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Summary  
 

During interphase of cycling cells, the surface of the nuclear envelope (NE), 

consisting of inner and outer nuclear membrane (I/ONM) fused at each nuclear pore 

complex (NPC) approximately doubles. This organelle growth requires homeostatic 

synthesis and delivery of lipids and proteins to maintain a fully functional NE and 

prepare for the next nuclear division. INM proteins reside specifically in the INM and 

carry out several essential functions. They constitute a heterogeneous class of 

transmembrane proteins and are delivered by the probably least understood cellular 

membrane trafficking pathway. How targeting of the different classes of INM proteins 

is achieved and how many trafficking and regulatory mechanisms exist is currently 

not well understood. One reason is that unlike for other trafficking pathways such as 

membrane secretion, it has so far been impossible to visualize INMP trafficking in 

live cells.  

To address this point in the first part of my project I have developed a novel INMP 

trafficking reporter system (named Target-INM) that allows the acute release of INM 

proteins from the ER to the INM. The system is based on trapping INM proteins in 

the ER with a cleavable retention domain that can be removed by acute activation of a 

protease. I applied this generic reporter strategy to a set of INM proteins (LBR, 

Lap2beta, Tor1AIP1, Man1 and Sun1) that represent the major transmembrane 

protein classes and could image and quantify their synchronous delivery from the ER 

to the INM in interphase with high spatial and temporal resolution.  

Exploiting this assay, I screened by siRNA knockdown and automated high resolution 

confocal time-lapse microscopy 96 candidate genes for their requirement in LBR 

targeting. These genes include nucleoporins, importins, lamins as well as NE and ER 

membrane proteins. I identified several genes that affect LBR INM targeting. 

Together with Antonio Politi, a postdoc in the lab, I developed a mathematical model 

of the INM protein targeting process that I used to fit the kinetic signatures of the 

different transport phenotypes and cluster the scoring genes into three major 

phenotypic classes providing evidences for the basic principle governing INM protein 

targeting. Comparing the genetic requirements for targeting of the different INMP 

protein classes should now put us in a position to define the number of molecularly 

distinct trafficking pathways from the ER to the INM. 
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Zusammenfassung 

Während der Interphase teilungsaktiver Zellen, verdoppelt die Kernhülle (KH), die 

aus einer inneren und äußeren Membran (I/ANM) besteht, welche an den Kernporen 

fusionieren, in etwa ihre Oberfläche. Dieses Organellenwachstum setzt 

homöostatische Synthese und Anlieferung von Lipiden und Proteinen voraus, um die 

KH voll funktionsfähig zu halten und sie für die nächste Kernteilung vorzubereiten. 

INM Proteine halten sich spezifisch in der INM auf und führen verschiedene 

essentielle Funktionen aus. Sie bestehen aus einer heterogenen Klasse von 

Transmembranproteinen und werden über den wahrscheinlich bisher am wenigsten 

verstandenen zellulären Membrantransportweg angeliefert. Wie die gezielte 

Anreicherung verschiedener Klassen von INM Proteinen bewerkstelligt wird und wie 

viele Transport-und Regulationsmechanismen es gibt, ist bisher nicht bekannt. Ein 

Grund ist, dass es bisher nicht, wie bei anderen Transportwegen wie 

Membransekretion, möglich war, INMP-Transport in lebenden Zellen zu 

visualisieren. 

Um diesen Punkt zu adressieren, habe ich im ersten Teil meines Projektes ein neues 

INMP Transport-Reportersystem (Target-INM) entwickelt, dass die akute Freigabe 

von INM Proteinen vom Endoplasmatischen Reticulum (ER) in die INM erlaubt. Das 

System basiert auf dem Einschließen von INM Proteinen im ER mit einer 

abspaltbaren Retentionsdomäne, die durch akute Aktivierung einer Protease entfernt 

werden kann.Ich habe diese generische Reporterstrategie auf ein Set von INM 

Proteinen angewendet (LBR, Lap2beta, Tor1AIP1, Man1 und Sun1), die die 

Hauptklassen von Transmembransproteinen repräsentieren, und konnte ihre 

synchrone Bewegung vom ER in die INM in Interphase mit hoher räumlicher und 

zeitlicher Auflösung am Mikroskop aufnehmen und quantifizieren. 

Mit diesem Assay habe ich mit siRNA Knockdown und automatisierter 

hochauflösender Konfokalmikroskopie 96 Kandidatengene auf ihre Notwendigkeit in 

LBR targeting gescreent. Diese Gene beinhalten Nukleoporine, Importine, Lamine 

und auch KH und ER Membranproteine. Ich habe verschiedene Gene indentifiziert, 

die LBR INM targeting beeinflussen. Zusammen mit Antonio Politi, einem Postdoc 

aus dem Labor, habe ich ein mathematisches Model vom INMP Targeting-Prozess 

entwickelt, das ich benutzt habe um kinetische Signaturen verschiedener Transport-

Phänotypen zu fitten und die Treffer-Gene in drei große phänotypische Klassen zu 



8 
 

unterteilen, die Hinweise auf grundlegende Prinzipien von INM Protein-Targeting 

liefern. Der Vergleich genetischer Vorraussetzungen für das Targeting verschiedener 

INMP Proteinklassen sollte uns nun in die Lage versetzen, die Anzahl der molekular 

verschiedenen Transportwege vom ER zur INM defnieren zu können. 
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1.1 The Nuclear Envelope (NE): an overview 
 

One of the characteristic features of the eukaryotic cell is the presence of a nucleus. 

This highly organized structure is delimited from rest of the cell by a double 

membrane system called the nuclear envelope (NE). The NE can be separated into 

two different compartments: the Outer Nuclear Membrane (ONM), which is 

continuous with the endoplasmic reticulum (ER) and has a similar protein 

composition, and the Inner Nuclear Membrane (INM) that faces the nucleoplasm and 

is more specialized in proteins composition and function. The 40-50 nm lumen 

between the ONM and the INM is the perinuclear space (PNS). The nuclear lamina, a 

dense meshwork of intermediate filament proteins termed lamins and their associated 

proteins, lies directly underneath the INM. Another characteristic of the INM is the 

presence of a large set of transmembrane proteins called Inner Nuclear Membrane 

Proteins (INMPs), which have essential functions in the stability of the nuclear 

structure and genome organization. The Nuclear Pore Complexes (NPCs) are inserted 

in a region, called pore membrane (PoM) where the ONM and the INM are fused, to 

ensure selective transport of proteins and ribonucleoproteins as well as passive 

diffusion of charged ions via its central channel (Figure 1.1).  

Despite its stable structure during interphase, during an open mitosis the NE can 

become very dynamic and flexible and undergo complete disassembly, which is 

reversed with the reformation of the NE in the two daughter cells. Moreover the 

nuclear envelope surface almost doubles between G1 and G2 of cycling cells in 

preparation for the next division. Postmitotic NE reassembly as well as NE growth 

during interphase require remodeling of membranes, reformation of protein 

complexes (e.g.NPC and lamin filaments) and trafficking of many membrane proteins 

to rebuild a fully functional NE (see paragraph 1.3.1).  

Recently the NE is no longer considered just a physical barrier to separate the nuclear 

and cytoplasmic processes of the cell but a fundamental player in genome regulation 

and an interface between external stimuli and the cytoskeleton on the one and the 

genome on the other side due to the functions of many INMPs (Dauer and Worman, 

2009). 
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Figure 1.1 Schematic representation of Nuclear Envelope (NE) structure and its main components. The 
NE is composed of the Outer Nuclear Membrane (ONM) and the Inner Nuclear Membrane (INM). The 
ONM is continuous with the rough endoplasmic reticulum (rER). The ONM and INM fuse to each 
other in regions where the Nuclear Pore Complexes (NPCs) are inserted. The space between the ONM 
and INM is called the Perinuclear space (PNS). Several transmembrane proteins called Inner nuclear 
Membrane Proteins (INMPs) are localized to the INM where they interact both with lamins or 
chromatin. Some INMPs can also interact in the PNS with proteins of the ONM that are bound to the 
cytoskeleton (Adapted from Dultz and Ellenberg, 2007). 

1.1.1 The scaffold of the metazoan nucleus: the nuclear lamina 

 

In order to maintain the integrity and the structure of the nucleus, metazoan cells have 

evolved a 25-50nm thick network of type V intermediate filaments, called lamins 

(Dechat et al., 2008). Nuclear lamins are the major component of the nuclear lamina 

and they can be separated into two major types called type A and type B nuclear 

lamins. The Lamin-A gene (lmna) gives rise to four different lamins: two type A and 

two type C lamins; instead Lamin-B1 and Lamin-B2 originates from two different 

genes lmnb1 and lmnb2. Lamins were believed to be specific to animal metazoans 

with no homologous genes present in fungi and plants (Mans et al., 2004). Recently 

lamin orthologues were found in several amoebozoan species, such as the NE81 genes 

in Dictyostelium (Kruger et al., 2012). 

The protein structure of lamins reassembles that of other intermediate filaments 
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consisting of a central rod domain with four α-helical coiled-coil segments flanked by 

a small globular N-terminal domain and a larger immunoglobin-like C-terminal 

domain. Individual monomer can then associate to form coiled-coil homodimers that 

are described to form high order lattice structures by head to tail and side to side 

association at least in vitro (Aebi et al. 1986). Both types of lamins undergo a series of 

posttranslational modifications; stable association of B-type lamins into the INM 

depends on its tail where the cystein in the CaaX domain becomes farnesylated and 

methylated. In contrast to Lamin-B, Lamin-A undergoes an endoproteolytic cleavage 

that removes the farnesyl and methylated tail; this cleavage occurs after its insertion 

into the nuclear lamina and thus the mature lamin A is no longer membrane 

associated. If Lamin-A and Lamin-B can form homopolymers or heteropolymers and 

whether the more complex nuclear lamina in somatic cells recapitulates the structures 

described in vitro is still unknown.  

At least one type of Lamin-B is expressed ubiquitously whereas embryonic stem cells 

and some differentiated cell types do not express Lamin-A. The main function of the 

nuclear lamina is to ensure stability and it largely determines the overall shape of the 

interphase nucleus. Moreover it provides anchoring sites for the NPCs and substrates 

for the interactions with many NE proteins (Wilson and Foisner, 2010). Proper 

localization of lamin binding proteins is fundamental for their roles in gene regulation 

and signaling in the nucleus and it is dependent on an intact network of lamins. For 

instance, Lamin-associated domains (LADs) are genomic regions ranging from about 

80 kb to 30 Mb that are anchored to the nuclear periphery (Guelen et al., 2008) via 

interactions with lamin binding proteins or lamin directly. Many of the genes within a 

LAD are transcriptional inactive suggesting a direct role of nuclear lamina in gene 

regulation and chromatin organization (Akhtar and Gasser, 2007; Heessen and 

Fornerod, 2007). Mutations in lamin genes lead to a class of human diseases called 

laminophaties such as Emery-Dreifuss muscular dystrophy and Hutchinson-Gilford 

progeria. This disease class presents with a wide range of organ and cellular 

phenotypes consistent with the multiple roles of lamins both in NE structure 

maintenance and genome regulation.  
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1.1.2 The nuclear pore complex (NPC): structure and functions 

 

Trafficking across the NE is finely regulated by a large macromolecular complex, 

called the nuclear pore complex (NPC). The NPC is composed of multiple 

subcomplexes that assemble themselves in a structure of about 50 MDa in yeast (Rout 

et al., 2000) and 110 MDa in vertebrates (Reichelt et al., 1990). Studies by electron 

microscopy reveal a conserved architecture of the NPC across different species 

(Hinshaw et al., 1992; Akey and Radermacher, 1993, Beck et al., 2004; Beck et al., 

2007). It has a cylindrical structure with pseudo eight-fold symmetry that can be 

divided in two main parts: a central core part in the plane of the nuclear membrane 

and the two peripheral structures: a filamentous structure toward the cytoplasmic side 

and a basket-like structure toward the nucleoplasm. The central core is formed by 

three main ring structures, the nucleoplasmic, spoke and cytoplasmic rings that create 

a central channel with a minimum diameter of about 50 nm; an additional peripheral 

approximately 10 nm channel is believed to exist between the NPC and pore 

membrane (PoM) (Reichelt et al., 1990; Hinshaw et al. 1992) (Figure 1.2 A). 

Despite its huge molecular size the NPC is composed of only approximately 30 

proteins, called nucleoporins (Nups), present in a multiple of eight copies in each 

NPC. Some Nups, like Nup107-160, Nup93 and Nu62 localize symmetrically to the 

central core of the NPC; other Nups instead form the cytoplasmic filaments (Nup358 

or RanBP2) and the nuclear basket (Tpr) (Brohawn et al., 2009). The anchorage of the 

NPC to the nuclear membrane is mediated by several transmembrane nucleoporins 

(e.g. Pom121, ndc1 and gp210) (Figure 1.2B) 
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Figure 1.2 (A) Reconstruction of D. Discoideum nuclear pore by 3D cryo-EM  nuclear pore with the 
dimensions of the outer and inner diameter and the central channel indicated (Beck et al., 2007). (B) 
Molecular architecture of vertebrate NPC complex showing the different NPC subcomplexes. (from 
Antonin et al., 2008). 
 

 

 

 

The central core of the NPC is believed to be a stable structure that does not dissociate 

during interphase (Rabut et al., 2004). In differentiated cells of C. elegans and in rat 

brain tissue it has indeed been shown to be stable for the entire life (D’Angelo et al., 

2009, Savas et al., 2012). In contrast peripheral nucleoporins are more much dynamic 

and can exchange with the soluble pool of Nups (Rabut et al., 2004).  

 

Assembly of the NPC is a multistep process that occurs in cycling cells with an open 

mitosis at two cell cycle stages: at the end of mitosis and during interphase. These two 

assembly processes, although not fully understood, differ both in terms of molecular 

requirements and timing. Postmitotic assembly occurs in a relative short time frame to 

re-establish an import competent NPC within 10 minutes (Dultz et al., 2008). On the 

other hand interphase assembly, which takes place on a sealed NE membrane, is a 

slower process characterized by the initial accumulation of transmembrane 

nucleoporin at the assembly site (Dultz et Ellenberg, 2010, Doucet et al., 2010) and 

requires on the order of one hour.  
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The NPC, although freely permeable to small molecules, metabolites and ions smaller 

than 50 kDa, acts as a highly selective barrier for macromolecules. Facilitated 

transport across the NPC of soluble cargos larger than 50-60 kDa is an efficient 

process that occurs in a number of steps: 1) The Nuclear Localization Signal (NLS) or 

Nuclear Export Signal (NES) in the cargo are first recognized by nuclear transport 

factors (NTFs) 2) The NTFs–cargo complex docks to the NPC by interaction with 

specific Nups and translocate through the NPC. 3) Once the target compartment is 

reached, the complex dissociates and the cargo molecule is released. Directionality of 

the transport is ensured by a gradient of RanGTP/RanGDP across the nuclear 

envelope that promotes the association or dissociation of the NTF with their cargo 

molecules (Weiss et al., 2003 Stewart, 2007).  

The family of nuclear transport factors or karyopherins includes around 20 members. 

Among them, are importin-ß and its adaptor importin-α that take part in nuclear 

import, as well as the exportin CRM1 which is involved in the process of nuclear 

export. Importin-ß binds its NLS cargo protein in the cytosol and translocates to the 

nucleus through the interactions in the NPC central channel. The interaction surface is 

mediated by Nups enriched in FG repeats that are multiple hydrophobic regions made 

of FG, FXFG or GLFG peptides. In the nucleus the binding of RanGTP to importin-ß 

induces the release of the NLS cargo protein from importin-ß (Stewart, 2007). Based 

on the fact that the Ran GTP exchange factor (RanGEF) RCC1 is chromatin 

associated, a higher concentration of RanGTP is found in the nucleus and this imposes 

the directionality of the transport process. In contrast the association of the export 

factors CRM1 with its cargo is enhanced by the presence of RanGTP allowing the 

exportin-cargo-RanGTP complex to exit the nucleus (Fornerod et al., 1997; Matsuura 

and Stewart, 2004). Once in the cytoplasm hydrolysis of GTP promoted by RanGAPs 

triggers the disassembly of the complex and the release of the cargo. Therefore 

transport across the NPC itself does not require energy consumption and it is powered 

simply by diffusion whereas directionality is assured by a steep gradient of Ran in the 

GTP- or GDP-bound state across the NE that favors assembly of export complexes in 

the nucleus and import complexes in the cytoplasm. 

 

Apart from the essential function in nucleocytoplasmatic transport, the NPC is 

emerging as an important element in gene regulation. It has been shown that some 
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nucleoporins associated with active genes in yeast might facilitate export of mRNA in 

a model the called gene-gating hypothesis (Casolari et al., 2004). Moreover different 

Nups display cell-specific expression; for instance, in embryonic stem cells (ESCs) 

the transmembrane nucleoporin gp210 is absent but becomes expressed and 

incorporated into the NPC in differentiated cells: preventing its incorporation into the 

NPC blocks the expression of genes required for differentiation without affecting 

nuclear transport (D’Angelo et al., 2012). The role of Nups that are not incorporated 

in the NPC has been also examined. Recently two works demonstrated that 

nucleoplasmic Nups bind directly to chromatin and are involved in the regulation of 

transcription of cell-cycle and developmental genes (Capelson et al., 2010; Kalverda 

et al., 2010). Many other functions have been described for the NPC and specific 

Nups ranging from the coordination of cell cycle progression, to the maintenance and 

repair of chromatin (reviewed in Strambio-De-Castillia et al., 2010).  

 

1.2 Nuclear Membrane Proteins 

 
The Outer Nuclear Membrane (ONM) is an extension of and shares many of its 

components with the endoplasmic reticulum (ER) to which it is connected with 

tubules and cisternae at multiple sites. However a subset of membrane proteins is 

exclusively localized to the ONM. Moreover the Inner Nuclear Membrane (INM) 

contains both a specific class of INM proteins and has a specialized lipids 

composition (Ledeen and Wu, 2006). Many studies have tried to identify the complete 

repertoire of NE proteins both by microscopy screen (Rolls et al., 1999) and by mass 

spectrometry (Dreger et al., 2001; Schirmer et al., 2003; Murthi and Hopper, 2005). 

Recently it has become clear that the NE proteome greatly differs between cell types 

and tissues (Korfali et al., 2010, 2012, Wilkie et al., 2011, reviewed in Wong et al., 

2014) and although many of these proteins have not yet been characterized in detail 

this variability likely reflects multiple roles of NE proteins in cell identity and 

differentiation.  

 

1.2.1 Outer Nuclear Membrane Proteins (ONMPs) 

 

The presence of several proteins that exclusively localized to the ONM raised 
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some intriguing questions: what prevents ONM proteins from diffusing back to the 

peripheral ER? Are they tethered within the ONM or do diffusion barriers exist 

between the ONM and the ER?  

Starr and Han (2002) found that the localization of C. Elegans Anc-1, a large type II 

ONM protein, was dependent on Unc-84, an INM protein, via the interaction of their 

respective luminal domains in the perinuclear space (PNS). The interaction depends 

on a conserved C-terminal domain, named KASH that was then described to be 

present also in the ONM protein Klarsicht from Drosophila and Syne-1 and Syne-2 in 

humans (also referred as Nesprin 1 and Nesprin 2). Recently two studies defined the 

structural basis of the KASH-SUN interaction demonstrating that the SUN proteins 

arrange as homotrimer able to bind three KAS peptides (Sosa et al., 2012; Zhou et al., 

2012). Protein containing KASH domains belong to a family that in mammals is 

encoded by the Nesprin 1-3 genes and consists of a number of alternatively spliced 

isoforms (Zhang et al., 2001). Nesprin 1-2 give rise to two very large proteins Nesprin 

1 Giant (Nesp1G 1.000kDa) and Nesprin 2 Giant (Nesp2G 800kDa) as well as other 

smaller isoforms believed to be localized in the INM too (Mislow et al., 2002). 

Nesp1G and Nesp2G have a typical domain organization with a large cytoplasmic N-

terminal tail containing an actin binding domain (ABD), followed by multiple spectrin 

repeats and a C-terminal PNS tail with the conserved KASH domain. The more 

recently discovered Nesprin-3 (Nesp3) and Neprin-4 (Nesp4) bind respectively the 

cytoskeleton protein plectin (Wilhelmsen et al., 2005) and the motor protein kinesin-1 

(Roux et al., 2009). Localization of all Nesprin proteins to the ONM is dependent on 

the interaction in the PNS with the Unc-84-related INM proteins, Sun1 and Sun2 

(Padmakumar et al., 2005). The macromolecular assembly containing Nesprin and 

Sun is known as the LINC complex (for Linker of the Cytoskeleton and 

Nucleoskeleton) since Sun1 and Sun2 are INM proteins that bind several nuclear 

proteins, including A-type lamins (Crisp et al., 2006)(Figure 1.3). The LINC complex 

is crucial for a number of different nuclear process. For example pronuclear migration 

along microtubules in C. elegans, the movement of telomeres in the nucleus during 

meiosis and mechanotransduction of signals from the extracellular matrix to the 

genome all rely on an intact LINC complex (reviewed in Tapley and Starr, 2013). 

Recently the Nesprin-4 gene was identified to carry a disease causing mutation in a 

family with hereditary hearing loss; indeed Nesprin-4 knockout mice are normal 

except for specific hearing loss phenotypes (Horn et al., 2013). Consistent with a 
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proposed role of the LINC complex, cochlea cells these mice exhibit several defects 

in nuclear positioning and degenerated stereocilia.   

 

 

 
 
 
 
 
 
 
 
 
Figure 1.3 Interaction of SUN and 
KASH proteins across the NE. SUN 
protein trimers (light blue, dark 
blue, and grey) bind the KASH 
domain of Nepsrin in the 
perinuclear space. Nespin 4 recruits 
microtubule motor proteins to the 
surface of the nucleus, while 
Nepsrin 1 and Nesprin 2 are able to 
bind actin filaments (Adapted from 
Tapley and Starr, 2013). 
 

 

 

1.2.2 Inner Nuclear Membrane Proteins (INMPs) 

 

Recently there has been increasing interest in Inner Nuclear Membrane proteins 

(INMPs) because of the link between INMPs and a variety of genetic diseases. 

However, so far only a subset of 15 INMPs is well characterized in term of membrane 

topology, domain organization and functions. They are mostly type II membrane 

proteins with the N-terminus facing the nucleoplasm and multiple structural features 

in terms of the number of transmembrane (TM) and size of the N-terminal domains 

(Table 1.1). INMPs are part of a fundamental network for nuclear structure stability, 

spatial organization of the genome and gene regulation via direct or indirect 

interaction with nuclear binding partners, such as lamins and chromatin proteins 

(Burke and Stewart, 2006) Moreover INMPs have been implicated in important 

signaling pathways inside the nucleus (Worman et al., 2006).  

 



Introduction 

21 
 

 

 
 

Table 1.1 Table including some of the well characterized INMPs. Transmembrane Domain (TMD),  N-
terminus (Nt), C-terminus (Ct). For multipassing INMPs the size of each nucleoplasmic domain is 
indicated. Note the large variability of the nucleoplasmic domain size among different INMPs. (Source 
Lusk et al., 2011 and UniProtKB/Swiss-Prot) 

Lamin-associated polypeptide2 (LAP2), LAP1 and lamin B receptor (LBR) are by far 

the most abundant lamin binding proteins in the INM. The family of LAP2 proteins 

includes the alternative spliced isoforms LAP2 β, γ, δ and ε (Harris et al., 1995; Harris 

et al., 1994; Furukawa et al. 1995). With a total molecular weight ranging from 38 to 

50 kDa they are characterized by the presence of one transmembrane region and a 

large N-terminal nucleoplasmic domain that binds lamins (Harris et al., 1994; Harris 

et al., 1995; Furukawa et al. 1995). LAP2 proteins share a conserved 43 amino acid 

motif, known as the LEM domain (named after Lap2, Emerin and MAN1), which 

mediates interaction with the DNA-binding protein BAF (barrier-to-autointegration 

factor), an important sequence-independent DNA cross-linking protein implicated in 

nuclear assembly, chromatin organization and cell cycle progression (Margalit et al., 

2007). The LEM domain is also found in other INMPs such as Emerin a small 34 kDa 

single pass INM protein (Bione et al., 1994; Manilal et al., 1996), MAN1, a double 

pass transmembrane protein with both N and C termini exposed to the nucleoplasm 

(Lin et al., 2000), the Ankyrin repeat and LEM domain-containing protein 2 

(ANKLE2) and LEM2/3. Domains that bind DNA or chromatin proteins are present 

in several LEM-containing proteins; the complex network of interactions between 
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lamins, LEM proteins, BAF and other nuclear factors is responsible for the connection 

between chromatin and NE thereby regulating signaling and transcription (reviewed 

in Wilson and Foisner, 2010).  

