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IV. Abstract 

Melanoma is the deadliest form of skin cancer. Traditional therapeutic options include surgery, 

radiation, chemotherapy and immunotherapeutic options. Typically, around 20% of patients 

develop metastases as the disease progresses, which reduces therapeutic options to provide 

only palliative benefit in the majority of cases. The genomes of a large number of primary and 

secondary melanomas were recently sequenced, leading to the identification of melanoma 

driver mutations. Targeting pathways, activated by cancer-specific genetic alterations, enabled 

researchers to develop novel therapeutic drugs. Although these drugs effectively fight 

melanoma cells, cancer cells develop various resistance mechanisms regulated by epigenetic 

changes, which leads to cancer recurrence in most patients.  

Nuclear factor-based reprogramming was implemented in melanoma cells to test whether 

malignant cancer cells can reacquire developmental pluripotency, and moreover to analyze 

reprogramming-associated epigenetic changes on the tumor cell phenotype. 

The results showed that the constitutive overexpression of Oct4, Sox2, and Klf4 reprograms 

melanoma cells into a murine embryonic stem cell-like state. In contrast to fibroblasts, 

melanoma cells do not require exogenous c-Myc for the induction of a pluripotent stem cell 

state, characterized by the reactivation of endogenous pluripotency markers and loss of the 

transcriptional profile of melanoma cells. However, continuous transgene expression is 

required to maintain an undifferentiated state. When injected into immunocompromised mice, 

melanoma-derived reprogrammed cells formed teratoma-like tumors containing cell types of 

all three germ layers, and despite their oncogenic mutations, rarely contained melanoma-like 

structures. In vitro directed differentiation into neuronal-like and fibroblast-like cells 

demonstrated that reprogrammed tumor cells acquired the potential to execute terminal 

differentiation pathways. Although most melanoma cell lines are highly depended on MAPK 

signaling, reprogrammed tumor cells and their differentiated daughter cells became resistant 

against BRAF- or MEK-targeting inhibitors, suggesting that epigenetic remodeling processes 

facilitated therapy resistance against targeted melanoma therapy. Furthermore, global gene 

expression profiling demonstrated that nuclear reprogramming and subsequent differentiation 

induced deregulation of tumor suppressors and oncogenes.  

In conclusion, reprogramming cancer cells allows the investigation of a cancer genome in the 

context of a specific epigenetic cell state and might help study how alterations in the epigenetic 

signature control the biological behavior of tumor cells and their response to therapy.  
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V. Zusammenfassung 

Das Melanom ist die gefährlichste Form aller Hautkrebsarten. Traditionelle Therapieoptionen 

umfassen operative Entfernung, Bestrahlung, Chemotherapie und immuntherapeutische 

Ansätze. Etwa 20% aller Patienten entwickeln während des klinischen Verlaufs Metastasen, 

wodurch sich die Behandlungsmöglichkeiten auf eine lediglich palliative Behandlung der 

Patienten reduziert. Während der letzten Jahre wurden zahlreiche Genome primärer und 

sekundärer Melanome entschlüsselt, was die Identifizierung von Melanom-initiierenden 

Mutationen ermöglichte. Das Wissen um die Aktivierung spezifischer, onkogener Signalwege 

erlaubte die Entwicklung zielgerichteter innovativer Medikamente. Diese neuartigen 

Medikamente bekämpfen zwar effektiv Melanomzellen, jedoch kommt es während der 

Behandlung zur Entstehung von Resistenzen. Bei vielen Patienten sind diese erworbene 

Resistenzen, die für die Bildung von Rezidiven verantwortlich sind, auf epigenetisch-regulierte 

Entstehungsmechanismen zurückzuführen. 

In der vorliegenden Arbeit wurde zunächst untersucht ob Melanomzellen mit Hilfe von 

Transkriptionsfaktoren reprogrammiert werden und das Entwicklungspotential einer 

pluripotenten Stammzelle erwerben können, um dann die Auswirkungen epigenetischer 

Veränderungen auf den Phänotyp von Melanomzellen zu studieren.  

Die vorliegenden Ergebnisse zeigen, dass die konstitutive Expression von Oct4, Sox2, und 

Klf4 ausreichend ist um Melanomzellen in einen Zustand zu reprogrammieren, der 

embryonalen Stammzellen der Maus ähnelt. Im Gegensatz zu Fibroblasten benötigen 

Melanomzellen dafür keine exogene Expression des onkogenen Transkriptionsfaktors c-Myc. 

Der stammzellähnliche Zustand der reprogrammierten Melanomzellen zeichnet sich durch die 

endogene Reaktivierung von Pluripotenzfaktoren und durch den Verlust des 

Transkriptionsprofils der ursprünglichen Melanomzellen aus. Allerdings war eine 

kontinuierliche Transgenexpression notwendig, um die Zellen in einem pluripotenten Zustand 

zu halten. In immunkompromittierten Mäusen erzeugten reprogrammierte Melanomzellen 

Teratom-ähnliche Tumore, die Zelltypen aller drei Keimblätter aufwiesen. Trotz der in den 

Zellen vorhandenen onkogenen Mutationen, waren in den Tumoren kaum Melanomzellen 

detektierbar. Die gezielte Differenzierung in neuronale und Fibroblasten-ähnliche Zellen in vitro 

zeigte, dass die reprogrammierten Zellen die Fähigkeit erlangten terminal zu differenzieren.  

Obwohl die große Mehrheit der parentalen Melanomzellen von der Aktivierung des MAPK-

Signalweges abhängig ist, wiesen sowohl die reprogrammierten als auch die daraus 

differenzierten Tochterzellen eine vergleichsweise erhöhte Resistenz gegenüber BRAF- und 

MEK-Inhibitoren auf. Dies führte zur Vermutung, dass epigenetische Veränderungsprozesse 

die Entwicklung von Resistenzen gegen zielgerichtete Melanom-Medikamente ermöglichen. 
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Darüber hinaus zeigten globale Genexpressionsanalysen eine durch nukleäre 

Reprogrammierung und auch durch anschließende Differenzierung induzierte Hoch- und 

Herunterregulation von Tumorsuppressor- und Onkogen-codierenden Genen.  

Zusammenfassend ermöglicht die Reprogrammierung von Tumorzellen die Untersuchung des 

Genoms einer Krebszelle im Kontext spezifischer epigenetischer Zellprofile. Die vorliegende 

Arbeit vertieft somit das Wissen darüber, wie epigenetische Modifikationen das biologische 

Verhalten von Melanomazellen und deren Therapie beeinflussen. 

 

 

 

 



Introduction 
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VI. Introduction 

VI.1. Pluripotency 

The development from the totipotent zygote to the fully evolved organism describes a tightly 

regulated process of transitions between cellular states. Key events are initialized by 

transcription factors modifying the cell’s epigenome.  

These epigenetic modifications are reversible, so the differentiation process is not a one-way 

street. The most feasible technique, discovered in Shinya Yamanaka’s ground-breaking 

research, is the ectopic overexpression of key transcription factors that facilitate pluripotency. 

The resulting cells are called induced pluripotent stem cells (iPSCs), and have had enormous 

influence on interdisciplinary research fields such as developmental biology, regenerative 

medicine, and oncology to name only a few. A hallmark of these cells is their potential to 

differentiate into all somatic and germline cells of a developing organism. Therefore, hopes are 

high that pluripotent stem cells can be made to differentiate into specialized cells suitable for 

cell replacement therapies, drug tests, and disease modelling. 

VI.1.1. Pluripotent cells during development 

Pluripotent stem cells occur at early stages during embryonic development and can be isolated 

from different sources. Ethical issues have limited research mainly to mice, but experiments 

have shown that much of the information gained from studying stem cell development in mice 

can be applied to human pluripotent stem cells. Nevertheless, certain features are unique to 

each system. This section will first summarize the current state of the art, and then discuss the 

differences between murine and human pluripotent stem cells in detail. 

As the totipotent zygote undergoes cell divisions, a hollow structure forms in which the inner 

cell mass (ICM) resides. The explantation of the ICM generates colonies of embryonic stem 

cells (ESCs). In vivo, the ICM develops into the epiblast and the hypoblast, but only epiblast 

stem cells (EpiSCs) have the potential to give rise to all somatic cells. Besides ICM cells and 

EpiSCs also primordial germ-line cells can be used as source for pluripotent stem cells 

(Shamblott et al. 1998; Shim et al. 1997). They develop during gastrulation, migrate through 

the embryo, and form the gonads later in life. Although pluripotent stem cells can be derived 

from these three sources, each cell type requires particular culture conditions in vitro. Here the 

features of the most common types, ESCs and EpiSCs, are outlined. 

VI.1.2. Embryonic stem cells 

It has been demonstrated that cells from the ICM can be isolated and expanded on feeder cells 

in the presence of leukemia inhibitory factor (LIF) (Smith et al. 1992). This cytokine belongs to 
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the interleukin (IL)-6 family and has a broad influence on a variety of physiological and 

developmental processes (reviewed in Hirai et al. 2011), such as the activation of Signal 

Transducer and Activator of Transcription 3 (STAT3) signaling, which is of crucial importance 

for ESC maintenance. After the LIF receptor binds its ligand, it heterodimerizes with gp130, 

followed by the phosphorylation of Janus kinase (JAK) I and II. Activated JAKs phosphorylate 

gp130, enabling STAT3 to bind the kinases, promoting phosphorylation and homodimerization 

of STAT3. The dimers translocate into the nucleus, regulating the expression of its target genes 

by binding their enhancer elements (Chen et al. 2008). In particular, STAT3 induces Nanog 

expression, a key molecule of the pluripotency network (Chambers et al. 2003). Consequently, 

the level of STAT3 activation correlates with the potential to keep ESCs from differentiating, 

indicating that a critical limit of STAT3 activation is required to prevent differentiation (Raz et 

al. 1999). In 2008, Austin Smith and colleagues discovered that protecting ESCs from 

differentiation-inducing stimuli provides optimal culture conditions to maintain undifferentiated 

ESCs. Therefore, ESCs were cultivated in the presence of the mitogen activated protein kinase 

kinase (MEK) inhibitor PD0325901, the glycogen synthase kinase-3 (GSK3) inhibitor 

CHIR99021, and LIF (2i+Lif). Under these specific conditions, ESCs homogenously expressed 

Oct4 and Nanog at strongly correlating levels (Descalzo et al. 2012), and were characterized 

by lower expression of lineage specifiers, reactivation of both X-chromosomes in female cells, 

and fewer bivalent chromatin domains, indicating a more naïve state of pluripotency (Marks et 

al. 2012). 

VI.1.3. Epiblast stem cells 

EpiSCs are at a later developmental cell stage than ESCs. Upon implantation of the embryo 

in the uterus, a single layer of epithelial cells derives from the ICM to form the epiblast. These 

cells can be isolated from embryos on day 5.5-7.5 and cultivated in the presence of basic 

fibroblast growth factor (bFGF) and Activin A (Brons et al. 2007; Tesar et al. 2007), but they 

spontaneously revert to ESC-like cells under permissive culture conditions (Bao et al. 2009). 

Besides the conditions required for isolation and cultivation of ESCs and EpiSCs, the cell types 

differ in other ways. EpiSCs grow in single layers of colonies and require cell-cell contact for 

survival (Greber et al. 2010). Their developmental potential is more restricted, as demonstrated 

by their poor contribution to chimeric mice and by the inactivation of one X-chromosome in 

female cells (Brons et al. 2007; Tesar et al. 2007). Furthermore, EpiSCs express early lineage-

commitment markers and major histocompatibility complex (MHC) class I molecules. 

Nevertheless, in vitro the cells are capable of multilineage differentiation, and in vivo they form 

teratomas. Notably, they are dependent on bFGF, ERK, Activin A, and TGF-ß, but independent 

of LIF/STAT3, indicating that EpiSCs respond differently to self-renewing and differentiation 
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stimuli compared to ESCs. These cells represent a population of pluripotent stem cells that is 

already primed for certain differentiation stimuli. 

In conclusion, cells representing the in vitro counterparts of pre-implantation cells are in the so 

called “naïve” state of pluripotency, while cells representing post-implantation cells like EpiSCs 

are in the “primed” state of pluripotency (reviewed in Nichols & Smith 2009).  

Features of pluripotent states 
in rodents 

Naive state Primed state 

Cell types (in vivo/ in vitro) Pre-implantation inner cell 
mass/ ESCs 

Post-implantation 
epiblast/ EpiSCs 

Teratoma formation Yes Yes 

Chimera contribution Yes No 

Signaling pathways 
maintaining pluripotency 

LIF/STAT3, BMP4 TGF-ß, Activin, 
bFGF, ERK1/2 

Marker signature   

Oct4, Sox2 High High 

Nanog, Klf2, Klf4, Rex1 High Low 

MHC class I Nearly absent Expressed 

XX status XaXa XiXa 

Lineage specifiers Absent Expressed 

Clonogenicity  High Low 

Morphology Domed-shaped, tightly 
packed colonies 

Flat, large colonies 

Response to 2i Self-renewal Cell death 

VI.1.4. Human embryonic stem cells 

James Thomson was the first to isolate human ESCs. Similar to murine ESCs, a preimplanted 

blastocyst was explanted and its ICM cells isolated (Thomson et al. 1998). In contrast to mouse 

ESCs, these cells require bFGF and Activin supplementation, are sensitive to single-cell 

dissociation, and form flat colonies. Under conventional conditions, isolated hESCs display X-

chromosome inactivation, although this also depends on oxygen levels. Isolation under 

physiological oxygen conditions (5% O2) results in ESCs with pre-inactivated X-chromosomes 

(Lengner et al. 2010). Taken together, human ESCs share more features with murine EpiSCs 

than with mESCs, raising questions about their state of pluripotency. One possible explanation 

might be that human cells derived from the inner cell mass continue to differentiate into 

emerging EpiSCs which are stabilized by bFGF. In rodents, the late blastocysts can be blocked 

Table 1 | Characteristics of naïve state and primed state pluripotent stem cells. 
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in their development, resulting in the inhibition of the implantation process (Lopes et al. 2004). 

This stasis is called diapause, and it can be reversed by LIF signaling (Nichols et al. 2001), 

suggesting that cells derived from explanted mouse blastocysts might remain in a diapause-

like state, allowing ESCs to be isolated. Nevertheless, there are hints that a pause in the 

blastocyst’s development is also possible in mammals (Ptak et al. 2012), suggesting that 

human stem cells in early developmental stages exist in a dynamic pluripotent state based on 

environmental conditions. According to these results, overexpression of Klf4 or c-Myc in 

human ESCs, and also iPSCs under 2i+LIF conditions, cause them to revert to a more naïve 

state, corresponding to murine ESCs in terms of X chromosome inactivation, resistance to 

single-cell dissociation, and global gene expression profile (Hanna et al. 2010a). In the search 

for conditions that stabilize human ESCs without the need for transgene expression, 

researchers identified inhibitors of Jun kinase and p38 MAP kinase that convert human ESCs 

or iPSCs in the naïve state in combination with 2i+LIF, bFGF, and TGF-ß (Gafni et al. 2013). 

Morphologically similar to mESCs, these cells show various epigenetic modifications that lead 

to a global reduction in DNA methylation and bivalent chromatin marks. Interestingly, these 

cells were able to contribute to murine chimeric embryos at a developmental state comparable 

to E8.5-E10.5 after microinjection into morulae. Nevertheless, recent discoveries indicate that 

these cells fail to express crucial epigenetic regulators and remain dependent on bFGF and 

TGFβ signaling. Instead, short-term expression of Nanog or Klf2 for eight days allows iPSCs 

to be cultivated in serum and growth factor depleted medium containing GSK3β and PKC 

inhibitors, supplemented with human LIF (Takashima et al. 2014). Due to their epigenetic 

resetting, these cells are called “reset human iPSCs” and share the transcription factor 

circuitry, facilitating naïve pluripotency in murine ESCs. Application of a kinase inhibitor mixture 

comprising MEK, BRAF, GSK3β, Src, and Rho-associated coiled-coil protein kinase (ROCK) 

inhibitors, in addition to LIF and Activin A, activates Oct4 distal enhancer elements similar to 

naïve mouse ESCs (Theunissen et al. 2014). These cells showed more similarity in global 

gene expression with cells derived after short-term expression of Nanog and subsequent 

cultivation in 2i+LIF (Takashima et al. 2014) than each cell type compared to other potential 

naïve human iPSCs. There was an additional screen in human ESCs, designed to identify 

small molecule inhibitors with the ability to enhance Nanog expression. The combination of 

three inhibitors, namely PD0325901, the GSK3 inhibitor BIO, and the BMP inhibitor 

Dorsomorphin, is able to keep ESCs pluripotent, although their self-renewal potential was 

decreased. Supplementation with LIF rescued this phenotype and generated ESCs with a 

gene signature of pre-implantation epiblast cells (Chan et al. 2013). Another group discovered 

that epigenetic marks defining the primed state can be reverted by pretreatment with histone 

deacetylase inhibitors, followed by culture in 2i with bFGF. Alternatively, naive ESCs can be 

created by direct isolation from embryos in 2i with bFGF (Ware et al. 2014). This suggests that 
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human naïve pluripotent stem cells (PSCs) require bFGF for pluripotency, in contrast to murine 

ESCs, which are destabilized by the growth factor. 

VI.1.5. Reprogramming somatic cells towards induced pluripotency 

Changing a cell’s fate by resetting its epigenetic profile to a pluripotent stem cell can be 

achieved by somatic cell nuclear transfer (SCNT) and cell fusion. Both techniques are 

technically challenging and require the use of human embryos produced by in vitro fertilization 

or human oocytes, raising ethical issues about the protection of unborn life. Therefore, Shinya 

Yamanaka’s 2006 report on reprogramming somatic cells into pluripotent stem cells similar to 

ESCs revolutionized not only the field of regenerative medicine, but also our notion of 

development. He proved that ectopic overexpression of four transcription factors, namely Oct4, 

Sox2, Klf4, and c-Myc, is enough to reset the epigenetic profile of murine or human somatic 

cells, generating a pluripotent stem cell similar to ESCs (Takahashi & Yamanaka 2006; 

Takahashi et al. 2007). These transcription factors are now called Yamanaka factors, and are 

either introduced by retroviral (Takahashi & Yamanaka 2006; Takahashi et al. 2007) or 

lentiviral (Stadtfeld et al. 2008a; Yu et al. 2007) vectors, as well as by non-integrating methods 

like plasmid transfection (Narsinh et al. 2011; Okita et al. 2008; Piao et al. 2014; Si-Tayeb et 

al. 2010) or adenoviral vectors (Stadtfeld et al. 2008c; Zhou & Freed 2009). Today, there are 

DNA-free techniques that are more suitable for the generation of clinically applicable iPSCs, 

such as factor expression by Sendai virus (Fusaki et al. 2009; Seki et al. 2010), direct protein 

delivery (Kim, D. et al. 2009; Zhou et al. 2009), and mRNA transfection (Warren et al. 2012). 

Lately, Venezuelan equine encephalitis (VEE) virus-based RNA vectors have been particularly 

useful in simplifying the generation of iPSCs. The synthetic, polycistronic, self-replicative RNA 

facilitates transgene-free reprogramming by a single transfection (Yoshioka et al. 2013). 

MicroRNA genes also hold the potential to promote iPSC generation. Human and mouse 

somatic cells that overexpress the miR-302/367 (Anokye-Danso et al. 2011) or miR-302/372 

cluster (Subramanyam et al. 2011) and a combination of miR-200c, miR-302s and miR-369s 

(Miyoshi et al. 2011) convert into iPSCs. 

Today, we know that induction of pluripotency is hierarchically organized by a network of 

transcription factors, which means that transcription factors can be substituted by one or a 

combination of other factors (Buganim et al. 2012). Single-cell expression analysis of 48 genes 

during reprogramming allowed researchers to model a Bayesian network (figure 1), which is 

turned on by endogenous activation of Sox2. According to the model, Sox2 switches on Sall4, 

which itself activates Oct4 and three other factors. Only Nanog and Dppa2 function 

independently of the key regulators, Sox2 and Oct4. The model was verified by the generation 
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of fully reprogrammed cells with a combination of Sall4, Esrrb, and Lin28 in combination with 

either Nanog or Dppa2. 

In addition, factors unlisted in this model can replace the transcription factors of the Yamanaka 

cocktail. For example, the orphan receptors Nr5a2, Nr5a1, and Glis1 can replace Oct4 and c-

Myc. Furthermore, members of distinct transcription factor families can often take over some 

of the functions of original Yamanaka factors. Accordingly, Sox1 and Sox3 can replace Sox2; 

Klf2 and Klf5 can compensate for Klf4, and L- and N-Myc for c-Myc. iPSCs containing 

exogenous Myc genes harbor a potential tumorigenic risk. Therefore, many studies focus on 

generating oncogene-free iPSCs more suitable for transplantation studies. Although 

researchers have discovered that exogenous c-Myc is dispensable for the induction and 

maintenance of pluripotency (Nakagawa et al. 2008; Wernig et al. 2008b), there is evidence 

that it facilitates chromatin engagement of the residual Yamanaka factors, therefore enhancing 

the efficacy of pluripotency induction (Soufi et al. 2012). In mice, more than 16 distinct 

combinations of transcription factors were identified to produce MEF-derived iPSCs (reviewed 

in Theunissen & Jaenisch 2014). Nevertheless, in addition to the activity of specific 

transcription factors, completion of other requirements is a prerequisite for reprogramming. 

Somatic cells have to complete the epithelial to mesenchymal transition (EMT) (Li, R. et al. 

2010) to be able to acquire pluripotency. This event takes place early during the 

reprogramming process (Samavarchi-Tehrani et al. 2010), and is characterized by the up-

regulation of the cell adhesion molecules E-cadherin (CDH1) (Chen et al. 2010; Li, R. et al. 

2010), epithelial cell adhesion molecule (EpCAM) (Huang et al. 2011), and intercellular 

adhesion molecule (ICAM1) (O'Malley et al. 2013). Overexpression of these epithelial 

regulators prevents nuclear localization of β-catenin, which can replace Oct4 in the Yamanaka 

cocktail (Redmer et al. 2011).  

Figure 1 | Hierarchical organization of the transcriptional events in reprogramming. Adapted with 

permission from Buganim et al. (2012). 
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Far less is known about the substitution of factors in human cells. It has been shown that 

Nanog and Lin28 can replace c-Myc and Klf4 (Yu et al. 2007), that Glis1 can substitute for c-

Myc (Maekawa et al. 2011), and the epigenetic inducer Rcor2 can restore the function of Sox2 

(Yang et al. 2011). The surprising discovery that the pluripotency inducers Oct4, Sox2, and 

Nanog possess specific lineage-inducing functions gave rise to an alternative approach to 

establish iPSCs. In ESCs, Oct4 induces mesendoderm (ME) and primitive endoderm 

differentiation, but inhibits the differentiation into ectoderm (ECT) cells, while Sox2 promotes 

neural ECT differentiation but suppresses ME differentiation (Thomson et al. 2011; Wang et 

al. 2012). Apparently, maintaining the pluripotent state depends on the balanced activity of 

lineage-inducing factors. These were initially considered as antagonists of pluripotency factors, 

but Shu et al. and Montserrat et al. discovered their potential to restore the pluripotent state by 

counteracting the up-regulation of ME or ECT genes, enabling them to replace Oct4 or Sox2. 

More specifically, a larger scale analysis identified Gata6, Sox7, Pax1, Gata4, C/EBPα, 

HNF4a, and Grb2 as potential Oct4 substitutes, all of them acting as ME lineage specifiers. 

Applying the same method, they were able to replace Sox2 with Sox1, Sox3, and Gmn, and 

finally replace Oct4 and Sox2 simultaneously (Shu et al. 2013). In parallel, Montserrat et al. 

demonstrated that human fibroblasts can be reprogrammed in the presence of Klf4 and c-Myc, 

using Gata3 as a replacement for Oct4, and the ectodermal specifiers ZNF521, OTX2, and 

PAX6 as a replacement for Sox2. Based on these results, the hypothesis of the so-called 

“seesaw” model arose, according to which, somatic cells are more likely to acquire pluripotency 

when opposing differentiation potentials counteract each other. Researchers are now working 

to generate transgene-free iPSCs that are more suitable for therapeutic purposes. Large-scale 

analyses of small molecule compounds identified signaling enhancers or inhibitors with the 

potential to substitute for individual Yamanaka factors. MEFs from transgenic mice carrying 

GFP in their endogenous Oct4 loci were screened with more than 10.000 molecules revealing 

a function of Forskolin (FSK), 2-Methyl-5-hydroxytryptamine (2-Me-5HT), and D4476 as Oct4 

replacements. Nevertheless, in combination with chemical Sox2 substitution (VC6T (VPA, 

CHIR99021, 616452, Tranylcypromine)) the cells did not fully reprogram. In order to achieve 

complete chemical reprogramming, the screen was repeated with cells expressing Oct4 

selectively in the early phase of reprogramming. Agonists of cAMP and epigenetic modulators 

like 3-deazaneplanocin A (DZNep) facilitated late reprogramming. Nevertheless, VC6T 

treatment, in combination with FSK, followed by the addition of DZNep, resulted in ESC-like 

cells displaying reduced pluripotency marker expression. After switching to 2i medium, 

germline-competent chemically induced pluripotent stem cells (CiPSCs) appeared (Hou et al. 

2013). Due to the lack of oncogenic transgene integrations, chimeric mice derived from 

CiPSCs remained healthy for more than 6 months. These results on the chemical replacement 

of Oct4 and the detailed investigation of different reprogramming phases allow us to speculate 
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about the mechanism behind the generation of human iPSCs. Sheng Ding’s group discovered 

that combined inhibition of TGF-β, histon-deacetylases, and MEK in combination with the small 

molecule activator 3’-phospoinositide-dependent kinase-1 (PDK1) in Oct4-expressing human 

cells successfully produced iPSCs (Zhu et al. 2010). However, their intended aim, to generate 

human iPSCs only by chemical compounds, has still not been achieved, potentially due to the 

distinct prerequisites for the induction and maintenance of pluripotency in human cells.                                                                        

Similar to ESCs, iPSCs can switch between distinct pluripotent states. Reprogramming of 

fibroblasts by ectopic expression of Oct4, Sox2, Klf4, c-Myc and Nanog in the presence of LIF 

results in tightly packed colonies expressing surface marker profiles similar to murine ESCs. 

These so called hLR5 cells shared features of naïve pluripotent stem cells like the response 

to LIF stimulation. However, the cells did not stabilize the pluripotent state or reactivate 

endogenous pluripotency genes (Buecker et al. 2010). This might indicate that either the 

culture conditions were not sufficient to support maintenance of pluripotency or hLR5 were not 

fully reprogrammed. Besides the composition also the stoichiometry of the exogenous 

reprogramming factors influence the properties of the resulting iPSCs (Carey et al. 2011; 

Papapetrou et al. 2009). Taken together, biological properties of iPSCs are dependent on the 

interplay of the transcription factors, their stoichiometry and the culture conditions used for 

reprogramming. 

VI.1.6. Molecular characteristics in different phases of reprogramming 

Reprogramming is a very inefficient process with a technique-dependent range from 0.00001% 

(transgene-free and viral-free) up to ≤1% (mRNA-based) cells generating iPSC colonies. In 

need to study the reprogramming process in genetically identical cells, mice entirely derived of 

iPSCs (all-iPSC mice) were generated carrying inducible stem cell factors. Fibroblasts from 

all-iPSCs mice displayed higher reprogramming efficiencies than other primary somatic cells 

(Carey et al. 2010; Wernig et al. 2008a) and enabled researchers to uncover distinct phases 

during the reprogramming process. Three consecutive events were identified by transcriptome 

profiling time course experiments: an initiation phase, a maturation and finally a stabilization 

phase (Samavarchi-Tehrani et al. 2010). The first period is characterized by initial 

transcriptional and epigenetic changes due to overexpression of the reprogramming factors, 

resulting in mesenchymal-to-epithelial transition (MET) (Li, R. et al. 2010; Samavarchi-Tehrani 

et al. 2010). As already mentioned, these changes become manifested on molecular level by 

the gain of epithelial markers like EpCAM (Huang et al. 2011) or CDH-1 (Chen et al. 2010; Li, 

R. et al. 2010) as well as the loss of somatic cell signature. With the goal to predict 

subpopulations of cells undergoing reprogramming and separate them from intermitted cells, 

several surface molecules but also genomic markers were analyzed. Studies demonstrated 

that early reprogramming initiation is accompanied by Thy1 down-regulation, SSEA-1 and AP 
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increase followed by Oct4 activation. Two waves of molecular changes were discovered in 

cells regarding their Thy1, SSEA-1 and Oct4-GFP status. The first wave takes place between 

day zero and day three, is driven by Klf4 and c-Myc and leads to an up-regulation of genes 

involved in cell metabolism, proliferation and cytoskeletal organization. Although Thy1-positive 

cells initiate the first wave, they fail to go through the second wave. The second wave is initiated 

by Oct4, Sox2, and Klf4 and is associated with the onset of pluripotency-related genes (Polo 

et al. 2012). It begins at day nine exclusively in SSEA-1-positive cells, even though the majority 

of SSEA-1 expressing cells never generated iPSCs. This indicates the need for more precise 

markers like ICAM1, which is homogeneously expressed in pluripotent stem cells. 

Nevertheless, the discovery that two distinct waves of transcriptional changes are responsible 

for the cell fate change towards pluripotency has been confirmed using a combination of 

ICAM1, CD44 and a Nanog reporter system (O'Malley et al. 2013). On day six after transgene 

induction CD44-/ICAM1+ cells replace CD44+/ICAM1- cells and activate the Nanog reporter. 

Here, CD44- and ICAM1+ cells closely correlate to Nanog expression which has been 

discovered to be a rate-limiting step. Furthermore, the same study proves the up-regulation of 

particular endogenous pluripotency markers by the time CD44 disappears, and discovers the 

transient up- and down-regulation of several epidermal genes in intermediate cells (O'Malley 

et al. 2013). These results have also been described in previous publications (Mikkelsen et al. 

2008; Sridharan et al. 2009), highlighting the complexity of the reprogramming process. 

