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Summary 

In order to clarify questions related to adequate and sustainable water management strategies in 

Jordan, the present thesis was initiated as an interdisciplinary project under the superordinate topic 

“Water in sensitive regions – Handling limited water resources in sensitive regions of the Near 

East” within the scope of the corporate project “Global Change and Globalization” of Heidelberg 

University within the scope of the Excellence Initiative II of the German Research Foundation, 

which was then integrated into the Heidelberg Center for the Environment. The objective of this 

dissertation was to elucidate the ecotoxicological hazard and risk of the main Jordanian surface 

waters (Jordan River, King Abdullah Canal, Yarmouk River, Wadi Mujib, Zarqa River) based on 

sediment (eco)toxicity assessment of a total of 20 sampling sites. To the best of knowledge, this 

study is the first to apply ecotoxicological bioassays to address water quality in terms of surface 

water sediment contamination in Jordan. The in vitro test battery included (a) general toxicity 

(cytotoxicity in the neutral red assay with RTL-W1 cells), (b) genotoxicity (DNA damage to RTL-

W1 and V79 cells), (c) embryo toxicity (Danio rerio), and (d) dioxin-like activity (EROD assay 

with RTL-W1 cells), all of which were conducted with acetonic Soxhlet extracts of sediments. It 

was complemented by assessment of geomorphological parameters and measurement of nutrients 

and salts. 

The result of the in vitro bioassays document that sediments from all surface waters were 

differentially polluted by contaminants that induced mainly genotoxic effects, but also cytotoxicity, 

embryo toxicity and elevated dioxin-like toxicity. Toxic potentials of the extracts were generally 

higher in the neutral red assay than in the fish embryo toxicity test. In most sediment samples, the 

comet assay proved to be more sensitive; however, for four sampling sites, the micronucleus 

showed stronger effects. The recently developed test design of a novel EROD assay including the 

use of β-naphthoflavone as a reference substance and the normalization of EROD activity against 

MTT reduction proved to be a most promising alternative to conventional protein-based 

normalization in EROD determination. Based on the differential results, a stepwise processing of 

toxicity assessment cannot be recommended, since a relationship between the different bioassays 

for toxicity assessment in terms of “if-then” or “if not-then not” could not be established in this 

study. 

For the comprehensive classification of Jordanian surface waters, the results were rated according 

to toxicity threshold values based on a fuzzy logic-classification approach or according to a rank-

sum based classification, resulting in three generalized toxicity levels. The bioassays were also rated 

according to ecological relevance, and the results were transferred into quality classes in accordance 

with the EU Water Framework Directive 2000/60/EC. Although results for the single rivers led to 

a heterogeneous pollution scenario, contamination hot spots could clearly be identified. In 

conclusion, the northern part of the Jordan River at Baqura, the outlet of Mujib Dam, the outlet of 

the Unity Dam of the Yarmouk River and the outlet of the wastewater treatment plant Khirbet As 

Samra discharging into the Zarqa River showed strong to moderate effects in at least four of the 

five tests applied and were thus rated quality class V indicating very high contamination. Results 

imply that sewage water treatment is not yet sufficient, particularly regarding mutagenic and dioxin-

like compounds, and that non-point sources add to the overall pollution situation.  

Since the results of this study suggested a certain discrepancy between conventional routine 

monitoring programs conducted by local authorities, which assign an overall good water quality to 

Jordanian surface waters, it is strongly recommend to include sediment toxicity assessment and 

effect-driven specific chemical analyses into regular monitoring programs and considerations for 

integrated water management.  

http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html
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Zusammenfassung 

Die vorliegende Arbeit entstand im Rahmen eines interdisziplinären Projekts mit dem Titel „Water 

in sensitive regions – Handling limited water resources in sensitive regions of the Near East” als 

Teil der Exzellenzinitiative II „Global Change and Globalization” der Universität Heidelberg und 

der Deutschen Forschungsgemeinschaft, um Fragen nach einem nachhaltigen Wassermanagement 

in Jordanien zu klären. Das Projekt wurde in das Heidelberg Center for the Environment integriert. 

Ziel dieser Dissertation war es, das ökotoxikologische Gefahrenpotenzial jordanischer 

Oberflächengewässer (Jordan, King Abdullah Kanal, Yarmouk, Wadi Mujib, Zarqa) über die 

Beurteilung der Belastung der Sedimente von insgesamt 20 Probenstellen zu ermitteln. Es ist dies 

die erste Studie, die sich diesem Ansatz der Wasserqualität in Jordanien widmet. Mit Hilfe einer In 

vitro-Testbatterie wurden in acetonischen Soxhlet Extrakten folgende Parameter erfasst: (a) 

allgemeine Toxizität (Zytotoxizität im Neutralrottest mit RTL-W1 Zellen), (b) Gentoxizität (DNA-

Schäden bei RTL-W1 und V79 Zellen), (c) Embryotoxizität (Danio rerio) und (d) dioxinähnliche 

Wirksamkeit (EROD-Bioassay mit RTL-W1 Zellen). Die biologischen Wirktests wurden durch die 

Erfassung von geomorphologischen Parametern, Nährstoffen und Ionen ergänzt. 

Die In vitro-Tests ergaben, dass die Sedimente aus allen Gewässern mit diversen Substanzen 

belastet sind, wobei vor allem gentoxische Effekte gehäuft auftraten; aber auch Zyto- und Embryo-

toxizität sowie dioxinähnliche Effekte traten regelmäßig auf. Unerwarteterweise überstieg das 

toxische Potenzial im Neutralrottest in vielen Fällen die Effekte im Fischembryotest. Mit Ausnahme 

von vier Sedimentextrakten erwies sich der Comet-Assay als sensitiver verglichen mit dem 

Mikrokerntest. Ein neu entwickelter Bioassay zur Bestimmung der dioxinähnlichen Wirksamkeit 

von Umweltproben, der β-Naphthoflavon als Referenzsubstanz nutzt und die EROD-Aktivität auf 

die Zellvitalität im MMT-Test normiert, erwies sich als vielversprechende Alternativmethode zu 

herkömmlichen Assays mit Normalisierung der EROD-Aktivität auf Protein. Auf Grund der sehr 

differenzierten Effektmuster in den einzelnen Biotests erwies sich ein schrittweises Vorgehen bei 

der Ermittlung der Sedimenttoxizität als nicht praktikabel, da die einzelnen Tests funktionell nicht 

miteinander zusammenhängen und daher kein kausaler Zusammenhang zwischen einzelnen Tests 

im Sinne von „wenn ‒ dann“ oder „wenn nicht ‒ dann nicht“ hergestellt werden konnte. 

Um die Charakterisierung jordanischer Oberflächengewässer zusammenzufassen, wurden die 

Befunde in einem Fuzzy-Logic-Ansatz unscharfen Toxizitätsklassen zugeordnet oder nach einem 

rangsummenbasierten Verfahren in drei Toxizitätsstufen eingeordnet. Hierbei wurden die 

Ergebnisse entsprechend ihrer ökologischen Relevanz gewichtet und in Qualitätsklassen eingestuft, 

die sich an der Europäischen Wasserrahmenrichtlinie 2000/60/EC orientierten. Trotz der 

heterogenen Belastungssituation der einzelnen Flussläufe konnten so Schwerpunkte der 

Kontamination ermittelt werden. So zeigten der nördliche Teil des unteren Jordans bei Baqura, der 

Auslauf des Mujib Reservoirs, der Ausfauf des Unity Damms am Yarmouk und die Mündung der 

Kläranlage Khribet As Samra in den Zarqa in mindestens vier der fünf Testsysteme wenigstens 

mäßige Effekte und konnten somit der Qualitätsklasse V mit hoher Kontamination zugeordnet 

werden. Die Ergebnisse zeigen, dass die Abwasserbehandlung in Jordanien vor allem hinsichtlich 

der Elimination gentoxischer und dioxinähnlich wirksamer Substanzen noch nicht ausreichend ist, 

und dass diffuse Schadstoffquellen einen wesentlichen Beitrag zur Belastung jordanischer 

Gewässer leisten.  

Da die Ergebnisse dieser Studie durchaus Diskrepanzen zu den Monitoringprogrammen lokaler 

Behörden aufweisen, die den jordanischen Gewässern eine insgesamt gute Wasserqualität 

zuschreiben, wird dringend die Integration toxikologischer Untersuchungen und effektdirigierter 

chemischer Analysen in Routineüberwachungsprogramme empfohlen. 

http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html
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1. Introduction 

1.1 Background of the thesis 

In areas of water shortage and in view of scenarios predicting a modified water distribution as 

a consequence of climate change, limited access to adequate water supplies may have severe 

impact not only on ecosystems but also on the development of human activities. Appropriate 

distribution and usage of available water supplies is an essential prerequisite for the 

maintenance of human health and a sustainable development in such regions (Falkenmark and 

Widstrand 1992, Haines et al. 2006). Besides a minimum required quantity of water, water 

quality issues receive increasing attention (Bartram and Cairncross 2010, Hunter et al. 2010).  

To elucidate questions of adequate and sustainable water management strategies in Jordan, the 

present thesis was initiated as an interdisciplinary work under the superordinate topic “Water 

in sensitive regions – Handling limited water resources in sensitive regions of the Near East” 

within the scope of the project “Global Change and Globalization” of Heidelberg University 

for the Excellence Initiative II of the German Research Foundation (DFG). As global change 

and globalization are very complex and extensive topics, the interdisciplinary project was 

subdivided into four groups of expertise: 

Group I: Water in sensitive regions – Handling limited water resources in sensitive regions of 

the Near East (Jordan). 

Group II: Global change and the energy system: Assessing options and their impacts. 

Group III: Element cycles and socioeconomic dynamics – Understanding global processes on 

a local scale (Canary Islands). 

Group IV: The psychology and neuroeconomics of ageing societies managing complex climatic 

systems: Hotter and greyer. 

The present study is part of group I, together with the following projects:  

 “Age and recharge rate of groundwater reserves in the Nubian and Disi Aquifers”, 

Department of Environmental Physics,  
 “Palaeodrainage systems, hydroclimatic changes and traditional water use in Egypt and 

Jordan”, Department of Geography,  
 “Water in the Middle East as an instrument of power – water conflicts, actors and 

discourses”, Department of Geography,  
 “Water Management in arid regions – a comparative legal study with a specific focus on 

groundwater utilization”, Department for German and European Administrative Law and  
 “Water and economic development – assessing contributions and constraints to growth in 

the Near East”, Research Centre for Environmental Economics.  

With the foundation of the Heidelberg Center for the Environment (HCE) in July 2011, “Global 

Change and Globalization” was integrated into this institutional strategy of the Excellence 

Initiative II. 

http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group2.html
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group3.html
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group3.html
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group4.html
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group4.html
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html#1
http://www.iup.uni-heidelberg.de/
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html#3
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html#3
http://www.geog.uni-heidelberg.de/
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html#4
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html#4
http://www.geog.uni-heidelberg.de/
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html#5
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html#5
http://www.jura-hd.de/ivr
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html#6
http://www.iup.uni-heidelberg.de/Exzellenzinitiative/group1.html#6
http://www.eco.uni-heidelberg.de/
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1.2 Water shortage in Jordan 

"Our water situation forms a strategic challenge that cannot be ignored. 

We have to balance between drinking water needs and industrial and 

irrigation water requirements. Drinking water remains the most 

essential and the highest priority issue ". 

H.M. King Abdullah II, 1999 

The Hashemite Kingdom of Jordan is a semi-arid to arid country in the north-western part of 

the Arabian Peninsula. It is bordered by Israel and the West Bank in the west, Syria in the north, 

Iraq in the east and Saudi Arabia in the south. The climate in Jordan is partly influenced by the 

Mediterranean Sea and is characterized by hot, dry summers and cool winters. Practically all 

precipitation occurs in winter and is centered in the western highlands. Rainfall diminishes 

towards the east, with large parts of the country receiving less than 100 mm a year, rendering 

two thirds of the country to be semi-arid to arid (Fig. 1). The aridity is also even more severe 

with high evaporation rates: about 92 % of the total rainfall of 8215 MCM (million cubic 

meters) evaporates, only 5 % recharges the groundwater reserves (Ministry for Water and 

Irrigation 2009). 

 

Fig. 1: Precipitation pattern and surface water basins in Jordan. While the highlands receive 

considerable amounts of rainfall, most of the country is characterized by semi-arid to arid 

climate. Data WAJ (2010), cartography by Thomas Bonn (2013). 
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Due to very limited freshwater resources, Jordan is one of the water poorest countries in the 

world, having an annual per capita renewable water availability of less than 145 m3/year in 

2007 (Hashemite Kingdom of Jordan and GTZ 2008a), which is far below the 500 m3/year limit 

for absolute water scarcity according to the Falkenmark water stress index (Falkenmark et al. 

1989). The pressure on water is particularly marked in the Jordanian capital, Amman, where the 

vast majority of households receives water only once or twice per week. Jordan’s renewable water 

resources add to a total amount of 867 MCM per year, whereas the demand exceeds 

1505 MCM/a, leaving a deficit of 638 MCM/a (Hashemite Kingdom of Jordan and GTZ 

2008b). Currently, about 63 % of the water used are allotted to agriculture, 30 % to domestic 

usage, 5 % to industrial usage, and 1 % to tourism (Bonn 2013). 

The situation is about to deteriorate further due to climate change (Abu-Taleb 2000) and due to 

a demographic boom caused by decreasing infant mortality and the large influx of refugees 

from Palestine in the 1960s and 70s, from Iraq in the last decade and today from people fleeing 

the civil wars in Syria and the Iraq (Manasreh 2010). In the Za’atari refugee camp in northern 

Jordan alone, 80,000 people find shelter at the moment. To address current and future water 

demand scenarios and to optimize future water resource management, Jordan has adopted a 

National Water Strategy. This document is a comprehensive set of guidelines applying a dual 

approach of demand management and supply management (Ministry for Water and Irrigation 

2009). It gives for example priority to municipal and industrial needs and aims to cap 

agricultural use of water by regulating the amount of irrigated agriculture and to promote water 

efficiency in irrigation by appropriate water tariffs or by increased wastewater reuse. To create 

a comprehensive awareness among Jordanians is regarded as prerequisite to reduce water 

demand. 

Water shortage has become a permanent issue in Jordan, and water managing is one of the most 

important topics in the country´s policies. Management and monitoring programs, however, are 

far from being centralized. General water quality control, for example, are under the guidance 

of the Ministry of Water and Irrigation, the actual tests and monitoring programs, however, are 

conducted by the laboratories of the Water Authority of Jordan. Furthermore, the Ministry of 

Health and the Royal Scientific Society apply their own quality monitoring (Royal Scientific 

Society 2000), and the Ministry of Agriculture surveys the suitability of water for irrigational 

purposes. The Jordan Valley Authority supervises mixing of treated wastewater and fresh water 

for irrigation of the Jordan valley. Irregularities concerning water issues are avenged by the 

Ministry of Environment. Besides national public authorities, many national and international 

Non-Governmental Organizations such as the Friends of the Earth of Middle East, the USAID 

or the GTZ have conducted studies on improving water resources management (Bartels 2011, 

Gafny et al. 2010, IUCN et al. 2006, USAID 2013). The coordination and consolidation of 
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knowledge and insights remain a challenge and are often complicated by differing expectations 

(Bonn 2013). 

Water resources are not only limited, but also vulnerable in terms of quality (Hashemite 

Kingdom of Jordan and GTZ 2008a). A major problem is the still insufficiently developed 

access to sewerage of households and especially industries. The current status of sewage 

connection for the different regions of Jordan is shown in (Fig. 2). Far too often, untreated 

sewage has access to surface water or threatens the quality of groundwater resources (Abu-

Rukah and Al-Kofahi 2001).  

 

An overwhelming amount of literature has focused on water issues especially in the Jordan 

Valley. However, most of it is characterized by a mere technical (i. a. Al-Weshah 2000) or 

social approach (i. a. Al-Weshah 2000, United Nations 2002), disregarding toxicological and 

ecotoxicological considerations (Alawi et al. 1996, Ghrefat and Yusuf 2006, Shahin 2004). 

Toxicological and ecotoxicological risk assessment is an indispensable tool for comprehensive 

Fig. 2: Coverage to sewer connection in Jordanian governorates (dark grey: connected share, 

light grey: not connected share). Cartography Thomas Bonn (2013).  
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classification, management and recovery procedures of water bodies. A basic test-battery often 

involves Daphnia Acute Immobilization Test according to the OECD guideline 202 for the 

assessment of acute toxicity to filtrating water organisms, the Luminescent Bacteria Inhibition 

test according to ISO 11348 for the assessment of acute bacteria toxicity, the umu-test with 

Salmonella typhimurium according to ISO 13829 for the assessment of genotoxicity and the 

Alga Growth Inhibition Test after the OECD guideline 201 for the assessment of acute and 

chronic toxicity to algae. An extensive test-battery especially for the evaluation of drinking 

water, however, should also involve testing of acute toxicity to vertebrates as assessed in the 

Zebrafish Embryo Toxicity Test with Danio rerio (OECD TG 236), of direct genotoxic effects 

e.g. in the Micronucleus Assay with hamster lung cells (OECD TG 487), and of bioavailability 

as assed in contact assay with e.g. Arthrobacter globiformis (DIN 38412 – 48). 

1.3 The study area: Jordanian surface waters 

Surface water in Jordan is very limited due to low precipitation and high evaporation levels 

(Fig. 1). Water bodies are either fed directly by runoff from rainfall (e.g. Wadi Mujib), by 

groundwater springs (e.g. Yarmouk River, Jordan River) or by discharge from waste water 

treatment plants (e.g. Zarqa River, Yarmouk River, parts of the Jordan River). The total average 

surface flow adds up to 693 MCM per year (Royal Scientific Society 2000). With increasing 

distance to the Mediterranean Sea from west to east and furthermore from north to south, the 

annual average regimen generally declines due to less influence of moisture sources. Most 

streams are adversely affected either by wastewater discharges or water supply abstraction. 

Apart from the Jordan River, few streams are fed enough by groundwater or springs to flow 

permanently throughout the year. However, nearly all available (fresh or treated) surface water 

is used and supplies up to almost 35 % of the total water used in Jordan (EXACT 1998). With 

the exception of the King Abdullah Canal, Wadi Mujib and spring discharge, however, surface 

water is said to be exclusively used for irrigation or watering of animals (Afonso et al. 2004). 
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Fig. 3: Major streams and wadis of Jordan (source: UNEP/DEWA/GRID-Geneva, 2001). 

1.3.1 Jordan River 

Although, by international standards, the Jordan River is a small river, it is the third largest 

perennial river in the Middle East. Culturally, it is known for its historical and political function 

as border between Israel and the West Bank on the one side and Lebanon, Syria and Jordan on 

the other (Gleick 1993). This rich mix of antagonistic nations, societies, cultures, religions, 

politics, ethnicities and languages is partially reflected in an amalgam of conflicts and 

complexities. As the Jordan River constitutes one of the most important water resource to its 

surrounding dry lands, all neighboring countries enforce their claim to the usage of its water. 

Though Jordan and Israel settled the abstraction quantities in the Peace Treaty of 1994 (The 

Hashemite Kingdom of Jordan and the State of Israel 1994), the political situation between 

Israel and Syria is still tense as reflected by the occupation of the Golan Heights.  

The upper Jordan River originates from three main springs: the Hasbani and Dan in Lebanon 

and the Banias in the northern Golan Heights (Howari and Banat 2002). Leaving Lake Tiberias, 

the largest surface fresh water reservoir in the region, as a small stream, the Lower Jordan River 

commences its way through the agriculturally used Jordan Valley, which is part of the large 

tectonic structure of the Great African Rift Valley. Historically, the largest tributary to the 

Lower Jordan River was the Yarmouk River (EXACT 1998). However, due to water supply 

projects in Israel, Syria and Jordan, this fresh water source has been drastically reduced, and 
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additional fresh water enters the river mainly during floods and negligible contributions from 

small springs (Shavit et al. 2003). The Bitania wastewater treatment plant (10 MCM/a) and the 

Saline Water Carrier (15 MCM/a) are currently the main water sources (Farber et al. 2005). 

Annual average precipitation ranges from 1600 mm in the north at the slopes of the Mount 

Lebanon to 250 mm around Lake Tiberias and to 100 mm in the south (Comair et al. 2012, 

Hassan and Klein 2002). After 251 km in total and 190 km in the Jordan Valley, the river 

discharges into the Dead Sea.  

Massive abstractions and water utilization in the upper regions have led to a significant 

reduction of the inflow to the Dead Sea. Originally, the Jordan River once carried about 

1.3 billion cubic meters of fresh water to the Dead Sea per annum (Gafny et al. 2010, Salameh 

and Naser 1999). Nowadays, it is no more than 100 to 200 millions of cubic meters per year 

(Salameh and Naser 1999). In consequence, the level of the Dead Sea has dropped by more 

than 25 m, and its length has shortened for more than 20 km over the last 20 years (Ben-

Avraham et al. 2008).  

A well-known problem of the Lower Jordan River is its high salinization due to hyper saline 

springs that are discharged into the river via the Saline Water Carrier and due to high 

evaporation levels (Farber et al. 2004, 2005). Furthermore, about 16.5 MCM/a of saline water 

are pumped into the Jordan River artificially (Farber et al. 2005). The groundwater discharging 

into the Jordan River is also highly influenced by agricultural wastewaters and composed of 

varying proportions of brines and sulfate- and nitrate-rich saline waters. It, thus, constitutes a 

non-point source of contamination (Holtzman et al. 2005, Vengosh 2003). Although increasing 

abstraction to up to 95 % of the water (Salameh and Naser 1999), intense agricultural usage, 

discharges form extensive fishponds in the upper Jordan Valley (Gat and Dansgaard 1972), and 

run-off from winter rainfall may further reduce water quality, only limited literature is available 

on water and sediment quality of the Jordan River such as contamination with heavy metals and 

pharmaceuticals (Banat and Howari 2003, Gafny et al. 2010, Howari and Banat 2001, Howari 

and Banat 2002, Pankrotov et al. 2005, Tiehm et al. 2011). However, due to its prominent role 

as fresh water provider, it is indispensable to investigate the quality situation and its effects on 

the environment. 

1.3.2 King Abdullah Canal 

Formerly known as the East Ghor Canal, the King Abdullah Canal (KAC) is the largest artificial 

water conveyor in Jordan with a length of 110 km and a discharge capacity of 20 m3/s (Jordan 

Valley Authority 2009). Construction was primarily financed by the USAID as part of the 

Johnston Plan and it was completed in 1987 after three different construction phases since 1959. 

The northern end of the KAC receives water diverted from the Yarmouk River via a 900 m long 
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tunnel. It plays a major role in agriculture of the Jordan Valley, as it irrigates 23,000 ha of land. 

Furthermore, shortly after completion, it was decided that the KAC water should also be used 

for the drinking water supply of the capital Amman after proper treatment mainly based on 

chlorination. Today, about 60 MCM are pumped annually from the KAC to Amman after being 

treated at the Zai treatment plant, which is located between Deir Alla as the water intake site in 

the Jordan Valley and Amman (Alkhoury et al. 2010). Since the water of KAC is an essential 

source for drinking water supply, water quality and human health effects have become crucial. 

However, especially during the first 10 years of pumping, water quality has been affected by 

strong odor and bad taste mainly caused by eutrophication problems of the KAC (Alkhoury et 

al. 2010). However, quality control is basically restricted to chemical analysis via 

chromatography, but not surveyed by toxicological or ecotoxicological studies.  

1.3.3 Wadi Mujib 

The Wadi Mujib is the largest contributing stream to the Dead Sea on its eastern side (EXACT 

1998). Construction of the Mujib reservoir started in 1999 and was finished in 2002 for the 

purpose of drinking water and recharging groundwater aquifers. The reservoir has a catchment 

area of 4,380 km2 and was designed to store about 217 MCM of rainwater. From the dam, water 

flows through the wadi to its mouth into the Dead Sea, where surface runoff is collected by a 

conveyor to be transferred to the water treatment station of Sweimeh (Margane et al. 2008). It 

provides irrigation water for the southern farmlands of the Jordan Valley, for the Arab Potash 

Company at the eastern shore of the Dead Sea, and drinking water for the hotels at the northern 

shore of the Dead Sea. Furthermore, it supplies the capital Amman with potable water, which 

makes water quality a primary concern. The water is collected from surface runoff, which flows 

during the winter season through the Al-Lajoun valley and Wadi Wala and which receives 

various kinds of effluents such as domestic, industrial, municipal wastewater, and agricultural 

wastewater. Although eutrophication seems to be a minor problem in the Wadi Mujib (Al-

Harahsheh and Al-Amoush 2010), water quality is threatened, since Manasreh et al. (2010) 

showed that sediments of the Wadi Mujib are polluted by Cd and, to a lesser extent, by Zn, Ni 

and Cu; in contrast, contamination by Mn and Pb was low. At least, Cd and Zn originate from 

anthropogenic sources such as the wastewater effluents of the treatment plant Al-Lajoun. 

1.3.4 Yarmouk River 

As the Yarmouk River is the main source of water for the King Abdullah canal and the main 

tributary of the Jordan River in the Jordan Valley, it is the most important surface water resource 

of Jordan. It also constitutes the border to Syria and the Golan Heights in the north and to Israel 

in the Jordan valley shortly before it opens into the Jordan River. The catchment area of the 
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Yarmouk River is mainly agrarian with small-scale industries located in Jordan and Syria. With 

the completion of the Al Wahda Dam/Unity Dam in 2011, further rainwater and surface runoff 

can be harvested at the upstream of the river. The distribution of the water is regulated in the 

Peace Treaty between Jordan and Israel (1994), whereby Israel is allowed to pump 12 MCM 

during summer period and another 13 MCM in winter. Thus, Jordan is left to use the rest of the 

water which naturally varies due to changes in precipitation. Critical and yet unsettled remains 

the Syrian share of the waters of the Yarmouk River.  

During flood events in winter, untreated effluents of two water treatment plants are discharged 

into the river. Furthermore, the effluents of two stabilization ponds are discharged into the river, 

mainly during floods. Besides, leachates of the Akader solid waste disposal reach the river 

directly on days when liquid loads exceed evaporation and infiltration potential. In general, the 

water quality of the Yarmouk River is believed to be good (EXACT 1998), however, its 

sediments are known to be contaminated with heavy metals, especially Hg and Cd, due to 

anthropogenic sources in the catchment area (Abu-Rukah and Ghrefat 2001). 

1.3.5 Zarqa River 

Following the Jordan and Yarmouk Rivers, the Zarqa River is the third largest stream in Jordan 

in terms of annual discharge. Its spring lies east of Amman, and the Wadi Dulheil is its largest 

tributary after the effluent of Jordan’s largest water treatment plant, Khirbet As-Samra. This 

plant treats about 80 % of the wastewater generated in Jordan (Shatanawi and Fayyad 1996). 

Wastewater composes nearly all of the Zarqa River flow during summer, degrading water 

quality (EXACT 1998, Shatanawi and Fayyad 1996). Two more wastewater treatment plants 

discharge their effluents into the river: Jerash and Almirad. The King Talal Dam regulates the 

river, before its water is released into the KAC for irrigational purposes in the Jordan Valley.  

The Zarqa River’s watershed encompasses Jordan’s most densely populated and industrialized 

area. About 3000 industries are registered in the governorate, making up more than 52 % of the 

country’s total industry (Mrayyan and Hamdi 2006). Decreased discharge of fresh water 

combined with increased discharges of organic load from domestic and industrial waste 

disposals have led to environmentally relevant concentrations of organic pollutants in the river 

sediments (Abderahman and Abu-Rukah 2006a, Batarseh 2003, IUCN et al. 2006, Scott and 

Abumoghli 1995, Shatanawi and Fayyad 1996). The main source for heavy metals are textile 

and paint plants (Al-Jundi 2000). Biodiversity is threatened and contamination of the water is 

a cause of disease in humans and livestock (IUCN et al. 2006). Several restoration projects have 

been ventured to improve water quality (IUCN et al. 2006, Mohsen 2007), and the assessment 

of water quality and sediment contamination of the Zarqa River is an urgent issue (Al-Wer 

2009). 
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1.4 Assessment of sediments in ecotoxicology 

As sediments serve as sinks for xenobiotics that are transported in the water (Ahlf et al. 2002, 

Calmano 2001, Chapman et al. 2002, Chapman et al. 1998), they are often referred to as ‘the 

memory of water’. There is a general agreement that sediment-bound substances are important 

to understand the fate and effect of contaminants as well as water quality (Wölz et al. 2009). 

Substantial sediment contamination often persists even after the discharge of chemicals has 

been terminated. Investigations of sediment contamination are therefore indispensable for a 

holistic evaluation of the quality of water courses, especially as sediment bound contaminants 

can be resuspended and remobilized through flood events, dredging or a change in the pH value, 

salinity or redox potential of the water (Calmano et al. 1992, Hollert et al. 2003, Spencer et al. 

2006, Wölz et al. 2009) and, thereby, can become a source of contamination. Furthermore, 

sediment-associated substances may have direct adverse effects on sediment-dwelling 

organisms and result in a disruption of the aquatic ecosystem (European Sediment Research 

Network 2004) or may lead to bioaccumulation in organisms. In cases contaminants are 

released from sediments they can enrich in the food chain (Ankley et al. 1992, Ingersoll et al. 

1995), and humans might be adversely affected through the consumption of contaminated fish 

or mussels as well (Matsumoto et al. 2006).  

Relations between aquatic sediments, organisms and ecosystems are multilayered and complex, 

and their monitoring should, therefore, be an integral part of environmental risk assessment. 

However, the role of sediments in water quality assessment has been neglected by, e.g., the EU 

water framework for a long time. Only in 2012, a recommendation has been made to add 

sediment assessment into water quality monitoring (Europäische Kommission 2012). By now, 

there has been a paradigm shift since sediments are no longer only viewed as troubling 

compartment of water bodies, but are recognized as an important resource, as a habitat for 

organisms and as a source for nutrients in agriculture. Sustainable sediment management has, 

thus, received increasing attention (Apitz and Power 2002, MacDonald 1994, Netzband 2007). 

Chemical analysis can serve as a useful tool to assess the occurrence of chemicals such as 

persistent organic pollutants (POPs) as polycyclic aromatic hydrocarbons (PAHs) and 

polychlorinated biphenyls (PCBs). However, they do not give information about their 

bioavailability, effects of interactions, combined or additive effects, or their actual dose-

dependent effects on organisms (Carlsson et al. 2014, O'Connor and Paul 2000). Bioassays, on 

the other hand, offer the opportunity to test the influence of whole sediments, extracts or eluates 

on organisms via various exposure paths, such as food, direct contact, or pore-water, without 

knowing the exact mixture of chemicals. 
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Model organisms for the assessment of sediments in ecotoxicology are diverse ranging from 

arthropods (Chironimus tentans), annelids (Lumbriculus variegates, Tubifex tubifex), crusta-

ceans (Hyalella azteca) to fish (e.g., Danio rerio(Borgmann and Munawar 1989, Dermott and 

Munawar 1992, Hallare et al. 2005, Ingersoll et al. 1995, Kosmehl et al. 2008b, Leppänen and 

Kukkonen 1998). As European legislation requires that non-animal alternative approaches of 

testing should be used in the place of animal procedures wherever possible (REACH 2006) and 

as the principal EU directive for the protection of animals used in scientific studies  states as 

final goal the “full replacement of procedures on live animals for scientific and educational 

purposes as soon as scientifically possible to do so” (European Parliament and the Council 

2010), a lot of research has been devoted to the development of in vitro alternative test systems 

to reduce animal tests. Among them are, for example, acute cytotoxicity tests (Castaño et al. 

