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Abstract

More and more experiments show that the CCCTC-binding factor (CTCF),

a multi-Cys2His2 (mC2H2) zinc finger protein, plays a key role in the spatial

organization of chromatin and gene regulation in the nucleus of eukaryotic cells.

In this context an important problem is to uncover the underlying mechanism

of how CTCF shapes the chromatin structure. In this thesis, models on dif-

ferent scales, from atomistic scale to coarse-grained scale, are studied to better

understand the conformational and dynamical properties of both the unbound

CTCF and CTCF-DNA complexes.

Using homology modeling, an atomistic model of CTCF is constructed to

study the conformational properties of unbound mC2H2 zinc finger proteins. To

enhance the computing and sampling efficiency an atomistic pivoting algorithm

and a mesoscale model for mC2H2 proteins is developed. It is shown that

the conformations of unbound mC2H2 proteins, like CTCF, can be explained

with a worm-like chain model. For proteins of a few zinc finger, an effective

bending constraint favors an extended conformation, which is consistent with

experimental findings. A self-avoiding chain model applies only to proteins of

more than nine zinc fingers.

As a subsequent step, a mesoscale model is designed to study how a mC2H2

zinc finger protein binds to and searches for its target DNA loci. Statistical

sequence-dependent interactions between the proteins and DNA are derived.

Molecular dynamics simulations of this model reproduce several kinetic prop-

erties of mC2H2 zinc finger proteins, such as the rotation coupled sliding, the

asymmetrical roles of different zinc fingers and the partial binding partial dan-

gling mode. An application to CTCF in complexes with one of its target DNA
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duplex shows that CTCF binds to DNA only by using its central zinc fingers.

It asymmetrically bends the DNA duplex but does not form DNA loops. Other

CTCF-assisted DNA looping mechanisms, like a bridged DNA loop organized

by a CTCF homodimer, could be further studied with this model.

Motivated by the non-covalent binding of polypeptides to DNA, I study the

adsorption of a flexible polymer to a rigid polymer with periodic binding sites,

both in 2d and in 3d. Analysis of Monte Carlo simulation results show that

the phase transition, from non-adsorbed to adsorbed with increasing adsorb-

ing strength, is a second order transition in 2d, and higher order transition in

3d. Compared to the adsorbed monomers, successive non-adsorbed monomers

contribute more to the winding of the flexible polymer around a rigid polymer,

showing the importance of the linkers in mC2H2 zinc finger proteins to wrap

around DNA.
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Zusammenfassung

Immer mehr Experimente zeigen, dass der CCCTC-Bindungsfaktor (CTCF),

ein multi-Cys2His2 (mC2H2) Zinkfingerprotein, eine Schlüsselrolle in der räum-

lichen Anordung von Chromatin und der Genregulation im Zellkern eukaryotis-

cher Zellen spielt. Ein bedeutendes Problem in diesem Zusammenhang besteht

darin, herauszufinden, welchen Einfluss CTCF auf die Chromatinstruktur hat.

In dieser Arbeit werden sowohl atomistische als auch sogenannte coarse-grained

Simulationen verwendet, um die Konformationseigenschaften sowie die Dynamik

von ungebundenem CTCF und CTCF-DNA Komplexen besser zu verstehen.

Mittels Homology Modelling wurde ein atomistisches Modell für CTCF er-

stellt, um die Konformationseigenschaften von ungebundenen mC2H2 Zink-

fingerproteinen zu untersuchen. Um die Effizienz der Berechnung sowie des

Samplings zu steigern, wurde sowohl ein Pivoting Algorithmus als auch ein

Mesoskalenmodell für mC2H2-Proteine entwickelt. In einem weiteren Schritt

wird gezeigt, dass sich die Konformationen von ungebundenen mC2H2-Proteinen,

wie CTCF, durch ein ”Worm-like Chain“ - Modell beschreiben lassen. Bei Pro-

teinen mit nur wenigen Zinkfingern führt eine effektive Biegesteifigkeit zu gestreck-

ten Konformationen, die auch in Experimenten beoachtet werden. Lediglich

Proteine mit mehr als neun Zinkfingern lassen sich mit dem ”Self-avoiding

Chain“ - Modell beschreiben.

In einem weiteren Schritt wird mithilfe eines Mesoskalenmodells untersucht,

wie ein mC2H2-Zinkfingerprotein seinen Ziel-DNA-Abschnitt findet und an diesen

bindet. Dabei werden statistische, von der jeweiligen DNA-Sequenz abhängige,
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Wechselwirkungen zwischen den Proteinen und der DNA abgeleitet. Mittels auf

diesem Modell basierenden Molekulardynamik-Simulationen lassen sich wichtige

kinetische Eigenschaften von mC2H2-Zinkfingerproteinen reproduzieren. Aus

der Untersuchung von Komplexen, die aus CTCF und einem der Ziel-DNA-Loci

bestehen, geht hervor, dass CTCF nur mittels der zentralen Zinkfinger an die

DNA bindet. Es biegt den DNA-Doppelstrang asymmetrisch ohne Schleifen zu

bilden. Mithilfe dieses Modells ist es möglich, auch andere Mechanismen zur

DNA-Schleifenbildung, an denen CTCF beteiligt ist, zu analysieren.

Da Polypeptide nichtkovalente Bindungen mit der DNA ausbilden, studieren

wir anhand von Monte-Carlo Simulationen die Adsorption eines flexiblen Poly-

mers an ein steifes Polymer mit periodischen Bindungsstellen sowohl in zwei

als auch in drei Dimensionen. Die Analyse der Ergebnisse dieser Simulationen

zeigt, dass es sich bei dem Phasenübergang von nicht-adsorbiertem zu adsor-

biertem Zustand bei sukzessivem Erhöhen der Adsorptionsstärke in zwei Dimen-

sionen um einen Phasenübergang zweiter Ordnung und in drei Dimensionen um

einen Phasenübergang höherer Ordnung handelt. Im Vergleich zu adsorbierten

Monomeren, tragen aufeinanderfolgende, nicht-adsorbierte Monomere stärker

zur Windung des flexiblen Polymers um das starre Polymer bei. Das unterstre-

icht die Bedeutung der Linker in mC2H2-Zinkfingerproteinen für das Umwickeln

der DNA.
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1 Aim and structure of
this thesis

1.1 Intention

How the genetic information carrier, DNA, is dynamically spatially organized

in eukaryotic nucleus is a very important question for a better understanding

of human genome. Recent experimental approaches have revealed that DNA

forms topological domains and subdomains, or generally called loops, in size

from several kilobases to megabases [1, 2]. These loops are not formed by

randomly distributed DNA distal interactions, but instead are tightly related

to the proper genome functions. The underlying molecular mechanism of the

organization of these loops then becomes an interesting problem.

One of the most compelling candidates for organizing the genome in eukary-

otes is the CCCTC-binding factor (CTCF). Since CTCF can bind to a wide

range of long and variant DNA sequences, CTCF binding sites are ubiquitous

in human genome and it was described as a “multivalent factor” [3]. After it

was discovered that the topological domain boundaries are highly correlated

with CTCF binding sites, more and more studies suggested a “master weaver”

[4] or an “architectural protein” [5] role of CTCF. Its historical transcription

regulation function, as an insulator, has also been reinterpreted as both a con-
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sequence and an effector of its ability to organize DNA loops.

Current experiments provide few insight into how CTCF associates with

DNA on the molecular scale. By using molecular dynamics and Monte Carlo

simulations on different scales, we attempt to shed more light on the conforma-

tion and dynamic properties of unbound CTCF, and more importantly, CTCF

in complex with DNA.

1.2 Structure of this thesis

In this thesis, due to the limitation of the computing power, the unbound CTCF

and CTCF binding to DNA are studied with different models on different length

scales.

In chapter 2, our current understanding of the genome packing in eukary-

otes is introduced. Characteristics of the genome organization on variant length

scales are briefly described. We review some recent experimental tools and re-

sults about CTCF, focusing on the correlation between CTCF binding sites

and genome topological functional domains, as well as the CTCF binding mo-

tifs. We summarize this chapter with an introduction of intrinsically disordered

proteins to which CTCF belongs, and point out the difficulty in determining

the structure of this kind of proteins in experiments.

In chapter 3, the basic principles of Monte Carlo simulation and molecular

dynamics simulation, both employed in this thesis, are explained with formulas

and simple examples. In addition, since in principle DNA and proteins are

polymers, we introduce some most commonly used polymer models and concepts

for general purposes and for biological macromolecules.

In chapter 4, we focus on the conformational properties of unbound CTCF.

We construct an atomistic model of CTCF, which contains ten Cys2His2 (C2H2)

zinc finger domains and one C2HC zinc finger domain, one by one connected by
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short linkers. Atomistic molecular dynamic simulations of proteins with fewer

C2H2 zinc fingers confirm that the linkers are flexible and disordered, while

the zinc fingers are structured. To improve computation efficiency, we develop

an atomistic pivoting algorithm and a mesoscale model. They show that the

conformation of unbound multi-C2H2 (mC2H2), like CTCF, can be explained

using a worm-like chain model. For proteins of a few zinc fingers, an effective

bending constraint prefers an extended conformation. A self-avoiding chain

model applies only to proteins containing more than nine zinc fingers.

In chapter 5, we study how a mC2H2 zinc finger protein binds to and searches

for its target DNA loci. The interactions between mC2H2 zinc finger proteins

and DNA in a mesoscale model are derived by using a top-down scheme. Molecu-

lar dynamics simulations of this model present several interesting kinetic prop-

erties of the proteins, such as the rotation coupled sliding, the asymmetrical

roles of different zinc fingers and the partial binding partial dangling mode.

Our model shows proper DNA sequence specificities. An application to CTCF

in complex with its target DNA duplex finds that only the central five zinc fin-

gers of CTCF contact DNA. The DNA duplex is asymmetrically bent, but no

DNA loop forms by a single CTCF binding.

In chapter 6, we study our problem by using a more coarse-grained polymer

model. The non-covalent binding of polypeptides to DNA is mapped to the ad-

sorption of a flexible polymer to a rigid polymer with periodic distributed bind-

ing sites, both in 2d and in 3d. Analysis of the fraction of adsorbed monomers,

the specific heat and the Binder cummulant show that the phase transition,

from completely non-adsorbed states to adsorbed states with increasing adsorb-

ing strength, is a second order transition in 2d, and higher order transition in 3d.

We also find that compared to the adsorbed monomers, successive non-adsorbed

monomers contribute more to the winding of the flexible polymer around the
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rigid one, which reminds us the importance of the linkers in mC2H2 zinc finger

proteins to wrap around DNA.

In chapter 7, all results are summarized. Some limitations about our work,

as well as possible extensions in the future, are discussed. Figure 1.1 gives an

visual summary of different models utilized in this thesis.

Figure 1.1: Multiscale models employed in this thesis. (a) An atomistic unbound C2H2

zinc finger with explicit solvent molecules. A cartoon style rendering of the zinc finger
is in the right half panel. (b) A mesoscale model of a mC2H2 zinc finger protein in
complex with double-strand DNA. (c) A coarse-grained polymer model.

4



While part of chapter 4 (the atomistic pivoting algorithm) has been pub-

lished in section 3 (A Model for CTCF) in p1, the whole chapter 4, as another

article p2, is in preparation. The results in chapter 5 have been accepted as p3,

and the contents of chapter 6 are formatted in p4 that is under peer review.

• p1. Feinauer C J, Hofmann A, Goldt S, Liu L, Mate G and Heermann

D W. 2013. Zinc finger proteins and the 3D organization of chromo-

somes. Organization of Chromosomes (Advances in Protein Chemistry

and Structural Biology vol 90) ed Donev R (Academic Press) pp 67-117.

My contribution is a model for CTCF.

• p2. Liu L, Wade R C and Heermann D W. 2014. A multiscale approach

to simulating the conformational properties of unbound multi-Cys2His2

zinc finger proteins. In preparation

• p3. Liu L and Heermann D W. 2014. The interaction of DNA with multi-

Cys2His2 zinc finger proteins. Journal of Physics: Condensed Matter.

Accepted

• p4. Liu L, Schubert D, Chu M and Heermann D W. 2014. Phase transition

and winding properties of a flexible polymer adsorbed to a rigid periodic

copolymer. Physical Review E. Under review. Lei Liu performed most

simulations and wrote the manuscript. David Schubert and Min Chu

contributed other materials to this work.
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2 Introduction

In this chapter, biological background about the spatial organization of the

genome in eukaryotes and the architectural role of the CCCTC-binding factor

(CTCF) is introduced. Some recent experimental tools and results, which show

how CTCF is involved in bridging genome packing and function, are discussed.

It provides the motivation of the whole thesis, i.e., to study how CTCF interacts

with chromatin via modelling. This chapter can be skipped for those who are

familiar with these topics.

2.1 Genome Organization in Eukaryotes

The control center of an eukaryotic cell is the cell nucleus, as shown in Figure

2.1. It is enclosed by a lipid bilayer membrane (nucleus envelope), which is

mechanically supported by a dense fibrillar network on the internal face of the

envelope (nucleus lamina). In mammalian cells, the average diameter of the

nucleus is approximately 6 µm, and the nucleus lamina has a thickness of 30

to 100 nm. Most space inside the nucleus is occupied by the most familiar

biological macromolecule, deoxyribonucleic acid (DNA).

Since the basic mechanism by which DNA carries genetic information was
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Figure 2.1: Cell nucleus. (a) A microscopy image of HeLa cells in which DNA is
stained with blue dye. The central and right cells are in interphase, while the left
cell is in mitosis. (b) A microscopy image of cell nucleus. Two types of chromatin
appear differently. Heterochromatin is darkly stained and euchromatin is not easily
stainable. While euchromatin occupies most part of the cell nucleus, heterochromatin
is dispersed all over the nucleus or accumulated near the nuclear envelope. Figures
adapted from [6, 7].

discovered by Waston and Crick in 1950’s [8], it has become the central icon

of molecular biology. As shown in 2.2(a), most DNA molecules are made of

two biopolymer strands, which coil around each other and form a double-strand

helix. Each strand is composed of four kinds of basic units called nucleotides.

They are consisted of the same sugar group, the same phosphate group and dif-

ferent nucleobases, namely adenine (A), cytosine (C), guanine (G) and thymine

(T). Along a DNA single strand, nucleotides are connected into a chain by cova-

lent bonds between the sugar group of one nucleotide and the phosphate group

of the next, which results in a sugar-phosphate alternating backbone and gives

the strand a direction of 3’ hydroxyl and 5’ phosphate ends. Two strands then

are anti-parallelly aligned, i.e., with opposite directions, and bind together via

hydrogen bonds between the complementary nucleobase pairs, namely A-T and

C-G. Genetic information is stored as the nucleobase sequence on each strand,

which can be copied to messenger RNA, used by ribosomes to build proteins
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and hence guides the construction and proper functions of entire body.

A naked double-strand DNA has a radius of 10 Å and a pitch of 34 Å. In

eukaryotic cells, DNA seldom exists in a naked form. Instead, histone proteins

bind to the naked DNA and form a DNA-histone complex called nucleosome

(see Figure 2.2(b)). Two of each of the core histones (H2A, H2B, H3 and H4)

make up a octameric nucleosome core with a diameter of about 63 Å. 147 base

pairs (bps) of DNA wrap around this core particle 1.65 times in a left-handed

super-helical turn, which results in the nucleosome of around 100 Å (or 10 nm)

in diameter (see also Figure 2.3(c)). Epigenetic modifications, like methylation,

can alter the the interactions between histone proteins and DNA, which influence

diverse biological processes though changing the organization of DNA on this

scale.

Figure 2.2: Illustrations of DNA and nucleosome. (a) Atomic structure of a section
of B-form DNA (PDB code: 1BNA). The DNA backbones (green) form two parallel
helical strands, which bind together via non-covalent interactions between the comple-
mentary nucleobase pairs, namely adenine(blue)-thymine(purple) and cytosine(white)-
guanine(gray). Two grooves of different width, the major groove and the minor groove,
are the two helical spaces between strands. (b) Crystal structure of the backbone atoms
in a nucleosome core particle (PDB code: 1AOI). DNA is colored green, and the his-
tones H2A, H2B, H3 and H4 are colored blue, purple, white and gray respectively.

Although naked DNA is condensed by histones, how the approximately 2
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meters DNA (in humans) is packed into a nucleus of a few micrometers in

diameter is not fully understood nowadays. Chromatin, the resulting complex

fiber composed of DNA and histones, is folded repeatedly and is reorganized

according to internal and external stimuli.

Figure 2.3: Hierarchies of DNA compaction in the nucleus of eukaryotic cells. (a)
naked double-strand DNA. (b) nucleosome where DNA (red) wraps round the histone
core (blue). (c) 10-nm ”bead-on-a-string” chromatin fiber. (d-e) 30-nm chromatin
fiber. (e-f) chromatin loops in interphase formed by attaching chromatin to scaffold
proteins (gray). (h-i) chromosome in mitosis. Those subplots of gray background (d-h)
are still under debates. Image adapted from [9].

In the next round of compaction, the linker histone H1 binds the nucleosomes

at the entry and exit sites of the DNA and stacks nucleosomes into a fiber with

a diameter of 30 nm (see Figure 2.3(d-e)). Some researchers are still suspicious

about its existence. What’s more, how the nucleosomes are arranged to form

a 30-nm fiber is not clear. Several models, like the solenoid models and the
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crossed-linker-models, have been developed to explain the nucleosome packing

and stacking.

Above the 30 nm scale, based on the fluorescence in situ hybridization (FISH)

[10] and HiC data [11, 1], chromatin fibers in interphase are suggested to form

loops in size from several kilobases to a few megabases. An important question

is what organizes the chromatin loop in cell nucleus. Possible candidates are the

nucleus lamina, the nucleolus, transcription factories and certain architectural

proteins, like CTCF (Section 2.2) or scaffold protein (see Figure 2.3(f-g)).

During mitosis the dispersed interphase chromatins undergoes a transition

into rigid, more compacted objects chromosomes. It has not reached an agree-

ment on the structure of the mitotic chromosomes. Many models have been

proposed for the description of its organization, such as attaching the chro-

matin to a protein scaffold (so-called radial loop model in many textbooks [12],

see Figure 2.3(h-i)) and a dynamic loop model with a restricted interaction

range [13, 14].

On an even larger scale, it was found that chromatins do not occupy the

space in nucleus at random. Depending on the compactness and the gene ex-

pression level, there are two types of chromatin, namely Euchromatin and Hete-

rochromatin. Euchromatin is less condensed and contains genes expressed more

frequently. while heterochromatin is more condensed and contains DNA tran-

scribed infrequently. Electron microscopy images of nucleus with staining, like

Figure 2.1(b), show that heterochromatin has a tendency to be located near

the nucleus envelope. In Figure 2.4, as another example of the non-uniform

distribution of chromatins, multiplex FISH images of sections of human nucleus

clearly demonstrated that individual chromatins are organized as distinct chro-

mosome territories even in the interphase [15, 16]. These results indicate that

the high order spatial-temporal organization of chromatins is coupled to the
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genome function and cell cycling.

Figure 2.4: Mid-plane section of human male fibroblast nucleus (a) and prometaphase
rosette (b) recorded with 24-color mupliplex FISH technique. Different chromosomes
are labeled with different colors. Images from left to right are RGB images without
deconvolution, after deconvolution and false color images after classification. Image
adapted from [15].

One important family of approaches to determine the spatial approximation

of genome regions is the chromosome conformation capture (3C) technique [18,

19]. As shown in Figure 2.5, 3C-based approaches have basic five steps: (1)

addition of formaldehyde to crosslink DNA segments spatially close to each

other. Hence interacting DNA sites are fixed, such as the association of an

enhancer with a promoter, (2) cleavage of chromatin by restriction enzyme or

sonicaiton. (3) ligation under a dilute condition such that ligation favors from

DNA ends captured on the same complex over from random collisions between

different complex, (4) reverse crosslinking at high temperature, (5) detection of

ligation junction using different ways depending on the variant of the methods.

There are different 3C-based techniques which detect different physical inter-

actions (see Figure 2.6). The basic 3C method tests the interaction between two

known sites in the genome via quantitative polymerase chain reaction (qPCR).

Circular chromosome conformation capture (4C) allows detecting unknown in-
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Figure 2.5: Basic protocol of chromosome conformation capture techniques. Image
adapted from [17].

teractions of a known bait sequence. Carbon-copy chromosome conformation

capture (5C) identifies all regions of interaction within a given genome domain,

and Hi-C probes all occurring interactions in an unbiased fashion genome-wide.

Further variants, like chromatin interaction analysis by paired-end tag sequence

(ChIA-PET) and chromatin immunoprecipitation-loop (ChIP-Loop), determine

genome interactions involving a specific protein of interest by incorporating an

additional protein precipitation step.

With the advances of these approaches, more and more details about the

high order chromatin organization have been revealed. Application of Hi-C to

the human and mouse nucleus in embryonic stem cells (ESCs) and terminally

differentiated cell types identified large, megabase-sized local chromatin interac-
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Figure 2.6: Physical interactions (black curves and arrows) detected by (a) 3C, (b) 4C,
(c) 5C, (d) Hi-C, (e) ChIP-Loop and (f) ChIA-PET. Chromatin fiber is represented by
the thick blue line. In subplots (e-f), the colored disks represent chromatin-associated
proteins, and the specific protein of interest is colored green. Image adapted from [19].

tion domains, which are termed topological domains [1]. The domains are stable

across different cell types and highly conserved cross species, indicating that

these topological domains are an inherent property of mammalian genomes. Hi-

C experiments with higher resolution showed that within these megabase-sized

domains, there exist topological subdomains with a mean size of 520 kilobases

[2]. As an example, Figure 2.7 shows a Hi-C interaction frequency heatmap of

a segment on chromosome 2 in human genome. Genome positions are labeled

on the underlying axis. One domain and one subdomain are outlined.

All these non-uniform non-random high order eukaryotic genome organiza-

tion motifs (chromosome territories, topological domains, subdomains and per-

haps sub-subdomains found by using even higher resolution in the future) sug-

gest that chromatins might be architectured in a function-related way. Although

without atomistic details, 3C-based techniques combined with other tools, such

as ChIP-ChIP and ChIP-seq which will be introduced in the next section, pro-

vide us further possibilities to study which factors and how they organize the
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Figure 2.7: Observed intrachromosomal interaction frequency heatmap of a 10 Mb
region on chromosome 2 in normal human cells. One topological domain and one
subdomain are outlined. The top right insert sketches a chromatin fiber segmented
into two (sub)domains depending on its self-contact. Data downloaded from [11] and
image adapted from [2].

chromatin on a genome-wide scale, as well as at specific gene loci.

2.2 CTCF: from Genome Topology to Function

One of the most compelling candidates for organizing the genome in eukaryotes

is the CCCTC-binding factor (CTCF). The full-length protein is composed of

727 amino acids. It contains a central DNA-binding domain, which is composed

of 11 zinc fingers and is almost 100% amino acids sequence conserved among

mouse, chicken and human. Based on its ability to employ different zinc fingers

to bind to a wide range of long and variant nucleotide sequences, CTCF binding

sites are ubiquitous in the human genome. It has been described as a “multiva-

lent factor” [3, 4]. Many recent studies, using the chromatin immunoprecipita-

tion followed by DNA microarray (ChIP-chip) or followed by DNA sequencing

(ChIP-seq) techniques (see Figure 2.8), have been devoted into characterizing

the genome-wide CTCF binding profile.

