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ABSTRACT 
 

Human papillomaviruses (HPV) are very common in the sexually active population and contribute to 

610,000 cancers per year occurring at different locations. The initial step of HPV-related 

carcinogenesis is the induction of transforming processes in the host cells mediated by the viral 

oncoproteins E6 and E7 that interfere with critical host cell pathways. The transforming infection is 

highlighted by overexpression of the tumor suppressor protein p16
INK4a

. Only a small number of 

precancerous lesions progress while the majority can be controlled by the host’s immune system and 

undergo regression. Progressing lesions under the immunoselective pressure seem to acquire 

characteristics that enable them to circumvent the host’s immune attack and promote disease 

progression. Immune evasion might be mediated by the immune microenvironment of the tumor as 

well as by tumor cell intrinsic features.  

The here presented thesis addressed different questions and strategies with regard to the role of the 

immune system in HPV-associated diseases and can be subdivided in two main parts: In the first part 

immunologic characteristics of precancerous lesions and cancers are investigated to gain insight into 

possible immune evasion mechanisms developed during disease progression. In the second part 

treatment options to positively influence the balance between immune evasion and anti-tumoral 

immune responses are evaluated. 

In the first part a) the immunohistochemical characterization of cervical precancers and cancers for 

infiltration with different T cell phenotypes revealed that generally increasing T cell densities occur 

late in carcinogenesis – and not yet with the onset of early transforming infection - and are 

accompanied by immunosuppressive regulatory T cells (Tregs). Mean cell densities for Tregs in the 

stroma significantly increased from 121.6 cells/mm
2
 (range: 24-286.8 cells/mm

2
) in low-grade lesions 

to 308.8 cells/mm
2
 (24-724.8 cells/mm

2
) in high-grade lesions and 673.6 cells/mm

2
 (52.8-1564.8 

cells/mm
2
) in cancer which points to their immunosuppressive role during carcinogenesis. The 

demonstrated large variances in T cell densities within one diagnostic category, however, point to a 

remarkable heterogeneity of the immune control with potential interesting prognostic implications. On 

keratinocytes themselves b) a selective loss for human leukocyte antigen (HLA) class I heavy chain A 

expression was observed in about 55% high-grade cervical intra-epithelial neoplasia (CIN) and 65% of 

cervical cancers. HLA class II de novo expression was found in 50% of low-grade CIN and in about 

85% of high-grade CIN and cervical cancers. These alterations could represent another fundamental 

mechanism contributing to immune evasion. A c) longitudinal analysis of immune infiltrates in 

patients treated with imiquimod, an immuno-modulatory Toll-like receptor (TLR) agonist, revealed 

that the patient’s local immune constitution might be decisive for a possible response to immune-

enhancing treatment strategies. Importantly, in patients responding to imiquimod immune cell 

densities increased during the treatment as epithelial CD3+ T cell counts (from 160.8 to 371.1 

cells/mm
2
) and CD8+ T cell counts (from 113.8 to 174.1 cells/mm

2
) demonstrated. The d) 

development and establishment of an automated cell quantification tool for high-throughput analysis 

allows the search for immune evasion markers and strategies to be continued in an objective, 

standardized and faster way.  

In consideration of the clinical efficacy of imiquimod and the observed stimulatory effects on the 

immune infiltrate density in part one of this thesis e) a new second generation TLR-agonist (TMX-

202) potentially having less side-effects than imiquimod was tested for the first time in an in vitro T 



      

cell stimulation model in part two of this thesis. Its potential to stimulate innate and adaptive immunity 

was demonstrated by an enhanced killing capacity of T cells that were stimulated with HPV-related 

antigens loaded on dendritic cells and then co-incubated with HPV16-positive CaSki cells. Based on 

the dense infiltration with Tregs observed in part one of the presented thesis the f) immune stimulating 

effects of Treg depletion was tested in an autologous in vitro model. In this regard, one major aim of 

the thesis was the generation of a new HPV-positive tumor cell line derived from an oropharyngeal 

squamous cell carcinoma that serves as model system for HPV-associated tumors. In combination with 

peripheral blood lymphocytes obtained from the same patient this autologous system allowed to 

address Treg depletion as an immunotherapeutic approach. The results demonstrated that this strategy 

might enhance the cell-mediated immune response against tumor cells and emphasize the role that this 

particular T cell phenotype is obviously playing in the carcinogenesis of HPV-associated tumors. 

Based on the results obtained in the first part of the thesis it is well conceivable that the combination 

of different immunologic markers contributes to the definition of a prognostic biomarker tool for 

progression and regression of precancerous lesions. Such a prognostic “immune score” has a high 

clinical relevance and allows risk-adapted treatment decisions minimizing the costs and long-term 

sequelae of surgical interventions. In particular the newly developed microscopy based method in this 

work allowing for the automated histological high-throughput quantification of infiltrating immune 

cells in cervical intraepithelial neoplasia provides an important methodical tool to realize this long 

term goal. The immuno-stimulating effects of the novel TLR7-agonist TMX-202 and Treg depletion 

demonstrated in the second part of this thesis by in vitro models indicate that immunomodulatory 

approaches could play an important role for the treatment of HPV-associated cancers in the future. In 

this regard, the established novel tumor cell line in combination with autologous immune cells 

provides a valuable in vitro model system for HPV-associated cancers that can be used to investigate 

further immunotherapeutic intervention and treatment strategies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



KURZFASSUNG 
 

Infektionen mit humanen Papillomviren (HPV) sind in der sexuell aktiven Bevölkerung weit verbreitet 

und führen zu bis zu 610,000 teilweise unterschiedlich lokalisierter Krebserkrankung pro Jahr. Der 

Beginn der HPV-assoziierten Karzinogenese stellt dabei die Induktion des Transformationsprozesses 

durch die viralen Onkoproteine E6 und E7 dar, die mit essentiellen Signaltransduktionswegen der 

Wirtszelle interagieren. Das transformierende Infektionsstadium korreliert hierbei mit der 

Überexpression des Tumorsuppressorproteins p16
INK4a

. Nur eine geringe Anzahl der daraus 

resultierenden präkanzerogenen Läsionen progrediert allerdings weiter zu einem Tumor während die 

Mehrheit solcher Läsionen unter Kontrolle des Immunsystems wieder regrediert. Progredierende 

Läsionen, die unter dem Selektionsdruck des Immunsystems stehen, scheinen dabei Charakteristika 

erworben zu haben um einen Angriff des Immunsystems zu umgehen und ermöglichen dadurch die 

Progression der Erkrankung. Entsprechende Immunevasionsstrategien könnten sowohl vom 

Immunmikromilieu um den entstehenden Tumor herum ausgehen als auch auf zellinherenten 

Tumoreigenschaften beruhen.  

Die vorliegende Dissertation beschäftigte sich mit verschiedenen Fragestellungen und verfolgt 

verschiedene Ansätze, die die Rolle des Immunsystems im Zusammenhang mit HPV-assoziierten 

Erkrankungen näher beleuchten sollen und ist dabei in zwei Hauptteile untergliedert: Teil eins 

beschäftigt sich mit der immunologischen Charakterisierung präkanzerogener Läsionen und invasiver 

Tumore um einen tieferen Einblick in mögliche Immunevasionsmechanismen bei voranschreitender 

Progredienz der Erkrankung zu gewinnen. In Teil zwei werden dagegen verschiedene 

Therapiemöglichkeiten evaluiert mit dem Ziel das Gleichgewicht zwischen Immunevasion und anti-

tumoraler Immunantwort positiv zu beeinflussen.  

Im ersten Teil dieser Arbeit konnte durch a) die immunhistochemische Charakterisierung von 

Infiltrationsraten verschiedener T-Zellphänotypen in Zervixkarzinomvorstufen und -tumoren gezeigt 

werden, dass ein Anstieg der T-Zelldichte relativ spät in der Tumorentstehung erfolgt - und nicht mit 

der Induktion des frühen Transformationsstadium korreliert - und dabei stets von einem Anstieg an 

immunsupprimierenden regulatorischen T-Zellen (Tregs) begleitet wird. Die Mittelwerte der 

gemessenen Zelldichten für Tregs im Stroma steigen dabei von 121.6 Zellen/mm
2
 (Varianz: 24-286.8 

Zellen/mm
2
) in niedriggradigen Läsionen über 308.8 Zellen/mm

2
 (24-724.8 Zellen/mm

2
) in 

hochgradigen Läsionen auf 673.6 Zellen/mm
2
 (52.8-1564.8 Zellen/mm

2
) in Tumoren an was auf ihre 

immunsupprimierende Rolle während der Karzinogenese hinweist. Die beobachteten großen 

Varianzen in den T-Zelldichten innerhalb einer diagnostischen Kategorie weisen dabei jedoch auf eine 

bemerkenswerte Heterogenität der Immunsystemkontrolle mit möglicherweise vielversprechenden 

prognostischen Implikationen hin. Auf Seite der sich verändernden Keratinozyten konnte weiterhin b) 

ein selektiver Ausfall der Expression der schweren Kette A des humanen Leukozytenantigens (HLA) 

Klasse I in 55% aller hochgradigen zervikalen intraepithelialen Neoplasien (CIN) und in 65% aller 

Zervixkarzinome festgestellt werden. HLA Klasse II de novo Expression konnte dagegen in 50% aller 

niedriggradigen CIN und in 85% aller hochgradigen CIN und Zervixkarzinomen beobachtet werden. 

Die gefundenen Veränderungen könnten dabei einen anderen grundlegenden Mechanismus darstellen, 

der zur Immunevasion der Tumorzelle beiträgt. Eine c) longitudinal ausgerichtete Analyse von 

Immuninfiltraten von Patienten die mit Imiquimod behandelt wurden - einem immunmodulatorischen 

Toll-Like-Rezeptor-(TLR)-Agonisten - ergab, dass die lokale Immunkonstitution des jeweiligen 



      

Patienten entscheidend für das mögliche Ansprechen auf immunstimulatorische 

Behandlungsstrategien ist. In Biopsien von Patientinnen, die auf eine Imiquimodbehandlung 

ansprachen konnten bemerkenswerterweise hohe Immunzelldichten im Behandlungszeitraum 

beobachtet werden, wie die gemittelten epithelialen CD3+ T-Zellzahlen (Anstieg von 160.8 auf 371.1 

Zellen/mm
2
) und CD8+ T-Zellzahlen (Anstieg von 160.8 auf 371.1 Zellen/mm

2
) belegen. Die d) 

Entwicklung und Etablierung eines automatisierten Zellquantifizierungssystems, das speziell zur 

Durchführung von Hochdurchsatzanalysen geeignet ist, ermöglicht die Suche nach 

Immunevasionsmarkern und -strategien in objektiverer, standardisierter und auf schnellere Art und 

Weise fortzusetzen.  

Unter Berücksichtigung der klinischen Wirksamkeit von Imiquimod und den ermittelten 

immunstimulatorischen Einfluss auf die Immuninfiltrationsraten in Teil eins wurde in Teil zwei dieser 

Arbeit e) ein TLR-Agonist der zweiten Generation (TMX-202), der potentiell weniger Nebenwirkung 

als Imiquimod aufweist, zum ersten Mal an einem in vitro T-Zellstimulationsmodell getestet. Das 

Potential von TMX-202 das angeborene und adaptive Immunsystem zu stimulieren wurde in diesem 

Zusammenhang an Hand gesteigerter zytotoxischer Aktivität von T-Zellen nachgewiesen. Diese 

wurden mit dendritischen Zellen stimuliert, die mit HPV-assoziierten Antigenen beladen waren und 

schließlich mit HPV16-positiven CaSki-Zellen koinkubiert. Aufbauend auf die in Teil eins der 

vorliegenden Arbeit nachgewiesenen hohen Infiltrationsdichten an Tregs wurde zusätzlich f) der 

immunstimulatorische Effekt einer Verminderung der Treg-Zellzahlen an einem autologen in vitro 

Modell getestet. In diesem Zusammenhang war ein Hauptziel dieser Dissertation die Generierung 

einer neuen HPV-positiven Tumorzelllinie aus einem Oropharynxkarzinom, die als Modell für HPV-

assoziierte Tumore dienen soll. In Kombination mit peripheren Lymphozyten, die aus dem Blut des 

gleichen Patienten gewonnen werden, sollte das so gewonnene autologe System die Untersuchung 

einer Treg-Depletion als einen Ansatz zur Immuntherapie ermöglichen. Die Ergebnisse zeigen, dass 

diese Strategie die zellvermittelte Immunantwort gegenüber Tumorzellen verbessern kann und hebt 

erneut die Rolle hervor, die dieser spezielle T-Zellphänotyp offensichtlich bei der Entstehung HPV-

assoziierter Tumor zukommt. Aufbauend auf den Ergebnissen der vorliegenden Dissertation ist es 

denkbar, dass eine Kombination verschiedener immunologischer Marker zur Definition eines 

prognostischen Biomarkersystems führt, das die Vorhersage der Progression und Regression 

präkanzerogener Läsionen ermöglicht. Ein solcher „Immunindex“ ist von hoher klinischer Relevanz 

und soll risikoangepasste Behandlungsentscheidungen ermöglichen, um somit die Kosten und 

Spätkomplikationen von chirurgischen Eingriffen zu minimieren. Insbesondere das in dieser Arbeit 

neu entwickelte Mikroskopie-basierte Verfahren zur automatischen histologischen 

Hochdurchsatzquantifizierung von Immuninfiltraten in zervikalen intraepithelialen Neoplasien sollte 

ein entscheidendes methodisches Werkzeug darstellen, um dieses Langzeitziel zu erreichen. Die in 

dieser Arbeit an in vitro Modellen für HPV-assoziierte Krebsarten gezeigten immunstimulierenden 

Effekte des neuartigen TLR7-Agonisten TMX-202 und der Treg-Depletion zeigen, dass 

immunmodulatorische Ansätze bei der Behandlung solcher Erkrankungen in Zukunft eine wichtige 

Rolle einnehmen könnten. Eine Kombination der neu generierten Tumorzelllinie mit autologen 

Immunzellen sollte in diesem Zusammenhang ein verlässliches in vitro Modellsystem für HPV-

assoziierte Krebsarten darstellen, das weiterführende Studien zu immuntherapeutischen Interventions- 

und Behandlungsstrategien ermöglicht.  
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1. 
 

INTRODUCTION 
 

“Do not follow where the path may lead. Go instead where there is no 
path and leave a trail.” (George Bernard Shaw) 
 

 

1.1  The discovery of human papillomaviruses in the  

 causation of cancer 

 
The knowledge of the relationship between the carcinogenesis of cervical tumors and sexually 

transmittable agents has already dated back to the 19
th
 century when a link between the sexual 

behavior and the risk for development of cervical cancers could be established. The Italian physician 

Domenico Antonio Rigoni-Stern analyzed the causes of death of Veronese women who had died 

between 1760 and 1839 and observed a significantly higher frequency of cervical cancers occurring in 

sexually active women, compared to virgins and nuns who were affected by cervical tumors only very 

rarely (GASPARINI and PANATTO, 2009).  

The awareness that cancers can be attributed to infectious agents raised in the beginning 20
th
 century. 

Peyton Rous, in 1911, demonstrated that cell-free extracts of chicken sarcoma can be transferred from 

one individual to another (ZUR HAUSEN, 2011).  

The history of the discovery of the human papillomavirus (HPV) as causing agent in the development 

of cervical cancer however started considerably later in the 1970s. At that time, Harald zur Hausen 

subverted the widespread opinion among scientists and clinicians that the sexually transmittable 

herpes simples virus type 2 (HSV-2) may be causally linked to carcinomas of the anogenital tract and 

proposed papillomaviruses to contribute to cervical carcinogenesis (ZUR HAUSEN et al., 1974). He 

proved that not HSV-2 but HPV DNA is detectable in the tumor tissue and hypothesized that the viral 

genome is persistently present and transcriptionally active in HPV-infected cancer cells (ZUR 

HAUSEN et al., 1975). 

His findings considerably contributed to a detailed description of the phylogenetic heterogeneity of the 

human papillomaviruses, to the identification of the major HPV types associated with cancer and the 

characterization of the oncogenic potential of the HPV proteins E6 and E7. His work awoke the 

general interest of the scientific community on viruses as cancer causing agents in general and on HPV 

in particular leading to the opening of a completely new research area which aims at understanding of 

the molecular mechanisms and, in a second step, combating HPV-related diseases. Having the courage 

to leave the path chosen by the research community of his time and thus paving the way for the 

following generations of researchers to participate in the battle against cancer caused by one of the 

most common sexually transmittable agents he was rewarded the Nobel Prize in 2008.  
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1.2  Characteristics and life cycle of human papillomaviruses 

Human papillomaviruses are non-enveloped DNA viruses containing one single-stranded circular 

DNA molecule with a size of about 8000 base pairs. They belong to the family of papillomaviridae 

which can further be subdivided into five genera (Alpha-, Beta-, Gamma-, Mu- and 

Nupapillomaviruses) (DOORBAR, 2006). The viral genome (Figure 1.1) comprises eight open 

reading frames (ORF) covering three distinct functional parts, namely the early genes’ region (E1-E7), 

the late genes (L1 and L2) and a non-coding part called long control region (LCR) containing cis-

regulatory elements (ZHENG and BAKER, 2006). HPV is characterized by an icosahedral capsid of a 

diameter of about 55 nm and consisting of 72 pentameric subunits, the capsomers. The capsomers are 

made of two structural proteins, the late proteins L1 and L2. 

 

 

FIGURE 1.1  THE HPV16 GENOME. The genome comprising 7904 bp is represented by a black circle with the early 

(p97) and the late (p670) promoters marked by arrows. The six early ORFs (E1-E7) are expressed from 

either p97 or p670. The late ORFs (L1 and L2) are represented as yellow structures and the long control 

region (enlarged and visualized as black line) contains the E2-binding sites, the binding sites for E1 and 

the TATA element of the p97 promoter. Adapted from (DOORBAR, 2006). 

Human papillomaviruses are characterized by a strong tropism for epithelial cells and the mucosa. The 

virus’ life cycle is initiated with infection of keratinocytes of the basal squamous epithelium which 

requires either microlesions as they can be found for example in the cervical epithelium or other 

anatomical structures like the characteristic tonsillar crypt epithelium. HPV infection therefore 

exclusively affects undifferentiated epithelial stem cells as cell division and keratinocyte 

differentiation are the prerequisite for the completion of the virus’ life cycle and replication (CHOW et 

al., 2010). The infectivity is predominantly mediated by the viral proteins L1, but also L2 capsid 

proteins (BUCK et al., 2013) enabling the virus to bind to the host cells which is followed by uptake 

of the virus via clathrin-based endocytosis. The late proteins also seem to be involved in transferring 

the viral DNA to the nucleus following disassembling in the late endosomes and lysosomes 

(DOORBAR, 2006). Initially, following infection the keratinocytes undergo lateral cell divisions and 

thus build a reservoir of stem cells harboring the virus (NGUYEN et al., 2014). Viral DNA replication 
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in this phase is tightly synchronized with the amplification of the host cell DNA during S-phase. 

During this latent phase of the infection the early proteins E1 and E2 are expressed which fulfill 

different functions during early infection (see also Table 1.1 for HPV protein functions). In addition to 

the role they play in the replication of the viral genome, they assure that the viral DNA is maintained 

as an episome at low copy numbers of about 10-200 copies. The viral early proteins E1 and E2 seem 

to prevent the integration of the viral DNA into the host’s genome as well as they assure the correct 

viral genome segregation during stem cell divisions (MCBRIDE, 2013). E2 initiates the amplification 

of the viral DNA by binding to the HPV upstream regulatory region and by forming together with E1 

that is recruited to this non-coding region the E1/E2 initiation complex. The E1 protein functions as a 

DNA helicase, and recruits several other, cellular, proteins to the viral origin of replication such as 

RPA (replication protein A) and DNA polymerase α primase (CONGER et al., 1999; DOORBAR, 

2006). Furthermore E2 controls the early promoter of high-risk HPV types, called p97 in HPV16, and 

thus strictly regulates the early proteins, which is of special importance regarding the expression rates 

of the viral oncogenes E6 and E7 expressed at low levels only (DOORBAR, 2005).  

With the migration of virally infected basal stem cells into the suprabasal cell layer of the epithelium 

the cells quit the cell cycle in order to undergo terminal differentiation. This initiates the productive 

phase of the viral infection characterized by activation of the viral genes in parallel to the 

differentiation program of the keratinocytes.  

 
 

FIGURE 1.2 THE HPV LIFE CYCLE. The cell layers of the mucosal epithelium are indicated on the left. Cells 

expressing cell cycle markers (red) that occur in the suprabasal cell layer are characterized by viral 

oncogene expression (E6 and E7) (green cells). The activation of p670 in E6 and E7 expressing cells of 

the upper epithelium leads to expression of viral proteins required for viral genome replication. The 

successive viral protein expression stages indicated by arrows represent distinct steps of the viral life 

cycle directly influencing also the host cell: low-levels of E1, E2, E4 and E5 (light green) accompanied 

by viral oncogene expression (E6 and E7) leads to induction of cell proliferation. Elevation of the proteins 

involved in replication (dark green) allows increased viral genome amplification. L1 and L2 (yellow) are 

expressed in the upper epithelium, where viral genome is packaged into infectious particles. Here, E4 also 

is expressed and probably contributes to the viral release. Adapted from (DOORBAR, 2006). 

 

As suprabasal keratinocytes that are terminally differentiated undergo cell cycle arrest, the virus has to 

reactivate S-phase of the host cells to complete its life cycle. The viral oncogenes E6 and E7 are 

required for the reactivation of the host replication cycle. However, their expression is still under 

control and locally restricted to a few cells in the lower part of the epithelium. These cells assure the 
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viral replication to be maintained and infectious virions to be produced once the keratinocytes quit the 

basal cell layer and migrate towards suprabasal layers (DOORBAR, 2006). The mode of action of the 

viral oncoproteins acting in the host cells are explained in more detail in section 1.3.2. In the mid and 

upper layers of the epithelium, the viral DNA is replicated, the amplified genome is packed into viral 

capsids and infectious virions are finally released. These processes are controlled by the late promoter 

which is dependent on the differentiation program and activated with the migration of keratinocytes 

through the epithelium. Its activation leads to increased expression rates of viral early proteins E1, E2, 

E4 and E5 which are involved in HPV DNA replication (Figure 1.2). However, E6 and E7 expression 

levels still are tightly controlled by the repressive functions of E2 on the early viral promoter (HAMID 

et al., 2009).  

 

viral 

protein 
function in the viral life cycle activities in the host cell 

Early proteins:  

E1  viral genome replication DNA-binding activity, helicase activity, ATPase 

E2  
viral gene transcription, viral genome 

replication, viral genome maintenance 

transactivation/transrepression, DNA-binding 

activity, DNA segregation in mitotic cell 

E4 
viral genome replication (enhanced 

amplification)  

destruction of keratin network, induction of G2M 

arrest of cell cycle 

E5 
possibly involved in proliferation and/or 

inhibition of apoptosis 
interference with cellular signaling pathway 

E6  

reactivation of cellular replication 

mechanisms, proliferation, immortalization, 

inhibition of apoptosis, viral genome 

maintenance  

interaction with various cellular proteins, e.g. p53, 

c-Myc, Bak, Bax, PDZ domain  

E7 

reactivation of cellular replication 

mechanisms, proliferation, genomic 

instability, inhibition of apoptosis, viral 

genome maintenance  

interaction with various cellular proteins, e.g. pRB, 

HDAC, E2F6, p21, p27, CDK/cyclin 

Late proteins:  

L1  major capsid protein  

L2  minor capsid protein   

TABLE 1.1 THE HPV16 PROTEIN FUNCTIONS. Depicted are the early and late proteins, their main functions in 

the viral life cycle and their activities in the host cell. Adapted from (KAJITANI et al., 2012).  

The viral proteins E4 and E5 also seem to be involved in viral DNA replication. E5 is involved in 

EGF-mediated signaling in order to maintain an environment that is favorable for replicative 

processes. The viral E4 protein expression levels increase during genome amplification and induce G2 

cell cycle arrest of host keratinocytes and thus prevents cell proliferation by counteracting E7 effects; 

it enhances viral genome amplification and thus is likely to contribute to an increased viral synthesis 

rate. Its interaction with and destabilizing effects on the keratin network of host cells implies that E4 

could also be involved in viral release (reviewed in DOORBAR, 2013).  

Finally, the structural L1 and L2 proteins necessary for capsid formation and packaging of the viral 

DNA are expressed and accumulate during viral replication. Following assembly – in which E2 is also 

involved by binding viral DNA for loading - of capsids containing one copy of the HPV DNA the 
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infectious particles are released from the fully differentiated cells that reach the outer surface of the 

squamous cell epithelium (DOORBAR, 2006).  

The viral gene expression pattern is tightly associated with the biological infection stage. The above 

described life cycle represents the productive or permissive infection stage characterized by viral DNA 

replication and release of newly assembled virions. In case of persistence of the HPV infection, the 

productive live cycle may be quit and the proliferation of terminally differentiated epithelial cells in 

the lower third of the epithelium can be induced (DOORBAR, 2005).  

This shift occurs under the influence of deregulated expression of E6 and E7 oncoproteins leading to 

abolishment of cell cycle arrest while DNA damage responses are inhibited. These processes induce 

the transforming infection stage which will be described in more detail in chapter 1.3.2.  

 

1.3  HPV-associated cancers  

More than 100 different HPV genotypes have been described so far (BERNARD, 2005). Those that 

are the clinically most relevant ones belong to the genera of alpha-papillomaviruses and cause not only 

cancerous precursor lesions and cancer but also genital warts (DE VILLIERS et al., 2004). 

Furthermore, papillomaviruses are classified into two groups depending on their potential to cause 

cancer: low-risk types leading to ano-genital warts or common skin warts whereas the so called high-

risk types - representing only a handful of all genotypes described so far - are involved in cancer 

development. Among those the high-risk types HPV16 and HPV18 are the most prevalent ones with 

their DNA being detectable in around 80% of cervical cancers (SCHIFFMAN et al., 2007). The most 

prevalent low-risk HPV types are HPV11 and HPV6 that cause the vast majority of genital warts 

(STEBEN and GARLAND, 2014).  

This chapter deals with the contribution of HPV to tumor development and the mechanisms involved 

in the establishment of precancerous lesions and their progression towards invasive disease.  

 

1.3.1 Prevalence, incidence and mortality of HPV-associated diseases 

 

HPV infections are common within the sexual active population and thus considerably contribute to 

the global health burden: the prevalence in the younger population aged 15 to 25 years is very high 

and an individual’s life time risk to enter in contact with these viruses and get infected is about 80% 

(DUNNE et al., 2007). Although the majority of HPV infections are cleared within two years – the 

mean clearance time even is 5 months - remaining without any consequences, more than 5% of 

cancers appearing worldwide are related to HPV infections that persisted (DE MARTEL et al., 2012). 

Incidences for different HPV-associated diseases vary between women and men (Figure 1.3).  

Cervical cancer is the fourth most common cancer in women following breast cancer, colorectal 

cancer and lung cancer in the latest GLOBOCAN statistics. Nearly 530,000 new cases of cervical 

cancer are diagnosed each year (2012), the main burden however occurs in developing countries that 

show a 10-fold higher incidence compared with industrial nations. Here, cervical cancer represents 

almost 12% of all female cancers and it still remains the most common cancer in women in Eastern 

and Middle Africa (FERLAY et al., 2010). This difference is explained by lacking screening programs 

and early detection of precancerous stages and cervical cancer. The pap-test, developed in the 1930s 
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by George Papanicolaou, allows the early detection and treatment of precancerous stages and since its 

introduction has led to a significant decline of the cervical cancer incidence in industry nations (GIBB 

and MARTENS, 2011). In 2012, an estimated number of around 270 000 women died from cervical 

cancer worldwide. This makes a percentage of 7.5% of all female cancer deaths. Here again, the 

majority, more than 85% of all deaths related to cervical cancer, occur in low- or middle-income 

countries (FERLAY et al., 2010).  

Even though cervical cancer is the best characterized among the HPV-associated diseases HPV 

infection can also occur on other epithelial or mucosal sites and can cause several other cancer types. 

While virtually all cancers of the cervix uteri are attributable to precedent infection with human 

papillomaviruses, persistent HPV infection also causes precancerous lesions and cancers at other ano-

genital sites and contributes to a proportion of vulvar, vaginal, penile and anal cancers (PARKIN and 

BRAY, 2006).  

 

 

FIGURE 1.3  CONTRIBUTION OF HPV TO THE HEALTH BURDEN. Estimated incidence rates of HPV-associated 

diseases (related to HPV6, 11, 16, 18) in women and men in Europe. Adapted from (STANLEY, 2012b). 

The contribution of HPV in the carcinogenesis of a proportion of head and neck squamous cell 

carcinoma (HNSCC) today is widely accepted (GILLISON et al., 2000). Especially, the oropharyngeal 

tract can be concerned by HPV infection and recent studies revealed an increasing incidence of HPV-

associated cancers of the oropharynx (OPC), the pharyngeal region located at the back of the throat, 

and here primarily the tonsils, the base of the tongue and the soft palate are affected (CHATURVEDI 

et al., 2011). Also here HPV16 is the most prevalent type with about 90% of HPV-positive carcinomas 

located in the oropharynx being positive for HPV16 DNA. Also in the other ano-genital sites, except 

the cervix uteri where HPV18 plays a non-negligible role, the vast majority of cancers are associated 

with HPV16 infections (BOSCOLO-RIZZO et al., 2013). The incidence rate of head and neck 

squamous cell carcinomas equals that of cervical cancer with about 550 000 new HNSCC cases per 

year worldwide making it the 7
th
 most common cancer in men. Thereof around 85,000 cases represent 

oropharyngeal cancers. The mortality rate is higher than in cervical cancer with around 305,000 deaths 

per year related to HNSCC. However, the etiological heterogeneity – with tobacco and alcohol being 

the major risk factors for HNSCC – makes it difficult to estimate to which extent HPV contributes to 

oropharyngeal cancers (GILLISON et al., 2014). Estimates for HPV-association among oropharyngeal 

cancers are higher for industrial nations (60-70% for the United States) which have experienced an 

increase in incidence for oropharyngeal cancer in the last two decades, whereas less than 10% of OPCs 

are believed to be caused by HPV in developing regions (CHATURVEDI et al., 2013). Worldwide, 
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these data lead to an estimated proportion of about 25% of OPCs attributable to HPV infection 

following an IARC review published in 2012 (CHATURVEDI et al., 2013).  

 

Distinct HPV types were found to play a role in the autosomal recessive hereditary skin disorder 

epidermodysplasia verruciformis which is characterized by a higher susceptibility for persistent 

infections and development of benign lesions and also malignancies of the skin (HARWOOD et al., 

2004). HPV also contributes to non-melanoma skin cancer (NMSCC) (reviewed in MOLHO-

PESSACH and LOTEM, 2007 and SMOLA, 2014) and might be of higher relevance in 

immunosuppressed individuals (REUSCHENBACH et al., 2011).  

The mechanisms of HPV-induced carcinogenesis in the following chapters will be explained by means 

of the well-studied cervical cancer and its precursor lesions, the so called cervical intraepithelial 

neoplasia (CIN). The underlying tumorigenic mechanisms, however, are the same in other HPV-

associated cancers.  

 

1.3.2  Viral oncogene overexpression and the transforming infection stage 

A small percentage of HPV infections – those that are not cleared and persist over months – finally 

shift from permissive/productive to transforming infection which is accompanied by a massively 

deregulated expression of the E6 and E7 oncoproteins. The affected cells that had undergone cell cycle 

arrest are driven continuously into S-phase and finally shift from the production of viral infectious 

agents to an intensively supported proliferation (DOORBAR, 2005). The deregulated expression of the 

E6 and E7 oncoproteins therefore can be considered as the prerequisite for the establishment of 

precancerous lesions and the development of invasive cancer. The transformation zone of the cervix is 

preferentially affected by HPV-induced neoplasia. Here, the cells of the stratified squamous 

epithelium and the columnar endocervical cells converge, for which reason this area is also called the 

squamocolumnar junction. Under hormonal influence the transition zone during the female life cycle 

is subject to substantial anatomical changes and rebuilding processes with changing proportions of 

columnar and stratified epithelium (BURD, 2003).  

 

 

FIGURE 1.4  TRANSFORMING INFECTION IS INDUCED BY FUNDAMENTAL CHANGES IN THE VIRAL 

GENE EXPRESSION PATTERN. While the majority of low-grade lesions (CIN1) represent permissive 

infections with the underlying viral gene expression patterns described above, high-grade lesions (CIN 2 

and CIN3) are characterized by an increasing proportion of cells with deregulated E7 expression which is 

accompanied by decreased expression of the early proteins involved in viral replication. This may be 

accompanied by the integration of the viral DNA into the host cell genome. In CIN3 and cervical cancers 

are characterized by more and more decreased or absent viral replication and increased E7 expression. 

Adapted from (DOORBAR, 2006). 
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Recently, a cell population retaining embryonic characteristics within the junction has been identified 

that is speculated to be particularly susceptible to HPV-induced carcinogenesis (HERFS et al., 2012). 

The occurrence of HPV-associated HNSCC at oropharyngeal sites, specifically the tonsils, could also 

be explained by the histologic characteristics of the lymphoepithelium of the tonsillar crypts. Here, the 

so called reticulated epithelium seems to be the preferred site for HPV infections (WESTRA, 2012).  

The loss of the repressive effects of viral E2 on the early promoter p97 is considered to be the reason 

for the deregulated oncogene expression and leads to a massive up-regulation of E6 and E7 expression 

rates in higher lesion grade (Figure 1.4). Different events are discussed as underlying mechanisms for 

the loss of E2 function. One is the integration of the viral episome into the host’s genome which 

disrupts the gene locus for E2 (VERNON et al., 1997). However, also cells with unintegrated, 

episomal viral DNA show E6 and E7 overexpression, a finding for which other, epigenetic 

mechanisms such as methylation of the E2-binding sites changing the binding affinities and thus the 

transcription rates might be responsible (CHAIWONGKOT et al., 2013).  

The oncoproteins E6 and E7, once they are expressed, perfectly act together, complementing the 

functions of each other, to re-induce proliferation in terminally differentiated cells and to circumvent 

apoptosis at the same time.  

 

 

FIGURE 1.5  HPV16 E7 CIRCUMVENTS ONCOGENIC STRESS INDUCED CELL CYLCE ARREST BY 

TARGETING pRB FOR DEGRADATION. A) In normal cells CDK4/6 is negatively regulated by 

p16INK4a. If absent CDK4/6 is activated by binding of cyclin D and phosphorylates pRB which is 

degraded. Loss of the suppressive subunit pRB activates the E2F transcription factor which mediates S-

phase entry. B) Oncogenic stress induces KDM6B expression and increased p16INK4a levels which 

inhibits CDK4/6 activity and phosphorylation of pRB, resulting in G1 cell cycle arrest and senescence. C) 

HPV E7 targets pRB for degradation and circumvents growth arrest. Adapted from (MCLAUGHLIN-

DRUBIN and MUNGER, 2013).  

Cell cycle progression, the transition from G1-phase to S-phase in dividing cells, is tightly regulated 

by the complex built of the cyclin-dependent kinase 4 (CDK4) and cyclin D. Under normal 

circumstances binding of the regulatory subunit cyclin D to CDK4 activates the complex and allows 

CDK4 to phosphorylate pRB which then dissociates from the E2F transcription factor. E2F migrates 

to the nucleus where it induces the transcription of genes necessary for cell cycle progression, such as 

cyclins A and E. In normal, non-dysplastic cells, the cyclin-dependent kinase inhibitor p16
INK4a

 

negatively regulates the kinase activity of CDK4 and CDK6 by binding to them and inhibiting the 
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formation of active complexes with cyclin D. This prevents hyperphosphorylation and inactivation of 

pRB and the release of E2F transcription factors. Consequently, cells expressing p16
INK4a

 under 

normal conditions are retained in the G1 phase and do not enter S-phase (Figure 1.5) 

(MCLAUGHLIN-DRUBIN and MUNGER, 2013). 

Due to the potency to drive host cells into S-phase which is crucial for the induction of the 

transforming infection stage, E7 directly contributes to carcinogenesis (reviewed in MCLAUGHLIN-

DRUBIN and MUNGER, 2009). E7 is assumed to bind to the retinoblastoma (pRB) tumor suppressor 

thus interfering with the pRB pathway and abrogating the host’s capacities to control cell cycle 

progression in the way similar to how other viruses achieve the same goal (JONES and WELLS, 

2006). Binding of the E7 oncoprotein to pRB leads to the disruption of complexes built of pRB and 

transcription factors belonging to the E2F family (Figure 1.5). Although no external growth stimuli are 

present, E2F is released from pRB and activates other host cell proteins involved in DNA replication 

such as the cyclins A and E (DOORBAR, 2006). Furthermore E7 was demonstrated to interact with 

other proteins of the host’s cell cycle regulation machinery, among others the activator protein 1(AP1) 

transcription complex (ANTINORE et al., 1996), histone deacetylases (LONGWORTH et al., 2005) 

and also the cyclin-dependent kinase inhibitors p21 and p27 (NOYA et al., 2001) are concerned.  

Interestingly, during natural infection E7 does not always induce cell cycle progression in 

differentiated keratinocytes. In some cells which express high levels of p21 and p27 the CDKs seem to 

be resistant to oncoprotein effects as here E7 builds inactive complexes with cyclin E. Consequently, 

mitosis is induced only in cells that are characterized by low p21 and p27 levels or by E7 levels that 

are high enough to overcome the cycle arrest (DOORBAR, 2006).  

 

 

FIGURE 1.6 HPV16 E6 INTERFERES WITH THE P53 PATHWAY. Binding of E6 to p53 promotes its degradation 

and thus prevents cell cycle arrest and apoptosis. Adapted from (YIM and PARK, 2005). 

The interference of E7 with the pRB pathway is complemented by E6 which abolishes the p53-

mediated apoptotic signaling. Modulation of apoptotic pathways is a common and effective 

mechanism known from a number of oncogenic viruses and contributes to malignant progression 

(reviewed in FUENTES-GONZALEZ et al., 2013)). During transforming HPV infections, the cell-

cycle entry of upper epithelial cells normally should lead to apoptosis mediated by ARF (ADP 
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ribosylation factor). However, under the influence of the viral oncoprotein E6 binding to E6AP (E6-

associated protein) p53 is ubiquitinylated and degraded (DOORBAR, 2006). The interplay of E7 

together with E6 impairing different host cell pathways leads to deregulated cell proliferation while 

the central apoptotic pathway is impaired. Apart from the interaction with p53 the viral E6 protein is 

also reported to target telomerase and different PDZ proteins involved in cell signaling and other 

cellular processes and thereby further supports transforming processes within the host cells 

(GANGULY and PARIHAR, 2009; WISE-DRAPER and WELLS, 2008). 

The inhibition of central DNA repair mechanisms at the same time when host cells undergo 

deregulated DNA synthesis has massive further consequences on genome integrity and provokes 

additional genomic alterations (DUENSING and MUNGER, 2002).  

 

In addition to the well-established mode of action of the viral oncoproteins E6 and E7 also E5 is 

discussed as another protein being involved in the development of cancers (reviewed in MIGHTY and 

LAIMINS, 2014)). One possible mechanism might be its ability to also inhibit ubiquitination and 

subsequent degradation of Bax and thereby preventing hydrogen-peroxide induced apoptosis (OH et 

al., 2010).  

 

1.3.3  A biomarker for transforming infections: p16
INK4a

 overexpression  

 

The expression of cyclin-dependent kinase inhibitor p16
INK4a

 is induced in aging cells and therefore a 

sign of senescence accompanied by cell cycle arrest and chromatin condensation. Its ability to prevent 

cells from further proliferation is of special interest in premalignant and malignant cells that have 

acquired genomic damages. In these cells p16
INK4a

 acts as a tumor suppressor preventing cell cycle 

progression and further accumulation of DNA damages. Due to the biological importance of the CDK 

inhibitor there seems to be an evolutionary pressure for loss of p16
INK4a

 gene function in neoplastic 

context. Indeed, many cancers of different sites show evidence of a functional loss of p16
INK4a

 by 

epigenetic modifications, deletions or point mutations. (LIGGETT and SIDRANSKY, 1998; ROCCO 

and SIDRANSKY, 2001).  

In cervical intraepithelial neoplasia and carcinomas however, p16
INK4a

 is overexpressed. This can be 

directly linked to the deregulated oncogene expression and therefore p16
INK4a

 represents a well-

established and recognized marker for transforming HPV infections (VON KNEBEL DOEBERITZ, 

2002). In this context its biological function as growth arrest inducing protein is abolished by the viral 

oncoprotein E7 that inactivates the down-stream inhibitory signals of p16
INK4a

. The overexpression of 

the viral protein E7 in dysplastic cells with underlying transforming HPV infection causes oncogenic 

stress to the host cell. This leads to an epigenetic remodeling particularly of the CDKN2a 

(p16
INK4a

/ARF) gene locus and a substantially increased p16
INK4a

 expression.  

Histone lysine methylation is one epigenetic mechanism involved in transcriptional activation and 

repression and for this reason plays a non-negligible role in cell cycle regulations. The enzymes 

involved in this epigenetic chromatin remodeling are histone lysine methyltransferases (KMTs) and 

demethylases (KDMs) that influence lysine methylation pattern of histones. The trimethylation mark 

at lysine 27 of histone H3 (H3K27me3) results in epigenetic silencing of the gene. The histone 

demethylases KDM6A (UTX) and KDM6B (JMJD3) however are able to remove the repressive 

methylation pattern and therefore are involved in transcriptional activation. The expression of the viral 
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E7 leads to oncogene induced stress (OIS) and transcriptional induction of histone demethylases 

KDM6A and KDM6B which remove the H3K27me3 mark. This results in epigenetic reprogramming 

by changing the levels of histone methylation of the p16IN4a/ARF gene locus and enhanced p16
INK4a

 

expression (MCLAUGHLIN-DRUBIN et al., 2011).  

 

Cells in the transforming infection stage however are not subject to p16
INK4a

 mediated cell cycle arrest 

and the cells continue to proliferate in presence of the overexpressed cyclin-dependent kinase 

inhibitor. This is explained by the interference of E7 with p16
INK4a

 downstream targets, namely pRB 

which is degraded under the influence of E7 activating the CUL2 pathway (HUH et al., 2007).  

In this context, p16
INK4a

 therefore cannot be considered as a senescence marker anymore and remains 

without mechanistic relevance. It is rather a marker for the transforming processes ongoing within the 

virally infected host cells. The immunohistochemical staining pattern in these cases shifts from patchy 

in case of real senescence to strong and diffuse in dysplastic lesions (KLAES et al., 2001). 

 

 

FIGURE 1.7 EXAMPLES OF p16INK4a IMMUNOHISTOCHEMISTRY ON CERVICAL TISSUE SAMPLES: 

 shown are representative examples of A) normal epithelium negative for p16INK4a, B) cervical 

intraepithelial neoplasia (CIN3) with p16INK4a-positive epithelium and C) cervical carcinoma with strong 

p16INK4a staining. Details of the epithelium are shown on right side.  

 

Recently published data (MCLAUGHLIN-DRUBIN et al., 2013) on p16
INK4a

 functions demonstrated 

that p16
INK4a

 overexpression is not only a bystander effect of oncogenic stress induced by HPV E7 

protein and not a consequence of pRB inactivation by the viral oncogene, but is elementary to 

maintain the neoplastic phenotype and the continuous growth of cells with underlying transforming 

HPV infections. Dysplastic cells under the influence of viral E7 become dependent on KDM6B and 

p16
INK4a

 expression for survival.  
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1.3.4 Histomorphological classification of cervical precancers 

In histomorphology, HPV-induced lesions are subdivided in three distinct progression steps and 

described by successive grade of cervical intraepithelial neoplasia (CIN) depending on the extent of 

morphological aberrations (MARTIN and O'LEARY, 2011). With increasing dysplastic cellular 

alterations beginning in the basal and suprabasal layers and eventually reaching throughout the 

complete epithelium the lesions are termed with increasing lesion grades from 1 to 3. CIN1 usually is 

described by the occurrence of so called koilocytes, indicating that viral replication is ongoing in the 

suprabasal layers of the epithelium. The altered cellular morphology concerns less than one third of 

the thickness of the epithelium. Lesions characterized as CIN1 are not yet considered as 

premalignancy in the narrower sense and therefore usually are not treated. With persistence and 

progressing disease cells with more severe dysplastic cellular alteration expand and may grow beyond 

the lower third of the thickness of the affected squamous epithelium and these lesions are named 

CIN2. The lesions that grow further and even beyond two thirds of the epithelium are referred to as 

CIN3 lesions (DARRAGH et al., 2013; RICHART, 1973). 

The Histomorphological defined CIN grades cannot be translated unequivocally into the biological 

infection stages. CIN1 and a part of CIN2 lesions retain the capacity to undergo the normal squamous 

epithelial differentiation and thus for viral replication and represent the permissive (productive) 

infections. However, the control of the viral oncogene expression in basal and suprabasal cells may 

have already been lost in a part of CIN1. The vast majority of CIN2 lesions and virtually all CIN3 

lesions are in the advanced transforming infection stage. Due to this discrepancy markers are needed 

to highlight the biological infection stage in biopsies. As it is directly link to oncogene activity 

p16
INK4a

 overexpression represents a reliable biomarker to identify lesions that have quit productive 

infection and entered the transforming infection stage independently of their histomorphological 

appearance (BERGERON et al., 2014; VON KNEBEL DOEBERITZ et al., 2012).  

 

 

1.3.5 HPV infection stages interpreted as a progression model  

 of cervical cancer 

 

The cervical carcinogenesis can be subdivided in clearly defined successive steps (Figure 1.8). Latent 

infections (step 1), during which the viral DNA has been replicated yet, usually remain clinically 

innocuous and are characterized by basal infected keratinocytes that divide continuously to establish a 

reservoir of cells harboring the episomal viral DNA. Permissive or productive infections (step 2) are 

characterized by viral replication cycles which become induced in suprabasal differentiating epithelial 

cells. This stage is accompanied by the occurrence of visible low-grade lesions. Here, the viral 

proteins are expressed - with E6 and E7 under transcriptional control -, viral DNA is synthesized and 

finally viral particles are released. In case of persistent HPV infection the lesions may progress 

towards the transforming infection stage (step 3) which is accompanied by a fundamental shift in the 

viral gene expression pattern with E6 and E7 oncogene overexpression as described in chapter 1.3.2. 
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This shift is the key event for the development of high-grade precancerous lesions and cancers with 

critical host cell pathways being reprogrammed to overcome the cell cycle arrest of fully differentiated 

cells and promote the proliferation of these keratinocytes.  

With regard to the histomorphological classification precancerous stages are graded from CIN1 lesions 

to CIN2 and CIN3 depending on the severity and the extent of the affected epithelium as described in 

chapter 1.3.5. Thereby CIN1 overlaps with both biological categories with the majority of them 

representing permissive infections and a smaller proportion of them being in the transforming 

infection stage.  

As the shift to E6 and E7 oncogene overexpression is accompanied by the induction of p16
INK4a

 

overexpression (chapter 1.3.4) in the affected cells p16
INK4a

 is a surrogate marker for transforming 

processes ongoing under the influence of the viral oncoproteins that interfere with the host cell 

replication machinery and tumor suppressors. A strong p16
INK4a

 expression can be detected in around 

40 % of low-grade lesions, the vast majority of high-grade lesions and virtually all cervical cancers 

(DARRAGH et al., 2013; TSOUMPOU et al., 2009). As it is consistently expressed along with viral 

proteins E6 and E7 it represents an interesting target for immune therapies.  

 

Although virtually all cervical cancers can causally be linked to human papillomaviruses, a woman 

who is infected does not inevitably develop a precancerous lesion and cancer. Most of the HPV 

infections are cleared spontaneously within several months. Only a long-lasting persistent HPV 

infection may lead to the development of precancers which is a rare event. The natural history of HPV 

infections and the development of premalignancy and eventually cancer can be considered a dynamic 

process in opposite directions, progression and regression. With more than 90% of HPV infections 

being cleared within 2 years only a small percentage of women originally infected will develop a 

precancerous lesion (SCHIFFMAN and WENTZENSEN, 2010). And also established CIN lesions 

show a clinically heterogeneous behavior: Here again, only a part of them will further progress 

towards higher lesion grades and the majority of them (60% of CIN 1 and 40% of CIN2) will regress 

in dependence of the host’s immune surveillance capacities (MCCREDIE et al., 2008; OSTOR, 1993). 

Even CIN3 lesions with extensive morphological abnormalities are reported to regress to a certain 

extent (MUNK et al., 2007).  

There are sporadic reports on a higher progression risk of p16
INK4a

-positive CIN1 compared to the 

p16
INK4a

-negative ones (WANG et al., 2004). Nevertheless high-grade lesions, although they are all in 

the transforming infection stage and thus all show p16
INK4a

 overexpression, do not all progress. This 

demonstrates that p16
INK4a

 which is a reliable surrogate for oncoprotein activity and the biological 

infection stage cannot predict progression of a lesion and other markers are necessary for the 

development of a prognostically relevant tool.  

