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Abstract

In this thesis, we use a functional quantum field theoretical approach to investigate
the non-equilibrium time evolution of an Anderson quantum dot with the main focus
on the Kondo regime. We employ a real-time Keldysh path integral formulation to
find an effective action. From the two-particle irreducible effective action, we derive,
from the variational principle, the exact real-time Kadanoff-Baym equations of mo-
tion for the full propagator. We study these dynamic equations for the single impurity
Anderson model, which decribes a quantum dot coupled to two finite-temperature
leads. We take the tunnelling to the leads into account exactly. In order to solve
the Kadanoff-Baym equations numerically we have to approximate them. For this
purpose, we make a non-perturbative approximation by summing an infinite number
of Feynman diagrams in the direct (s)-, particle-particle (t)-, particle-hole (u)-, and
stu-channels. The aim of our investigation is to analyse the non-equilibrium real-
time evolution of the quantum dot after a hybridisation and interaction quench into
its stationary state. The main focus is on the narrowing of the Kondo resonance
and the formation of the Hubbard side bands. Following on from this, the main
achievement is the transient, as well as the stationary electrical current, through the
quantum dot and the investigation of the dependence on temperature and magnetic
field. We compare our results with other methods, such as functional renormalisation
group and iterative sum of path integrals, and find a very good agreement in most
situations.



Kurzzusammenfassung

In der vorliegenden Arbeit wird ein funktionaler quantenfeldtheoretischer Zugang
verwendet, um die Nichtgleichgewichtszeitentwicklung eines Anderson-Quantenpunk-
tes insbesondere im Kondo-Regime zu untersuchen. Es wird eine Pfadintegralformu-
lierung unter Benutzung des Keldysh-Realzeitformalismus verwendet, um eine ef-
fektive Wirkung herzuleiten. Unter Verwendung des Variationsprinzips werden die
exakten Kadanoff-Baym-Bewegungsgleichungen in Realzeit fiir den vollen Propaga-
tor aus der zweiteilchen-irreduziblen Wirkung abgeleitet. Die Bewegungsgleichungen
werden fiir das single impurity Anderson-Modell, welches einen Quantenpunkt mit
zwei angekoppelten Warmebéadern bei endlicher Temperatur beschreibt, untersucht.
Die auftretenden Tunnelprozesse werden exakt berticksichtigt. Damit die Kadanoff—
Baym-Gleichungen numerisch gelost werden koénnen, muss eine Néaherung vorge-
nommen werden. Hierzu wird eine nichtstorungstheoretische Naherung gewahlt, bei
der eine unendliche Anzahl von Feynman-Diagrammen im Direkten (s)-, Teilchen-
Teilchen (t)-, Teilchen-Loch (u)- und stu-Kanal aufsummiert wird. Das Ziel dieser
Arbeit ist die Nichgleichgewichts-Realzeitentwicklung eines Quantenpunktes nach ei-
nem Hybridisierungs- und Wechselwirkungsquench in seinen stationéren Zustand zu
untersuchen. Das Hauptaugenmerk liegt auf der Beobachtung der Verschmélerung
der Kondo-Resonanz und der Bildung der Hubbard-Seitenpeaks. Dartiber hinaus
wird der transiente sowie der stationare elektrische Strom durch den Quantenpunkt
und dessen Abhangigkeit von Temperatur und Magnetfeld betrachtet. Die Ergebnisse
werden mit anderen Methoden, wie der funktionalen Renormierungsgruppe und der
iterativen Summierung von Pfadintegralen verglichen, wobei in den meisten Fallen
eine sehr gute Uberstimmung gefunden wird.

vi



Declaration by Author

This thesis is composed of my original work, and contains no material previously
published or written by another person except where due reference has been made in
the text. I have clearly stated the contribution by other authors to jointly-authored
works that I have included in my thesis. The content of my thesis is the result of work
I have carried out since the commencement of my graduate studies at the Heidelberg
Graduate School of Fundamental Physics, Institut fiir Theoretische Physik, Uni-
versitat Heidelberg and does not include material that has been submitted by myself
to qualify for the award of any other degree or diploma in any university or other
tertiary institution.

vii






B4R
$E'£

ix






Contents

Abstract/Kurzzusammenfassung v
Declaration by Author vii
1 Introduction 1

2 Two-Particle Irreducible Effective Action Approach to Non-Equilibrium

Quantum Field Theory 5
2.1 Two-Point Green’s Function . . . . . .. ... ... ... ... ... 6
2.1.1 Decomposing the Two-Point Green’s Function into its Spectral

and Statistical Components . . . . . . . ... ... ... 7

2.1.2  Schwinger-Keldysh Closed Time Path . . . . ... ... ... 8

2.2 Non-Equilibrium Generating Functional . . . . . . . . . ... ... .. 10
2.3 Non-Equilibrium Two-Particle Irreducible Effective Action . . . . . . 14
2.4 Exact Non-Equilibrium Dynamic Equation . . . . . . .. .. ... .. 17

2.4.1 Exact Dynamic Equation for the Two-Point Green’s Function 18
2.4.2 Exact Dynamic Equations for the Statistical Propagator and

the Spectral Function . . . . . . . ... ... o0 19
2.5 Thermal Equilibrium . . . . . ... .. .00 20
2.5.1 Fluctuation-Dissipation Relation . . . .. ... ... ... .. 22
2.6 Summary ... ... 23
3 Physical Background of Quantum Dots 25
3.1 Quantum Dot . . . . . . ..o 25
3.2 Kondo Effect . . .. ... 27
3.3 Single Impurity Anderson Model . . . . . ... ... ... ... ... 29
3.3.1 Hamiltonian and Action . . . . . ... ... ... ... ... 30
3.3.2 Phase Diagram . . . . ... ... oo 31
34 Summary ... ... 33

4 Applying the Two-Particle Irreducible Effective Action to the Single Im-
purity Anderson Model 35
4.1 Dynamic Equations for the Single Impurity Anderson Model . . . . . 36
4.2 Loop Expansion of the 2PI Effective Action . . . . .. ... ... .. 36
4.2.1 Mean-Field or Hartree-Fock—Bogoliubov Approximation . . . 38
4.2.2  Second-Order Loop Expansion . . . . . . . ... ... ..... 40
4.2.3 Third-Order Loop Expansion . . . . . ... ... ... .... 41

X1



Contents

xii

4.2.4 Higher-Order Loop Expansion . . . . . ... .. .. ... ... 43
4.3 Non-Perturbative Resummation of the 2PI Effective Action . . . . . . 45
4.3.1 Hubbard-Stratonovich Transformation . . . . ... ... ... 45
4.3.2 Direct (s)-Channel Resummation . . . . ... ... ... ... 48
4.3.3 Particle-Particle (t)-Channel Resummation . . . . . . . .. .. 50
4.3.4 Particle-Hole (u)-Channel Resummation . . . . ... ... .. 52
4.3.5 stu-Channel Resummation . . . . . . . ... ... ... .... 53
4.4 Implementing the Leads in the 2PI Formalism . . . . . ... ... .. 54
4.5 Electrical Current and Conductance . . . . . . . .. .. .. ... ... 29
4.6 SUMMAry . . ... 62
Time Evolution of an Anderson Quantum Dot 65
5.1 Numerical Implementation . . . . . . ... .. ... ... ... ... . 66
5.1.1 Initial Conditions . . . . . . . . . .. ... ... ... ... . 66
5.1.2 Leads . . . . . . . ... 67
5.1.3 Kadanoff-Baym Equations of Motion . . . . . ... ... ... 67
5.1.4 Units . . . . . . 69
5.2  Equilibrium Study of the Quantum Dot . . . . . . . . . ... ... .. 70
5.2.1 Occupation Number . . . . ... .. ... ... ........ 70
5.2.2  Spectral Function . . . . . . ... ... 74
5.3 Non-Equilibrium Study of the Quantum Dot . . . . . . . .. ... .. 87
5.3.1 Transient Electrical Current . . . . . . . . ... .. ... ... 87
5.3.2 Stationary Electrical Current and Conductance . . . . . . .. 90
5.3.3 Temperature Dependence of the Stationary Electrical Current 94
5.3.4 Stationary Electrical Current and Conductance with a Mag-
netic Field . . . . . ... ... o 94
5.4 Summary ... ... 96
Conclusion 99
Numerical Methods 103
A.1 Linear Multistep Methods for Solving Ordinary Differential Equations 103
A.1.1 Adams-Bashforth . . . . . ... ... ... ... ... ..... 104
A.1.2 Adams—Moulton . . .. ... ... L 105
A.1.3 Predictor-Corrector . . . . . . . . .. ... L. 105
A.2 Integration Methods . . . . . . . .. ... . . ... ... ... ..., 106
A21 Newton—Cotes. . . . .. ... .. ... ... ... .. ..... 106
A.2.2 Gaussian Quadrature . . . . . .. ... 107
Effective Coupling 109
B.1 Direct (s)-Channel . . . ... ... ... ... ... .. 110
B.2 Particle-Particle (t)-Channel . . . . . .. ... ... 111
B.3 Particle-Hole (u)-Channel . . . . ... .. ... ... .. ....... 112



Contents

C Energy Conservation of an Isolated Quantum Dot 113
C.1 Mean Field . . . ... ... . ... ... 115
C.2 Second Order . . . . . . . . . . ... 115
C.3 Direct (s)-Channel . . . . ... ... ... ... 116
C.4 Particle-Particle (t)-Channel . . . . . ... ... ... ... 117
C.5 Particle-Hole (u)-Channel . . . . ... ... ... ... ..... ... 118

Bibliography 119

Danksagung 135

Xiil






Chapter 1

Introduction

The substantial progress in nanotechnology over the last five decades has confirmed
Richard Feynman’s belief about this branch of physics, as expressed in the famous
quotation:

“There’s plenty of room at the bottom.”!

Since then it has been managed to shrink the dimensions of bulk materials to two-
dimensional quantum wells by confining the material along one axis, such that the
size of the material is smaller than the de Broglie wavelength of an electron in this dir-
ection. Furthermore, one-dimensional quantum wires and zero-dimensional quantum
dots are feasible and have been of large scientific interest in the last twenty years.
Due to the confinement in all directions, quantum dots, also referred to as artificial
atoms, have a discrete and high density of states which gives rise to important elec-
tronic and optical properties. This can be exploited in a myriad of applications such
as solar cells [1-3], lasers [4-6], displays [7], DNA nanosensors [8], biological tagging
9], and for medical diagnostics in general. Consequently, nanotechnology, and in
particular quantum dots, have become an interdisciplinary research topic; as have
quantum information and quantum computation. A quantum dot is manageable
to prepare [10], control and manipulate [11-14], and its state can be read [15-17].
Hence, quantum dots meet most of DiVincenzo’s criteria [18] and therefore are a
promising candidate for building quantum computers as proposed in Ref. [19]. Due
to the wide range of applications, nanotechnology will undoubtedly change our daily
lives in the near future.

In 1961, the Anderson model [20] was introduced to explain the formation of
magnetic moments in bulk metals with magnetic impurities. The limitation to a
single impurity, the so-called single impurity Anderson model (SIAM), also perfectly
describes the physics of quantum dots coupled to finite-temperature leads. The
SIAM is the standard model? for quantum impurities and is of fundamental interest

Tn 1959, Richard Feynman gave a talk entitled “Plenty of Room at the Bottom” at the California
Institute of Technology.

2Besides the SIAM, there is also the resonant level model (RLM), which is a special case of the
SIAM for vanishing on-site interaction, U = 0; the interacting resonant level model (IRLM),
which describes a single level on the quantum dot interacting with the nearest lead electrons;
and the Anderson-Holstein model (AHM), which extends the STAM by an additional interaction
of phonons and electrons on the quantum dot.
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in understanding the low temperature behaviour of quantum dots. At first sight, the
SIAM looks rather simple, yet it exhibits a variety of interesting phenomena. The
interplay of the on-site Coulomb repulsion and the coupling to a sea of fermions, rep-
resented by finite-temperature leads, gives rise to non-trivial many-body dynamics,
such as the Kondo effect for large on-site interaction strength and low temperatures
T < Tg; where the Kondo temperature, Tk, is a characteristic energy scale of the
system, see Ch. 3. The Kondo temperature depends exponentially on the interaction
strength and therefore, the Kondo physics is hard to access. The first measurements
of the Kondo effect in quantum dots [21-23] were realised in 1998. From the the-
oretical perspective, the STAM has been studied for many years, however only the
thermodynamic properties in equilibrium are known exactly from the Bethe ansatz
[24-28]. Furthermore, dynamical properties of the spectral function in equilibrium
are well understood, but the precise time evolution from a given initial state to the
stationary state is not yet known. Moreover, when the quantum dot is driven by a
finite bias voltage, due to different chemical potentials of the leads, the stationary
electrical current for large bias voltages beyond the linear response regime is still
being researched. Therefore, the SIAM is ideal for studying the non-equilibrium
charge transport through quantum dots. Since the first realisation of quantum dots
coupled to finite-temperature leads in experiments two decades ago, the STAM has
attracted a lot of attention. Due to available experimental data and the tunability
of all relevant parameters in quantum dots, the SIAM has become a playground for
testing new theoretical methods. Thus, there has been a tremendous effort to study
the SIAM in and out of equilibrium.

The stationary properties of the SIAM were investigated by employing simple
perturbative methods, such as the mean-field approximation of the one-particle non-
equilibrium Green’s function (NEGF) [29] and an extension to the second-order ex-
pansion in the coupling constant [30]. Furthermore, Fermi liquid theory [31, 32],
a self-consistent perturbation theory for NEGF [33], which makes use of a Ward
identity, was applied and also the integrability of the STAM [34] was exploited. In
addition to this, calculations using a renormalised perturbation theory [35-38] were
carried out. Moreover, various renormalisation group (RG) methods were employed
to impurity models, such as the perturbative renormalisation group (PRG) [39-42],
numerical renormalisation group (NRG) [43-52] based on the Wilson RG [53], func-
tional renormalisation group (FRG) [54-58] and its extension to non-equilibrium
[59-65]. The Bethe—-Salpeter equation in the parquet approximation [66] was used to
tackle the STAM in the Kondo regime [67-69]. Besides this, the slave boson approach
[70-74], full counting statistics (FCS) [75, 76], and Chebyshev expansion using matrix
product states [77] were used to study quantum impurity models.

All the aforementioned methods either cannot access the time evolution of the
SIAM or this was not performed in the cited references. In recent years, methods
which are naturally not able to tackle the time evolution, were improved and can now
yield time-dependent results such as the time-dependent density matrix renormal-
isation group (tDMRG) [78-84], the time dependent NRG [85-89], and the real-time
renormalisation group [90-92]. There are also real-time Monte-Carlo [93-95] and



iterative sum of path integrals (ISPI) approaches [96-98], which make the calcula-
tion of time-dependent correlation functions possible. Recently, other not so popular
methods, such as the Gutzwiller approach [99], excitation states [100, 101], and in-
fluence functional path integral (INFPI) [102] were employed to quantum impurity
models.

In this thesis, we employ the two-particle irreducible (2PI) effective action, also
known Luttinger—Ward functional and ¢-derivable [103—-105], to investigate the non-
equilibrium time evolution of the STAM. The effective action allows us to derive, via
the variational principle, an exact equations of motion for the NEGF, the so-called
Kadanoff-Baym equations of motion, see Ch. 2. In order to find numerical solutions
to these equations, one must approximate the self-energy of the NEGF, or equival-
ently the 2PI effective action. A non-perturbative resummation of a certain type of
Feynman diagram to all orders, so-called channel resummation, is commonly used for
an approximation. The 2PI effective action has successfully described the dynamics,
as well as the thermalisation, of relativistic Bose systems [106-115], non-relativistic
Bose gases in the context of Bose-Einstein condensates [116-121], relativistic fermi-
onic quantum fields [122-124] and also non-relativistic Fermi gases [125-127]. How-
ever, in these fields, the 2PI effective action approach misses key benchmarks from
exact results, other methods or even experimental data for strongly coupled systems.
In the STAM, the situation is different. Data obtained from other methods, numerical
as well as exact analytic results and experimental data, are available for the station-
ary state of the quantum dot. Hence, the STAM is an ideal system to benchmark the
2PT effective action for finding a range of validity. This is one key motivation for this
thesis. In Ref. [128], a real time renormalisation group was proposed and extended
in Ref. [129], which yields similar equation as in the 2PT effective action.

An equivalent approach is the so-called GW approximation [130, 131] of the
NEGF, where additionally a certain type of Feynman diagram are resummed. Usu-
ally, it is carried out in Fourier space to calculate the stationary properties directly; as
performed in Refs. [132-136] for the STAM. For real-time calculation, the Kadanoff—
Baym equation of motion must also be solved. Due to the complexity of this equation,
in most cases the generalised Kadanoff-Baym ansatz (GKBA) [137] is applied, which
simplifies the equation and reduces the computational time from cubic to quadratic.
The GKBA was recently employed to carrier dynamics of semiconductors [138, 139],
optical absorption spectra [140], quasiparticle spectra and excited Hubbard clusters
[141-143], as well as the SITAM [144]. To our knowledge, the Kadanoff-Baym equa-
tion of motion for the NEGF, which is the starting point of this thesis, was used
for the first time in Ref. [145] to calculate the time evolution of the SIAM and used
also a few months later also in Ref. [146]. There are comparative studies for Fourier
space calculations [48, 147, 148] and also real time [145, 146].
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Aims and Achievements of the Thesis

The first aim of this thesis is to investigate the time evolution of the equilibrium
(equal chemical potentials of the leads) spectral function of the quantum dot into
the stationary state. The quantum dot is set to a specific state at the initial time and
will be coupled immediately to the leads, which is called hybridisation quench. The
stationary equilibrium spectral function has been studied in detail in recent years
with various methods [30, 43-45, 47, 51, 52, 56, 61, 62, 65, 67-69, 77, 87, 83, 149]
and therefore, the stationary spectral function of the quantum dot is known. Thus,
we can compare the stationary spectral function of the time evolution of the system
obtained from the 2PI effective action to the known results. The main challenge with
the spectral function is the width of the resonance, which narrows exponentially with
increasing interaction strength. We find a range where we can render this feature
correctly. Moreover, we present the whole time evolution of the spectral function
to observe the build-up of the Kondo resonance and the Hubbard side bands, which
goes beyond what is already discussed in the literature. For more detail, we refer to
Sec. 5.2.2.

The second aim is to investigate the non-equilibrium charge transport through the
quantum dot, especially beyond the linear response regime. In this range, even the
stationary current is not yet well understood. The stationary current was investigated
in Refs. [82, 98, 145, 148, 150, 151]. In addition to this, we are also interested in the
transient current of the SIAM, which is so far not well researched, see Refs. [102,
145, 146, 150-152]. We study the transient electrical current through the quantum
dot up to large bias voltages. Additionally, we compare the stationary results with
the functional renormalisation group (FRG) and iterative sum of path integrals and
find a very good agreements in the whole range for small to intermediate interaction
strengths. For larger interaction strength, the deviation compared to the results of
FRG becomes visible. However, we obtain the correct results in the limit of large
bias voltages for the electrical current for all probed interaction strengths. More
information can be found in Sec. 5.3.

The third aim of this thesis is to find out what can be achieved with this method.
We will compare our results with other well-established methods and, when applic-
able, also with exact analytic results. We use different channel resummations for
a non-perturbative approximation of the self-energy. Besides the established direct
(s)-, particle-particle (t)-, and particle-hole (u)-channel resummations, we define the
stu-channel resummation as a sum of these channel resummations and compare the
results of each of them. This has not been carried out so far. From this analysis, we
can estimate which diagrams are more important for the investigation of the STAM
in the Kondo regime. We obtain the best results for the stu-channel resummation
approximation.



Chapter 2

Two-Particle Irreducible Effective
Action Approach to Non-Equilibrium
Quantum Field Theory

In this chapter, we put this thesis on a sound theoretical footing by introducing
the theoretical concepts used to obtain the results we present in Ch. 5. In this
thesis, we use the two-particle irreducible (2PI) effective action approach to non-
equilibrium quantum field theory which is a well-established method, in particular
in the fields of high energy physics and ultra-cold quantum gases, to derive an exact
dynamic equation for the two-point correlation function. In describing the theoretical
foundations, we make use of the formulation as layed out in Refs. [127, 153, 154].

We want to describe quantum dots at low temperatures, which means we can
assume a non-relativistic system, which is well described without any space coordin-
ates due to its smallness, see Ch. 3. These are the only assumptions we impose in
this chapter. The extension to an arbitrary number of spatial dimensions is straight-
forward but not needed for the purposes of the present work. Apart from that, the
entire derivation of the dynamic equations is universally valid for all interacting the-
ories. Later in Ch. 3, we specify the model Hamiltonian for an Anderson quantum
dot and in Ch. 4 we derive all relevant equations for the specific Hamiltonian for
different approximations.

We are interested in the time evolution of experimentally accessible observables
which can be extracted from the lowest order correlation functions as occupation
number and electrical current. In the case of fermions, there is no macroscopic field
because of the Pauli exclusion principle, which means the one-point function vanishes.
Hence, at the beginning of this chapter, we introduce the two-point Green’s function
and its decomposition into the statistical propagator and spectral function.

The main goal of this chapter is the derivation of exact dynamic equations for
the two-point Green’s function, the so-called Kadanoff-Baym equations of motion
[104, 155]. In the first instance, we use a real time path integral formulation along
the Schwinger—Keldysh closed time path [156-160] to introduce a non-equilibrium
generating functional for 2n-point correlation functions. This generating functional
includes the initial density matrix, which encodes the initial conditions of the system.
In this thesis, we use Gaussian initial conditions, which means we specify the initial
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correlation up to two-point correlation functions. This choice of initial conditions
is not an approximation to the dynamics of the system and allows us to write the
generating functional in a compact form. As an intermediate step, we introduce
the Schwinger functional for generating connected 2n-point correlation functions.
With a Legendre transform with respect to the two-point source term we arrive
at the 2PI effective action, which incorporates all statistical as well as quantum
fluctuations. In analogy to the action in classical mechanics, we can derive with the
variational principle an exact dynamic equation for the two-point Green’s function,
which includes an integration along the Schwinger-Keldysh contour. We use the
decomposition into the statistical propagator and spectral function to convert the
dynamic equation into a set of coupled integro-differential equations with ordinary
time derivatives and integrals.

At the end of this chapter, we look at the special case of thermal equilibrium. In
thermal equilibrium, the density matrix is given by a canonical or grand-canonical
ensemble. In this case, the Schwinger—Keldysh closed time path is extended by a strip
along the imaginary time axis determined by the temperature of the system. From
the periodicity conditions, so-called Kubo-Martin—-Schwinger conditions [161, 162],
of this time path we can derive a relation between the statistical propagator and the
spectral function.

2.1 Two-Point Green’s Function

With our theoretical tools, we want to investigate real physical situations, and hence,
we are interested in the time evolution of observables, e.g. the occupation number or
the electrical current. Most of the experimentally accessible observables are encoded
in the lowest correlation functions. Since there is no macroscopic fermionic field, the
one-point function is vanishing and the lowest non-trivial correlation function is the
two-point Green’s function'.

The definition of the two-point Green’s function or propagator is given by the
time-ordered expectation value of two fermionic field operators at two points in time

Dag(t,t') = (TeWa(t)WE(H)) (2.1)

where (-) denotes the expectation value, ¥ an annihilation and W' a creation field
operator, and 7¢ is the time ordering operator along the Schwinger—Keldysh contour
C. We shift the discussion of the Schwinger—Keldysh contour to Subsec. 2.1.2 and in
Sec. 2.2 we introduce a path integral representation for the expectation value. The
index of a field operator describes, in general, its quantum numbers which depend
on the system under consideration. We are interested in the non-equilibrium time
evolution of an Anderson quantum dot, thus the index specifies the spin orientation
of an electron, a € {1,]}. The Heisenberg field operators have the same properties

L«Correlation function” and “Green’s function” are used interchangeably. In the special case of a
two-point function, we also call it a propagator.



2.1 Two-Point Green’s Function

as Grafimann numbers?, therefore the time ordering of the two field operators reads

U ()h#) i t>¢

UL, () it <t (2.2)

TeVa(t)Uh(t) = {
with an additional minus sign in the second case, t < t. With this definition, we can
rewrite the two-point Green’s function in Eq. (2.1) with the help of the Heaviside
step function as

Dag(t,t') = (Wa()WE(t')) c(t — 1) = (UH(#)Wa(t)) bc(t' — ). (2.3)

In the case of fermions, the two-point correlation function is always connected because
of the vanishing one-point function. The situation alters for higher n-point functions
and there is a difference between full and connected n-point functions.

The definition of the propagator has a drawback because at equal times, in
general, it has a jump discontinuity®, which is visible from Eq. (2.2). Both limits
do exist but are not the same and the value at equal times is not defined. Such
discontinuities can cause trouble and are not always easy to handle, especially in
numerical calculations. Fortunately, there is a way to circumvent this problem by
making this jump discontinuity explicit in what we are doing next.

2.1.1 Decomposing the Two-Point Green’s Function into its
Spectral and Statistical Components
We want to reformulate the propagator in terms of new functions which are con-

tinuous. We start from Eq. (2.3) and use the identity sgn,(t) = 260¢(t) — 1. We
find

Das(t, 1) = S{Walt), WH(H)]) — & smelt — i({Ta(t), W(E)),  (24)

where [-, -] indicates the commutator and {-,-} the anti-commutator. We introduce
the definition of the statistical propagator, I, and spectral function?, p,

Faslt, ) = S{[Walt), W)
paslt, ) = 1({a(0), WH(1)).

With these definitions, we can write the two-point Green’s function in Eq. (2.1) in
terms of the statistical propagator, F', and spectral function, p,

(2.5)

D,s(t,t') = Fop(t,t') — %sgnc(t — ) pap(t,t'). (2.6)

2Grafmann numbers make up the GraBmann algebra. GraBmann numbers are complex numbers
that anti-commute with each other but commute with ordinary numbers. Let 6; and 6; denote
two Grafimann variables. It follows that {6;,60;}=0 and (6;)* = 0.

3In mathematics, singularities are divided into two types. Type I embraces the removable and
jump discontinuity and type II contains the infinite discontinuity and essential singularity.

4The terms “statistical propagator” and “spectral function” are special for the propagator. We
can also decompose, for example, the self-energy in the same way. For this and other functions,
we use the terms statistical and spectral “part” or “component”.
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Both the statistical propagator, F', and spectral function, p, are continuous at equal
times t = ', since the discontinuity is pulled out explicitly in the sign function.

With the decomposition of the two-point Green’s functions in Eq. (2.6), the time-
ordering operator does not appear in the statistical propagator, F', nor in the spectral
function, p. In a path integral formulation, which we will introduce later, we cannot
directly compute these expectation values because a path integral is inherently time
ordered. However, with the Bjorken—Johnson-Low theorem [163, 164] it is possible
to evaluate expectation values of equal-time anti-commutators of Grafimann field
operators, which is consistent with the canonical quantisation. Therefore, we obtain
for the spectral function, p, at equal times,

paﬁ(t, t) = i(socﬁ : (27)

The statistical propagator, F', is connected to the occupation number for equal field
components by

Faalt,t) = ; — na(t), (2.8)

with the definition for the occupation number n,(t) = (¥ (t)1o(t)). From these
definitions, we also find symmetry relations for the statistical propagator, F, and
spectral function, p:

Fa,3<t7 t/) = Fga(tlv t) ) paﬁ(t’ t/> = —pza(t/, t) : (29)

2.1.2 Schwinger—Keldysh Closed Time Path

In this section, we want to introduce the Schwinger—Keldysh closed time path inven-
ted by Schwinger [157], Bakshi [158, 159], Mahanthappa [160] and Keldysh [156]. So
far, it has just been a label attached to operators but now we will give it a meaning.
The basic idea comes from using the trace to calculate expectation values of operat-
ors. Hence, we write the expectation value of two field operators in the Schrodinger
picture with the help of time evolution operators, U(t,t") = T¢ exp ( —i ftt/ H(z) dz).
We obtain

(Terha (VL) = (Tel (to, t)/hald (¢, YWRUE 1)) . (2.10)

From this, where we have the time dependence in the time evolution operators, it is
clearly visible that it starts at time tg, runs to time ¢, goes further to time ¢, and
then back to the initial time ty. This describes a closed time path which we also
show graphically in Fig. 2.1. We can split this time path into the forward, C*, and
the backward branch, C~. Typically, the maximum time of the closed time path is
given by the latest time of the operator appearing in the expectation value but we
can also push this time to infinity. This is possible since the contribution from times
later than the maximum time of the operators on both branches must cancel each
other due to causality or, in terms of time evolution operators, U (t',t")U(t", ') = 1.
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c+
: > N .
| : /| "
tO C_ tmax

Figure 2.1: The closed time path or Schwinger—Keldysh contour consists of the forward,
CT, and backward branch, C~. The Schwinger-Keldysh contour starts at an
initial time tg and goes to the maximum time ¢, occurring in the arguments
of the operators. This time can also be pushed to infinity. Due to causality,
all contributions later than ¢,,x must cancel each other on the forward and
backward branch. The contour in the illustration is only shifted from the real
time axis for clarity.