1996, Fent 2007b, Lange et al. 1995), genotoxicity tests with permanent cell cultures (Fenech 

2007, Hartmann et al. 2001a), endocrine screening tests with Salmonella and fish embryo tests 

(Bachmann 2002b, Braunbeck et al. 2005, DIN 2001, Embry et al. 2010, Lange et al. 1995, 

OECD 2011, 2013). 

1.5 Objectives of the present thesis 

The challenge of water contamination is very high in areas of water shortage, i.e. under 

conditions when any available source of water including the reuse of wastewater is essential for 

human survival. Within the interdisciplinary project described above, the key issue of this 

dissertation was to elucidate the ecotoxicological hazard and risk caused by Jordanian surface 

waters based on solid phase extraction and sediment (eco)toxicity assessment. According to the 

current state of research, no ecotoxicological study assessing sediment quality or effects of 

sediment contamination on organisms has ever been conducted in Jordan so far. Thus, to the 

best of knowledge, this study is the first to apply ecotoxicological bioassays to assess water 

quality in terms of surface water sediment contamination in Jordan. 

As the principal prerequisite for sampling and authorized export of samples, the main goal of 

the first working period was to establish contacts to and collaborations with local authorities 

and partners in Jordan. A cooperation agreement could be signed between the Department for 

Environmental Physics, the Department of Zoology and the Water Authority of Jordan, 

allowing the German partners to have access to restricted areas, obtain export permissions and 

use the local laboratories. A promising scientific exchange involving visits of Jordanian 

partners to Heidelberg was accomplished. Although there was already a rough idea about 

potential sampling sites, namely to follow the drinking and wastewater paths of the capital 

Amman, precise sampling sites could only be defined through extensive disucssions with 

authorities and stakeholders and through expeditions into the field. Originally planned overlaps 

of sampling sites with the collaborating groups (Ch. 1.1) in order to design a comprehensive 
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strategy for water use and re-use could not be realized due to local situations and circumstances 

affecting all projects and requiring a reorganization of areas of investigation. Limited access to 

the border rivers Jordan and Yarmouk due to militarily restricted areas or floating mines, or the 

complex terrain of e.g. Wadi Mujib basically determined sampling of this study, covering a 

sufficiently broad area of investigation for each surface water body. 

In this thesis, efforts were directed to promote rapid and cost-effective biological response 

parameters for recognition and effects of potentially hazardous contaminants. For the deter-

mination of sediment and water contamination, a battery of toxicological tests is required. In 

the context of the overall scope of the project, this test battery had to be economically feasible 

and also needed to cover a multitude of potential biological effects. The in vitro test battery 

included a) general toxicity (cytotoxicity), b) genotoxicity (DNA damage), c) embryo toxicity 

and d) dioxin-like activity. It was complemented by assessment of morphological and physical 

parameters and measurement of nutrients and salts. All biotests were conducted with acetonic 

sediment extracts and water extracts based on solid phase extraction with C18 cartridges. Given 

the strong trend to non-animal testing in toxicology and ecotoxicology under the regulations of 

the new European chemical legislation (REACH – Registration, Evaluation, Authorization and 

Restriction of Chemicals), the project exclusively applied methods relying on non-animal 

testing such as cell cultures with rainbow trout liver cells (Boettcher et al. 2010, Bols et al. 

1999, Kosmehl et al. 2004) and Chinese hamster lung cells (OECD TG 487) and evaluations 

with early embryonic stages of fish (Danio rerio). Fish have been selected as major test 

organisms, since they represent the vertebrate model for the evaluation of toxic effects in/from 

the aquatic environment (OECD TG 236). 

After data acquisition, the wealth of toxicological information had to be transformed into a 

simple classification of toxicity in order to make results accessible to local authorities and 

decision makers and to facilitate a scientifically well-based strategy for integrated water 

resources management. The most important aim of this dissertation is, therefore, to provide 

easy-to-use and substantial science-based information on water quality as a prerequisite to 

arrive at an optimized (re-)use of water. Therefore, the results of the bioassays were classified 

according to toxicity threshold values established within the framework of a fuzzy logic-

classification approach by Keiter et al. (2009b) or by a rank-sum-based analysis in cases 

comparison to the values determined by these authors did not apply due to methodological 

differences. The results obtained from the rank-sum analysis and allocation to toxicity levels 

via threshold values were then transformed into quality classes in accordance with the 

classification criteria for physical and chemical parameters after Graw and Borchardt (1999), 

which complies with the EU Water Framework Directive 2000/60/EC (EU-WRRL 2000)
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2. Materials and Methods 

2.1 Sampling 

In October 2009 and October 2010, sediment samples were taken at 20 different sites of the 

five main surface water bodies of Jordan: Jordan River, King Abdullah Canal, Wadi Mujib, 

Yarmouk River and Zarqa River. All sampling was conducted in cooperation and close 

collaboration with the Water Authority of Jordan. Sediment samples were taken with a stainless 

steel shuffle near to the riverbank at depths of 1-10 cm and transferred directly into 2 liter PE 

wide-mouth bottles. Samples were cooled and stored protected from light for transport in the 

field and then stored at -20°C as soon as possible until further processing as described in Ch. 2.2. 

Additionally in 2009, water samples at a volume of one liter were taken at 8 sampling sites at 

the Zarqa River and King Abdullah Canal. The water was filtered with borosilicate glassfibre 

filters (Typ MN 85/70, Machery & Nagel, Düren, Germany) and stored and cooled in brown 

glass bottles (Fa. Schott, Mainz) until processed for further usage in the biotests as described in 

chapter 2.3.3. Since no effects were recorded for the water extracts in the bioassays, water 

sampling was not further conducted in 2010. 

2.1.1 Jordan River  

Alongside the Lower Jordan River, 5 sites were sampled within an air line distance of 93 km 

and approximately 160 km of actual flow distance. Accessibility limited the selection of 

sampling sites. Thus, sites were selected for close proximity to bridges to ensure reasonably 

safe access to the river segment, as several regions of the Lower Jordan River are considered 

hazardous due to the potential presence of landmines. All sampling was conducted on the 

eastern bank of the river and further cooperation with the Jordan Valley Authority, the 

Jordanian Military and the Intelligence Agency of Israel was inevitable due to the still tense 

situation in the border district. Sampling locations are shown in Fig. 4 and were selected to 

include sites spanning from the north to the south of the lower river to ensure adequate 

representation of the river course. Further information and GPS data of the sampling sites are 

summarized in (Tab. 1).  
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Tab. 1: Overview of the sampling sites at the Jordan River.  

 

2.1.2 King Abdullah Canal 

Water distribution systems such as the Jordanian King Abdullah Canal (KAC) distribute water 

from areas of water affluence to areas of water shortage. The northern end of the KAC receives 

water diverted from the Yarmouk River via tunnel of 900 m lenght. Despite surveillance and 

Sampling Site Synonym GPS data Date  of sampling

Gesher Jordan 1
32°38’07.5” N 

35°33’56.7” E
11.10.2010

Sheik Hussein Bridge Jordan 2
32°29’48.97” N 

35°34’32.68” E
11.10.2010

Damiya Bridge Jordan 3
32° 6’9.45” N 

35°32’6.19” E
20.10.2010

Allenby/King Hussein Bridge Jordan 4
31°52’27.00” N 

35°32’27.00” E
10.10.2010

King Abdullah Bridge Jordan 5
31°48’3.77” N 

35°32’47.89” E
10.10.2010

Fig. 4: Sampling sites at the Jordan River; map modified according to EXACT (1998). 
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fencing, water quality may be altered during the canal’s flow through the Jordan Valley through 

discharge of agricultural sewage water, livestock farming or waste. For this reason, one 

sampling site was chosen with considerable distance to the Yarmouk River being also the water 

intake site for later drinking water treatment at Zai treatment station and being, thus, of crucial 

importance. The second sampling site was chosen after the confluence of KAC and the Zarqa 

River (Fig. 5, Tab. 2)  

 

Fig. 5: Sites at the King Abdullah Canal, modified after UNEP/DEWA/GRID-Geneva, 2001 

Tab. 2: Overview of the sampling sites at the King Abdullah Canal. 

 

2.1.3 Wadi Mujib 

At the Mujib reservoir, two sites were sampled (Fig. 6, Tab. 3): the southern shore of the 

reservoir at the height of the dam and the outlet stream below the dam. Furthermore, at the 

mouth to the Dead Sea after joining with the Wadi Wala, another sample was taken, which is 

of high relevance for toxicity assessment since this is where water is abstracted for treatment 

and further usage as drinking, industrial, and irrigational water.  

Sampling Site Synonym GPS data Date  of sampling

Deir Allah KAC 1
32°11’45.2” N 

35°37’06.8” E

21.10.2009  

11.10.2010

Confluence with Zarqa River KAC 2
32°10’59” N 

35°37’06.8” E
11.10.2010
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Tab. 3: Overview of the sampling sites at the Wadi Mujib. 

 

2.1.4 Yarmouk River 

As for the Jordan River, accessibility limited the selection of sampling sites at the Yarmouk 

River, being the border river between Jordan, Syria and the Golan Heights. To access sampling 

sites, further authorization was needed from the Jordanian and Syrian military. Locations were 

selected for easy accessibility and to cover a preferably wide area. Thus, four sites were sampled 

which are shown in Fig. 7 and Tab. 4.  

Sampling Site Synonym GPS data Date  of sampling

Mujib reservoir inlet Mujib 1
31°26’35.94” N 

35°49’03.66” E
05.10.2010

Mujib reservoir outlet Mujib 2
31°26’48.6” N 

35°49’26.6” E
05.10.2010

Mujib mouth to Dead Sea Mujib 3
31°34’29.7” N 

35°33’04.4” E
05.10.2010

Fig. 6: Sampling Sites at Wadi Mujib, modified according to EXACT (1998) 
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Tab. 4: Overview of the sampling sites at the Yarmouk River. 

 

2.1.5 Zarqa River 

As the Zarqa River is known to be strongly contaminated by urban and industrial effluents 

(Abderahman and Abu-Rukah 2006, Batarseh 2003, Shatanawi and Fayyad 1996), six samples 

were taken at various crucial sites to cover an extensive part of the river. As the Zarqa River 

was totally dry during the time of sampling, the first sample was taken in the Wadi Dulheil from 

the effluent of the wastewater treatment plant Khirbet As-Samra. Wadi Dulheil flows into the 

Zarqa River after approximately 10 kilometers. The geography of the sampling sites is shown 

in Fig. 8 and further data can be obtained from Tab. 5. 

Sampling Site Synonym GPS data Date  of sampling

Unity Dam Yarmouk 1
32°44’00.6” N 

35°51’50.3” E
11.10.2010

Wadi Raqab Yarmouk 2
32°43’03.4” N 

35°42’49.0” E
01.10.2010

Diversion to KAC Yarmouk 3
32°10’55.0” N 

35°38’16.2” E
01.10.2010

Gesher Yarmouk 4
32°40’35.3” N 

35°37’29.8” E
02.10.2010

Fig. 7: Sampling Sites at the Yarmouk River, modified according to EXACT (1998) 
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Tab. 5: Overview of the sampling sites at the Zarqa River. 

  

Sampling Site Synonym GPS data Date  of sampling

Khirbet As Samra Zarqa 1
 32° 8'58.22" N       

36° 8'49.69" E

18.10.2009 

07.10.2010

Confluence Zarqa Zarqa 2
 32° 8'52.01" N      

36° 3'6.68" E

18.10.2009  

07.10.2010

Seil Jerash Zarqa 3
 32°12'2.79" N  

35°54'2.85" E

20.10.2009  

02.10.2010

Jerash Bridge Zarqa 4
 32°12'58.30" N  

35°52'59.19" E
 02.10.2010

Inlet King Talal Dam Zarqa 5
 32°11'29.84" N 

35°49'54.48" E

19.10.2009 

02.10.2010

Outlet King Talal Dam Zarqa 6
 32°11'28.04" N  

35°47'48.80" E

19.10.2009 

02.10.2010

Fig. 8: Sampling Sites at the Zarqa River, modified according to EXACT (1998). 
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2.2 Morphological and physical parameters, nutrients and salts 

For each sampling site, the following physical parameters were recorded: width, depth, current 

velocity, depth of visibility; temperature, oxygen, biological oxygen demand in five days 

(BOD5), pH value and electrical conductivity (Multi 350i electrode, WTW, Weilheim, 

Germany). Furthermore, ammonia, nitrite, nitrate, phosphate and chloride (Aquamerk test kits, 

Merck, Darmstadt, Germany) were measured. For assessing the BOD5, a two liter brown glass 

bottle was filled completely with water, measured for oxygen content and stored protected from 

light at 20 °C for five days. It was then measured again for oxygen content. The BOD5 is the 

difference between the two values expressed in mg O2/L. Results were classified according to 

the guidance of the LAWA (1998) as shown in Tab. 6. 

Tab. 6: Substance-based categorization into quality classes according to LAWA (1998). 

 

For the remaining parameters, classification was conducted according to criteria of Graw and 

Borchardt (1999) which comply with the EU Water Framework Directive 2000/60/EC (EU-

WRRL 2000) as shown in Tab. 7. Here, the LAWA categories I and I-II are merged to class 1, 

II remains class 2, II-III equals class 3, III is classified 4 and III-IV and IV reflect class 5. 

Tab. 7: Categorization according to Graw and Borchardt (1999). 

 

Unity
no 

contamination          

I

low 

cnotamination      

I - II

moderate 

contamination   

II

considerable 

contamination   

II - III

increased 

contamination  

III

high 

contamination  

III - IV

very high 

contamination  

IV

Nitrate mg/L <= 1 <= 1.5 <= 2.5 <= 5 <= 10 <= 20 > 20

Nitrite mg/L <= 0.01 <= 0.05 <= 0.1 <= 0.2 <= 0.4 <= 0.8 > 0.8

Ammonium mg/L <= 0.04 <= 0.1 <= 0.3 <= 0.6 <= 1.2 <= 2.4 > 2.4

Total phophate mg/L <= 0.05 <= 0.08 <= 0.15 <= 0.3 <= 0.6 <= 1.2 > 1.2

Oxygen mg/L > 8 > 8 > 6 > 5 > 4 > 2 <= 2

Chloride mg/L <= 25 <= 50 <= 100 <= 200 <= 400 <= 800 > 800

 Quality class

Unity 1 2 3 4 5

Temperature °C < 18 18 ‐ 20 20 ‐ 22 22 ‐ 24 > 24

pH-value 6.5 - 8 6 ‐ 6.4 5.5 ‐ 6.9 5 ‐ 5.4 < 5

8.1 - 8.5 8.6 ‐ 9 9.1 ‐ 9.5 > 9.5

electrical 

conductivity
µS/cm 300 301 - 500 5001 - 700 7001 - 900 900

BOD5 mg O2/L <  1 1 - 3 3.1 - 5 5.1 - 10 >  10

Quality class
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2.3 Sample processing 

2.3.1 Freeze drying of sediments  

For conservation and stable storage, all sediments were freeze dried. Freeze drying is a gentle 

method to remove water from the samples to be able to use them for later extraction (Hjorth 

2004, McClymont et al. 2007). 250 ml of each sampling site were transferred into a 500 ml 

round bottom flask (Duran, Schott, Mainz, Germany) and shock-frozen for 20 minutes under 

constant rotation in a - 30 °C isopropanol bath (N6, C41, Haake, Vreden, Germany). The 

rotation ensures freezing of the sediments in a thin layer, thus, resulting in a maximum surface 

area which facilitates later freeze drying. With a freeze drying machine (Alpha 1-4, Christ, 

Osterode, Germany), sediments were dried through sublimation at -1.4 bars for 48 to 72 hours. 

Sieving with a mesh size of 1.2 mm (stainless steel, Haver & Boecker, Oelde, Germany) 

removed leaves, twigs and larger particles. 

2.3.2 Organic extraction of sediments 

In sediment toxicology, organic extraction is used to solve 

organic compounds ligated to particles (Ahlf 1995, Erdinger 

et al. 2004, Hollert et al. 2009, Raynie 2006). Of each freeze-

dried sediment sample, 20 g were transferred into a cellulose 

extraction cartridge (Whatman, Dassel, Germany), covered 

with glaswool and put into a soxhlet apparatus (Fig. 9). 

Acetone was used as organic solvent since it is ecologically 

compatible and at the same time has a broad spectrum of 

dissolving power, resulting in high effects in the bioassays 

(Erdinger et al. 1997, Seiler et al. 2006). Besides, its boiling 

point of 56 °C reduces the risk of degrading heat-sensitive 

substances. For the extraction process, 250 ml acetone are 

evaporated through a heating plate. Condensation at a reflux 

condenser ensured steady wetting of the sediment samples. 

As soon as the acetone reached the vertex of the ascension 

pipe, it was transferred back into the round bottom flask and 

the cycle repeated. Thus, com-pounds dissolved by acetone 

accumulated in the flask. The cycle repeated approximately ten times per hour, and the system 

ran for 14 hrs over night. Subsequently, the organic extract was reduced to a volume of 5-7 ml 

with a rotary evaporator (300 - 500 mbar, 38 °C; Heidolph, Kehlheim). Extracts were then 

transferred into 8 ml glass vials and dried almost completely under a constant nitrogen stream. 

For usage in biotests, extracts were resolved in 1 ml DMSO. 

Fig. 9: Soxhlet.apparatus. 
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2.3.3 Solid-phase extraction of water samples 

Solid-phase extraction is a chromatographic technique used to prepare samples for subsequent 

analysis by concentrating and purifying analytes from solutions by sorption onto a disposable 

solid-phase cartridge, followed by elution (Thurman and Mills 1998) (Fig. 10). As the analysis 

of the water samples from 2009 (Ch. 2.1) was non-target-oriented, an extraction cartridge with 

a wide adsorption spectrum, the OasisTM HLB cartridge (Cheng et al. 1997, Parkerton et al. 

2000, Snow et al. 2002), was used. It contains a resin made from a co-polymer of 

divinylbenzene and vinyl pyrrolidinone. The pyrrolidinone functionally acts as an imbedded 

hydrophilic group and thus provides enhanced retention for polar analytes and of non-polar 

analytes. In order to concentrate and enrich contaminants potentially dissolved in the water s, 

cartridges were fitted to a vacuum block (Baker) which was connected to a vacuum pump. Prior 

to sample application, the cartridges were conditioned with 6 ml of methanol and subsequently 

washed with 6 ml of distilled water each. 1 L of previously filtered water from each sampling 

site was then applied through the cartridges with a flow rate of 10 ml/min (Fig. 10). Afterwards, 

cartridges were dried under a constant nitrogen stream, and the samples were eluted with two 

times 3 ml of acetone (Sigma Aldrich, suprasolve). For further usage in biotests, the acetone 

was evaporated under constant nitrogen stream, and extracts were resolved in 1 ml of DMSO 

resulting in a final concentration of 1 L extracted water per ml DMSO.  

 

Fig. 10: Principle of solid-phase extraction, modified after Chromabond (left) and applied 

solid-phase extraction of Jordanian water samples with OasisTM HLB cartridges (right). 
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2.4 In vitro assays 

2.4.1 Cell culture 

Rainbow trout liver cell line RTL-W1 

In 1984, the permanent cell line RTL-W1 was developed by Bols and co-workers from the liver 

of a male adult rainbow trout (Oncorhynchus mykiss). Lee et al. (1993) could show that this cell 

line can be cultured under in vitro conditions. Furthermore, it can be used in several biotest 

systems to assess, e.g., the cytotoxic and genotoxic potentials of chemicals or complex 

environmental samples (Keiter et al. 2006, Rocha et al. 2009, Schirmer et al. 2000, Seitz et al. 

2008).  

RTL-W1 cells were obtained from Drs. Niels Bols and Lucy Lee (University of Waterloo, 

Canada). Culture conditions according to Lee and co-workers (1993) were adopted: RTL-W1 

cells were cultured at 20 °C in L15 medium (Sigma), supplemented with 10 % fetal bovine 

serum (Biochrom AG, Berlin), 1 % l-glutamine-solution (200 mM, Sigma), and 1 % penicilline-

streptomycine solution (SIGMA Aldrich). The cells were incubated in 75 cm2
 plastic culture 

flasks (Greiner, Frickenhausen, Germany) and could be passaged once a week for usage in 

biotests approximately 100 times. 4 - 5 days after passaging, they formed a confluent monolayer 

and were ready to be used in a biotest. For passaging, the old medium was discarded and the 

cells were washed with 5 ml of phosphate buffered saline (PBS without calcium and 

magnesium, Sigma). In order to detach the cells from the culture flask, 2 ml of a trypsin solution 

were used over 3 minutes. Proteoylsis was inhibited by adding 5 ml of supplemented 

L15-medium containing protease inhibitors in fetal bovine serum. Cells were resuspended in 

the supplemented L15-medium and equally distributed in two new flasks containing 10 ml of 

supplemented medium or used in biotests. In case of the later, antibiotic-free medium was used 

to avoid interactions with any possible compounds of the extracts.  

V79 cells (Chinese hamster lung) 

For the assessment of cytotoxicity (Ch. 2.4.2) and genotoxicity in the micronucleus assay 

(Ch. 2.4.3), the permanent mammalian cell line V79 from Chinese hamster lung cells was used. 

The cells were obtained in 2006 from RCC (Roßdorf, Germany). Cells were cultured at 37 °C 

under 5 % CO2 in Minimum Essential Medium (SIGMA Aldrich) supplemented with 10 % fetal 

bovine serum (Biochrom), 1 % l-glutamine-solution (200 mM, Sigma), and 1 % penicilline-

streptomycine solution (Sigma). The cells were incubated in 25 cm2
 plastic culture flasks 

(Greiner) and were passaged as described above twice a week and used for the biotests until 

passage 15.  
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Examination of mycoplasma contamination 

Mycoplasma contamination still remains one of the major problems in cell culture. These 

bacteria can induce an unlimited variety of effects in the cell cultures they infect (Butler and 

Leach 1964, Collier et al. 1969, Fogh et al. 1971, Sokolova et al. 1998). Therefore, it is 

indispensable prerequisite to guarantee that all cells used in bioassays are not contaminated by 

mycoplasmas. To this end, the RTL-W1 as well as the V79 cells were screened at least every 

four weeks, during experiments every two weeks, for contamination by mycoplasmas through 

the polymerase chain reaction according to Tang et al. (2000) with slight modifications by 

Uphoff and Drexler (2002) and Hopert et al. (1993). In case contamination could be observed, 

all affected cells, media and solutions used were discarded, and uninfected cryo stocks were 

thawed and used instead. 

2.4.2 Acute cytotoxicity 

Neutral red assay with RTL-W1 cells 

Preliminary to other in vitro tests with cell cultures, sediment extracts had to be tested for acute 

cytotoxicity to avoid false positive results (Choucroun et al. 2001, Hartmann et al. 2001c, 

Hartmann and Speit 1997, Henderson et al. 1998). The method used in this assay followed 

Borenfreund and Puerner (1985) with slight modifications (Kosmehl et al. 2004). Exposure was 

conducted in 96-well plates (TTP, Renner, Dannstadt, Germany) with a cell density of 

4-5 x104 cells/well and dilution of the sediment extracts was carried out directly in the wells 

(Fig. 11). According to Keiter et al. (2006), the DMSO concentration used in the assay should 

not exceed 1 % to exclude solvent specific effects on the cells. Thus, the highest concentration 

was 200 mg SEQ/ml. Negative, solvent and process controls were applied to exclude any non 

extract specific effects. 3,5-Dichlorphenol (Aldrich, Steinheim, Germany) at a final 

concentration of 4 mg/ml was used as positive control.  

 
Fig. 11: Scheme of a 96-well plate for the neutral red assay. 
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After 48 hours of exposure, the test medium was replaced by a 1:80 dilution of 0.4 % neutral 

red solution with medium, and cells were incubated for another 3 hours at 20°C to ensure uptake 

of the dye into intact cells (Barile 1994, Segner 1998b). After discarding surplus dye solution 

and duplicate thorough washing done twice with PBS, 100 μl of the neutral red extraction 

solution (1 % glacial acetic acid [Merck, Darmstadt, Germany], 50 % ethanol p.a. [Riedel-de 

Haën, Seelze, Germany] in Aqua bidest) were added to each well and shaken for 30 min. The 

retention of neutral red was measured photometrically at 540 nm against a reference wavelength 

of 690 nm using a multiwell plate reader (Spectra™ III; Tecan, Crailsheim, Germany). The 

assay was considered valid if the medians of the two negative controls did not differ from each 

other by more than 20 %. The percentage of the values for each well was calculated on the 

median of the negative controls in column 2. In the next step, for each concentration the medians 

(in percent of the negative control) and the standard deviations were calculated. Finally, dose-

response curves were plotted using SigmaPlot 11.0 (Jandel SPSS, Erkrath, Germany). Each 

extract was tested in three independent replicates and if possible, NR50 and NR80 values were 

stated. At these concentrations, the neutral red uptake of the exposed cells corresponds to 50 

and 80 % of the negative control or, in other words, to 50 and 20 % lethality of the cells.  

Neutral red assay with V79 cells 

Acute cytotoxicity to V79 cells was tested with the neutral red assay as explained for the 

RTL-W1 cells above. However, 20 hours prior to exposure, 100 µL with approximately 

104 cells (10 x 104 cells/ml) were seeded into each well to ensure secure attachment to the wells’ 

surface. Dilution of the extracts was then conducted in a separate well plate and later transferred 

carefully onto the cells from which the old medium had been removed before. Furthermore, for 

exogenous metabolic activation, S9-mix (Mp Biomedicals, Eschwege, Germany) was added to 

the test medium to gain concentration ranges for the micronucleus assay. The S9-fraction had 

been extracted from livers of rats exposed to Aroclor 1254 (Ames et al. 1975); its final 

concentration in the mix was 10 % which in turn was used at a concentration of 20 % in the test 

system (Tab. 8). S-9 exposure was only conducted for four hrs due to the inherent toxicity of 

the S9-Mix. Measurement of neutral red retention was performed as explained above.  

Tab. 8: Composition and concentrations of the S9-Mix. 

 

Volume for

2.5 ml

Isocitrate 1 M 5 nM 12.5 µl

NADP-solution 0.1 M 4 mM 100 µl

1.65 M KCl 33 mM KCl,

0.4 M MgCl2 8 mM MgCl2

Phosphat buffer pH 7,4 0.2 M 15 mM 187.5 µl

S9-fraction 10% 250 µl

Sterile water 1900 µl

Substance
Concentration of 

stock solution

Concentration in 

S9-mix

KCl-MgCl2-solution 50 µl
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2.4.3 Genotoxicity 

Genotoxicity is the interaction of DNA at the level of genes, chromosomes or whole genomes 

caused by chemical or physical agents, which can also lead to permanent mutations (Fent 

2007a). Mutagens cause DNA lesions, strand breaks, modified bases and DNA crosslinks 

(Farmer et al. 2003, Kim and Hyun 2006). These alterations cause a change of the DNA 

sequence during the next cell cycle. Most mutagens are also known to cause cancer (Fent 

2007a). Directly genotoxic chemicals are of electrophilic character and do not require metabolic 

activation to interact with the DNA (Marquardt 1994). Indirect genotoxic substances, on the 

other hand, require metabolic activation to cause adverse effects. Due to the differences in their 

metabolic capabilities, these effects may differ between species, individuals, and organs 

(Marquardt 1994, Nehls and Segner 2001). The role of genotoxins in the environment is still 

unsettled (Fent 2007a), however, the study and research of genotoxically contaminated 

environmental samples has received special attention, because mutagenesis and carcinogenesis 

can threaten the survival of individuals, entire populations, and species, especially when 

effecting gametes.(Connell et al. 1999). 

Comet assay with RTL-W1 cells 

The comet assay is a sensitive, rapid and simple technique for evaluating DNA breakage at the 

level of single eukaryotic cells (Mitchelmore and Chipman 1998, Nehls and Segner 2005, Singh 

et al. 1988, Tice 2000). The comet assay was performed under alkaline conditions according to 

Singh et al. (1988) with modifications detailed in Schnurstein and Braunbeck (2001) and 

Boettcher et al. (2010) using the cell line RTL-W1 without exogenous metabolic activation. In 

order to avoid false positive results, Henderson and coworkers (1998) showed that no 

concentration of a substance should be tested in the comet assay affecting the cell vitality more 

than 25 %. Hence, the results of the cytotoxicity test were used to determine the highest 

applicable test concentrations for the comet assay, which ensured 80 % vitality of the cells. 

Exposure was conducted in antibiotic-free medium for 24 hours and negative controls with the 

test medium, solvent controls with 1 % DMSO, and a process control of the Soxhlet extraction 

were also tested. For the positive control (Green et al. 1993, Klee et al. 2004, Kosmehl et al. 

2004, McKelvey-Martin et al. 1993, Schnurstein and Braunbeck 2001), RTL-W1 cells were 

irradiated for 5 min at 252 nm using a crosslinker (8W, UV Stratalinker 1800, Stratagene, La 

Jolla, California).  

All slides were examined at a magnification of 320 X using a fluorescence microscope 

(Aristoplan, Leica, FRG) equipped with an excitation filter of 518 nm and an image-analysis 

system (Optilas, Munich, Germany) with a grey-scale CCD camera (JAI Pulnix TM-765E 

Kinetic, Glostrup, Denmark) and Comet 3.0 software (Kinetic Images, Liverpool, UK). For 

each concentration, the tail moments of 100 randomly selected cells were analyzed by 
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multiplying length and fluorescence intensity of the tail (Schnurstein and Braunbeck 2001). The 

data was compiled in box plots showing median, 25 and 75 percentiles as a box and 5 and 95 

percentiles as dots (Sigma Plot 11.0, SPSS - Jandel, Erkrath, FRG). For statistical analysis, data 

were analyzed with the H-test according to Kruskal and Wallis. In case of significant 

differences, a post hoc test according to Dunn was used to identify groups that differed 

significantly, which were then marked by an asterisk. The induction factor (IF) was calculated 

by dividing the median of each concentration by the median of the corresponding control group. 

To simplify the comparisons, data were converted into a “concentration dependent induction 

factor” (CDI) according to Seitz et al. (2008). The CDI is a simple index that integrates all 

important information, providing a basis for a general comparison of the genotoxic potential in 

the comet assay. The CDI is calculated as follows: 

 

IFi = induction factor of the concentration i; ci = concentration i; and n = n 

concentrations. 