 

The prevalence of HPV-infection is highest in young women aged 15-25, and the mean age of women 

diagnosed with high-grade cervical lesions is approximately 28 years, while invasive cervical cancer is 

established much later in women aged approximately 50 years at time of diagnosis (DOORBAR, 

2006). Only a part of the precancerous lesions persist, progress and grow further out over time to 

bigger lesions and to higher precancerous stages and finally only the minority of individuals that have 

acquired a HPV-infection during their life time develop cancer. This demonstrates that cervical 

carcinogenesis as very slow process. Considering these clinical characteristics one might speculate that 
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accumulation of genetic changes of the host in combination with predisposing factors might be 

decisive for whether a tumor develops or not.  

The progression towards cancer could biologically be explained by accumulation of specific cellular 

and chromosomal changes and subsequent outgrowth of distinct cell clones. It has been demonstrated 

that the viral oncoprotein overexpression affects the integrity of the host genome in different ways:  

Both oncoproteins E6 and E7 are able to cause major numeral and structural chromosomal aberrations 

and also DNA damages (DUENSING and MUNGER, 2002). These changes are caused by disruption 

of the centrosome duplication control mechanisms and the simultaneous induction of multiple spindle 

poles (KORZENIEWSKI et al., 2011). The resulting mis-segration of chromosomes and aneuploidy of 

the host cells contribute to further genomic aberrations. Although deadly for most of the cells raising 

during such process this might generate some cells with growth advantage and lead to the outgrowth 

of these cell clones (DUENSING and MUNGER, 2002; KORZENIEWSKI et al., 2011).  

 
 

 

 

FIGURE 1.8  CERVICAL CANCER PROGRESSION MODEL. Cervical carcinogenesis is a characterized by 

successive biological infection. It is, however, a dynamic processes as lesions also can undergo 

regression. Persistent transforming infection is accompanied by accumulation of secondary genomic 

alterations that might provide distinct cells with growth advantage. Selection for these cell clones and 

expansion leads to tumor growth and invasive disease. The transforming infection stage is highlighted by 

p16INK4a overexpression. Histomorphological classification represents a two-tiered system that does not 

match the biological infection stages totally as transforming infections can be observed in a proportion of 

low-grade lesions already. Adapted from (DOEBERITZ and VINOKUROVA, 2009a).  

Studies that are based on comparative genomic hybridization report on different genomic changes in 

cervical squamous cell carcinoma such as gains at chromosome 3q, losses at 3p and losses at 11q with 

the aberrations mainly located at the terminal chromosomal regions. In cervical precancerous stages 

there are also chromosomal aberrations, with increasing frequency from low-grade CIN to high-grade 
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lesions and finally cancer. The same gains and losses affecting 3p, 3q and 11q of cervical squamous 

cell carcinoma are already present in high-grade lesions, however at a lower frequency. Genomic copy 

number alterations have substantial effects on gene dosage that may involve overexpression of 

oncogenes on the one side and decreased expression of tumor suppressor genes on the other side. As 

the above described changes of different chromosomal regions are all present in SCC one might 

speculate that these aberrations provide growth advantage for tumor cells and are selected during 

cervical carcinogenesis (reviewed in THOMAS et al., 2013).  

The chromosomal instability of keratinocytes is likely to induce secondary genomic alterations that 

may give rise to cells having distinct features providing them with growth advantage (BECKMAN and 

LOEB, 2005). During continued persistence these cells are further selected by evolutionary 

mechanisms leading to clonal expansion of cells that are adapted best to the host’s immunologic 

environment. 

 

Still, the causal relationship between integration of the viral genome and induction of chromosomal 

instability leading to further genomic alterations is discussed controversially. Different 

hypotheses/concepts regarding the chronology of the events may be discussed: On the one hand 

integration of the viral DNA is hypothesized to be the first event leading to genomic rearrangement 

and for this reason is responsible for chromosomal instability and aneuploidisation (HOPMAN et al., 

2006; PETER et al., 2010; PETT et al., 2004). On the other hand genomic instability is considered to 

be an early event and rather prepares the integration of the viral DNA by creating fragile chromosomal 

sites (DUENSING and MUNGER, 2004; MELSHEIMER et al., 2004, reviewed in WENTZENSEN et 

al., 2004). Nonetheless, cervical carcinogenesis can be seen as a multi-step process including 

deregulation of viral protein expression and breakthrough of the host’s cell cycle machinery finally 

leading to chromosomal instability, accumulation of DNA damages and secondary (epi)genetic 

alterations that altogether favor the outgrowth of cancer cells (SNIJDERS et al., 2006).  

Whatever the chronological succession is, chromosomal instability seems to be the decisive event for 

the onset of malignant processes and the transition from precancerous lesions to invasive disease 

(BIGNOLD, 2002, 2003). The resulting destabilizing effects of aneuploidy in terms of chromosome 

synthesis, segregation and repair during mitosis lead to further secondary genomic changes giving rise 

to a huge number of cells provided with different characteristics (reviewed in DUESBERG et al., 

2011). Those that are best adapted to the environment of their host, especially the immunologic 

environment, will survive and undergo clonal expansion and thus promote carcinogenesis.  

An effective immune response is considered to be crucial for the clearance of infections and for 

regression of established lesions. Considering the complexity of the immunobiology of HPV 

infections (described in section 1.4.1) and the multitude of mechanisms developed by the virus to 

circumvent the host’s immune attack (see “immune evasion”, section 1.4.2) it appears that secondary 

genomic alterations are likely to affect mechanisms that contribute to immune tolerance or 

immunosuppression and that enables the virus to remain undetected. Another frequently observed 

genomic loss (LOH) is that at 6p21.3 locus which harbors the genes for HLA class I antigens 

(CHATTERJEE et al., 2001; KERSEMAEKERS et al., 1999). This results in MHC-class I down-

regulation which substantially contributes to impaired antigen presentation and recognition by immune 

cells that could eliminate HPV infected or precancerous cells, such as cytotoxic T cells (CTLs). Other 

secondary genomic changes that alter the immunological features also might contribute to survival and 

growth advantages of cells which undergo clonal selection to finally grow out to precancerous lesions 
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and invasive cancers. The HPV-transformed cells within these lesions and tumors are able to 

circumvent the host’s immune attack by different mechanisms and therefore constitute the “immune 

evasion phenotype”.  

 

Considering the fact that all projects of this thesis are centered on questions of immunology, the 

following chapter will address different immunologic aspects in general and in particular related to 

HPV-infections.  

 

1.4  The immunobiology of HPV infections  

1.4.1 The role of the host’s immune system in the defense against HPV 

The host’s immune system plays a crucial role in whether a HPV infection persists or is cleared and 

whether a developing lesion regresses spontaneously or persists and finally leads to invasive cancer. It 

has been demonstrated that immune deficiency and immunosuppression of allograft transplanted 

patients increase the risk for persistence of the precancerous disease and development of cancer 

(DENNY et al., 2012; PALEFSKY, 2009). In contrast, cytotoxic T lymphocytes (CTLs) are associated 

tumor control and a decreased risk for cancer (MATSUI et al., 1999). The presence or absence of 

distinct immune cell phenotypes in the lesion and the surrounding tissue is considered to be highly 

important for the prediction of the clinical outcome of the patients and should be considered in the 

treatment plans as a prognostic parameter.  

The following sections will address the different arms – innate and adaptive - of the immune system 

and their role in HPV-related diseases.  

 

 

INNATE IMMUNITY AND HPV  

 

The innate responses represent the first line defense against invading pathogens and comprise 

mechanisms that, in contrast to adaptive immune responses, act independently from antigen 

specificity. Activation of the innate immune system leads to an immediate reaction without 

establishing however an immunologic memory of the encountered pathogens (MOGENSEN, 2009). 

Cells of the innate immune system recognize highly conserved molecular patterns that are shared by 

many different pathogens leading to a general activation of the immune system. Here, Toll-like 

receptors (TLRs) play an important role (HEINE and LIEN, 2003) which will be explained in more 

detail in section 1.4.x. Cells of the innate immune system comprise dendritic cells (DCs) and 

Langerhans cells (LCs) which are professional antigen-presenting cells (APCs), and also 

macrophages, natural killer (NK) cells and natural killer T (NKT) cells. They release pro-

inflammatory cytokines and thereby substantially change the immune milieu of the infection site by 

attracting further innate immune cells and, in a second step, by induction of the adaptive immune 

response (JANEWAY and MEDZHITOV, 2002). Antigen-processing and cross-presentation by DCs 

and LCs enable T lymphocytes to get activated and to perform their tasks as cells of the adaptive 

immune system (reviewed in AMADOR-MOLINA et al., 2013).  

NK cells are an important cell type mediating innate immunity as they are able to recognize abnormal 

cells, for example by aberrant Human Leukocyte Antigen (HLA) class I molecule expression. NK cell-
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mediated cytotoxicity which is induced upon stimulation of activating NK cell receptors such as 

NKp30, NKp46 and NKG2D then eliminate these virally infected or precancerous cells (reviewed in 

AMADOR-MOLINA et al., 2013).  

In the setting of established HPV-associated precancers and cancers however, many innate immunity 

mechanisms are impaired, such as cytokine release, antigen-presentation by LCs and type I interferon 

(IFN)-responses favoring the persistence and progression of the lesions and carcinogenesis, that will 

be explained in more detail in section 1.4.2 (reviewed in STANLEY, 2008).  

 

 

HUMORAL IMMUNE RESPONSE TO HPV 

 

The viral protein that most potently induces antibody responses in patients with underlying HPV-

infections is the late protein L1. However, titers of neutralizing antibodies remain relatively low in 

naturally occurring HPV infections. This might be due to mechanisms developed by the virus to evade 

recognition and elimination by the host’s immune system that will be discussed in chapter 1.4.2. These 

immune evasion strategies prevent the induction of a strong immune response (STANLEY, 2008). 

HPV infections studied in animal models revealed that even low antibody titers provided protection 

against subsequent HPV infections. The observation that the protective characteristics of these sera 

could be transferred to other individuals gave rise to the development of the currently used 

prophylactic vaccines that use L1 of different HPV-types as an immunogen in a bivalent (Cervarix®, 

HPV16 and 18) and a quadrivalent formulation (Gardasil®, HPV 6, 11, 16 and 18) (reviewed in 

STANLEY, 2006).  

 

 

T CELL MEDIATED IMMUNE RESPONSE TO HPV  

 

T lymphocytes can - independently of antigen-specificity - be quantified as different T cell subtypes in 

the epithelium where the lesion or the tumor is located and the adjacent stromal compartment which is 

generally characterized by higher densities of immune cells (GUL et al., 2004; SHAH et al., 2011). T 

cell phenotypes that could be relevant in the course of HPV infection and development of 

precancerous lesions belong to different arms of the immune system and might contribute to either an 

effectively mounted response against the infected keratinocytes or to immune suppression and T cell 

anergy and thus to disease progression (GARCIA-CHACON et al., 2009; PATEL and 

CHIPLUNKAR, 2009). Immune markers that provide information about the quality of the immune 

cell composition in the locally confined regions around the lesions include different T cell markers: 

CD3+ T cells generally are quantified in order to obtain information about the total T cell numbers 

present in the affected tissue. To define the proportions of different specialized T cell subpopulations 

the total infiltrate consists of, other markers might be interesting: CD4 is generally used to characterize 

T helper cells whereas CD8 identifies the presence of cytotoxic T lymphocytes (CTLs) that can further 

be characterized by Granzyme B (GranB) which is typically expressed in activated, granzyme-

producing CTLs (BONTKES et al., 1997; NEDERGAARD et al., 2007). Forkhead box transcription 

factor 3 (Foxp3) however is a marker for regulator T cells (Treg cells) and rather indicates the 

activation of the opposite, immunosuppressive arm of the immune response (WU et al., 2011). CD3 ζ-

chain is a dimeric signal transducing molecule of the T cell receptor (TCR) that is responsible for the 

activation of T cells following binding to and recognition of HLA-bound antigens. It therefore is 
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considered to be a parameter for the successful T lymphocyte activation and effectiveness of the T 

cell-mediated immune response (WHITESIDE, 2004). 

 

With regard to the first approach, previous cross-sectional studies evaluating the densities and 

phenotypes of tissue infiltrating T cells in general report on elevated numbers of different T 

lymphocyte subtypes, such as CD3+ T cells, cytotoxic CD8+ CTLs and also Treg infiltration, with 

increasing histomorphologically defined CIN stages (EDWARDS et al., 1995; NEDERGAARD et al., 

2007) (ADURTHI et al., 2008; WU et al., 2011). However, only the minority of CTLs in CIN is 

reported to be in the activated, GranB-expressing state (BONTKES et al., 1997). Single studies also 

report the inverse correlation between global T cell infiltration and histomorphologically defined 

stages (SILVA et al., 2010). Regulatory T cells are considered to exert immunosuppressive functions 

in the microenvironment and are reported to be increased in high-grade lesions and invasive cancer 

and might contribute to the progression of the lesions towards cancer (ADURTHI et al., 2008; 

JAAFAR et al., 2009; NAKAMURA et al., 2007; WU et al., 2011) and (reviewed in PATEL and 

CHIPLUNKAR, 2009). Down-regulation of CD3 ζ-chain expression has been demonstrated in 

different tumor entities such as melanoma (DWORACKI et al., 2001), head and neck cancers (KUSS 

et al., 1999) and also colorectal carcinomas (NAKAGOMI et al., 1993) which emphasizes 

(NAKAGOMI et al., 1993)its relevance for disease progression. However, the data published for 

cervical cancer and its precancerous lesions are way scarcer (ZEHBE et al., 2002). Interestingly, CD3 

ζ-chain expression was found to be down-regulated in cervical carcinoma patients compared to healthy 

controls but not in precancerous lesions.  

These previous studies on T cell infiltration reported on varying cell densities and phenotypes in 

correlation with histomorphological disease stages without taking however into consideration the 

underlying biological infection status defined as non-transforming and transforming infections. 

Therefore, it has been remained unclear until now whether these changes are induced with beginning 

transforming infections in low-grade lesions or rather occur later in well-established high-grade 

lesions that have accumulated secondary genomic alterations and clonal selection. 

The density and phenotype of tissue infiltrating T cells has been reported to correlate with outcome in 

various cancer types (GALON et al., 2006) and it is conceivable that the quantity and the quality of 

immune cells in CIN is of prognostic importance.  

 

With regard to the characterization of antigen-specific T cells in HPV-related cervical precancers and 

cancers data are published for peripheral as well as for tumor-infiltrating T cells. T cells specific for 

HPV-antigens are rare, however several studies demonstrated that at low frequencies they exist.  

The immunogenicity of the viral Ll proteins that is able to induce a humoral immune response is also 

reported to contribute to proliferative T cell responses. Both T cell subtypes, CD4+ and CD8+ T cells 

were shown to contribute to the cellular immunity (PASSMORE et al., 2002). However, CD4+ T 

lymphocytes were characterized by a higher IFN-γ release upon stimulation with L1-peptides 

demonstrating that the antigen is able to induce a T helper cell type 1 (Th1) memory response that 

enhances the mechanisms of the cell-mediated immunity (SHEPHERD et al., 1996). Interestingly, T 

cell responses predominated in patients who had cleared the HPV infection or resolved precancerous 

lesions and one could speculate that CD4+ memory T cell responses are established during the battle 

against HPV infections and also provide long term protection (CHAN et al., 2011). Conversely, 

patients with advanced persisting or progressing precancerous lesions lack pro-inflammatory cytokines 
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(DE VOS VAN STEENWIJK et al., 2008) and although isolated from tumors and lymph nodes of 

cervical cancer patients CD4+ and CD8+ T cells show only low levels of IFN-γ release upon 

stimulation with HPV antigens (DE VOS VAN STEENWIJK et al., 2010).  

This again is indicative for the inability of these patients to mount an effective T cell-mediated 

immune response leading to functionally inactive or even immunosuppressive T cell fractions 

invading the tumors and circulating in the peripheral blood. Factors that might contribute to the 

impairment of the host’s cellular immune response and the inability of these patients to clear the 

infection and thus prevent malignancies will be highlighted in the following section (1.4.2).  

 

The published data imply that antigen-specific cellular immune responses is associated a successful 

establishment of immune response against HPV and clearance of the infection and thus occurred in 

patients whose immune system successfully raised an immune response against HPV. Also the lack of 

IFN-γ secretion, the cytokine directing cellular cytotoxic responses, suggests that immunosuppressive 

mechanisms inhibit the raise of an effective cell-mediated immune response and immune attack of the 

lesions and tumors. This might be an interesting starting-point for therapeutic interventions.  

 

 

1.4.2 Immune evasion strategies developed by human papillomaviruses  

Human papillomaviruses have developed different immune escape mechanisms allowing them not 

only to modulate the host’s immune response that might be raised during infection and establishment 

of precancerous lesions but also to avoid to be recognized and to remain largely invisible for the host’s 

defense mechanisms. The viral life cycle regarding the site of infection and also the viral replication 

within the epithelium is perfectly adapted to assure immune ignorance (reviewed in KANODIA et al., 

2007 and STANLEY, 2012a).  

In general, the infection site is located in the basal cell layer of the stratified squamous epithelium and 

occurs via microlesions in the tissue giving the virus access to the basal stem cells. During permissive 

infection the viral genome is maintained in that cell layer at low copy numbers which minimizes the 

antigen exposure for immunocytes that could potentially invade the epithelium from the stromal tissue 

beneath. The expression level of the viral proteins, especially the early proteins, remains very low 

during replication (Figure 1.9). The protein considered to be most immunogenic, the viral capsid 

protein L1, is not expressed in the basal, undifferentiated layers of the squamous cell epithelium. As 

only in the upper layers of the squamous epithelium, which circulating immune cells hardly have 

access to, the viral proteins become expressed at higher levels, and an effective immune response 

cannot be initiated. The low expression level of HPV proteins in epithelial layers that are closer to 

immune cells thereby represents an effective immune evasion strategy (FELLER et al., 2010). 

Furthermore, the assembled virions are released during naturally occurring cell death of differentiated 

keratinocytes arriving at the upper side of the epithelium and not due to cytolysis or necrosis of the 

infected host cells. Again, this strategy prevents stromal or epithelial immune cells from having direct 

contact with the infectious agent and also inhibits inflammation at the infection site. The non-lytic life 

cycle of HPV does not provoke release of pro-inflammatory cytokines and supports the virus’ 

invisibility to the host’s immune defense (STANLEY, 2006). Altogether the viral replication cycle is 

perfectly adapted to the differentiation of the host’s keratinocytes with the aim to reduce antigen 

exposure and pro-inflammatory mechanisms and thereby to avoid an effective immune response to be 
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raised. At a later time point, the interaction of the viral proteins E6 and E7 with host cell pathways 

regulating apoptosis and cell cycle progression contribute to the survival of the virus within 

keratinocytes by preventing apoptosis and delaying the differentiation program of keratinocytes that 

consequently remain in the proliferative phase (chapter 1.2).  

 

 

FIGURE 1.9 HPV EVADES THE HOST’S IMMUNE SYSTEM. The virus’ life cycle (left) is adapted to the host 

cells’ differentiation program and thus prevents immune recognition: there is no blood-born phase, low 

viral protein levels in the basal cell layers, no cell death for viral release. Furthermore, HPV actively 

down-regulates inflammatory processes (right) preventing thus the activation of innate and adaptive 

immune responses by different mechanisms. Adapted from (STANLEY, 2012a).  

Also the fact that the viral genome is not optimized for the mammalian translation machinery and 

shows a different codon usage that results in decreased translation rates of the viral proteins might 

explain the low expression profile of viral antigens (reviewed in ZHAO and CHEN, 2011). 

Furthermore, a mechanism that can be subsumed under the keyword “molecular mimicry” contributes 

to immune evasion by hindering recognition by and reactivity of immune cells (OLDSTONE, 1998). It 

has been demonstrated that human papillomavirus proteins display similar epitopes compared with the 

host cell proteome that leads to less effective immune response due to self-tolerance mechanisms of 

the host’s cells (NATALE et al., 2000). 

 

The immune evasion strategy of HPV does not only include adaptions to remain invisible for the 

host’s immune system but also includes strategies evolved to actively counteract immune responses 

that are raised by the host.  

Immune tolerance and immune suppression per se are important and helpful mechanisms in the 

regulation of the different arms of the immune system and balance the activation and termination of 

immune attacks. Mediators of immune suppression such as regulatory T cells are inherent to the 

immune defense and have evolved to prevent damages by excessive cytotoxic responses especially if 

they are directed against self-antigens. Adopted by tumors, however, immune tolerance or suppression 

are mechanisms that enable cancer cells to evade the host’s immune attack. They become able to 

modulate the tumor environment in order to create an immunotolerant micromilieu and thereby to 

immobilize the host’s immune responses.  
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Chemokines and cytokines are signaling molecules and the key players in the regulation of a complex 

immunologic network of activating and inhibitory immune responses. They are decisive for the 

immune cell types attracted to the lesion and the outcome of the immune response. Immune evasion 

strategies developed by tumors that involve aberrant cytokine or chemokine secretion do not only have 

singular but rather systemic effects on different immunological pathways. The most immediate effect 

of HPV infections is the down-regulation of type I IFN responses inhibiting antiviral innate immune 

defense mechanisms and also the induction of a secondary adaptive response (Figure 1.9). Type I IFN, 

especially IFN-α, is normally produced by infected cells, has anti-viral effects and also recruits 

neutrophils, macrophages, NK cells and DCs to the infection site (BASLER and GARCIA-SASTRE, 

2002). Its activation is necessary to induce both the innate and the adaptive immune response. The 

viral oncoproteins have been shown to interact with IFN signaling pathways that normally lead to 

transcriptional induction of IFN downstream target genes necessary for anti-viral defense, induction of 

immune response and cell growth regulation. Both E6 and E7 directly interfere with IFN downstream 

targets (IFN response genes, nuclear factor-kappa B (NFkB)) and signaling pathways to prevent IFN-

mediated immune responses. They inhibit among others the transcription of transporter associated 

with antigen-processing 1 (TAP-1), IFN-β and monocyte-chemoattractant-protein-1 (MCP-1) and 

interfere with the Jak-STAT-pathway that upon activation regulates DNA transcription and is also 

involved regulating the activity of immune cells (reviewed in STANLEY, 2008). Further chemokines, 

such as interleukin (IL)-8, and cytokines (IL-18, IFN-γ) are suppressed in HPV-infected cells. 

Normally involved in the onset of the inflammatory responses and attracting different sorts of immune 

cells such as monocytes, memory T cells, NK cell or being involved in the priming of CD8+ T cells 

the down-regulation of these molecules favors the persistence of the viral infection and the 

development of precancerous lesions (reviewed in STANLEY, 2012a). Changes of the polarity of the 

Th1/Th2 cytokine profile to a pronounced Th2 response has also been demonstrated to have 

immunosuppressive effects and to result in impaired cytotoxic immune responses (BAIS et al., 2005). 

Such a change is accompanied by reversal of the immune cell composition in precancerous stages and 

cancers as demonstrated by immunohistochemical analyses and also flow cytometry data (ADURTHI 

et al., 2012; SHAH et al., 2011).  

 

HPV infection also has effects on antigen presentation via HLA class I molecules. It has been shown 

several times independently that the viral early proteins E7 and E5 are associated with HLA class I 

antigen expression on keratinocytes and this impairs recognition of the infected cells by CD8+ T 

lymphocytes and the induction of a cytotoxic response (BOTTLEY et al., 2008; CAMPO et al., 2010). 

Theoretically, down-regulation of HLA class I molecules on the cell surface increases the 

susceptibility to be killed by NK cells. However, as the immunosuppressive cytokine IL-10 is also 

associated with HLA class I down-regulation (RODRIGUEZ et al., 2012), it is likely that the 

keratinocytes evade a possible NK cell-mediated immune attack due to the generally 

immunosuppressive micromilieu probably disturbing the recruitment of immune cells to the lesion. It 

could be demonstrated that E5 and the oncoprotein E7 both directly regulate HLA class I expression 

levels (reviewed in KANODIA et al., 2007). The interaction of E7 with the promoter of the HLA class 

I heavy chain gene has repressive effects on the transcription and leads to down-regulation of HLA 

class I antigen levels (GEORGOPOULOS et al., 2000). Viral E5 in contrast affects the stability and 

the transport of HLA class I complexes loaded with peptides that both depend on an acid pH: via 

interaction with the H(
+
)-ATPases (V-ATPase) it inhibits the acidification of endosomes and the Golgi 
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complex and thus massively disturbs peptide-HLA-complex trafficking to the cell membrane 

(ASHRAFI et al., 2005; SCHAPIRO et al., 2000).  

Down-regulation of type I IFN production is associated with lacking antiviral innate immune defense 

mechanisms and consequently inhibition of a secondary adaptive response. It was shown that the 

initiation of any of these responses by antigen-presenting cells (APCs) is defective because 

Langerhans cells, the specialized epithelial APCs, are decreased in number and are not activated 

during HPV-infections and uptake of L1 antigen, leading to inhibition of both innate and adaptive 

immune response (STANLEY, 2008). Different mechanisms are discussed to contribute to this lacking 

LC activation: (1) E-cadherin expression in keratinocytes which is required for APCs to migrate 

through the epithelium is down-regulated under the influence of DNA methyltransferase 1 activity 

(Dnmt1) (LAURSON et al., 2010). (2) The inhibition of a HPV-specific immune response in the 

epithelium is caused by activation of phosphoinositide-3-kinase pathway (FAUSCH et al., 2005).  

(3) Immunosuppressive cytokines (transforming growth factor (TGF)-β, Fas-ligand) may be released, 

that among other effects are responsible for the recruitment of regulatory T cells (Treg cells) that again 

change the cytokine milieu in the lesions by releasing TGF-β and IL-10. This release inhibits thereby 

the functional activity of CTLs and in the long run favor a deficient recognition of and cytotoxicity 

against HPV-infected and transformed cells and promote the outgrowth of the lesions and progression 

towards cancer.  

Altogether, these factors inhibit the influx of immune cells into the epithelial compartment, impair the 

migration and thus lead to a decreased likelihood that immune cells detect HPV and initiate an 

effective immune response.  

 

Importantly, the rates of HPV clearance and lesion regression proof that in the majority of the patients 

the immune system is able to combat the disease and that the quality of the immune system, either 

humoral (mainly against L1) or cell-mediated (against late or early viral proteins), is decisive in the 

natural course and also treatment of cervical intraepithelial neoplasia and cancers. Immunotherapeutic 

inventions therefore should aim at the activation of a strong, T cell-based immune response that may 

induce destruction of HPV infected keratinocytes by CTLs either by recognition of tumor antigens or 

tumor-associated antigens.  

Also, the composition of the T cell infiltrates and the cytokine profile in the microenvironment may be 

indicative for the clinical course of the disease and the patient’s outcome and therefore represent 

potential markers for progression or regression. They also contain information that could potentially 

be considered for treatment decisions in precancers in order to minimize unnecessary surgical 

interventions in patients that - from their immune status - are likely to overcome the disease.  

 

 

 

  



   1. Introduction 23 

1.5  Immunologic intervention strategies in HPV-associated 

diseases  

1.5.1  The urgent need for therapeutic interventions in HPV-associated 

precancers and cancers  

The prophylactic L1 VLP based vaccines Cervarix and Gardasil aim at the induction of a systemic 

immune response and are based on the production of neutralizing antibodies floating the whole body. 

The represent, however, HPV type-specific approaches and are considered - aside from sporadic 

reports on cross-protection - to offer protection against only two high-risk HPV types, HPV16 and 18, 

(reviewed in KAWANA et al., 2009). Also, they do not have any known advantageous effects on 

preexisting HPV infections or established lesions.  

A recently developed mathematical model can be used to estimate the impact of the prophylactic 

vaccines on the development of the incidence of HPV-associated cervical precancers and cancers and 

also anogenital warts. This model is based on epidemiological information of the natural history of 

HPV infections, the frequency and natural history of HPV-infections and resulting precancerous 

lesions and considers also cervical cancer screening program implemented in Germany. This model 

predicts that with a vaccination coverage of about 50% only, which reflects the actual situation in 

Germany, over the next 100 years about 22% of cervical intraepithelial neoplasia and 37% of cervical 

cancers will be prevented by the available prophylactic vaccines (HORN et al., 2013). 

These data demonstrate that the situation within the next 20-30 years will not substantially change and 

that cervical precancerous lesions and cancers as well as anogenital warts still are a major health 

problem to resolve. Therefore, there is a non-negligible need for secondary vaccination strategies or 

other approaches enabling the immune system to recognize and eliminate HPV-infected and 

transformed cells. In contrast to primary vaccines, secondary therapeutic intervention strategies aim at 

establishing an effective cellular immunity and especially enhancing the T cell responses to antigens 

expressed by HPV-infected cells that additionally might undergo transforming processes 

(BRINKMAN et al., 2007). A multitude of secondary vaccination approaches is under investigation in 

preclinical trials and some are investigated in clinical trials (reviewed in ALBERS and KAUFMANN, 

2009 and KANODIA et al., 2008).  

It has been reported that the majority of the therapeutic vaccination trials only sporadically induce an 

efficacious clinical response accompanied by cytotoxic cellular responses that might be able to 

overcome the viral evasion mechanisms and subvert immune suppression. Some other approaches led 

to promising results in patients with vulvar precancerous lesions but rarely in cervical intraepithelial 

neoplasia. This might be due to special features of the mucosal immunity in comparison to the 

epithelial immune reactions in VIN that hinders the induction of cellular response upon systemic 

vaccine administration (reviewed in KAWANA et al., 2012).  

For these reasons other approaches, alone or in combination with the above described therapeutic 

vaccines represent an interesting option to enhance the host immune reaction, also at mucosal sites in 

order to elicit a strong T cell mediated immune response. One of these treatment strategies involves 

immuno-modulatory agents that modify the quality of the immune response and reverse the 

immunosuppressive environment. The following chapter is dedicated to Toll-like receptors that can be 

targeted by specific immuno-stimulatory compounds. Once they are activated by these compounds 
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they are able to link innate and adaptive immune responses to finally induce a strong anti-viral and 

anti-tumoral cellular response.  

 

1.5.2  Toll-like receptors are key players in linking the innate and adaptive 

immune responses  

Discovered in the 1990s and since then subject to many functional studies Toll-like receptors were 

identified as main molecules of the innate immune system and major players of the first wall 

encountered by pathogens that enter the body. TLRs can mainly be found in immune cells of the 

innate immune system including DCs, monocytes and mast cells. They can, however, occasionally 

also be found in T and B lymphocytes as well as in NK cells (CRAIN et al., 2013). Their expression 

also was demonstrated in cells of the endothelium and epithelium and in a subset of tumor cells 

(HOLLDACK, 2014).  

 

 

FIGURE 1.10 TLRs LINK INNATE WITH ADAPTIVE IMMUNE RESPONSES. Upon recognition of pathogen-

associated molecule patterns (PAMPs) by TLRs dendritic cells release cytokines (IL-6, IL-12) that via 

complex regulatory mechanisms stimulate further innate immune cells but also adaptive immune 

responses. Adapted from (STEVENSON and RILEY, 2004)  

 

TLRs fall into the category of the so called pattern recognition receptors (PRRs) that are able to detect 

microbial infections. They bind to and recognize highly conserved microbial structures, so called 

pathogen-associated molecular patterns (PAMPs) that are common to a broad variety of infectious 

agents and comprise molecules such as lipopolysaccharides (LPS), bacterial DNA or double-stranded 

RNA (CHAN et al., 2009). Binding of PAMPs results to interaction of the TLRs with adaptor 

molecules, for example with myeloid differentiation primary-response protein 88 (MyD88) (AKIRA 

and TAKEDA, 2004). This initiates complex intracellular signaling pathways mediating the signal to 

the nucleus where NFκB becomes activated regulating the expression of downstream target genes 

including primarily pro-inflammatory cytokines such as IL-1, IL-6, IL-8, IL-12, tumor necrosis factor 

(TNF)-α, IFN-α and IFN-β. Their expression further enhances the innate immunity. Immediate 
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protection against pathogens is provided, in an antigen non-specific manner, by activation of NK cells, 

recruitment of macrophages and activation of the complement cascade (reviewed in MEDZHITOV, 

2007). The induction of the expression of co-stimulatory molecules of antigen-presenting cells such as 

CD40, CD80 and CD86 that contribute to T cell activation (ZHOU et al., 2013) as well as the created 

pro-inflammatory milieu that recruits further immune cells to the infection site enables an antigen-

specific, adaptive immune response to be raised against the tumor (Figure 1.10) (DE GIORGI et al., 

2009). Obviously, TLRs activated in locally confined regions can also induce NK cell mediated 

killing, enhance MHC class I expression on tumor cells and interfere with apoptotic pathways of the 

tumor cells leading to tissue destruction and a further release of pro-inflammatory cytokines enhancing 

the immune response (HOLLDACK, 2014). 

1.5.3  Toll-like receptor ligands have immuno-stimulatory properties  

TLR agonists represent a promising approach for the activation of the innate and adaptive immune 

response by binding to and stimulation of TLRs. In the context of this thesis TLR7 is of special 

interest which is an intracellular non-catalytic receptor that is located within the endosomal 

compartment of immune cells (CRAIN et al., 2013). The natural ligands for TLR7 are single-stranded 

RNA molecules which preferentially are rich in guanine and uridine (DIEBOLD et al., 2004). 

However, they also respond to synthetic small molecules such as imidazoquinolines and molecules 

that structurally resemble purine bases (Figure 1.11) (HEMMI et al., 2002) making them an interesting 

target for immuno-modulatory treatment strategies.  

One of these synthetic TLR ligands is the imidazoquinoline compound imiquimod that acts as an 

immune modifier by changing the immune milieu by binding to TLR7 and, to a lesser extent, to TLR8 

(TERLOU et al., 2010). Imiquimod is approved by the Food and Drug Administration (FDA) as a 5% 

cream – and as such called Aldara® - and clinically applied for the treatment of genital warts, 

superficial basal cell carcinoma and actinic keratosis (GASPARI et al., 2009). Imiquimod appears as 

important non-invasive treatment option also in patients with vulvar intraepithelial neoplasia allowing 

the conservation of the vulvar anatomy and is of special interest in multifocal VINs that show high 

rate of recurrence. Two imiquimod-treatment studies, a pilot study and the following placebo-

controlled, randomized trial, were conducted that included patients with diagnosed vulvar 

precancerous lesions (grade 2 or 3). The trials demonstrated the efficiency of locally applied (topical) 

imiquimod treatment that induces (at least partial) clinical response in the majority of the patients 

defined as reduction of the lesion size, histologic regression and HPV clearance (VAN SETERS et al., 

2002; VAN SETERS et al., 2008). 

In general, Aldara® is well-tolerated by patients if locally applied. Nevertheless, clinical studies 

demonstrated that systemic and local adverse effects cannot be avoided. They appear as fever, 

arthralgia, headache, myalgia or lymphadenopathy and all these symptoms are caused by pro-

inflammatory cytokine release in the blood stream having systemic effects (CRAIN et al., 2013).  

These observations induced chemists and biologist to search for new derivatives with an at least as 

high immune stimulatory potential as imiquimod but reduced side effects. In this context, a TLR7-

specific ligand called SM360320 (Figure 1.11) was synthesized on the basis of an adenine skeleton 

and pharmacologically evaluated. In a mouse model, this substance demonstrated to have an adjuvant 

effect in combination with DNA vaccination (DHARMAPURI et al., 2009). It could also be shown 
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that SM360320 is up to 100-fold more potent in inducing interferons compared with imiquimod 

(KURIMOTO et al., 2004).  

In order to further improve the effects mediated by SM360320 further derivative molecules based on 

this core molecules were synthesized by conjugating it to different macromolecules such as proteins, 

lipids or polyethylene glycol. These attempts gave rise to TMX-202 which is the core TLR7 agonist 

conjugated to a C-12 phospholipid (Figure 1.11).  

 

 

FIGURE 1.11 CHEMICAL STRUCTURES OF TLR AGONISTS. Shown are the chemical structures of the 

imidazoquinoline imiquimod and the purine-like TLR7 ligand SM360320 which represents the core 

molecule of TMX-202 obtained by conjugation of a C-12 phospholipid.  

In a cooperation project with a company specialized in TLR agonist, Telormedix S.A., Bioggio, 

Switzerland, we could gain access to the new TLR agonist TMX-202 and characterize its immuno-

stimulatory potential on different levels and in vitro experiments.  
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2. 
 

MOTIVATION AND RATIONALE 
 

Infections with human papillomaviruses are very common in the sexually active population and under 

certain circumstances might give rise to dysplastic abnormalities of the squamous cell epithelium – for 

example in the cervix uteri where the lesions then are called cervical intraepithelial neoplasia (CIN). 

The initial step of cervical carcinogenesis is the transition from permissive infection to transformation 

of the HPV-infected cells, induced by expression of the oncogenes E6 and E7 that interfere with 

critical host cell pathways and which can be highlighted by p16
INK4a

 overexpression. However, the 

induction of transformation is not sufficient to drive a lesion into further progression and development 

of invasive cancer, as proven by the proportion of transformed high-grade lesions that are reported to 

undergo regression. The deregulated host cell pathways lead to chromosomal instability and 

subsequent secondary genomic aberrations. These might give rise to cell clones having distinct 

features providing them with growth advantage over normal cells promoting disease progression. The 

higher progression rates in immunosuppressed or immunocompromised individuals clearly 

demonstrate the importance of the host’s immune system in HPV clearance and prevention from HPV-

related cancer. Clonally selected and expanding cells might have developed mechanisms that promote 

immune evasion and thus disease progression (see Figure 2.1 for conceptual background). These 

mechanisms might affect the immune microenvironment by creating an immunosuppressive milieu as 

well as tumor cell intrinsic features enabling tumor cells to directly evade the immune attack.  

 

 

FIGURE 2.1 CONCEPTUAL MODEL ILLUSTRATING CENTRAL QUESTIONS ADDRESSED IN THIS THESIS. 

Immune evasion mechanisms in cervical intraepithelial neoplasia might contribute to the induction of 

transforming infection and progression of cervical intraepithelial neoplasia towards invasive cancer. 

Clonal selection for tumor cells favoring immune evasion leads to the outgrowth of a so called immune 

evasion phenotype which might be reversed by proper immuno-modulatory drug intervention. Adapted 

from (DOEBERITZ and VINOKUROVA, 2009b).  
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The objective of this thesis was to gain a better understanding of the battle of the host’s immune 

system against HPV-associated precancerous lesions of different grades and also cancer. This is 

crucial to improve prognostic markers for guiding treatment decisions and also therapeutic 

interventions. Therefore, in this thesis the following two central goals were pursued:  

In the first part of this thesis, the immune evasion phenotype of cervical precancerous lesions was 

characterized to improve the understanding of the quality of possibly initiated immune responses 

against HPV-induced neoplasia and evaluate how successful the immune system battles against 

dysplastic cells. Possible immune evasion or suppression mechanisms were investigated and their 

occurrence was correlated with different time points of the disease progression. Thereby features 

observed on the immune cells’ side as well as mechanisms inherent to HPV-infected keratinocytes 

were investigated.  

 

 

FIGURE 2.2 GRAPHICAL OVERVIEW OF THE AIMS AND THE WORKFLOW OF THE PRESENTED THESIS. 

Shown are the main questions of each part (dark blue), the different aspects investigated in this context 

(grey) and the central methodological approaches (light blue).  

 

The second part of this work aimed at the development of non-invasive therapeutic strategies to 

circumvent possible immune evasion mechanisms in HPV-associated diseases. Different approaches 

aiming at immune-modulation of potentially suppressed immune responses were evaluated that 

possibly influence the balance between immune evasion and anti-tumoral immune response and thus 

might lead to an effect tumor attack.  

 

 

All these aspects of the interaction of the host’s immune system with lesion or tumor cells in HPV-

associated diseases were investigated by a broad spectrum of different approaches to address specific 

problems (outlined in Figure 2.2).  
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 Objective and standardized quantification methods for immune cell infiltrate in HPV-associated 

precancerous lesions of the cervix are lacking.  

 Development of a computational tissue analysis platform combining histological analysis and 

automated whole slide imaging allowing the objective quantification of tissue infiltrating 

immunocytes. This method is required to establish an immune-based prognostic biomarker tool 

for cervical intraepithelial neoplasia that would also allow the monitoring of the efficacy of 

tumor therapies (chapter 4.1).  

 

 It is still unclear which mechanisms trigger the infiltration of immune cells into lesions and a 

shift in immune cell densities and composition still cannot be related to any time point of the 

natural history of CIN. It is of particular interest whether this correlates with the biological 

infection status, e.g. with the shift from permissive to transforming infection.  

 Characterization of the immune cell infiltrates as CD3, CD8, GranB, Foxp3 and CD3 ζ-chain 

expressing cells in an antigen-independent way in cervical precancerous lesions of different 

grades and infection stages by immunohistochemistry. The main focus was lying on possible 

differences between permissive and transforming infections as represented by p16
INK4a

 

overexpression (chapter 4.2).  

 

 HPV might interfere with antigen-presentation mechanisms and thus contribute to immune 

evasion. Altered HLA expression is reported in cervical cancer, the time point when this occurs 

during progression of precancerous lesions however remains to be elucidated.  

 Analysis of the expression of molecules involved in antigen-processing and -presentation (HLA 

class I heavy chains and light chains, and HLA class II antigens) on keratinocytes by 

immunohistochemistry in different progression grades of cervical precancerous lesions and 

cancers (chapter 4.3).  

 

 Topical treatment with an immune-modulatory drug, imiquimod, might have effects on immune 

cell densities and composition in cervical intraepithelial neoplasia. These changes might be 

associated with the clinical outcome of patients.  

 Longitudinal characterization of the immune cell infiltrates as CD3 and CD8 expressing cells by 

immunohistochemistry in cervical precancerous lesions that were topically treated with a Toll-

like receptor agonist-based immune modulator (chapter 4.4).  

 

 Second generation Toll-like receptor agonists might have less side effects compared with 

imiquimod, however their effects on immune cells and the potential to raise an anti-tumoral 

immune response in the context of HPV-associated diseases have to be demonstrated.  

 Evaluation of the effects of a new immuno-modulatory drug (TMX-202) on TLR7 expression in 

immune cells on the transcript and protein level by quantitative real-time PCR and western blot. 

Evaluation of its efficiency to induce a pro-inflammatory cytokine milieu (as measured by IL-6 

ELISA). Investigation of its potency to enhance the immune attack against HPV-associated 

cancers by an in vitro priming experiment of naïve T cells and measurement of cytotoxic 

responses against CaSki cells monitored by CD107a degranulation assay (chapter 5.1). 
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 Models based on HPV-positive tumor cell lines and autologous immune cells for the 

investigation of immune responses against HPV-associated tumors are lacking. These, however, 

are of special importance to test immune-modulatory treatment options.  

 Generation of a HPV-associated cell line from HNSCC patients in order to establish an 

autologous model for in vitro functional analyses of tumor cell and immune cell interaction. 

Tumor samples could be obtained from HPV-positive head and neck squamous cell carcinomas 

that develop through the same tumorigenic mechanisms as cervical cancers and therefore 

represent a valuable model for HPV-related cancers (chapter 5.2) 

 

 The immunophenotypic characterization of CIN and cervical cancer revealed regulatory T 

lymphocytes as one possible contributor to HPV-related carcinogenesis and possible target for 

immuno-modulatory intervention strategies.  

 Analysis of the immunosuppressive effects mediated by regulatory T lymphocytes in HPV-

associated diseases using the established autologous tumor model and evaluating Treg depletion 

as one possible therapeutic intervention strategy to reverse immune evasion phenotype. The 

antitumoral effects of Treg depleted T cells and the total T cell fraction was compared in 

CD107a degranulation assay and impedance measurement (chapter 5.3).  
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3. 
  

