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Abstract:

The direct measurement of the gravitational acceleration of antimatter in the earth’s field,
which represents a test of the weak equivalence principle, is in the focus of several ongoing
experimental attempts. This thesis investigates tools and techniques known from the field
of atom optics that can be utilised for such a measurement with antihydrogen atoms as
envisioned by the AEgIS collaboration. A first experimental step is presented, in which a
deflection due to an electromagnetic force acting on antiprotons is measured with a moiré
deflectometer. This device, which can be described with classical particle trajectories, consists
of two gratings and a spatially resolving detector. Key elements of this measurement are the
use of an emulsion detector with high spatial resolution and an absolute reference technique
based on an interferometric fringe pattern of light, which is not deflected by forces. For
future realisations, a new detection and evaluation scheme to measure gravity based on a
three-grating system enclosed by a vertex-reconstructing detector is discussed. This allows
the use of a grating periodicity that is smaller than the resolution of the detector while
making efficient use of the particle flux. Smaller periodicities are favourable to increase the
inertial sensitivity of the measurement apparatus but require to take effects of diffraction
into account. To explore this near-field regime with antimatter, a Talbot-Lau interferometer
for antiprotons is proposed and its possible experimental implementation is discussed.

Zusammenfassung:

Die direkte Messung der Beschleunigung frei fallender Antimaterie, die einem Test des
schwachen Äquivalenzprinzips entspricht, ist das Ziel mehrerer sich im Aufbau befinden-
der Experimente. Die vorliegende Arbeit untersucht Instrumente und Methoden aus dem
Arbeitsgebiet der Atomoptik im Hinblick auf eine solche Messung mit Antiwasserstoff, wie
sie von der AEgIS Kollaboration beabsichtigt wird. In einem ersten experimentellen Schritt
wurde die Ablenkung von Antiprotonen durch eine elektromagnetische Kraft mit einem Moiré
Deflektometer gemessen. Dieses Gerät, welches mit klassischen Teilchenbahnen beschrieben
werden kann, besteht aus zwei Gittern und einem ortsaufgelösten Detektor. Entscheidende
Aspekte dieser Messung sind der verwendete hochauflösende Emulsionsdetektor und eine
absolute Referenzierungstechnik, die auf mit Interferometrie erzeugten Lichtstreifen beruht,
die durch Kräfte nicht verschoben werden. In zukünftigen Messungen könnte ein neues
Detektionsschema Verwendung finden, welches die Nutzung von Gittern ermöglicht, deren
Periodizität kleiner ist als die Ortsauflösung des verwendeten Detektors. Hierzu wird das
System um ein weiteres Gitter ergänzt und von einem Vertex rekonstruierenden Detektor
umgeben, um die zur Verfügung stehende Teilchenstatistik effizient auszunutzen. Die Ver-
wendung einer kleineren Gitterperiode birgt den Vorteil, dass hiermit die Empfindlichkeit
des Messinstruments bezüglich Beschleunigungen erhöht werden kann; erfordert jedoch, die
auftretenden Beugungseffekte zu berücksichtigen. Um diesen Nahfeldbereich mit Antimaterie
zu erforschen, wird die Möglichkeit diskutiert, ein Talbot-Lau Interferometer für Antiprotonen
zu realisieren.
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‘But in any event, it is in the hands of our generation to perform an experiment
to measure the gravitational acceleration of antimatter. Some day it will be done,
whether we do it or not. It will be done. If we do not do it, and the answer
eventually turns out to be what we expect, then future generations will look back
upon us and say it was a shame. But if the answer turns out to be a surprise,
then, if we do not do it, future generations will look back upon us and say we
were fools.’

M. M. Nieto et al. Theoretical Motivation for Gravitation Experiments on Ultra-
Low Energy Antiprotons and Antihydrogen. arXiv, 1994.
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2.6. Inertial Sensitivity of a Moiré Deflectometer or a Talbot-Lau Interferometer . 39

2.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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1. Introduction

The weak equivalence principle is a cornerstone of today’s understanding of gravity. Its
earliest formulation goes back to Galileo Galilei who noted

‘...veduto, dico, questo, cascai in opinione che se si levasse totalmente la resistenza
del mezzo, tutte le materie descenderebbero con eguali velocità.’ [1],

which translates to

‘Having observed this I came to the conclusion that, if one could totally remove
the resistance of the medium, all substances would fall at equal speeds.’ [2].

Newton pointed out that this universality of free fall is equivalent to the inertial mass be-
ing proportional to the gravitational mass [3]. Up until now the weak equivalence principle
(WEP) has been thoroughly tested with a wide variety of matter systems [4–7], however,
since Anderson’s discovery [8] of the positron, which was predicted by Dirac [9], one has
wondered if the weak equivalence principle also applies to this new kind of matter known
as antimatter. Many theoretical arguments [10–12] contradict the possibility of such a vio-
lation of the WEP, especially as in the framework of general relativity gravity is described
as a geometrical phenomenon and objects in free-fall simply follow straight lines in curved
space-time. Additionally, some experimental arguments [13–18] set tight constraints on the
gravitational acceleration of antimatter, which is often denoted ḡ. On the other side these
arguments are somehow indirect as they are based on assumptions and models. And the
knowledge of antimatter and gravity is known to be incomplete. Prominent examples are the
absence of larger quantities of antimatter in the universe, the missing unification of gravity
with the other fundamental forces and that visible matter only accounts for 4 % of the matter
content in the universe. These have led physicists to investigate new theories of gravity, often
involving additional hypothetical vector or scalar bosons [19–22]. To address this question
experimental physicists have tried to perform a direct measurement of the gravitational ac-
celeration of an antimatter system for nearly five decades. Whatever the outcome of such
an experiment would be, be it that antimatter falls as expected or not, the experiment will
be ‘A classic, one for the textbooks’ [23]. The early experiments [18,24,25] aiming at direct
measurements of ḡ used charged, elementary antimatter particles and were consequently
plagued with shielding problems, however, techniques of trapping, cooling, and manipulation
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1. Introduction

of charged antimatter particles have seen substantial progress in last two decades. This has
ultimately resulted in the synthesis of antihydrogen atoms [26,27] in 2002, which has opened
the door to directly measure the gravitational acceleration using this neutral antimatter
system. Several independent experimental [28–30] attempts are underway to investigate the
gravitational acceleration of antihydrogen although some experiments lay their focus on other
exotic atoms such as positronium [31] or muonium [32], which are also intriguing as these
represents purely leptonic systems.

Another field of physics, in which substantial progress has been achieved over the last
decades, is the field of atom optics, hence, the manipulation of uncharged matter. Many of
the early experiments of this field focused on demonstrating effects with atomic or molecu-
lar beams, which were already known from optics. Prominent examples are the diffraction
of atoms by a transmission grating [33], the double-slit experiment with atoms [34] and
atom interferometers in the far- [35] and near-field [36, 37] regime. All these experiments
have in common that they explored the wave character of matter, which was predicted by
de Broglie. This distinguishes them from devices working the classical regime such as the
moiré deflectometer [38]. This limit between classical and wave-mechanical regime is still
being pushed, for example by experiments performing interferometry with increasingly heavy
molecules [39, 40]. On the other side, the experimental tools and techniques of atom optics
have developed from these early proof-of-principle experiments to reliable instruments of
metrology with unprecedented sensitivity. There is an increasing number of experiments that
use tools from atom optics to explore fundamental questions outside the field of atom optics
itself. Paradigm examples are Raman interferometers based on atomic fountains [41–46],
which – unsurprisingly – are being used to test the weak equivalence principle with matter.

The AEgIS (Antimatter Experiment: gravity, Interferometry, Spectroscopy) collaboration
envisions the use of a moiré deflectometer, which is a classical tool from atom optics, to
directly measure the gravitational acceleration of antihydrogen. This would expand the range
of systems for which the weak equivalence principle has been directly tested to neutral
antimatter.

1.1. Contents of this Thesis

This thesis focuses on the moiré deflectometer and its wave-mechanical counterpart, the
Talbot-Lau interferometer for the use within the AEgIS experiment. The chapters are or-
ganised as follows: The remaining part of the introduction gives a brief overview on two
existing, indirect measurements of the gravitational acceleration of antimatter. This is com-
plemented with the description of planned experiments at CERN, which aim to perform
a direct measurement – one of which is the AEgIS experiment. The second chapter estab-
lishes the required theoretical basis by reviewing the atom optical tools in question with the
emphasis on the limit between the classical and the wave regime. This includes a general
discussion on the inertial sensitivity of such devices and their critical dependence on the
temperature of the produced antihydrogen. Chapter 3 reports on the results of a moiré de-
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1.2. Indirect Experimental Limits on the Gravitational Acceleration of Antimatter

flectometer for antiprotons, which is simultaneously a Talbot-Lau interferometer for visible
light. The approach followed in this experiment demonstrates how the sign of a force can be
determined without having time-of-flight information on single events. Chapter 4 describes
a new detection scheme including an adequate evaluation based on an unbinned maximum
likelihood estimator. This approach does not require a spatially resolving detector as foreseen
in the AEgIS proposal and opens the possibility to increase the experiment’s sensitivity by
using gratings with a smaller periodicity and pushing the device into the wave regime. Such
Talbot-Lau interferometer, here for the use with antiprotons, is proposed in chapter 5 to
examine the feasibility of such a device in the next experimental step.

1.2. Indirect Experimental Limits on the Gravitational
Acceleration of Antimatter

It is important to be aware that indirect measurements exist, which set limits on a possible
violation of the weak equivalence principle for antimatter. These limits are lower than the
precision of planned experiments. Two of these arguments are reviewed in the following.

1.2.1. Trapped Protons and Antiprotons as Reshifted (Anti-) Clocks

Precise measurements have been reported on the ratio of the inertial massmi of the proton and
the antiproton based on comparison of their cyclotron frequencies ω = eB/mi in the magnetic
field of a Penning trap [47–49]. These represents sensitive tests of the charge, parity, and time
symmetry (CPT). Under the assumption that CPT is conserved, one can alternatively argue
that measurements of this type represent a test on the weak equivalence principle. Hughes
et al. [13] express this argument as follows. The trapped particles or antiparticles represent
local clocks or local anticlocks, respectively. If the clocks are placed in a gravitational field,
they are subject to gravitational redshift. If antiprotons couple differently to the gravitational
field, whereby α in ḡ = α g deviates from unity, the two clocks should experience a different
gravitational redshift and therefore exhibit different frequencies. The frequency difference
that one should observe is derived [13] to be

ω̄C − ωC
ωC

= 3(α− 1)
U

c2
, (1.1)

where U represents an absolute gravitational potential. Consequently, the observation of
a frequency difference would mean that one is no longer free to choose the offset of the
gravitational potential as known from Newtonian physics. This is inevitable when the weak
equivalence principle is violated. The most convenient choice is then to set the zero of this
absolute field to infinity, so that the frequency difference vanishes in the absence of gravity.
For the absolute potential, one can use the value of our local supercluster of |U/c2| ≈ 3 · 10−5.
Hughes et al. [13] concluded from the precision of the frequency ratio of 4 · 10−8 reported
in [48], that |α− 1| < 5 · 10−4. Consequently, the gravitational acceleration of antiprotons
cannot differ by more than 5 · 10−4. One should note, however, that the precision of the
measurements on the inertial mass ratio has meanwhile improved [49] by two orders of
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1. Introduction

magnitude, which lowers this limit further. Even though this measurement is commonly
considered a strong indirect measurement, it has also been challenged. For example Fischler
et al. [20] state ‘That is, in order to use the absolute potential based arguments to interpret
these results as limiting possible antimatter asymmetry, one must logically start with the
premise that General Relativity holds in its particulars, and thus that antimatter asymmetry
cannot be present a priori.’.

1.2.2. Neutral Kaons as a Weak Equivalent Test

If the antiproton experiences a different gravitational acceleration as the proton, this should
translate to the quark level, meaning that there is a different gravitational coupling of quarks
and antiquarks. A possible deviation should therefore also be observable in mesons such as
the kaon [14]. A test of the weak equivalence principle based on the decay of K0 and K̄0

into π+π− at CPLEAR is reported by A. Apostolakis et al. [15]. Neutral kaons are an
interesting system, as their states mix through the weak interaction, which is described by
the mass matrix

M =

(
MK0 ∆m/2

∆m/2 MK0

)
, (1.2)

where ∆m = mL −mS denotes the mass difference between the short (S) and long (L) living
state. As the neutral kaon system violates the CP symmetry, these states are not pure, but
superpositions of the CP eigenstates K1 =

(
|K0〉 − |K̄0〉

)
/
√

2 and K2 =
(
|K0〉+ |K̄0〉

)
/
√

2:

|K0
S〉 =

1√
1 + |ε|2

(
|K0

1 〉+ ε|K0
2 〉
)

(1.3)

|K0
L〉 =

1√
1 + |ε|2

(
|K0

2 〉+ ε|K0
1 〉
)
. (1.4)

The parameter ε represents the magnitude of the CP violation. If there are different interac-
tions of K0 and K̄0 with the gravitational field1, denoted g and ḡ, the effective mass difference
of K0 − K̄0 is then given by [50]:

δmeff = MK0(g − ḡ)
U

c2

(
1 +

v2

c2

)
γ2e−r/r2 (1.5)

where v is the speed of the Kaon, γ = 1/
√

1− v2/c2 and r2 is the range of the interaction.
If the gravitational potential U and thus the effective mass difference δmeff varies, the time
evolution of K0 and K̄0 would change differently causing a variation of the magnitude of
the CP violation. The analysis is based on data accumulated by CPLEAR over a period of
three years. It looks for annual, monthly and diurnal modulations in the experimental observ-
ables |η+−| and φ+− of the CP violation, but no modulation is observed. Using the known
variations of the gravitational potential caused by the relative motion of earth, moon and sun

1Assuming a tensor gravitational interaction. The effective mass difference for vector and scalar interactions
can be found in [15].
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1.3. Direct Measurements of the Gravitational Acceleration of Antihydrogen

one can determine limits for tensor, vector and scalar mediated gravitational interactions. The
resulting upper limits are given in table 1.1 and are much lower than the envisioned precision
of the proposed direct measurements on antihydrogen. On the other hand one should note
that the argument requires exact CPT and that kaons are not baryons.

Table 1.1.: Limits on |g − ḡ| reported in [15] for spin 0, 1 and 2 interactions.

variation of potential spin 0 spin 1 spin 2

earth 6.4 · 10−5 4.1 · 10−5 1.7 · 10−5

moon 1.8 · 10−4 7.4 · 10−5 4.8 · 10−5

sun 6.5 · 10−9 4.3 · 10−9 1.8 · 10−9

1.3. Direct Measurements of the Gravitational Acceleration of
Antihydrogen

J. Walz and T. W. Hänsch made a descriptive argument [51] why directly measuring the
gravitational acceleration of antihydrogen represents such a formidable experimental challenge.
The main difficulty is not the production of antihydrogen, which is certainly difficult enough, it
is the production of antihydrogen with a sufficiently low temperature. If one wants to perform
a direct experiment, meaning an experiment which is comparable to a Galilei-like free fall
experiment [1] or Newton’s omnipresent falling apple [3], one needs to know the antihydrogen’s
start condition in space and velocity. Assuming a production of an ensemble of antihydrogen
atoms with temperature T , of which the velocities are Maxwell-Boltzmann distributed, the
spread of the vertical velocities of such a cloud is given by σv =

√
kbT/m. Antihydrogen

atoms with this velocity can climb in the earth’s gravitational field (presuming ḡ = g) to a
height of h = kbT/2mg. With a glance at table 1.2, which lists these characteristic measures
for several antihydrogen temperatures, it becomes apparent that for temperatures on the
level of helium’s boiling point ∼ 4 K, the attained height is much larger than a reasonable
experimental drop height. Each experiment at CERN’s antiproton decelerator (AD) that

Table 1.2.: Spread of the vertical velocity σv =
√
kbT/m and the climbing-

height h = kbT/2mg in earth’s gravitational field of an antihydrogen cloud with temper-
ature T .

TH̄ 10 K 1 K 100 mK 10 mK 1 mK 100 µK 10 µK

σv 280 m s−1 88 m s−1 28 m s−1 8.8 m s−1 2.8 m s−1 0.88 m s−1 0.09 m s−1

h 4000 m 400 m 40 m 4 m 400 mm 40 mm 4 mm

aims to measure the gravitational acceleration of antihydrogen tackles this difficulty from a
different angle.
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1. Introduction

1.3.1. ALPHA Experiment

The ALPHA collaboration reported on a first experiment [52] using a catch and release
procedure. Antihydrogen atoms are synthesised in a nested Penning-Malmberg trap by au-
toreasonently exciting antiprotons into a cloud of positrons. A magnetic trap [53,54] captures
the low energy tail of ∼ 6000 antihydrogen atoms that are produced per cycle. The trap’s
potential depth corresponds to a temperature of ∼ 540 mK, which is much lower than the
mean temperature of the produced atoms and results on average in one atom being trapped
per trial. The atoms are kept in the trap for 400 ms to ensure their decay into the ground state.
The magnetic field of the trap is then lowered to release the atoms. The atoms subsequently
leave the trap isotropically to annihilate on the trap walls, the vertices of which are identified
by reconstructing the annihilation products with a silicon strip tracking detector. The flight
distance from the centre of the trap to the trap wall is about 20 mm, which is by orders of
magnitude shorter than the atom’s climbing-height at that temperature. Consequently, the
number of atoms annihilating on the top of the trap is comparable to the amount annihilating
on the bottom of the trap. But the comparison of the balance of the two, for which they
employ a statistical model matching their experimental configuration, allows an experimental
limit to be set. The conclusion of this experimental run is that the absolute value of the
gravitational acceleration of antihydrogen cannot be larger than a hundred times g. Possible
future improvements, such as direct laser cooling of the atoms in the trap might enable the
experiment to determine the sign of g. Nevertheless, one should keep mind that direct laser
cooling of hydrogen is limited to 2 mK due to the Doppler limit [51].

1.3.2. GBAR Experiment

A collaboration named GBAR, which has been commissioned by CERN, follows an ap-
proach [29,51] aiming at even lower temperatures. It is based on the synthesis of antihydro-
gen ions, thus an antiproton with two positrons. Being positively charged, it can be trapped
in a electromagnetic trap such as a Paul trap. The hydrogen ion possesses a single bound
state, which can be assumed to be true for the antihydrogen ion. This means, that the ion
cannot be directly laser cooled. As it is positively charged, it can simultaneously be trapped
with positive ions such as beryllium ions, which are known to exhibit strong laser cooling
transitions. Therefore, they plan to sympathetically cool antihydrogen ions with a cloud of
laser-cooled positive ions to reach temperatures as low as ∼ 10 µK. After a complex produc-
tion and cooling scheme, the envisioned gravity measurement itself is relatively simple. The
ultra-cold antihydrogen ion, still trapped in the electromagnetic trap, is neutralised with a
laser that detaches the ion’s additional positron. The charged ion becomes a neutral atom
and is no longer confined by the electromagnetic fields of the trap. Thus, it falls freely in
earth’s gravitational field to annihilate on a detector placed 100 mm below the trap. In this
measurement scheme, the starting and arrival time are well defined, as the fall begins with
the laser-induced photo-detachment of the positron and ends with the annihilation on the
detector. The GBAR collaboration aims to measure ḡ on a percent level with a few weeks of
measurement time.
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1.3. Direct Measurements of the Gravitational Acceleration of Antihydrogen

1.3.3. AEgIS Experiment

There are numerous examples of experiments in the field of atom optics that resolve the
deflection of an atomic or molecular beam due to gravitational acceleration. These devices are
either interferometers [55,56] or are working in the classical regime like the moiré deflectome-
ter [38]. The original antihydrogen production scheme [26], which with some variation is still
used by the ALPHA experiment, does not allow to direct the atoms to form a beam towards
a gravity measuring device. Additionally, it is not possible to measure the time-of-flight of
the atoms as the production goes on for several seconds. The initial motivation of the AEgIS
experiment was to develop an antihydrogen production scheme that allows to form a pulsed
beam [28,57,58]. The scheme that AEgIS collaboration pursues is depicted in figure 1.1 and
is based on the charge exchange reaction

p̄+ Ps∗ = H̄
∗

+ e− (1.6)

of antiprotons and Rydberg positronium, i.e. a highly excited atom consisting of an electron
and a positron, to form Rydberg antihydrogen. The individual steps of the scheme work as

positronium

conversion

laser

excitation

Starck

accelerationantiproton trap

charge exchange:

Antiproton

decelerator

Na22 source

antihydrogen beam towards

a gravity measuring device

Figure 1.1.: Pulsed antihydrogen beam production as envisioned by the AEgIS collabora-
tion [28]. The antiprotons are delivered by CERN’s antiproton decelerator, trapped and
cooled in several steps. The positrons are collected from radioactive sodium. In order to
shape a beam, the synthesis is based on a charge exchange process of antiproton and
Rydberg positronium. The large dipole moment of the excited antihydrogen atoms can
be used to accelerate the atoms to form a beam towards the gravity measuring device.

follows (see figure 1.1): The antiprotons are delivered by CERN’s antiproton decelerator,
which provides every 90 s a bunch of ∼ 107 antiprotons with a mean energy of 5.3 MeV. A
fraction of the antiprotons are captured in an electromagnetic trap of the Penning style and
subsequently cooled to 100 mK. The decay of the radioactive sodium isotope Na22 provides
the positrons, which are accumulated and then implanted into a nanoporous target [59]. A
fraction of the positrons thermalise with this target, forms positronium atoms with electrons
from the surface of the target and subsequently escape the nanoporous material. The bunch
of positronium atoms is then excited to a Rydberg state via a two-step laser excitation [60]
before it crosses the trap with the cold antiprotons to form antihydrogen through the charge
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1. Introduction

exchange reaction given in equation 1.6. As the positronium is in an excited state, the
synthesised antihydrogen is in an excited state as well as it inherits the inner energy of the
positronium. Hence, the inner state of the antihydrogen atom can, at least to some extent,
be controlled by the laser excitation of the positronium. When antihydrogen is formed, it is
no longer confined by the trap, as the Penning trap only confines charged particles. But the
atoms are in an excited state, which results in a large dipole moment. This can then be used
to accelerate the atoms with electric field gradients, a process called Stark accleration [61–63],
to form a beam of antihydrogen for a gravity measuring device.

This brief summary shows that the envisioned antihydrogen production involves very inter-
esting physics from different fields such as particle physics, plasma physics, electromagnetic
traps, cooling, atomic physics, laser physics and particle detectors. It is important to note
that many experimental elements of this scheme have been individually shown to work, but
the formation of antihydrogen atoms through this charge-exchange reaction remains an ex-
perimental challenge. Details on many aspect of the production can be found in the given
references. For the work presented here, only two elements of this scheme are of special inter-
est. The first one is the temperature of the antiprotons. The second one is the acceleration
of the antihydrogen atoms. These parameters determine the properties of the antihydrogen
beam and are discussed in detail at the end of following chapter, which focuses on tools of
atom optics.
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There are known knowns; there are things we know we
know. We also know there are known unknowns; that
is to say we know there are some things we do not
know. But there are also unknown unknowns – there
are things we don’t know we don’t know.

(Donald Rumsfeld)

2. From Moiré Deflectometry to Talbot-Lau
Interferometry

The AEgIS experiment envisions to measure the gravitational acceleration of antihydrogen
with a tool from atom optics. This so-called moiré deflectometer and its wave-mechanical
counterpart, the Talbot-Lau interferometer are well established techniques. A wide range
of theoretical [64–67] and experimental work [36–38,55,56,68–79] has been reported in this
field. This chapter reviews theoretical descriptions of these devices and draws conclusions
that are of importance for the work with antimatter. The moiré deflectometer and the
Talbot-Lau interferometer are closely related, therefore it is convenient to review both of
them simultaneously. However, they exhibit distinct features that cannot be ignored and
are discussed in detail. Rather than performing a Monte Carlo simulation of a specific
experimental configuration, this chapter focuses on analytic descriptions in order to keep the
discussion as general as possible. The approach followed is to go from a simplified to the more
general description. Therefore, each new aspect is briefly introduced and then reviewed in
more detail. The theoretical framework described here serves as a basis for work described in
the following chapters, such as an experiment to measure forces on antiprotons with a moiré
deflectometer (chapter 3) and possible future realisations of interferometers for antimatter
(chapter 5).

