′)2

∫
Q

˙̄Rφ(q2)

Aφ

(
1 + 2Rx

φ + 4q2x2Rxx
φ

det2
B(Q)

−
2q2x2(1 + 2Rx

φ)2LSφ(Q)

det3
B(Q)

)
,

(4.178)

V̇
(B)
φ = 4ρ(U ′′)2

∫
Q

˙̄Rφ
Aφ

(
3Vφ

det2
B(Q)

−
(S2
φ + 4Vφfφ)Vφq

2
0

det3
B(Q)

+
4Vφρ

2(U ′′)2 − S2
φfφ − 4Vφf

2
φ

det3
B(Q)

)
. (4.179)

The flow equations for Sφ and ηφ formally agree with the results obtained without
Vφ-term in Eqs. (4.171) and (4.172), respectively. However, in the present context,
the right hand side depends on Vφ. As a consequence, we immediately see that
we obtain the beta functions from above for Vφ → 0. In order to compare these
equations with the ones derived by Floerchinger and Wetterich [2008] we adapt
the notation fφ = k2 + 2λρ0, U ′′ = λ, and set U (3) = 0, 1 + 2Rφ = 0. The
determinant is given by detB = V 2q4

0 + (S2 + 2V k2 + 2V λρ0)q2
0 + k4 + 2k2λρ0.

We then find that the equations for Sφ, ηφ, and Vφ indeed agree with Eqs. (D1)
in Floerchinger and Wetterich [2008]. This also serves as an independent check of
the beta functions in the latter reference.
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4.3.2 Loop integration

For displaying the Matsubara summations we set

k = 1 (4.180)

to simplify the notation. The overall prefactor of threshold functions can be deter-
mined from canonical power counting, and is often not needed when implementing
the flow equations in terms of dimensionless running couplings.

Fermionic Matsubara sums

For fermionic Matsubara frequencies we have

F1(z) = T
∑
n,F

1

ω2
n + z2

=
1

z

(1

2
− ÑF (z)

)
, (4.181)

F2(z) = T
∑
n,F

1

(ω2
n + z2)2

=
1

2z3

(1

2
− ÑF (z) + zÑ ′F (z)

)
, (4.182)

F3(z) = T
∑
n,F

1

(ω2
n + z2)3

=
3

8z5

(1

2
− ÑF (z) + zÑ ′F (z)− z2

3
Ñ ′′F (z)

)
(4.183)

with

ÑF (z) =

{
0 T = 0,

(ez/T + 1)−1 T > 0
. (4.184)

To simplify the nonthermal beta functions we set ÑF = 0 at zero temperature.
Still, the limit T → 0 with NF (z) → θ(−z) gives the same result. This can also
be verified explicitly in the numerics.

The fermionic Matsubara summations in the spin-imbalanced case are most
easily parametrized by

fσ = LSσ(Q) = q2 − µσ +Rσ(q2). (4.185)

For instance, the flow of the effective potential is given by

U̇ (F )(ρ) = −
∫
Q

L−Q1 Ṙ2 + LQ2 Ṙ1

detQF12

= −
∫
Q

iq0(Ṙ1 − Ṙ2) + Ṙ1f2 + Ṙ2f1

q2
0 + iq0(f1 − f2) + f1f2 + h2ρ

. (4.186)

This is a Matsubara summation of the type

T
∑
n,F

1

ω2
n + iωnx+ y

= T
∑
n,F

h(iωn) (4.187)

with x = f1 − f2, y = f1f2 + h2ρ, and

h(z) =
1

−z2 + zx+ y
=

−1

(z − z1)(z − z2)
. (4.188)
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We parametrize this according to

z1 =

√
(f1 + f2)2

4
+ h2ρ+

f1 − f2

2
,

z2 = −
√

(f1 + f2)2

4
+ h2ρ+

f1 − f2

2
. (4.189)

z1 − z2 = 2

√
(f1 + f2)2

4
+ h2ρ.

We have

T
∑
n,F

(iq0)s

detQF12

(∗)
=

1

z1 − z2

(
zs1 + zs2

2
− zs1ÑF (z1)− zs2ÑF (−z2)

)
. (4.190)

The (*) indicates that for s > 1 the formula only serves for generating convergent
expressions with higher powers of detF12 in the denominator. Moreover, for odd
s the sum is understood as the principal value, and yields zero for the balanced
limit. Higher orders in the determinant are found from the recursion relations

T
∑
n,F

(iq0)s

(detQF,12)2
= − ∂2

∂z1∂z2
T
∑
n,F

(iq0)s

detQF,12

, (4.191)

T
∑
n,F

(iq0)s

(detQF,12)3
=
−1

4

∂2

∂z1∂z2
T
∑
n,F

(iq0)s

(detQF,12)2
. (4.192)

We obtain

T
∑
n,F

1

(detQF,12)2
=

2

(z1 − z2)3

(
1− ÑF (z1)− ÑF (−z2)

)
+

1

(z1 − z2)2

(
Ñ ′F (z1) + Ñ ′F (−z2)

)
, (4.193)

and

T
∑
n,F

iq0

(detQF,12)2
=

2

(z1 − z2)3

(z1 + z2

2
− z1ÑF (z1)− z2ÑF (−z2)

)
(4.194)

+
1

(z1 − z2)2

(
ÑF (z1)− ÑF (−z2) + z1Ñ

′
F (z1) + z2Ñ

′
F (−z2)

)
.

The expressions involving det3
F12(Q) in the denominator can be easily derived

with a computer algebra system.
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Bosonic Matsubara sums

For bosons in the B0-truncation, we have

B1(z) = T
∑
n,B

1

ω2
n + z2

=
1

z

(1

2
+ ÑB(z)

)
, (4.195)

B2(z) = T
∑
n,B

1

(ω2
n + z2)2

=
1

2z3

(1

2
+ ÑB(z)− zÑ ′B(z)

)
, (4.196)

B3(z) = T
∑
n,B

1

(ω2
n + z2)3

=
3

8z5

(1

2
+ ÑB(z)− zÑ ′B(z) +

z2

3
Ñ ′′B(z)

)
, (4.197)

with

ÑB(z) =

{
0 T = 0,

(ez/T̃ − 1)−1 T > 0
. (4.198)

In the B-truncation we need sums of the type

T
∑
n,B

1

detQB
= T

∑
n,B

1

S2
φω

2
n + (Vφω2

n + a)(Vφω2
n + b)

(4.199)

with a = 1 + ω1 and b = 1 + ω1 + 2ω2. We define

z1 =

(
S2
φ + Vφ(a+ b)

2V 2
φ

+

√√√√S4
φ + 2S2

φVφ(a+ b) + V 2
φ (a− b)2

4V 4
φ

)1/2
Vφ→0−→ Sφ

Vφ
,

z2 = −z1 → −
Sφ
Vφ
,

z3 =

(
S2
φ + Vφ(a+ b)

2V 2
φ

−

√√√√S4
φ + 2S2

φVφ(a+ b) + V 2
φ (a− b)2

4V 4
φ

)1/2
Vφ→0−→

√
ab

Sφ
,

z4 = −z3 → −
√
ab

Sφ
, (4.200)

which are the poles of h(z) = h(iωn) which we sums over. Note that Vφz1 → Sφ
remains finite for Vφ → 0. Furthermore we introduce

detV = V 2
φ (z2

1 − z2
3) =

√
S4
φ + 2S2

φVφ(a+ b) + V 2
φ (a− b)2 → S2

φ. (4.201)

In order to present the results we write

`
(n,m)
V ≡ `(n,m)

V (T, ω1, ω2, Sφ, Vφ) = T
∑
n′,B

(ω2
n′)

n

detB(Q)m
. (4.202)
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We then have

`
(0,1)
V =

−1

detV

(
B1(z1)− B1(z3)

)
, (4.203)

`
(0,2)
V =

2V 2
φ

det3
V

(
B1(z1)− B1(z3)

)
+

1

det2
V

(
B2(z1) + B2(z3)

)
, (4.204)

`
(0,3)
V =

−6V 4
φ

det5
V

(
B1(z1)− B1(z3)

)
−

3V 2
φ

det4
V

(
B2(z1) + B2(z3)

)
− 1

det3
V

(
B3(z1)− B3(z3)

)
. (4.205)

For the expressions with ω2
n or ω4

n in the numerator we have

`
(1,1)
V =

1

detV

(
z2

1B1(z1)− z2
3B1(z3)

)
, (4.206)

`
(1,2)
V =

−2V 2
φ

det3
V

(
z2

1B1(z1)− z2
3B1(z3)

)
+

1

det2
V

(
B1(z1)

+ B1(z3)− z2
1B2(z1)− z2

3B2(z3)
)
, (4.207)

`
(1,3)
V =

6V 4
φ

det5
V

(
z2

1B1(z1)− z2
3B1(z3)

)
−

3V 2
φ

det4
V

(
B1(z1) + B1(z3)− z2

1B2(z1)

− z2
3B2(z3)

)
− 1

det3
V

(
B2(z1)− B2(z3)− z2

1B3(z1) + z2
3B3(z3)

)
, (4.208)

and

`
(2,1)
V

∗
=
−1

detV

(
z4

1B1(z1)− z4
3B1(z3)

)
, (4.209)

`
(2,2)
V =

2V 2
φ

det3
V

(
z4

1B1(z1)− z4
3B1(z3)

)
− 1

det2
V

(
2z2

1B1(z1) + 2z2
3B1(z3)− z4

1B2(z1)− z4
3B2(z3)

)
, (4.210)

`
(2,3)
V =

−6V 4
φ

det5
V

(
z4

1B1(z1)− z4
3B1(z3)

)
+

3V 2
φ

det4
V

(
2z2

1B1(z1) + 2z2
3B1(z3)− z4

1B2(z1)− z4
3B2(z3)

)
(4.211)

− 1

det3
V

(
B1(z1)− B1(z3)− 2z2

1B2(z1) + 2z2
3B2(z3) + z4

1B3(z1)− z4
3B3(z3)

)
.

The asterisk (∗) indicates that the sum is not convergent and only serves to
generate higher moments.

99



4 BCS-BEC Crossover from Functional Renormalization

Fermionic momentum integrals

The q2-opt fermion cutoff is given by

R̄ψ(q2) = Aψk
2rψ(z),

˙̄Rψ(q2)

Aψ
= −ηψRψ + Ṙψ, Ṙψ(q2) = 2k2sgn(z)θ(1− |z|), (4.212)

with z = (q2 − µ)/k2 and

rψ(z) = (sgn(z)− z)θ(1− |z|),
r′ψ(z) = −θ(1− |z|), (4.213)

r′′ψ(z) = sgn(z)δ(1− |z|).

We have Rxx
ψ = (1/k2)r′′ψ(z). For simplicity we neglect the renormalization of the

fermion propagator in the following, i.e. m2
ψ = −µ, and Aψ = Sψ = 1. From the

computations presented here the generalization should be straightforward. The

computation employs that due to the overall ˙̄Rψ we effectively have

LSψ(Q) = q2 − µ+Rψ(q2) = k2(z + rψ(z))
eff≡ k2sgn(z). (4.214)

For n ∈ N0 we then find∫
~q
Ṙψ(q2)(LSψ)2n =

8vdk
d+2+4n

d
`2(µ̃), (4.215)∫

~q
Ṙψ(q2)(LSψ)2n+1 =

8vdk
d+2+2(2n+1)

d
`1(µ̃), (4.216)∫

~q
Ṙψ(q2)q2x2r′′ψ(z)(LSψ)2n =

2vdk
d+4+4n

d
`3(µ̃), (4.217)∫

~q
Ṙψ(q2)q2x2r′′ψ(z)(LSψ)2n+1 =

2vdk
d+4+2(2n+1)

d
`1(µ̃), (4.218)

where µ̃ = µ/k2, and we introduce the threshold functions

`1(x) ≡ `(x) = θ(x+ 1)(x+ 1)d/2 − θ(x− 1)(x− 1)d/2, (4.219)

`2(x) ≡ `S(x) = θ(x+ 1)(x+ 1)d/2 − θ(x)2xd/2 + θ(x− 1)(x− 1)d/2, (4.220)

`3(x) ≡ `η(x) = θ(x+ 1)(x+ 1)d/2 + θ(x− 1)(x− 1)d/2. (4.221)

We define

vd =
1

2d+1πd/2Γ(d/2)
, v1 =

1

4π
, v2 =

1

8π
, v3 =

1

8π2
. (4.222)
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4.3 Flow equations for optimized regulators

Proofs. We now perform the explicit calculation. We have∫
~q
Ṙψ(q2)(LSψ)2n = 4vdk

d+2+4n

∫ ∞
−µ̃

dz(z + µ̃)d/2−1sgn(z)θ(1− |z|)

= 4vdk
d+2+4n

{
θ(−µ̃)

∫ ∞
−µ̃

dz(z + µ̃)d/2−1θ(1− z)

− θ(µ̃)

∫ 0

−µ̃
dz(z + µ̃)d/2−1θ(1 + z) + θ(µ̃)

∫ ∞
0

dz(z + µ̃)d/2−1θ(1− z)
}

= 4vdk
d+2+4n

{
θ(−µ̃)θ(µ̃+ 1)

2

d
(µ̃+ 1)d/2 − θ(µ̃)θ(µ̃− 1)

2

d

[
µ̃d/2 − (µ̃− 1)d/2

]
− θ(µ̃)θ(1− µ̃)

2

d
µ̃d/2 + θ(µ̃)

2

d

[
(µ̃+ 1)d/2 − µ̃d/2

]}
(4.223)

Now we employ some standard tricks which are common to all the following
calculations. First we drop the θ(µ̃) in the second term since µ̃ > 1 always implies
µ̃ > 0:

θ(µ̃)θ(µ̃− 1) ≡ θ(µ̃− 1). (4.224)

Moreover, in the (first part of the) fourth term we introduce the term θ(µ̃+ 1) by
hand, because µ̃ > −1 is surely satisfied for µ̃ > 0:

θ(µ̃) ≡ θ(µ̃)θ(µ̃+ 1). (4.225)

Then we can combine the first term with the first part of the fourth term since

θ(−µ̃) + θ(µ̃) ≡1. (4.226)

The first two parts containing µ̃d/2 can be combined due to θ(1−µ̃)+θ(µ̃−1) ≡ 1.
We eventually arrive at∫

~q
Ṙψ(q2)(LSψ)2n =

8vdk
d+2+4n

d

{[
θ(−µ̃) + θ(µ̃)

]
θ(µ̃+ 1)(µ̃+ 1)d/2

+ θ(µ̃− 1)(µ̃− 1)d/2 −
[
θ(µ̃− 1) + θ(1− µ̃)

]
θ(µ̃)µ̃d/2 − θ(µ̃)µ̃d/2

}
. (4.227)

This agrees with Eq. (4.215). In a similar fashion we can compute the integral
involving an odd power of LSψ. Since there is an additional sgn(z)–term, the

µ̃d/2–terms cancel out.

For the integrals involving r′′ψ(z) we need a smeared out step function. For
instance, we can employ

θε(y) =
1

e−y/ε + 1
, δε(y) = θ′ε(y). (4.228)

101



4 BCS-BEC Crossover from Functional Renormalization

We can then apply the formula

δε(y)f(y, θε(y))
ε→0−→ δ(y)

∫ 1

0
duf(0, u), (4.229)

which is valid for continuous f , for f(y, u) = u, i.e.

δε(1± z)θε(1± z)(z + µ̃)d/2 → 1

2
δ(1± z)(µ̃∓ 1)d/2. (4.230)

Moreover, we replace x2 → x2
d = 1/d, see Eq. (4.155). We then find

d

vdkd+4+4n

∫
~q
Ṙψ(q2)q2x2r′′ψ(z)(LSψ)2n = 4

∫ ∞
−µ̃

dz(z + µ̃)d/2θ(1− |z|)δ(1− |z|)

= 4

{
θ(−µ̃)

∫ ∞
−µ̃

dz(z + µ̃)d/2θ(1− z)δ(1− z)

+ θ(µ̃)

∫ 0

−µ̃
dz(z + µ̃)d/2θ(1 + z)δ(1 + z) (4.231)

+ θ(µ̃)

∫ ∞
0

dz(z + µ̃)d/2θ(1− z)δ(1− z)
}

= 2

{
θ(−µ̃)θ(µ̃+ 1)(µ̃+ 1)d/2 + θ(µ̃)θ(µ̃− 1)(µ̃− 1)d/2 + θ(µ̃)(µ̃+ 1)d/2

}
.

We apply again the tricks from above to arrive at Eq. (4.217). For the integral
involving an odd power of LSψ we get a minus sign in front of the term which

produces θ(µ̃− 1)(µ̃− 1)d/2. For this reason we arrive at `1(µ̃) instead of `3(µ̃).

Bosonic momentum integrals

The q2-opt boson regulator reads

˙̄Rφ(q2) = Aφk
2rφ(y),

˙̄Rφ(q2)

Aφ
= −ηφRφ + Ṙφ = k2

(
−ηφ(1− y) + 2

)
θ(1− y), (4.232)

with y = q2/2k2 and

rφ(y) = (1− y)θ(1− y),

r′φ(y) = −θ(1− y), (4.233)

r′′φ(y) = δ(1− y).

Note that Rxx
φ (q2) = (1/4k2)r′′φ(y). We find∫

~q

˙̄Rφ(q2)

Aφ
=

8vd2
d/2kd+2

d

(
1− ηφ

d+ 2

)
, (4.234)∫

~q

˙̄Rφ(q2)

Aφ
q2x2Rxx

φ (q2) =
vd2

d/2kd+2

d
. (4.235)
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4.3 Flow equations for optimized regulators

The proof of the formulas is a simple application of∫ ∞
0

dyyd/2−1θ(1− y) =
2

d
,

∫ ∞
0

dyyd/2θ(1− y)δ(1− y) =
1

2
. (4.236)

For the second integral we again need to smear out the step function, see the
discussion of the fermionic case.

4.3.3 Flow equations

We now explicitly display the beta functions for the q2-opt regulator in the F, FB0,

and FB-truncations. For this purpose we introduce threshold functions `
(n,m)
F and

`
(n,m)
B which allow for particularly short expressions.

Threshold functions

For the fermionic diagrams we define∫
Q
Ṙψ

(LSψ)n

(detQF )m
=

8vdk
d+4+2n−4m

d
`
(n,m)
F (µ̃, T̃ , ω3), (4.237)

∫
Q
Ṙψq

2Rxx
ψ

(LSψ)n

(detQF )m
= 2vdk

d+4+2n−4m`
(n,m)
F,xx (µ̃, T̃ , ω3), (4.238)

where

`
(n,m)
F (µ̃, T̃ , ω3) =

{
`1(µ̃)Fm(

√
1 + ω3), n odd,

`2(µ̃)Fm(
√

1 + ω3), n even
, (4.239)

`
(n,m)
F,xx (µ̃, T̃ , ω3) =

{
`1(µ̃)Fm(

√
1 + ω3), n odd,

`3(µ̃)Fm(
√

1 + ω3), n even
, (4.240)

and

µ̃ =
µ

k2
, T̃ =

T

k2
, ω1 =

U ′

k2
, ω2 =

ρU ′′

k2
, ω3 =

h2ρ

k4
. (4.241)

We recall that the functions `1(x), `2(x), `3(x) are given by

`1(x) ≡ `(x) = θ(x+ 1)(x+ 1)d/2 − θ(x− 1)(x− 1)d/2, (4.242)

`2(x) ≡ `S(x) = θ(x+ 1)(x+ 1)d/2 − θ(x)2xd/2 + θ(x− 1)(x− 1)d/2, (4.243)

`3(x) ≡ `η(x) = θ(x+ 1)(x+ 1)d/2 + θ(x− 1)(x− 1)d/2. (4.244)

For the bosonic contributions we define∫
Q

˙̄Rφ
Aφ

(LSφ)n

(detQB)m
=

8vd2
d/2kd+4+2n−4m

d
`
(n,m)
B (T̃ , ω1, ω2, ηφ, Sφ), (4.245)

∫
Q

˙̄Rφ
Aφ

q2Rxx
φ

(detQB)m
=

1

2
vd2

d/2kd+4−4m`
(0,m)
B,xx (T̃ , ω1, ω2, Sφ). (4.246)
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4 BCS-BEC Crossover from Functional Renormalization

We employed that LSφ = k2(1+ω1 +ω2) under the integral. The bosonic threshold
functions read

`
(n,m)
B =

1

S2m
φ

(
1− ηφ

d+ 2

)(
1 + ω1 + ω2

)n
Bm
(√(1 + ω1)(1 + ω1 + 2ω2)

Sφ

)
,

(4.247)

`
(0,m)
B,xx = 2`

(0,m)
B

∣∣∣
ηφ=0

=
2

S2m
φ

Bm
(√(1 + ω1)(1 + ω1 + 2ω2)

Sφ

)
. (4.248)

The definitions∫
Q

˙̄Rφ
Aφ

(LSφ)n

detmB (Q)
=

8vd2
d/2kd+2+2n−4m

d
`
(n,m)
B (T̃ , ω1, ω2, ηφ, Sφ, Ṽφ), (4.249)∫

Q

˙̄Rφ
Aφ

q2Rxx
φ

detmB (Q)
=

1

2
vd2

d/2kd+4−4m`
(0,m)
B,xx (T̃ , ω1, ω2, Sφ, Ṽφ) (4.250)

can also be applied to the truncation with Vφ-term. We then have LSφ = Vφq
2
0 +

k2(1 + ω1 + ω2) under the integral and arrive at

`
(0,n)
B =

(
1− ηφ

d+ 2

)
`
(0,n)
V

`
(1,n)
B =

(
1− ηφ

d+ 2

)(
Ṽφ`

(1,n)
V + (1 + ω1 + ω2)`

(0,n)
V

)
, (4.251)

`
(2,n)
B =

(
1− ηφ

d+ 2

)(
Ṽ 2
φ `

(2,n)
V + 2Ṽφ(1 + ω1 + ω2)`

(1,n)
V + (1 + ω1 + ω2)2`

(0,n)
V

)
.

The corresponding Matsubara sums, `
(n,m)
V , are given in Eqs. (4.203)-(4.211).

Note that we may also use

(LSφ)2 = detB(Q)− S2
φq

2
0 + (ρ0λφ)2 (4.252)

to write

`
(2,n)
B =

(
1− ηφ

d+ 2

)(
`
(0,n−1)
V − S2

φ`
(1,n)
V + ω2

2`
(0,n)
V

)
.

In the same fashion we apply

(LSφ)3 = [Vφq
2
0 + (1 + ω1 + ω2)](detB − S2

φq
2
0 + (λφρ0)2) (4.253)

to obtain

`
(3,n)
B =

(
1− ηφ

d+ 2

)[
Ṽφ`

(1,n−1)
V + (1 + ω1 + ω2)`

(0,n−1)
V − S2

φṼφ`
(4,n)
V

+
(
−S2

φ(1 + ω1 + ω2) + ω2
2Ṽφ

)
`
(1,n)
V + ω2

2(1 + ω1 + ω2)`
(0,n)
V

]
. (4.254)

The generalization of `
(0,m)
B,xx to the case of Vφ 6= 0 is straightforward since

`
(0,m)
B,xx = 2`

(0,m)
B

∣∣∣
ηφ=0

= 2`
(0,m)
V . (4.255)
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Flow equations

With these definitions we eventually arrive at

U̇ (F )(ρ) = −16vdk
d+2

d
`
(1,1)
F (µ̃, T̃ , ω3), (4.256)

U̇ (B)(ρ) =
8vd2

d/2kd+2

d
`
(1,1)
B (T̃ , ω1, ω2, ηφ, Sφ, Ṽφ) (4.257)

for the flow of the effective potential. We refer to Sec. 4.2 for the definition of the
F- and B-notation. For the boson propagator we find

Ṡ
(F )
φ = −16vdh

2kd−4

d

(
`
(0,2)
F (µ̃, T̃ , ω3)− 2ω3`

(0,3)
F (µ̃, T̃ , ω3)

)
, (4.258)

η
(F )
φ =

16vdh
2kd−4

d
`
(0,2)
F,xx(µ̃, T̃ , ω3), (4.259)

V̇
(F )
φ = −16vdh

2kd−6

d
`
(1,3)
F (µ̃, T̃ , ω3) (4.260)

for the fermionic contributions in the spin-balanced case, and

Ṡ
(B)
φ = −32vd2

d/2kd−4SφρU
′′

d

[
(U ′′ + ρU (3))`

(0,2)
B

+ 2(ρU ′′)2(U ′′ + ρU (3))k−4`
(0,3)
B − 2ρU ′′(2U ′′ + ρU (3))k−2`

(1,3)
B

]
, (4.261)

η
(B)
φ =

8vd2
d/2kd−4ρ(U ′′)2

d
`
(0,2)
B,xx, (4.262)

V̇
(B)
φ =

32vd2
d/2kd−6ρ(U ′′)2

d

[
3Ṽφ`

(0,2)
B

−
(
S2
φ + 4Ṽφ(1 + ω1 + ω2)

)
Ṽφ

(
1− ηφ

d+ 2

)
`
(1,3)
V

+
(

4Ṽφω
2
2 − S2

φ(1 + ω1 + ω2)− 4Ṽφ(1 + ω1 + ω2)2
)
`
(0,3)
B

]
. (4.263)

for the bosonic contributions. We can apply

Ṽφ

(
1− ηφ

d+ 2

)
`
(1,3)
V = `

(1,3)
B − (1 + ω1 + ω2)`

(0,3)
B (4.264)

to write the flow equation for Vφ as

V̇
(B)
φ =

32vd2
d/2kd−6ρ(U ′′)2

d

[
3Ṽφ`

(0,2)
B + 4Ṽφω

2
2`

(0,3)
B

−
(
S2
φ + 4Ṽφ(1 + ω1 + ω2)

)
`
(1,3)
B

]
. (4.265)
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4 BCS-BEC Crossover from Functional Renormalization

In the spin-imbalanced case only the fermionic contributions change. We restrict
here to the symmetric scheme (Rψ1 = Rψ2), since the flow equations for the
asymmetric scheme are easily deduced from Eqs. (4.166)-(4.168). For the effective
potential we find

U̇ (F )(ρ) = − 8vdk
d+2

d
√

1 + ω3
`1(µ̃)

(
1− ÑF (

√
1 + ω3 − δµ̃)− ÑF (

√
1 + ω3 + δµ̃)

)
(4.266)

with δµ̃ = δµ/k2. The anomalous dimension is given by

η
(F )
φ =

4vdh̃
2

d(1 + ω3)3/2
`3(µ̃)

[(
1− ÑF (

√
1 + ω3 − δµ̃)− ÑF (

√
1 + ω3 + δµ̃)

)
+
√

1 + ω3

(
Ñ ′F (
√

1 + ω3 − δµ̃) + Ñ ′F (
√

1 + ω3 + δµ̃)
)]
. (4.267)

For the frequency coefficients we have

Ṡ
(F )
φ = −2h2

[
T
∑
n

1

(det12)2
− T

∑
n

2h2ρ

(det12)3

]
8vdk

d+2

d
`2(µ̃), (4.268)

V̇
(F )
φ = −2h2

[
T
∑
n

1

(det12)3

]
8vdk

d+4

d
`1(µ̃), (4.269)

with

T
∑
n

1

(det12)2
=

2

(z1 − z2)3

(
1− ÑF (z1)− ÑF (−z2)

)
+

1

(z1 − z2)2

(
Ñ ′F (z1) + Ñ ′F (−z2)

)
, (4.270)

T
∑
n

1

(det12)3
=
−1

4

∂2

∂z1∂z2
T
∑
n

1

(det12)2
, (4.271)

see Eqs. (4.192) and (4.193).
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5 Three-dimensional BCS-BEC
Crossover

5.1 Tan contact

The single particle momentum distribution n~q of a noninteracting Fermi gas in
equilibrium is described by the Fermi–Dirac distribution, which decays exponen-
tially for momenta sufficiently larger than the chemical potential. In contrast,
for ultracold fermions in the BCS-BEC crossover one finds an algebraic decay
(Haussmann [1993, 1994], Viverit et al. [2004]) according to

nψ,~qσ =
C

q4
for large q. (5.1)

Here nψ,~qσ is the occupation number of fermions of species σ and the precise
meaning of “large q” will be specified later. It was realized by Tan [2008a,c,b] that
the factor of proportionality C, called contact, makes its appearance in several
exact relations describing the quantum many-body system. For instance, it allows
to compute the change of the energy density of the system due to a change of the
scattering length according to the adiabatic sweep theorem

1

V

dE

d(−1/a)
=

C

4πM
. (5.2)

Moreover, the energy density of the homogeneous system is given by

E

V
=

C

4πMa
+
∑
σ=1,2

∫
d3q

(2π)3

q2

2M

(
nψ,~qσ −

C

q4

)
. (5.3)

Interestingly, there also is a connection between the contact and the shear vis-
cosity of the system (Punk and Zwerger [2007], Taylor and Randeria [2010]).
The Tan relations (Braaten and Platter [2008], Braaten et al. [2008], Zhang and
Leggett [2009], Braaten [2012], Schneider and Randeria [2010], Son and Thompson
[2010], Hu et al. [2010]) have found verifications in experiments on the BCS-BEC
crossover of ultracold fermionic atoms (Partridge et al. [2005], Thomas et al.
[2005], Werner et al. [2009], Stewart et al. [2010], Kuhnle et al. [2010, 2011]). The
measurement of the contact for a homogeneous system has been performed by
Sagi et al. [2012]. The Tan relations have been generalized to the 2D (Valiente
et al. [2011], Werner and Castin [2012]) and 1D case (Barth and Zwerger [2011]).
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5 Three-dimensional BCS-BEC Crossover

Using DSE and the FRG we derive the universal factorization property of the
fermion self-energy

Σψ(Q) =
4C

Pψ,cl(−Q)
− δµ for large q, (5.4)

where Pψ,cl(Q) = iq0 + q2 − µ is the classical (microscopic) fermion propagator.
In Eq. (5.4), q has to be larger than any of the physical scales kph set by in-
verse scattering length a−1, chemical potential µ, and temperature T . The first
contribution in Eq. (5.4), which we refer to as Tan term, results in the large
momentum decay of the momentum distribution according to nψ,~qσ = C/q4, see
Eq. (5.35) below. The second term constitutes a high momentum shift of the ef-
fective fermion chemical potential1. Within DSE it is not trivial to show that Σψ,
C and δµ are ultraviolet finite quantities that do not involve any counterterms.
This requires a suitable split of the relevant momentum integrals, see Eq. (5.24)
below.

The importance of the double fraction structure of the fermion propagator in
order to quantitatively describe the BCS-BEC crossover has first been pointed out
by Haussmann [1993, 1994]. Universal high momentum factorization of dynamic
quantities has also been observed with the FRG in the context of finite temper-
ature Yang–Mills theory (Fister and Pawlowski [2011]) and with the Similarity
Renormalization Group applied to N -body systems at zero temperature, includ-
ing deuteron, ultracold fermions and the electron gas (Anderson et al. [2010],
Bogner and Roscher [2012]). The large momentum behavior of the self-energy is
related to properties of energetic atoms propagating in a strongly interacting gas,
see Nishida [2012] for a operator product expansion study.

Although the contact C appears in the high momentum propagator of the the-
ory, it is a many-body quantity dominated by interaction and many-body scales.
This is also reflected in its close relation to thermodynamic quantities. Thermo-
dynamic considerations based on the Tan relations restrict the most general form
of the contact as a function of temperature (Yu et al. [2009], Hu et al. [2011]). In
order to compute the function C(µ, T, a) it is therefore mandatory to work within
a setting which can resolve the physics on all scales of the theory. This is realized
by an FRG framework, where fluctuations on distinct scales are integrated out
successively, and which goes beyond the mean field approximation.

In this section we develop an FRG scheme to compute the physics related to
the contact. In particular, we derive a flow equation for the flowing contact Ck,
which interpolates between Ck=Λ = 0 in the ultraviolet and the physical contact
Ck=0 = C in the infrared. The method readily applies to nonzero values of the
crossover parameter (kFa)−1 and any spatial dimension d. It allows for improving
quantitative precision by using more elaborate truncations. We comment on this
point below. We only consider the spin-balanced case here.

1Note that δµ should not be confused with the spin-imbalance discussed in Sec. 5.3.
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5.1 Tan contact

We normalize the momentum distribution such that the integral 2
∫
~q nψ,~qσ = n

yields the density of atoms n, and thus the contact C is an intensive quan-
tity. Defining 2

∫
~q n̄ψ,~qσ = N instead, with the particle number N , results in

an extensive contact C̄ = CV , where V is the volume of the system. We have
C̄/NkF = 3π2C/k4

F.