This closed time path translates to integrals along this time contour as

/&:/a+/du (2.11)
C ct C—

where the integral along the forward, C*, and backward branch, C~, is given by

tmax t
mz/ dt, w:/oa. (2.12)
ct to C— tmax

In the introductory example in Eq. (2.10), we tacitly assumed that both times of the
operators lie on the forward branch. However, we can generalise it to both branches.
Thus, in the case of a two-point correlation function, there are four possibilities
depending on where the times are located on the Schwinger-Keldysh contour. The
time ordering operator on this contour is defined as the standard time ordering
if both times lie on the forward branch and anti time ordering on the backward
branch. Times on the backward branch are always considered later than times on
the forward branch. Therefore, the sign function on the Schwinger—Keldysh contour
is the ordinary sign function if both times are on the forward branch and it gets an
additional minus sign on the backward branch. The propagator in the decomposition
of Eq. (2.6) reads

D (1) = Fas(t,t) = - pas(t. ) sen(t — 1),
D5 (tt) = Fas(t,t') + %pag(t, ) sen(t — ¢,

1 (2.13)
D3y (1) = Fap(t:t) + 5pas(t,t),

— 1
Do (t,1) = Fap(t:t) = 5pap(t,t)

where the =+ labels on the propagator D on the left hand side indicate whether the
times in the argument are considered on the forward or backward branch of the
Schwinger—Keldysh contour.
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We point out that the introduction of the closed time path is artificial and is
made only for technical reasons. This formalism provides us with a convenient way
to get all correlation functions that are needed to describe non-equilibrium physical
situations. From Eq. (2.13), we see that not all of these four propagators are linearly
independent of one another because of

Dgg (t,t') + Dog (t,t') = D;jﬁ‘(t, t') + D;;(t, t'). (2.14)

Due to this fact, in literature, a Schwinger—Keldysh rotation is often used to get rid
of one of the four propagators and the retarded D®, advanced D*, and Schwinger—
Keldysh propagator DX are introduced as a linear combination of the propagators in
Eq. (2.13). Also the remaining three propagators are not completely independent of
each other and there is a relation between the retarded and advanced ones. Hence,
we only need two independent functions to describe the non-equilibrium physics,
which in our case are the statistical propagator, F', and the spectral function, p. We
can consider equilibrium as a special case of non-equilibrium. In this special case,
we derive a universal relation between the statistical propagator, F', and the spectral
function, p, see Subsec. 2.5.1. Thus, in equilibrium, only one propagator is needed
and in non-equilibrium there are more degrees of freedom.

2.2 Non-Equilibrium Generating Functional

In non-equilibrium physics, we are interested in time-dependent correlation functions.
For that, we use expectation values of Heisenberg field operators. The dynamics of
the system is not only determined by the model Lagrangian but also by its initial
conditions encoded in an initial density matrix at time ¢y. The expectation values
of time ordered Heisenberg field operators are given by the trace over them together
with the initial density matrix as

() =Trlp(to)] - (2.15)

To evaluate this trace we need a complete set of states at the initial time t5. A
reasonable choice for this are eigenstates of the Heisenberg annihilation field operator

\Ija(t())7
U, (o) |05y = wSa sy (2.16)

where |@Z)[()i) ) denotes the eigenstates, so-called coherent states, and @/J((]i) are the
corresponding eigenvalues. Here, 4+ are only labels, so both sets are the same. We
take these set of states to perform the trace for two Heisenberg field operators, after
which it reads

(TeWa(t)TL(E)) = Tr [plte) Te Vo (t) TH(1)]

(2.17)
= [ it Dy (i loto) l0) (Wi TR BLE)IE) )

10
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Between the density matrix and the time-ordered Heisenberg field operators, we
also inserted an additional unity operator by taking advantage of the completeness
of the eigenstates, [Dvyq |1y ) (¥y| = 1. The measure of the integral is Dwo =
Il d@/)g,ad%,(y The expectation value of the time-ordered Heisenberg field operators
in the second line of Eq. (2.17) can be expressed as a path integral® [165], which is
given in standard textbooks about quantum field theory [166, 167]. It reads

W ITew ) = [ Duuioul@es|i [ag]. @)

where the integral measure of the path integral is defined on the time contour without
the initial time D't = ], yec\ 1oy A% (t)deha(t) and 2 denotes the Lagrangian of the
system. Accordingly, we can put this together and yield a path integral formulation
for expectation values of time-ordered Heisenberg field operators,

(TeW,(t)V /D¢Sr Dy <¢0 Ip(to)ltbg )
- (2.19)
< [ Dol esp fisefvl].
where the action is given by
:/Cdtz[wa,@ug}. (2.20)

Since the expectation value of a fermionic field operator vanishes due to the Pauli
principle, we introduce in the following, a method to calculate 2n-point correlation
functions by taking the n-th derivative of a generating functional. In addition to
the action in the path integral, we also append an additional term that includes a
non-local two-point source term, K,5(¢,t'). The generating functional, also called
partition functional, reads

ZIK; p(to)] = [ D D (i (to) g
(2.21)

x /w ; D'ipexp |iSe[v / dt At () Kas(t, ) s(t)]

This equation shows nicely the main components that make up non-equilibrium
quantum field theory. The first line of the right-hand side embodies the initial con-
ditions of the system, which describes the statistical fluctuations. The second line
encloses information on the quantum fluctuations of the quantum dynamics via the
action of the system, Sc. From the definition of the partition function in Eq. (2.21),
it follows that

ZIK = 0, p(to)] = Tr[p(to)] = 1. (2.22)

5In 1948, Richard Feynman introduced the path integral as a new formulation of quantum mech-
anics. It is nowadays a standard technique in quantum field theory.

11



Chapter 2 2PI Effective Action Approach to Non-Equilibrium QFT

The introduction of this non-local two-point source term is artificial and is made only
for technical reasons, since it allows us to write higher-order correlation functions with
the help of derivatives. After taking the derivative, we set the two-point source to
zero. However, there are systems where such source terms have a physical meaning,
such as an open system. In that case the source cannot be set to zero. The full
2n-point correlation function is given by

(TeWl, (t)Ws, (1) - WL (82) Vs, ()
1 3" Z[K; p(to)] (2.23)
Z 16K ayp, (b, 1h) -+ 10K, (b 10) |

=0

While the partition function provides the full correlation function, the Schwinger
functional, W, which is defined by

WIK;p] = —iln Z|K; p|, (2.24)

gives only the connected part. This is due to the fact that the two-point correlation
function or Green’s function is connected in the case of fermions because there is no
macroscopic fermionic field. Therefore, we get

07 K] IWIK]

- = ~Gpa(t',1). 2.9
6K045(t7 t/) (SKa (t,t/) Gﬁa(t 7t) ( 5)

Higher derivatives of the generating functionals are different. It is obvious that higher
derivatives of the Schwinger functional give more than one term because of the chain
rule. The extra terms subtract the unconnected parts. In mathematical terms, the
partition function generates moments and the Schwinger functional cumulants.

Gaussian Initial States

In this section, so far, we have derived a path integral formulation for describing non-
equilibrium dynamics for arbitrary initial conditions. In this subsection, we focus on
the initial conditions, the first line in Eq. (2.21), to find an alternative formulation
for the initial density matrix. It is sufficient to specify the first lowest correlation
functions to describe experimental setups. For fermions, there are no expectation
values of the fields, which means there is no macroscopic fermionic field and we have
to set the initial conditions for the two-point correlation functions. We refer to this
choice of initial conditions as Gaussian initial conditions. As a side effect of this
choice of initial conditions, we can write the non-equilibrium partition function in a
simpler or more compact way.

We write the initial density matrix in the most general form, which allows us to
set arbitrary initial conditions and parametrise it as

(W to) [ ) = N exp [ife[v]], (2.26)

12



2.2 Non-Equilibrium Generating Functional

where N denotes a normalisation constant and f¢ is a functional of fields which can
be expanded in powers of fields as

felt) =¥+ 3 Lol o (et Lo 00). 220

The integral is along the Schwinger—Keldysh contour and it has to be evaluated on
the forward branch, C*, and the backward branch, C~, of the closed time path with
the boundary condition ¢ (ty € CT) = M+ (t;) and v (t, € C7) = v~ (ty).
The Einstein notation for repeated indices is implied. The density matrix is only
specified at the initial time, therefore the cumulants a&"l),,,an (t1,...,t,) are only non-
vanishing at the initial times on both branches of the Schwinger-Keldysh contour.
The Hermiticity of the density matrix, py = pg, imposes further conditions on the
cumulants.

In the case of vanishing cumulants, agi)_,_an (t1,...,t,), for all n > 2 and at the
initial times ty, we obtain a Gaussian density matrix. As mentioned before, for
fermions there are no field expectation values, thus the cumulant for n = 1 can
also be set to zero. For the Gaussian initial states, the non-equilibrium generating

functional is given by

21K plto)) = N [ Dexp fia® + < [ drar ol )k (st)

(2.28)
FiSe[y] +i /C dt dt' o} (1) Ko (1, )05 (1)

In contrast to Eq. (2.21), the integration measure D also includes the fields at the
initial time, w(()i), because they occur as the limits of the path integral and not as
basis states of the matrix representation of the density matrix anymore. The zeroth
cumulant @(®) can be shifted to the normalisation constant N, which does not affect
the non-equilibrium dynamics of a system. Therefore, we will drop it from now on.
With a closer look at Eq. (2.28), we notice that the terms of the initial conditions
for the two-point correlation function, agg,, and the non-local two-point source, Kz,
resemble each other. Therefore, we now define a new non-local two-point source,

R, which combines both terms as

al)(t. ). (2.29)

1
Raﬁ<t7 t/) - Kaﬁ<t7 t/) + 5

With this redefinition of the non-local two-point source, R, we can write the partition
function in a compact form as

Z[R) = [ Dyexp [iSc[w]+i /C At At 1 () Res (8, )05 (2) | (2.30)

In short, we are able to specify an arbitrary initial density matrix. In this thesis, we
will stick with Gaussian initial conditions that allow us to write the non-equilibrium

13
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generating functional in a compact way. We point out that, these initial condi-
tions do not impose any restrictions on the non-equilibrium dynamics of the system.
Higher correlation functions are not specified in the beginning but can build up dur-
ing the non-equilibrium time evolution. In general, most physical setups are well
approximated by Gaussian initial states, including experiments.

In the next section, we will introduce the 2PI effective action starting from the
non-equilibrium generating functional in Eq. (2.30).

2.3 Non-Equilibrium Two-Particle Irreducible Effective
Action

In the previous section in Eq. (2.36), we introduced the non-equilibrium generat-
ing functional which is a generalisation of the equilibrium partition function. We
know in thermodynamics that the Legendre transform of the logarithm of the par-
tition function also describes the same physics. In analogy to this, also in non-
equilibrium quantum field theory, the Legendre transform of the Schwinger func-
tional in Eq. (2.24) gives another equivalent representation. The Legendre transform
with respect to the one-point source term leads to the one-particle irreducible (1PI)
effective action, and the Legendre transform up to the two-point source term gives
the two-particle irreducible effective action (2PI). This procedure can be generalised
to an arbitrary order of source terms to get an nPI effective action [168].

All the generating functionals describe the physics equivalently. The main ad-
vantage of effective actions is that they are expressed in terms of correlation functions.
The initial values of correlation functions are easier to access than those of source
terms. In addition to this, the effective action obeys the variational principle, which
makes it easier to derive dynamic equations for the correlation functions. We look
for an effective action that fulfils

OT'[D]
0D
We introduce the (2PI) effective action [103-105] via a Legendre transform of the

Schwinger functional given in Eq. (2.24) with respect to the two-point source term,
R. We get

—0. (2.31)

r[D] = W[R] — /Cdt at’ %Raﬁ(t, ') = W[R] + Tt[DR] (2.32)

where we took advantage of

— Dgo(t',t; R) = m : (2.33)

Eq. (2.32) uses a trace which implies a sum over all field indices and an integration
along the Schwinger-Keldysh closed time path. By taking the functional derivative

14



2.3 Non-Equilibrium Two-Particle Irreducible Effective Action

with respect to this 2PI effective action we get

oT[D]

5Dpa(t',t: R) = Ras(t,1), (2.34)

which is the stationary condition in Eq. (2.31), in the case of a vanishing non-local
source, R.

In the following, we want to calculate the 2PI effective action, which means
we first need an expression for the generating functional of the 2n-point correlation
function given in Eq. (2.30). In general, the action contains a free and an interaction
part

Selw) = [ dt Q¥ LD 4 (t £ 1a(t) + Seaml]. (2:35)

where the free inverse propagator® Dy iﬁ appears in the free part of the action. We
Taylor expand the exponential containing the interaction action term. Then, the
partition function reads

= [Deexp (— [[ar a0 (Daha(t. ) — st ) )stt)
+ [ Do exp (= [ dedr vl () (Doha(t.t) = iRas(t.))0s(t)) (2.3
% Z 1SClnt

In the first line, we pulled out the term corresponding to n = 0 because it is a
Gaussian path integral which is exactly solvable and gives a functional determinant
expression. This term is referred to as the one-loop order. The second summand
includes the interaction of the underlying model and is at least of the order of two
loops. In the following steps, we focus on the one-loop part and derive the 2PI
effective action at one-loop order. Performing the Gaussian path integral, we obtain
for the partition functional at one-loop order,

Z(l loop) {R] — det (Da’éﬁ(t’ t/) _ iRag (t, t/))

2.37
:exp<Tr1H <D0a5(t t) Raﬁ(t t))) ( )

From this follows the Schwinger generating functional for connected correlation func-
tions at one-loop order,

17 (1 loop) [R] = —iln Z1oop) — Ty n (Do aﬁ(t t') — iR.p(t,t )) (2.38)

6The free inverse propagator is the inverse propagator of the free, non-interacting theory. For a
non-relativistic system, it can usually be written as iD&iB(t, t') =6t —1t) (10, — HiB(t)) bap,
where H'B denotes the one-body Hamiltonian. We also used & = 1 and we will use this
throughout the thesis.
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Finally, we arrive at the 2PI effective action at one-loop order,

rtleon)[p] = Wt P [R] 4 Tr (DR)

=—iTr (ln D'+ D(Dal . Dl)) ' (2.39)

In the last step, we set D~' = Dy —iR because the effective action, also at one-loop
order, has to fulfil the stationary condition in Eq. (2.34):

i(D;g(t,t’) — Dy os(t, t’)) = Rus(t,t) = D'=D;'—iR. (2.40)

At one-loop order, the full propagator is the same as the free propagator as long as
no external sources are present.

Since we have now fully discussed the one-loop term, we draw the reader’s at-
tention to the second term in Eq. (2.36). We can write this contribution, which is at
least of two-loop order, as an additional term to the one-loop 2PI effective action

['[D] = —iTr (m D'+ DDO—1> +Ty[D]. (2.41)

In this expression, we dropped the constant term Tr (DD‘I) because it is irrelevant
for the dynamics of the system. All scattering effects are absorbed in the I's[D] term.

We can depict the T'y[D] term with the help of Feynman diagrams” [169]. How-
ever first, in the following, we have to specify which conditions T's[D] must satisfy.
The effective action is a functional of the full propagator, D, which means that math-
ematically the effective action maps the full propagator to a scalar because it has no
indices or time arguments. If we transfer this finding to the Feynman diagrams, the
effective action contains only closed diagrams. It can be shown that the I'y[D] term
is the sum of all possible 2PI Feynman diagrams assembled from bare vertices and
full propagators, D. The 2PI term for Feynman diagrams means that we can cut
two lines and the Feynman diagram is still connected. We also call this term the 2PI
part of the effective action. The definition is

Iy[D] = —i <§: (iS5 int)n> , (2.42)
2PI & D

|
n=1 n.

where (-)opr & p denotes the expectation value of n interaction terms Sj,, with the
condition that the corresponding Feynman diagrams have to be 2PI and the lines
are the full propagators, D. The exact appearance of the 2PI Feynman diagrams is
determined by the interaction term of the action. Thus, it is determined by the un-
derlying model that is taken into consideration. In this thesis, we want to investigate
a fermionic system at low temperatures and energies, therefore no relativistic effects

"Richard Feynman invented the pictorial representation of complicated mathematical expressions
for subatomic scattering processes.
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such as the annihilation and creation of particles will occur and we do not expect
bound states. For this reason, we assume a two-to-two body scattering which means
that at each interaction vertex four full propagator lines meet. For this interaction
term, we show the Feynman diagram representation of the 2PI part of the effective
action up to fourth order explicitly as

['y[D] = + +

(2.43)

where the solid blue lines represent the full propagator, D, and the black dots are
the bare vertices. In these Feynman diagrams, we do not distinguish between spin
up and down because here we are focusing solely on the general structure of the
diagrams. In Ch. 3, we introduce the specific model for this thesis and when we
apply the 2PT effective action techniques to this model, in Ch. 4, we will show the
Feynman diagrams in full detail.

So far, we have not given a reason why the Feynman diagrams that make up
the 2PI part of the effective action, I'y, have to be 2P1. However, we have explained
why they have to be closed. In the next section, where we derive an exact dynamic
equation for the full propagator or two-point Green’s function, the 2PI condition
imposed on the Feynman diagrams will become clear.

2.4 Exact Non-Equilibrium Dynamic Equation

In the previous section, we introduced the 2PI effective action which incorporates
statistical as well as quantum fluctuations. From this effective action, we want to
derive a dynamic equation for the two-point Green’s function in this section. Up to
this point, we have not made any approximations in the derivation of the 2PI effective
action and therefore, the derived dynamic equation, via the stationary condition, will
be exact. Also, the Gaussian initial conditions we introduced in Subsec. 2.2 are not an
approximation to the quantum dynamics of the system. Only the higher correlations
are set to zero at the beginning. However, during the time evolution these higher
correlations can build up. The higher correlation functions are very important for
equilibration processes.
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2.4.1 Exact Dynamic Equation for the Two-Point Green’s
Function

We put the full 2PT effective action given in Eq. (2.42) into the stationary condition
in Eq. (2.34) and yield the well-known real time Schwinger-Dyson equation [170, 171]

D;g(t, t:R) = D(;;B(t, t') —iRup(t, 1) — Sup(t, t'; D), (2.44)

where we used

i 0Da[D]
5D5a(t’, t; R) ’

which is the one-particle irreducible (1PI) self-energy. Here, it becomes clear why
the I's term has to be 2PI. Since by taking the derivative we, graphically speaking,
cut one full propagator line, D, in the corresponding Feynman diagram and therefore
reduce the order of the particle irreducibility by one. Thus, the self-energy imposes
the 2PI condition on I's.

The Schwinger—Dyson equation, Eq. (2.44), which we recover from the stationary
condition of the 2PI effective action, is not easily numerically solvable for given initial
conditions. Therefore, we convolve this equation with the full propagator, D, and
obtain the equivalent Kadanoff-Baym equation of motion [104, 155],

Sas(t, 5 D) = (2.45)

/C 2Dyl (£, 2) Dys(2, 5 R) = i0c(t — )das

(2.46)

—I—i/cdz (Eav(t,z; D) + iR (t, z))Dw(z,t’;R).
The two-point source, R, brings for the initial time, ¢y, the information about the
density matrix into the equation. In a closed system, R is only non-vanishing at the
initial time, ¢y, at both branches on the Schwinger—Keldysh contour. In this case,
the term does not influence the dynamics of the system. This changes when a system
is open and can interact with its environment. In general, the non-local two-point
source term can be non-vanishing at all times and also has a deep impact on the
dynamics.

Since we are considering a non-relativistic system, the free inverse propagator
Dy includes a first order time derivative and it is also diagonal in the time space.
Thus, we can perform the integral and write the Kadanoff-Baym equations of motion
as an integro-differential equation. In addition to this, we also pull out the local
contribution of the self-energy

Sas(t,t'; D) = —iS0)(t; D)oe(t — 1) + Sap(t, t'; D) (2.47)

and from now on Y denotes only the non-local proper self-energy. The local contri-
bution to the self-energy can be combined with the one-body Hamiltonian appearing
in the free inverse propagator, Dy ', which yields

Mas(t,t D) = be(t —t') (5045110{13(75) + 30t D)) . (2.48)
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In the next step, we insert all of this into Eq. (2.46) and can perform the integration
over the free inverse propagator and the local contribution of the self-energy because
of the delta function. Now, the Kadanoff-Baym equation of motion reads

(lat Mo (1.t D))Dag(t,t')—iéaﬂéc(t—t') _ /C 2180, (t, 2: D)Ds(=, ) . (2.49)

We dropped the term [ RD because R enters the dynamic equation in the same way
as the self-energy and therefore the non-local source term, K, can also be shifted
into the self-energy. The cumulant that specifies the initial condition of the two-
point correlation function enters via the initial condition of the integro-differential
equation. In the next subsection we will decompose the Kadanoff-Baym equation of
motion into its statistical and spectral components.

2.4.2 Exact Dynamic Equations for the Statistical Propagator
and the Spectral Function

In the previous section, we derived an integro-differential equation, the so-called
Kadanoff-Baym equation of motion, for the two-point Green’s function. In this
section, we split this equation into its statistical and spectral components. As in
Eq. (2.6), we do the same decomposition for the non-local self-energy,

Eaﬂ (tv t,) = Egﬂ(t t,) - %Egﬂ (tu t/) SgnC(t - t,) : (250)

We insert both decompositions in Eq. (2.49) and use the identities for sign functions
on the Schwinger—Keldysh contour:

t/
/Cdt sgng(t' —t) =2 dt (2.51)

to

and .
/ dz sgne(t — z)sgne(z — t') = 2sgne(t — t') / dz. (2.52)
¢ ¢

We end up with the Kadanoff-Baym equations of motion for the statistical propag-
ator, F', and spectral function, p,

(16a78t M, (t; D) ) La(t, ) / dz ¥t (t,2; D) Fyp(z, 1)
- dz ¥ (t, 2, D)pys(2, 1) (2.53)

(15a76t M, (t; D) >Pvﬁ (t, ") / dz X0, (t, 2 D)pys(z,t') .

The time derivative acting on the two-point Green’s function also acts on the sign
function in front of the spectral function when we use the decomposition in Eq. (2.6).
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to — i

Figure 2.2: In thermal equilibrium, the Schwinger—Keldysh closed time path is extended
by a strip along the imaginary time axis from the time ¢y to ty — i to the so-
called Konstantinov—Perel’ contour. The entire path is denoted by Cg. Times
in the imaginary part of the time contour, Cg, are considered to be later than
any time on the Schwinger—Keldysh contour, C. The extended time path, Cg,
is supposed to be closed such that it addresses boundary conditions to the
operators at the initial times tg and ty — if3.

Since sgn,(t — t') = 20(t — t') — 1 it follows that J;sgn.(t —t') = 20c(t — t’). This
exactly cancels the delta term in Eq. (2.49) because p(t,t) = i.

The product of the self-energy and the two-point Green’s functions gives four
terms but only three of them survive because ordinary functions integrated on a
closed time path vanish. Two terms include one sign function which vanishes due to
the identity in Eq. (2.51) and therefore contribute to the dynamic equation of the
statistical component. The last term including two sign functions contribute to the
spectral component because of Eq. (2.52). The memory integrals on the right hand
side are normal time integrals which are no longer on a closed time path.

We now have a set of coupled integro-differential equations. The initial condition
of the full propagator enters the Kadanoff-Baym equations of motions via the initial
value of the statistical propagator, F', and spectral function, p, at initial time .
The scattering processes that were once in the 2PI part of the effective action are en-
coded into non-Markovian memory integrals on the right-hand side. They are called
memory integrals because the dynamics of the present and the future is influenced
by the entire past of the system. The form of the equations do not change with
the approximation we have made in order to numerically calculate solutions to these
equations. We discuss the commonly used approximations in Ch. 4 after we specify
the Hamiltonian of the system in Ch. 3.

2.5 Thermal Equilibrium
So far, we have discussed a general theory describing non-equilibrium physics. In

this section, we want to focus on a system in equilibrium at finite temperature. The
thermal equilibrium can be regarded as a special case of non-equilibrium. The system

20



2.5 Thermal Equilibrium

can initially be described by a (grand) canonical ensemble with the density matrix

1
P = ?ﬁ e_BH ’ (254)

and the partition function Zz = Trexp(—8H), where f is the inverse temperature®,
B = T~1. For the path integral formulation, we follow exactly the same steps as in
Sec. 2.2. Thus, we have to replace the general density matrix in the non-equilibrium
case with the density matrix given in Eq. (2.54) and use the eigenstates of the Heis-
enberg field operators at the initial time, ¢y, for the calculation of the trace. We
get

Zs = [ Doo(wilpslio) (2.55)

With a closer look at the numerator of Eq. (2.54), it becomes clear that e ?# re-
sembles a time evolution operator if we write e ™ = e (TNH = 1(t ¢, — if),
with the unusual property that this time evolution operator evolves the system to
imaginary times which depend on the temperature. Thus, we get

(tolpsltho) = (o—isltho) - (2.56)

This consideration alone suggests that we extend the Schwinger—Keldysh contour
discussed in Subsec. 2.1.2 by an imaginary strip along the imaginary time axis. We
depict this new complex time path, also called the Konstantinov—Perel’ contour [172]
Cs, in Fig. 2.2. All times in the imaginary part are considered to be later than all
times on the Schwinger—Keldysh closed time path. From the cyclic property of the
trace, it follows that we have to identify the initial time, ty, with the final time,
to —if, which means this time path is also supposed to be closed. Therefore, we get
certain periodicity conditions, also called Kubo-Martin—Schwinger (KMS) conditions
[161, 162]. For a two-point Green’s function, it follows at the initial time, ¢, and
final time, tq — i3, that

(Te,wO¥ ()] _, =~ (t)w(®)]
(Te 0¥ ()],_, = WOw' )]

iB

t=to’ (2.57)

t=to—iB ’

and with that
— @I )|, = @@ @)

t=to

(2.58)

t=to—ip
The generating functional for the complex time contour ordered, 2n-point cor-
relation functions with Gaussian initial states is

Z5[R)] = / Dip exp {iscﬁ +i /C deat UL () Rag(t, E)0s(t) | (2.59)

8The inverse temperature is 3 = (kgT)~! with the Boltzmann constant kp. However, we set
kg = 1.
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Chapter 2 2PI Effective Action Approach to Non-Equilibrium QFT

with the action on this time contour given by
Sealt] = [ dt Ll L) (2.60)
5

The two-point Green’s function decomposed into the statistical propagator, F', and
spectral function, p, reads

Daslt —t') = Fog(t —t') — %paﬁ(t — ') sgug, (t — 1), (2.61)

where we used that in thermal equilibrium the system has time-translational invari-
ance, which means that all functions depend only on the difference of the times.

2.5.1 Fluctuation-Dissipation Relation

A quantum system that is initially set far-from-equilibrium will evolve towards equi-
librium, which means that the system is time- and space-translation invariant. How-
ever, this does not mean that the system is also thermalised in the sense that it
is possible to describe the system with a (grand) canonical density matrix. It was
shown for a one dimensional non-relativistic interacting Fermi gas in Ref. [126] that
it can equilibrate without being thermalised. The fluctuation-dissipation relation
provides the possibility to check whether the equilibrated state is also thermalised.

