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Abstract

For many applications, such as drug discovery, road network analysis, and image

processing, it is critical to study spatial properties of objects in addition to object

relationships. Geometric graphs provide a suitable modeling framework for such

applications, where vertices are located in some 2D space. As a result, searching

for similar objects is tackled by estimating the similarity of the structure of different

graphs. In this case, inexact graph matching approaches are typically employed.

However, computing the optimal solution to the graph matching problem is proved

to be a very complex task. In addition to this, approximate approaches face many

problems such as poor scalability with respect to graph size and less tolerance to

changes in graph structure or labels.

In this thesis, we propose a framework to tackle the inexact graph matching prob-

lem for geometric graphs in 2D space. It consists of a pipeline of three components

that we design to cope with the requirements of several application domains. The

first component of our framework is an approach to estimate the similarity of ver-

tices. It is based on the string edit distance and handles any labeling information

assigned to the vertices and edges. Based on this, we build the second component of

our framework. It consists of two algorithms to tackle the inexact graph matching

problem. The first algorithm adopts a probabilistic scheme, where we propose a den-

sity function that estimates the probability of the correspondences between vertices

of different graphs. Then, a match between the two graphs is computed utilizing the

expectation maximization technique. The second graph matching algorithm follows a

continuous optimization scheme to iteratively improve the match between two graphs.

For this, we propose a vertex embedding approach so that the similarity of different

vertices can be easily estimated by the Euclidean distance. The third component of

our framework is a graph indexing structure, which helps to efficiently search a graph

database for similar graphs. We propose several lower bound graph distances that

are used to prune non-similar graphs and reduce the response time.

Using representative geometric graphs extracted from a variety of applications

domains, such as chemoinformatics, character recognition, road network analysis, and

image processing, we show that our approach outperforms existing graph matching

approaches in terms of matching quality, classification accuracy, and runtime.
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Zusammenfassung

Für viele Anwendungen wie beispielsweise die Arzneimittelforschung, Straßennet-

zwerkanalyse und Bildverarbeitung ist die Analyse räumlicher Eigenschaften von

Objekten zusätzlich zu den Beziehungen zwischen den Objekten von zentraler Be-

deutung. Für solche Anwendungen bieten geometrische Graphen einen geeigneten

Modellierungsrahmen, in dem Knoten im zweidimensionalen Raum dargestellt wer-

den. Hierdurch können Ähnlichkeiten zwischen Objekten durch die Abschätzung der

Ähnlichkeiten ihrer Graphen bestimmt werden. Dafür werden typischerweise inexakte

Graph-Matching-Verfahren verwendet. Allerdings wurde gezeigt, dass die Berechnung

einer optimalen Lösungen für das Graph-Matching-Problem eine sehr komplexe Auf-

gabe darstellt. Außerdem sind die Skalierbarkeit in Bezug auf die Größe der Graphen

und die Toleranz gegenüber Änderungen in der Graphstruktur weitere Schwächen

inexakter Ansätze.

In dieser Arbeit stellen wir ein neues Framework vor, um das inexakte Graph-

Matching-Problem für geometrische Graphen im zweidimensionalen Raum zu lösen.

Dieses besteht aus einer dreiteiligen Pipeline, die wir so entworfen haben, dass die

Anforderungen zahlreicher Anwendungsgebiete berücksichtigt werden. Die erste

Komponente ist ein Ansatz zur Abschätzung von Knotenähnlichkeiten, die auf

der String-Edit-Distance basiert und jegliche Knoten- und Kanteneigenschaften

berücksichtigt. Darauf aufbauend besteht die zweite Komponente aus zwei Algo-

rithmen zur Berechnung des Graph-Matching-Problems. Der erste Algorithmus

basiert auf einer Wahrscheinlichkeitsschätzung, für die wir eine Dichtefunktion

zur Berchnung der Übereinstimmungswahrscheinlichkeiten zwischen Knoten ver-

schiedener Graphen entwickelt haben. Danach wird die Übereinstimmung zwischen

zwei Graphen mithilfe von Expectation Maximization errechnet. Der zweite Graph-

Matching-Algorithmus wendet dagegen ein kontinuierliches Optimierungsschema an,

um die Übereinstimmungen iterativ zu verbessern. Hierfür schlagen wir einen Ansatz

zur Einbettung der Konten vor, so dass die Ähnlichkeit verschiedener Knoten schlicht

anhand der Euklidischen Distanz abgeschätzt werden kann. Die letzte Komponente

des Frameworks bildet schließlich eine Graph-Indexstruktur, die das effiziente Durch-

suchen einer Graphdatenbank nach ähnlichen Graphen ermöglicht. Zusätzlich stellen

wir mehrere Graphabstandsfunktionen zum Ausschließen unähnlicher Graphen vor,

um die Laufzeit zu optimieren.

Anhand einer repräsentativen Auswahl geometrischer Graphen aus unter-

schiedlichen Anwendungsbereichen zeigen wir, dass unser Ansatz bessere Ergebnisse
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bezüglich Matching-Qualität, Klassifikationsgenauigkeit und Laufzeit erzielt als

existierende Ansätze.
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Chapter 1

Introduction to Graph Similarity

In recent years, commodity hardware enable the collection of huge amounts of data

from a variety of application domains, such as meteorology, bioinformatics, and geoin-

formatics. Since there is a correlation between the observed data and the variables

controlling a phenomenon, computers are used to analyze such data to extract pat-

terns and predict future behaviors. For example, in bioinformatics, medical records

are used to predict relationships between clinical tests and the possibility of having

cancer; in meteorology, sensor data, such as pressure and temperature, is used for

weather forecasting.

For a computer to analyze such data, first, it is critical to decide how to represent

the objects and entities related to an application domain. In addition to the vector-

based representation, recently, more and more applications have been using the graph

data structure for the modeling of objects and relationships. In general, a graph

consists of nodes or vertices that represent entities, and edges connecting the vertices

represent the relationships between them.

There are several examples where graphs are used to represent data. Graphs have

been used to represent chemical compounds where the atoms are modeled by the

vertices and the covalent bonds are represented by edges. A protein is modeled as

a graph such that vertices represent secondary structures and spatial relationships

between them are represented by the edges. A road network is typically modeled as a

graph such that cross roads are represented by vertices and road segments are modeled

by edges. The World Wide Web is naively represented as a graph where vertices

represent web pages and edges represent hyperlinks. With the recent emergence of

social networks, graphs are used to model users and their friendships.

The graph data structure has several advantages and adapts the number of ver-

tices and edges to the complexity of each object. Different types of relationships
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2 CHAPTER 1. INTRODUCTION TO GRAPH SIMILARITY

can be represented by edges connecting two vertices or even more. Features can

be easily assigned to the vertices and edges representing some properties related to

an application domain, such as the latitudes and longitudes of elements of a road

network.

1.1 Graph Similarity

For the previously mentioned applications and many more, a critical task is to com-

pare two graphs and to determine their similarity. For example, in computer vision

and pattern recognition, graph similarity is used for face recognition [128] and object

tracking [23]; in chemoinformatics, it is used to extract similar chemical compounds

[96, 97] and to predict bio-activities [14, 121]; in bioinformatics, graph similarity is

used for the identification of protein motifs [24], metabolic pathways [133], and to

understand gene regulation mechanisms [34]; in geoinformatics, graph similarity is

used for route planning, street connectivity analysis [105], and spatial information

matching [122].

Considering such a wide variety of application domains, the notion of similarity

is often subjective and reflects the needs of each application. For example, graph

clustering and classification algorithms require a distance function that describes the

similarity of two graphs as a real-valued number. Other graph applications, like

frequent substructure discovery, consider two graphs similar if one is a substructure

of the other. Other applications, like motif discovery, search for common structures

in a database of graphs. For this, two graphs are considered similar if there is a

substructure from the first graph that is identical to a substructure from the second

one. In addition to that, the notion of inexact structure similarity has been proposed

to quantify the similarity of non-identical graphs based on the amount of modifications

needed to make one graph identical to another.

Basically, the similarity between two graphs consists of the similarity of the labels

that are assigned to the vertices and edges, in addition to the similarity of their

structure. Different functions are used to estimate the similarity between labels, such

as the Euclidean distance or a Dirac function that assigns a distance of 0 if the two

vertices have the same label and 1 otherwise. On the other hand, estimating the

structural similarity between two graphs is a very complex task. It is denoted by the

graph matching problem, which searches for a mapping between the vertices of two

graphs such that the mapped vertices have similar connectivity.
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G1
G2

G3
Spatially very similar

Structurally identical

Figure 1.1: The difference between the similarity of geometric and non-geometric
graphs.

1.2 Labeled Geometric Graphs

One of the biggest advantages of using graphs is the possibility to consider different

features for different parts of a graph. This is possible by assigning labeling informa-

tion to both the vertices and edges of a graph. For example, in cheminformatics, a

label is used to represent an atom type, in computer vision, a label represents the

color of a group of pixels. In these cases and many more, a graph is called labeled

graph.

A common property of the above graph-based applications is that the vertices

of the graphs have coordinates in some 2- or 3-dimensional space, which are used to

capture the spatial properties of the objects under study. For example, the atoms of a

protein or a chemical compound are labeled with their coordinates in 2D or 3D space,

latitudes and longitudes are assigned to road networks, different features appearing in

an image are assigned coordinates indicating their locations in 2D space. Generally,

the graphs that are used to model such objects are called geometric graphs. Figure 1.1

gives a feeling on why geometry matters. If no spatial information is considered, graph

G1 is identical to graph G3. However, spatial properties make G1 more similar to G2

than G3, even though G1 and G2 are not identical in terms of the number of vertices

and the structure.

1.3 Objectives

Motivated by a wide variety of application domains, in this thesis, we are interested

in studying the problem of geometric graph similarity. In addition to the labeling

information and graph structure, the spatial properties of geometric graphs, indicated
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by the coordinates of the vertices, must be considered by a graph similarity measure

or a graph matching algorithm.

The main goal of this thesis is to build a general framework for graph matching

and similarity that can be used in several application domains. Our framework con-

sists of the following three components. 1) A vertex similarity measure that estimates

the similarity between vertices of different graphs. 2) Utilizing the concept of vertex

similarity, we propose graph matching algorithms that estimate the similarity of dif-

ferent geometric graphs. 3) In the context of querying a graph database for similar

graphs, our framework uses a graph indexing structure to efficiently search for similar

graphs and prune non-similar ones.

1.4 Challenges

Graphs with their flexible modeling power are widely used for the representation

of objects and relationships. However, flexibility comes with a high price. In the

following, we summarize the main challenges that we faced during the study of the

similarity of geometric graphs.

1. Several trivial operations of the vector-based representation have an exponen-

tial runtime complexity when applied to the graph representation. For example,

computing the similarity of two vectors has a linear runtime complexity. How-

ever, computing the optimal solution to the graph matching problem has in

general an exponential runtime complexity [20, 98].

2. Spatial properties of geometric graphs increase the complexity of graph match-

ing. Since the coordinates of the vertices depend on the particular reference

frame of each graph, geometric graph similarity is defined to handle invariance

under geometric transformations, such as translation, rotation, and in some

cases scaling. For example, in Figure 1.1, a rotation followed by a scaling is

required to estimate the similarity between the two graphs G1 and G2.

3. Most of the graph indexing structures assume that the vertices and/or the edges

are labeled with a discrete alphabet, e.g., [53, 132, 135, 138, 139]. However, for

geometric graphs, the vertices are assigned coordinates as real-valued labels. In

addition to this, using a spatial index structure such as an R-tree based on the

coordinates of the vertices is incapable of handling similarity under geometric

transformation.
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4. We found it challenging and difficult to search for and study related work. Sev-

eral research communities have proposed heuristics and algorithms for graph

matching and similarity. The lack of standardization and communication be-

tween such communities generate similar algorithms and concepts under differ-

ent naming conventions. For example, the structure of a vertex and its direct

connected vertices has been widely used for graph similarity. However, different

authors have been presenting such a structure under different names, such as

clique [114], local structure [101], stars [134], and subgraph [95].

1.5 Contributions

In this thesis, we propose a framework for geometric graph matching and similarity

that has the following advantages over the current approaches.

1. It scales well, in terms of time and space, as graph size increases.

2. It is more tolerant to changes in graph structure, labeling information, and the

spatial properties of the graphs.

3. It can be used to estimate both subgraph and common subgraph matchings.

4. It can be used to efficiently search a database for similar graphs taking into

consideration geometric transformations.

In the following, we outline the accomplishments of this thesis.

Vertex Similarity

The basic block of any graph matching algorithm is to estimate the similarity

between the vertices of different graphs. As a result, we start our contributions and

propose a vertex distance function for labeled geometric graphs in 2D space, which

we partially published in “Vertex Similarity - A Basic Framework for Matching

Geometric Graphs” [10]. It has two main advantages. First, it is invariant to

spatial transformations, such as translation, rotation, and scaling. Second, it handles

labeling information that is assigned to the vertices and edges.

Geometric Graph Matching: A Probabilistic Approach

We propose a probabilistic graph matching algorithm, which is tolerant to the

differences between a two given graphs. We partially introduced this algorithm in
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our paper “Geometric Graph Matching and Similarity: A Probabilistic Approach”

[9]. An initial match between two graphs is estimated using our vertex distance

function. Then, the expectation maximization (EM) technique is used to iteratively

improve the match between two graphs. To utilize the EM technique, we formalize

the graph matching problem as a maximum likelihood estimation (MLE) problem.

We propose a density function that combines both the similarity of the vertices and

the structure of the graphs.

Efficient Geometric Graph Matching Using Vertex Embedding

We propose a graph matching algorithm that scales well as graph size increases.

First, we propose a vertex embedding approach to convert a graph into a multi-set

of vectors. As a result, the distance between two vertices is efficiently estimated by

the Euclidean distance. Second, based on vertex embedding, we propose a graph

matching algorithm. Initially, highly similar vertices, which are called anchors, are

selected to initialize the match between two graphs. Then, the match is improved

iteratively using the structure of both graphs. For this, we propose a probabilistic

voting scheme, where the vertices of the match vote to quantify the similarity of

different vertices from both graphs. We published the general embedding framework

and some preliminary results in “Efficient Geometric Graph Matching Using Vertex

Embedding” [8].

Geometric Graph Similarity Search

The final contribution of this thesis is a two layers indexing structure to efficiently

search a database for similar graphs. The first layer efficiently retrieves vertices

highly similar to the vertices of the query graph. For this, we propose to index the

vertices of the graphs by an R-tree after embedding them in a higher-dimensional

space using our proposed embedding scheme. Then, the set of candidate similar

vertices is used to generate a set of candidate similar graphs. This is accomplished by

using both an inverted index that maps each vertex to its graph and a lower bound

distance function that utilizes the set of candidate similar vertices. The second layer

of our indexing structure consists of two pruning approaches to further reduce the

size of the set of candidate similar graphs.
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Figure 1.2: Graphical overview of the structure of this thesis. Four contributions are
added to the research community, which are outlined inside the dotted rectangle.

1.6 Structure of the Thesis

In the following, we outline the structure of this thesis, which is also illustrated in

Figure 1.2. Chapter 2, first, introduces general concepts related to graph theory.

Then, the problem of graph matching and the different notions of graph similarity

are formalized. We detail our contributions in Chapters 3, 4, 5, and 6. We propose the

vertex distance metric in Chapter 3. Based on this, we propose the probabilistic graph

matching algorithm in Chapter 4. After that, in Chapter 5, we propose a embedding

scheme and a scalable graph matching algorithm. We utilize our approaches to vertex

similarity and embedding to propose a indexing structure in Chapter 6. At the end,

Chapter 7 summarizes our findings and suggests open issues for future studies.
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Chapter 2

The Graph Matching Problem

Searching for similar objects is a vital task in many application domains, such as

biology, chemistry, computer vision, and pattern recognition. For such applications

and many more, graphs are used to model complex objects and relationships. There-

fore, the problem of finding similar objects is transformed into the problem of finding

similar graphs. Graph similarity, in general, captures both the similarity of the la-

bels, which are assigned to the vertices and edges, and the structural similarity of the

graphs.

The latter notion of similarity is normally formalized as the graph matching prob-

lem, which searches for correspondences between the vertices of two graphs such that

the mapped vertices have similar structure. Graph matching can be classified into

two main categories. The first category is the exact graph matching problem, where

a vertex from one graph is mapped to another vertex from another graph only when

the two vertices are identical in terms of structure and label. The second category

is the inexact graph matching problem, which allows the mapping of any two vertices

with a penalty cost that describes the differences in the structure and label.

In this chapter we give the foundations of the graph matching problem, which is

typically used to measure the structural similarity of different graphs. We first intro-

duce some preliminary definitions, and then we detail the graph matching problem

and discuss common approaches and techniques.

2.1 Preliminary Definitions

In this section we give preliminary definitions related to the graph-based representa-

tion, which are considered the foundations of the rest of this thesis [38].

9
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Figure 2.1: Examples for the different concepts related to the graph representation.

A graph G = (V,E) is represented by a non-empty finite set of vertices V , also

called nodes, and a finite set of edges E that connect the vertices. The vertex set of

a graph Q is denoted by V (Q). In the same way, we refer to the edge set of Q as

E(Q). Notice that V and E are used as functions of the graph name to denote its

vertex and edge sets, respectively. A vertex v in a graph G is referred to as v ∈ V (G)

or v ∈ G. An edge e that belongs to a graph G is denoted by e ∈ E(G) or e ∈ G. An

edge eij = (vi, vj) connects the two vertices vi and vj. For an undirected graph, both

edges eij = (vi, vj) and eji = (vj, vi) refer to the same edge. On the other hand, an

edge in a directed graph is represented as an ordered pairs such that edge eij = (vi, vj)

is different from eji = (vj, vi) as shown in Figure 2.1.

The order of a graph G represents the number of vertices in that graph and is

denoted by |G|. On the other side, the size of G represents the number of edges and

is denoted by ‖G‖. The definitions of both graph order and size are well separated

in the domain of graph theory [38]. However, in the graph data mining literature,

graph size is used to represent the number of vertices in a graph [103]. In this thesis,

we use graph size to denote the number of vertices in a graph.

For a graph G, two vertices vi and vj are adjacent or direct neighbors if there is

an edge eij = (vi, vj) ∈ E(G) connecting or joining both of them. The two vertices

vi and vj are incident with the edge eij and also they are its ends. On the other side,

two edges are adjacent if they are connected to the same vertex. The degree (valency)

of a vertex vi is denoted by deg(vi) and equals the number of edges incident to that

vertex. A vertex of degree zero is called isolated vertex. A vertex of degree one is

called a pendant vertex.
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Definition 2.1. (Undirected Labeled Graph) An undirected labeled graph G =

(V,E, l) consists of a set of vertices V , a set of edges E ⊆ {V × V }, and a labeling

function l : {V ∪E} → {Σ∪ ε} assigning a label to every vertex and every edge from

a label alphabet Σ. ε is the null label denoting unlabeled vertices or edges.

The above definition does not restrict the label alphabet Σ. For instance, Σ =

{a, b, . . . , z} assigns each vertex or edge a discrete label from the English alphabet,

Σ = N assigns positive integer labels to the vertices and edges. Similarly, Σ = R
d

represents labels of real-valued vectors of dimension d. A weighted graph, as shown

in Figure 2.1, assigns labels to only its edges such that Σ = R.

Definition 2.2. (Subgraph) Let G = (V,E, lg) and Q = (U, T, lq) be two undirected

labeled graphs. Graph G is considered a subgraph of Q, denoted G ⊆ Q, if V ⊆ U

and E ⊆ T .

The subgraph notion captures the case when one graph is contained in another.

If G is a subgraph of Q, then Q is called a supergraph of G. Another variation of the

notion of subgraph is induced subgraph. Graph G = (V,E, lg) is an induced subgraph

of another one Q = (U, T, lq) when V ⊆ U and E = T ∩ V × V . If G is an induced

subgraph of Q and there are the vertices {vi, vj} ⊆ V and their corresponding vertices

{uk, ul} ⊆ U such that ekl = (uk, ul) ∈ T , then edge eij = (vi, vj) must be in E. Figure

2.1 shows the difference between the subgraph and the induced subgraph concepts.

A clique is a (sub)graph, such that any two vertices are connected by an edge.

A path is a special type of (sub)graphs defined as P = (V,E) such that V =

{v1, v2, . . . , v|P |} and E = {(v1, v2), (v2, v3), . . . , (vk, vk+1), . . . , (v|P |−1, v|P |)}. Nor-

mally, a path is represented by its sequence of vertices as P = [v1, v2, . . . , v|P |]. The

length of a path represents the number of edges it has. The vertices v1 and v|P | are

linked or connected by the path P and are called its ends. In a weighted graph, the

shortest path between two vertices is the path of the minimum sum of edge weights.

For unweighted graphs, a shortest path is the one of the minimum number of edges.

A self loop is an edge that connects a vertex to itself. Parallel edges denote several

edges connecting the same two vertices. A graph with no self loops and parallel edges

is called a simple graph.

A product graph, or an association graph as called by the pattern recognition

community, defines the compatibility between the structure of two graphs and is

formalized as follows:

Definition 2.3. (Product Graph) Given the two graphs G1 = (V1, E1, l1) and

G2 = (V2, E2, l2), their product graph is G = (V,E, l) such that:
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• V = (vi, vk) ∈ V1 × V2 such that l1(vi) = l2(vk)

• E = {((vi, vk), (vj, vl)) ∈ V × V } , such that:

– eij = (vi, vj) ∈ E1 ∧ ekl = (vk, vl) ∈ E2 ∧ l1(eij) = l2(ekl)), or

– eij = (vi, vj) /∈ E1 ∧ ekl = (vk, vl) /∈ E2.

The vertices of the product graph represent pairs of vertices from the original

graphs, and the edges represent the similarity between the edges of the original two

graphs.

A graph is called geometric when its vertices have coordinates in some d-

dimensional space, which is formally defined as follows:

Definition 2.4. (Geometric Graph) A labeled undirected geometric graph G =

(V,E, l, c) consists of a finite set of vertices V , a finite set of edges E ⊆ {V × V }, a
labeling function l : {V ∪ E} → {Σ ∪ ε}, assigning a label to every vertex and every

edge from a label alphabet Σ or the null label ε, and a function c : V → R
d, assigning

a coordinate in R
d to every vertex.

The main difference between geometric and non-geometric graphs are the spatial

properties of the graphs, which we define as follows:

Definition 2.5. (Spatial Property of Geometric Graph) For a geometric graph,

its spatial property means the coordinates of its vertices in addition to the lengths of

the edges, which is computed for an edge using the Euclidean distance between the

coordinates of its end vertices.

The scope of this thesis considers simple undirected labeled geometric graphs,

where the vertices have coordinates in some 2D space. For simplicity, refer to as

geometric graphs. It is worth mentioning that we do not restrict a geometric graph

to be planar, i.e., graphs that can be embedded in the plain such that edges intersect

only at the vertices.

2.2 Graph Matching

Due to the flexibility of the graph data structure, computing the optimal solution

to the graph similarity problem is a very difficult task. For example, there are n!

different permutations, i.e., representations, for a graph of n vertices. Such a lack of
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a canonical order is the main problem that makes the task of computing the similarity

between graphs a very hard one.

The graph similarity problem can be classified into two categories. The first one

is the graph comparison problem and the second one is the graph matching problem.

Definition 2.6. (Graph Comparison Problem) Given a space of graphs G, the
graph comparison problem searches for a function d : G × G → R such that d(G,Q)

estimates the distance between the two graphs G and Q.

Several graph-based applications require finding why two graphs are similar and

not only whether they are similar or not. Such a task is answered by identifying

similar common (sub)graphs, which is formalized as the graph matching problem.

Definition 2.7. (Graph Matching Problem) Given two graphs G and Q, the

graph matching problem searches for correspondences between V (G) and V (Q) such

that the mapped vertices have similar labels and similar connectivity.

Given two graphs G and Q with their vertex sets V and U , respectively, a match

between the two graphs can be represented as a function f : V → U . f(vi) = uk

denotes that vertex vi ∈ V corresponds to vertex uk ∈ U . Using the function f , the

match between two graphs can be also represented as a matrix M ∈ {0, 1}|V |×|U |. An
entry mik is an assignment variable indicating whether vertex vi is being in corre-

spondence with vertex uk. mik is formally defined as:

mik :=

{

1, if f(vi) = uk

0, otherwise
(2.1)

under the conditions:

∀k ∈ {1, . . . , |U |},





|V |
∑

i=1

mik



 ≤ 1, and (2.2)

∀i ∈ {1, . . . , |V |},





|U |
∑

k=1

mik



 ≤ 1 (2.3)

According to the previous two conditions, each vertex from G is matched to at

most one vertex from Q and vise versa.

Graph matching finds mappings between the vertices and edges of one graph to

the vertices and edges of another one as shown in Figure 2.2. In the case of labeled
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Figure 2.2: A graph matching algorithm finds the correspondences between the ver-
tices of two graphs such that the mapped vertices are structurally similar. The match
between G and Q is represented by the blue lines.
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Figure 2.3: The spatial properties of both G1 and G2 are considered identical utilizing
one geometric transformation. The spatial property of G3 is similar to both G1 and
G2 but not identical since there is no single geometric transformation that transforms
their coordinates identical.

graphs, the correspondent vertices and edges must have similar labels. For unlabeled

graphs, only the structure of the graphs is used for graph matching.

Definition 2.8. (Structural Similarity) The structure of two graphs G and Q is

similar based on a match M if edge eij = (vi, vj) ∈ G is similar to edge ekl = (uk, ul) ∈
Q whenever mjl = 1 and mik = 1.

For unlabeled graphs, only the existence or absence of an edge defines the struc-

tural similarity. For labeled graphs, the labels of the two edges must be also similar.

The notion of geometric graph similarity considers the spatial properties of the

graphs in addition to the similarity of the labels and structure. Normally, the Eu-

clidean distance is used to measure the similarity between real-valued labels. However,
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the Euclidean distance between the coordinates of different vertices does not capture

the spatial similarity between geometric graphs. This is because two graphs are con-

sidered similar if there is a geometric transformation, which consists of a translation,

rotation, and scaling, that transforms the coordinates of one graph identical to the

coordinates of the other. Thus, two geometric graphs may be considered identical

even though the Euclidean distances between the coordinates of their vertices are

large.

To illustrate such a concept, we give an example of two geometric graphsG1 andG2

in Figure 2.3. A geometric transformation that consists of a rotation, translation, and

scaling makes the coordinates of graph G1 identical to the coordinates of graph G2.

As a result, the spatial properties of both graphs are considered identical. However,

the Euclidean distance between the coordinates of G1 and G2, without considering

any geometric transformation, gives the indication that their spatial properties are

different.

In the following two sections we give general foundations and techniques related to

the graph matching problem. In Section 2.3 we discuss concepts related to exact graph

matching. After that, we detail the inexact graph matching problem in Section 2.4.

2.3 Exact Graph Matching

The exact graph matching problem is a strict notion of graph similarity, where two

vertices are only matched if they are identical in terms of label and structure. In

this section, we discuss three concepts related to the exact graph matching problem.

In particular, we discuss graph isomorphism, subgraph isomorphism, and maximum

common subgraph matching.

2.3.1 Graph Isomorphism

The isomorphism between two graphs is a one-to-one mapping between their ver-

tices, therefor, two graphs that differ in the number of vertices are not isomorphic.

Additionally, the structure of the two graphs must be identical.

Definition 2.9. (Graph Isomorphism) Two graphs G = (V,E, lg) and Q =

(U, T, lq) are called isomorphic or they posses an isomorphism if there is a bijective

function f : V → U that satisfies the following:

1. ∀vi ∈ V , lg(vi) = lq(f(vi))
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2. ∀uk ∈ U , lq(uk) = lg(f
−1(uk)) , where f−1 is the inverse function of f

3. ∀eij = (vi, vj) ∈ E, ∃ekl = (f(vi), f(vj)) ∈ T ∧ lg(eij) = lq(ekl)

4. ∀ekl = (uk, ul) ∈ T, ∃eij = (f−1(uk), f
−1(ul)) ∈ E ∧ lq(ekl) = lg(eij)

Unfortunately, the complexity of the graph isomorphism problem is NP [98]. There

is no known polynomial algorithm to solve it, neither is proven to be NP-complete.

In the worst case, the computational complexity of any of the current solutions to

the graph isomorphism problem is in general exponential with respect to graph size.

On of the most common techniques to check for graph isomorphism is tree search

with backtracking [32]. Initially, a set of candidate mappings C(vi) is computed for

each vertex vi ∈ G. Vertex uk ∈ Q is added to the candidate set of vi ∈ G if they have

identical labels and degrees. The search algorithm starts with an empty match, which

is then expanded iteratively by adding new pairs of vertices from the two graphs. At

an iteration, suppose the last pair of vertices that is added to the match be (vi, uk).

The algorithm selects a new vertex vj from G to be added to the match. It searches

the candidate similar vertices C(vj) for a vertex ul ∈ Q such that mapping the two

vertices is compatible with the structure of the two graphs and the vertices in the

match. If no vertex from C(vj) passes the test, a backtrack is applied and the last

pair of vertices that was added to the match, i.e., (vi, uk), is removed and a new

mapping for vertex vi is tested.

Since tree search with backtracking scales poorly with respect to graph size, several

graph matching algorithms adopt different techniques to prune the search space and

reduce the runtime. The graph matching algorithm of Ullmann [117] follows this

technique. He propose a look-ahead technique to further prune the search space. It

tests the compatibility between the unmatched vertices that are connected to the

vertices in the match M . Such a pruning technique makes the best time complexity

O(n3), where n is the size of a graph. Another search-based algorithm is the VF2

with best time complexity of O(n2) [33]. The search order of Ullmann’s algorithm

is random. However, VF2 requires that the new vertex to be added to the match is

directly connected to one of the vertices in M . To prune the search space further,

QuickSI has been proposed [111]. It utilizes a search order that prunes as much as

possible from the search space and is guided by the frequency of the labels that are

assigned to the graphs in a given database.

Another class of algorithms to solve graph isomorphism utilizes the concept of

canonical labeling. A canonical form is used to represent all graphs that are considered
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isomorphic. The challenge is that finding a canonical form for a graph is as difficult

as the graph isomorphism problem itself. To prune the search space, such algorithms

utilize the concept of automorphisms, which is an isomorphism between a graph and

itself. The main prominent algorithms following this approach are Nauty [83], Bliss

[64], and Traces [94]. A detailed comparison between the different algorithms is

presented by McKay and Piperno [84].

2.3.2 Geometric Isomorphism

In the domain of geometric graphs, isomorphism tests for both structural isomor-

phism, which is discussed in the previous section, and geometric isomorphism.

Definition 2.10. (Geometric Isomorphism) Given a bijection function f between

the two geometric graph G = (V,E, lg, cg) and Q = (U, T, lq, cq), the two graphs

are considered geometric isomorphic if there is a geometric transformation φ, which

consists of a rotation, translation, and scaling, such that:

∀vi ∈ G : φ(cg(vi)) = cq(f(vi)) (2.4)

The notion of isomorphism is a very strict notion of similarity. To show how this

restriction applies to geometric graphs, we refer to Figure 2.3. Even though graphs

G1 and G3 are structural isomorphic, they are not geometric isomorphic. There is

no affine transformation that transfers the coordinates of all vertices of G1 to be

identical to the coordinates of the vertices of G3. However, there is a set of different

affine transformations that transfers the coordinates of the vertices of G1 identical to

the coordinates of the vertices of G3.

The aforementioned notion of geometric graph similarity is not practical for sev-

eral scientific applications, such as chemoinformatics and bioinformatics. For such

applications, the extracted geometric graphs have normally measurement errors with

respect to the coordinates of the vertices. Kuramochi and Karypis [75] consider this

problem and propose to relax the constraints in Equation 2.4 to consider a certain

tolerance of error r as follows:

∀vi ∈ G :‖ φ(cg(vi))− cq(f(vi)) ‖≤ r (2.5)

The above equation suggests that the Euclidean distance between the coordinates

of two vertices, after applying the geometric transformation φ, must be less than or

equal to a certain threshold r.
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Figure 2.4: Different notions of exact graph matching.

The runtime complexity of solving the general graph isomorphism problem in

NP [98]. However, solving the graph isomorphism problem between two geometric

graphs runs in polynomial time [75]. This is feasible because the spatial property

prunes the search space of the possible structural isomorphisms between the two

graphs.

Approaching the geometric graph isomorphism consists of two steps: 1) finding

all the geometric transformations that make the coordinates of two graphs identical,

and 2) verifying the structural isomorphism for each computed transformation. Given

the two geometric graphs G = (V,E, lg, cg) and Q = (U, T, lq, cq) in some 2D space,

finding the match between their vertices based on just the spatial property can be

considered as matching two point sets. A local coordinate frame is generated from

any two vertices vi and vj in graph G. The x-axis is spanned by the vector ~xij, which

starts at point cg(vi) and ends at point cg(vj). The y-axis is defined by the vector ~yio,

which starts at point cg(vi) and is orthogonal to ~xij. Thus, graph G has |V |2 different
local frames. To estimate a match between G and Q based on just the coordinates of

the vertices, first, a local frame LFkl is computed for Q utilizing the two vertices uk

and ul. Then, for each local frame LFij from G, find the best match for each vertex

from G utilizing the nearest neighbor Euclidean distance to the vertices of Q. The

runtime complexity of this step is O(|V ||U |). As a result, finding the optimal match

based on only the spatial property runs in O(|V |3|U |). After that, such a geometric

isomorphism is tested for structural compatibility, which runs in O(|E|) [7].

It is worth mentioning that polynomial solutions for the graph isomorphism prob-

lem exist for special graphs, such as graphs with unique labels [37], graphs of bounded

degree [79], planner graphs [56], ordered graphs [61], and trees [5].
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2.3.3 Subgraph Isomorphism

The difference between graph isomorphism and subgraph isomorphism is that the lat-

ter one considers graphs that differ in the number of vertices. However, the structure

of the smaller graph must be identical to the structure of its correspondent subgraph

from the larger one.

Definition 2.11. (Subgraph Isomorphism) A graph G is subgraph isomorphic to

another graph Q if there exist a subgraph Q
′ ⊆ Q such that G and Q

′
are isomorphic.

In fact, the graph isomorphism is a special case of subgraph isomorphism when the

two graphs have the same number of vertices. However, the computational complexity

of solving the subgraph isomorphism problem is NP-complete [98]. This is because

the matching algorithm searches for graph isomorphism between a smaller graph G

and all subgraphs of size |G| of another graph Q.

Most of the approaches to tackle the graph isomorphism problem, such as Ullmann

[117] and VF2 [33], can be used as well to solve subgraph isomorphism. However,

for subgraph isomorphism, they use a less than or equal criterion instead of only an

equality. This relaxation is because the larger graph has more vertices and edges than

the smaller one. As a result, two vertices vi ∈ G and uk ∈ Q are mapped to each

others if deg(vi) ≤ deg(uk) and both vertices have the same label.

2.3.4 Maximum Common Subgraph

Unfortunately, subgraph isomorphism cannot estimate the similarity between two

graphs in the case that the smaller graph is not identical to a subgraph of the bigger

one. To solve this problem, a notion of graph similarity is proposed based on the

concept of maximum common subgraph mcs [18].

Definition 2.12. (Maximum Common Subgraph (mcs)) Given two graphs G

and Q, their mcs is the maximum subgraph from G that is isomorphic to a subgraph

from Q.

The above definition implies several issues, in particular 1) the size of the maxi-

mum common subgraph between two graphs is less than or equal the size of the smaller

of them, 2) there could be several maximum common subgraphs between a two given

graphs, and 3) an exact match, i.e., (sub)graph isomorphism, is used between the

mcs and both graphs. In the literature, the mcs problem is classified based on the
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Figure 2.5: The maximum common induced subgraph mcis and the maximum com-
mon edge subgraph mces for the two graphs G and Q. Notice that a mcs could be
disconnected.

definition of maximality, which is either maximality based on the number of vertices

(mcis) or the number of edges (mces) as shown in Figure 2.5.

The computational complexity of finding the mcs between two graphs is NP-

complete [48]. McGregor proposes a solution based on searching with backtracking

[82]. However, most of the existing approaches to the mcs problem reduce it to

the problem of finding a maximum clique in their product graph [12, 31, 43, 96],

see Definition 2.3. Even though the problem of maximum clique detection is NP-

complete [48, 67], a branch-and-bound technique is used to speed up and prune the

search space [16, 72], which is considered faster than directly tackling the maximum

common subgraph problem.

2.4 Inexact Graph Matching

The exact graph matching approaches map two vertices from two graphs only if

their labels and structure are identical. However, such a strict matching criterion is

impractical for several scientific applications. For instance, in image analysis, different

scales of the same color are considered similar even though they are not identical. In

chemoinformatic, two different atoms may have similar chemical reaction. In social

network, two users may have similar interests even though they are not connected

to the same friends. In these applications and many more, some error may be also

introduced as a result of graph extraction, i.e., representing an object by the graph

data structure. Thus, two similar objects can be modeled by two non-identical graphs.

The concept of inexact graph matching problem is introduced to estimate the

similarity between graphs that differ in the number of vertices and structure [108].