Ren and his colleagues performed a ChIP-chip analysis against CTCF and

confirmed its binding to 13,804 regions in human fibroblast cells [21]. In ad-
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Figure 2.8: A basic workflow of a Chip-Chip or Chip-Seq experiment: (1) crosslink
DNA-binding proteins to DNA, (2) lyse the cells and shear the DNA by sonication, (3)
immunoprecipitate the crosslinked complexes with an antibody specific to the protein
of interest, (4) reverse the crosslinking and isolate DNA strands. For ChIP-chip,
the DNA fragments are labeled with a fluorescent tag (5a) and analyzed via DNA
microarray (6a). For ChIP-seq, the immunoprecipitated sample is analyzed using
high-throughput sequencing (5b), then mapped to the genome (6b). Image adapted
from [20].

dition, most of its localization was found invariant across different cell types

(compared with a hematopoietic progenitor cell line). By analyzing the con-

served noncoding elements in the human genome, Lander et al. first discovered

several groups of long nucleotide motifs which do not match any previously

known motif, then they demonstrated by biochemical (Western blot) and com-

putational methods that CTCF binds to the motifs in the largest group. A total

of ∼ 15, 000 conserved binding sites of CTCF were found through this way [22].
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Another computational study by Wang’s group aimed to classify CTCF binding

sites as cell type-specific (only found in one out of 38 cell lines), or conserved

(found in all 38 cell lines). Approximately 66,800 CTCF binding sites were iden-

tified from each cell type. In cell type K562, 28% of the binding sites (∼ 18, 700)

were conserved [23]. A database of CTCF binding sites, CTCFBSDB, has also

been constructed online, which now contains nearly 15 million experimentally

determined CTCF binding sequences [24, 25].

CTCF was traditionally characterized as an insulator [26, 3, 27], which inter-

feres with enhancer-promoter communication (activator or repressor), or buffers

transgenes from chromosomal position effects (as a chromatin barrier) caused

by heterochromatin spreading. In other words, it showed distinct functions

at different loci depending on the biological context. Now more and more evi-

dences [4, 28, 29, 5] strongly support that the mechanism underlying the diverse

functions of CTCF is both a consequence and an effector of its contribution in

organizing chromatin loops in the cell nucleus.

The most well known example comes from the analysis of the imprinted

H19 -insulin-like growth factor 2 (IGF2 ) locus [31, 4]. Figure 2.9(a) [2] shows

the CTCF binding profile overlayed with 4C interaction profiles of five differ-

ent viewpoints (highlighted in red) at the H19-IGF2 locus on human chromo-

some 11. The IGF2 promoter region (vp1) interacts strongly with an intergenic

region, where CTCF binds, between H19 gene and IGF2 gene. This chro-

matin interaction is also confirmed by vp2. A region upstream of H19 (vp3)

also shows interactions with the intergenic region. In contrast, viewpoints in a

CTCF-depleted region (vp4) and at the domain boundary (vp5) show only weak

interactions. Based on several independent researches, a linear depiction and a

simplified sketch of how CTCF mediates long-range chromatin contacts at the

H19-IGF2 locus [31, 30] are presented in Figure 2.9(b,d) and (c,e), for the ma-
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Figure 2.9: CTCF-mediated interactions at the imprinted H19-IGF2 locus. (a) CTCF
binding sites overlayed with 4C interaction profiles from five different viewpoints (high-
lighted in red). Two vertical dashed lines indicates the boundaries of a domain. (b,c)
Linear depiction of the H19-IGF2 locus. The maternally expressed noncoding H19
gene is located downstream from the gene encoding Insulator-like growth factor 2
(IGF2 ) that is expressed exclusively from the paternal allele. The imprinting control
region (ICR) between H19 and IGF2 contains CTCF binding sites and is essential for
controlling entire locus. The differential methylated region (DMR) upstream of IGF2
promoters (p1,2,3) and central conserved DNase I hypersensitive domain (CCD) act
together to regulate allele-specific expression patterns with a shared set of downstream
enhancers (Enh). DNA methylation of ICR and DMR in the paternal allele are rep-
resented by appending an additional small circle. (d,e) Schematic models illustrating
allel-specific patterns of CTCF binding, DNA methylation and chromatin looping.
Image adapted from [2, 4, 30].

ternal and paternal allele, respectively. On the maternal allele, the imprinting

control region (ICR) is unmethylated, CTCF is bound, and the enhancer down-
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stream of H19 is prevented from accessing the IGF2 promoter. On the paternal

allele, the ICR is methylated, CTCF is unbound, which results in the spatial

approximation between the enhancer and promoter and hence the expression of

IGF2. Except for H19-IGF2, expression patterns at other loci involving CTCF,

such as mouse β-globin, can also be better understood if CTCF is considered

to mediate chromatin loops.

Statistic on the genome-wide comparison between the binding profile of

CTCF and the distributions of other factors provides descriptions of CTCF

binding on a larger scale.

CTCF normally is positioned in regions surrounded by well-positioned nu-

cleosomes [23]. Approximately 50% of CTCF binding sites are located in inter-

genic regions, ∼ 15% are near promoters and ∼ 40% are intragenic. Although

CTCF binding profile strongly correlates with gene density, similar to a canon-

ical transcription factor such as TAF1, there are key differences between their

distributions [21]. The majority of the TAF1 binding sites (∼ 89%) are close to

transcription starting sites, while the average distance from CTCF binding sites

to promoters is further away (48,000 bp). It is also noticed that CTCF-depleted

regions tend to include clusters of related gene families and coregulated genes,

while CTCF-enriched regions often have multiple alternative promoters.

It has been shown that density of open chromatin tags, such as DNase I

hypersensitive sites (chromatin region which has lost its condensed structure,

and therefore it is sensitive to cleavage by the DNase I enzyme), is sharply

elevated within the CTCF binding sites [23]. Analysis of the histone modi-

fication patterns in human genome [35] revealed that all the three states of

H3K4 methylation are enriched in promoter regions of active genes, and highly

correlates with CTCF binding sites. In addition, many of the CTCF binding

are detected between histone methylation-defined active and silent chromatin
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Figure 2.10: CTCF binding sites distribution. Profile of CTCF binding sites, gene
density, Dnase I hypersensitive sites, histone modification H3K4me3 and lamin B
occupancies (a) on human chromosome 11, (b) at Sox2 locus on mouse chromosome
3. Tracks in (b) are overlayed by a Hi-C interactions heatmap. (a) is generated using
the Circos software package. Data fetched from [32, 33, 34] and image adapted from
[36, 23].

domains, which is in consistent with its insulator role. By aligning the bind-

ing profile of CTCF and lamin B (fibrous protein in nuclear lamina), Wei and

her colleagues [36] found that CTCF looping signals are depleted in lamin B-

associated domains. Last but not least, Hi-C data in mammalian cells [1] showed

that most topological domain boundaries are enriched for the binding of CTCF.

As two examples, Figure 2.10 aligns the binding profile of CTCF, gene density,

DNase I hypersensitive sites, histone modification H3K4me3 pattern and lamin

B binding density on (a) human chromosome 11 and (b) Sox2 gene locus on

mouse chromosome 3 with Hi-C interactions heatmap. More details are referred

to [36, 23].

All these studies indicate that CTCF contributes to the construction of topo-

logical and functional domains of human genome. However, it should be pointed

out that CTCF is not the sole player in genome organization [30, 37]. By exam-

ining the consequence of depletion of factors of interest on high order chromatin

organization, Wendt et al. [2] observed a general reduce of chromatin inter-
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actions but intact topological domains after cohesin depletion, and reduced

intradomain interactions but increased interdomain interactions after CTCF

depletion. They concluded that CTCF and cohesin contribute differently to

chromatin organization. There lacks a comprehensive description of the func-

tions of CTCF neither. For example, although CTCF binding site density is

elevated, only 15% of its binding sites are located within topological domain

boundaries.

Figure 2.11: “Saddle” model of CTCF binding to DNA [38]. (a) CTCF binds tightly
to a DNA site containing an upstream (U) and a core (C) motifs. While zinc fingers
(ZFs) 4-7 interact with the core motif, the entire complex is stabilized by via ZFs 9-11
binding to the upstream motif. ZFs 1-2 contributes to the binding by associating with
nonspecific sequence. (b) CTCF binds loosely to a DNA site containing a core and a
downstream (D) motifs. ZFs 1-2 no longer associate with DNA or an unknown factor
X outcompetes it for binding. Image adapted from [38].

Lots of efforts have been made to identify a consensus nucleotide sequence

motif for CTCF binding, albeit no agreement has been reached yet. Early

study by Ohlsson et al. [39] reported an 50-60 bp sequence. A large number

of in vivo CTCF binding sites measured by ChIP-based techniques provides a

larger opportunity to find a consensus motif. A 20 bp motif defined from ChIP-

chip experiment was reported later [21]. By deleting individual zinc fingers and
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mutating individual sites, Pedone et al. [40] determined a core 12 bp DNA

motif to which CTCF binds with high affinity (KD ∼ 10−10). What’s more, it

was shown that only 4 out of 11 zinc fingers are essential to strong directional

binding, and the N- and C- terminal regions of the protein which flank the

zinc finger domains are not required for DNA binding. More recently, based

on the analysis of genome-wide binding profiles of CTCF zinc finger mutants,

Casellas et al. [38] reported a ∼ 55 bp consensus sequence comprising a 10 bp

upstream motif, a 20 bp core motif and a 10 bp downstream motif, which joined

by two spacer sequences of ∼ 6 bp each. A “saddle” model of CTCF binding

was proposed, which is presented in Figure 2.11.

As Phillips and Corces summarized at the end of a review article about

CTCF in 2009 [4]:

Many important questions remain to be answered. Determina-

tion of the crystal structure of the zinc finger domain would lend

significant understanding into how CTCF’s conformation and the

specific zinc fingers associated with DNA change upon binding to di-

vergent sequences . . . Organizing principles for loop formation should

be established, in particular an unambiguous conclusion regarding

whether chromatin interactions involve CTCF homodimerization or

heterodimerization or if a single CTCF molecule can bring together

multiple regulatory elements by serving as a substrate for proteins

such as cohesin known to mediate chromatin contacts,

current experimental data provide few insight into how CTCF associates with

DNA on atomistic scale. The underlying reason is that CTCF belongs to in-

trinsically disordered proteins (IDPs), sometimes also called intrinsically un-

structured proteins. IDPs contain domains that are unstructured in solution,

but usually become structured on binding to their physiological targets. Oc-

21



currence of unstructured regions is quite common. Dunker and his colleagues

[41] showed that more than 30% of eukaryotic proteins containing unstructured

regions of size > 50 residues.

As shown in Figure 2.12, with a growing ratio of stable 3d content, structural

characteristics change from highly extended, unstructured states, to compact

but disordered molten globules, to proteins with multi folded domains which

linked by flexible or disorder linker sequences and, finally, to mostly folded

single domain proteins with only local disordered.

Figure 2.12: Examples of intrinsically disordered proteins. For the upper panels, from
left to right, content of unstructured regions in the proteins increases. (a) An unstruc-
tured conformation ensemble of a region of nuclear receptor coactivator (ACTR). (b)
A molten globule-like nuclear coactivator binding domain (NCBD) of CREB-binding
protein (CBP) (PBD code: 2KKJ). (c) First three linked zinc finger domains of un-
bond transcription factor TFIIIA. (d) Free eukaryotic translation initiation factor 4E
(eIF4E), which is mostly folded with unfolded N terminus (PDB code: 1EJH). Local
disorder regions are labeled purple. The lower panels show well-ordered structures, as
results from specific binding of proteins to their targets. (e) ACTR-NCBD complex
(PDB code: 1KBH). (f) TFIIIA in complex with specific oligonucleotide (PDB code:
1TF3). (g) eIF4E-eIF4G complex (PDB code: 1RF8). Image adapted from [42].

Many eukaryotic proteins are modular and fall into the third subdivision,

such as CTCF. They contain independently folded globular domains which are
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separated by flexible linker regions. In the absence of their targets, modular

proteins behaves as “beads on a flexible string”, where the linker allows a rela-

tively unhindered spatial search by the attached domains. Specific binding can

induce a ordered structure of the linkers, and hence stabilize the structure of

entire complex. A well known example is the binding of three Cys2His2 zinc

finger proteins to target DNA loci, which will lead the linkers to fold, cap, and

instruct consecutive zinc fingers to bind correctly in the major groove of DNA

[43].

Because crystals of conformationally disordered molecules are difficult to

form, crystallographic studies can not provide much information on unstruc-

tured states. It can only indicate their presence through the absence of electron

density in local regions. Even if it succeeds to form a crystal, the crystallized

structure may not be representative of the conformation ensemble of the IDP in

solution. Instead, meaningful knowledge about the overall shape and size dis-

tribution (see Figure 2.13), long-range residue-residue contacts and backbone

flexibility of IDPs is accessible through nuclear magnetic resonance (NMR) [44]

and small-angle X-ray scattering (SAXS) experiments [45].

How to describe the unstructured states of IDPs and how to construct a con-

formation ensemble which represents the real dynamic conformations of IDPs

are still under research. Based on the clear similarity, concepts in Polymer

Physics, such as the radius of gyration (Rg) or end-to-end distance (Re) (more

details referred to Section 3.1), can help us to understand the conformational

properties of IDPs. For example, Figure 2.13(a) shows the variety of the con-

formation of Tau protein [46] through the distribution of Rgs. In subfigure (b)

[45], dependence of Rg on the chain length of IDPs is plotted in a log-log scale.

The fitted straight solid line (Rg ∼ Nν) assigns ν a value 0.522, which is close to

that of a self-avoiding chain (0.588). Experimental data of IDPs or denatured
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Figure 2.13: Radius of gyration (Rg) of intrinsically disordered proteins (IDPs). (a)
Distribution of Rgs in a NMR-measured conformation ensemble of K18 domain of Tau
protein [46]. Two inserts show the conformation of largest and smallest Rg, upper and
below, respectively. (b) Experimentally measured Rgs versus the chain length of IDPs.
Full dots represent various Tau protein constructs, and blue (red) dots label those more
extended (compacted) IDPs with names. The straight solid line corresponds to the
fitted Flory’s relationship Rg = (2.54±0.01)N0.522±0.01. Image (b) adapted from [45].

proteins from other sources, like single molecule fluorescence spectroscopy [47],

have been also interpreted with these theoretical tools.
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3 Methods

Two kinds of methods, Monte Carlo method and molecular dynamics simula-

tion method, are most widely used to simulate classical biological macromolec-

ular systems. Both methods have their pros and cons, and have been applied

in this thesis. In general, it could be more efficient for computing the equlib-

rium properties of a system with Monte Carlo method than with molecular

dynamics simulation method, while the latter method is a better choice if the

non-equilibrium properties are of interest. In this chapter, we describe the basic

principles of them, as well as a few examples.

3.1 Monte Carlo method

3.1.1 Importance sampling and Metropolis algorithm

In classic statistical mechanics, the probability of a system stays at x in phase

space, where x stands for the set of variables describing the considered degrees

of freedom, is given by the Boltzmann distribution in the canonical ensemble

p(x) = 1
Z

exp(−H(x)
kBT

), (3.1)
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in which the partition function Z equals

Z =
∫

exp(−H(x)
kBT

) dx, (3.2)

kB is the Boltzmann factor, H(x) is the Hamiltonian and T is the temperature

of the system. Then the thermal average of any observable A(x) is

< A(x) >T= 1
Z

∫
A(x) exp(−H(x)

kBT
) dx. (3.3)

To compute the multi-dimensional integration in < A(x) >T numerically,

the most direct way in which we can do is to randomly select points {xi}, i =

1, 2, ...,M from the phase space independently, and to approximate the integra-

tion by summations as

A(x) =
∑M
i=1 exp(−H(xi)

kBT
)A(xi)∑M

i=1 exp(−H(xi)
kBT

)
. (3.4)

However this so-called simple sampling is of little use in practice. Because

according to equation 2.1, the Boltzmann weight on {xi} will be negligibly small

and terms associated with these points contribute little to the average. Instead,

the idea behind an importance sampling is to sample more points in the phase

space where the Boltzmann weight is large and fewer elsewhere. Now supposing

the points {xi} in the phase space are selected based on some probability ω(xi),

the estimation of < A(x) >T becomes

A(x) =
∑M
i=1 exp(−H(xi)

kBT
)/ω(xi)A(xi)∑M

i=1 exp(−H(xi)
kBT

)/ω(xi)
. (3.5)

Obviously, the most natural choice for ω(xi) would be ω(xi) ∝ exp(−H(xi)/kBT ).
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Then Equation (2.5) reduces to an arithmetic average

A(x) = 1
M

M∑
i=1

A(xi). (3.6)

This process was first proposed by Metropolis et al. in 1953 [48] using a

Markov process where each state xi+1 is constructed from its previous state xi

via a proper transition probability ω(xi → xi+1). With the transition proba-

bility
ω(xi → xi+1)
ω(xi+1 → xi)

= exp(−H(xi+1)−H(xi)
kBT

) = exp(− δH

kBT
), (3.7)

it is well known that the probability distribution of generated states tends to the

Boltzmann distribution as the number of generated states approaches infinity.

One example of the explicit form of Metropolis algorithm in implementation is

P (xi → xi+1) =


1 δH ≤ 0,

exp(− δH
kBT

) δH > 0.
(3.8)

where P (xi → xi+1) is the probability to accept a trial move, which try to

change the system from state xi to xi+1.

Given a sequence of states {xi} generated by a Monte Carlo simulation, a

key concept in analyzing the results is the autocorrelation time τauto for any

observable A(x). Let’s define the normalized autocorrelation function ρ(t) as

ρ(t) = < A(xi), A(xi+t) > − < A(xi) >2

< A(xi), A(xi) > − < A(xi) >2 . (3.9)

ρ(t) measures the correlation of A(x) between system states, which are sepa-

rately sampled by t Monte Carlo steps. As t increases from 0, ρ(t) decreases from

1 to 0 exponentially or in most case slower than exponentially. An integrated
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autocorrelation time τauto is then defined as

τauto = 1
2

+∞∑
t=−∞

ρ(t) ≈
M∑
t=0

ρ(t)− 1
2 . (3.10)

The approximation in last formula is given by an “automatic winding” algorithm

[49] to estimate τauto, where M is chosen to be the smallest integer such that

M ≥ c × τauto(M). If ρ(t) roughly decays exponentially, it would be suffice to

take c ≈ 4. Otherwise, it is prudent to take 6 ≤ c ≤ 10.

From an initial state x0, the Metropolis algorithm will first drive the system

to its thermal equilibrium. To eliminate this initialization bias, 10 ∼ 20× τauto

states sampled in the beginning of the simulation will be discarded. After the

equilibration, states will be saved in every 10× τauto Monte Carlo steps, which

are considered to be uncorrelated and will be averaged out to calculate A(x)

using equation 2.6. Other factors, like the boundary condition and the finite

size of the simulated system, may also have significant effects that need to be

considered to interpret the Monte Carlo simulation results properly.

Many important systems in statistical mechanics have been studied by Monte

Carlo method. Here are two simplest examples. Figure 3.1 shows the initializa-

tion stage of a Monte Carlo simulation for a standard zero-field ferromagnetic

two-state Ising model [50] (H = −J
∑
i,j sisj , si,j = ±1) on a triangular lattice,

with J = 0.2 in (a) and J = 0.3 in (b). Configuration of the system, with

different spin states in different colors, at Monte Carlo step t = {25, 50, 75, 100}

are plotted in (c)-(f) with J = 0.2, and in (g)-(j) with J = 0.3 respectively. It

is clear from (a) and (b) how the energy of the system fluctuates and reaches a

equilibrium sooner or later. Comparing the system configuration in equilibrium

with J = 0.2 (f) to the configuration with J = 0.3 (j), spontaneous magneti-

zation happens when J increases (or the temperature of the system decreases

beyond the Curie temperature) as expected.
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Figure 3.1: Hamiltonian and configurations of a ferromagnetic two-states Ising model
simulated using Monte Carlo method on a 30 × 30 triangular lattice. Hamiltonian
of the system versus the simulation step in the initialization stage with J = 0.2 (a)
and with J = 0.3 (b). Configurations at Monte Carlo step t = {25, 50, 75, 100} with
J = 0.2 in (c)-(f), and with J = 0.3 in (g)-(j) respectively. Different spin states are
labeled via different colors.

The second example is a two-dimensional Lennard-Jones fluid model in

canonical ensemble [51], again simulated on a triangular lattice. Given the

distance between the nearest neighbor sites to be σ, the Hamiltonian of the

system H =
∑
i,j VLJ(ri,j), where the Lennard-Jones potential VLJ has a form

VLJ(ri,j) =


4ε(( σ

ri,j
)12 − ( σ

ri,j
)6) ri,j < 2.5σ,

0 otherwise.
(3.11)

Progress of the Hamiltonian and configuration of the system in the initialization
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stage of a Monte Carlo simulation are presented in Figure 3.2 with temperature

T = 0.1 ε/kB in (a)(c)-(f), and with T = 0.2 ε/kB in (b)(g)-(j), respectively. The

simulations start from a “liquid” phase. As it shows, molecules stay aggregated

when the temperature is low. But evaporation begins as soon as the temperature

climbs up.

Figure 3.2: Hamiltonian and configurations of a two-dimensional Lennard-Jones fluid
simulated via Monte Carlo method on a 45 × 45 triangular lattice, with system tem-
perature T = 0.1 ε/kB in (a)(c)-(f), and with system temperature T = 0.2 ε/kB in
(b)(g)-(j). Configurations are plotted at Monte Carlo step t = {25, 50, 75, 100}, where
dots represent molecules on lattice.

Not only in Statistical Physics, Monte Carlo method has its wide usage

in many other fields, such as Pharmacy [52] and Finance [53]. In the next

subsection, first some physical quantities and models in Polymers Physics will

be introduced, then we will show how to simulate polymers using Monte Carlo
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method.

3.1.2 Applications in Polymer Physics

A polymer is a macromolecule which is composed of many repeated subunits

monomers. Depending on its structure, polymers can be classified into linear

polymers and branched polymers. Depending on the properties of the subunits,

polymers can be categorized into homopolymers (all monomers of the same type)

and copolymers (monomers of different types). Many biological macromolecules

are polymers, or can be easily modeled as polymers on a coarse-grained scale.

Given a polymer consisted of N + 1 monomers of positions {r0, r1, ..., rN},

there are a few quantities frequently used to describe the conformation of the

chain.

• The end-to-end distance Re is defined as

Re = |
N∑
i=1

ri − ri−1|, (3.12)

which denotes the distance from the first monomer to the last monomer.

• The radius of gyration Rg, which measures the dimension of the polymer

chain, is given by

Rg = ( 1
N + 1

N∑
i=0
|ri − rcom|2)1/2, (3.13)

where rcom is the center of mass of the polymer, e.g., for homopolymers

rcom = 1
N+1

∑N
i=0 ri.

• The persistence length ξp is calculated from the decay of the bond angle

correlation

exp(−l/ξp) =< u(l0) · u(l0 + l) >l0 , (3.14)
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where l is the contour length along the polymer chain, u(l) is a unit vector

parallel to the chain segment at contour length l, and the average <>l0 is

carried out over all possible l0 along the chain. The persistence length ξp

is a measurement the stiffness of the polymer. The more rigid the chain

is, the larger the ξp is.

Corresponding to different types of polymers, different physical models have

been proposed based on different assumptions.

• The most simple model is the so-called freely-joined chain (or ideal chain)

model. The bond length is a constant, i.e., |bi| = |ri − ri−1| = b,∀i ∈

{1, 2, .., N}. In addition, the direction of the bonds are completely inde-

pendent of each other. We get

< R2
e >=

N∑
i=1

N∑
j=1

< bi · bj >=
N∑
i=1

N∑
j=1

δi,jb
2 = Nb2. (3.15)

This can also be written in a scaling relation as

< R2
e >∼ N2ν (3.16)

with ν = 0.5. Equation (2.15) is the same as the mean squared dis-

placement of a N -step random walk with a step length b. Therefore, a

freely-joined chain is also sometimes called a random-walk chain.