Micronucleus assay with RTL-W1 cells 

The in vitro micronucleus assay was performed according to ISO/DIS 21427-2 (2004) and the 

OECD Guideline 487 (2010) with modifications after Boettcher et al. (2010) using the cell line 

RTL-W1 without exogenous metabolic activation. Before exposure, cells were transferred to 

6-well plates with ethanol-cleaned cover slips (Assistent, Sondheim, Germany) and incubated 

for 24 h in pure medium to ensure complete cell attachment to the slides. Exposure to sediment 

extracts was conducted in antibiotic-free medium for 24 hours with the same concentrations as 

used for the Comet assay. Nitroquinoline-N-oxide (NQO, Sigma) in a concentration of 

100 mg/ml medium was used as positive control, and negative controls with the test medium, 

1 % DMSO and a process control of the Soxhlet extraction were also tested.  

Following treatment, cells were incubated with pure medium for another 72 h to ensure cell 

division after exposure. Cells were then fixed for 10 min with methanol/acetic acid (4:1) diluted 

in PBS (1:1). A second fixation was performed with methanol/acetic acid (4:1). Air-dried slides 

were kept in the well plates until visual examination under a fluorescence microscope 

(Aristoplan, Leitz). Staining was conducted with acridine orange (40 mg/L PBS; Sigma), 

resulting in nuclei and micronuclei appearing green and cytoplasm appearing red. Criteria for 

micronuclei and anomalies in RTL-W1 cells were set according to ISO 21427-2 (2004). 

Micronucleus assay with V79 cells with metabolic activation 

The in vitro micronucleus assay with V79 cells was performed according to ISO/DIS 21427-2 

(2004) and the OECD Guideline 487 (2010) with exogenous metabolic activation through 
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addition of S9-mix (Mp Biomedicals). The S9-fraction was extracted from livers of rats that 

had been exposed to Aroclor 1254 (Ames et al. 1975) and its final concentration in the mix was 

10 % which in turn was used at a concentration of 20 % in the test system (Tab. 8). 6 Hours 

prior to exposure, V79 cells were seeded at a density of  2 x 105 cells/ml into 1 ml chamber 

slides (Lab-Tek Culture Chambers, Permanox slide, Nunc, USA) to guarantee attachment to 

the slides. Sediment extracts were tested in serum- and antibiotic-free medium at four different 

concentrations, of which the highest resulted in no more than 20% lethality in the neutral red 

assay. 100 µM benzo[a]pyrene served as a positive control to prove metabolic activation by the 

S9-mix (Békaert et al. 1999). Three negative controls with the test medium only, 1 % DMSO 

and a process control of the Soxhlet extraction were also tested. Exposure with S9-mix was 

conducted for 4 hrs to avoid toxic effects caused by the S9-fraction itself. This was followed 

by incubation in pure complemented medium for another 20 hours to guarantee cell division 

after exposure. Fixation and staining was conducted in the same way as shown above for RTL-

W1 cells. Criteria for micronuclei and anomalies V79 cells were set according to ISO 21427-2 

(2004). The induction factor (IF) was calculated by dividing the number of micronucleated cells 

in the treatments with the equivalent number in the negative controls. Furthermore, the lowest 

effect concentration (LOEC) was determined for each sampling site. 

2.4.4 EROD assay 

Induction of cytochrome P450 dependent monoxygenases in fish is a well-established and well-

documented biomarker to study responses to xenobiotic exposure at the molecular level 

(Behrens et al. 2001, Burke et al. 1985, Fent , Hahn and Stegeman 1994, Sarasquete and Segner 

2000, Scholz and Segner 1999). The cytochromes P450 are a multi-gene family of heme-

containing proteins (Guengerich 1988) that oxidize, hydrolyze, or reduce compounds through 

the insertion of atmospheric oxygen to the substrate, generally increasing the water solubility 

of substrates, thereby enhancing their elimination (Andersson and Förlin 1992). However, these 

phase I metabolites of some contaminants may be the intrinsic toxic compound and are thus 

bioactivated through the enzyme system (Guengerich et al. 1985). Induction of the isoenzyme 

cytochrome P4501A (CYPlA), that, among others, metabolizes polycyclic aromatic 

hydrocarbons (PAHs), is mediated through the binding of certain xenobiotics to the cytosolic 

aryl hydrocarbon receptor (AhR) which then translocates to the nuclei to switch partner 

molecules from Hsp90 to Arnt to bind as promoter complex to specific DNA sequences 

(Mimura and Fujii-Kuriyama 2003). Among the more than 1000 known organic compounds 

that bind to the AhR are environmentally critical planar polychlorinated biphenyls (PCBs), 

PAHs, polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofuranes (PCDFs) 

(Fent 2007a). The catalytic activity of CYP1A can be assessed by the dealkylation of the 

sythetic substrate 7-ethoxyresorufin (7-EXR) to fluorescent resorufin (EROD activity). 



Materials and Methods 

32 

 

Increased EROD activity after exposure to PAHs and PCBs has been shown in RTL-W1 cells 

(Bols et al. 1999). 

EROD assay with RTL-W1 cells 

To evaluate the dioxin-like activity of the sediment samples, a new protocol of the live-cell-

EROD assay for RTL-W1 cells developed in cooperation with Patrick Heinrich and Ulrike 

Diehl was applied (Heinrich et al. 2014). This new approach combines assessment of cell 

vitality through the cytotoxicity with thiazoly Blue tetrazolium bromide (MTT assay (Cole 

1986, Gerlier and Thomasset 1986)) to exclude overlying cytotoxic effects of the samples and 

measurement of EROD activity through scaling of the results to the number of cells and EROD 

induction of β-napthoflavone (BNF, SIGMA Aldrich). Since maximum EROD activities tend 

to show natural fluctuation among experimental runs, EROD induction capabilities of 

substances and environmental samples are usually expressed in relation to established reference 

substances. BNF was used as reference substance instead of 2,3,7,8-tetrachlorodibenzo-p-

Dioxin (TCDD), as TCDD is one of the most toxic substances known (Birnbaum and Tuomisto 

2000, Cantrell et al. 1996, Ott and Zober 1996, Poland et al. 1982, Safe et al. 1991) and should, 

therefore be, avoided in routine laboratory use. Furthermore, it could be shown that BNF serves 

as an equally good inductor of EROD activity in RTL-W1 cells in even lower concentrations 

resulting in similar maximum inductions and time-response relationships (Fig. 11). 

 

 

Exposure. 24 Hours prior to exposure, 100 µL of a cell suspension of RTL-W1 cells in 

L-15 medium (SIGMA) with a density of 4x104 cells/ml was seeded into each well of 96-well 

plates (TTP) except for 6 wells that later served as blanks and two rows for the resorufin 

standards and the cell dilution row for the straight calibration line of the basal metabolic rate of 

Fig. 11: Comparative EROD induction of TCDD and β-napthoflavone. 
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the cells. Sample dilutions were prepared in test tubes, the highest concentration being 

400 mg SEQ/ml with 2 % DMSO. As reference for the induction of EROD activity, eight 1:2 

dilutions of BNF was also prepared in test tubes, the highest concentration being 200 nM. 

3,5-Dichlorphenol (3,5-DCP, Aldrich) at a concentration of 160 mg/ml was prepared to serve 

as positive control for the MTT assay. The dilutions were added to the wells (Fig. 12) and since 

these already contain 100 µL of cell suspension and L15-medium, the concentrations were 

diluted 1:2 in each case resulting in the highest concentrations of 200 mg SEQ/ml for the 

sediment extracts, 100 nM for BNF and 80 mg/ml for 3,5-DCP. To obtain the straight 

calibration line the basal metabolic rate for scaling of the results, 40,000, 30,000, 20,000 and 

10,000 cells were seeded into two wells each of one row (Fig. 12). To guarantee identical 

conditions in all wells – positive and negative controls, extract dilutions and cell dilution – the 

final DMSO concentration used was always 1 %. The plates were incubated for 24 hours at 

20°C.  

 

As reducing sulfur compounds may be present in acetonic sediment extracts and are able to 

react with MTT, well-plates containing only the dilution rows of the sediment extracts but no 

cells were also prepared and incubated for 24 hours at 20°C. These external blanks were later 

substracted from the results of the MTT assay. 

Measurement of resorufin and MTT. After exposure, medium was discarded and replaced 

by DMEM-medium (Sigma) with 8 µM 7-EXR except for row 3 as this was where the resorufin 

standards were applied. These were prepared in test tubes directly with DMEM with 8 µM 

7-EXR at concentrations of 300 nM, 150 nM, 75 nM and 37.5 nM. Incubation should always 

be the same, ideally for 30 minutes, but it was not to exceed 45 minutes. Afterwards, 150 µL 

of each well were transferred carefully without influencing the cell layer into black 96-well-

plates and kept dark until measurement. To the remaining 50 µL in the original plates, 150 µL 

Fig. 12: Scheme for the EROD assay in 96-well-plates; left: seeding of cell suspension 24 

hours prior to exposure, right: insertion of positive controls and sample dilutions and cell 

dilution for cell count 
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of DMEM-medium with 588 µg/ml MTT were added and incubated for 3 hours at 20°C in the 

dark. The same was applied to the plates with the external blanks. Meanwhlie, the fluorescence 

of the resorufin of the standards and of the resorufin formed by deethylation of 7-EXR by the 

cells was measured with the black well-plates in the plate reader (Spectra™ III) at a wavelength 

of 544 nm (excitation) and 590 nm (emission). After exposure, the MTT solution was discarded 

carefully from the treatment and external blank plates and replaced by 200 µL DMSO with 

2.5 % ammonia (Wang et al. 2012). Measurement in the plate reader was then conducted at 

540 nm (absorption) and 690nm (reference). 

Data interpretation. Calibration curves were generated for the results of the resorufin 

standards and the MTT assay of the cell dilution. R2 should not be less that 0.98 and 0.95, 

respectively. The EROD activity of the sediment samples was then scaled to metabolic activity 

in each well. This activity was measured in metabolic cell equivalents (MCE), where the 

activity of 1000 unexposed cells is defined as 1 MCE:  

EROD Activity = Resorufin [pmol] x MCE-1 x incubation duration [min-1] 

Furthermore, the dose-response of BNF towards the EROD activity was fitted to the following 

2-parametrical logarithmic model:  

f(x) = a × ln x+ b 

To evaluate the EROD activity induced by the sediment samples, the sediment concentration 

inducing the highest amount of EROD-activity was selected and the concentration of BNF 

inducing equal activity was determined mathematically using the equation:  

f(x) = e^(-(b/a)+(Activity [fmol Resorufin × MCE-1 × min-1]/a )) 

Results from the MTT assay can help to distinguish EROD induction or inhibition from effects 

caused by beginning apoptosis. All information can be depicted in one graph as shown in fig. 

13. To simplify matters, however, the BNF regression will be disregarded for the presentation 

of the results as the BNF equivalent is obtained mathematically.  
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2.5 In vivo assay: zebrafish embryo toxicity test with Danio rerio 

In recent years, acute toxicity tests with fish have aroused considerable ethical concern since 

they are conducted with juvenile or adult animals. European legislation requires that non-

animal, alternative approaches of testing should be used in the place of animal procedures 

wherever possible (REACH 2006). Russell and Burch (1959) originally set out the definition 

of the three Rs (3Rs): ‘Replacement’, ‘Reduction’ and ‘Refinement’. ‘Replacement’ means the 

substitution of conscious living higher animals by insentient material, ‘Reduction’ means 

reduction in the numbers of animals used to obtain information. ‘Refinement’ means any 

decrease in the incidence or severity of inhumane procedures applied to those animals that still 

have to be used. Beside ethical considerations, Zebrafish Embryo Toxicity Test with Danio 

rerio test offers other advantages compared to the acute fish test. It is easy to handle, the fish 

are easy to keep and breed in the laboratories, and eggs can be delivered all seasons and only 

little volume of substances or samples is needed. Moreover, it allows an insight into toxic 

effects on the very early developmental stages. Investigations with other major OECD species, 

the fathead minnow (Pimephales promelas) and the Japanese Medaka (Oryzias latipes), 

revealed a high comparability between the species and a better reproducibility compared to 

acute toxicity tests with different adult fish species (Braunbeck et al. 2005). In addition, Ratte 

and Hammers-Wirtz (2003) and Lammer et al (2009) compared existing data from zebrafish 

embryo tests with existing data from acute in vivo fish tests and showed that there is a reliable 

correlation between the fish embryo test and the acute fish test.  

Fig. 13: Graphic illustration of the EROD activity scaled to MCE × min-1 induced by several 

concentrations of sediment samples and BNF and of the cell vitality measured through the MTT 

assay as vitality in 5 of the negative control. 
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The zebrafish Danio rerio 

It was first described from the Kosi tributary of the Ganges River in India (Danio rerio, 

Hamilton-Buchanan 1822). It is a small benthopelagic freshwater representative of the family 

of cyprinids. The species has been studied extensively since the nineteenth century as it is easily 

obtainable, inexpensive and readily maintainable (Laale 1977). The embryonic development of 

Danio rerio is described in Kimmel et al. (1995). The fish has an elongated, slightly compressed 

habit and reaches a mean adult length between 3 and 5 cm. Both male and female fish are 

brownish-olive coloured with a yellow-white waist and five uniformly, pigmented, horizontal 

lateral stripes, all extending onto the end of caudal fin rays (Fig. 14). During spawn maturity, 

females can be distinguished easily from the male by their swollen bellies.  

Male fish are more slender and show an orange to reddish tint in the silvery bands along the 

body. One female produces 50 - 200 eggs per day and only needs 2 to 3 days for regeneration. 

Thus, under appropriate conditions, a large number of non-adherent, fully transparent eggs can 

be obtained all-seasonally (Laale 1977). Due to a very short developmental period and the eggs’ 

transparency, the zebrafish embryonic development has been described in detail in numerous 

studies (Kimmel et al. 1995, Westerfield 2000), and the species has become a major model in 

neurobiology and toxicology as well as in general molecular and developmental biology 

(Busquet et al. 2008, Hollert et al. 2003, Kimmel et al. 1995, Laale 1977, Wells et al. 2005, 

Westerfield 2000).  

  

 

Fig. 2.2.1: adult zebrafish – upper individual: female, recognizable by the 

swollen belly; lower individual: male, recognizable by the reddish tint in the 
silvery bands   

Fig. 14: Left: adult zebrafish – upper individual: female with swollen belly; lower individual: 

male with reddish tint in the silvery bands (Photo: Erik Leist). Right: Spawning tanks for egg 

production of Danio rerio (Photo: Nadja Seitz). 
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Animal husbandry and breeding of Danio rerio 

All fish used for breeding were descendents of the “West-aquarium” strain, originally obtained 

from Dr. H.J. Pluta (Federal Environment Agency, Berlin, FRG). The fish were maintained in 

150 L-fish tanks at 26 ± 1°C in a light-isolated room. An artificial light-dark cycle of 12 each 

hours was maintained. The fish tank water was purified by an internal activated-carbon filter 

(Eheim, Deizisau, Germany) and aerated continuously with compressed air. The animals were 

fed twice a day with fresh larvae from Artemia (Great Salt Lake Artemia Cysts, Sanders Brine 

Shrimp Company, Ogden, USA) and with dry flake food (TetraMinTM, Tetra-Werke, Melle) 

as required. For egg production, the fish were transferred into a special spawning facility 

(Fig. 15) at a ratio of 1:1. The fish started spawning at the latest 30 minutes after beginning of 

the light-period in the morning. As a special stimulant, a green plant dummy made out of plastic 

was used. As zebrafish tend to predate their own eggs, grids with a mesh size of 1.25 mm were 

adjusted at the bottom of the tanks, through which eggs fell into a separate spawning tray. Eggs 

were collected 1 hour after spawning.  

Test procedure 

For the assessment of teratogenic and embryotoxic effects of the sediment extracts, the 

Zebrafish Embryo Toxicity Assay was conducted according to OECD TG 236 under semistatic 

conditions. Using the DMSO stock solutions of the extracts, five different concentrations were 

tested in three independent replicates. Artificial water was used for dilution according to 

ISO 7346/3. The highest concentration tested was limited by the concentration of DMSO used 

in the assay, which was not to exceed 0.15 % due to its capability of changing the chorion’s 

permeability (Kais 2009). Thus, extracts were tested at 50, 37.5, 25, 15.5, and 1 mg SEQ/ml 

and DMSO concentration was always adjusted to 0.15 % to secure constant conditions. To 

exclude effects caused by the dilution water, a negative control with artificial water 

corresponding was applied. 3,4-Dichloroaniline served as positive control at a concentration of 

3.7 mg/L . Furthermore, a solvent control with o.15 % DMSO and a process control of the 

soxhlet extraction (ch. 2.3.2) were carried out for each replicate. As tests were conducted with 

24-well-multiplates made of polystyrene (TPP; Trasladingen, Switzerland, ISO 9001, Fig 2.3.1) 

and adsorption of lipophilic chemicals to negative binding sites of plastic has been described in 

several studies (Knorr and Gätzschmann 1967, Palmgren et al. 2006, Schreiber et al. 2007), 

multiplates were pre-treated with the respective test concentrations 24 hours prior to the actual 

embryo test. A test was classified as valid according to OECD TG 236, if ≥ 90 % of the embryos 

in the negative and solvent controls treatments showed neither sublethal nor lethal effects, and 

the positive control delivered lethal effects ranging between 20% and 80% 96 hours post 

fertilization (hpf). 
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Toxicological endpoints. Embryos were examined at 24, 48, 72 and 96 hpf. Endpoints were 

determined according to OECD TG 236 as well as to Bachmann (2002a) and Nagel (2002) and 

are shown in. 

Tab. 9. 

Tab. 9: Evaluation endpoints of acute toxicity and teratogenicity on the embryo of Danio rerio. 

  hours post fertilization 

Toxicological endpoints 24 48 72 96 

Coagulation o o o o 

Retarded somite stage o    

Tail not detached  o    

Lack of heartbeat  o o o 

Failure of hatching     • 

Reduced heartbeat rate   • • • 

Lack of blood circulation  • • • 

Reduced blood circulation  • • • 

Affected eye development    •  • • • 

Underdevelopment    •  • • • 

Edema formation  • • • 

Affected pigmentation  • • • 

Malformation in general • • • • 

Tail malformation  • • • 

Spine malformation     • • 

o: lethal endpoint; •: sublethal endpoint  

Data interpretation. The LC50 and EC50 values, the concentrations at which 50 % of the 

embryos were lethally affected or showed any effect, respectively, were determined with 

ToxRat®
 Professional, Version 2.10 (ToxRat Solutions, Alsdorf) using probit analysis with linear 

maximum likelihood regression or moving average computation after Thompson for each exposure 

time. The logarithmic average of all replicates was then used for toxicity assessment. 

Furthermore, the lowest observed effect concentration (LOEC) and the no observed effect 

concentration (NOEC) were determined. All graphs in this thesis were prepared with Sigma 

Plot 11.0 (SPSS - Jandel, Erkrath, FRG). 
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2.6 Classification of sediment toxicity 

For the classification of the Jordanian watercourses studied within the scope of this thesis, the 

results of 1) the neutral red assay with RTWL-W1 cells, 2) the comet assay with RTWL-W1 

cells, and 3) the fish embryo toxicity test with zebrafish were rated according to the toxicity 

threshold values established within the framework of a fuzzy logic-classification approach by 

Keiter et al. (2009b). Following this approach, the dataset of each bioassay is divided into three 

toxicity levels (non-toxic, moderately toxic and strongly toxic) to cover the entire response 

range of test systems. To gain a location-independent insight into the response ranges, data from 

various studies were integrated into this calculation: Danube (Keiter et al. 2009a, Keiter et al. 

2008, Keiter et al. 2006, Seitz et al. 2008), Rhine (Kosmehl et al. 2004) and Neckar (Braunbeck 

et al. 2009, Hollert et al. 2000, Hollert et al. 2002b). Among other methods, the empirical 

method was used and proved to be the most suitable by Keiter et al. (2009b). It offers the 

possibility to consider the whole specific response range of a biotest by showing the distribution 

of the dataset (Ahlf and Heise 2005) and to, thus, allocate results of the bioassays to the toxicity 

levels. The dataset is then categorized into three equal intervals with 33.3 % each, the lower 

interval representing non-toxic results, the medium interval representing moderately toxic 

results and the upper interval representing strongly toxic results (Fig. 15). The threshold values 

resulting out of this classification are listed in Tab. 10 and were applied to the results obtained 

for Jordanian surface waters in this study. Three colors are used to facilitate orientation: red = 

strongly toxic, yellow = moderately toxic, green = non-toxic.  

 

Fig. 15: Empiric method for the determination of toxicity threshold values according to Keiter 

et al. (2009b) as shown exemplarily for the neutral red assay. The relative distribution of NR50 

values is divided into three equal intervals determining toxicity levels (Fig.: Keiter). 
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Tab. 10: Threshold values for toxicity levels according to the fuzzy logic approach by Keiter 

et al (2009b) based on the empirical method. 

 

A rank-sum based classification was applied according to Canfield at al. (1994) and Hollert et 

al. (2002b) for the EROD assay and the Micronucleus assay as they were conducted after a 

different protocol than in Keiter at al. (2009b). Thus, data for each individual result was scaled 

proportionally between 1 % and 100 % (e.g. an IF in the Micronucleus assay of 1.3 being the 

lowest and an IF of 4.1 being the highest observed effect). Scaling of data results in a relative 

ranking of results. The ranked data is then classified into three groups equivalent to the toxicity 

levels of Keiter et al (2009b): non-toxic ˂ 33.3 %, moderately toxic for 33.3 to 66.6 % and 

strongly toxic ˃ 66.6 %.

non-toxic Moderatley toxic Strongly toxic

Neutral red assay [NR50 mg SEQ/ml] ˃ 80 80-31 ˂ 31

Comet assay [CDI] ˂ 0.24 0.24 -0.5 ˃ 0.5

Fish embryo toxicity test [LC 50 mg SEQ/ml] ˃ 21 21 -11 ˂ 11

Threshhold values for the toxicity levels
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3. Results 

3.1 Morphological an physical parameters, nutrients and salts 

3.1.1 Jordan River 

Anthropogenic influence on the Lower Jordan River was apparent at each sampling site. At 

sites Jordan 1 and 2, the river was channeled even though it was not artificially fortified (Fig. 

16). Fluvial adjustment was most striking in the anthropogenic abstraction of water during the 

river flow: width and depths of the river declined rather steadily from 3 m and 100 cm at Jordan 

2, 10 m and 100 cm at Jordan 2, 4 m and 30 cm at Jordan 3, 3 m and 10 – 20 cm at Jordan4 to 

3 m and 20 cm at Jordan 5. These changes have also been described as severe interference in 

other studies (Gafny et al. 2010, Hassan and Klein 2002). The water generally showed strong 

turbidity. Thus, visibility ranged from 5 (Jordan 1) to 30 cm (Jordan 5). Strong odor of hydrogen 

sulfur emerged during sampling at site Jordan 1. All other sites showed constructional 

modifications due to bridges (Fig. 17). At site 5, concrete slabs lay in the water due to the 

blasting of the King Abdullah Bridge in 1967.  

 

Fig. 16: Sampling sites at the Jordan River: a, b) Baqura (Jordan 1), c, d) Sheik Hussein Bridge 

(Jordan 2). 

 

 

 

a) b) 

c) d) 
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Physical characteristics as well as the concentrations of nutrients and salts in the water of the 

Lower Jordan River are summarized in Tab. 11. The results were classified according to LAWA 

(1998) as well as Graw and Borchardt (1999) as described in Ch 2.2. Considering all allocable 

parameters to the same degree and calculating the mean value of the classes rated, sampling 

site Jordan 1 and Jordan 2 are rated as water quality class III-IV, whereas the remaining sites 

were rated class III and II-III. Electrical conductivity was very high at all sampling sites and 

thus rated class IV. It increased during the flow from 7.4 mS/cm to 13.5 mS/cm. This may be 

due to geogenic influence and due to the discharge of saline waters (Shavit et al. 2003), but can 

Fig. 17: Sampling sites at the Jordan River: a, b) Damiya (Jordan 3), c, d) Allenby Bridge 

(Jordan 4), e, f) King Abdullah Bridge (Jordan 5). 

 

 

 

 

e) f) 

d) c) 

b) a) 
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also be an indicator of inorganic contamination (Buhr et al. 2001). Toxicity of substances in the 

water may be influenced by ph values. Due to the contents of limestone in the fluvial sediments 

(Rimmer and Salingar 2006), ph values were found to be slightly alkaline, but rather constant 

ranging from 7.7 (Jordan 2) to 8.3 (Jordan 1 and 5). Oxygen contents generally improved along 

the river flow. The worst situation was found at site Jordan 2, where there were only 2.0 mg/ml 

to be measured and, thus, was rated class IV. Oxygen contents below 3.0 mg/ml are usually 

considered unsuitable for fish. Only the sites Jordan 4 and 5 could be rated class I and I-II 

showing 11 and 8.2 mg O2/ml, respectively. This could probably be ascribed to the turbulences 

due to shallow water and rather high current velocity of 1 m/s. The other two sampling sites 

with 6.6 and 7.8 mg O2/ml were rated moderately contaminated. Evaluation of the BOD5 

resulted in the category II-III for Jordan 2, 3 and 4 and in category III with signs for increased 

contamination for Jordan 1. Jordan 2 had a BOD5 of 1.9 mg/ml which is rated class II, however, 

having a total oxygen content of only 2 mg/ml, the BOD5 equals nearly all oxygen available for 

metabolizing bacteria at this sampling site. For all sampling sites at the Lower Jordan River, 

very high concentrations of chloride ions have been detected with 2.5 g/ml which is a well-

known phenomenon at the Jordan River and associated with discharge of the Saline Water 

carrier and hypersaline springs (Comair et al. 2012, Farber et al. 2004, Shavit et al. 2003, 

Vengosh 2003). A drop in ammonia levels was evident for Jordan 3, 4 and 5. With the method 

used, 0.5 mg/ml was the smallest amount to be measured. Thus, the quality for these sites may 

be better than rated here. Jordan 1 was rated class IV with 2 mg/ml, and the highest 

concentration was found at Jordan 2 with 10 mg/ml. Similar results were described in studies 

by Barel-Cohen et al (2006) as well as Holtzman et al. (2005). The values for nitrite 

significantly improved from 1.0 mg/ml at Jordan 1 over 0.1 mg/ml at sites 2 and 3 to 

0.025 mg/ml or even less at Jordan 4 and 5. The concentration of nitrate was 10 mg/ml for all 

sampling sites except Jordan 1 where it was 25 mg/ml, which was, thus, rated class IV. Fish 

ponds and agricultural drainage in the northern parts of the Jordan Valley have been identified 

as reasons for the strong contamination by nitrogen along the upper stretches of the Lower 

Jordan River (Gat and Dansgaard 1972, Segal-Rozenhaimer et al. 2004). According to 

phosphate concentrations, Jordan 1 and 2 are classified as category IV and Jordan 3, 4 and 5 as 

category III-IV with 6.7 and 1 mg/ml, respectively. However, 1 mg/ml was the detection limit 

for the method used. Thus, the quality for the later sites may be better than rated here. Markel 

et al. (1994) identified basaltic sources of the Golan Heights and the Crateceous and 

anthropogenic sources such as fish ponds in the Hula Valley as the major sources for phosphate 

in the Lake Tiberias and the Upper Jordan River which may also account for the Jordan River. 
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Tab. 11: Classification of the sampling sites at the Jordan River according to LAWA (1998). 

 

3.1.2 King Abdullah Canal 

Since the King Abdullah Canal (KAC) is an artificial water conveyor, it did not have a natural 

riverbed, but was channeled and lined with concrete (Fig. 18Fig. 19). Sedimentation was limited 

to a thin layer of approximately 10 – 20 cm at the bottom of the channel. The channel had a 

width of 3 meters and a depths of 1.5 meters. Also the current velocity was the same with 50 m/s 

and the depths of visibility was 20 cm.  

 

 

°C
1 pH

Conduc-

tivity
2 

O2 BOD5
3

Cl
- PO4

3- NH4 NO2
-

NO3
-

1 27.5 8.3 7.4 6.6 5.99 2500 6.7 2 > 1.0 25

2 25 7.7 6.3 2.0 1.9 2500 6.7 10 0.1 10

3 25.5 8.2 10.3 7.8 3.1 2500 < 1* < 0.5* 0.1 10

4 25.5 8.2 12.4 11 4.77 2500 < 1* < 0.5* < 0.025* 10

5 26 8.3 13.5 8.2 3.5 2500 < 1* < 0.5* < 0.025* 10

Physical and chemical parameters [mg/mL]

1: ranking of temperature does not aplly to semi-arid climate; 2: mS/cm; * the method used did not allow a more accurate measurement,

thus, a better quality class might as well apply.

Jo
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Fig. 18: Sampling site 1 at the King Abdullah Canal (Deir Allah): pipeline on the right is used 

for pumping drinking water to the Zai treatment station for further use in Amman. 
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Tab. 12 shows the physical parameters as well as the concentrations of nutrients and salts 

measured for the sampling sites at the KAC. Categorization after LAWA (1998) and Graw and 

Borchardt (1998) resulted in the overall water quality class II-III indicating considerable 

eutrophication. The ph values indicated slightly alkaline conditions with values of 8.5 for KAC 

1 and 8.2 for KAC 2. Electrical conductivity slightly decreased during the flow direction from 

2.3 to 1.2 mS/cm, which was rated class IV. The contents of oxygen were very high for both 

sampling sites (11.6 and 8.5 mg/ml) and could be assigned category I. However, the BOD5 with 

4.35 mg/ml at sites KAC 1 implied an increased microbiological activity (class III). KAC 2 was 

classified II with 1.9 mg/ml. For ions and nutrients, the water quality of the KAC generally 

increases during the river flow: chloride concentrations decreased from 475 to 275 mg/ml and 

were rated class III-IV and III, respectively. Contamination with phosphate was very high at 

KAC 1 with 6.7 mg/ml. For the second sampling site, the detection limit of the method used 

did not allow for a more accurate determination and, thus, 1 mg/ml was set as limit. Although 

other studies have showed strong eutrophication of the waters from the KAC especially for 

nitrogen (Alkhoury et al. 2010, Salameh and Harahsheh 2011), results for ammonia and nitrite 

were rated class II-III and I-II, respectively. Only KAC 2 showed increased levels of nitrate 

with 10 mg/ml and KAC 1 had 5 mg/ml. 

Tab. 12: Classification of sampling sites at the King Abdullah Canal after LAWA (1998). 