It allows the mapping of any two vertices with a penalty reflecting the difference of

their labels and structure [50].
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Definition 2.13. (Inexact Graph Matching Problem) Given two labeled undi-

rected graphs G = (V,E, lg) and Q = (U, T, lq). Let the function f(vi, uk) define the

distance between lg(vi) and lq(uk). Also, let the function f(eij, ekl) define the distance

between lg(eij) and lq(ekl) such that eij = (vi, vj) ∈ E and ekl = (uk, ul) ∈ T . Suppose

a match between the two graphs is represented by a matrix M ∈ {0, 1}|V |×|U | such that

mik = 1 if vi ∈ V is matched to uk ∈ U and 0 otherwise. The optimal solution to the

inexact graph matching problem is the matrix M∗ such that:

M∗ =argmin
M

∑

i

∑

k

f(vi, uk)mik +
∑

i

∑

j

∑

k

∑

l

f(eij, ekl)mikmjl

subjected to the constraints:

∀k ∈ {1, . . . , |U |},
|V |
∑

i=1

mik ≤ 1, and

∀i ∈ {1, . . . , |V |},
|U |
∑

k=1

mik ≤ 1

The first summation of the above objective function, i.e., the function needed

to be minimized, captures the compatibility in the labeling information between the

vertices of two graphs. The second summation captures the structural similar between

the vertices. The above two constraints guarantee a one-to-one mapping between the

vertices of two graphs. In addition to this, they allow a vertex not to be matched to

any other vertex from the other graph.

Computing the optimal solution to the inexact graph matching problem is NP-

hard [20, 134]. Although the optimal solution can be computed [17], it is impractical

for scientific applications as it requires exponential runtime [20, 50].

In the following sections we discuss three approaches that give approximate solu-

tions to the inexact graph matching problem. In Section 2.4.1, we discuss the graph

edit distance approach, which is a generalization of the concept of string edit dis-

tance. Then, we detail the spectral graph matching technique in Section 2.4.2, which

utilizes the spectra of the adjacency or the Laplacian matrices. Finally, we discuss

the continuous optimization approach in Section 2.4.3, which iteratively improves the

match between two graphs at consecutive steps.
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2.4.1 Graph Edit Distance

The concept of graph edit distance was introduced by Sanfeliu and Fu to measure the

similarity between graphs that differ in the number of vertices, graph structure, and

labeling information [108]. Its main idea is to measure the number of modifications

needed to make one graph identical to another. For this, edit operations are provided

to quantify the penalty or the cost of changing a vertex or an edge to become identical

to its counterpart vertex or edge, respectively.

Three operations are used to edit the vertices and another three operations are

used to edit the edges. Given the two vertices v ∈ G and u ∈ Q, the vertex operations

are: 1) a substitution operation (v → u) to change the label of vertex v to be identical

to the label of u, 2) a deletion operation (v → ε) to delete or to remove vertex v from

G, and 3) an insertion operation (ε → u) to insert or to add vertex u to graph Q,

such that ε denotes the null non-existent vertex. Similarly, another three operations

are defined for editing the edges of different graphs. The cost of an edit operation is

indicated by the function c(.). For instance the cost of vertex substitution is indicated

by c(v → u). Normally, the costs of vertex and edge edit operations are provided by

the user and customized to match the notion of similarity and labeling information

for each application domain [103].

Definition 2.14. (Edit Path) An edit path between two graphs is a sequence of edit

operations that transfers the two graphs to be identical.

To construct an edit path between two graphs, edge operations are triggered when

their adjacent vertices are edited [103]. Given the vertices vi, vj ∈ G and uk, ul ∈ Q,

and the two edges eij = (vi, vj) and ekl = (uk, ul), the edge operations are triggered

according to the following rules:

1. Edge substitution. (vi → uk) ∧ (vj → ul) ∧ (eij ∈ E(G)) ∧ (ekl ∈ E(Q)) →
(eij → ekl).

2. Edge deletion.

(a) (vi → uk) ∧ (vj → ul) ∧ (eij ∈ E(G)) ∧ (ekl /∈ E(Q))→ (eij → ε).

(b) (vi → ε) ∧ {eij ∈ E(G)} → (eij → ε), the same rule applies to graph Q.

3. Edge insertion. (vi → uk)∧(vj → ul)∧{eij /∈ E(G)}∧{ekl ∈ E(Q)} → (ε→ eij)

These rules ensure that the edit path between two graphs is structurally compati-

ble. However, there is an exponential number of different edit paths by which a graph
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Figure 2.6: Different edit paths between the two graphs G and Q.

can be made identical to another. For example, Figure 2.6 shows three different edit

paths between the two unlabeled graphs G and Q. Assuming that we assign a cost

of 0 for each of the vertex and edge substitutions and a cost of 1 for the remaining

edit operations, then, the edit paths P1 and P2 have the same cost of 3. Whereas,

the cost of edit path P3 is 13, which is created by first deleting all the vertices and

edges of graph G and then inserting all the vertices and edges of Q.

Since different edit paths have different costs, the graph edit distance is defined

based on the one with the least cost.

Definition 2.15. (Graph Edit Distance) Given the two graphs G and Q, the edit

distance between them ged(G,Q) is defined as:

ged(G,Q) := min
Pi∈P(G,Q)

cost(Pi)

where P(G,Q) is the set of all edit paths between G and Q and cost(Pi) is the sum

of the costs of all edit operations that are included in the edit path Pi.

Based on this definition, the match between two graphs is defined by the edit

path with the least cost, and the distance between the two graphs is the cost itself. A

graph similarity metric can be defined based on the edit distance concept. A graph

distance function d(G,Q) is considered metric if it satisfies the following conditions:

1. d(G,Q) ≥ 0: non-negativiy

2. d(G,Q) = 0 if and only if G = Q: identity of indiscernibles

3. d(G,Q) = d(Q,G): symmetry
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4. d(G,Q) ≤ d(G,C) + d(C,Q): triangle inequality

Conditions 1 and 2 ensure that the distance is always positive or zero between an

object and itself. Condition 3 means that the order of the variables does not affect

the result of the function. The last condition ensures the least distance between two

graphs. Based on Sanfeliu and Fu [108], the graph edit distance is a metric function

when the following conditions are satisfied:

1. The cost of each edit operation is computed using a metric function.

2. For any two vertices vi and vj having identical labels, c(vi → ε) = c(ε→ vj).

3. For any two edges eij and ekl having identical labels, c(eij → ε) = c(ε→ ekl).

Conditions 2 and 3 ensure that the deletion cost equals the insertion cost for edges

or vertices having identical labels.

The graph edit distance is very flexible to handle any type of labeling information

for the vertices and edges. However, the complexity of computing the exact solution

to the graph edit distance is NP-hard [134]. Bunke and Allermann [17] use the well-

known A∗ algorithm [52] to find the exact graph edit distance. This approach follows

a tree search paradigm such that intermediate nodes in the search tree represent

partial edit paths between the two graphs, and leaves represent full edit paths.

Although the A∗ algorithm finds the optimal solution, it has an exponential com-

putational complexity. As a result, several techniques are used to give approximate

solutions. The A∗ algorithm is also used to approximate the graph edit distance [88].

Instead of keeping all possible partial paths from a certain node in the search tree,

only the k least cost are kept. Following this, a large area of the search space can be

pruned leading to a fast searching algorithm. The graph edit distance is formalized

as a binary linear programming (BLP) problem by Justice and Hero [65]. Since the

complexity of solving BLP problems is NP-complete [48], the authors approximate

the solution by providing upper and lower bounds to the exact solution. Given that

the graph size is n, the lower bound to the BLP problem is computed in O(n7) using

the interior point method [89]. On the other side, the upper bound is computed in

O(n3) by utilizing the Hungarian algorithm [90], as will be detailed later.

Approximate solutions to the graph edit distance are typically computed by ne-

glecting the overall structure of the graphs. Only the structure in the neighborhood

of a vertex is used to match that vertex to another one. For this, a feature vector

is extracted from the labels of the neighborhood of each vertex. Then, approximate



2.4. INEXACT GRAPH MATCHING 25

solutions are computed by solving the assignment problem between the features of

two graphs, which is formalized as the bipartite graph matching problem. In this ap-

proach, three questions must be answered, 1) how to define the neighborhood of a

vertex?, 2) how to compute the distance between two features?, and 3) how to solve

the assignment problem?

The structure and labeling information of the neighborhood of a vertex is used

to represent its feature. The neighborhood for a vertex can defined in several ways.

For instance, the vertex and its incident edges [139], in addition to the previous, the

neighboring vertices are included [63, 69, 101, 104, 134], a spanning tree with a certain

depth [123], and simple paths up to a certain length [131].

Once the neighborhood is defined, the labels assigned to the vertices and edge

compose the feature of that vertex. Different distance functions are used in the

literature to compute the distance between the features of two vertices, such as the

Manhattan distance [63], the Euclidean distance [134], the Heterogeneous Euclidean

Overlap Metric [62], which is similar to the Euclidean distance but handles features

composed of multiple data types.

After defining the features and their distance function, the graph edit distance is

approximated by first building a distance matrix between the features of two graphs,

then, solving the assignment problem [69, 101, 104, 134]. The latter problem repre-

sents the task of selecting a minimum cost mapping between a group of workers and

a group of jobs. The assignment problem is also referred as the weighted complete

bipartite graph matching problem. The solution to the assignment problem is then

the match with the least cost in such a bipartite graph.

Definition 2.16. (Bipartite Graph) A weighted complete bipartite graph is defined

as GBP = ({V1 ∪ V2}, E, w), where {V1 ∪ V2} is a finite set of vertices such that

V1 ∩ V2 = ∅. E = V1 × V2 is a finite set of undirected edges, and the function

w : E → R assigns a real-valued weight to each edge.

For a graph to be bipartite, its vertex set must be divided into two disjoint vertex

classes V1 and V2, such that there is no edge connecting two vertices from the same

vertex class. Also, for a bipartite graph to be complete, there has to be an edge from

every vertex in V1 to some vertex in V2, and vise versa. We refer to the weighted

complete bipartite graph as the bipartite graph.

Definition 2.17. (The Bipartite Graph Matching Problem) For a bipartite

graph GBP = ({V1 ∪ V2}, E, w), a match is a disjoint-set of edges E
′ ⊂ E, such

that no two edges in E
′
share the same vertex. For a match to be minimum, it
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Figure 2.7: The solution to the assignment problem is considered as a suboptimal
solution to the graph matching problem. Vertex v4 ∈ G must be mapped to u4 ∈ Q.
However, it is mapped instead to u7 ∈ Q. For simplicity pendant vertices are not
shown.

has to minimize the overall weight assigned to its edges,
∑n

i=1 w(ei), ei ∈ E
′
, and

n = min{|V1|, |V2|}.

To solve the bipartite matching problem, the Hungarian algorithm is used [90],

which was initially proposed by Kuhn [74] based on the work of the Hungarian math-

ematicians Dánes Kőnig and Jenő Egerváry. Such an algorithm has been reviewed

and improved by Munkres [85]. After that the algorithm is referred as Kuhn-Munkres’

algorithm or shortly Munkres’ assignment. The fastest implementation of Munkres’

algorithm runs in O(n3) where n is the size of the bipartite graph, which was pro-

posed by Edmonds and Karp [44]. In this thesis, we use the Hungarian algorithm

and Munkres’ algorithm interchangeably to refer to the solution of the assignment

problem.

It is worth mentioning that Munkres’ algorithm computes the optimal solution to

the assignment problem. However, such a solution is considered as an approximate

solution to the graph edit distance. A match between two graphs based on such an

approach may be structurally incompatible. This means that two direct neighboring

vertices in one graph may be mapped to non-direct neighboring vertices in the other
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graph, as shown in Figure 2.7. To be more specific, in the figure, vertex v4 ∈ G is

mapped to vertex u7 ∈ Q since their neighborhoods are similar. However, when the

overall graph structure is considered, vertex v4 should be mapped to u4 ∈ Q.

The concept of edit distance for geometric graphs is formalized by Cheong et

al. [26]. Even though the geometric graph isomorphism problem is solved in polyno-

mial time, they prove that the graph edit distance for geometric graphs is NP-hard.

As a result, they propose an approximate solution that runs in cubic time complexity

with respect to the graphs size. First, a feature vector is extracted for each vertex

from a graph, which represents the shortest path distances between that vertex a

set of landmark vertices. To select the set of landmarks, they propose to use four

extreme vertices in the boundaries of the graph, i.e., peripheral vertices. Based on

the features, a vertex-to-vertex distance matrix is created utilizing the Manhattan

distance. Then, an approximate solution to the geometric graph edit distance is esti-

mated by solving the assignment problem. Instead of using the Hungarian algorithm,

the authors propose to use the Earth Mover’s Distance (EMD) algorithm [106]. It is

used to find the minimum cost of moving piles of earth so that to fill a group of holes

taking into consideration that a pile can be split into several holes.

2.4.2 Spectral Graph Matching

The graph edit distance provides a flexible approach that can handle different types of

labeling information that is assigned to the vertices and edges. However, it performs

poorly in the case of unlabeled graphs. In other words, in the case of matching two

graphs based on only their structure, the graph edit distance looses its power. This is

because the features extracted from the neighborhoods of the vertices have very poor

selectivity power. In this section, we discuss the second family of algorithms to solve

the inexact graph matching problem, which is build based on ideas from spectral graph

theory [30]. In the following, we give some preliminary definitions, then we discuss

how graph spectra can be used for graph matching.

The structure of a graph can be represented in different ways using different

connectivity matrices, which includes mainly the adjacency matrix, the Laplacian

matrix, and the normalized Laplacian matrix.

Definition 2.18. (Adjacency Matrix) For an undirected unlabeled graph G =

(V,E), its adjacency matrix A ∈ {0, 1}|G|×|G| is a square matrix of size |G| × |G|,
such that an entry aij indicates if vertex vi is a direct neighbor of vj. Formally, it is

defined as:
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aij :=

{

1, if e = (vi, vj) ∈ E

0, otherwise
(2.6)

The adjacency matrix is an approach to represent the structure of a graph. For

a weighted graph, an entry of its adjacency matrix aij represents the weight of edge

e = (vi, vj).

Definition 2.19. (Degree Matrix) For an undirected unlabeled graph G = (V,E),

its degree matrix D is a square matrix of size |G|×|G|, such as an entry dij is defined

as:

dij :=

{

deg(vi) if i = j

0, otherwise

The degree matrix has the degrees of the vertices on the diagonal and zero other-

wise.

Definition 2.20. (Laplacian Matrix) For an undirected unlabeled graph G =

(V,E), its Laplacian matrix L is a square matrix of size |G| × |G|, such that:

lij :=







deg(vi) if i = j

−1, if e = (vi, vj) ∈ E

0, otherwise

According to this definition, the Laplacian matrix stores the degree of the vertices

on the diagonal, zero when there is no edge between the two vertices that are indexed

by i and j, and a value of −1 in the case that the two vertices are connected by an

edge. The Laplacian matrix can be easily computed using the adjacency matrix and

the degree matrix of a graph as L = D − A.

Definition 2.21. (Normalized Laplacian Matrix) For an undirected unlabeled

graph G = (V,E), its normalized Laplacian matrix L is a square matrix of size

|G| × |G|, such that:

lij :=







1 if i = j
−1√

deg(vi)deg(vj)
, if e = {vi, vj} ∈ E

0, otherwise

(2.7)

One can compute the normalized Laplacian matrix from the Laplacian matrix or

from the adjacency matrix according to the following relationship:
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L = D−
1
2LD−

1
2 (2.8)

= I −D−
1
2AD−

1
2

where I is the identity matrix and D−
1
2 is a diagonal matrix such that an entry

on the diagonal is defined as − 1√
deg(vi)

.

In addition to unlabeled graphs, the previous matrices can also represent weighted

graphs such that the entries store the weights that are assigned to the edges of a graph.

For example, an entry in the Laplacian matrix L of a weighted graph G = (V,E,w)

with a weighting function w : E → R is defined as:

lij :=







∑

vk∈N(vi)

w(e = (vi, vk)) if i = j

−w(e), if e = (vi, vj) ∈ E

0, otherwise

(2.9)

The spectral graph matching algorithms utilize the concept that graph structure

is highly related to the Eigenvalues/vectors of its matrix representations. A vector

x is considered as an Eigenvector of a square matrix A if it satisfied the following

equations

Ax = λx (2.10)

where λ is the Eigenvalue corresponding to x. According to the previous equation,

an Eigenvector does not change its direction when multiplied by A, its length is

only changed to become λx. The Eigenvalues of a matrix A are the roots of its

characteristic polynomial p(λ), which is defined as:

p(λ) = det(A− λI) (2.11)

where det(.) is the determinate of a matrix. Based on this, the Eigenvalues are

the solution of the equation p(λ) = 0. The Eigenvector xi that corresponds to the

Eigenvalue λi is computed by solving (A−λiI)xi = 0 . In the following we give some

definitions and properties for the Eigenvalue/vectors of a matrix.

Definition 2.22. (Spectrum) The spectrum of the graph is the Eigenvalues for its

adjacency or (normalized)Laplacian matrices.

Definition 2.23. (Algebraic Multiplicity) For an Eigenvalue λi, its algebraic

multiplicity is the multiplicity of λi as a root of the characteristic polynomial.



30 CHAPTER 2. THE GRAPH MATCHING PROBLEM

Definition 2.24. (Geometric Multiplicity) For an Eigenvalue λi, its geometric

multiplicity is the maximal number of linearly independent Eigenvectors corresponding

to λi.

Definition 2.25. (Principal Eigenvector) It is the Eigenvector that correspon-

dence to the maximum Eigenvalue of a matrix.

Definition 2.26. (Eigendecomposition) A symmetric matrix can be decomposed

as:

A = UΛUT

such that Λ is a diagonal matrix of the Eigenvalues, U is the matrix of Eigenvectors,

and UT is the transpose matrix of U .

Proposition 2.1. If the Eigenvalues for a symmetric matrix A are strictly ordered,

i.e., 0 ≤ λ1 < λ2 < · · · < λn, then matrix A has n unique Eigenvectors up to a sign.

The aforementioned proposition means that each Eigenvalue has a geometric mul-

tiplicity of one. Notice that, if x is an Eigenvector for a matrix, then −x is also

considered an Eigenvector of that matrix, which is denoted by a unique Eigenvector

up to a sign in the previous definition.

Definition 2.27. (Rayleigh Quotient) The Rayleigh quotient for the symmetric

matrix A is R(x) such that:

R(x) =
xTAx

xTx
, where x 6= 0

Theorem 2.1. Supposed that λn and xn are the maximum Eigenvalue and its Eigen-

vector (principal Eigenvector) for the symmetric matrix A, respectively, then:

xn = argmax(R(x))

λn = R(xn)

In other words, the principal Eigenvector xn of a matrix A is the vector that

maximizes the Rayleigh quotient of A. Such a theorem plays a key role in tackling

the graph matching problem, as will be shown later.

Definition 2.28. (Cospectrality of Graphs) Two graphs are called cospectral if

they are not isomorphic and they have the same spectrum.
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If two graphs are isomorphic then they should have the same Eigenvalues. How-

ever, cospectrality means that two graphs could be not isomorphic but they share

the same Eigenvalues [126]. As a result, the focus is on the Eigenvectors of the

connectivity matrices to tackle the graph matching problem.

In the following, we discuss three approaches to utilize the spectra of the con-

nectivity matrices for graph matching. The first approach uses the spectra of both

graphs, the second one uses the spectra of an affinity matrix, which is a kronecker

product of their adjacency matrices, and the third approach uses the spectra of a

vertex-to-vertex similarity matrix between two graphs.

Most of the following approaches have been applied to geometric graphs, although

this is not explicitly mentioned. Several authors use geometric graphs in their eval-

uation. They utilize the weighted adjacency or Laplacian matrices, which store the

lengths of the edges.

• Spectra of Both Graphs

The first to use the spectra of the connectivity matrices for graph matching is

Umeyama [118]. The main idea of his approach is to embed the vertices of a graph in

its Eigenspace, which is the space spanned by the Eigenvectors of the adjacency matrix

of a graph. Then, each vertex can been seen as a point in a higher dimensional space

such that each dimension corresponds to an Eigenvector. After that, he proposes to

use the Hungarian algorithm to approximate the graph matching problem. Given

the two graphs G and G
′
with their adjacency matrices A and A

′
, where |G| =

|G′ | = n, the solution to the graph matching problem between the two graphs is the

permutation matrix P ∗, such as:

min
P∈P
‖ PAP T − A

′ ‖2 (2.12)

such that P is the space of all permutation matrices of size n × n. The above

equation minimizes the Frobenius norm of the difference between PAP T and A
′
.

Note that a permutation matrix is a double stochastic matrix representing a one-to-

one mapping between the vertices of two graphs, also it is an orthogonal matrix.

The approximate solution to the graph matching problem that is proposed by

Umeyama depends on the assumptions that 1) both A and A
′
have distinct Eigenval-

ues that can be ordered, and 2) the domain of the permutation matrices is extended

to the domain of orthogonal matrices Q. As a result, minimizing ‖ QAQT − A
′ ‖2,
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Q ∈ Q, is achieved by Q∗, such that Q∗ = U
′
SUT , U

′
and U are the matrices of the

Eigenvectors of A
′
and A, respectively, S is a diagonal matrix such that sii ∈ {−1, 1}.

Notice that the matrix Q∗ is not a permutation matrix since an entry qij ∈ [0, 1]. To

solve the sign ambiguity in the eigendecomposition of both matrices, which means

to consider an Eigenvector λi or its negative −λi, Umeyama’s heuristic is to use the

absolute values of the entries in both U and U
′
. As a result, an entry in Q∗ can be

seen as the cosine similarity between two vertices based on their coordinates in U

and U
′
. To get a zero-one discrete values from the Q∗, i.e., to recover a permutation

matrix from it, Umeyama proposes to use the Hungarian algorithm to select the best

match from Q∗.

The above approach has two limitations. First, it handles only graphs with the

same number of vertices. Second, the Eigenvalues/vectors are not unique, which

makes their order not reliable for graph matching. Notice that eigendecomposition

creates two different Eigenspaces for a two given graphs. So, before computing the

similarity between the vertices of two graphs, the dimensions of the Eigenspaces

must be first mapped. In other words, it is required to determine which dimension

of the first Eigenspace corresponds to which from the other Eigenspace. For that,

Umeyama uses a total ordering of the dimensions of an Eigenspace by sorting them

based on the magnitude of the Eigenvalues. However, in practice, Eigenvalues may

have algebraic multiplicity and geometric multiplicity leading to an incorrect mapping

of the dimensions of two Eigenspaces.

In addition to the adjacency matrix, the spectra of the Laplacian are used for

graph matching [71]. To match two graphs G and Q with sizes m and n, respectively,

first the Eigenspaces of both graphs are truncated by keeping only k Eigenvectors

from both graphs that correspond to the largest k Eigenvalues where k < min{m,n}.
To align the Eigenspaces of the two graphs, the authors use the histograms of the

eigenfunctions, i.e., a histogram of the values of each Eigenvector. The main idea of

such an approach is that the histograms are invariant to vertex permutation.

Once the similarity between the Eigenvectors of two graphs is computed, the Hun-

garian algorithm is used to estimate the best match between the dimensions of the

two Eigenspaces. After that, the similarity of two vertices is computed as the co-

sine similarity of their values across different Eigenvectors. To estimate the match

between the two graphs, they proposed to use the well-known expectation maximiza-

tion technique (EM) [36], which combines both the similarity in the Eigenspace and

graph structure.
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Xiao et al. use the normalized Laplacian to embed the vertices of a graph into its

Eigenspace [130]. They build their solution based on the concept of the heat kernel

that is computed by exponentiating the spectrum of the normalized Laplacian matrix.

Let U and Λ be the matrix of Eigenvectors and the diagonal matrix of the Eigenvalues

for the matrix A, respectively, then the heat kernel ht is defined as:

ht = U exp[−tΛ]UT (2.13)

The heat-kernel describes the flow of information across the edges of a graph over

time t. The main idea behind it is that the differences between the structure of two

graphs mainly affect their smaller Eigenvalues. This means that the Eigenvectors that

correspond to the smaller Eigenvalues are unstable. To reduce their effect on graph

matching, the Eigenvalues are exponentiated as seen in the previous equation. Also,

Eigenvectors corresponding to the smaller Eigenvalues are truncated to cope with the

differences in graph size. To create a vector-based representation for the vertices,

they use the Young-Householder decomposition of the heat kernel, i.e., ht = Y TY .

As a result, the coordinate matrix of the vertices is Y such that:

Y = exp[−1

2
Λt]UT (2.14)

To find the distance between two vertices based on their heat kernel embedding,

they propose using the squared Euclidean distance. This creates a distance matrix

between the vertices of two graphs, where the best match between the vertices is

selected using Scott and Longuet-Higgins algorithm [110]. Such an algorithm is

considered as a greedy approach to solve the assignment problem. It matches two

vertices if their similarity is the maximum among the other pairs of vertices.

• Spectra of Affinity Matrix

We discussed in Section 2.3 that the product graph is utilized in approaching the

maximum common subgraph problem. The main idea was to find the maximum clique

in the product graph, which represents the maximum common subgraph. Following

the same methodology, the spectra of the affinity matrix of two graphs are used to

estimate the match between them. The difference between the affinity matrix and

the product graph is that the similarity between the weights of two edges is utilized

by the affinity matrix, however, the product graph requires that the two edges have

identical labels.
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1,A 1,B 1,C 2,A 2,B 2,C 3,A 3,B 3,C

1,A 0.24 0.95 0.25 1.0
1,B 0.24 1.0 0.25 1.0
1,C 0.95 1.0 1.0 0.95

2,A 0.24 0.95 0.24 0.97
2,B 0.24 1.0 0.24 0.24
2,C 0.95 1.0 0.97 0.24

3,A 0.25 1.0 0.24 0.97
3,B 0.25 0.95 0.24 0.24
3,C 1.0 1.0 0.97 0.24
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2
3

A

B
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Figure 2.8: The affinity matrix between the two graphs G and Q. Empty entries
represent a similarity of value zero and are removed for convenience.

Given the two graph G = (V,E,wg) and Q = (U, T, wq), such that wg and wq

are the weighting functions assigning a real-valued label to the edges in E and T ,

respectively. Also suppose that m = |V | and n = |U |. Then, the affinity matrix

of G and Q is a square matrix K ∈ R
mn×mn, such that an entry kab, a = (vi, uk)

and b = (vj, ul), represents the similarity of the two edges eij = (vi, vj) ∈ E and

ekl = (uk, ul) ∈ T . kab is defined as :

kab =

{

s(eij = (vi, vj), ekl = (uk, ul)), if eij ∈ E ∧ ekl ∈ T

0, otherwise
(2.15)

where s(.) is an edge similarity function. Figure 2.8 shows the affinity matrix

between two graphs such that the function s(.) is a Jaccard function based on the

weights of two edges.

Once the affinity matrix is constructed, matrix decomposition is used to estimate

the cluster of entries in the affinity matrix that represents an approximate solution to

the inexact graph matching problem. Formally, the match between the two graphs is

estimated by a cluster of assignments C = {(vi, uk)|vi ∈ E, uk ∈ T} in their affinity

matrix that has the maximum inter-cluster similarity score:

C∗ = argmax
C

∑

a,b∈C
kab (2.16)

This optimization problem can be written by utilizing a vector of assignment

indicators x ∈ {0, 1}mn, such that an entry indicates where vi ∈ E is mapped to
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vertex uk ∈ T . Using such a vector, the optimal solution x∗ is computed as:

x∗ = argmax(xTKx) (2.17)

under the constraints:

1. ∀i ∈ {1, . . . , |G|},∑|Q|k=1 xik ≤ 1

2. ∀k ∈ {1, . . . , |Q|},∑|G|i xik ≤ 1

Conditions 1 and 2 guarantee a one-to-one mapping between the vertices of two

graphs. The above optimization problem is considered as a quadratic assigned prob-

lem, which is known to be NP-complete [48]. To give an approximate solution,

Leordeanu and Hebert [78] propose to relax the previous two constraints and uti-

lize a solution vector from the continuous domain x ∈ [0, 1]mn. Since K is positive

and symmetric and ||x∗|| = 1, then based on Raleigh’s ratio theorem (Theorem 2.1),

x∗ that maximizes the inter-cluster score xTKx is the principal Eigenvector of K.

Notice that x∗ ∈ [0, 1]mn does not represent an assignment vector. To binarize x∗,

they follow a greedy algorithm by taking the assignment that has the maximum value

in the principal Eigenvector, and add it to the match. Then all the candidate matches

inK that contradict the vertices in the match are removed. This is because the higher

the value in the principal Eigenvector the stronger the association with the cluster.

Another approach to select the cluster from the affinity matrix is to adopt a ran-

dom walk ranking algorithm [27]. The higher the rank the more reliable the match

between two vertices. Notice that the constraints in Equation 2.17 are adopted as a

post-processing step during the binarization step, which leads to a weak local min-

imum. Such constraints are considered by a reweighed random walk algorithm pro-

posed by the same authors in [27]. The key idea is that a random walk is personalized

by the constraints following the idea of teleporting of the well-known PageRank algo-

rithm [76].

Unfortunately, the previous approaches require an explicit computation of the

affinity matrix, which scales poorly as graph size increases. Suppose that the size

of a graph is n, then the memory complexity of storing the affinity matrix of two

graphs is O(n4). To solve this problem, Zhou and la Torre [140] utilize the fact

that the affinity matrix is sparse and propose to factorize it into smaller and denser

matrices. This includes the incident matrices, which represent the relationships

between the vertices and edges of the graphs, the vertex-to-vertex similarity matrix,

and the edge-to-edge similarity matrix. After factorization, the affinity matrix is
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represented by four smaller and denser matrices. In addition to the sparsity of the

affinity matrix, Kang et al. [66] use the redundancy in the affinity matrix for matrix

factorization. They consider two entries that have a difference within a certain

threshold as redundant, which is a consequence of having several pairs of vertices

that are connected by edges that have nearly the same weight. They use a binning

method to assign all edges within a certain difference to the same value. Then, a

new approximated matrix is represented by the linear combination of the Kronecker

product of several smaller compressed matrices. Based on such smaller vertices, the

principal Eigenvector is computed without the need to materialize the affinity matrix.

• Spectra of Similarity Matrix

As we discussed, the Hungarian algorithm is used to find the match between two

sets of vertices based on their similarity matrix. Similarly, the spectra of the vertex-

to-vertex similarity matrix can be used to approximate the match between two graphs

[110, 112]. Such an approach was initially proposed to match two sets of features and

later used for graph matching [130]. Given two graphs G and Q such that m = |G|
and n = |Q| and m 6= n, a similarity matrix S is built based on the features extracted

from the neighborhoods of the vertices. Then, singular value decomposition (SVD) is

used to factorize S as follows:

S = UΣV T (2.18)

where U and V are orthogonal matrices of sizes m and n, respectively and Σ

is a diagonal matrix of the singular values of the similarity S. The rows of U are

considered as the coordinates of the vertices of G in the Eigenspace. The columns

of V T are considered the coordinates of the vertices of Q. After that, a new matrix

P is computed by replacing Σ by a diagonal matrix D such that all elements at the

diagonal are assigned the value 1.

P = UDV T (2.19)

An entry pij represents the similarity between vi ∈ G and uj ∈ Q. To select

the best match from P , they follow an extremum principle, which means that vi is

matched to vj if pij is the maximum value in both row i and column j.
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2.4.3 Continuous Optimization Approaches

In this section, we discuss another approach for tackling the inexact graph match-

ing problem. It gives an approximate solution by first relaxing the graph matching

problem, which is a discrete optimization problem, to another continuous non-linear

optimization one. Several algorithms can be then used to approximate the latter prob-

lem. Many of them follow an iterative continuous improvement approach. During

each iteration, the probability of mapping any two vertices is updated by consider-

ing the structure of the graph and the mapping probabilities that are computed at

the previous iteration. Notice that the solution of the graph matching problem is

expressed as a permutation matrix, i.e., the entries are either 1 or 0. However, the

solution of the relaxed continuous optimization problem is a matrix such that each

entry expresses the quality of matching any two vertices, i.e., the entries belong to

the interval [0, 1]. To convert the mapping probabilities to a permutation matrix, a

binarization technique is used to convert back the solution to the discrete domain.

Following this, relaxation labeling is an approach to approximate the graph match-

ing problem. Each vertex from a graph is assigned a label indicating its corresponding

vertex from another graph. For this, each vertex has a vector of probabilities indicat-

ing the strength of mapping that vertex to every vertex of the other graph. At the

beginning, such probability is measured mainly based on a vertex-to-vertex label sim-

ilarity. Then, the probabilities are updated iteratively taking the information of the

neighboring vertices into account [45]. A maximum a posteriori estimation (MAP)

approach for relaxation labeling is proposed by Hancock and Kittler [51]. Given two

graphs G = (V,E, lg) and Q = (U, T, lq), suppose a match between the two graphs is

represented by a function f : V → {U ∪ ε}, then the maximum a posteriori estimate

(MAP) P (f |G,Q) is written as follows:

argmax
f

P (f |G,Q) = argmax
f

P (G,Q|f)× P (f) (2.20)

where P (G,Q|f) the conditional density function of the similarity between the

labels of the mapped vertices given the matching function f , P (f) is the prior prob-

ability of the match f . Wilson and Hancock propose gradient ascent to optimize the

above objective function [127]. The crucial part of their model is the definition of

the prior P (f). They propose to compute the prior based on the average similarity

between the neighborhoods of the vertices of one graph to the neighborhoods of the

vertices of another one. They define the neighborhood of a vertex as that vertex and

its direct neighboring vertices and called it a super-clique [86].
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Luo and Hancock propose a maximum likelihood estimation (MLE) formalism for

graph matching [80]. They assume the vertices of graph G as observed data and the

corresponding vertices from another Q as the hidden data. A mixture model is then

defined based on the vertices of graph Q. This means that any vertex vi ∈ V may

be generated from a vertex uj ∈ U . As a result, M can be seen as a mixture model

parametrized by the set of assignment variables mij. Following these assumptions,

the solution to the graph matching problem is the mixture model M∗ that maximizes

P (G|M), which is the incomplete-data likelihood of the observed graph. This is

formalized as:

M∗ = arg max
M∈M

P (G|M) (2.21)

whereM is the space of all possible matches between the two graphs. In general,

there are 2|G||Q| different matches and thus mixture models. To maximize the objective

function, the authors propose the expectation maximization technique (EM).

A well-known algorithm that follows the continuous optimization scheme is the

graduated assignment graph matching of Gold and Rangarajan [50]. Given an initial

match between two graphs, the authors use Taylor series expansion to approximate

the optimal solution to the graph matching problem. They prove that minimizing

the solution of the Taylor series is equivalent to solving the assignment problem.

Their iterative approach starts by an initial match, then, the derivative of the Taylor

series with respect to such a match is computed, which represents the sum of the

similarities between the neighboring vertices of one vertex to the neighboring vertices

of another one. In other words, such a derivation can be seen as a vertex-to-vertex

similarity matrix. The match computed at an iteration is then used to vote for the

similarity of the vertices of two graphs. Instead of solving the optimal solution to

the assignment problem, they propose to compute a soft assignment. It represents

the probability of matching any two vertices of the two given graphs. This can be

achieved by, first, exponentiation the entries of the vertex-to-vertex similarity matrix

by utilizing a control parameter β, then, performing a two way normalization to get

a double stochastic matrix. Through consecutive iterations, the algorithm increases

the control parameter β such that when it converges the vertex-to-vertex similarity

matrix, which is a double stochastic matrix, becomes mostly a permutation matrix.

To produce a permutation matrix, two vertices from the two graphs are matched if

their similarity is the maximum among other possible vertex similarities.
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2.5 Summary and Discussion

In this chapter we have discussed the graph matching problem. Since the complexity

of computing the optimal solution to the inexact graph matching problem is NP-hard,

several approaches are presented in the literature to give approximate solution. Even

though each approach follows a different heuristic, in the following, we summarize

the general framework that nearly all such approaches follow.

1. Vertex similarity. The basic task for any graph matching algorithm is to

estimate the similarity of two vertices from two different graphs. This is accom-

plished, in most of the related work, by utilizing the labels of the vertices. In

addition to this, the labeling information of the direct neighboring vertices is

utilized.

2. Graph matching using the assignment problem. To alleviate the com-

plexity of the inexact graph matching problem, the overall graph structure is

neglected and only the concept of vertex-to-vertex similarity is utilized. A dis-

tance matrix between the vertices of two graphs is computed. Then, approaches

to the assignment problem utilize such a distance matrix to approximate the

match between the two graphs.

3. Iterative graph matching. Utilizing only the concept of vertex-to-vertex sim-

ilarity generates a match that is structurally incompatible. Two direct neigh-

boring vertices from a graph may be matched to non-direct neighboring vertices

of another one. To overcome this problem, several approaches follow an iterative

scheme to improve the match. An initial match is computed utilizing solutions

to the assignment problem. Then, iteratively, the vertices of the match are used

to update the vertex-to-vertex similarity by considering more structural infor-

mation. In general, given two vertices v and u, if the direct neighboring vertices

of v are matched to the direct neighboring vertices of u, then the similarity of

v and u increases.
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Chapter 3

Vertex Similarity

The previous chapter discussed several approaches and algorithms to tackle the graph

matching problem. Even though each approach has its own techniques, most of the

approaches utilize the concept of vertex similarity as a metric to estimate the match

between two graphs. This makes such a concept the basis of any graph matching

algorithm.

In addition to graph matching, the concept of vertex similarity has been used by

a variety of graph-based algorithms such as link prediction [22], web search [13], and

frequent subgraph discovery [91]. A naive solution to estimate the similarity between

two vertices is based on the similarity of their labels, which is denoted as unary

notion of similarity. For example, two atoms in a chemical compound are similar

if they have the same type, or two users in a social network have similar interests

if they have the same age. To implement such a notion of similarity, one can use

the Minkowski distance or a Dirac function that assigns a distance of 0 if the two

vertices have the same label and 1 otherwise. Any unary notion of similarity, normally,

does not consider the structure of the graph. However, the similarity between two

graphs is highly related to their structure. Therefore, a more accurate structure-based

similarity approach is normally used. It is built on the concept that two vertices are

similar if they are connected to similar vertices [77].

