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Zusammenfassung

Die Segmentierung von Bildern ist eine der grundlegenden Aufgaben der Bildver-
arbeitung. Es existieren viele Abwandlungen, wovon eine die Segmentierung von
Schichten mit einer natürlich vorgegebenen Reihenfolge ist. Die Zellschichten in der
menschlichen Retina stellen eine Instanz dieses Problems dar. Die vorliegende Dok-
torarbeit untersucht einen Segmentierungsansatz für diese Problemklasse, welcher auf
probabilistischen grafischen Modellen basiert. Diese Modelle beinhalten das Problem
der Infererenz: Wie kann man - gegeben einen Scan der Retina - eine einzelne Vorher-
sage oder, falls möglich, eine Verteilung über Segmentierungen dieses Scans erhalten.
Exakte Inferenz ist im Allgmeinen nicht praktikabel, weswegen wir einen approxima-
tiven Ansatz untersuchen, der auf variationeller Inferenz basiert. Dieser erlaubt die
effiziente Approximierung der vollen A-posteriori-Wahrscheinlichkeit. Eine charakter-
istische Eigenschaft unseres Ansatzes ist die Integration einer A-priori-Verteilung über
Retinakonturen, welche nicht auf lokale Information beschränkt ist. Wir evaluieren
unseren Ansatz anhand verschiedener unter anderem auch pathologischer Datensätze.
Dabei können wir zeigen, dass globale Konturinformation Segmentierungsergebnisse
nach dem Stand der Technik liefert. Da wir die volle A-posteriori-Verteilung in-
ferrieren, ist es uns weiterhin möglich, sowohl die Qualität unserer Vorhersage als
auch den Grad der Anomalie des vorliegenden Scans zu bewerten. Motiviert durch
unsere Problemstellung haben wir außerdem die nicht-parametrische Dichteschätzung
unter der Nebenbedingung der Log-Konkavität untersucht. Diese Klasse von Dichte-
funktionen ist auf die konvexe Hülle der empirischen Daten beschränkt. Dies liefert
automatisch Konturverteilungen, die die Reihenfolge der Retinaschichten beachten,
indem sie ungültigen Konturkonfigurationen keine Wahrscheinlichkeitsmasse zuweisen.
Wir untersuchen einen bekannten Ansatz aus der Literatur, zeigen die Erweiterung
von 2-D auf N-D und wenden ihn auf Daten der Retina an.
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Abstract

Image segmentation constitutes one of the elementary tasks in computer vision.
Various variations exists, one of them being the segmentation of layers that entail a
natural ordering constraint. One instance of that problem class are the cell layers
in the human retina. In this thesis we study a segmentation approach for this
problem class, that applies the machinery of probabilistic graphical models. Linked
to probabilistic graphical models is the task of inference, that is, given an input scan
of the retina, how to obtain an individual prediction or, if possible, a distribution
over potential segmentations of that scan. In general, exact inference is unfeasible
which is why we study an approximative approach based on variational inference,
that allows to efficiently approximate the full posterior distribution. A distinguishing
feature of our approach is the incorporation of a prior shape model, which is not
restricted to local information. We evaluate our approach for different data sets,
including pathological scans, and demonstrate how global shape information yields
state-of-the-art segmentation results. Moreover, since we approximatively infer the
full posterior distribution, we are able to assess the quality of our prediction as well
as rate the scan in terms of its abnormality. Motivated by our problem we also
investigate non-parametric density estimation with a log-concavity constraint. This
class of density functions is restricted to the convex hull of the empirical data, which
naturally leads to shape distributions that comply with the ordering constraint of
retina layers, by not assigning any probability mass to invalid shape configurations.
We investigate a prominent approach from the literature, show its extensions from
2-D to N-D and apply it to retina boundary data.
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1 Introduction

1.1 Motivation

Segmentation tasks arise in many areas of computer vision and methodically come
in many different flavors. In video surveillance systems segmentation techniques
are utilized to detect objects of interest, for example pedestrians and other objects
in a street scene [AO11]. Another wide field for the application of segmentation
approaches is the analysis of satellite images, with one example being the tracking of
sand storms in desert areas [BGF13]. Finally, the umbrella term medical imaging
entails plenty of different imaging modalities and corresponding tools for evaluation
and interpretation. They seek to reveal the internal structures of the human body
hidden by skin and bones and ultimately assist in the detection and treatment of
diseases.
Optical coherence tomography (OCT) is an imaging modality that measures the

delay and magnitude of backscattered light. It is able to generate cross-sectional
or three-dimensional images of optical scattering media such as biological tissue.
OCT is especially well suited for ophthalmic imaging since naturally, the ocular
media allows light to travel with almost no interference, thus enabling micrometer
resolution and millimeter penetration depth into the retinal tissue itself [DF08]. Since
no other method can perform noninvasive imaging with such a resolution, OCT has
become a standard tool in clinical ophthalmology [SPF04]. The recent introduction
[dBCP+03, WLK+02] of spectral-domain OCT dramatically increased the resolution
as well as the imaging speed and enabled the acquisition of 3-D volumes composed
of hundreds of 2-D scans.
Since the manual segmentation of retina scans is tedious and time-consuming,

automated segmentation methods becomes evermore important given the growing
amount of gathered data. Several studies have shown, that accurate segmentations
can facilitate the detection of many common diseases such as glaucoma or age-related
macular degeneration [BZB+01, ZNO+07, TLL+08]. Ideally, this is carried out
independently of any user interaction, in order to enable the automatic screening of
large databases. A probabilistic representation of inferred segmentations is desirable
to facilitate subsequent assessments by health professionals. Ultimately, an integrated
warning system for the detection of pathologies would be particular valuable for the
everyday usage in a clinical environment.
Automatic segmentation approaches face several challenges: The scan quality

can be impaired for several reasons. For example blood vessels, located in the
outermost cell layer, can cause a shadowing of subsequent layers and thereby a
blurred appearance of layer boundaries. Other scan artifacts can arise by the scan
process itself. Thus, a segmentation approach that relies solely on appearance

1



1 Introduction

information would in many cases yield unsatisfying results. Furthermore, since
texture only constitutes a local feature, texture-only based approaches would lack
awareness about the global configuration of the retina.

In general these issues are tackled by adding prior shape knowledge to the segmen-
tation process, that helps gluing together local features in a meaningful way and
provides shape-driven hypotheses in regions with poor texture quality. In addition,
a shape prior with global information allows to draw conclusions about the shape
configuration.

1.2 Related Work

We begin with a formal definition of the task at hand:

Definition 1.1 (Image labeling problem). Let Ω ⊂ Rd be the image domain (d = 2, 3)
and I(x) be an image defined on that domain. The image labeling problem consists
in finding a partition PK(Ω) into K mutually disjoint subregions Ωk, that is

PK(Ω) ∈
{

Ωk

∣∣∣∣Ω =
K⋃
k=1

Ωk, Ωj

⋂
Ωi = ∅, ∀i 6= j

}
(1.2.1)

Any PK(Ω) is called a segmentation of I.

The retina segmentation task entails an additional constraint on the ordering of
partitions Ωk, corresponding to the given ordering of retina layers. Let x be composed
of xpos, the position on the retina surface and xdepth, its depth (the direction of
incoming light). For any two points xj ∈ Ωj and xk ∈ Ωk with j < k,

xjpos = xkpos =⇒ xjdepth < xkdepth (1.2.2)

has to hold. Note that there exist many other instances of that problem class, for
example the multi-surface segmentation of arterial walls in vascular MR images1

[YHSB+03] (upper panel Figure 1.1) or the segmentation of tree rings [CHKM07]
(lower panel Figure 1.1).

In general, one differentiates between binary segmentation task (K = 2) used to
differentiate foreground from background in object detection scenarios and those
where K > 2. For the application considered in this thesis, the resolution of current
scanning devices easily allows the meaningful differentiation of K = 10 or more
distinct cell layers (c.f. Figure 1.2).

Segmentation approaches rely on shape information to deal with missing low-level
information, as pointed out above. Although for some industrial applications it may
be sufficient to include just one single template shape, in general one needs to include
information about shape variations too. A common approach is to gather shape
characteristics from an annotated set of training samples and to build a statistical
shape model.

1In terms of polar coordinates (r, ϕ).

2



1.2 Related Work

(a) Segmentation of arterial walls

(b) Segmentation of tree rings

Figure 1.1 - Two instances of the segmentation task with ordering constraint: (a) The segmen-
tation of arterial walls in vascular MR images (taken from [SHB14]) and (b) the segmentation
of tree rings (taken from [CHKM07]). For the former example one has to switch to the polar
coordinate system.

The field of different approaches developed in the last decades is vast. Our selection
is guided by the set of approaches successfully applied to the retina segmentation
problem. In general we can differentiate between spatially continuous and spatially
discrete graph-based approaches. We will first review representatives of the former
type.

1.2.1 Spatially Continuous Segmentation Approaches

Active Contour Models. Methods of this group feature an explicit parametric
representation of the segmentation curve, which they evolve towards image gradients
using partial differential equations. Development started with the seminal paper of
[KWT88]. Here a parametric curve C : [0, 1]→ Ω is driven by a force that pulls the
curve towards gradient-based image features while another one controls the length
and rigidity of the curve.
An important extension by a (sparse) global shape prior, called the active shape

model, was proposed by [CTCG95]. Their statistical shape model is governed by a
set of control points with associated lower-dimensional latent space found by PCA.
During the energy minimization process the movement of the curve is restricted by
limiting the variance of the control points projected into the latent space.
An extension of active shape models called active appearance models (AAMs)

[CET98] evaluates texture information from inside the segmented region. As set of
texture control points is defined inside a mean shape and each training image is

3



1 Introduction

ONL + IS

OPL

INL

NFL 

GCL + IPL

CC

OS

RPE

Choroid

Vitreous Body

Boundaries Layers

Figure 1.2 - The retinal layers segmented by our approach and their corresponding anatomical
names: Nerve fibre layer (NFL), ganglion cell layer and inner plexiform layer (GCL + IPL), inner
nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer and inner segment (ONL +
IS), connecting cilia (CC), outer segment (OS), retinal pigment epithelium (RPE). See Section
2.5.2 for more information on some of these layers and the cells they are composed of.

warped to that mean shape to sample texture features and build a latent appearance
model, again using PCA. During optimization, the model compares texture features
as estimated by the current fit to those found in the image, and proposes new
positions for the shape control points.
Although active contour models are very popular for segmentation, they lack a

meaningful probabilistic interpretation. Moreover the explicit representation does
not easily carry over to K > 2 partitions and the optimization of the gradient-based
approaches (thus excluding AAM) is plagued by many local minima.
[KPH+10] adapted active appearance models to the retina segmentation task.

They use only sparsely sampled landmark points for their statistical shape model,
potentially losing information along the way. Furthermore, caused by the inherent
properties of the AMM, only a point estimate is inferred.

Level-Set Methods. Level-set methods [OS88], another family of spatially contin-
uous approaches, represent the segmentation curve C implicitly as zero level-lines
C = {x ∈ Ω |φ(x) = 0} of some time-evolving embedding function φ(x, t). The
evolution of φ is given by the partial differential equation ∂φ

∂t = −|∇φ|F where F is
the speed function. Alternatively there exist variational formulations based on an
energy E(φ) with corresponding Euler-Langrange equation ∂φ

∂t = −∂E(φ)
∂φ [CRD07].

Like in the case of AAMs, level-set formulations can be extended to include
region-based terms, that are governed by intensity, texture or color of objects and
background [CRD07]. [LGF00] where the first to integrate shape priors into the level-
set framework, driving the embedding function towards a PCA-based representation
of sample shapes2. Many other shape representations where proposed, see the review
of [CRD07] for more details.
Applications of level-set methods to the retina segmentation task [MWBC09,

YHSS11, NVT+13] utilize a multiphase formulation with one φi for each partition
2The number of required eigenmodes may be higher than for explicit contours, since PCA captures
the variance of the contour C only indirectly via the variance of the embedding function φ
[CRD07].
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1.2 Related Work

boundary. No shape prior [MWBC09], simple distances between layers [NVT+13] or
a shape prior enforcing circular-shaped contours [YHSS11] are applied. While the
assumption of simple circular contours was justified for the data used in [YHSS11],
in general much more complicated shapes are observed.

1.2.2 Spatially Discrete Segmentation Approaches

A very big class of spatially discrete segmentation approaches is based on Markov
Random Fields (see Section 2.3.4). Let G = (V,E) be an undirected graph composed
of nodes i ∈ V corresponding to pixels in I and edges (i, j) ∈ E ⊂ V ×V determining
the neighborhood of pixels in I, and let f = {fi ∈ {1, . . .K} | i ∈ V } denote the
labeling corresponding to PK(Ω). The problem of finding a partition PK(Ω) can
then be formulated as minimization of the energy function

E(f) =
∑
i∈V

Di(fi) +
∑

(i,j)∈E
Wij(fi, fj), (1.2.3)

where Di(fi) is the cost of assigning label fi to pixel i and accordingly for Wij(fi, fj).
Complexity of the problem is determined, among other things, by the type of pairwise
cost functions Wij and the complexity of the neighborhood structure denoted by E.
There exist many different optimization techniques to solve (1.2.3), among them

message-passing approaches that are covered in Section 2.4, linear-relaxation tech-
niques, combinatorial methods or graph-cuts. Depending on the model structure, any
of these techniques may perform best [KAH+13]. The latter technique was previously
applied to the retina segmentation task.

Graph-cut methods. Segmentation of graph-based energy minimization schemes
based on minimum graph cuts became popular after the seminal work of [BVZ01]. A
cut C = (S, T ) is a partition of the nodeset V into two disjoint subsets by removing
all edges that connect these two partitions called the cut-set. Each edge has an
associated weight, and the cost of the cut is defined as the sum over all edges (that
is their respective weights) in the cut-set.

A series of papers [GAW+09, SBG+13, DCA+13] use graph-cut based approaches.
They take into account the interaction of neighboring boundaries to mutually restrict
their relative positions. This shape prior information is encoded into the graph as
hard constraints [GAW+09] or, as recently introduced by [SBG+13] and subsequently
extended by [DCA+13], as probabilistic soft constraints. However, due to limitations
on complexity, only local shape information is included and boundaries are segmented
sequentially.

More retina segmentation approaches. Other approaches can not be clearly
assigned to any of the segmentation approaches presented above. Several employ
rule-based heuristic techniques [ASG+08, FSP05, ISW+05, MHMT10], which for
example use outlier detection along with linear interpolation to account for erro-
neous segmentations. Others [BFT07, YRW+10] use dynamic programming for
single Markov chains per boundary and constrain the maximal vertical distance
between neighboring boundary positions. [VvdSLdB11] classify pixels using support
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vector machines and regularize the output using level-set techniques. None of these
approaches incorporates shape prior information.

1.3 Contribution

As pointed out in the previous section, there exists no retina segmentation approach
that utilizes a full global shape prior. To our knowledge [KPH+10] is the only
work that utilizes global shape features, but their active appearance model uses
landmark points that represent only 5% of all boundary positions, thereby possibly
neglecting crucial information. All other approaches apply at best local marginal
shape distributions, that do not take into account long-range interactions.

In this thesis we demonstrate the various benefits of using global shape information,
which become apparent by

a) a state-of-the-art segmentation performance, outperforming approaches
that only utilize local or no shape information,

b) the ability to assess the quality of the segmentation and

c) the ability to judge the degree of abnormality of the global retina configuration,
that is the detection of pathologies. Here, too, we can demonstrate superior
performance over state-of-the-art approaches, that only rely on local shape
information.

We tackle the retina segmentation problem by combining probabilistic appearance
models with a shape prior distribution that takes into account all boundary positions
and their possible interactions. Both model parts, that are themselves probabilistic
graphical models, are merged in a hierarchical probabilistic graphical model. Dif-
ficulties arise about how to utilize the global shape information while keeping the
computation of posterior distributions over all possible partitions PK(Ω) or modes
thereof tractable.
Two different schemes were proposed and published separately: [RSS11] and

[RSS14]. The former conference paper [RSS11] can be seen as a predecessor of
the latter journal paper [RSS14]. While in [RSS11] the observed segmentation
performance was satisfactory, the model had several minor and major shortcomings
that we addressed in [RSS14]. For example, during inference the former model
took only modes of the shape prior into account, thereby not utilizing all available
information. Also, the probabilistic interpretability of that model was not clear, due
to a somewhat unorthodox inference process. This hampered the evaluation of the
posterior distribution.

In [RSS14] we completely remodeled the interplay between the shape and appear-
ance components and adopted a more sophisticated inference framework based on
variational inference. This enabled us to incorporate full conditional distributions
of the shape prior and resulted in a sound probabilistic framework as well. We also
extended the approach to 3-D. As a result of that recomposition, we observed a more
robust performance for scans of low quality. Moreover, the new inference part enabled
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1.4 Thesis Outline

us to infer an approximation to the full posterior distribution over segmentations.
This in turn made it possible to implement features b) and c) mentioned above. Last
but not least, by exploiting the inherent sparsity of the model as well as implementing
the crucial part of the model in C, we were able to constrain the time requirements,
such that the approach became applicable in a clinical environment.
One problem still remained: The support of our shape prior distribution is not

constrained to partitions that are valid in a biological sense. In the models above
we dealt with that issue in a sub-optimal way by simply ignoring probability mass
assigned to shape configurations violating the natural order of layers. As a preparatory
step to rectify this, we investigated the class of non-parametric log-concave density
estimators. As one of their crucial characteristics, their support is constrained to the
sample data set. And since samples represent only valid configurations, we obtain a
density that obeys the ordering constraint.

Investigating the approach of [KM10], we proposed an alternative optimization in
terms of the primal which yields similar performance as the Mosek-based implemen-
tation of Koenker et al. We furthermore elaborated the extension from 2-D to N-D
mentioned in [KM10] and present results for the 3-D case. The integration into our
segmentation model remains as future work though.
In order to ensure a clear and well-structured presentation, we decided to only

present the journal paper [RSS14] in this thesis, while we refer to [RSS11] for details
of our first approach. Moreover we compactly confined the segment about log-concave
density estimation to the second last chapter.

1.4 Thesis Outline

Preliminaries are covered in Chapter 2. We first address the basics of convex
analysis, then present probability theory from a measure-theoretic point of view.
After we examined some necessary concepts of graph theory, we are in a position
to introduce probabilistic graphical models, providing the theory underlying our
retina segmentation model. The next section sheds light on inference methods in
graphical models with the focus on the methodology of variational inference. Finally,
the last section will introduce physiological background information about the retina
segmentation task.
Chapter 3 introduces our probabilistic graphical model for retina segmentation

and presents each component separately. We then point out the intractability of
directly inferring probability distributions and outline how variational inference can
be applied to obtain approximative posterior distributions in a deterministic fashion.
Chapter 4 presents the three different data sets of retina scans used in this work.

Afterwards we evaluate segmentation performance and demonstrate how the inferred
approximative posterior distributions can be utilized to recognize pathological scans
and also determine the quality of the segmentations.
In Chapter 5 we address the problem of the Gaussian shape prior not being

faithful to the ordering of the retinal layer boundaries. We introduce, extend and
implement an existing approach to estimate log-concave densities on the support
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of the sample set, thereby automatically taking into account the natural ordering
constraints for retina boundaries.

Finally, we draw a conclusion in chapter Chapter 6 and discuss possible directions
of future work.

An Index, located before the bibliography, collects all keywords that are marked
bold throughout this thesis for reference.

1.5 Notation

The following table gives an overview of relevant notation. This serves as a reference,
while each section introduces the notation it requires separately.

Table 1.1 - Relevant notation used throughout this thesis.

Convex Analysis (Section 2.1)
R Extended reals: R ∪ {∞,∞}
intS Interior of the set S
S̄ Closure of the set S
bdS Boundary of the set S, bdS = S̄ \ intS
convS Convex hull of the set S
Sn Space of symmetric n× n matrices
Sn+ [Sn++] Cone of symmetric, positive semidefinite [definite] n× n matrices
�K [≺K ] Generalized inequality: x �K y ⇐⇒ y − x ∈ K [y − x ∈ intK]
� [�] X � 0⇐⇒ X ∈ Sn+ [X � 0⇐⇒ X ∈ Sn++]
δC(x) Indicator function of the convex set C
epi f Epigraph of the function f

Measure and probability theory (Section 2.2)
Ω Sample space
ω Outcome of a random experiment, ω ∈ Ω
A Event, A ⊆ Ω
F σ-algebra; collection of subsets of Ω
P Measure on the measurable space (Ω,F)
X,Y Random variables, X : Ω→ R (or X : Ω→ Rn)
x, y Realizations of X,Y (elements of the codomain)
B Borel algebra on R (or Rn)
PX Measure on the measurable space (R,B) induces by X
p(x) Density function corresponding to PX
H[p] Shannon entropy of p(x)
dν(x) Base measure (counting measure or Lebesgue measure)

Probabilistic graphical models (Section 2.3)
G = (V,E) Graph composed of a set of nodes V and edges E ⊆ V × V
(i→ j) Directed edge from node i to node j
(i, j) Undirected edge between nodes i and j
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pa(i) Parents of node i: j ∈ pa(i)⇔ (j → i) ∈ E
ch(i) Children of node i: j ∈ ch(i)⇔ (i→ j) ∈ E
ne(i) Neighbors of node i: j ∈ ne(i)⇔ (i, j) ∈ E
X ⊥⊥ Y |Z Conditional independence of X and Y given Z

Variational inference (Section 2.4.2)
φ(x) Sufficient statistics
θ Canonical parameters
A(θ) Log partition function
pθ Density from the exponential family: pθ(x) = exp{〈θ, φ(x)〉 −A(θ)}
µ Mean parameters (dual to θ)
A∗(µ) Conjugate of A(θ)

Retina segmentation model (Chapter 3)
N,M OCT scan dimensions (rows, columns)
Nb Number of segmented boundaries; Nb = 9 in this paper
i, j, k Indices of N,M and Nb: i = 1, . . . , N, j = 1, . . . ,M, k = 1, . . . , Nb

bk,j ∈ R Real-valued location of boundary k in column j (relative depth)
ck,j ∈ {1, . . . , N} Integer-valued boundary variables analogous to b,

but specifying row-positions on the pixel grid
xi,j ∈ X Class variables indicating membership to layer or transition classes
yi,j Observed data; here patches around pixel (i, j)
qc, qb Approximating densities of the posterior: p(b, c|y) ≈ qc(c)qb(b)

Log-concave density estimation (Chapter 5)
f(x) Log-concave density function
g(x) Convex function, such that f(x) = − log g(x)
X Set of sample points xi ∈ Rd
G(X) Cone of polyhedral convex functions on convX
C(X) Space of continuous functions on convX
C∗(X) Space of signed, finite, regular Borel measures, dual to C(X)
K(X) Cone of closed (lower semicontinuous) convex functions on convX
K∗(X) Polar cone of K(X)
Pn Empirical measure corresponding to X
Ln Lorentz cone: Ln = {(x, z) ∈ Rn+1 | z ≥ ‖x‖2}
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2 Preliminaries

This chapter will introduce all the necessary tools which are required in the remainder
of this thesis. Convex analysis lies at the heart of many mathematical areas and we
will give a short introduction in Section 2.1. Section 2.2 follows with a treatise of
probability theory from a measure-theoretic point of view. A significant part of our
graphical model relies on the multivariate normal distributions, which we introduce
at the end of that section. There, it is a pivotal question how to obtain regularized
estimates for the covariance matrices, and we will address this issue by presenting
two approaches from the literature. Section 2.3 and Section 2.4 present the main
theory behind probabilistic graphical models and how inference is performed with
the focus on variational inference. Finally, Section 2.5 comprises some background
material regarding the image data used in this thesis, human retina scans acquired
using Optical Coherence Tomography. We also give a short survey about retinal
anatomy and how one of its most numerous diseases, glaucoma, affects its structure.

2.1 Convex Analysis

In this section the necessary terminology of convex analysis will be presented. For a
much more thorough treatment we refer to the books [BV04] and [Roc70]. To ease
presentation, all definitions will be given in terms of the Euclidean space Rn, but
can readily be rewritten in terms of a generic vector space X.
We denote the extended real numbers R ∪ {−∞,+∞} by R and the space of

symmetric n× n matrices by Sn.

Definition 2.1 (Convex set). A set C ⊆ Rn is convex, if for any x, y ∈ C

λx+ (1− λ)y ∈ C, ∀λ ∈ [0, 1]. (2.1.1)

Definition 2.2 (Indicator function of a convex set). We the define the convex
indicator function1 of the convex set C as

δC(x) =

0 x ∈ C
+∞ x /∈ C.

