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Abstract

In this paper we develop an asymptotic theory for the parametric GARCH-in-Mean model. The

asymptotics is based on a study of the volatility as a process of the model parameters. The proof makes

use of stochastic recurrence equations for this random function and uses exponential inequalities to

localize the problem. Our results show why the asymptotics for this specification is quite complex

although it is a rather standard parametric model. Nevertheless, our theory does not yet treat all

standard specifications of the mean function.
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1 Introduction

The aim of this paper is to develop an asymptotic theory for the Quasi-Maximum Likelihood Estimator

(QMLE) in GARCH-in-Mean (GARCH-M) models for the special case of GARCH(1,1)-innovations. This

model was suggested in Engle et al. (1987) and has been frequently used in empirical finance for inves-

tigating the risk-return trade-off implied by Merton’s (1973) intertemporal CAPM (see, among many

others, French et al., 1987 or Lundblad, 2007). Despite of its popularity in empirical applications, up to

now there is no asymptotic theory for the QMLE of the GARCH-M. We will explain why the proof of

the asymptotic normality of the QMLE is so difficult in this simple classical parametric model. There

is also a mathematical motivation for investigating this model, because difficulties in the study of the

model arise from nonstationarities of derivatives of the likelihood function that create some nonstandard

mathematical problems.

The GARCH(1,1)-M model is given by

Yt = mγ0
(h̄t(θ0)) + h̄t(θ0)

1/2Zt, (1)

h̄t(θ) = ω + α(Yt−1 −mγ(h̄t−1(θ)))
2 + βh̄t−1(θ) (2)

with i.i.d. mean zero variables Zt with variance equal to one. Here, θ = (ψ, γ) is the unknown parameter,

consisting of the regression parameter γ and the GARCH parameter ψ = (ω, α, β). The true parameters

are denoted by θ0, ψ0, γ0, ω0, α0 and β0. We also write ht for h̄t(θ0) and m0 for mγ0
. The function

h̄t(θ) is defined as the strictly stationary and ergodic solution of (2). Below we will state conditions

under which such a solution exists and is unique (see Lemma 1). The existence and uniqueness of such

a solution at the value θ = θ0 is guaranteed if E[ln(α0Z
2
t + β0)] < 0, see Nelson (1990). We also write

ĥt(θ) for a solution of (2) with fixed starting value ζ0, that is

ĥt(θ) = ω + α(Yt−1 −mγ(ĥt−1(θ)))
2 + βĥt−1(θ) with ĥ0(θ) ≡ ζ0. (3)

In the following, the quasi-likelihood function will be based on ĥt(θ). Lee and Hansen (1994) and

Lumsdaine (1996) were the first to derive the distribution theory for the QMLE of the GARCH(1,1) model.

The theory has been extended to the general GARCH(p, q) case by Berkes et al. (2003) and Francq and

Zaköıan (2004), among others. The result for the GARCH(1,1) can be easily extended to a GARCH(1,1)

model with a constant function mγ . Also, one can use results from the GARCH(1,1) literature to study

the properties of the GARCH(1,1)-M model. For example, in Carrasco and Chen (2002) it has been

shown that ht in the GARCH(1,1) model is β-mixing with exponentially decaying mixing coefficients.

A detailed discussion of the dependence structure of Yt and ht is provided in Conrad and Karanasos

(2014). Some properties of the volatility process ht follow directly from the ARCH(∞) representation

of ht. Christensen et al. (2012) give a complete asymptotic analysis for a GARCH(1,1)-M model with
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modified recurrence equation (2). In their model it is assumed that ht(θ) = w+αY 2
t−1+βht−1(θ). Then,

by construction, the ARCH(∞) representation of ht does no longer depend on m. This allows them to

develop a detailed theory, also for nonparametric m. Alternative estimators for a nonparametric m have

been studied in Linton and Perron (2003) and Conrad and Mammen (2008).

For a parametric m function, it is standard to assume that the conditional mean can be written as

mγ(x) = γ1 + γ2g(x) with a fixed function g. The original specification of Engle et al. (1987) assumes

either g(ht(θ0)) = ht(θ0) or g(ht(θ0)) =
√

ht(θ0), while some authors also use g(ht(θ0)) = ln(ht(θ0)).

The linear specification is directly motivated by Merton’s (1973) intertemporal CAPM, which suggests

that the expected excess return on the market should be proportional to the conditional variance of the

market return. As noted by Pagan and Hong (1990), the log specification may be unsatisfactory, since as

ht(θ0) → 0 the conditional variance in logs takes very large negative values and the relationship between

the conditional variance and Yt may be overstated.

In this paper we will develop an asymptotic theory for GARCH-M models. For doing so, we will

assume that (2) behaves like a “stochastic contraction”. Our approach will cover the specifications

g(x) =
√
x and g(x) = ln(x) but will not apply when g(x) = x.

2 Asymptotics for GARCH(1,1)-M models

Our main result is a theorem on the asymptotic normality of the QMLE θ̂. The proof of this result

proceeds in several steps where in the first step consistency is shown. In the second step, we derive rates

of convergence for θ̂. In the final step, this result is used to get local expansions of the quasi-likelihood

function that allow to establish asymptotic normality.

In the first step, our treatment of the quasi-maximum likelihood estimator is based on a stochastic

recurrence equations approach as developed in Straumann (2005) and Straumann and Mikosch (2006).

In those papers, stochastic recurrence equations of the quasi-likelihood function and of its derivatives

have been used to show that they have a stationary ergodic functional solution. In the GARCH(1,1)-M

model, we can use these arguments to show that the quasi-likelihood function has a stationary ergodic

functional solution. But this argument does not apply for the derivatives of the quasi-likelihood function,

at least under reasonable assumptions. We argue that the derivatives of the quasi-likelihood functions

show exploding behavior in a neighborhood of the true parameter and that they only have a stable

behavior in a shrinking neighborhood. For this reason, in a second step we have to show convergence

rates for θ̂. Having these rates, we only have to consider the derivatives of the quasi-likelihood functions

in shrinking neighborhoods.

We make the following assumptions.
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Assumption 1. The parameter set Θ is compact and equal to the closure of its interior. The true

parameter θ0 lies in the interior of Θ. The function (γ, u) mγ(u) is continuous with respect to γ and

differentiable with respect to u. It holds that ω ≥ ω∗ > 0, α ≥ α∗ > 0, β ≥ β∗ > 0 for all θ ∈ Θ. The

innovations Zt are i.i.d. with E[Zt] = 0 and E[Z2
t ] = 1.

Assumption 2. It holds that α0 + β0 < 1.

Assumptions 1 and 2 imply that
√
htZt is a covariance-stationary process with unconditional variance

equal to ω0/(1 − α0 − β0) (see Bollerslev, 1986). Further, they imply that E[ln(α0Z
2
t + β0)] < 0. As

mentioned above, this guarantees that (2) has a strictly stationary and ergodic solution ht for θ = θ0.