An interesting question is related to the range of applicability of the asymptotic
formula (5.4) for the fermion propagator, i.e. the momentum scale qc such that
the universal scaling form is valid for q ≥ qc. This has direct consequences for
the density of the system. Indeed, as was already noted by Tan [2008c], the
contribution from large momentum atoms to the total atom density for T = 0 can
be approximated by

δn(C) = 2

∫
q≥qc

d3q

(2π)3

C

q4
=

C

π2qc
. (5.5)

The apparent divergence of this expression for qc → 0 is cured by a nonzero gap
or temperature, such that δn(C) remains finite. Thus, there is no a priori lower
bound for qc.

It can be understood easily that qc is smallest for the UFG. Indeed, the universal
form of the self-energy in Eq. (5.4) is valid for q being larger than the physical
scales kph. Typically, the inverse scattering length a−1 is much larger than the
momentum scales set by chemical potential and temperature. In particular, this
is valid in the perturbative regimes on the BEC and BCS sides, where |a| → 0.
However, for the UFG we have a−1 = 0 and the first physical scale is set by either
µ1/2 or T 1/2. For this reason there is a huge enhancement of the universal regime
where Eq. (5.4) is valid in the unitary limit. This is seen in Sec. 5.1.3. From
Eq. (5.5) we then conclude that the contribution of high energetic particles on
the thermodynamic functions is large at resonance.

Our findings suggest that a rather simple approximation to the full inverse
fermion propagator given by

Pψ(Q) = iZψq0 +Aψq
2 − µ− δµ+

4C(iq0 + q2 − µ+Rk(Q))

q2
0 + (q2 − µ+Rk(Q))2 + κ

(5.6)

with k-dependent couplings Zψ, Aψ, δµ, C, and κ, and infrared cutoff Rk(Q),
combined with a suitable generalization of the inverse boson propagator, will lead
to a substantial improvement of the quantitative precision in the FRG treatment
of strongly interacting fermionic systems. We observe that in the superfluid regime
the inverse fermion propagator has an additional anomalous contribution ∼ ∆0.
This regularizes the momentum integrals such that the explicit regulator ∼ κ may
not be needed. The occupation number corresponding to this ansatz reads

nψ,~qσ = −
(
T
∑
n

Pψ(Q)

Pψ(Q)Pψ(−Q) + ∆2
0

− 1

2

)
(5.7)
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5 Three-dimensional BCS-BEC Crossover

with k-dependent density nk = 2
∫
~q nψ,~qσ. The flowing density, and therefore the

total density n = nk=0, can thus be inferred from the flowing couplings Zψ, Aψ,
δµ, C and κ.

5.1.1 Perturbative contact from the equation of state

We derive the contact from the equation of state in the perturbative BEC- and
BCS-regimes by means of the adiabatic sweep theorem in Eq. (5.2). We first
consider the BEC-limit of the crossover, i.e. the region

(kFa)−1 � 1. (5.8)

Moreover, we restrict the considerations to the case of zero temperature. We
closely follow Tan [2008c]. The energy density of the system (in the canonical
variables) is given by the Lee–Huang–Yang (Lee et al. [1957], Lee and Yang [1958])
expression

E

V
= ndεB +

gd

2
n2

d

(
1 +

128

15
√
π

√
nda

3
d

)
, (5.9)

where nd is the number of dimer atoms, which is related to the density according
to nd = n/2 on the far BEC side, and εB is the binding energy of a dimer. From
Eq. (5.8) we find the gas parameter nda

3
d to be small. The coupling constant for

the dimers is given by

gd =
4πad

Md
= 4πcda, (5.10)

where we used that Md = 2M = 1 and ad = cda. The dimensionless constant
cd relates the scattering length of dimers to the fermionic scattering length. The
exact value of cd is known to be 0.6 (Petrov et al. [2004]). However, within the
truncation of the flow equation presented below we have cd = 0.72 from a solution
of the vacuum problem (Diehl et al. [2010a]). The energy density in terms of n
and a is found to be

E

V
= n

εB

2
+
πcdan

2

2

(
1 +

128

15
√

2π

√
nc3

da
3
)
. (5.11)

We compute the chemical potential according to µ(n) = d(E/V )/dn and subtract
half the binding energy to obtain the (positive) many-body chemical potential

µmb(n) = µ− εB

2
= πcdan

(
1 +

32

3
√

2π

√
nc3

da
3
)
. (5.12)

Inverting this relation to the same order of approximation we find

n(µmb) =
µmb

πcda

(
1− 32cd

3π
√

2

√
µmba

)
. (5.13)
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5.1 Tan contact

This is the equation of state in the grand canonical variables at T = 0 to leading
order in the gas parameter

√
µmba.

By virtue of the adiabatic sweep theorem, Eq. (5.2), we can derive an expression
for the contact in the BEC regime. For this purpose we employ εB = −1/Ma2 =
−2/a2. From Eq. (5.11) we then find

CBEC =
4πn

a
+ cdπ

2a2n2
(

1 +
64

3
√

2π

√
nc3

da
3
)

(5.14)

at zero temperature. By dividing by k4
F we obtain

CBEC

k4
F

=
4

3π
(kFa)−1 +

cd

9π2
(kFa)2

(
1 +

64c
3/2
d

3π
√

6π
(kFa)3/2

)
. (5.15)

Inserting the equation of state (5.13) we arrive at

CBEC

µ2
mb

=
4

cd
(
√
µmba)−2

(
1− 32cd

3π
√

2

√
µmba

)
. (5.16)

We now consider the asymptotic behavior on the BCS side. The equation of
state at zero temperature from Fermi liquid theory is given by

E

V
=

3

5
k2

Fn
(

1 +
10

9π
kFa

)
, (5.17)

see Sec. 6.1.3. We deduce for the chemical potential that

µ(kF) =
d

dn

E

V
= k2

F

(
1 +

4

3π
kFa

)
. (5.18)

The contact is found from

C = 2π
d(E/V )

d(−1/a)
= 4π2n2a2. (5.19)

Thus we have

CBCS

k4
F

=
4

9π2
(kFa)2. (5.20)

Inserting the equation of state kF(µ) =
√
µ we then arrive at

CBCS

µ2
=

4

9π2
(
√
µa)2. (5.21)
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5.1.2 Contact from Dyson–Schwinger equations

High momentum factorization of the fermion self-energy

The physics of the contact is based on a separation of scales. This scale dependence
is most efficiently resolved within a Renormalization Group analysis. Nevertheless
it is instructive to first consider a self-consistent gap equation or DSE equation
for the fermion propagator. From this exact equation, the factorization property
of the self-energy at large external momenta is deduced easily. Moreover, we
use this formalism to show how the perturbative results CBEC = 4πn/a and
CBCS = 4π2a2n2 arise naturally on the BEC and BCS sides of the crossover after
a proper ultraviolet renormalization scheme has been applied.

From the two-channel model we infer the inverse classical fermion and boson
propagators, respectively, to be given by

Pψ,cl(q0, q
2) = iq0 + q2 − µ,

Pϕ,cl(q0, q
2) = ν + iεq0. (5.22)

We introduce an infinitesimal contribution iεq0 with ε → 0+ in the inverse bo-
son propagator to regularize momentum integrals involving Pϕ. With this single
modification we will make manifest that only one single coupling, the detuning ν,
requires an ultraviolet renormalization in the BCS-BEC crossover, see Eqs. (5.40)
and (5.41). Alternatively, one can add a counterterm ∝ fΛψ

∗
σψσ in the fermionic

part of the microscopic action and then adjust fΛ appropriately.

Due to quantum and thermal fluctuations, the classical propagators Pψ,cl(Q)
and Pϕ,cl(Q) get dressed to yield the macroscopic propagators Pψ(Q) and Pϕ(Q).
This correction is encoded in the self-energies Σψ/ϕ(Q) = Pψ/ϕ(Q) − Pψ/ϕ,cl(Q).
The DSE for the full inverse fermion propagator reads

Pψ(Q) = Pψ,cl(Q) +

∫
P

h2

Pψ(P −Q)Pϕ(P )
(5.23)

according to the graph shown in Fig. 5.1. The corresponding momentum integral
involves the fully dressed propagators. It is in this sense that the equation is
self-consistent and cannot be solved in a straightforward manner. In Eq. (5.23)
we approximate the full Feshbach coupling by the microscopic one, which is mo-
mentum independent. This approximation is justified due to the weak effect of
fluctuations on the Feshbach coupling.

The BCS-BEC crossover across a broad Feshbach resonance can be parametrized
by the physical scales temperature, chemical potential and scattering length. We
denote the highest physical momentum scale by kph. In the perturbative regimes,
this corresponds to the inverse scattering length, whereas this is not valid close
to resonance where a−1 = 0. Only momenta p2 < k2

ph in the loop-integral in Eq.
(5.23) can resolve the details of the choice of parameters. For this reason we split
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−1 −1P

Q

P P
=

P

Q− P

+

Figure 5.1: DSE for the inverse fermion propagator. A single line corresponds
to a classical propagator and a double line denotes a full propaga-
tor. Fermions and bosons are represented by solid and dashed lines,
respectively. In the loop integral we have one fully dressed Feshbach
coupling and a microscopic one. The latter is momentum independent.
Figure taken from Boettcher et al. [2013].

up the integration according to

Σψ(Q) = h2T
∑
n

∫
p2<k2

tr

1

Pψ(P −Q)Pϕ(P )
+ h2T

∑
n

∫
p2>k2

tr

1

Pψ(P −Q)Pϕ(P )
,

(5.24)

where the transition momentum ktr is sufficiently larger than kph, such that for
p2 > k2

tr the p2-dependence of Pϕ(P ) can be neglected. We can then replace

Pϕ(P )→ Pϕ(p0, p
2 = k2

tr) =: Pϕ,tr(p0) (5.25)

in the second integral. By adding and subtracting a convenient piece we can now

write Σψ(Q) in terms of two contributions, Σψ = Σ
(1)
ψ + Σ

(2)
ψ , with

Σ
(1)
ψ (Q) = h2T

∑
n

∫
p2<k2

tr

1

Pψ(P −Q)

(
1

Pϕ(P )
− 1

Pϕ,tr(p0)

)
,

Σ
(2)
ψ (Q) = h2

∫
P

1

Pψ(P −Q)Pϕ,tr(p0)
. (5.26)

Both pieces are manifestly ultraviolet finite and do not depend on ktr for suffi-
ciently large k2

tr � k2
ph.

We emphasize that the splitting of the self-energy in Eq. (5.24) enables us to
show that the superficially divergent loop-integral in Eq. (5.23) is indeed finite for
large q2. This nontrivial statement results from a scale argument only and thus
does not imply any restrictions on coupling strength, density, or temperature.
Moreover, the particular choice of the artificially introduced momentum ktr does
not play a role for the final result.

We are interested in the behavior of Σψ(Q) for large momenta q2 � k2
tr. The

scale hierarchy in this case is given by

k2
ph � k2

tr � q2 � Λ2. (5.27)
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In Σ
(1)
ψ (Q) we can then replace Pψ(P −Q) by Pψ,cl(−Q), because the integral is

restricted to momenta which are small in comparison to Q and we can neglected
self-energy corrections to leading order at high momenta. This results in the
factorization

Σ
(1)
ψ (Q) =

4C

Pψ,cl(−Q)
for large q2. (5.28)

We define the contact according to

C =
h2

4
T
∑
n

∫
p2<k2

tr

(
1

Pϕ(P )
− 1

Pϕ,tr(p0)

)
, (5.29)

since the numerator in Eq. (5.28) is seen below to result in the prefactor C of the
1/q4-tail of the momentum distribution. Again, formulas (5.28) and (5.29) only
rely on the splitting of the loop-integral at ktr, which gives us a precise notion of
“large q2”, namely q2 � k2

tr. The factorization is thus a generic feature of theories
which can be described by similar Feshbach- or Yukawa-type gap equations.

We can define an effective boson occupation number as

nϕ,~p = T
∑
n

(
1

Pϕ(P )
− 1

Pϕ,tr(p0)

)
(5.30)

with total boson number density nϕ =
∫
~p nϕ,~p. This yields

C =
h2

4
nϕ (5.31)

and hence shows the close relation between the contact and the number of atoms
bound in bosonic pairs. Note that the definition of nϕ has to be renormalization
group invariant and thus involves a wave function renormalization constant, which
we set to unity here for simplicity. The second term in Σψ(Q) results in a Hartree-
like shift of the effective chemical potential

Σ
(2)
ψ (Q) = −δµ for large q2. (5.32)

The correction to the momentum distribution of particles at high momenta
which results from the self-energy in Eqs. (5.28) and (5.32) is found from the
generally valid formula

nψ,~qσ = −
(
T
∑
n

1

Pψ(Q)
− 1

2

)
. (5.33)

Treating the self-energy perturbatively for large external momentum q2, we find

nψ,~qσ =−
(
T
∑
n

1

Pψ,cl(Q)− δµ −
1

2

)
+ T

∑
n

4C

P 2
ψ,cl(Q)Pψ,cl(−Q)

. (5.34)
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The first two terms yieldNF (q2−µ−δµ) with Fermi functionNF (z) = (ez/T+1)−1.
This contribution vanishes for large q2. Evaluating the Matsubara summation we
find for the second contribution

nψ,~qσ = T
∑
n

4C

P 2
ψ,cl(Q)Pψ,cl(−Q)

= 4C
(1−NF (q2 − µ)

4(q2 − µ)2
+
N ′F (q2 − µ)

2(q2 − µ)

)
q2�µ,T−→ C

q4
for large q2. (5.35)

This justifies the identification of C in the numerator of the asymptotic self-energy
(5.28) with the contact as defined from C = limp→∞ p

4npσ. Higher order contri-
butions to the fermion self-energy do not enter the 1/q4-tail of the momentum
distribution.

The formulas derived in this section become particularly simple in the perturba-
tive BEC and BCS regimes, because the integrals in Eq. (5.26) can be performed
analytically. We present the calculation below, but give here already the results.
The shift δµ of the effective chemical potential vanishes on the BEC side of the
crossover. On the BCS side, it is given by

δµ = −λψnψ,σ, (5.36)

with four-fermion coupling λψ = 8πa. Since all atoms are bound to dimers in the
BEC limit, the boson density in Eq. (5.31) equals half the particle density and
we arrive at

CBEC =
4πn

a
. (5.37)

The relation h2 = 32π/a results from the wave function renormalization of the
boson propagator, see Eq. (5.42). In the BCS limit, the first nonvanishing contri-
bution to the contact arises at second order in perturbation theory in the coupling
a. Inserting the DSE for the boson propagator (5.40) into Eq. (5.31), we obtain a
double integral over two fermion propagators, each resulting in a fermion density
nψ,σ. We find

CBCS = 4π2a2n2. (5.38)

These perturbative results derived from DSE agree with the expressions found
from the zero temperature equation of state.

Contact in the perturbative regime

To exemplify our statements on C and δµ from the DSE, we consider here the
perturbative BEC and BCS regimes, where the integrals in Eqs. (5.28) and (5.32)
can be performed analytically. For weak interactions, the largest physical scale
is given by kph = a−1. To study the contact in the whole crossover we employ
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−1 −1P
=
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Q

P
+

P

P −Q

Figure 5.2: DSE for the inverse boson propagator. The notation is chosen as in
Fig. 5.1. Figure taken from Boettcher et al. [2013].

the Functional Renormalization Group in Sec. 5.1.3. One of the merits of this
method is that all expressions are automatically renormalized.

On the BEC and BCS sides of the crossover, the fermion propagator only gets
weakly dressed because either the fermion or the boson propagator is gapped. This
leads to a suppression of the loop-integral originating from the diagram shown in
Fig. 5.1. Hence we can always treat the fermion self-energy perturbatively in
these regimes. We identify the Hartree shift of the chemical potential as

−δµ = h2

∫ Λ

~p
T
∑
n

1

(i(p0 − q0) + p2 − µ)(ν + iεp0)

= h2

∫
~p

−NF (p2 − µ)−NB(ν/ε)

ε(iq0 − p2 + µ) + ν
= −h

2

ν
nψ,σ (5.39)

on the BCS side. The Bose function is denoted by NB(z) = (ez/T − 1)−1. In the
last expression we take the limit ε→ 0+. The q0-dependence of δµ defined in Eq.
(5.32) is seen to vanish.

For computing the contact we first consider the BEC limit, where µ ' −1/a2

is large and negative. The shift of the chemical potential vanishes due to the
suppression of the Fermi function NF (p2 − µ) in the integral in Eq. (5.39). The
inverse boson propagator is derived from the DSE (Diehl and Wetterich [2007])
for the bosonic self-energy

Σϕ(Q) = Pϕ(Q)− Pϕ,cl(Q) = δνΛ − h2

∫
P

1

Pψ(Q− P )Pψ(P )
, (5.40)

shown diagrammatically in Fig. 5.2. The counterterm is given by

δνΛ =
h2Λ

4π2
. (5.41)

In the perturbative regime we can replace the full fermion propagators in the loop-
integral by the classical ones. The Matsubara summation and angular integration
can then be evaluated analytically. We do not need the full expression but only
note that

Pϕ,BEC(Q) = ν +
h2

8π

√
iq0

2
+
q2

4
− µ ' Zϕ

(
iq0 +

q2

2

)
(5.42)
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for |q0|, q2 � a−2 in the BEC regime. (We used −h2/ν = 8πa and µ = −1/a2)
The boson propagator resembles particles with classical dispersion relation ωq =
q2/2Mϕ and mass Mϕ = 2M = 1. The wave function renormalization constant is
Zϕ = h2a/32π.

Inserting the boson propagator from Eq. (5.42) into Eq. (5.29) we arrive at

CBEC =
8π

a

∫
p2<k2

tr

T
∑
n

( 1

ip0 + p2/2
− 1

ip0 + k2
tr

)
=

8π

a

∫
p2<k2

tr

(
NB(p2/2)−NB(k2

tr)
)

=
8πnϕ,cl

a
, (5.43)

where we used kph � T 1/2 and nϕ,cl defines the number density of boson with
classical dispersion relation from Eq. (5.30). Due to the equation of state nϕ,cl =
n/2 on the BEC side of the crossover we conclude

CBEC =
4πn

a
(5.44)

as expected.
In the BCS regime the bosons are resonant excitations and nϕ,cl = 0. The

corresponding formula for the contact is most easily derived from inserting the
DSE (5.40) into formula (5.29). Therein, the boson self-energy Σϕ ∝ h2 can be
treated perturbatively, since it is small in comparison to the boson gap ν due to
the small scattering length a = −h2/8πν. We then find

CBCS = −h
2

4
T
∑
n

∫
p2<k2

tr

Σϕ(P )− Σϕ(p0, k
2
tr)

(ν + iεp0)2

=
h4

4ν
T
∑
n

∫
p2<k2

tr

∫
K

1

Pψ,cl(K)(ν + iεp0)

×
(

1

Pψ,cl(P −K)
− 1

Pψ,cl(p0 − k0, (ktr − k)2)

)
= −h

4

4ν

∫
K

∫
p2<k2

tr

NF ((~p− ~k)2 − µ)

Pψ,cl(K)(ν + iεk0)

= −h
4

4ν
nψ,σ

∫
K

1

Pψ,cl(K)(ν + iεk0)

= −h
4

4ν
nψ,σ

∫
~k

NF (k2 − µ)−NF (ν/ε)

ε(k2 − µ)− ν =
h4

4ν2
n2
ψ,σ. (5.45)

We again applied the limit ε → 0+. With the BCS equation of state nψ,σ = n/2
we arrive at

CBCS = 4π2a2n2. (5.46)

This agrees with Eq. (5.19).
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Figure 5.3: Flow equation for the fermion self-energy. The notation is chosen as
in Fig. 5.1. The crossed circle indicates an insertion of Ṙk in the loop
integral. Figure taken from Boettcher et al. [2013].

5.1.3 Contact from Functional Renormalization

Fermion self-energy and contact term in the symmetric regime

For conceptual clarity we first isolate the contact term and the shift of the chemical
potential from the flow equation of the self-energy Σψ(Q) = Pψ(Q)− Pψ,Λ(Q) in
the symmetric or disordered regime, where the field expectation value of the boson
field is zero. The procedure will be extended below to the ordered regime of the
flow with a nonvanishing expectation value φ0. In general the self-energy is a
4× 4–matrix. For equal population of the two hyperfine states σ = 1, 2, the most
general form of the self-energy can be parametrized by two complex functions
Σψ(P ) and Σψ,an(P ), where the second one is called the anomalous contribution.
We neglect the anomalous self-energy in the following.

The fermions are treated perturbatively but in a momentum resolved fashion.
Perturbatively here means that we neglect the feedback of the self-energy on the
other running couplings. Of course, they can be implemented iteratively, thus
enhancing the quantitative precision of the results. We have an additional flow
equation for the fermion self-energy shown in Fig. 5.3. In the second line of
the figure we replaced the full fermion propagator by the microscopic one, in
accordance with our perturbative treatment. Note that all quantities on the right
hand side of the flow equation in Fig. 5.3 are known to us and the fermionic
self-energy can be readily integrated.

The flow of the inverse fermion propagator, which is identical to the flow of the
self-energy, is given in the symmetric regime by

∂kΣψ,k(P ) = −h̄2

∫
Q

{
∂kR̄φ,k(Q)

(P̄φ,k(Q) + R̄φ,k(Q))2

1

Pψ,k(Q− P ) +Rψ,k(Q− P )

+
∂kRψ,k(Q)

(Pψ,k(Q) +Rψ,k(Q))2

1

P̄φ,k(Q+ P ) + R̄φ,k(Q+ P )

}
.

(5.47)

We emphasize that the external momentum P is a free parameter and for each P
we have an individual flow equation. The Feshbach or Yukawa coupling h̄ does
not depend on momentum in our truncation. We also neglect a possible scale
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dependence of h̄. The expressions Pψ,k(Q) = Pψ,Λ(Q) + Σψ,k(Q) and P̄φ,k(Q) are
the full inverse propagators at scale k. We have

Pψ,Λ(Q) = iq0 + q2 − µ. (5.48)

Since the boson propagator is gapped for k � kph, where kph is a physical scale
given by either the inverse scattering length, temperature or chemical potential,
we effectively only have a nonvanishing contribution to Eq. (5.47) for k . kph.
Choosing a large external momentum p2 � k2

ph ≥ k2, we can use the property
limq2/k2→∞Rk(Q) = 0 of the regulator functions Rk(Q) to approximate

Pk(Q± P ) +Rk(Q± P ) ' Pk(±P ). (5.49)

Thus, for large external momentum p2, the flow of the self-energy simplifies ac-
cording to

∂kΣψ,k(P ) '− h̄2

Pψ,k(−P )

∫
Q

∂kR̄φ,k(Q)

(P̄φ,k(Q) + R̄φ,k(Q))2

− h̄2

P̄φ,k(P )

∫
Q

∂kRψ,k(Q)

(Pψ,k(Q) +Rψ,k(Q))2
. (5.50)

We now show that this results in an asymptotic self-energy Σψ = Σψ,k=0 of the
form

Σψ(P ) ' 4C

Pψ,Λ(−P )
− δµ. (5.51)

The first term in Eq. (5.50) yields the contact term. Indeed, for large external
momenta P , renormalization effects on the fermion propagator are small and we
can approximate Pψ,k(−P ) ' Pψ,Λ(−P ). We then find the P -dependent term
being multiplied by an integral which receives contributions from the physical
scales kph. Since Pψ,Λ(−P ) is k-independent, we can integrate the first term in
Eq. (5.50) and identify the contact as being given by

4C = −
∫ 0

Λ
dkh̄2

∫
Q

∂kR̄φ,k(Q)

(P̄φ,k(Q) + R̄φ,k(Q))2

=

∫ 0

Λ
dk∂̃k

∫
Q

h̄2

P̄φ,k(Q) + R̄φ,k(Q)
. (5.52)

In the second line, we introduced the formal derivative ∂̃k, which only acts on
the k-dependence of the regulator Rk. The advantage of this rewriting is to make
the simple one-loop structure of the equations manifest. Eq. (5.52) allows us to
define a scale dependent contact Ck according to the flow equation

∂kCk =
h̄2

4
∂̃k

∫
Q

1

P̄φ,k(Q) + R̄φ,k(Q)
(5.53)
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5 Three-dimensional BCS-BEC Crossover

with CΛ = 0 and Ck=0 = C. This flow equation and its generalization to the
ordered regime are the basis for our numerical evaluation of C in Sec. 5.1.5.

The second term in Eq. (5.50) contains the boson propagator evaluated for
large momentum. Since the microscopic boson propagator is constant and the
momentum dependence only builds up due to the renormalization group flow,
this contribution to the fermion self-energy is independent of P and constitutes
a shift of the effective chemical potential. The asymptotic value is then equal to
the one evaluated for a large momentum ktr. We conclude

δµ = −
∫ 0

Λ
dk

h̄2

m̄2
φ

∂̃k

∫
Q

1

Pψ,k(Q) +Rψ,k(Q)
. (5.54)

With the effective four-fermion vertex −h̄2/m̄2
φ = λψ we find δµ = −λψnψσ.

Contact term in the ordered regime

For low enough temperatures, a nonvanishing expectation value ρ0,k of the boson
field ρ = φ∗φ appears during the renormalization group flow. If ρ0,k=0 = ρ0 > 0,
we say that the system is in its superfluid phase and some of the bosons have
condensed. Note that, due to interactions, the condensate fraction does not coin-
cide with the superfluid fraction. Above the critical temperature there is a region
where a nonvanishing value of ρ0,k appears for k > 0 during the flow, but does
not persist for k → 0. We then arrive in the symmetric (normal) phase of the
system. We may call this intermediate region the precondensation regime. It is
characterized by local but not global superfluid order.

Conceptually the above derivation of the flow of the self-energy and the asymp-
totic scaling with contact term ∼ 4C/Pψ,Λ(−P ) remains valid also in the presence
of a possibly nonvanishing boson field expectation value. We write

Σ(P ) =

(
Σψ,an(P )ε −Σψ(−P )

Σψ(P ) −(Σψ,an(P ))∗ε

)
, (5.55)

with

Σψ,k(P ) = Pψ,k(P, ρ0,k)− Pψ,Λ(P, ρ0,k)

= Pψ,k(P, ρ0,k)−
(

ip0 + p2 − µ
)
. (5.56)

The complex functions Σψ(P ) and Σψ,an(P ) are called (normal) self-energy and
anomalous self-energy, respectively. The parametrization in Eq. (5.55) is the
most general form of the self-energy in the spin-balanced case of equal chemical
potentials for the hyperfine components.

Evaluating the self-energy for each k on the expectation value ρ0,k of the bosonic
field properly takes into account the fluctuations on different scales. As a result,
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5.1 Tan contact

the flow equation of the ψ∗1ψ1-component of Σk (i.e. the normal contribution) is
given by

∂tΣψ,k(P ) = (ηφρ0,k + ∂tρ0,k)
∂Σk,ψ

∂ρ
(P, ρ0,k) +

(
∂t|ρ̄Σψ,k

)
(P, ρ0,k)︸ ︷︷ ︸

diagram

. (5.57)

The derivative is performed for fixed ρ̄. On the right hand side, the self-energy
appears as a function of the background field, whereas the left hand side only
depends on k and P . We indicated that the last term in Eq. (5.57) is the actual
diagrammatic contribution to the beta function.

Within our truncation we have for this term

(
∂t|ρ̄Σψ,k

)
(P, ρ0) = h2

∫
Q

˙̄Rφ
Aφ

(
S2
φq

2
0,B − 2(iSφq0,B + λρ0)(λρ0 + pφ(~q))− p2

φ(~q)
)

det2
B(Q)

×

(
i(p0 + q0,B) + pψ(~q + ~p)

)
detF (Q+ P )

− h2

∫
Q
Ṙψ

(
iSφ(p0 + q0,F )− λρ0 − pφ(~q + ~p)

)
detB(Q+ P )

×

(
q2

0,F + 2iq0,F pψ(~q) + h2ρ0 − p2
ψ(~q)

)
det2

F (Q)
, (5.58)

with q0,B = 2πnT and q0,F = 2π(n+1/2)T being bosonic or fermionic Matsubara
frequencies, respectively, and p0 = 2π(m+ 1/2)T . We introduced

detB(Q) = S2
φq

2
0,B + pφ(~q)(pφ(~q) + 2λρ0), (5.59)

detF (Q) = q2
0,F + p2

ψ(~q) + h2ρ0 (5.60)

and used pψ = q2 − µ + Rψ(q2), pφ = q2/2 + m2
φ + Rφ(q2). The Matsubara

summations can be performed analytically and we arrive at an explicit expression
for the third term in the flow equation (5.57).

The flow equation for Σψ,k(P ) is valid for arbitrary values of P . For large P , the
equation simplifies considerably and, eventually, allows to derive the renormaliza-
tion group flow of the contact Ck. We restrict the following discussion to the first
integral in Eq. (5.58), which is responsible for the high momentum behavior. We
have

i(p0 + q0) + pψ(Q+ P )

detF (Q+ P )
' 1

−ip0 + p2 − µ (5.61)

for large p2 and find (
∂t|ρ̄Σψ,k

)
(P, ρ̄) ' (∂t|ρ̄c̄k)(ρ̄)

Pψ,Λ(−P )
(5.62)
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5 Three-dimensional BCS-BEC Crossover

with

(∂t|ρ̄c̄k)(ρ̄) = h2

∫
Q

˙̄Rφ(~q2)

Aφ

S2
φq

2
0,B − 2(iSφq0,B + λρ0)(λρ0 + pφ(~q))− p2

φ(~q)

det2
B(Q)

= h2

∫
~q

˙̄Rφ
Aφ

T
∑
n

( 1

detB(Q)
−

2S2
φω

2
φ,k + 2λ2ρ2

0

det2
B(Q)

)
. (5.63)

For the definition of ωφ,k see Eq. (5.74).
We define the flowing contact according to

Ck =
1

4
ck(ρ0,k), (5.64)

where ck(ρ) := c̄k(ρ̄) is expressed in terms of the normalized field ρ = ρ̄Aφ. Since

c(k, ρ) = c̄(k, ρ̄(ρ, k)) (5.65)

we have

∂c

∂k
=
∂c̄

∂k
+
∂c̄

∂ρ̄
·
(
∂ρ̄

∂k

)
ρ

=
∂c̄

∂k
+

1

k
ηφρ̄

∂c̄

∂ρ̄
, (5.66)

∂c

∂ρ
=

1

Aφ

∂c̄

∂ρ̄
. (5.67)

From these two relations we deduce the flow equation for ck(ρ) in the presence of
the k–dependent background field ρ = Aφρ̄ to be given by

(∂t|ρck)(ρ̄) = (∂t|ρ̄c̄k)(ρ̄ = ρ̄(ρ)) + ηφρ
∂ck
∂ρ

(ρ). (5.68)

Thus we arrive at

∂tCk =
1

4

(
(∂t|ρ̄c̄k)(ρ0,k) + (ηφρ+ ∂tρ0,k)

∂ck
∂ρ

(ρ0,k)
)
. (5.69)

We show that ∂c/∂ρ = h2 +O(Σψ). For this purpose we consider the limit of
classical fermion propagators Pψ(Q) = Pψ,Λ(Q) = iq0 +q2−µ. For the momentum
distribution per species we have

nψ,~qσ = −
(
T
∑
n

Pψ,Λ(−Q)

Pψ,Λ(Q)Pψ,Λ(−Q) + h2ρ
− 1

Pψ,Λ(Q)

)
= T

∑
n

h2ρ

Pψ,Λ(Q)
[
Pψ,Λ(Q)Pψ,Λ(−Q) + h2ρ

]
' h2ρ

2
√
q4 + h2ρ

(√
q4 + h2ρ+ q2

) ' h2ρ

4q4
(5.70)
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5.1 Tan contact

for large q. Whereas the Fermi–Dirac distribution decays exponentially for large
q, a q4-tail arises from the presence of a bosonic background field with contact
parameter C = h2ρ/4. This completes the proof of

∂c

∂ρ
(ρ0,k) = h2 +O(Σψ). (5.71)

The flow equation for the contact becomes

∂tCk =
h2

4
(ηφρ0,k + ∂tρ0,k) +

h2

4

∫
~q

˙̄Rφ
Aφ

T
∑
n

( 1

detB(Q)
−

2S2
φω

2
φ,k + 2λ2ρ2

0

det2
B(Q)

)
.