• Usually the length of a chemical bond in macromolecules is fluctuating,

instead of a fixed value. The Gaussian chain model describes the flexibility

of the bond length using a Gaussian distribution,

p(b) = 3
2πb2

3/2
exp(− 3|b|2

2 < b2 >
). (3.17)

The resulting system is equivalent to a polymer with its monomers con-
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nected by harmonic springs, where the potential energy in the springs is
κ
2

∑N
1 |bi|2 with κ = 3

<b2>kBT . The distribution for the end-to-end vector

Re is

p(Re) = ( 3
2πN < b2 >

)3/2 exp(− 3R2
e

2N < b2 >
). (3.18)

It can be easily obtained that

< R2
e >= N < b2 > . (3.19)

• Another probable important role, which has not been considered yet, is

the stiffness of a polymer. In the continuous limit (N →∞, b→ 0, Nb→

L) of the Worm-like chain model, the bending energy of the polymer is

calculated via

H = B

2

∫ L

0
(∂u(l)
∂l

)2 dl (3.20)

with the bending modulus B proportional to the persistence length, B =

kBTξp. The mean squared end-to-end distance could be derived as

< R2
e >= 2Lξp(1−

ξp
L

(1− exp(− L
ξp

))) = L2fD( L
ξp

), (3.21)

where the Debye function fD(x) = 2
x2 (x − 1 + exp(−x)). For very short

chain L � ξp, we can substitute exp(− L
ξp

) with 1 − L
ξp

+ L
ξp

2, and get

< R2
e >= L2. This means that the chain does not bend at all. For very

long chain L� ξp, we get < R2
e >= 2Lξp ∼ N , which is the same as the

scaling relation in freely-joined chain model. Together this shows that the

effect of the stiffness of a polymer depends on the polymer length (or the

coarse-grained scale).

• Last but not least, the excluded volume interaction is necessary to be

considered in most applications. Each monomer occupies certain space

33



exclusively, and the polymer is also called self-avoiding chain. Flory first

gave a theoretical solution to self-avoiding chain in 1949 [54]. The total

free energy F of a polymer with end-to-end vector Re is made up of two

parts. An entropy part F1 equals

F1(Re) = −TS = −TkB log(p(Re)) = kBT
3

2Nb2R
2
e + const., (3.22)

where Equation (2.18) is applied in the last step. The second part F2

is the energy of excluded volume interactions. When we consider only

pairwise interactions,

F2(Re) ' βkBTc2R3
e = βkBT

N2

R3
e

, (3.23)

where c ' N
R3
e

is the local monomer concentration and β is the strength for

the excluded volume interactions. Minimizing F = F1 + F2 with respect

to Re yields

R2
e ∼ N2ν = N2· 35 . (3.24)

Numerical simulations estimated ν = 0.588, which is quite close to the

Flory’s result.

Besides these general models, many more specific polymer models have been

designed to simulate biological macromolecules which are essential for all known

form of life. Regarding adenine, thymine, cytosine and guanine as four types of

monomers, a single-strand DNA molecule can for example be considered as a

polymer on a coarse-grained scale. To understand the spatial organization and

interactions of chromatin fibers with accessible computing power nowadays, the

chromatin fiber of over 100 Mbp need to be modeled via a more coarse-grained

polymer. As an example, Figure 3.3(a) shows the mean squared spatial distance
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as a function of the genomic distance given by the random loop model [55]. The

random loop model was developed from the Gaussian chain model. Except

for the harmonic springs connecting successive monomers, additional springs

connect monomer i and j with a probability p. Therefore, the Hamiltonian of

the polymer has the form

H = κbackbone
2

N∑
i−1
|ri − ri−1|2 + κi,j

2

N∑
j>i+1

|ri − rj |2, (3.25)

where

κi,j =


κloop with probability p,

0 with probability 1− p.
(3.26)

In Figure 3.3(a) this homogeneous model produces a plateau in an interme-

diate range of genome distance in the < R2
n > profile. This was observed in

fluorescence in situ hybridization (FISH) experiment in human interphase cells

[10], but can not explained by any general model mentioned above (Equation

(2.16)(2.19)(2.21)(2.24)).

Figure 3.3: Random loop model. (a) Mean squared spatial distance versus genomic dis-
tance with different looping probabilities (Equation (2.26)) [55]. (b) Intra-chromatin
interactions of human chromosome 21 (b) and 11 (d), compared to the experimental
data (c) and (e) respectively. The vertical bars in (b-e) represent 10 Mbp in length.
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Inhomogeneity could be easily introduced into this model. By determining

κi,j =


κloop

2 (cctcfi ccohesinj + cctcfj ccohesini ) with probability p,

0 with probability 1− p,
(3.27)

where cAi is the binding site density of protein A at genome loci i (of bins 1

Mbp), the intra-chromatin interaction frequencies can be plot as a heat map

for human chromosome 21 (b) and 11 (d), with comparison to the experimen-

tal data (c) and (e) respectively. Based on this model, by explicitly taking

excluded volume interaction into consideration, dynamic loop model [10] (with

restricted interaction range [13, 14]) could be applied to describe the chromatins

in interphase (in mitosis).

Figure 3.4: One optimal structure of protein of sequence HHHHHPHHPHPHPHPH-
PHPHHHHHHPH predicted by HP model in a face centered cubic lattice (a) and in a
simple cubic lattice (b) [56, 57]. Hydrophobic residues are colored red, and polar ones
are colored blue.

Proteins, which is mostly composed of 22 kinds of amino acids, can also be

thought of an inhomogeneous polymer. One example is hydrophobic polar (HP)

model, which is developed by Lau and Dill [58] to study the protein folding

problem (see Figure 3.4). Each amino acid is represented by one monomer,

either hydrophobic(H) or polar(P). The Hamiltonian of the protein is given by
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the H-H contacts of non-successive monomers. With si = {1, 0} for monomer i

is H or P, it can be formulated as

H = −J
N∑

|i−j|>1

sisj (3.28)

for all monomer pairs {i, j} which contacts with each other. Figure 3.4 shows

one optimal structure of an amino acid sequence HHHHHPHHPHPHPHPHPH-

PHHHHHHPH predicted by HP model in a face centered cubic lattice (a) and

in a cubic lattice (b) [56, 57]. Hydrophobic and polar residues are colored red

and blue, respectively. It is clear that hydrophobic residues form a hydrophobic

core which is more or less shielded by the polar residues on the protein-water

interface. There are lots of possible modifications on HP model. Many other

polymer models of protein, such as Gō-type model [59, 60, 61], are not discussed

here.

So far we have discussed about the principle of Monte Carlo algorithm and

various models of polymers or biological macromolecules. Before one starts

simulating polymers using Monte Carlo method, one question still need to be

solved is how we try to change the conformation of a polymer in each step. In

other words, what is our Monte Carlo trial move? The answer to this question

depends on many properties of the system of interest, such as dilute or dense,

homogeneous or inhomogeneous. Here two examples are illustrated.

The first one is the so-called bond fluctuation model, which was originally

designed by Carmesin and Kremer [62, 63]. In a 3d simple cubic lattice of unit

spacing (see Figure 3.5(a)), each monomer occupies a cubic grid cell so that

eight vertices of the cell are blocked for occupation by other monomers. This

guarantees the excluded volume constraint and leads to a minimum bond length

bmin = 2. The Monte Carlo trial move is set to ±1 in either {x, y, z} direction.

To further preserve the topology of the polymer, i.e., no bonds intersection, a
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Figure 3.5: Bond fluctuation model. (a) Every monomer occupies a grid cell (the blue
framed cubic), so that eight vertices of the cell is blocked from occupation by other
monomers. Priori probability distribution of the allowed bond length b (b) and the
allowed bond angle θ (c). The vertical dashed line in (b)(c) represents the mean value.

set of allowed bond vectors {b} could be derived from

{b} = PPP (2, 0, 0)∪PPP (2, 1, 0)∪PPP (2, 1, 1)∪PPP (2, 2, 1)∪PPP (3, 0, 0)∪PPP (3, 1, 0), (3.29)

where PPP (δx, δy, δz) represents the set of all permutations and sign combinations

of ±δx,±δy,±δz. The set {b} contains 108 bond vectors, and results in a set

of fluctuating bond length {b} = {2,
√

5,
√

6, 3,
√

10}. The priori probability

distribution for bond length b is plotted in Figure 3.5(b), with its mean value

< b >= 2.688 indicated by a vertical dashed line. The priori probability dis-

tribution for bond angle θ formed by successive two bonds is shown in Figure

3.5(c). Although there exist only two angles values 0, π in the underlying lattice,

θ have many possible choices in the range [0, π]. The distribution is symmetric

around the mean bond angle < θ >= π/2. Bond fluctuation model has been

used a lot in simulating polymers in lattice. It is also easy to make extensions

based on it, such as the dynamic loop model and work in Chapter 6.

The second example is to simulate a semiflexible chain adsorbed on a sphere

in continuous space (off-lattice) [64]. Two kinds of Monte Carlo moves are
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Figure 3.6: Two kinds of Monte Carlo trial moves for polymer simulated in continuous
space [64]. (a) Translate each monomer in a random direction by a random distance,
which changes the polymer conformation locally. (b) Pivot either tail of the polymer
by a random angle, which changes the polymer conformation globally. The old, new
conformation is plotted with dashed, solid line respectively.

adopted (see Figure 3.6). One local trial move try to translate a monomer in

3d space (a) by ∆r = s(sin θ cosφ, sin θ sinφ, cos θ), where s, θ, φ are randomly

chosen from [0, smax], [0, π] and [0, 2π] respectively. This is similar to the trial

move used in the bond fluctuation model. Trajectories generated using local

moves might capture some dynamic properties of the system. In contrast an-

other trial move is global, which pivots either tail of the polymer by a randomly

chosen angle. Sometimes global move greatly reduces the correlation between

successive polymer conformations, so that the computation demand decreases.

However it could lead to a small acceptance ratio of trial moves in some cases,

e.g., a very compact system. Therefore it is quite often to take advantages of

both kinds of moves, and to apply them together.

Figure 3.7 shows the initialization stage of a simulation for a polymer of

large stiffness. In equilibration, the polymer is in fully contact with the curved

surface and wraps around the whole sphere (d). The trajectory (a-d) does not

reveal the real adsorption process of the polymer. Ensemble statistics will be

done on snapshots taken only after this initialization stage.
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Figure 3.7: Hamiltonian (a) and configurations (b-e) of a semiflexible chain adsorbed
on a sphere simulated via Monte Carlo method in continuous space. Snapshots are
taken at Monte Carlo step t = {50, 100, 150, 200} in order.

3.2 Molecular Dynamics Simulation

Molecular dynamics simulation method is a more preferable choice than Monte

Carlo method when dynamic properties, such as transport coefficient, are con-

cerning.

3.2.1 Integrators

For Monte Carlo method, a designed trial move propagates the system while

the velocities of particles in the system do not explicitly play any role. For

molecular dynamics simulation, Hamiltonian of both coordinate and velocity

H(r,p) controls the evolution of the system containing N particles, according

to the Newton’s law

ṙi = pi/mi, (3.30)

ṗi = fi, (3.31)
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for all i ∈ {1, 2, ..., N}. There are several ways , so-called integrators, to im-

plement these two equations on computer. Two most widely used algorithms

are introduced here. The first one is leap-frog algorithm, which is the default

integrator in the simulation software GROMACS [65]. It updates {ri,pi} via

pi(t+ 1
2δt) = pi(t−

1
2δt) + δtfi(t) (3.32)

ri(t+ δt) = ri(t) + δtpi(t+ 1
2δt)/mi. (3.33)

The other integrator is called velocity verlet algorithm, which is the default

integrator in the simulation package ESPResSo [66, 67] and can be written as

pi(t+ 1
2δt) = pi(t) + 1

2δtfi(t) (3.34)

ri(t+ δt) = ri(t) + δtpi(t+ 1
2δt)/mi (3.35)

pi(t+ δt) = pi(t+ 1
2δt) + 1

2δtfi(t+ δt). (3.36)

Two algorithm are literally equivalent, if the initial condition {ri(0),pi(0)},

couplings and constraints are not considered. Both of them are time reversible

and of third order of δt for ri, i.e.,

ri(t+ δt) = 2ri(t)− ri(t− δt) + δt2fi(t)/mi +OOO(δt4). (3.37)

In practice, given a single initial point, they will yield different trajectories. Fig-

ure 3.8 shows the difference between the step schemes of these two integrators.

3.2.2 Thermostats

Since the Hamiltonian is conserved in the Newtonian scheme, disregarding the

computation error, a trajectory obtained by basic leap-frog or velocity verlet

algorithm maps to a microcanonical ensemble (NV E). However this is not the
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Figure 3.8: Integration scheme for (a) leap-frog algorithm and (b) velocity verlet
algorithm. The solid line represents the propagation of ri(t) and the dashed line
represents the propagation of pi(t).

condition under which most experiments are performed. The canonical ensem-

ble (NV T ), isothermal-isobaric ensemble (NPT ) and grand-canonical ensemble

(µV T ) are more suited to imitate real experiment. We focus on the canonical

ensemble and briefly discuss how to modify the integration scheme to satisfy the

constraint on temperature in molecular dynamics simulations (so-called thermo-

stat). In principle, a thermostat works by coupling the system of our interest,

which has an instantaneous temperature T (t) ∝
∑
imiṙ

2
i , to a heat bath of a

different temperature T0. Heat transfers back and forth between the heat bath

and the system so that T has certain designed properties. Depending on the

coupling scheme, there are different thermostates [68, 69, 70], such as velocity

rescaling coupling, Andersen coupling and Nosé-Hoover coupling. Berendsen

thermostat and Langevin thermostat will be introduced in the following, which

are applied in GROMACS and ESPResSo, respectively.

The Berendsen thermostat also belongs to the velocity rescaling coupling

methods. The corresponding equation of motion can be written as

ṗi = fi −
1
2τ ( T0

T (t) − 1)pi. (3.38)
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According to this scheme, one can show that the instantaneous temperature

T (t) changes following

Ṫ (t) = (T0 − T (t))/τ. (3.39)

Thus the coupling strength parameter τ in Equation (2.38) describes how fast

T (t) relaxes to T0. If this parameter is too large τ → ∞, the heat flows into

and out of the system so slowly that the thermostat is actually disabled. Then

Equation (2.38) will reduce to Equation (2.31), which leads to a microcanonical

ensemble sampling. On the other hand, a too small τ will results in an unrealistic

small temperature fluctuation. In atomistic simulations, it is typically set τ ≈

0.1 ps. On should notice that the Berendsen thermostat does not produce a

canonical ensemble in general. One exception of this thermostat with τ = δt,

which generates a canonical distribution of configurations (but not momenta).

The Langevin thermostat, in contrast, produces a trajectory which converges

to a canonical distribution. It relies on the Langevin equation of motion

ṗi = fi − γipi + wi(t), (3.40)

where wi is a stochastic force and γi is the atomic friction coefficient. To

obtain a canonical ensemble of system temperature T0, it has been shown that

wi(t) must be uncorrelated with pi(t′) and fi(t′) for t′ < t, and have following

properties

< wi(t) > = 0, (3.41)

< wi(t)wj(t′) > = 2miγikBT0δijδ(t′ − t). (3.42)

If γi = γ ∀i, on an intermediate timescale (short compared to the experimental

timescale, but long compared to the time separating atomic collisions), the effect

43



of the thermostat can be formulated as

Ṫ (t) = 2γ(T0 − T (t)). (3.43)

Comparing Equation (2.43) with (2.39), it is clear that γ controls the rate of

energy exchange between the heat bath and the system (like τ), and its value

should be set within a proper range.

Besides the integration scheme and the temperature control, many other

techniques, such as implementation of additional constraints (e.g., constraints

on bond length or bond angle), the boundary condition and calculation of long-

range forces etc., are all important to set up an appropriate and efficient molec-

ular dynamics simulation. However even a simulation is carefully performed, we

still have problems on how to interpret its result. Does the generated trajectory

accurately predict the “real” trajectory of macromolecules in our cell? The an-

swer is no. Then is the trajectory close to the “real” trajectory? The answer is

no one has proved it so far, but it is generally trusted on belief in spite of the

so-called Lyapunov instability beneath all molecular dynamics simulation (see

Figure 3.9) [69].

In order to reduce computational demand, quite often biological macro-

molecules are simulated without explicit surrounding solvent molecules. In an

implicit solvent simulation, motion of the macromolecules of interest are de-

scribed by the Langevin dynamics (see Equation (3.40)). What’s more, in the

overdamped limit, i.e.,

0 = fi − γipi + wi (3.44)

or

pi = fi/γ + wi/γ, (3.45)
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Figure 3.9: Lyapunov instability. Two molecular dynamics simulations for 103 parti-
cles, interacting with each other via Lennard-Jones potential of depth 1.0 /kBT and
equilibrium distance 21/6, are performed in a simulation box of dimensions 403. They
start from an identical equilibrated state, except that the x component of the veloc-
ities of two particles in the second run are changed by ±10−10. (a) The onset of the
snapshots of discernible difference between two trajectories (in different colors). (b)
The difference

∑
i
|ri−r′i|2 grows exponentially with simulation time. Image adapted

from [69].

the Langevin motion becomes Brownian motion (see Figure 3.10).

By defining ζ = γm, and using the Einstein relation D = kBT/ζ, the equa-

tion of motion for the Brownian dynamics then can be rewritten as

ṙ = D

kBT
f + w′, (3.46)

where D is the diffusion coefficient and w′ is stochastic forces of variance
√

2D.

Compared with molecular dynamics, Brownian dynamics can access longer

timescales and simulate system of larger spatial scales.
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Figure 3.10: Brownian motion. A simulated trajectory of a pollen grain (the large blue
dot) suspended in water. Velocity of the pollen grain is changed by elastic collisions
with surrounding water molecules (small green dots).
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Chapter Summary. The conformational properties of unbound multi-Cys2His2

(mC2H2) zinc finger proteins are studied using a multiscale approach. Three

methods on different length scales are utilized. First, atomistic molecular dy-

namic simulations confirmed that the zinc finger is more rigid than the most

typical linker. Second, the end-to-end distance distributions of mC2H2 zinc fin-

ger proteins are computed using a more efficient pivoting algorithm, which only

takes excluded volume interaction into consideration. The end-to-end distance

distribution gradually changes its profile, from left-skewed to right-skewed, as

the number of the zinc fingers increases. We explained this with a worm-like

chain model. For proteins of a few zinc fingers, an effective bending constraint

favors an extended conformation. Only for proteins containing more than nine

zinc fingers, a somehow compact conformation is preferred. Third, a mesoscale

model is modified to study both the local and global conformational proper-

ties of mC2H2 zinc finger proteins. Simulations of the protein CCCTC-binding

factor (CTCF), which includes ten C2H2 and one C2HC zinc fingers, on the

molecular level are presented.
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4.1 Introduction

Multi-Cys2His2 (mC2H2) zinc finger proteins are composed of tandem repeats

of a Cys2His2 (C2H2) zinc finger motif connected by short flexible linkers. They

form a class of transcription factors which control a wide range of cellular pro-

cesses [71, 72]. Each C2H2 finger has a general sequence motif X2-C-X2-4-C-

X12-H-X3-5-H, and forms a β − β − α secondary structure motif with a central

coordinating Zn2+ ion. There are few researches on the conformational property

of unbound mC2H2 zinc finger protein, which might be helpful for understanding

its binding mechanism to DNA, RNA and other proteins.

Comparison of the NMR data of the three linkers in the Wilms’ tumor zinc

fingers transcription factor in complex with DNA and in solution indicated that

the whole protein would be segmentally disordered, while the individual zinc

fingers are structured [73]. Following this idea, multi-zinc finger proteins are

usually classified as intrinsically disordered proteins, that “fold while binding”,

and form a globally disordered chain when unbound [42, 74]. On the one hand,

NMR relaxation measurements for the first three zinc fingers of the Xenopus

transcription factor TFIIIA showed that on time scales shorter than 10 ns, the

motions of individual zinc fingers are highly correlated, and that the average

end-to-end distance of the polypeptide chain is longer than that in its crystallo-

graphic conformation bound with DNA [75]. On the other hand, an attraction

between the zinc finger in protein GATA-1 and the zinc finger in protein SP1

or in freind of GATA-1 (FOG) was observed in both isothermal calorimetric

titration and CD spectra [76, 77]. Assuming interactions between zinc fingers

are always attractive and strong, zinc fingers will aggregate and the unbound

the polypeptide chain will collapse, which are contradictory to the NMR obser-

vation.
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Among various mC2H2 zinc finger proteins, the CCCTC-binding factor, or

CTCF, is of special interest because of its potential function in genome organiza-

tion. CTCF contains tandem 10 C2H2 and 1 C2HC zinc fingers. As a ubiquitous

transcription factor in eukaryotes, more than 13,000 CTCF binding sites have

been identified experimentally in human genome [35, 78, 22]. Since first iso-

lated from chicken in 1990 [26], CTCF has been reported to play several roles in

gene regulation in different contexts, such as promoter repression, activation, en-

hancer blocking, X-chromosome inactivation and genomic imprinting. Recently,

in applications of chromosome conformation capture techniques, CTCF binding

sites genome-wide correlate with both intra- and inter-chromosome interactions.

It has become the most compelling candidate for the genome architecturer, and

has been dubbed as “The Master Weaver of the Genome” [4]. Several CTCF-

mediated chromosome loop models have been proposed [4, 10, 79]. However,

due to the flexibility of the mC2H2 zinc finger protein, it is not easy to determine

its conformational ensemble in experiments, and an understanding of unbound

CTCF dynamics is still lacking.

In this chapter, we want to investigate the conformational space of the un-

bound mC2H2 zinc finger protein. Does it collapse into a globular conformation

due to the interactions between zinc fingers, curl in a coil due to the intrinsi-

cally disordered linkers, or extend like a straight rod? It is difficult to study the

complete CTCF protein in solution using atomistic detailed simulation because

of its large molecular weight (over 82 kDa) and expected long relaxation time.

A multiscale approach extending from atomic to mesoscale was developed for

this purpose.
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4.2 Materials and Methods

Three approaches on different length scales are utilized in this study: 1) for

proteins composed of single zinc finger or of three zinc fingers, atomistic molec-

ular dynamics (MD) simulations with explicit water and ions are applied; 2)

for proteins containing more zinc fingers, i.e. for CTCF, a pivot algorithm is

devised, which only takes excluded volume interaction into consideration; 3)

finally, a mesoscale polypeptide model with implicit solvent is constructed for

both single- and multi-C2H2 proteins. The reference codes for the different sys-

tems studied in this work are composed of three parts: the PDB code, the index

of the first zinc finger and the index of the last zinc finger. These codes and

the corresponding names of studied polypeptides are listed in Table 4.1. Besides

these zinc finger proteins, the most typical linker (the so called conserved linker)

is labeled “cLinker”, which is a short peptide of sequence TGEKP. For the sake

of brevity, we use ZFi to stand for the i-th zinc finger in the following.

Table 4.1: Reference codes and corresponding protein names.

Reference codea Protein name Indices of zinc fingersb Number of residues

1aay 1 Zif268 1 32
1tf3 1 3 TFIIIA 1∼3 91
ctcf 4 8 CTCF 4∼8 150
ctcf 3 9 CTCF 3∼9 206
ctcf 2 10 CTCF 2∼10 267
ctcf 1 11 CTCF 1∼11 314

a The reference code is composed of three parts: the PDB code, the index of the
first zinc finger, and the index of the last zinc finger. For example, 1tf3 1 3
represents a polypeptide containing the N-terminal three zinc fingers in the
protein structure of PDB code 1tf3.

b Indices of zinc fingers are the indices in the protein structure deposited in PDB.
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4.2.1 Atomic Simulations

As a protein of 727 amino acid residues (AA), CTCF contains 10 C2H2 and 1

C2HC zinc finger, with linkers of 5∼8 AA between them. The aligned sequence

motifs with conserved Cys and His residues, which coordinate the Zn2+ ion,

are shown in Figure 4.1 (a). The sequence disorder propensities predicted by

DisEMBL, DISOPRED2 and GLOBPLOT2 [80, 81, 82] of the entire peptide

chain are shown in Figure 4.1 (b), with the 11 zinc fingers labeled in gray. It

shows that the tandem zinc finger central segment is flanked by two intrinsically

unstructured tails, of about 265 and 148 AA each, at the N and C termini. Only

the central multi-zinc finger domain is studied here.