In the proof of consistency of the quasi-maximum likelihood estimator, we make use of the theory on

stochastic recurrence equations. The essential assumption needed in this approach is stated below. In the

following, we denote derivatives of functionsmγ(u) w.r.t. the argument u bym′
γ(u), m

′′
γ(u), ... Derivatives

w.r.t. the parameter γ are denoted by ṁγ(u), m̈γ(u), ...

Assumption 3. It holds that

E[ln(Ut)] < 0, D1 < +∞, D2 < +∞,

where

Ut = sup
α,β

2αD1|Zt

√

ht +m0(ht)|+D2 + β,

D1 = sup
γ,u

|m′
γ(u)|,

D2 = sup
γ,u

|mγ(u)m
′
γ(u)|.

Next, we explain why this assumption naturally arises here. For this purpose, we shortly come back

to the classical assumption that E[ln(α0Z
2
t + β0)] < 0. We recall why it implies that there exists a

stationary ergodic solution ht of the GARCH equation. We will later explain why Assumption 3 will be

useful for similar reasons. Afterwards, we will discuss how restrictive the assumption is. We start with a

brief discussion of stochastic recurrence equations.

Consider first two sequences h∗t and h∗∗t with different starting values ζ∗0 > 0 and ζ∗∗0 > 0 that fulfill

the recurrence equation of ht = h̄t(θ0):

h∗t = ω0 + h∗t−1(α0Z
2
t−1 + β0),

h∗∗t = ω0 + h∗∗t−1(α0Z
2
t−1 + β0).

Then h∗∗t − h∗t = (h∗∗t−1 − h∗t−1)(α0Z
2
t−1 + β0) and the condition E[ln(α0Z

2
t + β0)] < 0 implies that

h∗∗t − h∗t → 0 a.s.. It can be shown that this result implies that there exists a unique stationary ergodic

solution of the recurrence equation of ht = h̄t(θ0). The approach of stochastic recurrence equations has
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been generalized w.r.t. two aspects: First, one can consider nonlinear recurrence equations. Then one

needs conditions of the type E[ln(Λ)] < 0 where Λ is the (random) Lipschitz constant of the recurrence

equation. Second, instead of real valued random variables one can consider random elements of function

spaces.

We use the second approach with the random functions

h̄t(·) = ω + α(Yt−1 −mγ(h̄t−1(·)))2 + βh̄t−1(·).

Consider two sequences h̄t(·)∗∗ and h̄∗t (·) again with different starting values ζ∗∗0 > 0 and ζ∗0 > 0:

h̄∗∗t (·) = ω + α(Yt−1 −mγ(h̄
∗∗
t−1(·)))2 + βh̄∗∗t−1(·),

h̄∗t (·) = ω + α(Yt−1 −mγ(h̄
∗
t−1(·)))2 + βh̄∗t−1(·).

One can show the following Lipschitz inequality:

‖h̄∗∗t (·) − h̄∗t (·)‖∞ ≤ Ut‖h̄∗∗t−1 − h̄∗t−1‖∞

with Ut defined above and ‖...‖∞ equal to the sup-norm. In our Assumption 3, we had assumed that

E[ln(Ut)] < 0. This assumption implies that the recurrence equation

h̄t(θ) = ω + α(Yt−1 −mγ(h̄t−1(θ)))
2 + βh̄t−1(θ)

has a stationary ergodic solution h̄t(θ). This is stated in the following lemma.

Lemma 1. Let Assumptions 1–3 be satisfied. Then (2) has a solution h̄t(·) that is unique, stationary

and ergodic. Furthermore, it holds that there exists a ρ > 1 such that

ρt sup
θ∈Θ

|ĥt(θ)− h̄t(θ)| → 0, a.s. (4)

for the random function ĥt that solves (3) for t ≥ 1 with fixed starting value ζ0 > 0.

For the convergence statement in (4), one also says that ĥt(·) converges exponentially fast almost

surely to h̄t(·).

Next, we discuss that Assumption 3 is rather restrictive. It is always fulfilled if β < 1 and D1 and

D2 are small enough. The assumption D2 < +∞ states that our function m does not grow faster than

x → a
√
x. The treatment of functions with faster growth would require a different approach. Consider

e.g. the recurrence equation for the linear function mγ(x) = γ1 + γ2x. Here, we get that

h̄t(θ)− h̄t(θ0) = ω − ω0 + ...+ αγ22 [h̄t−1(θ)− h̄t−1(θ0)]
2 + ...

It needs a very careful check why the quadratic term in the recurrence equation does not lead to an

explosive behavior during 0 ≤ t ≤ T . The process is not stationary and it is to be expected that the
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process explodes for t → ∞. In order to illustrate this behavior we simulate the GARCH(1,1)-M model

with the following parameters: α0 = 0.1, β0 = 0.85, γ01 = 0 and γ02 = 0.5. For the process h̄t(θ), all

parameters but γ2 are chosen as in h̄t(θ0), while γ2 ∈ {0.6, 0.7, 0.8, 0.9, 1}. We choose T = 3000 and

consider M = 1000 replications. For different values of ∆γ2 = γ2 − γ02, the following tables show the

fraction of cases in which h̄t(θ) − h̄t(θ0) is diverging (defined as h̄t(θ) − h̄t(θ0) > 100) and the average

point in time t when this is happening (explosion time). As Tables 1-3 clearly show, the fraction of cases

in which h̄t(θ)− h̄t(θ0) is diverging (# divergence) is increasing in ∆γ2. Also, the larger ∆γ2 the earlier

the difference h̄t(θ) − h̄t(θ0) explodes. Further, by considering different values of ω0 it becomes evident

that divergence occurs more often and earlier the larger is the expected value of ht = h̄t(θ0).

Table 1: Comparison of h̄t(θ) − h̄t(θ0) when ω0 = 0.05.

∆γ2 0.1 0.2 0.3 0.4 0.5

# divergence 0.02 0.50 0.99 1 1

explosion time 1403.8 1316.5 645.96 187.67 82.73

Notes: The table reports the fraction of cases in which h̄t(θ)−h̄t(θ0) is

diverging (# divergence). For those simulations for which we observe

divergence the average explosion time t is reported.

Table 2: Comparison of h̄t(θ) − h̄t(θ0) when ω0 = 0.1.

∆γ2 0.1 0.2 0.3 0.4 0.5

# divergence 0.41 1 1 1 1

explosion time 1327.5 363.15 90.85 40.91 25.09

Notes: see Table 1.

Table 3: Comparison of h̄t(θ) − h̄t(θ0) when ω0 = 0.2.

∆γ2 0.1 0.2 0.3 0.4 0.5

# divergence 0.99 1 1 1 1

explosion time 513.39 69.49 27.84 16.78 11.67

Notes: see Table 1.
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Next, the quasi-maximum likelihood estimator θ̂ is defined as

θ̂ = argmax
θ∈Θ

L̂T (θ),

where L̂T (θ) is the quasi-likelihood function:

L̂T (θ) = −1

2

T
∑

t=1

[ln(ĥt(θ)) + ĥt(θ)
−1 (Yt −mγ(ĥt(θ)))

2]. (5)

For the consistency of θ̂, we need one further assumption.