 

°C
1 pH

Conduc-

tivity
2 

O2 BOD5 Cl
-

PO4
3- NH4 NO2

-
NO3

-

1 25 8.5 2.3 11.6 4.35 475 6.7 < 0.5* <  0.025* 10

2 27.5 8.2 1.2 8.5 1.9 275 <  1* <  0.5* <  0.025* 5

Physical and chemical parameters [mg/mL]

1: ranking of temperature does not aplly to semi-arid climate; 2: mS/cm; * the method used did not allow a more accurate

measurement, thus, a better quality class might as well apply. 
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Fig. 19: Sampling site 2 at the King Abdullah Canal with the Zarqa River discharging from 

the left. Pipelines abstract water for irrigational usage in the Jordan Valley. 
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3.1.3 Wadi Mujib 

During the time of sampling, the Mujib reservoir did not have the level of full storage capacity 

(Fig. 20 a, b). Site 1 was without any findings of odor, but had only a visibility of 5 cm due to 

strong general turbidity of the stagnant water. Site 2 (Fig. 20 c, d), however, showed strong 

odor of hydrogen sulfur and the sediment sampled was of nearly black color indicating 

anaerobic decomposition. Visibility was 50 cm with a current velocity of 60 cm and a width of 

up to 10 m. Sampling site Mujib 3 (Fig. 20 e, f) had a strong current with 70 cm/s at a depth of 

20 – 40 cm with a width of 8 m and a depth of 20 – 40 cm.  

 

 

 

 

 

a) b) 

e) 

c) d) 

f) 

Fig. 20: Sampling sites at the Wadi Mujib: a, b) Inlet Mujid Dam (Mujib 1), c, d) Outlet Mujib 

Dam (Mujib 2), e, f) Mouth to Dead Sea (Mujib 3). 
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The general water quality class resulting out of the categorization according to LAWA (1998) 

led to a categorization into class II for Mujib 1 and 3 and class II-III for Mujib 2. A summary 

of the parameters is given in Tab. 13. The ph value was rated class II for all sampling sites at 

the Wadi Mujib ranging from slightly acidic (6.4, Mujib 1) to 8.4 (Mujib 2) and 8.1 (Mujib 3). 

Electrical conductivity as a sign for salinity increased during the course of the wadi from 0.6 to 

1.0 and 1.7 mS/cm suggesting that side wadis as the Wadi Wala discharge ions into the 

conveyor or that ions are dissolved out of the riverbed. The amount of oxygen was rated class 

1 except for site Mujib 1 where there were only 7.1 mg/ml to be measured, probably linked to 

the stagnant water and absence of any major water plants. The BOD5 suggests a high 

microbiological activity with 5.36 mg/ml for Mujib 2 which equals class III-IV. Site 1 was rated 

class II-III (2.73 mg/ml) and site 2 class II with 2.49 mg/ml. The concentration of chloride ions 

significantly increased (75, 100, 350 mg/ml) during flow direction matching the results from 

the electric conductivity. The most dominant nutrient was phosphate with 1.5 mg/ml at site 

Mujib 2 which was classified as category VI. Due to the detection limit of the method used, a 

more accurate determination than less than 0.5 mg/ml PO4
3- for the other sites could not be 

detected. The content of ammonia and nitrate could be classified as II-III and the content of 

nitrate as I-II for all sampling sites at the Wadi Mujib.  

Tab. 13: Classification of the sampling sites at the Wadi Mujib according to LAWA (1998). 

 

3.1.4 Yarmouk River 

As the river is regulated through the Unity Dam (Fig. 21 a, b) and is diverted to parts into the 

KAC (Fig. 21 d, e), anthropogenic influence and pressure on the stream is high. Furthermore, 

the sampling sites 2 and 4 flow through extensively agriculturally used areas with high water 

abstraction rates and surface runoffs with agricultural drainage (Fig. 21 c, f). There was a 

tendency of decreasing current velocity (60-10 m/s) as the river gets wider (4 - 10 m) and deeper 

(30 - 400 cm). Visibilty ranged between 30 – 40 cm at sites 1 and 3, but was only 5 – 10 cm at 

sites 2 and 4. 

°C
1 pH

Conduc-

tivity
2 

O2 BOD5 Cl
-

PO4
3- NH4 NO2

-
NO3

-

1 27 6.4 0.6 7.1 2.73 75 < 1* < 0.5* < 0.025* < 5*

2 27 8.4 1.0 12.3 5.36 100 1.5 0.5 0.05 < 5*

3 28.8 8.1 1.7 10.1 2.49 350 < 1* < 0.5* < 0.025* < 5*

Physical and chemical parameters [mg/mL]

1: ranking of temperature does not apply to semi-arid climate; 2: mS/cm;* the method used did not allow a

more accurate measurement, thus, a better quality class might as well apply.
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The average water quality class for the Yarmouk River was class II-III according to the 

categorization system of the LAWA (1998) indicating a considerable problem with 

eutrophication. Parameters are nearly constant during the river flow with slight variations as 

explained below (Tab. 14). Class I could be allocated to Yarmouk 1 for the ph value of 7.9. The 

other three sampling sites ranged from 8.1 (Yarmouk 2 and 4) to 8.4 and were rated class II. 

Electrical conductivity indicated high salinity for all sampling sites (class IV). The oxygen 

concentration increased during river flow (6.1, 8.6, 9.2 and 9.0 mg/ml) although most water 

 

 

 

b) a) 

f) e) 

d) c) 

Fig. 21: Sampling sites at the Yarmouk River: a, b) Unity Dam (Yarmouk 1), c) Al Hamma 

(Yarmouk 2), d, e) Diversion to KAC (Yarmouk 3), f) Gesher (Yarmouk4). 
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turbulences were recognized at Yarmouk 1 due to high current velocity and shallow waters. 

The BOD5, on the other hand, was best for Yarmouk 1 with 2.6 mg/ml (class II-II). For 

Yarmouk 2 4.7 mg/ml and for Yarmouk 3 and 4 3.3 mg/ml were detected and rated class III as 

sign for increased microbiological activity. Chloride concentration was highest at Yarmouk 1 

with 250 mg/ml (class III) and then decreased slightly to 175 mg/ml for the other sites (class II-

III). The heaviest pollution with nutrients was recorded for phosphate which was categorized 

as class IV for all sampling sites at the Yarmouk River ranging from 1.3 mg/ml (Yarmouk 2) 

to 6.7 mg/ml (Yarmouk 4). With the method used, ammonia levels could not be determined 

precisely resulting in concentrations of less than 0.5 mg/ml which was rated as class II-III. 

Nitrite concentrations ranged from less that 0.025 to 0.5 mg/ml (class I-II). Class III was 

allocated to Yarmouk 1.2 and 3 for 10 mg/ml of nitrate. At Yarmouk 4, the concentration 

decreased to less than 5 mg/ml (class II-III). 

Tab. 14: Classification of the sampling sites at the Yarmouk River according to LAWA (1998). 

 

3.1.5 Zarqa River 

Since the Zarqa River basin is the most populated basin in Jordan, anthropogenic influence on 

the River basin and its water quality is distinct. Morphological alterations were most prominent 

in the King Talal Dam (Fig. 23 c, d), which was completed in 1977 and stores approximately 

86 million m3. But also the effluent discharge of the water treatment plant Khirbet As-Samra 

(Fig. 22 a, b) into the basin which later unites with Wadi Dulheil poses an immense change on 

the natural conditions, especially during summer when there is no natural run off at all. A very 

strong odor of humic acid and yellowish color of the water was observed at the first three 

sampling sites, diminishing with increasing distance to the water treatment plant. Being a 

popular recreational area for picnic and swimming, a lot of litter and solid waste was found 

alongside the shore and concrete slabs from the bridge were found in the water at Jerash Bridge 

(Fig. 23 a, b). Apart from Zarqa 5 at the King Talal Dam, the river showed a rather fast flow 

compared to other Jordanian streams (80 – 120 cm/s). Visibility was good as the bottom was 

°C
1 pH

Conduc-

tivity
2 

O2 BOD5 Cl
- PO4

3- NH4 NO2
-

NO3
-

1 26.6 7.9 1.2 6.1 2.6 250 2.7 < 0.5* 0.05 10

2 27.6 8.1 1.2 8.6 4.7 175 1.3 < 0.5* < 0.025* 10

3 29.5 8.4 1.1 9.2 3.3 175 2.7 < 0.5* < 0.025* 10

4 30.4 8.1 1.1 9.0 3.3 175 6.7 < 0.5* 0.025 < 5*

Physical and chemical parameters [mg/mL]

1: ranking of temperature does not aplly to semi-arid climate; 2: mS/cm; * the method used did not allow a more accurate

measurement, thus, a better quality class might as well apply.
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clearly visible at the sampling sites Zarqa 1 – 4; Zarqa 5, however, only had 20 cm and Zarqa 6 

60 cm. The width was between 2 and 9 m with the exception of the King Talal Dam, whose 

shores were 50 m distant from each other. Depths varried between 40 – 100 cm, agin with the 

exception of the dam where the exact depths is not known due to permanetn sediment influx 

and varriying water levels. 

 

 

 

 

 

a) 

c) 

b) 

e) f) 

d) 

Fig. 22: Sampling sites at the Zarqa River: a, b) Khirbet As-Samra (Zarqa 1), c, d) Confluence 

Zarqa (Zarqa 2), e, f) Seil Jerash (Zarqa 3). 
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Considering all allocable parameters to the same degree and calculating the mean value of the 

classes rated, the classification after LAWA (1998) resulted in class III-IV for Zarqa 1 and 2, 

whereas the remaining sites were rated class III (Tab. 15). Thus, the Zarqa River together with 

the Jordan River (Ch. 3.1.1) is the most polluted and anthropogenically affected River system 

studied in this thesis. With values from 7.3 to 8.7, the ph values could be rated class I, I-II and 

II, respectively. Electrical conductivity was very high for all sampling sites ranging from 

1.9 mS/cm (Zarqa 1) to 2.4 mS/cm (Zarqa 3) and was, thus, rated class IV for all sites. The 

 

 

 

a) b) 

c) d) 

e) f) 

Fig. 23: Sampling sites at the Zarqa River: a, b) Jerash Bridge (Zarqa 4), c, d) Inlet King Talal 

Dam (Zarqa 5), e, f) Outlet King Talal Dam (Zarqa 6). 
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oxygen content was very good for the sampling sites before and right at the King Talal Dam 

(class I). The upper two sampling sites were categorized as class II with 6.8 and 7.4 mg/ml of 

oxygen. Only the outlet of the dam was the content of oxygen low with 3.4 mg/ml and was 

assigned class III-IV. This might be due t the fact that the water that is released from the dam 

into the Jordan Valley is taken from the lower parts of the reservoir were oxygen contents are 

generally lower than at the surface (Smith and Smith 2009). At this site also, the BOD5 was 

2.8 mg/ml which is generally rated class II; however, since almost all the oxygen available was 

consumed after five days, the situation is rather underestimated with this categorization. For the 

other sampling sites, the BOD5 ranged between 3.9 mg/ml (Zarqa 3) and 8.1 mg/ml (Zarqa 5) 

and was allocated class III and III-IV indicating a lot of microbiological activity. Chloride ions 

were found at concentrations of 375 mg/ml (Zarqa 2 and 6, class III), 400 mg/ml (Zarqa 1, class 

III), 475 mg/ml (Zarqa 5, class III-IV) and 500 mg/ml (Zarqa 3 and 4, class III-IV). Very high 

concentrations were found for phosphate and all sampling sites were rated class IV with values 

from 6.7 mg/ml (Zarqa 5) to 13.4 mg/ml (Zarqa 1 and 2). The concentrations decrease with the 

river flow direction. High values of ammonia were found for Khirbet As-Samra and the outlet 

of King Talal Dam with 5 and 2.5 mg/ml, respectively. Class III was allocated to Zarqa 2 with 

1 mg/ml and the other sites were rated class II-III as the method used did not allow a more 

precise measurement. Variations in the nitrite level were observed between Zarqa 1 and 2 (more 

than 1 mg/ml, class IV) and Zarqa 2, 3 and 6 (0.1 - 0.075 mg/ml, class II). Nitrate concentrations 

were detected between 5 mg/ml at Zarqa 3, 4 and 5 (class II-III) and 10 mg/ml at Zarqa 1, 2 and 

6 (class III).  

Tab. 15: Classification of the sampling sites at the Zarqa River according to LAWA (1998). 
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2 28.5 8.3 2.1 7.4 7.0 375 13.4 1 > 1 10

3 24 8.3 2.4 9.6 3.9 500 12 < 0.5* 0.1 5

4 24 8.2 2.2 10.4 5.0 500 12 < 0.5* 0.075 5

5 30.1 8.7 2.2 9.2 8.1 475 6.7 < 0.5* 0.9 5

6 24.7 7.8 2.1 3.4 2.8 375 10 2.5 0.1 10

Physical and chemical parameters [mg/mL]

1: ranking of temperature does not aplly to semi-arid climate; 2: mS/cm; * the method used did not

allow a more accurate measurement, thus, a better quality class might as well apply
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3.2 Acute cytotoxicity of sediment extracts in the neutral red assay 

with RTL-W1 cells 

3.2.1 Jordan River 

All sediment extracts from the Jordan River showed cytotoxic effects in three independent 

replicates of the neutral red assay with RTL-W1 cells. All replicas were valid according to the 

criteria in Ch.2.4.2 .The concentrations at which 50 % of the neutral red were retained by the 

cells (NR50) are displayed in Fig. 24 for all sampling sites. NR50 values were determined 

graphically as shown exemplarily in Fig. 25. A decrease in cytotoxicity was detectable with the 

river flow direction. Jordan 1 was moderately toxic with an NR50 value of 34.1 mg SEQ/ml. 

Jordan 2 showed slightly cytotoxic effects with 85.3 mg SEQ/ml. At Jordan 3, 4 and 5, the 

effects decreased further to little to no toxicity with NR50 values of 93.5, 97.1 and 137.8 mg 

SEQ/ml, respectively. NR80 values for usage as initial concentrations in the micronucleus and 

comet assay of Jordan 1 - 5 were also determined graphically and rounded for easier handling. 

Thus, 20 mg SEQ/ml were assigned to Jordan 1, 60 mg SEQ/ml to Jordan 2, 70 mg SEQ/ml to 

Jordan 3 and 4 and 110 mg SEQ/ml t  o Jordan 5.  

 

Fig. 24: Cytotoxicity of the sediment extracts of the Jordan River in the neutral red assay with 

RTW-W1 cells (n = 3). NR50 values are displayed in sediment equivalent/ml. 
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3.2.2 King Abdullah Canal 

Only the first sampling site at the KAC taken showed cytotoxic effects in the neutral red assay. 

All replicas were valid according to the criteria in Ch.2.4.2 With an NR50 value of 45.4 mg 

SEQ/ml the sediment extract was considered moderately toxic (Fig. 26). The concentrations of 

the NR80 values needed for the micronucleus and comet assay were also determined. Thus, 

30 mg SEQ/ml were detected for KAC 1 and 200 mg SEQ/ml for KAC 2. No effec ts were 

recorded for testing of the water eluates as described in Ch.2.3.3. 
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Fig. 25: Cytotoxicity of extracts from Jordan 1 at Gesher Bridge in viability [%] of the control 

cells as medians, ± standard deviation. A sigmoid curve fitting with three parameters was 

applied with 95-%-confidence interval (blue lines).  
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Fig. 26: Cytotoxicity of the 2010 extracts from KAC 1 (Deir Allah) in viability [%] of the 

vitality of control cells as medians with standard deviation. A sigmoid curve fitting with three 

parameters with 95-%-confidence interval (blue lines) was applied. 
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3.2.3 Wadi Mujib 

The effects of the acetonic extracts from Wadi Mujib observed for cytotoxicity in the neutral 

red assay with RTL-W1 cells were heterogeneous (Fig. 27). Hence, the highest cytotoxicity 

found for all Jordanian samples was determined at Mujib 2 at the outlet of Mujib reservoir with 

an NR50 value of only 16.4 mg SEQ/ml. On the other hand, Mujib 1 at the reservoir inlet showed 

only slight to no cytotoxicity with a value of 144.7 mg SEQ/ml and at Mujib 3 no effects could 

be observed at the concentrations range tested. NR80 values for usage as initial concentrations 

in the micronucleus and comet assay were derived and rounded for easier handling from the 

graphs as follows: 120 mg SEQ/ml for Mujib 1 and 10 mg/ml for Mujib 2. As no effect could 

be observed for Mujib 3, 200 mg SEQ/ml were used. All replicas were valid according to the 

criteria in Ch. 2.4.2 

 

3.2.4 Yarmouk River 

The NR50 values for the sediment extracts of the Yarmouk River in the neutral red assay with 

RTL-W1 cells are displayed in Fig. 28. All replicas were valid according to the criteria in 

Ch.2.4.2 All sampling sites showed cytotoxic effects. Moderate toxicity was recorded for the 

sampling sites Yarmouk 1 at the Unity Dam, Yarmouk 2 at Al Hamma and Yarmouk 4 at Gesher 

Bridge with NR50 values of 80.0 mg SEQ/ml, 46.5 mg SEQ/ml and 51.5 mg SEQ/ml, 

respectively. Yarmouk 3 at the Diversion to King Abdullah Canal showed little to no cytotoxic 
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Fig. 27. Cytotoxicity of the sediment extracts of the Wadi Mujib in the neutral red assay with 

RTW-W1 cells (n = 3). NR50-values are displayed in sediment equivalent/ml. n.d.: NR50 not 

detectable. 
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potential with 126.9 mg SEQ/ml. The following NR80 values were obtained graphically for the 

sampling sites listed in river flow direction after rounding for easier handling in the genotoxicity 

tests as follows: 60 mg SEQ/ml, 25 mg SEQ/ml, 75 mg SEQ/ml and 35 mg SEQ/ml. 

 

3.2.5 Zarqa River 

All extracts from the Zarqa River were tested in the neutral red assay with RTL-W1 cells 

fulfilling the criteria in Ch. 2.4.2 and exhibited cytotoxic effects. The corresponding NR50 

values are shown in Fig. 29. Apart from the sampling sites at the King Talal Dam, the Zarqa 

River showed increasing toxicity upstream. The closer the sampling sites were to the water 

treatment plant Khirbet As-Samra, the higher was the cytotoxic potential of the extracts. The 

second most toxic sample of all Jordanian samples following Mujib 1 was found to be Zarqa 1 

directly at the effluent of Khirbet As-Samra. There, 16.5 mg SEQ/ml induced 50 % effects on 

the cells. At the moderately toxic sampling sites Zarqa 2, Zarqa 3 and Zarqa 4, the NR50 values 

were 38.1 mg SEQ/ml, 39.3 mg SEQ/ml, and 79.8 mg SEQ /ml, respectively. At the inlet of the 

dam at Zarqa 5, the NR50 value was determined at 160.7 mg SEQ/ml and, thus, it was assigned 

little to no toxicity. At the outlet of the dam, however, toxicity increased to moderate toxicity 

with an NR50 value of 75.8 mg SEQ/ml. The NR80 values that were needed to determine the 

initial concentrations used in the genotoxicity assays were also determined graphically and 

rounded for easier pipetting of the volumes as follows: Zarqa 1. 10 mg SEQ/ml, Zarqa 2 and a: 

30 mg SEQ/ml, Zarqa 4: 70 mg SEQ/ml, Zarqa 5: 120 mg SEQ/ml and Zarqa 6: 50 mg SEQ/ml. 

No effects wer observed for the water elutes as described in Ch. 2.3.3. 
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Fig. 28: Cytotoxicity of the sediment extracts of the Yarmouk River in the neutral red assay 

with RTW-W1 cells (n = 3). NR50-values are displayed in mg sediment equivalent/ml. 
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3.2.6 Comprehensive presentation of effects in the neutral red assay 

On the basis of the threshold values for cytotoxicity in the neutral red assay developed by Keiter 

et al. (Keiter et al. 2009b) (Ch. 2.6), all samples with an NR50 value of less than 31 mg SEQ/ml 

were rated strongly toxic. NR50 values between 31 and 80 mg SEQ/ml were considered 

moderately toxic and those higher than 80 mg SEQ/ml non-toxic. A ranking of the cytotoxicity 

of all Jordanian sampling sites is shown in Fig. 30.  

 

Fig. 29 Cytotoxicity of the 2010 sediment extracts of the Zarqa River in the neutral red assay 

with RTW-W1 cells (n = 3). NR50-values are displayed in sediment equivalent/ml. 
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Fig. 30: Ranking of Jordanian rivers in terms of toxicity of sediment extracts in the neutral 

red assay with RTL-W1 cells given as NR50 values [mg SEQ/ml]. Colors indicate toxicity 

(Keiter et al. 2009); red: strongly toxic, yellow: moderately toxic, green: non-toxic. 
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3.3 Acute cytotoxi  city in the neutral red assay with V79 cells 

All acetonic sediment extracts were tested for cytotoxicity with the endpoint neutral red 

retention with V79 cells under exogenous metabolic activation with S-9 mix. In two 

independent replicates, neither of the sampling sites showed significant effects that allowed a 

determination of NR50 or NR80 values (Fig. 31) with the exception of Zarqa 1 and Mujib 2. For 

Zarqa 1 an NR50 value of 96.3 mg SEQ/ml and for Mujib 2 an NR50 of 112.1 mg SEQ/ml was 

detected. The NR80 was determined graphically and rounded to 50 mg/ml for both locations. 

For the other sampling sites, 200 mg SEQ/ml were used as maximum concentration for testing 

of genotoxic potential in the micronucleus assay. Nearly all sampling sites showed vitality 

stimulation at almost all concentrations. 
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Fig. 31: Cytotoxicity of the acetonic extract from Yarmouk 2 (Al Hamma) with V79 cells in 

viability [%] of the vitality of control cells as medians with standard deviation. A logarithmic 

curve fitting with three parameters with 95-%-confidence interval (blue lines) was applied. 
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3.4 Comet assay with RTL-W1 cells 

3.4.1 Jordan River 

In two independent replicates each, the sediment extracts from all five sampling sites at the 

Jordan River showed significant genotoxic effects in terms of DNA fragmentation ( Olive tail 

moment) when compared to the negative controls. Generally, a dose-response relationship 

could be observed as illustrated in Fig. 32Fig. 33. Concentrations of 20 mg SEQ/ml (Jordan 1), 

60 mg SEQ/ml (Jordan 2 and 4), 70 mg SEQ/ml (Jordan 3) to 110 mg SEQ/ml (Jordan 5) were 

used as maximum concentrations as obtained from rounded NR80 values of the neutral red assay 

(Ch. 3.2.1). For all locations, the maximum induction factors (IFmax), LOEC values and 

concentration dependent induction factors (CDI) were determined and are listed in Tab. 16. 

 

    

    

Jordan 3 

Jordan 1 Jordan 2 

Jordan 4 

Fig. 32: Genotoxic effects of the acetonic sediment extract of Jordan 1 - , negative (NC) and 

positive controls (PC) displayed in Olive Tail Moment with median. The boxes indicate 25 and 

75 percentiles, dots 5 and 95 percentiles, whiskers minimum and maximum values and numbers 

induction factors. An ANOVA-on-ranks test was conducted with Dunn’s test with p < 0.05. * 

= significantly different from negative control. 



Results 

61 

 

 

 

With respect to IFmax values, Jordan 2 with 6.9 and Jordan 3 with 3.8 were the most toxic sites 

at the Jordan River. However, the IFmax does not consider the concentration at which the effect 

occurs. Thus, consideration of the LOEC values is also necessary for the understanding of 

toxicity. Jordan 2 would then be only the third toxic site with an LOEC of 30 mg SEQ/ml. 

Jordan 1 with only 2.5 mg SEQ/ml was by far the most toxic site followed by Jordan 4 with 

17.5 mg SEQ/ml. Jordan 5 was the least toxic location with an LOEC of 55 mg/ml. A concept 

that allows the combination of the IFmax and the LOEC is the CDI according to Seitz etal. 

(2008). Based on the CDI, the ranking of toxicity paralleled the river flow direction with 

Jordan 1 being the site with a strongly genotoxic potential as it induced comets significantly at 

concentrations as low as 2.5 mg SEQ/ml. Jordan 2 was also rated strongly genotoxic, whereas 

Fig. 33: Genotoxic effects of the acetonic sediment extract of Jordan 5 as well as negative (NC) 

and positive control (PC) displayed in Olive Tail Moment with median. The boxes indicate 25 

and 75 percentiles, dots 5 and 95 percentiles, whiskers minimum and maximum values and 

numbers induction factors. An ANOVA-on-ranks test was conducted with Dunn’s test with 

p < 0.05. * = significantly different from negative control. 
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Tab. 16: Genotoxicity of sediment extracts from sampling sites at the Jordan River 

given as LOEC, IFmax and CDI values. 

LOEC          

[mg SEQ/mL]
IFmax CDI

Jordan 1, Baqura 2.5 2.1 1.3

Jordan  2, Sheik Hussein Bridge 30 6.9 0.5

Jordan  3, Damiya Bridge 35 3.8 0.3

Jordan  4, Allenby/King Hussein Bridge 17.5 2.4 0.3

Jordan  5, King Abdullah Bridge 55 4.7 0.2
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Jordan 3 and 4 were moderately and Jordan 5 slightly to non-toxic. For better comparison of 

the data, a three-step analysis was conducted (Fig. 34). 

 

3.4.2 King Abdullah Canal   

Both sampling sites at the King Abdullah Canal showed significant effects in the comet assay 

with RTL-W1 cells in terms of Olive Tail Moment (Fig. 35). As there was no cytotoxic potential 

detected for KAC 2 that allowed a determination of a NR80 value, the highest concentration 

tested was 200 mg SEQ/ml. For KAC 1, however, a maximum of 30 mg SEQ/ml was applied. 

A dose-dependency with the exception of one concentration each was observed. At KAC 1, the 

IF was only 2 at 15 mg SEQ/ml whereas it was 2.3 at only 7.5 mg SEQ/ml. At KAC 2, the IF 

was 1.2 and not significantly different from the negative control, whereas it was 2.6 at only 25 

mg SEQ/ml. LOEC, IFmax and CDI values are shown in Tab. 17. 

Fig. 34: Induction factors and LOECs of the extracts from the Jordan River sediments in the 

comet assay with RTL-W1 cells. * = significant difference to negative control. Colors indicate 

toxicity degree according to Keiter et al. (2009); red: strongly toxic, yellow: moderately toxic, 

green: non-toxic. 
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Considering the LOEC value of 3.75 mg SEQ/ml compared to 25 mg SEQ/ml, KAC 1 would 

be the most toxic site at the KAC. The IFmax of KAC 2, however, with 3.7 is higher than that of 

KAC 1 with 2.9. The CDI as a value combining both qualities, identifies KAC 1 as exhibiting 

a strong genotoxic potential with 1.0, whereas extracts from KAC 2 showed little to no toxicity 

with a CDI of 0.2. No effects wer observed for the water elutes as described in Ch. 2.3.3. 

3.4.3 Wadi Mujib  . 

A genotoxic potential as detected in the comet assay with RTL-W1 cells was only observed for 

the outlet of Mujib Dam and a dose-dependency was visible as shown in Fig. 36. According to 

the NR80 values from the cytotoxicity test (Ch. 3.1.3) 10 mg SEQ/ml was the highest 
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Fig. 35: Genotoxic effects of the acetonic sediment extract of KAC 1 at Deir Allah  and  KAC 2 

at the Confluence with the Zarqa River (right) and negative (NC) and positive controls (PC) 

displayed in Olive Tail Moment with median. The boxes indicate 25 and 75 percentiles, dots 5 

and 95 percentiles, whiskers minimum and maximum values and numbers induction factors. 

An ANOVA-on-ranks test was conducted with Dunn’s test with p < 0.05. * = significantly 

different from negative control. 

KAC 2 KAC 1 

Tab. 17: Genotoxicity of the sediment extracts sampling sites at the King Abdullah Canal 

given as LOEC, IFmax and CDI values. 

LOEC          

[mg SEQ/mL]
IFmax CDI

King Abdullah Canal 1, Deir Allah 3.75 2.9 1.0

King Abdullah Canal  2, Confluence with Zarqa River 25 3.7 0.2
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concentration tested. As even the lowest concentration of 1.25 mg SEQ/ml induced high effects 

with an IFmax of 8.2, this sampling site was strongly toxic one in terms of the endpoint Olive 

Tail Moment compared to the negative control. All concentrations induced significant effects. 

As the LOEC of 1.25 mg SEQ/ml was the lowest concentrations tested, the actual LOEC may 

be even smaller. A CDI of 6.1 assigned a very high genotoxic potential to the sediments. At 

Mujib 1, only the two highest concentrations of 120 and 60 mg SEQ/ml induced significant 

effects with induction factors of 2.6 and 2.5, respectively (Fig. 36). The CDI was found to be 

0.2 and was thus rates slightly to non-genotoxic. The complete data are listed in Tab. 18 and 

the three step analysis is shown in Fig. 37  

 

Fig. 36: Genotoxic effects of the acetonic sediment extract of Mujib 1 and Mujib 2, negative 

(NC) and positive controls (PC) displayed in Olive Tail Moment with medians. Boxes indicate 

25 and 75 percentiles, dots 5 and 95 percentiles, whiskers minimum and maximum values and 

numbers induction factors. An ANOVA-on-ranks test was conducted with Dunn’s test with 

p < 0.05. * = significantly different from negative control. 
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3.4.4 Yarmouk River 

For all sediment extracts from the Yarmouk River with the exception of Yarmouk 3 at the 

diversion to the KAC, a genotoxic potential was detected in the comet assay with RTL-W1 

cells. A compilation of LOEC, IFmax and CDI values is shown in Tab. 19. The NR80 values as 

Tab. 18: Genotoxicity of sediment extracts from sampling sites at the Wadi Mujib 

given as LOEC, IFmax and CDI values. 

LOEC          

[mg SEQ/mL]
IFmax CDI

Mujib 1, Inlet Mujib Dam 60 2.6 0.2

Mujib 2, Outlet Mujib Dam 1.25 8.2 6.1

Mujib 3, Mouth Dead Sea n.d. 1.3 0.1

n.d.: not detectable with the concentrations tested

Fig. 37: Induction factors and LOECs of the extracts from the Wadi Mujib in the comet assay 

with RTL-W1 cells. * = significant difference to negative control. Colors indicate toxicity 

degree according to Keiter et al. (2009); red: strongly toxic, green: non-toxic. 
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determined in the neutralred assay (Ch. 3.2.4) set the limit for the highest concentration to be 

tested: for Yarmouk 1 to 60 mg, for Yarmouk 2 to 25 mg, for Yarmouk 3 to 75 mg, and for 

Yarmouk 4 to 35 mg SEQ/ml. As can be seen in Fig. 38, effects on the cells were very 

heterogeneous between the different concentrations of the various sampling sites, and a dose-

dependency could only be detected at Yarmouk 4. At Yarmouk 1, on the other hand, the 

induction factor decreased from 2.4 at 7.5 mg SEQ/ml to 1.9 at 60 mg SEQ/ml (Fig. 38). 

Yarmouk 2 showed the highest significant effect of 6.1 at the second-lowest concentration of 

6.25 mg SEQ/ml, whereas the induction factor ranged from 2.6 to 1.8 at the other concentrations 

(Fig. 38).  

 

Fig. 38: Genotoxic effects of the acetonic sediment extract of Yarmouk 1 - 4, negative (NC) 

and positive controls (PC) displayed in Olive Tail Moment with median. Boxes indicate 25 and 

75 percentiles, dots 5 and 95 percentiles, whiskers minimum and maximum values and numbers 

induction factors. An ANOVA-on-ranks test was conducted with Dunn’s test with p < 0.05. 