Furthermore, even in human cells the transition from initiation to maturation phase has been 

demonstrated to represent the “bottleneck” regarding the acquisition of pluripotency. Although 

the majority of reprogrammed human somatic cells expresses the pluripotency marker Tra-1-

60, only a fraction of ~1% actually becomes pluripotent (Tanabe et al. 2013). The last step 

during the reprogramming process describes the transition to stable pluripotent stem cells 

undergoing self-renewal independent from transgene expression. Therefore, the repression of 

the Yamanka factors is a critical step towards the stabilization phase. Genes involved in this 

process are classified into two groups: one being responsible for stem cell maintenance and 

one selective for transition, indicating that the transition and maintenance of pluripotency are 

regulated by different mechanisms. In more detail, a siRNA screen of late reprogramming cells 

proved the importance of pluripotency factors for the maintenance of iPSCs, while the network 

regulating the acquisition of the competent state contained molecules distinct from the 

Yamanka factors. Among those have been regulators of cytoskeletal remodeling, 

chromosomal organization and segregation as well as distinct signaling pathways, indicating 

the importance of other molecules than the core pluripotency markers for survival upon 

transgene suppression (Golipour et al. 2012). Once cells transit to the last phase, the 

stabilization phase, they acquire full pluripotent potential shortly after transgene suppression 

(Okita et al. 2007; Stadtfeld et al. 2008b). Single cell analysis by Fluidigm and single-molecule-
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mRNA-fluorescence-in-situ-hybridization (sm-mRNA-FISH) revealed endogenous Sox2 to be 

a discriminating marker of this event, regulating the Bayesion network (Buganim et al. 2012). 

This last phase of the reprogramming process is time-consuming and slow. It is characterized 

by numerous epigenetic modifications such as changes in DNA methylation. Especially human 

cells require extensive passaging until their epigenetic memory is lost and iPSCs become more 

and more similar to human ESCs (Chin et al. 2009). Furthermore, stabilization of pluripotency 

is associated with telomere elongation back to embryonic length (Marion et al. 2009) and the 

reactivation of inactivated X-chromosomes in female cells of mouse and human (Lengner et 

al. 2010; Maherali et al. 2007; Tomoda et al. 2012). 

VI.1.7. Kinetics during the reprogramming process 

Different hypothesis arose about the predictability of the reprogramming process based on 

discoveries that iPSC generation follows distinct kinetic events. The stochastic model assumes 

that every single cell can potentially reprogram and acquire a pluripotent state. Nevertheless, 

the modality differs considerably, and random rate-limiting incidents are responsible for the 

variable latencies. Accelerations of the kinetics can be achieved by modifications affecting the 

rate of cell-divisions, like the overexpression of Lin28, or the disruption of the p53/p21 complex, 

or cell-division-independent changes like Nanog overexpression (Hanna et al. 2009c). Time 

course investigations in single cells derived from a secondary system suggest that stochastic 

processes and deterministic phases alternate. Interestingly, the studies from Buganim et al. 

suggest an early stochastic phase and late Sox2-dependent deterministic progress (Buganim 

et al. 2012). In contrast, the molecular roadmap defined by Polo et al. assumes two 

transcriptional waves separated by a stochastic middle part (Polo et al. 2012). In both models, 

the stochastic events represent rate-limiting roadblocks. The elimination of methyl-binding-

protein 3 (Mbd3) accelerates reprogramming speed and raises efficiency up to nearly 100% 

identifying the nucleosome remodeling and deacetylation (NuRD) complex as major 

reprogramming roadblock (Rais et al. 2013). Mbd3 has been shown to bind target sites of Oct4, 

Sox2, Klf4 and c-Myc after transcription factor induction, therefore suppressing the initiation of 

reprogramming. Accordingly, Mbd3 knockdown cells generated iPSC-like colonies within six 

days after transgene induction. In contrast, other studies of genetic and small-interfering RNA 

(siRNA)-mediated knockdown and knockout of Mbd3 (Dos Santos et al. 2014) as well as short-

hairpin RNAs (shRNA)-mediated suppression (Onder et al. 2012) have been shown to have 

no effect on the reprogramming kinetics of mouse fibroblasts. Noteworthy, also a 

subpopulation of privileged cells has been demonstrated to reprogram according to the 

deterministic model (Guo et al. 2014). Within granulocyte/monocyte-progenitors a small 

number of cells characterized by ultra-fast cycling account for the majority of iPSCs after 4 to 

5 cell divisions. In addition, expression of reprogramming factors can induce privileged cells 
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within a fibroblast population, suggesting a rather dynamic state. In accordance with these 

data, reprogramming barriers can be eliminated increasing the reprogramming efficiency not 

only by genetic manipulation but also with the help of small molecule inhibitors, challenging 

the assumption of the stochastic model. 

VI.1.8. Epigenetic modifications during the reprogramming process 

In contrast to nuclear transfer based reprogramming, the DNA demethylation process initiated 

via transcription factor overexpression, requires a longer period of time. For this reason, low-

passage iPSCs retain residual methylation marks at distinct sequence sites leaving iPSCs with 

an epigenetic memory (Kim, K. et al. 2010). These specific molecular signatures substantially 

affect their differentiation potential, highlighting the influence of the parental cells on the 

phenotype of their reprogrammed daughter cells. Consequently, low-passage iPSCs 

predominantly differentiate into the lineage of their parental cells (Bar-Nur et al. 2011; Kim et 

al. 2011). Nevertheless, with continuous passaging epigenetic marks are gradually resolved 

and molecular as well as functional differences abrogate, resulting in indistinguishable iPSCs 

independent of their origins (Polo et al. 2010). In pluripotent stem cells the epigenetic 

reorganization is highly dynamic, indicated by an upraised turnover rate compared to somatic 

cells. Indeed, antagonistic effects balance, and therefore stabilize the canonical epigenetic 

profile (Shipony et al. 2014). In contrast to stem cells, somatic cells inherit epigenetic 

information to their daughter cells, making them vulnerable for the manifestation of epigenetic 

alterations. Accordingly, comparative chromatin modification and transcription program 

analysis between ESCs and iPSCs show little differences (Bock et al. 2011; Chin et al. 2010; 

Doi et al. 2009; Guenther et al. 2010). Nevertheless, functional analysis revealed that iPSCs 

differ from ESCs in their developmental potential, as only few were able to produce all-iPSC 

mice (Boland et al. 2009; Kang et al. 2009; Zhao et al. 2009). In order to investigate this 

observation in more detail, murine ESC transduced with the Yamanaka factors have been used 

to generate viable mice. From these transgenic mice cells derived of various somatic tissues 

were reprogrammed into iPSCs and analyzed for molecular differences compared to their 

genetically identical ESC (Stadtfeld et al. 2010). The comparison demonstrated the differential 

expression of exclusively two molecules; the non-coding RNA Gtl2 and the small nucleolar 

RNA Rian. Treatment of iPSCs with ascorbic acid or alternatively with the histone deacetylase 

inhibitor valproic acid reactivated the silent gene cluster, resulting in murine iPSCs with an 

equal molecular profile as ESCs and the potential to efficiently generate all-iPSC mice 

(Stadtfeld et al. 2012). Noteworthy, to date similar detailed molecular analysis between human 

ESC and iPSCs are ethically not feasible. Nevertheless, vitamin C also seems to improve the 

induction of pluripotency in human cells. Here, it decreases cellular senescence during the 

process and therefore increases reprogramming efficiency (Esteban et al. 2010). Furthermore, 
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these studies demonstrated that alterations in environmental conditions during the 

reprogramming process affect the epigenetic and biological outcome. 

VI.1.9. Application of induced pluripotent stem cells for investigating molecular 

mechanisms in disease pathology and regenerative medicine 

The iPSC technology holds great promises for future medical improvements. The cells can be 

expanded and cultured indefinitely providing a never-ending source for cell replacement 

attempts. Their differentiation into insulin-producing β-cells (Hua et al. 2013; Jeon et al. 2012), 

functional hepatocytes (Chen, Y. F. et al. 2012; Takayama et al. 2012), cardiomyocytes (Itzhaki 

et al. 2011; Kim, C. et al. 2013), and dopaminergic neurons (Devine et al. 2011; Jiang et al. 

2012; Swistowski et al. 2010) give a reason to believe that cell replacement strategies for 

diabetes, liver cirrhosis, cardiovascular disease and neurodegenerative diseases like 

Parkinson’s disease are within reach without the concern of immune rejection. Nevertheless, 

the tumor-forming potential of iPSCs or ESCs forms the major hurdle of transplantation studies 

to go into clinical application and request strict differentiation protocols with defined selection 

methods for the isolation of differentiated cells. Therefore, cell replacement strategies are 

currently of minor importance while iPSCs are already well-recognized for disease modeling, 

drug screens and toxicity tests. Their greatest advantage is that studies can be performed 

directly with the cell-type of interest derived from individual patients without fearing the problem 

of limited sources. There are numerous examples of drug tests that have failed due to the lack 

of that possibility demonstrating the need for precise models mimicking diseases. Preclinical 

experiments in mice sometimes do not fulfill this criteria for the reason that drugs were effective 

in mice but not in human or vice versa (Tobert 2003). Furthermore, even genetically 

manipulated human cells often do not resemble disease mechanisms adequately and 

demonstrate the demand of drug validations in the system that is actually affected by the 

disease. For example, the properties of non-steroidal anti-inflammatory drugs (NSADs) as 

modulators of γ-secretase (GSMs) resulting in reduced levels of Aβ42 have been investigated 

in APP-transgenic non-neuronal cells. While micromolar concentrations have successfully 

been able to reduce Aβ42 ratios, neurons derived from patient-iPSCs have been completely 

resistant (Mertens et al. 2013). Especially the investigation of neuronal diseases like 

Parkinson, Alzheimer and Huntington’s disease benefits from iPSCs-based disease modeling. 

Defined neural inducers enable researchers to produce glial cells (Wang et al. 2013), 

dopaminergic (Ha et al. 2011; Ryan et al. 2013) and striatal neurons (An et al. 2012; Nelson 

et al. 2014) from iPSCs derived from patients carrying disease-causing mutations. These 

specific neuronal cell populations are then subjected to studies comparing disease affected 

and healthy cells. 
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Even molecular insights in oncogenic processes have been found using iPSCs. The group of 

Ohnishi et al. (2014) connected nuclear factor-based reprogramming and tumorigenic 

transformation of cells in vivo. Using iPSC-derived chimeric mice with doxycycline inducible 

transcription factors, they demonstrated that the reprogramming factors drive tumor initiation. 

Short-term induction of the transgenes generates reversible dysplasia in various organs but 

prolonged exposure resulted in tumor formation with de-differentiated phenotypes distinct from 

teratomas. Performing methylation analysis between ESCs/iPSCs, normal kidneys and kidney 

tumors, they identified that failed repression of ESC-polycomb repressive complex (PRC) 

targets is responsible for the generation of transgene-independent tumors. Furthermore, they 

found a PRC signature similar to Wilms’ tumors, a pediatric kidney cancer and have been able 

to show an identical methylation profile within samples of this specific tumor (Ohnishi et al. 

2014). 

In spite of unresolved questions concerning the tumorigenic potential of iPSCs, the first clinical 

study started in august 2014 using autologous iPSC-derived retinal pigment cells (RPCs) for 

transplantation into patients suffering from exudative age-related macular degeneration (Sipp 

2013). 

VI.1.10. Induced pluripotent cancer cells 

Reversible epigenetic modifications regulate the differentiation process generating specialized 

cells of an organism. Additionally, epigenetic alterations combined with irreversible genetic 

mutations also play a role in the transformation of tumor cells. Accordingly, several hints exist 

that tumors arise selectively in the context of a specific developmental state. This suggests 

that on the one hand chromatin modifications regulate differentiation processes, on the other 

hand they can affect the tumorigenic potential of cells. A way to gain insight into this interplay 

of epigenetic modifications and transforming events is based on the utilization of cancer-

derived iPSCs, so called induced pluripotent cancer cells (iPCCs). The generation and 

validation of iPCCs is similar to somatic iPSCs. However, the generation of iPCCs is more 

difficult to achieve, probably due to their various epigenetic and genetic aberrations. The first 

report of reprogrammed cancer cells came from the Jaenisch laboratory. They generated 

murine ESC cell lines derived from the RAS-inducible melanoma cell line R545 by nuclear 

transfer (Hochedlinger et al. 2004). Without H-RAS overexpression, the R545-ESCs have 

been able to contribute to chimeras, to restore lymphocytes in Rag2 deficient mice and to 

produce ES-cell-derived embryos up to E9.5 upon tetraploid complementation. Additionally, 

the same cell line was amenable for transcription factor-induced reprogramming with only 

Oct4, Klf4 and c-Myc (Utikal et al. 2009a). Similar to SCNT-ESCs resulting melanoma iPCCs 

contributed to chimeric mice after blastocyst injection indicating that the R545 melanoma 



Introduction 

  14 

genome remains the potential to contribute to a living organism. Since then, a wide variety of 

murine and human tumor cells were reprogrammed using different techniques. 

Mouse lung carcinoma cells reprogram into murine iPCCs after transient transfection of the 

Yamanaka factors and selection for Nanog-expressing cells (Lin & Chui 2012). Human 

prostate and colon cancer cells display marker expression and methylation profiles of PSCs 

through miR-302 transfection (Lin et al. 2008). Data from human chronic myeloid leukemia 

(CML) cells of blast crisis stage demonstrated successful induction of pluripotency with Oct4, 

Sox2, Klf4 and c-Myc retroviruses. Here, deprivation of c-Myc resulted in cell death while Oct4, 

Sox2, and Klf4 were necessary to generate fully reprogrammed cells (Carette et al. 2010). 

According to the mutational status of the parental cell line the resulting iPCCs differ from 

normal iPSCs in the expression of the BCR-ABL oncogene. In contrast to CML cells the derived 

iPCCs escape oncogene addiction and become resistant to BCR-ABL inhibitor treatment with 

imatinib. Data from CML-iPSCs derived from a primary patient sample uncovered that 

phosphorylation of ERK1/2, AKT and c-Jun N-terminal kinases (JNK) has not been affected by 

imatinib but has been decreased in differentiated hematopoietic cells (Kumano et al. 2012). In 

contrast, the phosphorylation state of CRKL and STAT5, which are specific for CML-iPCCs, 

have been reduced in CML-iPCCs and their differentiated hematopoietic progenies. 

Consequently, the authors suggested that CRKL and STAT5 are not essential for survival, 

instead signaling pathways for iPSC maintenance compensated for the imatinib induced BCR-

ABL inhibition. Furthermore, it was shown, that oncogenic mutations did not prevent 

differentiation so that neurons, neuronal epithelium, fibroblast-like cells and hematopoietic cells 

could be differentiated from CML-iPCCs (Carette et al. 2010). These showed no response to 

imatinib treatment while CD34, CD43 and CD45 positive cells were reduced by the inhibitor 

indicating that BCR-ABL oncogene dependence correlated with the epigenetic differentiation 

status of cells. CML cells were also reprogrammed using episomal vectors for Oct4, Sox2, 

Klf4, Nanog, Lin28 and c-Myc. Generated that way, iPCCs lacked transgene integrations, were 

positive for the BCR-ABL fusion gene and differentiated in granulocytes, erythrocytes, 

monocytes and megakaryocytes (Hu et al. 2011). The first human iPCCs of solid tumors cells 

were derived from four gastrointestinal cancer cell lines selected for low Nanog expression. 

The cells were transduced with the four Yamanaka factors by retroviral delivery and showed 

signs of pluripotency in vitro (Miyoshi et al. 2010). Derived differentiations were characterized 

by increased sensitivity to chemotherapeutics and decreased tumor-initiating properties in 

vivo, which might be explained by reactivation of tumor suppressor genes through 

reprogramming. The same group also discovered a re-sensitization to drugs of miR-302 

reprogrammed hepatocellular carcinoma cells and the link to the miRNA target AOF2. miRNA 

mediated repression of AOF2 decreases c-Myc expression levels, thereby elevating miR-29b 

expression and sensitizing cells to Mcl-1 induced apoptosis (Koga et al. 2014). The influence 
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of epigenetic changes on drug response has been confirmed by methylome analysis of 

reprogrammed human non-small cell lung cancers (NSCLCs). After reprogramming, aberrantly 

methylated promoters of NSCLCs become hypomethylated in iPCCs, containing genes 

associated with development but also tumor suppressor genes like APC, TIMP3 and WRN. 

Accordingly, between 59 and 110 genes from a list of 391 unique genes commonly up-

regulated in NSCLCs were down-regulated upon reprogramming (Mahalingam et al. 2012). 

Notable, only a small percentage of tumor suppressor genes were elevated in iPCCs compared 

to the number of oncogenes which were down-regulated after reprogramming. Combined 

analysis of gene expression data and methylation analysis verified that dysregulation of tumor 

suppressor genes and oncogenes in NSCLCs is partially reversed in cancer-derived iPCCs 

(Mahalingam et al. 2012). A comparable study from Zhang et al. (2013) in human sarcoma 

cells found global hypomethylations upon reprogramming. Greatest changes were observed 

equally in tumor suppressor genes and oncogenes. In order to determine the grade of 

epigenetic resetting in iPCCs, the group used a set of 50 genes previously identified to 

discriminate mouse ESCs, MEFs and MEF-iPSCs. The expression levels suggested that the 

sarcoma cells were only reprogrammed slightly beyond a mesenchymal stem cells (MSCs) 

state which might indicate the existence of reprogramming roadblocks that prevent the 

acquisition of full pluripotency. Accordingly, in vitro experiments demonstrated the successful 

differentiation into fat and bone producing cells as well as in blood cells. These terminal 

differentiated cells of connective tissue or blood abolished the tumor initiating potential of the 

parental sarcoma cells. Nevertheless, the group used lentiviral vectors constitutively 

expressing the Yamanaka factors indicating a metastable pluripotent state of the sarcoma-

iPCCs. More likely, the cells represent partly reprogrammed intermediates which could be in 

line with the discovery that these cells lacked teratoma formation and rather generated 

undifferentiated sarcomas in vivo (Zhang et al. 2013). Further results from glioblastoma cells 

strengthened the hypothesis that the malignancy of a tumor genome correlates to its 

methylome. Comparison of methylation profiles between glioblastoma neural stem cells (GNS) 

and neural stem cells identified cancer-specific methylation variable positions (cMVPs). A high 

percentage of PRC2 target genes including tumor suppressors like cyclin-dependent kinase 

inhibitor 1C (CDKN1C) and TES were found to be hypermethylated in GNS but demethylated 

upon reprogramming. Furthermore, demethylation of the tumor suppressor genes persisted 

during the differentiation into non-neuronal cells but became hypermethylated in neural 

progenitors which was associated with loss of protein expression and an increased tumorigenic 

potential (Stricker et al. 2013). Nevertheless, the results also demonstrate that the majority of 

normalized cMVPs remain hypomethylated even during neuronal differentiation. On the one 

hand epigenetic resetting can lead to a stable loss of cancer specific methylation marks but on 

the other hand distinct sites are susceptible to reacquire aberrant chromosomal modifications. 
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Another study utilized cancer cells as a heterogeneous starting population in order to 

investigate whether the reprogramming process selects for subpopulations. NSCLCs 

harboring mutations for TP53 and CDKN2A and CDKN2B were subjected to nuclear 

reprogramming and subsequently analyzed for occurring mutations. In contrast, to the parental 

cell lines, none of the known mutations were detectable. Therefore, the group proposed that 

an undetectable small subpopulation carrying no mutations was amenable to reprogramming 

and giving rise to iPCCs with a homogenous karyotype. Consequently, the process of 

reprogramming cancer cells might be illustrated by the so called elite model suggesting the 

existence of a favored cell population which is more susceptible to become pluripotent (Lai et 

al. 2013). On the other hand, tumor-derived pluripotent stem cells are applicable to model 

tumorigenesis. Especially when mouse models rather resemble advanced tumors, 

reprogramming of tumor cells might represent an elegant technique to investigate early 

neoplastic processes. Kim, J. et al. (2013) compared pancreatic intraepithelial neoplasias 

(PanINs), which progressed to invasive pancreatic ductal adenocarcinomas (PDACs) with 

reprogrammed human ductal adenocarcinomas derived from primary resections (Kim, J. et al. 

2013). Although the reprogrammed cancer cells shared characteristics with iPSCs they 

required low doxycycline concentrations indicating that the cells were not fully reprogrammed. 

Nevertheless, upon subcutaneous injection the iPCCs gave rise to teratoma-like structures 

with a high portion of endodermal tissue with PanIN1-, PanIN2- and PanIN3-like structures. 

These are able to progress to invasive human pancreatic cancer and therefore resemble early-

stages of PDAC. On the basis of cultured organoids derived from PanIN-like cells, they found 

several proteins and markers associated with early-stage pancreatic cancer and additionally 

identified the HNF4α network to play a key role in the late PanIN stages (Kim, J. et al. 2013). 

VI.2. Melanoma 

Melanomas arise from pigment-producing melanocytes and represent the most serious form 

of skin cancer. In 2014, melanomas were estimated to account for only 2% of all skin tumors 

in the US but to cause 80% of skin cancer-related deaths. The five-year survival rate of patients 

suffering from metastatic melanoma reaches merely 15% (American Cancer Society, 2013). 

In order to understand the biological processes that are characteristic for growth and 

progression of melanomas, it is necessary to gain insights into the early embryonic 

development of melanocytes.  

VI.2.1. The origin of melanoma 

During neurulation the neural plate border elevates and folds into the neural tube. Depending 

on the organism, neural crest cells (NCCs) delaminate and migrate from the dorsal neural tube 

along distinct routes into the periphery where they differentiate into a wide range of lineages 
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such as peripheral neurons, endocrine cells, bone, cartilage, connective tissue and 

melanocytes (reviewed in Gammill & Bronner-Fraser 2003). Thereby, the anatomic location of 

the neural crest derivatives determines their fate by environmental conditions. The cellular 

developmental potential and plasticity of trunk and cranial neural crest cells (Baker et al. 1997) 

indicate that these cells generate bipotent glial-melanocytic lineage progenitors (Dupin et al. 

2000), which are committed to differentiate into non-pigmented melanoblasts. These migrate 

along the dorsolateral trail and invade the epidermis where they expand extensively to 

distribute equally (Yoshida et al. 1996). In hairless regions of the skin, melanoblasts reside at 

the basement membrane and differentiate when stimulated by keratinocytes. Melanoblasts 

located in hairy regions of the skin localize either at hair bulbs as differentiated melanocytes 

or at hair follicle bulges as immature melanocyte stem cells (McSCs) (Nishimura et al. 2002). 

Maintained in their specific compartment, melanocytes mainly produce melanin in order to 

protect our skin from ultraviolet (UV) radiation-induced damage. Furthermore, recent studies 

propose that McSCs play an important role in the regeneration of wounded skin epithelium. 

Here, McSCs leave their stem cell niche to migrate into wounded regions in order to support 

the repopulation and repigmentation of the injured region (Chou et al. 2013).  

The exact mechanism behind the transformation of melanocytes or their progenitor cells into 

tumorigenic melanoma cells is not fully understood. Interestingly, UV irradiation of melanoma 

cells induces a higher genetic mutation rate than in any other solid tumor. Improved molecular 

techniques allowed to investigate genomic alterations that drive tumor transformation and to 

discriminate them from potential UV-induced passenger mutations. The most prominent 

mutation found in melanomas (63%) affects the BRAF gene followed by mutations in 

neuroblastoma RAS viral oncogene homolog (NRAS), tumor protein p53 (TP53), phosphatase 

and tensin homolog deleted on chromosome 10 (PTEN), and in the gene locus CDKN2A 

(Hodis et al. 2012). In the correct cellular context these genomic changes can promote a 

stepwise process leading to the development of malignant melanoma. In histological sections, 

this process is classified by the so-called Clark model. According to this classification, 

malignant melanomas develop from a benign melanocytic nevus with aberrantly proliferating 

melanocytes. The identification of mutations in BRAF or NRAS and its correlation with an 

abnormal mitogen-activated protein kinase (MAPK) signaling in benign nevi suggest that this 

overactivation initially stimulates melanocyte proliferation and thereby represents an early 

event in melanomagenesis (Pollock et al. 2003; Wu et al. 2007; Yazdi et al. 2003). Interestingly, 

oncogenic BRAF or NRAS induce cellular senescence in melanocytes by induction of p16 

inhibitor of cell cycle kinase 4A (p16INK4A) (Gray-Schopfer et al. 2006; Michaloglou et al. 2005). 

Animal models with endogenous Braf mutations demonstrated that some melanocytes escape 

the protective cell cycle arrest probably by the acquisition of additional mutations (Dhomen et 

al. 2009) resulting in dysplastic nevi. Nearly 50% of all melanomas carry a mutation in one of 
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the tumor suppressor genes TP53, PTEN or p16INK4A (Hodis et al. 2012) affecting DNA damage 

repair, cell growth or sensitivity to apoptosis. Accordingly, single mutations in RAF, RAS, PTEN 

or p16INK4A fail to initiate melanomas but combinations of these mutations facilitate the progress 

towards in situ melanomas. Resulting lesions initially remain confined to the epidermis but 

expand laterally. Therefore this phase is defined as the radial growth phase. Afterwards the 

vertical growth phase follow, which is crucial for the formation of malignant melanoma and 

associated with poor clinical outcome. Here, cells gain invasive properties, penetrate the basal 

membrane and infiltrate the surrounding tissue in order to generate metastasis at distant sites. 

Therefore, melanoma cells down-regulate junctional E-cadherin and gain N-cadherin resulting 

in a migratory phenotype (Alonso et al. 2007). This process describes an epithelial-to-

mesenchymal transition (EMT) and is linked to a hyperactivation of MAPK, nuclear factor 

kappa B (NF-κB) and phosphoinositide 3-kinase (PI3K)/AKT signaling resulting in transcription 

of target molecules like SNAI1, TWIST and SLUG (Caramel et al. 2013). These genes bind 

promoter regions of E-cadherin leading to its repression (Cano et al. 2000; Ohkubo & Ozawa 

2004; Poser et al. 2001; Weiss et al. 2012). Moreover, oncogenic ERK activation initiates a 

switch in the expression pattern of genes acting as tumor suppressors in melanocytes like 

ZEB2 and SLUG towards the expression of ZEB1 and SNAIL1, further triggering EMT and 

thereby driving melanomagenesis (Caramel et al. 2013).  

VI.2.2. Mutations involved in melanomagenesis and their therapeutic 

significance 

VI.2.3. RAS-RAF-MEK 

MAPK signaling is initiated by the binding of a wide variety of growth factors, hormones and 

differentiation-inducing molecules to their receptors resulting in the activation of rat sarcoma 

oncogene (RAS). GTP-bound RAS triggers a cascade of phosphorylation steps initiated via 

interactions with the RAS-binding-domain (RBD) of membrane-recruited RAF proteins. 

Phosphorylation of two amino acids within in the kinase domain are required for full activation 

of BRAF, in contrast to A- and C-RAF, which additionally require phosphorylation within the 

negative-charge regulatory domain (N-region) (Fabian et al. 1993; Mason et al. 1999) 

explaining why BRAF plays a predominant role in activating downstream mitogen activated 

protein kinase 2 (MAP2K1, MEK) (reviewed in Matallanas et al. 2011). BRAF phosphorylation 

allows formation of a specific dimerization mode called side-by-side dimerization, facilitated 

either by homodimers consisting of two BRAF molecules or heterodimers consisting of one 

BRAF molecule and one molecule of kinase suppressor of RAS (KSR), a RAF-related pseudo-

kinase (Rajakulendran et al. 2009) In this conformation, these molecules promote 

phosphorylation of dual-specificity kinases MAP2K1/MAP2K2 (MEK1/2), which in turn 
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subsequently activate extracellular signal-regulated kinase 1/2 (ERK1/2). Phosphorylated ERK 

targets proline-neighboring serine or threonine residues of cytoplasmic and nuclear molecules 

resulting in the induction of cell proliferation, survival and differentiation. Genetic examinations 

of MAPK signaling members revealed mutations of BRAF in 60% of all melanoma cases 

emphasizing its role as key player in melanomagenesis (Davies et al. 2002). Additionally, 

mutated BRAF plays a role in several other tumors types including colorectal, lung, thyroid, 

ovarian, pancreatic and prostate cancer (Brose et al. 2002; Cho et al. 2006; Ishimura et al. 

2003; Nikiforova et al. 2003; Oliveira et al. 2003; Perren et al. 2004; Wang et al. 2003). Thus, 

understanding the mechanism of oncogenic BRAF signaling is of essential interest for multiple 

tumor types. In 80% of all cases a single nucleotide substitution within the catalytic domain 

results in replacement of valine (V) with glutamic acid (E) at position 600 leading to increased 

kinase activation (Lovly et al. 2012) by mimicking phosphorylation of the activation loop. 

Substitutions at the same position with lysine (K), arginine (R), methionine (M) and aspartic 

acid (D) are less frequent but also result in a BRAF hyperactivation illustrating the regulatory 

importance of this position (Heinzerling et al. 2013; Lovly et al. 2012; Menzies et al. 2012). 

Novel studies using RAF specific inhibitors revealed the mechanisms behind BRAFV600E activity 

pointing towards a RAS-independent function of mutated BRAF. Furthermore, elevated ERK 

levels induce a negative feedback loop repressing RAS in melanoma cells. Blocking RAF 

signaling using small molecules inhibitors release this feedback triggering RAS activation. 

Hence, RAF inhibition is accompanied by a rebound in ERK activation resulting in a new steady 

state (Lito et al. 2012). There is evidence that only copper-bound MEK is able to interact with 

ERK (Turski et al. 2012). According to that, prevention of copper-MEK interaction decreases 

oncogenic BRAF signaling in mice and reduces tumor growth of BRAFV600E positive melanoma 

cells. Therefore, copper deprivation using chelators applied for the treatment of Wilson’s 

disease might be supportive in MAPK targeting therapies (Brady et al. 2014). In more than 

22% of melanoma cases (Ball et al. 1994; Hodis et al. 2012) the RAS family member 

neuroblastoma rat sarcoma oncogene (NRAS) harbors activating mutations predominantly 

Q61R or Q61L transitions in exon two. Interestingly, mutations in BRAF and NRAS are 

exclusive (Daniotti et al. 2004; Hodis et al. 2012). Mutant BRAF itself only triggers growth of 

benign nevi but its activation together with loss of p53 transforms subpopulation of 

melanocytes (Patton et al. 2005; Yu et al. 2009) into malignant melanoma cells. Murine 

BRAFV600E models confirm the transforming potential of the gene and nicely demonstrate the 

role of additional mutational events in other molecules and their contribution to malignant 

transformation. In this manner loss of PTEN in combination with oncogenic BRAF signaling 

has been identified to generate melanomas with 100% incidence whereas BRAFV600E 

mutations induced skin hyperplasia but not melanomagenesis in this model (Dankort et al. 