The initial conformation of single zinc finger for MD simulation was taken

from a crystal structure of protein Zif268 (PDB code: 1AAY), which probably

is the most frequently studied mC2H2 zinc finger protein. The NMR resolved

structure of ZF1∼ZF3 in protein TFIIIA (PDB code: 1TF3), whose unbound

conformational properties have been investigated by another NMR research, was

chosen as the initial conformation of a polypeptide with three zinc fingers. For

CTCF, NMR resolved atomic structures of ZF6∼ZF7 and ZF10∼ZF11, each

are contained in PDB file 2CT1 and 1X6H. Other zinc fingers were built using

a homology modeling approach with the MODELLER 9.10 program [83]. The

zinc finger structure templates were chosen from non-redundant PDB sequences

of < 95% sequence identity, that facilitates to derive unbiased statistics on their

structure and evolution. Single or multiple templates used for the modeling had

at least 35% sequence identity to the target CTCF zinc finger. Compared with

the templates, the generated homology models have backbone root mean square

deviations (RMSD) ≤ 1 Å, and have Z-scores ≥ 3.5 (see Table 4.2). A typical

conformation is rendered in Figure 4.2.

Standard all atom MD simulations were applied to 1aay 1 and 1tf3 1 3.
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Figure 4.1: Sequence properties of the central zinc finger containing domain of CTCF.
(a) Zinc finger and linker sequences of CTCF, with Cys and His residues colored
purple and blue, which coordinates the Zn2+ ion. (b) Sequence disorder propensities
predicted by DisEMBL (solid red), DISOPRED2 (dashed blue), and GLOBPLOT2
(dotted green), with zinc fingers labeled gray.

All calculations were carried out using the GROMACS software [65] with the

Amber force field Amber99SB [84]. The Zn2+ ion type, which plays a key

role in folding and stabilizing the β − β − alpha structure motif in each zinc

finger, was simulated using the Cationic Dummy Atom (CaDA) method [85].

One tetrahedron-shaped zinc divalent cation was represented by four peripheral

cationic dummy atoms, which interact with other atoms electrostatically but

not sterically and impose the requisite orientational requirement for the zinc

four-ligand coordination (Figure 4.3 (a)).

The system was first energetically minimized to remove unfavorable contacts.
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Table 4.2: Parameters of homology modeling for CTCF zinc fingers.

Zinc finger Template PDB codea
Tempalte/Target

Sequence identityb (%) RMSDc (Å) Z-scored

ZF1 1SRK 40 0.55 3.7
1X5W 48 0.75 3.5

ZF2 2EN4 54 0.94 3.7
2KMK 50 0.36 3.9

ZF3 2EME 56 0.58 3.7
2KMK 46 1.00 3.7

ZF4 2DMD 62 0.50 3.7
2ELQ 52 0.68 3.9

ZF5 2DMD 50 0.83 3.7
2ELQ 60 0.32 3.9

ZF8 2ELS 35 0.87 3.7
2EM3 42 1.01 3.7

ZF9 2DMD 48 0.43 3.7

a Corresponding PDB code of the structure template.
b Percentage of sequence identity between template and model.
c Backbone RMSD between template and model.
d Proteins with similar fold typically have RMSD ≤ 1.0 Å, and Z-score ≥ 3.5.

Next it was solvated in NaCl solution of defined ionic strength, followed by an-

other energy minimization. Then, to equilibrate the zinc fingers and surrounding

water molecules and ions, 30 ps MD at 200 K was carried out with constraints

on all bond lengths. This was implemented using the LINCS algorithm with a

harmonic constraint force constant of 1.0× 103 kcal ·mol−1 · nm−2. Afterward,

unconstrained equilibration of 12.5 ps with constant volume and constant tar-

get temperature, and 100ps with constant pressure and constant temperature

were performed. Finally, 10 ns for 1aay 1, 30 ns for 1tf3 1 3 production runs

were carried out with an integration step of 1fs. The temperature and pressure

of the system were controlled via the Berendsen algorithm with coupling time

constants of 0.1 and 1.0 ps, respectively. Coordinates from generated trajectory

were written every 0.5 ps.

With different ionic strengths {0.00, 0.01, 0.10} M and different tempera-
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Figure 4.2: A homology model of the central zinc fingers domain of CTCF. Consecutive
zinc fingers are encapsulated in ellipsoids of alternating colors.

tures {300, 330} K, ten independent runs were perfored for 1aay 1 under each

environmental condition. For 1tf3 1 3, ten runs were carried out with an ionic

strength of 0.1 M and temperature of 300 K.

4.2.2 An atomistic pivoting algorithm

For proteins with more zinc fingers, assuming that each zinc finger does not

change its secondary structure and that the internal motion of each zinc finger

is not strongly coupled to the collective motion of the whole peptide chain, a

pivoting algorithm [86] was devised to take only excluded volume interactions,

i.e., atom clashes, into consideration.

As shown in Figure 4.4, we first randomly pick pivoting points along the

backbone (N − Cα or Cα − C ′ bonds) of residues in the linkers of a multi-zinc

finger protein of conformation i. Then random rotations are made around these

points. The resulting conformation is accepted as a new conformation i + 1, if

no excluded volume violation is detected. The pivoting process is repeated until
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Figure 4.3: Atomic and mesoscale models of 1aay 1. (a) The CaDA representation,
where the orange Zn2+ ion is surrounded by four gray dummy atoms. (b) Mesoscale
model, where each AA is made up of three backbone beads (N,Cα, C′) and one side
chain bead (Cβ). The Zn2+ ion is explicitly modeled as one additional bead, which
interacts with Cβ of its coordinating residues.

a minimum number of conformations are sampled.

This algorithm is much more efficient for sampling regions in conformational

space which are unlikely to be visited through naive atomistic MD simulation.

What’s more, subject to the above assumptions, it provides a first-order ap-

proximation to the conformational ensemble of the unbound multi-zinc finger

protein under physiological conditions (see results in Section 4.3.2).

4.2.3 Mesoscale Simulations

To further reduce the computational demand while keeping the AA sequence

specificity, we adapted a mesoscale model, peptideB, developed by Bereau and

Deserno, which was designed for protein folding and aggregation [87].

As shown in Figure 4.3 (b), each amino acid in peptideB is modeled by three

(Glycine) or four (non-Glycine) beads. These beads represent the amide group

N , the central carbon Cα, the carbonyl group C ′ and the side group Cβ . Both

bonded and nonbonded interactions have been systematically parameterized (see
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Figure 4.4: Illustration of the atomistic pivoting algorithm. It shows a trial to pivot
a residue backbone bond, the blue bond in (b,c), which is randomly chosen from the
linkers in conformation i (a). If there are atom clashes (b), reject it and try again.
Otherwise it is accepted as a new conformation i+ 1 (c).

Appendix B). In contrast to other coarse grained protein models, such as the

Gō-type model and MARTINI force field [88, 89, 90], which forbid changes of

the secondary or tertiary structure of the simulated peptide, the peptideB model

does not bias the structure toward any particular secondary motif and hence is

suitable for the flexible multi-zinc finger proteins. However, some modifications
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are necessary:

(i) Because of the critical role of Zn2+ in stabilizing the individual zinc finger

motifs, the Zn2+ ion is explicitly modeled by an extra bead. Additional Gō-type

constraints between the Zn2+ and its coordinating residue beads are included

as

VZn−bond(r) = 1
2κZb(r − r0)2, (4.1)

VZn−angle(r) = 1
2κZa(θ − θ0)2. (4.2)

The equilibrium distance r0 and angle θ0 are set equal to the values obtained

from the atomic coordinates of the reference conformation. The spring constants

κZb and κZa are tuned to give the best nativeness order parameter Q of single

zinc finger, which is defined by < exp[−(rrefi,j − rsimi,j )2/9] >i,j . The distance ri,j

is measured between a pair of Cα beads, each in residue i and j, in the reference

conformation and during a simulation. The average goes over all bead pairs

{i, j} [91]. The advantage of Q over RMSD is that no structure alignment is

involved.

(ii) The hydrophobic interaction between side chain beads is reduced so that

the calculated standard free binding energy for a CCHC zinc finger (FOG)

binding to a CCCC zinc finger (GTAT-1) get closer to the experimental value

(see Appedix C).

With an energy scale ε = kBTr = 1.38×10−23J·K−1×300K ≈ 0.6kcal·mol−1

and a time scale τ = 0.1 ps, all mesoscale simulations were carried out using

the ESPResSo 3.1.0 package [66, 67]. To avoid bead clashes in the initial con-

formation, Lennard-Jones forces were capped for 200 cycles of 50 steps, with

maximum force strength increasing gradually from 0 to normal force strength.

Then, simulations longer than ten nanoseconds (e.g., 15 ns for 1tf3 1 3) with

constant simulation box volume and constant temperature 0.5 ∼ 0.7 Tr were
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performed. The integration step was 0.01 τ , roughly corresponding to 1 fs.

The whole system was coupled to a Langevin thermostat with friction coef-

ficient 1.0. Multiple runs from different initial conformations, resulting from

the atomistic pivoting algorithm, were carried out for each studied protein to

ensure adequate sampling. Then thermodynamic calculations were performed

by the weighted histogram analysis method (WHAM) [92, 93], which combines

energy histograms from canonical simulations at different temperatures (see

also Appendix C). Compared to a single histogram method carried out at one

temperature, it is known that WHAM constructs a more precise free energy

landscape.

4.3 Results and Discussion

4.3.1 The rigidity of single zinc finger

Figure 4.5: RMSD and RMSF of atomic MD simulations of 1aay 1. (a) RMSD against
simulation time of the whole protein (gray) and only the zinc finger (green). (b)
RMSF of each residue at 330 K (dashed red line) and 300 K (solid blue line), with the
secondary structure shown above. The error bar is calculated over independent runs.

Compared to the linker, the rigidity of the zinc finger was verified by all-atom

MD simulation. A typical RMSD of Cα atoms in 1aay 1 versus the simulation

time, where the protein trajectory was first aligned with the crystallographic
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structure, is shown in Figure 4.5 (a). The deviation of the whole peptide is

2∼4 fold greater than that for only one zinc finger. The difference between AAs

with specific secondary structure and AAs without stable secondary structure

can be analyzed in more detail from the root mean square fluctuation (RMSF)

calculated for each residue, as shown in Figure 4.5 (b). As expected, AAs in

α-helix or β-strands show low fluctuations, while AAs in the linker at the C-

terminus show much higher fluctuations. In addition, we performed a principle

component analysis (PCA) on the protein trajectory [94]. The high frequency

internal motion modes and the low frequency collective motion modes have

distinct amplitude patterns for AAs of zinc finger and for AAs of linker, which

indicates the coupling of the collective motion of whole peptide chain and the

internal motion of zinc finger is weak.

Figure 4.6: Principle component analysis of 1aay 1 trajectories. (a) Fastest five modes
projection by residue at 330 K (dashed red) and 300 K (solid blue). The Zn2+ coor-
dinating AAs {Cys5, Cys10, His23, His27} and the hydrophobic core above Zn2+ ion
{Ala4, Phe14, Leu20}, which show high frequency fluctuations, play a critical role in
stabilizing the β − β − α fold. (b) Slowest five modes projection by residue.

The effects of ionic strength in the surrounding medium and the environ-

mental temperature on the stability of zinc finger were investigated by checking

the dependence of radius of gyration (Rg) of zinc fingers (Figure 4.7 (a)) and

the number of hydrogen bonds between the protein and solvent (Figure 4.7
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(b)) on these factors. Both factors have minor impacts. The small increase

of about 0.05 Å of Rg induced by the higher temperature mainly contributes

to the elongation along the major axis of zinc finger ellipsoid. The number of

surface hydrogen bond varies within 5%. These results reveal that i) the zinc

finger is structurally more stable than the linker under the studied conditions,

ii) its fast internal motions are decoupled from the slow motions of the linkers.

These observations pave the foundation of our atomistic pivoting algorithm.

Figure 4.7: Properties of 1aay 1 simulated at variant ionic strengths and at 330 K
(dashed red) or 300 K (solid blue). (a) Radius of gyration Rg and the component of
Rg along the major axis of the zinc finger, Rg 3. (b) The number of protein-solvent
hydrogen bonds.

4.3.2 Conformations of multi-zinc finger proteins

The time dependent end-to-end distance Re of 1tf3 1 3, calculated from an all-

atom MD trajectory, is shown in Figure 4.8 (a). In agreement with the NMR

observation, the entire polypeptide chain extends from the initial conformation,

i.e., the DNA-bound conformation.

However, a simulation of 30 ns is not long enough to obtain good statistics

over the Re distribution of this protein. As Figure 4.8 (b) shows, (φ, ψ) of Gly39

in the first linker (also a conserved linker) of 1tf3 1 3 was still centered in the

αL region, which formed a C-capping motif with Ser35 [95, 43]. This α-helix
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Figure 4.8: All-atom MD simulations of 1tf3 1 3. (a) End-to-end distance Re versus
simulation time. (b) Ramachandran plot of Gly39 in the first linker (also a conserved
linker) of 1tf3 1 3, simulated using all-atom MD (red) and atomistic pivoting (yellow).
They are compared with the Ramachandran plot of Gly2 in a cLinker simulated using
all-atom MD (blue).

capping has been suggested to be a determinant of the binding affinity of zinc

finger to DNA, and was identified as a conformational characteristic relevant to

its bound state. On the contrary, backbone dihedrals of Gly2 in an atomistic

MD simulation of cLinker itself showed a much wider, standard Ramachandran

distribution for Glycine under the same simulation conditions. Therefore, the

MD simulation for 1tf3 1 3 was too short to visit the entire phase space.

To overcome this insufficient sampling problem, an atomistic pivoting algo-

rithm was devised (Section 4.2.2). It is shown in Figure 4.8 (b) that when this

algorithm was applied to 1tf3 1 3, Gly39 could take all possible local confor-

mations. The Re distributions of multi-zinc finger proteins calculated by the

pivoting algorithm are shown in Figure 4.9. For ctcf 1 11 and ctcf 2 10 (a,b),

the distributions are skewed to the right. For other shorter polypeptides (c∼e),

the distributions are skewed to the left. We use a worm-like chain model to

explain the dependence of the Re distribution shape on the number of residues

of polypeptides [47]. Considering each zinc finger as a monomer, they are con-

nected and form a polymer chain. The excluded volume of the zinc fingers
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prevents the polypeptide bending too much, which effectively exerts a bending

constraint on the chain. The strength of this constraint can be described by a

persistence length ξp, where the orientational correlation between any two seg-

ments on the chain, with contour separation l, roughly decays as exp(−l/ξp).

Then the shape of Re distribution is dependent on the ratio of the contour

length of the chain L to ξp. When L is small (< 10ξp), the excluded volume

encourages an extended conformation. Otherwise, the chain is more likely to

take a somewhat bended conformation.

Figure 4.9: End-to-end distance (Re) distributions of multi-zinc finger proteins. Scaled
Re distribution of (a) ctcf 1 11 (b) ctcf 2 10 (c) ctcf 3 9 (d) ctcf 4 8 (e) 1tf3 1 3 sim-
ulated by the atomistic pivoting algorithm, compared with that of a worm-like chain
(red line). (f) Mean squared end-to-end distance < R2

e > over the contour length L,
fitted with the Debye function (red line).

For each mC2H2 polypeptide, here we defined L as the largest Re that it

can take, while still keeping the β − β − α motif of all zinc fingers. By fitting

the relation betwen the mean squared end-to-end distance < R2
e > and L

< R2
e > /L2 = fD( L

ξp
), (4.3)
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where fD is the Debye function fD(x) = 2(x−1+e−x)/x2, we obtained ξp ≈ 29.4

Å (Figure 4.9 (f)). The Re distribution of a worm-like chain was given by [96]

p(r) = κ

N

∞∑
k=1

π2k2(−1)k+1e−κπ
2k2(1−r), (4.4)

with κ = ξp/L and a normalization factor N . These distributions are plotted

using red lines in Figure 4.9 (a∼e), with k truncated at 48.

The effective bending constraint produces orientational correlation between

adjacent zinc fingers, which may influence the transcription factor-DNA bind-

ing, e.g. part of the free energy barrier that needs to be overcome from unbound

to bound state, is contributed by the protein itself (see Section 4.3.3). While

mutation of the linker sequence affects the protein-DNA binding dynamics and

conformations, the sequence and length of the linker will also impact the confor-

mational properties of unbound multi-zinc finger proteins by changing ξp. For

example, replacing Glycine by Proline will increase ξp and extending the linker

will decrease ξp, resulting in a more straightened or more compact polypeptide,

respectively.

4.3.3 The mesoscale model

Qualitative agreement between the RMSF of 1aay 1 from all-atom MD simu-

lations and that from mesoscale simulations is shown in Figure 4.10 (a). The

fluctuation of AAs decreases in the first β-strand and the α-helix, and it in-

creases dramatically at both terminals. Note that the mesoscale potential does

not stabilize the second β-strand as well as the atomic potential does, which is

probably due to the coarse graining. To complement the analysis, we calculated

and plotted the nativeness order parameter Q of 1aay 1 over time in Figure 4.10

(b). An average Q of ∼0.93 demonstrates that the rigidity of the single zinc

finger is captured by our mesoscale model, where Q ≥ 0.6 has been chosen as a
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Figure 4.10: Stability of single zinc finger in the mesoscale model. (a) Comparison of
RMSF of 1aay 1 simulated with all-atom MD (dashed red line) and with mesoscale
MD (solid blue line). (b) Nativeness order parameter versus time in a typical mesoscale
simulation.

threshold for peptide successful folding [87].

Figure 4.11: Re distribution of (a) 1tf3 1 3 and (b) ctcf 1 11, simulated with the
atomic pivoting algorithm (solid blue), and with mesoscale MD (dashed red).

Compared to the results from the atomistic pivoting algorithm, Re distri-

butions of 1tf3 1 3 and ctcf 1 11, calculated with mesoscale MD, are plotted in

Figure 4.11 (a) and (b) respectively. It shows that while the excluded volume in-

teraction dominates the global packing of the polypeptide chain, the mesoscale

model favors more extended conformations, as a result of other interactions,

namely the hydrogen bonds and dipole-dipole interaction.

In addition, we calculated the free energy difference landscape of 1tf3 1 3
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Figure 4.12: Free energy landscape of 1tf3 1 3. d is the distance between the center of
geometry of ZF1 and that of ZF3. ϕ is the angle between the centers of geometry of
three zinc fingers. The color represents the free energy difference relative to the lowest
value, in units of kBTr. The DNA-bound state is the center of the white circle.

using WHAM. It is projected onto a plane in Figure 4.12 with two axes corre-

sponding to d = |r3
cog − r1

cog| and ϕ = 6 r1
cogr

2
cogr

3
cog, where ricog is the center

of geometry of the i-th zinc finger. It shows several characteristics of the con-

formations of 1tf3 1 3: i) too small d (< 15 Å) and too small ϕ (< 40◦) values

are forbidden due to the excluded volume of the zinc finger; ii) small d with

large ϕ and large d with small ϕ are forbidden due to the length constraint of

linkers; iii) it corresponds well with the Re distribution shape, i.e., weighted on

the larger d value side; iv) compared to the DNA-bound state (34 Å, 99◦), most

favorable unbound conformations of d 40 ∼ 50 Å and ϕ 120 ∼ 150◦ are more

elongated. The free energy penalty from most populated unbound states to the

bound state is around kBTr.

The mesoscale MD is more efficient than the all-atom MD simulation. To

sample sufficient conformations to calculate a Re distribution like in Figure

4.11 (a), it takes 104 CPU hours using the atomistic pivoting algorithm, 324

CPU hours using mesoscale MD, whereas 32000 CPU hours of all-atom MD
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simulation is still not long enough.

4.4 Conclusion

In this chapter, we studied the conformational properties of unbound mC2H2

zinc finger proteins using multiscale approaches. First, a homology model of the

tandem zinc finger domain of transcription factor CTCF was constructed. All-

atom MD simulations showed that single zinc finger is a stable structural unit,

independent of the studied environmental conditions. In agreement with the

NMR observation of the N-terminal three zinc fingers of TFIIIA, the polypeptide

becomes more extended from a DNA-bound state to an unbound state. Next, an

atomistic pivoting algorithm, which considers only the excluded volume inter-

action, was developed to investigate the global conformational characteristics.

It showed that as the number of zinc fingers increases, the end-to-end distance

distribution gradually changes its shape, from skewed to the left to skewed to

the right. This was explained using a worm-like chain model. The effective

bending constraint should apply not only to multi-zinc finger proteins, but also

to other multi-domain proteins connected by short flexible linkers. Finally, a

mesoscale peptide model was modified for mC2H2 proteins, which is efficient

while providing similar conformational properties as those given by atomistic

models.

Due to the limitation on computational resources, our all-atom MD simula-

tion was not long enough to calculate a Re distribution of 1tf3 1 3, which could

be further compared to that calculated with the mesoscale model. Based on the

modified mesoscale model, how mC2H2 protein binds to double stranded DNA

or how it searches for its DNA target loci will be studied in the next chapter.
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Chapter Summary. The multi-Cys2His2 (mC2H2) zinc finger protein, like

CTCF, plays a central role in the three-dimensional organization of chromatin

and gene regulation. The interaction between DNA and mC2H2 zinc finger

proteins becomes crucial to better understand how CTCF dynamically shapes

the chromatin structure. Here we study a coarse-grained model of the mC2H2

zinc finger proteins in complexes with DNA, in particularly, study how a mC2H2

zinc finger protein binds to and searches for its target DNA loci. On the basis

of coarse-grained molecular dynamics simulations we present several interesting

kinetic conformational properties of the proteins, such as the rotation coupled

sliding, the asymmetrical roles of different zinc fingers and the partial binding

partial dangling mode. In addition, two kinds of studied mC2H2 zinc finger

proteins, of CG-rich and AT-rich binding motif each, were able to recognize

their target sites and slid away from their non-target sites, which shows a proper

sequence specificity in our model and the derived force field for mC2H2-DNA

interaction. A further application to CTCF shows that the protein binds to a

specific DNA duplex only with its central zinc fingers. The zinc finger domains

of CTCF asymmetrically bend the DNA, but do not form a DNA loop alone in

our simulations.
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5.1 Introduction

In human cells, the chromosomes three-dimensional structure is dynamically

shaped by certain proteins and the nuclear lamina in vivo. More and more recent

chromosome conformation capture results suggest that the protein CCCTC-

binding factor (CTCF), as well as cohesin, might be responsible for the spatial

organization of chromatin in mammalian nuclei [97, 98, 2]. They mediate the

long-range chromatin looping genome wide and their binding sites are enriched

at the boundaries of both topological domains and “subdomains”. Since first

isolated from chicken in 1990, CTCF has been reported to play many different

roles in gene regulation in different contexts [99, 100, 101]. Several possible DNA

looping mechanisms of CTCF, where it regulates gene expression via reshaping

the chromatin structure, have been proposed [101, 4, 102]. Although CTCF

binds to a lot of DNA loci, different CTCF consensus binding motifs have been

also reported by different groups [40, 21, 38]. However, little is known about

how CTCF binds to these different DNA loci and how it searches for its target

loci.

The central binding domain of CTCF is composed of ten Cys2His2 (C2H2)

zinc fingers and one C2HC zinc finger, hence it is classified as a C2H2 zinc finger

protein. Since the transcription factor TFIIIA was first identified in Xenopus

laevis, the C2H2 zinc finger protein has attracted wide range of interest for

several decades [72, 103, 104]. Each C2H2 finger contains one central Zn2+ ion

coordinated by two cysteines and two histidines, with a sequence motif X2-C-

X2-4-C-X12-H-X3-5-H, and folds into a stable β-β-α secondary structure domain.