* = significantly different from negative control. 
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Due to the LOEC of 3.1 mg SEQ/ml, the IFmax of 6.1 as well as the CDI of 2.1, the second 

sampling site at the Yarmouk showed very strong genotoxic potential. Second-most toxic was 

Yarmouk 4 at Gesher as the LOEC of 8.75 mg SEQ/ml still induced 2.4 times more DNA 

fragmentation then the negative control. The IFmax of 2.9 was found at the highest test 

concentration of 35 mg SEQ/ml. A similar LOEC (7.5 mg SEQ/ml) with also 2.4 times 

induction was determined for Yarmouk 1 at the Unity Dam. Both sites exhibited a strongly 

genotoxic potential. The LOEC values of Yarmouk 1 and 2 were the lowest concentration used 

in the test. Thus, the actual values might have been even less. Yarmouk 3 was classified as 

moderately toxic with a CDI of 0.4. The three step analysis is shown in Fig. 39. 

Tab. 19: Genotoxicity of the sediment extracts from sampling sites at the 

Yarmouk River given as LOEC, IFmax and CDI values. 

LOEC          

[mg SEQ/mL]
IFmax CDI

Yarmouk 1, Unity Dam 7.5 2.4 0.6

Yarmouk 2, Wadi Raqab 3.125 6.1 2.1

Yarmouk 3, Diversion to KAC 18.75 1.8 0.4

Yarmouk 4, Gesher 8.75 2.9 1.1

n.d.: not detectable within the concentration range tested.
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3.4.5 Zarqa River 

Effects on the DNA fragmentation as detected by the Olive tail Moment in two independent 

replicates in the comet assay with RTL-W1 cells were visible for all sampling sites at the Zarqa 

River (Tab. 20, Fig. 40Fig. 41). A dose dependency was identified with the exception of the 

sampling sites Zarqa 2 and 3. For Zarqa 2, a low-dose effect with an induction of 1.8 occurred 

at 3.75 mg SEQ/ml, which was also the LOEC. Zarqa 3 showed a significant rise of induction 

from 3.0 fold at 3.75 mg SEQ/ml to 7.9 fold at 7.5 mg SEQ/ml and then a decrease to a 2.4 fold 

induction at 15 and 30 mg SEQ/ml. In general, substantial differences in the effective range 

(3.75 to 120 mg SEQ/ml) between the locations were observed. Furthermore, significant 

induction factors ranged from 7.9 at Zarqa 3 to 1.8 at Zarqa 2.  

Fig. 39: Induction factors and LOECs of extracts from Yarmouk River in the comet assay with 

RTL-W1 cells. * = significant difference to negative control. Colors indicate toxicity degree 

according to Keiter et al. (2009); red: strongly toxic, yellow: moderately toxic. 
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LOEC          

[mg SEQ/mL]
IFmax CDI

Zarqa River 1, Khirbet As Samra 10 2.2 1.7

Zarqa River 2, Confluence Zarqa 3.75 1.8 0.8

Zarqa River 3, Seil Jerash 3.75 7.9 2.1

Zarqa River 4, Jerash Bridge 8.75 3.3 1.2

Zarqa River 5, Inlet King Talal Dam 15 5.3 0.3

Zarqa River 6, Outlet King Talal Dam 6.25 3.2 0.6

Tab. 20: Genotoxicity of the sediment extracts from Zarqa River given as LOEC, 

IFmax and CDI values. 

    

Fig. 40: Genotoxic effects of the acetonic sediment extract of Zarqa 1 – 4, negative (NC) and 

positive controls (PC) displayed in Olive Tail Moment with median. Boxes indicate 25 and 75 

percentiles, dots 5 and 95 percentiles, whiskers minimum and maximum values and numbers 

induction factors. An ANOVA-on-ranks test was conducted with Dunn’s test with p < 0.05. 

* = significantly different from negative control. 
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Considering only the LOEC values, Zarqa 2 and 3 would both be rated as the most genotoxic 

sampling sites within this river. However, considering the IFmax and CDI, it became obvious 

that Zarqa 3 had higher toxicities with significant effects at all other tested concentrations, 

whereas for Zarqa 2 the LOEC was also the only significant concentration tested. A high 

induction of DNA fragmentation was also found at Zarqa 5 with an IFmax of 5.3. As this occurred 

at a rather high concentration of 120 mg SEQ/ml, however, the CDI of 0.3 was rather small and 

rated moderately toxic. Strong toxicity could be ascribed to all sites with the exception of Zarqa 

5 which was moderately genotoxic. For a better comparison of the sampling sites, a three-step 

analysis was conducted listing the sites according to their genotoxic potentials (Fig. 42). No 

effects wer observed for the water elutes as described in Ch. 2.3.3. 
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Fig. 41: Genotoxic effects of the acetonic sediment extract of Zarqa 5 and 6, negative (NC) 

and positive controls (PC) displayed in Olive Tail Moment with median. Boxes indicate 25 and 

75 percentiles, dots 5 and 95 percentiles, whiskers minimum and maximum values and 

numbers induction factors. An ANOVA-on-ranks test was conducted with Dunn’s test with 

p < 0.05. * = significantly different from negative control. 
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Fig. 42: Induction factors and LOECs of the extracts from the Zarqa River in the comet assay 

with RTL-W1 cells. * = significant difference to negative control. Colors indicate toxicity 

degree according to Keiter et al. (2009); red: strongly toxic, yellow: moderately toxic. 
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3.5 Micronucleus assay with RTL-W1 cells 

In order to complete and supplement the results of the comet assay and to reveal another mode 

of genotoxic action, the miconucleus assay was conducted. Micronuclei may result from 

acentric chromosome fragments detaching from a chromosome after breakage during mitosis 

(clastogenic effects) or from whole chromosomes which do not integrate into the daughter 

nuclei due to damage of the spindle apparatus (aneugenic effects; (Fenech 2000). 

In this study, RTL-W1 cells did not prove suitable for the assessment of genotoxicity in the 

micronucleus assay. As is shown for the example of the sediments from KAC 1 in Fig. 43, the 

negative controls constantly exceeded the maximum allowed micronuclei rate of 3% (ISO 2004, 

OECD 2010). The number of micronucleated and abnormal cells did in many cases even exceed 

the number of affected cells in the exposure series (Fig. 44).  

 

A contamination with mycoplasms was identified as a possible reason for this phenomenon 

during the time of the experiment. Paton and coworkers (1965) showed that mycoplasms may 

induce chromosome anomalies in cell cultures. However, tests with freshly thawed and 

uncontaminated cell stocks showed similar results. At least, the results for the negative controls 

were not reproducible. Various kinds of anomalies and micronucleated or even polynucleated 

cells occurred more often than allowed by the validity criteria according to ISO/DIS 21427-2 

Fig. 43: Micronuclei and abnormality rate in RTL-W1 cells after exposure to sediment extracts 

of KAC 1 from 2009 and negative (NC) and positive control (PC) with 100 mg/ml NQO. 
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(2004) and the OECD Guideline 487 (2010). The micronucleus test series with RTL-W1 cells 

was therefore not continued, and V79 cells were used instead.  

 

Fig. 44: a) Hoechst 3258 staining of RTL-W1 cells with Mycoplasma contamination, red 

arrows indicate single mycoplasms; b-f) RTL-W1 cells as negative controls in the 

micronucleus assay stained with acridine orange with micronuclei and various anomalies, 

white arrows indicate micronuclei, pink arrows indicates a plasma bridge between two 

nuclei, blue arrows indicate leaking nuclei and noses, orange arrow indicates nucleus 

malformation. 
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3.6 Micronucleus assay with V79 cells 

Since RTL-W1 cells did not proved suitable as test system for the micronucleus assay (Ch. 3.5), 

the micronucleus assay was conducted with V79 cells instead. Metabolic activation through S9-

mix was also used in this test approach to detect clastogenic and aneugenic genotoxic effects 

of the sediment extracts (Fenech 2000, ISO 2004). Besides micronuclei, various anomalies were 

also recorded. The micronucleus assay with V79 cells was only conducted with extracts from 

the 2010 sampling period. Each sampling sites was tested in three independent replicates. 

Results are given as (1) the percentage of micronucleated and abnormal cells out of 2000 cells 

counted for each concentration, (2) the induction factors (IFs) as compared to the negative 

control and (3) the lowest observed effect concentrations (LOECs) for the induction of 

micronuclei. Examples for anomalies detected in exposed V79 cells are given in fig. 45 and 47.  

 

Fig. 45: V79 cells stained with acridine orange in the micronucleus assay after exposure to 

sediment extracts; a) two cells with micronuclei, the lower one with two and further nucleus 

deformation after exposure to 25 mg SEQ/ml of Jordan 1, b) polynucleated cell after 

exposure to 100 mg SEQ/ml of KAC 1, c) nucleus with indention after exposure to 

200 mg SEQ/ml of KAC 2, d) blebbing after exposure to 200 mg SEQ/ml of Yarmouk 4. 
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3.6.1 Jordan River 

Since the cytotoxicity assay did not show any significant effects (Ch. 3.3), the highest 

concentration tested was defined by the maximum allowed concentration of 1 % DMSO, which 

corresponded to 200 mg SEQ/ml. Significant genotoxic effects of the sediment extracts from 

the Jordan River as detected by formation of micronuclei were only observed at the sampling 

sites Jordan 1 and Jordan 4 (Tab. 21). The other sampling sites did not show any significant 

increase in the rate of micronucleated or abnormal cells and thus did also not allow the 

determination of LOEC values. Anomalies generally occurred at rates less than 2.5 % and were 

statistically not significant. At Jordan 1, the highest and the lowest concentrations tested 

induced a significant number of micronuclei compared to the negative control with IFs of 3.3 

and 2.2, respectively (Fig. 47). At 50 and 100 mg SEQ/ml, no increase in the frequency of 

micronucleated cells was observed. 100 and 200 mg SEQ/ml of the extract from Jordan 2 

induced 3.4 and 2 times more micronuclei than in the negative controls (Fig. 47). The other 

concentrations tested did not induce significantly. A compilation of the complete   data is shown 

in Tab. 21.  

Fig. 46: V79 cells stained with acridine orange in the micronucleus assay after exposure to 

sediment extracts; a) nucleus deformation (nose) after exposure to 100 mg SEQ/ml of 

Zarqa 3, b) plasma-bridge between two nuclei after exposure to 50 mg SEQ/ml of Zarqa 4. 
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3.6.2 King Abdullah Canal 

Both sampling locations at the King Abdullah Canal induced the micronucleus rate significantly 

in three independent replicates. The highest concentration tested (200 mg SEQ/ml) was pro-  

vided by the maximum allowed concentration of the solvent DMSO (0.5 %). In both cases, the 

two highest concentrations of 200 and 100 mg SEQ/ml yielded in significant results with 

induction factors of 2.3 and 2.5 for KAC 1 and in 3.2 and 2.8 for KAC 2 (Tab. 22). As the 

negative controls showed a slightly higher micronucleus rate than in the replicates for the Jordan 

River, an induction factor of 2.4 as observed for 25 mg SEQ/ml of KAC 2 was not found to 

differ significantly. The rate of anomalies did not show a significant increase when compared 

Fig. 47: Induction of micronuclei and anomalies in the micronucleus assay with V79 cells after 

exposure to sediment extracts from Jordan 1 at Baqura and Jordan 4 at the Allenby Bridge in 

three replicates. An ANOVA-on-ranks test was conducted followed by Dunnett’s method with 

p < 0.05; * = significantly different from negative controls. Numbers indicate induction factors. 

n = 3. 

25 50 100 200

Jordan 1, Baqura 2.2* 0.9 0.9 3.3*

Jordan  2, Sheik Hussein Bridge 1.3 1.4 1.1 0.5

Jordan  3, Damiya Bridge 0.8 1.0 1.6 1.4

Jordan  4, Allenby/King Hussein Bridge 1.3 1.5 2.0* 3.4*

Jordan  5, King Abdullah Bridge 0.8 1.2 1.2 1.3

mg SEQ/mL

Tab. 21: Induction factors in the micronucleus assay with V79 cells for the 

sediment extracts from Jordan River. Grey boxes indicate LOEC values, * = 

significantly different from negative controls. 
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to negative controls. A graphic illustration is given in fig. 48. No effects wer observed for the 

water eluates as described in Ch. 2.3.3. 

 

 

3.6.3 Wadi Mujib   

Given that the cytotoxicity test with V79 cells did not show any effects for the sampling sites 

Mujib 1 and Mujib 3 (Ch. 59), 200 mg SEQ/ml of the extracts were used as highest 

concentration in the micronucleus assay. The NR80 for Mujib 2 was determined at 

50 mg SEQ/ml which set the limit for testing. 200 and 100 mg SEQ/ml of Mujib 1 induced a 

1.9 fold rate of nuclei and the concentrations of 12.5, 25, 50 mg SEQ/ml of Mujib 2 resulted 

IFs of 3.2, 3.5 and 3.3, respectively (Fig. 49). The LOEC of 12 mg SEQ/ml was the lowest 

recorded during the whole experiment (Tab. 23). Mujib 3, the LOEC was determined at 

200 mg SEQ/ml which induced micronuclei 2.4 fold. 

Tab. 22: Induction factors in the micronucleus assay with V79 cells for the 

sediment extracts from King Abdullah Canal. Grey boxes indicate LOEC 

values,* = significantly different from controls. 

25 50 100 200

KAC 1, Deir Allah 2.0 1.9 2.5* 2.3*

KAC  2, Confluence with Zarqa River 2.4 2.0 2.8* 3.2*

mg SEQ/mL

Fig. 48: Induction of micronuclei and anomalies in the micronucleus assay with V79 cells after 

exposure to sediment extracts of KAC 1 and KAC 2. An ANOVA on the ranks was conducted 

with Dunnett’s method with p < 0.05. * = significantly different from negative controls. 

Numbers indicate induction factors. n = 3. 
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3.6.4 Yarmouk River   

As is illustrated in fig. 50, the sediment extracts of the sampling sites Yarmouk 1 and Yarmouk 4 

showed significant effects in the micronucleus assay with V79 cells. For Yarmouk 1, only the 

highest concentration of 200 mg SEQ/ml induced a significant number of micronuclei with an 

IF of 4.1 which was the highest to be measured in the whole experiment. The extracts of 

Yarmouk 4 resulted in a low dose effect where 25 mg SEQ/ml induced significantly 2.4 fold 

but the other concentrations did not. The LOEC were, thus, 25 mg SEQ/ml and 200 for 

Yarmouk 1 (Tab. 24). 

25 50 100 200

Mujib 1, Inlet Mujib Dam 1.1 1.4 1.9* 1.9*

Mujib 2, Outlet Mujib Dam 2.0
1

3.2*
1

3.5*
1

3.3*
1

Mujib 3, Mouth Dead Sea 0.8 2.3 1.9 2.4*

mg SEQ/mL

1
: the equivalent concentrations for Mujib 2 were 50, 25, 12.5 and 6.25 mgSEQ/ml

Tab. 23: Induction factors in the micronucleus assay with V79 cells for the 

sediment extracts from Jordan River. Grey boxes indicate LOEC values, * = 

significantly different from controls. 

Fig. 49: Induction of micronuclei and anomalies in the micronucleus assay with V79 cells after 

exposure to sediment extracts of Mujib 1 and 2. An ANOVA on the ranks was conducted with 

Dunnett’s method with p < 0.05. * = significantly different from negative controls. Numbers 

indicate induction factors. n = 3. 
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3.6.5 Zarqa River   

While the cytotoxicity test with V79 cells limited the highest concentration to be tested to a 

NR80 of 50 mg SEQ/ml for the sampling site Zarqa 1, 200 mg SEQ/ml as set by the maximum 

allowed DMSO concentration of 1 % was used for the other extracts. No mutagenic effects in 

the micronucleus assay was found for Zarqa 2, whereas the other five sampling sites showed 

significant mutagenic effects (Fig. 51). The highest IFs for sediments from the Zarqa River 

were found at Zarqa 1 with a 3.9 fold induction of micronucleus rate at 25 mg SEQ/ml, which 

was also the LOEC value (Tab. 25). The same LOEC with an IF of 3.5 was found for extracts 

from Zarqa 5. Zarqa 4 and 6 had a maximum IF of 3.1 and Zarqa 3 of 2.4 at 200 mg SEQ/ml. 

No effects wer observed for the water elutes as described in Ch. 2.3.3. 

25 50 100 200

Yarmouk 1, Unity Dam 0.7 1.8 2.3 4.1*

Yarmouk 2, Wadi Raqab 0.7 0.8 1.3 1.6

Yarmouk 3, Diversion to KAC 1.2 1.3 1.5 1.3

Yarmouk  4, Gesher 2.4* 2.0* 1.5 1.6

mg SEQ/mL

Tab. 24: Induction factors in the micronucleus assay with V79 cells for the 

sediment extracts from Yarmouk River. Grey boxes indicate LOEC values, * = 

significantly different from controls. 

Fig. 50: Induction of micronuclei and anomalies in the micronucleus assay with V79 cells after 

exposure to sediment extracts of Yarmouk 1 and Yarmouk 4. An ANOVA on the ranks was 

conducted with Dunnett’s method with p < 0.05. * = significantly different from negative 

controls. Numbers indicate induction factors. n = 3. 
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25 50 100 200

Zarqa 1, Khirbet as Samra 2.1
1

2.8
2

3.9
3
* 3.64*

Zarqa 2, Confluence Zarqa 1.1 1.2 1.4 1.8

Zarqa 3, Seil Jerash 0.7 1.0 1.4 2.4*

Zarqa 4, Jerash Bridge 0.9 1.6 1.8 3.1*

Zarqa 5, Inlet King Talal Dam 3.5* 2.2 1.9 2.4

Zarqa 6, Outlet King Talal Dam 1.1 1.7 1.9 3.1*

1: 6.25 mg SEQ/mL, 2: 12.5 mg SEQ/mL, 3: 25 mg SEQ/mL, 4: 50 mg SEQ/mL

mg SEQ/mL

Tab. 25: Induction factors in the micronucleus assay with V79 cells for the sediment 

extracts from Zarqa River. Grey boxes indicate LOEC values, * = significantly different 

from controls. 

Fig. 51: Induction of micronuclei and anomalies in the micronucleus assay with V79 cells after 

exposure to sediment extracts of a) Zarqa 1, b) Zarqa 4, c) Zarqa 5 and d) Zarqa 6. An ANOVA 

on the ranks was conducted with Dunnett’s method with p < 0.05. * = significantly different 

from negative controls. Numbers indicate induction factors. n = 3. 
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3.7 EROD assay  

Since 1 % DMSO was the maximum concentration allowed in in vitro tests with the RTL-W1 

cell line, 200 mg SEQ/ml was the highest concentration of sediment extracts used in the EROD 

and MTT assays. Seven 1:2 dilutions were prepared from this concentration, resulting in 

1.56 mg SEQ/ml as the lowest concentration. Three independent replicates were conducted for 

each sampling site. Results are depicted in the concentration of sediment extracts that induced 

the highest EROD activity, which was then compared to the BNF concentration in pmol 

evoking an equal induction. Thus, the higher the equivalent concentration of BNF and the lower 

the concentration of sediment extract, the higher was the dioxin-like activity of a sampling site. 

To simplify the comparison of the toxicity of the sampling sites, the quotient of the induction 

equivalent of BNF in pmol, and the mg SEQ/ml was calculated. The higher the quotient, the 

higher the dioxin-like toxicity in the EROD assay.  

3.7.1 Jordan River 

All sites along the Jordan River showed dioxin-like induction of the EROD activity in RTL-

W1 cells (Tab. 26). The results from the replicates correlated well; however, some minor 

deviations remained probably due to differences in the moment of exposure during cell cycle. 

The highest dioxin-like toxicity was found at sampling site Jordan 1, as 12.5 mg SEQ/ml 

induced EROD activity as 3.4 pmol BNF resulting in a mean quotient of 0.21 (Fig. 52). The 

second highest induction was found at Jordan 4 because 25 mg SEQ/ml induced in the same 

way 1.79 – 2.83 pmol BNF with a mean quotient of 0.09 (Fig. 55). Jordan 2, 3 and 5 slightly 

induced EROD activity with quotients of 0.03 to 0.05 (Figs. 54, Fig. 54). As was detected by 

the MTT assay, at all sampling sites and replicates the concentration with the highest induction 

of EROD activity was always linked to a cell viability of about 100 %. At concentrations 

beyond this point, the cell viability rose in the cases of Jordan 1, 2, and 3, but then declined to 

a mortality of up to 100 % at 200 mg SEQ/ml as for Jordan 1. Subsequent to the peak of 

induction, a decrease in the EROD activity of the RTL-W1 cells was detectable in all replicates. 

This was not only to be observed in cases where cell viability declined as at Jordan 1 at 

200 mg SEQ/ml (Fig. 52), but also during increased cell viability as at 100 mg SEQ/ml of the 

extracts from Jordan 2 (Fig. 54). 
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mg SEQ/ml pmol BNF mg SEQ/ml pmol BNF mg SEQ/ml pmol BNF

Jordan 1 12.5 1.46 6.25 1.64 12.5 3.4 0.21

Jordan 2 50 1.06 50 2.64 50 0.97 0.03

Jordan 3 50 1.24 25 0.83 25 2.34 0.05

Jordan 4 25 1.79 25 2.16 25 2.83 0.09

Jordan 5 50 1.98 50 1.31 50 2.15 0.04

Replicate 1 Replicate 2 Replicate 3

maximum induction at maximum induction at maximum induction at

Mean value                   

pmol BNF/  

mg SEQ/ml

Tab. 26: Induction of EROD activity of sediment extracts from the Jordan River given as 

concentration with the respective highest induction, its BNF equivalent and the quotient of BNF 

induction and concentration for simplification of the ranking of sampling sites. 

Fig. 52: Dioxin-like toxicity of sediment extracts from Jordan 1 in the EROD assay with RTL-

W1 cells. Induction and inhibition of EROD activity is plotted against the viability of cells in 

the MTT assay. A regression for the induction of BNF was conducted and the equivalent 

concentration inducing as much as the respective concentration of the sediment extract was 

determined mathematically. ●: EROD activity of sample, ○: viability in % of negative control, 

x: EROD activity of BNF as reference. 
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Fig. 53: Dioxin-like toxicity of sediment extracts from Jordan 2 and 3 in the EROD assay with 

RTL-W1 cells. Induction and inhibition of EROD activity is plotted against the viability of cells 

in the MTT assay. A regression for the induction of BNF was conducted and the equivalent 

concentration inducing as much as the respective concentration of the sediment extract was 

determined mathematically. ●: EROD activity of sample, ○: viability in % of negative control, 

x: EROD activity of BNF as reference. 
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Fig. 54: Dioxin-like toxicity of sediment extracts from Jordan 4 and 5 in the EROD assay with 

RTL-W1 cells. Induction and inhibition of EROD activity is plotted against the viability of cells 

in the MTT assay. A regression for the induction of BNF was conducted and the equivalent 

concentration inducing as much as the respective concentration of the highest observed 

induction caused by the sediment extract was determined mathematically. ●: EROD activity of 

sample, ○: viability in % of negative control, x: EROD activity of BNF as reference. 
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3.7.2 King Abdullah Canal 

Little dioxin-like toxicity as determined by the EROD assay with RTL-W1 cells was found for 

KAC 1 as well as for KAC 2. In all three replicates with sediment extracts from KAC 1, a slight 

induction of the ERDOD activity was noted up to a concentration of 12.5 mg SEQ/ml followed 

by a decrease of activity down to no activity at 100 and 200 mg SEQ/ml (Fig. 55). Cell viability 

as measured in the MTT assay was roughly 100 % up to 25 mg SEQ/ml and then decreased 

until complete mortality at 100 and 200 mg SEQ/ml, correlating with the decline of EROD 

activity. The extracts from KAC 2 did not show such a decline in cell viability and EROD 

activity Cell viability rose at 200 mg SEQ/ml and ERDOD activity was increased until 

100 mg SEQ/ml followed by a slight decrease. Comparing the quotient of the equivalent BNF 

concentration and the SEQ, KAC 1 showed a higher toxicity than KAC 2 as 12.5 mg SEQ/ml 

exhibited the same induction as 0.58 to 1.18 pmol of BNF. 100 mg SEQ/ml of KAC 2 induced 

EROD activity as much as 0.22 to 1.63 pmol BNF (Tab. 27).  

 

Tab. 27: Induction of EROD activity of sediment extracts from King Abdullah sediment 

extracts expressed by the concentration with the respective highest induction, its BNF 

equivalent and the quotient of BNF induction and concentration for simplification of the 

ranking of locations. 

mg SEQ/ml pmol BNF mg SEQ/ml pmol BNF mg SEQ/ml pmol BNF

KAC 1 12.5 0.58 12.5 1.18 12.5 0.6 0.06

KAC 2 100 1.43 100 1.62 100 0.22 0.01

Replicate 1 Replicate 2 Replicate 3

maximum induction at maximum induction at maximum induction at

Mean value                   

pmol BNF/  

mg SEQ/ml
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Fig. 55: Dioxin-like toxicity shown for KAC 1 and 2 in the EROD assay with RTL-W1 cells. 

Induction and inhibition of EROD activity is plotted against the viability of cells measured in 

the MTT assay. A regression for the induction of BNF was conducted and the equivalent 

concentration inducing as much as the respective concentration of the highest observed 

induction caused by the sediment extract was determined mathematically. ●: EROD activity 

of sample, ○: viability in % of negative control, x: EROD activity of BNF as reference. 
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3.7.3 Wadi Mujib 

The sediment extracts of the three sampling sites of Wadi Mujib were all slightly positive for 

the induction of EROD activity in RTL-W1 cells. Mujib 1 and Mujib 2 showed gradual 

induction up to a concentration of 25 and 12.5 mg SEQ/ml, respectively, followed by a strong 

decrease of the activity at 200 and 100 mg SEQ/ml (Fig. 56). In the case of Mujib 2, this 

decrease correlated with a complete decline of the cell viability measured with the MTT assay 

(Fig. 56). Only a slight decline of cell viability was found at 200 mg SEQ/ml of the extracts 

from Mujib 1. At Mujib 3, cell viability rose slightly at 200 mg SEQ/ml, and a slight decrease 

of EROD activity was observed after the maximum induction at 100 mg SEQ/ml (Fig. 57). The 

highest induction, when related to the BNF equivalent, was found in the second replicate of 

Mujib 2, where 25 mg SEQ/ml induced as much EROD activity as 2.64 pmol BNF (Tab. 28). 

However, the BNF induction in this replicate was smaller than in the other tests. The same 

applied to Mujib 3 where the second highest induction of an equivalent of 1.62 pmol BNF was 

found at 100 mg SEQ/ml. The remaining induction equivalents of the other replicates of Mujib 3 

were 1.43 and 0.53 pmol BNF, and 0.29 and 0.12 for Mujib 2. At 25 mg SEQ/ml, Mujib 1 

induced as much EROD activity as 0.52 to 0.71 pmol BNF.  

 

 

mg SEQ/ml pmol BNF mg SEQ/ml pmol BNF mg SEQ/ml pmol BNF

Wadi Mujib 1 25 0.59 25 0.52 25 0.71 0.02

Wadi Mujib 2 12.5 0.29 25 2.64 12.5 0.12 0.05

Wadi Mujib 3 100 1.43 100 1.52 100 0.53 0.01

Mean value                   

pmol BNF/  

mg SEQ/ml

Replicate 1 Replicate 2 Replicate 3

maximum induction at maximum induction at maximum induction at

Tab. 28: Induction of EROD activity of the Wadi Mujib sediment extracts expressed by the 

concentration with the respective highest induction, its BNF equivalent and the quotient of BNF 

induction and concentration for simplification of the ranking of sampling sites. 
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Fig. 56: Dioxin-like toxicity of sediment extracts from Mujib 1 and 2 in the EROD assay with 

RTL-W1 cells. Induction and inhibition of EROD activity is plotted against the viability of 

cells measured in the MTT assay. A regression for the induction of BNF was conducted and 

the equivalent concentration inducing as much as the respective concentration of the highest 

observed induction caused by the sediment extract was determined mathematically. ●: EROD 

activity of sample, ○: viability in % of negative control, x: EROD activity of BNF as reference. 
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3.7.4 Yarmouk River 

All sediment extracts of the Yarmouk River induced EROD activity at rather low concentrations 

of 6.25 mg SEQ/ml (Yarmouk 1 and 2) and 12.5 mg SEQ/ml (Yarmouk 3 and 4). Subsequently, 

for all sites, the activity decreased totally at 100 and at 200 mg SEQ/ml at Yarmouk 3. With the 

exception of Yarmouk 3, this decrease was accompanied by a decline in the cell viability as 

was measured by the MTT assay. This decline was preceded by an increase in cell viability 

where the decrease of EROD activity, however, had already started. The highest EROD 

induction by means of BNF equivalents was found at the sampling site Yarmouk 1 (Fig. 58), 

where 12.5 mg SEQ/ml induced as much EROD activity as 2.22 pmol BNF (Tab. 29). The 

second highest induction equaled 1.98 pmol BNF at 12.5 mg SEQ/ml of Yarmouk 3, followed 

Fig. 57: Dioxin-like toxicity assed in the EROD assay with RTL-W1 cells for sediment extract 

of Mujib 3. Induction and inhibition of EROD activity is plotted against the viability of cells 

measured in the MTT assay. A regression for the induction of BNF was conducted and the 

equivalent concentration inducing as much as the respective concentration of the highest 

observed induction caused by the sediment extract was determined mathematically. ●: EROD 

activity of sample, ○: viability in % of negative control, x: EROD activity of BNF as reference. 
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by 1.41 pmol BNF at 6.25 mg SEQ/ml of the extracts of Yarmouk 2 (Fig. 59), and 

0.93 pmol BNF at 12.5 mg SEQ/ml of Yarmouk 4 (Fig. 60).  

 

Tab. 29: Induction of EROD activity of the Yarmouk River sediment extracts expressed by the 

concentration with the respective highest induction, its BNF equivalent and the quotient of BNF 

induction and concentration for simplification of the ranking of sampling sites. 

mg SEQ/ml pmol BNF mg SEQ/ml pmol BNF mg SEQ/ml pmol BNF

Yarmouk 1 6.25 1.03 6.25 0.94 12.5 2.22 0.16

Yarmouk 2 6.25 0.86 6.26 1.19 6.25 1.41 0.19

Yarmouk 3 12.5 0.69 12.5 0.53 12.5 1.98 0.09

Yarmouk 4 12.5 0.93 12.5 0.86 25 0.25 0.05

Replicate 1 Replicate 2 Replicate 3

maximum induction at maximum induction at maximum induction at

Mean value                   

pmol BNF/  

mg SEQ/ml

Fig. 58: Dioxin-like toxicity of sediment extracts from Yarmouk 1 in the EROD assay with 

RTL-W1 cells. Induction and inhibition of EROD activity is plotted against the viability of 

cells measured in the MTT assay. A regression for the induction of BNF was conducted and 

the equivalent concentration inducing as much as the respective concentration of the highest 

observed induction caused by the sediment extract was determined mathematically. ●: EROD 

activity of sample, ○: viability in % of negative control, x: EROD activity of BNF as reference. 
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Fig. 59: Dioxin-like toxicity as assed in the EROD assay with RTL-W1 cells for the sampling 

sites Yarmouk 2 and 3. Induction and inhibition of EROD activity is plotted against the viability 

of cells measured in the MTT assay. A regression for the induction of BNF was conducted and 

the equivalent concentration inducing as much as the respective concentration of the highest 

observed induction caused by the sediment extract was determined mathematically. ●: EROD 

activity of sample, ○: viability in % of negative control, x: EROD activity of BNF as reference. 
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3.7.5 Zarqa River 

All sites along the Zarqa River showed induction of dioxin-like EROD activity in RTL-W1 

cells (Tab. 30). Minor deviations between the replicates occured probably due to differences in 

the moment of exposure during cell cycle, although the overall correlation was good. The 

highest EROD induction in terms of BNF equivalent was found for the sediment extracts of 

sampling site Zarqa 2 as 25 mg SEQ/ml induced in the same way as 3.89 pmol BNF (Fig. 61). 