2.1. Moiré Deflectometer

The measurement principle of the device known as a moiré1 deflectometer [38] can be mo-
tivated by examining the simplified situation depicted in figure 2.1a. Two apertures, each
consisting of an opaque material with a single slit, are placed into the path of a divergent
beam of particles. The two slits restrict the particle beam to a narrow trajectory; the rest of
the beam is stopped by either the first or the second aperture. The particles that pass both
slits hit a detector with spatial resolution. In the absence of any force the particles perform
a uniform linear motion (grey lines). If the particles are subject to a force F = ma, they
follow parabolic trajectories (blue) and thus the position of impact on the detector is shifted
by ∆y with respect to the undeflected beam. This shift can be determined from the vertical

1The word moiré does not denote a person’s name and is therefore written in lower case.
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2. From Moiré Deflectometry to Talbot-Lau Interferometry
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Figure 2.1.: (a) Two single slits define a possible trajectory. The particles of an uncol-
limated beam that pass both slits hit a spatially resolving detector. The position of
the particles’ impact depends on the force that acts upon them and is given by ∆y.
(b) The moiré deflectometer represents the generalisation of this concept. Gratings with
periodicity d replace the single slits and allow an increased throughput. The result is a
fringe pattern with the periodicity of the gratings.

velocity vy at the moment of the particle’s passage of the second slit and the acceleration
between the second slit and the detector:

∆y = vyτ +
1

2
aτ2 =

1

2
aτ2 +

1

2
aτ2 = aτ2 (2.1)

The time of flight is defined as τ = L/vz and the vertical velocity vy at the second slit results
from the acceleration beginning on the top of the parabola, thus vy = aτ/2. This experi-
mental approach is interesting as it is conceptually equivalent to Newton’s ‘apple’ falling
from a tree and represents a model-free measurement. The major drawback is the dramatic
particle loss caused by the single slits. The use of a larger number of slits N – i.e. a grating –
overcomes this limitation, as the number of possible trajectories scales with N2, as illustrated
in figure 2.1b. If the grating separation equals the distance between the second grating and
the detector, the trajectories refocus in the plane of the detector. Instead of a single spot
as in the case of single slits, one observes a fringe pattern that has the same periodicity
as the gratings. The position of the fringe pattern is still described by equation 2.1. This
configuration is known as a moiré deflectometer, which can be seen as the generalisation of
the single slit configuration. The deflection ∆y depends on the particles’ time-of-flight, thus
the moiré deflectometer is a dispersive device. In an experiment one can either measure the
total shift ∆y, for which the position of the undeflected fringe pattern must be known, or one
makes use of the dispersion and measures the fringe position as a function of the time-of-flight.
The moiré deflectometer has two main advantages. First of all, it is universal, as one can use
it for any particle species one can build a detector for. Secondly, its use does not require a
collimated beam, so it suits the divergent antihydrogen beam the AEgIS experiment intends
to create.

A pivotal question does, however, remain: is it adequate to describe the motion of the
particles as classical trajectories or must their wave-like behaviour also be accounted for? This
fundamental question will be of central importance to the work presented and is reviewed on
different levels throughout this elaboration. A first estimation [38] of this limit between the
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2.2. Talbot Effect

classical and the wave regime can be derived from the grating equation,

d sin(φn) = nλ , (2.2)

specifying the angle φn of the nth diffraction order of a plane wave with wavelength λ,
which impinges on a grating with periodicity d. The spatial separation of neighbouring
diffraction orders after the distance L when the diffracted beams arrive on the second grating
is approximately

L
λ

d
= L sin(φ1) ≈ Lφ1 � d . (2.3)

If this separation is much smaller than the grating period d, one can assume, that the wave-
like character is negligible. Thus, one can describe the experiment with classical paths if the
condition

L� d2

λ
(2.4)

is fulfilled. It is interesting to note that the characteristic length LT = d2/λ is known as the
Talbot length, the relevance of which is further examined in the following section.

2.2. Talbot Effect

In 1836, H. F. Talbot was the first [73] to observe an effect that was later named after him,
with a grating fabricated by Fraunhofer. He illuminated this grating with a ray of sunlight
coming from a point-like source and studied the grating with a lens2. He was surprised to
observe coloured fringes, which were parallel to the grating’s slits. When he increased the
distance between grating and lens, the fringes’ colour changed from red over green to blue
and than back to red. He increased the distance up to a foot and still observed fringes of high
visibility, even though the grating was far outside the focal point of the grating. An analytical
description for this effect was not found until Lord Rayleigh [74] repeated the experiment
in 1881, but Talbot already correctly suspected that the maximal distance at which one can
observe fringes depends on the spatial extent of the light source and thus how close the light
source comes to a mathematical point source. Figure 2.2a illustrates an example of the Talbot
effect. A plane wave with wavelength λ impinges on a single grating with periodicity d. The
intensity field behind the grating depicts a characteristic structure that repeats itself and is
known as a ‘Talbot carpet’3. At integer multiples of the so-called Talbot length

LT =
d2

λ
(2.5)

one observes a self-image or a ‘rephasing’ of the grating. A detector with sufficient spatial
resolution placed on one of these distinct distances records a fringe pattern with the periodicity

2The author strongly discourage the reader from looking into sunlight with a magnifying glass.
3The web page of the journal ‘nature physics’ uses a blue Talbot carpet as a background of their title line.
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2. From Moiré Deflectometry to Talbot-Lau Interferometry
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Figure 2.2.: (a) Illumination of a periodic structure such as a grating with plane waves
leads to the Talbot effect, which denotes that the self-image of the grating rephases at
integer multiple of a distinct length – called Talbot length LT = d2/λ. A detector placed
on one of these self-images records a fringe pattern with high visibility. (b) Coherent
illumination is a crucial requirement for the observation of the Talbot effect. A diffuse
light source causes the so-called ‘Talbot carpet’ to smear out.

of the gratings. Between these full self-images one notices patterns with higher periodicities.
This fractional Talbot effect has been subject to numerous publications and is connected
to interesting fields such as number theory and fractals [67], but is of limited relevance for
the work presented and consequently omitted in the following. It is important to realise
that coherent illumination is a crucial requirement to observe self-images. The use of a
monochromatic but diffuse light source as shown in figure 2.2b does not lead to structure in
the intensity field.

The Talbot effect is a well-established phenomenon. Several approaches exist [64, 69, 71,
76, 77] to derive the effect and it has been experimentally observed with light [76, 77], elec-
trons [78], atoms [36,37,79], plasmons [80–82] and heavy molecules [36,56,83]. The following
derivation [71, 84, 85] is based on the plane-wave decomposition also known as the angular
spectrum. It provides intuitive access to key features of the Talbot effect and efficient means
to compute intensity fields as shown in figure 2.2. This approach allows to compute the field
u at an arbitrary position z > 0 if the field at the position z = 0, where the grating is placed,
is known. The Fourier transformation of a given scalar field u(y, z = 0) is

ũ(ky) = Fy{u(y, z = 0)} =

∫
dy u(y, z = 0)e−ikyy , (2.6)

which is also known as the angular spectrum. The reverse Fourier transformation is given by

u(y, z = 0) = F−1
ky
{ũ(ky)} =

1

2π

∫
dky ũ(ky)e

ikyy (2.7)

and results again in the field at z = 0. Thus the field in the plane of the grating is a
superposition of plane waves into which it can be decomposed. Each plane wave propagates
freely in space. Because of the dispersion relation ~k2 = k2 = (2π/λ)2, the components
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2.2. Talbot Effect

of k = [ky, kz] are not independent but connected by

kz = ±

√(
2π

λ

)2

− k2
y , (2.8)

where the positive kz describe the waves propagating in the positive z direction. Each wave
accumulates on the distance between the grating and the observational plane z an additional
phase of eikzz. With the use of equation 2.8, the field in this plane follows as

u(y, z) =
1

2π

∫
dky ũ(ky)e

ikzzeikyy

=
1

2π

∫
dky ũ(ky)e

iz
√

(2π/λ)2−k2yeikyy . (2.9)

If one introduces the propagator Pky(z) := exp(iz
√

(2π/λ)2 − k2
y), this can be written as

u(y, z) = F−1
ky
{Fy{u(y, 0)} · Pky(z)} , (2.10)

which is known as the plane-wave decomposition (pwd). Note that no approximation was
required so far, so that the pwd solves the wave equation ∆u = −k2u:

∆u =

∫
dky ũ(ky)∆e

ikyy+ikzz =
(
(iky)

2 + (ikz)
2
)
u = −k2u . (2.11)

Depicted intensity fields throughout this work, such as figure 2.2, are computed by numerically
evaluating equation 2.10. Diffuse illuminations are simulated by summation of the intensity
fields resulting from plane waves of varying incident angle θ

I =
∑
θ

Iθ with Iθ = u∗θuθ . (2.12)

The plane wave decomposition has the advantage that one can compute fields resulting from
the illumination of finite gratings – which is of importance later on. For now, the introduction
of a grating of infinite length provides an analytic form of the Talbot effect. Such an infinitely
long grating with grating vector kd = 2π/d can be represented by its Fourier series

f(y) =
∞∑

n=∞
cn e

inkdy =
∞∑

n=∞
cn e

ikny , (2.13)

with kn = n · kd and the Fourier coefficients

cn =
1

d

d
2∫

d
2

dy f(y) e−ikny . (2.14)
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2. From Moiré Deflectometry to Talbot-Lau Interferometry

The grating is assumed to be infinitely thin4 and placed at z = 0. If a plane wave u(y, z) =
ei(kyy+kzz) impinges on the grating from one side (denoted 0−), the field on the other side of
the grating (denoted 0+) follows as

u(y, 0+) = u(y, 0−) · f(y) =

∞∑
n=∞

cn e
i(ky+kn)y . (2.15)

The field behind the grating consists of a series of plane waves with wave vectors k′n = ky+kn
corresponding to different angles of propagation. These are the well-known diffraction angles
that were given by the grating equation

d (sin(φn)− sin(φ)) = nλ , (2.16)

where φ denotes the incident angle of the incoming plane wave. Beginning with the field behind
the plane of the grating, one can determine the propagation in two steps using the plane
wave decomposition. Firstly, with the use of

∫
dy exp(iky) = δ(y), the Fourier transformation

of the field behind the grating is

ũ(ky) =

∫
dy u(y, 0+)e−ikyy =

∞∑
n=∞

cn

∫
dy ei(k

′
ny−kyy)

=

∞∑
n=∞

cn δ
(
k′n − ky

)
, (2.17)

which is then multiplied with the propagator Pky(z) = iz
√
k2 − k2

y followed by the reverse

Fourier transformation

u(y, z) =
1

2π

∫
dky ũ(ky) e

iz
√
k2−k2yeikyy

=
1

2π

∞∑
n=∞

cn

∫
dky δ

(
k′n − ky

)
eiz
√
k2−k2yeikyy

=

∞∑
n=∞

cn e
iz
√
k2−k′2n eik

′
ny , (2.18)

where the last step uses the convention
∫

dk δ(k) = 2π. The square root in the exponent is
developed to first order to

√
k2 − k′2n ≈ k −

k′2n
2k
± . . . , (2.19)

which is known as the paraxial approximation. A plane wave impinging perpendicular onto

4Note that the grating causes a discontinuity in the field.
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2.3. Talbot-Lau Interferometry

the grating corresponds to ky = 0, which leads to k′n = kn = nkd. The field follows as

u(y, z) ≈
∞∑

n=∞
cne

ikze−iπ n
2 λ
d2
zeikny

= eikz
∞∑

n=∞
cne

iknye
−iπ n

2

LT
z
, (2.20)

where the Talbot length (equation 2.5) LT = d2/λ is inserted in the last step. This re-
sult is notable as it only differs from the field behind the grating by the additional phase

factors exp(ikz) and exp
(
−iπ n2

LT
z
)

, of which the former can be neglected as only the inten-

sity I = u∗u is experimentally accessible. It can be directly seen that, if the distance z equals
an even integer of the Talbot length, the last phase factor becomes 1, leading to

u(y, z = 2mLT) ≈ u(y, z = 0) for m ∈ N . (2.21)

At these distinct positions one observes the same intensity field as directly behind the grating,
which is the reason why the observed patterns are called self-images. In literature, one therefore
often finds in literature an alternative definition of the Talbot length, L′T = 2d2/λ. Figure 2.2
depicts additional self-images, which are shifted by half a grating period, at distances which
are uneven integer multiples of the Talbot length LT. This can be seen following

exp(−iπ n
2

LT
z) = exp(−2πi n2m) · exp(−iπ n2) = 1 · exp(−iπ n) , (2.22)

as an uneven number squared results in an uneven number. This leads to

u(y, z = mLT) ≈
∞∑

n=∞
cne

iknye−iπ n =
∞∑

n=∞
cne

i( 2π
d
ny−πn)

=
∞∑

n=∞
cne

(ikn(y−d/2)) = u(y − d/2, z = 0) . (2.23)

2.3. Talbot-Lau Interferometry

The Talbot effect described in the previous section requires coherent illumination such as
plane waves. Ernst Lau described [75] in 1948 how a similar effect can be observed with
a diffuse wave source using an additional grating. His argument is illustrated in figure 2.3,
which shows a close-up of two gratings with periodicity d that are separated by the distance L.
The red lines represent adjacent paths of which the common origin is a single slit of the first
grating. One looks for the grating separation L for which the phase difference between the
neighbouring slits B and D is equal to one wavelength λ. The black curve identifies points of
identical phase. The tangent in point C divides BD into two equal parts for a small angle α,
from which follows that BE = 2λ. The angle ^BDE is equal to α. With tan(α) = d/L and
sin(α) = 2λ/d follows for a small angle α

d

L
=

2λ

d
→ L =

d2

2λ
=
LT

2
. (2.24)
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2. From Moiré Deflectometry to Talbot-Lau Interferometry

1. grating 2. grating

Figure 2.3.: Neighbouring paths in a Talbot-Lau interferometer. Following the argument
of Ernst Lau [75], the resulting phase difference between neighbouring slits of the second
grating equals the wavelength λ if the grating separation L corresponds to the half Talbot
length. The second grating seems to be illuminated by a plane wave and the intensity
field behind the second gratings is similar to the one observed in the Talbot effect.

This corresponds to a half Talbot length. In this configuration, the phase difference between
neighbouring slits of the second grating corresponds to a full wavelength. Consequently, the
second grating seems to be illuminated by a plane wave, which leads to a result behind the
second grating that is comparable to the case where a single grating is illuminated with a
plane wave. It is therefore the first grating that generates the spatial coherence. The argument
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Figure 2.4.: (a) A Talbot-Lau interferometer requires a second grating. The distance
between the two gratings and between the second grating and the observational plane
equals an integer multiple of the Talbot length. For plane waves one observes the same
Talbot carpet but in contrast to the simple Talbot effect, the fringe pattern observed on
the detector remains when using a diffuse illumination as shown in (b). The reason is the
spatial coherence generated by the first grating. For better perceptibility, the intensity of
the light field between second grating and the detector is divided by the open fraction η
to compensate for the intensity loss at the passage of the second grating.

of Lau provides an intuitive explanation of how near-field interferometry, such as the Talbot
effect, can be realised with uncollimated sources. This is of special interest when working with
matter waves, where Talbot-Lau interferometers make efficient use of uncollimated sources.
In a configuration commonly used in many experiments the two gratings and the detector
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2.4. Wigner Function and Classic Phase Space Representation

are equidistant and the separation corresponds to an integer multiple of the Talbot length:

L1 = L2 = nLT for n ∈ N (2.25)

Figure 2.4 depicts an example of a Talbot-Lau interferometer where the grating separation
is set to twice the Talbot length. For an illumination with plane waves as depicted in (a), the
intensity field is identical to the simple Talbot effect. If illuminated with a diffuse wave source
as shown in (b), the majority of the field’s features vanish. But in contrast to the simple
Talbot effect (compare to figure 2.2), a fringe pattern of high visibility remains detectable in
the observational plane. The following section provides a detailed analytical description of
Talbot-Lau interferometry using the Wigner description of a stationary beam. Furthermore
it reveals a direct connection to moiré deflectometry from which two important conclusions
can be drawn.

2.4. Wigner Function and Classic Phase Space Representation

Talbot-Lau interferometry is a well-established field. A variety of approaches describe this
near-field interferometer in great detail [65,66,69,71,73,75–77]. This section closely follows
a derivation outlined by Hornberger et al. [64], which uses the Wigner representation [86].
Furthermore, the moiré deflectometer is revised in the analogous representation in classic
phase space in section 2.4.2. The similarity of these formal approaches allows a direct com-
parison between the Talbot-Lau interferometer and the moiré deflectometer. The results of
these sections are simple expressions for the visibility and the phase of the signal of these
two types of devices.

2.4.1. Talbot-Lau Interferometer in Wigner Representation

The overall experimental geometry is maintained and corresponds to the one described
in the previous sections. The particles of a beam propagate in positive z direction with
momentum pz, which is assumed to be much larger than the transversal momenta. The
consequence of this assumption is that the longitudinal and the transverse component of
the wave function can be separated. ψ0(r) denotes the transverse component of the initial
state, so r = (x, y) are two-dimensional coordinates that lie in the plane of the gratings.
The Wigner function is a quasiprobability distribution. It is comparable to a probability
distribution f(r,p) of a classical system described in phase space, but does not fulfil all its
properties due to Heisenberg’s uncertainty principle [87], which limits to what extent one can
simultaneously measure a particle’s position r and momentum p. The Wigner function [86]
is defined as

w(r,p) =
1

2π~

∫
d∆ e

ip∆
~ ρ

(
r− ∆

2
, r +

∆

2

)
(2.26)
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2. From Moiré Deflectometry to Talbot-Lau Interferometry

and represents the Fourier transformation of the density matrix5

ρ(r, r′) =

∫
dµ g(µ)ψµ(r)ψ∗µ(r′) , (2.27)

where ∆ = r−r′ denotes the so called two-point separation. One requires two transformations,
which are alternately applied to the Wigner function to determine the signal at the end of
the interferometer. The first step is the free evolution of the Wigner function w(r,p) as
it propagates the distance L from one grating to the next one. The other transformation
describes the changes that occur to the Wigner function at the passage of a grating. The
derivation is structured as follows: First, the free evolution and the passage through a grating
are examined. These transformations are then applied to the beam as it propagates through
the interferometer. With explicit expressions for the gratings, one can finally derive a formula
for the signal of such a device.

Free Evolution of the Wigner Function

With the free evolution of the state [64]

ψ(r) =
pz

2πi ~L
e
ipzL/~

∫
dr0 exp

(
i
pz
~
|r− r0|2

2L

)
ψ0(r0) +O

( r

L2

)
(2.28)

the density matrix evolves like

ρ(r, r′) =

∫
dµ g(µ)ψµ(r)ψ∗µ(r′)

=
( pz

2π ~L

)2
∫

dµdr0 dr′0 g(µ) exp

(
i
pz
~
|r− r0|2

2L

)
ψ0(r0)·

exp

(
−ipz

~
|r′ − r′0|2

2L

)
ψ∗0(r′0)

=
( pz

2π ~L

)2
∫

dr0 dr′0 exp

(
i
pz
~
|r− r0|2 − |r′ − r′0|2

2L

)∫
dµ g(µ)ψ0(r0)ψ∗0(r′0)

=
( pz

2π ~L

)2
∫

dr0 dr′0 exp

(
i
pz
~
|r− r0|2 − |r′ − r′0|2

2L

)
ρ0(r0, r

′
0) . (2.29)

This is used [64] to determine the free evolution of the Wigner function after the distance L

wL(r,p) =
1

(2π~)2

p2
z

(2π~)2L2

∫
d∆e

ip ∆
~

∫
dr0r

′
0 exp

(
i
pz
~

∣∣r− ∆
2 − r0

∣∣2 − ∣∣r− ∆
2 − r′0

∣∣2
2L

)

=
1

(2π~)2

∫
d∆e

ip ∆
~ ρ0

(
r− L

pz
p, r− L

pz
p +

∆

2

)
= w0

(
r− L

pz
p,p

)
. (2.30)

The important result here is that in the Wigner representation the free evolution becomes
a simple expression. The propagation of the distance L causes a position shift of L

pz
p in the

Wigner function.

5Note that
∫

dµ g(µ) = 1.
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Wigner Function’s Passage through a Grating

The second transformation in the Wigner representation one requires is the passage of the
beam through a grating. A grating t(r) with |t(r)|2 < 1 results in a modulation of the
transverse wave function ψi(r) impinging on a grating, so the wave function ψi+1(r) behind
the grating is given by ψi+1(r) = t(r)ψi(r). With the definition of the Wigner function
(equation 2.26) and the density matrix (equation 2.27), the Wigner function behind the
grating follows as

wi+1(r,p) =

∫
d∆ e

ip ∆
~ t

(
r− ∆

2

)
t∗
(

r +
∆

2

)
ρi

(
r− ∆

2
, r +

∆

2

)
. (2.31)

This term represents a Fourier transformation of a product. Thus, equation 2.31 can be
rewritten as the convolution

wi+1(r,p) =

∫
dqT (r,q)wi(r,p− q) , (2.32)

where the convolution kernel T (r,p) represents the grating

T (r,p) =
1

(2π~)2

∫
d∆ e

ip ∆
~ t

(
r− ∆

2

)
t∗
(

r +
∆

2

)
. (2.33)

Propagation through the Interferometer

Step-by-step, one can now proceed along the individual elements of the Talbot-Lau interfer-
ometer. Starting with an initial Wigner function w0(r,p) = 1, the passage through the first
grating (see equation 2.32) yields

w1(r,p) = |t1(r)|2 . (2.34)

The free evolution given by equation 2.30 between the first and the second grating, which
are separated by the distance L, leads to

w2(r,p) = w1

(
r− L

pz
p,p

)
=

∣∣∣∣t1(r− L

pz
p

)∣∣∣∣2 . (2.35)

Here, the beam impinges on the second grating T2, which in turn yields

w3(r,p) =

∫
dqT2(r,p)w2(r,p− q)

=

∫
dq

∣∣∣∣t1(r− L

pz
(p− q)

)∣∣∣∣2 · T2(r,q) . (2.36)
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2. From Moiré Deflectometry to Talbot-Lau Interferometry

This is followed by another free evolution of the distance L between the second grating and
the observational plane, which finally leads to

w4(r,p) = w3

(
r− L

pz
p,p

)
=

∫
dq

∣∣∣∣t1(r− L

pz
p− L

pz
(p− q)

)∣∣∣∣2 · T2

(
r− L

pz
p,q

)
=

∫
dq,

∣∣∣∣t1(r− 2
p

pz
L+

q

pz
L

)∣∣∣∣2 · T2

(
r− p

pz
L,q

)
. (2.37)

The Wigner function w4(r,p) represents the state in the observational plane. One needs to
integrate over the momentum variable of w4(r,p) to retrieve the density modulation or fringe
pattern recorded in this plane. In order to proceed, one requires explicit expressions for the
coefficients of the first and second grating given by |t1(r)|2 and T2(r,p), respectively. These
are determined in the following. For simplicity, the discussion is limited to the dimension,
which is parallel to the grating vector kd, thus the position y and momentum p = py.