(2.1.2)

Definition 2.3 (Cones). A set K ⊆ Rn is called a cone, if λx ∈ K for all x ∈ K
and λ ≥ 0. If K is also convex it is called a convex cone.

We call K a proper cone, if it is closed, convex, has nonempty interior and is
pointed, that is x ∈ K ⇒ −x /∈ K, except if x = 0. Two important proper cones are

1The concept of a convex function will be introduced in Definition 2.7.
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Sn+ and Sn++, the cones of symmetric, positive semidefinite and definite matrices.

Definition 2.4 (Polyhedron and polytope). We call the intersection of a finite number
of half-spaces

C = {x |xT bi ≤ ξi, i = 1, . . . , n}, (2.1.3)

a polyhedron. If C is bounded we call it a polytope.

Definition 2.5 (Convex Hull). Given a set C ⊂ Rn, we call the set of all convex
combinations of points in C,

convC =
{
λ1x1 + . . .+ λkxk |xi ∈ C, λi ≥ 0, i = 1, . . . , k,

∑
i

λi = 1
}
, (2.1.4)

the convex hull of C.

A convex hull generated by a finite set of points is a polyhedron. Both representations,
by a set of points and by a set of half-spaces, are dual to each other and serve as an
example for conjugate duality, described below2.

Definition 2.6 (Generalized inequality). We define a generalized inequality as
the partial ordering on Rn associated with the proper cone K

x �K y ⇐⇒ y − x ∈ K, (2.1.5)

and the strict partial ordering

x ≺K y ⇐⇒ y − x ∈ intK. (2.1.6)

We will use X � 0 as a short form for −X �Sn
+

0 and X � 0 for −X ≺Sn
+

0.

Definition 2.7 (Convex function). A function f : Rn → R is called convex, if it
satisfies Jensen’s inequality for any x, y ∈ Rn, that is

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ [0, 1]. (2.1.7)

A dual characterization of a convex function is in terms of its epigraph:

epif := {(x, µ) ∈ Rn × R : µ ≥ f(x)}. (2.1.8)

Convexity of the set epif is equivalent to convexity of f .
An elementary property of convex sets is the fact that they possess a dual repre-

sentation in terms of the intersection of all half-spaces that contain them. Let f be
a convex function. For epi f to be contained in the half-space corresponding to the
hyperplane h(x) = xT ξ − µ, we require that

sup
x∈dom f

{h(x)− f(x)} ≤ 0 ⇐⇒ sup
x∈dom f

{xT ξ − f(x)} ≤ µ

This determines a function whose graph describes the set of all half-spaces tangent
2The indicator function δC and the support function δ∗C of a set C are conjugate to each other.
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to the graph of f :

Definition 2.8 (Conjugate duality). Let f : Rn → R. The function f∗ : Rn → R
defined as

f∗(ξ) = sup
x∈dom f

{xT ξ − f(x)} (2.1.9)

is called the conjugate function.

It immediately follows from the definition that xT ξ ≤ f(x)+f∗(ξ), known as Fenchel’s
inequality. In this inequality the role of both functions seems interchangeable. This
is true iff f is a convex function in which case we can equally express f in terms
of f∗:

f(x) = f∗∗(x) = sup
ξ∈dom f∗

{xT ξ − f∗(ξ)}. (2.1.10)

Thus we gained an alternative representation of f in terms of an optimization
formulation. This is also called the variational representation of f and will become
important again when we deal with variational inference in Section 2.4.2.

Definition 2.9 (Convex minimization problem). The convex minimization problem
subject to a set of generalized inequality constraints is given by

minimizex∈D f0(x) : fi(x) �Ki 0, ∀i = 1, . . . , n (2.1.11)

with convex domain D = ∩ni=0 dom fi, convex function f0 : Rn → R, Ki-convex
functions3 fi : Rn → Rki and proper cones Ki ⊆ Rki .

Using logarithmic barrier functions, problem (2.1.11) can be readily trans-
formed into an unconstrained optimization problem. Barrier functions −ψ(−fi(x))
can be understood as differentiable approximations to indicator functions

IKi(fi(x)) =

0 fi(x) �Ki 0,
∞ else.

We require that −ψ is a convex, closed and continuously differentiable function,
domψ(−fi(x)) = intKi and ∇2ψ(y) ≺ 0 for any y ∈ intKi [BV04].

Example 2.10 (Barrier function for the positive semidefinite cone). Let A ∈ Sn,
then ψ(A) = log detA is the logarithmic barrier function for the generalized inequality
−A �Sn

+
0, since

log detA = log
∏
i

λi =
∑
i

log λi. (2.1.12)

Using barrier functions, we can reformulate (2.1.11) into the unconstrained convex
problem

minimizex∈D tf0(x)−
n∑
i=1

ψ(−fi(x)) := π(x). (2.1.13)

Note that we introduced the factor t which governs the relative weight between the

3Ki-convexity amounts to replacing ≤ with �Ki in Equation (2.1.7).
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objective term f0 and the log-barrier terms. A valid strategy to optimize π(x) is to
initialize x with a feasible x0 and set t = 1, and then to solve a series of unconstrained
optimization problems while resetting t := µt after each step, where µ > 1. This
approach is called the barrier method, which is guaranteed to converge towards
the global optimum of problem (2.1.11) as t→∞ [BV04].

For the inner optimization steps one usually uses Newton’s method, which is a
step-wise descent method

xk+1 := xk + λ∆xk, (2.1.14)

with step size λ and Newton step ∆xk, defined as

∆xk := −[∇2π(xk)]−1∇π(xk), (2.1.15)

consisting of the inverse Hessian and gradient of π(x). We will make use of logarithmic
barrier functions and the barrier method in Section 5.3.3.

2.2 Probability Theory

Length, area, volume are all different instances of the concept of measure. Also the
theory of probability is build upon measure theory and this section will develop the
necessary concepts. It orients itself towards the book [ADD00], to which we refer for
a more detailed treatment of the topic.

2.2.1 Probability Space

We denote by Ω the sample space, that is the set of all possible outcomes ω of
a random experiment. The set Ω can be finite, e.g. Ω = {ω1, . . . , ωn}, countably
infinite, e.g. Ω = N or uncountably infinite, e.g. Ω = R. We call any subset of Ω an
event and denote it by A. Finally, a measure P is a set function that assigns a
number P (A) to each set A.
For a measure to be well-defined, we need to impose certain constraints on the

collection of subsets of Ω:

Definition 2.11 (σ-algebra). Let F be a collection of subsets of Ω. F is called a
σ-algebra or σ-field iff Ω ∈ F and F is closed under complementation and countable
union, that is:

a) Ω ∈ F .

b) If A ∈ F , then Ac ∈ F (where Ac is the complement of A that is Ac := Ω \A).

c) If A1, A2, . . . , An ∈ F , then ∪∞i=1Ai ∈ F .

It follows by the DeMorgan laws, that F is closed under countable intersection, since
∩∞i=1Ai = (∪∞i=1A

c
i )c ∈ F .

We call the pair (Ω,F) ameasurable space and any A ∈ F is called F-measurable.
The smallest σ-algebra consists of the two sets Ω and ∅. Contrary, we denote by

2Ω the power set of ω, that is the set of all subsets of Ω. Given a collection C of
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subsets of Ω, there exists a unique smallest σ-algebra containing C, that is said to be
generated by C. It is defined as the intersection of all σ-algebras containing C.
A very important σ-algebra, generated by all open intervals (a, b), is the Borel

algebra on R denoted by B. Elements of B are called Borel sets and one can show
that B contains all types of intervals such as [a, b] or [a, b) and consequently (by
means of countable union and intersection) all open and all closed sets.
Given a measurable space (Ω,F), we now want to assign a probability to each

event A ∈ F .

Definition 2.12 (Probability measure). Given a non-empty set Ω and a σ-algebra F .
We call the mapping P : F → [0, 1] a probability measure iff the three Kolmogorov
axioms are satisfied:

1. P (A) ∈ R, P (A) ≥ 0 ∀A ∈ F .

2. P (Ω) = 1.

3. (Countable additivity) For a sequence of disjoint sets {Ai} we require P (∪∞i=1Ai) =∑∞
i=1 P (Ai).

We call the triple (Ω,F , P ) a probability space and the number P (A) the proba-
bility of A. If only the first and third condition holds, we call P a measure.

2.2.2 Random Variables

We continue with one of the central concept of probability theory, that of a random
variable X. From a measure-theoretic point of view, X is a function that maps
each outcome ω ∈ Ω to the reals or extended reals. Intuitively it is a quantity that
is measured in connection with a random experiment, for example the height of a
person who is randomly drawn from the sample space Ω, containing all inhabitants
of this planet.

Suppose we are interested in probabilities of the form a ≤ X(ω) ≤ b for all a, b ∈ R,
that is we want to compute P ({ω |X(ω) ∈ B}) for events of the form B = [a, b]. For
this to be possible, sets X−1(B) must be F-measurable for each interval B.

Definition 2.13 (Random variable). A function X : Ω→ R is a random variable if
the set {ω | a ≤ X(ω) ≤ b} is F-measurable for all a, b ∈ R.

Since the set of intervals {[a, b] | a, b ∈ R} generates the Borel algebra B, it can be
shown that X−1(B) is F-measurable for every Borel set. This induces that the
probability P ({ω |X(ω) ∈ B}) is well-defined for all B ∈ B.

Definition 2.14 (The probability law of a random variable). Let (Ω,F , P ) be a
probability space and let X : Ω→ R be a random variable. For every Borel set B we
define

PX(B) = P ({ω |X(ω) ∈ B}), B ∈ B. (2.2.1)

The resulting function PX : B → [0, 1] is called the probability law of X.
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The measurable map X induces a push-forward operation that takes the measure P
on (Ω,F) to the measure PX on (R,B). The measure PX may be characterized by a
single function from R to R.

Definition 2.15 (Cumulative distribution function). The cumulative distribution
function (cdf) of a random variable X is the function F : R→ [0, 1], given by

F (x) = P ({ω |X(ω) ≤ x}), x ∈ R. (2.2.2)

It can be shown that F (x)→ 0 as x→ −∞ and F (x)→ 1 as x→∞.
In practice the original probability space (Ω,F , P ) generally remains in the back-

ground, while one works with the more accessible probability space (R,B, PX)4.

2.2.3 Probability Density Functions

We say that a random variable X is discrete, if its range X(Ω) is countable.

Definition 2.16 (Probability mass function). Given a discrete random variable X,
we can define its probability mass function (pmf) pX : R→ [0, 1] as

pX(x) = P ({ω |X(ω) = x}), x ∈ R.

The measure corresponding to X is the countable sum

PX(B) =
∑
x∈B

pX(x), (2.2.3)

as pX is 0 except at a countable set {xn, n = 1, 2, . . .}.

The definition of a continuous random variable is more subtle:

Definition 2.17 (Probability density function). A random variable is called (ab-
solutely) continuous, iff there exists a nonnegative Borel measurable function
f : R→ [0,∞) such that

F (x) =
∫ x

−∞
f(t)dt, x ∈ R, (2.2.4)

with F (x)′ = f(x) almost everywhere. We call f the (probability) density func-
tion (pdf) of X. It follows that

PX(B) =
∫
B
f(x)dx for each B ∈ B. (2.2.5)

4Most of the time it is the other way round: Given a distribution function F , the measure PX

it induces and no reference to the underlying probability space, one can construct a canonical
probability space by taking Ω = R,F = B and define X as the identity map X(ω) = ω, which
induces the measure P (B) = PX(B).
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2.2.4 Random Vectors

If one associates more than one random variable with the same experiment, we speak
of a n-dimensional random vector X : Ω→ Rn, which is a n-tuple (X1, . . . , Xn) of
random variables such that each Xi is Borel measurable. The probability measure
induced by X is PX(B) = P ({ω |X(ω) ∈ B}) for all B ∈ B, where B now denotes
the σ-algebra generated by all open sets in Rn.

Definition 2.18 (Joint distribution function). We call F (x1, . . . , xn) the joint dis-
tribution function defined by

F (x) = PX
(
(−∞, x]

)
= P ({ω |Xi(ω) ≤ xi, i = 1, . . . , n}). (2.2.6)

Much of the previous development carries over, with analogous definitions of the
joint pmf and pdf.
Before we continue, some remarks about terminology are in order: By virtue of

the Radon-Nikodym theorem5, probability mass functions can be considered density
functions, by replacing the Lebesgue measure with the counting measure. This
motivates a unified treatment of pdfs and pmfs and we denote both of them by p(x)
for the remainder of this thesis. We will also sometimes use the term probability
distribution or just distribution to mutually refer to both, pdfs and pmfs. The
base measure, referring to the Lebesgue measure or the counting measure, will be
denoted by dν(x).

Given X : Ω→ Rn, we call p(x) the joint distribution of X and the distribution
p(xA) of any subset XA, A ⊂ {1, . . . , n} the marginal distribution of XA.

Definition 2.19 (Independent random variables). Random variables X1, . . . , Xn are
called independent, iff their joint distribution p(x1, . . . , xn) fully factorizes:

p(x1, . . . , xn) =
n∏
i=1

p(xi) (2.2.7)

If independence between two random variablesX,Y does not hold, then the knowledge
about the outcome of Y does change the probabilities related to the possible outcomes
of X. Thus we need to replace the marginal distribution p(x) by a revised distribution.

Definition 2.20 (Conditional probability). Let (X,Y ) be a random vector of arbi-
trary dimension. We denote by p(x|y) the conditional distribution of X given
that we know the realization of Y . It holds that

p(x|y) = p(x, y)
p(y) , (2.2.8)

provided p(y) > 0.

Given that definition, one of the most important tools in statistical inference arises:
Bayes theorem or Bayes rule.

5A fundamental theorem of measure theory, see Chapter 2 of [ADD00].
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Theorem 2.21 (Bayes theorem). Given two random variables X,Y , we can express
the conditional distribution p(x|y) in terms of the conditional distribution p(y|x) as
follows:

p(x|y) = p(y|x)p(x)
p(y) = p(y|x)p(x)∫

p(y|x)p(x)dν(x) . (2.2.9)

The second equality applies the law of total probability, a useful tool to calculate
marginal distributions. In statistical inference, the terms in Bayes theorem are often
denoted by

posterior = likelihood× prior
marginal likelihood , (2.2.10)

and we will from now on frequently make use of them.
The final definitions will be useful to obtain compact characterizations of probability

distributions.

Definition 2.22 (Expectation). Let X = (X1, . . . , Xn) be a random vector and let g
be a Borel measurable function from Rn to R. We define the expectation of g in
terms of the density function p(x) as

E[g(X)] =
∫
g(x)p(x)dν(x), (2.2.11)

provided the integral exists.

Definition 2.23 (Shannon entropy). Let X be a random variable and p(x) its
associated density function. Setting g(x) = − log p(x) yields the Shannon entropy
or simply the entropy of X, defined as

H[p] := E[− log p(X)] = −
∫
p(x) log p(x)dν(x). (2.2.12)

Definition 2.24 (Moments of a random variable). Let X : Ω → R be a random
variable, then E[Xk] is called the kth moment of X and E[(X −E[X])k] is called
the kth central moment of X.

The first moment (k = 1) is often called the mean of X, whereas the second central
moment is called the variance of X, sometimes written as Var(X) and abbreviated
by σ2. Furthermore, the square root of the variance, denoted by σ, is called the
standard deviation of X and the inverse variance, denoted by τ , the precision
of X. Finally the covariance of random variables X and Y is defined by

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]. (2.2.13)

2.2.5 Multivariate Normal Distribution

The multivariate normal distribution, also called multivariate Gaussian distri-
bution, is one of the workhorses of statistical inference and will be used extensively
throughout this thesis.

Definition 2.25 (Multivariate normal distribution). A continuous random vector
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X = (X1, . . . , Xn) is said to be normally distributed, denoted by X ∼ N (µ,Σ), if its
joint density function is

p(x) = 1
(2π)n/2|Σ|1/2

exp
(
− 1

2(x− µ)TΣ−1(x− µ)
)

(2.2.14)

with mean vector µ ∈ Rn and (symmetric, positive definite) covariance matrix
Σ ∈ Rn×n, Σij = Cov(Xi, Xj). The inverse K := Σ−1 is called the precision
matrix.

The marginal and conditional distribution of a normal distribution are again
normal. Let us define the following partitions

X =
(
XA

XB

)
, µ =

(
µA
µB

)
,

and accordingly

Σ =
(

ΣAA ΣAB

ΣBA ΣBB

)
, K =

(
KAA KAB

KBA KBB

)
.

Proposition 2.26 (Marginal and conditional normal distribution [RW06]). The
marginal distribution of XA is given by

XA ∼ N (xA;µA,ΣAA). (2.2.15)

The distribution of XA conditioned on XB is

XA|XB ∼ N (xA;µA|B,ΣA|B),
µA|B = µA −K−1

AAKAB(xB − µB), ΣA|B = K−1
AA.

(2.2.16)

Alternatively, the covariance matrix of the conditional distribution can be calculated
via ΣA|B = ΣAA − ΣABΣ−1

BBΣBA, due to the Schur complement.
Another useful property is that products of Gaussian distributions are Gaussian

again, see for example the appendix of [RW06].

2.2.5.1 Unregularized Covariance Estimation

Assume we are givenN realizationsD = {xi}Ni=1 ∈ Rn of a random vector (X1, . . . , Xn),
that we believe to be normally distributed, i.e. X ∼ N (µ,Σ), and we want to obtain
estimates of µ and Σ.

Definition 2.27 (Likelihood function and maximum likelihood). The likelihood
function L(θ;D) of the parameter vector θ given data D under the assumption of
independent and identically distributed (i.i.d.) samples xi is

L(θ;D) = p(D|θ) =
N∏
i=1

pθ(xi). (2.2.17)
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Taking the logarithm of (2.2.17) yields the log-likelihood function `(θ;D). Finally,

θ̂ = arg max
θ

`(θ;D) (2.2.18)

is called the maximum likelihood (ML) estimate of θ.

Maximizing `
(
K,µ;D

)
with respect to µ yields the sample mean x̄ = 1/N

∑N
i=1 x

i

as an estimate. To obtain Σ̂, we consider the problem

arg max
K

log p(D|K, x̄) = arg max
K

log detK − tr (KS) , (2.2.19)

where S is the sample covariance matrix, with Sij = 1/N
∑N
k=1(xki − x̄i)(xkj − x̄j).

Taking the derivative of both terms with respect to K yields [PP12]

∂ log detK
∂K

= Σ, ∂ tr[KS]
∂ K

= S.

Thus setting ∂`(K;D)/∂K != 0 we obtain Σ̂ = S.
Estimating Σ involves the estimation of n(n − 1)/2 parameters. If N � n2,

the maximum likelihood estimate is ill-conditioned and may perform poorly. Here
regularization techniques come into play, which introduce additional information into
the problem. They may come in different flavors: As application of the principle of
Occam’s razor6 or from a Bayesian perspective by adding a prior distribution. Below
we present two regularization techniques that we will utilize for our segmentation
model, and each can be seen as a representative of one of these types of regularization.

2.2.5.2 `1-Regularized Covariance Estimation

One popular regularization approach enforces sparsity on the precision matrix K
[MB06, BEGd08, FHT08], thereby reducing the amount of estimated parameters.
This is achieved by augmenting the ML problem (2.2.19) with `1-regularization
acting on K. From a Bayesian point of view, this can motivated by adding a prior
distribution p(K):

Definition 2.28 (Maximum a posteriori). Given a data set D and a parameter
vector θ that we want to estimate. The mode of the posterior distribution, that is

θ̂ = arg max
θ

p(θ|D) ∝ p(D|θ)p(θ), (2.2.20)

is known as maximum a posteriori (MAP) estimate of θ.

An alternative motivation arises from the viewpoint of graphical models, since entries
with Kij = 0 imply absent edges between nodes i and j in the graph associated
withX, see Example 2.44. As we see in the next section, this corresponds to additional
conditional independence assumptions and thereby a less complex distribution p(x).

6Occam’s razor states that one should always choose, from a set of hypotheses, the one with the
fewest assumptions.
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Figure 2.1 - Comparison of Laplace distribution (2.2.21) and univariate normal distribution
(2.2.14) both with mean zero and variance one (λ =

√
2 for Laplace), that illustrates the difference

in the allocation of probability mass especially around the mean.

We now treat each Kij as a random variable and assume pairwise independence,
that is p(K) =

∏
ij P (Kij) (Definition 2.19). The prior distribution that gives rise to

the `1-norm is the Laplace distribution with density function

p(Kij) = λ

2 exp (−λ|Kij − µ|) , (2.2.21)

with mean µ = 0 and variance σ2 = 2/λ2. Figure 2.1 illustrates the difference
between a Laplace distribution and normal distribution both with zero mean and
variance one, and how the Laplace distribution much more emphasizes values around
its mean. Taking the logarithm of p(K) gives

log p(K) =
n∑
i,j

log p(Kij) = n2(log λ− log 2)− λ‖K‖1, (2.2.22)

where ‖K‖1 =
∑
ij |Kij | is the `1-norm of K. Combining the prior (2.2.22) with the

likelihood function (2.2.19) yields the concave optimization problem

arg max
K�0

log detK − tr(KS)− λ‖K‖1, (2.2.23)

which yields the MAP estimate of K as discussed in Definition 2.28. Note that
positive semidefiniteness of K is automatically enforced by the term log detK, which
is the logarithmic barrier function for the positive semidefinite cone (see Example 2.1).
A regularization using `1-norm is often called lasso regularization [Tib96]. As-

suming normally distributed Kij would result in the regularization term −1
2τ‖K‖

2
2,

also known as Tikhonov regularization in the machine learning literature, with
precision parameter τ and ‖K‖22 =

∑
ijK

2
ij . Both types of regularization are com-

pared in Figure 2.2.
To derive the dual problem of (2.2.23), one replaces ‖K‖1 by max‖U‖∞≤1 tr(KU),

where ‖ · ‖∞ is the maximum norm maxij(|Uij |). Exchanging max and min, solving
the inner optimization problem with K = (S + U)−1 and setting K−1 = W = S + U
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Figure 2.2 - Comparison of `1 and `2 regularization. Contours for optimal K11 are shown.
Parameters λ and τ are chosen as in Figure 2.1. `1-regularization enforces K12 = 0. i.e. sparsity
on the precision matrix K.

yields the dual
Σ̂ := arg max

W

{
log detW : ‖W − S‖∞ ≤ λ

}
. (2.2.24)

[FHT08] efficiently solve (2.2.24) by applying a block-coordinate descent approach.
We implemented their approach, called the graphical lasso, in C and use it to
regularize the covariance matrices of our texture models (c.f. Section 3.1.1).

2.2.5.3 Probabilistic Principle Component Analysis

An alternative approach for regularized covariance estimation is based upon Principle
Component Analysis (PCA). PCA is a well-known technique for dimensionality
reduction that, given a data set D = {xi}Ni=1 ∈ Rn, consists of a linear projection
into a lower-dimensional subspace of dimension q � n. PCA finds q principal axes
that are orthonormal and retain maximum variance of the projected data [Hot33]. It
can be easily shown, that these axes correspond to the q dominant eigenvectors of
the sample corvariance matrix S (defined in (2.2.19)). The variance of the projected
data is given by the sum of the corresponding eigenvalues.
[TB99] embedded PCA into a density framework, which they called Probabilis-

tic Principle Component Analysis (PPCA). PPCA assumes that the random
vector X is generated from a latent random vector Z via

X = WZ + µ+ ε, (2.2.25)

where W ∈ Rn×q, ε ∼ N (0, σ2I) is isotropic Gaussian noise and Z ∼ N (0, I) is
assumed to have standard normal distribution7. Thus, X|Z ∼ N (WZ+µ, σ2I). The

7PPCA can be considered as a generalisation of PCA, which assumes the deterministic relation
X = WZ + µ.
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marginal distribution of X is a product of two Gaussians and therefore Gaussian
itself [RW06]. Calculating the moments of X (see Definition 2.24) gives

E[X] = WE[Z] + µ+ E[ε] = µ,

E[XXT ]− E[X]E[X]T = WE[ZZT ]W T + E[εεT ] = WW T + σ2I,
(2.2.26)

thus X ∼ N (µ, σ2I + WW T ). Using the Woodbury identity [PP12, p. 18], the
precision matrix is given by

K = σ−2I − σ−2WMW T , M = (σ2I +W TW )−1. (2.2.27)

To estimate the parameters µ, σ2 and W , one can use the ML approach mentioned
earlier. [TB99] go on to show, that µ̂ is the sample mean x̄ and

Ŵ = Uq(Λq − σ2I)1/2, σ̂2 = 1
n− q

n∑
i=q+1

λi,

where Uq contains the q principle eigenvectors of S, and Λq is a diagonal matrix with
eigenvalues λ1 . . . λq on its diagonal. Note, that although the maximum likelihood
framework is used, we obtain a regularized estimate of Σ, since the regularization is
implicitly given by the low-rank decomposition Σ = WW T + σ2I. This reduces the
numbers of parameters to be estimated from n(n− 1)/2 to nq + 1, which is linear in
the dimension of the data.