(5.72)

The result of the Matsubara summation and the ~q–integration is given by

∂tCk =
h2

4
(ηφρ0,k + ∂tρ0,k) +

2d/2+1vd
d

h2

S2
φ

kd+2
(

1− ηφ
d+ 2

)[
N ′B(ωφ,k)

− λ2ρ2
0

S2
φω

3
φ,k

(1

2
+NB(ωφ,k)− ωφ,kN ′B(ωφ,k)

)]
, (5.73)

with

ωφ,k =

√
(k2 +m2

φ,k)(k
2 +m2

φ,k + 2λkρ0,k)

Sφ
. (5.74)

The Bose function is defined as NB(z) = (ez/T −1)−1 and N ′B = dNB/dz. Typical
renormalization group flows of Ck for the UFG are shown in Fig. 5.4.

At zero temperature we obtain a nonvanishing value for the contact C. The
corresponding value is found from Eq. (5.73) by setting the Bose functions to
zero. We have

∂tCk|T=0 =
h2

4
(ηφρ0,k + ∂tρ0,k)−

2d/2vd
d

h2λ2ρ2
0

S4
φω

3
φ,k

kd+2
(

1− ηφ
d+ 2

)
. (5.75)

In the limit where the density is dominated by the superfluid density of condensed
bosons, the first term in Eq. (5.73) dominates. For small anomalous dimension
ηA and neglecting the running of h2 this yields the simple relation

C ≈ h2

4
ρ0, (5.76)

which coincides with Eq. (5.31) for nϕ ≈ ρ0.
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Figure 5.4: RG-scale dependence of the flowing contact Ck at unitarity a−1 = 0.
We have k = Λet such that t = 0 corresponds to the ultraviolet and
t → −∞ to the infrared. We observe that the contact is unaffected
by fluctuations of ultraviolet modes and it starts to build up on the
many-body scales of the system, which are set here by the chemical
potential and temperature corresponding to tµ = ln(µ1/2/Λ) = −6.9
and tT ' tµ. Obviously, all curves saturate at a certain value of t
and we can read off the physical value at k = 0. Figure taken from
Boettcher et al. [2013].

5.1.4 Relation between Tan contact and boson density

To clarify the relation between ∂tCk and ∂tnφ,k, we consider the scale-dependent
density nk defined by

nk = −∂Uk
∂µ

(ρ0,k). (5.77)

The µ-derivative is performed for fixed Rψ. For k = 0 we arrive at the physical
density

n =
∂P (µ, T )

∂µ
= −∂U(µ, T, ρ0)

∂µ
(5.78)

with pressure P (µ, T ). The corresponding flow equation is given by

∂tnk = −αφ(ηφρ0,k + ∂tρ0,k)−
(
∂µ∂t|ρ̄Uk

)
(ρ0,k). (5.79)

with

αφ =
∂2U

∂µ∂ρ
(ρ0,k). (5.80)
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The flow of the effective potential receives contributions from bosonic and fermionic
fluctuations. Defining

∂tn
(U)
φ,k = −

(
∂µ∂t|ρ̄U (B)

k

)
(ρ0,k), (5.81)

∂tn
(U)
ψ,k = −

(
∂µ∂t|ρ̄U (F )

k

)
(ρ0,k) (5.82)

as the bosonic or fermionic contribution, respectively, we can employ(
∂t|ρ̄U (B)

k

)
(ρ) =

∫
Q

˙̄Rφ
Aφ

k2 + U ′k(ρ) + ρU ′′k (ρ)

[k2 + U ′(ρ) + 2ρU ′′k (ρ)][k2 + U ′(ρ)] + S2
φq

2
0

(5.83)

to find

∂tn
(U)
φ,k = −αφ

∫
Q

˙̄Rφ
Aφ

( 1

detB(Q)
−

2S2
φω

2
φ,k + 2λ2ρ2

0

det2
B(Q)

)
. (5.84)

This is precisely the third term in the flow equation (5.63) for Ck. We can sum-
marize these findings in the generally valid relation

∂tCk = − h2

4αφ

(
−αφ(ηφρ0,k + ∂tρ0,k) + ∂tn

(U)
φ,k

)
= − h2

4αφ

(
∂tnk − ∂tn(U)

ψ,k

)
, (5.85)

where n
(U)
φ/ψ,k are contributions which arise from effects of bosonic/fermionic fluc-

tuations on the effective potential and hence the density. In contrast, the term
−αφ(ηφρ0,k + ∂tρ0,k) accounts for the nontrivial scaling of the renormalized prop-
agator and the contribution from condensed bosons.

In the BEC limit, Eq. (5.85) simplifies considerably. Indeed, following the flow
of Ck from k = Λ to k = 0 we see that in the early stages of the flow, where
k is much larger than the many body-scales set by µ and T , the flow of Ck is
zero, because ρ0,k = 0 and there are no bosonic fluctuations on high energy scales.
Hence

∂kCk = 0 for k � µ1/2, T 1/2. (5.86)

However, the flow of the prefactor h2/αφ = h̄2/ᾱφ is governed by the scale set by
the scattering length a−1. On the far BEC side, this quantity is large and these
renormalization effects set in far above the many-body scales. At such high scales
the vacuum relation ᾱφ,k = −2Zφ,k, with wave function renormalization Zφ,k of
the bosons, is valid. The relation stems from the appearance of the combination
Zφ,k(∂τ − 2µ) in the propagator due to semi-local U(1)–invariance and the sym-
metry preserving nature of the flow equation. One can show that the vacuum flow
of Zφ,k is solved by Zφ,k=0 = h̄2a/32π on the BEC side (Diehl et al. [2007a]), i.e.

− h̄2

4ᾱφ
→ 4π

a
for k � µ1/2, T 1/2. (5.87)
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Figure 5.5: Zero temperature contact on the BEC side of the crossover. The
many-body chemical potential is defined as µmb = µ− εB/2 and thus
is a positive quantity. (See for instance Eq. (5.12) in the context of a
weakly interacting Bose gas.) The FRG treatment captures the Lee–
Huang–Yang (LHY) correction, see. Eq. (5.16). Mean field theory
(MF) is shown by the dashed curve. Figure taken from Boettcher
et al. [2013].

This prefactor effectively enters the renormalization group equation of Ck which
takes place on the many-body scales and thus we can write

∂kCk =
4π

a
∂knφ,k. (5.88)

Due to the fact that there are no fermion fluctuations contributing to the density
on the BEC side, we have nφ,k = nk and thus arrive at the well-known relation
CBEC = 4πn/a. The mean field result CBEC = 4πn/a receives corrections from
bosonic fluctuations, which are incorporated in the renormalization group flow.

5.1.5 Results of the FRG analysis

Within the above truncation scheme we can compute the contact as a function of
the crossover parameters µ, T , and a. Moreover, the high momentum factorization
of the self-energy can be shown explicitly by solving the flow equation for Σψ(P )
for different values of P . In order to translate the results expressed in terms of
the chemical potential for the density, the equation of state P (µ, T ) has to be
applied. Since the density (and, iteratively, the contact itself) receives substantial
contributions from the contact term in the fermion self-energy, fully self-consistent
results can only be obtained from a self-consistent treatment of the Tan term in
the flow equations. Here we restrict to an analysis of the qualitative behavior of
the contact and do not aim at quantitative precision.

The result of the integration of the renormalization group equations at zero
temperature on the BEC side is given in Fig. 5.5. We find excellent agreement
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Figure 5.6: The contact close to resonance as a function of the scattering length
for both T = 0 and T = Tc(a, µ). The labels of the axes are analogous
to Fig. 5.5. At unitarity we obtain C(T = 0)/µ2 = 0.34 and C(T =
Tc)/µ

2 = 0.24. Far on the BCS side our present truncation becomes
inappropriate as is discussed in the main text. For better visibility we
show the asymptotic BCS/Fermi liquid value up to (

√
µa)−1 = −0.5,

which is already beyond the applicability of BCS theory. Figure taken
from Boettcher et al. [2013].

with the prediction from LHY theory, whereas the mean field curve deviates sub-
stantially. From Eq. (5.85) it is apparent that the LHY correction, which is
reproduced in the equation of state on the BEC side as well, is also visible in
the contact, because both share a common flow equation. The nontrivial renor-
malization of the prefactor in Eq. (5.85) ensures the result to be beyond mean
field.

As we approach unitarity from the BEC side, we leave the perturbative regime,
and the contact is no longer described by the LHY expression. The FRG result
within the truncation of this work is shown in Fig. 5.6. For a−1 = 0 we find
C/µ2 = 0.34 and C/k4

F = 0.11 at zero temperature. The Bertsch parameter
within this approximation is ξ = 0.55. We observe the contact to be a monotonous
function of the crossover parameter (

√
µmba)−1, or, equivalently, (kFa)−1.

For negative scattering lengths we find our zero temperature results to be far
below the BCS/Fermi liquid prediction. The reason for the failure of the present
truncation is that the momentum dependence of the boson propagator is not well-
approximated by a derivative expansion on the BCS side, although momentum
independent observables like the equation of state are described correctly. This
becomes transparent in the derivation of the relation CBCS = 4π2n2a2 from the
DSE (5.46), where we explicitly use the momentum dependence of the bosonic
self-energy Σϕ(Q).

In Fig. 5.6 we also show the value of the critical contact C(Tc, a) in the
crossover. We find the corresponding value always to be below the zero tem-
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Figure 5.7: The contact of the UFG normalized by k4
F with Fermi momentum

kF = (3π2n)1/3. We compare predictions from Functional Renormal-
ization Group (FRG, this work, Tc/TF = 0.276), non-self-consistent
T-matrix theory (G0G0: Palestini et al. [2010], Tc/TF = 0.242), Gaus-
sian pair fluctuations and Nozières–Schmitt-Rink theory (GPF/NSR:
Hu et al. [2011], Tc/TF = 0.235), self-consistent T-matrix theory (GG:
Enss et al. [2011], Tc/TF = 0.15) and Quantum Monte Carlo cal-
culations (QMC: Drut et al. [2011], Tc/TF = 0.15) for lattice sizes
Nx = 12, 14. In this list, the brackets indicate the label in the plot,
the corresponding reference and the chosen value for the critical tem-
perature. For the experimental data of Sagi et al. [2012] we employed
Tc/TF = 0.16, which suffices here to obtain a qualitative comparison
of the data. Figure taken from Boettcher et al. [2013].

perature value. The full temperature dependence of the contact of the unitary
Fermi gas is shown in Figs. 5.7 and 5.8. We observe a sharp dip at the critical
temperature, hence C(0) > C(Tc) in Fig. 5.6. Since the contact is related to a
first derivative of the energy (or pressure) according to the adiabatic sweep the-
orem, it has to be continuous at Tc as a result of the second order nature of the
phase transition. We confirm this behavior in our results with a critical contact
parameter C(T = Tc)/k

4
F = 0.11. The contact C/k4

F shows a maximum above Tc.

Fig. 5.7 also compares our result for C/k4
F to other theoretical approaches and

to a recent experimental measurement of the homogeneous contact. Due to the
disagreement of predictions for Tc/TF from different theoretical methods, we have
rescaled the abscissa by the corresponding critical temperatures. This allows to
compare the qualitative features of the temperature dependence like monotony or
location of peaks and minima. In order to relate the contact C in Fig. 5.7 to an
extensive contact C̄ = CV with volume V we use C̄/NkF = 3π2C/k4

F, see our
discussion of the normalization in the introduction. The Fermi momentum of the
FRG data in Fig. 5.7 is not corrected due to the high momentum contribution
to the particle number density. Hence, kF will in general be larger than plotted
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Figure 5.8: The blue solid line shows the temperature dependence of the con-
tact normalized by the chemical potential for the UFG. We observe
a decrease of C/µ2 as we approach the critical temperature from be-
low, resulting in a sharp dip at Tc. The function is monotonic for
T/Tc & 1.75. The green, red, and orange curves correspond to dif-
ferent contributions to the contact and are explained in Eqs. (5.89)–
(5.91). Figure taken from Boettcher et al. [2013].

here.
We find largely different predictions for the temperature dependence of the

contact in the critical region. This indicates a sensitivity of this observable with
respect to approximations in theoretical calculations, which makes further inves-
tigation even more interesting. Note that for higher temperatures, the second and
third order virial expansions by Hu et al. [2011] allow for a solid comparison of
the temperature dependence of the contact. However, we focus here on the region
around Tc, which is well-captured by our truncation of the effective action.

From Eq. (5.73) we observe that the contact receives contributions from dif-
ferent terms in the flow equation. These are important in distinct regimes of the
system. To visualize this, we split up the flow of Ck into three parts according to

∂tCk = ∂tC
(1)
k + ∂tC

(2)
k + ∂tC

(3)
k with

∂tC
(1)
k =

h2

4
(ηφρ0,k + ∂tρ0,k), (5.89)

∂tC
(2)
k =

2d/2+1vd
d

h2

S2
φ

kd+2
(

1− ηφ
d+ 2

)
N ′B(ωφ,k), (5.90)

∂tC
(3)
k =

2d/2+1vd
d

h2

S2
φ

kd+2
(

1− ηφ
d+ 2

)
×
(
− λ2ρ2

0

S2
φω

3
φ,k

)(1

2
+NB(ωφ,k)− ωφ,kN ′B(ωφ,k)

)
. (5.91)

The only term which persists in the stages of the flow where ρ0,k = 0, is C
(2)
k .
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Figure 5.9: The asymptotic approach of the contact for the UFG at the crit-
ical temperature. We plot the real part of Pψ,cl(−P )Σψ(P ) with
Pψ,cl(−P ) = −ip0 +~p2−µ and p0 = πT (red dots). In accordance with
formula (5.4), the factorization at large momenta leads to the approach
of the constant value 4C (blue dashed line). For very low momenta
our perturbative treatment of the fermion propagator becomes quanti-
tatively less accurate, but still the deviations do not exceed 20% even
for p → 0. We restrict the self-energy here to the diagram in Fig.
5.3 where the external momentum P appears in the fermion line and
which is responsible for the contact term. Figure taken from Boettcher
et al. [2013].

Therefore, it is the leading contribution above Tc (red dashed line in Fig. 5.8).

Both C
(1)
k and C

(3)
k start to build up in the precondensation phase. However, C

(3)
k

is never really large (orange dashed-dotted line in Fig. 5.8). For small T , the

contribution from C
(1)
k dominates (green dashed-dotted line in Fig. 5.8). Above

Tc this contribution is negligible. In the zero temperature limit, the term C
(1)
k

becomes most important. This can be understood easily from Eq. (5.79), where
we identify this term as the contribution from condensed bosons to the density.

We already addressed the question whether the scaling formula (5.4) can be
applied for a large part of the momenta or only yields an asymptotic, but practi-
cally irrelevant contribution. For this purpose we solve the flow equation for the
self-energy Σψ,k(P ) on a grid of P -values according to Eq. (5.58). Therein we re-
strict to the first integral, which corresponds to the diagram in Fig. 5.3 where the
external momentum appears in the fermion line. Only this diagram contributes
to the contact. The universal regime of validity is expected to be large for the
UFG. In Figs. 5.9 and 5.10 we underline this statement at T = Tc and a−1 = 0.

Since the self-energy Σψ(P ) is a complex valued function of P = (p0, ~p), we gain
information about the high momentum behavior from plotting both the real and
imaginary part at the lowest possible fermionic Matsubara frequency p0 = πT as a
function of |~p|. To see the asymptotic approach of the form Pψ,cl(−P )Σψ ' 4C we
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Figure 5.10: The fermion self-energy Σψ,k=0(P ) at a−1 = 0 and T = Tc computed
from the first diagram in Fig. 5.3. We evaluate the function for
p0 = πT and find the large momentum behavior to be a reasonable
approximation for both the real and imaginary parts even at low
momenta. The asymptotic form (5.4) is shown by a dashed line. The
self-energy vanishes for large momenta since we effectively added the
constant δµ for p→∞ by neglecting the second diagram in Fig. 5.3.
Figure taken from Boettcher et al. [2013].

plot the real part of this particular combination in Fig. 5.9. The imaginary part of
this product vanishes for p→∞, showing that the contact indeed is real-valued.

We plot ReΣψ(P ) and ImΣψ(P ) in Fig. 5.10 for the same set of parameters
as before. We find that the scaling form is a good description for all momenta
at the critical temperature. Although this does not come unexpected for a scale
invariant, critical system, this behavior could be a relict of our perturbative treat-
ment of the propagator for small momenta, where this is not necessarily a valid
assumption. Further improvement of the truncation and iterative solution of the
flow equation will shed light on the reliability of this finding, but is beyond the
scope of the present work.

5.2 Unitary Fermi Gas

In this section we compute the critical temperature and the superfluid gap of the
spin-balanced UFG. The focus is on quantitative precision and the comparison of
different truncation and regularization schemes.

5.2.1 Mean field analysis

The simplest truncation capturing the superfluid phase transition for all values
of the scattering length consists in mean field theory. The latter is built on a
saddle-point approximation to the effective action. We first review the mean
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field predictions for the zero temperature gap ∆/µ and the critical temperature
Tc/µ. Then we discuss how the mean field approximation is recovered in an FRG
framework by taking into account fermionic diagrams (F), but neglecting bosonic
fluctuations.

From a saddle-point expansion of the effective action we obtain the effective
potential in mean field approximation

U(∆2, µ, T ) = − ∆2

λψ,Λ
−
∫ Λ

Q
log
(
q2

0 + (q2 − µ)2 + ∆2
)
. (5.92)

The UV-divergent integral is regularized by means of a sharp momentum cutoff
enforcing q2 ≤ Λ2. We impose the vacuum renormalization condition

− 1

λψ

!
=

∂U

∂∆2
(0, 0, 0) = − 1

λψ,Λ
− 1

2

∫ Λ d3q

(2π)3

1

q2
, (5.93)

where λψ = 4π~2a/M = 8πa is related to the fermion scattering length, see Sec.
5.3.1 for a discussion of the vacuum renormalization procedure. The renormalized
gap equation at zero temperature reads

0 =
∂U

∂∆2
(∆2

0, µ, 0) = − 1

λψ
−
∫ Λ

Q

1

q2
0 + (q2 − µ)2 + ∆2

0

+
1

2

∫ Λ d3q

(2π)3

1

q2

= − 1

λψ
− 1

4π2

∫ ∞
0

dq
( q2√

(q2 − µ)2 + ∆2
0

− 1
)
. (5.94)

The integral is UV finite and we can send Λ→∞.
For µ > 0, we can rewrite the gap equation (5.94) in the dimensionless form

π

2µ1/2a
= f

(∆0

µ

)
(5.95)

with

f(y) = −
∫ ∞

0
dx
( x2√

(x2 − 1)2 + y2
− 1
)
. (5.96)

The BCS-formula for an exponentially small gap is obtained from f(y)→ log(e2y/8)
for y → 0. We then find

∆BCS

µ
=

8

e2
exp
( π

2µ1/2a

)
. (5.97)

However, this asymptotic formula cannot be applied to the unitary Fermi gas
with a−1 = 0. In this case, the BCS-formula results in ∆0/µ = 1.083, whereas
the correct solution to the gap equation (5.95) is given by

∆0/µ = 1.162 for a−1 = 0. (5.98)
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The gap vanishes at the critical temperature and thus we have

0 =
∂U

∂∆2
(0, µ, Tc) = − 1

λψ
− 1

2π2

∫ ∞
0

dq

[
q2

|q2 − µ|
(1

2
− 1

e|q2−µ|/Tc + 1

)
− 1

2

)]
.

(5.99)

This can be cast into the form

π

2µ1/2a
= g
(Tc

µ

)
, (5.100)

where

g(y) = −
∫ ∞

0
dx

[
x2

|x2 − 1|
(

1− 2

e|x2−1|/y + 1

)
− 1

]
. (5.101)

For small critical temperatures we can apply g(y) → log(πe2y/8eγ) for y → 0 to
obtain the BCS-formula

Tc,BCS

µ
=

8eγ

πe2
exp
( π

2µ1/2a

)
. (5.102)

An extrapolation of this asymptotic formula to the unitary point yields Tc/µ =
0.6138. In contrast, the solution to Eq. (5.100) is given by

Tc/µ = 0.6646 for a−1 = 0. (5.103)

The mean field prediction for the ratio ∆/Tc for the Unitary Fermi gas is thus
given by ∆/Tc = 1.75.

We now turn to the FRG analysis. In the mean field limit, there is no feedback
of bosonic fluctuations onto the flow of running couplings. Therefore, neither
the inverse boson propagator Pφ(Q), nor the boson regulator Rφ(Q) appear in
the loop integrals. Hence, the mean field limit is a good testbed for benchmark-
ing the implementation of the fermionic diagrams. The set of running couplings
consists of the boson anomalous dimension ηφ = −k∂k logAφ and the effective
potential Uk(ρ). The inverse fermion propagator remains in its initial shape given
by Pψ(Q) = iq0 + q2 − µ.

Considering only fermion diagrams, the n-th derivative of the flow equation for
the effective average potential is given by

∂kŪ
(n)
k (ρ̄) = −n!(−h̄2)n

∫
Q

LQψ∂kR
−Q
ψ + L−Qψ ∂kR

Q
ψ

(LQψL
−Q
ψ + h2ρ)n+1

, (5.104)

with LQψ = Pψ(Q) + Rψ(Q). The flow of ūn = Ū (n)(ρ̄0) receives an additional
contribution proportional to ∂kρ̄0. The flow of the n-th expansion coefficient of
the effective potential is thus given by

∂kūn = ∂kŪ
(n)
k (ρ̄0) + ūn+1∂kρ̄0 (5.105)
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for n ≥ 2. We emphasize that only due to the second term there is a feedback
of the higher couplings u3, u4, . . . onto the remaining couplings. This observation
has also been made by Strack et al. [2008]. The flow equations for ρ̄0 and Aφ are
given in Sec. 4.2.2.

In an FRG treatment, no precondensation appears on the mean field level for
the spin-balanced system. Therefore, the symmetric phase is accessible from the
symmetric regime of the flow, where ρ0,k = 0. In particular, the flow equation
for the effective potential is given by the F-diagram with microscopic fermion
propagator iq0 + q2 − µ. We then find in the symmetric regime

˙̄U ′k(0) = h̄2

∫
Q

LQψ Ṙ
−Q
ψ + L−Qψ ṘQψ

(LQψL
−Q
ψ )2

= −∂th̄2
Λ

∫
Q

1

LQψL
−Q
ψ

, (5.106)

since h̄2
k = h̄2

Λ and the only k-dependence of LQψ = iq0 + q2 − µ+ RQψ arises from
the regulator. Eq. (5.106) can readily be integrated to yield

1

h̄2
Λ

[
Ū ′(0, µ, T )− Ū ′Λ(0)

]
= −

∫
Q

(
1

q2
0 + (q2 − µ)2

− 1

|iq0 + q2 − µ+Rψ,Λ(Q)|2

)
.

(5.107)

We used that Rψ,k=0(Q) = 0. The regularization of the UV divergent integral is
performed by means of the regulator Rψ,Λ(Q), which vanishes for q0, q

2 ≥ Λ2 and
thus gives finite support to the integration. We have

Ū ′Λ(0) = m̄2
φ,Λ = − h̄2

Λ

λψ,Λ
. (5.108)

Accordingly, we reproduce the gap equation (5.99) for T = Tc and Ū ′(0, µ, Tc) = 0.
Therefore, the critical temperature found from the flow equation in the mean field
limit trivially coincides with the standard mean field result.

In order to reproduce the gap equation (5.94) we have to include higher orders
terms un (n ≥ 3) in the effective potential. The mean field zero temperature gap
∆/µ = 1.162 provides a benchmark for testing the regulator and truncation de-
pendence of the fermionic contributions to the flow. We find that the quantitative
difference between a φ4- and a φ8-truncation is at the 10 percent level. By further
extending to a φ2N -expansion, the results converge quickly to the expected value.
We summarize our findings in Table 5.1.

Due to the absence of a precondensation regime in the mean field treatment,
the critical temperature Tc/µ at the mean field level is not affected by terms
proportional to ∂kρ̄0. Indeed, whenever ρ0,k > 0 for some k, we also have ρ0,k=0 >
0. Accordingly, the correct value is already found in a φ2-truncation, because the
condition m2

φ = 0 can be satisfied independently of λφ at the mean field level.

Higher orders in a φ2N -expansion of the effective potential influence the critical
temperature once bosonic diagrams are included in the RG flow.
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∆/µ Tc/µ

Truncation q2-opt Q-exp q2-opt Q-exp

F, φ4 1.045 1.056 0.665 0.664
F, φ8 1.133 1.141 0.665 0.664
F, φ12 1.154 1.157 0.665 0.664
F, φ16 1.160 1.160 0.665 0.664
F, φ20 1.162 1.161 0.665 0.664
F, φ24 1.162 1.161 0.665 0.664

Mean field 1.162 0.6646

Table 5.1: Critical temperature and superfluid gap obtained from the inclusion
of fermionic diagrams (F). When including higher order terms in the
effective potential, we recover the mean field result for both types of
regulators considered in this work. In particular, a φ8-truncation al-
ready yields a good approximation to the exact result. The value of
Tc/µ is unaffected by this change in truncation, as is discussed in the
main text.

5.2.2 Bosonic fluctuations

The boson dynamics emerge in the crossover due to the F-diagram containing two
fermion lines. Once built up, the boson propagator has an important impact on
the flow of running couplings due to diagrams containing two bosonic lines (B).
These bosonic fluctuations are particularly important for an accurate description
of the superfluid phase transition. We find here that the effect of B-diagrams is
most prominent on the value of the critical temperature, whereas mixed diagrams
change the latter only moderately.

The truncation FB0 has been studied in previous works by means of the opti-
mized momentum q2-opt regulator (Diehl et al. [2007b], Floerchinger et al. [2008],
Diehl et al. [2010a]). Here we aim at comparing these results to the application
of a Q-exp regulator. Moreover, we include the Vφq

2
0-term, which has been left

out so far. We further increase the truncation of the effective potential in order
to estimate the effect of higher order bosonic scattering processes on physical ob-
servables. As previous studies mainly employed the q2-opt regulator with relative
cutoff scale cφ = 1, we choose this value here. Below we will discuss the relative
cutoff scale dependence for the Q-exp regulator in more detail. The results of our
investigation are summarized in Table 5.2.

By including bosonic fluctuations we observe the critical temperature to drop
dramatically as compared to its mean field value. This behavior is expected
as bosons generically tend to wash out the ordering and thus to decrease the
critical temperature. In this context, it is interesting to study the influence of
the emergent “relativistic” term Vφq

2
0 in the boson propagator. Whereas the

effect of including this running coupling is strong for the purely momentum q2-opt
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∆/µ Tc/µ

Truncation q2-opt Q-exp q2-opt Q-exp

FB0, φ4 1.09 1.244(5) 0.441 0.399(2)
FB0, φ8 1.13 1.227 0.424 0.380
FB0, φ10 1.16 - 0.427 0.394

FB, φ4 1.05 1.228(10) 0.405 0.389(2)
FB, φ8 1.23 1.240 - 0.380
FB, φ10 - - - 0.386

Table 5.2: Influence of the regularization scheme and higher orders in the effec-
tive potential when including bosonic diagrams (B), where B0 and B
correspond to a boson propagator without and with the term Vφq

2
0,

respectively. We observe that the scheme with a frequency and mo-
mentum cutoff is less sensitive to the inclusion of this term. The values
for this table have been obtained for cφ = 1. The errors in brackets
estimate the numerical error.

regulator, its effect is only moderate for a regulator which cuts off both frequencies
and momenta. This is an indication for the efficiency of the latter cutoff, which
incorporates the frequency behavior of the boson propagator already within a
simple truncation. In contrast, the q2-opt cutoff needs a higher resolution of the
nontrivial q0-dependence in order to obtain reliable results.

The superfluid gap comes out substantially larger for a Q-exp regulator. This
is also true when including higher terms in the effective potential, see also Fig.
5.12.

The effects of higher orders in a series expansion of the effective potential are
less conclusive as in the mean field case. We find a trend to decrease the critical
temperature by applying an order φ8-truncation, but this effect is almost cancelled
at order φ10. The critical temperature in the FB-truncation is particularly stable
with variations of a few percent.

When going to higher orders in the effective potential one eventually expects
the results to converge to a fixed value. Within our investigation, however, we
found that the series expansion of U(ρ) in powers of ρ − ρ0 breaks down during
the flow, indicating the nonanalytic shape of the effective potential. The latter is
well-known to be reproduced with the FRG, see e.g. Berges et al. [2002], Litim
et al. [2006]. Thus we cannot report on values beyond φ8 for the superfluid gap,
and φ10 for the critical temperature. This shortcoming may be resolved by an
expansion about a field value ρ > ρ0, or by incorporating the full function U(ρ)
on a grid of ρ-values.
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5.2 Unitary Fermi Gas

5.2.3 Renormalization of the fermion propagator

We now proceed by discussing the highest truncations employed in this section.
By including mixed diagrams (M) containing both a boson and a fermion line, we
can resolve renormalization effects on the fermion propagator and the Feshbach
coupling h2.

When applying a truncation with Vφ = 0 and a purely momentum cutoff (such
as the q2-opt regulator), the fermion propagator does not get renormalized in
vacuum. This property is due to the analytic structure of the regularized prop-
agators, which have both poles lying in the same half-plane for the M-diagrams.
Accordingly, the contour of the frequency integration can be closed in the other
half-plane, thereby yielding a vanishing beta function.

This simple behavior is spoiled by the application of the Q-exp regulator or
the inclusion of the Vφq

2
0-term. This is not problematic for the FB-truncations,

as an appropriate renormalization in vacuum removes the corresponding unphys-
ical flow. However, as we allow for a running of the fermion mass term m2

ψ,
the interpretation of the chemical potential µ̄, which enters the initial conditions
through

m2
ψΛ = CΛ2 − µ̄, (5.109)

is complicated. C = m̃2
ψ? is a bare renormalization constant fixed in vacuum. The

value of C only depends on the truncation and the regularization scheme.
In general, for the truncations FBM0 and FBM, we do not have µ̄ = µ, whereas

this is true for all other truncations discussed so far. To see this, we vary µ̄,
and check whether ∆(µ̄)/µ̄ or Tc(µ̄)/µ̄ are independent of µ̄. We then find a
logarithmic (µ̄/Λ2)-dependence of both observables when including M-diagrams.
However, we checked that the ratio ∆/Tc is indeed independent of µ̄. This shows
that the uncertainty in the ratios ∆/µ and Tc/µ dominantly results from the
inequality µ̄ 6= µ.

As is discussed in Sec. 4.1.4, for the FBM0- and FBM-truncations the initial
conditions only allow to interpret µ̄ = µ for a special choice of cφ within our
setting, which is c0 = 0.2454 ' 1/4. For cφ = c0, the observables ∆/µ̄ and Tc/µ̄
are independent of µ̄. Therefore, the values of Tc/µ and ∆/µ can only be read off
for this particular choice. Results for cφ = c0 are summarized in Table 5.3.

We emphasize that the renormalization group flow in the truncations with M-
diagrams is well-defined for every choice of cφ. However, it requires to determine
the function µ(µ̄, cφ), which is µ = µ̄ for cφ = c0. For other values of cφ, an
appropriate infrared renormalization condition has to relate the initial value µ̄ to
the physical chemical potential. The determination of this condition is postponed
to future work. Here we restrict ourselves to the simpler task of discussing the
physical point cφ = c0. An error estimate in the FBM-truncations, however, can
still be obtained by means of the subtraction prescription discussed in Sec. 5.2.5.

The ratio ∆/Tc can be computed consistently for every truncation. We display
our results in Fig. 5.11 and Table 5.4. Whereas the cφ-dependence is rather
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∆/µ

Truncation F FB0 FB FBM0 FBM

φ4 1.04 0.97 0.99 0.94 0.82
φ8 1.13 1.11 1.13 1.04 0.89

Tc/µ

Truncation F FB0 FB FBM0 FBM

φ4 0.664 0.381 0.381 0.385 0.383

Table 5.3: Critical temperature and superfluid gap for all truncations applied in
this work. By improving the truncation of the effective potential to
order φ8, the gap is increased by approximately 10 percent. This is
independent of the given truncation scheme. The values for this table
have been obtained for a Q-exp regulator and with cφ = c0, which also
allows to compare to truncations which include mixed diagrams (M)
with both fermionic and bosonic lines.

∆/Tc

Truncation FB0 FB FBM0 FBM

cφ = 1 3.1 3.2 2.5 2.4
cφ = c0 2.9 2.9 2.7 2.3

Table 5.4: Relative cutoff scale cφ-dependence of the ratio ∆/Tc for a Q-exp
regularization scheme. The values of the gap are obtained for a φ8-
truncation, whereas for the critical temperature we have chosen a φ4-
truncation of the effective potential. We observe a substantial lowering
when including mixed diagrams (M).

strong in a φ4-truncation, we find the φ8-truncation to flatten the curve for all
truncations. Moreover, there is a systematic increase of ∆/Tc when going to order
φ8. We find that all four curves in a φ8-truncation show a maximum in the interval
Ic = [0.2, 1]. It is a generic finding of our analysis that observables tend to have
minima or maxima within this interval. Accordingly, we can use the variation
within Ic for an error estimate. This procedure is applied below.

