2.6. Studien zur möglichen regulatorischen Interaktion zwischen APM-1und *p53*

Das Tumorsuppressor-Gen *p53* codiert für einen sequenzspezifisch DNA-bindenden Transkriptionsfaktor, der in Zellen aktiviert wird, die ionisierender Strahlung, UV-Licht oder anderen DNA-schädigenden Agenzien ausgesetzt werden (Reisman und Loging, 1998). Das Wildtyp-p53-Protein spielt eine wichtige Rolle bei der Zellzyklus-Regulation und scheint die genetische Integrität der Zelle zu überwachen. In dieser Funktion registriert es die verschiedenen Stimuli, die DNA-Schäden bewirken, und reagiert mit der Expressionsinduktion von Genen, die ihrerseits für die Inhibierung der DNA-Synthese oder die Stimulierung von Apoptose zuständig sind (Ko and Prives, 1996; Hansen and Oren, 1997; Levine, 1997). Funktionell inaktivierende Mutationen im *p53*-Gen wurden in mehr als 50 % aller menschlichen Tumoren beobachtet (Levine et al., 1994; Ko and Prives, 1996). Diese Mutationen führen fast immer zu einer Störung der sequenzspezifischen Transaktivierung, was die Hypothese unterstützt, dass diese Funktion essentiell für die Tumorsuppressor-Wirkung von p53 ist. In einer daraufhin erfolgten systematischen Identifizierung p53-regulierter Gene wurde gezeigt, dass p53 die Expression zahlreicher Gene aktiviert, die wichtige Komponenten der neoplastischen Veränderung von Zellen beeinflussen (Yu *et al.*, 1999).

2.6.1. Vergleich von APM-1-mRNA und p53-Protein in Tumorzelllinien verschiedender Gewebe

Vor dem Hintergrund der zentralen Position von p53 im Prozess der Kanzerogenese wurde untersucht, ob zwischen *APM-1* und *p53* möglicherweise ein Zusammenhang auf genregulatorischer Ebene besteht. Dazu wurde zunächst die p53-Proteinmenge in Tumorzelllinien bestimmt, in denen das *APM-1*-Expressionsprofil durch Northern-Analyse erstellt worden war. Abbildung 1 zeigt eine repräsentative Auswahl von Western-Analysen zur Detektion von p53. Eine Übersicht des Vorkommens von APM-1-mRNA im Vergleich zu p53-Protein in 36 Tumorzelllinien aus 5 verschiedenen Geweben und ektozervikalen Keratinozyten gibt Tabelle 1. Das p53-Protein ist nur in denjenigen Zelllinien nachweisbar, in denen auch *APM-1* exprimiert wird. Eine Ausnahme bildet die Colonkarzinom-Zelllinie CoLo-320, die bei fehlender *APM-1*-Expression p53-positiv ist. Allerdings wird in CoLo-320-Zellen kein funktionell aktives p53 exprimiert (Arita *et al.*, 1997). Der auffällige Befund einer Korrelation zwischen APM-1-mRNA und p53-Protein führte zu der Vermutung, dass entweder p53 aktivierend auf die *APM-1*-Expression wirken oder umgekehrt APM-1 an der Induktion von p53 beteiligt sein könnte.

Abbildung 1: Western-Analyse der p53-Proteinmenge in Tumorzelllinien verschiedener Gewebe

Gezeigt ist der Nachweis von p53-Protein in Kernextrakten aus insgesamt zwei Zervix-, zwölf Colon-, vier Pankreas-, drei Harnblasen- und zwei Lungenkarzinomzelllinien. Die Bezeichnungen der Zelllinien und die Gewebegehörigkeit sind angegeben. In zwei unabhängigen Experimenten **A** und **B** wurden je 30 µg Kernprotein in einem 10 %-igen SDS-PAG aufgetrennt und auf PVDF-Membran transferiert. Das p53-Protein mit einem apparenten Molekulargewicht von 53-55 kDa (Pfeil) wurde mit polyklonalem α -p53-Antiserum aus Ratten nachgewiesen. Das Antiserum wurde freundlicherweise von Dr. Hanswalter Zentgraf (DKFZ) zur Verfügung gestellt. Die Größen ausgesuchter Banden des Proteingrößenstandards "Rainbow" in kDa sind angegeben.

