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Abstract

A task in statistics is to find meaningful associations or dependencies between multivari-
ate random variables or in multivariate, time-dependent stochastic processes. Hawkes
(1971) introduced the powerful multivariate point process model of mutually exciting
processes (Hawkes model) to explain causal structure in data. Therefore, we discuss
several causality concepts and show that causal structure is fully encoded in the cor-
responding Hawkes kernels. Hence, for causal inference and for establishing graphical
models induced by causality it is necessary to estimate the Hawkes kernels. We provide
a nonparametric, consistent and asymptotically normal estimator of the Hawkes kernels
depending on the increments on a time scale with mesh ∆ using methods from infinite
order regression and time series analysis. To illustrate our results we apply our method
to EEG data from the spinal dorsal horn of a rat.

To tackle the problem for random samples of random vectors we examine a new
dependence measure, namely distance correlation (Székely, Rizzo and Bakirov; 2007).
Distance correlation provides a strikingly simple sample version in order to test for
independence between two random vectors of arbitrary dimensions and finite first mo-
ments. However, distance correlation is not well understood on the population side and
it fails to be invariant under the group of all invertible affine transformations. Hence,
we introduce the affinely invariant distance correlation and compute the analytic usual
distance correlation and affinely invariant distance correlation in various settings: for
multivariate normal distributions and for Lancaster probabilities (e.g. the bivariate
gamma distribution) explicitly. Furthermore, we generalize an integral which is at the
core of distance correlation.





Abstract (Deutsch)

Eine Aufgabe der Statistik besteht darin, aussagekräftige Verknüpfungen und Abhängig-
keiten zwischen multivariaten Zufallsvariablen oder in multivariaten, zeitabhängigen
stochastischen Prozessen zu finden. Hawkes (1971) führte das mächtige Punktprozess-
modell der wechselseitig anregenden Prozesse ein (Hawkes-Modell), um kausale Struk-
turen in Daten zu erklären. Daher diskutieren wir verschiedene Kausalitätskonzepte
und zeigen, dass die kausale Struktur vollständig in den Hawkes-Kernen verschlüsselt
ist. Deshalb ist es für die kausale Inferenz und für das Betrachten von induzierten
Kausalitätsgraphen nötig, die Hawkes-Kerne zu schätzen. Wir leiten einen nicht-
parametrischen, konsistenten und asymptotisch normalen Schätzer für die Hawkes-
Kerne her. Dieser beruht auf einer Diskretisierungsmethode und den Zuwächsen des
Prozesses auf einem Gitter der Feinheit ∆. Folglich benutzen wir verallgemeinerte
Methoden der Regression unendlicher Ordnung und der Zeitreihenanalyse. Wir ver-
anschaulichen unseren Schätzer am Beispiel von EEG-Daten aus dem Hinterhorn des
Rückenmarks einer Ratte.

Um auf das Problem bezüglich zufälliger Stichproben von Zufallsvektoren einzuge-
hen, untersuchen wir ein neues Abhängigkeitsmaß, nämlich die Distanzkorrelation (Szé-
kely, Rizzo and Bakirov; 2007). Die Distanzkorrelation bietet eine erstaunlich ein-
fache empirische Version, um die Unabhängigkeit zwischen zwei Zufallsvektoren von
beliebiger Dimension und endlichen ersten Momenten zu testen. Jedoch ist die Dis-
tanzkorrelation auf der Populationsseite nicht gut verstanden. Außerdem ist sie nicht
invariant unter der Gruppe aller invertierbarer affiner Transformationen. Daher führen
wir die affin invariante Distanzkorrelation ein und berechnen explizit die gewöhnliche
Distanzkorrelation und die affin invariante Distanzkorrelation in diversen Situationen:
für multivariate Normalverteilungen und für Lancasterverteilungen (z.B. die bivari-
ate Gammaverteilung). Darüber hinaus verallgemeinern wir ein Integral, welches das
Herzstück der Distanzkorrelation bildet.
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1 Notations

Throughout this thesis we use the following notations: We denote by N, Z, Q, R and C
the sets of nonnegative integers, integers, rational numbers, real numbers and complex
numbers, respectively. For a complex number z ∈ C we let |z| be its modulus and <(z)
the real part of z. For a matrix A ∈ Rn×k we denote by A′ its transpose. If we face
a real vector t ∈ Rd, then |t|d represents the standard Euclidean norm of t. Hence, if
t = (t1, . . . , td)

′ then
|t|d = (t21 + · · ·+ t2d)

1/2.

For vectors u and v of the same dimension, we let 〈u, v〉 be the standard Euclidean
scalar product of u and v. If we need to put emphasis on the dimension of the space
where the vectors are elements from, we use the notation 〈u, v〉d for u, v ∈ Rd. We call
the identity matrix, in the matrix space Rd×d, Id. Furthermore, P always stands for
a probability measure on the corresponding probability space and E for the expected
value. For two random variables X and Y we denote by var(X) the variance of X
and by cov(X, Y ) the covariance between X and Y (or the covariance matrix). We
also make use of the abbreviations ΣX and ΣY for the variance/covariance matrices
of X and Y , respectively, and ΣXY for the cross-covariance matrix between X and Y .
The normal distribution is represented by the symbol N . Stochastic convergence is

abbreviated
p→ and convergence in distribution

D→. We use the standard big O and
small o notation. For a matrix A ∈ Rn×k we denote by ‖A‖ the Frobenius norm and
by ‖A‖1 the spectral radius.

For a stationary time series y, fy denotes its spectral density. Finally, we let ∆ be
an arbitrary positive real number and k a positive integer.
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2 Introduction

In this thesis we examine dependencies in complex systems. In particular, we mainly
focus on meaningful associations, such as causality and stochastic independence, for
multivariate data, e.g. generated by multivariate random variables or multivariate
processes. It is natural to consider causality in time-dependent systems (the cause
should be always before the effect). Therefore, we introduce an appropriate point
process model, the so-called Hawkes model, which reflects causal structures in point
process data. In order to analyze multivariate random variables (in general not time-
dependent) we suggest to use the new dependence measure distance correlation. Still,
the population quantity of distance correlation is not well understood. In our work
we put a lot of effort in clarifying the analytic distance correlation version for certain
probability distributions.

Hawkes (1971) first introduced mutually exciting processes (Hawkes model). His-
torically, it was motivated by modeling aftershocks and seismological phenomena. In
several papers over the last years, many authors dealt with modeling earthquake ef-
fects using mutually exciting processes, e.g. see Ogata (1999), Vere-Jones (1970) and
Vere-Jones and Ozaki (1982) for details. However, the usage of the Hawkes model
has been more and more spread out to different research areas: Brantingham, et al.
(2011) examine insurgency in Iraq; Mohler, et al. (2011) use it for modeling crime and
Reynaud-Bouret and Schbath (2010) apply it to genome analysis. The most recent
advance of the Hawkes model is in finance for price fluctuations or transactions, see
Bacry, et al. (2011), Bacry, et al. (2012) and Embrechts, Liniger and Lu (2011).

In this thesis we put the emphasis on the causal structure induced by Hawkes
model. We connect concepts for causality with mutually exciting processes. Granger
(1969) defined the notion of Granger causality. It reflects the belief that a cause should
always occur before the effect and that a prediction of a process with the knowledge
of a possible cause should improve if there is a causal relation present. Since then,
new concepts concerning causality in different settings have been developed, namely
local independence, Didelez (2008), and weakly instantaneously causality, Florens and
Fougere (1996), below others.

A Hawkes process is a multivariate point process with conditional arrival rate

Λ(t) = ν +

∫ t

−∞
γ(t− u) dN(u),

where ν is a vector of positive constants often referred to as background or Poisson
rates and γ(·) is a matrix of nonnegative functions that vanish on the negative half
axis. It may be viewed as a continuous analogon to classical auto-regression in time se-
ries analysis. Every time a component process jumps, it can excite the other processes
according to the so called decay or Hawkes kernel γ(·). Hence, a causal structure is en-
coded in the Hawkes kernels. The problem is to estimate these decay kernels. The most
popular approach is an ML-approach as in Ozaki (1979). Therefore, γ is assumed to
be of a parametric form, e.g. exponential functions or Laguerre polynomials. In recent
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literature other estimation procedures evolved. Bacry, et al. (2012) use a numerical
method for the nonparametric estimation based on martingale and Laplace transform
techniques and Lewis and Mohler (2011) EM-algorithms. We estimate Hawkes kernels
nonparametrically using infinite order regression methods as Lewis and Reinsel (1985)
by discretizing the axis corresponding to a mesh ∆.

For the purpose of testing for noncausality the asymptotic distribution of the esti-
mator is needed. We show that the estimator is indeed asymptotically normal. Finally,
we apply our estimation procedure to EEG data from the spinal dorsal horn of a rat
and to simulated data.

Székely, Rizzo and Bakirov (2007) and Székely and Rizzo (2009), in two seminal pa-
pers, introduced the distance covariance and distance correlation as powerful measures
of dependence. Contrary to the classical Pearson correlation coefficient, the population
distance covariance vanishes only in the case of independence, and it applies to random
vectors of arbitrary dimensions, rather than to univariate quantities only.

As noted by Newton (2009), the “distance covariance not only provides a bona fide
dependence measure, but it does so with a simplicity to satisfy Don Geman’s elevator
test (i.e., a method must be sufficiently simple that it can be explained to a colleague
in the time it takes to go between floors on an elevator!).” In the case of the sample
distance covariance, find the pairwise distances between the sample values for the first
variable, and center the resulting distance matrix; then do the same for the second
variable. The square of the sample distance covariance equals the average entry in
the componentwise or Schur product of the two centered distance matrices. Given the
theoretical appeal of the population quantity, and the striking simplicity of the sample
version, it is not surprising that the distance covariance is experiencing a wealth of
applications, despite having been introduced merely half a decade ago.

In later papers, Rizzo and Székely (2010, 2011) and Székely and Rizzo (2012, 2013,
2014) gave applications of the distance correlation concept to several problems in math-
ematical statistics. In recent years, an enormous number of papers have appeared in
which the distance correlation coefficient has been applied to many fields. In particular,
the concept of distance covariance has been extended to abstract metric spaces (Lyons,
2013) and has been related to machine learning (Sejdinovic, Sriperumbudur, Gret-
ton, and Fukumizu, 2013); to detecting associations in large astrophysical databases
(Mart́ınez-Gomez, Richards, and Richards, 2014) and to interpreting those associations
(Richards, Richards, and Mart́ınez-Gomez, 2014); to measuring nonlinear dependence
in time series data (Zhou, 2012); and to numerous other fields.

To recapitulate the definition of distance correlation we let p and q be positive
integers. For column vectors s ∈ Rp and t ∈ Rq, denote by |s|p and |t|q the standard
Euclidean norms on the corresponding spaces; thus, if s = (s1, . . . , sp)

′ then |s|p =
(s2

1 + · · · + s2
p)

1/2, and similarly for |t|q. Given d-dimensional vectors u and v, we let
〈u, v〉d be the standard Euclidean scalar product of u and v. For jointly distributed
random vectors (X, Y ) ∈ Rp × Rq and non-random vectors (s, t) ∈ Rp × Rq, let

fX,Y (s, t) = E exp
[
i 〈s,X〉p + i 〈t, Y 〉q

]
be the joint characteristic function of (X, Y ), and let fX(s) = fX,Y (s, 0) and fY (t) =
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fX,Y (0, t) be the marginal characteristic functions of X and Y , respectively. Székely, et
al. (2007) defined V(X, Y ), the distance covariance between X and Y , as

V(X, Y ) =

[
1

cpcq

∫
Rp+q

|fX,Y (s, t)− fX(s)fY (t)|2

|s|p+1
p |t|q+1

q

ds dt

]1/2

, (2.1)

where |z|2 denotes the squared modulus of z ∈ C and

cp =
π(p+1)/2

Γ
(
(p+ 1)/2

) . (2.2)

The distance correlation between X and Y is the nonnegative number defined by

R(X, Y ) =
V(X, Y )√

V(X,X)V(Y, Y )
(2.3)

if both V(X,X) and V(Y, Y ) are strictly positive, and R(X, Y ) is defined otherwise to
be zero. For distributions with finite first moments, the distance correlation coefficient
characterizes independence in that 0 ≤ R(X, Y ) ≤ 1, and R(X, Y ) = 0 if and only if
X and Y are mutually independent.

When using the concept of distance correlation in applications one faces the prob-
lem that distance correlation is not invariant under the group of all invertible affine
transformations. A main contribution of this thesis consists of the introduction of an
affinely invariant distance correlation coefficient. This new measure inherits all basic
characteristics from usual distance correlation but is equipped with the additional group
invariance. We review the sample version of the affinely invariant distance correlation
introduced by Székely, et al. (2007), and we prove that the sample version is strongly
consistent. Moreover, we provide exact expressions for the affinely invariant distance
correlation in the case of subvectors from a multivariate normal population of arbitrary
dimension, thereby generalizing a result of Székely, et al. (2007) in the bivariate case.
Our result is non-trivial: It is derived using the theory of zonal polynomials and the
hypergeometric functions of matrix argument, and it enables the explicit and efficient
calculation of the affinely invariant distance correlation in the multivariate normal case.
To get a better understanding of affinely invariant distance correlation in higher dimen-
sions, we outline the behavior of the affinely invariant distance measures for subvectors
of multivariate normal populations in limiting cases as the Frobenius norm of the cross-
covariance matrix converges to zero, or as the dimensions of the subvectors converge
to infinity. We expect that these results will motivate and provide the theoretical basis
for many applications of distance correlation measures for high-dimensional data.

After the presentation of our theoretical results we study the example of time series
of wind vectors at the Stateline wind energy center in Oregon and Washington; we shall
derive the empirical auto and cross distance correlation functions between wind vectors
at distinct meteorological stations.

In further sections, we are able to compute regular distance correlation for the
normal distribution and the Laplace distribution. Unfortunately, the calculation of
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population distance correlation coefficients remains an intractable problem. As a con-
sequence, it is not possible to calculate distance correlation coefficients explicitly for
given nonnormal distributions in terms of the parameters that parametrize these dis-
tributions; nor is it possible to ascertain for nonnormal distribution any analogs of the
mentioned limit theorems.

We describe in detail the difficulties in calculating the population distance covari-
ance coefficient. For any pair of random vectors X and Y , the fundamental obstacle
in calculating the population distance correlation coefficient is the computation of the
singular integral (2.1) which defines these coefficients. We solve this problem as fol-
lows: First, we note that the singular nature of the integrand precludes evaluation of
the integral by squaring the denominator and then integrating each of the resulting
three terms. Then we compute the distance correlation coefficients for pairs (X, Y ) of
random vectors whose joint distributions are in the class of Lancaster distributions, a
class of probability distributions which was made prominent by Lancaster (1958). It is
well-known that the distribution functions of the Lancaster family have appealing ex-
pansions in terms of certain orthogonal functions (Koudou, 1998; Diaconis, et al., 2008).
By applying these orthogonal expansions, we deduce that the corresponding character-
istic functions can be expanded as infinite series, and it is those series which lead to
explicit expressions for the corresponding distance covariance and distance correlation
coefficients (e.g. for a bi-variate gamma distribution).

In the final section we generalize the fundamental singular integral, which allows
distance correlation to possess a strikingly simple sample quantity.
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3 Nonparametric Estimation of Hawkes Kernels and

Graphical Models

In this section we follow Dahlhaus, Dueck and Eichler (2014). We introduce the pow-
erful Hawkes model which yields a framework for examining causal structures in point
processes. We make the connection between Hawkes model and Granger causality
and conclude that it is necessary for causal inference to estimate the Hawkes kernels.
Therefore, we provide a nonparametric estimator, which is shown to be consistent and
asymptotically normal.

3.1 Hawkes Process and Graphical Models

We first define a mutually exciting or Hawkes process and then show and discuss con-
nections to Granger causality and Granger causality graphs. In our setting we consider
a stationary d-variate point process N = (N(t), t ∈ R). Na(t) = Na([0, t]) for t ≥ 0
and a ∈ {1, . . . , d} is supposed to represent the cumulative number of events in the ath
process from time zero up to time t. We denote the intensity vector of N by

λ = E[dN(t)]/dt.

A mutually exciting process N does not have multiple jumps at the same time in-
stant, which is regularly in literature referred to as a simple point process. Additionally,
a Hawkes process is orderly, which means that the jumps of the process are isolated.
Following Hawkes (1971) we establish a linear dependence of the conditional intensity
function at a specific time instant t on the full history of the process N by defining

P(Na(t+ h)−Na(t) > 0 |N(s), s ≤ t) = Λa(t)h+ o(h), (3.1)

where a ∈ {1, . . . , d}. By specifying the conditional intensity function, the distribution
of Hawkes process is fully determined which is a basic result on point processes. Hawkes
sets

Λ(t) = ν +

∫ t

−∞
γ(t− u) dN(u)

with γij(u) = 0, for u < 0, such that

Λa(t) = νa +
d∑
j=1

∫ ∞
0

γaj(u) dNj(t− u), (3.2)

where ν is a deterministic vector whose elements are all nonnegative. To guarantee the
nonnegativity of the conditional intensity function the Hawkes kernels have to fulfill
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γij(u) ≥ 0 for all u ∈ R. The vector ν is the basic Poisson rate (independent of each
other) for the component processes to jump. After having jumped each component
process excites another process according to the link function γ. That is why Hawkes
refers to it as ”model of mutually exciting point processes”.
If the process is stationary it is straight forward to derive the useful relation

λ =
(
I −

∫ ∞
−∞

γ(t) dt
)−1

ν. (3.3)

A full explicit analysis of the covariance structure can be found in Bacry, et al. (2012).
In his paper Hawkes computes the point spectral density of the mutually exciting
process under the condition that the link functions are of exponential decay. In the
following we will stick to the notation of Hawkes. To summarize define the covariance
density matrix as

µ(τ) = E
[
dN(t+ τ) dN ′(t)

]
/(dt)2 − λλ′.

Due to stationarity µ does not depend on t. Because of Bartlett (1963) it is well known
that the covariance density matrix for the Hawkes Process is well defined. Furthermore
it holds µ(−τ) = µ′(τ). Since Hawkes Process is a simple point process it is degenerate
for τ = 0, i.e. E

[
dNi(t)

2
]

= E
[
dNi(t)

]
. Thus, Hawkes defines the complete covariance

density as

µ(c)(τ) = D δ(τ) + µ(τ),

where D = diag(λ1, . . . , λd) and δ is the Dirac delta function. Notice that µ(τ) is
continuous at the origin. Then, the point spectral density matrix takes the form

f(ω) =
1

2π

∫ ∞
−∞

e−iωτ µ(c)(τ) dτ

= M(ω) +
1

2π
D

where M is the Fourier transform of µ, i.e.

M(ω) =
1

2π

∫ ∞
−∞

e−iωτ µ(τ) dτ.

Additionally Hawkes derives an implicit expression for µ,

µ(τ) = γ(τ)D +

∫ ∞
−∞

γ(τ − u)µ(u) du, for τ > 0,

which results in solving a fundamental integral equation subject to the condition
µ(−τ) = µ′(τ). The latter equality is similar to the Wiener-Hopf integral equation.
Now defining

β(τ) = γ(τ)D +

∫ ∞
−∞

γ(τ − u)µ(u) du− µ(τ), −∞ < τ <∞,
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and assuming

γij(u) < Ae−ηu,

|βij(u)| < B eηu

for some constants A and B, Hawkes is able to explicitly compute

f(ω) =
1

2π

[
Id −G(ω)

]−1
D
[
Id −G′(−ω)

]−1
,

where G(ω) =
∫∞
−∞ e

−iωτ γ(τ) dτ .

If γ vanishes in any component then it should be intuitive, that there is no respective
causal relation. Hence, desiring to establish a graphical model based on noncausality
in this sense, we have to find an appropriate definition of causality in order to capture
the latter intuition. Also notice, that in the case where the ath row of γ vanishes
identically, then Na is a regular Poisson process with rate νa.

Definition 3.1. Set Ft = σ(N(s), s ≤ t), F−at = σ(NV \{a}(s), s ≤ t), (V = {1, . . . , d})
and

Λ−ab (t) = lim
h↓0

P(Nb(t+ h)−Nb(t) > 0 | F−at )

h
.

We say that Na is globally or Granger noncausal for Nb relative to the process NV ,
denoted by Na 6→G Nb[NV ], if

Λb(t) = Λ−ab (t) a.s. ∀ t ≥ 0.

Granger causality (Granger 1969) displays, that Na is noncausal for Nb relative to
the process NV if the prediction of Nb with respect to the full history of the process
is as good as the prediction with respect to the full history except for the history of
the process Na. As we will find in the next theorem, Granger noncausality corresponds
to vanishing of the associated Hawkes kernels contained in the matrix function γ in
the Hawkes model. This immediately implies that we may establish Granger causality
graphs based on the estimation of the link functions in the Hawkes model.

Theorem 3.2. For the Hawkes model Na is globally noncausal for Nb relative to the
process NV if and only if γba vanishes, i.e.