Lamin B receptor (LBR) is probably the most well characterized INM protein. 

Initially discovered due to its capacity to bind specifically to Lamin-B (Worman et al., 

1990), LBR also binds via 200aa N-terminal domain the MeCP2, HA95 and 

heterochromatin (HP1) proteins. The interaction seems to be regulated by cell cycle 

phosphorylation at many arginine/serine rich regions (Nikolakaki et al., 1997). On the 

other hand the C-terminal domain is believed to function as a sterol reductase given 

the high sequence homology with various sterol reductases.  

A additional class of INM proteins is characterized by the presence of the SUN 

domain which is found in the homologues proteins Sad1 and UNC-84 in S. pombe and 

C. elegans respectively (Malone et al., 1999). Five different SUN proteins are present 

in mammals, two of which SUN1 and SUN2 are localized specifically to the INM 

(Hodzic et al, 2004; Padmakumar et al, 2005). The N-terminal domain extends into 

the nucleoplasm and binds to the nuclear lamina. Whereas the conserved C-terminal 

SUN domains reside in the PNS and interact with the KASH domain of Nesprin ONM 

proteins forming the LINC complex. SUN2 forms stable homotrimers through coiled-

coil regions adjacent to its SUN domain (Sosa et al., 2012; Zhou et al., 2012) and it 

also heteroligomerizes with SUN1 (Wang et al, 2006; Lu et al, 2008).  

A visual screen for nuclear envelope-localizing proteins (Rolls et al., 1999) first 

identified Nurim as a new INM protein (Rolls et al., 1999). Interestingly this 

multispanning transmembrane protein lacks the large N-terminal domain required for 

binding to the nuclear lamina and chromatin; the tight association of Nurim within the 

INM is dependent on its C-terminal domain through the binding with a currently 

unidentified protein in the nucleus (Hofemeister and O'Hare, 2005). LUMA has been 

recently added to the INMPs panel following its identification in a proteomic screen 

(Dreger et al., 2001). Characterization of the LUMA protein revealed that it has four 

transmembrane domains with both N and C termini in the nucleoplasmic face of the 

nuclear membrane. LUMA can oligomerize through its transmembrane domains and 

interact with Emerin participating in controlling its distribution in the NE (Bengtsson 

and Otto, 2008). 

Small isoforms of Nesprin 1 and 2 are also reported to localize to the INM (Mislow et 

al., 2002; Zhang et al., 2001). They contain a LEM-like domain but their localization 
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to the INM depends on interaction with A-type lamin and Emerin being unable to 

bind BAF directly. 

 

 

1.2.3 The role of INMPs in disease 

 

It is now clear that INMPs have many other functional roles apart from the 

maintenance of nuclear structure and stability. The genome is non-randomly 

distributed inside the cell nucleus; various studies have identified self-associated 

topological domains (TADs) described as subchromosomal regions that self-interact 

while having few contact sites with neighboring TADs (Dixton et al., 2012). 

Moreover Lamin Associated Domains (LADs) are defined as large chromatin 

domains that are in contact with the nuclear lamina. Although it has been shown that 

TADs are fairly conserved between cell types as well as between embryonic stem 

cells and more differentiated cell types, LADs can substantially change. Many LADs 

contain developmentally regulated and cell-type specific genes that need to be 

activate in a specific temporal framework. Various studies have shown how genome-

nuclear lamin interactions reorganize during neuronal differentiation (Peric-Hupkes et 

al., 2010) or during myogenesis (Yao et al., 2011) allowing expression of 

developmentally regulated genes. Interestingly, establishment of this chromatin 

configuration requires the presence of different INMPs such as Lap2b (Zullo et al., 

2012) and LBR (Solovei et al., 2013). These evidences are also supported at the 

molecular level since LBR can form a quaternary complex with the heterochromatin 

protein (HP1) and under-acetylated core histones H3/H5 (Polioudaki et al., 2001). 

Moreover the binding of LBR with the methyl binding protein MeCP2 (Guarda et al., 

2009) and methylated histones (Hirano et al., 2012) can play a direct role in 

positioning DNA and heterochromatin to the nuclear periphery. In the same way 

LAP2β can repress transcription by interacting with the repressor GCL and inducing 

deacetylation of histone H4 through the histone deacetylase HDAC3 (Nili et al., 2001; 

Somech et al., 2005). Given the cell type differences in NE proteome composition and 

that several INMPs are differentially expressed in different tissues (reviewed in Wong 

et al., 2014) it has been proposed that cell specific chromatin organization relies 

significantly on the composition of the NE. Indeed overexpression screening of 

several NE proteins influence the localization of chromosomes inside the nuclei and 
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the chromatin compaction state (Korfali et al., 2010, Zuleger et al., 2013).   

Apart from their roles in overall genome regulation some INMPs may more directly 

modulate specific functions and pathways inside the cell. Martins et al., 2003 

proposed that LAP2β is involved in regulation of DNA replication. During interphase, 

LAP2β interacts with HA95 and stabilizes the replication factor Cdc6 preventing its 

proteasome degradation thereby promoting DNA replication. An involvement of the 

INM protein MAN1 in the regulation of TGF-β/BMP signaling during the 

dorsoventral axis determination in Xenopus embryos came initially from two different 

studies (Osada et al., 2003; Raju et al., 2003). The TGF-β/BMP signaling cascade is 

propagated inside the cell by the phosphorylation of members of the signal 

transducers family, Smad. MAN1 interacts via its C-terminal domain with all Smad 

family members thereby inhibiting the TGF-β/BMP signaling by sequestration of the 

Smad factors to the INM; indeed downregulation of MAN1 by RNAi enhances the 

TGF-β (Lin et al., 2005; Pan et al., 2005). In addittion some plasma membrane growth 

factor receptors (such as Amphiregulin and Heparin-binding EGF-like growth factor) 

have been demonstrated to traffic between the plasma membrane to the INM 

regulating general transcription and inducing heterochromatin formation. (Heida et 

al., 2008; Isokane et al., 2008). These new studies and the function of MAN1 in the 

TGF-β/BMP signaling identify the NE as an important interface between external 

stimuli and the genome. 

 

Laminopathies are a class of diseases linked to mutations in the LMNA gene; 

however some of the INMPs, like Emerin, MAN1 and LBR are also disease 

associated. Mutations in the emerin gene cause the X-linked Emery-Dreifuss muscular 

dystrophy (EDMD), the third most common form of X-linked muscular dystrophy. 

EDMD is characterized by muscle wasting, differentiation defects of myoblast into 

myotubes, cardiomyopathy and cardiac conduction defects. Loss of emerin from the 

NE can lead to disregulation of the MyoD induction of myogenesis (Melcon et al., 

2006). Several diseases (osteopoikilosis, Buschke-Ollendorf syndrome, and 

melorheostosis) with severe sclerosing bone dysplasias and skin abnormalities are 

caused by mutations in the MAN1 gene. In affected families, deletions of the C-

terminal domain of MAN1 disrupt the interaction with Smad family proteins; this can 

cause enhancement of the TGF-β/BMP signaling (as discussed above) that is also 

implicated in the regulation of bone density and homeostasis (Hellemans et al., 2004). 
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LBR mutations have been linked to two different types of diseases; impairment of the 

sterol reductase domain leads to the Pelger–Huet anomaly which is associated with 

abnormal nuclear shape and chromatin organization in neutrophil cells (Hoffmann et 

al., 2002). Interestingly LBR expression increases during the differentiation of 

precursors into granulocytes and supports the nuclear shape and chromatin changes 

necessary for neutrophil differentiation. Complete loss of LBR expression gives rise 

to the lethal HEM/Greenberg skeletal dysplasia (Waterham et al., 2003).  

 

1.3 Nuclear Envelope Dynamics in Mitosis and Interphase 
 

The nuclear envelope (NE) undergoes dramatic changes during the cell cycle of a 

metazoan eukaryotic cell. To allow chromosome segregation during an open mitosis 

the cytoplasmic mitotic spindle has to have access to the chromatin and this is 

achieved by the complete disassemble of the NE. As a consequence the NE must be 

regenerated in the two daughter cells in order to re-establish the nuclear 

compartmentalization and functions. Although less dramatic, changes in the structure 

of the NE also occur during interphase; the nuclear surface as well as the number of 

NPCs almost doubles in order to let the cell to properly progress through multiple cell 

divisions. NE remodeling in both mitosis and interphase is thus a highly dynamic and 

essential process that involves many molecular players and requires a fine level of 

regulation. 

 

 

1.3.1 NE Remodeling During Mitosis: Role of Nuclear Membrane Proteins 

 

NE disassembly during mitosis is a multi-step process that requires disruption of 

polymers and macromolecular complexes (e.g. nuclear lamina and NPCs), removal of 

membranes and trafficking of membrane proteins with both high temporal and spatial 

coordination. The process called nuclear envelope breakdown (NEDB) marks the 

entry in mitosis. (Terasaki et al., 2001; Dultz et al., 2008). NEBD begins with the 

removal of several nucleoporins from the NPC; this causes the initial loss of the 

permeability barrier of the NE and generates several fenestrations allowing the influx 

of molecules (Lenart et al., 2003). After substantial fenestration of the NE, mitotic 
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factors have access to the nucleus allowing NE disassembly to progress. 

Depolymerization of the nuclear lamina is the following step after NEBD and is 

largely mediated by the cyclin-dependent kinase 1 (Cdk1) phosphorylation of A/C 

lamins and importantly of INMPs like LAP2 β and LBR (Courvalin et al., 1992; 

Dreger et al., 1999).  

Although chromatin condensation starts before NEBD, the rate of condensation 

increases dramatically upon NEBD (Hirota et al., 2004). In addition phosphorylation 

of chromatin proteins that are associated to the NE, such as BAF, reduces their 

affinity for the LEM protein family (LAP2, Emerin and MAN1) (Nichols et al., 

2006). Lamina depolymerization and phosphorylation of INM and chromatin proteins 

trigger the complete absorption of NE membranes and the redistribution of INMPs 

into the ER (Ellenberg et al., 1997; Yang et al., 1997). NEDB is further facilitated by 

microtubule dependent tearing by the attachment of microtubule filaments to the outer 

face of the nucleus (Beaudouin et al.,2002). In addition depletion of the INM proteins 

SUN1 and SUN2 has been shown to delay removal of membrane from chromatin and 

to affect mitotic progression (Turgay et al., 2014). A similar phenotype is displayed 

by a series of proteins, called reticulons, that are able to bend and tubulate the ER 

(Voeltz et al., 2006). Depletion of a specific class of reticulons (i.e. YOP-1 and RET-

1) not only leads to abnormal ER structure but delays NEBD (Audhya et al., 2007). In 

metaphase the bipoloar spindle is established such that the minus ends of 

microtubules are focussed at the two centrosomes and the plus ends interact with the 

chromosomes at their kinetochores. Interestingly NE components play an unexpected 

mitotic role; some Nups can be detected in association with the kinetochores 

(Loïodice et al., 2004) and are suggested to be involved in the spindle assembly 

checkpoint (Guttinger et al., 2009). 

 

The reassembly of the NE (NER) occurs around the segregated chromatin in late 

anaphase and is concluded during telophase. NER is a delicate process that must 

ensure the enclosure of the whole set of chromosomes into a sealed NE with 

functional NPCs and an intact lamina network. A spatial signal for reformation of the 

NE around chromatin is mediated by high levels of RanGTP produced by the 

chromatin associated factor RCC1 (Hetzer et al., 2002). One of the first events in NE 

reformation is the binding of the Nup107-160 complex to the surface of naked 

chromatin (Dultz et al., 2008). In the mitotic cytoplasm the Nup107-160 complex is 
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sequestered by importin-β. Binding of importin-β to RanGTP allows the release of 

Nup107-160 and the initiation of the assembly of NPCs on chromatin (Harel et al., 

2003). In addition NER is a process that implicates the reorganization of the mitotic 

ER from tubules into NE sheets (Anderson and Hetzer, 2008). The initial coating of 

chromatin by the tips of ER tubules is believed to be supported by the presence of NE 

membrane proteins, such as the pore membrane Nups NDC1 and POM121, able to 

bind the preformed NPCs on chromatin (Anderson et al., 2009). Moreover a major 

role is played by INMPs trough their ability to bind directly to chromatin and/or 

nuclear factors. It has been shown that several INM proteins can bind DNA directly 

due to the presence of a basic extralumen domain (Ulbert et al., 2006). For instance 

LBR is able to target membranes to the naked chromatin surface in Sea urchin 

(Chaudhary and Courvalin, 1993; Collas et al., 1996) and it has been demonstrated to 

be recruited into chromatin early after anaphase in live cells (Ellenberg et al., 1997). 

A model for LBR-mediated targeting of membrane during NE reassembly suggests 

that importin-β is bound to the phosphorylated form of LBR in the mitotic ER. Upon 

approaching chromatin, importin-β is then release from the LBR due to the presence 

of high level of RanGTP and LBR dephosphorylated. LBR can now bind DNA and 

the heterochromatin protein HP1 and efficiently recruits membranes around 

chromatin (Ma et al., 2007; Lu et al., 2010). A role is also described for the chromatin 

protein BAF and LEM containing INMPs in the formation of a continuous NE 

membrane. during NEBD BAF is phosphorylated by the vaccinia-related kinase 1 

(VRK1) causing its dissociation from the chromatin; reversal of this phosphorylation 

state during NE reassembly leads to the recruitment of LEM containing INMPs 

(LAP2 β, emerin and MAN1) to chromatin through an interaction with BAF 

interaction (Nichols et al., 2006). Interestingly Lem4 (also known as ANKLE2) 

interacts both with the phosphatase PP2A and VRK1 and controls the 

dephosphorylation of BAF during mitotic exit inhibiting VRK1 and enhancing PP2A 

activity (Asencio et al., 2012) Importantly at this early stage of NE reassembly the 

bulk of the nuclear lamins are not yet reassembled thus targeting of INMPs to the 

reforming NE is largely dependent on interactions with chromatin and chromatin 

proteins (Newport et al.1990). 

Another point to consider is the topological rearrangement from the mitotic tubular 

ER into the spherical NE sheet. Although INM proteins play a role in this transition 

by spreading the ER membrane around the chromatin the implication of ER-shaping 
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proteins has been considered in different studies. The current proposal is that different 

ER tubule and edge binding proteins, the reticulons Rtn3-4 and DP1, are displaced 

from the forming NE to allow formation of the NE sheets. Indeed overexpression of 

reticulons inhibits NE formation and their depletion of these by siRNA accelerates NE 

formation in vivo (Anderson and Hetzer, 2008). How reticulons are displaced from 

the forming NE is still an open question. 

 
 

1.3.2 NE Remodeling during Interphase 
 
 
The nucleus of a cycling cell doubles its volume during interphase in order to 

maintain nuclear size in the two daughter cells. This process requires the integration 

of additional nucleoplasmic material, new membranes and lamina components. 

Strikingly NE growth, as well as the increase in NPCs, is not a direct consequence of 

DNA replication because inhibitors of DNA replication do not interfere with these 

processes (Maul et al., 1973, Dultz et al., 2010). De novo assembly of NPCs assembly 

in interphase leads to the increase of the total number of NPC from about 2000 in the 

G1 phase to 4000 in G2 in HeLa cells (Maul et al., 1972). Interphase assembly 

requires insertion of the NPC into an intact NE membrane and nuclear lamina and 

only recently is it clear that this mechanism differs from postmitotic assembly 

(Doucet et al., 2010; Dultz et al., 2010). The INM protein Sun1 has been implicated in 

NPC assembly during interphase in two different studies; Sun1 associates with NPCs 

(Liu et al., 2007) and its depletion from mammalian cells reduces interphase NPC 

assembly (Talamas et al., 2011). 

A continuous delivery of membranes to the NE is necessary; however is not clear how 

this process happens in vivo. At least in vitro disruption of the connections between 

the NE and peripheral ER prevents nuclear expansion suggesting a pathway for 

membrane trafficking between the ER tubules to the ONM (D’Angelo et al., 2006). 

Nuclear membrane expansion can be mediated by farnesylated nuclear proteins as 

suggested in studies in Xenopus; for example overexpression of lamin B can lead to 

nuclear membrane growth in Xenopus oocytes (Prufert et al., 2004; Ralle et al., 2004). 

Moreover it has been suggested that lipid metabolism can play a role in nuclear 

envelope growth. In yeast abnormal proliferation of the nuclear membrane has been 

reported in deletion mutants that affect the balance between phosphatidic acid (PA) 
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and its dephosphorylated form diacyl glycerol (DAG) (Han et al., 2008; O’Hara et al., 

2006). In addition the PA phosphatase lipin is implicated in lamina disassembly 

during mitosis (Gorjanacz and Mattaj, 2009, Mall et al 2012). Since the lamin 

network is very stable during interphase (Daigle et al., 2001) it is possible that 

membrane growth requires partial and local disassembly of the lamin network. Thus 

factors implicated in the depolymerization of the nuclear lamina during mitosis, such 

as PKC-isoforms and lipin could be important for local rearrangements in interphase.     

Not only membranes but also nuclear membrane proteins must be targeted to the NE 

during interphase. Although these proteins are co-translationally inserted into the ER 

membranes and can diffuse to the ONM, the NPC poses a diffusional barrier for those 

proteins that have to reach the INM. The mechanism of targeting INM proteins during 

interphase is still largely unknown and a detailed overview of the current knowledge 

will be discussed in the next section.  

 

 

 

1.4 Targeting of INM Proteins In Interphase 

 

As discussed previously after NEBD INMPs are distributed into the mitotic ER and 

they are responsible via their interactions with chromatin to reshape the ER into the 

NE during NE reassembly. In this manner INMP targeting is achieved and directly 

linked to a functional role in nuclear assembly (Antonin et al., 2008). Although 

INMPs carry out essential functions in interphase, surprisingly the INM is one of the 

least understood destination compartments in membrane trafficking. How targeting of 

proteins to this compartment is achieved and regulated is poorly understood especially 

when compared to the transport of soluble nuclear proteins across the NPC. Moreover 

substantial differences in the mechanism of targeting to the INM can exist between 

different resident proteins, given the great variability of the INMPs in terms of the 

number of transmembrane regions, size and domains organization of the 

nucleoplasmic domains. The first model to be proposed, called diffusion-retention, 

implies that once INMPs reache the INM by lateral diffusion from the ER, the 

interactions with the lamina or chromatin prevents them from diffusing back. It is now 

becoming clear that this model cannot fully explain the more recent experimental 
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findings; INM protein targeting must be considered as a multi-step process that 

includes diffusion from the ER to the ONM, NPC translocation and INM retention 

and/or mobility. Moreover different model organisms (yeast, mammalian cell and 

Xenopus oocytes), and methodologies (in vitro biochemistry or in vivo imaging) have 

been employed to study INM protein targeting therefore a comprehensive view of the 

targeting mechanisms for different INMPs has so far not been achieved.  

 

 

1.4.1 Insertion of INM Proteins in the membrane 

 

Protein insertion into the lipid membrane is a regulated process mediated by two well 

conserved systems: the Sec61 and GET (Guided-entry of a Tailed Anchor protein) 

system. The components of these two systems are located in the ER and ONM but 

possibly also at the INM (Deng et al., 2006). Insertion of membrane proteins with 

single (monotopic) and multiple (polytopic) transmembrane segments occurs co-

translationally via the Sec61 system. Whereas the GEF pathway is used by proteins 

with a single transmembrane segment and a short luminal tail.  Most of the well 

characterized INMPs are polytopic or contain large lumenal domains which make 

them likely to be inserted co-translationally via the Sec61 system; only emerin and 

Lap2β in principle can use the GEF system. Which of the two pathways are actually 

required for different INMPs has not been directly investigated. Moreover it is 

believed that INMP insertion occurs at the cytoplasmic ER-ONM surface but very 

small monotopic INMPs could as well transported as soluble chaperoned proteins into 

the nucleus first and then be directly inserted into the INM destination compartment. 

 

1.4.2 The Diffusion-Retention Model  

 

As discussed in the previous section, most INMPs are likely incorporated into the ER 

membrane with a topology determined by their primary structure. Since the ER 

meshwork is continuous with the NE, INMPs can diffuse laterally from ER 

membranes via the ONM and the pore membrane into the INM where they are 

retained by interactions with chromatin, lamins or other nuclear factors. Powell and 

Burke (Powell and Burke, 1990) first formulated this diffusion retention hypothesis of 

targeting. By fusing rat and mouse cells they could follow the exchange of LAP1 with 
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species specific antibodies after formation of the heterokaryons. Instead when murine 

cells lacking Lamin A and C were used for formation of heterokaryons the exchange 

between nuclei was not observed. Based on this evidence they concluded that 1) lamin 

A confers retention of LAP1 at the INM and 2) that the protein by laterally diffusing 

in the peripheral ER of the heterokaryons can reach the INM via the NPC. In 

agreement with the diffusion retention model several studies observed differential 

mobility of INMPs in the ER and at the INM (Ellenberg et al., 1997, Ostlund et al., 

1999, Wu et al., 2002). The work of Ellenberg et al. (1997) showed by quantitative 

Fluorescence Recovery After Photobleaching (FRAP) that the ER fraction of an LBR 

tagged with GFP is highly mobile in interphase in contrast to a less mobile pool of 

LBR localized in the INM that is assumed to be bound to Lamin-B and other nuclear 

proteins. Although the same behavior has been reported for Emerin (Ostlund et al., 

1999) and MAN1 (Wu et al., 2002), the mobility of INMPs at the INM is very 

variable and this is likely to be caused by differences in binding affinities for their 

nuclear substrates (lamins and chromatin proteins) (Ostlund et al., 2006) (Figure 1.4 

A). 

In the diffusion-retention model the INMPs can freely diffuse across the pore 

membrane (PoM); indeed some small viral membrane proteins can access the INM 

but do not accumulate at this site likely due to the lack of retention (Bergmann and 

Singer, 1983) suggesting that free diffusion occurs across the PoM. However by 

artificially increasing the size of the nucleoplasmic domain of an INM protein up to 

60-70 kDa the accumulation at the INM can be prevented leading to its retention in 

the ER (Soullam and Worman, 1995; Wu et al., 2002). Notably the N-terminal 

domain of all known INMPs does not exceed 60kDa and ranges from the 40aa of 

Nurim to the more than 400aa of LAP2β or MAN1. It has therefore been suggested 

that the 10 nm channel that has been postulated between the NPC and the PoM (Beck 

et al., 2004) acts as a sterical restriction diffusion barrier to membrane proteins which 

have large cytoplasmic domains. 

Several studies have tried to investigate the presence and the requirement of targeting 

signals and it is now clear that these signals are different among different INMPs. A 

chimeric protein harboring the N-terminal nucleoplasmic domain of LBR fused to a 

transmembrane segment was shown to be sufficient to localize to the INM, suggesting 

the presence of targeting signals in the N-terminal region (Soullam and Worman, 
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1995). The same has demonstrated for MAN1, LAP2β and emerin (Furukawa et al, 

1995; Ostlund et al., 1999; Wu et al., 2002). However the N-terminal domain is not 

the only determinant of INM protein targeting since transmembrane domains also 

have a role in the targeting of LBR (Soullam and Worman, 1993, 1995) and nurim 

(Rolls et al., 1999). 

All of these studies have been done by assessing the steady state localization of 

deleted or mutated fluorescencely tagged INMP chimeras. Therefore it is difficult to 

distinguish whether the identified targeting signals have a role in post-mitotic or 

during interphase targeting and the relative contribution of these signals in the two 

targeting processes. 

 

 

1.4.3 NPC permeability barrier for membrane proteins 

 

As discussed previously, artificially increasing the size of the nucleoplasmic domain 

of an INM protein above 60-70 kDa prevents its accumulation in the INM (Soullam 

and Worman, 1995; Wu et al., 2002, Ohba et al., 2004). These studies indicate that the 

NPC imposes a size dependent diffusional barrier for membrane proteins. This barrier 

can prevent large proteins resident in the ER from entering the INM as well as 

limiting the diffusion of INMPs.  