We distinguish two classes of applications that utilize the structure-based simi-

larity approach: applications that use the similarity between two vertices in one big

graph and applications utilizing the similarity between two vertices that belong to

two different graphs. The first class of applications analyzes one big graph like a

social network, a biological network, or a co-author network. The purpose of vertex

similarity for such applications is to predict or recommend friendships, discover com-

mon behaviors, or find communities. For such a class of applications, two vertices

41
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are considered similar if they are connected to the same vertices, which can be im-

plemented as a Jaccard or a cosine similarity functions. However, in many cases, two

vertices maybe considered similar even if they do not share common vertices. Several

algorithms implement this notion of similarity, including HITS [70], SimRank [59],

and P-Rank [136].

The second class of applications utilize vertex similarity for the purpose of graph

matching and frequent subgraph discovery. In Chapter 2, we discussed different tech-

niques to estimate the similarity of two graphs based on the similarity of their vertices,

which is estimated by using local features that are extracted from the neighborhood

of each vertex. The neighborhood of a vertex can be defined in different ways such as

1) the vertex and its incident edges [139], 2) in addition to the previous, the neigh-

boring vertices are also included, 3) a spanning tree with a certain depth [123], and 4)

simple paths with a certain length [115, 131]. Once the neighborhood is defined, the

labels assigned to the vertices and edges are used as the features of that vertex. In

addition to local-based features, global-based features are also used based on spectral

graph theory. The projection of each vertex into the Eigenspace of the adjacency or

the Laplacian matrices are considered as a global feature of that vertex. The reader

may refer to Section 2.4.2 for more details.

In this chapter, we detail the problem of vertex similarity for geometric graphs.

In Section 3.1, we survey related work. Section 3.2 formalizes a local similarity

concept for vertices of geometric graphs. We prove that for general geometric graphs,

the complexity of computing the similarity between two vertices is NP-hard. In

Section 3.3, we concentrate on vertex similarity for geometric graphs in 2D space

and propose an approach that runs in cubic time with respect to the vertex degree.

Experimental results for different data sets are presented in Section 3.4. Finally,

Section 3.5 summarizes the chapter.

3.1 Related Work

Several graph matching algorithms use the Euclidean distance to estimate the

similarity between real-valued labels that are assigned to the vertices and edges

[101, 134]. For geometric graphs, the coordinates of the vertices cannot be simply

treated as real-valued attributes since they are measured with respect to the particu-

lar reference axis frame for each graph. This makes the Euclidean distance incapable

of estimating the spatial distance between vertices of two graphs underlying, e.g.,

a geometric transformation. In addition to this, pure structural graph matching
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approaches, such as the spectral approach, cannot be applied to geometric graphs

because they do not consider the spatial property of a graph, as shown in Figure 1.1.

In addition to the Euclidean distance and graph spectra, several other approaches

have been proposed to solve the vertex similarity problem for non-geometric graphs,

as discussed in Chapter 2. However, for geometric graphs, little can be found in the

literature. We believe that this is a consequence of the complexity of the problem

in the case of geometric graphs, which will be discussed in later sections. In the

following, we discuss current solutions to estimate the similarity between vertices of

geometric graphs. We divide them into two groups, the global-based approaches and

the local-based ones.

• Global Features. The global-based feature approaches extract a feature for each

vertex using the overall graph structure. In the following, we discuss two approaches:

the spectral and the landmark distance.

In Section 2.4.2, we discussed how graph spectra are used to match two unlabeled

graphs. The main idea is to extract a feature for each vertex based on the values of

the Eigenvectors. Such features are then used by the Hungarian algorithm for graph

matching. To use the same concept for geometric graphs, the spectra of the weighted

adjacency or the weighted Laplacian matrices are used [118]. The weight of an entry

represents the length of an edge, which is computed using the Euclidean distance

between the coordinates of its incident vertices. Then, eigendecomposition is used

to generate a spectral feature for each vertex, which is represented by the values of

the Eigenvectors with respect to that vertex. Since graphs with different number of

vertices create a different number of Eigenvectors, the spectral features for the vertices

are truncated by keeping the values with respect to the most dominant Eigenvectors

[141], i.e., the Eigenvectors that correspond to the largest Eigenvalues. Based on

this, the distance between two vertices equals the Euclidean distance between their

spectral features. A major drawback for the spectral approach is that it cannot handle

labeling information. Also, such an approach is sensitive to differences in the number

of vertices, the structure of the graph, and the lengths of the edges.

Another global-based vertex similarity approach is based on the landmark dis-

tance concept [26]. First, a set of vertices from each graph is selected as landmarks.

Then, every vertex from the graph is represented by a feature vector containing the

distances to the landmarks. The distance is measured as the length of the shortest

path between the vertex and a landmark. Then, the distance between two vertices

is computed using the Manhattan distance between their landmark-based features.
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The basis of such an approach is the selection of landmarks for each graph. Cheong

et al. [26] propose to use four landmarks as the extreme vertices in the boundaries

of the graph, i.e., peripheral vertices. However, such an approach is incapable of

matching graphs that differ in the number of vertices.

• Local Features. The main drawback of the global-based approaches is their

sensitivity to changes in the graph structure and the number of vertices. To overcome

such a problem, local-based features are used based on the neighborhood of each

vertex, which will be discussed in the following.

One of the earliest approaches to estimate the similarity of different vertices is the

histogram-based approach [46, 57, 69, 116]. A histogram is created from the spatial

properties of the neighborhood of each vertex, which is defined by the vertex and

its direct neighbors. The histogram stores the pair-wise relationships between the

edges that are incident to that vertex, which consists of the ratio of the lengths of the

edges in addition to the angle between them. As a result, the local feature is a 2D

histogram of edge lengths and angle values. These two properties preserve the spatial

property of a graph, i.e., the edge length indicates the spatial distance between a

vertex and a direct neighbor and the angle between two edges is used as an estimate

of the distance between their incident vertices. As a result, the distance between two

vertices is estimated by the distance between their geometric histograms, which is

computed by the χ2 or the Bhattacharyya distances [21]. Unfortunately, histogram

approaches face problems in binning and normalization, especially when dealing with

real-valued attributes such as the length of an edge or the angle between two edges.

Notice that the above approaches extract features that are invariant to geometric

transformation. Another approach to solve vertex similarity is to use geometric hash-

ing based on the coordinates of the vertices. The basis of this approach is to create

several local frames for the neighborhood of each vertex, which is defined again by

that vertex and its direct neighbors. Then, the coordinates of the vertices in the

neighborhood of a vertex are measured with respect to each local frame. To estimate

the similarity between two vertices given their local frames, the Euclidean distance

is used based on the coordinates of the vertices. Since there are several local frames

for the neighborhood of a vertex, all of them must be tested to guarantee an optimal

distance. To overcome such a complexity, hashing is used to speed up the search for

the local frame that best estimates the distance between two vertices. The geometric

hashing approach is efficient in the case of matching vertices that have a homogeneous

transformation, i.e., affine transformation. But, in the case of inexact matching, such
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an approach fails to estimate the similarity of the vertices. This is because the hashing

function is not tolerant to differences in the local frames of two vertices.

3.2 Local-based Vertex Similarity

As we have discussed, finding the similarity between vertices either utilizes global

properties of the graphs or local properties of the neighborhoods of the vertices. In

our framework, we follow the local-based approach, which has been proved to give

good results for general non-geometric graphs [63, 69, 101, 104, 134]. This can be

justified since, in general, two non-identical graphs that model two similar objects

have many differences in their overall structure and spatial properties. However, in

many cases, local properties of the neighborhoods of the vertices are highly similar.

For example, given images of a moving object over time, the background of the object

may have several differences over time. However, the spatial property and structure

of the object remain the same across different snapshots.

The local-based vertex similarity approach is based on the concept that two ver-

tices are similar when their neighbors are similar, i.e., the more similar neighbors the

two vertices have, the more similar they are. Different algorithms define the meaning

of locality in different ways. Examples are paths that start from a certain vertex

and have a certain length [115, 131], trees rooted at each vertex [123], and a sub-

graph that has all vertices reachable with a certain number of hubs from that vertex

[63, 69, 101, 104, 134]. Based on the research of non-geometric graphs, subgraph

features have the highest selectivity power. However, finding the optimal similarity

between two subgraphs is as complex as the graph matching problem itself. To over-

come this bottleneck we use minimal subgraphs for our framework, each consisting of

a vertex and its direct neighbors. We call such a subgraph vertex signature. Notice

that the vertex signature concept has been used under different names such as clique

[114], local structure [101], starts [134], and subgraph [95].

Definition 3.1. (Vertex Signature) Given a vertex vi in a graph G = (V,E),

the vertex signature S(vi) is a subgraph G
′
= (V

′
, E

′
) of G such that V

′
= {vi ∪

{vj|(vi, vj) ∈ E}}. For each vertex vj ∈ V
′
, vj 6= vi, there exists an edge (vi, vj) ∈ E

′
.

vi is called the root vertex of S(vi).

Figure 3.1 shows the vertex signatures for different vertices. For graph G with n

vertices, a multi-set of n vertex signatures represents the local features for all vertices.
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Figure 3.1: Several vertex signatures are defined for the graph G. The root vertex is
shown in black for each vertex signature.

For simplicity, the figure shows an unlabeled graph (G). However, the concept naively

scales to include labeling information for the vertices and edges.

After defining the meaning of locality, the similarity between two vertices is es-

timated by computing the similarity of their vertex signatures. A function that

quantifies the similarity between two vertex signatures must satisfy geometric trans-

formations, i.e., two vertex signatures are considered spatially identical if there is a

geometric transformation that makes the coordinates of one vertex signature identi-

cal to the coordinates of the other [75]. For two vertices, v and u, an exact vertex

similarity between their vertex signatures is an instance of the geometric graph iso-

morphism problem. Given that n = deg(v) = deg(u), the exact vertex similarity

can be computed in O(n log n) for geometric graphs in 2D space or O(nd−2 log n) for

geometric graphs in d-dimensional space [7].

However, exact vertex similarity obviously fails to measure the similarity between

vertices under noise and outliers, that is, when there are differences in the number

of vertices, labeling information, and spatial properties of two vertex signatures. For

example, in scientific applications, two similar objects are often represented by two

non-identical graphs. In pattern recognition applications, acquisition methods often

introduce noise in the number of vertices and their locations. Also, the structure and

connectivity of vertices often vary between graphs representing similar objects. As

a result, two vertex signatures representing similar vertices have differences in the

number of neighbors, labeling information, the distance between the root vertex and

its neighbors, and the distance between the neighbors themselves. This leads to the

concept of inexact vertex similarity, which will be detailed in the following section.

In Figure 3.2, we show a couple of examples for the concepts addressed above.

If no spatial properties are considered, vertex signature S(v1) is considered identical

to S(v3). However, spatial properties make S(v1) more similar to S(v2) than S(v3).
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Figure 3.2: Spatial properties make vertex v1 more similar to v2 than to v3. An affine
transformation makes S(v3) identical to S(v4). Only inexact vertex similarity can
estimate the distance between S(v3) and S(v5).

A rigid transformation that consists of a rotation and a scaling makes S(v3) identical

to S(v4). However, there is no homogeneous transformation that makes S(v3) identical

to S(v5). For the latter case, only an inexact match can be used to make the two

vertex signatures identical.

3.2.1 Vertex Edit Distance

To compute the inexact similarity between two vertices based on their vertex signa-

tures, we adopt the edit distance concept that is been used in matching strings and

graphs [108, 120]. It is defined as the minimum amount of distortion that is needed

to make a string or a graph identical to another. We call the edit distance of two

vertex signatures the vertex edit distance (VED). For two vertex signatures S(v) and

S(u), the key idea of the VED is to delete some vertices and edges from S(v), re-label

some other vertices and edges, change the coordinates of some vertices, and insert

some vertices and edges into S(u) such that the two vertex signatures become iden-

tical. For this, we adopt three edit operations : substitution (re-label), insertion, and

deletion. A sequence of edit operations that transfer one vertex signature identical

to another is called an edit path. Obviously, there are many possible edit paths from

one vertex signature to another. As a result, the VED is defined as the distance with

the minimum cost of all of them:

Definition 3.2. (Vertex Edit Distance) Let φ(S(v), S(u)) be the set of all geo-

metric transformations between the coordinates of S(v) and S(u), Υφi
(S(v), S(u)) be

the set of all edit paths between the two vertex signatures S(v) and S(v) after applying

the geometric transformation φi, then the vertex edit distance is defined as:

d(v, u) = min
φi∈φ(S(v),S(u)),pj∈Υφi

(S(v),S(u))
cost(pj) (3.1)
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where cost(pj) is the total cost of all edit operations that consist the path pj.

The cost of an edit path depends on the cost of its edit operations, which we

define as the following. The cost of a substitution between two vertices is defined by

the Euclidean distance between their coordinates, the distance between their labels,

and the substitution costs of their edges. The substitution cost between two edges is

defined as the distance between their labels in addition to the distance between their

lengths. The cost of vertex insertion or deletion equals to a constant α.

The problem of vertex edit distance between two vertex signatures S(v) and S(u)

consists of two optimization problems. The first problem is a linear assignment prob-

lem to find a correspondence between the neighbors of v and the neighbors of u. The

second problem is a least-square continuous problem to transform the coordinates of

the neighboring vertices. Each problem is solved in polynomial time complexity if

treated separately, but it is very difficult to find a solution when the two problems

are combined [29]. For example, if we get the optimal mapping between the vertices

of S(v) and S(u), one can easily find the distance between them as follows. First, a

local coordinate frame is created for S(v) and another one for S(u). To create a local

frame, for example, in 2D space, two vertices v and any direct neighboring vertex

vi are selected from S(v) to create the basis of its local frame. Their correspondent

vertices in S(u), u and uj, are selected to define the basis of its local frame. Then,

the coordinates of the vertices are measured with respect to such local frames. Fi-

nally, the Euclidean distance is used to find the distance between the correspondent

vertices.

Lemma 3.1. The problem of vertex edit distance for geometric graphs in the Rd space

is NP-hard for d ≥ 2.

In the following, and without loss of generality, we give a proof for the above

lemma in the case of unlabeled geometric graphs.

Proof. For two unlabeled geometric graphs, we reduce the problem of inexact point

set matching to the problem of vertex edit distance. Let P = {p1, p2, . . . , pn} and

Q = {q1, q2, . . . , qm} be two point sets in R
d, d ≥ 2. The two point sets are reduced

to two vertex signatures in polynomial time as follows. All points from the point set

P become vertices directly connected to a dummy root vertex vp. The coordinate of

vp is computed as the center of the point set P . In the same way, the points from Q

create a vertex signature with a dummy root vertex uq. The optimal match between

P and Q is the optimal mapping of the neighbors of vp and the neighbors uq. Such an
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optimal match represents the optimal edit path between the two vertex signatures.

Non-matched points (vertices) represent the insertion and deletion operations. A

substitution operation is indicated by a correspondence from one point to another.

The problem of inexact point set matching in the R
d space is proved to be NP-

hard [6] where d ≥ 2. As result, the problem of computing the optimal solution of

vertex edit distance for geometric graphs in R
d space is also NP-hard.

3.3 Vertex Similarity for 2D Geometric Graphs

In the previous section, we proved that computing the vertex edit distance is a very

hard problem. The discussion was mainly about the computation of the spatial

distance based on the coordinates of the vertices. We now concentrate on computing

the vertex edit distance for geometric graphs in 2D space, which is a special case where

we propose an algorithm that runs in polynomial time. The main idea of our solution

is to utilize the property that the edges in a vertex signature have a natural cyclic

order, which is a consequence of the embedding of the direct neighboring vertices

in 2D space. Such a total order is then used to extract a spatial feature from each

vertex signature that is invariant to geometric transformations. Based on the spatial

features of two vertices, the edit distance between their vertex signatures is computed

by solutions to the string edit distance problem [120]. In the following, we first discuss

the optimal solution to the VED problem for vertices in 2D space. Then, in Section

3.3.2, we propose a suboptimal solution that can be computed in cubic time with

respect to the vertex degree.

3.3.1 Optimal Solution

Inspired by the geometric histogram approach, we propose to compute the distance

between two vertex signatures based on spatial features that are invariant to geometric

transformations. This means that the coordinates of the vertices are not used to

estimate their spatial distance. Such spatial features consist of the lengths of the

edges in addition to the angles between them. The intuition behind this is that the

lengths of the edges define the distances between a vertex and its direct neighbors.

On the other hand, the angle between two adjacent edges is used as an estimate of

the distance between their incident vertices.
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Figure 3.3: The spatial feature for the vertex signature S(v), where a and b are the
labels of the neighboring vertices. For simplicity, edges are unlabeled.

Definition 3.3. (Spatial Feature) Given a geometric graph G = (V,E, l, c),

the spatial feature Fv for the vertex signature S(v) is a set of strings Fv =

{F1, F2, . . . , Fn}, n = deg(v), such that a string Fi = [fi,1, fi,2, . . . , fi,n] represents the

pair-wise geometric relationships between a reference edge ei and every other edge

ei ∈ S(v), where a token fi,j ∈ Fi is defined as:

fi,j := (|ej|,∠eiej, l(ej), l(vj))

where |ej| denotes the length of the edge ej, ∠eiej denotes the counter-clockwise

order angle between the edges ei and ej, l(ej) is the label of the edge ej, and l(vj) is

the label of the neighboring vertex that is incident to the edge ej.

For geometric graphs in 2D space, the total ordering property is used to represent

a vertex signature as a set of strings. A vertex signature S(v) that has n edges has a

set of n different strings Fv = {F1, F2, . . . , Fn}. Each string Fi represents the pair-wise

geometric relationships between an edge ei and every other edge ej ∈ S(v). In this

case, we call ei the reference edge. As a result, a token fi,j of a string Fi represents

the pair-wise geometric relationship between the two edges ei and ej. The ordering

of the tokens in a sting follows the cyclic order of the edges at that vertex signature.

For the string Fi with the reference edge ei, the first token represents the relationship

between ei and itself, the second token represents the pair-wise relationship between

ei and the next edge in a counter clock-wise order, and so on. In Figure 3.3, we

show the spatial feature for vertex signature S(v), which consists of three different

strings. The angle in the first token of any string equals to zero since it represents

the pair-wise geometric relationship between an edge and itself.

Following this feature extraction method, one can see that each string represents

a polar coordinate system for that vertex signature. The root vertex of a vertex

signature is considered as the pole, the reference edge of a string represents the polar
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Figure 3.4: The conditional vertex distance between vertex v1 and u1 .

axis, a token in the string represents the polar coordinate of a neighboring vertex such

that the counter clock-wise angle represents the angle with respect to the polar axis,

and the edge length represents the distance between that point, i.e., the neighboring

vertex, and the pole, i.e., the root vertex.

After representing each vertex signature as a spatial feature, the solution to the

vertex edit distance between two vertex signatures S(v) and S(u) is defined by the

minimum distance between the strings of Fv and the strings of Fu. To formalize this,

we first define the concept of conditional vertex distance.

Definition 3.4. (Conditional Vertex Distance) Given two vertices vi and uj with

their spatial features Fvi and Fuj
, respectively. Suppose that vk ∈ S(vi), vk 6= vi, and

ul ∈ S(uj), ul 6= uj . The conditional vertex distance between vi and uj, given vk and

ul, denoted as d(vi, uj|vk, ul), is defined as the string edit distance between the two

strings Fk and Fl such that the edge (vi, vk) is the reference edge of Fk and the edge

(uj, ul) is the reference edge of Fl.

Figure 3.4 shows an example of the conditional vertex distance between two vertex

signatures. The conditional part of the distance specifies the reference edge for the

strings to be compared. In other words, it defines the polar axis for each of the

polar systems of the two vertex signatures to be compared. To solve the conditional

vertex distance, one can use solutions to the string edit distance. For this, three

edit operations are defined between the tokens of different strings. The substitution

cost is defined as the polar distance between two tokens in addition to the distance

in the labeling information of the edges and the neighboring vertices. The insertion

and deletion costs are computed proportional to the distance between a neighboring

vertex and the vertex defining the polar axis. In addition to this, a constant α defines

the cost of inserting or deleting the labels of the vertices and edges.

Using the conditional vertex distance between the strings from one vertex signa-

ture to the strings of another one, the vertex edit distance is formalized as follows:
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Definition 3.5. (Vertex distance) The distance between two vertices vi and uj is

defined as:

d(vi, uj) := min
vk∈S(vi)
ul∈S(uj)

d(vi, uj|vk, ul) (3.2)

We call the previous solution to the VED problem naive since every string of a

spatial feature is compared to all strings of another one. In general, the solution to

the VED problem between two vertex signatures S(v) and S(u), m = deg(v) and

n = deg(u), consists of m × n string comparisons. Each comparison uses the string

edit distance algorithm with a runtime complexity of O(mn) [120]. As a result, the

runtime complexity of computing the distance between the two vertex signatures

based on this approach is O(m2n2).

3.3.2 Approximate Solution

To enhance the running time of the naive approach, we propose an approximate

solution to the VED problem that can be computed in O(mn log n), such that n and

m are the number of edges for two vertex signatures. Notice that the high complexity

of the naive approach is a consequence of extracting n different strings from a vertex

signature. On the other hand, the approximate solution can be computed in less than

cubic complexity by representing all the strings extracted from a vertex signature as

one cyclic string. We require that edges in a vertex signature are sorted in counter-

clockwise order around the root vertex, and that an angle is measured relatively to

the previous edge in the sequence and not with respect to the reference edge. As a

result, the invariant feature that is extracted from each vertex signature is a cyclic

string that is defined as:

Definition 3.6. (Spatial Feature) Given a geometric graph G = (V,E, l, c), the

spatial feature Fv for the vertex signature S(v) is a cyclic string Fv = [f1, f2, . . . , fn],

n = deg(v), such that each token fi is defined as:

fi := (|ei|,∠eiei−1, l(ei), l(vi))

where |ei| denotes the length of the edge ei, ∠eiei−1 denotes the angle between the

edges ei and ei−1, i.e., counter-clockwise order, l(ei) is the label of edge ei, and l(vi)

is the label of the neighboring vertex incident to edge ei.

The spatial feature is created by selecting an edge from the vertex signature and

going over the rest of the edges in a counter-clockwise order. For a vertex signature
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Figure 3.5: Feature extraction for vertex v3. Initially, the vertex signature of v3 is
determined, then, a cyclic string of the spatial properties and labeling information of
the neighborhood of v3 defines its feature.

with n edges, there will be n different ways to represent its spatial feature. How-

ever, all of them are considered equivalent with a cyclic shift from one to another.

Such a property enables the approximate solution to be computed faster than the

optimal one.

The previous feature extraction method is illustrated in Figure 3.5. To extract

the feature for vertex v3, initially, the vertex signature is selected as the subgraph

of vertex v3 and its direct neighbors. After that, a spatial feature is extracted from

that vertex signature. Notice that we use an unlabeled graph in the figure just for

simplicity.

Once the spatial features are represented as cyclic strings, the VED between two

vertex signatures is computed by the cyclic string edit distance (CS) [81], which is

a natural extension of the string edit distance. A naive approach to solve it runs in

O(nm2), where n and m are the numbers of edges of the two vertex signatures. This

is done by applying the algorithm by Wagner and Fisher [120] to the first spatial

feature and all cyclic shifts of the second one. Maes in [81] proposes a faster solution

to the cyclic string edit distance that runs in time O(nm logm). Thus, the cyclic

string edit distance solves the VED problem with a time complexity of O(nm logm).

To utilize the CS approach, we define three edge edit operations: substitution,

insertion, and deletion. We propose edit operations that combine spatial attributes

and labeling information. In the following we discuss two sets of edit operations. The

first one computes the edit operations based on the absolute values of the edge length

and the angel value. The second one uses a polar distance based on the lengths of

two edges and the angle between them.
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• Edit operations using the Manhattan distance

Given two vertex signatures S(v) and S(u) such that n = |S(v)| and m =

|S(u)|, let edge ei ∈ S(v), edge ej ∈ S(u), fi = (|ei|,∠eiei−1, l(ei), l(vi)), fj =

(|ej|,∠ejej−1, l(ej), l(uj)), then, the substitution cost c(fi → fj) is defined as:

c(fi → fj) := dL(fi, fj) + dS(fi, fj) (3.3)

In the case of labeled graphs, the function dL(fi, fj) computes the distance between

the label of edge ei and the label of ej, in addition to the distance between the labels

of the vertices that are incident to them, i.e., vi and uj. The function dS(fi, fj)

calculates the spatial distance based on the angle and the edge length. For an edge

e, let θe and le denote the angle and edge length, as defined earlier in Definition 3.6,

then, the function dS is formally defined as follows:

dS(fi, fj) :=
|θei − θej |

2π
+

∣
∣
∣
∣
∣

lei
∑n

k=1 lek
− lej
∑m

k=1 lek

∣
∣
∣
∣
∣

(3.4)

The angles and the lengths of the edges at a vertex signature are normalized, as

can be seen by the denominators used in Equation 3.4. An angle is normalized by

2π since the sum of angles at a local signature sums up to this value. Also, an edge

length is normalized by the sum of the lengths of the edges at a local signature. For

example, for a local signature S(v), the edge length normalization factor is
lei∑n

k=1 lek
,

where n is the number of edges connected to v.

In the following, we define the insertion and deletion operations. Let λ represent

the null (non-existent) edge, then the insertion c(λ→ fi) and deletion c(fi → λ) with

respect to fi are defined as follows:

c(λ→ fi) = c(fi → λ) := c(fi) +

(
θei
2π

+
lei

∑n

k=1 lek

)

(3.5)

The cost of edge insertion or deletion is computed based on the angle value, edge

length, and labeling information. For labeled graphs, the function c(.) defines the

cost of inserting or deleting the label assigned to that edge in addition to the label

assigned to its incident vertex.

For unlabeled graphs, the cost of an edit operation lies in the range [0,2]. This is

because each of the angle value and edge length is normalized to the range [0,1]. For

labeled graphs, the range increases depending on the range of the function dL for the
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substitution operation and c(fi) for the insertion and deletion.

• Edit operations using polar coordinate

The second set of edit operations shares many similarities with the previously

defined edit operations. However, the spatial distance between two vertex signatures

is computed based on the polar distance between the neighboring vertices of two

vertex signatures. Given two vertex signature S(v) and S(u), let edge ei ∈ S(v) and

edge ej ∈ S(u). The substitution cost c(fi → fj) is defined as:

c(fi → fj) := dL(fi, fj) + dS(fi, fj) (3.6)

In the case of labeled graphs, the function dL(fi, fj) computes the distance between

the label of edge ei and the label of ej. It also computes the distance between the

label of the neighboring vertex connected to ei to the label of the one connected to

ej. The function dS(fi, fj) calculates the spatial distance based on the angles and

the lengths of the edges. For an edge e, let θe denote the angle between e and the

previous edge in a counter-clockwise order, and let le denote the edge length. The

function dS is defined as:

dS(fi, fj) :=
√

l2ei + l2ej − 2 leilejcos(|θei − θej |) (3.7)

The substitution cost is defined as the distance needed for the neighboring vertex

of edge ei to align with the neighboring vertex of ej. To compute such a distance we

utilize the lengths of the two edges and the angle between. This can be seen as the

polar distance between them such as the polar axis for each vertex is the edge that

precedes it in the counter-clockwise order. Analogously, we define the insertion and

deletion operations. Let λ represent the null (non-existent) edge. Then, the insertion

c(λ→ fi) and deletion c(fi → λ) with respect to fi are defined as:

c(λ→ fi) = c(fi → λ) := c(fi) + lei (3.8)

The cost of edge insertion or deletion is computed based on the edge length (lei).

For labeled graphs, the function c(fi) defines the cost of inserting or deleting the label

assigned to the edge ei in addition to the label assigned to the neighboring vertex

connected to ei.
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Figure 3.6: The edit matrix M used in one of the iterations to compute the cyclic
string edit distance between S(v) and S(u).

After having defined the three edge edit operations, the cyclic string edit distance

is solved by using the dynamic programming paradigm as proposed by Wagner and

Fischer [120]. An edit matrix is used to store the edit distance between incrementally

increasing prefixes of two strings. In other words, the edit matrix stores the edit

distance between all prefixes of the first string to all prefixes of the second one. At

each cell in the edit matrix, the algorithm selects the edit operation that results in

the minimum edit distance between the two prefixes.

Figure 3.6(b) shows the edit matrix M for computing the distance between the

two vertex signatures given in Figure 3.6(a). Using the first set of edit operations, the

edit path between the two vertex signatures is (f1 → f
′

1), (f2 → f
′

2), (f3 → f
′

3). When

calculating the cost at entry m2,2 ∈ M , the string edit distance takes the minimum

of:

• M [1, 1] + c(f3 → f
′

3) (substitution),

• M [2, 1] + c(λ→ f3) (insertion), and

• M [1, 2] + c(f
′

3 → λ) (deletion)

which are highlighted by the solid circles on the arrows of Figure 3.6(b). Since

|e3| = |e′

3|, the substitution cost, using the Manhattan distance edit operations, is

c(f3 → f
′

3) =
π
2
−π

4

2π
= 1

8
, and the cost of the edit path is 1

8
+ 1

8
= 2

8
, which is shown by

entry m2,2 of Figure 3.6(b).

Lemma 3.2. The cyclic string edit distance finds a suboptimal solution to the VED

problem.
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Proof. Let the string S
′
= (e1, . . . , ek−1) be the prefix of S = (e1, . . . , en). Let the

string S
′′
= (ek, . . . , en) be the suffix of string S. The string edit distance considers

the tokens of a cyclic string totally independent. In other words, any string edit

operation applied to the prefix S
′
does not change the values of string S

′′
. This

assumption is not sufficient and thus cannot be adopted when computing the cyclic

string edit distance between two spatial features. The edit operation applied to edge

ek−1 ∈ S
′
may change the angle of edge ei ∈ S

′′
. For example, in Figure 3.6(a),

if one assumes F1 = [f1, f2, f3] is the spatial feature of S(v) starting from edge e1,

F
′

1 = [f
′

1, f
′

2, f
′

3] is the spatial feature for S(u) starting from edge e
′

1, then the edit

path is c(f1 → f
′

1) = 0, c(f2 → f
′

2) = 1
8
and c(f3 → f

′

3) = 1
8
. Whereas (f2 → e

′

2)

means moving edge e2 ∈ S(v) by π
4
clockwise, this increases the angle ∠e2e3 by π

4
.

As a result, the optimal cost c(f3 → f
′

3) is 0 and not 1
8
. This makes the cyclic string

edit distance as proposed in [81] a suboptimal solution to the vertex edit distance in

the context of geometric graphs.

Note that the dependency between edges is only related to the angle value. On

the other hand, two edges are independent with respect to the edge length.

Lemma 3.3. The suboptimal solution to the VED problem, as discussed above, is a

metric.

Proof. Since the edit operations that are proposed in Equations 3.4, 3.5, 3.7 , and 3.8

are metrics, the cyclic string edit distance is also a metric [81]. Thus, the solution to

the VED problem is a metric distance for vertex signatures in 2D space.

In the previous two sections, we discussed approaches to tackle the vertex simi-

larity problem for geometric graphs in 2D space. Initially, we discussed an approach

to compute the optimal solution to the VED problem, i.e., the similarity of two ver-

tices based on their vertex signatures. Such a solution utilizes spatial features that

are invariant to geometric transformations. To enhance the runtime complexity, we

proposed another approach that computes a suboptimal solution in cubic time with

respect to the vertex degree. For this, a spatial feature from each vertex signature is

extracted, which is represented as a cyclic string. Based on this, the cyclic string edit

distance is used to compute the distance between two vertex signatures. To utilize

the string edit distance concept, we proposed two sets of edit operations. The first

one uses the absolute values of the edge length and the angle value. The second one

uses the polar distance between two neighboring vertices from two vertex signatures.
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3.4 Experimental Evaluation

In this section, our proposed approach to the vertex similarity problem and its usage

for graph matching is empirically evaluated. Wince there are several approaches to

compute the similarity between different vertices, our evaluation tries to answer the

following questions:

1. Which approach is better, using a global-based or a local-based approach for

vertex similarity?

2. Can we use only labeling information and neglect the spatial property of a graph

to evaluate the similarity of different vertices?

3. Which is more accurate for vertex similarity: invariant spatial features or the

coordinates of the vertices?

4. What is the relationship between the accuracy of a vertex similarity approach

and its scalability as the graph size, the database size, and the vertex degree

increase.

For our evaluations, we use geometric graphs that are extracted from different

application domains such as chemoinformatic, computer vision, road networks, and

character recognition. We use 6 different datasets: 1) the antiviral screen database of

active compounds (AIDS) [42, 99], which represents a group of chemical compounds,

2) Chinese characters [1], 3) the GREC image dataset [39, 99], 4) the COIL-100

image dataset [87], 5) the CMU house and hotel image datasets [2], and 6) three

road networks consisting of the California, city of Oldenburg, and North America

road networks [4]. As shown in Table 3.1, besides coming from different application

domains, our datasets vary in many aspects such as the size of the dataset, the

number of classes (in case geometric graphs have been assigned to classes), as well as

the number of vertices and edges.

The focus of this section is to empirically evaluate different vertex similarity ap-

proaches. We compare our algorithms (CSv1), which uses the first set of edit op-

erations, and (CSv2), which uses the second set of edit operations, with four other

approaches:

1. Graph spectra using the weighted adjacency matrix of the lengths of the edges

(SP) [118]. To compare vertices from two graphs that differ in their sizes,

the Eigenvectors of the larger graph is truncated by keeping the n dominant
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Table 3.1: Statistics for the datasets used in our experiments. |D| is the size of the
dataset. |Ω| is the number of classes. φ is the average function. |V | denotes the
number of vertices in a graph. |E| denotes the number of edges in a graph.

Dataset |D| |Ω| φ|V | φ|E|
AIDS 2000 2 15 16
GREC 1000 22 12 12
Chinese 9384 1564 20 18
COIL-100 3900 100 21 53
CMU house 111 NA 30 76
CMU hotel 101 NA 30 92
Road network 3 NA 4125 5475

Eigenvectors, such that n is the size of the smaller graph [141]. We compare

with the graph spectral approach to evaluate the performance of global-based

vertex similarity approaches in general.

2. Geometric histogram of the pair-wise relations between the edges in the neigh-

borhood of a vertex (GH) [58, 116], where the pair-wise relation between two

edges is defined as the ratio of the lengths of the edges and the angle between

them. For binning information, we used 10 bins for the edge length ratio and

18 bins for the angle value. Also, we normalize the histogram by its number of

entries. Then, the distance between two vertices is computed by the χ2 distance

of their geometric histograms.

3. Graph edit distance based on only labeling information (GED) [134]. The dis-

tance between two vertices is computed by the star edit distance of the labeling

information of two star structures, i.e., vertex signatures. For two vertices v

and u, such a distance function is computed as the difference of their vertex

degrees, in addition to the differences of the labeling information of their vertex

signatures, S(v) and S(u). The GED approach is used to evaluate the contri-

bution of the labeling information to the similarity of different vertices, in the

case of labeled geometric graphs.

4. A unary vertex distance function based on only the coordinates of the vertices

(CO), thus neither global nor local structural information is used. We test such

an approach to evaluate the effect of using the coordinates of the vertices on

their similarities.
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For all the approaches and for labeled geometric graphs, the distance between

numeric labels, which are assigned to the vertices and the edges, is computed by

the Manhattan distance. The distance between non-numeric labels is 0 if they are

identical and 1 otherwise.

To compare the different approaches, we embed them in a unified graph matching

algorithm. It consists of two steps. First, a vertex-to-vertex distance matrix is cre-

ated using any of the previous vertex similarity approaches. Second, the Hungarian

algorithm [85] is used to select the best match between the two graphs. Since all

the approaches use the Hungarian algorithm for graph matching, the differences in

the matching results are affected by only the approach that is used to estimate the

similarity between two vertices.

To measure the performance of a graph matching algorithm, which indicates the

performance of a vertex similarity approach, we use different criteria. The first one

is the effect of vertex similarity on a graph similarity metric. This is evaluated

by embedding the graph matching algorithm in a classification task. The higher the

classification accuracy the better the vertex similarity approach is, which is formalized

as:

classification accuracy =
the number of graphs correctly classified

the total number of graphs
(3.9)

To create a graph distance metric, we follow a graph edit distance approach.

This means that the distance between two graphs consists of the cost of the match

between them, i.e., the substitution cost, in addition to the cost of inserting the

unmatched vertices. The second criterion is selectivity power, which means that a

vertex similarity approach reflects the similarity notion of an application domain. This

is measured by the quality of the match computed by the graph matching algorithm.

The third criterion is scalability with respect to the vertex degree, the number of

vertices, and the size of the dataset. We measure this by the runtime required to

match different graphs.

3.4.1 Graph Similarity and Classification

In this section, we evaluate the relation between different vertex similarity approaches

and graph similarity in general. To measure this, we test the different approaches in a

graph classification task. The higher the classification accuracy, the better the vertex

similarity approach. In our experiments, we used the first nearest neighbor classifier
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Figure 3.7: Sample images of the GREC dataset [39, 99, 103].

(1-NN) based on the similarities of the graphs. Four datasets are used: two of them

contain labeled geometric graphs, AIDS and GREC, and the other two, Chinese and

COIL-100, contain unlabeled geometric graphs.

The AIDS dataset has chemical compounds that belong to one of two classes:

active or inactive against HIV. A graph is extracted from each compound. From

a total of 2000 graphs, we use a training set of 1500 graphs: 300 active and 1200

inactive. For testing, we use a set of 500 graphs: 100 from the active class and

400 from the inactive class. On the other hand, the GREC dataset has images of

architectural and electronic drawings. From the GREC dataset, 22 (images) classes

are selected, which are shown in Figure 3.7. A training set of 814 and a testing set

of 286 images are used. For each class, 37 images for training and 13 for testing are

chosen.