Na 6→G Nb[NV ] ⇔ γba ≡ 0. (3.4)

Proof. ”⇐ ” First suppose γba ≡ 0. Then
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Λ−ab (t) = lim
h↓0

P(Nb(t+ h)−Nb(t) > 0 | F−at )

h

= lim
h↓0

E(1{Nb(t+h)−Nb(t)>0} | F−at )

h

= lim
h↓0

E(E(1{Nb(t+h)−Nb(t)>0} | Ft) | F−at )

h

= lim
h↓0

E([νb +
∑

k∈V \{a}
∫∞

0
γbk(u) dNk(t− u)]h+ o(h) | F−at )

h

= νb +
∑

k∈V \{a}

∫ ∞
0

γbk(u) dNk(t− u)

= Λb(t),

where we used (3.1), measurability with respect to F−at .

”⇒ ” Next assume Λb(t) = Λ−ab (t) for all t. This identity is equivalent to the equation

∫ ∞
0

γba(u) dNa(t− u) = E
[ ∫ ∞

0

γba(u) dNa(t− u) | F−at
]
.

Clearly, this immediately implies that the left hand side is measurable with respect
to F−at . Since the state space of N is polish, we find by some factorization lemma of
conditional expectations, that there must exist an F−at -measurable function h with

∫ ∞
0

γba(u) dNa(t− u) = h(N̄V \a(t)),

which must mean γba ≡ 0.

The next proposition works out the fact, that the equality of the above conditional
rates (noncausality) can be rephrased in terms of conditional independence.

Proposition 3.3. With the same notations as before

Na 6→G Nb[NV ] ⇔ Λ−ab (t)⊥N̄a(t)
∣∣N̄V \a(t) ∀t,

where for any A ⊆ V , N̄A(t) = {NA(s), s ≤ t}.

Proof.
” ⇒ ” For the first step let Na 6→G Nb[NV ]. Then Theorem 3.2 tells us γba ≡ 0 and
Λb(t) = Λ−ab (t). The latter yields
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Λ−ab (t) = vb +
∑

k∈V \{a}

∫ ∞
0

γbk(u) dNk(t− u),

which is clearly independent of N̄a(t) given N̄V \a(t).

” ⇐ ” Now assume Λ−ab (t)⊥N̄a(t)
∣∣N̄V \a(t) for all t. Parallel computations as above

lead to

Λ−ab (t) = E
([
vb +

d∑
k=1

∫ ∞
0

γbk(u) dNk(t− u)
] ∣∣∣F−at )

If γba would not vanish for all t, this would directly lead to contradiction. Hence,
Theorem 3.2 again gives us Na 6→G Nb[NV ].

In the next subsections we state different kinds of causal relation definitions and
discuss them. We find that the causality concepts are equivalent for the Hawkes model.

3.1.1 Local Independence

Didelez (2008) defines local independence for finite marked point processes in contin-
uous time. The key idea of local independence is that under rather mild conditions
one may decompose the component processes Nk(t) into a compensator and a mar-
tingale dependent on the chosen filtration (Doob Meyer decomposition). If we choose
the internal filtration of the whole process the compensator concerning Nk(t) takes the
form

Zk(t) =

∫ t

0

E(Nk(ds)|Ft−).

We now state a specified version for the component processes of local independence
by Didelez.

Definition 3.4 (Local Independence). Let N = (N1, . . . , Nd) be a multivariate point
process. We say that Na is locally independent of Nb, for a 6= b, given NV \{a,b} if
the Ft compensator Za is measurable with respect to F−bt for all t. We denote this by
Na 6→L Nb[NV ].

The key idea of local independence is, that if we reduce the whole filtration Ft to
F−bt , the compensator Za, which is a short-term prediction, remains unchanged.

In view of the linear structure of the conditional intensity function in the Hawkes
model, one would expect equivalence of the concepts of local and global noncausality
in this situation. This is the subject of the next theorem.
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Theorem 3.5. In the Hawkes model Nb 6→G Na[NV ] if and only if Nb 6→L Na[NV ].

Proof. We show Nb 6→L Na[NV ] if and only if γba ≡ 0 and hence by Theorem
3.2 the assertion. We obtain

Za(t) =

∫ t

0

E(Na(ds)|Ft−) =

∫ t

0

Λa(s) ds

=

∫ t

0

(
νa +

d∑
j=1

∫ ∞
0

γaj(u) dNj(s− u)
)
ds

= νat+
d∑
j=1

∫ t

0

∫ ∞
0

γaj(u) dNj(s− u)ds.

Therefore, Za(t) is measurable with respect to F−bt if and only if γba ≡ 0.

3.1.2 Weakly Instantaneously Causality

Florens and Fougere (1996) yield a similar definition for a certain type of noncausality as
the local independence concept, namely the weakly instantaneously causality. However,
this definition is formulated in a rather general context and in a slightly more technical
way. In their setting they consider Markov and counting processes as well as a very
general class of stochastic processes. The authors put the focus on the close relation
between causality and martingale properties of a stochastic process. Let F = (Ft)t∈I
be a filtration and zt a real-valued stochastic process adapted to F . Furthermore set
G = (Gt)t∈I to be a sub-σ field of F , which means Gt ⊂ Ft for all t ∈ I. We are ready
to state the definition of weakly instantaneously causality out of Florens and Fougere.

Definition 3.6 (Weakly Instantaneously Causality). Assume that zt is a semi-martingale
with respect to G = (Gt)t∈I , such that a decomposition zt = z0 +H∗t +M∗

t exists. Then
F does not weakly instantaneously cause zt given G, if zt remains a semi-martingale
with respect to F with the same decomposition.

Let us recapitulate this definition for our special setting:

Definition 3.7 (Weakly Instantaneously Causality). Let N = (N1, . . . , Nd) be a mul-
tivariate point process. Let F be the canonical filtration generated by N . Suppose
that Na is a special semi-martingale with respect to F−b , so that a decomposition
Na(t) = Na(0) + H∗t + M∗

t exists. Then Nb does not weakly instantaneously cause Na

given NV (Nb 6→WI Na[NV ]), if Na(t) remains a semi-martingale with respect to F with
the same decomposition (for all t ∈ I).

The proof of the next theorem is immediate.

Theorem 3.8. In the Hawkes model Na 6→WI Nb[NV ] if and only if Na 6→L Nb[NV ].
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In all of the latter concepts causality is explicitly expressed via the link functions
γab in the Hawkes model. One can therefore induce a causality graph structure. In this
graph there is no directed edge from a to b, if Na is noncausal for Nb, i.e. if γba ≡ 0. For
the inference of the causal structure two steps are necessary. We have to estimate the
Hawkes kernels nonparametrically and we have to derive the asymptotic distribution
of our estimator. The next section is devoted to the latter problem. The asymptotic
distribution can be used in future work to test if the Hawkes kernels are identically
equal to zero or not.

3.2 Nonparametric Estimation and Identification

Our approach for the estimation of the link function γ is via discretization and conse-
quently using methods from time series analysis. Again, as in section 3.1 we observe
a multi-dimensional point process N = (N(t) : t ∈ R) with component processes Ni,
1 ≤ i ≤ d, where d is the dimension of the process N . The conditional intensity func-
tion is once more given by (3.1) and (3.2), where the component functions of γ belong
to a nicely behaving but general class, that is specified later on in the section. Our
desire is to estimate the link functions of the Hawkes process nonparametrically, i.e.
we do not assume any parametric form of the link functions, e.g. an exponential form.
For the purpose of discretization define

yi∆,t := Ni((t+ 1) ·∆)−Ni(t ·∆),

F∆,t−1 := Ft·∆,

for all t ∈ Z, 1 ≤ i ≤ d and for any positive constant ∆. This is equivalent to dividing
the real line into intervals of width ∆. For every fixed ∆, y∆ represents a d-dimensional
time series displaying the number of jumps in time intervals of the form [t·∆, (t+1)·∆].
Thus, for ∆ small enough the random variables y∆,t are approximately binary. Notice
that the considered point processes are simple so that the probability that more than
one jump takes place in the interval [t, t + ∆] is of order o(∆). Additionally Hawkes
process is stochastically continuous. With these observations we may calculate

E[yi∆,t|F∆,t−1] = P(yi∆,t = 1 | F∆,t−1) + o(∆)

= P(Ni((t+ 1) ·∆)−Ni(t ·∆) = 1 | F∆,t−1) + o(∆)

=
[
νi +

d∑
j=1

∫ ∞
0

γij(s) dNj(t ·∆− s)
]
·∆ + o(∆)

=
[
νi +

d∑
j=1

∑
u∈N0

∫ (u+1)∆

u∆

γij(s) dNj(t ·∆− s)
]
·∆ + o(∆).
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The latter equation motivates a least squares approach for the nonparametric estima-
tion. In order to see this make the following observations or approximations. For ∆
small enough we can think of E[yi∆,t|F∆,t] ≈ yi∆,t and the component function of γ being
constant on the intervals [t∆, (t+ 1)∆] for t ∈ Z as well as o(∆) displaying some white
noise process. Then the latter computation gives us approximately the structure

y∆,t ≈ ∆ ν + ∆
∑
u∈N0

γ(∆u) y∆,t−u−1 + εt,

which is a regular infinite order regression problem and is known to be solvable by a
least squares approach (at least for a fixed ∆).

However, in our case it is more complicated so that we need to be exact and have a
closer look at the possible class of functions that we may handle properly with such an
approach. From an applicational point of view connected to e.g. EEG data as well as
from a mathematical point of view it is reasonable to assume that γij is directly Riemann
integrable and integrable with respect to the point process N for every 1 ≤ i, j ≤ d.
Furthermore, this implies

γij(t)→ 0 as t→∞,
γij(t) < C uniformly for all 1 ≤ i, j ≤ d and all t ∈ R

for some positive constant C > 0. Our strategy is to discretize the real line to approx-
imate the Hawkes process by some kind of infinite order regression. Then to obtain a
consistent estimator we use methods derived by Lewis and Reinsel (1985). For simplic-
ity we stick to the same notation as in Lewis and Reinsel (1985).

For this purpose define Γ∆(j) := E(y∆,ty
′
∆,t+j) = Γ∆(−j)′ to emphasize that the

y∆,t strongly depend on ∆ and therefore as well does Γ.
We set Γ′1,k,∆ := (Γ∆(1)′, . . . ,Γ∆(k)′). Note that this is a (d× dk) matrix. Also set

Γk,∆ to be the (dk × dk) matrix whose (m,n)th (d× d) block of elements is
Γ∆(m− n) , m,n = 1, . . . , k.
Suppose now that we observe the realizations y∆,1, . . . , y∆,T . Without loss of generality
we assume that y∆,1, . . . , y∆,T are centered. If this is not the case, we initially center

the data by subtracting ∆ȳ := ∆T−1
∑T

t=1 y1,t. It is well known that the sample mean
converges in probability to the population mean. We notice carefully that T is not the
observation time but the number of observed time slots. The observation time itself
equals T ·∆. We define our estimator as

γ̂k =
(
γ̂k(0), γ̂k(∆), . . . , γ̂k((k − 1)∆)

)
:= Γ̂′1,k,∆ Γ̂−1

k,∆

1

∆
,

where Γ̂1,k,∆ := (T − k)−1
∑T−1

t=k Y∆,t,k y
′
∆,t+1, Γ̂k,∆ := (T − k)−1

∑T−1
t=k Y∆,t,k Y

′
∆,t,k and

Y∆,t,k = (y′∆,t, . . . , y
′
∆,t−k+1)′ which is a column vector of length dk.

With these definitions we are able to derive the desired asymptotic results for γ̂k.
Therefor we denote by ‖B‖2 := tr(B′B) the Frobenius norm and by ‖B‖2

1 := λmax(B′B)
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the spectral or operator norm. For the proof of the following main theorem we remind
ourselves of the inequalities

‖AB‖2 ≤ ‖A‖2
1‖B‖2 and ‖AB‖2 ≤ ‖A‖2‖B‖2

1,

as well as ‖A‖1 ≤ ‖A‖ ≤
√
r‖A‖1, where r is the rank of A. Furthermore the Frobenius

norm is sub-multiplicative.

Theorem 3.9. For k ≥ 1 define γk := (γ(0), γ(∆), . . . , γ((k − 1)∆)) and make the
following assumptions:

1. Let k and ∆ be functions of T such that

k∆→∞ and T−1k
2

∆
→ 0

as T →∞.

2. We demand the stability condition
∥∥∥ ∫∞0 γ(u)du

∥∥∥
1
< 1.

3. The component functions of γ decrease in a way such that

k1/2

∞∑
j=k

‖γ(∆j)‖ → 0

as T →∞.

4. ∆2 k → 0 as T →∞.

Then our estimator is consistent in the sense

∆ ‖γ̂k − γk‖
p→ 0 as T →∞.

Proof. First of all we realize, that assumption 2 assures the stationarity of the
mutually exciting process. Moreover we observe as in Lewis and Reinsel (1985) the
useful relation

γ̂k − γk = Γ̂′1,k,∆ Γ̂−1
k,∆

1

∆
− γk Γ̂k,∆ Γ̂−1

k,∆

=
(
Γ̂′1,k,∆ −∆γk Γ̂k,∆

)
Γ̂−1
k,∆

1

∆

=
(

(T − k)−1

T−1∑
t=k

y∆,t+1Y
′

∆,t,k −∆γk(T − k)−1

T−1∑
t=k

Y∆,t,kY
′

∆,t,k

)
Γ̂−1
k,∆

1

∆

=
(

(T − k)−1

T−1∑
t=k

(
y∆,t+1 −∆γkY∆,t,k

)
Y ′∆,t,k

)
Γ̂−1
k,∆

1

∆

=
(

(T − k)−1

T−1∑
t=k

ε∆,t+1,kY
′

∆,t,k

)
Γ̂−1
k,∆

1

∆
,
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where ε∆,t,k := y∆,t −
∑k−1

j=0 ∆γ(∆j) y∆,t−j−1.
Thus, we find

∆‖γ̂k − γk‖ ≤ ‖∆Γ̂−1
k,∆‖1

(
‖U1T‖+ ‖U2T‖+ ‖U3T‖+ ‖U4T‖

)
,

with

U1T : = (T − k)−1

T−1∑
t=k

( ∞∑
u=k

γ(∆u)y∆,t−u

)
Y ′∆,t,k

U2T : = (T − k)−1

T−1∑
t=k

(y∆,t+1 − E[y∆,t+1|F∆,t]

∆

)
Y ′∆,t,k

U3T : = (T − k)−1

T−1∑
t=k

ω Y ′∆,t,k where ω = ν − λ

U4T : = (T − k)−1

T−1∑
t=k

(∫ ∞
0

γ(u)dN(t∆− u)−
∞∑
j=0

γ(∆j)y∆,t−j

)
Y ′∆,t,k,

where N is here meant to be the centered point process.
First we find

∆‖Γ̂−1
k,∆‖1 ≤ ∆‖Γ−1

k,∆‖1 + ∆‖Γ̂−1
k,∆ − Γ−1

k,∆‖1.

We now show that the first summand in the latter inequality is an O(1/∆). In
order to prove that fact we realize that Γk,∆ is a block Toeplitz matrix for all fixed ∆.
Upper bounding the spectral radius of ∆Γ−1

k,∆ for all k,∆ is equivalent to bounding the
smallest eigenvalue of 1/∆Γk,∆ away from zero for all k,∆. It is well known that this
can be translated to the world of the respective spectral density generating the block
Toeplitz matrix. To recapitulate this denote for any fixed ∆ the spectral density of y∆

by fy,∆. Let ρ be the function that maps a matrix onto its smallest eigenvalue. If

inf
ω
ρ
(
fy,∆(ω)

)
> C > 0,

then the smallest eigenvalue of 1/∆Γk,∆ is bounded away from zero for all k. This
yields for our situation that we need to show

inf
∆

inf
ω
ρ(fy,∆(ω)

)
> C > 0

in order to obtain ∆‖Γ−1
k,∆‖1 < κ for all k,∆ for some constant κ > 0. Since the point

process is stationary we have with the notation of Hawkes

cov
(
dN(s), dN(t)

)
= µ(s− t) dsdt+D δ{s=t}ds := µ(c)(s− t) dsdt

and for the spectral density matrix

f(ω) =
1

2π

∫ ∞
−∞

e−iωτµ(c)(τ) dτ = M(ω) +
1

2π
D.
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Under suitable regularity assumptions we have the inverse Fourier-transform

µ(τ) =

∫ ∞
−∞

eiωτ M(ω) dω.

Hawkes proves

f(ω) =
1

2π
{I −G(ω)}−1D {I −G′(−ω)}−1.

Since y∆,t is stationary we have

c∆(j) := cov
(
y∆,j , y∆,0

)
=

∫ ∆

0

∫ (j+1)∆

j∆

cov
(
dN(s), dN ′(t)

)
ds dt

=

∫ ∆

0

∫ (j+1)∆

j∆

∫ ∞
−∞

eiω(s−t) M(ω) dω ds dt+ ∆D δj.

Since
∫ ∆

0
e−iωtdt = ∆ +O(∆2) we obtain

c∆(j) = ∆2

∫ ∞
−∞

eiωj∆ M(ω) dω + ∆D δj

= ∆

∫ ∞
−∞

eiλjM
( λ

∆

)
dλ+ ∆D δj

= ∆

∫ π

−π
eiλj

∞∑
`=−∞

M
(λ+ 2π`

∆

)
dλ+ ∆D δj.

This implies that the spectral density matrix of the process y∆,t is

fy,∆(λ) = ∆
∞∑

`=−∞

M
(λ+ 2π`

∆

)
+

1

2π
∆D

Since M(λ) is positive definite for all λ we have that the minimal eigenvalue of fy,∆(λ)
is larger than the minimal eigenvalue of 1

2π
∆D which is 1

2π
∆ mini∈{1,...,d} λi > 0. Hence,

it holds that ∆‖Γ−1
k,∆‖1 < κ for all k and all ∆ for some κ > 0.

Remark 3.10. Under suitable regularity conditions (e.g. exponential decay of M) we
have

lim
∆→0

1

∆
fy,∆(λ) = M(0) δ{λ=0} +

1

2π
D.

This means that the above lower bound is ‘optimal’ for λ 6= 0 and ‘rate optimal’ for
λ = 0.

We claim, that the second summand of the inequality, ∆‖Γ̂−1
k,∆ − Γ−1

k,∆‖1, converges

to zero in probability as T →∞. For that purpose note that ‖Γ̂k,∆− Γk,∆‖1
p→ 0 since

E
(
‖Γ̂k,∆ − Γk,∆‖2

1

)
≤ E

(
‖Γ̂k,∆ − Γk,∆‖2

)
= E

[
tr
((

Γ̂k,∆ − Γk,∆
)′(

Γ̂k,∆ − Γk,∆
))]

≤ C2
k2

T − k
E
((
y′∆,1y∆,1

)2)
,

29



which converges to zero as T → ∞ according to assumption 1. Do note that

E
((
y′∆,1y∆,1

)2)
= o(1) as ∆→ 0. Therefore we find

∆‖Γ̂−1
k,∆ − Γ−1

k,∆‖1 = ∆ ‖Γ̂−1
k,∆ (Γ̂k,∆ − Γk,∆) Γ−1

k,∆‖1

≤ ∆ ‖Γ̂−1
k,∆‖1 ‖Γ̂k,∆ − Γk,∆‖1 ‖Γ−1

k,∆‖1

≤ ∆
(
‖Γ̂−1

k,∆ − Γ−1
k,∆‖1 + ‖Γ−1

k,∆‖1

)
‖Γ−1

k,∆‖1 ‖Γ̂k,∆ − Γk,∆‖1

≤
(
∆ ‖Γ̂−1

k,∆ − Γ−1
k,∆‖1 + κ

)
κ ‖Γ̂k,∆ − Γk,∆‖1/∆.

Now we have

0 ≤ Zk,∆,T = ∆‖Γ̂−1
k,∆ − Γ−1

k,∆‖1/
(
∆‖Γ̂−1

k,∆ − Γ−1
k,∆‖1 + κ

)
κ

≤ ‖Γ̂k,∆ − Γk,∆‖1/∆
p→ 0 as T →∞,

due to assumption 4.55. Additionally, we obtain

∆‖Γ̂−1
k,∆ − Γ−1

k,∆‖1 =
κ2 ∆ ‖Γ̂−1

k,∆ − Γ−1
k,∆‖1(

∆ ‖Γ̂−1
k,∆ − Γ−1

k,∆‖1 + κ
)
κ− κ∆ ‖Γ̂−1

k,∆ − Γ−1
k,∆‖1

=
κ2 Zk,∆,T

1− κZk,∆,T
.

Thus, this yields that also ∆‖Γ̂−1
k,∆ − Γ−1

k,∆‖1
p→ 0 as T →∞.