Multi-C2H2 zinc finger proteins (mC2H2), usually tandem repeats of C2H2 zinc

fingers connected by highly conserved short peptide linkers, are ubiquitous in

eukaryotic cells and affect a broad range of biological functions.
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The most fascinating character of C2H2 zinc finger appears to be its mod-

ularity for sequence-specific binding to DNA [103, 105]. As a representative,

Egr-1 (also known as Zif268 [106, 107]) which contains three zinc fingers and

has a great influence in the brain and cardiovascular system, binds specifically

to a 9 base-pair (bp) CG-rich sequence, while each zinc finger contacts a 3∼4

bp subsite along the major groove of DNA. This “canonical” zinc finger-DNA

binding mode provided an expectation of a DNA recognition code and hence a

framework for the design of novel zinc finger combinations recognizing desired

DNA target sites. Considerable effort has been devoted into this field and it

turned out that a single versatile DNA recognition code for mC2H2 does not

exist. First, there are other types of zinc fingers which uniquely bind to DNA

sites of AT-rich sequences (e.g., TATAZF [108]). Second, the binding affinity

of a mC2H2 is neither a simple summation nor multiplication of the binding

affinities of its component zinc fingers. It is also determined by the cooperativ-

ity between zinc fingers, as well as the linkers [103, 43]. Different zinc fingers

in mC2H2 might play different roles in a complex with DNA, such as the N-

terminal six zinc fingers of protein TFIIIA [109]. Prediction of the binding motif

and conformation of the generic mC2H2 zinc finger protein with DNA remains

an unsolved challenge [110, 111].

The kinetics of mC2H2 zinc finger protein, which is usually intrinsically

disordered when unbound [73, 42, 112], searching for its target DNA loci is also

a quite interesting problem. The asymmetrical roles of zinc fingers of Egr-1 in

DNA-scanning process was revealed by a recent NMR study [89]. The first zinc

finger (ZF1) of Egr-1 undergoes more intensive domain motions than the second

and third one (ZF2 and ZF3 respectively) when Egr-1 slides along DNA, and

ZF1 mainly dissociates while ZF2 and ZF3 bind to the DNA in the nonspecific

DNA complex. This is consistent with the “search and fold” mechanism (also
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Figure 5.1: Multi-Cys2His2 zinc finger proteins in complexes with DNA. (a) Rotation
coupled sliding motion of protein Egr-1 when it slides along DNA. Egr-1 binding do-
main contains three zinc fingers (labeled as ZF1, ZF2 and ZF3 from N to C terminus),
which are joined by two flexible white linkers. (b) A snapshot of the simulated eleven
zinc finger domains of CTCF bound to DNA. The central five zinc fingers ZF4∼ZF8,
which contact DNA, are highlighted in different colors.

called two-mode model) which emphasizes the coupling between protein binding

and partial protein folding [42, 74]. Coarse-grained (CG) molecular dynamics

simulation, which only considered the electrostatic interaction between protein

and DNA, succeeded in orientating Egr-1 and showing a higher domain mobility

of ZF1 [89]. However, the effect of mutation on the cognate DNA sequence is
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out of the scope of this sequence nonspecific model.

Aimed at understanding how CTCF changes the chromatin structure in more

detail, in this paper we studied the conformational properties of mC2H2 zinc

finger proteins while it binds to or scans double stranded DNA, with sequence

specific protein-DNA interactions. In section 5.2, the mapping schemes from

atomistic to CG scale for both amino acids and nucleotides are described. In

section 5.3, we will briefly explain how the protein-DNA CG force-field was

derived, the simulation details and all the conformational properties of interest.

Then simulation results of the force-field parameterization are presented for one

training case, two testing cases and a first application to the zinc finger domains

of CTCF. Finally, we give a short discussion and summary of our work.

5.2 Coarse-grained model

Due to the intrinsically disorder of mC2H2, CG peptide models which forbid

changes of the secondary or tertiary structure of the protein during simulation

are not suitable for our purpose. We have adjusted the peptideB model, which

was designed by Bereau [87] for studying protein folding and aggregation, as

the CG description of mC2H2 zinc finger proteins (figure 5.2(a)). Each amino

acid is modeled by three (Glycine) or four (non-Glycine) beads, that represent

the amide group N, central carbon Cα, carbonyl group C’ and side chain group

Cβ . The first three beads are backbone beads and the fourth bead determines

the sequence specificity of peptides. Considering the importance of the Zn2+

ion in maintaining the secondary structure of single zinc finger, the Zn2+ ion is

explicitly represented by an extra bead. Gō-type constraints between the Zn2+
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Figure 5.2: Coarse-grained (CG) models for proteins (a) and DNA (b). Each amino
acid in proteins are represented by four beads (amide group N, central carbon Cα,
carbonyl group C’ and side chain group Cβ). Each nucleotide in DNA are represented
by three beads (phosphate group P, sugar group S and base group B).

and the Cβ of its coordinating residues are added as

VZn−bond(r) = 1
2κZb(r − r0)2 (5.1)

VZn−angle(r) = 1
2κZa(θ − θ0)2, (5.2)

where the equilibrium distance r0 of Zn2+-Cβ and equilibrium angle θ0 of Cβ-

Zn2+-Cβ are obtained from reference structures. By simulations of a single
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ZF, the interaction strength κZb and κZa have been tuned to give the best

nativeness Q (∼ 0.93), which has the same expression as equation 7 (Q =<

exp[−(rrefi,j − rsimi,j )2/9] >i,j), but averaged over any bead pairs {i, j} in the ZF.

To simulate B-form double stranded DNA, we use the 3SPN.1 model [113,

114] which has been successfully applied to study the DNA sequence preference

of nucleosomes (figure 5.2(b)). Each nucleotide is modeled by three beads,

representing the backbone phosphate group P, the backbone sugar group S, and

the base group B∈{A,T,C,G}.

Both peptideB and 3SPN.1 are implicit solvent models, while the effect of

salt concentration in solvent is considered via the Debye-Hueckel approximation.

For simplicity, we set the temperature to T=300 K and the salt concentration

in sodium chloride solvent to [Na+]=150 mM in this work.

5.3 Methods

5.3.1 Parametrization

i

d

rp SiHdL

Figure 5.3: The accessible surface area Si(d) of radius d for a bead of type i. rp is the
radius of a probe, and the dash line represents the probe’s accessible surface.

Based on our CG model for mC2H2-DNA complexes, the protein-DNA inter-

actions are mainly composed of the nonbonded interactions between the twenty

different types of side chain beads Cβ of the protein and the six different types
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of beads of DNA. We derived the 20×6 interactions of each pair of type i in the

protein and type j in the DNA as follows. First, all the atomistic mC2H2-DNA

complexes deposited in the RCSB Protein Data Bank [115], which was filtered

to remove those of high amino acid sequence similarity, were mapped to our

CG representation (see also appendix). Then an initial guess of the “statistical

potentials” were inferred from these CG complexes using the formula [116, 117]

Gi,j(d) = −kBT < ln(Nobs(i, j, d)/Nexp(i, j, d)) >, (5.3)

where Nobs and Nexp are the number of observed and expected occurences of a

bead pair {i, j} of a distance d ± δ, and the term inside the angle brackets is

averaged over all complexes. Given the coordinates of beads in CG complexes,

it is straightforward to count Nobs. We calculated Nexp as

Nexp(i, j, d) = χi(d)χj(d)Ntot(d) (5.4)

= Si(d)∑
i Si(d)

Sj(d)∑
j Sj(d)Ntot(d). (5.5)

Ntot(d) is the total number of pairs of mC2H2-DNA beads of a distance d± δ,

and χi(d) is the probability of any DNA bead appearing at a distance d±δ from

a protein bead of type i. Si(d) is the contribution from beads of type i to the

total accessible surface area of radius d, which is defined as the area accessible

to the center of a probe of radius rp while the surface remains at a distance d

from the bead i (figure 5.3). Hence, χi(d) and χj(d) can be calculated from the

mC2H2 structure and the DNA structure in a CG complex respectively. The

parameter d was varied from 5 to 18 Å with a step size of 0.5 Å, i.e., δ = 0.5 Å.

Nobs(i, j, d) will be too small to give a meaningful and smooth profile of Gi,j(d),

if d is smaller than 5 Å or larger than 18 Å. The same consideration applies for

the choice of δ. The radius of a probe rp, is set to be equal to 3.44 Å, which

76



is the mean value of all bead radii. According to the shape of the subtracted

potentials, for i representing Cβ beads Gi,j was then fitted to

U cb−DNAi,j (d) = εi,j [(
a(σi,j + 18)
d+ 18 )8 − (a(σi,j + 18)

d+ 18 )6] (5.6)

with a = (3/4)1/2, σi,j ≤ d ≤ dcutoff . When d < σi,j ,

U cb−DNAi,j (d) = εi,j [(
aσi,j
d

)8 − (aσi,j
d

)6]. (5.7)

For other types of i (N, Cα, C’), a Weeks-Chandler-Andersen (WCA) pure

repulsive potential was used as

U bb−DNAi,j (d) = 4εbb−DNA[(σi,j
d

)12 − (σi,j
d

)6 + 1/4] (5.8)

when d ≥ 21/6σi,j . Otherwise, U bb−DNAi,j (d) = 0. Note that the superscript

cb means Cβ beads, and bb stands for backbone beads in the above equations.

The interaction between Zn2+ bead and DNA was ignored due to small value

of Nobs.

U cb−DNAi,j was further divided into two parts, the DNA-sequence depen-

dent interaction U
cb−{A,T,C,G}
i,j and the DNA-sequence independent interaction

U
cb−{S,P}
i,j , which includes 20 × 4 and 20 × 2 pairs of {εi,j , σi,j} respectively.

Since the fluctuation of the binding energy landscape along the DNA affects

the stability of the protein-DNA complex at the target site [118, 119], we mul-

tiplied U
cb−{A,T,C,G}
i,j by a prefactor fSP . In addition, because the mean value

of binding energy determines the dissociation rate of a protein from DNA, we

added a shift mSP to U cb−{A,T,C,G}i,j . U cb−{S,P}i,j and U bb−DNAi,j was manipulated

by {fNS ,mNS} and {fWCA,mWCA} likewise. Taking the interactions between

Cα beads and DNA base groups as an example, the final potential that we used
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during the simulation has a form,

V
cb−{A,T,C,G}
i,j (d) = fSP × U cb−{A,T,C,G}i,j (d) +mSP . (5.9)

The shift parameter does not change the depth of a potential well.

The parameters {εi,j , σi,j} are obtained by fitting the potential function

Ui,j(d) to the statistical potential Gi,j(d). Rather than further tuning {εi,j , σi,j}

we introduced six scaling or shifting parameters {fSP ,mSP , fNS ,mNS , fWCA,mWCA}.

For these we found the optimum values by force matching, which facilitate the

binding specificity of our training case. More precisely, their values are tuned

to stabilize Egr-1 in the complex with DNA for the training case, but to desta-

bilize the complex with nonspecific site. All the parameter values used in the

molecular dynamics simulation are given in Table 5.1 and Table 5.2.

Table 5.1: PDB complexes used to derive mC2H2-DNA potential.

3UK3 4F6M 2WBS 2WBU 2KMK 2PRT
2I13 1LLM 1P47 1F2I 1G2F 1TF6
1YUI 1AAY 1MEY 1UBD 2DRP 2GLI

5.3.2 Characterization and simulation details

To quantitatively characterize a CG mC2H2-DNA complex structure, we defined

and calculated the following features [120, 121].

(a) A protein-DNA contact interface is composed of all the mC2H2-DNA

bead pairs within a threshold distance of 7 Å. Then the interface nativeness Q

is defined as

Q =< exp[−(rrefi,j − r
sim
i,j )2/9] >i,j , (5.10)

where ri,j is the distance between bead pair {i, j} in the reference or simulated

conformation, and the average is taken over all the bead pairs {i, j} which belong
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Table 5.2: {εi,j , σi,j} in mC2H2-DNA potential.

mC2H2
DNA (kcal/mol, Å)

P S A T C G

N 0.09, 4.9 0.09, 4.9 0.09, 4.9 0.09, 4.9 0.09, 4.9 0.09, 4.9
Cα 0.09, 5.3 0.09, 5.3 0.09, 5.3 0.09, 5.3 0.09, 5.3 0.09, 5.3
C’ 0.09, 5.2 0.09, 5.2 0.09, 5.2 0.09, 5.2 0.09, 5.2 0.09, 5.2
Ala 0.12, 4.8 0.12, 4.2 1.51, 6.4 2.41, 6.0 2.44, 6.1 2.47, 8.0
Pro 0.11, 4.5 0.09, 5.2 0.65, 6.1 1.87, 7.6 1.92, 4.3 1.28, 7.0
Glu 0.17, 4.8 0.18, 5.5 1.25, 8.1 1.56, 4.5 3.26, 6.5 3.54, 8.0
Gln 0.13, 4.8 0.11, 6.1 3.68, 6.5 2.90, 6.4 2.28, 6.3 2.49, 7.4
Asp 0.11, 6.5 0.13, 5.1 2.31, 5.9 2.77, 6.6 5.95, 5.7 7.28, 7.1
Asn 0.10, 5.6 0.10, 6.1 3.38, 5.1 4.40, 7.8 2.96, 7.8 1.81, 7.4
Ser 0.14, 3.9 0.16, 5.6 2.76, 4.8 3.31, 5.7 3.81, 6.4 2.31, 5.5
His 0.28, 3.9 0.22, 6.5 2.95, 6.5 3.51, 4.6 4.03, 7.3 4.50, 7.5
Lys 0.14, 3.9 0.12, 4.8 1.27, 7.8 3.73, 7.2 4.14, 7.2 2.19, 6.5
Arg 0.14, 5.2 0.10, 5.3 3.77, 7.8 5.00, 7.3 7.03, 7.7 6.49, 8.2
Thr 0.18, 3.9 0.16, 5.2 2.06, 6.4 3.29, 6.1 3.40, 6.6 2.39, 7.6
Val 0.12, 5.0 0.11, 5.0 1.79, 6.7 3.09,10.3 2.27, 8.3 1.44, 9.3
Ile 0.19, 4.3 0.15, 5.6 1.31, 9.2 2.71, 8.0 2.28, 6.8 4.39, 9.8
Leu 0.19, 6.0 0.11, 5.9 1.29, 8.0 2.89, 8.0 2.04, 6.5 0.28,10.5
Met 0.17, 7.7 0.12, 7.7 0.51, 4.8 2.25,10.3 0.82, 8.0 1.46,10.1
Phe 0.28, 5.6 0.18, 6.1 1.25, 8.0 3.60, 8.8 2.52, 6.6 0.76, 8.5
Tyr 0.11, 5.2 0.11, 4.5 0.30, 6.4 1.48, 6.8 1.32, 5.6 0.63, 4.4
Cys 0.22, 6.1 0.19, 5.6 1.04, 8.2 2.30, 7.2 2.22, 8.2 0.86, 8.7
Trp 0.11, 5.6 0.08, 6.9 0.57, 9.3 2.74, 7.8 2.51, 7.8 1.01, 8.7

to the reference contact interface. The recognition region of a protein is made

up of all the protein beads on the contact interface.

(b) For any protein bead of a snapshot taken from a simulation, first in each

DNA strand we determine the phosphate bead which is closest to this protein

bead, then we calculate the distance between these two phosphate beads. If

the separation is larger than 15 Å, this protein bead is defined to locate in the

major groove of DNA. Otherwise, it is in the minor groove. A small change of

the criterion 15 Å, e.g., by 1 Å, will not change the conclusions obtained from

the simulation results. The percentage of the recognition region of a protein in

the major groove is obtained by applying this judgment to all the protein beads

in its recognition region.
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(c) Since DNA is dynamic in the simulation, local axis {lx, ly, lz} are defined

bp by bp along the DNA. For the i-th bp,

lix ‖ rSi − rceni (5.11)

liy ‖ rceni+1 − rceni (5.12)

liz ‖ lix × liy (5.13)

where rSi is the position of the i-th sugar bead on a single DNA strand, and

rceni is the position of the center of the i-th pair of sugar beads. The orientation

of a protein domain relative to DNA is determined as the angle between the

center of geometry of its recognition region rcogreg , the center of geometry of

the domain rcogdom, and the projection point of rcogdom to liy, where i minimize

|rcogdom − rceni |. Although there still exist some controversies, we still hope to find

a quantity to characterizes the bending of double stranded DNA observed in our

simulations. With the 3SPN model, de Pablo has studied the dependence of the

DNA persistence length on the environment’s salt concentration [113, 114], and

Takada has studied the effect of P53 binding on DNA bending [121]. A similar

DNA bending score is defined in our work as < ûi, ûi+10 >, where ûi is a unit

vector parallel to the vector rCeni −rCeni−10, and rCeni is the position of the center

of the i-th pair of sugar beads. With this definition, for a DNA segment of n bp,

the bending score is calculated from the tenth bp to (n−10)-th bp. It decreases

as the DNA bends more severely.

We studied four mC2H2 zinc finger proteins in complex with DNA of dif-

ferent sequences, which are summarized in table 5.3. Egr-1 are simulated with

a DNA duplex of 28 bp, of either specific (SP) sequence which contains the

target site or nonspecific (NS) sequence without it. The sequence of SP28 and

NS28 were taken from the recent experimental research of Iwahara [89]. The

initial conformation of Egr-1:SP28 (or NS28) complex for the molecular dynam-
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Table 5.3: Simulated mC2H2-DNA complexes.

mC2H2
DNA

Label Sequencea,b

Egr-1 SP28 GTACCGATT GCGTGGGCG GAACCTTCAG
NS28 GTACCGATT GCAGATTCC GAACCTTCAG

TATAZF SP27 GCCCCGGAC GCTATAAAA GGAGGGGCC
NS27 GCCCCGGAC CACCATCCG GGAGGGGCC

TFIIIA SP61 TGATCTCAG AAGCGATAC AGGGTCGGG
CCTGGTTAG TACCTGGAT GGGAGACCG
CCTGGGA

CTCF SP160 CGGCTTATG TGATCTCTC GATCGAATT
AGTTTACTT TGCCTGCAC CCCCAGCAG
CGCTGCAGT ACCGCGCTT GGCCGCGAG
GTGGCGCCA TTGCTCCAC GATTGACGC
GCGCCCCCC GCGTTTAAC GTATAAGGG
ACGCCTAGC CGGCTTTCA ACAGGCA

a From 5’ to 3’.
b Target sites in SP or non-target sites in NS have been underlined.

ics simulation was built by superimposing the sugar group beads of G10∼G18

in a standard B-form structure of SP28 (or NS28) to the sugar group beads of

the target site in the reference structure (PDB code: 1AAY [107]), while the

protein remained the same as in 1AAY. A similar preparation was made for

TATAZF and TFIIIA, with reference structures of PDB codes 1G2F and 1TF6,

respectively [108, 109].

As for CTCF, the atomistic structures of the sixth and seventh, tenth and

eleventh zinc fingers were contained in the PDB structure 2CT1 and 1X6H

respectively. Other zinc fingers were prepared using a homology modeling ap-

proach with the MODELLER 9.10 program [83]. Then the constructed atomistic

structure of the central eleven zinc finger domains of CTCF was mapped to the

CG scale and simulated without DNA. Next, we randomly chose an unbound

CTCF conformation, translated and rotated it so that the seventh zinc finger

was embedded into the major groove of the DNA sites C84∼G86. We use this
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transformed CTCF, together with the 160 bp specific DNA duplex [21], as the

initial conformation of CTCF:SP160 complex.

Our molecular dynamics simulations were carried out using the ESPResSo

3.1.0 package [66, 67]. In case that beads clash with each other in the initial

conformation, a complex structure was energy minimized, and “warmed” up

by gradually increasing the allowable maximum force strength from zero to the

normal value. Given the CG time scale t ∼ 0.1 ps, a subsequent simulation

at constant volume and constant temperature (NV T ) was performed using a

Langevin thermostat with friction constant of t−1, an integration step of 0.01t,

a sample step of τ ∼ 500t and total simulation time of 1.5 × 105t. Then we

analyzed the conformational properties of this complex based on the trajectories

of tens of simulations performed with different random seeds.

5.4 Results

5.4.1 Egr-1

Rotation coupled sliding.

Whether a protein slides along the DNA helical pitch (rotation coupled sliding)

or not is governed by the type and details of the dominating interaction between

the protein and DNA, and may affect the rate of the protein to find its target

site. Given that Egr-1 is embedded in the major groove of DNA in the crystal

structure, we first examine the percentage of the recognition region of Egr-1

located in the major groove (figure 5.4(a)). For both specific and nonspecific

DNA duplexes, more than 80% of the recognition region of Egr-1 stay in the

major groove during the simulations. In addition, we calculated the trajectory

averaged distance from the Cα bead to its nearest DNA bead for each amino

acid residue of the protein in figure 5.4(b). For each zinc finger (bounded via
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Figure 5.4: Conformational characteristics of Egr-1 sliding along specific (SP28) and
nonspecific (NS28) DNA. (a) Percentage of the recognition region of Egr-1 located in
the major groove of DNA during simulation. (b) Trajectory averaged minimal distance
from the Cα bead to DNA for each amino acid residue, compared with the distance in
the crystallographic Egr-1:DNA complex (Native). Residues in three zinc fingers are
bounded via three dashed boxes.

a dashed box), the distance grows to a high peak, then decreases and oscillates

on a low plateau. A similar distance profile appears in the crystal structure of

Egr-1:DNA complex, because the C2H2 zinc finger uses its C-terminal α-helix as

its DNA-binding interface. Together this suggests that the protein slides along

DNA with the same contact interface as in the crystal complex, no matter the

DNA site is specific or nonspecific.

83



Figure 5.5: Distribution of the changes in the rotation angle θ (∆θ) and in the diffusion
displacement y (∆y) for (a) the second zinc finger of Egr-1 and (b) Egr-1.

To further clarify the rotation-diffusion coupled motion, given the definition

the rotation angle θ based on the local axes {lx, lz} and the diffusion displace-

ment y based on ly (see section 5.3.2(c)), we plot the distribution of the changes

in rotation value ∆θ and changes in diffusion displacement ∆y between succes-

sive samplings in figure 5.5, for the second zinc finger of Egr-1 (a) and Egr-1

(b). The dashed line in figure 5.5(a) corresponds to a diffusion along the helical

groove of an ideal B-form DNA, 34 Å displacement with 360◦ rotation, which

matches quite well to the simulated data. As for the whole protein, θ and y are

still coupled with a Pearson correlation coefficient of 0.874, but the slope of ∆θ
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over ∆y has changed. The latter point can be interpreted as a result of the fact

that different zinc fingers have different characteristics of motion, which will be

discussed in the following.

Asymmetrical roles of zinc fingers.

Figure 5.6: Conformational properties of different zinc fingers during the simulation of
Egr-1 in complex with nonspecific DNA. (a) The interface nativeness Q. The smaller
the Q is, the farther the zinc finger deviates from its initial gesture relative to DNA.
(b) The orientation angle relative to DNA. A large orientation angle indicates a dis-
sociation of the zinc finger from DNA.

To show the asymmetrical roles of zinc fingers in Egr-1, namely ZF1 almost
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dissociates when Egr-1 diffuses on nonspecific DNA, we calculated and compared

(a) the interface nativeness Q and (b) the orientation relative to DNA versus

the simulation time for different zinc fingers. In figure 5.6(a) Qs of three zinc

fingers drop to zero one by one. This shows that the first zinc finger initiated the

sliding, followed by the second then the third zinc finger. In figure 5.6(b), while

the orientation angles of the second and third zinc fingers remain at low values,

the orientation angle of the first one is comparatively large, which suggests the

dissociation of the first zinc finger. A direct influence of the more intensive

motion of ZF1 is that during our simulations of the Egr-1:NS28 complex, the

protein always slides towards the 3’ end of the DNA duplex (see also figure

5.1(a)), which has also been experimentally verified.

DNA sequence dependency.