Lfd.	Zelllinie	Cowobo	APM-1-mRNA ^a	p53-Protein ^b	
Nr.		Gewebe	(Signalintensität) ^c	(Signalintensität) ^c	
1	CX-2		+++	+	
2	SW48		++	-	
3	HT-29		++	++	
4	LoVo		++	-	
5	CX-1		++	++	
7	SW707		++	++	
8	SW403	Colon-	++	-	
9	LS174T	karzinom	+	-	
10	LS180	Mulzinom	+	-	
11	CXF94		+	-	
12	KM-12		+	+	
13	HCT116		-	-	
14	CaCo-2		-	-	
15	SW948		-		
16	CoLo-320		-	+	
17	ME180		+++ ^d	-	
18	HeLa	Zervix-	-	-	
19	C4-II	karzinom	+	-	
20	MRI-H196		+	-	
21	Ekto-CxK	Ektozervikale Keratinozyten	+	-	
22	A818-4		++	+	
23	Capan-1	Pankreas-	+	++	
24	DanG	karzinom	+	-	
25	CoLo-357		+	-	
26	LX-1		++	++	
27	LUTCML-54		-	-	
28	A549	Lungen	-	-	
29	RPMI 2650	Lungen-	+	+	
30	H-Messo-1	KalZIIIVIII	-	-	
31	H-Messo-1a		-	-	
32	H69		+	-	
33	XF439		++	++	
34	RT112	TT	+	+	
35	EJ28	Hamplasen-	_		
36	RT4	Karzinom	++	-	
37	HBTCPL-1		-	-	
L	1	1			

Tabelle 1: Vergleich der Mengen von APM-1-mRNA und p53-Protein in Tumorzelllinien verschiedener Gewebe und in ektozervikalen Keratinozyten

^a Northern-Analyse von poly(A)+-RNA mit Hybridisierungssonde "G9-POZ" (0,4 kb, umfasst die für die BTB-Domäne codierende Sequenz des *APM-1*-Gens); Daten zur Verfügung gestellt von E. Schwarz

^b Eigene Daten; ausführliche Beschreibung im Text

- ^c -: negativ, +: schwach, ++: mittel, +++: stark
- ^d viral-zelluläres Fusionstranskript unter Kontrolle des HPV68-Promotors

2.6.2. Reportergenanalyse zur regulatorischen Beziehung zwischen APM-1 und p53

Mit Hilfe von Reportergenanalysen wurde untersucht, ob p53 einen transaktivierenden Effekt auf die Genexpression von *APM-1* ausübt, oder ob umgekehrt APM-1 die Regulation der *p53*-Expression beeinflusst. Gleichzeitig wurde die autoregulatorische Eigenschaft von APM-1 analysiert. Als Reporterkonstrukte für die Analyse der APM-1-Regulation wurden pGL3-Basic-p2-s, pGL3-Basic-a31-*Pvu*II-s, pGUP.PA-p2-s und pGUP.PA-p2-as eingesetzt (siehe Tabelle 4 A und B). Die Wirksamkeit von p53 wurde mit Hilfe von pFragA-GUP.PA und p53Con-GUP.PA kontrolliert. Das FragA-Plasmid enthält eine 33 Nucleotide lange authentische p53-Bindungssequenz aus dem "ribosomal gene cluster" (RGC), während in p53Con-GUP.PA eine artifizielle p53-Bindungsstelle von ca. 50 Nucleotiden vorliegt. Beide Konstrukte wurden freundlicherweise von Dr. Karin Butz (DKFZ) zur Verfügung gestellt.

