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Zusammenfassung

Modellierung und Computersimulation des Tumorwachstums und der
Tumorantwort auf Strahlentherapie

Gegenwirtig werden in der Strahlentherapie Gesamtdosis und Fraktionierungs-
schema der geplanten Bestrahlung vom Strahlentherapeuten anhand seiner klini-
schen Erfahrung ausgewéhlt. Diese Erfahrungswerte sollen um eine computersi-
mulierte Tumorantwort auf Bestrahlung ergiinzt werden, die auf biologischen Zu-
sammenhéngen basiert. Ziel der Arbeit ist die Entwicklung und Implementierung
eines radiobiologischen Modells auf zelluldrer Ebene, das die dreidimensionale
Computersimulation von Tumoren klinisch relevanter Gréfle ermoglicht. Simula-
tionen von Tumorproliferation und Tumorantwort auf Strahlentherapie anhand
des entwickelten Modells erlauben es, den Einfluss einzelner radiobiologischer
GrofBen auf das Tumorverhalten zu untersuchen. Simuliertes ungestortes Tumor-
wachstum wird verglichen mit entsprechenden experimentell ermittelten Wachs-
tumskurven in vivo. Fiir unterschiedliche radiobiologische Parameter, wie etwa
Zellzykluszeit, Wachstumsfraktion und Strahlenempfindlichkeit, werden Gesamt-
dosen angegeben, die bei konventioneller und bei beschleunigter Fraktionierung
appliziert werden miissen, um Tumorkontrolle zu erreichen.

Abstract

Modeling and computer simulation of tumor growth and tumor re-
sponse to radiotherapy

In radiotherapy, total dose and time-dose patterns are currently chosen according
to the clinical expertise of the radiation oncologist. To aid radiation oncologists
in the treatment planning process, it is important to quantitatively assess tumor
response to irradiation. The objective of this work is to devise a cellular radiobio-
logical model and to develop three-dimensional simulation methods that allow
simulation of tumors with clinically relevant sizes. Simulations of unperturbed
tumor proliferation are compared to corresponding experimental growth curves
in vivo. The most important radiobiological parameters are identified and their
influence on tumor growth and tumor response to irradiation is quantified. Total
doses needed by conventional and accelerated fractionation schemes for tumor
control are given for different radiobiological parameters, such as cell cycle time,
growth fraction and radiosensitivity.
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Chapter 1

Introduction

About 50% of all cancer patients are subject to radiation treatment, either to
radiotherapy alone or in combination with surgery or chemotherapy [67]|. Ra-
diation oncology aims at maximizing tumor control while minimizing normal
tissue complications. Treating cancer patients with radiation is based on the
damage radiation induces in cells. Tailoring dose distributions that deliver a
high dose to the tumor volume and spare organs at risk as much as possible
is of major concern in radiotherapy. This problem is addressed by three-
dimensional conformal radiotherapy techniques such as intensity modulated
radiotherapy (IMRT) [14, 15].

Finding a dose distribution that is an acceptable trade-off between tumor
control and normal tissue complications is based on empirical knowledge and
the radiation oncologist’s clinical expertise. To further improve treatment
outcome it is important to quantitatively assess the biological effect the de-
livered dose has on the tumor and on normal tissues. In recent years biolog-
ical models have been proposed to aid radiation oncologists in the decision
making process. Radiobiological models aim at predicting probabilities for
either tumor control [52, 82, 80, 110] or normal tissue complications |73, 117|
based on physical parameters, such as the dose distribution, and biological
parameters, such as the radiosensitivity of the tumor.

Current radiobiological models are either derived from biological first
principles or from empirical observations [119]. Mechanistic models allow
for a more realistic description of tumor behavior, but the simplicity of phe-
nomenological models makes them more appealing for clinical practice. All
present models restrict their number of parameters to reduce their complexity
[119]. A novel approach to radiobiological modeling and simulating treatment
outcome is founded on a cellular description of tumor growth and tumor re-
sponse to irradiation. Switching to a cellular level allows for the introduction
of additional cell biological parameters and processes to those that are usu-
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ally accounted for in biological modeling. This approach was first introduced
by Diichting et al [41, 42] and Kocher et al |63, 64, 65].

The objective of the work described here is to devise a cellular radiobio-
logical model and to develop three-dimensional computer simulation methods
that allow to predict tumor control for different tumor entities and treatment
scenarios. In order to be validated by clinical data, a simulation tool must
predict tumor control for tumors of clinically relevant sizes. It will be shown
that simulating tumor proliferation up to diameters of 12 mm is feasible with
the cellular methods presented here.

The model presented in this work takes into account more radiobiological
parameters than current models do. This allows for a more realistic descrip-
tion of tumor behavior. Including biological processes such as the oxygena-
tion status of individual cells [102, 96] and tumor angiogenesis [56, 46| is
crucial in developing a simulation tool that is capable of predicting tumor
control by radiotherapy. It has been pointed out that treatment outcome
depends crucially on the time-dose pattern chosen and that strategies have
to be employed to account for days off in dose-fractionation schedules [57, §|.
It will be shown that the cellular approach chosen in this work allows to con-
sider time dependent effects throughout the treatment. Current mechanistic
models [105, 109, 107, 18, 40| try to account for the time factor in radiother-
apy by defining global parameters quantifying effects such as repopulation.
Due to the dynamic behavior of tumors in the cellular approach, there is
no need to define global parameters to allow for the time factor in tumor
response.

The cellular model presented is a tumor model only. No modeling of normal
tissue complications is attempted in spite of their significance for treatment
outcome.

The cellular approach to biological modeling of tumor growth and tumor
response to radiotherapy tries to account for the most important cell biologi-
cal parameters governing tumor behavior. The complexity of cellular models
requires an understanding of the underlying biological mechanisms and the
knowledge of the values of the input parameters. The chapters introducing
the cellular radiobiological model, chapters 2 to 4, will therefore start out
with a brief outline of the biological processes involved. The biological basis
of the tumor model will be described from a perspective of modeling, which
is a very simplistic one. Complex interactions on a molecular level, such
as proteins triggering events like cell death or repair mechanisms, will be
reduced to a description of causes and effects.

In section 2.1 the most basic parameters influencing unperturbed tumor
growth will be sketched. Simplifying the complex processes of tumor pro-
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liferation yields a cellular model that allows computer simulation of tumor
growth up to diameters of 12 mm. How to implement this model will be
described in section 2.2.

Tumors cannot reach clinically detectable sizes without securing their own
blood supply by generation of new vasculature penetrating the tumor [56].
This process is called angiogenesis. The angiogenesis model used to simulate
tumor angiogenesis is explained in chapter 3.

Tumor response to radiotherapy is modeled based on the linear-quadratic
formalism |70, 27, 34| to calculate survival fractions of cell populations sub-
ject to a certain radiation dose. Its biomechanistical rationale is given in
chapter 4. It has been shown that fractionating total dose over a certain
period of time rather than administering it in one single dose allows escalat-
ing total dose and increasing tumor control without increasing normal tissue
complications [104, 108, 4]. The radiobiological basis for dose-fractionation
patterns will be derived from the parameters of the linear-quadratic model
for tumors and normal tissues. Time dependent effects due to the dynamic
behavior of tumors can influence treatment outcome of fractionated radio-
therapy. The “4 Rs” of radiotherapy [115], repair, repopulation, redistribution
and reoxygenation, address these phenomena.

The simulation results presented in chapter 5 demonstrate the relation-
ships between tumor behavior and the model parameters chosen. Three-
dimensional computer simulations of tumor growth up to diameters of 12
mm are presented. Tumor response to irradiation is simulated for different
radiobiological parameters and two fractionation schemes.

The work presented aims to reduce the gap between radiobiological re-
search and clinical practice by three-dimensional computer simulation of tu-
mor control. It will be shown that simulations of tumor behavior quali-
tatively agree with experimental data. The computer simulation methods
developed in this work aim at identifying the crucial parameters in tumor
growth and tumor response to irradiation. Their influence on tumor control
will be quantified. Total doses needed for tumor control will be given for
different time-dose patterns and various radiobiological parameters.
Validating any model requires comparing predictions based on simulations
with corresponding experimental and clinical data. In section 5.3, simu-
lations of tumor growth will be compared to observed growth of Dunning
R3327 prostate carcinoma in male Copenhagen rats.

This work is designed to lay the foundations for a future integration of the
simulation tool for prediction of tumor response to radiotherapy into clinical
practice.






Chapter 2

Modeling tumor growth

Current radiobiological models calculate the outcome of radiotherapy by use
of a restricted number of global parameters, such as radiosensitivity of tumor
cells and clonogenic cell density |52, 82, 80, 110].

A more realistic model of tumor response to irradiation must take into
account the dynamic behavior of the tumor. Repair [105], redistribution
[18, 100] and repopulation [109, 107, 40] have been modeled but other effects
that reflect the dynamic characteristics of tumors such as oxygen supply, re-
oxygenation and angiogenesis are not considered. Furthermore, no unified
model exists to date. Time dependent effects are modeled separately. The
cellular radiobiological model presented here includes the main factors influ-
encing tumor proliferation. Elaborating on tumor growth allows to take into
account time dependent effects during radiotherapy in a more realistic way
than current radiobiological models do.

In section 2.1 some basic processes governing tumor proliferation will be
introduced. Cell proliferation and apoptosis, programmed cell suicide, are
discussed in sections 2.1.1.1 to 2.1.1.4. The influence exerted on the tumor
by its microenvironment is described in sections 2.1.2 and 2.1.3.

Comparing simulated tumor behavior to experimentally observed tumor pro-
liferation is crucial to validate the cellular model and its implementation into
a simulation tool. The tumor system chosen for comparison, the Dunning
R3327 prostate tumor system, will be introduced in section 2.1.4.

Based on the main biological processes of tumor proliferation identified in
section 2.1, a cellular tumor growth model will be devised in section 2.2.
Section 2.2.2 will discuss important aspects of implementing the model to
perform computer simulations. Simplifications made to enhance computer
perfomance will be pointed out.
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2.1 The biological basis of tumor growth

Tumor growth is determined by cell proliferation and cell death. Both pro-
cesses will be described in a very mechanistic manner. This section serves as
a background for the tumor growth model devised in section 2.2.

2.1.1 Cell proliferation

In normal tissues there is an equilibrium between cell proliferation, deter-
mined by the cell cycle time, the growth fraction and the ability to undergo
apoptosis (see figure 2.1). The cell cycle duration is the time span between
two cell divisions. The growth fraction is defined as the fraction of well
oxygenated cells that do actively proliferate. Apoptosis is programmed cell
suicide, a phenomenon first described by Kerr et al in 1972 [62].

Fraction active cells
GF

Cell cycle
Te

Apoptosis
(Cell death)

Figure 2.1: In normal tissues there is an equilibrium between the three factors
governing the proliferation and death of cells: The duration To of the cell cycle,
the growth fraction GF and the ability to undergo apoptosis (programmed cell death).

2.1.1.1 Cell cycle

Cell division takes place during mitosis (M phase), which only lasts a few
hours. Cells spend most of their time in interphase, the time between suc-
cessive mitoses. Interphase is made up of three phases. Mitosis is followed
by the G, phase (G for gap). During synthesis (S phase), the DNA is du-
plicated. Synthesis is followed by the G, phase after which another mitosis
takes place. Differences in cell cycle time are mostly due to differences in the
duration of G;. Mitosis and Go usually last only a few hours 35, 55].
Analyzing cell kinetics can be done by feeding cell cultures with agents
that are taken up and incorporated into the DNA during S phase. Feeding a
pulse of bromodeoxyuridine (BrdUrd) and adding a stain allows to determine
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the fraction of cells in synthesis by counting the number of cells that have
been labeled by BrdUrd (labeling index LI). This technique also serves to
determine the time span Ts, during which DNA is duplicated, the time span
between synthesis and mitosis, Tq,, and the duration of mitosis, Ty, itself.
If all tumor cells are proliferating, the cell cycle time T¢ can be calculated
from the labeling index and the duration of synthesis Ts:

Ts
Te=A7r
where ) is a factor correcting the fact that cells are not distributed uniformly
along the cell cycle because of cell production during mitosis. Hall suggests
A = [n2 based on the assumption of an exponential distribution of cells in
time |55], but A = 0.8 is used mostly [101]. In flow cytometry a fluorescent-
labeled antibody instead of a staining agent is added. The labeling index
LI is determined by passing a suspension of labeled cells through a laser
beam and detecting the fluorescence. Flow cytometry allows for much faster
estimation of T and the cell cycle time T than the staining technique does.
Table 2.1 lists median cell proliferation parameters for selected human tumor
entities measured by flow cytometry.

2.1.1.2 Tumor growth fraction

In normal tissues the majority of cells does not actively proliferate. Only
14% of intestinal epithelial cells are in cell division cycle and only 0.01% of
endothelial cells are [56, 46]. Inactive cells are called quiescent cells and are
treated as being in an additional phase, termed Gg, which follows G;. The
fraction of cells that are capable of proliferation and actively do proliferate
is defined as the growth fraction, GF. A major cause for the growth disequi-
librium observed in tumors is the increase in their growth fraction. The Myc
oncogene is frequently associated with activating cells in Gg. Its expression
is deregulated in many human cancers [12]. Tumors exhibit growth fractions
of up to 100% [72], compared to growth fractions of below 20% for all nor-
mal tissues. Tumor proliferation is mostly quantified as T}, the potential
doubling time. T, is defined as

Te
Tpot — @
In flow cytometry it is measured as
Ts
Tpot — )\—

LI’
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which equals T¢ if all cells capable of mitosis do actually proliferate and
GF=100%. It can be seen from table 2.1 that the increasing tumor prolifera-
tion (decreasing T ) of less differentiated aneuploid cell lines is mostly due
to an increase in growth fraction (corresponding to a higher LI) and only to
a lesser extent due to a decrease in Tg.

| Tumor | LI[%] | Ts [h] | Tpor [d] |

HNSCC [47] 8 13.7 6.2
diploid 5 13.5 7.7
aneuploid 9.5 13.8 5.0
HNSCC [113] 19 | 99 6.4
diploid 3.9 8.9 8
aneuploid 9.3 11.5 4.2
ANSCC [7] 00 | 99 5.7
Cervical tumors|13] 9.5 12.1 4.4
size<H5cm 9 11.7 4.9
size>5cm 11.7 12.5 4.0
Cervical tumors [113] | 11.6 | 15.8 4.5
diploid 6.1 13.8 6.9
aneuploid 16.9 16.9 4.4
Rectal cancer [103] 21.2 | 20.7 3.3
Rectal cancer [113] 9 13.1 3.9
diploid 8.5 11.1 5.4
aneuploid 12 15 3.5
Lung cancer [113] 8 15.1 7.3
diploid 22 | 12.9 17
aneuploid 9.5 15.8 4.7

Table 2.1: Cell kinetics for selected human tumors. Less differentiated aneuploid
tumor cells have higher labeling indices.

2.1.1.3 Apoptosis

The third mechanism responsible for growth equilibrium in normal tissues is
apoptosis, programmed cell suicide. Tissues with a large turnover rate such
as mucosa have relatively low cell cycle times and relatively high growth
fractions. Equilibrium can only be obtained if there is a mechanism for
controlled cell death after a certain number of cell divisions. Besides ensuring
equilibrium, apoptosis fulfills two further needs. It is a control mechanism
to remove cells that have served their purpose, such as lymphocytes, and
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it inhibits mutagenesis. A mammalian genome undergoes about 100,000
modifications per day 91|, each carrying a finite probability for DNA damage.
It is clear that having a mechanism that controls DNA integrity is of high
priority. Apoptosis is triggered by external and internal signals which induce
the cell to produce enzymes causing its death.

Deactivation of apoptosis is a main cause for malignant diseases. Mutations
to the tumor suppressor gene p53 are observed in more than 50% of human
cancers [12, 89]. Transformation to malignant growth is also associated with
a class of oncogenes, the bcl-2 family, that inhibit (and promote) apoptosis.
The bcl-2 oncogene has been isolated from 70% of human breast, 30-60% of
human prostate and 90% of human colo-rectal cancers [31].

With decreasing differentiation, tumor cell lines show decreasing ability to
undergo apoptosis. Anaplastic tumors often show no apoptosis at all.
Apoptotic cells lose contact with their neighbors, decrease in size and show
condensed chromatin. They fragment into small membrane bound blebs
termed apoptotic bodies |62].

Apoptosis is also a response to external injury, such as radiation damage,
but this aspect of apoptosis is not considered here. Induction of apoptosis
by radiation is located at the transition from Gg to M.