The fermion anomalous dimension ηψk receives strong corrections at the sym-
metry breaking scale k2 ' µ, where it becomes of order 0.2. For k → 0, it
eventually vanishes. The renormalization effects on the Feshbach coupling h2 are
found to be small.

5.2.4 Error estimates

Now we can estimate the errors of ∆/µ and Tc/µ within each individual trun-
cation. We estimate the errors from the variation with cφ shown in Figs. 5.11,
5.12, and 5.13. From the figures presented in this section it is apparent that
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Figure 5.11: Dependence of the ratio ∆/Tc on the choice of the relative cutoff scale
cφ. We employ the Q-exp regulator. Here and in Figs. 5.12 and 5.13,
we choose the following labelling of the curves: Solid lines correspond
to a φ8-truncation for computing the gap, whereas dashed lines give
the results for the gap in a φ4-truncation. The critical temperature
is always computed in a φ4-truncation. The colors correspond to
the truncations (from top to bottom) FB (red), FB0 (blue), FBM0

(green), and FBM (black). Upon including higher orders in the ef-
fective potential, the gap increases by 10 percent in all truncation
schemes. Figure taken from Boettcher et al. [2014c].

observables show pronounced features like minima or maxima inside the interval
cφ ∈ Ic = [0.2, 1]. It is therefore reasonable to concentrate on this interval to
estimate the error.

Our final results of the error analysis are summarized in Table 5.5, where we
apply the following notation:

• Mean field: F-truncation to order φ24

• Truncation 1: FB0-truncation to order φ8 (φ4) for ∆/µ (Tc/µ)

• Truncation 2: FB-truncation to order φ8 (φ4) for ∆/µ (Tc/µ)

• Truncation 3: FBM0-truncation to order φ8 (φ4) for ∆/µ (Tc/µ)

• Truncation 4: FBM-truncation to order φ8 (φ4) for ∆/µ (Tc/µ)

The running couplings associated to the truncations are listed at the end of Sec.
4.1.1.

For the FB0- and FB-truncations, the cφ-dependence of the superfluid gap is
small within the φ8-truncation. Moreover, the improvement φ4 → φ8 in the
effective potential seems to equilibrate the values, since the value at cφ = 1 remains
almost unchanged, whereas the values for smaller cφ are increased. We choose the
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Observable Tc/µ ∆/µ ∆/Tc

Mean field 0.664 1.16 1.75

Truncation 1 0.38(2) 1.17(6) 2.9(2)
Truncation 2 0.376(14) 1.18(6) 3.0(2)
Truncation 3 0.385(20) 1.04(5) 2.6(1)
Truncation 4 0.38(2) 0.89(5) 2.4(1)

Best estimate 0.38(2) 1.04(15) 2.7(3)

Table 5.5: Critical temperature and superfluid gap of the Unitary Fermi Gas ob-
tained by successivley extending the truncation of the effective average
action. The truncations with a smaller number are contained in the
ones with a larger number. The particular choices of running couplings
for each truncation are explained at the beginning of Sec. 5.2.4. The
error in brackets gives the systematic error within the given trunca-
tion. The errors of Tc/µ and ∆/µ in truncations 3 and 4 result from
an uncertainty in the chemical potential µ.

central value in the interval Ic and find ∆/µ = 1.17(6) and ∆/µ = 1.18(6) for the
FB0- and FB-truncations, respectively. The error is given by the distance from
the minimum and maximum inside the interval Ic. In the same fashion we find
Tc/µ = 0.38(2) and Tc/µ = 0.376(14) for FB0 and FB, respectively. Applying
this procedure to the ratio ∆/Tc in Fig. 5.11, we find ∆/Tc = 2.9(2) and 3.0(2),
respectively. The relative error of all observables is thus consistently given by 5
percent.

Estimating the error within the FBM0- and FBM-truncations is complicated
by the fact that µ̄ 6= µ for cφ 6= c0. We therefore choose the physical point c0

to obtain our central values for ∆/µ and Tc/µ. These values are given in Table
5.5. A good estimate of the relative error can be obtained from ∆/Tc, which is
independent of µ̄. To estimate the error we apply the procedure described in Sec.
5.2.5 below.

We find ∆/Tc = 2.6(1) for the FBM0-truncation, which corresponds to a 4
percent error. Averaging ∆/µ which is obtained by means of the ηµ-subtraction
procedure of Eq. (5.111) over the interval Ic yields 1.04(3). This coincides with
the central value. Given the fact that ∆/Tc is indeed very flat as a function of cφ,
we conclude that ∆/µ = 1.04(5) is a reasonable error estimate.

The dotted curve in Fig. 5.13 gives the error estimate of Tc/µ when subtracting
the anomalous running of the chemical potential in the FBM0-truncation. The
rather strong dependence on cφ (when compared to the cφ-dependence of ∆/Tc

and ∆/µ) can be explained by the fact that the subtraction procedure in Eq.
(5.111) strongly influences the flow at k2 ' µ. As this is precisely the scale where
precondensation occurs and decides over the value of Tc, the critical temperature is
strongly affected by Eq. (5.111). Hence, the error estimate also contains unphysi-
cal contributions and should not be extrapolated too far into the region where ηµ
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Figure 5.12: Relative cutoff scale dependence of the superfluid gap ∆/µ. Colors
are as in Fig. 5.11, and solid (dashed) lines correspond to a φ8-
(φ4-) truncation. The FB0- and FB-truncations become much more
stable when including higher terms in the effective potential. For an
error estimate we show the FBM0-truncation where we subtracted
the anomalous running of the chemical potential according to Eq.
(5.111). This corresponds to the dotted (dotdashed) curve for a φ8-
(φ4-) truncation. We emphasize that the latter two curves are applied
here only for estimating the error. Figure taken from Boettcher et al.
[2014c].

is large. A reasonable error estimate is thus again found to be Tc/µ = 0.385(20).
This is also in harmony with the relative variation of ∆/Tc in dependence of cφ.

Finally, for the FBM-truncation we find within the interval Ic that ∆/Tc =
2.4(1). The insensitivity of this result with respect to cφ is similar to the FBM0-
truncation. Since both truncations are similar to each other, we assume a 5 percent
error within the FBM-truncation just like for the FBM0-case. The central values
are taken at cφ = c0. We then arrive at ∆/µ = 0.89(5) and Tc/µ = 0.38(2).

Our best estimates for ∆/Tc and ∆/µ are obtained as the central value within
the 4 truncations, with the error being given by the distance to the maximum
(minimum). This yields ∆/µ = 1.04(15) and ∆/Tc = 2.7(3). For the critical tem-
perature we obtain 0.381(6) with this procedure of averaging. However, this un-
derestimates the error of the individual truncations, so we choose Tc/µ = 0.38(2)
which is valid in all four truncations.

In Tables VI and VII we display reference values on Tc/µ and ∆/µ from other
theoretical approaches, and from experiment. The stability of our result Tc/µ =
0.38(2) within all truncations considered in this work indicates the efficiency of
the Q-exp regulator. In particular, we found a strong decrease of the critical
temperature in comparison to previous FRG calculations with the q2-regulator,
which places our calculation in the range Tc/µ = 0.3− 0.4 of the reference values.
A missing key feature in our approach is the particle-hole channel. However,
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Figure 5.13: Relative cutoff scale dependence of the critical temperature Tc/µ for
the FB0- (upper curve) and FB-truncation (middle curve). The crit-
ical temperatures shown here have been obtained in a φ4-truncation.
The dotted curve gives the error estimate for the FBM0-truncation
according to the subtraction of the anomalous running of the chem-
ical potential in Eq. (5.111). Figure taken from Boettcher et al.
[2014c].

from previous studies by Floerchinger et al. [2008], we expect its effect to be
small at unitarity due to the less pronounced Fermi surface. For the superfluid
gap we obtain ∆/µ = 1.04(15), which is smaller than all of the reference values.
In particular, by improving the truncation due to the inclusion of the running
fermion propagator, we do not find a convergence of results, in contrast to the
critical temperature. Thus, the limit T = 0 requires additional running couplings,
which are less important at criticality. We expect the inclusion of the full effective
potential U(ρ) to significantly improve our results at zero temperature.

5.2.5 Estimated effective chemical potential

In the presence of mixed diagrams, the nontrivial running of the fermion prop-
agator in the symmetric regime spoils the interpretation of µ̄ as the chemical
potential. Due to the presence of the relevant initial perturbation ∆m2

ψΛ =

m2
ψΛ − CΛ2 = −µ̄, all beta functions of the remaining running couplings scale

linear in ∆m̃2
ψk = ∆m2

ψk/k
2 for large k. However, the latter acquires an (un-

physical) anomalous running due to the presence of the regulator function. We
have

∂tm̃
2
ψ(µ̄, cφ) = 0−

(
2 + ηµ(cφ)

)(
− µ̄

k2

)
+ . . . (5.110)

for large k. The leading term vanishes due to the fixing of the initial conditions at
the vacuum fixed point, where ∂tm̃

2
ψ(µ̄ = 0) = 0. The anomalous dimension ηµ of

the term linear in −µ̄/k2 leads to a nontrivial running of the supposed “chemical
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5.2 Unitary Fermi Gas

Tc/εF µc/εF Tc/µ

BBurovski et al. [2006] (DDMC) 0.152(7) 0.493(14) 0.308
Haussmann et al. [2007] (LW) 0.160 0.394 0.406

Bulgac et al. [2008] (QMC) 0.15(1) 0.43(1) 0.35
Nascimbène et al. [2010] (Exp) 0.157(15) 0.49(2) 0.32(3)
Horikoshi et al. [2010] (Exp) 0.17(1) 0.43(1) 0.40

Goulko and Wingate [2010] (DDMC) 0.171(5) 0.429(9) 0.399
Floerchinger et al. [2010] (FRG) 0.248 0.55 0.45

Ku et al. [2012] (Exp) 0.167(13) 0.42* 0.40

This work - - 0.38(2)

Table 5.6: Reference values for the critical temperature Tc/µ from different theo-
retical and experimental works. The abbreviations correspond to Dia-
grammatic determinant Monte Carlo (DDMC), Quantum Monte Carlo
(QMC), Self-consistent T-matrix approach or Luttinger-Ward formal-
ism (LW), and experiment (Exp). (*We estimated the critical chemical
potential of the MIT data (Ku et al. [2012]) by the maximal chemical
potential µmax/εF = 0.42(1) at T/εF = 0.171(10).)

Method ∆/εF µ/εF ∆/µ

Carlson et al. [2003] (QMC) 0.55(5) 0.44(1) 1.3
Carlson and Reddy [2005] (QMC) 0.50(5) 0.42(1) 1.2

Haussmann et al. [2007] (LW) 0.46 0.36 1.3
Carlson and Reddy [2008] 0.45(5) - -

Bulgac et al. [2008] (QMC) - 0.37(5) -
Schirotzek et al. [2008](Exp) 0.44(3) - -
Bartosch et al. [2009] (FRG) 0.61 0.32 1.9

Floerchinger et al. [2010](FRG) 0.46 0.51 0.90
Carlson et al. [2011] (QMC) - 0.372(5) -

Ku et al. [2012] (Exp) - 0.376(4) -
Zürn et al. [2013] (Exp) - 0.370(5)(8) -

This work - - 1.04(15)

Table 5.7: Reference values for the superfluid gap ∆/µ at T = 0. The abbre-
viations are as in Table 5.6. The values by Carlson and Reddy [2008]
have been extracted from measured density distributions from partially
spin-polarized trapped atoms. The overall trend of the Monte Carlo
and experimental data indicates a preferred value ∆/µ ' 1.2 − 1.3.
The Bertsch parameter µ/εF from Zürn et al. [2013] is based on the
one measured by Ku et al. [2012] with an improved determination of
the location of the 6Li Feshbach resonance.
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5 Three-dimensional BCS-BEC Crossover

potential” with k. Consequently, µ̄ 6= µ. For cφ = c0 we have ηµ(c0) = 0, such
that the problem does not arise in this case. The value of ηµ can be extracted from
the flow equation of the fermion mass term at t = 0. It is given by ηµ(1) = 0.21892
for cφ = 1, decreasing for smaller values of cφ. The value of ηµ also depends on
the truncation and receives small corrections in a φ8-truncation.

To estimate the influence of the anomalous running induced by ηµ, we can
subtract the corresponding contribution to the flow equation by hand. This is
not a self-consistent procedure and serves here only for an error estimate. For
this purpose, we replace the flow equation for the running fermion mass term
according to

∂tm̃
2
ψ(µ̄, cφ)→ ∂tm̃

2
ψ(µ̄, cφ)− ηµ(cφ)f

( µ̄
k2

)
, (5.111)

where f(x) is chosen such that f(x) = x for x� 1 and f(x) = 0 for x� 1. This
choice of f(x) removes the anomalous running for large k, whereas we leave the
flow equation unchanged for small k as soon as higher powers of µ̄/k2 become
relevant. The leading contribution is then given by these higher terms, which are
well-behaved. We employ f(x) = x/(e(x−1)/0.1 + 1) for the following analysis, but
the precise form of f(x) is not important. In fact, also f(x) = x gives almost the
same values for ∆/µ and Tc/µ within the purpose of this error estimate.

The subtraction in Eq. (5.111) could also be elaborated to a systematic renor-
malization of the field with anomalous dimension ηψ = O(µ̄/k2). Since the value
of ηµ can be inferred from the flow at t = 0 (or the flow of ∂m2

ψ/∂µ in vacuum),
it is fixed a priori by the truncation and regularization scheme.

With the ηµ-subtraction (5.111), we find that the observables Tc/µ and ∆/µ
are indeed independent of µ̄ for all cφ. Moreover, the qualitative running of
couplings compared to their vacuum values, gk − gvac = O(µ̃), is similar to the
well-understood case of cφ = c0.

It is instructive to study the behavior of

∆m2
ψk = m2

ψk −m2
ψ,vac = O(µ/k2) (5.112)

within the subtracted scheme just described. (Or, equivalently, for the physical
point cφ = c0 without the subtraction.) Herein, m2

ψ,vac = m̃2
ψ?k

2 only shows a

canonical running fixed in vacuum. For large k we have ∆m2
ψ,k ' −µ. As k

is lowered towards the many-body scales given by µ and T , the absolute value
of |∆m2

ψ,k| = µeff increases, thereby yielding an effectively enhanced chemical
potential appearing in the denominator of the fermionic propagator. We find the
enhancement µeff/µ to be of order 50 %. We show the behavior of ∆m2

ψ in Fig.
5.14.

Closing the Q-loop over Gψ(Q) = (iq0 +q2−µeff)−1 yields a larger value ∼ µ3/2
eff

when compared to the loop over the microscopic propagator (iq0 + q2 − µ)−1.
As a result, the density of the system (which is related to this loop-integral) is
enhanced. This increase of the density due to many-body effects is well-known for
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Figure 5.14: Running of ∆m2
ψ = m2

ψ − m2
ψ,vac in units of the initial chemical

potential µ. The constant line (green) at the top corresponds to a
truncation without running of m2

ψ, and hence ∆m2
ψ = −µ for all k.

The remaining curves from top to bottom correspond to cφ = 1 in
the ηµ-subtracted scheme of Eq. (5.111) (blue, solid), cφ = c0 (red),
and cφ = 1 without the ηµ-subtraction (blue, dashed). Clearly, the
anomalous running for large k screens the physical effects in the latter
case. For cφ = c0 we see that renormalization effects on ∆m2

ψ only

show up at the many-body scales k2 ' µ, and result in an effective
chemical potential µeff/µ ' 1.5. Figure taken from Boettcher et al.
[2014c].

the UFG and can be attributed to the Tan effect, see Sec. 5.1. Hence we found
evidence that the running of m2

ψ within our truncation correctly incorporates this
effect on the density.

5.3 Spin-imbalance

A particularly interesting question for understanding fermion pairing concerns
the stability of superfluidity in the presence of mismatching Fermi surfaces. Such
an asymmetry between the pairing partners is realized in electronic materials in
an external magnetic field (Clogston [1962], Chandrasekhar [1962], Sarma [1963],
Fulde and Ferrell [1964], Larkin and Ovchinnikov [1964]), or is expected to be
found in neutron stars (Lombardo and Schulze [2001], Dean and Hjorth-Jensen
[2003], Alford et al. [2008], Page et al. [2013], Gezerlis et al. [2014], Krüger et al.
[2014]).

With ultracold atoms this situation can easily be simulated by introducing a
population imbalance between different hyperfine states. In a microscopic model
this manifests itself in a difference in chemical potentials. Hereafter, µ1 and µ2

denote the chemical potentials of atoms in hyperfine state |1〉 and |2〉, respectively.
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5 Three-dimensional BCS-BEC Crossover

We

assume the |1〉-atoms to be the majority species, i.e. µ1 ≥ µ2. In the following
we study the spin-imbalanced system with mean field theory and with the FRG.

While the ground state of the spin-balanced UFG (µ1 = µ2 > 0) is widely
believed to be a homogeneous superfluid, the phase structure in the imbalanced
situation is less clear. Given µ1 > 0 the density of minority atoms vanishes
for µ2 . −0.6µ1 (Lobo et al. [2006], Chevy [2006], Bulgac and Forbes [2007],
Prokof’ev and Svistunov [2008], Pilati and Giorgini [2008], Schmidt and Enss
[2011]). This is the so-called polaron energy. As a consequence superfluidity
has to break down at a finite critical value of the spin-imbalance. For a BCS
superfluid this already happens for an exponentially small mismatch of Fermi
surfaces (Clogston [1962], Chandrasekhar [1962]). However, since the UFG has
less pronounced Fermi surfaces, it might still be favourable to compensate the
mismatch due to the gain from pairing energy. We find below that within our
approximation superfluidity at zero temperature persists down to µ2 ' 0.09µ1,
where it vanishes in a first order phase transition.

Allowing for a finite scattering length, our FRG analysis not only allows to study
the phase structure of the spin-imbalanced UFG, but rather the whole BCS-BEC
crossover. We are here particularly interested in the quantum phase structure,
i.e. the zero temperature case. On the so far largely unexplored BEC-side of
the crossover we find a quantum critical point (QCP) where the breakdown of
superfluidity changes from first to second order. The location of the QCP deviates
from the mean field prediction.

Besides the breakdown of superfluidity, the existence of exotic phases has been
conjectured for the spin-imbalanced BCS-BEC crossover. In the mean field ap-
proximation (Sheehy and Radzihovsky [2006], Gubbels et al. [2006], Parish et al.
[2007]), the homogeneous Sarma phase (Sarma [1963]) is unstable at zero temper-
ature on the BCS-side of the crossover. This scenario is found below to persist
upon inclusion of bosonic fluctuations. We find that the Sarma phase only appears
on the BEC-side of the crossover, its onset being shifted from the mean field pre-
diction. The Sarma phase, or special cases of it, is also referred to as interior gap
superfluid, breached pair phase, or magnetized superfluid in the literature (Liu
and Wilczek [2003], Wu and Yip [2003], Bedaque et al. [2003], Liu et al. [2004],
Carlson and Reddy [2005], Gubbels et al. [2006], Sheehy and Radzihovsky [2006],
Parish et al. [2007], Nikolić and Sachdev [2007], Parish et al. [2007], Gubbels
and Stoof [2008], Radzihovsky and Sheehy [2010], Gubbels and Stoof [2013]). It
consists of a homogeneous superfluid with gapless fermionic excitations.

Furthermore, inhomogeneous phases such as the ones studied by Fulde and
Ferrell [1964] and Larkin and Ovchinnikov [1964] represent competing orders to
the homogeneous superfluid. They have to be taken into account for a complete
study of the phase structure. Here we restrict the investigation to the stability
of homogeneous superfluid order. A competing effect from inhomogeneous order
is expected to show precursors in the renormalization group flow. One of those
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5.3 Spin-imbalance

is the vanishing of Aφ,k at some nonzero momentum scale k > 0, see e.g. Krahl
et al. [2009]. At this point, the truncation employed here becomes insufficient.
Since we do not detect signs of such a behaviour anywhere near the superfluid
phase, it seems reasonable to restrict ourselves to a homogeneous order parameter
∆0 6= ∆0(~x). A more detailed discussion of the appearance of inhomogeneous
order in the presence of spin- and mass-imbalance from an FRG perspective is
provided by Braun and Roscher [2014].

The FRG makes it possible to include the effect of bosonic fluctuations onto
the many-body state. Besides a large quantitative improvement, this analysis
is also mandatory for a solid understanding of the qualitative features of the
phase diagram. For instance, the feedback of fluctuations may change the order
of the phase transition compared to the mean field prediction. In addition, a
commonly encountered situation is the suppression of long-range order due to
long wavelength fluctuations. Moreover, the FRG is not plagued by the sign
problem, which hampers lattice simulations of spin-imbalanced fermions.

The grid code for the evolution of the effective potential employed in Secs. 5.3.2
and 5.3.3 has been developed by Dietrich Roscher and Tina Katharina Herbst,
which is highly appreciated here by the author.

5.3.1 Mean field analysis

We first study the mean field theory of the spin-imbalanced BCS-BEC crossover.
This allows for an introduction of most relevant concepts, and also constitutes
the starting point for an analysis including bosonic fluctuations. In an FRG
setup, mean field theory is recovered by keeping only the fermionic particle-particle
diagram on the right hand side of the flow equation.

Our analysis is built on the microscopic Lagrangian

L =
∑
σ=1,2

ψ∗σ

(
∂τ −∇2 − µσ

)
ψσ − h

(
φ∗ψ1ψ2 + h.c.

)
+ φ∗

(
∂τ −

∇2

2

)
φ+ νΛφ

∗φ .

(5.113)

The two species of fermions couple to chemical potentials µσ, which can be dif-
ferent in general. We write

µ1 = µ+ δµ, µ2 = µ− δµ , (5.114)

with spin-imbalance δµ = h̃ = (µ1−µ2)/2 ≥ 0. The quantity h̃ is also referred to
as Zeeman field.

Mean field theory is based on the one-loop formula or saddle-point approxi-
mation to the effective action, see Eq. (3.26). For a detailed derivation of the
effective potential for a BCS superfluid in mean field approximation by means of
a Hubbard–Stratonovich transformation we refer to Boettcher et al. [2012]. Mean
field theory can be applied to the whole BCS-BEC crossover when allowing for a
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5 Three-dimensional BCS-BEC Crossover

negative chemical potential. In the case of the spin-imbalanced system we obtain

U(∆2, µ, δµ, T ) = − ∆2

λψΛ
− 1

2

∫ Λ

Q
log

[(
q2

0 + (Eq + δµ)2
)(
q2

0 + (Eq − δµ)2
)]
,

(5.115)

where

Eq ± δµ =
√
ε2
q + ∆2 ± δµ. (5.116)

Here εq = q2−µ is the dispersion relation of fermionic quasiparticles. The integral∫ Λ

Q
= T

∑
n

∫
~q,q2≤Λ2

(5.117)

is defined with an upper boundary Λ. The chemical potential is given by

µ =

{
µmb (a−1 ≤ 0),

µmb − a−2 (a−1 > 0)
(5.118)

with bound state energy εB = −2a−2θ(a). For the numerical implementation it is
convenient to set µmb = 1. In the following we restrict to the zero temperature case
for simplicity, but the generalization to nonzero temperatures is straightforward.

We have mainly two goals: (i) Determine the minimum ∆0(µ, δµ) of the effective
potential, thereby obtain the mean field phase diagram. (ii) Compute the density
of the system by means of n = dP/dµ, where P (µ, δµ) = −U(∆0) is the pressure
of the system. For the first task we have to account for the possibility of first
order phase transitions for δµ > 0. Their appearance is well-known in the BCS
limit (Clogston [1962], Chandrasekhar [1962]), and this behavior will be found to
extend even into the BEC regime.

We study the breakdown of superfluidity by computing the condensation energy
density defined by

εcon(µ, δµ) = U(∆2
0, µ, δµ)− U(0, µ, δµ), (5.119)

where ∆0 = ∆0(µ, δµ) is the minimum of the effective potential. In the superfluid
phase we have ∆2

0 > 0 and εcon < 0, whereas we have ∆2
0 = 0 and εcon = 0 in

the normal phase. Coming from the superfluid phase we locate the transition at
εcon ↗ 0. At the critical point the condensation energy vanishes, and the gap ∆2

0

either vanishes continuously (second order phase transition) or discontinuously
(first order transition).

The minimum of the effective potential should be found from an unbiased global
analysis of the function U(∆2). From mean field studies of the BCS-BEC crossover
(Sheehy and Radzihovsky [2006], Parish et al. [2007]) we already know that ∆0 in
the superfluid phase can also be found from solving the gap equation U ′(∆2

0) = 0.
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Figure 5.15: The effective Hamiltonian for ultracold atoms assumes a pointlike
interaction. This is valid on the length scales we encounter in ex-
periments (k−1

F , a, λT , `osc). However, when calculating the effective
action in perturbation theory, we are confronted with divergences
when integrating over all momenta. These singularities arise because
of momenta q2 & Λ2. At these scales, the microscopic details of the
interatomic potential can be resolved and we cannot rely on a point-
like approximation. We cure the problem by observing that the true
coupling λ(q) is derived from a more realistic potential and falls off
smoothly in the UV. This cannot be described in the pointlike ap-
proximation, but is taken into account by introducing a sharp cutoff
at Λ. Figure taken from Boettcher et al. [2012]

Due to the simplicity of the approach, we concentrate on this method here. From
Eq. (5.115) we find

0
!

= U ′(∆2
0) = − 1

λψΛ
− 1

2

∫
Q

1

Eq

(
Eq + δµ

q2
0 + (Eq + δµ)2

+
Eq − δµ

q2
0 + (Eq − δµ)2

)

= − 1

λψΛ
− 1

2

∫ Λ

~q

θ(Eq − δµ)

Eq
. (5.120)

The integrand approaches unity for large q, and thus the integral diverges ∼ Λ.
This is related to an inappropriate treatment of the short distance details of the
atomic interactions, see Fig. 5.15 and the discussion in Boettcher et al. [2012].
We cure the divergence by a proper vacuum renormalization according to

− 1

λψΛ
= − 1

8πa
+

1

2

∫
~q

1

q2
, (a−1 ≤ 0), (5.121)

− 1

λψΛ
=

1

2

∫
~q

1

q2 + a−2
, (a−1 > 0). (5.122)
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Figure 5.16: Left: Mean field quantum phase diagram in grand canonical coordi-
nates, with µmb = µ−εB/2. Everything below the curve is superfluid,
whereas the region above the curve is in the normal phase. Right:
The same phase diagram, but with δµc scaled to |εB|/2 = a−2. We
see that the critical imbalance is on the order of the bound state
energy, and thus very large.

The renormalized gap equation then reads

0 = − 1

8πa
+

1

2

∫
~q

( 1

q2
− θ(Eq − δµ)

Eq

)
, (a−1 ≤ 0), (5.123)

0 =
1

2

∫
~q

( 1

q2 + a2
− θ(Eq − δµ)

Eq

)
, (a−1 > 0). (5.124)

The condensation energy is given by

εcon = U(∆2
0)− U(0)

= − ∆2
0

λψΛ
− 1

2

∫ Λ

Q
log
[(
q2

0 + (Eq + δµ)2
)(
q2

0 + (Eq − δµ)2
)]

+
1

2

∫ Λ

Q
log
[(
q2

0 + (|εq|+ δµ)2
)(
q2

0 + (|εq| − δµ)2
)]
. (5.125)

To evaluate the frequency integrals we employ∫ W

−W

dq0

2π
log(q2

0 + a2) = −2W

π
+
W

π
log(W 2 + a2) + |a| − 2a

π
arctan

( a
W

)
.

(5.126)

For W � |a| only the term |a| will be important for the rest. We then find

εcon = − ∆2
0

λψΛ
− 1

2

∫ Λ

~q

(
|Eq + δµ|+ |Eq − δµ| −

∣∣∣|εq|+ δµ
∣∣∣− ∣∣∣|εq| − δµ∣∣∣).

(5.127)
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Figure 5.17: Left: Critical gap ∆c at the phase transition border for T = 0.
For (

√
µmba)−1 = 4.193 the transition turns second order. At the

quantum critical point we find δµc/µmb = 21.56, (kFa)−1 = 2.367
and δµc/εF = 6.871. Right: Mean field quantum phase diagram in
terms of the Fermi momentum. The critical line δµc/εF shown here
gives the lower boundary, and it is separated via a forbidden region
from the normal phase.

For the proper renormalization of λψΛ we can either use the gap Eq. (5.120) or
the vacuum renormalization conditions in Eqs. (5.121) and (5.122). The corre-
sponding quantum phase diagram in grand canonical coordinates is shown in Fig.
5.16. The critical gap ∆c(a) at the superfluid phase transition is shown in Fig.
5.17 (left). We observe that ∆c = 0 for a−1 = 4.193, where the transition becomes
of second order. The corresponding quantum critical point is discussed below.

The density of particles, n = n1 + n2, is found from

n(µ, δµ) = −∂U
∂µ

(∆0) = −
∫ Λ

~q

εqθ(Eq − δµ)

Eq
. (5.128)

We again need to cure an unphysical divergence, see Boettcher et al. [2012], and
arrive at

n(µ, δµ) = 2

∫
~q

1

2

(
1− εqθ(Eq − δµ)

Eq

)
. (5.129)

From the density (equation of state) we can compute the quantum phase diagram
in canonical variables, Fig. 5.17 (right). The population imbalance, δn = n1−n2,
is given by

δn(µ, δµ) = − ∂U
∂δµ

(∆2
0) =

∫
~q
θ(δµ− Eq). (5.130)

We see that δn > 0 at zero temperature if and only if δµ > minq Eq. We call this
the Sarma criterion. In Sec. 5.3.3 we discuss the Sarma phase in more detail.
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Figure 5.18: Left: The Sarma phase is found from the intersection point δµc =
minq Eq =

√
µ2 + ∆2

0 on the BEC side (blue and orange curves, re-
spectively). We locate the onset point at (

√
µmba)−1 = 2.27. This

corresponds to (kFa)−1 = 1.01 and δµc/εF = 1.57. Right: Ratio of
the gap over the critical imbalance. We find ∆/δµc =

√
2 = 1.41 on

the BCS side, as is expected from BCS theory.

Note that, due to the possibility of a negative fermion chemical potential on the
BEC side of the crossover, we have

min
q
Eq =

{
∆0 (a ≤ 0)√
µ2 + ∆2

0 (a > 0).
(5.131)

Note also that
√
µ2 + ∆2

0 ' |µ| ' |εB|/2 far on the BEC side. The Sarma criterion
is plotted in Fig. 5.18.

The quantum critical point (QCP) on the BEC side, where the first and second
order phase boundaries meet, can be found from the solution of

0 = U ′(∆2 = 0, a, δµ) = U ′′(∆2 = 0, a, δµ). (5.132)

Herein a prime denotes a derivative with respect to ∆2. In order to solve these
equations it is useful to introduce a small nonzero temperature T > 0 and to solve
the equations

0 = U ′(0) = − 1

λψΛ
−
∫
~q

1

Eq

[
1−NF (Eq + δµ)−NF (Eq − δµ)

]
, (5.133)

0 = U ′′(0) =

∫
~q

1

2E2
q

[
1

Eq

(
1−NF (Eq + δµ)−NF (Eq − δµ)

)
+
(
N ′F (Eq + δµ) +N ′F (Eq − δµ)

)]
, (5.134)

with NF (z) = (ez/T + 1)−1 and Eq =
√

(q2 − µ)2 + ∆2 → |q2 − µ|. The second
contribution to U ′′(0) is particularly important. For the numerics we found it
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5.3 Spin-imbalance

convenient to set µmb = 1 and use T = 0.005. However, T ≤ 0.1 seems to be
sufficient. The vanishing of the critical gap can be seen in both Figs. 5.17 (left) and
5.18 (right). The QCP has coordinates (

√
µmba)−1

c = 4.193 , δµc/µmb = 21.56,
(kFa)−1

c = 2.367 and δµc/εF = 6.871.