Fourier Coefficients of the Gratings

As previously discussed (see equation 2.13), the infinite gratings ti(y) can be represented by
their Fourier series

ti(y) =
∑
n∈Z

an exp (inkdy) (2.38)

with the grating vector kd = 2π/d. The three gratings ti(y) are restricted to the case of
real amplitude gratings, thus they exhibit transparent slits with the open fraction η but are
otherwise opaque as seen in figure 2.5. With equation 2.14, the Fourier coefficients of these

−d −d/2 0 d/2 d
0

1

Figure 2.5.: Geometry of the gratings represented by ti(y) with open fraction η, grating
period d and position yi.

gratings, which have a rectangular shape, are

an =
1

d

∫ d
2

− d
2

dy t1(y)e−inkdy =
1

d

∫ η
2

+yi

− η
2

+yi

dy e−inkdy

=
i

2πn

(
e−inkd(

η
2

+yi) − e−inkd(−
η
2

+yi)
)

= η sinc(n η) · e−inkdyi = a′n · e−inkdyi , (2.39)
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2.4. Wigner Function and Classic Phase Space Representation

where the cardinal sine is given by sinc(b) = sin(π b)/π b. The position yi of the ith grating
denotes the shift relative to the position on which a slit is centred on zero (see figure 2.5),
thus a′n (with inverted comma) are the coefficients of the grating that is centred on zero.
This notation is maintained throughout this section. The square of the absolute value of t1(y)
yields

|t1(y)|2 = t1(y) t∗1(y) =

∑
j ∈Z

aj exp (ijkdy)

 ·(∑
h∈Z

a∗h exp (−ihkdy)

)

=
∑
j,h∈Z

aja
∗
h exp (i(j − h)kdy)

l=j−h
=

∑
j,l∈Z

aja
∗
j−l exp (ilkdy)


=
∑
l∈Z

Al exp(ilkdy) with Al =
∑
j ∈Z

aja
∗
j−l

=
∑
l∈Z

A′l exp(ilkd(y + y1)) with A′l =
∑
j ∈Z

a′j a
′∗
j−l . (2.40)

Using equation 2.33 and the same rearrangement of the sums as for the first grating, the
second grating is given by

T2(y, p) =
∑
l,j∈Z

bjb
∗
j−l exp (ilkdy) δ

(
p− ~π

2j − l
d

)

=
∑
l,j∈Z

b′j b
′∗
j−l exp (ilkd(y + y2)) δ

(
p− ~π

2j − l
d

)
. (2.41)

Detectable Signal of a Talbot-Lau Interferometer

With expressions for |t1(y)|2 and T2(y, p), one can proceed to evaluate the Wigner func-
tion w4(y, p) in the observational plane. It follows by evaluating the integral in equation 2.37
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2. From Moiré Deflectometry to Talbot-Lau Interferometry

and rearranging the arguments of the phase factors.

w4(y, p) =

∫
dq

∣∣∣∣t1(y − 2
p

pz
L+

q

pz
L

)∣∣∣∣2 T (y − p

pz
L, q

)
=

∫
dq

(∑
l∈Z

Al exp

(
ilkd

(
y − 2

p

pz
L+

q

pz
L

)))
·

∑
j,m∈Z

bmb
∗
m−j exp

(
ijkd(y −

p

pz
L)

)
δ

(
q − ~π

2m− j
d

)

=
∑

l,j,m∈Z
Al bmb

∗
m−j exp

(
ilkd

(
y − 2

p

pz
L+

~π
pz

2m− j
d

L

))
·

exp

(
ijkd

(
y − p

pz
L

))
=

∑
l,j,m∈Z

Al bmb
∗
m−j exp

(
ikd (l + j) y − ikd(2l + j)

p

pz
L

)
·

exp

(
iπ l (2m− j) L

LT

)
(2.42)

In the last step, the Talbot length LT = d2/λ = d2pz/h is introduced. In order to determine
the density modulation, which can be detected with a spatially resolving detector placed in
the observational plane, one simply needs to integrate over the transversal momentum p:

w(y) =

∫
dpw4(y, p)

=
∑

l,j,m∈Z
Al bmb

∗
m−j exp

(
iπl(2m− j) L

LT

)
exp(ikd(l + j)y)

∫
dp exp

(
−ikd(2l + j)

p

pz
L

)

∝
∑
l,m∈Z

Al bmb
∗
m+2l exp

(
iπl(2m+ 2l)

L

LT

)
exp(ikd(l − 2l)y)

=
∑
l∈Z

AlB
(T)
2l exp(ikdly) (2.43)

with

B
(T)
j =

∑
m∈Z

bmb
∗
m−j exp

(
iπ
j2 − 2mj

2

L

LT

)
. (2.44)

Note that due to the integral over p in equation 2.43, the only remaining summands are the
ones with j = −2l. Equation 2.43 depicts that in the observational plane, one can observe

a fringe pattern with the same periodicity as the gratings. The coefficients B
(T)
j express the

influence of the second grating. It turns out that it is indeed the description of the second
grating that differs in the wave regime from the classical description. The first grating solely
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2.4. Wigner Function and Classic Phase Space Representation

generates spatial coherence, but the second grating redirects momentum due to diffraction,

which is absent in the classical regime. The coefficients B
(T)
j of the Talbot-Lau interferometer

are therefore marked with a (T) to distinguish them from the classical coefficients B
(C)
j , which

are introduced further down in section 2.4.2. The position of the second grating y2 influences

the coefficients B
(T)
j through an additional phase factor

B
(T)
2l =

∑
m∈Z

bmb
∗
m−2l exp

(
2πi

(
l2 −ml

) L

LT

)
=
∑
m∈Z

b′mb
′∗
m−2l exp

(
2πi

(
l2 −ml

) L

LT

)
exp (−kdil 2y2)

= B
′(T)
2l exp (−kdil 2y2) . (2.45)

The comparison with equation 2.40 shows that a displacement of the second grating by ∆y2

shifts the observed pattern by twice the distance and in opposite direction compared to an
equal displacement of the first grating by ∆y1. The pattern w(y) can be directly observed
with a detector whose spatial resolution is smaller than the grating period d. An experimental
realisation of this approach is presented in chapter 3. In many experiments where the fringe
pattern cannot be directly resolved, a third grating (identical to the other two) can be placed
in the observational plane to probe or to scan the fringe pattern. A detector with no spatial
resolution behind the third grating measures only the spatial integral of the flux, thus the
technological requirements for this detector are significantly reduced. Naturally, the flux
measured by this detector is reduced as a portion of the particles hit the last grating. But
this limitation of statistics can be circumvented with the approach presented in chapter 4.
The following derivation includes the use of a third grating, which leads to the signal

S =

∫
dy dp dq w4(y, p− q)T (y, q)

=

∫
dy w(y) |t3(y)|2 . (2.46)

The notation is maintained: the coefficients of the third grating are denoted Cl and its position
is labelled y3. This finally leads to the signal of the three-grating Talbot-Lau interferometer:

S (y1, y2, y3) ∝
∑
l∈Z

AlB
(T)
2l Cl

=
∑
l∈Z

A′lB
′(T)
2l C ′l exp (kdil (y1 − 2y2 + y3))

=
∑
l∈Z

(A′l)
2B
′(T)
2l exp (kdil (y1 − 2y2 + y3)) . (2.47)

With the positions of the first (y1) and third grating (y3) being extracted, the coefficients
of the centred gratings are identical, thus A′l = C ′l is used in the last step. A characteristic
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2. From Moiré Deflectometry to Talbot-Lau Interferometry

measure of a fringe pattern is its visibility. Equation 2.47 allows to directly derive a general
expression for a Talbot-Lau interferometer’s visibility. It yields

VT =
Smax − Smin

Smax + Smin
=

∑
l∈Z

(
(A′l)

2B
′(T)
2l − (A′l)

2B
′(T)
2l eπil

)
∑
l∈Z

(
(A′l)

2B
′(T)
2l + (A′l)

2B
′(T)
2l eπil

) =

∑
l∈Z

(A′l)
2B
′(T)
2l

(
1− eπil

)
∑
l∈Z

(A′l)
2B
′(T)
2l (1 + eπil)

=

∞∑
n=1

(
A′2n−1

)2
B
′(T)
4n−2

1
2 · (A

′
0)2B

′(T)
0 +

∞∑
n=1

(A′2n)2B
′(T)
4n

, (2.48)

where the signal’s maximum Smax is attained when the three gratings are aligned y1 − 2y2 +
y3 = 0. The signal reaches a minimum when the last grating is shifted by half a period with
respect to the fringe pattern, thus y1 − 2y2 + y3 = d/2. It is important to point out that
equation 2.47 and 2.48 provide a direct determination of a Talbot-Lau interferometer’s signal
and visibility for a given configuration defined by the wavelength λ, the grating separation L,
the open fraction η, and periodicity of the grating d.

2.4.2. Moiré Deflectometer in Classic Phase-Space Representation

As the treatment of the Talbot-Lau interferometer is kept very general, one can argue that the
findings from the previous section include the classical case a priori. This would mean, that the
signal and visibility of a moiré deflectometer can be determined by setting the wavelength λ
to a sufficiently small value, so that the Talbot length LT is much longer than the grating
separation L – making diffraction negligible. However, one can derive a similar result [64]
by treating the moiré deflectometer in classical phase space. The calculations are in many
aspects analogous to the quantum mechanical treatment. A probability distribution f(r,p)
in classical phase space replaces the Wigner function. Following [64], the free evolution is
given by

f(r,p) = f0

(
r− L

pz
p,p

)
; (2.49)

it thus is equivalent to equation 2.30. The pivotal difference results from the different treat-
ment of the gratings, which does not include diffraction. Here, the convolution kernel is given
by

TC(r,p) =
1

h2

∫
d∆e

ip∆/~|t(r)|2 = |t(r)|2δ(p) , (2.50)

so that the passage of a grating results in the probability distribution

fi+1(r,p) = |t(r)|2 fi(r,p) . (2.51)
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2.4. Wigner Function and Classic Phase Space Representation

After passing two gratings separated by the distance L, one obtains in the observational plane
(compare to equation 2.37):

f4(r,p) =

∣∣∣∣t1(r− p

pz
2L

)∣∣∣∣2 ∣∣∣∣t2(r− p

pz
L

)∣∣∣∣2 . (2.52)

The signal and visibility of the moiré deflectometer with a scanning third grating are

SC(y1, y2, y3) ∝
∑
l∈Z

(A′l)
2B
′(C)
2l exp (ilkd(y1 − 2y2 + y3)) (2.53)

and

VC =
Smax − Smin

Smax + Smin
=

∞∑
n=1

(
A′2n−1

)2
B
′(C)
4n−2

1
2 · (A

′
0)2B

′(C)
0 +

∞∑
n=1

(A′2n)2B
′(C)
4n

. (2.54)

Note that they have the same form as for the Talbot-Lau interferometer. The only difference

is given by the coefficients of the second grating B
(C)
j , which do not depend on the Talbot

length (compare to equation 2.44):

B
(C)
j =

∑
m∈Z

bm b
∗
m−j . (2.55)
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2. From Moiré Deflectometry to Talbot-Lau Interferometry

2.5. From Classical Paths to the Wave Regime

The classical signal SC and the Talbot-Lau signal ST show a strong resemblance as the

only difference lies within the Fourier components B
′(C)
l and B

′(T)
l , where the latter contains

the additional phase factor exp
(
2πi

(
l2 − jl

)
L/LT

)
. For very short wavelengths or when the

grating separation L is much smaller than the Talbot distance LT , i.e.

L� LT =
d2

λ
, (2.56)

this phase factor vanishes. One can therefore see the moiré deflectometer as the classical limit
of a Talbot-Lau interferometer and equation 2.56 as the characteristic limit [38] between both
regimes. Another special case is even more intriguing. If the grating separation L equals a
multiple, positive integer of the Talbot length LT, i.e.

L

LT
= s ∈ N , (2.57)

the Fourier components of the Talbot-Lau signal become

B
′(T)
2l =

∑
j ∈Z

b′jb
′∗
j−2l exp

(
2πi

(
l2 − jl

) L

LT

)
=
∑
j ∈Z

b′jb
′∗
j−2l exp

(
2πi

(
l2 − jl

)
s
)

=
∑
j ∈Z

b′jb
′∗
j−2l = B

′(C)
2l , (2.58)

so they become identical to the ones of the classical signal. Here, the phase factor vanishes
because with l, j ∈ Z and s ∈ N, (l2− jl)s is an integer. Two important statements can been
drawn from this result:

1. Visibility: The fringe pattern of a Talbot-Lau interferometer of which the grating sepa-
ration is set to a multiple, positive integer of the Talbot length cannot be distinguished
from the fringe pattern of a moiré deflectometer. From the mere observation of this
fringe pattern with the visibility V one cannot conclude whether the device operates in
the wave regime or in the classical regime.

2. Phase: If one has two (or more) waves sources of different (de Broglie) wavelengths λi,
and each of these comply either with L/LTi = si ∈ N (Talbot-Lau) or L � LTi

(classical), with L being the grating separation of a sole device, the phases of the
resulting fringe patterns are identical in the absence of external forces. The observation
of a phase difference is therefore a measure of a force.

Both conclusions are of importance for later sections of the work presented. The first one is
crucial if one wants to make an experiment to demonstrate that a device actually operates
in the wave regime. Following the above statement, this can only be done if one examines a
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2.5. From Classical Paths to the Wave Regime

configuration where the grating separation is not a multiple positive integer of the Talbot
length. A possible experiment to demonstrate the wave-like behaviour of antiprotons with a
Talbot-Lau interferometer is discussed in chapter 5.

The second statement is visualised in figure 2.6a for the exemplary case of simultaneously
having visible light waves of wavelength λ so that the Talbot criteria is fulfilled (here 4LT = L)
and particles such as atoms, of the which the de Broglie wavelength is so short that the device
operates in the classical regime (see equation 2.56) of a moiré deflectometer. The intensity
of the light field is indicated as red shading, the classical particle trajectories are illustrated
as straight grey lines; in neither case a force is present. As stated above, in the plane of

ba

Figure 2.6.: Talbot-Lau interferometry as an absolute reference for moiré deflectometry.
(a) Uncollimated particles and waves enter from the left. Classic, straight trajectories
(grey) are drawn on top of light field (red shading) for a three-grating configuration. Both
patterns overlay not only in the simple case of identically positioned gratings (yi = 0),
but also for arbitrary relative positions as exemplary show in (b). This makes the light
measurement ideal to measure the undeflected, or force-free, fringe position – a technique
later used for a measurement with antiprotons.

the third grating (or the spatially resolving detector), the particles arrive at the positions of
the light field’s maxima. The device’s phase solely depends on the position of the gratings
(an arbitrary situation is depicted in figure 2.6b) and does not depend on the collimation or
direction of the source. Neither the light nor the particle sources are collimated.

This effect is of special interest if one uses two particle species that couple differently to
external fields. The photons of light waves, for example, are not susceptible to electromagnetic
fields unlike charged particles, which are deflected. Thus, the observation of a phase difference
is a direct measure of a force. An experiment using this technique to measure forces on
antiprotons is described in chapter 3. But this method could also be applied to measure
the gravitational acceleration of antihydrogen, as the photon’s deflection due to gravity is
negligible. Even though being in the wave regime, photons can be used to generate a reference
fringe pattern that indicates the undeflected position. In this context, one should keep in mind
that the Talbot effect is a near-field phenomenon. Consequently, there must be an upper limit
on the integer multiple of the Talbot length on which self-images can be observed. Thus, for
a given wavelength λ and grating period d, there must be a maximum grating separation one
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Figure 2.7.: Maximal extent of the Talbot carpet. A plane wave with wavelength λ
impinges on a grating with periodicity d and length D. In the far field one observes
completely separated diffracted beams, which contain no self-imaging features. The
Talbot effect is restricted to areas where the diffracted beams overlap; the outer extent
has the shape of a cone where the diffraction orders +1, 0, -1 interfere. The length of
the cone is given by the diffraction angle sin(αn) = nλ/d, it is therefore favourable to
use short wavelengths such as blue light in the visible regime.

can realise. It is therefore important know how far the near-field goes and where the far field
begins. The previous treatment of the Talbot effect presumed the use of gratings with infinite
length, which results in an infinite number of self-images being observable. An approximate
estimation for gratings with finite length can be derived as follows. Figure 2.7 depicts the
computed light field of a finite grating with periodicity d = 40 µm and the length D = 2 mm,
which is illuminated with a plane wave with wavelength λ = 405 nm. The field is computed
with the plane wave decomposition (see equation 2.10) up to a distance of half a meter6. At
this distant point, the diffraction orders given by equation 2.15 are completely separated
and represent the far-field diffraction. Directly behind the grating, one observes the expected
Talbot fringes. The principle limit to which these can be observed is therefore given by
the volume in which the diffraction orders still overlap. For the ±1 diffraction orders, this
characteristic length is given by

Lmax ≈
Dd

2λ
=

1

2
Nslits LT . (2.59)

The maximum number of observable rephasings cannot be bigger than half the total number
of grating slits Nslits = D/d. It is favourable to use shorter wavelengths to extend the near-
field. Assuming UV light of 405 nm from Blu-ray c© laser diodes and the gratings used in this
thesis (d = 40 µm, D = 100 mm) results in Lmax ≈ 5 m.

6A common problem when numerically evaluating equation 2.10 with the Fast Fourier Transformation are
the mirror solutions caused by the finite length of u(y, 0). These are suppressed if one adds sufficient
periods to gratings that are completely opaque.
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2.6. Inertial Sensitivity of a Moiré Deflectometer or a Talbot-Lau Interferometer

2.6. Inertial Sensitivity of a Moiré Deflectometer or a Talbot-Lau
Interferometer

This section focuses on the inertial sensitivity of a moiré deflectometer or a Talbot-Lau
interferometer, which is ultimately limited by the shot noise and thus the finite number of
particles being detected. The findings presented in the following are the subject of an internal
note [88], which was distributed among the members of the AEgIS collaboration. The aim
is to find an analytic expression for the relative error δg/g, rather than to determine the
performance of a particular configuration with Monte-Carlo simulations. The result builds
on only a few approximations and clearly depicts the scaling of the key parameters of the
particle source and the measuring device itself. In this context it is negligible if the device
operates in the wave regime or not, as long as one observes a fringe pattern as illustrated in
figure 2.8. The fringe pattern, here approximated to first order by a sinusoidal function, is

y position
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Figure 2.8.: The fringe pattern is shifted by ∆y due to an uniform acceleration. The
slope of the fringe provides the highest phase sensitivity. The sensitivity is ultimately
limited by the shot noise, thus the finite number of detected particles.

shifted due to a uniform acceleration a by the amount ∆y = aτ2, with τ being the particle’s
time-of-flight. The maxima and minima contain negligible phase information: the highest
sensitivity on the phase is attained at the steepest section of the signal. The close up shows a
histogram on which the count number Ni of the single bins are ultimately shot-noise limited
and therefore have a relative uncertainty of 1/

√
Ni. The sine function sinφ = φ− φ3/6± ...

has a slope of unity at its zero-crossing; consequently the phase can be determined to a
precision of δφ ≈ 1/

√
Ndet. In the case of a fringe pattern S with reduced visibility

V =
max(S)−min(S)

max(S) + min(S)
, (2.60)

this is further reduced to δφ ≈ 1/(V
√
Ndet). For a fringe pattern with Ndet detected particles

and a periodicty d, which is shifted by ∆φ = 2π/d ·∆y = 2π/d · aτ2, it follows that

δa = amin =
d

2π V τ2
√
Ndet

, (2.61)

which is known as the minimal detectable acceleration [38,89]. For the antihydrogen produc-
tion as envisioned by the AEgIS collaboration, the number of detected atoms depends on
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the solid angle the device covers and is estimated using the simplified geometry shown in
figure 2.9. L1st and L denote the distance from the antihydrogen’s starting point to the first

production trap

gratings

beam divergence

detector

grating
or

Figure 2.9.: Simplified geometry of the moiré deflectometer (or interferometer) and the
antihydrogen beam.

grating and the distance between gratings, respectively. For simplicity, the detector and the
gratings are assumed to be round; the size is defined by the radius r. The outer cone with
radius rH̄ pictures the antihydrogen beam. The number of detectable antihydrogen atoms

Ndet =

(
r

rH̄

)2

· η2 ·Nprod (2.62)

is given by the ratio of the two cones’ solid angles (or surfaces of two base areas) and the
grating’s open fraction η. The total number of created antihydrogen atoms is denoted Nprod.
It is a reasonable assumption that the detector only covers a fraction of the beam’s solid
angle, leading to

r

Ltotal
≤ rH̄

Ltotal
=
v⊥
v‖

(2.63)

with Ltotal = L1st + 2L being the total distance from the production point to the detector.
The antihydrogen beam’s solid angle is given by the ratio of its transversal velocity v⊥ and
longitudinal velocity v‖. Therefore, equation 2.62 transforms to

Ndet =

(
r

(L1st + 2L)

v‖

v⊥

)2

· η2 ·Nprod . (2.64)

The transversal velocity of the antihydrogen atoms is dominated by the temperature of the
antiprotons in the production trap before the synthesis of the antihydrogen atoms, as the
antiproton’s inertial mass is three orders of magnitudes larger than the positron’s inertial
mass. The cloud of antiprotons is assumed to be Maxwell-Boltzmann distributed so that the
transversal velocity is given by v⊥ =

√
(kT/m). The longitudinal velocity v‖ is higher than

the transversal component as it is boosted via Starck acceleration [61–63]. This envisioned
acceleration is a unique feature of the AEgIS experiment as it is this acceleration that forms
the beam. Without it, the antihydrogen atoms leave the trap region isotropically. One should
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note that the acceleration occurs on a short distance of a few millimetres. Therefore, the
atoms can be assumed to be instantaneously accelerated by a ‘boosting’ factor β ≥ 1, leading
to v‖ = βv⊥ = β

√
(kT/m). The total number of detectable antihydrogen atoms becomes

Ndet = η2 ·
(

r · v‖
L1st + 2L

)2

· m
kT
·Nprod

= η2 r2

︸︷︷︸
gratings

·
(

1

L1st + 2L

)2

︸ ︷︷ ︸
geometry

· β2

︸︷︷︸
boost

· Nprod︸ ︷︷ ︸
H̄ source

. (2.65)

Equation 2.65 determines how many antihydrogen atoms make it to the detector and
consequently go into the statistics of the gravity measurement. Nevertheless, the equation is
a little suggestive, as it seems to be sufficient to increase the number of detectable antihydrogen
atoms. Some of the parameters affect the minimal detectable acceleration (equation 2.61) of
the deflectometer, which, using equation 2.65 and τ = L/v‖, becomes

δa =
d

2π V η r
· (L1st + 2L)

L2
· v‖ ·

√
kT

m

1√
Nprod

=
d

2π V η r︸ ︷︷ ︸
gratings

· (L1st + 2L)

L2︸ ︷︷ ︸
geometry

· β︸︷︷︸
boost

· kT
m

1√
Nprod︸ ︷︷ ︸

H̄ source

. (2.66)

The parameters (grating periodicity d, visibility V, open fraction η, detector radius r, dis-
tance of the source to first grating, grating separation L, boosting factor β, temperature T ,
number of produced antihydrogen atoms Nprod) in equation 2.65 and 2.66 are grouped by
the aspects of the experiment they can be attributed to. The minimal detectable acceleration
denotes the lower limit one can reach, where the relative precision of the experiment (the
ultimate goal of the AEgIS experiment is to reach 1%) is given by δa/g. This estimation
determines the ultimate limit. Not included are possible systematics such as the detection
efficiency, the detector’s resolution or the support structure within the grating surface, which
additionally reduces flux and performance. In order to get a feeling for the difficulty of the
task of measuring the gravitational acceleration of antihydrogen, it is instructive to put in
some numbers. We already have gratings with a periodicity of 40 µm, a radius of 50 mm and
an open fraction of 30 %. The AEgIS proposal foresees to place a deflectometer outside the
magnet of the production trap. This implies a minimum distance of ∼ 1 m between the point
where the antihydrogen is synthesised and the first grating. Assuming a grating separation
of 600 mm and that the antihydrogen atoms are accelerated to 500 m s−1, one needs a total
number of ∼ 2000 detected antihydrogen atoms to reach a relative precision of 1 %. Table 2.1
gives an overview of the number of measurement days required to accumulate such an amount
of data as a function of the antihydrogen temperature and the number of atoms synthesised
per AD shot. The new antihydrogen production scheme of the AEgIS experiment has not
been shown to work yet but ones sees how the feasibility of this experiment depends on the
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2. From Moiré Deflectometry to Talbot-Lau Interferometry

Table 2.1.: Estimated measurement time in days as a function of the antihydrogen
temperature and the number of antihydrogen atoms synthesised per AD bunch for the
following configuration: d = 40 µm, L = 0.6 m, L1st = 1 m, v‖ = 500 m s−1, η = 30 %, r =
50 mm and V = 80 %.