This was followed by the sites Zarqa 5 and Zarqa 3 as here 50 mg SEQ/ml and 12.5 mg SEQ/ml 

induced EROD activity as much as 3.75 and 3.15 pmol BNF, respectively (Fig. 62, Fig. 63). 

The highest BNF equivalents found for the sites Zarqa 1, 6 and 4 were 2.91, 2.56 and 2.43, 

respectively. In terms of the concentration of the sediment extracts inducing the maximum 

Fig. 60: Dioxin-like toxicity as assed in three independent replicates in the EROD assay with 

RTL-W1 cells for the sampling site Yarmouk 4. Induction and inhibition of EROD activity is 

plotted against the viability of cells measured in the MTT assay. A regression for the induction 

of BNF was conducted and the equivalent concentration inducing as much as the respective 

concentration of the highest observed induction caused by the sediment extract was determined 

mathematically. ●: EROD activity of sample, ○: viability in % of negative control, x: EROD 

activity of BNF as reference. 
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EROD activity, Zarqa 1 proved to be most potent in terms of dioxin-like activity as only 

3.13 mg SEQ/ml were needed. To simplify the comparison of the toxicity of the sampling sites, 

the quotient of the induction equivalent of BNF in pmol and the mg SEQ/ml was calculated. 

Accordingly, the ranking in dioxin-like toxicity for the Zarqa River was as follows: Zarqa 3 

(0.17), Zarqa 4 (0.15), Zarqa 6 (0.14), Zarqa 1 (0.12), Zarqa 2 (0.11) and Zarqa 5 (0.06). 

Induction of EROD activity was always followed by a decrease in activity. With the exception 

of the sampling site Zarqa 5 (Fig. 63), this decrease correlated with a decline in cell viability as 

was simultaneously measured by the MTT assay. Preceding the decreasing cell viability, an 

increase in viability was observed in the cases of Zarqa 1, 2, 4 and 6. 

 

Tab. 30: Induction of EROD activity of the Zarqa River sediment extracts expressed by the 

concentration with the respective highest induction, its BNF equivalent and the quotient of BNF 

induction and concentration for simplification of the ranking of sampling sites. 

mg SEQ/ml pmol BNF mg SEQ/ml pmol BNF mg SEQ/ml pmol BNF

Zarqa 1 3.13 0.34 3.13 0.31 3.13 2.91 0.12

Zarqa 2 12.5 0.68 12.5 1.43 25 3.89 0.11

Zarqa 3 12.5 1.49 12.5 1.58 12.5 3.15 0.17

Zarqa 4 12.5 2.19 25 1.50 12.5 2.45 0.15

Zarqa 5 50 2.57 50 3.75 50 2.43 0.06

Zarqa 6 12.5 2.56 12.5 1.31 12.5 1.41 0.14

Mean value                   

pmol BNF/  

mg SEQ/ml

Replicate 1 Replicate 2 Replicate 3

maximum induction at maximum induction at maximum induction at
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Fig. 61: Dioxin-like toxicity for sediment extracts of Zarqa 1 and 2 in the EROD assay with 

RTL-W1 cells. Induction and inhibition of EROD activity is plotted against the viability of 

cells measured in the MTT assay. A regression for the induction of BNF was conducted and 

the equivalent concentration inducing as much as the respective concentration of the highest 

observed induction caused by the sediment extract was determined mathematically. ●: EROD 

activity of sample, ○: viability in % of negative control, x: EROD activity of BNF as reference.. 
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Fig. 62: Dioxin-like toxicity as assed in the EROD assay with RTL-W1 cells for the sampling 

sites Zarqa 3 and 4. Induction and inhibition of EROD activity is plotted against the viability 

of cells measured in the MTT assay. A regression for the induction of BNF was conducted and 

the equivalent concentration inducing as much as the respective concentration of the highest 

observed induction caused by the sediment extract was determined mathematically. ●: EROD 

activity of sample, ○: viability in % of negative control, x: EROD activity of BNF as reference. 
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Fig. 63: Dioxin-like toxicity as assed in the EROD assay with RTL-W1 cells for the sampling 

sites Zarqa 5 and 6. Induction and inhibition of EROD activity is plotted against the viability 

of cells measured in the MTT assay. A regression for the induction of BNF was conducted and 

the equivalent concentration inducing as much as the respective concentration of the highest 

observed induction caused by the sediment extract was determined mathematically. ●: EROD 

activity of sample, ○: viability in % of negative control, x: EROD activity of BNF as reference. 
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3.8 Acute toxicity of sediment extracts in the fish embryo test with 

zebrafish 

3.8.1 Jordan River 

The effects of sediment extracts as determined by the fish embryo toxicity test with Danio rerio 

were very heterogeneous for the Jordan River, since only sediments from three out of the five 

sampling sites showed any lethal effects at all. However, following Mujib 2, Jordan 1 was found 

to be the second most toxic site within this thesis with an LC50 value of 13.8 mg SEQ/ml after 

96 hpf (Fig. 64 and Tab. 31). After 24 hpf, 100 % of the embryos at 50 and 37.5 mg SEQ/ml 

and 75 and 7 % of the embryos at 25 and 12.5 mg SEQ/ml were coagulated, respectively. At 

25 and 12.5 mg SEQ/ml, other lethal effects such as non-detachment of the tails and retarded 

somite stages were recorded three times, all of which eventually resulted in coagulation or lack 

of heartbeat at 48 hpf. Acute toxicity rose to 90 % at 25 mg SEQ/ml and to 13 % at 

12.5 mg SEQ/ml. Furthermore, sublethal effects in terms of edemata, reduction of blood 

circulation and heartbeat rate were recorded for 42 % of the remaining living embryos at 

12.5 mg SEQ/ml and for 100 % at 25 mg SEQ/ml at 48 and 72 hpf. Hence, the EC50 value after 

48 hpf differed considerably from the equivalent LC50 value (Fig. 64). This was even more 

evident after 96 hpf, as 100 % of the remaining living embryos at 25 mg SEQ/ml, 87 % at 

12.5 mg SEQ/ml and 93 % at 1.0 mg SEQ/ml showed no hatching success (Fig. 66 g). At 

12.5 mg SEQ/ml, embryos showed severe edemata and reduction of heartbeat rate and blood 

circulation in 39 %. Thus, the EC50 value could not be determined with ToxRat and had to be 

less than 1.0 mg SEQ/ml (Fig. 64).  

 

 96 hpf  48 hpf  96 hpf  48 hpf

Jordan 1, Baqura 13.8 14.8 ˂ 1* 5.2 1.0 ˂ 1*

Jordan  2, Sheik Hussein Bridge 33.9 35.4 6.6 24.8 1.0 ˂ 1*

Jordan  3, Damiya Bridge n.d. n.d. 28.7 n.d. 12.5 1.0

Jordan  4, Allenby/King Hussein Bridge n.d. n.d. n.d. n.d. 37.5 25

Jordan  5, King Abdullah Bridge n.d. n.d. n.d. n.d. 50 37.5

centration of 1 mg SEQ/mL, the EC50 value must be less than this.

LC50 EC50 LOEC     

96 hpf

NOEC    

96 hpf

a detection of the corresponding values. *: Since all embryos showed sublethal effects even at the lowest con- 
n.d.: not detectable within the concentration range tested since the amount of effects observed did not allow for

Tab. 31: Toxicity data of the fish embryo test with Danio rerio for the Jordan River 

in mg SEQ/ml. 
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Jordan 2 at the Sheik Hussein Bridge with an LC50 at 96 hpf of 33.9 mg SEQ/ml produced acute 

embryo toxicity as well and was the fourth most toxic sampling site after Jordan 1, Mujib 2 and 

Zarqa 6 in terms of embryo toxicity with Danio rerio (Tab. 31). Besides 66 % coagulation, two 

embryos showed the effect of no heartbeat at 50 mg SEQ/ml after 48hpf and seven after 96 hpf. 

By then, 90 % of the embryos at 50 mg SEQ/ml, 57 % at 37.5 mg SEQ/ml 13 % at 

25 mg SEQ/ml were mortally affected. 40 and 30 % of the not lethally affected embryos showed 

effects on the cardiovascular system after 48 hpf at 37.5 and 25 mg SEQ/ml, respectively. At 

25 mg SEQ/ml, a recovery of these effects could be observed in three out of nine individuals 

after 96 hpf. As did also account for Jordan 1, the hatching success of embryos was affected 

after 96 hpf at all concentrations. Of the remaining living embryos, 100 % failed to hatch at 

50 mg SEQ/ml, 93 % at 37.5 mg SEQ/ml, 96 % at 25 mg SEQ/ml, 38 % at 12.5 mg SEQ/ml 

(Fig. 66 f) and 7 % at 1.0 mg SEQ/ml. Furthermore, teratogenic effects in terms of severe 

malformations of notochord/spine and tail were observed in 60 %, 30 %, 27 % and 7 % at 50, 

37.5, 25 and 12.5 mg SEQ/ml, respectively (Figs. 66,Fig. 66 a - f). This led to a significant 

difference between the EC50 and LC50 values. Correlation of the LC50 values after 48 and 96 hpf 

was good for Jordan 1 as well as for Jordan 2.  

Fig. 64: Correlation and development of LC50 and EC50 values for the sediment extracts of 

Jordan 1. *: Since embryos at all concentrations tested showed no hatching success at 96 hpf, 

the EC50 value must be less than 1.0 mg SEQ/ml. 
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Although extracts of the sampling site Jordan 3 did not result in a sufficient number of lethal 

effects that allowed a determination of LC50 values, an EC50 of 28.7 mg SEQ/ml after 96 hpf 

(Tab. 31) could be determined, since reduced hatching success and spine and tail malformations 

Fig. 65: Effects of sediment extracts from Jordan 2 on spine and tail malformations. 

Fig. 66: Embryos of Danio rerio exposed to sediment extracts from Jordan 1 and 2 (J 1, 2). 

Flocculated extract was accumulated at the chorion at higher concentrations. a) 48 hpf at 

50 mg SEQ/ml J 2, tail malformation, b) 72 hpf at 50 mg SEQ/ml J 2, tail malformation, 

c) 48 hpf at 25 mg SEQ/ml J 2, tail malformation, d) 96 hpf at 12.5 mg SEQ/ml J 2, lack of 

hatching, edema and tail malformation, e) 96 hpf at 25 mg SEQ/ml J 2, tail malformation, edema 

and reduced heartbeat, f) 96 hpf at 25 mg SEQ/ml J 2, severe malformation of the 

notochord/spine g) 96 hpf at 12.5 mg SEQ/ml J 1, no hatching success.  

b) a) c) d) 

e) f) g) 
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were observed in some embryos at all concentrations except for 1.0 mg SEQ/ml. Teratogenicity 

could therefore be assigned to this sampling site. Only very few embryos showed any sublethal 

effect after exposure to extracts from the sampling sites Jordan 4 and 5, which are not to be 

mentioned further as they did allow the determination of LC50 or EC50 values. 
    

3.8.2 King Abdullah Canal 

Neither of the sediment extracts from the King Abdullah Canal did show significant lethal 

effects in the Embryo Toxicity Test with Danio rerio that would allow for the determination of 

LC50 values. However, extracts from KAC 1 led to a reduced hatching rate of at concentrations 

of 12.5, 25, 37.5 and 50 mg SEQ/ml. At 50 mg SEQ/ml all embryos in the three replicates 

except for one showed this effect. A dose-dependency was evident (Fig. 67). Furthermore, few 

embryos showed reduced blood circulation and reduced heartbeat rate. An EC50 of 

19.1 mg SEQ/ml could thus be determined after 96 hpf.  

 

3.8.3 Wadi Mujib 

Acute toxicity as determined in the fish embryo test with Danio rerio could only be observed 

for the sampling site Mujib 2 at the outlet of Mujib Dam. It was, however, with an LC50 of 

21 mg SEQ/ml after 48 hpf and 9.9 mg SEQ/ml after 96 hpf (Tab. 32) the most toxic sampling 

site of this thesis and was rated strongly acute toxic according to Keiter et al. (2009). 24 hpf 

100 % and 100 % of the embryos were lethally affected at 50 and 37.5 mg SEQ/ml, respectively 

(Fig. 68). Besides 36 % of coagulation, 30 % of the embryos showed retarded somite stage and 

Fig. 67: Effects of sediment extracts from KAC 1 on hatching success of zebrafish embryos. 
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non-detachment of tails at 25 mg SEQ/ml, which led to coagulation or no heartbeat at 48 hpf. 

One embryo lacked tail detachment at 12.5 mg SEQ/ml and showed no heartbeat at 48 hpf. No 

lethal or sublethal effects were recorded for 1.0 mg SEQ/ml at any time during the experiment. 

Mortality rate rose to 80 and 100 % at 25 mg SEQ/ml after 48 and 72 hpf (Fig. 68), of which 

50 % were coagulated (Fig. 69 a) and 50 % ´had no heartbeat (Fig. 69 c). At 12.5 mg SEQ/ml 

17 % were coagulated and 50 % lacked heartbeat at 96hpf. Of the not lethally affected embryos 

at 25 and 12.5 mg SEQ/ml, 100 % showed effects on the cardiovascular system as reduced 

heartbeat rate and blood circulation after 48, 72 and 96 hpf. Furthermore, pericardial or yolk 

sack edemata or a combination of both were recorded for all individuals (Fig. 69 b - d). 40% of 

the remaining embryos at 12.5 mg SEQ/ml did not hatch after 96 hpf. Moreover, teratogenic 

effects in terms of spine/notochord and tail malformation were observed in 40 and 100 % (Fig. 

69 c - e).  

 

 

Tab. 32: Toxicity data of the fish embryo test with Danio rerio for sediment extracts of Wadi 

Mujib in mg SEQ/ml. 

 96 hpf  48 hpf  96 hpf  48 hpf

Mujib 1, Intlet Mujib Dam n.d. n.d. n.d. n.d. n.d. n.d.

Mujib 2, Outlet Mujib Dam 9.9 21.0 1.4 2.6 12.5 1.0

Mujib 3, Mouth Dead Sea n.d. n.d. 34.1 n.d. 25 12.5

not allow for a detection of the corresponding values.
n.d.: not detetctable within the concentration range tested since the amount of effects observed did

LC50 EC50 LOEC   

96 hpf

NOEC 96 

hpf

Fig. 68: Acute toxicity of sediment extracts from Mujib 2 to zebrafish embryos at 48 and 

96 hpf. 
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As many embryos did not hatch at 96 hpf after treatment with 50, 37.5 and 25 mg SEQ/ml from 

Mujib 3, and EC50 of 34.1 mg SEQ/ml could be determined for this site (Tab. 32). Apart from 

that, no other effect was to be observed. 

3.8.4 Yarmouk River   

In the embryo toxicity test with Danio rerio, no lethal effects could be found for the sediment 

extracts within the concentration range of 50 to 1 mg SEQ/ml. Embryonic development 

proceeded normally, except for the sampling site Yarmouk 2 at Wadi Raqab. In all replicates, 

hatching of embryos could not be observed at all concentration except for 1.0 mg SEQ/ml for 

between 70 and 100 % of individuals. Therefore, an EC50 value after 96 hrs of exposure could 

be determined at 6.0 mg SEQ/ml, assigning a still highly toxic potential to this site. In rare 

cases, effects on the cardiovascular system and edemata were recorded.   

3.8.5 Zarqa River 

Sediment extracts of the sampling sites Zarqa 2, 4 and 5 did not lead to lethally affected 

embryos. Only few sublethal effects as edemata were recorded for Zarqa 2 and 4. The sampling 

sites Zarqa 1 and Zarqa 6 showed acute toxicity as LC50s were determined at 43.1 and 

18.5 mg SEQ/ml at 48 hpf and at 48.5 and 19.8 mg SEQ/ml at 96 hpf, respectively (Tab. 33). 

a) b) c) 

d) e) 

Fig. 69: Effects on embryos of Danio rerio exposed to sediment extracts of Mujib 2. a) 72 hpf 

at 25 mg SEQ/ml, coagulation, b) 48 hpf at 12.5 mg SEQ/ml, yolk sack edema, c) 48 hpf at 

25 mg SEQ/ml, tail malformation, yolk sack edema and lack of heartbeat, d) 72 hpf at 

12.5 mg SEQ/ml, tail malformation, edema and reduced heartbeat, e) 72 hpf at 

12.5 mg SEQ/ml, tail malformation. 
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Thus, the correlation of LC50 values after these two evaluation intervals was good (Fig. 70). 

24 hpf, 55 and 23 % of the embryos were lethally affected either with coagulation (Fig. 72 a) 

or non-detachment of tail (Fig. 72 b) without spontaneous movement at 50 and 37.5 mg SEQ/ml 

of Zarqa 1. The cardiovascular system of all remaining individuals was affected at the later 

evaluation intervals at 50 mg SEQ/ml and of 75 % at 37.5 mg SEQ/ml (Fig. 72 d). At 

25 mg SEQ/ml, coagulation was only recorded once. Severe edemata were recorded for this 

concentration in 25 to 35 % of the embryos at 48 and 96 hpf, respectively (Fig. 72 c - g). In 

30 % of the cases, this was combined with a reduced heartbeat rate and blood circulation. Some 

embryos at 50 and 37.5 mg SEQ/ml also lacked pigmentation (Fig. 72 c). Teratogenic effects 

(Fig. 72 e - g) could be observed at the three highest concentrations and is displayed in Fig. 71. 

96 hpf, no success of hatching was detected 67, 65, 35 and 10 % of embryos at 50, 37.5, 25 and 

12.5 mg SEQ/ml, respectively. Apart from that, no other sublethal effects were recorded for 

12.5 mg SEQ/ml of Zarqa 1, and no effect at all was recorded at 1.0 mg SEQ/ml. The EC50 

values were determined at 23.8 mg SEQ/ml at 48 hpf and 18.2 mg SEQ/ml at 96 hpf (Tab. 33)  

 

 

 

 

Tab. 33: Toxicity data of the fish embryo test with Danio rerio for Zarqa River in mg SEQ/ml. 
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Fig. 70: Correlation and development of LC50 and EC50 values for the sediment extracts from 

Zarqa 1. 

Fig. 71: Sublethal effects of sediment extract from Zarqa 1 on spine/notochord and tail 

malformations. 
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Out of the embryos exposed to sediment extracts from Zarqa 6, 100 % were coagulated at 24 hpf 

at the two highest concentrations and 60 % at 25 mg SEQ/ml. Here, an additional 10 % showed 

no detachment of the tail. Therefore, the LC50 values resulted in 19.8 mg SEQ/ml at 48 hpf and 

18.5 mg SEQ/ml at 96 hpfb (Tab. 33). Sublethal effects on the cardiovascular system in 

combination with edemata were found in 66 % of the not lethally affected embryos at 

25 mg SEQ/ml at 48 hpf (Fig. 73). Two embryos managed a full recovery at 96 hpf. Apart from 

one coagulated and two unhatched embryos, no effects were recorded at 12.5 mg SEQ/ml, and 

none at all for 1.0 mg SEQ/ml. Thus; EC50 values were determined at 17.4 mg SEQ/ml at 48 hpf 

and at 16.2 mg SEQ/ml at 96 hpf.  

 

a) b) c) d) 

e) f) g) 

Fig. 72: Lethal and sublethal effects of sediment extracts from Zarqa 1 on zebrafish embryos. 

a) 37 mg SEQ/ml at 24  hpf, beginning coagulation, b) 50 mg SEQ/ml at 24 hpf, non-detachment 

of tail, c) 50 mg SEQ/ml at 48 hpf, yolk sack edema and lack of pigmentation, 

d) 37.5 mg SEQ/ml at 48 hpf, pericardial edema and reduced heartbeat rate, e) 50 mg SEQ/ml 

at 72 hpf, spine/notochord, tail and yolk malformation, f) 37.5 mg SEQ/ml at 96 hpf, 

malformation of spine and mouth and pericardial edema, g) 50 mg SEQ/ml at 96 hpf, 

malformation of spine/notochord. 

a) b) c) 

Fig. 73: Sublethal effects of 25 mg SEQ/ml from Zarqa 6 on zebrafish embryos. a) at 48 hpf, 

tail edema, b) at 48 hpf, yolk sack edema, c) at 96 hpf, yolk sack and pericardial edema, yolk 

and tail malformation. 



Results 

106 

 

 

As the lethality did not exceed 30 %, a determination of LC50 values was not possible within 

the concentration range tested for the sampling site Zarqa 3. However, EC50 values of 34.4 and 

22.1 mg SEQ/ml were recorded at 96 and 48 hpf since there were major effects on the 

cardiovascular system and edemata formation. For 63, 31 and 14 % of the not lethally affected 

individuals reduce heartbeat rate and blood circulation was identified at 50, 37.5 and 

25 mg SEQ/ml at 48 hpf. Three embryos managed to recover from this cardiovascular 

deficiency after 72 hrs and another one after 96 hrs. Development of this effect is shown in Fig. 

74. Furthermore, some embryos had general malformations or malformations of the 

spine/notochord or tail or a combination of this. Since between 7 and 60 % of the embryos did 

not hatch at 96 hpf at all concentration except 1.0 mg SEQ/ml, the EC50 increases at this 

evaluation point.  

 
 

3.8.6 Comprehensive presentation of effects in the fish embryo test 

On the basis of the threshold values for fish embryos toxicity developed by Keiter et al. (Keiter 

et al. 2009b), all samples that allowed a detection of LC50 values between a concentrations of 

10 to 28 mg SEQ/ml were classified as moderately toxic in terms of embryo toxicity on the 

zebrafish. Mujib 2, however, was rated strongly toxic. Extracts that led to values higher than 

28 mg SEQ/ml were considered not embryo toxic. The ranking of the relevant sampling sites 

in terms of LC50 values at 48 and 96 hpf is shown in Fig. 75. An equivalent ranking for EC50 

values is displayed in Fig. 76, which accounts for more sampling sites as the occurrence of 

Fig. 74: Sublethal effects on the cardiovascular system of zebrafish embryos after exposure to 

sediment extracts from Zarqa 3 
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sublethal effects did often allow for a determination of EC50 values although no LC50 values 

could be determined.  

 

 

Fig. 75: Ranking of the five Jordanian sampling sites that showed acute toxicity in the 

zebrafish embryo test with Danio rerio according to LC50 values at 96 hpf. LC50 values at 

48 hpf are included for better traceability. Colors indicate toxicity degree according to Keiter 

et al. (2009); red: strongly toxic, yellow: moderately toxic, green: non toxic.  

Fig. 76: Ranking of Jordanian sampling sites that showed teratogenic effects in the zebrafish 

embryo test with Danio rerio according to EC50 values at 96 hpf. EC50 values at 48 hpf are 

included where possible for better traceability. *: As all test concentrations showed effects of 

more than 50 %, the value had to be less than 1 mg SEQ/ml. 
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4. Comprehensive evaluation of bioassays   

Evaluation of environmental samples such as sediments requires a certain amount of bioassays 

to guarantee comprehensive conclusions on their quality. The following chapters give a broad 

characterization and weight-of-evidence-based classification of the examined Jordanian 

watercourses through a thorough evaluation of the results of the different bioassays and test 

systems used in this study. Furthermore, recent environmental and chemical studies on the 

investigated area will be taken into account for a better understanding and potential explanation 

of specific effects as determined in the various bioassays. An overview of all bioassay results 

is given in Tab. 34.  

Tab. 34: Results in terms of the different endpoints applied for bioassays used in this study. 

Colors indicate toxicity level according to Keiter et al. (2009b) and as explained in Ch.2.6: 

red = strong toxicity, yellow = moderate toxicity, green = minor to no toxicity. 

  

Neutral red assay                

NR50 [mgSEQ/ml]

FET                                   

LC50 [mg SEQ/ml]

Comet assay        

[CDI]

Micronucleus assay 

[IF]

EROD assay             
[pmol BNF/mg SEQ/ml]

Jordan 1 34.1 13.8 1.3 3.3* 0.21

2 87.6 33.9 0.5 1.3 0.03

3 95.9 n.d. 0.3 1.6 0.05

4 105.8 n.d. 0.3 3.4* 0.09

5 135.1 n.d. 0.2 1.3 0.04

1 45.4 n.d. 1.0 2.5* 0.06

2 n.d. n.d. 0.2 3.2* 0.01

Wadi Mujib 1 144.7 n.d. 0.2 1.9* 0.02

2 16.4 9.9 6.1 3.5* 0.05

3 n.d. n.d. 0.1 2.4* 0.01

1 80.0 n.d. 0.6 4.1* 0.16

2 46.5 n.d. 2.1 1.6 0.19

3 126.9 n.d. 0.4 1.5 0.09

4 51.5 n.d. 1.1 2.4* 0.05

Zarqa River 1 16.5 48.5 1.7 3.9* 0.12

2 38.1 n.d. 0.8 1.8 0.11

3 39.3 n.d. 2.1 2.4 0.17

4 79.8 n.d. 1.2 3.1* 0.15

5 160.7 n.d. 0.3 3.5* 0.06

6 75.8 19.8 0.6 3.1* 0.14

Yarmouk River

N.d.: not detectable within the concentration range tested. * significantly different from negative control.

Sampling Site

Bioassay

King Abdullah 

Canal
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4.1.1 Comparison of acute cytotoxicity in the neutral red assay with RTL-

W1 cells and acute toxicity in the fish embryo test with zebrafish 

In recent years, acute toxicity tests with fish have aroused considerable ethical concern, since 

they are conducted with juvenile or adult animals. Following the European Directive 

2010/63/EU, the principle of the “3Rs” (replacement, reduction and refinement) originally 

described Russell and Burch (1959) has again found its way into ecotoxicological assessment 

and regulation. Two alternatives to acute toxicity testing with adult fish were used in this study: 

the neutral red assay (NRA) with RTL-W1 cells and the fish embryo test with zebrafish (FET). 

While the later has recently been validated and accepted as an OECD guideline (OECD TG 

236) and since it is generally accepted that fish possess necessary characteristics for the use in 

detection of hazardous environmental pollutants such as comparability to higher vertebrates 

(Embry et al. 2010), there is still no validation available for the use of fish cell lines in toxicity 

assessment, although this has repeatedly been advocated (Fent 2001a, Schirmer 2006, Tollefsen 

et al. 2006). One of the remaining problems of toxicity assessment using fish cell lines is the 

heterogeneity in terms of data correlation with acute fish toxicity. Although many studies have 

proven a rather good correlation of LC50 values not only for testing of monosubstances (Ahne 

1985, Segner 1993, 2004), but also for testing of effluent waters (Castaño et al. 2000), many 

studies have also found striking deviations, since cell lines have a tendency to react less 

sensitively to pure substances (Bols et al. 1985, Castaño et al. 1996, Lange et al. 1995), and 

variable results have been obtained for the testing of effluents (Ahne 1985, Rusche and 

Kohlpoth 1993).  

Results obtained in this study did not show a good correlation between NR50 values derived 

from the NRA with RTL-W1 cells and LC50 values derived from the FET with zebrafish (Fig. 

77, Tab. 34). Only in the case of the sampling site Mujib 2, both tests indicated strong toxicity 

for the sediment extracts (threshold values according to Keiter et al. 2009b, Ch. 2.6). At Zarqa 1, 

however, only the NRA indicated strongly toxic effects, whereas in the FET assigned no 

toxicity to the extracts. In the cases of Jordan 1 and Zarqa 6, both tests identified a moderately 

toxic potential, and for Jordan 2, 3, 4 and 5, KAC 2, Mujib 1 and 2, Yarmouk 3 and Zarqa 5, 

little to no toxicity was determined. For the remaining seven sample sites, the NRA assigned 

moderate toxicity to the extracts, whereas no to little toxicity was found in the FET. Thus, toxic 

potential of the extracts was generally higher in the NRA than in the FET. As the endpoints 

used for the determination of toxicity levels and ranking of the sites were only those that had 

lethal effects on the embryos, an additional correlation between NR50 values of the NRA and 

EC50 values of the FET was also tested, but no correlation was found here either (Fig. 77). 
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An extensive review by Schirmer (2006) has identified a possible reason for deviations between 

results obtained from cell lines and acute fish toxicity tests (it should be noted, that the studies 

cited in the review examined correlations between cell line tests and acute fish toxicity with 

adult fish and not with embryos as in the present study): Cell cultures naturally offer only a 

limited number of target sites for hazards compared to whole organisms. However, this rather 

explains deviations in terms of lower sensitivity of cell cultures. In the present study, deviation 

was rather the other way around. The chorion has long been thought to present a protective 

uptake barrier especially to larger or highly lipophilic chemicals and could, therefore, prevent 

the embryo from being directly exposed. Electron microscopy has shown that the chorion has 

pores with a size of 0.17 µm2 (Cheng 2007), and, indeed, some studies involving dechorionation 

and fluorescence microscopy have shown that the threshold for a nearly free passage through 

the chorion is approx.. 3,000 Da, and that side chains and electric charge can have an influence 

on the passage (Henn and Braunbeck 2011, Kais et al. 2013). Due to lack of chemical analysis, 

it cannot be clearly stated that such characteristics do also apply to the sediment extracts tested 

in this study; however, this is quite likely since an accumulation of flocculated extract was in 

many cases visible at the outside of the chorion as for example with Jordan 1 (Ch. 3.8.1). 

Furthermore, the concentrations of the solvent DMSO was not identical in the two test systems: 

1 % in the NRA to 0.25 % in the FET, which was chosen due to a study by Kais et al. (2013), 

which proved an impact of DMSO on the chorion’s permeability. Thus, solubility of the extracts 

and possibly also the uptake into the cells might have been facilitated in the NRA when 

compared to the FET and might account for the higher sensitivity. Since lack of hatching was 

very often recorded as a sublethal effect in the FET, e.g. for the sites Jordan 1 -3, KAC 1 and 

Yarmouk 2, the prolonged exposure duration to 96 h did not help to exclude the role of the 

chorion as barrier for sediment extracts.  