2009). In contrast, the second mouse model demonstrated that BRAFV600E mutations alone 
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were sufficient to induce tumor formation in 70% of mice. Beside these differences, both 

models confirmed appearance of benign nevi and senescent melanocytes upon induction of 

mutated BRAF. Interestingly, p16INK4a was expendable for melanocyte senescence and 

tumor progression but influenced tumor latency and increased numbers of developing tumors 

per mouse (Dhomen et al. 2009). Knockdown of BRAFV600E using small interfering RNA 

(siRNA) in melanoma cells suppressed typical tumor characteristics like invasiveness, cell 

proliferation (Sumimoto et al. 2004), and tumor vascularization (Sharma et al. 2005). 

Furthermore, simultaneous expression of INK4a and inhibition of BRAF potently induced 

apoptosis in melanoma cells indicating a functional interaction of BRAF and INK4a mutations 

(Zhao et al. 2008b). Additionally, knockdown experiments point towards a role of mutated 

BRAF as a negative regulator of protein kinase B (Akt) signaling via activation of mammalian 

target of rapamycin complex 2 (mTORC2), thereby suggesting a negative feedback 

mechanism between MAPK and AKT signaling (Chen, B. et al. 2012). Taken together, the high 

frequency of BRAF mutations in melanoma and their putative role as one of the driver 

mutations highlights mutated BRAF as a promising target in melanoma therapy.  

The first clinically tested RAF inhibitor was sorafenib (Wilhelm et al. 2004). This small 

compound inhibitor failed to provide survival benefits in clinical trials most probably due to its 

low specificity to BRAFV600E and additional reaction against BRAF, CRAF, vascular-endothelial 

growth factor (VEGF) and platelet-derived growth factor receptor tyrosine kinases (PDGF 

RTKs). Vemurafenib (PLX4032) is a type I ATP-competitive BRAFV600E inhibitor and was the 

first small molecule approved by the FDA in 2011 selectively targeting BRAFV600E (Joseph et 

al. 2010). In a phase I clinical trial with patients carrying V600E mutated BRAF, vemurafenib 

treatment led to tumor shrinkage in 81% increasing median overall survival to 15.9 months. 

Since then, other BRAF inhibitors like dabrafenib or MEK inhibitors such as trametinib and 

selumetinib were developed representing the most important MAPK signaling inhibitors.  

Although these compounds are very promising drugs for treating RAS-RAF-MEK-ERK-driven 

tumors their application is limited due to resistance mechanisms and paradoxical MAPK 

pathway activation. In BRAF wildtype melanoma cells carrying a RAS mutation, inhibition of 

BRAF activity results in hyperactivation of ERK. Application of BRAF inhibitors (Halaban et al. 

2010) induce stimulation of CRAF-MEK-ERK leading to increased cell proliferation and 

migration. These results have been confirmed by an oncogenic RAS mouse model with 

inducible expression of a kinase-inactive form of BRAF (BRAFLSL-D594A), that mimics 

consequences of BRAF inhibition leading to the generation of rapidly growing melanomas 

(Heidorn et al. 2010). Paradoxical activation describes a mechanism of ERK activation in BRAF 

wildtype cells after administration of BRAF inhibitors. These block one protomer of the RAF 

homo- or heterodimers, thereby inducing RAS-dependent transactivation of the other protomer 

(Poulikakos et al. 2010). In accordance to this hypothesis cells harboring BRAFV600E mutations 
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are characterized by an inactive RAS proto-oncogene required for paradoxical activation, 

thereby leading to a predominant inhibition of V600E monomers. BRAF and CRAF mutants 

that are defective in dimerization fail to induce ERK overactivation confirming that dimerization 

plays a key role for paradoxical activation (Hatzivassiliou et al. 2010). Further insights were 

unraveled in a recently published study discovering ATP-dependent auto-regulatory 

mechanisms of RAF wildtype proteins (Holderfield et al. 2013). Autophosphorylation within the 

P loop stabilizes an enzymatic inactive conformation of RAF proteins, abolishing its activation. 

Consequently, BRAFV600E melanoma cells bypass auto-regulatory mechanisms similar to other 

P loop mutation-bearing cells.  

The drug-induced hyperactivation of RAS-RAF-MEK-ERK signaling is not restricted to the 

melanocytic lineage but also affects cells of other lineages. Consequently, it causes severe 

side-effects like formation of squamous cell carcinomas (SCCs) that often harbor RAS 

mutations (Oberholzer et al. 2012; Su et al. 2012). Nevertheless, SCCs are slightly invasive 

and therefore easy to remove. 

The high percentage of relapse during targeted melanoma treatment within a year is one of 

the most severe issues indicating that tumor cells quickly adapt to BRAF inhibition (Flaherty et 

al. 2010). Studies with dabrafenib, trametinib and selumetinib demonstrated that acquired 

Figure 2 | Inhibition of MAPK signaling members and pharmacological consequences. Adapted with 

permission from Tsao et al. (2012). 
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resistance mechanisms are not vemurafenib-specific but present general strategies of 

melanoma cells to escape MAPK pathway inhibition. Nevertheless, many experiments were 

performed with vemurafenib so that mechanisms leading to therapy resistance are most 

explicitly investigated for this drug. Molecular events conferring resistance to inhibitor 

treatment either restore signaling activity or circumvent inhibition by switching to other 

pathways. Stimulating RTKs of tumor cells with corresponding ligands, also commonly found 

to be up-regulated in tumors or surrounding tumor stromal cells, can rescue drug-induced 

growth arrest in vitro. This also demonstrates an important role of the tumor microenvironment 

in the development of drug resistance. In BRAFV600E mutated melanoma cells stimulation with 

hepatocyte growth factor (HGF) mediates resistance by activation of the PI3K and MAPK 

pathway (Straussman et al. 2012; Wilson et al. 2012). This was also shown for some cell lines 

using neuregulin 1 (NRG1) as stimulating agent. Inhibition of the HGF receptor MET by 

crizotinib re-sensitizes tumor cells to RAF inhibition and increases vemurafenib efficacy 

Additionally, HGF expression was detected in pre-treated patient samples correlating inversely 

to drug response. Other groups confirmed that increased RAF dimerization by activation of 

upstream signaling molecules like PDGFR or NRAS can mediate resistance against novel RAF 

inhibitors (Nazarian et al. 2010). Furthermore, loss of the MAPK negative regulator NF1 is 

associated with de-repression of RAS signaling providing a stimulus leading to activation of 

CRAF (Whittaker et al. 2013) or K- and HRAS (Maertens et al. 2013). Signaling through 

alternative RAF family members restores MAPK signaling activity, therefore providing an 

effective resistance strategy against RAF isotype-specific monotherapies since respective 

clinical data demonstrated that successful inhibitor treatment requires nearly complete MAPK 

signaling inhibition (Bollag et al. 2010). Surprisingly, no acquired secondary mutations in 

vemurafenib-resistant melanomas were found in the BRAFV600E gene indicating that cells retain 

their ability to respond to vemurafenib (Nazarian et al. 2010). This observation was confirmed 

by discontinuous dosing strategies. Tumors which acquired drug resistance through elevated 

MAPK signaling became dependent on continuous BRAF inhibition. Therapy cessation 

resulted in an initial tumor regression probably due to excessive ERK activation followed by 

cell cycle arrest or induction of apoptosis. Furthermore, discontinuous dosing eliminated the 

survival advantage of resistant clones preventing therapy resistance in mice (Das Thakur et 

al. 2013). Nevertheless, in some patients with acquired vemurafenib resistance a splice variant 

of BRAFV600E lacking the RAS-binding domain was detected. The 61 kDa variant excluded exon 

4-8 and was characterized by increased RAF dimerization even in a RAS-independent 

manner. A dimerization-deficient mutant restored sensitivity against vemurafenib indicating 

that drug resistance can be generated by increased dimerization ability (Poulikakos et al. 

2011). Furthermore, occurrence of BRAF oncogene amplification can facilitate resistance by 

increasing expression levels in melanoma (Shi et al. 2012) and also colon cancer (Corcoran 
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et al. 2010). Studies in BRAF-mutated colon cancer identified resistance mechanisms also 

observed in melanoma cells like the expression of epidermal growth factor receptor (EGFR) 

as an alternative activation mechanism of MAPK signaling. In six out of 16 melanoma patients 

with acquired resistance to BRAF treatment a gain in EGFR expression was initiated by TGF-

β signaling inversely correlating to Sox10 levels (Sun et al. 2014). Furthermore, this study 

confirmed previous results of drug-resistant cell populations with survival advantages under 

therapy which are reverted during drug holidays.  

Melanoma-driving mutations affecting the MAPK pathway and leading to therapy resistance 

can also occur downstream of RAF. Several studies recently identified MAP2K1 (MEK1) and 

its mutation hotspot at codon P124 as a feasible melanoma oncogene (Hodis et al. 2012; 

Krauthammer et al. 2012; Nikolaev et al. 2012). Furthermore, MEK inhibition by trametinib can 

cause mutations in MEK1 (Emery et al. 2009) as well as MEK2 (Villanueva et al. 2013) 

resulting in resistance to trametinib itself and other MEK inhibitors. Previously, we reported a 

case of a trametinib-resistant melanoma patient well responding to vemurafenib treatment 

indicating that resistance mechanisms against MEK inhibition do not necessarily facilitate 

cross-resistance to BRAF-targeting therapy (Bernhardt et al. 2014). These data were 

supported by a retrospective study of 23 melanoma patients with inverse sequential therapy 

(MEKi treatment followed by BRAFi in case of progression) showing increased disease control 

rates (Goldinger et al. 2014). However, patients quickly develop novel resistances against 

vemurafenib. Besides others, mutations in the genes for MEK1 and MEK2 (Emery et al. 2009; 

Villanueva et al. 2013) were observed to be responsible for insensitivity against BRAF and 

MEK inhibitors in parallel. Nevertheless, co-targeting both molecules (Emery et al. 2009) or 

even in combination with inhibition of the PI3K/mTOR axis prevented the appearance of multi-

resistant clones (Shi et al. 2011; Villanueva et al. 2013). Screening pharmacological 

substances in BRAF inhibitor-resistant cells identified an insulin-like growth factor receptor 1 

(IGF-1R)-dependent drug resistance. In samples of recurrent melanomas elevated levels of 

IGF-1R and phosphorylated AKT were detected. Accordingly, combination therapy targeting 

MEK and IGF-1R in parallel resulted in increased cytotoxicity (Villanueva et al. 2010). Besides 

already discussed pathways involved in melanoma formation also modulation of pathways that 

are not associated with melanoma progression can de-sensitize melanoma cells to drugs. The 

overexpression of 600 kinases and kinase-related open-reading frames (ORFs) identified 

MAP3K8 as a potential mediator of resistance (Johannessen et al. 2010). This kinase is also 

known as COT and is able to induce JNK and MAPK signaling upon stimulation by molecules 

associated with inflammatory processes like tumor necrosis factor (TNF), interleukin-1 (IL-1) 

or CD40 (Vougioukalaki et al. 2011). Thereby, COT actives MEK and ERK in a RAF-

independent way and was detected in melanoma patients with acquired BRAF resistance 

(Johannessen et al. 2010). Analysis of deregulated networks in various cancer types identified 
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the translation-initiation complex to integrate several cancer-related signal pathways like 

MAPK and PI3K/mTOR signaling. The eukaryotic initiation factor 4F (eIF4F) controls this 

process by regulating the step of initiation (reviewed inBitterman & Polunovsky 2012) and is 

commonly deregulated in tumors (De Benedetti & Graff 2004). A recent publication shows that 

the eIF4F complex contributes to the development of resistance against BRAF and MEK mono- 

as well as combination therapy in BRAF V600 mutated melanoma, colon and thyroid cancer 

cell lines (Boussemart et al. 2014). Combined inhibition of eIF4F and BRAF V600 

synergistically induces cell death in tested cancer cells, suggesting eIF4F to be an interesting 

target to prevent innate and de novo resistance. Mainly, cell culture systems were used to 

study the appearance of de novo mutations as a result of therapy resistance in BRAFV600E 

mutated cells. In order to detect molecular lesions appearing in vivo 100 samples of 44 

melanoma patients with acquired resistance against vemurafenib or dabrafenib were 

sequenced. In more than 52% mutations exclusively appeared in the MAPK pathway 

associated to reactivation of ERK signaling (NRAS mutations 18%, KRAS mutations 7%, 

BRAF-mutant amplification 19%, BRAF splice variants 13%). Furthermore, all tumor samples 

were still harboring BRAFV600E but did not gain secondary mutations in the BRAF gene locus. 

This lead to the disproof that BRAF wildtype cells remain silent in melanoma generating 

resistant tumors during treatment with V600E-specific inhibitors. Instead, the detection of 

BRAFV600E in all samples demonstrated that the cells fulfill the genetic criteria to respond to 

therapy. In 4% of all tested melanoma samples only PI3K/AKT signaling was affected while 

18% developed resistant cells due to mutations in MAPK and PI3K/AKT signaling. Therefore, 

reactivation of MAPK signaling and activation of the PI3K/AKT pathway represent the core 

mechanism of BRAF inhibitor resistance. In addition, analysis of several metastases from 

patients of the same cohort demonstrated that often multiple driver mutations are acquired in 

recurrent tumors.  

VI.2.4. PTEN 

Phosphatase and tensin homolog (PTEN) is lost in about 10% of all melanoma cases (Stahl 

et al. 2003). With its bi-specific function as protein and lipid phosphatase, PTEN is involved in 

the regulation of cell growth, proliferation and survival. As dual specificity protein phosphatase 

PTEN dephosphorylates tyrosine as well as serine/threonine residues. The identification of 

phosphatidylinositol (3,4,5,)-trisphosphate (PIP3) as target of PTEN led to the discovery of its 

negative regulatory function in PI3K/AKT signaling (Maehama & Dixon 1998). Loss of PTEN 

leads to the accumulation of PIP3, the product of the PI3K, which recruits AKT to the plasma 

membrane where AKT it is activated by phosphorylation. As AKT is a known oncogene 

promoting cell survival, proliferation and migration, PTEN functions as tumor suppressor gene 

in melanoma but also in other tumors like breast cancer where it mediates cell cycle arrest 
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(Weng et al. 2001). More important, there is evidence that PTEN is directly involved in 

regulating MAPK signaling. In breast and glioblastoma tumor cells, it inhibits EGFR- and 

PDGFR-mediated MAPK activation and decreases MEK and ERK phosphorylation (Gu et al. 

1998; Weng et al. 2001). Interestingly, PI3K itself is rarely mutated in melanoma compared to 

other cancer types (Omholt et al. 2006). In combination with the suggested cooperation of 

PTEN and BRAF activation (Tsao et al. 2004) it indicates that the protein phosphatase activity 

of PTEN or its direct interaction - for example with p53 (Tang & Eng 2006) - are the dominant 

mechanisms behind its tumor suppressive function in melanoma compared to its role in AKT 

signaling.  

VI.2.5. TP53 

The role of p53 in melanoma is still controversially discussed. Molecular analysis in a large 

cohort of primary melanoma species only detected few reoccurring mutations resulting in 

amino acid substitution (Albino et al. 1994; Houben et al. 2011; Papp et al. 1996) although 

mutation rates up to 20% are also frequently reported (Hodis et al. 2012; Ragnarsson-Olding 

et al. 2002; Stretch et al. 1991; Weiss et al. 1995). One possible explanation for this 

discrepancy was given by BRAFV600E -driven mouse models in which significant differences 

were observed between sun-exposed and unexposed tumors (Viros et al. 2014). UV-induced 

cytosine-to-thymine transitions at the 3’ end of pyrimidine dimers were responsible for p53 

mutations that could be detected in 40% of the tumors indicating that p53 is a major target of 

UV radiation (Viros et al. 2014). The protective effect of sunscreen against ultraviolet radiation 

(UVR) delays the onset of melanoma development but is not able to completely prevent UVR-

induced tumorigenesis. Nonetheless, no significant accumulation of p53 mutations was 

detectable in sun-exposed human cutaneous melanomas in comparison to sun-shielded 

mucosal melanomas (Ragnarsson-Olding et al. 2002). Noteworthy, melanomas with p53 

mutations did not accumulate additional mutations in CDKN2a suggesting that the need for 

p53 loss of function mutations in melanoma is reduced compared to other cancer types due to 

the high prevalence of CDKN2a mutations (Hodis et al. 2012). Additionally, further 

mechanisms inhibiting p53 function in melanoma were recently identified. Phosphorylation of 

inhibitor of apoptosis-stimulating protein of p53 (iASPP) by cyclin B1/CDK1 prevents iASPP 

dimerization so that monomers translocate to the nucleus where they bind p53 and decrease 

its activity (Lu et al. 2013). In addition MDM4 was found to suppress p53 activity in the majority 

(~65%) of human melanoma samples by its direct interaction with the transcriptional activation 

domain of the tumor suppressor (Gembarska et al. 2012). This leads to the conclusion that 

recurrent genetic alterations in melanoma affect p53 wildtype functionality so that p53 

restoration represents a promising therapeutic strategy. Nutlin3, a p53 agonist slightly restored 

p53 function and delayed tumor growth (de Lange et al. 2012; Ji et al. 2012) but failed to initiate 
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p53-dependent apoptosis (Tseng et al. 2010). Disruption of MDM4-p53 interaction increased 

p53 activity and resulted in enhanced response to chemotherapeutic treatment (Gembarska et 

al. 2012). Similarly, MDM2 knockdown experiments or administration of JNJ-7706621, a potent 

pan-CDK inhibitor, prevent p53 inhibition leading to reduced melanoma growth. In combination 

with Nultin3, inhibition of MDM2 and iASPP suppress human melanoma growth in melanoma 

xenografts by p53-dependent apoptosis. Additionally, together with vemurafenib, 

reconstructed and functionally active wildtype p53 achieved synergistic effects and decreased 

melanoma proliferation and tumor growth up to 80% (Lu et al. 2013). 

VI.2.6. CDKN2A 

The CDKN2A locus on chromosome 9p21 contains four exons and encodes for two tumor 

suppressor proteins p16INK4a (exons 1a, 2, 3) and p14ARF (exons 1b, 2, 3) by alternative splicing. 

Therefore, loss or hypermethylation leading to repressed expression of this particular locus 

highly correlates with tumor susceptibility and is detected in a wide variety of tumor cell lines 

(Kamb et al. 1994). About 12-20% of all melanomas harbor mutations in the CDKN2a locus 

resulting in homozygous or heterozygous loss of CDKN2a (Castellano et al. 1997; Young et 

al. 2014). Although both proteins represent tumor suppressors, they possess distinct functions. 

p16INK4a directly interacts with the cyclin D1-cyclin dependent kinase four (CDK4) and six 

(CDK6) complex inhibiting phosphorylation of retinoblastoma protein (RB) and thereby the 

transition from G1 to S phase. Consequently, mutations in p16INK4a convey re-entry into cell 

cycle. In contrast, p14ARF regulates p53 degradation via the regulation of MDM2. Key target of 

MDM2 is p53, which is ubiquitinated and therefore marked for degradation. Mutations in p14ARF 

or hypermethylation of its promoter lead to destabilization and degradation of p53. (Pomerantz 

et al. 1998; Zhang et al. 1998). Taken together, loss of CDKN2a affects two main tumor 

suppressor pathways, the RB and p53 pathway. Several reports of melanoma-prone families 

and clinical atypical moles identified CDKN2a germline mutations supporting its role as bona 

fide susceptibility gene (FitzGerald et al. 1996; Soufir et al. 1998). 

VI.2.7. Novel melanoma driver mutations distinct from UV-induced passenger 

mutations  

Two large studies compared whole-exome sequencing data from tumor and normal tissue 

pairs of melanoma patients and selected non-silent mutations. 85% of these mutations, 

enriched in more than 20% of melanomas, represented YC->YT transitions. These transitions 

derive most likely from UV-light induced damage indicating that frequent melanoma mutations 

might represent passenger mutations that do not contribute to the malignant phenotype (Hodis 

et al. 2012). Excluding loci with generally high mutational events, researchers identified exonic 

mutations positively selected during melanomagenesis. Among the statistically significantly 
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enriched mutations were BRAF, NRAS, PTEN, TP53, MAP2K1 and the p16INK4a gene, but also 

five novel candidates were detected (Hodis et al. 2012). Both studies identified PPP6C, RAS-

related C3 botulinum toxin substrate 1 (RAC1) and inactivating mutations in AT rich interactive 

domain 2 (ARID2). RAC1 belongs to the Rho family of small GTPases and harbored a P29S 

mutation next to its catalytic site facilitating a stronger binding to GTP and stabilization of this 

active state leading to stimulation of MAPK signaling, increased migration as well as 

proliferation. Another newly discovered melanoma-associated gene is PPP6C, a 

serine/threonine protein phosphatase involved in signaling pathways controlling cell cycle 

progression in part through negative regulation of cyclin D1. Results from both groups included 

R264C mutations in PPP6C pointing towards a tumor suppressive function of this protein in 

melanoma. Similarly, ARID2 was affected by loss-of-function mutations, indicating that the 

subunit of the human SWIth/Sucrose NonFermentable chromatin-remodeling complex 

(SWI/SNF) as wells as other subunits of this multiprotein complex act as tumor suppressors 

(Hodis et al. 2012). 

VI.2.8. Melanoma mutations outside coding sequences 

Exome-based sequencing identified many mutations driving melanoma initiation and 

progression. Nevertheless, this approach misses the influence of non-coding regions within 

the genome. Recently, researchers studying deregulated microRNAs upon oncogenic BRAF 

or NRAS expression detected miR-146a. This particular miRNA interferes with the NOTCH 

repressor NUMB. Localized on the cell surface NUMB inhibits NOTCH expression on 

neighboring cells and hence plays an important role during differentiation as a key player of 

dual cell fate determination (reviewed in Schweisguth 2004). According to previous data, 

NOTCH promotes melanomagenesis (Pinnix et al. 2009) as well as melanoma progression 

(Asnaghi et al. 2012; Howard et al. 2013; Liu et al. 2006). Hence, inhibition of NUMB by miR-

146a mediates Notch activation and promotes melanoma cell proliferation and tumor initiation 

(Forloni et al. 2014). More strikingly, an enriched single-nucleotide polymorphism (SNP) 

increasing the expression of mature miR-146a correlate with melanoma progression from 

patient-matched nevi, primary tumors and metastases. This might indicate the existence of 

melanoma driver mutations offside the commonly investigated coding sequences. In addition, 

whole genome sequencing data identified mutations within the core promoter region of the 

human telomerase reverse transcriptase (TERT) in 71% of melanomas examined (Huang et 

al. 2013). These cytidine-to-thymidine transitions (C228T and C250T) induced by UV-radiation 

lead to an additional E-twenty-six (ETS) transcription factor binding site resulting in 1.5- to 4-

fold up-regulation of transcriptional activity (Horn et al. 2013; Huang et al. 2013). Analysis of 

140 melanoma cases and 165 healthy controls revealed that these mutations do not represent 

common germline variants but rather are specific for tumor cells (Horn et al. 2013). The 
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prevalence of the mutation is similar to the combined two most frequent (BRAF and NRAS) 

exon mutations suggesting that melanoma cells are exposed to selective pressure for TERT 

promoter mutations. 

VI.2.9. The role of MITF and differentiation-associated regulators in melanoma 

MITF plays a key role in melanogenesis and melanocyte development but its role in melanoma 

development and progression is controversial. Dysfunctional MITF results in pigmentation 

defects (Hodgkinson et al. 1993) and disruption of the retinal epithelium development 

(Capowski et al. 2014) indicating that MITF widely affects survival of the complete melanocytic 

lineage. In the presence of constitutive BRAF signaling, MITF acts as an oncogene (Garraway 

et al. 2005) and accordingly, in 20% of melanomas, MITF is amplified correlating to elevated 

mRNA levels. Nevertheless, in transformed melanocytes BRAF-induced cell proliferation is 

antagonized by MITF (Selzer et al. 2002; Wellbrock & Marais 2005) indicating that 

differentiation mechanisms regulated by MITF are partially reverted during the transformation 

process (Landsberg et al. 2012; Vachtenheim et al. 2001). Consequently, molecules that 

regulate MITF are likewise important in melanoma. Four different promoters - A, H, B and M - 

control the expression of corresponding MITF isoforms, therefore allowing their tissue-specific 

expression. M-MITF is exclusively present in melanocytes and controlled by Sox10, Pax3, 

WNT, and cAMP/CREB (Shibahara et al. 2001). Sox10 is expressed at first in NCCs and 

regulates multipotency, proliferation and survival leading to the initiation of MITF expression in 

melanocytic-differentiated cells (Potterf et al. 2001). Various studies demonstrated Sox10 

expression in melanoma cells (Agnarsdottir et al. 2010; Bakos et al. 2010) showing that the 

transcription factor initiates NCC-like properties. Ablation of Sox10 reduce invasion and 

tumorigenesis of melanoma cells and result in increased cellular senescence (Cronin et al. 

2013; Graf et al. 2014; Shakhova et al. 2012).  

Pax3 acts similar to Sox10. During development its expression is located at regions of the 

neural tube and mutations in the human gene result in pigmentation and hearing defects 

(Waardenburg syndrome) (Tassabehji et al. 1994). Furthermore, Pax3 is expressed in nearly 

all analyzed melanoma samples and contributes to melanoma cell survival. (Plummer et al. 

2008; Scholl et al. 2001).  

Wnt signaling is frequently dysregulated in melanoma but activation of the canonical or non-

canonical signaling pathway leaves this pathway difficult to investigate. This might be one 

reason why many different studies with conflicting data exist. For example, activation of β-

catenin in human and murine melanoma models demonstrated an anti-tumorigenic effect of 

Wnt signaling characterized by decreased tumor proliferation, better survival and increased 

sensitivity to drug induced apoptosis (Chien et al. 2009; Zimmerman et al. 2013). In contrast, 
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in BRAF mutated PTEN-deficient tumors loss of β-catenin/Wnt is associated with increased 

patient survival and decrease melanoma metastasis (Damsky et al. 2011). 

VI.2.10. Subpopulations of melanoma cells with altered tumorigenic activity 

In order to understand the interplay of therapy resistance and acquisition of distinct mutations 

melanomas were intensively characterized. Novel molecular and cellular techniques, like 

single-cell expression analysis, identified the existence of frequently occurring melanoma 

subpopulations (Quintana et al. 2008; Vidwans et al. 2011; Yancovitz et al. 2012) by 

demonstrating a high heterogeneity within melanoma tumors (Ennen et al. 2014). Due to this 

heterogeneity consequences for therapy prognosis and treatment arise. Single agent 

monotherapy targeting specific subpopulations might leave others unharmed resulting in 

therapy failure. Furthermore, subpopulations differ in their ability to initiate new tumors and 

metastasis suggesting that specific cells are tumor drivers and need to be targeted for 

successful cancer eradication. In order to identify potential tumor-initiating cells several 

markers were described in order to define distinct melanoma subpopulations. 

VI.2.11. CD271 

Since progenitors of melanocytes develop from neural crest origin, expression of neural crest 

stem cell markers was examined in melanoma cells. Therefore, melanoma bulk populations 

were sorted according to low-affinity nerve growth factor receptor (LNGFR or CD271) 

expression in order to enrich melanoma-initiating cells (Beretti et al. 2014; Boiko et al. 2010; 

Civenni et al. 2011; Redmer et al. 2014). Subcutaneous injection of the CD271+ and CD271- 

subpopulations into Rag2−/−γc−/− mice and NOD/SCID mice generated tumors, derived in 90-

100% from the CD271+ subpopulation (Boiko et al. 2010; Civenni et al. 2011), while CD271- 

melanoma cells were unable to initiate tumor growth. Recent studies contributed to these 

results as CD271 knockdown reduced the tumorigenic potential of melanoma cells (Redmer et 

al. 2014). Furthermore, CD271+ melanoma cells showed decreased MITF expression levels 

correlating to increased levels of stemness-associated genes like Oct4, Nanog and NES (Cheli 

et al. 2014), thereby supporting the idea that highly tumorigenic melanoma cells display a 

dedifferentiated phenotype with reduced expression of melanocytic markers. Nevertheless, 

CD271 was also detected in a fast cycling but less tumorigenic population and its expression 

could be reacquired by initially negative populations indicating a phenotypic plasticity in 

melanoma cells. In line with that, others observed a high tumor-initiating potential at the single 

cell level. Every forth cell generated tumors in immunocompromised NOD/SCID interleukin-2 

receptor γc−/− mice independently from any marker expression highlighting the influence of the 

mouse system on the tumor-initiating potential (Quintana et al. 2008). Furthermore, potential 

heterogeneously expressed stem cell markers like CD271, ABCB5, CD166, A2B5, CD151, 
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CD54, CD44, CD9, CD29, N-cadherin, CD49e, CD49f, L1-CAM, E-cadherin, and c-kit were 

investigated in patient-derived parental, marker+/high- and marker-/low-sorted secondary tumors. 

All secondary tumors recapitulated the heterogenic subpopulations of their parental tumors 

without any significant differences in tumorigenicity indicating a reversible expression signature 

(Quintana, Shackleton et al. 2010(Quintana et al. 2010).  

VI.2.12. ABCB5 

Some melanoma subpopulations are highly resistant to chemotherapeutic treatments through 

the expression of efflux transporter. ATP-binding cassette transporter B5 (ABCB5) was 

demonstrated to be expressed in clinical melanoma samples and involved in doxorubicin 

resistance in multiple melanoma cell lines. ABCB5+ cells co-express activated leukocyte 

adhesion molecule (ALCAM/CD166), a biomarker of progressive melanoma, and CD133 

(Frank et al. 2005). Both markers are transmembrane glycoproteins associated to a stem cell 

signature. In xenograft experiments ABCB5+ cells have been shown to form tumors more 

frequently than bulk tumor cells. In contrast to these results another group claimed that ABCB5- 

tumor cells were unable to reconstitute the ABCB5+ population and to generate secondary 

tumors, which were exclusively derived from ABCB5+ melanoma cells (Schatton et al. 2008). 