We examined the sequence specificity of the “statistical potentials” via a com-

parison of the interface nativeness of the mC2H2 zinc finger protein in complexes

with specific and nonspecific DNA. In figure 5.7(a), it is clear that Egr-1 resides

on its target site and forms a stable complex with the specific DNA duplex

(SP28), but it slides away from its non-target site when it is simulated with

the nonspecific DNA duplex (NS28). The probability of Egr-1 sliding away for

SP28 and NS28, calculated from 100 independent simulations, are 0.17 and 0.74

respectively (see table 5.4).

5.4.2 TATAZF

To check whether the potential of protein-DNA interaction is biased to the

“canonical” mC2H2-DNA complex or not, we further studied TATAZF, which

binds specifically to 9 bp AT-rich DNA motif, also in complexes with specific

DNA (SP27) and nonspecific DNA (NS27). The interface nativeness during a
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Figure 5.7: Interface nativeness Q, which is the average of Qs of three component zinc
fingers versus simulation time for (a) Egr-1 and (b) TATAZF in complex with specific
or nonspecific DNA duplex.

typical simulation is shown in figure 5.7(b). Similar to the results for Egr-1,

TATAZF slides away on non-target site while stays on target site. The proba-

bility of this protein sliding away with SP27 and NS27 are 0.09 and 0.67. These

values suggest that our CG potential captures the essential sequence specificity

for mC2H2-DNA recognition.
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Table 5.4: DNA sequence specificity.

mC2H2 DNA Probabilitya

Egr-1 SP28 0.17
NS28 0.74

TATAZF SP27 0.09
NS27 0.67

a Probability of mC2H2 to slide away in the simulations.

Figure 5.8: Different roles of the N-terminal first six zinc fingers of protein TFIIIA.
Six zinc fingers are labeled and colored with different colors, joined by short flexible
white linkers. ZF1∼ZF3 bind to DNA while ZF4 and ZF6 dissociate.

5.4.3 TFIIIA

Another test was performed via applying our CG model to the N-terminal six

zinc fingers of the protein TFIIIA, which is known from the crystal structure

that it tightly binds to DNA with the first three zinc fingers ZF1∼ZF3 and the

fifth one ZF5, while other zinc fingers ZF4 and ZF6 dissociate. As shown in

Figure 8, ZF1∼ZF3 wraps around the major groove of DNA, like the ZFs in

Egr-1. In contrast, ZF4∼ZF6 align roughly parallel to the DNA axis, and form

an extended structure.

The trajectory averaged minimal distance from the Cα bead to its closest
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Figure 5.9: Conformation properties of TFIIIA in complex with DNA. (a) Trajectory
averaged minimal distance from the Cα bead in each residue to DNA (SP61), and to
DNA bases (SP61-base), compared with the distance in the crystal structure (Native).
Residues in six zinc fingers are bounded via six dashed boxes. (b) Percentage of DNA
contacting beads in ZF3∼ZF6 of TFIIIA located in the major groove of DNA versus
the simulation time. Note that lines for ZF4 and ZF6 completely coincide with each
other.

DNA (base) beads for the residues in TFIIIA is plotted in figure 9 (a), with

comparison to the distance in the crystal complex. The percentage of DNA

contacting beads in ZF3∼ZF6 of TFIIIA located in the major groove of DNA,

as a function of the simulation time, is shown in figure 9 (b). Here the DNA

contacting beads are defined as the protein beads whose minimal distance to
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DNA beads is less than 7 Å.

In general the distance is smaller for the first three zinc fingers than that

for the fourth and sixth one, which agrees with the partial binding partial dan-

gling mode. If 7 Å is chosen as the threshold to determine a protein bead in

contact with DNA or not, it seems that ZF4 also binds to the DNA during

the simulation. However, additional analysis of the minimal distance of Cα to

the DNA bases shows that ZF4 is far away from the DNA bases. Hence in our

simulations, ZF4 is closer to the DNA backbone than in the crystal structure,

which might result from the long-range coulomb interactions are not explicitly

included in our force field. What’s more, although the α-helix region of ZF4 is

near to the DNA, it is always located in the minor groove of the DNA.

Consistent with the native complex conformation, Figure 9 (a) also shows

that ZF5 contacts DNA bases. It has a wider range of motion than the first

three zinc fingers, e.g., ZF3, and it resides in the major groove of DNA most of

the time (see Figure 9 (b)).

5.4.4 CTCF

The trajectories averaged minimal distance from each amino acid residue to

DNA of the eleven zinc finger domains of CTCF in complex with DNA (SP160)

are presented in figure 5.10(a). It is quite clear that only the central five zinc

fingers ZF4∼ZF8 contact DNA (see also figure 5.1(b)). while ZF5∼ZF7 are

consecutively embedded in the major groove, ZF4 and ZF8 also reside in the

major groove but cross the minor groove with the linkers between ZF4 and

ZF5, ZF7 and ZF8, respectively. Concerning the unbound zinc fingers, one may

notice the difference of the profiles monotonicity between the N- and C-terminal

parts in figure 5.10(a), which indicates that the N-terminal ZF1∼ZF3 are more

rigid than the C-terminal ZF9∼ZF11. The DNA bending scores of nucleotide

90



Figure 5.10: Trajectory averaged conformational properties of CTCF:SP160 complexes
with or without fixed DNA terminals (TerFix or TerFree). (a) Minimal distance from
the Cα bead to DNA for the zinc finger domains of CTCF, where the eleven zinc fingers
are bounded by dashed boxes. (b) DNA bending score of each nucleotide base pair,
where the dashed box indicates the position of the consensus 20 bp CTCF binding
motif.

bps are plotted in figure 5.10(b), where the consensus 20 bp CTCF binding

sites are bounded with a dashed box. As suggested by the gel mobility shift

analysis experiments [122, 123], the zinc fingers of CTCF bend double stranded

DNA while it binds to. The asymmetry profile in the binding sites confirmed a

directional binding of CTCF, as well as different roles of different zinc fingers

in CTCF.
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5.5 Conclusions

To investigate how the transcription factor CTCF, as a typical mC2H2 zinc fin-

ger protein, organizes the spatial structure of chromatin which probably results

in gene regulation, we presented a CG molecular dynamics study on mC2H2

zinc finger proteins in complexes with DNA. Using sequence specific “statistical

potentials”, which are derived from the mC2H2-DNA complex structures in the

PDB database and tuned by cautious scaling and shifting, we confirmed sev-

eral experimental key features in our simulation results. The three zinc finger

protein Egr-1 slides in the major groove of DNA duplex, and contacts the DNA

with the same interface as in the specific crystal structure. The first zinc finger

of Egr-1 was found to undergo more intense domain motion and to dissociate

from nonspecific DNA when sliding on. What’s more, no matter the target DNA

motif is CG-rich or AT-rich, mC2H2 proteins recognized their target sites and

slide away from non-target sites. A further testing performed on six zinc finger

domains of a mC2H2 protein, also presented a partial binding partial dangling

mode found in the experiment.

An application to the eleven zinc finger domains of CTCF with a specific

DNA duplex shows that the protein binds only with its central five zinc fingers

ZF4∼ZF8. These zinc fingers are embedded in the DNA’s major groove, but

perhaps not continuously. ZF4 and ZF8 cross the minor groove with the C-

and N-terminal linker, respectively. it is also shown that CTCF asymmetrically

bends the DNA duplex. It is not clear from experiments whether a CTCF or

the zinc finger domains of CTCF can organize a DNA loop alone [122, 123]. We

don’t find a DNA loop formed by CTCF binding in our simulation, but it is still

possible that, besides the central zinc finger domains, the unstructured N- or

C-terminal is necessary for CTCF to organize a DNA loop. Other possibilities,
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like two CTCFs, which contacts a DNA site respectively, aggregate together and

form a bridged DNA loop, will be studied in the future.

The mC2H2-DNA interaction potentials, we developed here, have some in-

born limitations. First, some important factors, like the ionic strength in the

solvent, are missing in the force field. As in the Mullinax and Noid’s study

[124, 125], structures deposited in PDB database can be regarded as an ex-

tended canonical ensemble composed of a collection of canonical ensembles for

distinct systems (e.g., different environment’s pH and salt concentration), each

at a finite temperature T . Then those variables can be explicitly considered

in the force field and further parameterized. Second, the statistical potentials

do not contain any long-ranged interaction, such as Coulomb interaction which

dominates nonspecific protein-DNA association. As a possible reason, the β-

helix in ZF4 of TFIIIA is closer to the DNA backbone during our simulations

than in the crystal structure. This may also influence the motion of a protein

searching for its DNA target locus. Hopping and correlated transfer might be

more easier with longer ranged interactions [120]. Long-ranged electrostatic in-

teractions, as a function of salt concentration, can be ad hoc included into a

coarse-grained force field using a Debye-Hueckel potential, as Bereau did for

the peptideB model [87]. This will be one of next objectives to optimize the

interactions.
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6 General one Chain
adsorbed onto another

Phase transition and winding properties of a flexible polymer

adsorbed to a rigid periodic copolymer, Lei Liu, David

Schubert, Min Chu and Dieter W Heermann,

Physical Review E. Under review. Lei performed most

simulations and wrote the manuscript. David and Min

contributed other materials to this work.
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Chapter Summary. Motivated by the non-covalent binding of polypeptides

to DNA, the adsorption of a flexible polymer to a rigid periodic copolymer is

studied in 2d and 3d. The fraction of adsorbed monomers, the specific heat,

and the Binder cummulant are analyzed and compared with analytical results

for an ideal chain. As the interaction strength ε increases a second-order phase

transition occurs from a non-adsorbed state to an adsorbed state, in 2d and a

higher-order transition in 3d. The transition point is estimated as ε0 ∼ 2.2 for

d = 2 and ε0 ∼ 2.1 for d = 3, where ε is given units of kBT . The dependence

of the number of adsorbed monomers Nads on the chain length L of the flexible

polymer shows a power law scaling relation Nads ∼ Lφ with φ ∼ 0.46, 0.42, for

d = 2, 3, respectively. We also find a optimal ε ∼ 2.8 for the winding of the flex-

ible polymer around the rigid one in 3d. Compared to the adsorbed monomers,

the successive non-adsorbed monomers contribute more to the winding. When

the interaction is strong ε > 3.5, the winding value or the number of winding

turns of the flexible polymer becomes linearly dependent on the chain length.
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6.1 Introduction

Contrary to the traditional view that a functional protein usually possesses a

stable three-dimensional structure, more and more functional intrinsically dis-

ordered protein domains of significant size are reported [42, 126]. They interact

with DNA, RNA and other protein domains, and play several important roles

in cells such as trascriptional regulation, translation and cellular signal trans-

duction [127, 128]. Many intrinsically disordered proteins undergo a transition

from a random-coil-like unbound state to a more ordered bound state of stable

secondary or tertiary structure, i.e. a so-called ’folding while binding’ process

[129, 130]. For example, the binding of the multi-Cys2His2 (mC2H2) zinc fin-

ger protein, which behaves like a worm-like chain [112], to its target DNA sites

results in an orientational restraint of successive zinc fingers and facilitates the

whole protein to wind around the DNA along its helical major groove [43].

It is well known that the giant lose of entropy of a protein from unbound to

bound state should be compensated with the protein-DNA binding enthalpy

gain [131, 132].

Another macromolecular system of current interest is the polymer-carbon

nanotube hybrid, which consists of a carbon nanotube (CNT) coated with

a self-assembled monolayer of flexible, or semi-flexible polymer chains [133,

134]. Several experiments confirmed that wrapping is a general phenomenon

occurring between polymers and CNTs, and some polymers are reported to

wrap CNTs in a distinct, helical-type conformation, like poly(sacchrides) [135],

poly(dialkylsilanes) [136] and single-stranded DNA [137, 138]. This non-covalent

polymer wrapping can effect the properties of the CNTs, such as the solubil-

ity, dispersity, strength, toughness, and conductance, and hence enhances its

functionality in numerous proposed applications [139, 140, 141].
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There are studies on both intrinsically disordered protein-DNA and polymer-

CNT, with either Monte Carlo or molecular dynamics methods on a coarse-

grained or atomistic scale [142, 143, 144]. For example, Levy’s group uncovered

the asymmetric role of zinc fingers in DNA-scanning process of the inducible

transcription factor Egr-1 based on a Go-type model [89, 145]. Tallury et al.

found that polymers with stiff and semiflexible backbones tend to wrap around

the CNTs with more distinct conformations than those with flexible backbones

via atomistic molecular dynamics simulations [146, 147]. However, all these

studies focused on one or a few specific molecular systems, and it was not fully

understood how the adsorptive interaction between the polypeptides and DNA,

or the polymer and CNT, influences the binding and the winding.

To answer these questions, a generic polymer-polymer coarse-grained model

was developed. The intrinsically disordered protein is modeled as a flexible

polymer chain, and the DNA is modeled as a rigid periodic copolymer. Con-

formation properties of the polymer-polymer complex were investigated with

different adsorptive interaction and different chain lengths. The phase transi-

tion from a non-adsorbed state to an adsorbed state, and the characteristics of

the flexible polymer wrapping around the rigid one are analyzed. In section 6.2,

we discuss the theoretical work on the adsorption of an ideal chain. In section

6.3, the model and the simulation method are briefly introduced. Then the

results for the phase transition and winding are discussed in two different parts.

Finally, we present a short summary of our main conclusions.

6.2 Theory

Research interest on similar problems dates back to the 1960’s. Rubin studied

the adsorption of an ideal chain on a long rigid-rod molecule by the transfer-

matrix method [148]. There the adsorbing rodlike molecule is represented by the
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Figure 6.1: Typical conformations of a flexible polymer of chain length L = 40 ad-
sorbed to a rigid polymer, with the adsorptive interaction strength ε = 0.4, 2.7, 4.7
(top-left, top-right and bottom panel, respectively). The flexible polymers are divided
into three kinds of segments, tail(brown), train(blue) and loop(white).

lattice sites on the z axis of a cubic lattice. The adsorptive interaction strength

is ε, and the adsorption energy per monomer is −ε in units of kBT . Given that

the first monomer is grafted on the z axis and the length of the flexible chain

approaching infinity, the average fraction of adsorbed monomers fads is found

to be equal to zero below a transition point ε < ε0. What’s more, the kth

derivative of fads at ε0 equals zero for any k ≥ 1 suggesting an infinite-order

phase transition.

For the adsorption of an ideal chain to an impenetrable straight line in 2d,

one can directly apply the solution of the adsorption of an ideal chain to an

impenetrable flat surface [149]. Consider a lattice model of the chain-surface

system in which the adsorbing surface corresponds to the x-y plane and the

chain is represented by a random walk in half of the space z > 0. Each lattice

site is surrounded by Z nearest-neighbor sites, while Z0 of them of the same z

value are called to locate in the same layer. At any moment, the walker can

only move to one of the current nearest-neighbor sites in the next step. For a
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random walker who starts on the adsorbing surface, the probability that at the

Nth step the random walker is located in the kth lattice layer is Pk(N). The

key recurrence equation for adsorption on a plane is

Pk(N) = 1
2aPk+1(N − 1) + (1− a)Pk(N − 1)

+ 1
2aPk−1(N − 1)

(6.1)

for k ≥ 1, where a = (Z − Z0)/Z. This describes that if at the Nth step the

random walker is in the kth layer, he must be in the k−1, k or (k+1)th layer at

the (N−1)th step. It is reported [149] that this system undergoes a second-order

phase transition as the chain length L → ∞. Again the chain is non-adsorbed

(fads = 0) below ε0, but the specific heat C = 〈(E − 〈E〉)2〉/LkBT 2 jumps

discontinuously from zero to a finite peak at ε0.

Concerning the problem of the adsoprtion of an ideal chain on an axis in 2d,

Pk(N) can be also regarded as the probability that a random walker, in half x-y

plane (y > 0), is located in the kth lattice layer (y = k) at the Nth step, when

he starts from the attracting x axis. Then in a 2d simple square lattice, one

simply sets a = (4 − 2)/4 = 0.5 and it should have the same phase transition

behavior as above.

A more general scaling analysis for the adsorption of flexible chain onto any

object S [150] shows that fads = 0 for ε < ε0 and fads > 0 for ε > ε0 when

the chain length L → ∞. Close to ε0, the number of adsorbed monomer Nads

follows the relation [151]

Nads = LφF ((ε− ε0)Lν) , (6.2)

where F (x) is a scaling function. The relation between the crossover exponent

φ and the critical exponent ν has been studied. Regarding the adsorption of
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a polymer on a surface in 3d, a lattice simulation by Eisenriegler, Kremer and

Binder reports that φ ' 0.59 ' ν3d [152], which is also obtained by Blumen

et al. [153]. Using a different algorithm, Hegger and Grassberger find φ ∼ 0.5

[154], and this results is supported by other simulations [155]. If the surface

is penetrable and neutral (with ε0 = 0), φ is related to ν via φ = 1 − ν [156].

Bhattacharya et al. found that the value of φ depends essentially on the degree

of interaction between different loops in a polymer, and varies in the range of

0.34 ≤ φ ≤ 0.59 [157].

6.3 Model and Simulation

In our model, both in 2d and 3d, the rigid molecule (e.g., DNA) is represented

by an infinitely long copolymer with periodically distributed adsorption sites on

it (see Fig.6.2). The flexible molecule (polypeptides) is modeled as a flexible

polymer of length L. We implement this using the bond fluctuation model [62]

for the cubic lattice, where the bond lengths of the flexible polymer can varies

from 2 to
√

10. The rigid polymer lies on the x axis. The distance between the

adsorbing sites is 3. Because of the excluded volume, one adsorption site can

not be occupied by two monomers simultaneously, and the distance from the

monomer of the flexible polymer to the rigid one is s ≥ 2. One monomer of the

flexible polymer is considered to locate on the surface of the rigid molecule if

s = 2 in 2d, or 2 ≤ s ≤
√

8 in 3d. But it is adsorbed only when it resides on

the surface of an adsorbing site, i.e., it has the same x coordinate value as an

adsorbing site.

The simulations were performed using the standard Metropolis algorithm

[50], where an adsorbed monomer can only leave the adsorption site with a

probability exp(−ε/kBT ). It is guaranteed that at least one monomer of the

flexible polymer, not adsorbed necessarily, is on the surface of the rigid copoly-
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Figure 6.2: An illustration of our model in 2d (a) and in 3d (b). The z-axis is perpen-
dicular to and points out of the plane. Monomers of the rigid polymer are represented
by squares, where the adsorbing sites are colored gray. Monomers of the flexible poly-
mer are represented by circles of solid black edges (z = 0), dashed red edges (z > 0)
and dash-doted blue edges (z < 0). Circles representing adsorbed monomers are filled.
In (b), bonds from monomer i to i+1 are draw using solid lines (parallel to the plane),
solid arrows (going out of the plane) and dashed arrows (going into the plane).

mer. For different L ∈ {10, 20, 40, 80, 160, 200} and ε ∈ [0.0, 5.0] with a step

0.1, we first calculated the sampling interval ∆t from the autocorrelation time

of the radius of gyration Rg of the flexible polymer (e.g., ∆t ∼ 107 MC steps

for L = 200, ε = 3.0), Then after equilibration, 104 independent conformations

with interval ∆t were sampled for each pair of parameters {L, ε} to calculate

the ensemble averaged properties of interest.

Since the first monomer of the flexible chain is always fixed and adsorbed in

the theoretical work, we also calculated the adsorption with the first monomer

grafted.
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6.4 Results

6.4.1 Phase Transition

Figure 6.3: Fraction of adsorbed monomers (a, c) and specific heat (b, d) for different
chain lengths L ∈ {10, 20, 40, 80, 160, 200, 320} and different adsorptive interaction
strength ε in dimension d = 2, 3. Subplot (b, d) has the same legend as (a, c),
respectively. The corresponding theoretical results for an ideal chain are shown in the
inserts, while the vertical dashed line indicate the location of the transition point ε0.

The dependence of the fraction of adsorbed monomers fads and the specific

heat C on the adsorptive interaction strength ε for various chain lengths are pre-

sented in Fig.6.3. In both dimensions, due to the finite size effect, the transition

gets sharper when L increases. For longer polymers, the fads is almost zero for

small ε. It is apparent that there is a steeper rise within the transition region in

2d than in 3d. Also a higher fraction of the flexible polymer is adsorbed in 2d

than in 3d when the interaction is strong (e.g., ε = 5.0). Concerning the specific

102



heat, for L = 200, C roughly jumps vertically to a higher peak in 2d, while it

climbs up to a lower maximum with a flatter slope in 3d. All of these features

appear in the theoretical results for an ideal chain too. Therefore we expect a

second-order phase transition for d = 2, and a higher (larger than two) order

transition for d = 3. In addition, as the flexible polymer becomes longer and

longer, the peak height of the specific heat increases monotonically in 2d, and

it starts increasing followed by a decline in 3d. However, it converges in either

case. Taking the number of adsorbed monomers Nads as an order parameter,

the dependence of susceptibility χ =< N2
ads > − < Nads >

2 on ε as L → ∞

(data not shown here) also support the conclusion drawn from the specific heat.

Figure 6.4: Binder cummulant U versus the inverse of chain length L−1 around
ε0 (a, c), and the ratio between U of different pairs of chain lengths {L/L′} ∈
{20/320, 40/320, 80/320, 160/320} versus the adsorptive interaction strength ε (b, d)
in d = 2, 3. The intersection points are located within the pair of vertical dash lines
in (b, d).

In order to determine the transition point ε0, we perform the analysis of
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the Binder cummulant U = 1 − 〈N2
ads〉/3〈Nads〉2 [50, 151]. It is known that,

providing the chain length L→∞, U approaches 2/3 for ε > ε0, and it tends to

a nonzero value at ε0 independent of L. Hence, for pairs of different finite chain

lengths {L,L′}, the ratio between the Binder cummulants UL/UL′ should equal

to one near the transition point. Fig.6.4 (a, c) shows U as a function of L−1

around ε0 for d = 2, 3, respectively. U shows different behavior for ε > ε0 and

ε < ε0 in both dimensions. This suggests that ε0 ∼ 2.3 in 2d and ε0 ∼ 2.1 in 3d.

The ratio of the Binder cummulants for different pairs of chain lengths versus

the interaction strength are plotted in Fig.6.4 (b, d). According to the points,

which cross over the horizontal line UL/UL′=1, we found 2.25 < ε0 < 2.35 and

2.05 < ε0 < 2.15, for d = 2 and 3, respectively. But this only gives us a rough

range of the transition point.

Since it is reported [155, 153, 151] that the ratio between the perpendicular

and parallel components of the mean square radius of gyration 〈Rg2
⊥〉/〈Rg2

‖〉

should be independent of the chain length L at the transition point in the

surface adsorption problem, the dependence of this ratio on the interaction

strength for different chain lengths are presented in Fig.6.5. In 2d, the curves

for different L intersect at ε0 = 2.2. But in 3d, they collapse onto each other

at low adsorptive interaction, and do not intersect at one clear point. The

difference can be explained if one notice that the flexible polymer can wrap

around the rigid polymer in 3d, but not in 2d (due to the dimensionality of the

space and the excluded volume interaction between the flexible polymer and the

rigid one). Swelling perpendicularly at small ε leads to a larger Rg⊥. Because

of the same reason, 〈Rg2
⊥〉/〈Rg2

‖〉 ∼ 1 for d = 2, but 〈Rg2
⊥〉/〈Rg2

‖〉 > 2 for d = 3,

for weak adsorptive interaction.