Assumption 4. The distribution of the random variable Zt allows for a strictly positive density on an

interval [z∗, z∗∗] with z∗ < z∗∗. The following identifiability condition holds:

mγ(h0) = m0(h0) a.s. if and only if γ = γ0.

The next theorem states the asymptotic consistency of the QMLE. The proof makes essential use

of the ergodicity of the process h̄(θ). In particular, this also implies that the quasi-likelihood function

converges to its expectation.

Theorem 1. For the model given by (1) - (2), let Assumptions 1 - 4 by satisfied. Then it holds that

θ̂
P−→ θ0.

In a next step, we will show the asymptotic normality of the QMLE θ̂. Unfortunately, as mentioned

above, the derivatives of the quasi-likelihood do not behave well in fixed neighborhoods of the true

parameter θ0. The basic reason is that under reasonable conditions the derivatives of ĥt do not behave

well at points θ 6= θ0. Only for θ in a shrinking neighborhood of θ0, one can control the asymptotic

behavior of the derivatives. For this reason, we need a stronger result than Theorem 1. In our next

theorem, we will show that θ̂ converges to θ0 with nearly parametric rate OP (ln(T )T
−1/2). In a next

step, we will show that the first two derivatives ĥ
(l)
t (θ) (l ∈ {1, 2}) of ĥt(θ) converge to a stationary

ergodic processes, uniformly over θ with ‖θ − θ0‖ ≤ ln(T )T−1/2. The limiting processes do not depend

on θ in this shrinking neighborhood. This can be used to show asymptotic normality of the QMLE. For

our next theorem, we need the following additional assumptions:

Assumption 5. For some D > 0 it holds for ‖θ−θ0‖ ≤ δ that for the functions g1(s) = mγ(s)ṁγ(s), g1(s) =

mγ(s)m
′
γ(s), g2(s) = m′

γ(s), g2(s) = mγ(s), g2(s) = ṁγ(s), g2(s) = ṁ′
γ(s), g2(s) = m′′

γ(s), g2(s) =

m̈γ(s), g3(s) = ṁγ(s), g4(s) = m′
γ(s), g4(s) = ṁ′

γ(s) with some constant D > 0

‖g1(s)− g1(s
′)‖ ≤ D|s− s′|,

‖g2(s)− g2(s
′)‖ ≤ D|s− s′|s−1/2,

‖g3(s)‖ ≤ D
√
s,

‖g4(s)‖ ≤ Ds−1/2
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for s > s′ ≥ ω∗. Here, ḟγ(s) and f̈γ(s) denote the first or second order partial derivative of a function

fγ(s) with respect to γ.

Assumption 6. There exists δ > 0, D3 > 0 such that for

Vt = sup
‖θ−θ0‖≤δ

4D3α|Zt|+ αD2
3 + 4DD3δ + 4β

4 (α0Z2
t + β0)

it holds that

E ln(Vt) < 0.

Here, D3 is chosen such that

|mγ(s)−mγ(s
∗)| ≤ D3

2

|s− s∗|√
s

for s, s∗ ≥ ω∗ and ‖θ− θ0‖ ≤ δ. If Vt fulfills that P [Vt > 1] > 0, then we define κ1 > 0 as the solution of

the equation EV κ1

t = 1. If P [Vt > 1] = 0 we set κ1 = ∞ and κ−1
1 = 0.

If Vt fulfils that P [Vt > 1] > 0, then there exists a unique solution 0 < κ1 < ∞ of the equation

EV κ1

t = 1, see Theorem 2.1 in Mikosch and Stărică (2000).

We make the following assumption on the moments of Zt.

Assumption 7. The random variables Zt fulfill the following moment condition:

EZκ2

t <∞

for some κ2 > 4.

Assumption 8. The random variables Zt fulfill the following moment condition:

E(α0Z
2
t + β0)

κ3/2 = 1

for some κ3 > 0 with 2κ−1
3 + 2κ−1

1 < 1.

Assumption 9. The matrix S = S1 + S2 with

S1 = E

[

h̄′t(θ0)h̄
′
t(θ0)

⊤

h2t

]

,

S2 = E

[

(ṁγ0
(ht) +m′

γ0
(ht)h̄

′
t(θ0))(ṁγ0

(ht) +m′
γ0
(ht)h̄

′
t(θ0))

⊤

ht

]

is non-singular.

We now state the following result on the convergence rate of the quasi-maximum likelihood estimator.

Proposition 1. For the model given by (1) - (2), let Assumptions 1 - 9 with δ > 0 small enough be

satisfied. Then it holds that

θ̂ − θ0 = OP

(

ln(T )T−1/2
)

.
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Proposition 1 allows to restrict attention to local expansions of the quasi-likelihood and this is the

essential step to derive asymptotic normality of the maximum quasi-likelihood estimator as stated in our

main theorem.

Theorem 2. For the model (1) - (2), make the Assumptions 1 - 9 with δ > 0 small enough. Then it

holds that
√
n(θ̂ − θ0)

d−→ N (Σ−1
2 Σ1Σ

−1
2 ),

where

Σ1 = E

[{

1

2

h̄′t
h̄t

(Z2
t − 1) + h̄

−1/2
t (ṁγ0

(h̄t) +m′
γ0
(h̄t)h̄

′
t)Zt

}{

1

2

h̄′t
h̄t

(Z2
t − 1) + h̄

−1/2
t (ṁγ0

(h̄t)

+m′
γ0
(h̄t)h̄

′
t)Zt

}⊤]

,

Σ2 = E

[

1

2

h̄′t(h̄
′
t)

⊤

h̄2t
+

1

h̄t
(ṁγ0

(h̄t) +m′
γ0
(h̄t)h̄

′
t)(ṁγ0

(h̄t) +m′
γ0
(h̄t)h̄

′
t)

⊤
]

.

Note that for Gaussian Zt, we have Σ1 = Σ2 and the asymptotic covariance is equal to Σ−1
1 . On the

other hand, if there is no mean function, i.e. mγ0
(ht) = 0, then Σ1 and Σ2 reduce to

Σ1 =
1

2
E

[

h̄′t(h̄
′
t)

⊤

h̄2t

]

and Σ2 =
1

4
(E[Z4

t ]− 1)E

[

h̄′t(h
′
t)

⊤

h̄2t

]

and the covariance reduces to the one of the standard GARCH(1,1) (see Theorem 2.2 in Francq and

Zaköıan, 2004).

3 Conclusions

Finding sufficient regularity conditions that ensure consistency and asymptotic normality of the QMLE

for the GARCH-M model has been a long-standing problem in financial econometrics. We consider

the special case of a parametric GARCH-M model with innovations that follow a GARCH(1,1) process,

which is the specification most often used in empirical applications. Following Straumann (2005) and

Straumann and Mikosch (2006), we make use of stochastic recurrence equations und employ exponential

inequalities to show the consistency and asymptotic normality of the QMLE for certain specifications of

the mean function that do not grow too fast.
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Appendix

Proof of Lemma 1. Put

gθ(y, s) = ω + α(y −mγ(s))
2 + βs (6)

and consider the sequence of random functions φt with:

[φt(s)](θ) = gθ(Yt, s(θ)).