The ability to decompose both Σ and K into W and σ2I is especially useful in case
of high dimensional data, since one only has to store W and σ2. The full covariance
matrix for the shape prior in our 3-D data set would be of size 45GB, whereas W
with q = 25 only requires 15MB of memory. Furthermore, operations related to Σ
and K can be rewritten in terms of W and σ, thereby significantly reducing their
complexity.

2.3 Graphical Models

This section presents probabilistic graphical models, which combine the concepts of
graph theory and probability theory. They provide an intuitive visual representation
of probability distributions, that allow insights into their structure. They also
facilitate a unified treatment of various existing approaches (hidden Markov models,
Kalman Filter, etc.) in terms of inference.

We start with some terminology related to graph theory in 2.3.1, followed in 2.3.2
by a general definition of probabilistic graphical models, combining the notions of
a graph and that of a probability distribution. In 2.3.3 and 2.3.4 we present two
different types of graphical models which arise depending in the type of edges used
in the graph. To unify the treatment of inference in Section 2.4, we show in 2.3.4.1
how to convert a directed graphical model into an undirected one.
References for this chapter are the excellent overview about graphical models in

[Bis06] as well as the more thorough treatments of [Lau96] and [KF09].
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2.3.1 Graph Theory

This section gives a short overview of some basic notions of graph theory, that will
be used in the subsequent sections.

Definition 2.29 (Graph). A graph is an ordered pair G = (V,E) comprising a set
of nodes (or vertices) V = {1, . . . , n} and a set of edges E ⊂ V × V .

Edges may be undirected, in which case no distinction is made between edges (s, t)
and (t, s) and s is called the neighbor of t and vice versa. We denote the set of
all neighbors of a node i by ne(i). Alternatively, edges may be directed, with the
direction of the edge indicated by (s → t) and s being the parent of the child t.
For a node i, pa(i) denotes its set of parents and ch(i) its set of children. We call a
graph G composed of the former type of edges an undirected graph, otherwise a
directed graph.

Definition 2.30 (Path). A path from node i1 to node im is a sequence {i1, i2, . . . , im}
of distinct nodes in V , such that either (ij , ij+1) ∈ E or (ij → ij+1) ∈ E for
j = 1, . . . ,m− 1. If all edges are directed we call it a directed path.

We call a node j an descendant of node i, if there is a directed path from i to j.

Definition 2.31 (Trail). A trail is a path such that the directionality of arrows is
ignored.

Definition 2.32 (Cycle). A cycle is a directed path with i1 = im.

Definition 2.33 (Loop). A loop is a trail with i1 = im.

A directed graph without cycles is called a directed acyclic graph (DAG), a notion
that will become important when we introduce directed graphical models. If we
add the constraint, that there can be only one trail between every pair of nodes, we
obtain a polytree. Finally, if every node has exactly one parent (except the source
node which has no parent), we call G a tree. It follows that

directed graph ⊃ directed acyclic graph ⊃ polytree ⊃ tree.

All four types of directed graphs are illustrated in Figure 2.3. Similarly, we call an
undirected graph without loops a tree.

Definition 2.34 (Subgraph). The subgraph induced by a set of vertices V ′ ⊂ V is
given by G′ = (V ′, E′), E′ = {(i, j) : i ∈ V ′, j ∈ V ′}.

We call a graph G complete, if E = V ×V . A complete subgraph is called a clique.
A maximal clique is a complete subgraph G′, such that by adding any additional
vertex from V \ V ′ it ceases to be complete.

2.3.2 Probabilistic Graphical Models

Previously we introduced the notion of a probability measure (or probability distri-
bution) P and that of a graph G. The following definition combines these two:
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(a) Directed Graph (b) DAG (c) Polytree (d) Tree

Figure 2.3 - Visualization of (a) a general directed graph containing the cycle {A,B,C}, (b) a
directed acyclic graph where the cycle is removed, but there are still two trails between several
pairs of nodes, (c) a polytree where now only one trail exists between every pair of nodes but
C has still two parents and (d) a tree, where each node has only one parent except the source
node A.

Definition 2.35 (Probabilistic graphical model). A probabilistic graphical model
corresponds to a tuple (G, P ) of a graph G = (E, V ) and a probability distribution P .
Each node i ∈ V is associated with a random variable Xi, taking values in some
space Xi, which may be either continuous (e.g. Xi = R) or discrete (e.g. Xi =
{0, 1, . . . , r−1}). The random vector X is distributed according to the distribution P .

We will use lower-case letters (e.g. xi ∈ Xi) to denote realizations of the random
variable Xi. Subsets of X will be denoted by XA or correspondingly by xA with
A ⊂ V . Realizations x of the random vector X take values in the Cartesian
product space X n = X1 ×X2 × . . .Xn.
Missing edges and the configuration of directed edges encode conditional inde-

pendences (CI) between components of the random vector X associated with G,
thereby determining the factorization of P :

Definition 2.36 (Conditional independence). Two random variables Xi and Xj are
said to be conditionally independent given the random vector XA, denoted by

Xi ⊥⊥ Xj | XA,

iff their joint conditional distribution factorizes according to

p(xi, xj |xA) = p(xi|xA)p(xj |xA).

Using the following factorization criterion, it is easy to determine conditional inde-
pendence:

Xi ⊥⊥ Xj | XA ⇐⇒ p(xi, xj , xA) = f(xi, xA) g(xj , xA), (2.3.1)

for some functions f and g.
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Figure 2.4 - Venn diagram that illustrates the relationship between the set of all distributions P
and those which can be expressed as perfect maps by undirected (U) and directed (D) graphical
models [Bis06].

In terms of the graph G, conditional independence Xi ⊥⊥ Xj | XA implies that all
trails from node i to node j are blocked by the nodes in A. Conditions when a
trail is blocked differ between directed and undirected graphical models and will be
introduced below.

Equipped with the concept of conditional independence, we now can specify more
precisely the connection between G and its associated distribution P (complementing
the definition of a probabilistic graphical model given above): G is an I-map of P .

Definition 2.37 (Independency map). A graph G is said to be an independency map
or short I-map of a distribution P , if all CI assumptions reflected in the structure
of G also hold in P .

This means that P factorizes according to G, but may have additional independencies
not reflected by G. The complete graph G encoding no CI assumption is a trivial
I-map for any distribution P . A stricter connection between G and P is the following:

Definition 2.38 (Perfect map). We say that a graph G is a perfect map for a
distribution P , if all CI assumptions encoded in G are also reflected in P and vice
versa.

We will see, that undirected and directed graphical models have different sets of
distributions, for which they are perfect maps. Furthermore there exist distributions,
for which there exists no perfect map in both types of graphical models. The Venn
diagram in Figure 2.4 illustrates these facts.

Definition 2.39 (Markov blanket). We define the Markov blanket [Pea88] of a
node i as the set of nodes A, such that

p(xi|xA, xV \{A,i}) = p(xi|xA).

Thus learning the state of a node not in the set A, will tell us nothing new about Xi.

2.3.3 Directed Graphical Models

The notion of a blocked trail and therefore conditional independence is quite subtle
for directed graphical models. There exist three different possibilities (see also Figure
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✘

(a) Tail-to-tail

✘

(b) Head-to-tail (c) Head-to-head

Figure 2.5 - The effects of observing XC on the three possible trails from A to C to B. Trails
that run tail-to-tail and head-to-tail over node C become blocked, therefore the observation of
XC renders XA and XB independent. Contrary, head-to-head connections become unblocked
and thus XA and XB become dependent, denoted by Xi ⊥6 ⊥Xj | XA.

2.5) for the connectivity of node i within a trail:

(i) tail-to-tail (← i→),

(ii) head-to-tail (→ i→) or

(iii) head-to-head (→ i←).

If the random variable Xi is observed, all trails including node i are blocked if
the connectivity at i is either of type (i) or (ii). Head-to-head connections behave
contrary, here the trail becomes unblocked if Xi (or any of its descendants) is observed.
That renders the random variables Xpai

dependent, and the observation of any if its
members will decrease the probability of the remaining ones, thereby explaining
away these other possible causes of Xi.

More general, given non-intersecting sets of nodes A,B,C, sets A and B are condi-
tional independent with respect to C, if all trails from A to B are blocked. Whether
a certain trail is blocked, can be deduced by investigating all nodes along that trail in
terms of the rules introduced above. This technique is called d-seperation [Pea88].

Definition 2.40 (I-equivalence). Two graphs G,G′ that encode the same set of CI
assumptions are said to be I-equivalent.

For example the graphs (a) and (b) in Figure 2.5 are I-equivalent.
As pointed out in the definition of probabilistic graphical models, the structure

of G encodes a set of CI assumptions that are also expressed by the corresponding
distribution P . This is reflected in the following definition:

Definition 2.41 (Directed Graphical Model). A directed graphical model orBayesian
network (BN) is a tuple (G, P ), where G = (E, V ) is a directed acyclic graph and
P is a distribution whose factorization reflects the structure of G and is given by

p(x1, x2, . . . , xn) =
∏
i∈V

p(xi|xpa(i)). (2.3.2)
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(a) (b)

Figure 2.6 - The Markov blankets of the node C for undirected (a) and directed graphical
models (b). For undirected graphical models only the direct neighbors of C are in the blanket.
But since for directed graphical models, conditioning on a child nodes D and E renders node C
dependent on their parents F and G (head-to-head connection, see Figure 2.5 (c)), one must
include them.

For directed graphical models, the Markov blanket of node i consists of the sets
pa(i) and ch(i), as well as the set of co-parents, the latter being all parents of ch(i)
except i itself. They have to be included, since the observation of a node j ∈ ch(i)
unblocks the head-to-head connections to the parents of j and thereby renders them
dependent given i. See Figure 2.6 (a) for an illustration, where F and G are the
co-parents of C.

Example 2.42 (Linear-Gaussian models). Linear-Gaussian models are an important
class of continuous directed graphical models. Here each node represents a random
variable Xi that has a normal distribution with mean µi, which is a weighted linear
combination of its parents states and variance σ2

i :

p(xi|pai) = N
(
xi;

∑
j∈pai

Wijxj + bi, σ
2
i

)
.

Since p(x) is the product of several normal distributions, it is normally distributed too.
Comparing the formula above with (2.2.25), shows that PPCA is a linear-Gaussian
model, where the node i of each Xi is the child of all nodes j belonging to latent
variables Zj .

2.3.4 Undirected Graphical Models

An undirected graphical model is composed of edges (s, t) with no directional infor-
mation. This significantly simplifies the detection of conditional independence: A
node whose random variable is observed, blocks every trail that includes this node.
Two nodes i and j are said to be conditionally independent given a set A of nodes,
if all trails that connect these two nodes contain at least one observed node a ∈ A.
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More general, if the set C of nodes was observed, and all trails from nodes in a set A
to nodes in a set B include nodes of C, then A ⊥⊥ B | C. The Markov blanket of
node i consists of the set ne(i), see Figure 2.6 (b).

The cliques of G constitute subgraphs where no CI assumptions are expressed. We
therefore use them as building blocks of the factorization of p(x):

Definition 2.43 (Undirected graphical models). An undirected graphical model or
Markov Random Field (MRF) is a tuple (G, P ) of an undirected graph G = (E, V )
and a distribution P . Given the set C of cliques of G, the distribution P factorizes
according to

p(x1, x2, . . . , xn) = 1
Z

∏
C∈C

ψC(xC), Z =
∑
x

∏
C∈C

ψC(xC), (2.3.3)

where xC ∈ V denotes the subset of nodes belonging to the clique C. Z is the
normalization constant or partition function8, ensuring that p(x) is a valid proba-
bility distribution. The ψC are called potential functions, and are assumed to be
non-negative.

One can without loss of generality restrict the set C to all maximal cliques [WJ08].
However, inference algorithms, such as those presented in Section 2.4, may be able
to exploit the non-maximal representation, which is why we stick with the definition
given above.

Opposed to directed graphical models, potential function have no interpretation in
terms of marginal distributions. Therefore, the factorization (2.3.2) can be viewed
as a special case of (2.3.3). Again we can state equivalence between the set of all
CI assumptions expressed by the factorization (2.3.3) and those encoded in the
corresponding graph G, which in the case of undirected graphical models is called
the Hammersley-Clifford theorem [Cli90]9.
As indicated by the Venn diagramm in Figure 2.4, there are cases where the CI

assumptions expressed by an undirected model cannot be encoded by a directed
graphical model and vice versa. While for BNs there exists the concept of head-to-
head connections, that renders nodes dependent when observing other nodes, for
MRFs observing a node may only result in additional independencies between other
nodes. On the other hand, an undirected graph G over nodes {a, b, c, d} with edge set
E = {(a, b), (b, c), (c, d), (d, a)} expresses the CI assumptions Xa ⊥⊥ Xc | Xb, Xd and
Xb ⊥⊥ Xd | Xa, Xc, which can not expressed simultaneously using Bayesian networks.

Example 2.44 (Gaussian Markov Random Fields). A Gaussian Markov Ran-
dom Field (GMRF) [RH05] is the tuple (G, P ) of an undirected graph G together
with a normal distribution P , i.e. X ∼ N (µ,Σ). Its connectivity, and thereby the
conditional independence structure, can be read from the precision matrix K. It
holds that

Xi ⊥⊥ Xj | X \ {Xi, Xj} ⇐⇒ Kij = 0 ⇐⇒ (i, j) ∧ (j, i) /∈ E, (2.3.4)

8In case of continuous random variables, summation is replaced by integration.
9For this theorem to hold, all potential functions have to be strictly positive.
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and a dense matrix K implies a fully connected graph G. While off-diagonal zero
entries of Σ indicate marginal independence Xi ⊥⊥ Xj | ∅, those of K denote
conditional independence Xi ⊥⊥ Xj | X \ {Xi, Xj}.

2.3.4.1 Directed Graphical Models → Undirected Graphical Models

It will turn out convenient to restrict the presentation of inference algorithms in the
next section to one class of graphical models. As discussed above, the factorization
(2.3.3) containts (2.3.2) as a special case, thus is much more expressive, which is why
we will discuss inference from the perspective of undirected graphical models. Here
we describe how to transform directed to undirected graphical models.

We want to associate a potential function ψC with every factor p(xi|xpa(i)), in
order to directly convert the factorization (2.3.2), i.e.

ψC(xi, xpa(i)) := p(xi|xpa(i)).

In order to do that, the node set {i ∪ pa(i)} must form a clique. For tail-to-tail and
head-to-tail connections this is naturally the case, since nodes that are connected
like this only have one parent and C consists of just two nodes.
But replacing edges in head-to-head connections by undirected edges yields no

clique. Instead additional nodes have to be added between all parents. This process is
called moralization, and the resulting graph is called the moral graph. This hides
the CI assumptions expressed by head-to-head connections in the fully connected
clique. Certainly the potentials themselves still express these CI assumptions. It
holds by construction that Z = 1.

Inspecting Figure 2.3 reveals that only directed trees can be transformed such that
no edges have to be added and the transformed graph remains a tree, whereas for
polytrees loops emerge, such that the resulting undirected graph is no tree.

2.4 Inference on Graphical Models

Given a graphical model (G, P ) with joint distributions function p(x), probabilistic
inference comprises the task of computing conditional distributions p(xA|xB) over a
set A ⊂ V of random variables, given another disjoint set B ⊂ V of observed random
variables. Another task is the determination of the marginal distribution p(xA). Yet
another important inference problem is the calculation of the mode of p(xA), that
is the element x̂A = arg max xA

p(xA). The inferred random variables can be either
unobserved latent variables and/or model parameters that are treated as random
variables.

The inherent challenges of inference problems become apparent when we consider
the discrete random vector X : Ω→ X n with state space Xi = {0, . . . , r− 1} for all i.
Naively calculating the marginal distribution p(xi) requires summing p(x) over the
product set of configurations S = {x′ ∈ X n|x′i = xi}:

p(xi) =
∑
x′∈S

p(x1, . . . , xn).
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This approach requires the summation over rn−1 configurations x′, which becomes
quickly intractable with increasing n and r. The situation for continuous random
variables most often is even harder as they require the computation of integrals.
A notable exception are GMRFs respectively normal distributions, that provide
analytical solutions for the tasks mentioned above (see Section 2.2.5).

Practical inference techniques are either of exact or (in most cases) of approximative
nature. All have in common that they rely upon the factorization of p(x) expressed
by G (c.f. Equations (2.3.2) and (2.3.3)), to reduce the complexity over the naive
approach. Various approximate inference approaches exist, among them graph
cuts [BVZ01] that correspond to max-flow algorithms, Markov Chain Monto Carlo
methods [Nea93] that rely on stochastic sampling or linear programming relaxation
techniques [DFJ54] such as dual decomposition.
Below we will present two important families of inference techniques that are

relevant for this thesis: message-passing approaches (which encompass exact inference
techniques for trees) and variational inference, a class of inference techniques that
yield deterministic approximative solutions.

2.4.1 Message-Passing Approaches

Message-passing algorithms follow the paradigm of dynamic programming: the
summation or integration over a set A of random variables is broken down into several
subproblems over smaller sets Ai ⊂ A. In case of overlapping subproblems this reduces
the amount of operations performed. The most important representative, introduced
in the next section, is the sum-product algorithm or belief propagation, that
yields exact marginals when applied to trees10. Closely related is the max-product
algorithm, which infers the mode of the distribution with summation replaced by
maximization.
When applied to general graphs with cycles, sum-product message passing is

known as loopy belief propagation. Although there are no guarantees for conver-
gence, loopy belief propagation has performed reasonably well for many problems,
see for example [MWJ99]. Several variations of the sum-product message passing
scheme were proposed, in order to yield better approximations and/or better con-
vergence properties. Among them are generalized belief propagation [YFW+01],
tree-reweighted belief propagation [WJW03] or the popular sequential tree-reweighted
belief propagation [Kol06].

An exact inference algorithm for general graphs is the junction tree algorithm
[LS88], which applies the sum-product method to a modified version of the input
graph, known as the junction tree. But since complexity increases exponentially with
growing treewidth of the modified graph, a measure of the size of the largest clique,
the approach quickly becomes intractable.

Numerous toolboxes for inference on general graphical models exist. For example,
the OpenGM library [ABK12, KAH+13] offers plenty of different inference techniques
as well as wrappers for several programming languages.

10Undirected and directed trees, including polytrees, if represented as directed or factor graphs.
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Figure 2.7 - Decomposition of a tree into subtrees, rooted at node s. Each subtree is rooted
at its labeled node, which are all neighbors of s. The illustration is adapted from [WJ08].

2.4.1.1 Message-Passing on Trees

We will now give a description of the sum-product algorithm when applied to
undirected trees11. An alternative interpretation from the viewpoint of variational
inference is given in the next section.

We first observe, that for a tree-structured graph T = (V,E) the cliques are given
by the individual nodes and edges. Thus, following (2.3.3), any undirected graphical
model without cycles has the following factorization:

p(x1, x2, . . . , xn) = 1
Z

∏
s∈V

ψs(xs)
∏

(s,t)∈E
ψst(xs, xt). (2.4.1)

We are interested in computing marginal distributions p(xs) for all s ∈ V and p(xs, xt)
for all (s, t) ∈ E. For future reference, we will denote them by µs and µs,t.
If we consider an arbitrary node s ∈ V , we can define a subgraph Tu = (Vu, Eu)

for every node u ∈ ne(s). Each subgraph Tu is composed of nodes and edges that
can be reached from u without traveling over s. Since T is a tree, every subgraph
Tu is a tree too. Thus each node u ∈ ne(s) can be viewed as the root of its own
subgraph, as illustrated in Figure 2.7.
All subgraphs are mutually disjoint and together comprise all nodes except the

node s and all edges except those that connect s with its neighbors. We collect all
terms from (2.4.1) connected to edges and nodes in Tu into the following product

p(xVu ;Tu) ∝
∏
t∈Vu

ψt(xt)
∏

(t,v)∈Eu

ψtv(xt, xv). (2.4.2)

11This excludes polytrees, since their conversion introduces loops as discussed in Section 2.3.4.1.
This constitutes no limitation as they are not used in this work.
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The calculation of the marginal µs can then be expressed in terms of these products:

µs(xs) =
∑
xt:t6=s

p(x1, . . . , xn)

=
∑
xt:t6=s

κ · ψs(xs)
∏

u∈ne(s)
ψsu(xs, xu) p(xVu ;Tu)

= κψs(xs)
∏

u∈ne(s)

∑
xu∈XVu

ψsu(xs, xu) p(xVu ;Tu)

︸ ︷︷ ︸
M∗us(xs)

. (2.4.3)

The positive scalar κ ensures normalization of µs. Each subgraph Tu in turn can
be split into smaller subgraphs T ′u′ , as illustrated in Figure 2.7 for the subgraph Tw.
Therefore the subproblems of computing M∗us(xs) can be broken down recursively
until only elementary subgraphs consisting of single nodes remain.

Usually one is interested in the complete set of marginals µs for all s ∈ V . The
sum-product algorithm computes the marginals for all nodes simultaneously. At
each iteration, every node t passes a message to all its neighbors s ∈ ne(t), denoted
by Mts(xs), in total 2|E| messages. Message updates are calculated according to the
following recursion

Mts(xs)← κ
∑
xt

ψst(xs, xt)ψt(xt) ∏
u∈ne(t)\s

Mut(xt)

 . (2.4.4)

Again κ denotes a normalization constant.

For tree-structured graphs, the approach converges after two iterations of message-
passing using the following schedule: In the first iteration messages are passed from
leaf nodes, nodes with only one neighbor, inwards to some arbitrarily chosen root
node s. In the second iteration, messages are passed back to the leaves. This yields a
fixed point M∗ = {M∗st,M∗ts, (s, t) ∈ E}, with components M∗st equal to those defined
in (2.4.3) up to a constant. Then marginals µs are given by Formula (2.4.3), while
pairwise marginals µst can be calculated via

µst = κψst(xs, xt)ψt(xt)ψs(xs)
∏

u∈ne(s)\t
M∗us(xs)

∏
v∈ne(t)\s

M∗vt(xt). (2.4.5)

Replacing the summation in (2.4.4) with maximization, yields the max-product
algorithm. In case of a general graph with loops, messages are passed along the
graph until convergence (which is not guaranteed), resulting in the loopy belief
propagation algorithm mentioned earlier. The resulting fixed points may only
represent approximations of the true marginals [Bis06].

The next section will give an interpretation of message-passing approaches from
the perspective of variational inference and energy minimization.
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2.4.2 Variational Inference

The phrase “variational“ is an umbrella term referring to the reformulation of an
inference task into an optimization problem. This new problem formulation then
is relaxed until the optimization can be performed efficiently. These relaxiations
amount to a deterministic approximation of the original problem as opposed to, for
example, Monte Carlo based stochastic methods.
The following exposure is inspired by the excellent survey about variational

inference by Wainwright and Jordan [WJ08]. We will introduce exponential families,
the parameterized family of probability distributions underlying variational inference.
Many well known probability distributions are members of this family, and we will
give examples for the normal distribution and Markov Random Fields with discrete
random variables. We then demonstrate how the variational methodology can be
used to derive tractable approximations for probabilistic inference.

2.4.2.1 Exponential Family

Definition 2.45 (Exponential family). Let X = (X1, . . . , Xn) be a random vector
taking values in some space X n = ⊗ns=1Xs. Furthermore, given a vector of sufficient
statistics φ = (φα : X n → R, α ∈ I) and the associated vector of canonical or
exponential parameters θ = (θα ∈ R, α ∈ I). Here I is an index set with d = |I|
elements, such that φ : X n → Rd and θ ∈ Rd.
The exponential family associated with φ(x) is given by

pθ(x1, . . . , xn) = exp{〈θ, φ(x)〉 −A(θ)}, (2.4.6)

with convex log partition function (or cumulant function)

A(θ) = log
∫
Xn

exp〈θ, φ(x)〉dν(x). (2.4.7)

The integral is taken with respect to some base measure dν(x)12. The corresponding
measure is defined by dP (x) = pθ(x)dν(x).