We have also measured the dependence of the number of adsorbed monomers

Nads on L in the transition region (see Fig.6.6(a, c) for d = 2, 3 respectively). In
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Figure 6.5: The ratio between the perpendicular and parallel components of the mean
square radius of gyration 〈Rg2

⊥〉/〈Rg2
‖〉 versus ε in 2d (a) and 3d (b). The vertical dash

line in (a) indicates the location of the intersection point.

agreement with the scaling analysis, a linear curve in the log-log plot indicates

a power law relation Nads ∼ Lφ for both dimensions. The exponent values of

{φ, ν} are further calculated by fitting the scaling

NadsL
−φ =a0 + a1(ε− ε0)Lν+

O((ε− ε0)2Lν)] ,
(6.3)

following the method from Luo [151]. In brief, taking 2d as an example, Nads at
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Figure 6.6: Log-log plot of the number of adsorbed monomers Nads versus the chain
length L around ε0 (a, c), and the scaling of Nads with {ε, φ, ν} equals {2.20, 0.46, 0.58}
in 2d (b), and {2.05, 0.42, 0.57} in 3d (d) for various chain lengths.

ε ∈ [2.0, 2.4] with a step of 0.01 are obtained from quadratic interpolation from

the simulation data at ε ∈ {2.0, 2.1, 2.2, 2.3, 2.4}. Then, {ε0, φ} are determined

by a best fit to a power law. ν is the value which minimizes the deviation from

the relation NadsLφ ∼ (ε− ε0)Lν of the simulation data to a parabolic function.

Fig.6.6(b, d) shows the scaled Nads with ε0 = 2.20, φ = 0.46, ν = 0.58 for d = 2,

and ε0 = 2.05, φ = 0.42, ν = 0.57 for d = 3. We can see that all data collapse

quite well even for ε far from ε0. It is quite interesting to find that our fitted

values satisfy φ ∼ 1− ν, which was proposed by de Gennes [156].

Finally, we compare fads with the first monomer always grafted to our model

(non-grafted polymer) in Fig.6.7(a, c). When the polymer is short, the grafted

polymer always has a higher fraction of adsorption than the non-grafted one,

but the difference between them diminishes as the polymer gets longer. Hence

the above discussion about the phase transition should also apply to the grafted
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Figure 6.7: Fraction of adsorbed monomers for non-grafted (dash line) and grafted
polymer (solid line) with L = 10, 200 in (a, c), respectively. The perpendicular
monomer density ρ⊥ versus the distance from the monomer to the rigid polymer
surface for non-grafted (dash line) and grafted polymer (solid line) with L = 200, and
ε = 0.3, 2.5 in (b, d), respectively.

polymer, providing L approaches infinity. However, deviations can be found if

one looks at the perpendicular monomer density ρ⊥ profile for the grafted and

non-grafted polymer in Fig.6.7(b, d). At low adsorptive interaction, compared

to the non-grafted polymer, the grafted one is expelled further away from the

rigid polymer. At high interaction, since most part of the polymer is adsorbed

on the surface, this difference disappears.

6.4.2 Winding Properties

Another property of special interest is how the flexible polymer winds or wraps

around the rigid one in 3d. The winding value w is defined as a function of the
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Figure 6.8: The winding value w, as a function of the contour length l along the flexible
polymer, varies from w(i) to w(i + 1) with dϕ, by which the flexible polymer rotates
around the rigid one from monomer i to i + 1. One turn is counted if |∆w| exceeds
2π.

contour length l of the flexible polymer, for l ∈ {1, 2, ..., L}. We have

w(i+ 1) = w(i) + dϕ , (6.4)

while the flexible polymer rotates around the rigid one from monomer i to i+ 1

by an angle dϕ (see Fig.6.8). One turn is counted if |∆w| = |we − ws| exceeds

2π, where ws and we is the winding value at the head and tail of a segment of

the flexible polymer, respectively. Looking along the rigid molecule, the flexible

polymer can wind either clockwise (w > 0) or anti-clockwise (w < 0) with equal

probability, and one would expect 〈w〉= 0. Hence we choose w2 and plot 〈w2/L〉

versus ε for various chain lengths in Fig.6.9.

With strong adsorptive interaction, monomers of the flexible polymer are

almost adsorbed. A local move parallel to the rigid polymer, from an adsorbing

site to a non-adsorbing site, is energetically unfavorable. One can assume that

each monomer moves only perpendicular to the rigid polymer stochastically

clockwise and anti-clockwise, while still keeps its distance to an adsorbing site
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Figure 6.9: The chain length normalized mean square winding value 〈w2〉/L versus
the adsorption energy ε for different L.

not larger than
√

8, i.e., still adsorbed. Similar to 〈∆D2〉 ∼ t, where ∆D is

the displacement and t is the elapsed time in one dimensional diffusion, this

assumption yields that with large ε,

〈w2〉 ∼ L (6.5a)

Nturn ∼ L (6.5b)

where Nturn is the mean number of turns. For ε > 3.5, the curves of 〈w2/L〉

for different chain lengths collapse (see Fig.6.9), which validates Eq.6.5(a). We

have also plotted the Nturn as a function of L at ε ∈ {3.0, 3.5, 4.0, 4.5, 5.0} in

Fig.6.10. The linearly fitted dash lines for all these interaction strength confirm

the above analysis too.

The flexible polymer is divided into three kinds of segments to further un-

derstand the dependence of 〈w2〉 on ε. The non-adsorbed successive monomers

at the terminals of the chain are called tail, in the middle are called loop, and the

adsorbed successive monomers are called train (see Fig.6.1). Given the length
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Figure 6.10: The mean number of turns Nturn versus the chain length L at strong
adsorptive interaction ε ≥ 3.0. The dash lines are the linear fitted curves.

of a segment is Ls, we define the squared winding value per monomer for this

segment as w2
mono = w2/Ls.

Fig.6.11(a) shows the fraction of monomers in tail ftail, loop floop and train

ftrain as a function of ε. With low attractive interaction strength, the tails

dominate the polymer. With high attractive interaction strength, the majority

of the monomers belong to the trains (see also Fig.6.1). As ε increases, ftail or

ftrain changes monotonically, while floop has a maximum in the range 2.5 < ε <

3.0.

Furthermore, Fig.6.11(b) presents the mean squared winding value per monomer

〈w2
mono〉 versus ε for three kinds of segments. It shows that 〈w2

mono〉(loop) >

〈w2
mono〉(tail) > 〈w2

mono〉(train) for ε < 4.0. Since every monomer in a train is

confined on the surface of the rigid polymer and each bond of certain length can

not step over a large dϕ, 〈w2
mono〉(train) is comparatively small. As for 〈w2

mono〉

in loop, compared to that in the tail, the additional grafted end impedes the

non-adsorbed segment to align parallel to the rigid polymer, which hence results

in a larger winding.
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Figure 6.11: The fraction of adsorbed monomers (a) and the mean squared winding
value per monomer < w2

mono > (b) in train, loop and tail versus ε for L = 200.

These two factors together explain why there is a peak for the winding of

the whole chain around ε ∼ 2.8 in Fig.6.9 (see also Fig.6.1), where we have

< w2/L >∼ ftrain × < w2
mono(train) > + floop × < w2

mono(loop) > + ftail ×

< w2
mono(tail) >. Finally, we stress that the winding properties analyzed here

do not necessarily mean a periodic helical conformation of the flexible polymer

wrapping around the rigid one. It has been pointed out that the bending rigid-

ity [146, 147, 158] and weak attraction between non-adjacent monomers of a

semi-flexible chain [142] play key roles in forming periodic helical winding on

a adsorbing cylinder surface. We have also calculated the periodic correlation
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function [142] from conformations for all the studied interaction strength, no

ensemble meaningful periodicity is found.

6.5 Conclusion

In this work, we studied a generic polymer-polymer model for the adsorption

of a flexible molecule onto a rigid molecule using the Monte Carlo method. In

agreement with the theoretical results for the adsorption of a grafted ideal chain,

our data show a steeper transition, namely from a non-adsorbed state to an

adsorbed state, in 2d than in 3d. Also considering the dependence of the Binder

cummulant on the adsorption interaction strength, we conclude that there is a

second-order phase transition in two dimension, and a higher-order transition

in three dimension. Both the crossing of the Binder cummulant and the ratio of

the perpendicular to parallel components of the radius of gyration, indicate the

transition point ε ∼ 2.2 in 2d, and ε ∼ 2.1 in 3d. Further analysis of the scaling

of the number of adsorbed monomers with the chain length shows an expected

power law relation close to the transition point. In addition, calculation of the

winding value of the flexible polymer around the rigid polymer in 3d shows that

the successive non-adsorbed monomers, which we called loop, contribute most

to the winding. It leads to an optimum ε of medium strength 2.8 for the winding

of the whole chain. Here the important role played by the loop reminds us of

the similar function of the linker peptide of a protein [43]. Taking the mC2H2

zinc finger protein wrapping around its target DNA site as an example, usually

the C2H2 zinc finger domains are bound to the DNA, while the flexible linker

peptides between these domains are unbound. Finally it is also shown that,

with high interaction strength, the dependence of the winding and the number

of turns of flexible polymer on the chain length becomes linear.

In our model, the periodicity of the adsorbing sites on the rigid polymer is
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set to 3, which is the integer closest to the priori mean bond length of a flexible

polymer in the bond fluctuation model [62]. The resulting transition energy ε0

is larger than that of the adsorption onto a homogeneous rigid polymer. If the

periodicity is enlarged, two effects are expected. First, monomers in the flexible

chain cannot be adsorbed successively any longer, and the saturation value of

fads will decrease. Second, the transition energy ε0 will increase. These tenden-

cies have been investigated by other studies, such as a Monte Carlo simulation of

the adsorption of periodic copolymers at a homogeneous planar substrate [159],

and a numeric solution of a directed walk model of a homogeneous polymer

adsorbed onto a surface with periodic adsorbing strip pattern [160].
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7 Conclusion and Outlook

7.1 A summary of the results

Aiming to better understand how CTCF organizes the chromatin loops in hu-

man cells, different models on different scales are developed, simulated and an-

alyzed in this thesis. The findings contribute to new insight into the unbound

mC2H2 zinc finger proteins and mC2H2 zinc finger proteins in complexes with

DNA.

In chapter 4, we studied the conformational properties of unbound mC2H2

zinc finger proteins using multiscale approaches. First, a homology model of

the tandem zinc finger domains of the transcription factor CTCF was con-

structed. All-atom MD simulations showed that single zinc finger is a stable

structural unit, independent of the studied environmental conditions. In agree-

ment with the NMR observation of the N-terminal three zinc fingers of TFIIIA,

the polypeptide becomes more extended in unbound states than in a DNA-

bound state. Next, an atomistic pivoting algorithm, which considers only the

excluded volume interaction, was developed to investigate the global conforma-

tional characteristics of multi-zinc finger proteins. It showed that as the number

of zinc fingers increases, the end-to-end distance distribution gradually changes
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its shape, from skewed to the left to skewed to the right. This was explained

by using a worm-like chain model. The effective bending constraint can be

applied not only to multi-zinc finger proteins, but also to other multi-domain

proteins connected by short flexible linkers. Finally, a mesoscale peptide model

was modified for mC2H2 proteins, which is efficient while providing similar con-

formational properties as those given by atomistic models.

In chapter 5, we presented a CG molecular dynamics study on mC2H2 zinc

finger proteins in complexes with DNA. Using sequence specific “statistical po-

tentials”, which were derived from the mC2H2-DNA complex structures in the

PDB database and tuned by cautious scaling and shifting, we confirmed several

experimental key features in our simulation results. The three zinc finger protein

Egr-1 slides in the major groove of DNA duplex, and contacts the DNA with

the same interface as in the specific crystal structure. The first zinc finger of

Egr-1 was found to undergo more intense domain motion and to dissociate from

nonspecific DNA when sliding on. What’s more, no matter the target DNA

motif is CG-rich or AT-rich, mC2H2 proteins recognize their target sites and

slide away from non-target sites. A further testing performed on six zinc finger

domains of a mC2H2 protein, also presented a partial binding partial dangling

mode found in the experiment.

An application to the eleven zinc finger domains of CTCF with a specific

DNA duplex showed that the protein binds only with its central five zinc fingers

ZF4∼ZF8. These zinc fingers are embedded in the DNA’s major groove, but

perhaps not continuously. ZF4 and ZF8 cross the minor groove with the C-

and N-terminal linker, respectively. It is also shown that CTCF asymmetrically

bends the DNA duplex. It is not yet clear from experiments whether a CTCF

or the zinc finger domains of CTCF can organize a DNA loop alone [122, 123].

We didn’t find a DNA loop formed by a single CTCF binding in our simulation,
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but there still exists other possibilities.

In chapter 6, we studied a generic polymer-polymer model for the adsorption

of a flexible molecule onto a rigid molecule using the Monte Carlo method. In

agreement with the theoretical results for the adsorption of a grafted ideal chain,

our data show a steeper transition, namely from a non-adsorbed state to an

adsorbed state, in 2d than in 3d. Also considering the dependence of the Binder

cummulant on the adsorption interaction strength, we concluded that there is

a second-order phase transition in two dimension, and a higher-order transition

in three dimension. Both the crossing of the Binder cummulant and the ratio of

the perpendicular to parallel components of the radius of gyration, indicate the

transition point ε ∼ 2.2 in 2d, and ε ∼ 2.1 in 3d. Further analysis of the scaling

of the number of adsorbed monomers with the chain length shows an expected

power law relation close to the transition point. In addition, calculation of the

winding value of the flexible polymer around the rigid polymer in 3d shows that

the successive non-adsorbed monomers, which we called loop, contribute most

to the winding. It leads to an optimum ε of medium strength 2.8 for the winding

of the whole chain. Here the important role played by the loop reminds us of

the similar function of the linker peptides of a protein. Taking the multi-C2H2

zinc finger protein wrapping around its target DNA site as an example, usually

the C2H2 zinc finger domains are bound to the DNA, while the flexible linker

peptides between these domains are unbound. Finally it is also shown that,

with high interaction strength, the dependence of the winding and the number

of turns of flexible polymer on the chain length becomes linear.

7.2 Outlook

Nowadays computing power puts a huge hindrance to study complex systems,

like CTCF in complex with DNA, by performing classical atomistic molecular
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dynamics simulations for meaningful long simulation time. As an example, in

chapter 4, tens of thousands of CPU hours are still not long enough to well

sample the end-to-end distance distribution of an unbound three-C2H2 zinc fin-

ger protein. Multiscale approaches are interesting, more important necessary

for studying large systems and long-time dynamics. They have been success-

fully applied in systems like proteins, lipid membranes and other biomolecular

systems [161, 162, 163, 164, 165].

There are two popular ways to develop a coarse-grained force field, namely

the top-down fashion and the bottom-up fashion. The top-down approach is to

tune the parameter values in the force field so that simulations of the coarse-

grained model can reproduce certain properties of interest of some reference

systems, such as the 3SPN model (appendix A), the PeptideB model (appendix

B), and the cross-parameterization of mC2H2-DNA interaction potentials in

chapter 5.

On one hand, we can further apply this model to other systems. There we

only examined CTCF binding conformations at one specific target DNA locus,

and it shows that CTCF binds to DNA by using its central zinc fingers. Other

possible CTCF binding modes at different DNA loci [38] could be similarly stud-

ied. More complex systems, like two CTCFs which contacts a DNA site each,

aggregating together and forming a bridged DNA loop, can also be extended in

the future.

On the other hand, the derived mC2H2-DNA interaction force field has some

limitations, which may be further optimized. First, some important factors, like

the ionic strength in the solvent, are not considered in the force field. As in the

Mullinax and Noid’s study [124, 125], structures deposited in PDB database

can be regarded as an extended canonical ensemble composed of a collection

of canonical ensembles for distinct systems (e.g., different environment’s pH
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and salt concentration), each at a finite temperature T . Then those variables

can be explicitly considered in the force field and further parameterized. Sec-

ond, the statistical potentials do not contain any long-ranged interaction, such

as Coulomb interaction which dominates nonspecific protein-DNA association.

This may also influence the motion of a protein searching for its DNA target

locus. One can ad hoc include long-ranged electrostatic interactions, as Bereau

did for the PeptideB model [87].

The bottom-up approach, as the other way, derives the parameter values in a

coarse-grained force field from simulation results of a model with higher resolu-

tion and reliability, like atomistic molecular dynamics simulation. The main idea

is to sample the part of the phase space in the coarse-grained simulation, which

is sampled by the atomistic simulation, with the same probability distribution of

a certain property [166, 167, 168]. Hence depending on the type of the reference

property, variant systematic bottom-up strategies have been developed, such as

the force-matching algorithm [169, 170, 125, 171, 172], structure-matching al-

gorithm [173, 174, 175, 124] and the relative entropy algorithm [176, 177, 178].

However, the resulting coarse-grained force field is state point dependent (e.g.,

relying on the temperature at which atomistic simulation is performed) and not

necessarily readily transferable. What’s more, it does not guarantee that ther-

modynamic properties of the reference system, like phase behavior, can be well

reproduced. Methodological issues and challenges are waiting to be addressed.

In any case it would be interesting to develop a mesoscale model for mC2H2-

DNA complexes using a bottom-up strategy, and compare it with our current

model.
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A 3SPN model

Simulations of DNA with atomistic details are usually limited to tens of base

pairs in length, or ten of nanosecond in time. Depending on the problems of

interest, a number of coarse-grained models for DNA on variant scales have

been developed. For example, DNA can be simply represented as a rigid or

semiflexible rod with charges uniformly distribued along the rod to investigate

the effect of electrostatic interactions and molecular stiffness on the distribu-

tion of other ionic species on the surface of DNA. It can also be modeled by

a bead-spring representation to study the spatail structure of whole genome,

where thousands or millions of base pairs are treated as a monomer. However,

many phenomena, like binding of proteins, require simulations on length scales

between ∼ 2 nm and ∼ 2 µm with molecular details. Coarse-grained models,

in which one nucleotide is represented by n sites, can fulfill both the demand of

higher resolution and the demand of reduced computation.

As our choice for simulations of DNA on mesoscale, the 3-site-per-nucleotide

(3SPN) model proposed by Pablo and his colleagues [113, 114, 179] is introduced

here (see Figure A.1). Each nucleotide is reduced to three interacting beads,

one each for the phosphate group P, the sugar group S and the base group B.

Note that n = 3 is the minimum number of sites that distinguish major and
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Figure A.1: 3SPN model where three sites, one each for the phosphate group P, the
sugar group S and base group B (A,T,C,G), make up a nucleotide. The major and
minor grooves are distinguishable.

minor grooves using isotropic potentials. Eight distinct interactions contribute

to the accompanying force field,

V3SPN.1 = Vbond+Vangle+Vdihedral+Vstack+Vbp+Vnnat+Velec+Vsolv, (A.1)

which are parameterized via reproducing the salt-dependent melting and per-

sistence length of DNA. The first three terms are bonded interactions,

Vbond =
Nbond∑
i=1

[κ1(di − d0i)2 + κ2(di − d0i)4] (A.2)

Vangle =
Nangle∑
i=1

κθ
2 (θi − θ0i)2 (A.3)

Vdihedral =
Ndihedral∑

i=1
κφ[1− cos(φi − φ0i)], (A.4)

which have typical two-, three- and four-body expressions for intramolecular

constraints about bonds length, bond angles and dihedral angles. The bond

length constant κ1,2, the bending constant κθ and the tersional constant κφ

describe the strengths of these constaints. The equilibrium distances and angles
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{d0i, θ0i, φ0i} are set equal to the values of standard B-form double-strand DNA,

which are summarized in Table A.1. Remaining nonbonded pairwise interactions

are given by

Vstack =
Nstack∑
i<j

4ε[(σij
rij

)12 − (σij
rij

)6] (A.5)

Vbp =
Nbp∑
i=1

4εbi[5(σbi
rij

)12 − 6(σbi
rij

)10] (A.6)

Vnnat =
Nnnat∑
i<j


4ε[( σ0

rij
)12 − ( σ0

rij
)6] + ε rij < rcut,

0 otherwise
(A.7)

Velec =
Nelec∑
i<j

qiqj
4πε0ε(T,C)rij

e−rij/λD (A.8)

Vsolv =
Nsolv∑
i<j

εs[1− e−α(rij−rs)]2 − εs (A.9)

Vstack accounts for the base-stacking interactions (an intrastrand effect) us-

ing a Go-type formula. It applies to all intrastrand native-contact pairs of sites,

where the distance between the sites is found within 9 Å. Hence the equilibrium

distance σij in Equation A.5 is pair dependent.

Vbp describes the hydrogen bonding between any complementary base pair

(A-T or C-G), both intrastrand and interstrand, which does not participate

in Vstack. Based on the base pair, it is characterized by an energy constant

εbi ∈ {εAT , εCG} and a distance constant σbi ∈ {σAT , σCG}.

Vnnat is a purely repulsive, excluded volume interaction which has a Weeks-

Chandler-Anderson (WCA) form. For mismatched base sites of distance within

rcut = 1.00 Å, σ0 is set to 2−1/6 · 1.00 Å. In other cases, rcut = 6.86 Å and

σ0 = 2−1/6 · 6.86 Å, where 6.86 Å is a mean pairwise separation in this model.

The last two terms depends on the solvent (NaCl) concentration. The elec-

trostatic contributions from pairs of phosphate groups, which are excluded from
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Vangle, are included into Velec using Debye-Hueckel theory. The Debye length

λD, which defines the spatial extend of charge screening, is given by

λD = [ ε0ε(T,C)kBT
2NAe2

0I
]1/2, (A.10)

where I is the ionic strength of the solution in units of mM (mol ·m−3). The

relative dielectric constant ε(T,C), as a function of the temperature T and salt

concentration C, is given by

ε(T,C) = ε(T )a(C) (A.11)

ε(T ) = 249.4− 0.788T + 7.20× 10−4T 2 (A.12)

a(C) = 1.000− 0.2551C + 5.151× 10−2C2 − 6.889× 10−3C3, (A.13)

where T and C are measured in K and M respectively. ε(T ) is the static (zero-

frequency) dielectric constat at temperature T , and a(C) is the salt correction.

Together, there equations A.8 and A.10-13, determine the electrostatic interac-

tions.

Finally, Vsolv implicitely represents many-body effects associated with the

arrangement of water molecules during the reversible denaturation of DNA. In

Equation A.9, Nsolv are all possible pairs of interstrand sugar sites. By compar-

ing the melting enthalpies and heat capacities predicted by the simulations and

experiments, the interaction strength εs, which depends on the salt concentra-

tion C and the chain length of DNA Nnt, is parameterized as

εs ≈ εNAI (A.14)

εN = 0.504982ε[1− (1.40418− 0.268231Nnt)]−1 (A.15)

AI = 0.474876[1 + (0.148378 + 10.9553C)−1]. (A.16)
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All values of relevant parameters are collected in Table A.1 and A.2.

Table A.1: Equilibrium distances and angles for bonded interactions. 5’ and 3’ labels
the direction of connections. Hence S(5’)-P represents a bond between a phosphate
and a sugar belonging to the same nucleotide, whereas S(3’)-P represents the bond
joining neighboring nucleotides.

Bond d0(Å) Bond Angle θ0(degree) Bond Dihedral φ0(degree)

S(5’)-P 3.899 S(5’)-P-(3’)S 94.49 P-(5’)S(3’)-P-(5’)S -154.80
S(3’)-P 3.559 P-(5’)S(3’)-P 120.15 S(3’)-P-(5’)S(3’)-P -179.17
S-Ab 6.430 P-(5’)S-Ab 113.13 Ab-S(3’)-P-(5’)S -22.60
S-Tb 4.880 P-(3’)S-Ab 108.38 S(3’)-P-(5’)S-Ab 50.69
S-Cb 4.921 P-(5’)S-Tb 102.79 Tb-S(3’)-P-(5’)S -33.42
S-Gb 6.392 P-(3’)S-Tb 112.72 S(3’)-P-(5’)S-Tb 54.69

P-(5’)S-Cb 103.49 Cb-S(3’)-P-(5’)S -32.72
P-(3’)S-Cb 112.39 S(3’)-P-(5’)S-Cb 54.50
P-(5’)S-Gb 113.52 Gb-S(3’)-P-(5’)S -22.30
P-(3’)S-Gb 108.12 S(3’)-P-(5’)S-Gb 50.66

Table A.2: Force field parameters for nonbonded interactions and strengths of bonded
interactions.

