Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Theta-Reihen zum Gaußschen Zahlkörper und Borcherds-Lifts

Merz, Klaus

English Title: Theta-Series for the Gaussian number field and Borcherds lifts

[img]
Preview
Postscript, German
Download (1196Kb) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the persistent URL or the URN below, as we can guarantee their long-time accessibility.

Abstract

In dieser Arbeit werden spezielle orthogonale Modulformen als additive Lifts nach Borcherds im Fall der Signatur (2,4) konstruiert. Dieser Fall entspricht dem hermiteschen vom Grad zwei. Hier spielen die von Freitag eingeführten Theta-Reihen eine wichtige Rolle. Ihre Quadrate sind symmetrische Modulformen vom Gewicht zwei zur Hauptkongruenzgruppe der Stufe 1+i zum Determinantencharakter und sie erzeugen die Algebra der symmetrischen Modulformen zu dieser Gruppe. Ziel dieser Arbeit ist es, diese Theta-Reihen auf der orthogonalen Seite als additive Lifts zu konstruieren. Wir erhalten damit neue Aussagen über die Theta-Reihen und neue Beweise für bekannte Tatsachen. Insbesondere wird das genaue Transfomationsverhalten der Theta-Reihen und ihr Relationenideal bestimmt. Wir wählen dazu ein geeignetes Gitter und erhalten, daß der Raum der konstanten elliptischen Modulfomen zur Weil-Darstellung der Diskriminantengruppe dieses Gitters zwanzigdimensional ist. Nach Borcherds erhalten wir einen Raum von orthogonalen Modulformen zum Diskriminantenkern, welcher Dimension zehn hat. Wir finden eine Basis deren Elemente Zwangsnullstellen auf Heegner-Divisoren haben. Mit Hilfe eines multiplikativen Lifts nach Borcherds erhalten wir, daß diese Zwangsnullstellen die genauen Nullstellen der additiven Lifts sind. Wir geben einen Isomorphismus zwischen dem orthogonalen und hermiteschen Halbraum und eine Isogenie zwischen der orthogonalen bzw. hermitesch-symplektischen Gruppe an, die mit diesem Isomorphismus und den Operationen auf den Halbräumen verträglich ist. Unter diesem Übersetzungsmechanismus gehen die zehn additiven Lifts in die zehn Theta-Reihen über, wie mit Hilfe der Nullstellen gezeigt wird. Die Aussagen über die Theta-Reihen folgen dann mit Hilfe der orthogonalen Theorie.

Translation of abstract (English)

In this paper special orthogonal modular form are constructed as additive lifts following Borcherds in the case of signature (2,4). This case corresponds to the hermitian of degree two. Here the theta-series, introduced by Freitag, are important. Their squares are symmetric modular forms of weight two with respect to the main congruence group of level 1+i and the determinant-character and they generate the algebra of symmetric modular forms for this group. The aim of this paper is to construct these theta-series as additive lifts on the orthogonal side. We obtain new results and new proofs of known results. Especially the exact transformation rule of the theta-series and their ideal of relations is determined. Therefore we choose an appropriate lattice and obtain, that the space of constant elliptic modular forms with respect to the Weil-representation of the discriminant group of this lattice is of dimension twenty. According to Borcherds we obtain a space of orthogonal modular forms with respect to the discriminantkernel, which is of dimension ten. We find a basis whoose elements necessarily have certain Heegner-divisors as zeros. Using a multiplicative Borcherds lift we obtain that these zeros are the only ones. We give an isomorphism between the orthogonal and the hermitian half space and an isogeny between the orthogonal and hermitian-symplectic group, which is compatible with the isomorphism and the operations on the half spaces. Via this translation the ten additive lifts transform into the ten theta-series, which is shown using the zeros. Then the statements on the theta-series follow using the orthogonal theory.

Item Type: Dissertation
Supervisor: Freitag, Prof. Dr. Eberhard
Date of thesis defense: 20. December 2001
Date Deposited: 22. Jan 2002 00:00
Date: 2001
Faculties / Institutes: The Faculty of Mathematics and Computer Science > Department of Mathematics
Subjects: 510 Mathematics
Controlled Keywords: Modulform, Orthogonale Gruppe, Gitter <Mathematik>, Theta-Reihe
Uncontrolled Keywords: orthogonale Modulform , Borcherds-Lift , hermitesche Modulformorthogonal modular form , Borcherds lift , hermitian modular form , Gauss numbers , theta-series
About | FAQ | Contact | Imprint |
OA-LogoLogo der Open-Archives-Initiative