The functions φt map continuous functions s : Θ → [0,∞) onto the class of such functions. Note that

ht+1(θ) = [φt(ht)](θ).

Because Yt is a stationary and ergodic sequence, the same holds for φt.

Consider functions s, s∗ with ‖s− s∗‖∞ ≤ δ. It holds that

|φt(s)− φt(s
∗)|(θ) ≤ 2α|

√

htZt +mγ0
(ht)||mγ(s)−mγ(s

∗)|+ α|mγ(s)
2 −mγ(s

∗)2|

+β|s− s∗|(θ)

≤ Ut|s− s∗|(θ).

The lemma follows from E[ln(Ut)] < 0 by application of Theorem 3.1 in Bougerol (1993), see also Propo-

sition 5.2.12 in Straumann (2005). See also the discussion before the statement of Lemma 1.

Proof of Theorem 1. The theorem can be shown by similar arguments as in Theorem 5.3.1. in

Straumann (2005). There, the proof is based on the comparison of L̂T (θ), L̄T (θ) and L(θ), where L̂T (θ)

is defined in (5) and

L̄T (θ) = −1

2

T
∑

t=1

ln(h̄t(θ)) + h̄t(θ)
−1(Yt −mγ(h̄t(θ)))

2,

L(θ) = −1

2
E
[

ln(h̄t(θ)) + h̄t(θ)
−1(Yt −mγ(h̄t(θ)))

2
]

.

The proof in Straumann (2005) is based on showing:

1

T
||L̂T − L̄T ||∞ → 0 (in probability), || 1

T
L̄T − L||∞ → 0 (in probability), L(θ) < L(θ0) for θ 6= θ0.

The second claim follows from the fact that h̄t is a stationary ergodic process (see Straumann, 2005).

For the first claim, one uses the bound

1

T
|L̂T (θ) − L̄T (θ)| ≤ c

T

T
∑

T=1

∆t(θ)

{

(Yt −mγ(ĥt(θ))
2

st(θ)
+

(Yt −mγ(h̄t(θ))
2

st(θ)
+ 1

}

+
c

T

T
∑

t=1

|mγ(ĥt(θ)) −mγ(h̄t(θ))| |Yt|
st(θ)

+
c

T

T
∑

t=1

|mγ(ĥt(θ)) −mγ(h̄t(θ))|2
st(θ)

,
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where st(θ) = ĥt(θ) + h̄t(θ), ∆t(θ) = |ĥt(θ) − h̄t(θ)| and c > 0 is a constant, not depending on θ. Using

Assumption 3, we have m2
γ(x) ≤ c′ x, |mγ(x)−mγ(y)| ≤ c′ |x− y|, |mγ(x)

2 −mγ(y)
2| ≤ c′ |x− y| with

a constant c′ > 0. Using st(θ) ≥ 2ω∗ (see Assumption 1) we get with a constant c′′:

1

T
[L̂T (θ) − L̄T (θ)] ≤

c′′

T

T
∑

t=1

∆t(θ)
{

1 + ht + ht Z
2
t + Z2

t

}

. (7)

Because of Assumptions 1 and 2, we have that E[htZ
2
t ] = E[ht] <∞. Further, because of the ergodicity

of ht, htZ
2
t and Z2

t , this implies that 1
s

∑s
t=1[1 + ht + htZ

2
t + Z2

t ] = OP (1) for s → ∞. We apply this

result with s = T and s = C lnT with C > 0 large enough. With this bound, (7) and (4), we get if C is

chosen large enough that

1

T
[L̂T (θ)− L̄T (θ)] ≤ OP

(

C lnT

T

)

1

C lnT

C lnT
∑

t=1

{

1 + ht + ht Z
2
t + Z2

t

}

+OP

(

ρ−C lnT
) 1

T

T
∑

t=1

{

1 + ht + ht Z
2
t + Z2

t

}

= OP

(

lnT

T

)

, (8)

uniformly over θ ∈ Θ. In particular, we have that 1
T [L̂t(θ)−L̄t(θ)] converges almost surely to 0, uniformly

over θ ∈ Θ.

It remains to check the last claim: L(θ) < L(θ0) for θ 6= θ0. For the proof of this claim, it suffices to

check that

h̄0(θ) = h0 a.s. implies θ = θ0.

From h̄0(θ) = h0 a.s. and stationarity of (h̄t(θ), ht), we get that h̄1(θ) = h1 a.s.. Thus, we have that

0 = ω − ω0 + (α− α0)Y
2
0 − 2Y0(αmγ(h0)− α0m0(h0)) + αm2

γ(h0)− α0m
2
0(h0) + (β − β0)h0 a.s.

Using Assumption 4 and considering the first two derivatives of the right hand side with respect to the

y value, we get that α = α0, mγ = m0 on the support of h0 (a.s.), and ω = ω0.

For the proof of Proposition 1, we will make use of the following lemmas.

Lemma 2. Make the assumptions of Proposition 1. Then with ĥt = ĥt(θ̂) and m̂ = mγ̂ it holds that

1

2

T
∑

t=1

(ĥt − ht)
2

ĥ2t ∨ h2t
+

T
∑

t=1

(m̂(ĥt)−m(ht))
2

ĥt
(9)

≤ −
T
∑

t=1

(ĥt − ht)

ĥt
(Z2

t − 1) + 2

T
∑

t=1

(m̂(ĥt)−m(ht))

√
ht

ĥt
Zt +OP (lnT ),

where a ∨ b denotes the maximum of the real numbers a and b.

Proof of Lemma 2. Note that by definition of the quasi-likelihood estimator θ̂, we have that L̂T (θ̂) ≥

L̂T (θ0). Because of (8), this implies that L̄T (θ̂) ≥ L̄T (θ0) + OP (lnT ). We make use of the inequality

10



ln(1 + x) ≤ x− x2(1 + (x)+)
−1, where (x)+ is the positive part of x. This inequality follows easily from

a Taylor expansion around x = 0. From these two inequalities, we get that

OP (ln T ) ≤ 1

2

T
∑

t=1

ln

(

ht

ĥt

)

− 1

2

T
∑

t=1

[

ĥ−1
t (h

1/2
t Zt +m0(ht)− m̂(ĥt))

2 − Z2
t

]

≤ 1

2

T
∑

t=1

ht − ĥt

ĥt
− 1

4

T
∑

t=1

(ht − ĥt)
2

ĥ2t ∨ h2t
− 1

2

T
∑

t=1

ht − ĥt

ĥt
Z2
t

−
T
∑

t=1

h
1/2
t

ĥt
(m0(ht)− m̂(ĥt))Zt −

1

2

T
∑

t=1

ĥ−1
t (m0(ht)− m̂(ĥt))

2.

The claim of the lemma follows by rearrangement of the terms.