2.1.1.4 Cell cycle checkpoints

Transition from one cycle phase to another is accompanied by the expression
of a number of proteins, most notably cyclins and cyclin-dependent kinases.
Control mechanisms exist to inhibit cells with chromosome aberrations to
pass into the next cycle phase. Thus, mutagenesis is prevented in healthy
tissues. Cell cycle checkpoints were defined to describe control mechanisms
at the G1-S transition, throughout S phase, and at the Go-M transition [111,
112|. Failing to pass checkpoints causes either cycle phase arrest or cell
death [12, 10|. Cells that do not pass the G1-S checkpoint are either arrested
for DNA repair or die of apoptosis [12|. Those that do not pass the Go-M
checkpoint (also termed the DNA damage checkpoint) usually die of mitotic
death, but apoptosis can also be induced at this point. G; arrest for repair
is mediated by the protein p21 which is induced by another protein, p53.
p53 is also capable of blocking the transition through synthesis. Inhibition of
the complex composed by p34°4“? and cyclin Bl causes a delay at the G,-M
transition to enable repair of DNA damage [79]. By deleting specific genes
in mutants, loss of checkpoint mechanisms can be induced. Failure of the
Go-M DNA damage checkpoint, for instance, can be provoked by deleting
the Rad9 gene [86].
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2.1.2 Oxygenation, hypoxia and necrosis

Cells depend on supply with oxygen and nutrients to survive. Oxygen dif-
fuses from capillaries, which form the microscopic part of the vascular system.
Capillaries have diameters from approximately 10 gm to 20 pm |71]. Oxygen
supply in tissues does not only depend on oxygen diffusion around capillaries
but on oxygen consumption, too. Oxygen concentrations around cylindri-
cal vessels and within two-dimensional networks of blood vessels have been
modeled by Tannock [102] and by Secomb et al [96]. The results obtained in
these publications will be presented briefly.

Assuming radial symmetry, the equation for steady state diffusion around
a cylindrical blood vessel is

”?2, p is the oxygen tension pOs at radius r

D is the diffusion coefficient in
in mm Hg, (o, is the rate of oxygen consumption in - h and k is a constant
[102]. It is assumed that oxygen consumption does not depend on oxygen
concentration. With the blood vessel radius a, the blood oxygen tension p,
and the diffusion radius R, the diffusion equation must be solved for the
following boundary conditions:

e p is equal to the blood oxygen tension adjacent to a capillary (which
means p = pg at r = a).

e Both p and the oxygen flow are zero at the diffusion radius (which
means p =2 =0 at r = R).

Introducing the parameter

4D
Ry = Po
kQo,
the solution to the diffusion equation can be expressed as
r? —a® R r
=po(l+ —2—In—
P = po( I I ~)

Typical values for Ry and a have been published by Tannock [102], showing
that the term f# can be neglected. The diffusion radius R at which p = 0 is
therefore given by
R
Ry = R*(2ln— —1) .

a
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% is relatively constant for a wide range of diffusion radii. The oxygen

R
tension p at radius r can be calculated by

2 7"2

R
2= 14 —) .
Rg( n )

P = Do
The parameter R, involves the diffusion coefficient D and the blood oxy-
gen tension py which is lower for venous blood (40 mm Hg) than for arterial
blood (100 mm Hg). At 37°C, D =2 x 10_5@ is assumed [102]. Figure 2.2
shows how oxygen tension decreases exponentially with capillary distance.
The black curve represents venous blood flow, a capillary size of 20 pym and
a diffusion radius of 150 pm. The blue and red curves represent arterial
blood flow with the same capillary size of 20 ym and different diffusion radii,
R =150 pm (blue) and R = 180 ym (red).

100
@ 80 .
E -
€
— 60| 4
C
o 4
‘»
[
o 40 .
C
< ]
=4
<201 .
O

O L L L L |

0 40 80 120 160

Distance [mu]

Figure 2.2: Ozygen tension pOy around a cylindrical blood vessel for diffusion
for venous blood (black curve) and arterial blood (colored curves). The ozygen
tenston represented by the red curve corresponds to o diffusion radius R of 180
um. The diffusion radius chosen in the calculation of the black and blue curves is
R =150 um.

Simulations of oxygen tension for two-dimensional (random) vessel net-
works have been performed by Secomb et al based on the diffusion equation

DAc = M(c) [96].

Again, D is the diffusion coefficient, ¢ is the oxygen concentration and the rate
of oxygen consumption is M. The concentration c¢ is considered to depend
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linearly on oxygen tension pp,. Consumption M is taken to be related to
concentration ¢ by Michaelis-Menten kinetics

c

M(C) N MOC"‘O[PM ’

where Mj is the consumption rate when oxygen is not rate-limiting and
Py is the pOy at which M falls to % The boundary condition is g—z =0
for tissue boundaries. The vessels of the random network are considered
to have uniform diameter and constant blood flow rate. A typical result of
simulations run by Secomb et al for a number of random networks is presented

in figure 2.3.

40

N [N
(@) o
I I
| |

(@]
I
|

Oxygen tension [mm HG]

O L 1 L 1 L 1

0 45 90 135 180
Distance [mu]

Figure 2.3: Ozygen concentration (illustrated as oxygen tension pOs in mm Hg)
around vessels for a two-dimensional random network of venous blood vessels ac-
cording to Secomb et al [96].

Cells that are well supplied with oxygen are called normoxic. Within the
tumor it is the normoxic cells that proliferate. Reduced oxygen tension of 5
to 10 mm Hg forces cells into hypoxia, a state in which they do no longer pro-
liferate |60, 59]. Certain proteins that trigger tumor angiogenesis, however,
become overexpressed in hypoxia. Hypoxic cells do not move through the cell
cycle and do not undergo apoptosis. At distances of 100 pm or more from
the nearest capillary oxygen levels are considered so low that cells become
hypoxic (see figure 2.4). This distance corresponds to about five cell layers
[49].

Severe lack of oxygen causes necrosis. Cells that are more than 150 pm (7-
8 cell layers) away from the nearest capillary become necrotic [23]. Necrotic



2. Modeling tumor growth 15

cells can easily be distinguished histologically from apoptotic cells. Whereas
apoptosis effects individual cells, necrosis is usually observed within a whole
group of cells. Necrosis is characterized by a loss of membrane integrity which
means that necrotic cells release their contents and cause an inflammatory
reaction [36, 12].

In addition to the potential doubling time T\, used to describe cell pro-
liferation, the tumor doubling time Ty, is defined to quantify tumor growth.
T4 takes into account cell loss, which is defined as the fraction of cells unable
to proliferate. This fraction comprises dead cells (apoptotic or necrotic) and
hypoxic cells. If the fraction of cells lost is termed ®, Ty is defined as

Tho
Ta=—4~

2.1.3 Lysis

Dead cells within a tumor are resorbed by two different mechanisms. Apop-
totic cells are rapidly phagocytosed by adjacent cells and macrophages. They
are recognized within a few hours and resorbed within around 24 h. Necrotic
cells are resorbed by phagocytosis, as well. However, phagocytosis of necrotic
cells by macrophages and immune cells happens more slowly than for apop-
totic cells [31].

2.1.4 The Dunning R3327 tumor system

The tumor system chosen to compare simulated tumor growth with growth
curves in vivo was the Dunning R3327 prostate tumor system. This system
was chosen for three reasons. Firstly, prostate cancer is the most common
cancer among men in Germany. Secondly, it is considered to be a useful
animal model for human prostate cancer [61]. Thirdly, its cell kinetics are well
known for several different degrees of differentiation [72, 93|. The cell kinetics
parameters are presented in table 2.2. Table 2.3 lists the observed tumor
volume doubling times and their cell loss ®. The AT1 subline is anaplastic,
the HI subline is moderately well differentiated. Experimental data indicate
that these two sublines have a growth fraction of 100% and no apoptotic cells.
The well differentiated hormone dependent H subline has a mean volume
doubling time of 20 days but has not been compared to simulated tumor
growth because so far it is not certain whether the H subline has a tumor
growth fraction below 100%. Experimental growth curves were obtained from
tumor seeds (~ 8 mm?) transferred subcutaneously into the distal right thigh
of male adult Copenhagen rats. Tumor growth was measured starting from
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volumes of about 300 mm3. Experimental tumor volumes were calculated

from three orthogonal diameters using the ellipsoid formula

V:DlxDQXDgx%. (2.1)
‘ Growth parameters ‘ AT1 ‘ HI ‘ H ‘
Ts [ 8 10.7
LI %] 71+0.5 7+0.5 | 3.7+0.5
Tc [d] 3.8£0.25 | 7.1
Growth fraction [%] 100 100
Apoptotic capacity %] 0 0

Table 2.2: Growth parameters for three sublines of the Dunning R3327 prostate
tumor system. The AT1 subline is anaplastic, the HI subline is moderately well dif-
ferentiated. Measuring Ts for the highly differentiated H subline is difficult because
it consists of two subpopulations with varying DNA content. Data are taken from

Lohr et al [72].

| Tumor behavior | AT1 | HI [H|
Volume doubling time Tp [d] | 5.6£0.4 | 10£1.1 | 20
Cell loss @ [%)] 15 10

Table 2.3: Observed tumor growth for the three sublines of the Dunning R3327
prostate tumor system according to Lohr et al [72].

2.2 A cellular model for tumor growth

In this section the biological model used to simulate tumor growth is intro-
duced. It has two main characteristics which are motivated by the desire to
aid radiation oncologists in their decision making process by simulating tumor
response to radiotherapy. Firstly, the model is defined on a three-dimensional
rigid cubic lattice to enable fast computer simulations. Secondly, the model
must include the main biological factors to be realistic without including too
many parameters. Simplification is crucial because on the one hand many
biological parameters are known with some uncertainty only and because on
the other hand every parameter assigned to the tumor cells increases the
computer run time and memory requirements.
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The cellular approach chosen for tumor modeling allows for intra-tumor
variability in biological parameters, such as T, to be taken into account. By
dealing with every single tumor cell effects that are relevant for treatment
outcome, such as blood supply of individual cells and reoxygenation due to
cell displacement, can be included in the tumor growth model.

2.2.1 Biological parameters

The cellular model is developed along the lines of tumor growth discussed
in the previous section 2.1. The following parameters are included in the
growth model.

1. The cell cycle time T¢ and the four cycle phases.
T¢ is the time between successive cell divisions. Distinguishing the cy-
cle phases is important when taking into account phase dependent pa-
rameters, such as radiosensitivities varying within the cell cycle. Typi-
cal values for Tg (from which T¢ can be calculated) are given in table
2.1 for some human cancers. Table 2.2 lists T for an animal model,
the Dunning R3327 prostate tumor system in Copenhagen rats.

2. The tumor growth fraction GF.

GF is defined as the fraction of normoxic cells that do actively pro-
liferate. Tumors exhibit an elevated growth fraction which can reach
100% for tumor cell lines with poor differentiation. Within a tumor,
the growth fraction is assumed to be size dependent. Being a con-
trol mechanism, it decreases logarithmically with increasing size. In
the simulations presented, tumor growth fractions for large tumors are
assumed to reach values as low as 75%.

3. Apoptotic capacity.
The ability to undergo apoptosis is quantified as the fraction ® ,p,, of
normoxic cells that undergo apoptosis.
D ,0p 1s also size dependent. It increases logarithmically with increas-
ing size to counter uncontrolled growth. In the simulations presented,
apoptotic capacity for large tumors is assumed to reach values as high
as 25%.

4. Blood supply.
The microvasculature is modeled by a capillary distribution that is
homogenous at the onset of tumor growth. An intercapillary distance
of 7 cell layers in every direction is chosen. This represents a normal
tissue with no hypoxic cells. Varying the intercapillary distance allows
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to model tissues with different degrees of oxygenation. A more realistic
capillary system can be modelled by randomly offsetting capillaries by
one lattice site.

5. Oxygenation status.
Oxygen tension pO, is modeled by a step function. Only normoxic,
hypoxic and necrotic cells are distinguished according to their distance
to the nearest capillary. This is shown in figure 2.4. Cells within 5
cell layers of a capillary are taken to be normoxic, cells 6 and 7 cell
layers away from a capillary are considered to be hypoxic. At capillary
distances of 8 and more cell layers, cells become necrotic.

6. Resorption of dead cells.
Lysis takes longer for necrotic cells than for apoptotic cells. Resorption
mechanisms are taken to saturate, prolonging lysis times with ongoing
cell death. Lysis times for necrotic cells are taken to increase loga-
rithmically from 72 h for little necrosis to 144 h for large numbers of
necrotic cells. For apoptotic cells, there is a logarithmic increase from

24 h to 96 h.
necrotic
ypoxic
capillary 2 cell layers

Figure 2.4: Simplified model for oxygen supply around capillaries. Within a dis-
tance of 100 um (corresponding to 5 cell layers) cells are well supplied with ozygen.
They are termed normozxic. At distances between 100 and 150 pm (corresponding
to 6 and 7 cell layers) cells turn hypoxic and cells farther away than that die of
necrosis.

2.2.2 Implementation

Simulations are performed on a three-dimensional rigid cubic lattice. Each
lattice site represents an individual cell with a volume of (20 ym)?, implying



2. Modeling tumor growth 19

[ | [ | [ | | u O [ | | [ |

[ | [ | | | -. L [ | '. |

O m ] | ] || ] ] ]
t—=20 t =T¢ t = 2T¢

Figure 2.5: Two-dimensional simulation of the very beginning of tumor
growth starting from one single cell and a homogeneous capillary distribution
(depicted red) with an intercapillary distance of 7 cell layers. Cell division
of normozic cells (black) can force existing cells to be displaced as indicated
in the right.

that all cells are treated as having equal size. Every single tumor cell is
assigned its individual biological variables, such as age and current cycle
phase or oxygenation status. Computer simulation of tumor growth starts
out from one single well oxygenated tumor cell which divides after one cell
cycle time T¢ as can be seen from figure 2.5. Random processes such as cell
displacement after cell division are simulated by Monte-Carlo methods. In
Monte-Carlo methods processes that occur according to probabilistic laws
are simulated by comparing random numbers to probability distributions
governing the processes.

To speed up the simulation process, only a lattice of size 64 x 64 x 64 is
allocated at the beginning of tumor growth. With ongoing proliferation, the
lattice is enlarged.

The cell cycle phases and checkpoints are simplified to account for qui-
escence (Gg phase), apoptosis and cell division. This is illustrated in figure
2.6. Cell proliferation is modeled by Monte-Carlo methods. Each individual
cell’s age is incremented by a step At which varies with Tc. At the G;-S
transition it is determined whether the cell is active or whether it stays in
Gy. The decision is made according to a uniform probability distribution re-
flecting the tumor growth fraction. Apoptosis is induced at the checkpoints
by the same probabilistic procedure. Cells divide at the end of mitosis.

The daughter cell is randomly assigned one of the mother’s 26 neighbor-
ing lattice sites. Cell division can force cells to be displaced if the lattice
site chosen for the daughter is already occupied. The occupying cell itself is
placed in one of its 26 adjacent sites and so on. Cell division in the inside
of the tumor can hence trigger a whole cascade of displacements. Displace-
ment can happen randomly or along straight lines. Random displacement
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Figure 2.6: Model of cell cycle phases and checkpoints. Apoptosis can be induced
at the G1-S and Go-M checkpoints. Quiescent cells are in Gy which is taken to
preceed synthesis and is assumed to last as long as Gy.

requires generating a new random number for each displacement, rendering
this process less efficient computationally. However, random displacement
yields tumors with a more realistic shape, as illustrated in figure 2.7.

For large tumor sizes the difference in the proliferation characteristics
of the two displacement processes becomes negligible. Cell displacement can
alter the oxygenation status of a cell by pushing it towards a capillary or away
from it. Hypoxic cells can thus be reoxygenated, a process that influences
tumor response to fractionated radiotherapy.

Individual tumor cells are assigned their own cycle times T¢ according to
a normal distribution. The cycle time of each cell can change after division;
the daughter cell is assigned its own cycle time. This results in a constant
redistribution of cell cycles and in an asynchronous cell population.

Simulating tumor growth can be sped up by further simplifying the cell
cycle. Figure 2.8 shows the cell cycle without distinguishing phases and
checkpoints. The mechanisms checking for apoptosis and inactivity are lo-
cated at the end of the cell cycle. If the cell passes both mechanisms, it will
divide.