Temozolomide-treated melanoma-bearing mice and also dacarbazine-treated tumor patients 

were enriched for ABCB5+ cells providing evidence that multi drug resistance is associated 

with its function as an efflux transporter (Chartrain et al. 2012). Additionally, there is evidence 

that ABCB5 controls IL-1β secretion, thereby inducing a slow-cycling drug resistant phenotype 

(Wilson et al. 2014). Of note, ABCB5 as well as other discussed markers can be used in order 

to enrich tumor-initiating cells. Nevertheless, only half of ABCB5 expressing cells initiate 

primary and secondary tumor formation. 

VI.2.13. CD133 

Lessons from leukemia research encouraged to quest the role of CD133 in melanoma. CD133 

was first recognized in hematopoietic stem cells (Yin et al. 1997) and identified in numerous 

reports as a potential marker for cancer-initiating cells of a wide variety of tumor types 

(reviewed in Grosse-Gehling et al. 2013). Patient-derived melanomas as well as melanoma 

cell lines harbor a small fraction of CD133 expressing cells, which are associated with 

increased tumorigenicity (Lai et al. 2012; Monzani et al. 2007), enhanced drug resistance (El-

Khattouti et al. 2014) and elevated metastatic potential (Rappa et al. 2008). CD133 is 

expressed predominantly in actively cycling cells of several tumor types including melanoma 

and ESCs (Jaksch et al. 2008). According to its function as a stem cell marker CD133 is co-

expressed with a subset of molecules also serving as pluripotency and progenitor markers 
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(Zimmerer et al. 2013), and cells expressing these markers are able to differentiate into 

mesenchymal cells or astrocytes (Monzani et al. 2007). 

VI.2.14. ALDH 

Another marker associated with drug resistance and detected in human melanoma cells is 

aldehyde dehydrogenase (ALDH). A subset of tumor cells derived from patient samples and 

from in vivo xenografts showed ALDH activity and could further be characterized by increased 

tumorigenic and self-renewal potential as demonstrated by serial transplantation assays 

(Boonyaratanakornkit et al. 2010; Luo et al. 2012). Only ALDH-expressing cells derived from 

initially ALDH+ tumors, were able to generate secondary and tertiary melanomas. Inhibition of 

ALDH reduced cell proliferation and tumorigenicity, induced apoptosis and increased response 

towards paclitaxel treatment. On the contrary, another study failed to find any correlation 

between tumor-initiating potential and ALDH expression questioning whether selective 

markers for tumor-initiating cells exist in melanoma (Prasmickaite et al. 2010). Alternatively, 

subpopulations with enhanced tumorigenicity can be enriched under distinct culture conditions 

like non-adherent spheroid culture (Fang et al. 2005) proposing that functional assays might 

be more helpful in order to select melanoma-initiating subpopulations than the selection by 

surface marker.  

VI.2.15. Sox2 

Besides skepticism about markers for tumor-initiating cells many groups mutually agree on a 

correlation of putative stem cell marker expression and enhanced tumorigenic potential. 

Therefore, this remains to be investigated in more detail. Lately, the pluripotency factor Sox2 

has been shown to facilitate self-renewal in melanoma spheres (Santini et al. 2014a). Silencing 

by knockdown experiments in patient-derived melanoma cells resulted in cell cycle arrest and 

induction of apoptosis. Interestingly, melanoma cells with high ALDH activity expressed two to 

three fold higher Sox2 levels, which is possibly regulated by HEDGEHOG-GLI (HH-GLI) 

signaling (Santini et al. 2012; Santini et al. 2014a). Recent data from lung squamous cell 

carcinoma (LSCC) highlighted the contribution of Sox2 in the set-up of a cell-autonomous HH 

signaling axis. On the one hand this supports the role of Sox2 in establishing features of HH-

mediated stemness, on the other hand it suggests that Sox2 rather controls HH signaling than 

vice versa (Justilien et al. 2014). In addition, Sox2 was observed to play a role in melanoma 

cell invasion (Girouard et al. 2012). It localized predominantly at the invasive front of 

melanomas and controlled expression of matrix metallo-protease-3 (MMP-3). Consequently, 

overexpression in melanoma cells resulted in increased invasiveness. 
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VI.2.16. JARID1B 

The idea that subpopulations are responsible for the initiation of tumors was derived from 

hierarchical-organized tumors like leukemia (Bonnet & Dick 1997) or gastro-intestinal cancers 

(Hirsch et al. 2014; Kobayashi et al. 2012). In these tissues, distinct stem cell populations exist 

and replenish the organ. When transformed, these cells give rise to aberrantly proliferating 

progenitor cells resulting in hyperplasia and cancer. In melanomas the situation is different as 

they do not follow a strictly hierarchical organization. This is supported by previous studies 

observing revertible proliferative and invasive states of melanoma cells (Hoek et al. 2008). 

Fast-growing cells expressed high levels of MITF and formed tumors after about 14 days in 

contrast to low-proliferative but highly invasive melanoma cells that needed 59 days for tumor 

generation. Regardless of which cells were injected, appearing tumors were indistinguishable 

in their molecular and phenotypical signature indicating the potential of cells to switch between 

the different states. The group assumed that microenvironmental factors were responsible for 

specifications of the phenotype. Recently, detection of jumonji AT-rich interactive domain 1B 

(JARID1B) expression in melanoma cells allows the identification of similar subpopulations of 

slow-cycling cells that can dynamically switch their phenotype. JARID1B catalyzes 

demethylation of histone 3 K4, thereby altering the expression of developmental genes (Albert 

et al. 2013; Dey et al. 2008) involved in proper neural differentiation (Schmitz et al. 2011) but 

plays also a role in different cancer types (Barrett et al. 2007; Kano et al. 2013; Ohta et al. 

2013; Xiang et al. 2007; Yamamoto et al. 2014). In vivo JARID1B is highly present in 

melanomas but rarely in melanocytes of benign nevi (Kuzbicki et al. 2013; Radberger et al. 

2012). Separation according its expression levels revealed no difference in the tumor-initiating 

potential of JARID1B subpopulations, although only JARID1B positive cells were able to 

continuously repopulate tumors (Roesch et al. 2010). These results suggest that the cellular 

heterogeneity of a single melanoma either arises from the accumulation of distinct genetic 

events or individual tumor cells adopt different epigenetic states. Furthermore, there is 

evidence that dynamic regulation of JARID1B involves bidirectional regulatory functions of 

Notch signaling. Enrichment of JARID1B+ cells under cisplatin or vemurafenib application in 

vitro and in vivo and enhanced therapy response after JARID1B knockdown demonstrated the 

ability of this histone demethylase to mediate multi drug resistance (Roesch et al. 2013). The 

mechanism behind this multi-drug resistance is completed understood. Nevertheless, the 

investigators observed a switch of the bioenergetics metabolism towards an elevated 

mitochondrial respiratory chain activity. Inhibition of key enzymes of the respiratory chain 

reduced the JARID1B subpopulation and pushed the cells into an active cell cycle overcoming 

drug resistance. 
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VI.2.17. Inflammatory events in melanoma and their role in tumor- and 

metastasis development 

Immune responses represent an effective defense system against infections and damaged 

cells prone to develop tumors. Mediators of inflammatory events are cytokines and 

chemokines that attract and activate other immune cells in order to restrain cancer growth. 

Already in 1863, Virchow suggested that there is a link between inflammatory processes and 

tumor development, in other words: tumors arise at sides of inflammation. Nevertheless, a 

direct link remained hidden until recent studies found a remarkable effect of chemokines on 

melanoma cells. Immune cells secrete TNF-α, stimulated melanoma cells via NGFR and led 

to a dedifferentiated amelanocytic phenotype with reduced expression of the melanoma 

antigens glycoprotein 100 (gp100) and tyrosine-related protein 2 (TRP2) (Landsberg et al. 

2012). Down-regulation of melanoma epitopes prevent successful recognition of melanoma 

cells by antigen-specific cytotoxic T-cells from an adoptive T-cell transfer. Similar to data 

obtained from the JARID1B study, this dedifferentiated phenotype is revertible and after 

removal of the inflammatory environment, cells acquire an equilibrium state similar to 

pretreatment. Participation of immune cells as mediators of an inflammatory environment play 

a critical role as demonstrated by UV–radiation-induced neutrophilic responses. Neutrophil-

conditioned medium as well as TNF from activated neutrophils promoted melanoma cell 

adhesion to endothelial cells resulting in angiotropism and perivascular invasion (Bald et al. 

2014). Thus, UV-radiation of HGF-CDK4 mice did not affect the incidence or growth kinetics 

of developing melanomas compared to non-radiated mice but strikingly increased the numbers 

of their lung metastasis. Suppression of inflammatory events using non-steroidal anti-

inflammatory drugs like aspirin seems to decrease the incidence of melanoma (Gamba et al. 

2013). 

Hence, inflammatory events are of special importance as melanoma cells respond to 

chemokines and cytokines by switching their epigenetic state. Taken together, studies 

corroborate the developing concept of highly plastic melanoma cells that quickly adopt to 

environmental factors resulting in altered phenotypes as one potential way to escape therapy 

and to promote tumor development.  
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VII. Materials and Methods 

VII.1. Materials 

Reagents and kits Company Branch 

Alkaline Phosphatase Staining Kit II Stemgent San Diego, USA 

DNeasy Blood & Tissue Kit QIAGEN Hilden, Germany 

DAPI Roche Diagnostics Mannheim, Germany 

Dako Fluorescent Mounting Medium Dako Hamburg, Germany 

TritonX-100 Carl Roth Karlsruhe, Germany 

Albumin Fraction V Carl Roth Karlsruhe, Germany 

Skim Milk Powder Sigma-Aldrich Steinheim, Germany 

Tween20 Applichem Darmstadt, Germany 

cOmplete Mini Protease Inhibitor 
Cocktail 

Roche Diagnostics Mannheim, Germany 

PhosphoStop Phosphatase Inhibitor 
Cocktail 

Roche Diagnostics Mannheim, Germany 

Pierce BCA Protein Assay Kit ThermoScientific Karlsruhe, Germany 

Immobilion PVDF membrane pore 
size 0.45 µm 

Merck Millipore Darmstadt, Germany 

Amersham ECL Prime Western 
Blotting Detection Reagent 

GE Healthcare Freiburg, Germany 

Rotiphorese Gel 30 Carl Roth Karlsruhe, Germany 

Tetramethylethylenediamine Carl Roth Karlsruhe, Germany 

Ammonium Persulfate Solution 
(APS) 

Carl Roth Karlsruhe, Germany 

Arcturus PicoPure RNA isolation Kit Applied Biosystems Foster City, CA, USA 

RevertAid First Strand cDNA 
Synthesis Kit 

Thermo Scientific Karlsruhe, Germany 

RNase-Free DNase Set Qiagen Hilden, Germany 

SYBR Green PCR Master Mix Applied Biosystems Warrington, UK 

X-tremeGene 9 DNA transfection 
Reagent 

Roche Diagnostics Mannheim, Germany 

Plasmid Maxi Kit Qiagen Hilden, Germany 

alamarBlue Invitrogen  

Ibidi Culture-Insert 500 µm ibidi München, Germany 

CytoSelect 96-Well Cell Invasion 
Assay 

CELL BIOLABS Heidelberg, Germany 
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Cell culture reagents Company Branch 

Neurobasal medium Gibco® Life Technologies Darmstadt, Germany 

DMEM AQmedia Sigma-Aldrich Steinheim, Germany 

mTesR1 Stem Cell Technologies Köln, Germany 

Medium 254 Gibco® Life Technologies Darmstadt, Germany 

DMEM/F12 Gibco® Life Technologies Darmstadt, Germany 

Human melanocyte growth 
supplement (HMGS) 100x 

Gibco® Life Technologies Darmstadt, Germany 

Fetal Calf Serum (FCS) Biochrom Berlin, Germany 

Adenine Sigma-Aldrich Steinheim, Germany 

Penicillin/Streptomycin Sigma-Aldrich Steinheim, Germany 

Trypsin Sigma-Aldrich Steinheim, Germany 

Non-essential amino acids Sigma-Aldrich Steinheim, Germany 

2-Mercaptoethanol Gibco® Life Technologies Darmstadt, Germany 

Basic fibroblast growth 
factor (bFGF)  

Promokine Heidelberg, Germany 

Bone morphogenic protein 4 
(BMP4) 

Promokine Heidelberg, Germany 

Leukemia Inhibitory Growth 
Factor 

Sigma-Aldrich Steinheim, Germany 

Epidermal Growth Factor 
(EGF) 

Gibco® Life Technologies Darmstadt, Germany 

N2 Gibco® Life Technologies Darmstadt, Germany 

B27 Gibco® Life Technologies Darmstadt, Germany 

Noggin R&D systems Wiesbaden-Nordenstadt, 
Germany 

Insulin Sigma-Aldrich Steinheim, Germany 

Hydrocortisone Sigma-Aldrich Steinheim, Germany 

Cholera Toxin Sigma-Aldrich Steinheim, Germany 

Forskolin R&D systems Wiesbaden-Nordenstadt, 
Germany 

Doxycyline Sigma-Aldrich Steinheim, Germany 

Mitomycin C Carl Roth Karlsruhe, Germany 

Dimethylsulfoxide Carl Roth Karlsruhe, Germany 

 

Small molecule inhibitors Company Branch 

PLX4032 Selleck Chemicals München, Germany 

GSK1120212 Selleck Chemicals München, Germany 

CHIR99021 Selleck Chemicals München, Germany 

LDN193189 Selleck Chemicals München, Germany 
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SB431542 Selleck Chemicals München, Germany 

Y-27632 Stemgent San Diego, USA 

 

Antibodies Company Branch 

Mouse anti-Cytokeratin 
(AE1/AE3) antibody 

Dako Hamburg, Germany 

Rabbit anti-phospho-p44/42 
MAPK (ERK1/2) 
(Thr202/Tyr204) antibody 

Cell Signaling 
Technology 

Leiden, Netherlands 

Rabbit anti-p44/42 MAPK 
(ERK1/2) antibody 

Cell Signaling 
Technology 

Leiden, Netherlands 

Mouse anti-BRAF V600E 
antibody, clone VE1  

Biomol Hamburg, Germany 

Mouse anti-Cytokeratin 20 
antibody, clone K 

Dako Hamburg, Germany 

Mouse anti-MelanA antibody VECTOR 
LABORATORIES 

Lörrach, Germany 

Rabbit anti-Sox2 antibody Abcam Cambridge, UK 

Rabbit anti-Ki67 antibody Abcam Cambridge, UK 

Rabbit anti-Nanog Abcam Cambridge, UK 

Mouse-Tra-1-60 Cell Signaling 
Technology 

Leiden, Netherlands 

Mouse-Tra-1-81 Cell Signaling 
Technology 

Leiden, Netherlands 

Rabbit anti-Neuron-specific class 
III β-tubulin (Tuj 1) 

Kindly provided by Dr. 
Sandra Horschitz, 
Central Institute for 
Mental Health 

Mannheim, Germany 

Atto 488 goat anti-rabbit IgG Sigma-Aldrich Steinheim, Germany 

Atto 647 goat anti-mouse IgG Sigma-Aldrich Steinheim, Germany 

Atto 647 goat anti-rabbit IgG Sigma-Aldrich Steinheim, Germany 

VII.2. Buffer solutions: 

Phosphate buffered saline (PBS) pH 7.4 

3.2 mM Na2HPO4 

0.5 mM KH2PO4 

1.3 mM KCl 

Tris buffered saline (TBS) pH 7.6 

137 mM NaCl 
20 mM Tris 
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Running buffer pH 8.3 

25 mM Tris 
190 mM glycine 
0.1% SDS 

 

Transfer buffer pH 8.3 

25 mM Tris 
190 mM glycine 
20% methanol 

 

Laemmli 2x buffer pH 6.8 

4% SDS 
10% 2-mercaptoethanol 
0.004% bromophenol blue 
0.125 M Tris HCl 

 

Washing buffer pH 7.6 

137 mM NaCl 
20 mM Tris 
0.1% Tween20 

Cell lysis buffer for protein isolation 

1x PhosphoStop 
1x cOmplete Mini Protease Inhibitor Cocktail 
1% Triton-X 
in TBS 

 

 

Analysis Software Source 

ImageJ National Institute of Health 
(NIH) 

GraphPad Prism 5 GraphPad Prism 

NIS-Elements Viewer Nikon 

7500 Software v2.0.5 Applied Bioscience 

Chipster Chipster Open source 

DAVID Bioinformatics 
Resources 

NIH 

Ingenuity Qiagen 

Leica Application Suite v4.0 Leica 

 

Devices Company Branch 

AB 7500 Real Time PCR 
machine 

Applied Biosciences Darmstadt, Germany 

SpectraMax M5 Molecular Devices Biberach an der Riss, 
Germany 

NanoDrop ND-1000 
Spectrophotometer 

Peqlab Biotechnologie 
GmbH 

Erlangen, Germany 

Nikon Eclipse Ti Fluorescence 
microscope 

Nikon Düsseldorf, Germany 

Nikon Eclipse TS100 
microscope 

Nikon Düsseldorf, Germany 

Leica DM LS microscope Leica Wetzlar, Germany 

ImageQuant LAS biomolecular 
imager 

GE Healthcare Freiburg, Germany 
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VII.3. Methods 

VII.3.1. Cell culture 

All cells were grown in a humidified atmosphere at 37°C and 5% CO2. Individual culture 

conditions are listed below.  

VII.3.1.1. Cell culture of tumor cells and murine embryonic fibroblasts 

Tumor cells and murine embryonic fibroblasts were cultivated in Dulbecco’s Modified Eagle 

Medium (DMEM) with 4500 mg/l glucose and 4 mM L-alanyl-L-glutamine supplemented with 

10% (v/v) heat inactivated fetal bovine serum (FCS), 1% (v/v) 100x non-essential amino acids 

(NEAA), 100 units/ml penicillin, 100 µg/ml streptomycin and 0.1 mM β-mercapthoethanol, from 

here on referred as complete medium. Every 3-5 days when 80% confluence was reached the 

cells were subcultured using a 21 mM trypsin solution. 

VII.3.1.2. Melanocyte cell culture 

Human melanocytes were obtained from foreskins, kindly provided by Dr. Uysal, Mannheim. 

Donor age ranged from new born to three years old patients. Excised foreskins were incubated 

for 15 min at room temperature in 10% Braunol solution, were washed with PBS and separated 

from subcutaneous fat followed by cutting into 10 x 4 mm pieces. Specimens were digested in 

dispase (1 mg/ml) at 4°C overnight followed by 15 min digestion of the epidermis at 37°C in 

trypsin/EDTA. Primary melanocytes were washed and transferred to 10 cm dishes in medium 

254 supplemented with 1% (v/v) 100x human melanocyte growth supplement (HMGS) 

resulting in a final concentration of 0.2% (v/v) bovine pituitary extract, 0.5% v/v fetal bovine 

serum, 1 µg/ml recombinant human insulin-like growth factor-I, 5 µg/ml bovine transferrin, 3 

ng/ml basic fibroblast growth factor (bFGF), 0.18 µg/ml hydrocortisone, 3 µg/ml heparin and 

10 ng/ml phorbol 12-myristate 13-acetate. Cells were subcultured before reaching 90% 

confluence. 

VII.3.1.3. Generation of iPS and iPC cells 

For reprogramming of human tumor cells, fibroblasts and melanocytes 105 cells per cm2 were 

seeded on gelatin-coated plates and transduced with a reverse tetracycline-controlled 

transactivator (FUdeltaGW-rtTA-zeocin) containing a zeocin resistance gene. Cells were 

selected with 100 µg/ml zeocin in complete medium generating resistant clones that were 

manually picked and expanded. The clones were co-infected with a doxycycline-inducible 

vector expressing a stem cell cassette (STEMCCA) encoding for the transcription factors Oct4, 

Sox2, Klf4 and a puromycin resistance or alternatively for Oct4, Sox2, Klf4 and c-Myc. The 

next day, superinfection was performed to reach higher efficiencies. All transductions were 
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conducted by incubation of cells with virus for 24 h at 37°C in DMEM medium supplemented 

with 10 µg/ml polybrene. 24 h after the last infection 105 cells in complete medium were plated 

onto six well tissue culture plates coated with gelatin. After cell attachment doxycycline was 

added to the medium to induce transgene expression. From here on, medium was changed 

every second day. After 30-40 days first colony-forming cells originated. In order to create 

reprogrammed clones derived from single cells individual colonies were manually transferred 

onto fresh feeder cells in DMEM/F12 with 20% (v/v) knockout serum replacement (KOSR), 2 

mM L-glutamine, 1% (v/v) NEAA, 100 units/ml penicillin, 100 µg/ml streptomycin, 0.1 mM ß-

mercaptoethanol, 1 µg/ml doxycycline and supplemented with 10 ng/ml human LIF, from here 

on referred to as naïve hES medium, until homogenous colonies were established. 

VII.3.1.4. Human induced pluripotent stem cell culture 

Stable clones of human iPSCs were cultivated under xeno-free cell culture conditions using a 

synthetic surface matrix. Therefore, one day prior use six well tissue culture plates were coated 

with Matrigel for one hour at room temperature and stored at 4°C. Human iPSCs were washed 

and undifferentiated parts were manually dissociated into cell clusters of 50-100 cells. These 

small cell aggregates were transferred to Matrigel-coated plates in mTeSR1 medium 

containing 20% (v/v) mTeSR1 supplements of bovine serum albumin, recombinant human 

bFGF, recombinant human TGF-β, lithium chloride, pipecolic acid and γ-aminobutyric acid. 

Every other day medium was changed and differentiated parts manually removed. 

Alternatively, human iPSCs were cultivated on feeder cells in DMEM/F12 with 20% (v/v) 

knockout serum replacement, 2 mM L-glutamine, 1% (v/v) NEAA, 100 units/ml penicillin, 100 

µg/ml streptomycin, 0.1 mM β-mercaptoethanol and 10 ng/ml bFGF, from here referred as 

human ES medium.  

VII.3.1.5. Culture of human iPS and iPC cells in the alternative pluripotent state 

Mitotic inactivated feeder cells were plated on gelatin-coated six well tissue culture plates in 

complete medium and incubated for two days to ensure proper attachment and spread. Then 

iPS cells were transferred onto the feeder cells and medium was changed to naïve hES 

medium. For passaging cells were harvested every 4-7 days using trypsin and replated at 1:30 

to 1:100 ratios in naïve hES medium containing 10 µM ROCK inhibitor (Y27632). In order to 

separate iPS or iPC cells from feeder cells by preplating, cells were harvested using trypsin, 

dissociated into single cells, washed and resuspended in naïve hES medium containing ROCK 

inhibitor. Then, the cell suspension was transferred onto gelatin-coated tissue culture plates 

and incubated for 2 hours at 37°C. Afterwards undifferentiated cells floating in the supernatant 

were collected and prepared for further experiments. 
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VII.3.1.6. Preparation of murine embryonic fibroblast 

Day 12.5 to 13.5 embryos postcoitum of C57BL/6 mice were dissected from the uterus and 

incubated for five minutes in 10% Braunol. Embryos from one mouse were rinsed in PBS 

followed by the mechanical removal of internal organs and the head. The carcass was 

manually minced in trypsin/EDTA solution using scalpels and incubated at 37°C for ten 

minutes. Afterwards the cell suspension was neutralized in complete medium, washed and 

resuspended in complete medium. Subsequently, the cells of one embryo were transferred to 

one 150 mm tissue culture dish and cultivated until confluence. 

VII.3.1.7. Mitotic inactivation of feeder cells 

Murine embryonic fibroblasts were expanded until passage three in either T175 cell culture 

flasks or 150 mm cell culture dishes. Dense fibroblasts were incubated with 10 µg/ml mitomycin 

C for 4 hours and washed with Ca2+ and Mg2+ containing PBS for three times followed by 

rinsing the cells with Ca2+ and Mg2+ free PBS. The postmitotic cells were trypsinized for 5-7 

min at 37°C until the cell detached followed by neutralization of the enzymatic digestion with 

complete medium. After centrifugation the cells were resuspended in 80% FCS with 20% (v/v) 

dimethyl sulfoxide (DMSO) and aliquoted at a concentration of 1x106 cells per vial. Until 

thawing the vials were stored in liquid nitrogen. 

VII.3.1.8. Fibroblast differentiation 

For the differentiation into fibroblast-like cells HT-144-iPCCs were seeded onto 80% confluent 

mitotic-inactivated feeder cells in naïve hES medium with 10 µM ROCK inhibitor and 1 µg/ml 

doxycycline and cultivated for two to five days until small colonies were formed. In order to 

establish the clones A-C, different protocols were followed. For clone A medium was switched 

to complete medium until stably expandable colonies emerged. Clone B was generated by 

changing the medium to DMEM/F12 1:1 with Neurobasal medium containing 1% B27 and 0.5% 

(v/v) N2 supplement (Gibco) for 3 days. Then the medium was also switched to complete 

medium with 20% (v/v) FCS. For clone C iPCC colonies were cultivated in DMEM/F12 3:1 

supplemented with 10% (v/v) FCS, 0.18 mM adenine, 0.5 µg/ml hydrocortisone, 100 pM 

cholera toxin, 10 ng/ml EGF, 5 µg/ml insulin for 10 days and supplemented on days four to ten 

with 0.5 nM BMP-4. Afterwards fibroblast-like cells were split and maintained in T75 cell culture 

flasks with complete medium.  

VII.3.1.9. Neuronal differentiation 

For neuronal induction, 2x104 cells per cm2 were seeded on Matrigel-coated dishes in human 

naïve ES medium supplemented with 10 µM ROCK inhibitor. When small colonies of 5-10 cells 

appeared medium was changed to DMEM/F12 and Neurobasal mixed at a 1:1 ratio with 1% 

(v/v) B27 and 0.5% (v/v) N2, 100 ng/ml noggin, 0.5 µM LDN-193189, 10 µM SB-491542, 2 µM 
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CHIR-99021, 10 µM forskolin and 10 ng/ml bFGF for 3-10 days. Subsequently, the cells were 

cultivated for additional 5-10 days without small compound inhibitors but in the presence of 10 

ng/ml bFGF. 

VII.3.1.10. Small molecule inhibitors 

All small molecule inhibitors were obtained from Selleck Chemicals as powder. Vemurafenib 

(PLX4032), trametinib (GSK1120212), LDN193189 and SB431542 were dissolved in DMSO 

to a stock concentration of 10 mM, CHIR99021 was dissolved in DMSO to a 30 mM stock 

solution. Aliquots of the inhibitors solutions were stored at -20°C and applied at the indicated 

concentrations. 

Inhibitor Target Targeted pathway Resolvent 

PLX4032 BRAFV600E MAPK DMSO 

GSK1120212 MEK1/MEK2 MAPK DMSO 

CHIR99021 GSK-3α/β GSK-3β DMSO 

LDN193189 ALK2, ALK3 BMP4 DMSO 

SB431542 ALK5, ALK4, ALK7 TGF-β DMSO 

VII.3.2. Transformation and plasmid isolation 

For plasmid amplification Dh5α competent E.coli cells were heat shocked at 42°C for 90 s in 

the presence of the plasmid of interest followed by a resting phase on ice for 2 minutes. 500 

µl LB media was added and bacteria were shaken for 60 minutes at 37°C. Transformed 

bacteria were plated on LB agar plates with 100 µg/ml ampicillin for selection and incubated 

overnight at 37°C. Single colonies were manually picked and transferred to sterile culture tubes 

containing 5 ml LB media supplemented with 100 µg/ml ampicillin and incubated for 12 h at 

37°C. From the bacteria suspension plasmid DNA was isolated and the vector confirmed by 

restriction digestion. Sterile flasks containing 200 ml LB medium supplemented with 100 µg/ml 

ampicillin were inoculated with bacteria containing verified plasmids and shaken in an orbital 

shaker at 37°C overnight. The next day bacteria were pelleted, lysed and plasmid DNA purified 

using the QIAGEN Plasmid Purification Maxi Kit according the manufacturer’s protocol. After 

isopropanol ethanol precipitation air-dried plasmid DNA was redissolved in buffer TE. Quality 

and quantity was analyzed using a NanoDrop ND-1000 Spectrophotometer. 

VII.3.3. Viral vector production 

Viral vector production was performed using a three plasmid transfection system in HEK 293T 

producer cells. Therefore, 60-70% confluent 293T cells in c medium were transfected with the 

Table 2 | Small molecule inhibitors used in the study. 
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expression vectors encoding for the packing proteins gag, pol and rev and the envelop plasmid 

VSV-G in addition to the plasmid of interest using FuGENE transfection reagent according to 

the manufacturer’s manual. After 12 h medium was changed to complete medium without 

antibiotics. For four consecutive times viral supernatant was collected every 12 h starting 24 h 

after infection. The pooled supernatants were filtered and directly used for infection or stored 

at 4°C for up to two weeks. For the infection of melanocytes the viral supernatant was 

concentrated by ultracentrifugation at 40.000xg for 2 h at 4°C, resuspended in PBS and stored 

at -80°C.  

VII.3.4. Teratoma formation assay and immunohistochemical staining 

For teratoma formation assay 106 naïve iPCCs were resuspended in 50% Matrigel and 

subcutaneously injected into each flank of NOD/SCID mice. After 8-10 weeks teratomas were 

isolated, washed and fixed in 4% paraformaldehyde overnight at room temperature. Paraffin-

embedded samples were cut and sections were deparaffinized in xylene followed by 

rehydration. After antigen retrieval the following targets were stained: S100, Ki67, PanCK, 

BRAFV600E, CK20, MelanA, Sox2, p44/42, phospho-p44/42. Afterwards samples were 

counterstained with haematoxylin. For histological analysis of tumors and evaluation of 

teratomas, sections were stained with haematoxylin and eosin (H&E). Cutting, 

deparaffinization and stainings were kindly performed by Sayran Arif-Said, Clinical 

Cooperation Unit Dermato-Oncology. All samples were analyzed under a Leica DM LS light 

microscope. 