The cumulant function A(θ) in general cannot be expressed in closed form, and
computing the integral turns out to be intractable for most graphical models. We will
see during the course of this treatise, that we can derive a variational representation
of A(θ). By itself this will lead to no simplifications, but will enable us to derive
tractable relaxations.

Definition 2.46 (Minimal and overcomplete representations). We speak of a min-
imal representation, if there are no linear dependencies between the sufficient
statistics φα(x). Otherwise, we call it an overcomplete representation.

With φ fixed, we define the set of valid canonical parameters θ as

Ω := {θ ∈ Rd |A(θ) < +∞}. (2.4.8)
12Counting measure or Lebesgue measure depending on X .
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An alternative parametrization, dual to the canonical parameters is in terms of a
vector of mean parameters µ:

Definition 2.47 (Mean parameters). We can associate a mean parameter µα with
every sufficient statistic φα via

µα = E[φα(X)] =
∫
φα(x)p(x)dν(x). (2.4.9)

We define the set of realizable mean parameters

M := {µ ∈ Rd | ∃ p s.t. E[φα(X)] = µα, ∀α ∈ I}. (2.4.10)

By definition, elements ofM are convex combinations of sufficient statistics, therefore
the setM is convex.
For discrete random variables with finite state space X n, Definition (2.4.10) de-

scribes a finitely generated bounded convex set called polytope (see Definition 2.4).
Two alternative representations exists: The first one is by a set of extreme points
(zero-dimensional faces of the set [Roc70]), which are the sufficient statistics φ(x):

M = conv{φ(x), x ∈ X n}. (2.4.11a)

The dual representation is in terms of a finite collection of linear inequality constraints

M = {µ ∈ Rd | 〈aj , µ〉 ≥ bj ∀j ∈ J , |J |finite}. (2.4.11b)

for suitable parameters aj , bj from a constraint set J .

Definition 2.48 (Marginal polytope). In the context of discrete pairwise MRFs, the
setM is called the marginal polytope M(G), with respect to the graph G.

For the graphical models relevant in this thesis, discrete Markov Random Fields
and Gaussian Markov Random Fields, we give their presentation in terms of the
exponential family.

Example 2.49 (Discrete Markov Random Fields). Consider an MRF where each
random variable Xs takes values in the discrete label space X := {0, 1, . . . , r− 1} for
some integer r ≥ 2. As sufficient statistics φ(x), we define indicator functions for
nodes s ∈ V and states j ∈ X as

Is;j(xs) =

1 if xs = j,

0 otherwise,

with associated parameter vector θs = {θs;j} ∈ Rr, and for edges (s, t) ∈ E and pair
of states (j, k) ∈ X × X as

Ist;jk(xs, xt) =

1 if xs = j ∧ xt = k,

0 otherwise,
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with associated parameter vector θst = {θst;jk} ∈ Rr×r. One can easily show, that
this representation is overcomplete [WJ08]. Let us introduce the shorthand notation

θs(xs) :=
∑
j

θs;jIs;j(xs), θst(xs, xt) :=
∑
j,k

θst;jkIst;jk(xs, xt).

We can now write p(x) as

pθ(x) = exp
{∑
s∈V

θs(xs) +
∑

(s,t)∈E
θst(xs, xt)−A(θ)

}
, (2.4.12)

with log partition function

A(θ) = log
∑
x∈Xn

exp
{∑
s∈V

θs(xs) +
∑

(s,t)∈E
θst(xs, xt)

}
. (2.4.13)

The mean parameters of a discrete MRF correspond to its singleton and pairwise
marginal distributions

µs;j = E[Is;j(Xs)] = P[Xs = j], ∀j ∈ Xs, (2.4.14a)
µst;jk = E[Ist;jk(Xs, Xt)] = P[Xs = j,Xt = k], ∀(j, k) ∈ Xs ×Xt. (2.4.14b)

For later reference, we define µs(xs) and µst(xs, xt) as shorthand notations in the
same manner as above.

Example 2.50 (Gaussian Markov Random Fields). Let (X1, . . . , Xn) be a normally
distributed random vector. The vector of sufficient statistics is given by

φ(x) = {xs, x2
s, s ∈ V ; xsxt, (s, t) ∈ E}. (2.4.15)

We associate the vector θ ∈ Rn with x = (x1, . . . , xn) and the symmetric matrix
Θ ∈ Rn×n with xxT . The density function is given by

pθ(x) = exp
{
〈θ, x〉 − 1

2〈Θ, xx
T 〉 −A(θ,Θ)

}
, (2.4.16)

where 〈Θ, xxT 〉 denotes the inner product over the vector space of matrices Rn×n.
This form is also called the canonical representation of normal distributions [RH05,
Def. 2.2]. The relation to the standard representation (2.2.14) is θ = Kµ and Θ = K.
Since A(θ,Θ) is finite only for Θ � 0, the valid parameter space Ω is given by

Ω = {(θ,Θ) ∈ Rn × Sn++}. (2.4.17)

The corresponding parametrization in terms of the mean parameters µ = E[X] and
Γ := E[XXT ] is

M = {(µ,Γ) ∈ Rn × Sn+ |Γ− µµT � 0}. (2.4.18)

Here Γ− µµT corresponds to the covariance matrix Σ as defined in (2.2.14).
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2.4.2.2 Forward Mapping: θ 7→ µ

Proposition 2.51 ([WJ08]). The cumulant function A(θ) (2.4.7) is a convex func-
tion on its domain Ω (strictly in case of a minimal representation). Its gradient and
Hessian matrix are the cumulants of the random vector φ(X):

∇A(θ) = E[φ(x)] :=
∫
φα(x)p(x)ν(dx), (2.4.19a)

∇2A(θ) = E[φ(x)φ(x)T ]− E[φ(x)]E[φ(x)]T . (2.4.19b)

We see from Proposition 2.51, that ∇A maps from the set of canonical parameters Ω
to the set of realizable mean parametersM. This mapping is one-to-one in case of a
minimal representation or one-to-one from an affine subspace in case of a overcomplete
representation. Furthermore, one can show that for minimal representations, ∇A(θ)
covers the whole interior ofM, denoted by intM [WJ08].

2.4.2.3 Variational Representation of A(θ)

Conjugate duality (see Definition 2.8) is the central technique for formulating vari-
ational representations of complex functions. For the log-partition function A(θ)
(2.4.7), we define the conjugate dual function

A∗(µ) := sup
θ∈Ω
{〈µ, θ〉 −A(θ)}. (2.4.20)

The choice of µ for the dual variable is deliberate, as µ and θ are coupled by conjugate
duality. Any maximizer θ∗ of (2.4.20) is uniquely determined by the correspondence

µ = ∇A(θ∗) = Eθ[φ(X)]. (2.4.21)

Since A(θ) is a convex function, it holds that A(θ) = A∗∗(θ) = (A∗(µ))∗ [BV04].
Therefore the conjugate of A∗ yields a variational representation of A:

Theorem 2.52 (Variational representation of A). The variational representation of
the log-partition function A(θ) in terms of the dual A∗ is given by

A(θ) = sup
µ∈M
{〈θ, µ〉 −A∗(µ)}. (2.4.22)

This representation of A is one of the cornerstones of variational inference. The
following theorem links the dual function A∗ to the entropy of p(x):

Theorem 2.53 (Shannon entropy and A∗). For any µ ∈ M and the unique θ(µ)
satisfying (2.4.21), the dual function A∗ corresponds to the negative entropy (c.f. Def-
inition 2.23):

A∗(µ) =

−H[pθ(µ)], µ ∈ intM,

+∞ µ /∈M .
(2.4.23)

For any boundary point µ ∈ bdM we have A∗(µ) = limn→+∞A
∗(µn), taken over

any sequence µn ∈ intM converging to µ.
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This is another important result, since it establishes two facts: First of all any
optimization problem including A∗ can be confined to the convex setM. Furthermore,
we may replace the indirect variational formulation of A∗ (2.4.20) by the explicit
formulation of the negative entropy. The downside of this is that the entropy is
defined in terms of θ. Furthermore since H[p] involves summing or integrating over
the entire state space X n, the same issues over intractability may emerge as for the
cumulant function A(θ).
Thus, although from a superficial point of view solving the convex objective

function (2.4.22) over the convex setM seams tractable, there exist some serious
obstacles:

• The setM may be difficult to express explicitly. For the marginal polytope
M(G), the number of facets can grow exponentially, depending on the structure
of G.

• The indirect representation of A∗(µ) in terms of θ, thus its evaluation for even
a single µ is computationally very expansive.

Variational methods can be classified according to the type of approximations toM
and A∗. Below we will introduce two instances, message-passing (this time from a
variational perspective) and mean field methods.

2.4.2.4 Message Passing Revisited

We will now revisit the message passing approach that we presented in Section 2.4.1.1
from a variational perspective. It relies on the Bethe approximation, an outer
polyhedral bound to the marginal polytope M(G) and an approximation to the dual
function A∗(µ), described here for the case of pairwise MRFs, such that every clique
contains at most two variables13.

Definition 2.54 (Local polytope). We call a polyhedral outer bound to M(G) the
local polytope L(G), if it consists of locally consistent non-negative functions τs(xs)
and τst(xs, xt), that satisfy normalization constraints∑

xs

τx(xs) = 1, ∀xs ∈ Xs, (2.4.24)

and marginalization constraints∑
xt

τst(xs, xt) = τs(xs), ∀xs ∈ Xs,
∑
xs

τst(xs, xt) = τt(xt), ∀xt ∈ Xt. (2.4.25)

Since any realization of mean parameters µ has to fulfill these constraints, the
following proposition holds:

Proposition 2.55 ([WJ08]). The inclusion M(G) ⊆ L(G) holds for any graph. For
any tree-structured graph T both sets are equal, while for general graphs with cycles
L(G) is a strict outer bound of M(G).
13This constitutes a rather general definition, since every undirected graphical model can be

transformed into a pairwise MRF [WJ08]

38



2.4 Inference on Graphical Models

As the second ingredient of the Bethe approximation, we approximate the dual
function or negative entropy A∗(µ). While the entropy in general lacks a closed-form
expression for MRFs with cycles, for a tree-structured MRF we can state an explicit
expression in terms of the mean parameters µ that is exact:

H[pµ] =
∑
s∈V
−
∑
xs∈Xs

µs(xs) lnµs(xs)︸ ︷︷ ︸
:=Hs(µs)

−
∑

(s,t)∈E

∑
xs,xt

µst(xs, xt) ln µst(xs, xt)
µs(xs)µt(xt)︸ ︷︷ ︸

:=Ist(µst)

.

(2.4.26)
It decomposes into two terms, which are the singleton entropy Hs(µs) andmutual
information Ist(µst). For an MRF with loops (2.4.26) constitutes an approximation.
Combining both ingredients yields the Bethe variational problem

max
τ∈L(G)

〈θ, τ〉+
∑
s∈V

Hs(τs)−
∑

(s,t)∈E
Ist(τst)

 , (2.4.27)

which gives exact results for tree-structured graphs. Setting the derivatives of the
corresponding Lagrangian to zero, one can recover the sum-product updates (2.4.4),
where the Lagrange multipliers λst associated with the marginalization constraints
(2.4.25) assume the role of messages Mst := exp(λst(xs)) [WJ08].

In Section 2.4.1 we mentioned several message-passing approaches for dealing
with general graphs, such as generalized belief propagation or tree-reweighted belief
propagation. When viewed from a variational perspective, it turns out that they
correspond to tighter approximations of the marginal polytope M(G) and the entropy
function H(pθ(µ)).

2.4.2.5 Mean Field Methods

An essential tool for the motivation of mean field methods is:

Definition 2.56 (Kullback-Leibler divergence). The Kullback-Leibler (KL) di-
vergence or relative entropy between two probability mass functions p(x) and q(x)
is defined as

KL(q||p) = −
∑
x∈X

q(x) ln p(x)
q(x) (2.4.28)

= −Eq [ln p(x)]−H[q].

The KL divergence is a measure of a distance between p and q. One can use Jensen’s
inequality to show that KL(q||p) ≥ 0 for all probability mass functions q(x) and
p(x) with equality if and only if p(x) = q(x) for all x [CT06]. For continues random
variables X we simply replace summation by integration.

Mean field methods can be motivated from two perspectives: The first one is as a
lower bound to A(θ). For any mean parameter µ ∈ intM, the following inequality
holds

A(θ) ≥ 〈θ, µ〉 −A∗(µ), (2.4.29)

39



2 Preliminaries

which is a direct consequence of (2.4.22). Mean field methods restrict the setM by
only considering tractable subgraphs F of G, such that it is feasible to perform exact
calculations. As for the Bethe approximation, this includes approximations to both
A∗ andM.

Associated with the cliques of F is a subset of sufficient statistics φ and parameters θ,
indexed by I(F ). The set of distributions that are Markov with respect to F is
parametrized by

Ω(F ) := {θ ∈ Ω | θα = 0, ∀α ∈ I \ I(F )}. (2.4.30)

Naturally, this restricts the set of realizable mean parametersM to a proper subset
denoted byMF (G), which constitutes an inner approximation toM(G). We denote
the dual function A∗ restricted to µ ∈MF (G) by A∗F (µ). Mean field methods then
find the best approximation to A(θ) by maximizing the lower bound

max
µ∈MF (G)

{〈θ, µ〉 −A∗F (µ)}. (2.4.31)

Tractability of mean field methods comes at a price though, as one can show that
the setMF (G) as well as the objective function (2.4.31) may be non-convex [WJ08].

The alternative perspective is given as minimization of the KL divergence between
the approximating distribution q ∈ Q and the target distribution pθ. Here Q denotes
a tractable family of distributions, exhibiting additional CI assumptions compared
to pθ. There is a direct correspondence between Q andMF (G).

Denote by X the set of observed random variables and by Z the set of hidden
latent random variables. We wish to find the distribution q(Z) closest to p(Z|X) in
terms of the KL divergence (2.4.28), that is

min
q∈Q

KL(q||p) = min
q∈Q

−
∑
Z

q(Z) ln pθ(Z|X)
q(Z) . (2.4.32)

We can absorb the effect of observing X by updating the parameters θ, such that
pθ(Z|X) = pθ̃(Z). Using the reparameterized form, we continue from (2.4.32):

min
q∈Q

−
∑
Z

q(Z) ln pθ̃(Z) +
∑
Z

q(Z) ln q(Z)

= min
q∈Q

−Eq[〈θ̃, φ(X)〉 −A(θ̃)]−H[q]

= min
µ∈MF (G)

−〈θ̃, µ〉+A(θ̃) +A∗F (µ),

where we used the fact that −H[q] = A∗F (µ). Since A(θ) is constant with respect
to µ, we end up with the problem (2.4.31).
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2.5 Retina Imaging

2.5.1 Optical Coherence Tomography

Optical Coherence Tomography (OCT) is a comparatively new technique for
acquiring cross-sectional images of internal structures in biological tissues, first
demonstrated by [HSL+91]. Soon the first tests with human retina followed [FHD+93,
SIH+93]. Since then OCT has found an ever-growing application in ophthalmic
diagnosis. It enabled ophthalmologists to obtain high-resolution images of retinal
layers, not possible with techniques previously used.

OCT is a low coherence interferometry technique, using a Michelson interferometer.
Here, the light source is split into two beams by the use of a partial reflective mirror.
One beam is reflected by the so called reference mirror. The other beam is focused
on the sample tissue, using a mirror and an objective lens. While parts of the beam
are absorbed or scattered, some amount is reflected back. Both beams are then
recombined to produce an interference pattern, visible to the observer. Comparing
the echo time delay and intensity of the reflected light with that from the reference
arm, a so-called A-scan is obtained, an axial gray-scale plot of the interferometric
signal strength. By translating the optical beam laterally, 2-D scans (B-scan) or
3-D scans (n B-scans) of the sample are obtained.

There exist two main types of optical coherence tomography: Time-domain OCT
and Fourier-domain OCT. In time-domain OCT the reference reflector position
is translated to obtain information from various depths in the sample. Contrary, in
Fourier-domain OCT the reference arm is held fixed, but broadband light source
and a spectrometer are used. Through Fourier transformation, the spectrum of the
backscattered light is transformed into the sample reflectance as a function of depth.
Avoiding the limitations of the mechanical component, Fourier-domain OCT features
a much higher acquisition speed and a lower signal-to-noise ratio [CSYI03, LHF+03].

2.5.2 Retinal Anatomy

The vertebrate retina, anatomically a part of the central nervous system, translates
incoming light into electrical signals, pre-processes them and relays them via the
optic nerve to the visual cortex for visual perception. It is composed of several layers
that contain different types of neurons and the synapses that interconnect them,
c.f. Figure 2.8. Of these neurons only photoreceptor cells, located at the back of
the retina, are directly sensitive to light. There exist two types of photoreceptor cells,
rods and cones. Cones are responsible for color vision and work best in bright light,
while rods are very sensitive to light and therefore are saturated in bright light, but
provide vision in conditions of dim light.

Next come layers containing three different types of neuronal cells: bipolar cells,
horizontal cells and amacrine cells. These cells act as pre-processing units, that
relay the input they receive from the photoreceptor cells to the ganglion cells,
which are situated in the outermost layer. Horizontal and amacrine cells provide
lateral connectivity, the former from receptors to bipolar cells and the latter from
bipolar cells to ganglion cells. Each ganglion cell has a receptive field, i.e. is influenced
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Figure 2.8 - Both figures illustrate the axial organization of cells in the retina. In Figure (a)
[RyC11] letters label different cells types: a,b: cones and cone nuclei, c,d: rods and rod nuclei,
e: horizontal cells, f: bipolar cells, g: amacrine cells, h: ganglion cells. Numbers correspond
to different layers: 1: rod and cone layer, 2: outer nuclear layer (ONL) 3: outer plexiform
layer (OPL), 4: inner nuclear layer (INL), 5: inner plexiform layer (IPL), 6: ganglion cell layer
(GCL), 7: nerve fiber layer (NLF). (Source: Wikipedia) (b) OCT-scan from the central slice of
a macula-centered 3-D volume, showing the locations of layers 1-7. Regions labeled by roman
numbers denote foveola (I), fovea (II) and macula (III) and correspond to those depicted in the
fundus image in Figure 2.9 (a).
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Figure 2.9 - (a) Fundus image that shows the foveola (I), fovea (II) and macula (III). Visible
to the left is the optic disc (or optic nerve head). See also Figure 2.8 (b) for an example of an
OCT scan of that region. (b) Schematic diagram of the human eye, illustrates the way the light
travels after entering through the lens, through the vitreous humour towards retinal layers located
around the fovea. (Source: Wikipedia)

by a certain compact region of photoreceptor cells. There are about 125 million
photoreceptor cells but only 1.2 to 1.5 million ganglion cells, so each ganglion cell
receives on average input from 100 photoreceptor cells [Hec87]. The axons of the
ganglion cells form the optic nerve, which leaves the retina and transmits the visual
information to the next processing instance inside the brain.
The macula (III in Figure 2.9 (a)) is the region of the retina in responsible for

visual acuity. It measures about 5.5µm in diameter and is defined anatomically
as having two or more layers of ganglion cells [Sch99]. Located at its center is the
fovea (II), a 1.5µm wide region which in turn includes the foveola (I), a 0.35µm
wide area where the upper neuronal layers disappear, such that light can directly
hit the photoreceptor cells [Alf06]. The foveola also features a much lower ratio
of photoreceptor cells per ganglion cell, allowing a much higher resolution [Hub95].
Figure 2.9 (b) illustrates the eye ball and the position of the foveal pit therein.

2.5.3 Glaucoma

The term glaucoma describes a group of ocular disorders, that are the second leading
cause of blindness in the United States [KFKA09]. Around 66 million individuals
are estimated to be affected by glaucoma world wide [WK04]. The most common
type is open-angle glaucoma, accounting for roughly 90% of all glaucoma cases.
Glaucoma is characterized by the loss of ganglion cells and their axons, as well as
tissue remodelling involving the optic nerve head and the retina [MGF08]. This
is believed to be caused mainly by a diminished aqueous outflow of the eye, often
accompanied by a slow build-up of intraocular pressure (IOP). Nevertheless, since
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not all patients with glaucoma exhibit an increased IOP, also other factors contribute
to the progression of the disease [WK04].
Symptoms are the loss of peripheral vision and, if left untreated, the irreversible

loss of vision. The progress of vision loss can be determined by a visual field test.
Nevertheless, these symptoms occur comparatively late in the course of the disease,
such that at the point of detection as many as 50% of all ganglion cells may have
been lost [Qui99]. This emphasizes the necessity to use other diagnostic methods,
which are able to detect glaucoma in a much earlier stage. Measurement of IOP,
although simple and fast, has only limited clinical benefit, since it is hampered by a
high false positive rate [KHH+02].
As pointed out earlier, glaucoma affects ganglion cells as well as the optic nerve

head also known as optic disc. Regarding the latter, one can for example measure
the cup-to-disc-ratio, which compares the size of the white cup, an area within the
optic disc having no nerve fibers, with the size of the optic disc itself. Glaucoma is
correlated with an increase of this ratio and several studies underlined the value of
this measurement [QKD+92, WGHH+98, KVGH+99]. Measuring the thickness of
the nerve fiber layer (NFL) constitutes another structural indicator for glaucoma.
Early studies used fundus photographs as the one shown in Figure 2.9 (a) to localize
NFL defects [HFN73, SMP+77, AN85]. But fundus photographs only provide a top
view of the NFL, therefore indication has to rely on the subjective assessment of
typical texture variations. It was shown by [QA+82], that up to 50% of the thickness
of the NFL may be lost until the defect is visible in the fundus image.
The recent advent of high-resolution OCT enabled the accurate measurement of

NFL thickness. Several studies demonstrated the applicability of NFL thickness
evaluation for the detection of glaucoma [BZB+01, LCC+05, CKFB09, LRZ+11].
Additionally, recent research suggests, that glaucoma not only manifests itself in
transformations of the NFL, but additionally also influences the ganglion cell layer
(GCL), inner plexiform layer (IPL) and to a lesser extent the inner nucleus layer (INL)
(numbers 4-6 in Figure 2.8) [TLL+08, TCL+09, KHH+11]. This seems reasonable,
since glaucoma affects ganglion cells, whose axons are located in the NFL, but their
nuclei reside inside the GCL and their dendrites, connecting them to bipolar cells
and amacrine cells, lie inside the IPL.

Many other diseases of the retina exists, which all manifest themselves in different
cell layers. This stresses the need for a segmentation approach which yields accurate
delineations of as many cell layer boundaries as possible. The approach presented in
this thesis segments eight different inner cell layers, and can easily be extended to
segment more, if training data in form of labeled OCT scans becomes available.
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3 A Probabilistic Graphical Model for
Retina Segmentation

This chapter will present our retina segmentation model. In Section 3.1 we outline the
parts that constitute our graphical model: the appearance models p(y|c) modeling
texture of partitions and their boundaries, the shape prior p(b) and the prior for
discrete boundary assignments p(c|b). In Section 3.2 we present the approximative
probabilistic inference framework, based on variational inference. We derive explicit
update formulas for the sufficient statistics of the approximating distributions qc(c)
and qb(b) in Section 3.3.

3.1 Graphical Model

This section presents our probabilistic graphical model, statistically modeling an OCT
scan y and its segmentations b and c respectively. We introduce c, the discretized
version of the continuous boundary vector b, to make mathematically explicit the
connection between the discrete pixel domain of y and the continuous boundary
domain of b. Our ansatz is given by

p(y, c, b) = p(y|c)p(c|b)p(b), (3.1.1)

where the factors are
p(y|c) appearance, data likelihood term,
p(c|b) Markov Random Field regularizer, determined by the shape prior and
p(b) global shape prior.

Moreover, we introduce the vector x that holds class labels for all pixel, indicating
their affiliation to either one of the cell layers or their corresponding boundaries.
Note that x is directly determined by c. We will sometimes make this connection
explicit by writing p

(
y|x(c)

)
.

Notation. Figure 3.1 displays the notation for components of vectors x, b and c:
We will use the subindex k ∈ {1, . . . , Nb} to differentiate between boundaries and the
subindices j = {1, . . . ,M} and i = {1, . . . , N} to differentiate between image columns
and rows. The symbol • will denote the set of all elements of the respective index,
for example bk,• ∈ RM is the vector holding real-valued positions of boundary k in
all image columns, and ck,• ∈ {1, . . . , N}M is its discretized counterpart. By b\j we
denote the subset {b \ b•,j} and will use an similar notation for µ and Σ. We will
sometimes drop the bullet-symbol to improve readability, thus b•,j will become bj .
Moreover, we will not emphasize the difference between random variables and their
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Figure 3.1 - Important variables used throughout this section. Note the difference between
real valued boundary position bk,j and its discretized counterpart ck,j .

realizations, but use lower case letter throughout our development. Section 1.5
recapitulates the notation in compact form.