The oxygenation level of each cell is checked at intervalls At. Hypoxia
and necrosis are induced independently of the cycle phase. Determining each
cell’s oxygenation status is done by scanning its environment for capillaries.
To reduce run time, a spherical scan with a radius of 8 cell layers is performed
instead of scanning row by row. Distances are euclidian distances with re-
spect to lattice sites (see figure 2.9). Hypoxic cells are quiescent. They do
not proceed in their cycle unless they are reoxygenated.
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Figure 2.7: Two-dimensional computer simulations of two tumors with Tc = 2 d.
Both tumors are 36 d old. a) Cell displacement along straight lines. b) Random cell
displacement, resulting in a less regular morphology and a more spherical shape than
displacement along straight lines. Simulations were performed without apoptosis
and without lysis of dead cells. Normouwxic cells are depicted pink, hypoxic cells are
blue and necrotic cells are black. Normal tissue is depicted white, capillaries are
red.
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Figure 2.8: Simulation of tumor growth can be done without distinguishing indi-
vidual cell cycle phases. Mechanisms checking for activity (growth fraction GF)
and apoptosis (apoptotic fraction ®apep) are triggered at the end of the cell cycle.

Figure 2.9: Two-dimensional illustration of oxygenation status around capillar-
ies (red). For capillary distances of 5 cell layers (lattice sites) or less, cells are
normozic (yellow). At capillary distances of 8 or more cells turn necrotic (blue).
Hypoxic areas (green) are 6 or 7 cell layers from the nearest capillary.
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Figure 2.10: Two-dimensional simulation of a tumor with a cycle time of 2 days
and At = 6 h. From top left to bottom right: Tumor at age 14, 16, ..., 28 d.
The tumor’s age at the bottom right is 34 d. At age 14 d, there are normoxic and
hypozic cells. At age 16 d the first cells turn necrotic. They are resorbed within 3
d, as can be seen from the tumor at age 20 d in the left of the middle row.
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Figure 2.11: Three-dimensional computer simulations of the beginning of tumor
growth with Tc = 2 d and At = 6 h. Simulation was performed using random
displacement. Growth starts out from one tumor cell and a homogeneous capillary
distribution (green). The tumor on the left is 21 d old, the tumor in the middle
15 30 d old. The three-dimensional surface of the tumor with age 30 d is shown
on the right. At 21 d there are only normogic cells (pink). After 30 d of growth
there are hypozic areas (pink) and some necrotic cells (white) in the core. In this
illustration, normogzic cells are depicted in blue.

A computer simulation of a tumor with T¢ = 2 d is illustrated in figure
2.10. In the top left, the tumor is 14 days old. At the bottom right its age
is 34 days. For reasons of efficiency the lattice which holds the tumor cell
variables increases with tumor size from 43 x 43 x 43 at 14 d to 127 x 127 x
127 at 34 d. It can be seen that there is an initial phase with exponential
growth. Tumor growth forces capillaries to be displaced which in turn causes
hypoxia and necrosis. Necrotic cells are resorbed within three days. The
simulations were performed with displacement along straight lines for clarity.
Usually, random displacement is chosen for computer simulations. In three
dimensions, displacement of capillaries does not occur as early as it does in
two dimensions. Figure 2.11 shows a tumor simulated in three dimensions
with the same proliferation characteristics as the two-dimensional tumor in
figure 2.10. After 21 d of growth there are still no hypoxic cells.

Simulations of two three-dimensional tumors, tumors A and B, are shown
in figure 2.12 a and b, respectively. Tumor A was simulated with lysis of
dead cells whereas there was no resorption in tumor B. For both tumors, the
growth fraction was taken to decrease logarithmically with tumor size while
apoptotic capacity increased logarithmically with size. T¢ was 2 d. Tumor
A has a size of 21 million tumor cells and a diameter of 7 mm. Tumor B has
a size of 15 million tumor cells and a diameter of 6.2 mm. Normal tissue is
depicted white, capillaries are red. There are four different types of tumor
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cells: Normoxic cells (pink), hypoxic cells (blue), apoptotic cells (green) and
necrotic cells (black). In the very core of tumor A, necrotic centers have
already been resorbed (white). The center of tumor B is largely necrotic.
Handling large three-dimensional lattices has to be done carefully to avoid
long computer run times and to minimize memory requirements. Memory is
allocated in one dimension to minimize access times. The three-dimensional
structure of the lattice is preserved by three-way pointer referencing. Each
lattice site is assigned a cell type. Normal tissue cells, capillaries and tu-
mor cells (normoxic, hypoxic, apoptotic, necrotic) are distinguished. To save
memory space, cell types are stored as characters. The variables representing
the age of viable cells and the time to lysis of dead cells are transformed to
be (short) integer values. Thus, memory for a structure of 5 bytes contain-
ing three variables is needed for each cell. Simulating tumors of clinically
relevant sizes with a diameter of 10 mm (corresponding to a lattice of size
500 x 500 x 500) requires 625 MB of RAM. If cell cycle phases are not dis-
tinguished and tumor cell cycle times are 3 d or more, time increments of
At = 12 h are sufficiently long. In the case of T¢ = 80 h, a run time of
approximately 20 h is needed on a PC with a 1 GHz Pentium III processor
for simulation of tumor growth up to a size of 10.5 mm in diameter.
The memory requirements can be further reduced by two procedures. Firstly,
the lattice can be divided into subcubes which are treated separately. Sec-
ondly, a list can be introduced containing tumor cell structures. The three-
dimensional lattice contains cell types only instead of structures. A structure
containing all biological variables will be added to the list only for lattice sites
occupied by tumor cells. Both procedures have the same drawback: The sub-
cubes and the list are saved on hard disk and are not stored in the working
memory. Due to the large number of cell-cell interactions many accesses
to the hard disk are necessary resulting in prohibitively long computer run
times.

2.2.3 Simulation runs

Table 2.4 shows typical parameter values of the tumor growth model used in
the simulations presented in chapter 5. T¢ = 2 d is at the lower end of cycle
times of fast proliferating tumors (see table 2.1). T¢ = 7.1 d is the cycle time
of the moderately well differentiated HI subline of the Dunning R3327 tumor
system chosen to compare simulations of tumor growth with corresponding
experimental data. The T values given are assumed to be the mean values
of normal distributions with (an assumed) variance of o, = TS—C. In tumor
systems the growth fraction increases with ongoing loss of differentiation
while the apoptotic capacity decreases. Within the same tumor, growth
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| Model parameters |

Cycle time T 2 -7 days
OT¢ %

Apoptotic capacity ®up0p no apoptosis or
increasing to 15%, 20% or 25%
Growth fraction GF 100 % or
decreasing to 85%, 80% or 75%
Oxygenation status normoxic, hypoxic, necrotic cells
Capillary density 1 capillary per 343 cells (mostly),
1 capillary per 216 cells

Lysis times for apoptotic cells | increasing from 24 h to 60, 72, 96 h
Lysis times for necrotic cells | increasing from 72 h to 96, 120, 144 h

Table 2.4: Typical values used in the simulations of tumor growth. Apoptosis,
growth fraction and lysis are assumed to be size dependent.

fraction GF and apoptotic capacitiy ®,pop are taken to be logarithmically
size dependent in the following way (example given for a decrease in GF
from 100% to 80%):

([ 100% #viable cells < 5 x 10*
97% : 5 x 10* < #viable cells < 10°
94% : 10° < #viable cells < 5 x 10°
GF(#viable cells) =< 91% : 5 x 10° < #viable cells < 10°  (2.2)
88% : 10° < #viable cells < 5 x 108
84% : 5 x 10% < #viable cells < 107
| 80% 107 < #£viable cells

Apoptotic cells are taken to be resorbed more rapidly than necrotic cells are.
Lysis mechanisms saturate logarithmically with increasing number of dead
cells analogous to equation 2.2. Lysis times for small numbers of apoptotic
cells were chosen according to D’Amico et al [31] while the choice of 72 h
for resorption of (small numbers of) necrotic cells was based on Kocher et al
|63, 64|. Lysis times for apoptotic and necrotic cells are not a dominant factor,
however. Lysis times given are the mean values of normal distributions.
Unless noted otherwise, the simulations presented in chapter 5 will start out
from a homogeneous capillary distribution with an intercapillary distance of
7 cell layers in all directions. This distance was chosen because it is the
lowest capillary density still resulting in a tissue with no hypoxic areas.
Simulations of tumor proliferation intended for comparison with experi-
mental data were performed with the growth parameters of the AT1 and HI
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sublines of the Dunning R3327 tumor system. The growth parameters T,
®opop and GE for these two sublines are listed in table 2.2.
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Figure 2.12: Three-dimensional computer simulations of tumor growth with Te =
2d. a) Tumor with lysis of dead cells, b) tumor without lysis mechanisms. Without
resorption, there are large necrotic centers in the core of the tumor. Normozic cells
are depicted pink. Hypozic cells are blue, apoptotic cells are green and necrotic cells
are black. Normal tissue is depicted white, capillaries are gray.



Chapter 3

Modeling tumor angiogenesis

Tumors cannot reach diameters of more than a few mm without securing
their own blood supply by angiogenesis. Tumor angiogenesis, the mechanism
by which tumors manage to generate new capillaries, is a central process in
the growing of tumors. Without angiogenesis, the tumor’s core is deprived of
nutrients and oxygen. Large parts of the core are hypoxic or necrotic. Only
the rim of the tumor contains viable cells. The normoxic fraction decreases
to about 50%, as can be seen from figure 3.1. This can be deduced from
the two-dimensional simulation of the beginning of tumor growth shown in
figure 2.10. Tumor cell proliferation results in displacement of capillaries
which causes cells to turn hypoxic and necrotic.

In this chapter, a model for tumor angiogenesis will be devised.

3.1 The biological basis of tumor angiogenesis

Angiogenesis, the formation of blood vessels, is a complex process involving
endothelial cells and growth factors. Fibroblast growth factors (bFGF and
aFGF) stimulate quiescent endothelial cells to undergo mitosis. Vascular en-
dothelial growth factors (VEGF) enhance vascular permeability. The steps
undergone in blood vessel formation are degredation of the vessel tube mem-
brane, invasion of endothelial cells into the stroma, migration of a sprout of
endothelial cells, proliferation of endothelial cells at the leading edge of the
sprout and differentiation and adhesion at its tail [56]. The cells adhering
to each other in the tail form a new capillary tube. Tumor vasculature is
irregular, forming branches, loops and shunts |71, 23|. The tumor growth
model presented here does not include vasculary structures, so no attempt is
made to model the sprouting, migration and branching process in detail. In
this model, angiogenesis effects endothelial cells, not blood vessels. Also, all
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Figure 3.1: Without angiogenesis, the normozic fraction decreases with increasing
tumor size. Simulated normozic fractions are shown for three tumors with To =
80 h, but different growth fractions GF and apoptotic capacities @qpop. For the black
curve, GF was taken to be 100% and Popop was 0%. The colored curves resulted
from simulations in which GF decreased and ®qp,p increased with growing tumor
size. GF was taken to decrease to 85% (blue) and 80% (red). ®upop was taken to
increase to 15% (blue) and 20% (red). The rate with which a tumor grows depends
on the fraction of normozic cells.

growth factors involved in angiogenesis will be treated as one single entity
called tumor angiogenesis factors (TAF).

3.2 A cellular model for tumor angiogenesis

3.2.1 Biological parameters
The angiogenesis model devised here is based on three assumptions.

1. It is hypoxic cells that secrete angiogenesis factors (TAF) [23]. The
amount of angiogenesis factors produced in hypoxic areas is directly
proportional to the number of hypoxic cells (and is given in arbitrary
units, a.u.).

2. The factors diffuse around hypoxic areas and are consumed by capil-
laries.

3. Quiescent capillaries are stimulated by the factors to divide [84, 56, 85].
This implies that angiogenesis is only possible if capillary cells are
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reached by the TAF. A certain amount of TAF is needed to stimulate
capillary cells to divide. If TAF levels are below a certain threshold, no
capillary division takes place. Angiogenesis does not occur instantly;
the quiescent capillaries need time to respond to the stimulus. Capil-
laries that have already been induced to divide are not stimulated again
until the end of mitosis.

Diffusion is governed by a steady state equation including consumption of
TAF [54]
D*Ac — Mc =0, (3.1)

: 2 gdc
which reduces to % 4+ 2r _ Mc

L 5z = 0 for radial symmetry. c is the TAF
concentration and M its consumption rate. The diffusion radius is larger
than that for oxygen diffusion mainly because the factors are not consumed
by hypoxic or normoxic cells. In analogy to the modeling of oxygen concen-
tration around capillaries, the distribution of TAF around hypoxic areas is
simplyfied by a step function.

The three parameters employed in the angiogenesis model are the thresh-
old value of TAF needed to induce capillary division, the distribution of
TAF around hypoxic areas and the capillary response time. Since the con-
centration of angiogenesis factors around hypoxic areas is assumed to behave
according to steady state diffusion (see equation 3.1), it is not time depen-
dent.

3.2.2 Implementation

Calculating the number of new capillaries generated in the vicinity of a hy-
poxic area is based on introducing a subgrid with subcubes of size (140 pm)?.
Thus diffusion of TAF around hypoxic areas is treated on a coarser scale than
diffusion of oxygen around capillaries. The subcube size chosen is motivated
by the intercapillary distance at the onset of tumor growth. Counting of
hypoxic cells, determining the amount of angiogenic factors produced, calcu-
lating the subsequent stimulus that reaches capillaries and generation of new
capillaries is performed within these subcubes. The definition of the subgrid
is illustrated in figure 3.2.

The step function that simplifies the distribution of TAF is defined with
respect to the subcubes. The values of the step function represent the fraction
of TAF that stays within the subcube of a hypoxic area itself as well as the
fraction reaching the adjacent subcubes (140 pm away) and the diagonally
neighboring subcubes (200 um away). No angiogenesis factors are consid-
ered to diffuse farther than into the diagonally adjacent subcubes. The step
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140 pm

m mun C

Figure 3.2: The angiogenesis model is defined on a subgrid of subcubes with a
volume of (140 pum)®. Hypogic cells (green) produce tumor angiogenesis factors
(TAF) which diffuse and reach capillaries (red). More TAF reaches capillary 1
than capillary 2.

function modeling the concentration ¢(R) of angiogenesis factors reaching a
subcube a distance R away is defined as:

of TAF :consumed in hypoxic area’s subcube

x 2+ of TAF : reaches subcubes R = 140 um away  (3.2)

1

x 7 of TAF : reaches subcubes R = 200 um away

c(R) =

ESTESCR[ESENTEN

¢(R) is defined to be the amount of TAF diffusing into all subcubes dis-
tance R away. In three dimensions, each subcube has 6 adjacent subcubes
140 pm away and 12 diagonally adjacent subcubes 200 pm away. Considering
this, equation 3.2 yields the amount of TAF c/(ﬁ) reaching a single adjacent
subcube:

—y

= & x ¢ of TAF : reaches a subcube | R |= 140 pm away

x L of TAF : reaches a subcube

5 = 200 pm away

(3.3)

To obtain the number of new capillaries generated in a subcube, the
amount of TAF reaching it must be calculated. This is done by weighing
the amount of TAF produced within the subcube itself and its neighbours
with the functions defined in equations 3.2 and 3.3. If this amount exceeds

2

3]
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Figure 3.3: Capillary division only happens for tumor angiogenesis factors (TAF)
levels above a certain threshold. For the number of hypoxic cells shown in the four
subcubes, capillary division in the yellow subcube will be induced for a threshold of 5
a.u. Adjacent subcubes are red, diagonally neighboring subcubes green. The amount
of TAF in the yellow subcube is determined by equations 3.2 and 3.3.

a certain threshold, the number of induced capillaries equals the number of
quiescent capillaries. This is illustrated in figure 3.3.

Consider the yellow subcube in figure 3.3 which has six hypoxic cells. The
two red subcubes one lattice point (corresponding to 140 pm) away have ten
and twelve hypoxic cells and the green subcube with a subgrid distance of
v/ 2 (corresponding to 200 pm) has another nine hypoxic cells. The amount
of angiogenesis factor reaching the yellow subcube is

4
amount of TAF = 6 x -
11—10><4><1+12><4><1
14 4 14 4
+9><4><1
28 4
= 5H.32 a.u.