In Figure 3.8(a), the classification accuracy for the AIDS dataset is shown. From

the figure, we see that all approaches have nearly the same classification accuracy

ranging from 99% to 99.6%. The first observation we report is that using only the

labeling information (GED) is sufficient to obtain a high classification accuracy.

Also, using the spatial properties alone, i.e., CSv1, CSv2, and GH, gives the same

result. This is justified since for chemical compounds, an atom with a specific type

is connected to the neighboring atoms with the same number of covalent bonds, i.e.,

edges. Also, it is always the case that the angle between two covalent bonds is identical
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Figure 3.8: Classification accuracy for labeled geometric graphs.

for the same atom. In other words, the spatial property of the graph is encoded by

the labeling information.

Figure 3.8(b) shows the classification accuracy for each approach for the GREC

dataset. The first observation is that using only the coordinates of the vertices (CO)

is highly reliable for this dataset. This is because all images are measured with

respect to nearly the same coordinate frame. On the other hand, using only the

labeling information (GED) gives less classification accuracy than using the spatial

property of the vertices. However, the difference between the classification accuracy

of CO and GED is statistically insignificant. The best classification accuracy is for

the CO+CSv2 approach, which has an accuracy of 100%.

From these two labeled geometric graph datasets, we conclude that using only

labeling information is sufficient to estimate the similarity between two vertices. This

is because the labeling information, most of the time, encodes the spatial property of

the graph.

Let us move our attention to unlabeled geometric graphs, where we exclude the

label-based vertex similarity approach (GED). For this experiment, we use the COIL-

100 dataset, which consists of images of 100 different objects taken at different degrees.

From 3900 graphs, we select 2900 for training, 29 graphs for each object. For testing,

we select 1000 graphs, 10 graphs for each object. We also use the Chinese dataset,

which contains a total of 9384 characters that belongs to 6 different fonts, i.e., 1564

characters from each font. A test dataset of 1564 graphs is extracted from the Dotum

Korean font. The remaining five fonts build a training dataset of 7820 graphs. Ideally,

for a query character, its most similar character from the train dataset must have the

same Unicode.
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Figure 3.9: Classification accuracy for unlabeled geometric graphs.

Figure 3.9(a) shows the classification accuracies for the COIL-100 dataset for

different approaches. The least classification accuracy is for the SP approach. This

is because spectral approaches are sensitive to changes in the number of vertices in

addition to their spatial properties. We conclude that a local-based vertex similarity

approach is better than a global-based one. The best classification accuracy is for

the CO+CSv2 approach, followed by the CSv2 approach. Notice that the use of

invariant spatial features by our approaches (CSv1 and CSv2) gives better results

than using the coordinates of the vertices (CO). However, combining both of them

gives the best result.

The classification accuracy for the last dataset, i.e., the Chinese dataset, is pre-

sented in Figure 3.9(b). Also, for this dataset, the best result is for the CO+CSv2

approach. On the other hand, the CSv1 and CSv2 approaches are much better than

CO alone. The least classification accuracy is for SP and GH.

From these two datasets we conclude that using invariant spatial features is better

than using only the coordinates of the vertices. However, and for many applications,

still, the coordinates of the vertices can be used to give good graph matching results.

Also, using the second set of edit operations, i.e., CSv2, gives better results than

the first set. i.e., CSv1. This is justified since CSv1 gives the same weight for the

differences in the angle value and the edge length.

3.4.2 Graph Matching

In this section, we test the selectivity power of a vertex similarity approach. This

means whether an approach reflects the similarity notion of an application domain or

not. To evaluate this, we measure the quality of the match computed by the graph

matching algorithm. Higher matching quality indicates higher selectivity power for
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the vertex similarity approach. We use the matching accuracy to evaluate the quality

of a match. For two graphs G and Q, the matching accuracy is estimated by the

agreement between the match M that is computed by a graph matching algorithm,

and the ground truth match M̂ . Given that M and M̂ ∈ {0, 1}|G|×|Q|, the matching

accuracy is formalized as:

matching accuracy :=

∑

i∈|G|,j∈|Q|
(m̂ij ×mij)

∑

i∈|G|,j∈|Q|
m̂ij

(3.10)

under the conditions:

1) ∀j ∈ |Q|,




∑

i∈|G|
mij



 ≤ 1, and ∀i ∈ |G|,




∑

j∈|Q|
mij



 ≤ 1

2) ∀j ∈ |Q|,




∑

i∈|G|
m̂ij



 ≤ 1, and ∀i ∈ |G|,




∑

j∈|Q|
m̂ij



 ≤ 1

Notice that the last two conditions mean that each vertex from G is matched to

only one vertex from Q and vise versa. Also, a vertex from G or Q is given the chance

not to be matched to any other vertex from the other graph.

For this test, we use the CMU hotel and house datasets [2]. It consists of images

for a toy house and hotel, subjected to rotation in 3D. As a result, each object creates

a sequence of images taken at different angles of view. Given two images of the same

object taken from two different angles of view, as shown in Figure 3.10, the task is

to use graph matching to map features from the first image to their similar features

from the second image. For example, if one take an image of a house and change

his position and take another image, the task is to use graph matching to map the

window from the first image to the same window in the second image. Notice that, the

higher the difference in the angle of view the harder the task is. For our experiment,

we match all images spaced at 10, 20, 30, 40, 50, 60, 70, 80, and 90 in the rotation

sequence, and compute the average matching accuracy.

From Figures 3.11(a) and 3.11(b), one can see that for all the approaches, the

matching accuracy decreases when the distance in the rotation sequence between the

images increases. This is a consequence of the increase in the structural difference

between the geometric graphs. The lowest matching accuracy is for the SP approach,

which is sensitive to the changes in the structure of the graphs. The best matching

accuracy is for CSv2 and CO. However, CO+CSv2 is not always better than using
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Figure 3.10: Two images taken at different angles of view [2].

either of the single approaches alone. Also, the matching accuracy of CSv2 is better

than CSv1. This means that using the polar distance gives better results than using

just the absolute values of the length of the edge and the angle value.

3.4.3 Subgraph Matching

In all the previous experiments, two graphs that are nearly the same size are compared

to discover whether they are similar or not. However, for many applications it is

critical to answer subgraph queries. Given a small graph, the problem is to find a

subgraph from a larger graph that is highly similar to the smaller one. For this, we

use the California road network. From this road network, we extracted manually 5

subgraphs from different locations of the road network. For each subgraph, a local

coordinate frame is created and all the vertices are measured with respect to it.

This demonstrates the scenario when different graphs are measured with respect to

different coordinate frames. We matched all subgraphs against the California road

network and averaged the matching accuracy.

Figure 3.12 shows that the best matching accuracy is for the approaches CSv1

and CSv2. In the third place comes the histogram approach (GH). On the other

hand, all other approaches have nearly zero matching accuracy. From this test, we

report the following two observations. First, using the coordinates of the vertices is

totally unreliable for graphs measured with different coordinate frames. As a result,

combining CO and CSv2 gives very low matching accuracy. Second, spectral graph

matching approaches have very poor matching accuracy in the case of matching two

graphs that have a large difference in the number of vertices.
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Figure 3.11: Matching quality for the CMU hotel/house datasets.
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Figure 3.12: Average matching accuracy for subgraph matching using the California
road network.
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Table 3.2: Worst case runtime complexity for computing the distance between two
vertices using different vertex similarity approaches. n is the average graph size, d
is the average vertex degree, and l and a are the number of bins for a geometric
histogram.

Approach Complexity
CO O(1)
CSv1 O(d3)
CSv2 O(d3)
CO+CSv2 O(d3)
GEM O(d)
SP O(n3)
GH O(la)

3.4.4 Scalability Study

In this section, we evaluate the scalability of different vertex similarity approaches

with respect to the vertex degree, the number of vertices, and the size of the dataset.

We measure this by the runtime required to match different graphs. Table 3.1 compare

the scalability of the different approaches. It shows the worse case runtime complexity

for computing the similarity between two vertices. Let n denote the average size of

the graph and d the average degree of a vertex, our approaches CSv1 and CSv2 run

in cubic time with respect to the vertex degree, which is related to the complexity

of solving the cyclic string edit distance. The spectral approach SP runs in cubic

time with respect to the size of the graph. This complexity is the result of computing

the Eigenvectors for each graph. All the other approaches can be considered to have

a constant runtime complexity. For example, the worst case runtime complexity for

the GH is related to the number of entries in the geometric histogram and equals to

O(la), where l and a are the dimensions of the histogram. CO and GED have the

least runtime complexity.

In Figure 3.13(a), we show the scalability with respect to the vertex degree. For

this test, we use a dataset that consists of randomly generated geometric graphs [3].

We generate 7 graphs, each with 100 vertices. To study the effect of the vertex degree,

i.e., the density of the graph, we increase the vertex degree from 2 to 15 as shown in

Figure 3.13(a). Our approaches CSv1 and CSv2 have poor scalability with respect

to the vertex degree. This is because computing the similarity of two vertices runs in

cubic time complexity with respect to the vertex degree. Also, there is a remarkable

difference in the scalability between CSv1 and CSv2. This comes from the use of
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the cosine function by CSv2, which requires more CPU time than just using the

absolute values of the edge length and the angle value, as used by CSv1. All other

approaches scales well with respect to the vertex degree.

To study the scalability with respect to the graph size, we report the runtime

of matching three road networks: California with 1365 vertices, city of Oldenburg

with 3494 vertices, and North America with 7517 vertices. Each graph was matched

against itself and the runtime was reported. Figure 3.13(b) shows that the worst

scalability is for the spectral approach SP. The result of this experiment matches our

analytical study in Table 3.1. On the other hand, the GH approach has the best

scalability with respect to graph size. The CSv1 scales much better than the CSv2,

which is also related to the use of the cosine function by the latter approach.

Finally, we report the relation between the size of the dataset and the runtime

for different approaches in Figure 3.13(c). In general, all related approaches scale

better than our approaches CSv1 and CSv2. However, our approaches give the best

results in terms of classification accuracy and matching quality. The best runtime

result was for the GH approach. The runtime for GED is reported for only GREC

and AIDS since only these two datasets contain labeled graphs. Even though the

Chinese dataset has more graphs than COIL-100, the runtime for CSv1 and CSv2

is higher for the latter one. This is because the average vertex degree for the graphs

in COIL-100 is greater than the graphs in Chinese. Since our approaches have cubic

time complexity with respect to the vertex degree, their runtime for the COIL-100 is

greater than the Chinese. From the Chinese dataset, we also see that our approach

CSv1 scales similarity to the related approaches. We conclude that for sparse graphs,

CSv1 scales well with respect to the dataset size.

Our scalability study shows that our approach CSv2 does not scale well with

respect to the vertex degree. On the other hand, our approach CSv1 scales better

than CSv2. This is because of the use of the cosine function in computing the

edit operations by CSv2. However, our approaches gives much higher classification

accuracy and matching quality than the related approaches.

3.5 Summary and Discussion

In this chapter, we discussed the problem of vertex similarity for geometric graphs.

Our discussion focused on local-based vertex similarity approaches, which use the

properties of the neighborhoods of different vertices to estimate their similarities.

One of the main results of our study is the proof that the problem of vertex similarity
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Figure 3.13: Scalability with respect to different parameters.
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for geometric graphs is an NP-hard problem. On the other side, we proposed an

algorithm to approximate the similarity between vertices for geometric graphs in 2D

space. Our solution utilizes the property that the direct neighbors of a vertex have a

total order, which is a consequence of the embedding of the neighboring vertices in 2D

space. To find the similarity between two vertices, first, a spatial feature is extracted

from the neighborhood of each vertex, which is a cyclic string of edges. After that, the

cyclic string edit distance is used to estimate the similarity of different vertices. For

this, we proposed two sets of edit operations. The first set uses the absolute values of

the edge length and the angle value. The second set uses the polar distance between

the neighboring vertices. Experimentally, we tested our algorithm with several data

sets coming from a variety of application domains such as chemoinformatic, computer

vision, road networks, and character recognition. In the following, we summarize our

experimental results for the vertex similarity problem of geometric graphs in 2D space.

1. For labeled geometric graphs, using only the labeling information to estimate

the similarity of different vertices gives good results. In other words, there is

no need to include the spatial property of a graph for vertex similarity.

2. For several applications, such as chemoinformatic and some applications in im-

age processing, using the coordinates of the vertices are reliable to estimate the

similarity of different vertices. This is because in such applications, the coordi-

nates of the vertices of different graphs are measured with respect to nearly the

same coordinate frame.

3. In general, local-based vertex similarity approaches give better results than

global-based approaches. This is because for scientific applications, two simi-

lar objects are model by two graphs that have many differences on the global

graph level, but have many similarities with respect to the neighborhoods of the

vertices. For example, given images of a car taken at different timestamps, the

spatial properties of the car remain the same across different images, however,

the background of the image has many changes since the car is moving from

one place to another.

4. Nearly for all the datasets that we used in our experiments, using spatial features

from the neighborhoods of the vertices gives better results than using only the

coordinates of the vertices.
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5. Our solution to the vertex similarity problem had the best results in terms of

the classification accuracy and the matching quality. However, it requires more

runtime than the related approaches especially for dense graphs.
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Chapter 4

Geometric Graph Matching: A

Probabilistic Approach

Motivated by a variety of graph-based applications, in the previous chapter, we dis-

cussed the vertex similarity problem, which is the basis of any graph matching al-

gorithm. For geometric graphs in 2D space, we propose to compute the similarity

between different vertices based on the similarity of their neighborhoods. We also

propose a naive approach to tackle the graph matching problem, where a vertex-to-

vertex similarity matrix is initially created, and then, the Hungarian algorithm is

used to select the best match between the two graphs.

Unfortunately, matching two graphs based on only the neighborhoods of the ver-

tices neglects the overall graph structure. As a result, the computed match is struc-

turally incompatible. To give a feeling of this problem, we show an example in Figure

4.1. The left part of the figure shows the vertex signatures for the two graphs G

and Q. The right part shows the match computed by the Hungarian algorithm using

only the similarity of the neighborhoods of the vertices, i.e., our algorithm CSv2,

discussed in the previous chapter. When only the neighborhoods of the vertices are

considered, vertex v4 ∈ G is more similar to u7 ∈ Q than u4 ∈ Q. However, when

the overall graph structure is considered, vertex v4 ∈ G is matched to u4 ∈ Q even

though their vertex signatures are not highly similar.

To solve this problem, in this chapter, we propose a probabilistic graph matching

algorithm that combines both the similarity of the vertices based on their vertex sig-

natures and the overall graph structure. Our algorithm is inspired by the approach

of Sanromá et al. [109]. They propose a graph matching algorithm based on the

assumption that the vertices of a graph G are sampled from a mixture model of the

vertices of another graph Q. As a result, the graph matching problem is formalized

73
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as a parameter estimation problem. To be more specific, the graph matching problem

is formalized as a maximum likelihood estimation (MLE) problem. Then, the expec-

tation maximization (EM) technique is used to select the parameters of the mixture

model that maximize the likelihood function.

In this chapter, we extend such a model and propose a novel density function for

geometric graphs in 2D space that considers the spatial properties in addition to the

structure of the graphs. Our density function consists of two components: 1) a vertex

similarity measure based on the vertex edit distance concept, which is discussed in

Chapter 3, and 2) a shortest path similarity function that estimates the similarity

between two vertices based on their connectivity to other non-neighboring vertices.

There are three main advantages of our model over the original model of Sanromá et

al. [109]:

1. The ability to estimate subgraph and common subgraph matchings. Especially

for the latter case, our algorithm employs several pruning techniques to exclude

the vertices of the non-common subgraph from the match computed between

different graphs.

2. The utilization of the overall graph structure in estimating the similarity of dif-

ferent vertices. We adopt this using a shortest path similarity function between
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two vertices based on their connectivity to other non-neighboring vertices. How-

ever, Sanromá et al. [109] utilize only the overall spatial properties of a graph

without considering its overall structure.

3. The scalability in terms of graph size. This includes both runtime and memory

consumption. A major problem of the original model is that the density function

is not manageable and goes to infinity as graph size increases, which we will

detail later in this chapter. Our proposed algorithm is made scalable with

respect to graph size by adopting the following techniques:

• Computing the density function based on a sub-space of the mixture model,

which is what we call the k-active subgraph. This solves the problem of the

non-manageable behavior of the density function of the original model.

• The ability to estimate the spatial similarity of two graphs without the

need to compute the geometric transformation that maximizes their simi-

larity. Our approach accomplishes this by utilizing the spatial features that

are extracted for the vertices of each graph. On the other side, the original

probabilistic graph matching algorithm computes a geometric transforma-

tion for each pair of vertices from the two graphs and at each iteration of

the algorithm.

In the following, Section 4.1 introduces concepts related to the maximum likeli-

hood estimation (MLE) problem and the expectation maximization technique (EM).

In Section 4.2, we detail the formalism of the graph matching problem as MLE and

propose a novel graph density function. In Section 4.3, we discuss how to use the EM

technique to compute the match between two graphs. Our experimental evaluations

are presented in Section 4.4. Finally, we summarize the chapter in Section 4.5.

4.1 Preliminaries

In many scientific domains, such as bioinformatic or social media analysis, people

are interested in discovering the laws behind certain behaviors of the system under

study. Unfortunately, such laws and principles are not directly observed. Instead,

a mathematical model is used to describe the internal structure of the system that

leads to a specific behavior. Such a mathematical model is mainly represented by

parametric families of probabilistic distributions (PD) such as the Gaussian or the

Poisson distributions. Since a family of PDs represents a wide variety of systems with
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different behaviors, parameter estimation is used to select the parameters of the PD

that fit some sample data taken from the system.

In the following sections we discuss some general concepts that are going to be

used through the rest of this chapter. First, in Section 4.1.1, we discuss maximum

likelihood estimation as a solution to the parameter estimation problem. Second, in

Section 4.1.2, we introduce the expectation maximization technique, which is used to

maximize a likelihood function of a mixture model that has latent variables or hidden

data.

4.1.1 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is one of the famous methods that is used

for parameter estimation. The main idea is to consider the parameters of a PD as

fixed hidden values. Then, they are estimated by maximizing the likelihood such that

the PD generates some given sample data. Suppose we have a data set of samples

X = {x1, x2, . . . , xn}, where each sample xi is a vector in m dimensional space,

i.e., xi = (xi1, xi2, . . . , xim). Here, we assume that the samples are independent and

identically distributed (i.i.d). Suppose the parameters of the model are represented

by the vector θ = (θ1, θ2, . . . , θc), then the likelihood function that the sample data

was generated from a PD with parameters θ is formalized as:

P (X|θ) =
∏

xi∈X
P (xi|θ) (4.1)

Notice that the likelihood of the data is factorized as the product of the likelihoods

of the single data points, which is a consequence of the assumption that our sample

data is i.i.d. Normally, the logarithm of the likelihood function is maximized to

estimate the parameters θ∗ that make the model best fit the sample data X . This is
because the logarithm function is a monotonically increasing function. As a result,

the parameters that maximize the logarithm of the likelihood function are the same

parameters that maximize the likelihood itself. On the other hand, the benefit we

gain is that the logarithm function is always easier to deal with from an analytical

point of view. As a result, the maximum likelihood estimation problem is formalized

as:

θ∗ = argmax
θ∈Θ

lnP (X|θ)
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= argmax
θ∈Θ

∑

xi∈X
lnP (xi|θ) (4.2)

such that Θ is the space of all parameters and ln(.) is the natural logarithm

function. In case that P (X|θ) is well-behaved, θ∗ can be computed using standard

deferential calculus, i.e., θ∗ is determined when the gradient of the likelihood function

with respect to θ equals to zero.

Until now we have been talking about a system that is modeled by just one

probability distribution. However, such an assumption, usually, fails to model a

complex system that is composed of sub-systems where each has its own laws and

principles. A more powerful way to model such a complex system is to use a mixture

of probabilistic distributions such that each PD models a sub-system. The major

problem that faces such an assumption is that we cannot observe which sub-system

leads or controls an observation. In this case, the mixture model is said to have latent

variables or hidden data. Let X denote the observed data, and let Z be the latent

variables, i.e., the random variables that define which model generates a specific

sample data point, then we call {X , Z} the complete data, and X the incomplete

data. In addition to this, the likelihood function of the complete data is denoted as

P (X , Z|θ), and the likelihood function for the incomplete data is denoted as P (X|θ).
The latter probability is considered as a marginal distribution with respect to the

latent variable. The likelihood of the incomplete data is formalized in terms of the

complete data as follows:

P (X|θ) =
∏

xi∈X
P (xi, Z|θ)

=
∏

xi∈X

∑

zj∈Z
P (xi, zj|θ) (4.3)

Notice that the product comes from the assumption that the data is i.i.d. and the

summation is related to the marginal distribution. By using the logarithm function,

the likelihood of the incomplete data is written as:

ln(P (X|θ)) =
∑

xi∈X
ln




∑

zj∈Z
P (xi, zj|θ)



 (4.4)

The key observation of Equation 4.4 is that the summation over the latent variable

is inside the logarithm function. As a result, it is very hard to analytically find
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the parameters that maximize the logarithm likelihood of the incomplete data. To

solve this problem, normally, a suboptimal solution to the maximization problem is

computed using the expectation maximization technique, which will be outlined in

the following section.

4.1.2 Expectation Maximization

Expectation maximization (EM) is a technique proposed by Dempster et al. [36] to

maximize a likelihood function in the case of hidden data. They prove that maxi-

mizing the log-likelihood function is equivalent to maximizing a weighted sum of the

complete log-likelihoods where the weights are the a posteriori of the hidden data.

Such a weighted sum can be iteratively maximized using the EM technique such that

each iteration has two steps. At iteration t + 1, the expectation step (E-step) com-

putes the a posteriori probability of the hidden data P (zj|xi, θ
(t)) using the observed

data and the previous estimation of the parameters θ(t). In the maximization step (M-

step), the parameters of the model P (xi, zj|θ(t+1)) are estimated using the observed

data and the a posteriori probabilities of the hidden data. As a consequence, the ob-

jective function Λ(θ(t+1)|θ(t)), which is used by the EM technique, can be formulated

as:

Λ(θ(t+1)|θ(t)) =
∑

xi∈X

∑

zj∈Z
P (zj|xi, θ

(t))
︸ ︷︷ ︸

E-step

lnP (xi, zj|θ(t+1))
︸ ︷︷ ︸

M-step

(4.5)

Notice that the EM technique does not directly optimize the log likelihood function

ln(P (X|θ)), instead, it optimizes the objective function Λ(θ(t+1)|θ(t)). As a result, the

solution computed by EM is not guaranteed to be a maximum likelihood estimator.

However, the parameters that improve the objective function Λ(θ(t+1)|θ(t)) implicitly

improve the log likelihood function ln(P (X|θ)).
In many cases, the M-step of the EM technique cannot be maximized in closed

form. As a result, the generalized expectation maximization (GEM) is proposed such

that to select θ(t+1) that improves the object function but not to maximizes it [36],

which is formally written as follows:

Λ(θ(t+1)|θ(t)) ≥ Λ(θ(t)|θ(t)). (4.6)

The convergence of both EM and GEM is guaranteed. This because their objective

functions are monotonically increasing [129]. However, the convergence speed of GEM

is faster than EM.
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4.2 Graph Mixture Model

Given two graphs G and Q with their vertex sets V and U , respectively, a match

between the two graphs can be represented as a function f : V → U . f(vi) = uj

denotes that vertex vi ∈ V corresponds to vertex uj ∈ U . Using the function f ,

the match between the two graphs can be further represented as a matrix M ∈
{0, 1}|V |×|U |. An entry mij is an assignment variable indicating whether vertex vi ∈ G

corresponds to vertex uj ∈ Q, which is defined as:

mij =

{

1, if f(vi) = uj

0, otherwise
(4.7)

The graph matching problem can be formalized as a maximum likelihood esti-

mation problem. We assume that the vertices of the two graphs are generated by

a process such that first, a vertex from Q is selected, and then, its corresponding

vertex from G is generated. Following this assumption, the vertices of graph G are

considered the observed data and the corresponding vertices from Q are the hidden

data. Notice that the matching function f is unknown, although we are able to ob-

serve graph Q. A mixture model is then defined based on the vertices of graph Q.

This means that any vertex vi ∈ V may be generated from a vertex uj ∈ U . As a

result, M can be seen as a mixture model parameterized by the set of assignment

variables mij. It is worth to notice that in case mij = 1, the probability that vi is

generated from vertex uj is 1. Following these assumptions, the solution to the graph

matching problem is the mixture model M∗ that maximizes P (G|M), which is the

incomplete-data likelihood of the observed graph. This is formalized as:

M∗ = arg max
M∈M

P (G|M) (4.8)

whereM is the space of all possible matches between the two graphs. In general,

there are 2|G||Q| different matches and thus mixture models. In the case where we

restrict the match to be one-to-one, the space of possible matches is reduced to
|G|!

(|G|−|Q|)! s.t. |G| ≥ |Q|. Under this assumption, any vertex of G has the chance to be

matched to any vertex of Q.

To define the likelihood function we assume the vertices of graph G to be i.i.d.,

given the matchM . As a result, the likelihood function is factorized over the observed

data (the vertices of G) and summed over the hidden data (the corresponding vertices
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from Q), as follows:

P (G|M) =
∏

vi∈V

∑

uj∈U
P (vi, uj|M) (4.9)

where P (vi, uj|M) is the density function of the complete-data likelihood. It

represents the probability that vertex vi corresponds to vertex uj given the matching

matrix M .

4.2.1 MLE for Graph Matching

In the following, we factorize the density P (vi, uj|M) to the single assignment vari-

ables in a similar way as proposed in [80, 109]. Using Bayes’ rule we have:

P (vi, uj|M) =
P (vi, uj,M)

P (M)
=

P (M |vi, uj) P (vi, uj)

P (M)
(4.10)

Since M is treated as a mixture of the models, we assume the models to be

independent of each other. This means that the probability of matching any two

vertices vi and uj is not affected by the connectivity between the vertices of M . As

a result, P (vi, uj|M) is factorized over the parameters of the mixture model, i.e., the

assignment variables mij.

P (vi, uj|M) =
{∏vk∈V

∏

ul∈U P (mkl|vi, uj)} P (vi, uj)

P (M)

=

{
∏

vk∈V
∏

ul∈U
P (vi,uj |mkl) P (mkl)

P (vi,uj)

}

P (vi, uj)
∏

vk∈V
∏

ul∈U P (mkl)

=

{
∏

vk∈V

∏

ul∈U

P (vi, uj|mkl)

P (vi, uj)

}

P (vi, uj) (4.11)

=

[
1

P (vi, uj)

](|V ||U |)−1 ∏

vk∈V

∏

ul∈U
P (vi, uj|mkl)

If vertex vi is assumed to depend on vertex uj only in the existence of the match

M , then the unconditional likelihood that the two vertices are in correspondence is

rewritten as P (vi, uj) = P (vi)·P (uj). This assumption means that the vertices of M

are used to estimate the possibility of matching any two vertices from the two graphs.

This is accomplished by utilizing the connectivity between vi and vk ∈ M from one

side, and between uj and ul ∈ M on the other side. However, in the absence of M ,

the possibility of matching any two vertices does not depend on the structure of the
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graphs. Furthermore, we assume a uniform distribution for the probabilities P (V )

and P (U), P (vi) =
1
|V | and P (uj) =

1
|U | , which means that all the vertices are equally

important for the matching of any two graphs. As a result, P (vi, uj|M) is simplified:

P (vi, uj|M) = K
∏

vk∈V

∏

ul∈U
P (vi, uj|mkl) (4.12)

where K = [|V ||U |](|V ||U |)−1

Here, the density function P (vi, uj|mkl) represents the conditional likelihood of

vi ∈ V being in correspondence with uj ∈ U , given the status of the assignment

variable mkl ∈ {0, 1}. In the previous equation, K is constant with respect to the

mixture model. As a consequence, the maximization of the likelihood function is

not affected by discarding K. By discarding K and using an exponential form, the

complete-data likelihood can be rewritten as:

P (vi, uj|M) = exp

[

ln

(
∏

vk∈V

∏

ul∈U
P (vi, uj|mkl

)]

= exp

[
∑

vk∈V

∑

ul∈U
ln (P (vi, uj|mkl))

]

(4.13)

We use an exponential form in the previous equation to simplify our formalism

of the problem as will be explained later. By using Equation 4.13, the incomplete

likelihood function in Equation 4.9 is rewritten as:

P (G|M) =
∏

vi∈V

∑

uj∈U
exp

[
∑

vk∈V

∑

ul∈U
ln (P (vi, uj|mkl))

]

(4.14)

Based on the above equation, the conditional likelihood function P (vi, uj|mkl)

is the basic block for the probabilistic graph matching algorithm. Notice that till

now we have not addressed the logarithm likelihood function, and the logarithm

in the previous equation is the result of using the exponential form when defining

P (vi, uj|M).

4.2.2 A Graph Density Function

In this section, we propose our novel probability density function for the conditional

likelihood P (vi, uj|mkl). It is defined based on both structural and spatial properties

in addition to the labels of the vertices and edges. The main idea is to compute
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the conditional likelihood based on the compatibility between the vertices that are

already selected in the match M and both the structure and geometry of the graphs.

In other words, every two vertices vk ∈ V and ul ∈ U vote to support or reject

the mapping of vi ∈ V to uj ∈ U . We build our voting scheme with the following

properties:

1. Given that vk ∈ N(vi) and ul ∈ N(uj) such that N(.) defines the set of direct

neighboring vertices for a given vertex, the density function is computed using

a radial basis function (RBF) kernel of the conditional vertex distance (see

Definition 3.4 in Section 3.3.1). This enables matching labeled graphs under

geometric transformation, i.e., translation and rotation.

2. We use the shortest path similarity as a measure of how non-neighboring ver-

tices contribute to the conditional likelihood function. By this, we combine a

geometric feature, i.e., the lengths of the edges, with the structure of the graph,

i.e., the shortest path. The benefit of using shortest paths is to utilize the overall

structure of the graph for graph matching.

3. We propose a variation of our model to support scalability with respect to graph

size. The main idea is to compute the density function based on a subspace of

the mixture model, which is what we call the k-active subgraph.

Given the vertices {vi, vk} ∈ V and {uj, ul} ∈ U , the density function P (vi, uj|mkl)

depends on two properties: 1) whether vk and ul are matched to each other, i.e.,

mkl = 1, and 2) whether vk and ul are direct neighbors to vi and uj, respectively.

Suppose Gik = 1 denotes that vi and vk are direct neighbors, and Qjl = 1 denotes

that uj is a direct neighbor to ul. Our density function is then defined as:

P (vi, uj|mkl) =







Pij,kl Fik,jl , if mkl = 1 ∧ (Gik = 1 ∧ Qjl = 1)

Pg Fik,jl , if mkl = 1 ∧ (Gik = 0 ∨ Qjl = 0)

Pg Pe , if mkl = 0

(4.15)

where Pg is a constant representing the geometrical similarity, Pe is a constant

representing the structural similarity, Pij,kl is the conditional vertex similarity, and

Fik,jl is the shortest path similarity.

The intuition behind such a density function is that the geometrical similarity

between two vertices is set to a minimum value of Pg. Then, the geometrical similarity

is updated given the information of the neighborhoods of two vertices and the status

of the match between the two graphs. If the neighbors of a vertex vi are match to
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the neighbors of another vertex uj, then the neighborhoods of the two vertices are

used to vote for the geometrical similarity between vi and uj. Other than that, we

assume the similarity of v1 and vj minimum with a value of Pg. The same logic applies

to the structural similarity Pe and the information of the shortest paths connecting

different vertices. We build our density function P (vi, uj|mkl) to satisfy the following

observations and assumptions:

• The probability of matching any two vertices depends on their structural simi-

larity, i.e., Pe and Fik,jl, and their spatial similarity, i.e., Pg and Pij,kl.

• Non-correspondent vertices support the matching of any two other vertices with

a low constant probability. In other words, we only trust the vertices in the

match M , i.e., mkl = 1, in estimating the probability of matching the vertices

of two graphs. This is indicated by the last term of our density function.

• Given two vertices vk and ul such that they are in correspondence, i.e., mkl = 1,

the probability of matching any other two vertices vi and uj is estimated in two

different ways:

1. Given that vk is a direct neighbor to vi and ul is a direct neighbor to

uj, the conditional likelihood function is computed by utilizing both the

conditional neighbor distance and the distance between the lengths of the

edges e1 = (vi, vk) and e2 = (uj, ul). The latter distance is simply the

distance between the shortest path between vi and vk and the shortest

path between uj and ul.

2. Given that vk /∈ N(vi) and ul /∈ N(uj), only the shortest path compatibility

is used to estimate the probability of matching vi with uj. In addition to

this, the spatial similarity between the two vertices is assumed minimum

of a value of Pg.

Figure 4.2 illustrates our proposed density function between the two vertices v1

and u1 with the three possible cases in Equation 4.15. In the following, we detail how

Pij,kl and Fik,jl are computed.

• The conditional vertex similarity Pij,kl between the two vertices vi ∈ V

and uj ∈ U , given that their direct neighbors vk ∈ N(vi) and ul ∈ N(uj) are

matched to each other, is defined as:

Pij,kl = exp

{

−d(vi, uj|vk, ul)
2

2σ2

}

(4.16)
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v1

v2

v3

G Q

u1

u2

u3

P (v1, u1|mv2u2) = Pv1u1,v2u2 Fv1v2,u1u2

P (v1, u1|mv3u3) = Pg Fv1v3,u1u3

P (v1, u1|mv2u3) = Pg Pe

Given that mv2u2 = 1, mv3u3 = 1,
and mv2u3 = 0, the conditional
likelhood function is computed as:

Figure 4.2: Computing the density value between v1 and u1. The dashed line is the
shortest path.

where d(vi, uj|vk, ul) is the conditional vertex distance based on Definition 3.4.

The above equation can be considered as an RBF kernel. To compute the

bandwidth σ, we first create a vector ~x ∈ R
|G|. An element xi represents the

minimum distance between vertex vi ∈ V and all the vertices of U . It is defined

as xi = min
uj∈U

d(vi, uj), where d(vi, uj) is the vertex edit distance based on the

second set of edit operations in Chapter 3. Then, σ is defined as:

σ = µ(~x) + 3 ∗ stdev(~x) (4.17)

where µ and stdev are the mean and standard deviation of the vector ~x, respec-

tively.

• The shortest path similarity Fik,jl between the shortest path vi, . . . , vk in

graph G and the shortest path uj, . . . , ul in Q is defined as:

Fik,jl = 1−
[ |dvivk − dujul

|
max{dvivk , dujul

}

]

(4.18)

where dvivk is the geodesic distance between vi and vk defined by the shortest

path between them, in a similar way dujul
is defined. To give an example on

how Fik,jl is computed, we take the two graphs in Figure 4.2. Let us assume

the length of the shortest path dv1v3 ∈ G is 1.4, and assume the length of the

shortest path du1u3 ∈ Q is 1.2, then Fik,jl = 1−
[
|1.4−1.2|

max{1.4,1.2}

]

= 1− 0.2
1.4

= 0.857.

To speed up the computation of the density function, Fik,jl considers only the

structure and the geometry of the graphs. However, the shortest path simi-

larity can be defined to include labeling information as proposed by Tang et

al. [115]. They use the optimal subsequence bijection algorithm (OSB) of Bai
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and Latecki [11] to compute the similarity between two shortest paths. For this,

first, a similarity matrix between the vertices of the two paths is created. The

similarity of two vertices is computed based on the similarity of the labeling

information of the neighborhoods of the two vertices. Then, the OSB algorithm

is used to find a subsequence of the first path that is highly similar to another

subsequence of the second path. Such a common subsequence is then used to

estimate the similarity between the two shortest paths.

To simplify our analysis, Equation 4.15 is written by considering the conditional

statements as exponential indicators. As a result, the density function is written as:

P (vi, uj|mkl) =
(
[Pij,kl Fik,jl]

GikQjlmkl
) (

[Pg Fik,jl]
(1−GikQjl)mkl

) (

[Pg Pe]
1−mkl

)

(4.19)

Substituting Equation 4.19 in the complete-data likelihood function (Equation

4.13) gives:

P (vi, uj|M) = exp

[
∑

vk∈V

∑

ul∈U
mklGikQjl ln(Pij,kl Fik,jl)

+mkl(1−GikQjl) ln(Pg Fik,jl)

+ (1−mkl) ln(Pg Pe)

]

(4.20)

The previous equation is further simplified by distributing the logarithm functions

and the multiplications as follows:

P (vi, uj|M) = exp

[
∑

vk∈V

∑

ul∈U
mklGikQjl ln(Pij,kl) +mklGikQjl ln(Fik,jl)

+mkl ln(Pg) +mkl ln(Fik,jl)−mklGikQjl ln(Pg)−mklGikQjl ln(Fik,jl)

+ ln(Pg) + ln(Pe)−mkl ln(Pg)−mkl ln(Pe)

]

(4.21)

Notice that there are four terms that cancel each other, which are underlined in

the above equation. Canceling these terms gives:
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P (vi, uj|M) = exp

[
∑

vk∈V

∑

ul∈U
mklGikQjl ln(Pij,kl)−mklGikQjl ln(Pg)

+mkl ln(Fik,jl)−mkl ln(Pe) (4.22)

+ ln(Pg) + ln(Pe)

]

Merging the logarithm terms together gives:

P (vi, uj|M) = exp

[
∑

vk∈V

∑

ul∈U
mklGikQjl ln

(
Pij,kl

Pg

)

mkl ln

(
Fik,jl

Pe

)

+ ln(Pg Pe)

]

(4.23)

From the above equation, it is noticed that the similarity constant Pg affects the

way by which the conditional vertex similarity Pij,kl contributes to the density func-

tion. Moreover, there is a similar relation between the constant Pe and the shortest

path similarity Fik,jl. For example, the shortest path similarity contributes negatively

to the density function when Fik,jl < Pe. This also applies to the conditional vertex

similarity Pij,kl. Thus, choosing small values for Pe and Pg leads to a density function

that is more tolerant to structural and spatial differences. We will show later that

good values for Pe and Pg are 0.5 and 0.1, respectively.