In what follows we will detail each component, thereby completing the definition of
our graphical model. The illustration of the graph in terms the individual layers in
Figure 3.2 accompanies this presentation.

3.1.1 Appearance Models

We utilize Gaussian distributions to model the appearance of retinal layers as well
as their boundaries. Given a segmentation hypothesis c, we can assign class labels
xi,j ∈ X to each pixel, their range being given by

X = {Xl,Xt}, Xl = {l1, . . . , l10}, Xt = {t1, . . . , t9}.

Thus, labels denote membership of observed pixels to either tissue layers lk or
transitions (boundaries) tk that separate them. To obtain a valid mapping c 7→ x,
we require c to satisfy the ordering constraint

1 ≤ c1,j < c2,j < · · · < cNb,j ≤ N, ∀j = 1, . . . ,M, (3.1.2)

and point out that the real-valued counterpart b may violate this constraint.
Since OCT scans display a large inter-scan as well as intra-scan variability in terms

of their brightness and contrast, each patch yi,j is first normalized by subtracting its
mean. We then project each patch yi,j onto a low-dimensional manifold, applying
the technique of PCA [Hot33]. To this end, we randomly draw patches from the
training set independently of their class affiliation, and estimate their empirical
covariance matrix and calculate its eigenvalues and eigenvectors. The projection can
then be carried out using the first qpca eigenvectors sorted by their eigenvalues. See
Section 4.1.3 for a discussion on how we set that parameter during evaluation.
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3.1 Graphical Model

Figure 3.2 - Illustration of our probabilistic graphical model for M = 4, N = 7 and Nb = 2.
The connectivity from b to c is only displayed for node c2,3. Similarly, connectivity for c to y via
x is only displayed for nodes in the third image column and additionally illustrated by the edge
color of the y-nodes.

We define the probability of the projected patch yi,j1 at pixel (i, j) belonging to
the class xi,j as

p(yi,j |xi,j(c)) = N (yi,j ;µxi,j ,Σxi,j ) . (3.1.3)

The class-specific moments µx,Σx, ∀x ∈ X are learned offline using patches from the
respective class. Regularized estimates for Σx are obtained by utilizing the graphical
lasso approach [FHT08], see Section 2.2.5.2. This leads to sparse estimates for K,
where the degree of sparsity is governed by the parameter αglasso. Again confer
Section 4.1.3 for details on how we set that parameter.
We define patches yi,j to be conditionally independent given a segmentation c,

that is

p(y|c) =
M∏
j=1

N∏
i=1

p(yi,j |xi,j(c)) . (3.1.4)

Finally, we introduce switches βt ∈ {0, 1} and βl ∈ {0, 1}, that turn on and off all
terms belonging to the corresponding transition class tk or layer class lk, which yields
the appearance model

p(y|c) =
M∏
j=1

∏
i:xi,j∈Xl

p(yi,j |xi,j(c))β
l ∏
i:xi,j∈Xt

p(yi,j |xi,j(c))β
t
. (3.1.5)

As we point out in the next section, our model can handle discriminative terms as
well. We can convert generative terms (3.1.3) into discriminative ones by renormaliz-

1For ease of notation, we will make no difference between a patch and its low-dimensional projection
and denote both by yi,j .
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ing:
p(xi,j(c)|yi,j) = p(yi,j |xi,j(c))p(xi,j(c))∑

xi,j∈X p(yi,j |xi,j(c))p(xi,j(c))
, (3.1.6)

where we use a uniform prior p(xi,j(c)). Also p(c|y) factorizes as a product distribu-
tion.

3.1.2 Shape Prior

As a model of the typical shape variation of layers due to both biological variability
as well as to the image formation process, we adopt a joint Gaussian distribution.
For 2-D circular scans (see for example Figure 1.2), a wave-like distortion pattern is
observed due to the conic scanning geometry and the spherical shape of the retina,
which we capture statistically rather than modeling it explicitly.

We denote the continuous height values of all boundaries k over all image columns j
by the NbM -dimensional vector b = (bk,j)k=1,...,Nb; j=1,...,M . Hence,

p(b) = N (b;µ,Σ), (3.1.7)

where parameters µ and Σ are learned offline from labeled training data. We
regularize the estimation of Σ by Probabilistic Principal Component Analysis (PPCA),
presented in Section 2.2.5.3. PPCA assumes that the high-dimensional observation b
was generated from a low-dimensional latent source s ∈ Rq via

b = Ws+ µ+ ε,

where s ∼ N (0, I) and ε ∼ N (0, σ2I) is isotropic Gaussian noise. The moments of
p(b) are given by E[b] = µ and E[bbT ] = WW T + σ2I = Σ. The precision matrix
K = Σ−1 can be decomposed into W and σ2I as well (c.f. (2.2.27)), thereby reducing
complexity as well as memory requirements of most operations related to Σ and K.
Figure 3.3 shows samples drawn from p(b), modeling fovea-centered 3-D vol-

umes (left panel, with the fovea clearly visible) and circular scans (right panel).

3.1.3 Shape-Induced Regularizers

The third component of our model is a prior for discrete boundary assignments c,
that regularizes the data likelihood term p(y|c). We define p(c|b) as a collection of
column-wise acyclic graphs

p(c|b) =
M∏
j=1

p(c•,j |b), p(c•,j |b) = p(c1,j |b)
Nb∏
k=2

p(ck,j |ck−1,j , b). (3.1.8)

That means the communication between image columns is governed by the shape
prior p(b).
In order to define the conditional distributions in (3.1.8), we need a couple of

notational prerequisites. Recall that b\j denotes the sub-vector of b after removing b•,j ,
that is all boundary positions in image column j. The conditional distributions are
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Figure 3.3 - Samples drawn from the the shape prior distribution p(b) trained on volumes (left)
and circular scans (right). Only one half of the volume is shown. In the volume samples the
fovea, that is the region of the retina where the upper layers disappear, is clearly visible.

specified in terms of b:

p(c1,j =n|b) = Pr
(
n− 1

2≤ b1,j≤ n+ 1
2
)
,

p(ck,j =n|ck−1,j =m, b) =

Pr
(
n− 1

2≤ bk,j≤ n+ 1
2

∣∣∣m− 1
2 ≤ bk−1,j≤ m+ 1

2
)
,

(3.1.9)

where the probabilities on the right-hand side are computed using the conditional
distributions p(b1,j |b\j) and p(bk,j |b\j)p(bk,j |bk−1,j) respectively, for all configurations
of c conforming to (3.1.2). Since p(b) is a normal distribution, these computations
are straightforward, see Section 2.2.5. From a modeling-perspective, the conditional
distribution p(bk,j |b\j) provides a way to introduce global shape knowledge into the
column-wise Markov random fields p(c•,j |b).

3.1.4 2-D vs. 3-D

Our description so far considered OCT scans of dimension two. Nevertheless, our
approach is equally applicable to 3-D volumes. We can use the very same notation,
since adding additional B-Scans will only increase the number of image columns M .
Similarly, the connectivity of the graphical model p(y, c, b) can be transferred one-to-
one.

The shape prior p(b) which is fully connected since K is dense, can be extended to
an arbitrary dimension. We exploit the fact that both, Σ and K, have an explicit low-
rank decomposition (as discussed in Section 3.1.2), such that memory consumption is
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not an issue and complexity of operations is reduced as well. For the regularization
term p(c|b), each node ck,j is connected to nodes b\j of all columns except the current
one, which now additionally includes columns of all other B-scans. Finally, the
data likelihood p(y|c) continues to fully factorize over pixels (i, j). Each pixel (i, j)
remains connected to at most two nodes ck,j from the same column j, determining
it’s label xi,j . Finally, we use separate sets of appearance models for each B-scan in
the volume to capture variations across different regions of the retina.

3.2 Variational Inference

Based on the model presented in the last section and given observed data y, we wish
to infer the posterior distribution

p(b, c|y) = p(y|c)p(c|b)p(b)
p(y) . (3.2.1)

Here, one major obstacle is the calculation of the marginal likelihood p(y), which
requires the integration respective summation of p(y, c, b) over b and c. But since
we lack a closed form solution and the problem at hand is high-dimensional, this is
intractable.
We cope with this problem by applying an established variational method: ap-

proximating the posterior by a tractable distribution q(b, c) by minimizing the
Kullback-Leibler (KL) distance KL(q‖p) with respect to q. This type of inference
approximations is called the mean-field approach and was discussed in Section 2.4.2.5.
We point out that unlike in related work (e.g. [MTRP09]) where the subproblem of
inferring the discrete decision variables has to be approximated as well, our model
has been designed such that by choosing q properly, all subproblems are tractable
and can be solved efficiently.
We choose the factorized approximating distribution

q(b, c) = qb(b)qc(c). (3.2.2)

This merely decouples the continuous shape prior and the discrete order-preserving
segmentation component of the overall model, but otherwise will represent both
components exactly. The Kullback-Leibler distance between q and p is given by

KL
(
q(b, c)

∥∥p(b, c|y)
)

=
∫
b

∑
c

q(b, c) log q(b, c)
p(b, c|y)db

= −
∫
b

∑
c

q(b, c)
(

log
(
p(y|c)p(c|b)p(b)

)
− log p(y)− log q(b, c)

)
db . (3.2.3)

Dropping the constant term log p(y), we may obtain our objective function.
Optionally, we can use the marginal likelihood log p(y) to introduce discriminative
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appearance terms into the model, using

log p(y|c)
p(y) = log p(y|c)p(c)

p(y) − log p(c) = log p(c|y)− log p(c).

Since p(b) already contains prior knowledge about the shape of boundary positions,
we assume an uninformative prior for c. Hence dropping p(c) and taking into account
the factorization of q, we obtain the objective function

J(qb, qc) = −
∫
b

∑
c

qb(b)qc(c) log
(
p(c|y)p(c|b)p(b)

)
db−H[qb]−H[qc], (3.2.4)

where H[qc] and H[qc] denotes the entropies of the approximating distributions,
c.f. Definition 2.23. It turned out that discriminative appearance terms yielded much
better performance, and we discuss that issue in Section 4.1.2. We will therefore
focus on the discriminative case in the subsequent derivation.

In what follows, we make the expectations with respect to qc and qb explicit. This
will provide us below with a closed-form expression of the objective function J(qb, qc).
We begin by defining qc and qb.

3.2.1 Definitions of qc and qb

For qc(c) we adopt the same factorization as for p(c|b), that is, written in a slightly
different but equivalent form

qc(c) =
M∏
j=1

qc;1,j(c1,j)
Nb∏
k=2

qc;k∧k−1,j(ck,j , ck−1,j)
qc;k−1,j(ck−1,j)

, (3.2.5)

where qc;k,j are discrete probability distributions, such that the normalization con-
straints (2.4.24) are satisfied. Similarly, by qc;k∧k−1,j we denote discrete probability
distributions over pairs of variables ck−1,j , ck,j . To enhance readability, we will
subsequently omit indices k, j of qc, if they are determined by their input variables.
For qc(c) to be a valid distribution, additional marginalization constraints have

to be satisfied for all qc;k∧k−1,j , c.f. (2.4.25). Note that we ignore here the set of
valid configurations (3.1.2), because this has already been taken into account when
defining p(c|b). As for qc and p(c|b), we let qb adopt the same factorization as p(b),
thus

qb(b) = N (b; µ̄,Σ), (3.2.6)

where the bar-notation helps to distinguish the sufficient statistics of qb from those
of p(b).

3.2.2 First Summand log p(c|y) of J(qb, qc)

The term p(c|y) does not depend on b, so qb integrates out. Moreover, qc factorize
over image columns j and p(x(c)|y) is a factor distribution. Hence we can rewrite
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Figure 3.4 - Label vector x•,j and boundary position vector c•,j for Nb = 3 and N = 40.
The coloring of each label xi,j denotes dependency on c•,j . Each label depends at most on two
elements of c•,j , and we can use that fact when calculating expectations with respect to qc.

the first summand of (3.2.4) as

−
∫
b

∑
c

qb(b)qc(c) log p(c|y) = −
M∑
j=1

∑
c•,j

qc(c•,j)
N∑
i=1

log p(xi,j(c•,j)|yi,j), (3.2.7)

where the second sum ranges over all combinations of boundary assignments for c•,j .
We can further simplify this equation by noting that each label xi,j depends at most
on two ck,j , as illustrated in Figure 3.4.

This enables us to split the inner sum over rows i = 1, . . . , N into k+ 1 sums. One
for each pair of labels (lk, tk) that are dependent only on ck−1,j and ck,j and one for
lNb+1 respectively. For each of theses sums we can therefore sum out all qc(c•,j) that
are independent of the respective labels. Continuing from (3.2.7) we obtain

= −
M∑
j=1

(∑
c1,j

qc(c1,j)
c1,j∑
i=1

log p(xi,j(c1,j)|yi,j)

+
∑
c1,j

∑
c2,j

qc(c1,j , c2,j)
c2,j∑

i=c1,j+1
log p(xi,j(c1,j , c2,j)|yi,j) + . . .

)
.

(3.2.8)

For each pair (lk, tk) of labels we define matrices Ψk,j , whose entries equal the sum
over pixel yi,j with xi,j ∈ {tk, lk}:

(Ψk,j)m,n =

 n−1∑
i=m+1

βl log p(xi,j = lk|yi,j)

+ βt log p(xn,j = tk|yn,j),

for k = 2, . . . , Nb, j = 1, . . . ,M and 1 ≤ m ≤ n ≤ N . Entries for n ≤ m are not
defined and set to negative infinity. Note that throwing away probability mass is
a rather rude approach. We will discuss a more elegant approach in Section 5, by
estimating a prior density that is directly restricted to the support of the training
data and thereby to the cone of correctly ordered boundaries.
We now can write for each of the summands in (3.2.8) (except for those only

related to c1,j and cNb,j respectively):∑
ck−1,j

∑
ck,j

qc(ck,j , ck−1,j)(Ψk,j)ck−1,j ,ck,j
= 〈qc;k∧k−1,j ,Ψk,j〉,

where 〈A,B〉 denotes the inner product of matrices A and B. This also determines
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the form of qc;k∧k−1,j . Accordingly, we introduce vectors (ψ1,j)n and (ψNb,j)n, rep-
resenting sums over pixels with labels l1, t1 and lNb+1 depending on c1,j and cNb,j

respectively.
We now can state the final form for the first term in J(qb, qc):

−
M∑
j=1

(
(qc;1,j)Tψ1,j +

Nb∑
k=2
〈qc;k∧k−1,j ,Ψk,j〉+ (qc;Nb,j)

TψNb,j

)
. (3.2.9)

3.2.3 Second Summand log p(c|b) of J(qb, qc)

The second term in J(qb, qc) is

−
∫
b

∑
c

q(b, c) log p(c|b) = −Eqc

[
Eqb

[log p(c|b)]
]
. (3.2.10)

We will first calculate the expectation with respect to qb.

Expectation with respect to qb. In (3.1.9) we defined the terms of p(c|b) as
conditional distributions of p(b). By the standard rule for conditional normal
distributions (see Section 2.2.5) we obtain for p(bj |b\j), the distribution of boundary
positions in column j conditional on boundary positions in all other image columns:

p(bj |b\j) = N (bj ;µj|\j ,Σj|\j),
µj|\j = µj − Σj|\jKj,\j(b\j − µ\j), Σj|\j = (Kjj)−1 ,

(3.2.11)

The univariate density p(bk,j |b\j) is obtained by marginalizing over (3.2.11), and we
denote its mean by (µj|\j)k and its variance by (Σj|\j)k,k.
We obtain p(bk,j |bk−1,j), the conditional distribution of boundary position bk,j

given the position of its direct neighbor k − 1 in column j by the same formula:

p(bk,j |bk−1,j) = N (bk,j ;µk|k−1,j , σ
2
k|k−1,j),

µk|k−1,j = µk,j − σ−2
k|k−1,j(Kjj)k,k−1(bk−1,j − µk−1,j), σ2

k|k−1,j = (Kjj)k,k .
(3.2.12)

We now can express the probabilities p(c1,j |b) and p(ck,j |ck−1,j , b) introduced in (3.1.9)
in terms of the integrals

p(c1,j = n|b) =
∫ n+ 1

2

n− 1
2

p(b1,j = τ |b\j)dτ,

p(ck,j = n|ck−1,j = m, b) =∫ n+ 1
2

n− 1
2

∫ m+ 1
2

m− 1
2

p(bk,j = τ |b\j)p(bk,j = τ |bk−1,j = ν)dτdν.

Turning our attention back to the problem of calculating Eqb
[log p(c|b)], we notice

that the terms of p(c|b) depend on b\j via (µj|\j)k, hence on qb too. It suffices to
adopt the most crude numerical integration formula (integrand = step function) in
order to make this dependency explicit

∫ a+1/2
a−1/2 f(x)dx ≈ f(a).
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3 A Probabilistic Graphical Model for Retina Segmentation

By applying the logarithm to p(c|b), we obtain a representation that is convenient
for the evaluation of

∫
b · · · qbdb. Recall that qb is normally distributed with moments µ̄

and Σ. Therefore the moments of b\j with respect to qb are given by

Eqb
[b\j ] = µ̄\j , Eqb

[b\jbT\j ] = Σ\j,\j + µ̄\jµ̄
T
\j . (3.2.13)

We now established all necessary prerequisites to write the terms Eqb
[log p(c1,j |b)]

and Eqb
[log p(ck,j |ck−1,j , b)] in an explicit form, that is suitable for an optimization

with respect to µ̄ and Σ. For the first term we have:

Eqb
[log p(c1,j = n|b)]

=Eqb
[log p(b1,j = n|b\j)]

= C − 1
2(Σj|\j)1,1

(
n2 − 2nEqb

[
(µj|\j)1

]
+ Eqb

[(
(µj|\j)1

)2] )
.

Recall the definition (3.2.11) of (µj|\j)1. Abbreviating the kth row of the ma-
trix Σj|\jKj,\j with (ajk)T and moving terms independent of µ̄ and Σ to C, we
obtain

= C − 1
2(Σj|\j)1,1

(
2(n− µ1,j)(aj1)TEqb

[b\j ] + (aj1)T (Eqb
[b\jbT\j ]− 2µ\jEqb

[b\j ])a
j
1

)
.

Finally, by replacing the expectations with the respective moments in (3.2.13) yields

Eqb
[log p(c1,j = n|b)] =

C − 1
2(Σj|\j)1,1

(
2(n− µ1,j)(aj1)T µ̄\j + (aj1)TBaj1

)
.

(3.2.14)

with B = Σ\j,\j + µ̄\jµ̄
T
\j − 2µ\jµ̄T\j .

The probability inside the second term

Eqb
[log p(ck,j = n|ck−1,j = m, b)] = Eqb

[log(p(bk,j = n|b\j)p(bk,j = n|bk−1,j = m))],

is a product of two Gaussians and therefore again Gaussian, modulo normalization.
Furthermore, the dependency on b\j is the same. We can therefore, by using the
formula for the product of two Gaussians, e.g. [RW06], show that

Eqb
[log p(ck,j = n|ck−1,j = m, b)] =

C̃ − 1
2(Σj|\j)k,j

(
2(n− µk,j)(ajk)

T µ̄\j + (ajk)
TBajk

)
,

(3.2.15)

with B as above, indices 1 replaced by k and a different constant C̃. Note that
the dependency on m, and thereby on ck−1,j is hidden inside C̃. We now made the
expectation with respect to qb explicit.

Expectation with respect to qc. Similar arguments as for p(c|b) hold for p(c|y)
too: We can split the sum over c•,j into parts depending (at most) on two neigh-
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3.2 Variational Inference

(a) Local: bk,j |bk−1,j (b) Global: bk,j |b\j (c) Both terms combined

Figure 3.5 - Illustration of a transition matrix Ωk,j (c) and the local (a) and global (b) shape
information it is composed of. The plots show the exponential version that is used during
optimization the optimization of qc (see Section 3.3.1), in order to illustrate the inherent sparsity
that we utilize to speed up the calculation of qc.

boring boundaries ck−1,j and ck,j . See the previous section for details. We define
matrices Ωk,j and vectors ω1,j as

(Ωk,j)m,n =Eqb
[log p(ck,j = n|ck−1,j = m, b)],

(ω1,j)n =Eqb
[log p(c1,j = n|b)],

for k = 2, . . . , Nb, j = 1, . . . ,M and 1 ≤ m ≤ n ≤ N . Finally, we can write the
expectation of the second term in vectorized form as

−
M∑
j=1

(
(qc;1,j)Tω1,j +

Nb∑
k=2
〈qc;k∧k−1,j ,Ωk,j〉

)
. (3.2.16)

Figure 3.5 shows the two components (left and center panel) of a transition matrix
Ωk,j (right panel) for m,n = 101, . . . , 200. For a better illustration of the inherent
sparsity of Ωk,j , we applied the exponential function to each term. We see how Ωk,j

is composed by combining prior information about the relative distance between bk,j
and bk−1,j (a) with the distribution of bk,j conditioned on information from all other
columns via Eqb

[b\j ] = µ̄\j (b).

3.2.4 Third Summand log p(b) of J(qb, qc)

Since the third term is independent of qc the expectation with respect to qc vanishes.
Before we continue, note that

aTBa =
∑
i,j

aiajBij = tr(aaTB) = 〈aaT , B〉, (3.2.17)

for symmetric n× n matrices B, since the trace can be seen as the inner product.
Furthermore with Eqb

[b] = µ̄ and Eqb
[bbT ] = Σ+µ̄µ̄T we can write for the expectation
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3 A Probabilistic Graphical Model for Retina Segmentation

of p(b)

−
∫
b
qb(b) log p(b)db = C + 1

2Eqb
[bTKb− 2bTKµ+ µTKµ],

= C + 1
2〈K,Σ + µ̄µ̄T − 2µ̄µT + µµT 〉.

(3.2.18)

3.2.5 Entropy Terms of J(qb, qc)

Finally, we make explicit the entropies of qb and qc. For the normal distribution qb
we have that

−H[qb] =
∫
b
qb(b) log qb(b)db = C − 1

2 log |Σ|, (3.2.19)

see for example [PP12, Eq. (389)]. For the negative entropy −H[qc] we can use the
fact (c.f. (2.4.26)) that for tree-structered Markov random field, their entropy is given
by the sum over singleton entropies and mutual information of unary and pairwise
marginals. Adapting the notation in (2.4.26) to that used for qc, we have

−H[qc] = −
M∑
j=1

Nb∑
k=1

Hk,j [qc;k,j ] +
M∑
j=1

Nb∑
k=2

Ik∧k−1;j [qc;k∧k−1;j ],

=
M∑
j=1

( Nb∑
k=1

∑
ck,j

qc(ck,j) log qc(ck,j)

+
Nb∑
k=2

∑
ck−1,j

∑
ck,j

qc(ck,j , ck−1,j) log qc(ck,j , ck−1,j)
qc(ck−1,j)qc(ck,j)

)
.

3.2.6 Explicit Formulation of the Objective Function J(qb, qc)

In the previous sections we derived explicit formulations of all expectations in the
functional J(qb, qc) (3.2.4). We now combine all terms to obtain the reformulated
minimization problem

min
qc,µ̄,Σ

−
M∑
j=1

(
(qc;1,j)T θ1,j +

Nb∑
k=2
〈qc;k∧k−1,j ,Θk,j〉+ (qc;Nb,j)

T θNb,j

)
+ 1

2〈K,Σ + µ̄µ̄T − 2µ̄µT 〉 − 1
2 log det Σ−H[qc] + C,

(3.2.20)

subject to normalization (2.4.24) and marginalization constraints (2.4.25) for qc.
Note that we merged the terms of (3.2.9) and (3.2.16) into θk,j and Θk,j , that is
Θk,j = Ωk,j + Ψk,j , θ1,j = ω1,j + ψ1,j and θNb,j = ψNb,j . Furthermore, note that
log det Σ automatically enforces Σ � 0 (see Example 2.10).
We derived the above optimization problem by minimizing the Kullback-Leibler

divergence between p(b, c|y) and q(b, c), see (3.2.3). Recall that we discussed this
type of variational inference, called mean field method, in Section 2.4.2.5. There we
also showed that one can view mean field methods from a second perspective, that
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3.3 Optimization

of maximizing a lower bound on A(θ):

max
µ∈MF (G)

{〈θ, µ〉 −A∗F (µ)}. (3.2.21)

We can rearrange (3.2.20) to bring it into the form (3.2.21). First note that

µ =
{
qc, µ̄,Σ + µ̄µ̄T

}
,

and
θ =

{
{θ1,j}Mj=1, {Θk,j}Nb,M

k=1,j=1, {θNb,j}
M
j=1,Kµ,K

}
.