The factor i stems from the number of adjacent subcubes 140 pm and 200
pm away. If the threshold is 5 a.u. for induction of capillary division and the
yellow subcube has three quiescient cells, three capillaries will be generated.
If there are no quiescent capillaries in the yellow subcube, no new capillaries
will be generated there. New capillaries are placed randomly within the sub-
cube, triggering a cascade of cell displacements analogous to the displacement
following cell division described in section 2.2.
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Figure 3.4: Tumor growth simulated with (b) and without (a) angiogenesis. Both
stmulations of tumor proliferation were run with a relatively long tumor cell cycle
time of Tc = 115 h. Simulation of angiogenesis for the bottom tumor was performed
with a low threshold of 80 a.u. of tumor angiogenesis factors (TAF) for capillary
stimulation. Angiogenesis increases the normozic fraction and thus enhances tumor
growth. Normoxic cells are depicted blue. Hypoxic cells are red, necrotic cells white
and capillaries green.
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The importance of angiogenesis for normoxic fraction and necrotic ar-
eas within the tumor is demonstrated in figure 3.4, which shows three-
dimensional simulations of a slowly proliferating tumor cell line. The tumor
cell cycle times were T¢ = 115 h. The simulations shown are for tumor
growth with and without angiogenesis. Both tumors pictured have about 15
million viable cells. The tumor proliferating without angiogenesis took 170 d
to grow to that size whereas the tumor simulated with angiogenesis reached
a size of 15 million viable cells within 130 d.

3.2.3 Simulation runs

‘ Model parameters ‘

TAF concentration step function simplifying exp. decrease
with diffusion radius R R = 200 pm
Threshold for cap. stimulation 80, 100, 120 a.u. of TAF
Capillary response time Te=48h, 72h or 120 h

Table 3.1: Parameter values used for the simulation of tumor angiogenesis.

The value R = 200 yum for the diffusion radius was motivated by the
fact that TAF is not consumed by normoxic cells and thus diffuse farther
than oxygen (R = 150 um) does. Simulation runs not discussed here showed
that increasing the diffusion radius to R = 240 yum had no pronounced ef-
fect on tumor angiogenesis, so R = 200 um was chosen for computational
reasons. The threshold for capillary stimulation in arbitrary units of TAF
was motivated by the observation that as little as 50 to 60 hypoxic cells can
induce angiogenesis. Values for capillary cell cycle times were chosen because
division of endothelial cells is observed no earlier than 48 h of stimulation
[44].






Chapter 4

Modeling tumor response to
radiotherapy

Radiotherapy aims at maximizing (local) tumor control while minimizing the
probability for normal tissue complications. Three-dimensional conformal
radiotherapy techniques have been developed to administer high doses to the
tumor volume while sparing organs at risk as much as possible. To further
increase the therapeutic window the radiobiological properties of tumors and
normal tissues have to be considered. One strategy that takes advantage
of a different response to radiation is fractionated therapy. By delivering
the total dose in a number of small fractions, the higher repair capacity of
many normal tissues can be exploited. Simulating the tumor control achieved
with a certain total dose and time pattern would aid radiation oncologists
in the treatment planning process. A cellular radiobiological model allowing
simulations of tumor response to radiotherapy is devised in this chapter.

The interactions of radiation with tissues and the processes killing cells
are described in sections 4.1.1 to 4.1.3. The influence of the microenviron-
ment on tumor response is discussed in section 4.1.4. Section 4.1.5 gives the
rationale for fractionated radiotherapy and introduces time-dose patterns
applied in clinical practice. The time factor in radiotherapy is described in
section 4.1.6. These concepts will be simplified in section 4.2 to formulate
a cellular radiobiological model that allows simulation of tumor response to
radiotherapy.

Time dependent effects have been incorporated into the linear-quadratic
model (LQM) to estimate tumor response to fractionated radiotherapy. Terms
added to the LQM to account for repopulation, repair and redistribution will
be discussed in section 4.1.6.

37
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4.1 The radiobiological basis of radiotherapy

4.1.1 Interaction of photons and particles with cells

Electromagnetic radiation is indirectly ionizing. Damage is not caused by the
photons themselves but by the charged particles they produce during their
interaction with matter. The process of photon absorption depends on the
photon energy and on the material the photon interacts with.

At low photon energies the dominant process of absorption is the pho-
toelectric effect. The photon interacts with a bound electron of an atom
transferring its energy hr and releasing the electron with a kinetic energy
Eiin, = h — Epinging- Ebinding 15 the binding energy of the electron. As a con-
sequence of electron emission in an inner shell, another electron from an outer
shell will take its place emitting a photon with energy hv = Ejpper — Eouter-
For soft tissues this radiation has a low energy and is of no importance.
Instead of a photon an Auger electron from an outer shell might be emit-
ted. At the lower end of the energy range used in radiation diagnostics it
is the photoelectric effect that is dominant. At the higher end of this range
(~100 keV) and especially for energies used in radiation treatment (1 MeV
< E <10 MeV) it is the Compton effect that is important for photon ab-
sorption. In the Compton process a photon with energy hAv interacts with a
free electron (an electron in a shell with low binding energy). It transferes
some of its energy, is scattered by an angle #, and continues with energy

1 hv
E' = hv Lo = .
7 1+ a(l —cosb) mec?
For a scattering angle of # = 7 the energy transfer is maximum. For

low photon energies there is a lot of scattering and little energy transfer. For
high photon energies there is a lot of energy transfer and little scattering.

Photon absorption also depends on the absorbing material. For soft tis-
sues with a low atomic number Z, the coefficient for photoelectric absorption
is proportional to Z*®. For matter with high Z, such as metals, it is propor-
tional to Z*. In contrast, the Compton process does not depend on Z. For
energies above 10 MeV generation of electron-positron pairs is important. Its
absorption coefficient is proportional to Z.

In radiotherapy, the photoelectric effect and, more importantly, the Comp-
ton effect produce electrons that cause cell damage. This is called direct
radiation action. Its time scale is in the order of 107 seconds.

The electrons can continue to generate free radicals, atoms or molecules
with unpaired electrons. In biological tissues it is mostly oxygen radicals O-
or hydroxil radicals OH- that are produced. They are highly reactive. It
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is believed that radicals within a distance of & 1 nm of the DNA helix can
cause DNA damage. DNA damage by free radicals is referred to as indirect
radiation action. The time scale of indirect radiation action is in the order
of 107° seconds. For radiation with a high linear energy transfer (LET), the
energy transferred to the absorbing matter per unit length of radiation track,
direct action is the dominant process. This is the case for protons or heavy
ions, but radiotherapy with charged particles is not considered in this work.
In photon therapy with energies of 1 MeV < E <10 MeV and an LET of
about ~1 keV /um approximately one third of the radiation action is indirect.
Within the radiation track approximately 5 radicals are produced per 100 eV
of absorbed energy.

Radiation dose is defined as absorbed energy per mass, D(z) = dEd—;f’S, its
unit is Gray (Gy). A dose of 1 Gray is defined as 1 Joule of absorbed energy

per 1 kg mass.

4.1.2 Cell damage and
the linear-quadratic model (LQM)

Modeling cell killing by radiation is based on the assumption that the critical
target is the DNA. Damage done outside of the cell’s nucleus is taken to be
of minor importance.

Radiation causes three types of DNA damage. The most common is
damage to one of the DNA bases adenine, cytosine, guanine and thymine,
with a rate of 2000 to 4000 per cell and Gy. Single-strand breaks of the
sugar desoxyribose that form the DNA backbone are produced at a rate of
1000 per cell and Gy. Both are repaired efficiently. The damage that is
considered to be crucial is double-strand breaks which occur at a rate of 40
per cell and Gy [33]. Non-repairable DNA double-strand breaks are thought
to be responsible for cell killing [92]|. In general, cells with lethal lesions are
assumed to die at the next attempt of mitosis, but with a certain probability
lethally hit cells will undergo a small number of mitoses before dying.

Cell survival after radiation depends on dose in a linear-quadratic manner
when plotted as the logarithm of survival fraction versus dose [34]. The
linear-quadratic model explains this relationship in a mechanistic manner by
proposing two components for cell killing [70, 27]. The linear component
corresponds to lethal events that are proportional to dose. Lethal events are
assumed to be caused by one single particle (intra-track interaction). The
component quadratic in dose corresponds to two sublethal lesions interacting
to form a lethal event. The quadratic component is also referred to as the
dual radiation concept: The two sublethal lesions are assumed to stem from
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two independent particle hits (inter-track interaction), hence a quadratic
relationship between number of lethal lesions and dose. The mean number
of lethal events is

aD + BD?* (4.1)

D being the radiation dose. The fraction of cells surviving radiation with
dose D is
SF(D) = exp(—aD — D?) , (4.2)

which follows from Poisson statistics. The parameters o and S are in units
of Gy=! and Gy~2, respectively. For D = § both mechanisms yield the
same amount of cell killing as can be seen from equation 4.2 and figure 4.1.
Surviving cells need to survive both mechanisms of cell kill. This is why the
linear-quadratic model is also referred to as the single-hit, multi-hit model.

100
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Figure 4.1: Cell survival fraction (SF) is the product of the survival fractions of
two mechanisms. The linear component (blue) stems from lethal lesions caused
by a single particle and results in SF = exp (—a D). The quadratic component
(red) is the consequence of the interaction of two sublethal lesions yielding SF =
exp (-8 D?). A dose of D = % yields the same amount of cell killing for both
mechanisms.

Evidence supporting the biological mechanisms of the LQM is obtained
by measuring fragmented DNA after irradiation. Measurements can be per-
formed with constant field gel electrophoresis [37] or with the alkaline un-
winding technique [32|. The fraction of DNA released depends on dose in
a linear-quadratic manner 32, 37|. The assumption that cell killing stems
from the interaction of radiation with the DNA is supported by experiments
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where radioactive tritiated thymidine (*HTdR) was incorporated into DNA.
The cells were killed by the radiation dose due to the g-particles released by
SHTAR. Since these 3-particles are of very short range, cell killing must be
caused by events within the DNA.

Intrinsic radiosensitivities of different cell lines show a great variability
[34]. Cell survival curves are studied in vitro. Measuring cell survival is done
by counting the colonies formed from surviving cells upon irradiation with
various single doses [32, 68|. This procedure implies that the survival curves
and a- and [-values represent survival with complete repair of sublethal DNA
damage. For most human cell lines the survival fraction at 2 Gy (SF3) varies
between 0.1 and 0.9. At this dose cell killing is mainly by a-inactivation
kinetics [27], so a-values may be derived from the SFy-values. The a- and
[-values for selected human cancer cell lines in table 4.1 are taken from
Chapman et al [11, 29].

| Tumor cell line | a[Gy '], B[Gy 7] |

HT-29 (colon) 0.03, 0.06
OVCARL0 (ovary) 0.16, 0.06
A2780 (ovary) 0.47, 0.07
DU-145 (prostate) 0.31, 0.05
PC-3 (prostate) 0.24, 0.07
TSU (prostate) 0.06, 0.05

Table 4.1: Parameters o and 3 of the LQM for selected human tumor cells taken
from Chapman et al [11, 29].

Most normal tissues are less radiosensitive than tumor cells are. The
following two figures, figures 4.2 and 4.3, show survival curves according
to the LQM for various parameters o and 5. For high radiation doses the
quadratic component for cell killing becomes dominant.

Radiosensitivity is highest for mitotic cells. In G, cells are relatively
radioresistant. Maximum radioresistance is observed during synthesis. Cell
populations are usually asynchronous with a certain fraction of cells being
in each of the four cycle phases. The variability in radiosensitivites dur-
ing different cycle phases can be explained by different chromatid structures
throughout the cell cycle. Energy deposition happens along the radiation
tracks. During mitosis the chromosomes are highly condensed [29] and the
probability for double-strand breaks is largest. Studying the radiosensitivi-
ties of cycle phases requires synchronizing the cell population.

Radiation can also induce apoptosis which adds to the fraction of cells
killed. Radiation induced apoptosis has been discussed in the literature |36,
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Figure 4.2: Survival fractions (SF) calculated with the LQM for parameters a =
0.1 Gy ! (black), o = 0.2 Gy ' (green), a = 0.3 Gy ' (cyan), « = 0.4 Gy !
(blue), and o = 0.5 Gy~! (red). 5 = 10 Gy was taken for all SF.
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Figure 4.3: Survival curves according to the LQM for different %—mtios. % =1
Gy (red), 5=20Gy (pink), =50y (blue), 5 =10 Gy (green), and =20 Gy

(black). o= 0.3 Gy~' for all survival fractions.
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2, 31, 79|, but is not considered here. So far, no consensus could be achieved
on how relevant radiation induced apoptosis is for treatment outcome [36].

4.1.3 Repair of sublethal damage

Three repair mechanisms for double-strand breaks are known. Homologous
recombination is basically error-free since it uses an exactly homologous
DNA-stretch. Non-homologous recombination can result in large deletions in
the DNA. Non-homologous end-joining is very efficient and presumably the
most common repair pathway in mammals. The excision repair pathway for
base damage is also highly effective [86], but base damage is not considered
here.

Repair of double-strand breaks can fail and cause aberrations due to mis-
repair. Early in the cycle phase misrepair of double-strand breaks will result
in chromosome aberrations. Radiation interaction after DNA duplication in
the synthesis phase will cause chromatid aberrations. The most common
aberrations are rings and dicentrics, which are chromosome aberrations, and
the anaphase bridge, which is a chromatid aberration [55]. Dicentric frag-
ments have two centromeres and result from incorrect joining of two separate
chromosome ends with double-strand breaks. An acentric with no centromere
is formed from the remaining DNA fragments of the two chromosomes. A ring
results from incorrect end-joining of two arms of the same chromatid with
double-strand breaks. Resulting from the interaction of two chromosomes
with double-strand breaks, the formation of aberrations serves as an expla-
nation for the quadratic component of the linear-quadratic model [70, 27].
Nonlethal aberrations like deletion of DNA fragments can cause mutagenesis
but are not covered in this context.

The number of double-strand breaks immediately after radiation and the
fraction of remaining unrepaired double-strand breaks at several repair times
can be studied by gel electrophoresis [33, 37]. It can be shown that the
number of non-repaired double-strand breaks correlates with cell survival
fraction |37, 38|.

Repair mechanisms are often associated with cell cycle checkpoints at the
G1-S and the Go-M transitions [111, 112| (see section 2.1.1). DNA damage
causes a cell cycle delay during which repair is attempted [10]. Cells with
non-repaired DNA damage will not pass. The G1-S checkpoint will induce G
arrest or apoptosis whereas the Go-M checkpoint will usually cause mitotic
death.

The molecular basis for cell cycle delay and repair mechanisms is not dis-
cussed here. However, it is a target for new strategies in radiation oncology.
It has been shown that inhibiting Go delay can radiosensitize cells whereas
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Figure 4.4: Survival fraction (SF) depends on oxygen supply. In the LQM the
oxygen effect is quantified by the OER. Survival fractions are shown for a = 0.35
Gy~ 'and % = 10 Gy. At a dose of 10 Gy, survival for OER = 2 (blue survival
curve) is 80 times higher than it is for OER = 1 (black). For OER = 3 (red) the

difference is even more pronounced.

cells with prolonged Gy delay have enhanced radioresistance |77]. Inhibit-
ing repair of tumor cells while stimulating repair mechanisms within normal
tissues would greatly enhance the therapeutic window in radiotherapy.

4.1.4 Oxygen effect

In section 4.1.1 two types of radiation action on the DNA have been intro-
duced: direct interaction and indirect interaction which involves the creation
of free radicals, mainly O- radicals. Tumor growth forces displacement of
capillaries which in turn results in lack of oxygen within the tumor. The lack
of oxygen in hypoxic areas translates into a reduced indirect action of radia-
tion on the DNA. The reduction in radiosensitivity of hypoxic cells is called
the oxygen effect. In the LQM it is quantified by the oxygen enhancement
ratio (OER), a factor which reduces the dose entering the expression calcu-
lating cell survival (see figure 4.4). For hypoxic cells the survival fraction

is
D D

- 2
OER ﬁ(OER) )
For photons, OER values are between 2.5 and 3 for doses of 2 Gy and

more [55, 94]. The oxygen effect is slightly reduced at doses of 1.5 Gy and
less. For high-LET radiation there is hardly any indirect radiation action,

SF(D)=exp(—«

(4.3)
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so the oxygen effect is negligible and the OER is one. Controlling hypoxic
tumor cells, an important aspect in photon radiotherapy, is not an issue in
radiotherapy with protons or heavy ions.

It was argued in section 2.1.2 that oxygen diffuses around capillaries and
is subsequently consumed resulting in an oxygen concentration around capil-
laries that decreases exponentially with distance to the capillaries (see figure
2.2). However, experiments on radiosensitivity have shown that radiosensi-
tivity remains almost constant until oxygen tension drops to very low levels.
Figure 4.5, taken from Hall [55], shows relative radiosensitivity versus oxygen
tension pOs in mm Hg.

rel. Sensitivity

O L L L L L L L
0 10 20 30 40
pO2 [mm Hg]

Figure 4.5: Fully oxygenated cells (oxygen tension pOy ~ 40 mm Hg for venous
blood flow) are three times more sensitive to irradiation than anozic cells are. Even
at pOy levels as low as 3 mm Hg cells are still twice as radiosensitive as anozxic
cells are. The oxygen effect only becomes pronounced at very low levels of pOs.
Sensitivities are given in arbitrary units.