The question is that why Pe > Pg, or why do we consider a higher threshold for the

shorted path similarity? The answer to this question is divided into two points. First,

the overall structure of two graphs, mostly, has many differences. This introduces

many differences between paths that connect pairs of similar vertices. Second, even

though the starting vertex of a path is matched to the starting vertex of another,

several vertices that make the first path are not matched to the vertices that make

the second one. These issues make the shortest path similarity less reliable than the

conditional vertex similarity and requires a higher value for Pg.

Since our likelihood function has a hidden part, i.e., the vertices of graph Q, max-

imizing Equation 4.8 in closed form is intractable. In the following section, we draw

our attention to the expectation maximization technique, which is used to estimate

the parameters of a mixture model in the presence of hidden data.

4.3 Graph Matching Using the EM Technique

Expectation maximization (EM) is a technique proposed by Dempster et al. [36] to

maximize a likelihood function in the case of hidden data. Since the graph matching
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problem is formalized as maximum likelihood estimation, several authors use the

EM technique and its variations to estimate the match between two graphs [40, 80,

109]. Following this, and after introducing our graph likelihood function, we use

the EM technique for the matching of geometric graphs. Notice that using the EM

technique is a standard approach. However, different graph matching algorithms use

different density functions to estimate the similarity between different vertices, which

we proposed in the previous section.

To simplify the computation of the MLE, normally, the log-likelihood of the ob-

served data L(M) is maximized where L(M) = lnP (G|M). Using L(M) in equations

4.8 and 4.13 gives:

M∗ = arg max
M∈M

{ln(P (G|M))}

= arg max
M∈M

{
∑

vi∈V
ln

{
∑

uj∈U
P (vi, uj|M)

}}

(4.24)

Dempster et al. [36] prove that maximizing the log-likelihood function is equivalent

to maximizing a weighted sum of the complete log-likelihoods where the weights are

the a posteriori of the hidden data. Such weighted sum can be iteratively maximized

using the EM technique where each iteration has two steps. In the expectation step

(E-step) and at an iteration t + 1, the a posteriori probabilities of the hidden data

P (uj|vi,M (t)) are computed using the observed data and the previous estimation of

the parameters M (t). In the maximization step (M-step), the parameters of the model

are estimated using the observed data and the a posteriori probabilities of the hidden

data P (vi, uj|M (t+1)). As a consequence, the objective function Λ(M (t+1)|M (t)), which

is maximized by the EM technique, can be formulated as:

Λ(M (t+1)|M (t)) =
∑

vi∈V

∑

uj∈U
P (uj|vi,M (t))
︸ ︷︷ ︸

E-step

lnP (vi, uj|M (t+1))
︸ ︷︷ ︸

M-step

(4.25)

In the following two sections, we detail how the a posteriori of the hidden data

is computed at the E-step, and the maximization of the objective function in the

M-step.

4.3.1 Expectation

In the E-step, the a posteriori P (uj|vi,M (t)) is computed using the observed data

and an estimation of the parameters of the mixture model. For simplification, we will
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use R
(t)
ij = P (uj|vi,M (t)), such that R(t) is a matrix that stores all the a posteriori

probabilities at iteration t+ 1. Using Bayes’ rule one obtains:

R
(t)
ij = P (uj|vi,M (t)) =

P (vi, uj|M (t))P (M (t))
∑

uy∈U P (vi, uy|M (t))P (M (t))
(4.26)

Substituting Equation 4.23 in the previous equation gives:

R
(t)
ij =

exp

[
∑

vk∈V

∑

ul∈U
m

(t)
kl

{

GikQjl ln
(

Pij,kl

Pg

)

+ ln
(

Fik,jl

Pe

)}]

∑

vy∈U
exp

[
∑

vk∈V

∑

ul∈U
m

(t)
kl

{

GikQyl ln
(

Piy,kl

Pg

)

+ ln
(

Fik,yl

Pe

)}] (4.27)

Notice that when computing R
(t)
ij , both ln(Pg Pe) and P (M (t)) from Equation 4.23

are canceled out.

4.3.2 Maximization

In the maximization step of the EM technique, the mixture model M (t+1) that max-

imizes the objective function Λ(M (t+1)|M (t)) is selected. Such a mixture model is

then used in the next iteration by the E-step. The maximization step is formalized

as follows:

M (t+1) = arg max
M̂∈M

Λ(M̂ |M (t))

= arg max
M̂∈M

{
∑

vi∈V

∑

uj∈U
R

(t)
ij lnP (vi, uj|M̂)

}

= arg max
M̂∈M

{
∑

vi∈V

∑

uj∈U
R

(t)
ij

∑

vk∈V

∑

ul∈U

[

m̂klGikQjl ln

(
Pij,kl

Pg

)

+ m̂kl ln

(
Fik,jl

Pe

)

+ ln(Pg Pe)

]}

(4.28)

Since ln(Pg Pe) is constant with respect to the parameters of the mixture model,

i.e., the assignment variables m̂kl, it can be discarded. Re-arranging the summation,

the previous equation is rewritten as:

M (t+1) = arg max
M̂∈M

{
∑

vk∈V

∑

ul∈U
m̂klSkl

}

(4.29)
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where Skl =
∑

vi∈V

∑

uj∈U
R

(t)
ij

[

GikQjl ln

(
Pij,kl

Pg

)

+ ln

(
Fik,jl

Pe

)]

In the previous equation, the matrix S represents the vertex similarity and the

structural compatibility score between vertices from graph G and Q. The higher the

score between vertices vk ∈ V and ul ∈ U , the more likely they are in correspondence.

It is worth mentioning that the value of a similarity score between two vertices belongs

to the R space.

Several algorithms can be used to maximize Equation 4.29. Luo and Hancock

[80] use the extremum principal based on singular value decomposition of the score

matrix S [110]. Sanromá et al. [109] use the Softassign algorithm. In this paper, we

propose to use Hungarian algorithm [85]. This algorithm is well-known in solving

the assignment problem and runs in O(m3) where m = max{|G|, |Q|}. We use the

Hungarian algorithm since it scales better than the other approaches with respect to

the graph size.

4.3.3 Generalized EM

In the previous sections, we introduced a probabilistic model for graph matching.

However, such a model has some problems. First, it has a scalability problem in

computing the a posteriori P (uj|vi,M (t)), see Equation 4.27. This is because the sum

in the denominator goes to infinity as graph size increases, or to be more specific,

when the number of assignment variables mij = 1 increases. Such a problem actually

exists in the original model of Sanromá et al. [109] and prevents it from having good

scalability with respect to graph size. Second, the model is sensitive to outlier vertices.

An outlier vertex is a vertex that does not have a corresponding vertex in the other

graph. As a result, the previous model solves (sub)graph matching but fails in finding

common subgraphs.

In this section, we focus on an extension to our model that overcomes these two

problems. To solve the scalability problem, we propose to compute the a posteriori

P (uj|vi,M (t)) and the scoring matrix S based on a subspace of the mixture model

[40]. For this, we introduce the concept of k-active subgraph.

Definition 4.1. (k-active subgraph) Given a graph G = (V,E), the k-active sub-

graph for a vertex vi ∈ V is the subgraph Gvi = (Vvi , Evi) such that Vvi is the set of

the k-nearest neighbors to vi. The distance between vi and vk ∈ Vvi is defined as the

geodesic distance between them.
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Notice that the k -active subgraph for a vertex v is not defined based on the

vertices that are reachable within k hubs from v. Instead, it is defined based on the

k nearest neighbors so that all the k-active subgraphs for all vertices have the same

cardinality. Our experiments will show later that a good value for k is 15. In the case

of graphs with a number of vertices fewer than 15, the k-active-subgraph is simply

the entire graph. Why does a value higher than 15 give worse results? Actually, this

is related to the lengths of the shortest paths that are used to compute the shortest

path similarity Fik,jl. With values higher than 15, the density function utilizes more

and more information about the overall graph structure. However, we discussed that

longer paths are highly unreliable in estimating the density value. Given the two

k-active subgraphs Vvi and Uuj
for two vertices vi ∈ G and uj ∈ Q, respectively, we

rewrite the definition of both the a posteriori P (uj|vi,M (t)) and the scoring matrix

S as follows:

• E-step

R
′(t)
ij =

exp

[

∑

vk∈Vvi

∑

ul∈Uuj

m
(t)
kl

{

GikQjl ln
(

Pij,kl

Pg

)

+ ln
(

Fik,jl

Pe

)}
]

∑

vy∈U
exp

[

∑

vk∈Vvi

∑

ul∈Uuy

m
(t)
kl

{

GikQyl ln
(

Piy,kl

Pg

)

+ ln
(

Fik,yl

Pe

)}
] (4.30)

• M-step

M
′(t+1) = arg max

M̂∈M

{
∑

vk∈V

∑

ul∈U
m̂klS

′

kl

}

(4.31)

where S
′

kl =
∑

vi∈Vvk

∑

uj∈Uul

R
(t)
ij

[

GikQjl ln

(
Pij,kl

Pg

)

+ ln

(
Fik,jl

Pe

)]

It is true that the parameters of the mixture model M (t+1) in Equation 4.29 are

not identical to M
′(t+1) in Equation 4.31. However, a higher score at S

′

kl still indicates

a better match [40].

Next, we focus on updating the model so that it can find common subgraphs.

The main idea is that the vertices from the common subgraph between G and Q have

higher values in the score matrix S
′
. We update the algorithm used to maximize

Equation 4.31 so that the vertices from the non-common subgraph are excluded before

applying Munkres’ algorithm. We summarize this by the following two steps:

1. Candidate selection. From the score matrix S
′
, only the top-k̂ similar pairs

of vertices are selected, which are called the candidate set. All other entries from



4.3. GRAPH MATCHING USING THE EM TECHNIQUE 91

S
′
are assigned a value of zero. By this, we gain two benefits: 1) pruning non-

similar vertices from the score matrix S
′
, and 2) speeding up the maximization

step. Experimentally, a good value for k̂ is 10 ×max{|G|, |Q|}. Notice that k̂

does not refer to the size of an active subgraph. In other words, k refers to the

size of an active subgraph and k̂ denotes the number of similar vertices to a

given vertex that are selected for the candidate set.

2. Solving the assignment problem. Munkres’ algorithm [85] is then used to

select the best match from the candidate set.

Since Munkres’ algorithm solves the assignment problem in cubic time, pruning

non-similar pairs of vertices makes the score matrix S
′
sparse. As a result, the size

of the assignment problem will decrease. In addition to this, solving the assignment

problem with a sparse matrix is much faster than with a dense one. To estimate the

initial mixture model M
′(0), the score matrix S ′ is defined based on an RBF kernel

of the vertex distance function (Definition 3.5), which is defined based on the vertex

edit distance function using the second set of edit operations.

The EM technique with these modifications can be considered a generalized ex-

pectation maximization (GEM) algorithm [36]. The maximization step that is used

by the GEM selects M
′(t+1) such that

Λ(M
′(t+1)|M ′(t)) ≥ Λ(M

′(t)|M ′(t)). (4.32)

The above equation means that the M-step selects a mixture model that improves

the objective function but does not maximize it. To guarantee that our algorithm

satisfies Equation 4.32, all pairs of vertices such that m
(t)
ij = 1 are added to the

candidate set. In other words, the match selected at iteration t is added to the

candidate set at iteration t + 1. In this case, Munkres’ algorithm finds the optimal

solution to the assignment problem. As a consequence, the score of the new match

M
′(t+1) will be for sure higher than or equal to the score of M

′(t). Let scoret+1 =

Λ(M
′(t+1)|M ′(t)), normally, the GEM algorithm converges when scoret+1−scoret < α.

However, for our framework, we normalize the score used in the convergence test by

the size of the match M
′(t+1) as follows:

scoret+1 =
scoret+1

∑

mij∈M ′(t+1)

mij

(4.33)
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The intuition behind this is to force the GEM algorithm to converge when the

size of the match is not improved. We show later that a good value for α is 0.5.

4.3.4 Complexity Analysis

In the following, we discuss the complexities of the main components of our proposed

algorithm, which is summarized in Algorithm 4.1. Let m = |G|, n = |Q|, and

m ≤ n, the worst case complexity of the match initialization step is O(n3). This is a

consequence of using Munkres’ algorithm in line 4. In practice the complexity is less

than that, because only the top-k̂ similar pairs of vertices are selected before applying

Munkres’ algorithm.

The complexity of the expectation step, line 9, is O(mncd2), where O(d2) is the

complexity of computing the conditional vertex similarity Pij,kl between two vertices

such that d is the average degree of a vertex. Given two k-active subgraphs of two

vertices, c represents the number of vertices from the first k-active subgraph that are

matched to vertices from the other k-active subgraph. This makes 0 ≤ c ≤ k, k = 15.

The complexity of computing the scoring matrix S
′
, line 11, is O(mnk2d2), where

d is the average degree of a vertex and k = 15 is the size of a k-active subgraph.

In practice, the complexity of computing S
′
can be reduced. This is done by only

computing the score for the entries where the a posteriori value is high. In other words,

since the a posteriori is considered as a weighting factor for the complete-likelihoods,

one can skip computing the complete-likelihood for vertices where the a posteriori

value is very low. In our implementation, we used a threshold of 0.1. This means

that if the a posteriori of two vertices is less that 0.1, then their complete-likelihood

value is set to 0. This is justified because, in all cases, low score entries will be

removed from S
′
before applying Munkres’ algorithm, line 13. The other component

of the maximization step is solving the assignment problem, line 14, which has again

a complexity of O(n3).

Where is the bottleneck of our algorithm in terms of complexity? The answer to

this question depends on the two graphs to be compared. If the size of the match, i.e.,
∑

mij∈M mij, reaches min{|G|, |Q|}, then the bottleneck will be Munkres’ algorithm.

On the other hand, if the size of the match is much smaller than the smallest graph,

then the highest complexity will be the computation of the scoring matrix S
′
.
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Algorithm 4.1: Probabilistic graph matching

Input: Two geometric graphs G = (V,E) and Q = (U, T )
Output: A match M that represents the correspondences between V and U
/* Compute the initial match */

1 foreach i ∈ |V |, j ∈ |U | do
/* RBF kernel of the vertex distance function */

2 Sij ← VertexSimilarity(vi, uj)

3 S ← Top-k̂(S) /* k̂ ← 10×max{|V |, |U |} */

/* solve the assignment problem */

4 {M} ←Munkres(S)

/* Start the GEM algorithm */

5 oldscore← 0
6 newscore← 0
7 counter ← 0

/* The GEM algorithm converges after a certain number of iterations */

8 while counter < max iterations do

/* Expectation step, Equation 4.30 */

9 foreach i ∈ |V |, j ∈ |U | do
10 R

′

ij ← P (uj|vi,M)

/* Maximization step, Equation 4.31 */

11 foreach k ∈ |V |, l ∈ |U | do
12 S

′

kl ←
∑

vi∈Vvk

∑

uj∈Uul

R
′

ij

[

GikQjl ln
(

Pij,kl

Pg

)

+ ln
(

Fik,jl

Pe

)]

/* Solve the assignment problem */

13 S
′ ← Top-k̂(S

′
) /* k̂ ← 10×max{|V |, |U |} */

14 {M,newscore} ←Munkres(S
′
)

15 newscore← newscore∑

mij∈M

mij

/* The GEM algorithm converges when the change in the score is statistically insignificant,

α← 0.5 */

16 if newscore− oldscore < α then
/* break from the while loop */

17 stop

18 oldscore← newscore
19 counter ← counter + 1

20 return M
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4.4 Experimental Evaluation

The focus of this section is to empirically evaluate our proposed graph matching

algorithm. Several criteria are considered by our evaluations. The first criterion is

the matching quality. Algorithms with high matching quality are more resistant to

changes in graph structure and spatial properties. For our experiments, the quality

of the match is measured by the matching accuracy. For two graphs G and Q,

the matching accuracy is estimated by the agreement between the match M that is

computed by a graph matching algorithm, and the ground truth match M̂ , which

formalized in Equation 3.10, page 64.

The second criterion that we study is scalability with respect to graph size. It

is measured by the runtime required to match different graphs, in addition to the

memory consumption. The third one is the recognition rate. This is evaluated by

embedding the graph matching algorithm in a classification task. The higher the

classification accuracy the better the graph matching algorithm.

In our experiments, we used geometric graphs that are extracted from different

application domains. The first dataset is the CMU hotel/house datasets that consist

of 212 geometric graphs [2]. The size of each graph is 30 vertices. The second

dataset represents graphs extracted from road networks. Three road networks are

used: California, City of Oldenburg, and North America, with sizes 1365, 3494, and

7517 vertices, respectively [4]. The third dataset is the COIL-100 dataset [87]. It

consists of 3900 geometric graphs with an average graph size of 21 vertices. More

details about the datasets will be outlined in the following sections.

We compare our graph matching algorithm MixModel, Section 4.3.3, to four

other related graph matching algorithms. In the following we summarize them, and

the reader may refer to Chapter 2 for more details.

1. EMSoft is the original probabilistic graph matching algorithm proposed by

Sanromá et al. [109]. To compute the conditional likelihood function, they

propose a multivariate Gaussian distribution based on an affine-invariant geo-

metrical relationship between the vertices of different graphs.

2. The GMS algorithm [26] follows a feature extraction and embedding approach.

Initially, a set of vertices from each graph is selected as landmarks. Then, every

vertex from a graph is represented by a feature vector containing the distances

to the landmarks. After that, the Earth Mover’s distance is used to match two

geometric graphs [106].
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Figure 4.3: Sample images from the CMU house/hotel datasets and their correspond-
ing geometric graphs represented by the white lines [2].

3. TheRRWM algorithm [27] is a random walk-based graph matching algorithms.

An associated graph is created from the two graphs to be compared. Then, the

stationary distribution for a random walk over the associated graph gives a

ranking for the possible correspondences between the vertices of two graphs.

4. CSv2 is a graph edit distance algorithm that utilizes only the neighborhood

of the vertices for graph matching. Initially, a vertex-to-vertex distance matrix

is computed using vertex edit distance and the second set of edit operations.

Then, Munkres’ algorithm is used to select the best match. This algorithm is

the same one that is used in our evaluation in Section 3.4.

All experiments were carried out on an Ubuntu 12.04 platform with an Intel

Core i5 CPU with 8GB RAM, and all algorithms are written in C++. For matrix

operations, we used the linear algebra library Armadillo [107]. To implement the

related algorithms and for EMSoft, we used some matlab code from the author1.

We also transfer the matlab code of RRWM into C++2. For GMS, we used the

publicly available C code of the Earth Mover’s distance3.

4.4.1 Matching Quality

We start our experiments with the CMU house and hotel datasets [2], which are used

by almost all related graph matching algorithms. They demonstrate how in general

1http://www.mathworks.com/matlabcentral/fileexchange/35179-smooth-point-set-registration-
using-neighboring-constraints, accessed 02.11.2013

2http://cv.snu.ac.kr/research/~RRWM/, accessed 02.11.2013
3http://robotics.stanford.edu/~rubner/emd/default.htm, accessed 02.11.2013
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(a) House dataset
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(b) Hotel dataset

Figure 4.4: The average matching accuracies for the CMU dataset and for different
graph matching algorithms.

a graph matching algorithm can be used to track an object using images taken at

different times or different viewing angles. They consist of images of a toy house

and hotel, subjected to rotation in 3D. Figure 4.3 shows example images and their

corresponding geometric graphs.

The house dataset consists of 111 images (snapshots taken during a rotation). The

hotel dataset has 101 images. We match all images spaced at 10, 20, 30, 40, 50, 60, 70,

80, and 90 in the rotation sequence, and compute the average matching accuracy. We

compare our algorithm MixModel with the related four graph matching algorithms:

EMSoft, GMS, RRWM, and CSv2.

Figure 4.4(a) shows the matching accuracy for the CMU house dataset as the

separation between snapshots increases in the rotation sequence. The more spaced
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Figure 4.5: Runtime for the CMU hotel dataset.

in time the two graphs (snapshots) are, the more dissimilar they are. As a result,

one can see that nearly for all algorithms, the matching accuracy decreases as the

time between the snapshots increases. The matching accuracies for our algorithm

MixModel, GMS, and RRWM are higher than the CSv2 algorithm. This is

because the overall graph connectivity is not considered by CSv2.

The matching accuracy for the CMU hotel dataset is shown in Figure 4.4(b). All

the algorithms have less matching accuracy compared to their results for the house

dataset (Figure 4.4(a)). This is because the spatial and structural differences between

different snapshots of the hotel dataset are more than the differences between the

snapshots of the house dataset. Our algorithm MixModel has the highest matching

accuracy. EMSoft has higher matching accuracy than both GMS and RRWM,

especially for graphs far apart in the snapshot sequence. This means that EMSoft

is more tolerant to changes in the locations of the vertices and the structure of the

graphs.

We use the CMU hotel dataset also to measure the scalability of the graph match-

ing algorithms. Figure 4.5 shows the scalability measured by the runtime in seconds

for all algorithms as the number of graph comparisons increases. Although EMSoft

has good matching quality, it has a very high runtime even for such a small dataset.

The reason for this is that at each iteration, EMSoft searches for the best affinity

transformation parameters for each pair of vertices from the two graphs to be com-

pared. This result is similar to the runtime analysis reported in [109]. Since EMSoft

has very poor scalability with respect to the number of graphs and the graph size, we

exclude it from the other experiments.
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Figure 4.6: Sample images from the COIL-100 dataset [99].

4.4.2 Graph Similarity and Classification

In this experiment, the recognition rate for a graph matching algorithm is evaluated.

Empirically, we test how good a graph matching algorithm is in finding graphs similar

to a query graph. For all three algorithms MixModel, CSv2, and RRWM, the

similarity between two graphs is quantified as the similarity of their common subgraph

in addition to the similarity of their sizes. We ran the GEM algorithm for only

one iteration for MixModel. For GMS, the similarity is quantified by the flow

calculated by the Earth Mover’s distance algorithm as proposed in [26]. To measure

the recognition rate we conduct a graph classification experiment. The higher the

classification accuracy, the higher recognition rate the algorithm has. For such an

experiment, we use the COIL-100 dataset [87, 99], which consists of images of 100

different objects taken at different degrees. Figure 4.6 shows sample images from

this dataset. For classification, we select 2900 graphs for training, 29 graphs for each

object. For testing, we select 1000 graphs, 10 graphs for each object. We compute the

similarity between each graph from the test dataset and all graphs from the training
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Figure 4.7: Classification accuracy for the COIL-100 dataset.

dataset. Then, a 1-NN classifier is used to find the nearest neighbor graph to the

query graph. Figure 4.7 shows the classification accuracy for all four algorithms. Our

algorithm MixModel and GMS has the highest classification accuracy followed by

CSv2 and then RRWM.

4.4.3 Scalability Study

In this experiment, we study the runtime and memory consumption for the algorithms

MixModel, GMS, andCSv2. We use these algorithms to answer common subgraph

queries. Three graphs are extracted from three road networks: California, the City of

Oldenburg, and North America [4]. From each graph, we created another distorted

graph [3]. Each of the graph matching algorithms is used to estimate the common

subgraph between a graph and its distorted version. To create the distorted version,

initially, the graph is clustered into groups of vertices. Distortion is applied to some

of the clusters to make them non-similar. The rest of the clusters are left untouched

without any distortion to create a common subgraph. In addition to this, rotation

and translation are done randomly to some of the clusters. Such an experiment

demonstrates the task of finding the differences in a road network over time or finding

similar areas in two different road networks. From this experiment, we exclude the

RRWM algorithm. This algorithm uses the Kronecker product to store the edge

similarity between two graphs, i.e., it uses a matrix of size |G||Q| × |G||Q| to match

the two graphs G and Q. For the California road network, which is the smallest

graph in this experiment, the similarity matrix has 1012 entries, which requires a huge
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Figure 4.8: Scalability study in terms of runtime and memory consumption for dif-
ferent graph matching algorithms as graph size increases.

amount of RAM storage. This makes such an algorithm scale poorly with respect to

memory consumption.

We report the runtime for all three algorithms in Figure 4.8(a). Our algorithm

gives the best result. It scales better than CSv2, because we are selecting the top-k̂

similar pairs of vertices before solving the assignment problem. GMS has the highest

runtime. This is a consequence of using the Earth Mover’s distance algorithm.

Figure 4.8(b) shows the memory consumption for the three algorithms, which is

measured by the memory peak reported for each of them at different graphs. The

CSv2 matching algorithm has the lowest memory consumption. Our algorithm Mix-

Model comes in the second place. It consumes more memory than CSv2, because it

uses two different matrices in the E- and M-steps, i.e., R
′
and S

′
, each of size |G|×|Q|.
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Figure 4.9: Matching quality for common subgraph matching using different road
networks.

In addition to this, it needs another matrix of size |G|× |Q| in the candidate selection

step. However, CSv2 requires only one matrix of size |G| × |Q| to match the two

graphs G and Q. Finally, GMS has the highest memory consumption. Even though

our algorithm does not score best with respect to memory consumption, it scales in

a way similar to the related graph matching algorithms, i.e., each algorithm has a

memory complexity of O(|G||Q|). On the other hand, our algorithm scores best in

terms of the matching accuracy, as will be shown in the following.

We also report the matching accuracy for this test in Figure 4.9. Our algorithm

has the highest matching accuracy with an average of 97%. On the other hand, the

GMS algorithm has nearly zero matching accuracy for all three road networks. This

is because the landmark selection method used by the algorithm is not suitable to

match graphs that differ in the number of vertices. Finally, the CSv2 algorithm has

reasonable results even though the overall graph structure is not used.

Next, we summarize our experiments. Both the EMSoft and RRWM algorithms

give good matching accuracy for small geometric graphs. Both algorithms are able

to match graphs that differ in the number of vertices, graph structure, and spatial

properties. However, they scale very poorly in terms of memory consumption and

runtime. The GMS algorithm is suitable for graphs that have the same number of

vertices. In addition to that, such an algorithm is good in finding the similarity be-

tween graphs but not to determine common subgraphs. Even though CSv2 does not

consider the overall graph connectivity, it gives reasonable results. We conclude, that

a good vertex similarity measure is sufficient to approximate the similarity between
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different graphs. Finally, our algorithm scored the highest matching accuracy and

the least runtime for all tests. It scales better than EMSoft, RRWM, and GMS in

terms of memory consumption. CSv2 outperforms our algorithm in terms of memory

consumption. This is because our algorithm considers and stores more information

about the connectivity of the graphs, which leads to a higher matching accuracy and

a higher memory consumption.

4.4.4 Parameters Analysis

In this section, we discuss how the parameters of our framework are chosen. For

this, we use a dataset of 5 subgraphs extracted from the California road network.

The average size of a subgraph is 100 vertices. Spatial and structural distortions

are applied randomly to the subgraphs. Then, our framework is used to match each

subgraph against the California road network. Figure 4.10(a) shows the relationship

between the constants Pe, which is the minimum structural similarity between two

vertices, and Pg, which is the minimum spatial similarity between two vertices, on

one side and the average matching accuracy on the other side. One can see that the

highest matching accuracy occurs when 0.3 ≤ Pe ≤ 0.5 and Pg = 0.1. We fix Pg

to a value of 0.1 and study the effect of the size k of an active subgraph. Figure

4.10(b) shows the average matching accuracy for different values of k and Pe. The

highest matching accuracy occurs when Pe is set to 0.5 and k to 15. For higher values

of k, the matching accuracy starts to decrease. This supports our argument about

the relationship between the length of a shortest path and its reliability for graph

matching, namely, the longer the path, the less reliable it is.

Next, we study the convergence speed of our algorithm in addition to the con-

vergence threshold α. For this test, we use the graphs of the CMU hotel dataset

that are spaced 70, 80, and 90 in the rotation sequence. In total there are 104 graph

comparisons. Figure 4.11 shows the matching accuracy at each iteration. Iteration 0

gives the matching accuracy before we start the GEM algorithm, i.e., the accuracy of

the match that is used to initialize GEM. Furthermore, the figure shows the change

of the score at each iteration, i.e., ∆ = score(t+1) − score(t) (Equation 4.33). Note

that ∆ can be only computed starting from the second iteration. One can see that

on average our approach converges after 6 iterations. The change in the score is

statistically insignificant starting from the 3rd iteration. The change in the average

matching accuracy is statistically insignificant starting from the 2nd iteration. From

the values of ∆ at iteration 2 and 3, we conclude that a good value for α is 0.5. In
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Figure 4.10: The effect of different parameters of our algorithm, including Pe, Pg, and
the size of the active subgraph, on the matching accuracy.
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Figure 4.11: Average matching accuracy at different iterations of our approach, ∆ =
scoret+1 − scoret.

addition to this, the figure shows that one iteration of our approach is enough to

give good results, i.e., only a marginal increase in the matching accuracy is achieved

after the first iteration. We show this result visually in Figure 4.12 for two graphs

extracted from the CMU hotel dataset. It shows the match computed before applying

the GEM algorithm, i.e., at iteration 0. It also shows the match that is computed by

the first iteration of the GEM algorithm. Notice that only one iteration is sufficient

to increase the matching accuracy from 43% to 70%.

4.5 Summary and Discussion

In this chapter, we proposed an efficient graph matching framework for geometric

graphs in 2D space. The main problem we solved is that how to estimate the match

between two graphs based on both 1) the similarity of the vertices utilizing their

neighborhoods, Chapter 3, and 2) the similarity based on the overall graph struc-

ture. Taking these two issues into consideration, we proposed a probabilistic graph

matching algorithm. The main idea is to use maximum likelihood estimation to find

the best match between two graphs. We define a mixture model of the set of pos-

sible correspondences between the vertices of two graphs. Then, the solution of the

graph matching problem between two graphs is the mixture model that maximizes

the likelihood function. For this, we propose a novel density function that considers
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Figure 4.12: The match computed by our algorithm at iterations 0 and 1 with match-
ing accuracy of 43 % and 70%, respectively. Blue lines show correct correspondence
and red lines show the false ones.

labeling information, spatial properties, and structural compatibility. Based on such

a density function, the likelihood is maximized using expectation maximization. Us-

ing representative geometric graphs extracted from several application domains, we

showed that our approach outperforms existing graph matching algorithms in terms of

matching quality, runtime, and memory consumption. In the following we summarize

our results in this chapter.

1. Utilizing the overall graph structure for graph matching increases the matching

quality. However, there is an inverse relationship between the length of the

shortest path and its reliability for graph matching.

2. A major drawback of our algorithm is that it uses many parameters. Even

though we estimate their optimal values experimentally, there is no guarantee

that they will lead to good results for other datasets.

3. Even our algorithm scales better than other related algorithms, but it can be

further improved. For example, till now we need to compute the conditional
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vertex similarity between each vertex from one graph to all the vertices of the

other one with a complexity of O(d2) where d is the average degree of a vertex.

In addition to this, given a graph database, our algorithm linearly searches

the database to extract similar graphs to a query graphs. These two issues

can be further improved using pruning and indexing techniques as will be later

discussed in Chapters 5 and 6.



Chapter 5

Efficient Geometric Graph

Matching Using Vertex Embedding

The first step in designing any scientific application is to select a suitable data struc-

ture to model and abstract the objects under study. As we discussed in Chapter 1,

mainly two representations are used, which are the vector- and the structure-based

representations. For decades, the vector-based representation has been used in sev-

eral domains such as in finance and physics. This because it enables us to use a

broad variety of mathematical operations such as computing the sum, product, or

the distance between two vectors, which can be efficiently computed.

Recently, the graph-based representation, which is a structure-based, has gained

more and more interest. Even though graphs are representative data structures, they

have some weakness compared to the vector-based representation. An example is

the complexity of computing the distance between two graphs. Whereas the distance

between two vectors can be computed easily by simple Euclidean distance, computing

the optimal distance between two graphs is NP-hard [20].

In this chapter, we bridge the gap between the vector- and the graph-based rep-

resentations. Our main goal is to estimate the similarity of two vertices using the

Euclidean distance function, which in turn runs in constant time. We propose a

graph matching framework that has two novel components. First, we propose a

novel vertex embedding scheme to represent the vertices of different graphs in the

vector-based representation. Initially, a set of representative vertex signatures called

prototypes is provided. Then, each vertex is embedded into the Euclidean space us-

ing the distances between its vertex signature and the set of prototypes. Second, we

propose an iterative graph matching algorithm such that the structure of the graphs

is used to merge highly similar vertices into similar connected common subgraphs.

107
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Our algorithm starts with an initial match between two given graphs and iteratively

improves and expands the match. In each iteration, the similarity between two ver-

tices is refined using a voting scheme. The vertices of the match that is computed in

a previous iteration are used to estimate the similarity between any pair of vertices

from the two graphs to be compared.

The remainder of this chapter is organized as follows. In Section 5.1, we discuss

existing techniques that have been used to embed graphs and vertices into vector

spaces. Section 5.2 presents our approach for embedding the vertices of different

graphs into the Euclidean space. After that, we introduce our iterative graph match-

ing algorithm in Section 5.3. Our experimental evaluations are discussed in Section

5.4. Finally, we summarize the chapter in Section 5.5.

5.1 Embedding into Vector Spaces

To bridge the gap between the vector- and the graph-representations, several au-

thors have proposed to embed graphs into vector spaces [49, 100]. Based on this, a

wide variety of algorithms and techniques can be used, and the complexity of sev-

eral graph-based problems can be reduced. In the following, we first introduce some

mathematical foundations for the embedding into vector spaces, and then we discuss

how different graph-based algorithms utilize such embedding schemes.

A finite metric space is normally denoted by a tuple (S, d) where S is a finite set

of objects and d : S×S → R
+ is a distance metric [92]. Such a metric space is defined

in general to adapt to different application domains. For example, the objects could

be images, graphs, trees, and the distance function d is designed to fulfill the notion

of similarity for each application domain. To bridge the gap between the vector- and

structure-based representations, we are interested in the embedding of finite metric

spaces into real-valued normed spaces.

Definition 5.1. (Embedding into Normed Spaces) The embedding of a finite

metric space (S, d) into a real-valued normed space (Rm, δ) is a mapping ϕ : S →֒ R
m,

where m is the number of dimensions of the embedded space and δ is the distance

function in the embedded space such that δ : Rm × R
m → R

+.

Normally, the distance metric δ is defined based on the norm of the embed-

ded space. For example, by using the L2 norm, δ(x, y) is defined as ‖ x − y ‖2=
√∑m

i=1(xi − yi)2.
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The key idea of using such an embedding scheme for similarity search is that the

distance in the embedded space δ(ϕ(x), ϕ(y)) is closely related to the distance in the

original space d(x, y). In other words, when two objects in the finite metric space are

highly similar, their embeddings in the normed space are also highly similar. However,

the accuracy of a search query in the embedded space does not equal the accuracy of

the same query in the original metric space. Suppose that the objects retrieved by

a similarity query in the original metric space is Ro and the set of objects retrieved

by the same similarity query in the embedded space is Re, then, the embedded space

can be used to search for similar objects only when Ro ⊆ Re, i.e., there are no false

dismissals. This condition can be fulfilled when the embedded space is contractive.

Definition 5.2. (Contractive Embedded Space) Given the finite metric space

(S, d), and let (U, d) be an infinite metric space that includes (S, d), then the embedded

space that is induced by the mapping function ϕ : S →֒ R
m is said to be contractive if

∀o1, o2 ∈ U, δ(ϕ(o1), ϕ(o2)) ≤ d(o1, o2).

The above condition simply means that the distance between any two objects

in the embedded space is a lower bound of their distance in the original metric

space. This condition guarantees that there are no false dismissals for range sim-

ilarity queries, i.e., finding all objects that are within a certain distance from a query

graph [55]. For nearest neighbor queries, one can use a filter and verification tech-

nique to get the k nearest neighbors utilizing the embedded space [73]. This is done

in three steps. First, get the k nearest neighbors to a query q using the similarity

in the embedded space. Second, compute the actual distances between the k nearest

neighbors and q using the original distance function d. Third, use such distances to

issue a range query to get the k nearest neighbors.

A famous embedding method that guarantees the contractive property is the Lip-

schitz embedding [15]. It creates a normed space Rm such that each dimension corre-

sponds to a reference subset of S.

Definition 5.3. (Lipschitz embedding) Given the metric space (S, d) and a set

SA = {A1, A2, . . . , Am} of subsets of S. Suppose the distance between an object oi and

a set Aj ⊂ SA is defined as d(oi, Aj) = minx∈Aj
d(oi, x), then the embedding of object

oi is defined as ϕ(oi) = (d(oi, A1), d(oi, A2), . . . , d(oi, Am)).

The Lipschitz embedding can be seen as a dissimilarity-based embedding. The

distances between an object oi and a set of reference objects SA define a vector-based

representation, which in turn defines the coordinates of oi in the embedded space. For
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graph classification, Riesen and Bunke [102] use the Lipschitz embedding to speed up

nearest neighbor queries. They use the graph edit distance to compute the distance

between each graph and the set of reference graphs SA. To select the reference set

of graphs they propose to use the well-known k-medoids cluster algorithm to split a

training dataset into m disjointed subsets. Each cluster represents the set of graphs

used to define a dimension of the embedded space.

A major drawback of the Lipschitz embedding is the high number of distance

computation that is needed to embed an object. To overcome this problem, a special

case of the Lipschitz embedding is used where each subset Ai is represented by only

one object [119]. This approach was also used for graph classification [100].

Another direction to create a vector-based representation for a graph is by ex-

tracting features where each feature represents a dimension of the embedded space.