MATERIALS AND METHODS 
 

 

3.1  Materials  

3.1.1   Technical equipment, instruments 

Agarose gel carriage     Tecnomara (Fernwald) 

Agarose gel running chamber SubCell GT  Biorad (Munich)  

Analytical balance BP 210D     Sartorius (Goettingen)  

Balance BP 310S      Sartorius (Goettingen) 

Bond Autostainer     Leica Microsystems (Wetzlar) 

Camera Electrophoresis Docu System 120   Kodak (Stuttgart) 

Centrifuge 5810R     Eppendorf (Hamburg) 

Digital camera Leica DFC480     Leica Microsystems (Wetzlar) 

Electrophoresis chamber (Sub Cell GT)   Biorad (München) 

Flow cytometer (FACSCalibur)    Becton Dickinson (Franklin Lakes, USA)  

Fluorometer for microtiter plates Luminex 100  Luminex (Austin, USA) 

Gel Documentation GelDoc 2000   Biorad (München) 

Incubator      Memmert (Schwabach) 

Leica Bond Autostainer II     Leica Microsystems (Wetzlar) 

Magnetic stirrer MR 2002     Heidolph (Schwabach) 

Microscope for cell culture Olympus CK40  Olympus optical CO (Center Valley, USA) 

Microscope Leica DMRBE    Leica Microsystems (Wetzlar) 

Microtiter plate reader Multiscan EX    Thermo Electron Corporation (Karlsruhe) 

Microtome Leica RM 2035    Leica Microsystems (Wetzlar) 

Microwave       Panasonic (Hamburg)  

Minishaker Vortex MS1     IKA-Works (Wilmington, NC) 

NanoZoomer 2.0-HT Scan System    Hamamatsu (Herrsching) 

PCR system (Mastercycler Gradient)    Eppendorf (Hamburg) 

PH meter (PB-11)      Sartorius (Göttingen) 

Photometer for microtiter plates GENios   Tecan (Crailsheim) 

Photometer Ultrospec 7000    GE Healthcare (Uppsala, Sweden) 

Pipettes 2-1000µl Pipetman     Gilson (Bad Camberg) 

Pipettor 8-5010      Neolab (Heidelberg)  

Power supply Power Pac 300    Biorad (Munich) 

Real-Time PCR system (StepOnePlus)    Applied Biosystems (Foster City, USA) 

Robocycler Gradient 96     Stratagene (Santa Clara, USA) 

Rolling mixer CAT RM 5     Neolab (Heidelberg) 

RTCA Analyzer W380     ACEA Biosciences (San Diego, USA) 
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RTCA SP Station 1x96     ACEA Biosciences (San Diego, USA) 

Safety cabinet Class II, SL-130 Blue Series   Kojair (Vilppula, Finland) 

Shaker for microtiter plates Titramax 100  Heidolph (Schwalbach) 

Speed Vac DNA Speed Vac 110    Savant (Holbrook, USA) 

Table top centrifuge 5424     Eppendorf (Hamburg) 

Thermomixer 5436      Eppendorf (Hamburg) 

Vacuum manifold Vacusafe Comfort    Millipore (Billerica, USA)   

Vortex (MS1 Minishaker)     IKA (Staufen) 

Water bath Grant SUB14    Grant Instruments (Cambridge, UK) 

 

3.1.2  Chemicals and Reagents 

Acetic acid 100%     Merck (Darmstadt) 

Acryl amide RotiphoreseGel 30    Roth (Karlsruhe) 

Agarose Ultra Pure     Invitrogen (Carlsbad, CA, USA) 

Albumine Bovine Fraction V pH 7.0   Serva (Heidelberg) 

Amphotericin B      Invitrogen (Karlsruhe) 

Aquatex       Merck (Darmstadt) 

B2-microglobuline (human)     Sigma Aldrich (Steinheim) 

Boric acid       Merck (Darmstadt) 

Brefeldin A       Sigma-Aldrich (Steinheim) 

Bromphenol blue      Serva (Heidelberg) 

Caseine from bovine milk     Sigma Aldrich (Steinheim) 

CellGro® DC      CellGenix Technologie Transfer (Freiburg) 

Citric acid       Merck (Darmstadt) 

DAB+ Substrate Chromogen System    Dako (Carpinteria, USA) 

Decitabine (5-Aza-2‘-deoxycytidine, DAC)   Sigma-Aldrich (Steinheim) 

Developer for photographic processing    Adefo-Chemie (Dietzenbach) 

Dimethyl sulfoxide (DMSO) 99.5%    Sigma Aldrich (Steinheim) 

Dipotassium phosphate     Gerbu (Gaiberg) 

Disodium hydrogenphosphate    VWR (Darmstadt) 

Disodium phosphate      VWR International (Leuven, Belgium) 

DMEM / Ham’s-F12     Gibco (Paisley, UK)  

DNA ladder 100 bp      Invitrogen (Karlsruhe) 

Dulbeco’s PBS (1x)     Gibco (Paisley, UK)  

Ethanol 96%      Sigma Aldrich (Steinheim) 

Ethanol 99%      Sigma Aldrich (Steinheim) 

Ethanol absolute      Sigma Aldrich (Steinheim) 

Ethanol absolute      Sigma-Aldrich (Steinheim) 

Ethylenediaminetetraacetic acid (EDTA)  Merck (Darmstadt) 

Fetal bovine      Gibco (Paisley, UK) 

Fixer for photographic processing    Adefo-Chemie (Dietzenbach) 

GelRed Nucleic Acid Stain    Biotium (Hayward, CA)  
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Gentamycin       Invitrogen (Karlsruhe) 

Glutamine       PAA Laboratories (Pasching, Austria) 

Glycerol (86%)      Carl Roth (Karlsruhe) 

Glycerol      Roth (Karlsruhe) 

Glycine       AppliChem (Darmstadt) 

GM-CSF      PromoCell (Heidelberg) 

H2O HPLC-grade      VWR (Darmstadt) 

Haematoxylin      Sigma Aldrich (St. Louis, USA) 

Hemalaun       AppliChem (Darmstadt) 

Heparin-Natrium 25000     Ratiopharm (Ulm) 

Horse serum      Vector Laboratories (Burlingame, CA) 

Human epithelial growth factor (EGF)    Sigma Aldrich (Steinheim) 

Human serum       PAA Laboratories (Pasching, Austria) 

Hydrochloric acid (HCl 37%)     Carl Roth (Karlsruhe)   

Hydrocortisone      Sigma Aldrich (Steinheim) 

Hydrogen peroxide 30%     Merck (Darmstadt) 

IMDM        Gibco (Paisley, UK) 

Imiquimod       Calbiochem (San Diego, USA) 

Insuline       Sigma Aldrich (Steinheim) 

Isopropyl alcohol     Sigma Aldrich (Steinheim) 

Luminol Reagent for Western Blot sc-2048  SC Biotechnology (Santa Cruz, USA) 

Lymphocyte Separation Medium LSM 1077  PAA Laboratories (Pasching, Austria) 

Magnesium chloride (MgCl2)     Solis Biodyne (Tartu, Estonia) 

Mercaptoethanol      Merck (Darmstadt) 

Methanol       Sigma Aldrich (Steinheim) 

Paraformaldehyde (PFA)     Carl Roth (Karlsruhe) 

PBS        Gibco (Paisley, UK) 

Penicillin/Streptomycin (100x)     Gibco (Paisley, UK)  

Ponceau S Solution 0.1%    Sigma Aldrich (Steinheim) 

Potassium chloride      Merck (Darmstadt) 

Potassium dihydrogen phosphate    Gerbu (Gaiberg) 

Precision Plus Protein Standard    Bio-Rad (Munich) 

Protease Inhibitor Cocktail      Sigma (Steinheim) 

Protein Assay Dye Reagent Concentrate   BioRad (München) 

Quantum 263 Medium for Tumor Cells   PAA Laboratories (Pasching, Austria) 

Reaction buffer BD (10 x)     Solis Biodyne (Tartu, Estonia) 

Recombinant Human Interleukin-2    PromoCell (Heidelberg) 

Recombinant Human Interleukin-4    PromoCell (Heidelberg) 

Recombinant Human Interleukin-7    PromoCell (Heidelberg) 

RIPA Buffer      Sigma Aldrich (Steinheim) 

RNase Out       Invitrogen (Karlsruhe) 

ROX size standard      Applied Biosystems (Darmstadt) 

RPMI 1640       Gibco (Paisley, UK) 
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Sodium acetate      Roth (Karlsruhe) 

Sodium carbonate     J.T. Baker (Deventer, Netherlands) 

Sodium chloride (NaCl)    Sigma Aldrich (Steinheim) 

Sodium dihydrogen phosphate dihydrate  J.T. Baker (Deventer, Netherlands) 

Sodium dihydrogenphosphate monohydrate   J.T. Baker (Deventer, Netherlands) 

Sodium heparin      Ratiopharm (Ulm) 

Sodium hydrogene carbonate     Merck (Darmstadt) 

Sodium hydroxide (NaOH)    Sigma Aldrich (Steinheim) 

Sodium thiosulfate      Gerbu (Gaiberg) 

Sodiumdodecylsulfate (SDS)    Serva (Heidelberg) 

Supplement Insulin-Transferrin-Selenium   Gibco (Paisley, UK) 

Tetramethylbenzidine (TMB)    Sigma Aldrich (Steinheim) 

Tetramethylethylenediamine (TEMED)   Sigma Aldrich (Steinheim) 

TMX-202      Telormedix (Bioggio, Switzerland) 

Tris-(hydroxymethyl)aminomethane    Roth (Karlsruhe) 

Tris-HCl       Roth (Karlsruhe) 

Trypan blue solution      Sigma-Aldrich (Steinheim) 

Trypsin-EDTA       Gibco (Paisley, UK) 

Tween 20      BioRad (München) 

Ultima Gold       PerkinElmer (Waltham, USA) 

Xylene       Merck (Darmstadt) 

 

3.1.3  Consumables 

96-well plates, U-bottom     BD Falcon (Durham, NC, USA) 

96-well plates, V-bottom    BD Falcon (Durham, NC, USA) 

Cannulas Microlance 3     Becton Dickinson (Fraga, Spain) 

Cell culture plate Cellstar (6/12/96 wells)  Greiner Bio-One (Frickenhausen) 

Cell culture plate Nunclon Surface    Nunc (Roskilde, Danmark) 

Cell strainer (100 µm)      BD Biosciences (Erembodegen, Belgium) 

Columns (LS)       Miltenyi Biotec (Bergisch Gladbach) 

Columns (MS)      Miltenyi Biotec (Bergisch Gladbach) 

E-Plate VIEW 96     ACEA Biosciences (San Diego, USA) 

Examination gloves, Sempercare® nitrile   Semperit (Vienna, Austria) 

Filter paper      Whatman (Dassel) 

Filter systems (0.22 µm)     Corning incorporated (New York, USA) 

Filter tips (10 µl, 20 µl, 200 µl, 1000 µl)   Corning Incorporated (New York, USA) 

Filter tips Tip One      StarLab (Ahrensburg) 

Freezing tubes Cryo.s with screw cap (2ml)  Greiner Bio-One (Frickenhausen) 

Laboratory film Parafilm „M“    American National Can (Greenwich) 

Microscope cover glasses     Marienfeld (Lauda-Königshofen) 

Microscope slides Superfrost Plus   Menzel (Braunschweig) 

Microscopy Aquatex     Merck (Darmstadt) 
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Microtome blades R35     PFM Medica (Köln) 

Microwell plate NUNC 96 flat bottom   NUNC (Langenselbold) 

PCR tubes       Steinbrenner (Wiesenbach) 

Petri dishes       Greiner Bio-One (Frickenhausen) 

Petri dishes (sterile)      Nunc (Roskilde, Denmark) 

Photographic film Kodak     Sigma-Aldrich (St. Louis, USA) 

Pipet tips       Greiner Bio-One (Frickenhausen) 

Polystyrene tubes      BD Biosciences (Erembodegen, Belgium) 

PVDF membrane Hybond N+     Amersham (Buckinghamshire, UK) 

Reaction tubes (1.5 and 2 ml)    Eppendorf (Hamburg) 

Reaction tubes (15 ml and 50 ml)   Greiner Bio-One (Frickenhausen) 

Scalpel No. 11      PFM Medical (Köln) 

Serological pipette (2-25 ml)     Sarstedt (Nümbrecht)  

Serological pipette Costar Stripette    Corning (New York, USA) 

Sterile filter (0.2 µm)      Corning Incorporated (New York, USA) 

Tissue culture flasks (sterile, pyrogen-free) Cellstar Greiner Bio-One (Frickenhausen) 

Western Blotting Luminol Reagent    Santa Cruz (Heidelberg)    

 

3.1.4  Commercially available kits 

CD4
+
CD25

+
 Regulatory T Cell Isolation Kit human Miltenyi Biotec (Bergisch Gladbach) 

CINtec Plus (Cytology, Histology)   Roche (Mannheim) 

DNeasy Blood & Tissue Kit     Qiagen (Hilden) 

dNTP Set 100 mM      Invitrogen (Karlsruhe) 

Hexanucleotide mix (10 x)     Roche Diagnostics (Mannheim) 

Multiplex HPV Genotyping Kit    Diamex (Heidelberg) 

Mycoplasma detection kit MycoAlert™    Lonza (Köln) 

Pan T Cell isolation Kit II     Miltenyi Biotec (Bergisch Gladbach) 

Power SYBR Green PCR Master mix    Applied Biosystems (Foster City, USA) 

QIAamp DNA FFPE Tissue Kit    Qiagen (Hilden)   

Quantikine®ELISA Human IL-6   R&D Systems (Abingdon, UK) 

RNeasy Mini Kit      Qiagen (Hilden) 

SuperScript II Reverse Transcriptase    Invitrogen (Karlsruhe) 

Vectastain Elite ABC Kit     Vector (Burlingame, USA) 

 

 

  



36  3. Materials and Methods  

3.1.5  Antibodies 

Reactivity Clone 
Modi- 

fication 

Application  

(dil./conc.) 
Supplier 

p16
INK4a

 E6H4 none 
ready to use in 

CINtec® Plus Kit 
(Roche, Mannheim) 

CD3 PS1 none 
IHC 

(1:50) 
Acris antibodies (Herford) 

Foxp3 236A/E7 none 
IHC 

(1:50) 
eBioscience (Frankfurt a. M.) 

GranzymeB 11F1 none 
IHC 

(1:50) 

Novocastra (Newcastle upon 

Tyne, UK) 

CD8 4B11 none 
IHC 

(1:50) 

Novocastra (Newcastle upon 

Tyne, UK) 

CD3-ζ 6.B10.2 none 
IHC 

(1:200) 
Santa Cruz (Heidelberg) 

HC-10 n.a. none 
IHC 

(1:50) 
kind gift of Soldano Ferrone 

HCA-2 n.a. none 
IHC 

(1:50) 
kind gift of Soldano Ferrone 

L368 n.a. none 
IHC 

(1:50) 
kind gift of Soldano Ferrone 

LG-612.14 n.a. none 
IHC 

1:300 
kind gift of Soldano Ferrone 

mouse IgG / 

rabbit IgG  
polyclonal biotin 

IHC  

(1:50) 

Vector Laboratories 

(Burlingame, USA) 

CD4 RPA-T4 FITC 
FACS 

(1:50) 
BD Pharmingen (Heidelberg) 

CD8 RPA-T8 FITC 
FACS 

(1:50) 
BD Pharmingen (Heidelberg) 

CD25 4E3 PE 
FACS 

(1:50) 

Miltenyi Biotec (Bergisch 

Gladbach) 

CD107a n.a. PE 
FACS 

(1:50)  
BD Pharmingen (Heidelberg) 

HLA-A2 n.a. FITC 
FACS 

(1:50) 
AbD Serotec (Puchheim) 

HLA-A/B/C W6/32 FITC 
FACS 

(1:50) 
eBioscience (Frankfurt a. M.) 

epithelial 

antigen 
BerEP4 FITC 

FACS 

(1:50) 
Dako (Eching) 

isotype 

control 

IgG1 

n.a. FITC 
FACS 

(1:50) 
BD Pharmingen (Heidelberg) 

  



  3. Materials and Methods  37 

isotype 

control 

IgG1 

n.a. PE 
FACS 

(1:50) 
BD Pharmingen (Heidelberg) 

isotype 

control 

IgG2a 

n.a. FITC 
FACS 

(1:50) 
BD Pharmingen (Heidelberg) 

isotype 

control 

IgG2b 

n.a. PE 
FACS 

(1:50) 
BD Pharmingen (Heidelberg) 

isotype 

control 

IgG2b 

n.a. PE 
FACS 

(1:50) 
BD Pharmingen (Heidelberg) 

TLR7  monoclonal none 
WB 

(1:1000) 
Abcam (Cambridge, UK) 

HPV16 E7 NM2 none 
WB 

(1:500) 
Santa Cruz (Heidelberg) 

actin n.a. none 
WB 

(1:20000) 
MP Biomedicals, Heidelberg. 

rabbit IgG n.a. HRP 
WB 

(1:2000) 
Promega (Mannheim) 

mouse IgG n.a. HRP 
WB 

(1:4000) 
GE Healthcare (Freiburg) 

n.a = not available; IHC = immunohistochemistry; WB = Western Blot  

 

3.1.6  Enzymes 

Collagenase Type IV      Sigma-Aldrich (Steinheim) 

DNase I       Sigma-Aldrich (Steinheim) 

Hyaluronidase       Sigma-Aldrich (Steinheim) 

Super Script Reverse Transcriptase (200U/µl)  Invitrogen (Karlsruhe)  

Tag DNA Polymerase (5U/µl)     Invitrogen (Karlsruhe) 

 

 

3.1.7  Peptides  

p16
INK4a

 

peptide name Amino acid positions amino acid sequence  

p16
INK4a

 peptide R1  51-59 VMMMGSARV 

The p16INK4a 9mer peptide was synthesized by the core facility for peptide synthesis, German Cancer Research 

Center, Heidelberg.  
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HPV16 L1  

peptide name Amino acid positions amino acid sequence  

HPV16 L1_2 2-11 SLWLPSEATV 

HPV16 L1_12 12-21 YLPPVPVSKV 

HPV16 L1_60 60-68 ILVPKVSGL 

HPV16 L1_67 67-75 GLQYRVFRI 

HPV16 L1_97 97-105 RLVWACVGV 

HPV16 L1_249 249-257 YLRREQMFV 

HPV16 L1_323 323-331 ICWGNQLFV 

The HPV16 L1 9mer and 10mer peptides were synthesized by Genaxxon Bioscience, Ulm.  

 
 

Influenza virus matrix protein  

peptide name Amino acid positions amino acid sequence  

viral MP  57-68 GILGFVFTL 

The virus matrix protein was synthesized by the core facility for peptide synthesis, German Cancer Research 

Center, Heidelberg.  

 

 

3.1.8  Primers 

primer name sequence (5’-3’) 

TLR7 forward AAGCCCTTTCAGAAGTCCAAGTT 

TLR7 reverse GGTGAGCTTGCGGGTTTGT 

β-actin forward ATGTGGCCGAGGACTTTGATT 

β-actin reverse AGTGGGGTGGCTTTTAGGATG 

The primers were obtained from Thermo Scientific, Ulm.  

 

 

3.1.9  Buffers and Solutions 

Agarose Gel (1.5%):    1.5 g Agarose 

100 ml TBE buffer 

1 µl Gel Red 

 

10% APS:     10 % (w/v) Ammonium persulfate in aqua bidest 
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Blotting Buffer (10x):   30.37 g Tris  

     144.13 g Glycine  

     ad 1l Aqua bidest.  

 

Blotting Buffer (1x) working solution: 100 ml 10x Blotting Buffer 

     200 ml methanol 

     700 ml Aqua bidest.  

 

10x Citrate buffer:    100 mM Citric acid monohydrate (21 g) 

     ad 1l Aqua bidest. 

     adjust pH to 6.0 with NaOH 

 

DNA loading buffer (6x):   25 ml Glycerol 

125 mg Xylenecyanol 

25 ml H2O dest. 

 

Laemmli sample buffer (4x) :   2.5 ml 1M Tris pH 8.0 (125mM) 

     8 ml 10% SDS (4%) 

     2 ml glycerin (10%) 

     2 ml β-mercaptoethanol (10%) 

     4 mg bromphenol blue (0.02%) 

     ad 20 ml H2O  

 

5 M NaOH:    100 g NaOH  

     ad 500 ml Aqua bidest  

 

10x PBS:     84 g NaCl (= 0.8 % w/v) 

     2 g KCl (= 0.02 % w/v) 

     11.5 g Na2HPO4 (= 0.1 % w/v)  

     2 g KH2PO4 (= 0.02 % w/v) 

     ad 800 ml Aqua bidest, pH 7.4 

 

4% PFA Stock Solution:   4g paraformaldehyde  

     100 ml PBS  

 

10x SDS-PAGE running buffer:  30.3 g Tris-Base 

     144 g Glycine  

     100 ml 10% SDS  

     ad 1 l Aqua bidest.  
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10x TBE:     108 g Tris  

     55 g boric acid  

     40 ml 0.5 M EDTA, pH 8.0 

     ad 1 l Aqua bidest.  

 

10x TBS:    60.55 g Tris  

     87.66 g NaCl 

     ad 1 l Aqua bidest.  

     adjust pH to 7.6 with 37% HCl  

 

1x TBS:     dilute 10x TBS 1:10 in Aqua bidest 

 

1x TBS-T for Western Blot:   dilute 10x TBS 1:10 in Aqua bidest  

     add 0.1% Tween  

 

Tris 0.5 M, pH 6.8:   20.29 g Tris  

     20 ml 10% SDS 

     ad 500 ml Aqua bidest.  

     adjust pH to 6.8, autoclave  

 

Tris 1.5 M, pH 8.8 :    90.9 g Tris  

     20 ml 10% SDS 

     ad 500 ml Aqua bidest 

     adjust pH to 8.8 with HCl, autoclave  

 

 

3.1.10 Cell culture media 

 

B cell/T cell basis medium  500 ml IMDM  

     50 ml human serum  

     6 ml L-glutamine 

     25 µg/ml gentamicin 

 

Dendritic cell medium    CellGro medium  

     1% penicillin / streptomycin 

     3% human serum  

 

Freezing medium for PBMCs  human serum  

     + 10 % DMSO  
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MACS Buffer    PBS 

5% human AB serum 

     1 mM EDTA 

     sterile filtrate 

 

Peptide-Load medium    500 ml IMDM (serum free) 

     25 µg/ml gentamicin 

 

Quantum Tumor Medium   Quantum 263 for Tumor cells  

(used for cell line generation)  5 µg/ml insulin 

     0.5 µg/ml hydrocortisone 

     10 ng/ml hEGF  

     25 µg/ml gentamicin 

 

T cell medium:    Bc/Tc basis medium 

1 x Insulin Transferrin Selenium 

10 U/ml IL-2 

10 U/ml IL-7 

 

Tumor digestion solution:   10 ml Tumor preparation solution 

1 mg/ml Collagenase Type IV 

0.1 mg/ml Hyaluronidase 

20 µg/ml DNase I 

 

Tumor preparation solution   200 ml RPMI 1640 

25 mM HEPES 

3.6 ml Penicillin/Streptomycin (100x)  

5 µg/ml amphotericin B 

2 mM Glutamin 

 

Tumor transport solution   DMEM medium  

     10% FCS 

     100 µg/ml gentamycin      

     10 µg/ml amphotericin B  

 

Tumor cell line Medium   RPMI 1640 

(used for standard cell lines)   10% FCS 

     25 µg/ml gentamicin  
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3.1.11  Cell lines  

 

cell line  origin, characteristics experiment 

CaSki HPV16 positive cervical cancer cell line killing assay (chapters 3.2.4, 5.2.4) 

Raji B cell lymphoma cell line, high TLR7 expression 
Positive control for TLR7 expression 

(chapters 3.2.4, 5.1.2) 

T2 TAP-deficient T-B lymphoblastoid hybridoma Peptide binding assay (3.2.4, 5.2.1) 

 

3.1.12  Patients’ material  

1) Cervical intraepithelial neoplasia and cervical cancer patients 

study “immune cell infiltration in relation to p16
INK4a

 expression” (chapter 4.2) 

University Hospital, Heidelberg and Institute of 

Pathology, Mannheim, Germany 

 

period of recruitment 2003-2004 (Mannheim) and 2007-2010 

(Heidelberg) 

number of patients  69 

resected tissue  cervical cone biopsies  

stages  

CIN1 

CIN2 

CIN3 

invasive cervical carcinoma 

p16
INK4a

-positive [n, (%)] 

n = 22  13 (59.1%) 

n = 11 11 (100.0%) 

n = 19 19 (100.0%) 

n = 17  17 (100.0%) 

 

 

2) Cervical intraepithelial neoplasia and cervical cancer patients 

antigen-presentation HLA class I and HLA class II study (chapter 4.3) 

Institute of Pathology, Mannheim, Germany  

period of recruitment 2003-2004 

number of patients  n = 41 (* n = 69) 

resected tissue  cervical cone biopsies 

disease stages 

* CIN1  

CIN2 

CIN3 

invasive cervical carcinoma 

p16
INK4a

-positive [n, (%)] 

n = 19 10 (52.6 %) 

n = 9 (* n = 9)  9 (*9) 100.0% 

n = 13 13 (100.0%) 

n = 19   19 (100.0%) 

* cohort enlarged by CIN1 (n=19) and an additional subset of CIN2 (n=9) for HLA class II analysis (deriving from cohort 1)  
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3) Cervical intraepithelial neoplasia patients: 

imiquimod study (chapter 4.4) 

 

University Hospital, Vienna, Austria   

period of recruitment 2009-2010 

number of patients  10 

resected tissue  punch biopsies 

disease stages all patients had CIN2/3 at study entry  

(inclusion criterion)  

 

4) Oropharyngeal carcinoma patients 

Generation of HPV-positive tumor cell line (chapter 5.2) 

University Hospital, Giessen, Germany   

period of recruitment 2011-2014 

number of patients  58 

resected tissue  primary tumors located in the oropharynx and 

metastatic lymph nodes in the head and neck 

region 

HPV-status 

HPV-positive  

HPV-negative  

 

n = 31 

n = 27 

 

5) healthy blood donors  

TMX-202 treatment on PBMCs 

Institute of Pathology, Heidelberg, Germany   

period of recruitment 2013/2014 

number of patients  4 

Sex  

male 

female 

 

50% 

50% 

 

3.1.13  Software 

Adobe Acrobat Reader 6     Adobe (San Jose, CA, USA) 

BIMAS       (PARKER et al., 1994)   

CellQuest pro (5.2)      Becton Dickinson (San Jose, USA) 

Diskus Bilddarstellung (4.30)     Techn. Büro Hilgers (Königswinter) 

Endnote X6       Thomson Reuters (New York, NY, USA)  

Magellan Standard      Tecan Group Ltd. (Männedorf, Switzerland) 

MedCalc, version 11.5.1.0    MedCalc Software (Ostend, Belgium) 

NDP.view Software     Hamamatsu (Herrsching) 
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RTCA software  2.0.0      ACEA Biosiences (San Diego, USA) 

SPSS Statistics 22     IBM (Ehningen)   

STATISTICA (7)      StatSoft (Europe) GmbH (Hamburg) 

Statistica, version 8.0.3.6    Statsoft (Hamburg) 

StepOne (2.1)       Applied Biosystems (Foster City, USA) 

SYFPEITHI       (RAMMENSEE et al., 1999)  

TissuemorphDP™M      Visiopharm, Hørsholm, Denmark  

 

 

3.2  Methods  

3.2.1   Immunohistochemistry for archived tissue samples  

p16
INK4a 

Immunohistochemistry 

 

The identification and diagnosis of precancerous lesions of the cervix uteri is based on the biomarker 

p16
INK4a

, a cyclin-dependent kinase inhibitor which is normally involved in tumor suppression. It is a 

well-established biomarker for early oncogenic processes in HPV-related cancers, especially cervical 

cancer as p16
INK4a

 becomes markedly overexpressed in persistent HPV-infections in which the 

oncogenic transformation is induced by HPV proteins which is the first step necessary for the 

development of cervical cancer. 
 

The CINtec® PLUS Kit was used for the qualitative detection of p16
INK4a

 and the 

immunohistochemical staining procedure was carried out as proposed in the manufacturer’s protocol. 

The provided reagents were used as described in the protocol with the following exceptions: the 

substrate incubation with DAB was carried out in two consecutive steps comprising 8 minutes each. 
 

 

Immunohistochemical staining for CD3-, Foxp3-, Granzyme B- and CD8-positive cells and the 

antigen-presentation molecules HLA class I and HLA class II  

 

Different T cell markers were qualitatively and quantitatively investigated by immunohistochemical 

analyses. The global T cell infiltration in tissue specimens was analyzed by staining for CD3. T cell 

markers representing different T cell subtypes were used to characterize T cell activation (CD8, 

Granzyme B and CD3 ζ-chain) and T cell inhibition (Foxp3). Precancerous lesions and cancers were 

characterized for HLA class I heavy chain (HLA-A/B/C) and light chain (beta2-microglobuline, β2m) 

and HLA class II antigen expression.  

Formalin-fixed paraffin-embedded tissue sections were mounted on aminopropylsilane-coated slides 

and following deparaffinisation in xylene and rehydration in decreasing ethanol concentrations (100%-

70%) the slides were heated for 15 minutes in 10mM citrate buffer (pH=6) in order to retrieve antigen 

epitopes to be analyzed. Blocking of endogenous peroxidase was performed by using 0.6% H2O2 in 

methanol. In order to reduce non-specific antibody binding and background staining the tissue sections 

were then blocked with 10% horse serum in PBS before the various first antibodies were applied (for 

dilutions see section “Antibodies”) and incubated at 4°C overnight. Slides were then incubated with 

biotinylated anti-mouse/anti-rabbit IgG secondary antibodies for 30 minutes at room temperature. 
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Following the application of avidin-biotin reagent according to the manufacturer’s instructions, the 

color reaction with 3,3-diaminobenzidine (DAB+ chromogen) allowed the detection of the antigens to 

be characterized. Finally, the slides were counterstained with hematoxylin and mounted with Aquatex.  

 

Automated immunohistochemical staining protocol (CD3 and CD8) 

 

Tissue sections (2µm) were mounted on aminopropylsilane-coated slides and subject to automated 

immunohistochemical staining with the Leica-Bond II Max autostainer by applying the following 

staining protocol with reagents provided by Leica Biosystems:  

 

 

Step (solution applied)  duration temperature 

BOND Dewax Solution 30 sec 72°C 

BOND Dewax Solution 30 sec 72°C 

BOND Dewax Solution 30 sec RT 

ethanol (99%) (3 repetitions)  RT 

BOND wash solution (3 repetitions)  RT 

BOND ER Solution 1 (citrate buffer, pH 6.0) (2x)  RT 

BOND ER Solution 1 (citrate buffer, pH 6.0) 20 min 100°C 

BOND ER Solution 1 (citrate buffer, pH 6.0) 12 min RT 

BOND wash solution (3 repetitions)  37°C 

peroxide block 20 min RT 

BOND wash solution (3 repetitions)  RT 

serum block (10% goat serum in PBS) 30 min RT 

BOND wash solution (3 repetitions)  RT 

primary antibody in TBS/10% FBS) 30 min RT 

BOND wash solution (3 repetitions)  RT 

post primary (polymer penetration enhancer 

in TBS/10% FBS) 
8 min RT 

BOND wash solution (3 repetitions) 2min RT 

polymer (secondary antibody, poly-HRP-anti-mouse/anti-rabbit IgG) 8 min RT 

BOND wash solution (2 repetitions) 2min RT 

deionized water  RT 

mixed DAB Refine ??? RT 

mixed DAB Refine 10 min RT 

deionized Water (3x)  RT 
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hematoxylin counterstaining 5 min RT 

deionized Water (3x)  RT 

BOND wash solution 5 min RT 

deionized water  RT 

embed slides in Aquatex  RT 

 

 

Microscopic evaluation  

 

p16
INK4a

 staining 

 

Sections were defined to be negative in cases where no p16
INK4a

 expression was detectable or where 

p16
INK4a

-positive cells showed a focal staining pattern (patchy, restricted to single cells). Lesions with 

a strong and diffuse p16
INK4a

 staining were considered to p16
INK4a

-positive.  

 

T cell markers  

 

Immunohistochemically stained slides were analyzed independently in a blinded fashion during two 

sessions and blinded to histopathological grade. For counting and evaluation of the tumor-infiltrating 

lymphocytes, a Leica DMRBE microscope with a 10x10 ocular grid covering an area of 0.0625 mm
2
 

at a 400-fold magnification was used. In total, seven grid areas were counted in the in lesion/tumor 

and the adjacent stromal tissue, three located in the epithelium and four located in the stroma. In total, 

an area of 0.4375 mm
2
 was considered for counting.  

 

HLA class I and II  

 

Lesions and tumors that showed a strong cytoplasmic or membranous staining in more than 75% of 

cells were classified as positive for HLA class I or class II expression. Heterogeneous expression was 

defined as faint and patchy staining (cytoplasmic or membranous) observable in 75% to 25% of the 

cells of a lesion or tumor. Lesions were defined to be negative for HLA expression when the staining 

was absent or restricted to single cells (representing invading APCs) or could be identified as locally 

induced expression due to the presence of immune cells (faint staining, locally restricted in areas with 

infiltrating immune cells) and concerned less than 25% of the lesion cells. 

 

Automated evaluation of immunohistochemically stained slides 

 

The establishment of an automated immune cell quantification platform and the adaption of the 

underlying imagine analysis algorithms were a major goal of this thesis and are described in detail in 

chapter 4.1. The major steps of the workflow are automated staining, whole-slide-imaging and 

computational image analysis and were carried out under the supervision of PD Dr. Niels Grabe and 

Dr. Bernd Lahrmann, TIGA Center, Heidelberg.  
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3.2.2   Molecular Biology Methods  

Isolation of genomic DNA from cells or tissue 

 

DNA was isolated from either FFPE tissue sections or from cultured cells deriving from fresh tumor 

tissue following the manufacturer’s instructions.  

Briefly, for the purification of genomic DNA (gDNA) from fresh or frozen cells, the pellet was 

resuspended in 200µl PBS and 20µl proteinase K were added. Then 200µl Buffer AL were added and 

the sample was incubated at 56°C for 10 min before it was resuspended in 200µl ethanol and loaded 

on a spin column by centrifuging at 8000 rpm for 1 min. After having washed the column with bound 

DNA two times with the provided wash buffers AW1 and AW2, DNA was eluted with Buffer AE in 

two subsequent steps and by using 30µl buffer only for each step to increase the final DNA 

concentration without losing to much of the maximum DNA yield.  

For the isolation of gDNA from formalin fixed paraffin-embedded tissue sections, samples had to be 

pretreated by xylene to remove paraffin. Following centrifugation and removal of the supernatant by 

pipetting, ethanol was added to the pellet to remove residual xylene. Ethanol was removed by 

pipetting following centrifugation. This step was repeated once before the pellet was dried in the 

SpeedVac at 37°C for 15 min, resuspended in 180µl buffer ATL and completely lysed by adding 20µl 

Proteinase K at 56°C (minimum 1 hour until overnight incubation). Then the samples were incubated 

at 90°C for 1 hour before 200 µl Buffer AL and 200µl ethanol were added to the sample. The lysate 

was transferred and the provided QIAamp MinElute column which – following binding of DNA to the 

column – was washed twice with Buffers AW1 and AW2. Finally, following complete drying of the 

membrane by centrifugation at full speed, DNA was eluted in two steps with 30µl buffer in each step.  

The concentration of eluted gDNA was determined by measuring the absorbance at 260 nm with the 

elution buffer used as blank for the zero adjustment.  

 

 

GP5+/6+ PCR for Luminex® -based HPV-Genotyping 

 

amount reagent 

26.75 µl H2O 

5.0 µl  10x PCR Buffer 

7.0 µl 50 mM MgCl2 

1.5 µl 10 mM dNTPs 

2.0 µl primer set 1 

0.5 µl primer set 2  

0.25 µl Taq polymerase 

7.0 µl  template 
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Temperature profile:  

 

94°C 10 min initial denaturation  

94°C 30 sec denaturation  

38 °C 30 sec primer annealing 40 x 

72°C 80 sec primer extension  

72°C 6 min final extension  

4°C forever  

 

 

HPV genotyping based on Luminex® technology  

 

Luminex Technology based on polystyrene beads with various but specifically identifiable absorption 

spectra allow the multiplexed detection of different factors. Specifically amplified DNA from tumor 

samples is bound to the beads that are coupled to HPV specific oligonucleotide probes. By this 

approach 24 of the most common HPV types (15 high-risk and 6 low-risk and 3 putative high-risk 

types) can be detected simultaneously in one sample by reporter fluorescence. For the assay procedure 

the manufacturer’s protocol was followed:  

First, 40µl/well of the Bead Mix were pipetted to each required sample well of a 96 well Hybridization 

Plate. As a negative control 10 µl H2O, 10µl Hybridization Control (1:10 diluted in H2O) ad 10µl PCR 

product per sample well were pipetted. The PCR plate was covered tightly with a seal foil and 

incubated at 95°C for 10 min in a preheated PCR machine. The plate was then incubated on ice for 1 

min and then for hybridization subsequently transferred to the PCR machine and incubated at 41°C for 

30 min. In the meantime a filter plate was equilibrated by pipetting 100 µl Assay Buffer in each well 

and incubating the plate for 30min at room temperature. Wash Buffer was removed by vacuum 

filtration and the Bead Mix PCR samples were transferred to the filter plate after having the samples 

mixed vigorously by pipetting up and down and with the hybridization plate still being located in the 

PCR machine. Liquid is removed from the filter plate by vacuum filtration and the plate was washed 

twice with 100µl/well Assay Buffer. 70µl Staining solution were added to each well and incubated 

protected from light for 30min at room temperature under slight agitation. Then the liquid was again 

removed by vacuum filtration and the plate was washed trice with 100µl/well Assay Buffer 

respectively. The beads were then resuspended in 100µl Assay Buffer and transferred to a 96 lock-

microtiter plate to measure samples then in the Luminex analyzer.  

 

 

RNA extraction from cultured cells 

 
RNA purification from human cells was performed with RNeasy Mini Kit from QIAgen with slight 

modifications to the manufacturer’s protocol. All centrifugation steps were carried out at 10000 rpm if 

not indicated otherwise. Cells were disrupted by adding Buffer RLT and β-mercaptoethanol (1:100) to 

the cells and vortexed. The lysate was homogenized by adding 70% ethanol and vigorous vortexing or 

pipetting. Then 700µl of the sample were transferred onto the membrane of an RNeasy spin column 

and centrifuged for 90 s. The flow-through was discarded. For DNA elimination 350 µl Buffer RW1 
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were added to the spin column, centrifuged for 90 sec to wash the membrane and the flow-through 

was discarded. DNase 1 incubation mix (consisting of 62µl H2O, 7µl 10xDNase Buffer + 1µl DNase 1 

(Invitrogen) per sample) was added onto spin column membrane and incubated for 15 min at RT. 

350µl Buffer RW1 were added to the membrane, centrifuged for 90 sec at 10000 rpm and the flow-

through was discarded. To wash the spin column membrane, 500µl Buffer RPE were then added to the 

membrane, centrifuged for 90 sec and the flow-through was discarded. This washing step was repeated 

once by centrifuging the spin column for 3 min. The spin column was then dried by centrifuging it at 

14000 rpm for 2 min and was then placed in a new 1.5 ml reaction tube. Then, 50µl RNase-free water 

were pipetted on the spin column membrane, incubated for 7 min on ice and then centrifuged at 10000 

rpm for 2 min to elute the RNA. This step was repeated to increase the overall RNA yield 

accompanied however by decreased RNA concentration.  

DNA concentration was measured at 260nm wavelength via photometer and RNA purity was assessed 

as the ratio of absorbance measured at 260nm to the absorbance measured at 280nm wavelength.  

 
 

Reverse Transcription  

 

Isolated RNA underwent reverse transcription for the generation of complementary DNA (cDNA). 

Complete RNA samples or a negative control (H2O HPLC-grade) were used for reverse transcription 

in addition with the following components: 

 

amount reagent 

11.0 µl RNA (1 µg, prediluted with H2O) 

4.0 µl 5 x First-Strand Buffer 

2.0 µl  0.1M DTT 

0.5 µl Oligo-dT-nucleotide 

0.5 µl Hexanucleotide Mix (1:10 pre-diluted) 

1.0 µl 10 mM dNTPs 

1.0 µl Reverse Transcriptase (200U/µl) 

 

The First-Strand Buffer, DTT and the Reverse Transcriptase (all contained in the SuperScript II 

Reverse Transcription Kit) were mixed with remaining reagent and RNA as listed above. The mixture 

was incubated at 70°C for 10 min, the briefly put on ice, incubated at 37°C for 15 min and finally at 

42°C for 60 min. The reverse transcription was completed with a denaturation step carried out at 90°C 

for 5 min. As the resulting cDNA concentration was assumed to equal the initial RNA concentration, 

cDNA was diluted based on RNA concentrations to 20ng/µl in H2O (HPLC-grade). The samples were 

either stored at -20°C until further usage or immediately used in quantitative real-time PCR.  
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Real-time quantitative PCR  

 

Quantitative Real-time RT-PCR was performed with primers to detect human toll-like receptor 7 

(TLR7) gene expression. The human β-actin gene expression was used as a normalization control 

(primer sequences listed in section 3.1.8). Quantitative real-time PCR was performed in triplicates in a 

96-well plate format. Power SYBR Green Master Mix (5µl), the corresponding forward and reverse 

primers (final concentration 150 nM) and cDNA template (5µl) or water for the non-template controls 

were mixed. The cycling conditions are shown in the table below.  

 

 

 Temperature Duration Number of cycles  

Enzyme activation 95°C 15 min 1 cycle 

Denaturation 95°C 15 sec  

Annealing 60°C 30 sec 40 cycles 

Extension 72°C 30 sec  

 

 

 

Calculation of TLR7 mRNA levels  

 
The threshold cycle PCR values (Ct) were obtained during exponential amplification. The calculation 

of relative changes in TLR7 mRNA levels was based on the ∆∆Ct method, which means that TLR7 

gene expression – in relative units – was calculated by comparing the Ct values of the target gene with 

the normalization control gene. The Ct values for β-actin and TLR7 of technical triplicates of each 

sample were averaged. Standard deviations (threshold cycle differences) between triplicate reactions 

less than 0.5 cycles were considered to be acceptable and the Ct values were used for further 

calculation. The relative expression level of TLR7 mRNA was calculated in comparison to β-actin 

mRNA expression. In a first step, ∆Ct-values were calculated for TLR7:  

 

∆Ct gene =Ct target – Ct control cDNA 

 

Then, the ∆∆Ct value for each treated samples was calculated by subtracting the ∆Ct of the control 

(untreated or DMSO-treated) from the ∆Ct of the sample.  

 

∆∆Ct = ∆Ct gene (treated) - ∆Ct gene (untreated/control)  

 

The fold exchange in TLR7 expression was then obtained by calculation 2
-∆∆Ct

 and visualized as bar 

graphs in a log2 scale.  
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3.2.3 Biochemical Methods 

 

Whole cell lysates  

 

Whole cell lysates were prepared by resuspending cell pellets containing a defined numbers of cells in 

4x Laemmli buffer and heated for 10 min at 95°C before subjected to gel electrophoresis.  

 

Protein lysates and Bradford assay  

 

Cell pellets were resuspended in 50µl RIPA Buffer containing Protease Inhibitor Cocktail and 

incubated for 20 min on ice. Samples were centrifuged at 13000rpm for 15 min at 4°C and 

supernatants were transferred in new 1.5 ml reaction tubes for further processing. Protein 

concentrations were determined using Bradford protein assay, a photometric method based on the dye 

Coomassie Brillant Blue changing its color from red to blue if complexes with proteins are formed. 

For the quantification of protein concentrations a 10 mg/ml aqueous BSA solution was serially diluted 

to produce a standard curve ranging from 0.0 mg/ml to 2.0 mg/ml BSA. The samples to be tested were 

diluted 1:20 in water and Bradford Reagent which was filtered with a 0.22µm sterile filter was diluted 

1:5 in water. 5 µl of the standards and the diluted samples were pipetted into a 96 well flat bottom 

plate and 250 µl of the Bradford solution were added to each well and incubated for 5 min at room 

temperature while shaking until measurement. The absorbance was measured at 595 nm without 

wavelength correction and the protein concentrations of the samples were determined by using the 

formula of the best-fit curve for the standard values. Samples were either directly used for SDS-PAGE 

or stored at -20°C for further analysis.  

 

Sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE)  

 

Protein separation was performed with polyacrylamide gel electrophoresis based on the method by 

Laemmli. Proteins are denatured and negatively charged after binding of the detergent SDS. In an 

electric field the negatively charged proteins migrate towards the anode and are thus separated 

according to their molecular weight.  

For TLR7 SDS-PAGE whole cell lysate were used, while for HPV16 E7 electrophoresis protein 

lysates as described above were used 

Dependent on the size of the protein of interest, the resolving gels were produced with different 

percentages of acrylamide contained in the formulation to vary the pore size for protein separation. For 

the early protein of HPV16, E7, a 20% resolving gel was used, whereas for the separation of TLR7 

protein a 7% gel was required.  
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 stacking gel resolving gels 

 5% gel 7% gel 20% gel 

Aqua dest. 2.9 ml 5.1 ml 0.73 ml 

Tris Buffer 
1.25 ml 

(0.5 M Tris, pH 6.8) 
2.5 ml 

(1.5 M Tris, pH 8.8) 
2.5 ml 

(1.5 M Tris, pH 8.8) 

Bis-Acrylamide 

(30%) 
0.85 ml 2.3 ml 6.67 ml 

10% APS 50 µl 100 µl 100 µl 

Temed 5 µl 10 µl 10 µl 

 

Dependent on the required total protein amount, protein lysates were mixed with 4x Laemmli sample 

buffer and water and adjusted to a total volume of 50 µl. The samples are cooked for 10 minutes at 

95°C for protein denaturation and then loaded on the gel. Gels were run at 200V, 250 mA and 50W for 

about 50 minutes.  

 

Western Blot  

 

Filters and sponges for the Western Blot chamber were treated with blotting buffer before use. The 

PVDF membrane was prewetted with 100% methanol for 30 seconds before use and was then washed 

in Blotting Buffer. The membrane and the acryl amide gel were stuck between three filter papers and 

one sponge from both sides. The blot was performed in Blotting Buffer at 400mA, 50W for 60-90 

minutes. After the blotting step the membrane was stained with Ponceau Red solution indicating the 

success of the protein transfer. After removing of the color by applying distilled water, the membrane 

was blocked with 5% casein solution (in TBS buffer) for one hour at room temperature on the rolling 

mixer and was then incubated over night at 4°C with first antibody diluted in 5% casein solution (for 

antibody concentrations see Table). The next day, the membrane was washed 3 times for 10 minutes 

with TBS containing 0.1% Tween before incubated with the corresponding secondary antibody diluted 

in 5% casein solution. After another washing step (3x10 minutes in TBS-T) the membrane was 

incubated with the premixed ECL substrate (solution A and B) for 1 min before the antigens could be 

detected by developing the photographic films exposed to luminescent light in the darkroom. Exposure 

time was variable ranging from 10 seconds to 1 hour depending on the strength of the signal.  

 

 

3.2.4  Cell culture methods 

Flow cytometry analysis  

 

In order to characterize the phenotypes of different primary cells as well as to monitor the generation 

of tumor cell lines and purification of different cell types from the whole PBMC fraction, flow 

cytometry analysis was performed. Therefore living cells were stained with directly fluorochrome-
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labeled antibodies specific for extracellular antigens expressed by different cell types. The light 

emitted by the fluorochromes following absorption is three-dimensionally scattered and registered as 

forward scatter representing the cell size and as sideward scatter representing the cell granularity. Not 

only the percentage of positive cells can be determined, but also the mean fluorescence intensity 

providing information about the levels of antigen expression can be measured.  

Depending on their availability an average of 2.5 x10
5 

cells were used per staining. Cells were 

harvested, washed twice in PBS by centrifugation for 10 min at 4°C and 1200 rpm. Incubation with 

directly labeled primary antibodies (each diluted 1:50 in PBS) was carried out on ice for 30 min and 

protected from light. If double staining was performed, the second antibody was applied in a second 

incubation step following an additional washing step to remove the first antibody. Additionally, for 

every staining an isotype control based on an antibody directed against the corresponding IgG subtype 

(diluted 1:50 in PBS) was included. Following the incubation with the antibodies, cells were washed 

twice again in PBS by centrifuging at 4°C and 1200 rpm for 8 min and finally fixed in 1% PFA 

solution and stored in the dark until measurement. The samples were analyzed in a FACSCalibur and 

fluoresce data obtained were evaluated using CellQuest Pro Software.  

 

 

Density gradient centrifugation for the isolation of mononuclear cells from peripheral blood 

 

For immunological studies peripheral blood mononuclear cells (PBMCs) were isolated by density 

gradient centrifugation. PBMCs are comprise different cell types such as lymphocytes, monocytes and 

macrophages that can be used directly or following further separation in different immunological 

approaches. Density gradient centrifugation allows isolating PBMCs from whole blood and is carried 

out with a ficoll-based separation medium that contains a hydrophilic polysaccharide of a distinct 

density. Centrifugation of overlaid blood leads to the separation of the whole blood sample into 

plasma on the top of tube, PBMCs (middle fraction), and a fraction mainly consisting of erythrocytes 

on the bottom of the tube.  

For extraction of PBMCs heparinized blood samples were diluted with equal amounts of RPMI 1640 

medium and the mixture was carefully layered on 15ml lymphocyte separation medium. Density 

gradient centrifugation was carried out at 2500 rpm for 15 minutes with inactivated brake. The 

supernatant containing plasma was taken off and stored at –20°C. Then the interphase containing 

peripheral blood mononuclear cells (PBMCs) was collected and cells were washed twice in RPMI 

1640 medium by centrifugation at 1800 rpm and 1500 rpm (15 min each) to purify PBMCs from 

eventually contaminating separation medium and also from thrombocytes. Following the washing 

steps the pellet was resuspended in 20 ml RPMI 1640 medium and cells were counted with trypan blue 

solution. PBMCs then were either directly used in experiments or stored at -80°C in human serum 

containing 10% DMSO.  

 

 

Tumor preparation and tumor tissue culture  

 

Tumor samples of HNSCC patients were sent overnight within 16-24 hours after surgical resection 

while lying in transport medium and on ice packs. All washing steps were performed with cooled 
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solutions and at 4°C. The tumor sample deriving from primary tumor of different localizations (base of 

the tongue, edge of the tongue, tonsils) or lymph node metastasis were transferred into a sterile 50 ml 

tube and washed twice in 10 ml tumor preparation solution by centrifuging for 10 min at 1200 rpm. 

Then the tissue was transferred to a sterile petri dish and eventually necrotic tissue, fatty tissue 

surrounding lymph nodes and larger blood vessels were removed mechanically. Following two 

additional washing steps in a new 50 ml tube the samples were again transferred to a new petri dish 

and cut into very small pieces (≥ 1 mm
2
) with a scalpel. The tissue pieces were again transferred into a 

new 50 ml tube with the help of forceps and 10 ml pipettes washed twice in a new 50 ml tube with 

tumor preparation solution and then digested overnight (16-20 hours depending on the size of tissue 

pieces) by applying 5 ml tumor digestion solution. Due to the limited size of tumor tissue, isolation of 

tumor infiltrating lymphocytes was not carried out and the complete amount of digested tumor tissue 

was used for generation of HNSCC tumor cell lines. The next day the tissue was washed twice in 

RPMI 1640 medium by centrifuging for 10 min at 1200 rpm and finally resuspended either in 

Quantum medium or FAD medium and cultured in cell culture flasks or plates. Cultures with adherent 

and outgrowing tumor cells were checked regularly via flow cytometry for the proportion of tumor 

cells. Cultures with at least 10% tumor cells were further cultured, whereas cultures with less tumor 

cells and those containing only fibroblasts were discarded. Sequential trypsinization of fibroblasts 

from young tumor cell cultures was performed to remove fibroblasts and if necessary a second 

trypsinization step of the remaining adherent tumor cells was carried out to detach single cells from 

tumor cell clusters and allow these areas to expand.  

 

 

T2- peptide binding assay  

 

The human T2 cell line deriving from T-B lymphoblast hybrids was used to test the binding affinities 

of different L1 peptides that were synthesized based on epitope prediction algorithms. T2 cells are 

transporter associated with antigen processing (TAP1/TAP2) deficient and therefore defective in 

loading human leukocyte antigen (HLA) class I molecules with endogenous peptides. However, HLA 

class I molecules of T2 cells can be loaded exogenously with peptides present in the medium, whereby 

different epitopes bind to HLA class I molecules with higher or lower affinities. Only peptide-HLA-

complexes are stable and can be detected by flow cytometry analysis following staining with a HLA 

class I specific antibody whereas free HLA class I molecules not bound to any peptide are instable and 

degraded and therefore cannot be detected. The higher the affinity of predicted epitopes to HLA class 

molecules, the more stable is the complex formed and the higher is the fluorescence intensity 

measured. 

T2 cells were harvested and resuspended in T2 medium at a density of 0.5x10
6
 cells/100 µl. 100 

µl/well was pipetted into a 96-well round bottom plate. Then β-2-microglobulin at concentration of 5 

µg/ml as well as the newly synthesized peptides to be analyzed for their binding affinity (at 50 µg/ml) 

were added to each well. Peptides already known to have a high affinity to HLA class I were included 

as positive controls and determined the cut-off (viral MP, p16_R1, L1_323). All antigens were tested 

in quadruplicates. The plate was incubated over night at 27°C for 17 hours. Following the 17 hours 

incubation period the plate had to be incubated another 2.5 hours at 37°C, 5% CO2. Then cells were 

harvested and transferred into a 1.5 ml reaction tube. They were washed one with PBS and then 
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stained with directly labeled HLA-A2 antibody. Finally, samples were washed twice with PBS, fixed 

with 1% PFA and stored at 4°C in the dark until measurement.  