The tumor growth model introduced in section 2.2 simplifies oxygen dif-
fusion around capillaries by a step function, distinguishing only well oxy-
genated (normoxic), unproliferating (hypoxic) and starved (necrotic) cells.
Figure 4.5 illustrates why the relationship between oxygen tension and re-
duction of radiosensitivity can be simplified by the same step function. From
the perspective of radiation response, merely distinguishing normoxic and
hypoxic cells is a reasonable simplification.
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4.1.5 Fractionation

Higher total doses are tolerated by normal tissues if the dose is applied in
fractions. At the same time, dose per fraction hardly effects tumor control.
This can be explained by the parameters of the linear-quadratic formalism.
In the linear-quadratic model, fractionating the total dose, i.e., delivering
N doses of size %, increases the survival fraction significantly due to the
quadratic term. This is easily understood by calculating the survival fraction
for N doses of d = %, where D is the total dose. This yields

SF(D) = (exp(—ay —A()))" =exp(—aD — ) (44)

compared to
SF(D) = exp(—aD — BD?)

for a single (unfractionated) total dose of size D. The gain in cell survival
is exp(BD*AZ).

Late responding tissues have a lower %—ratio than acutely responding
tissues, such as tumors, do. For lower %—ratio the shoulder of the survival
curve is more pronounced. Consequently, the sparing of cells achieved by
the reduction of dose per fraction is more pronounced (see figure 4.6). For 5
fractions of 2 Gy and o = 0.3 Gy~! the gain in survival fraction is around
1.6 x 10° for % = 2 Gy (late responding tissues) versus a gain of 11 for
= 10 Gy (acutely responding tissues). This motivates the interpretaion of
as repair capacity.

Experimental data on the influence of dose per fraction on radiation tol-
erance were compiled by Thames et al. [104]. From these data, Fowler
derived %-ratios for various tissues [48]. For breast treatments § seems to
be in the range of 7 to 11 Gy for early reactions, and 2 to 4 Gy for late
effects [108]. The following tables, tables 4.2 and 4.3, taken from Thames
and Hendry [106], list 5-values for a number of early and late responding
normal tissues as well as for selected tumors. The higher %—ratios for most
tumors compared to late responding normal tissues was the main rationale
for introducing fractionated radiotherapy.

Administration of 1.8 to 2 Gy per fraction once a day with weekends off
is regarded as standard practice |4]. Hyperfractionation is defined as a treat-
ment in which doses per fraction are 1.6 Gy at the most, whereas accelerated
fractionation refers to dose delivery patterns that reduce the overall treat-

ment time or increase the dose per week [4]. Recently fractionation schemes

oW
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Figure 4.6: Cell survival fraction (SF) of fractionated radiotherapy for typical
g-ratios for tumors (% = 10 Gy, black) and for normal tissues (% =3 Gy, red).
Fractionated delivery of total dose yields a higher sparing of cells for normal tissues
than for tumors. Cell survival was calculated for a = 0.35 Gy~ .

have been devised that escalate dose per fraction during the course of therapy
of rapidly proliferating tumors such as non-small-cell lung cancer (NSCLC)
[78]. In most time-dose patterns there is no treatment on weekends. Different
ways to compensate for gaps and missed treatment days have been studied
by Hendry et al [57].

Fractionation of the total dose delivered also reduces the oxygen effect in
hypoxic cells. At doses below 2 Gy the oxygen enhancement ratio drops to
about 2 for most tissues. In accelerated and hyperfractionated radiotherapy
doses of 1.6 Gy and less are given per fraction.

4.1.6 The “4 Rs” of radiotherapy

In fractionated radiotherapy total dose is administered in doses of 1.5 Gy to
2 Gy per fraction over a time course of weeks. Calculating survival fractions
according to equation 4.2 of the LQM does not take into account time de-
pendent effects that are due to the dynamic behavior of tumors and normal
tissues. The most important time factors have been identified by Withers
as the “4 Rs” of radiotherapy [115]: Repopulation, repair, redistribution and
reoxygenation.

Repopulation is due to proliferation of undamaged cells which might hap-
pen at an accelerated rate because growth fraction and apoptotic capacity
can be size dependent [97, 98]. Little changes in Ts and in T have been
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a

Response | £ in Gy

B
Early
skin 9.5-12
colon 8.5-10
testis 13-14
Late
spinal cord 2-5
kidney 1-2.4
lung 2-4.5

Table 4.2: %—mtios for acute and late effects taken from Thames and Hendry
[106].

‘ Tumor in Gy ‘

Mam. Ca. N.T. | 7.5-17.5
CH3 Mam. Ca | 12.5-18.5

‘ a

Squamous Ca. 12
Fibrosarcoma 4
Slow sarcoma 20-30

Table 4.3: g -ratios for selected tumor cells taken from Thames and Hendry [106].

observed throughout treatments, however |13, 97, 98|. Attempts have been
made to incorporate repopulation into the linear-quadratic model by intro-
ducing a term + linear in time ¢ [109, 107]:

SF(D) = exp(—aD — BD* +t) .

The dose equivalent of regeneration per day D,y is used to quantify repop-
ulation: Dp,if = a_jﬁ with d = %. Values for v are obtained by maximum
likelihood estimation from clinical data [108|.

Repair of sublethal damage happens between fractions. For conventional
fractionation inter-fraction intervals seem to be long enough to complete
repair. For accelerated treatments and especially for hyperfractionation this
might not be true [39, 3, 9]. In the linear-quadratic formalism it is the
quadratic multi-hit component that is sublethal and can be repaired [105,
30, 29|. Several models have tried to account for repair of DNA damage by
adding terms to the LQM. In the incomplete repair model the fraction 6 of
unrepaired sublethal damage decreases exponentially with time

0= exp(—ut) )
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i being the repair rate [105]. Taking into account repair mechanisms is
important for predicting treatment outcome in brachytherapy, where dose is
delivered continuously at a low dose rate [20]. There is no time for repair
between the deposition of the doses so incomplete repair must be considered.
For doses below 0.6 Gy hypersensitivity of cells is observed [68, 75]. Cell
survival is less than according to the linear-quadratic model. This might be
due to a failure to induce repair mechanisms at low doses. Late responding
tissues tend to have a higher repair capacity than acutely responding tissues
and tumors do, so considering repair mechanisms is more important for many
normal tissues than it is for tumors.

Redistribution refers to asynchronous cycle phases of surviving tumor
cells. Cell cycles vary in their radiosensitivity. Upon irradiation, a higher
fraction of cells will be in S phase, the least radiosensitive phase. Between
fractions the cell population will again become asynchronous resulting in a
resensitization of tumor cells. Redistribution has been incorporated into the
LQM by Brenner et al [18] and Smith et al [100]. Redistribution results
in asynchronous sensitivities. Fluctuations in 3 are considered to be small;
the probability distribution of « is taken to be gaussian with variance o?.
Averaging over asynchronous subpopulations yields

2
SF(D) = exp(—aD — BD* + %DZ) .

It is assumed that extra resistance outweighs extra sensitivity, which results
in an extra term that increases the survival fraction by exp(";D2).

Due to ongoing cell division and tumor angiogenesis, hypoxic cells may
be reoxygenated between fractions. This results in higher radiosensitivity.

4.2 A cellular model for tumor response to ra-
diotherapy

Modeling tumor response to radiation is based on the stem cell principle and
on the linear-quadratic formalism for DNA damage. Using the stem cell prin-
ciple is founded on the observation that tumor cells are proliferating and not
functional cells [72]. Much of the time factor in fractionated radiotherapy
introduced in section 4.1.6 is already accounted for by the dynamic behavior
of the tumor growth model. Of the “4 Rs” of radiotherapy only repair needs
to be modeled separately. Treatment pattern dependent effects like reoxy-
genation, repopulation and redistribution are consequences of the cellular
approach to tumor modeling. Repopulation happens through ongoing prolif-
eration of undamaged cells which can be enhanced by a growth fraction that
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is assumed to increase with decreasing cell number. In addition, apoptotic
fraction is taken to decrease with decreasing tumor size. Redistribution of cell
cycles happens due to the reassignment of cycle times of surviving proliferat-
ing cells. Cell cycle delay caused by repair also contributes to redistribution.
Reoxygenation of hypoxic cells occurs because of cell displacement through-
out the tumor as a consequence of ongoing proliferation. Angiogenesis also
results in reoxygenation of hypoxic cells.

4.2.1 Biological parameters

Based on the interaction of radiation with tissues, the mechanisms of cell
killing, cell response to damage and the time factor in fractionated radio-
therapy, a model can be devised that allows computer simulation of tumor
response. The following parameters are included in the model for tumor
response to radiotherapy.

1. Cell survival.
Survival fraction is calculated according to the linear-quadratic model
(LQM). Every single tumor cell is considered a potential target. Only
if all viable tumor cells have been killed is the tumor considered to be
controlled.

2. Radiosensitivity.

The dominant factor in modeling fractionated radiotherapy is the in-
trinsic radiosensitivity of tumor cells which is given by the parameters
a and [ of the LQM. Cell cycle phases can differ in their sensitivities
[88, 29]. Since cells are individually taken into consideration, a hetero-
geneous cell population can easily be modeled by assigning every cell
its own parameters o and 3 according to a normal distribution.
Hypoxic cells are considered to be quiescent. Their radiosensitivity is
assumed to be that of the G; phase.

3. Oxygen effect.
Oxygen levels influence radiosensitivity [102, 72|. The number of free O-
radicals is reduced in hypoxic areas, limiting indirect radiation action.
In the LQM the oxygen effect is considered by dividing the dose by a
factor OER (oxygen enhancement ratio) as indicated in equation 4.3.
The oxygen effect is slightly lower for doses of 1.5 Gy than for doses of
2 Gy or more.

4. Cell death and postmitotic survival.
Lethally hit normoxic cells are taken to die upon entering mitosis. With
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a certain probability Pus, however, postmitotic survival for a small
number of cell cycles is allowed. Not moving through cycle phases, hit
hypoxic cells are considered to die after one cycle time [64].

5. Repair of sublethal damage.

The quadratic component of the LQM stems from sublethal damage
[105, 30] which can potentially be repaired with a certain probability
[37]. In this model of tumor response, repair mechanisms can either
be triggered instantly or repair can take place at the G;-S and Gy-M
checkpoints [10]. No repair is possible for hypoxic cells.

Most tumors show less repair capacity than normal tissues do. Typical
%—ratios are about 10 Gy for tumors, versus ratios of about 2-5 Gy for
most late responding tissues. For tumors, repair of sublethal damage
between fractions is not a dominant effect. Complete repair between
fractions is assumed in simulations unless stated otherwise.

6. Cell cycle delay.
The cell cycle delay due to (successful or unsuccessful) repair is taken to
be 6 h. In this setting, taking into account repair only has a significant
influence on tumor control for short intervals between fractions.
The cell cycle delay caused by repair contributes to the redistribution
of cell cycles between fractions.

4.2.2 Implementation

Tumor response to radiotherapy is simulated by a Monte-Carlo technique.
Three more cell types are added to the ones defined in the implementation
of the tumor growth model in section 2.2.2: Lethally und sublethally hit
normoxic cells and lethally hit hypoxic cells. Since hypoxic cells do not cycle,
there is no repair mechanisms in hypoxic cells and all hits are taken to be
lethal. Cell survival is simulated for each tumor cell individually according to
the linear-quadratic formalism and the sensitivity of the cell. A normoxic cell
survives if a random number drawn from a uniform probability distribution
is less than its individual survival probability

SFcell(D) = eXp(_acellD - 6ce11D2) .

A hypoxic cell is taken to survive if the same probabilistic procedure
yields a number less than

D D

SFcell(D) = €xp ( - acellﬁ - 5(:911(@)2) .
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If repair mechanisms of sublethally hit normoxic cells are taken into ac-
count, the probability for a lethal hit is

SFcell(D) - eXp(_acellD)
and the probability for a sublethal hit is
SFcell(D) — exp(_ﬁcellDz) .

To reduce memory requirements, the parameters o and f are determined
(randomly) at each radiation event. The dose is taken to be administered
instantaneously. No dose-rate is considered. Radiosensitivities that vary
within the cell cycle can be accounted for by determining o and S values
according to four different normal distributions, depending on the cell age.

Repair of sublethally hit cells and postmitotic survival of lethally hit cells
is determined by the same probabilistic technique. For each lethally hit cell
a random number is drawn from a uniform probability distribution upon
entering mitosis to determine whether the cell survives. If so (i.e. if the
number drawn is less than P,), the daughter inherits the cell’s damage.
Cells killed by radiation are treated the same way necrotic cells are. They are
resorbed within the same lysis times. Two repair mechanisms can be modeled.
Repair is either triggered instantaneously or at the G,-M checkpoint. Repair
is attempted for all hit cells causing a delay in the cell cycle. A cell is
successfully repaired if a random number drawn from a uniform probability
distribution is less than Pip.

The mechanisms for cell killing and possible repair are incorporated in the
cell cycle model of tumor growth introduced in section 2.2.2. As indicated,
repair mechanisms are checked once the cell passes the G; phase or the Gy
phase. The mechanism deciding whether the cell dies of mitotic death is
activated at the transition from Go to M. The resulting cell cycle model is
illustrated in figure 4.7. The importance of further simplifying the cell cycle
model to speed up simulations has been pointed out in section 2.2.2. If cell
cycle phase dependent radiosensititvities are not considered and complete
repair between fractions is assumed, simulations are performed according to
a cell cycle model that checks for activity, apoptosis and mitotic death at the
end of the cell cycle (see figure 4.8).

Figure 4.9 shows a tumor before (a) and after (b) six weeks of conven-
tional radiotherapy corresponding to a total dose of 60 Gy. At the onset
of radiotherapy the tumor had 50 million cells and a diameter of 10.5 mm.
Almost all normoxic cells (blue) have already been killed and absorbed at
the end of therapy. A significant fraction of viable hypoxic cells (red) has
survived. Reduced sensitivity of hypoxic cells was due to a large OER value
which was taken to be OER = 3. The tumor cycle time was T¢ = 65 h.
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Figure 4.7: Model of the cell cycle including mechanisms for repair of sublethal
damage and mitotic death. Activity of unhit normoxic cells (determined by GF)
is decided on after Te;,. At this point (and again after Tq;, ), apoptosis might also
occur with a probability ®gpep. For hit cells two mechanisms are activated: Repair

of sublethal damage with probability P.., at the Gi-S and Gi-M checkpoints or
matotic death at the G1-M transition.
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Figure 4.8: Simplification of the cell cycle model pictured in 4.7. Mechanisms for
activity, apoptosis and mitotic death are located at the end of the cell cycle and are
checked once every Tc.
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4.2.3 Simulation runs

‘ Model parameters

Radiosensitivity a=03-04Gy ', §=10Gy
Oa 8
% 10 Gy

Oxygen effect OER = 3 for D =2 Gy
OER = 2.5 for D = 1.5 Gy

Cell cycle delay due to repair 6 h

Probability for postmitotic survival Poms = %

Repair mechanism complete repair between fractions or
Prep =0, % at checkpoints
Dose fractionation pattern standard: 2 Gy once daily
accelerated: 1.5 Gy every 12 h

Table 4.4: Typical parameter values used in the simulations of tumor response to
fractionated radiotherapy.

The radiosensitivities considered in the simulations presented are consid-
ered to be typical for many human tumors (see table 4.4 for typical a and
table 4.3 for typical %—ratios). The OER values were chosen according to
experiments published by Hall [55]. The cell cycle delay was assumed to be
6 h due to short repair halftimes published by Dahm-Daphi et al [33] and
Smith et al [100]. However, analysis of clinical data on continuous hyper-
fractionated accelerated radiotherapy suggests that repair is not complete
within 6 h [39, 3]. The probability for postmitotic survival is assumed to
be % because some cells are observed to survive mitosis in spite lethal DNA-
damage, but few cells undergo more than three or four mitoses after being
lethally hit. For P, = % only (%)3 = 3.7% of lethally hit normoxic cells will
undergo three more mitoses and only (5)* = 1.2% of lethally hit normoxic
cells will undergo four more mitoses. Repair mechanisms have been studied
extensively for normal tissues but no repair halftimes have been published for
tumor cell lines. No probability for repair P, of sublethal damage can be
given. A repair probablity P, = % was assumed, but this is only relevant for
one simulation presented, in which no complete repair was assumed between
fractions.