VII.3.5. RNA isolation and cDNA transcription 

RNA extraction was performed using the RNeasy kit (Qiagen) or PicoPure RNA isolation kit 

(Life Technologies) according to the manufacturer’s instructions. Briefly, pelleted cells were 

lysed and RNA extracted using a column based purification. Every sample was DNase I treated 

for 15 minutes at room temperature on the purification column followed by two washing steps 

and the elution in RNase-free H2O.  

RNA concentration and quality was measured using a NanoDrop ND-1000 

Spectrophotometer. Exclusively samples fulfilling the quality recommendations were further 

analyzed. From each sample 500 ng RNA were incubated with oligo (dT)18 primers in a volume 

of 12 µl for five minutes at 65°C. Reverse transcription was performed using the RevertAid 

First Strand cDNA Synthesis Kit according to the manufacturer’s advice. Before use cDNA was 

diluted 1:5 in nuclease-free H2O.  

VII.3.6. Quantitative real-time polymerase chain reaction (qPCR) 

qPCR was performed using SYBR Green PCR Master Mix and an Applied Biosystems 7500 

Real-Time PCR System. Results were either normalized to two endogenous controls (GAPDH 
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and 18s RNA or GAPDH and ß-actin) or for low differently regulated expression levels between 

the samples confirmed by analyzing three technical replicates. Each primer pair was evaluated 

and amplification efficiency confirmed to lay in a range from 85-110%. Gene quantification was 

calculated using the Pfaffl method (Bustin et al. 2009) calculating the delta-delta Ct. Statistical 

analysis was carried out in Excel and visualization of graphs in GraphPad Prism 5. Primers 

used in this study are listed in table 000. 

 Forward primer Reverse primer 

Sox2_endo GCTAGTCTCCAAGCGACGAA GCAAGAAGCCTCTCCTTGAA 

Oct4_endo GACAGGGGGAGGGGAGGAGCTAGG CTTCCCTCCAACCAGTTGCCCCAAAC 

Nanog_endo CAGTCTGGACACTGGCTGAA CTCGCTGATTAGGCTCCAAC 

Sall4 ATTCCCTGGGTGGTTCACT AGCACATCAACTCGGAGGAG 

Tet1 CGCTACGAAGCACCTCTCTTA CTTGCATTGGAACCGAATCATTT 

DPPA4 GACCTCCACAGAGAAGTCGAG TGCCTTTTTCTTAGGGCAGAG 

Nodal CAGTACAACGCCTATCGCTGT TGCATGGTTGGTCGGATGAAA 

Lefty1 AGGAGCTGGTCATCCCCAC GCCACCTCTCGGAAGCTCT 

Lefty2 TGGACCTCAGGGACTATGGAG CCGAGGCGATACACTGTCG 

DNMT3L TGAACAAGGAAGACCTGGACG CAGTGCCTGCTCCTTATGGCT 

Pax6 AACGATAACATACCAAGCGTGT GGTCTGCCCGTTCAACATC 

MAP2 CGAAGCGCCAATGGATTCC TGAACTATCCTTGCAGACACCT 

RBFOX3 TCGTAGAGGGACGGAAAATTGA GCCGTTGGTGTAGGGGTTC 

MITF-M AGAGGGAGGGATAGTCTACCG ACTTGGTGGGGTTTTCGAGG 

AP2 GGAGACGTAAAGCTGCCAAC GGTCGGTGAACTCTTTGCAT 

Sox10 AGCCCAGGTGAAGACAGAGA ATAGGGTCCTGAGGGCTGAT 

TRP1 AGCAGTAGTTGGCGCTTTGT TCAGTGAGGAGAGGCTGGTT 

E-Cadherin AGCCAACCTTAACTGAGGAGT GGCAAGTTGATTGGAGGGATG 

FSP1 CTGCCCAGCTTCTTGGGG TGGGCTGCTTATCTGGGAAG 

Vimentin ACACCCTGCAATCTTTCAGACA GATTCCACTTTGCGTTCAAGGT 

GAPDH GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC 

β-Actin GGATGCCACAGGATTCCATACCCA TCACCCACACTGTGCCGATCTACGA 

Table 3 | qPCR primer pairs used in the study. 
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VII.3.7. Genomic DNA isolation and cell authentication 

Genomic DNA was isolated from HT-144 and their reprogrammed counterparts by a column-

based purification method using the QIAGEN DNeasy Blood & Tissue Kit according to the 

manufacturer’s instructions. Briefly, cells were lysed and digested with proteinase K for ten 

minutes at 56°C. Genomic DNA was isolated from the mixture through column purification and 

eluted in buffer AE. DNA concentration and quality was measured using a NanoDrop ND-1000 

Spectrophotometer. A 24-plex single nucleotide polymorphism profiling assay was performed 

by MULTIPLEXION as described in Castro et al. (2013) to confirm their common identity. 

Additionally, cell authentication was performed by DMSZ applying short tandem repeat DNA 

typing and comparison to the DNA reference database of human cell lines, thereby verifying 

the HT-144 cell line.  

VII.3.8. Immunofluorescence and alkaline phosphatase staining 

Tumor and feeder cells were seeded on gelatin coated coverslips while neuronal-differentiated 

cells were seeded on Matrigel-coated coverslips. For nuclear staining cells were fixed in 

methanol for 7 min at -20°C and subsequently rinsed with -20°C cold acetone. Samples for 

surface marker staining were fixed in 4% paraformaldehyde (PFA) for 5 min at room 

temperature and permeabilized with 0.1% Tween 20 in PBS for additional 5 min. Blocking was 

performed with PBS containing 0.5% (w/v) BSA, 1% (v/v) FCS and 0.1% (v/v) Triton X-100 for 

30 min at room temperature. Then samples were incubated with primary antibodies overnight 

at 4°C in blocking solution with the indicated dilutions: rabbit anti-Nanog 1:150, mouse anti-

TRA-1-60 1:250, mouse anti-TRA-1-81 1:250 and rabbit anti-β3-tubulin (Tuj-1) 1:250. Samples 

were washed twice with blocking solution and incubated with either Atto 488 goat anti-rabbit 

IgG 1:500, Atto 647 goat anti-mouse IgG 1:500 or Atto 647 goat anti-rabbit IgG in blocking 

dilution for 4 h at 4°C. Afterwards samples were washed twice, counterstained with 100 ng/ml 

DAPI in PBS and mounted with Dako Fluorescent Mounting Medium (Dako, S3023). The next 

day samples were analyzed with a Nikon ECLIPSE Ti fluorescent microscope. 

Staining for alkaline phosphatase activity was performed using the Stemgent Alkaline 

Phosphatase Staining Kit II according to the manufacturer’s protocol. Following fixation, cells 

were washed with PBS and incubated with AP staining solution for 15 minutes at room 

temperature. The reaction was stopped by washing with PBS and pictures were taken using a 

Nikon ECLIPSE TS 100 light microscope.  

VII.3.9. Western blot analysis 

Cells were washed twice with ice-cold PBS and proteins were isolated in 1% Triton X-100 

supplemented with Roche cOmplete Mini Protease Inhibitor Cocktail and Roche PhosphoStop 

Phosphatase Inhibitor Cocktail in PBS. Cell debris was pelleted and protein concentration 
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estimated using Pierce BCA Protein Assay Kit. Under denaturating conditions 30 µg protein 

was fractionated by SDS-PAGE. 12% gels were produced according the scheme below. 

Proteins were transferred onto polyvinylidene difluoride (PVDF) membranes with 30V for 10 h 

at 4°C. Membranes were blocked in 5% non-fat dried milk in TBST for 1h at room temperature. 

Primary antibodies were diluted in 5% (w/v) BSA, 0.1% (v/v) Tween 20 in TBS in the following 

dilutions: rabbit anti-phospho-p44/42 1:2000, rabbit anti-p44/42 1:1000, anti-rabbit GAPDH 

and incubated overnight at 4°C. Membranes were washed three times in TBST and 

subsequently incubated with a goat anti-rabbit horseradish peroxidase linked antibody diluted 

1:10.000 in 5% non-fat dried milk in TBST at room temperature for 2 h. Proteins were visualized 

by enhanced chemoluminescence (ECL) reagent as peroxidase substrate. 

Resolving gel 

3.3 ml H2O 

3 ml 30% acrylamide/bisacrylamide solution 

2.5 ml 1.5 M Tris pH 8.8 

100 µl 10% SDS solution 

100 µl 10% ammonium persulfate solution (APS) 

20 µl tetramethylenediamine (TEMED) 

 

Stacking gel 

3.4 ml H2O 

0.83 ml 30% acrylamide/bisacrylamide solution 

0.63 ml 1 M Tris pH 6.8 

50 µl 10% SDS solution 

50 µl 10% ammonium persulfate solution (APS) 

5 µl tetramethylenediamine (TEMED) 

VII.3.10. 24-colour FISH 

24-multi colour FISH to detect chromosomal rearrangements was kindly performed by Prof. 

Dr. Jauch, Department of Human Genetics, Heidelberg University Hospital. Each probe binds 

specifically one of the human chromosomes. After washing and probe detection reactions the 

chromosome spreads were counterstained with DAPI and analyzed with a fluorescence 

microscope. 

VII.3.11. Invasion assay 

Cell invasiveness was determined by the use of the CELL BIOLABS 96-well cell invasion assay 

precoated with an extracellular basement membrane according to the manufacturer’s 
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instructions. 150 µl medium supplemented with 10% FCS was added to the lower feeder tray 

of the invasion plate. Cells were collected by trypsinization, washed with PBS and resuspended 

in glucose-free, serum-free DMEM medium and 100 µl of the cell suspension containing 5x104 

cells distributed to each insert. Afterwards invasion plates were incubated for 24 h at 37°C. 

The membrane chamber was then transferred to the harvesting tray containing 150 µl Cell 

Detachment Solution and incubated for 30 minutes at 37°C. Migrated cells on the lower surface 

of the membrane were detached by gently tilting the membrane chamber followed by adding 

50 µl Lysis Buffer/CyQuant GR dye solution. After 20 minutes incubation at room temperature, 

150 µl solution were transferred into a black 96-well plate and analyzed using a SpectraMax 

M5 multimode plate reader.  

VII.3.12. Migration assay 

To avoid a variable physical manipulation of cells, a cell chamber-based migration assay was 

performed. Therefore, sterile cell culture inserts were placed into six well cell culture plates 

and incubated until air-dried inserts remained fixed to the plate. Cells were harvested by 

trypsinization, washed and resuspended at a concentration of 5*105 cells/ml followed by the 

transfer of 70 µl cell suspension into each chamber of the insert. Afterwards cells were allowed 

to attach overnight before the culture inserts were removed. Directly light microscopy images 

were acquired with a Nikon ECLIPSE Ti microscope at the indicated time points using an 

automated positioning system to ensure recording of precisely the same locations. Images 

were analyzed using Nikon NIS-Elements AR 4.00.00 image analysis software.  

VII.3.13. Cell viability assay 

Cell viability was analyzed using alamarBlue Cell viability assay. The method monitors 

metabolic activity based on the reducing conditions generated by growing cells. 1.000, 3.000 

and 5.000 cells were plated in triplicates in black 96-well plates in 100 µl complete medium. 

After 24 h at 37°C 100 µl of complete medium was added supplemented with DMSO or 

inhibitors at two fold concentrations ranging from 1 nm to 1 µM. At indicated timepoints 20 µl 

alamarBlue were added and cells were allowed to reduce the reagent for two to four h at 37°C 

followed by fluorescence measurement using a SpectraMax M5 microplate reader at an 

excitation wavelength of 540 nm and an emission wavelength of 590 nm. Cell viability was 

calculated from the resulting change in fluorescent intensity normalized to cells exposed to the 

vehicle only. 

VII.3.14. Whole genome expression analysis 

Whole genome expression profiling was performed at DKFZ Core Facility for Genomics and 

Proteomics. Samples were analyzed on a HumanHT-12 v4 Expression BeadChip (Illumina) 

that is able to quantify expression levels of 48107 human genes. Therefore, 1 µg total RNA 
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was isolated as described in VII.1.14. (RNA isolation and cDNA transcription) in triplicates from 

each sample. Members of the core facility performed quality control, reverse transcription with 

labeling, chip hybridization and calculation of mean averages for each probe according to the 

manufacturer’s instructions. Resulting raw data were exported to Chipster software. First, array 

data were log2 transformed and quantile normalized. For assessing differentially regulated 

genes two group test or several group test using empirical Bayes method were performed with 

a p value adjustment according to Benjamini-Hochberg (BH). P value threshold was set to 0.05 

to filter for significantly deregulated genes. Differentially expressed genes were clustered using 

Spearman correlation as a distance measure visualizing up-regulated genes in red and down-

regulated genes in green. Dendrograms as result of the hierarchical clustering were 

constructed by the average linkage method. Gene sets were analyzed for enrichment of distinct 

pathways using DAVID software from the Bioinformatics Resources from the National Institute 

of Allergy and Infectious Diseases (NIAID), NIH (http://david.abcc.ncifcrf.gov/) and pathway 

analysis was performed by MetaCore, THOMSON REUTERS (https://portal.genego.com/).  

 

http://david.abcc.ncifcrf.gov/
https://portal.genego.com/
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VIII. Aims of the thesis 

The technique to convert somatic cells of various origins into a pluripotent state by 

overexpression of transcription factors offers a model to analyze molecular changes, which 

are associated with the switch from one cell fate to another. This process is induced by 

epigenetic modifications, providing the potential to study implications of cell type-specific 

epigenetic marks on cellular fates. 

In cancer cells, genomic modifications like hypermethylations of DNA and chromatin are 

aberrantly regulated. Their epigenetic signature comprises marks derived from the cell of origin 

and cancer-specific modifications. These cancer-specific epigenetic modifications are 

associated with tumor-promoting functions.  

Although novel melanoma therapies targeting MAPK signaling have the capacity to provide 

significant clinical benefit, their therapeutic efficacy is limited due to the development of 

acquired resistance. Besides secondary mutations, epigenetic modifications seem to play a 

major role in the appearance of resistant melanoma cells.  

Therefore, this thesis addresses the following questions: 

a) Can human melanoma cells be converted into pluripotent stem cells by 

nuclear-based reprogramming? 

b) Do epigenetic changes, associated with nuclear reprogramming, influence the 

development of resistances against novel targeted melanoma therapies? 

Using iPSCs technology is an elegant way to study molecular processes in human cancer 

cells. The question, how epigenetic mechanisms regulate tumorigenicity and sensitivity to 

therapies, is instrumental for the development of novel cancer therapeutics. Furthermore, anti-

cancer drugs affecting the epigenetic cell state are already used in the clinic. 
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IX. Results 

IX.1. Generation of induced pluripotent cancer cells 

Reprogramming of cancers cells was investigated using four human melanoma cell lines of 

different mutational status, a primary human melanoma cell line derived from a trametinib-

resistant melanoma metastasis (Ma-1) (table 4), the human cervical cancer cell line HeLa, and 

primary melanocytes as control. Cells were co-infected with the lentiviral expression vector 

TetO-human-STEMCCA and a Zeocin-selectable rt-TA transactivator (FUdeltaGW-rtTA-

Zeocin). The stem cell cassette (STEMCCA) encodes for the reprogramming factors Oct4, 

Sox2, Klf4 and c-Myc separated by a combination of internal ribosome entry sites (IRES) and 

self-cleaving 2A oligopeptides. Data from whole gene expression analysis demonstrated that 

the melanoma cell lines HT-144 and Ma-1 expressed c-Myc at levels similar to iPSCs (figure 

3B). Therefore, the STEMCCA vector was modified by replacing c-Myc with a puromycine 

resistance gene to reprogram tumor cells without the oncogene (figure 3C). In cells expressing 

the transactivator, transgene expression was induced by the addition of doxycycline (figure 

3A&C). 30-40 days after the induction of exogenous transcription factors, cells were cultivated 

on postmitotic murine fibroblasts (feeder cells) and two days later medium was replaced with 

naïve ESC-medium. Depending on the cell type, 20-40 days later first colony-forming cells 

appeared, which were manually picked and transferred onto fresh feeder cells. Surprisingly, 

the emerging cells shared morphological features of murine ESCs. In contrast to bFGF-

dependent human iPSCs or ESCs, these colonies were maintained in the presence of 

doxycycline and human LIF without bFGF. Cells were resistant to single-cell dissociation 

without Rho kinase inhibitor (Y-27632), although its addition significantly increased cell 

survival. After re-plating trypsin-digested cells, single cells formed tightly packed, doom-like 

shape colonies on feeder cells and were positive for the expression of alkaline phosphatase 

(AP), an early marker of reprogramming (figure 3D). The origin of the HT-144-iPCCs cells was 

confirmed analyzing 24 single nucleotide polymorphisms, followed by comparison to their 

parental cell line (figure 3F). The consensus sequence proved the purity and authentication of 

the reprogrammed and parental cells. Furthermore, it was of interest whether normal human 

iPSCs derived from somatic cells (NHiPSCs) could be cultivated under the same conditions 

suitable for tumor-derived iPSC-like colonies. Therefore, feeder-free NHiPSCs were picked 

and transferred to feeder cells in the presence of doxycycline and human LIF. After two to 

three passages with trypsinization and single cell replating colonies appeared, which were 

morphologically indistinguishable from murine ESCs. Consequently, iPSCs could be switched 

between different pluripotency-states. In the alternative state, iPSCs gained features of murine 
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ESCs, capable to form tightly packed three-dimensional colonies derived from single cells on 

dense feeder cells (figure 3D&E). NHiPSCs that were switched into the alternative state of 

pluripotency are hereafter referred to as NHiPSCs AS. In summary, tumor cells were 

reprogrammed towards a state similar to murine ESCs, generating AP positive colonies by 

consistently overexpressing the reprogramming factors.  

Human melanoma cell lines BRAF  NRAS 

HT-144 V600E wt 

WM266.4 V600D unknown 

Mewo wt wt 

SKMEL147 wt mut 

Ma-1 V600E wt 

 

 

  

Table 4 | Mutational status of human melanoma cell lines. 
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IX.2. Reactivation of endogenous pluripotency markers in human 

melanoma-derived iPCCs 

One hallmark of fully reprogrammed iPSCs is the reactivation of endogenous pluripotency 

markers. In particular, Nanog, Oct4, and Sox2 are key mediators of pluripotency (Boyer et al. 

2005), regulating the expression of target genes to facilitate self-renewal and to promote an 

undifferentiated cell state. As previously shown, pluripotency factors form a hierarchical 

organized network centered on Sox2, which orchestrates downstream targets (Buganim, 

Faddah et al. 2012) during the reprogramming process. Therefore, endogenous expression of 

key pluripotency markers on mRNA and protein level was investigated in the presence of 

doxycycline. Nanog and Sox2 were up-regulated in all six reprogrammed tumor cell lines to 

levels similar to fibroblast-derived human iPSCs (figure 4A). The emerging colony-forming cells 

are from here on called induced pluripotent cancer cells (iPCCs). In comparison to all 

pluripotency markers investigated, Oct4 showed least changes. Although it was increased 

significantly in nearly all iPCCs lines from a technical point of view, it remained questionable 

whether the levels reached were biologically relevant. While Oct4 expression in iPCCs derived 

from Ma-1, SKMEL147 and HT-144 reached around 1% compared to NHiPSCs (previously 

demonstrated to be pluripotent, http://www.ub.uni-heidelberg.de/archiv/17870), other iPCCs 

were even below 1%. Exclusively, HT-144-iPCCs expressed Oct4 at nearly 10% of the level 

observed in NHiPSCs. According to the Bayesian transcription factor model (figure 1), Sall4 in 

part regulates Oct4. Here, increased Sall4 mRNA expression in all tested iPCC lines was 

observed compared to the parental tumor cell lines. In HT-144-, Ma-1-, SKMEL147- and HeLa-

derived iPCCs the expression of Sall4 reached levels similar to those of NHiPSCs. WM266-4- 

and Mewo-iPCCs also increased expression of Sall4 but only to about 1 to 15% compared to 

the expression level in NHiPSCs. Due to low Oct4 expression levels observed in iPCCs, 

expression levels of factors potentially substituting Oct4 were analyzed. Many previous studies 

shed light on the reprogramming process, identifying substitutes for the original reprogramming 

factors Oct4, Sox2, Klf4 and c-Myc. To date, each factor can be replaced by one or more 

Figure 3 | Reprogramming of human tumor cells into induced pluripotent cancer cells (iPCCs). A) 

Schematic time line for the reprogramming of tumor cells. B) Expression analysis of c-Myc in melanoma cell 

lines HT-144 and Ma-1 compared to NHiPSCs by gene expression microarray. Expression levels were 

normalized to normal human melanocytes (NHM). Fold change was log2 transformed. C) Illustration of the 

STEMCCA vector used for reprogramming, encoding for the transcription factors Oct4, Sox2, Klf4 and a 

puromycin resistance for selection. D) Microscopical analysis of reprogrammed tumor cells (iPSC-like cells) 

and of alkaline phosphatase (AP) expression. E) NHiPSCs can be switched in an alternative state similar to 

iPCCs. F) Single nucleotide polymorphism analysis confirmed the authentication of HT-144-iPCCs. W indicates 

unclear data position. 

http://www.ub.uni-heidelberg.de/archiv/17870
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factors. Nevertheless, the only transcription factors that can replace Oct4 are Tet1 and Nr5a2 

(Gao et al. 2013; Heng et al. 2010). Therefore, Tet1 mRNA transcription levels were 

investigated and found to be increased in iPCCs (figure 4B). HT-144 cells initially expressed 

high levels of Tet1, so that the increase upon reprogramming was not significant. In contrast, 

Ma-1-iPCCs showed a high up-regulation of Tet1 expression levels compared to its parental 

cell line and to NHiPSCs. In order to confirm expression of pluripotency markers on protein 

levels, immunofluorescence staining was performed. As Oct4, Sox2, and Klf4 were expressed 

by the STEMCCA cassette, protein expression of Nanog and the surface marker Tra-1-60 were 

investigated. While original melanoma cell lines and also the cervical cancer line HeLa were 

negative, all tumor-derived iPCCs showed nuclear expression of the transcription factor 

Nanog, homogenously distributed in the colonies (figure 5A), and were positive for the 

glycoprotein Tra-1-60 covering the colony surfaces (figure 5B). Taken together, these data 

indicate that continued expression of reprogramming factors successfully induced pluripotency 

in cancer cells with reactivation of endogenous regulators. 
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Figure 4 | Reactivation of the endogenous loci of pluripotency genes in iPCCs derived from melanoma 

and cervical cancer cell lines. Total RNA from parental cancer cells, reprogrammed iPCCs and human 

fibroblast-derived iPSC (NHiPSCs) was isolated, reverse transcribed and analyzed by qPCR for relative 

transcript levels of the endogenous pluripotency markers Nanog, Oct4, and Sox2. In addition, expression levels 

of total Sall4 were measured. B) Gene expression levels of Tet1 in HT-144 and Ma-1 tumor cells and their 

reprogrammed counterparts. Expression levels were normalized to GAPDH. Error bars indicate 95% 

confidence intervals. P values were calculated by two-tailed, unpaired sample t-test. Asterisk indicates t-test p 

value of ≤ 0.05 in comparison to the respective reference (**: p value ≤ 0.01; ***: p value ≤ 0.005), NS indicates 

not significant. 
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Figure 5 | Immunofluorescence staining of Nanog and Tra-1-60 in iPCCs and original tumor cells. The 

reprogrammed cancer cells form tightly packed colonies on feeder cells (right panel) and strongly expressed 

Nanog (A) and Tra-1-60 (B) in contrast to the negative parental cell lines (left panel). Mitotic inactivated murine 

embryonic fibroblasts served as feeder cells. DAPI was used for nuclear counterstaining. 
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IX.3. iPCCs demonstrate signs of early embryogenesis and 

epigenetic remodelling 

To determine the transcriptional similarities of iPCCs with iPSCs compared to the parental 

melanoma cell lines, mRNAs from each sample were analyzed using an Illumina gene 

expression microarray. Using a p value ≤ 0.05, calculated by empirical Bayes moderated t-

test, statistically differentially expressed genes were identified between the parental cell lines 

(HT-144 and Ma-1), their iPCCs, and iPSCs derived from somatic cells either cultivated on 

Matrigel (NHiPSCs) or cultivated under the same conditions used for iPCCs (NHiPSCs AS). 

Hierarchical clustering of the probes demonstrated a higher degree of similarities between 

iPCCs and iPSCs than between iPCCs and their parental cells (figure 6A). However, NHiPSCs 

cultivated under the same conditions as the reprogrammed tumor cells still share more 

molecular similarities with NHiPSCs cultivated under feeder-free conditions than with the 

iPCCs. These data demonstrate the resetting of the melanoma transcription program. 

Next, differentially expressed genes between the parental melanoma cells and their 

reprogrammed counterparts were analyzed. 2561 commonly expressed genes were identified 

(figure 6B) and used for pathway analysis, applying Metacore (from GeneGo, 

https://portal.genego.com/). The differentially expressed genes were found to be enriched in 

pathways associated with development and cytoskeleton remodeling (figure 6C).  

The process of reprogramming results in a stepwise resetting of epigenetic modifications, i.e. 

methylation marks. In pluripotent stem cells, especially the DNA (cytosine-5)-

methyltransferase 3-like (DNTM3L) was shown to play an important role (Ooi et al. 2010). 

Recent findings demonstrated that DNMT3L is highly expressed in ESCs to prevent 

hypomethylation at promoter regions of bivalent developmental genes, protecting cells from 

differentiation (Neri et al. 2013). Here, DNMT3L was found to be expressed in iPCCs at levels 

comparable to NHiPSCs. Next, the expression of the cell surface marker E-Cadherin (CDH1) 

was analyzed. Successful induction of a pluripotent state requires a completed mesenchymal-

to-epithelial (MET) transition. Therefore, CDH1 represents one of few targets on the cell 

surface, which allows to monitor single cells during early events in their transition to pluripotent 

stem cells (Li, R. et al. 2010). HT-144, Mewo and Ma-1 were derived from melanoma 

metastasis and together with SKMEL147, the cell lines display a metastatic phenotype in vitro 

and in vivo (Alla et al. 2010; Gouon et al. 1996; Janji et al. 1999; Pencheva et al. 2014; Wolter 

et al. 2007). In accordance with their metastatic potential, the majority of the parental cell lines 

did not express CDH1 at significant levels. Previous studies observed that in vitro CDH1 is 

expressed in melanocytic cells, down-regulated in non-invasive melanoma cells and lost in 

malignant melanoma cell lines (Danen et al. 1996). Exclusively Mewo cells expressed 

detectable CDH1 mRNA levels (figure 6A). Stepwise dedifferentiation initiated by the 
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expression of reprogramming factors induced regulators of early developmental processes. 

Nodal and its inhibitors Lefty1 and Lefty2 belong to the TGF-β superfamily regulating the axial 

left-right determination during early embryogenesis. Furthermore, TGF-β signaling directly 

regulates Nanog in human ESCs, thereby maintaining pluripotency (Vallier et al. 2009; Xu et 

al. 2008). Here, it was show that iPCCs-derived from HT-144 and also from the primary human 

melanoma line Ma-1 expressed Lefty1, Lefty2, and Nodal at mRNA levels similar to NHiPSCs 

(figure 6B). Also DPPA4, a marker exclusively found in pluripotent stem cells and restricted to 

cells of the pre-implantation embryo (Maldonado-Saldivia et al. 2007), was significantly 

enhanced upon reprogramming. In reprogrammed HT-144 and Ma-1, DPAA4 expression 

reached levels around 90% and 110% compared to NHiPSCs (figure 6C). In the 

reprogramming progress of somatic cells DPPA4 was shown to be involved in the stabilization 

of the pluripotent stem cell state as one of the molecules outside the Bayesian network, 

mediating the transition from the maturation to the stabilization phase (Golipour et al. 2012). 

Thus, this result led to the question whether iPCCs acquired a stable pluripotent stem cell state 

independent from transgene expression.  
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Figure 6 | iPCCs share characteristics of normal pluripotent stem cells. A) Heat map and dendrogram 

generated by unsupervised hierarchical clustering of differentially regulated genes (empirical Bayes moderated 

t-test p ≤ 0.05) in tumor cell lines, their reprogrammed daughter cells and iPSCs derived from somatic cells, 

cultivated either on Matrigel (NHiPSCs) or converted in the alternative state (NHiPSCs AS). Samples were 

analyzed and displayed as duplicates. B) Venn diagram showing differentially expressed gene probes 

(empirical Bayes moderated t-test p ≤ 0.05) between iPCCs and their parental cell lines. 2561 overlapping 

genes were analyzed for enrichment of signaling pathways using MetaCore pathway analysis. C-E) qPCR 

analysis of expression levels of the epigenetic modifier DNMT3L and the MET marker CDH1 (C), the 

stabilization marker DPPA4 (D) and members of the TGF-β superfamily (Nodal, Lefty1 and Lefty2) (E). GAPDH 

expression was used for normalization to endogenous genes. Error bars indicate 95% confidence intervals. P 

values were calculated by two-tailed, unpaired sample t-test. Asterisk indicates t-test p value of ≤ 0.05 in 

comparison to the respective reference (**: p value ≤ 0.01; ***: p value ≤ 0.005). Error bars indicate 95% 

confidence intervals NS indicates not significant.  
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IX.4. Melanoma cell reprogramming leads to dedifferentiation with 

loss of terminal differentiation markers 

Nuclear reprogramming is a stepwise process of dedifferentiation, whereby unipotent cells 

acquire the potential to differentiate in multiple cell types. One sign of this epigenetic 

remodeling process is the loss of terminal differentiation markers, indicating specialized 

functions. Here, the melanoma markers MITF, TYR, TRP1, DCT, MC1R and Sox10 were 

compared between parental melanoma cells and the reprogrammed iPCCs by microarray data 

(figure 7A). Expression levels were normalized to NHM and displayed as log2 transformed fold 

change. It was demonstrated that HT-144 cells and Ma-1 differ in their expression levels of 

melanoma markers. In contrast to Ma-1 cells, HT-144 showed high expression levels of all six 

markers in the parental cell line, whereas these were significantly down-regulated in their 

respective iPCCs. Furthermore, a pathway analysis using differentially expressed genes 

between the parental HT-144, Ma-1 cells and their reprogrammed iPCCs was performed using 

the Database for Annotation, Visualization and Integrated Discovery (DAVID) in order to 

identify signaling pathways that were down-regulated upon reprogramming. Most prominently, 

key mediators of melanogenesis like MITF and MAPK signaling members were found to be 

significantly decreased (figure 7B). Hence, expression levels of typical melanoma markers 

were investigated by qPCR in a panel of parental melanoma cell lines and compared to their 

respective iPCCs in order to confirm the previous data (figure 7C). MITF mRNA expression 

was detectable in the four human melanoma cell lines HT-144, Ma-1, SKMEL147 and Mewo 

whereas expression levels were below the detection limit in all iPCCs tested. In addition, TRP1 

was decreased to 1% or less in melanoma-derived iPCCs referred to the initial mRNA levels. 