 

For analysis the MFI values for all antigens were recorded and compared with the positive controls 

after background subtraction (obtained by measuring T2 cells incubated in absence of any antigen). 

Peptides were considered to have sufficient binding capacity to HLA-A2 if the MFI was significantly 

higher as negative controls and at the same time exceed the lowest MFI measured for the positive 

controls. Peptides that fulfilled both criteria were considered to form stable peptide-HLA-complexes 

and to be suitable for simulation experiments.  

 

 

IL-6 ELISA 

 

Enzyme-linked immunosorbent assay (ELISA) allows the detection and quantification of antigen by 

specific antibodies. The ELISA used for measuring IL-6 levels is a classical “sandwich” ELISA with 

the antigen contained in a sample being attached to the surface of wells coated with a first antigen-

specific antibody. Bound antigens are detected by a second specific antibody linked to an enzyme 

allowing the detection of antigen-antibody complexes via a color reaction after adding the 

corresponding substrate for the enzyme. Antigen concentrations can be calculated by comparing the 

measured optical density values with those of defined standard concentrations. For measuring the 

interleukin-6 release following PBMC stimulation, a commercially available IL-6 ELISA was used 

providing pre-coated and blocked plates. The assay was performed following the manufacturer’s 

protocol and all standards, samples and controls were tested in duplicate. Briefly, after having 

prepared an IL-6 standard dilution series, the assay diluent provided was added to the wells, followed 

by 100µl/well of standard, sample or control. After 2 hours incubation, wells were washed, 200µl/well 

of IL-6 conjugate was added, incubated for another 2 hours and washed again. Substrate solution 

(200µl/well) was added, incubated for 20 minutes protected from light and then the color reaction was 

stopped by adding 50µl/well of stop solution. The optical density was determined at a wavelength of 

450nm and the reference wavelength for wavelength corrections was 540nm. A standard curve was 

created by plotting the mean absorbance for each standard against the concentrations and drawing a 

best fit curve through the data points which allowed the concentration of the samples to be calculated.  

 

 

Generation of dendritic cells from monocytes 

 

Dendritic cells are the most potent antigen-presenting cells and play an important role in the raise of an 

antigen-specific immune response as the process and present antigens to T cells. Except from culturing 

dendritic cells from hematopoietic progenitor cells they also can easily be generated using CD34-

positive monocytes circulating in the peripheral blood. Generation of dendritic cells requires external 

granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-4 contained in the media.  

The standard protocol requires PBMCs freshly isolated from peripheral blood. They were washed in 

serum free CellGro medium and resuspended in CellGro medium supplemented with 3% human 

serum. After one hour of adherence in a 10cm cell culture plate at 37°C the non-adherent cells were 
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detached by tapping to avoid clumping and the cell culture flask was then incubated overnight at 37°C, 

5 % CO2. The next day, the non-adherent cells were removed and the remaining adherent monocytes 

were cultured to generate mature dendritic cells. To stimulate the differentiation of monocytes into 

dendritic cells, the monocytes were cultured in CellGro medium containing GM-CSF (1000U/ml) and 

IL-4 (667 U/ml) for 6 days at 37°C and 5% CO2 in a humified atmosphere. The standard maturation 

cocktail was supplemented by addition of TMX-202 to the medium (treatment schedule see below) on 

days 0, 2, 4 and 5 of the culture. Cells were harvested on day 6 by using 0.05% EDTA solution and a 

cell scraper. Cells were immediately used for immunoassays. For the T cell in vitro priming DCs 

generation with cells from the same donor was repeated weekly (every 6 days) and used as fresh cells 

for T cell re-stimulation.  

 

 

Isolation of T lymphocytes from PBMCs  

 

In order to obtain total T cells from the whole PBMC fraction, isolated mononuclear cells were subject 

to plastic adherence for 4 hours in RPMI containing 5% human serum as described for the generation 

of dendritic cells. T cells then were isolated from the non-adherent cell fraction by Pan T cell isolation 

based on magnetic depletion of non-T cells. Therefore floating cells were harvested, passed through a 

40µm cell strainer to avoid clumping, counted and washed once in MACS Buffer. T cells were 

purified from that fraction by using MACS Pan T cell Isolation Kit II from Miltenyi Biotec following 

the manufacturer’s protocol. Briefly, cells were resuspended in 40 µl MACS buffer per 10
7
 cells and 

then incubated for 5 minutes with 10 µl per 10
7
 cells of the biotin-antibody cocktail (containing 

monoclonal antibodies against CD14, CD15, CD16, CD19, CD34, CD36, CD56, CD123, and 

CD235a) targeting non-T cells. Following addition of 30 µl MACS buffer and 20 µl anti-biotin 

microbeads per 10
7
 cells to the sample and incubation for 10 minutes, T cells could be isolated by 

magnetic separation. The specific binding of magnetic microbeads to labeled cells allows the depletion 

of the non-target cells by retaining them in the magnetic field of the MACS column while unlabeled T 

cells pass through. Eluted T cells were counted and immediately used in immunoassays. T cells were 

cultured in T cell medium containing IL-2 and IL-7.  

 

 

Isolation of regulatory T cells from PBMCs (Regulatory T cell depletion)  

 

Treg depletion was performed in order to compare the effects of T cell mediated killing of tumor cells 

between the total T cell fraction (including regulatory T cells) and T cells that are depleted from 

regulatory T cells. Tregs were depleted from the total CD3+ T cell fraction by using MACS 

technology based on magnetic labelling of CD25
+
 T cells with CD25 MicroBeads and isolation of the 

labelled cells by positive selection over a MACS column in a magnetic field. Tregs were depleted in 

two successive steps following the manufacturer’s protocol and comparable to the procedure describe 

for T cell isolation. In the first step non-CD4 positive cells were magnetically labelled and separated 

from CD4+ T cells to enrich the CD4+ T cell fraction. These cells were eluted from the column and 

stored for the experiments. In the second step, CD4+CD25+ regulatory T cells were labelled and 

separated from the remaining CD4+ T cell population over a column. Briefly, the cell pellet of CD4+ 
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T cells was resuspended in 90 µl MACS buffer per 10
7
 cells and 10 µl of anti-CD25 microbeads per 

10
7
 cells were added and incubated for 15 minutes on ice. Cells were then washed twice in 2 ml of 

MACS buffer by centrifuging at 1200 rpm for 10 minutes and finally resuspended in 500 µl of MACS 

buffer. Cells were then subject to magnetic separation for positive selection of labeled CD25+ cells 

while unlabeled cells pass through the column. Non-CD4+ T cells separated in first step were 

combined with the CD4+ enriched and Treg depleted fraction and used for further experiments.  

 

 

In vitro priming of T cells with HPV16 L1 and p16
INK4a

 peptides  

 

The induction of a specific T cell response depends on the recognition of the antigen via MHC 

complex and the activation by co-stimulatory molecules. The activation of naïve T cells after the 

recognition of antigens presented by antigen presenting cells and their development into effector T 

cells is called “priming” and can be simulated in vitro to monitor the ability of peptides to induce a 

cell-mediated immune response in naïve individuals giving rise to T cells that are able to recognize 

and target tumor cells that express the protein.  

In order to induce a primary cell-mediated immune response against HPV16 L1-peptides and a 

p16
INK4a

-peptide naïve T cells of a HLA-A*0201 positive healthy donor were stimulated with 9mer 

and 10mer L1 and p16
INK4a

 peptides predicted for HLA-A2 and validated in peptide binding assay.  

Dendritic cells as potent antigen-presenting cells were used to prime naïve T cells to the peptides and 

were generated in 4 cycles as described above. T cells were obtained by T cell isolation from PBMCs 

as described above. The ratio between DC and T cell during stimulation was 1:10.  

 

 

FIGURE 3.1  TMX-202 AND DMSO TREATMENT SCHEDULE FOR DENDRITIC CELLS AND T CELLS 

DURING THE IN VITRO PRIMING APPROACH. 

 

Dendritic cells were harvested and loaded with peptides by incubating them in peptide-load medium 

with 20µg/ml of each peptide and in presence of Lipofectamine 2000 for 2.5 hours at 37°C, 5% CO2. 

Cells were irradiated with 30 Gray after loading and washed twice. They were then added to T cells in 

a 12-well plate in T cell medium and were co-cultured until the next restimulation 6 days later. For 

restimulation T cells were harvested, washed and counted and the required amounts of DC were 

loaded again with peptides by repeating the procedure described above. In total, T cells had four 

stimulation cycles over 24 days (Figure 3.1). The experiment was based on two distinct T cell 

fractions that were treated with either TMX-202 or DMSO during the complete duration of the 
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experiment (4 treatments per cycle) and also were stimulated with either TMX- or DMSO-treated 

dendritic cells. The treatment schedule is shown in Figure 3.1. 

 

 

PBMC treatment with TMX-202 

 

PBMCs were obtained by density gradient centrifugation as described above and cultured in 24-well 

plates in medium for T cells. PBMCs were cultured for 3 days and were treated daily with either 1 µM 

TMX-202, 10µM TMX-202, 30µM imiquimod or the same amount of DMSO as added with the 

substances as control. Cells were harvested after 72 hours. Due to the adherence capacities of 

monocytes two distinct cell fractions had to be harvested: non-adherent peripheral blood lymphocytes 

(PBLs) and adherent monocytes that were harvested by using a cell scraper. Cells were washed and 

pellets were stored at -20°C until used for further analyses. Supernatants were also harvested, 

centrifuged to remove cells and stored at -80°C for cytokine analysis.  

 

 

Tumor cell line maintenance  

 

Tumor cell lines were cultured in the corresponding tumor cell media listed above. Adherent tumor 

cell lines were split when confluent. Prior to use in killing assays tumor cells were treated with 1 µM 

DAC following a standard treatment protocol to increase antigenicity of the tumor cells which was 

developed in the department: tumor cells were treated for 96 hours, with daily change of half of the 

media and addition of 1 µM final concentration with the supplemented media. Cells were then 

harvested and used in the corresponding experiments.  

 

 

xCELLigence Impedance Measurement  

The xCELLigence system is based on a microelectronic readout using electronic cell sensor array 

technology and allows for real-time monitoring of cellular processes without requiring labeling of 

cells with additional compounds and therefore being less invasive and allowing more physiological 

conditions. The assay principle is based on changes of the electrode impedance by adherent cells 

(Figure 3.3) As the measurement reflects the entire duration of the assay, the conditions can be 

monitored in real-time allowing the characterization of the kinetic response of cells within an assay, 

prior and following certain treatments. Thereby information regarding the biological status of the cell 

(growth rate, growth arrest, morphology, apoptosis) can be obtained rendering the assay also suitable 

for the quantification of compound-mediated or cell-mediated cytotoxicity. The assay principle is 

based on the measurement of changes of the electrode impedance due to cell-electrode interactions, as 

adherence of cells onto the electrodes affects the local ionic environment at the electrode/solution 

interface. Impedance increase is dependent on the numbers of cells attached to the electrodes but also 

on the quality of the interaction between cells and electrodes. The electrode impedance is represented 

by a dimensionless value, termed cell index, which indicates the relative change in measured electrical 

impedance and thus the cell status. It contains information about cell viability, cell growth or growth 

arrest, apoptosis, morphology and adhesion degree (Figure 3.3). 



  3. Materials and Methods  59 

 

FIGURE 3.2  PRINCIPLE OF THE xCELLigence TECHNOLOGY. Adherence of cells to the electrodes affects the 

electrode impedance (Z cell) compared with the baseline impedance (no cells, non-adhered cells) by 

changing the local ionic environment at the electrode/solution interface). Adapted from 

www.aceabio.com. 

Without cells or cells not adhered to the electrodes the cell index is zero. Under the same conditions, 

cell index values increases with adherence of cells to the electrodes, and even more increases if cells 

spread over the electrodes or become more strongly attached to them. The values decrease with cells 

detaching from the electrodes due to apoptosis or cytotoxicity.  

 

FIGURE 3.3 CHANGES OF THE CELL INDEX REPRESENTATIVE OF THE ELECTRODE IMPEDANCE OVER 

TIME UNDER DIFFERENT CONDITIONS. A) Electrode and cell index (CI) is zero if no cells or only 

non-adherent cells are contained in the wells and B) increases with adherence of cells to the electrodes. 

The CI positively correlates with C) the cell number and D) the strength of adherence. E) Detaching cells 

due to apoptosis or cytotoxicity lead to decreasing CI values. Adapted from www.aceabio.com. 

electrode without cells
Z

Z

Z = Z0

Z = Z cell
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60  3. Materials and Methods  

The xCELLigence system was used to compare and quantify the effects of depletion of regulatory T 

lymphocytes from the total T cell fraction on the killing rate of tumor cells. It served as platform to 

characterize the cell-mediated cytotoxicity in an autologous tumor model.  

The 96 well E-plate was prepared by adding 100 µl PBS in all interspaces between the wells to reduce 

evaporation of the medium and drying-out of the plate. Then, 75 µl/well Quantum tumor cell medium 

were added in well (150 µl/well in the wells designated for medium control). The plate then was 

incubated for 30 min at RT, put onto the SP station for measurement and impedance was measured for 

determination of the background (sequence 1). Per well, 25000 tumor cells were seeded in a volume of 

150 µl Quantum tumor cell medium and were grown for 96 hours while pre-treated with 1 µM DAC 

following the standard treatment protocol developed in our laboratory (see above). Therefore the 

measurement was interrupted every 24 hours until day 4 (96 hours) when effector cells were added. 

This was done by changing half of the media and adding 25000 T cells per well in 75 µl T cell 

medium. The plate was then measured for an additional period of 96 hours without interruption while 

T cells and tumors were co-incubated. Throughout whole experiment the electrode impedance was 

measured every 30 minutes leading to approx. 48 time points measured for each 24 hours-interval and 

approx. 190 time points recorded during the tumor cell growing and the co-incubation phase.  

 

CD107 degranulation assay  

Cytotoxic T lymphocytes (CTLs) can get activated upon contact with and recognition of target cells. 

In the activated state during the CTL-target interaction they start to release cytotoxic granules which is 

accompanied by the mobilization of CD107a (lysosomal-associated membrane protein-1, LAMP-1) to 

the cell surface which is normally present in vesicle membranes. The CD107a surface expression thus 

correlates with the cytotoxic activity of T cells and the killing rate of target cells and can be 

quantitated by flow cytometry analysis. This method allows also for the simultaneous staining with 

other markers to gain further information about T cell phenotypes. The assay principle is displayed in 

Figure 3.4. 

CD107a mobilization assay was used in two different settings: for the analysis of the killing potential 

of T cells after in vitro priming under treatment with immune modulators and of the killing effect of T 

cells after Treg depletion in an autologous setting.  

The specific conditions and setups for each of these assays are demonstrated in Tables x and x. In 

general, 2.5x10
5 

T cells (effectors) were co-incubated with tumor cells (targets) in a 1:1 ratio. 

Following isolation of fresh cells or harvesting of cultured cells, T cells were washed once in RPMI 

medium and adjusted to 2.5x10
6
 cells per 100 µl in T cell medium. Effector cells and target cells were 

co-incubated in a total volume of 200µl in a 96-well round bottom under sterile conditions. As the 

experiment was demonstrated in previous approaches to provide reliable results with small standard 

deviations between quadruplicates it was performed in duplicates as T cell numbers were restricted. As 

controls for spontaneous CD107a release and background reactivity T cells were incubated without 

tumor cells. To the corresponding wells (except those where only T cell markers were investigated or 

served as isotype controls), 10 µl of fluorescent-labeled anti-CD107a antibody were added (see Table 

“Antibodies” section 1.3.5).  
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FIGURE 3.4 PRINCIPLE OF THE CD107A DEGRANULATION ASSAY. Effector cells (T cells) are co-incubated 

with target cells (tumor cells) and an antibody against CD107a is added to the culture (A). Upon T cell activation CD107a is 

mobilized to the cell surface with the release of cytotoxic granules and can be bound by the antibody. CD107a surface 

expression can then be analyzed by flow cytometry analysis (B).  

 

The plate was then incubated at 37°C in a humidified atmosphere with 5% CO2. After 1 hour of co-

incubation, brefeldin A at a final concentration of 5µg/ml was added to each well and the plate was 

incubated for further 4 hours. The plate was then centrifuged (1200 rpm, 10 minutes, room 

temperature) and the supernatant was removed. T cell/tumor cell conjugates were dissolved by 

resuspending the pellets in 200 µl PBS/0.5mM EDTA buffer and cells were then transferred into a 1.5 

ml reaction tube. The wells were washed a second time with 200 µl PBS/0.5mM EDTA buffer and 

remaining cells were also transferred into the tubes. After centrifugation (1200 rpm/10 minutes/ 4°C), 

cells were washed once with FACS-PBS and samples were either directly fixed with 1% PFA solution 

(CD107a single staining) or subjected to FACS staining (isotype control and T cell markers as single 

staining or in double staining with CD107a) by applying the FACS staining protocol described above., 

Finally, cells were fixed with 1% PFA solution and transferred into FACS tubes for measurement.  

During FACS analysis, T cells could be distinguished from tumor cells in the FSC/SSC based on their 

size and granularity. The corresponding FITC and PE isotype controls allowed the definition of 

quadrant borders and single stains for CD107a and T cell markers were used to adjust the fluorescence 

compensation for the measurement of double stains. Samples containing only tumor cells were used to 

verify that with the instruments settings and gates chosen for analysis only T cells are included in the 

analysis and tumor cells are excluded from the quantitation. Then the samples of co-incubated T cells 

and tumor cells for the analysis of the killing rate were measured in duplicates by applying the same 

settings and conditions.  
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In vitro priming of T cells with subsequent CaSki killing 

sample no Tc untreated Tc treated tumor cells anti-CD107a FACS-stain 

1 yes no no none IgG1-FITC 

2 yes no no none IgG1-PE 

3 yes no no yes none 

4 yes no no none CD8 

5 yes no no yes  CD8 

6 no yes no none IgG1-FITC 

7 no yes no none IgG1-PE 

8 no yes no yes none 

9 no yes no none CD8 

10 no yes no yes CD8 

11 no no yes none IgG1-FITC 

12 no no yes none IgG1-PE 

13 no no yes yes none 

14 no no yes none CD8 

15 no no yes yes CD8 

16-17 yes no yes no CD8 

18-19 yes no yes yes none 

20-21 yes no yes yes  CD8 

22-23 no yes yes no CD8 

24-25 no yes yes yes none 

26-27 no yes yes yes CD8 

Samples 1-5 represent controls for untreated T cells, samples 6-10 controls for treated cells. Controls for tumor 
cells are represented by samples 11-15. The killing experiment (co-incubation of T cells with tumor cells) is 

represented by samples 16-23.  

Treg depletion with subsequent killing of the autologous cell line HN038M 

sample no Tc total  Tc depleted tumor cells anti-CD107a FACS-stain 

1 yes no no none IgG1-FITC 

2 yes no no none IgG1-PE 

3 yes no no yes none 

4 yes no no none CD4 

5 no yes no none IgG1-FITC 

6 no yes no none IgG1-PE 

7 no yes no yes none 

8 no yes no none CD4 

9 no no yes yes none 

10 no no yes none CD4 

11 no no yes yes yes 

12-13 yes no yes yes yes 

14-15 no yes yes yes yes 

Samples 1-4 represent controls for total T cells, samples 5-8 controls for Treg depleted T cells. Controls for 

tumor cells are represented by samples 9-11. The killing experiment (co-incubation of T cells with tumor cells) 

is represented by samples 12-15.  
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Mycoplasma detection assay  

Mycoplasma are the simplest prokaryotes and a major problem in cell culture as contamination is very 

common and may influence the cell proliferation of cell lines but also their gene expression patterns 

which might be a problem for different assays. To exclude infections with mycoplasma, cell lines, 

especially those of primary cell culture, were regularly tested with the MycoAlert™ assay. This assay 

is a rapid and easy method to detect mycoplasma contamination in cell cultures and is based on the 

selective biochemical analysis of the activity of special mycoplasma enzymes. Mycoplasma contained 

in the culture are lysed and set free enzymes that react with the MycoAlert substrate catalyzing the 

conversion of ADP to ATP. The ATP levels measured in a sample before and after the substrate is 

added allow the calculation of a ratio that indicates presence or absence of mycoplasma. The 

underlying biochemical reaction is based on the oxidation of Luciferin in presence of ATP by 

Luciferase and allows the quantification of emitted light.  

 

The intensity of the emitted light is linearly related to the ATP concentration and can be measured by a 

luminometer. The assay was performed following the manufacturer’s protocol. Briefly, 2 ml of cell 

culture supernatant or cell culture were transferred into a reaction tube and any cells contained in the 

sample were pelleted at 1500 rpm for 5 minutes. 100 µl of the cleared supernatant were transferred 

into a luminometer cuvette and 100 µl of MycoAlert reagent were added to each sample and incubated 

for 5 minutes. The cuvette was placed in the luminometer and read (with a program set to 1 minute 

integrated reading) to obtain a value for Reading A. Then 100 µl of the MycoAlert substrate were 

added to each sample and incubated for 10 minutes before the cuvette was measured again (Reading 

B). The ratio “Reading B/Reading A” was calculated and interpreted as follows:  

 

Ratio Interpretation 

< 0.9 negative for mycoplasma 

0.9 - 1.2 borderline: quarantine cells and retest in 24 hours  

> 1.2 mycoplasma contamination 

 

 

3.2.5  Statistical Methods 

 

For the comparison of continuous data between two groups either Student’s t-test or Mann-Whitney U 

test for non-parametrical data were used.  

For the estimation of differences in categorical in terms of between two groups chi-square test was 

used.  

For all tests, differences were considered to be significant if the calculated p-value was 0.05 or less.  
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4. IMMUNE CELL INFILTRATES 

AND POSSIBLE IMMUNE 

EVASION MECHANISMS IN 

CERVICAL LESIONS 
 

The present chapter deals with the immunological characterization of cervical intraepithelial neoplasia 

and cancers. Final goal of this part is to gain a better understanding of the clinically heterogeneous 

behavior of the precancerous lesions in terms of regression and progression rates.  

In the first part a central methodological approach of histological analyses of immune cell infiltrates in 

CIN was established using a computer-based tool for the standardized quantification of immune cell 

infiltrates in cooperation with the TIGA Centre Heidelberg (chapter 4.1).  

In the following part immune cell infiltrates were investigated in CIN to find out if samples of 

different infection stages are different in terms of immune cell phenotypes. Changes in immune cell 

densities and composition might be a hint for either underlying immune-regulatory mechanisms or 

effective anti-tumoral immune responses. In this context, the time point of when changes in the 

immune cell infiltration become apparent during the natural history of CIN lesions and a possible 

association with the initiation of the transforming infection stage as represented by p16
INK4a

 

overexpression are of special interest. Therefore different T cell markers of which most are well-

characterized, and which are representative of T cell activation and also of immuno-regulatory 

mechanisms were investigated (chapter 4.2).  

To better understand to which extent intrinsic features of the epithelial cells play a role in the 

pathogenesis of cervical cancer the antigen-presentation capacity of the lesion cells was investigated. 

Antigen presentation might be influenced by HPV infection and alterations regarding the expression of 

the involved molecules probably promote disease progression by causing immune escape despite the 

presence of infiltrating lymphocytes (chapter 4.3).  

Finally, the immune infiltrates of patients with CIN who were topically treated with the clinically 

approved immuno-modulatory substance imiquimod, were characterized in a longitudinal approach 

(chapter 4.4). These analyses aim at a better understanding of how the immune cell composition could 

be positively influenced and how these changes might correlate with the clinical course of the disease.  
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4.1  Development of an automated quantification system for the 

computational profiling of cervical intraepithelial neoplasia 

and its microenvironment  

 

4.1.1 Scanning and digitalization of stained tissue sections 

As the analysis of immune cell infiltrates in the lesions and the adjacent stroma was based on 

digitalized images of the tissue sections, the slides were scanned after having been fully automated 

stained with monoclonal antibodies against CD3 and CD8. The tissue sections were automatically 

imaged with the Hamamatsu NanoZoomer 2.0-HT Scan System (Figure 4.1) at 20-fold magnification 

resulting in a resolution of 0.46µm/pixel. The scan system is equipped with three 4096x64 pixel Time 

Delay and Integration (TDI) CCD (charge-coupled device) sensors enabling imaging based on a three-

dimensional XYZ-zoom technology (ROJO et al., 2006). This type of sensor allows multilayer 

scanning and is not restricted to one single, two-dimensional layer. The resulting virtual slides can 

then be analyzed in a similar manner as using classical microscopy allowing focusing through 

different layers of the tissue, dependent on the number of layers that were scanned and the distance 

between them. With a total capacity of 210 slides per batch and a scanning speed of 60 seconds for a 

tissue sample sized 15x15mm² the system allows for high-throughput scanning, digitalization and 

archiving of tissue samples. While scanning a glass slide, the system automatically detects the region 

of interest defined by presence of any tissue and also automatically chooses the correct and valid focal 

plane for the scanning processing. The file size of the virtual slides resulting from the digitalization 

process originally is up to 20 GB as uncompressed files and depends on the total size of the scanned 

area, the number of scanned layers and the magnification used during scanning. The file size 

retroactively can be reduced (approximately by the factor 25) by applying lossless JPEG compressing 

algorithms reducing for example a 16.3 GB slide to a 636 MB JPEG file.  

 

  

FIGURE 4.1  THE NANOZOOMER 2.0-HT SCAN SYSTEM USED FOR DIGITALIZATION OF STAINED 

SLIDES AND THE USER INTERFACE OF THE NDP SLIDE SERVER. With the NDPView software 

digitalized slides can be analyzed on a computer and allows the user to navigate through the slide in all 

three dimensions. Slides can be annotated, screenshots can be made and parameters such as intensity of 

the color channel, contrast and brightness can be adapted.  
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The scanned slides were made accessible on the TIGA’s Slide Server (http://tigacenter.bioquant.uni-

heidelberg.de/ndp-slide-server.html) for all cooperation partners and thus facilitated the exchange of 

data and information. This tool was also used for the definition of the lesion based on the p16
INK4a

 

staining and in cases of unclear morphology in low-grade lesions served as a platform for the 

pathologist’s review of the tissue (Figure 4.1).  

 

 

4.1.2 Development of an image processing tool adapted to cervical 

intraepithelial neoplasia 

The algorithms used for image processing have been developed using TissuemorphDP™M from 

Visiopharm, a company specialized in tissue analysis. The image processing software applied in this 

project was based on different algorithms and developed in cooperation with the TIGA Center, 

Heidelberg. An overview of the user interface of the Visiopharm image processing software with 

exemplary tools developed in the frame of this project that are applicable to the analysis of immune 

cells infiltrates in cervical intraepithelial neoplasia is given in Figure 4.2.  

 

 

FIGURE 4.2  OVERVIEW OF THE USER INTERFACE OF THE VISIOPHARM IMAGE PROCESSING 

SOFTWARE. Tools were developed for the annotation of the lesion and basal membrane, generation of 

ROIs, clearance of non-ROIs before starting the processing for cell segmentation.  
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Image processing was developed and adapted to CIN lesions using the Visiopharm image processing 

software before algorithms could finally be applied to the digitalized slides. Image processing is 

performed in four distinct steps.  

(i) Automated tissue detection  

The fully automated detection of all analyzable tissue contained on the glass is the first step towards 

the cell quantification in the lesion and its microenvironment. The region of interest (ROI) is defined 

as the tissue area that shall be subjected to further analysis. ROI detection was performed on the whole 

slide after converting a color overview image (RGB) into a greyscale image. By applying simple 

thresholding methods on the grey scale image as described previously (OTSU, 1979), ROIs could be 

separated from the background regions of the slides. Thereby the background representing any non-

tissue regions is separated from the relevant tissue regions which can then be subject to further image 

processing steps and analysis (Figure 4.3 A). As a post-processing step for the ROI detection, areas 

that cannot be analyzed because they are too small or inappropriate such as small tissue fragments, 

folded tissue, staining artifacts or dust particles were removed (Figure 4.3 B) by applying 

morphological operations like opening or closing (GONZALES, 2009). These are standard imaging 

operations to remove small disturbing objects from the image or to remove small holes contained in 

the tissue.  

 

FIGURE 4.3  EXAMPLE OF THE ROI DETECTION PROCESS. A) Regions of interest are detected automatically 

using thresholding methods to separate the tissue from the background (green line). B) Post-processing 

steps remove artifacts and areas (indicated by arrows) that are too small for further analysis.  

(ii) Manual annotation of the lesion and the basal membrane and automated generation of 

different invasive margins in the stroma  

In a second step the regions to be analyzed had to be defined which was done partially by manual 

annotation and partially by automated generation of regions that were then subjected to further 

analysis. Due to the high tissue heterogeneity in CIN and the resulting difficulties to separate normal 

tissue from the lesion and also the presence of p16
INK4a

-positive and p16
INK4a

-negative lesion areas 

among the low-grade lesions renders fully automated computational image processing challenging. 

One major concern is that p16
INK4a

-negative low-grade lesions would not have been identified as such 

by the established automated annotation algorithm and would have falsely been annotated as “normal” 

tissue. Therefore in this first approach for the establishment of the basic method, automated 
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tumor/lesion-identification was replaced by manual annotation based on a comparison with the 

p16
INK4a

-stained reference slide. Lesions positive for p16
INK4a

-overexpression were visually identified 

and the corresponding region was annotated manually in the slides stained for the defined T cell 

markers (white line, Figure 4.4). In unclear cases due to aberrations between the histological stage 

given by the pathologist and the morphology of the lesion, tissue sections were reviewed by the 

pathologist again. The manual approach described here also allowed for the separate investigation of 

p16
INK4a

-positive and -negative lesion areas within the same sample. In the second step the basal 

membrane underneath the annotated lesion was also manually marked. These annotation steps are the 

prerequisite to proceed to the next step that divided the adjacent stromal tissue into several distinct 

areas (invasive margins). The algorithms applied for region growing are used from the baseline (basal 

membrane/lamina) and separate the tissue into specific regions by growing in fixed and determined 

directions. Starting at the basal lamina, the first region grows with a distance of 100µm into the 

surrounding tissue of the epithelial region (yellow line, Figure 4.4). Then the second defined region 

grows with further 400µm into the tissue (border at 500µm, pink line) and is followed by the last 

growing with 500µm (border at 1000µm) leading finally to the last margin with a maximal distance of 

1000µm located from the basal membrane (green line, Figure 4.4). After processing the slides were 

manually inspected and regions that did not represent typical stromal tissue (artifacts such as 

disruptions, or glandular tissue, endothelial cells and cavities of large blood vessels) and that therefore 

had to be excluded from further processing were removed manually from the regions by annotating 

them as regions to be cleared (Figure 4.4).  

 

FIGURE 4.4  EXAMPLES OF PROCESSED SLIDES WITH AND THE CLEANING POST-PROCESSING STEP. 

The regions of interest (ROIs) are visualized by color-coded lines and represent the epithelium (white), 

margin 100 (yellow), margin 500 (pink) and margin 1000 (green). Cleared regions are marked by an 

asterisk. 
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(iii) Cell segmentation 

During the last image processing step positively stained and unstained cells were detected by cell 

segmentation and subsequently the expression level (determined as brown (positive) or non-brown 

(negative)) is determined. The segmentation of the cell nuclei was performed separately in all 

determined stromal ROI generated in the previous step and also of all nuclei in the epithelial region. 

The segmentation of all nuclei (brown and blue) is based on a watershed segmentation described 

elsewhere (BEUCHER, 1992; JUNG and KIM, 2010) on the IHS (Intensity, Hue, Saturation)-S color 

band. The basic principle of watershed segmentation is the transformation of an intensity image into a 

three-dimensional topographic image. The intensity of each pixel of an image thereby is represented 

by the altitude of the relief. Watershed algorithms then are applied, the relief is “floated” and the 

watersheds around peaks can be interpreted as borders defining different components which can thus 

be segmented from each other.  

 

FIGURE 4.5  EXAMPLE OF THE CELL DETECTION STEP. Shown is the annotated tissue (A) before cell 

segmentation and (B) after cell segmentation. DAB-negative cells are displayed in green, DAB-positive 

cells in red. 

Finally, the DAB-positive (brown stained) cells were detected within a HDAB-DAB color band, 

provided by a color deconvolution algorithm (RUIFROK and JOHNSTON, 2001). In dependence on 

the DAB staining signal of the surrounding membranes nuclei were categorized into two groups by 

simple thresholding, namely blue nuclei with brown (DAB-positive) membranes and blue nuclei 

without brown staining signal (Figure 4.5). In a post-processing step nuclei detected that were defined 

as being too small where removed by an area-filter. An overview of all image processing steps is given 

in Figure 4.6.  
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FIGURE 4.6  EXAMPLE OF THE SUCCESSIVE STEPS OF THE AUTOMATED QUANTIFICATION PROCESS. 

Based on the p16INK4 reference slide (1) on which the lesion was marked after reviewed by a pathologist 

(1*) the slides stained for CD3 (left side, (A)) and CD8 (right side, (B)) were annotated by demarking the 

epithelium and the basal membrane (2). Then the different invasive margins with 100 µm, 500 µm and 

1000 µm reaching into the stromal compartment were generated (3). Finally, cells stained for the 

corresponding immune cell markers (red) and those that are negative (green) are detected and quantified.  
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4.1.3  Calculation of cell densities from the output data  

The successive application of image processing steps described above resulted in different output 

variables comprising number and area of the nuclei for every staining category (negative = blue, 

positive = brown) and, in addition, the white areas surrounding the nuclei and representing cytoplasm. 

All output variables are listed below in table 4.1. 

ROI 001 RO002 ROI 003 ROI 004 

epithelium margin 100 margin 500 margin 1000 

counts of negative nuclei inside the corresponding ROI (blue signal) 

counts of positive nuclei inside the corresponding ROI (brown signal) 

area covered by negative nuclei inside the corresponding ROI  

area covered by positive nuclei inside the corresponding ROI 

remaining (non-nuclei) area inside the corresponding ROI (white area) 

TABLE 4.1 OVERVIEW OF THE OUTPUT VARIABLES OBTAINED FOR ALL DEFINED REGIONS OF 

INTEREST (ROI) FOLLOWING APPLICATION OF IMAGE PROCESSING STEPS.  

 

The output data comprise cell counts of positive and negative cells and the areas that are covered by 

cell in a distinct ROI. Single values are given for the negative nuclei, positive nuclei and the white 

surroundings representing cytoplasm. The total areas of all compartments, ROIs, could then be 

calculated from these values. This was done for each compartment separately (margin 100, margin 500 

and margin 1000), but also for the continuous regions that reach from the basal membrane up to the 

500µm and the 1000µm borders. The ratios between cell counts in a distinct ROI and the 

corresponding area of this compartment were calculated in order to obtain the cell densities as 

“positive cells/mm
2
”) from the output data.  

 

 

4.2  The local immune cell infiltration in cervical intraepithelial 

neoplasia in relation to p16
INK4a

 expression 

 

The study presented in this chapter adresses the question whether changes in the composition and 

densities of immune cell markers are correlated to p16
INK4a

 overexpression in cervical dysplasia, as a 

marker stratifying CIN into two infection states (permissive infections, p16
INK4a

-negative, and 

tansforming infections, p16
INK4a

-positive). The correlation of possible changes in immune cell density 

and composition with p16
INK4a

-defined biologic stages may reveal import insights into the immune 

control and changes of these mechanisms during cervical carcinogenesis.  
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For the investigation of a possible link between the infection stage and infiltrating immune cells in 

CIN mainly well-characterized standard T cell markers were chosen (for details see Introduction 

chapter 1.4.1).  

A mixture of activation and inhibition markers should allow to investigate to which extent T cells 

present in the lesion microenvironment are in an activated state and possibly able to combat the HPV 

infection and transformed cells or are inhibited. The global T cell infiltration was characterized by 

CD3-expressing cells while CD8 and Granzyme B were used as markers for cytotoxic T lymphocytes 

(CTLs) and activated CTLs displaying lytic activity. Forkhead box transcription factor 3 (Foxp3), a 

marker for regulatory T cells and thus representing the suppressive state of immune cells was also 

included. CD3-ζ was included as a marker for the susceptibility of T cells for activation upon antigen 

recognition. 

 

4.2.1  p16
INK4a

-expression status of the lesions 

As a marker highlighting transforming HPV infections (BERGERON et al., 2014; VON KNEBEL 

DOEBERITZ et al., 2012) p16
INK4a

 was used to biologically define the different lesion grades that 

were available for this study. Immunohistochemical staining for 16
INK4a

 (chapter 3.21) revealed that all 

cervical carcinoma samples and all high-grade CIN (CIN2/3) were p16
INK4a

-positive. However, low-

grade CIN (CIN1) could be classified into two groups with 9 of 22 lesions being p16
INK4a

-negative 

(permissive infection) and 13 of 22 lesions being p16
INK4a

-positive representing the early transforming 

infection stage in CIN (Table 4.2).  

 

 CIN1 CIN2 CIN3 CxCa Overall population 

number of patients 22 11 19 17 69 

p16
INK4a

-positive 

samples: n (%) 
13 (59.1%) 

11 

(100.0%) 

19 

(100.0%) 

17 

(100.0%) 

60 

(86.96%) 

TABLE 4.2 SAMPLE CHARACTERISITCS REGARDING THE HISTOLOGICAL CLASSIFCIATON AND THE 

TRANSFORMING INFECTION STAGE AS REPRESENTED BY THE p16INKa STATUS.  

 

4.2.2  Comparison of T cell infiltrates in p16
INK4a

-positive and p16
INK4a

-

negative low-grade CIN 

In terms of histomorphological classification CIN1 lesion are regarded as a uniform group. 

Biologically they are, however, more diverse with a proportion of these lesions being already in the 

early transforming infection stage which is highlighted by beginning p16
INK4a

-overexpression.  

T cell infiltrates of all phenotypes were compared between p16
INK4a

-negative and p16
INK4a

-positive 

low-grade lesions (representative examples for the immunohistochemical characterization of 

infiltrating immune cells are given in Figure 4.7).  
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FIGURE 4.7  REPRESENTATIVE DETAILS OF IMMUNOHISTOCHEMICAL STAININGS (AT 200x 

MAGNIFICATION) FOR p16INK4a, CD3, CD8, GRANB, CD3ζ AND FOXP3. Representative areas of 

the epithelium (upper part of the tissue) and the adjacent stroma (lower part) are shown and examples of 

positive cells are indicated by arrows.  

Low-grade lesions (all CIN1 irrespective of the p16
INK4a

 expression state) and the adjacent stromal 

compartment had generally lower total numbers of infiltrating immune cells compared with the higher 

grade CIN (mean cell numbers, ranges and standard deviations are summarized in Table S9.1). 

Nevertheless, the comparison of p16
INK4a

-negative and p16
INK4a

-positive samples within the group of 

low-grade CIN did not reveal significant differences regarding the infiltration densities of the five 

investigated T lymphocyte phenotypes (4.8 and Table S9.1). The ratio between epithelial and stromal 

cell numbers representing the percentage of T cells invading from the lesion-adjacent stroma into the 

lesion neither did reveal significant differences between p16
INK4a

-negative and p16
INK4a

-positive CIN1 

lesions (Figure 4.8 and Table S9.1). Furthermore, the ratios of all T cell subtypes to CD3+ cell counts 

were calculated for both compartments as a measure for the proportion of distinct T lymphocyte 

phenotypes among all present T cells. Here again, no significant differences between p16
INK4a

-negative 

and p16
INK4a

-positive low-grade lesions were observed (Figure 4.9 and Table S9.2). 
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FIGURE 4.8 DISTRIBUTION OF T CELL SUBTYPES IN DIFFERENT COMPARTMENTS IN p16INK4a-

NEGATIVE LOW-GRADE LESIONS COMPARED WITH p16INK4a-POSITIVE LOW-GRADE 

LESIONS. A) Absolute T cell counts per 0.0625mm² in the lesion and lesion-adjacent stroma. B) Ratio 

between the lesion and lesion-adjacent stroma for all T cell phenotypes. The dot in the center of each box 

represents the median value of the distribution; the borders of the box represent the upper and lower 

quartiles (25%-75%). Significant levels are indicated by asterisks:  

  * p<0.05 (significant) 

  ** p<0.01 (very significant) 

  ***  p<0.001 (extremely significant) 
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FIGURE 4.9 RATIOS OF T CELL SUBTYPES TO CD3+ T CELLS PRESENT IN THE LESION AND LESION-

ADJACENT STROMA IN p16INK4a-NEGATIVE LOW-GRADE LESIONS COMPARED WITH 

p16INK4a-POSITIVE LOW-GRADE LESIONS. The dot in the center of each box represents the median 

value of the distribution; the borders of the box represent the upper and lower quartiles (25%-75%). 

Significant levels are indicated by asterisks:  

  * p<0.05 (significant) 

  ** p<0.01 (very significant) 

  ***  p<0.001 (extremely significant) 
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4.2.3 T cell infiltrates in p16
INK4a

-positive high-grade CIN 

The high-grade CIN (CIN2/3) were all p16
INK4a

-positive indicating true transforming HPV infection in 

these lesions that furthermore probably have acquired secondary genomic alterations. 

The comparison of T cell counts between high-grade CIN (CIN2/3, all p16
INK4a

-positive) and all low-

grade CIN (of which n=13 were p16
INK4a

-positive and n=9 were p16
INK4a

-negative) revealed that the 

number of total T cells represented by CD3+ cells significantly was increased in high-grade lesions 

compared with low-grade CIN in both the epithelium (p=0.0273) and the stromal compartment 

(p<0.0001). This general increase is also reflected by the higher stromal infiltration of Foxp3+ T cells 

(p=0.0076), the higher infiltration with GranB+ T cells in the epithelium (p=0.0028 for the epithelium 

and p=0.0014 for the stromal), of CD8+ T cells (p=0.0012 for the epithelium and p<0.0001 for the 

stroma) and also of CD3ζ+ T cells (p=0.0286 for the epithelium p=0.0022 for the stroma) (Figure 

4.10, Table S9.1). With regard to the epithelial to stromal cell number ratios a trend for decreased 

ratios was found for CD3+ cells (p=0.0799) and also CD3ζ+ cells (p=0.0672) in high-grade CIN 

compared to low-grade lesions (Figure 4.10 and Table S9.1). Again, the ratios for all T cell 

phenotypes to CD3+ T cell counts were calculated and were found to be significantly increased in 

high-grade CIN for GranB+ T cells (p=0.0041) and for CD8+ T cells (p=0.0258) in the epithelium. 

The ratio calculated for CD3ζ+ T lymphocytes showed the inverse correlation and tended to be 

decreased in the stromal compartment of high-grade CIN (p=0.0700) (Figure 4.11 and Table S9.2).  

Interestingly, the absolute T cell numbers but also the ratios calculated for different T cell subtypes to 

CD3+ T cells are very heterogeneous in high-grade lesions (Figures 4.10 and 4.11) and within a 

distinct histomorphological category (Table S9.1) and span wide ranges. Epithelial numbers for CD8+ 

T cell for example range from 3.7 to 32.3 cells per 0.0625mm² in CIN2 lesions. These enormous 

variances can also be observed for epithelial Foxp3+ T cell numbers in CIN2 lesions ranging from 2.0 

to 17.0 cells per 0.0625mm
2 
(Table S9.1). 
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FIGURE 4.10 DISTRIBUTION OF T CELL SUBTYPES IN DIFFERENT COMPARTMENTS IN LOW-GRADE 

(LG) LESIONS COMPARED WITH HIGH-GRADE (HG) LESIONS. A) Absolute T cell counts per 

0.0625mm² in the lesion and lesion-adjacent stroma. B) Ratio between the lesion and lesion-adjacent 

stroma for all T cell phenotypes. The dot in the center of each box represents the median value of the 

distribution; the borders of the box represent the upper and lower quartiles (25%-75%). Significant levels 

are indicated by asterisks:  

   * p<0.05 (significant) 

   ** p<0.01 (very significant) 

   ***  p<0.001 (extremely significant) 
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FIGURE 4.11 RATIOS OF T CELL SUBTYPES TO CD3+ T CELLS PRESENT IN THE LESION AND LESION-

ADJACENT STROMA IN LOW-GRADE (LG) LESIONS COMPARED WITH HIGH-GRADE (HG) 

LESIONS. The dot in the center of each box represents the median value of the distribution; the borders 

of the box represent the upper and lower quartiles (25%-75%). Significant levels are indicated by 

asterisks:  

  * p<0.05 (significant) 

  ** p<0.01 (very significant) 

  ***  p<0.001 (extremely significant) 

 

4.2.4 T cell infiltrates in cervical carcinomas 

With regard to the total T cell numbers the infiltration is even higher in cervical carcinoma samples in 

comparison to high-grade CIN for most of the different T cell phenotypes (mean cell numbers, ranges 

and standard deviations are shown in Table S9.1). Especially the stromal compartment showed an 

enhanced T cell infiltration where significant differences compared to the high-grade lesions could be 

found for the global T cell infiltration with CD3+ T lymphocytes (p=0.0414), GranB+ T cells 

(p=0.0095) and also Foxp3+ T cells (p=0.0243). The higher total cell numbers were accompanied by 
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decreased epithelial to stromal ratio for GranB+ (p=0.0467) and Foxp3+ T lymphocytes (p=0.0464). 

For the other cell types (CD3+, CD8+ and CD3ζ+ T lymphocytes) no significant differences in the 

epithelial/stromal ratio could be observed (Table S13.x). Also most of the ratios calculated for all T 

cell subtypes to CD3+ cell counts as a measure for the proportion of distinct cell phenotypes among all 

T lymphocytes, were decreased in cervical carcinomas compared to high-grade CIN. The decrease was 

significant for the intraepithelial CD8/CD3 ratio (p=0.0090) and the stromal CD3ζ/CD3 ratio 

(p=0.0090), which represents the lowest CD3ζ/CD3 ratio of all stages. The only exception is the 

significantly higher GranB/CD3 ratio (p=0.0418) in cervical carcinoma samples compared to high-

grade lesions.  

 

In summary, cervical precancerous lesions displayed generally increasing T lymphocyte densities with 

worsening lesion grade from low-grade lesions to high-grade lesions and towards cancer. Thereby, T 

cell densities in the transforming infection stage of low-grade CIN were not yet different form non-

transforming CIN1 lesions. Although the increase of immune cell densities could be observed for 

different T cell markers, the presence of regulatory T cells could be identified in all lesion stages and 

is more pronounced in the stroma than in the epithelium. Based on the data shown in Table S9.1 an 

increase from low-grade lesions (stromal mean cell density for both non-transforming and 

transforming low-grade lesions together: 10.8 cells/0.0625 mm
2
) to CIN3 (mean 19.3 cells/0.0625 

mm
2
) could be observed (p=0.0076). The Foxp3+ T cell density was further increased in invasive 

cancer with a mean density of 42.1 cells/0.0625 mm
2
 compared with high-grade lesions (p=0.0243). 

The ranges of densities were remarkable in all diseases stages with 0.0-20.0 cells/0.0625 mm
2
 in low-

grade lesions, 1.5-16.8 cells/0.0625 mm
2 

in high-grade lesions and 3.3-97.8 cells/0.0625 mm
2 

in 

cervical cancers.  

 

 

4.3  Alterations of human leukocyte antigen expression in 

cervical intraepithelial neoplasia and cancers 

As shown in section 4.2 there is a striking contradiction between high numbers of infiltrating 

lymphocytes in high-grade cervical dysplasia and carcinomas indicating that immune cells are 

attracted to the lesion site. However, these lesions obviously have progressed to finally become an 

established and morphologically visible high-grade lesion demonstrating that despite the presence of T 

cells in the microenvironment a certain number of already established high-grade lesions cannot be 

completely eradicated and will further progress to become invasive tumors. High T lymphocyte 

infiltration of both CD4+ and CD8+ T lymphocytes in association with cancer development has also 

been observed in other tumor entities (HAN et al., 2014; MATKOWSKI et al., 2009).  

These observations might imply that tumor cells under the immunoselective pressure evolve strategies 

that provide protection from recognition and elimination by cytotoxic T cells (GARCIA-LORA et al., 

2001). Indeed, as adaption to the host’s immune system and in order to circumvent an immune attack 

tumor cells are able to modulate the immune response by changing their own characteristics. One of 

these changes represent the alteration of the expression and function of human leucocyte antigen 

(HLA) class I and class II on the surface of tumor cells. In comparison with the modification of the 
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tumor microenvironment by changes in the cytokine milieu and immune cell composition, is a much 

more immediate mechanism. In the context of HPV-associated diseases this might also be of 

importance: transforming cervical lesions and carcinomas constitutively express the viral oncoproteins 

E6 and E7 which could be degraded for antigen processing and subsequent presentation by HLA class 

I molecules and might be recognized by effector cells such as cytotoxic T lymphocytes. As outlined in 

chapter 1.4.2 alterations in antigen-presentation pathways might result in a less effective presentation 

of viral and tumor-associated antigens and prevents the tumor from being recognized by the host T 

cells.  