The NPC is also an efficient barrier to diffusion of soluble inert objects larger than 5 

nm in diameter, typically globular proteins larger than 50-60 kDa. Different models 

have been proposed to explain the permeability barrier to soluble molecules. Although 

it is generally accepted that FG Nups (Nups 54, 58, 62, 98) are needed for barrier 

formation, the physical arrangement and the relative contribution of FG Nups to the 

barrier is still unclear. The “selective phase model” predicts that FG Nups bind each 

other forming a sieve-like FG hydrogel (Frey S and Görlich D. 2007) across which 

small molecules but not large ones can diffuse. The main alternative model, the 

“reduction of dimensionality`” model (Peters 2005), assumes that the central NPC 

channel is narrow enough to prevent three-dimensional random walks of small inert 

molecules without requiring the interaction between FG domains. The contribution of 

different FG Nups has been investigated using reconstituted nuclei from Xenopus 

extract (Hülsmann et al., 2012); surprisingly depletion from the extract of the 
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centrally located Nup62 leaves the NPC barrier largely intact. However Nup98 

depletion strongly impairs the permeability. A recombinant Nup98 added to the 

depleted extract can restore NPC permeability only if it contains cohesive FG domain 

supporting the “selective phase model”.   

The first evidence on the nature of NPC permeability for membrane proteins came 

from a study in reconstituted nuclei of Xenopus in which Nup188 was depleted 

(Theerthagiri et al., 2010). Reconstituted nuclei showed no defect of NPC 

permeability for soluble molecules but the import rate for integral INM protein 

reporters was increased twofold. Moreover reporters harboring an artificial 

nucleoplasmic domain above the 60-70 kDa threshold were able to reach the INM. 

However depletion of the other inner ring Nup205 does not show the same phenotype 

in the reconstituted nuclei. The Nup188 phenotype has been recapitulated in 

mammalian cells following Nup188 KD (Antonin et al.,2011). By contrast, removal 

of an inner ring Nup (scNup188, scNup170) in S. cerevisiae, prevents transport of the 

INM proteins scHeh1/scHeh2 and scDoa10 without evident changes in nuclear size or 

NE expansion (King et al., 2006; Deng and Hochstrasser, 2006). So far a systematic 

analysis on the contribution of different Nups to the permeability of the NPC for 

membrane proteins is still missing.   

 

 

1.4.4 Active/facilitated INM protein targeting 

 

The involvement of an active and energy dependent pathway for INM protein 

targeting has been long debated. By using an artificial reporter based on a truncated 

form of LAP2β, Ohba et al. (2004) demonstrated that reporter accumulation to the 

INM is prevented by the depletion of ATP from the cells. Therefore it was suggested 

that an energy dependent process is required for local rearrangements of the NPC in 

order to create a transient channel allowing lateral diffusional movement of the INM 

protein. This could involve kinases and phosphatases acting on NPC components; 

additionally ATP could be required for the dissociation of heat shock protein family 

acting on nucleoporins via the activity of ATPases. ATP depletion could lead to stable 

binding of heat shock proteins to nucleoporins creating a steric impediment to INMPs 

movement across the NPC  
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The requirement for energy could also be an indirect indication that some active 

facilitated/active transport mechanisms exist. Indeed the N-terminal nucleoplasmic 

domain of LBR contains sequences that resemble NLS able to bind importin-β (Ma et 

al., 2007). When this domain is expressed as a soluble protein it is efficiently targeted 

to the nucleus indicating that the NLSs are functional. Several INMPs have predicted 

NLS sequences in their N-terminal domain (Lusk et al., 2007); NLS sequences have 

been shown to contribute in the targeting process of SUN2 (Turgay et al., 2010) and 

the Man1 yeast homologues Heh1 and Heh2 (King et al., 2006). The functional NLS 

in SUN2 is able to bind the import complex importin-α/importin-βl; however 

mutations in the sequence prevent localization to the INM only to a minor extent 

(Turgay et al., 2010). The situation for yeast Heh2 is different. Either deleting or 

mutating the NLS abolishes targeting of Heh2 to the INM leading to its 

mislocalization to the ER. Interestingly yeast strains that carry mutations in the yeast 

transport factors Karyopherin-α and Karyopherin-β show the same phenotypes 

suggesting that the classical mechanism of NLS facilitated nuclear transport used by 

soluble nuclear proteins can also play a role in the trafficking of INM proteins (King 

et al., 2006) (Figure 1.4 B) 

Another facilitated targeting mechanism has been proposed for the yeast protein 

Mps3. Mps3 can bind the NLS-containing protein histone H2Z.A and use it as a 

“piggyback” system to the INM. (Gardner et al., 2011). Given the large numbers of 

INMP nuclear binding partners it cannot be excluded that some of them are potential 

“piggyback” candidates 
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Figure 1.4 Cartoon representation of the three main targeting models (A) In the diffusion retention 
model INM proteins translocate via the peripheral channel of the NPC and then bind to lamins or 
chromatin. (B) based on the active/facilitated model the importin and the RAN system are responsible 
for the targeting using the central channel of the NPC (C) in the signal sequence model the INM-SM on 
INM protein can be recognized by the importin-α-16 just after translation. Importin-α-16 binding 
drives INM protein to peripheral NPC channels. The release from the importin-α-16 in the nucleus is 
mediated by Nup50/Nup2 or other Ran-independent mechanisms. (modified from Katta et al., 2014). 

1.4.5 Role of NPC components in INM Protein Targeting 
 

 

The karyopherin mediated targeting of the yeast protein Heh2 implies that the 

karyopherins must be able to contact FG Nups to promote translocation of the cargo. 

These Nups are mostly located in the central channel of the NPC away from the PoM 

(exceptions are the membrane FG-nucleoporin POM121 and Nup35); Thus whether 

INMPs can interact with FG-Nups during their transit is unclear. Nup2 and Nup170 

are required for targeting of wt Heh2 to the INM (King et al., 2006); moreover yeast 

strains lacking the GLFG repeats of Nups 100, 145, and 57 show a reduced INM 

accumulation of a reporter based on Heh2 (Meinema et al., 2011). The reporter used 

in Meinema et al. (2011) differs from the wt Heh2 by the absence of the LEM domain 

and the second transmembrane domain; however the reporter containing only the N-

terminal bipartite NLS signal, a linker region (LR) and the first transmembrane 

domain does localize to the INM in a karyopherin dependent manner. The authors 

have shown that reducing the LR below a threshold length prevents targeting to the 

INM; moreover the LR is predicted to be an unstructured region typical of disordered 

proteins. Taken together, this model predicts that the LR region could stretch allowing 

the NLS, with bound karyopherins, to contact FG-Nups in the central channel of the 
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NPC. In order to test this model a trapping system based on the rapamycin FRB-

FKBP system has been developed between centrally located Nups, Nsp1, and the 

Heh2 reporters. Upon addition of rapamycin the Heh2 reporter gets trapped in NPC 

like structures suggesting that it is able to reach the central channel of the NPC in 

order to contact the Nup-Nsp1 whereas if it was using the lateral channel addition of 

rapamycin should have no effect. Although the central channel pathway is an 

intriguing hypothesis, how the NPC can accommodate INM protein passage of 

polypeptides that span from membrane to channel through its scaffold structure is still 

not addressed. Moreover in the study of Meinema et al. (2011) a more technical issue 

needs to be clarified. The reporter used in the study could potentially behave as a tail 

anchored protein rather than a canonical transmembrane protein like the wt Heh2; 

therefore it cannot be excluded that during the rapamycin trapping experiment the 

reporter is present as a soluble protein and was not membrane anchored.  

In mammalian cells a more systematic analysis of different INMPs has been carried 

out by looking at the exchange of proteins between the ER and INM after 

photobleaching. In this study LBR targeting is shown to be affected by the depletion 

of Nup53 and requires RanGTPase activity. Additionally LBR contains six FG repeats 

that are believed to interact directly with FG-Nups (Zuleger et al., 2011). FG repeats 

are particularly enriched in nuclear envelope proteins suggesting that they might 

enable these proteins to function as their own transport receptors (Kerr and Schirmer, 

2011).  

 

1.4.6 Importance of subcellular trafficking in INM protein targeting 

 

Membrane proteins can undertake a number of trafficking pathways to different 

subcellular compartments before reaching their final destination compartment. Proper 

targeting is often mediated by the presence of signal sequences in the membrane 

protein. In this context is worth mentioning some mechanisms that account for the 

steady state localization of INMPs at the INM.  

Several INMPs (SUN2, Emerin, LBR and LEM2) have an arginine rich motif that has 

been identified as a retrieval signal from the Golgi to the ER. Mutations of this 

retrieval motif in SUN2 lead to its mislocalization in the Golgi away from the ER 

membrane indicating that retrieval signals might support efficient delivery of INMPs 

to the INM (Turgay et al., 2010). Moreover perturbing endosome dynamics by Rab5 
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GTPase overexpression leads to SUN2 accumulation in endosomal membranes (Liang 

et al., 2011).  

It has been proposed that INM proteins can be already recognized during the process 

of translation and directed to the INM. The evidence came from baculovirus-derived 

membrane proteins destined to the inner nuclear membrane (INM) containing a 

specific stretch of positively charged amino acids (later named INM-SM). The INM-

SM located close to the nucleoplasmic face of the transmembrane domain can be 

recognized by a truncated membrane associated form of importin-α (KPNA-4-16) 

(Saksena et al., 2004). The INM-SM is found conserved in different INMPs and 

indeed KPNA4-16 can bind the sorting motif present in the two mammalian INMPs 

nurim and LBR (Braunagel et al., 2007). The proposed role for the KPNA4-16 is to 

recognize the INM-SM posttranslationally and mediate an early sorting of the INMPs 

towards the INM; however how the directionality of the sorting toward the INM is 

achieved remains undetermined (Figure 1.4 C). 

 

1.4.7 NPC-independent trafficking pathways?  

 

Although it is generally believed that targeting of INMPs occurs via lateral diffusion 

in the ER membranes, it has been speculated that there is a potential vesicular 

trafficking pathway for INMPs between the INM and ONM. Treatment of cells with 

drugs that inhibit membrane fusion events (BAPTA and NEM) has no effect on the 

targeting of an artificial INM reporter (Ohba et al., 2004); however these drugs block 

cytoplasmic membrane fusion and it is unknown if they act also on luminal nuclear 

membrane surfaces. Indeed vescicular trafficking can exist across the NE as 

demonstrated by the nuclear egress of Herpes Simplex Virus (HSV); during HSV life 

cycle the mature capsids are assembled inside the nucleus and encapsulated into 

vesicles close to the nuclear face of the INM. Here, they recruit the endogenous 

protein kinase-C (PKC) and produce viral Cdc2-like kinases, which together 

phosphorylate the nuclear lamina triggering its local disassembly. HSV capsids are 

then observed in the NE perinuclear space and they are finally de-enveloped via 

membrane fusion with the ONM and released into the cytoplasm (reviewed in 

Johnson and Baines, 2011). For a long time the virus has been thought to use a 

membrane disassembly mechanism but a recent a study from Speese et al. (2012) 
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pointed to the possibility of an endogenous vesicular trafficking pathway for nuclear 

exit of large RNPs. Interestingly the protein TorsinA, a AAA+ protein with ATPase 

activity that localizes in the ER-NE lumen, has been implicated in this pathway. 

Depletion of TorsinA leds to an accumulation of large RNP vesicles in the perinuclear 

space likely due to a defect in INM scission (Jokhi et al, 2013). It cannot formally be 

excluded that a similar trafficking pathway for INMPs exists from the ONM to the 

INM that is dependent on ATP hydrolysis to support TorsinA acitivity. 

 

 

 

The studies published to date suggest that the trafficking of INMPs proteins is much 

more complex than first believed. For several INMPs the steady state localization at 

the INM is the result of the combination of several targeting signals present in their 

sequence and the simple diffusion-retention model cannot fully explain the complexity 

of this mechanism. Recent evidence suggests that a receptor-mediated targeting exists 

in yeast but whether the same mechanism is also conserved in mammals has not been 

yet proven. As well many other questions remain open with the respect to the 

contribution of Nups in the targeting process and how the NPC can accommodate the 

transit of very different INMPs, potentially slicing through its structural scaffold  

during translocation. The intriguing model of a NPC central channel pathway should 

be more carefully investigated. If it is confirmed potentially two trafficking pathways 

through the central and peripheral channel of the NPC could be undertaken by INMPs 

depending on their size and the presence of NLS signals. These two pathways would 

likely require different molecular machinery and have different transport kinetics 

across the NPC.  
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1.5 Aim of the research 

 
The Inner Nuclear Membrane (INM) represents one of the least understood 

destination compartments in membrane trafficking. Compared to the nuclear import 

of soluble proteins, the mechanism of INM protein targeting in interphase to the 

nucleus has been poorly investigated. Most of the studies have been carried out in 

very different model systems (yeast vs mammalian cells) and focused on different 

INM protein family members making comparison between studies complicated or 

impossible. Moreover progress in the field is currently limited by the absence of a 

general assessment of the molecular requirements for INM protein targeting, which 

could help to differentiate between the existence of different targeting pathways or a 

single unifying targeting mechanism.  

 

The aim of my PhD project is to fill some of the above mentioned gaps in our 

knowledge by developing a robust system to image INMP targeting in real time in 

living mammalian cells that can be combined with siRNA screening technology, in 

order to elucidate the genetic requirements for the targeting process and provide 

evidence for which targeting mechanism is used. 

 

I therefore first developed a novel reporter that allows real time imaging of the 

synchronous targeting of INMPs from the site of synthesis in the ER to the INM with 

high spatial and temporal resolution in live mammalian HeLa cells. The development, 

validation of the reporter system and its application to a panel of different INMPs is 

presented in chapter 2.1 (“Generation of a novel reporter to study INM protein 

trafficking”) 
 

I then combined the newly developed reporter with a high throughput time-lapse 

microscopy and liquid handling platform for siRNA screening. This allowed me to 

target several genes in parallel and asses their contribution in the targeting of the INM 

protein Lamin B receptor (LBR). The results, shown in chapter 2.2 ( “A quantitative 

assay to study LBR targeting after siRNA gene knock down”), demonstrates that the 

developed reporter system is a valuable tool to dissect the genetic requirement for the 

trafficking of INMPs.  
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Moreover in collaboration with a postdoc in the lab, Antonio Politi, we took 

advantage of the large amount of quantitative kinetic INM INMP targeting data of the 

screen and built a mathematical model for INM protein targeting (2.3 “A predictive 

mathematical model for INM proteins targeting”). The model allowed me to make 

predictions which step of the targeting process is affecting by a particular gene and to 

guide functional validation experiments (2.4 Validation of model prediction).  
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2.1 Generation of a novel reporter to study INM protein trafficking 
 

In generating a new reporter to study INMPs trafficking I considered the different 

requirements that it should fulfill in order to be robust and generally applicable. 

Firstly, the new reporter should allow me to observe synchronous trafficking of a 

consistent amount of INM protein between ER and the INM by microscopy. The 

general strategy I employed is based on trapping and then the release of an INM 

protein from the ER. Importantly the release step should occur with sufficient 

temporal resolution and be compatible with live cell experiments. The reporter should 

allow me to not only observe but also to quantify the targeting process with a good 

dynamic range in siRNA functional screens. Finally, although I started to develop the 

reporter using Lamin B Receptor (LBR) as a model protein, the general reporter 

strategy should be applicable to other INMPs in order to allow comparative studies 

with the same system.   

 

2.1.1   ER trapping of LBR by increasing its N-terminal cytoplasmic domain  

 

 It was shown previously that adding the 60 kDa chicken muscle pyruvate kinase 

domain (CMPK) to the N-terminus of lamin B receptor (LBR) prevents its targeting 

to the INM and leads to its retention in the ER (Soullam and Worman, 1995). The 

fusion of the CMPK domain to the N-terminal domain likely prevents the passage of 

the LBR through the limited space between the NPC and the pore membrane (PoM). 

Therefore I took advantage of this and used the LBR as a model protein to develop the 

new reporter. I used is truncated version (LBR1TM-mEGFP) of the full length human 

LBR consisting of a nucleoplasmic domain of about 200 aa and the first 

transmembrane domain. This construct has been shown to retain the full capacity to 

target to the INM (Soullam and Wormann, 1995). The LBR nucleoplasmic region 

contains three different domains: the tudor (aa 1-62), RS (aa 53-89) and globular II 

domain (aa 89-211) (Figure 2.1 A). The tudor and the RS domains are able to bind 

histones and DNA respectively whereas the globular II domain of LBR interacts with 

HP1 and the RS domain also interacts with Lamin B.  

The CMPK domain was fused to the N-terminus of LBR1TM-EGFP to generate the 

CMPK-LBR1TM-EGFP. HeLa Kyoto cells were transfected with the CMPK-
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LBR1TM-EGFP construct and imaged with confocal microscopy 24h later. As 

predicted an ER tubular meshwork is clearly visible; this localization is typical for ER 

membrane proteins that distribute homogenously through the ER membranes. A 

comparable fluorescence intensity level is also present at the NE, presumably the 

ONM where the reporter should be able to freely diffuse (Figure 2.1 B).  

 

 

Figure 2.1 Schematic representation of hLBR1TM-EGFP with the three different domains: tudor (aa 
1-62), RS (aa 53-89) and globular II domain (aa 89-211). (B) Predicted and in vivo localization of the 
CMPK-LBR1TM-EGFP constructed. Scale Bar 10μm (C) Postmitotic targeting of hLBR1TM-EGFP 
around telophase nuclei. Note that the accumulation around chromatin is prevented in the presence of 
the CMPK domain. 
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Discrimination between the ONM and INM is not possible by confocal microscopy 

due to its resolution limit (the typical distance between INM and ONM is about 50 

nm), and therefore the possibility that some of the reporter is targeted to the INM 

during interphase cannot be ruled out. Postmitotic INM targeting should also be 

excluded since the presence of the CMPK also prevents LBR targeting during NE 

reassembly at the end of mitosis (Figure 2.1 C).  

To conclude, fusion of the 60kDa CMPK retention domain is a perfect strategy to trap 

a large amount of LBR protein in the ER membranes. 

 

 

2.1.2 Inducible cis-cleavage of the retention domain allows INM localization of 

LBR 

 

The CMPK retention domain needs to be removed in order to release the LBR 

fraction trapped in the ER. The removal of the CMPK domain can be achieved by a 

protease that acts at a cleavage site placed between the LBR N-terminus and the 

CMPK domain. Protease cleavage needs to be specific, fast and inducible. Among 

different proteases that I considered, the NS3 protease from the Hepatite C Virus 

(HCV) was determined to be the only one suitable for this purpose.  

The HCV genome encodes for a long polyprotein that is cleaved by the NS3 serine 

protease at four different sites into several functional viral proteins. The NS3 protease 

and its cleavage site have been chosen for several reasons: first the NS3 protease is 

well tolerated by the cell as demonstrated in a previous application (time-STAMP) 

(Lin et al., 2008), a specific and reversible cell-permeable small molecule inhibitor 

(called BILN2061) has been described (Lamarre et al., 2003) and at least in vitro the 

activity of the NS3 protease seems to be an order of magnitude higher than other 

proteases such as the TEV protease from tobacco etch mosaic virus (Cabrita et al., 

2007; Zhang et al., 1997).  

Among the four cleavage sequences in the HCV polyprotein I selected the NS5a/b 

site. The NS5a/b site is a stretch of about 15aa (ASEDVVCCSMSYTWT) that is 

recognized and cleaved between the critical residues “CC|SM” by NS3 protease with 

the highest activity compared to the other sites of the polyprotein (Zhang et al., 1997).  
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The features described above should ensure high efficiency cleavage by the NS3 

protease at NS5a/b site and fast release of CMPK retention domain from LBR. 

I therefore cloned the NS5a/b cleavage site between the CMPK retention domain and 

the N-terminus of LBR; the NS3 protease was then fused to the N-terminal of the 

CMPK domain allowing cis-cleavage activity at the protease cleavage site. In this 

manner I expected to achieve controllable localization of the LBR in the ER or INM 

as a function of protease activity (Figure 2.2 A). This new reporter was named Target-

INM-LBR. 

 

 
 

Figure 2.2 (A) Schematic representation of Target-INM-LBR reporter and its predicted subcellular 
localization before (left part of the panel) and after (right part of the panel) protease activation by 
inhibitor washout. In gray the retention domain with the NS3 protease and the protease cleavage site 
(dark gray) and CMPK domain (light gray). LBR 1-238 containing the N-terminal domain (light blue) 
and first transmembrane domain TMD (yellow) followed by EGFP. (B) Confocal images of HeLa cells 
stably expressing H2B-mCherry and Target-INM-LBR grown for 24h in the presence of (inactive 
protease) or without (active protease) the protease inhibitor. Bar, 10μm (C) WB analysis of cells grown 
for 24 hours in the presence (protease activity -) or absence (protease activity +) of the protease 



Results 
 

46 
 

inhibitor shows respectively the full-length and cleaved form of the reporter respectively, 
 

A HeLa doxycycline (DOX) inducible system was used to express the Target-INM-

LBR in combination with stable expression of the chromatin marker H2B-mCherry. 

This system allows for single site genomic integration of the Target-INM-LBR 

construct and expression by Doxycycline. Expression of the reporter was induced by 

adding Doxycycline (1μg/ml) to the culture medium in the presence or absence of the 

protease inhibitor BILN2061 (2μM) and cells were incubated for an additional 24h 

before imaging.  By monitoring the localization of the reporter by confocal 

microscopy, I confirmed that the reporter is localized in the ER when the protease and 

the NE when it is active (Figure 2.2 B). Western blot analysis shows that 

predominantly the full length protein is present when the protease is kept inactive 

whereas when it is active the reporter is efficiently cleaved (Figure 2.2 C). 

 

2.1.3 Controlled induction of Target-INM targeting by inhibitor removal 

 

The Target-INM reporter allows me to observe trafficking of INM proteins between 

the ER and INM in a single living cell. This can be achieved by acutely inducing the 

activity of the NS3 protease. The BILN2061 inhibitor can be washed out from the 

cells due to its cell permeability leading to the cleavage of the CMPK retention 

domain and synchronous targeting of the reporter to the INM. I therefore employed 

high resolution time-lapse confocal microscopy to image HeLa cells expressing the 

Target-INM-LBR before and after inhibitor washout. To ensure complete removal of 

the inhibitor the cells were repeatedly washed with normal fresh medium and then 

imaged for more than 1h after the inhibitor removal. After inhibitor washout the 

reporter accumulates over time at the NE while the ER fraction of the reporter is 

depleted during the translocation (Figure 2.3). 
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FIGURE 2.3 Acute inhibitor wash-out leads to Target-INM-LBR reporter translocation from the ER 

(preWO) to the NE (PostWO). Images are shown with inverted gray color. Bar, 10μm. 

Due to the resolution limit of the confocal microscope is not possible to determine if 

the fluorescent NE signal is coming from the ONM or INM. It is therefore important 

to prove that the reporter is localized to the INM after translocation. The mobility of 

LBR-GFP at the INM is reduced due to its binding to nuclear substrates when 

compared to the mobility observed in the ER (Ellenberg et al., 1997; Oustlund et al., 

1999). Therefore reduced mobility would be an indicator of successful INM targeting. 

To assess changes in mobility of the Target-INM reporter before and after relocation 

to the NE, I performed Fluorescence Recovery After Photobleaching (FRAP) 

experiments. A small region of ER or NE is bleached at full laser power intensity and 

the fluorescence recovery is followed over time. The mobility of the reporter in the 

ER is analyzed before inhibitor washout and compared to that of the NE after 

complete translocation of the reporter. ER fluorescence recovery is fast with a t1/2 of 

about 10 sec, reaching a plateau around 60 sec when the recovery is almost complete, 

indicating that the proportion of the mobile fraction of the protein is more than 90%. 

After relocation to the NE the reporter shows reduced mobility compared to the ER 

(Figure 2.4 A). This observation suggests that the reporter is indeed targeted to the 

INM.  