Gibert et al. [49] propose to embed a graph into a vector space using the statistics

of the labels of the vertices and edges. This work is dedicated to labels that belong

to the real-valued space. The graph is embedded into a vector space by using a set

of representative labels W = {w1, w2, . . . , wn} such that wi ∈ R
d. Each vertex is

assigned to one representative label by taking the nearest neighbor distance. Then,

the embedding of the graph is the vector that represents how many vertices from that

graph are assigned to each representative.

Another well-known technique for feature extraction is by utilizing the spectra of

the adjacency or the Laplacian matrix [118]. However, one of the major drawbacks

of this technique is that each graph is embedded in its own vector space. In other

words, to determine the similarity between vertices of two graphs based on their

spectral features, the dimensions of the two embedded spaces must first be mapped,

which is as complex as the graph matching problem itself [118].

In the following section, we propose a method for embedding the vertices of a

graph into a vector space. To this end, we follow the special case of the Lipschitz

embedding such that each dimension of the embedded space is spanned by only one

reference object. Such an approach is successfully used for image similarity and graph

classification [100, 119].

5.2 Vertex Embedding

In this section, we propose our vertex embedding scheme. The main idea is to use

both the vertex signature and the spatial feature concepts (Section 3.3.2) to cre-

ate a dissimilarity representation for the vertices of different graphs. To embed all
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Figure 5.1: The embedding of graph G into a 2D space using two prototypes.

vertices from a graph, the graph is first decomposed into a multi-set of vertex sig-

natures. Then, a representative set of vertex signatures, which are called prototypes,

is provided. For a vertex, the distances between its vertex signature and the set of

prototypes form a vector. This vector is considered the embedding of that vertex in

the Euclidean space.

Definition 5.4. (Vertex Embedding) Let G = (V,E, l, c) be a geometric graph

with the multi-set of vertex signatures S = {s1, s2, . . . , sn}, n = |V |. Given a set of

prototypes P = {p1, p2, . . . , pm}, s.t. m < n, the embedding using the prototype set is

a mapping ϕ : S →֒ R
m, defined as:

ϕ(si) := (d(si, p1), d(si, p2), . . . , d(si, pm))

where d(si, pj) is the vertex edit distance between the vertex signature si and the

prototype pj based on Definition 3.5.

To compute the distance between two vertex signatures, we use the cyclic string

edit distance between their spatial features as discussed in Section 3.3.2. We illustrate

the proposed embedding scheme in Figure 5.1. Using two prototypes p1 and p2, graph

G is embedded into a two-dimensional space using the distances to the prototypes.

Notice that the vertices v1, v2, and v3, which are similar, are embedded close to each

other.

Based on Definition 5.4, each axis of the Euclidean space corresponds to a single

prototype pi ∈ P . In other words, the prototypes span the whole embedded space.

This can be interpreted as a special case of the Lipschitz embedding, as discussed in

the previous section.
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So the question is how much speedup one can gain by using this embedding

scheme? Notice that after the embedding of the vertices from different graphs, the dis-

tance between two vertices is computed by the Euclidean distance, which is computed

in linear time with respect to the size of the vector. However, without embedding, the

complexity of computing the distance between two vertices is O(d3) where d is the

average degree of all vertices. To give a feeling about the speedup, let us compare the

complexity of building the distance matrix between the vertices of two graphs once by

using the embedding scheme and once without. Notice that such a distance matrix is

frequently used by several graph matching algorithms including our algorithms that

were proposed in Chapters 3 and 4.

Given two graphs G and Q with |G| and |Q| vertices, respectively. Suppose that

the degree of a vertex is d, and the size of the prototype set is m. The complexity of

embedding the two graphs is O((|G|+|Q|)md3). This means that for every vertex from

the two graphs, we compute its coordinates by applying the cyclic string edit distance

with respect to each of the prototypes. Based on the vector-based representation, the

complexity of computing the distance matrix between the vertices of G and Q is

O(|G||Q|m), assuming that the Euclidean distance is computed in linear time with

respect to the length of the vector. On the other hand, the complexity of computing

the distance matrix using the vertex edit distance is O(|G||Q|d3). By removing the

asymptotic notation, the speedup is computed as follows:

speedup =
|G||Q|d3

(|G|+ |Q|)md3 + |G||Q|m (5.1)

Without loss of generality, let us assume that the size of a graph is n. Then, the

previous equation is simplified as:

speedup =
n2d3

2nmd3 + n2m

=
1

2m
n

+ m
d3

(5.2)

Based on Equation 5.2, the speedup that is gained by using the embedding scheme

is defined as the ratio of the size of the vector, i.e., the number of dimensions of

the embedded space, to the graph size and the vertex degree. Once the number of

dimensions of the Euclidean space becomes greater than d3, the embedded scheme

becomes a bottleneck and the performance gets worse. Also, it is not recommended to

use the embedding scheme for small graphs where the graph size equals the number
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of dimensions of the embedded space. As a result, we conclude that we gain the

best speedup of our approach when using large and dense graphs and we do not

recommend to use it for small and sparse graphs.

Now we turn our attention to formalize the relationship between the cyclic string

edit distance between two vertices and their Euclidean distance [103]. The Euclidean

distance between two vectors ϕ(s1) and ϕ(s2) is defined as:

‖ ϕ(s1)− ϕ(s2) ‖2=
√

‖ ϕ(s1) ‖2 + ‖ ϕ(s2) ‖2 −2ϕ(s1)·ϕ(s2) (5.3)

Given that the cyclic string edit distance, denoted as d(.), is a metric, and due to

the triangle inequality |d(s1, pi)− d(s2, pi)| ≤ d(s1, s2), we have:

‖ ϕ(s1)− ϕ(s2) ‖2 =
(

m∑

i=1

d(s1, pi)
2 +

m∑

i=1

d(s2, pi)
2 − 2

m∑

i=1

(d(s1, pi)d(s2, pi))

) 1
2

=

(
m∑

i=1

(d(s1, pi)− d(s2, pi))
2

) 1
2

≤ (m · d(s1, s2)2)
1
2

=
√
m · d(s1, s2) (5.4)

As a result, ‖ϕ(s1)−ϕ(s2)‖2√
m

is a lower bound to the cyclic string edit distance between

the two vertex signatures s1 and s2. This relationship, as we discussed in the previous

section, guarantees that the embedded space is contractive. This means that no false

dismissals occur for a similarity query in the embedded space.

5.2.1 Prototype Selection

Matching two graphs based on their vector-based representation relies on the embed-

ding of similar vertices close to each other. To guarantee this, a representative set

of prototypes must be used. This makes the prototypes the basis and the crucial

part of the proposed embedding scheme. Furthermore, in addition to the prototypes

themselves, the number of prototypes is also a crucial decision. In this section, we

discuss how prototypes are generated or selected from a graph training dataset.

Prototype selection is studied in the literature to improve well-known problems

for the k -NN classifier [93]. Examples for such problems are low tolerance to noise

and less efficiency due to distance computation. For vertex embedding, a prototype

selection method should also take care of these issues.
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In the following, we discuss three prototype selection methods: random selection

(RS), medoids selection (MS), and spanning selection (SP).

• Random Selection. For graphs where a training sample is not available, the

random selection method is used. Prototypes of vertex signatures are artificially

created. The user specifies the number of prototypes, the size of each, and the label-

ing alphabet. Then, labels are assigned randomly to the edges and the neighboring

vertices. In addition to this, the lengths of the edges and the values of the angles are

randomly assigned. Then, they are normalized in the interval [0, 1], as proposed in

Equation 3.4.

Algorithm 5.1: Medoids selection method

Input: A set of vertex signatures S = {s1, s2, . . . , sn} and the size of the
prototype set m

Output: A set of prototypes P = {p1, p2, . . . , pm} ⊆ S

/* D is a distance matrix s.t. D ∈ R
n×n */

/* d(.) is the cyclic string edit distance function */

1 foreach si, sj ∈ S do
2 Dij ← d(si, sj)

/* P represents the medoids of the clusters, m is the number of prototypes */

3 P ←MedoidsCluster(D,m)
4 return P

• Medoids Selection. The medoids selection method is used to select proto-

types from a graph training dataset. As described in Algorithm 5.1, it utilizes the

well-known k -medoids clustering algorithm to select k prototypes. Each prototype

represents the center of a cluster of vertex signatures. The k -medoids algorithm uses

a distance matrix that is created from vertex signatures extracted from the training

dataset. The distance between two vertex signatures is computed based on the

cyclic string edit distance. The medoids selection can be interpreted as a frequent

prototype selection method. Each cluster extracted by the k -medoids represents a

group of a frequent vertex signature.

• Spanning Selection. We adopt the spanning prototype selection method

proposed in [103] to select prototypes of vertex signatures. This prototype selection

method finds vertex signatures as uniformly distributed as possible from a training

dataset. The median vertex signature is first selected, which is the one with the

minimal sum of distances to all other vertex signatures.
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Definition 5.5. (Median Vertex Signature) Given a set of vertex signatures

S = {s1, s2, . . . , sn}, the median vertex signature smedian is defined as:

smedian := argmin
si∈S

∑

sj

d(si, sj) (5.5)

where the distance d(si, sj) is the cyclic string edit distance between the two

vertex signatures si and sj. To select the remaining prototypes iteratively, the vertex

signature with the farthest distance from the already selected prototypes is selected,

as illustrated in Algorithm 5.2. To further improve the spanning selection method,

we restrict the prototype set to have only one prototype that has only one edge. In

other words, we allow only one pendent vertex to exist in the prototype set. This way,

the prototype set will be more discriminative and leads to less dependencies between

the different dimensions of the embedded space.

Algorithm 5.2: Spanning selection method

Input: A set of vertex signatures S = {s1, s2, . . . , sn} and the size of the
prototype set m

Output: A set of prototypes P = {p1, p2, . . . , pm} ⊆ S

/* initialize P with the median vertex signature */

1 P ← {smedian}
2 S ← S \ {smedian}
3 while |P | < m and S 6= φ do
4 p = argmax

si∈S
min
pj∈P

d(si, pj)

5 S ← S \ {p}
/* size(p) denotes number of edges in the prototype p */

6 if (size(p) ≥ 2) or (size(p) = 1 and ∀si ∈ S, size(si) ≥ 1) then
7 P ← P ∪ {p}

8 return P

In Figure 5.2, we show the different prototype selection methods. The RS method

follows an unsupervised approach by selecting the prototypes randomly. On the other

side, the MS and SP methods follow a supervised approach and select prototypes

from a training dataset. MS selects the prototypes as medoids of clusters of frequent

prototypes. SP selects the prototypes uniformly to cover the whole training dataset.

The advantage of the spanning selection method over the medoids method is that it

follows a deterministic scheme for selecting the prototypes. However, the medoids

method creates different prototype sets for different executions of the algorithm even

when using the same training dataset. This is because the k-medoids clustering
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Figure 5.2: Different prototype selection methods.

algorithm is sensitive to the initial assignments of the clusters, i.e., different initial

assignments lead to different clustering results.

5.3 Iterative Graph Matching

After the embedding of all graphs into the Euclidean space, the k -nearest-neighbor

algorithm can be used to find similar vertices. However, matching two graphs based

on the similarity in the Euclidean space creates a match that is structurally inconsis-

tent, i.e., two neighboring vertices from one graph may be mapped to non-neighboring

vertices from another one. This is because the distance function used in the embed-

ding process considers only a vertex and its direct neighbors. As a result, graph

connectivity is not preserved in the Euclidean space.

We solved this problem in Chapter 4 by formalizing the graph matching problem

as maximum likelihood estimation. Then, the generalized expectation algorithm is

used to select the parameters of the mixture model that maximize the likelihood

function. Such a solution gives good results and scales better than the related graph

matching algorithms, as shown in Section 4.4. Unfortunately, the algorithm proposed

in Chapter 4 cannot utilize the embedding scheme. This is because such an algorithm

utilizes the conditional vertex similarity between two vertices at the E- and M-steps,

which is not defined in the Euclidean space.

To solve this problem, in this section, we propose an iterative graph matching

algorithm that integrates the similarity between the vertices in the Euclidean space

with structural compatibility. Our proposed algorithm follows the continuous opti-

mization style and iteratively refines the match between two graphs G = (V,E) and

Q = (U, T ) to create similar connected common subgraphs. Each iteration consists

of three steps:
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1. solving the assignment problem,

2. similarity refinement, and

3. candidate selection.

In an iteration t, the best matchM t = {0, 1}|V |×|U | from a set of candidate matches

Ct = R
|V |×|U | is selected by solutions to the assignment problem. In the similarity

refinement step, the similarities between the vertices of one graph to the vertices of

the other one are updated in a voting scheme. Vertices from M t vote to quantify

structural compatibility between each pair of vertices from the two graphs. Then, a

set of k candidate matches Ct+1 is selected to be used in the next iteration.

In the following section, we discuss how to initialize the match between two graphs.

Section 5.3.2 discusses a greedy algorithm to solve the assignment problem. Then, in

Section 5.3.3, we formalize a probabilistic approach to refine the similarity between the

vertices of two graphs based on structural compatibility. Finally, in Section 5.3.4, we

propose a pruning technique to exclude non-similar pairs of vertices from the match

between two graphs. Through the rest of this section, the distance between two

vertices refers to the Euclidean distance between their coordinates in the embedded

space.

5.3.1 Candidate Initialization

The set of candidates used in the first iteration of the proposed graph matching

algorithm is called the initial candidate set. The vertices from the initial candidate

set are considered seeds for the iterative algorithm. We call such seeds of vertices

anchor vertices or anchors. The anchors affect the number of iterations needed

for the convergence. Two issues should be considered when selecting them: 1) the

similarity of the anchors from one graph to another, and 2) the degree of the anchors,

i.e, the vertex degree. Since our matching algorithm iteratively increases the match

between two graphs, anchors that are highly similar and have a higher vertex degree

guarantee a faster convergence rate and produce good matching results. We propose

two anchor selection methods guided by requirements from different application

domains.

• Common Subgraph Matching. The size of a common subgraph between two

graphs G and Q is less than or equal to min{|G|, |Q|}. To speed up the convergence,

vertices from the non-common subgraph should be avoided and not added to the
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initial candidate set. For this type of matching, the similarity of the vertices is

used to prune the vertices that belong to the non-common subgraph. To do this, a

similarity matrix is created from the vertices of G and Q. The similarity between two

vertices is defined as the similarity of their embedding in the vector space. Then, for

each vertex vi ∈ G, the candidate pair of vertices (vi, uj) is added to the candidate

set when uj is the most similar vertex to vi and their similarity exceeds a certain

threshold c. To compute the similarity threshold, we first create a vector ~x ∈ R
|G|

such that xi = maxuj∈Q s(vi, uj) and s(vi, uj) is the similarity in the Euclidean space

between the two vertices vi and uj. Based on this, the threshold c = µ(~x) where µ is

the mean function.

• (Sub)graph Matching. To increase the tolerance to changes in graph structure

and spatial probabilities, anchors for subgraph matching are not filtered based on the

similarity of the vertices but based on the vertex degree. To do this, first, a similarity

matrix is created from the vertices of Q and G. The similarity between two vertices

is defined as the similarity of their embedding in the vector space. Then, a candidate

pair of vertices (vi, uj) is added to the candidate set when uj is the most similar vertex

to vi and their degrees exceed 3. This number guarantees that the match between

two graph is refined and expanded faster than picking vertices of lower degree, an

aspect that will be discussed later in the similarity refinement section.

5.3.2 Solving the Assignment Problem

Given a candidate set of similar vertices, the question is how to select the best as-

signment from the vertices of one graph to the vertices of another one such that the

selected pairs of vertices have the highest similarity? This problem is normally re-

ferred as the assignment problem, which can be solved by different techniques. Mostly,

the Hungarian algorithm is used to solve the assignment problem. However, such an

algorithm runs in cubic time with respect to graph size. To overcome this complexity,

we propose to use a greedy algorithm that has less runtime complexity and computes

an approximate solution to the assignment problem. The greedy algorithm iteratively

selects the highest similar pair of vertices from the candidate set and adds it to the

match. Specifically, it adds the pair of vertices (vi, uj) when s(vi, uj) = maxvk s(vk, uj)

and s(vi, uj) = maxul
s(vi, ul)} where s represents the similarity between two vertices.
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5.3.3 Similarity Refinement

The match between graphs based on the initial candidate set utilizes only the similar-

ity in the Euclidean space. Thus, in an iterative approach, the match is expanded and

improved by utilizing more information about the structure of the graphs. The main

idea is that the computed match in iteration t is used to refine the similarity between

the vertices, which is then utilized in the next iteration. Given two graphs G and

Q with their vertex sets V and U , respectively, the similarity between the vertices

is updated based on a probabilistic voting scheme. For this, we adopt a Bayesian

formulation similar to the one presented in [28]. Given a match M t = {0, 1}|V |×|U |
computed at an iteration t, the similarity between two vertices vk ∈ V and ul ∈ U

is updated as a conditional joint probability distribution P (V, U |M t). To compute

such a probability distribution, an auxiliary variable of a match M ∈ M t is used.

The probability distribution is computed by marginalizing P (V, U,M |M t) over M .

By using the chain rule, the similarity between vk and ul is defined as:

P (vk, ul|M t) :=
∑

mij∈Mt

P (vk, ul,mij|M t) (5.6)

=
∑

mij∈Mt

P (vk|ul,mij,M
t) P (ul|mij,M

t) P (mij|M t)

where P (mij|M t) is a prior representing the probability of choosing the match

mij ∈M t. P (ul|mij,M
t) describes the probability of ul being a neighbor of vertex uj.

P (vk|ul,mij,M
t) represents the probability that vk is similar to ul given the status of

the match mij. This marginalization can be seen as a probabilistic voting such that

the voters are the matches mij ∈ M t. In the following, we detail the realization of

the three probabilities in Equation 5.6.

P (mij|M t) =
similarity(vi, uj)×mij
∑

mkl∈Mt

similarity(vk, ul)×mkl

(5.7)

where the similarity between two vertices is computed in the previous iteration t− 1.

P (ul|mij,M
t) =

{
1

deg(uj)
, if ul ∈ N(uj) and mij = 1

0, otherwise
(5.8)
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for a vertex uj, deg(uj) denotes its degree and N(uj) describes the set of its direct

neighboring vertices.

P (vk|ul,mij,M
t) =







1, if mij = 1 and mkl = 1 and vk ∈ N(vi)
exp(−d(vk,ul))

Z
, if mij = 1 and mkl = 0 and vk ∈ N(vi)

0, otherwise

(5.9)

where d(vk, ul) is the Euclidean distance between the two vertices vk and ul. Z is

a normalization factor which is defined as:

Z :=
∑

vk∈N(vi)

exp(−d(vk, ul)) (5.10)

To summarize, the probability of matching any two vertices vk ∈ V and ul ∈ U

increases when 1) they are similar in the Euclidean space and 2) their neighbors exist

in the match M t. The more neighbors exist in M t, the higher the probability that vk

is matched to ul.

Algorithm 5.3: Candidate selection

Input: A match M and a similarity matrix S between the vertices of two
graphs

Output: The candidate set C that is going to be used in the next iteration

1 c← 0
2 if common subgraph matching then
3 x̂← 0
4 foreach vk ∈ V do
5 x̂← x̂ ∪maxuj∈U s(vi, uj)

/* c is the similarity threshold, µ and stdev are the mean and standard deviation

functions, Equation 5.11 */

6 c← µ(~x)− stdev(~x)

/* % ∗% is the element-wise multiplication between two matrices */

7 C ←M % ∗% S

/* Add all neighboring vertices */

8 foreach mij ∈M do
9 foreach vk ∈ V, ul ∈ U do

10 if mij = 1 ∧ vk ∈ N(vi) ∧ ul ∈ N(uj) ∧ S(k, l) > c then
11 Ckl ← S(k, l)

12 return C
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5.3.4 Candidate Selection

Once the similarity between the vertices is updated following the previous probabilis-

tic approach, the candidate set Ct+1 is selected to be utilized by the graph matching

step at the next iteration. We propose to prune non-similar pairs of vertices before

solving the assignment problem. By this, we guarantee that our heuristic does not

falsely select non-similar vertices and does not add them to the match. We select the

candidate set Ct+1 as follows. First, all the vertices vi and uj s.t. mt
ij = 1 are used

to initialize Ct+1. Then, all neighboring vertices to the vertices in Ct+1 are selected

as candidates. For common subgraph matching, we further refine the candidate set

to prune the vertices from the non-common subgraph. We remove all pairs of ver-

tices from the candidate set where their similarity is under a certain threshold c. To

compute this similarity threshold c, we first create a vector ~x ∈ R
|G|. An element xi

represents the maximum similarity between vertex vi ∈ V and all the vertices of U .

It is defined as xi = maxuj∈U s(vi, uj), where s(vi, uj) is the similarity between the

two vertices vi and uj as computed in the previous iteration. Then,

c = µ(~x)− stdev(~x) (5.11)

where µ and stdev are the mean and standard deviation of the vector ~x, respec-

tively. Our candidate selection method is outlined in Algorithm 5.3.

5.3.5 Convergence

Given a scoring function f :M → R that quantifies the quality of any match from

the matching space M, our algorithm converges when the change in the score for

two consecutive iterations is statistically insignificant. However, the score reported

at different iterations is not monotonically increasing. In other words, the score may

decrease in a future iteration. This is because the match between two graphs is

iteratively expanded. As a result, new pairs of vertices may be added to the match

such that they vote negatively to the similarity of other pairs of vertices. For our

algorithm, the convergence criterion is |S(Mt+1)−S(Mt)| < α, where α is a threshold

defined by the user. Our experiments (Section 5.4) show that a good value of α is

10−4 for subgraph matching and 10−2 for common subgraph matching. These values

guarantee a good matching accuracy and a fast convergence time. We outline our

iterative approach in Algorithm 5.4. Notice that our algorithm returns the match

with the highest matching score and does not return the match at the convergence

iteration.
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a) iteration t = 1, accuracy = 37.5%.

b) iteration t = 2, accuracy = 62.5%.

c) iteration t = 4 , accuracy 100%.
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Figure 5.3: The iterative graph matching between two graphs G and Q. The anchor
vertices for G are represented by squares. A correct correspondence is drawn in blue and a
false one is drawn in red. a), b), and c) represent the matching results at the 1st, 2nd, and
3rd iteration, respectively.
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Algorithm 5.4: Iterative graph matching

Input: Two geometric graphs G = (V,E) and Q = (U, T )
Output: The match M

′

/* D is a dissimilarity matrix using the Euclidean distance s.t. D ∈ R
|V |×|U| */

1 foreach vi ∈ V , uj ∈ U do
2 dij ← d(vi, uj)

3 min value← min(D)
4 max value← max(D)

/* convert the distance matrix D to a normalized similarity matrix S */

/* S ∈ R
|V |×|U| */

5 foreach vi ∈ V , uj ∈ U do

6 sij ← 1− dij − min value

max value − min value

/* candidate initialization, Section 5.3.1, C is a candidate set s.t. C ⊆ S */

7 C ← CandiateInit(G,Q, S)

8 oldscore← 0
9 newscore← 1

10 highestscore← 0
/* The algorithm converges when the change in the score is statistically insignificant */

11 while |newscore− oldscore| > α do

/* solve the assignment problem, Section 5.3.2 */

12 {M,newscore} ← SolveAssignment(C)

/* vertex-to-vertex similarity refinement, Section 5.3.3 */

13 S ← Similarity(G,Q,M)

/* C is a candidate set s.t. C ⊆ S, k is size of the candidate set, Section 5.3.4 */

14 C ← CandidateSelection(G,Q, S,M, k)
15 oldscore← newscore

/* save the match with the highest score */

16 if oldscore ≥ highestscore then
17 M

′ ←M
18 highestscore← oldscore

19 return M
′
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Table 5.1: The three geometric graphs that are used in our evaluations. |V | and |E|
denote the number of vertices and the number of edges, respectively.

Road network |V | |E|
California 1365 1990
City of Oldenburg 3494 4348
North America 7517 10088

We finish this section by an example that gives a feeling about our iterative graph

matching algorithm, which is shown in Figure 5.3. At the end of the 1st iteration,

the similarity between v0 ∈ G and u0 ∈ Q increases since all the neighbors of v0 are

matched to the neighbors of u0, whereas the similarity between v3 and u3 decreases

since there is no neighbor of v3 that is matched to a neighbor of u3.

5.4 Experimental Evaluation

In this section, our proposed solution to the graph matching problem is empirically

evaluated. To this end, we use geometric graphs that are extracted from three road

networks: California, North America, and the City of Oldenburg [4]. Latitude and

longitude are used as the x and y coordinates of the vertices. Since a road segment

between two intersections is represented by several nodes in the road network, we

simplified them using the Douglas Peucker algorithm [41]. This algorithm is used to

reduce the number of points representing a curve. Table 5.1 shows the number of

vertices and edges for the simplified road networks. We also show an example from

our dataset in Figure 5.4. It represents the geometric graph that is extracted from

the road network of the City of Oldenburg.

The focus of this section is to empirically evaluate two criteria for a graph matching

algorithm. The first criterion is the scalability with respect to graph size. It is

measured by the runtime required to match different graphs. The second criterion

is the quality of the match computed by the graph matching algorithm. Algorithms

with high matching quality are more resistant to changes in graph structure and

spatial attributes. For our experiments, the quality of the match is measured by the

matching accuracy. For two graphs G and Q, the matching accuracy is estimated by

the agreement between the matchM that is computed by a graph matching algorithm,

and the ground truth match M̂ , which is formalized in Equation 3.10, page 64.

We compare our graph matching algorithm, called VEM, which is proposed in

this chapter, with the following related algorithms:
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Figure 5.4: The geometric graph of the road network of the City of Oldenburg.

1. MixModel (Chapter 4). The MixModel algorithm follows a probabilistic

approach to solve the graph matching problem. It computes the similarity of two

vertices based on 1) the similarity of their neighborhoods and 2) the similarity

of the paths that connect them to other vertices in the graphs. The main idea

of this approach is to use maximum likelihood estimation to find the best match

between two graphs. A mixture model of the set of possible correspondences

between the vertices of two graphs is defined. Then, the solution of the graph

matching problem between two graphs is the mixture model that maximizes

the likelihood function, which is optimized using the expectation maximization

technique.

2. CSv1 (Chapter 3). The CSv1 algorithm follows a graph edit distance approach

and utilizes only the neighborhoods of the vertices for graph matching. This

algorithm initially creates a vertex-to-vertex distance matrix based on the cyclic

string edit distance of the spatial features of the vertices. To this end, the first

set of edit operations are used, which is proposed in Section 3.3.2. Then, the

Hungarian algorithm is used to select the best match between the two graphs.
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Figure 5.5: The effect of the number of prototypes and the prototype selection method
on graph matching accuracy.

3. Heat. It is the heat kernel embedding algorithm proposed by Xiao et al. [130].

Such an algorithm initially uses the spectra of the normalized Laplacian matrix

to embed the vertices of a graph into the Eigenspace. Then, the match between

two graphs is estimated following a variation of the Scott and Longuet-Higgins

algorithm [110]. This algorithm uses SVD to create a similarity matrix between

the vertices of the two graphs based on their embeddings in the Eigenspace.

Then, two vertices are matched if their similarity is the maximum among all

similarities of the matches containing any of them.

In the following section, we study the effects of various parameters of our graph

matching algorithm. This includes the prototype selection method, the size of the

prototype set, and the convergence threshold α. After that, in Section 5.4.2, we

evaluate the matching quality followed by a scalability study in Section 5.4.3.

5.4.1 Parameters Analysis

In this section, we first study the effect of the prototype selection method and the

number of prototypes on the matching accuracy. Then, we discuss the matching

accuracy with different values of the convergence threshold α for both subgraph and

common subgraph matching.

Two datasets are used for the parameter analysis: one for (sub)graph match-

ing and the other for common subgraph matching. The subgraph matching dataset
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contains 5 subgraphs extracted from the California road network. We applied ran-

dom spatial and a few structural distortions to these subgraphs [3]. The sizes of

the subgraphs are 60, 92, 116, 123, and 128. We matched each of them against the

California road network and averaged the matching accuracy. The common subgraph

dataset consists of 5 different geometric graphs created from the California road net-

work. Each geometric graph has a common subgraph with the original California

road network in addition to a non-common subgraph. To do this, we first partition

the California road network into different clusters. The number of clusters used varies

from 3 to 7. We apply spatial distortion to some clusters to make them non-similar

[3]. For the five graphs, the number of distorted clusters are 1, 1, 2, 3, and 3, re-

spectively. The remaining of the clusters are considered as the common subgraph

between the new created graph and the original California road network. The sizes

of the common subgraphs are 451, 334, 546, 592, and 689 such that some common

subgraphs are disconnected. We matched all 5 graphs against the California road

network and averaged the matching accuracy.

Prototype Selection

We empirically evaluate the three prototype selection methods: random selection

(RS), medoids selection (MS), and spanning selection (SP), see Section 5.2. For this

test, we use the dataset of subgraph matching. Since the result of the MS method is

affected by the initial medoids assignment, we run the k-medoids several times with

different initial assignments. The prototypes that create the lowest within-cluster

sum of distances are chosen. As shown in Figure 5.5, the spanning selection method

has the highest matching accuracy. On the other side, the RS method has nearly

the same matching accuracy as MS. This result confirms the analysis reported in

[93], which says that a random prototype selection method gives good results in

many cases. Figure 5.5 also shows the effect of the number of prototypes on the

matching accuracy. A small number of prototypes does not cover the diversity of

the vertex signatures extracted from the graphs, which gives low matching accuracy

for all three selection methods. Also, a high number of prototypes decreases the

matching accuracy. This is because more non-representative vertex signatures are

selected as prototypes, especially for the MS method. From this experiment, we

conclude that 10 prototypes give a good matching accuracy. We observe that the

increase in the matching accuracy is statistically insignificant for values more than

10. On the other hand, a higher number of prototypes decreases the scalability of the

matching algorithm. This is because the algorithm computes the cyclic string edit
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Figure 5.6: The effect of the convergence threshold α on the accuracy of subgraph
matching.

distance between a vertex and each of the prototypes, which runs in cubic complexity

with respect to the vertex degree.

The Convergence Threshold α

We test the convergence threshold α for both subgraph and common subgraph match-

ing. We also test the matching accuracy that is achieved by running our algorithm

for only one iteration. For subgraph matching as seen in Figure 5.6, a higher value

of α achieves better matching quality. For subgraph matching, the task is normally

to locate a query graph in a larger one, i.e., which subgraph from the larger graph

is highly similar to the query graph. A higher value for α means that our algorithm

requires more iterations to find such a subgraph. For subgraph matching, we assign

α a value of 0.0001. This value is a compromise between the matching accuracy and

the scalability.

Figure 5.7 shows the effect of α on common subgraph matching. Notice that one

iteration of our algorithm gives a matching accuracy of 96.5 %. The best matching

accuracy occurs when α = 0.01, which is the value used for the rest of our experiments

and for common subgraph matching. When comparing Figures 5.7 and 5.6, we see a

different effect of α on the matching accuracy. This is because the common subgraph

between the California road network and its distorted version has very little spatial

and structure differences. As a result, the initial match computed at the first iteration

gives high matching accuracy. However, for subgraph matching, there are significant
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Figure 5.7: The effect of the convergence threshold α on the accuracy of common
subgraph matching.

spatial and structure differences between the two compared graphs. For subgraph

matching, a higher matching accuracy is achieved when running the algorithm for

more iterations using higher values for α.

5.4.2 Matching Quality

In this section, we test the matching quality of our algorithm against the three match-

ing algorithms MixModel, CSv1, and Heat. First, we discuss the matching ac-

curacy for subgraph matching, then, we analyze the results for common subgraph

matching.

Subgraph Matching

We use the California road network for subgraph matching. From this road network,

we extracted 5 initial subgraphs. From these 5 subgraphs, we created two datasets

such that each one has 20 graphs. The first dataset was created by applying only

structural distortion for the initial 5 subgraphs. The second dataset was created by

using only spatial distortion [3]. Distortion is applied at an increasing level. We

computed the amount of distortion needed to make an initial subgraph non-similar

to the distorted one. Then, we divide this amount to create four levels of distortion

such that each distortion level is represented by 5 subgraphs. We compare the graphs
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Figure 5.8: The effect of spatial differences on the matching accuracy for subgraph
matching.

at each distortion level against the California road network and average the matching

accuracy.

Figure 5.8 shows the effect of spatial distortion on the matching accuracy for dif-

ferent matching algorithms. The value reported under 0X is the accuracy of matching

the initial 5 subgraph against the California road network. This can be seen as an

instance of the exact matching problem since the initial 5 subgraphs do not have any

distortion with respect to the California road network. As one can see, our proposed

algorithm VEM comes in the second place. The best matching accuracy is for our

algorithm MixModel, Chapter 4. This is because the latter algorithm uses more

information about the overall graph structure. The Heat algorithm has nearly zero

matching accuracy for all levels of distortions. This demonstrates the weakness of

spectral approaches for matching graphs that differ in their sizes. On the other side,

CSv1 gives better results thanHeat even though the global connectivity of the graph

is not considered by textbfCSv1. We conclude that our proposed vertex similarity

metric, Section 3.3.2, which is used by both VEM and CSv1, is very efficient in

finding similar vertices.

Figure 5.9 shows the relationship between the structural differences and the match-

ing accuracy for different matching algorithms. Additionally to this test, MixModel

gives the best result and Heat gives the worst result. Even though MixModel gives

higher matching accuracy than VEM, it does not scale well as VEM, as will be

shown later.
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Figure 5.9: The effect of structural differences on the matching accuracy for subgraph
matching.

Common Subgraph Matching

The accuracy for common subgraph matching is tested by using all three road net-

works: California, North America, and the city of Oldenburg. From each road network

we created another distorted graph [3]. To this end, initially, each road network is

clustered into groups of vertices. Then, distortion is applied to some of the clusters

to make them non-similar. The remaining clusters are left without any distortion

to create a common subgraph. We matched each graph with its distorted version

and computed the matching accuracy. We show an example in Figure 5.10 for the

California road network and its distorted graph.

Figure 5.11 shows the accuracy for common subgraph matching for the three road

networks. The results show that our proposed algorithm outperforms the related

graph matching algorithm. The matching accuracy for our algorithm is nearly 100%

for the three road networks. The difference in the matching accuracy between Mix-

Model and VEM is statistically insignificant. This is because the common subgraph

between any two compared graphs has very little distortion. On the other hand, the

distortion between the graphs was higher for subgraph matching. As a result, Mix-

Model gives the best result. Even for common subgraph matching, heat performs

the worst. This shows again that spectral approaches are sensitive to structural and

spatial changes.
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Figure 5.10: The California road network and its distorted graph. The subgraph in
the black polygon highlights the non-common subgraph between them.
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Figure 5.11: Common subgraph matching accuracy by using different road networks.

5.4.3 Scalability Study

In this section, we compare the scalability with respect to graph size for the four

graph matching algorithms. We report the runtime for common subgraph matching

from Section 5.4.2. All experiments were carried out on an Ubuntu 12.04 platform

with an Intel Core i5 CPU with 8GB RAM. For matrix operations we used Armadillo,

which is a C++ linear algebra library [107].

Figure 5.12 shows all three road networks with the number of vertices for each.

As one can see, our proposed algorithm VEM scales well with respect to the graph
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Figure 5.12: Scalability with respect to graph size reported as the runtime required
to match different graphs.

size. It scales better than both MixModel and CSv1 because the latter two algo-

rithms use Munkres’ algorithm, which runs in cubic time with respect to the graph

size. The Heat algorithm requires the longest runtime. This algorithm uses matrix

decomposition to compute the Eigenvectors for each of the graphs followed by SVD

for their similarity matrix. However, matrix decomposition and SVD face scalability

problems with dense and large matrices making Heat the slowest algorithm [107].

5.5 Summary and Discussion

In this chapter, we proposed a novel graph matching algorithm that has high scalabil-

ity with respect to graph size and high matching accuracy. To improve scalability, we

proposed to embed the vertices of different graphs into vector-spaces. This enables

us to find the similarity between two vertices in constant time compared to a cubic

runtime complexity in the case of using the cyclic string edit distance. Our embed-

ding scheme is considered a special case of the Lipschitz embedding where each axis

of the embedded space is spanned by the distances to a reference object. To embed

the vertices of a graph into a vector space, initially, the graph is decomposed into a

multi-set of vertex signatures such that each vertex signature represents the neighbor-

hood of a vertex. Then, prototypes of vertex signatures are provided. The coordinate

of a vertex in the embedded space is defined by the vector of distances between that

vertex and the set of prototypes. To select a representative set of prototypes, we
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discussed three different prototype selection methods. After embedding the vertices

of different graphs into the vector space, we proposed a probabilistic graph matching

algorithm that combines both the similarity in the embedded space with structural

compatibility. Our algorithm starts with an initial match between the two graphs

and iteratively improves and expands it. At each iteration, the similarity between

two vertices is refined in a voting scheme. The vertices of the match that is computed

in a previous iteration are used to estimate the similarity of any pair of vertices from

the two graphs to be compared.

Using representative geometric graphs that are extracted from road networks,

our algorithm outperforms related algorithms in terms of scalability and matching

accuracy. However, our algorithm proposed in Chapter 4 outperforms the algorithm

that is proposed in this chapter for subgraph matching.

All the previous chapters discuss the problem of matching geometric graphs in 2D

space. However, a crucial task for many scientific applications is to search a graph

database for similar graphs. Since computing the similarity between two graphs runs

in cubic time complexity, as proposed in this chapter and Chapter 4, a linear search

of the graph database takes too much time. As a result, filtering and verification

techniques are used to prune non-similar graphs before solving the graph matching

problem, which will be detailed in the following chapter.