Confer Examples 2.49 and 2.50 for more information about canonical and mean
parameters of MRFs and GMRFs. Finally, by observing that A∗F (µ) denotes the
negative entropies of qc and qb, we have shown the correspondence between (3.2.20)
and (3.2.21).

3.3 Optimization

We alternatingly optimize the objective function (3.2.20) with respect to the sufficient
statistics of qc and qb. The former corresponds to inference on trees and can be
accomplished by the sum-product algorithm presented earlier. The optimization
with respect to µ̄ and Σ is given in closed form. Both subproblems are convex, thus
by alternatingly optimizing with respect to qb and qc, the functional J(qb, qc), being
bounded from below over the feasible set of variables, is guaranteed to converge to
some minimum.

3.3.1 Optimization of qc

Taking into account only terms in (3.2.20) that depend on parameters of qc, we obtain
an optimization problem that can be split into column-wise convex subproblems that
are instances of the Bethe variational problem (2.4.27). As discussed in Section 2.4.2.4,
this can be solved to global optimality with the sum-product algorithm.

3.3.2 Optimization of qb

We now turn to the problem of optimizing (3.2.20) with respect to µ̄ and Σ. Recall
that in Section 3.2.3 we defined vectors ω1,j (3.2.14) and matrices Ωk,j (3.2.15),
whose entries were all dependent on subsets of µ̄ and Σ. We furthermore have terms
originating from the entropy of qb and the expectation of p(b) with respect to qb.
Inspecting all these terms, we see that µ̄ and Σ are independent from each other, so
we can optimize them separately.
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3 A Probabilistic Graphical Model for Retina Segmentation

3.3.2.1 Optimization With Respect to Σ

We begin by stating the final result, namely that the optimization with respect to Σ
is given by

min
Σ
−1

2 log |Σ|+ 1
2〈K + P̃ ,Σ〉, (3.3.1)

which has the closed-form solution: Σ = (K + P̃ )−1. The newly introduced matrix P̃
contains the dependencies of terms ω1,j and Ωk,j on Σ.

Derivation of P̃ . Only considering terms in the nth entry of (ω1,j) that depend on
Σ, we obtain

(ω1,j)n(Σ) = − 1
2(Ej|\j)1,1

(aj1)TΣ\j,\ja
j
1,

and accordingly for (Ωk,j)m,n(Σ) with indices 1 replaced by k. We defined (ajk)T
in Section 3.2.3 as the kth row of Σj|\jKj,\j , hence as a column vector of length
NbM −Nb. We introduce the extended version ãjk of length NbM , padded with zero
entries such that

(ãjk)
TΣ ãjk = (ajk)

TΣ\j,\ja
j
k. (3.3.2)

Note that entries of (Ωk,j)(Σ) and (ω1,j)(Σ) are independent of m and n and
therefore independent of qc. Thus

(qc;1,j)Tω1,j(Σ) = 1 · ω1,j(Σ), 〈qc;k∧k−1,j ,Ωk,j(Σ)〉 = 1 · Ωk,j(Σ).

Using bTBb = 〈bbT , B〉, we obtain for (3.2.16)

−
M∑
j=1

(
(qc;1,j)Tω1,j(Σ) +

Nb∑
k=2

〈
qc;k∧k−1,j ,Ωk,j(Σ)

〉)

= 1
2

M∑
j=1

Nb∑
k=1

〈
1

(Ej|\j)k,k
ãjk(ã

j
k)
T ,Σ

〉

= 1
2〈P̃ ,Σ〉.

Since P̃ is independent of qc and depends only on the sufficient statistics of p(b), we
do not have to update it while optimizing J(qb, qc). Furthermore, since it is composed
of linear combinations of submatrices of K, it can be expressed solely in terms of W
and σ2I (c.f. Section 2.2.5.3).

3.3.2.2 Optimization With Respect to µ̄

Again we first state the final result. Taking into account all terms in J(qb, qc) that
depend on µ̄, we get

min
µ̄

1
2〈K + P̃ , µ̄(µ̄− 2µ)T 〉+ p̃T µ̄, (3.3.3)
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3.3 Optimization

with the solution µ̄ = µ− (K + P̃ )−1p̃. Again p̃ captures the dependencies of ω1,j
and Ωk,j , this time on µ̄, and is derived below. P̃ is the same as above. To minimize
(3.3.3), we use conjugate gradient descent which enables us to calculate µ̄ using
(K + P̃ ) instead of (K + P̃ )−1.

Derivation of p̃. Only considering terms in ω1,j depending on µ̄, we obtain

(ω1,j)n(µ̄) = − 1
2(Ej|\j)1,1

(
2(n− µ1,j)(aj1)T µ̄\j + (aj1)T (µ̄\jµ̄T\j − 2µ\jµ̄T\j)a

j
1
)

and accordingly for (Ωk,j)m,n(µ̄). The first term is dependent on n and thus on qc,
whereas the remaining terms are again independent and qc marginalizes out as above.
Using again (ãj1)T as the extended version of (aj1)T (see (3.3.2)) we obtain

−
M∑
j=1

(
(qc;1,j)Tω1,j(µ̄) +

Nb∑
k=2

〈
(qc;k∧k−1,j)T ,Ωk,j(µ̄)

〉)

= 1
2

M∑
j=1

Nb∑
k=1

1
(Ej|\j)k,k

(
2 (Eqc [ck,j ]− µk,j) (ãjk)

T µ̄+
〈
ãjk(ã

j
k)
T , µ̄(µ̄− 2µ)T

〉)

= 1
2

M∑
j=1

Nb∑
k=1

2p̃Tk,jµ̄+
〈
P̃k,j , µ̄(µ̄− 2µ)T

〉
= p̃T µ̄+ 1

2
(
〈P̃ , µ̄(µ̄− 2µ)T

〉
.

Since p̃ is dependent on qc, its gets updated at every iteration.

3.3.3 Initialization

We start the optimization of J(qb, qc) by initializing the distribution qc and setting
Eqb

[p(bk,j |b\j)] to a uniformity, since we yet lack the distribution qb. Afterwards,
we initialize qb via (3.3.1) and (3.3.3). Subsequently, we iterate both optimizations
alternatingly until J(qb, qc) converges.
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4 Evaluation

4.1 Experiments

4.1.1 Data Acquisition

Circular B-scans measured around the optic nerve head were acquired from 80 healthy
as well as from 66 glaucomatous subjects using a Spectralis HRA+OCT device
(Heidelberg Engineering, Germany). Each scan had a diameter of 12◦, corresponding
to approximately 3.4mm, and consisted of M = 768 A-scans of depth resolution
3.87µm/pixel (N = 496 pixels), see Figure 4.1 (a). A medical expert provided
ground truth for the boundary separating NFL and GCL, crucial for the diagnosis of
glaucoma, as well as a grading for the pathological scans: pre-perimetric glaucoma
(PPG), meaning the eye is exhibiting structural symptoms of the disease but the visual
field and sight are not impaired yet, as well as early, moderate and advanced primary
open-angle glaucoma (PGE, PGM and PGA). Ground truth for the remaining eight
boundaries was produced by the author of this thesis. To measure interobserver
variability, a second set of labels for the healthy B-scans was obtained.

The second data set consisted of fovea-centered 3-D volumes, acquired from 35
healthy subjects using the same device as above. Each volume was composed of
61 B-Scans of dimension 500× 496, covering an area of approximately 5.7× 7.3mm.
Ground truth was obtained as follows: Each volume was divided into 17 regions,
and a B-scan randomly drawn from each region was labeled with the previously
introduced nine boundaries, see Figure 1.2. Figure 4.1 (b) depicts the location of all
61 B-Scans and their partition into regions indicated by color.

4.1.2 Various Configurations of Appearance Terms

In Equation (3.1.5) we introduced switches βl and βt to enable or disable layer and
boundary appearance terms, respectively. In the discussion following (3.2.3) we
described discriminative appearance models as an alternative to generative ones and
pointed out that they yielded better performance. In this section we will report how
different combinations of appearance terms performed.
Using the set of healthy circular scans, we tested the model with generative layer

as well as boundary terms, i.e. βt = βl = 1. This configuration turned out to be
sensitive to texture distortions caused for example by blood vessels. This resulted
in initializations above the retinal layers, since the model misinterpreted the dark
area as part of the choroid, as shown in Figure 4.2 (a). We then disabled the layer
appearance terms, i.e. set βl = 0. This solved the previous issue, but spuriously led
to some columns being initialized below the retina, due to very high probabilities for
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4 Evaluation

(a) 2-D circular scan (b) 3-D volume

Figure 4.1 - SLO fundus images that exemplarily depict (a) the trajectory and radius of a
2-D circular scan centered around the optic nerve head and (b) the area covered by a 3-D
volume consisting of 61 B-Scans centered at the foveola, the light spot in the center, c.f. (I) in
Figure 2.9 (a). Alternating coloring illustrates the partitioning into 17 different regions, from
which one scan respectively was randomly selected for manual labeling. Confer Figures 2.8 and 2.9
for a physiological classification of the depicted regions.

some boundary classes caused by relatively small class model variances, i.e. narrow
and steep normal distributions. For patches close to the mean, the probabilities for
those classes happened to be up to 100 times larger than for other classes. This
caused false positive class responses in the choroid to displace the entire initialization
for some columns, as displayed in Figure 4.2 (b).
Switching to discriminative probabilities solved this issue as well, since the local

normalization limits all probabilities to 1 and gives each appearance class the same
influence. Thus false-positives did not possess the probability mass any more to
displace the segmentation of a complete column, see Figure 4.2 (c). Notice that the
layer terms, although switched off by setting βl = 0, are utilized indirectly, since
they contribute to the normalization of terms p(xi,j(c)|yi,j), see (3.1.6). Thus large
layer appearance terms disfavor layer boundaries and thus can rule out certain parts
of the OCT scan for segmentation.

4.1.3 Model Parameters

Table 4.1 summarizes the model parameters and the values they were set to. For
the appearance models we set αglasso to 0.01, which resulted in sparse covariance
matrices Σxi,j that speed up computations significantly. A patch-size of 15× 15 and
the projection onto the first qpca = 20 eigenvectors resulted in smooth segmentation
boundaries. Similar, we used qppca = 20 eigenvectors to build the shape prior model,
after examining the eigenvalue spectrum of the empirical covariance matrix S.
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(a) βl, βt = 1, p(y|c) (b) βl = 0, p(y|c) (c) βl = 0, p(c|y)

Figure 4.2 - (a)-(c) Close-up view of initialization results for different configurations of
appearance terms. Switches βl and βt include or exclude layer and transition appearance terms.

Table 4.1 - Set of model parameter values used throughout all experiments.

Appearance Shape Inference
Parameters αglasso qpca Patch-Size qppca Variance of p(bk,j |b\j)

Value 0.01 20 15× 15 20 10

An important parameter during the inference is the variance of p(bk,j |b\j), which
balances the influence of appearance and shape. Artificially increasing this parameter
results in broader normal distributions (that is wider stripes in Figure 3.5 (b)),
which allows qc to take into account more observations around the mean of p(bk,j |b\j)
during the discrete inference part. At the same time the influence of the appearance
terms on qb is reduced, which results in smoother estimates for the mean µ̄ of qb.
Thus increasing the variance loosens the coupling between qc and qb and vice versa.
A ten-fold increased variance turned out to provide a good balance between local
appearance terms and shape regularization as well as between run-time and prediction
accuracy.
We used the very same set of parameter values for all our experiments and

performed no fine tuning separately for each data set. Hence it is plausible to assume
that these values perform well on a broad range of data sets.

4.1.4 Error Measures and Test Framework

For each boundary as well as the entire scan we computed the unsigned distance in
µm (1px = 3.87µm) between estimates ĉk,j = Eqc [ck,j ] and manual segmentations c̃k,j ,
that is

Ekunsgn = 1
M

M∑
j=1
|ĉk,j − c̃k,j |, Eunsgn = 1

Nb

Nb∑
k=1

Ekunsgn .
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For volumes we additionally averaged over all 17 scans in the volume. For each data
set we provide the unsigned error averaged over all scans and it’s standard deviation
(SD).

Results were obtained via cross-validation: After splitting each data set into a
number of subsets, each subset in turn is used as a test set, while the remaining
subsets are used for training. This provided an estimate of the ability to segment new
(unseen) test scans. We used 10-fold cross-validation for the set of non-pathological
circular scans and leave-one-out cross-validation for the volumes data set, to maximize
the number of training examples in each split. For the set of glaucomatous scans,
we used no cross-validation but used a single model trained on all healthy scans as
predictor.

4.1.5 Implementation and Running Time

We implemented our approach in MATLAB. The main bottle-neck, the sum-product
algorithm used to find an optimal solution for qc(c), was implemented in C and
incorporated into MATLAB via the Mex-interface. To further decrease running
ti.e. we exploi.e. the inherent sparsity of the transition matri.e. Ωk,j , as illustrated
in Figure 4.1. Also, wherever possible we transferred expensive matrix-vector mul-
tiplications to the GPU, using a wrapper for MATLAB called GPUmat [MMG08].
Segmenting all 61 B-Scans of a 3-D volume took around 60 s, with memory require-
ments of about 2GB, measured on a Core i7-2600K 3.40GHz.

4.2 Results

4.2.1 Circular Scans

Average boundary-wise results are summarized in Table 4.2. In general, boundaries 1
and 6 to 9 turned out to be easier to segment than boundaries 2 to 5. For boundary 1
this stems from easily detectable textures, whereas boundaries 6-9 with their regular
shape profit disproportionately from regularization by the shape prior. Boundaries
2-5 on the other hand pose a harder challenge with their high variability of texture
and shape. The upper row in Figure 4.3 shows an example close to the average
segmentation performance.

For the pathological scans segmentation performance was comparable to that of the
normal scans, but naturally decreased with the progression of the disease. This may
have had several causes: Since glaucoma is known to cause a thinning of the nerve
fiber layer (NFL) [SHP+95, BZB+01], the shape prior trained on healthy scans may
encounter difficulties adapting to very abnormal glaucomatous shapes. Furthermore,
we observed a reduced scan quality for glaucomatous scans, also reported by others
[ISW+05, SIH+06, MHMT10], which in turn reduced the meaningfulness of the
appearance terms. For advanced primary open-angle glaucoma, the NFL can even
vanish at some locations. The appearance model for this layer, trained on healthy
data, is not able to detect these extreme anomalies, which resulted in a comparatively
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Table 4.2 - Results in µm±SD (3.87µm =̂ 1px) for 2-D circular scans (separately for healthy
eyes as well as the different degrees of glaucoma, pre-perimetric, early, moderate and advanced)
and 3-D scans of healthy subjects. Numbers within brackets denote the respective data set size.

2-D Healthy 2-D Glaucoma 3-D Healthy
k All (80) PPG (22) PGE (22) PGM (13) PGA (9) All (35)

1 2.06±0.57 2.60±0.85 3.76±1.42 4.51±1.18 6.53±2.76 1.36±0.18
2 4.68±1.13 6.66±2.41 5.65±1.66 6.74±1.64 9.95±4.74 3.32±0.37
3 3.67±0.84 4.57±1.18 5.37±1.33 5.49±1.00 8.80±3.03 3.17±0.44
4 3.31±0.78 4.43±1.09 5.78±1.48 5.44±1.19 8.30±2.21 3.23±0.56
5 3.30±0.75 4.34±1.63 4.40±1.14 4.15±0.68 5.05±0.92 3.27±0.66
6 2.10±0.76 2.67±1.37 2.76±0.97 2.88±1.62 2.99±1.92 1.61±0.23
7 2.34±1.05 2.59±1.11 2.95±1.27 2.21±0.68 2.42±0.44 1.86±0.32
8 2.81±1.42 2.82±1.00 3.40±1.22 2.94±1.40 4.19±1.97 2.27±0.40
9 2.01±1.14 2.06±0.65 1.63±0.48 1.64±0.25 2.36±1.18 2.07±0.48

∅∅∅ 2.92±0.53 3.64±0.68 3.97±0.73 4.00±0.53 5.62±1.25 2.46±0.22

Figure 4.3 - Top: Segmentation (Eunsgn = 2.97µm) of a non-pathological circular scan.
Bottom: Segmentation (Eunsgn = 5.09µm) of an advanced glaucomatous scan.
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Table 4.3 - Interobserver variability as well as prediction performance for the set of 80 healthy
circular scans, for which we obtained a second set of labels. The algorithm was trained on the
average ground truth. Errors in µm±SD (3.87µm =̂ 1px). Interestingly the performance improves
over to the case of only one set of labels, compare column four with column one of Table 4.2.

Obs.1 vs.
Obs.2

Algo. vs.
Obs.1

Algo. vs.
Obs.2

Algo. vs.
Avg. Obs.

1 2.86±0.46 2.35±0.62 3.69±0.76 2.74±0.66
2 7.57±1.06 5.51±1.30 6.15±1.35 4.56±1.00
3 4.62±1.13 3.74±0.91 4.26±0.85 3.25±0.74
4 3.63±0.65 3.31±0.75 3.35±0.74 2.74±0.73
5 3.39±0.66 3.31±0.75 3.36±0.75 2.83±0.70
6 1.87±0.59 2.09±0.73 2.05±0.73 1.82±0.71
7 2.36±1.14 2.33±0.99 2.55±1.03 2.08±0.92
8 3.54±1.78 3.23±1.44 2.51±1.33 2.21±1.15
9 1.37±0.51 1.94±1.03 2.17±1.02 1.91±1.01

∅∅∅ 3.47±0.37 3.09±0.50 3.34±0.52 2.68±0.50

bad performance for some scans. We discuss possible modifications to overcome this
problem in Section 4.3.
The bottom panels in Figure 4.3 show an example of a PGA-type scan and its

segmentation. The scan exhibits the discussed reduced scan quality. Furthermore,
the segmentation proves that the shape model can generalize well to pathological
shapes as well as scan artifacts.

4.2.1.1 Interobserver Variability

A second set of labels was created for the healthy circular B-scan data set by a
colleague. For training and testing we utilized the same set-up as described earlier
(10-fold cross-validation, parameters as reported in Table 4.1), but used the mean of
both labelings for training. In Table 4.3 we compare the predicted segmentations
separately with each of the two labelings and with the mean labeling. Furthermore,
we report the average absolute distance between both observers, the interobserver
variability.

We see, that the resulting prediction errors are well within the range of the interob-
server variability. The performance for the mean labels even improves compared to
set-up with only one set of labels, c.f. the first column of Table 4.2. This suggests an
increased robustness of the averaged ground truth towards scan artifacts, ambiguous
image regions and labeling bias.

4.2.1.2 Qualitative Evaluation

A key property of our model is the inference of full probability distributions over
segmentations qc and qb, instead of only modes thereof. This allowed us to rate the

66



4.2 Results

H P E M A
2

3

4

5

6

7

8

Unsigned Error

(a)
H P E M A

Singleton

(b)
H P E M A

Mutual

(c)
H P E M A

Data

(d)
H P E M A

Shape

(e)

Figure 4.4 - Different terms (b-e) of the objective function J(qb, qc) and the unsigned error (a)
for healthy (H) as well as glaucomatous scans (PPG, PGE, PGM and PGA). While "Shape" is
very discriminative for glaucomatous scans, "Mutual" and "Data" correlate well with the unsigned
error.

quality of the prediction as a whole as well as point out areas with low certainty,
and classify a scan as normal or potentially pathological. To this end, we evaluated
the different terms of the objective function J(qb, qc). Figure 4.4 shows boxblots of
four terms (b-e) and compares them to the unsigned error (a). Singleton entropy
(b) and mutual information (c) are the two summands of the negative entropy of qc,
see (3.2.20). The data (d) and shape (e) terms represent the first two summands
of (3.2.4), introduced in Section 3.2.2 and 3.2.3.

The shape term, which measures how much the data-driven distribution qc differs
from the shape-driven expectation Eqb

[log p(c|b)], is highly discriminative between
healthy and pathological scans. The mutual information on the other hand exhibit
a good correlation with the unsigned error. It measures the dependence between
neighboring random variables ck,j and ck−1,j . Imaging ck,j and ck−1,j each having a
single strong peak in qc;k,j and qc;k−1,j . Their joint probability qc;k∧k−1,j will reveal
almost no dependency. On the other hand, if we have several possibilities for each
variable caused for example by poor data terms, then their dependency increases
and thereby the mutual information. We will use these two terms in the forthcoming
evaluation.

Classification. A state-of-the-art method for the clinical diagnosis of glaucoma
is based on NFL thickness, averaged for example over the whole scan or one of
its four quadrants [BZB+01, LCC+05, CKFB09, LRZ+11]. Estimates of the NFL
thickness for all circular scans were obtained using the software of the Spectralis OCT
device, version 5.6. We compared this established method against the prediction of
the shape term discussed above. Using the same setup as in [BZB+01], we report
sensitivities for specificities of 70% and 90%, as well as the area under the curve
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Table 4.4 - Sensitivities for the detection of glaucoma. We compare NFL-based features that
measure average thickness in different parts of the scan (indicated by their name), and our
global shape based feature. Bold numbers indicate the highest detection rate for the respective
specificity and glaucoma class.

Specificity 70% 90% AUC
Type PPG PGE PGM PPG PGE PGM PPG PGE PGM

Average 68.2 90.9 100.0 36.4 86.4 100.0 0.72 0.93 1.00
Superior 63.6 81.8 92.3 45.5 77.3 76.9 0.78 0.84 0.90
Inferior 45.5 72.7 92.3 13.6 31.8 53.8 0.69 0.77 0.89
Temporal 63.6 95.5 100.0 54.5 90.9 100.0 0.74 0.95 0.99
Nasal 36.4 63.6 92.3 18.2 45.5 61.5 0.51 0.74 0.89

Shape 77.3 95.5 100.0 63.6 95.5 100.0 0.84 0.95 1.00

(AUC) of the receiver operating characteristic (ROC)1, see Table 4.4. In all cases,
our shape-based discriminator performs at least as good as the best thickness-based
one. Especially for pre-perimetric scans, which feature only subtle structural changes,
our approach improves diagnostic accuracies significantly. For this most interesting
group, Figure 4.5 (a) provides ROC curves of the two overall best performing NFL
measures and our shape-based measure.

Global Quality. We obtained a global quality measure, by combining the mutual
information and the shape term. Given the values for all scans, we re-weighted both
terms into the ranges [0, 1] and took their sum. Thereby we could establish a quality
index that had a very good correlation of 0.82 with the unsigned segmentation error.
See Figure 4.5 (b) for a plot of all quality index/error pairs and a linear fit thereof.
The estimate of this fit and the true segmentation error differs on average by only
0.51µm. This shows that the model is able to additionally deliver the quality of its
segmentation.

Local Quality. Finally, we determined a way to distinguish locally between regions
of high and low model confidence. This could for example point out regions where a
manual (or potentially automatic) correction is necessary. To this end we examined
the local correlation (that is on a column-wise level) of the mutual information terms
with the unsigned error. We calculated its mean for instances with segmentation
errors smaller than 0.5 and bigger than 2 pixels. This yielded three ranges of
confidence in the quality of the segmentation. For each image we fine-tuned these
ranges by dividing by max(Quality Index(CurrentImage), 1).
Figure 4.6 (a) shows a PGA-type scan with annotated segmentation, whose error

is 6.83µm. The advanced thinning of the NFL and the partly blurred appearance
caused the segmentation to fail in some parts of the scan. Close-ups (b) and (c) show
that the model correctly identified those erroneously segmented regions. The average

1The AUC can be interpreted as the probability, that a random pathological scan gets assigned a
higher score than a random healthy scan.
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Figure 4.5 - (left) ROC curves for the two overall best performing NFL-based classifiers and
our shape prior based approach for the least advanced and therefore hardest to detect glaucoma
class. (right) High correlation of our quality index, obtained by combining terms (c) and (e) from
Figure 4.4, with the actual unsigned error. On average, the estimated error (linear fit) differed by
only 0.51µm from the true segmentation error.