In the case of phase dependent radiosensitivities and incomplete repair
due to low inter-fraction intervalls the parameter values listed in table 4.5
were used for simulation of tumor response to radiotherapy. The phase de-
pendent radiosensitivities chosen reflect experiments showing that mitosis is
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b)

Figure 4.9: Tumor with a = 0.4 Gy ' and 5 = 10 Gy before (a) and after
(b) siz weeks of conventional therapy (2 Gy given once a day with weekends off).
Tc =65h, GF = 100% and ®apop = 0 % was chosen. Normozic tumor cells are
blue, hypozic tumor cells red and necrotic tumor cells white. Capillaries are depicted
green. At the end of the simulated therapy there are almost no normozic cells left
while o significant number of hypozic cells have survived because of a pronounced

oxygen effect with OER = 3.
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Model parameters ‘

Tc 115 h
TGU g, &3 h, a=04 Gy‘l
Ts, Qs 14 h7 a=0.1 Gyil
Tq,, ag, 12 h, «a = 0.5 Gyfl
T, am 6h,a=05Gy!
Oa 5
% 5 Gy
Oxygen effect OER =3
Cell cycle delay due to repair 6 h
Repair mechanism Prep =0 — % at checkpoints
Dose fractionation pattern | accelerated: 1.5 Gy every 12 h

Table 4.5: Model parameters for the simulation of tumor response including cycle
phase dependent sensitivities and repair mechanisms. These values were only used
wn the simulation of the effect of incomplete repair on tumor response shown in
figure 5.16.

the most and synthesis the least sensitive cycle phase. Literature on phase de-
pendent radiosensitivities is scarce. Phase dependent radiosensitivities have
only been measured for a few human cell lines in vitro 88, 11].



Chapter 5

Results

In this chapter simulation results based on the radiobiological model devel-
oped in the three previous chapters will be presented. In section 5.1 it will
be shown how the model parameters effect tumor growth. The influence of
angiogenesis on tumor growth is demonstrated in 5.2. A central aspect of this
work was the desire to compare simulation results with experimental data in
vivo. The Dunning R3327 tumor system in Copenhagen rats was chosen as a
reference point for simulations of tumor growth. This tumor system has been
introduced briefly in section 2.1.4. Comparing simulated growth curves with
corresponding experimental data stresses the need to include angiogenesis in
simulations of tumor proliferation. Section 5.4 deals with the influence of the
model parameters on tumor response.

It will be demonstrated that tumor response does not only depend on the
intrinsic radiosensitivities of tumors but on their growth characteristics, too.
Comparing simulations of tumor growth for the cell kinetics parameters of the
AT1 and the HI sublines of the Dunning R3327 tumor system emphasizes
the role angiogenesis plays in tumor proliferation. The way angiogenesis
influences tumor response to fractionated radiotherapy is discussed.

All simulations presented in this chapter were performed with the param-
eter values given in tables 2.4, 3.1 and 4.4 for tumor growth, tumor angio-
genesis and tumor response to irradiation, respectively. The ranges chosen
for the parameter values are either motivated by experimental data or con-
sidered to be typical in the literature. A major objective of this work was
to verify that simulations according to the cellular model are in qualitative
agreement with experimental data. Another goal was to identify the domi-
nant parameters influencing tumor behavior. Parameter values entering the
simulations presented in the next four sections were chosen with these two
objectives in mind.

o7
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5.1 Tumor growth

Simulations of unperturbed tumor growth were performed with the param-
eter values given in table 2.4. Simulations of tumor growth were performed
for Tc-values as low as 2.7 d (65 h) and as high as 7.1 d (170 h). Growth
fraction and ®,,,, were taken to be size dependent. Within a tumor GF was
taken to decrease logarithmically with tumor size while ®,,,, was considered
to increase logarithmically with tumor size (see equation 2.2). Lysis mech-
anisms were assumed to saturate logarithmically with increasing number of
dead cells in an analogous manner. Within the range of lysis times given
in table 2.4, lysis times do not have a dominant effect on tumor behavior.
Therefore, all simulations will be performed with maximum lysis times of 96
h and 144 h for apoptotic and necrotic cells, respectively. The oxygenation
status of tumor cells was determined by their distance to the nearest capil-
lary. Normoxic, hypoxic and necrotic cells were distinguished. The capillary
system was modeled by a capillary distribution that was homogeneous at
the beginning of tumor growth with an intercapillary distance of 7 cell layers
(see figure 2.5). Only to demonstrate the effect the microenvironment has
on tumor proliferation were simulations performed with different capillary
systems.
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Figure 5.1: Tumor growth depends on the cell cycle time Te:. Growth curves are
shown for various To: Te = 55 h (black curve), Tc = 80 h (blue), Tc = 115 h
(green), Tc = 150 h (red). All simulations represent tumors with apoptotic capacity
@ upop = 0 and growth fraction GF = 100%.

In normal tissues there is an equilibrium between cell cycle time (T¢),
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actively proliferating cells (growth fraction GF) and programmed cell suicide
(determined by the apoptotic capacity ®apop). In tumors this equilibrium is
lost and there is uncontrolled growth. Simulations of tumor growth for vari-
ous cell cycle times T« show an increase in proliferation rate with decreasing
Te (figure 5.1). Tumor proliferation also depends on growth fraction and
apoptosis. Increasing cell cycle times and apoptotic capacity while lowering
growth fraction slows down the rate of proliferation and ultimately results in
equilibrium. This is illustrated in figure 5.2, which shows simulated growth
curves for the same cell cycle time T = 80 h but different fractions of apop-
totic and quiescent cells. The logarithmic increase in apoptotic fraction was
from 0% to 15% for the blue curve and from 0% to 20% for the red curve.
The growth fraction decreased logarithmically from 100% to 85% for the blue
curve and from 100% to 80% for the red curve.

Size [total no. of cells]

WO L L L L L | |
40 80 120 160 200
Age [d]

Figure 5.2: Tumor growth curves for different apoptotic capacity ®opop and growth
fraction GF. Tumors with ®gpop = 0% and GF = 100% (black curve) proliferate
faster than tumors where there is still some (size dependent) apoptosis and some
(size dependent) fraction of quiescent cells (colored curves). Growth was simulated
with T = 80 h. @gpep increased logarithmically from 0% to 15% (blue) and from
0% to 20% (red) while the growth fraction decreased on the same logarithmic scale
from 100% to 85% (blue) and from 100% to 80% (red).
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throughout the simulations presented here. The diffusion radius remained
constant at 200 pum, corresponding to 10 cell layers. A capillary cycle time of
120 h was applied in one simulation to demonstrate that capillary cycle time
does not have a pronounced effect on tumor proliferation (see figure 5.5). All
other simulations of tumor growth with angiogenesis were performed with
capillary cycle times T = 72 h.

new capillaries generated

WO L 1 L 1 L |
10° 10° 10
Size [total no. of cells]

Figure 5.4: Number of newly produced capillaries due to tumor angiogenesis vs. tu-
mor size. Different thresholds for capillary stimulation are shown: 120 a.u. (black),
100 a.u. (blue) or 80 a.u. (red) of tumor angiogenesis factors (TAF) are needed
for capillary stimulation. To = 72 h was chosen for capillaries, the tumor cell
cycle time was T = 115 h. The number of new capillaries produced depends on
the amount of TAF needed to stimulate capillary division.

Figure 5.4 shows the number of induced capillaries for various thresholds.
Tumor angiogenesis increases the number of normoxic cells which is the frac-
tion of cells that proliferate (figure 5.5). Thus, angiogenesis enhances tumor
growth (figure 5.6). There is a competition between proliferation of tumor
cells and generation of new capillaries. Angiogenesis has a more pronounced
effect on normoxic fraction for slowly proliferating tumors. If T¢ is too low,
angiogenesis cannot keep up (figure 5.7). Simulations were performed with
the same parameters of the angiogenesis model, but with three different tu-
mor cell cycle times. Whereas the normoxic fraction recovers to values above
85% for low thresholds in the slowly proliferating tumor (T¢ = 115 h) result-
ing in the red curve, it remains below 80% for the fast proliferating tumors
(T¢ =65 h and T = 80 h for the black and blue curves, respectively).
Within the range studied, the capillary response time is not a dominant
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Figure 5.5: Normozic fraction vs. tumor size. Stimulus thresholds in a.u. of tumor
angiogenesis factors (TAF') used for the simulations were 120 (pink), 100 (blue)
and 80 (green and red). Simulations of tumor angiogenesis were performed with
tumor cycle times of To = 115 h. Capillary cycle times were T = 120 h for the
green curve and To = T2 h for all other tumor simulations. Without angiogenesis
the normogic fraction decreases with tumor size (black curve), reducing the tumor
growth rate. Angiogenesis increases the normoxic fraction.

parameter as can be seen from figure 5.5. For a tumor cell cycle time of
Te = 115 h, increasing the capillary cycle time T from 72 to 120 h delays
tumor angiogenesis but does not influence the normoxic fraction. The reason
for this is that most capillaries are in Gy, waiting to be stimulated. Only
if a significant fraction of capillaries were actively moving through their cell
cycle would their cycle time influence angiogenesis.
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Figure 5.6: Tumor proliferation with and without angiogenesis. The black growth
curve shows tumor proliferation without angiogenesis. Tumor angiogenesis en-
hances tumor growth. Capillary stimulation thresholds chosen were 120 a.u. of
tumor angiogenesis factors (green), 100 a.u. (blue) and 80 a.u. (red). Tc was 115
h for tumor cells and 72 h for capillaries. The tumor growth rate increases with
decreasing stimulation threshold.
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Figure 5.7: Normouzxic fractions versus tumor size for the same stimulus threshold
(80 a.u. tumor angiogenesis factors) but for different cell cycle times Te:. The red
curve represents tumor proliferation with To = 115 h. Tc was 80 h for the blue
curve and 65 h for the black curve. The effect of angiogenesis on the tumor depends
on the tumor cell proliferation. For fast growing tumors, new capillaries are not
induced fast enough to keep tumor cells from turning hypozic or even necrotic.
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Figure 5.8: Simulated growth curves for the cell kinetics parameters of the AT1 and
HI sublines of the R3327 Dunning tumor system with and without tumor angiogen-
esis. Angiogenesis was simulated using a threshold of 80 a.u. of tumor angiogenesis
factors. Tumor angiogenesis reduces the tumor volume doubling time. The effect of
angiogenesis is more pronounced for the moderately well differentiated HI subline
than for the anaplastic AT1 subline.

5.3 Comparing simulated tumor growth with
experimental growth curves in vivo

Simulations were performed with the growth parameters of two of the sub-
lines of the Dunning R3327 tumor system, the AT1 and HI sublines. The
cell kinetics parameters for these two sublines were measured with flow cy-
tometry methods |72, 93] and are given in table 2.2. Observed tumor volume
doubling times were calculated using equation 2.1 and are presented in table
2.3. Figure 5.8 shows simulated tumor growth with and without angiogenesis
for the AT1 and HI sublines. Simulations were performed with no apoptosis
and a growth fraction of 100% for both sublines. The threshold considered for
angiogenesis was 80 a.u. of TAF and the capillary cycle time was T¢ = 72 h.
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It can be derived from figure 5.8 that simulations of tumor growth not
considering tumor angiogenesis result in volume doubling times much lower
than observed experimentally. Volume doubling times were calculated from
the growth curves according to

In2
V(t) = Vo exp(——t) .
Tp
From two volumes V; and V5 at times ¢; and ¢, the volume doubling time T,
can be extracted by

111‘/2 — hl‘/l = ln—2(t2 — tl) .
Tp

For the AT1 subline, Tp was 9 d without angiogenesis. Tp decreased to 6.1 d
when angiogenesis was accounted for in the simulations. The observed mean
volume doubling time was 5.640.4 d. For the HI subline, the effect was even
more pronounced. Tp decreased from 21.1 d without angiogenesis to 10.3 d
when angiogenesis was considered. The HI tumors have an observed mean
volume doubling time of 104+1.1 d [72]. This can be explained by the cell
kinetics and the proliferation rates of the two sublines. The HI tumor grows
much slower, allowing angiogenesis to keep up with its growth. In table 5.1
experimental volume doubling times are compared to those obtained by the
simulations shown in figure 5.8. Simulations of angiogenesis were performed
with thresholds of 80 a.u. of TAF for both the AT1 and the HI tumors.

Dunning R3327 Subline | observed T, [d] simulated Ty [d]
no angiogenesis ‘ angiogenesis
AT1 5.6£0.4 9 6.1
HI 10+1.1 21.1 10.3

Table 5.1: Volume doubling times Tp for two Dunning R3327 sublines obtained
experimentally from male Copenhagen rats and from the simulations illustrated in
figure 5.8. Experimental doubling times were taken from Lohr et al [72].

5.4 Tumor response to irradiation

The tumor response model includes parameters to describe intrinsic (cycle
phase dependent) radiosensitivities, repair of sublethal cell damage, cell cy-
cle delay, postmitotic survival and the oxygen effect. Simulation results are
presented for typical parameter sets (see table 4.4). For most simulations,
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complete repair between fractions is assumed and sensitivities do not vary
throughout the cell cycle. An %—ratio of 10 Gy was chosen, a value considered
to be typical for tumors (see table 4.3). Repair and phase dependent sensitiv-
ities are only considered in one example to demonstrate that repair effects are
not dominant in tumor control, but must be considered for moderately acute
responding tissues (which are assumed to have %—ratios of approximately 5
Gy). Both fractionation schemes studied here, conventional and accelerated
fractionation, were assumed to have weekends off. In all simulation results
presented, tumor response will be given as the number of normoxic cells sur-
viving each day of the treatment. In conventional fractionation 10 Gy are
delivered per week, whereas one week of accelerated treatment corresponds
to a total dose of 15 Gy.

Tumor response is first and foremost determined by the intrinsic radiosen-
sitivity. In the LQM, radiosensitivity is quantified in terms of the parameters
« and . Figure 5.9 presents simulated tumor response for a conventional frac-
tionation pattern. The growth parameters for all three tumor cell lines were
Tc =80h, GF = 100% and @,,,, = 0%. The radiosensitivities were a = 0.3
Gy~ for the cell line corresponding to the black curve and o = 0.35 Gy~ !,
a = 0.4 Gy ! for the blue and red curves respectively. As can be seen from
table 4.4, % = 10 Gy was assumed for all cell lines. The OER was taken to be
3, a value which drastically reduces the sensitivity of hypoxic cells. Complete
repair between fractions was assumed. The relatively radioresistant cell line
with @ = 0.3 Gy~ (black survival curve) could not be controlled for a total
dose as high as 70 Gy. The effect of two of the “4 Rs”, repopulation and
reoxygenation, on tumor response can clearly be seen from figure 5.9. There
is significant repopulation during weekends where there is no treatment. Re-
population between fractions during the first week of treatment is illustrated
for the red curve representing the most sensitive cell line. Figure 5.9 also
stresses the importance of reoxygenation. At the end of the treatment it
can be seen that killing of all normoxic cells might not correspond to tumor
control because of reoxygenation of hypoxic cells.

Treatment outcome also depends on the time-dose pattern applied. Fig-
ure 5.10 shows how the time-dose pattern influences tumor control. Two cell
lines with different radiosensitivities but with the same cell proliferation dif-
fer in tumor response. The black curve represents cell survival for a relatively
radioresistant cell line (o = 0.3 Gy~ !) that could not be controlled with a
conventional treatment of seven weeks, corresponding to a total dose of 70
Gy. Simulated accelerated fractionation yielded tumor control at a total dose
of 69 Gy, corresponding to 31 days of treatment (red cell survival curve). The
blue survival curve resulted from simulation of a conventional radiotherapy
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Figure 5.9: Simulated cell survival (represented by the number of surviving nor-
mozic cells) depends on the intrinsic radiosensitivity. o = 0.3 Gy~' for the black
survival curve and o = 0.35 Gy~ ', o = 0.4 Gy~ ! for the blue and red curves, re-
spectively. The growth characteristics were T = 80 h, GF=100% and ®gpop = 0.
A conventional dose-fractionation scheme of 2 Gy once per day with weekends off
was simulated.

of a tumor with the same cell kinetics, but a higher radiosensitivity. Tumor
control was possible for a total dose of 70 Gy.