Chapter 6

Geometric Graph Similarity Search

In the previous chapters, we discussed the matching problem for geometric graphs in

2D space. We proposed algorithms that approximate the optimal solution and run

in cubic time complexity with respect to graph size. In this chapter, we turn our

attention to the geometric graph similarity search problem, which formalizes the task

of discovering all graphs in a database that are similar to a query graph. For example,

in bioinformatics, the task is to search a database to find proteins that are similar to

a newly discovered one; in image analysis, users search an image database for similar

images or search a database for similar fingerprints.

6.1 Problem Definition

A well-known approach to estimate the similarity of graphs is by utilizing solutions to

the graph matching problem. The more similar vertices the two graphs have the more

similar the graphs are. The common subgraph concept adopts this approach such that

the similarity between two graphs increases when the size of their maximum common

subgraph increases [54]. Unfortunately, such a solution is based on the concept of

exact graph matching, which cannot estimate the similarity between graphs that differ

in structure and labeling information. As a result, graph edit distance is proposed

to estimate the similarity between graphs in several scientific applications, such as

computer vision, character recognition, and many more [47].

A typical task for many applications is to retrieve all graphs, from a graph

database, that are highly similar to a query graph Q. Such a task can be classified

into two types: 1) k-nearest-neighbor queries and 2) range queries. In this chapter,

we are interested in range queries with graph edit constraints.

135
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Definition 6.1. (Graph Range Query Problem) Given a graph database D =

{G1, G2, . . . , G|D|} and a query graph Q, the range query problem is to find all graphs

Gi ∈ D such that the graph edit distance between Gi and Q is less than a threshold τ .

Since computing the exact graph edit distance is an NP-hard problem [134], a

sequential search of a graph database takes too much time. Even a graph matching

heuristic, such as the one we proposed in the previous chapter, takes too much time

when applied to all the graphs in a database. As a result, filtering and verification

techniques are used to initially filter non-similar graphs and later verify the candidate

similar graphs using graph edit distance. There are three criteria that should be

guaranteed by such a filtering approach:

1. There are no false negatives. This means that there are no filtered graphs that

satisfy the range threshold τ . To guarantee this condition, the filtering step

utilizes a graph distance function d(G,Q)lower that is a lower bound to the

graph edit distance d(G,Q). The main idea is that if d(G,Q)lower > τ then

for sure d(G,Q) > τ . As a result, graph G does not satisfy the range query

threshold and can be safely filtered out.

2. The runtime complexity of the filter step is less than the complexity of the

verification step. Otherwise, using the filter step becomes a bottleneck and not

an advantage.

3. The higher the percentage of the pruned graphs the better the filtering approach.

It is always true that the tighter the lower bound d(G,Q)lower to the graph edit

distance d(G,Q), the higher the percentage of pruned graphs.

Most of the pruning approaches with graph edit distance constraints suppose the

vertices or/and the edges are labeled based on a discrete alphabet. Also, most of the

lower bound distances are defined based on the number of edit operations that are

used to make two graphs identical [53, 123]. In other words, a Dirac function of the

labels of the vertices and edges is used to estimate the costs of their edit operations,

where the distance is 1 if the labels of two vertices/edges are different and 0 otherwise.

Unfortunately, these two assumptions are not valid in the case of solving range queries

for geometric graphs. First, the vertices are assigned coordinates as real-valued labels

and not discrete. Second, using the number of edit operations does not capture the

spatial similarity between two graphs. As a result, the real-valued cost of the edit

path must be used instead. Such requirements make it hard to formalize a lower
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bound to the graph edit distance for geometric graphs, which is stated explicitly by

Cheong et al. [26].

In this chapter, we study range queries for geometric graphs in 2D space. Since it is

very hard to formalize a tight lower bound to the graph edit distance, we use another

graph distance measure that has the flavor of a graph edit distance. Such a distance

measure is built based on the similarity of the vertices of two geometric graphs and

the Hungarian algorithm. To speed up the search for similar vertices to the vertices

of the query graph, we propose a vertex-based index structure. For this, we adopt

the vertex embedding technique proposed in Chapter 5. First, all the vertices of a

graph database are represented as vectors of their distances to a set of prototypes.

Then, the vectors are indexed by the well-known R-tree structure. We also propose

three distance functions that are considered lower bounds to the geometric graph

distance. The first one utilizes highly similar vertices, which are retrieved from the

R-tree, to estimate the distance between different graphs. The second one is based

on the concept of graph norm, which is defined based on the insertion costs of the

vertices of a graph. The third uses a lower bound to the substitution cost of two

vertices and the Hungarian algorithm to estimate the overall graph similarity.

The remainder of this chapter is organized as follows. Section 6.2 discusses re-

lated work. In Section 6.3, we propose our geometric graph indexing framework. In

Section 6.4, we empirically evaluate our proposed solution. Section 6.5 summarizes

the chapter.

6.2 Related Work

A crucial task for many graph-based applications is to retrieve relevant graphs from

a graph database given a query graph. Since graph problems, such as graph iso-

morphism or frequent subgraph discovery, are very complex, a sequential search of a

graph database takes too much time. Several graph indexing structures and pruning

techniques that support graph query processing have been proposed, which can be

classified into two main categories: containment queries and similarity queries.

A containment query searches for a graph G from a graph database such that there

is a subgraph isomorphism between G and a query graph Q. Actually, most of the

indexing structures proposed in the literature support containment queries. The main

idea of such approaches is to index and prune non-similar graphs based on frequent

or discriminative graph substructures. This includes path-based approaches such

as GraphGrep [113], frequent subgraph-based approaches such as gIndex [132] and
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FG-Index [25], frequent and discriminate subtrees-approaches such as TreePi [135],

Swift-Index [111], and Tree+∆ [137], and coding-based approaches such as GCoding

[142] and GString [60].

The second class of indexing structures is dedicated to support graph similarity

search. Given a similarity threshold τ and a query graph Q, the user is interested

in retrieving every graph G from a graph database such that the graph edit distance

between Q and G is less than τ .

A naive approach to prune non-similar graphs is by using the difference in the

number of vertices and edges [134], or the difference in the labels of the vertices

and edges [131]. However, the pruning power of such naive approaches is very limited

since the structure of the graphs is not considered. Substructure-based approaches are

proposed to solve this problem. The main idea is to extract substructures as features

from each graph. Then, a count-based lower bound to the graph edit distance is used

to prune non-similar graphs. To retrieve features similar to the features of a query

graph, different indexing approaches have been proposed based on the structure of

the features. In the following, we categories such approaches based on the extracted

graph feature.

• (Tree-based): a tree feature approach has been introduced by Wang

et al. [123]. Each graph is decomposed into a multi-set of k -adjacent trees

(k-AT), which is the breadth first search tree rooted at each vertex with hight

k. The vertices at the same level of the tree are sorted based on the canonical

order of their labels. The authors propose a lower bound to the graph edit

distance based on the number of common k -adjacent trees. To index and

organize the k -AT of all graphs, they introduce a k -AT lattice.

• (Star-based): Wang et al. [124] propose a star feature approach called SE-

GOS. The star structure is defined by a vertex, its incident edges, and the set

of direct neighboring vertices [134]. They give a lower bound to the graph edit

distance based on the best assignments of stars using the Hungarian algorithm

[134]. For indexing, they suggest a two level indexing structure. The first level

maps a label to star structures, and the second level maps a star structure to

graphs.

• (Path-based): Zhao et al. propose GSimJoin, which is a path feature ap-

proach [131, 138]. They give a count-based lower bound to the graph edit

distance based on the common paths of two graphs. To organize the paths

extracted from the graph database, they use an inverted index that maps each
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path to the graphs that contain it. Since some paths may exist in nearly every

graph of the database, they suggest a prefix filtering technique to prune graphs

that do not guarantee the range query threshold. To obtain a smaller candidate

set, they choose rare labels as the prefixes of the paths. They also use a pruning

technique based on the non-common paths of two graphs.

• (Branch-based): recently, a branch approach has been presented [139], which

is a star structure that does not include the direct neighboring vertices and

only includes the incident edges. To efficiently search for similar branches, they

propose an indexing structure called branch-tree where all leaves are graphs

and non-leaves represent the information union of their child nodes. Such a

concept is similar to the closure-tree concept [53] except that the internal nodes

store branch unions instead of graph unions. They also give a lower bound to

the graph edit distance by solving the assignment problem between the branches

of two graphs.

There are two common assumptions made by the above indexing and pruning

techniques. First, most of the lower bounds proposed are based on the number of

edit operations between two graphs and do not consider the difference in the labeling

information. Second, most of the indexing structures suppose a discrete label alpha-

bet with a canonical order. Unfortunately, geometric graphs do not guarantee such

assumptions. Spatial properties are real-valued numbers and are not discrete. On

the other hand, the number of edit operations cannot estimate the spatial similarity

between two graphs. As a result, most of the previous approaches are not applicable

and cannot handle geometric graphs.

For geometric graphs, one can only find a very few indexing structures that support

similarity search. Remember that geometric graph similarity should handle invariance

under geometric transformation, as we already stated before. As a result, using

a spatial index structure, such as a Quad-tree, cannot retrieve similar coordinates

under geometric transformation.

To the best of our knowledge, geometric hashing is the only index structure that

supports similarity between the coordinates of different vertices taking into consider-

ation geometric transformations [125]. The basis of this approach is to create several

local frames for the neighborhood of each vertex, which is defined again by that vertex

and its direct neighbors. Then, the coordinates of the vertices in the neighborhood of

a vertex are measured with respect to each local frame. After that, hashing is used to

speed up the search for the local frame that best estimates the distance between two



140 CHAPTER 6. GEOMETRIC GRAPH SIMILARITY SEARCH

vertices. Geometric hashing is efficient in the case of matching vertices that have a

homogeneous transformation, i.e., a affine transformation. But, in the case of inexact

matching, such an approach fails to correctly estimate the similarity of the vertices.

6.3 Geometric Graph Indexing

In this section, we propose our novel framework to tackle the range query problem for

geometric graphs in 2D space. We follow a star-based approach utilizing the vertex

signatures concept. We propose several pruning techniques that guarantee no false

negatives and a recall of 100%. Our proposed framework consists of two layers. The

first layer searches for vertices similar to the vertices of a query graph. For this, we

propose a vertex-based indexing structure that allows to efficiently retrieve similar

vertices. Based on the common similar vertices, the first layer generates the first set of

candidate similar graphs, which is then passed to the second layer of our framework.

The second layer consists of two filtering approaches that prune non-similar graphs

before computing the geometric graph similarity. In the following, we outline our

framework before detailing its components.

1. First Layer. The core of the first layer is an index structure that supports

the search for vertices similar to the vertices of a query graph. Initially, all

vertices of the graphs of in a database are embedded into a higher dimensional

space using our previously proposed method (Chapter 5). Then, an R-tree is

used to store and index all vertices using their vector-based representations.

For querying, all vertices of the query graph are embedded into the same higher

dimensional space. Then, the R-tree is used to retrieve all vertices that are

similar, within a certain threshold, to the vertices of the query graph.

Based on the set of candidate similar vertices, the first layer builds the first set

of candidate similar graphs to be processed by the second layer. This can be

done through an inverted index that links each vertex to its graph. The first

layer estimates a lower bound to the geometric graph distance by utilizing 1)

the set of common vertices, 2) the set of non- common vertices from the smaller

graph, and 3) the set of non-common vertices from the larger graph.

2. Second Layer.

Two pruning approaches are used by the second layer to filter non-similar

graphs. The first approach employs the concept of graph norm, which is the
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sum of the insertion costs of all the vertices of a graph. We prove later that

the difference between the norms of two graphs is a lower bound to the dis-

tance between the two graphs. The second pruning approach is a tighter lower

bound of the distance between geometric graphs. However, the computational

complexity of such an approach is more than the complexity of the norm-based

approach. To compute the second lower bound between two graphs G and Q,

first, a distance matrix is created such that each entry di,j represents a lower

bound to the vertex edit distance between the two vertices vi ∈ G and uj ∈ Q.

In other words, each entry represents a lower bound to the substitution cost be-

tween two vertices from the two graphs. Then, the Hungarian algorithm is used

to find the cost of the best assignment between the vertices of the two graphs.

Such cost is eventually considered a lower bound to the distance between the

two graphs.

Figure 6.1 outlines our geometric graph search framework. The two layers are

highlighted inside the rectangles in bold. In the first layer, the inverted index is

used to link each vertex to its graph id and its embedding coordinate. Notice that

we maintain a global id among all the vertices from the graphs. Given a vertex v

and its embedding, an R-tree is used to retrieve vertices highly similar to v. In the

second layer, the two pruning approach are used to prune non-similar graphs to the

query graph. Notice that the second layer also uses the inverted index to access the

embedding of the vertices of different graphs.

6.3.1 Geometric Graph Distance Measure

In this section, we formalize our graph distance measure that is used to estimate the

similarity between two geometric graph in 2D space. Since it is hard to formalize a

lower bound to the geometric graph edit distance, we propose a distance measure that

is highly related to the graph edit distance concept and easier to analyze. Several

concepts that were introduced in Chapter 3 are going to be used to formalize our

graph distance measure. Mainly, we are interested in the vertex edit distance, and

our solution uses the polar distance-based edit operations (Section 3.3.2).

Definition 6.2. (Vertex Substitution) Given two vertices v and u with their vertex

signatures S(v) and S(u), respectively, the substitution cost between the two vertices

c(v → u) is computed by the vertex edit distance between S(v) and S(u) using the

polar coordinates edit operations.
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Dataset of Graphs

Query Graph

Embedding

Candidate Similar Vertices

First Layer Candidate Similar Graphs

Norm Distance Pruning

Lower Distance Pruning

Candidate Similar Graph

Second Layer

Indexing

R-tree

First Layer

Vertex ID Graph ID Vertex Number Embedding
id1 G1 v1 embed(v1)
...

...
...

...
idn Gm v|Gm| embed(v|Gm|)

Inverted Index

uses the inverted index

Figure 6.1: Proposed geometric graph search framework consisting of two layers.
The first combines both an inverted index and an R-tree. The second layer has two
pruning techniques to filter non-similar graphs.

Definition 6.3. (Vertex Insertion/Deletion) Given a vertex v and its spatial

feature Fv = [f1, f2, . . . , fdeg(v)], the insertion cost of vertex v c(ε → v) and the

deletion cost c(v → ε) are computed as:

c(ε→ v) = c(v → ε) =

deg(v)
∑

i

c(λ→ fi)

such that c(λ→ fi) is the insertion cost of fi as proposed in Equation 3.8.

Definition 6.4. (Vertex Distance Matrix) Given two geometric graphs G and Q,

m = |G|, n = |Q|, and m ≤ n. The vertex distance matrix C is defined as:
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C =














1 2 . . . n

1 c1,1 c1,2 . . . c1,n
...

...
. . .

...

m cm,1 cm,2 . . . cm,n

m+ 1 cε,1 cε,2 . . . cε,n
...

...
...

...
...

n cε,1 cε,2 . . . cε,n














where ci,j denotes the substitution cost c(vi → uj) of the two vertices vi ∈ G and

uj ∈ Q and cε,j denotes the insertion cost c(ε→ uj) of vertex uj ∈ Q.

Since different graphs have different numbers of vertices, the vertex distance ma-

trix is made a square matrix by padding it with the insertion costs of the vertices of

the larger graph. This can be interpreted as if the smaller graph is padded with the

null, i.e., a non-existent vertex, to make its size equal the larger one.

Definition 6.5. (Geometric Graph Distance) Given two geometric graphs G and

Q with their vertex distance matrix C, the distance between the two graphs d(G,Q)

equals the cost of solving the assignment problem using C.

Normally, the solution of the assignment problem is represented by the bijective

function φ : {V (G), ε} → V (Q) that maps each vertex from G to a vertex from Q and

maps the unmatched vertices from Q to the (null) non-existent vertex ε. Based on

such a mapping function, the geometric graph distance d(G,Q) is simply computed

as:

d(G,Q) =
m∑

i=1

c(vi → φ(vi)) +
n∑

i=m+1

c(ε→ φ(ε)) (6.1)

Figure 6.2 shows an example of how we compute the distance between two ge-

ometric graphs. In the figure we see the vertex signatures of two graphs G and Q.

Solving the assignment problem produces the match between the two graphs, which

is represented by the dashed lines. In total there will be 4 vertex substitutions and

one vertex insertion. If we suppose the cost of such edit operations the values on the

arrows, then the distance between the two graphs is 50.

Our geometric graph distance (Definition 6.5) is a metric function. This is be-

cause a) the vertex edit distance, i.e., vertex substitution, b) the vertex insertion and

deletion costs are metric functions, and c) the Hungarian algorithm computes the

optimal solution to the assignment problem.
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Figure 6.2: The geometric graph distance based on solving the assignment problem
using the vertex distance matrix.

It is worth to notice that the distance function proposed in Definition 6.5 has

been used to approximate the graph edit distance for non-geometric graphs. Zeng

et al. prove that such a distance function can be used as a lower bound to the non-

geometric graph edit distance with certain assumptions [134]. On the other hand,

Justice and Hero prove that under different assumptions such a graph distance mea-

sure is an upper bound to the non-geometric graph edit distance [65]. In our case,

it is worth to put more efforts and try to study the relation between our geometric

graph distance and the exact solution to the geometric graph edit distance. In the

following, we are going to define the range query problem based on the geometric

graph distance measure given in Definition 6.5.

After introducing our geometric graph distance metric, in the following sections,

we detail our framework that helps in solving the geometric graph range query. Sec-

tion 6.3.2 outline the first layer of our framework. We formalize the vertex range

query problem in Section 6.3.3 and propose our solution that combines the idea of

vertex embedding and the well-known R-tree structure. Then, in Section 6.3.4, we

discuss how to prune non-similar graphs based on the set of candidate similar ver-

tices. Section 6.3.5 details the second layer of our framework with its two pruning

approaches.
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6.3.2 Indexing Structure

The main task of the first layer is to use the common similar vertices between a query

graph and the graphs in a database to generate a set of candidate similar graphs.

Notice that the similarity between two vertices is estimated by the similarity of their

vertex signatures. To fulfill such a task, two questions should be answered:

1. How to efficiently retrieve vertices similar to the vertices of a query graph, which

is what we call the vertex range query problem and will be detailed in Section

6.3.3.

2. Given a set of common similar vertices between two graphs, how to estimate

the overall graph similarity, taking into consideration the lack of information

about the similarity of the non-common vertices. We will discuss this problem

in Section 6.3.4.

6.3.3 Vertex Range Query Problem

Since our framework follows a substructure-based approach, i.e., vertex signatures in

our case, an efficient indexing structure is needed to retrieve vertex signatures similar

to the vertex signatures of the query graph. For this, we formalize the vertex range

query problem as follows:

Definition 6.6. (Vertex Range Query Problem) Given a database Ds =

{S(v1), S(v2), . . . , S(v|Ds|)} that contains vertex signatures from all the graphs of a

graph database D, and a query vertex signature S(vq), the vertex range query problem

is to find all vertex signatures S(vi) ∈ Ds such that the vertex edit distance between

S(vi) and S(vq) is less than a threshold µ.

Our framework does not explicitly index the database of vertex signatures Ds.

Instead, we convert such an indexing problem to the indexing of higher dimensional

data by utilizing our vertex embedding scheme (Chapter 5). The first layer of our

framework first embeds all the vertex signatures in Ds into a higher dimensional space

using a pre-defined set of prototypes. To select the prototypes, we follow the spanning

prototype selection method as defined in Algorithms 5.2 (page 115). It initializes the

prototype set by the median vertex signature from a training dataset. Then, the

vertex signature that has the farthest distance from the already selected prototypes

is selected. We also add the null prototype to the prototypes set, i.e., the null non-

existent vertex. The result of measuring the distance between a vertex signature and
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the null prototype equals the cost of inserting that vertex, which helps to efficiently

computed our lower bounds as will be detailed later.

After converting all the vertex signatures to the vector-based representation, an R-

tree is used to index and store all the vectors. For a query graph, first, all its vertices

are embedded into higher dimensional space. Then, given a vertex range threshold

µ, the R-tree is used to efficiently retrieve vertices similar to a query vertex.

A critical issue is definition of the value of the threshold µ. Suppose a query graph

Q and a graph G such that |Q| ≤ |G|. If the distance between the two graphs is within

τ , then there are at least two vertices from the two graphs v ∈ G and u ∈ Q such that

their substitution cost c(v → u) ≤ τ
|Q| . On the other side, if ∀vi, uj c(vi → uj) >

τ
|Q| ,

then the two graphs are not within a τ distance.

Unfortunately, the previous observation is only valid in the case where |Q| ≤ |G|.
On the other side, i.e., |Q| > |G|, using µ = τ

|Q| later leads to false negatives in terms

of similar graphs. In other words, there will be a graph G such that its distance with

respect to the query graphs is d(Q,G) ≤ τ and at the same time ∀vi ∈ G, c(vi →
φ(vi)) > µ. We give an example in Figure 6.2 to clarify this point. Suppose graph Q

is the query graph and τ = 50. If we consider µ = 10, then all the vertices of graph

G will be filtered by the R-tree. However, the distance between the two graphs is 50

and satisfies the range threshold τ .

Actually, the cause of this problem is that we do not know the size of graph G

in advance, other than that the problem is solved by dividing τ by the minimum

of both graph sizes. To overcome this problem, we utilize the insertion costs of the

vertices of the query graph to guarantee a value of µ without any false negatives.

The intuition is that if |Q| = |G|+ 1, then there are G substitutions and exactly one

insertion. If we assume the insertion cost x s.t. x < τ
|Q| , then, it is possible that |G|−1

substitutions have a total cost less than or equal (|G| − 1) τ
|Q| , and one substitution

has a cost less than or equal τ
|Q| +( τ

|Q|−x). In this case, the geometric graph distance

is x + (|G| − 1) τ
|Q| +

τ
|Q| + ( τ

|Q| − x), which is less than or equal τ . As a result, the

upper bound to the substitution cost becomes τ
|Q| + ( τ

|Q| − x). Since we do not know

the size of graph G, we utilize the upper bound of the number of insertions, which is

|Q| − 1. To define µ, we consider the minimum |Q| − 1 insertions of Q as follows:

µ =
τ

|Q| +
|Q|−1
∑

j=1
c(ε→uj)<

τ
|Q|

(
τ

|Q| − c(ε→ uj)

)

(6.2)
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where c(ε→ uj) is the insertion cost of vertex uj ∈ Q. Notice that the summation

includes the cost of an insertion c(ε → uj) only if it is less than τ
|Q| . On the other

side, an insert edit operation does not affect the upper bound of µ if its cost is less

than or equal τ
|Q| . Based on the above equation, the value of µ is considered as the

upper bound to the substitution cost between any two vertices from G and Q such

that d(G,Q) ≤ τ . As a result, we guarantee no false negatives.

6.3.4 From Similar Vertices to Similar Graphs

The first layer uses the set of similar vertices to generate a candidate set of similar

graphs. Notice that the set of similar vertices contains vertices from many graphs.

For this, the first layer uses an inverted index that links each vertex to its graph

id and its embedding vector-based representation. The first layer uses the inverted

index to group similar vertices that belong to the same graph. Given the vertices of

a query graphs Q and their most similar vertices from another graph G, how do we

know if the two graphs have a distance within the threshold τ?

To solve this problem, we divide the vertices of the two graphs G and Q into

three overlapping groups of vertices to define three different distances between them:

Cinsertion, Csimilar, and Cunmatched, as shown in Figure 6.3. We use such three dis-

tances to create the first layer graph distance function, which is a lower bound to the

geometric graph distance and is used to prune non-similar graphs.

Let m = |G| and n = |Q|. Without loss of generality, suppose m ≤ n. Let Gs be

the set of vertices from G that have similar vertices in Q, which is represented by the

vertices v1 and v3 in Figure 6.3. Also, let Qs be the set of vertices from Q that have

similar vertices in G, which is represented by the vertices u1, u2, and u3 in Figure

6.3. Notice that a vertex from Gs may be similar to more than one vertex from Qs,

and vise versa. Following these assumptions, we define the three graph distances as

follows:

1. Cinsertion. Let the set S = {s1, . . . , sn} contain the insertion costs of all the

vertices of Q in increasing order, then Cinsertion is the sum of the insertion costs

of the vertices of Q that do not have a corresponding vertex in G:

Cinsertion =
n−m∑

i=1

si (6.3)

Notice that when computing the graph distance d(G,Q), there will be |G| vertex
substitutions and n−m vertex insertions. For the graphs in Figure 6.3, Cinsertion
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Figure 6.3: Three groups of the vertices of two graphs are used to compute the first
layer graph distance.

equals the minimum insertion cost of the vertices of Q. This is because the

difference between the sizes of both graphs is 1. The insertion cost Cinsertion,

as defined above, is a lower bound to the insertion cost computed by the graph

distance d(G,Q). This is because we took the smallest n −m values of them.

However, when computing d(G,G), the Hungarian algorithm may select any of

the n−m insertions from the set S.

2. Csimilar. Without loss of generality, suppose |Gs| ≤ |Qs|, then Csimilar is com-

puted as the sum of the minimum distances between the vertices of Gs and

Qs.

Csimilar =
∑

v∈Gs

dmin(v,Qs) (6.4)

where dmin(v,Qs) is the minimum distance between v and the vertices of Qs as

retrieved from the R-tree. Notice that such a distance is computed based on

the Euclidean distance of the embedding of two vertices, which is a lower bound
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to their substitution cost as proved in Equation 5.4. As a result, Csimilar is a

lower bound to the sum of substitution cost between the vertices of Gs and Qs.

3. Cunmatched. Let h = min{|G|, |Q|}−min{|Gs|, |Qs|} define the number of vertices

from the smaller graph that have no similar vertices from the larger one, which

is represented by the vertices v2 and v4 in Figure 6.3. Then we define Cunmatched

as:

Cunmatched = h ∗ µ (6.5)

Since we use the vertex similarity threshold µ to filter non-similar vertices, any

pair of vertices that are not added to the candidate of similar vertices must have

an Euclidean distance greater than µ. As a result, any filtered pair of vertices

has a substitution cost greater than µ. This is because the Euclidean distance

between the embedding of two vertices is a lower bound to their substitution

cost. This makes Cunmatched a lower bound to the sum of the exact substitution

costs of the same h vertices.

Definition 6.7. (First Layer Graph Distance) The first layer graph distance

dfl(G,Q) is defined as:

dfl(G,Q) = Cinsertion + Csimilar + Cunmatched (6.6)

Lemma 6.1. The first layer graph distance dfl(G,Q) between the two graphs G and

Q is a lower bound to the geometric graph distance d(G,Q).

Proof. Cinsertion is a lower bound to the sum of insertion costs of the vertices of

the larger graph as computed by the geometric graph distance d(G,Q). Csimilar +

Cunmatched is a lower bound to the sum of substitution costs of the vertices of the

smaller graph. As a result, dfl(G,Q) ≤ d(G,Q).

By using the first layer graph distance, a set of candidate similar graphs is deter-

mined from the set of candidate similar vertices. Then, such candidate graphs are

passed to the second layer for further processing.

6.3.5 Lower Bound Distances

The second layer of our framework takes a set of candidate similar graphs and the

embedding of their vertices from the first layer. It uses two lower bounds to the
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geometric graph distance measure to prune non-similar graphs. The first one is not

tight and runs in linear time complexity with respect to the graph size. The second

lower bound is a tighter one and runs in cubic time complexity.

Definition 6.8. (Graph Norm) The norm of a graph G, m = |G|, is defined as:

‖ G ‖=
m∑

i

c(ε→ vi)

where c(ε→ vi) is the insertion cost of vertex vi ∈ G based on Definition 6.3.

The complexity of computing the insertion cost of a vertex vi, i.e., c(ε → vi), is

linear with respect to the degree of vi. As a result, the complexity of computing the

norm of a graph is linear with respect to its size.

Definition 6.9. (Graph Norm Distance) Given two graphs G and Q, their norm

distance is defined as:

dno(G,Q) = | ‖ G ‖ − ‖ Q ‖ | (6.7)

The norm distance between two graphs is defined as the Manhattan distance

between their norms. It is obvious from the above definition that the complexity of

computing such a distance is linear with respect to the graph size.

Lemma 6.2. The graph norm distance dno(G,Q) is a lower bound to the geometric

graph distance d(G,Q).

Proof. Given two geometric graphs G and Q, m = |G|, n = |Q|, m ≤ n. The

geometric graph distance between G and Q as a result of solving the assignment

problem can be written as:

d(G,Q) =
m∑

i=1

c(vi → φ(vi)) +
n∑

i=m+1

c(ε→ φ(ε))

For simplicity, we define v
′

i := φ(vi), and c(vi, v
′

i) := c(vi → φ(vi)). Using this,

d(G,Q) is written as:

d(G,Q) =
m∑

i=1

c(vi, v
′

i) +
n∑

i=m+1

c(ε, ε
′

)

From the triangle inequality, we have |c(ε, v)−c(ε, u)| ≤ c(v, u) for any two vertices

v and u. As a result, d(G,Q) is rewritten as:
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d(G,Q) ≥
m∑

i=1

|c(ε, vi)− c(ε, v
′

i)|+
n∑

i=m+1

c(ε, ε
′

)

Notice that for a finite set of real numbers,
∑

i |ri| ≥ |
∑

i ri| holds. Utilizing this,

we write the above equation as:

d(G,Q) ≥
∣
∣
∣
∣

m∑

i=1

c(ε, vi)− c(ε, v
′

i)

∣
∣
∣
∣
+

n∑

i=m+1

c(ε, ε
′

)

Since the insertion cost is positive, i.e., c(ε, ε
′
) ≥ 0,

n∑

i=m+1

c(ε, ε
′
) =

∣
∣
∣
∣

n∑

i=m+1

c(ε, ε
′
)

∣
∣
∣
∣
.

Also, for any two numbers a and b, |a|+ |b| ≥ |a+b|. By using these two observations,

d(G,Q) is rewritten as :

d(G,Q) ≥
∣
∣
∣
∣

m∑

i=1

c(ε, vi)− c(ε, v
′

i) +
n∑

i=m+1

c(ε, ε
′
)

∣
∣
∣
∣

≥
∣
∣
∣
∣

m∑

i=1

c(ε, vi)−
m∑

i=1

c(ε, v
′

i) +
n∑

i=m+1

c(ε, ε
′
)

∣
∣
∣
∣

Since c(ε, ε
′
) ≥ 0,

n∑

i=m+1

c(ε, ε
′
) ≥ −

n∑

i=m+1

c(ε, ε
′
). Using this, we rewrite the above

equation as:

d(G,Q) ≥
∣
∣
∣
∣

m∑

i=1

c(ε, vi)−
m∑

i=1

c(ε, v
′

i)−
n∑

i=m+1

c(ε, ε
′
)

∣
∣
∣
∣

≥
∣
∣
∣
∣

m∑

i=1

c(ε, vi)−
(

m∑

i=1

c(ε, v
′

i) +
n∑

i=m+1

c(ε, ε
′
)

)∣
∣
∣
∣

≥
∣
∣
∣
∣

m∑

i=1

c(ε, vi)−
n∑

j=1

c(ε, uj)

∣
∣
∣
∣

≥ | ‖ G ‖ − ‖ Q ‖ |
≥ dno(G,Q)

The norm distance lower bound is used to prune non-similar graphs. It runs in

linear time complexity with respect to graph size. In the following, we first define

a lower bound to the vertex substitution cost. Then, we use such a lower bound to

propose another tighter lower bound to the geometric distance measure that runs in
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cubic time complexity. Notice that in our framework we use different graph pruning

approaches. We apply them consecutively following their runtime complexity, i.e.,

in increase order. So even though the last approach uses the tightest lower bound

distance, it has the highest runtime complexity. Using such a pipeline of approaches

reduces the candidate set that is processed by the tightest lower bound and speeds

up query processing.

Definition 6.10. (Vertex Substitution Lower Bound) Given two vertices v and

u, a lower bound to their substitution cost, i.e., c(vi → uj), is defined as:

lbvi,uj
= max

{‖ ϕ(vi)− ϕ(uj) ‖√
k

, |c(ε→ vi)− c(ε→ uj)|
}

(6.8)

where ϕ : {V (G), V (Q)} → R
k is the embedding function of a vertex into a higher

dimensional space using our embedding scheme in Chapter 5. ‖ ϕ(vi) − ϕ(uj) ‖ is

the Euclidean distance between the embeddings of two vertices vi and uj, k is the

dimension of the embedding space, |c(ε→ vi)− c(ε→ uj)| is the Manhattan distance

between the insertion costs of two vertices vi and uj.

Notice that we have two lower bounds to the substitution cost between two ver-

tices. The first one is |c(ε → vi) − c(ε → uj)|, which is based on the insertion cost

of the two vertices. The second lower bound uses our embedding scheme. After the

embedding of the vertices of two graphs into a higher dimensional space using the

same set of prototypes, we proved in Equation 5.4 that
‖ϕ(vi)−ϕ(uj)‖√

k
is a lower bound

to the substitution cost. To have a tighter lower bound to the vertex substitution

cost, we take the maximum of both vertex lower bounds. Notice that computing the

substitution cost between two vertices runs in cubic time complexity with respect to

the vertex degree. However, both vertex lower bounds are computed in linear time

complexity with respect to the vertex degree.

Definition 6.11. (Lower Bound Vertex Distance Matrix) Given two geometric

graphs G and Q, m = |G| with n = |Q| and m ≤ n, the lower bound vertex distance

matrix LB is defined as:
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LB =














1 2 . . . n

1 lb1,1 lb1,2 . . . lb1,n
...

...
. . .

...

m lbm,1 lbm,2 . . . lbm,n

m+ 1 cε,1 cε,2 . . . cε,n
...

...
...

...
...

n cε,1 cε,2 . . . cε,n














where lbi,j is the lower bound to the substitution cost between the two vertices

vi ∈ G and uj ∈ Q, and cε,j denotes the insertion cost c(ε→ uj) of vertex uj ∈ Q.

Using such a distance matrix, in the following, we define the second lower bound

to the geometric graph distance.

Definition 6.12. (Graph Lower Mapping Distance) Given two graphs G and Q

with their distance matrix LB, the distance dlm(G,Q) between the two graphs equals

the cost of solving the assignment problem using LB.

Notice that the way we compute the graph lower mapping distance is similar to

the way we compute the geometric graph distance. The only difference is that instead

of using the exact vertex substitution cost we use its lower bound.

Lemma 6.3. The graph lower mapping distance dlm(G,Q) between the two graphs G

and G is a lower bound to the geometric graph distance d(G,Q).

Proof. Given the vertex distance matrix C ∈ R
n×n, the solution of the assignment

problem is the permutation matrix P ∈ {0, 1}n×n that minimizes the following ob-

jective function:

min
P∈P

n∑

i=1

n∑

j=1

cij pij (6.9)

where P is the space of all permutation matrices of size n × n subject to the

following conditions:

∀i ∈ {1, . . . , n},
n∑

j=1

pij = 1

∀j ∈ {1, . . . , n},
n∑

i=1

pij = 1 (6.10)

∀i ∈ {1, . . . , n}, j ∈ {1, . . . , n}, pij ∈ {0, 1}
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Let the permutation matrix PC be the solution to the assignment problem using

the distance matrix C and PLB be the solution to the assignment problem using

the lower bound vertex distance matrix LB. Then, the distance between two graphs

d(G,Q) is written as

d(G,Q) =
n∑

i=1

n∑

j=1

cij p
C
ij (6.11)

Since ∀i, j ∈ {1, . . . , n}, lbij ≤ cij, we rewrite d(G,Q) as:

d(G,Q) ≥
n∑

i=1

n∑

j=1

lbij p
C
ij (6.12)

The solution to the assignment problem is the permutation matrix that minimizes

the objective function, as a result

∀P ∈ P ,
( n∑

i=1

n∑

j=1

lbij p
LB
ij

)

≤
( n∑

i=1

n∑

j=1

lbij pij

)

(6.13)

which means that

( n∑

i=1

n∑

j=1

lbij p
LB
ij

)

≤
( n∑

i=1

n∑

j=1

lbij p
C
ij

)

(6.14)

Using this inequality, we rewrite d(G,Q) as

d(G,Q) ≥
n∑

i=1

n∑

j=1

lbij p
C
ij

d(G,Q) ≥
n∑

i=1

n∑

j=1

lbij p
LB
ij (6.15)

d(G,Q) ≥ dlm(G,Q)

To summarize, given a query graph Q and a graph database, our framework

first finds vertices from the graph database that are highly similar to the vertices of

the query graph. Then, it uses three lower bound distances to the geometric graph

distance to filter out non-similar graphs. The first one is used by the first layer and

uses the set of candidate similar vertices to generate a set of candidate similar graphs.

Then, the other two lower bounds are used by the second layer, which are the graph
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norm distance and the graph lower mapping distance. A graph that is not filtered by

any of these approaches is considered part of the final set of candidate similar graphs

and then verified using our geometric graph distance, i.e., Definition 6.5.

6.4 Experimental Evaluation

In this section, our proposed framework to tackle the search problem for 2D geometric

graphs is empirically evaluated. We evaluate our framework with respect to the

following criteria:

1. Pruning performance, which is measured by the average number of pruned

graphs over the total number of graphs in the database.

2. First layer vertex pruning performance, which is measured by the average num-

ber of pruned vertices, given a query vertex, over the total number of vertices

indexed by the R-tree.

3. The pruning performance of each of the proposed lower bound distances. This

includes dfl(G,Q), which is used by the first layer, dno(G,Q) and dlm(G,Q),

which are used in sequence by the second layer. For this, the pruning perfor-

mance of a lower bound distance is measured by the average number of pruned

graphs over the total number of graphs processed by that distance.

4. Time and space used to build our indexing framework as the size of the graph

database increases.