Fig. 77: Regression and correlation analysis between results for acute cytotoxicity in the neutral 

red assay with RTL-W1 cells and acute toxicity (left) and teratogenicity (right) in the fish 

embryo test with zebrafish. Dashed lines indicate 95 % confidence intervals. No correlation 

was detected after Spearman: p ˃ 0.05. 
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Since recent studies have proven that zebrafish embryos already possess the capacity of 

bioactivation via the cytochrome P450 enzyme system (Otte et al. 2010, Weigt et al. 2011), and 

since the results from the EROD assay did not indicate a correlation between less toxicity in 

the FET and the occurrence of proteratogens either, it is not likely that a lack of bioactivation 

of chemicals in the samples is responsible for the deviations in results. However, it cannot be 

completely ruled out as a possible reason. Further studies with exogenous activation might be 

helpful in toxicity assessment of complex environmental samples. 

Since no relationship in the sense of “if - then” or “if not - then not” could be established in this 

study between the NRA and FET, it is suggested that complex environmental samples address 

a multitude of pathways and target sites and are rather unpredictable in their mode of action. 

Scholz et al. (2014) also warn to extrapolate toxicity from one test to another, as they did, e.g., 

only find a slight correlation between embryo toxicity in the FET with zebrafish and acute 

mammalian toxicity. As is also postulated by Yang et al (2010), a variety of tests has to be 

applied to generate a full overview of their toxicological potential.  

Whereas the NRA protocol does only allow a distinction between intact or dead cells, the FET 

also offers the opportunity to account for certain sublethal effects which might also have 

relevance for population development and ecology. A variety of sublethal effects were recorded 

in zebrafish embryos after exposure to sediment extracts of Jordanian surface waters. For 

instance, severe malformations of the spine/notochord and the tail were recorded for Jordan 2 

and 3, Mujib 2 and Zarqa 1 and 3. Von Westernhagen (1988) found that gross malformations 

such as skeletal deformations are caused by numerous types of pollutants and are not pollutant-

specific. However, more recent studies suggest that polycyclic aromatic hydrocarbons (PAHs) 

can disturb a multitude of processes during early developmental stages of fish and, thus, also 

lead to malformations (Barron et al. 2004). Especially a mixture of different PAHs is known to 

produce spinal curvature which was described as prominent effects for sediment extracts from 

Zarqa 1 (Incardona et al. 2004). Hardly any information could be obtained about PAH 

contamination of Jordanian rivers and their sediments. Tahboub et al. (2014) found low 

concentrations of acenaphthalene (0.025 µg/L), naphthalene (0.055 µg/L), phenanthrene 

(0.015 µg/L) and anthracene (0.008 µg/L) in water samples of the Zarqa River and King Talal 

Dam with the PAH concentrations being all within the guideline of the European Directive 

2008/105 (European-Commission 2008). These finding are in accordance with results presented 

by Batarseh (2003) in his doctoral thesis. He was able to detect all 16 PAHs listed by the US 

EPA in various sediment samples from the Zarqa River which were taken very close to the 

sampling sites of this study. The total concentrations ranged from 69 to 234 µg/kg dry weight 

and were, thus, rather low compared to other studies as for example of the harbor of 

Braunschweig, Germany (Kolb 1994). Among the most frequently found PAHs were 

phenanthrene, pyrene, napthtalene, fluoranthene, benzo[b]flouranthene and chrysene. It might, 
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therefore, be likely that PAHs are at least partly responsible for the teratogenic effects recorded 

in this study, especially for those of the Zarqa River sediments.  

Apart from malformations and interferences with the hatching process, the cardiovascular 

system of zebrafish was another sphere of action addressed by Jordanian sediment extracts. As 

recent studies suggest, PAHs play an important role in the causation of effects like yolk sac or 

pericardial edemata and disruption of cardiac function (Barron et al. 2004, Billiard et al. 2008, 

Billiard et al. 2006). However, it is most unlikely that only one or two groups of organic 

pollutants are responsible for the various effects of different sampling sites. It is far more likely 

that a mixture of toxins added to a mixture of effects and toxicity (Karlsson et al. 2008, Mayer 

and Reichenberg 2006). Tahboub et al. (2014) also found high concentrations of phenol 

(18.5 µg/L) which suggest also the occurrence of phenolic substances Reports about the 

toxicological effects of pure phenol toward zebrafish is rare since it is mostly phenolic 

substances that induce toxicity. LC50 values for acute toxicity with adult zebrafish were set at 

0.16 mg/L. As the concentration of phenol is believed to be even higher in the sediments due 

to bad water solubility, and Tahboub et al. (2014) describe a decrease of concentration with 

increasing distance from the water treatment plant Khirbet As-Samra and then an increase at in 

the deep parts of King Talal dam, the findings correlate very well with the results from the FET 

and NRA in this study (Tab. 34). 

Tiehm et al. (2011) were, furthermore, able to detect rather high concentrations – if compared 

to those found in the USA and Europe (van den Brandhof and Montforts 2010) − of the 

antiepileptic drug carbamazepine (240 – 1600 ng/L) and the pain reliever diclofenac (240 ng/L) 

in the waters of the Jordan River. Since both substances are badly soluble in water, their 

concentrations in sediments may be expected to be even much higher. Diclofenac was found to 

have an LC50 of 6.11 mg/L after 144 hrs an zebrafish embryos (Praskova et al. 2011) and an 

EC50 of 5.3 mg/L after 72 hrs including sublethal effects on tail malformation and edemata 

formation (van den Brandhof and Montforts 2010) as were also observed for the first three 

sampling sites at Jordan River. As Weigt et al (2011) were able to show in their study, 

carbamazepine leads to spine/notochord and tail malformations in zebrafish embryos already at 

concentrations of 31.25 µM with an EC50 of 222 µM (≈ 52,5 mg/L) after 72 hrs of exposure. A 

study by van den Brandhof and Montforts (2010) confirms these findings with an EC50 of 86.5 

mg/L. Apart from malformations, reduced hatching success was furthermore recorded as 

sublethal affect and could, thus, also account for the effects observed for Jordan 1, 2 and 3. 

Pollution with heavy metals is a major problem in Jordan. Several studies have detected 

elevated concentrations as would result from the geological structure for all areas investigated 

in this thesis. Besides lead, especially cadmium and mercury are characterized by persistence 

and toxicity. They arise from a variety of anthropogenic activities such as industrial emissions 

and  agricultural fertilization and are distributed via the atmosphere (Umwelt-Bundesamt 2013). 
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It is, therefore, not surprising that they were found in all watercourses, especially in those that 

either have a big catchment area for run-off water (Wadi Mujib, Zarqa River, Yarmouk River) 

or many tributaries (Jordan River). Among the most frequently detected and highest 

concentrated heavy metals were lead, cadmium and mercury. Lead is especially enriched in the 

sediments of the Zarqa River (Abderahman and Abu-Rukah 2006b, Ghrefat 2012) with a 

tendency to decrease with further distance from the waste water treatment plant Khirbet As-

Samra. Cadmium was found in the sediments or the surrounding soils of all surface waters 

(Banat 2005, Ghrefat 2012) with enrichment factors of up to 100 for the Yarmouk (Abu-Rukah 

and Ghrefat 2001, Batayneh 2010), up to 35 for Wadi Mujib (Banat and Howari 2003, Manasreh 

2010), and up to 15 for the Jordan River (Howari and Banat 2001), when compared to natural 

occurrences. Although embryo toxicity and teratogenicity (Cheng et al. 2000, Dave 1985, Dave 

and Xiu 1991, Meinelt et al. 2001) and also acute toxicity on Danio malabaricus embryos 

(Saxena 1982) has been proven for cadmium, mercury and lead, no real correlation could be 

found between concentrations or concentration differences found in literature and the results 

from neither the cytotoxicity test with RTL-W1 cells nor the FET with zebrafish. However, it 

might as well be that the heavy metals found in Jordanian surface waters add to or influence the 

toxicity of various sampling sites. 

According to several studies (Billsson et al. 1998, Westerlund et al. 2000), polychlorinated 

biphenyls (PCBs) are well known to have severe influence on the hatching process. However, 

information on pollution of Jordanian surface waters with PCBs is scarce. Tarawneh at al. 

(2012) did not find any PCBs during their study in soils in the vicinity of Zarqa River. In his 

doctoral thesis, Batarseh (2003) was able to detect 6 PCB congeners in the sediments of the 

Zarqa River. The predominant PCB was found to be PCB 28, and the total concentration ranged 

from 2 to 8 µg/kg dry weight at the same sampling sites as investigated in this study. It has, 

furthermore, been described for sludge from several water treatment plants (Batarseh 2011), 

and it can, therefore, be assumed to be also of environmental concern in waste water effluent 

streams as the Zarqa River, Yarmouk or Jordan River.  

4.1.2 Genotoxicity 

To date, there is not yet an overall consensus on the ideal bioassay for the assessment of 

sediment genotoxicity (Chen and White 2004). Two different bioassays were applied in this 

study to obtain information on the genotoxic potential of sediment extracts from Jordanian 

surface waters: the comet assay (CA) with the permanent fish cell line RTL-W1 and the 

micronucleus assays (MNA) with mammalian V79 cells. The applicability of the CA has been 

proven in many studies (Chapman et al. 2002, Devaux 1997, Klaude et al. 1996, Mitchelmore 

and Chipman 1998, Møller 2006, Nehls and Segner 2001), also precisely for the use with RTL-

W1 cells (Boettcher et al. 2010, Braunbeck et al. 2009, Kosmehl et al. 2004, Nehls and Segner 
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2005, Rocha et al. 2009, Seitz et al. 2008). However, lack of standardization of protocols for 

the comet assay may lead to or at least explain some variations between laboratories or various 

studies (Collins et al. 2008). The micronucleus assay with V79cells, on the other hand, has 

already been validated as OECD guideline 487 (2010).  

As can be seen in Tab. 34, both bioassays that screened for genotoxicity were the most sensitive 

ones compared to the other specific (NRA and EROD) and unspecific tests (FET). Except for 

Jordan 5, KAC 2 and Mujib 1 and 3, all of the samples indicated genotoxic effects in terms of 

the comet assay with RTL-W1 cells and only 7 out of 20 did not induce a micronuclei rate that 

was determined as moderately or strongly toxic according to the applied rating further explained 

in Ch. 2.6. This suggests a considerable contamination of Jordanian surface waters with 

genotoxic compounds. Other publications have also clearly proven genotoxic activity in 

sediments, and many have linked this to the presence of PAHs. As was already stated above, 

low concentrations of PAHs were found in the water and sediments of Zarqa River (Batarseh 

2003, Tarawneh 2012). However, other components may play a role in inducing mutagenicity 

as well (Chen and White 2004). Mutagenicity of municipal and industrial wastewater has been 

determined in several studies (Gauthier et al. 1993, Malik and Ahmad 1995, Meier et al. 1987, 

Rappaport et al. 1979), and could, thus, be also the source of contamination for Zarqa River, 

Yarmouk River and the lower parts of Jordan River (Ministry for Water and Irrigation 2009). 

Non-point sources such as urban runoff during flash floods are also known to be a possible 

source to enter particle-bound combustion by-products as for example from the Jordan 

Petroleum Refinery (Tarawneh 2012) into watercourses, which could especially be the case in 

Wadi Mujib and Yarmouk River as they have rather large watersheds (Ministry for Water and 

Irrigation 2009). The landfill Mafraq, where urban waste is being incinerated, is in the 

proximate vicinity of Zarqa River. Alawi et al.(1996) were able to detect very high 

concentrations of polychlorinated dibenzodioxins and polychlorinated dibenzofurans in the 

surroundings of this landfill. Both compound groups are known to exhibit a highly mutagenic 

potential (Mc Gregor 1998, Safe 1986). It cannot be excluded that run-off and fly ash does not 

contribute to the genotoxic results from Zarqa River, since five out of six samples showed 

strong genotoxicity. Furthermore, Batarseh (2003) was able to detect the PCBs 52, 101, 138, 

153, 180 and most prominently PCB 28 in sediments samples of the Zarqa River. Although not 

all PCB congeners are rated mutagenic, the lower chlorinated PCBs such as PCB 28, 52 and 

101 are known to induce single strand breaks detected in the CA in fish cells (Ludewig and 

Robertson 2013, Marabini 2011, Schilderman et al. 1999) and could, thus, account for the 

strong effects found for the CA with extracts of the Zarqa River. Since micronuclei and DNA 

strand breaks are also induced by phenolic compounds (Barale et al. 1990, Li et al. 2005, 

Robertson 1991, Yager et al. 1990), contamination of the Zarqa River and King Talal Dam with 

phenolics as determined by Tahboub et al. (2014) could also account for the genotoxic potential 

of the corresponding sites. 
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As has already been stated above, pollution with heavy metals is a major problem in Jordan. 

Especially lead, cadmium and mercury were found at elevated concentrations in all surface 

waters studied with the exception of KAC, where no literature was found despite thorough 

research (Abderahman and Abu-Rukah 2006b, Banat 2005, Banat and Howari 2003, Ghrefat 

2012, Howari and Banat 2001, Manasreh 2010). Although some mechanisms of their toxicity 

remain unclear (Risso-de Faverney et al. 2001), mutagenicity has been proven for cadmium and 

mercury, since they, for example, have induced micronuclei in eel (Sanchez-Galan et al. 2001). 

Micronuclei induction of mercury has also been shown in carp (Al-Sabti 1994, Nepomuceno et 

al. 1997) and in different fish erythrocytes (Porto et al. 2005). An intensive study of heavy 

metals in the sediments of Yarmouk and Jordan River by Howari and Banat (2001) reveals a 

striking correlation between the contamination with mercury and results of the micronucleus 

test conducted in this study (Tab. 34). The highest induction factors were obtained for Jordan 1 

(3.3) and 4 (3.4) and for Yarmouk 1 (4.1) and 4 (2.4). Likewise, the concentrations of mercury 

were among the highest, e.g. approx. 6.5 and 8.0 ppm for Jordan 1 and 4, and 7.5 and 5.0 for 

Yarmouk 1 and 4, respectively. For the other sampling sites, mercury concentration as well as 

induction factors were notably smaller, e.g. 1.8 ppm at Jordan 2 (IF 1.3) and 1.5 ppm at 

Yarmouk 3 (IF 1.5). It is, therefore, suggested that mercury is at least partly responsible for the 

micronuclei induction of sediment extracts from the Jordan and Yarmouk River, but probably 

also the other surface waters, and does also account for regional differences in the induction 

factors.  

As has been mentioned above, genotoxic results were the most prominent findings of this study. 

However, when comparing the results of the two different test systems, only Jordan 1, Mujib 2, 

Yarmouk 1 and Zarqa 1 did react strongly positive in both test and were, thus, identified as hot 

spots in terms of genotoxic potential. The rest of the sites did not show concurrence in the 

results since in most of the cases the comet assay was more sensitive (Jordan 2, 3, 5, KAC 1, 

Yarmouk 2, 3,4, Zarqa 2, 3, 4, 6). Only at Jordan 4, KAC 2, Mujib 3 and Zarqa 5 did the MNA 

show a stronger response. A regression and correlation analysis is shown in Fig. 78 and 

confirms weak correlation between the two bioassays.  
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In most of the cases, the comet assay was more sensitive than the MNA. This was even more 

evident when comparing the LOEC values (Ch. 3.6).There might be different reasons for the 

deviation between these two assays. First of all, they detect different types of DNA damage. 

The comet assay detects single-strand breaks that might result from alkali-labile sites or arise 

during excision-repair of damaged DNA (Hartmann et al. 2001b) up to one break per 1010 Da 

(Gedik et al. 1992). These broken DNA strands are then released in the course of lysis and 

unwinding stages of the comet assay process and then produce the comet tail upon 

electrophoresis. The MNA detects formation of micronuclei during mitosis that might result 

from chromosomal breakage or from adverse effects on the spindle apparatus during the 

anaphase (Fenech 2000). Thus, the MNA does also account for aneugenic effects, whereas the 

comet assay does not (Dhawan 2009). This would suggest the MNA being more sensitive than 

the comet. However, the MNA is only capable of detecting established chromosomal 

aberrations, whereas the CA does also account for effects that could be repaired in intact cells 

through repair systems. Nevertheless, the present of aneugenic hazards in the samples that 

reacted more sensitive in the MNA could be a possible explanation for the deviation, although 

very few purely aneugens are known (Aardema et al. 1998). Furthermore, the MNA with V79 

cells was conducted under external metabolic activation with Aroclor 1245 induced rat liver S9 

fractions and might, therefore, respond to mutagens that need bioactivation. However, intrinsic 

bioactivation capacity of RTL-W1 cells for at least a broad range of mutagens in complex 

environmental samples has been proven (Bols et al. 1999, Kosmehl et al. 2004, Nehls and 

Segner 2001). 

Fig. 78: Regression and correlation analysis of genotoxic effects as results from the comet 

assay with RTL-W1 cells (CDI) and the micronucleus assay with V79 cells (induction factor). 

Dashed lines symbolize 95 % confidence interval. No correlation was detected after Spearman: 

p ˃ 0.05. 
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Secondly, two different cell lines were used: the permanent fish cell line RTL-W1 and the 

mammalian fibroblasts V79. This became necessary because the MNA with RTL-W1 cells did 

not prove to be suitable in this study (Ch. 3.5). Since fish cells in general typically express 

comparatively low amounts of DNA repair enzymes and a lower activity of the DNA 

polymerase (Walton 1983, 1984a, 1984b), they hold a potential to be generally more sensitive 

(Frenzilli et al. 2009, Kim and Hyun 2006, Nikoloff et al. 2012). Babich and Borenfreund 

(1991) have found that fish cell culture mainly respond to the same chemicals as mammalian 

cells such as benzo[a]-anthracene or benzo[b]fluoranthene, and other studies have also found 

fish cell lines to be more sensitive to, for example, sodium arsenate and arsenite (Raisuddin and 

Jha 2004), and also for the antibiotic trimethoprim (Papis 2011). Possible reasons suggested are 

a lower metabolic rate and low activities of DNA repair enzymes (Raisuddin and Jha 2004). 

These findings do also correlate with the results of this study, since in most cases the comet 

assay was at least as sensitive as the MNA. Nevertheless, especially rainbow trout cells are 

known to also possess repair mechanisms (Espina and Weis 1995, Walton 1983, 1984b, Wirgin 

and Waldman 1998).  

Since genotoxic effects have high ecotoxicological and toxicological relevance as generation 

of DNA damage can be a predecessor to carcinogenesis also in humans (Møller 2006), it is 

crucial to neither underestimate nor overestimate results. The risk of overestimation does 

mainly apply to the comet assay, since several studies suggest that DNA fragments resulting 

from apoptosis instead from genotoxins could also be detected in the assay (Choucroun et al. 

2001). However, other scientific experts have clearly excluded this possibility (Collins et al. 

2008). Since terminal apoptotic and necrotic cells have a very low molecular weight of DNA, 

Vasquez and Tice (Tice 1999) suggest that the DNA of many of these cells is expected to be 

lost from the gels under the typical electrophoretic conditions. Furthermore, no correlation 

between ghost cells and apoptosis inducing chemicals has been found by Meintières at al. 

(2003). Another study also tested cytotoxic concentrations that did not result in positive effects 

in terms of DNA migration (Hartmann et al. 2001b). Since apoptotic cells are characterized by 

internucleosomal DNA fragmentation and appear as large fan-like cells with small head known 

as hedgehogs during examination (Frenzilli et al. 2009), they can easily be distinguished from 

real comets. Such hedgehog-like cells were at no time integrated into scoring of comets during 

this study. Furthermore, no concentration inducing more than 20 % of cytotoxicity was used for 

the comet assay, and since exposure duration was only 24 hrs compared to 48 hrs in the NRA, 

this source of possible overestimation of the comet assay can be suspended. Kirkland et al. 

(2007) suggest that false positive results may be generated through exogenous bioactivation via 

S9 mix, however, this does not account for the protocol of the comet assay with RTL-W1 cells 

used in this study. Furthermore, the comet assay without bioactivation was even more sensitive 

than the MNA with exogenous activation.  
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Overall, results of the present study suggest that the comet assay is a useful tool for screening 

of genotoxic potentials (Mitchelmore and Chipman 1998), especially because a good 

correlation of in vitro results with RTL-W1 cells and in vivo results from the European Barbel 

has been demonstrated for environmental samples (Boettcher et al. 2010). However, to prevent 

sediments from being underestimated in their genotoxic potential and to secure the screening 

for aneugenic compounds, the comet assay should be combined with a follow-up testing in the 

MNA (Kim and Hyun 2006). 

4.1.3 EROD induction 

The EROD assay was the most specific test applied in this study, as it determines the response 

of a gene-regulating system to the exposure of organic hazards (Ch. 3.7). Due to this high 

specificity, it is not surprising that the results of the EROD assay were found to be the least 

sensitive when compared to other more unspecific tests as the NRA or FET (Tab. 34). Because 

EROD expression is induced by highly persistent organic compounds such as (co)planar 

polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated 

dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) and because many of 

those compounds are also known to have mutagenic potential, it is also not surprising that the 

correlation seemed to be best with the bioassays screening for genotoxicity (Tab. 34). Only 

little data is available on EROD-inducing compounds in Jordan. As already mentioned above, 

Batarseh (2003) has detected the PCBs 52, 101, 138, 153, 180 and most prominently PCB 28 

in sediments samples of the Zarqa River during a sampling campaign in 2000 and 2001. 

However, due to their non-planar structure, all of these PCBs are characterized as non-dioxin-

like and have been found to not induce EROD activity (Marabini 2011). Nevertheless, because 

these congeners were the only PCBs scanned for in the study by Batarseh, other PCBs might 

be likely to occur in the sediments as well and might be responsible for the rather high results 

obtained for the EROD assay with extracts of the Zarqa River.  

The second well-studied group of EROD-inducing compounds are PAHs. Among those found 

in the vicinity and also in the sediments of the Zarqa River (Batarseh 2003, Tahboub 2014, 

Tarawneh 2012), only chrysene and benzo[b]fluoranthene are known to induce EROD activity 

in RTL-W1 cells (Behrens et al. 2001, Bols et al. 1999). In other studies, EROD induction could 

also only partly be correlated with the total amount of PAHs; thus, it seems necessary to include 

the EROD bioassay into environmental risk assessment and monitoring to gain an insight into 

the actual dioxin-like potential of a river (Hollert et al. 2002a).  

Few studies are concerned with the pollution with combustion by-products such as PCDFs and 

PCDDs in Jordan. Alawi (1996) detected a total amount of up to 85 and 26 mg/kg, respectively, 

originating form a landfill close to the Zarqa River. Al-Dabbas (2010) also identified landfills 

with waste combustion apart from medical waste and transport as the main source for PCDDs 
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and PCDFs in Jordan. Furthermore, many substances that induce EROD activity emerge during 

industrial combustion or herbicide production. This presents a good correlation with the 

findings of this study, as the Yarmouk River and Zarqa River were the two sites that showed, 

apart from Jordan 1, the strongest effects in the EROD assay and are also the rivers mostly 

affected by industry or waste combustion (Abu-Rukah and Al-Kofahi 2001, Al-Dabbas 2010). 

The Zarqa Governorate hosts among others the Jordanian Petroleum Refinery, three steel 

factories, the chemical factories Industrial Commercial & Agriculture, Mafraq Agricultural Co. 

and Sulphochemical Co., Arab White Cement Industries and Jordan Industries for Bricks. 

Concerning the remaining areas of investigation of this study, no information was found about 

pollution with those substances indicating that a screening is not yet integral part of the 

environmental monitoring in Jordan. 

The recently improved new test design of the EROD assay including the use of ß-napthoflavone 

as reference substance and the normalization of EROD activity against MTT reduction, which 

was applied in this study, proved to be a most promising alternative to conventional protein-

based normalization (Heinrich et al. 2014). Reasons for the frequently observed decline in 

EROD activity after cell treatment with complex environmental samples, chemical mixtures or 

even monosubstances have long been the object of scientific discussion (Chen 1996, Hahn et 

al. 1993, Petrulis and Bunce 1999, Petrulis et al. 2001, Rodman et al. 1989, Schirmer et al. 

2000). Integrating a cytotoxicity test simultaneously into the measurement of EROD activity 

allows to distinguish between EROD inhibition as caused by high concentrations of xenobiotics 

or competitive inhibition and inhibition caused by cell death or hormesis and therefore adds to 

the scientific discussion. In this study, all sampling sites showed, if only a very small, induction 

of EROD activity. A conventional saturation curve was never to be observed, whereas EROD 

activity declined at higher extract concentrations (Tab. 34). This was, however, in all cases 

linked to hormesis in terms of increasing cell viability or to reduced cell viability, both of which 

were measured by the incorporated MTT assay (Ch. 3.7). However, although inhibitory effects 

of a sample itself at higher concentration were basically excluded by that, the presence of 

inhibitory compounds as such inhibiting already at small concentrations could not be excluded. 

Despite the knowledge of inhibiting substances being present in complex samples (Mahadevan 

et al. 2007, Shimada and Guengerich 2006), this aspect has widely been ignored in routine 

monitoring. Inhibition of EROD activity can follow various pathways: 1) A whole variety of 

ligands is capable of binding to the Ah-receptor; however, these vary in their ability to initiate 

the production of CYP1A1 m-RNA (Chen 1996) Hence, there is a competition between the 

ligands for a limited number of AhR-binding sites (Petrulis et al. 2001). 2) Ligands may exert 

competitive inhibition of CYP 1A1 while simultaneously inducing gene expression. 

Competitive inhibition occurs since the ligand as original substrate competes with the synthetic 

substrate 7-ethoxyresorufin for the catalytic capacity of EROD (Behrens et al. 2001, Petrulis 

and Bunce 1999). 3) Direct inhibitory effects of ligands or other substances on CYP1A1, which 
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is well known for heavy metals, especially cadmium, in fish cells. Brüschweiler et al. (1996) 

proved that heavy metals do not block AhR binding sites, but interfere with EROD, because the 

EROD content was found to be the same with a combined exposure with heavy metals and a 

strong EROD inducer as without heavy metals. Especially the fish EROD is known to be 

extremely sensitive to heavy metal concentrations (Oliveira et al. 2004, Viarengo et al. 1997). 

In summary, there is a high risk of underestimating induced EROD activity in complex samples. 

Thus, a lack of EROD induction cannot truly be an indication for the absence of dioxin-like 

substances, whereas, induction can clearly indicate their presence. The observed effects depend 

on both the inherent properties of the inducers and inhibitors and their concentrations.(Petrulis 

et al. 2001). The interpretation of the responses remains a challenge and further research on 

inhibition and its effects on the organisms have to be conducted. 

Inhibitory effects are also believed to play a role in the exposure of RTL-W1 cells to sediment 

extracts from Jordanian surface waters. Especially at sites where two or more bioassays showed 

moderate to strong toxicity, thus indicating a high content of hazardous chemicals some of 

which may have inhibition capability, it is most likely that inhibition of EROD is responsible 

for the low induction (e.g. Mujib 2 or Zarqa 1, Tab. 34). On the other hand, the results did not 

seem to correlate well with the findings of heavy metals such as mercury being present at rather 

high concentrations e.g. at the sampling sites Jordan 1 and Yarmouk 1 as detected by Howari 

and Banat (2001) and as already discussed in Ch. 4.1.2, because these sites were among the 

strongest to induce EROD activity. However, it is also possible that the effects would have been 

even higher without the presence of heavy metals.  

In summary, the EROD assay with RTL-W1 cells showed a strong EROD-inducing potential 

for the sampling sites Jordan 1, Yarmouk 1 and 2 and Zarqa 3. Moderate induction was found 

for Jordan 4, Yarmouk 3, Zarqa 1, 2, 4 and 6. It could not be determined whether this moderate 

toxicity and the even lower induction at the remaining sampling sites was due to the absence of 

dioxin-like compounds or caused by inhibitory effects. However, for Jordan 4 and Wadi 

Mujib 2, the correlation with the other bioassays indicating likewise no toxicity suggests a good 

status in terms of contamination. 

4.1.4 Acceptability of the bioassays applied 

As has been shown in various studies, hazard-based chemical analysis of environmental 

samples alone cannot provide evidence for the toxicological consequences in organisms and 

ecosystems. Likewise, risk-based effect observations in bioassays do not have the power to 

identify the causative agents (Burton 2002, Calmano 2001, Castaño et al. 1996, Fent 2001a). It 

is therefore essential to include toxicity testing into sediment quality assessment (Carlsson et 

al. 2014). Alternative methods for the risk assessment and evaluation of chemicals have become 
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more and more important within the scope of the European chemical policy REACH 

(Registration, Evaluation and Authorization of Chemicals) and the EU Directive 2010/63/EU. 

The effort of reducing animal testing has also found its way into environmental screening and 

monitoring for a long time (Höfer et al. 2004). However, especially in sediment ecotoxicology, 

various fields of research remain the object to scientific discussion. For example, how realistic 

and relevant are ecotoxicological scenarios based of extraction methods or can results obtained 

from in vitro methods with cell lines be extrapolated to whole organisms and populations?  

Sediments are a well-known sink for particle-sorbed hazardous substances in aquatic systems 

and can serve as a reservoir of toxic contaminants that continuously threaten the health and 

viability of aquatic biota. Hydrophobic characteristics of, e.g., mutagens lead to exclusion from 

water and to adsorption to particulate material, and this material is likely to be incorporated into 

bottom sediments (Chen and White 2004). This is also postulated by the results from the present 

study, since extracts obtained from solid phase extraction methods of water samples did not 

results in any effects concerning general toxicity, whereas the sediment extracts did so very 

well. Sediments can pose a long-term hazard to benthic biota (Baumann 1995, Marvin et al. 

1999, Marvin et al. 2000), which becomes especially relevant during the changing availability 

of bound contaminants during flood events (Eggleton and Thomas 2004, Wölz et al. 2010, Wölz 

et al. 2011). Thus, there is general agreement that assessment of sediment quality should be an 

integral part of environmental studies (Wölz et al. 2009) and is recently found its way into the 

regulatory framework such as the European Water Framework Directive (2000).  

Except for in situ studies, there is the need to collect and process samples for further use in in 

vivo or in vitro bioassays. It is only natural that sampling, transport and storage already effect 

the chemical and biological characteristics of a sediment sample (Chen and White 2004, Hjorth 

2004). Extraction of sediments becomes especially important for bioassays with cell lines as 

testing of whole sediments cannot be applied. Therefore, various extraction techniques have 

been proposed, since obtaining an appropriate sample is obviously the first crucial step for 

analytical procedures and bioassays (Hjorth 2004, Marvin et al. 1992, Raynie 2006, Seiler et 

al. 2006) and for standardization (Rönnpagel et al. 1998). The procedure of dissolving 

compounds and of adding them to cell cultures can be the source of several problems. 

Unfortunately, these are difficulties that cannot readily be solved, but are, nevertheless, 

important to consider for date interpretation (Dayeh et al. 2013). Other than extraction 

techniques based on semipermeable membranes (Karacık et al. 2013), solvent-based extraction 

does always result in a more or less broad elution of compounds based on the solvent used and 

does, thus, depict a worst-case-scenario rather than an image of the natural condition. The 

inability to properly incorporate in situ exposure and bioavailability when using organic 

extraction to assess the toxic hazards of contaminated sediments has been criticized (Jha et al. 