Um den Einfluss von APM-1 auf die *p53*-Transkription analysieren zu können, wurde das Konstrukt p53EP-GUP.PA hergestellt, das ein 994 bp großes genomisches PCR-Fragment aus dem Promotorbereich unmittelbar stromaufwärts des 5'-Endes von *p53* enthält. Das PCR-Produkt wurde unter Verwendung einer endogenen *Pst*I- und einer eingefügten *Bg*II-Erkennungssequenz im Rückwärts-Primer mit den entsprechenden Restriktionsenzymen geschnitten und in pGUP.PA inseriert.

Als Effektorplasmide wurden die Expressionsvektoren pSG5-APM-1 mit der APM-1-cDNA unter Kontrolle des SV40-Promotors/Enhancers, bzw. p53wt mit der Wildtyp-p53-cDNA unter Kontrolle des hCMV-Promotors/Enhancers co-transfiziert. Das p53wt-Plasmid wurde freundlicherweise von Dr. Karin Butz (DKFZ) zur Verfügung gestellt.

Die Tabelle 2 A und B zeigen die Ergebnisse zweier repräsentativer Messungen. Nach Co-Transfektion mit p53wt schien sich bei pGL3-Basic-p2-s eine deutliche Aktivierung gegenüber dem allein transfizierten Reporterplasmid abzuzeichnen. Dieser Effekt wurde jedoch offenbar nicht durch die Steigerung der absoluten Luciferase-Aktivität (ALA) hervorgerufen. Vielmehr kam es bei den Transfektionen mit p53wt-Beteiligung aufgrund einer bis zu 10-fachen Senkung der β -Galaktosidase-Aktivität (im Vergleich zu den übrigen Co-Transfektionen) zu einer artifiziellen Erhöhung der relativen Luciferase-Aktivität, welche den Quotienten aus ALA und β -Galaktosidase-Aktivität darstellt. Verursacht wurde dieses Phänomen wahrscheinlich durch eine reprimierende Wirkung von p53 auf den hCMV-Promotor, der die Transkription des β -Galaktosidase-Gens im Normalisierungsplasmid pCMV-Gal kontrolliert. Mit Ausnahme des Kontrollplasmids pFragA-GUP.PA, das die p53-Wirksamkeit bestätigt, zeigen alle übrigen Reporterkonstrukte keine nennenswerte Aktivierung in Gegenwart von p53wt. Nach Co-Transfektion mit pSG5-APM-1 konnte bei keinem der untersuchten Reporterkonstrukte eine klare Änderung der ALA gegenüber den Reportern ohne Effektor festgestellt werden. Es erfolgt offenbar weder eine Autoregulation der APM-1-Expression noch eine Beeinflussung der p53-Transkriptionskontrolle durch APM-1. Eine Übersicht der gemittelten ALA-Werte aus insgesamt vier Messreihen ist in Tabelle 3 zusammengestellt.

Anhand der vorliegenden Reportergenanalysen ist eine Interaktion zwischen *APM-1* und *p53* durch direkte Beeinflussung der transkriptionellen Regulation eher unwahrscheinlich. Eine Autoregulation von APM-1 war mit dem verwendeten experimentellen System ebenfalls nicht nachzuweisen.

 Tabelle 2 A: Analyse transienter Transfektionen zur Bestimmung der Promotor-/Enhancer

 Aktivität des p2-Fragments, des a31-PvuII-Fragments, von p53-Bindungsstellen und der p53-Kontrollregion nach Co-Transfektion mit pSG5-APM-1 und/oder p53wt

Effektor ^a	Reporter ^b	A	β- Gal d	
_		1036	963	786
		889	000	557
pSG5-		1576	1265	359
APM-1	nGL3-Basic	1153	1505	449
n 53wt		598	615	47
poome		632	015	47
pSG5-APM-1		327	395	42
+ p53wt		323	0~0	51
_		61953	55541	819
		49129	000 H	671
pSG5-		24158	21251	471
APM-1	pGL3-Basic- p2-s	18344	21201	410
n53wt		49548	45916	67
Poont		42284	10010	63
pSG5-APM-1		14739	13116	52
+ p53wt		11493		55
-		2255	2013	745
		1771		667
pSG5-		4769	4472	570
APM-1	pGL3-Basic-	4175		563
n53wt	a31- <i>Pvu</i> II-s	749	795	56
Poont		840		79
pSG5-APM-1		436	433	42
+ p53wt		429	100	46