In the following we derive the fluctuation-dissipation relation by taking advantage
of the KMS boundary conditions in Egs. (2.57) and (2.58) and using the decompos-
ition of the two-point Green’s function in the statistical propagator, F', and the
spectral function, p. We obtain

— (F(t,t') - ;p(t,t’)> = (F(t,t’) - ;p(t,t’)> (2.62)

t=to t=to—ip

We use the inverse Fourier transform for the statistical propagator, F', and also for
the spectral function, p(¢, ') = [, e (=) p(w). Then, Eq. (2.62) reads

—00 27

i i
Flw) + Sp(w) = eﬁw( —Flw)+ 2p(w)) . (2.63)
Due to the imaginary part on the final point of the time contour, we get the ad-
ditional factor, exp(—fw). In the next step, we rearrange this equation such that
the statistical propagator is isolated on the left hand side. We get the well-known
Callen—Welton dissipation-fluctuation relation [173] which reads

F(w) = —i@ - n(w)) (), (2.64)

where n(w) = (exp(fw) + 1)~! denotes the Fermi-Dirac distribution function. In
thermal equilibrium, the statistical propagator, F', is connected with the spectral
function, p, via a Fermi—Dirac distribution function. This is a result of the special
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choice of density matrix. In non-equilibrium, where we have an arbitrary density
matrix, it is also always possible to take the fraction of the two functions that make
up the two-point Green’s function. However, a priori it is not clear how this function
looks. This is different to the special case of thermal equilibrium. Since in thermal
equilibrium, the degrees of freedom for the Green’s function are reduced because we
only have to know one of the two functions.

2.6 Summary

In this section, the main goal was to derive exact dynamic equations for the two-point
Green’s function, the so-called Kadanoff-Baym equations of motion, in a general
formulation for non-relativistic fermionic systems without any further specification
of the model. With this tool, we are able to tackle non-equilibrium physical situations
and can describe their quantum dynamics.

In the beginning, we introduced the two-point Green’s function and found a de-
composition in the statistical propagator, F', which describes the occupation of the
available states in the system and the spectral function, p, which gives information
about the spectrum of the system. In the next step, we introduced a path integ-
ral formulation of the non-equilibrium generating functional for 2n-point correlation
functions. This partition function contains the statistical fluctuations given by a
general density matrix and the quantum fluctuations arising from a specific action.
We use the convenient Schwinger—Keldysh closed time path formalism to access the
full non-equilibrium information of the system encoded in the correlation functions.
The initial density matrix sets the initial values of the correlation functions. It is
sufficient for almost all purposes to use the correlation functions up to the second
order. With these so-called Gaussian initial states, we introduced the two-particle ir-
reducible effective action via a Legendre transform of the Schwinger functional. From
this effective action, we could derive the exact dynamic equation for the two-point
Green’s function through the variational principle. We could then write this equation
as a set of coupled integro-differential equations for the statistical propagator and
the spectral function. In this formulation, only standard time integrals are present
in the memory integrals.

At the end, we also discussed the special case of thermal equilibrium where
the initial density matrix is given by a (grand) canonical ensemble. In thermal
equilibrium the degrees of freedom are reduced because the statistical propagator
and the spectral function are connected to each other via a Fermi—Dirac distribution
function which is referred to as the fluctuation-dissipation relation.
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Chapter 3

Physical Background of Quantum
Dots

In the previous chapter, we used a path integral approach to introduce the two-
particle (2P1) irreducible effective action. This effective action is a functional of the
full propagator and incorporates the full quantum dynamics arising from the under-
lying Hamiltonian and statistical fluctuations encoded in the general density matrix.
From the 2PI effective action, we derived an exact dynamic equation for the two-
point Green’s function, also known as the Kadanoff-Baym equation of motion, for a
spatially zero-dimensional non-relativistic system without any further specification
of the interaction. In order to solve this dynamic equation numerically, we have to
make approximations to the self-energy of the full propagator due to the complexity
of the mathematical structure of the equation. However, this demands the precise
knowledge of an interaction term, which is why we need to specify the underlying
Hamiltonian of our investigation.

In this chapter, we focus on the physical fundamentals of quantum dots. First, we
introduce a quantum dot, which is an elementary component of electronic nanotech-
nology and has attracted a lot of attention over the past twenty years. In addition
to this, we explain the main components of such nanodevices and the tunability of
the most important parameters that have a strong influence on the physics. Second,
we introduce the Kondo effect in a quantum dot. This effect has a tremendous non-
trivial impact on the transport properties of quantum dots. Although it was first
experimentally observed in the 1990s, the Kondo effect is still under investigation; es-
pecially the time-evolution in and out of equilibrium. Third, we introduce the single
impurity Anderson model (SIAM), which is the role model to describe the forming
of magnetic moments in metals and it also reflects the physics of quantum dots. At
the end, we discuss the phase diagram of the SIAM to see where the Kondo regime
is located in the parameter space.

3.1 Quantum Dot

In the last two decades, the rapid development of nanoelectronics, especially quantum
dots, has led to various different fabrications such as two-dimensional electron gases,
carbon nanotubes [174], metallic nanoparticles and also in recent years, the pop-
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Chapter 3 Physical Background of Quantum Dots

ularisation of indium arsenid nanowire quantum dots [175]. The general structure
of quantum dots is independent of the special fabrication. Quantum dots are meso-
scopic nanoelectronic devices with electronic properties between bulk materials and
atoms. A certain number of electrons are confined in a small three-dimensional re-
gion with discrete energy levels, where the exact available energies strongly depend
on the confining potential. Due to the smallness of such devices (of the order of
100nm) and consequently the discreteness of the quantum dot’s spectrum, it can
be well-described as spatially zero-dimensional object. This electronic island is, in
general, contacted capacitively with two leads forming a tunnelling barrier, which
determines the probability of exchanging electrons. In experiments, this barrier can
be controlled by voltages. In addition to this, a gate voltage is also capacitively
coupled to the quantum dot for tuning the available energy levels. This can be seen
in the equivalent electronic circuit of the quantum dot, depicted on the left-hand side
of Fig. 3.1.

A frequently used model to describe the energy levels of a quantum dot is the
constant interaction model (CIM) [176]. In this simplifying model, it is assumed
that first, the single-electron energy levels of the quantum dot are not perturbed
by the interaction and second, the interaction of the electrons on the quantum dot
is determined by a constant capacitance, C' = C}, + Cr + Cqg, where C,, Cg, and
Cq denote the capacitance of the contact of the leads and gate to the quantum dot.
Without loss of generality, we assume the right lead to be grounded. Then according
to the CIM, the total energy, Fi., of a quantum dot with N electrons is given by

N —No)+CLVs + CeVa)? &
Bon() = AN = M) % Qo 2 Ol oy 3.)
=1

where Ny denotes the number of electrons at zero gate voltage, ¢ the electron charge,
Vg the bias voltage, and Vy the gate voltage. The last term describes the energy
eigenvalues of the single-particle Schrodinger equation with a certain confining po-
tential’ of the quantum dot. The chemical potential of the quantum dot, fige, is
defined by

Lot (N) = Eior(N) = Eyge(N — 1). (3.2)

An electrical current through the quantum dot can flow if the quantum dot’s chemical
potential lies between the Fermi edges of the leads. The addition energy, F,qq, to
add one more electron to the quantum dot is then given by

Eadd = ftaot (N 4+ 1) — fraot(N)
¢ (3.3)

=—4+F —F
C—i- N+1 N

with the charging energy, U, and orbital level spacing, 0 F, given by

!This depends strongly on the geometry of the quantum dot. In most cases, a box or harmonic po-
tential is assumed. For a three-dimensional isotropic harmonic potential, the energy eigenvalues
read E, ;= (2n+ 1+ 3/2)hw.
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Figure 3.1: Left: The equivalent electronic circuit of a quantum dot coupled capacitively
to three contacts: the left lead, right lead and gate contact. The energy levels
on the dot can be adjusted by the gate voltage, Vg, and the bias voltage,
VB, controls the chemical potential of the leads. Right: Schematical energy
diagram of a quantum dot coupled to two leads with chemical potential, j1, Rr.
The discrete energy levels belonging to the same orbital are separated by the
charging energy, U, and to different orbitals by an extra amount for the orbital
spacing, 0 F.

§E = Eny1— Ey . (3.4)

Consequently, the on-site Coulomb repulsion can be controlled by the total capa-
citance, C'. On the right-hand side of Fig. 3.1, a schematic energy diagram of a
quantum dot coupled to two leads is shown. The leads are indicated by the red
rectangles and the energy levels below the Fermi edges of the leads are occupied.
Energy levels belonging to the same orbital are separated by the charging energy, U,
and otherwise the additional orbital level spacing, d E, comes on top of it. The grey
shaded areas represent the tunnel barriers which determine the tunnelling probab-
ility and can be adjusted by the left lead, right lead and quantum dot capacitance,
CrLr. Furthermore, the energy levels are adjusted by the applied gate voltage, V4.
All relevant parameters determining the physics of the quantum dot are tunable via
the gate and bias voltage, which is a tremendous advantage of such systems.

3.2 Kondo Effect

Since the Kondo effect is the central topic of this thesis, we explain the Kondo effect
in a quantum dot in full detail in this section. We assume that the quantum dot is
coupled to two leads with the same chemical potentials, p;, = pgr. For the Kondo
effect, the gate voltage of the quantum dot is tuned such that it is occupied by one
electron which can be spin-up or spin-down with equal probability. This is achieved
when first, the single electron energy, Ej, is smaller than the Fermi energy of the
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Figure 3.2: Illustration of two possible cotunnelling processes on a quantum dot in the
particle-hole symmetric case with a double occupied (a) and an unoccupied
virtual state (b) that give rise to the Kondo effect. Initially, the quantum
dot is occupied by one electron mimicking the magnetic impurity. The virtual
state is energetically forbidden (Coulomb blockade) because the Fermi energy
lies between the two possible energy levels on the quantum dot and therefore
both virtual states cost energy, F = U/2. Due to Heisenberg’s uncertainty
principle, it can occur in an intermediate state in a time scale of t ~ E~L.
In the final state, the spin is flipped on the quantum dot. c) The expected
spectral function consists of two Hubbard side peaks located at £ = +U/2
and the sharp Kondo peak at the Fermi energy.

leads, Fy < EF, and second, due to the Coulomb repulsion when the double-occupied
energy level lies above the single electron energy by the charging energy, U, and must
be larger than the Fermi energy, Fy + U > Ep. In the particle-hole symmetric case,
both energy levels on the quantum dot are aligned symmetrically around the Fermi
energy, gy = —U/2. In principle, in this situation, an additional electron cannot
tunnel into the quantum dot, nor can the first electron tunnel out of the quantum
dot, because both events cost energy. This situation is called a Coulomb blockade
and is shown in Fig. 3.2 as the initial state.

However, this is only true for first-order tunnelling processes and changes if
higher-order cotunnelling processes are also considered. Due to the Heisenberg un-
certainty principle, intermediate states which are energetically forbidden also referred
to as virtual states can occur only at very short time scales depending on the energy,
t ~ E~!. There are two possible intermediate states with a zero- or double-occupied

28
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quantum dot, shown in Fig. 3.2.

Within the time scale ¢, a further tunnelling process must take place such that the
final and initial states have the same total energy in order to make the virtual state
possible. In the case of the Kondo effect, in the final state the electron must have the
inverse spin of the initial state. This spin-flip process happens successively such that
the quantum dot and lead electrons form a spin-singlet state and screen the spin on
the quantum dot effectively. The formation of the spin-singlet is a macroscopically
correlated state and leads to a sharp peak in the quantum dot’s density of states at
the Fermi energy, depicted in Fig. 3.2. The width of this peak is called the Kondo
temperature, Tk, and only for smaller temperatures, 7" < Tk, do such processes
become significant. The Kondo temperature can also be interpreted as the binding
energy of the spin singlet. The side peaks corresponding to the two energy levels on
the quantum dot are determined by the coupling to the leads, I'.

The Kondo effect leads to an enhanced differential conductance at zero bias
voltage and low temperatures. This was first proposed in Ref. [177] and observed
in experiments by Goldhaber-Gordon et al. [21, 22] and Kouwenhoven et al. [23]. In
the next section, we review the origin and the first steps in understanding the Kondo
effect which led to the single impurity Anderson model.

3.3 Single Impurity Anderson Model

The origin of the motivation for the Anderson model goes back to 1936 when de
Haas and van den Berg [178] measured the resistance of gold at low temperatures,
up to T' = 20K. They discovered at temperatures around 7" = 7.5 K a minimum,
which was not expected at that time for metals. With this, the resistance at low
temperatures can be described by

D
R(T) = Ry + AT® + BT® + C'ln (T> , (3.5)

where the first term, Ry, is the residual resistance coming from scattering events of
conduction electrons with non-magnetic impurities, the second term is a Fermi gas
contribution of the conduction electrons, the third term comes from the interaction
of phonons with conduction electrons, and the, so far unknown, fourth term and
was later linked with the scattering of conduction electrons with magnetic impurities
which is the Kondo effect.

Almost two decades later in the 1950s, work by Zener [179], Yosida [180] and
Friedel [181] led to the nowadays often called Kondo model?. The model describes
an exchange spin interaction between an immobile local impurity spin and conduction
electrons. The Hamiltonian reads

H = Zekclgcka +JS s (3.6)

ko

2This model is also called the s — d exchange model.
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where CLU and ¢, creates and annihilates a conduction electron with energy ¢, and
spin o, J is the exchange coupling constant and S and s are the spin operators of
the immobile impurity and conduction electrons. The formation of local moments®
are not included in this model. In 1961, Anderson [20] suggested a more extens-
ive model, which is named after him, and presented a Hartree—Fock calculation for
the forming of local moments. Later Schrieffer and Wolff demonstrated that the
single impurity Anderson model in the Kondo regime can be unitary transformed
to the Kondo model [182]. Also in the early 1960s, the purity of the materials was
drastically improved such that the resistance minimum could be connected to the
magnetic impurities experimentally. In 1964, Kondo derived the logarithmic term in
the resistance in Eq. (3.5) with a third-order perturbation expansion in the exchange
coupling J from model then named after him [183]. It follows that, the resistance
diverges for T' — 0 which imposes that the perturbation theory must breakdown
for very low temperatures. This was referred to as the Kondo problem. Only a
year later, first non-perturbative calculations were carried out by Abrikosov [184],
Suhl [185], Nagaoka [186], and Kondo [187], who suggested a resonant scattering at
the Fermi edge that gives rise to a sharp resonance. For that reason, it should be
called the Abrikosov—Suhl-Nagaoka—Kondo resonance. Nevertheless, all calculations
diverge and could not be applied for temperatures far below the Kondo temperature.
Furthermore, Anderson’s new poor man’s scaling idea [188] has the same fault. Non-
etheless, this scaling idea led to Wilson’s numerical renormalisation group in 1975
[53]. With that, the first calculations far below the Kondo temperature could be
performed.

Originally, the Anderson model was invented to explain the formation of local
moments in bulk metals. The SIAM, which we introduce in the following subsection,
perfectly models a quantum dot coupled to leads. A quantum dot provides the
perfect possibility to study an isolated magnetic impurity in all detail because of the
tunability of all parameters. This is in contrast to bulk metals and is a big advantage.

3.3.1 Hamiltonian and Action

The SIAM consists of three parts describing the quantum dot, Hp, the non-interacting
metallic leads, Hy,, and the tunnelling between leads and quantum dot, Hr,

with
Hp = Z Eoong +Unyn (3.8)
Hy, = Z(ekp - ﬂp)clpackpa 5 (39)
kpo
Hy = — Z(tpc;rcpadU + t;dlckpa) ) (310)
kpo

3Local moments can be formed by magnetic impurities.
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where 0 = +£1/2 ~1, | denotes the spin index, p = £ ~ L, R labels the left and
right leads, and k is the index of the spectrum of the lead electrons. The creation
and annihilation operator of quantum dot electrons with spin o are d! and d,, hence,
the occupation number operator of quantum dot electrons is given by n, = did,.
Analogously, CLPJ and ¢y, creates and annihilates a lead electron. The single electron
energy, Fy, is controlled by the gate voltage. In the presence of a magnetic field, B,
the single electron energy is spin dependent due to the Zeeman splitting, Ey, =
Ey+o0B. U is the interaction energy caused by the on-site Coulomb repulsion. Each
lead has a chemical potential, y, = peVs, which forms a bias voltage®, V. The
energies €, denote the single electron energies of the lead electrons. The tunnelling
probability between leads and quantum dot is given by the parameter ¢,, which we
assume to be symmetric, ¢, = tg = 7, throughout the thesis.

For the path integral approach to non-equilibrium physics, we need the corres-
ponding action of the Hamiltonian given in Eq. (3.7). The action is determined by
the Lagrangian which is a Legendre transform of the Hamiltonian. Therefore, the
action reads

S =Sp+ Sp,+ St (3.11)
with
Sp = /C ary d (10, — Eoy)d, — Udld;did, , (3.12)
Sy = /Cdt %cng(iat — €kp + Hp)Chipo (3.13)
Sp = /C At S (bl o dy + £ Chno) (3.14)
kpo

In the previous section, we discussed the Kondo effect and noticed that the
temperature is very important for the system. Only below the Kondo temperature,
Tk, do the necessary correlations between lead and quantum dot electrons prevail,
which give rise to the Kondo peak in the quantum dot spectral function. The Kondo
temperature was derived in Refs. [24-26] by applying the Bethe ansatz [189] to the

STAM and is given by
1T TU

in the particle-hole symmetric setup Eq = —U/2, where I' = 27|7|?py, is the hybrid-
isation between quantum dot and lead electrons. We assume a constant density of
states, pr, in the leads, see Sec. 4.4. Eq. (3.15) is valid for U > T.

3.3.2 Phase Diagram

The physics of the quantum dot is not determined by the total number of electrons
but whether it has an even number, which is then a non-magnetic state, or an odd

4This is a different convention than that used in Sec. 3.1.
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Figure 3.3: Tllustrations of the phase diagram of the single impurity Anderson model. De-
pending on the interaction strength, U, and gate voltage, Ey, the quantum
dot can be in four different regimes: the green marked area corresponds to the
empty orbital, the blue area to the double occupied, the black lines between
the green and red and blue and red areas to the mixed valence, and the red
area to the local moments or Kondo regime. The mixed valence regime is not
a sharp line as indicated on the left-hand side but rather a transition range
of the order of I' as depicted in the illustration on the right-hand side. The
Mlustration on the left-hand side is inspired by Ref. [190]

number of electrons on the quantum dot, which is a magnetic state. This is why
the STAM is a very good approximation of a real quantum dot. In the SIAM, the
non-magnetic states correspond to the unoccupied and double-occupied quantum
dot, whereas the magnetic state corresponds to the single-occupied dot. The two
non-magnetic states have a total energy® of

Egot = 07 (316)

B2 =2E,+U, (3.17)
and for the magnetic state

El. =Es. (3.18)

We assume that the quantum dot is single-occupied. If adding E2, — EL = —FEy > 0,
and the removal of one electron costs energy, EY, — FL, = —FEy > 0, then this state
is stable. In this situation, the quantum dot is Coulomb blockaded due to the on-site
repulsion interaction. From this consideration, we find the condition for the local
moment regime®, which is

U U U

— > F — > ——. 3.19

5 o+ 5 5 ( )
Strictly speaking, this consideration is only valid for zero temperature and in the

limit of a vanishing coupling to the leads, I' — 0. This is shown on the left-hand

5This can be naively read off from the SIAM Hamiltonian. However, due to the on-site Coulomb
repulsion, higher-order quantum corrections can change the exact values. We calculate the total
energy of an isolated quantum dot in App. C.

6We use the term “local-moment regime” and “Kondo regime” interchangeably but the Kondo
effect needs a finite coupling to the leads and lower temperatures.
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side of Fig. 3.3 where the different regimes of the STAM are only separated by a thin
line. On the right-hand side, the total occupation number, n = ny + n,, is shown as
a function of the gate voltage, Ey, for a fixed interaction strength, U, and a finite
coupling to the leads, I', depicted as a continuous transition around the points £y = 0
and Ey = —U, the so-called mixed valence regime.

3.4 Summary

In this chapter, we introduced quantum dots and their physical foundations, in partic-
ular the tunability of important parameters determining the physics of the quantum
dot. Moreover, we used a simple model to find an energy spectrum of the quantum
dot.

Subsequently, we discussed the Kondo effect in a quantum dot in different phys-
ical situations. The Kondo effect requires higher-order cotunnelling processes because
of the Coulomb blockade. The resulting intermediate state is energetically forbidden
but due to the Heisenberg uncertainty principle, can happen within short time scales.

At the end, we introduced the standard model of quantum dots, which is the
single impurity Anderson model (STAM). Originally, Anderson proposed this model
to describe the formation of local moments in bulk metals. However, it also describes
quantum dots which were invented much later. We argued in which parameter space
local moments are present in the STAM. This is the most important aspect of the
Kondo effect.
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Chapter 4

Applying the Two-Particle Irreducible
Effective Action to the Single
Impurity Anderson Model

In the previous chapter, we stressed the importance of quantum dots in the field of
condensed matter physics. This importance is due to the tunability of all quantities
that affect the physics of such systems. We discussed the physical setup of real
quantum dots. Moreover, we explained the Kondo effect in a quantum dot, which
has a tremendous influence on the electrical charge transport property. Finally, we
argued that the single impurity Anderson model (STAM) is an appropriate model for
describing quantum dots.

In this chapter, we apply the two-particle irreducible (2PI) effective action to the
SIAM Hamiltonian and derive the specific dynamic equations that we can solve nu-
merically. This model has two inconveniences: first, the interaction on the quantum
dot, which is a two-body scattering process that gives rise to the four-fermion vertex,
and second, the coupling to the leads. We start with the first point and hence, at
first, we limit our consideration to an isolated quantum dot. Although the derived
Kadanoff-Baym equations of motion for the full propagator are exact, they are not
solvable without any truncation of the self-energy, which diagrammatically means
not all Feynman diagrams can be taken into account. We begin with a loop expan-
sion of the 2PI effective action and go on with a non-perturbative approximation to
the 2PI part of the effective action, I'y, by summing up a certain class of Feynman
diagrams to infinite order with the help of a Hubbard—Stratonovich transformation.
For all considered approximations, we derive all the relevant equations to obtain the
results we present in Ch. 5.

At the end of this chapter, we extend our considerations from a closed to an open
system and discuss, in detail, how we treat the leads and implement them in our 2PI
formalism. With this knowledge, we can introduce observables in which the leads
play a tremendous role, like the linear and differential electrical conductance, as well
as the electrical current through the quantum dot.
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4.1 Dynamic Equations for the Single Impurity
Anderson Model

In Ch. 2 we derived an exact equation for the two-point Green’s function for a spa-
tially zero-dimensional, non-relativistic fermionic system without any further spe-
cification to the model, especially concerning the interaction of the system. In the
previous chapter, we introduced the STAM, which describes a quantum dot coupled
to finite temperature leads. We will, in this section, discuss the general shape of the
Kadanoff-Baym equations of motion for the SIAM before we review approximations
to the interaction of the system in order to make it possible to solve this equation
numerically.

We consider a non-relativistic system at low temperatures and energies. Further-
more, the spin of each electron is assumed to be conserved. Thus, we assume that
the two-point Green’s function is diagonal in the spin space, D, ~ d,). Hence, we
can write D,, = D, without implying a sum over the same indices. Thereby, the
two-point Green’s function, which is a 2 x 2 matrix in spin space, is reduced to its
diagonal elements. With that, the Kadanoff-Baym equations of motion also simplify
to

(10— M,(0)) o (1,1) = [ dusig (e, ) ()

, (4.1)
t t
(i@t - Mg(t))Fg(t, t)= [ dusp(t ) Fy(ut) — [ dusE(twp,(ut),
0 0
where the effective mass term
M,(t) = By + 29 (2) (4.2)

is given by the single electron energy, Ey, and the local self-energy contribution, (%,
which will be determined in Subsec. 4.2.1. Also, the symmetries of the statistical
propagator, F', and the spectral function, p, in Eq. (2.9) simplify to

Fa(t7 t,) = F; (t,7 t) ) pa(tv t,) = _p:r(tlv t) : (43)

From these symmetries, it follows that the statistical propagator, F', has a symmetric
real part and an anti-symmetric imaginary part, and that the spectral function, p, has
an anti-symmetric real part and a symmetric imaginary part. For later times, when
the system reaches equilibrium and both functions only depend on the difference of
the times, the Fourier transform with respect to this gives a purely real statistical
propagator and an imaginary spectral function in Fourier space.

In the following subsections, we show possible approximations to the 2PI part of
the effective action.

4.2 Loop Expansion of the 2Pl Effective Action

In the previous section, we derived the general exact dynamic equations for the
isolated quantum dot. To solve these equations, we need an expression for the self-
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4.2 Loop Expansion of the 2PI Effective Action

energy entering the dynamic equations. In general, we have to take into account all
two-particle irreducible (2PI) diagrams which can be constructed from the on-site
quantum dot repulsive interaction term,

S = —/dtUde did, — . 44
t . rara @y /A\ (4.4)

This describes a two-to-two scattering process which couples up to down spins such
that at each bare interaction vertex, U (black dot), one full propagator goes into
the vertex and one out for spin up (blue line) and spin down (green line). This is
problematic because it is impossible to write down a closed functional expression for
all 2PI diagrams. Thus, we have to make some approximations or truncations to the
2PI part of the effective action and respectively to the self-energy. In this section,
we perform a loop expansion of the 2PI effective action for which we rewrite the
interaction part,

To[D] = > T87[D], (4.5)
n=2
as a sum of the number of bare interaction vertices appearing in all possible 2PI
diagrams,
n .Sin nl
(D] = —i <(1t)|> . (4.6)
(n=D! /oprep

The last equation means that we have to calculate the expectation value of a product

of a certain number, n, of interaction terms but with the condition that the con-

structed diagram is 2PI and the propagator lines in the Feynman diagram are full

propagators, D. This can be done by using Wick’s theorem [191], for example.
Additionally, we introduce the n-loop approximation,

Iy P D) = 3" YD) withn > 2, (4.7)

m=2

which is a sum of all 2PI diagrams constructed with up to n bare interaction vertices.

This procedure of loop expansion resembles the standard perturbation theory
but it is important to note, at this stage, that they are not the same because in
the Feynman diagrams, the solid lines represent full and not the free propagators.
The full propagator is calculated self-consistently from Eq. (4.1) which means that
each solid line consists of a multitude of diagrams up to an arbitrary power of bare
vertices, U, depending on the chosen approximation. This is the reason why this
type of approximation is called a loop expansion and not, as in perturbation theory,
a coupling expansion.

In the following, we carry out this loop expansion for the first three orders expli-
citly and then give an outlook for higher orders.
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Chapter 4 Applying the 2PI Effective Action to the SIAM

4.2.1 Mean-Field or Hartree—-Fock—Bogoliubov Approximation

We follow the instructions we introduced before and start with the simplest possible
approximation, which is well-established as a mean-field or Hartree—Fock—Bogoliubov
approximation [192-194]. To obtain this, we end the loop expansion in Eq. (4.7)
after the first term and therefore the corresponding 2PI diagram is made of one bare
vertex, U. Due to the structure of the bare vertex shown in Eq. (4.4), there is only
one possibility for connecting the external legs to two full propagator lines, D. We
need one for each spin to get a 2PI diagram,

IMF[p] = U /C du Dy(u, u) D, (u,u). (4.8)

The corresponding Feynman diagram is?
YD) = : (4.9)

In the dynamic equations, the information of the chosen truncation enters via the
self-energy. For this reason, we have to calculate the self-energy at mean-field order
by taking the derivative of Eq. (4.9) with respect to the full fermion propagator, D,
to obtain

SME (g 1) = iU /C dud(u — 1)8(u — t) Dy (u, u)

— iU D5 (t,t)8(t —t) (4.10)
— —iUny (1)6(t — ')

which corresponds to the Feynman diagrams

Yt t') = J Y (t,t) = Q (4.11)

This shows the meaning of the functional derivative of the 2PI part of the effective
action, which involves cutting and removing one full propagator line in the Feynman
diagram, respectively.