Only Ma-1 cells, which were derived from a primary melanoma metastasis, showed similar 

TRP1 expression in iPCCs and in the parental cell line. However, these data only reflected 

expression levels compared to the parental cell line. In comparison to NHM and HT-144 cells, 

Ma-1 showed low expression levels of TRP1 and TYR (figure 7A).  

Melanoma cells represent transformed melanocytes and share their neural crest origin. In 

order to exclude, that iPCCs reprogrammed only to a neural crest-like state, mRNA expression 

levels of neural crest markers including Sox10 and AP2 were compared to the parental cell 

lines by qPCR. In accordance with the microarray expression results, Sox10 was hardly 

detectable after reprogramming and AP2 showed more than 100-fold down-regulation in all 

iPCCs except Ma-1-iPCCs (figure 7D). Here, AP2 was about 50-fold decreased. Taken 

together, neural crest markers and markers of melanogenesis were strikingly down-regulated 

upon reprogramming. Collectively, these data show that nuclear reprogramming of human 

melanoma cells resulted in global gene expression changes, similar to healthy iPSCs 

accompanied by loss of melanoma markers.  
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IX.5. iPCCs acquire a metastable pluripotent state  

In order to elucidate whether reprogramming of tumor cells results in a stable pluripotent state, 

expression levels of pluripotency markers after doxycycline withdrawal were measured. 

Importantly, mRNA levels of Nanog were down-regulated after 36 h without transgene 

expression (figure 8A). After 80 h Nanog expression was 90% decreased compared to initial 

levels. Usually, human ESCs and iPSCs require bFGF to maintain their pluripotency. 

Therefore, it was analyzed whether iPCCs can be stabilized by bFGF. Even in the presence 

of bFGF iPCCs tended to differentiate and could not be cultivated without doxycycline. After 

seven days iPCCs showed morphological signs of differentiation and no AP positive colonies 

were detectable (figure 8B). These result indicated that reprogrammed melanoma cells 

depended on continuous transgene expression to prevent differentiation.  

  

Figure 7 | Loss of melanocytic markers in melanoma-derived iPCCs and down-regulation of enzymes 

involved in melanogenesis. A) Gene expression levels of the melanocytic markers dopachrome tautomerase 

(DCT), melanocortin 1 receptor (MC1R), Sox10, microphthalmia-associated transcription factor (MITF), 

tyrosinase (TYR) and tyrosinase-related protein 1 (TRP1) in the parental melanoma cells HT-144 and Ma-1, 

and their reprogrammed counterparts were determined by gene expression microarray. Fold changes are log2 

transformed and calculated compared to NHM. Samples were analyzed in duplicates. B) Global gene 

expression profiling was used to identify deregulated genes between parental melanoma cells and their iPCCs 

by two group tests (empirical Bayes moderated t-test p ≤ 0.05). Down-regulated genes were analyzed using 

the software tool DAVID, showing enrichment of key molecules involved in melanogenesis (figures in green 

symbolizing down-regulated genes). Samples were analyzed in triplicates. C) Reprogramming of melanoma 

cells resulted in loss of melanocytic and D) neural crest markers in qPCR experiments. Parental cell lines served 

as reference for melanocytic markers. GAPDH expression was used as internal control. Error bars indicate 95% 

confidence intervals. P values were calculated by two-tailed, unpaired sample t-test. Asterisk indicates t-test p 

value of ≤ 0.05 in comparison to the respective reference (**: p value ≤ 0.01; ***: p value ≤ 0.005). NS indicates 

not significant. 
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IX.6. HT-144-iPCCs form teratomas in vivo 

The most stringent assay to test whether a cell is fully pluripotent is the complementation of 

tetraploid embryos. Fused murine ESCs of the two-cell stadium give rise to tetraploid cells of 

extra-embryonic tissue and develops to a blastocyst stage. Although tetraploid cells are able 

to implant in the uterus, they fail to develop into a normal embryo. Under these conditions 

diploid pluripotent stem cells can normally develop into viable animals. Therefore, this assay 

allows to determine the developmental potential of the injected cells. Using this technique, 

publications demonstrated the possibility to generate mice-derived entirely from injected iPSCs 

(Boland et al. 2009; Kang et al. 2009; Zhao et al. 2009). Ethical reasons imply the need for 

alternatives when working with human cells. Therefore, the most demanding test for human 

iPSCs is their capability to differentiate into tissues of the three germ layers, endoderm, 

ectoderm and mesoderm in vivo. Therefore, HT-144-iPCCs were injected subcutaneously in 

NOD/SCID mice. In all cases tumors developed after 10-12 weeks and contained tissues of all 

three germ layers (figure 9). Tumor slices stained with haematoxylin and eosin (H&E) 

demonstrated a high portion of endodermal structures. Taken together, consistent 

overexpression of Oct4, Sox2, and Klf4 in tumor cells is sufficient to induce the process of 

reprogramming, resulting in a metastable state with pluripotent characteristics. 

 

Figure 8 | Reprogrammed tumor cells acquire a metastable pluripotent state. A) Nanog expression levels 

in HT-144-iPCCs measured by qPCR after doxycycline withdrawal normalized to initial Nanog levels and 

compared to the parental cell line. Nanog expression was normalized to internal GAPDH. Error bars indicate 

95% confidence intervals. B) AP staining of iPCCs cultured for 7 days in medium supplemented with bFGF 

alone (-Dox) or together with doxycycline (+Dox). 
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IX.7. iPCCs preferentially differentiate into non-melanocytic lineages 

Previous publications showed that tumors derived from iPCCs contained structures from the 

original tumor (Kim, J. et al. 2013). Consequently, tumors derived from iPCCs and their 

parental melanoma cells were compared after subcutaneous injection into 

immunocompromised mice. In total, 26 tumors of four melanoma and iPCC lines were 

analyzed. Original tumor lines generated melanomas with strong S100 staining, a typical 

melanoma marker used for diagnostic validations in the clinic (Springall et al. 1983). 

Furthermore, melanomas were homogenous tumors and exhibited a high nuclear-to-

cytoplasmic ratio. In contrast, iPCC-derived teratomas showed multiple areas of differentiated 

foci that were architecturally organized and contained irregularly shaped cells with enlarged 

cytoplasm. Formation of gland-like structures were observed in most of the tumors developed 

from iPCCs but especially HT-144-iPCCs-derived teratomas contained several structures with 

abundant mucin (* in figure 10A,C,E). Independent of the mutational status, iPCC-derived 

tumors generated rarely melanoma-like structures (figure 10A). S100 expressing melanoma-

like cells were hardly detectable in teratomas derived from Ma-1-, SKMEL147- and Mewo-

iPCCs and only few S100-positive cells were derived from HT-144-iPCCs (black arrows in 

figure 10B). Furthermore, also few S100 positive, neuronal-like cells were found (white arrows 

in figure 10B) but rarely accumulated HT-144-iPCC-derived S100 expressing cells in nests. 

Tumors derived from melanoma cell lines expressed the proliferation marker Ki67 

homogenously (figure 10C). In contrast, iPCC-derived tumors showed heterogeneous 

expression of Ki67. Only some cells of distinct structures proliferated actively. A similar 

heterogeneous pattern was also observed for other markers in tumors derived from 

reprogrammed cancer cells. In order to identify cells of epithelial origin, a mixture of antibodies 

recognizing a broad spectrum of cytokeratin proteins was applied. As expected, melanoma 

cells were pan-cytokeratin negative while iPCC-derived tumors contained epithelial tissues 

(figure 10D). As HT-144-iPCCs formed the most dedifferentiated tumors characterized by 

Figure 9 | iPCCs derived from the human melanoma cells HT-144 generated teratomas in vivo. 

Subcutaneous injection of HT-144-iPCCs generated tumors containing a wide variety of differentiated 

structures. Paraffine-embedded tumor slices were stained with H&E. 
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many varying structures, these tumors were subjected for further analysis. The majority of cells 

in tumors derived from the HT-144 cell line expressed the BRAF mutation V600E, the 

melanoma marker MelanA and the transcription factor Sox2 but all were negative for 

cytokeratin 20. In contrast, HT-144-iPCC-derived tumors showed endodermal-like structures 

positively stained for BRAFV600E and Sox2, while cells forming connective tissue in between 

remained negative for these markers (figure 10E). Accordingly, cytokeratin 20 was, similarly to 

pan-cytokeratins, restricted to distinct tumor sites, while MelanA-positive cells were rather 

distributed sparsely throughout the tumor (figure 10E). In order to investigate the impact of 

reprogramming on mitogen-activated protein kinase (MAPK) signaling, samples were 

additionally stained for ERK and its phosphorylated active form (figure 10F). All melanomas 

showed high expression levels of ERK but differed significantly regarding the amount of 

phosphorylated ERK (pERK). HT-144 and SKMEL147-derived tumors contained few pERK-

positive cells while Ma-1-derived tumors showed intermediated levels. Exclusively in Mewo-

derived tumors the majority of melanoma cells was positive for pERK. In iPCC-derived tumors 

ERK expression was limited to specific tumor regions. Accordingly, pERK was only detectable 

in some of the ERK positive areas. Notably, although many cells of Mewo-iPCC-derived tumors 

expressed ERK, only few cells were positive for its phosphorylated form. In summary, these 

data suggest that melanoma-derived iPCCs generated teratoma-like tumors containing various 

differentiated structures that were rarely of melanocytic or melanoma origin. While melanoma 

markers were homogenously expressed in melanoma cell line-derived tumors, iPCC-derived 

teratomas demonstrated high heterogeneity regarding their morphological appearance and 

marker expression.  
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IX.8. iPCCs achieve terminal differentiation into neuronal cells 

Transcription factor-based reprogramming into pluripotent stem cells with subsequent 

differentiation allows the generation of patient-specific cells. Recent studies reported great 

success in the generation of terminally differentiated neuronal cell types. Our in vivo 

differentiations of iPCCs showed no characteristics of neuronal differentiation, although 

spontaneous appearance of neurons in cell culture was occasionally observed. Therefore, 

neuronal differentiation of iPCCs and iPSCs in the alternative state was investigated in vitro. 

Therefore, a protocol was applied using small molecules inhibiting SMAD and GSK3ß signaling 

(figure 11A) in combination with low dose of Noggin and the BMP inhibitor LDN-193189 

allowing the differentiation of normal human melanocyte-derived hiPSCs (NHiPSCs AS II&III) 

Figure 10 | Teratomas from reprogrammed 

tumor cells generally do not share 

characteristics of melanomas. Parental 

tumor cells and their corresponding iPCCs 

were subcutaneously injected. Developing 

tumors were pfa fixed and stained for the 

melanoma marker S100 (A and B), the 

proliferation marker Ki67 (B), epithelial 

cytokeratins (D) and the MAPK signaling 

molecule ERK and its active form (F). Tumor 

derived from HT-144 and HT-144-iPCCs were 

additionally investigated for the expression of 

the melanoma proteins BRAF V600E and 

MelanA as well as CK20 and Sox2 via 

immunostaining (E). Arrows show respective 

stainings. * demonstrate areas of extensive 

extracellular mucin. 
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(figure 11B) but also tumor cell-derived iPCCs into the neuronal lineage (figure 11C). Within 

three days after induction of neuronal differentiation first axonal-like structures appeared and 

elongated with continuing differentiation. In accordance with the differentiation, pluripotency 

markers Nanog and Oct4 were down-regulated (figure 11D). Nevertheless, expression levels 

of both transcription factors were clearly higher than in the parental cell line suggesting that 

the differentiation was not yet completed, although early neuronal markers like microtubule-

associated protein 2 (MAP2) and Pax6 increased. In accordance with the observation that 

differentiated cells stopped proliferation, bundled together (figure 11C) and detached after 20-

50 days, the late post-mitotic neuronal marker RBFox3 was found to be significantly up-

regulated in HT-144-derived neuronal-like cells (HT-144-dNLCs). In comparison to the iPCCs, 

HT-144-dNlCs up-regulated neuronal markers more than 1000-fold (figure 11E). As expected, 

original melanoma cells were negative for all neuronal markers. Immunofluorescence staining 

of Tuj1 in neuronal differentiated cells derived from HT-144-iPCCs constitutively expressing 

GFP (figure 11F), confirmed the successful neuronal differentiation. Taken together, these 

results demonstrate that iPCCs could be differentiated similarly to iPSCs into the neurogenic 

lineage. 
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IX.9. HT-144-iPCC-derived fibroblast-like cells in vitro 

In order to investigate the impact of epigenetic modifications on the melanoma phenotype more 

detailed, HT-144-iPCCs were randomly differentiated by withdrawal of doxycycline in the 

presence of FCS, and selected for continuously proliferating, immortal cells. Emerging cells 

showed a fibroblast-like morphology and could be cultivated in non-stem cell promoting 

conditions (DMEM medium with FCS) usually used for fibroblast culture. Therefore, these cells 

were named HT-144-derived-fibroblast-like cells (HT-144-dFLCs) differentiation A. As the 

differentiation was inefficient, a more defined fibroblast-differentiation protocol was applied. 

Therefore, doxycycline was withdrawn and iPCC colonies were cultivated in the presence of 

EGF, insulin, and at later stages with additional BMP-4 (figure 12A). BMP-4 is essential to 

direct differentiation into mesodermal lineages. After two weeks, appearance of spindle like 

cells was observed similar to normal human fibroblasts (NHF) (figure 12B). These cells were 

picked, transferred to new wells and expanded (HT-144-dFLCs B and C). Although these cells 

proliferated slower than the parental melanoma cell line and the iPCCs, they could be cultured 

for more than 40 passages. Gene expression profiling was performed and differentially 

regulated genes between HT-144, HT-144-dFlC A and B and NHF analyzed. Therefore, a 

several group test using the empirical Bayes moderated t-test method was calculated and the 

dataset was filtered for genes with a p value ≤ 0.05. Unsupervised hierarchical clustering of 

these genes was used to construct a dendrogram and a heat map (figure 12C). HT-144-dFlC 

A and HT-144-dFlC B formed one cluster, indicating that the differentiation was reproducible. 

Furthermore, the cells shared more transcriptionally similarities with NHF than with the parental 

cell line. 

In order to prove that fibroblast-like cells possess the same genomes like their parental 

melanoma cells, a 24-multi-colour-fish analysis was performed. Differentiated cells showed the 

same mutations present in HT-144 cells, indicating their common origin (figure 12D). 

Furthermore, qPCR analysis revealed loss of Nanog and absence of MITF expression (figure 

Figure 11 | iPSCs and iPCCs efficiently differentiate into neural cells in the presence of SMAD and 

GSK3ß inhibitors. A) Scheme for the neural differentiation of iPSCs and iPCCs. Morphological changes 

including formations of axonal-like structures (white arrows) after the induction of differentiation into the 

neuronal lineage of NHiPSCs (B) and melanoma-derived iPCCs (C). D-E) Expression levels of pluripotency 

markers and early and late neuronal markers analyzed by qPCR. Nanog and Oct4 were normalized to 

NHiPSCs. The neuronal markers MAP2, Pax6 and RBFox3 were normalized to NHiPSCs derived from 

melanocytes (NHiPSCs II) and differentiated into the neuronal lineage (NHiPSCs II-NLCs). GAPDH served as 

internal control. Error bars indicate 95% confidence intervals. P values were calculated by two-tailed, unpaired 

sample t-test. Asterisk indicates t-test p value of ≤ 0.05 in comparison to the respective reference (**: p value ≤ 

0.01; ***: p value ≤ 0.005). (F) GFP expressing HT-144-iPCCs were differentiated according the scheme and 

stained for the neuronal protein Tuj1. 



Results 

  72 

12E), indicating that the cells differentiated into a non-melanocytic lineage. In addition, 

fibroblast-like cells up-regulated cell structure proteins like FSP1 and Vimentin compared to 

iPCCs (figure 12F) and reached expression levels similar to HT-144 cells. Considering this 

regain of cell structure proteins, the question rose whether fibroblast-like cells also reacquire 

a migratory and invasive phenotype similar to that observed in melanoma cells. Surprisingly, 

differences between the distinct differentiations were noted. While HT-144-dFlC from 

differentiation B showed an increased in the migratory potential compared to parental 

melanoma cells, cells from differentiation A migrated similarly to HT-144 (figure 12G).  

Nevertheless, all fibroblast-like cells showed migratory and invasive properties comparable to 

the parental melanoma cell line (figure 12G and H). Of note, all cells used for the invasion 

assay did not show high invasive capacities. Consequently, differences in invasiveness were 

not significant. In summary, the data point out that epigenetic modifications in melanoma cells, 

either induced by nuclear reprogramming or differentiation, can alter tumor cell characteristics 

like morphology, migration and invasion. 
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IX.10. Nuclear reprogramming-induced epigenetic modifications 

mediate therapy resistance in melanoma-derived iPCCs 

Recently, it has been demonstrated that leukemia-derived iPCCs lose their BCR-ABL 

oncogene dependence, restricting targeted therapy to a specific epigenetic cell state (Carette 

et al. 2010). Considering the activating V600E mutation in HT-144, Ma-1 and SKMEL147 cells, 

the question was addressed whether epigenetic modifications in iPCCs and iPCC-derived 

fibroblast-like cells might affect their response to novel targeted melanoma therapy.  

Parental melanoma cell lines, their reprogrammed iPCCs and additionally HT-144-dFlCs were 

treated with 1 µM of the MEK inhibitor GSK1120212 (trametinib) and 1 µM of the oncogene-

specific BRAF inhibitor PLX4032 (vemurafenib) and compared to vehicle (DMSO) treated-

cells. After seven days, vehicle-treated melanoma cells and HT-144-dFlCs were grown to 

confluency, while melanoma-derived iPCCs formed AP positive colonies. Treatment with 

GSK1120212 reduced cell proliferation in all melanoma cell lines and resulted in the 

appearance of floating, dead cells (figure 13A). In accordance to their mutational status (as 

shown in table 4), HT-144 and Ma-1 were sensitive to PLX4032 treatment but not the BRAF 

wildtype cell lines Mewo and SKMEL147. Compared to the parental cell lines, iPCCs and HT-

144-dFlCs showed an increased drug resistance. MEK inhibition and BRAF inhibition in iPCCs 

did not block growth of colonies or their maintenance of pluripotency, indicated by AP activity 

(figure 13A). In order to extend the analysis, the effect of MAPK pathway inhibition on the 

cellular metabolic activity was quantified. Therefore, cell metabolic activity was measured by 

Figure 12 | Epigenetic modifications induced by nuclear reprogramming and differentiation alter 

melanoma cell identity. A) Schematic protocol for the generation of fibroblast-like cells. Addition of BMP4 

directs cells towards a mesodermal fate. B) Morphological comparisons of HT-144-derived fibroblast-like cells 

(HT-144-dFlC) and normal human fibroblasts. C) Heat map and dendrogram of differentially expressed genes 

(empirical Bayes moderated t-test p value ≤ 0.05) generated by unsupervised hierarchical clustering of HT-144 

melanoma cells, their differentiated daughter cells and NHF. Samples were analyzed in triplicates. NHF were 

derived from three individual donors. D) 24-multi-colour FISH analysis detects same mutations in the parental 

melanoma cell line and the derived differentiated cells. E-F) qPCR analysis of the pluripotency marker Nanog, 

the melanoma marker MITF (E) and the cell matrix proteins FSPα and Vimentin (F) in parental HT-144 cells, 

their derived iPCCs and fibroblast-like differentiated cells. Nanog was normalized to iPCCs, while the melanoma 

marker and the cell structure genes were normalized to HT-144 cells. GAPDH was used as internal control. 

Error bars indicate 95% confidence intervals. P values were calculated by two-tailed, unpaired sample t-test. 

Asterisk indicates t-test p value of ≤ 0.05 in comparison to the respective reference (**: p value ≤ 0.01; ***: p 

value ≤ 0.005). G) Parental HT-144 and fibroblast-like cells were seeded in silicone culture-inserts. 24 h later, 

inserts were removed generating a defined gap. Pictures were taken at indicated time points. Migration potential 

was calculate as the percentage of gap closure in triplicates. H) G) Triplicates of three independent fibroblast-

like differentiations and HT-144 cells were measured for their potential to invade a basement membrane-coated 

membrane. Relative fluorescent units (RFU) are displayed. 
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the colorimetric change of the redox sensitive growth indicator alamarBlue. Cells were treated 

with increasing concentrations of GSK1120212 and PLX4032, and compared to DMSO-treated 

control cells (figure 13B). In parental melanoma cells a time- and dose-dependent response 

was observed. While 1 nM of neither vemurafenib nor trametinib influenced the cell 

metabolism, 10 nm of both drugs were sufficient to reduce cell activity to approximately one 

third of the vehicle-treated control after 120 h treatment. Interestingly, administered drugs 

showed a very narrow therapeutic range in HT-144 cells. Concentrations of 100 nM and 1000 

nM did not significantly improve therapy response, indicating that 10 nM triggered nearly the 

full therapeutic effect. In contrast, all fibroblast-like differentiations (A, B and C) were more 

resistant to MAPK signaling inhibition (figure 13A&C), although variations among the 

differentiations were observed. At 1000 nM GSK1120212 fibroblast-like cells from 

differentiation B responded to drug treatment albeit cells were more resistant than the parental 

cell line. Similarly, 100 nM PLX4032 resulted in reduced metabolic activity of about 25% after 

120 h in differentiation C but hardly effected differentiation B compared to the vehicle treated 

control while the cellular activity of parental cells decreased to 30%. Fibroblast-like cells 

derived from differentiation C were the most resistance ones, and did not significantly reduce 

their metabolic activity independent of the concentration and drug type. Taken together, these 

data indicate that MAPK signaling is not required for survival in iPCCs and fibroblast-like cells. 

In contrast, the parental melanoma cell line are addicted to active BRAF signaling, not 

tolerating any reduction. Activation of MEK and BRAF results predominantly in the 

phosphorylation of ERK, which then translocates to the nucleus to phosphorylate its nuclear 

targets. Therefore, phosphorylation levels of ERK correspond to MAPK signaling activity. 

Performing a western blot against phosphorylated ERK (pERK) demonstrated a strong 

phosphorylation of the protein in the original melanoma cell line HT-144, but also a clear 

decrease in HT-144-derived iPCCs and in fibroblast-like cells (figure 13D). Even total ERK 

protein was lower expressed in fibroblast-like cells compared to the parental cell line. These 

data suggest that epigenetic modifications, induced by the reprogramming process and 

subsequent differentiation, led to the loss of BRAF oncogene addiction, resulting in therapy 

resistance against targeted melanoma therapy.  
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IX.11. Tumor suppressor- and oncogene deregulation in distinct 

differentiation states 

In order to evaluate the molecular resemblance of parental melanoma cells, melanoma-derived 

iPCCs and HT-144-iPCC-derived differentiations, the gene expression signature of 

deregulated genes was compared using whole genome expression profiling. Unsupervised 

hierarchical clustering of differentially expressed genes was performed to construct a heat map 

(figure 14A). Based on the similarities of the expression profile a dendrogram was built. Here, 

the parental melanoma cells HT-144 and Ma-1 were sharply distinguished from their iPCCs. 

Ma-1-iPCCs and HT-144-iPCCs cluster together demonstrating that HT-144-dFlC and HT-144-

dNlC are transcriptionally distinct from the iPCCs. Nevertheless, HT-144-iPCC-derived 

differentiations share more molecular similarities with iPCCs than with the parental melanoma 

cells. In addition, HT-144-dFlCs clustered closer to iPCCs than to HT-144-iPCCs differentiated 

into the neuronal linage.  

Previous data demonstrated that nuclear reprogramming leads to epigenetic silencing of 

oncogens like c-Myc (Zhang et al. 2013). Therefore, expression of tumor suppressor genes 

and oncogenes in parental melanoma cells, their iPCCs and differentiated cell types was 

investigated. Lists of oncogenes and tumor suppressor genes were compiled from the UniProt 

Knowledgebase (http://www.uniprot.org/uniprot/) searching for human genes associated with 

the keyword oncogene or tumor suppressor gene. 398 reviewed oncogenes and 168 reviewed 

tumor suppressor genes were identified, and their expression levels in HT-144-iPCCs, HT-

144-dFlCs A, HT-144-dFlCs B and HT-144-dNlCs investigated and compared to HT-144 cells. 

It was assumed that induction of distinct cell fates would lead to a deregulation of distinct sets 

of tumor suppressor genes or oncogenes. Therefore, tumor suppressor genes exhibiting a fold 

change ≥ 2 and a p value ≤ 0.01 in at least one sample were filtered. A set of 50 tumor 

suppressor genes remained (figure 14B). Surprisingly, an equal number of genes were up- 

and down-regulated in the samples. In accordance to our assumption, it was observed that 

Figure 13 | Altered melanoma cell identity results in reduced drug response and independence of MAPK 

signaling. A) The parental melanoma cell lines HT-144, Ma-1, SKMEL147 and Mewo, their reprogrammed 

counterparts, and HT-144-dFLC B were teated with 1 µM GSK1120212 and 1 µM PLX4032. Seven days after 

drug application iPCCs colonies were stained for AP activity and pictures were taken. B) HT-144 cells were 

treated with increasing concentrations of the MEK inhibitor GSK1120212 and the BRAF inhibitor PLX4032 for 

the indicated time points. Cell metabolic activity was measured by alamarBlue and compared to vehicle treated 

controls. B) Fibroblast-like differentiated cells B and C were treated with 1000 nM GSK1120212 and 100 nM 

PLX4032 and compared to the parental cell line. C) The melanoma cells HT-144, their corresponding iPCCs 

and fibroblast-like cells B were investigated for expression and phosphorylation of ERK by western blot. GAPDH 

was used as loading control. DMSO served as vehicle control. 

http://www.uniprot.org/uniprot/
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between HT-144-dNlC, HT-144-iPCCs, and HT-144-dFlCs, tumor suppressor genes were 

differentially regulated. In order to identify reversibly regulated genes that might alter the 

tumorigenic phenotype, only up-regulated tumor suppressor genes were further investigated.  

Both fibroblast-like differentiations shared 16 of the top 20 up-regulated tumor suppressor 

genes (figure 14C). Therefore, the gene sets of HT-144-dFlC A and B were combined and 

ranked in accordance to their arithmetic mean. Next, the ten most up-regulated tumor 

suppressor genes of HT-144-iPCCs, HT-144-dFlCs and HT-144-NlCs were analyzed for 

commonly up-regulated genes, identifying bridging integrator 1 (BIN1). BIN1 was the only 

tumor suppressor gene found to be commonly up-regulated in the samples, compared to the 

parental melanoma cell line HT-144 (figure 14D). HT-144-iPCCs and HT-144-dFlCs shared 

five reversibly regulated tumor suppressor genes while the neuronal-differentiated cells up-

regulated nine exclusive tumor suppressors. Taken together, these data demonstrate that 

reprogramming alone and re-differentiation leads to an epigenetic change, accompanied with 

the up-regulation of a small fraction of tumor suppressor genes. 

The list containing oncogenes was expanded by MITF and filtered for a fold change ≥ 2.8 and 

a p value ≤ 0.001 in at least one sample, resulting in a list of 62 genes (figure 15A). Similar to 

the tumor suppressor genes, an equal number of oncogenes was up- and down-regulated in 

reprogrammed HT-144-iPCCs and their differentiated daughter cells compared to the parental 

cell line. Furthermore, oncogene expression differed between the cellular differentiation states. 