(a) (b) (c)

Figure 4.6 - (a) An advanced primary open-angle glaucoma scan and the segmentation thereof
(Eunsgn = 6.81µm), augmented by the local quality estimates of the model, with red representing
highest uncertainty. (b and c) Close-ups of the three areas, the model is (correctly) most uncertain
about. White dotted lines represent ground truth.
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Figure 4.7 - (a) A healthy scan (Eunsgn = 3.05µm) accompanied by a positive quality
assessment. (b) Average segmentation errors broken down for each type of grading and healthy
as well as pathological scans. Black lines donate the average segmentation errors as reported in
Table 4.2. (c) Average amount of assignment to each class for healthy and pathological scans.

errors of the three categories are 4.67, 5.43 and 18.36µm respectively. Figure 4.7 (a),
on the other hand, shows a scan from a healthy eye with a segmentation error of
2.83µm, that is accompanied by a throughout positive quality rating.
We examined the accuracy of the local quality index numerically for all scans.

Figure 4.7 (b) reports the average unsigned error for normal (H) and glaucomatous
scans (P, E, M and A) as well as all three grades of certainty, and compares it to
the average segmentation error for each data set, given as black lines. As for the
global quality index, also locally the model is able to distinguish between correct and
erroneous regions. Figure 4.7 (c) shows the average percentage of each segmentation
that was assigned to one of the quality ratings. While normal scans are mostly
labeled as OK, this changes gradually as the disease progresses.

4.2.2 Volumetric Scans

In contrast to 2-D scans, the labeling of OCT volumes is very time consuming, hence
our data set only consisted of 35 samples. Thus we were left with less data points
to train a shape model of much higher dimension. Consequently, we observed a
reduced ability of p(b) respectively qb(b) to generalize well to unseen scans. We
tackled this problem by reducing the dimensionality of p(b) and by interpolating it
for intermediate columns, which fixed the problem only to some extent.
We further pursued this i.e. and suppressed the connectivity between different

B-scans inside the volume, which corresponds to a block-diagonal covariance matrix
Σ, where each block is obtained separately using PPCA. This significantly reduced the
amount of parameters that had to be determined, and improved accuracy significantly.
The last column in Table 4.2 reports results for all boundaries.

The average segmentation error of 2.46µm is significantly smaller than for circular
scans, as well as its standard deviation of 0.22µm. Reasons are smoother boundary
shapes and less severe texture artifacts caused by blood vessels. Representative for
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Figure 4.8 - Four segmented B-Scans from regions 2, 6, 9 and 11 of the same volume
(Eunsgn = 2.53µm).
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the average segmentation performance, Figure 4.8 shows B-scans of the same volume
from four different regions, with an error of 2.53µm averaged over all scans in the
volume.

4.2.2.1 Noise Robustness

Speckle noise is a known issue when dealing with OCT scans. It is caused by random
interference between reflected laser beams that are mutually coherent [SXY99]. In
this section we investigate the robustness of our segmentation approach to speckle
noise. To this end we artificially added speckle noise to our OCT scans, using the
Matlab function imnoise(A,’speckle’,var), which modifies the image A via

Anew = A+ εA,

where ε is uniformly distributed with mean 0 and variance var. Note that this was
done for test scans only, whereas the model was still trained on the unmodified
data. We examined parameter values var = {0, 0.1, 0.2, . . . , 1}. Figure 4.9 shows
close-ups of the fovea-region with (a) no added speckle noise and (b)-(d) with added
speckle noise of variances 0.2, 0.6 and 1. Again the examples where picked to be
representative for the average segmentation error.

It turned out that for very high levels of speckle noise, the column-wise initialization
became more and more error-prone, with single columns being way off. This caused
the subsequent iterative inference to produce very inaccurate configurations. We
therefore added a simple routine, that detected those outliers, and in case of detection
solved a MRF for boundary one spanning all columns. The resulting marginal
densities were then used to clamp the appearance terms of the first boundary during
the initialization step. This worked well in almost all cases except for some cases
where boundary 6 was mistaken for boundary 1. But since this happened in only
0.5% of all cases, most of them in the same volume, we did not persuaded this any
further, but dropped the corresponding results (since the mean is very sensitive to
outliers).

Figure 4.10 illustrates how the segmentation error evolves with increasing speckle
noise. Error bars indicate standard deviation. We added results reported by
[DCA+13], as their setup is almost identical to ours (same noise parameters, very
similar data obtained from the same OCT device), and their model constitutes a
state-of-the-art retina segmentation approach based on graph-cuts with local prob-
abilistic shape terms. We see that the segmentation performance remains stable
much longer for our model, while [DCA+13] report a significant drop in performance
already for the lowest amount of speckle noise. This underlines the usefulness of a
global shape prior, which helps to deal with situations of poor data terms

4.3 Discussion

A novel probabilistic approach for the segmentation of retina layers in OCT scans
was presented. It incorporates global shape information, which distinguishes it from
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(e) (f) (g) (h)

Figure 4.9 - Close-ups of the fovea region showing the unmodified scan in (a), and with added
speckle noise for noise parameter set to 0.2 (b), 0.6 (c) and 1.0 (d). The chosen example is
representative for the mean error reported in Figure 4.10.
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Figure 4.10 - Response of our segmentation model when confronted with increase amounts of
artificially added speckle noise. State-of-the-art results of [DCA+13] are given for comparison, as
they use an almost identical setup but their model only encompasses local shape information.
Error bars show standard deviation.
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other existing approaches, that rely solely on local shape information or at best on
sparse global information. To obtain a deterministic approximate of the full poste-
rior distribution p(c, b|y), we employed variational methods, which entail efficiently
solvable optimization problems. We demonstrated the applicability of our approach
for a variety of different OCT scans as well as showed the benefit of inferring full
probability distributions over segmentations rather than point estimates thereof.

3-D Segmentation Performance. Especially for 3-D OCT volumes, our segmen-
tation performance was significantly better than results recently reported from
approaches that use no shape information [VvdSLdB11, YRW+10], local hard-
constrained shape information [GAW+09], local probabilistic shape information
[DCA+13, SBG+13] or sparse global shape information [KPH+10]. Taking into
account, for better comparability, only publications that used data sets obtained
from the same OCT device used in this publication, the following trend evolves:

• While no shape information lead to only mediocre results: 6.20µm and 5.28µm
for healthy and moderate glaucomatous data respectively [VvdSLdB11],

• adding local shape information via hard constraints yielded improved segmen-
tation performance: 3.54± 0.56µm as evaluated by [DCA+13] but comparable
to the model proposed by [GAW+09].

• Additionally using probabilistic local constraints, [DCA+13] recently could again
boost performance to 3.03± 0.54µm.

• Finally, by adding global shape information, we could in turn increase the
segmentation performance to 2.46± 0.22µm.

We also showed the increased robustness of our model when faced with speckle noise
compared to the model of [DCA+13]. Although this clearly seems to support the
use of global shape information for regularization, keep in mind that a concluding
comparison can only be carried out using the same data set. Nevertheless, we believe
that these results highlight the usefulness of global shape regularization for the
segmentation of retinal layers in OCT images.
Reported time requirements vary greatly, and our running time of 60 s is slower

than the 18 s and 15 s reported by [DCA+13] and [YRW+10], but faster than the
remaining approaches cited above, ranging from 900 s [VvdSLdB11] to over two hours
[SBG+13]. Since the bottleneck of our approach, optimizing qc, is done separately
for each image column j, further speed-ups could be achieved by parallelizing the
existing C implementation or transferring the calculation of qc to the GPU.

2-D Segmentation Performance. We also evaluated the performance for healthy
and pathological 2-D circular scans and, in both cases, obtained good results. The
only exception was the group of advanced glaucomatous scans, which was mainly
caused by the appearance models. Patches with near-zero layer thickness are too
far away from the mean to be detected from the Gaussian distribution trained on
healthy data.
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Apart from including patches from glaucomatous scans into the training set, a
useful extension could be to define a mixture of Gaussians for each appearance class,
adding patches centered below or above pixel (i, j), which model its surrounding but
not the layer/boundary itself. Also fixing the issues reported in Section 4.1.2 and
utilize all appearance terms, those of boundaries and layers, should help in that case.
Finally, given more pathological examples especially for PGM and PGA, one could
learn a pathological shape prior and let the model choose the more probable shape
prior based on the initialization.

Pathology detection. We investigated different ways to utilize the inferred distri-
butions qc and qb. Experiments showed, that the model is quite sensitive to abnormal
shapes and thus can act as a detector of glaucoma, with a higher sensitivity than
established methods solely based on NFL thickness. This could relate to recent
findings, that glaucoma causes a thinning of all inner retinal layers: NFL, GCL, IPL
and (to a lesser extent) INL [TLL+08]. To confirm these promising results, further
studies with more patients enrolled will be needed.

Quality Assessment. Another benefit of our approach is the ability to assess the
quality of the segmentation, altogether for the whole scan or for each boundary
position separately. In the context of screening large patient databases, the former
could be a valuable tool to minimize the effort of a physician in reassessing the
results. The latter could facilitate a automatic or manual post-processing, targeted
specifically at regions with a high error probability. A thorough investigation of these
regions could reveal a suitable approach.

To facilitate further research in the area of OCT segmentation and related areas,
we published our source code together with a documentation on our project page:
http://graphmod.iwr.uni-heidelberg.de/Project-Details.132.0.html.
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5 Shape Prior Obeying
Ordering-Constraints

5.1 Introduction

5.1.1 Overview, Motivation

In many real-world scenarios we are given a random vector X ∈ Rd, distributed
according to some underlying density function p, whose components satisfy the
ordering constraint:

X1 ≤ X2 ≤ . . . ≤ Xd. (5.1.1)

This set of linear constraints defines the cone K, given by

K =
{
x ∈ Rd : x1 ≤ · · · ≤ xd

}
. (5.1.2)

Many instances arise in physiology, where boundaries of cell tissue naturally satisfy
such an ordering constraint. Examples from the literature are the segmentation
of the left heart ventricle [EKKN13, DHDP13], cross-section images of the artery
[TKK+11, UAO+12] or the segmentation of retinal layers in OCT images [DCA+13,
RSS14]. Figure 1.1 illustrates the arterial wall segmentation and the non-medical
application of tree ring segmentation.
In the application presented in this thesis, the ordering constraint arises during

the column-wise discrete inference of boundary positions, see Section 3.1.3. There
we require for all image columns j, that for pairs of neighboring boundaries k and
k − 1 the following holds:

p(ck,j = n, ck−1,j = m|b) = 0, ∀ m < n,

where ck,j are the respective discrete boundary positions.
We now assume a set of i.i.d realizations of X denoted by D = (xi)Ni=1, x

i ∈ K.
Given D we wish to infer an estimate of the underlying distribution, whose support
is restricted to the cone K. This constraint immediately rules out all classical
parametric density estimators, as they lack the ability to restrict their support to
such a linear subspace. For example, consider the Gaussian density estimate for two
neighboring boundaries close to the foveola. In that region the upper retina layers
vanish in order to allow as much light as possible to reach the photo-receptor layers
located below, c.f. Figure 2.8 (b). This leads to estimates of f , where a significant
amount of probability mass is located outside of K as illustrated in Figure 5.1.
We therefore turn our attention to non-parametric density estimation. Since

maximizing the likelihood of a non-parametric density without any regularization
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Figure 5.1 - Samples of two neighboring layer boundaries close to the foveola (c.f. Figure 2.8
(b)), that all satisfy the constraint Xi+1 ≥ Xi. Contour lines show one, two and three standard
deviations of the normal distribution. The red line denotes the boundary of the cone constraint
(5.1.2). A significant amount of probability mass is located outside that cone.

results in a density f of Dirac deltas at the sample points xi, all approaches perform
some sort of regularized maximum likelihood estimation.

5.1.2 Related Work

A class of approaches that received a great deal of interest lately is that of shape-
constraint density estimators, which dates back to the seminal work of [Gre56].
Recent approaches proposed the estimation of a log-concave density function f in R
[Ruf07, DR09] and more recently in Rd, d ≥ 2 [CSS10, KM10, SW10], such that

f(x) = exp(−g(x)), (5.1.3)

where g(x) : Rd → (−∞,∞] is a convex function. The class of log-concave density
functions is an immensely rich one, including many parametric density functions
as special cases: all (non-degenerate) normal distributions, Wishart distributions,
gamma distributions with shape-parameter bigger than one, beta(α, β) distributions
with α, β ≥ 1 and many more.

Log-concave densities enjoy many desirable properties: All its level sets are convex
and bounded. Log-concave density estimators do not rely on a tuning parameter
contrary to for example kernel density estimators, a popular class of non-parametric
density estimators [Par62]. The property of log-concavity itself is preserved under
marginalization and conditioning and the product of log-concave densities is log-
concave again. Finally, in case a limiting density exists the weak limits of log-
concave densities are also log-concave [DJD88]. Sampling is especially efficient, with
applications to MCMC and related sampling algorithms, see for example [FKP94]
and [Bro98].
Log-concave density estimation can be seen from two perspectives: The first one

is that of maximizing the log-likelihood of the sample set D (Definition 2.27) subject
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to the log-concavity constraint on the estimated density f . Dual to that perspective
is that of maximizing the Shannon entropy of f (Definition 2.23) subject to absolute
continuity of the corresponding measure F with respect to the Lebesgue measure
[KM10].

Outline. In the next section we will introduce the log-likelihood perspective and
from that derive its dual formulation (similar to the treatment in [KM10]). In
Section 5.3 we describe the optimization procedure, that is based on a discretization,
and consists of solving a differentiable convex optimization problem with an interior-
point method. Section 5.4 presents some numerical evaluations. An alternative
approach is discussed in Section 5.5.

5.2 Log-Concave Density Estimator

5.2.1 Primal Formulation

Given a data set D = {xi}Ni=1, the primal objective function is given by the following
constrained maximum likelihood problem:

min
g

Φ0(g) = 1
N

N∑
i=1

g(xi), such that g is convex and
∫
e−g(x)dx = 1, (5.2.1)

where g = − log f . However, the non-convexity of the set {g |
∫
e−g = 1} renders the

whole problem intractable. But, as pointed out by [Sil82], a convex formulation can
be obtained by moving the integral constraint into the objective function:

min
g

Φ1(g) = 1
N

N∑
i=1

g(xi) +
∫
e−g(x)dx, such that g is convex. (5.2.2)

The following theorem ensures equality between both problem formulations:

Theorem 5.1 ([Sil82]). The convex function ĝ minimizes Φ0 over g subject to∫
e−g(x)dx = 1 if and only if ĝ minimizes Φ1.

Proof. Let g be any convex function and define g∗ = g + log
∫
e−g. We have∫

e−g
∗ =

∫ 1∫
e−g

e−g = 1 . Plugging g∗ into Φ1 yields

Φ1(g∗) = Φ1(g) + 1−
∫
e−g + log

∫
e−g.

The maximum of f(x) = 1− x+ log x is obtained for f(x = 1) = 0 which induces
Φ1(g∗) ≤ Φ1(g). Thus g minimizes Φ1(g) if and only if

∫
e−g = 1. But for any g with∫

e−g = 1, Φ1(g) and Φ0(g) + 1 are identical, which proofs the theorem.

One can show that functions g minimizing Φ1 are finitely generated: For every
collection (X,Y )1 of points xi ∈ Rd and yi ∈ R, we define the function g(X,Y ) finitely

1To remain consistent with [KM10], we denote from hereon by X any set of points and the set D
in particular. This overrides the meaning of X as a random variable.
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Figure 5.2 - Dotted lines visualize convex combinations of points (xi, yi) and (xj , yj). As
defined in (5.2.3), g(X,Y ) denotes the lower convex hull of (X,Y ).

generated by (X,Y ) to be

g(X,Y )(x) = inf
{

N∑
i=1

λiy
i |x =

N∑
i=1

λix
i,

N∑
i=1

λi = 1, λi ≥ 0
}
. (5.2.3)

Hence, by [Roc70, Corol. 19.1.2], g(X,Y ) is a polyhedral convex function which has a
polyhedral epigraph, being the lower convex hull of the points (X,Y ) (see Figure 5.2
for an example in R). That is equivalent to saying that g(X,Y ) is the supremum of a
finite number of affine functions, hence convex [RWW09, Prop. 2.9(b)]. Clearly, for
any convex function h with h(xi) ≤ yi for all i, it holds that h(x) ≤ g(X,Y )(x) for
all x [RWW09, Prop. 2.31]. From the convention inf{∅} = +∞ follows dom g(X,Y ) =
convX.

Let us denote, for a fixed set of points X, the collection of finitely generated func-
tions g(X,Y ) by G(X). The following theorem enables us to restrict the mimimization
of Φ1(g) to the set G(X):

Theorem 5.2 ([KM10]). For any convex function h, we can find a function g ∈ G(X)
such that Φ1(g) ≤ Φ1(h). Strict inequality holds whenever h /∈ G(X) and convX
has nonempty interior.

For the sake of mathematical clarity in the subsequent development, we reformulate
the primal optimization problem (5.2.2) once more. Let C(X) denote the space of
functions continuous on convX and K(X) the cone of closed (lower semicontinuous)
convex functions on convX. Clearly G(X) ⊂ K(X) ⊂ C(X). In view of Theorem 5.2,
any solution of (5.2.2) is also a solution of

min
g∈C(X)

1
N

N∑
i=1

g(xi) +
∫
e−g(x)dx, such that g ∈ K(X), (5.2.4)

and vice versa.
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5.2 Log-Concave Density Estimator

5.2.2 Dual Formulation

This section will outline the derivation of the problem dual to (5.2.4) as given in
[KM10]. To do that we require further prerequisites: Let C∗(X) denote the dual
space of C(X), which is the space of signed, finite, regular Borel measures on convX.
The bilinear form associated with C(X) and C∗(X) is given by

〈g,G〉 =
∫
g dG g ∈ C(X), G ∈ C∗(X). (5.2.5)

The polar cone to K(X) is defined as

K∗(X) =
{
G ∈ C∗(X) | 〈g,G〉 ≤ 0 for all g ∈ K(X)

}
. (5.2.6)

Moreover, Pn ∈ C∗(X) denotes the empirical measure of the set X. Finally, the
conjugate f∗ of a function f was introduced in Definition 2.8.

Let Υ(g) be the indicator function of the cone K(X) (c.f. Definition 2.2). Then we
can equivalently express (5.2.4) as

inf
g∈C(X)

Φ(g) + Υ(g). (5.2.7)

Fenchel’s duality theorem2 [Roc70, Thm. 31.1] states that (under certain conditions,
that are satisfied for the problem at hand [KM10]) strong duality holds between
(5.2.7) and

sup
G∈C∗(X)

−Υ∗(−G)− Φ∗(G), (5.2.8)

where −Υ∗(−G) expresses the constraint G ∈ K∗(X) [KM10].
The conjugate function of Φ(g) is given by

Φ∗(G) = sup
g∈C(X)

{
〈G, g〉 − 1

N

N∑
i=1

g(xi)−
∫
e−g dx

}

= sup
g∈C(X)

{
〈G− Pn, g〉 −

∫
e−g dx

}
= Ψ∗(G− Pn),

where we defined Ψ∗(H) as the conjugate function of Ψ(g) =
∫
ψ(g) =

∫
e−g. [R+71,

Corol. 4A] states that for measures H that are absolutely continuous with respect to
the Lebesgue measure, the functional Ψ∗(H) is given by

Ψ∗(H) =
∫
ψ∗
(
dH

dx

)
dx, (5.2.9)

and Ψ∗(H) = +∞ otherwise. The argument of ψ∗ denotes the Radon-Nikodym
derivative and defines an integrable function h(x) such that H(A) =

∫
A h(x) dx. The

2Together with the fact that for a convex function h(x) = −g(x) its conjugate is given by
h∗(x∗) = −g∗(−x∗) [Roc70, p. 308].
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explicit form of ψ∗(h) is given by

ψ∗(h) = −h log−h+ h, domψ∗ = {h |h ≤ 0}. (5.2.10)

Finally, let f = −h. We now obtained all ingredients to give the final statement:

Theorem 5.3. The problem

sup
f
−
∫
f(x) log f(x) dx, such that f = d(Pn −G)

dx
, G ∈ K∗(X), (5.2.11)

is the strong dual problem of (5.2.4). Furthermore, for any dually feasible f , it holds
that f ≥ 0 and

∫
fdx = 1, hence that f is a probability density.

Indeed, the non-negativity of f is induced by the domain of ψ∗(−f). From the
definition of the polar cone K∗(X) (5.2.6) it follows that 〈G, g〉 ≤ 0 for any g ∈ K(X).
Therefore

0 ≥ 〈G, 1〉 = −〈G,−1〉 ≥ 0 =⇒ 〈G, 1〉 = 0,

and for every dual feasible f it follows that∫
f(x) dx = 〈Pn −G, 1〉 = 〈Pn, 1〉 − 〈G, 1〉 =

∫
1 dPn = 1.

5.3 Discretization and Optimization

There exist two popular approaches in the literature, that propose numerical proce-
dures for solving the optimization problems outlined in the previous section. The
first one by [CSS10] solves a reformulated version of the primal problem (5.2.2) which
is convex but non-differentiable. Therefore, they have to resort to subgradient-based
methods with no theoretical proof of convergence (although in practice convergence
is no issue). Furthermore, their approach calculates in each step the convex hull of
the point set (X,Y ) mentioned in the previous section, and therefore run-time scales
strongly with the number of samples.
The second approach by [KM10] solves the dual problem formulation (5.2.11) on

a discrete grid where individual points are subsumed by the grid points that enclose
them. The resulting optimization problem is smooth and differentiable, and can be
solved by interior-point methods. Their approach trades the dependency on sample
size for that on grid density, although this is no issue for 2-D.

Outline. As a prerequisite for the discretization, we derive an approximation of the
Hessian of g based on finite differences in Section 5.3.1. Section 5.3.2 will establish the
discritization of (5.2.2) based on a regular grid and derive the discrete version of the
primal function. While [KM10] go on to derive the discrete dual, we show in Section
5.3.3 how to directly optimize the discrete primal formulation. In Section 5.3.4 we
extend their approach and derive a general formulation for the case of three or more
dimensions.

82



5.3 Discretization and Optimization

5.3.1 Finite Difference Approximation of Derivatives

A twice-differentiable function g(x) is convex if

∇2g(x) � 0, ∀x ∈ dom g(x). (5.3.1)

The Hessian ∇2g(x) is defined in terms of the second partial derivatives of g, which
are in turn defined as limits of difference quotients for some h→ 0. The next section
will deal with a discrete approximation of g(x) on a regular grid, where such limits
can not be taken.

We therefore resort to finite difference approximations of derivatives. Using multi-
index notation

|α| = α1 + . . .+ αn, a! = a1! . . . an!, xα = xα1
1 . . . xαn

n , (5.3.2)

the following Theorem states that one can approximate a k times differentiable
function g around a given point by a kth order Taylor polynomial:

Theorem 5.4 (Taylor’s theorem [JJ99]). Let g : Rn → R be a k times differentiable
function at the point a ∈ Rn. Then there exists hα : Rα → R such that

g(x) = Pk(x) +
∑
|α|=k

hα(x)(x− a)α

Pk(x) =
∑
|α|≤k

Dαg(a)
α! (x− a)α

(5.3.3)

and limx→a hα(x) = 0.

The first term constitutes the Taylor polynomial Pk(x) of degree k, while the term
hα(x)(x− a)α denotes the approximation error g(x)− Pk(x).

Using a Taylor polynomial P2(x) around the point x = (x1, x2), one can approxi-
mate the function g by

g(x1 + h1,x2 + h2) ≈

g(x)+∂g(x)
∂x1

h1 + ∂g(x)
∂x2

h2 + ∂2g(x)
∂x2

1

h2
1

2! + ∂2g(x)
∂x2

2

h2
2

2! + ∂2g(x)
∂x1∂x2

h1h2
2! .

which becomes more accurate as ‖h‖ → 0.

We can now derive approximations for the terms in ∇2g(x). Adding the approxi-
mations for g(x1 + h1, x2) and g(x1 − h1, x2), the terms −∂g(x)

∂x1
h1 and ∂g(x)

∂x1
h1 cancel

and one obtains

∂2g(x)
∂x2

1
≈ g(x1 + h1, x2) + g(x1 − h1, x2)− 2g(x)

h2
1

,
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and similar for ∂2g(x)
∂x2

2
. The approximation for the off-diagonal terms,

∂2g(x)
∂x1∂x2

≈ g(x− h)− g(x1 + h1, x2 − h2)− g(x1 − h1, x2 + h2) + g(x+ h)
4h1h2

,

is obtained by adding the Taylor expansions of the terms in the numerator. We will
make use of these approximations in the next section, to calculate Hessian matrix
evaluations at the grid points.

5.3.2 Discretization of Φ1(g)

Rectangular Grid. Let us define a regular rectangular grid consisting of grid
points ξα ∈ Rn where we use the multi-index notation α = (α1, . . . , αn) to denote
the grid position (ξα1 , . . . , ξαn). The distance along each coordinate is δ. Finally, we
denote function evaluations at grid point ξα by γα = g(ξα).