In the last step of Eq. (4.10), we used a subtlety that needs further explanation.
The propagator has a jump discontinuity at equal times and therefore, the value
depends on the limit as we approach equal times and is ambiguous. To make this
point clear, we look at the definition of the propagator in Eq. (2.1), which is the
time-ordered expectation value of the annihilation and creation operators,

lim D, (t,t — €) = (do(t)df (1)) = 1 — ng(t)

e——+0

_ (4.12)
Jim Do (t,t+€) = —(dl(t)d, (1)) = —ny(t).

IThe lowest possible Feynman diagram for a four-point interaction is often called a double-bubble
diagram.
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4.2 Loop Expansion of the 2PI Effective Action

The exact value for equal times is determined by the ordering of the operator in
the Hamiltonian. The Hamiltonian in Eq. (3.7) corresponds to the latter value in
Eq. (4.12). For more information, we refer to Ref. [145]. Since the lowest possible
2PI diagram consists of one bare vertex, the self-energy is only local in time and
gives a contribution to the effective mass term,

M, (t) = Eoy + Uny(t). (4.13)

The mean-field contribution shifts the bare one-particle energy level, Ey, by a value
that is linear in occupation number and interaction strength. In the mean-field
approximation, the occupation number is a constant in time because of the lack of
non-local contributions to the self-energy that give rise to memory integrals. This
changes when we go beyond the mean-field approximation in the repulsive interaction
on the quantum dot or when we couple the quantum dot to external baths.

Exact Solutions

Due to the simplicity of mean-field approximation, it is possible to find exact ana-
lytic solutions for the Kadanoff-Baym equations of motion. Since the self-energy
contribution of the lowest possible 2PI diagram in I'y is local in time, the memory
integrals on the right-hand side of Eq. (4.1) vanish. Therefore, the dynamic equa-
tions of motion become partial differential equations. We use Eq. (4.13) and yield
the Kadanoff-Baym equations at mean-field order:

(i@t - Mg>pg(t, ) =0

(4.14)

(@ - Mg) Fy(t,¢) = 0.
Although the mean-field self-energy contribution, which is proportional to the occu-
pation number, appears in the equation for the spectral function, both equations are
not coupled because the occupation number is a constant at mean-field order for an
isolated quantum dot. Thus, in the mean-field approximation, the Kadanoff-Baym
equations of motion are simple, first-order differential equations with the conditions

at equal times for the spectral function, p,(f,¢) = i, and statistical propagator,
F,(t,t) =1/2 — n,. We find the analytic solutions

po(t 1) = ie Mo lt=t)

) = (L) e (419
2

The solutions are plane waves with angular frequency, M,, which is similar to the

solution of a free theory but with shifted frequency. Since the solution only depends

on the relative time coordinate, we apply a Wigner transform to the time variables

t,t and map them to the relative s = ¢ — ¢ and absolute time T' = (¢ + ¢')/2 and
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Chapter 4 Applying the 2PI Effective Action to the SIAM

perform a Fourier transform of the spectral function with respect to the relative time
coordinate. We obtain

po(w) = 27id(w — M,), (4.16)
which describes a sharp located peak and therefore, the state has an infinite lifetime
t ~ 71, with the width I'. This situation alters drastically when we couple the dot
to external baths because then the dot electrons can tunnel off the quantum dot,

which means that the state can decay in time and we expect a finite lifetime, cf.
Sec. 4.4.

4.2.2 Second-Order Loop Expansion

In the next step, we go beyond mean-field approximations and take into account
Feynman diagrams of up to two bare vertices U, which means up to three loops.
Besides the two bare interaction vertices, the three loop Feynman diagram consists
of four full propagator lines, D (two for each spin),

Fég loop)[D] S U/Cdu Dy (u,w)D(u, u)

| (4.17)
—1—%UQ/Cdudu'DT(u,u’)DT(u’,u)D¢(u,u’)Di(u’,u)

and in diagrammatic language?
r@leop)ip) = + . (4.18)

This expansion is also called the second-order Born approximation [195]. The way to
connect the two bare vertices with full propagator lines stays unique even at second
order. This behaviour will change in the next order of the loop expansion, which we
will discuss in the following subsection. Since we already derived the self-energy of the
first diagram in Eq. (4.18), we now compute the self-energy of the three loop diagram
(basketball diagram) by taking the derivative with respect to the full propagator, D.
We obtain

2
=0 (¢, 1) :i /C dude §(u — t)8(u — t)Dy (', w) Dy (u, 0 Dy (', w)

2
- U2 [ dudu’ Dy, w)o(u’ — ¥)3(u ~ ) Dy (u, ') Dy (o, ) (4.19)
c
=U?D,(t,t)Dy(t,t')Ds(t', 1)
and in terms of Feynman diagrams®
St t) =¢——s.  SP(t1) = . (4.20)

2The three loop diagram is often called a basketball diagram.
3The self-energy Feynman diagram corresponding to the three loop diagram of the 2PI effective
action at second order is often called a sunset diagram.
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4.2 Loop Expansion of the 2PI Effective Action

Since the self-energy at second order is non-local in time, the contribution appears
as memory integrals in the Kadanoff-Baym equations of motion. We split Eq. (4.19)
into its spectral and statistical parts and obtain

S5 (t,¢) =U? [E,60) (1B 2(0,0) = Jlos (1, 0)
_leptf (tv t/) (Fc_f<t7 t/)p;(t, t,) + F; <t7 t/>pc_r(t7 t,)>:|

r 1
St #) =U% | 1,8 (I8 8) = {1palP(11)

ol ) (Fo 6 0) + B30, )00, ]

(4.21)

where we used the symmetry relations in Eq. (4.3) to bring the time arguments in
the spectral function and statistical propagator to the same order.

With a look at Eq. (4.21), it becomes immediately clear that the Kadanoff-Baym
equations of motion increase drastically in complexity in comparison to the mean-field
order due to the non-local contribution to the self-energy. First of all, the dynamic
equations are a closed set of coupled integro-differential equations and second, the
equations are non-Markovian because of the memory integrals which describe many-
body corrections. Even at second order the Kadanoff-Baym equations of motion are
no longer analytically solvable and therefore, we need numerical techniques in order
to obtain results from them.

4.2.3 Third-Order Loop Expansion

At third order or four loop expansion, the construction of 2PI diagrams is no longer
unique and we get more terms that we have to take into consideration. The 2PI part
of the effective action, I'y, reads

4 U®
Fg)[D] = 6zgz/cdxdydz
<Dg(x, Y)D5(y, x)Dy(y, 2) D5 (2,y) Dy (2, 2) D5 (2, 2) (4.22)
+D4(,5)Ds (@, ) Da(y. 2)Da(y:2) Dy (2,2) s 2:)

and diagrammatically

(D] O +A +© +A . (4.23)

These diagrams consist of three bubbles, where the first and the last are connec-
ted to each other. In every bubble, the propagators have opposite spin but either
with propagators directed in the same or in opposite directions. A third possibility,
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Chapter 4 Applying the 2PI Effective Action to the SIAM

with alternating spin bubbles, can only occur with an even number of bare vertices
because otherwise four propagators with the same spin would be connected to one
vertex. We can compare this to the Feynman diagram with one less vertex. As we
discussed before, there is only one way to write down a 2PI diagram but we can
look at it in the aforementioned manner. While the first two mentioned topologies
of Feynman diagrams exist at all orders starting with two bare vertices, the other
exists only for an even number of bare interaction vertices. In the next section, we
introduce a non-perturbative resummation scheme where we sum up a special class of
Feynman diagrams to all orders. We will recover these three topologies of diagrams
and distinguish three different channel resummations.

Taking the functional derivative of Eq. (4.22) with respect to the full propagator
we obtain

SO, ) = —iU® (Dg(t,t’) [ 42 Do(t,2)Ds (2, 8) Dy (5, ) s ¢, 2)
¢ (4.24)
D1, 1) /C dz Dc,(t,z)D(—,(t,z)DU(z,t’)Dg(z,t’))

and in Feynman diagrams

00.0) = (0 + AN + (D + [,
=Y (1) _QJFAJFQJFA.

We decompose the self-energy into its statistical,

(4.25)

et =U?

— Fy(t,1) ( / "z (p B+ Fopl) (1, 2) (FL s — }lpz:pa) ()

+ /0 "as (FoF; - ipa,o:;) (t,2) (P3Fs + Fips ) (¢, z))
= o 00) [ (oo s + Eopt)(1,2) (05 + Fips) (12

(4.26)

— F5(t')t) (/Ot dz (pUFg + nga) (¢, 2) (F0F5 — ipop&)(t’, 2)

+ /Ot/ dz (FUFE — lepgp;,) (, z)(nga + ng(—,) (t, z))

— ip(—,(t/, t) /t,t dz (poF(—, + Fopc—r)(t, z) (pUF;, + Fop(—,)(t’, z)] ,
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and spectral part,

1
SOt t) = UP Zp;pg)(t', 2)

— ps(t,t)) ( /0 "z (po P2 + Fopt) (1, 2) (F s —

t/

+ dz *papg)(t z)(pJF +F*pg> (t, z))

t
LBt 1) / Az (poFz + Fopl) (t.2) (05 Fs + Fips ) (£, 2)
t/
/ . ] o (a2
- p&(t 7t) (/0 dZ (poF6 + FUP&) (ta Z) (FUF& - Zpap(?) (t >Z>

+ dZ 4papa> (ta Z) (paF& + Fop&) (t/a Z))
+ F&<t/7 t) /t dZ (nga + Fap&) (ta Z) (IOUFEr + Faﬂ&) (tlv Z)] )
+

where we used the shorthand notation (pUFg‘ + ngj;> (t,z) = po(t,z)Fi(t,z) +
F,(t,2)pL(t,z). These equations make clear that not only the number of possible
diagrams increases with the order n but also the complexity of the resulting equa-
tions. This is obvious because the functional derivative with respect to the full
propagator, D, cancels two time integrations in the effective action, therefore n — 2
remain. If one of those integrations is left in the self-energy, we can manage to solve
the Kadanoff-Baym equations of motion numerically. In general, it is also possible
to solve them with more integrations but the computation time increases drastically
and so either the time step size must be large or only short times can be considered
in the time evolution. In both cases, we cannot expect to observe physics of interest
in our research.

4.2.4 Higher-Order Loop Expansion

We could go on with the procedure introduced in Sec. 4.2 to even higher orders but
this becomes very tedious and, for practical purposes, not feasible. Thus, we limit
our discussion of higher-order loop expansion of the effective action to the Feyn-
man diagram representation. Possible Feynman diagrams with four bare interaction
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vertices are given by

30D = mm + + +

+ A e+ . C N> B (4.28)

Besides the first three diagrams that we have recognised in the previous subsection
as three possible kinds of diagram that appear for every even number of bare vertices
(the first diagram)? and for any number (the next two diagrams)®, Feynman diagrams
appear with a novel structure that could not have been assembled with fewer bare
interaction vertices. In comparison to the three aforementioned topologies, these new
diagrams cannot be regarded as a sequence of bubbles where the first and the last are
connected to each other. This is because the full propagators depicted inside the outer
circle do not link two adjacent but the vis-a-vis bare interaction vertices. For this
reason, these diagrams will not be considered in the leading-order non-perturbative
channel resummation of the 2PI effective action in the next section.

4In the next section, these diagrams will appear in the direct (s)-channel resummation.
°The first two diagrams will later appear in the particle-hole (u)-channel resummation and the
last two in the particle-particle (t)-channel resummation.
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4.3 Non-Perturbative Resummation of the 2PI Effective Action

4.3 Non-Perturbative Resummation of the 2PI
Effective Action

In the previous section, we performed a loop expansion of the 2PI effective action
and showed the expansion starting from the leading-order expansion in U, which is
mean-field with a ‘double-bubble’ diagram, continuing with a second-order ‘basket-
ball” diagram and ending with the third order. In this section, we summarise the
resummation of certain classes of diagrams to infinite order. This procedure clearly
goes beyond the previous discussed loop expansion. In particular, we will consider
summations of s-, t- and u-channel bubbles, often also termed resummations in the
direct, particle-particle, and particle-hole channels. In the direct (s)-channel, bubbles
with alternating spins make up the chains where, in each bubble, the two propagators
describe the same spin component. This is similar to the next-to-leading-order 1/N
approximation for N-component scalar fields [107, 113] and fermionic fields [126]. In
the particle-particle (t)- and particle-hole (u)-channels, each bubble consists of two
opposite spins propagating in the parallel or anti-parallel directions, i.e. ordering of
d, and d in the propagator, distinguishing between the so-called particle-particle
(t)- and particle-hole (u)-interactions. In this thesis, we extend the prior work in
Ref. [145] by the particle-particle (t)-, particle-hole (u)-, and newly defined stu-
channel calculations.

4.3.1 Hubbard-Stratonovich Transformation

The Hubbard—Stratonovich transformation [196, 197] provides an elegant way to
perform this resummation. This transformation uses a kind of bosonisation where
two fermionic operators in the four-point interaction term are replaced by an aux-
iliary bosonic field. Due to four different fermionic operators, there are three ways
of doing this which are related to the three types of resummations. The Hubbard—
Stratonovich transformation converts the four-point interaction vertex to a Yukawa-
like coupling® term, where two fermionic fields are coupled to one auxiliary bosonic
field and the resulting new action is Gaussian in the new fields. Due to the integ-
rability of these integrals, this transformation is exact.
We use the substitution for the on-dot interaction term

— JEAT e = xTAx + 20 x (4.29)

_Xl _iOl 71_ 01
R U B I

where x is a vector with the new auxiliary bosonic fields y; and x2, A is a matrix,

with

61n elementary particle physics, the Yukawa interaction describes the interaction of a Higgs boson
with two fermions. This can be generalised to an interaction of an arbitrary scalar field to
fermionic fields.
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A~1 is its inverse matrix, and the J operators are given by

1 deT> 1 (d*d*) 1 (de
Jo= o L= == ). (4.31)

2 <dfd¢ t 2 \dydy 2 \dyd]
This corresponds to the three kinds of bosonisation we take into consideration. If we
put all this into Eq. (4.29), we obtain, on the left-hand side, the on-dot interaction

term shown in Eq. (3.8) and on the right-hand side, the free part for the quantum
dot electrons, which gives the new transformed action

1
Sdot = /cdt <Z df (i0, — Eog)ds + TR ‘zint{) : (4.32)

The new Yukawa interaction Lagrange densities, which are resummation scheme
dependent interaction terms, (£ =s, t, u), are

Lrnes = dldyxr + dldyx (4.33)
Loy = dbdx1 + dydixa, (4.34)
Lot = dbdyx1 + dyd] X2 . (4.35)

The free inverse propagator for the fermions, Dy, and the auxiliary bosonic fields,
Gy, is given by the quadratic part of the action or the second derivative of the
action with respect to the fields, that is

Gyl (t, 1) = 2A0(t — 1),
for s-channel (4.36)

otherwise

iDg, (t,1') = (i0; — Eoo)0(t —t') + {gaé(t —1)

The free inverse propagator, Gy ', is a 2 x 2 matrix, where G denotes the resummed
full bosonic propagator and Y, is the expectation value of the bosonic fields, x,. The
corresponding 2PI effective action can be written as

TG, D, X] =Sdore[X] —iTr[ln D' + Dy' D]

i . . (4.37)
+3 Trln G~ + G, G| + I'y[D, G,

where I'; includes all 2PI diagrams according to the new three-point Yukawa vertices
in Egs. (4.33), (4.34), and (4.35) with the full fermionic and bosonic propagators.
In the following subsections, we present the lowest-order contribution for the three
channels explicitly.

The self-energy of the quantum dot electrons and the auxiliary bosonic fields is
given by the derivative of the 2PI part of the effective action with respect to the full
propagators,

Se(t,t) = — MG; ziy
3D, (1) (.38)
(¢, ) =2 O1[G, D] |
oD 6Gro (1)
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From the stationary condition, we obtain the equations of motion for the propagators
or two-point functions for the dot electrons and the auxiliary bosonic fields

oT
gﬁz—ﬂ—D*+Df%HE:0 = Dy'=D"'+3%
o L (4.39)
5o = (GG —gT=0 = Gyl =GN I

For both propagators, we get the Dyson equation but the self-energies are, in general,
functionals of the fermionic, as well as the bosonic, full propagators.

We convolve the Dyson equation for the auxiliary bosonic fields with the free
propagator, Gy, from the left and the full propagator, G, from the right,

G(t,t') = Go(t,t') + (Go x I x G)(¢,1'), (4.40)
where the asterisk denotes a convolution along the Keldysh contour, C,
(iA * B)(t, /du1Atu) (u,t")
_/QMAPthFut /<MAthB%ut) (4.41)

— 5sgn(t—t) duAp(t w)B?(u,t).

The free propagator of the auxiliary bosonic fields, G, is the functional inverse of
the first line in Eq. (4.36), that is [ du Gy (¢, u)Go(u, ') = 15(t — t') and we obtain

Golt,t') = %A*la(t ) = iUo8(t — ') = Goolt — ). (4.42)

We defined Gy = iUy with o1, the first Pauli matrix. We yield for the convolution
of the free propagator with the self-energy of the auxiliary bosonic fields

(Go * II)(t, ') /du God(t — u)Il(u,t') = iU (gi g‘fz) (t,1'). (4.43)

Solving the Dyson equation for the auxiliary bosonic fields iteratively, we obtain

AN 01 4\ 772 H22 H21 /
G(t,t') =U <1 O) ot—t)-U M, I, (t,t)
: IIp * g + Ilog % 111 Tlgy * Ilpy + Ilpg * 11
_ s (Mo ¥ Hae 22 % Lo Loy * Loy 2% L) (4 4y 4 O(UY.
: (Hn  Ilpp 4 Hig * i iy * Moy + Il * Ilyy (t,%) )
(4.44)

The solution is a sum of bubbles represented by different I at all orders. We explained
the general approach for the resummation of an infinite number of Feynman diagrams
of a certain class. In the following subsection, we derive the equations we need to
solve the Kadanoff-Baym equations of motion in this approximation scheme for the
three channels in the lowest order, which means including one resummed bosonic full
propagator. At the end of this section, we give an outlook beyond the leading-order
resummation.
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4.3.2 Direct (s)-Channel Resummation

We start the discussion of the direct (s)-channel resummation with the equations of
motion for the one-point functions of the auxiliary bosonic fields from the variation
or functional derivative of the effective action with respect to the fields

;XF((t)) llfxz( ) = Di(t,t) =0 = X2 = UD4(t,t)
1 (4.45)
;;2((% I1JX1( t) = Dy(t,t) =0 = x1=UD,(t,t).

The expectation values of the auxiliary bosonic fields give the mean-field contribution,
cf. Eq. (4.10), which enters the fermion’s free inverse propagator, Eq. (4.36), and
shifts the bare one particle energy Ey, ¢f. Eq. (4.13). From the new Yukawa couplings
given in Eq. (4.33), we have to construct the lowest possible 2PI diagram to get the
leading-order term in the s-channel resummation which reads

[y5[G, D] = Z/dudu Dy(u,u)Dy(u', 1) G yo (u, u') (4.46)

and in Feynman diagrams
I'ss[G, D] = + NN (4.47)

The blue and green solid lines correspond to the spin up and down full fermion
propagator and the wiggly line denotes the resummed bosonic propagator. From the
[’y part of the effective action given in Eq. (4.46), we can compute the self-energy of
the auxiliary fields as

W0 (t,t) = —D, (t,t') Dy (t', 1) = I, (1) .

4.48
HO’& (t7 t,) - 0 ( )

and diagrammatically
Iy (t, 1) = ; I, (t,t) = , (4.49)

which represents a bubble with the same spins but opposite directions. We then split
Eq. (4.48) into its statistical and spectral parts,

1
_H50<t7t/) = |F0|2(t?t/) - Z|p0|2(tvt/)a

(4.50)
TP (1) = 23%(%(15, t’)F;‘(t,t’)) |
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Similar to the self-energy of the auxiliary bosonic fields, we obtain for the fermions’
self-energy

O[G, D] 1 / / /
_léDg(t’,t) = 2Da'(t7t )(Ggg(t,t )+ Gool(t ,t))

= D, (t,t)Goo(t,t'),

Bolt,t) = (4.51)

where we have used the symmetry relation G,,(t,t') = G,,(t',t) which is a direct
result of the symmetries of the bosonic self-energy bubbles in Eq. (4.48). Diagram-
matically, it reads

Yt t') = Q, T (t, 1) = g, (4.52)

We split the fermion self-energy into its statistical and spectral parts,

1
Fﬂ(tv t/)Gga (tv t/) - ZPU(tv t/>Ggo(t7 t/> )

So(6,1) = pa(t,1)Gog (t,1) + Fy (1, 1) G, (t,1).

SE(t, )

(4.53)

From Eq. (4.48), it follows that the self-energy of the auxiliary bosonic fields has
vanishing off-diagonal elements and the diagonal remains because the propagators
occurring in Eq. (4.46) have the same spin indices. The solution for the full resummed
bosonic propagator in the direct (s)-channel can be read off from Eq. (4.44) with
Eq. (4.48) as

T AU O Ny U D S VI R 0 oy * 1114
G_1U<1 ())5 U(o H11> o (HH*HQQ 0 )

(4.54)
+U4<H22*H11*H22 0 >—|—~~~,

0 H11 * HQQ * Hll

where we have suppressed the time arguments. Since only the diagonal elements
appearing in the self-energy of the fermions in Eq. (4.51) are those entering the
Kadanoff-Baym equations of motion, we write down the Feynman diagrammatic
representation of the diagonal elements of the full bosonic propagator, G,

° e + o ® O(U6)
AN = (4.55)

+ + O (UY),

where the two cases belong to the two possible leading-order 2PI diagrams shown in
Eq. (4.47). The elements of the full bosonic propagator, GG, can be written as coupled
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Chapter 4 Applying the 2PI Effective Action to the SIAM

recursive equations,

Goo(t, 1) = iU(ls5 * Gop)(t, 1) — Ulss(t, ), Gou(t,t') =
Gss(t, V) = iUy % Gop)(t, ') — UTlye(t, 1), Gus(t,t') =

—e

Uy * Goo ) (£, 1),
U5 * Go5)(t, 1) .
(4.56)

—e

These equations can be split into statistical and spectral components with Eq. (4.41)
and we have used this to calculate the effective coupling in App. B.1.

4.3.3 Particle-Particle (t)-Channel Resummation

We follow exactly the same steps as in the previous subsection for the direct (s)-
channel resummation to derive all the relevant equations we need in order to solve
the Kadanoff-Baym equations of motion. Unlike in the direct (s)-channel, the ex-
pectation value of the auxiliary bosonic fields vanishes,

or or
0X1 0X2 ( )

Hence, the mean-field contribution must come along with the resummed bosonic
propagator. We construct the lowest possible 2PI diagram from the Yukawa coupling
in Eq. (4.34), which reads

I'94[G, D] = %Z/Cdu du’ Dy (u, u')Ds(u, u")Gys(u', u) (4.58)

and in the Feynman diagram representation
I94[G, D] = Q + @ (4.59)

Due to the mixed spin indices appearing in the I'y part of the effective action in
Eq. (4.58), the self-energy of the auxiliary bosonic fields has only off-diagonal entries,

I,5(t,t") = =D, (t,t")D5(t,t') = 5, (t, 1),

Lot 0 (4.60)

with the corresponding Feynman diagram

HTi(tv t/) = /)-\ = HH(t’ t/) ) (4'61)

which is a bubble with opposite spins but with the same direction. We split the
self-energy into its statistical and spectral parts,

1
_H5&<t7 t/> = Fﬂ(ta t/)F5<t7 tl> - Zpo(t> t/)p&(ta t/) )

—I0,(t, ') = po(t,t') F5(t,t") + F,(t, 1) ps (L, 1) .

(4.62)
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4.3 Non-Perturbative Resummation of the 2PI Effective Action

The fermion self-energy follows from taking the derivative of Eq. (4.60) with respect
to the full fermionic propagator, D,

Y, (t,t) = ;Dg(t’,t) (Gw(t,t’) - Gw(t,t’)> = D;(t', t)Gos(t, 1), (4.63)

where we took advantage of the symmetry relation G,5(t,t') = Gz,(t,t') coming
from the symmetry of the bosonic self-energy in Eq. (4.60). Diagrammatically, it

reads
Yt ) = AN, Y (t,t) = m (4.64)

The statistical and spectral parts of the fermion self-energy read

1
Vot ) = F3 (6, ¢) G (t,1) = 2056 1)Gos (4 ),
So(t.t) = py(t, 1) Gop (t,1) + Fy (8, 8) Gl (t,1)

(4.65)

where we used the symmetries for the statistical and spectral function to bring the
time arguments in all terms to the same order. With Eq. (4.60), we can read off the
solution of the resummed bosonic propagator, G, in the particle-particle (t)-channel
from Eq. (4.44)

s 01 772 0 Iy 773 0 oy * Iy
G =iU (1 0>6 U (ng 0) iu <H12*H12 0 )

(4.66)
—|—U4< 0 H21*H21*H21>+.H

Iy * Iy * 1o 0

If we put the first term in Eq. (4.63), we get exactly the mean-field contribution.
Thus, we define the resummed bosonic propagator without the mean-field contribu-
tion as G = G — iUo6. This reads, in Feynman diagrams,

v + + O (UY

AN = (4.67)

UJF + 0 (UY

which is an infinite sum of bubbles with opposite spins pointing in the same direc-
tion. The two cases correspond to the two off-diagonal elements of the full bosonic
propagator, GG, which can be determined by the recursive equation

Gos(t, 1) = iUy * Gog ) (t, 1) — U, (¢, 1) . (4.68)

We split it, with the help of Eq. (4.41), into its statistical and spectral parts in
App. B.2 to calculate the effective coupling.
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Chapter 4 Applying the 2PI Effective Action to the SIAM

4.3.4 Particle-Hole (u)-Channel Resummation

We continue with the last channel resummation and derive the equations of motion

for the one-point function of the auxiliary bosonic fields,
or or
X1 dX2 ( )

As in the particle-particle (t)-channel, the expectation value vanishes and therefore
the mean-field contributions come from the resummed propagator. The 2PI part of
the effective action, I's, reads for the lowest possible 2PI diagram from the interaction
term in Eq. (4.35),

Dy [G, D] = % 3 /C dudu’ Dy (u, u') Dy (0, 1) G (1, ') (4.70)

and in terms of Feynman diagrams,
[y.|G, D] = QJF@ (4.71)

The structure looks very similar to the particle-particle (t)-channel but with opposite
directions of the fermions. Hence, the self-energy of the auxiliary bosonic field has
also only off-diagonal entries and reads

o (t,¢) = —D,(t,t')Da(t',t) = Iy (t, 1) .

4.72
,,(¢,t) =0, ( )
diagrammatically,
HN(t> t/) = /)-\ = HH(t/’ t) ’
(4.73)
(¢, t) = \(_/ = Iy (¢, 1)
and split into its statistical and spectral components,
1
—E_(t,t) = F,(t, ) Fi(t, 1) — = p,(t,t)pi(t, 1),
() = Pt ) FS(4Y) = 1on(t )05 (0, -

—M5s(t,1") = po(t, 1) F5 (8, 1) + Fo (1) p (¢, 1) -

We take the derivative of Eq. (4.70) with respect to the full fermion propagator, D,
to calculate the fermionic self-energy and obtain

Ea(t7 t,) = ;Da(tv t/) (Gaa(t/7 t) + G&a(ta t,)> - D&(tv t,)Ga6<t/a t) ) (475)
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4.3 Non-Perturbative Resummation of the 2PI Effective Action

where we used the symmetry relation G,5(t',t) = G5, (t,t’), which is a direct result
of the symmetry of the self-energy in Eq. (4.72). The diagrammatic representation

IRV VV, VS Y (t,t) = Q (4.76)

and split into its statistical and spectral components,

(e

YP(t 1) = ps(t, t)GE (1) 4+ Fy(t, t)Go (L, 1) .

1
YY) = Fs(t,t)GE (8, 1) — = ps(t, ) G2, (£, 1),
(t,t) (t, 1) G5, (1) 40( )G (L, 1) (477)

From Eq. (4.44), it follows that the solution for the resummed bosonic propagator in
the particle-hole (u)-channel, with the help of Eq. (4.72), is

. 01 772 0 H21 773 0 Hgl*Hgl
R I I PR

0 IIgy * Il * II
4 21 21 21
T U <H12 * ng * ng 0 ) +

(4.78)

and the diagrammatic representation for the off-diagonal elements is

+ + 0 (U
OO
v + \/\ + OUY) .