We proceed in showing that each UiT , 1 ≤ i ≤ 4, converges to zero in probability.
For this purpose it suffices to show that the expected values of the corresponding norms
vanish (Markov inequality). Examining U1T we find

E(‖U1T‖) ≤ (T − k)−1

T−1∑
t=k

E
(∥∥∥ ∞∑

u=k

γ(∆u)y∆,t−uY
′

∆,t,k

∥∥∥)
≤
{
E
(∥∥∥ ∞∑

u=k

γ(∆u)y∆,t−u

∥∥∥2)}1/2

{E(‖Y∆,t,k‖2)}1/2

≤ {k · tr(Γ∆(0))}1/2
{ ∞∑

i=k

∞∑
j=k

‖Γ∆(i− j)‖‖ γ(∆i)‖‖ γ(∆j)‖
}1/2

≤ Ck1/2

∞∑
j=k

‖γ(∆j)‖,

which converges to zero in probability according to assumption 3. For the second
summand we obtain
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E
(
‖U2T‖2

)
= (T − k)−2E

(∥∥∥ T−1∑
t=k

(y∆,t+1 − E[y∆,t+1|F∆,t]

∆

)
Y ′∆,t,k

∥∥∥2)
= (T − k)−2 1

∆2

T−1∑
t=k

T−1∑
s=k

E
[(
y∆,t+1 − E[y∆,t+1|F∆,t]

)′
×
(
y∆,s+1 − E[y∆,s+1|F∆,s]

)
Y ′∆,t,kY∆,s,k

]
= (T − k)−2 1

∆2

∑
t=s

E
[(
y∆,t+1 − E[y∆,t+1|F∆,t]

)′
×
(
y∆,s+1 − E[y∆,s+1|F∆,s]

)
Y ′∆,t,kY∆,s,k

]
≤ C(T − k)−1 k

∆2
.

Therefore, U2T converges to zero in probability according to assumption 1.

For U3T observe

E
(∥∥∥U3T

∥∥∥2)
= E

(
tr

([
(T − k)−1

T−1∑
t=k

ωY ′∆,t,k

]′[
(T − k)−1

T−1∑
t=k

ωY ′t,k

]))

= (T − k)−2E

(
tr

([ T−1∑
t=k

ωY ′∆,t,k

]′[ T−1∑
t=k

ωY ′∆,t,k

]))

= ω′ω(T − k)−2

T−1∑
t=k

T−1∑
s=k

E

(
Y ′∆,t,kY∆,s,k

)

= k · ω′ω · (T − k)−2

T−1∑
t=k

T−1∑
s=k

tr
(
Γ∆(t− s)

)
≤ k · ω′ω · (T − k)−2

T−1∑
t=k

∞∑
s=−∞

tr
(
Γ∆(t− s)

)
≤ C · k · (T − k)−1

which again converges to zero in probability by assumption 1. For the last inequal-
ity we notice, that for all ∆ < 1,

∑∞
s=−∞ tr

(
Γ∆(t − s)

)
is uniformly bounded by∑∞

s=−∞ tr
(
Γ1(t− s)

)
.

Finally we find for U4T
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(
E
(
‖U4T‖2

))2

≤ C1 k∆E
∥∥∥ ∞∑
j=0

∫ ∆(j+1)

∆j

(γ(u)− γ(∆j)) dN(t∆− u)
∥∥∥2

= C1 k∆
∞∑
j=0

∞∑
k=0

∫ ∆(j+1)

∆j

∫ ∆(k+1)

∆k

tr
[
(γ(u)− γ(∆j))′(γ(v)− γ(∆k))

]
× E

[
dN(t∆− v)′ dN(t∆− u)

]
= C1 k∆

∞∑
j=0

∞∑
k=0

∫ ∆(j+1)

∆j

∫ ∆(k+1)

∆k

tr
[
(γ(u)− γ(∆j))′(γ(v)− γ(∆k))

]
× tr

[
µ(c)(u− v)

]
d(t∆− v) d(t∆− u)

= C1 k∆
∞∑
j=0

∞∑
k=0

∫ ∆

0

∫ ∆

0

tr
[
(γ(u+ ∆ j)− γ(∆j))′(γ(v + ∆ k)− γ(∆k))

]
× tr

[
µ(c)(u− v + ∆(j − k))

]
d(t∆− v − k∆) d(t∆− u− j∆)

≤ C2 k∆3,

which converges to zero in probability by assumption 4.
Putting all factors and summands as well as the inequalities together it falls out

nicely that

‖γ̂k − γk‖
p→ 0 as T →∞.

After having proved our main Theorem we discuss the made assumptions. Assump-
tion 1, T−1 k2

∆
→ 0 as T → ∞, tells us that the number of observed slots T has

to be much larger than the width of the slots and the finite regression order k, i.e.
T >> 1/∆ and T >> k. We may also reformulate assumption 1 by k2

T̃
→ 0 as T̃ →∞,

where T̃ = ∆T is the observation time. Furthermore k∆→∞ assures that the infinite
integrals and sums converge. The second assumption ‖

∫∞
0
γ(u)du‖ < 1 is a standard

stability condition for any infinite order regression to make the process stationary and
to establish that the autocovariances are absolutely summable with respect to the cor-
responding norm. Assumption 3 is some kind of lower bound for the convergence rate
of the norm of γ to zero. It tells us that the link functions have to decrease quickly.

The next theorem generalizes Theorem 3.9 to a functional convergence. Therefor
we set γ̃T to be the step function defined by

γ̃T (s) =
k∑

u=1

I[∆(u−1),∆u)(s)γ̂
k(∆(u− 1)).

Theorem 3.11. Under the assumptions of Theorem 3.9 it holds∫
R
‖γ(s)− γ̃T (s)‖ds p→ 0 as T →∞.
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Proof. Decomposing the integral into the approximation error and the estimation
error we find

∫
R
‖γ(s)− γ̃T (s)‖ds =

∫ ∆k

0

‖γ(s)− γ̃T (s)‖ds+

∫ ∞
∆k

‖γ(s)− γ̃T (s)‖ds

=
k∑

u=1

∫ ∆u

∆(u−1)

‖γ(s)− γ̃T (s)‖ds+

∫ ∞
∆k

‖γ(s)‖ds

=
k∑

u=1

∫ ∆u

∆(u−1)

‖γ(s)− γ(∆(u− 1))‖ds+ ∆‖γ̂k − γk‖+

∫ ∞
∆k

‖γ(s)‖ds,

where the first and third summand converge to zero according to integrability con-
ditions and the second summand converges to zero in probability by Theorem 3.9.

Figure 1 illustrates our estimation procedure based on simulated data. To simu-
late the three dimensional Hawkes process we used a Lewis simulation method. The
true link functions, given by the dashed lines, were taken to have the form γij(s) =
αij exp(−βij s) for 1 ≤ i, j ≤ 3 with different coefficients. In total we recorded ap-
proximately five thousand events. We chose ∆ = 0.05 and k = 20 as our discretization
parameters. The solid lines are the outcome of our estimation technique.

Notice that we have estimated the link functions separately from the constant vector
ν. This is intuitively possible due to the fact, that the least squares estimator estimates
the function or parameters that concern the covariance structure of the process. How-
ever, ν displays the Poisson amount of the component processes. Hence, this part is
”independent” of the covariance structure. Having estimated the link functions we may
also estimate ν in the stationary setting via the well known relation (see (3.3))

ν = (Id −G)λ,

where G :=
∫∞
−∞ γ(t)dt. This is a nice side result, however, since ν is a component

that has no causal influence, it is not of importance for establishing causality graphs.

Corollary 3.12. Define ν̂ = (Id − ĜT ) λ̂, where ĜT :=
∫ k∆

0
γ̃T (s)ds and

λ̂ = T−1
∑T

t=1 y1,t. Then with the assumptions of Theorem 3.9 it holds

ν̂
p→ ν as T →∞.

Proof. Follows directly by Theorem 3.9 and Slutsky’s theorem.

We now turn to the derivation of asymptotic normality of our estimator. In the
following vec(·) denotes the vec-operator and A⊗B the Kronecker product of matrices
A and B with suitable dimensions.
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Figure 1: Estimation of the Hawkes link functions based on simulated data. The solid
line displays the estimated values and the dashed lines the real link functions.

Theorem 3.13. Make the following assumptions:

1. Let k and ∆ be functions of T such that

k∆→∞ and T−1k
3

∆
→ 0

as T →∞.

2. We demand the stability condition
∥∥∥ ∫∞0 γ(u)du

∥∥∥
1
< 1.

3. The component functions of γ decrease in a way such that

T 1/2

∞∑
j=k

‖γ(∆j)‖ → 0

as T →∞.

4. T 1/2
(
E
∥∥∥ ∫∞0 γ(u)dN(t∆− u)−

∑∞
j=0 γ(∆j)y∆,t−j

∥∥∥2)1/2

→ 0 as T →∞ .

5. A sequence of (kd2 × 1) vectors, {l(k)} is given satisfying

0 < C1 ≤ ‖l(k)‖2 ≤ C2 <∞ for k = 1, 2, . . .
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Then

(T−k)1/2∆l(k)′vec(γ̂k − γk)

− (T − k)1/2∆l(k)′vec
({

(T − k)−1

×
T−1∑
t=k

(y∆,t+1 − E[y∆,t+1|F∆,t]

∆
+ ω

)
Y ′∆,t,k

}
Γ−1
k,∆

)
p→ 0

as T →∞.

Proof.

Observe the following computation:

(T−k)1/2∆l(k)′vec(γ̂k − γk)

− (T − k)1/2∆l(k)′vec
({

(T − k)−1

T−1∑
t=k

(y∆,t+1 − E[y∆,t+1|F∆,t]

∆
+ ω

)
Y ′∆,t,k

}
Γ−1
k,∆

)
= (T − k)1/2∆l(k)′

{
vec
[ 4∑
i=1

UiT Γ̂−1
k,∆

]
− vec

[
U2TΓ−1

k,∆

]
− vec

[
U3TΓ−1

k,∆

]}
= (T − k)1/2∆l(k)′

{ 4∑
i=1

Id ⊗ (Γ̂−1
k,∆ − Γ−1

k,∆)vec[UiT ] +
∑
i=1,4

Id ⊗ Γ−1
k,∆vec[UiT ]

}
=

4∑
i=1

wiT +
∑
i=1,4

viT ,

where wiT and viT are defined in the obvious way. First we notice for i = 1, . . . , 4

|wiT | ≤ ‖l(k)‖k1/2∆‖Γ̂−1
k,∆ − Γ−1

k,∆‖1‖k−1/2(T − k)1/2UiT‖.

Following the arguments of the proof of Theorem 3.9 it holds that k1/2∆‖Γ̂−1
k,∆ −

Γ−1
k,∆‖1

p→ 0. Hence, again using the same methods as in the proof of Theorem 3.9
we obtain
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|w1T | ≤ ‖l(k)‖ k1/2 ∆ ‖Γ̂−1
k,∆ − Γ−1

k,∆‖1C (T − k)1/2

∞∑
j=k

‖γ(∆j)‖,

|w2T | ≤ ‖l(k)‖ k1/2 ∆ ‖Γ̂−1
k,∆ − Γ−1

k,∆‖1
1

∆

∞∑
s=k

E
(

(y′∆,t+1 y∆,s+1)2
)
,

|w3T | ≤ ‖l(k)‖ k1/2 ∆‖Γ̂−1
k,∆ − Γ−1

k,∆‖1C,

|w4T | ≤ ‖l(k)‖ k1/2 ∆ ‖Γ̂−1
k,∆ − Γ−1

k,∆‖1C (T − k)1/2

×
[
E
(∥∥∥∫ ∞

0

γ(u) dN(t∆− u)−
∞∑
j=0

γ(∆j) y∆,t−j

∥∥∥2)]1/2

.

Therefore, |wiT |
p→ 0 for all 1, . . . , 4 (|w1T |, |w2T | by assumption 3 and |w4T | by as-

sumption 4).
Furthermore, for the remaining summands we find

|v1T | ≤ (T − k)−1/2 d1/2 ∆
∥∥∥ T−1∑
t=k

( ∞∑
u=k

γ(∆u)y∆,t−u

)
l(k)′(Γ−1

k,∆Y∆,t,k)⊗ Id
∥∥∥

≤ C (T − k)1/2M2 κ
∞∑
j=k

‖γ(∆j)‖ p→ 0 as T →∞,

due to assumption 3, where κ is the uniform bound of ‖∆Γ−1
k,∆‖1 and analogously

|v4T | ≤ (T − k)−1/2 d1/2 ∆

×
∥∥∥ T−1∑
t=k

(∫ ∞
0

γ(u)dN(t∆− u)−
∞∑
j=0

γ(∆j)y∆,t−j

)
l(k)′(Γ−1

k,∆Y∆,t,k)⊗ Id
∥∥∥

≤ C(T − k)1/2M2κ
(
E
∥∥∥∫ ∞

0

γ(u)dN(t∆− u)−
∞∑
j=0

γ(∆j)y∆,t−j

∥∥∥2)1/2 p→ 0,

as T →∞ due to assumption 4. Thus, the proof is complete.
The next theorem establishes asymptotic normality of the modified score function

of the last theorem.

Theorem 3.14. Define

sT = (T − k)1/2∆l(k)′vec
({

(T − k)−1

T−1∑
t=k

(y∆,t+1 − E[y∆,t+1|F∆,t]

∆
+ ω

)
Y ′∆,t,k

}
Γ−1
k,∆

)
and

v2
T = V ar(sT ).
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Then under the assumptions of Theorem 3.13 it holds

sT
vT

D→ N (0, 1) as T →∞.

Proof. First we notice that

V ar(sT ) =(T − k)−1 ∆2

T−1∑
t=k

T−1∑
s=k

l(k)′ (Id ⊗ Γ−1
k,∆)

× E
[
vec
((y∆,t+1 − E[y∆,t+1|F∆,t]

∆
+ ω

)
Y ′∆,t,k

)
× vec

((y∆,s+1 − E[y∆,s+1 | F∆,s]

∆
+ ω

)
Y ′∆,s,k

)′]
(Id ⊗ Γ−1

k,∆)l(k).

For explicit expressions for the covariance structure see Bacry, et al. (2012).
Define for k + 1 ≤ t ≤ T

Xt(T ) = (T − k)−1/2 ∆ l(k)′
(

Γ−1
k,∆Y

′
∆,t−1,k ⊗ Id

)(y∆,t − E[y∆,t|F∆,t−1]

∆
+ ω

)
/vT

and set Xt(T ) = 0 for 0 ≤ t ≤ k. Then we can rewrite sT/vT =
∑T

t=1Xt(T ). By the
structure of the latter term (e.g. by Doob-Meyer decomposition) we immediately find
that (Sn(T ) =

∑n
t=1 Xt(T ), 0 ≤ n ≤ T a.e. is a martingale sequence for every fixed

T ≥ 1. Thus, we have to prove asymptotic normality for a triangular array. Theorem
2 of Scot (1973) gives sufficient conditions for the convergence of the triangular array

in the sense st/vT
D→ N (0, 1). Here we want to derive conditions (C) of Theorem 2 in

Scot (1973), namely

(a) sup
t≤T

X2
t (T )

p→ 0 asT →∞,

(b)

nT (τ)∑
t=1

X2
t (T )

p→ τ, 0 ≤ τ ≤ 1, asT →∞,

where nT (τ) = maxn≤T{n : E[(
∑n

t=1Xt(T ))2] ≤ τ}. For (a) notice that for any
δ > 0

P
(

sup
t≤T

X2
t (T ) ≥ δ

)
≤

T∑
t=k+1

P(X2
t (T ) ≥ δ) ≤ δ−2(T − k)E(X4

t (T ))

≤ (T − k)−1 ‖l(k)‖4
(
∆ ‖Γ−1

k,∆‖
)4
v−4
t ×{

E
(∥∥∥y∆,t+1 − E[y∆,t+1|F∆,t]

∆
+ ω

∥∥∥8)}1/2 {
‖Y∆,t−1,k‖8

}1/2

≤ C ∆−1 (T − k)−1 k2 E
((
y′∆,t y∆,t

)4)
,
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which converges to zero as T →∞ due to Assumption 1. Condition (b) can be verified
in analogous fashion to the proof of Theorem 3 in Lewis (1985) by Assumption 1.

Finally asymptotic normality of our estimator is an immediate consequence of the
latter theorem.

Corollary 3.15. With the assumptions of Theorem 3.14 it holds

(T − k)1/2∆l(k)′vec
(
γ̂k − γk

)
/ vT → N (0, 1) as T →∞.

In future work it would be desirable to develop a test based on the latter asymptotic
behavior to decide whether an estimated link function is believed to be identically equal
to zero or not.

3.3 Application

As an application we analyzed spike train data from the lumbar spinal dorsal horn of
a pentobarbital-anaesthetised rat during noxious stimulation. The firing times of ten
neurons were recorded simultaneously by a single electrode with an observation time
of 100s. The data have been measured and analyzed by Sandkühler and Eblen-Zajjur
(1994) who studied discharge patterns of spinal dorsal horn neurons under various
conditions.
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Figure 2: Estimated link functions of Hawkes model based on spike train data.

As an underlying model it is reasonable to choose Hawkes model, since it reflects
the mutually exciting structure of neurons dependent on time. Hence, we estimated the
Hawkes kernels with the presented estimation procedure (Figure 2). As discretization
parameters we set ∆ = 0.5 and k = 20. We can clearly see that most of the 100
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link functions vanish and only few show significant peaks. To statistically significantly
decide whether the link functions vanish or not a test has to be constructed in future
work. As we have seen a causality graph is induced by the estimated link functions,
which is displayed in Figure 3. It is remarkable, that neuron nine is completely isolated
from the other neurons.

Excitatory connection

6

1

2

3

5

9

4

87 10

Figure 3: Causality Graph induced by estimated link functions of Hawkes model based
on spike train data.

Furthermore Figure 2 shows, that if there is a peak, then shape, time and intensity
behave very similarly. The time instants of the peaks happen roughly around 17 ms
with an intensity of approximately 0.38.

Hawkes model has two drawbacks in this application. First it is only capable of
modeling excitement, not inhibition, which is well known to play a major role in neu-
ronal data. Secondly neurons possess a refractory period. Thus, a neuron inhibits itself
after having fired. As a consequence negative correlations appear and Hawkes model
fails to catch this phenomenon. Hence, we observe in Figure 2 that link functions on
the diagonal become negative in contradiction to Hawkes model. On the other hand
incorporating refractory period into the model would destroy its linear structure.

However, in many different applications such as modeling aftershock effects (Ogata,
1999; Vere-Jones, 1970 and Vere-Jones and Ozaki, 1982), insurgency in Iraq (Brant-
ingham, et al. 2011), crime (Mohler et al. 2011) or genome analysis (Reynaud-Bouret
and Schbath 2010), the Hawkes model does not encounter these problems.
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4 Distance Correlation

In this section we introduce the new dependence measure of distance correlation. We
state its most important properties and explain why it makes sense in certain situations
to make the transition from usual distance correlation to affinely invariant distance
correlation. Therefore, we define affinely invariant distance correlation and show that
in the Gaussian case it is a function of the canonical correlation coefficients. Moreover,
we derive explicit formulas for distance correlation for Lancaster distributions.

4.1 Definition and Properties

In this section we follow the revolutionizing papers by Székely, Rizzo and Bakirov
(2007) and Székely and Rizzo (2009). We state the definition of distance correlation
and recapitulate their most important results. Distance correlation is a new measure
for classical stochastic independence between random variables of arbitrary dimensions
with finite first moments in the usual sense, that the characteristic function of the
joint distribution splits up into the product of the marginal characteristic functions.
Specifically, let p and q be positive integers that will represent the dimensions of the
corresponding random variables. For jointly distributed random vectors X ∈ Rp and
Y ∈ Rq, let

fX,Y (s, t) = E exp
[
i 〈s,X〉p + i 〈t, Y 〉q

]
be the joint characteristic function of (X, Y ), and let fX(s) = fX,Y (s, 0) and fY (t) =
fX,Y (0, t) be the marginal characteristic functions of X and Y , where s ∈ Rp and t ∈ Rq.
Then an obvious natural choice for a dependence measure would be of the form

V2(X, Y, ω) =

∫
Rp+q

|fX,Y (s, t)− fX(s)fY (t)|2 ω(s, t) ds dt, (4.1)

where |z| denotes the modulus of z ∈ C. This definition leads to a family of distance
covariances and then to a definition of distance correlations analogously to classical
product moment correlations, that heavily depend on the choice of the weight function
ω. Székely, Rizzo and Bakirov (2007) point out that they are only interested in scale
invariant nonnegative distance correlations. Furthermore, the authors show that the
weight function ω should not be integrable, since otherwise

lim
ε→0

V2(εX, εY ;ω)√
V2(εX, εX;ω)V2(εY, εY ;ω)

= ρ2(X, Y ).

This would imply that distance correlation for dependent but uncorrelated random
variables could be arbitrarily close to zero. On the other hand a weight function ω
is needed that allows for a simple consistent estimator. Otherwise one would have to
deal with estimating high-dimensional integrals using e.g. numerical methods which
seems unsatisfying. The striking result of Székely, Rizzo and Bakirov (2007) is that
they find a weight function ω such that the sample distance correlation is of a very
simple form. The following lemma is the crucial integral observation and the basis of
distance covariance and the whole distance correlation calculus.
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Lemma 4.1. (Székely, Rizzo and Bakirov, p. 2771) Suppose that 0 < α < 2. Then for
all x ∈ Rd ∫

Rd

1− cos〈t, x〉d
|t|d+α
d

= C(d, α)|x|αd , (4.2)

where

C(d, α) =
2πd/2 Γ(1− α/2)

α 2α Γ
(
(d+ α)/2

) .
The integrals in the neighborhood of 0 and ∞ are meant in the principal value sense:
limτ→0+

∫
Rd\{εB+ε−1Bc}, where B is the unit ball centered at 0 in Rk and Bc = Rd \B is

the complement of B.