Convexity Constraint. In the previous section we derived an approximation for
Hessian matrices Hα at grid points ξα based on finite differences. For a grid point
ξij = (ξi, ξj) ∈ R2, its entries are given by

H ij
11 = [g(ξi + δ, ξj)− 2g(ξi, ξj) + g(ξi − δ, ξj)]/δ2,

H ij
22 = [g(ξi, ξj + δ)− 2g(ξi, ξj) + g(ξi, ξj − δ)]/δ2,

H ij
12 = [g(ξi + δ, ξj + δ)− g(ξi + δ, ξj − δ)

− g(ξi − δ, ξj + δ) + g(ξi − δ, ξj − δ)]/4δ2,

H ij
21 = H ij

12.

(5.3.4)

Convexity of g is then approximately enforced by imposing positive semi-definiteness
of H ij at all grid points ξij except those on the grid boundary. In R2 positive
semi-definiteness of H is enforced by

H ij
11, H

ij
22 ≥ 0, detH ij = H ij

11H
ij
22 − (H ij

12)2 ≥ 0, ∀ij. (5.3.5)

These constraints correspond to rotated quadratic cone constraints:

Qrot := {(x, y, z) ∈ R1+2 | x2 ≤ yz, y ≥ 0, z ≥ 0}. (5.3.6)

Thus, we specifically have (H ij
12, H

ij
11, H

ij
22) ∈ Qrot for all grid points ξij which more

explicitly means

∥∥∥∥∥
(

2H ij
12

H ij
11 −H

ij
22

)∥∥∥∥∥ ≤ H ij
11 +H ij

22 ⇔

2 0 0
0 1 −1
0 1 1


︸ ︷︷ ︸

:=RQ

H
ij
12

H ij
11

H ij
22

 ∈ L2. (5.3.7)

Denoting (5.3.4) as
H ij := (H ij

12H
ij
11H

ij
22)> =: Gijγij (5.3.8)
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with

Gijγij =

0 0 0 0 0 1/4 −1/4 −1/4 1/4
1 1 0 0 −2 0 0 0 0
0 0 1 1 −2 0 0 0 0





γi−1,j
γi+1,j
γi,j−1
γi,j+1
γi,j

γi−1,j−1
γi−1,j+1
γi+1,j−1
γi+1,j+1


, (5.3.9)

and setting
Aij := RQG

ij , (5.3.10)

the constraints (5.3.7) read

Aijγij ∈ L2, ∀ij. (5.3.11)

Assembling them into a global system yields

Aγ ∈ K. (5.3.12)

Later on, it will be convenient to make explicit the connection between (5.3.11) and
(5.3.12). Each index ij in (5.3.11) refers to an internal grid node ξij = (ξi, ξj). The
local vectors H ij defined by (5.3.8) and (5.3.4) may not correspond to consecutive
components of the vector Aγ in (5.3.12). We therefore introduce matrices Iij such
that

IijAγ = Aijγij , ∀ij. (5.3.13)

Accordingly, the cone K in (5.3.12) is defined by

Aγ ∈ K ⇔ IijAγ ∈ L2, ∀ij. (5.3.14)

Integral Constraint. For the integral constraint, [KM10] suggest performing
straightforward Riemann sums on the rectangular grid∫

convX
exp(−g(x)) dx ≈

∑
α

sα exp(−γα) = sTΨ(γ), (5.3.15)

where the index runs over all points in the grid and weights sα = δ2 denote the area
of the approximating squares. Naturally, the accuracy of such an approximation
depends heavily on the density of the grid.

Log-Likelihood-Term. Since sample points xi most probably won’t lie on the
rectangular grid, evaluation of g(xi) is done by linear interpolation of values γα at
grid points ξα directly enclosing xi. This is sufficiently accurate given a fine enough
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grid. We define
1
N

N∑
i=1

g(xi) ≈ ωTLγ (5.3.16)

where L is a interpolation operator, selecting the appropriate grid points such that
(Lγ)i ≈ g(xi) and ω is a weighting vector of the observations, typically ωi = 1/N .

5.3.3 Discrete Objective Function and Numerical Optimization

Using the formulations (5.3.14), (5.3.15) and (5.3.16), the discrete equivalent of the
primal problem (5.2.2) reads

inf
γ
ω>Lγ + s>Ψ(γ), such that Aγ ∈ K, (5.3.17)

which is a convex optimization problem with generalized inequality constraints
(c.f. Definition 2.9).

As pointed out in Section 2.1, this type of problem can be transformed into an
unconstrained convex problem using logarithmic barrier functions. To every grid
point ξα in the interior of the grid corresponds a generalized inequality

−IαAγ �L2 0 ⇐⇒ IαAγ ∈ L2.

Recall, that we defined IαAγ in (5.3.13) as the column vector Aαγα consisting of
three elements. Identifying ψ(−fi(x)) with

ψ(IαAγ) = log
(
(Aα3 γα)2 − ((Aα1 γα)2 + (Aα2 γα)2)

)
, (5.3.18)

we can collect all log-barrier terms in the function

φ(Aγ) = −
∑
α

ψ(IαAγ). (5.3.19)

Following (2.1.13) we can formulate the unconstrained version of (5.3.17):

inf
γ
t
(
ωTLγ + sTΨ(γ)

)
+ φ(Aγ) := π(γ), (5.3.20)

where we introduced the weighting term t. As pointed out in Section 2.1, a valid
approach for that type of problem is the barrier method, that iteratively solves the
unconstrained convex problem π(γ) to optimality and sets t := µt with µ > 1 after
each step. The optimization of π(γ) is performed by Newtons method, that requires
the calculation of the gradient and the Hessian of π(γ) for each descent step ∆γk,
c.f. (2.1.14) and (2.1.15).
The gradient and Hessian of π(γ) are

∇π = t(ωTL+ θ) +∇φ, θα = −sα exp(−γα),
∇2π = tΘ +∇2φ, Θαα = sα exp(−γα).
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The derivation of ∇φ and ∇2φ is given below. Note that, although the problem is
high-dimensional with hundreds of thousands of grid points, the Hessian ∇2π is a
sparse banded matrix. While Θ is diagonal, the off-diagonal entries of ∇2φ reflect
the neighborhood structure imposed by the local Hessian matrices Hα, which access
only the direct neighbors of each ξα.

We therefore were able to utilize fast versions of Cholesky decomposition designed
for sparse matrices, to calculate the Newton step (2.1.15) in an efficient way. Fur-
thermore, we utilized Matlabs sparse library to speed up several other computations.

Gradient and Hessian of φ(Aγ). Let us denote the argument of the logarithm in
(5.3.18) by cα, such that

φ(Aγ) = −
∑
α

log(cα).

Then the gradient of φ is given by

∇φ = −
∑
α

(cα)−1∇cα,

∇cα = 2
(
(Aα3 γα)(Aα3 )T − (Aα1 γα)(Aα1 )T − (Aα2 γα)(Aα2 )T

)
.

Again differentiating with respect to γ yields the Hessian

∇2φ = −
∑
α

−(cα)−2∇cα(∇cα)T − (cα)−1∇2cα,

with ∇2cα given by

∇2cα = 2
(
Aα3 (Aα3 )T −Aα1 (Aα1 )T −Aα2 (Aα2 )T

)
.

5.3.4 N-D case

The extension of both the log-likelihood term (5.3.16) and the integral constraint
(5.3.15) to a grid with three or more dimensions is straightforward. However, the
positive semidefiniteness constraints of local Hessian matrices Hα (5.3.5) require a
different log-barrier function. As pointed out in Example 2.10, the barrier function
for the constraint Hα ∈ Sn+ is

ψ(Hα) = log detHα, dom ψ(Hα) = intSn+, (5.3.21)

such that
φ(γ) = −

∑
α

log detHα. (5.3.22)

Note that we dropped the selection and rotation matrix A, but directly relate entries
ofHα to entries in γ. But these are merely notational issues. Using Laplace expansion,
the determinant of a symmetric 3× 3 matrix can be calculated using the formula

detHα = Hα
11H

α
22H

α
33 +2Hα

12H
α
23H

α
13−Hα

11(Hα
23)2−Hα

22(α13)2−Hα
33(Hα

12)2. (5.3.23)
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Figure 5.3 - Denotes, for a three-dimensional grid, the neighbors of ξα that are required to
calculate all entries of Hα. Blue squares denote those neighbors that are required for off-diagonal
terms H12, H23 and H13, red lines those (including ξα itself) that are required for H11, H22 and
H33. The green layer denotes the 2-D case.

The entries of H are determined from γ using the same scheme as in (5.3.4) adapted
to the third dimension and visualized in Figure 5.3. Entries H11, H22 and H33 are
denoted by red lines and entries H12, H13 and H23 by blue squares. The green layer
denotes the 2-dimensional case.
Instead of 8 neighboring grid points, each grid point ξα now is related to 18

other grid points. This increases the bandwidth in ∇2φ. Moreover, the number of
grid points now grows cubically with the number of points per dimension. This
significantly increases the complexity of calculating the Newton step. We examine
this issue in Section 5.4.4.

Gradient and Hessian of φ(γ). Applying the chain rule, we obtain

∇φ = −
∑
α

1
detHα

∇ detHα

∇2φ = −
∑
α

− 1
(detHα)2∇ detHα(∇ detHα)T + 1

detHα
∇2 detHα

Calculating ∇ detHα and ∇2 detHα amounts to writing each entry Hα
ij as a linear

combination of entries in γ as visualized in Figure 5.3 and differentiating detHα

with respect to γ. Since these calculations are straightforward but rather tedious we
omit them here.

5.4 Experiments

The experimental section is concerned with two things: The first one is to demonstrate
soundness of our implementation for 2-D and 3-D. Secondly, it will outline numerical
properties of our implementation and compare them with results obtained from the
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R package LogConcDead of [CSS10]. Finally, we will obtain a log-concave density
estimate for the motivating example shown in Figure 5.1 that obeys the ordering
constraint.

5.4.1 Setup

If not otherwise stated, we choose a grid of size 300× 300 in accordance with [KM10],
which yielded satisfactory results without artifacts and very close to the results of
[CSS10] (see Section 5.4.3 for more details). We used values t = {1, 10, . . . , 108} as
parameters of the barrier method.

5.4.2 Student’s Criminals Data Set

In order to examine the validity of our implementation, we choose the Student’s
criminal data set [Stu08], that was also used in [KM10]. This bivariate data set
contains the heights and left middle finger lengths of 3000 British criminals. Fig-
ure 5.4 a) shows the output of our implementation whereas panel b) shows the output
of LogConcDead. Contour lines denote the same level sets. The plots show that the
two different approaches yield almost identical density estimates.

The latter more clearly exposes the polyhedral character of the solution as predicted
by Theorem 5.2. This originates from the fact, that the numerical approach proposed
by [CSS10] explicitly models g(x) as a polyhedral function, while the approach
proposed by [KM10] and implemented here does not rely on an explicit polyhedral
parametrisation of g and solves the dual problem using an interior point method.
The corresponding log-barrier function enforces strict convexity of the grid function
as defined above, and hence may introduce slight approximation errors in case of
solutions that are actually located at the boundary of the feasible set.

5.4.3 Influence of Grid and Sample Size

We pointed out before the different characteristics of the optimization approaches
of [CSS10] and [KM10]: While the former is sensitive to sample size the latter’s
performance is governed by the grid density. We will examine both aspects in this
section.
To test the influence of the grid size, we sampled once 250 data points from a

normal distribution with parameters

µ =
(

0
0

)
, Σ =

(
2 0.5

0.5 1

)
.

We examined different grid sizes and run times are reported in Figure 5.5 (a)3. For
comparison, the run time of Cule’s approach for 250 samples is 3.5 s, indicated by
the red line. The computational bottleneck in our implementation is (naturally) the
Cholesky decomposition necessary for the Newton step, which accounts for roughly
85% of total run time. Furthermore, we observed that with growing grid density

3Grid size denotes number of grid points along each dimension.
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Figure 5.4 - Log-concave density estimations for the Student’s criminal data set. Comparison
of (a) our implementation (interior-point-approach applied to the primal formulation (5.3.20))
with the results (b) obtained from the R package LogConcDead of Cule et al. The estimated
densities are almost the same.
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(a) Approach by Koenker et al.

0 500 1000 1500 2000 2500 3000

10
0

10
1

10
2

10
3

10
4

Sample Size

R
u

n
 T

im
e

 i
n

 s

(b) Approach by Cule et al.

Figure 5.5 - The influence of grid size and sample size on the run time. While the approach
by [KM10] is sensitive to the grid density (a), the one of [CSS10] is sensitive to sample size (b).
250 samples where used in the left plot. Red lines denote run times of the respective other
approach.

Newton’s method required more iterations. Our implementation needed 60 s for a
300 × 300 grid , and 15 s for a 200 × 200 grid. On the other hand, the grid-based
approach is insensitive to sample size, while the run time of Cule’s approach increases,
as shown in Panel (b) of Figure 5.5.
Figure 5.6 (a) shows that very low and very high grid sizes yields estimates with

reduced sample log-likelihood. For low densities this is mainly caused by boundary
effects and inaccurate interpolation of sample points. For very high densities this
is caused by ill-conditioned Hessian matrices, which in turn result in poor Newton
steps. Nonetheless, even for the “optimal“ grid size of 300× 300, there remains a
small gap to the log-likelihood of the estimate of [CSS10], caused by the distinct
ansatz of [KM10]. Confer also the discussion in Section 5.4.2.

5.4.4 Density Estimation in 3-D

In Section 5.3.4 we discussed the extension of the approach of [KM10] to the
n-dimensional case. Since there the number of grid points grows cubically, running
the approach with 300 grid points along each dimensions turned out too expansive.
Therefore, as a proof of concept, we sampled 250 data points from a 3-dimensional
normal distribution and obtained the log-concave density estimate using a 50×50×50
grid.
The result is shown in Figure 5.6 (b). Recall, that for the 3-D problem the

bandwidth of the Hessian ∇2π grows since the calculation of local Hessian matrices
Hα requires more neighbors of grid point ξα. This in turn makes the Cholesky
decomposition more expansive. Total run time was about 600 s while the run time of
a 2-D example with the same amount of grid points only requires 100 s. From the
viewpoint of our retina segmentation model this is not important though, since the
shape prior distributions are calculated offline.
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Figure 5.6 - (a) Sample log-likelihood for different grid sizes and the one returned by Cule’s
approach as a red line. See Section 5.4.3 for a discussion of that plot. (b) Log-concave density
estimate in 3-D on a 50× 50× 50 grid.

5.4.5 Log-Concave Shape Prior

In Figure 5.1 we showed a Gaussian density estimate for a set of data points that
represent boundary positions very close to the foveola, a region where the upper
retina layers can become very thin or even vanish. Figure 5.7 (a) again shows that
data set together with its Gaussian density estimate. In Panel (b) the log-concave
density estimate for the same data set can be seen. Contour lines in both plots
denote the same level sets. Since the log-concave density concentrates all probability
mass inside the convex hull of the data, it naturally has a higher density at almost all
data points. Furthermore, the log-concave density captures the skewed characteristic
of the data set in contrast to the normal density.

One problem remains: How to handle test samples which lie outside the convex hull
of the training samples. In the literature exist smoothed versions of the log-concave
estimator [CS13], but this would eliminate the inherent ordering property. A better
alternative would be to project any sample onto the polyhedral convex set convX,
which can be solved as a convex quadratic program, see [BV04, Sec. 8.1.1].

5.5 Discussion

We investigated non-parametric log-concave density estimation as a way of obtaining
density estimates that obey the ordering constraint inherent in many problems. We
examined the approach of [KM10] and outlined its optimization in detail. We also
discussed its extension to more than two dimensions. We yet did not integrate it
into our segmentation model, but that is rather straightforward and we discuss that
point in the next chapter.
While the approach seems applicable in the 2-D and 3-D case, four or more

dimensions don’t seem feasible. On the other hand the approach by [CSS10] becomes
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Figure 5.7 - Normal density versus a log-concave density estimate for positions of two neigh-
boring boundaries close to the fovea (same sample as in Figure 5.1). Colors in both plots denote
the same level sets. The right density obeys the ordering constraint inherent in the data set.

quickly intractable with increasing sample size. As a quick recap, Cule’s approach
relies on the “internal“ representation of the epigraph of g, that is on a set if points
(X,Y ) whose lower convex hull defines the graph of g. To obtain a polyhedral
representation of g they need to conduct a triangulation of (X,Y ) at each step,
whose simplicies then form the polyhedral function g ∈ G(X) (c.f. Equation (5.2.3)).

A first analysis of results produced by LogConcDead [CSS10] showed that only a
small amount of points in (X,Y ) are extreme points in the sense of [Roc70, Chap. 18],
i.e. zero-dimensional faces of conv(X,Y ). One example is given in Figure 5.8 for
250 sample points, out of which 20 are extreme points, colored blue. Hyperplanes,
corresponding to the 1-dimensional simplices connecting extreme points, are given
by dashed lines for better visualization. Only four of the 20 simplicies generate most
of g(x).
This suggests an approach relying on the “external“ representation of epi g in

terms of its faces, corresponding to the alternate definition of convexity in terms of a
set of hyperplanes supporting g

g(x1) ≥ g(x2) + pT (x2 − x1), p ∈ ∂g(x1), ∀x1, x2 ∈ convX, (5.5.1)

where the subdifferential ∂g(x) denotes the convex set of subgradients [Roc70,
Chap. 23] of g at x. For polyhedral functions a finite set of such hyperplanes
suffices to accurately represents g.
A class of functions that automatically satisfy these constraints are max-affine

functions, defined as
g(x) = max

k
ak + βTk x, (5.5.2)
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Figure 5.8 - Output of LogConcDead, the R package of [CSS10] for a 1-D sample of 250 points.
Blue points denote extreme points of the lower convex hull, which constitutes g(x). The dashed
lines denote hyperplanes that correspond to the 1-dimensional faces connecting those extreme
points. Although there exist 20 different hyperplanes, only four of them contribute significantly
to the shape of g(x) and f(x) respectively.

for a set of hyperplanes α = {a1, β1, . . . , aK , βK}. Some approaches for convex
regression exist [MB09, HD13], that fit max-affine functions by minimizing the
least-squares error

J(α) =
N∑
i=1

(
g(xi)− yi

)2
=
∑
i

(
max
k

(ak + βTk x
i)− yi

)2
. (5.5.3)

Although convex for each polyhedral region where the kth hyperplane is active,
globally this problem is non-convex. The same holds true for the log-concave density
estimation problem based on the same function class, that is

J(α) = 1
N

N∑
i=1

g(xi) +
∫
e−g(x)dx

= 1
N

N∑
i=1

max
k

(ak + βTk x
i) +

∫
e−maxk (ak+βT

k x)dx.

(5.5.4)

Working out a dedicated optimization method might provide a further promising di-
rection of research in order to exploit sparse representations of g in dimensions d > 3.
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6 Conclusion

Summary. In this thesis we proposed and evaluated a segmentation approach for
the retina segmentation task. By the application to various data sets we could demon-
strate its state-of-the-art performance. We furthermore showed how to make use of
the fact that we infer an approximation of the full posterior distribution. This made
it possible to establish an estimator for the quality of the predicted segmentations
as well as a detector for pathological scans which both showed promising results.
Finally, we published our revised code along with a documentation to serve as a
possible baseline for future segmentation approaches.
In the last chapter we outlined a possible extension of our approach, that is the

inclusion of local shape distributions that are adapted to the task of representing
ordering constraints. We demonstrated their applicability in the 2-D and 3-D case.
Their integration into the segmentation approach remains future work though (see
the discussion below).

Future work. We already outlined some possible directions for future work before.
Here we will express some additional thoughts.

• (Connectivity of discrete graphical models) Currently our segmentation model
uses a separate discrete graph for each image column, where only direct neigh-
bors are connected. Communication along image columns is governed by the
shape prior. Other forms of more complex discrete graphs are conceivable,
by either increasing the intra-column connectivity and/or by introducing con-
nectivity between image columns. An adaptive approach could be to increase
connectivity in regions with poor appearance information based e.g. on the
values in the precision matrix of the shape prior distribution, since these values
reflect conditional dependencies of boundary positions.

• (Utilizing log-concave shape prior information) Following Equation (3.1.9),
we defined that the prior terms of our discrete graphical models consist of
a local and a global component, both emerging from the Gaussian shape
prior distribution. We could alter that for the local terms over neighboring
boundaries, such that they would be given by the non-parametric log-concave
densities discussed in Chapter 5. This would induce the ordering constraint
in a more natural way. The modification would result in altered transition
matrices Ωk,j of the discrete graph qc, as the normalizing constant C̃ would
change, c.f. (3.2.15). It would not change however the calculation of the
sufficient statistics of qb and thus not alter the interplay between qc and qb.
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Index
F-measurable, 14
σ-algebra, 14

A-scan, 41
amacrine cells, 41

B-scan, 41
barrier method, 14
Bayes theorem, 17
Bayesian network, 27
belief propagation, 31
Bethe approximation, 38
Bethe variational problem, 39
bipolar cells, 41
blocked trail, 26
BN, see Bayesian network
Borel algebra, 15
Borel sets, 15

canonical parameters, 34
Cartesian product space, 25
cdf, see cumulative distribution function
central moment, 18
child (graph), 24
CI, see conditional independence
clique (graph), 24
co-parents, 28
complete graph, 24
conditional distribution, 17
conditional independences, 25
conjugate function, 13
continuous random variable, 16
convex cone, 11
convex function, 12
convex hull, 12
convex set, 11
covariance, 18
covariance matrix, 19

cumulant function, 34
cumulative distribution function, 16
cycle (graph), 24

d-seperation, 27
density function, 16
descendant (graph), 24
directed acyclic graph, 24
directed graph, 24
directed graphical model, 27
directed path (graph), 24
discrete random variable, 16

edge, directed (graph), 24
edge, undirected (graph), 24
edges, 24
entropy, 18
epigraph, 12
event, 14
expectation, 18
explaining away, 27
exponential family, 34
exponential parameters, 34

Fourier-domain OCT, 41
fovea, 43
foveola, 43

ganglion cells, 41
Gaussian Markov Random Field, 29
generalized inequality, 12
GMRF, see Gaussian Markov Random

Field
graph, 24
graphical lasso, 22

Hammersley-Clifford theorem, 29
horizontal cells, 41
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INDEX

I-equivalent, 27
I-map, 26
independence, 17
indicator function, 11

joint distribution, 17
joint distribution function, 17
junction tree algorithm, 31

KL, see Kullback-Leibler divergence
Kullback-Leibler divergence, 39

lasso regularization, 21
law of total probability, 18
likelihood function, 19
local polytope, 38
log partition function, 34
log-likelihood function, 20
logarithmic barrier functions, 13
loop (graph), 24
loopy belief propagation, 31

macula, 43
marginal distribution, 17
marginal polytope, 35
Markov blanket, 26
Markov Random Field, 29
maximal clique (graph), 24
maximum a posteriori, 20
maximum likelihood, 20
mean, 18
mean parameters, 35
measurable space, 14
measure, 14, 15
message, 33
minimal representation, 34
moment, 18
moral graph, 30
moralization, 30
MRF, see Markov Random Field
multivariate normal distribution, 18
mutual information, 39

neighbor (graph), 24
Newton’s method, 14
node (graph), 24

OCT, see Optical Coherence Tomography
open-angle glaucoma, 43
optic nerve, 43
Optical Coherence Tomography, 41
overcomplete representation, 34

parent (graph), 24
partition function, 29
path (graph), 24
pdf, see density function
perfect map, 26
photoreceptor cells, 41
pmf, see probability mass function
polyhedron, 12
polytope, 12
polytree, 24
potential function, 29
power set, 14
PPCA, see Probabilistic Principle Com-

ponent Analysis
precision, 18
precision matrix, 19
probabilistic graphical model, 25
probabilistic inference, 30
Probabilistic Principle Component Anal-

ysis, 22
probability distribution, 17
probability law, 15
probability mass function, 16
probability measure, 15
probability space, 15
proper cone, 11

random variable, 15
random vector, 17

sample space, 14
Shannon entropy, 18
singleton entropy, 39
standard deviation, 18
subgraph (graph), 24
sufficient statistics, 34
sum-product algorithm, 31

Tikhonov regularization, 21
Time-domain OCT, 41
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trail (graph), 24
tree, 24
treewidth, 31

undirected graph, 24
undirected graphical model, 29

variance, 18
variational inference, 34
vertex (graph), see node
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