The off-diagonal elements obey the recursive equation

Gos(t, 1) = iUy * Gog)(t, 1) — Uz, (t, 1), (4.80)

which we split, with Eq. (4.41), into its statistical and spectral components in
App. B.3 to calculate the effective coupling.

4.3.5 stu-Channel Resummation

Above, we discussed three different resummation channels according to the spins and
direction of the fermionic propagators in the loops of the Feynman diagrams. All of
these are directly derived from the underlying theory and therefore contribute to the
physics. However, some diagrams can be more important depending on the physical
situation. From this point of view, it is natural to define a new channel where all
the three different channels are taken into consideration at the same time. However,

23



Chapter 4 Applying the 2PI Effective Action to the SIAM

we have to be careful when doing this because diagrams in one channel can also be
in one of the others. Thus, we define

F2,stu [Da G] :FQ,S [Da G] + F2,t [Da G]

4.81
+F2,u [DvG] _FQ,O [D7G] ) ( )

where I'y 4 denotes

Ion=I'ys NIy +T9s NIy,

(4.82)
+ Tt NIy —TosNTat NIy,

which prevents over-counting of the diagrams. Inserting the leading diagram of
Eqgs. (4.55), (4.67), and (4.79) into Eqs. (4.47), (4.59), and (4.71), we can see that
the second order diagram

r2vdp) = (4.83)

is already included in all channels and hence it must be subtracted twice from the
sum of all channels. Therefore the corresponding non-local self-energy, which enters
the dynamic equations for this channel, is given by

Efrtu (tv t,) :Ersy (tv t/> + Eztj (tv t,)

4.84
+ 38 (1) =252 (4, 1) . (4.84)

The local self-energy contribution arising from the double-bubble diagram is treated
separately.

4.4 Implementing the Leads in the 2Pl Formalism

At the beginning of this chapter, we focused on different non-perturbative truncations
of the 2PI effective action for the isolated quantum dot with a repulsive on-site
interaction. In this section, we explain how we implement the coupling of the leads
to the quantum dot into the 2PI formalism. Initially, we assume that there are no
correlations between the leads and the quantum dot and therefore, the density matrix
of the entire system is given by the tensor product

p(to) = pp @ pr.. (4.85)

Furthermore, we assume that the leads are in thermal equilibrium, hence the density
matrix of the leads is described by a grand canonical ensemble, p, = exp(—/S(H —
uN)), with the inverse temperature” 3 = T—!, chemical potential y, and occupation
number N. Since the leads are an infinite system in comparison to the quantum

"The inverse temperature is 3 = (kgT)~! with the Boltzmann constant kg. However, we set
kg =1.
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4.4 Implementing the Leads in the 2PI Formalism

dot, tunnelling processes to and off the quantum dot do not drive the leads out of
equilibrium. In Sec. 2.5, we explained, with the inclusion of a thermal density matrix,
that we need to extend the close time path by a finite strip along the imaginary time
axis and therefore, in this section C denotes the Konstantiov-Perel’ time path [172].

In the SIAM, electrons form non-interacting metallic leads such that the model is
quadratic in the lead electron operators and we can integrate them out exactly, which
is why we do not have to make any further approximations in this procedure. In the
following, we neglect the quantum dot part of the STAM Hamiltonian in Eq. (3.7)
and focus on the lead in Eq. (3.9) and tunnelling part of the action in Eq. (3.10) to
write down the path integral representation of the partition function,

Z[d,d"] = /D[c, ' exp [i/cdtz (c,tpg(iﬁt—ekp)ckpg—i—Tcho_da—i—T*dickpU)} . (4.86)
kpo

We shift the lead electron fields that we integrate over,
cﬁcpg = Chpo + T(10; — ekp)_lda , cgpo_ = CLPU + 77(10; — ekp)_ldf, (4.87)
to complete the square and arrive at a Gaussian integral in the new primed fields,

Zld,d"] = /D[c/, M exp [i/cdtz (cgpa(iat — €kp) Chpo
kpo (4.88)

7} (0, — ) 'ds )|
We perform the Gaussian integral over the shifted lead electron fields
Z[d,d] ~ exp {_ irf? [y diGio, - ekp)ldg} , (4.89)
¢ kpo

where the expression between the dot electron fields is the free propagator of a lead
electron. This is the inverse of the differential operator of the free theory

(10 — e (£)) Augo (1, 1') = Bc(t, 1) (4.90)

where €, (t) = €, is on the Keldysh contour and e,(t) = €, — o on the additional
imaginary strip. Ay, denotes the free propagator of the lead electrons that is also

defined by the time ordered product of an annihilation and creation operator, c.f.
Eq. (2.1),
iApo (1, 8) = (TeChpo (£l (1)) - (4.91)

The time evolution of the creation and annihilation operator is given by a phase
factor with the energy eigenvalue

Ckpg(t) = CkpU e*inpt ) C/TCPU (t) = CLIJU eiEkpt : (492)
We insert this into Eq. (4.91) and yield

T hpo (t)hpo(t') = (1=} Chpo)e "0t 1)l crpoe 0 —1) . (4.93)
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Chapter 4 Applying the 2PI Effective Action to the SIAM

The occupation number operator can be expressed with the Fermi-Dirac distribution
function, known from quantum statistics, as

1

eBlerp—rn) + 1 = flerp — p) - (4.94)

<Nk]?0> = <CJI[€pJCkPU> =

With this and the relation 26(¢) = 1 + sgn(t), we get the statistical and spectral
components of the free lead electron propagators

1 ‘ /
AB(4,8) = =i (5 = Flew — 1) ) €700,
A (8, ) = e 70

(4.95)

Only the statistical component of the free lead electron propagator contains informa-
tion about the thermodynamic properties, like the temperature and chemical poten-
tial, of the leads. In addition to this, due to the Fermi—Dirac distribution function, it
has knowledge about the occupation probability of a state. Both components depend
only on the difference of the times, which indicates thermal equilibrium.

If we add the quantum dot part of the STAM Hamiltonian to the partition func-
tion in Eq. (4.89) and follow the same steps as in Ch. 2, we obtain the equation of
motion for the quantum dot electron propagator,

[D01+ilr|2A} «D=%xD+36. (4.96)

We can interpret the leads term as a contribution to the free inverse propagator of
the dot electrons or, alternatively, we can bring the term to the right-hand side and
interpret this as a contribution to the self-energy. We continue with the latter point
of view and get a contribution to each electron’s self-energy,

1 oy
—ir (5 = fle—m) e 40,
Zﬁ(l)(t,t,) — _i|7_|2e—iE(t—t,) )

EE(D@) t/) (4 97)

We get the entire contribution from all electrons in the lead by integrating over the
density of states of the lead, pr,. Thus, we replace the sum over k, which indicates
the energy of one electron, with an energy integral in the limits of the bandwidth,
D. We obtain, for either the statistical or spectral components of the self-energy,

N (7 (1)
St 1) = / de pr(e)=). (4.98)
-D
Throughout this thesis, we use the wide flat band limit, where we assume a constant
density of states. The one lead contribution to the spectral component of the self-

energy is given by

D : /
Se(t,t') = —i lim / de pp| 7|7 =) = —iD§(t — 1), (4.99)
D—oo J_D
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4.4 Implementing the Leads in the 2PI Formalism

where we have used the definition of the hybridisation I' = 27|7|?py,. For the statist-
ical part of the self-energy, we obtain

D 1 .
F N _ 1 2 (= _ —ie(t—t")
¥, (t,t) Dlgréo /4) de, pr|7| (2 f(e u)) e : (4.100)

In general, it is not possible to perform this integral analytically. However, in the
case of zero temperature and D > |u|, it follows that

r o gt
F AN F . —ie(t—t)
¥, (t, 1) Dlgréo yym /_D de sgn(e — p,)e

il e~ (=) — cos D(t —t')

= lim — (4.101)
D—oo 27‘[‘ t— t/
il e imn(t=t)

Torl =t

where P denotes the principal value.

Exact Mean-Field Solutions

The dynamic equations for the statistical propagator and spectral function are only
coupled through the effective mass term that includes the occupation number in
both equations. At late times, the occupation number is supposed to be stationary
and then it is a constant and both equations decouple. Therefore, we can solve the
dynamic equation for the spectral function independent of the statistical propag-
ator. Only the statistical component of the self-energy arising from the leads causes
problems and such a term does not exist in the dynamic equation for the spectral
function.

We apply a Wigner transform to the time coordinates which changes the times
t,t’ to the relative s =t — ' and absolute time T' = (¢ + ') /2 because at later times
when the system reaches equilibrium, the statistical propagator, F', and the spectral
function, p, only depend on the difference of the times. Hence, we have

Dupo(s) = ( M, —T sgn(s)) po(s). (4.102)

For this equation, we need an initial value to obtain a solution. From the fermionic
anti-commutator, we get an initial value p,(0) = i. With this, we get

ps(8) =iexp ( — iM,s — F|s]) (4.103)

and the spectral function in Fourier space reads
2il°
_ Mg)Q + T2’

po(w) = 1/—2 dsexp (i(w - M,)s — F]s|) = & (4.104)
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Chapter 4 Applying the 2PI Effective Action to the SIAM

with the expected normalisation
/00 dw 2il°
—o0 2T (W — M,)?2 4+ T2

In comparison to the mean-field solution of the isolated quantum dot in Eq. (4.16),
the state in the spectral function has a finite width of 2I" due to the coupling of the
leads. This leads to a finite lifetime of this state because electrons can tunnel off
the quantum dot. The effective mass term, M,, appears as a free parameter in the
spectral function. In the next step, we want to derive a constraint equation for the
occupation number, which also sets the effective mass. For that, we transform the
dynamic equation for the spectral propagator, F, to the new variable, T', which is
directed along the diagonal in the real time plane. However, we encounter a problem
because of the memory integrals arising from the leads that contain the statistical
part of the self-energy, due to the cumbersome term in Eq. (4.101). Since we are
only interested in the stationary value, we can push the times in the limits of the
integral to infinity. Then this integral is a convolution in the real time domain,
which translates to a normal product in Fourier space. Therefore, we have to apply
the inverse Fourier transform to the product of X} ;(w) = —I'/2 sgn(w) and the
spectral function given in Eq. (4.104). We do this only for equal times because
we are interested in the occupation number. This simplification makes the inverse
Fourier transform analytically solvable and we get
Ey+U ng)

> ir’
duX¥ (t,u)p,(u,t) = —— arct (
/_ U Digaq(t, ) po(u, t) arctan

The dynamical equation for the statistical propagator along the time diagonal reads
Ey+ Uns
)
where the first term on the right-hand side comes from the spectral part of the lead
contribution to the self-energy. In any case, this equation is only valid for large
times T" — oo because of the second term on the right-hand side. Therefore, we
can only extract the stationary occupation number from that and not the whole
time evolution. At large times, when the system reaches equilibrium, the statistical
propagator, F', and consequently the occupation number, is a constant. Thus, the
left-hand side of Eq. (4.107) is zero. With these considerations and F,(T) = 1/2 —
ne(T"), we can recover the known occupation number at mean-field, c.f. Ref. [20],
from the Kadanoff-Baym equations of motion derived from the 2PI effective action
. 1 1 t Eo + U Ng
ng—2—7rarcan< T )
We do not consider a magnetic field, which means that the occupation number for
up and down spins are the same, n, = nsz. This equation is not solvable analytic-
ally but it can be solved numerically or graphically. In the particle-hole symmetric
quantum dot, Fy = —U/2, the solution of the equation is n = 0.5. This is easy to
verify because, in this case, the argument of the inverse tangent function is zero and
therefore this term vanishes.

=i, (4.105)

(4.106)

ir
107 F,(T) = —iTF, (T) + - arctan ( (4.107)
T

(4.108)
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4.5 Electrical Current and Conductance

4.5 Electrical Current and Conductance

Now that we have discussed how to implement the leads in the 2PI formalism, we
can introduce the electrical current through a quantum dot. Electrical current is
transport of charges and therefore the product of the elementary charge and the
change of the occupation number. The contribution of one lead to the current through
the quantum dot is

L(t) = —eNy(t),  Ny(t) = Y (eho(eno(t)) (4.109)

ko
and the total net current is given by the difference of both contributions,
I, — Ig

5 -
We can compute the derivative with respect to the time of one operator with the
help of the Heisenberg equation®. Thus, we have to calculate the commutator of the
occupation number operator in Eq. (4.109) with the full Hamiltonian. The quantum

dot and the lead part of the Hamiltonian commutes with the occupation number
operator,

I =

(4.110)

[HD,NP] = [HL,NP] =0, (4.111)

because the first term does not contain a creation or annihilation operator of a
lead electron and the second term contains only the occupation number operator of
lead electrons. Therefore, we need to calculate the commutator of the part of the
Hamiltonian that describes the tunnelling between quantum dot and leads and the
occupation number operator
€. €.
_[p = _ﬁl[HT’p7 Np:| = _ﬁlz |: pkad +t dT Cpko’)a CLko.Cpko—}
e . (4.112)
ag

The index p attached to the Hamilton operator indicates that only one lead is taken
into account because the commutator of the two operators is non-vanishing if the
creation and annihilation operators of the lead electrons operate on the same lead.
The total electrical current through the quantum dot is given by the expression,

:_@Zp( o(Chiods ) = to(dicpro)) (£) (4.113)

We want to include this term in our path integral formalism. It is convenient to
calculate the electrical current just by taking the derivative of a source, in analogy
to the correlation functions,
(%
n=0 on In=

0 AU > (4.114)

I(ty) = —i—1InZ
(tm) = —i—In [n]nzo 7 on

on

8In the Heisenberg picture, an operator O obeys the Heisenberg equation dO/dt = i/h[H, O] +
00/ 0ot.
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Chapter 4 Applying the 2PI Effective Action to the SIAM

Therefore, we need to introduce an additional term to the action in the path integral,

which reads
17T€’I7

Sp(tm) = >0 (tpChioto — tydlcpno ) (tm) (4.115)

pko

At this point, we can also integrate out the leads degree of freedom with this addi-
tional term in the action, as we did in the previous section. We can just change the
tunnelling parameter slightly,

- T<1 + Tyt t)> , (4.116)

to get exactly the same form as before in Eq. (4.88), and arrive at

iStend = —il7[? Z/dt /dt di(t ( o (6, ) + WTa?pApka(t,t')
pho (4.117)

X [5(t’ —tm) — O(t — tm)Dda(t’) :

where we have dropped the term that is proportional to n? because it yields a term
with n after we take the derivative with respect to this source. We have to set this
source to zero and therefore it vanishes.

The goal is to derive a formula for the electrical current through the quantum
dot from this effective action. To achieve this, we have to take the derivative with
respect to the source, n, and obtain

Iy(tn) = =12 ([ A Do ) Ayt ¥
pho (4.118)

+/CdtDa(tm7t)Apka(t7tm))‘

The full quantum dot propagator comes from taking the expectation value. For the
next step, we split the product of the full quantum dot and the free lead electron
propagators into the spectral and statistical components. The latter will vanish due
to the integration along the Schwinger-Keldysh contour because one of the terms
has no sign function and the other has two but with the same time arguments. For
this reason, we only calculate the spectral part of it,

(Dol t) Aot ) = ot ) A s ) = Fo (1) A (£, ). (4.119)

We put this into Eq. (4.118), bring the arguments of the propagators for all terms
to the same order and obtain the expression for the current as a function of time:

Htw) = =S50S [ dtp (A b 000 (8 ) = Ay (b, OF 1, )
pko (4120)

AL (b 0956 t) = AL s O (1) )
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The terms including the statistical propagator, F', drop out because the spectral part
of A does not contain any information about the thermodynamic properties of the
leads and thereby A{ = A%. We use |7|> = I'/(27) and insert the expression for A
into Eq.(4.120). Finally, we obtain

I(ty) = —f%;/otm dt (AE(tm,t) - Ag(tm,t)>pg(t,tm)

N (4.121)
_ ehrgzaj/_]; de/o dt (f(e — ) — fle— MR))eie“mt)pa(t, t) -

Since the real part of the exponential is symmetric, the imaginary part is anti-
symmetric and vice versa for the symmetries of real and imaginary parts of the
spectral function. Consequently, the imaginary part of the product of both functions
is symmetric. For this reason, we can also extend the time integral to negative times
and get an additional factor of 1/2. Furthermore, we push the time to infinity and
get, for the stationary current,

- ;;sz [ e [T as( e m) = se— pm))e p(s 1)

2 ! (4.122)
— %%;/_D de(f(e — ) — f(e— MR))PU(GaT) :

This equation is also called the Meir-Wingreen formula [198], which is a Landauer
formula® [199] for the current through an interacting electron region. In the first line,
we applied a Wigner transform and in the step to the second line, we performed the
integral along the relative time coordinate, which leads to a Fourier transform of the
spectral function.

Once we have the electrical current, we can introduce the linear and differential
electrical conductance:

I(t) dI(t)

G]in(t) - 77 Gdif(t) - W . (4123)

Exact Mean-Field Solution

At mean-field order, it is possible to calculate exact results for the stationary current
voltage characteristics at zero temperature. We can just take the solution we found
in the previous subsection for the spectral function in Eq. (4.104). In that solution,
we find the effective mass term that is an unknown parameter to be determined
before we can insert the solution into Eq. (4.122) to calculate the stationary current.

We need a new constraint equation for the occupation number because Eq. (4.108)
is only valid for zero chemical potential of the leads. In the derivation of this equa-

tion, we replace the statistical self-energy component of the leads with ¥ ..4(w) =

9The Landauer formula combines the transmission amplitude, T, of a one-level non-interacting
scatterer in a conductor with the conductance, G, for low bias voltages, G = 2¢%/h|T|?.
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—I'/2 sgn(w — p,) and obtain [29]

1 1 Ey+Unsz —V/2 1 Ey+Unz +V/2
Ne = = — — arctan o+ Un / — — arctan o+ Ung 1 V/ . (4.124)
2 2r r 2 r

However, we always assume that the quantum dot is in the particle-hole symmetric
case, Ey = —U/2, the chemical potentials are adjusted symmetrically, uy, = —ur =
—p/2, around zero energy, and we do not apply a magnetic field to the leads. In
this case, Eq. (4.124) is also easy to solve with an educated guess of n, = nz; = 0.5.
Then the single electron energy, Fy, and the mean-field contribution, Un, cancel each
other. From the anti-symmetric property of the inverse tangent function, it follows
that the two inverse tangent functions cancel each other and we are left with one
half on the left- and right-hand sides. In this special case, the effective mass term is
always zero and the occupation number for up and down spins is a half.
With that, it follows for the stationary electrical current,

i 1(t,) = 553 [ e (sle=m) = fle=m)) =g @129

tm—00

and at zero temperature and finite bias voltage we get

el’ ru/2 2T del’ i
J=92—_ d = t — . 4.126
hl e e h [arc an (2r>] (4.126)

For the maximum current, we take the limit of an infinite chemical potential gradient:

r
I= 2%% . (4.127)

From Eq. (4.126), we immediately obtain the differential conductance

df 41?2

— =Gy———7= 4.12
dV GOM2 + <2F>2 9 ( 8)

where we introduced the conductance quantum'® Gy = 2¢%/h [200].

4.6 Summary

In this chapter, we discussed the Kadanoff-Baym equations of motion and different
approximations of the two-particle irreducible (2PI) effective action for the single
impurity Anderson model (SIAM) introduced in the previous chapter. Due to the
low temperatures and energies, we do not have to consider any relativistic effects
and so the STAM has a two-to-two scattering interaction vertex that couples up to
down spins. Although the Kadanoff-Baym equations of motion are exact, we have

0The conductance quantum in SI units is G = 7.7480917346(25) - 1075 S.
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to make an approximation for the self-energy because of the tremendous complexity
in order to obtain self-contained expressions for the dynamic equations in terms of
the statistical propagator, F', and the spectral function, p, so that we can solve them
numerically. We reviewed two non-equilibrium approximation schemes of the 2PI
part of the effective action.

First, we made a loop expansion of the 2PI part of the effective action up to the
third order explicitly. In the lowest order mean-field approximation, we found that
the dynamic equations for the statistical propagator and the spectral function do not
have any non-Markovian memory integrals. This changes when we go to a higher
expansion of the 2PI effective action.

Second, we carried out a resummation of spin bubbles to all orders, which is
possible as long as we sum up a certain class of Feynman diagram. According to the
spin structure of each bubble, we categorised the resummation in three channels: the
direct (s)-channel, which consists of alternating spin bubbles; the particle-particle
(t)-channel and particle-hole (u)-channel, where all bubbles with opposite spins are
propagating in the opposite or same direction. In addition, we also took all channels
into account simultaneously in a so-called stu-channel. Here, we had to pay attention
to avoid multiple counting of Feynman diagrams. The Hubbard—Stratonovich trans-
formation provides an elegant way of achieving this. We wrote down the leading-order
resummation in terms of resummed auxiliary propagators.

Afterwards, we showed how we implemented the non-interacting metallic leads
into the 2PI formalism. The path integral for the STAM is Gaussian in the lead
electron fields, which provides the opportunity to integrate them out exactly. This
results in an additional contribution to the self-energy:.

At the end, we introduced the electrical conductance and current through the
quantum dot and derived an expression for the transient, as well as stationary, prop-
erties. Both quantities are important for characterising the electrical charge transport
properties of the quantum dot in a non-equilibrium situation, in the case of a finite
bias voltage, where both chemical potentials of the leads are different.
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Chapter 5

Time Evolution of an Anderson
Quantum Dot

In the previous chapter, we introduced different non-perturbative approximations
from simple loop expansions to the resummation of an infinite number of Feynman
diagrams for the two-particle irreducible (2PI) effective action of the single impurity
Anderson model (STAM). The Kadanoff-Baym equations of motion are exact equa-
tions for the two-point functions but are not solvable without any truncations to the
2PI part of the effective action or to the self-energy of the quantum dot electrons.
Therefore, finding significant approximations that on the one hand side, include as
much physics as possible and on the other hand, limit the Kadanoff-Baym equations
of motion to a solvable set of equations is a major step towards reliable results. In
addition to this, we discussed how we implemented the leads into the 2PI formalism
and derived the necessary equations for the physical quantities describing transport
through the quantum dot, such as equations for the electrical current and conduct-
ance.

The SIAM consists of two elements, the leads and the quantum dot. First,
we prepare the system such that there is no coupling between the leads and the
quantum dot, 7 = 0, and the two elements are separate systems. The leads are
in thermal equilibrium and thus the leads’ density matrix is described by a grand
canonical ensemble. The density matrix of the quantum dot is determined by the
initial occupation. We will assume an empty quantum dot and the equal time anti-
commutation relation specifies the two-point function. At the beginning of the time
evolution, we perform a quench in the coupling, 7, and the interaction strength, U,
and with that we drive the quantum dot out of equilibrium. However, throughout the
whole time evolution, we assume the leads stay in thermal equilibrium because the
leads are a much larger system than the quantum dot and the occurring tunnelling
processes cannot alter this.

We begin this chapter with the discussion of the initial conditions and the nu-
merical implementation. The first part of our numerical results is dedicated to the
quantum dot without a chemical gradient. We start with the transient and stationary
occupation of the quantum dot. However, the main focus is on the spectral function
in the particle-hole symmetric scenario, where the Kondo effect plays a major role.
For the second part of our numerical results, we switch on a bias voltage which also
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Chapter 5 Time Evolution of an Anderson Quantum Dot

provides a non-equilibrium condition for the quantum dot. This applied voltage leads
to a charge transport through the quantum dot. We study the transient, as well as
the stationary, electrical current and conductance with respect to their dependence
on the applied voltage, temperature and magnetic field. The main goal of this thesis
is to have a better understanding of the transient dynamics of this quantum system
in and out of equilibrium.

This work is based on Ref. [145] where similar investigations were undertaken
with the 2PT effective action in the direct (s)-channel resummation. In this thesis,
we extend the investigation to all other non-perturbative resummations discussed in
Ch. 4 and with our research for the SIAM, go into much more detail.

5.1 Numerical Implementation

In this section, we discuss how we numerically solve the equations we derived in the
previous chapter to obtain the results we present in the ongoing sections. We start
the discussion with the initial conditions, the leads, go on to the algorithm we use
for solving the Kadanoff-Baym equations of motion and end with comments on the
units we use in this chapter. For more details on the used numerical methods we
refer to Appendix A.

5.1.1 Initial Conditions

In Ch. 2, we stated that non-equilibrium physics can be formulated as a collection of
initial value problems, which can also be seen from the integro-differential Kadanoff—
Baym equations of motion. These type of equations need defined initial values in
order to calculate the time evolution just like every other ordinary differential equa-
tion. From the definition of the statistical function, F', in Eq. (2.5), it follows that it
is linearly proportional to the occupation number of the system at equal times, see
Eq. (2.8), and therefore it is determined by the initial occupation. The initial value
for the spectral function, p, is given by the equal-time anti-commutator relation for
fermions. Hence, the initial values read

po(to,to) =1, (5.1)
Ey (o, t0) = 5 = (o) 52

and thereby, according to Eq. (2.6), the propagator or two-point function for the
quantum dot electrons,

D, (to, to) = (do (to)d}(to) ) (53)
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5.1 Numerical Implementation

is completely defined. All other two-point correlation functions are:

(do(to)d}(ts)) =0 for o # (5.4)
(di(to)di (o)) = 0 (5.5)
(ds(to)dx(to)) = 0 (5.6)

and higher order correlation functions are set to zero. This is how the Gaussian initial
conditions introduced in Subsec. 2.2 enter the Kadanoff-Baym equations of motion.
We want to stress that during the time evolution higher correlation functions can
and will, for non-linearly coupled systems, build up.

5.1.2 Leads

The main advantage of the leads’ contribution to the self-energies is that it only
depends on the time difference, which means only A values must be calculated
for the spectral and statistical part of the self-energy and not N2, Hence, this
saves memory and calculation power. Since the number of points, N, for each time
axis and the step size of the time discretisation, A¢, must be set in advance, the
statistical component of the leads’ self-energy contribution given in Eq. (4.100) can
be calculated completely at the beginning, stored in an array and added to the dot
self-energies when it is needed. For the spectral part of the self-energy, we use the
limit of an infinite bandwidth and can treat this term similarly, as with the mean-field
contribution.

In the case of zero temperature, another benefit comes into play because the
integral can be performed analytically, as shown in Eq. (4.100), and thus saves further
calculation effort. For non-vanishing temperatures, we use fifth order Gau3—Legendre
quadrature in lieu of a Newton—Cotes rule to perform the integrals because it is
usually more accurate and furthermore, the functions occurring in the integral are
given analytically. The latter point is the reason why this integration method is
not very applicable to the memory integrals on the right-hand side of the dynamic
equations. Since the nodes are the roots of the Legendre polynomial, and therefore
not equally distributed, this means that intermediate points are needed. In general, it
is possible to interpolate these points but this procedures has an additional numerical
error and extends the runtime dramatically.

5.1.3 Kadanoff-Baym Equations of Motion

In the past, the Kadanoff-Baym equations of motion were solved by splitting the dif-
ferential part from the non-Markovian memory integrals, see Refs. [116, 126]. While
the differential part was solved with the fourth-order Runge-Kutta algorithm, the
memory integrals were calculated with a Newton—Cotes formula of second order.
However, both results were added together linearly, which is why this procedure has
an error of the same order as the standard Euler method. In Ref. [145], a modified
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Figure 5.1: Tllustration of the real-time plane, where we solve the Kadanoff-Baym equa-
tions of motion for the statistical propagator, F', and spectral function, p. In
the green area, we solve the dynamic equations of motion, Eq. (4.1), numeric-
ally, and for the red area, we take advantage of the symmetry relations given
in Eq. (4.3) to save computation time. The spectral function is fixed for equal
times due to the anti-commutator relation for fermions. Since the quantum dot
is coupled to external baths, the occupation number is not conserved and con-
sequently the statistical propagator must also be solved numerically for equal
times.

Euler method was used to solve the Kadanoff-Baym equations of motion. In this
thesis we apply an algorithm to these equations where we treat both parts in the
same way consistently.