Among the time dependent factors in radiotherapy, repopulation is the
dominant effect. The influence of the growth parameters T, GF and ®,,,, on
tumor control is demonstrated in figures 5.11 and 5.12. Both figures show cell
survival for the standard time-dose pattern in which 2 Gy are administered
once daily with the weekends off. A pronounced oxygen effect with OER =
3 was considered.

Tumor control was not achieved for relatively radioresistant cell lines
(@ = 0.3 Gy™!) if the cell cycle time was too short and tumor proliferation
subsequently too high. Figure 5.11 shows survival for cell lines with no ability
for apoptosis and a growth fraction of 100%. Tumor control for total doses
of 70 Gy is possible only for T¢ = 115 h. Figure 5.12 shows cell lines with
varying degrees of differentiation, corresponding to varying growth fractions
and apoptotic capacities. The least differentiated cell line is not controlled
even at total doses as high as 70 Gy (black cell survival curve), whereas the
two cell lines that still show apoptotic and quiescent cells (colored curves)
are controlled with conventional fractionation and a total dose of less than
60 Gy. Growth fraction varied size dependently from 85% to 100% for the
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Figure 5.10: Tumor response for different time-dose patterns. Cell survival is
shown for two cell lines differing only in radiosensitivity. Control was possible
with conventional fractionation at a total dose of less than 60 Gy (corresponding
to 6 weeks of treatment) for « = 0.4 Gy ' (blue). The cell line corresponding to
the black and red curves (o = 0.3 Gy~!) could only be controlled with accelerated
fractionation and a total dose of 69 Gy (corresponding to 31 days of treatment).
T = 115 h was chosen for both cell lines.

blue curve and from 80% to 100% for the red curve. Apoptotic fraction ®,pep
varied between 0% and 15% and 0 % and 20%, respectively.
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Figure 5.11: Cell survival for tumors with different cell cycle times. Tc = 65 h
for the black survival curve and To = 80 h and T = 115 h for the blue and red
curves, respectively. Conventionally fractionated therapy of the three tumors was
simulated with o = 0.3 Gy~ . Only the slowly proliferating tumor (Tc = 115 h)
was controlled at o total dose of 70 Gy, corresponding to 49 treatment days.
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Figure 5.12: GF and ®qpop influence tumor response. Higher growth fraction and
lower apoptotic capacity mean more ongoing tumor proliferation throughout the
treatment. Simulation of tumor response for GF = 100% and ®qpop = 0 yielded
the black survival curve. The colored curves represent well differentiated cell lines.
With ongoing proliferation GF decreased from 100% to 85% and 80% for the blue
and red curves, respectively, while ®qpop increased form 0% to 15% and 20% for
the blue and red curves, respectively.
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Several authors have pointed out that hypoxia adversely effects treatment
outcome in radiotherapy [58, 59, 22, 120, 23, 51, 94|. The role of hypoxia
and the oxygen effect in tumor control is demonstrated by simulating ra-
diotherapy for various oxygen enhancement ratios. For doses of 2 Gy and
more, OER values are typically between 2.5 and 3. At doses of 1.5 Gy and
below, there is a reduced oxygen effect with OER ~ 2. Figure 5.13 shows the
decrease in the number of surviving normoxic cells for two levels of oxygen
effect. For high-LET radiation there is no oxygen effect and OER = 1.

No. of normoxic cells
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Figure 5.13: The ozygen effect adversely effects tumor control. Conventional ra-
diotherapy was simulated for OER = 3 (black curve) and OER = 2.5 (red curve).

Tumor angiogenesis increases the normoxic fraction, enhancing repopula-
tion between fractions. Tumor control should hence require additional dose
for tumors with angiogenesis. On the other hand, tumor angiogenesis de-
creases the hypoxic fraction. Since hypoxic cells are less radiosensitive than
normoxic cells are, this effect should facilitate tumor control. Including tu-
mor angiogenesis in the simulation of tumor response to irradiation allows to
predict which of the two effects, increased repopulation or increased radiosen-
sitivity, is dominant. For fast proliferating tumors, the effect of repopulation
prevails over the resensitization of hypoxic cells. Control of tumors with
angiogenesis requires higher total doses than control of tumors without an-
giogenesis as can be seen in figure 5.14. For slowly proliferating tumors,
angiogenesis greatly reduces the hypoxic fraction, facilitating tumor control
(figure 5.15).
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Figure 5.14: Tumor response with (black) and without angiogenesis (red). Sim-
ulations of conventional fractionation were performed for a short cell cycle time
Tc = 80 h and a high radiosensitivity o = 0.4 Gy~'. For fast proliferating tumors,
angiogenesis enhances repopulation which adversely effects tumor control even for
very high capillary stimulation thresholds.
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Figure 5.15: Tumor response to conventionally fractionated radiotherapy for a
radiosensitivity of a = 0.4 Gy ‘with (black) and without angiogenesis (red). Both
survival curves were simulated with a relatively long cell cycle time Te = 115 h. In
slowly proliferating tumors such as these, the reduction of the hypoxic fraction due
to angiogenesis outweighs the effect of repopulation.
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Repair of sublethal damage has been assumed to be completed between
fractions in the simulations presented so far. For accelerated fractionation
and repair within 6 h at the G;- and Gsy-checkpoints this is no longer true.
Tumors are assumed to have high %—ratios, so incomplete repair is not an
important effect because only a small fraction of DNA-damage is sublethal.
For doses of 1.5 Gy and a = 0.4 Gy~! and § =10 Gy only 1 — exp(—0.04 x
2.25) = 9% of the normoxic cells aquire a sublethal DNA-damage compared
to 1 — exp(—0.4 x 1.5) = 45% of normoxic cells that get a lethal hit. Late
responding (normal) tissues have lower Z-ratios. For a = 0.4 Gy ! and
% = 3 Gy, the fraction of normoxic cells aquiring a sublethal DNA-damage
is 1 — exp(—0.133 x 2.25) = 26%.

Simulations were performed with phase dependent sensitivities, mitosis
being the most sensitive and synthesis being the least sensitive cycle phase.
The sensitivities and repair parameters chosen are given in table 4.5.
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Figure 5.16: Simulated survival fractions for accelerated radiotherapy with three
different scenarios for repair mechanisms. The %-ratio was chosen to be 5 Gy for all
three survival curves. There was either complete repair between fractions (resulting
in the black curve), no repair at all (red) or repair at the Gy- and Ga-checkpoints
with a probability of Prep = % The survival fraction for incomplete repair between
fractions is lower than that for complete repair but higher than that for no repair
at all.

For an %-ratio of 5 Gy, corresponding to moderately acutely responding
tissues, the survival fraction throughout accelerated fractionation with repair
at the Gi- and Gs-checkpoints is lower than the survival fraction with com-
plete repair and higher than that with no repair at all between fractions (see
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figure 5.16). Allowing for repair of sublethal damage at the G;-S and Go-M
checkpoints with a certain repair probability P, results in an exponential
decrease in time of cells with sublethal damage analogous to the incomplete
repair model by Thames [105].






Chapter 6

Discussion

The cellular radiobiological model

The objective of this work was to devise and implement a radiobiological
model that allows a more realistic description of tumor growth and tumor
response to radiotherapy than current models do. By considering each tumor
cell individually, the cellular radiobiological model that has been introduced
in this work includes the main processes influencing tumor behavior.

The tumor growth model (section 2.2) takes into account three growth
parameters determining the tumor cell kinetics (T¢, @apop and GF), the mi-
croenvironment and the diffusion of oxygen around capillaries, as well as
lysis times for apoptotic and necrotic cells. Modeling tumor proliferation
including tumor angiogenesis (section 3.2) is performed along the following
principle: Hypoxic areas produce tumor angiogenesis factors (TAF) which
diffuse into the environment, inducing capillaries to divide if TAF concentra-
tions exceed a certain threshold. Tumor response to irradiation (section 4.2)
is determined by the radiosensitivities «, § of the linear-quadratic model, the
oxygen effect, a probability P, for postmitotic survival, a cell cycle delay
due to repair and repair mechanisms for sublethal DNA-damage.

A principal advantage of the cellular model presented in this work is tak-
ing into account the time factor in fractionated radiotherapy. Repopulation
due to division of undamaged tumor cells, redistribution of cell cycles and
reoxygenation of hypoxic cells due to cell displacement are all consequences
of the ongoing tumor proliferation and are dealt with by the tumor growth
model. Of the “4Rs” in radiotherapy only repair of sublethal damage between
fractions must be accounted for separately. Previously no unified model ex-
isted in the literature dealing with all four time dependent effects at the
same time. It is the ease with which the time factor in radiotherapy is ac-
counted for that makes the cellular approach to modeling tumor response so

75
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appealing.

The methods presented allow three-dimensional computer simulation of
tumors with diameters of 12 mm containing 100 million tumor cells. This
is achieved by simplifying processes such as blood supply and interaction of
radiation with tissues. Also, allocation of three-dimensional data structures
is implemented in a way that minimizes computer run times. Previous three-
dimensional computer simulations of tumors were restricted to sizes of less
than one million cells.

Simulation results based on the cellular model

The simulation results presented in chapter 5 illustrate how tumor prolifera-
tion depends on the three growth parameters, cell cycle time, growth fraction
and apoptotic capacity (figure 5.2), and not on the cell cycle time alone (fig-
ure 5.1). A low growth fraction and the ability of tumor cells to undergo
apoptosis can slow down tumor proliferation to an equilibrium between cell
proliferation and cell death. Within the range studied, lysis times for dead
cells have no pronounced effect on tumor behavior. The influence exerted
on tumors by their microenvironment is demonstrated by the relationship
between tumor proliferation rate and the capillary density of the host tissue
(figure 5.3).

Tumor angiogenesis increases the normoxic fraction, thus enhancing tu-
mor proliferation (figures 5.6 and 5.7). The dominant factor of the tumor
angiogenesis model is the amount of TAF needed to stimulate capillaries to
divide.

The need to compare simulated growth curves and survival fractions with
experimental data in vivo was crucial throughout the process of developing
the simulation methods presented here. The Dunning R3327 prostate tumor
system was chosen for comparing simulated tumor growth curves with tumor
proliferation observed in male Copenhagen rats. The cell kinetics of this
tumor system are well known for several sublines with varying degrees of
differentiation (table 2.2). Experimentally observed tumor volume doubling
times are given in table 2.3.

The results presented on unperturbed proliferation of Dunning R3327
AT1 and HI prostate tumors show that simulated tumor growth curves are
in qualitative agreement with corresponding tumor proliferation in animals.
Simulated tumor volume doubling times are in remarkable quantitative agree-
ment with observed tumor volume doubling times (table 5.1). However,
parameters entering the simulations of angiogenesis are known with large
uncertainties only, so further studies are necessary to validate the simula-
tion tools developed. The results also emphasize the role angiogenesis has
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in tumor proliferation. A realistic tumor model that bears comparison with
experimental and clinical data must account for angiogenesis (figure 5.8 and
table 5.1).

Tumor control is not only determined by the intrinsic radiosensitivities
of tumors (figure 5.11) but also by their proliferation characteristics (figure
5.12). The results presented on tumor control by radiotherapy stress the
importance of the time factor in fractionated radiotherapy. Repopulation
between fractions is a major factor in tumor control. Possible reoxygena-
tion of hypoxic cells means that elimination of all normoxic cells might not
suffice for tumor control. The adverse effect of hypoxia on tumor control
reported by many authors is demonstrated by simulations of tumor response
to irradiation for different OER-values (figure 5.13). Tumor angiogenesis en-
hances tumor proliferation (possibly rendering tumor control more difficult)
while decreasing the hypoxic fraction (possibly rendering tumor control eas-
ier). From the simulation results no general conclusion can be drawn on how
angiogenesis effects tumor control. The influence of angiogenesis on tumor
control depends on the cell kinetics of the tumor. In fast proliferating tumors
angiogenesis enhances repopulation and increases the cell survival fraction af-
ter irradiation (figure 5.14). In slowly proliferating tumors the decrease in
hypoxic fraction due to angiogenesis outweighs the effect of increased repop-
ulation resulting in tumor control for lower total doses (figure 5.15). For
moderately acute responding tissues (with an assumed %—ratio of 5 Gy), in-
complete repair between fractions is a relevant time dependent effect (figure
5.16) in accelerated dose fractionation.

From the results presented it can be seen that simulation of tumor re-
sponse cannot be done adequately without taking into account the dynamic
characteristics of tumor growth. The most important time dependent effect
of the “4 Rs” is repopulation, followed by reoxygenation. Redistribution does
not seem to influence treatment outcome significantly. Incomplete repair is
of importance for accelerated fractionation only. The way angiogenesis in-
fluences tumor response to fractionated radiotherapy depends on whether
angiogenesis can keep up with tumor proliferation or not.

The cellular model and the simulation tools developed allow the estima-
tion of tumor control for different radiobiological parameters and time-dose
patterns. Tumor entities can be distinguished by their growth parameters,
their intrinsic radiosensitivities, and their oxygen supply which in turn is
determined by the capillary density of the host tissue and its angiogenic re-
sponse. Tumors with different degrees of differentiation differ in their growth
parameters and radiosensitivities. Comparing different time-dose patterns in
terms of their tumor control is of special interest in radiotherapy. The simula-
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tion methods introduced here can be used to study tumor control for different
fractionation schemes. An estimation can be made whether a new (and pos-
sibly more time-consuming) fractionation scheme does indeed enhance tumor
control. Simulations like the ones presented could help to identify patients
who might profit from accelerated fractionation schemes.

Critical discussion of the cellular model

Tumor growth and tumor response to irradiation involve complex biological
processes on a molecular scale. Deriving a tumor model requires simplify-
ing these complex processes by including only the most important aspects
and formulating mechanisms describing tumor behavior on a cellular level.
Restrictions on computer run times impose further simplifications in the
mechanisms and parameters included.

In the tumor growth model devised here simplifications were made con-
cerning tumor morphology. The current model results in hypoxic areas,
necrotic centers and resorbed cells which is consistent with observed tumor
growth. However, tumors in vivo are more diffuse and heterogeneous than
the simulated tumors presented in this work. The potential of accounting for
tumor heterogeneity and including tumor shrinkage will be discussed in the
following Outlook chapter.

Tumor angiogenesis has previously been modeled using systems of partial

differential equations. The simulations of blood vessel creation presented by
Chaplain et al |25, 28] include the formation of vessel branches and loops.
Highly irregular structures including loops, shunts and blind ends are typical
of tumor vasculature. Markus et al presented cellular automata that simulate
blood vessel creation |74].
The tumor angiogenesis model presented here does not consider any vascular
structure since literature allowing a quantitative analysis of microvasculature
is scarce. Less et al have quantified branching patterns of the microvascula-
ture in a mammary carcinoma |71] but usually oxygen distributions within
tumors are studied [51, 43, 76, 94]. Comparing simulated microvasculature
to corresponding experimental data would not be possible. Therefore, the
model that has been devised in section 3.2 focuses on the subsequent effect
of increased blood supply on tumor cells. In previous angiogenesis models
based on differential equations this was not attempted.

The linear-quadratic model has drawn much criticism [19]. It is argued
that it is a data fit that lacks biological basis. Survival curves are generally
obtained for cells in culture and extrapolation of cell behavior to situations
in vivo have to be done with care. Cell response to radiation might be
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different in tissues than in culture. In addition, radiation energy is absorbed
differently in tissues and in culture. Survival curves show linear-quadratic
form only for doses between 1 Gy and 10 Gy.

Since single doses in fractionated radiotherapy are in that range, the LQM
is used throughout this work to calculate cell killing.

Critical discussion of the
radiobiological parameters of the cellular model

Input parameters entering the computer simulations are motivated by biolog-
ical experiments (as indicated in sections 2.2.3, 3.2.3 and 4.2.3) rather than
by fitting clinical data. Predicting tumor behavior with the cellular model
is founded on the assumption that the radiobiological model parameters are
known with sufficient certainty.

For the Dunning R3327 tumor system chosen to compare simulated tu-
mor proliferation with corresponding experimental data, parameter values
obtained by two different laboratories vary. The cell cycle time T of the
AT1 subline for example is 18% lower according to Overgaard et al [93]
(T¢ = 3.1 +£0.2 d) than according to Lohr et al |[72] (T¢ = 3.8 £ 0.25 d).
Nevertheless, for this particular tumor system, the cell kinetics parameters
are known to a sufficient degree to justify simulations of tumor behavior
based on the cellular approach presented here. Another growth parameter,
the apoptotic capacity, is known to be zero with little margin of error for in-
stance. A detailed study of how the inter-laboratary variability in biological
parameters effects tumor doubling times and tumor responses to irradiation
predicted by simulations still needs to be done.