 

HLA class I antigens are composed of a heavy chain (glycoprotein) which is encoded by genes within 

the HLA regions of chromosome 6p (HLA-A, -B, -C) and a light chain (β2m) encoded by a gene 

located on chromosome 15q. HLA class I antigens are normally expressed on all nucleated cells of the 

body. HLA class II antigens are also heterodimeric molecules composed of an alpha and a beta chain. 

This class of antigen-presenting molecules is usually expressed by professional antigen-presenting 

cells of the immune system. Tumors of different origins have been reported to show altered human 

leucocyte antigen expression which can be gradual and range from down-regulation to total loss of 

classical HLA class I antigens but also gradual induction of de novo expression of HLA class II 

antigens.  

 

The project described in this chapter aims at the characterization of altered HLA class I antigen and 

HLA class II antigen expression profiles in cervical intraepithelial neoplasia and cancers to answer the 

question if these modifications might contribute to cervical carcinogenesis. Some reports on altered 

HLA class I expression are conflicting and it remains still unclear whether HLA class I antigens are 

completely lost during cervical carcinogenesis – suggesting a strong selection pressure for negative 

cell clones, or whether their expression is only reduced – suggesting functional impairment, but 

potentially enabling re-expression by drug intervention, vaccination or immune modulation.  

Cervical lesions of different grade, CIN2 (n=9), CIN3 (n=13) and invasive squamous cell carcinoma 

(SCC) samples (n=19) were analyzed by immunohistochemical staining for HLA class I antigen heavy 

chains (HLA-A, HLA-B and HLA-C) and the light chain (beta-2-microglobuline, β2m) and also HLA 

class II antigens in order to find out if these molecules are differentially expressed in increasing 

histomorphological lesion grades. 

 

 

4.3.1  Altered HLA class I antigen expression in cervical intraepithelial 

neoplasia and cervical carcinoma  

 

For the characterization of HLA class I antigen expression a panel of antibodies was used as described 

previously (KLOOR et al., 2005) to determine the expression levels of the HLA class I heavy and light 

chains separately. The monoclonal antibodies HC-10 and HCA-2 recognize different epitopes of the 

HLA class I heavy chains: while HC-10 recognizes a determinant expressed on β2m-free HLA-A10, 

HLA-A28, HLA-A29, HLA-A30, HLA-A31, HLA-A32 and HLA-A33 heavy chains and on β2m-free 
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HLA-B and HLA-C heavy chains the monoclonal antibody HCA-2 binds to a determinant expressed 

on β2m-free HLA-A (excluding HLA-A24), HLA-B7301 and HLA-G heavy chains.  

To determine the expression of the HLA class I light chain the monoclonal antibody L368 recognizing 

β2m was used.  

Importantly, HLA class I complexes are denatured by formalin fixation during the tissue processing 

and dissociate into the heavy chain and the light chain. Therefore, it is not possible do detect intact and 

functionally active HLA class I complexes. Thus only a combination of antibodies can allow the 

distinction between free heavy chains or β2m molecules respectively and those assembled to HLA-

class I heavy chains/β2m complexes transferred to and located on the cell surface. Membranous 

localization of HLA heavy chains (A/B/C) indicated intact HLA class I complexes transferred to the 

tumor cell surface. In contrast, altered expression or complete loss of membranous β2m staining and 

disturbances in membranous HLA class I heavy chain staining is a sign for defects in the antigen 

presentation pathway being either impaired or non-functional.  

Lesions were classified as having normal, heterogeneous or negative HLA class I staining pattern 

based on criteria summarized in Table 4.3.  

 

score staining pattern 
% cells positive within 

lesion/tumor 

positive strong, homogeneous overall expression  > 75% 

heterogeneous faint and patchy, weak overall expression 25-75% 

negative  
absent or restricted to single cells (immune cells or locally 

induced expression)  
< 25%  

TABLE 4.3 SCORING SYSTEM FOR THE EVALUATION OF HLA CLASS I AND II STAINING PATTERNS. 

Examples of staining pattern are shown in Figure 4.12 for the HCA-2 antibody. 

 

 

FIGURE 4.12  REPRESENTATIVE HCA-2 STAINING PATTERNS OBSERVED IN CIN AND CERVICAL 

CANCER SAMPLES (200x MAGNIFICATION). Shown are examples for A) positive staining (strong 

and membranous) in normal, non-dysplastic epithelium, B) positive staining of invasive SCC, C) 

heterogeneous expression pattern and D) invasive SCC with negative HCA-2 staining pattern.  
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Cytoplasmic and membranous staining of cells of the normal, non-dysplastic epithelium, precancerous 

lesions and tumors was recorded separately and are summarized in Table 4.4. Representative staining 

results for p16
INKa

 and all HLA class I antigen markers are shown in Figure 4.13.  

 

 

TABLE 4.4  HLA CLASS I ANTIGEN EXPRESSION IN CIN2, CIN3 AND INVASIVE SCC. Data for HC-10 and 

HCA-2 heavy chain antibodies and β2m are shown for the cytoplasmic and membranous separately.  

Normal, non-dysplastic epithelium if present and analyzable on the same slide was characterized for 

HC-10, HCA-2 and β2m staining patterns. In total, n=19 regions could be found that were adjacent to 

CIN2 or CIN3 lesions. The normal epithelial regions showed positive staining in 100.0% of the cells 

and also a clear membranous staining for all three antibodies.  

In cervical precancerous lesions and cancers a high frequency of HLA class I alterations could be 

observed.  

 

All samples investigated for HLA class I antigen expression were p16
INK4a

-positive. The staining 

results for HC-10 showed that all CIN2 samples displayed normal expression in both cytoplasm and 

membranous localization (100.0%). A heterogeneous membranous staining could be observed in 3 of 

13 (23.1%) of CIN3 lesions and 3 out of 19 samples (15.8%) of invasive SCC. Lesions totally negative 

for membranous HC-10 staining were rare and represented 1of 13 (7.7%) of CIN3 and 1 of 19 (5.3%) 

of invasive SCC.  

The HCA-2 staining demonstrated that heterogeneous or absent cytoplasmic staining occurred more 

frequently in comparison with HC-10 antibody staining. Positive HCA-2 cytoplasmic staining could 

only be observed in 6 of 9 (66.7%) of CIN2, in 6 of 11 (54.5%) of CIN3, and 8 of 17 (47.1%) of 

invasive SCC samples. Conversely, heterogeneous expression and total losses were frequent: 

regarding the membranous expression more than half of CIN2 (5 of 9, 55.6%) and CIN3 (6 of 11, 

54.5%), and 11 of 17 (64.7%) of invasive SCC are negative for membranous HCA-2 staining.  

 

non-neoplastic epithelium

positive (%) 19 100.0% 19 100.0% 19 100.0% 15 78.9% 19 100.0% 19 100.0%

heterogeneous (%) 0 0.0% 0 0.0% 0 0.0% 4 21.1% 0 0.0% 0 0.0%

negative (%) 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%

Samples analyzed 19 19 19 19 19 19

CIN 2 

positive (%) 9 100.0% 9 100.0% 6 66.7% 1 11.1% 9 100.0% 9 100.0%

heterogeneous (%) 0 0.0% 0 0.0% 1 11.1% 3 33.3% 0 0.0% 0 0.0%

negative (%) 0 0.0% 0 0.0% 2 22.2% 5 55.6% 0 0.0% 0 0.0%

Samples analyzed 9 9 9 9 9 9

CIN 3 

positive (%) 12 92.3% 9 69.2% 6 54.5% 2 18.2% 12 92.3% 8 61.5%

heterogeneous (%) 1 7.7% 3 23.1% 2 18.2% 3 27.3% 1 7.7% 4 30.8%

negative (%) 0 0.0% 1 7.7% 3 27.3% 6 54.5% 0 0.0% 1 7.7%

Samples analyzed 13 13 11 11 13 13

invasive SCC

positive (%) 16 84.2% 15 78.9% 8 47.1% 2 11.8% 16 84.2% 8 42.1%

heterogeneous (%) 2 10.5% 3 15.8% 4 23.5% 4 23.5% 3 15.8% 6 31.6%

negative (%) 1 5.3% 1 5.3% 5 29.4% 11 64.7% 0 0.0% 5 26.3%

Samples analyzed 19 19 17 17 19 19

HLA class I heavy chain HLA class I light chain

HC-10 cytoplasm HC-10 membrane* HCA-2 cytoplasm HCA-2 membrane* β2m cytoplasm β2m membrane*
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FIGURE 4.13  EXEMPLARY STAINING RESULTS FOR ALL MARKERS IN A CERVICAL CANCER SAMPLE 

(SCC) AT 200x MAGNIFICATION. Shown are the p16INK4a-staining and the slides stained for all three 

HLA class I antigen markers (HC-10, HCA-2 and L368).  

 

Regarding the staining for β2m the results demonstrated the vast majority of cervical precancers and 

cancers are positive for cytoplasmic β2m (100.0% of CIN2, 92.3% of CIN3 and 84.2% of invasive 

SCC). Heterogeneous expression is found in a small proportion of CIN3 and invasive SCC (7.7% and 

15.8%) and none of the samples is negative for cytoplasmic β2m expression. Regarding the 

membranous expression of β2m all CIN2 samples displayed normal expression (100.0%) while CIN3 

and invasive SCC to a certain extent display altered membrane staining. However, still 61.5% of CIN3 

and 42.1% of invasive SCC are positive for membranous β2m.  

 

The correlation analyses between expression intensities (negative, homogenous and positive) and stage 

of the disease showed that the HC-10 membranous staining was differently distributed between all 

precancerous lesions (CIN2 and CIN3) and invasive cancers (SCC) with p<0.0001. CINs lesion more 

often showed a positive staining (in 13/22 samples) while in SCC more often a heterogeneous staining 

pattern could be observed (in 15/19 samples). Regarding the HCA-2 staining no differences between 

the two groups could be shown for the membranous staining, but the overall cytoplasmic expression 

was different between CIN and SCC: CIN lesions more frequently showed positive staining patterns 

(in 9 out of 20 CINs), while 9 of 17 SCC samples were negative for HCA-2 staining (p=0.0005). For 

membranous β2m-expression a strong trend towards more positive staining pattern in CIN (17 of 22 

samples) in comparison to SCC samples (8 of 19 samples) could be observed. In contrast, SCC 

samples showed a higher tendency to be negative for membranous β2m-expression (5 of 19 samples) 

compared with CIN samples (1 out of 22).  
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4.3.2  Human leucocyte antigen class II expression in cervical intraepithelial 

neoplasia and cervical cancer 

HLA class II antigens are normally expressed on professional antigen-presenting cells (APCs), but 

have also been reported to be expressed by distinct solid tumors (ALTOMONTE et al., 2003; 

DENGJEL et al., 2006). The mechanisms involved in the expression of HLA class II antigens and 

their role in the interaction of the tumor cells with the host’s immune system as well as the role of 

immunoselection in HLA class II antigen loss are largely unknown. To investigate the role of HLA 

class II antigen expression in the development of cervical intraepithelial neoplasia and progression 

towards cancer, cervical lesions were stained with a monoclonal antibody against HLA class II chains 

DR, -DQ, -DP (LGII-612.14).  

The analysis was performed in the cohort used for the characterization of HLA class I antigen 

expression. With CIN2 already displaying strong HLA class II antigen de novo expression the 

question arose whether or not low-grade CIN (CIN1) also showed this expression pattern. To 

explicitly address this question the cohort was enlarged by an additional set of CIN1 samples (n=19) 

and a further subset of CIN2 samples (n=9). In parallel to the study of immune cell infiltrates in 

different infection stages of low-grade CIN lesions (chapter 4.x) the HLA class II expression pattern 

was correlated with the p16
INK4a

 status of these additionally included lesions.  

The same categories of staining patterns were applied as for HLA class I antigen staining (Table 4.3). 

Examples of the different HLA class II antigen staining patterns are shown in Figure 4.14.  

 

 

FIGURE 4.14  EXEMPLARY LGII.612-14 STAINING PATTERNS OBSERVED IN CIN AND CERVICAL CANCER 

SAMPLES. Shown are A) normal, non-dysplastic epithelium which is negative for HLA class II antigen 

expression B) the transition from adjacent normal epithelium to a CIN lesion with a strongly positive 

staining pattern, C) positive invasive SCC and D) heterogeneous staining pattern in invasive SCC with 

areas negative and positive for LGII.612-14 staining. 
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The results of HLA class II antigen expression were recorded separately for the cytoplasm and the 

membranous localization and are summarized in Table 4.5.  

Again, if normal non-dysplastic epithelium adjacent to the lesions was present, it was also analyzed 

for HLA class II antigen expression (n=29). Positive staining was completely absent in the normal 

stratified cervical epithelium or restricted to single cells in the epithelium only. However, HLA class II 

antigen expression can frequently be detected in dysplastic epithelium as shown in Figure 4.14.  

Interestingly, 15 of 18 investigated CIN2 samples showed cytoplasmic HLA class II antigen 

expression (heterogeneous or positive staining) in the lesion and only 3 of 18 (16.7%) were negative 

for staining with the LGII.612-14 antibody. Importantly, more than half of the CIN2 lesions (55.6%) 

(10 out of 18 cases) displayed strong and positive HLA class II antigen expression. This suggests that 

HLA class II antigen expression is a very common event during the initial steps of transforming HPV 

infection.  

 

 

TABLE 4.5 HLA CLASS II ANTIGEN EXPRESSION IN NORMAL EPITHELIUM, CIN1, CIN2, CIN3 LESIONS 

AND INVASIVE SCC. Data are shown for the cytoplasmic and membranous expression separately.  

In CIN3 lesions 84.6% (11 out of 13 samples) of the lesions were found to be positive for HLA class 

II antigens with more than half of them (53.8%) being strongly stained and considered positive. The 

same trend could also be observed in invasive cancers. Here, a positive HLA class II staining pattern 

could be observed in 11 of 19 cases (57.9%).  

LGII-612.14 membrane*

non-neoplastic epithelium

positive (%) 0 0.0% 0 0.0%

heterogeneous (%) 0 0.0% 0 0.0%

negative (%) 29 100.0% 29 100.0%

Samples analyzed 29 29

CIN 1

positive (%) 6 31.6% 3 15.8%

heterogeneous (%) 4 21.1% 4 21.1%

negative (%) 9 47.3% 12 63.1%

Samples analyzed 19 19

CIN 2

positive (%) 10 55.6% 8 44.4%

heterogeneous (%) 5 27.8% 6 33.3%

negative (%) 3 16.6% 4 22.3%

Samples analyzed 18 18

CIN 3 

positive (%) 7 53.8% 5 38.4%

heterogeneous (%) 4 30.8% 6 46.2%

negative (%) 2 15.4% 2 15.4%

Samples analyzed 13 13

invasive SCC

normal (%) 11 57.9% 10 52.6%

heterogeneous (%) 5 26.3% 6 31.6%

negative (%) 3 15.8% 3 15.8%

Samples analyzed 19 19

HLA class II 

LGII-612.14 cytoplasm
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The observation that the majority of CIN2 lesions displayed HLA class II antigen expression prompted 

the idea to characterize low-grade CIN1 lesions - included retrospectively - for the expression of HLA 

class II antigens in order more precisely determine the time point of the induction of its expression.  

Again, in a non-negligible proportion of samples (10 of 19, 52.7%) HLA class II expression could be 

observed. In comparison with high-grade lesions (CIN2/3) and cancers, however, the percentage of 

negative lesions was relatively high (47.35%).  

 

As for the immune cell infiltrates (chapter 4.2) the low-grade lesions were stratified for their p16
INK4a

-

status representing thus non-transforming (p16
INK4a

-negative) and transforming (p16
INK4a

-positive) 

CIN1 in order to estimate a possible correlation of HLA class II with the biological infection stage.  

 

 

FIGURE 4.15  REPRESENTATIVE STAININGS FOR THE CORRELATION OF (A) P16INK4A EXPRESSION AND 

(B) HLA CLASS II ANTIGEN EXPRESSION IN LOW-GRADE CIN (CIN1). Shown are examples for 

1) perfectly matching p16INK4a-positive areas with HLA class II positive regions 2) a p16INK4a-positive 

lesion that is HLA class II negative and C) a p16INK4a-negative (focal p16INK4a-expression) that is HLA 

class II positive.  

Among CIN1 9 out of 19 (47.4%) were p16
INK4a

-negative and 10 out of 19 (52.6%) were p16
INK4a

-

positive. A possible association between p16
INK4a

 expression reflecting the infection stage and HLA 

class II antigen expression in CIN1 lesions could not be found when HLA class II antigen expression – 

cytoplasmic or membranous – and the p16
INK4a

 expression status in low-grade lesions were correlated. 
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This result confirmed the observations made during the microscopic evaluation with regard to the 

occurrence of all possible combinations of p16
INK4a

 expression with HLA class II antigen presence or 

absence (Figure 4.15). The distribution HLA class II antigen expressing lesions among p16
INK4a

-

negative and p16
INK4a

-positive CIN1 is shown in Table 4.6.  

 

p16
INK4a

 status  LGII-612.14 negative  LGII-612.14 positive 

p16
INK4a

-negative 3/9 (33.3%)  6/10 (60.0%) 

P16
INK4a

-positive 6/9 (66.6%)  4/10 (40.0%) 

p-value   p=0.245  

TABLE 4.6  DISTRIBUTION OF HLA CLASS II EXPRESSION IN p16INK4a-NEGATIVE AND p16INK4a-POSITIVE 

CIN1 LESIONS.  

The distribution of HLA class II antigen expression was also correlated to the grade of the disease by 

comparing all precancerous lesions with the invasive cancer samples: no correlation could be observed 

between the membranous HLA class II antigen expression and the disease stage represented by all 

CIN lesions and invasive SCC samples (p=0.182). The comparison of single, unpooled CIN stages 

(CIN1, CIN2 and CIN3 separately) and SCC samples with each other revealed that membranous HLA 

class II antigen expression was significantly different lower in CIN1 lesions than all high-grade lesions 

(CIN2, CIN3) and cancers (p=0.019).  

  

In order to find out if there was a correlation between HLA class II expression and the alterations of 

HLA class I antigen expression reported in the previous section (4.3.1) the samples that were initially 

included in the study (CIN2, CIN3 and invasive SCC) before enlargement by CIN1 and further CIN2 

samples and for which both staining data sets were available, were investigated. A significant 

association between HLA class II and class I antigen expression was not observed. The presence and 

absence of HLA class II expression was correlated with the HC-10 staining pattern (p=0.996) and 

HCA-2 staining (p=0.532) and also β2m expression (p=0.361). A significant association between HLA 

class II and class I antigen expression was not observed.  

 

While the normal, non-dysplastic epithelium was negative for HLA class II staining, a strong and 

uniform staining pattern was observed in glandular cells and the columnar epithelium of the 

transformation zone of the cervix uteri (Figure 4.15 3B).  

 

 

4.4 Immune cell infiltrates under immuno-stimulatory 

treatment  

 

It has been demonstrated that immune modulation by topical treatment with imiquimod, a TLR-

agonist, might positively influence the local immune response and lead to regression of dysplastic 

lesions (TERLOU et al., 2010).  
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The efficacy of topical imiquimod treatment in patients with cervical intraepithelial neoplasia has been 

tested for the first time in the frame of a phase I (double-blind randomized, placebo-controlled) trial 

conducted in Austria (GRIMM et al., 2012). The treatment protocol and the clinical outcome of the 

patients analyzed in the here presented study are summarized in Figure 4.16.  

The patients included in the Austrian trial represent an exceedingly precious cohort. Although the 

sample size is relatively small, the included biopsies represent a precious source of tissue of non-

excised lesions that were treated with an immuno-modulatory agent and observed for 20 weeks. This 

cohort therefore provides highly important longitudinal information about the influence of immuno-

modulatory agents on the immune cell composition and the clinical behavior of these lesions.  

 

 

 

FIGURE 4.16  SCHEME OF THE AUSTRIAN IMIQUIMOD TRIAL WITH TIMING OF THE OBTAINED PUNCH 

BIOPSIES. Procedure is shown for the 10 patients of the imiquimod arm that were analyzed in the 

presented study.  

 

4.4.1  Characterization of the study cohort 

 

In a cooperation project with the Medical University of Vienna, Austria samples of the above 

described imiquimod trial could be obtained for immunological characterization. 10 patients with a 

CIN2/3 diagnosis that had received a 16-week imiquimod treatment were included in the analysis each 

providing cervical biopsies before (week 0), during (week 8) and after (week 20) treatment. Tissue 

sections of the biopsies were stained for p16
INK4a

, CD3 and CD8. Image annotation and processing 

were performed based on the method described in section 4.1 and blinded to the patient ID and the 

clinical outcome. All patient related information at this stage of the analysis was subjected to 

pseudonymisation except the histomorphological classification (lesion grades) as the lesion grade that 

led to the diagnosis was needed for the definition of the region to be analyzed on the p16
INK4a

 reference 
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slide as well as for the annotation of the slides stained with T cell markers. Once the immune cells 

were quantified the clinical parameters were uncovered: 6 of the patients had regressing disease 

(defined as CIN1 or less) and 4 of the patients had persistent disease or had even progressed (defined 

as CIN2 or CIN3). The characteristics of all 10 patients are listed in Table 4.7.  

 

 

patient 
week 0 

(CIN grade) 

week 8 

(CIN grade) 

week 20 

(CIN grade) 
clinical outcome 

1 CIN2 (no CIN) CIN3 progression 

2 CIN2 CIN1 no CIN regression 

3 CIN3 CIN2 CIN1/no CIN regression 

4 CIN2 no CIN CIN1/no CIN regression 

5 CIN2 n.a CIN2 persistence 

6 CIN2 n.a CIN2 persistence 

7 CIN2 CIN1 no CIN regression 

8 CIN 3 CIN3 CIN3 persistence 

9 CIN2 no CIN CIN1 regression 

10 not available no CIN no CIN regression 

TABLE 4.7  OVERVIEW OF THE CHARACTERISITICS OF THE PATIENTS SELECTED FOR THIS 

APPROACH. All patients received a 16-week imiquimod treatment; n.a = not analyzable. Histologic CIN 

grades were recorded to evaluate the treatment efficacy for CIN2/3 patients which was defined as 

histologic regression of the initial high-grade lesions to histologically proven CIN1 or less (normal 

epithelium). 

 

4.4.2 T cell infiltrates in non-responders and responders to imiquimod 

before treatment 

 

Immune cell infiltrates, as CD3+ and CD8+ T cells, were quantified by application of the automated 

quantification method presented in chapter 4.1. The lesions were annotated as described previously on 

the basis of the p16
INK4a

 reference slide. The areas for all regions of interest as well as the T cell 

densities in these regions were calculated. Cell densities of both T cell phenotypes were compared 

between patients that had persistent or progressing disease and did not respond to the imiquimod 

therapy (“non-responders”) and patients whose lesions had regressed during the treatment 

(“responders”). Densities for each phenotype separately as well as ratios of CD8+ T cells to all CD3+ 

cells in the different regions were compared in week 0 and week 20 biopsies.  

Before treatment (week 0 biopsy) the infiltration with CD3+ T cells is very high in patients who did 

not respond to the imiquimod therapy (progressing/persistent lesions) compared with patients whose 

lesion had regressed after imiquimod therapy (Figure 4.17). The mean cell density of CD3+ T cells in 

the epithelium of non-responders is much higher (537.0 cells/mm
2
) compared with responders (160.8 

cells/mm
2
). However, these differences are not statistically significant (p=0.190). This trend can also 

be observed in the stromal compartments where again non-responders had higher CD3+ T cell 
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numbers (1883.9 cell/mm
2
) compared with non-responders (945.9 cells/mm

2
) (p=0.190) (margin 500) 

(supplementary Figures S9.1 and S9.2 and supplementary Table S9.3). 

Interestingly, with regard to CD8+ T cell infiltrating the lesion and the stroma the densities are higher 

in responders than in non-responders in week 0 before treatment is started. The mean cell densities for 

CD8+ T cells in the epithelium of non-responders is 82.1 cells/mm
2
 compared with 113.8 cells/mm

2
 in 

responders (p=0.730). The difference in the stromal compartment margin 100 is even more 

pronounced (394.2 vs. 973.3 cells/mm
2
, p=0.286) (supplementary Figures S9.1 and S9.2). The same 

trend could also be observed for the more distant stromal compartments and also for the CD8/CD3 cell 

ratios in all regions of interest (supplementary Figures S9.1 and S9.2 and supplementary Table S9.4).  

 

 

FIGURE 4.17 CD3+, CD8+ CELL COUNTS AND CD8/CD3 RATIO IN THE INITIAL BIOSPSY (WEEK 0) IN 

NON-RESPONDERS AND RESPONDERS. Results are shown as Box-Whisker-Plots for A) the 

epithelium and B) the first stromal compartment (margin 100). The line in the center of each box 

represents the median value of the distribution; the borders of the box represent the upper and lower 

quartiles (25-75%). 
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4.4.3  T cell infiltrates in non-responders and responders to imiquimod after 

treatment 

In the biopsies taken 4 weeks after the treatment (week 20 biopsy) CD3+ T cell densities are 

comparably high in non-responders and in responders to imiquimod in the lesion and stromal 

compartment (Figure 4.18 and supplementary Figures S9.3 and S9.4). For example, in the epithelium 

the mean cell density is 287.8 cells/mm
2
 in non-responders and 371.1 cells/mm

2
 in responders 

(p=0.429) (supplementary Table 9.3).  

 

 

FIGURE 4.18  COMPARISON OF CD3+, CD8+ CELL COUNTS AND THE CD8/CD3 RATIO IN THE INITIAL 

BIOSPSY (WEEK 0) AND THE LAST BIOPSY (WEEK 20) IN NON-RESPONDERS AND 

RESPONDERS. Results are shown as box-whisker-plots for A) the epithelium and B) the first stromal 

compartment (margin 100). The line in the center of each box represents the median value of the 

distribution; the borders of the box represent the upper and lower quartiles (25-75%).  
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As the direct comparison between week 0 and week 20 shown in Figure 4.18 demonstrates the 

assimilation of responders and non-responders in terms of T cell densities is caused by an increased 

CD3+ T cells densities in responders compared to non-responders. This can be observed in the 

epithelium and the stroma of responders is also reflected by the comparison of the mean cell densities 

of week 0 and week 20 (see also supplementary Figures S9.6 and S9.7 and supplementary Table S9.3).  

With regard to CD8+ T cells the direct comparison of both time points (week 0 and week 20) for non-

responders and responders revealed that CD8+ T cell densities also slightly increase over time in 

patients responding to the treatment but not in non-responders (Figure 4.18 and supplementary Figures 

S9.6 and S9.7). Non-responders in contrast show decreasing CD8+ T cell densities in week 20 

compared with week 0 which results in a more pronounced difference between the groups at the end of 

the treatment. In week 20 the CD8 mean cell density in the epithelium of non-responders is 58.2 

cells/mm
2
 compared with 174.1 cells/mm

2
 in responders (p=0.643).  

 

To get a better insight in how the T cell infiltrates develop during the treatment in the two groups, the 

mean cell densities of every single patient at each time point is shown in a line chart and both groups 

(non-responders vs. responders) were directly compared (Figure 4.19). This contrasting juxtaposition 

revealed that the majority of the responders’ infiltrate densities is located above the highest value of 

the non-responders’ T cell densities in week 20. However, the groups are different in the middle of 

treatment were non-responders show an increase and responders a decrease in T cell densities. 

Interestingly, these differences are completely reversed in the last weeks of the treatment until week 

20. T cell densities in non-responders show a massive decrease while those of responders continuously 

increase. The majority of responders therefore quit the treatment with clearly higher T cell densities 

compared with non-responders 
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FIGURE 4.19  DEVELOPMENT OF CD8+ T CELL DENSITIES OVER TIME IN NON-RESPONDERS COMPARED 

WITH RESPONDERS. Results for non-responders (red) and responders (green) are shown as line chart 

for A) the epithelium and B) the first stromal compartment (margin 100). The dashed line represents the 

highest count of non-responders in week 20.  
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5. 
 

  TREATMENT OPTIONS FOR 

HPV-ASSOCIATED 

PRECANCERS AND CANCERS 
 

 

Despite important advances in the prevention of HPV infections and screening programs the world-

wide incidence rates for cervical and other HPV-associated ano-genital precancerous lesions and 

cancers are not expected to decrease significantly within the next 15 to 20 years. On the contrary, the 

incidence is expected to increase in developing countries. The introduction of the prophylactic 

vaccines was demonstrated to reduce the risk for HPV infections for young girls. However the 

currently available vaccines provide protection against four HPV types of 14 considered to be 

potentially carcinogenic. Although protection might be provided by herd immunity, this effect requires 

a certain vaccination coverage and young women already infected with HPV do not necessarily benefit 

from subsequent vaccination and still might develop cervical cancer twenty years later. Screening 

programs based on Pap test in developed countries are well established, but getting women to attend 

the cervical cancer screening in developing countries remains a major concern. In the light of all these 

factors there is still a need for therapeutic intervention strategies. Different approaches are 

conceivable, many of them are based on therapeutic vaccines based on RNA, DNA, peptides or full-

length proteins of diverse HPV-antigens.  

In this part of the thesis, based on the insights that could be gained in the first part of this thesis, two 

different intervention strategies involving immune modulation of the cancer environment will be 

investigated. The first strategy aims at local application of a newly developed substance that might 

enhance the local immune response by induction of inflammatory processes. In a second approach the 

effect of regulatory T cell depletion on the efficiency of immune attack towards autologous tumor cells 

shall be investigated.  

 

 

5.1  Effects of TLR agonist treatment on immune cells 

It has been shown in the past that TLR-agonists act as immune modifiers that, locally applied, can 

positively influence the immune response and potentially reverse immune suppression. The substance 

imiquimod is a well characterized immune stimulatory agent that is approved for the treatment of 

condylomata accuminata, actinic keratosis and basal cell carcinoma, but is also tested in patients with 

vulvar intraepithelial neoplasia. Within the scope of this thesis the potency of a new, second-

generation immune modifier was evaluated. The substance called TMX-202 was obtained from 

Telormedix SA, Bioggio, Switzerland and is a modified purine base derivative that is supposed to be 

even more potent than actually available immuno-stimulatory agents such as imiquimod.  
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TMX also is a TLR7 agonist and was tested in vitro by measuring the effects on PBMCs of healthy 

donors. It has been demonstrated in the past that TLR-9 agonist treatment increased the expression of 

the corresponding TLR-9 on B cells (BOURKE et al., 2003). It is conceivable that the new TLR 

agonist TMX also positively correlates with TLR expression on peripheral immune cells and thus 

further enhances the innate and adaptive immune response by a positive feedback loop between 

stimulation and activation of TLRs and their expression. To gain a better understanding of its mode of 

action and its potency to induce immune responses the effects of TMX-202 on TLR7 mRNA and 

protein levels were investigated (chapters 5.1.1 and 5.1.2). 

The down-stream effect of TLR stimulation is the induction of inflammation that provokes the 

attraction of further immune cells to the treated site and thus stimulates both the innate and the 

adaptive immune response. To gain insight in the potency of the new TLR-agonist to induce 

inflammation the cytokine release was measured (chapter 5.1.3).  

As a long term goal, the TLR-agonist should be included in a combinatory drug composed of TMX-

202 and other immune modifiers that could be locally applied and thus is suitable for non-invasive 

anogenital lesions.  

 

 

5.1.1  The effect of TLR7 agonist treatment on the TLR7 mRNA expression 

levels in PBMCs 

To characterize the effects of the second-generation TLR7 agonist TMX on PBMCs a total number of 

4 healthy donors were tested. Peripheral blood mononuclear cells were isolated from freshly drawn 

blood and cultured for 72 hours in the presence of imiquimod, TMX or the vector control DMSO (as 

described in 3.x). The expression of TLR7 was first measured on the transcript level by quantitative 

real-time PCR. Possible effects of the substances on mRNA levels were compared between the 

compounds. An additional negative control is represented by untreated cells that were frozen at day 0 

and not subjected to in vitro culture. Furthermore, cells that were not treated with any substance but 

cultured under the same conditions as those that received the treatment were included in the analysis. 

For normalization purposes controls were included that were treated with the same amounts of DMSO 

that were added with substance (dissolved in DMSO) to TMX-treated cells. Each treatment 

experiment was normalized with the corresponding DMSO concentration in order to take into account 

the effect of DMSO.  

 

The mRNA levels in PBMCs that were frozen on day 0 before treatment was started were similar to 

those of cultured, but untreated cells (data not shown). Therefore the values obtained for DMSO-

treated cells were normalized against these untreated cells cultured under the same conditions. The 

DMSO controls were then used to normalize the corresponding values obtained for PBMCs treated 

with the immuno-modulatory agents by matching the DMSO concentrations used during stimulation.  

In the first approach involving the first two donors, the effects of the new TLR7 agonist TMX-202 at a 

concentration of 10 µM was compared with imiquimod at a concentration of 30 µM. This 

concentration was reported previously in the context of immune cell in vitro vaccination approach 

(FAHEY et al., 2009) while the TMX-concentration was based on preliminary in vitro data 

communicated by Telormedix.  
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The results of the TLR7 quantitative real-time PCR for donors 1 and 2 (Figure 5.1) demonstrated that 

imiquimod in both donors induced higher mRNA levels compared to the DMSO control. Donor 1 

displayed high fold changes of TLR7 mRNA after treatment with both of the substances, imiquimod 

and TMX-202, but mRNA expression was more up-regulated after TMX treatment. Donor 2 also 

showed increased TLR7 mRNA after imiquimod treatment expression, while TMX treatment did not 

show an effect on TLR7 mRNA levels. Here again, following imiquimod treatment higher fold-

changes could be measured.  
 

 

FIGURE 5.1 TLR7 mRNA EXPRESSION IN PBMCS TREATED WITH TMX AND IMIQUIMOD. Changes of 

mRNA levels in comparison to the DMSO control are displayed on the y-axis (fold-change). The 

experimental groups are displayed on the x-axis. The bars represent the results for the tested groups.  

Two further donors were tested to compare the effects of TMX-treatment administered in different 

concentrations. The 10µM dosage from the first experiment was compared with a reduced TMX-202 

concentration (1µM). Furthermore, another aspect was investigated in this second experiment, as not 

only the PBL fraction but also the adherent cell fraction representing mainly monocytes was analyzed 

separately. Thus, changes in TLR7 mRNA levels were measured under two different TMX-202 

concentrations separately for monocytes and lymphocytes (PBLs) (Figure 5.2). Donor 3 displayed 

down-regulation of TLR7 mRNA expression in all cases except for the 1 µM concentration in the 

monocyte fraction. Donor 4 showed a general TMX-induced up-regulation of TLR7 mRNA 

expression levels compared with the corresponding DMSO controls. The 1µM dosage had a higher 

effect on mRNA levels than the 10µM in both of the cell types, monocytes and PBLs. 
 

 

FIGURE 5.2  TLR7 mRNA EXPRESSION IN MONOCYTES AND LYMPHOCYTES (PBLs) TREATED WITH 

DIFFERENT TMX CONCENTRATIONS. Changes of mRNA levels in comparison to the DMSO 

control are displayed on the y-axis (fold-change). The experimental groups are displayed on the x-axis. 

The bars represent the results for the tested groups.  
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5.1.2 The effect of TLR7 agonist treatment on the TLR7 protein expression 

in PBMCs 

A second fraction of the same PBMCs that were tested for TLR7 mRNA expression levels was 

subjected to TLR7 Western Blot in order to investigate the effect of TLR7 agonist treatment on the 

protein level. As a positive control for TLR7 expression a B cell lymphoma cell line (Raji) was 

included. Whole cell lysates of the same samples were tested, including the DMSO controls, the d0 

uncultured PBMCs and PBMCs under treatment. As a loading control actin expression was 

investigated.  

The results for donors 1 and 2 treated with imiquimod and TMX-202 are shown in Figure 5.3.  

The baseline TLR7 expression in uncultured and immediately stored PBMCs (d0) was difficult to 

evaluate for both donors. No effects of any of the treatments (neither controls nor substances) could be 

observed in donor 1. Donor 2 showed comparable TLR7 protein levels for the DMSO controls and 

TMX, however, also less expression in imiquimod-treated cells.  

 

 

FIGURE 5.3  TLR7 PROTEIN EXPRESSION IN PBLs TREATED WITH TMX AND IMIQUIMOD. Shown are the 

results of the anti-TLR7 western blots of donor 1 (left) and donor 2 (right). TLR7 expression of treated 

PBMCs is compared with uncultured control PBMCs (PBMCs d0), DMSO controls and the TLR7 

positive control (Raji cells).  

 

The results for donors 3 and 4 treated with two different TMX concentrations (1µM and 10µM) are 

shown in Figure 5.4. Donor 3 showed slight baseline TLR7 expression and similar intensities of the 

protein bands for the DMSO control and 1µM TMX. A strong signal for 10µM TMX treated PBLs 

could be observed which might not be related to the treatment as a stronger signal can also be 

observed for actin. Although lacking baseline TLR7 expression in donor 4 could be explained by very 

protein concentration in the sample due to the lacking actin signal, the comparison between the highest 

DMSO control (4 µl) and the TMX-treated samples revealed an induction of TLR7 protein expression 

following treatment.  
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FIGURE 5.4 TLR7 PROTEIN EXPRESSION IN PBLs TREATED WITH TMX AND IMIQUIMOD. Shown are the 

results of the anti-TLR7 western blots of donor 3 (left) and donor 4 (right). TLR7 expression of treated 

PBMCs is compared with uncultured control PBMCs (PBMCs d0), DMSO controls and the TLR7 

positive control (Raji cells).  

In summary, the effects of different treatment approaches on the TLR7 expression on the protein level 

that has been investigated in the PBMCs of 4 healthy individuals remained inconclusive. In most cases 

no changes in protein expression could be observed – or could not definitively be related to the 

treatment – and the observed protein expression was not concordant with changes in TLR7 mRNA 

levels during treatment. The only exception is donor 4 who displayed higher protein levels for both 

TMX concentrations compared to the DMSO controls. This is in concordance with the increase in 

mRNA levels measured following treatment with TMX-202.  

 

5.1.3  Release of the pro-inflammatory cytokine IL-6 of PBMCs upon 

treatment with TLR7 agonists  

 

Following the investigation of mRNA and protein levels induced by TLR agonist treatment, another, 

more functional readout to investigate the effects of TMX-202 treatment was chosen based on the 

quantification of interleukin (IL)-6 released by immune cells. IL-6 is a potent inducer of inflammation 

and therefore indicative for the initiation of innate and adaptive immune responses. The supernatants 

from PBMCs cultures that were treated with imiquimod, TMX-202 and the controls were tested in IL-

6 ELISA.  

 

Although the effects of TMX treatment on mRNA and protein expression in the four tested donors 

remained inconclusive, it could be shown by ELISA that the IL-6 release was consistently induced by 

TMX treatment (Figures 5.5 and 5.6). The IL-6 release of stimulated PBMCs into the cell culture 

medium was significantly higher than under DMSO control treatment. Massive IL-6 release was 

induced with 1µM TMX compared with the DMSO control in donors 3 and 4 (p=0.0036 and 

p<0.0001), but further increased in dose-dependent manner with 10µM TMX compared with the 1µM 

TMX treatment (p=0.0002 and p=0.0004) (Figure 5.6). The IL-6 concentrations released under 

imiquimod treatment in donors 1 and 2 did not exceed the IL-6 release measured in the DMSO 
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controls or untreated cells (Figure 5.5). Interestingly, in one donor (donor 4) DMSO equally induced a 

slightly higher IL-6 release compared with the untreated control cells (p=0.0247). 

 

 

 

FIGURE 5.5  IL-6 SECRETION BY PBMCS TREATED WITH IMIQUIMOD AND TMX-202. The IL-6 

concentration (pg/ml) is presented on the y-axis. The experimental groups for donors 1 and 2 are 

displayed on the x-axis. The colored bars represent the means for the tested groups, standard deviations 

are shown as black whiskers (comparison by unpaired t-test, p-values are indicated). 

 

FIGURE 5.6  IL-6 SECRETION BY PBMCS TREATED WITH DIFFERENT TMX-202 CONCENTRATIONS. The 

IL-6 concentration (pg/ml) is presented on the y-axis. The experimental groups for donors 3 and 4 are 

displayed on the x-axis. The colored bars represent the means for the tested groups, standard deviations 

are shown as black whiskers (comparison by unpaired t-test, p-values are indicated). 
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5.2  Effects of TMX-202 treatment on the in vitro priming of 

naïve T lymphocytes with HPV-associated and host cell 

antigens and the generation of antigen-specific T cells  

 

The potency of the new TLR agonist was investigated on a functional level in a large experiment 

based on the in vitro priming of naïve T cells with HPV-related antigens that were loaded on dendritic 

cells for antigen-presentation. This experimental setup allowed the effects of TMX-202 to be 

investigated for both of the arms, the innate and the adaptive immunity. The final read-out of the 

treatment, however, focused on the adaptive immune response as was evaluated by the potency of 

stimulated T cells to kill tumor cells. This was measured in a heterologous system based on PBMCs of 

a healthy HLA-A2 positive donor and CaSki cells. TMX-202 treatment was applied during the 

complete procedure starting with the generation of dendritic cells from monocytes and continued 

during the stimulation of T cells with the antigen-presenting cells until the end of the experiment. As 

potentially relevant antigens in HPV-associated cancers p16
INK4a

, strongly overexpressed in HPV-

associated tumors, and HPV16 L1, one of the most immunogenic HPV antigens, were chosen.  

While for p16
INK4a

 a peptide was available that has been demonstrated in previous experiments to bind 

to HLA-A2 antigens, potential HPV16 L1 peptides had to be evaluated for their binding capacities to 

HLA molecules in a T2 cell based peptide binding assay.  

 

5.2.1  Determination of L1 peptides bound to HLA class I antigens with 

high affinity for stimulation assays  

 

In order to define out of a panel of predicted L1 peptides (for sequences see chapter 3.1.7, for 

predicted peptide panel see supplementary Table S9.8) those that have the highest binding affinity to 

HLA class I antigens and therefore being suitable for in vitro priming of T cells they were tested in 

peptide-binding assay based on T2 cells. The mean fluorescence intensities (MFIs) for each peptide 

were measured and compared with the negative and positive controls. As negative control served T2 

cells incubated in absence of any peptide thus defining the baseline fluorescence intensity. To compare 

the effect of beta2-microglobuline (β2m) on the MFI the negative control was performed with and 

without β2m added to the culture. It could be shown that the addition of β2m to the cells, required for 

stabilizing the complex built of HLA class I antigens and peptide, did not increase the MFI in absence 

of any peptides (Figure 5.7). Peptides that were reported to have high binding affinities (L1_323) or 

were evaluated before in the context of other experiments (p16_R1 and viral MP) were included to 

obtain reference MFIs as positive controls. The values for all three positive controls (L1_323, p16_R1 

and viral MP) were significantly higher than the negative control (Figure 5.7). 

For the T cell in vitro priming the peptides with highest MFIs were chosen by applying the following 

inclusion criteria: Only peptides that fulfilled two distinct criteria, having significantly higher MFIs 

compared with the negative control and with a MFI at least as high as the positive control with the 

lowest MFI. The L1-peptides L1_2, L1_12 and L1-97 had MFIs that were significantly higher than the 
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negative control (all p<0.0001). Furthermore, the MFIs of the L1 peptides were significantly higher 

than the control peptide with the lowest MFI which was viral MP (Figure 5.7).  

 

 

FIGURE 5.7 MEAN FLUORESCENCE INTENSITIES (MFIs) MEASURED FOR DIFFERENT HPV16 L1 

PEPTIDES IN A T2-CELL BASED PEPTIDE BINDING ASSAY. 

The peptide binding assay was repeated once and the result obtained in the first assay could be 

confirmed. Again, the peptides L1_2, L2_12 and L1_97 were revealed to be the best binding ones and 

therefore chosen for subsequent T cell in vitro priming (supplementary Figure S9.8).  

 

 

5.2.2  The effect of TMX treatment on dendritic cell maturation  

 

The generation of antigen-specific T lymphocytes was based on an autologous system that involved 

antigen-presenting cells of the same healthy donor from whom also T cells were obtained. Being the 

most potent antigen-presenting cells, dendritic cells (DCs) were generated from the adherent PBMC 

fraction, the monocytes, under the influence of a basic cytokine cocktail including GM-CSF and IL-4. 

To test the potency of the immune modulatory agent TMX on the innate immune system, involving 

maturation of dendritic cells from monocytes, and also on the adaptive immunity in terms of 

interacting with T cells and priming them towards the chosen antigens, TMX was added to the 

dendritic cell culture. Following the standard protocols for dendritic cell generation from monocytes 

the cells require a “maturation cocktail” consisting of different pro-inflammatory cytokines including 

IL-1β, TNF-α, PGE-2 and IL-6. As TMX leads to IL-6 secretion of peripheral immune cells creating a 

strongly pro-inflammatory milieu as shown in section 5.1.3 one could hypothesize that TMX treatment 

also might have an influence on dendritic cell maturation and that the endogenous IL-6 production 

could replace the exogenously added cytokine cocktail. The effect of TMX on monocytes and 

generation of dendritic cells was evaluated by the cell counts obtained after dendritic cell culture, 

morphology of the growing cells and expression of co-stimulatory molecules CD80 and CD86 on 

dendritic cells which is a sign for DC maturation.  
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The cell counts of harvested monocytes and dendritic cells – although varying between different 

cycles of DC generation - demonstrate that the numbers of harvested cells depends on the treatment. 

Cell numbers were calculated as the percentage of full PBMCs that could be harvested after 6 days 

culture period. Obviously the number of monocytes that became adherent and thus were separated 

from the non-adherent lymphocytes varied from one generation cycle to another. However, out of the 

cells that initially became adherent, more cells could be obtained after TMX stimulation compared 

with DMSO controls. The difference was most pronounced after the second and third round of 

dendritic cell generation with a 1.8- and 2.1-fold increase in cell numbers (Figure 5.8).  

 

 

 

FIGURE 5.8  CELL NUMBERS OBTAINED DURING THE FOUR DENDRITIC CELL GENERATION CYCLES. 

The percentage of dendritic cells that could be harvested from total PBMCs subjected to adherence for 

monocyte isolation is displayed on the y-axis. The 4 cycles of DC generation are shown on the x-axis 

with the bars representing the different tested groups (DMSO and TMX). 

Also, the morphology of monocyte culture is indicative for the maturation of dendritic cells: while 

newly adhered monocytes are regular and round, growing and maturing dendritic cells display the 

typical, longish and branched, dendrite-like morphology. The cultures that obtained TMX treatment in 

comparison with the DMSO controls showed faster, at an earlier time point, and to a higher extent 

cells with a dendrite-like morphology. The morphologic changes became obvious 48 hours after 

treatment with TMX had started and could be observed in more cells than in the culture containing 

DMSO treated cells. After 96 hours under TMX treatment the monocyte culture displayed clear 

morphologic signs of dendritic cells. Still, these cells were more frequent than in the DMSO-treated 

culture (Figure 5.9). These effects could be observed in all 4 successively established DC cultures, 

independently of the cell density and the rate of yield of monocytes from full PBMCs. 
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FIGURE 5.9  REPRESENTATIVE MICROSCOPIC IMAGES OF THE MORPHOLOGY OF DENDRITIC CELLS 

GENERATED FROM MONOCYTES UNDER THE INFLUENCE OF CONTROL SUBSTANCE 

DMSO (A) AND TMX (B). Shown are examples for 1) early dendritic cell culture (48h) at 20x 

magnification and 2) a later time point of dendritic cell generation (96h) at 40x magnification.  

 

The expression of CD80 and CD86 is indicative for activated antigen-presenting cells – B cells and 

monocytes. They are co-stimulatory molecules that bind to CD28 and CTLA-4, which are the 

corresponding ligands on T cells. CD80 and CD86 together play an important role in T cell activation 

and priming towards distinct antigens. They are up-regulated during the activation of monocytes and 

maturation of dendritic cells (CD86 is a marker for early maturation, while CD80 is a marker for 

mature DC). While morphology and cell numbers were recorded for all DC cultures the expression of 

co-stimulatory molecules could only be investigated in one out of 4 DC cultures because there was not 

a decent amount of cells available in the other cycles. The cell numbers were limited and in most cases 

all available DC had to be used for the T cell stimulation to assure the ratio of 1:10 between antigen-

presenting cells and T cells. FACS analysis of the available DCs revealed that culturing monocytes in 

presence of TMX in comparison with DMSO treatment leads to higher expression of CD80 (28.8% vs. 

19.92%) and CD86 (41.95% vs. 28.8%). The results are shown in Figures 5.10 and 5.11.  
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FIGURE 5.10  RESULTS OF THE FACS ANALYSIS FOR CD80 EXPRESSED ON DENDRITIC CELLS. The results 

are shown for DC generation under DMSO treatment (top) and TMX treatment (bottom). The 

fluorescence intensities for CD80 are given on the x-axis. Region borders (R2) were defined based on the 

isotype control with the FI for mouse IgG1 given on the x-axis. The percentage of cells that are CD80+ is 

given in R2.  