H̄ per AD shot 0.1 K 0.3 K 1 K 4 K

100 1 5 11 44
10 11 55 110 443
1 110 554 1108 4435

temperature and efficiency of the synthesis. One should note that equation 2.66 represents
an estimation in the central limit and cannot be extrapolated to arbitrary small numbers of
detected particles. Every method (a new approach that requires around 300 particles to work
is introduced in chapter 4.) used for evaluating the data has a minimal number of particles
required for the algorithm to produce reliable results, so one must assure that enough particles
are detected. This can be estimated with equation 2.65. The following overview examines
each group of equation 2.66 individually:

Boosting: The scaling of the boost factor β, describing the acceleration of the antihydrogen
atoms after their synthesis, is of special interest. The number of detected particles increases
significantly with the boost factor, but the minimal detectable acceleration also increases,
thus the precision is actually reduced by the acceleration of the antihydrogen atoms! The
direct consequence is that one must accelerate the atoms as little as possible – just enough
to accumulate the minimum data set required for the evaluation to work. The optimum is
to omit the acceleration, which is only a possibility if the antihydrogen synthesis is efficient
enough.

Geometry: The geometry denotes the mere size of the measurement device. The distance
between the source of antihydrogen and the first grating L1st should be reduced as much as
mechanically possible. The AEgIS proposal foresees a deflectometer outside the production
trap’s magnet – which implies a minimum distance of at least a metre. For the distance be-
tween the gratings L one needs to find the best compromise between the number of detected
particles, which favours a short device, and minimising the minimal detectable acceleration,
which benefits from a long device.

H̄ source: One wants to produce the antihydrogen as cold as possible. The AEgIS collab-
oration considers two different approaches: The first is to cool the production trap with
a dilution refrigerator and the antiprotons with resistive cooling, the second is to cool the
antiprotons sympathetically with laser-cooled negative ions or molecules7.

7Fusion of heavier antinuclei is out of reach even though one can dream of catching antihelium nuclei in the
cosmic background [90,91]. Therefore, the mass m is restrained to the lightest antiatom: antihydrogen.
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2.7. Discussion

Gratings: Potentially the most interesting parameters are those of the gratings, especially
the grating period d. One is interested in minimising it, but if the fringe pattern is detected
with a spatially resolving detector (see the experimental results presented in chapter 3), the
detector needs to resolve the pattern. Therefore, the periodicity needs to be larger than the
resolution of the detector. Chapter 4 introduces a method that overcomes this technical
limitation while making efficient use of the antihydrogen statistics. At the same time, the
periodicity plays a central role in whether the device operates in the wave regime or not.
The visibility V depends on the open fraction η and, additionally, in the wave regime, on
the wavelength itself as described in section 2.4.1. Nevertheless, the visibility and the open
fraction leave little room for improvement. Figure 2.9 shows that the detector and the gratings
are of comparable size r. In the current status of the AEgIS experiment, both the gratings
and the detector have grown to an extent of approximately 100 mm in diameter. Both are
based on silicon wafer technologies and are limited by wafer sizes and companies being able
to machine large wafers. Without building arrays of gratings and detectors only limited
advancement can be expected here.

The general experimental limitation given by the gratings is that one needs to get them, so
one depends on what gratings can be realised. It is interesting to note that the ratio between
grating period d and 2r in equation 2.66 is simply the amount of periods on the grating.
The total number of slits on a grating is therefore a valid criterion to evaluate the usefulness
of this grating for gravity measurements. When looking for quotes for a new, better set of
gratings, one can break down the requirement to: ‘How many slits can you make?’.

2.7. Discussion

The review of established descriptions of the moiré deflectometer and the Talbot-Lau in-
terferometer depicts that these devices can be understood within a generalised framework
and that their key features such as the shape of the fringe pattern or its visibility can be
determined analytically. The characteristic measure to differentiate between the regimes of
this framework is the Talbot length, for which an overview is given in table 2.2. Furthermore,

Table 2.2.: The Talbot length LT = d2/λ represents the characteristic measure between
the different regimes of diffraction.

classical regime 1st Talbot order upper Talbot limit far field
L� LT L = LT L ≈ 1

2NslitsLT L� LT

this elaboration has shown that the simultaneous use of a single device with different particle
species enables the measurement of forces based on the phase shifts between their patterns.
This also works if the device is not in same regime8 for each particle species (e.g. classic
moiré deflectometer for particles, but Talbot-Lau for photons of visible light).

8Interestingly, one uses devices for neutron interferometers also for experiments with X-rays, but the wave-
length of these two species are comparable, so that the interferometers are in the same regime [92].
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2. From Moiré Deflectometry to Talbot-Lau Interferometry

The inertial sensitivity these kinds of devices attain can also be estimated analytically, which
depicts the scaling of the critical parameters. The direct measurement of the gravitational
acceleration of antihydrogen is a challenging goal and one cannot foresee the performance of
the new antihydrogen production scheme. As the AEgIS experiment offers a high modularity,
it is worthwhile to use this flexibility to divide this challenge into several experimental steps
in order to identify the most promising configuration and determine its systematics. For this
purpose, the use of antiprotons from the AEgIS apparatus is of special interest as it is always
the antiproton’s annihilation that is being detected – also when working with antihydrogen.
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Photons have mass? I didnt even
know they were Catholic.

(Woody Allen)

3. A Moiré Deflectometer for Antimatter

This chapter reports on a moiré deflectometer for antimatter using antiprotons. It is the
first experimental realisation of this tool from atom optics to measure the deflection of an
antimatter beam due to a force. The device is in the classical regime for antiprotons but in
the wave regime for photons of visible light. The illumination with visible light generates a
Talbot-Lau fringe pattern that indicates the undeflected position of the antiprotons1. The
measured deflection is consistent with a force of 530 aN. The force measured here origins from
an electromagnetic stray field and is much larger than gravitation. Still, the combination of
techniques from different fields of physics, such as atom optics, particle physics and detector
physics denotes a first experimental step towards the detection of gravitational acceleration of
antihydrogen with a moiré deflectometer as envisioned by the AEgIS collaboration [28,57,58].
The results presented here are the subject of a publication in Nature Communications [89],
of which a printout can be found in appendix D.

3.1. Measurement Principle and Experimental Setup

This measurement is based on a two-grating moiré deflectometer and a spatially resolving
emulsion detector making snapshots of the antiprotons’ annihilations. Figure 3.1a illustrates
how the antiprotons enter the deflectometer from the left as a divergent beam. Certain
trajectories can pass the two gratings and these antiprotons annihilate inside the emulsion
detector, leaving characteristic annihilation stars as in figure 3.2. It is interesting to note that
the first observation of an antiproton’s annihilation star at the Bevatron succeeded using an
emulsion detector [93] and that this type of detectors still provide the highest spatial resolution.
The emulsion detector is identical to the ones used in the OPERA experiment [94], which is
searching for neutrino-induced τ -leptons. Further details on emulsion detectors can be found
in reference [95,96]. Figure 3.1b depicts the possible trajectories through the two gratings. The
ensemble of detected antiprotons forms a fringe pattern on the detector. If no force is present,
the trajectories (indicated as straight grey lines) are not deflected. If a force acts on the
antiprotons, the trajectories (blue lines) are deflected by ∆y = F/m · τ2 = aτ2 in comparison
to the force-free trajectories. The position of the undeflected fringe pattern is independently
measured with light, using this two-grating system as a Talbot-Lau interferometer for visible

1The measurement principle is therefore a direct application of the second conclusion made in section 2.5.
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3. A Moiré Deflectometer for Antimatter

light interference

matter moiréa b

c

Figure 3.1.: Moiré deflectometer for antimatter [89]. Two identical gratings with period-
icity d and a spatially resolving emulsion detector form the moiré deflectometer in (a).
A divergent beam of antiprotons enters from the left. The slits only allow certain tra-
jectories to pass both gratings and reach the detector, on which one observes a fringe
pattern with the same periodicity d. (b) In the presence of a force along the direction of
the grating vector, the fringe pattern is shifted (blue trajectories) in comparison to the
fringe pattern without a force (grey trajectories). The position of the undeflected fringe
pattern can independently be measured with light (c) using near-field Talbot-Lau inter-
ferometry in a subsequent measurement. An additional grating is placed directly on the
detector right next to the deflectometer in (a). Its ‘contact’ patterns are simple shadows
for antiprotons and light, which are used to align the antiproton and light measurement
in the post-processing.

light. Figure 3.1c shows the corresponding light field of the two gratings being illuminated
with a plane wave. With this technique one can determine the absolute deflection due to a
force.

In this realisation, the interference pattern with light is recorded in a subsequent measure-
ment with a flat-bed ccd scanner with high resolution. In order to align the two measurements
in the post-processing, an additional identical grating is placed in direct contact with the
detector, which is also depicted in figure 3.1a. The illumination of the whole structure with an-
tiprotons or light generates a pattern behind this ‘contact’ grating, which is a simple shadow.
Therefore, the measurements can be aligned in the analysis by overlaying the patterns of the
contact grating.
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3.1. Measurement Principle and Experimental Setup

Figure 3.2.: Antiproton annihilation stars observed with the AEgIS apparatus [89]. The
annihilation of an antiproton with a proton of a nucleus within the emulsion leaves
characteristic, star-shaped tracks. Courtesy of T. Ariga.

3.1.1. Setup

When this experiment was designed, it was intended to assign a single day2 of antiproton
beam time to it before C.E.R.N.’s Antiproton Decelerator (AD) shut down together with
the Large Hadron Collider at the end of 2012. An additional operational constraint came
from the emulsion detector. As the emulsion detector is photosensitive, it was mounted into
the experiment’s vacuum chamber in a dark room. The vacuum chamber was then sealed
with a gate valve. The whole chamber was then brought to the experimental zone at the AD,
mounted to the vacuum chamber of the AEgIS apparatus and pumped down to 10−6 mbar.
The preparation procedure before beam time took about two hours. One shift of beam time at
the AD is eight hours long. A change of an experimental parameter in the middle of the beam
time or a repetition of the experiment under modified conditions was therefore not possible.
As a consequence, the overall design prerequisite was to incorporate several experimental
realisations onto a single support structure to enhance the chance of success. The plan was
to illuminate the whole structure for a full shift without interruptions.

The final setup is shown in figure 3.3a. The structure is made from aluminium and brass
and is mounted directly onto the emulsion detector with eight screws. The structure’s rigidity
ensures passive stability over the measurement time. The detector has a feed size of 68 mm.
The structure contains two moiré deflectometers of different lengths (2 × 25 mm and 2 ×
16.7 mm). Additionally, there is a second order moiré, for which the distance between first
and second grating is twice as long as the distance between the second grating and the
detector (2× 33.3 mm and 2× 16.7 mm). For this special configuration one expects a fringe
pattern of low visibility but with twice the periodicity of the gratings. At last, three contact
gratings are placed directly onto the detector. All gratings for this setup were quarried out

2Eventually, two shifts were devoted to this experiment. Unfortunately, the emulsion of the second run got
overexposed with high energy antiprotons as one of the degrader foils had to be removed from the beam
line to debug the antiproton trap, an experimental effort that ran parallel to this measurement.
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3. A Moiré Deflectometer for Antimatter

a b

1st order moiré: L = 25.0 mm

1st order moiré: L = 16.7 mm

2nd order moiré: L1=33.3 mm, L2=16.7 mm

contact gratings

+

+

+

,

Figure 3.3.: Experimental Setup (a) The structure incorporates several experimental
realisations to increase the chance of a successful measurement with a single day of beam
time: Two conventional moiré deflectometers, one second order moiré deflectometer and
three contact gratings. During the measurement, the emulsion detector is placed below
the device and the antiprotons enter from the top. L denotes the grating separation.
(b) The required grating pieces are cut out of a 150 mm grating. The arrangement makes
efficient use of the undamaged sectors of the grating from an early production batch with
several defects such as holes. The coloured aluminium frames are glued with high-vacuum
epoxy Torr Seal c© onto the silicon grating before scoring rupture lines onto the surface
of the silicon. This protects the grating structures when they are subsequently quarried
out. The framed grating pieces are subsequently glued onto the structure shown in (a).

of a larger grating etched into a 150 mm silicon wafer3 with a grating period of 40 µm, a
thickness of a 100 µm and a open fraction of 30 %, leading to slit openings of 12 µm. Firstly,
stabilising aluminium frames (highlighted in rainbow colours in figure 3.3b) were glued onto
the back side of the delicate silicon wafer, making efficient use of the available grating surface.
A diamond cutter was used to score rupture lines into the surface of the wafer’s front side.
By applying the right amount of force, the pieces were subsequently broken out. The single
elements were glued onto the support structure while the gratings were illuminated with a
Helium-Neon laser. The diffraction patterns of the gratings were used to align the grating
vectors of the moiré deflectometers’ gratings to a deviation smaller than a 1 mrad.

3.1.2. Data Acquisition

The antiprotons were delivered from the existent parts of the AEgIS apparatus, which is
located at the Antiproton Decelerator at C.E.R.N. Every 90 s, the AD provides an antiproton
bunch with narrow energy distribution and a mean energy of 5.3 MeV. When a bunch is
extracted from the decelerator ring, it passes a set of degrader foils to reduce the mean
energy right in front of AEgIS’ first Penning trap. The degrading system consists of 170 µm

3Details on the production of these wafers can be found in reference [69].
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3.2. Antiproton Fringe Pattern

of aluminium and 55 µm of silicon. A simulation, of which the details are discussed below (see
figure 3.13a), reveals that the energy distribution after the foils is broad and that the beam
is divergent. The mean energy is 106 keV with a root mean squared value of about 150 keV.
The antiprotons then pass the 5 T superconducting magnet of the catching trap, followed
by the 1 T magnet of the antihydrogen production trap and finally reach the experimental
chamber after a flight distance of 3.6 m. Because of the long distance between the foils and
the experiment, only a small fraction of the antiprotons reach the experiment but the total
number of detected antiprotons is on the order one can expect for future measurements with
antihydrogen. In measurements using antihydrogen it is still the antiproton, which is detected,
as it provides a much stronger signal than the annihilation of the positron. Many aspects of
the following analysis, such as efficient fringe detection, are based on small count numbers
and can be deployed to future antihydrogen measurements. The de Broglie wavelength can
be estimated to λdB = h/p ≈ 8.8 · 10−14 m. The device is not in the wave regime and can
be described with classical particle trajectories, as λdB � d2/L is clearly fulfilled (this is
classical limit given by equation 2.56). The energy of the antiprotons is so low that the
probability of one passing through 100 µm of silicon is practically zero. It is therefore ensured
that the antiprotons can only pass the gratings through the slits and that the gratings act as
true amplitude gratings. After the exposure to antiprotons, which was reduced to 6.5 hours
due to downtime of the AD, the emulsion detector was removed in the darkroom, sealed
in lightproof foil and shipped to the microscope lab of the LHEP group at the University
of Bern. It was then chemically developed and analysed with an motorised microscope to
determine the positions of the annihilation stars.

The reference measurement with light was performed subsequently and did not involve an
emulsion detector. An array of red light-emitting diodes (LED) with a spatial diffuser served
as a homogenous light source. The whole structure with deflectometer and contact grating
was placed on a flat bed ccd scanner with a resolution of 2.7 µm to record the patterns of
light. The LED illumination was placed on top of it. The Talbot length4 for the wavelength
used is TL = d2/λ = (40 µm)2 /640 nm = 2.5 mm, which means that for the deflectometer
with L = 25 mm one observes the tenth rephasing of the fringe pattern in the plane of the
detector.

3.2. Antiproton Fringe Pattern

This section focuses on the evaluation of the antiproton data. This data is basically a list
of the x, y - coordinates of the antiproton annihilation stars, which are retrieved from the
emulsion with a motorised microscope. Theses positions can be determined with a typical
resolution of about 2 µm. The density of detected events is so low that, on average, less than
one antiproton is detected per grating period. Consequently, it is not possible to directly see
the fringe patterns. The primary task is therefore to determine if a fringe pattern is present
or not. The exact orientation angle and the periodicity of the patterns are not known a priori,

4Two definitions of the Talbot distance are found in literature. The version with an additional factor 2
denotes the first rephasing without a phase shift of d/2. The smallest distance to observe a fringe pattern
with the same periodicity as the grating is given by the definition used throughout this work.
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3. A Moiré Deflectometer for Antimatter

even though tight limits are given. As described above, the two gratings of the deflectometers
were aligned to each other when they were glued onto the support structure, but they are
not aligned to the support structure itself with the same precision. Additionally, when the
emulsion is placed on the microscope, the rotational alignment is done by hand. Still, the
upper limit on the angle is estimated to be about ±20 mrad. The effective periodicity is
expected to be slightly larger (≈ 1 %) than the nominal periodicity of the gratings because of
the known expansion [97] of the emulsion during the chemical development. The orientation
and the periodicity are therefore extracted from the dataset. It is important to note that
the expansion of the emulsion is not completely homogenous and causes distortions (or
deformations), which are the cause of a systematic error. The method to measure periodicity
and orientation of the patterns, which is discussed in the following, is sensitive enough to
detect these local distortions and, as a consequence, it is chosen to restrict the data to two-
thirds of the initial emulsion surface. The details on this selection process are discussed in
section 3.2.3 and the impact on the result is given in this chapter’s discussion.

3.2.1. Rayleigh Test for Efficient Detection of Fringe Patterns

Suitable statistical methods are paramount when working with a small number of events as
it is the case with the antiproton measurement described here. A method called Rayleigh
test will be shown to be very sensitive for the detection of two-dimensional fringe patterns
on unbinned data with unknown periodicity d and unknown angular orientation α. The
knowledge of the orientation of the patterns is crucial as one wants to align them with the
measurement performed with light to determine a possible deflection. The Rayleigh test
produces reliable results even if there is less than one event per grating period. The test
was described at first by Lord Rayleigh [98] and later put into the wider context of circular
statistics [99–101]. It is used in fields such as the research on the magnetic compass navigation
of birds [102,103] or in astronomy to look for periodicity in the arrival time of X-ray and γ
photons to detect pulsars [104–107]. For data given here, one is looking for a periodic signal in
the scattered positions of the detected annihilations. It is elegant to investigate this problem
on a circle where trigonometric functions replace modulo calculations and the circumference
equals the periodicity of the pattern. The Rayleigh test, for which the interested reader can
find a derivation in the appendix A, is defined [100] as

Z2 =
2

n

( n∑
i=1

cos (θi)

)2

+

(
n∑
i=1

sin (θi)

)2
 , (3.1)

where n denotes the total number of detected events and θi is the position of the i-th
annihilation star. Figure 3.4 visualises how this test works with antiproton data of the contact
pattern. In order to map the two-dimensional annihilation positions of the n antiprotons
into the Rayleigh test these positions are projected onto a new axis under the angle αtest as
seen in figure 3.4a. The original positions are depicted as grey dots and the new projected
positions are the blue dots. This new axis is rolled to a circle with circumference dtest as
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a

b

dtest = 40.00 µm dtest = 40.238 µm dtest = 40.50 µm

1 mm

increasing periodicity/circumference

test

projection of antiproton coordinates

Rayleigh test

Figure 3.4.: Visualization of the Rayleigh test on antiproton data from the contact
grating. (a) The coordinates of the antiproton’s annihilation (grey dots) are projected
onto a new axis (blue dots) under the angle αtest. (b) These ‘pearls on a string’ are
then wrapped several hundred times around a circle with circumference equaling the
periodicity dtest. If αtest and dtest match the parameters of the antiproton fringe pattern
(here, the circle in the middle), the points accumulate on one side of the circle. Z2 is a
measure of this imbalance. It is proportional to the squared length of the chain of the
added vectors vi = (cos(θi), sin(θi)), which are plotted in blue. The rose diagrams, which
are histograms on a circle, only serve as a guide to eye.

visualised in figure 3.4b. These two steps are expressed by

θi =
2π

dtest
· yi and yi = y′ · cos(αtest) + x′ · sin(αtest) . (3.2)

If dtest and αtest match the true parameters of an existing fringe pattern, the blue data
points accumulate on one side of the circle, which is shown in the middle of figure 3.4b. If
they do not match, the points are distributed uniformly on the circle. Examples for dtest

being to small or to large are shown on the two outer circles of figure 3.4b. The rose diagrams,
which are histograms on a circle, only serve as a guide to the eye to better estimate the
circular distribution of the points in this figure. To each point i one can attribute the
vector vi = (cos (θi) , sin (θi)) with a length of one. The value Z2 can then be understood as
a normalised squared length of the sum of the single vectors vi. If all of the vectors point in
the same direction, the Rayleigh test Z2 is maximised. This is visualised in figure 3.4b with
the blue string of the vectors vi, of which the length is maximised for the circle in the middle.
Figure 3.5 shows the result of the Rayleigh test on the antiproton data from the long moiré
deflectometer (L = 25 mm) and the adjacent contact grating for a wide parameter range
(orientation angle αtest = (−20 mrad, ..., 20 mrad), periodicity dtest = (38 µm, ..., 42 µm). For
these two areas one observes well defined maxima showing that indeed there is a periodicity in
the positions of the antiprotons and therefore fringe patterns are detected5. Their attributed

5The analogous examination of the short (L = 16.7 mm) and the double fringe deflectometer (L1 = 33.3 mm
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Figure 3.5.: Rayleigh test applied on the antiproton data of moiré and contact area [89].
Z2 is computed for different orientation angles αtest and periodicities dtest. Both datasets
show clear maxima, from which these parameters are extracted. The measured periodicity
is slightly larger than the nominal grating periodicity of 40 µm as the emulsion detector
expands during the chemical development.

parameters are within the expected range. Note that Z2 can reach a maximum value of 2n
for all vectors vi pointing in the same direction. The fringe pattern of the moiré deflectometer
reaches Z2

max = 69.4 with 241 antiprotons, the pattern of the contact area reaches Z2
max = 192

with 146 antiprotons. The lower value of the moiré pattern results from its reduced visibility
in comparison to the contact pattern, which is shown in figure 3.6. Table 3.1 summarises
the extracted parameters. The errors are estimated by dividing the data into subsamples, an
approach described in detail in section 3.2.3.

Table 3.1.: Key figures of the antiproton fringe patterns.

peridodicity [µm] angle [mrad] hits size [mm2]

moiré 40.210± 0.011 −6.64± 0.18 241 11× 6
contact 40.238± 0.010 −8.65± 0.19 146 15× 6

3.2.2. Antiproton Fringe Pattern

An exemplary emulsion area of 1 mm2 is depicted in figure 3.6a showing ten annihilation stars
from the moiré pattern. The emulsion shows stronger darkening than the example shown in
figure 3.2. This was caused by a Penning vacuum gauge that was not switched off during this
measurement. The photons of its discharge were sufficient to significantly expose the detector.
The tremendous advantage of emulsion detectors is that they provide unambiguous and
robust particle identification. Despite the background, the positions of the vertices were still
retrieved with a resolution of 2 µm. With the knowledge of the fringe pattern’s parameters,

and L1 = 16.7 mm) do not reveal a distinct peak so that no fringe pattern can be retrieved.
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3.2. Antiproton Fringe Pattern

all antiprotons vertices can be collapsed to one period along the grating vector for the data
of the moiré deflectometer (figure 3.6b) and the contact grating (figure 3.6c). The black
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Figure 3.6.: Antiproton measurement [89]. (a) An exemplary emulsion area of 1 mm2

shows the traces of ten antiproton annihilations, which are highlighted in blue. With the
low density of events, there is less than one annihilation per lattice period so that the
fringe pattern is not directly visible. With the parameters of orientation and periodicity
obtained with the Rayleigh test, the events can be mapped into one period by binning the
vertical position modulo the extracted periodicity – revealing the fringe of the moiré (b)
and the contact (c) pattern. The black line denotes the expected pattern determined
via simulations. A possible shift a due to a force can be determined by comparing this
antiproton fringe pattern to the light measurement, which is not deflected.

lines denote the expected distributions due to geometrical constraints and are determined
via Monte Carlo simulations. The resulting distribution of the contact pattern is simply a
convolution of a box function with an opening fraction of 30 % (the shadow of the gratings)
and a normal distribution with σ = 2 µm (the resolution of the detector). The contact
pattern has a visibility close to one and the moiré pattern has a visibility6 of (71± 10) %. It
is interesting to note that the mere presence of a fringe with high visibility sets an upper limit
on the force being present, as an increasing force reduces the visibility for a broad velocity
distribution because the moiré deflectometer is a dispersive device. A dedicated simulation
based on this effect is used to perform an independent cross-check on the magnitude of
the force. This is discussed in detail in section 3.4. The comparison with the measurement
of light determines the absolute position of the moiré fringe (indicated as the offset a in
figure 3.6b) and therefore provides additional information on the magnitude and the sign of
the force. The few hits outside the expected distribution of the contact pattern (figure 3.6c)
are consistent with independently observed local grating defects. The gratings used for this
experiment originate from an early production batch. Besides substantial defects such as holes

6The error of the visibility is estimated with a resampling technique: One repeats the fit on the observed
histogram in figure 3.6b with randomised bin counts assuming the single bins to be shot-noise limited.
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a b

10 mm 10 mm

Figure 3.7.: Continuous improvement of grating technology. (a) Photograph of the grat-
ings used for the experiment described here shows partial ‘sticking’. A few neighbouring
rods stick to each other, leading to a local disruption of the pattern. (b) A new batch
of gratings for future use does not show this effect because it features a denser micro
support structure.

on the millimetre level, one observes a microscopic effect called ‘sticking’, where neighbouring
rods of the grating touch each other. The larger defects can be easily eliminated by sensible
selection of undamaged sectors of the gratings (see figure 3.3). The remaining ‘sticking’ allows
antiprotons arriving on this period to annihilate outside the expected area as the slit’s opening
is displaced. Figure 3.7a shows a photograph of an exemplary grating area with sticking. A
newer batch of gratings shown in figure 3.7b with additional support structures does not
show this effect and completely overcomes this issue for future experiments.