Presently, cell kinetics parameters for human tumor cell lines are usually
known with a large variability only. Predicting treatment outcome based on
cell kinetics parameters has been difficult. Efforts have been made to corre-
late labeling indices LI and durations Tg of the S phase to tumor size, tumor
stage, DNA content and patient age. Few statistically significant relation-
ships for Ts have emerged, however. Zatterstrom et al report that T depends
significantly on tumor age, but this is for a model system, xenografted human
squamous cell carcinoma in the head and neck (HNSCC) in mice [121]. The
parameter most likely to vary with cell differentiation and tumor age is LI,
whereas T seems to remain relatively constant. Bennett et al conclude that
for HNSCC no important differences in cell kinetics can be found between
primary, recurrent or metastatic tumors [7]. Terry et al find no correlation
between tumor stage and cell kinetics [103].

Compiling median (or mean) data on cell proliferation as given in Table
2.1 is misleading. Inter-patient variability is so large that one could argue
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knowing median (or mean) tumor proliferation parameters is of little use.
In addition to the inter-patient variability there is a great variability in the
results obtained by different laboratories [6]. Wilson reviewed a list of pub-
lications on median LI and Ty for HNSCC. Median LI ranged from 6.3% to
12.7% and median Tg from 8.1 to 14 h. Wilson concludes that the results on
studies on cell proliferation have not been consistent and that no consensus
has emerged on whether T, can serve as a clinical predictor for treatment
outcome in radiotherapy [114]. Begg et al conclude from a multi-center anal-
ysis for head and neck cancer that only LI (corresponding to growth fraction)
offers some evidence of being correlated to tumor control [6]. According to
their study, Tyt provides only a weak predictor of radiotherapy outcome.

Establishing cellular simulation tools of tumor growth requires sophisti-
cated measurements of tumor cell kinetics. Prior to predicting tumor be-
havior in clinical practice based on the cellular radiobiological model, it has
to be assessed how the variability in the input parameters effects simulated
tumor control.

The parameters entering the angiogenesis model have also not been es-
tablished to a satisfying extent. The choice of 80 arbitrary units of tumor
angiogenesis factors for the capillary stimulation threshold was motivated by
the observation that as little as 50 to 60 hypoxic cells can trigger angiogene-
sis. Choosing a diffusion radius of 200 ym was motivated by computational
efficiency rather than by biological experiments. Simulations presented on
tumor angiogenesis are intended to qualitatively demonstrate the effect an-
giogenesis has on tumor behavior. A thorough validation of the tumor growth
model including angiogenesis requires a more detailed knowledge on the dif-
fusion characteristics of TAF than is currently available in the literature.

Phase dependent radiosensitivities have only been measured for a few
human cell lines in vitro [88, 11|, so comparing simulations including phase
dependent sensitivities with experimental data is difficult at present.

Studies on continuous hyperfractionated accelerated radiotherapy have
shown an increase in normal tissue complications due to incomplete repair
between fractions |39, 3]. Bentzen et al estimated repair halftimes in the or-
der of 4 h to 5 h for selected late responding tissues in the head and neck [9).
In recent studies, biphasic repair models with a fast repair process (repair
halftime in the order of minutes) and a slow repair process (repair halftime
in the order of hours) have been successfully fitted to experimental data
of late responding normal tissues [100, 33|. For human fibroblasts, repair
was complete within about 12 h |37, 38]. Only about 2.5% of all induced
double-strand breaks remained non-repaired. It is not clear, however, how
the fraction of non-repaired double-strand breaks translates into cell killing.
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Also, no repair halftimes for tumors have been studied so far.

Simulations of tumor response to accelerated radiotherapy that bear compar-
ison with experimental data require repair probabilities for tumor cell lines
as input parameter. Data on the probabilitites P, with which sublethal
damage is repaired are currently not available in the literature. To date,
simulations of tumor response to fractionated radiotherapy distinguishing
complete and incomplete repair cannot be compared to experimental data.

The tumor model and the simulation tools that have been developed in
this work are not limited to a single tumor entity. Predictions of tumor
response to irradiation can be made based on the cellular radiobiological
model for any tumor for which the radiobiological parameters are sufficiently
well known.






Chapter 7

Outlook

Comparing computer simulations to experimental data

The simulation methods devised in this work intend to provide the foundation
for integrating a simulation tool that calculates tumor control probabilities
into the treatment planning process in radiotherapy. This can only be done
after a thorough comparison of simulated tumor growth and tumor response
to experimental as well as to clinical data.

Comparing simulated and observed tumor growth could help to quantify
parameters of the angiogenesis model that are not sufficiently well known at
present. Simulated tumor growth and experimental growth curves of Dun-
ning R3327 prostate tumors can be compared for two different settings. Tu-
mor growth in vivo can be observed either after transplanting fresh pieces
of tumors subcutaneously or after injecting tumor cells. It has been shown
that there is little angiogenesis in the case of injected tumor cells, so these
two experiments allow validating the tumor growth model with and without
angiogenesis.

All current radiobiological models dealing with the time factor in radio-
therapy define global parameters that are fitted to clinical data. Evaluating
fractionated radiotherapy performed on Copenhagen rats with AT1 tumors
by the Dept. of Radiobiology at DKFZ allows comparing observed tumor
response of AT1 prostate tumors with simulated tumor response. Tumor re-
sponse to radiotherapy has been quantified by the growth delay of recurrent
tumors |87]. The parameters o and § of the LQM can be extracted from
experiments that have been performed on cell cultures of the AT1 subline by
the same group [95].

83
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Obtaining dose-response curves

To be of clinical relevance, the model devised must predict the probability
of (local) tumor control for different tumor entities and time-dose patterns.
The stochastic element in simulating treatment outcome for tumor patients
is twofold. Firstly, tumor control is defined as sterilization of every sin-
gle clonogenic tumor cell. Simulation of response to radiotherapy for two
tumors with equal radiobiological parameters and equal dose-fractionation
could yield zero surviving tumor cells in one case and one single (or a few)
surviving tumor cells in the other. Only the first of the two tumors would be

considered as controlled. The tumor control probability (TCP) would be 1.

The second stochastic aspect in simulating tumor control is the inter—patier21t
variability in intrinsic biological parameters. Different tumors of the same
cell line (or subline) show some variance in their radiobiological parameters.
Whereas a tumor with a (mean) cell cycle time of 3 days might be controlled
with a certain fractionation pattern, a tumor with a (mean) cell cycle time
of 3 days and 3 hours might not be. Probabilities for tumor control for dif-
ferent tumor entities can be obtained by accounting for the variability in
biological parameters in the patient population when simulating tumor re-
sponse. Monte-Carlo simulation for a number of simulations of tumor control
for identical radiobiological parameters demonstrates the stochastic aspect
in radiotherapy due to the requirement that all clonogenic tumor cells must
be killed (figure 7.1). No population averaging has been done. Performing
large-scale Monte-Carlo simulations to obtain tumor control probabilities for
a heterogenous patient population still needs to be done. Dose-response
curves obtained in this manner can be compared to those obtained from
existing phenomenological [52] and mechanistic |80, 82, 110] TCP models.

Improving the cellular radiobiological model

The requirement of realistic computer run times leads to simplifications of
biological processes in the implementation of the tumor model. Elaborating
on four aspects that have been simplified should yield an even more detailed
tumor model:

1. In the radiobiological model presented here, only three levels of oxy-
genation are distinguished resulting in normoxic, hypoxic and necrotic
cells. The oxygen effect is included by introducing a parameter OER
for hypoxic cells. For normoxic cells the OER is one. Recently it has
been pointed out by Wouters et al [120] and Brown et al 23] that cells
with intermediate levels of oxygen can be as important as the hypoxic
fraction for tumor response to fractionated radiotherapy. A function
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Figure 7.1: Dose-response curve (fraction of controlled tumors vs total dose) ob-
tained by Monte-Carlo simulations. A total of 11 simulations of tumor growth
and tumor irradiation with conventional dose fractionation were performed. To =
80 h, ®ypop = 0% and GF=100%. Radiosensitivities were « = 0.4 Gy~ ' and % =10
Gy. Values given for Tc and o are mean values of normal distributions to allow
for heterogeneity within the tumors.

relating oxygenation status and OER to capillary distance according to
experiments (see figure 4.5) should improve the tumor response model.

2. Apoptotic and necrotic cells are resorbed by phagocytosis. The im-
plemented lysis mechanisms correspond to resorption of dead cells by
adjacent cells. The lattice site of a resorbed cell is assumed to stay
empty until it is reoccupied due to cell division or cell displacement.
In tumors in vivo a large fraction of necrotic cells is phagocytized by
macrophages and immune cells penetrating the tumor [12]. This causes
a heterogeneous tumor morphology not accounted for in the current
model.

3. Tumor cells infiltrate normal tissues resulting in a diffuse tumor rim
and in a heterogeneous tumor. Introducing regions along which tumor
cells proliferate preferentially should yield more realistic tumor mor-
phologies.

4. Certain tumors, such as carcinoma of the cervix uteri, shrink as a
consequence of cell killing by irradiation while others, such as sarcomas,
do not. The influence of tumor shrinkage on tumor response and on
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recurrence has been studied by Kocher et al |63, 64|, but has not been
included in the model presented here.

5. In the simulations on tumor response to irradiation, no effect of ra-
diation on capillary cells has been considered. The consequences of
capillary cell killing by irradiation on tumor response need to be stud-
ied in detail. According to Kocher et al [65] killing of endothelelial cells
should result in less tumor cell survival.

The oxygen distribution within the tumor resulting from a more sophisticated
model can be compared with experimentally obtained oxygen distributions.
Corresponding data are available from the Dept. of Radiobiology at DKFZ,
where oxygen tension was measured by polariographic methods [94] and by
NMR [76].

A closer look at radiobiological parameters

Knowing the radiosensitivities of tumors is absolutely crucial in estimating
tumor control based on the linear-quadratic formalism. Tumors are assumed
to have high %—ratios and low repair capacity. In all simulation results pre-
sented, % = 10 Gy was assumed for tumors. For high %—ratios, including
repair mechanisms in the computer simulation methods drastically increases
run time without resulting in significantly different cell survival curves. How-
ever, data have recently been published indicating %—Values as low as % ~ 2
Gy for human prostate tumors |21, 50|, implying that repair mechanisms be-
tween accelerated fractions must be accounted for. Quantifying the effect low
%—ratios have on the tumor control achieved by different time-dose patterns
applied in clinical practice is an important application of the simulation tools
developed in this work.

All simulations of tumor response to irradiation were performed with a
cell cycle delay of 6 h based on the observation of low repair halftimes |33,
100, 37|. However, repair might not be completed within 6 h. Quantifying
the effect different repair times and cell cycle delays have on tumor response
for accelerated fractionation might be important in clinical practice.

Dose inhomogeneities and organ movement

The trade-off between tumor control and sparing of organs at risk can re-
sult in inhomogeneous dose distributions in the target volume. The cellular
approach to radiobiological modeling allows to study the influence of dose
inhomogeneities, such as cold spots, on tumor control. Time-dose patterns in
which an additional radiation boost is applied to part of the tumor volume
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can also be simulated. The position and the size of cold spots are easily
varied.

Inaccuracies in patient positioning and organ movement during or be-
tween fractions can adversely effect treatment outcome. The effect of these
two aspects on tumor control can be studied by the simulation methods de-
veloped. Organ movement can be modeled by translating and rotating the
tumor.

Tumor recurrence

Sparing organs at risk can require radiation doses to the tumor that are not
sufficiently high to eliminate all tumor cells. Surgical resection of tumors can
also result in a small number of surviving tumor cells due to diffuse tumor
boundaries or anatomical complexity. A recurrence caused by repopulation
of surviving tumor cells can be simulated using the simulation methods pre-
sented here. Factors such as necrotic areas of the original tumor and a mi-
crovasculature that has been displaced by the original tumor can be included
in the simulations of tumor recurrence.

Comparing simulated tumor response to irradiation to clinical data

More than 300 patients with prostate carcinoma have been treated by three-
dimensional conformal radiotherapy tecuniques at the Radiological Univer-
sity Hospital, Heidelberg. These data are availiable for a retrospective analy-
sis, in which tumor control based on levels of PSA (prostate specific antigen)
is compared with tumor control predicted by the cellular model. For all pa-
tients the three-dimensional physical dose distributions as well as the tumor
specific prognostic factors are known. These are tumor stage, Gleason score
(quantifying the degree of differentiation of the tumor) and PSA-levels prior
to treatment. An important parameter of the study is the tumor volume,
which can be quantified empirically from the prostate volume, the Gleason
score and the PSA-level prior to treatment [1, 83]. The degree of differen-
tiation of the tumor can be used to identify patients with tumor cells that
proliferate faster and are more radiosensitive. Patient data can be classified
into groups according to the parameters tumor size, physical dose and degree
of differentiation. Tumor control that has been achieved can be compared to
tumor control predicted by the simulation methods. Varying the parameters
within the inter-patient variabilities allows to assign tumor control probabil-
ities to each of the patient groups.

The work done to compare simulated tumor behavior with experimental data
on Copenhagen rats with Dunning R3327 prostate tumors can serve as a
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foundation to such a retrospective clinical study.

New treatment modalities

Strategies to improve the outcome of radiation treatments aim at enlarging
the therapeutic window, which is defined as the difference in tumor response
and normal tissue complications.

An example for a biological strategy to improve treatment outcome is to
increase the tumor radiosensitivity. Radiosensitivity can be influenced by hy-
perthermia (heat is believed to increase blood perfusion and to inhibit repair
mechanisms, resulting in an increased radiosensitivity), by chemotherapeutic
agents, which delay cell cycle progression and repair (such as Pentoxyphiline)
or by radiosensitizers such as Misonidazole and Etanidazole, which deliver
free radicals to hypoxic areas, reducing the OER.

A combination of chemotherapy and radiotherapy can be modeled by
turning off the repair mechanisms that are allowed for at the G;-S and G-
M checkpoints and by reducing the cell cycle delay. Radiosensitization by
agents supplying free radicals can be modeled by diffusion processes similar
to the diffusion of tumor angiogenesis factors. Hypoxic cells reached by
radiosensitizers have a reduced OER.

Physical concepts aim to further conform the high dose region to the
planning target volume. One strategy to achieve this is by delivering charged
particles. Today, mostly photons with a mean energy between 2 MeV and
10 MeV are applied in radiotherapy. Radiotherapy with charged particles
requires energies of about 200 MeV to 400 MeV per nucleon and is restricted
to very few facilities worldwide. Charged particles have more favorable phys-
ical and biological properties. Whereas dose deposition for photons decreases
exponentially with depth, dose deposition for charged particles increases to-
wards the Bragg-Peak and then drops to almost zero. Also, charged particles
have a large linear energy transfer (LET), a quantity describing the energy
deposited in tissues per unit length of the radiation track. High-LET radia-
tion is characterized by a higher fraction of irrepairable lethal cell damage,
a reduced oxygen effect [55] and less variability of radiosensitivity of cells
throughout their cell cycle [116]. Radiation with different LET can be mod-
eled by LET dependent radiosensitivities. For high-LET radiation such as
heavy ions, there is no sublethal damage and = 0. Also, there is no indirect
action for high-LET radiation and the OER is one.



Chapter 8

Conclusion

The cellular radiobiological model and the simulation methods developed in
this work were motivated by the need to quantify tumor control by radio-
therapy for different tumor entities, grades of differentiation and time-dose
patterns. Three-dimensional computer simulation of tumors with diameters
of 12 mm and more is feasible with the methods developed.

Comparing simulated tumor growth with corresponding experimental data
was an important aspect of this work. The Dunning R3327 prostate tumor
system in Copenhagen rats was chosen for comparison because prostate can-
cer is the most common cancer among men in Germany and because cell ki-
netics parameters of the Dunning tumor system are well known for different
degrees of differentiation. The results presented illustrate the important role
tumor angiogenesis has in tumor proliferation. The comparison of simulated
and experimental data demonstrate that simulated tumor growth curves are
in qualitative agreement with tumor proliferation observed in animals.

The simulation methods presented allow to identify the most important
radiobiological factors influencing tumor response to radiotherapy. Differ-
ent fractionation schemes can be compared in terms of their tumor control.
The cellular approach to radiobiological modeling allows estimations on how
the time factor in radiotherapy effects tumor control for different time-dose
patterns.

The work presented serves as a foundation to integrate the tool developed
in this work to predict tumor control into the treatment planning process.
The promising results presented in chapter 5 encourage further studies to
compare predictions of tumor proliferation and tumor response to irradiation
to experimental and clinical data.
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