Results 
 

48 
 

To independently check the INM localisation I expressed a dedicated reporter 

carrying a Myc-tag between the NS5a/b cleavage site and the N-terminus of the LBR 

(CMPK-NS5a/b-Myc-LBR1TM-GFP). In this case the protease activity was supplied 

by co-transfecting the cells with a construct expressing the NS3 protease. Following 

complete reporter relocation I then selectively permeabilized the plasma membrane by 

using a low concentration of the detergent digitonin, which leaves the nuclear 

membrane intact. Immunofluorescence after such partial digitonin permebilitation 

does not allow detection of nuclear epitopes that are instead accessible only with 

Triton X-100 permeabilization (Figure 2.4 B). After Triton X-100 permeabilization 

the nuclear rim is strongly stained with the anti-Myc antibody; in contrast after 

digitonin permebilitation ER but no nuclear rim signal is detected with the anti-Myc 

antibody while a green fluorescence nuclear rim from the GFP fluorescence is clearly 

visible (Figure 2.4 B). This data demonstrates that the large majority of the NE 

fraction of the reporter is translocated to the INM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 

49 
 

 
 

Figure 2.4 (A) FRAP analysis of reporter mobility in the ER and at the NE. ER or NE regions of the 
cell were bleached and imaged every 2sec for 2 minutes. Fluorescence recovery curves were 
normalized between 1 (prebleach value) and 0 (postbleach value) and plotted over time. Error bars are 
standard deviation of the mean. Scale Bars, 15μm. (B) IF after Triton/Digitonin permeabilization of 
cells expressing the modified reporter carrying a Myc tag at the LBR N-terminus. Antibody against 
LMNB1 (Lamin B) is used as a control for the accessibility of the antibodies to the INM after 
Digitonin or Triton X-100 permeabilization. From the images it is clear that Digitonin permeabilized 
cells do not display Lamin B stain. Scale Bars, 15μm. 
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2.1.4 Target-INM strategy can be applied to other INMPs 

 

The Target-INM was successful in allowing me to followthe trafficking of the LBR 

indicating that this approach may work as general strategy to study other INMPs in 

living cells. I therefore applied the same strategy to other INMPs, namely the Lamin 

associated polypeptide 2 β (Lap2β), Torsin 1A Interacting Protein 1 (Tor1AIP1), 

Man1 and Sun1 that are representative members of the main INMPs subclasses. 

Lap2β, Tor1AIP1 and Man1 contain putative NLS signals. Based on the distance 

between their TMD domain and NLS sequences, Tor1AP1 and Man1 (Heh2 

homologues) are predicted to be transported thorough the NPC according to the 

central channel model whereas Lap2β is believed to be targeted via the peripheral 

NPC channel. 

Sun1 has a large nucleoplasmic domain compared with the other INMPs and the 

contribution of the SUN domain to the targeting process is unknown.    

I cloned the NS3 protease, CMPK domain and the NS5 cleavage site at the N-

terminus of the selected INMPs which carry the GFP at their C-terminus. All the 

INMPs are full length proteins except Man1 which was truncated after the first TM in 

order to consistently have the GFP in the ER lumen. 

I generated HeLa inducible cell lines expressing the Target-INM variants and tested 

the localization of each reporter as a function of protease activity (Figure 2.4 A). All 

the reporters are localized in the ER when the protease is inactive and activation of 

the protease leads to relocation of the reporter to the INM. Western blot analysis 

shows that ER and INM localization corresponds to the presence of the full length or 

cleaved form of the reporter. (Figure 2.5 B). 
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Figure 2.5 (A) Confocal images of HeLa cells stably expressing the Target-INM reporters grown for 
24h in presence (inactive protease) or absence (active protease) of the protease inhibitor. Localization 
of the reporter depending on protease activity status is shown. The domain organization of each INMP 
is shown above the images. LEM domain (green), NLS sequences (red),  Lamin binding domain 
(LMND) (blue), Sun domain (purple) TMD (yellow). (B) WB analysis of cells grown for 24 hours in 
the presence (protease activity -) or absence (protease activity +) of the protease inhibitor shows the 
full-length and cleaved form of the each reporter respectively. 
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2.2 A quantitative assay to study LBR targeting after siRNA gene 

knock down  

 
The Target-INM reporters provide a simple and robust tool for the screening of 

candidates genes required for INM protein targeting by fluorescence microscopy-

based. This can be done by monitoring the degree of reporter translocation from the 

ER to the INM upon knock down of a specific gene. In the first part of this chapter I 

discuss the development of a quantitative assay for siRNA screening using the LBR 

based Target-INM reporter and in the second part the results from the screennin of a 

panel of candidate genes is reported. 

 

2.2.1 General screening pipeline and implementation 

 
The assay combines long term gene knock down with time-lapse confocal microscopy 

of the previously established Target-INM-LBR cell line. Gene knock down was 

achieved by reverse transfection of siRNA using siRNA spotted microarrays (Erfle et 

al., 2007). For the screening assay, the Target-INM cell line was seeded on the siRNA 

microarray and 24 hours later the expression of the reporter was induced by 

doxycycline in the presence of the protease inhibitor. After 48 hours knock-down 

(KD), I washed out the protease inhibitor and started live cell confocal time-lapse 

imaging (Figure 2.6 A). Time-lapse imaging was carried out for 2.5 h in order to fully 

record the dynamics of reporter translocation. In order to achieve sufficient time 

sampling of the translocation dynamics the number of different genes targeted were 

limited to five, each of which was targeted by two distinct siRNAs in duplicate 

together with the on chip Control siRNA. This setup allows me to record a total of 30 

siRNA knockdown time-lapse movie in the same wash-out experiment (Figure 2.6 B). 

 

The recorded movies contain cells in different cell cycle stages and cell cycle 

transition from interphase to mitosis can occur during the time frame of image 

acquisition. Since I want to study INM protein trafficking in interphase an automatic 

method to isolate cells that persist in interphase for the whole time of acquisition is  
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FIGURE 2.6 Schematic representation of the screening workflow. Each siRNA microarray was 
generated by siRNA spotting as described in Erfle et al. (2007). Cells were seeded on the siRNA 
microarray and after 24h Target-INM-LBR expression is induced by adding Doxycycline (1μg/ml) 
together with the protease inhibitor BILN2061 (2μM) to the culture medium. Imaging is started after 
additional 24h, i.e. 48h of siRNA treatment. Each siRNA position is imaged for two time points before 
inhibitor wash-out and then up to of 2.5 hrs after the activation of the protease with a time resolution of 
9 min (B) Example of one siRNA spotted microarray. Each microarray includes scrambled siRNA 
(Control siRNA) (S), siRNAs against INCENP (IN), siRNAs against 5 different genes (targeted by two 
distinct siRNA) and empty positions (E) where only the transfection mix is present. Each siRNA spot 
measures 700µ x 700µ as shown in the transmission image inset before cell seeding. A field of view of 
160µ x 160µ is imaged inside the siRNA spot. Since siRNAs spots are not visible after cell seeding I 
use the INCENP siRNAs placed at the microarray boundaries as positional fiducials. The INCENP 
siRNA gives rise to a distinguishable nuclear phenotype that allows the alignment of the microarray 
slide inside the microscope. The green dashed rectangle indicates the siRNA spots that are imaged for a 
total of 30 siRNA knockdown time-lapse movies in the same wash-out experiment. 



Results 
 

54 
 

needed. I therefore used CellCognition (http://www.cellcognition.org) to segment and 

track cells based on the nuclear marker H2b-mCherry (Held et al 2010, Walter et al., 

2010). Additionally CellCognition allowed me to classify cell cycle stages (mitotic vs. 

interphase) based on chromatin features and to select cell trajectories that persist in 

interphase for the entire time-lapse movie (Figure 2.7 A).  

 

The single cell trajectory for Control siRNA showed a clear increase in NE signal and 

corresponding decay in ER signal over time (Figure 2.7 B). To quantify INM protein 

targeting I implemented a method that accurately detects the NE and ER regions and 

records fluorescence intensity at these locations (Figure 2.7 C and Material and 

Methods). This method was applied along the complete cell trajectory leading to 

traces for the NE and ER intensities over time. The NE and ER intensities were 

normalized to one to the average of the first two pre-wash out time points and plotted 

over time as the fold change in intensity from the initial intensities values as shown in 

Figure 2.7 D. 

For each cell trajectory I computed the NE Increase (fold change), a parameter that 

scores the maximal reporter accumulation after washout of the inhibitor. NE Increase 

(fold change) is defined as the average of the three highest consecutive NE values 

during the time course. This parameter is a reliable and reproducible indicator of 

reporter accumulation in a single replicate where typically the reporter reaches a 

maximal accumulation at the INM 40-50 min after activation of the protease (Figure 

2.7 E). 

 

 

In conclusion this pipeline allowed me to collect thousands of cell trajectories for 

Control siRNA and siRNA KDs for each of which I computed a single parameter (the 

NE Increase (fold change)) that represents the degree of reporter translocation. By 

comparing this parameter for Control siRNA and a specific siRNA, I will explain in 

the next section how genes that affect reporter translocation are identified. 
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FIGURE 2.7 (A) Representative field of view acquired in the screening setup showing the H2B-
mCherry signal. The zoomed inset shows the segmentation, tracking, and cell classification of 
interphase (green) and mitotic (red) cells by the CellCognition software. (B) Example of a single 
interphase cell trajectory. The images show translocation of the reporter to the INM after inhibitor 
washout. (C) Image analysis workflow. (1, left panel) The boundary of the segmented H2B-mCherry 
signal (red line) seeds a domain in the nucleus to ER direction (orange arrow) around the surface of the 
nucleus (blue arrow). (2, right panel) This domain is unfolded along the blue arrow and the regions for 
measuring nuclear envelope (NE, green triangle) and ER intensities (magenta rectangle) are determined 
(Material and Methods). (D) Quantification of a single cell trajectory. The plot shows the intensity fold 
change of the NE and ER normalized to the average of the first two pre-wash out time points. Gray line 
is the NE increase (fold change) defined as the average of the three highest consecutive NE values. (E) 
Quantification of Control siRNA NE and ER fold changes in a single replicate of the screening (mean 
± s.d.). The gray line is the replicate average NE increase (fold change) (the region within the standard 
deviation is indicated by the gray area).  
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2.2.2 Identification of genes implicated in LBR targeting process 

 

The molecular machinery for INM targeting is so far largely unknown. With the 

screening assay I can target by siRNA different genes and score in a robust manner 

how they affect INM targeting. In particular the current knowledge on the genes 

required for LBR targeting is limited; depletion of the nucleoporin Nup53 seems to 

affect LBR targeting (Zuleger et al., 2011) and the truncated membrane associated 

form of importin-α (KPNA-4-16) has been suggested to be able to bind the INM-SM 

present in LBR to facilitate its targeting (Braunagel et al., 2007). As previously 

mentioned the time resolution needed to record the full reporter translocation dynamic 

limits the number of genes I can simultaneously target by siRNA in the same 

microarray to five. I therefore started with a candidate gene list that is likely to be 

involved in the targeting process. This list includes around 100 genes that can be 

divided into the following groups: 1) nucleoporins, 2) validated INMPs 3) nuclear 

binding partners of INMPs, 4) ER remodeling proteins, and 5) nucleocytoplasmic 

transport factors (Material and Methods – Table 3.1) Systematic knock down of 

different nucleocytoplasmic transport factors should help to clarify if an active 

transport is required for LBR targeting, wheras targeting of INMP nuclear binding 

proteins will help to dissect the contribution of the retention at the INM.   

In the screen I imaged a total of 73 siRNA microarrays including 3 or 4 replicates for 

each siRNA; this comes to over 2000 time lapse movies of reporter translocation in 

Control and KDs conditions. I used the pipeline described previously to derive NE 

Increase (fold change) values for Controls siRNA and siRNAs. Control siRNA NE 

Increase (fold change) across all the microarrays imaged show a normal shape 

distribution with the average value of 1.58 (Figure 2.9 A). I then tested if each siRNA 

significantly deviates from the Control siRNA in the same microarray (Material and 

Methods). A siRNA was considered to have reproducible effect when it significantly 

deviates from Control siRNAs in at least 2 of the 3-4 microarray replicates. All 

siRNAs were ranked based on the magnitude of their average deviation from Control 

siRNA (Figure 2.8, significant siRNA are shown in blue, Table 2.1). As a result the 

majority of significant siRNAs negatively affects NE increase (fold change) 

compared to Control siRNA. Interestingly a smaller number of siRNAs also increase 

the translocation of the reporter at the INM.  
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To check if reporter expression is strongly affected by KDs I calculated for each 

siRNA the deviation of ER intensity pre-wash out (ER Intensity PreWO) from the 

Control siRNA. Although siRNA KDs do not cause a biased decrease in reporter 

expression, the reporter expression can change significantly after siRNA KD (mean 

deviation of ER Intensity PreWO = 0.01 +/- 0.20 SD) (see Table 2.1). Importantly the 

NE increase (fold change) scored for each siRNA does not correlate with the reporter 

expression before the wash out. (Figure 2.9 B). 

 

 

 

 

Figure 2.9 (A) Distribution of NE increase (fold change) of Control siRNA across all the microarrays 
imaged. Average = 1.58 +/- 0.08 SD (B) The scatter plot shows correlation for each siRNA between
the deviation of NE increase (fold change) (x axis) and the deviation of ER Intensity PreWO (y axis) 
from Control siRNA. (C) Scatter plot showing the deviation of NE increase (fold change) from Control 
siRNA for the two siRNAs targeting the same gene. 
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To consider a gene as a hit two independent siRNAs targeting the same gene have to 

show statistically significant reproducible effects (Figure 2.8 A, listed names). Overall 

independent siRNA targeting of the same gene cause a similar magnitude of deviation 

of NE increase (fold change) from Control siRNA indicating robust reproducibility of 

the phenotype (Figure 2.9 C).  

The vast majority of gene hits affecting INMPs are nucleoporins, all of which cause a 

decrease in NE increase (fold change). Consistently almost all components of the 

NUP107-160 complex show a 50% to 80% decrease in NE increase (fold change) 

compared to Control siRNA. Additionally NUP153 and NUP93 KDs show a similar 

milder effect. Two of the gene hits code for NE proteins. I detected mild reduction of 

reporter translocation after depletion of the outer nuclear membrane protein Nesprin-1 

(SYNE1), whereas LMNA depletion reproducibly increased the reporter 

accumulation at the NE. In LMNA KD cells the NE increase (fold change) was 80% 

higher than Control siRNA (Figure 2.8 and Figure 2.10 A). Although in the screening 

I targeted the complete set of importins none of them seems to have a major effect in 

the targeting process, except for KPNB1 KD having a mild but reproducible effect in 

reporter in the reduction of translocation (Figure 2.8). 

Visual examination of single cell trajectories of gene KDs that have a reduced NE 

increase (fold change) reveals two possible reasons for this effect. In the first case, 

which represents the large majority of the genes, the reporter does not show any 

significant accumulation at the INM before and after WO suggesting that transport 

and/or retention at the INM is impaired. For example, in SEC13 KD cells the reporter 

only slightly accumulates at the INM over time reaching an approximately 10% 

increase compared to the preWO steady state level (Figure 2.10 B). In the second case, 

the reporter localizes at the INM throughout the experiment. A representative example 

of this phenotype is NUP93 KD (Figure 2.10 C). After depletion of NUP93 the full 

length form of the reporter has fully translocated to the INM already prior to inhibitor 

wash out. Therefore in this case the absence of the ER localized pool of the reporter 

suggests a loss of size selectivity of INM targeting. 
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Figure 2.10 (A-C) Representative single cell trajectory images for the three main phenotypic classes: 
LMNA KD (A), SEC13 KD (B) and NUP93 KD (C) cells. The plots show NE fold change for the 
Control siRNA (grey triangle) and for the indicated gene KD (green triangle). The average data plot is 
from a single replicate of the screen. Error bars for the genes KD are standard deviation of mean. 
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2.3 A predictive mathematical model for INM proteins targeting 

 
2.3.1 Model description

Although we used a simple single parameter score to identify genes implicated in 

INM protein targeting, the screening data contains detailed kinetic information for 

each hit. To exploit this information and gain insight into the mechanism underlying 

the RNAi phenotypes I generated, in collaboration with Antonio Politi (a postdoc in 

the lab), a mathematical compartmental model to parameterize the observed dynamics 

of reporter translocation. In this model we took into account the transport, binding at 

the INM, protease cleavage, production and degradation of the reporter during its 

relocation from the ER to INM after cleavage of the retention domain (Figure 2.11). 

The binding of the reporter to nuclear substrates (Lamins/chromatin proteins) causes a 

decrease in the export rate constant ko and so a longer retention in the INM (Material 

and Methods). To describe phenotypes with an INM localization of the full length 

protein (Figure 2.10 C) we also include a reduced permeability for the uncleaved 

construct.  By fitting the model to unperturbed Control siRNA dynamics the overall 

import and export rate of the reporter across the NPC can be determined. 

Furthermore, the model can help to give mechanistic insight for the previously 

identified gene hits, by distinguishing phenotypes that affect the import or retention of 

the reporter. 

 

Figure 2.11 Schematic 
representation of the 
mathematical model. The 
model has two compartments, 
the ER and the INM, with the 
membrane area ratio α = 
AER/ANE. The model accounts 
for translation (vt), 
degradation of the reporter 
construct (dC and dF), and the 
cleavage of the ER retention 
domain (kc). The transport of 
the reporter is set by the 
import and export rate 
constants (ki and ko, 
respectively). The uncleaved 
protein can be transported 
with reduced rates set by λ
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2.3.2 Parameters estimation for Control siRNA 

 

I first determined the set of rate constants characterizing the reporter targeting for 

control siRNA. Some of the rates can be determined experimentally in order to 

constrain the fitting of the model to NE and ER kinetics.  

The ER retention domain cleavage rate (kc) was determined by Western blot analysis 

of cell lysates collected at different time points after inhibitor washout (Figure 2.12 A) 

The full length (uncleaved) reporter species was quantified and plotted over time. 

Fitting of the relative intensity value of the uncleaved reporter leads to a rate constant 

of kc = 2.05 h-1 (Figure 2.12 B).  

To compute the ER to NE membrane area ratio α, I used 3D images of distribution 

CMPK-LBR1TM-mEGFP, that is uniformly distributed in the ER-NE membranes. I 

then measured fluorescence intensity in the segmented ER and in a region around the 

chromatin that includes only the NE. Since this construct codes for a membrane 

anchor protein the ratio between the ER and NE intensities directly reflects the 

relative surface area between these two compartments with  α = AER/ANE = 7 (see 

Material and Methods). 

In the model, the translocation dynamic does not depend on the exact value of the 

translation rate (vt) but can be influenced by variations in the rate constant.  

I then tested the effect of an acute reduction of translation rate on maximal reporter 

accumulation at the INM. To completely block protein synthesis (vt = 0) cells were 

incubated before wash out for 30min in presence of different concentration (10, 50, 

100 µg/ml) of Cyclohexemide (CHX); protease inhibitor was then washed-out with 

medium containing CHX and the NE Increase (fold increase) was computed for each 

condition (Figure 2.12 C). Maximal accumulation of the reporter is reduced by around 

50% after the complete block of protease synthesis at 50 µg/ml of CHX. In the screen 

set up such an acute drop in the translation rate just prior to wash out is unlikely and 

moreover I did not found a correlation between initial ER intensity, which is 

proportional to the translation rate and maximal reporter accumulation (NE Intensity 

(fold change) (Figure 2.12 D). I therefore assumed that the reporter synthesis rate is 

stable over the time frame of translocation and a constant fixed value of vt  can be 

used. 
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The remaining rate constants were estimated by fitting the model to NE and ER 

kinetics after WO and the pre-WO NE to ER intensity ratio (Figure 2.12 E and 

Material and Methods).  

The derived degradation rates for the full length and the cleaved reporter (dF and dC) 

are respectively dF = 0.53 [0.08], dC = 1.54 [0.23] (median [inter quartile range]). This 

indicates that the full length protein is more stable (~ 3 fold longer turnover time) than 

the cleaved reporter and therefore the total reporter concentration in the cells should 

decrease after wash out. Quantification by microscopy shows that total reporter 

concentration indeed decreases after the wash out with a rate that is in agreement with 

the one predicted by the model (Figure 2.12 F). The difference in protein stability 

between the full length and the cleaved reporter also accounts for the transient peak in 

intensity at the NE seen during the translocation (Figure 2.12 E). In the end I could 

determine Control siRNA import and export rates (ki = 9.4 [1.26], and ko = 1.88 [0.61] 

in units h-1). We found that the transport through the nuclear pore is in the order of 

minutes for the cleaved form and negligible for the uncleaved. The transport from the 

ER to the INM takes t1/2 = log(2)/ki = 4-5 min, whereas the inverse process, returning 

to the ER from the INM, is considerably slower due to binding in the INM with t1/2 = 

log(2)/ko =19-25 min.  
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Figure 2.12 (A-B) WB analysis of protease cleavage kinetics. Cells lysates were collected at different 
time points after inhibitor wash out and blotted with anti-GFP antibody. The quantified intensity of the 
uncleaved reporter bands over time were plotted as relative intensity to the time point 0 (inhibitor +). 
Data were fitted with an exponential decay function and the cleavage rate kc = 2.05 h-1 was determined. 
(C) NE increase (fold change) in Control cells and cells treated with different concentration (µg/ml) of 
Cyclohexemine (CHX). p values are derived from the t-test  (D) Scatter plot showing no correlation 
between expression level of the reporter (ER intensity preWO) and the NE increase (fold change) (E) 
The reference parameter set is obtained by fitting the model (solid lines) to all cell trajectories for 
Control siRNA (symbols) in the screening. Obtained parameters are dF = 0.53 [0.08], dC = 1.54 [0.23], 
ki = 9.4 [1.26], and ko = 1.88 [0.61] in units h-1, and λ = 0 (median [inter quartile range]).(F) Total 
Target-INM GFP fluorescence after washout in Control siRNA. Model curves are computed from Eq. 
9-10 (Material and Methods) using parameters obtained from the fit to the single cell NE and ER 
kinetics, with dF = 0.53 h-1, dC = 1.54 h-1 (control siRNA) 
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2.3.3 Determination of best model for a predictable phenotype 

 

To simulate targeting phenotypes we systematically fitted different combinations and 

number of parameters to the NE and ER kinetics after WO. The parameter 

combination accounting for a phenotype with the smallest number of parameters that 

differ from control is then selected (Material and Methods). To validate this approach 

I generated a new reporter named Target-INM-Δ60LBR, in which the first 60aa of 

LBR are removed (Figure 2.13 A). Since this domain contains the binding regions for 

different nuclear substrates (laminB, histones and DNA binding domains)(Ye and 

Wormann, 1994), I predicted that the Target-INM-Δ60LBR would have a reduced 

INM accumulation. Indeed Target-INM-Δ60LBR is largely localized in the ER 

membrane when the protease is active. Moreover kinetic analysis shows that Target-

INM-Δ60LBR only slightly accumulates at the INM (Figure 2.13 C). Different 

parameter combinations were then fitted to NE and ER kinetics and the best fitted was 

selected as illustrated in Figure 2.13 B. The model reliably reproduces the observed 

phenotype with an 8.7 fold increase in export rate (Figure 2.13 B). Thus our model 

correctly predicts the Target-INM-Δ60LBR phenotype as a reduced INM retention 

compared to the Target-INM-LBR reporter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 

66 
 

 

Figure 2.13 (A) Schematic representation of TARGET-INM-Δ60LBR reporter and its localization 
assessed by imaging of HeLa cells stably expressing H2B-mCherry grown for 24h in the presence 
(inactive protease) or absence (active protease) of the protease inhibitor. WB analysis of cells grown 
for 24 hours in presence (protease activity -) or in the absence (protease activity +) of the protease 
inhibitor shows respectively the full-length and cleaved form of the reporter. (B) Selection of 
parameter combinations using crossvalidation. Through resampling without replacing I createed a 
large number (here 300) of data sets from the original Target-INM-D60LBR data set. Different 
parameter combinations for NP (i.e. change ki and ko but leave ki / ko = const.), ki, ko, dC, and λ are 
fitted to half of the resampled data. The predicted χ2 for the other half is calculated (shown in the 
graph). Parameter not included in the fit are chosen equal to the Target-INM reference parameter set 
(Figure 2.12). Kolmogorov-Smirnov tests (p < 0.005) are used to test whether predicted traces using a 
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larger set of parameters are significantly better than traces that use a smaller set (right panel). See also 
Material and Methods. (C) To reproduce Target-INM-D60LBR traces (data points) with the model 
(solid lines) it is sufficient to assume a large increase in the export rate constant with ko = 16.41 [1.54] 
h-1 compared to 1.88 [0.61] h-1 for Target-INM. We also found that the best fit is obtained when also 
dC is slightly decreased, dC = 1.28 [0.05] h-1 compared to 1.54 [0.23] h-1 for Target-INM. Parameter 
values are given in median [interquartile range]. 
 

2.3.4 The model clusters genes hit into 3 distinct classes   

 

After having validated the approach for the selection of the parameters with Target-

INM-Δ60LBR, the model was applied to the gene hits list (Figure 2.14). Genes were 

clustered according to the type of parameters that differ from Control siRNA and this 

leads to 3 distinct classes (Figure 2.15). In the first cluster a, containing 12/15 of the 

genes, a concomitant and equal decrease in both import and export rate is observed. 