One way to treat both parts equally is to use a single step algorithm, such as
the Runge-Kutta method, which needs only the current time point to calculate the
next one. This makes the algorithm very stable but at the same time it is also a
drawback because midpoints are needed. This is the reason why it is complicated
to implement the memory integrals using this algorithm. Another way is to apply
a linear multistep algorithm. At first glance, it seems to be an elaborate solution
because points from the past must be taken into consideration. However, due to the
memory integrals, we have to save the entire past anyway.

For the linear multistep algorithms we have to distinguish between the explicit
Adams-Bashforth methods where the current and past time points are needed and
the implicit Adams—Moulton methods, where the next time point also appears on the
right hand side. This makes the implicit method more stable but at every time step,
we have to solve a linear set of equations. Due to this fact, we decided to combine
both methods and use a predictor-corrector method. First, we apply an n-th order
Adams—Bashforth to calculate the value at the new time step, ¢,,.1, and put this value
into an (n + 1)-th! order Adams—Moulton method to increase the accuracy of this

'For the Adams-Bashforth and Adams-Moulton algorithms, we use the order counting convention
given in App. A.
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value (correction step). Our analysis showed that we could decrease the numerical
errors if we execute the correction step twice. We could not find any better results if
we increased the number of iterations for the correction step. This predictor-corrector
algorithm and higher order Newton-Cotes integration clearly improves the results for
the exponential decay of the spectral function, in the tail of the relative time, at the
end of the time evolution.

At the beginning of the time evolution, when we only have our initial values, we
start with the lowest possible order in the predictor step, which is the implicit, and
in the corrector, the explicit Euler method. After every time step, we increase the
order of the multistep algorithms until we reach the aforementioned orders after n
time steps, and then calculate all the following values in the time evolution at this
order in the methods.

We save computation time by using the symmetry relations for the statistical
and spectral function shown in Eq. (4.3). With these symmetries, we only have to
calculate the lower triangle in the real time plane. Starting from the initial values at
(to, to) we perform the time step to get the values at (t1,%y) and with the symmetries
also the values at (to,t1). For the spectral function, the values along the time diag-
onal, which are the equal times, are determined by the equal-time anti-commutator
relations and no further calculations are needed. This changes for the statistical
function because the occupation number that is related to the diagonal values can
change; as long as the quantum dot is coupled to leads. So we apply our algorithm to
the values at the point (¢1,%g) to find the solution at (¢1,¢;). We do this successively
until we arrive at the end of our time evolution.

For the non-Markovian memory integrals, we do not make any truncations to
the time we take into account. In every time step, we integrate over the full past
and therefore we have to save all values for the statistical and spectral function, as
well as the statistical and spectral part of the self-energy. We evaluate the memory
integrals with the well-known closed Newton—Cotes algorithm up to seventh order.

5.1.4 Units

Throughout the whole thesis, we use I'-units for all quantities, which means we write
them in terms of the hybridisation, I' = 2mpy |7|?, and set it to one, ' = 1. There
are quantities which are in I'-units, such as: interaction strength U, gate voltage Ej,
chemical potential p, bias voltage eV, magnetic field B, temperature T, electrical
current [/, and the Fourier space variable w. There are also quantities that are in
inverse ['-units, such as time ¢, and spectral function p in Fourier space. For example,
if we write U = 4 we mean U = 4I". In our numerics we set the physical constants of
elementary charge, Planck constant and Boltzmann constant to one, e = h = kg = 1.

We want to point out that in the literature different definitions of the hybrid-
isation, I', are used. In the case of two leads, I' is half the width of the Hubbard
side peaks. The definition I' = I't, + I'g is also common. Hence, the results in the
literature are not always directly comparable.
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Chapter 5 Time Evolution of an Anderson Quantum Dot

5.2 Equilibrium Study of the Quantum Dot

In this section, we begin our investigation of the non-equilibrium time evolution of
an Anderson quantum dot coupled to leads with equal chemical potentials, py, = pr.
This is, in principle, the equilibrium case for the quantum dot. However, as we stated
in Sec. 4.4, we consider the leads and the quantum dot as two separate systems,
which we couple immediately at the beginning of the time evolution by a quench
in the tunnelling parameter?, 7, and interaction strengths, U. Initially, this quench
drives the quantum dot out of equilibrium but during the time evolution the system
evolves into a stationary state. While the stationary state was studied extensively
in theory and experiment, the time evolution of the quantum dot was only tackled
theoretically in the years. In this section, we focus on the time evolution of the
occupation number, as well as the stationary occupation and the spectral function.
In this section, the main focus is on the spectral function.

5.2.1 Occupation Number

We consider first the transient evolution of the electron population on the quantum
dot after a sudden coupling to the leads, given a particular self-coupling, U, on
the dot. Our first aim is to study the effect of the different resummation schemes
introduced in Ch. 4. We choose an initially empty dot, n+(0) = n(0) = 0.

In both investigations of the transient as well as the stationary occupation of the
quantum dot we let the system evolve numerically with a time-step size of At = 300!
up to the total time t,,,, = 6.67 which correlates to 2000 time steps. We set the
physical parameters of the quantum dot to a vanishing magnetic field, B, and couple
it to zero temperature, T' = 0, leads. For our investigation of the transient properties
of the quantum dot we adjust the single electron energy level to the particle-hole
symmetric point, Fy = —U/2.

Transient Occupation

In Fig. 5.2, we compare the time dependence of the population of the dot as obtained
with the full 2PI equations of motion for different resummation schemes applied
for the 2PI part, I'y, of the effective action. The different panels show the results
obtained with the dot self-energy in direct (s)-, particle-particle (t)-, particle-hole
(u)-, and stu-channel resummations (from upper left to lower right panels). Since
we set the initial occupation for both spins equally and do not apply a magnetic
field to the quantum dot, the Kadanoff-Baym equations of motion are the same
for spin up and down. Therefore, the occupation number for each spin evolves
in the same way, n(t) = n4(t) = n,(t), and we plot on the axis of ordinates the
single electron occupation number. In each panel we compare the time evolution of
the quantum dot population for different interaction strengths, U, from vanishing
Coulomb interactions at U = 0, where an exact solution exists

2This is also called a hybridisation quench.
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Figure 5.2: Comparison of the transient populations n(t) = n4(t) = n(t) of the quantum
dot at the particle-hole symmetric point starting from zero occupation, after
a sudden coupling to the zero-temperature bath represented by the leads, for
different interaction strengths between up- and down-spin electrons on the
dot. The results are obtained in the direct (s)- (upper left), particle-particle
(t)- (upper right), particle-hole (u)- (lower left), and stu-channel (lower right)
resummation. The exact solution for U = 0 is shown in Eq. (5.7), taken from
Ref. [152].

n(t) = ~ (1 - e—m) (5.7)

taken from Ref. [152], via small U = 1, all the way to large on-site couplings, U = 16.

We benchmarked our numerics with the exact solution in the non-interacting case
and found a numerical error after the first time step of 107, which exponentially
decreases during the time evolution to an error of 1071°, when the occupancy becomes
stationary. For vanishing Coulomb interactions, we can read from Eq. (5.7) that the
occupation number increases for t < 2I" linearly in time and has a charge relaxation
time of the order tq, ~ 1/T.

In the presence of interactions on the quantum dot, we observe qualitatively
similar results. At the beginning of the time evolution, the system is independent of
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the interaction strengths because the interaction term, cf. Eq. (3.8), is proportional
to the product of the occupancies of up and down spins. Therefore it takes about
t =~ 0.1 for large couplings and ¢t ~ 0.4 for small couplings for the effects of the
interactions to set in. After this time, for all resummation schemes, we observe with
increasing interaction strength a steeper initial slope in the occupation number and
hence, the stationary state is reached earlier but at the same timescale as in the non-
interacting case. The deviation of the interacting and non-interacting time evolution
of the occupation number, An = ny — ng, with ny given in Eq. (5.7), increases
with increasing interaction strength. For U = 16, the maximum occurs around
t = 0.45 and is about An = 0.11 and both values are slightly larger only in the
particle-particle (t)-channel. However, if we compare the results for the interaction
with the case without interaction but with a fixed gate voltage, Ey, the results
change drastically because then both states are below the chemical potentials and
the stationary occupation grows with increasing interaction strength.

In Ref. [152], a similar analysis was done with perturbation theory and Monte
Carlo (MC) methods. The presented results are in good concordance with our results,
especially with respect to the MC data. The main difference of the results is in the
time range up to t &~ 0.15. Initially, it seems that the MC data for the occupation
number starts with a higher exponent before it continues to increase linearly. In
contrast to the wide flat band, in Ref. [152], a more realistic model with a soft cut-off
for the leads is taken into consideration. In addition, the deviation of the interacting
to the non-interacting case with a fixed bias voltage is close to our results.

While in the direct (s)-, particle-hole (u)-, and stu-channels, the stationary oc-
cupation is approached from below, we find that the particle-particle (t)-channel for
large interaction strength, U = 16, oscillations lead firstly to an overshoot over the
stationary occupation of n = 0.5, and later approaches that value from below.

For the study of the transient occupation of the quantum dot, we use the particle-
hole symmetric setup, which means that the single and double occupation levels in
the quantum dot are symmetrically assigned around the Fermi edges of the leads.
Therefore we expect a stationary occupation of n = 0.5, which is obtained in all
resummation schemes. For later times than are shown in Fig. 5.2, we find no change
in the occupation up to the end of the time evolution at .., = 6.67. However,
in the particle-particle (t)-channel resummation we observe numerical instabilities
which come into play for even later times and lead to a divergence in the occupation
number. For smaller time steps, we find the instability to appear at later times and
for larger interaction strengths, at earlier times.

Stationary Occupation

We discussed the transient and asymptotic occupation number for the direct (s)-,
particle-particle (t)-, particle-hole (u)-, and stu-channels. We go on with the final
occupation number at the end of the finite time evolution for these channels, not
only in the particle-hole symmetric scenario, which is shown in Fig. 5.3. In each
panel on the axis of ordinates we address the final single electron occupation number
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Figure 5.3: The final occupation number, n, after the time evolution, starting from zero oc-
cupation, as a function of the gate voltage, Ey, for several interaction strengths,
U, obtained in the direct (s)- (upper left), particle-particle (t)- (upper right),
particle-hole (u)- (lower left), and stu-channels (lower right). The two solid
black lines in each panel mark the particle-hole symmetric setup and at this
point, the results directly correspond to the asymptotic occupation number in
Fig. 5.2. The different line styles indicate the numerical results obtained with
the full 2PI equations of motion for different resummation schemes applied for
the 2PI part, I'o, of the effective action and the points mark the mean-field
solution given by Eq. (5.8).

n and on the axis of abscissas the single electron energy level (gate voltage), Ep,
normalised by the negative interaction strength, —U. This is a useful and convenient
notation because the stationary population of the quantum dot is correlated with
the axis of abscissa. We have to distinguish three regions: First, in the case of a gate
voltage much smaller than the negative interaction strength Ey < —U, or in our
notation —FEy/U > 1, both energy levels lie below the Fermi edges and the quantum
dot is fully occupied with two electrons, which means n = 1 for the single electron.
Second, the empty dot, n = 0, for gate voltages much larger than zero, Ey > 0,
and —Fy/U < 0, because both energy levels lie above the chemical potentials of

73



Chapter 5 Time Evolution of an Anderson Quantum Dot

the leads. Third, in the region around the particle-hole symmetric point that is
—U > Ey> 0or 0> —Ey/U > 1, the quantum dot is singly-occupied, n = 1/2.
The transition between the three regions is determined by the width of the energy
levels, which means by the value of the transition matrix element, 7.

In Fig. 5.3, the vertical solid line in each panel marks the particle-hole symmetric
setup and the horizontal line the expected stationary occupation, n = 0.5. The
values at this point result from the time evolution of the occupation number shown
in Fig. 5.2. Besides the numerical results represented by the different line styles in
each panel, we compare it to the mean-field solution for the stationary occupation
number given by

1 1 <E0+Un5) | (5.8)

Ng = 5 arctan T
which is represented by the symbols in the same colour for the same interaction
strength. In the case of a vanishing magnetic field, Eq. (5.8) simplifies because both
occurring occupation numbers are equal. Even in this simpler case, the equation is
not solvable analytically and we need numerical techniques to find the intersection
of the left- and right-hand side which was accomplished using MATHEMATICA.

For small interaction strengths, all results obtained from the non-perturbative
resummation of the 2PI effective action agree very well with mean-field results. An
explicit deviation, as expected, is visible for larger interaction strengths in the direct
(s)-, particle-hole (u)-, and stu-channels. The particle-particle (t)-channel results still
match pretty well. All non-perturbative resummations show the correct values for
large negative values of the gate voltage, where the quantum dot is doubly occupied
and on the other side for large gate voltages, where the quantum dot is empty.
However, for large interaction strengths it is expected that around the particle-hole
symmetric point a plateau should form. Our data shows that for interaction strengths
starting from U = 4, the slope around the particle-hole symmetric point does not
get steeper, but rather is even slightly more gradual for large interaction strengths.

5.2.2 Spectral Function

The width of the Kondo peak depends exponentially on the interaction strengths
and therefore it is challenging to obtain the right results. Perturbative methods
cannot yield this feature of the spectral function correctly. Surprisingly, a second
order perturbation expansion in the interaction strength provides compared good
results to Monte-Carlo methods, except for the Kondo temperature [30]. It is not yet
known which Feynman diagrams are important and which cancel each other. The
NRG yields the best results found in current literature [43, 44, 51, 52, 87, 88]. In
Ref. [87], the stationary spectral function obtained from the time dependent NRG is
compared to the results from the direct equilibrium calculation with NRG and a very
good agreement is found. However, the time evolution into the stationary state is
not shown. In Refs. [30, 45, 51, 52, 56, 67, 87, 88|, the stationary equilibrium spectral
functions are presented, which can render the main characteristics. In comparison to
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this, other methods do not yield the main features correctly [61, 62, 65, 68, 69, 77,
147, 149].

In the non-equilibrium case, with different chemical potentials of the leads, the
stationary spectral function is not yet completely known. The first investigation of
this setup [201] proposed a splitting of the Kondo resonance in the spectral function,
such that one peak is pinned to each chemical potential. With increasing bias voltage,
the peaks should be damped and vanish for bias voltages much larger than the Kondo
temperature. In contrast to that, there are other methods which do not yield these
results. Instead, the bias voltage acts as an effective temperature that damps the
Kondo peak until it vanishes [30]. The non-equilibrium spectral function for finite
bias voltages is beyond the scope of this thesis.

Interaction Strength Dependence for Long Time Evolution

We want to begin our discussion of the stationary spectral function with the de-
pendence on the interaction strength of the on-site Coulomb repulsion, U. We let
the quantum dot, which is adjusted to the particle-hole symmetric point, evolve in
time, as stated in the beginning of this section, until the total time of t,., = 20
is reached with a time-step size of At = 800~!. In Fig. 5.4, we present our results
obtained from the numerics with the non-perturbative resummation approximation
of the 2PI effective action in the direct (s)-, particle-particle (t)-, particle-hole (u)-,
and stu-channel from upper-left to lower-right panel for small, U = 2, to intermediate
interaction strengths, U = 10. During the time evolution we calculate the real and
imaginary part of the spectral function in the whole real-time plane. In the figure,
we show only the imaginary part of the spectral function at the end of the time
evolution for positive relative times because the real part is zero and the imaginary
part is symmetric according to the symmetry relation in Eq. (4.3).

In Ch. 3, we mentioned that the spectral functions for the symmetric STAM
without a bias voltage, at very low temperatures, show three peaks corresponding
to the Hubbard side peaks because of the single and double occupation levels with
a width of the order of I" and a very narrow peak located at the Fermi edges with
the width of the Kondo temperature, Tx. Thus, the spectral function in the time
domain should be approximated by

p(t) = Ae M cos(U/2t) + Be Tk/21H (5.9)

The first term describes the side peaks with width?® 2I", located at the points
w = £U/2 and the second term, the Kondo peak. The real solution does not have
to be exactly like Eq. (5.9) but it should be similar to it to render the expected
characteristics. From Eq. (5.9), we can deduce that the first term approaches zero
much faster than the second one because the width of the side peaks is much larger
than the Kondo resonance, 2I' > Tx. While the short time behaviour is dominated

3We define the width as the full width at half maximum (FWHM) and use this definition through-
out the whole thesis.
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Figure 5.4: The imaginary part of the spectral function, p(t), at the end of the time evolu-
tion obtained in the direct (s)- (upper left), particle-particle (t)- (upper right),
particle-hole (u)- (lower left), and stu-channel (lower right) for different inter-
action strengths, U, with a time-step size of At = 800~! in the particle-hole
symmetric setup. The inset in the lower-right panel shows the transition re-
gion from large to small exponential decay. For larger interaction strengths,
the oscillatory behaviour becomes more pronounced. This feature is important
for the Hubbard side bands in Fourier space.

by the first term describing the coupling to leads, the late time characteristics come
from the second term describing the Kondo correlations.

We compare these considerations to the results shown in Fig. 5.4, where we set the
axis of ordinates to a log scale because then the exponential function becomes linear.
For the smallest interaction strength, U = 2, two ranges with a larger negative slope
for small relative times and a smaller one for later times are already visible in the
direct (s)- but less pronounced, particle-hole (u)-, and stu-channel. This effect is only
present in the particle-particle (t)-channel for larger interaction strengths but less
distinct. The negative slope in this channel is larger than in the others and therefore,
the spectral function at the final time is much smaller. In the other channels, the
two ranges with different exponential decays become much steeper with increasing

76



5.2 Equilibrium Study of the Quantum Dot

2.0 2.0 T T T T
— U=2
— U=4
= . 5 - -
1.5 1.5 — U=7
< <
‘E/ 1.0 B ‘E’ 1.0 B
0.5 B 0.5 [ B
0.0 - L 0.0 — _ .
-20 -1 —-10 -5 0 5 10 15 20 -20 —-15 -—-10 10 15 20
w w
2.0 T T 2.0 T
1.5 1.5 1
< <
\ET 1.0 ‘E’ 1.0 1
0.5 0.5 [ 1
0.0 — 0.0 ——

—-20 -15 -10 -20 -15 -10 -5 0 5 10 15 20

Figure 5.5: The discrete Fourier transform of the spectral function, p, shown in Fig. 5.4
obtained in the direct (s)- (upper left), particle-particle (t)- (upper right),
particle-hole (u)- (lower left), and stu-channel (lower right) for different inter-
action strengths, U, in the particle-hole symmetric setup, Fy = —U/2. The
system was evolved to the time t,,.x = 20 with a time-step size of At = 800~".

interaction strengths. The initial drop-off depends on the interaction strength, which
is also included in Eq. (5.9), in the argument of the cosine function. However, an
oscillatory behaviour is clearly visible in the stu-channel and in the direct (s)- and
particle-hole (u)-channel only a tiny ansatz. The strong bend that starts just before
the final time is a finite-time effect we discuss later in more detail.

In Fig. 5.5, we show the corresponding spectral functions, to the same order as
shown in Fig. 5.4, in Fourier space by using a discrete Fourier transform. It is clear
that the spectral functions do not show the expected features, like the Hubbard side
bands in the particle-particle (t)-channel, for example. Also, the peaks do not change
much with increasing interaction strength. This is totally different in the other three
channels. The first point to note is that the height of the peak is decreasing with
increasing interaction strength, which means that the area under the spectral function
in time is not conserved. This is not in accordance with the Friedel sum rule, cf.
Fig. 5.7 and Fig. 5.8, which we discuss later. Second, besides the Kondo peak at
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the origin, there are side peaks located at U = +U/2, which is best visible in the
stu-channel. This effect sets in at interaction strengths of around U = 4. In the
following discussion, we focus on the features of the Kondo peak, like width and
height.

Kondo Temperature

In this section, we focus on the main characteristic of the spectral function, the width
of the Kondo resonance, which is determined by the Kondo temperature, Tx. The
Kondo temperature is the energy scale at which the correlations between dot and
lead electrons becomes important.

We do not read off the value for the width of the peak located at the origin for
two reasons. First, the discretisation in the Fourier space is determined through the
discrete Fourier transform as

™

T AN

This means decreasing the time-step size, At, makes the resolution in Fourier space
worse if we do not simultaneously increase the number of time steps, N. The res-
olution is given by the maximum time in the time evolution, which we chose to be
tmax = 20, thus in Fourier space the resolution is Aw & 0.157, which is much less
accurate than in the time domain. Second, the amplitude of the peak is not the
same for all time discretisations and interaction strengths. We discuss this fact in
the following section.

Instead, we take advantage of our knowledge of the spectral function. We extract
the Kondo temperature from an exponential fit,

Aw tmax = AN =20 (5.10)

pit(t) = kye ket (5.11)

to the data of our spectral functions at late times in the range t € [12,14]. We saw
in Fig. 5.4 that we have to be careful for choosing the right range for this fit because
at times which are too late the spectral function shows a sharp bend, which we will
discuss later. For our consideration, the fit parameter, ki, is of minor importance.
The Kondo scale is related to the other fit parameter, Tx = 2k,.

In Fig. 5.6, we address at the axis of ordinate, the Kondo temperature Tk and,
at the abscissa, the interaction strength, U. We compare our results obtained in
the direct (s)-, particle-particle (t)-, particle-hole (u)- and stu-channel from upper-
left to lower-right panels for different time-step sizes, At, with the exact analytic
solution [24-26] drawn as a black solid line given by Eq. (3.15). This solution is
valid for U > T" and therefore, we do not expect any accordance for small interaction
strengths. Each curve from our numerical results is made of 19 data points; 13 data
points from U = 0 to U = 12 in steps of AU = 1, and an additional 6 data points at
U €{2.5,3.5,4.5,5.5,14,16}.

Due to our method, how we extract the width cannot be distinguished for small
interaction strengths between the decay, as a consequence of the coupling to the
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Figure 5.6: The Kondo temperature extracted from an exponential fit to the imaginary
part of the spectral function in time (see Fig. 5.4) in the range of ¢ € [12, 14] as
a function of the interaction strength, U, for different time-step sizes comparing
with the exact analytic solution (black solid line) given in Eq. (3.15) obtained
in the direct (s)- (upper left), particle-particle (t)- (upper right), particle-hole
(u)- (lower left), and stu-channel (lower right).

leads and the Kondo effect. That is why the Kondo temperature seemingly rises to
Tk = 2 for the non-interacting case, cf. Eq. (4.103). For finite but small interactions,
our data decreases and approaches U = 3, the exact analytic solution. Around that
value, the Kondo effect starts to appear and we can speak of the Kondo temperature.
In addition to this, the time-step size begins to play a role. With decreasing time-
step size, our extracted Kondo temperature from the data gets closer to the analytic
solution and the range where the accordance is very good increases up to U = 6. For
stronger interactions, the numerical data grows whereas the exact analytic results
fall off exponentially. The results in the particle hole (u)- and stu-channel are very
close to each other and no significant deviation is visible. In the direct (s)-channel,
the results for the width of the Kondo resonance is even better for large interaction
strengths but not yet close the exact solution.

The situation for the particle-particle (t)-channel is completely different. Al-
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though the extracted decay constant decreases with increasing interaction strength
the data does not approach the expected Kondo temperature. In this channel, we
cannot observe a Kondo effect. From this data we can also see the numerical instabil-
ity that shows up for interaction strengths around U = 7. With decreasing time-step
size this instability is observable at later times. We fit the following function,

TEU) =ae ™V 4+, (5.12)

to the data shown in the upper-right panel in Fig. 5.6 and get the best match for the
parameters

a=1100, B=0243~n/13, ~=0.934. (5.13)

Interestingly, the data exhibit an exponential component but also a large constant
offset. The behaviour of this resummation channel is not yet fully understood.

Spectral Sum Rule

Another characteristic of the spectral function in Fourier space, besides the width we
discussed before, is the height of the peak at the Fermi edge. Since we have already
seen in Fig. 5.5 that the height of the peak is not the same for different interaction
strengths, U, we will review the impact of the time-step size, as well as the total time
of the non-equilibrium time evolution of the Anderson quantum dot. The Friedel sum
rule [202] predicates that the occupation number of displaced electrons of a Fermi
gas due to a charged impurity is related to the scattering phase shift. This was also
applied to a system of interacting electrons in Ref. [203] and later to the Anderson
model in Ref. [204]. The generalised Friedel sum rule gives a connection between the
quantum dot occupation and its spectral function in Fourier space at the Fermi edge

™

p(0) ~ sin? (2> : (5.14)

taken from Ref. [150], with n = ny 4+ n;, the mean total occupation number on the
quantum dot. This is an exact result for zero temperature and in the particle-hole
symmetric case where ny = n; = 1/2, this holds independent of the interaction
strength, U. Obviously, the Friedel sum rule demands a constant height of the peak
at the Fermi edge which contradicts the results we have shown before. This is why
it needs some further investigation.

In Fig. 5.7, we show the results obtained from the non-perturbative resummation
of the 2PI effective action in the direct (s)-, particle-particle (t)-, particle-hole (u)-,
and stu-channel from the upper-left to lower-right panels for the value of the spectral
function at zero energy as a function of the interaction strength, U, for different time-
step sizes, At. For each graph, we evolved the quantum dot coupled to two leads
to the time t,.. = 20 for interaction strengths from U = 0 to U = 16 in steps
of AU = 1. Although we have shown in Subsec. 5.2.1 that the numerics yield the
correct quantum dot occupation in the particle-hole symmetric case, the spectral
function at zero energy does not match the Friedel sum rule in Eq. (5.14) for all
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Figure 5.7: The value of the spectral function in Fourier space at w = 0 as a function of the
interaction strength U obtained in the direct (s)- (upper left), particle-particle
(t)- (upper right), particle-hole (u)- (lower left), and stu-channel (lower right)
for different time-step sizes and a total time evolution of ¢, = 20.

interaction strengths. For interaction strengths up to U = 3, all non-perturbative
resummation channels are in perfect concordance with the expected value according
to the Friedel sum rule. While the particle-particle (t)-channel also fulfils the Friedel
sum rule up to U = 6 until it struggles with the previously mentioned numerical
instabilities, all other resummation channels fall off exponentially, and then go over
into a power law decline, below 1/2 for interaction strengths around U = 16. When
the decline sets in, the time-step size starts to play a role as in the analysis of the
Kondo temperature but the effect is much smaller in comparison. The effect of the
time-step size in the particle-hole (u)- and stu-channel is slightly larger than in the
direct (s)-channel. This is consistent with the results for the Kondo temperature in
Fig. 5.6 because the extracted Kondo temperatures in the direct (s)-channel are, for
different time-step sizes, closer to each other than in the other two channels.

In Fig. 5.8, we show the influence of the total time of the non-equilibrium time
evolution on the height of the spectral function at the Fermi edge for all non-
perturbative resummation channels in the same order as in Fig. 5.7. We now fix
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Figure 5.8: The value of the spectral function in Fourier space at w = 0 as a function of
the interaction strength, U, obtained in the direct (s)- (upper left), particle-
particle (t)- (upper right), particle-hole (u)- (lower left), and stu-channel (lower
right) for different total times, ¢yax, and a time-step size of At = 800~ 1.

the time-step size to At = 800~ and vary the total time of the time evolution for all
integer interaction strengths from U = 0 to U = 16. In contrast to the dependence
on the time-step size, the impact of the total time is biggest for small interactions
and gets smaller for larger interaction strengths. Hence, the larger the total time,
the bigger the range of interaction strengths where the Friedel sum rule is perfectly
fulfilled. Unlike the width of the Kondo peak and with that the Kondo temperature
is formed at times around ¢ =~ 13 for all probed interaction strengths up to U = 16
the height of the peak is a real long time effect which takes much more time for larger
interaction strengths.