 

 

FIGURE 5.11  RESULTS OF THE FACS ANALYSIS FOR CD86 EXPRESSED ON DENDRITIC CELLS. The results 

are shown for DC generation under DMSO treatment (top) and TMX treatment (bottom). The 

fluorescence intensities for CD86 are given on the y-axis. Region borders (R2) were defined based on the 

isotype control with the FI for mouse IgG2b given on the y-axis. The percentage of cells that are CD86+ 

is given in R2.  
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5.2.3  The effect of TMX treatment on stimulation of naïve T cells with 

HPV-associated antigenic peptides  

 

The priming of naïve T cells with peptide-loaded dendritic cells was carried out in 4 cycles over 24 

days. Functional analyses during the stimulation period were not possible as T cell numbers were 

limited and all available cells were used for the final killing assay.  

However, the appearance of the T cells in culture and their morphology was recorded. Also, after each 

stimulation cycle that has been completed, T cell numbers were determined upon harvesting and 

reseeding cells with newly generated dendritic cells. From the photos taken of the T cell cultures 

(Figure 5.12) it becomes obvious that, although the same T cell numbers were initially seeded, T cells 

under TMX developed differently from those treated with DMSO only. On day 10 of the stimulation T 

cells that were treated with DMSO were less dense compared with the TMX-treated T cells (Figure 

5.12. 1A and 1B). Although they seemed to recover until day 21 they still appeared to be less close to 

each other and more scattered over the well than the T cell culture treated with TMX (Figure 5.12 2A 

and 2B).  

 

 

FIGURE 5.12  APPEARANCE OF T CELLS DURING STIMULATION WITH PEPTIDE-LOADED DENDRITIC 

CELLS UNDER THE INFLUENCE OF CONTROL SUBSTANCE DMSO (A) AND TMX (B). Shown 

are examples for 1) an earlier time point of T cell priming (day 10) and 2) a later time point of T cell 

stimulation (day 21) at 20x magnification.  

The morphologic appearance of the T cell cultures was confirmed by the cell numbers recorded upon 

harvesting and re-stimulation. Figure 5.13 demonstrates the development of T cell numbers over time 

during the stimulation. While T cells stimulated under TMX treatment with TMX-generated DCs 

continuously grew until day 17, T cells numbers under DMSO conditions decreased until day 11. 

Nonetheless, they recovered until day 21 and finally both cultures were harvested with more than 

3x10
6
 cells and thus globally showed a positive growing tendency.  
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FIGURE 5.13  DEVELOPMENT OF T CELL NUMBERS DURING THE IN VITRO PRIMING. Shown are the cell 

numbers for T cells stimulated in presence of TMX and in presence of the control substance DMSO.  

 

5.2.4  The effect of TMX treatment on the killing potency of stimulated T 

cells against CaSki cells  

 

The final read-out of the T cell in vitro priming was the killing assay of CaSki cells in a heterologous 

tumor cell – immune cell system. To minimize the reactivity of T cells against tumor cells due to HLA 

mismatching, a PBMC donor expressing the HLA-A2 allele was chosen.  

The reactivity of T cells stimulated with peptides against L1 and p16
INK4a

 and cultured either under 

TMX or DMSO treatment was compared. Therefore they were co-incubated with tumor cells and the 

degranulation rate as measured by CD107a expression on the cell surface was evaluated.  

First, the gate for T cells was defined by T cell cultured alone. Its suitability was also checked for T 

cells that were co-incubated with CaSki cells (Figure 5.14). Then two gates containing CD8+CD107a+ 

T cells (R2) and the total fraction of CD8+ cells irrespective of CD107a expression (R4) were defined. 

The percentage of cells that upon co-incubation with tumor cells expressed CD107a on their cell 

surface and that simultaneously expressed CD8 (cytotoxic T lymphocytes) were higher in the T cell 

culture that had undergone a treatment with TMX compared with the cells that were treated with 

DMSO (p=0.1353). In a second step the degranulation rate of CD8+ T cells measured upon co-

incubation with CaSki cells was calculated by diving the fraction of CD8+/CD107+ T cells by total 

amount of CD8+ T cells measured in the corresponding well. The percentage of CD107a-expressing 

CTLs among all CD8+ T cells again tended to be higher in TMX-treated T cells (8.26%) compared 

with DMSO-treated T cell culture (6.75%) (p=0.2202) (Figure 5.15).  

In conclusion, a slightly higher CD107a release could be obtained by TMX-treatment compared with 

untreated cells. This is true for CD8+CD107a+ T cells and the fraction of CD107a+ T cells among all 

CD8+ T cells (degranulation rate of CD8+ T cells).  
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FIGURE 5.14  EXEMPLARY RESULTS OF THE FACS ANALYSIS FOR CD8 AND CD107A. The gating strategy in 

the FSC/SSC is shown for A) T cells and B) T cells with CaSki cells. One of the duplicates is shown for 

C) the co-incubation of T cells with CaSki cells under DMSO treatment and D) TMX treatment. The 

fluorescence intensities for CD8 (x-axis) and CD107a (y-axis) are given. Region borders were defined 

based on the isotype controls (not shown). The percentage of cells that are CD8+CD107a+ is given in R2 

and the percentage of CD8+ cells in R4.  

 

 

FIGURE 5.15  EVALUATION OF THE CD8+ T CELLS FOR THE DEGRANULATION MARKER CD107A AND 

DEGRANULATION RATE. The percentage of positive cells is presented on the y-axis. The 

experimental groups are displayed on the x-axis. The blue bars represent the results for the tested groups, 

standard deviations are shown as black whiskers (comparison by Student’s t-test, p-values are indicated).  
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5.3 Establishment of an autologous system for the development 

and evaluation of therapeutic intervention strategies in 

HPV-associated diseases  

 

The previous results (chapter 4.2) demonstrated that regulatory T cells might play a role in the 

carcinogenesis of cervical cancers and that immuno-modulatory treatment might reverse the 

immunosuppressive state of the host’s immune system and lead to better killing of cervical cancer 

cells (CaSki) (chapter 5.2.4). Other strategies, such as cell-based approaches, might also be of 

importance in the battle against HPV-cancers and will be considered in this thesis. For the 

investigation of immunological questions autologous models based on tumor cells and immunocytes 

deriving from the same donor are of special interest as they provide advantages in terms of avoidance 

of cross-reactivity and cytotoxicity due to unmatched HLA allelic phenotypes. However, autologous 

HPV-associated tumor models for the cervix as well as for other sites are lacking. One major part of 

this thesis therefore was to establish a HPV-positive tumor cell line for these purposes. This was based 

on tumor samples of head and neck squamous cell carcinoma (HNSCC) patients that could be 

obtained from collaboration partners of the University Hospitals Giessen and Muenster. As cervical 

cancer and HPV-positive HNSCC have the same underlying mechanisms of tumorigenesis, HNSCC 

tumor might also function as a reliable model for HPV-related diseases.  

In the course of this project, one HNSCC cell line from a HPV-positive patient could be established 

and used for further immunological studies.  

 

5.3.1  The cell line HN038M: general features and patient’s characteristics 

In the course of this project tumors samples of 31 HPV-positive HNSCC patients, primary tumors 

together with or without the corresponding metastatic lymph nodes, were obtained. The tissue was 

prepared and cultured as described in section 3.2.4. After many attempts, one cell line out of these 31 

primary cultures could successfully be established by explant culture. This cell line derives from a 

lymph node metastasis of a male patient who underwent his first surgery in March 2013.  

The patient’s and the tumor’s characteristics as well as the clinical course of the disease are 

summarized in Table 5.1.  

The tissue of the primary tumor and the metastasis was prepared as described in section 3.2.4. 

Following the enzymatic digestion of the tissue two tumor explant cultures were initiated, one 

containing the primary tumor cells and the other containing the metastatic cell material. Regular 

microscopic evaluation showed that the culture containing the primary tumor cells in contrast to the 

metastasis seven weeks after tumor preparation still did not contain adherent and growing tumor cell 

cluster and therefore was discarded. 
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Parameter Description 

Sex male  

Age 58 years at diagnosis (march 2013) 

exposure to noxa heavy smoker 

primary tumor  

HPV-association p16
INK4a

 status as determined before surgery: positive 

localization oropharyngeal cancer of the palatine/lingual tonsil 

Size resected mucosal tissue (7,5 x 5,5 x 1,5 cm
3
), with a ulcerous area 

of about 2,1 x 1,5 cm
2
 in the center of the tissue  

cTNM staging cT3, cN2b, cM0 

pTNM staging pT2, pN2b (14/18), L1, V0  

metastatic LN 10 of 11 lymph nodes on the right side affected (level IIb)  

4 of 7 lymph nodes on the right side affected (Level V) 

grade of malignity G2 

 R0 

ICD-O code 8070/3 

further clinical course recurrent disease, relapse within one year: detection of multiple 

metastases 

beginning of January 2014  second surgery: macroscopically recurrent disease could not 

be observed; removal of a lymph node conglomerate 

 lymph node metastasis could be identified  

 partially necrotic tissue, moderately differentiated (G2) 

 squamous cell epithelium 

 ICD-O-Code: 8070/6 

end of January 2014  third surgery with removal of further lymph nodes 

 in 1/25 “metastasis of the known primary tumor” 

 poorly differentiated (G3) 

 ICD-O-Code: 8070/6 

TABLE 5.1  OVERVIEW OF THE MAIN CHARACTERISITCS AND THE CLINICAL COURSE OF THE 

PATIENT FROM WHOM THE CELL LINE IS DERIVED.  

The explant culture of the metastasis after 3 weeks has already shown macroscopically and 

microscopically detectable tumor cell clusters within the fibroblast layer (Figure 5.16 A). After the 

fibroblasts had undergone apoptosis, the tumor cell nests remained stably attached to the cell culture 

flask. However, they did not further expand across their initial “borders” determined by the outer cells 

and, although cells proliferated, only the minority of the newly generated cells adhered to the free 

space of the bottom of the flask (Figure 5.16 B). In this state the tumor cells remained stable over 11 

months. The culture was subjected to repeated trypsinization in order to detach the cells from the 

bottom and allow them to adhere again but in a more homogeneously distributed pattern.  
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Finally, cell proliferation and adherence of newly generated cells to the flask could be stimulated by 

this treatment (Figure 5.16 C and D). The culture after 13 months became 90% confluent, could be 

split and analyzed by FACS staining and cytometry analysis in order to determine the content of 

epithelial cells (Figure 5.17).  

 

FIGURE 5.16  MORPHOLOGIC APPEARANCE OF THE CELL LINE HN038M. Shown are A) an initial tumor cell 

nest (arrow) embedded in fibroblasts (week3), B) expanded tumor cell nest (month 8) and C) tumor cells 

of the established cell line at 100x magnification and B) at200x magnification.  

The analysis revealed that the culture contained ~ 99% of BerEP4+ cells, a marker for epithelial cells 

that have been stable for more than 13 months and still proliferate autonomously. The FACS results 

could be confirmed several times and the tumor cells were subjected to further characterization which 

is described in sections 5.3.2 to 5.3.4 

To date the culture is stable, continuously growing and has until now undergone 43 passages.  

 

 

FIGURE 5.17 EXAMPLARY RESULTS OF THE FACS ANALYSIS FOR BEREP4 OF THE NEWLY GENERATED 

TUMOR CELL LINE. One of the replicates of tumor cells harvested at confluence (passage x) is shown. 

The fluorescence intensity (FI) for BerEP4 is given on the x-axis. Region borders (R2) were defined 

based on the isotype control with the FI for mouse IgG1 given on the x-axis. The percentage of cells that 

are BerEP4+ is given in R2.  
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5.3.2  Determination of the HPV-status and oncogene activity  

To further characterize the established cell line and to validate the clinical finding in terms of HPV-

association of the tumor, the formalin-fixed paraffin-embedded tissue of the metastasis was ordered to 

compare the characteristics of the tumor cell line with the archived tumor material. Therefore, tissue 

sections were stained for p16
INK4a

 to confirm the original diagnosis of the pathologist. The original 

FFPE material of the lymph node metastasis showed a strong and diffuse staining for p16
INK4a 

(Figure 

5.18).  

 

FIGURE 5.18  p16INK4a IMMUNOHISTOCHEMISTRY OF FORMALIN-FIXED PARAFFIN-EMBEDDED 

METASTATIC TUMOR TISSUE OF THE PATIENT FROM WHOM THE CELL LINE IS DERIVED. 

Shown is A) on overview of the lymph node metastasis at 20x magnification and B) details at 40x 

magnification (p16INK4a-positive tumor is marked by an arrow).  

In order to assure that the cultured cells still have this feature equally and were not selected for 

p16
INK4a

-negative cell clones, p16
INK4a

 cytology staining on cultured cells was performed. Therefore, 

tumor cells were harvested and spun down onto a microscopy glass slide. The p16
INK4a

 staining for 

cytological preparations revealed that virtually all cells contained in the sample strongly stained for 

p16
INK4a

 indicating viral oncogene activity (Figure 5.19 A,B).  

 

FIGURE 5.19  p16INK4a CYTOLOGY OF THE HNSCC CELL LINE HN038M AND HPV DNA STATUS 

VISUALIZED BY GP5+/6+ LUMINEX PCR. A) and B) Staining of tumor cells of the HN038M cell line 

(passage 14) shows a clear p16INK4a-staining (brown signal). C) Agarose gel following GP5+/6+ PCR 

shows amplification of HPV DNA in the HN038M tumor cells and in the positive controls (HeLa and 

SiHa) but not in the negative controls.  
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In order to proof the underlying HPV-infection in the cells and the oncogene activity the tumor cells 

were subjected to HPV-genotyping and viral oncoprotein expression of HPV16 E7.  

The GP5+/6+ PCR demonstrated that HPV DNA was amplified (Figure 5.19 C) and the subsequent 

Luminex-based HPV genotyping revealed that the sample was positive for HPV16 DNA. The HPV 

status was also compared with the original FFPE tissue samples of the primary tumor and the 

metastases to validate these findings. HPV genotyping demonstrated that the archived tumor material 

also harbored HPV16 DNA (supplementary Table 9.9).  

 

In order to examine whether p16
INK4a

 overexpression was linked to viral oncogene activity, the viral 

oncogene expression was investigated by western blot analysis for HPV16 E7 expression.  

For the characterization of the protein expression the viral oncoprotein E7 was investigated. Samples 

of different subcultures that have undergone varying numbers of passages (7 and 16 passages) were 

analyzed for viral oncoprotein E7 expression and compared with each other. They were also compared 

with HPV16-positive SiHa cells which were used as positive control for HPV oncoprotein expression. 

As shown in Figure 5.20 the tumor cell line HN038M displayed a strong staining for the viral 

oncoprotein E7 (located at 17 kDa) at earlier passages as well as at a later time point when the tumor 

cell had undergone more passages. 

 

FIGURE 5.20  WESTERN BLOT ANALYSIS OF DIFFERENT FRACTIONS OF THE HNSCC CELL LINE HN038M 

FOR HPV16E7. Tumor cells of different passages (passage 16 and passage 7) were tested and compared 

with HPV16-positive cell line SiHa used as control.  

The tumor cell line was further characterized for HLA class I antigen expression, which is an 

important factor for immunological studies. Expression of HLA class I antigens is the prerequisite for 

the recognition of cells by T cells and therefore required for by CD8+ T cells.  

Tumor cells of the cell line HN038M were characterized for HLA class I expression by flow 

cytometry analysis. It could be demonstrated in two independent experiments that virtually all cells 

were positive for HLA class I antigens (Figure 5.21).  
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FIGURE 5.21  REPRESENTATIVE RESULTS OF THE FACS ANALYSIS FOR HLA CLASS I ANTIGENS OF THE 

NEWLY GENERATED TUMOR CELL LINE. One of the replicates of tumor cells harvested at 

confluence (passage x) is shown. The fluorescence intensity (FI) for HLA class I antigens is given on the 

x-axis. Region borders (R2) were defined based on the isotype control with the FI for mouse IgG1 given 

on the x-axis. The percentage of cells that are HLA class I positive is given in R2.  

 

5.3.3  Cell line validation via short-tandem-repeat profiling 

 

The detection of misidentification of standard cell lines and the increasing awareness of the danger for 

cross-contamination, the proof of authenticity of established and newly generated cell lines that are 

used in experiments has become indispensable. Short-tandem-repeat (STR) profiling is a DNA 

fingerprinting method based on the characterization of hypervariable DNA sequences, so called 

microsatellites, and recommended for cell line authentication. It allows the determination of a unique, 

cell-line specific profile based on 8 different STR loci. The comparison with database comprising all 

characterized and registered cell lines allows to authenticate the cell line and to exclude cross-

contamination with other cell lines.  

Cell line authentication was carried out by Multiplexion GmbH, Heidelberg. STR profiling and 

comparison with database revealed that the newly generated HNSCC cell line HN038M has a unique 

sequence, showing only 90% identity with already known cell lines (less than 96% identity is defined 

as a cell line being not identical with the compared “best hit” cell line). The search for the best hit 

among cell lines registered in the database identified the cell line UACC-257. This is a melanotic 

melanoma cell line of non-epithelial origin which is not in use in our laboratory. The established 

HNSCC cell line has not been present in database to date and shows a genotype code that is unique to 

this cell line and does not match to any of the cell lines contained in the database.  

 

best database hit identity genotype code 

UACC-257 90% AATTAAAAAATTAAAAATAAAWA 

TTTTTTTAAWTWTATTTAATTATWT 

(W= uncertain signal) 

TABLE 5.2  CHARACTERISITICS OF THE TUMOR CELL LINE HN038M.  
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All these characteristics revealed by cell line characterization exclude cross-contamination of the 

primary culture with additional cells from other cell line (established cell lines). In conclusion, the 

identity of the cell line was confirmed with a unique sequence being revealed for the sample. 

Furthermore, the characteristic genotype code, which represents a 48-letter code for 24 single 

nucleotide polymorphism (SNP) locations, was identified. The main characteristics are summarized in 

Table 5.2, for more detailed information provided by the company see also supplementary Figure 9.9.  

As the newly generated cell line is currently not present in the Multiplex Cell Authentication (MCA) 

database (CASTRO et al., 2013) and does not show identity with any other cell lines reported therein, 

the novelty could be proofed and cross-contamination was excluded.  

 

 

5.4  Effect of regulatory T cell depletion on the cellular immune 

response against autologous tumor cells 

 

The presence of regulatory T cells in low-grade lesions and their increasing frequencies in high-grade 

lesion and invasive cervical cancer (chapter 4.2) is a hint for the role they play in all steps of cervical 

carcinogenesis. Their contribution to tumor progression and metastasis and the resulting poor 

prognosis for patients has been, apart from cervical cancer, also been demonstrated in other tumor 

entities (reviewed in HALVORSEN et al., 2014). With the availability of the above described 

autologous model system that could successfully be established the idea was prompted to test the 

immunosuppressive effects of Tregs in vitro and measure the cell-mediated cytotoxicity in presence 

and absence of Tregs. Therefore, peripheral blood lymphocytes could be obtained from the patient 

who gave rise to the cell line that were subjected to Treg depletion and used for the killing assay.  

 

5.4.1  T cell purity and Treg depletion 

The efficiency of Treg depletion was monitored by flow cytometry analysis by comparing the total 

(undepleted) T cell fraction with the T cells following Treg depletion. The results are shown in Figure 

5.22 and demonstrate that depletion of CD25+ T cells by magnetic labelling decreased the amount of 

CD4+CD25+ T cells from 1.93% in undepleted T cells to 0.75% in Treg depleted T cells.  
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FIGURE 5.22  RESULTS OF THE FACS ANALYSIS OF CD4+CD25+ T CELLS CONTAINED IN THE T CELL 

FRACTIONS USED FOR CD107a DEGRANULATION ASSAY BEFORE AND AFTER MAGNETIC 

DEPLETION OF TREG CELLS. The gating strategy in the FSC/SSC is shown in the upper part of the 

figure and was applied for both T cell fractions. The frequencies of Tregs before (total T cells) and after 

Treg depletion are shown in lower part of the figure. The fluorescence intensities for CD4 (x-axis) and 

CD107a (y-axis) are displayed. The percentage of cells that are CD4+CD107a+ are given in R5.  

 

5.4.2  Characterization of the effect of Treg depletion on the killing potency 

of autologous T cells against the tumor cell line HN038M 

The cytotoxic effect of T cells against tumor cells that were either depleted from regulatory T cells or 

not was measured by CD107a expression on the cell surface as described in section 3.x. CD107a 

degranulation in T effector cells is induced upon recognition of and activation by tumor cells. As the 

Treg depletion via magnetic labelling (chapter 3.2.4) targets the CD4+ T cell population of T cells 

isolated from PBMCs the killing effect also was measured by analyzing the CD4+ T cell population. 

Although an additional staining for CD8+ T cells was not possible due to restricted cell numbers, the 

fraction of non-CD4+ T cells can be considered to reflect effects of CD8+ T cells. The gating was 

performed on T cells as shown in chapter 5.2 and the defined gate was then also checked for samples 

consisting of T cells co-incubated with tumor cells. T cells were analyzed by plotting CD107a 

expression against CD4 expression and defining a gate for CD107a+ cells among the CD4+ and non-

CD4+ T cells respectively which represented two clearly distinguishable cell populations (Figure 

5.23). The values for CD4+CD107a+ T cells were obtained by applying the same gates for all 

samples.  
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FIGURE 5.23  RESULTS OF THE FACS ANALYSIS FOR CD4 AND CD107A. One of the duplicates is shown for the 

co-incubation of autologous tumor cells with total T cells (left) and Treg depleted T cells (right). The 

fluorescence intensities for CD4 (x-axis) and CD107a (y-axis) are given. Region borders were defined 

based on the isotype controls (not shown). The percentage of cells that are CD4+CD107a+ are given in 

R2 and the percentage of CD4-CD107a+ cells in R3.  

The results obtained from the comparison between Treg depleted and total T cells are shown in Figure 

5.x. Treg depleted T cells compared with total non-depleted T cell fraction showed a slightly better 

killing effect as measured by the percentage of CD107+ cells among the CD4+ T cells as defined by 

region R2. Interestingly, this effect can also be observed in the non-CD4+ T cell fraction (R3).  

 

 

FIGURE 5.24  EVALUATION OF THE CD4+ AND NON-CD4+ T CELLS FOR THE DEGRANULATION MARKER 

CD107A. The percentage of positive cells is presented on the y-axis. The experimental groups are 

displayed on the x-axis. The blue bars represent the results for the tested groups, standard deviations are 

shown as black whiskers (comparison by Student’s t-test, p-values are indicated).  

 

In summary, a higher degranulation rate could be observed in the CD4+ T cell fraction and also in the 

non-CD4+ T cell population after Treg depletion. The effect was even more pronounced in the non-

CD4+ T cell fraction where the proportion of CD107a+ T cells following Treg depletion was 3 times 

higher compared with the total T cell fraction.  
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5.4.3 The killing capacities of T cells co-incubated with autologous tumor 

cells can also be monitored in real-time 

 

The effect of Treg depletion on tumor cell killing was monitored by a second experimental approach. 

Thereby changes in impedance caused by cytotoxic effects mediated by T cells against tumor cells 

were measured as explained in section 3.2.4. These effects are displayed as cell indices, a unit that 

reflects changes in size and morphology of the cells, grade of adherence of the cells to the plate as well 

as cell density (PEPER et al., 2014). The results obtained from this measurement are shown in Figure 

5.x. While the ascending curves represent the growing phase of tumor cells during the first 96 hours 

(represented by the dotted line), the descending curves represent the co-incubation of tumor cells with 

the effector cells during the following 96 hours (continuous line). T cells were added following the 

adherence and growing of tumor cells, 96 hours after the experiment has been started (marked by an 

arrow).  

 

 

FIGURE 5.25  DYNAMIC REAL-TIME MONITORING OF T CELL-MEDIATED CYTOTOXICTY AGAINST 

AUTOLOGOUS TUMOR CELLS MEDIATED BY TOTAL T CELLS AND TREG DEPLETED T 

CELLS. The values recorded by the xCELLigence system are displayed as dimensionless cell indices. 

Controls (grey and blue) were also measured and compared with the co-cultures of tumor cells and T cells 

(green and red) (top). Slope values were defined in distinct phases of the killing marked by the brackets 

A, B and C and visualized as bar graphs (bottom).  
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The spikes interrupting the curve during the tumor cell growing phase can be explained by the daily 

removal of the plate from the analyzing unit for change of the media. A massive decrease of cell index 

values directly after addition of the T cells to the culture could be observed at t=96 hours. This 

coincides with the time point when T cells were added and thereby half of the tumor cell medium was 

replaced by lymphocyte medium. This decrease in some samples is followed by a recovery phase 

accompanied be a re-increase of the cell index (between t=96 hours and t=105 hours).  

As depicted in Figure 5.25 the addition of non-adherent T cells to the wells did not have any effect on 

the impedance and the resulting cell index (blue control curve). Slight differences in the growing 

behavior of tumor cells during the first 96 hours is reflected by higher or lower cell index values of the 

tumor cell cultures that were then subjected to different treatments. At that time point the tumor cells 

subsequently co-incubated with the total T cell fraction had a higher cell index than tumor cells co-

incubated with Treg depleted T cells (cell indices for different time points are summarized in Table 

5.3).  

 

Time point 

(hours after start 

of experiment) 

description T cell total 

cell index 

Treg depleted 

cell index 

p-value 

96:00 after tumor cell growing phase 4.34 5.23 0.0569 

105:00 after media change and recovering 4.02 4.47 0.2544 

132:00 crossing point of both curves 4.21 4.21 0.9273 

192:00 end of experiment 3.38 2.38 0.0619 

TABLE 5.3  CELL INDICES FOR TUMOR CELLS CO-INCUBATED WITH TOTAL T CELLS AND TREG 

DEPLETED T CELLS. The values recorded by the xCELLigence system are displayed for different time 

points beginning after tumor cell adherence and proliferation.  

The starting point for measuring the real effect of T cells on tumor cells was set to 105 hours after start 

of the experiment which represent the end of the recovery phase. Here, the indices for the Treg 

depletion experiment were still higher than for the total T cell experiment. These differences in the cell 

indices underscore even more the effects that the different T cell fractions had on the tumor cells 

which will be explained below. 

During the following 96 hours of co-incubation of total T cells with tumor cells the curve showed a 

slight overall decrease its course is comparable with the grey control curve (tumor cells without T 

cells). The tumor cell culture that later on was treated with the Treg depleted T cells had reached a 

higher cell index after 96 hours growing. After change of the media the cells did not show a recovering 

phase but from that time point on a constantly decreasing curve which, although initially higher, 

crossed the curve of the tumor cells treated with total T cells at approximately 132 hours. At the end of 

the measurement the cell index of this curve was far lower (2.38) than that of tumor cells treated with 

total T cells (3.38) (p=0.0619).  

 

The trends of the curves can be better characterized by determining the slope (in 1/h) over the 

complete co-incubation period (starting from the recovering phase, phase A) and also in single 

sections (B, C) (Figure 5.25). The analysis of the overall slope demonstrated that the values for total T 

cells and Treg depleted T cells are negative, but the values for the “Treg depleted” curve show a 

greater descending slope. The analysis of the slope in the first killing phase (B) demonstrated, that the 
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slope was positive for the total T cell curve (+0.0068) while the Treg curve was decreasing (-0.0074). 

In the last section (C) from the crossing point until the end of the experiment (132 hours - 192 hours) 

both curves displayed negative slopes, the slope for the Treg curve (-0.0297) however is twice the 

value of the total T cell curve (-0.0136). The graphical visualization of the slope values calculated for 

the different cultures and the control also demonstrated that the curve for total T cells (red) is similar 

to the control curve (grey) and that the curve for Treg depletion (green) behaves completely different. 

The slope values explain the differences observed for the cell indices for the both co-cultures, with the 

Treg curve starting at a higher cell index and finally falling below the total T cell curve.  

 

In summary, the real-time measurement of the T cell mediated cytotoxicity against autologous tumor 

cells demonstrated that Treg depletion enhances the killing of tumor cells and thus confirms the results 

obtained in the first experiment by CD107a degranulation assay.  
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6. 
 

DISCUSSION AND 

CONCLUSION 
 

6.1  Overview of the results obtained during the thesis  

The central goals of this thesis were to generate a deeper understanding of the immune status of 

patients with HPV-associated precancerous lesions and cancers and evaluate possible intervention 

strategies to enhance anti-tumoral immune responses.  

In the first part (chapter 4) immune markers that might contribute to tumor immune evasion were 

investigated on the immune cell side and on the tumor cell side. It could be shown that immune 

infiltrates in cervical lesions are denser in high-grade lesions compared to low-grade lesions. This was 

observed for different immune cell markers (CD3, CD8, GranB, Foxp3 and CD3ζ) and does not point 

to a clear immune activation or suppression (chapter 4.2). Invasive cervical cancer, however, was 

characterized by a further significant increase in Foxp3+ regulatory T cells accompanied by 

significantly decreased CD8/CD3 and CD3/CD3ζ ratios which might be a hint for the 

immunosuppressive state of patients with invasive disease. Although the changes between different 

infection and histomorphological stages in precancers were not significant large variances in T cells 

densities in all histomorphological CIN grades could be observed, for example for Tregs and also 

CD8+ T cells. This might indicate that more or less infiltration with distinct T cell subtypes - effector 

T cells or immune suppressive T cells - is associated with progression or regression of the lesions. To 

also gain a deeper insight in the immunological modification on the tumor side contributing to 

immune evasion mechanisms the expression of HLA antigens was investigated within this thesis 

(chapter 4.3). Alterations in terms of HLA class I antigen losses and down-regulation, especially of 

HLA class I heavy chain A, and HLA class II de novo expression in precancerous lesions and cancers 

were common. The selective down-regulation of HLA class I antigens could represent another 

effective immune evasion mechanism. Interestingly, it could be demonstrated in a longitudinal setting 

(chapter 4.4) that immune infiltrates in CIN can be influenced by local immune modulatory drug 

treatment based on imiquimod and that a response to the immune stimulatory treatment with 

imiquimod is associated with increasing immune cell densities of CD3+ and CD8+ T cells. The major 

methodological approach of this first part (chapter 4.1) was the establishment of automated cell 

detection and quantification platform for immune cell infiltrates in cervical precancerous lesions. This 

tool allows high-throughput screening of larger cohorts on the search for immunological prognostic 

markers and also for monitoring of treatment strategies.  

Based on the findings obtained from the immunological characterization of CIN lesions and cervical 

carcinoma samples in the first part therapeutic strategies could be deduced for the second part of this 

work (chapter 5). The approach based on immuno-modulatory drug treatment was pursued in this 

chapter and also depletion of regulatory T lymphocytes was evaluated in different experimental 

settings. Immune modulation by TLR-agonist treatment was further investigated by comparing two 
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different compounds: the approved substance imiquimod and a new purine base derivative called 

TMX-202 were tested for efficiency regarding immune stimulation (chapter 5.1). It was demonstrated 

that TMX-202 in comparison to imiquimod induces massive IL-6 secretion. In an in vitro priming 

experiment of naïve T cells it was also shown that this substance can stimulate the adaptive immune 

response and enhance the killing of CaSki cells. One aim of the second part was also to establish a 

HPV-positive HNSCC tumor cell line as an autologous model for HPV-associated cancers (chapter 

5.2). Autologous systems are of special interest for immunological studies involving tumor cell killing 

as alloreactivity of immune cells against an incompletely HLA-matched tumor cell lines can be a 

problem. This model was used to test another strategy aiming at the circumvention of possible immune 

suppressive effects mediated by regulatory T cells (chapter 5.3). The killing effects of T cells after 

Treg depletion and without Treg depletion against the autologous tumor cell line were compared and 

found to be enhanced with Treg depleted T cells in two independent experimental approaches.  

 

 

 

FIGURE 6.1  THE HPV-RELATED CANCER PROGRESSION MODEL INTERPRETED IN THE CONTEXT OF 

THE RESULTS OBTAINED IN THE COURSE OF THIS THESIS. 
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6.2  An automated cell quantification tool allows the analysis of 

the immune cell contexture of cervical precancerous 

lesions in high-throughput approaches 

The tumor micromilieu is thought to be highly important for a better understanding of the factors that 

influence tumor development and progression. Parameters of interest are the immune cell composition 

in term of densities and different phenotypes of immune cells entering the tumor area but also features 

inherent to these cells such as production of enzymes or cytokines that might be released in the tumor 

environment. The importance of the “immune cell contexture” in primary tumors of different sites and 

their metastases has frequently been reported and it has been demonstrated that the quality of this 

tumor micromilieu impacts the clinical outcome of the patients (reviewed in FRIDMAN et al., 2011; 

FRIDMAN et al., 2012; FRIDMAN et al., 2014).  

The idea to search for biomarkers that might be relevant for prognosis and for the prediction of the 

patient’s clinical outcome is widespread in the field of oncology and tumor biology and not restricted 

to any tumor entity (LLOYD et al., 2010) (GALON et al., 2006). On the hunt for suitable prognostic 

cancer biomarkers whole slide imaging and automated quantification tools are the approaches that 

scientists currently strive for. The impact of this methodological approach is reflected by the number 

of up-to-date publications related to this topic (IRSHAD et al., 2014) and the multitude of reviews that 

address not only general aspects of digitalized pathology and the state-of-the-art of this relatively new 

field but also the challenges for imaging informatics and the needs of pathologists (KOTHARI et al., 

2013; TAYLOR, 2014; WEBSTER and DUNSTAN, 2014). 

The characterization and definition of prognostic biomarkers is also highly important in the screening 

of cervical intraepithelial neoplasia (CIN). They are frequently detected especially in young women, 

but they often remain without any clinical consequence due to a high regression rate. Virtually all 

women diagnosed with a high-grade CIN are surgically treated resulting in over-treatment. To solve 

this problem reliable biomarkers are necessary for prognosis and risk-adapted treatment strategies.  

The first step in the direction of virtual microscopy of cervical precancers was done with the 

establishment of a platform used for the scanning and evaluation of cervical cytology slides (GRABE 

et al., 2010). At that time an algorithm was developed that allows the automated detection of p16
INK4a

 

stained cells and reliable discrimination from unstained cells.  

In the context of immune cell characterization aiming at identification of potentially immune 

suppressive or cell-mediated cytotoxic mechanisms that could represent progression and regression 

markers the developed tool for automated cell detection and quantification is highly important. It is a 

prerequisite for defining immunological markers indicative for the clinical course of cervical 

intraepithelial neoplasia. One major aim of the presented thesis was the development of such a 

platform for the quantification of immune cell infiltrates in cervical precancerous lesions.  

As outlined in chapter 4.1 this aim could be achieved in a cooperation project with the TIGA Center, 

Heidelberg. Continuous feedback given between computer scientists, pathologists and immunologist 

allowed the method to be brought to perfection. The use of available server structures for data storage 

allowed all cooperation partners involved in the project to have access to the whole slide scans. The 

establishment of the method was based on CIN samples stained for CD3 and CD8 and involved 

continued control of the cell detection rate and manual comparison of computed cell signals with the 
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brown DAB staining signals of digitalized slides. Several rounds of improvement including adaption 

of annotation tools and defining the threshold for signal recognition also for weaker stains were 

undergone until the algorithm finally was applied to the patient samples. 

 

The established system has several advantages in comparison with existing manual approaches in the 

investigation of immunological approaches. (1) It offers high reproducibility as the procedure is based 

on standardized immunohistochemical staining protocols and application of a defined cell detection 

and quantification algorithm. (2) It represents an objective way for cell quantification and assures 

reliable discrimination of positively stained cells from negative cells. Especially the precise 

demarcation of the basal membrane allows immune cells in this region exactly to be determined: this 

is very challenging during manual quantification and requires the utmost concentration of the 

investigator as high immune cell densities can be found in this region. (3) Manual quantification 

methods mostly are restricted to smaller areas. This novel method which is based on whole-slide-

images of the affected tissue allows the comprehensive assessment of not only the tumor or lesion 

itself but also of the surrounding tissue, the whole microenvironment which seems to largely impact 

the course of the disease. (4) It offers time-effectiveness and allows high-throughput screening of large 

cohorts which could be analyzed for a variety of different (immunological) markers.  

The advantages of the automated system over manual counting of positively stained cells under the 

microscope in terms of objectivity reproducibility of the results are widely recognized (FUCHS et al., 

2008). Nonetheless, the established platform shall be applied to larger sample sets in the near future to 

validate the method. Thereby, the intra-observer variability by comparison of repeated manual 

counting and automated quantification shall be evaluated as well as the inter-observer variability by 

comparison of manually and automatically quantified immune cell counts of different investigators.  

 

In the long run the technological basis of this study shall be further developed, the parameters to be 

analyzed shall be expanded and the underlying algorithms have then to be adapted to these needs. 

Many other markers could be interesting and as their diversity is high and the sample material limited 

immune-fluorescence allowing double staining appears as an interesting option. Additionally, further 

immune-cell related information, such as definition of T cell clusters, that frequently are observed in 

the tumor microenvironment (EDWARDS et al., 1995; HALAMA et al., 2009), might be of interest. 

Therefore the coordinates of each cell have to be offset against the positions of the surrounding cells to 

evaluate how many cells are in direct contact with each other and how far they are located from the 

epithelium.  

The actually available operations shall also be extended and one major aim is rendering the annotation 

of the lesions easier and faster. Currently the exact annotation of the lesion has to be performed 

manually by drawing the exact borders at the basal and superficial cell layers. The improvement could 

be achieved by including a previously described algorithm that allows the automated separation of 

stromal and tumor tissue based on a DAPI staining of the nuclei (LAHRMANN et al., 2011). This 

algorithm could be adapted to CIN lesions allowing the automated annotation of the basal membrane. 

This procedure would then require only an approximate demarcation of the abnormal epithelium to 

initiate the annotation, the basal membrane, however, would then be automatically detected in this 

region and the ROIs would be calculated as described in chapter 4.1.2. This method would be even 

more time efficient and exact.  
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Another challenge of the project and a step towards even more automation regarding the annotating 

step of the process is the usage of registration methods (MOLES LOPEZ et al., 2014). By elaborating 

this method, the lesion regions would have to be defined only once on the p16
INK4a

 reference slide, 

either manually or automatically, which would then be used as template to automatically transfer the 

annotated region to all other stained and digitalized slides by pattern recognition. The p16
INK4a

 staining 

could be reliably used for the detection of transformed high-grade lesions, as it is a surrogate for 

oncogene overexpression and in these cases displays as strong and diffuse staining pattern. A few 

slides, however, do not express p16
INK4a

 and still would have to be annotated manually. Nevertheless, 

image registration could reduce the workload as an annotated p16
INK4a

 stained slide could be used as a 

reference template for several other consecutive stained slides.  

Also the morphological appearance could be used and integrated in the computational detection of the 

lesion as CIN lesions are graded according to the degree of morphologically atypical epithelial cells. 

While in CIN1 the basal third of the epithelium is affected, CIN2 is defined as showing abnormalities 

until the middle third and in CIN3 atypical cells can also be found in superficial third of the 

epithelium. For p16
INK4a

-negative low-grade lesion that have not yet entered the transforming infection 

stage a combination of information gained from the morphological appearance and an epithelial 

marker would be conceivable to identify the p16
INK4a

-negative lesions (KEENAN et al., 2000; WANG 

et al., 2007). An algorithm could be developed that recognizes the lesion by computational analysis of 

the cellular morphology and p16
INK4a

 positivity in parallel and by specifically distinguishing the lesion 

from the background and also the stromal tissue. This would allow an objective and standardized 

definition of the intraepithelial neoplasia and thus the corresponding p16
INK4a

 reference slide could be 

used as template for the automated annotation of the following serial slides stained with different 

immune markers.  

 

In conclusion, this methodological approach is in accordance with the actual needs of the classical 

pathology and the contemporary trend towards whole slide imaging that replaces visual inspection and 

evaluation of glass slides under the microscope and allows for high-throughput analyses. Automated 

quantification platforms allow the classical pathological discipline to be transferred in to the world of 

digitalization. The establishment of such a system for CIN lesions was a necessary step to make up 

leeway and close the gap to the achievements already made for other tumor entities (GALON et al., 

2006; KUNZ et al., 2014; LLOYD et al., 2010). This new approach facilitates sharing of sample 

material between pathologists and scientists as it did also in the here described cooperation project and 

might improve the reproducibility not only in terms of pathological diagnosis (BUENO et al., 2014) 

but especially in the scientific investigation of biomarkers predicting the clinical course of CIN 

lesions. The established method allows the immune cell contexture in the whole affected area to be 

taken into account and immune cells to be quantified in a standardized and objective way and 

therefore is highly relevant for the prediction of biomarkers and as guidance for immunotherapy.  
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6.3  Immune cell densities and composition are different in 

high-grade lesions and cancers compared with low-grade 

lesions  

A non-negligible proportion of morphologically defined low-grade CIN1 overexpresses p16
INK4a

 

(TSOUMPOU et al., 2009) indicating that within these lesions there is to a certain extent already viral 

oncogene overexpression constituting the initial transforming event. Only a small fraction of these 

early transforming infections stages, however, progresses towards higher stages (CIN2/CIN3) (WANG 

et al., 2004). The study presented herein addressed the question whether density and phenotype of 

infiltrating immune cells are different in low-grade CIN that have already entered the transforming 

stage (p16
INK4a

-positive) and those that are still in the permissive stage (p16
INK4a

-negative) and thus 

correlates with the early induction of transformation in low-grade lesions or whether this shift rather is 

associated with established and morphologically advanced high-grade dysplasia that may have 

accumulated chromosomal instability. To answer these questions, different T cell phenotypes in CIN 

were quantified in a cross-sectional study cohort and analyzed in relation to the p16
INK4a

-expression of 

the lesions. In addition to well characterized immune cell markers (CD3, CD8, Granzyme B and 

Foxp3) also CD3 ζ-chain was included as here data for CIN are scarcer. 

T cell infiltrates were compared between non-transforming and transforming infection stages in low-

grade CIN (chapter 4.2.2). The analysis revealed that p16
ÌNK4a

-positivity in a substantial proportion of 

low-grade CIN (CIN1) representing the early transforming infection stages, was not associated with 

significant changes in densities of different T cell phenotypes infiltrating the lesion-adjacent stroma 

and the lesion. T cell densities in these p16
INK4a

-positive low-grade CIN were similar to those in 

p16
INK4a

-negative low-grade CIN demonstrating that the onset of p16
INK4a

 expression which represents 

the beginning of the transforming infection state was demonstrated is not associated with changes in T 

cells densities or in the composition of the infiltrate.  

Changes obviously occur at a later time point after transforming processes have been initiated: in later 

CIN stages (CIN2/3) compared to low-grade CIN the T cell infiltrate densities fundamentally changed 

irrespective of the T cell phenotype (chapter 4.2.3). The finding of increased T cell density in high-

grade lesions – observed for all investigated T cell subtypes in both compartments (except epithelial 

Treg cells) - is in accordance with other studies describing also denser infiltration and altered immune 

cell composition in increasing clinicopathologic CIN stages (BONTKES et al., 1997; JAAFAR et al., 

2009; MONNIER-BENOIT et al., 2006).  

Additionally, the higher absolute T cell infiltration in high-grade CIN compared to low-grade lesion 

was accompanied by lesion/stroma ratios tending to be decreased for all T cell subtypes except for 

GranB which was slightly increased. This demonstrates that despite dense infiltration with immune 

cells attracted to the adjacent stromal compartment the recruitment of T cells into the lesion, where T 

cell effectors should do their job and eliminate transformed cells, is hampered in high-grade lesions. 

This effect may - in combination with immunological tolerance – favor progression and the outgrowth 

of the lesion although dense immune cell infiltrates are present at the lesion site.  

Invasive cervical carcinomas were compared with high-grade CIN (chapter 4.2.3) and showed a 

further increase in total T cell numbers. Significantly higher densities were observed for CD3+, 

GranB+ and Foxp3+ T cells. This is also in agreement with several other studies reporting on higher 
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densities of CD4+ T lymphocytes (ADURTHI et al., 2008; LODDENKEMPER et al., 2009), CD8+ T 

cells (ADURTHI et al., 2008; EDWARDS et al., 1995; LODDENKEMPER et al., 2009) and also 

Foxp3+ regulatory T lymphocytes (ADURTHI et al., 2008; HOU et al., 2012; WU et al., 2011). 

One explanation for the denser T cell infiltration in high-grade CIN and cancer could be the increased 

antigenicity due to the permanent viral oncogene expression as proposed by Loddenkemper et al. 

(LODDENKEMPER et al., 2009) or the potential expression of tumor-associated cellular antigens. 

It has been described in literature that genomic alterations are induced following viral oncogene 

overexpression initiating transformation of the host cells and that the accumulation of distinct 

secondary alterations is driving the progression of a lesion (DUENSING and MUNGER, 2004). 

However, studies based on comparative genomic hybridization revealed that these genomic alterations 

are rare in low-grade lesions irrespective of their p16
INK4a

-status (THOMAS et al., 2013). The results 

obtained from the presented study show that despite p16
INK4a

-positivity indicating viral E6 and E7 

overexpression, transforming low-grade CIN are not yet characterized by marked immune cell 

infiltrate changes, which only occur – as well as the accumulation of genomic alterations 

(chromosomal alterations) - in later high-grade stages of CIN.  

Interestingly, the lesion/stroma ratio for GranB+ activated CTLs and also the epithelial CD8+/CD3+ 

ratio were significantly decreased in invasive cancer samples, a finding confirmed by other studies 

speculating on the ineffectiveness of effector T lymphocyte responses despite a strong infiltration due 

to immunoregulation mechanisms provoking further T cell recruitment to the lesion/tumor while 

disease progression is unhampered at the same time (ADURTHI et al., 2008; EDWARDS et al., 1995; 

LODDENKEMPER et al., 2009; MONNIER-BENOIT et al., 2006). Immune suppression mechanisms 

seem to be more important in high-grade lesions where all sorts of immune cells are attracted to a 

greater extent. In cervical cancer the highest Treg density could be found, which was constantly 

increasing with disease severity. The presence of regulatory T cells, however, could also be observed 

in low-grade lesions. This finding together with the fact that they show large variances in each of the 

diagnostic categories point to the role they could play in disease progression and clinical outcome of 

the patients. Also one might speculate that the observed increase of total CD3+ T cell infiltration 

correlates with an increased proportion of other types of immune regulating, inhibiting cells. This 

would have to be tested with other markers. With only one immune regulation T cell type, represented 

by Treg cells, investigated in this study, the exact mode of action of immune control mechanisms 

enabling HPV-transformed cells to evade the immune system and allow disease progression, remains 

still to be identified in prospective studies. A comprehensive overview will be given in chapter 6.4 

where different immune regulation mechanisms as possible markers for future studies will be 

discussed. Also strategies adapted by the tumor cells themselves might be involved in the 

circumvention of host immune responses and enable the cells to further grow out to high-grade lesions 

and invasive cancers. One of these mechanisms is the alteration of the antigen-presentation capacity 

(chapter 4.3) which prevents potential HPV-associated antigens to be presented to immune cells. This 

could hamper the activation of cytotoxic T lymphocytes – that as demonstrated in the course of this 

analysis are frequently are present in the tumor environment – and thus favor disease progression.  

T cell infiltration of CIN lesions and the adjacent stromal compartment is highly heterogeneous with 

regard to the T cell densities and also phenotypes and was shown to increase with histomorphological 

lesion grades. The correlation of T cell infiltrates with the p16
INK4a

 status and thereby with biologically 

defined progression steps of precancerous lesions, which was done for the first time in this study, 
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demonstrated that there are no differences in the T cell numbers between p16
INK4a

-negative and 

p16
INK4a

-positive low-grade CIN. Only in later, morphologically more advanced high-grade CIN 

(p16
INK4a

-positive CIN2/3) remarkable alterations of T cell densities could be found. This is in 

agreement with the idea of the local selection and outgrowth of more advanced abnormal subclones 

that have acquired genomic alterations and the influence that these aberrations have on the local 

immune milieu during progression of established lesions.  

 

The above described heterogeneous T cell densities within the same histomorphological category were 

reported previously for example for Treg cells by Adhurti et al. who argue that this T cell phenotype 

varies over time and is dependent of persisting HPV infections (ADURTHI et al., 2008). It has been 

demonstrated that also a proportion of established high-grade CIN (CIN2/3) regress spontaneously 

(MUNK et al., 2007) and one could speculate that the dynamics of progression and regression 

correlates with the variation in T cell densities and that this could be a valuable progression marker 

especially for high-grade lesions that all are p16
INK4a

-positive for which reason p16
INK4a

 alone cannot 

predict progression. The density and phenotype of infiltrating immune cells could be a source of 

predictors for the natural course of CIN and the clinical outcome as it has been described for various 

other cancer types (CUNHA et al., 2012; DAVIDSSON et al., 2013; GALON et al., 2006; KIM et al., 

2013). Single longitudinal studies reported on higher GranB-expressing cytotoxic T cells in regressing 

CIN (TRIMBLE et al., 2010; WOO et al., 2008) and this might also be true for other T cell types in 

both outcome groups.  