3.2.3. Performance of Rayleigh Test and Detected Distortions in the Emulsion

The repetition of the experiment was unfortunately not possible due to the shut-down of
the antiproton decelerator at the end of 2012. Two measures are taken to estimate the
uncertainties of this single measurement. Firstly, the performance of the Rayleigh test on
retrieving periodicity and angular orientation of a pattern is tested with simulated data sets
with known parameters d and α. Secondly, the data of the measurement is divided into
subsets, which are then individually reanalysed in order to estimate systematic effects. The
results of the simulation are shown in figure 3.8, which depicts the standard deviation of the
estimates of the orientation angle and the periodicity as a function of the particle number.
The results of this figure are determined as follows: Fringe patterns with N particles are
generated with random periodicity and orientation angle, which are subsequently re-estimated
with the Rayleigh test. This procedure is performed a thousand times for each configuration
to estimate the standard deviation and repeated for different numbers of particles N and
pattern sizes. Both measured patterns have a longish extent due to the grating geometry;
they are approximately three times longer than they are wide. The width of the pattern is set
to the experimental value of ∼ 6 mm. The height is varied from 5 to 20 mm. Figure 3.8 shows
how the estimates of the statistical errors generally decrease with

√
N . Additionally, the error

estimate of the periodicity is inversely proportional to the height the pattern. These clear
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dependencies make it possible to parametrise the estimates of the errors for later use such as
in figure 3.9. The error estimates from the simulation are now compared to the experimental
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Figure 3.8.: The performance of the Rayleigh test is estimated with simulated datasets for
different segment heights and particle numbers. The error estimates generally decrease
with the square root of the particle number. The error of the periodicity is inversely
proportional to the height of the pattern, which is the direction of the grating vector.
The error of the rotation, however, shows a very low dependence on the height.

data via subdivision of these datasets. For data free of systematic errors, one expects that,
when the data is divided into smaller subsets, the results on the subsets are within the now
increased statistical error limits of the other segments. Figure 3.9 depicts the results of this
segmentation analysis for the moiré (left) and the contact pattern (right). The data of each
pattern has been divided in up to three segments. Due to the longish extent of the fringe
patterns, the datasets are subdivided into shorter segments, which is visualised on top of
figure 3.9. For each segment, the Rayleigh test is applied to determine orientation angle and
periodicity. The error bars are individually estimated using the results from the simulation
(see figure 3.8), thus they depend on the size of the segment and the number of annihilations
within the segment. For both patterns, the result on the upper third of the emulsion shows that
the periodicity and the orientation angle deviate much more than the statistical fluctuations.
This deviation is attributed to and consistent with the known inhomogeneous component of
the emulsion’s expansion. As a consequence of this detection of deformation, the data of the
emulsion is restricted to the lower two thirds of the original area, which show only negligible
distortions. The deviation between the remaining two segments, which is used to estimate the
uncertainty on the measured angle and periodicity, corresponds to a displacement uncertainty
between the moiré and contact pattern of ±1.2 µm. To determine the impact of the exclusion
of data on the evaluation, the final result using the full dataset is computed as well and given
in the discussion. One should keep in mind that the use of the full dataset means to ignore
that one can detect distortions with the methods discussed here.
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Figure 3.9.: Segmented analysis: In order to look for systematic effects, the emulsion
areas (moiré and contact) are divided into up to three subsets as indicated on top
of the figure. The Rayleigh test is applied to each subset to determine the patterns’
orientation (periodicity and angle). The error bars are estimated with simulated datasets
(see figure 3.8). The uncertainties increase for smaller segments as the remaining number
of events per segment decreases. As one observes deviating results in the upper third of
the emulsion area for both the moiré and the contact pattern, the analysis is restricted
to the lower two-thirds of the emulsion area.

56



3.3. Fringe Pattern of Light and Antiproton Deflection

For future measurements, the distortion of the emulsion can be overcome with the use of
a photomask as shown in [97] or the use of emulsions on glass substrates instead of plastic
substrates. The most promising route, though, is to directly imprint the reference fringes
of light onto the emulsion, which is photosensitive, before it is chemically developed. The
additional advantage of this approach is that the use of the contact grating then becomes
obsolete as all information is saved in the emulsion.

3.3. Fringe Pattern of Light and Antiproton Deflection

The evaluation of the antiproton data revealed the deflectometer’s fringe pattern, but not
if the pattern is shifted or not. The reference measurement conducted with light provides
the undeflected fringe position because photons are not deflected by external forces7. The
analysis of the measurement with light is discussed in this section. The comparison with
the results on the antiprotons leads to a measure of deflection due to a force. Systematic
limits are discussed and put into perspective with an independent cross-check. Again, there
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Figure 3.10.: Periodicity and orientation angle of the fringe patterns of light determined
with the Fourier transformation. Both datasets show a clear peak.

are two patterns to be analysed in order to determine their periodicity and their orientation.
The contact pattern creates a simple shadow, the two gratings of the moiré deflectometer
act as a Talbot-Lau interferometer if they are illuminated with visible light. The two fringe
patterns of light are recorded using a flat bed ccd scanner with a resolution of 2.7 µm, which
is sufficient to resolve the fringes’ expected periodicity of 40 µm. The evaluation is analogous
to the antiproton analysis, but in contrast to the data retrieved from the emulsion, which is
unbinned, the data here is discrete in space as it is a pixelated figure. Hence, one can simply
use the Fourier transformation instead of the Rayleigh test to determine periodicity and
angular orientation of the fringe pattern. The Radon transformation is used to project the
two-dimensional picture onto one axis under the angle αtest followed by the one-dimensional
Fourier transformation. Figure 3.10 depicts the result of this analysis on the data of the

7The deflection of photons due to gravitational lensing is negligible.
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3. A Moiré Deflectometer for Antimatter

Talbot-Lau area and the contact area. Both patterns of light depict distinct peaks similar to
the ones of the analysis on the antiprotons shown in figure 3.5. The extracted values of the
periodicity and the angle of these two fringe patterns of light are listed in table 3.2. With

Table 3.2.: Key figures of the two fringe patterns of light.

peridodicity [µm] angle [mrad]

moiré 39.948± 0.030 −4.13± 0.08
contact 39.932± 0.023 −7.06± 0.03

the measured orientations of the four two-dimensional patterns (two antiproton patterns and
two patterns of light), one can finally compare antiproton and light measurement. This is
shown in figure 3.11a for the same area depicting ten annihilation stars as in figure 3.6, but
here in direct comparison to the zero-force reference fringes measured with light. The fringes
of light are indicated as a red-coloured shading8. The tracks of the annihilation stars are
highlighted with blue lines. The alignment of the antiproton and light data is conducted as
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Figure 3.11.: Light measurement [89]. To determine a shift due a force, the antiproton
pattern (blue) is compared to the subsequently recorded Talbot-Lau fringe pattern (red)
indicating the force-free fringe position. Inset (a) shows the same area as in figure 3.6.
In this post-processing, antiproton and light measurement are aligned using the patterns
of the contact grating. This is visualised on the right hand side of (b), where the data
has been mapped into an area of 80 × 80 µm2. Here, both patterns (blue and red) are
simple shadows and are aligned to overlay. Without further alignment, the moiré pattern
is compared to the Talbot-Lau pattern on the left hand side of (b). The same data is
shown binned into one period in (c), where the shift of 9.8 µm discloses the presence of
a force being present.

8The data, of which constant offset is substracted, is based on the red channel of the scanner’s RGB data.
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3.3. Fringe Pattern of Light and Antiproton Deflection

follows: Firstly, the coordinates of the annihilation stars are globally rescaled to compensate
for the emulsion’s expansion by multiplying the coordinates with the ratio of the mean values
of the measured periodicities given in table 3.1 and 3.2. Secondly, the entire antiproton data is
rotated and shifted so that the antiproton pattern and the light pattern of the contact grating
overlay. As both patterns of the contact grating are simple shadows they should superimpose
as their phase is not susceptible to forces. This is visualised on the right of figure 3.11b, where
all annihilation points are mapped9 into an area of 80× 80 µm2. Without further alignment,
the pattern of the moiré deflectometer and the Talbot-Lau interferometer can be compared
on the left hand side of figure 3.11b, where a slight shift is notable. The same data projected
onto the vertical axis and binned into one period is shown in figure figure 3.11c and discloses
a mean shift of ∆y = 9.8± 0.9(stat.)± 6.4(syst.) µm. The statistical error results from the
involved fits, but the dominant uncertainty on this mean shift is given by the uncertainty
of the described rotational alignment. The uncertainty of the alignment origins from the
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Figure 3.12.: Distortions in the emulsion detector cause a systematic uncertainty
on the rotational alignment. The measured angle between the antiproton pat-
terns (blue) and the light patterns (red) should be identical, but they exhibit a deviation
of ∆θ = (0.92± 0.27) mrad. To estimate the impact on the result one can examine the
outer bounds of the possible alignments. One can either parallelise the patterns of the
contact grating (a) leading to a minimal shift or parallelise the patterns of the moiré
deflectometer and the Talbot-Lau interferometer (c). The specified shift of 9.8 µm results
from the intermediate alignment (b); the symmetric error interval of ±6.4 µm corresponds
to the limits given by (a) and (c).

fact that one observes a different angle between the patterns in the antiproton and in the
light measurement. The observed difference is ∆θ = (0.92± 0.27) mrad. This difference is
attributed to the distortions in the emulsion detector and it implies an intrinsic systematic

9The mapping is conducted by taking the modulo of the annihilation positions using the measured periodicity.
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error. One cannot know how exactly the emulsion’s distortions occurred but the systematic
limits on the alignment can be estimated by examining the border cases of the rotational
alignment for which the analysis is then repeated. This is depicted in figure 3.12, where the top
row visualises the rotational alignment of the patterns and the histograms in the bottom line
depict the resulting shift between the antiproton and the light pattern. If one assumes that
the deformation of the emulsion can be completely attributed to the area of the moiré pattern
then the alignment is performed in such a way that the two contact patterns are parallel,
which is shown in figure 3.12a. This results in a minimal shift of ∆ymin = 3.7± 0.9(stat.) µm.
The opposite assumption is that the antiproton contact pattern underwent a deformation.
The moiré and the Talbot-Lau pattern are then aligned, as can be seen in figure 3.12c, leading
to a maximal shift of ∆ymax = 16.4± 0.9(stat.) µm. For the value of the mean shift, it is
chosen to repeat the analysis for the intermediate angle and specify the systematic error as a
symmetric interval, on which the limits are given by the minimum and maximum shift. This
leads to the result of ∆ymean = 9.8± 0.9(stat.)± 6.4(syst.) µm.

3.4. Discussion

The energy distribution of the antiprotons has been simulated10 with the Geant 4 toolkit [108],
taking into account the antiproton beam, the geometry of the experiment, the degrading foil
system, and the magnetic fields of the 5 T and 1 T Penning trap magnets along the beam line.
The result is shown in figure 3.13a. The mean energy of the energy distribution corresponds to
a velocity of v = 4.5 · 106 m s−1 and a transit time of τ = 5.6 ns. As the pattern’s shift is given
by ∆y = F/m · τ2, the measured shift of the antiproton fringe pattern corresponds to a force
on the antiprotons of F = 530± 50(stat.)± 350(syst.) aN. The antiproton is charged so that
the deflection could have been caused by the Lorentz force of a static electromagnetic stray
field. An electric field component of ∼ 33 V cm−1 in direction of the deflection or a magnetic
field component of ∼ 7.4 G perpendicular to the deflection would have been sufficient to cause
the observed shift. A stray field of ∼ 10 G from the superconducting magnets of the AEgIS
apparatus were measured in the area of the moiré deflectometer.

With the use of the velocity distribution one can perform an independent cross-check on
a possible shift that does not require any reference or alignment. The moiré deflectometer
is a dispersive device. A constant force deflects particles of different velocities by a different
amount. Without time-of-flight information on the single events, the fringe patterns of the
different velocity classes inevitably mix and smear out the pattern. Consequently, the mere
observation of a fringe pattern with high visibility sets an upper bound on a force being
present. Figure 3.13b shows the expected visibility of the fringe pattern as a function of the
force. The visibilities are determined with a Monte Carlo simulation based on the geometry
of the experiment and the energy distribution. This simulation generates the expected fringe
patterns, of which three examples are depicted in figure 3.13c. The visibility of these fringes is
then determined with the fit of a suitable function. The result of the measurement presented,
which is also plotted in figure 3.13b, is consistent with this simulation. The horizontal error

10The author gratefully acknowledges the help of G. Bonomi, who conducted the simulation of the energy
distribution.

60



3.4. Discussion

y position
0 d/2 d

2154 aN

464 aN

100 aN

force [aN]
101 102 103 104

simulation
measurement

v
is

ib
ili

ty

1

0.8

0.6

0.4

0.2

0

a b c

0

0.1

0.2

0.3

0.4

p
ro

b
a

b
ili

ty

energy of antiprotons [keV]
100 200 300 400 5000

Figure 3.13.: The mere presence of a fringe with high visibiliy sets an upper limit on
the force being present [89]. The moiré deflectometer is a dispersive device: particles of
different velocities are deflected by a different amount. Consequently, the fringe’s visibility
decreases for an increasing force. Inset (a) shows the simulated velocity distribution of the
antiprotons. This results from a Monte Carlo simulation using the Geant 4 toolkit [108]
and is a courtesy of G. Bonomi. Based on this velocity distribution, the expected fringe
visibility as a function of the force can be determined and compared to the visibility
and force measured (b). This represents an independent cross-check requiring no light
reference. Inset (c) depicts three exemplary fringe patterns.

bar is the sum of the systematic error and the statistical error of one sigma. The vertical
error bar of the visibility is determined with a resampling technique (see the footnote in
section 3.2.2). A force of only 10 fN decreases the visibility below 10 %. For the same reason,
one can exclude the possibility that the fringe pattern was deflected by more than one period
because the visibility would have been significantly reduced. Note that this indirect approach
cannot determine the sign of the deflection and only sets upper limits as the visibility can
be reduced due to other reasons.

To quantify a possible bias caused by the selection process described in section 3.2.3,
the entire analysis on the phase shift is repeated without excluding any events from locally
distorted areas of the emulsion – thus ignoring that one can detect local distortions with
the methods presented. The selection process actually introduces a bias as the antiproton
patterns slightly change their orientation, but this bias of 2.1 µm is within the systematic
error bounds and positive, thus the mean shift of the antiprotons moves away from zero if the
full dataset enters the analysis. One can therefore exclude that the observed shift is caused
by the exclusion of data points.

In summary, one can say that the result presented does not represent a precision measure-
ment but is a first experimental step of a moiré deflectometer for antimatter. The systematic
uncertainty given by this realisation does not represent a principal limitation and can be
reduced in future realisations. A new generation of emulsions on glass substrates – a re-
cent development triggered by the results of this work – show less distortions. A major
improvement can be achieved by imprinting the reference fringes of light directly onto the
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photosensitive emulsion. This way the reference fringes and the antiproton annihilations
are saved in the emulsion before the expansion. The direct outcome of such a measurement
would be figure 3.11a without the necessity of the contact grating or any alignment in the
post-processing.

Many aspects of this experiment are of importance for future antihydrogen measurements
as envisioned by the AEgIS collaboration. When using antihydrogen it is still the antiproton’s
annihilation being detected, for which the emulsion detector provides a clear, practically back-
ground free signal with a very high resolution. Additionally, the emulsion detector can easily
be scaled up. That makes it compatible to geometries described in the AEgIS proposal [28].
Gravity is a force that is much smaller than the 500 aN reported here. The improvement in
sensitivity required to measure the gravitational acceleration of antihydrogen is about ten
orders of magnitude – which at first glance may seem inaccessible. This gap results mainly
from the ultra short transit time of τ = 5.6 ns of the 100 keV antiprotons. One can easily see
how the device can reach a sufficient sensitivity to measure gravity: The minimal detectable
acceleration of the moiré deflectometer is given by

amin =
d

2π V τ2
√
Ndet

. (3.3)

It is inversely proportional to the square of the transit time. The reduction of the antihydro-
gen’s speed to v̄ = 500 m s−1 corresponds to an improvement of the sensitivity of eight orders
of magnitude. An additional improvement of three orders of magnitude can be achieved by
increasing the distance between the gratings from 25 mm to 1 m. The expected shift due
to gravity of such a beam (v̄ = 500 m s−1 and L = 1 m) is about 40 µm. This means that
the expected shift due to gravity in this future device is comparable to the shift detected in
the measurement presented here. An additional lesson learned from this measurement is the
importance of the new, absolute referencing technique based on Talbot-Lau interferometry
with light. It provide the means to determine a shift without time-of-flight information on the
single particles. It also has the potential to generate the required reference when one wants to
connect data from different runs – as it will be the case for the future gravity measurement,
during which the experiment will accumulate data for several weeks.

The minimal detectable acceleration in equation 3.3 indicates that a smaller grating period
is favourable to increase the inertial sensitivity. This is ultimately limited by the spatial
resolution of the detector, as one needs to resolve the fringe pattern, which has the same
periodicity as the gratings. The following chapter describes a new method using an additional
grating in the plane of the detector and an additional vertex reconstructing detector. This
approach which will show that this principal limitation can be overcome while making efficient
use of the particle statistics.
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The 50-50-90 rule: Anytime you have a 50-50
chance of getting something right, there’s a
90 % probability you’ll get it wrong.

(Andy Rooney)

4. On the use of a third Grating

Two different approaches can be used to detect the fringe pattern of a moiré deflectometer or
an interferometer and to measure its phase. The first method is to directly resolve the pattern
with a position sensitive detector; the second one is to probe the fringe pattern with a third
grating followed by a detector with no spatial resolution. The optimal choice varies from
application to application and there are countless examples of both solutions. This section
discusses a new detection scheme and a suitable evaluation based on a maximum-likelihood
estimator to show that one can efficiently use the particle flux with a three grating system.

To spatially resolve the fringe pattern one requires a position sensitive detector with a
resolution considerably smaller than the grating period. For a given detector system this
sets a lower limit on the grating periodicity. An integrating detector, meaning a detector
whose resolution is insufficient to resolve the pattern but still measures the arrival time of
the particles, in combination with a third grating is less complex, however, it comes at the
cost of reduced flux as the last grating absorbs on average 1 − η of the beam’s particles,
with η being the grating’s open fraction. Thus, the majority of the flux does not pass the last
grating and does not reach the detector. Typically the third grating is mechanically moved
to scan the fringe patten, however, neutron interferometers [92,109] made of single crystals
serve as excellent examples of this not being an absolute necessity. This will be shown to
work for antihydrogen (or antiprotons) as well. Experiments with antimatter are in general
more challenging than experiments with matter. Nevertheless, figure 4.1 shows that the use
of antimatter opens possibilities to obtain information about the system that are unavailable
in a matter based experiment. An antiproton stopping in the material of the third grating
annihilates. The emerging pions (red tracks) can be reconstructed by a particle tracking
detector that surrounds the gratings. The position of the annihilation vertex is determined
by extrapolating the pions tracks back to a common point of origin. By reconstructing the
annihilation vertex it can be determined if the particle passed through the third grating or
stopped within it. In this approach, the statistics of the particles hitting the last grating
is not lost but in the contrary provides a complementary output (red tracks) to particles
that make it through the last grating (green tracks). A tracking detector based on the
scintillation of charged particles as they traverse plastic optical fibres has already been built
for the production trap region of the AEgIS apparatus and would be well suited for this
application [110]. The design of this existing detector could straightforwardly be adapted to
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Figure 4.1.: Proposed detection of antiprotons being stopped by a third, scanning grating
(red tracks). A third grating reduces the flux of particles that make it to the spatially
integrating detector thus reduces the available statistics. Antiprotons however leave a
noticeable trace as the annihilation point can be reconstructed by detecting the emerging
pions. These events provide a secondary output with a complementary signal.

match the requirements of this method. The following section details a method by which a
comparison of the count numbers of transmitted and stopped atoms can be used to measure
the gravitational acceleration of antihydrogen atoms. The performance of this method is
tested with simulated data sets. For simplicity, the following derivation and simulations focus
on the case of a moiré deflectometer. One must stress that the method described in the
following can be equivalently applied to a device in a wave regime as long as the probability
density function or the shape of the expected fringe pattern is known.

4.1. Coin Toss

For a single antihydrogen atom passing the moiré deflectometer, the following information
is acquired: First of all one knows if the atom made it through the third grating or not.
Additionally, for a pulsed source one knows the time-of-flight of this atom. The grating
position φ can be independently measured, for example with Talbot-Lau interferometry using
light. The binary character of the first information makes one think of a coin toss, where the
result is either heads or tails, with p being the probability of heads for a single throw. The
repetition of n throws resulting in k times heads is known as the Bernoulli process where the
probability of the outcome is given by

L(p) =

(
n

k

)
pk (1− p)n−k . (4.1)
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4.2. Probability Function for a Maximum-Likelihood Estimator

For a coin with unknown ‘fairness’ p, the result of a series of tosses can be used to derive an
estimator p̂ by maximising L(p), leading to the intuitive result of

dL

dp
= 0→ p̂ =

k

n
, (4.2)

which is a text book example [111, 112] of a maximum-likeliness estimator (MLE). In the
following, such an estimator is derived for a three grating system.

4.2. Probability Function for a Maximum-Likelihood Estimator

For a device as seen in figure 4.1, the probability of passage pp,j of the jth antiproton is not a
constant like for the coin toss, but a periodic probability function that can be approximated
to first order to

pp,j = A0 +A1 · cos

(
2π

d

(
φj + g τ2

j

))
, (4.3)

with the grating period d, the last grating’s position φj , the time-of-light τj = L/vj and
gravity g. The probability of the particle being stopped follows as ps,j = 1 − pp,j . The
probability of the ensemble in which the particles 1 . . . k pass and k + 1 . . . n are stopped is
given by

L ∝ pp,1 · . . . · pp,k · ps,k+1 · . . . · ps,n , (4.4)

where g is the only free parameter. To evaluate this function it is convenient to apply the
logarithm on both sides to circumvent the numerical difficulty of multiplying many very small
numbers. As one is only interested in maximising L(g) and the logarithm is monotone for
positive numbers, this does not represent a constraint. If L(g) shows gaussian behaviour in
proximity of the maximum, its logarithm has parabolic shape to which

log(L(g)) ≈ C1 + C2 · g + C3 · g2 , (4.5)

can be fitted to determine the parameters Ci. Equation 4.5 directly provides an estimate
of the gravitational acceleration and its error. The latter is given by the curvature of the
parabola [112]:

ĝ ± δĝ = − C2

2C3
±
√
− 1

2C3
. (4.6)

4.3. Performance on Simulated Data

The maximum-likelihood estimator is tested in the following with simulated data sets. The
configuration of this Monte Carlo simulation is chosen to be somewhat realistic in terms of
what kind of moiré deflectometer could be built to date. The parameters of the antihydrogen
beam reflect the performance one hopes to achieve with production scheme envisioned by
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4. On the use of a third Grating

the AEgIS collaboration. The grating’s periodicity and thickness is set to 40 µm and 100 µm,
respectively. The diameter of the gratings is 100 mm and the open fraction η is 30 %. This
corresponds to the parameters of gratings we have at our disposal and are the ones used
for the antiproton measurement (see chapter 3). The distance between the gratings is set
to L = 600 mm leading to a total length of the deflectometer of 1.2 m. The starting point and
the velocity of the antihydrogen atoms in three dimensions are randomised. For this, the radial
temperature of the antihydrogen atoms is assumed to be 100 mK before being accelerated
towards the deflectometer to a uniform distribution between 200 m s−1 and 600 m s−1. The
trajectories from the starting point towards the first grating, which is placed at a distance
of 900 mm, are determined to eliminate the particles that hit a rod of this grating. For the ones
passing the first grating, this procedure is repeated until the third grating is reached. A single
simulation consists of up to 1000 detected particles. The maximum-likelihood estimator
is then applied to the simulated data set. Smaller periodicities of 20 µm and 10 µm are
considered as well to investigate the MLE’s dependence on the grating period. For each
configuration, the simulation and the MLE is repeated 1000 times in order to investigate
the statistical performance. One should note that the probability functions need to match

probability density function

phase

p
ro
b
a
b
ili
ty

0 d/2 d
0

0.2

0.4

0.6

0.8

1

pas
sed

stopped

Figure 4.2.: Simulation to determine the coefficients Ai of the probability functions pp
and ps.