In section 5 we will generalize this integral. Indeed, it is not necessary to use any
regularization method for the integral to converge. The term 1 − cos〈t, x〉d acts as a
natural regularizer. Therefore, the authors choose as a canonical weight function

ω(s, t) = (cpcq|s|p+1
p |t|q+1

q )−1,

where cp = C(p, 1). Then, they show, that the integral in (4.1) is well defined as long as
the first moments of X and Y , respectively, exist, which finally leads to the definition
of distance covariance.

Definition 4.1. (Székely, Rizzo and Bakirov, p. 2772) The distance covariance between
random vectors X and Y with finite first moments is the nonnegative number V(X, Y )
defined by

V2(X, Y ) =
1

cpcq

∫
Rp+q

|fX,Y (s, t)− fX(s)fY (t)|2

|s|1+p
p |t|1+q

q

ds dt

and distance variance is then just defined as V2(X,X).

Now, distance correlation is defined analogously to classical product moment corre-
lation.

Definition 4.2. (Székely, Rizzo and Bakirov, p. 2773) The distance correlation between
random vectors X and Y with finite first moments is the nonnegative number R(X, Y )
defined by

R(X, Y ) =
V(X, Y )√

V(X,X)V(Y, Y )
(4.3)

if both V(X,X) and V(Y, Y ) are strictly positive, and defined to be zero otherwise.

For distributions with finite first moments, the distance correlation characterizes in-
dependence in that 0 ≤ R(X, Y ) ≤ 1 with R(X, Y ) = 0 if and only if X and Y are
independent. We now review the sample versions of the standard distance covariance
and distance correlation. Given a random sample (X1, Y1), . . . , (Xn, Yn) from jointly
distributed random vectors X ∈ Rp and Y ∈ Rq, we set

X = [X1, . . . , Xn] ∈ Rp×n and Y = [Y1, . . . , Yn] ∈ Rq×n.

42



An ad hoc way of introducing a sample version of distance covariance is to let

fnX,Y (s, t) =
1

n

n∑
j=1

exp
[
i〈s,Xj〉p + i〈t, Yj〉q

]
be the corresponding empirical characteristic function, and to write fnX(s) = fnX,Y (s, 0)
and fnY (t) = fnX,Y (0, t) for the respective marginal empirical characteristic functions.
The sample distance covariance then is the nonnegative number Vn(X,Y ) defined by

V2
n(X,Y ) =

1

cpcq

∫
Rp+q

|fnX,Y (s, t)− fnX(s)fnY (t)|2

|s|1+p
p |t|1+q

q

ds dt.

Székely, et al. (2007), in a tour de force, showed that

V2
n(X,Y ) =

1

n2

n∑
k,l=1

AklBkl, (4.4)

where

akl = |Xk −Xl|p, āk· =
1

n

n∑
l=1

akl, ā·l =
1

n

n∑
k=1

akl, ā·· =
1

n2

n∑
k,l=1

akl,

and
Akl = akl − āk· − ā·l + ā··,

and similarly for bkl = |Yk − Yl|q, b̄k·, b̄·l, b̄··, and Bkl, where k, l = 1, . . . , n. Thus, the
squared sample distance covariance equals the average entry in the component wise
or Schur product of the centered distance matrices for the two variables. The sample
distance correlation then is defined by

Rn(X,Y ) =
Vn(X,Y )√

Vn(X,X)Vn(Y ,Y )
, (4.5)

if both Vn(X,X) and Vn(Y ,Y ) are strictly positive, and defined to be zero otherwise.
Székely, Rizzo and Bakirov (2007) show that the sample distance covariance and the
sample distance correlation are strongly consistent estimators with 0 ≤ Rn ≤ 1 and if
Rn(X,Y ) = 1, then there exists a vector a, a nonzero real number b and an orthogonal
matrix C such that Y = a+bXC. Another crucial property of the distance correlation
is that it is invariant under transformations of the form

(X, Y ) 7−→ (a1 + b1C1X, a2 + b2C2Y ), (4.6)

where a1 ∈ Rp and a2 ∈ Rq, b1 and b2 are nonzero real numbers, and the matrices
C1 ∈ Rp×p and C2 ∈ Rq×q are orthogonal. One further major achievement of the paper
is a hypothesis test for independence based on a test statistic consisting of sample
distance covariance components. Computer code for calculating these sample versions
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and for applying the test for independence is available in an R package (energy package)
by Rizzo and Székely (2011).

One problem concerning distance correlation is that it lacks physical interpreta-
tion. The sample distance correlation is very simple but distance correlation on the
population side is complicated. One does not know exactly what the sample distance
correlation even estimates. Therefore, it is of great value to understand distance cor-
relation for standard distributions as functions of the parameters of the distributions.
Székely, Rizzo and Bakirov (2007, p. 2785) take the first step into that direction, that
we pursue in the next sections.

Theorem 4.2. If X and Y are standard normal with correlation ρ, then

1. R(X, Y ) ≤ |ρ|,

2. R2(X, Y ) =
ρ arcsin ρ+

√
1−ρ2−ρ arcsin ρ/2−

√
4−ρ2+1

1+π/3−
√

3
,

3. limρ→0
R(X,Y )
|ρ| = 1

2(1+π/3−
√

3)1/2
≈ 0.89066.

Now we discuss an alternative distance correlation, the so called affinely invariant
distance correlation, Dueck, et al. (2014), and compute affinely invariant distance
correlation for the multivariate Gaussian distribution. Furthermore, we derive explicit
formulas for distance correlation for Lancaster distributions and generalize the integral
in (4.2).

4.2 Affinely Invariant Distance Correlation for the Multivari-
ate Normal Distribution

This subsection concerning the affinely invariant distance correlation is due to Dueck,
Edelmann, Gneiting and Richards (2014). We tackle the problem that distance corre-
lation fails to be invariant under the group of all invertible affine transformations.

4.2.1 Affinely Invariant Distance Correlation

Despite of the very nice properties reviewed in the last section, distance correlation fails
to be invariant under the group of all invertible affine transformations of (X, Y ), which
led Székely, et al. (2007, pp. 2784–2785) and Székely and Rizzo (2009, pp. 1252–1253)
to propose an affinely invariant sample version of the distance correlation.

Adapting this proposal to the population setting, the affinely invariant distance co-
variance between distributions X and Y with finite second moments can be introduced
as the nonnegative number Ṽ(X, Y ) defined by

Ṽ2(X, Y ) = V2(Σ
−1/2
X X,Σ

−1/2
Y Y ), (4.7)

where ΣX and ΣY are the respective population covariance matrices. The affinely
invariant distance correlation between X and Y is the nonnegative number defined by

R̃(X, Y ) =
Ṽ(X, Y )√

Ṽ(X,X)Ṽ(Y, Y )
(4.8)
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if both Ṽ(X,X) and Ṽ(Y, Y ) are strictly positive, and defined to be zero otherwise.
In the sample versions proposed by Székely, et al. (2007), the population quantities
are replaced by their natural estimators. Clearly, the population affinely invariant
distance correlation and its sample version are invariant under the group of invertible
affine transformations, and in addition to satisfying this often-desirable group invariance
property (Eaton, 1989), they inherit the desirable properties of the standard distance

dependence measures. In particular, 0 ≤ R̃(X, Y ) ≤ 1 and, for populations with finite

second moments and positive definite covariance matrices, R̃(X, Y ) = 0 if and only if
X and Y are independent.

4.2.2 The Sample Version of the Affinely Invariant Distance Correlation

In this section we describe sample versions of the affinely invariant distance covariance
and distance correlation as introduced by Székely, et al. (2007, pp. 2784–2785) and
Székely and Rizzo (2009, pp. 1252–1253).

Now let SX and SY denote the usual sample covariance matrices of the data X and
Y , respectively. Following Székely, et al. (2007, p. 2785) and Székely and Rizzo (2009,
p. 1253), the sample affinely invariant distance covariance is the nonnegative number

Ṽn(X,Y ) defined by

Ṽ2
n(X,Y ) = V2

n(S
−1/2
X X, S

−1/2
Y Y ) (4.9)

if SX and SY are positive definite, and defined to be zero otherwise. The sample affinely
invariant distance correlation is defined by

R̃n(X,Y ) =
Ṽn(X,Y )√

Ṽn(X,X)Ṽn(Y ,Y )
(4.10)

if the quantities in the denominator are strictly positive, and defined to be zero other-
wise. The sample affinely invariant distance correlation inherits the properties of the
sample distance correlation; in particular

0 ≤ R̃n(X,Y ) ≤ 1,

and R̃n(X,Y ) = 1 implies that p = q, that the linear spaces spanned by X and Y
have full rank, and that there exist a vector a ∈ Rp, a nonzero number b ∈ R, and an
orthogonal matrix C ∈ Rp×p such that S

−1/2
Y Y = a+ bCS

−1/2
X X.

Our next result shows that the sample affinely invariant distance correlation is a
consistent estimator of the respective population quantity.

Theorem 4.3. Let (X, Y ) ∈ Rp+q be jointly distributed random vectors with positive
definite marginal covariance matrices ΣX ∈ Rp×p and ΣY ∈ Rq×q, respectively. Suppose
that (X1, Y1), . . . , (Xn, Yn) is a random sample from (X, Y ), and let X = [X1, . . . , Xn] ∈
Rp×n and Y = [Y1, . . . , Yn] ∈ Rq×n. Also, let Σ̂X and Σ̂Y be strongly consistent
estimators for ΣX and ΣY , respectively. Then

V2
n(Σ̂

−1/2
X X, Σ̂

−1/2
Y Y )→ Ṽ2(X, Y ),
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almost surely, as n→∞. In particular, the sample affinely invariant distance correla-
tion satisfies

R̃n(X,Y )→ R̃(X, Y ), (4.11)

almost surely.

Proof. As the covariance matrices ΣX and ΣY are positive definite, we may
assume that the strongly consistent estimators Σ̂X and Σ̂Y also are positive definite.
Therefore, in order to prove the first statement it suffices to show that

V2
n(Σ̂

−1/2
X X, Σ̂

−1/2
Y Y )− V2

n(Σ
−1/2
X X,Σ

−1/2
Y Y )→ 0, (4.12)

almost surely. By the decomposition of Székely, et al. (2007, p. 2776, Equation (2.18)),
the left-hand side of (4.12) can be written as an average of terms of the form∣∣Σ̂−1/2

X (Xk −Xl)
∣∣
p

∣∣Σ̂−1/2
Y (Yk − Ym)

∣∣
q
−
∣∣Σ−1/2

X (Xk −Xl)
∣∣
p

∣∣Σ−1/2
Y (Yk − Ym)

∣∣
q
.

Using the identity∣∣Σ̂−1/2
X (Xk −Xl)

∣∣
p

∣∣Σ̂−1/2
Y (Yk − Ym)

∣∣
q

=
∣∣(Σ̂−1/2

X − Σ
−1/2
X + Σ

−1/2
X )(Xk −Xl)

∣∣
p

∣∣(Σ̂−1/2
Y − Σ

−1/2
Y + Σ

−1/2
Y )(Yk − Ym)

∣∣
q
,

we obtain∣∣Σ̂−1/2
X (Xk −Xl)

∣∣
p

∣∣Σ̂−1/2
Y (Yk − Ym)

∣∣
q
−
∣∣Σ−1/2

X (Xk −Xl)
∣∣
p

∣∣Σ−1/2
Y (Yk − Ym)

∣∣
q

≤ ‖Σ̂−1/2
X − Σ

−1/2
X ‖1 ‖Σ̂−1/2

Y − Σ
−1/2
Y ‖1 |Xk −Xl|p |Yk − Ym|q

+ ‖Σ̂−1/2
X − Σ

−1/2
X ‖1 |Xk −Xl|p

∣∣Σ−1/2
Y (Yk − Ym)

∣∣
q

+ ‖Σ̂−1/2
Y − Σ

−1/2
Y ‖1

∣∣Σ−1/2
X (Xk −Xl)

∣∣
p
|Yk − Ym|q,

where the matrix norm ‖Λ‖1 is the largest eigenvalue of Λ in absolute value. Now we
can separate the three sums in the decomposition of Székely, et al. (2007, p. 2776,

Equation (2.18)) and place the factors like ‖Σ̂−1/2
X −Σ

−1/2
X ‖1 in front of the sums, since

they appear in every summand. Then, ‖Σ̂−1/2
X − Σ

−1/2
X ‖1 and ‖Σ̂−1/2

Y − Σ
−1/2
Y ‖1 tend

to zero and the remaining averages converge to constants (representing some distance
correlation components) almost surely as n → ∞, and this completes the proof of

the first statement. Finally, the property (4.11) of strong consistency of R̃n(X,Y ) is

obtained immediately upon setting Σ̂X = SX and Σ̂Y = SY .

Székely, et al. (2007, p. 2783) proposed a test for independence that is based on the
sample distance correlation. From their results, we see that the asymptotic properties
of the test statistic are not affected by the transition from the standard distance cor-
relation to the affinely invariant distance correlation. Hence, a completely analogous
but different test can be stated in terms of the affinely invariant distance correlation.
Noting the results of Kosorok (2009, Section 4), we raise the possibility that the spe-
cific details can be devised in a judicious, data-dependent way so that the power of the
test for independence increases when the transition is made to the affinely invariant
distance correlation. An alternative multivariate test for independence based on ranks
of distances can be found in Heller, et al. (2012).
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4.2.3 The Affinely Invariant Distance Correlation for Multivariate Normal
Populations

We now consider the problem of calculating the affinely invariant distance correlation
between the random vectors X and Y where (X, Y ) ∼ Np+q(µ,Σ), a multivariate
normal distribution with mean vector µ ∈ Rp+q and covariance matrix Σ ∈ R(p+q)×(p+q).
We assume, without loss of generality that ΣX and ΣY are nonsingular; otherwise, the
problem reduces to a calculation on a lower-dimensional space.

For the case in which p = q = 1, i.e., the bivariate normal distribution, the problem
was solved by Székely, et al. (2007), see Theorem 4.2. In that case, the formula for the
affinely invariant distance correlation depends only on ρ, the correlation coefficient, and
appears in terms of the functions sin−1 ρ and (1− ρ2)1/2, both of which are well-known
to be special cases of Gauss’ hypergeometric series. Therefore, it is natural to expect
that the general case will involve generalizations of Gauss’ hypergeometric series, and
Theorem 4.4 below demonstrates that such is indeed the case. To formulate this result,
we need to recall the rudiments of the theory of zonal polynomials (Muirhead 1982,
Chapter 7).

A partition κ is a vector of nonnegative integers (k1, . . . , kq) such that k1 ≥ · · · ≥ kq.
The integer |κ| = k1 + · · ·+ kq is called the weight of κ; and `(κ), the length of κ, is the
largest integer j such that kj > 0. The zonal polynomial Cκ(Λ) is a mapping from the
class of symmetric matrices Λ ∈ Rq×q to the real line which satisfies several properties,
the following of which are crucial for our results:

(a) Let O(q) denote the group of orthogonal matrices in Rq×q. Then

Cκ(K
′ΛK) = Cκ(Λ) (4.13)

for all K ∈ O(q); thus, Cκ(Λ) is a symmetric function of the eigenvalues of Λ.

(b) Cκ(Λ) is homogeneous of degree |κ| in Λ: For any δ ∈ R,

Cκ(δΛ) = δ|κ|Cκ(Λ). (4.14)

(c) If Λ is of rank r then Cκ(Λ) = 0 whenever `(κ) > r.

(d) For any nonnegative integer k,∑
|κ|=k

Cκ(Λ) = (tr Λ)k. (4.15)

(e) For any symmetric matrices Λ1,Λ2 ∈ Rq×q,∫
O(q)

Cκ(K
′Λ1KΛ2) dK =

Cκ(Λ1)Cκ(Λ2)

Cκ(Iq)
, (4.16)

where Iq = diag(1, . . . , 1) ∈ Rq×q denotes the identity matrix and the integral is
with respect to the Haar measure on O(q), normalized to have total volume 1.

47



(f) Let λ1, . . . , λq be the eigenvalues of Λ. Then, for a partition (k) with one part,

C(k)(Λ) =
k!

(1
2
)k

∑
i1+···+iq=k

q∏
j=1

(1
2
)ij λ

ij
j

ij!
, (4.17)

where the sum is over all nonnegative integers i1, . . . , iq such that i1 + · · ·+ iq = k,
and

(α)k =
Γ(α + k)

Γ(α)
= α(α + 1)(α + 2) · · · (α + k − 1),

α ∈ C, is standard notation for the rising factorial. In particular, on setting
λj = 1, j = 1, . . . , q, we obtain from (4.17)

C(k)(Iq) =
(1

2
q)k

(1
2
)k
, (4.18)

(Muirhead, 1982, p. 237, equation (18); Gross and Richards, 1987, p. 807, Lemma
6.8).

With these properties of the zonal polynomials, we are ready to state our key result
which obtains an explicit formula for the affinely invariant distance covariance in the
case of a Gaussian population of arbitrary dimension and arbitrary covariance matrix
with positive definite marginal covariance matrices. This formula turns out to be a
function depending only on the dimensions p and q and the eigenvalues of the matrix
Λ = Σ

−1/2
Y ΣYX Σ−1

X ΣXY Σ
−1/2
Y , i.e. the squared canonical correlation coefficients of the

subvectors X and Y . For fixed dimensions this implies R̃(X, Y ) = g(λ1, . . . , λr), where
r = min(p, q) and λ1, . . . , λr are the canonical correlation coefficients of X and Y .
Due to the functional invariance the maximum likelihood estimator (MLE) for affinely

invariant distance correlation in the Gaussian setting is hence defined by g(λ̂1, . . . , λ̂r),

where λ̂1, . . . , λ̂r are the MLEs of the canonical correlation coefficients.

Theorem 4.4. Suppose that (X, Y ) ∼ Np+q(µ,Σ), where

Σ =

(
ΣX ΣXY

ΣYX ΣY

)
with ΣX ∈ Rp×p, ΣY ∈ Rq×q, and ΣXY ∈ Rp×q. Then

Ṽ2(X, Y ) = 4π
cp−1

cp

cq−1

cq

∞∑
k=1

22k − 2

k! 22k

(1
2
)k (−1

2
)k (−1

2
)k

(1
2
p)k (1

2
q)k

C(k)(Λ), (4.19)

where
Λ = Σ

−1/2
Y ΣYX Σ−1

X ΣXY Σ
−1/2
Y ∈ Rq×q. (4.20)

Proof. We may assume, with no loss of generality, that µ is the zero vector. Since
ΣX and ΣY both are positive definite the inverse square-roots, Σ

−1/2
X and Σ

−1/2
Y , exist.
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By considering the standardized variables X̃ = Σ
−1/2
X X and Ỹ = Σ

−1/2
Y Y , we may

replace the covariance matrix Σ by

Σ̃ =

(
Ip ΛXY

ΛXY
′ Iq

)
,

where
ΛXY = Σ

−1/2
X ΣXY Σ

−1/2
Y . (4.21)

Once we have made these reductions, it follows that the matrix Λ in (4.20) can be
written as Λ = ΛXY

′ΛXY and that it has norm less than 1. Indeed, by the partial
Iwasawa decomposition of Σ̃, viz., the identity,

Σ̃ =

(
Ip 0

ΛXY
′ Iq

)(
Ip 0
0 Iq − ΛXY

′ΛXY

)(
Ip ΛXY

0 Iq

)
,

where the zero matrix of any dimension is denoted by 0, we see that the matrix Σ̃ is
positive semidefinite if and only if Iq −Λ is positive semidefinite. Hence, Λ ≤ Iq in the
Loewner ordering and therefore ‖Λ‖1 ≤ 1.

We proceed to calculate the distance covariance Ṽ(X, Y ) = V(X̃, Ỹ ). It is well-

known that the characteristic function of (X̃, Ỹ ) is

fX̃,Ỹ (s, t) = exp
[
− 1

2

(s
t

)′
Σ̃
(s
t

)]
= exp

[
−1

2
(|s|2p + |t|2q + 2s′ΛXY t)

]
,

where s ∈ Rp and t ∈ Rq. Therefore,∣∣fX̃,Ỹ (s, t)− fX̃(s)fỸ (t)
∣∣2 =

(
1− exp(−s′ΛXY t)

)2
exp(−|s|2p − |t|2q),

and hence

cpcq V2(X̃, Ỹ ) =

∫
Rp+q

(
1− exp(−s′ΛXY t)

)2
exp(−|s|2p − |t|2q)

ds

|s|p+1
p

dt

|t|q+1
q

=

∫
Rp+q

(
1− exp(s′ΛXY t)

)2
exp(−|s|2p − |t|2q)

ds

|s|p+1
p

dt

|t|q+1
q

, (4.22)

where the latter integral is obtained by making the change of variables s 7→ −s within
the former integral.