Time-Step Size Dependence

The dependence of the imaginary part of the stationary spectral function in time
on the time-step size is shown in Fig. 5.9 obtained in the non-perturbative direct
(s)-, particle-particle (t)-, particle-hole (u)-, and stu-channels, from upper left to
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Figure 5.9: The imaginary part of the spectral function in time obtained in the direct
(s)- (upper left), particle-particle (t)- (upper right), particle-hole (u)- (lower
left), and stu-channel (lower right) with an interaction strength U = 5 in the
particle-hole symmetric setup at zero temperature and different time-step sizes.

lower right, in the particle-hole symmetric case, Fy = —U/2. We evolved the system
to the total time of tp. = 20 for time-step sizes between At = 100! and At =
800~! for an interaction strength of U = 5 at zero temperature. In contrast to
the particle-particle (t)-channel, the effect of the time-step size plays a role in the
non-perturbative resummation channels starting from relative times around ¢ ~ 4.
Therefore, it is hard numerically to achieve precise results for the tail in the spectral
function and equivalently, the width of the Kondo peak. Moreover, the results for
the exponential decay in the tail have not yet converged and will become smaller for
even smaller time-step sizes, c¢f. Fig. 5.6. This also results in a larger area under
the spectral function in time and therefore, the Kondo peak in the Fourier domain
grows. In addition to this, the exponential decay in the particle-particle (t)-channel
only changes a little, which is clearly different to the other channels. Only the results
obtained in the stu-channel show a small plateau in the transition region between
the two different exponential decays, leading to stronger pronounced side peaks in
the Fourier domain.
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Figure 5.10: The imaginary part of the spectral function in time obtained in the direct
(s)- (upper left), particle-particle (t)- (upper right), particle-hole (u)- (lower
left), and stu-channel (lower right) with an interaction strength U = 5 in the
particle-hole symmetric setup at zero temperature and at different times.

Intermediate Time Evolution

In Fig. 5.10, we show the results for the imaginary part of the spectral function in
time at different times, obtained in the non-perturbative direct (s)-, particle-particle
(t)-, particle-hole (u)-, and stu-channel resummations of the 2PI effective action,
from upper left to lower right, in the particle-hole symmetric case, Fy = —U/2.
During the non-equilibrium time evolution of the Anderson quantum dot, we set the
time-step size to At = 80071, the interaction strength U = 5 and zero temperature.

Two points are note-worthy from this figure. First, the exponential decay in the
tail becomes smaller with increasing total time and therefore affects the width of
the Kondo peak in the Fourier domain, Tk. Second, the transition range between
the two different exponential decays become broader, which is important for the
Hubbard side bands. These effects are only present in the direct (s)-, particle-hole
(u)-, and stu-channel resummations and most distinct in the latter. In the following
section, we show the transient time-evolution in the whole real-time plane spectral
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function, from which these effects are also observable. The spectral function obtained
in the particle-particle channel resummation does not have these characteristics and
therefore does not change much at different times.

Transient Time Evolution

So far, we have only shown the spectral function at a certain absolute time along
the relative time. Now, we present in Fig. 5.11 the imaginary part of the spectral
function color coded in the whole real-time plane obtained in the non-perturbative
direct (s)-, particle-particle (t)-, particle-hole (u)-, and stu-channel resummations,
from top to bottom, for different interaction strengths, U = 2, 4, 6, from left to
right, in the particle-hole symmetric case, Fy = —U/2, at zero temperature. From
Fig. 5.9, it can be seen that for early times the results do not depend on the time-step
size in the range of At = 100~! to At = 800~! and therefore we set the time-step size
to At = 507! for the investigation of the transient spectral function in the real-time
plane.

The results obtained in the particle-particle (t)-channel resummation approxim-
ation shows only small differences between the different interaction strengths. Only a
slight broadening is observable for increasing interaction strength at very early total
times. Clearly, it is different in all other non-perturbative resummation channels of
the 2PI effective action. The decrease of the imaginary part of the spectral function
becomes faster for increasing interaction strengths. Contrarily, at smaller values the
decrease is much weaker. The observable broadening for small values of the spectral
function corresponds to the transition rate between the initial exponential decay,
determined by the coupling to the leads, I', and the exponential decay in the tail, de-
termined by the Kondo effect, Tk, which leads to the formation of the Hubbard side
bands in the Fourier domain. This effect is stronger in the particle-hole (u)-channel
in comparison to the direct (s)-channel but most pronounced in the stu- channel re-
summation approximation. From Fig. 5.11, we can recover the previous results but
additionally, we can also observe how it evolves in real time.
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Figure 5.11: The transient time evolution of the imaginary part of the spectral function in
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the real time plane obtained in the direct (s)-, particle-particle (t)-, particle-
hole (u)-, and stu-channel (from top to bottom) for different interaction
strengths U = 2, 4, 6 (from left to right) with a time-step size of At = 507!
in the particle-hole symmetric setup at zero temperature. In particular, the
formation of the Hubbard side bands is clearly observable in the stu-channel
for the largest presented interaction strength, U = 6.



5.3 Non-Equilibrium Study of the Quantum Dot

5.3 Non-Equilibrium Study of the Quantum Dot

In the previous section, we studied the quantum dot in equilibrium but with a quench
in the coupling to the leads, 7, and the interaction strength, U, which drives the
system out of equilibrium, initially. In this section, we extend our study to the
non-equilibrium case by applying a bias voltage to the quantum dot. The SIAM
is designed to study non-equilibrium quantum transport; especially in the Kondo
regime, where strong correlation effects also play a large role.

We investigate the transient current through the quantum dot as well as the
current-voltage characteristics of the stationary current for interaction strengths,
from small U = 2 to intermediate U = 8. Afterwards, we also study the dependence
of finite temperatures and magnetic fields on the stationary electrical current through
the quantum dot. We compare our results for the stationary current with those ob-
tained with functional renormalisation group (FRG) [60] and the iterative sum of
path integrals (ISPI) [96-98, 205]. Similar studies have been done in Ref. [145],
where 2PI results obtained in the direct (s)-channel were compared to FRG, ISPI,
real-time quantum Monte Carlo (rtQMC) [151, 206-209] and time-dependent density
matrix renormalisation group (tDMRG) [78-84] results. In this thesis, we extend the
comparison to higher applied bias voltages and all possible non-equilibrium resum-
mation schemes of the 2PT effective action. In Ref. [84], FRG and tDMRG, and in
Ref. [148], FRG, tDMRG, ISPI, and rtQMC results were compared in the Kondo as
well as the mixed valence regime.

For the non-equilibrium study of the quantum dot, we start initially with an
empty and decoupled quantum dot from the thermally equilibrated leads such that
the leads and quantum dot are two separated systems. This is exactly the same
setup as before in the equilibrium study. Moreover this time, at the beginning of the
time evolution, we instantaneously couple the non-interacting metallic leads to the
quantum dot with a quench in the hybridisation parameter, 7, interaction strength,
U, and in the bias voltage, V. Without loss of generality, we assume that the
chemical potential of the left lead is smaller than the right one. This leads to an
electrical current from the left to the right lead and we regard this electrical current
to be positive. We set the chemical potential of the non-interacting metallic leads
symmetrically, ur, = —ur = V/2, which yields a bias voltage of V' = pup, — ugr. Also in
this non-equilibrium setup, we assume that the leads will stay in thermal equilibrium
over the entire time evolution and adjust the gate voltage so that the quantum dot
is in the particle-hole symmetric point, Ey = —U/2.

5.3.1 Transient Electrical Current

We start our discussion of the non-equilibrium quantum dot with the transient cur-
rent. In Fig. 5.12, we show the time dependence of the electrical current, I, obtained
in the direct (s)-, particle-particle (t)-, particle-hole (u)-, and stu-channels displayed
in the upper left to lower right panel for different applied bias voltages, V', for an
on-site interaction strength of U = 4 and a time-step size of At = 3007!. Since
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there is a stationary electrical current before t = 3, we cut out this range from the
total time evolution up to t,.x = 6. Before we start our time evolution (at ¢ < 0)
the quantum dot is decoupled from the non-interacting metallic leads and is unoccu-
pied. At the beginning of our time evolution, we immediately couple the leads to the
dot and also apply the bias voltage, which initially results in zero electrical current.
During the time evolution, the electrical current through the quantum dot evolves
to a finite stationary value. From our results shown in Fig. 5.12, we observe three
characteristic regions for all considered resummation schemes.

First, we find a linear rise in the electrical current for short time-scales. The
initial slope of the electrical current is determined by the applied bias voltage,

I
—| =2v. (5.15)
dt|,_,

As we found in Subsec. 5.2.1, the initial slope of the time evolution of the occupation
number of the quantum dot is independent of all probed on-site Coulomb repulsion
strengths up to U = 16. This is also true for the electrical current because of
an initially unoccupied quantum dot. The time range of this behaviour is longer for
small bias voltages but ends at a smaller value. The effects induced by the interaction
strength come into play after this linear behaviour.

Second, we find that the region after the linear rise up to the point where the
electrical current becomes stationary now depends on the interaction strength as well
as the applied bias voltage. For smaller interaction strengths and bias voltages, the
stationary state is reached later. However, in all cases the time when the steady-state
value is reached, tg, is of the order of ty ~ I'"!. This intermediate time region is
characterised by the bias voltage as well as the interaction strength. On the one
hand, high applied bias voltages lead to oscillations with larger amplitudes but on
the other hand, larger Coulomb repulsions on the dot damp those oscillations faster.
Furthermore, at larger interaction strengths the oscillations also show up for small
bias voltages. In the following, we want to investigate the angular frequency in more
detail. In Ref. [150] it was stated that the angular frequency depends linearly on the
applied voltage and interaction strength,

V+U

WV 0) ===

(5.16)

which comes from the investigation of the interacting resonant level model (IRLM) in
Ref. [91]. We extract the angular frequency by taking the derivative of the electrical
current with respect to time. Then, the roots of the derivative correspond to the
maxima and minima of the oscillations and from that, we can extract the angular
frequency. We do this for five values of the bias voltage, from V = 16 to V = 20,
for fixed interaction strength. After that, we can easily fit the data to a linear
function. For an interaction strength of U = 2, we get for all four non-perturbative
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Figure 5.12: The transient current, I, through a quantum dot coupled to finite temperature
leads at a temperature T' = 0.1 with an interaction strength U = 4 obtained
in direct (s)- (upper left), particle-particle (t)- (upper right), particle-hole (u)-
(lower left), and stu-channels (lower right) with a time-step size of At = 300~}
for different applied bias voltages, V, in the particle-hole symmetric case,
Ey=-U)2.

resummation channels:

s-channel: w(V) = 0.50V + 0.07
t-channel: w(V) = 0.50V + 0.06 (5.17)
u-channel: w(V) =049V +0.14 ‘
stu-channel: w(V) =0.51V —0.10,
and for an interaction strength of U = 4, we obtain:
s-channel: w(V) =051V —0.21
t-channel: w(V) =0.53V —0.75 (5.18)
u-channel: w(V) =0.50V —0.19 '
stu-channel: w(V) =0.54V —0.94.
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Our results are in perfect agreement with Eq. (5.16) for the dependence on the bias
voltage w ~ 0.5V. The largest deviation, Aw(V) = 0.04, is in the stu-channel for
U = 4. Contrarily, we cannot confirm the dependence on the interaction strength
given in Eq. (5.16) from Ref. [150]. The results are far from the proposed dependency.

The time dependence of the electrical current can be calculated analytically at
mean-field order if we assume that the occupation number is constant. In the particle
hole symmetric case, Fy = —U/2, and with symmetrically adjusted chemical poten-
tials the stationary occupation number is n = 0.5. Therefore, the effective mass term
in the spectral function at mean-field order, given in Eq. (4.103) vanishes. We insert
this into Eq. (4.121) and obtain for the electrical current

t e Tsin (%u)
I(t) = 4/ dy—— 27 (5.19)
0 u
This is the exact solution with vanishing interaction strength. Nevertheless, it is
a good approximation because at the beginning we start with an initially empty
dot which switches-off effectively the interaction. From this consideration we can
understand the dependence on the bias voltage.

Third, once the system has reached the stationary state, it remains there. The
exact steady-state value depends on the on-site repulsive Coulomb interactions, as
well as the applied bias voltage. For a fixed interaction strength the electrical current
increases with the bias voltage and for a fixed bias voltage the electrical current
decreases with the interaction strength. We discuss the stationary current in more
detail in the next subsection.

In all resummation schemes, we can observe these characteristics. The stationary
value of the electrical current in the particle-particle (t)-channel is larger than in any
other.

5.3.2 Stationary Electrical Current and Conductance

In this subsection, we want to focus on the stationary electrical current through the
quantum dot and its dependence on the applied bias voltage. In the left column
of Fig. 5.13, we show our results for the electrical current obtained in the direct
(s)-, particle-particle (t)-, particle-hole (u)- and stu-channel from small, U = 2, to
intermediate, U = 8, interaction strengths depicted from top to bottom panel and
compare them to FRG results. We sample the bias voltage in steps of AV = 0.5,
starting from eV = 1.0 and evolve the system up to ty.x = 6 with a time-step
size of At = 30071, For smaller values of the bias voltage, we have additional data
points at V' = 0.02, 0.05, 0.2, 0.35, 0.5 and evolved the system up to tn., = 40.
Moreover, we can set the current at zero bias voltage to zero because with no bias
voltage there will be no net current. Therefore, every curve in each panel consists
of 45 data points. The stationary values of the transient currents shown in Fig 5.12
correspond to the appropriate values of the bias voltage in the left middle panel of
Fig. 5.13. In the right column, we show the corresponding differential conductance
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of the left column, where we trivially continue the values to negative bias voltages of
the electrical current using anti-symmetry.

In Sec. 4.5, we showed that the maximum electrical current through the quantum
dot is Ihax = 27. This will be the case for the results obtained for any approximation
of the 2PI effective action because we set the value of the spectral function at equal
times to p(t,t) = i.* This is directly connected to the integral over this function in
Fourier space. For large bias voltages, V' > U~+2I", our numerical results approach the
maximum current asymptotically and fit perfectly with the FRG results for arbitrary
interaction strengths. From the naive point of view, a significant electrical current
can only flow when the bias voltage is reaching the order of the interaction strength,
V &~ U, because the bias voltage then reaches the two available states in the quantum
dot. This is an important requirement for charge transport.

However, from the numerical results, we can see already that for very small
bias voltages an electrical current flows. This behaviour is highly non-trivial and
governed by the Kondo effect. In Sec. 3.2, we argued that the Kondo effect gives rise
to additional states at the Fermi edges of the leads. The range of small bias voltages
is also accessible with linear response theory and therefore, the initial slope of the
electrical current is known not only theoretically but also experimentally [21, 23].
Due to the Kondo effect, the electrical conductance reaches its maximum which is
the conductance quantum® for zero bias voltage, Ggit(0) = Go. Thus, the quantum
dot shows a perfect transmission property at that point.

For the smallest probed interaction strength, U = 2, our results are in perfect
accordance with FRG results in the whole range of bias voltages. Also, the mean-field
results, which are independent of the interaction strength (see Sec. 4.5), give a good
approximation for that interaction strength. It is clear that the results obtained in
the particle-particle (t)- channel are a bit off the results obtained in the other non-
perturbative resummations of the 2PI effective action and FRG results. This effect
becomes more pronounced for larger interaction strengths.

The results for an interaction strength of U = 4 obtained in the direct (s)-,
particle-hole (u)-, and stu-channels agree very well with FRG results. However, the
results obtained in the particle-particle (t)- channel are clearly off and show charac-
teristics similar to the mean-field results. In comparison to the smaller interaction
strengths, the electrical current shows more varied characteristics. This is seen in
the differential conductance as two sidepeaks located at V' = £U because the two
energy levels in the quantum dot are separated by the interaction strength, U. When
the bias voltage reaches that value, one of the two chemical potentials of the leads is
located at the gate voltage and the other at the double-occupied level. This leads to
an enhanced differential conductance. Also, the region for very small bias voltages,
which is hard to access because of the long-time effects arising from the Kondo effect,
is in good agreement with the prediction. The peak in the differential conductance
at zero bias voltage reaches almost Gg;(0) = 2.

Mtis [7 92 [ dse “sp(s) = [ dsd(s)p(s) =i, with the relative time s = ¢ —t'.

—o0 27 J—
5The conductance quantum is defined as Gy = 2%, see Sec. 4.5.
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Figure 5.13:

92

The stationary current, I, through a quantum dot (left column) and the differ-
ential conductance (right column) dependence on the applied bias voltage, V',
obtained in different resummation channels compared to the FRG results in
Ref. [148] for different interaction strengths, U = 2, 4, 8 (from top to bottom)
in the particle-hole symmetric case, Fy = —U/2, and a finite temperature of
T = 0.1. The system was evolved to the total time t,,x = 40 for bias voltages
V < 0.5 and tmax = 6 otherwise with a time-step size of At = 300~
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Figure 5.14: The stationary current, I, through the quantum dot coupled to finite temper-
ature leads at a temperature of T'= 0.4, 1.0, 2.0, 4.0 corresponding to steep-
to-flat slopes of the curves in the particle-hole symmetric case, Fy = —U/2, in
dependence on the applied bias voltage, V', obtained in the direct (s)- (upper
left), particle-particle (t)- (upper right), particle-hole (u)- (lower left), and
stu-channels (lower right) with an interaction strength U = 2 compared with
FRG and ISPI results in Ref. [148]. The system was evolved to the total time
tmax = 6 with a time-step size of At = 3007".

For even larger interaction strengths, U = 8, the deviation of all non-perturbative
resummation channels to the FRG results becomes clear but show the correct main
characteristics apart from the results obtained in the particle-particle (t)- channel.
The best agreement is found for the stu-channel. For very small bias voltages, the
stationary current was not yet reached and therefore, the results in that range can
be improved for longer time evolutions. We then expect to attain the correct value
with the 2PI effective action. At intermediate bias voltages, our results are above the
FRG results and later below. However, all non-perturbative resummation schemes
reach the correct maximum electrical current asymptotically.
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5.3.3 Temperature Dependence of the Stationary Electrical
Current

In this subsection, we discuss the temperature-dependence of the electrical current.
The physical setup is analogous to the previous subsection but with different values
of temperature, 7' = 0.4, 1.0, 2.0, 4.0. We let the system evolve until ¢,,,, with a
time-step size of At = 300! and sample the bias voltage in steps of AV = 0.25.
In Fig. 5.14, we show the results obtained in the direct (s)-, particle-particle (t)-,
particle-hole (u)-, and stu-channel from upper left to lower right panel and in addition
to this, results from FRG and ISPI for an interaction strength of U = 2. With
increasing temperature, the electrical current becomes smaller for all bias voltages.

In the direct (s)- channel, the results are in perfect agreement with the FRG
results over the entire range of bias voltages. Also, results obtained in the other
channels generally agree, apart from the smallest temperature, T = 0.4. While the
results in the particle-particle (t)- are larger, the results from the particle-hole (u)-,
and stu-channels are smaller than the FRG results. However, the deviations are
small and there is still a good agreement between the different methods.

5.3.4 Stationary Electrical Current and Conductance with a
Magnetic Field

In this subsection, we want to study the influence of an applied external magnetic field
to the electrical current voltage characteristic of the quantum dot. We also choose a
small interaction strength, U = 2, because we know from our previous investigation
that our results agree perfectly with the results obtained from FRG. Thus, we can
isolate the effect of the magnetic field and compare our results to those from FRG.
The magnetic field is applied to the quantum dot before the time evolution starts
and is kept switched on. We evolved the system in the particle-hole symmetric set-up
until t. = 6 with a time-step size of At = 300~! and did this for bias voltages from
V =0 to V = 20 in steps of AV = 0.5. Therefore, we have 41 data points for each
graph representing the electrical current. For the differential conductance, we simply
extended the values to negative bias voltages using anti-symmetry.

In the case of a finite applied bias voltage to the quantum dot, the Kondo reson-
ance in the spectral function splits into two because of the Zeeman effect. Thus, the
Kondo peaks are shifted away from the Fermi energies of the two leads. This leads
to a smaller electrical current for small bias voltages and a smaller differential con-
ductance even for zero bias voltage. This effect is stronger with increasing magnetic
field. The conductance should rise with increasing bias voltage until the bias voltage
is equal to the Zeeman splitting of the states, V = uB, because at that point, a split
Kondo peak is located at the Fermi energy of the leads. For even higher values of the
bias voltage, the differential conductance falls off. Thus, two peaks in the differential
conductance are expected at V' = £puB. This was proposed theoretically in Ref. [201]
and shown experimentally in Ref. [23].

In Fig. 5.15, we show our results for the electrical current in the left column and
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Figure 5.15: The stationary current, I, through a quantum dot (left column) and the dif-

ferential conductance (right column) dependence on the applied bias voltage,
V', obtained with an interaction strength U = 2 and a finite temperature of
T = 0.1 in different resummation channels compared to the FRG results in
Ref. [148] for different magnetic fields, B = 0.2, 0.6, 1.2 (from top to bottom)
in the particle-hole symmetric case, Fy = —U/2. The system was evolved to
the total time t.x = 6 with a time-step size of At = 30071.
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the corresponding differential conductance for three different values of the magnetic
field in the upper B = 0.2, middle B = 0.6, and lower panel B = 1.2 of the right
column. In each panel, we compare the results we obtained in the non-perturbative
direct (s)-, particle-particle (t)-, particle-hole (u)-, and stu-channel resummation of
the 2PI effective action to FRG results.

For all three probed magnetic fields the results obtained in the direct (s)-,
particle-particle (t)-, particle-hole (u)-, and stu-channel are very close to each other.
Only in the close-up of the electrical current results, which shows the results for
large bias voltages, is a deviation visible. The particle-particle (t)- channel results
are closest to the results obtained in FRG. The electrical current voltage character-
istics are easier to see in the results for the differential conductance. The decrease
of the conductance at zero bias voltage for increasing magnetic fields is clearly vis-
ible. Also, the enhanced conductance is present at the Zeeman splitting energies.
The deviation between our results and FRG are at the maxima and minima of the
differential conductance. However, in general, both methods show good agreement
with each other.

5.4 Summary

In this chapter, we showed the numerical results we achieved from our numerical
efforts to solve the Kadanoff-Baym equations of motion for the statistical propagator
and spectral function derived from the two-particle irreducible (2PI) effective action,
with the non-perturbative channel resummation approximation of the self-energy for
a quantum dot with on-site Coulomb repulsion interaction, coupled to two metallic
non-interacting leads described by the single impurity Anderson model (STAM). In
the first section, we presented how the Gaussian initial conditions enter our dynamical
equations. Furthermore, we discussed the algorithm we used to solve the equations
numerically.

In the second section, our investigation focused on the case of leads with the
same chemical potentials, which is referred to as the equilibrium setup. However,
we applied a quench in the tunnelling parameter and the interaction strength at the
beginning of the time evolution, which drives the quantum dot out of equilibrium.
During the time evolution, the system evolves into a stationary state. We started
with the discussion of the occupation number of the quantum dot in the particle-
hole symmetric case from small to large interaction strengths. Our results for the
time evolution of the occupation number were compared to Monte-Carlo data and
we found very few deviations. We also showed results for the stationary occupa-
tion over a high range of gate voltages, such that the quantum dot runs through
the unoccupied, mixed valence, Kondo, and double occupied regimes. Up to large
interaction strengths, we found a good agreement with the results in the literature.
The main focus of this section was the time evolution of the spectral function and
the investigation of its properties. We showed the spectral function as a function of
time at small, intermediate and late times and found that at early times the spectral
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function decays exponentially with rate on the order of the hybridisation while at
later times, where the Kondo effect sets in, the exponent becomes very small. We
found that for smaller time-step sizes the exponent becomes smaller and is close to
the predicted Kondo temperature for interaction strengths around U = 4. For higher
interaction strengths, the exponential decay becomes faster. The results obtained
in the direct (s)-, particle-hole (u)-, and stu-channel are very similar to each other
but the particle-particle (t)-channel starts deviating from the others at interaction
strengths U 2 4.

In the third section, we applied a finite bias voltage to the quantum dot to study
the electrical current voltage characteristics and the influence of different paramet-
ers, such as: interaction strength, temperature, and magnetic field. We started our
investigation with the non-equilibrium time evolution of the electrical current for an
interaction strength of U = 4. At small bias voltages, we observed long-time effects
due to the Kondo effect. The initial rise of the electrical current is independent of
the interaction strength but determined by the applied bias voltage. In a certain
parameter range for the interaction strength and bias voltage, a damped oscillation
is observed with an angular frequency proportional to the bias voltage, w ~ V /2. We
compared our results for the stationary current with those from FRG and found, for
small interaction strengths, a very good agreement in all non-perturbative resum-
mation schemes. This starts to break down with increasing interaction strengths.
However, the results obtained in the direct (s)-, particle-hole (u)- and stu-channel
can render the characteristics of the differential conductance. Furthermore, our res-
ults for the temperature- and magnetic field-dependence of the stationary current
agree perfectly with FRG results.

97






Chapter 6

Conclusion

In this thesis, we employed the real-time Schwinger-Keldysh path integral formu-
lation to derive the two-particle irreducible (2PI) effective action to investigate the
non-equilibrium time evolution of an Anderson quantum dot. From the 2PI effective
action, we used the variational principle to find the exact Kadanoff-Baym equa-
tions of motion for the full propagator. These dynamic equations for the statistical
propagator and spectral function are the central equations from which we numerically
obtained all the results shown in this thesis.

The underlying model of our investigation is the single impurity Anderson model
(STAM), which describes a zero-dimensional quantum dot with two available energy
levels and on-site Coulomb repulsion, coupled to two leads with finite temperature
and chemical potential. The zero-dimensional approximation of the quantum dot is
justified because real quantum dots are nanoscale devices with a discrete spectrum.
Furthermore, the physics of the quantum dot depends on whether the total number of
electrons are even or odd. Therefore, one orbital on the quantum dot, which can hold
up to two electrons, is a very good approximation. The tunnelling between the leads
and the quantum dot is taken into account exactly by integrating out the leads’ fields
in the path integral formulation. The commonly used wide flat band approximation
for the leads’ density of states is also used in this thesis. This approximation considers
a constant density of states in the range of the bandwidth. In general, this is only
true for two- dimensional systems, however it is also reasonable for our purposes. We
assume that the leads are in thermal equilibrium and can be described by a grand
canonical ensemble during the entire time evolution.

At the beginning of the time evolution, the leads and the quantum dot, which is
described by a general density matrix determined by the initial occupation, are two
separate systems. Initially, we set the occupation of the quantum dot to zero. After-
wards, we performed a hybridisation and interaction quench which drives the system
out of equilibrium, even for equal chemical potentials in the leads. Our numerical
results, obtained from solving the real-time Kadanoff-Baym equations of motion
numerically in the non-perturbative direct (s)-, particle-particle (t)-, particle (u)-
and stu-channel resummations, are divided into two parts, one with equal chemical
potentials in the leads, and the other with an applied bias voltage.

In the case with an applied bias voltage, we extended the work given in Ref. [145]
by the non-perturbative particle-particle (t)-, particle-hole (u)-, and stu-channel re-
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summation schemes and also studied the transient electrical current through the
quantum dot. Similar to the occupation number in the previous case, the short-time
electrical current is independent of the interaction strengths and only determined
by the applied bias voltage. Afterwards, interaction effects also become important
and strongly influence the evolution into the stationary state. Furthermore, in this
non-equilibrium case with an applied bias voltage, we found the results to be in very
good accordance with other established methods, such as the functional renormal-
isation group and the iterative sum of path integrals up to an interaction strength
of U = 4. For interaction strengths of U = 4 and U = §, best results were obtained
in the stu-channel approximation. In the Kondo limit of small bias voltages we ob-
served long-time effects until the electrical current reaches its stationary state. For
larger interaction strengths, it takes more time. At large bias voltages, which is bey-
ond the linear response regime, the 2PI effective action is able to render the correct
asymptotic stationary currents. Moreover, we also investigated the influence of finite
temperatures and magnetic fields and found a very good agreement with the results
obtained from the aforementioned methods for all non-perturbative resummation
channels.

In the case of equal chemical potentials in the leads, we studied the transi-
ent as well as the stationary occupation numbers, with the main focus set on the
spectral function of the quantum dot. In the particle-hole symmetric setup, the ex-
pected occupation number is obtained in all non-perturbative resummation schemes.
Moreover, at very short times, we found that the occupation number is independent
of the interaction strength. This can be understood from direct considerations of
the STAM Hamiltonian because the on-site interaction term is given by the occupa-
tion operators for up and down spins. Since we have an initially empty quantum
dot, the interaction strength should not play a role. We compared our results with
those from the exact numerical Monte Carlo data given in Ref. [152] and found a
very good quantitative agreement for all interaction strengths. We also studied the
stationary occupation number of the quantum dot for different gate voltages, such
that the quantum dot runs through the empty to the double-occupied state. In the
whole range of probed gate voltages, we obtained the qualitatively correct results
compared to exact analytic results. The main focus was on the time evolution of
the quantum dot’s spectral function in the particle-hole symmetric setup for a large
range of interaction strengths. In this setup, the main features of the spectral func-
tion at late times is known but the time evolution from a certain initial state is not.
This provides the opportunity to check our results at late times. One of the cardinal
characteristics of the spectral function is the width of the Kondo peak, also referred
to as the Kondo temperature. It is known from exact Bethe ansatz calculations in
the stationary limit that the Kondo temperature decreases exponentially for large
interaction strengths, ¢f. Eq. (3.15), and also experiments showed this behaviour.
The reproduction of this exponential scaling is a very challenging task, where most
other methods fail. Our results are in a very good accordance with the exact analytic
solution up to interaction strengths of U = 5 and a good accordance up to U = 6.