With the samples deriving from the Austrian imiquimod trial described in section 4.4 and based on 

automated high-throughput screening methods as described previously (chapters 4.1 and 6.2) these 

analyses can be transferred to a prospective study of high clinical relevance. T cell densities and 

phenotypes there can be investigated in relation to the clinical outcome and the correlation with 

regression or progression of the lesions is likely to contribute to a better understanding of the here 

discussed heterogeneity in T cell densities. This might allow the definition of the “immune evasion 

phenotype” – an immunological phenotype associated with immune evasion. Once this combination of 

immune characteristics is defined it could also be used as a clinically relevant immune cell marker 

panel to estimate the progression risk of patients.  

 

6.4 HLA class I and class II antigen expression is altered in 

cervical intraepithelial neoplasia and cancers  

 

Alterations of HLA class I antigens on tumor cells have been reported in different tumor entities and 

are believed to play – in addition to the variation in T cell infiltrate densities – an important role in the 

battle of the host’s immune system against cancer cells. Modulation of the antigen presentation 

capacities of the tumor cells is an elaborated mechanism by which tumor cells adopt to the host’s 

immune system to possibly evade an immune attack (CHANG and FERRONE, 2007). HLA class I 

antigen expression is reported to be associated with the clinical outcome of the patients in different 

cancers such as HNSCC (MEISSNER et al., 2005), rectal cancer (REIMERS et al., 2014) and 

melanoma (HICKLIN et al., 1998). For cervical cancer patients a negative correlation between absent 

HLA class I heavy chain expression and a poor clinical outcome (MEHTA et al., 2008) has been 
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shown which is explained by presence or absence of recruitment of distinct T cell phenotypes to the 

tumor (JORDANOVA et al., 2008). The vast majority of these analyses have been performed in 

cancer patients while the role of HLA class I and class II antigen modulation in earlier stages of 

cervical carcinogenesis is less well characterized. Also studies involving both components of HLA 

class I complexes, the heavy chain and the light chain, together with HLA class II antigen expression 

have been lacking. To close these gap CIN and cervical cancer samples (n=40) were analyzed for 

HLA class I and HLA class II antigen expression (chapter 4.3).  

 

With regard to HLA class I antigen expression, the analyses performed during this thesis demonstrated 

that normal, non-dysplastic epithelium adjacent to the lesions showed strong, homogenous and 

membranous expression for HLA class I heavy chains and β2m in all observed regions. In contrast, 

CIN and invasive cancers are characterized by a high frequency of alterations in HLA class I antigen 

expression.  

Importantly, the observed losses of HLA class I expression in the majority of the analyzed samples do 

not represent total HLA class I loss, but often affect only parts of the lesion/tumor defined as 

heterogeneous expression pattern. About 40 % of lesions (45.0% of CIN and 35.3% of cancers) still 

retain the expression of HLA class I heavy chain A of the cell surface. With regard to cytoplasmic 

expression the percentage of lesions that express HLA class I heavy chain A is about 75% (80.0% of 

CIN and 70.6% of cancers).  

Alterations of HLA class I heavy chain expression is more frequently were observed of for the staining 

with HCA-2 representing HLA class I heavy chain A epitopes while staining results for HC-10 (heavy 

chains B and C) and β2m less frequently showed alterations.  

 

Possible mechanisms explaining the higher frequencies of losses observed with the HCA-2 antibody 

mainly recognizing HLA-A heavy chains could be discussed as following: One potential explanation 

might be that in these cervical lesions a selective loss of the HLA-A locus occurs more frequently as 

compared with the HLA-B and HLA-C loci which visualized by the HC-10 antibody (reviewed in 

SELIGER et al., 2002). Selective loss of HLA class I allospecificities in malignant cells has also been 

reported in melanoma (PASCHEN et al., 2003), renal cell carcinoma (LUBOLDT et al., 1996) and 

colorectal cancer (KLOOR et al., 2005). This alteration potentially reflects immune selection caused 

by the massive immune infiltrates entering the tumor microenvironment (chapter 4.2) and might be 

involved in down-regulated presentation of tumor-associated antigens. Additionally, tumor antigens 

with a higher antigenic potential might be bound by HLA heavy chain A compared with the other 

classical heavy chains of the HLA class I complex. Selective loss or down-regulation of HLA-A could 

then be considered as an adaption of the tumor cells under the immune selective pressure of the host’s 

immune system (CHANG et al., 2003). It is known from other tumor types that the presence or 

absence of distinct HLA haplotypes, not only HLA class I but also class II antigens, contribute to a 

higher susceptibility for cancer (RAZMKHAH and GHADERI, 2013), and it is conceivable that this is 

also true for the development of cervical and other HPV-associated cancers.  

 

Concerning the observed HC-10 staining pattern (less frequent alterations), a definitive conclusion 

concerning HLA-B and HLA-C heavy chains in this context cannot be drawn for different reasons. 

First of all, the antibody has overlapping specificity for HLA-B and HLA-C heavy chains and also for 
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some HLA-A epitopes. If one of the antigens is down-regulated, the presence of the other heavy chain 

subtype would still result in a positive staining signal (STAM et al., 1986). 

 

Furthermore, other underlying mechanisms such as defects in the antigen-processing in the cytosol and 

endoplasmatic reticulum might also be involved resulting in disturbed antigen loading and transport to 

the cell membrane. This could be caused by loss of transporter-associated with antigen processing 

(TAP) (BANDOH et al., 2010) or tapasin (HAN et al., 2008) which are involved in the transport of 

antigenic peptides into the endoplasmatic reticulum and loading on HLA class I molecules.  

Total loss of HLA class I antigens is causally linked to complete loss of β2m expression due to 

structural defects of one of the β2m locus on chromosome 15. In this case, HLA class I heavy chains 

cannot any longer be trafficked by the endoplasmatic reticulum and golgi apparatus to be finally 

expressed on the cell membrane (reviewed in SELIGER et al., 2002). Cytoplasmic β2m expression is 

retained in 100% of CIN2 samples and heterogeneous expression of β2m expression could only be 

observed in the minority of CIN3 and cancer samples. None of the samples were negative for 

cytoplasmic β2m expression. This implies that loss of β2m is not the major mechanism of immune 

evasion contributing to the cervical carcinogenesis. This is in contrast to other tumor types such as 

melanoma or microsatellite unstable colorectal cancers where the β2m wild-type allele is lost 

(PASCHEN et al., 2003; TIKIDZHIEVA et al., 2012).  

 

The fact that expression in most of the regions is retained argues against a total functional disruption. 

Selective loss or down-regulation could be mediated by the interaction of HPV with the expression of 

HLA class I molecules. It has been shown that HPV16 E7 induces HLA class I down-regulation 

(BOTTLEY et al., 2008) as well as HPV16 E5 (CAMPO et al., 2010). This might represent a 

mechanism developed by the virus to circumvent immune attack of virally infected cells by preventing 

antigen-presentation of viral antigen and thus to establish the infection and promote the completion of 

the viral life cycle (ASHRAFI et al., 2005).  

Once the underlying mechanisms are clear, the re-induction of full HLA class I antigen expression by 

therapeutic intervention (LANZA et al., 1995) may be a goal and naturally occurring immune 

responses might then be successfully eradicate the lesion. In addition, treatment strategies based on 

vaccines or other immune enhancing therapeutics can probably restore or further enhance the immune 

attack against tumor cells.  

 

The method based of immunohistochemical analyses of HLA class I complexes certainly has 

limitations. The formalin fixation process of the tumor samples leads to dissociation of assembled 

complexes into free heavy chains and β2m. In contrast to fresh, unfixed tissue material or cells, where 

functional HLA class I complexes can be detected for example with the W6/32 antibody recognizing 

assembled HLA-A/B/C complexes, on paraffin-embedded tissue the heavy and light chains have to be 

stained separately by distinct antibodies as described previously (KLOOR et al., 2005). This is the 

reason why this approach does not allow functional conclusions to be drawn from the analysis. 

Although membranous expression of the components are considered to be a surrogate for the potential 

antigen-presentation capacity by HLA I antigen complexes, this method is remains of limited 

accuracy. However, the observed higher frequency of HLA-A losses are not thought to be caused by 

deficient antibody specificity as the antibodies used in this study are well characterized and widely 
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accepted for use in immunohistochemical analyses of HLA class I expression patterns (SERNEE et al., 

1998 and STAM et al., 1986).  

 

HLA class II antigen expression can be detected in different solid tumors of non-lymphoid origin 

(ALTOMONTE et al., 2003) and also cervical precancerous stages and cancers were found to be 

positive for HLA class II molecules (CHIL et al., 2003; GLEW et al., 1992). The biological function 

in the context of antigen-presentation and activation of effector T cells still remains unclear. The 

investigation of HLA class II antigen expression was therefore included in the characterization of 

antigen-presentation mechanisms with the aim to unravel a possible correlation with the classical 

antigen-presentation pathway mediated by HLA class I antigens.  

 

The staining with the monoclonal antibody LG-612.14 for HLA class II chains DP, DQ and DR 

demonstrated that the majority of CIN2 and CIN3 lesions are positive for HLA class II antigens. 

Around 80% of them displayed membranous HLA class II antigen staining. Similarly, cervical 

carcinoma samples also are positive for membranous HLA class II molecules in around 85% of all 

cases.  

This is a strikingly high percentage of precancerous lesions and invasive cancers compared with other 

solid tumors of different origins that are reported to express HLA class in tumor cells. Among these 

are melanoma, gastric, colorectal and breast cancer which to a lesser extent show HLA class II antigen 

expression, 50-60% of melanoma for example (reviewed in ALTOMONTE et al., 2003).  

 

These observations raise the question of the biological significance and the functional relevance in 

terms of antigen-presentation. In consideration of the fact that around 85% of CIN2, CIN3 and 

invasive cancers express HLA class II with 38.4% to 52.6% being scored “positive” and showing 

membranous expression on virtually all tumor cells, this might probably not contribute to efficacious 

antigen-presentation directly mediated by tumor cells and a stimulation of anti-tumoral immune 

responses.  

Although it has been shown in the past that tumors – under inflammatory processes - might present 

peptides via the HLA class II antigen complex to CD4+ T cells and that these can mediate cytotoxicity 

leading to tumor rejection (DENGJEL et al., 2006; EKKIRALA et al., 2014) the sole binding and 

presentation of peptides does not necessarily lead to the induction of a cell-mediated immune 

response. This also requires the presence of co-stimulatory molecules, such as CD28, and their 

absence rather induces antigen-specific immune tolerance mechanisms favoring disease progression 

(BAL et al., 1990; GASPARI et al., 1988; HARDING et al., 1992).  

With the results seen in this light one might speculate whether HLA class II antigen-negative low-

grade lesions therefore represent those that are more likely to regress as they would not – as described 

in this scenario – induce immune suppression. This question however can only be addressed in a study 

providing information about the functional role of HLA class II antigen expression for example by 

correlating it with different immune cell phenotypes present in these lesions and with the clinical 

outcome of the patients which requires a longitudinal setting such as the Austrian Imiquimod trial.  

 

By interpreting the alterations in HLA class I and class II alterations as adaptions of the tumor cells 

under the immunoselective pressure of the host’s anti-tumoral immune responses, the roles of HLA 
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class I and II in enabling CD8+ T lymphocytes and NK cells to recognize, bind and kill tumor cells 

have also to be taken into consideration. The frequently observed HLA class I down-regulation or 

complete loss in tumors was early associated with impaired CD8+ CTL-mediated anti-tumoral 

responses (reviewed in GARRIDO et al., 1997). The absence of HLA class I molecules on the tumor 

cell however is associated with the induction of NK-cell mediated killing (BOTTINO et al., 2004). 

From the developing tumor’s point of view this would be a weak immune evasion mechanism. It was 

demonstrated that HLA class II molecules expressed on tumor cells protect them from being attacked 

and lysed by NK cells (JIANG et al., 1996). Expression of HLA class II antigens might therefore also 

be considered as – secondary – evolutionary development allowing tumor progression. The combined 

alterations, HLA class I down-regulation and HLA class II expression on tumor cells could therefore 

represent mechanisms that play together to circumvent cell-mediated cytotoxicity.  

 

HLA class II expression could be caused by HPV infections and interference of the virus the host 

cell’s antigen-presentation machinery. Such a correlation, however, could not be demonstrated 

(GLEW et al., 1992). One could speculate that a so far unknown event that is related to the 

transformation processes in high-grade lesions be associated with HLA class II antigen expression. 

The observed staining pattern in precancerous lesions could also represent the phenotypical heritage of 

the initially infected keratinocytes that did not resolve the HPV infection and further grew out to 

precancerous lesions. This hypothesis is supported by the observed peculiar staining pattern of 

columnar epithelium in the squamocolumnar junction in combination with the absence of HLA class II 

expression in normal squamous epithelium. It has recently been shown that a distinct cell population 

present in the squamocolumnar junction zone is susceptible to HPV infections and furthermore is 

characterized by a distinct protein expression profile (HERFS et al., 2012). It is conceivable that HLA 

class II expression is another characteristic of these highly metaplastic cells. If the assumption holds 

true that the vast majority of cervical lesions originate in this region and develop by clonal expansion 

of distinct cells, the strong HLA class II expression could be explained by the maintenance of this 

phenotype in outgrowing lesions. This was hypothesized earlier in a study also observing high 

expression in the metaplastic epithelium and strong expression in cervical precancerous lesions and 

cancers (CHIL et al., 2003). This phenomenon then would rather be explainable by cell-intrinsic 

characteristics than an adaption caused by interaction of the viral infection with the host cell’s antigen-

presentation machinery. Interestingly, only half of the CIN1 were positive for HLA class II antigen 

staining and this did not correlate with p16
INK4a

 expression representing the transforming infection 

stage. Considering the high frequencies of HLA class II expression in later stages, one could speculate 

that low-grade lesions positive for HLA class II antigen expression are more likely to progress which 

could not addressed in this study but requires a longitudinal approach.  
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6.5 The density and composition of immune cell infiltrates can 

be influenced by immuno-modulatory drugs  

 

Several studies have demonstrated that the composition of immune infiltrates and the behavior of 

immune cells such as migration can be influenced by immune modifying agents such as imiquimod 

(HACKSTEIN et al., 2012; HUANG et al., 2009b; SUZUKI et al., 2000). Imiquimod is TLR7/8 

agonist and its potential to enhance the patient’s immune response prompted physicians to initiate a 

multitude of trials in order to investigate is efficacy in off-label indications such HPV-associated 

vulvar intraepithelial neoplasia (WESTERMANN et al., 2013) (VAN SETERS et al., 2002) (VAN 

SETERS et al., 2008). Although imiquimod is known to cause local and systemic side effects, it 

appears to be a promising alternative to surgical standard treatment. In particular, in women affected 

by multifocal VIN imiquimod treatment can replace cold knife excision as a first intervention option 

(FREGA et al., 2013). Also in CIN patients there is a non-negligible need for conservative treatment 

strategies as the surgical standard treatment, LEEP conization, is supposed to affect the outcome of 

subsequent pregnancies and provoke pre-term birth (ARBYN et al., 2008; SIMOENS et al., 2012).  

 

The Austrian imiquimod trial was the first randomized, placebo-controlled trial performed to test the 

efficacy of topical imiquimod treatment in patients with high-grade CIN (GRIMM et al., 2012). Three 

biopsies per patient were taken over 20 weeks during the treatment and after the completion of the 

treatment protocol and the clinical outcome of each patient was defined based on the last biopsy taken. 

These tissue specimens allow the investigation of changes in immune cells densities under treatment 

with a TLR7/8 agonist and might give insights in how the immune modifier acts and which immune 

cell composition is associated with a clinical response to the treatment. Of this unique patient cohort 

cervical biopsies of 10 patients could be obtained who received imiquimod therapy over 16 weeks. 

Albeit numerically restricted, these samples represent very valuable patient material allowing address 

questions that have never been investigated before.  

The tissue specimens that could be obtained of this trial were characterized by p16
INK4a

 staining and 

then analyzed based on the method described in chapter 4.1 for total T cell infiltration represented by 

CD3+ cells and cytotoxic lymphocytes represented by CD8+ T cells. The obtained data were 

comparatively evaluated as immune infiltrates in non-responders and responders to the imiquimod 

treatment (described in chapter 4.4). In a first approach the question was addressed whether CD3 and 

CD8 T cells in initial CIN2/3 biopsies are different between lesions that subsequently regressed 

(responders to imiquimod) and those that persisted or even progressed (non-responders). Interestingly, 

in non-responders a higher initial infiltration with CD3+ T cells was observed compared with 

responders. The fact that these patients do not respond to the imiquimod treatment might be an 

evidence for the presence of cell types others than effector cells present in the lesion 

microenvironment. Although only one single T cell subtype was investigated (represented by CD8+ T 

cells) and a definitive conclusion cannot be drawn from these results, the preliminary results allow the 

speculation that the difference between non-responders and responders lies in a higher densities of T 

cells phenotypes eventually responsible for immune regulation such as Treg cells. The higher absolute 

T cell densities represented by CD3+ T cells could possibly be explained by a higher fraction of these 



   6. Discussion and Conclusion  133 

“unfavorable” cell types which are absent in responders and thus having a lower CD3+ T cell 

infiltration. Responders were characterized by lower total CD3 T cell infiltration. They had, however, 

higher total CD8+ T cell densities and CD8/CD3 T cell ration compared with non-responders. The 

higher proportion of cytotoxic T cells in responders before treatment might constitute a better initial 

situation probably leading to an enhanced response to imiquimod.  

Additionally, the cohort is predestined to answer the question whether the immune cell densities and 

composition are different between non-responders and responders at the end of the imiquimod 

treatment. It allows also the analysis of possible changes of the local immune cell composition that 

occur during the treatment and their effect on the clinical response of the patients. The total T cell 

infiltration with CD3+ T cells in responders after treatment compared with the initial biopsy indicated 

that imiquimod locally applied to the cervix attracted immune cells to the lesion site. Responders also 

showed a further increased infiltration with CD8+ T cells that could not be observed in non-

responders. The densities after treatment exceeded the CD8+ cell counts of the initial biopsies taken 

before the treatment was started. However, the CD8/CD3 ratios were not higher after treatment 

compared with the initial CD8/CD3 ratio in the biopsies taken before treatment, which might indicate 

that together with CD8+ cytotoxic T cells also other T cell subtypes must have been attracted to the 

lesion site in a proportional way representing a non-negligible proportion of T cells. This might be an 

explanation why the CD8/CD3 ratio is not influenced to the extent one would expect from the absolute 

CD8+ cell counts. In non-responders the total T cell infiltration represented by CD3+ T cells was not 

different at the end of the treatment compared with the initial biopsies. Interestingly, non-responders 

after treatment compared with week 0 showed a further decreased CTL infiltration regarding the 

absolute cell counts leading also to even lower CD8/CD3 ratios than before the treatment. The exact 

composition of the initially dense CD3+ T cell infiltrate in non-responders, aside from the 

characterization of CD8+ T cell densities, remains largely unclear and warrants further investigation of 

immune cell phenotypes possibly responsible for the unfavorable immune cell composition that might 

be associated with treatment resistance. On the other hand, it is also worthwhile to characterize in 

more detail T cell subtypes others than CTLs in responders and the underlying mechanisms 

contributing to a clinical response to imiquimod. 

It has been demonstrated before that generally low immune cell densities in the tumor environment are 

associated with a poorer prognosis in cervical cancer (NEDERGAARD et al., 2007), especially low 

CD8+ T cell counts in combination with high regulatory T cells infiltration correlates with poor 

prognosis (SHAH et al., 2011). A major aim of cancer immunotherapy therefore is to enhance the anti-

tumoral immune responses and to attract immune cells to the lesion site. It has been shown in the past 

that imiquimod treatment in patients with vulvar intraepithelial neoplasia contributes to the 

normalization of immune cell counts, for example by maturation of immature Langerhans cells, and 

thus induces histological regression of the lesions (TERLOU et al., 2010). Changes in immune cell 

counts are conceivable to be also the underlying reason for regression of the proportion of CIN 

patients that had responded to imiquimod therapy. It appears to be obvious that the enhanced CD8+ T 

cell infiltration into the lesion might contribute to the better outcome of these patients as it has been 

reported before (DE VOS VAN STEENWIJK et al., 2013; PIERSMA et al., 2007) and that imiquimod 

also in cervical intraepithelial neoplasia might be able to expand pre-existing CD8+ T cell response 

(TODD et al., 2004).  
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As discussed above (chapter 1.3.3), p16
INK4a

 is a reliable marker routinely used in clinical practice and 

specifically highlighting the stage of infection as it is a surrogate that indicates the presence of HPV 

oncogene activity and induction of transformation of the cell (VON KNEBEL DOEBERITZ et al., 

2012). Its overexpression, however, only proofs the presence of HPV transformed cells and does not 

indicate if the lesion will progress into high-grade CIN and cancer or regress, which happens in a non-

negligible proportion of all cases (SCHIFFMAN and WENTZENSEN, 2010). Until now the 

prediction of possible regression and progression therefore has remained an unsolved diagnostic 

problem and consequently in the clinical practice all high-grade CINs are routinely treated by surgical 

intervention irrespective of the individual risk for progression. The characterization of distinct immune 

cell phenotypes and the combination of different immune markers to define a biomarker tool appears 

as an interesting option for the prediction of the progression risk. Although the here presented analysis 

was based on a small sample size of only 10 patients and differences were not yet significant the data 

argue for a consistently differential T cell distribution in non-responders compared with responders.  

The both markers analyzed so far representing the total T cell infiltration as measured by CD3+ T cells 

and possible cytotoxic responses as indicated by CD8+ T cells already provided interesting insights in 

their potential prognostic role (as measured by responsiveness to imiquimod treatment). However, 

other immunological markers might be of interest to gain more insight in the mode of action of 

imiquimod and to identify further prognostically relevant mechanisms. In the past, imiquimod has 

been reported in the context of Langerhans cell migration (SUZUKI et al., 2000) and recruitment of 

CD8+ T cells via the integrin CD49a (SOONG et al., 2014). It induces furthermore the expression of 

cytokines and chemokines, such as CXCR3, IFN-γ and reduces IL-10 and TGF-β expression 

(HUANG et al., 2009b; SOONG et al., 2014; WENZEL et al., 2005). Interestingly, imiquimod also 

seems to turn myeloid and plasmacytoid dendritic cells into effector cells by inducing them to express 

perforin, Granzyme B and TRAIL (STARY et al., 2007). These markers only represent a restricted 

selection of possible markers that could be analyzed to determine the effects of TLR7/8 agonist 

treatment and to characterize the typical immune cell phenotypes of regressing or progression lesions. 

Also markers that represent immune evasion mechanisms would have to be taken into consideration to 

characterize the “immune evasion phenotype”. Markers that might contribute to progression of lesions 

or mediate resistance to immuno-modulatory treatments are discussed in more detail in the following 

section 6.6.  

 

The samples obtained from the Austrian imiquimod trial demonstrate how important longitudinal 

information is for the understanding of immune cell densities and phenotypes influencing the course of 

the disease. As the trial included also a placebo-controlled patient group the natural course of CIN 

without therapeutic intervention (Figure 6.2), T cell infiltrates can be associated with progressions of 

treated and untreated patients also a T cell infiltration profile important for spontaneous regression 

(under placebo) might be identified. By its longitudinal setting and the placebo controlled patient 

group the Austrian trial is a precious study cohort to better understand immune cell composition in 

regressing and progressing CIN lesions in the placebo group or in the imiquimod group. This allows 

also the determination of immune cell compositions associated with spontaneous regression or 

susceptibility to imiquimod therapy. On the long run this cohort could be the clue for a better 

understanding of the factors that influence progression and regression and might be decisive for the 

definition of immune markers for a more risk adapted treatment of patients. Thus, not all patients with 
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high-grade lesions might have to undergo classical surgical treatment but could alternatively be tightly 

monitored and wait for spontaneous regression or non-surgically be treated with an immune 

modulator.  

 

 

FIGURE 6.2  OVERVIEW OF THE TREATMENT SCHEDULE OF THE AUSTRIAN IMIQUIMOD TRIAL AND 

OUTCOME OF THE PATIENTS. The setup of this trial does not only allow to compare effects of 

imiquimod treatment in responders and non-responders but also to define T cell phenotypes associated 

spontaneous regression (placebo group) or disease progression (under treatment or placebo).  

 

With preliminary results (chapter 4.4) obtained in the here described characterization of CD3+ and 

CD8+ T cell infiltrates clinical impact of this study begins to show even though only few samples and 

only two T cell markers were investigated so far. Despite the relatively small sample size differences 

in immune cell densities could be observed when the patients were stratified for clinical outcome. 

Furthermore, it could be demonstrated that the local therapy of cervical intraepithelial neoplasia with 

the immuno-modulatory drug imiquimod can influence the T cell infiltration in terms of density and 

composition. Significant differences remain to be shown in a larger setting where all patients of both 

treatment arms, in total 59 patients, shall be included.  

 

As discussed formerly (section 6.1) the densities and phenotypes of tissue infiltrating immune cells is 

investigated in various cancer types to define prognostic markers. Furthermore, the characterization of 

the immune cell contexture (FRIDMAN et al., 2014) is indispensable for the mechanistic 

understanding of cancer immunotherapy playing a more and more important role in clinical praxis. 

The whole-slide-imaging and quantification platform implemented in CIN histopathology (chapter 

4.1) will be used to characterize the patient cohort of the imiquimod trial. The developed method will 

allow quantifying in a standardized way the immune cell composition of the complete 

microenvironment and provides a highly information-rich profile which can be used for the definition 

of a prognostic biomarker tool.  
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6.6 The search for the prognostic markers characterizing the 

immune evasion phenotype has to be continued 

The characterization of immune infiltrates in cervical intraepithelial neoplasia (chapter 4.2) has 

demonstrated that despite a generally higher infiltration with different T cell phenotypes in high-grade 

CIN, these lesions have progressed to a certain extent and may further progress into invasive cancer 

(SCHIFFMAN and WENTZENSEN, 2010). In addition to the presence of Treg cells in the cancer 

environment, decreasing CD3ζ-expression possibly leading to a lack in T cell activation and changed 

ratios of effector cells (decreased CD8/CD3 ratio) that were observed in the CIN studies, other 

markers still may be of interest and contribute to progression (Table 6.1). This chapter discusses 

possible markers and reviews mechanisms described also in other than HPV-related diseases that 

could be considered in the further analyses of the Austrian imiquimod cohort (chapter 6.5) in order to 

define the immune profile that characterizes the immune evasion phenotype of progressing CIN.  

 

Of course, not all immune cell phenotypes, receptors and ligands or cytokines represent markers 

exclusively associated with immune suppression and evasion. The majority of the here listed 

mechanism are originally associated with cytotoxic immune response (Table 6.x). However, their 

altered expression, down-regulation or changes in their ratios to other markers or cell phenotypes 

harbor potential immune inhibiting effects.  

The following list does not claim to be complete but rather is a try to summarize the most important 

players in immune evasion that exert the effect on different levels. The different aspects were 

classified in different categories in dependence on whether immune cell phenotypes or rather signaling 

molecules or receptor and ligands are involved.  

 

 

Evasion mechanism Effect References 

A) immune cell phenotypes 

CD4+CD25+Foxp3+ Treg cells 
promote progression of primary tumors, possibly 

also involved in promoting metastasis 

(HALVORSEN et al., 

2014) 

CD4+CD69+CD25- Treg cells 

express CD122 and membrane-bound TGF-β1 by 

which they mediate immune escape and tumor 

progression 

(HAN et al., 2009) 

reversal of the CD4/CD8 

T cell ratio 

Together with presence of Treg cells has a negative 

impact on clinical outcome 
(SHAH et al., 2011) 

immature dendritic cells 
convert anergic T cells into immune suppressive 

Treg cells 

(PLETINCKX et al., 

2014) 

loss of co-stimulatory 

molecules CD27 and CD28 on 

T cells 

Senescent T cell phenotype induced by tumor cells; 

leads to suppression of responder T cells 

proliferation and promotes tumor progression 

(MONTES et al., 

2008) 

γδ-T17 cells accumulation of myeloid-derived suppressor cells (WU et al., 2014) 

myeloid derived suppressor 

cells (MDSCs) 
suppression of T-cell and NK cell function 

reviewed in (DIAZ-

MONTERO et al., 

2014) 
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lack of Langerhans cells impaired antigen-presentation in the epithelium 
(FAUSCH et al., 

2002) 

CCR8(+) inflammatory 

myeloid cells (monocytes and 

granulocytes) 

CCL1 secreted by tumors binds CCR8  tumor-

induced inflammation  immune evasion 

(ERUSLANOV et al., 

2013) 

B) cytokine and chemokine microenvironment  

TGF-β immunosuppressive cytokine that hampers the Th1 

response 

(PALOMARES et al., 

2014) 

IL-10 immunosuppressive cytokine that hampers the Th1 

response 

(SYRJANEN et al., 

2009) 

IL-13 immunosuppressive cytokine that hampers the Th1 

response 

(DEEPAK et al., 

2010) 

chemokine CXCL12 and 

chemokine receptor CXCR4 

promote tumor growth, invasion, metastasis and 

therapeutic resistance 

reviewed in 

(CHATTERJEE et al., 

2014) 

C) endothelial factors, T cell homing and migration   

decreased mucosal addressin 

cell adhesion molecule 

(MAdCAM) expression 

decreased CD8+ T cell access to cervical 

tissue  

(TRIMBLE et al., 

2010) 

vascular cell adhesion 

molecule-1 (VCAM-1) 

expression by tumor cells promotes T cell migration 

away from the tumor 

(WU, 2007) 

E-cadherin down-regulation associated with decreased numbers of Langerhans 

cells in the epithelial and viral immune evasion 

(LEONG et al., 2010) 

D) antigen processing and presentation in tumor cells 

HLA class I antigen down-

regulation 

promotes escape of tumor cells from recognition 

and destruction by HLA class I-restricted, antigen-

specific cytotoxic T lymphocytes 

reviewed in (CHANG 

et al., 2003) 

increased non-classical HLA 

class I antigen (HLA-G) 

expression  

impairs the cell-mediated anti-tumoral immune 

response  

(RODRIGUEZ et al., 

2012) 

dysregulation of transporter 

associated with antigen 

processing (TAP) 

Disturbed antigen loading on HLA class I heavy 

chains resulting in impaired antigen presentation 

(BANDOH et al., 

2010) 

E) altered immune cell ligand/receptor expression  

up-regulation of CD94/NKG2A inhibitory NK receptors  (SHEU et al., 2005) 

MHC class I chain-related 

molecule A (MICA) down-

regulation 

CTL and NK cell ligand, impaired effector cell 

activation 

(LU et al., 2011) 

abnormal CTLA-4 expression 

and dysregulation 

down-regulation of T cell proliferation and effector 

function 

(MAO et al., 2010) 

PD-L1 expression in tumors binding to PD-1 on TILs leads to impaired T cell 

functions through suppression of T cell receptor 

signaling  

(MAINE et al., 2014), 

reviewed in 

(MCDERMOTT and 

ATKINS, 2013) 

Fas and FasL expression on Changes in Fas expression promotes tumor growth (ABRAMS, 2005) 
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tumor cells by reduced apoptosis sensitivity, FasL expression 

on tumor cells mediates killing of T cells entering 

the tumor  

F) other mechanisms    

micro-RNAs (miRNA-155) reduced levels of miRNA-155 results in decreased 

numbers of CD8+ effector T cells  

(DUDDA et al., 2013) 

IDO, TDO expression in tumor 

cells  

catalyzes immunosuppressive kynurenine leading to 

cell cycle arrest and functional anergy of effector 

cells, Treg differentiation and activation  

reviewed in (MUNN 

and MELLOR, 2013; 

PLATTEN et al., 

2012) 

matrix-metalloproteinase 

(MMP-1, MMP-2 and MMP-9) 

expression  

NK cell dysfunction; down-regulation of IL-2 

receptor a (IL-2Ra) expression on activated tumor-

infiltrating lymphocytes 

(PENG et al., 2014) 

(SHEU et al., 2001) 

increased inducible nitric oxide 

synthase (iNOS) expression, 

high levels of nitric oxide (NO) 

 

nitric oxide acts as signaling molecule and promotes 

cancer formation, progressions and metastasis 

(CHENG et al., 2014) 

microparticles (subtype of 

extracellular vesicles 

containing nucleic acids and 

proteins) 

involved in immune evasion, angiogenesis, tumor 

invasion and metastasis 

(VOLOSHIN et al., 

2014) 

expression of sialic acids on 

tumor cells  

promote immune evasion via interaction with the 

inhibitory receptor Siglec 

(BULL et al., 2014) 

TLR4 expression on tumor 

cells 

TLR stimulation induces synthesis of IL-6, iNOS 

and other factors, mediates resistance of tumor cells 

to CTL attack and promotes immune evasion  

(HUANG et al., 2005) 

TABLE 6.1  POTENTIAL MARKERS FOR THE DEFINITION OF THE “IMMUNE EVASION PHENOTYPE”. A 

combination of markers that contribute to immune evasion in HPV-related precancerous stages and 

cancers could be used as a diagnostic biomarker tool.  

The immunohistochemical analyses of cervical precancerous and cancerous lesions performed in the 

first part of this work gave hints of immunosuppressive and immune evasion mechanisms that might 

play a role in the progression of HPV-associated diseases. The presence of Tregs in these lesions, 

varying from low densities to high infiltration within one diagnostic category and increased in cancers 

compared to precancerous stages as well as varying densities of effector T cell phenotypes in the 

lesions implies that these variations might contribute to either the progression or regression of the 

lesions. Furthermore, this indicates that the quality of the immune infiltrates might correlate with the 

clinical outcome and could be the basis for defining prognostic markers. To better understand which 

combination of markers is the most relevant for prediction of progression or regression. Here again the 

longitudinal nature of the Austrian imiquimod trial is extremely valuable as it allows to decipher 

distinct immunological constitutions associated with progression of high-grade lesions – in untreated 

patients and under the influence of imiquimod. In combination with the automated cell quantification 

method allowing high-throughput screening of larger patient cohorts and a broad variety of different 

immune markers the identification of a prognostically relevant biomarker tool usable for treatment 

decision appears as a realistic goal.  
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The positive effect of immuno-modulatory drugs on the density and composition of the T cell infiltrate 

could be demonstrated for imiquimod for CD3+ and CD8+ T lymphocytes (chapter 4.4).  

In the second part of this thesis different intervention strategies were investigated in more detail in 

immune and tumor cell based in vitro assays. Here, immuno-modulatory agents (chapter 5.1) and also 

manipulations directly on the cellular levels in terms of Treg depletion (chapter 5.3) were analyzed to 

explore the potential of different immunological treatment strategies.  

 

 

6.7  A new immune modulatory drug, TMX-202, shows 

promising effects the priming of naïve T cells to HPV-

associated antigens 

Immune modulation has been shown to be one mechanism that potentially leads to tumor eradication 

by enhancing the host’s immune responses against abnormal cells. Aldara, the 5% imiquimod cream 

formulation, is an immuno-modulatory TLR7/8 ligand-based substance approved for the treatment of 

warts, actinic keratosis and basal squamous carcinoma (chapter 1.x). Because of lacking conservative 

treatment options it is also given as an off-label drug to patients with anal and vulvar intraepithelial 

lesions and melanoma in situ (DAVID et al., 2011) and investigated in a multitude of trials to prove its 

efficacy in these off-label indications. Its efficacy could also be demonstrated in the first randomized, 

controlled trial enrolling high-grade CIN patients (GRIMM et al., 2012). Although imiquimod is 

considered to be safe, it causes local and systemic adverse effects which require the treatment protocol 

to be interrupted (chapter 1.5.3). Considering the potent immuno-modulatory capacity of imiquimod 

by induction of a strong cytokine release and a Th1-dominant anti-tumor immune response and the 

non-deniable need for such an immune stimulating treatment it is worthwhile to consider alternate 

drugs for TLR activation.  

In cooperation with a company specialized in immuno-modulatory drugs, Telormedix S.A., which 

provided a new substance for initial tests, the potency of TMX-202 a purine-like TLR7 agonist 

bioconjugated to a phospholipid (Figure 1.11) agonist could be tested in different experiments 

(CRAIN et al., 2013). Within the presented thesis, its immuno-stimulatory effects were tested in vitro 

in the HPV-setting as it could be an interesting substance for a combinatorial drug approach that 

increases the immune response to papillomaviruses. The results obtained in these experiments 

contributed to a patent application.  

It has been shown in the past that the TLR expression levels in B cells can be up-regulated by both 

activation of the antigen-receptor or stimulation of the TLR itself by treatment with a TLR-ligand 

(BOURKE et al., 2003). This finding implies that external stimuli simulating infection could regulate 

the expression levels of TLRs by a positive feedback loop. Therefore, possible regulatory mechanisms 

on the expression levels of TLRs were also tested under the influence of imiquimod and the new TLR-

ligand TMX-202 and measured on the transcript and protein level. The PBMCs of four healthy donors 

were treated, two of them with imiquimod and TMX-202 to compare the effects of the approved and 

the newly developed drug and two of them were treated with different TMX-202 concentrations.  
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Donor 1 showed high changes in TLR7 mRNA expression which have to be interpreted with caution, 

as RNA concentrations following isolation were low. These low mRNA levels might have resulted in 

low Ct values and high-fold changes when visualized in a log2 scale. Also the effects of imiquimod on 

the PBLs of the first two donors were contradictory as donor 2 displayed higher changes in TLR7 

mRNA expression following imiquimod treatment while donor 1 responded to TMX-202 treatment 

with mRNA up-regulation. Whether this is a specific effect of imiquimod or rather induced by 

potential side effects that could be caused by the imidazoquinoline cannot be deduced from only 

donors tested. Also the results obtained for donors 3 and 4 were inconsistent with donor 3 showing no 

effect or even decreasing mRNA expression levels and donor 4 increasing TLRL7 mRNA expression. 

On the protein level for donors 1 to 3 no effect of any of the treatments could be observed. The 

PBMCs of donor 4, however, displayed increased TLR7 protein expression following treatment with 

TMX. In summary, only donor 4 showed a convincing influence of TMX-202 on both mRNA and 

protein levels that were consistently up-regulated after treatment and under both applied 

concentrations of 1µM and 10µM. The fact that natural infections lead to up-regulation of the 

corresponding TLRs in vivo accompanied by an enhanced cytokine release in a time dependent 

manner (HUANG et al., 2009a; KAUR et al., 2014) might be a reason for the responsiveness of donor 

4. A previous infection might have induced immune cell activation and thus enhanced their 

responsiveness. Secondary stimulation with a TLR-ligand might faster and to a higher extent than in 

the PBMCs of the other donors have up-regulated TLR7 expression on mRNA and protein level. The 

immune cells might still have been in an activated state and thus shown a greater reaction to the 

external stimulation.  

However, most importantly the down-stream effect of TLR agonist treatment which is considered to 

be the release of pro-inflammatory cytokines stimulating both innate and adaptive immunity 

(STANLEY, 2002). The pro-inflammatory cytokine plays a pivotal role in linking both arms of the 

immune system and mediates the transitions from inflammatory processes to the acquired immune 

response (reviewed in JONES, 2005). The pro-inflammatory processes after imiquimod and TMX-202 

treatment were therefore measured by IL-6 ELISA using the supernatants deriving from PBMC 

stimulation and were compared between the different treatment groups. It could be shown that 

imiquimod induced significantly higher IL-6 levels compared with the controls. TMX treatment, 

however, further increased the IL-6 release (by approximately two powers of ten) which was 

extremely significant compared with controls. These results confirmed data published for dose-

dependent IL-6 release measured in whole blood following TMX-202 treatment (CRAIN et al., 2013). 

In addition, it could be shown that the substance has a strong potential for the induction of a pro-

inflammatory cytokine milieu and this is not dependent on the TLR7 mRNA or protein expression 

levels but rather dose-dependent.  

 

With these insights gained in the mechanisms how TMX-202 could link the innate with the adaptive 

immune response its potential to probably enhance T cell responses against HPV-associated antigens 

were tested additionally in an in vitro approach. This experiment is based on the priming of naïve T 

cells with HPV-associated antigens loaded on dendritic cells in order generate antigen-specific T cells 

by bringing them repeatedly in contact with antigens presented by professional APCs. Therefore a 

well-established protocol used in our department was used (KAUFMANN et al., 2001).  
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One of the peptides used in this experimental approach were p16
INK4a

, a host cell protein which by its 

specific overexpression in HPV-transformed lesions and all HPV-induced cancers is a potential target 

protein for secondary vaccination approaches. In contrast to the viral proteins it is not HPV-type 

specific. The second antigen is the major capsid protein L1 of HPV16 which is known to be a strongly 

antigenic protein on which the prophylactic vaccines are based. The antigenicity of p16
INK4a

 as well as 

of HPV16 L1 were demonstrated in our phase I/IIa p16
INK4a

 vaccination clinical trial and by a 

therapeutic vaccine based on chimeric virus-like particles consisting of a L1p16
INK4a

 fusion protein 

(FAULSTICH, 2014). Both studies demonstrated that p16
INK4a

-specific and L1-specific cellular 

immune responses can be developed following vaccination.  

For p16
INK4a

 the peptide sequence used in the clinical trial was used. For L1 a series of 9-mer and 10-

mer HLA-A2 restricted peptides were predicted and chosen as described in section 3.x and were tested 

in a peptide-binding assay. One L1 sequence that was reported to induce L1-specific T cells following 

in vitro priming was included as positive control (KAUFMANN et al., 2001), together with an 

influenza matrix protein sequence, to evaluate the binding capacities to HLA antigens in the peptide 

binding assay. The p16
INK4a

 peptide used in the clinical trial also was considered to have a high 

binding affinity and therefore was considered to be a control peptide for the newly synthesized L1 9-

mer peptides.  

Of the tested L1 peptides three (L1_2, L_12 and L1_97; sequences in chapter 3.x) were demonstrated 

to meet criteria defined to identify the best binding antigens: they had a significantly higher MFI 

reflecting the binding capacity as compared with the background control and furthermore had a higher 

MFI compared with the lowest “positive” control.  

The effects of TMX-202 stimulation during T cell priming were compared with DMSO as vector 

control and investigate on different levels: on the one hand dendritic cells were characterized in more 

detail and on the other hand T lymphocytes were evaluated by their potency to kill tumor cells as 

measured by CD107a degranulation rates.  

The experiment was based on an autologous but HLA-A2 matched cell system involving CaSki cells 

as targets and T lymphocytes obtained from a HLA-A2 positive healthy donor as described formerly 

(RESSING et al., 1996).  

The effect of TMX-202 treatment during maturation of dendritic cell from monocytes was generally 

monitored by changes in the morphology and also cell numbers. In comparison to DMSO treated 

control cells monocytes under the influence of the immuno-modulatory drug earlier and to a larger 

extent showed a changing morphology from regularly shaped and round adherent monocytes, the 

plasmacytoid morphology, to the dendrite-like morphology with branched cell appendices 

(SOUMELIS and LIU, 2006). The better effect of TMX-202 treatment in comparison to the DMSO 

control could also be demonstrated by higher cell numbers obtained from the original fraction of 

PBMCs used for adherence of monocytes. Under TMX-202 influence consistently higher cell numbers 

could be harvested demonstrating the higher rate of surviving and maturing cells under immuno-

modulatory drug treatment. Furthermore, it could be demonstrated that TMX-202 treated dendritic 

cells extent expressed the co-stimulatory molecules CD80 and CD86 to higher extent compared with 

the DMSO treated cells. CD80 and CD86 become expressed during maturation of dendritic cells and 

are functionally relevant for T cell activation (DILIOGLOU et al., 2003). These results imply that 

dendritic cells generated from monocytes and treated with a basic mixture of GM-CSF and IL-4 

become functionally mature under the treatment with TMX-202. This is in accordance with recently 
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published data also demonstrating that TLR-ligands can induce dendritic cell maturation (DEIFL et 

al., 2014) (MASSA and SELIGER, 2013). This further indicates that the standard protocol based on 

GM-CSF and IL-4 supplemented with a cytokine cocktail consisting of IL-1β, TNF-α, PGE-2 and IL-6 

for the final maturation of dendritic cells (COLIC et al., 2004) might be substituted by one single 

agent, the immune modifier TMX-202, which by inducing high levels of IL-6 can also lead to 

functional maturation of dendritic cells.  

 

With regard to the TMX-202 mediated effects on T cells during the repeated stimulations with 

peptide-loaded dendritic cells the only parameters that could be investigated were the T cell 

morphology and viability as estimated by microscopic inspection and T cell numbers representing T 

cell proliferation as counted before each re-stimulation. As described in section 5.x at day x of the in 

vitro priming the T cells numbers in the DMSO experiment decreased, which was also reflected by 

less dense T cell culture upon visual inspection, while the TMX-treated T lymphocytes showed a 

continuously increasing growth curve. However, DMSO-treated T cells recovered over time until the 

end of the experiment and reached almost the number of the T cells under TMX treatment. This could 

be interpreted as a first hint for the efficacy of the immuno-modulatory drug to promote adaptive T 

cell responses either indirectly by stimulation with dendritic cells matured under TMX-treatment or by 

direct effects of the immuno-modulatory treatment on T cell differentiation and proliferation.  

 

The final readout of the 22 days lasting stimulation experiment was the measurement of T cell 

mediated killing of CaSki cells as indicated by CD107a released upon co-incubation of the effector 

cells with the target cells. Recognition of tumor cells induces cytolytic vesicles in effector T cells to 

localize to the membrane and to release lytic enzymes by fusion with the outer cell membrane and 

thereby CD107a contained in the inner membrane of the vesicles is transferred to the cell surface. The 

killing rates of T cells stimulated under DMSO treatment were compared with the killing potential of 

the T cell culture that were treated with the new immune modulator TMX-202. It could be 

demonstrated that T cells cultured in presence of TMX-202 led to better killing rates as represented by 

a higher fraction of CD107a-expressing CD8+ T cells. The treatment seems to promote a better 

stimulation of T lymphocytes and induction of antigen-specificity. It is conceivable that this is either 

related to more potent antigen-presentation mechanisms mediated by dendritic cells matured with 

TMX-202 substituting the classical pro-inflammatory cytokine mix (DEIFL et al., 2014), or caused 

directly by TMX-202 affecting T cell proliferation and differentiation into effector T cells (JIN et al., 

2012).  

Although the killing rates are not significantly different between the DMSO and the TMX-202 T cell 

experiment and the fractions of CD107a-expressing T cells killings were relative small, one should 

consider that the frequencies of naïve CD8+ T cells in the peripheral blood in general is very low. 

They represent only approximately 2.5% of all leukocytes contained in the peripheral blood 

(CHEVALLIER et al., 2013). 

It cannot completely ruled out that alloreactivity of the T lymphocytes against the heterologous tumor 

cell line also contributed to the killing effect, but the differences in the killing effects of the two T cell 

cultures (DMSO and TMX-202) still remain obvious. Spontaneous, non-antigen-specific reactivity of 

T cells in the presence of CaSki cells was not included in the experimental setup as all T cells were 
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stimulated with the mixture of possible antigens and this approach was solely focused on the effects 

that an immune modulator could contribute to such an in vitro “vaccination” of naïve T cells.  

To minimize the risk for alloreactivity of T cells against tumor cells, albeit matched for the HLA-A 

allele (HLA-A2), killing assays preferably should be carried out in an autologous cell system as it was 

established in the course of this thesis (chapter 5.2). Unfortunately, at the time point when the here 

discussed experiment was carried out the tumor cell line was not yet established.  

 

 

6.8  The generation of a HPV-associated head and neck 

squamous cell carcinoma cell line for immunological 

studies based on an autologous system  

Although a restricted number of HPV-positive head and neck squamous cell carcinoma cell lines are 

available and sporadically new HPV16-positive cell lines deriving form head and neck cancers are 

published (TANG et al., 2012) they might not be optimal for certain immunological studies. The 

establishment of an autologous system that provides a HPV-positive cancer cell line and at the same 

time - preferentially freshly isolated - immune cells of the same patients is invaluable. In our 

department this goal could be achieved for a colorectal cancer cell line in the past but a model until 

now was still lacking for HPV-associated cancers. Therefore the establishment of a HPV-positive cell 

line deriving from a HNSCC patient can be considered the major methodological approach of the 

second part of this thesis. Once a tumor cell culture was continuously growing and had undergone 

several passages without losing its adherence and proliferation capacities, which could be observed in 

1 out of 31 tumor explant cultures, it was subjected to further analyses to proof its association with 

HPV infection. The metastatic tumor cell line HN038M was stable for 11 months, showed continued 

proliferation and contained nearly 100% tumor cells after 13 months and 2 passages. The portion of 

epithelial cells contained in the culture was determined using BerEP4 antibody directed against the 

epithelial cell adhesion molecule (EpCAM) by which cells of epithelial origin can be stained 

specifically (BREZICKA, 2005) as the antibody does not bind to fibroblasts which are of mesodermal 

origin. This demonstrates that the underlying tumor preparation protocol established during this work 

(section 3.4.2) successfully eradicates contaminating fibroblast over time by sequential trypsinization 

and the maintenance of tumor cells keeping their proliferating potential.  