2000). It is suggested that extraction and in vitro assays should be followed by in vivo tests; 

however, they are very costly, complex and time-consuming. Likewise, it is also well known 



Discussion 

123 

 

that the portion of a chemical that is either bioavailable or bioaccessible in a given soil or 

sediment environment can differ substantially between organisms (Semple et al. 2004). 

Therefore, also the alienability of testing whole sediments or semipermeable membrane extracts 

depend on the test organisms used and can only add one share of toxicity assessment.  

Extraction offers a broad insight into the contaminant spectrum of a sample. Various solvents 

have been studied for the ability to elude contaminants from sediments, and there is the 

consensus that there is no ideal universal solvent (Chen and White 2004). In this study, acetone 

was used for soxhlet extractions since being intermediately polar it is capable of extracting both 

lipophilic and slightly hydrophobic substances (Banjoo and Nelson 2005, Hollert et al. 2000), 

thus covering major contaminants as PCBs or PAHs. Furthermore, soxhlet extraction requires 

addition of heat for the evaporation of the solvent, which may add to the alterations of samples, 

as temperature may effect especially volatile substances (Wang et al. 2010). With 56° C, 

acetone has a rather low boiling point compared to, e.g., n-hexane (69° C), ethanol (78° C) or 

even dimethylsulfoxide (189° C). Finally, acetone closely mimics the spectrum of extractants 

found in the lipid fractions of biological samples. Many environmental studies have thus made 

use of acetone as solvent in soxhlet extraction, and the comparison of results is therefore 

rendered possible and facilitated (Boettcher et al. 2010, Hollert et al. 2002a, Keiter et al. 2009b, 

Kosmehl et al. 2008a, Seitz et al. 2008). In fact, many studies have proven, that soxhlet 

extraction being the basic and conventional method for extraction of sediment is not inferior to 

more modern approaches such as membrane dialysis extraction or microwave extraction 

(Schulze et al. 2012, Wang et al. 2010, Zielke et al. 2011). As the aim of this study was to 

screen for potential ecotoxicological effects caused by Jordanian surface water sediments, 

alterations of samples caused by sampling, storage, processing and extraction (worst-case 

scenario) are acknowledged and accepted. 

In addition to the discussion of the chapters above, it should be mentioned that short-term 

exposure of single cells can of course only imitate long-term effects on whole organisms and 

ecosystems to a certain extent (Rönnpagel et al. 1998). Because of their practicability, simple 

laboratory tests are, however, irreplaceable tools for hazard assessment (Segner 1998a). As has 

already been discussed above, the use of primary fish cell lines is a well-studied and approved 

technique as alternative to whole animal testing in ecotoxicology (Bols et al. 2005, Dowling 

and Mothersill 2001, Fent 2001a, Schirmer 2006, Tollefsen et al. 2006). However, current in 

vitro methods for acute aquatic toxicity are neither standardized nor validated, which also 

applies for the other bioassays applied in this thesis involving cell lines, except for the 

micronucleus assay with V79 cells (OECD 2010). Inter-laboratory comparison and evaluation 

of results, therefore, remains a challenge. Furthermore, as has been shown for the EROD assay 

by Rodman et al. (1989), bioassays tend to vary in sensitivity and applicability depending on 

the test organism used. At the same time, however, they allow testing for specific endpoints 
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such as mutagenicity and, therefore, contribute to a better understanding of individual 

characteristics of samples concerning the spectrum of toxicity.  

As can be seen from the results obtained in this study (Tab. 34), a stepwise proceeding in 

toxicity assessment cannot be recommended, since there is not necessarily a relationship 

between the different bioassays for toxicity assessment in terms of “if-then” or “if not-then 

not”. Rather, a complete biotest battery should routinely be incorporated into thorough 

assessment studies (Carlsson et al. 2014). Nevertheless, toxicity tests should not be regarded as 

ultimate predicting models for environmental conclusions. They provide information for what 

might happen under certain conditions (Chapman 2002). A certain extrapolation of results and 

consequences to the field, however, is necessary due to the multitude of chemicals in the 

environment, species diversity and complex ecological processes and influencing factors that 

can impossibly be all accounted for under laboratory conditions (Fent 2001a). Although studies 

of sediment toxicity are often stimulated by a concern for human welfare, the likeliness of 

adverse human effects from contaminated sediments is unclear. Humans are rarely in intimate 

contact with aquatic sediments and exposure to sediment toxins appears unlikely (Chen and 

White 2004); nevertheless, effects on fish and cell cultures can serve as a warning of possible 

impacts on human health (Bols et al. 2005, Kirsch-Volders et al. 2011). Although ecological 

and toxicological relevance of in vitro bioassays is still being challenged, it is concluded that a 

test battery as applied in this study is a useful tool for potential toxicity assessment of sediments, 

especially as a first-time screening and survey as it is − to the best of our knowledge − the case 

in Jordan. 

4.2 Classification of sediment toxicity 

Assessment of water and sediment toxicity is not yet standardized and far from being 

straightforward. It still lacks universally valid or applicable assessment standards, and the 

variety of test systems used is still very broad (Keiter et al. 2009b). Furthermore, there is often 

no direct correlation between the concentration of a biohazard in the sediment and the 

toxicological effects caused by the sediment due to complex mechanisms for bioavailability of 

organic compounds (DiToro 1991). Apart from the need to combine different exposure paths 

and test organisms into a comprehensive evaluation to meet the ecological and biological 

diversity of any watercourse itself, there is an increasing demand to consider ecological 

relevance of results obtained from different bioassays. For the classification of the Jordanian 

watercourses studied within the scope of this thesis, the results of three bioassay were rated 

according to the toxicity threshold values established within the framework of a fuzzy logic-

classification approach by Keiter et al. (2009b): 1) the neutral red assay with RTWL-W1 cells, 

2) the comet assay with RTWL-W1 cells, 3) the fish embryo toxicity test with zebrafish. 

Following this approach, the dataset of each bioassay is divided into three toxicity levels (non-
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toxic, moderately toxic and strongly toxic) to cover the entire response range of test systems. 

To gain a location-independent insight into the response ranges, data from various studies were 

integrated into this calculation: Danube (Keiter et al. 2009a, Keiter et al. 2008, Keiter et al. 

2006, Seitz et al. 2008), Rhine (Kosmehl et al. 2004) and Neckar (Braunbeck et al. 2009, Hollert 

et al. 2000, Hollert et al. 2002b). Among other methods, the empirical method was used and 

proved to be the most suitable by Keiter et al. (2009b) as explained in Ch. 2.6.  

Threshold values were furthermore established by Keiter et al. (2009b) for the EROD assay, 

however, since the EROD assay in this study was conducted according to a new protocol 

(Heinrich et al. 2014), the same threshold values could not be applied. Therefore, a rank-sum 

based classification was applied according to Canfield at al. (1994) and Hollert et al. (2002b). 

The same was applied for the micronucleus assay, since no sufficient data base was available 

for the micronucleus assay with V79 cells exposed to sediment extracts. Thus, data for each 

individual result was scaled proportionally between 1 % and 100 % (e.g. an IF of 1.3 being the 

lowest and an IF of 4.1 being the highest observed effect). Scaling of data results in a relative 

ranking of results. The ranked data is then classified into three groups equivalent to the toxicity 

levels of Keiter et al (2009b): non-toxic ˂ 33.3 %, moderately toxic for 33.3 to 66.6 % and 

strongly toxic ˃ 66.6 %. Results of the rank-sum-based classification for the EROD assay and 

micronucleus assay is shown in Fig. 79. It has to be noted that the rank-sum-based analysis for 

the classification of toxicity data is location-dependent, as it does only take data obtained in this 

study into consideration (Ahlf and Heise 2005). However, due to the lack of comparable data 

for the EROD assay conducted under the protocol of Heinrich et al. (2014), it seems to be 

sufficient to gain at least insight into the relative toxicity according to EROD induction of the 

sampling sites analyzed in this study. Data obtained from the micronucleus assay with RTL-

W1 cells in similar studies suggest good correlation with the rank-sum analysis applied for this 

test (Boettcher et al. 2010, Keiter et al. 2009a, Rocha et al. 2009).  
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Fig. 79: Rank-sum-based analysis with scaling of all results between 1 and 100 % according to 

Canfield at al. (1994) and Hollert et al. (2002b) for the EROD assay (dark grey) based on the 

quotient of BNF induction equivalents in mg SEQ/ml and for the micronucleus assay (light 

grey) based on the maximum induction factors. Numbers show the corresponding results of the 

bioassays for each sampling site. Colors indicate toxicity level: red = strongly toxic, 

yellow = moderately toxic, green = non-toxic. 

The results obtained from the rank-sum analysis and allocation to toxicity levels via threshold 

values are then transferred into quality classes in accordance with the classification criteria for 

physical and chemical parameters after Graw and Borchardt (1999), which complies with the 

EU Water Framework Directive 2000/60/EC (EU-WRRL 2000). Thus, class 1 stands for no 

contamination, class 2 for moderate contamination, class 3 for considerable contamination, 
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class 4 for increased contamination and class 5 for high to very high contamination. The 

combination of the three different toxicity levels obtained from the five bioassays define the 

quality classes according to Keiter et al (2009b; Tab. 35).  

Tab. 35: Definition of quality classes in following the 

classification system after Graw and Borchardt (1999) and 

the EU Water Framework Directive 2000/60/EC (EU-

WRRL 2000) according to Keiter et al. (2009b) in terms 

of toxicity levels obtained from the various bioassays. 

 

Following the suggestion of Henschel et al. (2001), a certain weighting is applied to test of high 

ecological relevance. Thus, the fish embryo toxicity test was granted a higher ecological rank 

than the cytotoxicity test, because it studies the development of an intact living organisms after 

exposure to sediment extracts rather than effects at the single cell basis (Keiter et al. 2009b). 

However, the comet and micronucleus assay were also assigned a higher rank, since genotoxic 

substances may affect viability of gametes and, therefore, reduce reproduction and can thus 

affect a whole population (White 1999, Zorita 2007). Therefore, if at least one sampling site 

was rated strongly toxic in either the fish embryo toxicity test, the comet assay or the 

micronucleus assay, it was automatically downgraded by one class. The same was applied when 

Quality class      non-toxic Moderately toxic Strongly toxic

5 - -

4 1 -

4 - 1

3 1 1

3 2 -

2 3 -

3 - 2

2 - 3

1 3 1

2 2 1

2 1 2

1 2 2

1 4 -

- 4 1

- 5 -

- 3 2

1 1 3

- 2 3

1 - 4

- 1 4

- - 5

III

IV

V

Toxicity level

I

II
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one sampling site showed moderate toxicity in all three of the tests just mentioned. Furthermore, 

a sampling site could not be rated class 1, when at least one of the tests just mentioned indicated 

moderate or strong toxicity. This system of ranking, however, is not final and needs further 

investigation and discussion. The comprehensive characterization of Jordanian surface waters 

is therefore based on a weight-of-evidence approach, which draws conclusions based on 

available data. There remains the need for a continued scientific discourse of toxicity 

assessment of sediments (Chapman 1995). It has further to be noted that all tests were conducted 

under laboratory conditions and can, therefore, not be directly applied in situ and a direct 

extrapolation to field and ecological effects cannot be made without further investigation 

(Chapman et al. 2002). The results of the classification for all Jordanian surface waters 

investigated in this study are shown in Tab. 36. 

 

Tab. 36: Results of the classification of toxicity of the sediment 

samples from Jordanian surface waters with and without 

consideration of ecological relevance. Numbers and colors indicate 

the quality classes: I, blue (no contamination) – V, red (very high) 

contamination). 
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4.2.1 Overall classification of the Jordan River 

The Jordan River as the largest and longest river in Israel and Jordan suffers massively under 

anthropogenic pressure and water deprivation (Ch. 1.3.1). An estimation on the gradient of 

sediment quality based on the effective classification of five sampling sites alongside the Lower 

Jordan River is shown in Fig. 80. 

 

The results of this study clearly identified the northern Lower Jordan River as contamination 

hot spot being rated quality class V, as extracts did not only induce strong genotoxic effects and 

EROD activity, but also showed cytotoxic, embryo-toxic and teratogenic potentials (cf. Tab. 

34). The sampling site Jordan 1 at Baqura was located shortly after the inlet of effluents from 

the Bitania waste water treatment plant and the Saline Water Carrier. The waste water effluents 

are therefore regarded as the main source of contamination, and detailed investigation of the 

efficiency und sufficiency of water treatment is strongly recommended. The results from the 

two sampling sites further downstream suggested a self-purification capacity of the Jordan 

River, since the quality class improves to class II and even to class I for Jordan 5 at the King 

Abdullah Bridge, where none of the bioassays showed moderate or even strong effects. This 

was also in concordance with a slight improvement of nutrient levels as e.g. NH4
+, PO4

3- and 

NO2
-, indicating that additional discharge of agricultural sewage plays a minor role in sediment 

Fig. 80: Classification of the contamination of the Jordan River in terms of toxicity assessment 

with consideration of ecological relevance of the applied bioassays. Sampling site Jordan 1 was 

identified as contaminated hot spot and there seems to be a self-purification process alongside 

the river flow direction. An effective classification was only conducted for the five sampling 

sites; thus, the gradient of quality classes is only an estimation. Map modified according to 

EXACT (1998). 
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contamination. Nevertheless, especially almost constantly high levels of NO3
- indicate 

eutrophication of the River. The overall classification according to the LAWA standards (1998) 

was class III-IV for Jordan 1 and 2, class III for Jordan 3 and 5 and class II-III for Jordan 4. 

Although, despite thorough literature research, no point source could be identified, Jordan 4 at 

Damiya Bridge was found to be another hot spot of contamination and was rated toxicity quality 

class IV mainly due to genotoxic effects. Precariously, genotoxic substances were identified as 

main hazard in the sediment of the Lower Jordan River, as for all sampling sites except Jordan 5 

positive results in either the comet assay or the micronucleus assay were obtained. As discussed 

in detail in the chapters 4.1.1, 4.1.2 and 4.1.3, available data on chemical analysis of e.g. 

pharmaceuticals and heavy metals (Howari and Banat 2001, Tiehm et al. 2011) correlate quite 

well with the findings of this study. However, in terms of the ecotoxicological test battery 

applied in this study, sediment contamination and toxic potential did not seem to be as bad as 

has been estimated from extrapolation of non-point sources of contamination (Holtzman et al. 

2005, Vengosh 2003). Nevertheless, salinity, ecological consequences for the Dead Sea and the 

critical results indicating genotoxicity may prevent the water of the southern parts of the Lower 

Jordan River from use for further irrigation (Farber et al. 2005).  

4.2.2 Overall classification of the King Abdullah Canal 

Due to limited access, only two samples could be collected at the King Abdullah Canal. 

However, site 1 at Deir Allah is among those being of highest interest to Jordanian water 

management as it corresponds with the intake for drinking water pumping to the capital 

Amman. An estimation on the gradient of sediment quality based on the effective classification 

of the two sampling sites alongside the King Abdullah Canal is shown in Fig. 81. The overall 

classification of physical and chemical analysis suggested a rather high eutrophication of the 

KAC, which is not surprising considering the Yarmouk being the main tributary. According to 

the LAWA standards (1998), the canal was rated quality category II-III. The results of the 

bioassays indicated considerable contamination with genotoxic substances, since for KAC 1 

both the comet and micronucleus assay showed strong and moderate effects, as did the 

micronucleus assay for KAC 2. This is of special concern, as the water from the KAC is used 

for drinking water supply in Amman. Screening for possible mutagens should, therefore, be 

thoroughly conducted. Furthermore, the hatching rate of zebrafish embryos was severely 

influenced by extracts from KAC 1. Sediment quality improved after the confluence with 

discharges of the King Talal Dam, because cytotoxicity in the neutral red assay was only 

detected for KAC 1, and also the results from the EROD assay improved. However, thus, in 

terms of toxicity KAC 1, was rated class IV and KAC 2 was rated class II. 
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4.2.3  Overall classification of Wadi Mujib 

Despite receiving domestic, industrial and municipal wastewaters, Wadi Mujib as one of the 

largest water reservoirs is primarily used for drinking and irrigation water supplies. Tow 

samples were taken at the inlet and outlet of the reservoir itself and another one at the mouth to 

the Dead Sea close to the extraction place for drinking water. Except for PO4
3-, nutrient levels 

are within the threshold values of the LAWA, and the sites were thus rated between II and II-

III according to LAWA standards. Since no bioassay applied in this study indicated any 

contamination for Mujib 1 at the inlet of the dam, this site could be rated toxicity class I like 

Jordan 5 (Fig. 82). However, water levels at this site depend strongly on rainfall and the 

sediment might not be covered with water throughout the year. This could naturally result in 

less binding of contaminates to the sediment. The opposite applies for Mujib 2 at the outlet of 

the dam, where there is a constant flow of water and thus a higher passage of substances that 

potentially bind to organic matter. Furthermore, the particle size of sediments from Mujib 2 

was only 200 µm compared to 630 µm for all other samples, thus offering a larger surface and 

more binding sites. Except for the EROD assay, all bioassay showed high effects indicating the 

presence of genotoxic and embryo-toxic contaminants. Mujib 2 was therefore rated class V. 

The gradient of sediment classification of the following stream could only be estimated, as the 

next sampling site was approximately 26 km further downstream. There, the micronucleus 

Fig. 81: Classification of the contamination of the King Abdullah Canal in terms of toxicity 

assessment with consideration of ecological relevance of the applied bioassays. Results 

suggested an increase of sediment quality after confluence with the Zarqa River. An effective 

classification was only conducted for the five sampling sites; thus, the gradient of quality 

classes is only an estimation. Map modified after UNEP/DEWA/GRID-Geneva. 
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assay screening for mutagenic potential indicated moderate toxicity resulting in an overall 

rating as class II.  

  

 

4.2.4 Overall classification of the Yarmouk River 

Being the major tributary to the Jordan River and the King Abdullah Canal, the Yarmouk River 

can be considered as the most important water resource of Jordan in terms of drinking water 

and irrigational water supplies. The analysis of the physical and chemical parameters, however, 

suggested considerable problems with eutrophication as especially high levels of PO4
3- and 

NO3
- were found resulting in class II-III according to LAWA (1998). Considering the fact that 

the river receives untreated effluents from two waste water treatment plants during flood events 

occurring regularly during the winter season, this did not seem to be surprising. More 

concerning are the results from the bioassays applied, since all of them except the fish embryo 

toxicity test indicated at least at one site moderate or even strong contamination. An estimation 

on the gradient of sediment quality based on the effective classification of four sampling sites 

alongside the Yarmouk River is shown in Fig. 83. The strongest effects were found for 

Yarmouk 1 at the outlet of the Unity Dam, which was identified as a hot spot of contamination. 

Results suggested elevated presence of genotoxic and dioxin-like substances in the sediments. 

The neutral red assay also indicated moderate general toxicity, and the overall classification for 

Fig. 82: Contamination classification of Wadi Mujib in terms of toxicity assessment with 

consideration of ecological relevance of the applied bioassays. An effective classification was 

only conducted for the five sampling sites; thus, the gradient of quality classes is only an 

estimation. Map modified according to EXACT (1998). 
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this site was category V. Overall, there was a slight improvement of sediment quality during 

the river flow direction. Nevertheless, genotoxic contaminants played a major role in toxicity 

assessment and are of precarious concern especially in terms of drinking water supply for the 

King Abdullah Canal. The sampling site at the diversion to the King Abdulla Canal received 

the best category within the Yarmouk River system and was rated class II. However, this site is 

especially known for flash floods and mixing/remobilization of sediments, which may account 

for the rather good quality (Abu-Rukah and Ghrefat 2001). The suitability of the Yarmouk 

River for irrigation purposes cannot be ensured on grounds of sediment toxicity assessment, but 

rather supports a study by Al-Taani (2013) who identified the river as being not acceptable for 

irrigation due to high nutrient levels. 

 

4.2.5 Overall classification of the Zarqa River 

Approximately 65 % of the Jordanian population live in the Arman-Zarqa basin, and it is also 

the center for principal industries, since industrial sites are located on the banks of the Zarqa 

River. Since, furthermore, during summer the river carries solemnly treated and untreated 

sewage waters, it is a highly anthropogenicly influenced surface water. Findings of this study 

add to other studies identifying the Zarqa River as being highly polluted and suffering from 

eutrophication. LAWA-based classification resulted in no better than class III and even 

Fig. 83: Classification of the Yarmouk River in terms of quality classes as assessed by various 

bioassays with consideration of their ecological relevance. The outlet the Unity Dam could be 

identified as hot spot, whereas results from the other sampling sites suggest a certain rate of 

self-purification alongside the river’s flow direction. An effective classification was only 

conducted for the five sampling sites; thus, the gradient of quality classes is only an estimation. 

Map modified according to EXACT (1998). 
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class III-IV for Zarqa 1 and 2, located shortly after the inlet of the Khirbet As Samra treatment 

plant. In terms of results obtained from the bioassays, Zarqa 1 was also identified as hot spot of 

contamination indicating that sewage treatment is not yet sufficient. Severe sublethal effects on 

zebrafish embryos could be observed at Zarqa 1 and 6, the latter accompanied by lethal effects 

resulting in moderate embryo toxicity. However, especially the presence of genotoxic and 

dioxin-like compounds make the usage of water for irrigation questionable. As has also been 

described for the Jordan and Yarmouk Rivers, sediment quality of the Zarqa River seemed to 

improve slightly alongside flow direction. Zarqa 5 at the inlet of King Talal Dam could be rated 

class III due to no effects observed in the FET, EROD assay and NRA. However, similar as for 

Mujib 1, water levels are subject to strong fluctuations, and sediment coverage is not guaranteed 

throughout the year. This could account for lower contamination found for this site compared 

to the remaining Zarqa River. An estimation on the gradient of sediment quality based on the 

effective classification of four sampling sites alongside the Zarqa River is shown in Fig. 85. 

  

Fig. 84: Classification of the Zarqa River in terms of quality classes as assessed by various 

bioassays with consideration of their ecological relevance suggesting a high contamination of 

the whole river. The effluent of As Samra treatment plant could be identified as hot spot of 

contamination, whereas a slight rate of self-purification alongside the river’s flow direction 

seemed to occur. An effective classification was only conducted for the six sampling sites; 

thus, the gradient of quality classes is only an estimation . Map modified according to EXACT 

(1998). 
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4.3 Contribution to Integrated Water Resources Management 

Water scarcity is a major challenge in Jordan which is believed to even further increase under 

the rapidly growing population and due to climate change as was for example modelled for the 

Zarqa basin (Abdullah and Al-Omari 2008). Water managers are challenged to meet multiple 

and often conflicting demands, such as to provide a sufficient quantity of water used for various 

needs and at the same time ensuring satisfactory water quality and support healthy and diverse 

ecosystems. The fact that water is an integral part of the ecosystem, a natural resource and a 

social and economic good is today recognized in the concept of Integrated Water Resources 

Management (IWRM). It is only natural, however, that in semi-arid to arid regions suffering 

from water deprivation quantity of water seems to have higher priority to quality issues. It is 

therefore even more necessary to prevent the existing water resources from being polluted and 

overexploited. Whereas assessment of sediment quality is already an integral part of holistic 

IWRM in countries like the USA and the European Union (Apitz and Power 2002, MacDonald 

1994, Netzband 2007), sediments have so far been neglected in Jordanian routine monitoring. 

However, sediments play a critical role in determining the fate and effects of environmental 

contaminants in addition to providing important habitats for aquatic organisms. Hence, 

sediment quality questions and concerns receive more and more attention in water management 

(MacDonald 1994). 

The results of this study suggested a certain discrepancy between regular monitoring programs 

conducted by the Royal Scientific Society (RSS) and the Water Authority of Jordan (WAJ) or 

studies of e.g. Tahoub (2014) which assign an overall good water quality to Jordanian surface 

waters as the Zarqa River or Wadi Mujib. After an incident in January 1998, when drinking 

water derived from the KAC had an unpleasant odor and created algae blooms as a consequence 

of insufficient treatment at the ZAI treatment station, quality monitoring was extended 

(Alkhoury et al. 2010). Nowadays, the parameters monitored in surface water by the WAJ 

program include pH, NO3
-, PO4

3-, TOC, NH4, odor and heavy metals (once every three to twelve 

months), chlorinated pesticides (once a year), chlorination byproducts (daily) and fecal 

coliforms (five times/week; (JISM 2001). This analysis, however, disregards contamination 

with PAHs, PCBs, PCDDs or PCDFs, and  ignores the role of sediments as a sink and possible 

source for contaminants that can be made available again especially during events of flash 

floods (Eggleton and Thomas 2004, Wölz et al. 2010, Wölz et al. 2011) occurring on a regular 

basis in Jordan. Hazardous compounds can therefore easily enter the food chain via irrigation 

or even get access to the drinking water supply system. 

All recommendations made in the following have to be regarded as fragmentary, as they 

constitute only one aspect of sediment quality analysis and are based on results obtained from 

bioassays that are themselves based on a worst-case scenario as discussed in Ch. 4.1.4. 

Extrapolation of the results from the bioassays applied in this study to human welfare and the 
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ecosystem can of course not be readily conducted; nevertheless, a certain risk can by no means 

be waived (Chen and White 2004, Keiter et al. 2006). Then again, no chemical measurement 

alone reliably predicts toxicity (Carlsson et al. 2014, O'Connor and Paul 2000). 

Generally, based on the findings of this study, it is strongly recommended that water quality 

monitoring should be expanded. Water quality monitoring should cover the entire spectrum of 

pollutants: standard organic, inorganic and nutrient-related substances. It should, thus, be 

extended to routine monitoring of mutagens as for example PCBs and PAHs, especially at 

drinking water abstraction sites such as KAC 2 or Wadi Mujib 3. Additionally, monitoring 

should include at least chemical analyses of sediments for major contaminants. Moreover, 

quality assessment should be conducted more frequently, and should take possible alterations 

of water quality and changes of sediment mobility after flash floods into consideration. In order 

to evaluate pursued long-term improvement of sediment quality, it is suggested to establish a 

database on sediment quality based on chemical analysis. An extension to toxicity assessment 

in terms of ecotoxicological bioassays would be desirable, but requires extensive education and 

training of laboratory staff and upgrading of laboratory facilities. Furthermore, the 

ecotoxicological knowledge acquired through this study needs to be supplemented by studies 

on bioavailability, on benthic communities that might be adversely affected by sediment 

contamination, and it requires strong support from other disciplines that monitor e.g. site 

stability and the potential for sediment mobility and overlying water chemistry (Ahlf and 

Förstner 2001). 

As the major hotspots of contamination detected in this study were found to be in strong 

correlation with the effluent of sewage water, it is also implied that sewage water treatment is 

not yet sufficient particularly regarding mutagenic and dioxin-like compounds. Currently, only 

63 % of the Jordanian population are connected to public sewerage (Bonn 2013). It is therefore 

strongly recommended in accordance to already existing plans (Hashemite Kingdom of Jordan 

and GTZ 2008b) to further upgrade and enhance existing water treatment plants, implement 

secondary treatment, support the continuation of construction programs and to further develop 

the sewerage network. To achieve improvement of sediment quality, it seems indispensable to 

stop discharge of untreated sewage into rivers and wadis. Since flash floods are a major source 

of untreated sewage, investigation of flash floods management as for example in the form of 

overflow or catchment basins are recommended. This is especially advisable for the Yarmouk 

River and the Wadi Mujib, since both water courses have rather large catchment areas and 

because their water serves either directly as drinking water source in the case of Wadi Mujib or 

via diversion to the King Abdullah Canal in the case of the Yarmouk River. Furthermore, other 

potential sources of contamination such as industrial effluents or surface run-offs have to be 

identified and removed as far as possible. 
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Since sediments could be identified as sinks for contaminates, caution is advised for the usage 

of water for drinking purposes as well as for irrigation. Filtration has to be an integral part not 

only for drinking water treatment, but should also precede irrigation to purge suspended matter 

(Capra and Scicolone 2004). Results obtained for sediments from the King Talal Dam and Wadi 

Mujib indicate that storage of waste water effluents in reservoirs does not lead to significantly 

improved quality and are in accordance with other studies investigating water quality aspects 

(Al-Harahsheh and Al-Amoush 2010, Al-Taani 2013, Shatanawi and Fayyad 1996). So far, 

most studies that investigated the consequences of the re-use of wastewater for irrigation in 

Jordan have only been concerned with nitrogen or heavy metal enrichment in soil (Abderahman 

and Abu-Rukah 2006b, Abdulla et al. 2009, Jiries et al. 2002, Shatanawi and Fayyad 1996). 

However, in terms of human welfare, it might be even more important and advisable to study 

the accumulation of persistent organic pollutants such as PAHs and PCBS in soil as well as 

their uptake into crops, which has also been suggested by Batarseh (2011). Accumulation of 

PAHs is a well-known problem linked to irrigation with wastewater (Chen 2005, Wang 2010) 

and should, therefore, also be monitored in relevant areas of Jordan. Furthermore, Jordanian 

studies and guidelines suggest only the re-use of domestic wastewater for irrigational purposes. 

However, in practice, a distinction between domestic and industrial effluents seems hardly 

possible due to uncontrolled discharges especially into the Zarqa River (IUCN et al. 2006) or 

the collective treatment in wastewater plants. 

Considering the hot spots of contamination identified in this study, namely Zarqa River 1 and 

2 after the effluent of Khirbet As Samra, Yarmouk 1 at the outlet of Unity Dam, Jordan 1 at 

Baqura and Mujib 2 at the outlet of the dam, it might be worth taking sediment remediation 

actions into account. However, remediation of sediments is very complex and cost-intensive 

due to mixture of contaminants (Jacobs and Förstner 2001) which might entail disposal 

difficulties. Additionally, dredging can affect a river’s ecosystem especially in terms of its 

benthic community. Comprehensive studies on site-specific characteristics such as the benthic 

community, bioaccumulation and biomagnification, site stability in terms of the sediment’s 

potential for mobility and physicochemical sediment properties are necessary. Several 

management strategies are currently available to remediate sediment contamination. However, 

as sediment remediation actions are beyond the author’s expertise, further discussion is left to 

pointing out reference studies and methods. Those include 1) monitored natural recovery, 2) in 

situ containment, in which sediment contaminants are isolated from their target organisms, but 

the sediments are left in place, 3) in situ treatment, 4) dredging or excavation followed by ex 

situ treatment, disposal and/or re-use (Apitz and Power 2002), or 5) capping of contaminated 

areas (Förstner et al. 2001, Förstner and Salomons 2008). For rivers with a long pollution 

history as the Zarqa River, resulting in a basin-wide contamination, flexibility in management 

may be required, allowing transition to longer term objectives (Netzband 2007). Following the 

suggestions of Krantzberg et al. (2000), an evaluation of both short-term adverse effects and 
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long-term beneficial results of contaminated sediment management should be undertaken. It is 

imperative that source control will be achieved to a level that will forbid recontamination. 
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