Table 4.1.: The coefficients Ai for the probability function 4.7 for different periodicities d
show little variation as the aspect ratio between periodicity to thickness of the grating
is kept constant.

40 µm 20 µm 10 µm

A0 0.278 0.278 0.278
A1 0.236 0.239 0.236
A2 −0.017 −0.015 −0.017
A3 −0.004 −0.003 −0.003

the actual experimental configuration. For instance the aspect ratio between a slit’s opening
and the grating thickness can not be ignored as the grating’s slits act as tunnels which
stop more particles than a infinitesimal thin grating. This effect is increased when reducing
the periodicity while keeping the thickness constant. The probability function are therefore
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determined to higher order m = 4 with

pp,j = A0 +
m∑
i=1

Ai · cos

(
i · 2π

d

(
φj + gτ2

j

))
(4.7)

for every different periodicity d using the Monte Carlo simulation. Figure 4.2 shows the
resulting signals of the particles passing the last grating and the one being stopped as
function of the last grating’s position. For this evaluation the aspect ratio of the gratings
is kept constant leading to comparable coefficients Ai which are given in table 4.1. The
evaluation’s first step is to compute log(L(g)) for a wide parameter scan of

gtest = [−1000 m s−2, ..., 1000 m s−2] . (4.8)

The exemplary result of a single run (d = 40 µm and Ndet = 1000) in figure 4.3 shows a
distinct maximum around the nominal value of g = 9.81 m s−2. The parabolic shape in close
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Figure 4.3.: The parameter scan on gtest = [−1000 m s−2, ..., 1000 m s−2] on an exemplary
simulation with a 1000 detected particles shows a characteristic maximum. The close-up
views show that in proximity of this maximum the result of the maximum-likelihood
estimator can be approximated by the parabolic function 4.5. The maximum and the
curvature are estimates of g and its error, respectively.

proximity of the peak indicates that the estimator itself distributes approximately normally.
Following equation 4.6, the position and curvature of the peak deliver single estimates of g
and its error δg. To study the statistical behaviour of the estimates, the simulation is repeated
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4. On the use of a third Grating

a thousand times for the three grating periods 40 µm, 20 µm and 10 µm. Figure 4.4 shows the
result of these simulations, each consisting of thousand detected particles. The top row depicts
histograms of the estimates ĝ for the three grating periodicities, the bottom row shows the
estimates of the corresponding error δĝ. The estimates of g distribute normally and centre
on the nominal value of the gravitational acceleration g = 9.81 m s−2 which is indicated as
vertical black line. The introduced bias can been seen to be much smaller than the variance.
Additionally, one can see that a smaller grating period significantly reduces the variance of
the estimator and therefore improves the performance. The single estimates of the error δĝ
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Figure 4.4.: The top row shows the variance of estimator of g, the bottom row the variance
of the estimator of δg for a 1000 simulations each. The estimators show a low bias as the
mean of ĝ centres on the nominal value of g (vertical black line). Likewise, the estimator
of the error centres on the standard deviation of ĝ drawn above. The value of g and its
error determined from a single measurement appear to be appropriate estimates.

should centre on the variance obtained when repeating the simulation and the subsequent
estimation of g, which is indicated with the curved arrow. This is fulfilled to a high degree
even though one sees a couple of cases for which the error is slightly overestimated.

This evaluation is repeated for varying numbers of detected particles. The results are
depicted in figure 4.5, which shows the relative error δĝ/g as function of the number of
detected particles Ndet. The data points (a, b, c) denote the data shown above in figure 4.4.
The error appears to be decreasing with

√
Ndet and is proportional to the grating period. To

put these results into perspective, they are compared to the minimal detectable acceleration
(equation 2.61) with a visibility V of one, which represents the ultimate limit that can be
reached

amin =
d

2π V τ2
√
Ndet

. (4.9)

The method describes here comes close to this limit. The major reason for not reaching the
shot noise limit is the reduced visibility of the two probability functions pp,j and ps,j , which
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Figure 4.5.: The standard deviation of the estimation of g for an increasing number of
detected particles and different grating periodicities. Each point results from the variance
of a thousand simulations. The error decreases with the square root of the number of
atoms detected Ndet and is inversely proportional to the grating period. The black solid
line denotes the corresponding shot noise limit amin. For exemplary points (a) to (c), the
variance of the estimation of g and its error δg are shown in detail in figure 4.4.

results mainly from the opening fraction of the gratings. The expected visibility of both
signals as a function of the grating’s open fraction η is shown in figure 4.6a. High visibility is
attained at small open fractions but the transmitted flux increases with η2. A compromise is
found [38] at open fraction of 30 %, which is the value used here. The signal’s visibility for the
particles passing the last grating is 83 %, for the ones being stopped it is 31 %. The reduced
visibility of the second channel can easily be understood from the geometrical constraints
which are depicted in figure 4.6b: The gratings’ single slits with an open fraction η restrict
the particle trajectories of an uncollimated beam. The shape of the resulting fringe can be
approximated by a trapezium. Therefore, the maximum transmission through last grating
is limited to about 50 %. At this point, the other half of the flux is being stopped by the
last grating, which means that the last gratings always absorbs at least half of the flux. It
is easy to convince oneself that for a sufficiently small open fraction, the last grating can be
positioned to absorb the complete flux. Therefore, the signal’s visibility of the atom being
stopped is limited to Vmax = (1− 0.5)/(1 + 0.5) ≈ 33 %.

One can conclude that a three-grating device can make efficient use of the particle flux
and deliver reliable results with less than a thousand detected particles. The premise is that
the particles being stopped are detected with an enclosing detector and that the probability
functions can be determined. This approach overcomes a significant limitation of the AEgIS
two-grating design, whereby the grating period can not be less than the resolution of the
spatially resolving detector. The statistical error is proportional to the grating period of
the gratings, but it can not be reduced any further in a two-grating system as the detector
needs sufficient resolution to resolve the fringe pattern. With the use of an additional third
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Figure 4.6.: (a) The antihydrogen atoms passing the last grating and the ones being
stopped by it generate two complementary signals of which the visibility depends on the
grating’s open fraction η. The total transmission of the two gratings is approximately η2.
The two dots indicate the expected value for the open fraction of 30 % used in the
simulation. (b) The maximal transmission through a slit of the third grating is limited
due to geometrical constraints to approximately 50 %, thus the signal’s minimum of the
atoms being stopped can not be lower than 50 %. The signal’s visibility of the atoms
being stopped is consequently limited to V = (1− 0.5)/(1 + 0.5) ≈ 33 %.

grating, the performance is only limited by the grating period - and therefore by what grating
period one can realise. This may allow for a significant improvement over the antihydrogen
deflectometer as originally proposed [28] for the AEgIS experiment.
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4.4. Dispersion and Symmetry of a Three-Grating System

4.4. Dispersion and Symmetry of a Three-Grating System

The approach of a three-grating system described here does not require the last grating to
move or to scan the fringe pattern. For the simulations described above, the grating was set
to a fix position of φ = d/4. But the balance of these count numbers depends on the time-
of-flight, a consequence of the moiré deflectometer being a dispersive device. It is therefore
the broadness of the velocity distribution that causes the single absolute maximum of L(p)
to emerge. Figure 4.7 shows a broad (grey) and monochromatic (black) velocity distribution
and the corresponding values of L(p) for gtest = [−60 m s−2, ..., 60 m s−2]. A monochromatic
beam causes periodic solutions as one can not know by how many periods the beam has been
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Figure 4.7.: The unambiguousness of the maximum-likelihood estimator’s single peak
arises solely from the broadness of the velocity distribution and the moiré deflectometer
being a dispersive device. Due to the sinusoidal character of the MLE, a monochromatic
beam results in periodic solutions with ∆g = d/τ2 because one can not determine how
many periods the beam has been deflected. Identifying the right peak in this case is
impossible.

deflected. This expresses itself in L(g) as one adds up trigonometric functions of the same
periodicity for a fixed value of τ . The periodicity of these solutions is simply given by a shift
of the fringe pattern by a single period d, for the example given it results in

∆g τ2 = d⇒ ∆g =
d

τ2
=
d v2

L2
≈ 23.8 m s−2 . (4.10)

A broad velocity distribution is therefore favourable. Furthermore, the above does not mean
that the grating’s position has to be held for the duration of the measurement. The algorithm
allows to input an individual position φj at the time of the jth event, for example caused by
drift as long as this drift is independently measured with light. On the other hand certain
positions are to be avoided for the reason described in the following. Figure 4.8 shows a single
simulation of 1000 antihydrogen atoms being detected, but repeated with the last grating
placed at four different fixed positions φi. The openings of the three gratings being in line
(see inset (a)) corresponds to φ = 0. As the deflectometer is then axis-symmetric along the
horizontal plane, one cannot distinguish between up and down. Consequently, L(p) becomes
symmetric as well (see figure 4.8) and a second maximum emerges at −g. The same occurs
for φ = d/2 as shown in (c). This effect is highly suppressed when breaking the symmetry.

71



4. On the use of a third Grating

L(p) is shown for the intermediate positions φ = d/4 and φ = 3d/4 for which negative g is
even the absolute minimum. For the first attempt to measure the gravitational acceleration
of antihydrogen, it is therefore required that some of the data is taken while the symmetry
of the moiré deflectometer is broken, so that the sign of g is unambiguously determined.
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Figure 4.8.: The third grating’s position φ during the measurement is of special interest.
(a) to (d) show the parameter scans on gtest for the identical simulation, but with different
grating positions φ. If the grating position is symmetric ((a) and (c)), one can not
distinguish a beam falling upwards or downwards as the parameter scan is symmetric
as well, even though the absolute value of g can be determined. To determine the sign
of g, it is therefore necessary that a portion of the data is taken with the last grating
positioned so that the symmetry is broken ((b) and (d)).

4.5. Discussion

The AEgIS proposal foresees a two-grating design in which the fringe pattern is resolved with
a spatially resolving detector. The idea is to use a combination of an emulsion detector and
a silicon strip detector. The emulsion detector provides the spatial resolution and the silicon
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detector measures the arrival time of the antihydrogen atom. While this ‘hybrid’ detection
scheme, if shown to work, certainly acquires more information, it does not seem to contain
significantly more phase information, however, it significantly increases the complexity of the
device and the mode of operation. The emulsion detector needs to be replaced from time to
time to be developed and analysed. Additionally, the use of an emulsion detector sets a couple
of mechanical constraints. For instance it cannot be used at 4 K or in ultra high vacuum. On
the other side the emulsion detector provides a nearly perfect particle identification what
is a great advantage. The ongoing efforts in the collaboration will show if this approach
can be realised but it appears to be worthwhile to consider the use a three a three-grating
device with an enclosing detector as discussed in this chapter. This may allow for a paradigm
change on approaching the measurement of the gravitational acceleration of antihydrogen
as it sets no principal lower on bound the grating’s periodicity in use while making efficient
use of the slim antihydrogen statistics. One is therefore free to reduce the periodicity to
increase the inertial sensitivity of the measurement device. The limit is set than by what
grating periodicity can be realised. The following chapters examine the use of gratings with
significantly smaller grating periods. For the use with antihydrogen having thermal velocities
one inevitably brings the measurement device into the wave regime. As, to the knowledge of
the author, no interferometers for antimatter have been reported yet, an expedient strategy
is to demonstrate such a device in the next experimental step – such as an interferometer for
antiprotons (see chapter 5), for which much higher flux is available at the AD.
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If you are soft on the hardware,
you need to be hard on the software.

(Claude Amsler)

5. An Antiproton Interferometer

This chapter discusses the possibility of realising an antiproton interferometer within the
AEgIS apparatus. The content of this chapter is subject of an internal proposal [113], which
was distributed among members of the AEgIS collaboration to promote this experiment.
The focus of this experiment is to demonstrate that an interferometer for antimatter can be
realised, not to measure gravity.

There is no reason to doubt that antimatter is not subject to the laws of quantum mechanics,
however, an interferometer for antimatter has not been demonstrated yet. Several proposals
for interferometers using antimatter systems exist, some of these with the intent to measure
gravity [30,32,114,115], but demonstrating interferometry with antimatter is by itself of high
interest. Experiments using other kinds of ‘exotic’ matter such as heavy molecules [39,40,116]
receive notable attention. This section examines the possibility to demonstrate the wave-like
behaviour of antimatter by means of a Talbot-Lau interferometer [73,75] using antiprotons.
The experimental requirements seem to be rather manageable. An experimental attempt
can therefore be prepared and implemented on a relatively short timescale in comparison
to experiments with antihydrogen. The major complication with the use of antiprotons is
the fact that they are charged, but interferometers for charged particles were shown to work
(Young’s double slit experiment1 performed with electrons [117]) much earlier than for neutral
matter such as neutrons [92,109,118] or even atoms [34,35,37,79,119–121]. Mach-Zehnder and
Talbot-Lau interferometry using electrons has been demonstrated [78, 122, 123]. An overview
of electron- and ion-interferometry can be found in reference [124]. For interferometry with
atoms and molecules refer to reference [125].

At the same time, an interferometer with antiprotons is a worthwhile intermediate step
toward the measurement of gravity with antihydrogen. A repetition of the experiment with
antihydrogen, when available, should be straightforward and could lead the way towards
the measurement of gravity. One should be aware that a successful demonstration of inter-
ferometry with charged matter heavier than an electron has not been published. A single
result shown in a German PhD thesis [126] in 1997 was not reproduced. The biprism-like

1In fact, the double slit experiment with electrons was voted to be ‘the most beautiful experiment’ by the
readers of Physics World in 2002.

75



5. An Antiproton Interferometer

interferometer used there require a source with high spatial coherence, a difficulty that the
Talbot-Lau interferometer described here circumvents as the first grating generates the spatial
coherence. Still, a group from the University of Tübingen is reactivating the approach of a
biprism using a new type of single atom tip sources [127,128]. An interferometer using even
heavier strontium ions is under development to test coulomb’s law [129].

The following estimations reveal that the two key ingredients for interferometry with
antiprotons are low-energy antiprotons and gratings with very small periodicity. The gratings
under consideration for this experiment are made from silicon nitride membranes with a
thickness of 160 nm and have a periodicity of d = 265 nm, which is a factor 150 smaller than
the gratings used in chapter 3. They have a size of 3× 3 mm2 . Still, they have four times as
many slits. For the use with a charged particle such as the antiproton, the gratings need to
be vapour coated with gold to ensure conductivity.

5.1. Scaling of a Talbot-Lau Interferometer for Antiprotons

Given the energy or the temperature, the antiproton’s velocity is given by

v =

√
2E

m
or v =

√
8 kb T

πm
(5.1)

and the de Broglie wavelength follows as

λ =
h

p
=

h

mv
=

h√
2mE

. (5.2)

The mean energy and therefore the de Broglie wavelength of the particles defines the length
of the interferometer since the distance between two gratings is matched to the Talbot length

LT =
d2

λ
=
mv d2

h
=
d2
√

2mE

h
. (5.3)

The Talbot length denotes the distance where a first rephasing of the pattern can be observed
and is therefore the smallest possible length of a Talbot-Lau interferometer. The time of
flight τ between two gratings follows as

τ =
LT

v
=
md2

h
. (5.4)

Note that τ is independent of the velocity since the interferometer’s length equals the Talbot
length, which scales linearly with the particles velocity. Due to its charge, the antiproton
is susceptible to electromagnetic fields. These fields can reduce the visibility (as previously
observed in the antiproton measurement in chapter 3) or even completely smear out the
interference pattern. One way to estimate this effect is to determine the force required to
shift the pattern by one grating period. This ‘critical’ force Fcrit follows from

d
!

= aτ2 =
Fcrit

m
·
L2
T

v2
=
Fcrit

m
· d

4m2 v2

v2 h2
, (5.5)
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mean p̄ energy 100 eV 1 keV 10 keV

mean velocity 1.4 · 105 m s−1 4.4 · 105 m s−1 1.4 · 106 m s−1

de Broglie wavelength 2.9 · 10−12 m 9 · 10−13 m 2.9 · 10−13 m
Talbot length 24.4 mm 77.2 mm 244 mm
time of flight 176 ns 176 ns 176 ns
critical force 1.4 · 10−20 N 1.4 · 10−20 N 1.4 · 10−20 N

critical electrical field 0.089 V m−1 0.089 V m−1 0.089 V m−1

critical magnetic field 6.41 mG 2.03 mG 0.64 mG
min. det. acceleration 1.4 · 106 m s−2 · 1√

N
1.4 · 106 m s−2 · 1√

N
1.4 · 106 m s−2 · 1√

N

Table 5.1.: Estimates using an antiproton beam and the grating constant d = 265 nm.

which can be rewritten as

Fcrit =
h2

md3
. (5.6)

This result is quite interesting. The smaller the grating period, the smaller the interferometer’s
sensitivity to stray fields! Note that there is no energy dependence – the grating period is
the only parameter one can tune for a given particle. With the Lorentz force

~F = e ·
(
~E + ~v × ~B

)
(5.7)

one finds

| ~Ecrit| =
h2

emd3
and | ~Bcrit| =

h2

e v m d3
, (5.8)

where only absolute components are considered. The minimal detectable acceleration for a
given visibility V and number of detected antiprotons Ndet is given by

amin =
d

2π V τ2
√
Ndet

=
h2

2π V m2 d3
√
Ndet

. (5.9)

Table 5.1 gives an overview of estimates derived for a variety of antiproton energies be-
tween 100 eV and 10 keV using a grating periodicity of 265 nm. The de Broglie wavelengths
are comparable to the ones observed in experiments using heavy molecules (compare to [40]).
The Talbot length and therefore the size of the device is in the order of tens of centimetres,
which gives the impression that such a device can be mechanically realised rather easily. The
critical force is four orders of magnitude smaller than the force observed with the antiproton
moiré deflectometer (see chapter 3). But the critical force of 1.4 · 10−20 N is still rather large
– which makes the interferometer less susceptible to stray fields. As a comparison, a single
charge would need to be placed as close as 130 µm to induce a force of that magnitude.
The corresponding critical fields have a magnitude that can commonly be achieved through
dedicated shielding. Section 5.4 focuses on the susceptibility of the interferometer to external
fields and to the inner beam interaction, i.e. the antiprotons’ mutual repulsion.
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5.2. Extinction Efficiency of a Thin Silicon Grating

For gratings as thin as 160 nm it is not obvious that an antiproton beam of high energy
stops and consequently annihilates within the material of the grating. A high extinction ratio
is a requirement for the grating to act as a pure amplitude grating. Figure 5.1 shows the
result of a Monte Carlo simulation using the Geant 4 [108] toolkit. It depicts the fraction
of antiprotons passing through a silicon foil of 160 nm as function of the antiproton’s energy.
Above 10 keV, the grating is practically transparent. From this simulation it seems safe to
design the experiment for a mean energy around 1 keV.
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Figure 5.1.: Geant4 [108] simulation showing the fraction of antiprotons passing through
a silicon membrane of 160 nm as a function of the antiproton’s energy. At energies
below 3 keV, the grating acts as a true transmission grating as practically all antiprotons
stop within the material. At energies above 10 keV the grating is transparent. Courtesy
of G. Bonomi.

5.3. The Fringe Visibility is the Signal

A possible design of an antiproton interferometer for 1 keV is shown in figure 5.2. When using
gratings with submicron periodicity, directly resolving the fringe pattern is not possible with
available technology. Consequently, the interferometer is a three-grating design, where the last
grating is used to probe the fringe pattern. Each grating is placed on a commercial actuator.
Two of the actuators are goniometers, whose pivot points are outside the actuators. The
third one is a linear actuator which can scan the grating vertically. The rotational alignment
between the gratings and the phase can therefore be remotely adjusted. The base plate has a
half-round shape so the interferometer fits inside a µ-metal tube for magnetic shielding. The
attainable flux of antiprotons at the AD is much higher than for the envisioned antihydrogen
production. One can certainly use an enclosing detector as discussed in chapter 4 to profit
from the entire statistics. This interferometer could then be used to test MLE and study the
systematics of this approach. But as the flux of antiprotons is high one can simplify the device
by focussing on the transmitted antiprotons. These can be detected with a silicon detector
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grating

goniometer

linear actuator

Figure 5.2.: A possible design of an interferometer for 1 keV antiprotons: The three
gratings are placed on commercial actuators – two goniometers for rotational alignment
and one linear actuator for scanning. The half-round base allows the use of a cylindrical
magnetic shield as shown in figure 5.5.

placed behind the third grating. If the last grating is tilted with respect to the antiprotonic
fringe pattern (see figure 5.3), the resulting moiré fringes can have macroscopic dimensions
as the period of the moiré pattern is given by

dmoiré =
d

2 sin (α/2)
. (5.10)

Tilting the last grating by a 100 µrad results in macroscopic fringes separated by about a
millimetre which can be resolved with a detector having two-dimensional spatial resolution.
The visibility of the moiré fringes is equal to the visibility extracted by scanning the third

+ =

antiproton

fringes
tilted 3rd

grating

macroscopic

fringes

3 mm

Figure 5.3.: Tilting the third grating circumvents the necessity of scanning it. Assuming
sufficient flux, the fringe pattern could be recorded with a single antiproton bunch. The
resulting vertical moiré fringes can have a ‘macroscopic’ extension (≈ 1 mm), which can
be resolved with a spatially resolving detector (2D) behind the third grating. (Additional
moiré beating can be observed when reading this document on a computer screen.)

grating. The important experimental advantage when tilting the grating is that one can
potentially record the fringe pattern with a single antiproton bunch - making vibrations
and drift irrelevant. The premise is that sufficient flux can be attained to detect around a
hundred antiprotons per bunch – which is sufficient to detect a possible fringe pattern with the
Rayleigh test (see section 3.2.1). Otherwise, one must use several bunches and incrementally
move the third grating to record the fringe pattern. If low flux demands to accumulate data
over several AD cycles, the phase difference between the subsequent measurements cannot
be ignored.
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Figure 5.4.: Expected visibilities as a function of the antiproton energy for different open
fractions. The grating separation is fixed to 77.2 mm and corresponds to a single Talbot
length for 1 keV antiprotons. Measuring the visibility of the fringes as a function of the
antiproton energy is a well established way to demonstrate that the device operates in
the wave regime (solid lines) because one expects no energy dependence of the visibility
in the classical regime (dashed lines): The lower part shows representative intensity fields
for an open fraction of 30 %: (a) Grating separation equals three times the Talbot length.
(b) Grating separation equals twice the Talbot length. (c) Grating separation equal to
the Talbot length. (d) Exemplary energy with low visibility. (e) For increasing energies
(decreasing de Broglie wavelength) the pattern resembles classical trajectories – visibility
comes back – a classic Moiré deflectometer. Note that this regime is not observable as
the gratings are completely transparent for antiprotons of this energy.
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5.3. The Fringe Visibility is the Signal

It is important to realise that the visibility itself is the figure of merit. One has to demon-
strate that the device actually operates in the wave regime as one can also observe fringes in
the classical regime (see discussion in chapter 2). The apparent ‘smoking gun’ is to measure
the visibility for different antiproton mean energies. One expects no dependence for a classical
device in contrast to a Talbot-Lau interferometer, for which a distinctive rephasing must be
observable. For thermal atomic or molecular beams it is typically rather difficult to change the
kinetic energy and therefore to tune the de Broglie wavelength. As a consequence, these ex-
periments tune the grating separation (see reference [36]), thus increase the physical distance
between the gratings. The mean energy of a charged particle beam can easily be tuned, for
example by reaccelerating the particles. This represents an important advantage, as one is not
required to change the grating separation during the measurement. The signal one is looking
for is shown in the upper part of figure 5.4, assuming a device with a fixed grating separation
of 77.2 mm, which corresponds to one Talbot length for 1 keV antiprotons. The expected
visibility of the Talbot-Lau interferometer as a function of the antiproton’s energy is depicted
as a solid line. It is computed with equation 2.48 for different open fractions of the gratings
(depicted as solid lines). The visibility of the corresponding moiré patterns, thus ignoring the
wave nature of the antiproton, are determined using equation 2.54 and are plotted as dashed
lines. The clear distinction between wave-like and classical description arises from the fact
that the former depends on the antiproton energy, while the latter does not. The lower part
of figure 5.4 depicts the corresponding intensity fields, which are known as ‘Talbot carpets’,
for several energies using an open fraction η of 30 %. The uncollimated wavefronts enter from
the left and pass the first and second grating. The resulting intensity field is probed at the
position of the third grating. In the insets (a, b, c) of figure 5.4 the Talbot length equals a
third, a half and a full grating separation of L = 77.2 mm, respectively. As expected, these
show high visibility. An example of very low visibility is given in (d). Toward high energies
(e), all lines approach the classical expectation with no further rephasing being observed –
a form of Bohr’s correspondence principle. With the gratings foreseen for this experiment,
the classic limit can not be observed as the gratings become transparent for energy higher
than 4 keV.