Lemma 3. Make the assumptions of Proposition 1. There exist random variablesWt with sup1≤t≤T |Wt| =

OP (T
1/κ1) such that for ‖θ − θ0‖ ≤ δ

∣

∣

∣

∣

h̄t(θ)− ht
ht

∣

∣

∣

∣

≤ ‖θ − θ0‖Wt, (10)

∣

∣

∣

∣

∣

ĥt(θ)− ĥt
ht

∣

∣

∣

∣

∣

≤ ‖θ − θ0‖Wt. (11)

Proof of Lemma 3. We only show claim (10). Claim (11) follows by similar arguments. For the proof

of claim (10), we show that for some constant C > 0 for ‖θ − θ0‖ ≤ δ

∣

∣

∣

∣

h̄t+1(θ)− ht+1

ht+1

∣

∣

∣

∣

≤ C‖θ − θ0‖+ Vt

∣

∣

∣

∣

h̄t(θ)− ht
ht

∣

∣

∣

∣

. (12)

For a proof of this claim, write h̄t = h̄t(θ) and ∆ω = |ω−ω0|, ∆α = |α−α0| and ∆β = |β− β0|. We get

that for some constants C1 > 0 for ‖θ − θ0‖ ≤ δ

|h̄t+1 − ht+1| ≤ ∆ω +∆αhtZ
2
t + α

∣

∣

∣
(h

1/2
t Zt +m0(ht)−mγ(h̄t))

2 − htZ
2
t

∣

∣

∣
+∆βht + β|h̄t − ht|

≤ C1‖θ − θ0‖(1 + ht + htZ
2
t ) + 2α|mγ(ht)−mγ(h̄t)|h1/2t Zt

+2α|mγ(ht)−mγ(h̄t)| |mγ(ht)−m0(ht)|+ α|mγ(ht)−mγ(h̄t)|2 + β|h̄t − ht|

≤ C1‖θ − θ0‖(1 + ht + htZ
2
t ) + |h̄t − ht|

[

αD3Zt + αDD3δ +
αD2

3

4
+ β

]

.

If we divide both sides of this inequality by ht+1, we get equation (12), because of ht+1 ≥ (α0Z
2
t +β0)ht.

For the proof of the lemma, it remains to show that (12) implies (10). Put ∆t = |h̄t − ht|/ht and define

∆∗
t as the stationary solution of the recurrence equation ∆∗

t+1 = 1 + Vt∆
∗
t . We have that

∆t+1 − C‖θ − θ0‖∆∗
t+1 ≤ Vt(∆t − C‖θ − θ0‖∆∗

t ).

This implies that (∆t+1−C‖θ−θ0‖∆∗
t+1)+ ≤ Vt(∆t−C‖θ−θ0‖∆∗

t )+, where (x)+ denotes the positive part

of x. Because (∆t−C‖θ− θ0‖∆∗
t )+ is stationary and E ln(Vt) < 0, we get that (∆t−C‖θ− θ0‖∆∗

t )+ = 0

a.s.. Thus for Wt = C∆∗
t we have that ∆t ≤ ‖θ − θ0‖Wt a.s.. For the proof of the lemma, it remains

11



to be shown that sup1≤t≤T |Wt| = OP (T
1/κ1). If P [Vt > 1] = 0, we can bound Vt by a random variable

V ∗
t with P [V ∗

t > 1] = 0 and E(V ∗
t )

κ∗

1 = 1 with κ∗1 as large as we like. Thus, w.l.o.g. we can assume that

P [Vt > 1] > 0. For this case we get from Theorem 4.1 in Goldie (1991) that P (Wt ≥ x) ∼ cx−κ1 for

x→ ∞ for some constant c > 0. This implies sup1≤t≤T |Wt| = OP (T
1/κ1). Note also that Vt is bounded

by definition.

Denote by ĥ′t(θ) the solution of

ĥ′t+1(θ) = ∂θgθ(Yt, ĥt(θ)) + ∂sgθ(Yt, ĥt(θ))ĥ
′
t(θ) (13)

with deterministic starting value ĥ′0(θ) = ζ1. The function gθ was defined in (6). Furthermore, ∂θgθ and

∂sgθ are the partial derivatives of gθ with respect to θ or s, respectively. We also define ĥ′′t (θ) as the

solution of

ĥ′′t+1(θ) = ∂θθgθ(Yt, ĥt(θ)) + 2∂θsgθ(Yt, ĥt(θ))ĥ
′
t(θ) + ∂ssgθ(Yt, ĥt(θ))ĥ

′′
t (θ) (14)

with deterministic starting value ĥ′′0(θ) = ζ2. Here ∂θθgθ, ∂θsgθ and ∂ssgθ denote second order partial

derivatives of gθ.

The next lemma states that

d∗t+1(θ) = ∂θgθ(Yt, h̄t(θ)) + ∂sgθ(Yt, h̄t(θ))d
∗
t (θ) (15)

has a unique stationary solution d∗t (·). We denote this solution by h̄′t(·) = d∗t (·).

Lemma 4. Make the assumptions of Proposition 1. Equation (15) has a unique stationary solution

h̄′t(·) = d∗t (·) that is ergodic. For δ > 0, ρ > 1 small enough it holds that

ρt sup
‖θ−θ0‖≤δ

‖h̄′t(θ)− ĥ′t(θ)‖ → 0, a.s.

Furthermore, it holds that h̄′t is identical to the derivative of h̄t, a.s., and that it is continuous.

Proof of Lemma 4. According to Proposition 5.5.1 of Straumann (2005), it suffices for the statement of

the lemma to verify that: (i) gθ(y, s) is continuously differentiable with respect to θ and s for y fixed. (ii)

For some κ > 0 and a stationary processCt with E[ln+(Ct)] <∞ it holds that ‖∆gθ(Yt, s)−∆gθ(Yt, s
∗)‖ ≤

Ct|s− s∗|κ for s, s∗ ≥ ω∗, ‖θ − θ0‖ ≤ δ. (iii) E[ln+(sup‖θ−θ0‖≤δ ∆gθ(Y0, h̄0(θ))] <∞.

Here, ∆gθ(y, s) denotes the vector of the first order derivatives of gθ(y, s) with respect to θ and s for y

fixed. We now check (i)–(iii). Condition (i) directly follows from our Assumption 1. For the check of (ii) we

note that from Assumption 1 we get by direct calculations that (ii) holds with Ct = C(1+
√
ht+

√
ht|Zt|)

if the deterministic constant C is chosen large enough. The condition E[ln+(Ct)] < ∞ follows from

EZ2
t <∞ and Eht <∞.

12



For the proof of (iii), one shows the following bound for ‖θ−θ0‖ small enough and C > 0 large enough

‖∆gθ(Y0, h̄0(θ)) −∆gθ0(Y0, h̄0(θ0))‖ ≤ C[1 + h0 + h0|Z0|+ (1 + |Z0|)|h̄0(θ)− h0|]

≤ C[1 + h0 + h0|Z0|+ (1 + |Z0|)h0W0],

where in the last inequality Lemma 3 has been used. Now, by direct calculations with C∗ > 0 large

enough

‖∆gθ0(Y0, h̄0(θ0))‖ ≤ C∗[1 + h0 + h0|Z0|].