5.3.2 Phase structure

We now discuss the phase structure of the system as obtained with the FRG in the
FB0-truncation with Sφ = 1 and grid-evolved effective potential. In particular,
we show results computed with the symmetric choice of fermionic regulators,

Rψσ(q2) ≡ Rψ(q2) =
[
sgn(q2 − µ)k2 − (q2 − µ)

]
θ
(
k2 − |q2 − µ|

)
, (5.135)

where µ = (µ1 + µ2)/2. As we demonstrate in Fig. 5.20, these results agree very
well with the ones obtained using the asymmetric scheme given by

Rψσ(q2) =
[
sgn(q2 − µσ)k2 − (q2 − µσ)

]
θ
(
k2 − |q2 − µσ|

)
, (5.136)

but are numerically more stable due to the analytical expressions for the beta
functions. We do not consider the possibility for inhomogeneous superfluid states
in our analysis, see Braun and Roscher [2014] for a discussion with the FRG.

Phase diagram

The phase diagram of the spin-imbalanced UFG beyond mean field theory is shown
in Fig. 5.19. The overall phase structure is qualitatively similar to the mean field
result, see Fig. 5.25 for a direct comparison. However, the critical temperature
is reduced drastically when fluctuations are included. In the balanced limit we
find a second order phase transition with Tc/µ = 0.40 . This is in good agreement
with recent measurements (Ku et al. [2012]) and consistent with the calculations
based on a Taylor expansion of the effective potential presented in Secs. 5.2.2 and
6.1.2.

As the spin-imbalance is increased, the transition changes from second to first
order in a tricritical point located at (δµCP/µ, TCP/µ) = (0.76, 0.20) . Below this
point we find a first order transition line, which appears to extend down to T ≈
0 (red, solid line). From an extrapolation of the transition line computed for
T ≥ 0.01, we deduce a first order phase transition for δµc/µ = 0.83 at vanishing
temperature. This is in reasonable agreement with the recent experimental finding
of a first order transition at δµc/µ = 0.89 (Navon et al. [2013]).

The critical imbalance at zero temperature lies above the mean field value
(δµMFA

c /µ = 0.807). This is an interesting observation since usually bosonic fluc-
tuations tend to destroy ordering. In this case, however, the latter influence the

running of the Feshbach coupling h2 via η
(B)
φ , which is then fed back into U̇ (F ).

In this way, for large enough δµ and low enough T , the nontrivial minimum of
Uk is stabilized rather than washed out. This illustrates how the competition
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Figure 5.19: Phase diagram of the spin-imbalanced UFG beyond mean field the-
ory. The phase boundaries are obtained from the FRG evolution
of the effective potential including the feedback of bosonic fluctua-
tions. The critical temperature of the balanced system is found to
be Tc/µ = 0.40. For small δµ/µ we find a second order phase tran-
sition with a reduced critical temperature. For low temperatures,
spin-imbalance results in a breakdown of superfluidity by means of
a first order phase transition. We extract δµc/µ = 0.83 for the criti-
cal imbalance at zero temperature. The second order line terminates
in a tricritical point (CP). We indicate the Sarma crossover by the
green, dash-dotted line. The region between the precondensation
line (black, dotted) and the phase boundary gives an estimate for
the pseudogap region as is explained in the main text.

of fermionic and bosonic contributions results in nontrivial effects on the phase
structure of the system.

Note that it is numerically impossible to calculate observables at exactly k = 0 .
However, the flow usually freezes out at a finite scale below the relevant many-
body scales present in the theory. In order to reliably extract the phase structure
we may hence stop the integration of the flow equation at any sufficiently small k
such that ∆0,k ' ∆0,k=0 is frozen out. Especially in the first order region at low
temperatures T/µ . 0.15, the complexity of the flow equation makes it harder
to reach the deep infrared. Due to accumulating numerical errors, the flow needs
to be stopped at relatively high k < 1 . This entails that a sufficient convergence
of ∆0,k inside the superfluid phase might not be achieved yet. However, we will
argue in Sec. 5.3.2 below that the position of the first order phase transition is not
affected by this and can still be determined accurately. A conservative estimate
of the domain where the IR scale is modified is indicated by the gray band in
Fig. 5.19.

We find the result for the phase boundary to differ by less than 5% for the
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Figure 5.20: Regularization scheme dependence of the phase boundary. We dis-
play the phase diagram obtained by applying the fermion regulator
Rψσ from Eqs. (5.135) (“Reg. 1”) and (5.136) (“Reg. 2”). Figure
taken from Boettcher et al. [2014a].

two choices of fermion regulators in Eqs. (5.135) and (5.136), respectively. We
compare both phase diagrams in Fig. 5.20. A more detailed discussion is provided
in Boettcher et al. [2014a]. The insensitivity of the critical line to the regulariza-
tion scheme indicates the stability of our predictions within the given truncation
scheme for the effective average action. We also note here that the second order
line for the transition is quantitatively only insufficiently resolved by a Taylor
expansion of the effective potential Uk(ρ) to order φ4. The discrepancy increases
for larger spin-imbalance, see Fig. 5.21.

Scale evolution and precondensation

In Fig. 5.22 we show the scale evolution of the minimum of the effective average
potential as a function of the RG-scale k for fixed T/µ = 0.17 and two different
spin-imbalances, δµSF = 0.78µ and δµNF = 0.79µ . For large k the running of
couplings is attracted to an ultraviolet fixed point. This scaling regime is left when
k becomes of the order of the many-body scales. For low enough temperatures
local symmetry breaking occurs at k2 ' µ, associated to a nonzero minimum of
the effective potential, ∆0,k > 0 . Competing bosonic and fermionic fluctuations
then determine whether the non-vanishing gap remains (red, solid line) or vanishes
(green, dotted line) in the infrared (IR) for k → 0.

The two values of δµ shown in Fig. 5.22 are chosen such that they lie on opposite
sides of the first order phase boundary. In both cases a non-vanishing gap, ∆0,k >
0 , is generated during the flow at tsb. Only for δµ = δµSF it persists for t→ −∞,
leading to superfluidity (SF) and symmetry breaking in the IR. For δµ = δµNF

instead, ∆0,k jumps back to zero at the finite scale tsr = −7.69 below which the
symmetry remains restored such that one finds a normal fluid (NF). In both cases,
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Figure 5.21: By Taylor expanding the effective average action Uk(ρ) to order φ4

(red dotted line) in the flow equation, the location of the second order
line deviates quantitatively from the grid solution (blue dashed line)
as we increase δµ/µ. Figure taken from Boettcher et al. [2014a].

the effective potential at intermediate k exhibits two minima (inset C), but for
δµNF the non-trivial one is raised above Uk(ρ = 0) and disappears (inset D) during
the flow.

The appearance of a nonzero ∆0,k in a limited range tsr < t < tsb is called
precondensation, see e.g. Boettcher et al. [2012]. It can be interpreted as the for-
mation of pairs and local phase coherence, although long-range order is destroyed
due to fluctuations. The associated coherence length can be estimated by k−1

sr .
In Fig. 5.19 the precondensation region is enclosed by the black, dotted line and
the phase boundary. The phenomenon of precondensation is closely related to
pseudogap physics. This close relation between both effects can be understood by
the observation that we can estimate the momentum dependence of the fermion
spectrum by setting k ' q in the fermion propagator. We then obtain the fermion
dispersion relation Eq ' [(q2 − µ)2 + ∆2

0,q]
1/2. For ∆0,

√
µ > 0 this spectrum dis-

plays a gap at the Fermi surface (q2 ' µ), although the system is not superfluid
due to ρ0,k=0 = 0.

For vanishing or small spin-imbalance, ∆0,k approaches zero continuously in
the precondensation region, see e.g. Fig. 28 in Boettcher et al. [2012]. For
configurations with large δµ/µ and low T/µ as in Fig. 5.22, a jump of ∆0,k can be
observed instead. This behaviour is only possible in the vicinity of a first order
phase transition. It is generated by a second, non-trivial local minimum of the
effective potential which is raised above Uk(ρ = 0) during the flow (cf. insets C
and D). An interesting consequence is that this type of precondensation is not
necessarily induced by order parameter fluctuations alone. Even in mean field
theory, where the latter are absent, we find a pseudogap regime for large δµ/µ,
see Fig. 1 in Boettcher et al. [2014a].
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Figure 5.22: Scale evolution of the minimum ∆0,k of the effective average potential
close to a first order phase transition at δµc. The insets show the
shape of the effective potential Uk(∆) at several points along the scale
evolution. The solid (red) lines correspond to a point in the broken
phase (δµSF = 0.78µ), where the global minimum of the effective
potential is non-zero in the infrared. The dotted (blue) line represents
a point with δµNF = 0.79µ, where the global minimum in the infrared
is located at ∆0,k=0 = 0. For all plots, T/µ = 0.17. Figure taken
from Boettcher et al. [2014a].

Furthermore, the peculiar k-dependence of the gap at the first order transition
region can be exploited numerically. A smooth decrease to zero of ∆0,k, as occur-
ring close to a second order phase transition, may take arbitrarily long in RG-time.
Therefore, an IR scale of about t ≈ −11 should be considered as an upper limit
for the reliable extraction of results for finite ∆0,k=0. However, for T/µ ≤ 0.15
(shaded area in Fig. 5.19), t ≈ −9 is often the utmost that can be reached, due
to the increasing stiffness of the flow equations. Thus, the estimate for the value
of ∆0,k=0 > 0 in the superfluid phase is less reliable for such low temperatures.
In contrast, the position of the first order phase transition is determined by the
occurrence of a sudden breakdown of the condensate. Indeed, we find that this
jump to ∆0,k = 0 always occurs at some t > −8 for T/µ ≤ 0.15. Since these
scales are not affected by the IR problems mentioned above, we conclude that our
results for the position of the phase transition can be trusted even in the shaded
area.

As a final remark, we mention that the scale evolution of Uk(ρ) as shown in
Fig. 5.22 allows to check the quality and consistency of the truncation. For exam-
ple, it can be seen in inset D that the FRG-evolved effective potential is convex for
k → 0 within our truncation, cf. Litim et al. [2006]. This exact property is repro-
duced by FRG flows (Berges et al. [2002], Ringwald and Wetterich [1990]). It can,
however, be spoiled by an insufficient truncation. The mean field approximation,
for instance, is included in the FRG equation as a truncation that neglects all
bosonic contributions, cf. our discussion above. However, the mean field effective
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Figure 5.23: The two lowest branches of the dispersion relation, Eq. (5.137), rele-
vant for the Sarma transition. Increasing the imbalance δµ, the low-
est branch extends below zero, yielding gapless excitations around
the Fermi surfaces at pmin and pmax. Note that for minp εp > 0 the
minimal momentum pmin can become negative, and the Sarma phase
appears with only one Fermi surface in this case. Figure taken from
Boettcher et al. [2014b].

potential is non-convex in the IR.

5.3.3 Sarma phase

The Sarma phase is a homogeneous superfluid phase with gapless fermionic quasi-
particle excitations. To understand its origin we consider a gas of two-component
fermions with chemical potential imbalance δµ = (µ1−µ2)/2 ≥ 0. After including
renormalization effects on the propagator of fermionic quasiparticles, we can infer
their dispersion relation from the quadratic part of the spin-imbalanced effective
Lagrangian. It typically splits into two lowest branches given by

E(±)
p =

√
ε2
p + ∆2 ± δµ, (5.137)

where εp is the microscopic dispersion relation of particles, and ∆ is the pair-
ing gap. For ultracold atoms we have εp = p2 − µ, but εp might also describe
relativistic particles.

The Sarma phase is characterised by a non-vanishing gap ∆ and the param-
eters in Eq. (5.137) are tuned such that the lower branch becomes negative in
a momentum interval pmin < p < pmax , see Fig. 5.23. Accordingly, this inter-
val becomes occupied even at zero temperature, and we find gapless excitations
around the built-up Fermi surfaces at pmin and pmax. For the remaining momenta,
fermionic excitations are gapped. For nonzero temperature the Fermi surfaces are
smeared out and a sharp distinction between the unpolarized superfluid and the
Sarma phase is not possible. Hence, we speak of a Sarma crossover in this case.
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5.3 Spin-imbalance

The criterion for a zero crossing of the lower branch in Eq. (5.137), and thus
for the onset of the Sarma phase, is equivalent to

δµ > min
p

√
ε2
p + ∆2 . (5.138)

We emphasize again that this equation is understood in terms of renormalized
single-particle quantities. Assuming for simplicity that minp εp = 0, we then
arrive at the condition δµ > ∆. Then there are three possible scenarios for a spin-
imbalanced system with ∆ > 0, which decide over the fate of the Sarma phase. By
increasing δµ we make pairing less favourable and superfluidity generically breaks
down at a critical imbalance δµc. If this happens continuously, i.e. by means
of a second order phase transition, the Sarma criterion is necessarily fulfilled
somewhere, since ∆ → 0 (scenario I). This is depicted in Fig. 5.24. At a first
order phase transition, on the other hand, the gap jumps from a critical value
∆c > 0 to zero. For δµc > ∆c a Sarma phase exists (scenario II), whereas the
required condition cannot be fulfilled for δµc < ∆c (scenario III). We see that the
existence of a Sarma phase at a second order transition line is a universal feature,
whereas it becomes non-universal in the vicinity of a first order transition line.

We recall that the binding energy εB < 0 is nonzero on the BEC side and
the fermion chemical potential eventually becomes negative for large positive
scattering length. In contrast, we set εB = 0 on the BCS side. The quantity
µmb = µ − εB/2 > 0 is manifestly positive for non-vanishing density, and we
choose units such that µmb = 1 when discussing the whole crossover. A negative
chemical potential shifts the minimum in the Sarma criterion (5.138). Taking this
possibility into account, the criterion generalizes to

δµ > min
p

√
ε2
p + ∆2

0 =

{
∆0 , (µ ≥ 0)√
µ2 + ∆2

0 , (µ < 0)
, (5.139)

see also the mean field theory discussion above.
In experiments with ultracold atoms the Sarma phase can be inferred from

a non-monotonous or non-continuous momentum distribution after time-of-flight
expansion (Gubbels and Stoof [2013]). At nonzero temperature, the sharp features
in the momentum distribution are smeared out. The Sarma phase also shows up
in shell-structured in-situ density images, where the polarized superfluid manifests
itself in a population imbalance between the spin species (Gubbels et al. [2006]):
If the transition to the normal gas is of first order, an intermediate population im-
balanced region in the cloud, which smoothly connects to the balanced superfluid,
indicates the Sarma phase. If the transition is of second order, the superfluidity
of the population imbalanced region can be probed by the excitation of vortices.
The presence of Fermi surfaces is also expected to induce metallic features in the
superfluid, which are observable in its transport properties. This makes the sys-
tem an unconventional superfluid. The transport properties of neutron stars are
known to strongly influence the life time of the star. A possible Sarma phase is
thus of relevance for interpreting the stellar evolution.
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Figure 5.24: The three possible scenarios for the Sarma condition ∆ = δµ; see
discussion below (5.138) for details. In the case of a second-order
superfluid phase transition the criterion is always fulfilled for some
δµ (Scenario I), whereas the size of the critical gap at a first-order
transition decides whether it is fulfilled (Scenario II) or not (Scenario
III). Figure taken from Boettcher et al. [2014b].

To highlight the impact of bosonic fluctuations, we compare results in the mean
field approximation to those obtained with the FRG. In many cases mean field
theory predicts a first order breakdown of superfluidity due to spin-imbalance at
T = 0. Including fluctuations, this first order transition can turn into a con-
tinuous one. This interesting effect has indeed been found in FRG studies of
two-dimensional Hertz-Millis type actions (Jakubczyk et al. [2009]), and a non-
relativistic spin-imbalanced Fermi gas on the BCS-side of the crossover in two
spatial dimensions (Strack and Jakubczyk [2014]). In the present analysis we do
not find such a smoothing of the transition. It can, however, be seen in a rel-
ativistic system of quarks and mesons with isospin density, see Boettcher et al.
[2014b].

For the investigation of the Sarma phase, we set Aφ = Zφ and Vφ = 0 in the
boson propagator. Moreover, we neglect the renormalization of the fermion prop-
agator. At first sight this might invalidate the analysis as the Sarma criterion
is formulated in terms of renormalized fermion quantities of the fermion excita-
tion spectrum. However, here we argue why we believe that a truncation with
Pψ,k(Q) = iq0 + q2 − µ for all k is sufficient.

From studies of the polaron (Lobo et al. [2006], Gubbels and Stoof [2008])
and the balanced UFG (Boettcher et al. [2014c]) it is known that fluctuations
effects tend to increase the individual chemical potential, µσ, by a contribution
approximately proportional to the chemical potential of the other species, µσ̄. In
both cases, fluctuations induce renormalization effects on the order of 60%,

µσ,eff ' µσ + 0.6µσ̄. (5.140)
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5.3 Spin-imbalance

Assuming this relation to be generally valid, we can estimate the effective imbal-
ance to be given by

δµeff = (µ1,eff − µ2,eff)/2 ' 0.4 δµ, (5.141)

i.e. the effective imbalance is smaller than the unrenormalized one. The Sarma
criterion ∆c < δµeff , which has to be true for the renormalized parameters, is
even less likely fulfilled. In particular, for most cases discussed below we find that
the Sarma criterion is violated already for the unrenormalized chemical potential
imbalance. According to our argument here, this implies that it is also violated
for the renormalized one.

Unitary Fermi Gas

We start our discussion with the imbalanced UFG, where the superfluid is strongly
correlated.

The mean field phase structure is recovered by neglecting bosonic fluctuations
in the FRG flow equation. This is demonstrated in Fig. 5.25 (upper lines labelled
“MFA”). The Sarma phase appears in the vicinity of the second order transition
line. Note that the dotted green line, corresponding to the condition ∆ = δµ, only
serves as an orientation, since the transition is a crossover at nonzero temperature.
The onset of the Sarma phase terminates close to the critical point, where it hits
the first order transition. The jump in the gap prevents the Sarma condition from
being fulfilled for lower temperatures. This corresponds to Scenario III discussed
above. We conclude that, at the mean field level, there is no stable Sarma phase
at T = 0.

Next we include the feedback of bosonic fluctuations. The resulting phase
diagram is also shown in Fig. 5.25 (lower lines labelled “FRG”). At vanishing
imbalance we again find a second order phase transition. The inclusion of bosonic
fluctuations makes the transition sharper, resulting in a shrinking Sarma phase.
Furthermore, this phase appears at relatively high temperatures only. In this
regime the presence of gapless fermionic excitations is smeared out and may be
difficult to detect in experiment.

Due to its complexity, it is hard to evolve the FRG flow for very small k in the
low temperature region. A conservative estimate for the latter is indicated by the
grey band in Fig. 5.25. The determination of the phase boundary, however, is
still reliable in this region. A more detailed discussion of this point is provided in
Sec. 5.3.2 above. The end of the Sarma phase, however, lies well above this band.
Hence we can draw our conclusions independent of this limitation.

BCS-BEC crossover

We extend our study to finite scattering lengths in order to identify a region that
might support a stable Sarma phase at T = 0 . We note that the phase structure
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Figure 5.25: Phase structure of the spin-imbalanced UFG. The upper lines corre-
spond to the mean field approximation (MFA), the lower ones to the
FRG result. We observe a substantial decrease in the critical temper-
ature due to bosonic fluctuations. The tricritical point is indicated by
a black dot. The Sarma condition ∆ = δµ is fulfilled along the dotted
green line close to the second order phase boundary. Interestingly, in
both cases we do not find a Sarma phase at zero temperature. Figure
taken from Boettcher et al. [2014b].

of the imbalanced BCS-BEC crossover beyond mean field had been unexplored to
a large extent so far.

In the following we focus on the phase structure of the imbalanced BCS-BEC
crossover at zero temperature, i.e. the quantum phase diagram. The mean field
result has been calculated by Sheehy and Radzihovsky [2006], Parish et al. [2007].
The superfluid-to-normal transition is of first order on the BCS side (a−1 ≤ 0).
This behavior persists on the BEC side (a−1 > 0) up to a quantum critical point
(QCP) where the transition turns to second order. Within the mean field approx-
imation, the QCP is located at

(
√
µmba)−1

MF = 4.19, δµMF = 21.6µmb = 0.61|εB|. (5.142)

The quantum phase diagram including the feedback of bosonic fluctuations
from the FRG is shown in Fig. 5.26. Its structure is quantitatively very similar to
the mean field result. Hence we only show the FRG result and superimpose the
locations of the QCP and the onset of the Sarma transition from the MFA. On the
BCS side and in the vicinity of the resonance the transition is of first order. On
the BEC side there is a quantum critical point where a second order line emerges.
Its coordinates read

(
√
µmba)−1

FRG = 7.1, δµFRG = 56.2µmb = 0.56|εB| (5.143)

within our approximation. We see that fluctuations rather induce a first order
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Figure 5.26: Quantum phase diagram of the spin-imbalanced BCS-BEC crossover
from the FRG. Units are such that µmb = 1 . The first order superfluid
phase transition appearing on the BCS side persists on the BEC side
up to the quantum critical point (QCP). The QCP is marked by a
filled (open) square for the result from the FRG (mean field) analysis.
The onset of the Sarma phase along the first order line according to
Scenario II is indicated by the filled (open) circle for the FRG (mean
field) result. The boundary of the Sarma phase on the BEC side is
given by the dotted green line. Figure taken from Boettcher et al.
[2014b].

phase transition than a second order one. This is in contrast to the relativistic
system mentioned above.

The onset of the Sarma phase on the BEC side is located to the left of the QCP,
and thus happens according to Scenario II in the terminology introduced above.
The boundary of the Sarma phase according to (5.139) is indicated by the dotted
green line in Fig. 5.26. It terminates in the first order line at (

√
µmba)−1

MF =
2.27 in MFA, which is shifted towards (

√
µmba)−1 = 2.6 when including bosonic

fluctuations. To the right of the QCP, we always find a stable Sarma phase
below the second order line according to Scenario I. Since the Sarma phase only
appears on the BEC side, the corresponding magnetized superfluid constitutes a
homogeneous state consisting of a BEC of diatomic molecules and majority atoms.

Hence we find that there is no parameter set that supports a bosonic-fluctuation
induced Sarma phase at T = 0 in the 3D BCS-BEC crossover. The onset of the
Sarma phase occurs closer to resonance in MFA compared to the FRG-analysis.
Moreover, distinct from the relativistic case discussed in Boettcher et al. [2014b],
a Sarma phase arises only on the BEC-side of the crossover, whereas the corre-
sponding relativistic system rather corresponds to a BCS-like system.

An interesting question concerns the critical exponents at the QCP on the BEC
side. The FRG is capable of computing critical exponents to a high accuracy
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5 Three-dimensional BCS-BEC Crossover

beyond mean field theory, see e.g. Litim [2002]. A more detailed analysis of the
quantum critical properties of the QCP will be presented elsewhere.

5.3.4 Experimental signatures

Our findings on the phase structure of the spin-imbalanced UFG have immediate
consequences on the qualitative behavior of in-situ density profiles, n(~r), obtained
for this system in experiment. Here, we briefly recapitulate the phenomenology
of second- and first order phase transitions in an external potential, and also
discuss the impact of the precondensation region on the interpretation of experi-
mental results. The generalization of the following arguments for nonzero a−1 are
straightforward. We define the density and population imbalance by

n(µ, T, δµ) = n1 + n2 =
(∂P
∂µ

)
δµ,T

, (5.144)

δn(µ, T, δµ) = n1 − n2 =
( ∂P
∂δµ

)
µ,T

, (5.145)

respectively. Herein P is the pressure, and nσ is the density of atoms in hyperfine
state |σ〉 .

For an ultracold quantum gas confined to an external trapping potential V (~r),
the thermodynamic equilibrium state depends on the particular shape of the trap.
In many cases, however, we can apply the local density approximation (LDA),
which assigns a local chemical potential µ(~r) = µ0 − V (~r) to each point in the
trap. Here µ0 is the central chemical potential. In this way, thermodynamic
observables computed for the homogeneous system are translated into those of
the trapped system, see the discussion in Sec. 2.1. Note that T and δµ are
constant throughout the trap within LDA. The LDA can be applied if the length
scale associated to the trap, `0, is much larger than all other scales of the many-
body system. For instance, in a harmonic trap, V (~r) = Mω2

0r
2/2, the former

scale is given by the oscillator length `0 =
√

~/Mω0.
If the central chemical potential is sufficiently larger than T , the inner region of

the trapped system is in the superfluid phase. Above a certain critical radius, rc,
superfluidity vanishes and is replaced by a quantum gas in the normal phase, which
eventually becomes classical and decays exponentially in the outer wings of the
cloud. The critical radius is related to the critical chemical potential, µc(T, δµ),
according to µc = µ0 − V (~rc). At a first order phase transition the density at
µc exhibits a jump. Accordingly, the superfluid core and the normal region are
separated by of a jump in density at rc. We visualize this in Fig. 5.27. In contrast,
the transition is continuous for a second order phase transition. In this way, the
order of the phase transition, and e.g. our prediction for the temperature of the
tricritical point of the UFG, TCP/µ0 = 0.20, can be verified from in-situ images
at different temperatures.

In experiments with cold atoms, the imbalance between spin-partners is intro-
duced by differing atom numbers N1 ≥ N2 for atoms in state |1〉 and |2〉, respec-
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Figure 5.27: Schematic in-situ density profile nσ(r) for a population-imbalanced
ensemble of the UFG with N1 > N2 at low temperature. The blue
and red points correspond to atoms in hyperfine state |1〉 and |2〉,
respectively. For T < TCP the superfluid transition is of first order,
such that the superfluid inner region is separated from the polarized
normal gas by a jump in density at the critical radius rc. Figure
taken from Boettcher et al. [2014a].

tively. The influence of a non-zero polarization p = (N1−N2)/(N1+N2) is very dis-
tinct for trapped systems in comparison to homogeneous ones (Braun et al. [2014]).
In a homogeneous system, we have Nσ = nσV with volume V , and the critical
spin-imbalance, δµc, translates to a critical polarization pc = δNc/δN = δnc/n,
with n and δn from Eqs. (5.144) and (5.145) in the normal phase. At zero temper-
ature, the superfluid phase is found for p = 0, whereas the system is in a normal
polarized phase for p > pc. When preparing N1 and N2 such that 0 < p < pc,
the equilibrium state of the system will not be homogeneous, but rather a mixed
phase consisting of a superfluid with bubbles of normal phase majority atoms.
For a trapped system instead, the particle numbers Nσ are obtained from an in-
tegral over the whole cloud, Nσ =

∫
~r nσ(~r). As a consequence, phase separation

takes place in real space by means of a superfluid inner region and a normal outer
region. Both are separated by the mentioned jump in the density.

With a state-resolved detection of individual densities, n1(~r) and n2(~r), it is
possible to measure the local in-situ polarization p(~r) of the trapped gas. Accord-
ing to our finding that there is no Sarma phase at zero temperature, a nonzero
polarization inside the superfluid core of the cloud can only be detected at T > 0.
As we find the Sarma phase only to appear at very high temperatures and close to
the phase boundary, a substantial local polarization p(~r) of the superfluid should
only be detectable for r . rc.

The length scale `0 divides the trapped system into cells of spatial extend `30
where the local chemical potential does not vary substantially. Thus within each
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5 Three-dimensional BCS-BEC Crossover

cell the system is approximately homogeneous and only fluctuations with wave-
lengths ≤ `0 are present. In this way, `0 approximately corresponds to the final
kf where we stop integrating the flow of Uk(ρ) according to k−1

f = `0. The ho-
mogeneous system corresponds to `0 =∞, i.e. kf = 0. By stopping at a nonzero
kf > 0, which is still sufficiently smaller than the many-body scales, we can simu-
late the effect of a large trapping potential and the corresponding infrared cutoff
which suppresses long wavelength fluctuations. However, despite being intuitively
reasonable, the association kf = `−1

0 does not always provide the correct picture
(Braun et al. [2005], Braun et al. [2011], Braun et al. [2012]).

In our analysis of the UFG we find a substantial precondensation region in
the phase diagram, Fig. 5.19, where a minimum ρ0,k > 0 appears during the
flow, but is eventually washed out such that ρ0,k=0 = 0. The restoration of
symmetry is due to long wavelength fluctuations on length scales k−1 → ∞.
However, if long wavelength fluctuations are cut off by a trap with scale `0, a
superfluid order parameter ρ0 ≈ ρ0,k=kf

can be observed experimentally even in
the precondensation phase.

As discussed in Sec. 5.3.2, the first order transition is barely influenced by
the final scale kf as long as the latter is below the many-body scales. Therefore,
the first order transition and its location can also be deduced in a finite trapping
geometry. On the other hand, for smaller spin-imbalance, where the transition
is of second order, this effect can be substantial. As a consequence, the second
order phase boundary of the homogeneous system is likely to be overestimated by
applying LDA to a trapped gas. It would be very interesting to study this effect
by means of varying the trapping frequency.
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6 Two-dimensional BCS-BEC Crossover

6.1 Fermion pairing in three and two dimensions

We systematically approach the balanced 2D BCS-BEC crossover with the FRG
by applying the beta functions whose range of applicability is well-understood for
the 3D system to the lower-dimensional setting. In this way we obtain a qualitative
picture of the phase structure of the system and find many similarities between
the 3D and 2D setup. However, it turns out to be characteristic that variations
of the truncation scheme which have almost no effect on the quantitative features
of the 3D system, substantially influence the 2D results.

6.1.1 Scattering properties

The scattering or vacuum physics in 2D is different to the 3D analogue in the
sense that a sufficiently strong attraction between two particles (which is present
in our model) always results in a bound state with binding energy εB. This allows
to define a 2D scattering length a according to

εB = − ~2

Ma2
= − 2

a2
, (6.1)

where M = 1/2 is the atomic mass, which we assume to be equal for both scat-
tering partners. This is in contrast to the 3D case where a bound state in the
spectrum only appears for a > 0. The 2D vacuum physics thus seem to be close to
the BEC-side in 3D. However, the binding energy on the BCS-side of the 2D sys-
tem is exponentially small such that the overall phenomenology of the crossover
is similar to the 3D case. Nevertheless, the presence of a bound state for all
a allows to drive the 2D crossover parameter log(kFa) by either changing a or
kF = (2πn)1/2. In the latter case we say that the crossover is density-driven.

In the following we first discuss the scattering physics in 3D and 2D from
elementary quantum mechanics, and then discuss the modification which are nec-
essary to initialize the RG-flow in 2D. For a comparison of scattering in 3D, 2D,
and 1D we refer to the presentation of Morgan et al. [2002]. We model interac-
tions between atoms by a pointlike δ-potential. This requires renormalization of
the coupling constant, see the discussion below Fig. 5.15, but also supports a
bound state for all values of the coupling constant in 2D. Since ultracold atoms
are faithfully described by such a δ-potential, see Sec. 2.1, we conclude that the
sufficiently strong attraction required for the two-body bound state is guaranteed
for ultracold atoms.
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6 Two-dimensional BCS-BEC Crossover

Bound state and scattering length

We start with computing the bound state energy of two particles interacting via
a δ-potential. For the bound state wave function in the center-of-mass frame with
relative coordinate ~r between the atoms we have(

−∇
2

M
+ λΛδ

(d)(~r)
)
ψ(~r) = εBψ(~r). (6.2)

Herein εB < 0 is the binding energy, which is to be determined. We apply
∫
~r e

i~q·~r

to both sides to obtain

q2

M
ψ̃(~q) + λΛ

∫
~r
ei~q·~rψ(~r)δ(d)(~r)︸ ︷︷ ︸

ψ(~r=0)

= εBψ̃(~q), (6.3)

where ψ̃(~q) is the Fourier transform of ψ(~r). Hence

ψ̃(~q) = − λΛ

q2/M − εB
ψ(~r = 0). (6.4)

Integrating both sides over ~q yields

ψ(~r = 0) =

∫
~q
ψ̃(~q) = −ψ(~r = 0)

∫
~q

λΛ

q2/M − εB
. (6.5)

The integral requires UV regularization and we choose a sharp momentum cutoff
here. We arrive at

− 1

λΛ
=

∫ Λ

~q

1

q2/M − εb

M=1/2
=

1

2

∫ Λ

~q

1

q2 − εb
2

. (6.6)

We conclude that a solution of Eq. (6.2) with εB < 0 necessarily requires
λΛ < 0. To further constrain the microscopic couplings which allow for a bound
state we first consider d = 2, where Eq. (6.6) becomes

− 1

λΛ
=

1

8π
log
(

1 +
Λ2

|εB|/2
)
' − 1

8π
log
( |εB|/2

Λ2

)
, (6.7)

where we applied log(1 + ε−1) ' − log(ε) + ε for small ε in the second equality
and assumed the UV cutoff Λ to be large enough such that we can neglect higher
order terms. Apparently, no further constraint on λΛ is set by this equation and
we always find a bound state with energy

εB = −2Λ2e8π/λΛ . (6.8)

We observe that a small binding energy requires |λΛ| to be rather small, which is
ensured on the BCS-side of the crossover. Introducing the 2D scattering length a
via εB = −2/a2 we find

a = Λ−1e−8π/λΛ (6.9)
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6.1 Fermion pairing in three and two dimensions

for a sharp momentum cutoff Λ. Note that a in 2D is large on the BCS-side, see
also Table. 6.2.