Importantly, only a fraction of about 20% of all HNSCC tumors is contributable to HPV (GILLISON 

et al., 2000). The primary tumor from which the metastasis derived that could be established as cell 

line was an oropharyngeal cancer located in the area of the palatine/lingual tonsil where most of the 

typical HPV-associated oropharyngeal cancers occur. Nonetheless, the cell line had to be characterized 

for clear signs of HPV presence and contribution of the virus to the tumorigenesis. These results were 

also compared with the analysis performed in the cooperating clinic. Such investigations allowed the 

non-HPV induced cancers clearly to be distinguished from those who are caused by underlying HPV 

infection and transformation caused by viral oncoproteins E6 and E7 that interfere with the host cell 

pathways.  

The staining of cultured tumor cells for p16
INK4a

 revealed a strongly positive staining pattern for the 

cells harvested from the culture of HN038M. As p16
INK4a

 is a surrogate for viral oncogene 



144     6. Discussion and Conclusion  

overexpression in transforming infection (chapter 1.3.3), this result indicates the underlying HPV-

infection and transforming processes induced by the virus – more specifically by the activity of the 

viral oncogene E7 – in the cell line HN038M (VON KNEBEL DOEBERITZ et al., 2012). However, 

as p16
INK4a

 in the head and neck occasionally is expressed without any relation to HPV (PRIGGE et 

al., 2014) the sample was further subjected to HPV genotyping and viral oncogene expression was 

analyzed by western blot analysis.  

The GP5+/6+ primer-based PCR for amplification of HPV DNA clearly revealed amplified DNA 

located between the 100bp and 200bp marker bands for the tumor cell samples and the positive 

controls. It could be shown by Luminex-based HPV genotyping (SCHMITT et al., 2006) that the 

tumor cells of the HN038M cell line harbor HPV16 DNA (SCHMITT et al., 2006). These results were 

compared with the characteristics of the tissue material that was directly formalin-fixed and paraffin-

embedded following surgery. The paraffin-embedded tissue was stained for p16
INK4a

 by 

immunohistochemistry and it could be demonstrated that the conserved material of the metastasis 

equally shows a strong and diffuse staining pattern of p16
INK4a

-positive cells.  

Furthermore, HPV genotyping was also performed with DNA obtained from the original formalin-

fixed tissue samples it was demonstrated that both primary tumor and metastasis of this patient also 

are positive for HPV16.  

To rule out the possibility of an underlying permissive HPV infection that would not contribute to the 

transformation of the tumor cells but rather represent a secondary effect, the cell lines was tested for 

HPV16 E7 oncogene expression. Western blot analysis of samples collected at different time points 

representing an earlier and a later passage, revealed that the cell line strongly expresses the E7 

oncoprotein; with the same total amount of protein loaded on the gel, the cell line expresses even 

higher E7 levels as the SiHa control. It can therefore be concluded that in this cell line HPV16 

infection and oncoprotein activity was the driving mechanisms for carcinogenesis (MCLAUGHLIN-

DRUBIN and MUNGER, 2009).  

In the context of the planned immunological experiments involving killing of tumor cell by autologous 

immune cells, HLA class I antigen expression was an important characteristic of this cells line to be 

determined. HLA class I antigen expression and other antigen-processing components are frequently 

reported to be altered in HNSCC and might represent a major mechanism that contributes to immune 

evasion and thus tumor progression and metastasis (BANDOH et al., 2010; TANG et al., 2009) 

(MANDIC et al., 2004; NÄSMAN et al., 2013; PRIME et al., 1987). Flow cytometry analysis of the 

tumor cell line HN038M for HLA class I expression was performed with a monoclonal antibody 

(clone W6/32) detects functional HLA class I antigens expressed on the cell surface by recognizing 

heavy chains A, B and C. The analysis demonstrated that virtually all tumor cells expressed HLA class 

I molecules on their cell surface (97.02 %). In conclusion, there were no concerns to use this cell in 

subsequent immunological studies investigating the potential effect of regulatory T cells on the killing 

efficiency of effector T cells. The high HLA class I expression was considered to be the prerequisite 

for tumor cells to be theoretically recognized, bound and killed by cytotoxic T lymphocytes.  

 

Finally, the cell line was characterized by short tandem repeat (STR) profiling to exclude cross-

contamination by established and frequently used cell lines. The awareness of the rising frequency of 

falsely identified cell lines and cross-contamination of cultures by standard cell lines, led the American 

Type Culture Collection (ATCC) Standards Development organization workgroup to initiate a 
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consensus standard on the authentication of cell lines based on STR profiling which should be applied 

to standardize the procedure of cell line characterization and to assure the reliability of published 

results (BARALLON et al., 2010; CONNEXIN et al., 2010). The STR profiling allows cell lines to be 

identified on the individual level, to compare them with and distinguish them from cell lines contained 

in the database (NIMS et al., 2010). The STR profiling, carried out by Multiplexion GmBH, 

Heidelberg, showed that the new cell line HN038M is not identic with any of the cell lines contained 

in the database which is defined as less than 96% identity with the best fitting comparison sequence. 

Therefore, cross-contamination with other cell lines frequently used in the same laboratory room, such 

as the HPV-associated cell lines CaSki, HeLa, SiHa and the colorectal cancer cell line HCT116, can be 

excluded and the originality of the new HNSCC is demonstrated.  

  

With the tumor preparation and treatment protocol adapted to head and neck squamous cell carcinoma, 

the sampling of HPV+ tumors preparation and establishment of cultures will be continued in order to 

establish further autologous HPV-associated cell lines in the future. Enlarging the numbers of HPV-

associated tumor cell lines of patients that are alive is a valuable enrichment for the scientific 

community and would allow performing - as long as patient does well - further immunological studies 

based on autologous tumor and immune cells.  

With the cell line in hands a cell-based immuno-modulatory intervention strategy was tested by 

applying depletion of regulatory T lymphocytes from the T cell fraction and evaluating their killing 

potential against autologous tumor cells in comparison to undepleted T cells.  

 

 

6.9  Regulatory T cells seem to have an inhibitory effect on 

anti-tumoral immune responses against autologous tumor 

cells of a HPV-positive HNSCC patient 

The contribution of regulatory T lymphocytes to cancer progression is one non-negligible mechanism 

frequently discussed and considered as a major concern. The presence of dense Treg infiltrates are 

reported in different tumor entities and their frequent occurrence in cancers is causally linked to tumor 

development at different sites of the body (KIM et al., 2013; MICHEL et al., 2008; SHAH et al., 2011; 

WOLF et al., 2003). Regulatory T cells are thought to hamper different kinds of therapeutic 

vaccination approaches or other strategies elaborated to induce T cell mediated anti-tumoral responses 

– not only in the HPV-setting. In the context of cancer immunotherapy Treg depletion therefore plays 

a crucial role (reviewed in CURIEL, 2007 and NISHIKAWA and SAKAGUCHI, 2014). Results from 

the here described study (chapter 4.2) and also published data demonstrate that regulatory T 

lymphocytes play a non-negligible role in HPV-associated cervical cancers and the precursor lesions 

(LODDENKEMPER et al., 2009; MOLLING et al., 2007; VISSER et al., 2007; WU et al., 2011). 

The regulatory T cell phenotype characterized as CD4+CD25+Foxp3+ T cells has been shown to 

contribute to suppression of cytotoxic responses and in vitro Treg depletion is reported to T cell 

mediated immune responses (CHEN et al., 2012). The effect of Treg depletion, however, is rarely 

investigated in the setting of HPV-related diseases (CHUANG et al., 2009; TUVE et al., 2007) and 

mainly demonstrated in mouse models. Only one study could be found investigating Treg depletion in 
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the context of nasopharyngeal carcinoma – without, however, considering possible underlying HPV 

infections (FOGG et al., 2013). Data concerning the role of Tregs in HPV-associated OSCC and the 

impact of Treg depletion is scarce.  

The established HPV16-positive tumor cell line deriving from an OSCC patient was used for an initial 

experiment which aimed at the investigation of the potential immunosuppressive effect mediated by 

regulatory T lymphocytes. The killing potential of PBMCs isolated from the blood of the OSCC 

patients against the autologous tumor cell line HN038M was measured in two different experimental 

approaches and was based on the comparison between Treg depleted T cells and the total (undepleted) 

T cell fraction. This last chapter thus completes the circle with regard to the immunohistochemical 

analyses performed in the first part of this work. Although it could not be demonstrated that regulatory 

T cells contribute to progression of precancerous lesions - because of the cross-sectional nature of the 

study -, the enormous variances in different diagnostic CIN grades might imply a functional role in 

tumor development. 

In a broad general approach - without considering possible underlying mechanisms - the effect of Treg 

depletion was measured by the impedance-based Roche Xcelligence System. The assay principle is 

explained in detail in section 3.2.4 and is based on impedance measurement reflecting changes in cell 

density, adherence and morphology. These changes for example can be caused by manipulations such 

as drug treatment inducing apoptosis. The convincing argument in favor of this system is the 

possibility to monitor the effects of treatments on tumor cells in real-time and in a label-free manner. It 

has been demonstrated to be applicable for monitoring vaccine-based cytotoxicity on tumor cells 

(PHAM et al., 2014), T cell mediated killing (PEPER et al., 2014) and also was compared with 
51

Cr- 

release assay (measuring the release of 
51

Cr from labelled target cells upon cytolysis) to demonstrate 

that the impedance-based assay can detect changes in the levels of antigen-specific cytotoxic T cells 

with increased sensitivity compared with the standard chromium release assay (ERSKINE et al., 

2012). It therefore represents an attractive alternative assay to established experiments as exposure to 

gamma radiation or other labelling reagents can be avoided, high reproducibility can be obtained and 

fewer cells are required for the experimental setup.  

For the above describe experiment the cell index values were measured during the growing phase and 

the killing phase of tumor cells and for Treg depleted T cells and the total T cell fraction. The cell 

index calculated for the T cell control wells demonstrated that the addition of effector cells to the 

adherent tumor cells did not affect the impedance. Therefore the impedance curves for the co-

incubated T cells and tumor cells can be considered to represent the true killing effect on tumor cells 

without requiring further normalization for T cell impedance. It could be shown that the T cells after 

Treg depletion induces a stronger decrease in cell index values and also in the slopes calculated for the 

cell index curves compared with the total T cell fraction (Figure 5.25). Decreasing cell indices can be 

interpreted as being caused by tumor cell lysis and T cell mediated cytotoxicity. The differences 

between Treg depleted T cells and the total T cell fraction are significant over the total killing period 

and also in the two defined sub-phases representing the first and second killing phase.  

 

To take into account the effects mediated by T cells with or without previous Treg depletion more 

specifically, CD107a degranulation assay was performed to gain information about the cytotoxic 

potential of the effector cells. This assay was first described in 2003 as a “novel technique to 

enumerate antigen-specific CD8+ T cells using a marker expressed on the cell surface following 
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activation induced degranulation, a necessary precursor of cytolysis” (BETTS et al., 2003). Although 

the here described experiment was performed in an antigen-independent manner it has been 

demonstrated that CD8+ T cells expressing CD107a are involved in antigen-specific cytotoxicity 

(BETTS et al., 2003) and that such assays allows the identification and analysis of tumor-reactive T 

cells in vitro (RUBIO et al., 2003). 

The performed CD107a degranulation assay showed that among T cells stained for CD4 and CD107a 

those subjected to Treg depletion showed a higher fraction expression CD107a compared with T cells 

that were not depleted from regulatory T cells. It has been reported that CD4+ T cells also can 

cytotoxic potential and contribute to elimination of tumor cells (reviewed in MARSHALL and 

SWAIN, 2011 and APPAY, 2004). This same trend could also been seen in the fraction of non-CD4+ 

T lymphocytes. This opens the question of the nature of the phenotype of the T cells contained in this 

population. Based on the assay principle for T cell isolation (chapter 3.2.4) which selects for CD3+ T 

cells the presence of natural killer cells (CD3-negative) in the isolated T cell fraction can be ruled out. 

Furthermore, the presence of HLA class I antigens on the tumor cells has been demonstrated and it is 

unlikely that NK cells, if present, would have any killing effect against HLA class I antigen expressing 

tumor cells (MORETTA et al., 1996). It can therefore be assumed that the non-CD4+T cell population 

is composed of a fraction of CD8+ CTLs and also natural killer T cells (NKT cells) which in contrast 

to NK cells express CD3.  

The percentage of CD107-expressing cells in both fractions, non-CD4+ and CD4+ T cells, are 

relatively low. It has been demonstrated in different settings that the frequencies of antigen-specific T 

cells are relatively low, and one can speculate that antigen-specific T cells circulating in the blood are 

even less frequent than tumor-infiltrating lymphocytes at the tumor site (reported frequencies range 

from 0.01% to 0.4% for CD8+ T cells) (HE et al., 1999; POLLACK et al., 2014). For HPV-associated 

antigens, due to effective immune evasion mechanisms the frequencies for antigens specific T cells 

might even be lower as reported for low levels of E7-specific precursor T cells (1 of 3947 T cells) in 

the blood (HOFFMANN et al., 2006). However, although changes remain low with regard to the 

absolute CD107+ T cell frequencies, the killing rate is 3 times higher after Treg depletion in the non-

CD4+ T cell fraction and such changes might have tremendous effects in vivo in respect to the low 

frequencies of potential antigen-specific T cells.  

 

In conclusion, both assays by addressing different parameters, the changes in impedance caused lysed 

tumor cells and the CD107a expression on the cell surface of T cells, demonstrated that Treg depletion 

enhances the killing efficiency of the remaining T cell fraction and that Treg mediated suppression 

might play a role in the investigated OSCC tumor probably having participated in disease progression. 

This finding might also be an explanation for disease recurrence after surgical treatment in this patient 

although HPV-associated HNSCC in general have a better prognosis and clinical outcome. Depletion 

of regulatory T cells might therefore be an important treatment option to be considered for HPV-

associated diseases in general and in OSCC in particular where data so far have been lacking and 

allows the circumvention of immunosuppressive effects.  

Intervention strategies in this context for example might be based on drugs that specifically target 

Tregs (FOGG et al., 2013). Recently also therapeutic approaches involving chemotherapeutic agents 

for control and reversal of the immunosuppressive effects mediated by regulatory T lymphocytes 
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might be applicable in anti-cancer therapy (reviewed in ALIZADEH and LARMONIER, 2014; 

D'ARENA et al., 2011; OHKURA et al., 2011).  

A combined therapy is conceivable involving immune stimulating agents such as TLR ligands and 

drugs combatting immune suppression, in the same way as today classical chemotherapeutic agents 

are combined such as cytostatic and cytotoxic drugs or combinations of antibody-based anti-cancer 

treatments. Probably here again, the combination of different strategies might be more effective than 

one single therapy alone by addressing the variability of mechanisms developed by HPV-associated 

diseases to circumvent the host’s immune attack  

Importantly, the single treatment strategies described in this thesis show a tendency to contribute to a 

reduced tumor growth. The combination of these strategies, however, is conceivable to improve and 

potentiate the effects obtained with each of these strategies alone.  

 

 

6.10 Future prospects  

The initial immunohistochemical analysis of immune cell infiltrated in cervical intraepithelial 

neoplasia and cancers demonstrated that changes of immune cell infiltrate are not associated with the 

onset of transforming infections in histomorphological low-grade lesions. The observed T cell 

densities are not yet different compared with non-transforming low-grade lesions. However, as lesions 

of the same histomorphological grade with different biological and clinical behavior are pooled within 

one diagnostic group - an approach which could not be avoided due to nature of most of the available 

patient cohorts - the T cells infiltrate data cannot be related to the clinical outcome of the patients. 

Interestingly, broad ranges of immune cell densities could be observed for distinct T cell subtypes, e.g. 

regulatory T cells and CD8+ cytotoxic T lymphocytes indicating that samples are characterized by a 

large heterogeneity. This might reflect samples of patients with either progressing or regressing 

disease. Only patients samples stratified for the clinical behavior of the lesions could unravel the 

impact of distinct immune cell phenotypes on disease outcome. The changes in immune cell densities 

and the phenotypic composition have to be in a prospective setting in order to gain a better 

understanding of how these changes are related with the clinical outcome of the patients.  

 

These aspects could perfectly be addressed in the patient cohort of the Austrian imiquimod trial. In the 

course of the 20 weeks treatment and observation protocol three biopsies per patient were sampled. 

The effect of a topical immuno-modulatory drug, imiquimod, was tested in a randomized, placebo-

controlled setting and the efficiency of the treatment was determined by comparing the imiquimod-

treated arm with the placebo-group. The small number of patient samples that could be obtained for 

the first analyses of T cell infiltrates in imiquimod treated patients represents extremely precious 

material and served as a basis for the first analyses of immune infiltrates in imiquimod-treated lesions. 

The first step was taken towards a deeper understanding of the immunophenotypic reversal mediated 

by immune modifiers such as TLR-ligands. However, if access will be gained to the placebo-treated 

patient samples, the natural course of untreated high-grade CIN lesions over time can be monitored 

and immune cell infiltrate data correlated with the course of the disease, e.g. progression or regression. 

The analysis of these samples is therefore considered to help answering the questions that could not be 

addressed in the cross-sectional study. T cell phenotypes that contribute to spontaneous regression 
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without previous therapeutic intervention can be investigated, as well as distinct immune phenotypes 

that rather are associated with disease persistence or progression. Also the analyses that have been 

initiated with the patients of the imiquimod treatment arm will be expanded to enlarge the sample size 

and validate the results obtained so far.  

 

In this context further immune markers might be relevant and should be included to enlarge the 

immune phenotypic characterization. Based on the list shown in section 6.6 the best marker 

combinations can be defined after having been evaluated in preliminary immunohistochemical 

analyses as it was done for some of the most important T cell markers in the first cross-sectional 

approach. It has to be demonstrated that the chosen markers are reliable predictors of the biological 

behavior of the disease and the clinical outcome of the patients. The final biomarker set might also be 

a combination of immune cell and tumor cell markers as long as they alone and even more in 

combination are predictive for the clinical course of the disease.  

 

On the long run this precious cohort will allow to define an “immune score”, a biomarker-based tool 

that could be applicable in the clinical routine to predict the risk for progression of CIN lesions and 

also the chance to respond to non-surgical interventions such as topical treatment with TLR agonists. 

This tool might help to make individualized and risk-adapted treatment decisions, minimize over-

treatment of a clinically heterogeneous disease and permit at least a distinct proportion of young 

women to obtain conservative treatment.  

 

HLA class I and class II antigens is a potential component of this novel “immune score”. However, 

with the results obtained so far, their biological relevance and their contribution to immune evasion or 

effective anti-tumoral immune responses is still not clear. Their impact on the quality of the immune 

response that might be initiated has to be elucidated by additional analyses. In a first approach T cell 

densities and also different T cell phenotypes infiltrating the tumor microenvironment should be 

correlated with the expression pattern of antigen-presenting molecules in the lesions. The best, 

clinically most relevant approach again would be a longitudinal one allowing the correlation with the 

patients’ outcome to reveal the role of these alterations in the context of immune evasion or either 

immune attack of the host. First analyses demonstrated that HLA class II expression indeed seems to 

impact immune densities in terms of CD3+ and CD8+ T cells. Thereby, a higher proportion of cells 

expressing HLA class II antigens as well as a higher fraction of cells showing membranous expression 

were associated with a trend towards denser T cell infiltrates (data not shown).  

All these investigations that finally should lead to the definition of an “immune score” for use in the 

diagnosis and prognosis will be based on the newly developed automated quantification method 

described in this thesis. It represents a highly standardized and objective method to quantify immune 

cells as the results of cell counting are not biased by subjective criteria defined by the investigator. 

Especially for the development of a clinically relevant immune cell based biomarker tool, the 

reliability of the results has to be demonstrated and they need to be validated in a larger sample cohort. 

Here, the established quantification platform is the method of choice as it allows high-throughput 

screening of large cohorts.  

 

.  
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FIGURE 6.3  GRAPHICAL OVERVIEW OF THE POSSIBILITIES TO COMBINE THE RESULTS AND 

ESTABLISHED METHODS IN THE FUTURE IN ORDER TO DEVELOP NEW DIAGNOSTIC 

TOOLS AND TREATMENT STRATEGIES. #  

 

The Austrian imiquimod trial together with the multitude of imiquimod trials performed in vulvar 

intraepithelial neoplasia (VIN) patients demonstrated the clinical efficacy of TLR-agonist based 

treatment that aims at immune modulation of the lesion microenvironment. The promising results 

obtained in this study make TLR-agonist treatment a strategy to be pursued. However, in consideration 

of the known side effects of imiquimod further immuno-modulatory treatment strategies were 

evaluated in the second part of the thesis. A second generation TLR-agonist, TMX-202, was tested in 

the in vitro priming of naïve T cells to p16
INK4a

 and HPV16 L1 peptides.  
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It could be shown that the substance has effects on dendritic cells maturation and T cell proliferation 

and also contributes to a slightly increased killing potential of T cells in the context of HPV-associated 

diseases. These first results warrant further studies to better characterize the potential of the new TLR-

agonist. The planning of a vaccination experiment based on p16
INK4a

L1 chimeric virus-like particles in 

a mouse model is under way. Here, TMX can be evaluated as a potential adjuvant. It is well 

conceivable that the cellular immune responses against L1 and p16
INK4a

 in mice vaccinated with the 

chimeric VLPs are potentiated by using TMX as an adjuvant, as effects were observed on both levels, 

the innate immunity and also adaptive immune responses  

With the oral squamous cell carcinoma cell line generated in the course of this thesis a valuable 

autologous model was established which can serve as basis for further immunological studies. For 

example the effect of TMX-202 treatment could now be validated in an autologous system to allay 

concerns regarding the alloreactivity between immune cells and an allogeneic tumor cell line. It 

represents a perfect model for the generation of antigen-specific T cells by in vitro priming with the 

auto-antigen p16
INK4a

 and viral antigens such as L1 and to test the killing potential of T cells against 

autologous tumor cells. The patient recruitment will be continued to obtain further tumor tissue 

samples for the generation of more cell lines. These are necessary to validate the results obtained from 

one single patient and to evaluate whether or not the findings are representative for HPV-associated 

diseases and the conclusions that were drawn can be generalized 

 

Although the results look promising, the effect of regulatory T cell depletion demonstrated in the 

autologous cell line HN038M will have to be tested in further cell lines to validate the results obtained 

in one patient. A combination strategy consisting of Treg depletion along with immuno-modulatory 

drug treatment would be highly interesting as the better killing effect observed after Treg depletion 

could further be enhanced if anti-tumoral response of the remaining cell fraction would be “enhanced” 

by TLR-ligand treatment. The experiment demonstrated how important strategies aiming at Treg 

depletion might be for the improvement of cancer immunotherapy approaches.  

This treatment strategy in general could be further refined by using drugs specifically targeting Tregs 

in order to deplete them from the total T cell fraction. A multitude of new and already established 

drugs are actually discussed to selectively eliminate the immunosuppressive effected mediated by 

regulatory T lymphocytes. Among these cyclophosphamide (Cytoxan) (CAMISASCHI et al., 2013), 

denileukin diftitox (TELANG et al., 2011) and ipilimumab (HODI et al., 2010) represent interesting 

therapeutic drugs. 
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9.1  Supplementary Figures 

 

FIGURE S9.1  Distribution of CD3+ and CD8+ T cell counts/mm² and the Ratio CD8/CD3 in the epithelium and stromal compartments in non-responders compared with responders in week 0 

(before treatment). The line in the center of each box represents the median value of the distribution; the borders of the box represent the upper and lower quartiles (25%-75%).  
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FIGURE S9.2  Distribution of CD3+ and CD8+ T cell counts/mm² and the Ratio CD8/CD3 in the stromal compartments in non-responders compared with responders in week 0 (before 

treatment). The line in the center of each box represents the median value of the distribution; the borders of the box represent the upper and lower quartiles (25%-75%). 



178         9. Supplementary Material   

 
FIGURE S9.x  Distribution of CD3+ and CD8+ T cell counts/mm² and the Ratio CD8/CD3 in the stromal compartments in non-responders compared with responders in week 20 (after 

treatment). The line in the center of each box represents the median value of the distribution; the borders of the box represent the upper and lower quartiles (25%-75%). 
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FIGURE S9.x  Distribution of CD3+ and CD8+ T cell counts/mm² and the Ratio CD8/CD3 in the stromal compartments in non-responders compared with responders in week 20 (after 

treatment). The line in the center of each box represents the median value of the distribution; the borders of the box represent the upper and lower quartiles (25%-75%). 
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FIGURE S9.5  Distribution of ratios for epithelial to stromal cell counts non-responders compared with responders in 

week 20 (after treatment). The line in the center of each box represents the median value of the 

distribution; the borders of the box represent the upper and lower quartiles (25%-75%).
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FIGURE S9.6  Distribution of CD3+ and CD8+ T cell counts/mm² and the Ratio CD8/CD3 in the epithelial and stromal 

compartments in non-responders compared with responders. Data for week 0 (before treatment) and week 

20 (after treatment) are shown next to each other. The line in the center of each box represents the median 

value of the distribution; the borders of the box represent the upper and lower quartiles (25%-75%).
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FIGURE S9.7  Distribution of CD3+ and CD8+ T cell counts/mm² and the Ratio CD8/CD3 in the stromal compartments 

in non-responders compared with responders. Data for week 0 (before treatment) and week 20 (after 

treatment) are shown next to each other. The line in the center of each box represents the median value of 

the distribution; the borders of the box represent the upper and lower quartiles (25%-75%). 
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FIGURE S9.8  Peptide binding assay – repetition and validation of the results obtained in the first assay.  
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FIGURE S9.9  Human Cell Line Authentication Report for the HNSCC cell line HN038.  

 

 



  9. Supplementary Material  185 

 

9.1  Supplementary Tables  

 

 

 

 

TABLE S9.1 Mean cell numbers, ranges and standard deviations (SD) for all T cell phenotypes in correlation with the 

lesion grades and p16INK4a expression status: intraepithelial and stromal cell numbers (per 0.0625mm²) 

and ratio lesion/lesion-adjacent stroma.  

 (1) p-values (comparison p16INK4a-negative and p16INK4a-positive low-grade CIN) 

 (2) p-values (comparison low-grade CIN vs. high-grade CIN) 

 (3) p-values (comparison high-grade CIN vs. invasive disease) 

 

 

mean range SD p-value mean range SD p-value mean range SD p-value

Low-grade CIN * p=0.1438 * p=0.2035 * p=0.6498

p16- CIN1 17.6 7.3-37.3 9.92 56.3 15.8-136.8 43.30 0.46 0.07-1.04 0.330

p16+ CIN1 13.3 1.3-45.3 12.14 32.6 11.5-84.8 19.39 0.41 0.07-0.89 0.249

High-grade CIN ** p=0.0273 ** p<0.0001 ** p=0.0799

CIN2 22.3 8.3-43.0 9.98 73.0 18.0-125.0 33.28 0.42 0.13-1.33 0.371

CIN3 25.2 4.3-99.3 25.52 110.1 33.5-260.5 63.10 0.26 0.06-0.64 0.212

Invasive disease *** p=0.2968 *** p=0.0414 *** p=0.9244

CxCa 43.8 2.0-161.1 42.72 140.5 34.3-336.0 77.58 0.41 0.02-1.52 0.403

Low-grade CIN * p=0.0864 * p=0.7856 * p=0.2012

p16- CIN1 8.5 0.0-23.0 6.72 17.6 1.8-39.5 13.89 0.72 0.00-1.90 0.655

p16+ CIN1 4.8 0.3-20.0 5.22 14.4 3.0-27.3 8.57 0.42 0.01-1.14 0.351

High-grade CIN ** p=0.0012 ** p<0.0001 ** p=0.4774

CIN2 14.8 3.7-32.3 9.68 37.0 7.8-56.8 16.90 0.59 0.14-1.85 0.642

CIN3 14.1 3.3-39.7 11.10 38.0 11.5-73.5 19.34 0.39 0.11-0.67 0.204

Invasive disease *** p=0.8802 *** p=0.2045 *** p=0.3929

CxCa 15.7 0.7-37.9 12.55 58.3 9.8-149.3 42.72 0.36 0.02-0.92 0.294

Low-grade CIN * p=0.9039 * p=0.5262 * p=0.9523

p16- CIN1 0.5 0.0-1.7 0.67 0.9 0.0-3.5 1.21 0.68 0.00-1.67 0.689

p16+ CIN1 0.5 0.0-4.7 1.29 0.5 0.0-2.3 0.70 0.46 0.00-1.33 0.582

High-grade CIN ** p=0.0028 ** p=0.0014 ** p=0.1838

CIN2 1.1 0.0-5.3 1.66 0.8 0.0-2.5 1.01 0.88 0.00-1.70 0.715

CIN3 2.2 0.0-8.3 2.29 2.7 0.8-12.3 2.75 0.73 0.00-1.93 0.542

Invasive disease *** p=0.9193 *** p=0.0095 *** p=0.0467

CxCa 1.5 0.0-5.3 1.63 5.7 0.0-20.0 5.98 0.40 0.00-1.67 0.427

Low-grade CIN * p=0.5375 * p=0.6444 * p=0.7237

p16- CIN1 3.4 0.3-9.7 3.72 17.4 0.0-46.0 17.13 0.25 0.04-0.67 0.200

p16+ CIN1 2.2 0.0-9.0 2.49 7.6 1.5-16.8 5.58 0.32 0.00-1.33 0.355

High-grade CIN ** p=0.2558 ** p=0.0076 ** p=0.2136

CIN2 5.8 2.0-17.0 4.05 21.7 6.0-37.8 12.29 0.39 0.07-1.06 0.343

CIN3 2.1 0.0-5.7 1.82 19.3 1.5-45.3 13.11 0.16 0.00-0.71 0.198

Invasive disease *** p=0.5933 *** p=0.0243 *** p=0.0464

CxCa 4.9 0.0-36.0 8.80 42.1 3.3-97.8 31.20 0.17 0.00-1.58 0.384

Low-grade CIN * p=0.1910 * p=0.2282 * p=0.3897

p16- CIN1 25.2 3.7-107.0 32.30 38.6 5.0-83.5 23.96 0.64 0.14-1.98 0.542

p16+ CIN1 10.4 3.7-31.0 7.42 26.5 8.5-49.0 13.97 0.42 0.14-0.73 0.203

High-grade CIN ** p=0.0286 ** p=0.0022 ** p=0.0672

CIN2 15.6 8.3-22.7 5.22 56.5 16.0-81.8 21.94 0.37 0.14-1.38 0.383

CIN3 16.3 5.3-38.9 9.00 58.6 13.5-141.5 37.57 0.38 0.12-1.21 0.281

Invasive disease *** p=0.7623 *** p=0.6801 *** p=0.6801

CxCa 17.0 2.0-45.3 13.09 60.8 14.0-115.0 34.58 0.39 0.04-1.31 0.363
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TABLE S9.2 Means, ranges and standard deviations (SD) for the ratios calculated between different T cell phenotypes 

and CD3+ T cells in correlation with the lesion grades and p16INK4a expression status (means per 

0.0625mm²). 

 (1) p-values (comparison p16INK4a-negative and p16INK4a-positive low-grade CIN) 

 (2) p-values (comparison low-grade CIN vs. high-grade CIN) 

 (3) p-values (comparison high-grade CIN vs. invasive disease) 

mean range SD p-value mean range SD p-value

Low-grade CIN * p=0.1347 * p=0.1861

p16- CIN1 0.48 0.00-1.00 0.265 0.31 0.09-0.52 0.139

p16+ CIN1 0.39 0.01-0.87 0.215 0.43 0.26-0.70 0.159

High-grade CIN ** p=0.0258 ** p=0.1314

CIN2 0.70 0.216-1.906 0.464 0.53 0.275-1.018 0.226

CIN3 0.79 0.11-1.94 0.532 0.41 0.13-0.77 0.183

Invasive disease *** p=0.0090 *** p=0.2000

CxCa 0.52 0.04-1.69 0.479 0.40 0.18-0.82 0.186

Low-grade CIN * p=0.9039 * p=0.8950

p16- CIN1 0.04 0.00-0.11 0.049 0.02 0.00-0.05 0.020

p16+ CIN1 0.03 0.00-0.20 0.066 0.01 0.00-0.06 0.021

High-grade CIN ** p=0.0041 ** p=0.0508

CIN2 0.09 0.00-0.64 0.197 0.01 0.00-0.04 0.017

CIN3 0.19 0.00-0.77 0.230 0.03 0.00-0.14 0.038

Invasive disease *** p=0.3762 *** p=0.0418

CxCa 0.09 0.00-0.53 0.153 0.04 0.00-0.18 0.044

Low-grade CIN * p=0.8403 * p=0.6498

p16- CIN1 0.20 0.03-0.68 0.237 0.26 0.00-0.54 0.164

p16+ CIN1 0.20 0.00-0.67 0.197 0.23 0.07-0.46 0.117

High-grade CIN ** p=0.7690 ** p=0.8833

CIN2 0.26 0.06-0.40 0.100 0.32 0.20-0.55 0.102

CIN3 0.18 0.00-1.31 0.301 0.22 0.02-0.54 0.138

Invasive disease *** p=0.2318 *** p=0.5747

CxCa 0.18 0.00-0.87 0.266 0.28 0.08-0.60 0.1490.28

Low-grade CIN * p=0.8576 * p=0.8980

p16- CIN1 1.10 0.35-1.97 0.658 0.79 0.26-1.49 0.434

p16+ CIN1 0.99 0.32-1.75 0.459 0.88 0.49-1.60 0.340

High-grade CIN ** p=0.5522 ** p=0.0700

CIN2 0.80 0.53-1.00 0.174 0.82 0.60-1.27 0.206

CIN3 0.96 0.14-1.77 0.458 0.59 0.10-1.23 0.260

Invasive disease *** p=0.1171 *** p=0.0090

CxCa 0.67 0.23-1.88 0.525 0.47 0.16-0.80 0.176
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TABLE S9.3  Mean cell numbers, minima, maxima (per mm²) and standard deviations for CD3+ cell counts in 

progressing/persistent and regressing CIN2/3. The results are shown separately for the epithelium and all 

stromal compartments and all time points from week 0 over week 8 until week 20. 

 

 

 

 

 

mean min max STD mean min max STD p=

CD3 Epithel V1 537,0 36,2 1194,3 570,45 160,8 20,2 610,1 252,08 0.190

V4 751,3 114,5 1388,1 900,61 427,6 56,4 1846,7 698,63 1.000

V7 287,8 135,8 439,8 215,02 371,1 140,4 645,6 231,96 0.429

M100 V1 1606,1 669,7 3460,0 1270,71 1386,8 722,5 1890,1 541,14 0.905

V4 4593,7 1960,1 6790,1 2444,51 1978,2 483,2 6193,9 2176,92 0.167

V7 1843,5 1675,7 2011,2 237,26 2166,2 1172,4 4934,5 1375,77 1.000

M500 V1 1883,9 946,7 3699,8 1236,12 945,9 420,9 1936,5 663,05 0.190

V4 4565,1 2230,5 5750,2 2021,84 3079,7 237,7 7985,2 2800,21 0.381

V7 1532,7 1320,3 1745,2 300,47 2401,4 991,4 5600,2 1689,64 0.643

M1000 V1 883,0 396,2 1838,1 675,40 597,9 53,0 1831,8 719,44 0.286

V4 3308,3 1907,0 5408,2 1852,21 2159,1 173,9 6842,0 2478,56 0.381

V7 1056,9 639,0 1474,7 590,91 2008,0 432,1 5818,5 1948,59 0.643

M0-500 V1 3490,1 1860,3 7159,8 2491,96 2332,6 1155,8 3703,6 1092,75 0.730

V4 9158,8 4190,7 12540,3 4395,14 5057,9 734,3 14179,1 4926,73 0.381

V7 3376,2 3331,5 3420,9 63,21 4567,6 2598,7 10534,6 3021,80 1.000

M0-1000 V1 4373,0 2275,1 8042,6 2532,27 2930,6 1208,8 4346,4 1413,45 0.730

V4 12467,1 6097,6 16153,7 5538,95 7217,0 908,2 21021,0 7240,28 0.381

V7 4433,0 4059,9 4806,2 527,70 6575,6 3066,1 16353,1 4913,47 0.643

progressing/persistent CIN2/3 regressing CIN2/3
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TABLE S9.4 Mean cell numbers, minima, maxima (per mm²) and standard deviations for CD3+ cell counts in 

progressing/persistent and regressing CIN2/3. The results are shown separately for the epithelium and all 

stromal compartments and all time points from week 0 over week 8 until week 20. 

 

 

 

 

mean min max STD mean min max STD p=

CD8 Epithelium w 0 82,1 10,3 173,1 82,76 113,8 26,3 318,7 120,26 0,730

w 8 169,0 44,6 293,3 175,84 128,2 23,5 397,0 142,67 0,643

w 20 58,2 58,1 58,2 0,08 174,1 40,6 407,3 164,20 0,643

CD8 M100 w 0 394,2 99,2 784,0 319,65 973,3 236,1 1883,2 749,23 0,286

w 8 1082,1 446,1 1603,0 586,98 640,6 160,7 1421,2 572,09 0,262

w 20 246,9 127,4 366,4 169,03 852,2 191,5 1222,2 487,61 0,286

CD8 M500 w 0 598,8 308,8 1234,5 432,27 616,5 75,0 1882,3 723,28 0,730

w 8 947,4 377,7 1276,5 495,33 964,1 144,4 1815,8 635,94 1,000

w 20 201,3 80,8 321,8 170,38 985,8 176,9 2802,9 960,89 0,286

CD8 M1000 w 0 346,2 136,9 661,3 247,53 471,6 21,5 1136,3 501,54 1,000

w 8 694,9 422,1 861,4 238,14 691,8 173,2 1712,1 630,56 0,714

w 20 201,9 192,5 211,2 13,17 1220,1 171,4 4159,6 1508,64 0,429

CD8 M0-500 w 0 993,0 445,8 2018,5 734,29 1589,8 311,1 3765,5 1350,08 0,730

w 8 2029,4 823,8 2790,9 1056,11 1604,7 316,8 3125,7 1173,83 1,000

w 20 448,2 208,2 688,2 339,42 1838,0 368,4 4021,3 1330,51 0,286

CD8 M0-1000 w 0 1339,2 614,9 2444,4 779,36 2061,4 332,5 4901,8 1831,64 0,730

w 8 2724,4 1625,1 3335,0 953,97 2296,4 490,0 4837,8 1791,11 0,548

w 20 650,0 419,3 880,7 326,24 3058,1 563,5 8181,0 2781,83 0,286

progressing/persistent CIN2/3 regressing CIN2/3
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TABLE S9.5 Ratios for epithelial to stromal cells counts (means, minima, maxima and standard deviations) for CD3+ 

cell in progressing/persistent and regressing CIN2/3. The results for each stromal compartment are given 

and are shown separately for all time points from week 0 over week 8 until week 20. 

 

 

 

TABLE S9.6 Ratios for epithelial to stromal cells counts (means, minima, maxima and standard deviations) for CD8+ 

cell in progressing/persistent and regressing CIN2/3. The results are shown separately for the epithelium 

and all stromal compartments and all time points from week 0 over week 8 until week 20. 

mean min max STD mean min max STD p=

CD3 Epithelium/M100 w 0 0,34 0,05 0,91 0,403 0,09 0,03 0,32 0,128 0,063

w 8 0,13 0,06 0,20 0,103 0,20 0,06 0,44 0,148 0,857

w 20 0,15 0,08 0,22 0,098 0,19 0,09 0,40 0,140 0,643

CD3 Epithelium/M500 w 0 0,32 0,03 0,88 0,396 0,24 0,04 0,98 0,411 1,000

w 8 0,15 0,05 0,24 0,134 0,23 0,03 0,92 0,348 1,000

w 20 0,21 0,08 0,33 0,180 0,23 0,07 0,65 0,243 1,000

CD3 Epithelium/M1000 w 0 0,90 0,02 2,01 0,946 0,27 0,11 0,39 0,143 0,730

w 8 0,30 0,06 0,53 0,334 0,31 0,07 1,26 0,469 0,857

w 20 0,26 0,21 0,30 0,061 0,28 0,08 0,67 0,221 1,000

CD3 Epithelium/M0-500 w 0 0,17 0,02 0,45 0,200 0,07 0,02 0,24 0,099 0,413

w 8 0,07 0,03 0,11 0,059 0,09 0,02 0,30 0,107 1,000

w 20 0,09 0,04 0,13 0,065 0,10 0,04 0,25 0,091 0,643

CD3 Epithelium/M0-1000 w 0 0,14 0,01 0,37 0,165 0,04 0,02 0,14 0,054 0,413

w 8 0,06 0,02 0,09 0,052 0,07 0,02 0,24 0,088 1,000

w 20 0,06 0,03 0,09 0,042 0,07 0,03 0,18 0,063 1,000

progressing/persistent CIN2/3 regressing CIN2/3

mean min max STD mean min max STD p=

CD8 Epithelium/M100 w 0 0,16 0,08 0,25 0,084 0,11 0,07 0,17 0,040 0,413

w 8 0,11 0,04 0,18 0,103 0,24 0,05 0,62 0,207 0,429

w 20 0,31 0,16 0,46 0,211 0,22 0,05 0,37 0,145 0,429

CD8 Epithelium/M500 w 0 0,12 0,03 0,26 0,106 0,24 0,09 0,45 0,154 0,286

w 8 0,14 0,04 0,25 0,150 0,20 0,03 0,74 0,274 1,000

w 20 0,45 0,18 0,72 0,382 0,29 0,02 0,65 0,241 0,429

CD8 Epithelium/M1000 w 0 0,33 0,02 0,82 0,363 0,47 0,14 1,22 0,438 0,556

w 8 0,37 0,05 0,70 0,455 0,21 0,09 0,62 0,207 1,000

w 20 0,29 0,28 0,30 0,018 0,32 0,01 0,89 0,309 1,000

CD8 Epithelium/M0-500 w 0 0,07 0,02 0,13 0,050 0,07 0,04 0,09 0,019 1,000

w 8 0,06 0,02 0,11 0,062 0,12 0,03 0,34 0,116 0,429

w 20 0,18 0,08 0,28 0,139 0,12 0,01 0,22 0,089 0,429

CD8 Epithelium/M0-1000 w 0 0,05 0,01 0,11 0,046 0,05 0,04 0,08 0,017 0,905

w 8 0,05 0,01 0,09 0,055 0,09 0,02 0,22 0,081 0,643

w 20 0,10 0,07 0,14 0,052 0,09 0,01 0,18 0,065 0,643

progressing/persistent CIN2/3 regressing CIN2/3



190      9. Supplementary Material   

 

 

 

 

 

TABLE S9.7 Ratios for CD8 to CD3 cell counts (means, minima, maxima and standard deviations) in 

progressing/persistent and regressing CIN2/3. The results for the epithelium and all stromal 

compartments and all time points from week 0 over week 8 until week 20 are shown.  

 

 

 

 

 

 

 

 

mean min max STD mean min max STD p=

CD8/CD3 Epithelium w 0 0,19 0,11 0,29 0,074 2,50 0,20 5,84 2,576 0,063

w 8 0,30 0,21 0,39 0,127 0,46 0,20 0,79 0,256 0,643

w 20 0,28 0,13 0,43 0,209 0,47 0,12 0,78 0,260 0,429

CD8/CD3 M100 w 0 0,32 0,12 0,86 0,359 0,72 0,28 1,13 0,391 0,063

w 8 0,31 0,09 0,61 0,269 0,39 0,21 0,77 0,210 0,714

w 20 0,14 0,06 0,22 0,110 0,43 0,15 0,75 0,278 0,286

CD8/CD3 M500 w 0 0,47 0,14 1,30 0,555 0,68 0,17 1,43 0,586 0,730

w 8 0,28 0,07 0,57 0,261 0,44 0,12 0,62 0,219 0,262

w 20 0,12 0,06 0,18 0,087 0,42 0,10 0,63 0,241 0,286

CD8/CD3 M1000 w 0 0,48 0,18 1,03 0,374 0,82 0,41 1,89 0,632 0,190

w 8 0,25 0,15 0,45 0,172 0,46 0,25 1,00 0,283 0,262

w 20 0,22 0,14 0,30 0,112 0,51 0,16 0,72 0,198 0,143

CD8/CD3 M0-500 w 0 0,40 0,14 1,09 0,404 0,71 0,23 1,26 0,456 0,190

w 8 0,30 0,08 0,59 0,297 0,42 0,15 0,68 0,201 0,714

w 20 0,13 0,06 0,20 0,132 0,43 0,12 0,70 0,254 0,286

CD8/CD3 M0-1000 w 0 0,42 0,15 1,07 0,438 0,71 0,24 1,37 0,481 0,413

w 8 0,29 0,10 0,55 0,232 0,40 0,16 0,58 0,170 0,548

w 20 0,15 0,09 0,22 0,092 0,45 0,13 0,64 0,232 0,286

progressing/persistent CIN2/3 regressing CIN2/3
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 SYFPEITHI BIMAS 

x-mer Rank Start position aa-sequence score rank Start position aa-sequence score 

9-mer 1 60 ILVPKVSGL 30 1 67 GLQYRVFRI 139.17 

 2 97 RLVWACVGV 23 2 249 YLRREQMFV 133.74 

         

10-mer 1 12 YLPPVPVSKV 30 2 12 YLPPVPVSKV 735.86 

 2 2 SLWLPSEATV 27 1 2 SLWLPSEATV 577.28 

 

TABLE S9.8 Results of HLA-A2 epitope prediction for HPV16 L1. Two different databases, SYFPEITHI and BIMAS, were used for HLA epitope prediction in order to obtain L1 peptide 

sequences as potential antigens to be used for in vitro priming of T cells. The two peptides with the highest score of each database and for 9-mer and 10-mer peptides respectively 

were chosen for peptide synthesis. Because of total concordance between the two databased with regard to the results obtained for 10-mer peptides, in total 6 potentially antigenic 

L1 peptides were synthesized. In addition, the L1 peptide with the starting position 323 which is known from literature was synthesized as positive control.  
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TABLE S9.9 HPV Genotyping results for the tumor cell line HN038M and the corresponding archived (FFPE) tissue of the corresponding lymph node metastasis and primary tumor. Results 

are displayed as mean intensity values (MFIs) for the samples and controls and for all tested HPV-types. Samples or controls positive for the corresponding HPV types are 

marked in blue, also the hybridization control is highlighted in blue.  

 

 

 

Program Luminex 100 IS

Build 2.3

Date 5/13/201411:52:44 AM

SN LX10000266007

TemplateName Optiplex HPV Genotyping Kit

TemplateDescription Beadmix-Zusammensetzung entspr der Progen-Beschichtung

SampleVolume 50 uL

DDGate 7000 to 20000

SampleTimeout 70 sec

DataType: Mean Fluorescence Intensity

Sample

HPV06-

R02

HPV11-

R03

HPV16-

R10

HPV18-

R11

HPV26-

R12

HPV31-

R13

HPV33-

R14

HPV35-

R15

HPV39-

R23

HPV42-

R24

HPV43-

R25

HPV44-

R27

HPV45-

R28

HPV51-

R29

HPV52-

R40

HPV53-

R41

HPV56-

R42

HPV58-

R43

HPV59-

R45

HPV66-

R46

HPV68-

R48

HPV70-

R49

HPV73-

R66

HPV82-

R67

HPV            

β-globin-

R64

HPVHYB1-

R70

Total 

Events

HN038 M tumor cells 14.5 1 2627.5 0 1 0 3 2 3 1 2 1 1 1 2 1 2 1 1 2 2 1 4 3 17 4 2272

FFPE metastasis 8 0 2590 1 1 1 1 1 5 1 1 0 1 1 1.5 3 1 1 2 1 1 2 4 2 8.5 4 1095

FFPE primary tumor 10 2 1299 3 3 0 1 2 6 1.5 1 2 0 2 1 2.5 1 4 3.5 3 1 4 4 4 31 4 1570

HeLa positive control 16 0 87 415 0 1 1 1 3 1 1 1 4 1 1 2 1 1 2 2 1 2 4 4 62 4 2246

Caski positive control 17 0 3007 0 1 0 3 1 4 1 1 1 1 1 1 2 1.5 1 1 2 1 2 4 3 10 3 2621

H2O control 17 0 1 1 1 1 1 1 5 1 1 0 1 1 2 2 1 2 2 1 2 1 3 3.5 8 3.5 2442

no tissue/cells (empty tube) 19 0 0 0 1 0 0 1.5 4 1 1 1 1 1 2 2 2 2 1 2 2 2 4 2 9 3 2483

hybridization control 17 1 1 0.5 0 0 0 2 4 2 1 1 1 1 3 2 1 1 2 2 2 1.5 3 3.5 8 775.5 2449