By a Taylor series expansion, we obtain(
1− exp(s′ΛXY t)

)2
= 1− 2 exp(s′ΛXY t) + exp(2s′ΛXY t)

=
∞∑
k=2

2k − 2

k!
(s′ΛXY t)

k.

Substituting this series into (4.22) and interchanging summation and integration, a
procedure which is straightforward to verify by means of Fubini’s theorem, and noting
that the odd-order terms integrate to zero, we obtain

cpcq V2(X̃, Ỹ ) =
∞∑
k=1

22k − 2

(2k)!

∫
Rp+q

(s′ΛXY t)
2k exp(−|s|2p − |t|2q)

ds

|s|p+1
p

dt

|t|q+1
q

. (4.23)
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To calculate, for k ≥ 1, the integral∫
Rp+q

(s′ΛXY t)
2k exp(−|s|2p − |t|2q)

ds

|s|p+1
p

dt

|t|q+1
q

, (4.24)

we change variables to polar coordinates, putting s = rxθ and t = ryφ where rx, ry > 0,
θ = (θ1, . . . , θp)

′ ∈ Sp−1, and φ = (φ1, . . . , φq)
′ ∈ Sq−1. Then the integral (4.24)

separates into a product of multiple integrals over (rx, ry), and over (θ, φ), respectively.
The integrals over rx and ry are standard gamma integrals,∫ ∞

0

∫ ∞
0

r2k−2
x r2k−2

y exp(−r2
x − r2

y) drxdry = 1
4

[Γ(k − 1
2
)]2 =

[
(−1

2
)k
]2
π, (4.25)

and the remaining factor is the integral∫
Sq−1

∫
Sp−1

(θ′ΛXY φ)2k dθ dφ, (4.26)

where dθ and dφ are unnormalized surface measures on Sp−1 and Sq−1, respectively.
By a standard invariance argument,∫

Sp−1

(θ′v)2k dθ = |v|2kp
∫
Sp−1

θ2k
1 dθ,

v ∈ Rp. Setting v = ΛXY φ and applying some well-known properties of the surface
measure dθ, we obtain∫

Sp−1

(θ′ΛXY φ)2k dθ = |ΛXY φ|2kp
∫
Sp−1

θ2k
1 dθ

= 2cp−1

Γ(k + 1
2
)Γ(1

2
p)

Γ(k + 1
2
p)Γ(1

2
)

(φ′Λφ)k.

Therefore, in order to evaluate (4.26), it remains to evaluate

Jk(Λ) =

∫
Sq−1

(φ′Λφ)k dφ.

Since the surface measure is invariant under transformation φ 7→ Kφ, K ∈ O(q), it
follows that Jk(Λ) = Jk(K

′ΛK) for all K ∈ O(q). Integrating with respect to the
normalized Haar measure on the orthogonal group, we conclude that

Jk(Λ) =

∫
O(q)

Jk(K
′ΛK) dK =

∫
Sq−1

∫
O(q)

(φ′K ′ΛKφ)k dK dφ. (4.27)

We now use the properties of the zonal polynomials. By (4.15),

(φ′K ′ΛKφ)k = (trK ′ΛKφφ′)k =
∑
|κ|=k

Cκ(K
′ΛKφφ′);
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therefore, by (4.16),∫
O(q)

(φ′K ′ΛKφ)k dK =
∑
|κ|=k

∫
O(q)

Cκ(K
′ΛKφφ′) dK =

∑
|κ|=k

Cκ(Λ)Cκ(φφ
′)

Cκ(Iq)
.

Since φφ′ is of rank 1 then, by property (c), Cκ(φφ
′) = 0 if `(κ) > 1; it now follows, by

(4.15) and the fact that φ ∈ Sq−1, that

C(k)(φφ
′) =

∑
|κ|=k

Cκ(φφ
′) = (trφφ′)k = (φ′φ)k = |φ|2kq = 1.

Therefore, ∫
O(q)

(φ′K ′ΛKφ)k dK =
C(k)(Λ)

C(k)(Iq)
=

(1
2
)k

(1
2
q)k

C(k)(Λ),

where the last equality follows by (4.18). Substituting this result at (4.27), we obtain

Jk(Λ) = 2cq−1

(1
2
)k

(1
2
q)k

C(k)(Λ). (4.28)

Collecting together these results, and using the well-known identity (2k)! = k! 22k (1
2
)k,

we obtain the representation (4.19), as desired.

We remark that by interchanging the roles of X and Y in Theorem 4.4, we would
obtain (4.19) with Λ in (4.20) replaced by

Λ0 = Σ
−1/2
X ΣXY Σ−1

Y ΣYX Σ
−1/2
X ∈ Rp×p.

Since Λ and Λ0 have the same characteristic polynomial and hence the same set of
nonzero eigenvalues, and noting that Cκ(Λ) depends only on the eigenvalues of Λ, it

follows that C(k)(Λ) = C(k)(Λ0). Therefore, the series representation (4.19) for Ṽ2(X, Y )
remains unchanged if the roles of X and Y are interchanged.

The series appearing in Theorem 4.4 can be expressed in terms of the generalized
hypergeometric functions of matrix argument (James, 1964; Muirhead, 1982; Gross and
Richards, 1987). For this purpose, we introduce the partitional rising factorial for any
α ∈ C and any partition κ = (k1, . . . , kq) as

(α)κ =

q∏
j=1

(
α− 1

2
(j − 1)

)
kj
.

Let α1, . . . , αl, β1, . . . , βm ∈ C where −βi + 1
2
(j − 1) is not a nonnegative integer, for

all i = 1, . . . ,m and j = 1, . . . , q. Then the lFm generalized hypergeometric function of
matrix argument is defined as

lFm(α1, . . . , αl; β1, . . . , βm;S) =
∞∑
k=0

1

k!

∑
|κ|=k

(α1)κ · · · (αl)κ
(β1)κ · · · (βm)κ

Cκ(S),

where S is a symmetric matrix. A complete analysis of the convergence properties of
this series was derived by Gross and Richards (1987, p. 804, Theorem 6.3), and we refer
the reader to that paper for the details.
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Corollary 4.5. In the setting of Theorem 4.4, we have

Ṽ2(X, Y ) = 4π
cp−1

cp

cq−1

cq

×
(

3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; Λ

)
− 2 3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; 1

4
Λ
)

+ 1
)
. (4.29)

Proof. It is evident that

(1
2
)κ =

{
(1

2
)k1 , if `(κ) ≤ 1,

0, if `(κ) > 1.

Therefore, we now can write the series in (4.19), up to a multiplicative constant, in
terms of a generalized hypergeometric function of matrix argument, in that

∞∑
k=1

22k − 2

k! 22k

(1
2
)k(−1

2
)k(−1

2
)k

(1
2
p)k(

1
2
q)k

C(k)(Λ)

=
∞∑
k=1

22k − 2

k! 22k

∑
|κ|=k

(1
2
)κ(−1

2
)κ(−1

2
)κ

(1
2
p)κ(

1
2
q)κ

Cκ(Λ)

=
∞∑
k=1

1

k!

∑
|κ|=k

(1
2
)κ(−1

2
)κ(−1

2
)κ

(1
2
p)κ(

1
2
q)κ

Cκ(Λ)− 2
∞∑
k=1

1

k! 22k

∑
|κ|=k

(1
2
)κ(−1

2
)κ(−1

2
)κ

(1
2
p)κ(

1
2
q)κ

Cκ(Λ)

=
[

3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; Λ

)
− 1
]
− 2

[
3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; 1

4
Λ
)
− 1
]
.

Due to property (4.14) it remains to show that the zonal polynomial series expansion for
the 3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; Λ

)
generalized hypergeometric function of matrix argument

converges absolutely for all Λ with Λ ≤ Iq in the Loewner ordering. By (4.18)

3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; Λ

)
≤

∞∑
k=0

22k

k! 22k

(−1
2
)k(−1

2
)k

(1
2
p)k

= 2F1

(
−1

2
,−1

2
; 1

2
p; 1
)
.

The latter series converges due to Gauss’ Theorem for hypergeometric functions and
so we have absolute convergence at (4.29) for all Σ with positive definite marginal
covariance matrices.

Consider the case in which q = 1 and p is arbitrary. Then Λ is a scalar; say, Λ = ρ2

for some ρ ∈ [−1, 1]. Then the 3F2 generalized hypergeometric functions in (4.29) each
reduce to a Gaussian hypergeometric function, denoted by 2F1, and (4.29) becomes

Ṽ2(X, Y ) = 4
cp−1

cp

(
2F1

(
−1

2
,−1

2
; 1

2
p; ρ2

)
− 2 2F1

(
−1

2
,−1

2
; 1

2
p; 1

4
ρ2
)

+ 1
)
.

For the case in which p = q = 1, we may identify ρ with the Pearson correlation coeffi-
cient and the hypergeometric series can be expressed in terms of elementary functions.
By well-known results (Andrews, Askey, and Roy (2000), pp. 64 and 94),

2F1(−1
2
,−1

2
; 1

2
; ρ2) = ρ sin−1ρ+ (1− ρ2)1/2, (4.30)

52



and thus we derive the same result for p = q = 1 as in Székely, et al. (2007, p. 2786).
For cases in which q = 1 and p is odd, we can again obtain explicit expressions for

Ṽ2(X, Y ). In such cases, the 3F2 generalized hypergeometric functions in (4.29) reduce
to Gaussian hypergeometric functions of the form 2F1(−1

2
,−1

2
; k + 1

2
; ρ2), k ∈ N, and

it can be shown that these latter functions are expressible in closed form in terms of
elementary functions and the sin−1(·) function. For instance, for p = 3, the contiguous
relations for the 2F1 functions can be used to show that

2F1(−1
2
,−1

2
; 3

2
; ρ2) =

3(1− ρ2)1/2

4
+

(1 + 2ρ2) sin−1 ρ

4ρ
. (4.31)

Further, by repeated application of the same contiguous relations, it can be shown that
for k = 2, 3, 4, . . .,

2F1(−1
2
,−1

2
; k + 1

2
; ρ2) = ρ−2(k−1)(1− ρ2)1/2Pk−1(ρ2) + ρ−(2k−1)Qk(ρ

2) sin−1 ρ,

where Pk and Qk are polynomials of degree k. Therefore, for q = 1 and p odd, the
distance covariance Ṽ2(X, Y ) can be expressed in closed form in terms of elementary
functions and the sin−1(·) function.

The appearance of the generalized hypergeometric functions of matrix argument
also yields a useful expression for the affinely invariant distance variance. In order to
state this result, we shall define for each positive integer p the quantity

A(p) =
Γ(1

2
p) Γ(1

2
p+ 1)[

Γ
(

1
2
(p+ 1)

)]2 − 2 2F1

(
−1

2
,−1

2
; 1

2
p; 1

4

)
+ 1. (4.32)

Corollary 4.6. In the setting of Theorem 4.4, we have

Ṽ2(X,X) = 4π
c2
p−1

c2
p

A(p). (4.33)

Proof. We are in the special case of Theorem 4.4 for which X = Y , so that p = q
and Λ = Ip. By applying (4.18) we can write the series in (4.19) as

4π
c2
p−1

c2
p

∞∑
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2
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)
− 1
]
− 2

[
2F1

(
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,−1
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2
p; 1

4

)
− 1
] )
.

By Gauss’ Theorem for hypergeometric functions the series 2F1(−1
2
,−1

2
; 1

2
p; z) also

converges for the special value z = 1, and then

2F1(−1
2
,−1

2
; 1

2
p; 1) =

Γ(1
2
p) Γ(1

2
p+ 1)[

Γ
(

1
2
(p+ 1)

)]2 ,
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Figure 4: The affinely invariant distance correlation for subvectors of a multivariate
normal population, where p = q = 2, as a function of the parameter r in three distinct
settings. The solid diagonal line is the identity function and is provided to serve as a
reference for the three distance correlation functions. See the text for details.

thereby completing the proof.

For cases in which p is odd, we can proceed as explained at (4.31) to obtain explicit
values for the Gaussian hypergeometric function remaining in (4.33). This leads in such

cases to explicit expressions for the exact value of Ṽ2(X,X). In particular, if p = 1
then it follows (4.30) that

Ṽ2(X,X) =
4

3
− 4(
√

3− 1)

π
;

and for p = 3, we deduce from (4.31) that

Ṽ2(X,X) = 2− 4(3
√

3− 4)

π
.

Corollaries 4.5 and 4.6 enable the explicit and efficient calculation of the affinely
invariant distance correlation (4.8) in the case of subvectors of a multivariate normal
population. In doing so, we use the algorithm of Koev and Edelman (2006) to evaluate
the generalized hypergeometric function of matrix argument, with C and Matlab code
being available at these authors’ websites.

Figure 4 concerns the case p = q = 2 in various settings, in which the matrix ΛXY

depends on a single parameter r only. The dotted line shows the affinely invariant
distance correlation when

ΛXY =

(
0 0
0 r

)
;
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Figure 5: The affinely invariant distance correlation between the p- and q-dimensional
subvectors of a (p+q)-dimensional multivariate normal population, where (a) p = q = 2
and ΛXY = diag(r, s), and (b) p = 2, q = 1 and ΛXY = (r, s)′.

this is the case with the weakest dependence considered here. The dash-dotted line
applies when

ΛXY =

(
r 0
0 r

)
.

The strongest dependence corresponds to the dashed line, which shows the affinely
invariant distance correlation when

ΛXY =

(
r r
r r

)
;

in this case we need to assume that 0 ≤ r ≤ 1
2

in order to retain positive definiteness.
In Figure 5, panel (a) shows the affinely invariant distance correlation when p =

q = 2 and

ΛXY =

(
r 0
0 s

)
,

where 0 ≤ r, s ≤ 1. With reference to Figure 4, the margins correspond to the dotted
line and the diagonal corresponds to the dash-dotted line.

Panel (b) of Figure 5 concerns the case in which p = 2, q = 1 and ΛXY = (r, s)′,
where r2 + s2 ≤ 1. Here, the affinely invariant distance correlation attains an upper
limit as r2 + s2 ↑ 1, and we have evaluated that limit numerically as 0.8252.

4.2.4 Limit Theorems

We now study the limiting behavior of the affinely invariant distance correlation mea-
sures for subvectors of multivariate normal populations.
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Our first result quantifies the asymptotic decay of the affinely invariant distance
correlation in the case in which the cross-covariance matrix converges to the zero matrix,
in that

tr (Λ) = ‖ΛXY ‖2 −→ 0,

where ‖ · ‖ denotes the Frobenius norm, and the matrices Λ = ΛXY
′ΛXY and ΛXY are

defined in (4.20) and (4.21), respectively.

Theorem 4.7. Suppose that (X, Y ) ∼ Np+q(µ,Σ), where

Σ =

(
ΣX ΣXY

ΣYX ΣY

)
with ΣX ∈ Rp×p and ΣY ∈ Rq×q being positive definite, and suppose that the matrix Λ
in (4.20) has positive trace. Then,

lim
tr (Λ)→ 0

R̃2(X, Y )

tr (Λ)
=

1

4 pq
√
A(p)A(q)

, (4.34)

where A(p) is defined in (4.32).

Proof. We first note that Ṽ2(X,X) and Ṽ2(Y, Y ) do not depend on ΣXY , as can
be seen from their explicit representations in terms of A(p) and A(q) given in (4.33).

In studying the asymptotic behavior of Ṽ2(X, Y ), we may interchange the limit and
the summation in the series representation (4.19). Hence, it suffices to find the limit
term-by-term. Since C(1)(Λ) = tr (Λ) then the ratio of the term for k = 1 and tr (Λ)
equals

cp−1

cp

cq−1

cq

π

pq
.

For k ≥ 2, it follows from (4.17) that C(k)(Λ) is a sum of monomials in the eigenvalues
of Λ, with each monomial being of degree k, which is greater than the degree, viz. 1,
of tr (Λ); therefore,

lim
tr (Λ)→ 0

C(k)(Λ)

tr (Λ)
= lim

Λ→ 0

C(k)(Λ)

tr (Λ)
= 0.

Collecting these facts together, we obtain (4.34).

If p = q = 1 we are in the situation of Theorem 7(iii) in Székely, et al. (2007).
Applying the identity (4.30), we obtain

2F1(−1
2
,−1

2
; 1

2
; 1

4
) =

π

12
+

√
3

2
,

and (tr (Λ))1/2 = |ρ|. Thus we obtain

lim
ρ→ 0

R̃(X, Y )

|ρ|
=

1

2
(
1 + 1

3
π −
√

3
)1/2

,
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as shown by Székely, et al. (2007, p. 2785).
In the remainder of this section we consider situations in which one or both of the

dimensions p and q grow without bound. We will repeatedly make use of the fact that

cp−1√
p cp
−→ 1√

2π
(4.35)

as p → ∞, which follows easily from the functional equation for the gamma function
along with Stirling’s formula.

Theorem 4.8. For each positive integer p, suppose that (Xp, Yp) ∼ N2p(µp,Σp), where

Σp =

(
ΣX, p ΣXY, p

ΣYX, p ΣY, p

)
with ΣX, p ∈ Rp×p and ΣY, p ∈ Rp×p being positive definite and such that

Λp = Σ
−1/2
Y, p ΣYX, p Σ−1

X, p ΣXY, p Σ
−1/2
Y, p 6= 0.

Then

lim
p→∞

p

tr (Λp)
Ṽ2(Xp, Yp) =

1

2
(4.36)

and
lim
p→∞

p

tr (Λp)
R̃2(Xp, Yp) = 1. (4.37)

In particular, if Λp = r2Ip for some r ∈ [0, 1], then tr (Λp) = r2p, and so (4.36) and
(4.37) reduce to

lim
p→∞

Ṽ2(Xp, Yp) =
1

2
r2 and lim

p→∞
R̃(Xp, Yp) = r,

respectively. The following corollary concerns the special case in which r = 1; we state
it separately for emphasis.

Corollary 4.9. For each positive integer p, suppose that Xp ∼ Np(µp,Σp), with Σp

being positive definite. Then

lim
p→∞

Ṽ2(Xp, Xp) =
1

2
. (4.38)

Proof of Theorem 4.8 and Corollary 4.9. In order to prove (4.36) we study
the limit for the terms corresponding separately to k = 1, k = 2, and k ≥ 3 in (4.19).

For k = 1, on recalling that C(1)(Λp) = tr (Λp), it follows from (4.35) that the ratio
of that term to tr (Λp)/p tends to 1/2.

For k = 2, we first deduce from (4.15) that C(2)(Λp) ≤ (tr Λp)
2. Moreover, tr (Λp) ≤

p because Λp ≤ Ip in the Loewner ordering. Thus, the ratio of the second term in (4.19)
to tr (Λp)/p is a constant multiple of

p

tr (Λp)

c2
p−1

c2
p

C(2)(Λp)

(1
2
p)2 (1

2
p)2

≤
c2
p−1

c2
p

p2

(1
2
p)2 (1

2
p)2

= 4
p

(p+ 1)2

c2
p−1

p c2
p
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which, by (4.35), converges to zero as p → ∞.
Finally, suppose that k ≥ 3. Obviously, Λp ≤ ‖Λp‖1Ip in the Loewner ordering

inequality, and so it follows from (4.17) that C(k)(Λp) ≤ ‖Λp‖k1 C(k)(Ip). Also, since
tr (Λp) ≥ ‖Λp‖ then by again applying the Loewner ordering inequality and (4.18) we
obtain

C(k)(Λp)

tr (Λp)
≤
‖Λp‖k1 C(k)(Ip)

‖Λp‖1

= ‖Λp‖k−1
1 C(k)(Ip) ≤ C(k)(Ip) =

(1
2
p)k

(1
2
)k
. (4.39)

Therefore,

4π
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2
)k (−1

2
)k (−1

2
)k

(1
2
p)k (1

2
p)k

C(k)(Λp)

≤ 4π p
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)k (−1

2
)k

(1
2
p)k

.

By (4.35), each term pc2
p−1/(

1
2
p)kc

2
p converges to zero as p → ∞, and this proves both

(4.36) and its special case, (4.38). Then, (4.37) follows immediately.

Finally, we consider the situation in which q, the dimension of Y , is fixed while p,
the dimension of X, grows without bound.

Theorem 4.10. For each positive integer p, suppose that (Xp, Y ) ∼ Np+q(µp,Σp),
where

Σp =

(
ΣX, p ΣXY, p

ΣYX, p ΣY

)
with ΣX, p ∈ Rp×p and ΣY ∈ Rq×q being positive definite and such that

Λp = Σ
−1/2
Y ΣYX, p Σ−1

X, p ΣXY, p Σ
−1/2
Y 6= 0.