As 17 of the twenty most down-regulated oncogenes were commonly regulated in HT-144-

dFlC A and B (figure 15B), the gene sets were combined and ranked according their arithmetic 

mean. The ten most down-regulated oncogenes of HT-144-iPCCs and HT-144-derived 

differentiations compared to the parental cell line were analyzed for commonly down-regulated 

genes. MITF, growth arrest-specific gene 7 (GAS7) and neuroblastoma 1 (NBL1) were 

identified (figure 15C). HT-144-iPCCs shared four commonly down-regulated oncogenes with 

HT-144-dNlCs and two with fibroblast-like differentiated cells. These also shared two down-

regulated oncogenes with HT-144-dNlCs. Taken together, the data indicate that similar to 

tumor suppressor genes also oncogenes are deregulated upon reprogramming of tumor cells 

into iPCCs and their subsequent differentiation.  
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Figure 14 | Differentially regulated tumor suppressor genes in iPCCs and their differentiated daughter 

cells. A) Heat map generated by unsupervised hierarchical clustering of differentially regulated genes 

(empirical Bayes moderated t-test p ≤ 0.05) in tumor cell lines, iPCCs, HT-144-dFlCs and HT-144-dNlCs. The 

dendrogram added to the heat map cluster samples according their relationship. B) Tumor suppressor genes 

showing a log2 fold change ≥ 1.5 compared to HT-144 melanoma cells in at least one sample of HT-144-derived 

iPCCs, fibroblast-like and neuronal-like cells were identified. Fold change is displayed as log2 transformed. The 

list of tumor suppressor genes was compiled from UniProt Protein knowledgebase (http://www.uniprot.org/). C) 

Venn diagram of the top 20 differentially regulated tumor suppressor genes between HT-144-dFlC A and B 

compared to HT-144. Overlapping regions contain commonly up-regulated tumor suppressor genes. D) Venn 

diagram of the top ten up-regulated tumor suppressor genes in HT-144-iPCCs and their differentiated daughter 

cells compared to parental cells. Overlapping regions represent commonly up-regulated tumor suppressor 

genes in indicated samples. HT-144-dFlC contain the top ten up-regulated tumor suppressor genes combined 

of HT-144-dFlC A and HT-144-dFlC B. Therefore, the arithmetic mean was calculated for each gene and used 

to rank the genes of the two samples. 

http://www.uniprot.org/
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Figure 15 | Reprogramming deregulates oncogene expression in iPCCs and their differentiated 

daughter cells compared to parental melanoma cells. A) Oncogenes differentially expressed between 

iPCCs, HT-144-dFlCs and HT-144-dNlCs compared to parental melanoma cells. The list of oncogenes was 

compiled from UniProt Protein knowledgebase (http://www.uniprot.org/) and filtered for genes with a log2 fold 

change ≥ one and p value ≤ 0.005 (empirical Bayes moderated t-test) in at least one sample of HT-144-derived 

iPCCs, fibroblast-like and neuronal-like cells. B) Venn diagram of the top 20 down-regulated oncogenes in HT-

144-dFlC A and B. Overlapping areas contain commonly deregulated genes of the two samples. C) Venn 

diagram of the top ten down-regulated oncogenes compared to HT-144 melanoma cells in HT-144-iPCCs, HT-

144-dFlC and HT-144-dNlC. Overlapping regions represent genes commonly down-regulated in the indicated 

samples. HT-144-dFlC contain the top ten down-regulated oncogenes combined of HT-144-dFlC A and HT-

144-dFlC B. Therefore, the arithmetic mean was calculated for each gene and used to rank the genes of the 

two samples. 

http://www.uniprot.org/
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X. Discussion 

In this study the nuclear factor-based reprogramming method was used to analyze the effect 

of epigenetic remodeling processes, associated with cellular dedifferentiation, on drug 

sensitivity of human solid tumor cells. First, it was demonstrated that tumor cells are amenable 

to transcription factor-based reprogramming. Therefore, various melanoma cell lines as well 

as primary cells-derived from a metastasis and the cervical cancer cell line HeLa were 

converted into a pluripotent-like state sharing in vitro and in vivo characteristics of murine 

ESCs. Finally, data are provided indicating that epigenetic modifications in melanoma-iPCC-

derived cells mediate resistance to targeted therapy and decrease their tumorigenic potential. 

X.1. Establishment of induced pluripotent cancer cells 

X.1.1. Barriers in tumor cells complicate their reprogramming 

The induction of pluripotency by ectopic expression of transcription factors is limited by the 

existence of reprogramming barriers. In tumor cells the first morphological differences after 

Yamanaka factor induction were observed significantly later than in healthy somatic cells. 

About 40 days after transgene induction the earliest tumor cells became smaller and generated 

cell clusters, but did not progress further into large colonies of single cell layers observed in 

iPSCs derived from human somatic cells. Usually, the reprogramming process of human 

somatic cells requires 8 to 40 days until colonies emerge using lentiviral expression vectors 

(Takahashi et al. 2007). Nevertheless, transferring the cells on feeder cells promoted the 

formation of tightly packed AP positive colonies. The efficiency of the process is limited by the 

existence of reprogramming barriers. The investigation of those barriers revealed processes 

like ubiquitination, vesicular transport, endocytosis and cell adhesion to play an important role 

(Buckley et al. 2012; Qin et al. 2014). Studying the reprogramming process in clonal cell 

populations demonstrated that every cell can give rise to iPSCs, although significant delays 

between daughter cells occur (Hanna et al. 2009b). The preference of individual cells to 

acquire pluripotency indicates that reprogramming roadblocks originate from epigenetic 

barriers. Resetting the epigenetic profile of differentiated cells into that of ESCs is the challenge 

of the reprogramming factors. Therefore, epigenetic remodellers and chromatin modifiers must 

be activated to erase the current epigenetic status. The pluripotency factors Oct4, Sox2, and 

Klf4, enhance the expression of the DNA methyltransferase DNMT3L compared to the parental 

cell line (figure 6C). During reprogramming equal numbers of methylated sites are gained and 

lost, indicating that the balanced methylation and demethylation of loci is comparable important 
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for the successful acquisition of pluripotency (Lister et al. 2011, Nishino et al. 2011). Genome-

wide methylation changes take place in the late phase of reprogramming. Accordingly, the up-

regulation of de- or methylating enzymes occurs late in reprogramming (Polo et al. 2012) and 

correlates with the stabilization phase (Golipour et al. 2012). Although DNMT3L is highly 

expressed in ESCs, its defined function is not yet clear. There is evidence that the DNA 

methyltransferase promotes the methylation of housekeeping genes but negatively regulates 

the methylation at promoters of bivalent genes (Neri et al. 2013). DNMT3L deficiency results 

in two important observations. First, DNMT3L-/- adult mice are infertile but do not suffer from 

an additional phenotype (Bourc'his et al. 2001). Secondly, ESCs lacking the enzyme lose DNA 

methylation over time (Ooi et al. 2010). Therefore, these data demonstrate that the 

differentiation potential of PSCs is independent of the chromatin modifications induced by 

DNMT3L, while the DNA methyltransferase plays an essential role in the acquisition or 

maintenance of a pluripotent state. However, the knockout of the family members DNMT3A 

and DNMT3B in fibroblasts allows the induction of pluripotency but limits their developmental 

potential (Pawlak and Jaenisch 2011). Taken together, applying nuclear reprogramming using 

the Yamanaka factors Oct4, Sox2, and Klf4 to solid human cancer cells suggests that human 

melanoma and cervical carcinoma cells undergo global epigenetic modifications mediated in 

part by DNMT3L. Furthermore, these data indicate that the more features a cell already shares 

with PSCs, the less hurdles exist preventing the induction of pluripotency. Thus, inverse 

correlations exist between the stage of cellular differentiation of somatic cells, and the 

frequency and efficiency of iPSCs formation (Eminli et al. 2009; Takahashi & Yamanaka 2006). 

Also DNA damage sensors like p53, p16INK4a, p14ARF, and pCIP1 are induced upon transgene 

expression representing reprogramming barriers by driving cells into senescence. Therefore, 

the process can be accelerated by reducing the expression of tumor suppressor genes (Hong 

et al. 2009; Li et al. 2009; Zhao et al. 2008a) or by the immortalization of cells (Utikal et al. 

2009b).  

Loss of tumor suppressors and infinite self-renewal is a hallmark of cancer cells, resulting in 

the hypothesis that those should reprogram faster and more efficiently than somatic cells. 

Previous studies investigating iPCCs reported controversial observations. In accordance with 

my observations other reports showed that reprogramming cancer cells is less effective and 

more time consuming (Lai et al. 2013; Lin & Chui 2012; Utikal et al. 2009a). In contrast, 

sarcoma and pancreatic cancer cell reprogramming resulted in the slightly earlier formation of 

ESC-like colonies than usually reported from somatic cells, revealing differences between 

cancer types (Kim, J. et al. 2013; Zhang et al. 2013). Taken together, these data suggest that 

tumor-specific epigenetic alterations as well as genomic mutations can represent 

reprogramming barriers (Mahalingam et al. 2012). These differ between distinct tumor samples 

explaining the observed differences concerning the reprogramming efficiency. Alternative 
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reprogramming methods, yielding higher reprogramming efficiencies in general, as well as 

adding chemical compounds regulating epigenetic modifications might overcome some of the 

difficulties easier. Furthermore, these might provide further insights into tumor-specific 

epigenetic barriers.  

Reprogramming somatic cells is a very inefficient process separated into distinct molecular 

phases. Clonal analysis demonstrated that iPSCs appear with varying latencies, while some 

daughter cells never give rise to iPSCs, indicating that cells pass a stochastic phase during 

reprogramming (Buganim et al. 2012; Chung et al. 2014). Expression of Oct4, Sox2, Klf4, and 

c-Myc stochastically induce signaling pathways, resulting in varying possible cell fates like 

apoptosis, cell senescence, transformation and reprogramming. The stochastic phase ends 

with the activation of Sox2, initiating a shorter deterministic phase. Here, a hierarchical order 

of events finally leads to the activation of the pluripotency network starting with the endogenous 

activation of Sox2. 

Somatic cells seem to contain a favored subpopulation of cells that overcome the bottleneck 

during reprogramming, the stochastic phase, quickly and form iPSCs in a non-stochastic 

manner according to the elite model (Guo et al. 2014). Similarly, Lai et al. (2013) demonstrated 

that also cancer cells follow the elite model (Lai et al. 2013), as the analysis of the mutational 

profile of the reprogrammed cells revealed that nuclear reprogramming selected for a minor 

subpopulation of cells from the heterogeneous parental cell line. Enriched cells were negative 

for common mutations of the parental cell line, leading to the suggestion that the iPCCs arise 

from a progenitor pool of aneuploid cells previous to the acquisition of critical mutations. In 

order to clarify whether this is also true for melanoma iPCCs, tumors derived from HT-144-

iPSCs were analyzed and found to be positive for the BRAFV600E mutation (figure 10E). 

Furthermore, investigating the genetic profile of fibroblast-like cells differentiated from the 

same HT-144-iPCCs, demonstrated the presence of common chromosomal aberrations as 

well as additionally gained mutations. Taken together, melanoma cells might reprogram 

according to two possible mechanisms. Either the process is similar to somatic cell 

reprogramming or HT-144-iPCCs are derived from a favored subpopulation, which itself is not 

depending on less chromosomal aberrations.  

Nonetheless, the assumption that the reprogramming process is inversely correlated to the 

number of reprogramming barriers advocate for cell populations more amenable for nuclear 

reprogramming than the tumor bulk, either due to distinct mutations or specific epigenetic 

states. One potential barrier might exist in the energy metabolism. In contrast to adult somatic 

cells, PSCs obtain energy predominantly by glycolysis (Folmes et al. 2011; Kondoh et al. 

2007). Therefore, it is likely that cells with a predominant glycolytic metabolism might be 

favored to become pluripotent. The identification of dynamic melanoma subpopulations 

differing in their metabolic energy supply (Roesch et al. 2013) might endorse the assumption 
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of privileged tumor cells. Taken together, the data from this study do not support previous 

results, following the hypothesis of a subpopulation with less chromosomal aberrations 

privileged to acquire pluripotency.  

Evidence that reprogramming barriers in tumor cells might limit the induction of pluripotency 

complicates the work with cells from primary material. During the isolation of tumor cells from 

patient samples fibroblasts can contaminate the cell culture. Therefore, reprogramming of 

contaminated tumor cells might enrich for iPSCs derived from somatic cells. In order to get rid 

of potential contaminations in the primary melanoma line Ma-1, cells were passaged for more 

than six times prior the establishment of clones. During passage four to eight large senescent 

fibroblasts emerged but were diluted with continuous passage numbers. Based on the 

morphological appearance, established clones showed no fibroblast-like cells. Additionally, 

drug tests indicated that generated cell lines harbored the same BRAFV600E mutation like the 

patient (Bernhardt et al. 2014). HT-144-iPCCs were additionally validated by a cell 

authentication service analyzing 24 single-nucleotide polymorphisms. Interestingly, no 

differences in the reprogramming efficiency between BRAF (HT-144, WM266-4, Ma-1) or 

NRAS (SKMEL147) mutated melanoma cells compared to wild-type (Mewo) tumor cells (table 

4) were noticed. The incidence of iPCC clones was independent of the mutational status, 

leading to the hypothesis that the mutational status of BRAF or NRAS does not play a decisive 

role in the reprogramming process.  

In order to verify that barriers of reprogramming were overcome, it was shown that iPCCs fulfill 

in vitro criteria of pluripotency. Reactivation of loci from members of the core circuitry of 

pluripotency (Boyer et al. 2005) were observed. NANOG and SOX2 in clones of varying 

reprogrammed tumor cells reached expression levels similar to NHiPSCs. Members of the 

pluripotency circuitry induce a network of transcription factors, regulating the maintenance of 

the pluripotent state and persistence of self-renewal. Successful activation of the core circuitry 

is indicated by the up-regulation of the extended pluripotency network (Buganim et al. 2012) 

like SALL4 and TET1. The up-regulation of these genes, which are located downstream of the 

core network, to levels observed in NHiPSCs might suggest that the reprogrammed tumor cells 

acquire a similar pluripotent potential. This notion is supported by the detection of the 

glycosylation epitope Tra-1-60 (figure 5). The stem cell marker is widely used in stem cell 

research to identify pluripotent stem cells (Badcock et al. 1999; reviewed in Draper et al. 2002). 

Taken together, the data indicate that tumor cells can be successfully reprogrammed into an 

iPSC-like state. This is supported by the observation that the transcriptional profile of iPCCs is 

more similar to iPSCs than to their parental cells (figure 6A). 
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X.1.2. Mesenchymal to epithelial transition of melanoma cells is reverted during 

reprogramming 

In the human skin, melanocytes and keratinocytes form a homeostatic balance, mediated by 

the cell adhesion molecule E-Cadherin and P-Cadherin (Hirai et al. 1989). Loss of the growth 

regulatory function is a consequence of an epithelial to mesenchymal transition-like process 

during melanomagenesis (Tang et al. 1994). Thereby, a cadherin switch results in loss of 

epithelial markers and cell adhesion molecules (Danen et al. 1996; Poser et al. 2001) in favor 

of a mesenchymal phenotype (Caramel et al. 2013; Hao et al. 2012). Forced up-regulation of 

E-cadherin restores the keratinocytic growth regulation (Hsu et al. 2000) inhibiting their 

invasiveness (Molina-Ortiz et al. 2009). Accordingly, melanoma cells used here were mainly 

negative for E-Cadherin expression (figure 6C). Previous studies demonstrated that even 

though Mewo cells have significantly down-regulated E-Cadherin levels in comparison with 

NHM (Matsuyoshi et al. 1997; Suyama et al. 2002), they still express detectable levels of the 

cell adhesion molecule (Fenouille et al. 2012; Tsutsumida et al. 2004). However, levels of 

membrane-bound E-Cadherin are tightly regulated and can be decreased by proteolytic 

cleavage of the extracellular domain, a process called ectodomain shedding (Billion et al. 2006; 

Shirahama et al. 1996). Therefore, the gene expression levels of the adhesion molecule do 

not necessarily correlate with its protein amount in melanoma cells. Besides that, the 

expression levels were compared to NHiPSCs, which might express E-Cadherin at lower levels 

than melanocytes. 

During reprogramming, somatic cells undergo a MET in the early phases of the process, 

induced by Sox2/Oct4-mediated suppression of the E-Cadherin repressor Snail and resulting 

in a cadherin switch towards E-Cadherin expression (Li, R. et al. 2010; Samavarchi-Tehrani et 

al. 2010). Furthermore, E-Cadherin loss prevents nuclear factor-based reprogramming but can 

be compensated by replacement with N-Cadherin (Bedzhov et al. 2013; Redmer et al. 2011). 

Similarly abrogation of E-Cadherin function in ESCs can be partly replaced by other cadherins 

in vitro (Hawkins et al. 2012), but results in the inhibition of trophectoderm formation in vivo 

(Larue et al. 1994). In the acquisition and maintenance of pluripotency the transmembrane 

protein plays multiple functions. In mouse ESCs, E-Cadherin is involved in the stabilization of 

the LIF receptor-GP130 complex required for proper activation of STAT3 signaling (del Valle 

et al. 2013; Hawkins et al. 2012). Furthermore the formation of cell junctions and cell adhesions 

is a prerequisite to generate pluripotent stem cell colonies (Bedzhov et al. 2013). Likewise E-

cadherin is essential for the pluripotent state in human cells by activating LIF signaling in naïve 

and primed human PSCs (Li, D. et al. 2010; Li, L. et al. 2010). Taken together, E-Cadherin 

plays a central role during reprogramming and is up-regulated during reprogramming. When 

human PSCs start to differentiate, the cadherin switch is reverted from an epithelial-to-

mesenchymal phenotype sharing many features with the EMT process in melanoma cells 
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(Eastham et al. 2007; Evseenko et al. 2010; Jung et al. 2012). The switch from E- to N-cadherin 

is accompanied by increased cellular motility, up-regulation of E-cadherin repressors and 

enhanced expression of matrix metallo-proteases (Eastham et al. 2007; Liao et al. 2013; 

Richter et al. 2014). Taken together, there is evidence that melanoma cells were able to 

complete MET to acquire pluripotency similarly to somatic cells. Furthermore, it is likely that E-

cadherin-mediated cellular junctions are responsible for the formation of the tightly packed 

colonies, mimicking the morphological appearance of murine ESCs. Due to the observation 

that ectopic E-cadherin expression in melanoma cells restores their growth regulation by 

keratinocytes, the malignant phenotype of the cells might be altered. In addition, the data 

suggest that differentiation of melanoma-iPCCs into a melanocytic-lineage requires a complete 

EMT, thereby mimicking the process from a melanoma in situ to malignant cells. This might 

raise the question whether cancer-derived PSCs are suitable to investigate early events in 

cancer development. Kim, J. et al. (2013) demonstrated that pancreatic adenocarcinoma-

derived iPCCs gave rise to neoplasia precursors progressing to the invasive state. Thereby, 

they discovered novel networks activated only in the early stage of pancreatic cancer 

progression. Consequently, cancer-derived pluripotent stem cells might serve as a tool to study 

early events in tumor development. 

X.1.3. Induction of the endogenous pluripotency network during 

reprogramming 

Fully reprogrammed cells and ESCs are characterized by the activation of the pluripotency 

network. Members of the core network are Oct4, Sox2, and Nanog. To our surprise, 

endogenous Oct4 was hardly up-regulated in most iPCCs compared to the parental tumor line. 

This rise the question whether Oct4-deficient or -low cells can be pluripotent. Oct4-/- embryos 

fail to generate pluripotent stem cells during the development (Nichols et al. 1998) and Oct4 

repression in ESCs comes along with the differentiation into trophectoderm (Niwa et al. 2000). 

Recent studies showed that oocytes from Oct4-null mice were still able to initiate the 

reprogramming machinery in somatic cells after NT (Wu et al. 2013), and ICM cells of these 

mice were still characterized by active Nanog expression albeit the cells were not pluripotent 

(Le Bin et al. 2014; Wu et al. 2013). Taken together, Oct4 is not essential for the foundation 

but for the maintenance of pluripotency. Thereby, the expression level of the pluripotency factor 

plays an ambivalent role. Control of the pluripotent state by transcription factors provides 

heterogeneity within the ICM or ESCs, resulting in individual cells naturally more prone to 

differentiation-inducing stimuli. Therefore, stem cells residing under the same environmental 

conditions can respond differently to external stimuli. This strategy enables the proper 

development of embryos but does not necessarily support extended self-renewal. Oct4-

heterozygous ESCs are characterized by reduced expression levels of the transcription factor, 
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although the pluripotent state is stabilized by enhanced binding of pluripotency-associated 

enhancers and increased self-renewal capacities (Karwacki-Neisius et al. 2013). 

Consequently, Oct4 expression either induces differentiation (Niwa et al. 2000) or stabilization 

of the pluripotent state in a dose-dependent manner. Moreover, ESCs of the naïve state 

balance Oct4 and Nanog expression at defined ratios, while variances in the expression ratio 

are observed in epiblast-like PSCs or further differentiated cells (Munoz Descalzo et al. 2012). 

The observation that HT-144-iPCCs formed tumors containing cells of different lineages 

conflicts with previous results of Oct4-low reprogrammed cells. Based on these data, it is 

doubtful whether endogenous reactivation of Oct4 is high enough to be biological relevant. 

However, fully reprogrammed iPSCs derived from somatic cells were generated using the 

STEMMCA vector (previously demonstrated to be pluripotent, http://www.ub.uni-

heidelberg.de/archiv/17870), suggesting that ectopic Oct4 expression by the transgene is 

sufficient to trigger activation of other pluripotency markers. Supported by in vitro and in vivo 

characteristics, it was suggested that human melanomas from cell lines and from patient 

material are susceptible to nuclear factor-based reprogramming. Consequently, the same 

reprogramming factors used for somatic cell reprogramming, are able to induce pluripotency 

in human cancer cells under equivalent conditions.  

Tumor cell lines express single pluripotency factors at levels nearly equivalent to those in 

iPSCs. Here, melanoma cells endogenously express c-Myc (figure 3B), and also Sox2 (figure 

4A). Previous studies demonstrated that cells with baseline expression of single 

reprogramming factors require fewer genes to induce pluripotency (Kim, J. B. et al. 2009a; 

Kim, J. B. et al. 2009b; Utikal et al. 2009a). Therefore it’s tempting to speculate that introducing 

fewer factors would be sufficient to reprogram cancer cells. Accordingly, it was observed that 

iPCCs generation using a STEMCCA cassette in which c-Myc is replaced by a puromycin 

resistance for selection is equally efficient. 

X.1.4. Mediators of pluripotency in tumor cells 

Expression of pluripotency markers and their function in tumor cells is controversially 

discussed (reviewed in Bernhardt et al. 2012). On the one hand many reports suggest a role 

for Oct4, Sox2, and Nanog in driving cancer progression and regulating self-renewal of cancer 

cells (Atlasi et al. 2007; Ling et al. 2012; Monk & Holding 2001; Schoenhals et al. 2009; Wang 

et al. 2014), on the other hand other studies did not detect any expression or criticize the lack 

of functional evidence (Cantz et al. 2008). Here, it was demonstrated that the majority of 

parental tumor cell lines express mRNA of one or more pluripotency factors at detectable levels 

although significantly below the level of iPSCs in most cases. Several reasons might be 

responsible for this observation. According to the model of melanoma subpopulations, a low 

number of privileged tumor cells might express pluripotency markers but the expression is 

http://www.ub.uni-heidelberg.de/archiv/17870
http://www.ub.uni-heidelberg.de/archiv/17870
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diluted by the tumor bulk. Therefore, qPCR experiments showing mean expression over the 

whole populations might give false negative results. Another reasonable possibility might be 

that tumor cells express low amounts of pluripotency factors as regulators of self-renewal. 

Nevertheless, most of the investigated pluripotency factors were more than 100-fold down-

regulated compared to iPSCs. 

In the parental cell lines elevated Nanog mRNA levels were exclusively observed in HT-144 

cells. Anyhow, Nanog expression was not detected in any tumor cell line by 

immunofluorescence. Previously, several tumor types were demonstrated to contain individual 

cells with high Nanog expression promoting a stem-cell like phenotype with enhanced 

tumorigenicity and increased metastatic potential (Jeter et al. 2009; Lee et al. 2011; Lu et al. 

2014; Shan et al. 2012; Xie et al. 2014). Two possibilities might account for the controversial 

observation regarding Nanog expression in HT-144 cells. Either expression levels for the 

antibody staining were below the detection limit or primer pairs used for qPCR analysis 

recognized a potentially expressed Nanog pseudogene. These arise either by the integration 

of mRNA copies or by gene duplications. Eleven human Nanog pseudogenes exist (Booth & 

Holland 2004), although only Nanog-P1, demonstrated to be expressed in human leukemia 

and colon cancer cells (Eberle et al. 2010; Ishiguro et al. 2012), shares the identical intron-

exon structure. In prostate cancer the expression of Nanog-P8 increases clonogenicity and 

tumor regenerative capacity (Jeter et al. 2011). Due to the structural identity, the expression 

of Nanog or its pseudogene Nanog-P1 cannot be discriminated, leaving the possibility that the 

detected expression is based on pseudogenes. Nevertheless, most of the potential 

pseudogenes are not translated and additionally there is no report that pseudogenes 

expression reaches expression levels similar to PSCs. Therefore, it seems unlikely that 

pseudogenes might be responsible for endogenous reactivation of pluripotency markers. 

Based on these results, the possibility was excluded that under the described cell culture 

conditions individual tumor cells evolve, following the theory of a cancer-initiating 

subpopulation with high expression of the pluripotency factor Nanog. 

The pluripotency factor Sox2 has been observed in three of five melanoma cell lines and was 

absent in HeLa cells. Previously, Sox2 was identified as driving force of melanoma metastasis 

and invasion (Girouard et al. 2012; Justilien et al. 2014; Santini et al. 2014b). Additionally, 

successful reprogramming of melanoma cells in the absence of ectopic Sox2 indicates its 

functional expression (Utikal et al. 2009a). The transcription factor is an early marker of neural 

progenitors (Rogers et al. 2009) and is involved in proliferation and differentiation of migratory 

and postmigratory neural crest cells (Wakamatsu et al. 2004). Its down-regulation in 

melanocytic progenitors is required for functional differentiation into melanocytes (Adameyko 

et al. 2012). In various tumor entities Sox2 promotes a stem cell-like phenotype with a highly 

aggressive tumorigenic potential (Boumahdi et al. 2014; Favaro et al. 2014; Gangemi et al. 
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2009; Leis et al. 2012). The function of Sox2 in melanoma is not fully understood. It is 

conceivable that Sox2 plays a similar role as its family member Sox10. Sox10 is a neural crest 

marker and active during melanocyte differentiation (Britsch et al. 2001; Wong et al. 2006). Its 

detection in melanoma and requirement for proliferation and cell survival suggests an 

incomplete silencing during melanocyte differentiation, resulting in melanoma development 

(Shakhova et al. 2012).  

X.1.5. Loss of the melanoma expression signature 

Signaling pathways controlling melanocyte development and differentiation are commonly 

deregulated in melanoma cells (Ordonez 2014; Vance & Goding 2004). Thus, a large number 

of melanocytic markers are used to distinguish melanoma from other tumors entities. In this 

study, melanocytic markers were investigated in the melanoma cell line HT-144 and in 

melanoma cells derived from a trametinib-resistant metastasis (Ma-1) as well as their 

reprogrammed iPCCs. Members of the MITF signaling pathway were highly expressed in HT-

144 but not in Ma-1 cells. This is in accordance to clinical observations. Trametinib-resistant 

metastases lost pigmentation compared to the tumor before treatment. Accordingly, the key 

enzymes of melanogenesis, namely MITF, TYR, TRP1 and DCT were low expressed in the 

parental Ma-1 cells (figure 7A&C).  

Comparing the melanocytic markers to NHM revealed that MITF, TYRP1, and DCT were 

expressed in Ma-1 at comparable levels. Furthermore, this would indicate that HT-144-iPCCs, 

although significant down-regulated compared to their parental cells, still express TYRP1 and 

DCT at similar levels as NHM (figure 7A). This is conflictive to the assumption that the 

reprogrammed cells lost all terminal markers and the melanoma transcription profile. As NHM 

were isolated from the foreskin of newborn babies, it might be, that the resulting melanocyte 

population was immature and expressed low levels of terminal differentiation markers. 

Therefore, normalization to these NHM might over-estimate the expression levels of 

melanocytic markers in the parental and reprogrammed melanoma cells.  

In contrast to the results obtained from microarray experiments, qPCR analysis demonstrated 

a significant down-regulation of MITF in Ma-1-iPCCs compared to the parental cells. This might 

be due to the higher sensitivity of the qPCR technique, which is superior to microarray analysis. 

As reprogrammed Ma-1-iPCCs showed MITF levels below the detection limit in qPCR analysis, 

a technical significant down-regulation was observed (figure 7). However, the data indicate 

that the melanoma cell lines HT-144 and Ma-1 clearly differ in their MITF signaling pathway 

activity. Genes of this pathway are already low expressed in Ma-1, and therefore a semi-

quantitative comparison of these genes in Ma-1-iPCCs does not indicate a down-regulation 

due to low gene expression levels already observed in the parental cell line.  
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Similar to terminal melanoma markers also genes highly expressed in neural crest cells were 

down-regulated in reprogrammed melanoma cells (figure 7D). This is in agreement with results 

obtained by the reprogramming of murine melanocytes decreasing melanin production and 

melanocytic markers (Utikal et al. 2009a). In contrast to nuclear factor-based reprogramming 

Kulesa et al. (2006) showed the reversion of melanoma cells towards a neural crest-like 

phenotype in an embryonic environment demonstrating high plasticity of melanoma cells and 

their ability to respond to molecules provided by the stem cell microenvironment. This indicates 

that active signaling pathways of ESCs can similarly stimulate melanoma cells (Postovit et al. 

2006; Topczewska et al. 2006). These data suggest that nuclear factor-based reprogramming, 

in contrast to dedifferentiation by external stimuli of melanoma or melanocytes, result in the 

loss of melanocytic lineages markers through a dedifferentiation beyond an intermediate stage 

of multipotent neural crest cells. 

X.1.6. Acquisition of unstable pluripotency in tumor-derived reprogrammed 

cells 

After transferring reprogramming tumor cells onto feeder cells, they formed small, tightly 

packed colonies, consisting of cells that share hallmarks with murine ESCs including dome-

shaped colony morphology, resistance to trypsin-passaging and single cell cloning. In contrast 

to somatic iPSCs (Chen et al. 2011; Park et al. 2013) the iPCCs do not require bFGF to be 

maintained in an undifferentiated state but are dependent on the continuous expression of the 

transgene. Similarly, it was demonstrated that bFGF-dependent human iPSCs derived from 

healthy melanocytes can be forced into an alternative state in which they shares features of 

murine ESCs. It is likely that the continuous expression of Oct4, Sox2, and Klf4 is partly 

responsible for this switch. This is supported by the finding that overexpression of Nanog in 

addition to the Yamanaka factors reprograms human fibroblast in the presence of LIF directly 

into mouse-like iPSCs (Buecker et al. 2010), while overexpression of Klf4 or alternatively c-

Myc pushes human ESCs to adopt a similar LIF-dependent state (Hanna et al. 2010a). Usually, 

the generation of iPSCs using retroviral vectors is split into two phases: a transgene-dependent 

phase where expressed transcription factors initiate epigenetic remodeling processes, and a 

transgene-independent phase in which the factors need to be silenced as they otherwise 

prevent normal differentiation and mediate enhanced tumorigenicity (Okita et al. 2007; Ramos-

Mejia et al. 2012). To circumvent these problems a doxycycline-inducible system has been 

used for the derivation of iPCCs. Previous publications showed that the transgene activation 

results in the sequential activation of pluripotency markers according the hierarchical 

organization of the pluripotency network (Brambrink et al. 2008; Buganim et al. 2012; Polo et 

al. 2012). Accordingly, AP positive cells appeared during the reprogramming process before 

defined colonies were formed. Further reprogrammed iPCCs additionally expressed late stem 
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cell markers like Nanog and Tra-1-60 (figure 4A&5), supporting the hypothesis that tumor cell 

reprogramming is mediated by the same events as somatic cell reprogramming. Several 

reports demonstrate the existence of distinct pluripotent states. While stable ESCs from murine 

blastocysts can be isolated, PSCs derived from other species appeared to be stable 

exclusively under epiblast-like growth conditions (Brons et al. 2007; Thomson et al. 1998). 