It is important to note that if an integer multiple of the Talbot length equals the grating
separation, the resulting visibility of the quantum and classical descriptions are identical.
Consequently, one cannot distinguish between the two if this condition is met. For low open
fractions, the Talbot-Lau fringes’ visibility reaches upmost the value of the moiré deflectometer.
In contrast, at an open fraction of 50 %, the classical visibility vanishes completely. Therefore,
an observed fringe pattern at this open fraction can only result from the wave character of the
antiproton. The open fraction of the grating under consideration is slightly larger than 40 %.
If one is able to measure the visibility from 500 eV to 3 keV, one should observe a broad peak,
with a dip centred at the design wavelength (corresponding to 1 keV). Being able to measure
down to 100 eV, thus showing the scaling of the rephasing, would represent even stronger
evidence that the device operates in the wave regime.
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5. An Antiproton Interferometer

5.4. Susceptibility to External and Internal Fields

To perform interferometry at the envisioned antiproton energy range around 1 keV, a magnetic
shield is required to reduce the residual field between the gratings to below 1 mG. Assuming
a residual field in the AD zone of 10 G, a suppression of at least 104 is necessary. A multilayer
structure of µ-metal can easily achieve 103. The suppression can be improved further with
three pairs of compensation coils – this type of compensation is commonly used in many
experiments. A starting point for good shielding is detailed knowledge of the magnetic field

3 layer magnetic shield

shield end caps

2D detector

interferometer

Figure 5.5.: A possible magnetic shield consisting of 3 cylindrical layers of µ-metal.
The field entering the cylinders through the axial openings of the antiproton beam can
significantly be reduced by adding cylindrical collars to the shield [130]. For a beam with
low divergence, the detector can be placed outside the shield - reducing the influence of
stray fields from the detector.

one starts with. A recommended approach is to measure the magnetic field map in the area of
interest and optimise the shielding’s geometry using dedicated simulation software. Figure 5.5
shows the interferometer in a possible three layer cylindrical shielding. This geometry has
the advantage that the transversal suppression (the one the interferometer is most sensitive
to) is higher than the axial suppression. The inner shield is commonly equipped with with
a demagnetisation coil (not drawn) to increase the permeability. This design including the
shield fits inside a CF 160 vacuum flange. Note that at a level sufficient for the proposed
experiment, the inner conducting shield serves as an electrostatic shield, too.

With increasing antiproton flux, the number of charges within the interferometer increases
and the electrostatic repulsion will tend to smear out the pattern. To estimate this effect, one
can compare the force due to the space charge with the critical force (see equation 5.6). Fol-
lowing the approach described in reference [131], one can assume a continuous, homogeneous
beam with the charge density ρ as shown in figure 5.6. With Gauss’ law

∫
E dA = 1

ε0

∫
ρ dV

follows Er · 2π r l ε0 = ρ π r2 l and thus

Er =
ρ r

2 ε0
. (5.11)

The resulting force due to the space charge expands the beam. The use of Ampere’s
law

∫
B ds = µ0

∫
j dA leads to 2 l B = µ0 j l r and with the current density j = v ρ one
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beam

Figure 5.6.: Geometry of a continuous, homogeneous beam with radius rb and charge
density ρ.

finds the expression

B =
µ0 j r

2
=
µ0 vρ r

2
. (5.12)

The magnetic field acts in the opposite direction of the electrostatic repulsion but is only
significant at high velocities. The link between the electric and magnetic component becomes
apparent with ε0 µ0 = 1

c2
leading to B = β

c Er. Both components are brought together in the
Lorentz force

F = e (Er − v B) =
eEr
γ2

=
1

γ2
· e ρ r

2 ε0
. (5.13)

The charge density ρ is given by the number of antiprotons N and the total volume of the
interferometer2

ρ =
eN

2LT · π r2
b

. (5.14)

As the force on the outer antiprotons is the strongest, one sets r = rb to examine the upper
limit, which leads to

F =
1

γ2
· e2N

4 ε0 LT π rb
. (5.15)

For the energy range in question relativistic effects can be ignored (1/γ2 ≈ 1). The force due
to inner beam interaction for the energy ranging from 100 eV to 100 keV is shown in figure 5.7
in comparison to the critical force. For the envisioned energy range of 1 keV and a hundred
antiprotons within the interferometer this perturbing force is two orders of magnitude smaller
than the critical limit. Following this simplified estimation, recording the fringe pattern with
a single antiproton bunch seem possible and should be the goal of the first experimental
attempt. If space charges turn out to be a limiting effect, one can reduce the flux and increase
the measurement time. This can even be brought to the extreme of single antiprotons passing
the interferometer making space charge effects irrelevant. This is further examined in the
following section, which focuses on the antiproton source. It describes three experimental
realisations of incrementally increasing complexity.

2The total length of the three grating interferometer is twice the Talbot length.
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Figure 5.7.: The force due to space charge effects in dependency on the number of
antiprotons within the interferometer. For the envisioned mean energy of 1 keV and 100
antiprotons, this force is two orders of magnitude smaller than the critical force limit
where the interferometric pattern is smeared out. This means that it might be possible
to record the pattern with a single antiproton bunch if a sufficient flux is reached.

5.5. Antiproton Source

The most minimalistic experimental realisation is depicted in figure 5.8a. The AD extraction
ports have a vacuum separation foil to isolate the vacuum of the decelerator ring from the
vacuum of the experiments. This titanium foil holds atmospheric pressure but is still so
thin, that the vast majority of the antiproton bunch passes it. This allows one to place the
interferometer inside an independent vacuum chamber with an identical foil as an entrance
window. Consequently, the antiprotons pass a short air gap3. The common way4 to decelerate
antiprotons of 5.3 MeV coming from the AD is to place a thin degrading foil into the beam,
which slows down the antiprotons via multiple scattering (compare to the degrading system
described in section 3.1.2). The degrader foil is placed inside the air gap between the two
vacuum chambers. The thickness of the degrader is critical as it affects the antiprotons’ mean
energy. It has the shape of a wedge such that its effective thickness can be tuned by translation
of the foil. The energy distribution after such a degrader is very broad as seen in figure 3.13,
but the AD’s antiproton bunch length of 200 ns is very short. One can therefore envision to
perform a time-of-flight measurement to separate the different velocity classes in the post
selection to determine the individual visibility. A separation of 1 meter between degrading
foil and detector results in a time-of-flight of 2.3 µs for the 1 keV antiprotons. A detector with
temporal resolution in the order of the bunch length or better would imply relative energy
resolution of ∼ 10 %. An important advantage of this approach is that the large background
of particles such as pions coming the degrader foil – most antiprotons annihilate within the

3In the first experiment that succeeded to trap antiprotons [132], the antiprotons travelled several centimetres
through air.

4An exception is the ASACUSA experiment [133] which includes a RF decelerator.
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Figure 5.8.: Possible antiproton sources in order of increasing complexity. (a) Direct
exposure of the interferometer with antiprotons from degrader foil. The velocity classes
are separated via time-of-flight post selection. (b) An electrostatic bender as velocity
selector. The mean energy is selected with the deflecting potential. (c) The antiprotons
are primarily trapped, cooled and subsequently released using the Penning trap of the
AEgIS main apparatus.

foil – have speeds approaching the speed of light. When the slow antiprotons arrive at the
detector, the vast majority of the background is already gone.

A single, additional element placed in front of the interferometer (figure 5.8b) may allow a
better velocity selection. Electrostatic benders [134] consisting of two curved plate electrodes
can be used as a velocity selector. The voltage U applied to the electrodes and thus the
field between the curved plates guides the charged particles on the radius r0 if they have the
matching energy

Ekin =
U r0

2 d
, (5.16)

where d represents the distance between the plates. Faster particles have a larger, and slower
particles a smaller curvature radius and do not pass the exit aperture. The advantage of an
electrostatic bender over its magnetic counterpart, is that electric fields can easily be shielded
and one does not want to place an additional magnet in front of the magnetic shield.

It is interesting to note that neither of the experimental approaches described so far require
the use of the main AEgIS apparatus. This can be seen as an advantage as it reduces
complexity of the measuring apparatus. For example, the vacuum requirements for this
experiment are very low. A vacuum pressure of 10−7 mbar to 10−8 mbar is certainly sufficient
for the interferometer to work. If the interferometer is connected to the AEgIS apparatus,
the vacuum requirements are naturally defined by the latter (≈ 10−11 mbar) and necessitate
a deliberate pumping strategy for the interferometer’s chamber. On the other hand, the
Penning traps and the cooling mechanism implemented in the main apparatus offer a high
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5. An Antiproton Interferometer

level of control over the antiprotons. Using primarily trapped antiprotons (see figure 5.8c),
which are subsequently cooled and released towards the interferometer would create a nearly
monochromatic, tuneable beam. Additionally, a piecewise release of the antiprotons from
the Penning trap allows the reduction of possible disturbing effects such as inner beam
interaction. With a slow release in a time window of 50 µs, which is still faster than most
acoustic vibrations of the interferometer, the antiprotons would spread over a length of 25 m.
This would reduce the number of antiprotons within the interferometer - making space charge
effects negligible. Pion background from the degrading foils is completely removed as the
traps can hold the antiprotons for several seconds.

5.6. Requirements of the Detection System

The spatially resolving detector needs to work in vacuum and cover an area of 3 × 3 mm2.
To resolve three macroscopic fringes (see figure 5.3) with 10 bins per period, a single event
resolution of around 100 µm is sufficient. The detector needs to distinguish antiproton anni-
hilations from background pions and should be able to detect up to a hundred antiproton
annihilations per AD bunch.

The amount of equipment within the interferometric volume (the volume between the
gratings) has to be minimised to what is absolutely necessary. The only indispensable elements
are the gratings and their actuators. The spatially resolving detector does not need to be
placed directly behind the third grating and can even be placed outside the magnetic field
shielding. The maximum distance LD allowed between the last grating and the detector is
limited by the divergence of the antiproton beam as it smears out the pattern. This effect
can be estimated as follows: A total distance of 1 m from the degrader foil to the last grating
and a grating with an edge length of 3 mm result in a divergence of approximately 3 mrad.
The divergence multiplied with the distance between the last grating and the detector needs
to be much smaller than the periodicity of the macroscopic fringe one wants to observe. For
three fringes on the total detector surface (see figure 5.3), the spacing between two fringes
is 1 mm, thus

LD �
1 mm

3 mrad
≈ 330 mm . (5.17)

Placing the detector at one tenth of this distance should insure that the pattern is not smeared
out in the plane of the detector.

5.7. Discussion

Having access to the two key ingredients – slow antiprotons and gratings with extremely
small grating periods – the demonstration of an interferometer for antimatter appears to
be within reach. Several technical aspects need be addressed in more detail, in particular
the detection system. Preliminary tests on the antiproton source and the various detection
systems available within the AEgIS collaboration are needed to identify the best solution.
While this experiment is of interest by itself, many of its aspects are similar to a possible
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5.7. Discussion

measurement with antihydrogen. One should note that the interferometer’s inertial sensitivity
is 2 · 105 times larger than the antiproton deflectometer (smaller gratings ≈ 200, three times
longer ≈ 10 and lower energy ≈ 100). A realisation would therefore represent a significant
leap forward towards the detection of gravitational acceleration of antihydrogen.

As all good things need to be named, the author deems the acronym ‘AtliX’ – Antimatter
Talbot-Lau Interferometry eXperiment – to be an appropriate name.
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All animals are equal, but some
animals are more equal than others.

(George Orwell)

6. Outlook and Conclusion

Much remains to be done to reach the goal of a 1 % measurement on ḡ as envisioned by
the AEgIS collaboration. The two most crucial steps to be taken are the new antihydrogen
production method based on the charge-exchange reaction and the realisation of a cooling
scheme that reaches an antihydrogen temperature below 1 K. The first antihydrogen atoms
produced by this new machine will certainly have a higher temperature; however, one should
use these antihydrogen atoms to lower the direct experimental limit, which is currently set
by the ALPHA experiment [52]. For instance, one could intend to measure the sign of the
gravitational acceleration. The following outlook outlines how such an interferometer could
look like in order to show how methods discussed in the previous chapters increase the
flexibility in designing such an experiment.

6.1. Outlook on Gravity

An emulsion detector cannot be used in the environment of the antihydrogen production trap,
which is placed in ultra-high vacuum at 4 K. However, with a three-grating configuration as
discussed in chapter 4, one is free to place such a device as close to the point of production
as possible. This increases the solid angle and therefore the number of detected antihydrogen
atoms. One could even consider to place the interferometer inside the superconducting magnet
of the production trap, which has a field strength of 1 T. The antihydrogen atom is not
susceptible to absolute fields, but remains susceptible to magnetic field gradients. As this
magnet’s field is axially symmetric, one can expect small transversal gradients on the central
axis of the magnet, but increasing gradients for larger radii. Figure 6.1a depicts how the
gradients of the magnetic field translate into a transversal acceleration of antihydrogen
atoms in the ground state. This figure can be understood as follows: The magnetic field
behind the production trap is computed for the coil configuration of the existing magnet
of the AEgIS apparatus. The hyperfine splitting of ground state antihydrogen is shown in
figure 6.1b as a function of the magnetic field. The two low-field and the two high-field
seeking states experience an opposite acceleration for a given field gradient. This is used
to compute figure 6.1a, which depicts the transversal acceleration on a radius of 6 mm as
a function of the distance z from the production trap. Up to a distance of a 100 mm, the
transversal acceleration is smaller than 2 m s−2; for radii smaller than 6 mm, the atoms
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Figure 6.1.: Magnetic field gradients at the exit of the antihydrogen production trap cause
a transversal acceleration of the antihydrogen atoms. (a) The transversal acceleration
on a radius of 6 mm with respect to the magnet’s central axis is smaller than one-fifth
of the gravitational acceleration for a flight distance of ∼ 100 mm. The acceleration for
smaller radii is even smaller. (b) The hyperfine splitting of antihydrogen induces two
low-field and two high-field seeking states, which experience opposite acceleration for a
given magnetic field gradient. Courtesy of A. Demetrio.

experience an even smaller acceleration due to the magnetic field. Thus, one could consider
this volume (100 mm in length and 12 mm in diameter) for an interferometer and presume
an antihydrogen temperature of 5 K, which is below the temperatures reported by ALPHA,
but 50 times hotter than the temperature AEgIS ultimately envisions to reach. The following
considers the ‘traditional’ antihydrogen production scheme and a production rate that has
been reported to work. The resulting mean velocity at that temperature can be estimated
to v̄ =

√
8 kbT/πm ≈ 325 m s−1. A Talbot-Lau interferometer with a total length of a 100 mm

results in a grating separation of L = 50 mm, which is chosen to correspond to one Talbot
length. This requires a grating period of d =

√
Lh/mv̄ ≈ 8 µm. The critical acceleration at

which the fringe pattern is completely smeared out follows with equation 5.6 to

acrit =
h2

m2d3
≈ 330 m s−2 , (6.1)

which is 30 times larger than the gravitational acceleration. This makes the interferometer
quite robust. However, the mere observation of a high-visibility fringe would limit the ab-
solute value of the gravitational acceleration to a value below this number. From such an
observation one could directly lower the current direct experimental limit [52] by an order
of magnitude without having time-of-flight information or a light reference. The minimal
detectable acceleration for this configuration follows as

amin =
d v̄2

2π V L2
√
Ndet

≈ 65 m s−2

√
Ndet

Ndet=500
≈ 3 m s−2 . (6.2)

One could reach the level at which the systematics due to magnetic field gradients become
significant with 500 detected ground state antihydrogen atoms. Assuming normal gravity,
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a minimal detectable acceleration of 3 m s−2 corresponds to a relative precision of 30 %.
The ALPHA experiment reports to produce 6000 atoms every ten minutes. Without the
acceleration to form a beam, the atoms leave the point of production isotropically and the
number of atoms flying in the direction of the interferometer is given by its solid angle, which
is about 4.4 · 10−3. Due to the open fraction η of the gratings, the fraction of atoms that
passes the first two gratings is given by η2. This results, on average, in 2.4 detectable atoms
every ten minutes. One shift at the AD consists of eight hours of beam time, so that ∼ 500
hits could be accumulated in five shifts.

While this discussion assumes a high temperature and a production scheme that has been
shown to work, it assumes that all atoms are produced in the ground state, which is a simplifi-
cation. In an approach where the interferometer is placed inside the superconducting magnet,
it comes down to how well one understands the magnetic field and the state distribution of
the produced antihydrogen atoms.

6.2. Conclusion

In the course of this thesis, tools from the field of atom optics were explored for their use
with antimatter. The starting point was the moiré deflectometer, a classical device the AEgIS
collaboration plans to use for a measurement of the gravitational acceleration of antihydrogen.
Such a test of the weak equivalence principle represents a challenging experimental goal and
sets high requirements to the antihydrogen source. Any improvement of the inertial sensitivity
of the measuring apparatus reduces these requirements and is therefore of great importance
to make such a measurement feasible. In this context, the extension of this classical tool to
the wave regime, where it is known as Talbot-Lau interferometer, has shown to be a promis-
ing path and allows new, creative solutions to tackle this challenge. In a first experimental
step, the deflection of antiprotons due to an electromagnetic force on the ∼ 500 aN level was
measured with a device that is in the classical regime for antiprotons but in the wave regime
for photons. Even though the sensitivity of this device was too small to measure gravity and
the details of this realisation disclosed systematic errors, this preliminary test demonstrated
three important aspects: Firstly, one can determine the sign of a force without having time-of-
flight information on single events using an absolute reference based on light. Secondly, this
absolute reference may allow the connection of data from different runs, a problem, for which
no other solution has been identified so far. Finally, the mere observation of a high-visibility
fringe pattern sets an upper bound on forces being present. This effect could be used to
reduce the directly observed limits on the gravitational acceleration of antihydrogen.

The work with antimatter complicates many things. Especially the small numbers of
detected events in future antihydrogen experiments will necessitate adequate statistical meth-
ods. Here, the Rayleigh test provides the means for efficient fringe detection. However, it
was shown, that the use of antimatter opens up possibilities that are difficult to access with
experiments based on ordinary matter. The annihilation of the antiproton for instance allows
the unambiguous detection of single events with emulsions, which offer a very high spatial
resolution of ∼ 2 µm. Another example is the proposed detection and evaluation scheme that
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allows the use of a third grating while still making efficient use of the particle flux. This
approach requires the detection of the particles that are stopped by the third grating. For
antiprotons (and antihydrogen), this can be achieved with a vertex-reconstructing detector.

The grating period turned out to be a parameter of great interest. Of all geometrical
parameters it offers the biggest potential to improve the inertial sensitivity of the measur-
ing apparatus. Additionally, it plays a central role in which regime the device operates – a
Talbot-Lau interferometer for antihydrogen based on a three grating configuration may result
in a higher inertial sensitivity than a moiré deflectometer. It would therefore be favourable
to explore the wave regime with antimatter in the next experimental step. In this context, a
Talbot-Lau interferometer for antiprotons appears technically feasible and timely.

One should go for it.
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[69] F. C. Haupert. A Moiré-Deflectometer as Gravimeter for Antihydrogen. PhD thesis,
Heidelberg University, 2012.

[70] H. Filter. Methoden zur Flussbestimmung von metastabilen Argonatomen. Master’s
thesis, Heidelberg University, 2011.

[71] F. Bergermann. Characterization of the Moiré Deflectometer for the AEgIS-Experiment.
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Matter-wave interference of particles selected from a molecular library with masses
exceeding 10000 amu. Physical Chemistry Chemical Physics, 15(35):14696–14700, 2013.

[117] C. Jönsson. Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten.
Zeitschrift für Physik, 161(4):454–474, 1961.

[118] Manfred Gruber, Kurt Eder, Anton Zeilinger, Roland Gähler, and Walter Mampe. A
phase-grating interferometer for very cold neutrons. Physics Letters A, 140(7-8):363 –
367, 1989.

[119] F. Riehle, Th. Kisters, A. Witte, J. Helmcke, and Ch. J. Bordé. Optical ramsey
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[128] G. Schütz, A. Rembold, A. Pooch, and A. Stibor. An ion interferometer for the mea-
surement of the electric Aharonov-Bohm effect. arXiv, 2013.

[129] B. Neyenhuis, D. Christensen, and D. S. Durfee. Testing nonclassical theories of
electromagnetism with ion interferometry. Physical Review Letters, 99(20), 2007.

[130] D. Budker and D. F. Jackson Kimball, editors. Optical Magnetometry. Cambridge
University Press, 2013.

[131] M. Ferrario. Space charge effects. CERN accelerator school, 2003.

[132] G. Gabrielse et al. First capture of antiprotons in a penning trap: a kiloelectronvolt
source. Physical Review Letters, 57(20):2504, 1986.

[133] N. Kuroda et al. A source of antihydrogen for in-flight hyperfine spectroscopy. Nature
Communications, 5, 2014.

[134] H. Kreckel et al. A simple double-focusing electrostatic ion beam deflector. Review of
Scientific Instruments, 81(6), 2010.

[135] J. A. Greenwood and D. Durand. The Distribution of Length and Components of the
Sum of n Random Unit Vectors. The Annals of Mathematical Statistics, 26(2):233–246,
1955.

[136] D. Wilkie. Rayleigh Test for Randomness of Circular Data. Applied Statistics, 32(3):311–
312, 1983.