The main achievement of this thesis is the detailed investigation of the spectral
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function, which so far has not been carried out in the literature to our knowledge.
This was only possible due to the tremendous improvement of the numerics for solv-
ing the real-time integro-differential Kadanoff-Baym equations of motion to a much
higher accuracy, in comparison to works which used the 2PI effective action to invest-
igate non-equilibrium time evolution as in Refs. [116, 145]. We treated differential
terms as well as the non-Markovian memory integrals in the dynamic equations con-
sistently with a higher-order predictor-corrector algorithm. With that, we were able
to calculate the time evolution starting from an arbitrary initial condition to the
stationary state and find the correct exponential scaling of the Kondo temperature
up to interaction strengths U = 6, which is a huge success.

Additionally, this enabled us to study the formation of the Hubbard side bands.
This feature of the spectral function is most pronounced in the non-perturbative
resummation of the stu-channel. The effects of the Hubbard side bands are due
to the coupling to the leads and play an important role for short relative times.
Furthermore, the formation takes place at earlier times than the Kondo effect in the
absolute time. We showed the whole real-time plane of the spectral function from
which this formation is clearly visible.

There is only one work in the literature [145] where the 2PI effective action was
applied to the STAM to study its non-equilibrium time evolution in the Kondo regime.
In this thesis, we have demonstrated that the essential physics of the quantum dot is
captured in non-linear effects solely in non-perturbative resummation schemes. We
compared the different non-perturbative resummation channels and found, in most
cases, the best results when we combined all standard resummation channels by
summing them up to the new defined stu-channel. Furthermore, we demonstrated
that the 2PI effective action is a very good method for tackling the very demanding
long-time effects in the Kondo regime.

We obtained the best results we could achieve with the algorithm used in our
numerics and the available computer power within the time constraints of this pro-
ject. With our work, we have paved the way for ongoing projects in this field. Due
to the exponential scaling of the Kondo temperature, there are two points that are
important for larger interaction strengths. First, it is much tougher to obtain numer-
ically precise results in that regime. This can be improved by decreasing the time
step size. Second, the Kondo temperature is an energy scale of the system but also
imposes a time scale. From this, it follows that the expected time for building up
the tail in the spectral function increases exponentially with the interaction strength
and therefore, the results are supposed to improve for larger times. However, this is
a very challenging issue because both points demand an increasing number of time
steps and therefore computational resources. For future work, the key point is to
improve the numerics to access later times with smaller time step sizes in order to
enhance the results for larger interaction strengths.
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Appendix A

Numerical Methods

In this section, we want to review all numerical methods and concepts used in order
to find solutions for non-equilibrium physics for the single impurity Anderson model
described by the Kadanoff-Baym equations of motion, which are a set of coupled
integro-differential equations. For this, there are two key aspects to consider. First,
how to solve a differential equation and second, how to evaluate an integral nu-
merically. We tackle the first point with a linear multistep method and the latter
with quadrature rule integration methods. The employed methods can be found in
standard textbooks about numerical mathematics, as in Refs. [210-212].

We limit our considerations to the one-dimensional case and simply transfer this
to the Kadanoff-Baym equations of motion. Since the spectral and statistical func-
tions of the full propagator obey symmetry relations, our calculations are restricted
to the lower triangle of the real time plane, therefore we can regard our problem as
quasi one-dimensional and the occurring integrals as one-dimensional convolutions.

A.1 Linear Multistep Methods for Solving Ordinary
Differential Equations

We are interested in solving ordinary differential equations. The problem is given by
a differential equation and an initial value as

Y1) = F(ty()  with y(0) = go. (A1)

The goal is to find a numerical solution to this problem. Beside the one-step methods
like Runge-Kutta, where only the current time is needed to calculate the next time
point, there are also multistep methods, which use more than the current time. The
most general form of the linear multistep method is given by

Yn+1 + aoYn + A1Yn—1 +...+ AsYn—s = At(bflfTH»l + bOfn +.. .+ bsfnfs) (AQ)

with constant coefficients a; and b; and where we have used the shorthand notation
v = y(te), fx = f(tx,y(tx)) and time step size At. It is called linear because the
appearing values of y, are a linear superposition. In the case of b_; # 0, the next
point that is needed has not been calculated. On the one hand side, this makes the
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algorithm more complicated because a set of linear equations must be solved at every
time step but on the other hand, the algorithm is more stable. We call this method
implicit or Adams—Moulton and in the case of b_; = 0, explicit or Adams—Bashforth.

A.1.1 Adams—Bashforth

The basic idea is to interpolate the function f around the current time with Lagrange
polynomials

F&) = >0 ht)li(t), (A.3)

i=k—n
with
2o
k—n<j<k Vi T Y

n denotes the order of the Lagrange polynomial and also the number of values of
the past that are taken into consideration for the next point in the future and con-
sequently, the order of the Adams—Bashforth algorithm. Substituting Eq. (A.3) into
Eq. (A.1), we obtain

tet1 / k /tk+1
t)dt,
J, vou=3 s
trt1
wer =t 3 [ .
k

i=k—n

(A.5)

We performed this calculation for n € {0,1,2,3,4}. The Adams—Bashforth formulae
up to fourth order read:

Yrt1 = Y + At fi, (A.6)
At

Ykl = Y + — (3fk fk—1> : (A7)
A

Ykt1 = Yk + 12(23sz —16f5—1 + 5fx— 2) (A.8)
At

Ye+1 = Yr + 24(55fk —59fp_1 + 37 fu—a — 9fi_ 3) (A.9)
At

Yer1 = Ui + 720(1901fk — QTTAfy s + 2616 f5_o — 1274fy_5 + 251 f,_ 4) (A.10)
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A.1.2 Adams—Moulton

The calculation for the coefficients for the Adams—Moulton algorithm is very similar
to Adams—Bashforth. We just have to shift the summation index by one,

k+1

trt1 tk+1
L= S g [
k
i=k+1—n (A]_l)
k+1 g1
Yk+1 = Yk + Z fi/ l;(t) dt
i=k+1-n Uk

and n still denotes the order of the Lagrange polynomials and the order of the
Adams—Bashforth algorithm. For the first five orders we obtain:

Y1 =Yk + & A (flc+1 + fk) (A.12)

Yk1 = Y + i(5fk+1 +8fk — fk—1> ; (A.13)

Yet1 = Yk + §4 (9fk+1 +19fk — 5fp-1+ sz) , (A.14)

Yk+1 =Y + 7A2]E)(251fk+1 + 646 f, — 264 f_1 4+ 106 fr._o — 195 3) (A.15)
At

(475fk+1 1427 f — TO8fiy + 482 — 173y + 27fi 4)
(A.16)

A.1.3 Predictor-Corrector

Implicit methods are more accurate than explicit methods but they require much
more numerical effort because for every time step, an additional equation has to be
solved. One way to utilise the advantages of implicit methods is to introduce a two-
step procedure. In the first step, an explicit method like Adams—Bashforth is used
to predict the next value and in the second step, an implicit method like Adams—
Moulton is applied to correct the predicted value to increase the accuracy. The
correction step can be iterated arbitrarily. Such methods are also easy to implement
in the numerics.

In our numerics, we start with an Adams—Bashforth predictor of order zero and
an Adams—Moulton corrector of the order one. We increase the order by one after
every time step until we arrive at order two for the predictor and three for the
corrector

At
Yirr = Yo - 12(23fk T A 2)

At
Yet1 = Yk + = 1 <9fk+1+19fk—5fk 1+ fie 2>

(A.17)

We then iterate the corrector twice.
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A.2 Integration Methods

In our numerics, we use integration methods that obey the quadrature rule. The basic
concept is to approximate the function we want to integrate with a polynomial.

A.2.1 Newton—Cotes

In the closed Newton—Cotes method, the end points of the integration interval are
also taken to evaluate the integral. The integration range [a,b] is divided into n
equally spaced points, x;, with ¢ € {1,2,...,n}. The integrated function, f, is
approximated by a polynomial, p,,, of order n,

/ab f(z)dz ~ /abpn(m) dz (A.18)
with .
Pu(z) = ZO f(@i)lin () . (A.19)

In the Newton—Cotes method, Lagrange polynomials [;, are used. From the definition
in Eq. (A.4), it follows that the interpolation polynomial is equal to the function at
the nodes, p,(z;) = f(z;). The integral follows:

b n 1 b
/a f(z)dz =~ (b—a) Zf(xz)m/a lin(z)dz . (A.20)

1=0

We define the weights w;, such that

1 b
wi = — / lin() dz (A.21)

From the special case f(z) = 1, it is easy to see that the weights fulfil the condition

>ow=1. (A.22)

Then the value of the integral using the Newton—Cotes method is given by

/abf@;) dr ~ éwif(:ci). (A.23)

With n + 1 nodes polynomials up to the order of n and n + 1 for even n can be
integrated exactly.
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Explicitly, the first five orders of the closed Newton—Cotes fomulae (trapezoid,
Simpson, Simpson 3/8, Boole, and 6-point) read:

/:“ f(a)da = A; (fk + fm) : (A.24)
/ ” f(a) de = QGN (fi+ A + fisa ) (A.25)
/t :+ f(z)dz = 3;“ ( Fo+3fue1 4+ 3fera + fk+3) : (A.26)
/:*4 f@)de = 49A0t (7 fi+32fii1 + 12 s + 32firs + 7fk+4) : (A-27)
/:% flz)dz = 528Aéf <19fk + 75 fkt1 + 50 k2 + 50 fis + 75 fora + 195 ‘“*5> (A.28)

with the shorthand notation f, = f(zx) and ty; =t + 1At

A.2.2 Gaussian Quadrature

In contrast to the Newton—Cotes method, in the Gaussian quadrature rule the ac-
curacy can be improved by choosing the nodes wisely, where they can be located
arbitrary in the integration range. Therefore with n 4+ 1 nodes, x;, polynomials up
to the order of 2n + 1 can be integrated exactly. The integral of a function, f, in the
limits [a, b] is given by

/bf(x)da:%b_azn:wif<b_axi+a+b> (A.20)
; 2 & 2 2

with the weights w;. The nodes, z;, are determined by the roots of orthogonal
polynomials with respect to the weighted scalar product

5 = / " P(2) Py(2)w(x) de (A.30)

with an appropriate weight function w. The weigths are given by

w; = /abw(x)lm(a:), ie{1,.,n} (A.31)

where [;, denotes Lagrange polynomials.
Legendre, Chebyshev, Hermite and Laguerre polynomials are commonly used. In
this thesis we use Legendre polynomials, which are given by the Rodrigues formula

1 4"

- 2np! dzn

P, (z) (2% —1)" (A.32)
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and the corresponding weight function is trivial, 2(z) = 1. The nodes, z;, and
weights, «;, for the fifth-order Gaufi—-Legendre quadrature rule are

392 — 131/70
/ _ 22— v A.33
1 900 (4.33)

322 + 13v/70
[ _ o2at v A.34
a2 900 (A-34)

128
_ 128 A.35
= 595 (A.35)

5+2,/1

_ 2\/>

322 + 1370

—9 = 7 A.36

V5 VE 0‘4 900 (A-36)
/7 322 — 1370

OO\»—\

W=
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Appendix B
Effective Coupling

In this appendix, we want to introduce the effective coupling. Due to the resumma-
tion of the fermion bubbles to all orders, we can also write the resummed propagator
in terms of an effective coupling, which is frequency dependent in Fourier space. Such
calculation has been done in Ref. [121] for an ultra-cold Bose gas and in Ref. [145]
for the direct (s)-channel resummation for the STAM. In the case of spatial degrees of
freedom, the effective coupling also becomes momentum dependent. We derive the
effective coupling for the SIAM with zero magnetic field and equal initial occupation
for the spin-up and -down propagators.

We summarise the symmetry relations for the resummed auxiliary propagator,
G, and the two-fermion loop function, II, for: the direct (s)-channel,

() =Mt t), Mot t) =1t t) =0, B.1)

Goi(t, 1) = Gia(t, 1), Gu(t,t') = Go(t, 1) ; .
particle-particle (t)-channel,

o (t,t") = My (¢, ), Iy (¢, t") = My (t, t") =0, (B.2)

G12(t,t/) = G21 t,t), G11 tﬂf/) = Gzz(tyt = 07 '
and the particle-hole (u)-channel,

H12(t, tl) = H21<t/,t) ) Hn(t7 t) = H22(t,t/ =0, (B 3)

Gia(t,t') = Gu (1, 1), Gu(t,t') = Go(t,t') =0 '
We define the effective coupling, U.g, in Fourier space as

UA{ (w) = —II{ (W)Uetre(w),  UAL(w) = —T1¢(w)Uetre(w) (B.4)

with £ = s, t, u and see Egs. (B.10), (B.21), and (B.27) for the exact definitions of
A¢ and II¢. On the left-hand side of Eq. (B.4) is the sum of the spin bubbles to all
orders and on the right-hand side, one bubble is pulled out and the rest are shifted
to the effective coupling, which is then frequency dependent in Fourier domain.

At late times, when the system overcomes the transient dynamics and reaches
the stationary state, all two-point functions depend only on the difference of the time
coordinates. In this case, we can use the decomposition of the convolution of two
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correlation functions in the statistical, spectral, retarded and advanced parts along
the Keldysh contour, C, where the initial time is pushed to minus infinity, t; = —o0,

(X V) = XBay? - XFuyh,
(X *Y)=XRsYPl - XPxYh,
(X *Y)R = XBsyR,

(X *Y)d = —X*x YA,

1

(B.5)

where on the left-hand side a convolution along the Keldysh contour is implied and
on the right-hand side, an ordinary time convolution. The retarded and advanced
functions are defined as

’ ) B.6
0 ' (B.6)

For late times, when II® and IT* only depend on the difference of the times, 7 = t —t/,
we can use the Fourier transform

M*(w) = [~ dreo(r)IP(r) ..
= /_O:O dre“T §(—7)II*(7) . .

The spectral part of the two-fermion loop has the same symmetry as the full propag-

ator,
Hp(ta t/> = _Hp*(t/a t) ) (B8)

and with that follows the relation between the two functions in Eq. (B.7),
1% (0 / dr e 7 9(7) 17 (7 / dr e g(— )P (7) = —TT*(w). (B.9)

Now, we have all the ingredients we need to derive an expression for the effective
couplings in terms of II® or II* in Fourier space for the three non-perturbative
resummation channels.

B.1 Direct (s)-Channel

With the symmetries given in Eq. (B.1), we define

At t) =UtGu (), B(t,t) = U 'Ga(t,t), (¢, t") = Ul (¢, t)
(B.10)
and can rewrite Eq. (4.56) as

A=ill* B —1I,

] (B.11)
B=ill+ A

110



B.2 Particle-Particle (t)-Channel

with suppressed arguments. With the help of Eq. (B.5), we write down the statistical

and advanced part of A,
AF — HRBF _HFBA . HF
AA — —HABA . HA

and also of B,

BF:HRAF—HFAA
BA = —14 A%

We insert Eq. (B.13) into the first line of Eq. (B.12), which yields
AF = IRIIRAY — ORIIF AA 4+ OF 112 A4 — TOF

and isolate A, so that

AF _ AA<HA _ HR)HF B 1I¥

1 — IIRIIR 1 — IIRIIR
Putting both equations together, it reads

AN =TIMIAAS — T

Now isolating A*,

HA
TOIATIA -1
and substituting this into Eq. (B.15), gives

AA

HA HA . HRHA P HF

AF = SR —
(1 — TIRIIR)(TTATIA — 1) 1 — IIRIIR

Substituting Eq. (B.18) into Eq. (B.4) yields

Uit 1 — [IRTIA

U ~ (IRIR — 1)(IAIA — 1)

With the relation in Eq. (B.9), it follows that

Ueff o 1+ ‘HRP
U |1 —RIOR2

B.2 Particle-Particle (t)-Channel
With the symmetries given in Eq. (B.2), we define

A(t,t) = U TGt t), (¢, t") = Ullya(t, t)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)
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and can rewrite Eq. (4.68) as
A=illxA—1I. (B.22)
We use Eq. (B.5) to decompose A into statistical and advanced parts, such that

AF:HRAF_HFAA_HF

AN = —TIMAN — T (B.29)
Next, we isolate AF,
IF (1 + A%)
F e ——
A¥ = TR (B.24)
and A*,
HA
A P —
=TI (B.25)
insert this into Eq. (B.4), which yields
Uest 1
U |1 —TR]? (B-26)
B.3 Particle-Hole (u)-Channel
With the symmetries given in Eq. (B.3), we define
A(t,t) = UGt t), (¢, t") = Ullya(t, t) (B.27)
and can rewrite Eq. (4.80) as
A=ill*A—TI. (B.28)

Since the recursion equation is the same as in the particle-particle (t)-channel, the
calculation is exactly the same and therefore we arrive at the effective coupling

Ut 1
U |1 -TIR]2"

(B.29)

To close, we shall comment on the effective couplings in the three different channels.
In contrast to the particle-particle (t)- and particle-hole (u)-channels, where all num-
bers of fermion bubbles appear in the resummed auxiliary propagator, in the direct
(s)-channel, only odd numbers of fermion bubbles occur because of alternating spin
bubbles and differing effective couplings. The general form of the effective couplings
in the particle-particle (t)-, Eq. (B.26), and particle-hole (u)-channel Eq. (B.29), are
the same but the difference comes from the two-fermion bubble, IIR.
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Energy Conservation of an Isolated
Quantum Dot

In this chapter, we shall calculate the energy of an isolated quantum dot, which
means without a coupling to the leads, 7 = 0. In this case, no electrons can tunnel
to or off the dot and therefore the occupation number and energy of the quantum dot
is conserved. It is then a closed system. The 2PI effective action fulfils conservation
laws for the energy, particle number and momentum for closed systems for any ap-
proximation. In Ref. [126], calculations for the these conserved quantities were done
for an NV-fold one-dimensional Fermi gas.
In Ch. 4, the most general form of the 2PI effective action was

I[D,G,x] =—iTr[In D'+ Dy'D] + ;Tr [InG™'+ Gy G

(C.1)
+T9[D, G + T[] .
To this effective action, we apply the continuous time transformation
t—t+et), (C.2)

which vanishes on the boundary, and where € is a time-dependent infinitesimal time-
translation function. The two-point Green’s functions and the one-point function
transforms to leading order in € are

dD(t,t") = €(t)0:D(t,t') + €(t') 0y D(t, 1),
0G(t, 1) = e(t)0,G(t, ') + e(t )0y G(t, 1), (C.3)
ox(t) = €(t)Ox(t).

With that, it follows for the variation of the 2PI effective action is

|
Qg

[[D.G, ] — I[D.G,¥] +6T[D.G, 7] with oI = / dt B d,e(t), (C.4)

where E denotes the energy which is obtained by integrating the Noether current
by parts. In general, for a model with spatial dimensions, we could have applied a
more general transformation x# — x* + €/(x), where x is a space-time vector. This
transforms not only the time- also the space-dimensions, which implies momentum
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conservation. In this case, instead of the energy, E, the energy-momentum tensor,
T+ appears. Then the energy is £ = T,

We begin the calculation with the one-loop part of the 2PI effective action because
this term is independent of the approximation. It was shown in Ref. [126] that the
first term vanishes,

0Tr[mD™ =6Tr [InG'| =0, (C.5)
and we apply the transformation in Eq. (C.3) to the second term,

0Tr GG = /Cdtdt’ Tr {Gal(t,t’)(e(t)@G(t,t) "0y G ﬂ

— —/Cdt dt’ Tr {Gol(t,t’)(G(t,t’)&fe( )+ G(t,t")Ope(t ')ﬂ

In the last step, we integrated by parts, then in each term the derivative acts on
two functions. Then, we can use the fact that the inverse free propagator, Gy, only
depends on the difference of the times by changing the variable in the derivative,
which gives an additional minus sign and two terms cancel.

Due to the delta function in the free inverse propagator, we can easily perform
one integration and then trace over the 2 x 2 matrices. We obtain

(C.6)

0Tr |Gy'G| = U dt(GIQ(t t) + Galt, t))@te(t). (C.7)
Similarly, we get for the fermionic term
0T [Dy'D] =i Eogno(t). (C.8)

For the 2PI part of the effective action contribution to the energy, we use the know-
ledge from classical field theory in Ref. [213],

2 6F2 [Da G7 g,uzz]
—g(z) 09" (x)

T(x) = (C.9)

where g"” denotes the space-time metric and ¢ is the determinant of the metric. The

metric enters the I's by scaling each interaction vertex with /—g(x). The derivative
of this with respect to the metric is

04/ —g
S (y) \/ ) g (2)0(x —y) . (C.10)
From Ref. [110], we can also use a shorter but equivalent prescription,

0T,
0&(x)|

£=1

T (x) = g™

(C.11)

where we then scale each vertex with ¢ in lieu of ¢g"”. In our case, the energy
momentum tensor, 7", is just the energy, F, and the space-time vector, x, with
time ¢.
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C.1 Mean Field

We have already calculated the energy contribution from the one-loop part of the
effective action. Thus, the energy contribution from the double-bubble diagram in
the 2PI part of the effective action now needs to be calculated. We obtain

55? ( U/ dx &(t)Dy(z, ) D) (x, x))
=UD+(t,t)D(t,1)
— Uny(Omy ().
In the last step, we used the relation in the second line of Eq. (4.12). Putting this

together with Eq. (C.8), we obtain the total energy of the quantum dot at mean-field
approximation,

Ep (1) =

&1 (C.12)

EME (1) ZEogna )+ Unq(t)ny(t). (C.13)

C.2 Second Order

Only the energy contribution from the basketball diagram is unknown at this stage,
which is

B0 = 5750 L4 €) [ Ay €Dy, Dy(a.0)Dyla )il )

— —1U2/Cda; Di(x, t) Dy (t, ) D, (x, t) D, (t, 7).

&=1

(C.14)

The aim is to write the energy contribution in terms of the statistical propagators,
F,, and spectral functions, p,. Obviously, the term without a sign function does not
contribute because it vanishes along the Keldysh contour. Moreover, terms with two
or four sign functions also vanish because of the same time arguments'. Therefore,
only terms with one or three sign functions contribute to the total energy. This
fulfils the spectral part of the four full fermion propagators, D. In the first step,
we introduce B, (x,t) = D(x,t)D(t,z) and decompose this into its statistical and
spectral components. We obtain

F = T T F: 2(z —1 2(x
By (2,1) = D(z,1)D(t, >\p [ (2.1) = S lpol*(2.1) (.15)
Bi(x,t) = D(x, ) D(t, )| = polw, ) F} (1) + p (2, ) Fo(, 1),

and using this, we can easily write down the spectral part of the four full fermion
propagators, D, as

By(2,t)By(x, )| = Bi(w,t)BE (x,1) + BY (x,£) B4 (x, ). (C.16)

YFrom sgn(z — t)sgn(z —t) = 1 and sgn(z — t)sgn(t — x) = —1, the argument becomes clear.
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We put this into Eq. (C.14) and get
U2 it
() =~ [ do (BN @0 Byt + Bya ) BE @) (C.17)
0

The total energy at second order reads

E? (1) =37 Eogng () + Uni(t)ny (1)

B 5 ot (1.0 = JlonP*t0)) 20 on(t 5 1)) o

where the last term gives a loop correction to the energy.

C.3 Direct (s)-Channel

Besides the leading-order resummation diagram, there is an additional term coming
from the expectation values of the bosonic fields. The variation of that term is

_ 1 o 1 _ _ 1 _ _
T [x] = Ué/cdt X1X2 = U/Cdt X2€(t)0rx1 + U/Cdt X1€()0s X2
1
= —— [ x1x20:€(t) .
U/CX1X2 re(t)
In the last step, we integrated one term by parts but we have to bear in mind that

the derivative then acts on the other two terms. Therefore, we have in total three
terms and two of them cancel each other. The energy contribution of this term reads

(C.19)

E5(t) = Unq(t)ny(t) (C.20)

which is exactly the mean-field result.
From the leading-order resummation Feynman diagram, we derive

Biu(0) = 5ers 2 [ €00 [ €00y D (o 9) Dol )Cor (.9

¢=1 (C.21)
- iz/Cdeg(a:,t)Dg(t,x)Gw(x,t).

Taking the derivative with respect to the metric gives two terms but due to the
symmetry of the auxiliary bosonic propagator, GG, both terms can be summed up,
which results in the second line. Using the same argument as above, we can argue
that only the spectral part of the integrand contributes to the energy. It reads

Do) Do (t,2) G (w,0)|” =(po (0. ) FE (,) + i (0,00 Fo,) ) Gl )

(C.22)
+ (1B, 6) = Lloo (e, ) )Gl .1).
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With this, we have the full expression for the energy of an isolated quantum dot in
the direct channel,

ZEogng )+ Ung (t)ns( ——Ztht

m(p;;(t, DF(t,2) ) GE, (¢, 2) (C.23)

—ZU:/Odz

+ (‘F0|2(t7 Z) - le‘ng(t,Z)) Gga(t>z)] :

C.4 Particle-Particle (t)-Channel

The energy contribution from the leading-order resummation Feynman diagram reads

B0 = s 2, €@de [ €0y Dale. ) Dole.1)Gos (3.2

¢=1

_ ;; /C dz (D(,(t,x)Da(t,m)G(m(I,t) (C.24)

+ Dy(z,t) D5 (x,t)Gos(t, m)) .

As before, only the spectral part is non-vanishing along the Keldysh contour. The
spectral part of the first term of the integrand is given by

Dy (t,2) Dy (b, 2)Goo (2, 1) :<pg(t, D) (1, 2) + Fy(t, 2)pa(t, @)GEU(Q;, 1)

4 (Fo(t,x)FU(t,x) - ipg(t,m)pg(t, x))an—,(x, 0.
(C.25)

For the second term we get the same result but with interchanged time arguments.
The order of the time arguments can be changed with a complex conjugation, which
gives a minus sign because of terms including one or three spectral functions and
another because of the sign function in front. Summing both up, we get twice the
real part of Eq. (C.25).

The total energy of an isolated quantum dot in the particle-particle (t)-channel
reads

ZEOUnU )+ Ung(t)ns( —*ZGaatt
- ;%R{/O dz {Qpa(tvz)FU(tv 2)Gos(t, 2) (C.26)

+ (Fo(t,2)Fo(0,2) = 3plt, 2)p(1,2) ) G, 2)] } .
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C.5 Particle-Hole (u)-Channel

Similar to the particle-particle (t)-channel, we obtain from the leading-order resum-
mation Feynman diagram

B0 = 5erivs X [ €60 [ €00y D (o.9) Dol )Cos (.9

e=1
_ ;goj /C dz (Da(t,a:)Dg(x,t)Gw(t, z) (C.27)

+ Do(, 1) Da(t, 2)Gos(x, t)> .
The spectral component of the first term reads
D, (t,2) Dy, )Gos (1, )| :(pg(t, D) (2, 1) + Fy(t, 2)ps (2, t))Gga(t, z)

4 (Fg(t,x)Fg(:c,t) - ipg(t,x)pa(x,t)>G§a(t, 7).
(C.28)

Analogously to the particle-particle (t)-channel, we can sum up both terms in Eq. (C.27)
by using the symmetry relations. Therefore, the total energy is given by

1
Eu(t) = Z Eoo-no-(t> + UninT - E Z Ga-a-(t, t)

- ZJ: afe{ /Ot dz Kpa(t, 2)Fi(t,2) + F,(t, 2)pilt, 2)>G§a(t, z) (C.29)

+(Eﬁwﬁﬂt@—imwdﬁﬁwﬁ0&@ﬂﬂ}
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