Tabelle 2 A: Analyse transienter Transfektionen zur Bestimmung der Promotor-/Enhancer-
Aktivität des p2-Fragments, des a31-PvuII-Fragments, von p53-Bindungsstellen und
der p53-Kontrollregion nach Co-Transfektion mit pSG5-APM-1 und/oder p53wt
(Fortsetzung)

Effektor ^a	Reporter ^b	Al	β -Gal ^d	
_		10619	11210	561
	p53Con-	11800	11210	517
pSG5-		24717	25847	435
APM-1		26977	~ JOH /	447
n53wt	GUP.PA	16569	16206	80
poont		15843	10~00	76
pSG5-APM-1		22772	22237	68
+ p53wt		21702	22201	73
-		404	366	776
		328	000	619
pSG5-	1241		1290	456
APM-1	pFragA- GUP.PA	1338	1200	477
n53wt		11669	13410	48
Poont		15150	10110	60
pSG5-APM-1		17472	18627	45
+ p53wt	-	19781	10041	49
-		5865	5657	833
		5448		682
pSG5-		12463	12673	512
APM-1	p53EP-	12883	1.010	478
p53wt	GUP.PA	1364	1530	44
room		1696		51
pSG5-APM-1		1066	1270	43
+ p53wt		1474		43

 $^{\rm a}$ Verwendet wurden je 2,5 μg pSG5-APM-1 und 100 ng p53wt

 $^{\rm b}$ Verwendet wurden je 3 μg der angegebenen Reporterplasmide

 ^c ALA: Absolute Luciferase-Aktivität in Extrakten der in 60 mm-Schalen kultivierten und transfizierten HeLa-Zellen (Ausgangsdichte: 1,5 × 10⁵ Zellen pro Schale); in der rechten Spalte ist das gerundete arithmetische Mittel der beiden Parallelansätze in der linken Spalte gezeigt

^d β-Gal: β-Galaktosidase-Aktivität in den Zellextrakten nach Co-Transfektion mit 0,5 μg pCMV-Gal

Effektor ^a	Reporter ^b	ALA c		β -Gal ^d	
-		2412	1827	1320	
		1241	1021	918	
pSG5-		2281	1898	861	
ÂPM-1	nGL3-Basic	1375	1020	631	
n53wt	pullo Dusie	970	867	110	
p55W		763	8	92	
pSG5-APM-1		365	295	85	
+ p53wt		225	20	62	
_		84967	65775	1189	
		46583	00110	1150	
pSG5-	pGL3-Basic- p2-s	34697	27478	962	
APM-1		20258	21110	779	
p53wt		78018	64834	98	
		51650		82	
pSG5-APM-1		19110	14975	94	
+ p53wt		10840	1.570	66	

Tabelle 2 B: Ana	lyse transienter '	Fransfektionen zur H	Bestimmung der I	Promotor-/Enha	incer-
Akti	ivität des p2-Fra	gments nach Co-Tra	ansfektion mit pS	G5-APM-1 und/	oder p53wt

Effektor	Reporter	ALA		β- Gal
_		4677	4621	745
		4565	TUWI	634
pSG5-	pGUP.PA	4247	3043	481
APM-1		3638	JJ4J	517
n53wt		2744	2883	58
рээмг		3022	~000	66
pSG5-APM-1		2346	1914	66
+ p53wt		1482	1014	43
-		20974	18508	975
		16042	10000	785
pSG5-		12588	10071	578
APM-1	pGUP.PA-	7554		384
p53wt	p2-s	2268	1942	78
•		1615		59
pSG5-APM-1		1456	1054	53
+ poswi		651		30
-		2059	1791	1165
		1523		829
pSG5-		5077	4081	603
APM-1	pGUP.PA-	3085		393
n53wt	p2-as	615	483	107
Poont		351	100	71
pSG5-APM-1		756	581	71
+ p53wt		406	001	26