For some genes in this cluster the model predicts a decreased stability of the cleaved 

reporter. For genes in the second cluster b, import and the export change 

independently; in particular the KPNB1 and LMNA KDs phenotype can be 

reproduced by an increase and respectively decrease of the export leaving the import 

unchanged. Finally, for cluster c, containing all the siRNAs for NUP93, the model 

predicts an increase in pore permeability for the uncleaved reporter and thus a 

decrease in the size-selectivity of the nuclear pore. This accounts for the pre-WO 

accumulation of the reporter and the reduced targeting after WO (Figure 2.10 C). 
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Figure 2.14 Example fits for (A) LMNA KD (dF = 0.53 [0.08], dC = 1.54 [0.23], ki = 9.4 [1.26],ko = 
0.24 [0.21] h-1); (B) SEC13 KD (dF = 0.53 [0.08], dC = 2.35 [0.13], ki = 3.27 [0.45], ko = 0.65 [0.09] in 
units h-1) and (C) NUP93 (dF = 0.53 [0.08], dC = 2.35 [0.13], ki = 3.27 [0.45], ko = 0.96 [2.04] in units 
h-1) and and λ 0.0535 [0.0068]. Parameteres are median [inter quartile range]. 
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Figure 2.15 Parameter fold changes with respect to the Control siRNA set for each of the 2 siRNAs 
targeting the 15 hit genes. The reporter stability is defined by 1/dC, the size selectivity is 1- λ. Genes 
classes; a) changes in import/export b) change in import or export independently c) change in size 
selectivity For the siRNAs marked by an asterisk a fit to the data could also be obtained by varying the 
turnover time of only the cleaved form. 
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For SEC13 KD the model predicts both a change in transport rate and a decrease in 

reporter stability of the cleaved form (Figure 2.15). I tested the prediction by 

measuring the total protein amount over time after wash out. In agreement with the 

model a significant decrease in the total protein amount after WO compared to 

Control siRNA (Figure 2.16 A) is detected. When the same quantification is done in 

cells that are kept in presence of the protease inhibitor (no wash out) for up to 2.5 hrs., 

total protein concentration does not significantly deviate from Control siRNA 

indicating that in SEC13 KD cells the translation rate is constant over this time 

(Figure 2.16 B). Additionally I tested if protease cleavage occurs normally in these 

cells. Cell lysates were collected from cells grown in the presence or absence of 

protease inhibitor for 24 hours and after inhibitor wash out (time points 30min and 

60min). Western blot shows that 1) after 48 hrs. of KD the reporter expression is still 

robust and 2) that reporter cleavage occurs quantitatively also in these cells (Figure 

2.16 C). The Efficiency of SEC13 KD was confirmed by Western blot against the 

endogenous protein (Figure 2.16 D).  

Genes clustered in the b class do not show any change in reporter stability compared 

to Controls. As predicted I confirmed that the total protein of LMNA KD cells 

concentration does not differ from the Control cells (Figure 2.16 E). 
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Figure 2.16 Total reporter concentration in Control siRNA (black circle) and Sec13 KD (red circle) 
plotted over time after inhibitor washout (A) or without washout (B) measured by microscopy. Bars are 
standard errors of means. (C) WB analysis of Control and Sec13 KD cells in presence and absence of 
inhibitor and after inhibitor wash out (30 and 60 min). Blot was done against GFP protein. (D) SEC13 
KD efficiency after 48 hrs. siRNA (E) Total reporter concentration in Control siRNA (black circle) and 
LMNA KD (red circle) plotted over time after inhibitor washout. Bars are standard errors of means. 
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2.4 Validation of model prediction 

 
2.4.1 NPCs densities partially account for reduction of targeting 

 

For the majority of the hits (a and b in Figure 2.15) the model predicts that the import 

and export rate constants varies by the same amounts. Both the import and export 

rates are proportional to the number of pores and pore permeability (Material and 

Methods Eq. 1-2). Thus a simultaneous decrease of import and export could be due to 

a decrease in pore numbers. We tested this prediction for four nucleoporins (NUP98, 

SEC13, NUP107 and NUP153) belonging to four distinct NPC complexes and 

quantified NPC density after 48 hours KD of each nucleoporin. Super-resolution 

images of nuclei stained with mab414 antibody allowed us to count single NPC 

(Figure 2.17). From this we computed the NPC density in the KD and Control siRNA. 

We found that all four nucleoporin KDs lead to a reduction of NPC density ranging 

from 25% (NUP153 KD) to 60% (SEC13 KD) relative to Control siRNA (Figure 

2.17). The good agreement between experimentally derived and model predicted NPC 

density for SEC13 KD and NUP98 KD indicates that these two phenotypes can be 

accounted for a reduced NPC density. Interestingly, for NUP107 KD and NUP153 

KD the model predicted a larger reduction in NPC density than observed 

experimentally. This indicates that additional mechanisms, such as decreased 

permeability or non-functional pores, may contribute to the observed phenotypes. 
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Figure 2.17 Super-resolved images of Control siRNA, SEC13KD, NUP98KD, NUP107KD and 

NUP153KD nuclei stained with anti mab414 antibody. Scale bar 10μm. In the inset single NPCs are 

visible. Lower panel: Density of the NPCs derived from experimental data (grey bars) or predicted by 

the model (black) normalized to 1 relative to Control siRNA. Raw NPC densities are for Control 

siRNA (9.55 +/- 0.65 NPC/µm2), SEC13KD (4.17 +/- 0.49 NPC/µm2), NUP98KD (4.70 +/- 0.51 

NPC/µm2), NUP107KD (5.26 +/- 0.71 NPC/µm2), NUP153KD (7.00 +/- 0.70 NPC/µm2) 
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2.4.2  The LMNA KD phenotype is explained by increased retention in the NE 

 

For LMNA KD the model predicted a decreased export rate constant. This will cause 

an increased retention and higher accumulation of the reporter in the nucleus. 

Alternatively, if the increased accumulation would be due to an increased import we 

would expect decreased retention (Material and Methods).  To test this prediction we 

performed fluorescence recovery after photobleaching (FRAP) experiments in Control 

siRNA and LMNA KDs cells where we bleached part of the NE 90min after inhibitor 

wash out (Figure 2.18 A B). Qualitatively FRAP curves for LMNA KD (red squares) 

show a slower recovery than for Control siRNA (gray circles) indicating a stronger 

retention in the nucleus (Figure 2.18). We computed characteristic times of recovery 

by fitting a two exponential function to the data (solid lines and inset). The estimated 

ratio of characteristic times (1.54) is in agreement with the ratio estimated from the 

model (1.44). The predicted and experimentally observed increased retention in the 

nucleus can have two reasons: (i) an asymmetric impairment of the passage through 

the NPC, (ii) stronger binding to nuclear proteins in the INM. As an asymmetric 

change in NPC permeability is thermodynamically unlikely, we propose that the 

phenotype seen for LMNA KD is caused by an increased binding of the reporter to 

nuclear proteins . 

This could be explained by an increase availability of binding sites for LBR at the 

INM; since LBR interacts with Lamin B at the INM I tested if after depletion of A-

type lamins a compensatory effect would lead to overexpression of Lamin B. 

However WB analysis of cells treated for 48 hours with siRNA against LMNA shows 

no change in Lamin B expression (Figure 2.18 B). As well Lamin B concentration at 

the NE is not increased due to LMNA KD cells compared to Control siRNA as shown 

by immunofluorescence (Figure 2.18 C)  

 



Results 

75 
 

 

Figure 2.18 A) NE FRAP recovery curves of Control siRNA (gray) and LMNA KD (red). Data are 
normalized between 1 (prebleach value) and 0 (post bleach value) and plotted over time. Solid lines are 
a fit of the double exponential )exp()1()exp()( 21 tkAtkAtFRAP −−+−=  to the data. The 
characteristic time is computed from 21 /)1(/ kAkA −+  and shown in the inset for Control and LMNA 
KD (mean ± s.d., n = 3 independent experiments). B) WB analysis of Lamin B1 expression after 
depletion of Lamin A C) left panel: HeLa cells stably expressing H2b-mCherry stained with anti-
LaminB1. Lamin B1 concentration at the NE is calculated by measuring fluorescence intensity a in a 
region around the chromatin signal and plotted as normalized value to the Control siRNA (right panel). 
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2.4.3 NUP93 KD cells also lose size selectivity for soluble dextrans  

 

Depletion of NUP93 leads to a distinctive phenotype in which the full length form of 

the reporter has already translocated to the INM before inhibitor washout. Among the 

other nucleoporins NUP93 is the only one for which the model predicts a decreased 

size-selectivity of the NPC without affecting the other processes. We therefore asked 

if the decrease in size-selectivity is restricted to membrane protein or if soluble 

macromolecules are also affected. The NPC represents a barrier for soluble protein 

larger than 50 kDa whereas protein smaller than this size are free to enter the nucleus. 

To assess the NPC permeability barrier after 48 hours of NUP93 KD, we 

microinjected the cell cytoplasm with two size dextran (70kDa and 160kDa) to 

mimics the behavior of soluble proteins. With a decrease in NPC size-selectivity we 

would expect a larger fraction of the dextran being to be able to enter the nucleus in 

the NUP93 KD than in Control cells. We therefore quantified the total amount of 

dextran in the nucleus compared to the whole cell for both Control and KDs cells.  In 

this experiment using cells that express the reporter in the presence of the inhibitor 

allowed us to score at the same time the permeability for membrane protein and for 

soluble dextran (Figure 2.19 A). We could detect a significant increase of about 50% 

in the nuclear accumulation of the 70kDa dextran in knock down cells relative to 

Control but only a mild, not significant, increase in nuclear accumulation of the 

160kDa dextran (Figure 2.19 B) This evidence indicates that NUP93 depletion affects 

the size-selectivity of the NPC permeability barrier for both membrane and soluble 

proteins. 
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Figure 2.19 (A) NE permeability assay. Representative images showing respectively reporter, 160kDa 
and 70kDa dextran localization in internal Control (gray asterisk) or NUP93 KD cells (red asterisk). 
(B) The bar plot shows dextran nuclear concentration relative to the Control siRNA. 
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The NUP93 forms a complex with other nucleoporins namely NUP188, NUP205 and 

NUP155. It has previously shown that depletion of Nup188 from in vitro reconstituted 

X. Laevis nuclei leads to mislocalization of ER resident proteins into the NE and 

results in enlarged size nuclei (Theerthagiri et al., 2010). A very similar phenotype to 

NUP93 KD has been reporter also in mammalian cells for Nup188 KD (Antonin et al., 

2011). In my screen, I could not observe any “NUP93 like” phenotype after Nup188 

depletion and as well for the other NUP93 subcomplex member NUP155; on the 

contrary examination of single cell trajectories show that in NUP205 KD the full 

length form of the reporter has already translocated to the INM before inhibitor 

washout. However this phenotype can be reproduce only with one siRNA targeting 

NUP205 and is linked with a decrease translocation after the wash out (Figure 2.20). 

 

 

Figure 2.20 Representative single cell trajectories images other Nup93 complex component: Nup188 
KD, Nup155 KD and NUP205 KD cells.  
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Table 2.1 Ranking of each siRNA based on the average deviation of NE Increase (fold change) from 
Control siRNA. For each siRNA the siRNA Ambion identifier, the Gene Symbol, the number of 
average replicates, the deviation of NE Increase (fold change) and the ER Intensity PreWO from 
Control siRNA is reported. siRNA that show a statistical reproducible effect in at least 2 of the scored 
replicates are marked in blue.  
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3.1 Materials 

 
Instruments 

Heating Block Eppendorf Thermomixer comfort 
Magnetic stirrer Heidolph MR 3001 
Thermo cycler GeneAmp PCR System 9700 Applied Biosystems 
Centrifuges Eppendorf Centrifuge 5417R 
Heraeus Megafuge 1.0 R 
Heraeus Labofuge 400 
MC 6 Centifuge, Sarstedt 
Water baths GFL 
Spectrophotometers NanoDrop 8000, ThermoScientific 
Ultrospec 2100 Pro, Amersham Biosciences 
Cell culture incubator Heraeus Hera cell 
Laminar flow hood Safe 2020 ThermoScientific 
UV lamps Benchtop UV Transilluminator, UVP 
Vacuum Concentrators Speed-Vac Concentrator, Bachofer 
miVac Quattro Concentrator, GeneVac, Ltd. 
Pipettes P2, P10, P20, P200, P1000 Gilson Pipetman 
Pipetus-Akku, Hirschmann 
Midi Plus, BioHit 
pH meter 240 pH/Temp meter, Beckman 
Spin coater KL-SCV-10, Lot Oriel 
Vacuum pump ME1, Vaccubrand 
Shakers Rollodrum TC-7, New Brunswick Scientific 
Sartorius Certomat RM 
VersArray_ChipWriterProSystem ,Bio-Rad 
Odyssey Scanner, LICOR 

Microscopes 
Leica SR GSD 
Zeiss LSM780 

Software 
LAS AF v2.6.1.7314, Leica Microsystems 
Zen up to v2012, Carl Zeiss Microscopy 
Matlab up to vR2012b, The Mathworks 
Python up to 3.3.2,  
Image J up to v1.46h, NIH, USA 
Adobe Illustrator CS3, Adobe 
Clone Manager 9 Professional Edition, Sci-Ed Software 
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3.2 Molecular Biology 
 

Agarose gel electrophoresis of nucleid acids 

 

Gels for nucleid acid separation were made from 0,8% or 1,5% (w/v) agarose 

dissolved in TBE buffer with 0,3 µg/ml ethidium bromide (stock solution 10mg/ml 

from Invitrogen). Separation was performed at 120 Volt in 1x TBE 

TBE: 89mM Tris, 89mM boric acid, 2mM EDTA 

DNA loading buffer: 30% v/v glycerol and 0,1 % w/v bromophenole blue in TBE 

DNA ladder: GeneRuler 1kb DNA ladder, (Thermo Fisher Scientific) 

 

Gel extraction of DNA 

 

Bands of DNA fragments were cut from agarose gels. The DNA was purified from 

the agarose gel using the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel 

GmbH) according to the manufacturer’s instructions. The DNA was eluted in 15 or 20 

μL of water.purify using NucleoSpin Extract II (Macherey-Nagel).  

 

DNA restriction digestion 

 

Restriction enzymes are from NEB (Ipswisch, MA, USA). Restriction digestions of 

DNA were perfomed in 15 µl or 50 µl reaction volume in the buffer suggested by the 

provider of the restriction enzyme. When recommended 0.1mg/ml BSA was added for 

stabilization of the enzyme. 1-2 units of enzymes per 1µg was used and the reaction 

was carried out at recommended temperature for 1-2 hours. Restriction reactions were 

loaded on agarose gels. 

 

Polymerase Chain Reaction 

 

PCR was performed in 50µl reaction volume with 10-50 ng DNA. The concentration 

of each dNTPs was 0,2mM and 0,2mM of each primer was used in the reaction. 

Amplification was catalysed by 1 U of Phusion® High-Fidelity DNA Polymerase 

(NEB) in the provided buffer. 30 cycle were run with denaturating step at 94°C for 
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45s, anneling for 30-60s and elongation 1 min for 1000 nucleotides of products at 

68°C. Every PCR round was preceded by 3 min at 94°C for complete denaturation 

and followed by 10 min at 68°C. The anneling temperature was chosen as the melting 

temperature of the primer with the lower melting temperature. The melting 

temperature of the primers is derived from the formula Tm=4(G+C)+2(A+T), cycling 

was performed in a PT C-200 thermocycler (MJ research, Inc). PCR products were 

analysed on agarose gel and the purified from the gel by NucleoSpin Extract II 

(Macherey-Nagel, Germany) 

 

Annealing of oligos and PCR with anneled oligo  

 

Oligos were dissolved in TE buffer (10 mM Tris-HCl, pH 7,5, 1 mM EDTA pH8.0) to 

0.5 OD260. 1OD260 was then mixed with 7.5 µl of NEB restriction enzyme buffer 2 and 

the filled to 75µl of dd H20. The reaction was incubated on a heating block at 85°C 

for 5 minutes. Afterwards the block was switched off and the reaction was allowed to 

cool to room temperature. The annealed oligos were diluted in TE buffer (10mM Tris-

HCl, 1mM EDTA, pH 8.0) to 1:500 and 2 μL were added to the ligation reaction.  

 
Table 4.1 Oligonucleotides Oligonucleotides were synthesized by Sigma. Numbers 
refer to the internal filing number of the laboratory 

Primer # Sequence 

758AB ATGGATCCGATGCCGGAGTTCCTAG 

759AB ATACCGGTAAGTTGGATATTTTAGTATC 

945AB CGAAGAACAGAAGCTGATCTCAGAGGAGGACCTGTGCAG 

946AB GATCCTGCACAGGTCCTCCTCTGAGATCAGCTTCTGTTCTTCGAT 

1073AB AATGCTAGCATGACGGCCTACTCCCAACAG 

1074AB AATAAGCTTAGACCGCATAGTGGTTTCC 

1170AB AATGGATCCTTAGGCAAAGGAAAGGTGG 

1171AB AATACCGGTGGATCTTTCTGTTTAC 

1076AB AATGGATCCTCATGGACTTTTCTCGGC 

1077AB AATTCCGGACCCAACTGGATGGGCTCTC 

1078AB AATAGATCTCGGACGAGAAAATGGCGGC 

1079AB AATTCCGGAGCAAGCTGTGCCAATCGATC 

1436AB AATTAGATCTAGCATGACGGCCTACTCCCAACAG 

1437AB AATTTTTAAATTACTTGTACAGCTCGTCCATGC 

1455AB AATTGGATCCAGATGGCGGGCGACG 

1457AB AATTCCCGGGTCTACCTCAGGAGTACTAAAGAAC 
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Ligation of DNA 

 

Ligation reactions were made in a volume of 15-20 µl using a range of 50-75 ng of 

vector and a ratio of 1:3 or 1:5 vector to insert. T4 ligase (NEB) was used to catalyze 

the reaction in the buffer recommended by the provider for 2 h at RT or at 16C ON. 

 

Coltivation of competent E.Coli cells 

 

Two E.Coli strains were used: E.Coli XL1-blue, subcloning grade (Strategene) and 5-

alpha High Efficiency (NEB). Both were growing in LB medium 1% (w/v) Bacto 

trypton, 1 % (w/v) NaCl, 0,5 % (w/v) yeast extract, pH 7.0 or in agar plats with LB-

medium with 1.5 % (w/v) agar, 100µg/ml ampicillin or 30µg/ml kanamycin. 

 

Transfomation of competent E.coli cells  

 

Amplification of plasmid was performed in 5-alpha High Efficiency (NEB). 5 ng of 

plasmid DNA of 3 µl of ligation reaction was used for trasformation as follow: 30 min 

incubation of E.Coli cells with DNA in ice, heat shock for 30 sec at 42°C, 5 min 

incubation in ice. After addition of 200 µl of SOC medium the E.Coli cells were 

incubated for 2 h at 37 in shaking machine. E.Coli cells were plated either in 

ampicillin or kanaycin plated and growed ON at 37°C. 

 

Plasmid purification 

 

Small scale plasmid preparations were purified by a ON cultures in 4 ml of LB 

medium by using as decribed in the protocol and diluted in 20 µl of ddH20. Large 

plasmid preparations were purified from ON cultures in 50ml of LB. For large-scale 

preparation of DNA for mammalian cell transfection, 50 ml of LB broth 

supplemented with the appropriate antibiotics was inoculated with 10 μl of the small 

scale culture and grown overnight on an orbital shaker. The pellets were collected by 

15 min centrifugation at 4000 rpm at 4°C. DNA was isolated using Nucleo Bond Kit 

(Macherey-Nagel) according to the manufacturer’s instruction. The purified DNA was 
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suspended in water to 1 μg/ μl final concentration. The DNA concentration was 

estimated either by agarose gel electrophoresis or using the NanoDrop 

spectrophotometer. 

 

Sequencing 

 

Sanger sequencing of the DNA constructs was carried out using the Single Read 

Sequencing service of GATC Biotech AG or Value Read service of Eurofins MWG 

Operon. Whenever possible, the sequencing was done using standard primers 

provided by either of the companies. Otherwise the sequencing primers were ordered 

from Sigma. 

 

 
Recombinant Plasmid 

 

 

pNS3-cMPK-2longNS5A/B-LBR1TM-EGFP (#1261):  

NS3 protease (without cofactor 4a) was amplified by PCR from pNS3/4Asc-mCherry 

(#768) with primer #1073AB and #1074AB. The product was inserted into pcMPK-

2longNS5A/B-LBR1TM-EGFP (#883) digested NheI and HindIII.  

 

pNS3-cMPK-longNS5A/B-LBR1TM-EGFP (#1275):  

NS3 was removed from by PCR from pNS3-pcMPK-2longNS5A/B-LBR1TM-EGFP 

(#1261) and inserted into pcMPK-longNS5A/B-LBR1TM-EGFP (#770) digested 

NheI and HindIII.  

 

pNS3-cMPK-longNS5A/B-LBR1TM-mEGFP (#1276):  

Digest pNS3-pcMPK-longNS5A/B-LBR1TM-EGFP (#1275) with NheI and AgeI and 

inserted in pmEGFP-N1 (V#94)   

 
pcMPK-2longNS5A/B-Δ60LBR1TM-EGFP (#1291):  
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Δ60LBR1TM was amplified with PCR from pcMPK-2longNS5A/B-LBR1TM-EGFP 

(#883) with primer #1170AB and #1171AB. The product was inserted  with BamHI 

and AgeI into pcMPK-2longNS5A/B-LBR1TM-EGFP (#883) 

 

pNS3-cMPK-longNS5A/B-Δ60LBR1TM-EGFP (#1292):  

Δ60LBR1TM was removed after cutting with BamHI and AgeI from pcMPK-

2longNS5A/B-Δ60LBR1TM-EGFP (#1291) and inserted into NS3-cMPK-

longNS5A/B-LBR1TM-EGFP BamHI and AgeI (#1275). 

 

pNS3-cMPK-longNS5A/B-LBR1TM-mEGFP/pcDNA5_FRT_TO (#1293):  

NS3-cMPK-longNS5A/B-LBR1TM-mEGFP was amplified by PCR from (#1276) 

with primer #1436AB and #1437AB and the product digested with BglII and DraI. 

The digested product was inserted into pcDNA5_FRT_TO (V#261) digested with 

BamH1 and EcoRV.  

pNS3-cMPK-longNS5A/B-Δ60LBR1TM-mEGFP/pcDNA5_FRT_TO (#1294):  

Δ60LBR1TM was extracted by digesting pNS3-cMPK-longNS5A/B-Δ60LBR1TM-

EGFP (#1292) with BamHI and AgeI. The digested product was inserted into pNS3-

cMPK-longNS5A/B-LBR1TM-mEGFP/pcDNA5_FRT_TO (#1293) digested with 

BamHI and AgeI. 

 

pNS3-cMPK-longNS5A/B-Sun1-mEGFP/pcDNA5_FRT_TO (#1295): 

mmSun1 was amplified by PCR from pEGFP-mmSUN1 (#757) with primer 

#1076AB and #1077AB and the product digested with BamH1 and BspEI. The 

digested product was inserted into pNS3-cMPK-longNS5A/B-LBR1TM-

mEGFP/pcDNA5_FRT_TO (#1293) digested with BamHI and AgeI. 

 

pNS3-cMPK-longNS5A/B-hMan-mEGFP/pcDNA5_FRT_TO (#1296): 

hMan1 (1-538) was amplified by PCR from pSVK-Flag-Man1 (#944) with primer 

#1078AB and #1079AB and the product digested with BglII and BspEI. The digested 

product was inserted into pNS3-cMPK-longNS5A/B-LBR1TM-

mEGFP/pcDNA5_FRT_TO (#1293) digested with BamHI and AgeI. 

 

pNS3-cMPK-longNS5A/B-Tor1AIP1-mEGFP/pcDNA5_FRT_TO (#1297): 
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Tor1AIP1 (1-538) was amplified by PCR from pTOR1AIP1-FLAP  (#1003) with 

primer #1455AB and #1457AB and the product digested with BamHI and XmaI. The 

digested product was inserted into pNS3-cMPK-longNS5A/B-LBR1TM-

mEGFP/pcDNA5_FRT_TO (#1293) digested with BamHI and AgeI. 

 

pNS3-cMPK-longNS5A/B-Lap2b-mEGFP/pcDNA5_FRT_TO (#1298): 

rLap2b was amplified by PCR from pEYFP-LAP2b (#24) with primer #758AB and 

#759AB and the product digested with BamHI and AgeI. The digested product was 

inserted into pNS3-cMPK-longNS5A/B-LBR1TM-mEGFP/pcDNA5_FRT_TO 

(#1293) digested with BamHI and AgeI. 