Then

lim
p→∞

√
p

tr (Λp)
Ṽ2(Xp, Y ) =

√
π

2

cq−1

q cq
(4.40)

and

lim
p→∞

√
p

tr (Λp)
R̃2(Xp, Y ) =

1

2q
√
A(q)

. (4.41)

Proof. By (4.19),

Ṽ2(Xp, Y ) = 4π
cp−1

cp

cq−1

cq

∞∑
k=1

22k − 2

k! 22k

(1
2
)k (−1

2
)k (−1

2
)k

(1
2
p)k (1

2
q)k

C(k)(Λp).

We now examine the limiting behavior, as p → ∞, of the terms in this sum for k = 1
and, separately, for k ≥ 2.
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For k = 1, the limiting value of the ratio of the corresponding term to tr (Λp)/
√
p

equals

π
cq−1

q cq
lim
p→∞

√
p

tr (Λp)

cp−1

p cp
C(1)(Λp) =

√
π

2

cq−1

q cq

by (4.35) and the fact that C(1)(Λp) = tr (Λp).
For k ≥ 2, the ratio of the sum to tr (Λp)/

√
p equals

4π

√
p

tr (Λp)

cp−1

cp
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cq
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,

where we have used (4.39) to obtain the last two inequalities. By applying (4.35), we
see that the latter upper bound converges to 0 as p → ∞, which proves (4.40), and
then (4.41) follows immediately.

The results in this section have practical implications for affine distance correlation
analysis of large-sample, high-dimensional Gaussian data. In the setting of Theorem
4.10, tr (Λp) ≤ q is bounded, and so

lim
p→∞

R̃(Xp, Y ) = 0.

As a consequence of Theorem 4.3 on the consistency of sample measures, it follows that
the direct calculation of affine distance correlation measures for such data will return
values which are virtually zero. In practice, in order to obtain values of the sample affine
distance correlation measures which permit statistical inference, it will be necessary to
calculate Λ̂p, the maximum likelihood estimator of Λp, and then to rescale the distance

correlation measures with the factor
√
p/tr (Λ̂p). In the scenario of Theorem 4.8 the

asymptotic behavior of the affine distance correlation measures depends on the ratio
p/tr (Λp); and as tr (Λp) can attain any value in the interval [0, p], a wide range of
asymptotic rates of convergence is conceivable.

In all these settings, the series representation (4.19) can be used to obtain complete
asymptotic expansions in powers of p−1 or q−1, of the affine distance covariance or
correlation measures, as p or q tend to infinity.

4.2.5 Time Series of Wind Vectors at the Stateline Wind Energy Center

Rémillard (2009) proposed the use of the distance correlation to explore nonlinear
dependencies in time series data. Zhou (2012) pursued this approach recently and
defined the auto distance covariance function and the auto distance correlation function,
along with natural sample versions, for a strongly stationary vector-valued time series,
say (Xj)

∞
j=−∞.
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It is straightforward to extend these notions to the affinely invariant distance cor-
relation. Thus, for an integer k, we refer to

R̃X(k) =
Ṽ(Xj, Xj+k)

Ṽ(Xj, Xj)
(4.42)

as the affinely invariant auto distance correlation at the lag k. Similarly, given jointly
strongly stationary, vector-valued time series (Xj)

∞
j=−∞ and (Yj)

∞
j=−∞, we refer to

R̃X,Y (k) =
Ṽ(Xj, Yj+k)√

Ṽ(Xj, Xj)Ṽ(Yj, Yj)
(4.43)

as the affinely invariant cross distance correlation at the lag k. The corresponding
sample versions can be defined in the natural way, as in the case of the non-affine
distance correlation (Zhou, 2012).

We illustrate these concepts on time series data of wind observations at and near
the Stateline wind energy center in the Pacific Northwest of the United States. Specif-
ically, we consider time series of bivariate wind vectors at the meteorological towers at
Vansycle, right at the Stateline wind farm at the border of the states of Washington
and Oregon, and at Goodnoe Hills, 146 km west of Vansycle along the Columbia River
Gorge. Further information can be found in the paper by Gneiting, et al. (2006), who
developed a regime-switching space-time (RST) technique for 2-hour-ahead forecasts
of hourly average wind speed at the Stateline wind energy center, which was then the
largest wind farm globally. For our purposes, we follow Hering and Genton (2010) in
studying the time series at the original 10-minute resolution, and we restrict our anal-
ysis to the longest continuous record, the 75-day interval from August 14 to October
28, 2002.

Thus, we consider time series of bivariate wind vectors over 10, 800 consecutive 10-
minute intervals. We write V NS

j and V EW
j to denote the north-south and the east-west

component of the wind vector at Vansycle at time j, with positive values corresponding
to northerly and easterly winds. Similarly, we write GNS

j and GEW
j for the north-south

and the east-west component of the wind vector at Goodnoe Hills at time j, respectively.
Figure 6 shows the classical (Pearson) sample auto and cross correlation functions

for the four univariate time series. The auto correlation functions generally decay with
the temporal, but do so non-monotonously, due to the presence of a diurnal component.
The cross correlation functions between the wind vector components at Vansycle and
Goodnoe Hills show remarkable asymmetries and peak at positive lags, due to the pre-
vailing westerly and southwesterly wind (Gneiting, et al. 2006). In another interesting
feature, the cross correlations between the north-south and east-west components at
lag zero are strongly positive, documenting the dominance of southwesterly winds.

Figure 7 shows the sample auto and cross distance correlation functions for the
four time series; as these variables are univariate, there is no distinction between the
standard and the affinely invariant version of the distance correlation. The patterns
seen resemble those in the case of the Pearson correlation. For comparison, we also
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Figure 6: Sample auto and cross Pearson correlation functions for the univariate time
series V EW

j , V NS
j , GEW

j , and GNS
j , respectively. Positive lags indicate observations at

the westerly site (Goodnoe Hills) leading those at the easterly site (Vansycle), or ob-
servations of the north-south component leading those of the east-west component, in
units of hours.

display values of the distance correlation based on the sample Pearson correlations
shown in Figure 6, and converted to distance correlation under the assumption of
bivariate Gaussianity, using the results of Székely, et al. (2007, p. 2786) and Section
4.2.3; in every single case, these values are smaller than the original ones.

Having considered the univariate time series setting, it is natural and complemen-
tary to look at the wind vector time series (V EW

j , V NS
j ) at Vansycle and (GEW

j , GNS
j ) at

Goodnoe Hills from a genuinely multivariate perspective. To this end, Figure 8 shows
the sample affinely invariant auto and cross distance correlation functions for the bi-
variate wind vector series at the two sites. Again, a diurnal component is visible, and
there is a remarkable asymmetry in the cross-correlation functions, which peak at lags
of about two to three hours.

In light of our analytical results in Section 4.2.3, we can compute the affinely in-
variant distance correlation between subvectors of a multivariate normally distributed
random vector. In particular, we can compute the affinely invariant auto and cross
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Figure 7: Sample auto and cross distance correlation functions for the univariate time
series V EW

j , V NS
j , GEW

j , and GNS
j , respectively. For comparison, we also display, in grey,

the values that arise when the sample Pearson correlations in Figure 6 are converted
to distance correlation under the assumption of Gaussianity; these values generally are
smaller than the original ones. Positive lags indicate observations at Goodnoe Hills
leading those at Vansycle, or observations of the north-south component leading those
of the east-west component, in units of hours.

distance correlation between bivariate subvectors of a 4-variate Gaussian process with
Pearson auto and cross correlations as shown in Figure 6. In Figure 8, values of the
affinely invariant distance correlation that have been derived from Pearson correlations
in these ways are shown in grey; the differences from those values that are computed
directly from the data are substantial, with the converted values being smaller, possibly
suggesting that assumptions of Gaussianity may not be appropriate for this particular
data set.

We wish to emphasize that our study is purely exploratory: it is provided for
illustrative purposes and to serve as a basic example. In future work, the approach
hinted at here may have the potential to be developed into parametric or nonparametric
bootstrap tests for Gaussianity. For this purpose recall that, in the Gaussian setting,
the affinely invariant distance correlation is a function of the canonical correlation
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Figure 8: Sample auto and cross affinely invariant distance correlation functions for the
bivariate time series (V EW

j , V NS
j )′ and (GEW

j , GNS
j )′ at Vansycle and Goodnoe Hills. For

comparison, we also display, in grey, the values that are generated when the Pearson
correlation in Figure 6 is converted to the affinely invariant distance correlation under
the assumption of Gaussianity; these converted values generally are smaller than the
original ones. Positive lags indicate observations at Goodnoe Hills leading those at
Vansycle, in units of hours.

coefficients, i.e. R̃ = g(λ1, . . . , λr). For a parametric bootstrap test, one could generate
B replicates of g(λ?1, . . . , λ

?
r), leading to a pointwise (1 − α)-confidence band. The

test would now reject Gaussianity if the sample affinely invariant distance correlation
function does not lie within this band. For the nonparametric bootstrap test, one
could obtain ensembles R̃?

n by resampling methods, again defining a pointwise (1−α)-

confidence band and checking if g(λ̂1, . . . , λ̂r) is located within this band.

Following the pioneering work of Zhou (2012), the distance correlation may indeed
find a wealth of applications in exploratory and inferential problems for time series
data.

We proceed with the calculation of regular distance correlation in the Gaussian case.

4.3 Distance Correlation for Multivariate Normal Populations

In Theorem 4.4 and Corollary 4.5 we calculated the affinely invariant distance covari-
ance for multivariate normal populations. Here, we consider the problem of deriving a
formula for the standard distance covariance and distance correlation.

We first consider the case in which ΣX and ΣY are scalar matrices, say, ΣX = σ2
x Ip

and ΣY = σ2
y Iq with σx, σy > 0. Thus, suppose that (X, Y ) ∼ Np+q(µ,Σ), where

Σ =

(
ΣX ΣXY

ΣYX ΣY

)
=

(
σ2
x Ip ΣXY

ΣYX σ2
y Iq

)
.
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Putting Λ = ΣYXΣXY , we follow the proofs of Theorem 4.4 and Corollary 4.5 to obtain

V2(X, Y ) = 4π
cp−1

cp

cq−1

cq

∞∑
k=1

22k − 2

k! 22k

(1
2
)k (−1

2
)k (−1

2
)k

(1
2
p)k(

1
2
q)k

1

(σxσy)2k−1
C(k)(Λ)

= 4πσxσy
cp−1

cp

cq−1

cq

([
3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; Λ/σ2

xσ
2
y

)
− 1
]

−2
[

3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; Λ/4σ2

xσ
2
y

)
− 1
])

.

Next we reduce the general case to the scalar case above. By making a diagonal
transformation of the form (4.6) we see that we may assume, without loss of generality,
that ΣX and ΣY are diagonal matrices. Now denote by σ2

x and σ2
y the smallest eigen-

values of ΣX and ΣY , respectively. Also, let ΛX = ΣX − σ2
xIp and ΛY = ΣY − σ2

yIq;
then, ΣX = ΛX + σ2

xIp and ΣY = ΛY + σ2
yIq. Substituting these decompositions into

the integral which defines V2(X, Y ), we obtain∫
Rp+q

(1− exp(s′ΣXY t))
2

exp(−s′ΣXs− t′ΣY t)
ds

|s|p+1
p

dt

|t|q+1
q

=

∫
Rp+q

(1− exp(s′ΣXY t))
2

exp(−s′ΛXs− t′ΛY t) exp(−σ2
x|s|2p − σ2

y|t|2q)
ds

|s|p+1
p

dt

|t|q+1
q

.

Next, we apply a Taylor expansion,

(1− exp(s′ΣXY t))
2

=
∞∑
k=2

2k − 2

k!
(s′ΣXY t)

k

and, writing ΛX = diag(λx1, . . . , λxp), we have

exp(−s′ΛXs) =
∞∑
l=0

(−1)l

l!
(s′ΛXs)

l

=
∞∑
l=0

(−1)l

l!
(λx1s

2
1 + · · ·+ λxps

2
p)
l

=
∞∑
l=0

(−1)l

l!

∑
l1+···+lp=l

(
l

l1, . . . , lp

) p∏
i=1

λlixis
2li
i .

Similarly, on writing ΛY = diag(λy1, . . . , λyq), we obtain

exp(−t′ΛY t) =
∞∑
m=0

(−1)m

m!

∑
m1+···+mq=m

(
m

m1, . . . ,mq

) q∏
j=1

λ
mj

yj t
2mj

j .

Integrating these series term-by-term, we find that the typical integral to be evaluated
is ∫

Rp+q

(s′ΣXY t)
k

p∏
i=1

s2li
i

q∏
j=1

t
2mj

j exp(−σ2
x|s|2p − σ2

y|t|2q)
ds

|s|p+1
p

dt

|t|q+1
q

.

64



By the substitution t 7→ −t, we find that this integral vanishes if k is odd, and so we
need to calculate∫

Rp+q

(s′ΣXY t)
2k

p∏
i=1

s2li
i

q∏
j=1

t
2mj

j exp(−σ2
x|s|2p − σ2

y|t|2q)
ds

|s|p+1
p

dt

|t|q+1
q

.

We transform to polar coordinates s = rxθ and t = ryφ, where rx, ry > 0, θ ∈ Sp−1,
and φ ∈ Sq−1. Then the integrals over rx and ry are standard gamma integrals:∫ ∞

0

∫ ∞
0

r2k+2l.−2
x r2k+2m.−2

y exp(−σ2
xr

2
x − σ2

yr
2
y) drxdry =

Γ(k + l.− 1
2
) Γ(k +m.− 1

2
)

4σ2k+2l.−1
x σ2k+2m.−1

y

,

where l. = l1 + · · · + lp and m. = m1 + · · · + mq. As for the integrals over θ and φ,
they are ∫

Sq−1

∫
Sp−1

(θ′ΣXY φ)2k

p∏
i=1

θ2li
i

q∏
j=1

φ
2mj

j dθ dφ.

To evaluate these integrals, we expand (θ′ΣXY φ)2k using the multinomial theorem, ob-
taining a sum of terms, each of which is homogeneous in θ and φ. Then we integrate
term-by-term by transforming the surface measures dθ and dφ to Euler angles (Ander-
son, 2003, pp. 285–286). The outcome is a multiple series expansion for the distance
covariance. It does not appear to be a series that can be made simple in the general
case, but it does provide an explicit expression in terms of Σ, p, and q.

Although we chose σ2
x and σ2

y to be the smallest eigenvalues of ΣX and ΣY , respec-
tively, we could have chosen them to be any positive numbers. This is reminiscent of
the comprehensive work of Kotz, Johnson, and Boyd (1967a, 1967b) on the distribution
of positive definite quadratic forms in normal variables. Bearing in mind those results,
it seems likely that an optimal choice for σ2

x and σ2
y will be close to the arithmetic,

geometric, or harmonic mean of the eigenvalues of ΣX and ΣY , respectively. At least,
the issue of optimal choices for σ2

x and σ2
y that will accelerate the convergence of the

above series is worthy of further investigation.
Finally, we note that our techniques allow for similar explicit expressions in the case

of the α-distance dependence measures described by Székely, et al. (2007, p. 2784) and
Székely and Rizzo (2009, pp. 1251–1252; 2012, p. 2282).

Computing the analytic distance correlation for general distributions is a nontrivial
task. However, we demonstrate a direct computation via the definition of affinely
invariant distance correlation once more: for the multivariate Laplace distribution.

4.4 Affinely Invariant Distance Correlation for the Multivari-
ate Laplace Distribution

Now let (X, Y ) ∼ Lp+q(Σ), i.e.

fX,Y (s, t) =

(
1 + 1

2

(
s
t

)′
Σ

(
s
t

))−1

,
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where fX,Y is the characteristic function of (X, Y ). Hence, the characteristic functions
of the marginals are

fX(s) =
(

1 + 1
2
s′ΣXs

)−1

and fY (t) =
(

1 + 1
2
t′ΣY t

)−1

,

respectively. Therefore, the affinely invariant distance covariance between X and Y
can be computed as

cpcqṼ(X, Y ) =

∫
Rp+q

∣∣∣(1 + 1
2

(
s
t

)′
Σ

(
s
t

))−1

−
(
1 + 1

2
s′ΣXs

)−1 (
1 + 1

2
t′ΣY t

)−1
∣∣∣2

×
√
|ΣX | ds

√
|ΣY | dt

(s′ΣXs)(p+1)/2(t′ΣY t)(q+1)/2
.

By substituting u =
√

1/2 Σ
1/2
X s and v =

√
1/2 Σ

1/2
Y t we obtain for the latter integral

2

∫
Rp+q

∣∣∣(1 + u′u+ v′v+2u′Σ
− 1

2
X ΣXY Σ

− 1
2

Y v
)−1

−
(
1 + u′u

)−1(
1 + v′v

)−1
∣∣∣2 du dv

(u′u)(p+1)/2(v′v)(q+1)/2
.

Now we change variables to polar coordinates, putting u = r1θ and v = r2φ where
r1, r2 > 0, θ = (θ1, . . . , θp)

′ ∈ Sp−1, and φ = (φ1, . . . , φq)
′ ∈ Sq−1. With Λ :=

Σ
− 1

2
X ΣXY Σ

− 1
2

Y the integral is equal to

2

∫
Sp−1×Sq−1

∫
R+×R+

∣∣∣(1 + r2
1 + r2

2+2r1r2 θ
′ Λφ

)−1

−
(
1 + r2

1

)−1(
1 + r2

2

)−1
∣∣∣2dr1 dr2 dθ dφ

r2
1r

2
2

.

Again substituting u = r2
1 and v = r2

2 the latter integral equals

1

2

∫
Sp−1×Sq−1

∫
R+×R+

∣∣∣(1 + u+ v+2
√
uv θ′ Λφ

)−1

−
(
1 + u

)−1(
1 + v

)−1
∣∣∣2du dv dθ dφ

u3/2 v3/2
.

Furthermore, we change coordinates to s = u
1+u

and t = v
1+v

. Observing that 1 + u =
1

1−s , 1 + v = 1
1−t and

1 + u+ v + 2
√
uv θ′ Λφ =

1− st+ 2 θ′Λφ
√
st
√

(1− s)(1− t)
(1− s)(1− t)

the inner integral transforms to∫
[0,1]×[0,1]

∣∣∣(1− st+ 2θ′ Λφ
√
st
√

(1− s)(1− t)
)−1 − 1

∣∣∣2 ((1− s) (1− t)
s t

)3/2

ds dt.
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By expanding into negative binomial series, we obtain∣∣∣(1− st+ 2 θ′ Λφ
√
st
√

(1− s)(1− t)
)−1 − 1

∣∣∣2
=
(
1− st+ 2 θ′ Λφ

√
st
√

(1− s)(1− t)
)−2

− 2
(
1− st+ 2 θ′ Λφ

√
st
√

(1− s)(1− t)
)−1

+ 1

=
∞∑
k=2

(k − 1)
(
st− 2 θ′Λφ

√
st
√

(1− s)(1− t)
)k
.

Moreover, by expanding into binomial series, the latter term reads

∞∑
k=2

(k − 1)
k∑
i=0

(
k

i

)
(st)k−i (−1)i (2 θ′Λφ

√
st
√

(1− s)(1− t))i.

Hence,

Ṽ(X, Y ) =
1

2cpcq

∞∑
k=2

(k − 1)
k∑
i=0

(
k

i

)
(−1)i

(∫ 1

0

sk−i−3/2(1− s)(i+3)/2ds
)2

×
∫
Sp−1×Sq−1

(2 θ′Λφ)idθ dφ.

Since
∫
Sp−1×Sq−1(2 θ

′Λφ)idθ dφ vanishes for i odd, this can be written as

Ṽ(X, Y ) =
1

2cpcq

∞∑
k=2

(k − 1)

b k
2
c∑

j=0

(
k

2j

)(∫ 1

0

sk−j−3/2(1− s)j+3/2ds
)2

×
∫
Sp−1×Sq−1

(2 θ′Λφ)2jdθ dφ.

The integral with respect to s is a standard beta integral∫ 1

0

sk−j−3/2(1− s)j+3/2ds = B

(
k − j − 1

2
, j +

5

2

)
,

where B is the beta function. Moreover the integral with respect to the spheres is
readily evaluated in (4.28) as

4cp−1cq−1

(1
2
)j (1

2
)j

(1
2
p)j(

1
2
q)j

C(j)(Λ),

where (α)j denotes the rising factorial and C(j)(·) is the top order zonal polynomial
with weight j. As a result, we finally find

Ṽ(X, Y ) = 2
cp−1 cq−1

cp cq

∞∑
k=2

(k − 1)

b k
2
c∑

j=0

22j

(
k

2j

)
B

(
k − j − 1

2
, j +

5

2

)2 (1
2
)j (1

2
)j

(1
2
p)j(

1
2
q)j

C(j)(Λ).
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In the special case Σ = Ip+q affinely invariant distance correlation between X and
Y reduces to

2
cp−1 cq−1

cp cq

∞∑
k=2

(k − 1)B

(
k − 1

2
,
5

2

)2

> 0,

which is a strictly positive constant.

4.5 Distance Correlation for Lancaster Distributions

In this section (see Dueck, Edelmann and Richards; 2014) we introduce a large class of
distributions, the so-called Lancaster distributions. We provide a formula to compute
distance correlation for distributions within this class. In order to prove its relevance
we apply the formula to several exemplary distributions. As in the previous sections
we once more compute distance correlation and affinely invariant distance correlation
for the normal distribution in order to confirm our results and to show how the method
simplifies computations, e.g. no elegant tricks are needed. Moreover, we are able
to calculate distance correlation for non-Gaussian random variables: for the bivariate
gamma distribution.