5. The response time of our framework. It is measured by the number of seconds

needed to retrieve the set of relevant similar graphs that satisfy the range query

threshold τ . This includes both the filtering time in addition to the verifica-

tion time. We also report the number of seconds each layer and each pruning

approach takes for a given query.

For our evaluations, we use three different datasets that come from a variety of

applications domains. This includes image processing, chemoinformatic, and charac-

ter recognition. We show some statistics of our datasets in Table 6.1 and detail each

of them in the following.

1. COIL-100 image dataset has 7200 images for 100 different objects [87]. Each

object creates a set of images by rotating the camera around that object in 3D.
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Dataset COIL-100 Chinese AIDS
Type Images Characters Chemical Compounds
Database size 6200 7820 42,234
Query set size 1000 1564 1000
Number of vertices in the R-tree 133,224 156,684 1,074,868
Average query size 21 31 33

Table 6.1: Statistics of the datasets being used to evaluate our indexing framework.

In other words, the dataset has images of objects taken from different angle

views. Notice that only a subset of this dataset has been used in the previous

chapters. For this test, we select randomly 1000 images as a query set, 10 images

for each object. The remaining images create a database of 6200 graphs.

2. The Chinese character dataset contains a total of 9384 characters that belongs

to 6 different fonts, i.e., 1564 characters from each font [1]. A query data set

of 1564 graphs is extracted from the Dotum Korean font. The remaining five

fonts build a dataset of 7820 graphs.

3. DTP AIDS Antiviral Screen chemical compound dataset [42]. It consists of

42,234 chemical compounds. In addition to the coordinates of the atoms, label-

ing information is assigned to the atoms indicating their types. Such a dataset

is considered the standard benchmark for the non-geometric graph indexing ap-

proaches [25, 53, 123, 124, 132, 135, 138, 139]. We select randomly 1000 queries

such that the query size is at least 24 vertices. This number is the upper limit

for the query size used by the non-geometric graph indexing approaches. For our

experiments, we consider only the spatial properties of the graphs and ignore

labeling information.

For all three datasets, to define the range threshold τ , we compute the exact

distance between every query and all the graphs in a database. Then, we assign τ for

a query Q to its minimum distance to all the graphs in the database. By this, the

graph G from the graph database such that d(G,Q) ≤ τ is the first nearest neighbor

graph to Q.

6.4.1 Index Construction

In this section, we elaborate on the performance of creating our indexing structure.

We measure this by the number of seconds needed to construct the index structure
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Figure 6.4: Number of seconds used to construct our proposed index structure. ”Em-
bedding” refers to the time spent to embed the vertices in a higher dimensional space.
”R-tree” is the time spent to construct the R-tree.

and its size in megabytes (MB). Remember that our indexing structure includes the

embedding of the vertices in a higher dimensional space, constructing an R-tree, and

constructing the inverted index. Since the time and space that are needed to construct

the inverted index are marginal compared to the other two steps, we remove it from

the figures. For this test, we use the AIDS dataset to create four different graph

databases with sizes of 10K, 20K, 30K, and 40K graphs.

Figure 6.4 shows the time needed to construct our indexing structure as the

database size increases. Since building the indexing structure consists of two steps,

embedding the vertices and constructing the R-tree, we report the time consumed by

each of them separately. The total time used to construct the index structure is the

sum of the times consumed by both of them. One can see from the figure that the

construction time increases linearly as the database size increases. This also applies

to both the embedding step and the R-tree construction step. From our experiments,

we see that each of the two steps consumes the same number of seconds. In addi-

tion to this, our experiments show a linear relationship between the increase of the

database size and the increase of the index size.

6.4.2 Pruning Performance

In this section, we test the pruning performance of our indexing framework. The

smaller the size of similar candidate graphs the more pruning performance we have.

Figure 6.5 shows the pruning performance of our proposed solution. One can see that

on average 94% of the graphs are pruned by our framework. The figure also shows the
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Figure 6.5: Pruning performance for different datasets. “Vertices” means the number
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Figure 6.6: The pruning performance for different layers and lower bound distances.
“Norm” denotes the norm distance dno(G,Q) . “Lower” denotes the lower mapping
distance dlm(G,Q).

percentage of the pruned vertices by the R-tree. We notice that on average more than

70% of the vertices indexed by the R-tree are pruned. This percentage is less than

the percentage of pruned graphs because we only use one lower bound distance to the

vertex substation cost to prune non-similar vertices. However, we use three different

lower bounds to prune non-similar graphs. Also, the more frequent vertex signatures

the graph database has, the less vertex pruning performance we get. An example for

this observation is the result of the AIDS dataset, which has a high percentage of

frequent vertex signatures.
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We also show the pruning performance for each of the proposed lower bound dis-

tances in Figure 6.6. It is true that the overall pruning performance of our framework

is more than 94%. But we want to know which layer and pruning approach of our

framework performs the best. The pruning performance of the first layer is a result

of first pruning non-similar vertices and then uses the lower bound dfl(G,Q) between

the query graph and candidate similar graphs.

From the figure, we see that in general the best pruning performance is for the

lower mapping distance. This is because it is the tightest lower bound to the geometric

graph distance. On the other side, the least pruning performance is for the norm lower

bound distance. This is because only the vertex insertion cost is used to estimate

such a distance, where neither the difference in the graphs’ sizes nor the substitution

costs of the individual vertices are considered.

We notice that our systems performs better for the AIDS dataset compared to

COIL-100 and Chinese datasets. This is because the edges in a chemical compound

have nearly the same length. As a result, the vertex degree is some how encoded by

the cost of vertex insertion, which is the sum of the lengths of the edges incident to

that vertex. However, graphs in the COIL-100 and Chinese datasets have edges with

high variation in their lengths. As a result, the insertion cost of two vertices maybe

similar even though their degrees are highly different. This happens when a vertex

has a low degree and edges with high lengths and the other vertex has many edges

and small edge length. As a result, the difference between their insertion costs is low

even though they are highly different.

We are also interested in measuring the pruning performance of our framework as

the range threshold τ increases. For this test, we use the Chinese characters dataset.

We used 5 different variations of the range threshold such that each one is defined by

increasing τ by a certain amount starting from 0.2× τ till 1.0× τ . For our analysis,

we average the size of the candidate similar graphs for different queries and measure

the overall pruning performance.

Figure 6.7 shows the pruning performance of each component of our framework

as the search threshold increases. This includes the first layer, the norm distance,

and the lower mapping distance. All are measured with respect to the percentage of

pruned graphs, as discussed previously. In the figure, +0X means that the threshold

is the minimum distance between a query graph and the graphs of the database.

To increase the threshold, we add to τ a percentage starting from 0.2 × τ , which is

indicated by +0.2X in the figure, till 1.0 × τ , which is indicated by +1.0X in the

figure. In other words, the last value means twice the minimum distance between



160 CHAPTER 6. GEOMETRIC GRAPH SIMILARITY SEARCH

Threshold

P
ru

n
e

 (
%

)

0
2

0
4

0
6

0
8

0
1

0
0

First Layer   

Norm

Lower

+0X +0.2X +0.4X +0.6X +0.8X +1.0X

Figure 6.7: The pruning performance of the different components as the range thresh-
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Figure 6.8: The percentage of the pruned graphs, candidate set, and relevant graphs
to the query graph as the range query threshold increases τ .

a query graph and the graphs of the database. Our results show that the lower

mapping distance has the highest pruning percentage with an average of 66%. The

norm distance prunes on average 15% of the set of candidate similar graphs produced

by the first layer. The first layer of our framework prunes on average 22% of the

graphs in the database.

Figure 6.8 compares the percentage of the pruned graphs to both the candidate

similar graphs retrieved by our framework and the percentage of the graphs relevant

to the query graph. One can see that most of the graphs in the database are pruned

by our framework. Notice that when we double the range query, which is indicated
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Figure 6.9: The response time of our approach compared with the base approach.

by +1.0X in the figure, still more than 36% of the graphs in the database are pruned

by our framework.

6.4.3 Response Time

In this section, we report the response time of our framework for the different datasets.

It is measured by the average number of seconds needed to retrieve the similar graphs

that satisfy the range threshold. This consists of both the filtering and the verification

times as stacked in Figure 6.9. Notice that the verification times for AIDS and Chinese

are marginal and does not appear in the figures. We also compare with the response

time of the base approach, which does not adopt any indexing nor pruning technique.

In average, we see that our approach reduces the response time by an amount of 77%.

We notice that the less the pruning power the more time the framework takes in the

verification step, which is clear for the COIL-100 dataset. On the other hand, our

system filters nearly 97% of the graphs for AIDS and Chinese, which leads to a high

filtering time and a low verification time.

We also detail the response time and zoom in to see how many seconds each layer

of our framework consumes to process a query graph in Figure 6.10. The first layer

denotes the time consumed by 1) accessing the R-tree, 2) merging similar vertices

to generate candidate similar graphs, and 3) applying the first layer lower bound

distance. The second layer denotes the time consumed by applying both the norm

and the lower mapping distances. Theoretically, the smaller the set of candidate

similar graphs generated by an approach the more time it takes. For example, for
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Figure 6.10: Time in seconds that is consumed by each component of our framework.

the AIDS dataset, we saw that the first layer prunes most of the graphs in the graph

database. As a result, the first layer takes more time than the second layer.

6.5 Summary

In this chapter, we discussed the geometric graph search problem. Given a geomet-

ric graph database and a query graph, the search problem is to efficiently retrieve

graphs from a database that are similar to the query graph within a certain range

threshold. For geometric graphs, we propose a distance function that estimates the

similarity between two graphs, which is defined based on concepts of the graph edit

distance. Initially, a vertex distance matrix is constructed from two graphs. Then,

the Hungarian algorithm is used to select the best mapping between the vertices of

the two graphs. Such a mapping is then used to estimate the overall graph distance.

Even with such a heuristic, a linear search of a graph database takes too much time.

To solve this problem, we propose a novel framework to efficiently prune non-similar

graphs before applying the geometric graph distance. Our framework consists of two

layers. The first one efficiently retrieves vertices highly similar to the vertices of the

query graph. For this, we propose to index the vertices of the graphs by an R-tree

after embedding them in a higher dimensional space. Then, the set of candidate

similar vertices is used to generate a set of candidate similar graphs. This is a ac-

complished by using both an inverted index that maps each vertex to its graph and a

lower bound distance function that utilizes the set of candidate similar vertices. The

second layer of our framework consists of two consecutive pruning approaches. The
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first one utilizes the concept of graph norm, which is defined by the insertion costs

of the vertices of a graph. The second pruning approach uses a lower bound to the

substitution cost of two vertices and the Hungarian algorithm to prune non-similar

graphs.

Using representative geometric graphs extracted from several application domains,

we showed the time and space needed to construct and store our index structure, the

pruning performance, and the response time to produce the set of candidate similar

graphs.
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Chapter 7

Conclusions and Future Work

Searching for similar objects is a vital task in many scientific applications, such as in

biology, chemistry, computer vision, and pattern recognition. For such applications

and many more, graphs have been used to model complex objects and relationships.

As a result, the task of finding similar objects is answered by finding similar graphs.

Basically, the similarity between two graphs consists of the similarity of the labels that

are assigned to the vertices and edges, in addition to the similarity of their structure.

Whereas the similarity between the labels can be easily computed, for example, using

the Euclidean distance, finding the structural similarity between two graphs is a

complex problem. The notion of structural similarity is typically formalized as the

graph matching problem, which searches for correspondences between the vertices of

two graphs such that the mapped vertices have similar structure.

Unfortunately, the inexact graph matching problem, which considers graphs that

differ in the number of vertices, structure, and labeling information, is proved to be

NP-hard [20, 26]. As a result, several authors proposed heuristics that approximate

the optimal solution. However, such approaches still face problems related to accuracy

and scalability.

7.1 Summary

In this thesis, we have proposed a novel framework to estimate the similarity and

matching of geometric graphs in 2D space. Such types of graphs have been used

by several application domains, such as drug discovery, protein analysis, image pro-

cessing, rout planning, and many more. Compared to state-of-the-art approaches,

our framework scales better, in terms of time and space, as graph size increases. It

has a higher matching accuracy when comparing graphs that differ in the number of

165



166 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

vertices, labeling information, and the spatial properties. And finally, it efficiently

supports a database search for similar graphs utilizing novel indexing and pruning

techniques.

Since the vertex similarity problem is the basis of any graph matching algorithm,

we start our contributions by tackling this problem. We proposed the vertex edit

distance to tackle such a problem, which we proved to be NP-hard. As a result, we

proposed an approach that approximates the optimal solution by utilizing the concept

of cyclic string edit distance.

To tackle the graph matching problem, we utilized the concept of vertex simi-

larity and proposed a probabilistic graph matching algorithm that is tolerant to the

differences between two graphs. It is based on a novel density function that estimates

the probability of matching any two vertices utilizing the vertex-to-vertex similarity

concept and the structure of both graphs. Then, a match between two graphs is com-

puted by maximizing a graph likelihood function using the well-known expectation

maximization technique.

To enable scalability with respect to graph size, we proposed a novel vertex embed-

ding scheme that bridges the gap between the vector and the graph representations.

For this, the vertices are represented by their distances to a given set of prototypes.

As a result, the similarity between two vertices is estimated by the Euclidean distance

in constant time. Based on this, we proposed a second graph matching algorithm that

iteratively improves and expands the match between two graphs. At each iteration,

the vertices of the match vote for the similarity of any two vertices from the two

graphs.

Finally, we proposed our novel indexing structure for geometric graphs in 2D space.

It helps to efficiently search a database for similar graphs. For this, we utilized our

approach to compute the similarity between different vertices, and our vertex em-

bedding approach. We proposed three graph similarity functions that are considered

lower bounds to the geometric graph distance function. Such lower bound distances

help to efficiently prune non-similar graphs before applying a graph matching algo-

rithm.

Throughout this thesis, we used different datasets that are extracted from a vari-

ety of applications domains, namely chemoinformatics, bioinformatics, geoinformat-

ics, character recognition, and image analysis. Empirically, our proposed approaches

outperformed state-of-the-art graph matching algorithms in terms of matching qual-

ity, classification accuracy, and scalability.
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7.2 Future Work

Obviously, there are still open issues that could be considered to extend our work. In

the following, we suggest directions for future work.

• Matching geometric graphs in 3D space. Till now, our graph similarity

framework tackles geometric graphs in 2D space. For future work, we recom-

mend to propose vertex similarity measures for graphs in 3D space. For this,

vertex edit operations that handle graphs under geometric transformations in

3D space must be proposed. On the other hand, all the modules of our frame-

work, i.e., the graph matching algorithms and the indexing structure, can be

naively used to match and index 3D graphs.

• Dimensionality reduction and vertex embedding. To extend our ver-

tex embedding scheme, it is worth to study the properties of the embedded

space. From our experiments, we noticed that our prototype selection methods

do not guarantee a space where all dimensions are mutually independent. In

this direction, we recommend to improve such a space by utilizing dimension-

ality reduction techniques. The result is a reduced space with higher matching

accuracy and less complexity.

• Hierarchical vertex embedding. Remember that our vertex embedding

scheme utilizes only the neighborhoods of the vertices. As a result, the overall

structure of the graphs is not preserved. For future work, we recommend to

extend our vertex embedding scheme by considering more information about

graph structure in a hierarchical style. The first level of the hierarchy is our

vertex embedding scheme in Chapter 5. The second layer uses the information

of both the first layer and the vertices that are within two hubs from each vertex,

and so on. We believe that such a hierarchal embedding scheme can be further

used for frequent subgraph discovery.

• Parallelized graph matching. Our proposed graph matching algorithms can

be easily parallelized using, for example, MapReduce [35]. Remember that our

algorithms estimate the similarity of any two vertices at each iteration, which

can be easily computed in parallel. In the context of a map-reduce framework,

any pair of vertices can be sent to a map job to estimate their similarity. Then,

the reduce job simply joins the similarities of the vertices together.
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• Lower bounds to the geometric graph edit distance. In this thesis, we

proposed graph matching algorithms that, in general, adopt the concept of edit

distance. However, till now, we do not have a mathematical analysis of the

relationship between the geometric graph edit distance and our graph match-

ing algorithms. In particular, in Chapter 6, we discussed a geometric graph

matching algorithm based on Bipartite graph matching. For future work, we

recommend to analytically study the relationship between such a graph match-

ing algorithm and the optimal solution to the geometric graph edit distance.



Appendix A

Datasets

One of the main goals of this thesis is to build a framework for graph similarity

and matching that can be used by several application domains. To empirically test

this, through the previous chapters, we used several datasets that are extracted from

a variety of application domains. Examples are chemoinformatic, bioinformatics,

geoinformatics, character recognition, and image analysis. In the following, we discuss

these datasets in more detail.

A.1 Road Networks

The field of road network analysis has been used as the basis for many geographic

information systems. A road network is normally modeled as a graph such that cross

roads are represented by vertices and road segments are modeled by edges. In addition

to this, latitudes and longitudes are used as labels for the vertices and the lengths of

the road segments are used as labels for the edges.

Our road network dataset contains three geometric graphs extracted from the

California, North America, and the city of Oldenburg road networks [4]. Since a

road segment between two intersections is represented by several nodes in the road

network, we simplified them using the Douglas Peucker algorithm [41], which is used

to simplify a curve by reducing the number of points that represent it. Table A.1

shows the number of vertices and edges for the simplified road networks.

From these three networks, we created two benchmarks. The first one is used

to test common subgraph matching algorithms, and the second one is for subgraph

matching. For the first benchmark, we create a distorted version from each road net-

work. For this, we use Itgrag [3], which is a package used to generate and distort geo-

metric graphs, to first partition the vertices of the road network into non-overlapping
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Table A.1: The number of vertices and edges for the three road networks. |V | and
|E| denote the number of vertices and the number of edges, respectively.

Road Network |V | |E|
California 1365 1990
City of Oldenburg 3494 4348
North America 7517 10088

Figure A.1: The California road network on left and its distorted version on right.

clusters [68], and then randomly introduce noise to the structure of some clusters in

addition to changing the locations of the vertices. Also, we change the location of

some clusters manually so that adjacent clusters become far apart. Figure A.1 shows

the California road network and its distorted version. For common subgraph match-

ing, each road network is matched to its distorted version to estimate the matching

accuracy.

For subgraph matching we created another benchmark from the California road

network. From this road network, we extracted 5 initial subgraphs such that the

average size of each subgraph is 104 vertices. From these 5 subgraphs, another dataset

of 40 subgraphs is generated. To do this, structural and spatial distortions are applied

to the 5 initial subgraphs using Itgrag [3]. Distortion is applied at an increasing level.

We computed the amount of distortion needed to make an initial subgraph non-similar

to the distorted one. Then, we divide this amount to create four levels of distortion

such that each distortion level is represented by 10 subgraphs.
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Figure A.2: Two glyphs from different fonts and their geometric graphs for the char-
acter with Unicode 9178.

A.2 Chinese Characters

The Chinese character dataset contains geometric graphs extracted from Chinese

character glyphs that belong to different fonts [1]. We choose six different fonts: two

Chinese, two Japanese, and two Korean. As seen in Figure A.2, the same Chinese

character is drawn in different ways in different fonts. This dataset contains a total of

9384 characters, 1564 characters from each font. To extract a geometric graph from

a glyph, the medial axis is computed. Small features are pruned and the Douglas

Peucker algorithm is used to simplify the medial axis [41].

We divide the characters into two datasets to conduct a classification experiment.

A test dataset of 1564 graphs is extracted from the Dotum Korean font. The remain-

ing five fonts build a training dataset of 7820 graphs. Ideally, for a graph from the

test dataset, its nearest graph from the train dataset should be a graph derived from

the same Chinese character.

A.3 CMU dataset

The CMU house and hotel datasets consist of images for a toy house and hotel,

subject to rotation in 3D [2]. The house dataset consists of a total of 111 images

(snapshots taken during a rotation). The hotel datasets has 101 images. To extract

graphs, 30 landmarks have been manually identified for each image representing graph

vertices [19]. Then, edges are created by Delaunay triangulation. Figure A.3 shows

two sample images with their geometric graphs. This dataset can be used to track
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Figure A.3: Two sample images and their geometric graphs form the CMU
house/hotel datasets [2]..

the same feature across different images taken at different time frames. Notice that

the differences between two snapshots increase when the elapsed time between them

increases.

A.4 IAM Graph Dataset

This dataset contains several benchmarks for graph matching and analysis [99]. For

our work, we choose three benchmarks that contain geometric graphs.

A.4.1 COIL-100

The COIL-100 dataset [87] consists of images of 100 different objects as shown in

Figure A.4. Each object creates a sequence of 72 images by rotating the camera

in 3D at pose intervals of 5 degrees. To extracted a geometric graph, the Harris

corner detection algorithm is used to extract features representing the vertices, then,

Delaunay triangulation is used to create the edges. The average sizes of the number

of vertices and edges are 21 and 53, respectively. From the COIL-100 dataset we

created two benchmarks. The first one is used to test graph indexing structures,

which consists of a database of 6200 graphs and 1000 query graphs. The second

benchmark is used for graph classification. It consists of a training dataset of 2400

graphs and a test dataset of 1000 graphs.
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Figure A.4: Sample images from the COIL-100 dataset [99].

A.4.2 AIDS

The AIDS antiviral screen dataset of active compounds consists of chemical com-

pounds that belong to one of two classes: active or inactive against HIV. A geometric

graph is extracted from each chemical compound such that the atoms are represented

by the vertices and the covalent bonds are represented by the edges. A vertex is also

labeled by the atom type, in addition to its coordinates in 2D space. An edge is

labeled by the valence of the linkage. We show an example of a geometric graph that

is extracted from the AIDS dataset in Figure A.5(a).

From the AIDS dataset we created two benchmarks. The first one is used to

test graph indexing structures and consists of 42,234 graphs. The second benchmark

consists of 2000 graphs and is used for graph classification. From a total of 2000

graphs, we use a training set of 1500 graphs: 300 active and 1200 inactive. For

testing we used 500 graphs.
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(a) A sample geometric graph from the
AIDS dataset.

(b) Sample images of the GREC data set
[39, 99, 103].

Figure A.5: Sample geometric graphs that are extracted from the AIDS and the
GREC datasets.

A.4.3 GREC

The GREC dataset consists of symbols of architectural and electronic drawings [39],

which are shown in Figure A.5(b). From 22 drawings a dataset of 1100 images is

created. Noise and distortions are used at different levels to create a set of 50 images

from each drawing. To extract a geometric graph from each image, intersections

and corners are used to create the vertices, which are assigned coordinates in 2D

space. Lines and arcs are used to create the edges. This benchmark is used for graph

classification. A training set of 814 and a testing set of 286 images are used. For each

class, 37 images for training and 13 for testing are chosen.



Bibliography

[1] CJK Fonts: Chinese, Japanese, and Korean Fonts. http://bookr-mod.

googlecode.com/files/cjk-fonts-1.zip. Accessed: 01/12/2011.

[2] CMU house and hotel datasets. http://vasc.ri.cmu.edu//idb/html/

motion. Accessed: 16/02/2012.

[3] Distort geometric graphs. https://code.google.com/p/itgrag/. Accessed:
23/12/2012.

[4] Road networks dataset. http://www.cs.utah.edu/~lifeifei/

SpatialDataset.htm. Accessed: 03/06/2013.

[5] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

[6] Tatsuya Akutsu, Kyotetsu Kanaya, Akira Ohyama, and Asao Fujiyama.
Point matching under non-uniform distortions. Discrete Applied Mathematics,
127(1):5–21, 2003.

[7] Helmut Alt and Leonidas J Guibas. Discrete geometric shapes: Matching,
interpolation, and approximation. Handbook of computational geometry, 1:121–
153, 1999.

[8] Ayser Armiti and Michael Gertz. Efficient Geometric Graph Matching Using
Vertex Embedding. In Proceedings of the 21st International Conference on
Advances in Geographic Information Systems, SIGSPATIAL’13, pages 234–243,
2013.

[9] Ayser Armiti and Michael Gertz. Geometric Graph Matching and Similarity: A
Probabilistic Approach. In Proceedings of the 26th International Conference on
Scientific and Statistical Database Management, SSDBM ’14, pages 27:1–27:12,
2014.

[10] Ayser Armiti and Michael Gertz. Vertex Similarity - A Basic Framework for
Matching Geometric Graphs. In Proceedings of the 16th LWA Workshops:
KDML, IR and FGWM, pages 111–122, 2014.

175



176 BIBLIOGRAPHY

[11] Xiang Bai and Longin Jan Latecki. Path Similarity Skeleton Graph Matching.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(7):1282–
1292, 2008.

[12] E. Balas and C.S. Yu. Finding a maximum clique in an arbitrary graph. SIAM
Journal on Computing, 15:1054, 1986.

[13] V.D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren. A
measure of similarity between graph vertices: Applications to synonym extrac-
tion and web searching. Siam Review, pages 647–666, 2004.

[14] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vish-
wanathan, Alex J. Smola, and Hans-Peter Kriegel. Protein Function Prediction
via Graph Kernels. Bioinformatics, 21(1):47–56, January 2005.

[15] J. Bourgain. On lipschitz embedding of finite metric spaces in Hilbert space.
Israel Journal of Mathematics, 52(1-2):46–52.

[16] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undi-
rected graph. Communications of the ACM, 16(9):575–577, 1973.

[17] H Bunke and G Allermann. Inexact graph matching for structural pattern
recognition. Pattern Recognition Letters, 1(4):245–253, 1983.

[18] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento. A comparison
of algorithms for maximum common subgraph on randomly connected graphs.
Structural, Syntactic, and Statistical Pattern Recognition, SSSPR’02, pages 85–
106, 2002.

[19] T. S. Caetano, T. M. Caelli, D. Schuurmans, and D. A. C. Barone. Graphical
Models and Point Pattern Matching. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(10):1646–1663, 2006.

[20] T.S. Caetano, J.J. McAuley, L. Cheng, Q.V. Le, and A.J. Smola. Learning graph
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(6):1048–1058, 2009.

[21] S.H. Cha. Comprehensive survey on distance/similarity measures between prob-
ability density functions. International Journal of Mathematical Models and
Methods in Applied Sciences, 4(2):300–307, 2007.

[22] Hung-Hsuan Chen, Liang Gou, Xiaolong (Luke) Zhang, and C. Lee Giles. Dis-
covering Missing Links in Networks Using Vertex Similarity Measures. In Pro-
ceedings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12,
pages 138–143, 2012.

[23] Hwann-Tzong Chen, Horng-Horng Lin, and Tyng-Luh Liu. Multi-object track-
ing using dynamical graph matching. In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, volume 2,
pages II–210–II–217 vol.2, 2001.



BIBLIOGRAPHY 177

[24] Jin Chen, Wynne Hsu, Mong-Li Lee, and See-Kiong Ng. NeMoFinder: dissect-
ing genome-wide protein-protein interactions with meso-scale network motifs.
In Proceedings of the 12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 106–115, 2006.

[25] James Cheng, Yiping Ke, Wilfred Ng, and An Lu. Fg-index: towards
verification-free query processing on graph databases. In Proceedings of the
2007 ACM SIGMOD International Conference on Management of Data, pages
857–872, 2007.

[26] O. Cheong, J. Gudmundsson, H.S. Kim, D. Schymura, and F. Stehn. Measuring
the Similarity of Geometric Graphs. Experimental Algorithms, pages 101–112,
2009.

[27] Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Reweighted random walks for
graph matching. In Computer Vision–ECCV 2010, pages 492–505, 2010.

[28] Minsu Cho and Kyoung Mu Lee. Progressive graph matching: Making a move
of graphs via probabilistic voting. In Proceedings of the 2012 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR’12, pages 398–405, 2012.

[29] Haili Chui and Anand Rangarajan. A new point matching algorithm for non-
rigid registration. Computer Vision and Image Understanding, 89(2-3):114–141,
2003.

[30] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[31] D. Conte, P. Foggia, and M. Vento. Challenging complexity of maximum com-
mon subgraph detection algorithms: A performance analysis of three algorithms
on a wide database of graphs. Journal of Graph Algorithms and Applications,
11(1):99–143, 2007.

[32] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty
Years Of Graph Matching In Pattern Recognition. International Journal of
Pattern Recognition and Artificial Intelligence, 18(3):265–298, 2004.

[33] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm
for matching large graphs. In 3rd IAPR-TC15 workshop on graph-based repre-
sentations in pattern recognition, pages 149–159, 2001.

[34] Eric H Davidson, Jonathan P Rast, Paola Oliveri, Andrew Ransick, Cristina
Calestani, Chiou-Hwa Yuh, Takuya Minokawa, Gabriele Amore, Veronica Hin-
man, Cesar Arenas-Mena, et al. A genomic regulatory network for development.
science, 295(5560):1669–1678, 2002.

[35] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.



178 BIBLIOGRAPHY

[36] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistcal Society, 39(B):1–38,
1977.

[37] Peter J. Dickinson, Horst Bunke, Arek Dadej, and Miro Kraetzl. Matching
graphs with unique node labels. Pattern Analysis and Applications, 7(3):243–
254, 2004.

[38] Reinhard Diestel. Graph theory. Springer-Verlag, New York, 4 edition, 2010.

[39] Ph. Dosch and E. Valveny. Report on the Second Symbol Recognition Contest.
In Graphics Recognition. Ten years review and future perspectives. Proceedings
of 6th International Workshop on Graphics Recognition, GREC’05, pages 381–
397, 2005.

[40] Prashant Doshi, Ravikanth Kolli, and Christopher Thomas. Inexact matching
of ontology graphs using expectation-maximization. Journal of Web Semantics,
7(2):90–106, 2009.

[41] D. H. Douglas and T. K. Peuker. Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature. The Canadian
Geographer, 10(2):112–122, 1973.

[42] Development Therapeutics Program DTP. AIDS Antiviral Screen, 2004. Ac-
cessed: 07/07/2014.

[43] P.J. Durand, R. Pasari, J.W. Baker, and C. Tsai. An efficient algorithm for
similarity analysis of molecules. Internet Journal of Chemistry, 2(17):1–16,
1999.

[44] Jack Edmonds and Richard M. Karp. Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems. Journal of the ACM, 19(2):248–264,
1972.

[45] M. A. Fischler and R. A. Elschlager. The Representation and Matching of
Pictorial Structures. IEEE Transactions on Computers, 22(1):67–92, January
1973.

[46] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. Image categorization:
Graph edit distance+edge direction histogram. Pattern Recognition, 41:3179–
3191, 2008.

[47] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit
distance. Pattern Analysis and Applications, 13(1):113–129, 2010.

[48] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.



BIBLIOGRAPHY 179

[49] Jaume Gibert, Ernest Valveny, and Horst Bunke. Graph embedding in vector
spaces by node attribute statistics. Pattern Recognition, 45(9):3072–3083, 2012.

[50] S. Gold and A. Rangarajan. A graduated assignment algorithm for graph
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(4):377–388, 1996.

[51] Edwin R. Hancock and Josef Kittler. Discrete relaxation. Pattern Recognition,
23(7):711–733, 1990.

[52] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[53] Huahai He and Ambuj K Singh. Closure-tree: An index structure for graph
queries. In Proceedings of the 22nd International Conference on Data Engi-
neering, ICDE’06., pages 38–38, 2006.

[54] D. Hidovic and M. Pelillo. Metrics for attributed graphs based on the maximal
similarity common subgraph. International Journal of Pattern Recognition and
Artificial Intelligence, 18(3):299–313, 2004.

[55] Gı́sli R. Hjaltason and Hanan Samet. Properties of embedding methods for
similarity searching in metric spaces. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 25(5):530–549, 2003.

[56] John E. Hopcroft and J. K. Wong. Linear Time Algorithm for Isomorphism of
Planar Graphs (Preliminary Report). In Proceedings of the sixth annual ACM
symposium on Theory of computing, pages 172–184, 1974.

[57] B. Huet and E.R. Hancock. Inexact graph retrieval. In Proceedings of the IEEE
Workshop on Content-Based Access of Image and Video Libraries, CBAIVL’99,
pages 40–44, 1999.

[58] Benoit Huet and Edwin R. Hancock. Relational Object Recognition from Large
Structural Libraries. Pattern Recognition, 35:1895–1915, 2002.

[59] Glen Jeh and Jennifer Widom. SimRank: a measure of structural-context sim-
ilarity. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 538–543, 2002.

[60] Haoliang Jiang, Haixun Wang, Philip S. Yu, and Shuigeng Zhou. GString: A
Novel Approach for Efficient Search in Graph Databases. In Proceedings of
the IEEE 23rd International Conference on Data Engineering, ICDE’07, pages
566–575, 2007.

[61] Xiaoyi Jiang and Horst Bunke. Optimal quadratic-time isomorphism of ordered
graphs. Pattern Recognition, 32(7):1273–1283, 1999.



180 BIBLIOGRAPHY

[62] S. Jouili, I. Mili, and S. Tabbone. Attributed graph matching using local de-
scriptions. In Advanced Concepts for Intelligent Vision Systems, pages 89–99,
2009.

[63] Salim Jouili and Salvatore Tabbone. Graph Matching Based on Node Signa-
tures. In Graph-Based Representations in Pattern Recognition, GbRPR ’09,
pages 154–163, 2009.

[64] Tommi A. Junttila and Petteri Kaski. Engineering an Efficient Canonical Label-
ing Tool for Large and Sparse Graphs. In Proceedings of the Ninth Workshop on
Algorithm Engineeringand Experiments and the Fourth Workshop on Analytic
Algorithms and Combinatorics, 2007.

[65] Justice and Hero. A Binary Linear Programming Formulation of the Graph Edit
Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28,
2006.

[66] U. Kang, Martial Hebert, and Soonyong Park. Fast and scalable approximate
spectral graph matching for correspondence problems. Information Sciences,
220:306–318, 2013.

[67] Richard M. Karp. Reducibility Among Combinatorial Problems. In Complexity
of Computer Computations, The IBM Research Symposia Series, pages 85–103.
Plenum Press, New York, 1972.

[68] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Par-
titioning Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–
392, 1998.

[69] Duck Hoon Kim, Il Dong Yun, and Sang Uk Lee. Attributed relational graph
matching based on the nested assignment structure. Pattern Recognition,
43(3):914–928, 2010.

[70] Jon Michael Kleinberg. Authoritative Sources in a Hyperlinked Environment.
Journal of ACM, 46(5):604–632, 1999.

[71] D. Knossow, A. Sharma, D. Mateus, and R. Horaud. Inexact Matching of Large
and Sparse Graphs Using Laplacian Eigenvectors. In Graph Based Representa-
tion for Pattern Recognition, GbR’09, pages 144–153, 2009.

[72] Ina Koch. Enumerating all connected maximal common subgraphs in two
graphs. Theory of Computer Science, 250(1-2):1–30, 2001.

[73] Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot L. Siegel, and Zenon
Protopapas. Fast Nearest Neighbor Search in Medical Image Databases. In
Proceedings of the 22th International Conference on Very Large Data Bases,
VLDB’96, pages 215–226, 1996.



BIBLIOGRAPHY 181

[74] H.W. Kuhn. The Hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[75] Michihiro Kuramochi and George Karypis. Discovering Frequent Geometric
Subgraphs. In Proceedings of the 2nd IEEE Conference on Data Mining,
ICDM’02, pages 258–265, 2002.

[76] A.N. Langville and C.D. Meyer. Deeper Inside PageRank. Internet Mathemat-
ics, 1(3):335–380, 2004.

[77] E. A. Leicht, Petter Holme, and M. E. J. Newman. Vertex similarity in networks.
Physical Review E, 73, Feb 2006.

[78] Marius Leordeanu and Martial Hebert. A Spectral Technique for Correspon-
dence Problems Using Pairwise Constraints. In Proceedings of the Tenth IEEE
International Conference on Computer Vision, ICCV’05, pages 1482–1489,
2005.

[79] Eugene M. Luks. Isomorphism of Graphs of Bounded Valence can be Tested
in Polynomial Time. Journal of Computer and System Sciences, 25(1):42–65,
1982.

[80] Bin Luo and Edwin R. Hancock. Structural graph matching using the EM
algorithm and singular value decomposition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(10):1120–1136, 2001.

[81] M. Maes. On a cyclic string-to-string correction problem. Information Process-
ing Letters, 35(2):73–78, 1990.

[82] J.J. McGregor. Backtrack search algorithms and the maximal common sub-
graph problem. Software: Practice and Experience, 12(1):23–34, 1982.

[83] BD McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87,
1981.

[84] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Jour-
nal of Symbolic Computation, 60:94–112, 2014.

[85] James Munkres. Algorithms for the assignment and transportation problems.
Journal of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

[86] Richard Myers, Richard C. Wilson, and Edwin R. Hancock. Bayesian Graph
Edit Distance. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(6):628–635, 2000.

[87] S. A. Nene, S. K. Nayar, and H. Murase. Columbia Object Image Library
(COIL-100). Technical report, Feb 1996.



182 BIBLIOGRAPHY

[88] Michel Neuhaus, Kaspar Riesen, and Horst Bunke. Fast Suboptimal Algorithms
for the Computation of Graph Edit Distance. In Structural, Syntactic, and
Statistical Pattern Recognition, SSPR’06, pages 163–172, 2006.

[89] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Oper-
ations Research. Springer, 1999.

[90] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1982.

[91] Odysseas Papapetrou, Ekaterini Ioannou, and Dimitrios Skoutas. Efficient dis-
covery of frequent subgraph patterns in uncertain graph databases. In Proceed-
ings of the 14th International Conference on Extending Database Technology,
EDBT’11, pages 355–366, 2011.

[92] Elzbieta Pekalska and Robert P. W. Duin. The Dissimilarity Representation for
Pattern Recognition: Foundations And Applications (Machine Perception and
Artificial Intelligence). World Scientific Publishing Co., Inc., River Edge, NJ,
USA, 2005.

[93] Elzbieta Pekalska, Robert P. W. Duin, and Pavel Pacĺık. Prototype selection
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