This gives for ‖θ − θ0‖ small enough and C∗∗ > 0 large enough

‖∆gθ(Y0, h̄0(θ))‖ ≤ C∗∗h0(1 + Z2
0 )W0.

Claim (iii) follows from E[ln+(h0)] < ∞ , E[ln+(1 + Z2
0 )] < ∞ and E[ln+(W0)] < ∞ . This concludes

the proof of Lemma 4.

Lemma 5. Make the assumptions of Proposition 1. It holds for ρ→ 0 that

sup
‖θ−θ0‖≤ρ

‖θ − θ0‖−2

∣

∣

∣

∣

E

[

(h̄t(θ)− ht)
2

h̄t(θ)2 ∨ h2t

]

− (θ − θ0)
⊤S1(θ − θ0)

∣

∣

∣

∣

→ 0, (16)

sup
‖θ−θ0‖≤ρ

‖θ − θ0‖−2

∣

∣

∣

∣

E

[

(h̄t(θ)− ht)
2

h2t

]

− (θ − θ0)
⊤S1(θ − θ0)

∣

∣

∣

∣

→ 0, (17)

sup
‖θ−θ0‖≤ρ

‖θ − θ0‖−2

∣

∣

∣

∣

E

[

(mγ(h̄t(θ)) −m0(ht))
2

h̄t(θ)

]

− (θ − θ0)
⊤S2(θ − θ0)

∣

∣

∣

∣

→ 0, (18)

sup
‖θ−θ0‖≤ρ

‖θ − θ0‖−2

∣

∣

∣

∣

E

[

(mγ(h̄t(θ)) −m0(ht))
2

ht

]

− (θ − θ0)
⊤S2(θ − θ0)

∣

∣

∣

∣

→ 0. (19)

Proof of Lemma 5. Choose θn with θn → θ0 and ‖θn − θ0‖−1(θn − θ0) → e for a unit vector e. For

claim (16), we have to show that

∣

∣

∣

∣

‖θn − θ0‖−2E

[

(h̄t(θn)− ht)
2

h̄2t (θn) ∨ h2t

]

− e⊤E

[

h̄′t(θ0)h̄
′
t(θ0)

⊤

h2t

]

e

∣

∣

∣

∣

→ 0.

For a proof of this claim first note that because of Lemma 4 we have that

‖θn − θ0‖−2
[

(h̄t(θn)− ht)
2(h̄2t (θn) ∨ h2t )−1

]

→ e⊤
[

h̄′t(θ0)h̄
′
t(θ0)

⊤h−2
t

]

e a.s.

Thus, the claim follows by dominated convergence since

‖θn − θ0‖−2[(h̄t(θn)− ht)
2(h̄t(θn)

2 ∨ h2t )−1] ≤W 2
t hth̄t(θn)

−1 ≤W 2
t htω

−1
∗ ≤W 4

t ω
−1
∗ + h2tω

−1
∗ , (20)

EW 4
t <∞ and Eh2t <∞, see also Lemma 3.

Claims (17)–(19) can be shown by similar arguments.
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Lemma 6. Make the assumptions of Proposition 1. With some constants c+ > c− > 0, it holds that

c−‖θ − θ0‖2 ≤ 1

T

T
∑

t=1

(h̄t(θ)− ht)
2

h̄2t (θ) ∨ h2t
+

1

T

T
∑

t=1

(mγ(h̄t(θ))−m(ht))
2

h̄t(θ)
≤ c+‖θ − θ0‖2

for all ‖θ − θ0‖ ≤ δ with probability tending to one.

Proof of Lemma 6. Put ϕt(θ0) = 0 and define for θ 6= θ0

ϕt(θ) = ‖θ − θ0‖−2

[

(h̄t(θ)− ht)
2

h̄2t (θ) ∨ h2t
+

(mγ(h̄t(θ))−m(ht))
2

h̄t(θ)
− (θ − θ0)

⊤Rt(θ − θ0)

]

,

Rt =
h̄′t(θ0)h̄

′
t(θ0)

⊤

h2t
+

(ṁγ0
(ht) +m′

γ0
(ht)h̄

′
t(θ0))(ṁγ0

(ht) +m′
γ0
(ht)h̄

′
t(θ0))

⊤

ht
.

Because of Lemmas 1 and 4, we have that ϕt is ergodic and stationary. Using the bound (20) for the

first term of ϕt and a similar bound for the second term we get that E[sup‖θ−θ0‖≤δ |ϕt(θ)|] < ∞. Thus,

we have that

sup
‖θ−θ0‖≤δ

∣

∣

∣

∣

∣

1

T

T
∑

t=1

ϕt(θ)− E[ϕt(θ)]

∣

∣

∣

∣

∣

= oP (1).

From Lemma 5, we know that sup‖θ−θ0‖≤ρ ‖E[ϕt(θ)]‖ → 0 for ρ → 0. Here, ‖ · ‖ denotes the spectral

norm of a matrix, i.e. θ → E[ϕt(θ)] is continuous in θ = θ0. The statement of the lemma now follows

from 1
T

∑T
t=1Rt = S + oP (1), see Lemma 4, and our assumption that S is non-singular. Here, we make

the assumption that δ is chosen small enough.

Our next lemma contains an exponential inequality for martingales. This inequality is a modification

of e.g. Lemma 8.9 in van de Geer (2000).

Lemma 7. For random variables ..., e−1, e0, e1, ..., eT suppose that et is Ft-measurable for an increasing

σ-field Ft, that E[et|Ft−1] = 0 and that supt E[exp(c|et|)|Ft−1] < ∞ (a.s.) for a constant c > 0 small

enough. Consider a sequence of random variables r1, r2, ... where rt is measurable with respect to the

σ-field generated by Ft−1. Assume that max1≤t≤T |rt| ≤ c/2 (a.s.). Then it holds that

E

[

exp

(

T
∑

t=1

rtet

)]

≤
{

E

[

exp(C
T
∑

t=1

r2t )

]}1/2

,

where C is a deterministic a.s. bound of E
[

2e2t exp (c|et|) |Ft−1

]

.

We will make use of this lemma in the proof of the following lemma. For completeness we will give a

proof of Lemma 7, although proofs of related versions of the result must be available elsewhere.

Proof of Lemma 7. We will show that for 0 ≤ s ≤ T

E

[

exp

(

T
∑

t=1

rtet

)]

≤







E



exp

(

s
∑

t=1

rtet

)

√

√

√

√Es+1

[

exp(C

T
∑

t=s+1

r2t )

]











, (21)
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where Es+1 [...] denotes the conditional expectation E [...|Fs]. Note that claim (21) with s = 0 implies

the statement of the lemma because of

E





√

√

√

√E1

[

exp(C

T
∑

t=1

r2t )

]



 ≤
{

E

[

E1

[

exp(C

T
∑

t=1

r2t )

]]}1/2

=

{

E

[

exp(C

T
∑

t=1

r2t )

]}1/2

.

Furthermore, (21) with s = T holds trivially. We will show that (21) for s = u+1 implies that (21) holds

for s = u, where u = 1, ..., T − 1. Thus by an induction argument we get (21) with s = 0 and this implies

the statement of the lemma.