4.5.1 The Lancaster distributions

To recapitulate the class of Lancaster distributions we will use the standard notation
in that area, as given by Koudou (1996 and 1998); cf., Lancaster (1969), Pommeret
(2004), or Diaconis, et al. (2008).

Let (X , µ) and (Y , ν) be locally compact, separable probability spaces, such that
L2(µ) and L2(ν) are separable. Let σ be a probability measure on X × Y such that σ
has marginal distributions µ and ν, respectively; then there exist functions Kσ and Lσ
such that

σ( dx, dy) = Kσ(x, dy)µ( dx) = Lσ( dx, y)ν( dy).

We note that Kσ and Lσ represent the conditional distributions of Y given X = x, and
X given Y = y, respectively.

Let N0 denote the set of nonnegative integers. Let {Pn : n ∈ N0} be a sequence
of functions on X which forms an orthonormal basis for the Hilbert space L2(µ); and
similarly, let {Qn : n ∈ N0} be a sequence of functions on Y which forms an orthonormal
basis for L2(ν). We suppose that P0(x) ≡ 1 and Q0(y) ≡ 1.

Suppose that σ ∈ L2(µ⊗ ν). Then there holds the expansion

σ( dx, dy) =
∑
m∈N0

∑
n∈N0

ρm,nPm(x)Qn(y)µ( dx) ν( dy), (4.44)

(x, y) ∈ X × Y . The probability measure σ is called a Lancaster distribution if there
exists a positive sequence {ρn : n ∈ N0} such that∫

Pm(x)Qn(y)σ( dx, dy) = ρm δm,n
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for all n and m, where δm,n denotes Kronecker’s delta. In this case, the sequence
{ρn : n ∈ N0} is called a Lancaster sequence, and the expansion (4.44) reduces to

σ( dx, dy) =
∑
n∈N0

ρnPn(x)Qn(y)µ( dx)ν( dy).

Koudou (1996, pp. 255–256) characterized the Lancaster sequences {ρn : n ∈ N0} such
that the associated probability distribution σ is absolutely continuous with respect to
µ⊗ ν and has Radon-Nikodym derivative

σ( dx, dy)

µ( dx) ν( dy)
=
∑
n∈N0

ρn Pn(x)Qn(y) ∈ L2(µ⊗ ν),

(x, y) ∈ X × Y .
In the sequel, we are particularly interested in the case in which X = Rp and Y = Rq.

Then, the underlying random vectors X ∈ Rp and Y ∈ Rq have joint distribution σ and
marginal distributions µ and ν, respectively. We assume that µ, ν, and σ are absolutely
continuous with respect to Lebesgue measure or counting measure on the respective
sample spaces and we denote their corresponding probability density functions by φX ,
φY , and φX,Y , respectively. This yields the simplified expansion,

φX,Y (x, y) = φX(x)φY (y)
∑
n∈N0

ρn Pn(x)Qn(y),

equivalently,

φX,Y (x, y)− φX(x)φY (y) = φX(x)φY (y)
∑
n6=0

ρn Pn(x)Qn(y). (4.45)

We will refer to the latter expansion as the Lancaster expansion of the joint probability
density function φX,Y .

4.5.2 Examples of Lancaster expansions

Here, we provide examples of Lancaster expansions (4.45) for the bivariate and mul-
tivariate normal distributions, and for the bivariate gamma, Poisson, and negative
binomial distributions.

4.5.2.1 The bivariate normal distribution

Let (X, Y ) follow a bivariate normal distribution, denoted (X, Y ) ∼ N2(0,Σ), where

Σ =

(
1 ρ
ρ 1

)
,

with joint probability density function

φX,Y (x, y) =
1

2π
(1− ρ2)−

1
2 exp

(
−x

2 + y2 − 2ρ x y

2(1− ρ2)

)
,
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and with standard normal marginal distributions

φX(x) ≡ φY (x) =
1√
2π

exp
(
−1

2
x2
)
,

x, y ∈ R. Let

Hn(x) = (−1)n exp
(

1
2
x2)

dn

dxn
exp(−x2/2),

x ∈ R, denote the nth Hermite polynomial, n = 0, 1, 2, . . .. It is well-known that the
Hermite polynomials are orthogonal with respect to the standard normal distribution.

The Lancaster expansion of φX,Y is given by the classical formula of Mehler,

φX,Y (x, y) = φX(x)φY (y)
[
1 +

∞∑
n=1

ρn

n!
Hn (x) Hn (y)

]
, (4.46)

x, y ∈ R.
We remark that there are several extensions of Mehler’s formula which can be inter-

preted as Lancaster expansions for generalizations of the bivariate normal distribution;
cf. Srivastava and Singhal (1972) for one such expansion. However, we will not study
these generalizations here because the developments are similar to the results which we
obtain.

4.5.2.2 The multivariate normal distribution

Let X ∈ Rp and Y ∈ Rq be random vectors such that (X, Y ) ∼ Np+q(0,Σ), a multi-
variate normal distribution with mean vector 0 and positive definite covariance matrix

Σ =

(
ΣX ΣXY

ΣY X ΣY

)
where ΣX , ΣY , and ΣXY = Σ′Y X are p× p, q × q and p× q matrices, respectively. We
denote by φX,Y the joint probability density function of (X, Y ), and by φX and φY the
marginal density functions of X and Y , respectively. Withers and Nadarajah (2010)
derived Lancaster-type expansions for φX,Y under various assumptions on Σ, e.g., for
partitioned covariance matrices or integrated versions.

We now describe the Lancaster expansion of φX,Y , a result which is provided in
Theorem 3.1, p. 1314 (Withers and Nadarajah; 2010). In order to state this result, we
introduce additional notation drawn from Withers and Nadarajah (2010).

For each j = 1, . . . , p and k = 1, . . . , q, let Njk ∈ N0 be an index of summation. Let
N = (Njk : 1 ≤ j ≤ p, 1 ≤ k ≤ q) be the p × q matrix of summation indices and let
N ! =

∏p
j=1

∏q
k=1Njk!. Define, for j = 1, . . . , p,

AN ,j =

q∑
k=1

Njk,
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and set AN = (AN ,1, . . . ,AN ,p). Similarly, define, for k = 1, . . . , q,

BN ,k =

p∑
j=1

Njk,

and then set BN = (BN ,1, . . . ,BN ,q). Denoting by (ΣXY )jk the (j, k)th entry of ΣXY ,
we also define

ΣN
XY =

p∏
j=1

q∏
k=1

[(ΣXY )jk]
Njk .

We also need the multivariate Hermite polynomials. For k = (k1, . . . , kp), a p-
dimensional vector of nonnegative integers, and x ∈ Rp, define the differential operator,(

− ∂

∂x

)k
=
(
− ∂

∂x1

)k1
· · ·
(
− ∂

∂xp

)kp
.

Then the multivariate Hermite polynomial with respect to the marginal density function
φX is defined as

Hk(x; ΣX) =
1

φX(x)

(
− ∂

∂x

)k
φX(x).

Then, the Lancaster expansion of φX,Y is given by the generalized Mehler formula:

φX,Y (x, y) = φX(x)φY (y)
[
1 +

∑
N 6=0

ΣN
XY

N !
HAN

(x; ΣX)HBN
(y; ΣY )

]
, (4.47)

with absolute convergence for all x ∈ Rp, y ∈ Rq.
In order to calculate the affinely invariant distance correlation between X and Y

we also need the Lancaster expansion of the joint density function of the standardized
variables X̃ = Σ

−1/2
X X and Ỹ = Σ

−1/2
Y Y . We deduce from (4.47) that the Lancaster

expansion for (X̃, Ỹ ) is given by

φX̃,Ỹ (x, y) = φX̃(x)φỸ (y)
[
1 +

∑
N 6=0

ΛN
XY

N !
HAN

(x; Ip)HBN
(y; Iq)

]
, (4.48)

where

Λ =

(
Σ
−1/2
X 0

0 Σ
−1/2
Y

)(
ΣX ΣXY

ΣY X ΣY

)(
Σ
−1/2
X 0

0 Σ
−1/2
Y

)

≡
(

Ip ΛXY

ΛXY
′ Iq

)
,

with

ΛXY = Σ
−1/2
X ΣXY Σ

−1/2
Y .
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4.5.2.3 The bivariate gamma distribution

The Lancaster expansion for a bivariate gamma distribution, which was derived by
Sarmanov (1970), can be stated as follows (cf., Kotz, et al.; 2000).

For α > −1 and n ∈ N0, the classical Laguerre polynomial is defined by

L(α)
n (x) =

1

n!
x−α exp(x)

( d

dx

)n
xn+α exp(−x)

=
(α + 1)n

n!

n∑
j=0

(−n)j
(α + 1)j

xj

j!
,

(4.49)

x > 0, where (α)n = Γ(α + n)/Γ(α) denotes the rising factorial.
Let λ ∈ (0, 1), and let α and β satisfy α ≥ β > 0. Sarmanov (1970) derived for

certain bivariate gamma random variables (X, Y ) the joint probability density function,

φX,Y (x, y) = φX(x)φY (y)

[
1 +

∞∑
n=1

anL
(α−1)
n (x)L(β−1)

n (y)

]
, (4.50)

x, y > 0, where

an = λn
[

(β)n
(α)n

]1/2

(4.51)

n = 0, 1, 2, . . .. The corresponding marginal density functions are

φX(x) =
1

Γ(α)
xα−1 exp(−x)

and

φY (y) =
1

Γ(β)
yβ−1 exp(−y),

which we recognize as the density functions of one-dimensional gamma random variables
with index parameters α and β, respectively.

We remark that if α = β then the density function (4.50) reduces to the Kibble-
Moran bivariate gamma density function and Corr(X, Y ) = λ (Kotz, et al., pp. 436–
437; 2000).

4.5.3 Distance correlation coefficients for Lancaster distributions

We derive under mild conditions a general result which enables the calculation of dis-
tance correlation coefficients for general Lancaster distributions with density functions
of the form (4.45). For φX,Y given by (4.45) and n 6= 0, we introduce the notation

LXn (s) =

∫
Rp

exp(i 〈s, x〉)φX(x)Pn(x) dx, (4.52)

s ∈ Rp, and

LYn (t) =

∫
Rq

exp(i 〈t, y〉)φY (y)Qn(y) dy, (4.53)
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t ∈ Rq. To verify that the integral LXn (s) converges absolutely for all s ∈ Rp, we apply
the Cauchy-Schwarz inequality to obtain

|LXn (s)|2 ≡
∣∣∣∣∫

Rp

exp(i〈s, x〉) [φX(x)]1/2 [φX(x)]1/2 Pn(x) dx

∣∣∣∣2
≤
(∫

Rp

| exp(i〈s, x〉) [φX(x)]1/2|2 dx

)
·
(∫

Rp

∣∣[φX(x)]1/2 Pn(x)
∣∣2 dx

)
=

(∫
Rp

φX(x) dx

)
·
(∫

Rp

φX(x) |Pn(x)|2 dx

)
= 1,

because φX is a density function and because {Pn : n ∈ N0} is an orthonormal basis
for the Hilbert space L2(µ). Similarly, |LYn (t)| ≤ 1 for all t ∈ Rq.

We now state the main result.

Theorem 4.11. Let X and Y be random vectors with values in Rp and Rq, respectively,
and with joint probability density function given by (4.45). Then,

V2(X, Y ) =
1

cpcq

∑
j 6=0

∑
k 6=0

ρj ρ̄k

∫
Rp

LXj (s)LXk (−s) ds

|s|p+1
p

∫
Rq

LYj (t)LYk (−t) dt

|t|q+1
q

,

(4.54)
whenever the latter double sum converges absolutely.

Proof. By taking Fourier transforms on both sides of (4.45), we obtain for all
s ∈ Rp and t ∈ Rq the identity

ψX,Y (s, t)− ψX(s)ψY (t) =
∑
n6=0

ρnLXn (s)LYn (t), (4.55)

subject to the requirement that we may interchange summation and integration; how-
ever, that interchange is justified by the assumption that the sum in the final result
converges absolutely. Using the identity (4.55) we deduce, moreover, that

|ψX,Y (s, t)− ψX(s)ψY (t)|2 =
∑
j 6=0

∑
k 6=0

ρj ρ̄k LXj (s)LXk (−s)LYj (t)LYk (−t).

Finally, to obtain a formula for V2(X, Y ), we need only interchange summation and
integration once more, which we are allowed to do so by assumption.

4.5.4 Examples

To display the versatility of Theorem 4.11, we apply that result to compute the dis-
tance correlation coefficients for several distributions, namely the bivariate normal, the
multivariate normal, the bivariate gamma and certain bivariate discrete distributions.
In each case, we retain the same notation as in Section 4.5.2.
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4.5.4.1 The bivariate normal distribution

Theorem 4.12. Let (X, Y ) follow a bivariate normal distribution with correlation co-
efficient ρ. Then

V2(X, Y ) =
4

π

∞∑
r=1

ρ2r(1
2
)2r((2r − 3)!!)2

(2r)!
(22r − 2). (4.56)

Proof. Starting with the Lancaster expansion of the bivariate normal density
function, as given in (4.46), and using the definitions of LXn and LYn in (4.52) and
(4.53), respectively, we obtain by substitution and integration-by-parts,

LXn (s) = LYn (s) =

∫ ∞
−∞

exp(isx)
1√
2π

exp
(
− 1

2
x2
)
Hn (x) dx

= (i s)n exp
(
− 1

2
s2
)
,

s ∈ R. Using the notation

(2n− 1)!! =
n∏
j=1

(2j − 1) ≡ (2n)!

2n n!

for the double factorial, we obtain∫
R
LXj (s)LXk (−s) ds

s2
= (−1)k ij+k

∫ ∞
−∞

sj+k−2 exp(−s2) ds,

=

{
(−1)k ij+k π1/2

(
1
2

)(j+k−2)/2
(k + j − 3)!!, if j + k is even

0, otherwise

since the latter integral is a moment of the N (0, 1
2
) distribution. By Theorem 4.11, we

obtain

V2(X, Y ) =
4

π

∑
j, k > 0
j+k even

ρj+k

j! k!

(
−1

2

)j+k (
(j + k − 3)!!

)2
.

To reduce the double-series (4.56) to a single series, let j+k = 2r with r ≥ 1. Then,
(4.56) reduces to

V2(X, Y ) =
4

π

∞∑
r=1

ρ2r(−1
2
)2r((2r − 3)!!)2

∑
j,k≥1
j+k=2r

1

j! k!

=
4

π

∞∑
r=1

ρ2r(1
2
)2r ((2r − 3)!!)2

(2r)!

2r−1∑
j=1

(2r)!

j! (2r − j)!

=
4

π

∞∑
r=1

ρ2r(1
2
)2r ((2r − 3)!!)2

(2r)!

( 2r∑
j=0

(
2r

j

)
− 2
)

=
4

π

∞∑
r=1

ρ2r(1
2
)2r ((2r − 3)!!)2

(2r)!
(22r − 2).
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The absolute convergence of this series can be verified by comparison with a geometric
series. Moreover, it is straightforward to verify that this series is identical with the
result obtained by Székely, et al. (p. 2786; 2007).

Once the distance covariance, V(X, Y ) is obtained, we let ρ → 1− to obtain the
distance variances V(X,X) and V(Y, Y ); here, we are using the well-known result that
if (X, Y ) is bivariate normally distributed and ρ = 1 then X = Y , almost surely.

4.5.4.2 The multivariate normal distribution

Theorem 4.13. Let (X, Y ) be multivariate normally distributed, i.e. (X, Y ) ∼ Np+q(0,Σ),
where

Σ =

(
ΣX ΣXY

ΣY X ΣY

)
with positive definite ΣX and ΣY . Then

Ṽ2(X, Y ) =
1

4 cp cq

∑
K 6=0

∑
J 6=0

S̃(K,J) T̃ (K,J) (−1)|AJ |+|BJ | i |AK |+|AJ |+|BK |+|BJ |

× Γ ((|AK |+ |AJ | − 1)/2) Γ ((|BK |+ |BJ | − 1)/2)
ΛK
XY

K!

ΛJ
XY

J !
,

where

S̃(K,J) =
1√
π

(
∑p

ν=1(AK +AJ)ν)!

(
∏p

ν=1(AK +AJ)ν !)

(
∏p

ν=1 [2(AK +AJ)ν ]!)

(
∑p

ν=1 2(AK +AJ)ν)!

×
Γ
(
|AK |+ |AJ |+ 1

2

)
Γ
(

1
2
p
)

Γ
(
|AK |+ |AJ |+ 1

2
p
)

and

T̃ (K,J) =
1√
π

(
∑q

ν=1(BK +BJ)ν)!

(
∏q

ν=1(BK +BJ)ν !)

(
∏q

ν=1 [2(BK +BJ)ν ]!)

(
∑q

ν=1 2(BK +BJ)ν)!

×
Γ
(
|BK |+ |BJ |+ 1

2

)
Γ
(

1
2
q
)

Γ
(
|BK |+ |BJ |+ 1

2
q
) .

Proof. The Lancaster expansion of the standardized jointly normal random vec-
tors is given in (4.48) to be

φX̃,Ỹ (x, y)− φX̃(x)φỸ (y) =
∑
N 6=0

ΛN
XY

N !
HAN

(x, Ip) HBN
(y, Iq) .

For the Fourier transforms, we find by integration-by-parts

LX̃N (s) =

∫
Rp

ei 〈s,x〉 φX̃(x)HAN
(x, Ip) dx

= (−1)|AN |
∫
Rp

ei 〈s,x〉
(
∂

∂x

)AN

φX̃(x) dx

= i |AN | sAN e−s
′s/2;
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and, similarly,

LỸN (t) = i |BN | sBN e−t
′t/2.

Furthermore, we have∫
Rp

LX̃K(s)LX̃J (−s)
|s|p+1

p

ds =

∫
Rp

(−1)|AJ | i |AK |+|AJ | sAK+AJ e−s
′s ds

|s|p+1
p

.

To calculate the affinely invariant distance correlation we reduced the problem of solving
the integral to integrals of type∫

Rp

sAK+AJ e−s
′s ds

|s|p+1
p

.

To derive the latter integral we change variables to hyperspherical coordinates, say
s = rω where r > 0, ω = (ω1, . . . , ωp)

′ ∈ Sp−1:∫
Sp−1

ωAK+AJ

∫
R+

r|AK |+|AJ |−2 e−r
2

dr dω.

The integral with respect to r is a standard gamma integral such that we obtain

1
2
Γ ((|AK |+ |AJ | − 1)/2)

∫
Sp−1

ωAK+AJ dω.

Furthermore we evaluate the remaining monomial over the sphere as in Aubert and
Lam (2003) to ∫

Sp−1

ωAK+AJ dω = S̃(K,J),

such that∫
Rp

LỸK(s)LỸJ (−s)
|s|p+1

p

ds = 1
2

(−1)|AJ | i |AK |+|AJ | Γ ((|AK |+ |AJ | − 1)/2) S̃(K,J).

Similarly, we derive the integral with respect to t, such that by putting together
all factors we get the final result by Theorem 4.11. We may apply Theorem 4.11 by
similar arguments as in the bi-variate case.

For the usual distance covariance V(X, Y ) we can use exactly the same arguments
as before. However, obtaining the result is slightly more complicated and the final
outcome is a little lengthy. Therefore, we explain the derivation of distance correlation
for the multivariate normal distribution step by step. The Lancaster expansion of φX,Y
is

φX,Y (x, y)− φX(x)φY (y) =
∑
N 6=0

ΣN
XY

N !
HAN

(x, Ip) HBN
(y, Iq) .
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In the same fashion as above we compute

LXN (s) =

∫
Rp

eis′x φX(x)HAN
(x,ΣX) dx

= i |AN | sAN e−s
′ΣXs/2,

such that∫
Rp

LXK(s)LXJ (−s)
|s|p+1

p

ds =

∫
Rp

i |AK |+|AJ | (−1)|AJ | sAK+AJ e−s
′ΣXs

ds

|s|p+1
p

.

To compute the integral ∫
Rp

sAK+AJ e−s
′ΣXs

ds

|s|p+1
p

we again change variables to hyperspherical coordinates, say s = rω where r > 0,
ω = (ω1, . . . , ωp)

′ ∈ Sp−1. The integral with respect to r is a standard gamma integral
such that the above integral simplifies to

(
1
2

)3/2−1/2(|AJ |+|AI |) Γ ((|AJ |+ |AI | − 1)/2)

∫
Sp−1

(φ′ΣXφ)
−1

φAJ+AI .

If ΣX ≡ CIp for some C > 0, the proof is as above. If Σ11 6= CIp we can divide by
a scalar, e.g. ‖ΣX‖1 such that ∆X := ΣX/‖ΣX‖1 ≺ Ip in the positive definite sense.
Hence, we may expand with the help of negativ binomial expansion

(φ′∆Xφ)
−1

=
∞∑
k=0

(
−1

k

)
(φ′∆Xφ− 1)

k
.