 

pcMPK-longNS5A/B-MYC-LBR1TM-EGFP (#1299): 

Myc tag generated by oligo anneling (#945AB, #946AB) and inserted into construct 

pcMPK-2longNS5A/B-LBR1TM-EGFP with BamHI and PvuI 

 

 

 
Table 4.2: Expression plasmids. Internal data base numbers are given. 

Gene Plasmid Name Plasmid  # Note 

hH2B pH2B-mCherry-IRES-Puro2b #616 
(unpublished, Made by Phil 
Rogers) 

     

rLap2b pEYFP-LAP2b   #24 (Beaudouin et al., 2002) 

     

hMan pSVK3-FLAG-MAN1 #944 (gift from Worman lab) 

     

hTo1Aip1 pTOR1AIP1-FLAP #1003 (unpublished, C. Chapuis) 

     

hLBR pCMPK-longHCVNS5AB-LBR1TM-EGFP #770 (unpublished, E. Dultz) 

     

hLBR pCMPK-2longHCVNS5AB-LBR1TM-EGFP #883 (unpublished, M. Isokane) 

     

hLBR pNS3-cMPK-2longNS5A/B-LBR1TM-EGFP  #1261 (unpublished, A. Boni) 

     

hLBR pNS3-cMPK-longNS5A/B-LBR1TM-EGFP  #1275 (unpublished, A. Boni) 

     

hLBR pNS3-cMPK-longNS5A/B-LBR1TM-mEGFP  #1276 (unpublished, A. Boni) 

     

hLBR pcMPK-2longNS5A/B-Δ60LBR1TM-EGFP  #1291 (unpublished, A. Boni) 
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hLBR pNS3-cMPK-longNS5A/B-Δ60LBR1TM-EGFP  #1292 (unpublished, A. Boni) 

     

hLBR 
pNS3-cMPK-longNS5A/B-LBR1TM-
mEGFP/pcDNA5_FRT_TO  #1293 (unpublished, A. Boni) 

     

hLBR 
pNS3-cMPK-longNS5A/B-Δ60LBR1TM-
mEGFP/pcDNA5_FRT_TO  #1294 (unpublished, A. Boni) 

     

hLBR pcMPK-longNS5A/B-MYC-LBR1TM-EGFP  #1299 (unpublished, A. Boni) 
     

mmSun1 
pNS3-cMPK-longNS5A/B-Sun1-
mEGFP/pcDNA5_FRT_TO  #1295 (unpublished, A. Boni) 

     

hMan1 
pNS3-cMPK-longNS5A/B-hMan-
mEGFP/pcDNA5_FRT_TO #1296 (unpublished, A. Boni) 

     

hTor1AIP1 
pNS3-cMPK-longNS5A/B-Tor1AIP1-
mEGFP/pcDNA5_FRT_TO #1297 (unpublished, A. Boni) 

     

rLap2b 
pNS3-cMPK-longNS5A/B-Lap2b-
mEGFP/pcDNA5_FRT_TO  #1298 (unpublished, A. Boni) 

     

NS3/4Asc pNS3/4Asc-mCherry #768 (unpublished, E. Dultz) 

     
Flp pOG44 #V75 Invitrogen 

     

FRT  pcDNA5_FRT_TO #V261 Invitrogen 
 

 

 

3.3 Sample Preparation 

 
Cell lines and cell culture 

 
Hela R19 FlpIn TREx cells used in the screen were a generous gift of Gromeier lab, 

Duke University Medical Center, Durham, North Carolina USA. described in Kaiser 

et al., 2008. Cells were grown in complete DMEM cell culture medium prepared by 

mixing High-Glucose Dulbecco’s Modified Eagle Medium (D-Glucose (+), L-

Glutamine (+), Sodium Pyruvate (-) with 10% fetal bovine serum (FBS, PAA 

Laboratories, GmBH), 1mM Sodium Pyruvate, 1x MEM nonessential amino acids, 

2mM L-Glutamine, and 100 U/ml Pen-Strep mix (all from Gibco Life Technologies). 

The medium was filtered through 0.22 μm Steritop filter (Millipore). The cells were 

grown on 10 cm BD Falcon tissue culture dishes (BD Biosciences) in 5% CO2 in a 
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humidified Hera cell incubator. For passaging, the cells were washed with PBS 

(EMBL Media Kitchen) and incubated with 1x Tripsin-EDTA solution for 2-5 

minutes. The cells were grown for up to 35 passages. All cell culture manipulation 

was performed under a laminar flow hood.  

 

Transfection of plasmid DNA 

 

Transfections of HeLa cells with plasmid DNA were carried out with different 

trasfection reagents: Lipofectamine 20000 (Invitrogen) and JetPRIMETM (Polyplus 

Transfection) following the protocol provided by the manufacturer. For co-

transfections with several plasmid the DNA amount was divided among those. The 

transfection mixes were done in OPTIMEM for Lipofectamine or in the provided 

solution for JetPRIME. The mixes were replaced with fresh medium after 4h for 

JetPRIME or after 24h for Lipofectamine. 

 

 

Generation of cell lines expressing Target-INM reporters 

 

H2B-mCherry (#616) was transfected into Hela R19 FlpIn TREx with JetPrime 

(Polyplus-transfection) according to the protocol of the manufacturer. A clone stably 

expressing H2b-mCherry was isolated by selection with 0.5 μg/ml Puromycin 

(Calbiochem). Each Target-INM reporters (#1293, #1294, #1295, #1296, #1297, 

#1298) construct was transfected together with the pOG44-Flp recombinase (V#75). 

Cells were kept under selection with 10 µg/mL Blasticidin (InvivoGen) and 200 

µg/mL HygromycinB (Invitrogen) till resistant clones were isolated.  

 
Table 4.3: Mammalian cell lines. Internal data base numbers for plasmids and cell lines 
are given. 

Gene Plasmid Name Cell type Plasmid  
# 

Cell 
Line # Note 

       

   
Hela R19 FlpIn 
TREx   #720 

(Kaiser et al., 
2008) 

       

H2B pH2B-mCherry-IRES-Puro2b 
Hela R19 FlpIn 
TREx  #616 #805 

(unpublished, 
A. Boni) 

       

H2B/hLBR 
pNS3-cMPK-longNS5A/B-LBR1TM-
mEGFP/pcDNA5_FRT_TO  

Hela R19 FlpIn 
TREx  #1293 #811 

(unpublished, 
A. Boni) 



Material and Methods 
 

93 
 

       

H2B/hLBR 

pNS3-cMPK-longNS5A/B-
Δ60LBR1TM-
mEGFP/pcDNA5_FRT_TO  

Hela R19 FlpIn 
TREx  #1294 #812 

(unpublished, 
A. Boni) 

       

H2B/mmSun1 
pNS3-cMPK-longNS5A/B-Sun1-
mEGFP/pcDNA5_FRT_TO  

Hela R19 FlpIn 
TREx  #1295 #826 

(unpublished, 
A. Boni) 

       

H2B/hMan1 
pNS3-cMPK-longNS5A/B-hMan-
mEGFP/pcDNA5_FRT_TO 

Hela R19 FlpIn 
TREx  #1296 #823 

(unpublished, 
A. Boni) 

       

H2B/hTor1AIP1 
pNS3-cMPK-longNS5A/B-Tor1AIP1-
mEGFP/pcDNA5_FRT_TO 

Hela R19 FlpIn 
TREx  #1297 #825 

(unpublished, 
A. Boni) 

       

H2B/rLap2b 
pNS3-cMPK-longNS5A/B-Lap2b-
mEGFP/pcDNA5_FRT_TO  

Hela R19 FlpIn 
TREx  #1298 #824 

(unpublished, 
A. Boni) 

 

 

 

 
Production of siRNA microarrays and coated 8-well LabTEK. 

 

HeLa cells were transfected with siRNAs by solid-phase transfection on siRNA 

microarray. The siRNA microarrays were spotted in batches using the following 

protocol from Erfle et al., 2008. 3 μl OptiMEM containing 400 mM sucrose were 

mixed with 1.75 μl Lipofectamine 2000, 1.75 μl H2O and 5 μl 3 μM siRNA oligo 

followed by incubation for 20 min at RT. After incubation the mixture was 

supplemented with 7.25 μl of a sterile 0.2% (w/v) gelatine water solution. 16 μl  of 

mixture was transfer in each well of a 384-wells plate. Microarrays were spotted using  

VersArray_ChipWriterProSystem (Bio-Rad). The microarrays were stored in sealed 

boxes with drying pearls for further use. The siRNA microarrays were spotted with 

the specific siRNA (see Table 4.1)  and a scrambled siRNA XWneg9 used as a 

control siRNA 

For a coated 8-well LabTEK  after addition of gelatin the 16 μl of this coating 

solution were diluted and thoroughly mixed in 800 μl H2O resulting in 15 nM total 

siRNA concentration. 100 μl of this final coating mixture were transferred to a well of 

an 8-well Lab-Tek and the solution was evaporated for 45 min at 37° C using a 

SpeedVac Concentrator from Thermo Scientific (Wilmington, US). The siRNA 

coated 8-well Lab-Teks were either used directly or stored at RT in a sealed box 

containing dry pearls for up to one year. 
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Western blot on Hela cells extracts 

 

Hela cells were rinsed three times in PBS and  resuspended in ice-cold lysis buffer (50 

mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton X-100 and protease inhibitor cocktail 

(Roche) and incubated for 30 minutes at 4°C in a rotor. The lysates were centrifuged 

for 15 min at 14000 at 4°C. The resulting supernatants were used as total cell lysates 

and load in NuPAGE® precast gel (Invitrogen). Western blot was carried out 

according to the protocol for The Odyssey® Infrared Imaging System (LICOR). The 

following antibodies were used for Western Blotting: anti-GFP (mouse, clones 

7.1/13.1, Roche); anti Rcc1 (rabbit, Mattaj Lab, EMBL, Heidelberg); anti Lem4 

(rabbit, Mattaj Lab, EMBL, Heidelberg); anti-LMNA (ab26300 Abcam); anti-

LMNB1 (ab16048 Abcam) Secondary antibodies: anti-mouse Alexa680 (Molecular 

Probes), anti-rabbit Alexa680 (Molecular probes), anti-mouse IRDye800CW (LI-

COR) 1:10000, anti-rabbit IRDye800CW (LI-COR) 1:10000. Blots were scanned in 

an Odyssey fluorescence imaging system (LI-COR). 

 

Dextrans Microinjection 

 

Cells were grown overnight in a 2 well LabTEK. The day after, cells were liquid 

transfected with NUP93 siRNA and incubated for additional 48 hrs. Microinjection 

was performed under a Zeiss LSM 780 confocal microscope with a 63x 

PlanApochromat oil objective, NA 1.4 (Carl Zeiss) equipped with a microinjection 

system  (Eppendorf). Cells were microinjected with a mix of 160kDa Dextran-TRIC 

(Sigma) and 70kDa Dextran-Cy5 (Molecular Probes) in water. After 10 min 

equilibration cells were imaged. Dextran intensities in the nuclear and cytoplasm were 

measured.  

 

NPC staining with antibodies 

 

Cells were grown for 48 hrs. in a siRNA ‘ready-to-transfect’ 8-well LabTEK. The 

cells were then rinsed twice with PBS and stained using one of the protocols 

described below. Washing consisted in a series of 3 5 minute incubations in PBS,  

Cells were pre-fixed with 2% PFA, PBS for 20 seconds. This step helps to keep the 

cells attached to the cover slip in the subsequent extraction and washing steps. The 
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cells were then extracted with 0.2 % Triton X-100, PBS for 3 minutes, rinsed once 

with PBS and fixed with 2% PFA, for 15 minutes. Extraction of the cells with a 

detergent before fixation washes out the soluble cytoplasmic pool of nucleoporins and 

thus reduces background. Subsequently, the samples were washed three times with 

PBS and blocked with 5% NGS, PBS for 1 hour. The incubation with primary 

antibody mab414 1:2500 (Covance), diluted in 5% NGS, PBS, was carried out for 1 

hour at RT or overnight at 4°C. Next, the samples were washed and incubated with 

the appropriate secondary antibody1:1000 anti-mouse Fab Alexa Fluor 647 

(Invitrogen) for 1 hour at RT. This was followed by a final round of 

washing.  
 

Immunofluorescence on Triton-X100/Digitonin permeabilized cells 

 

Cells were grown in a 8-well LabTEK For IF Cells were washed three times with 

transport buffer (TB) (20 mM HEPES pH 7.3, 110 mM potassium acetate, 5 mM 

sodium acetate, 2 mMmagnesium acetate, 1 mM EDTA). For digitonin 

permeabilization cells were incubated with TB containing 33µg/ml digitonin for 5min 

on ice, washed three times in TB and then fixed in 2% PFA in TB for 10min at RT; 

for Triton-X100 permeabilitation cells were incubated for 5 min at RT with 0.2% 

Triton X-100, washed three times and then fixed in 2% PFA in TB for 10min at RT. 

After fixation the cells were washed again three time in TB and blocked with 2% 

BSA ON at 4°C. Primary and secondary antibodies were diluted in BSA and used for 

1h incubation at RT (dilution indicated below). Between the two incubations the cells 

were washed three times with TB 5 min 
 

3.4 Imaging 
 

Confocal microscopy  

 

For the screening assay, the Target-INM-LBR cell line was seeded on the siRNA 

microarray; 24 hours later the expression of the reporter was induced with 1 µg/mL 

Doxycycline (Sigma) in presence of 2 µM BILN2061 NS3 protease inhibitor 

(Boehringer Ingelheim). After additionally 24 hours we washed out the protease 
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inhibitor and started live cell confocal time-lapse imaging time-lapse microscopy. 

Each siRNA microarray was acquired with the ZEN 2010 Software on a Zeiss LSM 

780 confocal microscope with a 63x PlanApochromat oil objective, NA 1.4 (Carl 

Zeiss). Each siRNA spot was imaged every 9 minutes before inhibitor wash out (two 

time points) and up to a 2.5 hrs after wash out. For total cell fluorescence imaging 

ZEN 2010 Software on a Zeiss LSM 780 confocal microscope with a 20x 

PlanApochromat dry objective, NA 0.8  (Carl Zeiss) was used; each position was 

imaged every 15min.  All live-cell imaging was performed at 37°C using CO2-

independent medium without phenol red (Invitrogen) containing 20% fetal bovine 

serum, 2 mM l-glutamine, and 100 mg/ml penicillin and streptomycin. 

 
Super-resolution microscopy 

 

Super-resolution imagin was performed on a Leica SR GSD microscope, equipped 

with Leica HCX PL APO 100x, NA 1.47 Oil CORR TIRF PIFOC objective. The 

image was acquired on an Andor iXon3 897 EMCCD camera. The lateral drift was 

minimized by the Suppressed Motion (SuMo) stage. The system was equilibrated for 

about 2 hours after switching on. Imaging was performed in epifluorescence mode. In 

order to bring the fluorophores into dark states, the sample was first illuminated with 

the excitation light at the maximum laser power, until single fluorophore blinking 

behavior was observed. For AF 647 this typically required less than 30 s. Next, a long 

series was acquired at intermediate laser power, at a rate of 100 frames per second. 

Typically up to 50,000 frames were acquired for images of NPCs.  

 

 

3.5 Image analysis 

 
Image analysis 

 
H2B-mCherry signal was used to monitor cell cycle stage of single cells. For this 

purpose nuclei were detected in the H2B-mCherry channel and classified with 

CellCognition (Held et al., 2010; Walter et al., 2010) in two morphological classes: 

Interphase and Mitotic. Cells were tracked with a constrained nearest-neighbor 



Material and Methods 
 

97 
 

tracking procedure, and cell trajectories that persist in interphase for the duration of 

the time-lapse were extracted. To reduce the effect of classification errors 

classification results were corrected with Hidden Markov Models (Held et al., 2010; 

Walter et al., 2010). Target-INM reporter fluorescence intensity along each single cell 

trajectory was quantified in the ER and NE with an in house developed routine 

implemented in MatLab. H2b-mCherry signal is used to trace the border of the 

nucleus and along which the NE is unfolded. The NE is divided in multiple segments 

with a fixed step length extending from the nucleus into the cytoplasm. Average 

intensity of the Target-INM reporter is then calculated along each segment length 

(Figure 4.1 1-2). The first derivative of segment average intensity in the direction 

from nucleus to cytoplasm is then computed; the derivative maxima (dmax) defines the 

nucleus to cytoplasm transition where the NE is positioned (Figure 4.1 2). Segments 

with dmax below a fixed intensity threshold are removed from the analysis. For the 

remaining segments the position of dmax  (Ymax)  is used as coordinate for deriving the 

following parameters: 

 

- NEmax =  highest intensity pixel in region [Ymax, Ymax + 4]  (Figure 4.1 4) 

- NEmean =  mean intensity in region [Ymax, Ymax + 4]   (Figure 4.1 4) 

- Nucleusmean =  mean intensity of pixels in [Ymax - 6, Ymax -2]  

 

The ratio between Nucleusmean / NEmean of a segment must be below 0.6 otherwise the 

segment is removed from the analysis. The NE intensity is computed by averaging 

NEmax of all remaining segments. For calculating the ER intensity I accept as valid all 

the segments; I then compute a moving average of pixels with window size equals to 

1/4 of the total segments and with step size equals to one segment in the region [Ymax 

+ 8, Ymax + 25]. Among all the computed averages the highest one was selected as 

single value for the ER (Figure 4.1 5). 
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Figure 4.1 (1) Raw average intensity along the nuclear surface as calculated in Figure 2.7 C In (2) a 
zoomed region of the raw average profile is shown. The first derivative of the raw average intensity (2) 
is calculated and shown in (3) (negative values are left white). The blue dots represent the first derivate 
maxima. (4) The computed derivate maxima is used as positional information for the search region 
(highlighted in green) for the brightest pixel of the NE. The search region does not include NE regions 
that do not fulfill the selection criteria. In (5) a zoomed inset of the ER shows the region where the ER 
intensity was measured (magenta region). 

For the total Target-INM fluorescence measurements I use the H2b-mCherry signal 

and CellCognition to automatically select and track nuclei that persist in interphase 

for the 2.5 h of the imaging after wash out. The ER is detected by thresholding the 

Target-INM GFP signal and single cells are separated by marker based watershed 

segmentation, using the nuclei as markers. For this I used an in house written scripts 

in FIJI (Schindelin et al. 2012) and MatLab. The GFP intensity for each cell is then 

averaged in space at every time point and the ratio computed with respect to the first 

pre-washout time point.  

 
Segmentation of NE and ER region 

 

A fully automated 3D computational pipeline has been implemented in Matlab to 

segment nucleus and ER region from H2B-mCherry and Target-INM-LBR channels, 

respectively. Fluorescent signal from confocal microscopes undergoes intensity decay 

with the increase of distance from the cover slip surface. The loss of intensity is 
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modelled as an exponential function of distance from the surface (Kervrann et al., 

2004). This function is used to compute a correction factor in order to compensate the 

intensity decay in different slices. Intensity corrected anisotropic stacks are 

interpolated to have an isotropic resolution that provides greater flexibility in 3D 

image analysis. 3D Gaussian filter is applied on the interpolated stacks to reduce the 

effects of noise. To segment the nucleus a global threshold is determined by analyzing 

the histogram constructed from all the pixels within the stack. This threshold is 

adapted to each of the slices by combining a second threshold (local) determined from 

individual slices (Hériché et al., 2014). By combining local and global thresholds 

within a stack it avoids over-segmentation and under-segmentation significantly. ER 

regions are also segmented by combining two thresholds in the same way. To separate 

ER region of individual cells a marker based watershed algorithm has been applied. In 

this process segmented nuclei are used as markers where the watershed method is 

applied on the distance transformed image of the segmented ER region. The NE 

membrane region is detected from the segmented nucleus volume with a fixed width. 

Integrated intensity of Target-INM-LBR in the ER and NE regions are computed. 

 

 
 

Figure 4.2 3D imaging of CMPK-hLBR-mEGFP and H2B-mCherry transfected cells. Representation 
of segmented ER (green), chromatin (red) and NE region (blue). Plot shows ER and NE integrated 
intensity ratio. 
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NPC counting in super-resolution imaging 
 
 
Single molecules in the super-resolved movies were localized with a centroid fit of 

the Leica SR GSD Wizard. The lists of localization events were then saved in a binary 

format and imported into Matlab. For correction of lateral drift a MatLab routine 

developed previously in our lab. Lateral drift in the images was corrected using the 

correlation method (described in Szymborska et al., 2013). The pixel size in super-

resolved images has be chosen to be 10 nm pixel. NPC counting was done using an in 

house custom written MatLab routine. Briefly super-resolved (SR) images were 

median filtered and single NPC clusters were detected. A peak detection algorithm 

was applied on the SR raw images and the number of peaks inside each NPC cluster 

was counted. To define a NPC as fully assembled a minimum number of three peaks 

were required. NPC clusters that fulfill this requirement were counted and an average 

NPC density was computed. 

 

Data analysis 

 

For each siRNA microarray NE and ER intensities data of single cell trajectory data 

were analyzed using an in house written Python pipeline. A fixed intensity threshold 

was applied to remove low reporter expressing cells. For each remaining cell raw NE 

and ER intensity values were normalized to the average of the two pre-wash out 

intensity values. The NE increase (fold change) was defined as the average of the 

three highest normalized values after wash out. An average NE increase (fold change) 

is derived for Control siRNA and gene siRNA by combining respectively cells from 

six Control siRNA and two siRNA spots. Deviation of each siRNA from the Control 

siRNA NE increase (fold change) was computed and tested for statistical significance 

with Student´s t test (p < 0.01). For making value comparable between replicates, a 

percentage NE increase (fold change) deviation from Control siRNA was calculated 

and a combined average deviation for the siRNA replicates derived.  

ER Intensity PreWO  is the average of ER intensity before wash-out. An average ER 

Intensity PreWO is derived for Control siRNA and gene siRNA by combining 

respectively cells from six Control siRNA and two siRNA spots. Deviation of each 

siRNA from the Control siRNA ER Intensity PreWO was computed. For making 

value comparable between replicates, a percentage ER Intensity PreWO  deviation 
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from Control siRNA was calculated and a combined average deviation for the siRNA 

replicates derived.  

 

3.6 Mathematical modelling 
 

Mathematical description 

 

The diffusion of the reporter in the ER is fast compared to the translocation time, for 

instance the reporter requires 5-15 sec to diffuse to the NE (t1/2 FRAP = 20 sec Figure 

2.4 , D = 0.03-0.1 µm2/sec, Zuleger et al. 2011) whereas protein cleavage and 

translocation time are in the order of 10 of minutes. Accordingly, during translocation 

gradients of the reporter radially away from the nucleus was not observed. Therefore, 

in the ER and INM fast diffusion and homogeneous distribution of the reporter was 

assumeed. Translocation occurs through nuclear pores evenly distributed on the NE, 

therefore the reporter density in the INM can also be considered to be spatially 

homogeneous. Finally fast binding of the reporter to nuclear proteins was assumed 

and that in this bound state the reporter can’t translocate through the pore. Under 

these assumption effective transport rates that are proportional to the number of pores 

N, permeabilities for import and export (Pi and Po, respectively), and the degree of 

binding to nuclear proteins 

 

ii NPk =       (Eq. 1) 

β
o

o
NPk =        (Eq. 2) 

 

The parameter β = 1+Kb L, where Kb is the binding constant to nuclear proteins and L 

their concentration, quantifies the binding of the reporter to INM proteins and 

increases with increased retention. For a pure diffusive transport Pi = Po = P. In this 

case, in order to vary the number of pores and/or permeability compared to the control 

data set ki and ko were changed and the ratio left equal to the ratio obtained for control.  