Suppose that (21) with s = u + 1 for some u = 1, ..., T − 1. then we get by application of the

Cauchy-Schwartz inequality that

E

[

exp

(

T
∑

t=1

rtet

)]

≤ E



exp

(

u+1
∑

t=1

rtet

)

√

√

√

√Eu+2

[

exp(C

T
∑

t=u+2

r2t )

]





= E



Eu+1



exp

(

u+1
∑

t=1

rtet

)

√

√

√

√Eu+2

[

exp(C
T
∑

t=u+2

r2t )

]









≤ E





{

Eu+1

[

exp

(

u+1
∑

t=1

2rtet

)]}1/2{

Eu+1

[

Eu+2

[

exp(C

T
∑

t=u+2

r2t )

]]}1/2




= E



exp

(

u
∑

t=1

rtet

)

{

Eu+1 [exp (2ru+1eu+1)]

}1/2
{

Eu+1

[

exp(C

T
∑

t=u+2

r2t )

]}1/2


 .

We now argue that

Eu+1 [exp (2ru+1eu+1)] ≤ exp(Cr2u+1). (22)

If one plugs this into the last inequality one gets (21) with s = u. This shows the statement of the

lemma. Thus it remains to show (22). This claim follows by a simple Taylor expansion. One gets with

|ηu+1| ≤ |ru+1| |eu+1| ≤ c/2 |eu+1| that

Eu+1 [exp (2ru+1eu+1)] = Eu+1

[

1 + 2ru+1eu+1 + 2r2u+1e
2
u+1 exp (2ηu+1)

]

= Eu+1

[

1 + 2r2u+1e
2
u+1 exp (2ηu+1)

]

≤ Eu+1

[

1 + Cr2u+1

]

= 1 + Cr2u+1

≤ exp(Cr2u+1).
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Lemma 8. Make the assumptions of Proposition 1. It holds that

T
∑

t=1

(ĥt − ht)

ĥt
(Z2

t − 1) +

T
∑

t=1

(m̂(ĥt)−m(ht))

√
ht

ĥt
Zt (23)

= OP (ln(T ))

[

T
∑

t=1

(ĥt − ht)
2

ĥ2t
+

T
∑

t=1

ht(m̂(ĥt)−m(ht))
2

ĥ2t

]1/2

,

T
∑

t=1

(ĥt − ht)

ĥt
(Z2

t − 1) +
T
∑

t=1

(m̂(ĥt)−m(ht))

√
ht

ĥt
Zt (24)

= OP (ln(T )T
1/κ3)

[

T
∑

t=1

(ĥt − ht)
2

ĥ2t ∨ h2t
+

T
∑

t=1

(m̂(ĥt)−m(ht))
2

ĥt

]1/2

.

Proof of Lemma 8. We will show that for δ > 0 small enough

sup
‖θ−θ0‖≤δ

[

T
∑

t=1

(h̄t(θ)− ht)
2

h̄t(θ)2
+

T
∑

t=1

ht(mγ(h̄t(θ)) −m(ht))
2

h̄t(θ)2

]−1/2

(25)

×
[

T
∑

t=1

(h̄t(θ) − ht)

h̄t(θ)
(Z2

t − 1) +

T
∑

t=1

(mγ(h̄t(θ))−m(ht))

√
ht

h̄t(θ)
Zt

]

= OP (ln(T )).

Because of Lemma 1 and consistency of θ̂ this implies (23).

For the proof of (25) we will apply Lemma 7 with et = e∗t − E[e∗t ], e
∗
t = (Z2

t − 1)I[|Zt| ≤ T 1/κ2 ] and

r̄t(θ) = r∗t (θ)I[|r∗t (θ)| ≤ cT 2/κ1], r∗t (θ) = ‖θ− θ0‖−1(h̄t(θ)− ht)/ht for θ in a δ-neighborhood of θ0. Note

that with probability tending to one et = e∗t for t = 1, ..., T . Furthermore, we have that for all ε > 0 the

constant c can be chosen such that with probability ≥ 1 − ε it holds that rt(θ) = r∗t (θ) for t = 1, ..., T

and for all θ in a δ-neighborhood of θ0. We now show that for ρ > 0, one can choose a constant cρ > 0

such that

P





T
∑

t=1

r̄t(θ)et > cρln(T )

[

T +

T
∑

t=1

r̄t(θ)
2

]1/2


 ≤ CT−ρ (26)

for T ≥ T0 with constant C not depending on θ and ε and T0 not depending on θ. For a proof of (26),

we use the inequality

P





T
∑

t=1

r̄t(θ)et > cρln(T )

[

T +
T
∑

t=1

r̄t(θ)
2

]1/2




≤ E

[

exp

(

T
∑

t=1

rt(θ)et

)]

exp (−cρln(T ))

with rt(θ) =
[

T +
∑T

t=1 r̄t(θ)
2
]−1/2

r̄t(θ). Application of the last lemma with rt = rt(θ) gives (26).

In a second step, we apply Lemma 7 with et = e∗t − E[e∗t ], e
∗
t = ZtI[|Zt| ≤ T 1/κ2] and r̄t(θ) =

r∗t (θ)I[|r∗t (θ)| ≤ cT 2/κ1], r∗t (θ) = ‖θ − θ0‖−1(mγ(h̄t(θ)) −m(ht))
√
ht

h̄t(θ)
Zt for θ in a δ-neighborhood of θ0.

Also, with these choices (26) holds.
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We now note that it suffices to show (25) with the supremum running only over a grid of polynomially

many θ-values. This follows by using rough estimates for neighbored values of θ. Thus, (25) follows from

equation (26) with the two choices of et and r̄t(θ). At this stage, also Lemma 6 is used. This concludes

the proof of (23). Claim (24) follows from (23) by using the bound sup1≤t≤T ht/ĥt ≤ ω−2
∗ sup1≤t≤T ht =

OP (T
1/κ3). Here, the last equality follows from Assumption 8, see Theorem 2.1 in Mikosch and Stărică

(2000) and the arguments at the end of the proof of Lemma 3.

Proof of Proposition 1. From Lemmas 2 and 8, we get that

T
∑

t=1

(ĥt − ht)
2

ĥ2t ∨ h2t
+

T
∑

t=1

(m̂(ĥt)−m(ht))
2

ĥt

≤ −
T
∑

t=1

(ĥt − ht)

ĥt
(Z2

t − 1) + 2

T
∑

t=1

(m̂(ĥt)−m(ht))

√
ht

ĥt
Zt +OP (lnT )

≤ OP (ln(T )T
1/κ3)







[

T
∑

t=1

(ĥt − ht)
2

ĥ2t ∨ h2t

]1/2

+

[

T
∑

t=1

(m̂(ĥt)−m(ht))
2

ĥt

]1/2






.

This implies that

T
∑

t=1

(ĥt − ht)
2

ĥ2t ∨ h2t
+

T
∑

t=1

(m̂(ĥt)−m(ht))
2

ĥt
= OP (ln(T )

2
T 2/κ3).

Because of Lemma 6, this shows that

‖θ̂ − θ0‖2 = OP (ln(T )
2
T−1+(2/κ3)).