In 3D Eq. (6.6) reads

− 1

λΛ
=

1

4π2

[
Λ−

√
|εB|

2
arctan

( Λ

(|εB|/2)1/2

)]
' 1

4π2

(
Λ− π

2

√
|εB|

2

)
(6.10)

for εB < 0, where we employed arctan(ε−1) ' sgn(ε)π2 − ε for small ε and again
assumed Λ to be large. Eq. (6.10) is solved by εB = −2/a2 with positive scattering
length a defined according to

1

8πa
=

1

λΛ
+

1

4π2
Λ > 0. (6.11)

Contrary to the 2D case, we only find a bound state in 3D for

λΛ < −4π2Λ−1. (6.12)

For a different regularization scheme, the prefactor on the right hand side of this
equation will change, but the qualitative statement remains valid.

To connect the previous consideration to the FRG approach within the two-
channel model we rederive the results from a different perspective. It is an exact
property that the fermion propagator is not renormalized for µ ≤ 0 and T = 0.
The corresponding effective potential reads

U(∆2, µ) = − ∆2

λψΛ
−
∫ Λ

Q
log
(
q2

0 + (q2 − µ)2 + ∆2
)
, (6.13)

and for the density per species in the presence of a boson background field ∆2 =
h2ρ we find

nσ(∆2, µ) =

∫
~q

1

2

(
1− q2 − µ√

(q2 − µ)2 + ∆2

)
. (6.14)

To define the physical vacuum we require both the boson field expectation value,
∆0, and the density, nσ = nσ(∆0, µ), to vanish. Given ∆0 = 0 the latter condition
is indeed fulfilled for T = 0 and µ ≤ 0. For the vacuum to be stable towards
condensation of bosons we need to have m2

φ := (∂U/∂ρ)(0, µ) ≥ 0. We have

0
!
≤
m2
φ

h2
= − 1

λψΛ
−
∫ Λ

Q

1

q2
0 + (q2 − µ)2

= − 1

λψΛ
− 1

2

∫ Λ

~q

1

q2 + |µ| . (6.15)

We used |q2 − µ| = q2 + |µ| for µ ≤ 0.
We first look for solutions of Eq. (6.15) with µ = 0. They correspond to the

atomic side of the resonance. For µ = 0 we have

0
!
≤
m2
φ

h2
= − 1

λψΛ
− 2vd

∫ Λ

0
dqqd−3. (6.16)
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A finite result for the boson mass is only found for d > 2. For lower dimensions
the integration range cannot extend to q = 0. The physical cure of this infrared
divergence is, in fact, simply the appearance of the bound state. From Eq. (6.16)
we find

0 ≤
m2
φ

h2
= − 1

λψΛ
− 1

4π2
Λ =: − 1

8πa
(6.17)

for d = 3 and a ≤ 0. Note that this definition of the 3D scattering length coincides
with the one given for a > 0 in Eq. (6.11). We also note here that

µ = 0, m2
φ = 0 (6.18)

in vacuum corresponds to the resonance point with a−1 = 0. At this point, both
bosons and fermions (the latter with mass term m2

ψ = −µ) become gapless.
To proceed we now consider solutions of Eq. (6.15) for a stable vacuum with

µ < 0. As mentioned in the previous paragraph, this corresponds to a nonzero
mass term −µ in the excitation spectrum for fermions, and thus bosons are the ele-
mentary excitations with vanishing mass term. Therefore, this situation describes
the bosonic side of the resonance. We have

0
!

=
m2
φ

h2
= − 1

λψΛ
− 1

2

∫ Λ

~q

1

q2 + |µ| . (6.19)

However, this coincides with Eq. (6.6), where we associate

µ =
εB

2
< 0, for a > 0, (6.20)

in vacuum. Eq. (6.20) is valid in both 3D and 2D.

Dimer propagator in vacuum

For later reference we compute here also the inverse dimer propagator, Pφ, in
vacuum. Its kinetic coefficients, which are regularization-scheme independent,
can be used as a benchmark for truncation schemes in the FRG analysis. For
µ ≤ 0 and external momentum P = (p0, ~p) we have

Pφ(P ) = − h2

λψΛ
− h2

∫ Λ

Q

1

Pψ(Q+ P )Pψ(−Q)

= − h2

λψΛ
− h2

∫ Λ

Q

1

[i(q0 + p0) + (~q + ~p)2 − µ][−iq0 + q2 − µ]

= − h2

λψΛ
− h2

∫ Λ

~q

1

ip0 + (~q + ~p)2 + q2 − 2µ

= − h2

λψΛ
− h2

∫ Λ

~q

1

ip0 +
(
~q + ~p

2

)2
+
(
~q − ~p

2

)2
− 2µ

= − h2

λψΛ
− 2vdh

2

∫ Λ

0
dqqd−1 1

q2 + ip0

2 + p2

4 − µ
, (6.21)
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where −h2/λψΛ = m2
φΛ is the unrenormalized boson mass term. For P = 0 we

recover Eqs. (6.16) and (6.19) with Pφ(0) = m2
φ. In 3D the integration yields

Pφ(P ) = − h2

λψΛ
− h2

4π2
Λ +

h2

8π

√
ip0

2
+
p2

4
− µ

=
h2

8π

(
−1

a
+

√
ip0

2
+
p2

4
− µ

)
, (6.22)

where we have dropped higher order terms ∼ |p0|/Λ2, p2/Λ2. On the bosonic side
of the resonance this expression can be expanded further in powers of P due to
the negative chemical potential given by µ = −a−2 < 0. Note that m2

φ = 0 in this
case. We write

Pφ(P ) = Aφ

(
Sφip0 +

p2

2
+ Vφp

2
0 − V2ip0p

2 − V3
p4

4
+ . . .

)
(6.23)

and find

Aφ =
h2a

32π
, Sφ = 1, Vφ = V2 = V3 =

a2

8
. (6.24)

Similarly, in 2D we obtain

Pφ(P ) = − h2

λψΛ
− h2

8π
log

(
ip0

2 + p2

4 − µ
Λ2

)

= −h
2

8π
log

(
1 +

ip0a
2

2
+
p2a2

4

)
, (6.25)

and, for the kinetic coefficients,

Aφ =
h2a2

16π
, Sφ = 1, Vφ = V2 = V3 =

a2

4
. (6.26)

Note that, of course, we always have Pφ(0) = m2
φ = 0 and µ = −a−2 for the 2D

vacuum case.

FRG analysis

The analysis presented above suggests a very simple and clear picture of the
vacuum renormalization with the FRG which is only based on static properties at
vanishing frequency and momentum. We assume that the fermion propagator is
not renormalized in vacuum. We further assume the vacuum setup, i.e. T = ∆ = 0
and µ ≤ 0, in the following.

If there is a microscopic bound state, i.e. for a > 0 in 3D, and for all a in 2D,
we set

µ =
εB

2
= −a−2, (a > 0), (6.27)
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and tune h2
Λ/m

2
φΛ = h̄2

Λ/m̄
2
φΛ such that

m2
φ,k=0 = 0, (a > 0). (6.28)

In this way the scattering length is defined via εB = −2a−2. For a ≤ 0 in the 3D
case we set µ = 0 and tune h2

Λ/m
2
φΛ such that

m2
φ

h2

∣∣∣
k=0

= − 1

λψ,k=0
= − 1

8πa
. (6.29)

Note that we often apply truncations where h̄2
k=0 = h̄2

Λ.
This scheme can be applied very generally. For the F- (mean field) and FB0-

truncations with q2-opt regulators, however, the equations simplify considerably
such that many scattering properties can be derived analytically. We then have
˙̄h = 0, such that h̄2

k = h̄2
Λ for all k. The flow of the renormalized dimensionless

Feshbach coupling is given by

∂th̃
2 = (d− 4 + ηφ)h̃2. (6.30)

The flow is attracted to a partial UV fixed point with

ηφ = ηφ,? = 4− d =

{
1 (d = 3)

2 (d = 2)
. (6.31)

Note that the fixed point anomalous dimension reflects the scaling of the vacuum
dimer propagator, Eqs. (6.22) and (6.25), according to Pφ ∼ Aφq

2 ∼ q2−ηφ , see
also Sec. 4.1.3. In the early stage of the flow we have µ̃ = µ/k2 ' 0. We can then
read off the anomalous dimension from Eq. (4.259) to be given by

η
(F )
φ =

16vdh̃
2

d
`
(0,2)
F,xx(0, 0, 0) =

4vdh̃
2

d
. (6.32)

The initial value for the Feshbach coupling is not important as long as it is large
enough, because it will be attracted to the UV fixed point. For concreteness we
directly start at the fixed point and thus set h̄2

Λ = h̃2
?Λ

4−d with

h̃2
? =

(4− d)d

4vd
. (6.33)

For the UV cutoff we may choose Λ = 1000, which has to be compared to µmb =
µ− εB/2 = 1 in the many-body problem. Given a scattering length a we further
need to fine-tune the boson mass term m̄2

φΛ. As outlined above we set

µ = −a−2θ(a). (6.34)

For the flow of the boson mass term we have

˙̄m2
φ =

16vdh̄
2
Λk

d−2

d
`
(1,2)
F (µ̃, 0, 0) =

4vdh̄
2
Λk

d−2

d
θ(µ̃+ 1)(µ̃+ 1)d/2. (6.35)
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Note that for µ < 0 the flow of the coupling is stopped at µ̃ = −1, i.e. k = a−1.
This provides for a physical infrared cutoff. In the 3D atomic limit, i.e. for a ≤ 0
and µ = 0, we find ˙̄m2

φ = 4vdh̄
2kd−2/d, and thus fix the initial mass from

− 1

8πa
=
m̄2
φ,k=0

h̄2
Λ

=
m̄2
φΛ

h̄2
Λ

+

∫ 0

Λ

dk

k

4vdk

d
. (6.36)

We then arrive at

m̄2
φΛ =

h̄2
Λ

6π2
Λ− h̄2

Λ

8πa
. (6.37)

For a > 0 we employ

0 = m̄2
φ,k=0 = m̄2

φΛ +
4vdh̄

2
Λ

d

∫ a−1

Λ

dk

k
kd−2

(
1− 1

k2a2

)d/2
(6.38)

to find

m̄2
φΛ =

h̄2
Λ

6π2

[√
Λ2 + µ

(
1− µ

2Λ2

)
− 3

2

√−µ arctan
(√Λ2 + µ

−µ
)]

=
h̄2

Λ

6π2a

(√
Λ2a2 − 1

(
1 +

1

2Λ2a2

)
− 3

2
arctan

(√
Λ2a2 − 1

))
(6.39)

in 3D, and

m̄2
φΛ =

h̄2
Λ

4π

(
log
( Λ√−µ

)
− µ

2Λ2
− 1

2

)
=
h̄2

Λ

4π

(
log(Λa) +

1

2Λ2a2
− 1

2

)
(6.40)

in 2D. Note that for Λ2a2 � 1 we find

− 1

λψΛ
=
m̄2
φΛ

h̄2
Λ

= c3Λ− 1

8πa
, (d = 3), (6.41)

− 1

λψΛ
=
m̄2
φΛ

h̄2
Λ

= c2 log(Λa), (d = 2), (6.42)

with c3 = 1/6π2 for the q2-opt regulator and c3 = 1/4π2 for the sharp cutoff, see
Eqs. (6.11) and (6.17), and c2 = 1/4π for both regularization schemes, see Eq.
(6.7).

Due to the particular shape of the exact dimer propagator in vacuum, which
only depends on the invariant

ip0

2
+
p2

4
− µ (6.43)
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Figure 6.1: Vacuum scaling of h2, Sφ, and Vφ within the FB-truncation with
q2-opt regulator in 3D (left) and 2D (right). We plot h2/(32π/a)
(h2/(16π/a2))) in blue, Sφ in red, and Vφ/(a

2/8) (Vφ/(a
2/4)) in or-

ange for the 3D (2D) case. Hence, with the appropriate scaling of
the dimer propagator in vacuum according to Eqs. (6.24) and (6.26),
all curves should saturate at unity for a > 0. We find the deviations
to be rather small in the 3D-case, whereas the 2D-vacuum is only
poorly resolved with this setup. Units are such that Λ = 1000 and
k = Λe−12 = 0.006. To obtain the proper scaling close to resonance
in 3D, we need to further lower k such that k < a−1.

with µ ≤ 0, the boson mass term m̄2
φ receives no contribution from the bosonic

tadpole diagram, since the closed loop vanishes as all poles in the frequency inte-
gration lie in the same half-plane. Therefore, only F-diagrams should contribute

to the vacuum running of m2
φ. However, a contribution ṁ

2(B)
φ 6= 0 can arise due to

either the particular choice of regulator Rφ(Q) or the truncation applied for Pφ(Q)
inside the loop. For instance, the Q-exp regulator leads to a nonzero contribution

ṁ
2(B)
φ in vacuum, as well the FB-truncations with Vφ-term.

The renormalization scheme described in Eqs. (6.27)-(6.29) can also be applied

to a situation with nonzero ṁ
2(B)
φ . However, it is less clear whether this still

gives a faithful description of the scattering properties. The reason for this is that
a > 0 typically requires a small vacuum precondensate, i.e. a nonzero ρ0,k appears
during the flow, but ρ0 = 0 at k = 0. As a consistency check we investigate
here the kinetic coefficients Aφ, Sφ, and Vφ. For the F- and FB0-truncation
with q2-opt regulator, the relations (6.24) and (6.26) in 3D and 2D, respectively,
are exactly fulfilled for a > 0 within the numerical precision. In contrast, we
find deviations for a FB-truncation with q2-opt regulator, where the Vφ-term in

the boson propagator leads to ṁ
2(B)
φ 6= 0. We display the results in Fig. 6.1.

We observe that the deviations are on the 5%-level in 3D, whereas they become
substantial in 2D. In Table. 6.1 we summarize the scattering properties, and also
display results for the Q-exp regulator with cφ = 1.

In the bosonic limit the system can be modelled by an effective description in
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6.1 Fermion pairing in three and two dimensions

2D 3D

Observable FB0, q2-opt FB, q2-opt FB0, q2-opt FB, q2-opt FB, Q-exp

h2/h2
exact 1 1.4 1 1.06 1.17

Sφ/Sφ,exact 1 0.7 1 0.96 0.88
Vφ/Vφ,exact 1 - 1 0.97 -

add/a - - 0.72 0.54 0.36

Table 6.1: Scattering properties for different truncation and regularization
schemes. The values of h2

exact, Sφ,exact, and Vφ,exact correspond to those
given in Eqs. (6.24) and (6.26), see also Fig. 6.1. The Q-exp regulator
is evaluated for cφ = 1. The exact value for the dimer-dimer scattering
length in 3D is given by add = 0.6a (Petrov et al. [2004]). For the
missing entries of Vφ in the table we do not find constant scaling.

terms of bosons. In 3D an important observable consists in the effective dimer-
dimer scattering length add. The exact value for the ratio add/a is known to be
0.6 (Petrov et al. [2004]). Within our approach the ratio can be deduced from the
boson-boson coupling λφ in vacuum. We use

λφ,k=0

∣∣∣
VAC

=
4π~2

Mφ
add = 4πadd (6.44)

to find

add

a
=
λφ,k=0

4πa

∣∣∣
VAC

. (6.45)

In the FB0-truncation with q2-opt regulator we find 0.72 for the ratio. We show
below that the many-body sector on the BEC-side is strongly affected by this
value, since both the Lee–Huang–Yang (LHY) correction to the equation of state
and the interaction-induced shift of the critical temperature can be obtained from
the purely bosonic theories with an appropriate insertion of add into the bosonic
formulas.

6.1.2 Phase structure

We now compare the phase structure of the BCS-BEC crossover in both 3D and
2D. For this purpose we apply the FB0-truncation with q2-opt regulator and a
Taylor expansion of the effective potential to order φ4. This scheme has the
advantage that the scattering properties in vacuum are accurately resolved, see
Table 6.1. Moreover, it allows to investigate the stability of results by comparing
the outcome with Ṡφ = 0 or Ṡφ 6= 0, respectively. We show that this modification
has only minor influence in 3D, whereas it leads to significant changes in 2D.
The FB0-truncation has several shortcomings such as the neglect of particle-hole
fluctuations, the insufficient resolution of the infrared Goldstone regime, and the
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6 Two-dimensional BCS-BEC Crossover

inability to capture the Fermi liquid correction to the equation of state on the
BCS-side. Still it yields a solid qualitative picture in 3D.

To determine the phase structure we find the highest temperature such that
ρ0,k=0 > 0. In practice the flow cannot be evolved down to k = 0 (or t = −∞). In
addition, physical systems always have a finite volume which sets an infrared cutoff
on long wavelength fluctuations. Therefore, we stop the flow at a nonzero “final”
kf (or tf) and determine physical observables at this scale. In 3D, the running of
couplings often saturates for sufficiently small t, resulting in gk=0 ≈ gkf

for many
couplings gk.

We search for the critical temperature by means of an algorithm which finds
T ≈ Tc(kf) such that

0 < ∆kf
(Tc, µ, a) <

1

100
∆kf

(0, µ, a), (6.46)

where ∆k(T, µ, a) = h2ρ0 is the gap in the fermion spectrum. The limitation to
1% of the zero temperature gap is a very efficient way to compute the critical
temperature for the whole crossover, as it appropriately accounts for very small
gaps on the BCS-side, whereas a rather large gap is allowed on the BEC-side.
We checked that a further limitation to 0.1% yields identical results in both 3D
and 2D within the numerical precision. However, the outcome of Eq. (6.46) is
strongly influenced by the choice of tf in 2D: Whereas changes in tf of order unity
result in a change of the higher digits of Tc/µ in 3D, they change Tc/µmb in 2D
by approximately 10%. We visualize this behavior in Fig. 6.2. Therein, and in
the remainder of this section, we choose Λ = 1000 and

µmb = µ− εB/2 = 1. (6.47)

The final cutoff scale is varied according to tf = −12,−15,−18, corresponding to
kf/
√
µmb = 0.006, 0.0003, 0.00002, respectively.

The limiting BCS-formulas

Tc,BCS/TF =
8eγ

πe2
eπ/2kFa, (d = 3), (6.48)

Tc,BCS/TF =
2eγ

π
e− log(kFa), (d = 2), (6.49)

with εF = µ are found independently of tf in both dimensions. We cannot resolve
the Gorkov-correction as we do not account for particle-hole fluctuations within
our truncation. The 2D curve possesses a sharp kink at log(

√
µmba) ≈ 0, where

Tc/µmb = 0.364, 0.327, 0.304 for tf = −12,−15,−18, respectively. In contrast we
have Tc/µ = 0.44124 (0.44120) for tf = −12 (−15) in 3D.

It is interesting to study the effect of enforcing Sφ = 1 during the flow. In
Fig 6.3 we show the result for the phase boundary with and without running of
Sφ for tf = −15. In 3D there is hardly any difference in the phase boundary.
The effect of Sφ is strongest in the crossover region, where Sφ = 1 reduces the
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6.1 Fermion pairing in three and two dimensions
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Figure 6.2: Critical temperature Tc/µ in 3D (left) and 2D (right) for the FB0-
truncation with q2-opt regulator and φ4-potential. This scheme is
also used for the remaining phase diagram plots. The blue region
constitutes the superfluid phase. In 2D we show the phase boundary
for final cutoff scales tf = −12,−15,−18 from top to bottom, see the
discussion below Eq. (6.47) in the main text. The positive many-body
chemical potential is given by µmb = µ − εB/2. In 3D the BCS-BEC
crossover is from left to right, whereas the direction is reversed in
the 2D case. We also plot the BCS-result (orange, dashed) in both
dimensions.

critical temperature to Tc/µ = 0.41. In contrast, we obtain Tc/µmb = 0.192
in 2D, which has to be compared to Tc/µmb = 0.327 mentioned above. Again
the critical temperature in 2D strongly depends on tf , with a relative variation
comparable to the one of the result obtained with running of Sφ. The sharp kink
at log(

√
µmba) ≈ 0 disappears when we set Sφ = 1, suggesting that this feature is

probably a truncation-artefact. However, the qualitative shape of a curve which is
flatter on the atomic side and which becomes steeper in the bosonic limit, remains
valid independent of Sφ.

In order to relate the phase diagram in grand canonical coordinates (µmb, T, a)
to the one in canonical ones, i.e. (kF, T, a), we need to determine the equation of
state n(µmb, T, a). This is a difficult task. Here we employ the simple approach
to the density already used in Sec. 5.1.4. In 3D we know that the phase structure
obtained in this manner is quantitatively accurate in the perturbative limits, but
only qualitatively correct in the crossover region. Keeping this in mind we apply
the same beta functions also to the 2D case. The phase diagram obtained in this
manner serves as a guide for the experimental phase diagram determined in Sec.
6.2.4.
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6 Two-dimensional BCS-BEC Crossover
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Figure 6.3: Phase structure for the truncation as in Fig. 6.2, however with Sφ
treated as a running coupling (solid, blue) and with constant Sφ,k = 1
for all k (dashed, blue). We only find minor modifications in 3D, where
the effect is strongest in the crossover regime. The critical temperature
of the UFG is reduced from Tc/µ = 0.44 to Tc/µ = 0.41. In 2D a
constant choice of Sφ = 1 results in a dramatically reduced critical
temperature. Moreover, the phase boundary becomes smoother. The
BCS-limit (dashed, orange) is not affected by the running of Sφ in 3D.
In contrast, the 2D curve is significantly below the BCS-curve.

The flow equation for the density is approximated here by ṅ = ṅ(F ) + ṅ(B) with

ṅ(F ) =
−16vd
d

kd
(
`
(0,1)
F − 2`

(2,2)
F

)
, (6.50)

ṅ(B) = −8vd2
d/2kdαφ
d

(
`
(0,1)
B − 2`

(2,2)
B

)
. (6.51)

For the definition of the threshold functions `F and `B we refer to Sec. 4.3.3.
The initial condition reads nΛ = θ(µ)µ3/2/3π2 and nΛ = θ(µ)µ/2π in 3D and
2D, respectively. The flow of αφ = (∂µ∂ρU)(ρ0) is truncated according to α̇φ =

ηφαφ + α̇
(F )
φ + α̇

(B)
φ with

α̇φ =
−16vdh̃

2

d

(
`
(0,2)
F − 4`

(2,3)
F

)
, (6.52)

α̇φ =
8vd2

d/2

d

[
−4λ̃φ

(
3`

(1,2)
B − 4`

(3,3)
B

)
+ 2ρ̃0λ̃

2
φ

(
`
(0,2)
B − 4`

(2,3)
B

)]
, (6.53)

and initial condition αφΛ = −2. In the broken regime of the flow, the flowing
density receives an additional contribution −ᾱφ ˙̄ρ0. For a detailed discussion of
this treatment of the density we refer to Diehl et al. [2010a], where the same
approximation was employed.

The resulting phase diagrams in canonical coordinates for the 3D and 2D
case are shown in Fig. 6.4. Again we find a significant tf -dependence of the
phase boundary in 2D. The critical temperature for log(kFa) = 0 is given by
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Figure 6.4: Phase diagram in canonical coordinates obtained with the equation
of state from Eqs. (6.50-6.53). In 3D this resolves the BEC-limit
in a very accurate manner, where it resolves the interaction-induced
shift (dashed, red) compared to the ideal-BEC critical temperature
(dashed, black), see Eqs. (6.54) and (6.55). The crossover regime
is, however, only qualitatively correct. We find a maximum of the
phase boundary at (kFa)−1 ≈ 0.5. Applying the same truncation to
the 2D system we find a phase diagram possessing two local maxima
and a dip, the latter being at log(kFa) ≈ 0. We find again a strong
dependence on tf = −12,−15,−18, shown here from top to bottom.
We also show the result obtained for Sφ = 1 in 3D (dashed, blue).

Tc/TF = 0.275, 0.242, 0.222 for tf = −12,−15,−18, respectively. In 3D we find
Tc/TF = 0.278 independent of the infrared scale. The sharp feature of the 2D
grand canonical phase diagram results in a sharp dip of the corresponding phase
diagram in the plane spanned by Tc/TF and log(kFa). This feature is independent
of the infrared cutoff scale.

Analogous to the previous analysis we set Sφ = 1 to study the stability of the
phase structure. In 3D we only find a small correction, see Fig. 6.4. At unitarity
the critical temperature is reduced to Tc/TF = 0.261. The impact on the 2D
phase structure is again substantial. However, the reduction of Tc/TF is mainly
due to the reduced value of Tc/µmb, as the influence of Sφ = 1 on the equation
of state is small (approximately 5%). Moreover, the equation of state is found to
be tf -independent. We show the corresponding 2D phase diagrams with Sφ = 1
in Fig. 6.5. Due to numerical limitations we restrict the analysis with Sφ = 1 to
log(kFa) ≤ 2.8, where the BCS-limit is not yet reached. This behavior, however,
can be traced back to the value of Tc/µmb, see Fig. 6.3, since µmb = εF is well
satisfied both with and without the running of Sφ.

On the BEC-side in 3D the critical temperature is shifted due to the repulsive
interactions of the bosons. Indeed, compared to the condensation temperature of
an ideal Bose gas

Tc,id/TF = 0.218, (6.54)

rescaled here to appropriate units for the BCS-BEC crossover, we parametrize the
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Figure 6.5: Left: 2D Phase diagram for Ṡφ 6= 0 (solid, blue) and Ṡφ = 0 (dashed,
blue). The critical temperature is strongly reduced for Sφ = 1. In
the example shown here we have chosen tf = −15 and find Tc/TF =
0.242 (0.147) for the truncation with (without) running of Sφ. Right:
2D critical temperature in a truncation with Sφ = 1 for tf = −12
and −15, displayed by the upper and lower curve, respectively. The
superfluid region appears for much lower temperatures. However, the
qualitative shape of the phase boundary with two local minima and a
dip at log(kFa) ≈ 0 persists.

deviation according to

Tc − Tc,id

Tc,id
=

κ

(6π2)1/3

add

a
(kFa). (6.55)

The parameter κ can be determined independently of the fermionic system from a
purely bosonic theory. For a discussion we refer to Boettcher et al. [2012]. Within
our truncation we have add/a = 0.72, see Table 6.1, and κ = 1.7. The ideal gas
and interaction-corrected curves are shown in Fig. 6.4 (left) by the dashed black
and red curve, respectively. Together with the exponentially increasing BCS-
or Gorkov-results on the BCS-side it is reasonable to assume that the critical
temperature curve possess a maximum. This point can be associated with the
transition from the fermionic to the bosonic theory, and, indeed, is found in 3D
to be close to the zero-crossing of the chemical potential, i.e. at µmba

2 = 1.

The theory of 2D bosons (Prokof’ev et al. [2001], Prokof’ev and Svistunov
[2002], Petrov et al. [2003]) predicts a BKT-temperature

TBKT

TF
=

1

2

(
log
[ C

4π
log
( 4π

k2
Fa

2
2D

)])−1

, C = 380(3), (6.56)

see also the discussion in Sec. 6.2.4. Again, together with the exponential increase
on the atomic side, we expect the curve to have a maximum in the plane spanned
by Tc/TF and log(kFa). Within our truncation we verify this statement. The zero-
crossing of the chemical potential µ = µmb − a−2 in 2D occurs for log(kFa) > 0.
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6.1 Fermion pairing in three and two dimensions

Indeed, since there is always a bound state in 2D, we find 1 =
√
µmba < kFa, and

thus log(kFa) > log(1) = 0. The fact that µmb/εF is smaller than unity is verified
in Fig. 6.6. For the truncations with running Sφ we find the maximum to be
located at log(kFa) ≈ 1, whereas for constant Sφ = 1 it appears for log(kFa) ≈ 0.5.

We close the discussion on the phase structure of the balanced 2D BCS-BEC
crossover by remarking that for sufficiently low k fermions always decouple from
the flow due to µ̃ = µ/k2 → −∞ and ∆̃ = ∆/k2 → ∞. Accordingly, the flow
equations for the full system are reduced to the flow equations for nonrelativistic
bosons in 2D in the deep infrared. Moreover, at the critical temperature, the beta
functions coincide with those of the classical statistical O(2)-model in d = 2 di-
mensions. It is well-known (Gräter and Wetterich [1995], Gersdorff and Wetterich
[2001]) that the BKT-physics of the latter can be resolved with the FRG, even for
purely fermionic systems (Krahl and Wetterich [2007]). We found that the FB-
truncation is sufficient to obtain a temperature dependent anomalous dimension
η(T ) with all the right properties, i.e. η(0) = 0, linear increase for small T , and
a jump from ηmax ≈ 0.25 to zero at T = Tc. However, due to the tf -dependence
of Tc the FB-truncation cannot capture the BKT-transition which is valid for an
infinitely large system. In a recent analysis by Jakubczyk et al. [2014] the BKT-
transition in a φ4-model was computed to high precision with field dependent
coefficients in a derivative expansion.

6.1.3 Equation of state

We turn to an extended discussion of the equation of state (EOS) in the 3D and
2D BCS-BEC crossover, respectively. It is the key observable in order to compare
with experiments for two reasons: First, the EOS can be measured directly from
in-situ density images. Second, more indirect, we need the EOS to translate a
phase diagram computed in grand canonical variables to the one measured in
canonical ones.

We again limit the investigation to an FB0-truncation with q2-opt regulator
and φ4-expansion of the effective potential. To check for stability we again em-
ploy truncations with and without the running of Sφ. The flow of the density is
determined according to Eqs. (6.50-6.53) here. We discuss the shortcomings of
this approach below.

In Fig. 6.6 we show the result for the EOS at T = 0 and T = Tc throughout
the crossover in terms of

ξ(n, T, a) =
µmb(n, T, a)

εF
=
µ(n, T, a)− θ(εB)εB/2

εF
, (6.57)

where εF = (3π2n)2/3 and εF = 2πn in 3D and 2D, respectively. In 3D, for
T = a−1 = 0, the quantity defined in Eq. (6.57) equals the Bertsch parameter.
For comparison we also show the zero temperature EOS from mean field theory
and the Fermi-liquid theory (FLT) predictions in Fig. 6.6. We note that the EOS
does not depend sensitively on the infrared scale tf , even in 2D, and we show
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Figure 6.6: EOS in terms of ξ = µmb/εF with µmb = µ − θ(εB)εB/2 in 3D (left)
and 2D (right), respectively. We show several curves for comparison
purposes: The zero temperature EOS from the FRG-truncation dis-
cussed in the text is shown in solid (dashed) blue for the truncation
with (without) running of Sφ. In the same way, the critical EOS at
T = Tc is shown in solid (dashed) red for the truncation with (with-
out) running of Sφ. The zero temperature mean field result is shown
by the dashed orange curve. The FLT-prediction on the atomic side
is plotted by the dashed green curve.

the 2D result for tf = −15. We find a mild dependence on Sφ in 2D, whereas,
remarkably, the EOS in 3D is almost independent on the running of Sφ. This
indicates that the important contributions to the running of n come from scales
k where Sφ,k ' 1. In contrast, the critical temperature is sensitive to the deep
infrared, where Sφ,k < 1. In 2D the Sφ-dependence of the EOS is probably
related to the logarithmic running of the fermion gap ∆k in the Goldstone regime
for truncations without Vφ.

On the BCS-side of the crossover we find ξ = 1 for T = 0. It is a major
drawback of our truncation that it systematically underestimates the density in
the atomic regime, i.e. for µ > 0. The EOS corresponds to the mean field theory
prediction in this regime. (Note that the zero temperature EOS in 2D from mean
field theory is given by ξ(a) = 1 for all a.) The leading correction on the BCS-
side to the EOS comes from the Hartree shift of the chemical potential, i.e. the
fermion self-energy correction. We summarize here only the phenomenological
approach to arrive at the FLT-formulas for the EOS (Engelbrecht and Randeria
[1990, 1992]). For this purpose we use the ideal Fermi gas EOS and shift the
chemical potential according to

µ→ µ̃ =

{
µ− 4πna (d = 3)

µ+ 2πn/ log(kFa) (d = 2)
. (6.58)

Note that a < 0 in 3D such that the Hartree shift always increases the effective
chemical potential, thereby increasing the density n(µ) for fixed µ. Physically this
can be understood by the attraction of atoms which energetically allows to put
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6.1 Fermion pairing in three and two dimensions

more particles into the Fermi sphere. We then arrive at

µFLT(n, a) = εF

(
1 +

4

3π
kFa

)
, (d = 3), (6.59)

µFLT(n, a) = εF

(
1− 1

log(kFa)

)
, (d = 2), (6.60)

in 3D and 2D, respectively. The corresponding ξ-parameters on the BCS-sides of
the crossover are also shown in Fig. 6.6. Note that the FLT-correction in 2D is
large even for moderate log(kFa) ≥ 1 such that the applicability of perturbation
theory is already questionable.