 $^{\rm a}$ Verwendet wurden je 2,5 μg pSG5-APM-1 und 100 ng p53wt

 $^{\rm b}$ Verwendet wurden je 3 μg der angegebenen Reporterplasmide

- ^c ALA: Absolute Luciferase-Aktivität in Extrakten der in 60 mm-Schalen kultivierten und transfizierten HeLa-Zellen (Ausgangsdichte: $1,5 \times 10^5$ Zellen pro Schale); in der rechten Spalte ist das gerundete arithmetische Mittel der beiden Parallelansätze in der linken Spalte gezeigt
- ^d β-Gal: β-Galaktosidase-Aktivität in den Zellextrakten nach Co-Transfektion mit 0,5 µg pCMV-Gal

Tabelle 3: Promotor/Enhancer-Aktivität des p2-Fragments, des a31-*Pvu*II-Fragments, von p53-Bindungsstellen sowie der p53-Kontrollregion in HeLa-Zellen nach Co-Transfektion mit pSG5-APM-1 und/oder p53wt

	Effe	ektor Absolute Luciferase-Aktivität						
Reporter	pSG5-	n59wt	Messreihe			Mittel-	Ct A have b	
	APM-1	pəəwi	1	2	3	4	wert ^a	STADW 2
	-	-	2625	963	1827	-	1805	831,2
nCI & Basic	+	-	4306	1365	1828	-	2500	1581,4
pollo-Dasic	-	+	1577	615	867	-	1020	498,8
	+	+	1078	325	295	-	566	443,7
	-	-	103312	55541	40085	65775	66178	26914,0
pGL3-Basic-	+	-	79771	21251	20316	27478	37204	28555,5
p2-s	-	+	101779	45916	30551	64834	60770	30725,0
	+	+	23025	13116	8570	14975	14922	6035,2
	-	-	4714	2013	-	-	3364	1909,9
pGL3-Basic-	+	-	15028	4472	-	-	9750	7464,2
a31- <i>Pvu</i> II	-	+	1935	795	-	-	1365	806,1
	+	+	1753	433	-	-	1093	933,4
	-	-	-	-	4621	-	4621	
nCUP PA	+	-	-	-	3943	-	3943	
puor .i A	-	+	-	-	2883	-	2883	
	+	+	-	-	1914	-	1914	
	-	-	-	-	10239	18508	14374	5847,1
pGUP.PA-	+	-	-	-	7385	10071	8728	1899,3
p2-s	-	+	-	-	1510	1942	1726	305,5
	+	+	-	-	923	1054	989	92,6
	-	-	-	-	1153	1791	1472	451,1
pGUP.PA-	+	-	-	-	3478	4081	3780	426,4
p2-as	-	+	-	-	401	483	442	58,0
	+	+	-	-	589	581	58 5	5,7
	-	-	11210	35331	-	-	23271	17056,1
p53Con-	+	-	25847	113860	-	-	69854	62234,6
GUP.PA	-	+	16206	57515	-	-	36861	29209,9
	+	+	22237	31467	-	-	26852	6526,6
	-	-	366	602	-	-	484	166,9
pFragA-	+	-	1290	1728	-	-	1509	309,7
GUP.PA	-	+	13410	20363	-	-	16887	4916,5
	+	+	18627	39522	-	-	29075	14775,0
	-	-	5657	4624	-	-	5141	730,4
р53EР-	+	-	12673	11013	-	-	11843	1173,8
GUP.PA	-	+	1530	2645	-	-	2088	788,4
	+	+	1270	2761	-	-	2016	1054,3

^a gerundetes arithmetisches Mittel aller Messreihen

^b StAbw: Standardabweichung um die jeweiligen Mittelwerte