The total density was defined for full length and cleaved protein in ER and ONM, 

computed with respect to the ER area, by αONMER FFF +=  and αONMER CCC += , 

respectively. The subscripts indicate the localization of the reporter. The parameter 
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INMER AA=α  gives the area ratio of the membranes. The system of ordinary 

differential equations (o.d.e.) reads

 (Eq. 3) 
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 (Eq. 6) 

 

The parameter 1-λ characterizes the size selectivity barrier of the pore, a value of 0 

indicates that the full-length protein can equally translocate through the pore as the 

smaller cleaved protein. The experimentally observables quantities in the ER and 

nuclear envelope (NE) are a linear combination of these variables 
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 (Eq. 8) 

 

These quantities, normalized to their initial steady-state values (at t = 0), are used to 

fit experimental data. The total reporter density, computed with respect to ER area is 

given by 
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(Eq. 9) 

 
(Eq. 10) 

The system of o.d.e.'s is solved analytically for kc = 0, t < 20 min and kc = 2.05 h-1 for 

t ≥ 20 min.  
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Derivation of the mathematical model 

 

The model given by Eqs. 3-6 is a simplified version of a more detailed model that 

includes the three compartments (the ER, the ONM and the INM). The model 

considers the surface density of uncleaved/cleaved reporter in the different 

compartments and the reversible binding of the reporter to inner nuclear proteins, e.g. 

lamin B. The equations describing the time changes of the uncleaved reporter read   

 

 (Eq. 11) 

   (Eq. 12) 

  

   (Eq. 13) 

  

  (Eq. 14) 

 

The rate constant  describes diffusion between ER and ONM.  and  are, 

respectively, the free and bound to nuclear proteins reporter density. Binding and 

unbinding of the reporter to proteins in the INM occur with rate constants  and , 

respectively. Binding sites are assummed to be in excess compared to the reporter so 

that their concentration . Similarly for the cleaved reporter one obtains

 

  (Eq. 15) 

  (Eq. 16) 

 

   (Eq. 17) 

   (Eq. 18) 

 

The rate constant  is the export rate constant of the free protein. If the exchange 

between ER and ONM is fast compared to the translocation ( , so that 

and , the parameters C can defined derived as 

and  and obtained  
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  (Eq. 19) 

  (Eq. 20) 

 

Finally, if the binding of the reporter to inner nuclear proteins is close to equilibrium, 

that is , and defining the total densities in the INM 

 and  , model given in the main text is derived. 

The effective export rate constant is then given by   and is reduced by 

the increased binding of the reporter in the INM.  

 

 

Parameter estimation  

For parameter estimation the mean squared distance was minimized as: 

 

 
(Eq. 21) 

where the NE and ER values are normalized by their initial densities. The first three 

time points (pre-wash out and point just after wash out) are omitted from the distance 

measure. A value of 25 multiplying the initial ER/NE ratio was chosen in order to 

increase the weight of this measure so that it reflects the 14 time points used in the fit 

for NE and ER. To estimate the variance of the parameters bootstrapping was used 

and the fitting repeated for 100 resampled data sets. These sets are obtained from the 

original data sets by resampling with replacing and contain the same number of cells 

as the original data set.  

To find a minimal set of parameters different from control reproducing the siRNA 

KD, 20 parameter combinations using crossvalidation were compared. Not fitted 

parameters are taken as the control values.  

1. Using resampling without replacing two data sets each containing half of the 

cells were generated 
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2. In the crossvalidation step the 20 parameter combinations investigated here 

were fit to one half of the data and the predicted χ2 for the other half was 

computed.  

3. this procedure was repeated 100 times and pairs of parameter combinations 

compared with a Kolmogorov-Smirnov p < 0.005. 

The smallest parameter combination was chosen if the statistical test is not significant. 

In case sets with equal number of parameters are not statistically different: 

• If sets changing NP (leaving the ratio of ki and ko unchanged), ki, or ko, are not 

statistically different, sets changing NP was selected. The rationale is that, for 

a pure diffusive transport, a change in number of pores and/or permeability 

after knock down is more likely than an unidirectional change of one of the 

rates. 

• If sets changing ki or ko are not statistically different the sets with the best 

mean predicted χ2 was taken.

 

 

Estimating transport rates per NPC 

 

The maximal transport rate through a single membrane pore of radius R = 60 nm and 

length L = 40 nm (Maimon et al. 2012) is derived from Fick's first law 

 2
max )/1( Rr

L
NCRDf A −

D
=

π

 (Eq. 22)
 

Where D is the membrane diffusion of the reporter, r the hydrodynamic radius of the 

cytoplasmic moiety, and  the concentration difference between INM and ONM. 

The last term describes steric hindrance of entry into the channel (Mohr et al. 2009). 

For the transport rate estimated from our kinetic model: 

 
 (Eq. 23) 

Where  is the density of nuclear pores, here estimated to be ~ 9 NPC/µm2. At 

washout the density in INM is ~0 therefore . the ratio of these two rates which 

is independent of concentrations can be then computed 

 
 (Eq. 24). 
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To compare the absolute transport rates obtained here to previous reported rates for 

diffusible proteins at a standard cytoplasmic concentration of 1 µM the concentration 

needs to be converted to a surface density. In the cell line used in this study the area 

ratio of ER and nuclear membrane was estimated from fluorescent images 

, a nuclear membrane area of 1200 µm2, and a cytoplasmic volume 

(including ER and organelles) of 4650 µm3. This yields a surface area ER density of ~ 

2 µm2/µm3. From this, it can be computed, assuming evenly distributed ER, that a 1 

µM cytoplasmic concentration correspond to a ER surface density in the ER of  5*10-

22 mol/µm2.

Fitting of FRAP experiments 

For FRAP experiments, in the limiting case were the entire nucleus is homogenously 

bleached, lateral diffusion can be neglected and a characteristic time for the 

fluorescence recovery can be computed 
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 (Eq. 25) 

 

Here λ = 0 was taken. The computed characteristic time overestimates the 

characteristic FRAP time after local bleaching; in this case lateral diffusion of 

fluorescent molecules from the side of the bleached area will speed up recovery. 

Nevertheless, Eq. 25 can be used to qualitatively estimate the effect of parameter 

changes on the recovery time. For instance, both import, export and degradation 

contribute to the residence time.  As observed in experiment a decrease in ko from our 

reference parameter set causes an increase in τ. Equation 25 has been used to compute 

the ratio of characteristic times for LMNA KD to Control siRNA.  
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Table 4.4  List of siRNAs sequences 
 

Gene Symbol siRNA 
ID Sense siRNA Sequence Antisense siRNA Sequence 

XWNeg9  Custom UACGACCGGUCUAUCGUAGtt CUACGAUAGACCGGUCGUAtt 
INCENP s7424 AGUCCUUUAUUAAGCGCAAtt UUGCGCUUAAUAAAGGACUtc 

Nup35 Custom UGCCCAGUUCUUACCUGGAtt UCCAGGUAAGAACUGGGCAtt 

Nup35 Custom CCUCUUGUUGGAGUUACAUtt AUGUAACUCCAACAAGAGGac 
Nup188 s23966 GGAGCUGAUUCAUGCGAUAtt UAUCGCAUGAAUCAGCUCCaa 

Nup188 s23965 GGAAACCUCUUGAUGAACAtt UGUUCAUCAAGAGGUUUCCgt 
Pom121 s19144 GCCCAUCCAUCCUAUCUUUtt AAAGAUAGGAUGGAUGGGCgt 

Pom121 Custom CAGUGGCAGUGGACAUUCAtt UGAAUGUCCACUGCCACUGcu 
Nup205 s23177 GGAACGAGAUGAUAUGAUUtt AAUCAUAUCAUCUCGUUCCtc 
Nup205 s23175 GGAGCAAGAUGGAUUGAUUtt AAUCAAUCCAUCUUGCUCCtt 

Nup93 s18654 GGAAUGAUACCAUACCGAAtt UUCGGUAUGGUAUCAUUCCag 
Nup93 s18655 CCGCUUCACAGGUAGUUAAtt UUAACUACCUGUGAAGCGGca 

Nup155 s18512 GGCAUCUACUUGUGAGUAAtt UUACUCACAAGUAGAUGCCtc 
Nup155 s18514 GGAUCCAACUUCAGAUACAtt UGUAUCUGAAGUUGGAUCCta 
Nup62 s24249 GGAGAGCCUGAUCAACAAAtt UUUGUUGAUCAGGCUCUCCag 

Nup62 s24247 GGGCUUCAGCUUAAAGGCAtt UGCCUUUAAGCUGAAGCCCtg 
Nup54 s28724 CGAUUCAGGGUGAACUAAAtt UUUAGUUCACCCUGAAUCGta 

Nup54 s28725 CUGCUGGUGUUGAUCCUAUtt AUAGGAUCAACACCAGCAGga 
NupL1 s18984 CAAGACCAGAGGAUAGUAAtt UUACUAUCCUCUGGUCUUGtt 

NupL1 s18985 GCCUUGGUGGUAUAGAUUUtt AAAUCUAUACCACCAAGGCct 
Nup210 s23331 CCGUGACGGUUUACUAUGAtt UCAUAGUAAACCGUCACGGat 
Nup210 s23333 GGUGCUUCUAGGUUACCCAtt UGGGUAACCUAGAAGCACCtt 

TMEM48 s31302 GGAUUAGCACUGCUAUGAAtt UUCAUAGCAGUGCUAAUCCaa 
TMEM48 s31303 GGAGGAUAGUUGCAAGUAUtt AUACUUGCAACUAUCCUCCag 

NUP133 s31401 CUGUAGAAGUCACUCAAUAtt UAUUGAGUGACUUCUACAGta 
NUP133 s31402 GCCUAUCUGUAUAACGAAAtt UUUCGUUAUACAGAUAGGCag 
NUP160 s23465 GGCAAGUUGUUCUCCGUAAtt UUACGGAGAACAACUUGCCac 

NUP160 s23466 GUUUCGAAAUUUACAACAAtt UUGUUGUAAAUUUCGAAACtc 
NUP107 s32727 GAUACGAGAGAGCAAUUUAtt UAAAUUGCUCUCUCGUAUCta 

NUP107 s32728 GUAGAUUGGUUAGAGAGUAtt UACUCUCUAACCAAUCUACca 
NUP85 s36610 GACGAAGAGUUGACUGGAAtt UUCCAGUCAACUCUUCGUCaa 

NUP85 s36612 CCAUUGAUCUGCACUACUAtt UAGUAGUGCAGAUCAAUGGgt 
NUP98 s9783 GGAUUGUUUGGAACCAGUUtt AACUGGUUCCAAACAAUCCtc 
NUP98 s9782 GGAGUUAGCACUAACAUAAtt UUAUGUUAGUGCUAACUCCag 

SEH1L s37878 CGACCAAAGAUGUGAGAAUtt AUUCUCACAUCUUUGGUCGct 
SEH1L s37879 CAGAUGGUAUAGUAAGAAUtt AUUCUUACUAUACCAUCUGcg 

SEC13 s12663 ACAGGUCCGUCAAAAUCUUtt AAGAUUUUGACGGACCUGUct 
SEC13 s12664 GGACACGACUCCUCAGUGAtt UCACUGAGGAGUCGUGUCCcg 
NUP37 s35439 GGUGGUCCACAAUUAGUGAtt UCACUAAUUGUGGACCACCtg 

NUP37 s35441 GGAUAUUACUCGGUCCAGUtt ACUGGACCGAGUAAUAUCCca 
NUP43 s51375 CAUCCAACCCAGAACAUCUtt AGAUGUUCUGGGUUGGAUGgg 

NUP43 s51377 GCAUUAGUAACCAAGCUAAtt UUAGCUUGGUUACUAAUGCta 
TPR s14353 GAGUCUGCGUUAUCGACAAtt UUGUCGAUAACGCAGACUCtc 

TPR s14354 GAAGUUCAUACUAAGCGUAtt UACGCUUAGUAUGAACUUCct 
NUP50 s21139 CUGUUUUACAAGAAAGACAtt UGUCUUUCUUGUAAAACAGtt 
NUP50 s21138 GAAGGACUGUCGAAUGGAAtt UUCCAUUCGACAGUCCUUCca 

NUP153 s19376 CAGUCUAAACUACGAAAUAtt UAUUUCGUAGUUUAGACUGtc 
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NUP153 s19374 CGAAAAUCUCUCUACCGAUtt AUCGGUAGAGAGAUUUUCGgt 
NUP214 s224849 GGAUCACUGUCCCAACAGAtt UCUGUUGGGACAGUGAUCCga 

NUP214 s15548 GGUUCAGCUUUGGGUCAAAtt UUUGACCCAAAGCUGAACCct 
GLE1 s5808 CGAGGAUGUUUUAGAAGAAtt UUCUUCUAAAACAUCCUCGcg 
GLE1 s5809 CCAAGUAAAGGAUUCCAAAtt UUUGGAAUCCUUUACUUGGta 

NUPL2 s21878 AGGUAAUAAUAGACGUGGAtt UCCACGUCUAUUAUUACCUga 
NUPL2 s21879 GAGCUUCAACUAACAGGAAtt UUCCUGUUAGUUGAAGCUCca 

NUP88 s9779 CCACUAACGUGAUAAUACUtt AGUAUUAUCACGUUAGUGGgt 
NUP88 s9780 GGGCUAACUUGGAUUCAUAtt UAUGAAUCCAAGUUAGCCCaa 

RANBP2 s11773 CCGUUUUGGUGAGUCAACAtt UGUUGACUCACCAAAACGGaa 
RANBP2 s11774 CCUGUAGAUUUGUCAACUAtt UAGUUGACAAAUCUACAGGtt 
AAAS s15607 GGUACAGGAUGGUAAACCAtt UGGUUUACCAUCCUGUACCct 

AAAS s15608 GCUGUUCACUGUAUUGGGAtt UCCCAAUACAGUGAACAGCag 
RAE1 s16105 AACCAUCCAUUGGAUCAAAtt UUUGAUCCAAUGGAUGGUUtt 

RAE1 s16107 GUAACCAAGCGAUACAGAUtt AUCUGUAUCGCUUGGUUACtg 
KPNB1 s7917 CCAGCAAGUUUUAUGCGAAtt UUCGCAUAAAACUUGCUGGtg 
KPNB1 s7919 CAGUGUAGUUGUUCGAGAUtt AUCUCGAACAACUACACUGgg 

TNPO1 s7933 GCCGUUGCAUCAUGGAUUAtt UAAUCCAUGAUGCAACGGCat 
TNPO1 s7934 GCAACAAGAGAGUACAAGAtt UCUUGUACUCUCUUGUUGCtg 

IPO5 s7935 GCAUCUCAGCAGUAGGGAAtt UUCCCUACUGCUGAGAUGCag 
IPO5 s7936 CCUCAUUUGUCCACAUAGAtt UCUAUGUGGACAAAUGAGGtt 

IPO4 s36154 GCCCUGACCAGGUUAUAGAtt UCUAUAACCUGGUCAGGGCtg 
IPO4 s36155 GCAUUUCGCUGUACAAGUUtt AACUUGUACAGCGAAAUGCtt 
IPO9 s31300 GGAUCCUCUCUAUCAGAUUtt AAUCUGAUAGAGAGGAUCCtt 

IPO9 s31301 CAUUCUUGCUACAAGUAAAtt UUUACUUGUAGCAAGAAUGtc 
IPO7 s20640 GGAAUCUGCUUACAGGUCAtt UGACCUGUAAGCAGAUUCCct 

IPO7 s20638 GACUGACAAGAGAGGUUAAtt UUAACCUCUCUUGUCAGUCtt 
IPO8 s20636 GCUCGGCUCUUUGAACGAUtt AUCGUUCAAAGAGCCGAGCta 
IPO8 s20635 CAUUCAACAUUCACGAAAAtt UUUUCGUGAAUGUUGAAUGga 

IPO11 s27654 GGUCGAGUUCUACUACAAAtt UUUGUAGUAGAACUCGACCca 
IPO11 s27652 CCACAAAUGUUUCAACCGAtt UCGGUUGAAACAUUUGUGGac 

TNPO2 s223838 AGAACAACGUGAAGGCACAtt UGUGCCUUCACGUUGUUCUtg 
TNPO2 s26882 CGUGCAGGAUAAACUCAAAtt UUUGAGUUUAUCCUGCACGat 

TNPO3 s24030 GGGACUCAUUGCUAACCCAtt UGGGUUAGCAAUGAGUCCCgt 
TNPO3 s24031 CCUUACGAAUUGGAGCUAAtt UUAGCUCCAAUUCGUAAGGaa 
IPO13 s18608 GGAUCAUCCUGAUAUUGUUtt AACAAUAUCAGGAUGAUCCct 

IPO13 s18609 UCGCUUAUCUCACCCUAUAtt UAUAGGGUGAGAUAAGCGAgt 
KPNA1 s7915 GAGCAGUUAUUCAAGCGGAtt UCCGCUUGAAUAACUGCUCtt 

KPNA1 s223979 GCGGAGAAAUGUUGCUACAtt UGUAGCAACAUUUCUCCGCtt 
KPNA2 s7920 GCAGAAUAGAGGUCAAUGUtt ACAUUGACCUCUAUUCUGCga 
KPNA2 s7922 GAGACUUGGUUAUUAAGUAtt UACUUAAUAACCAAGUCUCgg 

KPNA3 s7923 CAAUAGCUGAAAUAAUAGAtt UCUAUUAUUUCAGCUAUUGtg 
KPNA3 s7924 GGCAUUAACUAACAUAGCAtt UGCUAUGUUAGUUAAUGCCca 

KPNA4 s7927 CGAUGGACUAAGUAAUAUAtt UAUAUUACUUAGUCCAUCGag 
KPNA4 s7928 CAUUGUUACUGGAACUGAUtt AUCAGUUCCAGUAACAAUGtt 

KPNA5 s7929 CAAUAGAUCAAGUUAUACAtt UGUAUAACUUGAUCUAUUGgt 
KPNA5 s7930 GCAGAGUUUCGUACCAGAAtt UUCUGGUACGAAACUCUGCtt 
KPNA6 s24241 GCAGAGUUUCGUACAAGGAtt UCCUUGUACGAAACUCUGCtt 

KPNA6 s24242 GACUGACGAUGACACGGAAtt UUCCGUGUCAUCGUCAGUCgt 
TMPO s14233 GAAUGGAAGUAAUGAUUCUtt AGAAUCAUUACUUCCAUUCtg 

TMPO s14235 CCAGGAAGCUAUAUGAGAAtt UUCUCAUAUAGCUUCCUGGtt 
TOR1AIP1 s25079 GAACAAGUCUAGGCCUAAAtt UUUAGGCCUAGACUUGUUCca 
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TOR1AIP1 s25081 GAUGUAGCCUUAGUCCUGAtt UCAGGACUAAGGCUACAUCtt 
LEMD3 s24158 GGGACUGACUUACCUAGGAtt UCCUAGGUAAGUCAGUCCCag 

LEMD3 s24159 GAAGGUAUAUUUAACACUUtt AAGUGUUAAAUAUACCUUCat 
UNC84A s23629 GUGUUGAACUGGGCAAGCAtt UGCUUGCCCAGUUCAACACgg 
UNC84A s23630 CAAUCAGUGCGGUUGGUGAtt UCACCAACCGCACUGAUUGtt 

SUN2 s24466 GGAAAUCCAGCAACAUGAAtt UUCAUGUUGCUGGAUUUCCtc 
SUN2 s24465 CAACAGCACUAUCUCCAGUtt ACUGGAGAUAGUGCUGUUGgg 

SUN3 s48826 GCUUGCUACAAAGAUCAUAtt UAUGAUCUUUGUAGCAAGCtt 
SUN3 s226034 CCACCGUUCAAACAUUUGAtt UCAAAUGUUUGAACGGUGGtt 

LBR s224003 GUACCACUGUAAGAAGAAAtt UUUCUUCUUACAGUGGUACtc 
LBR s8100 GAAAUAGCAUCAGCAGAUAtt UAUCUGCUGAUGCUAUUUCca 
EMD s4647 GCUUUACUCUACCAGAGCAtt UGCUCUGGUAGAGUAAAGCgt 

EMD s225840 GACCUGUCCUAUUAUCCUAtt UAGGAUAAUAGGACAGGUCca 
ANKLE2 s23124 CGUCAAAGCCGGAUUGAAAtt UUUCAAUCCGGCUUUGACGat 

ANKLE2 s23125 GGCUUUACUGGAGCAAGGAtt UCCUUGCUCCAGUAAAGCCtg 
TMEM43 s35704 GUGUUUCAUAGAGAACUAAtt UUAGUUCUCUAUGAAACACct 
TMEM43 s35705 CAUUCGCCGUGGAGACUUUtt AAAGUCUCCACGGCGAAUGat 

LEMD2 s48071 GCACUGACCUGGAUACUGAtt UCAGUAUCCAGGUCAGUGCgg 
LEMD2 s48070 AGCUGGUAAUUUUGAGUGUtt ACACUCAAAAUUACCAGCUtg 

TMEM201 s47157 GCUGUGGAGUACUACAUCAtt UGAUGUAGUACUCCACAGCcg 
TMEM201 s47158 CAGUACUUGGAGCACCUGAtt UCAGGUGCUCCAAGUACUGgg 

LMNA s8222 GAAGGAGGGUGACCUGAUAtt UAUCAGGUCACCCUCCUUCtt 
LMNA s8221 CCAAAAAGCGCAAACUGGAtt UCCAGUUUGCGCUUUUUGGtg 
LMNB1 s8226 GAGAUUAACGAGACCAGAAtt UUCUGGUCUCGUUAAUCUCct 

LMNB1 s8224 GGACUUGGAGUUUCGCAAAtt UUUGCGAAACUCCAAGUCCtc 
LMNB2 s39476 AGUCCUCGGUGAUGCGUGAtt UCACGCAUCACCGAGGACUtc 

LMNB2 s39477 GAACAACUCGGACAAGGAUtt AUCCUUGUCCGAGUUGUUCtt 
NRM s22251 CGGGCCCAGCUACAAAGAAtt UUCUUUGUAGCUGGGCCCGga 
NRM s22250 CCUUCUCGUCUUUGACUAUtt AUAGUCAAAGACGAGAAGGat 

SIGMAR1 s20088 CUAUACUCUUCGCUCCUAUtt AUAGGAGCGAAGAGUAUAGaa 
SIGMAR1 s20086 AGAGACCCAUGGGAACAAAtt UUUGUUCCCAUGGGUCUCUgt 

SYNE1 s23608 GCAUAGUACCGAAACCCAAtt UUGGGUUUCGGUACUAUGCag 
SYNE1 s23609 CGAUUCCUGUAACUCGGAAtt UUCCGAGUUACAGGAAUCGta 

SYNE2 s23328 GAAGAAAAGGUGCAUGUUAtt UAACAUGCACCUUUUCUUCag 
SYNE2 s23329 CAGCUGAACUCUGAUAUCAtt UGAUAUCAGAGUUCAGCUGtt 
C14orf49 s46245 AGAUCACCGGAGAACUGGAtt UCCAGUUCUCCGGUGAUCUtc 

C14orf49 s46246 AGCUCAUCGUCUUCCCUCAtt UGAGGGAAGACGAUGAGCUcc 
C19orf46 s46437 GCACGUCACCAAAGACACUtt AGUGUCUUUGGUGACGUGCta 

C19orf46 s46436 GGAAGCCUCAGGACAAGAAtt UUCUUGUCCUGAGGCUUCCgg 
TOR1AIP2 s46465 CGGUCAAGCUGUUGGUUGAtt UCAACCAACAGCUUGACCGtg 
TOR1AIP2 s46466 GUAUUGUGAUCAUGAGAAUtt AUUCUCAUGAUCACAAUACtt 

CBX5 s23883 GGAGCACAAUACUUGGGAAtt UUCCCAAGUAUUGUGCUCCtc 
CBX5 s23885 ACCUGGUUCUUGCAAAAGAtt UCUUUUGCAAGAACCAGGUca 

MECP2 s8644 GGAAGCUCCUUGUCAAGAUtt AUCUUGACAAGGAGCUUCCca 
MECP2 s8646 GCUUCCCGAUUAACUGAAAtt UUUCAGUUAAUCGGGAAGCtt 

BANF1 s16807 AGUUUCUGGUGCUAAAGAAtt UUCUUUAGCACCAGAAACUgg 
BANF1 s16808 AGAUUGCUAUUGUCGUACUtt AGUACGACAAUAGCAAUCUtt 
AKAP8L s25667 GGAACACUUUAAGUACGUAtt UACGUACUUAAAGUGUUCCtt 

AKAP8L s25668 CCAUGGAUCACAACCGGAAtt UUCCGGUUGUGAUCCAUGGtc 
TOR1A s4404 GAGCAGAAAGGAUCACAGAtt UCUGUGAUCCUUUCUGCUCca 

TOR1A s4402 CCACAUGCUUCAAACAUCAtt UGAUGUUUGAAGCAUGUGGaa 
ATP1B4 s23838 GGCAAACUGACUCACGUUAtt UAACGUGAGUCAGUUUGCCgt 
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ATP1B4 s23839 CAGACUCGAUGAUCCGGAUtt AUCCGGAUCAUCGAGUCUGta 
RAB5A s11680 GCAAGCAAGUCCUAACAUUtt AAUGUUAGGACUUGCUUGCct 

RAB5A s11678 GGAAGAGGAGUAGACCUUAtt UAAGGUCUACUCCUCUUCCtc 
BCLAF1 s18873 UAUCGUCGCGAUUACAGAAtt UUCUGUAAUCGCGACGAUAat 
BCLAF1 s18874 CAUUGAUCGCCGUAGAAAAtt UUUUCUACGGCGAUCAAUGtc 