Finally, we may expand (φ′∆Xφ− 1)k with the help of the regular binomial Theorem.
Hence, we see that we are left to evaluate an integral over a sum of monomials with
respect to the sphere. This can be evluated with exactly the same formula as above,
see Aubert and Lam (2003). If we denote all the sums of these integrals with respect
to the spheres again by S(J , I) and T (J , I), respectively, the outcome is

V2(X, Y ) =
1

cp cq

∑
J 6=0

∑
I 6=0

S(J , I)T (J , I)
(

1
2

)3−1/2(|AJ |+|AI |+|BJ |+|BI |)

× Γ ((|AJ |+ |AI | − 1)/2) Γ ((|BJ |+ |BI | − 1)/2)
ΣJ
XY

J !

ΣI
XY

I!
.

S and T do now of course depend on ΣX and ΣY , respectively.

4.5.4.3 The bivariate gamma distribution
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Theorem 4.14. Suppose that random vector (X, Y ) is distributed according to a Sar-
manov bivariate gamma distribution, as given by (4.50). Then the distance covariance
between X and Y is

V2(X, Y ) =
4

2α+β

∞∑
j=1

∞∑
k=1

aj ak
(α)j
j!

(α)k
k!

(β)j
j!

(β)k
k!

1

(α− 1 + j)!(β − 1 + k)!

× (−1)2α+2β+j+k

22j

Γ(j + k − 1)

Γ(j − α)

Γ(j + k − 1)

Γ(j − β)

× 2F1

(
−α + 1− k, α + j;−α + j; 1

2

)
× 2F1

(
−β + 1− k, β + j;−β + j; 1

2

)
. (4.57)

Proof. By (4.50), we have the expansion,

φX,Y (x, y)− φX(x)φY (y) = φX(x)φY (y)
∞∑
n=1

anL
(α−1)
n (x)L(β−1)

n (y),

x, y > 0. Then, it follows from (4.52) that for s, t ∈ R,

LXn (s) =

∫ ∞
0

exp(isx)L(α−1)
n (x)φX(x) dx

=
1

Γ(α)

∫ ∞
0

exp
(
− (1− is)x

)
xα−1 L(α−1)

n (x) dx.

By applying (4.49), we deduce that

LXn (s) =
(α)n
n!

(1− is)−α
(
1− (1− is)−1

)n
=

(α)n
n!

(1− is)−(α+n) (−is)n,

and, analogously,

LYn (t) =
(β)n
n!

(1− it)−(β+n) (−it)n.

We calculate, next, the integral∫
R
LXj (s)LXk (−s) ds

s2
=

(α)j
j!

(α)k
k!

i−j+k
∫
R
sj+k−2 (1− is)−(α+j) (1 + is)−(α+k) ds

≡ (α)k
k!

(α)j
j!

i−j+k
∫
R
g(s) ds, (4.58)

where
g(s) = sj+k−2 (1− is)−(α+j) (1 + is)−(α+k), (4.59)

s ∈ R. We provide two approaches to calculating this integral, one by means of Cauchy’s
residue theorem and another by applying a beta integral which is also due to Cauchy.
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For the first approach we assume, to begin with, that α, β ∈ N. In that case, we
have g(s) = P(s)/Q(s), where P and Q are polynomials with deg(P) + 2 ≤ deg(Q)
and Q(s) 6= 0 for all s ∈ R. Furthermore, the rational function g, when extended to
the complex plane, has one pole in the upper half-plane, at z = i, and this pole is of
order α + k + 1. Therefore, by Cauchy’s residue theorem,∫

R
g(s) ds = 2πi Res(g; i).

An explicit formula for this residue can be found via

Res(g; i) =
1

(α− 1 + k)!
lim
z→ i

dα−1+k

dzα−1+k

[
(z − i)α+kg(z)

]
=

1

(α− 1 + k)!
lim
z→ i

dα−1+k

dzα−1+k

[
(z − i)α+k (−1)−(α+j) i−(2α+j+k)

× zj+k−2 (z + i)−(α+j) (z − i)−(α+k)
]

=
1

(α− 1 + k)!
(−1)−(α+j) i−2α−j−k−1

(
1

2

)α+j

×
α−1+k∑
ν=0

(
α− 1 + k

ν

)(
−1

2

)α−1+k−ν

(j + k − ν − 1)ν (α + j)α−1+k−ν .

By reversing the order of summation and simplifying the terms in the latter sum, we
find that the sum equals

α−1+k∑
ν=0

(
α− 1 + k

ν

)(
−1

2

)α−1+k−ν

(j + k − ν − 1)ν (α + j)α−1+k−ν

=
∞∑
ν=0

(
α− 1 + k

ν

)
(j − α + ν)α−1+k−ν

2ν
(α + j)ν (−1)ν

=
∞∑
ν=0

(−α + 1− k)ν
ν! 2ν

(j − α)α−1+k (α + j)ν
(j − α)ν

=
Γ(j + k − 1)

Γ(j − α)
2F1

(
−α + 1− k, α + j;−α + j; 1

2

)
,

where 2F1 denotes the Gaussian hypergeometric series. For general α ≥ β > −1, this
result remains valid because of Carlson’s Theorem (Andrews, p. 110; 1999).

Our second approach to calculating the integral (4.58) makes use of Cauchy’s beta
integral formula:

1

2π

∫ ∞
−∞

dt

(1 + iat)x (1− ibt)y
=

Γ(x+ y − 1)

Γ(x)Γ(y)
ay−1 bx−1 (a+ b)1−x−y,

where Re(x+y) > 1, Re(a) > 0, Re(b) > 0; see (Andrews, p. 48; 1999). Differentiating
both sides of this identity j + k − 2 times with respect to a and choosing the suiting
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parameters we find∫
R
g(s) ds =

2π ij+k−2

(α + 2− k)j+k−2

(
1

2

)2α+1
Γ(2α + 1)

Γ(α + 2− j) Γ(α + 2− k)

× 2F1

(
−j − k + 2, 2α + 1;α + 2− k; 1

2

)
.

Thus, we obtain∫
R
LXj (s)LXk (−s) ds

s2
=

(α)j
j!

(α)k
k!

ij−k
1

(α− 1 + k)!
(−1)−(α+j) i−2α−j−k−1

×
(

1
2

)α+j Γ(j + k − 1)

Γ(j − α)
2F1

(
−α + 1− k, α + j;−α + j; 1

2

)
,

and analogously for Y . By Theorem 4.11, we obtain the series (4.57) as a formal
expression for V2(X, Y ).

Finally, we verify that (4.57) converges absolutely. We observe, by (4.59), that∫
R
|g(s)| ds =

∫
R
|s|j+k−2 (1 + s2)−(2α+j+k)/2 ds.

Making the change of variables s2 = u/(1− u), the latter is transformed to

1
2

∫ 1

0

u(j+k−3)/2 (1− u)α+ 1
2 du = B

(
1
2
(j + k − 1), α + 1

2

)
,

where B(·, ·) is the standard beta function, and this integral converges absolutely be-
cause j + k − 1 > 0 for all j, k ∈ N and α + 1/2 > 0 for all α > 0. Hence, to establish
absolute convergence of the series (4.57), we need to examine the sum

∞∑
j=1

aj
(α)j
j!

(β)j
j!

∞∑
k=1

ak
(α)k
k!

(β)k
k!

×B
(

1
2
(j + k − 1), α + 1

2

)
B
(

1
2
(j + k − 1), β + 1

2

)
. (4.60)

By (4.51), we have aj ≤ λj for all j. Also, for fixed j and large k, Stirling’s formula for
the gamma function yields the asymptotic behavior,

B
(

1
2
(j + k − 1), α + 1

2

)
B
(

1
2
(j + k − 1), β + 1

2

)
∼ C1 k

−(α+β+1),

and
(α)j
j!
∼ C2 j

α−1,

where C1 and C2 are constants which do not depend on j, and similarly for β. As a
result, we find that the inner sum satisfies

∞∑
k=1

ak
(α)k
k!

(β)k
k!

B
(

1
2
(j + k − 1), α + 1

2

)
B
(

1
2
(j + k − 1), β + 1

2

)
≤ C1 + C2

∞∑
j=1

λk

k3
= C3 <∞,
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where C1, C2, and C3 are constants which are independent of j due to a standard
geometric series argument. Therefore the double sum in (4.60) is bounded above by

C3

∞∑
k=1

λk kα+β−2 <∞.

Therefore, the series (4.60) converges absolutely and, by Fubini’s theorem, the inter-
change of integral and summation in (4.54) is justified.

To calculate the distance variances V(X,X) and V (Y, Y ), we note that only the
marginal distributions are relevant. Therefore, we may assume that X and Y have any
joint distribution for which their marginal distributions are gamma with parameters
α and β, respectively. To that end, we first set β = α; then, the Sarmanov bivariate
gamma distribution reduces to the Kibble-Moran distribution, and it is well-known
(Kotz, et al.; 2000) that the joint characteristic function of (X, Y ) is(

(1− it1)(1− it2) + λt1t2
)−α

.

Next, we let λ→ 1; then this characteristic function converges to(
1− i(t1 + t2)

)−α ≡ E exp
(
i(t1 + t2)X

)
,

proving that, for λ = 1, X = Y , almost surely. Therefore, the distance variance
V(X,X) is a limiting case of V(X, Y ), viz.,

V2(X,X) =
1

c2
1

∫
R2

|ψX(s+ t)− ψX(s)ψX(t)|2 ds

s2

dt

t2

= lim
λ→1−

lim
β→α

1

c2
1

∫
R2

|ψX,Y (s, t)− ψX(s)ψY (t)|2 ds

s2

dt

t2

= lim
λ→1−

lim
β→α
V2(X, Y ).

Similarly,
V(Y, Y ) = lim

λ→1−
lim
α→β
V2(X, Y ).
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5 Extensions of Distance Correlation

Székely and Rizzo (2005), in developing the foundations of distance correlation, derived
an intriguing multidimensional singular integral, see (4.2). It is this integral which is
the subject of the present section, see Dueck, Edelmann and Richards (2015).

To recapitulate, suppose that α ∈ C satisfies 0 < <(α) < 2. Székely and Rizzo
(2005) proved that, for all x ∈ Rd,∫

Rd

1− cos(〈t, x〉)
|t|d+α
d

dt = C(d, α) |x|αd , (5.1)

where

C(d, α) =
2πd/2 Γ(1− α/2)

α 2α Γ
(
(d+ α)/2

) . (5.2)

Székely and Rizzo defined the integral (5.1) by means of a regularization procedure,
where the integrals at 0 and at ∞ are in a principal value sense: limε→0

∫
Rd\{εB+ε−1Bc},

where B is the unit ball centered at the origin in Rd and Bc is the complement of B.
In this section, we generalize the integral (5.1) by inserting into the integrand a

truncated Maclaurin expansion of the function cos(〈t, x〉). We show that the general-
ization is valid for all α ∈ C such that 2(m− 1) < <(α) < 2m, where m is any positive
integer. Moreover, we prove that the generalization converges absolutely under the
stated condition on α; as a consequence, we deduce that (5.1) converges without the
need for regularization.

We note that the integral (5.1) arises in other areas of probability and statistics.
Indeed, in the area of generalized random fields, (5.1) provides the spectral measure of
a power law generalized covariance function, which corresponds to fractional Brownian
motion; see Reed, Lee and Truong (1995) or Chilès and Delfiner (2012, p. 266, Section
4.5.6). In mathematical analysis, a related integral is treated by Gelfand and Shilov
(1964, pp. 192–195), and a similar singular integral arises in Fourier analysis in the
derivation of the norms of integral operators between certain Sobolev spaces of functions
(Stein, 1970, pp. 140 and 263).

We remark that the extension of (5.1) to more general values of α raises the intrigu-
ing possibility that a general theory of distance correlation can be developed for values
of α outside the range (0, 2).

Now let m ∈ N, the set of positive integers. Also, for v ∈ R, define

cosm(v) :=
m−1∑
j=0

(−1)j
v2j

(2j)!
(5.3)

to be the truncated Maclaurin expansion of the cosine function, where the expansion
is halted at the mth summand.

The following result generalizes (5.1) to arbitrary m ∈ N.

Theorem 5.1. Let m ∈ N and x ∈ Rd. For α ∈ C,∫
Rd

cosm(〈t, x〉)− cos(〈t, x〉)
|t|d+α
d

dt = C(d, α) |x|αd , (5.4)
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with absolute convergence if and only if 2(m− 1) < <(α) < 2m, where C(d, α) is given
in (5.2).

Proof. We shall establish the proof by induction on m.
Throughout the proof, we let Ba = {x ∈ Rd : |x|d < a} denote the ball which is

centered at the origin and which is of radius a.
Consider the case in which m = 1. In this case, observe that for t ∈ Ba where a is

sufficiently small, the function

t 7→ cos1(〈t, x〉)− cos(〈t, x〉) ≡ 1− cos(〈t, x〉)

is asymptotic to |t|2d. Then the integrand in (5.4), when restricted to Ba, is asymptotic
to |t|−d−α+2

d . By a transformation to spherical coordinates to compute the integral over
the unit ball B we deduce that the integrand is integrable over Ba, and hence integrable
over any compact neighborhood of the origin, if and only if <(α) < 2.

For |t|d →∞, we apply the bound |1− cos(〈t, x〉)| ≤ 2 to deduce that the integrand
in (5.4) (with m = 1) is integrable over R \ Ba if and only if <(α) > 0. Consequently,
for m = 1, the integral converges for all x ∈ Rd if and only if 0 < <(α) < 2.

To conclude the proof for the case in which m = 1, we proceed precisely as did
Székely, et al. (2007, p. 2771) to obtain the right-hand side of (5.4).

Next, we assume by inductive hypothesis that the assertion holds for a given positive
integer m. Note that the right-hand side of (5.4), as a function of α ∈ C, is meromorphic
with a pole at each nonnegative integral α.

By (5.3),

cosm+1(v) = cosm(v) + (−1)m
v2m

(2m)!
.

For fixed a > 0, we decompose the integral (5.4) into a sum of three terms:∫
Rd

cosm(〈t, x〉)− cos(〈t, x〉)
|t|d+α
d

dt = T1 + T2 + T3, (5.5)

where

T1 =

∫
Ba

cosm+1(〈t, x〉)− cos(〈t, x〉)
|t|d+α
d

dt,

T2 =

∫
Rd\Ba

cosm(〈t, x〉)− cos(〈t, x〉)
|t|d+α
d

dt,

and

T3 =
(−1)m−1

(2m)!

∫
Ba

〈t, x〉2m

|t|d+α
d

dt.

We now determine the necessary and sufficient condition on the range of α for which
the decomposition (5.5) entails absolute convergence of the integral. In so doing, we
examine each term individually.
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In the case of T1, we apply (5.3) to write

cosm+1(〈t, x〉)− cos(〈t, x〉) =
∞∑

j=m+1

(−1)j+1 〈t, x〉2j

(2j)!
. (5.6)

Proceeding formally to interchange the integral and summation, we obtain

T1 =
∞∑

j=m+1

(−1)j+1

(2j)!

∫
Ba

〈t, x〉2j

|t|d+α
d

dt. (5.7)

To verify that this series converges absolutely, note that∫
Ba

〈t, x〉2j

|t|d+α
d

dt (5.8)

converges absolutely for all x ∈ Rd if and only if <(α) < 2j. Moreover, this integral
clearly is a radial function of x, and it can be calculated exactly by a transformation to
spherical coordinates. After evaluating the integral and inserting it in the series (5.7),
we find that the series converges absolutely for all x ∈ Rd if and only if <(α) < 2(m+1).

As regards the term T2 we know, by inductive hypothesis, that it converges abso-
lutely if and only if <(α) > 2(m− 1).

To analyze the term T3, we note that T3 is similar to (5.8); hence we find that T3

converges absolutely if and only if <(α) < 2m.
To complete the proof, we need to evaluate T3. Let Sd−1 be the unit sphere in Rd

and, for ω = (ω1, . . . , ωd) ∈ Sd−1, let dω denote the corresponding surface measure. We
define

Ad−1 =

∫
Sd−1

ω2m
1 dω,

a constant which can be calculated exactly but whose exact value is not needed in this
context.

Similar to (5.8), T3 is a radial function of x. Thus, by a standard invariance argu-
ment and by a transformation to spherical coordinates, t = rω, where ω ∈ Sd−1 and
0 ≤ r ≤ a, we obtain

T3 =
(−1)m−1

(2m)!
Ad−1 |x|2md

∫ a

0

r2m−1−α dr

=
(−1)m−1

(2m)!
Ad−1 |x|2md

a2m−α

2m− α
. (5.9)

Moreover, the last term in (5.9) exists for all α ∈ C such that <(α) 6= 2m and it is a
meromorphic function of α.

To summarize, T1 converges absolutely for <(α) < 2(m+1); T2 converges absolutely
for <(α) > 2(m − 1); and T3 converges absolutely for <(α) < 2m. Therefore, the
decomposition (5.5) is valid for 2(m − 1) < <(α) < 2m, and it represents an analytic
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function which equals C(d, α) |x|αd on the strip {α ∈ C : 2(m−1) < <(α) < 2m}. Hence,
by analytic continuation, we obtain for 2(m− 1) < <(α) < 2(m+ 1), <(α) 6= 2m,

C(d, α) |x|αd = T1 + T2 +
(−1)m−1

(2m)!
Ad−1 |x|2md

a2m−α

2m− α
. (5.10)

Now fix 2m < <(α) < 2(m+1) and let a→∞ in (5.10). It is apparent that T2 → 0
and a2m−α → 0; therefore, for 2m < <(α) < 2(m+ 1), we obtain

C(d, α) |x|αd = lim
a→∞

T1 =

∫
Rd

cosm+1(〈t, x〉)− cos(〈t, x〉)
|t|d+α
d

dt,

which concludes the proof.

In conclusion, we are intrigued by the possibility of applying (5.4) to develop a
general theory of distance correlation for values of <(α) > 2. We expect, inter alia,
that such a theory will lead for sufficiently large <(α) to distance correlation analyses
of data modeled by random vectors which do not have finite first moments, e.g., the
multivariate stable distributions of index less than 2. Moreover, although the integral
(5.4) diverges for <(α) = 2m, our results raise the possibility of developing a theory
of distance correlation at the poles by modifying (5.4) to attain convergence as <(α)
converges to the poles.

Finally, we remark that our decomposition (5.5) was motivated by the ideas of
Gelfand and Shilov (1964, p. 10).
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6 Discussion

In this thesis we discussed the concepts of Hawkes processes and distance correlation
as powerful tools of recognizing meaningful structures in point process data and in
multivariate random samples.

We connected several causality concepts to Hawkes model and showed their equiva-
lence within this model. Causality is fully encoded in the Hawkes kernels. Therefore, we
provided a nonparametric, consistent and asymptotic normal estimator based on time
series techniques. Furthermore, we illustrated our results by applying our methods to
real world data from the spinal dorsal horn of a rat.

In future work, a test for noncausality needs to be established. However, this is a
multiple hypothesis testing problem and it might not be tractable in higher dimensions.
We also notice that our estimation procedure suffers from high computational costs in
high dimensions.

We have studied an affinely invariant version of the distance correlation measure in-
troduced by Székely, et al. (2007) and Székely and Rizzo (2009) in both population and
sample settings (see Székely and Rizzo (2012) for further aspects of the role of invariance
in properties of distance correlation measures). The affinely invariant distance correla-
tion shares the desirable properties of the standard version of the distance correlation
and equals the latter in the univariate case. In the multivariate case, the affinely in-
variant distance correlation remains unchanged under invertible affine transformations,
unlike the standard version, which is preserved under orthogonal transformations only.
Furthermore, the affinely invariant distance correlation admits an exact and readily
computable expression in the case of subvectors from a multivariate normal popula-
tion. The standard distance correlation version in the Gaussian case allows for a series
expansion, too, but this does not appear to be a series that generally can be made
simple, and further research will be necessary to make it accessible to efficient numeri-
cal computation. Related results and further asymptotics can be found in Gretton, et
al. (2012) and Székely and Rizzo (2013).

Moreover, we computed distance covariance for several distributions, such as a mul-
tivariate Laplace distribution or for Lancaster distributions (a mulivariate gamma dis-
tribution). The form of the Lancaster expansions simplifies the computation of distance
correlation severely. A drawback of the presented method consists of finding those ap-
propriate expansions, even though the existence is immediate.

Finally, we generalize an integral which is at the core of distance correlation by
analytic continuation. This raises the possibility that one may introduce distance cor-
relation measures with different parameters in the weight functions.

Competing measures of dependence also have featured prominently recently (Reshef,
et al. 2011; Speed, 2011). However, those measures are restricted to univariate settings,
and claims of superior performance in exploratory data analysis have been disputed
(Gorfine, Heller and Heller, 2012; Simon and Tibshirani, 2012). We therefore opine
with Newton (2009) that the distance correlation and the affinely invariant distance
correlation might become uniquely useful, and potentially the predominant, measures
of dependence and associations for the 21st century.
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