There are two ways to interpret the Hartree shift given by

n(µ, a) =
µ̃

2π
=

1

2π

(
µ+

2πn0

log(kF0a)

)
. (6.61)

The first one is that n0 and kF0 refer to the noninteracting gas formulas. This
is called non-self-consistent Hartree–Fock (or Fermi liquid theory). In contrast,
one may insert the full density n and kF = (2πn)1/2 on the right hand side of Eq.
(6.61), thereby regarding the equation as a self-consistent equation, which can
then be solved numerically. This is called self-consistent Hartree–Fock approach.
We have

n =
µ̃

2π
=

1

2π

(
µ+

2πn0

log(kF0a)

)
(non-self-consistent), (6.62)

n =
µ̃

2π
=

1

2π

(
µ+

2πn

log(kFa)

)
(self-consistent). (6.63)

We use the non-self-consistent equation in Fig. 6.6 and regard it as the leading
perturbative correction. For a FLT correction of (n − n0)/n0 ≈ 17%, the differ-
ence is at most a 2-3% effect at small temperatures, and it decreases for larger
temperatures. We display this behavior in Fig. 6.7. For almost all cases where
µ > 0, we can replace kF0 →

√
µ in the logarithm. However, this breaks down for

very small or negative chemical potentials, which is relevant for the outer regions
of a trapped system.

We summarize the Fermi liquid corrections. For the noninteracting gas we have

n0(µ) =
µ

2π
, (T = 0), (6.64)

n0(µ, T ) =
2

λ2
T

log
(

1 + eµ/T
)

=
T

2π
log
(

1 + eµ/T
)
, (T > 0), (6.65)

with kF0 = (2πn0)1/2. These expressions have to be inserted into the interacting
gas formulas, which read

n(µ, a) =
1

2π

(
µ+

2πn0

log(kF0a)

)
, (T = 0), (6.66)

n(µ, T, a) =
T

2π
log

(
1 + exp

[ 1

T

(
µ+

2πn0

log(kF0a)

)])
, (T > 0). (6.67)
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Figure 6.7: Left: Interacting gas Fermi liquid formula for a 6Li-gas at 1400G
(blue), which corresponds to an interaction correction ≈ 17%, com-
pared to a noninteracting ideal gas formula (orange, dashed). Right:
Self-consistent formula divided by the non-self-consistent (Fermi liq-
uid) formula.

The bosonic side of the resonance, where µ < 0 and fermions are gapped, is
resolved to high accuracy in 3D. In this regime we obtained the Lee–Huang–Yang
(LHY) (Lee et al. [1957], Lee and Yang [1958]) correction for a dimer gas with
scattering length add = 0.72a, see Table 6.1. The corresponding perturbative
formulas at zero temperature are given in Sec. 5.1.1. We have

nLHY(µmb, a) =
µmb

πadd

(
1− 32

3π
√

2

√
µmbadd

)
, (6.68)

where the leading term is the mean field prediction. We compare the zero tem-
perature EOS in 3D from FRG with the results from mean field and LHY-theory
in Fig. 6.8.

6.2 Observation of pair condensation in two dimensions

In this section we describe the experimental realization of the 2D BCS-BEC
crossover in the Jochim Group at the PI Heidelberg. The setup allows for measur-
ing many-body observables such as phase diagram, equation of state, momentum
distribution, and phase correlations. The author’s contribution to the experiment
consists of conceptual considerations on the measurements and support with the
data analysis. Both aspects are outlined here. First results on the phase structure
of the system are available in Ries et al. [2014].

6.2.1 Experimental setup

The experiment utilizes 6Li-atoms to simulate the 2D BCS-BEC crossover. The
spin degree of freedom is given by the hyperfine state |σ〉 of the atoms: The single
valence electron of a lithium atom has vanishing orbital angular momentum. This
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Figure 6.8: Zero temperature EOS in 3D from the FRG (solid blue) compared
to mean field (dashed orange) and LHY-theory (dashed red), see
Eq. (6.68). For comparison we insert the dimer scattering length
add = 0.72a to be consistent with our vacuum solution. We find per-
fect agreement with LHY-theory, and significant deviations from the
mean field prediction. This indicates the correct resolution of effects
beyond mean field theory on the bosonic side of the crossover, where
the chemical potential is negative.

corresponds to the quantum numbers L = 0, S = 1/2, and J = 1/2 in the usual
notation. Accordingly, there is no fine structure of the energy levels. However,
due to the nuclear spin (I = 1), we have a hyperfine splitting with F = 3/2, 1/2.
This is visualized in Fig. 6.9.

The hyperfine state of an atom is thus characterized by the quantum numbers
F and mF = −F, . . . ,+F . However, this description is only useful in the Zeeman
regime for small magnetic fields B ∼ 30G. As we will employ a magnetic Feshbach
resonance at B = 832.2G (Zürn et al. [2013]), we are rather in the high-field
Paschen–Back regime, where mI instead of mF is a good quantum number. We
denote |1〉- and |2〉-atoms by those in hyperfine state |1〉 = |F = 1

2 ,mI = 1〉 and
|2〉 = |F = 1

2 ,mI = 0〉, respectively.

After a sequence of cooling steps the gas consisting of 50000-60000 particles
per spin state is transferred to a highly anisotropic hybrid trap consisting of a
standing-wave optical dipole trap (SWT) and a superimposed magnetic trap. The
SWT confines the system to a pancake-shaped geometry and thereby simulates
2D physics in the xy-plane. It is created from two elliptical focussed Gaussian
beams which intersect at a small angle (14◦), see Figs. 6.10 and 6.11. For a
detailed review of optical traps we refer to Grimm et al. [2000].

The effective trapping potential in the xy-plane is given by

Vopt(x, y) =
MLi

2

(
ω2
xx

2 + ω2
yy

2
)

+ c4xx
4 + c4yy

4. (6.69)
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6 Two-dimensional BCS-BEC Crossover

Figure 6.9: Hyperfine structure of 6Li. The BCS-BEC crossover is simulated with
the magnetic Feshbach resonance at B0 = 832.2G between |1〉- and
|2〉-atoms. The atoms populate the lowest two sublevels in the high-
field Paschen–Back regime. Since the energy difference ∆E ∼ 80MHz
is much larger than any other energy scale in the experiment, there
is no conversion between the atom species (e.g. due to thermal fluc-
tuations). The population of the state |σ〉 is thus constant. However,
it may be changed by applying a radio-frequency pulse tuned to the
transition frequency.

Figure 6.10: The standing-wave optical dipole trap is created by crossing two ellip-
tical focussed 1064 nm Gaussian beams which intersect with an angle
of 14◦. This results in a large aspect ratio ωz

ωr
≈ 300 of transverse

versus radial trapping. However, in order to simulate 2D physics, the
system also needs to be kinematically in the 2D limit, which requires
the typical energies of particles of be much smaller than ~ωz.
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6.2 Observation of pair condensation in two dimensions

Higher order terms are not important for the fillings (i.e. particle numbers) of the
experiment. We have ω2

x/y = ω2
x/y,opt + ω2

mag with

ωx,opt = 2π × 14.10(2) Hz,

ωy,opt = 2π × 14.02(3) Hz,

ωmag = 2π × 0.39
√
B[G] Hz, (6.70)

c4x = −1.04× 10−16 kg

m2s2
,

c4y = −1.34× 10−16 kg

m2s2
.

The lithium mass is given by

MLi = 9.98834× 10−27 kg. (6.71)

The errors for the magnetic frequency and the quartic terms are ≈ 10% and
≈ 25%, respectively. Note that the magnetic trapping frequency depends on the
magnetic fieldB, which is tuned across the Feshbach resonance. The optical trap is
tuned such that the frequencies in x- and y-direction are almost identical, whereas
this is generally true for the magnetic frequencies. As a result, the harmonic part
of the hybrid trap is almost radially symmetric. The transverse trapping frequency
and oscillator length, respectively, are given by

ωz = 2π × 5.53(3) kHz, `z =
√

~/Mωz = 0.551µm. (6.72)

Hence, to give an example, at 795G we obtain an aspect ratio of ωx : ωy : ωz =
1 : 0.997 : 309. The experimental setup is summarized in Fig. 6.11.

After the gas has been evaporatively cooled and transferred to the SWT, it
can be heated in two ways. For the lowest three temperatures the gas is held for
a variable hold time of 300ms to 1s in the trap, where it is heated by technical
noise. To achieve higher temperatures, the trap depth is modulated with vary-
ing amplitude. Eventually a proper thermometry is required to translated these
temperature variables to a physical temperature T in nK, see Sec. 6.2.3.

Imaging the cloud with a beam along the z-direction as shown in Fig. 6.11 yields
the (column) optical density OD(x, y). The optical density has to be corrected
for saturation effects and the reduced detectability of atoms bound in dimers,
see Ries et al. [2014]. We assume that this is already done. We then still face
the problem that the optical density has to be normalized such that it gives the
particle number density n in µm−2. It is empirically motivated to assume

n(x, y) = c ·OD(x, y), (6.73)

where c is approximately constant throughout the crossover, i.e. independent of
temperature, density, or magnetic field. Thus the constant c has to be fixed once.
This can be achieved by a series of images with different intensities of the trapped
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trapping
beams

imaging
beam

camera

Figure 6.11: Experimental setup. The SWT generates a stack of trap layers. Ap-
proximately 89% of the particles are trapped in the central layer.
The ultracold quantum gas (red disk) is trapped in the xy-plane by
the hybrid trap. Imaging proceeds along the z-direction (red arrow).
A typical optical density profile is shown at the bottom of the figure.
The almost radial symmetry of the image is in line with the nearly
equal trapping frequencies ωx and ωy in Eqs. (6.70). Figure taken
from Ries et al. [2014].

gas, or of the empty trap. We refer to Ries et al. [2014] for details, especially Sec.
VI. of the supporting online material therein.

To tune interactions between |1〉- and |2〉-atoms, the magnetic Feshbach reso-
nance at 832.2G is employed in the range 692G ≤ B ≤ 1400G. The 3D scattering
length as a function of the magnetic field has been determined to high precision
by Zürn et al. [2013]. We display characteristic values of a3D(B) in Table. 6.2.

For a truly 2D system, a sufficiently strong attractive interaction between the
atoms always results in a two-body bound state with binding energy εB. The
energy scale associated to the bound state allows to define the 2D scattering
length a2D according to εB = −~2/Ma2

2D, see the discussion in Sec. 6.1.1. The
interaction parameter a2D can also, with the same result, be defined from the 2D
scattering amplitude or T-matrix of two colliding atoms.

In our experiment we simulate an effectively 2D setting by means of a tight
confinement along the z-direction. The system is then characterized by an addi-
tional length scale, `z =

√
~/Mωz, which is the oscillator length along the axial

direction. Together with the 3D scattering length this allows to determine the
effective 2D scattering length we are simulating: a2D = a2D(`z, a3D).

There are mainly two ways of finding the effective 2D scattering length of the
trapped system. The first one, which we choose, is based on reading off a2D

from the T-matrix of the confined quasi-2D system. The second one employs the
confinement induced bound state energy ε̃B to define a scattering length according
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6.2 Observation of pair condensation in two dimensions

B[G] a3D[a0] a2D[a0] ã2D[a0] Ω = |ε̃B|/~ωz a2D/ã2D

692 1463 2.585 1456 51 0.00178
782 6718 2780 6130 2.9 0.453
832 2 324 337 19 300 20 970 0.25 0.920
892 -8554 89 300 89 720 0.013 0.995
1042 -3656 690 000 690 100 0.00023 1.000

Table 6.2: 3D and 2D scattering lengths, a3D and a2D, as a function of the mag-
netic field B across the Feshbach resonance. Values for B ≤ 782 G
(B ≥ 892) correspond to the BEC (BCS) limit. The asymptotic for-
mula (6.74) provides a reliable estimate for the 2D scattering length in
the whole crossover region. In contrast, ã2D defined from the confine-
ment induced bound state energy ε̃B via ε̃B = −~2/Mã2

2D largely over-
estimates the interaction strength on the BEC side. We find ã2D = a3D

on the BEC side such that the confinement induced bound state is equal
to the 3D bound state. In order to display the phase diagram of the
2D BCS-BEC crossover from experimental data, a2D(B) is the optimal
choice for defining the 2D scattering length.

to ε̃B = −~2/Mã2
2D. The outcome does not coincide on the BEC side of the

crossover, where a2D and ã2D differ by orders of magnitude. In this work we
use the first definition of a2D for all magnetic fields because it gives the correct
limit of a weakly interacting 2D Bose gas far on the BEC-side of the crossover.
However, a2D and ã2D are related to each other in a one-to-one fashion, and thus
no information is lost with a particular choice.

Scattering length from T-matrix of two body scattering. This method has re-
cently been applied by Makhalov et al. [2014] and it is discussed in detail by
Levinsen and Parish [2014]. It relies on the low-energy expansion of the T-matrix
of the tightly confined system. It thus directly relates the 2D scattering length
a2D to a scattering property between atoms. Although the atoms might be tightly
bound with a large binding energy, their energy of relative motion is still small
compared to ~ωz. As a result one finds

a2D = `z

√
π

A
exp
(
−
√
π

2

`z
a3D

)
, (6.74)

with A = 0.905 (Petrov and Shlyapnikov [2001], Bloch et al. [2008]). This formula
is applied here for all magnetic fields.

Scattering length from confinement induced bound state. The confinement along
the z-direction induces a two-body bound state for all values of the 3D scattering
length a3D. The corresponding binding energy ε̃B is found from solving `z/a3D =

189



6 Two-dimensional BCS-BEC Crossover

f1(|ε̃B|/~ωz) (Petrov and Shlyapnikov [2001], Bloch et al. [2008]) with

f1(Ω) =

∫ ∞
0

du√
4πu3

(
1− e−Ωu√

(1− e−2u)/2u

)
. (6.75)

We denote ε̃B with a tilde to distinguish it from εB of the truly 2D system. For
small binding energies, i.e. far on the BCS side, the integral can be expanded
in Ω. We then have f1(Ω) ' log(πΩ/A)/

√
2π for Ω . 0.1, and we arrive at the

asymptotic expression ã2D = `z
√
π/A exp(−

√
π/2`z/a3D) equivalent to Eq. 6.74.

We find this limit of Eq. (6.75) to be appropriate for magnetic fields ≥ 852G.
On the other hand, far on the BEC side, we have f1(Ω) '

√
Ω for Ω � 1, and

thus find the induced binding energy to coincide with the 3D binding energy,.
Accordingly ã2D ' a3D in this limit. In our case this applies to 692G and 732G.

Comparison of both approaches. For a magnetic field of 692G we find a2D/ã2D =
0.0018, and thus a substantial difference in both definitions. Associating ã2D with
the simulated 2D scattering length of the effectively 2D system would indicate
that system at 692G is still strongly interacting, with log(kFã2D) ' −1, whereas
we have log(kFa2D) ' −7 instead. Moreover, it has been shown by Makhalov
et al. [2014] that the T-matrix based approach gives the correct limit of weakly
interacting 2D bosons far on the BEC side of the crossover. We show the results
on a2D and ã2D as a function of the magnetic field in Table. 6.2.

6.2.2 Momentum distribution from T/4-imaging

The momentum distribution of ultracold atoms can be obtained after time of flight
(TOF) expansion. The commonly applied TOF method is based on switching off
the trapping potential V (~r) at time t = 0, and allowing the gas to expand freely
for a sufficiently long expansion time texp. If the expansion can be approximated
to be ballistic, the position of a particle with initial velocity ~v is given by ~x(texp) =
~x(0) + ~v · texp after TOF. It is important that |~x(texp)| is much larger than the
spatial extend of the in-situ cloud such that the initial position of the atom inside
the trap is negligible in comparison to the travelled distance: |~x(texp)| � |~x(0)|.
In order to ensure ballistic expansion it is convenient to ramp shortly before the
TOF to a magnetic field B where the scattering length a3D(B) is small. This
suppresses mutual interaction between the atoms during the TOF.

An immediate disadvantage of the TOF method just described is that a long
expansion time texp also results in a very dilute sample, which is more difficult
to resolve by imaging. On the other hand, for too short texp, the influence of the
initial position of the atom is large. In addition, slow particles need to travel for
a longer time. Here we apply a simple but efficient modification of the standard
TOF approach. Instead of releasing the gas into free space, we let it expand in a
shallow harmonic trap with frequency ωexp. In this way the position of the particle
at a quarter of the trap period T = 2π/ωexp is given by its initial momentum inside
the trap.
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6.2 Observation of pair condensation in two dimensions

Below we derive this statement, which holds for ballistic expansion, from a
field theoretical point of view. However, it can also be understood in terms of a
classical particle in an external potential V (~x) = Mω2

exp~x
2/2. For this purpose

we note that due to energy conservation the energy

E(t) =
~p2(t)

2M
+
M

2
ω2

exp~x
2(t) (6.76)

is constant for all times t ≥ 0. In particular, for a particle initially at the trap
center we have

~p2(0)

2M
=
~p2(t)

2M
+
M

2
ω2

exp~x
2(t) (6.77)

for all times. Due to the time evolution ~x(t) ∝ sin(ωexpt) and ~p(t) ∝ cos(ωexpt)
we have

~p(0) = Mωexp · ~x(texp) (6.78)

for texp = π/(2ωexp) = T/4. This beautifully states the merit of the method:
From a density image at texp = T/4 we obtain the full (trap averaged) momentum
distribution of the gas.

Evolution equation for the field operator

We now give a self-contained derivation of Eq. (6.78) from a field theoretical point
of view. To do so, we consider the bosonic field operators ψ̂†(~x) and ψ̂(~x), which,
respectively, create and annihilate an atom at point ~x. The second quantized
Hamiltonian in terms of these operators reads

Ĥ = H(ψ̂, ψ̂†) =

∫
d2xψ̂†(~x)

(
− ~2

2M
∇2 +

M

2
ω2~x2

)
ψ̂(~x). (6.79)

Note that ~x is labelling the field operator, and thus is not an operator x̂ like in
the quantum mechanical harmonic oscillator p̂2 + x̂2. The bosonic operators obey
the canonical commutation relations

[ψ̂(~x), ψ̂†(~y)] = δ(2)(~x− ~y). (6.80)

By assuming a bosonic field operator we limit the derivation to the BEC side of
the resonance. The same result can, however, easily be derived for a fermionic field
operator, since the evolution of a single non-interacting atom is not influenced by
statistics.

Within the Heisenberg picture, we now construct time-dependent operators
Ψ̂†(~x, t) and Ψ̂(~x, t) which obey the canonical equal-time commutation relations

[Ψ̂(~x, t), Ψ̂†(~y, t)] = δ(2)(~x− ~y). (6.81)
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At t = 0 we demand

Ψ̂(~x, t = 0) = ψ̂(~x). (6.82)

For t > 0 the time evolution of the operators is given by

∂tΨ̂(~x, t) =
i

~
[Ĥ(t), Ψ̂(~x, t)], (6.83)

where the Hamiltonian Ĥ(t) is constructed from Ĥ according to

Ĥ(t) = H(Ψ̂(t), Ψ̂†(t)) =

∫
d2xΨ̂†(~x, t)

(
− ~2

2M
∇2 +

M

2
ω2~x2

)
Ψ̂(~x, t). (6.84)

Inserting this into the field equation, and using the canonical equal-time commu-
tation relation, we then find

i~∂tΨ̂(~x, t) = [Ψ̂(~x, t), Ĥ(t)]

=

∫
d2y

(
Ψ̂(~x, t)ψ̂†(~y, t)

(
− ~2

2M
∇2
y +

M

2
ω2~y2

)
Ψ̂(~y, t)

− Ψ̂†(~y, t)

[(
− ~2

2M
∇2
y +

M

2
ω2~y2

)
ψ̂(~y, t)

]
Ψ̂(~x, t)

)

=

∫
d2y[Ψ̂(~x, t), Ψ̂†(~y, t)]

(
− ~2

2M
∇2
y +

M

2
ω2~y2

)
Ψ̂(~y, t)

=

∫
d2yδ(2)(~x− ~y)

(
− ~2

2M
∇2
y +

M

2
ω2~y2

)
Ψ̂(~y, t)

=
(
− ~2

2M
∇2 +

M

2
ω2~x2

)
Ψ̂(~x, t). (6.85)

This looks like a Schroedinger equation. However, it is the full evolution equation
of the field operator (in the absence of interaction terms in the Hamiltonian, i.e.
for ballistic expansion.)

Our goal is to construct the momentum distribution

ñ(t, ~p) = 〈Ψ̃†(t, ~p)Ψ̃(t, ~p)〉 (6.86)

at t = 0 from the density image

n(t, ~x) = 〈Ψ̂†(t, ~x)Ψ̂(t, ~x)〉 (6.87)

at t = T/4 = π/2ω. Herein,

Ψ̃(t, ~p) = `−2

∫
d2xe−i~p·~x/~Ψ̂(t, ~x) (6.88)

is the field operator in momentum space, and ` =
√

~/Mω is the oscillator length.
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Hermite function expansion

To solve the evolution equation

i~∂tΨ̂(t, ~x) =
(
− ~2

2M
∇2 +

M

2
ω2~x2

)
Ψ̂(t, ~x), Ψ̂(0, ~x) = ψ̂(~x) (6.89)

we first note that the solution can be factorized due to the assumption of ballistic
expansion. We thus restrict to a 1D setting without loss of generality. With the
ansatz

Ψ̂(t, x) =
∑
n

e−iEnt/~ψ̂n(x) (6.90)

we find

Enψ̂n(x) =
(
− ~2

2M
∂2
x +

M

2
ω2x2

)
ψ̂n(x) (6.91)

for each n individually. This is, of course, of the form of the Hermite differential
equation

H ′′n(x) + (2n+ 1− x2)Hn(x) = 0, (6.92)

where Hn(x) are the Hermite functions. Indeed, with x̃ = x/` = x
√
Mω/~ and

En = ~ω(n+ 1/2) we find( ∂2

∂x̃2
+ (2n+ 1− x̃2)

)
ψ̂n(x) = 0. (6.93)

Hence

Ψ̂(t, x) =
∑
n

e−iEnt/~Hn(x/`)ψ̂n(0). (6.94)

For an expansion time t = T/4 we use

e−iEn(T/4)/~ = e−iπ
2

(n+1/2) = (e−iπ/2)ne−iπ/4 = (−i)ne−iπ/4, (6.95)

to arrive at

Ψ̂(T/4, x) =
∑
n

(−i)ne−iπ/4Hn(x̃)ψ̂n(0). (6.96)

We now employ that for the Fourier transform of the Hermite functions, H̃n, we
have

H̃n(y) = (−i)nHn(y). (6.97)
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For the field operator in momentum space we then obtain

Ψ̃(t, p) = `−1

∫
dxe−ipx/~Ψ̂(t, x) = `−1

∑
n

e−iEnt/~ψ̂n(0)

∫
dxe−ipx/~Hn(x̃)

= `−1
∑
n

e−iEnt/~ψ̂n(0)`

∫
dx̃e−ip̃x̃Hn(x̃) =

∑
n

e−iEnt/~ψ̂n(0)(−i)nHn(p̃),

(6.98)

where we defined p̃ = `p/~ in the last equality. From this we conclude that

Ψ̂†(T/4, ~x)Ψ̂(T/4, ~x) =
∑
n,n′

in(−i)n
′
Hn(x̃)Hn′(x̃)ψ̂†n(0)ψ̂n′(0)

= Ψ̃†(0, p̃ = x̃)Ψ̃(0, p̃ = x̃). (6.99)

Of course, p̃ = x̃ is equivalent to p = ~x/`2 = Mωx, and we eventually arrive at
the desired result

n(T/4, x) = 〈Ψ̂†(T/4, x)Ψ̂(T/4, x)〉
= 〈Ψ̃†(t, p = Mωx)Ψ̃(t, p = Mωx)〉
= ñ(0, p = Mωx). (6.100)

6.2.3 Thermometry

Temperature determination of the trapped gas is an important and nontrivial
aspect of the experimental setup. As mentioned in Sec. 6.2.1, we only have tech-
nically defined temperature variables, which qualitatively corresponds to a heated
gas, but do not yield the precise temperature in nK. Here we describe how this can
be achieved from the momentum distribution, and from in-situ density images.
Together with the measured density n, the temperature determination allows to
specify the phase diagram, i.e. the curve Tc/TF. In contrast, a determination of
the equation of state n(µ, T ) also requires to determine the chemical potential -
an experimentally even more delicate task.

From the momentum distribution after time of flight (see Sec. 6.2.2) we can ex-
tract the temperature from a Boltzmann fit to the large momentum part according
to

ñ(p) ∼ zeffe
−p2/2MkBT . (6.101)

The Gaussian behavior for large momenta is clearly visible in the log-p2-plot of
the radially average momentum distribution, see Fig. 6.12. The radial average is
justified by the almost radial symmetry of the trap. The effective fugacity zeff in
Eq. (6.101) does not coincide with the fugacity z = eβµ, which would multiply
the tail for a homogeneous system. This is a result of the fact that we measure
the trap-averaged momentum distribution after TOF.
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6.2 Observation of pair condensation in two dimensions

Figure 6.12: Radially averaged momentum distribution ñ(k) at 782G, obtained
after T/4-TOF for the coldest accessible temperature. The image
is the average over approximately 30 realizations. We clearly see
the Boltzmann tail ñ(p) ∼ exp(−p2/2MkBT ) for large momenta,
where M = 2MLi is the dimer mass for this particular value of the
magnetic field. At low momenta we see an enhanced occupation of
low-momentum states, which we associate with condensation. The
determination of the critical temperature is discussed in Sec. 6.2.4.
Figure taken from Ries et al. [2014].

In Eq. (6.101) the particle mass M enters the exponential function. It is the
same mass M which also appears in the evolution equation for the field operator,
Eq. (6.85). Therefore, it is the mass of the expanding particles, which are com-
posite bosons on the BEC side (M = 2MLi), and atoms (M = MLi) on the BCS
side of the crossover. In the intermediate region it is problematic to decide which
M has to be inserted. In particular, the fitted temperature sensitively depends
on this choice. However, from the limiting regimes it appears that the degeneracy
T/TF is almost constant for a fixed temperature variable over the whole crossover.
We thus linearly interpolate T/TF in the magnetic field region 783G ≤ B ≤ 892G.

An alternative way to determine the temperature is from a Boltzmann fit to the
outer region of the in-situ density profile. In contrast to the thermometry from
the momentum distribution, we here apply the Boltzmann form of the equation
of state (EOS) at large negative local chemical potential µ(~r) = µ0 − V (~r). For
this purpose we apply LDA to the whole cloud such that

n(~r) = n(µ0 − V (~r), T ) (6.102)

for all ~r. In particular, using the Boltzmann EOS n(µcl, T ) = eβµcl/λ2
T , we then

find

n(~r) ∼ eβµcl(~r) (6.103)

for large |~r|. In this equation µcl refers to the chemical potential of the classical
particles, i.e. the few-body degrees of freedom. Similar to the above problem of
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determining the mass M of the expanding particle, we find µcl = 2µ and µcl = µ
in the BEC and BCS limit, respectively.

We write

µcl = αµ (6.104)

with fermion chemical potential µ and 1 ≤ α ≤ 2, and arrive at

n(~r) ∼ e−αβV (~r) (6.105)

for large radii. This equation may also be read in a different way: The potential
energy of tightly bound bosons in the external potential is twice as large as the
one of single atoms, since they consist of two atoms. Accordingly, we have Vφ(~r) =
2V (~r) for the potential seen by the dimers. The weaker response to the trapping
potential can also be rephrased in an enhanced mass due to

M = αMLi. (6.106)

Interestingly, the problem of assigning the right mass to Eq. (6.101) is equivalent
to finding α in Eq. (6.105). In both cases the proper few-body degrees of freedom
have to be determined. A non-integer α is understood as an effective number of
degrees of freedom. We have chosen the symbol α here to make contact with the
running coupling

αφ =
∂2U

∂µ∂ρ
(ρ0) (6.107)

introduced in the FRG context, see e.g. Diehl et al. [2010a], or Eqs. (6.52) and
(6.53).

To extract the temperature from the in-situ images, we map out the function
n(V ), which groups the density profile n(~r) with the corresponding value of the
trapping potential V (~r), Eq. (6.69). The asymptotic behavior in Eq. (6.105)
then corresponds to n(V ) ∼ e−αV/kBT . The function n(V ) is obtained from ap-
proximately 3002 = 90000 pixels, which we group into 500 bins for n(Vi) with
discrete equidistant Vi. The fit range consists in those bins where n(V ) decays
exponentially, which typically is the part of the cloud where the density is below
10% of the central density. To account for a possible background noise we then
fit the function

n(V ) = A · e−V/kT + n0 (6.108)

to the data. The rescaling with the factor α is performed later. A typical example
of the fit procedure is shown in Fig. 6.13.

For obtaining the function n(V ) it is important to account for the anharmonic
terms in V (~r), which becomes relevant in the outer regions of the trap. They lead
to an decrease of typically 10nk in the fitted temperature. For 782G ≤ B ≤ 922G
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6.2 Observation of pair condensation in two dimensions
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Figure 6.13: Left: Binned density profile n(V ) for a low temperature variable on
the far BEC side (692G). We plot n(m−2) vs. V (J). Note that
due to grouping the data into 500 bins, the central region p → 0
is only poorly captured, whereas we obtain a reliable picture of the
large momentum tail. Right: The same configuration plotted on a
logarithmic scale. We fit the model of Eq. (6.108) to the red region.
With this we obtain a temperature of 74nK. For this value of the
magnetic field we use α = 2 to account for the bosonic nature of the
classical particles.

we linearly interpolate α in Eq. (6.105) between 2 and 1. The result of the in-situ
thermometry is shown in Fig. 6.14.

The results of the in-situ thermometry agree well with the temperatures ob-
tained from the momentum distribution on the BEC side of the resonance. How-
ever, as we approach the atomic limit, the lowest values are reduced by a factor of
two in comparison to the T/4-fit results. However, the error of the fit is also very
large in both cases. Interestingly, without the rescaling by α, the in-situ Boltz-
mann method yields a temperature that is almost independent of the magnetic
field for the whole crossover.

For 1042G, the correction to the free fermion EOS from Fermi liquid theory
(FLT) is 22%. This motivates to fit a FLT-profile n(~r) = nFLT(µ0− V (~r), T, a2D)
with

nFLT(µ, T, a2D) =
2MLi

~2

kBT

2π
log

(
1 + exp

[ 1

kBT

(
µ+

( ~2

2MLi

) 2πnid

log(kF,ida2D)

)])
,

nid(µ, T ) =
2MLi

~2

kBT

2π
log
(

1 + eµ/kBT
)

(6.109)

to the in-situ density profile. Using a2D = 3.7×10−5m for the 2D scattering length,
the only free parameters are the central chemical potential µ0, the prefactor c =
OD/n (or particle number N), and the temperature T . In particular, since LDA
should work reasonably well in the central region of the cloud, the values of µ0

and N can be fitted independently of T in the inner region, with a subsequent
estimate for T from the outer regions. In order to get a reasonable fit, we typically
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6 Two-dimensional BCS-BEC Crossover

Figure 6.14: Temperature in nK obtained from an in-situ Boltzmann fit of the
thermal wing of the cloud vs. temperature variable 1-22. For tem-
perature variables 1-3 the sample is held in the trap for varying time
where it is heated due to technical noise, whereas 4-22 correspond to
a periodic modulation of the trap depth with increasing amplitude.

have to leave the particle number N free, i.e. cannot fix it to the experimentally
determined value. Again, the quartic terms substantially influence the result
of the fit for the temperature. The latter is decreased by ≈ 10nK due to the
anharmonicity. In contrast, the chemical potential is barely affected by the latter,
as it is determined mostly from the central region. The result of the FLT fit at
1042G is shown in Table 6.3.

Comparing the temperature obtained from the in-situ Boltzmann fit to those
found from the Boltzmann tail of the momentum distribution after TOF, we find
that the lowest temperatures in the atomic limit disagree, but are still compatible
within their errors. We find good agreement on the BEC side of the resonance.
The most conflicting result is that the in-situ Boltzmann method finds the lowest
attainable temperatures to be on the atomic side, whereas the lowest temperatures
seem to be reached in the bosonic limit from the T/4-imaging. However, the
influence on the critical temperature, and thus on the phase structure, is only
weak, as we display in Fig. 6.15.