YTHDC1 s40756 GGAAUUUCAUAACAUGGGAtt UCCCAUGUUAUGAAAUUCCct 
YTHDC1 s40757 CAGUAAAGAUCGGACGUGAtt UCACGUCCGAUCUUUACUGgt 

H2AFZ s6414 CCGUAUUCAUCGACACCUAtt UAGGUGUCGAUGAAUACGGcc 
H2AFZ s6415 GACUUAAAGGUAAAGCGUAtt UACGCUUUACCUUUAAGUCtt 

SMAD2 s8397 GGCUGUAAUCUGAAGAUCUtt AGAUCUUCAGAUUACAGCCtg 
SMAD2 s8398 GGAGUGCGCUUAUACUACAtt UGUAGUAUAAGCGCACUCCtc 
SMAD3 s8401 AGGUCUGCGUGAAUCCCUAtt UAGGGAUUCACGCAGACCUcg 

SMAD3 s8402 GUCUACCAGUUGACCCGAAtt UUCGGGUCAACUGGUAGACag 
RTN1 s12378 GGACUUGUGAGGACUCACAtt UGUGAGUCCUCACAAGUCCca 

RTN1 s12379 GGACCUGGUGGAUUCCUUAtt UAAGGAAUCCACCAGGUCCtg 
RTN4 s32766 GCCUCUUCUUAGUUGAUGAtt UCAUCAACUAAGAAGAGGCgc 
RTN4 s32767 GUGUUGAUGUGGGUAUUUAtt UAAAUACCCACAUCAACACtg 

RTN3 s20161 GGUGCUGUUUUUAACGGAAtt UUCCGUUAAAAACAGCACCaa 
RTN3 s20162 ACUCAUUAUUCGUCUCUUUtt AAAGAGACGAAUAAUGAGUtt 

REEP1 s227344 CAGGGUGCCUUAUCGGAGAtt UCUCCGAUAAGGCACCCUGtc 
REEP1 s35169 CCAUUCUAUUAUGAACUAAtt UUAGUUCAUAAUAGAAUGGaa 

REEP2 s27911 ACAAGGCCGUGAAGACAAAtt UUUGUCUUCACGGCCUUGUag 
REEP2 s27913 CGCAAGUUCGUGCACCCAAtt UUGGGUGCACGAACUUGCGgt 
REEP3 s47938 GGUAAACUUUGGACGGCAAtt UUGCCGUCCAAAGUUUACCat 

REEP3 s47939 CAGUAUGCAUGAUUUAACAtt UGUUAAAUCAUGCAUACUGaa 
REEP4 s37270 CAAGAACAUUCGUGAAUAUtt AUAUUCACGAAUGUUCUUGgt 

REEP4 s37271 GGAUUGUUUUUGCACUCUUtt AAGAGUGCAAAAACAAUCCag 
REEP5 s15455 CGCUCUUGGUGUCAUCGGAtt UCCGAUGACACCAAGAGCGat 
REEP5 s15456 AGAGAGUCCCAACAAAGAAtt UUCUUUGUUGGGACUCUCUat 

REEP6 s41034 GCUGUGCAAUCUCAUCGGAtt UCCGAUGAGAUUGCACAGCag 
REEP6 s41035 CGCAUAUGCCUCAAUCAAAtt UUUGAUUGAGGCAUAUGCGgg 

PCYT1A s10167 GAAUUGUGCGGGAUUAUGAtt UCAUAAUCCCGCACAAUUCgg 
PCYT1A s10166 CCAUGAUGAUAUUCCUUAUtt AUAAGGAAUAUCAUCAUGGgc 

TOR2A s26228 GAACCUCACUGAGCCUUGAtt UCAAGGCUCAGUGAGGUUCtg 
TOR2A s26230 CGGGACCAAUUACCGCAAAtt UUUGCGGUAAUUGGUCCCGta 
TOR3A s34576 GGGAAGAAAUUACGAUGGAtt UCCAUCGUAAUUUCUUCCCgg 

TOR3A s34577 UCAAUGAGGUGGUCCUAAAtt UUUAGGACCACCUCAUUGAtt 
TOR4A s195251 UCCAAGUUCUCAACGCUAUtt AUAGCGUUGAGAACUUGGAag 

TOR4A s195252 GGGUGUGUGUCCUACGCAAtt UUGCGUAGGACACACACCCgg 
TOR1B s26210 GGAACAACAAAAAUCCCAAtt UUGGGAUUUUUGUUGUUCCtg 
TOR1B s26212 GGAUCAUUGACGCAAUCAAtt UUGAUUGCGUCAAUGAUCCcg 

KLHL14 s33323 CGACGAUGAAAAGAAGACAtt UGUCUUCUUUUCAUCGUCGta 
KLHL14 s33322 GCUAUAACCUAGAAACGAAtt UUCGUUUCUAGGUUAUAGCac 
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Despite the essential functions of INMPs in interphase, the INM represents the 

probably least understood destination compartment of cellular membrane trafficking. 

Compared to the nuclear import of soluble proteins, the mechanism of INM protein 

targeting in interphase to the nucleus has been poorly investigated. Progress in the 

field is currently limited by the absence of a general assessment of the molecular 

requirements for INM protein targeting, which could help to differentiate between the 

existence of different targeting pathways or a single unifying targeting mechanism. 

I discuss here the development of an INM protein targeting reporter based on the on 

the Lamin B Receptor (LBR) that allows to assay the kinetics of the transport process 

to the INM quantitatively in living cells. I used this assay in a siRNA screen 

combined with automated high-resolution confocal time-lapse microscopy to dissect 

the molecular requirements of LBR targeting. 

 

 

4.1 Target-INM: a new reporter for inner nuclear membrane protein targeting 

 

I successfully established a novel reporter for studying INM protein targeting during 

interphase named Target-INM. This reporter allows to control the localization of an 

INM protein in the ER or INM by chemically inducible proteolytic cleavage of a 

retention domain in cis. Moreover synchronous trafficking of a wave of protease 

released INM proteins from the ER to the INM can be triggered after acute protease 

activation in live cells allowing for the first time a direct observation of the 

translocation kinetics in a non-steady state situation in live cells.  

Different systems have been employed previously to study INM protein targeting. An 

inducible reporter for INM protein targeting has been generated by Ohba et al., 2004. 

This reporter was based on the rapamycin-mediated interaction between the FK506-

binding protein (FKBP) and the 11kDa FKBP rapamycin binding domain (FRB). FRB 

was fused at the N-terminus of the transmembrane domain of LAP2beta; retention to 

the INM upon addition of rapamycin was induced by a FKBP-lamin fusion protein. 

Compared to this reporter the Target-INM presents several advantages. First, after 

cleavage of the retention domain only a very short artificial peptide remains at the N-

terminus of the INM protein instead of the 100 amino acid sized FRB domain. Second 

the INM protein binds its endogenous nuclear interaction partners and thus relies on 

the physiological binding affinities to regulate its mobility/retention at the INM. A 
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more systematic analysis of targeting different INMPs tagged with GFP has been 

carried out previously by photobleaching experiments in steady state (Zuleger et al., 

2011). A region of the NE was bleached and fluorescence recovery due to protein 

movement from the ER to the INM was followed over time. However in this 

experiment both lateral diffusion within the INM as well as from the ER to the ONM 

movement contributes to the observed fluorescence recovery, making it difficult to 

dissect the actual targeting kinetics. Because the Target-INM reporter is prevented 

from entering the INM and a large pool of protein accumulates in the ER, acute 

release of a wave of Target-INM allows to differentiate the rate of ER-ONM diffusion 

from translocation and since there is minimal retrograde flow initially, directly 

observe the kinetics of trafficking from the ER to the INM.  

 

To demonstrate the generic applicability of the Target-INM strategy I generated four 

additional reporters based on the INM proteins Lap2β, Tor1AIP1, Man1 and Sun1. 

All these proteins can be trapped in the ER and targeted to the INM upon induction of 

the protease. In the case of the Tor1AIP1 cells show slightly enriched fluorescence in 

the nuclear rim already before protease induction (Figure 2.5). It is worth notice that 

most of the INMPs can be targeted to the INM during post mitotic NE reassembly; 

although the CMPK retention domain prevents targeting of the LBR both during 

interphase and post-mitotic targeting this block of postmitotic targeting may be only 

partially true in the case of other INMPs. The ability of the CMPK domain to abolish 

post-mitotic targeting of LBR is believed to occur by sterically preventing binding of 

the LBR N-terminus domain to its chromatin substrates during nuclear envelope 

reformation. The differences in the structural organization of nucleoplasmic domains 

of the other INM proteins as well as in the strength of their interactions to nuclear 

substrates may explain the subtle differences in the efficiency of the same cytoplasmic 

retention domain.  
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4.2 A quantitative assay to study kinetics of INM protein targeting 

 

The Target-INM can be used to analyze the kinetics of targeting of different INMPs. I 

therefore established an assay in which INM targeting of the LBR based reported can 

be followed by confocal microscopy after acute activation of the protease. 

Quantification of NE and ER intensities changes over time reveals the kinetics of 

LBR targeting to the INM. 

 

However the observed increase in NE intensity over time is the result of several 

distinct processes: the trafficking of the reporter to the INM, the cleavage kinetics of 

the protease, synthesis and degradation of the reporter. To account for the different 

rates of these processes and determine the rate of INM trafficking a mathematical 

model was developed and applied to the observed targeting kinetics. 

 

Ideally the time required for the protease cleavage should be as short as possible and 

should not be a rate-limiting step in the targeting process. Cleavage of the retention 

domain starts immediately after protease activation but requires around 20-25 min for 

completion; comparison of protease cleavage by WB and kinetics of reporter targeting 

shows that cleavage of the retention domain by the protease is likely to partially limit 

reporter accumulation to the INM. Although the employed NS3 protease shows a fast 

kinetics at the NS5a/b cleavage site in vitro (6.2 -8.0 kcat (min-1) (Zhang et al., 1997), 

we observed a slower protease cleavage in vivo. In the future, it would be interesting 

to test a recently developed light-activatible NS3 protease (Zhou et al., 2012) which 

would abolish the necessity to complete the wash out of the reversible chemical 

inhibitor from the cells prior to the onset of cleavage. 

Quantification of reporter accumulation at the INM shows that it reaches a transient 

peak around 40 min after induction of the protease followed by a slow decrease of NE 

intensity. In agreement with this observation the mathematical model predicts a 

reduced stability of the reporter after cleavage resulting in a 3-fold reduction in 

lifetime of the protein. It has previously reported that cleavage of NS3 protease on the 

NS5a\b cleavage site in an artificial construct can lead to increased degradation of the 

cleavage product (Sabariegos et al., 2009). Moreover a Target-INM reporter carrying 

an NS5a\b site in which critical amino acids for cleavage have been mutated showed 

no visible degradation after protease induction (data not shown) indicating that 
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protease activation does not generally affect protein stability in the cell. 

On the approximately one hour time frame of reporter translocation, continuous 

synthesis of new full length reporter protein also has to be taken into account by the 

model, since whole cell reporter levels were reduced by around 50% when new 

protein synthesis was abolished by Cycloheximide (CHX) treatment. 

 

Since both protease cleavage kinetics and degradation after cleavage may depend on 

sequence context of the cleavage site the reporter therefore requires careful control 

measurements of the non-trafficking related rates for the different Target-INM 

reporters, before it can be applied to compare different INM proteins. It is furthermore 

essential to use the developed mathematical model to derive import (ki) and export 

rates (ko) of the cleaved reporter across the NPC from the observed kinetics of NE 

intensity increase.  

 

 

4.3 INM protein targeting is a slow process 

 

By combining the experimental and the mathematical model approaches I could for 

the first time directly determine the exchange rate of INM protein targeting. Transport 

from the ER to the INM has a characteristic time of 4-5 min whereas export from the 

INM to the ER is slower due to binding at the INM with a characteristic time of 19-25 

min for export. These values indicated that efficient LBR targeting relies on an only 

fivefold difference in exchange rates. These rates are in the same order of the ones 

computed in previous indirect estimates by FRAP  (Zuleger et al. 2011).  

The transport rate estimated from our kinetic model is 500 times slower than the one 

predicted for a membrane proteins moving by free diffusion through a membrane pore 

of the size of the NPC (for details see Material and Methods, Estimating transport 

rates per NPC). This indicates that passage across the NPC encounters a barrier to free 

diffusion and could be a limiting step in efficient delivery of LBR to the INM. In 

addition I could estimate absolute transport rate of 4.6 molecules/NPC/min for an 

effective reporter concentration of 1µM. Compared to the translocation rate obtained 

for a soluble freely diffusible GFP at 1µM, the absolute transport rate for the LBR 

reporter is 30 times slower. This is consistent with a 20-100 times faster diffusion of 

soluble GFP compared to integral membrane proteins (Ribbeck and Goerlich 2001, 
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Mohr et al. 2009) and indicates that membrane proteins encounter a similar 

impediment to free diffusion at the NPC. 

In recent years single molecule tracking techniques allowed the directed visualization 

of individual molecules of both soluble cargo and mRNA during their motion across 

the NPC. This allowed a better characterization of the kinetics of nuclear import of 

soluble molecule in its different transport steps at the NPC (i.e. docking, passage and 

release of the cargo) (for review Tu and Musser, 2011). In vivo single molecule 

tracking employs photoactivatable or photoswitchable proteins that can switch 

between an ON and OFF states. The rate of switching is controlled in order to have in 

a limited volume only a single molecule in the ON state that can be tracked. To date a 

similar approach has not yet been undertaken for targeting of INM proteins. One 

prerequisite for single molecule tracking is the possibility to collect thousands of 

single events in order to obtain a robust statistic. The Target-INM reporter offers the 

advantage to induce a large number of transport events in a controlled time fashion. In 

future work it would be interesting to explore the possibility to use the Target-INM 

reporter tagged with photoactivatable or photoswitchable proteins to detect single 

molecule transport of an INM protein.  

 

 

4.4 The first siRNA screen for INM protein trafficking 

 

siRNA screens in mammalian cells have made important contributions to define the 

molecular machinery of different membrane trafficking pathways (e.g. Collinet at al., 

2010, Simpson et al., 2012). To date no general assessment of the molecular 

requirements for INM protein targeting has been carried out, which should help to 

differentiate between the two prominent models of transport: the diffusion retention 

and the receptor mediated transport model. In the present work I applied for the first 

time a siRNA approach to study INM protein targeting taking advantage of the novel 

Target-INM reporter. I have used the reporter based on the LBR exhibiting both a (i) 

functional domains that bind to B type lamins and chromatin, consistent with a 

diffusion retention model, and (ii) three NLS, consistent with receptor mediated 

translocation. The possibility to acutely release the Target-INM reporter allowed me 

to study ER to INM exchange kinetics directly. I systematically knocked down 96 

candidate genes and recorded the resulting kinetics of LBR targeting after gene 
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depletion. By applying the mathematical model to the observed kinetics I could reveal 

which proteins are required for normal targeting, what aspects of the LBR targeting 

process they affect and derive general insights on the mechanisms that normally 

govern  targeting of an INM protein with mixed signals. 

 

 

4.5 INM protein targeting is dependent on the number of NPCs 

 

The predominant protein family that scored in the siRNA screen were nucleoporins, 

in particular the Nup107-160 complex. The mathematical model predicted that the 

mechanism underlying their depletion phenotype was a reduction of the number of 

NPCs. This is consistent with their previously demonstrated function in NPC 

assembly (e.g. NUP107, Nup98; Walther et al. 2003; Krull et al., 2004) and in two 

cases (SEC13 and NUP98) I could experimentally validate that the reduction of NPCs 

quantitatively explains the observed kinetic effect. Thus the targeting of INM proteins 

depends surprisingly sensitively on the number of available NPCs. NPC density in the 

HeLa cell line used in the current work was 9 NPCs/µm2; It would be interesting to 

assess the targeting kinetic using the Target-INM in cell lines that have been reported 

to have a lower density of NPCs (e.g. normal rat kidney NRK ∼6–7 NPCs/µm2 as 

reported in Dultz et al., 2010).  

For most of the nucleoporins phenotypes the model predicts a concomitant decrease in 

reporter stability associated with the reduced accumulation at the INM. Although a 

direct effect of nucleoporins in controlling reporter stability is difficult to envision, a 

secondary effect of nucleporin depletion in reporter expression is possible. The model 

assumes that reporter synthesis rate (vt) is stable over the time frame of translocation; 

it is possible that knock down of Nups (e.g. Nup98 and Nup153, important for mRNA 

export Powers et al., 2007) could result in a acute decrease in reporter synthesis rate 

by depletion of the reporter mRNA in the cytoplasm. However reporter expression 

after 48 hours KDs of these Nups is not generally and consistently lower than the one 

of control siRNA suggesting that an acute drop in translation rate during the recorded 

translocation is unlikely. Indeed total reporter concentration in SEC13 KD cells does 

not change over 2.5 hrs frame when the protease is maintained inactive indicating that 

synthesis rate is stable.  
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4.6  INM protein targeting is limited by available nuclear retention sites 

 

As soon as INM proteins reach the INM nucleus through the NPC, they can interact 

with nuclear binding partners. As the kinetic analysis has shown, efficient LBR INM 

accumulation relies on a fivefold reduced export rate compared to import due to 

binding at the INM. Interestingly, I observed an increased targeting of the reporter 

after knock down of lamin A which the model predicted to be due to an increased 

retention. Due to the abundance of nuclear lamina and chromatin it is often believed 

that nuclear binding sites are available in vast excess to INM protein ligands. Instead 

the increased retention we observed after knock down of lamin A, suggests that INM 

protein targeting is quite sensitive to the availability of nuclear binding sites.  

It is possible that depletion of A-type lamins frees up B-type lamins as the cognate 

binding partners of the lamin B receptor based reporter. Another possibility is that 

INM proteins that bind preferentially Lamin A (e.g. emerin and Lap2) are cannot be 

targeted to the INM allowing more accumulation of LBR. These results suggest that 

the effective concentration of available binding sites at the INM is a major 

determinant for INM protein targeting in addition to the number of available pores.  

 

 

4.7 The Nup93-based complexes function as size controllers of the NPC for 

membrane proteins 

 

The screen revealed a third general insight, which is what controls the size selectivity 

of the NPC for membrane proteins. Nup93 is required to exclude the uncleaved 

reporter with the large retention domain in the ER, suggesting that Nup93 is part of 

the sizing mechanism of the NPC. It is has been shown that Nup93 can form two 

distinct complexes, either with Nup188 or Nup205 (Theerthagiri et al., 2010). In the 

screen NUP205 knock down showed a similar phenotype as NUP93 KD, albeit with 

only one siRNA, whereas neither of the two NUP188 siRNAs lead to loss of size 

selectivity against the uncleaved reporter. It is possible that incomplete depletion of 

Nup188 accounts for the lack of visible phenotype. Nevertheless Nup188 likely plays 

a similar role, since its depletion in mammalian cells allowed targeting of the INM 

protein Sun2 with an artificially enlarged nucleoplasmic domain that normally 
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excludes it from the nucleus (Antonin et al., 2011). Together these studies suggest that 

different Nup93-based complexes work together to establish the NPC’s size 

selectivity for membrane proteins. In the future work it would be interesting to 

investigate if INM proteins with nucleoplasmic domains of different size are 

differentially affected when a particular Nup93-complex component is depleted. The 

already generated Target-INM variants offer a perfect tool to address this point.  

 

 

4.8 Size selectivity for soluble proteins and membrane both involve Nup93 but 

are likely controlled by distinct mechanisms 

 

Nup93 depletion also led to a moderate loss of size exclusion against medium sized 

soluble dextran indicating that the diffusion barrier for membrane and soluble 

macromolecules may have the same molecular basis. This double effect is in 

agreement with previous reports in Caenorhabditis elegans (Galy et al., 2003) and 

could be due to the loss of the central channel Nup62 after depletion of Nup93 

observed in Xenopus leavis extracts (Sachdev et al., 2011). However, while both 

soluble and membrane protein size selectivity require Nup93, they are probably 

mechanistically distinct, since neither knock down of Nup62 nor of the other major 

soluble diffusion barrier determinant Nup98 impaired the size selectivity of the NPC 

for membrane protein in the screen. In this contest it would be important to directly 

assess the size exclusion for medium sized soluble cargo after depletion of Nup62 and 

Nup98. Conversely depletion of Nup188 did not impair the soluble protein diffusion 

barrier (Theerthagiri et al., 2010). Taken together, Nup93 is possibly required for two 

distinct size control mechanism in the NPC, one for soluble proteins based on Nup62 

and potentially Nup98 and the other one for membrane proteins based on Nup188 and 

Nup205. This would be consistent with the model that membrane proteins pass the 

NPC through a route with a different size control mechanism than soluble cargo, such 

as the previously proposed lateral channel of the NPC.  
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4.9 The ER and NE proteins Nesprin-1 and SIGMAR1 affect LBR targeting 

 

Two potentially interesting new regulators of INM protein targeting are identified in 

the screen: Nesprin1 (SYNE1) and SIGMAR1. The ONM protein Nesprin-1 is a 

component of LINC (Linker of the Cytoskeleton and Nucleoskeleton) complex and 

through interaction with the INM SUN protein believed to be involved in the 

maintenance of nuclear organization and structural integrity. There are nine isoforms 

of  Nesprin-1, one of which (Nesprin-1alpha), is reported to be localized also in the 

INM where it interacts with emerin and lamin a (Mislov et al., 2002). SIGMAR1 

(Sigma non-opioid intracellular receptor 1) is a protein receptor localized through the 

ER and NE membranes involved in different cellular functions like lipid transport 

from the endoplasmic reticulum and calcium signaling through ITP3R-dependent 

calcium efflux at the endoplasmic reticulum (Kekuda et al., 1996; Jbilo et al., 1997).  

In future work it is important to first validate the phenotype seen after Nesprin-1 and 

SIGMAR1 depletion and excluding siRNA off target effects. Addressing which 

isoforms contribute to Nesprin-1 phenotype by rescue experiments using specific 

isoform can guide more functional follow up experiments whereas SIGMAR1 

expression and localization still needs to be confirm in HeLa cell lines.  

 

 

4.10 The diffusion retention model is sufficient to explain LBR targeting 

 

The phenotypes I observed in the screen and their experimental validation suggest that 

LBR targeting can almost completely be explained with the diffusion retention model 

of INM protein targeting. The model predicts no asymmetric effects on import and 

export rates after knocking down different nucleoporins. In addition, none of the 

knock down of 17 members of the importin α/β family affected LBR INM targeting, 

including importin-α-16 (KPNA4-16), that has been proposed to support INM 

targeting of LBR (Braunagel et al., 2007).  

This model is also supported by the evidence provided by Target-INM-Δ60LBR 

lacking the binding regions for different nuclear substrates (lamin B, histones and 

DNA binding domains) but still containing three NLS signals. Target-INM-Δ60LBR 

is largely localized in the ER membrane when the protease is active indicating that the 
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NLS signals are not sufficient to confer efficient INM localization, which rather

requires the presence of the first 60 aa domain of LBR.  

The sole evidence against a pure diffusion retention model I could find is the mild 

reduction in reporter accumulation after knock down of Importin β1 (KPNB1). 

However based on the kinetic signature of the importin β1 phenotype, the 

mathematical model predicts it to be caused by an increased export of the reporter 

rather than a decreased import, suggesting that importin β1 might normally regulate 

retention after an INM protein has reached the nucleus, rather than its translocation 

through the NPC. This prediction could be tested in future experiments, analogous to 

the FRAP validation experiments performed for the LMNA KD phenotype, the model 

predicted to be due to decreased export. FRAP experiments of the NE in cells 

depleted of importin β1 should show a faster fluorescence recovery after 

photobleaching. 

 

 

 
 

Figure 4.1 Mapping of screen hits in the NPC and NE. The colors genes that after cause decrease (red) 

and  increase (green) translocation of the reporter or permeability of the NPC to the uncleaved form of 

the reporter (blue). 
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Abbreviations 

 
NPC: Nuclear Pore Complex 

INM: Inner Nuclear Membrane 

ONM: Outer Nuclear Membrane 

NE: Nuclear Envelope 

ER: Endoplasmic Reticulum 

HCV: Hepatite C Virus 

CMPK: Chicken Muscle Pyruvate Kinase 

LBR: Lamin B Receptor 

Lap2β: Lamin associated polypeptide 2 β 

Tor1AIP1: Torsin 1 A Interacting Protein 1  

FRAP: Fluorescence Recovery After Photobleaching 

CHX: Cycloheximide  
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