Potential Parameter Value(KJ·mol−1) Parameter Value(Å)

Vstack ε 0.769856 σij Pair-dependent
Vbp εAT 2.000ε σAT 2.9002

εCG 2.532ε σCG 2.8694
Vnnat σ0 (mismatch) 1.00 · 2−1/6

σ0 (otherwise) 6.86 · 2−1/6

Vsolv εs System-dependent α−1 5.333
rs 13.38

Vbond κ1 ε
κ2 100ε

Vangle κθ 1400ε
Vdihedral κφ 28ε

3SPN model has been applied to explore the dynamics of DNA denatura-

tion, bubbling, bending and hybridization. As a simple example, Figure A.2

shows the number of denatured base pairs of a doulbe strand DNA of 14 bp

simulated using 3SPN force field at 300 K (a) and at 350 K (b). While DNA

remains double helix structure at 300 K (c-e), it gradually denatured at 350 K
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(f-h). More comprehensive comparisons with experimental data are referred to

their published articles. It also be noticed that this model is still under vivid

updating, from 3SPN.0 [113] to 3SPN.2 [179].

Figure A.2: Double strand DNA of 14 bp simulated at different temperatures using
3SPN.1 model. Number of denatured base pairs versus the simulation time at 300 K
(a) and 350 K (b). Conformations of DNA at simulation time t = {0.33, 0.66, 0.99}
ns with T = 300 K (c-e) and T = 350 K (f-h), respectively. In (a,b), one base pair is
defined denatured if the separation between bases is larger than (σbi + 2.0) Å.
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B PeptideB model

Similar to modeling of DNA, the success of atomistic simulations of proteins is

limited to available computing power. Coarse-grained models for proteins, on

a broad range of length scales, have been developed for many years. For ex-

ample, the lattice heterogeneous polymer HP model briefly discussed in Section

3.1, and the off-lattice one-bead-per-amino-acid Gō model. They provide many

important insights into the protein folding, unfolding, binding to DNA, etc.

Another force field of many impressive applications, MARTINI, was proposed

by Marrink and his colleagues more recently. On average, four heavy atoms are

mapped to one bead except ring-like molecules, and each physiological amino

acid is approximately represented by two beads. As initially designed for lipids,

MARTINI is parameterized using the partition coefficients between water and a

lipid membrane. One constraint underlying Gō model and MARTINI is that the

force field biases the simulated protein towards a pre-defined native structure or

secondary structure. Hence they are not quite suit for studies of proteins with

intrisically disordered regions or large domain dynamics (e.g., CTCF). Models

of higher resolution could sample more extended phase space of protein struc-

ture, and offer a larger probability to succeed in simulating peptide de novo

folding, aggregation, and proteins of marginal stability. The peptideB model,
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developed by Bereau and Deserno [87, 180, 181], is our basic mesoscale model

for multi-zinc finger proteins.

Figure B.1: PeptideB model. (a) One amino acid is constructed using four beads, each
representing the amino group N, central carbon Cα, carbonyl group C’ and side chain
group Cβ . (b) Some force field-related angles and dihedral angles. The label i stands
for “improper dihedral”. Two dashed circles represent two phantom atoms H and O,
which is connected to a N and C’ bead respectively. Details are explained in the main
text.

As shown in Figure B.1(a), in peptideB, one residue is represented by four

beads. The backbone is modeled almost atomistically with three beads, each

corresponding to the amino group N, central carbon Cα and carbonyl group

C’. The side chain group (except glycine) is modeled by a bead located at the

position of Cβ . The force field is composed of following seven contributions,

VpeptideB = Vbond + Vangle + Vdihedral + Vbb + Vhp + Vhb + Vdip. (B.1)

The first three terms are bonded interactions of common expressions,

Vbond = 1
2κbond(d− d0)2 (B.2)

Vangle = 1
2κangle(θ − θ0)2 (B.3)

Vdihedral = κdihedral[1− cos(ϕ− ϕ0)]. (B.4)
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Note that in Vdihedral (see also Figure B.1(b)), constraints are only applied to the

third backbone dihedral ω (CαC’NCα) and the improper dihedral (NCαC’Cβ),

which favors trans conformations and a local tetrahedron geometry around Cα,

respectively. The interaction strengths {κbond, κangle, κdihedral} and equilibrium

distances and angles {d0, θ0, ϕ0} are listed in Table B.1.

The nonbonded interactions include

Vbb =


4εbb[(σijr )12 − (σijr )6] + εbb r ≤ rcut,

0 otherwise
(B.5)

Vhp = Shp ×


4εhp[(

σCβ
r )12 − (σCβr )6] + εhp(1− ε′ij) r ≤ rc,

4εhpε′ij [(
σCβ
r )12 − (σCβr )6] rc ≤ r ≤ rhpcut,

0 otherwise

(B.6)

Vhb = εhb[5(σhb
r

)12 − 6(σhb
r

)10]×


cos2 θN cos2 θC |θN |, |θC | < 90◦&r ≤ rhbcut,

0 otherwise

(B.7)

Vdip = κdip[(1− cosφ) + (1− cosψ)]. (B.8)

Vbb describes the excluded volume interactions with a purely repulsive Weeks-

Chandler-Andersen (WCA) potential. In Equation B.5, rcut = 21/6σij , and σij

is the arithmetic mean of the sizes of two beads involved. It is applied to all

backbone-backbone and backbone-side chain bead pairs i − j that are at least

three bonds apart.

Vhp accounts for the interactions between side chain beads, which are mainly

contributed from hydrophobic effect. It is composed of a repulsive WCA poten-

tial for small distances and a Lennard-Jones attractive potential at intermediate

distances. They are joined at rc so that both Vhp and its first derivative are
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continuous. In Equation B.6, ε′ij controlling the strength of attractive potential,

obeys the Lorentz-Berthelot mixing rule ε′ij =
√
ε′iε
′
j , where ε′i/j are normal-

ized hydrophobicities whose values are listed in Table B.2. The leftmost factor

Shp ∈ [0, 1] is designed to scale the hydrophobic interactions strength depending

on the solvent.

Vhb describes the hydrogen bond interactions as a function of the separation

and relative orientation of the amide and carbonyl groups. In Equation B.7, r

is the distance between a N bead and a C’ bead, σhb is an equilibrium distance,

θN is the angle formed by the atoms HNC’ and θC is the angle formed by

NC’O, where the coordinates of atoms H and O are inferred from backbone

beads without explicitly simulation. It favors a geometry of aligned N, H and

O atoms (see Figure B.1(b)).

The last item Vdip is a crude approximation of the interactions of dipoles

formed by bonded carbonyl and amide groups. Taking only the nearest-neighbor

interactions into consideration, Vdip is determined using the first and second

backbone dihedrals, φ(C’NCαC’) and ψ(NCαC’N) (see also Figure B.1(b)). This

contribution is important for balancing the α-helices and β-sheets in the sec-

ondary structure contents. Parameters for nonbonded interactions are summa-

rized in Table B.3.

Table B.1: Force field parameters for bonded interactions. For interaction strength
constants, κbond = κangle = 300, κdihedral = 67 for ω, and κdihedral = 17 for the
improper dihedral, in units of ε = kBTr = 2.494 KJ ·mol−1.

Bond d0(Å) Bond Angle θ0(degree) Bond Dihedral ϕ0(degree)

NCα 1.455 NCαCβ 108 ω 180
CαC’ 1.510 CβCαC’ 113 improper ∓120
C’N 1.325 NCαC 111
CαCβ 1.530 CαC’N 116

C’NCα 122

Many efforts have been devoted into developing a systematic method to pa-
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Table B.2: Normalized hydrophobicities ε′i for amino acid residue i.

Residue ε′i Residue ε′i Residue ε′i Residue ε′i

Lys 0.00 Glu 0.05 Asp 0.06 Asn 0.10
Ser 0.11 Arg 0.13 Gln 0.13 Pro 0.14
Thr 0.16 Gly 0.17 His 0.25 Ala 0.26
Tyr 0.49 Cys 0.54 Trp 0.64 Val 0.65
Met 0.67 Ile 0.84 Phe 0.97 Leu 1.00

Table B.3: Force field parameters for nonbonded interactions. The energy unit ε =
kBTr = 2.494 KJ ·mol−1.

Potential Parameters value(ε) Parameters Value(Å)

Vbb εbb 0.02 σN 2.9
σCα 3.7
σC′ 3.5
σCβ 5.0

Vhp εhp 4.5 σCβ 5.0
rhpcut 10

Vhb εhb 6.0 σhb 4.11
rhbcut 8

Vdip εdip -0.3

rameterize a nice coarse-grained force field. In general there exist two schemes.

The bottom-up approach is to derive the parameter values from the simulation

results of a model with higher resolution and reliability, like atomistic molec-

ular dynamics simulation and ab initio quantum chemistry calculation. The

top-down approach is to tune the parameter values so that the coarse-grained

model can reproduce certain properties of interest of the reference system (also

called training set). Following the second scheme, peptideB was parameterized

to generate proper local conformations (Ramachandral plot) of tripeptides and

to de nove fold proteins of native three-helix bundle structure. It also succeeds

in aggregating Heptapeptides to form β-sheet.

As an example, Figure B.2 shows the simulated binding of the pepetide

KESLV to the syntrophin PDZ domain (PDB code: 2PDZ), which has been

studied by Staneva and Wallin using an all-atom Monte Carlo method [182,
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183]. The shot peptide is positioned far away from the protein at the beginning

of the simulation (b). Once it hits the binding pockect of protein, although

with a wrong orientation, it stays there (c). The peptide continually adapts its

conformation with the protein until it finds its native binding posture (d). In

the subplot (a), the interface nativeness Q quantitatively describes this binding

pathway.

Figure B.2: Simulated binding of the peptide KESLV to the sytrophin PDZ domain.
(a) Interface nativeness Q =< exp[−(rrefij −r

sim
ij )2/9] >ij versus the simulation time t.

Reference structure is the NMR-resolved structure deposited in PDB database (2PDZ).
The interface is defined as the pairs of beads, each from the pepetide and from the
protein, with a separation less than 7 Å in the reference structure. (b-d) Snapshots at
t = {10, 50, 90}τ . The protein is colored green, and the peptide is colored orange with
a black N-terminus.
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C WHAM

The Weighted Histogram Analysis Method (WHAM) is a statistical approach

to calculate the Potential of Mean Force (PMF) from multiple Monte Carlo

or melecular dynamics simualtion results. It has been shown to be particu-

larly helpful in parameterizing coarse-grained force field, e.g., 3SPN model and

peptideB model.

Here we describe how to determine the PMF from parallel simulations at a

series of R inverse temperatures βi = 1/kBTi, i = 1, 2, ..., R [92, 93]. The ith

simulation produces a histogram hi(E) composed of Ni records of the internal

energy E, i.e., hi(E) = {E1
i , E

2
i , ..., E

Ni
i }. According to the WHAM equations,

the best estimate for the unnormalized probability of the internal energy E at

βi is

P (E, βi) =
∑R
j=1 g

−1
j hj(E)e−βiE∑R

j=1 g
−1
j Nje−βjE−fj

, (C.1)

where fj = −βjAj with Aj identical to the (Helmholtz) free energy of the

system at βj , and gj = 1 + 2τj with τj the integrated autocorrelation time for

the jth run. And the free energy parameters {fi} are given by the equations

fi = ln[
∑
E

P (E, βi)]. (C.2)
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For Esi , the sth record of E during the ith simulation, notice that Esi 6= Etj

provided i 6= j and s 6= t. Then assuming gi is a constant independent of βi,

C.2 can be formulated as

fi = ln[
∑
E

1∑R
j=1 Nje

(βi−βj)E−fj
]. (C.3)

C.3 is composed of R equations, but there are only R − 1 independent free

energy parameter {fi}. In other words, {fi} are determined up to an arbitrary

additive constant. Many algorithm, like direct iteration, can be applied to solve

these equations.

The next step is to calculate the relative PMF as function of reaction co-

ordinate(s) ξ at a specific inverse temperature βi. Using the unnormalized

probability P (ξk, βi) for ξk ∈ [ξ0
k −∆ξ, ξ0

k −∆ξ] (with a step 2∆ξ) at Ti

P (ξk, βi) =
∑R
j=1 g

−1
j hj(ξk)e−βiE∑R

j=1 g
−1
j Nje−βjE−fj

. (C.4)

the relative ∆PMF(ξ, βi) is given by

∆PMF(ξk, βi) = − 1
βi
× ln[

∑
E P (ξk, βi)

maxi,k(
∑
E P (ξk, βi))

]. (C.5)

It should also be noticed that WHAM is a self-consistent way, without any

extra parameter, to calculate relative PMF(ξ). The variable ξ can be a vector

of 1d, 2d (in chapter 4), 3d (in chapter 4), or even higher dimensions.

As an example, Figure C.1 shows an application of WHAM to calculate

the relative PMF(φ, ψ), where φ and ψ are the first and second backbone di-

hedral of the central residue in tripeptide Gly-Ala-Gly. The simulation was

performed using peptideB model at a series of temperatures. During the force

field parametrization, Bereau [87] used this heatmap to check whether both

132



Figure C.1: WHAM applied to coarse-grained simulations of tripeptide Gly-Ala-Gly
using peptideB model. (a) Histograms of energies E at {0.7, 1.0, 1.3, 1.6}Tr. (b) Rel-
ative PMF heatmap in units of kBTr, compared to the conformation of lowest free
energy, as a function of the backbone dihedrals φ and ψ in the central residue Alanine.

α-helix (-60◦, -60◦) and β-sheet (-60◦, 130◦) are well populated, balanced and

connected.

In chapter 4, when the original peptideB model was directly applied to the

three-C2H2 polypeptides 1tf3 1 3, the first and the third zinc finger quickly ag-

gregated, which is contradictory to the NMR experiment result [75]. To reduce

the nonbonded interaction between amino acids, the hydrophobic interaction

was scaled by a factor shp, which should be less than 1. As an application of

WHAM in 3d, proper value of shp for mC2H2 proteins was determined by cal-

culating the standard binding free energy ∆G0 for a CCHC zinc finger (FOG)

binding to a CCCC zinc finger (GATA-1) and comparing the results with ex-

perimental value [77].

Based on the structure of the complex GATA-1:FOG in PDB file 1Y0J [77],

an initial conformation for a simulation was prepared by assigning a random

separation and orientation of FOG relative to GATA-1 without atom clashes.

For different shp values, 50 runs with different initial conformations, each of

simulation time 6×106 τ , were performed using the same procedue as described
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in chapter 4. By aligning the structure of GATA-1 in each snapshot, we obtained

3× 105 positions r of the zinc ion in FOG. r was taken as a reaction coordinate

to calculate the 3d PMF W (r) for FOG binding to GATA-1. Then using the

methodology of Buch et al. [184], ∆G0 is given by

∆G0 = −kBT ln (Vb/V0)−∆W. (C.6)

V0 is the standard-state volume (1661 Å3 for 1 M concentration). The average

sampled bound state Vb is an integral over “bound region”,

Vb =
∫
Vb

exp(−W (r)/kBT ) dr, (C.7)

while the “unbound region” is chosen to represent where the W (r) is flat in the

bulk. ∆W is then the difference between the value of PMF in the bulk and the

minimum value in the bound state, i.e., the depth of PMF.

Figure C.2: Dependence of the bound volume Vb (a) and the standard free energy of
binding ∆G0 (b) on the definition of the bound state with the scaling factor shp of
value 0.0 (solid blue line) and of value 1.0 (dashed red line). The errors in (b) are
calculated from block average over five sets of data of 6× 104 τ each.

As Figure C.2 (a) shows, Vb converges as the criterion for bound state in-

creases. If we choose PMF < 2.0 ε ·mol−1 as the definition of bound state, this
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procedue yields ∆G0 = −3.31 for shp = 0.0, and ∆G0 = −3.90 for shp = 1.0

in units of ε ·mol−1. Compared to the experimental value -3.64∼-2.79 ε ·mol−1

[77], shp was set to 0.0 or 0.1.

135



136



Bibliography

[1] Dixon J R, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu J S and
Ren B 2012 Nature 485 376–380

[2] Zuin J, Dixon J R, van der Reijden M I J A, Ye Z, Kolovos P, Brouwer
R W W, van de Corput M P C, van de Werken H J G, Knoch T A, van
IJcken W F J, Grosveld F G, Ren B and Wendt K S 2014 Proceedings of
the National Academy of Sciences 111 996–1001

[3] Filippova G N, Fagerlie S, Klenova E M, Myers C, Dehner Y, Goodwin
G, Neiman P E, Collins S J and Lobanenkov V V 1996 Molecular and
cellular biology 16 2802–2813

[4] Phillips J E and Corces V G 2009 Cell 137 1194–1211

[5] Ong C T and Corces V G 2014 Nat Rev Genet 15 234–246

[6] Wikipedia 2007 Hela cells stained with hoechst 33258. [Online; ac-
cessed 29-Oct-2014] URL http://commons.wikimedia.org/wiki/File:
HeLa_cells_stained_with_Hoechst_33258.jpg

[7] MedCell@Yale Euchromatin and heterochromatin. [Online; accessed 29-
Oct-2014] URL http://medcell.med.yale.edu/histology/cell_lab/
images/euchromatin_and_heterochromatin.jpg

[8] Crick F 1970 Nature 227 561–563

[9] Wikipedia 2007 Chromatin structures. [Online; accessed 29-Oct-
2014] URL http://commons.wikimedia.org/wiki/File:Chromatin_
Structures.png

[10] Mateos-Langerak J, Bohn M, de Leeuw W, Giromus O, Manders E M M,
Verschure P J, Indemans M H G, Gierman H J, Heermann D W, van Driel
R and Goetze S 2009 Proceedings of the National Academy of Sciences 106
3812–3817

[11] Lieberman-Aiden E, van Berkum N L, Williams L, Imakaev M, Ragoczy
T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O, Sandstrom R,
Bernstein B, Bender M A, Groudine M, Gnirke A, Stamatoyannopoulos
J, Mirny L A, Lander E S and Dekker J 2009 Science 326 289–293

137



[12] Lewin B 2003 Genes VIII united states ed ed (Benjamin Cummings) ISBN
0131439812

[13] Zhang Y and Heermann D W 2011 PLoS ONE 6 e29225

[14] Zhang Y, Isbaner S and Heermann D W 2013 Frontiers in Physics 1 1–11

[15] Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S,
Eils R, Cremer C, Speicher M R and Cremer T 2005 PLoS Biol 3 e157

[16] Cremer T and Cremer M 2010 Cold Spring Harbor Perspectives in Biology
2 1–22.a003889

[17] Wikipedia 2008 Chromosome conformation capture technology. [On-
line; accessed 29-Oct-2014] URL http://commons.wikimedia.org/wiki/
File:Chromosome_Conformation_Capture_Technology.jpg

[18] Farnham P J 2009 Nat Rev Genet 10 605–616

[19] Hakim O and Misteli T 2012 Cell 148 1068 – 1068.e2

[20] Wikipedia 2012 Chromatin immunoprecipitation sequencing. [Online; ac-
cessed 29-Oct-2014] URL http://commons.wikimedia.org/wiki/File:
Chromatin_immunoprecipitation_sequencing.svg

[21] Kim T H H, Abdullaev Z K, Smith A D, Ching K A, Loukinov D I, Green
R D, Zhang M Q, Lobanenkov V V and Ren B 2007 Cell 128 1231–1245

[22] Xie X, Mikkelsen T S, Gnirke A, Lindblad-Toh K, Kellis M and Lander
E S 2007 Proceedings of the National Academy of Sciences 104 7145–7150

[23] Chen H, Tian Y, Shu W, Bo X and Wang S 2012 PLoS ONE 7 e41374+

[24] Bao L, Zhou M and Cui Y 2008 Nucleic acids research 36 D83–87

[25] Ziebarth J D, Bhattacharya A and Cui Y 2013 Nucleic Acids Research 41
D188–D194

[26] Lobanenkov V V, Nicolas R H, Adler V V, Paterson H, Klenova E M,
Polotskaja A V and Goodwin G H 1990 Oncogene 5 1743–1753

[27] Vostrov A A and Quitschke W W 1997 The Journal of biological chemistry
272 33353–33359

[28] Merkenschlager M and Odom D T 2013 Cell 152 1285–1297

[29] Phillips-Cremins J E and Corces V G 2013 Mol Cell 50 461–474

[30] Nativio R, Wendt K S, Ito Y, Huddleston J E, Uribe-Lewis S, Woodfine
K, Krueger C, Reik W, Peters J M and Murrell A 2009 PLoS Genet 5
e1000739+

138



[31] Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S,
Kanduri C, Lezcano M, Singh Sandhu K, Singh U, Pant V, Tiwari V,
Kurukuti S and Ohlsson R 2006 Nat Genet 38 1341–1347

[32] Karolchik D, Hinrichs A S, Furey T S, Roskin K M, Sugnet C W, Haussler
D and Kent W J 2004 Nucl. Acids Res. 32 D493–496

[33] Karolchik D, Barber G P, Casper J, Clawson H, Cline M S, Diekhans M,
Dreszer T R, Fujita P A, Guruvadoo L, Haeussler M, Harte R A, Heitner
S, Hinrichs A S, Learned K, Lee B T, Li C H, Raney B J, Rhead B,
Rosenbloom K R, Sloan C A, Speir M L, Zweig A S, Haussler D, Kuhn
R M and Kent W J 2014 Nucleic Acids Research 42 D764–D770

[34] Shen Y, Yue F, McCleary D F, Ye Z, Edsall L, Kuan S, Wagner U, Dixon
J, Lee L, Lobanenkov V V and Ren B 2012 Nature 488 116–120

[35] Barski A, Cuddapah S, Cui K, Roh T Y Y, Schones D E, Wang Z, Wei
G, Chepelev I and Zhao K 2007 Cell 129 823–837

[36] Handoko L, Xu H, Li G, Ngan C Y Y, Chew E, Schnapp M, Lee C W H W,
Ye C, Ping J L H L, Mulawadi F, Wong E, Sheng J, Zhang Y, Poh T,
Chan C S S, Kunarso G, Shahab A, Bourque G, Cacheux-Rataboul V,
Sung W K K, Ruan Y and Wei C L L 2011 Nature genetics 43 630–638

[37] Dowen J M, Fan Z P, Hnisz D, Ren G, Abraham B J, Zhang L N, Wein-
traub A S, Schuijers J, Lee T I, Zhao K and Young R A 2014 Cell 159
374–387

[38] Nakahashi H, Kwon K R, Resch W, Vian L, Dose M, Stavreva D, Hakim
O, Pruett N, Nelson S, Yamane A, Qian J, Dubois W, Welsh S, Phair R,
Pugh B, Lobanenkov V, Hager G and Casellas R 2013 Cell Reports 3 1678
– 1689

[39] Ohlsson R 2001 Trends in Genetics 17 520–527

[40] Renda M, Baglivo I, Burgess-Beusse B, Esposito S, Fattorusso R, Felsen-
feld G and Pedone P V 2007 Journal of Biological Chemistry 282 33336–
33345

[41] Dunker, Lawson, Brown C J, Williams R M, Romero P, Oh J S, Oldfield
C J, Campen A M, Ratliff C M, Hipps K W, Ausio J, Nissen M S, Reeves
R, Kang C, Kissinger C R, Bailey R W, Griswold M D, Chiu W, Garner
E C and Obradovic Z 2001 Journal of Molecular Graphics and Modelling
19 26–59

[42] Dyson H J and Wright P E 2005 Nat Rev Mol Cell Biol 6 197–208

[43] Laity J H, Dyson H and Wright P E 2000 Journal of Molecular Biology
295 719 – 727

139



[44] Schneider R, Huang J r, Yao M, Communie G, Ozenne V, Mollica L,
Salmon L, Ringkjobing Jensen M and Blackledge M 2012 Mol. BioSyst.
8(1) 58–68

[45] Bernado P and Svergun D I 2012 Mol. BioSyst. 8 151–167
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