101





A. Derivation and P-Values of the Rayleigh
Test

This section provides a brief derivation [99–101] of the Rayleigh test and its P-values and can
be regarded as supplementary information to complete its discussion. Let (θ1, θ2, ..., θn) be a
set of n independent realisations of a random variable on a circle C. The null hypothesis H0

(no periodic signal) is tested against the alternative HA (a periodic signal is present):

H0 : p = 0 against HA : p > 0 . (A.1)

p = 0, ..., 1 denotes signal strength [101] of a periodic function fs(θ) over uniform noise, so
that the observed signal can be described as

f(θ) = p · fs(θ) +
1− p

2π
. (A.2)

For p = 1 one observes only the periodic function fs(θ) and for p = 0 one observes only
flat noise. A measure of distance between the resulting function f(θ) and a uniform den-
sity g(x) = 1/2π on a circle is given by the Beran statistics [99]:

Ψ(f) =

∫ 2π

0

(
f(θ)− 1

2π

)2

dθ = p2

∫ 2π

0

(
fs(θ)−

1

2π

)2

dθ . (A.3)

For Ψ(f) follows Ψ(f) → 0 for p → 0 and Ψ(f) = 0 for fs = 1/2π. One can reject the null
hypothesis H0 when Ψ(f) is large [99,101]. A probability density function (pdf) to be tested
can be represented as Fourier series

f(θ) =
1

2π

∞∑
p=−∞

φp e
−i p θ (A.4)

with the Fourier coefficients

φp =

∫ 2π

0
ei p θf(θ)dθ , (A.5)
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which in circular statistics are referred to as trigonometric moments [100]. For these coefficients
follows φ0 = 1 as the distribution is normalised and φ∗p = φ−p. This can be used to rewrite

f(θ) =
1

2π

1 + 2

∞∑
p=1

φp e
−i p θ


=

1

2π

1 + 2
∞∑
p=1

αp cos(p θ) + βp sin(p θ)

 (A.6)

with

αp =
1

n

m∑
i=1

cos(p θi) and βp =
1

n

m∑
i=1

sin(p θi) . (A.7)

Limiting the Fourier series to the first order results in

f1(θ) =
1

2π
[1 + 2α1 cos(θ) + 2β1 sin(θ)] , (A.8)

which allows the evaluation of the integral in equation A.3

Ψ(f1) =

∫ 2π

0

(
f1(θ)− 1

2π

)2

dφ

=

∫ 2π

0

(
1

2π
(1 + 2α1 cos(θ) + 2β1 sin(θ))− 1

2π

)2

dθ

=
1

(2π)2

∫ 2π

0

(
2α2

1 cos2(θ) + 8α1β1 cos(θ) sin(θ) + 2β2
1 sin2(θ)

)
dθ

=
1

(2π)2

(
4π α2

1 + 4π β2
1

)
=
α2

1 + β2
1

π
=
L2

1

π
(A.9)

where

L1 =
√
α2

1 + β2
1 =

√√√√( 1

n

n∑
i=1

cos(θi)

)2

+

(
1

n

n∑
i=1

sin(θi)

)2

is the length of the added vectors vi = (cos(θi), sin(θi)). As one is only trying to maximise L,
normalisation is not critical. Nevertheless, L2

1 is usually multiplied with 2n so the Rayleigh
test is in line [101] with χ2 with 2 degrees of freedom for large n (n > 100). Thus, the Rayleigh
test has the final form:

Z2 = 2nL2
1 =

2

n

( n∑
i=1

cos (θi)

)2

+

(
n∑
i=1

sin (θi)

)2
 . (A.10)
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P−values of the Rayleigh test
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Figure A.1.: The P-value of the Rayleigh test is the probability that the null hypothesis
of no periodic signal being present is true.

The orientation angle and periodicity of the antiproton fringe pattern can be extracted
unambiguously, as clear peaks are visible in figure 3.5. In cases where the presence of a
periodicity or a fringe pattern is in doubt (for example in future antihydrogen measurements),
the corresponding P-values of Z2 can be calculated to estimate the probability of such a
signal. For datasets with more than a hundred events, this is given by

P (Z2) = e−
Z2

2 . (A.11)

For less than a hundred data points one can use the approximation derived by Greenwood
and Durand [135,136] with K = Z2/2:

P
(
Z2
)

= e−K ·
[
1 +

2K −K2

4n
− 24K − 132K2 + 76K3 − 9K4

288n2
−

1440K + 1440K2 − 8280K3 + 4890K4 − 870K5 + 45K6

17280n3

]
. (A.12)
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B. Constants

Constants used in this thesis are listed in the following table.

constant symbol value

Planck constants ~ 1.0546 · 10−34 J s
h ~ · 2π

Boltzmann constant kb 1.3087 · 10−23 J K−1

speed of light c 299 792 458 m s−1

standard acceleration of gravity g 9.806 65 m s−2
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The precise measurement of forces is one way to obtain deep insight into the fundamental

interactions present in nature. In the context of neutral antimatter, the gravitational inter-

action is of high interest, potentially revealing new forces that violate the weak equivalence

principle. Here we report on a successful extension of a tool from atom optics—the moiré

deflectometer—for a measurement of the acceleration of slow antiprotons. The setup con-

sists of two identical transmission gratings and a spatially resolving emulsion detector for

antiproton annihilations. Absolute referencing of the observed antimatter pattern with a

photon pattern experiencing no deflection allows the direct inference of forces present. The

concept is also straightforwardly applicable to antihydrogen measurements as pursued by the

AEgIS collaboration. The combination of these very different techniques from high energy and

atomic physics opens a very promising route to the direct detection of the gravitational

acceleration of neutral antimatter.
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T
he precise measurement of forces between objects
gives deep insight into the fundamental interactions and
symmetries of nature. A paradigm example is the

comparison of the motion of matter in the gravitational field,
testing with high precision that the acceleration is material-
independent, that is, the weak equivalence principle1–4. Although
indirect experimental evidence suggests that the weak equivalence
principle also holds for antimatter5–7, a direct observation for
antimatter is still missing. First attempts in this direction have
recently been reported by the ALPHA collaboration8, who used
the release of antihydrogen from a magnetic trap to exclude the
absolute value of the gravitational acceleration of antihydrogen to
be 100 times larger than for matter. An alternative approach is
followed by the GBAR collaboration9, which is based on
sympathetic cooling of positive antihydrogen ions and their
subsequent photodetachment. One of the specified goals of
the AEgIS collaboration (antihydrogen experiment: gravity,
interferometry, spectroscopy) is the direct detection of the
gravitational acceleration using an antihydrogen beam10,11

combined with a moiré deflectometer12, a device with high
sensitivity for acceleration measurements.

Here, we present the successful realization of such a device for
antiprotons. This has been achieved using slow antiprotons from
the Antiproton Decelerator (AD) at CERN, the technology of
emulsion detectors developed for recent high-energy neutrino
experiments13 and a novel referencing method employing
Talbot–Lau interferometry14,15 with light. The observation is
consistent with a force at the 500 aN level acting on the
antiprotons. This demonstration is an important prerequisite
for future studies of the gravitational acceleration of antimatter
building on an antihydrogen beam.

Results
Moiré deflectometer. The principle used in the experiment
reported here is visualized in Fig. 1a. A divergent beam of
antiprotons enters the moiré setup consisting of three equally
spaced elements: two gratings and a spatially resolving emulsion
detector. The two gratings with periodicity d define the classical
trajectories leading to a fringe pattern with the same periodicity at
the position of the detector. If the transit time of the particles
through the device is known, absolute force measurements
are possible by employing Newton’s second law of mechanics16.

As indicated in Fig. 1b, the position of the moiré pattern is shifted
in the presence of a force with respect to the geometric shadow by

Dy ¼ Fk
m

t2 ¼ at2; ð1Þ

where F|| represents the force component along the grating
period, m is the inertial mass of the test particle, a is the
acceleration and t is the time of flight between the two gratings. It
is important to note that the shift has two contributions. The
velocity of the particle after the second grating in the direction of
the acceleration is non-zero and the particle is also accelerated in
the second half of the moiré deflectometer. The relevant
parameter for precision measurements is the sensitivity, that is,
the minimal detectable acceleration amin. This can be estimated
by considering the maximal signal S to noise ratio possible in this
scenario. Since the influence of a pattern shift is most sensitively
detected at the steepest gradient of the pattern the visibility
u¼ (Smax� Smin)/(Smaxþ Smin) should be maximized and the
periodicity minimized. The noise of the signal is intrinsically
limited for classical particle sources to the shot noise which scales
as 1/

ffiffiffiffi
N
p

, where N is the number of detected particles.
Consequently, the minimal detectable acceleration12 is given by
amin ¼ d= 2put2

ffiffiffiffi
N
p� �

. It is important to note that this device
works even for a very divergent source of particles as shown in
Fig. 1a, and thus is an ideal device for the highly divergent beam
of antihydrogen atoms that is expected in the AEgIS apparatus.

Talbot–Lau interferometry with light as absolute reference.
To determine the magnitude of the fringe pattern shift,
knowledge of the undeflected fringe position (indicated as grey
trajectories in Fig. 1b) is required. Due to the neutrality and high
speed of photons, it is favourable to measure this position inde-
pendently with light so that the action of forces is negligible.
Unlike the case of classical particles described above, geometric
paths are not applicable for visible light as diffraction at the
gratings has to be taken into account. Figure 1c depicts the cor-
responding light field pattern where the distance between the
gratings is given by the Talbot length LTalbot¼ 2d2/l. This con-
figuration is known as Talbot–Lau interferometer14, which is
based on the near-field Talbot effect15—the rephasing of the
pattern in discrete distances behind a grating illuminated with
light. The final pattern is not a classical distribution, but an
interference pattern and coincides with the pattern of the moiré

Light interference

Matter moiré
a b

c

40 µm

25 mm

25 mm

Moiré Contact

Figure 1 | Moiré deflectometer for antiprotons. (a) A divergent antiproton beam impinges on two subsequent gratings that restrict the transmitted

particles to well-defined trajectories. This leads to a shadow fringe pattern as indicated in b, which is shifted in the presence of a force (blue trajectories).

Finally, the antiprotons are detected with a spatially resolving emulsion detector. To infer the force, the shifted position of the moiré pattern has to be

compared with the expected pattern without force. (c) This is achieved using light and near-field interference, the shift of which is negligible. A grating in

direct contact with the emulsion is used to reference the antimatter and the light measurements.
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deflectometer experiencing no acceleration. Thus, light provides
the required absolute zero-force reference. The only prerequisite
is that the Talbot length (or a multiple integer of it) is matched to
the distance between the gratings and the detector. With that, the
absolute shift of the antimatter pattern can be directly accessed
and systematic errors can be significantly reduced as the
moiré deflectometer and Talbot–Lau interferometer use the
same gratings. We would like to stress that Talbot–Lau
interferometry is also possible for matter waves such as atoms
and molecules17,18 if their de Broglie wavelength is long enough.

Experimental implementation. The experiment was performed
within the AEgIS apparatus designed to produce antihydrogen for
a future measurement of the gravitational acceleration10,19. A
beam of antiprotons with a broad energy distribution, delivered
by the AD at CERN, is realized after the 5.3 MeV antiprotons are
transmitted through degrader foils with a total thickness of
225mm (170 mm of aluminium and 55 mm of silicon). The
simulated distribution has a mean energy of 106 keV and a root
mean squared value of about 150 keV (see Methods). After
traversing a 3.6-m long tube within two homogeneous magnetic
fields of 5 T and 1 T, the antiprotons enter the deflectometer. We
estimate the mean de Broglie wavelength to be 8.8� 10� 14 m,
which implies that the concept of classical paths for the
trajectories of the antiprotons is applicable for our gratings with
a periodicity of 40 mm.

The grating holder is compact (25 mm distance between the
gratings) so that the passive stability of the relative positions
between the gratings for the long measurement time of 6.5 h is
ensured. The slit arrays are manufactured in silicon by reactive
ion etching, leading to a 100-mm thick silicon membrane with a
slit width of 12mm and a periodicity of d¼ 40mm. Low-energy
antiprotons hitting the slit array annihilate on the surface of the
array and do not reach the detector. For this measurement, the
final pattern, that is, the annihilation positions of antiprotons
after passing two gratings, is detected by an emulsion detector.
The moiré deflectometer and the annihilation detector are
mounted in a vacuum chamber (10� 5 mbar) on the extraction
line of the AEgIS apparatus. After the exposure to antiprotons,

the emulsion detector is removed, developed and analysed with
an automatic microscope available at one of the participating
institutions to determine the location of single annihilations. This
facility was initially developed for the detection of neutrino-
induced t-leptons by the OPERA experiment13. The development
of emulsion detectors for the application presented here, which
involves operation in vacuum, is described in refs 20,21.

After removal of the emulsion detector the pattern of the
Talbot–Lau interferometry with light was recorded in a
subsequent measurement. For this purpose, the grating holder
was homogenously illuminated by an incoherent light source (red
light-emitting diode with spatial diffuser). For a wavelength of
l¼ 640 nm, the Talbot distance is LTalbot¼ 2d2/lE5 mm. Thus,
for our setup (L¼ 25 mm), we analyse the fifth rephasing of the
light waves. The light pattern was directly recorded at the plane of
the emulsion with a high-resolution flatbed charge-coupled
device scanner (2.7mm resolution). To align the antiproton and
light measurement in the experiment reported here, an
independent spatial reference is implemented. For that purpose
we installed an additional transmission grating in direct contact
with the detector plane. Contact grating and moiré deflectometer
(see Fig. 1a) were simultaneously illuminated: first with
antiprotons and subsequently with light. In each case, the pattern
behind the contact grating is a simple shadow without any force
dependence, and thus can be used as a reference for alignment.

Antimatter fringe patterns. With the emulsion detector, the
positions of the annihilation vertices can be detected with a
typical resolution of 2mm (see Fig. 2a). The fragments produced
by the annihilation of antiprotons lead to a characteristic star-
shaped pattern, which can be observed with the microscope (an
example is depicted in Fig. 2a). The first observation of such an
annihilation star succeeded shortly after the discovery of the
antiproton using emulsions22. This allows for very robust and
high-quality particle identification, which makes this detector
practically background-free. In addition, this detector can detect
the arrival of antiprotons over a large area and thus is compatible
with an upscaling of the grating area necessary for experiments
with a divergent antihydrogen beam.
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Figure 2 | Antiproton fringe pattern. (a) The spatial pattern of the antiprotons (highlighted as blue tracks) as detected by the emulsion detector

in an exemplary area of 1 mm2. The annihilation of an antiproton leads to a clear signal from which the annihilation vertex can be extracted with a

precision of 2mm by reconstruction analysing the emitted secondary particles. The image enlargement shows an exemplary annihilation star. (b) The

fringe pattern after transmission through the moiré deflectometer setup reveals a visibility as high as (71±10) %. Since less than one antiproton is detected

per lattice period, the pattern shown is obtained by binning the vertical positions modulo the extracted periodicity of the fringe pattern. The solid black

line denotes the expected distribution. (c) The pattern behind a grating placed directly on the emulsion detector (‘contact’) is a simple shadow that is

smeared out due to the finite resolution of the detection. The few background events are consistent with independently observed grating defects. This

pattern is used as a reference with no force dependence since the transit time is zero. The position of the moiré fringe pattern (indicated as offset a) is

measured using light.
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The pattern of 146 antiprotons detected for the grating in
direct contact with the emulsion is depicted in Fig. 2c. The high
visibility implies that the periodicity is well-defined in an area as
large as 15� 6 mm2 since the data collapses onto one fringe by
taking the detected position modulo the extracted periodicity d of
the pattern. To extract the periodicity, we employ the Rayleigh
test23 that is also widely used in astronomy24. The periodicity d
and the relative rotation a of the pattern is found by maximizing

Z2 ¼ 2
n

Xn

i¼1

sin
2p
d
� yi

� � !2

þ
Xn

i¼1

cos
2p
d
� yi

� � !2" #
; ð2Þ

where n is the total number of antiprotons and yi¼ y0 � cos a
þ x0 � sin a depicts the antiproton’s projected coordinate. This
leads to an inferred periodicity of 40.22±0.02 mm, which is
consistent with the expected emulsion expansion of B1% and the
nominal periodicity of 40mm. It is interesting to note that the
analysed area corresponds to 368 slits and, on average, only in
every second slit an antiproton is detected.

In Fig. 2b, the observed moiré pattern for antiprotons is shown.
The 241 events associated with antiproton annihilations were
accumulated during the 6.5-h run of the experiment. The
Rayleigh tests on sub-segments of the detected patterns reveal
local distortion due to the expansion/shear of the emulsion and
allow the identification of regions with negligible distortion.
We have restricted the areas to two-thirds of their initial size,
which ensures a position uncertainty due to shear to be smaller
than ±1.2 mm.

Absolute deflection measurement. To determine the absolute
position of the antiproton fringe pattern (parameter a in Fig. 2b),
we conduct a comparison with the measurement with light.
The results are represented in Fig. 3a,b where the detected
intensity is indicated by the red shading. The alignment is
achieved by overlaying the contact patterns as depicted on the
right of Fig. 3b. The moiré pattern can now be directly compared
with the Talbot–Lau pattern (left of Fig. 3b) to extract a possible
deflection.

For the quantitative analysis, we extract the orientation of the
antimatter (Rayleigh test) and light patterns (Fourier transforma-
tion as the data is discrete in space). We find that the relative
angle of the two antiproton patterns, which are 15 mm apart,
deviates from the angle measured between the two corresponding
light patterns by Dy¼ 0.92±0.27 mrad.

This observation is consistent with independent systematic
studies of the distortion of emulsions on this large scale25. It is
important to realize that this angle implies an intrinsic systematic
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Figure 3 | Comparison between photon and antiproton patterns. (a) The spatial positions of the detected antiprotons (blue dots) are compared with the

subsequently recorded light pattern (measured intensity indicated by the red shading). The Talbot–Lau fringe pattern provides the zero-force reference,

presented here for the same exemplary detector area with ten annihilations as in Fig. 2a. (b) The antiproton and light measurements are aligned by

overlaying the two patterns obtained with the contact grating. The result of this procedure is visualized on the right, where the annihilation positions

of all antiprotons are folded into an area of 80� 80mm2. The moiré and Talbot–Lau pattern depicted on the left, without any further alignment, can be

compared to determine a shift. (c) The data is projected onto the y axis for quantitative analysis. A relative shift between moiré and Talbot–Lau

pattern indicates that a force is present. The observed mean shift of 9.8 mm is consistent with a mean force of 530 aN.

V
is

ib
ili

ty

0

0.2

0.4

0.6

0.8

1

y position

100 aN

464 aN

2154 aN

Measurement
Simulation

Force (aN)

101 102 103 104 0 d/2 d

Figure 4 | Monte Carlo simulation. A detailed simulation study based on

the expected energy distribution of the antiprotons (see Methods) shows

the visibility for increasingly large forces. As the observed pattern in the

presence of a force is an ensemble of differently shifted patterns

corresponding to different transit times t the visibility consequently

decreases. The measured fringe pattern exhibits a visibility of (71±10) %

and is consistent with the result of this simulation. The error bar on the

measured visibility is determined via resampling; the error bar on the

measured force includes the systematic error bound and the one sigma

statistical error bound. The observed high visibility excludes that the fringe

pattern is shifted by more than one period and sets an upper limit for a

force present without the necessity of referencing.
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uncertainty in the determination of the relative shift between the
light and antimatter patterns since one cannot know which part
has undergone the deformation. Assuming that both areas of the
emulsion corresponding to contact and moiré have changed the
same way on the centimetre scale, that is, half of the angular
deviation for each pattern, we can compare the relative positions
of the antiprotons with that of the light pattern as shown in
Fig. 3b. The contact patterns on the right overlay as these are
direct shadows of the grating (no force dependence), while an
upward shift of the antiprotons in the force sensitive moiré
pattern is noticeable. For quantitative analysis, we collapse the
data onto one fringe (see Fig. 3c) and deduce the relative shift of
Dymean¼ 9.8±0.9 mm (stat.) where the error is due to the
uncertainties (one sigma) of the involved fits. Estimating a
bound on the systematic uncertainties, we repeat our analysis
assuming that either the contact or the moiré pattern has been
changed due to the distortion. With that we find a minimal shift
of Dymin¼ 3.7±0.9 mm (stat.) and maximal shift of Dymax¼ 16.4
±0.9 mm (stat.) leading to a shift of Dymean¼ 9.8±0.9 mm
(stat.)±6.4 mm (syst.).

Discussion
The observed shift of the moiré pattern is consistent with a force
acting on the antiprotons. With the assumption of a mean velocity
of v¼ 4.5� 106 ms� 1 implying a transit time of t¼ 5.6 ns, we find
a mean force of F¼ 530±50 aN (stat.)±350 aN (syst.).

It is important to note that the mere observation of a pattern
sets an upper bound for the force being present. The impinging
antiproton beam has a very broad velocity distribution due to the
degrading process in the foils. Thus, in the case that a force is
present, the experimentally observed moiré pattern is an
ensemble of differently shifted patterns corresponding to the
transit times t for different velocities. The results of a simulation
of the performance of the moiré deflectometer are depicted in
Fig. 4 and clearly reveal how the visibility vanishes for
increasingly large forces (a force of 10 fN reduces the visibility
below u¼ 10%). The observed visibility of 71% is consistent with
a mean force of B500 aN. The visibility of the antiproton moiré
pattern on its own (not relying on additional referencing) is an
independent consistency check that the observed pattern is
indeed shifted due to a force. Additionally with the observed high
visibility of the moiré pattern, we exclude the possibility that the
force has shifted the pattern by more than one period (see Fig. 4).

The measured force could arise from a Lorentz force either
caused by an electric field of B33 V cm� 1 in direction of the
grating period or a magnetic field component of B7.4 G
perpendicular to the grating period and antiproton direction.
The latter is compatible with the measured magnetic field of

B10 G at the position of the deflectometer due to the fringe
field of the trapping region and stray fields of neighbouring
experiments in the AD zone.

The results presented are a crucial step towards the direct
detection of gravitational acceleration of antihydrogen with the
AEgIS experiment. Its concept is based on the formation of
excited antihydrogen through the charge exchange reaction of
electromagnetically trapped antiprotons with bunched Rydberg
positronium. The resulting dipole moments of the antihydrogen
atoms in a weak electric field allow their subsequent acceleration
with electric field gradients, thus forming a beam towards the
moiré deflectometer. The measurement of the antihydrogen’s
arrival position is realized by detection of the annihilation of its
antiproton—thus using techniques presented here.

It is important to note that the expected absolute shift of the
antihydrogen pattern due to gravity is comparable to the one
observed in the current experiment. Although the gravitational
force acting on antihydrogen is 10 orders of magnitude smaller
than the sensitivity level reached with the presented small
prototype deflectometer, the resolution of the setup can be simply
improved by scaling up the deflectometer and the detector.
A detailed discussion of the expected performance can be found in
refs 10,19. The main improvement is achieved by increasing the
transit time t (see equation (1)). Using a beam of antihydrogen
atoms with a significantly lower velocity of B500 ms� 1 and a
distance of 1 m between the gratings (this experiment v¼ 4.5
� 106 ms� 1 and L¼ 25 mm) will improve the sensitivity by 11
orders of magnitude (eight orders of magnitude due to slower
velocity and three orders of magnitude due to increased length of
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the device), thus allowing the application of this technique to direct
measurements of the gravitational force with antihydrogen.

High resolution is a prerequisite for the successful direct
detection of the gravitational acceleration of antimatter. For
absolute measurements, the sensitivity is the relevant parameter,
which is ultimately limited by the intrinsic shot noise due to the
detection of single atoms. Since the sensitivity scales with 1/

ffiffiffiffi
N
p

det

(Ndet representing the number of detected particles) increasing
the length of the moiré setup implies a similar expansion of the
transverse dimensions to keep the throughput, and thus the flux,
high. We have already successfully produced high-quality
gratings with a transverse extent as large as 100 mm. The
currently limiting systematic errors due to the distortion of the
emulsion can be overcome by referencing the antihydrogen
pattern directly to an in situ-realized light pattern, by employing
emulsions on a glass substrate instead of the plastic used for this
measurement or by the use of photomasks25.

Methods
Orientation of the antiproton pattern. Collapsing the detected annihilation
events to a single histogram as shown in Fig. 2 relies on the accurate determination
of the periodicity as well as the angular orientation of the two dimensional fringe
pattern. For this reason, we conduct the Rayleigh test given by equation (2) for
different angles and periodicities and the results are depicted in Fig. 5 for the moiré
and the contact pattern. The maximum is well-defined so that periodicity and
angular orientation can be extracted for further analysis. The performance of the
Rayleigh test has been tested with simulated data sets.

Velocity distribution. The kinetic energy of the antiprotons reaching the
deflectometer is estimated with a simulation based on Geant4 (ref. 26). All the
materials interposed along the beamline, between the AD antiproton beam (initial
kinetic energy of 5.3 MeV) and the deflectometer, as well as the magnetic field and
geometry of the AEgIS apparatus, are taken into account.

The input parameters of the Monte Carlo simulation are matched to meet the
experimentally observed best antiproton trapping efficiency. This measurement
was performed by counting the number of trapped antiprotons for various
thicknesses of an aluminium degrader placed upstream of the antiproton trap. The
thickness of the degrader foils used to slow down the antiprotons was selected in
order to maximize the number of antiprotons with a kinetic energy lower than
10 keV that enter the antiproton trap and was set to 55 mm of silicon and 170 mm of
aluminium. An additional foil of titanium (2mm) is placed at the exit of the 1 T
magnet. The energy distribution at the position of the deflectometer is depicted in
Fig. 6. It is very broad and thus can be employed for setting limits on the maximum
force present by analysing the visibility of the moiré pattern.
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