We close the discussion of thermometry with a summary of systematic errors
of both methods to determine the temperature. An immediate advantage of the
method based on the momentum distribution is that the Gaussian tail is clearly
visible in the logarithmic plot over a wide range. The resulting fit error due to the
fitting range is approximately 7% for low and up to 13% for high temperatures.
In contrast, the fit range for the in-situ Boltzmann method is often very small.
The variation due to changing the fit range is usually 10−20nK in absolute units.

For the T/4-imaging to give a reliable account of the actual momentum distri-
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6.2 Observation of pair condensation in two dimensions

TempVar N µ0 (nK) T (nK) TF (nK) T/TF

1 103 000 224 27 306 0.09
3 102 000 222 34 303 0.11
5 102 000 222 36 301 0.12
7 98 000 223 42 292 0.14
9 105 000 209 51 294 0.17
11 116 000 193 57 301 0.19
13 101 000 201 67 274 0.24
15 97 000 200 74 263 0.28
17 88 000 208 76 248 0.31

Table 6.3: Results of the FLT fit to the density profile at 1042G, which is far on the
BCS side. Still there is a 22% Fermi liquid correction to the free fermion
gas density. Note that the energy spacing in the (tight) transverse
direction is ~ωz = 265nK. We find good agreement of the temperatures
with the ones from the Boltzmann fit at low temperatures, whereas the
FLT-temperatures are lower by ≈ 20% at high temperature variables.

bution, we need to ensure that (i) the expansion is ballistic, (ii) the expansion
plane is orthogonal to the z-direction, i.e. not tilted, and (iii) we measure exactly
at the turning point texp = T/4 such that Eq. (6.100) is applicable. (i) Due to the
highly anisotropic tapping of the cloud, the expansion after release from the trap
is very rapid in z-direction. This leads to a fast dilution of the gas during TOF.
In addition, before the release from the trap, the gas is ramped to 692G (”jump”)
with a speed of ' 1.9G/s such that the 3D scattering length is maximally small
within the range of accessible values. The ramp is sufficiently slow to ensure
that it does not result in heating1, but still fast enough such that the many-body
system cannot adjust to the new value of a2D. Murthy et al. [2014] have shown
that less than 10% of the particles undergo scattering during the expansion time
texp = 25ms, and that collisions are only important for the first 0.5ms after the
release. (ii) A relative tilt of the expansion plane compared to the imaging plane
results in a weak ellipticity of the cloud after T/4-imaging. This effect, however,
has been found to be less then 5%. (iii) The measured texp is very close to the
exact T/4, as t = T/4 corresponds to the turning point in the evolution in the
harmonic trap, and thus results in a maximal value for the temperature. By fit-
ting the temperature to images obtained for t < texp and t > texp it has been
verified that the image at texp has indeed maximal temperature with an error of
approximately 5%.

Fitting the wings of the in-situ profiles is mostly limited by the applicability of
the LDA. As we have discussed in Sec. 2.1, the latter becomes invalid for very

1This has been checked by measuring the temperature with and without jump, and by ramping
back and forth and then comparing the temperature at the initial magnetic field before and after
the ramp.
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6 Two-dimensional BCS-BEC Crossover
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Figure 6.15: Comparison of the ratio Tc/TF in the crossover with the temperature
being determined from T/4-imaging after TOF and the in-situ Boltz-
mann fit, respectively. Both methods coincide for log(kFã2D) ≤ 1,
but the central values disagree in the atomic limit. Still they are com-
patible within their errors. Note that we show the data normalized
to ã2D here, see Table. 6.2 for the translation to a2D.

low densities. This is the case for the Boltzmann tail, which we find to set in
for approximately 10% of the central peak density. As the latter decreases by
a factor of 3 when going from the bosonic to the atomic limit, the applicability
on the BCS side is most questionable. On the other hand, the global FLT fit
gives quantitatively good agreement with the Boltzmann fit for low temperatures
at 1042G. In contrast to the Boltzmann fit, the FLT-ansatz of Eq. (6.109) is
applied to the whole cloud. As a consequence, it is very robust against changes
of the fitting region. However, we also find that we have to leave the particle
number N as a free fit parameter for the FLT-ansatz to be compatible with the
density profile. The obtained N disagrees by ≈ 10% with the measured values,
and appears to be too high. Moreover, at higher temperatures, the agreement
between the in-situ FLT- and Boltzmann-methods becomes worse, but both are
still compatible within the errors. It is also puzzling that, for a fixed temperature
variable, the in-situ method gives the same temperature almost independent of
the magnetic field: T 6= T (B). Only due to the rescaling with 1 ≤ α ≤ 2 we
obtain the spread shown in Fig. 6.14.

For the temperature determination for the phase diagram we use the method
based on the momentum distribution since we believe that the Gaussian part of
the momentum distribution over a wide range is a very convincing signature of
an equilibrated temperature, whereas the applicability of LDA to an extremely
dilute, almost classical gas is questionable. The influence on the phase boundary
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6.2 Observation of pair condensation in two dimensions

is rather small as we do not observe condensation far on the atomic side of the
resonance. For lower magnetic fields, both methods coincide within their errors,
see Fig. 6.15. For a more detailed discussion of systematic errors we refer to Ries
et al. [2014].

6.2.4 Phase diagram

We now describe the experimental determination of the phase diagram of the 2D
BCS-BEC crossover within the setup outlined above. In order to compare the
measurements of the trapped gas to predictions for the homogeneous system we
normalize the data to the peak density n0 by employing the LDA to the trap
center. We define

TF =
~2

2MkB
2πn0, (6.110)

where n = n1 + n2 is the total density of atoms. Together with a measurement
which allows for the distinction of the condensed from the normal phase, we can
then obtain the critical temperature ratio Tc/TF for each value of the magnetic
field. This results in the phase diagram shown in Fig. 6.18. To determine Tc we
associate the broken phase with largely enhanced occupation of low-momentum
modes.

In Fig. 6.16 we show low-temperature in-situ density profiles and momentum
distributions for magnetic fields B = 692G, 782G, 832G, 852G, 922G across the
Feshbach resonance. This corresponds to inverse 3D scattering lengths a−1

3D =
7.11, 1.55, 0,−0.46,−1.67 in units of `z. The latter parametrization allows for
a possibly more intuitive comparison to the 3D case with crossover parameter
(kFa3D)−1. When crossing from the BEC (left in the figure) to the BCS side
(right in the figure), we observe a decrease of the peak density n0 together with
a broadening of the cloud. The central density at 692G is 2.7µm−2 per species,
whereas we have 0.76µm−2 per species at 922G. The qualitative shape of the
density profiles is in accordance with the expectation of a crossover from bosonic
degrees of freedom to an atomic ensemble. An analogous phenomenology is found
in the 3D BCS-BEC crossover.

From the in-situ density profiles it is hard to decide whether the system is in a
symmetry broken phase. In fact, although it is possible to identify a second order
phase transition by means of a kink in the number density, a more direct signa-
ture is highly desirable. Here we use the enhanced occupation of low-momentum
modes in the momentum distribution ñ(p) as a signature of phase coherence in
the system. We then call the system to be in the condensed phase. For a finite
system, as is realized by the trapped gas, a nonzero condensate can appear at low
momenta. To distinguish it from a mere enhanced occupation of low-momentum
modes with p > 0 is inherently difficult in experiment due to the finite resolution
of the imaging apparatus after TOF. We thus follow the common standard of
associating a bimodal structure of the momentum distribution with a condensate.
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6 Two-dimensional BCS-BEC Crossover

A
de

ns
ity

 
di

st
rib

ut
io

n

de
ns

ity
 [a

.u
.]0.12

0.06

0

m
om

en
tu

m
 

di
st

rib
ut

io
n

de
ns

ity
 [a

.u
.]

0.2

0.1

0

B

ln(kFa2D) -0.51 1.26 1.78 3.24-7.13

lz / a3D 7.11 0 -0.46 -1.671.55
BCSBEC

Figure 6.16: By varying the 2D scattering length across the Feshbach resonance we
tune the system from the bosonic (log(kFa2D)� −1) to the fermionic
regime (log(kFa2D) � 1). Here we show the in-situ density profile,
n(r), and the momentum distribution, ñ(p), at the lowest accessible
temperatures. The in-situ profile decreases in height and becomes
broader as we approach the fermionic limit. However, a clear signa-
ture of the phase transition cannot be inferred from it. In contrast,
a greatly enhanced occupation of low-momentum modes signals con-
densation in the momentum distribution. In order to compare to the
3D crossover we also display a−1

3D in units of `z. Figure taken from
Ries et al. [2014].

A better resolution of the low-momentum region is, however, possible with the
techniques described by Murthy et al. [2014].

The phase transition to the condensed phase is identified with the sharp rise of
the central peak momentum density, ñ(p = 0), normalized by the in-situ spatial
density, n(r = 0). In Fig. 6.17C we show the corresponding ratio as a function
of T/TF for 782G. We clearly observe two distinct linear regimes at low and
high temperatures, respectively. The critical temperature is defined from the
intersection of linear fits to both regimes. For the configuration shown in Fig.
6.17 we obtain Tc/TF = 0.151(40), where the uncertainty is obtained from the
standard error of the linear fits. The phase boundary extracted with this method
for the whole crossover region is shown in Fig. 6.18 by the black dots.

Apart from the phase transition to the condensed phase the momentum distri-
bution also allows to quantify the deviation of the trapped gas from a thermal
ensemble. For this purpose we determine the gray area under the curve shown in
Fig. 6.12, which we define as the non-thermal or quantum fraction, Nq/N . The
latter observable depends on the trap parameters due to the fact that we only
measure the trap-averaged momentum distribution. Nevertheless, it is a useful
quantity to measure deviations from the thermal gas density, and in this spirit
it is related to the determination of the transition point from the density men-
tioned above. In Fig. 6.17B we show the quantum fraction as a function of T/TF

for 782G. In contrast to ñ(0), the decay of Nq/N with increasing temperature
is rather smooth. The increase for T ≥ Tc implies quantum degeneracy of the
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6.2 Observation of pair condensation in two dimensions

Figure 6.17: Temperature dependence of the quantum fraction Nq/N and peak
momentum density ñ(p = 0) for 782G. The quantum fraction is ob-
tained from the gray area in Fig. 6.12, quantifying the non-thermal
fraction of particles. It gives a good account for the quantum degen-
eracy of the gas, but does not allow to locate the transition point.
In contrast, from the ratio ñ(p = 0)/n(r = 0) we find a clear separa-
tion between two temperature regimes. The critical temperature is
obtained from the intersection point of linear fits of the data in both
regimes. Note that an enhanced occupation value for ñ(p = 0) signals
phase coherence of the system. We associate this with condensation.
Figure taken from Ries et al. [2014].

gas, and heralds condensation. We obtain a picture which is consistent with the
method of extracting Tc from the peak momentum distribution since the increase
in Nq/N appears to become steeper at Tc. We show the quantum fraction as
a color scale in the phase diagram, Fig. 6.18. The condensed region roughly
corresponds to Nq/N & 0.3.

We are now in the position to discuss the main result of the present analysis,
the experimentally measured phase diagram of the 2D BCS-BEC crossover in
Fig. 6.18. On the BEC side we find the critical temperature to agree reasonably
well with an effective description in terms of strongly coupled composite bosons:
Based on the a Monte Carlo analysis of two-dimensional bosons by Prokof’ev et al.
[2001], Prokof’ev and Svistunov [2002], the BKT transition temperature on the
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Figure 6.18: Measured phase diagram of the 2D BCS-BEC crossover. The 2D scat-
tering length is determined according to Eq. (6.74), and the Fermi
momentum is given by kF = (2πn0)1/2. The black dots corresponds
to the estimated critical temperature from ñ(p = 0). The color scale
shows the quantum fraction Nq/N . We do not detect condensation
for log(kFa2D) > 2 on the BCS side, which puts an upper bound on
the critical temperature in this regime. The white dashed line cor-
responds to the BKT-transition temperature of a gas of composite
bosons from Eq. (6.111). Figure taken from Ries et al. [2014].

BEC side was shown by Petrov et al. [2003] to be

TBKT

TF
=

1

2

(
log
[ C

4π
log
( 4π

k2
Fa

2
2D

)])−1

(6.111)

with C = 380(3). Within the errors this formula provides a good description
of the data up to log(kFa2D) = 0. This is supported by the fact that the zero-
crossing of the chemical potential, due to the microscopic two-body bound state,
is located on the BCS side of the 2D crossover. (In contrast, it appears on the
BEC side in the 3D system.) Apart from the good agreement of the measured
critical temperature with the prediction from Eq. (6.111) within the experimental
error, we find the central experimental value to be systematically larger.

The phase diagram in Fig. 6.18 shows a maximum for log(kFa2D) ≈ 1, where
we find Tc/TF = 0.19. We associate this point with the crossover from bosonic
molecules to fermionic Cooper pairs. The location of the maximum thus approxi-
mately corresponds to the location of the zero-crossing of the chemical potential.
This statement is also supported by the FRG analysis for both the 3D and 2D
system, respectively.

Far on the BCS side, perturbation theory predicts an exponential decrease of
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Figure 6.19: We plot the phase diagram in terms of log(kFã2D). Here ã2D is the 2D
interaction parameter obtained from the confinement induces binding
energy (ε̃b) according to ε̃b = −~2/Mã2

2D, see the discussion below
Eq. (6.75). The Bose limit at 692G corresponds to log(kFã2D) ' −1.
If we associated ã2D with the 2D scattering length a2D, this would
indicate that the gas is still strongly coupled at 692G. In contrast,
log(kFa2D) ' −7 for this magnetic field. On the BCS side both
definitions coincide and we have ã2D = a2D. We show the GMB and
BCS results from Eq. (6.112) extrapolated to strong coupling in this
regime. The Petrov curve corresponds to the dashed white curve in
Fig. 6.18, however applied with a2D → ã2D here.

Tc/TF (Petrov et al. [2003]) according to

Tc

TF

∣∣∣
GMB

=
1

e

Tc

TF

∣∣∣
BCS

=
2eγ

π

1

kFa2D
, (6.112)

where GMB (BCS) indicates the expressions associated to Gorkov and Melik-
Barkhudarov (Bardeen–Cooper–Schrieffer) in 3D. Due to the limitation on ex-
perimentally accessible values for T/TF on the atomic side of the crossover, we
can only provide a lower bound of Tc/TF ≤ 0.19 for ln(kFa2D) ≥ 2. The observed
non-Gaussian fraction, however, supports a decrease towards the BCS limit. Note
also that the thermometry from the in-situ profiles, which indicates a lower cen-
tral value of the temperature on the far BCS side, does not invalidate the bound.
The extrapolation of the GMB- and BCS-predictions into the strongly-correlated
regime are shown in Fig. 6.19, although the perturbative calculations become
invalid in this regime.

Our estimate for the critical temperature for log(kFa2D) > 0 is systematically
above corresponding theoretical predictions for a homogeneous system (Bauer
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6 Two-dimensional BCS-BEC Crossover

B (G) log(kFa2D)c log(kFã2D)c Tc/TF (Tc/TF)in−situ

692 - 7.30 (4) - 0.96 (4) 0.104 (17) 0.105 (15)

732 - 3.42 (2) - 0.45 (2) 0.117 (25) 0.116 (31)

782 - 0.59 (1) 0.20 (1) 0.151 (40) 0.131 (51)

812 0.57 (1) 0.79 (2) 0.170 (29) 0.171 (24)

832 1.23 (1) 1.33 (1) 0.195 (45) 0.142 (120)

852 1.72 (1) 1.76 (1) 0.195 (32) 0.142 (70)

Table 6.4: Phase boundary of the 2D BCS-BEC crossover. The results are shown
for both a2D and ã2D, see also Table 6.2 for the translation a2D ↔ ã2D.
The critical temperature Tc is determined from the Boltzmann fit to the
high momentum tail of the momentum distribution. We also display
the corresponding value for the critical temperature obtained from the
in-situ fit to the density profile, see the discussion in Sec. 6.2.3. Both
thermometry methods are compatible within their errors for magnetic
fields which support a condensed phase in the experimentally accessible
temperature region. The error given in this table corresponds to the
statistical error. For a detailed discussion of uncertainties see Ries et al.
[2014].

et al. [2014]). We address part of this deviation to the influence of the finite aspect
ratio of our trap, which leads to residual influence of the third dimension (Fischer
and Parish [2014]). Furthermore, local equilibration and thus applicability of the
local density approximation at the trap center is not guaranteed. This effect
becomes more pronounced for decreasing central peak density. Still, due to the
reasonable agreement with theory on the BEC side, we believe that the phase
diagram shown in Fig. 6.18 gives a reliable account for the phase structure of the
homogeneous system. We display selected values for the phase boundary in Table
6.4.

From a Fourier transform of the momentum distribution ñ(p) we obtain the
correlation function g1(r). In the low temperature phase we observe a clearly
visible power law decay according to g1(r) ∼ r−α for large r. In contrast the
decay is exponential in the high temperature region. This is in line with a BKT-
transition of a spin-wave phase with algebraically decaying phase correlations
into a disordered phase at T = TBKT. In particular, the correlation length ξcor

is anomalously large below Tc. For a truly 2D system we have ξcor = ∞ in the
superfluid phase. Here, however, due to the finite extent of the trapped system,
correlations are cut off at length scales on the order of the oscillator length `0.
Indeed, we find that g1(r) = r−α exp(−r/ξcor) is a good fit function for large r
with ξcor ≈ 20µm being on the order of the radial oscillator length.

Single-shot density images of the cloud after short TOF display density fluctu-
ations on length scales which are sufficiently larger than the thermal wavelength.
Those fluctuations have to be due to initial (i.e. in-situ) phase fluctuations. In-
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6.2 Observation of pair condensation in two dimensions

Figure 6.20: Density profile in-situ (left) and after short TOF (right) at a low-
temperature on the BEC-side. We observe density fluctuations after
TOF which cannot be explained by the far smaller initial density fluc-
tuations. Accordingly, they have to result from initial phase correla-
tions. The size of the patches after TOF is larger than the thermal
wavelength. This rules out thermal correlations and the observed
pattern must result from a superfluid with large correlation length.
Figure taken from Ries et al. [2014].

deed, the size of initial density fluctuations can be estimated from shot-by-shot
images of the trapped cloud before the release, and they are too small to explain
the signature after TOF. We show an in-situ density image and a density image
after short TOF in Fig. 6.20.

We conclude from (i) the good agreement of Tc with the BKT-prediction on the
BEC-side, (ii) the algebraic decay of phase correlations and an ’infinite’ correlation
length (< `0) below Tc, and (iii) the imprint of initial phase correlations on the
density profile after short TOF that the observed transition is consistent with
a BKT-transition to a superfluid phase. The observation of vortices above the
critical temperature would be a further important experimental signature.
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7 Conclusions and Outlook

For the theoretical analysis of the BCS-BEC crossover in ultracold Fermi gases
in 3D and 2D we employed the FRG and DSE. In addition, the 2D setup has
also been investigated from the experimental side. A central finding is that the
phenomenology of the 2D many-body system is similar to the 3D counterpart,
and that the reduction of dimension results in a smooth dimensional crossover.
Indeed, the FRG equations can be employed for continuous spatial dimension
3 ≥ d ≥ 2 and, although we only considered the limits of d = 3 and d = 2 here,
there is no indication that the qualitative features in the many-body context
change for an intermediate critical dc. Furthermore, the experimental setup in
a highly anisotropic trap with aspect ratio ωz/ωx ≈ 300 effectively simulates a
truly 2D system with the same qualitative features found from the FRG or other
theoretical approaches in 2D. We conclude that when going from 3D to 2D we
indeed find a smooth dimensional BCS-BEC crossover.

Both system, however, also feature some inherent differences. In the few-body
(or vacuum) sector we always find a two-body bound state in 2D. Therefore, the
2D BCS-BEC crossover with crossover parameter log(kFa) can be driven solely
by density. In contrast, the resonance condition a−1 = 0 is located at a vacuum
quantum critical point in 3D, and the regimes with positive or negative sign of
the crossover parameter (kFa)−1 cannot be connected by an increase of particle
number. In experiment, however, the 2D crossover is driven by a magnetic Fesh-
bach resonance changing the 3D scattering length, which induces an effective 2D
scattering length a, and the change of log(kFa) due to density is only weak.

Another important difference of both systems is the nature of the superfluid
phase transition. Whereas we have a second order phase transition in 3D with
critical exponents in the O(2)-universality class, the transition is of the BKT-
type in 2D. As a consequence, the correlation length is infinite below the critical
temperature Tc in the latter case and a nonzero anomalous dimension is found
for temperatures 0 < T ≤ Tc. Both features are recovered within the theoreti-
cal FRG-framework and they are observed in experiment. Condensation of zero
momentum pairs, which is forbidden for the infinitely extended 2D system due
to the Mermin–Wagner theorem, can be observed in a finite system. In fact, the
condensate fraction only vanishes logarithmically with the system size and is thus
always present in an experimental realization. For the interpretation of the ex-
periments discussed in this thesis, the appearance of an enhanced occupation of
low momentum modes has been associated with condensation. This allowed us
to extract the phase diagram of the 2D BCS-BEC crossover from the momentum
distribution.
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In order to obtain a quantitatively precise description of the phase structure
and the equation of state in the BCS-BEC crossover one has to resolve fluctuation
effects which go beyond mean field theory. We have employed the FRG in a variety
of truncation and regularization schemes to identify important contributions onto
observables such as the phase diagram or the equation of state.

To leading order bosonic fluctuations have impact onto both the effective po-
tential and the boson propagator. These contributions are particularly important
to obtain the critical physics, i.e. the correct universality class in 3D, and the
BKT physics in 2D. Moreover, bosonic fluctuations are important to resolve the
bosonic side of the crossover beyond mean field theory, and to account for the
correct zero temperature physics in d < 3. In this manner a qualitative picture
of the dimensional BCS-BEC crossover can be obtained in the whole parameter
range spanned by chemical potential, temperature, scattering length, dimension,
and spin-imbalance. Moreover, important quantitative benchmarks such as the
critical temperature Tc/µ of the UFG or the LHY-correction and critical tem-
perature on the bosonic side in 3D are accurately resolved within a derivative
expansion.

The equation of state, instead, is not resolved in a satisfactory fashion in this
truncation scheme. Rather, as we have shown explicitly for 3D, the fermion self-
energy receives important fluctuation corrections which significantly increase the
density of the system. We have shown that in a purely fermionic picture the boson
contribution enters the density through the Tan contact, which is the coefficient of
the large momentum part npσ ∼ C/p4 of the momentum distribution of fermions
in state |σ〉. We derived the RG evolution equation for the scale dependent Tan
contact, Ck, which interpolates between CΛ = 0 in the UV and C0 = C in the
IR. Again, only on the bosonic side of the crossover the Tan contact is resolved
to quantitative precision within the FB0-truncation.

On the atomic side we observe that the missing Hartree shift of the chemical po-
tential results in the failure to capture the Fermi liquid correction to the equation
of state and the Tan contact. In the perturbative limit, the Fermi liquid correction
to the equation of state can be obtained easily by integrating the flow equation
for the fermion propagator in a way that the direct feedback of the fermion self-
energy is neglected. The density is then defined by means of the closed fermion
loop. In this way a parametrization of the fermion propagator which includes
both Hartree shift and Tan contact should give a reliable account for the equation
of state in the perturbative limits.

At unitarity, a running fermion mass term has been included in the FBM0- and
FBM-truncations with the Q-exp regulator. In this case we found a substantial
correction of approximately 60% to the effective chemical potential for the UFG.
This strong renormalization suggests that a running chemical potential shift needs
to be taken into account at resonance. We believe that the combination of such a
truncation together with the definition of the density from the closed fermion loop
gives a very good account of the whole crossover region to 5 − 10% accuracy. In
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first studies we obtained very promising results from this approach to the equation
of state.

We moved further towards quantitative precision in the FRG-approach to the
BCS-BEC crossover by evolving the effective potential on a grid of field variables.
For the spin-balanced 3D system we found a rather good stability of the critical
temperature of the UFG as compared to the results obtain within a φ4-expansion
of the effective potential. This suggests that the corresponding second order phase
transition is well-captured by a Taylor expansion. However, for small enough spin-
imbalances such that the transition is still of second order, we found the result
for the critical temperature of the UFG within a φ4-expansion to overestimate
the one obtained from the full evolution. It will be very interesting to study
the behavior of the effective potential in the spin-balanced and -imbalanced 2D
BCS-BEC crossover.

The grid-solution for the effective potential allows for the discussion of the
impact of spin-imbalance in the BCS-BEC crossover. This additional direction
in parameter space introduces qualitatively new aspects to the pairing properties
of fermions. Due to the mismatch of (approximate) Fermi spheres, pairing with
zero relative momentum and a homogeneous superfluid might be energetically
disfavoured. In particular, it is known from BCS theory that the breakdown
of superfluidity due to spin-imbalance proceeds by means of a first order phase
transition at low temperatures. We have extended the mean field analysis of
the spin-imbalanced 3D BCS-BEC crossover by including bosonic fluctuations
in the FB0-truncation. We find the qualitative structure of the mean field phase
diagram of the imbalanced UFG to persist after inclusion of fluctuations. However,
the location of the phase boundary changes significantly: In the balanced limit
we reproduce the substantially lowered critical temperature, whereas the critical
spin-imbalance is found to be above the mean-field prediction.

Several exotic phases have been conjectured for spin-imbalanced Fermi gases.
Here we studied in detail the stability of the Sarma phase, where the system
is a homogeneous, but polarized superfluid. Moreover, the formation of one or
two Fermi surfaces in this phase results in gapless excitations of the fermionic
excess quasiparticles. Strictly speaking, the Sarma phase is only well-defined for
T = 0, but the criterion for its existence can be extended for the case of T > 0
as well. However, in order to observe the characteristic features of this phase in
experiment, sufficiently low temperatures are required. We thus investigated the
stability of the Sarma phase at zero temperature in the 3D BCS-BEC crossover
beyond the mean-field approximation with the FRG. This analysis was also moti-
vated by studies of a relativistic system where fluctuations induce a stable Sarma
phase. We find that for 3D ultracold fermions the Sarma phase at T = 0 is only
stable on the BEC-side of the crossover, where it appears close to the prediction
from mean field theory.

Our analysis constitutes the first study of the quantum phase diagram of the
spin-imbalanced 3D BCS-BEC crossover including bosonic fluctuations beyond
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mean field theory. Again, the extension to the 2D case will be very interesting.
Another promising direction of research consists in computing the properties of
the quantum critical point on the BEC-side of the crossover. It is well-known
that the FRG is capable of resolving critical phenomena in bosonic systems to
high accuracy. Incorporating fluctuation effects onto the fermion self-energy and
Feshbach coupling might, however, result in a new universality class beyond the
bosonic classification as O(2)-model. Those corrections are gapped for the bal-
anced system, but become important in the Sarma phase. This leads to inter-
esting infrared physics dominated by both bosonic Goldstone modes and gapless
fermionic excitations.

By applying the well-understood FB0-truncation to the 2D BCS-BEC crossover
we obtained a qualitative picture of the phase structure and the equation of state
of the system. The superfluid transition is consistent with the BKT-mechanism
for all values of the 2D scattering length within our truncation. We find a strong
dependence of the critical temperature Tc/µmb and the zero temperature gap
parameter ∆/µmb on the infrared scale kf > 0 at which we stop the flow. Further-
more, the truncations with or without a running of the linear frequency coefficient
Sφ show significant quantitative changes. However, they also share common fea-
tures: Both ways to treat the running of Sφ result in a logarithmic kf -dependence
of the critical line. The phase boundary plotted as Tc/TF vs. log(kFa) shows
two local maxima and a dip at log(kFa) ≈ 0. Whereas a maximum is expected
from extrapolation of the BCS- and BEC-limiting formulas, the additional sub-
structure appears to be an effect of the competition between bosonic (few-body)
and fermionic (many-body) features of the system. From improvements of the
truncation it will be possible to decide whether these features are physical effects
or mere truncation artefacts.

The system size introduces a physical cutoff onto the maximal length of long
wavelength fluctuations. In the FRG approach to the BCS-BEC crossover this
can be modelled by stopping the RG running at a nonzero infrared scale kf > 0,
which is well below all physical scales of the system due to density, temperature,
and scattering length. The dependence of observables computed from the FRG
on kf is a subtle question because it can be either due to physics or due to the
truncation. It is know that unphysical infrared scale dependencies appear in the
FB0-truncation when applied to nonrelativistic bosons at zero temperature for
d < 3. Since we partially recover a bosonic system in d spatial dimensions, the
infrared or Goldstone sector is dominated by the same set of flow equations. It is
thus important to leverage the ansatz for the effective action to a FB-truncation
including the quadratic frequency Vφ-term. We have found in computations not
presented in this thesis that the inclusion of Vφ does indeed remove the unphysical
kf -dependence of the zero temperature gap. However, the infrared scale depen-
dence of the critical temperature persists.

The FB-truncation with q2-opt regulator violates the nonrelativistic vacuum
hierarchy which ensures that the fermion propagator and four-fermion coupling are
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not renormalized in vacuum. The same is true for any truncation employing the
Q-exp regulator. This is not problematic in the sense that the boson and fermion
mass terms can still be fine-tuned to yield the scattering length or binding energy
in vacuum. However, the correct result for the dimer propagator coefficients Aφ,
Sφ, and Vφ is not recovered for k → 0 in those cases with unphysical vacuum
contributions, see Table 6.1. We attribute this to a failure to accurately describe
the vacuum even with fine-tuning of the mass terms. This may result in an
additional error on the scattering length.

The improper account for the dimer propagator can be seen as a breakdown of
the mediation of fermionic vacuum interactions by the s-channel boson. In fact,
the u-channel or particle-hole (’box’) diagram does not vanish in vacuum for those
cases, and thus successively spoils the proper account for fermionic interactions
during the flow. With a correct dynamical bosonization procedure during the
flow, this contribution can be subtracted at each scale, thereby resulting in a
truncation which respects the vacuum hierarchy and resolves the correct dimer
propagator. From this point of view, the cφ-dependence of results with the Q-
exp regulator can partially be seen as a parametrization of the running of the box
diagram. It is very likely that the 2D BCS-BEC crossover at zero temperature can
be captured accurately by means of a FB-truncation where the correct vacuum
scaling is obtained from dynamical bosonization. It will also be interesting to
study the BCS-BEC crossover in continuous dimension.

Besides the theoretical approach to fermion pairing in 3D and 2D we also looked
at the 2D system from an experimental perspective. The realization of the 2D
BCS-BEC crossover using 6Li by the Jochim group at PI Heidelberg offers many
opportunities to investigate the thermodynamics and phase structure of the sys-
tem. From a new T/4-imaging technique it is possible to obtain the momentum
distribution in a clean way after expansion in a harmonic potential. This can be
understood easily from a classical picture, but has been derived in this thesis with
quantum field theoretical techniques as well. From an enhanced occupation of
low momentum modes we have defined the condensed phase of the system, which
allowed to extract the experimental phase diagram of the 2D BCS-BEC crossover.
It agrees well with the expected form on the bosonic side of the resonance and
possesses a maximum at log(kFa) ≈ 1. On the atomic side of the resonance no
condensation is observed for log(kFa) ≥ 2, thus complicating a comparison to
theory in this regime. For the measurement of the phase diagram an accurate
determination of T , TF, and a from the experimental data was crucial.

The experimental data immediately opens up several directions of future re-
search. By applying the local density approximation to the in-situ density profiles
we can map out the equation of state in the 2D BCS-BEC crossover. The relevant
techniques have partially been developed in this thesis for the in-situ thermome-
try, and thus are ready for application. Of course, this allows for a comparison
of FRG-predictions for the phase diagram and the equation of state with exper-
iment. Another interesting question concerns the nature of the quasi-long range
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order in the system which can be observed from a power law decay of phase corre-
lations. The latter can be obtained from the Fourier transform of the momentum
distribution. Furthermore, the bosonic side of the resonance realizes a strongly
coupled Bose gas, and thus facilitates the comparison with results for the momen-
tum distribution of 2D bosons from the FRG. Here we can build on earlier works
for purely bosonic systems.

In this thesis we made important steps towards the understanding of fermion
pairing in the BCS-BEC crossover in 3D and 2D. Our analysis provides insights
into the merits and shortcomings of different FRG-approaches to the system. For
the first time, we included the additional parameters of spin-imbalance, δµ, and
two dimensions, d = 2, in the FRG-description of the BCS-BEC crossover. The
experimental phase diagram of the balanced 2D BCS-BEC crossover has been
extracted in close collaboration with experiment.
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Für viele wichtige Beiträge zu dieser Arbeit danke ich Sebastian Diehl. Von seiner Un-
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