Recent studies stepwise elucidated culture conditions stabilizing murine ESC-like pluripotent 

stem cells from human and other species (Buecker et al. 2010; Fang et al. 2014; Gafni et al. 

2013; Hanna et al. 2009a; Hirai et al. 2012; Theunissen et al. 2014; Ware et al. 2014). Here, 

conditions reported to support the switch from an epiblast-like state to an alternative pluripotent 

state were used (Buecker et al. 2010; Hanna et al. 2010b). Therefore, cells were cultivated on 

dense feeder cells in the presence of doxycycline and human LIF.  

Although previous publications already demonstrated successful reprogramming of various 

cancer entities, the generation of iPCCs-derived from human melanoma cells adopting this 

murine ESC-like state is shown for the first time. Although DPPA4, which is involved in 

stabilizing the pluripotent state, is expressed (figure 6D), attenuation of the transgene 

expression leads to the differentiation of iPCCs. It is demonstrated that withdrawal of 

doxycycline results in differentiation of the cells indicated by loss of Nanog expression and AP 

positive colonies. Accordingly, morphological changes are observed, leading to the 

disintegration of colonies (figure 8). Furthermore, addition of bFGF has no effect on the 

stabilization of the iPCCs, indicating that cells in the alternative pluripotent state differ in their 

requirements of culture conditions from epiblast-like iPSCs 

Based on these results, it can be suggested that the epigenetic profile or genetic mutations of 

the melanoma genomes prevent the successful acquisition of a stable pluripotent state. Our 

hypothesis is that ectopic expression of reprogramming factors circumvents the inherent 

blocks, allowing to adopt a metastable pluripotent state which might explain the transcriptional 

differences between iPSCs and iPCCs cultivated under the same conditions (figure 6A). This 

is supported by the notion that even in previous studies reprogrammed tumor cells did not 

reach a stable pluripotent state. iPCC-derived from human pancreatic adenocarcinomas 

required the expression of Oct4, Sox2, Klf4 and c-Myc to give rise to teratomas and to prevent 

differentiation (Kim, J. et al. 2013). Zhang et al. (2013) reprogrammed sarcoma cells using 

lentiviral encoded pluripotency factors controlled by a constitutively active promoter. Although 

the group showed that the transgenes were silenced in PSCs, residual transgene expression 

influences the iPSCs phenotype (Sommer et al. 2012) and might maintain the iPCCs 

undifferentiated. 
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X.1.7. Alternative pluripotent states suitable for gene targeting 

Genetic manipulation is a fundamental technique to study the implication of a single gene in 

its cellular context. Due to low resistance against single cell dissociation, the introduction of 

transgenes and reporter-constructs works poorly in human ESCs or iPSCs (Amit et al. 2000; 

Ohgushi et al. 2010; Thomson et al. 1998). Therefore, murine ESCs were crucial for the 

investigation of gene functions in the frame of mammalian development. To overcome the 

hurdle that human iPSCs or ESCs are intolerant to clonal selection, the conversion of NHiPSC 

into the alternative pluripotent state as demonstrated with melanocyte-derived iPSCs (figure 

3) might represent an effective tool to study modified genetic elements in human pluripotent 

stem cells. As such fibroblasts reprogrammed directly in an alternative pluripotent state by 

overexpression of Nanog in addition to the Yamanaka factors allowed gene targeting with 4 kb 

large DNA fragments by electroporation (Buecker et al. 2010).  

X.2. Reprogramming-induced epigenetic modifications controlling 

tumorigenicity 

X.2.1. Melanoma-iPCCs re-acquire the potential to execute pathways of non-

melanocytic differentiation 

The analysis of the differentiation capacities of reprogrammed human cells is limited to the 

teratoma assay, while the gold standard, contribution to viable chimeric mice, is restricted to 

murine cells. Although cautiousness is appropriate when extrapolating the differentiation 

potential of a human cell from their capability to form tumors in mice, teratoma assays are a 

widely accepted technique. In this study parental tumor cell lines as well as their reprogrammed 

counterparts formed tumors after subcutaneous injection, albeit the histopathology of the 

samples differed markedly. iPCC-derived tumors exhibit a heterogeneous pattern of 

undifferentiated structures. HT-144-iPCCs generated tumors with the highest grade of 

heterogeneity, containing many undifferentiated structures compared to other iPCC-derived 

tumors. Nevertheless, from their morphological appearance iPCC-derived tumors showed the 

appearance of similar tissue structures. In contrast, melanoma cell lines formed homogenous 

tumors with clear distinction compared to the iPCC-derived tumors. Moreover, iPCC-derived 

tumors contained differentiated tissues of varying origin. Epithelial cells were detected as 

clusters localized in endodermal-like structures in HT-144-iPCC-derived tumors. Similarly, 

Sox2 as wells as BRAF are expressed in defined formations. Furthermore, staining of ERK 

was restricted to specific areas in teratoma-like tumors indicating that diverging parts originate 

from different lineages (figure 10). In accordance to the heterogeneous pattern found, also 

proliferating cells were located in specific areas. As expected, phosphorylated ERK was 
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restricted to areas of ERK staining although not all ERK positive areas activated the pathway. 

The majority of iPCC-derived tumors did not contain cells with a melanoma-like profile as only 

a few cells were positively stained for melanoma markers. In contrast to our results, other 

studies showed that reprogrammed pluripotent cells tend to differentiate into the cell type of 

their origin. For example, reprogrammed pancreatic cancer cells predominately differentiate 

into pancreatic tissue, recapitulating early and late events of the carcinoma development (Kim, 

J. et al. 2013). This phenomenon is imprinted by epigenetic anchored marks which together 

generate an epigenetic memory (Bar-Nur et al. 2011; Kim et al. 2011). Three hypotheses might 

account for the effect. One explanation might be that due to the mutational status of the 

melanoma cells, differentiations into lineages are favored which are less addicted to the 

pathways containing the mutated molecules. Nevertheless, this does not explain why Mewo 

cells harboring no known mutation in BRAF or NRAS did not differentiate back into a 

melanocytic lineage. Therefore, acquired DNA damage, leading to the transformation into 

malignant melanoma cells, might prevent differentiations according pathways of melanocyte 

development. Alternatively, specific culture conditions used for iPCCs, might influence their 

differentiation potential and generate cells restricted to differentiate into specific lineages. In 

line with this hypothesis, the relatively high amount of gland-like tissue found in teratoma 

assays might indicate that the conditions favor endodermal differentiations. Another option is 

that the iPCCs were only partially reprogrammed reaching a dedifferentiated state that 

prevents the equal differentiation into all three germ layers. Taken together, it was concluded 

that epigenetic or genetic barriers as well as specific environmental conditions impede the 

differentiation of melanoma-iPCCs back to their lineage. Furthermore, reprogrammed 

melanoma cells re-acquire the potential to accomplish differentiation pathways of non-

melanocytic origin, which is supported by the fact that iPCCs efficiently differentiated into 

neurons and fibroblast-like cells in vitro. 

Furthermore, the lack of distinct morphological structures between different teratoma-like 

tumors derived from cells with varying genetic backgrounds suggests that neither BRAFV600E 

mutations nor NRAS mutations affect the differentiation outcome under these conditions.  

The parental cell lines used in this study are highly proliferative and tumorigenic, harboring 

innumerable amounts of genetic mutations. Nonetheless, it was observed that iPCC-derived 

tumors contained large parts of non-proliferating cells (figure 10). In vitro, cells converted to 

neuronal-like cells stopped proliferation and expressed markers of mature postmitotic neurons 

(figure 11). Previous studies showed that sarcoma cells can be reprogrammed leading to a 

reset of their epigenetic profile allowing the cells to terminally differentiate into connective 

tissue and blood cells (Zhang et al. 2013). The generation of a melanoma-iPCC-derived mice 

demonstrated that the murine melanoma cell R545 can differentiate into various cell types 

(Utikal et al. 2009a). Taken together, this might indicate that the reprogramming process allows 
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the cells to regain the ability to execute differentiation pathways towards postmitotic and non-

tumorigenic functional cells.  

X.2.2. Neuronal differentiation of melanoma-derived iPCCs 

Independent of their complex karyotype solid tumors cells can be reprogrammed, gaining the 

ability to differentiate along different lineages. Directed differentiation into neuronal- and 

fibroblast-like cells were associated with down-regulation of pluripotency markers and in 

parallel up-regulation of specific lineage markers.  

Spontaneously differentiating human PSCs often pursue the neural lineage. Also the culture 

of embryoid bodies, three-dimensional aggregates containing all three germ layers formed by 

human iPSCs or ESCs under non-adhesive conditions, enriches for neuronal cells (Boulting et 

al. 2011; Nat et al. 2007; Zhang & Zhang 2010). Guided differentiation using defined media 

and the supplementation with small molecule inhibitors greatly improves the efficiency of the 

process (Chambers et al. 2009; Kim, D. S. et al. 2010; Mak et al. 2012; Wattanapanitch et al. 

2014), enables the differentiation into specific functional neuronal populations (Hester et al. 

2011; Stanslowsky et al. 2014; Swistowski et al. 2010) and directs the conversion of fibroblasts 

into neurons (Ladewig et al. 2012; Thier et al. 2012). Therefore, these advances facilitate the 

study of human neuronal cells and provide great promises for the research of 

neurodegenerative disease, in spite of the existing complications due to the postmitotic nature 

of mature neurons (reviewed in Herrup & Yang 2007).  

Neuronal cells and melanocytes share their origin in the neural crest raising the question 

whether the high plasticity of melanoma cells disburdens their transdifferentiation. Although 

melanomas can contain structures of differentiated non-melanocytic origin, hints for neuronal-

like cells are rare (Iyengar & Singh 2010). Nonetheless, primary cutaneous melanoma but not 

metastatic melanoma express the neural marker MAP2 (Soltani et al. 2005) which is suggested 

to be induced by BRAFV600E (Maddodi et al. 2010). Our data demonstrate low expression levels 

of MAP2 in the malignant melanoma cell line HT-144 when compared to neuronal differentiated 

cells. The cell line was isolated from a metastatic site which might explain the low MAP2 

expression. Nevertheless, MAP2 was the only detectable neuronal marker in the parental cell 

line. After accomplished differentiation into neuron-like cells the neuroectodermal marker Pax6 

(Zhang et al. 2010) and RBFox3, which is restricted to late postmitotic neurons (Kim, K. K. et 

al. 2013), could be detected indicating the successful terminal differentiation of melanoma-

iPCCs into neurons.  

As Nanog is a repressor of neuroectoderm differentiation (Wang et al. 2012) and therefore 

consequently down-regulated during neuronal differentiation (Vallier et al. 2009; Wang et al. 

2009), it was surprising to detect only a slight decrease of its expression. Assuming that some 
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cells remained undifferentiated, it might indicate that individual cells require longer to respond 

to differentiation-inducing stimuli.  

Taken together, the presented data extend the current knowledge about the differentiation 

potential of reprogrammed cancer cells. So far, it was shown for the first time that the genome 

of human melanoma cells possesses the ability to differentiate in neuronal-like cells. Previous 

hints were gained from the genome of murine melanoma cells giving rise to viable animals 

(Hochedlinger et al. 2004; Utikal et al. 2009a). In agreement with previous iPCC studies, our 

data suggest that the terminal differentiation along re-engaged normal pathways modifies the 

epigenetic profile preventing uncontrolled proliferation and tumorigenicity (Zhang et al. 2013). 

X.2.3. Fibroblast-like differentiations regain features of melanoma cells without 

their molecular profile 

Differentiation towards non-melanocytic lineages of iPCCs provides a tool to study the 

influence of a melanoma genome in the context of varying epigenetic backgrounds. Besides 

neuronal-like cells, HT-144-iPCCs generated fibroblast-like cells able to be stably expanded in 

order to study melanoma oncogene dependence. As previously discussed, common 

chromosomal translocations identified in fibroblast-like cells confirmed their derivation from 

HT-144 melanoma cells. After a few passages the down-regulation of pluripotency markers as 

well as the lack of melanocytic markers demonstrates the differentiation into non-melanoma 

cells. Instead, their transcriptional gene signature provided evidence of their similarity with 

human fibroblasts (figure 12C). In line with a fibroblast-like phenotype expression of FSP1 and 

the mesenchymal cytoskeletal marker vimentin were detected. Expression of cell structure 

proteins is a prerequisite for cell migration and invasion, both features reacquired by the 

differentiated cells (Mendez et al. 2010). Although fibroblast-like clones were obtained by 

different protocols they showed a very homogenous expression profile for the investigated 

fibroblast markers. However, cells differentiated in the presence of FCS and cells differentiated 

in the presence of EGF and BMP-4 differed markedly in their migratory activity. Due to these 

data it was concluded that the iPCCs are able to activate differentiation pathways stimulated 

by the supplements of their respective media but also that different protocols can lead to 

distinct activation profiles of the generated cells.  

The potential of iPSCs or ESCs to differentiate in stromal cells with the ability to integrate 

functionally into skin equivalents has previously been demonstrated (Hewitt et al. 2011). In 

agreement with these data fibroblast-like differentiated cells can be serially passaged over 

prolonged time periods. Depending on the cell type and age of the donor primary cells undergo 

a replicative exhaustion resulting in cellular senescence (reviewed in Kuilman et al. 2010), 

which indicates that the same mechanisms facilitating immortalization in the parental tumor 

cells are conserved in fibroblast-like cells but not in the neural differentiations. This might point 
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out that immortalization of HT-144 cells is at least partly epigenetically controlled and therefore 

revertible. 

Deciphering the oncogene dependence of melanoma cells and their counterparts, effects of 

MAPK signaling inhibitors on melanoma cells in different epigenetic stages were tested.  

The oncogene-specific drug PLX4032 affected only the BRAFV600E-mutated cell lines HT-144 

and Ma-1 while all cell lines were sensitive against GSK1120212 treatment. Surprisingly, even 

Ma-1 cells, that were isolated from reoccurring metastases after GSK1120212 treatment, 

showed decreased cell proliferation compared to the control cells. It is likely, that prolonged 

cell culture without selective pressure favored the reappearance and proliferation of a 

GSK1120212-sensitive subpopulation. Previous studies demonstrated that the cessation of 

drug application leads to the regression of established tumors, as drug-resistant cells also 

became drug-dependent (Das Thakur et al. 2013). 

However, alterations of the epigenetic state within reprogrammed iPCCs or fibroblast-like cells 

significantly reduced the drug-based cytotoxic and cytostatic effects. Therefore, the present 

study extends the current knowledge about the link between epigenetic modifications and 

targeted therapy. Previously, it has been shown that BCR-ABL-dependent chronic myeloid 

leukemia cells lose their oncogene dependence through nuclear reprogramming indicated by 

their resistance against imatinib treatment (Carette et al. 2010; Kumano et al. 2012). Similarly, 

neuronal and fibroblast-like differentiated cells but not differentiations into hematological 

lineages acquired resistance against the BCR-ABL inhibitor (Carette et al. 2010) providing 

evidence that targeted therapy is dependent on specific genetic and epigenetic states. These 

findings lead to the conclusion that the resistance mechanism is not a compensatory function 

of the pluripotency network. Instead, terminally differentiated cells negative for the pluripotency 

factors lose their oncogene dependence suggesting that alternative signaling pathways 

missing in the parental lineage neutralize the drug effects. In our example this might be 

supported by the down-regulation of MAPK signaling on mRNA and protein level. Alternative 

pathways control proliferation and survival in iPCCs and in differentiated cells leading to the 

inactivation of the pathway. Nevertheless, more differentiations of different lineages might be 

necessary to gain further insights. Due to the cell cycle arrest of neurons drug sensitivity 

assays could not be performed in neuronal differentiated cells as drug-induced cytostatic 

effects might have been underestimated.  

Nevertheless, epigenetic alterations can equally result in enhanced drug sensitivity. 

Reprogrammed hepatocellular carcinoma cells get more amenable to systemic chemotherapy 

using 5-fluorouracil than their parental cells (Koga et al. 2014) demonstrating that epigenetic 

remodeling mediated by reprogramming processes can also re-sensitize cells to drug 

treatments. Surprisingly, even embryoid body-mediated differentiation of reprogrammed 

gastrointestinal cancer cells enhanced their sensitivity to anti-cancer drugs (Miyoshi et al. 
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2010). Similar to the reprogramming approach, transformation of a mature somatic cell type 

into another mature somatic cell, a process called transdifferentiation results in epigenetic 

alterations affecting the drug response. Transdifferentiated squamous cell carcinomas were 

resistant to Lox inhibition in contrast to parental lung adenocarcinoma cells (Han et al. 2014). 

Endothelial cells transdifferentiated from tumor-initiating glioblastoma cells acquired resistance 

against anti-VEGF receptor treatment (Soda et al. 2011). Furthermore, the impact of the 

cancer-associated epigenetic profile is supported by numerous studies, investigating DNA- or 

histone modifying small molecules for cancer therapy (reviewed in Brown et al. 2014; reviewed 

in Yoo & Jones 2006). Tumor therapy with demethylating agents promote re-sensitization 

against apoptosis-inducing drugs in some cancer types (Al-Romaih et al. 2008; Fulda et al. 

2001; Steinhart et al. 2013). Taken together, this study with melanoma-iPCCs extends the 

current knowledge of epigenetic modifications on therapy success.  

According to our results, the activity of cancer-specific pathways depends on particular 

epigenetic states. Therefore, targeted monotherapy might be susceptible to fail in 

epigenetically dynamic cells similar as reprogramming-induced resistance might be exclusive 

for targeted therapy but not to systemic working drugs.  

In sum, epigenetic modifications of tumor cells significantly influence their drug response 

leading to two conclusions. First, a high epigenetic plasticity in tumor cells might prevent an 

effective therapy explaining the high relapse rate of many cancer types. Second, a dual 

strategy considering the potential of differentiation therapies together with targeted therapy 

might reveal a powerful treatment option (Sung & Waxman 2007).  

Furthermore, inhibition of MAPK signaling did not affect the integrity of iPCC colonies neither 

their pluripotent state indicated by AP expression. In human embryos MEK inhibition does not 

prevent epiblast or hypoblast formation (Kuijk et al. 2012; Roode et al. 2012) but favors ground 

state pluripotency in mice (Nichols et al. 2009). Additionally, simultaneous MAPK and GSK3β 

inhibition enhances reprogramming efficiency and efficacy (Lin et al. 2009). This is of interest 

as MAPK activity is required to maintain self-renewing pluripotent epiblast-like PSCs while its 

inhibition leads to rapid differentiation and cell death (Greber et al. 2010; Li et al. 2007). This 

controversy might be explained by the observation that epiblast-like iPSCs, reprogrammed by 

the expression of Nanog in addition to the Yamanaka factors, can be converted into mouse-

like cells by a combination of LIF supplementation and MEK inhibition (Buecker et al. 2010). 

Furthermore, the isolation of human naïve ESCs as well as switching epiblast-like PSCs into 

a more naïve pluripotent state requires the supplementation by small molecules blocking MEK 

(Gafni et al. 2013; Takashima et al. 2014; Theunissen et al. 2014; Ware et al. 2014). These 

data suggest that reprogrammed tumor cells in the alternative state resemble a pluripotent 

state distinct from the epiblast-like bFGF-dependent phenotype. More likely, the alternative 

pluripotent state of the iPCCs reminds of murine the ESC-like state previously described 
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(Buecker et al. 2010; Hanna et al. 2010b) although significant differences in the cellular 

phenotypes and their requirements separate the studies. In contrast to these investigations the 

iPCCs did not require exogenous Nanog to adopt an alternative pluripotent state. It is likely 

that high endogenous reactivation of Nanog in the iPCCs circumvent the need for exogenous 

supplementation. In sum, the presented data provide for the first time evidence, that tumor 

cells are amenable to adopt alternative states of pluripotency. Besides, there is evidence that 

the development of resistance mechanisms against targeted signal inhibition is associated with 

dedifferentiation resulting in chromatin alterations (Sharma et al. 2010). Therefore nuclear 

factor-based reprogramming might represent an interesting tool to investigate epigenetic-

mediated drug resistances.  

X.2.4. Tumorigenicity as a consequence of epigenetic and genetic alterations 

Characterizing the molecular signature of melanoma cells highlighted their phenotypic 

plasticity, switching between proliferating and invading, tumorigenic and non-tumorigenic 

phenotypes. Here, rapid tumor formation of the parental melanoma cell line HT-144 in vivo, 

teratoma-like formation of iPCCs and reduced tumorigenicity of iPCC-derived fibroblast-like 

cells were observed. In accordance with this phenotypic data, a deregulation of tumor 

suppressor genes and oncogenes compared to the parental tumor cell lines was found (figure 

14&15). Previous studies demonstrated that ectopic expression of one or more Yamanaka 

factors is sufficient to dedifferentiate cancer cells, leading to reactivation of embryonic 

transcription factors. Forced dedifferentiation of a variety of tumor types by single pluripotency 

factors has been associated by an increased tumor-initiating potential and the acquisition of a 

stem cell-like phenotype (Chiou et al. 2010; Jeter et al. 2011; Leis et al. 2012; Santini et al. 

2014b; Siu et al. 2013). Ectopic transcription factor expression represses anoikis and 

consequently increases tumorsphere formation (Leis et al. 2012). Additionally, forced 

expression of Oct4 or Sox2 in melanoma induces up-regulation of markers found in melanoma-

initiating cells (Kumar et al. 2012; Santini et al. 2014b). These data demonstrate that the 

expression of single reprogramming factors enhances the tumorigenic phenotype of melanoma 

cells by a partial dedifferentiation. In contrast, complete reprogramming using a suitable 

mixture of pluripotency factors results in a widespread epigenetic remodeling process 

influencing the tumorigenic potential of cells. So far, the interplay of global epigenetic 

reconfigurations with a malignant phenotype is poorly investigated. Reversion of 

hypermethylated promoter regions of tumor suppressors as a consequence of reprogramming 

was first observed in immortalized fibroblasts (Ron-Bigger et al. 2010). In accordance, nuclear 

reprogramming of cells derived from several different tumor types showed that cancer-

associated aberrant methylation sites are reverted upon successful nuclear reprogramming 

(Mahalingam et al. 2012; Stricker et al. 2013; Zhang et al. 2013). Tumor-associated 
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hypermethylated promoter regions comprise tumor suppressor genes and genes involved in 

development while oncogenes become hypomethylated. Abolishment of this cancer-specific 

methylome induced by global epigenetic modifications taking placing during reprogramming 

results in enhanced expression levels of tumor suppressors and in decreased levels of 

oncogenes (Mahalingam et al. 2012; Zhang et al. 2013). This seems to be contradictory to the 

studies demonstrating that iPSCs retain an epigenetic memory affecting the conversion into 

pluripotent cells as well as their differentiation potential (Chin et al. 2009; Polo et al. 2010). 

Therefore, incomplete reversion of methylation marks due to an epigenetic memory might be 

responsible for a tumorigenic phenotype. During the differentiations of stem cells the 

epigenetic memory favors the differentiation back into the lineage of their origin raising the 

question whether in iPCCs the tumorigenic methylome is reestablished with the loss of 

pluripotency. Against this idea argues the resetting of the epigenetic profile of sarcoma cells 

by reprogramming, which demonstrated that even partly reprogrammed cells regained the 

potential to execute differentiation pathways thus restoring tumor suppressor genes and 

silencing oncogenes. Accordingly, the induction of pluripotency enabled their terminal 

differentiation into osteogenic and adipogenic cells, thereby abrogating their tumorigenic 

potential (Zhang et al. 2013). These data encourage the hypothesis that cancer arise from 

deregulated epigenetic regulations causing abnormal growth (Ohnishi et al. 2014). In contrast, 

the malignant phenotype of glioblastoma-initiating cells is epigenetically imprinted but 

restricted to the neuronal lineage. Derived non-neuronal cells up-regulated expression of tumor 

suppressor genes resulting in the loss of tumorigenic behavior (Stricker et al. 2013). 

Nevertheless, it might be that observed differences are due to additionally acquired mutations 

reactivated in the appropriate epigenetic context. Similarly, BCR-ABL positive leukemia-iPCCs 

depend on the BCR-ABL signaling when differentiated into blood cells but lose their oncogene 

addiction in other cell types. Collectively, the data show that the tumor-initiating potential of a 

cell is epigenetically determined and therefore revertible. Erasing these marks either allows to 

execute novel differentiation pathways or to restore the potential to generate terminally 

differentiated cells without generating tumors. Development of a viable chimeric mouse derived 

from R545 melanoma cells supports the idea that a melanoma genome is able to adopt the 

cell fate of various functional cells without generating cancer (Utikal et al. 2009a). However, 

melanoma-iPCCs were not differentiated back into their melanocytic lineage. Therefore, the 

tumorigenic potential of iPCCs-derived melanocytic cells remains to be investigated.  

Here, equal numbers of tumor suppressor genes were up- and down-regulated in melanoma-

derived iPCCs, fibroblast-like and neuronal-like cells (figure 14A&15A). The same holds true 

for oncogenes. Furthermore, only a low number of tumor suppressor genes and oncogenes 

was commonly deregulated. This might indicate that individual tumor suppressor genes but 

also oncogenes are regulated in a cell type-specific manner. Only BIN1 was found to be 
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commonly up-regulated in all HT-144-derived cell types. BIN1 is the most important risk locus 

for Alzheimer’s disease (Tan et al. 2013). It is a c-Myc-interacting adaptor protein and plays 

an important role as tumor suppressor in several cancer types (Cassimere et al. 2009; Ge et 

al. 2000; McKenna et al. 2012; Tajiri et al. 2003). Noteworthy, BIN1 is alternatively spliced in 

melanoma, resulting in a protein that is unable to suppress malignant transformation, thereby 

promoting melanomagenesis. 

Similarly, only three oncogenes, MITF, GAS7 and NBL1 were commonly down-regulated in 

HT-144-derived iPCCs, fibroblast- and neuronal-like differentiated cells.  

GAS7 is predominantely expressed in terminally differentiated brain cells and required for bone 

differentiation of mesenchymal stem cells (Chao et al. 2013; Hung et al. 2011). Furthermore, 

GAS7 plays a putative role as oncogene in childhood CNS tumors (Ebinger et al. 2006). 

Surprisingly, recent data from clinical trials demonstrated that melanoma patients showing 

tumor regression after receiving adoptively transferred autologous tumor-infiltrating 

lymphocytes had a common T cell subpopulation recognizing mutated GAS7 protein (Robbins 

et al. 2013; Zhou et al. 2005). Together, these data indicate GAS7 might represent an 

interesting target for melanoma therapy.  

NBL1 is a relatively undefined gene and member of the DAN superfamily of BMP antagonists 

(Hung et al. 2012). Although NBL1 seems to be involved in prostate and pancreatic cancer 

(Hayashi et al. 2013; Olakowski et al. 2009), there is no study focusing on the role of NBL1 in 

human melanoma so far. 

As previously described, MITF is a key molecule of melanogenesis and plays an important role 

in melanoma cells for transformation, cell invasion, cell survival and proliferation (VI.2.9). 

Microarray and qPCR data demonstrated significant down-regulation of MITF in iPCCs 

compared to the parental melanoma cells in a panel of cell lines (figure 7). Furthermore, MITF 

was also deregulated in HT-144-derived differentiations (figure 12). Taken together, it is 

coherent, that MITF appears as one of the most down-regulated oncogenes. However, it was 

demonstrated that melanoma cells like Ma-1 exist with a less active MITF signaling. Although 

previous data provided evidence that MITF inhibition might result in melanoma suppression 

(Yokoyama et al. 2008), it is questionable whether melanoma cells like Ma-1 would be affected.  

The molecular analysis of human tumors reveals a growing amount of data demonstrating 

interconnections of tumor heterogeneity and its relevance for therapeutic treatment options. 

The basis of these intra-tumorigenic differences is encoded by genetic and epigenetic 

alterations. Here, the technique of nuclear reprogramming was applied on human tumors cells 

as a tool to induce epigenetic modifications and to investigate their impact on cellular 

phenotypes. The investigation demonstrated for the first time the successful reprogramming of 

solid human tumor cells into an early embryonic state sharing characteristics with murine ESCs 

allowing the differentiation into several lineages like mesoderm-derived fibroblast-like cells and 
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ectoderm-derived neuronal-like cells. Together with the endodermal in vivo differentiations it 

has been demonstrated that reprogrammed tumor cells are able to differentiate into all three 

germ lines, the hallmark of pluripotency. 

Reprogramming resets cancer-specific DNA methylation marks allowing the redistribution of 

epigenetic modifications leading to non-tumorigenic cells after differentiation. Furthermore, the 

generation of iPCCs is depending on the reactivation of the same transcription factor network 

like somatic cells. Taken together, the study provides another piece in the puzzle of 

reprogramming and a novel tool to investigate phenotypic switches of tumor cells. In addition 

to that, it was shown that epigenetic modifications might conceal a tumorigenic genome 

harboring driver mutations of melanomagenesis.  

Although the model presented here is artificial and cannot be directly translated into a clinical 

situation it highlights the problem of epigenetic-altered tumor cells, resistant against targeted 

therapy albeit being carrier of malignant mutations.  

For the first time, it was shown that human melanoma cells can be converted into a metastable 

pluripotent state by consistent overexpression of the reprogramming factors acquiring a mouse 

ESC-like state. Chromatin modifications induced by reprogramming and subsequent 

differentiation provided resistance against targeted melanoma therapies in melanoma-derived 

cells of varying differentiation states. Furthermore, it was demonstrated that nuclear 

reprogramming in combination with directed differentiation is a powerful tool to identify 

reversibly regulated tumor suppressor genes for potential reactivation as anti-tumor strategies.  
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