With Lemma 3, we get from this bound that

∣

∣

∣

∣

∣

ĥt − ht
ht

∣

∣

∣

∣

∣

= OP (ln(T )
2
T−(1/2)+(1/κ1)+(1/κ3)) = oP (1).

Thus,

[

T
∑

t=1

(ĥt − ht)
2

ĥ2t ∨ h2t
+

T
∑

t=1

(m̂(ĥt)−m(ht))
2

ĥt

] [

T
∑

t=1

(ĥt − ht)
2

h2t
+

T
∑

t=1

ht
(m̂(ĥt)−m(ht))

2

ĥ2t

]−1

→ 1,

in probability and we get by using the above arguments with (23) instead of (24) that

T
∑

t=1

(ĥt − ht)
2

ĥ2t ∨ h2t
+

T
∑

t=1

(m̂(ĥt)−m(ht))
2

ĥt
= OP (ln(T )

2
).

Because of Lemma 6, this proves the statement of the proposition.
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For the proof of Theorem 2 we will make use of the following expansions for functions θ → s(θ):

∂θgθ(y, s(θ)) =



















1

v2

s

−2αvṁ



















+ (β − 2αvm′)s′, (27)

∂θθgθ(y, s(θ)) =



















0 0 0 0

0 0 0 −2vṁ

0 0 0 0

0 −2vṁ 0 2αṁṁ⊤ − 2αvm̈



















+



















0

−4vm′

2

4αm′ṁ− 4αvṁ′



















s′ (28)

+(β − 2αvm′)s′′.

Here, we denote by ∂θ and ∂θθ the first and second order partial derivatives with respect to θ. Furthermore,

we define v = y − mγ(s) and we write s instead of s(θ). These equations can be used to show for

ht(θ) = ĥt(θ) or ht(θ) = h̄t(θ) that

∥

∥h′t+1(θ)− h′t+1(θ0)
∥

∥ ≤ C [‖θ − θ0‖(1 + ht(θ0)|Zt|+ ht + h′t(θ0)|Zt|) (29)

+|ht(θ) − ht(θ0)|(1 + |Zt|+ h′t(θ0)|Zt|)

+ ‖h′t(θ)− h′t(θ0)‖Vt(α0Z
2
t + β0)

]

for some positive constant C.

Using the last inequality and Lemma 3, we get the statement of the following lemma.

Lemma 9. Make the assumptions of Proposition 1. For a constant C > 0 it holds that

sup
‖θ−θ0‖≤C ln(T )T−1/2

sup
1≤t≤T

h−1
t (θ0) ‖h′t(θ)− h′t(θ0)‖ = oP (1),

sup
1≤t≤T

h−1
t (θ0) ‖h′t(θ0)‖ = OP (T

1/κ1).

The next lemma states that

d∗∗t+1 = ∂θθgθ0(Yt, ĥt(θ0)) + 2∂θsgθ0(Yt, ĥt(θ0))ĥ
′
t(θ0) + ∂ssgθ0(Yt, ĥt(θ0))d

∗∗
t+1(θ) (30)

has a unique stationary solution d∗∗t . We denote this solution by h̄′′t = d∗∗t . Note that this is a random

value and not a random function.

Lemma 10. Make the assumptions of Proposition 1. Equation (30) has a unique stationary solution

h̄′′t = d∗∗t that is ergodic. For ρ > 1 small enough it holds that

ρt‖h̄′′t − ĥ′′t (θ0)‖ → 0, a.s.
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Equation (28) can be used to show that

∥

∥

∥
ĥ′′t+1(θ)− ĥ′′t+1(θ0)

∥

∥

∥
≤ C

[

‖θ − θ0‖(1 + |Zt|(1 + ht + ‖h′t‖++‖h′t‖2 + ‖h′′t ‖)

+|ĥt(θ) − ĥt(θ0)|(1 + |Zt|)(1 + ‖h′t‖+ ‖h′t‖2 + ‖h′′t ‖)

+‖ĥ′t(θ)− ĥ′t(θ0)‖(1 + |Zt|)(1 + ‖h′t‖)

+
∥

∥

∥ĥ′′t (θ) − ĥ′′t (θ0)
∥

∥

∥Vt(α0Z
2
t + β0)

]

for some positive constant C. Using the last inequality, we get the statement of the following lemma.

Lemma 11. Make the assumptions of Proposition 1. For constants C > 0 it holds that

sup
‖θ−θ0‖≤C ln(T )T−1/2

sup
1≤t≤T

h−1
t (θ0)

∥

∥

∥ĥ′′t (θ)− ĥ′′t (θ0)
∥

∥

∥ = oP (1).

By making use of the derived results, we now get the statement of Theorem 2.

Proof of Theorem 2. We make use of 0 = L̂′
T (θ̂) = L̂′

T (θ0) + L̂′′
T (θ̂

∗)(θ̂− θ0) for some random θ̂∗ with

θ̂∗ = OP (ln(T )T
−1/2). This gives:

√
T (θ̂ − θ0) = (T−1L̂′′

T (θ̂
∗))−1T−1/2L̂′

T (θ0).

Using the above discussions, we get that

T−1L̂′′
T (θ̂

∗) → Σ2, in probability,

T−1/2L̂′
T (θ0) =

1√
T

T
∑

t=1

1

2

h̄′t
h̄t

(Z2
t − 1) + h̄

−1/2
t (ṁγ0

(h̄t) +m′
γ0
(h̄t)h̄

′
t)Zt + oP (1).

The theorem follows by application of a martingale central limit theorem, see Hall and Heyde (1980).
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[1] Berkes, I., L. Horváth, and P. Kokoszka (2003). “GARCH processes: structure and estimation.”

Bernoulli 9, 201–227.

[2] Bollerslev, T. (1986). “Generalized autoregressive conditional heteroskedasticity.” Journal of Econo-

metrics 31, 307–327.

[3] Bougerol, P. (1993). “Kalman filtering with random coefficients and contractions.” SIAM J. Control

Optim. 31, 942–959.

[4] Carrasco, M., and X. Chen (2002). “Mixing and moment properties of various GARCH and stochastic

volatility models.” Econometric Theory 18, 17–39.

19



[5] Christensen, B. J., C. M. Dahl, and E. M. Iglesias (2012). “Semiparametric inference in a GARCH-

in-Mean model.” Journal of Econometrics 167, 458–472.

[6] Conrad, C., and M. Karanasos (2014). “On the transmission of memory in GARCH-in-Mean models.”

Journal of Time Series Analysis, forthcoming.

[7] Conrad, C., and E. Mammen (2008). “Nonparametric regression on a generated covariate with

an application to semiparametric GARCH-in-Mean models.” Department of Economics, Discussion

Paper No. 473, University of Heidelberg.

[8] Engle, R. F., D. M. Lilien, and R. P. Robins (1987). “Estimating time varying risk premia in the

term structure.” Journal of Business and Economic Statistics 9, 345–359.
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